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Abstract

A Spoken Dialogue System’s (SDS’s) dialogue strategy specifies which action it will

take depending on its representation of the current dialogue context. Designing it by

hand involves anticipating how users will interact with thesystem, and/or repeated

testing and refining, and so can be a difficult, time-consuming task. Since SDSs in-

evitably make understanding errors, a particularly important issue is how to design

“repair strategies”, the parts of the dialogue strategy which attempt to get the dialogue

“back-on-track” following these errors.

To try to produce better dialogue strategies with less time and effort, previous re-

searchers have modelled a dialogue strategy as a sequentialdecision problem called

a Markov Decision Process (MDP), and then applied Reinforcement Learning (RL)

algorithms to example training dialogues to generate dialogue strategies automatically.

More recent research has used training dialogues conductedwith simulated rather than

real users and learned which action to take in all dialogue contexts, (a “full” as op-

posed to a “partial” dialogue strategy) - simulated users allow more training dialogues

to be generated, and the exploration of new dialogue contexts not present in an original

dataset. As yet however, limited insight has been provided as to which dialogue con-

textual features are important to include in the MDP and why.Indeed, a full dialogue

strategy has not been learned from training dialogues with arealistic probabilistic user

simulation derived from real user data, and then shown to work well with real users.

This thesis investigates the value of adding new linguistically-motivated contextual

features to the MDP when using RL to learn full dialogue strategies for SDSs. These

new features are recent Dialogue Acts (DAs). DAs indicate the role or intention of an

utterance in a dialogue e.g. “provide-information”, an utterance being a complete unit

of a speaker’s speech, often bounded by silence. An accurateprobabilistic user simula-

tion learned from real user data is used for generating training dialogues, and the recent

DAs are shown to improve performance in testing in simulation and with real users.

With real users, performance is also better than other competing learned and hand-

crafted strategies. Analysis of the strategies, and further simulation experiments show

how the DAs improve performance through better repair strategies. The main findings

are expected to apply to SDSs in general - indeed our strategies are learned and tested

on real users in different domains, (flight-booking versus tourist information). Com-

parisons are also made to recent research which focuses on handling understanding

errors in SDSs, but which does not use RL or user simulations.
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Chapter 1

Introduction

1.1 Motivation

Spoken Dialogue Systems (SDSs) are human-computer interfaces that enable humans

to have spoken dialogues with computers, and can be used either in place of, or as

a complement to the traditional Graphical User Interface (GUI). The motivation for

SDSs is that since spoken dialogue enables humans to enjoy efficient and productive

interactions with one another, given sufficiently advancedtechnology, the same can

be true for human-computer interactions. Figure 1.1 is a graphical representation of

a generic SDS and shows the key basic components. One of thesecomponents is the

Dialogue Manager (DM), the main functions of which are to maintain a representation

of the current dialogue context, and based on this representation, to specify which ac-

tion the system will take next. This is likely to be one or moreutterances, (units of

speech, often bounded by silence), but might also be some other kind of action such as

a database query to retrieve information for the user. The DM’s mapping between rep-

resentations of dialogue contexts and system actions is known as adialogue strategy,

and clearly the dialogue strategy should be designed to maximise a dialogue’s overall

chances of success, however this may be defined. It is dialogue strategy design for

SDSs to which this thesis directly relates.

The next section here introduces some of the main concepts and issues which are re-

lated to dialogue strategy design and which are particularly relevant to the experimental

work of this thesis. In doing so, it tries to give an impression of how designing a dia-

logue strategy by hand can be a complicated and time-consuming task. This fact has

1
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Figure 1.1: The basic architecture of a generic Spoken Dialogue System; The input

components, (the Automatic Speech Processing and Natural Language Understand-

ing components), try to interpret user utterances, and the output components, (Natural

Language Generation and Text-To-Speech synthesiser), generate utterances; The Dia-

logue Manager (DM) maintains a representation of the dialogue context and executes

a dialogue strategy; A Dialogue Act (DA) is defined in Section 1.2 as a representation

of the role/intention of an utterance in a dialogue.

been the spur for a field of research whose goal is to produce better dialogue strategies

with less time and effort, and whose basic approach has been to use a particular kind

of algorithm to automatically derive dialogue strategies from appropriate datasets. It

is this field of research that this thesis seeks to extend, andso Section 1.1.2 goes on

to outline the scope of previous research and motivate the experimental work of later

chapters.
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1.1.1 Concepts and issues involved in designing a dialogue s trat-

egy

Designing a dialogue strategy by hand, even for a relativelysimple Spoken Dialogue

System (SDS), can be a difficult and time-consuming process.The limitations of an

SDS mean that human-machine dialogue is quite different in nature to human-human

dialogue (Fraser and Gilbert, 1991), and that action choices must be made based on

sometimes highly imperfect representations of the dialogue context - representations

that potentially include a lot of information, varying amounts of which will be either

relevant, inaccurate (e.g. as a result of Automatic Speech Recognition (ASR) errors),

or irrelevant. Thus, designers of a dialogue strategy may need to spend a large amount

of time anticipating how potential users will interact withthe system, and/or on re-

peated testing and refining. In this section, we use an example dialogue to introduce

relevant concepts and terms, and to try to give an impressionof the non-trivial nature

of dialogue strategy design.

1.1.1.1 Information-slot-filling Spoken Dialogue Systems

Table 1.1 shows a hypothetical dialogue between a user and the “TownInfo” SDS

(Lemon et al., 2006b) which is used in an experiment described in this thesis, and

whose purpose is to help the user to find local restaurants, bars and hotels. The Town-

Info system is an example of aninformation-slot-fillingSDS, (“slot-filling” for short),

and most of the relevant previous research, and all of the experimental work in this the-

sis concerns dialogue strategy design for information-slot-filling SDSs. Information-

slot-filling SDSs attempt to obtain preferences from the user, (fill slots), and then based

on these preferences, (slot-values), they retrieve and present suitable entries from a rel-

evant information source such as a database. Preferences which the TownInfo system

asks the user for includetypee.g. type of food,price-rangeandlocation. Of course, if

no options are found, then a sensible dialogue strategy willask the user to relax one or

more of their preferences, while if there are many options, then it will ask for further

preferences, (assuming that there are further preferencesto ask for).
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Turn System transcript Turn User (ASR)

1 Welcome to the TownInfo tourise information system, 2 i want a restaurant

how may i help you?

3 Did you say restaurant? 4 yes

5 What kind of food are you looking for? 6 [asr rejection]

7 Would you like it to be cheap, reasonable or expensive?8 [out-of-domain]

9 Would you like it to be cheap, reasonable or expensive?10 reasonably priced

11 A reasonably-priced restaurant, in what area of town? 12 [out-of-domain]

13 I can answer simple requests such as ..., how may I 14 a chinese restaurant

help you?

15 A chinese restaurant, in what area of town? 16 no french

17 A french restaurant, in what area of town? 18 central

19 Did you say central? 20 yes

21 Please wait a moment while I find a reasonably-priced

central French restaurant. The first of two options ...

Table 1.1: A hypothetical example dialogue between a tourist information Spoken Dia-

logue System and a user. The transcript for the user’s utterances is that generated by

the speech recogniser.

1.1.1.2 Understanding errors in Spoken Dialogue Systems

Due to the limitations of their input components, (the Automatic Speech Recognition

(ASR) and Natural Language Understanding (NLU) components), SDSs inevitably

make understanding errors.Non-understandingsare a first broad category of under-

standing error, and these occur when the system fails to obtain any interpretation for

what the user just said, or is not confident enough to choose a specific interpretation.

In this thesis, we define a non-understanding to mean that thesystem failed to ob-

tain a “within-domain” interpretation - an interpretationwhich means something to

the system in question e.g. for the TownInfo system, something relating to the type,

price or location of a restaurant/hotel/bar, or one of a small set of simple commands

such as “Start over”). Turns 6, 8, and 12 in Table 1.1 are therefore examples of non-

understanding errors. In turn 6, there is anASR rejection, which means that either

the ASR component could not form a hypothesis for what the user just said with a

sufficient degree of confidence to consider it reliable, or that it failed to form any hy-



Chapter 1. Introduction 5

pothesis at all. By contrast, in turns 8 and 12, the ASR component forms a hypothesis

for what the user said, but no within-domain interpretationcan be derived from it and

so the utterance is considered “out-of-domain”. Often in these cases, the original user

utterance is in fact within-domain and is considered out-of-domain due to ASR errors

(misrecognised words). The second broad category of understanding error ismisun-

derstandings. These occur when the SDS forms an interpretation which is not in line

with the user’s intentions, and for an information-slot-filling SDS, this would mean

that the system has obtained an incorrect slot-value. In turn 16 in Table 1.1, following

the system’s attempt to confirm an incorrect slot-value, theuser indicates the misun-

derstanding error.

1.1.1.3 The non-trivial nature of dialogue strategy design : repair strategies and

initiative

To try to give more of an impression of the non-trivial natureof dialogue strategy

design for SDSs, we now consider “repair strategies”, the parts of a dialogue strategy

which try to get the dialogue “back-on-track” following understanding errors. We start

with repair strategies for non-understandings.

Following a non-understanding error then, it is often unclear which repair strategy is

best to use. For example, should the system repeat the promptwhich caused the non-

understanding, (turn 9), or is this a bad thing to do because it is likely to frustrate the

user and cause another non-understanding? Alternatively,should the SDS switch fo-

cus to a different slot, (turn 7), but if so, which one, or should it instead use some kind

of “give help” function, (turn 13) in order to inform/remindthe user of the system’s

capabilities/limitations? As the number of possible repair strategies available to the di-

alogue strategy designer increases, the opportunities to make more appropriate choices

for the current dialogue context may also increase, but thenso will the complexity of

the problem of finding these most appropriate choices. Like all action choices, the

decision of which repair strategy to apply must be based on the information in the

system’s representation of the dialogue context, but what information is important is

also likely to be unclear. Again, as the amount of information in the representation

increases, the opportunities to make better repair strategy choices may also increase,

but so will the complexity of the problem.

Which repair strategies are best to use following differentuser indications of misun-
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derstanding errors is another potential area for uncertainty - for example, in turn 17

it seems sensible for the system to re-confirm the problem slot, (not doing so might

disconcert the user), but had the system already failed a number of times to correctly

fill this slot, would it instead be better to give up and move on? In order to try to detect

misunderstanding errors in the first place, a dialogue strategy may use implicit and

explicit confirmation, (turn 11 is an example of the former, and turn 19, of the latter).

However, the dialogue strategy designer may not wish the system to over-use confir-

mation for fear of irritating the user, and so this then presents the problem of deciding

when it is necessary to confirm, and when not.

A further important concept in dialogue strategy design which is related to understand-

ing errors and repair strategies, and which will be mentioned again at various points in

this thesis, isinitiative. The concept of “having the initiative” can be loosely defined as

having the greater control in directing the dialogue. In turns 5 and 7, the system has the

initiative because it asks for a specific piece of information. By contrast, in turns 1 and

13 it asks open-ended questions and so invites the user to supply any within-domain

information that they please, thus giving the initiative tothe user. Table 1.1 may be

referred to as amixed-initiativedialogue, because sometimes the system has the initia-

tive, and sometimes the user. Another problem for the dialogue strategy designer then,

is to decide when it is appropriate for the system to take the initiative, and when to

give it to the user. For example, if the system asks an open-ended question at the start

of the dialogue, then this might often induce users to supplya greater number of pref-

erences in their first turn. This could be a desirable or undesirable outcome depending

on whether such user turns are likely to be subject to understanding errors. If they

are, then it will probably set the system back in its goal of successfully completing the

dialogue, but if they are not, then the opposite is true.

1.1.2 Using Reinforcement Learning in dialogue strategy de sign

and the scope of previous research

Due to the difficult nature of designing dialogue strategies, previous researchers have

begun to investigate howmachine learningcan be applied to the problem. Machine

learning is a broad subfield of artificial intelligence, and it concerns algorithms and

techniques that allow computers to “learn” to perform a taskby extracting rules and

patterns from (usually large) appropriate datasets. For dialogue strategy design, start-
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ing with Levin and Pieraccini (1997), previous researchershave chosen to use a ma-

chine learning approach which involves modelling a dialogue strategy as a sequential

decision problem called a Markov Decision Process (MDP). AnMDP is defined in

terms ofstates, actionsand numericalrewards, and in the case of a dialogue strat-

egy, states are system representations of the dialogue context, actions correspond to

system actions, and higher rewards are assigned to dialogues which have favourable

conclusions e.g. task completion, short length, high user satisfaction. The goal then

is to find the action in each state which,on average will lead to the greatest long-term

reward. Happily, Reinforcement Learning (RL) algorithms,which work using trial-

and-error search, can be applied to example training dialogues in order to try to solve

this problem, and in doing so, generate a dialogue strategy automatically.

If we are to use RL to learn which is the best action to take in all possible contexts,

(“full” as opposed to “partial” dialogue strategies), thenwe require a large number of

training dialogues. In general, generating a sufficiently large number of training dia-

logues with real users will be infeasible due to time and possibly cost constraints, and

so a user simulation, a predictive user model for simulatinguser responses (Schatz-

mann et al., 2006), must be used instead. This user simulation must simulate real

users as accurately as possible. If it does not accurately simulate real users, then we

risk learning a dialogue strategy that may work well with theuser simulation, but not

with real users. Ideally, to create an accurate user simulation, an empirical approach

should be taken, and this means creating a stochastic user simulation whose probabil-

ities are derived from real user data viaSupervised Learning (SL)e.g. Georgila et al.

(2005a). SL algorithms are machine learning algorithms which generate a function1

that maps inputs to desired outputs - in the case of a user simulation, inputs are rep-

resentations of the dialogue context, and outputs are user responses. If taking this

approach to create a user simulation requires first collecting new data, then it could be-

come very time-consuming. However, the finding made by Lemonet al. (2006a) that

a strategy learned in one information slot-filling domain, (flight-booking), can work

well in another, (tourist information) is encouraging. This suggests that at least for

information-slot-filling systems, it should be unnecessary to collect new training data

for every different domain, and indeed that data from different slot-filling domains can

be pooled.

In any case, in using RL to learn full dialogue strategies, only Scheffler and Young

1If the output of the function is a continuous value, then it iscalledregression, and if it predicts a
class label of the input object, then it isclassification.
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(2002) has used a stochastic user simulation whose probabilities are derived from real

user data, but Scheffler and Young’s learned strategy was notthen tested and shown to

work well with real users. Additionally, like other previous research which involved

learning full dialogue strategies with a user simulation (e.g. Pietquin and Renals 2002),

Scheffler and Young included little contextual informationin the RL state - onlyslot-

statusfeatures (e.g. for each information slot, whether it is filled and/or confirmed),

and no linguistically-motivated features. Hence it provides little insight as to what

contextual features should be represented in the state for learning a better dialogue

strategy and why. Henderson et al. (2005, 2008), where a dialogue strategy was learned

from a fixed dataset, is the only example of previous researchin which a large amount

of contextual information is included in the RL state. Such an amount would have been

intractable for standard RL, and so Henderson et al. applieda Hybrid RL/Supervised

Learning (SL) approach where the SL component restricted the learned strategy to

states for which there was data, and additionally the RL component was augmented

with a generalisation technique in order to generalise fromobserved to unobserved

states. However, including all of the available contextualfeatures in the RL state did

not provide insights as to which were important and why, and there is no qualitative

analysis of the learned strategy. Indeed there is also the question of how well the

learning approach really worked - would it be possible to learn as good as, or an even

better dialogue strategy with much less information in the state and standard RL?

1.2 Thesis contributions

The work of this thesis concerns the issues described above.The main aims are to

identify new contextual features which can improve the learned strategy if included in

the RL state, and to understand why they cause improvements.Given what was said

above, our basic approach must therefore be to train full dialogue strategies with accu-

rate user simulations, and then to confirm that they work wellwith real users by testing

them on real users. Following a set of preliminary RL experiments, this is what we go

on to do. The new contextual features which we choose to focuson are linguistically-

motivated, namely recent Dialogue Acts (DAs). A Dialogue Act (DA), alternatively

referred to as aspeech act, or adialogue move, is a concept from semantic and prag-
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matic theory of language2 (Searle, 1969), and is used to indicate the role or intention

of an utterance within a dialogue. For example, if we were to define a DA-schema

for utterances in TownInfo dialogues, we might represent turn 5 in Table 1.1 with a

DA such as “requestfood type”, and turn 18 with “providefood location”. Various

DA-schemas have been designed to fit the needs of previous research, and descriptions

can be found in the literature e.g. Dialogue Act Markup in Several Layers (DAMSL)

(Core and Allen, 1997), Dialogue Act Tagging scheme for Evaluation of SDSs (DATE)

(Walker and Passonneau, 2001). Besides investigating the usefulness of recent DAs,

other aims of this thesis are to investigate whether our learned strategies outperform

a state-of-the-art hand-crafted strategy, and the Hybrid Strategy of Henderson et al.

(2008), and if so, to understand why.

The main contributions of this thesis can be summarised as follows:

• A complete literature review of previous research on using RL to learn dialogue

strategies is provided.

• Analysis is made of suitable RL parameter settings for learning dialogue strate-

gies, and of the effect on the learned strategy of different reward functions based

on task completion and dialogue length.

• When training and testing with different stochastic user simulations whose prob-

abilities are derived from real user data, results show thatadding the DAs of the

last user and then system turn to the slot-status features already in the state pro-

duces significant incremental improvements in the learned strategy. Our learned

strategies are also shown to achieve better evaluation scores than the Hybrid

Strategy of Henderson et al..

• Results from real user tests show that a strategy trained with one of these user

simulations, and with a state containing slot-status and recent DA features, sig-

nificantly outperforms both a strategy learned with only slot-status features, and

a state-of-the-art hand-crafted strategy. Again, our learned strategy also achieves

better evaluation scores than the Hybrid Strategy of Henderson et al..

• Analysis is made of the Hybrid Strategy of Henderson et al., and it is compared

to our learned strategies to show that it is apparently nowhere near optimal. An

2Semantics is loosely defined as the study of meaning in natural language, and pragmatics, as the
study of the ability of speakers to communicate more than what is explicitly said.
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explanation for why this is the case is provided - this explanation centres on the

size of the state-action space used by Henderson et al..

• Analysis of the learned strategies and the real user experiment, and further RL

experiments show how the recent DAs are improving the learned strategy:

– The DAs are only making significant improvements to the learned strategy

with respect to better repair strategies in states in which the slot-status fea-

tures are unchanged, (most often due to non-understanding errors) - they

are not producing improvements with respect to dealing withuser indica-

tions of misunderstanding errors, nor in portions of dialogue in which there

is smooth progress i.e. slots are being filled and confirmed. However, we

do observe a general trend for the reinforcement learner to learn to maintain

focus on the problem slot following user indications of misunderstanding

errors.

– The DAs are important both because they can be used to identify whether

the slot-status features are unchanged and hence that a repair strategy is

required, and also for then choosingwhichrepair strategy to apply. For ex-

ample, our best learned strategy is more likely to repeat itsprevious action

following an ASR rejection, but to switch focus to a new slot following a

user utterance that is recognised as out-of-domain.

– Choosing an optimal repair strategy is not simply a case of choosing any

“sensible” repair strategy which avoids repeating the previous system ac-

tion. The hypothesis that it was originated from analysis ofthe real user

experiment which showed that both a strategy learned with only slot-status

features and the hand-crafted strategy over-used repetition in states in which

the slot-status features were unchanged - this irritated the users, causing

them to hyperarticulate / adopt an irritated tone, which in turn led to more

ASR errors and hence longer dialogues and lower average taskcompletion.

– Including the DAs of both the last system and user turns produces better

repair strategies - taking out the DAs of the last user turn and using only

the DA of the last system turn causes a deterioration in performance.

• Our findings are compared to those of relevant previous research on handling

non-understanding errors in SDSs - Skantze (2003)/Chapter4 of Skantze (2007)

and Bohus and Rudnicky (2005).
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1.3 Thesis overview

This section provides an overview of the thesis. It summarises the contents of each

chapter, and where this includes experimental work, it alsogives some information

about the methodology.

1.3.1 Chapter 2: Markov Decision Processes and Reinforceme nt

Learning

This chapter introduces Markov Decision Processes (MDPs) and Reinforcement Learn-

ing (RL) in the context of their application in this thesis.

1.3.2 Chapter 3: Previous research on Reinforcement Learni ng of

dialogue strategies

This chapter summarises and analyses the work of the different research groups who

have made significant contributions with regards to using Reinforcement Learning

(RL) to learn dialogue strategies for Spoken Dialogue Systems (SDSs). Throughout

the presentation, a comparative analysis of the previous research is provided, lessons

learned are presented, and further work as carried out in theresearch described in

Chapters 4 to 7 of this thesis is motivated. See also Framptonand Lemon (2008b) for

an extended version of the literature review contained in this chapter.

1.3.3 Chapter 4: The Reinforcement Learning setup and proof -of-

concept experiments

This chapter first introduces our basic Reinforcement Learning (RL) experimental

setup and then goes on to describe three preliminary RL experiments, (see also Framp-

ton and Lemon 2005). In introducing the basic experimental setup, we discuss how

best to set the reinforcement learner’s parameters for learning dialogue strategies. The

experiments here are considered preliminary because they use a stochastic user sim-

ulation whose probabilities are not learned from real user data - instead they are set

based on intuition and an initial analysis of relevant data.The experiments of this

chapter may be preliminary, but nevertheless, they enable us to investigate a number
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of relevant issues. These include how and why adding recent Dialogue Acts (DAs)

to the state might improve the learned strategy, whether it is possible to scale up to

a commercially-realistic number of slots, how different types of reward function af-

fect the learned strategy and the implications of this for designing reward functions for

learning dialogue strategies.

1.3.4 Chapter 5: Learning with real user data: n-gram user si mula-

tion experiments

This chapter describes two experiments in which slot-filling dialogue strategies are

learned and tested with stochastic user simulations whose probabilities are learned via

Supervised Learning (SL) from real user data i.e. n-gram models whose probabilities

are learned from the COMMUNICATOR data (Walker et al., 2001a) (flight-booking

domain). An n-gram model models sequences of n items, (here ndialogue turns rep-

resented as Dialogue Acts (DAs), and predicts the next item based on the previous n-1

items.

In the first experiment of this chapter, dialogue strategiesare learned for a system with

three information slots, and in the second, for a system withfour information slots, (see

also Frampton and Lemon (2006) for a summary of the four-slotexperiment). These

experiments investigate whether the learned strategy can be improved if the DAs of

the last system and user turns are added to the state. Since the DAs are found to im-

prove the learned strategy, detailed analysis is conductedin order to investigate why.

The main reasons for conducting the second 4-slot experiment include to accumulate

more evidence for how the recent DAs improve the learned strategy and to show that

the RL problem remains tractable with a more commercially-realistic number of slots.

Another main reason is to compare performance with the Hybrid RL/SL Strategy of

Henderson et al. (2008). A meaningful comparison is possible here because the Hy-

brid Strategy was tested with a user simulation derived fromCOMMUNICATOR data

which has been shown to produce very similar simulated dialogues to the n-gram sim-

ulations (Georgila et al., 2006). Prior to describing the experiments, this chapter also

discusses the limitations of the n-gram simulations with respect to accurately simulat-

ing real users, and the implications this has for learning dialogue strategies.
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1.3.5 Chapter 6: Testing the learned strategies on real user s

This chapter describes an experiment in which we implement two of our learned three-

slot strategies and a state-of-the-art hand-crafted strategy in a slot-filling Spoken Di-

alogue System (SDS) and test them on real users. The SDS whichwe use here -

the TownInfo SDS (Lemon et al., 2006b) - operates in the tourist information domain

and so we must first transfer our learned strategies to this alternative domain by treat-

ing them as generic slot-filling strategies. The first learned strategy tested here was

learned with a state containing only the slot-status features, and the second, with ad-

ditional state features for the Dialogue Acts (DAs) of the last system and user turns.

Hence here we are investigating the relative performance ofthese different strategies

in testing with real users. Various evaluation measures, both objective and subjective,

are collected, and we provide analysis to explain performance differences between the

strategies. Again we are also able to compare results with the Hybrid RL/Supervised

Learning (SL) Strategy of Henderson et al. (2008), because athree-slot version of the

Hybrid strategy was tested on real users with the same SDS, and the same evaluation

measures were collected, (see Lemon et al. 2006a). We provide analysis of the Hybrid

strategy itself in order to explain its relative performance, and discuss why the learning

approach used by Henderson et al. produced the strategy which it did.

1.3.6 Chapter 7: Investigating the role of Dialogue Acts in l earning

repair strategies

Based on the results and analysis of the experiments in Chapters 5 and 6, a number of

hypotheses were formed as to why the recent DAs improved the learned strategy. In

this chapter, these hypotheses are investigated further infour new experiments where

new strategies are learned and tested with the n-gram simulations, (see also Frampton

and Lemon (2008a) for a summary of these experiments). The use of the n-gram

simulations here is justified because of the positive resultobtained in the real user

experiment of Chapter 6. The hypotheses tested here all relate to repair strategies, and

the role of recent DAs in learning more effective repair strategies. Having described

these experiments, we then compare our findings with relevant previous research on

repair strategies for Spoken Dialogue Systems (SDSs) i.e. Skantze (2003) and Bohus

and Rudnicky (2005). This previous research did not involveReinforcement Learning

(RL) or user simulations, and so the experimental methodology is quite different to
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that employed in the experimental work of this thesis.

1.3.7 Chapter 8: Summary and conclusions

The final chapter discusses the contributions made in this thesis to the research field

of using Reinforcement Learning (RL) to design dialogue strategies, and to dialogue

management for Spoken Dialogue Systems (SDSs) in general. It summarises these

contributions and assesses their impact. Based on how they extend existing knowledge,

their limitations, and the overall state of the field, the chapter also suggests areas for

future research.



Chapter 2

Markov Decision Processes and

Reinforcement Learning

2.1 Introduction

A Markov Decision Process (MDP) is adecision-theoretic stochastic planningmodel

- it provides a mathematical framework for modelling decision-making in situations

where outcomes are partly random and partly under the control of the decision-maker,

(also known as the agent). Based on an MDP representation of interactions between

the agent and its environment, a Reinforcement Learning (RL) algorithm can then be

used to try to learn which action the agent should take in different situations in or-

der to achieve a specified long-term goal. In the experimental work of this thesis,

the MDP-RL framework is applied to dialogue management. It is used to learn a

slot-filling dialogue strategy as a Dialogue Manager (DM) interacts with a stochastic

simulation which simulates both a user, and the input components of a slot-filling Spo-

ken Dialogue System (SDS) - the Automatic Speech Recognition (ASR) and Natural

Language (NLU) components. Here the agent is the dialogue manager, its goal is to fill

and confirm the slots in as few turns as possible, and the environment is the stochastic

user/ASR/NLU simulation.

The purpose of this first background chapter then is to introduce MDPs and RL in

the context of their application in the experimental work ofthis thesis. It will cover

all of the required concepts and formal definitions, but we start in the next section by

providing reasons why the MDP-RL framework is applied to dialogue management.

15
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2.2 Advantages of using Reinforcement Learning for

dialogue management

Markov Decision Processes (MDPs) and Reinforcement Learning (RL) are used for

designing dialogue strategies because they are thought to be able to produce better

strategies with less time and effort than the standard rule-based hand-coding approach.

As a statistical learning approach, the MDP-RL framework offers several key potential

advantages over rule-based hand-coding (Lemon and Pietquin, 2007):

• data-driven development cycle,

• provably optimal action policies,

• a precise mathematical model for action selection,

• reduced development and deployment costs for industry,

• greater robustness in the face of noise/uncertainty.

Amongst the various statistical learning approaches whichmight be applied to dia-

logue management, RL is made very attractive by its two main features. The first of

these features is that RL isplanningso as to maximise long-term reward. Planning is

a branch of Artificial Intelligence that concerns the realisation of strategies or action

sequences. A sequence of actions which maximises reward in the long-term is exactly

what we want from a dialogue strategy - in general, and certainly in task-oriented dia-

logues, it is only at the end of the dialogue that we can say whether or not the dialogue

was successful i.e. the task was successfully completed, the user is satisfied. For ex-

ample, in a flight-booking dialogue, we cannot say whether the system has provided

the user with a suitable flight until the end. The second of RL’s main features is its

use of trial-and-error search. This is important in learning a dialogue strategy, because

there are likely to be a very large number of possible strategies to explore, and so some

degree of automated trial-and-error experimentation willbe required.

We now start a thorough introduction to MDPs and RL. In the next section, we begin

by providing a formal definition of the problem which the MDP-RL framework is used

to tackle.
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2.3 Defining the problem

The agent and environment interact at each of a sequence of discrete time steps,t =

0,1,2,3... 1. At each time stept, the agent receives some representation of the envi-

ronment’s state,st ∈S, whereSis the set of possible states, and on that basis selects an

action,at ∈ A(st), whereA(st) is the set of actions available in statest . The mapping

from states to probabilities of selecting each possible action is called the agent’spolicy

and is denotedπt , whereπt(s,a) is the probability thatat = a if st = s. In the case of

dialogue management then, states represent the dialogue context2, actions correspond

to system actions, (e.g. generating a particular utterance), and a policy is a dialogue

strategy. One time step later, in part as a consequence of itsaction, the agent receives

a real number as a reward,rt+1 ∈ℜ, and finds itself in a new state,st+1. This reward

is computed by a function of the state, which we refer to as thereward function. The

purpose or goal of the agent is formalised in terms of this reward function - in dia-

logue management, it is designed so that it gives higher total reward to dialogues with

favourable outcomes e.g. task completion, short length, high user satisfaction.

Informally then, the problem which we are trying to solve is to find the policy which

maximises the total amount of reward which the agent receives i.e. not immediate

reward, but cumulative reward in the long run. More specifically, we seek to find the

optimal policyπ∗, which is the policy that maximises theexpected returnfor all states.

The return, denotedRt , is some particular function of the reward sequence, denoted

rt+1, rt+2, rt+3, ..., and since the return is a random variable, the expected return is its

population mean.

The return can be defined differently for two different typesof task - episodicand

continuing. In an episodic task, the agent-environment interaction naturally breaks

down into a sequence of separate episodes. For example, dialogue management is an

episodic task in which each dialogue is an episode. In episodic tasks then, the return is

simply the sum of rewards:

Rt = rt+1+ rt+2+ rt+3 + ...+ rT (2.1)

1We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g. Bersekas and Tsitsiklis 1996, Werbos 1992,
Doya 1996).

2The dialogue context is represented by information derivedfrom the Spoken Dialogue System’s
(SDS’s) representation of the dialogue context.
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whereT is a final time step. By contrast, in a continuing task, the agent-environment

interaction does not break down into identifiable episodes,but goes on continually

without limit e.g. a robot with a long life-span. The above formulation is problematic

for continuing tasks because the final time step would beT = ∞, and the return which

is what we are trying to maximise could itself easily be infinite. Therefore, we need

to usediscountingin order to determine the present value of future rewards, and so

seek to maximise the expected discounted return, rather than the expected return. The

expecteddiscounted returnis:

Rt = rt+1+ γrt+2 + γrt+3+ ...+ =
∞

∑
k=0

γkrt+k+1 (2.2)

whereγ is a parameter, 0≤ γ≤ 1, called thediscount rate. If γ < 1, the infinite sum has

a finite value as long as the reward sequence{rk} is bounded. Whenγ = 0, the agent

is only concerned with maximising immediate rewards i.e.rt+1. As γ approaches 1, it

takes future rewards into account more strongly i.e. it becomes more far-sighted. We

can then unify the definition of the return for episodic and continuous tasks by writing

it as:

Rt =
T

∑
k=0

γkrt+k+1 (2.3)

and including the possibility thatT = ∞, (i.e. we are dealing with a continuing task),

or γ = 1, (i.e. we are dealing with an episodic task). As stated above, dialogue man-

agement is an episodic task, and so we setγ = 1 in the RL experiments described in

this thesis.

Here we have provided a formal definition of the kind of problem to which the MDP-

RL framework is applied. We now move on to describe MDPs, and start in the next

section by introducing their defining characteristic - the Markov property.

2.4 The Markov Property

The previous section stated that the agent chooses which action to take based on a

function of a signal from the environment called the environment’s state. Hence, an

ideal state signal is one which contains all of the relevant information and nothing
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more. A state signal that succeeds in retaining all relevantinformation is said to be

Markov, or to have theMarkov property(Sutton and Barto, 1998).

We now formally define the Markov property for the RL problem.The mathematics

can be kept simple if it is assumed that there are a finite number of states and reward

values - this enables us to work in terms of sums and probabilities rather than integrals

and probability densities, but we could easily extend to include continuous states and

rewards if required. When the agent takes an actiona at timet, the environment will

respond at timet + 1 with a rewardrt+1 and a new statest+1. It is possible that this

response depends on everything that has happened earlier, and so the dynamics must

be defined in terms of the complete probability distribution. This is shown in Equation

2.4 where the notationPr(A|B) means “the probability of event A occurring given that

event B occurs”.

Pr{st+1 = s′, rt+1 = r|st ,at , rt,st−1,at−1, ..., r1,s0,a0} (2.4)

However, if the state signal has the Markov property, then this means that the en-

vironment’s response depends only on the state and action attime t, and hence the

environment’s dynamics can be defined as:

Pr{st+1 = s′, rt+1 = r|st ,at} (2.5)

for all s′,r,st andat . In other words, a state signal has the Markov property, and is a

Markov state, if and only if Equation 2.5 is equal to 2.4. Hence, if an environment has

the Markov property, then its one-step dynamics enable us topredict the next state and

expected reward given the current state and action, and it follows that Markov states

provide the best possible basis for choosing actions.

RL algorithms can still be applied when the state signal is non-Markov, but assum-

ing tractability, their performance will improve as the state approaches being Markov.

Hence in any problem to which the MDP-RL framework is applied, there is a challenge

to identify all or as much as possible of the relevant information required for producing

a Markov state signal. By identifying contextual features which when represented in

the state enable an RL algorithm to learn an improved dialogue strategy, this thesis

can be said to make a contribution towards producing a more Markov MDP state for

dialogue management.
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Now that we have introduced the defining characteristic of MDPs - the Markov prop-

erty - we move on in the next section to provide a formal definition of an MDP.

2.5 Markov Decision Processes

A Markov Decision Process (MDP) is a Reinforcement Learning(RL) task that sat-

isfies the Markov property (Sutton and Barto, 1998). If the state and action spaces

are finite, then it is called afinite MDP. Finite MDPs are particularly important to the

theory of RL, and the theory presented in the rest of this chapter implicitly assumes

that the environment is a finite MDP. An MDP for an agent is defined by a tuple,

{S,A,T,R}, whereS is the set of states that the agent can be in,A is the set of possible

actions which the agent can take,T defines a transition probability distribution over

the state space (sometimes called the transition matrix), and R is the expected reward

distribution. As previously stated, in the case of dialoguemanagement, states represent

the dialogue context, and actions correspond to system actions, (e.g. generating a par-

ticular utterance, presenting some information to the user). The couple{T,R} defines

the one-step dynamics of the system:

Ta
ss′ = Pr{st+1 = s′|st = s,at = a} (2.6)

Ra
ss′ = E{rt+1|st = s,at = a,st+1 = s′} (2.7)

whereE denotes the expected value, (population mean).

Having defined both the problem to which the MDP-RL frameworkis applied, and

MDPs themselves, we now shift focus to RL. Since almost all RLalgorithms are based

on estimatingvalue functions, value functions are our starting point.

2.6 Value functions

Almost all RL algorithms are based on estimatingvalue functions- either functions

of states that estimate how good it is for the agent to be in a given state, or functions

of state-action pairs that estimate how good it is to performa given action in a given

state. The notion of “how good” here is defined in terms of expected return, and

since the rewards that the agent can expect to receive in the future depend on what
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actions it will take, value functions are defined with respect to particular policies. In

the first subsection here, we provide formal definitions for state and state-action value

functions.

2.6.1 Definitions for state and state-action value function s

Vπ(s) denotes the value of an individual states under a policyπ - it is the expected

returnR when starting ins at timet and followingπ thereafter. For MDPs,Vπ(s) is

defined formally as:

Vπ(s) = Eπ{Rt|st = s}= Eπ{
∞

∑
k=0

γkrt+k+1|st = s} (2.8)

Qπ(s,a) denotes the expected return when starting ins at timet, taking actiona, and

following π thereafter. It is defined as:

Qπ(s,a) = Eπ{Rt |st = s,at = a}= Eπ{
∞

∑
k=0

γkrt+k+1|st = s,at = a} (2.9)

In the next subsection, we now go on to introduce Bellman equations for value func-

tions. We do this because Bellman equations are fundamentalto Dynamic Program-

ming (DP), and although DP is not used in the experimental work of this thesis, it is

introduced a little later in this chapter because it provides an essential foundation for

the understanding of RL algorithms.

2.6.2 Bellman equations for value functions

Reinforcement Learning (RL) algorithms make use of the factthat value functions sat-

isfy particular recursive relationships. For any policyπ and any states, the consistency

condition given below in Equation 2.10 holds between the value ofs and the value of

its possible successor states. The reader can refer back to Equations 2.6 and 2.7 for the

respective definitions ofT andR.
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Vπ(s) = Eπ{Rt |st = s}

= Eπ{
∞

∑
k=0

γkrt+k+1|st = s}

= Eπ{rt+1+ γ
∞

∑
k=0

γkrt+k+2|st = s}

= ∑
a

π(s,a)∑
s′

Ta
ss′[R

a
ss′+ γEπ{

∞

∑
k=0

γkrt+k+2|st+1 = s′}]

= ∑
a

π(s,a)∑
s′

Ta
ss′[R

a
ss′+ γVπ(s′)] (2.10)

The last line of Equation 2.10 is theBellman Equationfor Vπ, and it tells us the value

of a state in terms of the values of its successor states. If westart in states, then

the agent can take any of a set of actions, and this in turn willlead to one of several

next states,s′, along with a rewardr. The Bellman equation averages over all the

possibilities, weighting each by its probability of occurring, and tells us that the value

at the start state must equal the (discounted) value of the expected next state, plus the

reward expected along the way.

In the same way as for the state value function, the state-action value function can also

be re-written:

Qπ(s,a) = Eπ{Rt |st = s,at = a}

= Eπ{
∞

∑
k=0

γkrt+k+1|st = s,at = a}

= Eπ{rt+1+ γ
∞

∑
k=0

γkrt+k+2|st = s,at = a}

= ∑
s′εS

Ta
ss′{R

a
ss′+ γEπ{γ ∑

k=0

γkrt+k+2|st = s}}

= ∑
s′εS

Ta
ss′{R

a
ss′+ γVπ(s′)} (2.11)

Above, the last line of Equation 2.11 is the Bellman equation forQπ

We now go on to describe Bellman optimality equations for value functions i.e. Bell-

man equations for the value function of the optimal policy.
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2.6.3 Bellman optimality equations for value functions

Value functions can be used to rank policies. A policyπ is defined to be better than or

equal to another policyπ′ if its expected return is greater than or equal to that ofπ for

all states i.e. if and only ifVπ(s) ≥ Vπ(s) for all s∈ S. There is always at least one

policy that is better than or equal to all other policies - theoptimal policy, denotedπ∗.
Optimal policies share the same state-value function, which is called the optimal value

function and is denoted asV∗. V∗ is defined as, for alls∈ S:

V∗(s) = maxπ Vπ(s) (2.12)

where the notationmaxx specifies the value ofx which produces the greatest value for

the expression that follows it. Optimal policies also sharethe same optimal state-action

value function, denotedQ∗, which is defined as, for alls∈ S anda∈ A(s), (possible

actions ins):

Q∗(s,a) = maxπ Qπ(s) (2.13)

We can writeQ∗ in terms ofV∗ as follows:

Q∗(s,a) = E{rt+1+ γV∗(st+1)|st = s,at = a} (2.14)

SinceV∗ is the value function for a policy, it must satisfy the self-consistency condition

given by the Bellman equation for state values, but because it is the optimal value

function, its consistency condition can be written in a special form without reference

to any specific policy. This leads us to the Bellman equation for V∗, or theBellman

optimality equation, which intuitively expresses the fact that the value of a state under

an optimal policy must equal the expected return for the bestaction from that state.
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V∗(s) = maxa Qπ∗(s,a)

= maxa Eπ∗{Rt |st = s,at = a}

= maxa Eπ∗{
∞

∑
k=0

γkrt+k+1|st = s,at = a}

= maxa E{rt+1+ γ
∞

∑
k=0

γkrt+k+2|st = s,at = a}

= maxa E{rt+1+ γV∗(st+1)|st = s,at = a} (2.15)

= maxa ∑
s′

Pa
ss′[R

a
ss′+ γV∗(s′)] (2.16)

The last two equations (2.15 and 2.16) are two forms of the Bellman optimality equa-

tion for V∗. The Bellman optimality equation forQ∗ is given by Equation 2.17:

Q∗(s,a) = E{rt+1+ γ maxa′ Q∗(st+1,a
′)}

= ∑
s′

Pa
ss′ [R

a
ss′+ γ maxa′ Q∗(s′a′)] (2.17)

For finite MDPs, the Bellman optimality equation has a uniquesolution independent

of the policy.

We now go on to describe how to derive the optimal policy from an optimal state or

state-action value function.

2.6.4 Deriving the optimal policy from a value function

If we haveV∗, then it is relatively easy to determine an optimal policy - for each

state, the optimal action or actions are those which lead to the new state with highest

value. Of course, to know what the possible new states are, weneed to know about the

environment’s dynamics, (see Section 2.5). The optimal policy is said to begreedywith

respect toV∗. In computer science, the term greedy describes any search or decision

procedure that selects alternatives based only on local or immediate considerations,

without taking account of the possibility that such a selection may prevent future access

to even better alternatives. However, in the case ofV∗, the greedy policy is optimal

in the long-term sense becauseV∗ already takes into account the reward consequences

of all possible future behaviour. If we haveQ∗, then finding the optimal action(s)
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in each state is even easier - for any states, the optimal action or actions maximise

Q∗(s,a). Since we do not need to know about possible successor states, we do not

require knowledge of the environment’s dynamics.

Now that we have described Bellman equations, we are in a position to introduce Dy-

namic Programming (DP). As stated previously, although DP is not used in the ex-

perimental work of this thesis, we describe it here because it provides an essential

foundation for the understanding of RL algorithms.

2.7 Dynamic Programming

Dynamic Programming (DP) refers to a collection of algorithms that can be used to

compute optimal policies given a perfect model of the environment as a Markov De-

cision Process (MDP). They are of limited utility in Reinforcement Learning (RL)

both because of their assumption of a perfect model, and because of their great com-

putational expense, but they have been used to learn partialdialogue strategies from

a corpus of human-machine dialogues e.g. Singh et al. (1999,2002), (Section 3.3),

Walker (2000), (Section 3.4), and Tetreault and Litman (2006), (Section 3.9). They are

important theoretically - other RL methods can be viewed as attempts to achieve much

the same as DP, only with less computation and without assuming a perfect model of

the environment.

DP involves two interacting processes -policy evaluationand policy improvement.

These are described in the next two subsections respectively. Subsection 2.7.3 then

describes how DP uses these two processes in combination in order to learn an optimal

policy.

2.7.1 Policy evaluation

Policy evaluation is the process of computing the state-value functionVπ for an arbi-

trary policyπ. How then can we do this? If the environment’s dynamics are completely

known, then the Bellman equation, (Equation 2.10), is a system of|S| simultaneous

linear equations in|S| unknowns, (|S| denotes the number of states inS), and policy

evaluation is achieved by solving this system. One way to findthe solution is by using

iterative policy evaluation, which is an example of aniterative methodfor solving a

system of linear equations. Unlikedirect methods, which attempt to solve the system
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in one-shot, iterative methods find successive approximations to the solution starting

from an initial guess. An iterative method is preferred for policy evaluation because

of the number of variables involved - iterative methods are able to cope with a much

larger number, and the number involved in policy evaluationis likely to make direct

methods prohibitively expensive.

The first step in iterative policy evaluation is to make an arbitrary choice for an initial

approximation of the value function, (N.B. the terminal state, if there is one, must be

given the value 0). Note, the first approximation of the valuefunction is denotedV0,

the secondV1, the thirdV2 etc. On each iteration, iterative methods generate succes-

sive approximations using what is called anupdate rule, and in the case of generating

successive approximations ofVπ, we can use the Bellman Equation as an update rule.

In each iteration then, iterative policy evaluation applies Equation 2.18 to every state

in the state space in what is often referred to as asweepthrough the state space, and

thus produces a new approximation of the value function i.e.Vk+1.

Vk+1(s) = Eπ{rt+1+ γVk(st+1)|st = s}

= ∑
a

π(s,a)∑
s′

Pa
ss′[R

a
ss′+ γVk(s

′)]

(2.18)

The sequenceVk can be shown in general to converge toVπ as k tends to infinity

(k→ ∞), under the same conditions that guarantee the existence ofVπ. In practice,

iterative policy evaluation must be halted short of this. After each iteration / sweep

through the state space, we can find the greatest amount by which the value of any

state has changed between this and the last approximation ofthe value function i.e.

maxs∈S |Vk+1(s)−Vk(s)|. A typicalstopping criterionis to then stop when this amount

is considered sufficiently small.

We now go on to describe the other process required to learn the optimal policy -policy

improvement.

2.7.2 Policy improvement

Policy evaluation is necessary forpolicy improvement- the process of finding a better

policy. As we shall see, we improve on an original policy by for each state, choosing

an action which is greedy with respect to this original policy’s value function.
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Policy improvement is performed by making use of a general result called thepolicy

improvement theorem3. The policy improvement theorem tells us that ifπ andπ′ are

any pair of deterministic policies such that for alls∈ S,

Qπ(s,π′(s))≥Vπ(s) (2.19)

then the policyπ′ must be as good as, or better thanπ i.e. it must obtain greater or

equal expected return from all statess∈ S:

Vπ′ ≥Vπ (2.20)

Consider a scenario then where we take an original policyπ and change the action in

one states to produce a new policyπ′. If as a result of this single change, strict in-

equality holds in Equation 2.19, then we will have succeededin producing an improved

policy. We can easily extend from considering such a single change inπ, to consider-

ing changes atall states toall possible actions, selecting at each state the action that

appears best according toQπ(s,a). In other words, we consider the new greedy policy,

π′, given by Equation 2.21.

π′(s) = maxa Qπ(s,a)

= maxa E{rt+1+ γVπ(st+1)|st = s,at = a}

= maxa ∑
s

Pa
ss′ [R

a
ss′+ γVπ(s′)] (2.21)

This greedy policyπ′ takes the action that looks the best after one step of lookahead

according toVπ. By construction, the greedy policy meets the conditions ofthe policy

improvement theorem (Equation 2.19), and so we know that it is as good as, or better

than the original policy. Hence we make a new policy which improves on an original

policy by choosing actions which are greedy with respect to the value function of the

original policy.

Having introduced policy evaluation and policy improvement, we are now ready to

explain how Dynamic Programming (DP) finds the optimal policy by combining these

two processes under a framework calledGeneralized Policy Iteration (GPI).

3The interested reader can refer to page 95 of Sutton and Barto(1998) to see how the policy im-
provement theorem is derived.
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2.7.3 Generalized Policy Iteration

The termGeneralized Policy Iteration(GPI) refers to the general idea of letting the

policy evaluation and policy improvement processes interact in order to find an optimal

policy. If both the evaluation and improvement processes stabilise, then the value

function and policy must be optimal. The value function stabilises only when it is

consistent with the current policy, and the policy stabilises only when it is greedy with

respect to the current value function. Thus both processes stabilise only when a policy

has been found that is greedy with respect to its own evaluation function. This implies

that the Bellman optimality equation (Equation 2.16) holds, and thus that the policy

and the value function are optimal. Almost all Reinforcement Learning (RL) methods

are well described as GPI - they all have identifiable policies and value functions, with

the policy always being improved with respect to the value function, and the value

function always being driven toward the value function for the policy.

Having introduced Dynamic Programming (DP), we are now in a better position to

describe RL algorithms which are able to learn from sample returns, and hence which

do not require a complete model of the environment’s dynamics. However, before

doing this, we now provide an overview of the two main learning approaches for using

RL to train dialogue strategies, one of which involves DP, and the other, RL algorithms

that learn from sample returns. We discuss the relative merits of the two approaches.

2.8 Model-based and simulation-based approaches to

learning dialogue strategies

Two different learning approaches can be distinguished in previous research on using

RL to train dialogue strategies, and like Schatzmann et al. (2006), we refer to these as

themodel-based approachand thesimulation-based approach. Here, we will begin by

describing the model-based approach.

2.8.1 The model-based approach

As we will see in Chapter 3, the model-based approach was usedmore in earlier re-

search between 1998-2002 e.g. Singh et al. (1999, 2002), Walker (2000). The model-

based approach uses a corpus of dialogues in which state transitions have been logged
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in order to estimate the transition probabilitiesT (see Section 2.5), and so build a com-

plete model of the environment. Parameter estimation can bedone based on the relative

frequency of occurrence of each transition, (simpleMaximum Likelihood Estimation

(MLE)):

T(s′,a,s) =
count(s′,a,s)
count(s,a)

(2.22)

Dynamic Programming (DP) can then be used to learn the optimal policy, (here di-

alogue strategy). In practice, DP is only used to learn the optimal action in certain

states for which the corpus contains exploratory data e.g. states in which the system

must choose whether or not to take the initiative, (see Section 1.1.1.3 for a definition

of initiative). For the corpus to be suitable for model-based learning of full dialogue

strategies, it should ideally contain exploratory data forall states, and this is very un-

likely to be the case. Even if the corpus did contain such data, there is then the issue of

DP’s high computational expense to contend with. Apart fromthis, the model-based

approach has a number of other significant deficiencies, which include:

1. Available corpora may well not be large enough to reliablyestimate transition

probabilities for practical systems.

2. When learning from a fixed corpus, the Dialogue Manager (DM) can only use

state-action combinations that were explored at the time ofthe corpus data col-

lection - it cannot try out new strategies since no transition probabilities can be

computed for unseen state-action combinations.

3. It is necessary to know the state-space and action set representation in advance

so that the corpus can be annotated correspondingly for estimating the state tran-

sition probabilities.

We now move on to describe the simulation-based approach to learning dialogue strate-

gies with RL.

2.8.2 The simulation-based approach

The simulation-based approach involves using an RL algorithm which is able to learn

from sample returns to learn a dialogue strategy as the Dialogue Manager (DM) in-

teracts with a stochastic user simulation. This approach therefore requires an accurate
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user model which generalises to unseen dialogue situations, and for this reason, it is

more complex than model-based approaches. As stated in Section 1.1.2, a stochas-

tic user simulation can be produced by training on a dialoguecorpus using Supervised

Learning (SL). Assuming that the resulting user model is reliable, the simulation-based

approach offers the following advantages:

1. The simulated user allows any number of training episodesto be generated so

that the learning dialogue manager can exhaustively explore the space of possible

strategies, and indeed learn full rather than partial strategies.

2. It enables strategies to be explored which are not in the training data. The learn-

ing DM can deviate from known strategies and try out new and potentially better

strategies.

3. The system state space and action set do not need to be fixed in advance, because

the system is not trained on corpus data. If the given representation turns out

to be problematic, then it can be changed and the system re-trained using the

simulated user.

As a result of these advantages, in general, simulation-based approaches to learning

dialogue strategies have been preferred in more recent research e.g. Pietquin and Re-

nals (2002), Scheffler and Young (2002), Frampton and Lemon (2005), Frampton and

Lemon (2006), Frampton and Lemon (2008a). Using SL to produce accurate user

models, and how to evaluate them is a an open and active research area (see Schatz-

mann et al. 2006). We will discuss these issues in the following chapter where we

review previous research on using RL to learn dialogue strategies.

We now return to our introduction to RL itself, and shift focus to RL algorithms which

are able to learn from sample returns, and hence do not require a complete model of the

environment’s dynamics. We will describe two different categories of these algorithms

- Monte Carlo (MC) methods first, and then Temporal Difference Learning (TDL).

However, since RL algorithms that learn from sample returnsmust use “soft” training

policies i.e. training policies which have a non-zero probability of selecting each action

in a state, in the next section, we first describe different approaches for generating and

using soft training policies in RL.
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2.9 Generating and using soft training policies in RL

As stated above, Reinforcement Learning (RL) algorithms that learn from sample ex-

perience e.g.Monte Carlo (MC)methods (see Section 2.10), andTemporal Difference

Learning (TDL)methods (see Section 2.11) require “soft” training policies i.e. train-

ing policies which have a non-zero probability of selectingeach action in a state. In

the first subsection here then, we describe two different action selection approaches for

producing a soft training policy.

2.9.1 Action selection for soft training policies

Two action selection methods for producing a soft training policy are ε-greedyand

softmaxaction selection. If usingε-greedy action selection, the parameterε is set to

a value 0< ε < 1, and then for each state, the learning agent has a probability of ε of

selecting the action which currently has the highest Q-value. When the learning agent

exploresi.e. it does not select the highest Q-value action, it chooses equally among the

other possible actions, and so it is as likely to choose the worst-appearing action as it is

to choose the next-to-best. If some actions are clearly better than others, then this will

produce redundant exploration and slower learning. The RL experiments of Chapter 4

useε-greedy action selection.

Softmax action selection can do better in this respect, because it varies the action se-

lection probabilities as a graded function of their corresponding current Q-values. This

can be implemented via aGibbsor Boltzmanndistribution which chooses actiona in

states with probability

e(Q(s,a)/τ)

∑b∈A(s) e(Q(s,b)/τ) (2.23)

wheree is the exponential function, andτ is a positive parameter called thetempera-

ture. If we lower the temperature, then this increases the difference in selection proba-

bilities for actions that differ in their current Q-values.The RL experiments of Chapters

5 and 7 use softmax action selection.

We now go on to describe two alternative frameworks for implementing soft training

policies - “on-policy” methods and “off-policy” methods.
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2.9.2 On-policy versus off-policy methods

This section will briefly explain the difference between on and off-policy methods

and then give the reason for our decision to use an on-policy rather than off-policy

algorithm in the Reinforcement Learning (RL) experiments of Chapters 4, 5 and 7.

In explaining on-policy versus off-policy methods, it is useful to refer to abehaviour

policy and anestimationpolicy. The behaviour policy is the policy which is used

to generate the training episodes, while the estimation policy is the resulting learned

policy. The difference between on-policy and off-policy methods is that for an on-

policy method, one policy acts as both the behaviour and estimation policy, while for

an off-policy method, the behaviour and estimation policies are separate. Hence in

an on-policy approach, the behaviour policy is necessarilyguided by the estimation

policy e.g. if we are usingε-greedy action selection withε set to 0.7, then 70% of the

time, the behaviour policy will select the action with the highest Q-value according to

the estimation policy. However in an off-policy approach, since the behaviour policy is

separate, it does not have to be guided by the estimation policy. As a result, on-policy

methods tend to converge faster than off-policy methods. Since our RL experiments

were relatively slow to run, this is why we chose to use an on-policy algorithm called

Sarsa, (see Section 2.11.2), rather than an off-policy alternative.

Now that we have described how to generate soft training policies, we are ready to

introduce a first category of RL algorithms that learn from sample returns - Monte

Carlo (MC) methods.

2.10 Monte Carlo Learning

Monte Carlo (MC)learning methods can be used to estimate value functions andfind

optimal policies without complete knowledge of the environment. Instead, they require

only experience - sample sequences of states, actions and rewards from on-line or

simulated interaction with an environment, (in the case of dialogue strategy learning,

a simulation of a user and the input components of a Spoken Dialogue System (SDS)).

MC methods have been used by previous researchers to learn full dialogue strategies

e.g. Levin et al. (2000) (Section 3.2), Pietquin and Renals (2002), (Section 3.5), and

English and Heeman (2005), (Section 3.7). As with Dynamic Programming (DP),

MC methods can be described in terms of policy evaluation andpolicy improvement.
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Policy improvement is performed in the same way as for DP i.e.by choosing actions

which are greedy with respect to the value function (see Section 2.7.2). This approach

works whether the policy which we are trying to improve is deterministic or soft, and

the interested reader can refer to pages 122 - 124 in Sutton and Barto (1998) where

equations are presented to show that the policy improvementtheorem assures that for

anyε-soft policy,π, anyε-greedy policy with respect toQπ is guaranteed to be better

than or equal toπ. MC methods are instead distinguished by the way in which they

perform policy evaluation, and it is this that we focus on in the next subsection.

2.10.1 Policy Evaluation

Monte Carlo (MC) policy evaluation involves estimating thevalue of a state/state-

action pair by averaging the returns observed after visits to that state/state-action pair.

An example of an MC policy evaluation method is theevery-visitmethod, and if we

initially consider policy evaluation for states, rather than state-action pairs, then this

estimatesVπ(s) as the average of the returns following all of the visits tos, (occur-

rences ofs), in a set of episodes. A simple every-visit MC method uses Equation 2.24

as the update rule for a visited state, whereRt is the actual return following timet and

α is a step-size parameter. Here the arrow notation is used to indicate that what is on

the left of the← is re-estimated as what is on its right. The step-size parameter α has

not been introduced before in this chapter, and the reader will see that in Equation 2.24,

it determines the degree to which the new estimate of a state’s value moves towards

the return that follows its visit. For an environment that does not change over time, as

is the case in the experimental work of this thesis, it is appropriate to setα to decrease

as the number of visits to a state increases:1
k wherek is the number of times that the

state in question has been visited. However for a non-stationary environment, this is

not appropriate, and so for these cases,α is often set to a constant value 0< α≤ 1.

V(st)←V(st)+α[Rt−V(st)] (2.24)

TheFirst-visit MC method is an alternative to theEvery-visitMC method which aver-

ages just the returns following the first visit to each states within each episode. Note

that if we lack knowledge of the environment’s dynamics, then we can apply the first

and every-visit methods to evaluate state-action values rather than state values.

We now go on to give an example of a full MC algorithm
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2.10.2 Example of a Monte Carlo algorithm

The following on-policy Monte Carlo (MC) algorithm evaluates the value of state-

actions by averaging returns following first-visits. It improves the policy towards the

optimal ε-greedy policy by making the training policyε-greedy with respect to the

Q-value.

For alls∈ Sanda∈ A(s) set:

Q(s,a) arbitrarily;

Returns(s,a) to an empty list;

π to theε-greedy policy.

Repeat forever:

(1) Generate an episode usingπ.

(2) For each pairs,a appearing in the episode:

add the return following the first occurrence ofs,a in the episode toReturns(s,a);

setQ(s,a) to the average of all of the returns inReturns(s,a).

(3) For eachs in the episode:

Set the learned actiona∗ to the actiona which produces the greatest value forQ(s,a);

for all a∈ A(s), setπ(s,a), the probability thatπ will take a, to:

ε if a = a∗;

else(1− ε)/(|A(s)|−1).

This then completes the introduction to MC methods. We now move on to describe

another category of RL algorithms that like MC methods learnfrom sample returns

and hence do not require a model of the environment’s dynamics.

2.11 Temporal Difference Learning

This section will introduce a category of Reinforcement Learning (RL) algorithm

called Temporal Difference Learning(TDL). The RL experiments of Chapters 4, 5

and 7 use a TDL algorithm. As for Dynamic Programming (DP) andMC methods,

policy improvement is performed by choosing actions which are greedy with respect

to the value function. However, unlike MC methods, TDL algorithms perform policy
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evaluation based on partial rather than complete returns, and so it is this that we focus

on in the next subsection.

2.11.1 Policy evaluation

While Monte Carlo (MC) policy evaluation involves estimating the value of a statesby

averaging the returns observed after visits to that state, Temporal Difference Learning

(TDL) algorithms re-estimate the value of a stateV(st) based on the observed reward

rt+1 and the estimate of the value of the subsequent stateV(st+1). For example, the

simplest TDL method, known asTD(0) uses the update rule in Equation 2.25, where

the step-size parameterα determines the degree to which the new estimate moves in

the direction of the sum ofr1+1 andV(st+1).

V(st)←V(st)+α[rt+1+ γV(st+1)−V(st)] (2.25)

Since the TDL method bases its update in part on an existing estimate, it is said to be

a bootstrappingmethod like Dynamic Programming (DP). Hence while MC methods

wait until the end of the episode to determine the increment to V(st) (only then isRt

known), TDL methods only wait until the next time step. This then provides a potential

advantage over MC methods in terms of rate of learning. If training episodes are long,

which they can be in training dialogue strategies, then delaying all learning until an

episode’s end can have a significant impact. Rate of learningwas a major concern of

ours in the RL experiments of Chapters 4, 5 and 7, and so this isthe reason why we

chose to use a TDL algorithm. Note that TDL methods are sound,meaning that the

TD(0) algorithm has been proved to converge toVπ with probability 1 if the step-size

parameter decreases according to the usual stochastic approximation conditions given

on page 39 of Sutton and Barto (1998).

We now move on to describe a full TDL algorithm - the on-policyalgorithm, Sarsa.

2.11.2 An on-policy TDL algorithm: Sarsa

Sarsais an on-policy Temporal Difference Learning (TDL) algorithm which learns the

values of state-action pairs by considering transitions from state-action pair to state-

action pair. It performs the following update after every transition from a non-terminal

state.
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Q(st ,at)←Q(st,at)+α[rt+1+ γQ(st+1,at+1)−Q(st,at)] (2.26)

whereα is a constant step-size parameter. Ifst+1 is terminal, thenQ(st+1,at+1) is

defined as zero. This rule uses every element of the quintupleof events,

(st,at , rt+1,st+1,at+1) that make up a transition from one state-action pair to the next,

and this gives rise to the nameSarsa. Below is the general form of the Sarsa algorithm,

which like all on-policy methods, continually estimatesQπ while at the same time

changingπ towards greediness with respect toQπ:

For alls∈ Sanda∈ A(s) set:

Q(s,a) arbitrarily

π to theε-greedy policy

Repeat for each episode

Choose actiona from start-states usingπ.

Repeat for each step of the episode untils is a terminal state:

Take actiona and observe the rewardr and new states′;

choose actiona′ from s′ usingπ;

re-estimateQ(s,a): Q(s,a)←Q(s,a)+α[r + γQ(s′,a′)−Q(s,a)];

set the learned actiona∗ to the actiona which gives the greatest value forQ(s,a);

for all a∈ A(s), setπ(s,a), the probability thatπ will take a, to:

ε if a = a∗;

else(1− ε)/(|A(s)|−1).

s′ now becomess, anda′ becomesa;

We have now introduced two different types of RL algorithm which learn from sample

returns - Monte Carlo (MC) methods and Temporal Difference Learning (TDL). Since

they are used in our RL experiments, the next section introducesEligibility Traces

(ETs). ETs can be combined with almost any RL method in order to speed up learning.

2.12 Eligibility Traces

Almost any Reinforcement Learning (RL) method, such as Sarsa, can be combined

with Eligibility Traces (ETs) to obtain a more general method that may learn more
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efficiently. When ETs are combined with Sarsa, the algorithmis called Sarsa(λ), and

we use Sarsa(λ) in all of the RL experiments described in Chapters 4, 5 and 7.

We begin our introduction to ETs in the next section, by describing how they can

be seen as forming a bridge between Monte Carlo (MC) and Temporal Difference

Learning (TDL) methods.

2.12.1 Eligibility Traces as a bridge between MC and TDL meth ods

Recall that a Monte Carlo (MC) policy evaluation method updates the estimate of

a state/state-action pair in the direction of the complete return i.e. thetarget of the

update is the complete return:

Rt = rt+1+ γrt+2+ γ2rt+3+ ...γT−t−1rT (2.27)

whereT is the last step of the episode. On the other hand, for simple Temporal Dif-

ference Learning (TDL) updates, the target (correctly denotedR(1)
t ) is the first reward

plus the discounted estimated value of the next state/state-action pair e.g.

R(1)
t = rt+1+ γVt(st+1) (2.28)

whereγVt(st+1) takes the place of the remaining termsγrt+2+ γ2rt+3+ ...+ γT−t−1rT .

In fact, it is possible to consider any number of steps, and ingeneral, the n-step target

is:

R(n)
t = rt+1+ γrt+2+ γ2rt+3+ ...+ γn−1rt+n+ γnVt(st+n) (2.29)

An n-step back-up is TDL because it still changes an earlier estimate based on how it

differs from a later estimate. TD(λ) is one particular way of averaging n-step back-

ups. This average contains all the n-step updates, each weighted proportional toλn−1,

where 0≤ λ ≤ 1. A normalisation factor of 1−λ ensures that the weights sum to 1.

The resulting update is toward a return, called theλ− return, defined by

Rλ
t = (1−λ)

∞

∑
n=1

λn−1R(n)
t (2.30)

If λ = 1, then updating according to theλ-return is the same as the MC algorithm,

while if λ = 0, then it reduces toR(1)
t . It can be shown formally that TDL policy evalu-
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ation using n-step updates converges to the correct values under appropriate technical

conditions, (see Chapter 7.1 of Sutton and Barto 1998).

The view of ETs presented in this section is often called theforward view, because it

is as if for each state visited, we are looking forward in timeto all the future rewards

and deciding how best to combine them. We now compare different kinds of ETs -

accumulatingandreplacing.

2.12.2 Accumulating versus replacing Eligibility Traces

If et(s,a) denotes the Eligibility Trace (ET) for the state-action pair s,a, then anaccu-

mulatingET can be defined as:

et(s,a) =

(

γλet−1(s,a)+1 i f s = st and a= at ;

γλet−1(s,a) otherwise.
for all s,a

Hence at the start of each episode,et(s,a) has a value of zero, but then increases by

1 each time actiona is taken in states. If (s,a) is re-visited within an episode before

et(s,a) has fully decayed to zero, thenet(s,a) will be driven greater than 1.

This is not the case withreplacingETs. The following definition for replacing ETs

shows thatet(s,a) is set to 1 every time(s,a) is visited:

et(s,a) =

(

1 i f s = st and a= at ;

γλet−1(s,a) otherwise.
for all s,a

This definition is sometimes modified so that the ETs for the unselected actions in a

visited state are set to zero:

et(s,a) =









1+ γλet−1(s,a) i f s = st and a= at ;

0 i f s = st and a6= at ;

γλet−1(s,a) i f s 6= st .

for all s,a

This is the specific kind of ET that we use in the RL experimentsof Chapters 4, 5 and

7. Section 4.2.3.3 will explain why we choose this kind of ET over the alternatives.

and Section 4.2.3.4 will explain why when using this kind of ET, we must be careful

not to set the initial Q-values too high.
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2.13 Summary

This chapter introduced Markov Decision Processes (MDPs) and Reinforcement Learn-

ing (RL) in the context of their application in the experimental work of this thesis. The

MDP-RL framework is used for dialogue management because itis thought able to

produce better dialogue strategies with less effort than the traditional rule-based hand-

coding approach. As a statistical learning method, it has a number of key potential

advantages over the traditional approach e.g. greater robustness to noise and uncer-

tainty. Amongst other statistical learning methods, it is very attractive because RL

tries to produce a plan to maximise long-term reward, and this is exactly what we

want for a dialogue strategy. In addition, RL uses trial-and-error search which will be

necessary given a large number of possible dialogue strategies to explore.

An MDP is defined in terms of actions (available to the agent - in our case the Dialogue

Manager (DM)), states (representations of the state of the environment - in our case

the dialogue context), and numerical rewards as determinedby a reward function, (a

function of the state which formalises the agent’s goal). A policy is a mapping between

states and actions, (in our case, a dialogue strategy). MDPsbear the Markov property

which means that the new state which an agent transitions to,and the reward it receives

as a result, depends only on the immediately prior state and the action taken in that

state. The dynamics of an MDP are defined by the one-step transition probabilities,

(denoted here asT), and the expected rewards, (denoted here asR), for all states and

their allowable actions. RL algorithms are used to try to learn the optimal policy i.e. the

policy which maximises the expected return. The return is a function of the sequence

of rewards produced by each interaction between the agent and the environment within

a single episode e.g. dialogue. Since the return is a random variable, its expected value

is its population mean.

Value functions of policies are fundamental to all RL algorithms - for each state or

state-action, they estimate the expected return when starting from that state or state-

action and then following a particular policy thereafter. The optimal value function

assigns to each state, or state-action, the largest expected return achievable by any

policy, and a policy whose value function is optimal is an optimal policy. Dynamic

Programming (DP) is not used for learning full dialogue strategies because it requires

complete knowledge of the environment, i.e.T andR, and it is computationally expen-

sive. However, it has been used in what we referred to as a model-based approach in
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order to learn partial dialogue strategies from a corpus of human-machine dialogues.

It was also described in this chapter because it provides a good basis for understanding

other RL algorithms. DP learns the optimal policy by using two different processes

- policy evaluation, and policy improvement. Policy evaluation computes the value

function for a particular policy. The Bellman equation for avalue function expresses

a relationship between the value of a state and the values of its successor states. If we

substitute all of the possible states into this equation, and then solve the resulting set

of simultaneous linear equations, (typically through an iterative method), then we have

performed policy evaluation. Policy improvement is the process of improving a policy

by making it greedy with respect to its own value function. The processes of pol-

icy evaluation and policy improvement interact under a framework called Generalised

Policy Iteration (GPI), and both stabilise only when the optimal policy is found.

RL algorithms which learn from sample returns e.g. Monte Carlo (MC) methods and

Temporal Difference Learning (TDL) do not require a full model of the environment,

and are less computationally expensive. They have been usedto learn full dialogue

strategies with a user and Automatic Speech Recognition (ASR) / Natural Language

Understanding (NLU) simulation, in what we referred to as a simulation-based ap-

proach. Learning from sample returns requires soft training policies i.e. training poli-

cies which have a non-zero probability of selecting each action in a state, and these

can be produced usingε-greedy or softmax action selection. On-policy and Off-policy

methods are two different methods for using soft training policies in order to learn a

policy. The fundamental difference between MC and TDL methods is in the way in

which they perform policy evaluation - whereas MC methods evaluate a policy using

complete returns, TDL methods use partial returns. Eligibility Traces (ETs) can be

seen as forming a bridge between MC and TDL methods, and can beused to speed up

learning.



Chapter 3

Previous research on Reinforcement

Learning of dialogue strategies

3.1 Introduction

This chapter will summarise and analyse previous research on using Reinforcement

Learning (RL) to learn dialogue strategies for Spoken Dialogue Systems (SDSs). Sev-

eral research groups have been working in this area in the past 10 years (see Table

3.1), and significant progress has been made. Different usersimulation approaches

for training RL approaches to dialogue have previously beensurveyed by Schatzmann

et al. (2006), and where relevant, this chapter also discussissues related to user simula-

tions, but here our primary focus is on surveying the different RL systems themselves.

This includes surveying very recent work such as Henderson et al. (2008), highlighting

the main advances, and pointing out open problems. For a version of the literature re-

view contained in this chapter which is extended to cover Frampton and Lemon (2005,

2006, 2008a), the reader should refer to Frampton and Lemon (2008b).

For each research system developed by the groups, our analysis will compare:

• application domain of the SDS,

• RL technique,

• data set/corpus used,

• state features and action set,

41
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Research publications Summary

Levin and Pieraccini (1997) Proof-of-conceptthat a DM can be modelled as a

MDP & RL applied to learn a dialogue strategy.

Singh et al. (1999) Learned/testedpartial ISF strategies with real users; state

& Singh et al. (2002) features for slot-status & which ASR grammar used last.

Walker (2000) As for Singh et al. but usingPARADISE reward: predictsuser

satisfaction from dialogue efficiency/quality & task success.

Pietquin and Renals (2002) Learnedfull ISF strategy; goal-directed, part-stochastic

US; stochasticES; hand-coded probabilities; no real user

tests; only slot-status state features.

Scheffler and Young (2002) As for Pietquin & Renals butprobabilities for US & ES

learned from data; US & ES evaluated (unconvincing).

English and Heeman (2005)Learnedboth the US & system strategies simultaneously

via RL, hence problem over accuracy of US.

Paek and Chickering (2005)Learned v. simple strategies with MDPs,non-Markov models

& model-specific automatic FS.

Tetreault and Litman (2006) Learned partial strategies for atutor system; evaluated

usefulness of state features; no real user tests.

Henderson et al. (2005) Hybrid RL/SL to learn full ISF strategy with v. large state-space

& Henderson et al. (2008) from fixed dataset; real user tests & comparison to hand-coded

strategy; no insights for which state features important & why.

Table 3.1: Timeline of previous research on RL of dialogue strategies for SDSs; DM

= Dialogue Manager; MDP = Markov Decision Process; ISF = Information-Slot-Filling;

U/ES = User/Error Simulation; FS = Feature Selection; SL = Supervised Learning.

• reward function,

• user simulations,

• Automatic Speech Recognition (ASR)/ Natural Language Understanding (NLU)

error simulations,

• experimental results.

Throughout the presentation a comparative analysis of the previous research will be
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given, lessons learned will be presented, and future research directions will be moti-

vated.

3.1.1 Properties shared by all approaches: slot status feat ures,

initiative and confirmation actions

In almost all of the systems discussed below, the task of the dialogue system is “slot-

filling”, which as stated in Section 1.1.1, involves collecting a set of preferences or

search constraints from the user (e.g. destination city, preferred food type). In gen-

eral, dialogue management action decisions such as initiative, (see Section 1.1.1), and

confirmation strategies are studied by all groups. In addition, all prior research uses

“slot-status” features in dialogue states, e.g. for each information slot in the particular

domain, whether it is filled, the associated Automatic Speech Recognition (ASR) Con-

fidence Level, whether it is confirmed. A CL is a number between0 and 1 based on

acoustic measurements and defines how sure the system is to have performed correct

recognition. Some approaches also differentiate states based on the particular values of

filled slots. In the presentation below, we note cases where research has used features

in addition toslot filled/confirmed status for the relevant task domain.

3.2 Early theory and proof-of-concept: Levin and Pier-

accini 1997 and 2000

Levin and Pieraccini (1997) contains the first presentationof the concept of using a

Markov Decision Process (MDP) and Reinforcement Learning (RL) to learn a dialogue

strategy. Levin et al. (1998) and Levin et al. (2000) then described a first attempt at

putting the theory into practice. They used a Monte Carlo (MC) algorithm to learn a

dialogue strategy for an Air Travel Information System (ATIS).

3.2.1 State features and action set

In learning strategies for the ATIS task, Levin et al. (1998)and Levin et al. (2000) used

state vectors consisting of the following fields, (in addition to slot status):
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1. the number of data tuples retrieved from the database according to the user re-

quest,

2. a feature which records whether the system has already presented data to the

user.

Possible system actions for learning include:

1. an open-ended question i.e. “How can I help you?”,

2. ask the user to provide information about a slot/specific attribute of the task (e.g.

origin, airline, departure time etc.,

3. retrieve data from the database according to the current user request,

4. present the retrieved data to the user,

5. ask the user to relax a particular constraint e.g “Do you mind considering other

airlines?”,

6. close the dialogue.

3.2.2 Reward function

In the ATIS domain, the system’s goal is to provide the user with information about

flights in an efficient way. Efficiency here involves the duration of the dialogue (in

turns), the cost of external resources (database retrieval) and the effectiveness of the

system output to the user. Hence Levin et al. (2000) used a reward function that was a

weighted sum of the following:

1. length of the dialogue in number of turns,

2. expected number of tuples retrieved from the database,

3. a data presentation cost function,f0(N0),

4. overall task success measure.
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For the third term, the data presentation cost function,N0 is the number of records that

are presented to the user, and generally,f0(N0) is zero forN0 smaller than a reasonable

N∗, and increases rapidly thereafter, whereN∗ depends on the medium used to output

information to the user, (it is generally small for voice based communication, and

higher for display). The fourth term is an overall binary task success measure that is

changed to “successful” if any data is presented to the user -it is assumed that there

have been no misunderstanding errors and so that the data matches the user request.

3.2.3 User simulation

Unlike other earlier research between 1998-2002, Levin et al. (2000) applies the sim-

ulation -based approach for using Reinforcement Learning (RL) to learn a dialogue

strategy, (see Section 2.8 for definitions of model and simulation-based approaches).

Levin et al.’s user simulation is partly-stochastic - it uses unigram and bigram mod-

els which generate a user response based on the previous system action. As in all

cases where a user simulation has been used for RL of dialoguestrategies, training

dialogues between the system and user simulation are conducted via abstract represen-

tations of utterances such as Dialogue Acts (DAs), (see Section 1.1.1 for a definition of

a DA). This is because such abstract representations are easier to generate than word

sequences, let alone speech signals, and they also make it easier to simulate Auto-

matic Speech Recognition (ASR) and Natural Language Understanding (NLU) errors.

Note that Levin et al. (2000) does not use any kind of error simulation. Levin et al.’s

user simulation supplies slot values rather than abstracting away from them. (For ex-

ample, if it is trying to fill the “destinationcity” slot, it will output something of the

form “destinationcity(Pittsburgh)” rather than just “destinationcity”.) This necessi-

tates the deterministic part of the simulation which ensuresconsistent or goal-directed

behaviour, so that within a dialogue, the simulation alwayssupplies the same values

for each slot e.g. the simulated user does not change its mindhalf-way through so that

it wants to fly to “Philadelphia” instead of “Pittsburgh”.

The simulation used unigram and bigram models for the following actions, whereX

andY can refer to any slot, including the same slot:

1. the number of values to supply in response to a greeting e.g. P(n), n = 0,1,2,

2. which slot to supply a value for in response to a greeting e.g. P(ORIGIN),

P(AIRLINE),
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3. which value to supply given the slot e.g.P(Boston|ORIGIN),P(Delta|AIRLINE),

4. supplying a value for slot X given that the system asked about slot Y e.g.

P(AIRLINE|AIRLINE), P(AIRLINE|DEPARTURETIME),

5. supplying values for N unsolicited slots given that the system has just asked

about slotX e.g.P(2|AIRLINE),

6. accepting the relaxation prompt given which slot the system wishes to relax e.g.

P(yes|AIRLINE) = 1−P(no|AIRLINE).

The original ATIS dialogue corpus (Walker et al., 1997) could only be used to estimate

the parameters for actions 1 and 2, because in this corpus, the system never takes the

initiative, and does not ask constraining or relaxing questions. Hence the parameters

for the other models were set using intuition. Levin et al. (2000) did not simulate

ASR/NLU errors. This simulation was not evaluated to assesshow realistic it is.

As we will see, this is a fairly typical approach to user simulation for RL in SDS,

featuring:

• partly deterministic and partly-stochastic behaviour,

• consistent/goal-driven behaviour,

• some probabilities are derived from appropriate data, someare hand-coded,

• communication between the user simulation and system via abstract representa-

tions of utterances e.g. Dialogue Acts (DAs),

• no evaluation of the simulation quality.

Later in this survey, more recent research will be describedin which efforts are made

to establish the accuracy of the user simulation e.g. Scheffler and Young (2002), Hen-

derson et al. (2008).

3.2.4 Experimental results

Levin et al. (2000) state that by the end of the training, the system had explored 111

states, and converged to the optimal strategy. A summary is provided of how the strat-

egy behaves. Firstly, the system always starts the dialogueby greeting. Depending on



Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 47

the system state after getting the user response to this greeting, the system, if needed,

proceeds by asking constraining questions until the origin, destination and airline are

specified. Note that the strategy does not take into account the number of database en-

tries that match the user’s constraints after every user turn (i.e. the strategy continues

to ask for all constraints even if there is only 1 or 0 current results). Next, the strategy

retrieves data from the database. After the retrieval, if the resulting data set is empty,

(because the query was over-constrained), then the system,depending on the current

state, relaxes the airline or the departure time, and retrieves again. If there are too

many flights in the data set, it asks for additional constraints (e.g. the departure time)

and then retrieves again. If at any point during the dialoguethe retrieved data set has a

reasonable number of flights, then the data is output and the dialogue is closed.

Levin et al. (2000)’s evaluation is unsatisfactory for the following reasons:

• There is no quantitative evaluation of the learned strategybased on average final

reward.

• There are no quantitative comparisons to any other strategye.g. a hand-crafted

strategy, a random baseline strategy or some other kind of learned baseline strat-

egy, (only one strategy is learned in any case).

• As a result of the above deficiencies, no statistical significance results can be

reported.

• The learned strategy is tested with the same simulation withwhich it was trained.

• The learned strategy is not tested on real users.

As we shall see later in this chapter, evaluation methodologies have become more

sophisticated in recent years e.g. Lemon et al. (2006a).

3.2.5 Summary

This early work was very important in pioneering the basic concepts and methods in

RL for Spoken Dialogue Systems (SDSs). All subsequent work builds on this approach

to some degree, but as we shall show, many aspects of the methodology have been

improved upon. We now describe work which closely followed the initial presentation

by Levin and Pieraccini (1997).
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3.3 RL using data from real users: initial results from

Singh et al. 1999-2002

This section describes the work of Singh et al. (1999, 2002),which differs from that

of Levin et al. (2000) in that it uses the model-based as opposed to simulation-based

approach for using Reinforcement Learning (RL) to learn a dialogue strategy, (see Sec-

tion 2.8 for definitions of model and simulation-based approaches). In addition, partial

rather than full strategies are learned, (action choices are learned only in certain states,

not all states), and the exploratory data used by the reinforcement learner is generated

by real, not simulated user interactions. Since the probabilities for the stochastic user

simulation used by Levin et al. (2000) were set using intuition, rather than learned from

data, we can say that Singh et al. (1999, 2002) pursue a more strongly data-driven ap-

proach. As we shall see further on in this survey, other researchers e.g. Walker (2000),

Tetreault and Litman (2006) have also used the model-based approach and real user

interactions in order to learn partial strategies. Learning full strategies is perhaps not

realistic when RL is directly applied to dialogues collected with real users. Learn-

ing full strategies rather than partial strategies obviously requires a greater number of

training dialogues, but collecting dialogues with real as opposed to simulated users is

costly in terms of time and possibly money. Even if these costs were not prohibitive,

real users cannot be expected to interact with a system whichis exploring different

actions in every state, many or most of which will be unreasonable.

Singh et al. (1999) describes 6 experiments in which they apply their software tool

“RLDS” (Reinforcement Learning for Dialogue Systems) to the TOOT train schedule

system. The TOOT system is a slot-filling system whose goal isto find the user a

suitable train in the Amtrak train schedule. RLDS takes a setof transcribed sample

dialogues, builds a Markov Decision Process (MDP) and then uses a standard Dynamic

Programming (DP) algorithm calledvalue iterationin order to find the optimal value

function and strategy. RLDS was applied to a corpus of 146 sample dialogues between

real users and TOOT. In appropriate states, action choices were learned for information

presentation, confirmation (whether and how to confirm user utterances) and initiative

(system vs. mixed), while in other states the action choice was fixed. The main aims

of the experiments described in Singh et al. (1999) were to:

1. confirm that the RLDS methodology and software produces intuitively sensible

policies,
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2. use the value functions computed by the RLDS software to discover and under-

stand correlations between dialogue properties and performance.

In related work, Singh et al. (2002) collected sample dialogues between real users

and another slot-filling system called NJFun. The NJFun system provides users with

information about “fun” things to do in New Jersey. Here, there were 54 subjects

for training and 21 for testing, and this provided 311 training dialogues and 124 test

dialogues. Like Singh et al. (1999), Singh et al. (2002) onlyattempted to learn which

action to take in certain states. In some states, they wantedto learn whether to confirm

a slot value, and in others, whether the system should take the initiative.

3.3.1 State features and action sets

Singh et al. (1999) used different state features dependingon the aim of the experiment.

The state features used for TOOT in the first experiment were the slot-status features

only. Here the aim was simply to check that RLDS was working and could learn a

sensible policy i.e. one which filled all of the slots, confirmed them and then queried

the database. Subsequent experiments also used the following two state features:

1. number of filled slots,

2. length of the dialogue.

One interesting experiment aimed to find a correlation between the value function and

the number of “distress indicators” in a dialogue - indicators that the dialogue is poten-

tially in trouble e.g.timeouts, resets, user requests for help. Hence a feature that kept

track of the number of distress indicators was added to the state representation.

Singh et al. (2002) aimed to learn which of 2 actions (initiative and confirmation type)

to take in 42 different states (the other action choices werehand-coded). Each of these

states was represented using the following features:

1. whether the system has greeted the user (0 or 1),

2. which slot is being worked on (1-4),
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3. confidence/confirmed (0,1,2 for low, medium and high ASR confidence1, 3,4 for

explicitly confirmed, and disconfirmed),

4. whether a value has been obtained for current slot (0 or 1),

5. how many times the current slot has been asked (0,1,2),

6. whether a non-restrictive or restrictive grammar was used (0 or 1),

7. whether there was trouble on any previous slot (0 or 1).

Some of the 42 states occurred when the system needed to ask orre-ask a slot, and then

the action choices were to retain the initiative or to give itto the user. The rest of the

42 states occurred when the system has just obtained a slot value, and then the action

choices are to confirm, or to move onto another slot. The system was trained with 54

users (311 dialogues) by taking random choices at these points, (the “Exploratory for

Initiative and Confirmation” strategy), and collecting rewards via task completion.

3.3.2 Reward functions

Singh et al. (1999) and Singh et al. (2002) only ever gave a reward in terminal dialogue

states. For the TOOT experiments, this terminal state reward was obtained from a

question in the user satisfaction survey. This reward was+1 if the user said that they

would use the system again, 0 if they said “maybe”, and−1 if they said “no”. In

Singh et al. (2002) dialogue reward was automatically labelled by a+1 in the case of

a completed task, or−1 otherwise.

3.3.3 Experimental results

The main findings of the 6 experiments described in Singh et al. (1999) were the fol-

lowing:

1. RLDS is capable of learning a sensible basic dialogue policy,

2. the value function grows roughly linearly with the numberof confirmed at-

tributes,

1As stated in Section 3.1.1, a speech recogniser can use acoustic measurements to indicate how sure
it is to have performed a correct recognition.
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3. dialogues with a higher number of distress features have alower value,

4. within the same length dialogue it is better to have obtained more attributes,

5. system initiative has higher value than mixed initiative,

6. results are extremely similar using a reward function based on whether the user

perceived the task to have been completed, rather than actual task completion.

Singh et al. (2002) found that the value function of the learned strategy was higher than

the average value of the random “Exploratory for Initiativeand Confirmation” strategy

used during training. Task completion increased from 52% intraining to 64% in testing

(p < 0.059 in an independent samples t-test over subject means)2. The experiments

had also involved collecting subjective evaluations from the users, but these were not

significantly different between the learned and random policies.

This work was the first to provide significant results showingthat a learned policy can

perform well with real users of a dialogue system. However, there are some unsatis-

factory elements to this result:

• the baseline strategy for comparison was random action choice, rather than a

state-of-the-art hand-crafted strategy,

• the strategy was only learnt for a small number of choice points, rather than for

the entire state-action space (all actions in all possible states),

• only small state spaces were used (e.g. compared to Henderson et al. 2008).

We now discuss the related work of Walker (2000), which used adifferent, data-driven,

methodology for determining the reward function for learning.

2A t-test is any statistical hypothesis test in which the teststatistic has a Student’s t distribution if
the null hypothesis is true i.e. no difference exists between two groups for the variable being compared,
(in this case the means). Population data from which sample data are drawn are assumed to be normal,
and variances of the populations, equal. Thep value gives the probability that the null hypothesis is
true. For information on independent samples t-tests, (tworandomly selected groups), see page 427 of
Sheskin (2007), and on dependent samples, (two groups matched on some variable or the same people
tested twice i.e. repeated measures), see page 743.
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3.4 Predicting user satisfaction and defining reward:

Walker 2000

Like Singh et al. (1999, 2002), Walker (2000) also describesan experiment in which a

partial slot-filling strategy is learned based on exploratory data generated by real user

interactions. However, Walker makes an important novel contribution with respect

to the reward function by proposing “PARADISE” (PARADIgm for System Evalua-

tion), which is a method for predicting a dialogue-enduser satisfactionscore based on

metrics that can be easily collected by the system itself. Section 3.4.2 will introduce

PARADISE in detail.

The particular Spoken Dialogue System (SDS) used by Walker (2000) is ELVIS (Email

Voice Interactive System) (Walker et al., 1998), the purpose of which is to support ac-

cess to email over the phone. Q-learning, (an off-policy Temporal Difference Learning

(TDL) algorithm - see Sutton and Barto 1998), is applied to a corpus of 219 dialogues

between ELVIS and 73 different real users, (each user carries out a set of three email

tasks). In generating these dialogues, the system randomlyexplored alternate strate-

gies in appropriate states for initiative, reading messages and summarising folders, and

used fixed strategies elsewhere e.g. for requesting and providing information. Hence

Reinforcement Learning (RL) is being used to learn action choices for initiative, read-

ing messages and summarising folders. The learned strategyis tested in 18 dialogues

with 6 new users. Training and testing dialogues are all evaluated with a user satisfac-

tion score, which is computed from the user’s answers to a number of questions about

how the dialogue went.

3.4.1 State features and action sets

As stated above, Walker (2000) explores different action choices with regard to initia-

tive, and summarising and reading messages. ELVIS explorestwo different types of

initiative action:

1. The system-initiative action constrains what the user can say by requesting a

particular item of information.

2. The user-initiative action allows the user to take control of the dialogue and

specify exactly what s/he wants to do next.
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For the implementation of ELVIS used in Walker (2000), the choice of initiative is

made early in the dialogue and then kept to for the remainder in order to avoid con-

fusing the user. If the system is using a user-initiative strategy but the user fails to

provide a recognisable response, then the system will take the initiative to repair the

situation before switching back to user-initiative actions. ELVIS explores 3 alternative

summarisation actions:

1. The Summarize-Both (SB) action uses both the sender and the subject attributes

in the summary.

2. The Summarize-System (SS) action summarises by subject or by sender based

on the current context.

3. The Summarize-Choice-Prompt (SCP) action asks the user to specify which of

the relevant attributes to summarise by.

Finally, ELVIS explores 2 different Read actions for reading multiple messages fol-

lowing a user request e.g. “Read my messages from Kim.”:

1. The Read-First (RF) action involves summarising all of the messages from Kim,

and then taking the initiative to read the first one.

2. The Read-Summary-Only (RSO) action provides information that allows users

to refine their selection criteria.

Walker uses the following state features, which are described further below:

1. KnowUserName (U): 0,1,

2. InitStrat (I): 0,SM,MI,

3. SummStrat (S): 0,SS,SCP,SB,

4. ReadStrat (R): 0,RF,RSO,RCP,

5. TaskProgress (P): 0,1,2,

6. CurrentUserGoal (G): 0, Read, Summarize,

7. NumMatches (M): 0, 1, N>1,
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8. WhichSelection (W): 0, Sender(Snd), Subject(Sub), InOrder(InO),

9. KnowSelectionCriteria (SC): 0,1,

10. Confidence (C): 0,1,

11. Timeout (T): 0,1,

12. Help (H): 0,1,

13. Cancel (L): 0,1.

The KnowUserName (U) feature keeps track of whether ELVIS knows the user’s name

or not. The InitStrat (I), SummStrat (S) and ReadStrat (R) features keep track of

whether ELVIS has already employed a particular initiativestrategy, summarise strat-

egy, or a reading strategy in the current dialogue, and if so,which strategy it was. The

TaskProgress (P) feature tracks how much progress the user has made in completing

the experimental task. The CurrentUserGoal (G) feature corresponds to the system’s

belief about what the user’s current goal is. The WhichSelection (W) feature tracks

whether the system knows what type of selection criteria theuser would like to use to

read her messages. The KnowSelectionCriteria (SC) featuretracks whether the system

believes it understood either a sender name or a subject nameto use to select mes-

sages. The NumMatches (M) feature keeps track of how many messages match the

user’s selection criteria. The Confidence (C) feature is a threshold variable indicating

whether the speech recogniser’s confidence that it understood what the user said was

above a pre-set threshold. The Timeout (T) feature represents the system’s belief that

the user said Help, and leads to the system providing context-specific help messages.

The Cancel (L) feature represents the system’s belief that the user said Cancel, which

leads to the system resetting the state to the state before the last user utterance was

processed. Walker reports that these state features produced 110592 possible states but

that not all of these states occur.

3.4.2 PARADISE and the reward function

As stated previously, Walker (2000) proposes a methodologycalled PARADISE for de-

veloping predictive models of SDS performance (see also Walker et al. 2000). Walker

(2000) describes an application of the methodology to the training dialogues collected

with ELVIS. Recall that the training dialogues are generated using a strategy which
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randomly explores action choices for initiative, reading messages and summarising

folders. At the end of each dialogue with ELVIS, the user’s satisfaction is seen as the

sum of the following features, where each feature has some positive weight:

1. Actual Task Completion (0 or 1),

2. Perceived Task Completion (0 or 1),

3. Task Ease (0−4),

4. Comprehension Ease (0−4),

5. System behaved as Expected (0−4),

6. Future Use (0−4).

The value for Actual Task Completion was obtained from the system logs, but the

values for the other user satisfaction features, (2−6 in the list above) were supplied

by the users. The modelling technique,multivariate linear regression3 is then used

to learn to predict the user satisfaction score based on a number of metrics that can be

directly measured from the system logs. These metrics include:

1. Dialogue Efficiency Metrics - elapsed time, system turns,user turns,

2. Dialogue Quality Metrics - mean ASR confidence score, number of timeouts,

(a timeout is when user response is detected within a certainamount of time),

Automatic Speech Recognition (ASR) rejections, user requests for help, user

requests to restart the dialogue, barge-ins, (interruptions of the system by the

user).

The resulting model is a PARADISE model for predicting user satisfaction/SDS per-

formance.

In learning the action choices for initiative, reading messages and summarising folders,

the actual user satisfaction score was used as reward, not the user satisfaction score as

computed by the PARADISE model.

3Multivariate linear regression, (see page 1433 of Sheskin 2007), models numerical data by aleast
squares functionwhich is a linear combination of the model parameters and depends on> 1 independent
variables. A least squares function fits a model so that the sum of the squared residuals has its least value,
a residual being the difference between an observed value and the value given by the model.
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3.4.3 Experimental results

Regarding PARADISE, a stepwise linear regression on the training data showed that

Task Completion, Mean Recognition Score (MRS), Barge-in% and Rejection% were

significant contributors to User Satisfaction, accountingfor 39% of the variance inR-

squared. 4. How well the model generalised to unseen data was tested with a ten-fold

cross-validation.5 The averageR2 for the training set was 37% with a standard error

of 0.005, while the averageR2 for the held-out 10% of the dialogues was 38% with

a standard error of 0.06. This suggests that the model will generalise to new ELVIS

dialogues.

Regarding the learned strategy, statistical analysis indicated a significant increase in

user satisfaction from training to test (p = 0.047). Wherever the choice arises, the

learned strategy uses the System-Initiative and Read-First actions. The learned strategy

uses the Summarize-Both action at the beginning of the dialogue, and then switches to

the Summarize-System action in later phases.

This work then shows that using a more data-driven definitionof reward leads to a bet-

ter learned strategy than a random strategy. We now turn to another strand of research,

which has focused onsimulatedusers and ASR systems rather than training with real

user data, (the simulation-based approach to learning dialogue strategies - see Section

2.8.2).

3.5 Learning with simulated users and ASR errors:

Pietquin and Renals 2002

This section describes the work of Pietquin and Renals (2002), which uses a Monte

Carlo (MC) algorithm and a stochastic user simulation to learn a strategy for a slot-

filling computer-dealing system. The novel feature of this work is that a simulated

Automatic Speech Recognition (ASR) system is introduced into the Reinforcement

4R2, the “coefficient of determination”, (see page 1230 of Sheskin 2007), is the proportion of vari-
ability in a data set that is accounted for by a statistical model. R2 = 1 indicates that the fitted model
explains all variability,R2 = 0, no ’linear’ relationship between the dependent and independent variables,
andR2 = 0.39, that approximately 39% of the variation in the dependentvariable can be explained by
the independent variables, and the remaining 61% by unknownvariables/inherent variability.

5In an n-fold cross-validation, the data is first divided inton (usually equal-sized) portions, and then
in each of n folds, a different one of these portions is used for testing, while the remainder of the data is
used for training. Results are averaged across the n folds.
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Learning (RL) environment. This ASR simulation simulates both speech recognition

errors and Confidence Levels (CLs), (recall that CLs were introduced in Section 3.1.1).

However, the probabilities for the user and ASR simulationsare not learned from data.

3.5.1 State features and action sets

For the computer-dealing application, each state is represented with the following slot-

status feature:

• A confidence feature for each of the 7 slots - undefined if slot unfilled, low or

high.

Hence each slot can be represented as either (0,undefined), (1,low) or (1,high), mean-

ing that there are 37 possible states.

The action set contains 6 generic actions:

1. GREETING e.g. “How may I help you?”,

2. ASK: ask to constrain the value of a slot,

3. CONF: ask to confirm the value of a slot,

4. RELAX: ask to relax the value of a slot,

5. DBQUERY: perform a database query,

6. CLOSE: present data and close the dialogue session.

With 7 slots, this gives 24 different actions. When the database was queried, only

values with a high confidence level were used.

3.5.2 Reward functions

After each turn, the reinforcement learner receives a reward that is a weighted sum of

the following:

1. a negative reward if the final state has not yet been reached,
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2. the number of database accesses,

3. the number of presented records,

4. the ASR Confidence Level (CL) for the user’s most recent utterance,

5. a “function of the modelled user’s satisfaction”.

Pietquin and Renals (2002) and Pietquin (2004) do not appearto provide details about

the “function of the modelled user’s satisfaction”.

Figure 3.1: A Confidence Level (CL) distribution for good and bad recognitions.

3.5.3 A stochastic user and error simulation

Like the simulation used by Levin et al. (2000), the simulation used by Pietquin and

Renals (2002) is partly-stochastic and able to simulate mixed-initiative behaviour. An-

other common feature is that the purpose of its deterministic element is to ensure that

the simulation maintains the same goal within an individualdialogue - a main user

goal is randomly defined at the start of each dialogue and useractions are consistent

with this goal. Here, since the domain is computer-dealing,a user goal describes a set

of specifications for a computer. A difference to the Levin etal. (2000) simulation is
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that for the Pietquin and Renals simulation, none of the probabilities are learned from

data - they are all supplied via intuition.

Pietquin and Renals (2002) and Pietquin (2004) denoten to mean the number of slots,

g = the user goal,kt = the user knowledge at timet, sβ = the slot which the system

has just asked about,uα = the slot which the user simulation provides a value for in

response to the system prompt. The user goalg defines the user’s preferred value for

each slot, andkt records how many times the user has supplied a value for each slot.

The probabilities used by the user simulation then include:

1. probabilities associated with responses to greeting e.g. P(n|Greeting,g),P(uα|kt ,g),

2. probabilities associated with responses to constraining questions e.g.P(uα|sβ,kt ,g),

P(n|sβ),

3. probabilities associated with responses to relaxation prompts e.g.P(yes|sβ,kt ,g),

P(no|sβ,kt ,g),

4. probability associated with user satisfaction:P(close|sβ,kt ,g) i.e. the user sim-

ulation can indicate its dissatisfaction by closing the dialogue early, and so this

probability is set to increase with the number of times that the simulation must

supply a particular slot value.

As stated at the start of Section 3.5, the novel feature of this work is that it uses a

stochastic ASR simulation which simulates ASR errors and outputs Confidence Level

(CL) scores. Just as for the user simulation, the probabilities for the ASR simulation

are not learned from data - they are set using intuition. Pietquin and Renals (2002)’s

ASR simulation uses different CL and error rate distributions for a finite number of

recognition tasks, which include:

1. digits,

2. numbers,

3. dates,

4. unrestricted continuous speech.

A CL distribution is composed of two distinct curves respectively for good and bad

recognition results - Figure 3.1 represents a CL distribution output from a real ASR
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system obtained using some of its training data (isolated words). As the two curves

cover each other, it is unavoidable to reject some well-recognised utterances as well as

to accept a few bad recognition results by defining a single CLthreshold. The ASR

simulation used here receives lists of one or more slot-value pairs from the user sim-

ulation, which it then splits into individual slot-value elements. The probability of it

simulating an ASR error for a particular slot-value pair is then dependent on the aver-

age Word Error Rate (WER) for the task in question. Note that the simulation assumes

that recognition errors only affect values of the slot-value pairs and that only words

occurring in the same context can be substituted with each other. If the simulation

simulates an ASR error, then it produces a partial CL according to the “bad recogni-

tion” curve of the corresponding CL distribution, and if it does not, then it produces a

partial CL according to the “good recognition” curve. A global CL is generated for the

list by multiplying all partial CLs.

3.5.4 Experimental results

Pietquin and Renals (2002) reports that after several thousand simulated dialogues, the

learned strategy stabilises and appears to be optimal. A summary description of the

strategy is provided: after greeting the user, the system uses the ASK and RELAX

actions until it has enough information with a high Confidence Level (CL) to query the

database and return a set which is not empty, but not “too large”. No details are given

as to what “too large” means in practice.

Pietquin and Renals report that the ASR simulation affectedthe order in which the

ASK action was applied for each slot. The learned strategy first asks questions about

values that present better recognition results e.g. numbers. For example, it will ask for

a value for the RAM size slot before the computer brand slot.

This work then shows that reasonable dialogue strategies can be trained in simulation

rather than with real data, and that with only slot-status features represented in the

state, the reinforcement learner can learn to ask the slots in an order which is sensitive

to the likelihood of ASR errors. However, the evaluation here is lacking in the same

way as that of Levin (see Section 3.2.4) e.g. there is no quantitative evaluation of the

learned strategy or testing with real users. We now present similar work.
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3.6 A goal-directed user simulation and error model with

probabilities learned from data: Scheffler and Young

2002

Scheffler and Young (2002), Scheffler (2002) use Q-learning (an off-policy Temporal

Difference Learning (TDL) algorithm - see Sutton and Barto 1998), Eligibility Traces

(ETs), a goal-directed user simulation and a system error model to learn a dialogue

strategy for a slot-filling cinema information Spoken Dialogue System (SDS). The er-

ror model simulates both Automatic Speech Recognition (ASR) and Natural Language

Understanding (NLU) errors. Unlike Pietquin and Renals (2002) the user simulation

and error model are both trained on a corpus of real user data.The user simulation

is also described in Scheffler and Young (2001), and is an extension of a previous

user model described in Scheffler and Young (2000). Unlike inLevin et al. (2000)

or Pietquin and Renals (2002), there is some evaluation doneto assess how realistic

the simulations are, and the performance of the learned strategy is compared to hand-

crafted baselines.

3.6.1 State features and action sets

Scheffler and Young (2002) used 5 different state representations composed from dif-

ferent combinations of the following features (in additionto slot-status):

1. slot currently in focus (Type, Day, Film, Cinema),

2. “InfoSource” (Default, Negated, Elicited, Unelicited),

3. confidence (Default,0.2,0.3,...,1.0),

4. “ConfLevel” (Default, Low, High).

Of these 5 state representations, the one with the greatest number of state-action pairs

included features 1 and 3, in addition to standard slot-status features. Once the impos-

sible state-action pairs had been ruled out, this state-representation was left with 1298

possible state-action pairs.

The different actions which the learner had to choose between were:
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1. Mixed Initiative - mixed initiative query for more information (available ifcur-

rent slot is empty),

2. System Initiative - query for information on the current slot (available if current

slot is empty),

3. Explicit confirmation - confirm the contents of the current slot explicitly,

4. Confirm all - confirm the contents of all slots,

5. Implicit confirmation - confirm the contents of the current slot implicitly while

querying for information on the next slot,

6. Accept - accept information in the current slot without confirmation at present,

and terminate if a complete transaction has been specified.

This action set allows for automatic design of the choice between mixed and system

initiative and the confirmation strategy, (a choice betweenexplicit confirmation, im-

plicit confirmation, and delaying confirmation until later).

3.6.2 Reward function

Scheffler and Young (2002) use a simple reward function that gives a reward at the end

of each dialogue. This reward function includes a per-turn penalty and a task failure

penalty.

3.6.3 User simulation and error model

As in Levin et al. (2000) and Pietquin and Renals (2002), the user simulation of Schef-

fler and Young (2001, 2002) is partially-stochastic and is able to simulate mixed-

initiative behaviour. Again, the deterministic element ofthe simulation is that it is

goal-directed - a main user goal is randomly defined at the start of each dialogue and

user actions are consistent with this goal. There is also a probabilistic error model.

The user simulation generates utterances using lattices which are made up of nodes

and paths between these nodes. Nodes are probabilistic or deterministic choice points

relating to user behaviour. The deterministic choices are based on user state and so

ensure consistent goal-directed behaviour. The parameters for the probabilistic user
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behaviour choice points and error model are estimated basedon training data collected

with a prototype cinema information SDS. In all cases, probabilities are estimated

from the data usingMaximum Likelihood Estimation (MLE)6. For the probabilistic

user behaviour choice points, aneventis a user action, and thecontextis the previous

system action(s) and a representation of the internal user state. For the error model, an

event would be whether or not a recognition/understanding error occurred. Counts are

obtained for both specific and more general contexts, so thatit is possible toback-off

to a more general case whenever the number of training examples falls below a certain

threshold.

The user simulation and error model are shown to simulate different scenarios well

enough to perform relative predictions of their durations.Hence some evaluation is

undertaken in order to assess how realistic the user and error simulations are, but be-

ing based only on the gross metric of dialogue duration, thisevaluation is not very

convincing. How best to evaluate the accuracy of user simulations is in fact an open

research question (see Schatzmann et al. 2006), and it is an issue which we will refer

to again in Section 3.10.

3.6.4 Experimental results

In evaluating the learned strategies, Scheffler and Young (2002) used two hand-crafted

strategies as baselines. The first used a small state space containing slot-status features

and feature 1 from Section 3.6.1, while the second used a large state space which

included additional features such as a confidence feature, and a feature which counts

how many times each slot has been asked. The performance of the learned and hand-

crafted strategies was evaluated in test dialogues with theuser simulation according

to the reward function in Section 3.6.2. Of the learned strategies, those learned with

larger state spaces tended to outperform those learned withsmaller state spaces, but

the improvement was not great. The learned strategies outperformed the small-state-

space-hand-crafted strategy by a large margin, and performed roughly as well as the

large-state-space-hand-crafted system.

Like Levin et al. (2000) and Pietquin and Renals (2002), thiswork then shows that

reasonable strategies can be learned using simulated users, but again:

6P(Event|Context) =
count(Event,Context)

count(Context)
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• testing and training are performed with the same user simulation,

• no tests with real users were performed,

• the quality of the simulated users is not established convincingly - we are only

told that the user simulation and error model are shown to simulate different

scenarios well enough to perform relative predictions of their durations,

• the learned strategies are not shown to be better than hand-coded strategies.

We now discuss an alternative approach which treated both simulated user and dialogue

manager as RL systems.

3.7 Reinforcement Learning for both user and system:

English and Heeman 2005

English and Heeman (2005) use Reinforcement Learning (RL) to learn the system

dialogue strategy for a collaborative task which requires the system and user to agree

on 5 pieces of furniture to place in a room. Both the system anduser have private

preferences about which furniture items they want in the room e.g. “if there is a red

couch in the room, I also want a lamp”. The main novel feature of this work is that RL

is used to learn the user strategy simultaneously. The same RL algorithm is used for

both strategies - an on-policy Monte Carlo (MC) method. The authors argue that their

approach is preferable to the more generally-accepted approach of using a stochastic

user simulation for which the probabilities have already been derived from a human-

human or human-machine dialogue corpus. They state that twodisadvantages of the

more generally-accepted approach are:

1. significant time and effort is required to collect the sample dialogues for the

dialogue corpus, and then model user behaviour to produce a user simulation,

2. the strategy that can be learned for the system is limited by the complexity and

flexibility of the simulated user.

They claim that their approach avoids these disadvantages,but as will be explained

in Section 3.7.4, it seems to be fundamentally flawed if it is to be used for learning

dialogue strategies for interacting with real users.
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3.7.1 State features and action sets

The state representation for each of the system and user agents includes the following

binary features:

1. Pending-Proposal,

2. I-Proposed,

3. Violated-Preference,

4. Prior-Violated-Preferences,

5. Better-Alternative.

A Pending-Proposalindicates whether an item has been proposed but not accepted

or rejected.I-Proposed indicates whether the agent made the most recent proposal.

Violated-Preferenceindicates that the pending proposal has caused one or more vio-

lations of the conversant’s private preferences.Prior-Violated-Preferences indicates

whether the conversant had one or more violated preferenceswhen the pending pro-

posal was made.Better-Alternative indicates that the agent thinks it knows an item

that would achieve a better score than the item currently proposed.

The action set for each of the system and user agents includes:

1. propose,

2. accept,

3. reject,

4. inform,

5. release turn.

The propose, accept and reject actions refer to proposing, accepting and rejecting

different items of furniture for the room. An agent uses theinform action to inform

the other conversant of preferences that are violated by thecurrent proposal. Since a

turn does not finish until the speaker uses therelease turn action, a single turn can

include multiple actions e.g. areject, followed by aninform and then apropose.
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3.7.2 Reward functions

The agents only receive non-zero rewards at the end of each dialogue. The reward

function is a linear combination of the solution quality (S)and the dialogue length (L),

taking the form:

Reward= w1S−w2L (3.1)

wherew1 andw2 are positive constants. The authors explore the effects of different

values for the constants.

3.7.3 User simulation using Reinforcement Learning

The user simulation is also an RL agent and so which action it takes at any given time

is determined by:

1. the action selection method e.g.ε-greedy and the relevant parameter’s value e.g.

ε (see Sutton and Barto (1998) or Section 2.9.1),

2. the Q-values for the different actions in the current state.

3.7.4 Experimental results

English and Heeman report that they succeeded in learning system and user dialogue

strategies that achieved comparable performance with hand-crafted system and user

strategy pairs. The authors also claim that the learned system strategies are robust -

when the learned system strategies “conversed” with the hand-crafted user strategies,

the resulting dialogues had comparable solution quality towhat the hand-crafted and

user strategies achieved together. They acknowledge that there was a lack of con-

vergence in the Q-values over a number of learning trials, presumably because the

Reinforcement Learning (RL) problem becomes more complex with two interacting

learning agents.

However, if the goal is to produce system strategies for interacting with real users, then

the approach of using RL to simultaneously learn both the system and user strategies

seems to be fundamentally flawed. To learn a strategy which works well with real

users, we need to train with a simulation which accurately simulates real users. For
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example, we will see in the description of the experimental work of this thesis, that

real users seem to respond better to different repair strategies in different contexts.

Hence, unless we train with an accurate simulation, we cannot expect to learn these

appropriate repair strategies. Therefore, it seems that the type of co-training used by

English and Heeman cannot be relied on to produce optimal strategies for real users.

We now discuss work which presents a method for automatically selecting features to

include in the state, and which investigates alternatives to Markov Decision Processes

(MDPs) for modelling the dialogue management problem.

3.8 Alternative learning approaches and feature selec-

tion: Paek and Chickering 2005

Alternatives to Markov Decision Processes (MDPs) for modelling the dialogue man-

agement problem have been investigated by Paek and Chickering (2005). Unlike

MDPs, their models do not constrain the state space by the Markov assumption, (see

Section 2.4). Paek and Chickering are interested in whetherit is possible to learn better

strategies with these alternative models, i.e. ones which obtain higher reward. Paek and

Chickering also present a data-driven method for identifying which features should be

represented in the MDP state. This data-driven method generalises to the alternative

non-Markovian models. First, an MDP is viewed as a special case of aninfluence

diagram, which is a more general framework for graphical modelling that facilitates

decision-theoretic optimisation. There are techniques for learning the parameters and

structure of a Bayesian Network7 that have been extended for influence diagrams

(Heckerman, 1995, Chickering and Paek, 2005), and it is possible to use these in order

to learn which features should be represented in the state.

In this way Paek and Chickering (2005) learned strategies for a speech-enabled web

browser. The data was generated using a simulation environment where all possible

system actions relating to a user command were systematically explored. Dialogues

were limited in length to 3 system turns due to the typically low tolerance users have

in command-and-control settings for extended repairs. Theauthors state that using

Dynamic Programming (DP) for a state space that includes more than a handful of

variables can be computationally expensive. Hence they useforward-samplingto ap-

7See Section 3.3 of Pietquin (2004) for an introduction to Bayesian Networks.
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proximate the DP solution for the MDP (Kearns et al., 1999).

3.8.1 State features and action sets

The potential state features in the data fell into the following three broad categories:

1. Within-utterance ASR features: features pertaining to a single utterance such

as the number of hypotheses in an n-best list8 of variable length, the mean of

the Confidence Levels (CLs) etc.,

2. Between-utterance ASR features: features pertaining to matches across utter-

ances, such as whether the top rule in the n-best list matchedthe previous top

rules, etc.,

3. Dialogue features: features pertaining to the overall dialogue such as the num-

ber of repairs so far, whether the system has engaged in a confirmation yet, etc.

Four different Dialogue Manager (DM) models were constructed:

1. a zero-order Markov model,

2. a first-order Markov model, i.e. an MDP,

3. a second-order Markov model,

4. a cumulative total reward model.

As we already know, in an MDP, a time slice’s state variables depend on those from

the previous time slice. For a second order Markov model, thethird time slice state

variables can also depend on those in the first time slice, while for a zero-order Markov

model, there are no dependencies between time slices. For a cumulative total reward

model, state features accumulate for each slice.

Here is a summary of the state features which Paek and Chickering (2005)’s data-

driven method learned should be represented in the MDP:

1. a number of features related to the n-best list Confidence Levels (CLs),

8A speech recogniser may provide a list, in order, of its topn hypotheses for a user utterance accord-
ing to their Confidence Levels (CLs).
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2. the mean CL in the n-best list,

3. the sum of all the CLs from the n-best list,

4. range of score values from n-best list,

5. whether all the rules in the list were the same though the actual phrases or word-

ing were different,

6. the grammar rule that was observed, e.g. the first or top rule in the n-best list.

Hence this includes a number of features related to the n-best list CLs, which seems

sensible given that most hand-crafted dialogue managementstrategies use some kind

of confidence threshold for taking actions, e.g. “Do the top recognised command if

its confidence is greater than 95%”. When applied to the othermodels, Paek and

Chickering’s method learned different feature sets, e.g. feature sets including between-

utterance Automatic Speech Recognition (ASR) features.

The action choices for the first turn were:

1. DoTop - execute the most likely command in the n-best list,

2. Confirm - confirm among the top three choices while giving the option that it

may not be any of them,

3. Ignore - ignore the utterance as spurious,

4. Repeat- ask for a repetition.

For the second turn they were:

1. DoTop,

2. Confirm ,

3. Repeat.

Finally, the action choices for the third turn were:

1. DoTop,
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2. Bail - make an apology and terminate the dialogue.

In generating the training data, all possible system actions were explored for each

user command - Section 3.8.3 will provide more details aboutthis training simulation

environment.

3.8.2 Reward functions

If the simulation selected either the DoTop, Ignore or Bail action, then the session

finished and a reward was given. When the final action was DoTop, if the system

executed the correct command, then it received a reward of+100, else it received

−100. If the final action was Ignore and there was no command, then it received

+100, else−100. For Bail, it received−100. If either the repair action Confirm or

Repeat was selected, a penalty of−75 was received.

3.8.3 User simulation

The simulation randomly selects a command from the command-and-control grammar

for the browser (e.g., “go back”, “go forward”, “go to link x”). Using state-of-the-

art Text-To-Speech (TTS) generation, an utterance is then produced for the command,

varying all possible TTS parameters, such as engine, pitch,rate and volume. Since

Paek and Chickering (2005) were interested in building models that were robust to

noise, they included empty commands and added various typesof background noise to

see if a model could learn to ignore spurious commands. The produced utterance was

then recognised by a Microsoft Speech API (SAPI) recognition engine. All possible

SAPI events were logged, and these events, and functions of these events constituted

the potential state feature set already provided in Section3.8.1.

3.8.4 Experimental results

Paek and Chickering (2005) found that the strategy learned for the cumulative total

reward model outperformed the strategies learned for the other models, including the

MDP. Hence it seems that the cumulative total reward model may offer an attractive

alternative to the MDP. However Paek and Chickering say theycannot draw any strong

conclusions for the following reasons:
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1. The domain was small with a relatively restricted command-and-control gram-

mar and a small action space.

2. It is possible that certain features which would have enabled the MDP to perform

best were not annotated.

3. The results depend on the techniques used for learning thestructure of the state

space and so these results may have turned out differently with other model se-

lection techniques. Feature selection techniques such as Correlation-based Fea-

ture Selection (CFS) subset evaluation Hall (1999) offer analternative.9

The work described here in this section proposed a method forautomatically identify-

ing features which should be included in the state. We now present some alternative

work which has used RL itself to assess the importance of different state features. The

basic methodology is to learn strategies with different state features, and to then subject

these strategies to quantitative and qualitative analysis.

3.9 Feature selection in RL for tutorial dialogue sys-

tems: Tetreault and Litman 2006

Like (Singh et al., 1999, 2002, Walker, 2000), Tetreault andLitman (2006) also de-

scribes an experiment in which a partial strategy is learnedbased on data generated

by real user interactions. However the work of Tetreault andLitman has two main

novel features. Firstly, the utility of three new state features is investigated by learn-

ing action choices with and without each of these features, and then subjecting the

learned strategies to quantitative and qualitative analysis. Secondly, the action choices

are not learned for a slot-filling system, but instead for a Spoken Dialogue System

(SDS) which acts as a tutor for undergraduate-level physicsi.e. the ITSPOKE SDS

(Litman and Silliman 2004). The action choices learned in appropriate states relate to

whether to ask the user a question, and if so, what kind of question e.g. a simple versus

a more complex question. The first state feature whose utility is investigated represents

whether the system is forced to re-visit a particular concept, the second, how frustrated

the user seemed to be in their last response, and the third is ameasure of the student’s

9As potential future work, Section 8.2 proposes a possible method for applying CFS to select a
subset of contextual features to include in the RL state.
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performance thus far on the current problem. Note that thesefeatures could potentially

be important to any SDS. Tetreault and Litman focus on question strategies because

what type of question a tutor should ask is of great interest to the Intelligent Tutoring

Systems community. In addition, it is also possible that theresults will generalise,

because in any domain, asking users questions of varying complexity is likely to elicit

different responses.

The action choices are learned by applying the Dynamic Programming (DP) algorithm

policy iterationto an annotated corpus of 20 human-ITSPOKE SDS sessions. Each of

these 20 sessions consists of an interaction with one student over 5 different physics

problems, so giving a total of 100 dialogues. Before each session, the student read

physics material for 30 minutes and then took a pretest basedon that material. The

system starts each dialogue by giving the student a problem and then the student writes

a short essay response. The system assesses the essay for potential flaws in the reason-

ing and then asks questions to help the student understand the confused concepts. Its

next action e.g. question is based only on the correctness ofthe student’s last answer,

and once the student has successfully completed the dialogue, they are asked to correct

the initial essay. Finally, at the end of a session, the student is given a post-test similar

to the pre-test, and this is then used to calculate the student’s normalised learning gain:

Gain=
posttest− pretest

1− pretest
(3.2)

This is a standard evaluation metric in the intelligent tutoring systems community.

3.9.1 State features and action sets

The state is always represented by a subset of the following features, which all relate

to the student (user):

1. Correctness- Correct (C),Incorrect or Partially Correct (IPC),

2. Certainty - Certain (cer),Uncertain (unc),Neutral (neu),

3. Concept Repetition- Concept is new (0),Concept is repeated (R),

4. Frustration - Frustrated (F),Neutral (N),

5. Percent Correct - 50-100% = (H)igh, 0-49% = (L)ow).
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Forbes-Riley and Litman (2005) describes how the emotion-related features,Cer-

tainty andFrustration , were annotated manually in the corpus.Certainty describes

how confident a student seemed to be in their answer, whileFrustration describes how

frustrated the student seemed to be when they responded. Theother three features,

(Correctness, Concept Repetition, Percent Correct) are automatically extracted.

Correctnessdescribes whether the student was correct or not,Percent Correct, the

percentage of correctly answered questions so far for the current problem, andCon-

cept Repetition, whether the system is forced to cover a concept again which reflects

an area of difficulty for the student. Tetreault and Litman (2006) were interested in the

utility of Concept Repetition, Frustration , andPercent Correct. Hence they learned

a baseline with only features 1 and 2 in the state, and then three further strategies with

features 1 and 2 and then one of 3 to 5.

As stated previously, where it is thought appropriate to aska question, Tetreault and

Litman use RL to learn to choose between the following actions:

1. Simple Answer Question (SAQ) e.g. “Good. What is the direction of that force

relative to your first?”,

2. Complex Answer Question (CAQ) e.g. “What is the definitionof Newton’s Sec-

ond Law?”,

3. Mix of SAQ and CAQ e.g. “Good. If it doesn’t hit the centre ofthe pool what do

you know about the magnitude of its displacement from the centre of the pool

when it lands? Can it be zero? Can it be nonzero?”,

4. No Question (NoQ) e.g. “So you can compare it to my response...”.

For other states, the action is fixed as either giving some kind of feedback or some

other type of helpful measure e.g. a hint or a restatement.

3.9.2 Reward functions

The 10 students with the highest normalised learning gain scores were labelled high

learners and their respective 5 dialogues were given a final reward of 100. The other

ten students were labelled low learners and their respective dialogues were given a final

reward of−100.
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3.9.3 Experimental results

Tetreault and Litman (2006) provide qualitative analysis of the effects of adding the

new state features. They state that in general, theConcept Repetitionfeature causes

the reinforcement learner to learn a Complex Answer Question (CAQ) after a concept

has been repeated, and especially if the student is correct when addressing a question

about the repeated concept. This seems to make sense, because if a concept has been

repeated, this should signal that the student did not grasp the concept, and a clarifica-

tion dialogue was initiated to help the student understand it better. Once the student

answers the repeated concept correctly, this indicates that the student understands the

concept and that the tutor can once again ask more difficult questions to challenge the

student. TheFrustration feature changes the policies most when the student is frus-

trated, but when the student is not frustrated (neutral), the policy stays the same as

the baseline with the exception of when the student is eitherCorrect andCertain, or

IncorrectandUncertain. Finally, thePercent Correctness Featuredoes not produce

a large policy change - most learned actions remain “Mix of SAQ and CAQ”, just as

they were for the Baseline.

Tetreault and Litman go on to provide quantitative analysisof the learned strategies in

order to compare the utility of the three new state features.Three metrics are used: (1)

“Diff’s” (2) % Policy Change and (3) Expected Cumulative Reward (ECR). The num-

ber of Diff’s is the number of states whose learned action differs from the Baseline.

% Policy Change weights each difference by the number of times that state-action se-

quence actually occurs in the data and then divides by the total number of state-action

sequences. This more accurately measures the utility of a feature because although a

first feature may produce a higher number of Diff’s than a second feature, its overall

impact could actually be lower if the states which it affectsoccur less frequently. How-

ever, % Policy Change still does not take into account the effect which the state feature

has on the state values, (see Section 2.6). The third metric,ECR, does take this into ac-

count. ECR is calculated by normalising the value of each state by the number of times

it occurs as a start state in a dialogue and then summing over all states. Tetreault and

Litman report that according to all three metrics,Concept Repetitionhas the greatest

utility, followed by Frustration , and thenPercent Correctness. For example, the+

Concept Repetitionstrategy obtained an ECR of 39.52, the+ Frustration strategy,

31.30, and the+ Percent Correctness, 28.17. Note that the learned strategies are not

compared to a hand-crafted strategy.
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This work then demonstrates a simple but useful approach to performing feature se-

lection for state features. As stated in section 3.8.4, the use of automatic feature se-

lection methods such as Correlation-based Feature Selection (CFS) subset evaluation

Hall (1999) is very much an open problem.

3.10 Learning in large state spaces via a generalisation

method: Henderson, Lemon and Georgila 2005-

2008

One of the main themes that we have observed in the above survey is the use of rela-

tively limited state spaces, which do not include much linguistically-motivated detail

regarding the dialogue context. This restriction has been due to researchers wishing to

avoid the “curse of dimensionality” (Bellman, 1957), in which learning in large state

spaces becomes intractable. One approach to large state spaces is to usegeneralisation

methods in which previously unobserved states are seen as “similar” (by some met-

ric) to states which have been observed. This section will describe Henderson et al.

(2005, 2008) (henceforth “HLG”) - work which explores usinga generalisation method

calledlinear function approximationin order to cope with a very large state space that

includes linguistically-motivated features e.g. the entire dialogue history represented

as Dialogue Acts (DAs).

HLG train a strategy on data collected with real users of the DARPA COMMUNICA-

TOR systems. The COMMUNICATOR corpora (Walker et al., 2001a, 2002) consist of

approximately 2300 “slot-filling” human-machine dialogues in the travel-booking do-

main. The systems in these corpora play the role of a travel agent, and the user always

tries to book either a single or return flight, and sometimes also tries to book a hotel

or rent a car. The data contains PARADISE (Walker et al., 2000) evaluation scores,

which HLG use as reward. Recall that PARADISE was introducedin Section 3.4.2.

Prior to applying Reinforcement Learning (RL), an automatic system was used to as-

sign DATE Dialogue Act (DA) tags (Walker et al., 2001b) to theuser utterances, and

to computeinformation states, (representations of the dialogue context), for each dia-

logue turn. Section 3.10.1 will introduce DATE. The new contextual features produced

a very large state space: 10386 states are theoretically possible. Since the number of

dialogues was relatively small, but the state-action spaceextremely large, the data only
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provided information about a small portion of the state-action space. To address this

problem, HLG applied a hybrid learning model which combinesRL with Supervised

Learning (SL), (see Section 1.1.2 for a definition of SL), where the role of the SL com-

ponent is to restrict the learned strategy to the portion of the space for which there is

data. Hence, like model-based approaches to learning dialogue strategies, HLG learn

a strategy from a fixed dataset, but their use of a Hybrid learning approach and a very

large state-action space are new. Note that Henderson et al.(2005) reports prelimi-

nary results for an experiment which used the same methodology as Henderson et al.

(2008), but was only conducted on a subset of the 2001 COMMUNICATOR corpus,

and hence produced inferior learned strategies.

3.10.1 DATE Dialogue Act tagging scheme

This section describes DATE, (Dialogue Act Tagging Scheme for Evaluation of Spoken

Dialogue Systems), (Walker and Passonneau, 2001), (see Section 1.2 for a definition

of a Dialogue Act (DA)). DATE was developed to provide finer-grained quantitative

dialogue metrics for comparing and evaluating COMMUNICATOR Spoken Dialogue

Systems (SDSs). DATE tags each utterance according to threedimensions:

1. SPEECH ACT,

2. TASK/SUBTASK,

3. CONVERSATIONAL DOMAIN.

The SPEECH ACT dimension characterises the utterance’s communicative goal, and

the different types are:

1. REQUEST-INFO,

2. PRESENT-INFO,

3. OFFER,

4. ACKNOWLEDGEMENT,

5. STATUS-REPORT,

6. EXPLICIT-CONFIRM,
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7. IMPLICIT-CONFIRM,

8. INSTRUCTION,

9. APOLOGY,

10. OPENINGS/CLOSINGS.

The TASK/SUBTASK dimension gives the task or subtask to which the utterance re-

lates. This dimension is present so that the amount of efforta system expends on

particular sub-tasks can be quantified. Below are the different tasks/sub-tasks:

1. TOP-LEVEL-TRIP,

2. ORIGIN,

3. DESTINATION,

4. DATE,

5. TIME,

6. AIRLINE,

7. TRIP-TYPE,

8. RETRIEVAL,

9. ITINERARY,

10. GROUND,

11. HOTEL,

12. CAR.

Finally, the CONVERSATIONAL DOMAIN dimension characterises the utterance as

relating to one of the following three conversational domains:

1. ABOUT-TASK,

2. ABOUT-COMMUNICATION,
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3. ABOUT SITUATION FRAME.

An ABOUT-TASK utterance will typically directly ask for or present task-related in-

formation, or offers a solution to a task goal. ABOUT-COMMUNICATION utterances

are concerned with managing the verbal channel and providing evidence of what has

been understood, e.g. via implicit confirmation. Finally, the SITUATION-FRAME

domain pertains to the goal of managing the culturally relevant framing expectations.

Most of the ABOUT-FRAME DAs fall into the speech-act category of INSTRUC-

TIONS, utterances directed at shaping the user’s behaviourand expectations about

how to interact with a machine.

3.10.2 State features and action set for Linear Function App roxi-

mation

As stated previously, prior to learning the strategy, HLG first annotated the COMMU-

NICATOR data with additional information. An automatic system which was imple-

mented using DIPPER (Bos et al., 2003) and several OAA agents(Cheyer and Martin,

2001) was used to assign DATE tags to the user utterances, andto compute informa-

tion states for each point in the system, (see Georgila et al.(2005b) for more details).

The new state features produced a very large state space - as already stated, 10386 are

theoretically possible), and there were 74 different system actions.

State features relate to the following:

1. Word Error Rate (WER),

2. complete speech acts history,

3. complete tasks history,

4. complete filled slots history,

5. complete filled slots values history,

6. complete grounded slots history.

The majority of the 74 different action choices are for asking or confirming a slot

value, where confirming can be implicit or explicit. Other actions include querying the

database of flights/hotels/cars, presenting database query results to the user, and giving

some kind of help to the user.
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3.10.3 Reward function

For learning the strategy, each system turn received a reward of−1, and the user satis-

faction score was the dialogue final reward. The PARADISE user satisfaction features

listed in Section 3.4.2 were used to compute this user satisfaction score. They were

summed with the following positive weights:

1. Actual Task Completion: 100,

2. Perceived Task Completion: 100,

3. Task Ease: 9,

4. Comprehension Ease: 7,

5. System behaved as Expected: 8,

6. Future Use: 9.

The weights for features 3−6 were determined by the application of PARADISE to

the COMMUNICATOR data, reported in Walker et al. (2001a).

When testing the strategy in simulation, HLG used a reward function based only on

dialogue length and task completion. We refer to this rewardfunction as “HLG05”, (it

is first introduced in Henderson et al. 2005), and it is as follows:

1. Database query,+25 for each filled slot, another+25 for each slot which is

confirmed,

2. System turn penalty:−1.

The training reward function could not be used when testing in simulation because the

simulations do not generate PARADISE user satisfaction scores. Learned strategies are

also evaluated with the HLG05 reward function in this thesis. This is so as to enable

performance comparisons with the Hybrid strategy and the hand-crafted COMMUNI-

CATOR systems.
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3.10.4 Stochastic User simulations

HLG used a user simulation in order to test the learned strategy. This user simulation

was trained on the COMMUNICATOR data using linear function approximation. The

simulation is given a vector of features representing the current context of the dialogue,

and outputs one or more actions, which consist of DATE speech-act-task pairs. Auto-

matic Speech Recognition (ASR) and Natural Language Understanding (NLU) errors

are incorporated since the model is built from the user utterances as they are recognised

by the ASR and NLU components of the original COMMUNICATOR systems. Note

that the user simulation does not provide instantiated slotvalues e.g. a response to pro-

vide a destination city is the speech act-task pair“[provide info] [dest city]” . It cannot

be assumed that two such responses in the same dialogue referto the same destination

cities, and so slot-status features in the Dialogue Manager’s (DM’s) information state

are only updated fromfilled to confirmedwhen the slot value is implicitly or explicitly

confirmed.

HLG also report how the COMMUNICATOR data was used to estimate the parameters

for user simulations based on n-grams. These n-gram models take as input the speech

act-task pairs of then− 1 most recent turns in the dialogue history and then output

a user utterance as one or more new speech act-task pairs. They simulate ASR and

NLU errors in the same way as the linear function simulation,and also like the linear

function simulation, they do not provide instantiated slotvalues. A criticism of some

stochastic user models is that they do not do a good job of simulating the different

types of user in the data from which they are derived (e.g. users with varying levels

of expertise and cooperativeness), and instead simulate anaverage user10. However,

this criticism is perhaps less true of n-gram user models. This is because an n-gram

model generates a new action based on some amount of dialoguehistory, and so can

generate a new action which bears common traits with previously generated actions.

The degree to which it is able to do this is obviously limited by the size ofn. We

use then-gram user simulations introduced here for training and testing strategies in

experimental work in Chapters 5 and 7. Hence, in Chapter 5, wediscuss how the

accuracy of these simulations is limited by the size ofn, and by the fact that they only

use DA information. We also discuss the implications which these limitations have for

learning dialogue strategies.

10This is obviously also a very important issue for how best to evaluate the accuracy of user simula-
tions.
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In order to establish their accuracy, Georgila et al. (2005a,b) evaluated the linear func-

tion approximation and the n-gram simulations on the further-annotated COMMUNI-

CATOR data usingperplexity, (see Schatzmann et al. (2006) for a formal definition

of perplexity). Perplexity is a measurement in InformationTheory which is used here

for determining whether the simulated dialogues contain similar action sequences (or

dialogue state sequences) to the real human-computer dialogue in the COMMUNICA-

TOR data. If they do, then the resulting perplexity will be lower. However, perplexity

is not necessarily a good indicator for how likely the user model is to predict a realistic

response in the context of an unseen dialogue situation. This is problematic, since in

simulation-based learning, our goal is to apply new strategies to the user model, and

there is no guarantee that a user model with a low perplexity will produce reasonable

user responses in such situations. Nevertheless, the modelbased on linear feature com-

bination gave the bestperplexity, followed by the 4-gram. Each one of the user models

was also run against a system strategy learned with purely Supervised Learning, (linear

function approximation), no RL. The quality of the simulated dialogues produced was

then measured as a function of the filled slots, confirmed slots, and number of actions

performed by the system in each dialogue. In this experiment, both the linear feature

combination model and the best n-grams (5-gram and 4-gram) produced similar re-

sults. Hence the accuracy of the simulations is evaluated more thoroughly here than in

Scheffler and Young (2002), (see Section 3.6.3). Recall thatScheffler and Young only

showed that their user and error models simulate different scenarios well enough to

perform relative predictions of their durations. As statedbefore, how best to evaluate

the accuracy of user simulations is an open and active research area (see Schatzmann

et al. 2006).

3.10.5 Experimental results

A dialogue strategy was learned from the further annotated COMMUNICATOR data,

and then tested with the linear function approximation usersimulation. The strategy

outperformed all of the COMMUNICATOR systems - it scores 35.42% higher than the

average COMMUNICATOR system. The authors find that when the relative impor-

tance of the Reinforcement Learning (RL) and Supervised Learning (SL) components

are adjusted, the best hybrid policy performs 302% better than the standard RL pol-

icy, and 1.4% better than the supervised policy. Lemon et al. (2006a) shows that the

Hybrid Strategy also outperforms a state-of-the-art hand-crafted system when tested
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on real users with the “TownInfo” Spoken Dialogue System (Lemon et al., 2006b).

Since the “TownInfo” system operates in a different domain,(the Tourist Information

domain as opposed to the COMMUNICATOR domain), this result also demonstrates

that it is possible to learn effective generic slot-filling strategies.

These results apparently show that large state spaces can behandled, and that good

policies can be learned by doing so. However, the approach ofsimply using all avail-

able state information for COMMUNICATOR systems does not tell us which aspects

of the state (in particular, of the dialogue history) are really important for the dialogue

management task. Additionally, no qualitative analysis ofthe learned strategy is pro-

vided. Despite the positive results described above, the very small improvement of the

hybrid policy over the purely supervised policy suggests that it is sub-optimal. It would

also be interesting to know whether this hybrid strategy is better than what could have

been learned using a smaller state-space and standard RL with or without a generali-

sation method. These are all issues which will be addressed by the experimental work

of this thesis.

We now provide a summary and comparison of the research described in this survey,

and open problems for the field.

3.11 Summary and open problems

This chapter has summarised the previous research in using Markov Decision Pro-

cesses (MDPs), Reinforcement Learning (RL), and related methods, to learn dialogue

strategies for Spoken Dialogue Systems (SDSs).

Most of the research described in this chapter involved learning strategies for systems

which filled slots before querying some information source (e.g. a database), and

presenting the results to the user. The exceptions were Tetreault and Litman (2006)’s

ITSPOKE physics tutor system, English and Heeman (2005)’s system for collaborating

in deciding how to arrange furniture in a room, and Paek and Chickering (2005)’s

speech-enabled web browser.

As discussed above, the main dimensions in which approachesdiffer are:

• size and detail of the state spaces,

• whether Dialogue Acts (DAs) are represented in the state,
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• size and complexity of action sets,

• amount of the state-action space actually explored in system training/ versus

amount hand-coded,

• use of simulations or real user data for training,

• use of an Automatic Speech Recognition (ASR) simulation fortraining,

• evaluation with real or simulated users,

• statistical significance of results,

• learning methods e.g. Dynamic Programming (DP) versus Monte Carlo (MC)

versus Temporal Difference learning (TDL), RL with and without a generalisa-

tion method,

• application domains (search, browsing, tutorial, negotiation....),

• reward functions: data-driven (e.g. PARADISE) versus hand-coded,

• degree to which feature selection methods are employed.

Table 2 compares the research based on important elements ofthe experimental method-

ology. We now summarise the various options covered in the prior work.

3.11.1 Learning methods

Researchers followed one of two general methods, these being:

1. Model-based approaches: Learn partial strategies from exploratory data gen-

erated by dialogues with real users, (Singh et al. 1999, 2002, Walker 2000,

Tetreault and Litman 2006). (Generating dialogues with real users will generally

give an insufficient number for learning full strategies). Due to the smaller num-

ber of variables, Dynamic Programming (DP) can be an option for the learning

algorithm.

2. Simulation-based approaches: Learn full strategies from exploratory data gen-

erated by dialogues with simulated users, (Levin et al. 2000, Pietquin and Renals



Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 84

Research group Slot Full Data-driven DAs in Feature Real user

fill strats sims state analysis tests

Levin & Pieraccini 1997-2000 ✓ ✓ ✕ ✕ ✕ ✕

Singh et al. 1999-2002 ✓ ✕ ✕ ✕ ✕ ✕

Walker 2000 ✓ ✕ ✕ ✕ ✕ ✕

Pietquin & Renals 2002 ✓ ✓ ✕ ✕ ✕ ✕

Scheffler & Young 2002 ✓ ✓ ✓ ✕ ✕ ✕

English & Heeman 2005 ✕ ✓ ✕ ✕ ✕ ✕

Paek & Chickering 2005 ✕ ✓ ✕ ✕ ✕ ✕

Tetreault & Litman 2006 ✕ ✕ ✕ ✕ ✓ ✕

Henderson et al. 2005-2008 ✓ ✓ ✓ ✓ ✕ ✓

Table 3.2: Comparison of work of different research groups:

“Slot-fill” column indicates whether the strategy was learned for a slot-filling system or not;

“Full-strats” indicates whether full as opposed to partial strategies were learned;

“DAs in state” indicates whether Dialogue Acts were represented in the state;

“Data-driven sims” indicates whether stochastic user and error simulations, probabilities for which are

learned from data, were used to learn the strategy;

“Feature analysis” indicates whether there was both quantitative and qualitative analysis of the effect of

different state features on the learned strategy;

“Real user tests” indicates whether the learned strategy was tested with real users and its performance

compared to a state-of-the-art hand-crafted strategy.

2002, Scheffler and Young 2002, English and Heeman 2005, Paekand Chicker-

ing 2005). A larger number of variables means some approximation to DP must

be applied, e.g. Monte Carlo (MC) or Temporal Difference Learning (TDL).

The exception to this is HLG. Like a model-based approach, HLG do not use a user

simulation for training, and instead, learn a dialogue strategy from a fixed dataset of

real user dialogues. However, they do not try to directly model the state transition

probabilities and apply DP. Instead they use an alternativelearning approach which

means that they can learn full strategies with a very large state-action space: “hybrid”

Supervised Learning/RL (TDL) with a generalisation method.
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3.11.2 Comparing the State spaces

In constructing their state spaces, researchers must try toinclude as much important

contextual information as possible without making it too large and making the RL

problem intractable. All of the researchers apart from Paekand Chickering (2005)

hand-picked their state features. Paek and Chickering treated the MDP as a special

case of aninfluence diagram, and then applied techniques for learning which features

should be represented in the state. Of those that learned full strategies for slot-filling

systems (Levin et al. 2000, Pietquin and Renals 2002, Scheffler and Young 2002),

only used slot-based features, e.g. whether a slot is filled,any associated confidence

score etc. HLG used additional features e.g. features for the complete dialogue history,

which produced a very large state space and necessitated using a hybrid supervised

RL method with linear function approximation. Tetreault and Litman (2006) learned

strategies in the tutorial domain, and used state features for userCorrectness(in their

most recent answer), userCertainty , Concept Repetition(whether the system has re-

peated a concept), userFrustration andPercent Correct (the proportion of questions

on the current topic answered correctly by the user).

3.11.3 Different reward functions

Most of the researchers use a simple reward function which rewardstask completion

and penalisesdialogue length. Walker (2000) and HLG use data which contains PAR-

ADISE (Walker et al., 2000) user satisfaction scores at the end of each dialogue, and

so use this measure of user satisfaction as their reward function.

3.11.4 User simulation and error modelling methods

Of the user simulations used by researchers, all are at leastpartially-stochastic and are

capable of simulating mixed-initiative dialogues. The user simulations of Levin et al.

(2000), Pietquin and Renals (2002) and Scheffler and Young (2002) supply actual slot

values, and so have a deterministic element to ensure that their behaviour is consistent

within a dialogue. The simulations developed by HLG, (linear function approximation

and n-grams derived from COMMUNICATOR data Walker et al. 2001a) do not supply

actual slot values and so do not have this deterministic element. All of the probabilities

for the user simulations of Scheffler and Young (2002) and HLGare learned from data,
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and some of the probabilities for the user simulation of Levin et al. (2000) are. The

probabilities for the simulation of Pietquin and Renals (2002) are entirely supplied

using intuition.

To simulate ASR/NLU errors Pietquin and Renals (2002), Scheffler and Young (2002)

and HLG also have a probabilistic error model. The probabilities for the error model

of Scheffler and Young and HLG are learned from data, while theprobabilities for the

error model of Pietquin and Renals are supplied using intuition.

Efforts were made to establish the accuracy of the simulations used by Scheffler and

Young, and those used and developed by HLG: linear function approximation simu-

lation and n-gram simulations derived from COMMUNICATOR data (Walker et al.,

2001a). Scheffler and Young showed that their user and error models simulate dif-

ferent scenarios well enough to perform relative predictions of their durations. The

accuracy of the linear function approximation and n-gram simulations is evaluated

more thoroughly (Georgila et al. 2005a,b). These simulations were evaluated on the

COMMUNICATOR data in terms ofperplexity. Each one of the user models was also

run against a system strategy learned with purely Supervised Learning (SL), (linear

function approximation), and the quality of the simulated dialogues which this pro-

duced was then measured as a function of the filled slots, confirmed slots, and number

of actions performed by the system in each dialogue.

3.11.5 Open problems

The prior work brings to light a number of open problems for the field, which include:

• Can we develop user simulations which are accurate enough toreliably train RL

Dialogue Managers (DMs)? What metrics can be used to evaluate user simula-

tions?

• Using data-driven user simulations and error models, can a reinforcement learner

learn full dialogue strategies which outperform state-of-the-art hand-crafted strate-

gies in evaluation with real users?

• Can linguistically motivated features e.g. Dialogue Acts (DAs) enable the rein-

forcement learner to learn better strategies?



Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 87

• If the answer to the above question is yes, why are these new strategies better, and

what does this tell us about human-machine dialogue and dialogue in general.

• Is additional contextual information only useful in certain portions of the policy

space? If it is, then this would be a useful finding - the additional contextual

information could be sacrificed where it is known to be redundant, so helping to

reduce the size of the policy search-space.

• Speech recognition/natural language understanding errors are a major obstacle

in human-machine dialogue, and better repair/error-recovery strategies should

lead to significant improvements in overall performance. Given that we are al-

ready using slot-status features, can additional context be used to learn better

repair/error recovery strategies?

• If additional contextual information does lead to better repair strategies, what are

these better repair strategies, and why are they better?

• Can automatic feature selection methods be applied to dialogue data to provide

an automatic method for identifying the important contextual features?

The reader should also be aware that this chapter did not describe very recent work

by Williams and Young (2007) which usedPartially Observable MDPs (POMDPs)

for learning dialogue strategies. A POMDP is an extension ofan MDP, and is used

for choosing actions when the entire world, or state-space is not always directly ob-

servable. Since the true state of the world cannot be uniquely identified, a POMDP

reasoner must maintain a probability distribution, calledthe belief state, which de-

scribes the probabilities for each true state of the world. Maintenance of the belief

state is Markovian in that it only requires knowledge of the previous belief state and

the action taken. POMDPs are therefore able to handle uncertainty in a principled

way, and since Automatic Speech Recognition (ASR) and Natural Language Under-

standing (NLU) are error prone, this makes them theoretically appealing for dialogue

management. However, at present POMDPs are computationally intractable to solve

for optimal behaviour for dialogue problems of realistic size. This then is another very

interesting avenue for future research.



Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 88

3.12 Conclusion

We summarised and analysed the work of the different research groups who have made

significant contributions in using Reinforcement Learning(RL) techniques to learn di-

alogue strategies for Spoken Dialogue Systems (SDSs). We surveyed the most im-

portant developments in this emerging field, and the open research issues. Given the

research content of this thesis, our primary focus was on thedifferent RL systems

themselves, but where appropriate, we also provided discussion related to user simula-

tion approaches.

This then ends the portion of this thesis which is devoted to background material, and

so in the next chapter, we begin description of the research content.



Chapter 4

The Reinforcement Learning setup

and proof-of-concept experiments

4.1 Introduction

This chapter first introduces the experimental setup which we use for Reinforcement

Learning (RL) of full dialogue strategies. This setup involves a reinforcement learner,

a Dialogue Manager (DM), and a stochastic user simulation. The reinforcement learner

controls the action choices of the DM, and learns a full dialogue strategy based on the

resulting interactions between the DM and the user simulation. This chapter also goes

on to describe three preliminary RL experiments which use this experimental setup in

order to learn full dialogue strategies for information slot-filling systems. These ex-

periments are also described in Frampton and Lemon (2005). The behaviour of the

user simulation used here is determined by a probabilistic model called a Bayesian

Network, and the experiments are considered preliminary because the Bayesian Net-

work’s structure and probabilities are hand-coded, ratherthan learned from real user

data. We prefer, (as we do in the experiments of Chapters 5 and7), to use a simulation

whose probabilities are learned from real user data, because assuming that the data is

of sufficient quality, then the simulation ought to be more realistic. An obvious but key

point to make, is that if we want to learn dialogue strategieswhich are to be directly

implemented in a real system, then the user and ASR simulations used for generating

training dialogues must be accurate.

Given that these RL experiments used a stochastic user simulation whose probabili-

89
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ties were not learned from real user data, why then did we conduct them? The first

reason was to provide a proof-of-the-concept that representing recent DAs in addition

to slot-status information in the state can potentially enable the reinforcement learner

to learn a more effective strategy. Another important reason was to gain insights into

how best to set the reinforcement learner’s parameters. Finally, conducting these ex-

periments also allowed us to to investigate the effects of different training reward func-

tions, and whether any tractability problems are encountered as we scale up to a more

commercially-realistic number of information slots.

The remainder of this chapter will proceed as follows. First, Section 4.2 describes

our experimental setup for using RL to learn full dialogue strategies. This descrip-

tion covers the choice of RL algorithm (Section 4.2.1), how the DM, user simulation

and reinforcement learner interact (Section 4.2.2) and thereinforcement learner’s pa-

rameter settings (Section 4.2.3). Section 4.2.4 describesthe Bayesian Network user

simulation which is used in the preliminary experiments of this chapter. Sections 4.3,

4.4 and 4.5 then describe the three preliminary RL experiments. The first two experi-

ments involve learning full strategies for a two-slot system, and the aim is to provide

a proof-of-the-concept that representing the DA of the user’s last turn in the state can

improve the learned strategy. The first experiment fails in this aim, but analysis is pro-

vided to explain why, while the second experiment succeeds.In the third experiment,

we then scale up to a more commercially-realistic 4 slots andinvestigate the effects on

the learned strategy of different training reward functions.

4.2 The experimental setup for Reinforcement Learn-

ing

4.2.1 Introduction

In the experiments described in this chapter, the followingthree software agents were

used to simulate dialogues and learn and test dialogue strategies:

1. the DIPPER Information State Update Dialogue Manager (DM) (Bos et al.,

2003),

2. a Bayesian Network user simulation,
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3. a reinforcement learner.

I created the reinforcement learner and Bayesian Network user simulations using Java.

The original version of the reinforcement learner stored the Q-values in ahashmap,

but in the experiments described in Chapter 5, the number of Q-values became too

large, and so I created a second version which stored the Q-values in a file, and then a

third which stored them in a database. In the work described in Chapters 5 and 7, the

Bayesian Network user simulation is replaced with an n-gramuser simulation.

The three “agents” communicate via the Open Agent Architecture (OAA) (Cheyer and

Martin, 2001). DIPPER is used to track and update the dialogue context. It supplies

the reinforcement learner with a reward following each system turn, and the reinforce-

ment learner uses these rewards to update the Q-values usingthe Sarsa(λ) algorithm

(see Sections 2.11 and 2.12). We chose to use the Sarsa(λ) algorithm because it is able

to learn from raw experience without a model of the environment’s dynamics, and it

has been found to converge faster than other RL algorithms e.g. Monte Carlo (MC)

algorithms. The reinforcement learner is also responsiblefor deciding which action

DIPPER should take next. Figure 4.1 shows this experimentalsetup. The task domain

is flight-booking, and the aim for the DM is to obtain values for the user’s flight infor-

mation “slots” i.e.departure city, destination city, departure dateanddeparture time,

before making a database query.

          
Reinforcement
Learner

DIPPER
Dialogue
Manager

Bayesian
Net User
Simulation

Dialogue Acts

State−action
pairs &
rewards

Actions

Figure 4.1: The basic experimental setup
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Next, Section 4.2.2 gives an overview of what happens in a single exchange between

the reinforcement learner, DIPPER, and the Bayesian Network simulation. Sections

4.2.3 and 4.2.4 give more details about the reinforcement learner and Bayesian Net-

work simulation.

4.2.2 Overview of a single exchange

In a single exchange between the DIPPER Dialogue Manager (DM), (whose action

choice is determined by the reinforcement learner), and thesimulated user, the DM

will first call the reinforcement learner’s main function -doRLearning(State, Possible-

Actions,Reward,NextAction)- with the first 3 variables instantiated. For a non-terminal

system turn, the reward will be specified as “systemTurnPenalty”. This represents a

negative value stored internally by the reinforcement learner, and so causes the rein-

forcement learner to learn strategies that do not prolong a dialogue longer than neces-

sary. In the experiments described in this chapter, the value of “systemTurnPenalty”

was always−1. The reinforcement learner will update its value estimates for actions,

(Q-values), internally and provide the DM with the next action to be taken in the 4th

variable. The DM carries out the action in the 4th variable and then calls the user

simulation’s main function -generateResponse(SysPrompt,UserResponse,ConfScores,

AbstractResponse)- with only the 1st variable instantiated. The user simulation, (see

Section 4.2.4), returns a Dialogue Act (DA) as a response, and the DM updates its

representation of the dialogue context accordingly.

This sequence of events repeats until the conclusion of the dialogue, and the system and

user simulation may have any number of dialogues. A dialogueconcludes when either

the user simulation ‘hangs-up’ (with final reward 0), or the system makes adatabase

query. In the case of a database query, the database query is compared to the user goal

defined by the user simulation at the start of the dialogue i.e. particular values for slots

such as the departure and destination cities. DIPPER will check whether the database

query and the user goal are the same, and if they are, then the reinforcement learner

will be given a relatively large dialogue-final reward. If the database query is partially

correct, then depending on the reward function being used, the reinforcement learner

may be given some lesser positive reward.

At set intervals of dialogues, the reinforcement learner will output a file containing

the Q-values, and the number of times each corresponding state-action pair has been
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visited. Such a file can be “loaded” into the reinforcement learner and this makes it

possible to continue learning from this point, or to test thelearned strategy using the re-

inforcement learner’s functiongetLearnedAction(State,Action), which given the state,

returns the action with the highest Q-value. The reinforcement learner is also able

to produce a graph of average reward-per-dialogue from set intervals of training dia-

logues, and this graph is useful for indicating when the learned strategy has stabilised.

4.2.3 The reinforcement learner’s parameter settings

For the experiments described in this chapter, the reinforcement learner’s parameters,

(introduced in Chapter 2), were set as follows:

1. Step-size parameter:α = decreasing,

2. Discount factor:γ = 1,

3. Action selection type =ε-greedy(alternative issoftmax),

4. Action selection parameter:ε = 0.7,

5. Eligibility Trace parameter:λ = 0.9,

6. Eligibility Trace =replacing(alternative isaccumulating),

7. Initial Q-values= 0.

The remainder of this section will explain why these are appropriate settings.

4.2.3.1 The step and discount parameters

As stated in Section 4.2.1, the reinforcement learner updates its Q-values using the

Sarsa(λ) algorithm (see Sections 2.11 and 2.12). The first parameter is the step-size

parameter,α, which was introduced in Sections 2.10.1 and 2.11.1, and this may take

a value between 0 and 1, or specified asdecreasing. If it is decreasing, as it is in our

experiments, then for any given Q-value update,α is 1
k wherek is the number of times

that the state-action pair for which the update is being performed has been visited. This

kind of step parameter will ensure that given a sufficient number of training dialogues,

each of the Q-values will eventually converge. The second parameter,γ, (the discount
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factor), may take a value between 0 and 1. Since dialogue management is an episodic

task, we can setγ to 1 so that future rewards i.e. rewards fortask completion, are taken

into account as strongly as possible (see Section 2.3).

4.2.3.2 The action selection parameters

Apart from updating Q-values, the reinforcement learner must also choose the next ac-

tion for the Dialogue Manager (DM) to take, and the third parameter specifies whether

it does this byε-greedyor softmaxaction selection (see Section 2.9.1). In the prelimi-

nary experiments described later in this chapter, we have usedε-greedy. If we are using

ε-greedy action selection, then the fourth parameter gives the value ofε, the probability

of selecting the action with currently the highest Q-value,while if using softmax, then

it gives thetemperature.

4.2.3.3 The Eligibility Trace parameters

The fifth parameter, the Eligibility Trace (ET) parameterλ, may take a value between

0 and 1, and the sixth parameter specifies whether the ETs areaccumulatingor re-

placing (see Section 2.12 for definitions of accumulating and replacing ETs). We

usedreplacingETs because they produce faster learning for the slot-filling task, es-

pecially when there is little information represented in the state e.g. only slot-status

features. To understand why, consider how during a trainingdialogue, the DM may

find a particular action in a particular state that often doesnot produce a change in

state i.e. adead-endstate-action/action. For example, consider a scenario where the

system re-asks a slot-value that has already been correctlyfilled/confirmed. The user

will probably often reply with the same value again, and so assuming that the value is

correctly recognised, the slot-status features will be unchanged. If the slot-status fea-

tures are all that is represented in the state, then the stateitself will be unchanged, and

so on the next system turn, the same dead-end state-action pair can be visited again.

Note that in general, the less information which is represented in the state, and so

the less fine-grained the representation of the context, themore frequent visits to such

dead-end state-actions/actions will be. If the system doesre-visit the same dead-end

state-action on its next turn, then with accumulating ETs, the ET increases to greater

than 1. When anon-dead-end actionis taken from this state, its ET will be less than

that for thedead-endaction. If a state-action’s ET increases, then so does the amount
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by which its Q-value will be updated in the direction of the most recently received

reward. Hence, if task completion is achieved and so a positive reward is received at

the end of the dialogue, then the Q-value for the dead-end state-action will increase by

more than that for the non-dead-end. In the next dialogue, the reinforcement learner

will be even more likely to choose the dead-end action, making it even more likely that

the dead-end action will have the larger ET. Eventually all of this may be corrected,

but learning will have been slowed down significantly. This problem does not occur

with replacingETs. No matter how many times the dead-end action is taken, its ET is

always less than that for a non-dead-end action after the non-dead-end action has been

taken. Indeed with the kind ofreplacingETs used here, when the non-dead-end action

is taken, the trace for the dead-end action is set to zero.

4.2.3.4 The initial Q-values parameter

The seventh parameter is for supplying the initial value forthe Q-values. There is

a trade-off to consider here, especially when the state contains little information e.g.

only slot-status features. On the one hand, we want to set this value high in order to

encourage the reinforcement learner to explore unvisited state-actions. However, when

using the kind of replacing ETs described above, if we set it too high, then at least in the

short term, the reinforcement learner will learn “dead-end” actions, (as stated above,

actions which do not lead to a change in the state). This happens because early on in

training a larger proportion of dialogues end in task failure and hence low reward. This

low reward will be propagated back to the non-dead-end stateactions, but not to the

dead-end state-actions because their ETs will have been setto zero. Thus while the

Q-values for the non-dead-end state-actions decrease significantly, those for the dead-

end state-actions remain at their initial high value. This may be corrected after further

dialogues but in any case, learning will be slowed. Again, this is more of an issue

when less information is represented in the state e.g. only slot-status features, because

in general, with a less fine-grained representation of the dialogue context, dead-end

state-actions will be visited more often.

Having provided details about how we set the reinforcement learner’s parameters, and

the issues involved, we now move on to describe the Bayesian Network user simula-

tion.
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4.2.4 Bayesian Network user simulation

Here auser simulation, rather than real users, interacts with the Dialogue Manager

(DM) via Dialogue Acts (DAs) (see Section 1.2 for a definitionof a DA). The Bayesian

Network user simulation is capable of simulating goal-directed mixed-initiative dia-

logue. When the user simulation’s main solvablegenerateResponse (SystemPrompt,

UserResponse, ConfidenceScores, AbstractResponse)is called with the first variable

instantiated, it first generates an abstract response via aBayesian Network(imple-

mented using NeticaJ Norsys 2002). A Bayesian Network is a probabilistic graphical

model that represents a set of variables and their probabilistic dependencies, and for

a good introduction, the reader can refer to Section 3.3 of Pietquin (2004). For the

Bayesian Network used here, the user’s response is dependent on the values of the

System Prompt, Slot Counter and History variables as shown in Figure 4.2. We chose

this structure after analysing COMMUNICATOR data (Walker et al., 2001a) and iden-

tifying what seemed to be the most important factors in determining the next user

response. These were:

1. the last system turn,

2. how many times each slot has been asked about,

3. whether or not the system has attempted to confirm any slot values incorrectly

due to a misunderstanding error, (recall from Section 1.1.1, that a misunder-

standing error occurs when the system obtains an incorrect slot-value),

4. whether the user has asked for help.

Below is an example of where the system tries to confirm an incorrect slot value as a

result of a misunderstanding error i.e. an Automatic SpeechRecognition (ASR) error

earlier in the dialogue.

User Simulation: I want to fly from Edinburgh.

System: So you want to fly from Eindhoven?

Whether the system has attempted to confirm any slot values incorrectly, and whether

the user has asked for help is represented by the ‘history’ node. As previously stated,

we supplied the probabilities for this simulation based on an initial analysis of relevant
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data - the COMMUNICATOR data (Walker et al., 2001a) -, and intuition. By contrast,

the RL experiments described in Chapters 5 and 7 use n-gram user simulations, the

probabilities for which are learned from the COMMUNICATOR data.

Prompt
System Slot

Counter

Response
Abstract

History

Figure 4.2: The Bayesian Network used by the user simulation: the abstract response

depends on the values of the System Prompt, Slot Counter and History variables.

We now provide the possible values for each node in the Bayesian Network.

4.2.4.1 The possible values for each node

The possible values for thesystem prompt nodeare all of the different possible system

actions. For Experiments 2 and 3, the list of possible systemactions includes all of

those given below, represented as Dialogue Acts (DAs). Unlike in Experiments 2 and

3, in Experiment 1 the system does not have the give help action available, and the

user simulation does not ask for help. Note thati is the number of slots which is 2 in

Experiments 1 and 2, but 4 in Experiment 3.

1. an open question e.g. ‘How may I help you?’,

2. ask the value for any of slots 1...i,

3. explicitly confirm any of slots 1...i,
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4. ask for theith slot whilst implicitly confirming slot valuei − 1, (wherei = 1

we implicitly confirm the final slot e.g. ‘So you want to fly fromEdinburgh to

where?’),

5. give help,

6. database query.

The different possible values for theslot counter noderepresent:

1. the slot asked about in the most recent system turn has beenasked about≤ 1

time before,

2. the slot asked about in the most recent system turn has beenasked about≥ 2

times before.

The different possible values for thehistory noderepresent:

1. Null: There are no outstanding incorrect system confirmations.

2. The dialogue system has attempted to confirm sloti incorrectly.

3. The user has asked for help.

Finally, the different possible values for theabstract responseare DAs which represent

the following:

1. stay quiet,

2. give the value for any of slots 1...i,

3. give the values for all of the slots,

4. say “no” and give the correct slot value in response to an incorrect system con-

firmation,

5. say “no”,

6. say “yes”,

7. ask for help,
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8. end the dialogue prematurely i.e. ‘hang-up’.

Abstract responses 1, 4, 5 and 6 will include the number of theslot to which they refer

e.g. “no(slot1)”.

We now give an overview of the settings for the probabilitiesthemselves.

4.2.4.2 The probabilities

Appendix A shows the probability table for the Bayesian Network used in Experiment

3. The probability table used for Experiment 2 is the same except that there are just

2 slots rather than 4. The probability table used for Experiment 1 is the same as for

Experiment 2 except that there are no probabilities relatedto asking for / receiving

help.

The probabilities are designed so that the user simulation may take the initiative by

giving more than one slot value when it is asked for only one, and may decide to close

the dialogue if asked the same question twice or more. If the system tries to incorrectly

confirm a particular slot value, the user simulation will generate abstract response 1,

4 or 5 to alert the system to this fact. Should the system then shift focus away from

this problem slot on its subsequent turn, there will be a 90% probability that the user

simulation will hang up. This is based on the intuition that in general, a user would

find it disconcerting if having indicated a misunderstanding error, the system moves

on without first acknowledging the corrected slot value. Unlike in Experiment 1, in

Experiments 2 and 3, the user simulation can ask for help and the system provide it.

The user simulation has a 20% chance of asking for help if:

1. the system has just asked an open question, (this is only possible at the start of a

dialogue),

2. the system asks for slot 1 for the first time,

3. the system asks for slot 2 for the first time.

The user simulation will not ask for help in any other situations, and it now has a 90%

chance of hanging up if it asks for help and then is not given help in the next system

turn.
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4.2.4.3 Translating the abstract response via the user goal

Having generated an abstract user response via the BayesianNetwork, the user simu-

lation next translates this abstract response into a concrete response (userResponsein

thegenerateResponsesolvable) by referring to a random user goal that it selectedat

the beginning of the dialogue. This random goal consists of values fordeparture city,

destination city, date of travelandpreferred airline. Hence if the abstract response is

to give the value for slot 1, and the goal departure city is ‘Edinburgh’, then the concrete

user response, (userResponse), will be departure(edinburgh).

4.2.4.4 Automatic Speech Recognition simulation

Next this concrete user response is subject to an Automatic Speech Recognition (ASR)

simulation. No data is used to help construct this simulation e.g. COMMUNICATOR

(Walker et al., 2001a) or the SACTI corpora (Williams and Young, 2004). Words are

assigned to groups with other similar-sounding words, and an ASR error is simulated

by substituting a word for another from the same group. The 2nd variable is then

instantiated with the concrete response which now possiblycontains a simulated ASR

error, and the 3rd variable with the associated ASR confidence score(s). The ASR

confidence score may be eitherlow or high. If a filled slot has low ASR confidence

and is unconfirmed, then there is only a 55% chance that the value is correct, while if

its ASR confidence is high, then it is correct.

This then completes the description of our basic experimental setup for RL of full

dialogue strategies, and of the Bayesian Network user and ASR simulations. Hence,

we now move on to describe the first of the three RL experimentswith the Bayesian

Network user simulation.

4.3 Experiment 1: a first attempt at improving the learned

strategy with the user’s last Dialogue Act

In this experiment, a first attempt is made at proving the concept that representing

recent Dialogue Acts (DAs) in the state can enable a reinforcement learner to learn

an improved dialogue strategy. Here, as stated in Section 4.1 and Section 4.2.4.1, the

user simulation does not ask for help or the system provide it. If the system tries to
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incorrectly confirm a particular slot value, the user simulation will generate a response

to alert the system to this fact e.g. “no”. Should the system then shift focus away from

this problem slot on its subsequent turn, the user simulation will have a 90% chance of

hanging up. If the reinforcement learner does not know that the last user utterance was

a rejection of an attempted confirmation, then it follows that it cannot learn to re-ask

or reconfirm the problem slot value on its next turn.

4.3.1 Hypothesis: Adding the user’s last Dialogue Act to the state

will improve the learned strategy

The hypothesis is that adding the Dialogue Act (DA) of the last user turn will enable

the reinforcement learner to learn a more effective strategy.

4.3.2 State representations

In order to test the hypothesis, two strategies are learned using different state represen-

tations. The first, which we refer to as the Slot-Status Strategy uses a state representa-

tion which contains only slot-status features:

1. whether the 1st slot is filled,

2. whether the 2nd slot is filled,

3. the ASR confidence score for the 1st slot value,

4. the ASR confidence score for the 2nd slot value,

5. whether the 1st slot value has been confirmed,

6. whether the 2nd slot value has been confirmed.

Next, a second strategy is learned using a state representation which contains the above

slot-status features and then an additional feature for theDA of the last user turn. Hence

we refer to this as the “DA Strategy”. If the hypothesis is correct, then the DA Strategy

will outperform the Slot-Status Strategy.
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4.3.3 The action set for the learner

Below is a list of all of the different actions that the Reinforcement Learning (RL)

Dialogue Manager (DM) can take and must learn to choose between based on the

representation of the dialogue context in the state:

1. an open question e.g. ‘How may I help you?’,

2. ask the value for any of slots 1...i,

3. explicitly confirm any of slots 1...i,

4. ask for theith slot whilst implicitly confirming slot valuei − 1, (wherei = 1

we implicitly confirm the final slot e.g. ‘So you want to fly fromEdinburgh to

where?’),

5. database query.

There are a couple of restrictions regarding which actions can be taken in which states.

Action 1 (open question) is only possible at the start of the dialogue, and DIPPER can

only confirm non-empty slots.

4.3.4 The reward function

This experiment used an “All-or-nothing” reward function which gave+100 if all the

slot values are correct, otherwise 0. Such an “All-or-nothing” reward function was used

because in a series of preliminary experiments, (not described here), it had been found

to produce faster learning for a 2-slot problem when usingε-greedy action selection.

Each system turn received a penalty of−1.

4.3.5 Results

Figure 4.3 shows how after 18000 training dialogues, each ofthe learned strategies

seemed to have stabilised. Interacting with the user simulation during testing runs,

the DA Strategy then achieved an average reward-per-dialogue of 94.05 over 500 di-

alogues, and the Slot-Status Strategy, 93.80. A one-tailed independent samples t-test

showed that this improvement was not statistically significant. Hence in this case the
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hypothesis was false - including the user’s last Dialogue Act (DA) in the state did not

improve the learned strategy. In the next section, we provide analysis to explain why.
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Figure 4.3: Learning in experiment 1: 2 slot system, reward function 2 (All-or-nothing

Reward), no user “help” action.

4.3.6 Analysis

4.3.6.1 Why the hypothesis was false

In order to avoid a likely user hang-up, whenever the user simulation indicated a mis-

understanding error i.e. an incorrect slot-value, it was necessary for the Dialogue Man-

ager (DM) to maintain focus on the problem slot. The hypothesis was false because

knowledge of the user’s last DA was unnecessary for learningto do this. An optimal

strategy here was one which attempted to fill and confirm the slots in a set order, not

moving on until the slot currently in focus is filled/confirmed. For such a strategy, the

problem slot can be inferred from the slot-status features alone, as shown by the ex-

ample in Table 4.1. When the user indicates the misunderstanding error, the state does

not change and so the learned action is the same as on the previous system turn i.e. the

Slot-Status Strategy maintains focus on the problem slot. Hence there is no advantage

to be gained from representing the last user DA in the state.



Chapter 4. The Reinforcement Learning setup and proof-of-concept experiments 104

Speaker Slot-status features Dialogue Act Transcript

System [0,0,low,low,no,no] askSlot1 “Where do you want to fly from?”

User “From Edinburgh”

System [1,0,low,low,no,no] icSlot1 askSlot2 “From Eindhoven to where?”

User “No Edinburgh”

System [1,0,low,low,no,no] icSlot1 askSlot2 “From Edinburgh to where?”

Table 4.1: On the final system turn here, the user’s last DA is unnecessary for identifying

the problem slot; ic = implicit confirm.

Speaker Slot-status features Dialogue Act Transcript

System [0,0,low,low,no,no] askSlot1 “Where do you want to fly from?”

User “[Asr rejection]”

System [0,0,low,low,no,no] askSlot2 “What is your destination?”

User “Eindhoven”

System [0,1,low,low,no,no] icSlot2 askSlot1 “To Eindhoven from where?”

User “No”

System [0,0,low,low,no,no] askSlot2 “Where do you want to fly to?”

Table 4.2: Due to switching focus from slot 1 to 2 earlier in the dialogue, on the final

system turn here, the slot-status features cannot identify the problem slot with total

certainty; ic = implicit confirm.

Had the optimal strategy been one which took a more flexible course through the dia-

logue, then contexts would have occurred in which the slot-status features alone were

not enough to infer the problem slot. Table 4.2 shows an illustrative example with a

hypothetical optimal strategy. Here the hypothetical optimal strategy switches focus

from slot 1 to slot 2 following a non-understanding error, (see Section 1.1.1 for a defi-

nition of non-understanding errors). It then obtains a value for slot 2, but the user then

indicates a misunderstanding error and so the slot-status features are now as they were

in the first state. Hence we cannot tell from the slot-status features alone whether the

problem slot is slot 1 or slot 2. It would be possible to learn this hypothetical optimal

strategy if the last user DA is represented in the state, but not if the state only contains
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the slot-status features. If the state only contains the slot-status features, then it would

not be possible to learn the optimal action of switching focus from slot 1 to slot 2

following a non-understanding error. As a result, the ambiguous context following the

misunderstanding error would not occur, but the overall strategy would be sub-optimal.

It will be interesting to see whether any of the issues discussed here crop up when we

learn strategies with real user data in Chapter 5. Now however, we move on to describe

further general characteristics of the learned strategies.

4.3.6.2 General characteristics of the learned strategies

Below is a list of further general characteristics of the learned strategies from this ex-

periment. These characteristics are also true of the learned strategies from Experiments

2 and 3.

1. An open question is asked at the start of the dialogue i.e. the system gives the

user the initiative.

2. Slot values with low ASR confidence scores are confirmed (implicitly or explic-

itly) rather than re-asked.

3. When at least 1 but not all slots are filled, an empty slot is asked while a filled

slot is implicitly confirmed.

4. Once all slots are filled, explicit is preferred to implicit confirmation for slot

values with low ASR confidence.

The reinforcement learner learns to ask an open question at the start of a dialogue be-

cause the user simulation is more likely to reply with> 1 slot value, so enabling a

shorter dialogue. To explain Characteristic 2, we must consider slots that have been

filled with low ASR confidence but are unconfirmed. The advantage of using confir-

mation over re-asking comes when the confirmation turns out be correct, which is the

majority of cases. Then the user simulation replies with ‘yes’ which is always recog-

nised correctly, whereas if the system re-asks the slot value, then the user simulation

replies with the value and this has a 45% chance of being misrecognised. Charac-

teristic 3 appears because if an implicit confirmation is correct, then the system can

confirm the slot and obtain a value for an empty slot in just oneturn, and this allows
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shorter dialogues. However, asking for one slot value whileimplicitly confirming an-

other is not desirable if all slots are filled because slot values provided by the user

simulation may be incorrectly recognised and so cause longer dialogues and/or in-

correct database queries. Hence, in these states the learned strategy chooses explicit

confirmation (Characteristic 4).

We now move on to describe the second preliminary experimentin which we add

Bayesian Network probabilities relating to a new system “Give Help” action. This

experiment tests the same hypothesis.

4.4 Experiment 2: a second attempt at improving the

learned strategy with the user’s last Dialogue Act

In this experiment, a second attempt is made at proving the concept that representing

recent Dialogue Acts (DAs) in the state can enable a reinforcement learner to learn an

improved dialogue strategy. Here, the user simulation is now able to ask for help and

the system to provide it. The user simulation has a 20% chanceof asking for help if:

1. the system has just asked an open question (this is only possible at the start of a

dialogue),

2. the system asks for slot 1 for the first time,

3. the system asks for slot 2 for the first time.

The user simulation will not ask for help in any other situations, and it now has a 90%

chance of hanging up if it asks for help and then is not given help in the next system

turn. Hence, adding the user’s last DA to the state will enable the reinforcement learner

to learn to give help when the user simulation asks.

4.4.1 Hypothesis: Adding the user’s last Dialogue Act to the state

will improve the learned strategy

As in Experiment 1 (see Section 4.3), the hypothesis is that adding the Dialogue Act

(DA) of the last user turn will enable the reinforcement learner to learn a more effective

strategy.
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4.4.2 State representations

Again, a baseline Slot-Status Strategy is learned using a state representation which

contains the following slot status features:

1. whether the 1st slot is filled,

2. whether the 2nd slot is filled,

3. the ASR confidence score for the 1st slot value,

4. the ASR confidence score for the 2nd slot value,

5. whether the 1st slot value has been confirmed,

6. whether the 2nd slot value has been confirmed.

A second strategy, the DA Strategy, is learned using a state representation which con-

tains these features, plus an additional feature for the DA of the last user turn.

4.4.3 The action set for the learner

Below is a list of all of the different actions that the Reinforcement Learning (RL)

Dialogue Manager (DM) can take and must learn to choose between based on the

context:

1. an open question e.g. ‘How may I help you?’,

2. ask the value for any of slots 1...i,

3. explicitly confirm any of slots 1...i,

4. ask for theith slot whilst implicitly confirming the value for sloti−1, (where

i = 1 we implicitly confirm the final slot e.g. ‘So you want to fly from Edinburgh

to where?’),

5. give help,

6. database query.

Hence, the action set is the same as in Experiment 1, except that there is now an

additional “give-help” action. Again, Action 1 (open question) can only be used at the

start of the dialogue, and DIPPER can only confirm non-empty slots.
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4.4.4 The reward function

This experiment used the same “All-or-nothing” reward function as the first experi-

ment, awarding+100 for totally correct database queries, and 0 otherwise, and giving

a penalty of−1 for each system turn.

4.4.5 Results and analysis

Learning lasted for 18000 dialogues after which both learned strategies were stable,

as shown by Figure 4.4. The DA Strategy gave help whenever theuser asked for

it, while the Slot-Status strategy did not give help in any state. As a result, the DA

Strategy achieved an average reward-per-dialogue of 90.55 over a 500 dialogue test

run interacting with the user simulation, and the Slot-Status Strategy had an average

reward of only 59.64. Hence the DA Strategy shows a 52% improvement, and an

independent samples one-tailed t-test, (see page 427 of Sheskin 2007), was conducted

to find that the significance level wasp < 0.05. Note that the rewards in the training

graph, (Figure 4.4), are less than in testing because of exploration i.e. during training

the reinforcement learner sometimes explores actions which at present it has learned

to be sub-optimal. This experiment then successfully demonstrates a first simple case

in which adding the DA of the last user utterance allows the reinforcement learner to

learn a superior strategy. Hence it is a proof-of-the-concept that including more than

only the slot-status features in the state can lead to a more effective learned strategy.

We now move on to an experiment where we investigate firstly, whether the RL prob-

lem remains tractable if we scale up to a more commercially-realistic number of slots,

and secondly, the effects on the learned strategy of different training reward functions.

4.5 Experiment 3: scaling-up and investigating differ-

ent training reward functions

Although the previous experiment proved the concept that including the user’s last

Dialogue Act (DA) in the state can improve the learned strategy, we have not yet

shown that the Reinforcement Learning (RL) problem remainstractable for a more

commercially-realistic number of slots e.g. 4. In addition, while an “all-or-nothing”

training reward function has been found to produce the fastest rate of learning for a
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Figure 4.4: Learning in Experiment 2: 2 slot system, reward function 2 (All-or-nothing

Reward), with user ‘help’ action.

2-slot system, it would be useful to know if this is also the case for a 4-slot system. As

the number of slots increases, it would seem reasonable to expect that at some point, a

reward function that gives some positive reward to partially-correct database queries,

a “partial reward function”, will produce faster learning than an all-or-nothing reward

function. Partial reward indicates to the reinforcement learner that it is headed in the

right direction for the optimal strategy, and so should become more important as the

number of slots and hence incorrect solutions increases. This experiment investigates

these issues.

4.5.1 Hypothesis 1: Scaling up to a more commercially-reali stic

number of slots does not cause intractability

Following the success of Experiment 2, the first hypothesis here is that with the Di-

alogue Act (DA) of the user’s last turn in the state representation, the reinforcement

learner is still able to learn an effective strategy if the number of slots is increased from

2 to a more commercially-realistic 4.
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4.5.2 Hypothesis 2: Rate of learning will be fastest with an “ all-or-

nothing” training reward function

The second hypothesis is that with 4 slots, the rate of learning will still be fastest

when using an all-or-nothing training reward function. We explore the impact of the

following training reward functions on rate of learning/quality of the learned strategies:

1. Reward Function 1 (Partial Reward):+100 for each correct slot value,

2. Reward Function 2 (All-or-nothing Reward): IF all slot values are correct,+100,

ELSE 0,

3. Reward Function 3 (Mixed Reward): IF all slot values are correct,+100, ELSE

+10 for each correct slot value.

Note that as usual, each system turn receives a penalty of−1. Reward function 3

(Mixed Reward) can be seen as a halfway-house between the partial and all-or-nothing

reward functions.

4.5.3 State Representation

Each state is represented in terms of the following variables:

1. Slot 1 confidence score,

2. Slot 2 confidence score,

3. Slot 3 confidence score,

4. Slot 4 confidence score,

5. the Dialogue Act (DA) of the last user utterance.

Variables 1-4 can take the valuesempty, low or high. If a value for the slot has been

supplied, and if its Automatic Speech Recognition (ASR) confidence score is low and

it is unconfirmed, then the value for the variable will below. If it is confirmed or if

its ASR confidence score ishigh, then it will behigh. There were 19 possible values

for variable 5 (see the user simulation actions in Subsection 4.2.4.1), and so a total of

34×19= 1539 states.
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Figure 4.5: Learning in experiment 3: 4-slot system, reward function 1 (Partial reward),

with user ‘help’ action, ε-greedy action selection, ε = 0.7

4.5.4 The action set for the learner

Below is a list of all the different actions that the Reinforcement Learning (RL) Dia-

logue Manager (DM) can take and must learn to choose between based on the context:

1. an open question e.g. ‘How may I help you?’,

2. ask the value for any of slots 1...i,

3. explicitly confirm any of slots 1...i,

4. ask for theith slot whilst implicitly confirming slot valuei − 1, (wherei = 1

we implicitly confirm the final slot e.g. ‘So you want to fly fromEdinburgh to

where?’),

5. give help,

6. database query.
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Figure 4.6: Learning in experiment 3: 4-slot system, reward function 2 (All-or-nothing

Reward), with user ‘help’ action, ε-greedy action selection, ε = 0.7

Whereas in Experiments 1 and 2 there were two slots, now thereare four. Again, action

1, (open question), is only possible at the start of the dialogue, and DIPPER can only

confirm non-empty slots.

4.5.5 Results and analysis

Learning continued for 100000 dialogues, at which stage thelearned strategies were

still improving, but the one using Reward Function 1 (Strategy 1: Partial Reward)

at a slower rate than those for Reward Functions 2 and 3 (All-or-nothing and Mixed

Rewards, Strategies 2 and 3 respectively). This is shown in Figures 4.5, 4.6, and 4.7.

Here we can see that the general dialogue strategy learning problem remained tractable

for the 4 slot case, and that after 30000 and 100000 dialogues, with ε-greedyaction

selection andε set to 0.7, the best strategy was learned using Reward Function 2, (All-

or-nothing Reward), the 2nd best strategy using Reward Function 3, (Mixed Reward),

and the worst using Reward Function 1, (Partial Reward). Theexperiment was re-

peated twice and this result was the same each time. The performance of the learned
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Figure 4.7: Learning in experiment 3: 4-slot system, reward function 3 (Mixed Reward),

with user ‘help’ action, ε-greedy action selection, ε = 0.7

strategies from the first run are summarised in Tables 4.3 and4.2 (columns represent

dialogue strategies trained with the 3 different reward functions, rows show testing of

those strategies based on the 3 ways of computing reward). The numbers represent the

average reward achieved per dialogue over 500 test dialogues.

Strategy 1 Strategy 2 Strategy 3

Reward 1 247.89 373.90 334.06

Function 2 20.12 84.42 62.74

(Testing) 3 35.65 85.30 71.90

Table 4.3: Testing the 3 strategies after 100000 training dialogues using each of the 3

reward functions, average reward achieved per dialogue over 500test dialogues.

When learning with Reward Function 1, the reinforcement learner has learned to query

the database in many more states where< 4 slots have been filled with high confidence

than when learning with Reward Functions 2 or 3. This is apparently because it still

receives a substantial reward for doing so:+100,+200, or+300 rather than the max-
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Strategy 1 Strategy 2 Strategy 3

Reward 1 186.76 320.04 301.91

Function 2 -4.54 78.69 40.32

(Testing) 3 14.58 75.16 56.79

Table 4.4: Testing the 3 strategies after 30000 training dialogues using each of the 3

reward functions, average reward achieved per dialogue over 500test dialogues.

imum attainable+400. Note that learned Strategy 2 outperformed learned Strategies 1

and 3 on all performance metrics i.e. including Reward Functions 1 and 3.

Note that this experiment does not consider the fact that fora real Spoken Dialogue

System (SDS) there are situations where it is preferable to query the database with only

a subset of the slots filled. For example, the speech recogniser may simply be unable

to recognise a particular slot value, perhaps due to the user’s accent. Then it is clearly

better to query the database with the slot values that can be obtained rather than asking

for the problem slot over and over again before the user becomes so frustrated that they

hang-up. Given a user simulation which is able to simulate unobtainable slot values, it

may be possible to learn such a strategy by including adialogue lengthfeature in the

state representation. This is a point which we will return toin Chapter 5.

4.6 Summary

This chapter first described our experimental setup for Reinforcement Learning (RL)

of full dialogue strategies (Section 4.2). This included a description of a Bayesian

Net user simulation (Section 4.2.4), for which the structure was based on the find-

ings of an initial analysis of COMMUNICATOR dialogues (Walker et al., 2001a), and

for which the probabilities were set based on intuition. Thechapter then went on to

detail three preliminary RL experiments involving this Bayesian Net user simulation

(Sections 4.3, 4.4 and 4.5). These experiments are considered preliminary because for

learning dialogue strategies, we prefer, (as we do in the experiments of Chapters 5 and

7), to use stochastic user simulations whose probabilitiesare learned from real user

data. This is because such a simulation ought to be more realistic and for a learned
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strategy to be directly applicable in a Spoken Dialogue System (SDS), the simulation

must be realistic. The first aim of these experiments was to provide a proof of the con-

cept that including more than just the slot-status variables in the state can potentially

enable the reinforcement learner to learn a more effective strategy. Secondary aims

included gaining knowledge for how best to set the reinforcement learner’s parameters

and investigating the effects of different training rewardfunctions.

To begin summarising the results of the experiments, in the first experiment, adding

the Dialogue Act (DA) of the last user utterance to the state representation does not

produce a superior learned strategy. The Bayesian Network user simulation was such

that it would hang up if the system attempted to confirm a slot value incorrectly, and

then having been alerted to the fact, it switched focus to a different slot on its next

turn. The hypothesis was that the reinforcement learner would need knowledge of the

DA of the user’s last turn so that it could learn not to switch focus to another slot in

these situations. However, in this case, the hypothesis wasfalse, and the explanation

centred on the fact that here an optimal strategy was one which asked the slots in a

set order, not moving on until it had filled/confirmed the slotcurrently in focus. As

a result, when the user indicated a misunderstanding error,it was always possible to

infer the problem slot based on the slot-status features alone.

The second experiment, where the system can respond to user “help” requests, demon-

strates a first simple case in which including this ‘high-level’ information does result

in a superior learned strategy - there is a 52% improvement inaverage reward with

p < 0.05. This then is the proof-of-concept that we were seeking. The third experi-

ment then shows that we can scale up to a more commercially realistic 4-slot problem,

and that when usingε-greedy action selection, a reward function which rewards only

totally correct database queries produced the best strategy i.e. all-or-nothing as op-

posed to partial rewards.

In the next chapter, we now go on to describe RL experiments which use a stochastic

user simulation whose probabilities are learned from real user data.



Chapter 5

Learning with real user data: n-gram

user simulation experiments

5.1 Introduction

Like the Reinforcement Learning (RL) experiments of the previous chapter, the RL

experiments of this chapter also involve training and testing dialogue strategies with

stochastic user simulations. However, whereas in the previous chapter, the user simu-

lation probabilities were hand-coded, here they are learned from real user data. Instead

of a Bayesian Network model, we now use n-gram models, (4 and 5grams), and the

probabilities for these n-grams are learned from the COMMUNICATOR data (Walker

et al., 2001a), (see Section 3.10.4). As a result, these n-gram models ought to simulate

real user behaviour more accurately than the Bayesian Network.

This chapter describes two RL experiments which were conducted using the n-gram

user simulations - in the first, dialogue strategies are learned for a flight-booking sys-

tem with three information slots (departure city, destination city, departure date), and

in the second, for a flight-booking system with four information slots (departure city,

destination city, departure date, departure time). The four-slot experiment is also

described in Frampton and Lemon (2006). The main hypothesistested by these ex-

periments is that the learned strategy can be improved by adding recent Dialogue Acts

(DAs) to the slot-status features already in the state. Should we find this hypothesis to

be true, we are then obviously interested in how the recent DAs improve the learned

strategy. We start with the three-slot experiment because using three rather than four

116
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slots obviously makes the RL problem more tractable, and so means that we can train

dialogue strategies to test the hypothesis in a shorter amount of time. Motivation for the

four-slot experiment then includes gathering more evidence with respect to the hypoth-

esis, and in doing so, making sure that the state-action space remains tractable when

the number of slots is increased to this more commercially-realistic number. Conduct-

ing the four-slot experiment also means that we can compare performance with the

four-slot Hybrid RL/Supervised Learning (SL) Strategy of Henderson et al. (2008),

and with the hand-crafted COMMUNICATOR systems - in many COMMUNICATOR

dialogues, the user required just a single-leg flight and so only four slots were relevant.

The evaluation measures for the COMMUNICATOR systems come from dialogues

with real users, and so this comparison should be taken with apinch-of-salt. However,

the comparison with the Hybrid Strategy is much more meaningful because the Hybrid

Strategy was tested with a simulation derived from COMMUNICATOR data using lin-

ear function approximation (see Section 3.10.4), and this simulation has been shown

to simulate very similar dialogues to the n-gram simulations (Georgila et al., 2006)1.

The remainder of this chapter proceeds as follows. Section 5.2 will first describe the

experimental design and methodology used in both experiments. This includes the

basic RL experimental setup, description of the reinforcement learner and n-gram sim-

ulations, and details concerning training, testing and evaluation. Where we describe

the n-gram simulations, we discuss their limitations, one of which is the limit that they

place on the amount of dialogue history which is potentiallyuseful in learning a dia-

logue strategy. Sections 5.3 and 5.4 then describe the threeand four-slot experiments

respectively. Both include detailed analysis of the effects of the recent DAs on the

learned strategies. Finally, Section 5.5 will draw conclusions based on the findings of

the two experiments.

5.2 Experimental methodology

In the experiments described in this chapter, the followingfour agents were used to

simulate dialogues and learn and test dialogue strategies:

1. the DIPPER Information State Update (ISU) Dialogue Manager (DM) (Bos

et al., 2003),

1Indeed, although the numbers are not reported, Henderson etal. (2008) states that the Hybrid Strat-
egy was tested with the n-gram simulations and that this produced similar results.
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2. n-gram user simulations (Georgila et al., 2005b,a), (onefor training, one for

testing),

3. a Reinforcement Learning (RL) program,

4. a mapping agent.

The roles of DIPPER, the user simulations and the Reinforcement Learning (RL) pro-

gram were the same as in the Bayesian Network user simulationexperiments of the

previous chapter, (see Section 4.2), and all of the agents again communicated via the

Open Agent Architecture (OAA) (Cheyer and Martin, 2001). The mapping agent is

required to map the responses generated by the user simulations into a form that can

be interpreted by DIPPER. Figure 5.1 shows this experimental setup. The task domain

is again flight-booking, and the aim for the Dialogue Manager(DM) is to obtain values

for the user’s flight information “slots” before making a database query. As stated in

the previous section, the slots in the (first) three-slot experiment aredeparture city, des-

tination city, departure date, and the (second) four-slot experiment uses an additional

slot fordeparture time.

     
Reinforcement

DIPPER
Dialogue
Manager

User Sim
(4/5 gram)

     Learner
State−action
pairs &
rewards

Actions

Speech act−task pairs

Mapping
  Agent

Intentions
Speech act−
task pairs

Figure 5.1: The basic experimental setup
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5.2.1 The reinforcement learner’s parameter settings

For the two experiments described in this chapter, the reinforcement learner’s parame-

ters were set as follows:

1. Step-size parameter:α = decreasing,

2. Discount factor:γ = 1,

3. Action selection type =softmax(alternative isε-greedy),

4. Action selection parameter: in the three-slot experiment, temperature= 15, and

in the four-slot experiment, 45 for states visited< 5 times, otherwise 15,

5. Eligibility Trace (ET) Parameter:λ = 0.9,

6. Eligibility Trace (ET) =replacing(alternative isaccumulating),

7. Initial Q-values= 25.

As in the experiments described in Chapter 4, the reinforcement learner updates its

Q-values using theSarsa(λ) algorithm (see Sutton and Barto (1998) or Section 2.11).

Section 4.2.3 explains why these parameter settings are suitable for learning dialogue

strategies.

5.2.2 The n-gram user simulations and their limitations

This chapter’s experiments use the 4 and 5-gram versions of the n-gram simulations

(Georgila et al. 2005a,b), which were previously introduced in Section 3.10.4. Recall

that these take as input and output DATE (Walker and Passonneau, 2001) Dialogue

Act (DA) tags, (see Section 3.10.1 for an introduction to DATE), and that the quality

of the 4 and 5-gram user simulations has been established through a variety of metrics

and against the behaviour of the actual users of the COMMUNICATOR systems, (see

Georgila et al. 2005a). Also recall that the n-gram simulations incorporate the effects

of Automatic Speech Recognition (ASR) and Natural LanguageUnderstanding (NLU)

errors because they are built from the user utterances as they were recognised by the

input components of the original COMMUNICATOR systems. Since they do not pro-

vide instantiated slot values e.g. a response to provide a destination city is the speech
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act-task pair“[provide info] [dest city]” , we cannot assume that two such responses

in the same dialogue refer to the same destination cities. Hence in the Dialogue Man-

ager’s (DM’s) “Information State” where we record whether aslot is “empty”, “filled”,

or “confirmed”, we only update from “filled” to “confirmed” when the slot value is im-

plicitly or explicitly confirmed. The additional mapping agent maps the user speech-

act-task pairs to a form that can be interpreted by the DM. Post-mapping user responses

are made up of one or more of the following types of utterance,each represented by a

Dialogue Act (DA):

1. an ASR rejection i.e. the speech recogniser cannot form a hypothesis / is not

confident enough in any of its hypotheses,

2. provide 1 or more slot values,

3. yes,

4. no,

5. ask for help,

6. hang-up,

7. out-of-domain: Note that in human-machine dialogue, a user utterance can of-

ten be within-domain but ASR / Natural Language Understanding (NLU) errors

cause the system to consider it out-of-domain.

The nature of the user and input component simulation determines the nature of the

learned strategies. If a learned strategy is to be directly implemented in a real dialogue

system, then the user and input component simulations used to produce it should be as

realistic as possible. For this reason we should note how then-gram simulations might

not always produce totally realistic behaviour. A first cause of unrealistic behaviour

is imperfect training data. Perhaps in some dialogue contexts, user behaviour in the

COMMUNICATOR data does not provide an accurate representation of user behaviour

in human-machine flight-booking dialogues in general. For example, if the system

fails to recognise anything at all from the user at a particular point in the dialogue,

users in the data may respond best to one kind of repair strategy e.g. repetition, but

in general users prefer an alternative e.g. switch focus to adifferent slot. In this case,

training with the n-gram simulations can be expected to produce a repair strategy for

this context which is not the best in practice.
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Another cause of unrealistic behaviour is the way in which the n-grams model the data

- firstly, they use a limited amount of dialogue history (n−1 turns), and secondly, this

dialogue history is represented only in terms of DAs. On thissecond point, we could

certainly speculate as to what other contextual features from the lastn−1 turns apart

from DAs might be important. However, the problems inherentin only modelling a

limited amount of dialogue history are clearer, and so this is what we focus on now.

One undesirable consequence of modelling a limited amount of dialogue history is that

an n-gram simulation might unnecessarily repeat a particular slot value because it has

“forgotten” that it already supplied this value at some point beyondn−1 turns ago

in the dialogue. A real user is more likely to remember and so not re-supply the slot

value. A further undesirable consequence concerns failureto simulate impossible-to-

fill slots, and another, the amount of dialogue history whichis potentially useful to the

reinforcement learner in learning a dialogue strategy. We focus on these two issues in

the following two subsections.

5.2.2.1 Impossible-to-fill slots

On rare occasions, the real COMMUNICATOR systems did seem toencounter im-

possible -to-fill slots e.g. because the speech recogniser had difficulty with the user’s

accent. However, in preliminary Reinforcement Learning (RL) experiments with the

n-gram simulations, (not reported here), it was found that the n-gram simulations fail

to simulate impossible-to-fill slots, and this must be because they use only a limited

amount of dialogue history. Before discovering this, we hadintended to experiment

with using a dialogue length state feature and a partial reward function. The hope was

that the reinforcement learner would then be able to learn a strategy which at some

stage gave up trying to fill an impossible-to-fill slot, and instead queried the database

with the other slots filled/confirmed. This then is an exampleof how state features can

assume more or less importance based on the kind of behaviourwhich the simulation

is able to generate.

5.2.2.2 How much DA history should ideally be given to the rei nforcement learner

Following a system action, which new RL state we transition to depends on the user

response. Hence for learning a dialogue strategy, if we assume that there are no prob-

lems with tractability, then the RL state should ideally represent all of the information
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which in combination with the current system action, affects the next user response.

For the n-gram simulations here, we know that the next user action is potentially af-

fected by the DAs of the lastn−1 turns, which for the 4-gram is the DAs of the last 3

turns, and for the 5-gram, the DAs of the last 4 turns. Figure 5.2 represents a portion of

dialogue where time is discrete, each unit of time contains one system-user exchange,

and the current time ist. Here, if the user actions are being generated by a 4-gram

simulation, then the user action at timet i.e. Usert is potentially affected bySyst ,

Usert−1 andSyst−1, but not byUsert−2, (a 5-gram would potentially be affected by

Usert−2). Hence, ideally,Syst should combine withSyst−1 andUsert−1 to produce a

3-gram which maximises the likelihood of eliciting the desired response inUsert. This

means that until they have been shown not to improve the learned strategy, the DAs of

the last two turns should be represented in the RL state because in combination with

the current system action, they potentially affect the nextuser response, and so could

potentially improve the learned strategy. In general, whentraining with an n-gram user

simulation, if we start with a state containing only the slot-status features, then adding

the DAs of the lastn−2 turns will potentially improve the learned strategy i.e. the last

2 turns for a 4-gram, the last 3 turns for the 5-gram, and for argument’s sake, the last

98 turns for a 100-gram.

Figure 5.2: A representation of a portion of dialogue in which time is discrete, each

unit of time contains one system-user exchange, and the arrows indicate the flow of the

dialogue. A 4-gram simulation would output a new action for Usert depending on the

actions at the previous turns that have bold circles.

In our experiments here, we train with the 4-gram user simulation and test with the

5-gram and vice versa. Hence, the 4-gram is always involved in either training or

testing, and this means that having added the DAs of the last 2turns to the state, the

learned strategy’s test performance cannot be improved by also adding the DAs of any

earlier turns. When we train with the 5-gram, adding the DAs of the 3rd turn back

will potentially affect the learned strategy - we may observe different learned actions

where the DAs are the same in the 1st and 2nd turns back, but different in the 3rd.

However, since the 3rd turn back cannot affect the 4-gram’s next action, we will have
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produced two different learned actions for what the 4-gram otherwise considers to be

the same context. Therefore, unless both of these actions are optimal in this context

with the 4-gram, this will cause a negative impact on the strategy’s test performance.

Hence, including the 3rd turn back in the state can only reduce the learned strategy’s

performance in testing with the 4-gram, not improve it.

Note that the DAs of a turn earlier than n-2 turns could potentially improve the learned

strategy if the state does not yet include the DAs for all of the turns as far back as

n-2. This is because the DAs of the earlier turn could be used to predict the DAs

for the missing turn, and if this missing turn is important, then being able to predict

its value to some degree might improve the learned strategy.If slot-status features

are not included in the state, and if we pretend for a moment that there would be

no problem with tractability, then greater than n-2 turns can potentially improve the

strategy. This is because turns further back than n-2 in the dialogue history can give

the reinforcement learner information about which slots are still unfilled/unconfirmed.

Of course, the tractability problem means that doing away with the slot-status features

is not a practical approach.

5.2.3 Training and evaluation

In each experiment, two strategies were learned for each state representation - the first

with the 4-gram user simulation (the ‘a’ strategy) and the second with the 5-gram user

simulation (the ‘b’ strategy). The average reward obtainedover each 1000 training

dialogues was recorded. This allowed graphs to be generatedthat tracked the improve-

ment of the learned strategies during training. If a strategy was trained with the 4-gram

simulation then it was tested with the 5-gram and vice versa.Each strategy was tested

over 10 sets of 100 dialogues. For each test dialogue, the total reward obtained was cal-

culated according to two different reward functions. The first was the reward function

used for training (which will be described in Section 5.3.4), and the second was the re-

ward function used by Henderson et al. (2005) to compute the task completion scores

for the original hand-crafted COMMUNICATOR systems. This will be referred to as

the HLG05 reward function and is based ontask completionanddialogue lengthre-

wards as determined by the PARADISE evaluation (Walker et al., 2000). This function

is as follows:
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1. database query,+25 for each filled slot, another+25 for each slot which is

confirmed;

2. system turn penalty:−1.

The maximum possible score for a single dialogue is 197 i.e. 200 minus 3 actions,

(the system prompts the user, the user replies by filling all of the slots in one turn, the

system then asks for confirmation of a slot, the user gives confirmation for all of the

slots, and then the system queries the database for an appropriate flight). The average

score for the 1242 dialogues in the COMMUNICATOR data-set where the aim was

to fill and confirm the same four slots as we have used in the firstexperiment was

115.26. Both of the ‘a’ and ‘b’ strategies learned for each state representation were

tested over 10 sets of 100 dialogues. A one-tailed independent samples t-test, (see

page 427 of Sheskin 2007), was first applied to the test data for the ‘a’ strategies in

order to determine whether adding the Dialogue Act (DA) features to the state led to a

significant improvement in performance. The same was then done for the ‘b’ test data,

and finally to the average of the ‘a’ and ‘b’ test data.

This then completes the general description of our experimental setup and methodol-

ogy, and so we now go on to describe the first RL experiment withthe n-gram simula-

tions - the three slot experiment.

5.3 Three slot experiment to investigate the usefulness

of recent Dialogue Acts

5.3.1 Hypothesis: Adding recent Dialogue Acts to the state w ill

improve the learned strategy

The main hypothesis tested by this experiment is that addingthe Dialogue Acts (DAs)

of the last user turn, and then last system turn to the slot-status features already in

the state will produce significant incremental improvements in the performance of the

learned strategy when tested with the n-gram simulations.
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5.3.2 State representations

In order to test the hypothesis, strategies were trained with both the 4 and 5-gram

simulations using the following three state representations:

• Slot-Status: The state contains a slot-status feature for each of the three infor-

mation slots. Each has three possible values - “empty”, “filled” and “confirmed”.

• DA1: The state contains the slot-status features and the Dialogue Act(s) (DAs)

of the last user turn i.e. the DA(s) of the last 1 turn and hencethe name DA1.

• DA2: The state contains the slot-status features and the DAs of the last user and

system turns i.e. the DAs of the last 2 turns and hence the nameDA2.

A strategy learned with the Slot-Status state representation is referred to as a Slot-

Status Strategy, a strategy learned with the DA1 state representation, as a DA1 Strategy,

and a strategy learned with the DA2 state representation, asa DA2 Strategy. If the

hypothesis is true then, DA1 Strategies ought to significantly outperform Slot-Status

Strategies, and DA2 Strategies ought to significantly outperform DA1 Strategies.

5.3.3 The action set for the learner

Below is a list of all of the different actions that the RL Dialogue Manager (DM) can

take and must learn to choose between based on the context:

1. an open question e.g. ‘How may I help you?’,

2. ask the value for any of slots 1...i,

3. explicitly confirm any of slots 1...i,

4. ask for theith slot whilst implicitly confirming slot valuei−1 or i +1, (if i = 1,

i−1 is considered to be the final slot, and ifi is the final slot,i +1 is considered

to be the first slot e.g. ‘So you want to fly from Edinburgh to where?’),

5. give help,

6. pass to human operator,

7. database query.
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There are two restrictions regarding which actions can be taken in which states:

1. An open question is only available at the start of the dialogue.

2. The DM can only confirm non-empty slots.

5.3.4 The reward function

This experiment used the following “all-or-nothing” reward function.

1. database query, all slots confirmed:+100,

2. any other database query:−75,

3. user simulation hangs-up:−100,

4. DIPPER passes to a human operator:−50,

5. each system turn:−5.

This reward function rewards confirmed slots-values because in general, these are more

likely to be correct than unconfirmed slot-values. The maximum reward that can be

obtained for a single dialogue is 85, (the DM prompts the user; the user replies by

filling all of the slots in a single utterance; the DM asks for confirmation; the user

confirms all of the slots; the DM submits a database query). The reward function is

“all-or-nothing” - it only gives positive reward when a database query is made with all

of the slots confirmed. This is due to the results of the final Bayesian Network user

simulation experiment, (see Section 4.5), where for a 4-slot system, learning was faster

with an “all-or-nothing” reward function than it was with a “partial reward” function.

5.3.5 The Dialogue Manager’s context update rules

We were unsure whether to follow Henderson et al. (2005, 2008) and to update a slot’s

status from “filled” to “confirmed” following an implicit confirmation of that slot and

a user response that was out-of-domain or an Automatic Speech Recognition (ASR)

rejection. Hence we learned two versions of each strategy - afirst where the Dialogue

Manager (DM) did update the slot’s status in these cases, anda second in which it did

not. We investigated whether this had any effect on the learned strategy.

The next section provides the test results for the learned strategies.



Chapter 5. Learning with real user data: n-gram user simulation experiments 127

0 5 10 15 20 25 30 35 40 45 50
−100

−50

0

50

Number of training dialogues (thousands)

A
ve

ra
ge

 r
ew

ar
d

 

 

Slot−Status Strategy

DA1 Strategy

DA2 Strategy

Figure 5.3: Training the three-slot dialogue strategies with the 4-gram simulation

5.3.6 Results

We did not find that the change in context update rule for implicit confirmations de-

scribed in the previous section had any significant effects on scores obtained by the

learned strategies in testing. Hence, here we provide the results for the first set of

learned strategies i.e. those learned using a rule that updated a slot’s status from “filled”

to “confirmed” following an implicit confirmation of that slot and a user response that

was out-of-domain or an ASR rejection.

Figure 5.3 tracks the improvement of the three learned strategies during training with

the 4-gram simulation, and Figure 5.4, their improvement during training with the 5-

gram simulation. They show, according to the training reward function described in

Section 5.3.4, the average score per dialogue over intervals of 1000 training dialogues.

After 50000 training dialogues with the 4-gram simulation,164 state-action pairs had

been visited for the Slot-Status Strategy, 2538 for DA1 and 5981 for DA2. After 50000
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Figure 5.4: Training the three-slot dialogue strategies with the 5-gram simulation

training dialogues with the 5-gram simulation, 164 state-action pairs had been visited

for the Slot-Status Strategy, 2393 for DA1, and 5403 for DA2.

Table 5.1 displays the test results for the strategies learned after 50000 training dia-

logues, (the Slot-Status Strategy, DA1 Strategy, DA2 Strategy). Column 3 shows the

average scores according to the training reward function obtained per dialogue by each

strategy over 1000 test dialogues. Columns 4 and 5 show the average scores per dia-

logue for the component parts of the reward function - the score for the database query

and the length of the dialogue respectively.

Let us first concentrate on column 3. The 1000 test dialogues for each strategy were

divided into 10 sets of 100. As stated in Section 5.2.3, one-tailed independent samples

t-tests were used to test for significance. The DA2 Strategy improves over the DA1

Strategy by 1.53% (p< 0.05) and over the Slot-Status Strategy by 15.28% (p< 0.005),

and DA1 improves over the Slot-Status Strategy by 13.53% (p< 0.005). Hence we can
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Features Av. Score Conf. Slots Length

4→ 5 gram = (a)

Slot-Status Strategy(a) Slot-status 47.55 100 10.49

DA1 Strategy(a) + Last User DA(s) 58.00** 100 8.40

DA2 Strategy(a) + Last System DA 59.15* 100 8.17

5→ 4 gram = (b)

Slot-Status Strategy(b) Slot-status 55.60 100 8.88

DA1 Strategy(b) + Last User DA(s) 59.10** 100 8.18

DA2 Strategy(b) + Last System DA 59.75* 100 8.05

Slot-Status Strategy(av) Slot-status 51.60 100 9.68

DA1 Strategy(av) + Last User DA(s) 58.55** 100 8.29

DA2 Strategy(av) + Last System DA 59.45* 100 8.11

Table 5.1: Testing the learned strategies after 50000training dialogues, average reward

achieved per dialogue over 1000 test dialogues. a = strategy trained using 4-gram

and tested with 5-gram; b = strategy trained with 5-gram and tested with 4-gram; av =

average; * significance level of improvement on above strategy p< 0.05; ** significance

level of improvement p < 0.005

already say that the main hypothesis as stated in Section 5.3.1 has been successfully

tested - adding the DAs of the last user turn, and then last system turn to the slot-status

features already in the state does produce significant incremental improvements in the

performance of the learned strategy when tested with the n-gram simulations.

Let us now consider the fourth and fifth columns which break upthe reward into its two

component parts - the dialogue query reward, and dialogue length penalty respectively.

The fourth column shows that all five of the strategies are always able to fill and con-

firm all of the 3 slots when conversing with the simulated COMMUNICATOR users.

As stated in Section 5.2.2, the n-gram simulations do not simulate the case of a par-

ticular user goal utterance being always unrecognisable/unobtainable. The variation in

performance of the strategies was due to the average dialogue length i.e. the number

of system turns required to fill and confirm all of the slots. This was 8.11 turns for

the DA2 Strategy, 8.29 turns for the DA1 Strategy, and 9.68 turns for the Slot-Status

Strategy.
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We now move on to provide analysis in order to explain the relative performance of

the different learned strategies in the tests reported here.

5.3.7 Analysis

In testing, the DA2 Strategy filled and confirmed all of the slots in the least number of

turns on average, the DA1 Strategy the second least, and the Slot-Status Strategy third.

The vast majority of this section is concerned with analysing the learned strategies

in order to form hypotheses as to why this was the case. These hypotheses will be

investigated further in the experiments of Chapter 7. However we start by looking at

the effect of the change in the Dialogue Manager’s (DM’s) context update rules, as

described in Section 5.3.5.

5.3.7.1 The effect of the different context update rules

As stated in Section 5.3.6, the change in context update rules for implicit confirmations,

(see Section 5.3.5), did not have any significant effects on the scores obtained by the

learned strategies in testing. However we did notice that this change had apparently

important effects on the Slot-Status Strategy’s behaviourin certain states. Some of

these were good, and some bad, and given that there was no significant change in the

test scores, it must be that these good and bad effects cancelled each other out.

These important behavioural effects occurred because often, if the last system turn had

involved an implicit confirmation, different actions were then optimal on the next sys-

tem turn depending on whether the user response had been out-of-domain / an ASR

rejection, or an unambiguous acceptance of the implicit confirmation. Changing the

update rule affected whether the learner was able to distinguish between such cases,

and hence learn alternative actions. Tables 5.2 and 5.3 showexample state-learned

action pairs which illustrate this point. For Table 5.2, assume that a slot’s status is be-

ing updated to “confirmed” following an implicit confirmation and a user response of

“user(out-of-domain)” or “user(asrrejection)”. Here then, the third slot, was “filled”,

but is updated to “confirmed” following the system action “impConfSlot3askSlot2”

and user responses of “user(out-of-domain)” / “user(asrrejection)” / “user(slot2)”.

Since the second slot was already “filled”, for each of the different user responses, the

slot-status features end up with the same values. Hence the Slot-Status Strategy cannot

distinguish between these different contexts and so the learned action is the same for
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each - “expconf slot2”. However, when the user response is “user(out-of-domain)”/

“user(asrrejection)”, a better action is to re-ask slot 2 because “expconf slot2” is

likely to elicit another unrecognised / out-of-domain userutterance. The DA2 (and

DA1) state produced the better learned action because the representation of the DAs of

the last user turn enabled the learner to distinguish between these contexts.

DA2 state representation DA2 Strategy Slot-Status Strategy

[conf,fill,conf,icSlot3askSlot2,user(out-of-domain)] ask slot2 exp conf slot2

[conf,fill,conf,icSlot3askSlot2,user(asrrejection)] ask slot2 exp conf slot2

[conf,fill,conf,icSlot3askSlot2,user(slot2)] exp conf slot2 exp conf slot2

Table 5.2: Here the Dialogue Manager (DM) updates 3rd slot’s status to “confirmed”

following an implicit confirmation and a user response that is out-of-domain / an ASR

rejection, and as a result the Slot-Status state is the same as if the user response was

an unambiguous acceptance of the confirmation; ic = implicit confirm.

DA2 state representation DA2 Strategy Slot-Status Strategy

[fill,emp,emp,askslot1,user(slot1)] icSlot1 askSlot2 icSlot1 askSlot2

[conf,emp,emp,icSlot1askSlot2,user(out-of-domain)] ask slot3 ask slot3

[conf,emp,emp,icSlot1askSlot2,user(asrrejection)] ask slot3 ask slot3

[conf,fill,emp,icSlot1askSlot2,user(slot2)] ask slot3 ask slot3

Table 5.3: Here the Dialogue Manager (DM) updates the 1st slot’s status to “confirmed”

following an implicit confirmation and a user response that is out-of-domain / an ASR

rejection, and as a result, the Slot-Status state is not the same as if the user response

was an unambiguous acceptance of the confirmation; ic = implicit confirm.

In Table 5.2 then, we have seen a bad effect of updating a slot’s status following

“user(out-of-domain)” / “user(asrrejection)”, but in Table 5.3, we see a good effect.

Here, the first slot is originally “filled”, and the other two slots are “empty”. The op-

timal action is then apparently “impConfSlot1askSlot2”. However, if the next user

response is “user(out-of-domain)” or “user(asrrejection)” as opposed to “user(slot2)”,

then although the first slot’s status is updated to “confirmed”, the second slot’s status

does not become “filled”. Hence on this occasion, updating has allowed the learner to

distinguish between the two contexts, and so learn alternative actions. Had the learner

not updated, then the slot-status features would have remained as they were origi-

nally, and so the learned action would have been “impConfSlot1 askSlot2”. This was
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observed to be a relatively poor action choice because it waslikely to elicit another un-

recognised / out-of-domain user utterance. Again, the DA2 (and DA1) state produced

the better learned actions because the representation of the DAs of the last user turn

enabled the learner to distinguish between these contexts.

We now move on to the rest of the analysis of our learned strategies, which concentrates

on finding an explanation for why the DA2 Strategy filled and confirmed all of the slots

in the least number of turns on average, the DA1 Strategy the second least, and the

Slot-Status Strategy third.

5.3.7.2 Different repair strategies in SSFU states

Observing the test dialogues, I noticed that the strategiesoften behaved differently in

the following two categories of states, the vast majority falling into the 1st category:

1. States in which the Slot-Status Features are Unchanged bythe previous user

turn (SSFU states): SSFU states are most often caused by a user response that

is out-of-domain or an ASR rejection. Other causes are seemingly uncooper-

ative user DAs of “yes” or “no” in response to a straightforward question for

a slot value. Consider an example where the slot-status features are initially

[filled,empty,empty], and then the user turn is “user(slot1)”. As a result, the DM

“re-fills” the 1st slot by setting it to “empty” and then “filled”, and so although

the slot-status features end up as[filled,empty,empty], such states are not con-

sidered SSFU states.

2. Other states in which the last user response was “user(out-of-domain)” or

“user(asrrejection)”, but in which the slot-status features have changed because

the last system DA involved an implicit confirmation i.e. a slot has been updated

from “filled” to “confirmed” due to this implicit confirmation, (see Table 5.2 for

an example).

Thus the strategies behaved differently when dialogue progress stalled i.e. they used

different repair strategies. It seemed that depending on the Dialogue Acts (DAs) of the

last two turns, certain repair strategies were more “effective” than others - here “effec-

tive” means that a repair strategy is good at getting the dialogue “back-on-track” by

eliciting a recognisable slot-value/confirmation from theuser. Note that the category

2 states are category 1 states for the strategies learned with a Dialogue Manager (DM)



Chapter 5. Learning with real user data: n-gram user simulation experiments 133

that does not update a slot’s status from “filled” to “confirmed” following an implicit

confirmation and a user response “user(out-of-domain)” / “user(asrrejection)”. Hence

for simplicity’s sake, the analysis here is based on these strategies.

To further investigate what the different learned strategies were doing in SSFU states,

we collected relevant statistics based on five new sets of 100test dialogues for each

strategy. Again, if a strategy had been trained with the 4-gram user simulation, then it

was tested with the 5-gram and vice-versa. The different repair strategies which were

observed in SSFU states can be categorised as the following:

1. Repeat: repeat the question/confirmation which led to the first SSFUstate in the

current sequence of SSFU states e.g. if following smooth progress, the system

action “askslot1” then leads to an SSFU state, so long as the system remains in

an SSFU state, the action “askslot1” is classified asrepeat,

2. Switch focus: switch focus to ask/confirm a different unfilled/unconfirmed slot

e.g. if the last system DA was “askslot1” but the user failed to supply a value,

assuming that slots 2 and 3 are “empty”, “askslot2” or “askslot3” would be

switching focus,

3. Give help: use the give help function,

4. Backtrack: re-ask an already filled slot.

For each learned strategy, Table 5.4 shows a number of statistics relating to the occur-

rence of states in which the slot-status features are unchanged i.e. Slot-Status Features

Unchanged (SSFU) states. Notice first of all, that there is very little difference between

the learned strategies in the number of first-visits to an SSFU state i.e. in a series of

two or more consecutive SSFU states, only the first is counted. However there are

significant differences in the overall number of visits to anSSFU state - the Slot-Status

strategy produces the most such turns, the DA1 Strategy the second most, and the the

DA2 Strategy the least. This suggests that in general, when in an SSFU state, the DA2

Strategy employs repair strategies which are the most likely to ensure that the next

state is not also an SSFU state, the DA1 Strategy employs the second most effective

repair strategies, and the Slot-Status Strategy, the leasteffective. In other words, once

progress stalls, the DA2 Strategy is the best at getting the dialogue back-on-track, the

DA1 Strategy the second best, and the Slot-Status Strategy,the worst. Notice also that

there are different levels of variation in the kinds of repair strategies employed by each
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of the learned strategies - DA1 employs a greater variety than the Slot-Status, and the

DA2 Strategy a greater variety still. This is better illustrated by Figure 5.5. Given the

statistics for first and total visits to SSFU states, the different levels of variation sug-

gest that different repair strategies are more effective depending on the Dialogue Acts

(DAs) of the last two turns.

Strategy First-visits to Total visits to %Repeat %Switch %Back %Give

SSFU states SSFU states focus -track help

Slot-Status 0.90 2.51 90.82 9.18 0 0

DA1 0.91 1.19* 59.24 29.83 10.92 0

DA2 0.90 1.06* 53.99 37.79 7.98 0.23

Table 5.4: The number of first and total visits to SSFU states per dialogue, and the

proportion of times which each of the four possible repair strategies is applied; * Im-

provement level on strategy above with significance level p < 0.05

Figure 5.5: The number of total visits to SSFU states per dialogue, and the proportion

of times which each of the four possible repair strategies is applied.

Let us now consider the frequency with which different user responses cause SSFU

states. This is shown in Figure 5.6. The reader can see that for all three strategies, the

vast majority are caused by non-understanding errors: userresponses which are recog-

nised as out-of-domain, or are ASR rejections, (see Section1.1.1.2 for a definition of
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non-understanding errors). Notice that in particular, there is a much larger number of

SSFU states caused by out-of-domain user responses for the Slot-Status Strategy than

there is for the DA1 and DA2 Strategies, (1.67 on average per dialogue versus 0.24 and

0.44 respectively). In the real user experiments of the next chapter, we find that the

Slot-Status Strategy’s over-use of the repeat repair strategy causes user frustration, and

so hyper-articulate speech, which in turn causes more ASR errors and hence longer

dialogues with a lower chance of task completion. This then is presumably what the

n-gram simulations are simulating here - the Slot-Status Strategy is eliciting more user

responses which are being misrecognised and hence classified as out-of-domain.

Figure 5.6: The frequency with which different user responses cause SSFU states for

each of the three learned strategies.

Figure 5.7 shows the relative frequency with which the DA2 Strategy employs each of

the four possible repair strategies depending on which userDA(s) caused the current

SSFU state. Since Figure 5.6 showed that out-of-domain userutterances and ASR

rejections are the main cause of SSFU states, these are of most interest here. Notice

then that the DA2 Strategy uses theswitch focusrepair strategy most often for user

utterances that are recognised as out-of-domain (66.67%), but the repeat repair strategy

most often for ASR rejections (83.04%). Given what we said in the previous paragraph

about out-of-domain user utterances and potential error spirals, it makes sense that

the switch focusrepair strategy would usually be more effective for out-of-domain
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utterances. On the other hand, when the system has failed to recognise anything from

the user i.e. there is an ASR rejection, potential causes arethat the user was not ready

to speak / was distracted, or that there was some background noise such as a door-slam.

In such circumstances, it would seem more appropriate to repeat the previous question

/ confirmation and so give the user another opportunity to answer. Hence the general

trends suggested by Figure 5.7 seem to make sense.

Figure 5.7: The relative frequency with which the DA2 Strategy uses each of the four

possible repair strategies in SSFU states following different user responses.

To summarise the key point of this section then, it seems thatadding recent DAs into

the state has improved the learned strategy by producing better repair strategies for

SSFU states. In Chapter 7, the experiment described in section 7.2 investigates whether

this is the only way in which the recent DAs are improving the learned strategy.

In the next section here, we now go on to provide example dialogues which involve the

kinds of repair strategies which we have just described.

5.3.7.3 Example dialogues involving different repair stra tegies

Let us now consider some example dialogues in order to see examples of the different

repair strategies in Slot-Status Features Unchanged (SSFU) states. Table 5.5 shows

an example dialogue conducted using the Slot-Status Strategy, (learned with the 5-

gram simulation, tested with the 4-gram). At a number of points in the dialogue, a
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System state System action Recognised user response

[emp,emp,emp] askSlot1 Out-of-domain

[emp,emp,emp] askSlot1 Out-of-domain

[emp,emp,emp] askSlot1 “New York” (slot 1)

[fill,emp,emp] impConfSlot1askSlot2 Out-of-domain

[fill,emp,emp] impConfSlot1askSlot2 ASR rejection

[fill,emp,emp] impConfSlot1askSlot2 “April 18th” (slot 3)

[fill,emp,fill] impConfSlot3askSlot2 “Miami” (slot 2)

[fill,fill,conf ] impConfSlot2askSlot1 “Newark” (slot 1)

[fill,conf,conf] expConfSlot1 Out-of-domain (slot 1)

[fill,conf,conf] expConfSlot1 “New York” (slot 1)

[fill,conf,conf] expConfSlot1 “yes”

[conf,conf,conf] dbQuery

Table 5.5: An example Slot-Status Strategy dialogue. Whenever the slot-status features

are unchanged, the Slot-Status Strategy’s repair strategy is to repeat.

user utterance fails to fill/confirm a slot value, and so on itsnext turn, the system

must employ a repair strategy. In all of these SSFU states, the Slot-Status Strategy’s

learned action is simply to repeat its previous action e.g. ask for slot 1 again in the

first and second cases. Without any representation of the previous user turn, the state is

unchanged, and hence the reinforcement learner could not learn a different action for

this context. Indeed the only SSFU Slot-Status state in which the reinforcement learner

could have learned to do anything other than repeat is a statewith the representation

“ [empty,empty,empty]”, and which immediately follows the start state i.e. “[start]”.

Here the state representation has changed and so the learnedaction can also change.

When training with the 5-gram simulation, the reinforcement learner learned to repeat

in this state (see Table 5.5), but when training with the 4-gram, it learned to switch

focus.

Table 5.6 shows an example dialogue conducted using the DA1 Strategy (again learned

with the 5-gram simulation, tested with the 4-gram). This time, a user utterance fails

to fill/confirm a slot value at four different points in the dialogue. In the first two cases,
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System state System action Recognised user response

[emp,emp,emp,none] askSlot1 ASR rejection

[emp,emp,emp,asrrejection] askSlot1 ASR rejection

[emp,emp,emp,asrrejection] askSlot1 “New York” (slot 1)

[fill,emp,emp,giveSlot1] impConfSlot1askSlot2 Out-of-domain

[fill,emp,emp,out-of-domain] askSlot3 “26th June” (slot 3)

[fill,emp,fill,giveSlot3] impConfSlot3askSlot2 “Dulles” (slot 2)

[fill,fill,conf,giveSlot2] impConfSlot2askSlot1 “Newark” (slot 1)

[fill,conf,conf,giveSlot1] expConfSlot1 Out-of-domain

[fill,conf,conf,out-of-domain] askSlot1 “New York” (slot 1)

[fill,conf,conf,giveSlot1] expConfSlot1 “yes”

[conf,conf,conf,yes] dbQuery

Table 5.6: An example DA1 strategy dialogue (learned with 5-gram simulation), showing

three different types of repair strategy - repeating, switching focus and backtracking.

the repair strategy used is simply to repeat the previous action, in the third case, it is

to switch focus from slot 2 to slot 3, and in the fourth it is to “backtrack” one step and

re-ask the second slot value. Since it is now represented in the state, for this strategy,

the reinforcement learner has been able to learn repair strategies which are sensitive to

the last user Dialogue Act(s). This produces a greater variety of repair strategies than

for the Slot-Status strategy - we see more switching focus, and backtracking.

Table 5.7 shows an example dialogue conducted using the DA2 Strategy (again learned

with the 5-gram simulation, tested with the 4-gram). Here, auser utterance fails to

fill/confirm a slot value at four different points in the dialogue, and we see all four

of the different types of repair strategy - give help, repeating, switching focus and

backtracking. Since it is now represented in the state, the reinforcement learner has

been able to learn repair strategies which are sensitive to both the last system and user

Dialogue Act(s). This again seems to increase the variety ofrepair strategies - we now

see a little giving help, more switching focus and again, backtracking.

We now move on to consider the effect of the DAs in states wherethe user has indicated

a misunderstanding error, (the system has obtained an incorrect value for a slot - see
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System state System action User response

[emp,emp,emp,none,none] askSlot1 “yes”

[emp,emp,emp,askSlot1,yes] giveHelp ASR rejection

[emp,emp,emp,giveHelp,asrrejection] askSlot1 “New York” (slot 1)

[fill,emp,emp,askSlot1,giveSlot1] icSlot1 askSlot2 Out-of-domain

[fill,emp,emp,icSlot1askSlot2,out-of-domain] askSlot3 “26th June” (slot 3)

[fill,emp,fill,askSlot3,giveSlot3] icSlot3 askSlot2 “Dulles” (slot 2)

[fill,fill,conf,icSlot3 askSlot2,giveSlot2] icSlot2 askSlot1 “Newark” (slot 1)

[fill,conf,conf,icSlot2askSlot1,giveSlot1] expConfSlot1 Out-of-domain

[fill,conf,conf,expConfSlot1,out-of-domain] askSlot1 “New York” (slot 1)

[fill,conf,conf,askSlot1,giveSlot1] expConfSlot1 “yes”

[conf,conf,conf,expConfSlot1,yes] dbQuery

Table 5.7: An example DA2 Strategy dialogue (learned with 5-gram simulation), show-

ing four different types of repair strategy - repeating, switching focus, giving help and

backtracking; ic = implicit confirm.

Section 1.1.1).

5.3.7.4 Misunderstandings

Recall from Section 1.1.1 that for an information slot-filling system, we consider a

misunderstanding error to have occurred when due to Automatic Speech Recognition

(ASR) / Natural Language Understanding (NLU) errors, the system obtains an incor-

rect slot-value. Table 5.8 shows DA2 Strategy (trained with5-gram) actions for states

where there has been a misunderstanding, and the user indicates the misunderstanding

directly after the system attempts to confirm the incorrect value. These state-learned

action pairs are all those that were visited 25 or more times during the 50000 training

dialogues. The table has five columns - the second contains the DA2 Strategy state

representations, the third the DA2 Strategy learned action, the fourth how many times

that state was visited during training, and the fifth the Slot-Status Strategy learned ac-

tion. The table shows that in 16 out of 17 states, the learned action for the Slot-Status

and DA2 Strategies is the same. Given then that there is just this one difference in the

learned actions, it seems then that the DAs are not making significant improvements
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to the learned strategy with respect to dealing with these user indications of misunder-

standing errors.

DA2 state representation DA2 Strategy No. visits Slot-Status

1 [emp,conf,conf,ec1,user(no(slot1))] ask1 1107 ask1

2 [conf,emp,conf,ec2,user(no(slot2))] ask2 2022 ask2

3 [conf,emp,conf,ec2,user(no)] ask2 612 ask2

4 [emp,emp,emp,ic1ask2,user(no(slot1))] ask1 436 ask1

5 [fill,emp,emp,ec1,user(no(slot2))] ic1ask2 161 ic1ask2

6 [conf,fill,fill,ec3,user(no,slot3)] ic3ask2 997 ic3ask2

7 [conf,fill,emp,ic3ask2,user(no,yes)] ask3 143 ask3

8 [conf,emp,fill,ec3,user(no,slot3)] ic3ask2 507 ic3ask2

9 [conf,emp,emp,ic3ask2,user(no,yes)] ask3 49 ask3

10 [emp,emp,conf,ec1,user(no(slot1))] ask1 28 ask1

11 [fill,emp,conf,ec1,user(no(slot2))] ic1ask2 47 ic2ask1

12 [emp,fill,conf,ec2,user(no(slot1))] ic2ask1 47 ic2ask1

13 [conf,emp,emp,ic3ask2,user(no)] ask3 37 ask3

14 [conf,fill,emp,ec3,user(no)] ask3 28 ask3

15 [conf,conf,fill,ec3,user(no,slot3)] ecSlot3 239 ecSlot3

16 [emp,emp,emp,ec1,user(no(slot1))] ask1 2782 ask1

17 [conf,fill,emp,ic3ask2,user(no)] ask2 125 ask3

Table 5.8: Example states for misunderstandings where the user indicates the misun-

derstanding directly after the system tries to confirm the incorrect value; emp = empty;

fill = filled; conf = confirmed; ic = implicit confirm; ec = explicit confirm.

Table 5.8 shows example states where the system attempts to confirm an incorrect slot

value, and the simulation immediately indicates the misunderstanding error, but what

about contexts in which the simulation delays one or more turns before indicating the

misunderstanding error? Does the DA2 strategy employ different actions to the Slot-

Status strategy in these states? As expected, we found such cases to be much less

common than those in which the simulation immediately indicates the misunderstand-

ing error. Table 5.9 shows the only three example state-learned action pairs which were

visited over 25 times in the 50000 training dialogues. Here again, the reader can see

that the learned actions for the Slot-Status and DA2 strategies are the same - the DA

information has not made any difference. Hence again, it seems that the DAs are not

improving the learned strategy here.
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DA2 state representation DA2 Strategy No. visits Slot-Status

[fill,emp,emp,ec1,user(no(slot2))] ic1ask2 161 ic1ask2

[emp,fill,conf,ask2,user(no(slot1))] ic2ask1 48 ic2ask1

[emp,fill,conf,ec2,user(no(slot1))] ic2ask1 47 ic2ask1

Table 5.9: Example states for misunderstandings where the user indicates the misun-

derstanding later in the dialogue.emp = empty; fill = filled; conf = confirmed; ic = implicit

confirm; ec = explicit confirm

DA2 state representation Slot-Status DA1 Strategy DA2 Strategy

[conf,fill,emp,ask3,user(slot2)] ask3 ask3 ask2

Table 5.10: The user simulation re-supplies a slot value and the learned actions are

different for the DA1 and DA2 Strategies.

We did find a couple of example states of the kind shown in Table5.10, which are

non-SSFU states where the user re-supplies a slot value, andthe DA2 learned action

is different from the DA1 and Slot-Status learned actions. It is unclear what exactly is

being simulated in such states - the user could be re-supplying the slot-value as a self-

correction, or alternatively, because they are concerned for some reason that the system

has made a misunderstanding error and obtained an incorrectvalue. Here, while the

DA1 Strategy asks for slot 3, the DA2 Strategy backtracks andasks for slot 2. It could

be that backtracking is the best action to take here, but to learn this action requires

knowledge of the last system DA. The DA1 Strategy asks slot 3 because on average,

the most likely previous system DA was “impConfSlot1askSlot2”, which means that

the dialogue is progressing, and the best action to take is toplough on and ask about

the as-yet-unfilled slot 3. Perhaps then we have found an example of a non-SSFU state

where the recent DAs are improving the learned strategy, namely the last system DA.

However, this state-action, and the other similar example which we found were very

infrequently visited - less than 25 times during the 50000 training dialogues. Hence,

we cannot be sure that the DA2 Strategy’s action is in fact better, and even if it is, the

fact that it is so infrequently applied means that is highly unlikely to have a significant

impact in testing. If states occur very infrequently in general then they are obviously

of less concern in dialogue strategy design. However, if when they do occur, they can
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have a significant impact on the likelihood of the dialogue being successful, then they

become more important. The same is true if they occur infrequently in general, but

frequently with a particular kind of user. This is because the ideal dialogue strategy

should be robust to all of the different kinds of users which may interact with the

system e.g. naive versus expert, native versus non-native speaker etc.

It seems then that the DAs are not making significant improvements to the learned

strategy in the contexts under discussion in this section, but is there anything else to

say about the learned actions? Notice that in all but the caseof the DA2 Strategy in

state 17 of Table 5.8, and the Slot-Status and DA1 Strategy actions in Table 5.10, the

learned action maintains focus on the problem slot. Intuitively, this seems to make

sense, because for example, having indicated a misunderstanding error, a user is likely

to find it disconcerting if the system simply moves on with thedialogue as if every-

thing is okay. As a result, the user may lose all confidence in the system and quit

immediately, or adopt an irritated/hyperarticulated toneof voice which causes more

ASR errors and so a longer dialogue with a lower chance of taskcompletion. Recall

that in the Bayesian Network user simulation experiment described in Section 4.3, we

set the probabilities so that the user simulation was very likely to “hang up” if after

indicating a misunderstanding error, the system failed to maintain focus on the prob-

lem slot. In the section containing analysis of the results (Section 4.3.6), we gave an

example misunderstanding error state in which the problem slot could not be inferred

with total certainty from the slot-status features alone. This was because on a previous

turn, following a non-understanding error, the system had switched focus from slot 1

to slot 2. Clearly in such states, if it is important to maintain focus on the problem

slot, the DA(s) of the last user turn would improve the learned strategy because they

would resolve the ambiguity regarding the identity of the problem slot. Hence it looks

as if in the three-slot experiment here, this kind of scenario is occurring at most very

infrequently, (e.g. in Table 5.10). Note that as the amount of switching focus in SSFU

states and the number of slots increases, then there will also be an increase in the oc-

currence of misunderstanding error states in which it is impossible to infer the problem

slot with total certainty based on the slot-status featuresalone. Thus, if it is true that

the system ought to maintain focus on the problem slot, then as a result, we would

expect the DAs to become more important for learning actionsto react to indications

of misunderstanding errors.

We can also speculate that given a very accurate user simulation, optimising for deal-
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ing with indications of misunderstanding errors may require information about more

dialogue history than was used here. For example it may be that in general, following

the first or second consecutive indication of a misunderstanding error for a particular

slot, users prefer the system to maintain focus on the problem slot, but then if there is a

further misunderstanding error, they become exasperated and prefer the user to switch

focus. Optimising for dealing with these contexts may also be made easier by using

a more sophisticated reward function i.e. one which uses a measure of “user satisfac-

tion”. Of course as explained earlier, the n-gram simulations used here place a limit on

the amount of dialogue history which can potentially improve the learned strategy, and

they do not generate user satisfaction scores. Attempting to optimise learned strate-

gies for dealing with misunderstanding errors using information about more dialogue

history and/or user satisfaction scores could be an avenue for future research.

To summarise then, the analysis in this section strongly suggests that at least in the

case of the n-gram COMMUNICATOR user simulations, the last system and user DAs

are not significantly improving the learned strategy with respect to dealing with user

indications of misunderstanding errors. However, there does seem to be a general trend

to maintain focus on the problem slot. We now move on to compare the behaviour of

the learned strategies in contexts in which the user turns are filling/confirming slot-

values i.e. the dialogue is progressing smoothly.

5.3.7.5 Behaviour when user turns fill/confirm slot values

Slot-Status Strategy DA1 Strategy DA2 Strategy

System: askSlot1 askSlot1 askSlot1

User: slot1 slot1 slot1

System: impConfSlot1AskSlot2 impConfSlot1AskSlot2 impConfSlot1AskSlot2

User: slot2 slot2 slot2

System: impConfSlot2AskSlot3 impConfSlot2AskSlot3 impConfSlot2AskSlot3

User: slot3 slot3 slot3

System: expConfSlot3 expConfSlot3 expConfSlot3

User: yes(slot3) yes(slot3) yes(slot3)

Table 5.11: System-initiative dialogues in which each user turn fills/confirms a slot

value.
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Slot-Status Strategy DA1 Strategy DA2 Strategy

System: askSlot1 askSlot1 askSlot1

User: slot1,slot2 slot1,slot2 slot1,slot2

System: impConfSlot1AskSlot2 impConfSlot1AskSlot2 impConfSlot1AskSlot2

User: slot3,slot2 slot3,slot2 slot3,slot2

System: impConfSlot3AskSlot2 impConfSlot2AskSlot3 impConfSlot2AskSlot3

User: slot3 slot3 slot3

System: expConfSlot3 expConfSlot3 expConfSlot3

User: yes(slot3) yes(slot3) yes(slot3)

Table 5.12: Mixed-initiative dialogues in which each user turn fills/confirms slots values.

Slot-Status Strategy DA1 Strategy DA2 Strategy

System: askSlot1 askSlot1 askSlot1

User: slot1,slot2 slot1,slot2 slot1,slot2

System: impConfSlot1AskSlot2 impConfSlot1AskSlot2 impConfSlot1AskSlot2

User: slot2,slot3 slot2,slot3 slot2,slot3

System: impConfSlot3AskSlot2 expConfSlot3 impConfSlot3AskSlot2

User: slot3 yes(slot3) slot3

System: expConfSlot3 expConfSlot2 expConfSlot3

User: yes(slot3) yes(slot2) yes(slot3)

Table 5.13: Mixed-initiative dialogues in which each user turn fills/confirms slots values.
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Let us now consider the behaviour of the different strategies when the user turns are

filling/confirming slot-values in order to assess whether the DA1 and DA2 strategies

might have improved over the Slot-Status strategy here as well. Table 5.11 shows

example dialogues for each of the three strategies in which the system always maintains

the initiative (i.e. the user never over-answers - see Section 1.1.1 for a definition of

initiative), and every user turn fills or confirms a slot value. The reader can see that

the behaviour of the three strategies is identical - the DA1 and DA2 strategies are not

making any performance gains over the Slot-Status strategyhere. Table 5.12 shows

example mixed-initiative dialogues for each of the three strategies where again no user

turn fails to fill or confirm a slot value. Again, the behaviourof the three strategies

is identical. In mixed-initiative dialogues where no user turn fails to fill or confirm a

slot value, there will be occasional slight differences in the behaviour of the strategies.

Table 5.13 shows an example where the DA1 strategy explicitly confirms slot 3 when

the Slot-Status and DA2 strategies implicitly confirm slot 3and ask slot 2. Unlike with

the repair strategies in Slot-Status Features Unchanged (SSFU) states, when observing

the test dialogues, these slight differences did not appearto affect the length of the

dialogue. Therefore we hypothesise that they are primarilydue to the random element

in the action selection used by the reinforcement learner during training.

We now summarise the most important findings of our analysis of the three-slot learned

strategies.

5.3.7.6 Summary

In this section we provided analysis to show that the Dialogue Acts (DAs) of the last

system and user turns improve the learned strategy by producing more effective repair

strategies for Slot-Status Features Unchanged (SSFU) states. The four types of repair

strategy for SSFU states observed in the learned strategieswere repeating, switching

focus (ask/confirm a different unfilled/unconfirmed slot), backtracking (re-ask a filled

slot) and giving help. The principal causes of SSFU states are non-understanding er-

rors, namely user utterances that are recognised as out-of-domain or ASR rejections.

The distinction between these two different types of non-understanding error seems

to be important because the DA2 Strategy, (the best learned strategy), used the repeat

repair strategy most often following ASR rejections, but the switch focus repair strat-

egy most often following out-of-domain user utterances. Wedid not find compelling

evidence to suggest that the DAs were making significant improvements to the learned
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strategy with respect to dealing with user indications of misunderstanding errors, nor

in portions of dialogue in which there is smooth progress towards the goal of filling

and confirming all of the slots. However we did observe a general trend for the re-

inforcement learner to learn to focus on the problem slot following misunderstanding

errors.

In the next section here, we now describe a four-slot versionof this section’s experi-

ment - the introduction gives the reasons for conducting such an experiment.

5.4 Four-slot experiment to investigate the usefulness

of recent Dialogue Acts

5.4.1 Introduction

This section describes a second Reinforcement Learning (RL) experiment with the 4

and 5-gram user simulations in which strategies are now learned for a four rather than

a three-slot system, (see also Frampton and Lemon 2006). Themain hypothesis is the

same as in the three-slot experiment i.e. adding the DAs of the last user turn, and then

last system turn to the slot-status features already in the state will produce significant

incremental improvements in the performance of the learnedstrategy when tested with

the n-gram simulations. The basic methodology is also the same: strategies are trained

with the 4-gram simulation and tested with the 5-gram and vice versa, the training

reward function is the same (see Section 5.3.4), the system action set is as described

in Section 5.3.3 except thati should now obviously be substituted with 4 rather than

3, and strategies are learned with the same three different state representations i.e.

Slot-Status, DA1 and DA2 (see Section 5.3.2). The reasons then for conducting this

equivalent four-slot experiment are the following:

1. It gives the opportunity to gather more evidence to show that representing recent

DAs in the state can produce improved learned strategies, and if so why.

2. We can investigate whether the state-action space remains tractable when the

number of slots is increased to a more commercially-realistic 4.

3. We can compare the performance of learned 4-slot strategies with the COMMU-

NICATOR systems: There are a number of dialogues in the COMMUNICATOR
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data where the user is only interested in a single-leg flight (i.e. they do not want

a return flight, hotel or car), and hence there are just four slots to fill (departure

city, destination city, departure date, and departure time). We can therefore com-

pare the performance of the COMMUNICATOR systems in these dialogues with

learned 4-slot strategies. However, no strong conclusionscan be drawn based on

such a comparison because while the learned strategies are tested in simulation,

the COMMUNICATOR dialogues were conducted with real users.

4. We can compare the performance of learned 4-slot strategies with the Hybrid

strategy of Henderson et al. (2008) (see Section 3.10.4): A meaningful compari-

son is possible here because the Hybrid strategy is a four-slot strategy and it was

tested with the linear function approximation simulation which has been shown

to simulate very similar dialogues to the n-gram user simulations (Georgila et al.,

2006). Indeed, although they do not report the numbers, Henderson et al. (2008)

state that the Hybrid Strategy was tested with the n-gram simulations and the

results were very similar.

We now move on to describe the results.

5.4.2 Results

As for the three-slot experiment, we first present graphs which track the improvement

of the learned strategies during training. Figure 5.8 tracks the improvement of the

three learned strategies for 50000 training dialogues withthe 4-gram user simulation,

and Figure 5.9 for 50000 training dialogues with the 5-gram.These graphs show the

average score per dialogue over intervals of 1000 training dialogues according to the

training reward function described in section 5.3.4. After50000 training dialogues

with the 4-gram, 636 state-action pairs had been visited forthe Slot-Status strategy,

7056 for DA1, and 18180 for DA2, and after 50000 training dialogues with the 5-

gram, 636 for the Slot-Status strategy, 6701 for DA1, and 17731 for DA2.

Table 5.14 displays the test results for the strategies learned after 50000 training dia-

logues (the Slot-Status, DA1 and DA2 strategies). As for thethree-slot experiment, the

‘a’ strategies are those trained with the 4-gram user simulation and tested with the 5-

gram, and the ‘b’ strategies are those trained with the 5-gram user simulation and tested

with the 4-gram. The table also shows the average of the ‘a’ and ‘b’ test scores. As in
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Figure 5.8: Training the four-slot dialogue strategies with the 4-gram simulation

Table 5.1, the third column shows the average scores according to the training reward

function obtained per dialogue by each strategy over 1000 test dialogues2. Recall from

Section 5.4.1 that a big part of the reason for conducting this four-slot experiment was

so that we would be able to compare the performance of our learned strategies with

the Hybrid Strategy of Henderson et al. (2008), and the original hand-crafted COM-

MUNICATOR systems. This is done using the HLG05 reward function, for which

the composite parts are +25 per filled slot, +25 per confirmed slot and -1 per system

turn (see Section 5.2.3). Hence there are additional rows here for the Hybrid Strategy

of Henderson et al. 2008 and the COMMUNICATOR systems, and there are columns

for the HLG05 reward function and its composite parts. Again, the columns for the

2These scores cannot be derived for the Hybrid Strategy and COMMUNICATOR systems from the
HLG05 scores because we need to know how often all of the slotswere confirmed. If we checked this
in the data and calculated the scores, then they would have large negative values. This is because these
strategies often fail to confirm slots and have a high averagenumber of system turns.
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Figure 5.9: Training the four-slot dialogue strategies with the 5-gram simulation

HLG05 reward function and its composite parts display average scores per dialogue.

Let us first concentrate only on our RL strategies and the average scores according

to our training reward function i.e. column 3. As in the three-slot experiment, the

1000 test dialogues for each strategy were divided into 10 sets of 100, and one-tailed

independent samples t-tests showed that for the ‘a’, ‘b’ andaverage cases, the DA1

strategy performs significantly better than the Slot-Status strategy, and the DA2 strat-

egy also performs significantly better than DA1. Hence the basic result is the same as

in the three-slot experiment i.e. adding the Dialogue Acts (DAs) of the last user and

then last system turns into the state produces incremental significant improvements in

the learned strategy. The significance level here isp < 0.005, except in the case of

DA1 Strategy(b)’s improvement over the Slot-Status strategy, where it isp < 0.025.

The DA1 strategy improves over the Slot-Status strategy by 4.9% in terms of average

dialogue reward, and the DA2 strategy by 7.8%.
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Features Av. Score HLG05 Filled Conf. Length

Slots Slots

4→ 5 gram = (a)

Slot-Status (a) Slot-status 51.60 190.32 100 100 −9.68

DA1 Strategy(a) + Last User DA(s) 53.35** 190.67 100 100 −9.33

DA2 Strategy(a) + Last System DA 54.9** 190.98 100 100 −9.02

5→ 4 gram = (b)

Slot-Status (b) Slot-status 51.4 190.28 100 100 −9.72

DA1 Strategy(b) + Last User DA(s) 54.15* 190.83 100 100 −9.17

DA2 Strategy(b) + Last System DA 56.25** 191.25 100 100 −8.75

Slot-Status (av) Slot-status 51.5 190.3 100 100 −9.7

DA1 Strategy(av) + Last User DA(s) 53.75** 190.75 100 100 −9.25

DA2 Strategy(av) + Last System DA 55.80** 191.16 100 100 −8.84

COMM Systems *** 103.6 85.0 63.0 −44.4

Hybrid RL/SL Info States *** 140.3 88.0 70.0 −17.7

Table 5.14: Testing the learned strategies after 50000training dialogues, average re-

ward achieved per dialogue over 1000test dialogues. a = strategy trained using 4-gram

and tested with 5-gram; b = strategy trained with 5-gram and tested with 4-gram; av =

average; * significance level p < 0.025; ** significance level p < 0.005. *** see below

for why these are not calculated.

Let us now consider how the performance of our learned strategies compares to the

Hybrid Strategy of Henderson et al. (2008), and the originalhand-crafted COMMU-

NICATOR systems. Looking at column 4, we see that according to the HLG05 reward

function, the DA2 strategy improves over the Hybrid Strategy by 36.25%, and over

the average COMMUNICATOR system by 84.52%. Recall that the comparison with

the COMMUNICATOR systems should be taken with-a-pinch-of-salt because these

systems were evaluated with real users. However, the comparison with the Hybrid

Strategy is much fairer because the Hybrid strategy was evaluated with the linear func-

tion approximation simulation, (see Section 3.10.4), which has been shown to simulate

very similar dialogues to the n-gram simulations (Georgilaet al., 2006). We had access

to logs for the Hybrid Strategy’s real user tests, but not to logs for its simulated user

tests. Hence we will provide analysis to explain why the Hybrid Strategy performs
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worse in Chapter 6 where we describe our own real user tests

As we did for the three-slot experiment, we now move on to provide analysis in order

to explain the relative performance of our learned strategies.

5.4.3 Analysis

Figure 5.10: The relative number of total visits to SSFU states per dialogue, and the

proportion of times which each of the four possible repair strategies is applied.

Analysis of our learned 4-slot strategies produced the samebasic findings as the anal-

ysis of our learned 3-slot strategies (see Section 5.3.7). The important states again

seemed to be Slot-Status Features Unchanged (SSFU) states,which in the vast major-

ity of cases are caused by non-understanding errors: user utterances that are recognised

as out-of-domain or for which there is no Automatic Speech Recognition (ASR) hy-

pothesis i.e. an ASR rejection. In these SSFU states, the recent Dialogue Acts (DAs)

enable the reinforcement learner to learn more effective repair strategies i.e. repair

strategies which are better at getting the dialogue “back-on-track”. As for the 3-slot

strategies, the number of first visits to an SSFU state per dialogue is approximately the

same for each of the learned strategies. However, the total number of visits to an SSFU

state differs - the DA2 Strategy visits the least, the DA1 Strategy the second least, and

the Slot-Status Strategy the most. Of the four possible kinds of repair strategy i.e.
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Slot-Status Strategy DA2 Strategy

System: ask1 System: ask1

User: out-of-domain User: out-of-domain

System: ask1 System: ask3

User: out-of-domain User: out-of-domain

System: ask1 System: give-help

User: asrrejection User: asrrejection

System: ask1 System: ask3

User: out-of-domain User: slot3

System: ask1 System: impConfSlot3askSlot4

User: asrrejection User: slot4

System: ask1 System: impConfSlot4askSlot1

User: slot1 User: slot1

System: impConfSlot1askSlot2 System: impConfSlot1askSlot2

User: slot2 User: slot2

System: impConfSlot2askSlot3 System: expConfSlot2

User: slot3 User: yes

System: impConfSlot3askSlot4 System: dbQuery

User: slot4

System: expConfSlot4

User: yes

System: dbQuery

Table 5.15: Example test dialogues for the Slot-Status and DA2 strategies.

repeating, giving help, switching focus or backtracking, (see Section 5.3.7 for defini-

tions), DA2 uses a greater mix than DA1, but DA1 a greater mix than the Slot-Status

Strategy. These last two points are well illustrated by figure 5.10.

As in the analysis of the three-slot experiment, we now provide example dialogues in

order to show the repair strategies in action. Table 5.15 contains transcripts of two

test dialogues - one conducted using the Slot-Status strategy, and the other using the

DA2 strategy. The reader can see that in both cases, the system has difficulty at the

start of the dialogue - it cannot obtain a value for slot 1. While the Slot-Status strategy

repeatedly asks for slot 1 until it is eventually able to obtain a value, the DA2 strategy
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switches focus to slot 3 and makes use of the “give help” function. It returns to slot 1

later in the dialogue. Employing more sophisticated repairstrategies such as this, the

DA2 Strategy fills and confirms all of the slots in fewer turns on average.

DA2 state representation DA2 Strategy No. visits Slot-Status

[conf,emp,conf,conf,ec2,user(no(slot2))] ask2 1366 ask2

[emp,emp,conf,conf,ic1ask2,user(no(slot1))] ask1 167 ask1

[conf,emp,conf,conf,ec2,user(no)] ask2 148 ask2

[emp,emp,fill,emp,ec3,user(no,slot3)] ic3ask4 91 ic3ask4

[emp,emp,fill,conf,ec3,user(no,slot3)] ic3ask2 62 ic3ask2

[fill,emp,conf,conf,ec1,user(no(slot2))] ic1ask2 502 ic1ask2

[emp,conf,conf,conf,ec1,user(no(slot1))] ask1 4489 ask1

[emp,conf,fill,emp,ec3,user(no,slot3)] ic3ask4 431 ic3ask4

[emp,emp,conf,conf,ec1,user(no(slot1))] ask1 1230 ask1

[emp,fill,conf,conf,ec2,user(no(slot1))] ic2ask1 32 ic2ask1

[conf,fill,fill,conf,ec3,user(no,slot3)] ic3ask2 27 ic3ask2

[fill,emp,conf,conf,ask1,user(no)] ic1ask2 53 ic1ask2

[fill,conf,conf,conf,ec1,user(no,slot1)] ec1 29 ec1

[emp,emp,emp,emp,ec1,user(no(slot1))] ask3 64 ask1

[emp,conf,conf,conf,givehelp,user(no(slot1))] ask1 26 ask1

[emp,conf,conf,emp,ec1,user(no(slot1))] ask4 26 ask4

[emp,conf,conf,conf,ec1,user(no)] ask1 42 ask1

[emp,emp,emp,emp,ask3,user(no(slot2))] ask3 31 ask1

[emp,fill,conf,conf,ec1,user(no(slot1))] ic2ask1 113 ic2ask1

[conf,conf,fill,conf,ec3,user(no,slot3)] ec3 45 ec3

Table 5.16: Example states for misunderstandings where the user indicates the misun-

derstanding directly after the system tries to confirm the incorrect value.

Also as in the three-slot experiment, we could not find compelling evidence to sug-

gest that the recent Dialogue Acts (DAs) were making significant improvements to the

learned strategy in other ways as well. There were apparently no significant effects

on the learned strategy’s behaviour in dealing with misunderstandings, nor in portions

of dialogue in which there is smooth progress towards the goal of filling and confirm-

ing all of the slots. Table 5.16 shows all of the DA2 states where the user has just

indicated a misunderstanding error, and which were visited25 times or more during

the 50000 training dialogues, (the third column shows the number of visits). For each
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Slot-Status Strategy DA1 Strategy DA2 Strategy

System: askSlot3 askSlot3 askSlot3

User: slot3 slot3 slot3

System: impConfSlot3AskSlot4 impConfSlot3AskSlot4 impConfSlot3AskSlot4

User: slot4 slot4 slot4

System: impConfSlot4AskSlot1 impConfSlot4AskSlot1 impConfSlot4AskSlot1

User: slot1 slot1 slot1

System: impConfSlot1AskSlot2 impConfSlot1AskSlot2 impConfSlot1AskSlot2

User: slot2 slot2 slot2

System: expConfSlot2 expConfSlot2 expConfSlot2

User: yes(slot2) yes(slot2) yes(slot2)

System: dbQuery dbQuery dbQuery

Table 5.17: System-initiative dialogues in which each user turn fills/confirms a slot

value.

Slot-Status Strategy DA1 Strategy DA2 Strategy

System: askSlot3 askSlot3 askSlot3

User: slot3,slot4 slot3,slot4 slot3,slot4

System: impConf3AskSlot2 impConfSlot3AskSlot2 impConfSlot3AskSlot4

User: slot2,slot4 slot2,slot4 slot2,slot4

System: impConf4AskSlot1 impConfSlot2AskSlot1 impConfSlot4AskSlot1

User: slot1 slot1 slot1

System: impConfSlot1AskSlot2 impConfSlot4AskSlot1 impConfSlot1AskSlot2

User: slot2 slot1 slot2

System: expConfSlot2 expConfSlot1 expConfSlot2

User: yes(slot2) yes(slot1) yes(slot2)

System: dbQuery dbQuery dbQuery

Table 5.18: Mixed-initiative dialogues in which each user turn fills/confirms slots values.
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state, the second and fourth columns show the learned actions for the DA2 and Slot-

Status strategies respectively. As in the three slot experiment, almost all are the same,

and the general trend seems to be for the reinforcement learner to learn to maintain

focus on the problem slot rather than move on as if the user hadnot indicated the

misunderstanding.

For each of the three learned strategies, Tables 5.17 and 5.18 then shows dialogues in

which there is smooth progress throughout i.e. no user turn fails to fill or confirm a slot

value. Table 5.17 shows system-initiative dialogues, and Table 5.18, mixed-initiative

dialogues. There are no behavioural differences between the strategies in Table 5.17,

and in observing test dialogues, the couple of differences in Table 5.18 did not seem

to be important. Table 5.18 shows example mixed-initiativedialogues for each of the

three strategies where again no user turn fails to fill or confirm a slot value. Again, the

behaviour of the three strategies is identical. Note, in Chapter 7, we will investigate

the hypothesis that the recent DAs are only making significant improvements to the

learned strategies with respect to better strategies in SSFU states.

We now move on to draw conclusions based on the findings of the three and four slot

experiments which have been described in this chapter.

5.5 Conclusion: Adding recent Dialogue Acts to the

state improves the learned strategy

The results of the three and four-slot experiments described in this chapter showed the

main hypothesis to be correct: with the slot-status features already in the state, adding

the Dialogue Acts (DAs) of the last user and then system turnsproduces significant

incremental improvements in the performance of the learnedstrategy when tested with

the n-gram simulations. Subsection 5.2.2.2 explained why adding more previous DAs

could not have improved the learned strategy further - when training with an n-gram

simulation, if the slot-status features and the DAs of the last n−2 turns are already

in the state, then DAs from turns further back thann−2 cannot improve the strategy.

In testing, we found that all of the learned strategies couldalways fill and confirm

all of the slots, but adding DAs to the state produced learnedstrategies which were

able to achieve this in fewer turns on average. Our analysis strongly suggests that this

is solely due to differences in behaviour in particular states which involve communi-
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cation problems. These are states in which the slot-status features are unchanged by

the last user turn, (usually due to a non-understanding error - an out-of-domain user

response or an ASR rejection). In these states then, the recent DAs seem to enable

the reinforcement learner to learn repair strategies whichare more effective at getting

the dialogue “back-on-track” i.e. inducing the user simulation to provide recognisable

slot values/confirmations. They produce a greater variety of repair strategies, and the

four different types are repeating the previous action, switching focus to ask/confirm

a different unfilled/unconfirmed slot, using the give-help function and backtracking

(re-asking a filled slot). There seems to be an important distinction between the two

different kinds of non-understanding error which cause SSFU states, because the best

learned strategy most often used the repeat repair strategyfollowing ASR rejections,

but the switch focus repair strategy following user utterances that are recognised as

out-of-domain. This perhaps motivates future work that investigates the usefulness of

making more fine-grained distinctions between different kinds of non-understandings,

a point we return to in Chapter 8. Qualitative analysis of thelearned strategies sug-

gested that the DAs were not producing improvements with respect to dealing with

misunderstanding errors, nor with respect to portions of dialogue in which there is

smooth progress towards the goal of filling and confirming allof the slots. However,

we did observe a general trend for the reinforcement learnerto learn to maintain focus

on the problem slot following a misunderstanding error.

In addition to testing the main hypothesis, we compared the performance of our learned

four-slot strategies with the four-slot Hybrid strategy ofHenderson et al. (2008). This

was a meaningful comparison because the Hybrid strategy wasalso tested with the lin-

ear function approximation simulation which has been shownto simulate very simular

dialogues to the n-gram simulations (Georgila et al., 2006). This comparison showed

our strategies to perform better in terms of dialogue length, and the number of filled

/ confirmed slots. We will provide analysis to explain this inthe next chapter. We

also compared the performance of our learned four-slot strategies to the hand-crafted

COMMUNICATOR systems, and again found our strategies to perform better in terms

of dialogue length and the number of filled/confirmed slots. However, this comparison

should be taken with a pinch-of-salt because the scores for the hand-crafted COMMU-

NICATOR systems were obtained from tests conducted with real users, not with the

n-gram simulations.

There is no reason not to believe that for use with the n-gram simulations, our best
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learned strategy is very near-optimal. However we should note that the n-gram simula-

tions do not simulate real users perfectly and so our learnedstrategies are very likely to

work less well with real users. With a more realistic simulation, it may become useful

to include additional features in the state e.g. more DAs, a feature for dialogue length.

Given a simulation which simulated unobtainable slot values, a dialogue length feature

could enable the reinforcement learner to learn a strategy which made partially com-

plete database queries when dialogue length was high and a particular slot value was

proving unobtainable. This would obviously require a reward function that gave pos-

itive reward to partially complete database queries, but asthe final Bayesian Network

user simulation experiment demonstrated, (see Section 4.5), using such a “partial” re-

ward function will produce slower learning and potentiallyinferior strategies than an

“all-or-nothing” reward function. Perhaps a good compromise then would be to use a

reward function that only gives positive reward when the Dialogue Manager (DM) has

done as well as it can. In some dialogues this will mean fillingand confirming all of

the slots, but in others it may mean only filling and confirmingless. Hence at the end

of each dialogue, the user simulation will have to communicate to the DM whether

any particular slot value(s) were unobtainable so that the DM can assess whether it has

done as well as it can, and so compute the appropriate reward.

The findings of the three and four slot experiments describedin this chapter are encour-

aging, but they leave questions which we address in experiments described in the next

two chapters. These questions include whether the DA strategies also work better with

real users, whether the DAs really only improve the learned strategy in certain con-

texts as seems to be the case in the experiments of this chapter, and whether the DAs

are useful for choosing which repair strategy to apply or only for recognising that one

is required. In the next chapter, we address the question of whether the DA strategies

also work better with real users. Here, we describe an experiment in which we test a

state-of-the-art hand-crafted strategy, and the three-slot Slot-Status and DA2 strategies

on real users with a full Spoken Dialogue System (SDS). Sincethe Hybrid strategy of

Henderson et al. (2008) was tested on real users using the same methodology, we are

able to make another direct performance comparison, and as stated above, this time we

provide analysis to explain the differences in results.



Chapter 6

Testing the learned strategies on real

users

6.1 Introduction

This chapter describes experiments which test the hypothesis that when implemented

in a full Spoken Dialogue System (SDS) and tested on real users, a strategy learned

with recent Dialogue Acts (DAs) will outperform a state-of-the-art hand-crafted strat-

egy or strategy learned with only slot-status information.We test this hypothesis be-

cause although we have already demonstrated in Chapter 5 that adding DAs improves

the learned strategy’s performance in testing in simulation, this still leaves the ques-

tion of whether the user simulation is sufficiently realistic, and whether the new strat-

egy is also better for real users. To test this hypothesis then, we use a state-of-the-art

hand-crafted strategy, and two of the strategies which werelearned in the three-slot

experiment of Chapter 5 - the Slot-Status strategy i.e. the strategy learned with only

the slot-status features represented in the state, and the DA2 strategy i.e. the strategy

learned with the slot-status features and the DAs of the lasttwo turns. These strategies

are tested on 11 real users using the “TownInfo” SDS (Lemon etal., 2006b), which

operates in the tourist information domain. Hence setting up these experiments in-

volved porting the learned strategies from the COMMUNICATOR (travel-booking)

domain into the tourist-domain. It also involved creating an “Action Retrieval” agent

in Java which was responsible firstly, for maintaining an internal representation of the

dialogue state, and secondly, for using this representation to retrieve learned actions

from a database. The DIPPER Dialogue Manager’s (DM’s) (Bos et al., 2003) update

158
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rules were modified so that the Action Retrieval agent was called to perform its func-

tions at the appropriate times. Both subjective and evaluation measures are collected

from the logs created by the Dialogue Manager (DM), and from user questionnaires.

We provide analysis to explain the relative performance of DA2 versus the Slot-Status

and hand-crafted strategies, and also DA2 versus the HybridReinforcement Learning

(RL) / Supervised Learning (SL) strategy of Henderson et al.(2008) - this is possible

because the Hybrid Strategy has previously been tested on real users using the same

experimental methodology (see Lemon et al. 2006a).

The remainder of this chapter will proceed as follows. Section 6.2 will describe the

related work of Lemon et al. (2006a) and Singh et al. (2002) which also both concern

testing learned strategies on real users with full-workingSDSs. Next Section 6.3 will

detail the experimental methodology including an overviewof the TownInfo system

(Section 6.3.1), the Action Retrieval agent (Section 6.3.2), the process of porting the

learned strategies from the COMMUNICATOR to TownInfo domain (Section 6.3.3),

and how the dialogues were evaluated (Section 6.3.4). Section 6.4 gives the results,

Section 6.5 provides analysis and explanation for the relative performance of the vari-

ous strategies, and Section 6.6 summarises and draws conclusions.

6.2 Related work

We begin in this section by focusing on the closely-related work of Lemon et al.

(2006a). Lemon et al. describe an experiment in which the Hybrid Strategy of Hen-

derson et al. (2008) is tested on real users using the same methodology as here, and

hence the results are directly comparable. Like our learnedstrategies, although the

Hybrid Strategy is learned in the COMMUNICATOR domain (Walker et al., 2001a),

in Lemon et al. it is ported to the tourist information domainand tested on real users

with the TownInfo system. Lemon et al. also have a hand-crafted strategy for per-

formance comparison, but their hand-crafted strategy is a little different to ours. Both

hand-crafted strategies attempt to fill and confirm the slotsin the order 1−3 and allow

the user to take the initiative, but whereas our hand-crafted strategy won’t query the

database until it has confirmed every slot, the hand-craftedstrategy of Lemon et al.

does not bother to confirm slots that are filled with a acousticconfidence value above

a certain threshold. Lemon et al. report that the users of the(ported) learned strategy

had an average gain in Perceived Task Completion of 14.2% (from 67.6% to 81.8%
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at p < 0.03), that the hand-crafted strategy dialogues had on average 3.3 more system

turns (p < 0.01), and that the user satisfaction results were comparable, even though

the strategy was learned for a different domain. Combining the PTC and dialogue

length measures in a dialogue reward score, the authors found a 14.4% increase for

the learnt policy (a 23.8% relative increasep < 0.03). They state that their results are

important because they show:

1. Results for real users are consistent with results for automatic evaluation (Hen-

derson et al., 2005) of learned strategies using simulated users (Georgila et al.,

2005a, 2006).

2. A strategy learned using linear function approximation over a very large strategy

space (Henderson et al., 2005) is effective for real users.

3. A strategy learned using data for one domain can be used successfully in other

domains.

The results which we obtain in the real user experiment of this chapter also show 1

and 3. Since our experimental results are directly comparable with those of Lemon

et al. (2006a), we provide analysis in order to explain the relative performance of our

learned strategies and the Hybrid Strategy of Henderson et al. (2008).

A less recent experiment in which a learned strategy is tested on real users is described

in Singh et al. (2002), (see also Section 3.3 for more details). Recall that 21 subjects

perform 6 tasks with the NJFUN system, and that Singh et al. only learned which

action to take in certain “choice states” rather than all states i.e. they learned partial

rather than full strategies. In some of the choices states, the reinforcement learner

learned between taking the initiative in the dialogue or giving the initiative to the user,

and in others, it learned whether to use confirmation. Unlikein Lemon et al. (2006a)

and the work described in this chapter, the baseline strategy for comparison here was

not a fully hand-crafted strategy - it differed from the learned strategy in that it chose

randomly between the possible actions in the “choice states”. Hence this baseline

could be referred to as an “Exploratory for Initiative and Confirmation” strategy. In

these conditions, task completion for the learned strategyrose from 52% to 64% with

p < 0.059. Data was then divided into the first 2 tasks (“novice users”) and tasks 3−6

(“expert users”) to control for learning effects. The learned strategy led to signifi-

cant improvement in task completion for experts but a non-significant degradation for

novices.
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The reader should also be aware that like Pietquin and Renals(2002) (see Section 3.5,

we have learned strategies with only slot-status variablesin the state, (we call these

Slot-Status Strategies). Pietquin and Renals did not test this strategy on real users, nor

compare its performance to a hand-crafted baseline with a user simulation. However, in

the previous chapter we tested Slot-Status strategies in simulation, and in this chapter,

we test one on real users and compare its performance with other strategies i.e. the DA2

strategy, a state-of-the-art hand-crafted strategy, and the Hybrid Strategy of Henderson

et al. (2008).

We now move on to describe our experimental methodology, andbegin with an overview

of the “TownInfo” SDS (Lemon et al., 2006b) which we use to test strategies on real

users.

6.3 Methodology

6.3.1 Overview of the TownInfo system

In order to test them on real users, the learned and hand-crafted strategies are imple-

mented in the TALK project’s “TownInfo” tourist information system (Lemon et al.,

2006b). TownInfo is designed to help a user to find a particular hotel, bar or restaurant.

Any TownInfo dialogue has 3 identifiable phases which can be referred to as:

1. Goal-selection phase,

2. Information slot filling/confirming phase,

3. Presentation of options phase.

In the Goal-selection phase, TownInfo tries to establish whether the user is looking

for a hotel, bar or restaurant. Having achieved this, it moves onto the Information slot

filling/confirming phase where it tries to fill and confirm information slots, these being:

1. Location,

2. Type,

3. Price.
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When the system has finished filling and confirming information slots, it queries its

database in order to find suitable hotels/bars/restaurants, and at this point it enters the

Presentation of options phase, where it presents the possible options to the user.

          

Action Retrieval

DB of actions

       Agent

User DB Agent

DB of bars/
restaurants/
hotels

DIPPER

ASR

Festival

GUI

text

textspeech

speech

state action

Figure 6.1: TownInfo System. The database of actions contains the state-action pairs

for whichever strategy is currently being used.

The TownInfo system is composed of a number of different components which com-

municate with one another via the Open Agent Architecture (OAA) (Cheyer and Mar-

tin, 2001), and this is represented in Figure 6.1. On the input side, the choice of

speech recogniser is the open speech recogniser, HTK, (Young, 2004). The user is

able to take the initiative in the conversation i.e. supply one or more slot values not

asked for by the system, and to give start over, quit, help and“show” commands. An

example of a “show” command would be “Show me the hotels”. Assuming the com-

mand is recognised correctly, this would prompt the system to make an immediate

database query and present the hotels which fit the criteria provided by the user up to

this point in the dialogue. The system’s presentation of suitable hotels/bars/restaurants

is multi-modal - as the system generates speech to describe apossible option, it also
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highlights it on the map displayed by the Graphical User Interface (GUI) agent (see

Figure 6.2). The Natural Language Generation (NLG) for the presentation of database

results is template-based1. The logging agent produces log files of the conversation in

the TALK Information State Update (ISU) format (Georgila etal., 2005b). One of the

ways in which the dialogues are evaluated is via dialogue length, and these log files

can be used to count the number of turns in each dialogue.

Figure 6.2: TownInfo System GUI

The Action Retrieval agent, which I built in Java, is used to implement the learned

and hand-crafted strategies. Given one of the strategies, and a representation of the

current dialogue context, the Action Retrieval agent returns the corresponding action

to DIPPER. The Action Retrieval agent is only called in the Information slot fill-

ing/confirming phase of a TownInfo dialogue because our learned and hand-crafted

strategies apply only to this phase. In the first and third phases i.e. the Goal-selection

1Template-based NLG systems are usually defined as NLG systems that map their non-linguistic
input directly, (i.e. without intermediate representations), to the linguistic surface structure, (see page
83-84 of Reiter and Dale 1997).
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and Presentation of options phases, the system uses hand-crafted dialogue plans. For

example, in the Goal-selection phase, the system will repeatedly ask the open-initiative

initial question “How can I help you?”, and then try to confirmthe user’s response until

it has successfully confirmed whether the user is interestedin a bar, restaurant or hotel.

The next section will now provide a detailed description of the Action Retrieval agent.

6.3.2 Action retrieval agent

I created an Action Retrieval OAA agent in Java which has fourfunctions -updateTh-

eState/2, resetSlotVariables/1, getLearnedActionForTownInfo1/4 andgetLearnedAc-

tionForTownInfo2/4. I modified the TownInfo DIPPER (Bos et al., 2003) update rules

so that they called these functions at the appropriate times. The first function,up-

dateTheState/2, took the last system-user exchange, represented in terms of speech

act-task pairs from DIPPER’s information state, and then updated the agent’s internal

representation of the current dialogue state accordingly.This internal state representa-

tion would necessarily be of the same form as was used to learnthe particular strategy

being tested e.g. in the case of the DA2 Strategy, the state would be represented in

terms of the following 5 variables:

1. status of slot 1: empty/filled/confirmed,

2. status of slot 2: empty/filled/confirmed,

3. status of slot 3: empty/filled/confirmed,

4. Dialogue Act (DA) of the last system turn,

5. DA(s) of the last user turn.

The second function,resetSlotVariables/1 is called at the end of each dialogue in order

to reset each of the slot status variables to “empty”.

The third function,getLearnedActionForTownInfo1/4 is responsible for using this state

representation to query the database table containing the strategy and so retrieve the

learned action. Before being returned, this action then hasto be mapped into a form

that can be used by TownInfo, which means that each action hasto be represented

in terms of the three DATE (Walker and Passonneau, 2001) dimensions. Recall from

Section 3.10.1 that these are:
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1. conversational domain,

2. speech Act,

3. task.

The TownInfo system next translates the DATE triplet into text and then speech. In

the case that there is no learned action for the DA2 Strategy in a particular state i.e.

that state had not been visited during training, then the Action Retrieval agent would

“back-off” in the order:

1. DA1 Strategy from Chapter 5,

2. Slot-Status Strategy from Chapter 5.

Backing-off to another strategy would obviously mean dropping the appropriate turn

variable from the state representation e.g. in the case of backing-off from the DA2

Strategy to the DA1 Strategy, the last system turn but one variable would be dropped.

The fourth function,getLearnedActionForTownInfo2/4, is called when the learned ac-

tion is to implicitly confirm one slot and ask another, and so cannot be expressed

as a single DATE triple. For example, the learned action “impConfSlot1-askSlot2”

must be mapped to two DATE triples -<about-communication,implicit-confirm,dest-

city>, <about-task,request-info,depart-arrive-date> . In this case,getLearnedAction-

ForTownInfo1/4 would be called first and would use the internal state representation

to retrieve the learned action “impConfSlot1-askSlot2”. It would then map this action

to the two date triples, but would only return the first to DIPPER, whilst storing the

second internally. Once this first triple has been translated into text and then speech,

DIPPER next callsgetLearnedActionForTownInfo2/4, which returns the second triple.

This second triple is then also translated into text and thenspeech, and the system turn

is released.

Why was a function not written which combined the functionalities of updateTheS-

tate/2 andgetLearnedActionForTownInfo1/4 i.e. one which updated the internal state

representation and returned the learned action as one or more DATE triplets? The

explanation is that in the first phase of the dialogue (Goal-selection phase - see Sec-

tion 6.3.1), we only want the function which updates the internal state representation.

Although our strategies and hence thegetLearnedActionForTownInfo/4 functions are
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redundant during this initial phase, it is still necessary to keep track of the status of

each of the slots. This is because having been asked “How may Ihelp you?”, the user

may take the initiative and fill one or more slot values e.g. “Iwant an expensive Italian

restaurant.” rather than just “I want a restaurant.” Hence,updateTheState/2 must be

called during the first phase in order to update the status of each of the slots.

6.3.3 Porting strategies from the COMMUNICATOR to the TownI nfo

domain

Our learned strategies were learned in the COMMUNICATOR (travel-booking) do-

main - Chapter 5 describes how strategies were learned as theDIPPER Dialogue Man-

ager (DM) conducted training dialogues with an n-gram user simulation, the proba-

bilities for which were learned from COMMUNICATOR data (Walker et al., 2001a).

We are now porting these strategies into a different domain -the tourist information

domain of the TownInfo Spoken Dialogue System (SDS). This isstraightforward to

do because if we abstract away from what the information slots actually represent,

the COMMUNICATOR and TownInfo systems have the same aim i.e.to fill up and

confirm information slots, then access a database and present results to the user. We

simply need to provide a mapping between the COMMUNICATOR and TownInfo in-

formation slots/sub-tasks. Table 6.1 shows the mappings that are used.

Sub-task

COMMUNICATOR TownInfo

destcity food type

departdate food price

departtime food location

destcity hotel location

departdate room type

departtime hotel price

destcity bar type

departdate bar price

departtime bar location

Table 6.1: Mappings between COMMUNICATOR and TownInfo tasks.
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These mappings allows us to:

1. map TownInfo actions to COMMUNICATOR actions so that theycan be in-

cluded in the Action Retrieval agent’s internal state representation which it uses

to retrieve the next action,

2. map the returned COMMUNICATOR actions to TownInfo actions so that they

can be implemented by the TownInfo system.

In fact it was only necessary for me to do 1, because the work ofLemon et al. (2006a)

had already enabled DIPPER to do 2.

If strategies learned in the COMMUNICATOR domain also work well in the TownInfo

domain, then this suggests that we have learned effective generic slot-filling strategies.

It is our hypothesis that this will be the case - that certain types of behaviour exhibited

by the strategies such as switching focus away from problem slots, making use of the

give-help function and backtracking (see Section 5.3.7.2 for definitions) will prove

effective in other domains as well.

6.3.4 Evaluation methodology

As stated previously, we test the following three-slot strategies on real users by imple-

menting them in the TownInfo Spoken Dialogue System (SDS):

1. a state-of-the-art hand-crafted strategy,

2. a Slot-Status strategy,

3. a DA2-strategy.

The two learned strategies were produced in the three-slot experiment of Chapter 5.

The hand-crafted strategy is the state-of-the-art mixed-initiative hand-crafted strategy

described in Section 6.2. The dialogue strategy is the only part of the TownInfo SDS

which is varied. Everything else always remains the same, i.e. the information presen-

tation routines, Automatic Speech Recogniser (ASR), Graphical User Interface (GUI),

Text-To-Speech (TTS) synthesiser, and hotel/bar/restaurant database. There are 11

subjects, and following the methodology of Walker et al. (2000) and Lemon et al.
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(2006a), each subject is given a questionnaire containing 15 tasks, (5 in each condi-

tion), to give a total of 165 test dialogues. In order to evaluate the system in the three

different conditions i.e. with the three different strategies, we collect Perceived Task

Completion (PTC), dialogue length and subjective evaluations. Section 6.3.1 stated

that as the dialogue progresses, the logging agent produceslog files containing each

DIPPER information state, and these files can be used to find dialogue length in terms

of the number of system turns. PTC and the subjective evaluations are obtained from

the user via the questionnaire. Learning and temporal ordering effects are controlled

for by rotating the order in which the strategies are appliedfor each user.

To see the questionnaire, see Appendix B. The presentation of the tasks on the ques-

tionnaire is such that the subjects cannot simply read them out to the system e.g.

Task 1: You are on a business trip on your own. You need to find a

hotel room in the middle of town. Price is no problem.

The user’s PTC is collected like so:

Write the name of the result that the system presented to you ( e.g.

FOG BAR) here:

Does this item match your search? Yes/No

For subjective evaluation of the system in each task, the user is asked to answer the

following questions using a 5-point Likert scale (1 = strongly disagree and 5 = strongly

agree):

1. In this conversation, it was easy to get the information th at I

wanted.

2. The system worked the way I expected it to, in this conversa tion.

3. Based on my experience in this conversation, I would like t o use

this system regularly.

Below, for shorthand, I will refer to question 1 as “Task ease”, question 2 as “System

behaviour as expected”, and question 3 as “Reuse the system”.

A total reward is calculated for each dialogue, using the following reward function:
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1. +100 for PTC,

2. −1 for each system turn.

This reward function is chosen because it is the same as that used in Lemon et al.

(2006a) and so allows us to directly compare results. The data for reward, PTC, dia-

logue length and subjective measures for all 165 test dialogues is logged. The mean

for each measure in each of the three conditions is calculated, and dependent sam-

ples t-tests are calculated for each of the following in order to test whether the DA2

strategy shows any significant improvement over the Slot-Status and the hand-crafted

strategies:

1. reward for hand-crafted versus DA2,

2. reward for Slot-Status versus DA2,

3. Task ease for hand-crafted versus DA2,

4. Task ease for Slot-Status versus DA2,

5. System behaviour as expected for hand-crafted versus DA2,

6. System behaviour as expected for Slot-Status versus DA2,

7. Reuse the system for hand-crafted versus DA2,

8. Reuse the system for Slot-Status versus DA2.

Dependent samples t-tests are the appropriate kind of t-test to use because the same

(rather than different) subjects use the system in the threedifferent conditions.

We now move on to describe our results.

6.4 Results

Table 6.2 shows Perceived Task Completion (PTC), average number of system turns

and reward per dialogue for each of the three strategies. Thereward is calculated using

the reward function described in Section 6.3.4. The PTC for the DA2 strategy (90.91%)

is significantly better than the PTC for both the hand-crafted and Slot-Status strategies
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Strategy PTC (Av. %) System turns (Av.) Reward (Av.)

Hand-crafted 81.82% 8.46 73.36

Slot-Status 81.82% 8.98 72.84

DA2 90.91%** 7.95* 82.96**

Table 6.2: ** = significantly better than hand-crafted and Slot-Status, * = significantly

better than Slot-Status

(p < 0.48). Average number of system turns per dialogue for the DA2 strategy (7.95)

is significantly fewer than for the Slot-Status strategy (8.98) (p < 0.0085) The average

reward per dialogue for the DA2 Strategy is significantly better than for both the hand-

crafted and Slot-Status strategies - 82.96 versus 73.36 (p < 0.0425) and 72.84 (p <

0.034) respectively.

Subjective Strategies

Measures Hand-crafted Slot-Status DA2

Task Ease 3.33 3.13 3.45

Expected Behaviour 3.29 3.15 3.36

Re-use 3.11 3.04 3.22

Table 6.3: The user preference scores for the hand-crafted, Slot-Status and DA2 Strate-

gies.

Table 6.3 shows the user preference scores for each of the three strategies (see Section

6.3.4 for a description of how these were collected). Although the DA2 Strategy is the

best according to each of the measures, it is not significantly better.

Strategy PTC (Av. %) User pref. (Av.) System turns (Av.) Reward (Av.)

DA2 90.91 3.34 9.65 82.96

Hybrid 81.8 2.67 11.6 74.9

Table 6.4: Comparison between the Hybrid Strategy of Henderson et al. (2008) and the

DA2-strategy
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Table 6.4 compares the performance of the DA2 Strategy and the Hybrid Strategy of

Henderson et al. (2008). No significance tests are possible because I only had the av-

erage scores for the Hybrid Strategy, rather than the scoresfor all of the trial runs.

The PTC is greater for the DA2 Strategy than the Hybrid Strategy (90.91 versus 81.8),

and the average number of system turns fewer (9.65 versus 11.6). Here all of the sys-

tem turns are counted, rather than only those in the Information slot filling/confirming

phase of the dialogue. Table 6.4 shows that the DA2 Strategy achieves greater PTC in

fewer turns on average, and hence gains a greater average reward (82.96 versus 74.9).

We now move on to provide analysis in order to explain the relative performance of

the various strategies in the real user tests.

6.5 Analysis

In this section we provide analysis in order to explain the relative performance of the

various strategies. We begin in the next section by focusingon why the DA2 Strategy

outperformed the Slot-Status and hand-crafted strategies.

6.5.1 The DA2 Strategy versus the Slot-Status and hand-craf ted

strategies

As in testing in simulation, in testing with real users, the DA2 Strategy outperforms

the Slot-Status Strategy. It also outperforms the state-of-the-art hand-crafted strategy.

It outperforms both in terms of Perceived Task Completion (PTC) and dialogue length,

and hence also in terms of the reward function described in Section 6.3.4. Recall

that in Sections 5.3.7 and 5.4.3, qualitative analysis was provided to show that the

learned strategies apparently only differed significantlywhen the slot-status features

are left unchanged by the previous user turn. In these situations, whereas the Slot-

Status Strategy, (and hand-crafted strategy), repeat the last question/confirmation, the

DA2 Strategy sometimes uses alternative repair strategies: switch focus to a different

unfilled/unconfirmed slot, give help or backtrack (re-ask analready filled slot). Hence

it seems that these repair strategies must also be the cause of DA2’s better performance

in the real user tests here.

It is one thing to know that the DA2 repair strategies are moreeffective than always
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using repetition, but it would be nice to know why, and this issomething which these

real user experiments help to explain. In supervising the experiments, I witnessed

users become frustrated when the Automatic Speech Recogniser (ASR) was failing

to recognise a slot value and the Slot-Status or hand-crafted strategy dictated that the

system persist in asking the same question/attempting the same confirmation. As a

result, the user would often begin to speak overly-clearly i.e. hyper-articulatetheir

words and/or adopt an angry tone, and this made it less likelythat the ASR would

correctly recognise what they were saying. Users would get stuck on particular slots

in this way, producing longer dialogues. Occasionally theywould completely lose

patience and quit, or alternatively, as a strategy to inducethe system to move on, they

might deliberately supply a slot value which was different to the one that they wanted,

but which they thought might be easier for the speech recogniser to correctly recognise.

This then was responsible for the lower rate of PTC. Below is an example from the

experiments, (task 2 using the hand-crafted strategy), in which the system could not

recognise a particular slot value, and this caused the user to eventually lose patience

and quit.

Hyper-articulate speechis often associated with elevated rates of recognition failure

(Shriberg et al., 1992). This is because hyper-articulatedspeech departs from the origi-

nal training data upon which a recogniser was developed. Thebasic principle of Auto-

matic Speech Recognition (ASR) is pattern matching of humanspeech with relatively

static stored representations of sub-word units. Althoughrecognition algorithms typi-

cally model phonemes and co-articulation effects, they do not tend to model dynamic

stylistic changes in the speech signal that are elicited by environmental factors, such

as hyper-articulate speech during miscommunication or Lombard speech during noise.

Lombard speech refers to how a user’s speech changes in a noisy environment. Oviatt

et al. (1998) provides a technical description of how hyper-articulate speech is different

from normal speech. It is also worth noting that the design ofrecognition technology

means that one recognition error can lead to a clustering of errors. For example, a

statistical model called a Hidden Markov Model (HMM), (see Rabiner (1989) for an

introduction), is often used in speech recognition, and since an HMM’s prediction for

a word is based in part on its prediction for the previous word, if one word is misrecog-

nised, then this may cause subsequent words to be misrecognised as well.

To summarise then, always repeating the same question/confirmation when a slot value

is not recognised is likely to make a user frustrated. The user will then react by
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Speaker Transcript (ASR transcript for user)

System how can I help you?

User i want no I want to eat

System how can I help you?

. User er said eat.

System did you say eat?

User yes I would.

System would you like something cheap, expensive or reasonably priced?

User er i dont mind

System you do not mind what kind of food would you like?

User you er chinese food

System a chinese restaurant do you want something central?

User in the town

System do you want something central?

User er in my hotel

System do you want something central?

User can you repeat near the hotel the primus

System do you want something central?

User i would [User then quits]

Table 6.5: A hand-crafted strategy dialogue in which Automatic Speech Recognition

(ASR) errors and over-use of repetition as a repair strategy cause the user to lose

patience and quit.

hyper-articulating and/or adopting an angry tone, and thiswill further degrade speech

recognition, producing longer dialogues and a lower rate oftask completion. With

the DAs of the last two turns represented in the state (the DA2state), the reinforce-

ment learner has learned to sometimes use alternative repair strategies, (switch-focus,

give-help, backtrack), and hence it has learned a strategy that better avoids eliciting

hyper-articulate / irritated speech from the user. This results in shorter dialogues and

a higher rate of task completion on average. It also raises the question of whether any

“sensible” avoidance of repetition is an optimal repair strategy whenever the slot-status

features are unchanged by the previous user turn e.g. any of switching focus/ giving

help or backtracking are always optimal. We would think not given that the DA2 strat-
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egy uses different repair strategies in different DA contexts, and indeed sometimes uses

repetition, but we will investigate this further in the experiment described in Section

7.4.

We now move on to explain the relative performance of the DA2 Strategy and the

Hybrid Strategy of Henderson et al. (2008).

6.5.2 The DA2 Strategy versus the Hybrid Strategy of Henders on

et al. (2008)

In the real user tests here, like the Slot-Status and Hand-crafted strategies, the Hybrid

Strategy of Henderson et al. (2008) is outperformed by the DA2 Strategy both in terms

of Perceived Task Completion (PTC) and dialogue length, andhence also in terms of

the reward function described in Section 6.3.4. The next section provides qualitative

analysis of the Hybrid Strategy in order to account for this performance difference.

Since I did not have access to the Lemon et al. (2006a) test logs, but instead to the

“Cambridge” real user test logs, the Hybrid Strategy dialogues which we use for quali-

tative analysis come from these Cambridge tests. The Cambridge tests used a four-slot

system and hence the full four-slot Hybrid Strategy. The four-slot Hybrid strategy

was implemented in the three-slot TownInfo Spoken DialogueSystem (SDS) used in

Lemon et al. (2006a) by setting one of the slots as confirmed before the start of each

dialogue. Note that the slot which was confirmed before the start of each dialogue was

always the same. In the example dialogues of the next sectionthen, in addition to the

slots for type, price and location, the reader will notice the system attempting to fill

a fourth slot. We will refer to this fourth slot as the “near to” slot because it speci-

fies what the bar/hotel/restuarant should be near to. Following on from the qualitative

analysis of the next section, Section 6.5.2.2 will then go onto provide an explanation

for why the learning approach used by Henderson et al. (2008)produced the strategy

it did.

6.5.2.1 Qualitative Analysis of the Hybrid Strategy

In Sections 5.3.7 and 5.4.3, we argued that the Slot-Status and Hand-crafted strategies

were outperformed by DA2 in the real user experiments here because in many cases

they use less effective repair strategies for when the slot-status features are unchanged
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by the last user turn i.e. they over-use repetition. Hence let us consider whether this

is also a factor in explaining why the results for the Hybrid Strategy in Lemon et al.

(2006a) are worse than those of the DA2 Strategy here.

System transcript User (ASR transcript)

how can i help you? id like to find a hotel

did you say hotel? yes

what area would you like, for example north, east or riverside? east

an in the east hotel where would you like the hotel to be near to?

where would you like the hotel to be near to?

where would you like the hotel to be near to? oh

where would you like the hotel to be near to? like

where would you like the hotel to be near to? like

where would you like the hotel to be near to?

where would you like the hotel to be near to to the park

near the park, would you like cheap expensive or reasonably priced

would you like something cheap, expensive, or reasonably priced?

would you like something cheap, expensive, or reasonably priced?

would you like something cheap, expensive, or reasonably priced? oh

would you like something cheap, expensive, or reasonably priced? something stop some

would you like something cheap, expensive, or reasonably priced? i dont mind

you do not mind, what hotel category would you like? for example 5*

i can respond to simple requests, for example, a cheap indian

restaurant, or you can say quit or restart. How can i help you? a five star hotel

now i am going to search for a hotel five star near the park in

the east please wait a moment while i search for suitable hotel options.

Table 6.6: The Hybrid Strategy of Henderson et al. (2008) apparently over-using repe-

tition as a repair strategy.

Table 6.6 shows an example Hybrid Strategy dialogue which involves repair strategies.

There are two points in this dialogue at which progress stalls for a number of turns.

The first is when the system tries to obtain a value for location, and the second is when

the system tries to obtain a value for price. The user responses are blank for these turns

because this is how they appeared in the logs, and we are therefore unsure whether

they are ASR rejections or recognised as out-of-domain. In any case, at both these

points at which progress stalls, the system keeps repeatingits original question until it
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is finally able to recognise a slot value in the user response -it needs 7 attempts for the

“near to” slot, and 6 for the price slot. As was said in Section6.5.1, always repeating

the same question/confirmation when a slot value is not recognised is likely to make a

user frustrated. The user will then react by hyper-articulating and/or adopting an angry

tone, and this will further degrade speech recognition, producing longer dialogues and

a lower rate of task completion. It seems then that less effective repair strategies for

when the slot-status features are unchanged by the last userturn are at least part of

the explanation for why the Hybrid Strategy performed worsein real user experiments

than the DA2 Strategy.

What other possible factors could there be to account for performance differences be-

tween DA2 and the Hybrid Strategy? Are there other contexts in which the Hybrid

Strategy seems to use sub-optimal actions? Notice that in the example dialogue in

Table 6.6, the Hybrid Strategy queries the database withoutfirst trying to confirm the

slot value for hotel “type”. In the example dialogue in Table6.7, we see the Hybrid

Strategy query the database without first confirming the “near-to” slot value. We could

speculate then that since the Hybrid Strategy does not always confirm all of the slots, it

might at least sometimes be submitting database queries that are incorrect with respect

to unconfirmed slots, and failing tasks as a result. It could be however that the Hybrid

Strategy is actually doing something very sensible - it may not be confirming in the

above examples because it has somehow inferred based on certain contextual features

e.g. Word Error Rate (WER) that the probability of the slot value being incorrect is

very small, (see Section 3.10.2 for a list of the different types of state features used

by the Hybrid Strategy). If such slot-values are invariablycorrect, then querying the

database without confirming them would obviously enable theHybrid Strategy to suc-

cessfully complete the task in fewer turns. Note that the example dialogue in Table 6.6

seems to suggest that dialogue history is not a decisive factor for the Hybrid Strategy

in deciding whether to confirm the last slot - despite all of the problems on previous

turns, it still chooses not to confirm.

It is unclear then whether these choices not to confirm are sub-optimal, but it seems that

making minimal effort to fill certain slots and then queryingthe database with unfilled

slots must be sub-optimal. This is because the information slots for a COMMUNI-

CATOR flight-booking system e.g. the destination city, havea very large number of

possible values, and as a result, querying the database withunfilled slot values would

mean that an infeasibly large number of possible flight options would have to be pre-
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System User (ASR transcript)

hello, welcome to the talk city information i would like to find a quick

dialogue system. how can i help you? snack please

did you say snack ? yes

what kind of food would you like, for example i dont mind

italian or chinese?

you do not mind would you like cheap, expensive,dont care

or reasonably priced?

you do not mind what area would you like, north,south

east or riverside?

an in the south restaurant where would you like close to the train station

it to be near to?

now i am going to search for a restaurant in the

south. please wait a moment while i search for

suitable restaurant options.

Table 6.7: Here the Hybrid Strategy does not attempt to confirm the “near to” slot.

sented to the user. Such action choices would surely therefore have a disastrous effect

on average task completion. Despite this, we see the Hybrid Strategy making such

action choices in the example dialogue in Table 6.8. Here theHybrid Strategy only

asks for the “type” and “near to” slots once, and when it failsto obtain values, it nev-

ertheless goes ahead and queries the database. Such behaviour will not have anything

like as dramatic a negative effect on task completion for theTownInfo system because

here the number of possible values for each slot is small enough so that the system

can often get away with presenting all of the possible options when the database query

is not fully constrained. However, even if task completion is achieved in such cases,

having to listen to a few different options will likely annoythe user and so reduce their

satisfaction with the system. Given then that the Hybrid RL/SL approach has produced

sub-optimal actions for both filling slots and repair strategies, it seems likely then that

at least some non-confirming actions of the type shown in Tables 6.6 and 6.7 are also

sub-optimal.

Note that apart potentially from failing to confirm the last slot, in the example dialogues



Chapter 6. Testing the learned strategies on real users 178

System User (ASR Transcript)

hello. Welcome to the talk city information

dialogue system. how can i help you?

how can i help you? id like to find out plays red

can get a do you have to

how can i help you? id like to find a bar

did you say bar? yes

what type of bar are you looking for? Maybe a

cocktail bar or a wine bar or a beer? oh

would you like something cheap, expensive, or reasonably priced please

reasonably priced?

a reasonably,priced bar what area of the town oh

for example north,east or riverside area?

what area of the town, for example north, east or i dont mind

riverside area?

you do not mind where would you like the bar to be

near to?.

now i am going to search for a bar moderate please

wait a moment while i search for suitable bar options.

options there are four options matching your query.

Table 6.8: Here the Hybrid Strategy makes minimal effort to fill the “type” and “near to”

slots and queries the database with them unfilled.

which we have seen here, so long as the dialogue is progressing smoothly, the Hybrid

Strategy seems to behave sensibly - it implicitly confirms filled slots whilst asking

empty slots. Hence in conclusion, it seems that less effective repair strategies for when

the slot-status features are unchanged i.e. over-use of repetition is one cause for the

Hybrid Strategy performing worse than the DA2-strategy. A second cause is making

minimal effort to fill slots in certain contexts and so querying the database with unfilled

slots, and another potential cause is failure to confirm certain slots, especially the last

slot. However these causes alone do not seems to be sufficientto account for the

Hybrid Strategy’s much worse performance in testing in simulation - in Chapter 5,
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when tested with the linear function approximation simulation, we reported that the

Hybrid Strategy had obtained an average HLG05 score of 140.3 (88 for slots filled,

70 for slots confirmed,−17.7 for number of system turns). Notice especially that

the dialogue length is very high. I was unable to view any logsfor these simulation

tests but have found out via personal communication that in some contexts, the Hybrid

Strategy will attempt to confirm an empty slot, (there are no examples of this in the

“Cambridge” tests). Such behaviour is clearly sub-optimaland had a detrimental effect

on the Hybrid Strategy’s performance in testing in simulation, particularly with respect

to dialogue length.

We now move on to provide an explanation for why the Hybrid RL/SL approach pro-

duced the kind of strategy which we have described here.

6.5.2.2 Explanation for sub-optimal action choices in Hybr id Strategy

Why then did the Hybrid Reinforcement Learning (RL)/Supervised Learning (SL) ap-

proach of Henderson et al. (2008) produce a strategy which makes the sub-optimal

action choices described in the previous section, and hencedoes not perform as well

as DA2 in the real and simulated user tests? The main explanation seems to be that the

Hybrid Strategy is almost entirely derived from SL, (the RL component only leads to

an approximately 1% improvement over the purely supervisedpolicy), and thus does

not fully exploit the power of exploratory RL as the DA2 strategy does. Recall from

Section 3.10 that the Hybrid RL/SL approach had an enormous policy space to search,

with relatively little data to work with, and so it is clear that the optimal strategy has not

yet been found. The main advantage of the Hybrid RL/SL approach in fact comes from

its supervised component: a “multi-version” system is being learned which blends the

best aspects of the original COMMUNICATOR systems. In addition, it was not even

possible for our reinforcement learner to learn one of the types of sub-optimal action

choice described in the previous section i.e. confirming an empty slot. Recall from

Section 5.3.3 that unlike Henderson et al., we used a rule during RL which stopped the

Dialogue Manager (DM) from choosing to confirm an empty slot.

It should be noted that apart from a different learning approach, Henderson et al. also

used a different training reward function - the Hybrid Strategy was trained with PAR-

ADISE scores i.e. a measure of user satisfaction (see Section 3.4.2 for the list of

features), whereas our training reward function was based only on filling/confirming
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slots and dialogue length. Recall that the filling/confirming slots element was present

because the number of filled/confirmed slots is strongly correlated to task comple-

tion, and task completion is obviously something which we want a dialogue strategy

to be optimised for. Task completion and dialogue length areclearly very important

in determining user satisfaction, but other features are also required in order to best

predict PARADISE user satisfaction scores, (again refer toSection 3.4.2 for the list of

features). Hence, all other things being equal, a strategy optimised for the PARADISE

reward function, and a strategy optimised for our reward function can be expected to be

different to some degree. We should note then that the main evaluation measures used

in the real user tests were Perceived Task Completion (PTC) and dialogue length, and

in the simulated user tests, they were the number of filled/confirmed slots and dialogue

length, (see Section 5.2.3 for the HLG05 reward function). These evaluation mea-

sures favour our strategies over one optimised for PARADISEuser satisfaction scores,

and so may have been another factor in the Hybrid Strategy’s worse performance as

compared to DA2.

6.6 Summary

This chapter described a real user experiment which successfully tested the hypoth-

esis that when implemented in a full Spoken Dialogue System (SDS) and tested on

real users, a state-of-the-art hand-crafted strategy, anda strategy learned with only

slot-status features are both outperformed by a strategy learned with additional recent

Dialogue Acts (DAs). The DA2 strategy outperformed both theSlot-Status and Hand-

crafted strategies in terms of Perceived Task Completion (PTC) (p < 0.05 versus both)

and dialogue length (p < 0.05 versus Slot-Status). This was due to its more effec-

tive repair strategies for when the slot-status features were unchanged by the previous

user turn, (usually due to one or more speech recognition errors). The Slot-Status and

Hand-crafted strategies would simply keep asking for the same slot value until even-

tually something was recognised, while the DA2-strategy would sometimes use an

alternative repair strategy i.e. switch focus/give help/backtrack. Repeatedly asking the

same question was likely to frustrate the user, elicitinghyper-articulate speechwhich

increased the likelihood of speech recognition errors. Users could get stuck on particu-

lar slots in this way, resulting in longer dialogues. Occasionally they would completely

lose patience and quit, or alternatively, as a strategy to induce the system to move on,
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they might deliberately supply a slot value which was different to the one that they

wanted, but which they thought might be easier for the speechrecogniser to correctly

recognise. This then was responsible for a lower rate of perceived task completion.

The Spoken Dialogue System (SDS) used in this experiment is called “TownInfo”

(Lemon et al., 2006b), and it operates in the tourist information domain. As a result,

in order to run the experiment, the learned strategies had tofirst be ported from the

COMMUNICATOR domain into this new domain. Like Lemon et al. (2006a) then,

the results here also demonstrate that it is possible to learn a slot-filling strategy in one

domain which then works well in another i.e. it is possible tolearn generic slot-filling

strategies.

We also compared our results to those of Lemon et al. (2006a),which used the same

methodology to test the Hybrid Strategy of Henderson et al. (2008). Although no sig-

nificance tests were possible, the scores for Perceived TaskCompletion (PTC) and di-

alogue length were better for DA2. Qualitative analysis of the Hybrid Strategy showed

apparently sub-optimal action choices in a number of contexts e.g. overuse of repeti-

tion as a repair strategy, making minimal effort to fill slotsand querying the database

with unfilled slots, confirming empty slots. We provided an explanation for why the

Hybrid RL/SL approach may have produced sub-optimal behaviour - the main reason

is that it is almost entirely a supervised strategy, and the enormous policy space means

that the optimal policy has not yet been found. We also noted that the Hybrid Strategy

was trained with a different training reward function - it was trained on PARADISE

user satisfaction scores. A strategy optimised for this reward function would not have

been as favoured by the main evaluation measures used in the real user tests, nor those

used in the simulated user tests reported in Chapter 5.



Chapter 7

Investigating the role of Dialogue Acts

in learning repair Strategies

7.1 Introduction

This chapter seeks to add to the insights provided by the experiments of the previ-

ous two chapters. The experiments of the previous two chapters showed that when

training with stochastic user simulations whose probabilities are derived from real user

data, adding the Dialogue Acts (DAs) of the last system and user turns into the state

produces better learned strategies. In Chapter 5 we showed an improvement in test-

ing with these user simulations, and in Chapter 6, an improvement in testing with

real users. Analysis of these experiments enabled us to formhypotheses as to how

the DAs were improving the learned strategy. In Chapter 5 ouranalysis suggested

that the DAs were making significant improvements to the learned strategy only with

respect to repair strategies for states in which the slot-status features are unchanged

by the previous user turn i.e. Slot-Status Features Unchanged (SSFU) states. They

did not appear to be making significant improvements with respect to dealing with

user indications of misunderstanding errors, nor in portions of dialogue in which there

was smooth progress towards the goal of filling and confirmingall of the slots. With

regard to learning repair strategies in SSFU states, the DAsseemed to be important

both for identifying SSFU states, and then also for choosingwhich repair strategy

was best to apply. In Chapter 6, our analysis suggested that the strategy learned with

only slot-status features over-used repetition in SSFU states - this often frustrated the

users, eliciting irritated/hyperarticulated speech which caused more Automatic Speech

182



Chapter 7. Investigating the role of Dialogue Acts in learning repair Strategies 183

Recognition (ASR) errors and hence longer dialogues and lower task completion. A

possible hypothesis then is that any kind of “sensible” avoidance of repetition in SSFU

states is optimal. Here we define “sensible” as any of the repair strategies for SSFU

states which emerged from the Reinforcement Learning (RL) i.e. repeating, switching

focus, backtrackingandgiving help(see Section 5.3.7.2 for definitions).

In this chapter then, (see also Frampton and Lemon 2008b), weconduct new experi-

ments in order to further investigate the hypotheses described above. We conduct these

experiments using the n-gram simulations - we justify this with the fact that Chapter 6’s

real user experiment for strategies learned with these simulations produced a positive

result. In addition to the hypotheses described above, we also investigate which is most

important in learning a dialogue strategy - the DA of the lastsystem turn or the DA(s)

of the last user turn. We also compare our findings to those of relevant previous re-

search, Bohus and Rudnicky (2005) and Skantze (2003)/Chapter 4 of Skantze (2007),

which investigates repair strategies for non-understanding errors without using RL or

user simulations, (see Section 1.1.1 for a definition of non-understanding errors).

The remainder of this chapter proceeds as follows. Section 7.2 describes the first of

the four new experiments. This experiment further investigates whether the DAs only

significantly improve the learned strategy through more effective repair strategies in

SSFU states. Section 7.3 then describes the second experiment, which investigates

whether DAs are useful for choosingwhich repair strategy to apply, rather than just

for identifying SSFU states and hence states in which a repair strategy is required.

Next, Section 7.4 describes the third experiment which investigates the possibility that

any sensible repair strategy which avoids repetition will always be optimal. Section

7.5 then describes the fourth experiment which investigates whether the DA of the

last system turn or the DA(s) of the last user turn are more important in learning a

dialogue strategy. Following this, Section 7.6 reviews therelevant previous research

of Bohus and Rudnicky (2005) and Skantze (2003)/Chapter 4 ofSkantze (2007) and

makes comparisons to the experimental work of this thesis. Finally, Section 7.7 is a

summary of the contents of the chapter.

7.2 Are Dialogue Acts only useful for repair strategies?

Here we investigate whether the Dialogue Acts (DAs) of the last system and user turns

are only significantly improving the learned strategy by producing better repair strate-
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gies in Slot-Status Features Unchanged (SSFU) states. Thiswould mean that they are

not significantly improving the learned strategy with respect to dealing with user in-

dications of misunderstanding errors (e.g. “no [a slot-value]” following an attempted

confirmation of a slot’s value), nor in portions of dialogue in which there is smooth

progress towards the goal of filling and confirming all of the slots. If this were the

case, then this would be a useful finding because it would meanthat these recent DAs

could potentially be sacrificed in other states, so reducingthe size of the state space

and hence speeding up learning.

7.2.1 Hypothesis: Dialogue Acts improve the learned strate gy only

through better repair strategies for SSFU states

The hypothesis tested here is that representing the Dialogue Acts (DAs) of the last

system and user turns in the Reinforcement Learning (RL) state only produces im-

provements in the learned strategy with respect to better repair strategies in Slot-Status

Features Unchanged (SSFU) states.

7.2.2 Methodology

In all of the experiments described in this chapter, we trainthree-slot strategies with the

4-gram simulation and test with the 5-gram and vice versa, and use the action set from

Section 5.3.3, and the all-or-nothing reward function fromSection 5.3.4. We test for

significant differences in performance between strategiesusing one-tailed independent

samples t-tests. Here, to test the above hypothesis, we use 2new state features:

1. “User DA(s) if Slot-Status Features Unchanged (UDAsifSSFU) feature” : a fea-

ture which takes the value of the DA(s) of the last user turn only in an SSFU

state, (otherwise it has the value “changed”),

2. “System DA if Slot-status Features Unchanged (SDAifSSFU) feature”: a feature

which takes the value of the DA of the last system turn only in an SSFU state,

(otherwise it has the value “changed”).

We learn a new strategy, which we call the “DA2ifSSFU Strategy”, using the following

state features:
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1. a slot-status feature for each slot with the values “empty”, “filled” and “con-

firmed”,

2. SDAifSSFU,

3. UDAsifSSFU.

We call this strategy the DA2ifSSFU Strategy, because it is learned with a state space

that represents the DAs of the last 2 turns, only if the state is an SSFU state. Since

the DA information is now only available in SSFU states, if our hypothesis is correct,

then the DA2ifSSFU Strategy will perform no better or worse than the DA2 Strategy.

Note that DA information is not available in states in which there is smooth progress

towards the goal of filling and confirming all of the slots i.e.states in which one or

more slots are now filled/confirmed as compared to the last state. Neither is the DA

information available in dealing with user indications of misunderstanding errors.

We now provide results for the performance of the DA2ifSSFU Strategy in testing, and

compare them to those of the Slot-Status, DA1 and DA2 Strategies.

7.2.3 Results and Analysis

The results in Table 7.1 show that the DA2ifSSFU Strategy didnot perform signifi-

cantly better or worse than the DA2 Strategy. This supports the hypothesis that the

recent DAs are only improving the learned strategy with respect to better repair strate-

gies in Slot-Status Features Unchanged (SSFU) states.

7.2.4 Conclusion: Dialogue Acts improve the learned strate gy only

through better repair strategies for SSFU states

The results of this experiment support the hypothesis that the recent DAs are only

improving the learned strategy through repair strategies.Strategies learned with DA

information only when the dialogue was not progressing performed as well as strate-

gies for which the learner used DA information in all contexts.

We now move on to describe an experiment which investigates whether the recent DAs

are useful for choosingwhichrepair strategy to use in SSFU states, rather than only for

identifying SSFU states.
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Features Av. Score Conf. Slots Length

4→ 5 gram = (a)

Slot-Status (a) Slot-Status 47.57 100 10.49

DA1 Strategy(a) + Last User DA(s) 58.00** 100 8.40

DA2 Strategy(a) + Last System & User DAs 59.14* 100 8.17

DA2ifSSFU (a) + UDAsifSSFU & SDAifSSFU 59.07 100 8.19

5→ 4 gram = (b)

Slot-Status (b) Slot-Status 55.59 100 8.88

DA1 Strategy(b) + Last User DA(s) 59.12** 100 8.18

DA2 Strategy(b) + Last System & User DAs 59.77* 100 8.05

DA2ifSSFU (b) + UDAsifSSFU & SDAifSSFU 59.82 100 8.04

Slot-Status (av) Slot-Status 51.58 100 9.68

DA1 Strategy(av) + Last User DA(s) 58.56** 100 8.29

DA2ifSSFU (av) + UDAsifSSFU & SDAifSSFU 59.45* 100 8.11

DA2 Strategy(av) + Last System & User DAs 59.46 100 8.11

Table 7.1: Testing the learned strategies after 50000training dialogues, average reward

achieved per dialogue over 1000 test dialogues. a = strategy trained using 4-gram

and tested with 5-gram; b = strategy trained with 5-gram and tested with 4-gram; av =

average; * Improvement over the strategy in above row with significance level p< 0.05;

** Significance level p < 0.005.

7.3 Are Dialogue Acts useful for choosing which repair

strategy to use?

We have shown that the Dialogue Act (DAs) of the last system and user turns improve

the learned strategy by producing better repair strategiesin Slot-Status Features Un-

changed (SSFU) states, but it would be useful to know more about how exactly they do

this. Certainly the DAs enable the reinforcement learner torecognise SSFU states, and

hence that a repair strategy is required. However, assumingthat different repair strate-

gies are more appropriate in different contexts and given that the slot-status features

are already represented in the state, are the DAs also helpful in decidingwhich repair

strategy to apply? Based on the analysis in Section 5.3.7, weexpect to find that they

are e.g. recall from Section 5.3.7.2 that a DA Strategy was more likely to use the re-
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peat repair strategy following an Automatic Speech Recognition (ASR) rejection, but

to switch focus following a user utterance that is recognised as out-of-domain. How-

ever, if we were to find that the DAs are not helpful in decidingwhichrepair strategy to

apply, then we would be better off replacing them with a binary feature that explicitly

records whether the slot-status features are unchanged. This would capture the only

useful information in the DAs and at a smaller cost in terms ofincreasing the size of

the state space.

7.3.1 Hypothesis: Dialogue Acts are useful for choosing whi ch re-

pair strategy to use

Given that slot-status features are already in the state, the hypothesis is that the Dia-

logue Acts (DAs) of the last system and user turns are useful for choosingwhichrepair

strategy to use.

7.3.2 Methodology

To test the above hypothesis, we learn two new strategies with two new different state

representations. The first new strategy, which we call the “Slot-Status Features Un-

changed (SSFU) Strategy” is learned using the following state features:

1. a slot-status feature for each slot with the values “empty”, “filled” and “con-

firmed”,

2. a Slot-Status Features Unchanged (SSFU) feature i.e. a binary feature that

records whether or not the state is an SSFU state.

Evidently, we call this strategy an SSFU Strategy because itis learned using an SSFU

feature instead of recent Dialogue Act(s) (DAs). With such astate representation,

the learner is able to recognise all of the contexts in which the slot-status features are

unchanged, and hence where a repair strategy is required. However, it has no DA infor-

mation to help it choose which repair strategy to apply - it can only make these choices

based on the values of the slot-status features. Hence if such a strategy performs worse

than the DA2 Strategy, then the hypothesis is correct, whileif it performs as well as or

better than the DA2 Strategy, then the hypothesis is incorrect.
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The second new strategy, which we call the “DA1ifSSFU Strategy” is learned using

the following state features:

1. a slot-status feature for each slot with the values “empty”, “filled” and “con-

firmed”,

2. the UDAsifSSFU feature already defined in Section 7.2.2.

Slot-Status features Next sys DA Next user DA(s) New DA1 state

[conf,fill,emp] icSlot2AskSlot3 no [conf,emp,emp,user(no)]

[conf,emp,emp] askSlot3 no [conf,emp,emp,user(no)]

Table 7.2: In the first row, the slot-status features change, and so the new state is a

non-SSFU state, but in the second they do not change, and so the new state is a SSFU

state. A DA1ifSSFU state representation represents distinguishes between these two

contexts, but a DA1 state representation does not.

We call this strategy a DA1ifSSFU Strategy because it is learned with a state space that

represents the DA(s) of the last 1 turn, (the last user turn),only if the state is an SSFU

state. Comparing the performance of the DA1ifSSFU Strategywith the DA1 and DA2

Strategies can tell us about the role of the last system DA in learning repair strategies

in SSFU states. The reason for this centres on contexts in which the DA(s) of the last

user turn are insufficient to clearly identify whether or nota state is an SSFU state.

These contexts occur when the user response is not an ASR rejection or recognised as

out-of-domain, but instead “yes” or “no” in response to a straightforward request for

a slot value. Table 7.2 shows an example - the first row contains a dialogue exchange

between the system and user which leads to a non-SSFU state, and the second, an

exchange which leads to a SSFU state, but the DA1 state representation for both of

these contexts is the same. Recall that SSFU states of the kind in the second row are

fairly uncommon, (see Section 5.3.7 and Figure 5.6), so it isperhaps unlikely that the

system’s behaviour in such states will have significant effects on performance. In any

case, for the DA1ifSSFU Strategy, there is never any ambiguity as to whether or not a

state is an SSFU state because the UDAsifSSFU feature explicitly represents this - if

it takes a DA value, then the state is an SSFU state, otherwiseit is not. Hence if the

role of the last system DA in learning repair strategies in SSFU states is only to resolve

such ambiguities and hence help to clearly identify more SSFU states, then we would
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expect the DA1ifSSFU Strategy to perform as well as the DA2 Strategy. However, if

the last system DA plays a role in choosingwhich repair strategy to apply, then the

DA1ifSSFU Strategy will not perform as well as the DA2 Strategy - it does not have

explicit knowledge of the last system DA to inform its choice.

We now provide results for the performance of the SSFU and DA1ifSSFU Strategies

in testing, and compare these results to those of the DA1 and DA2 Strategies.

7.3.3 Results and Analysis

Features Av. Score Conf. Slots Length

4→ 5 gram = (a)

Slot-Status (a) Slot-Status 47.57 100 10.49

SSFU (a) + SSFU 49.32* 100 10.14

DA1 Strategy(a) + Last User DA(s) 58.00* 100 8.40

DA1ifSSFU (a) + UDAsifSSFU 58.84 100 7.94

DA2 Strategy(a) + Last Sys & User DAs 59.14* 100 8.17

5→ 4 gram = (b)

Slot-Status (b) Slot-Status 55.59 100 8.88

SSFU (b) + SSFU 57.61* 100 8.48

DA1ifSSFU (b) + UDAsifSSFU 58.87* 100 8.23

DA1 Strategy(b) + Last User DA(s) 59.12 100 8.18

DA2 Strategy(b) + Last Sys & User DAs 59.77* 100 8.05

Slot-Status (av) Slot-Status 51.58 100 9.68

SSFU (av) + SSFU 53.47* 100 9.31

DA1 Strategy(av) + Last User DAs 58.56* 100 8.29

DA1ifSSFU (av) + UDAsifSSFU 58.86 100 8.23

DA2 Strategy(av) + Last Sys & User DAs 59.46* 100 8.11

Table 7.3: Testing the strategies, average reward achieved per dialogue over 1000

test dialogues. a = strategy tested with 4-gram; b = strategy tested with 5-gram; av =

average; * improvement over strategy in above row with significance level p < 0.005

Table 7.3 shows that although both the Slot-Status FeaturesUnchanged (SSFU) and

DA1ifSSFU Strategies outperformed the Slot-Status Strategy (p < 0.05), they per-

formed worse than the DA2 Strategy (p < 0.05). This supports the hypothesis - given
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that slot-status features are already in the state, additional Dialogue Act (DA) informa-

tion is useful for choosingwhichrepair strategy to use.

We now provide qualitative analysis of both of the new strategies in order to explain

their performance as compared to the Slot-Status, DA1 and DA2 Strategies. We start

with the SSFU Strategy.

7.3.3.1 The Slot-Status Features Unchanged Strategy

We first consider why the Slot-Status Features Unchanged (SSFU) Strategy outper-

forms the Slot-Status Strategy (p < 0.05). As usual, we only detected apparently im-

portant behavioural differences in SSFU states. Unlike forthe Slot-Status Strategy,

the SSFU Strategy always knows when the state is an SSFU statebecause the SSFU

feature provides this information. Hence for first-visits to SSFU states, the value of the

SSFU feature changes and the state is now different to the previous state. This means

that the reinforcement learner could learn to do something other thanrepeate.g. it

could switch focus, and previous experiments have already demonstrated that this is

often preferable, (see Sections 5.3.7.2, 5.4.3 and 6.5). Figure 7.4 contains an example

which shows the SSFU Strategyswitching focuswhen a user turn fails to fill a slot

value and so the resulting state is an SSFU state. By contrast, the Slot-Status Strategy

keeps repeating its previous question.

Speaker SSFU dialogue Slot-Status dialogue

System: impConfSlot1askSlot2 impConfSlot1askSlot2

User: [out-of-domain] [out-of-domain]

System: askSlot3 impConfSlot1askSlot2

User: slot3 [out-of-domain]

Table 7.4: Here, slot 1 is initially filled, while slots 2 and 3 are empty, and following

an out-of-domain user response, the Slot-Status Features Unchanged (SSFU) Strategy

switches focus from slot 2 to 3, while the Slot-Status Strategy uses the repeat repair

strategy.

Note that if after the first-visit to an SSFU state, the state remains an SSFU state, the

state for the SSFU Strategy will not have changed, and so the reinforcement learner

could not have learned a different repair strategy to the oneapplied in the first-visit
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SSFU state i.e. it could not learn combinations of differentrepair strategies over con-

secutive turns.

We now consider why the SSFU Strategy was outperformed by both the DA1 and DA2

Strategies (p < 0.05). Since for the SSFU Strategy the reinforcement learner is now

able to recognise all SSFU states, and hence where a repair strategy is required, this

means that Dialogue Acts (DAs) must have some additional importance with respect

to learning repair strategies, and this can only be that theyare useful for choosing

whichrepair strategy to apply. States for which the slot-status features are unchanged,

and corresponding learned action pairs can be found to support this hypothesis, and

those in Table 7.5 are examples. For these SSFU states, the slot-status features are

the same, but the last user DA and learned actions are not. If the distinctions between

the different user DAs in the table were unimportant, then wewould expect the DA1

Strategy to use the same action in each case, and for the SSFU Strategy to perform as

well as the DA1 Strategy, but this is not the case. Note that inthe table, for the SSFU

Strategy, the state representation is always “[confirmed,filled,empty,user,unchanged]”,

and so the learned action is also always the same - to ask slot 3.

State Representation (DA1 Strategy) DA1 Strategy SSFU Strategy

[confirmed,filled,empty,user(out-of-domain)] askSlot2 askSlot3

[confirmed,filled,empty,user(asrrejection)] askSlot3 askSlot3

[confirmed,filled,empty,user(no)] askSlot2 askSlot3

[confirmed,filled,empty,user(yes)] askSlot3 askSlot3

Table 7.5: The table shows learned actions in different states for the DA1 Strategy and

the SSFU strategy (trained with the 5-gram simulation). For the SSFU strategy, the

state representation is always the same i.e. “[confirmed,filled,empty,user,unchanged]”,

and hence the learned action is always the same.

We now provide qualitative analysis of the DA1ifSSFU Strategy.

7.3.3.2 The DA1ifSSFU Strategy

We consider here why the DA1ifSSFU Strategy failed to perform as well as the DA2

Strategy, and no better than the DA1 Strategy. As stated in Section 7.3.2, with a DA1

state representation, there are some cases where it is impossible to be sure whether or

not the slot-status features have changed. With a UDAsifSSFU feature, there are no
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such ambiguities, and as a result, it was possible that the DA1ifSSFU Strategy would

improve over the DA1 Strategy. However, as already stated, the DA1ifSSFU Strategy

did not improve over the DA1 Strategy. This is unsurprising because ambiguous DA1

states of the type already shown in Table 7.2 are rare, (see Figure 5.6). In any case,

when we inspected such ambiguous DA1 Strategy states and equivalent DA1ifSSFU

states, we often found the learned actions to be the same. Table 7.6 shows an example

of this.

Last Sys DA Last User DA DA1ifSSFU state DA1ifSSFU action

impConfSlot2AskSlot3 no [conf,emp,emp,statechanged]askSlot3

askSlot3 no [conf,emp,emp,no] askSlot3

Table 7.6: For both of the DA1ifSSFU states, the equivalent state representation for

the DA1 Strategy would be the same as the second DA1ifSSFU state. Despite the

alternative state representations, the learned action is still the same.

The fact that the DA1ifSSFU Strategy performs significantlyworse than the DA2 Strat-

egy suggests two things regarding the last system turn:

1. The last system DA is important for choosingwhichrepair strategy to apply.

2. The system DA cannot always be inferred from the UDAsifSSFU and slot-status

features.

The first point is supported by examples where the last systemDA is not required to

identify a state as an SSFU state, but nevertheless, the DA2 Strategy behaves differ-

ently to the DA1 and DA1ifSSFU Strategies i.e. it chooses a different repair strategy.

Table 7.7 shows such examples where the DA2 state-learned action pairs were visited

between 51 and 659 times during the 50000 training dialogues.

We now provide our conclusion for this experiment.

7.3.4 Conclusion: Dialogue Acts are useful for choosing whi ch re-

pair strategy to use

The hypothesis is correct - given that slot-status featuresare already in the state, addi-

tional Dialogue Act (DA) information is useful for choosingwhich repair strategy to
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DA2 state representation DA2 Strategy DA1 Strategy

[confirmed,empty,empty,giveHelp,out-of-domain] askSlot3 askSlot2

[confirmed,empty,empty,askSlot2,out-of-domain] askSlot3 askSlot2

[empty,filled,empty,askSlot1,asrreject] askSlot2 askSlot1

[confirmed,filled,empty,expConfSlot2,out-of-domain] askSlot3 askSlot2

[confirmed,filled,empty,giveHelp,out-of-domain] askSlot3 askSlot2

[empty,empty,empty,askSlot3,asrreject] giveHelp askSlot1

[empty,empty,empty,askSlot2,asrreject] giveHelp askSlot1

Table 7.7: Examples where the last system DA is not required to identify a state as

an SSFU state, but nevertheless, the DA2 and DA1 Strategies, (both trained with the

5-gram), use a different repair strategy - such examples support the claim that the last

System DA is important in choosing which repair strategy is best to apply.

use. We had already established that the recent DAs only improve the learned strategy

through repair strategies in Slot-Status Features Unchanged (SSFU) states, and hence

that the reinforcement learner can do without it otherwise.However, our result here

shows that it should be retained in SSFU states - we will learnbetter repair strategies

as a result.

Note that although the recent DAs affect which repair strategy should be used in an

SSFU state, finding the optimal repair strategy could still be very simple if it is true

that any “sensible” avoidance of repetition will always be optimal. This hypothesis

became a possibility following the real user experiment of Chapter 6, and we now

move on to describe an experiment which further investigates.

7.4 Repair strategies that avoid repetition

We have established now that the Dialogue Acts (DAs) of the last system and user

turns are useful for choosingwhichrepair strategy to apply in Slot-Status Features Un-

changed (SSFU) states. However, we should recall our analysis of the relatively poor

performance of the Slot-Status Strategy in the real user experiment in Chapter 6, (see

Section 6.5). Here we found that the Slot-Status Strategy over-used repetition in SSFU

states, and that this often frustrated the users, elicitingirritated / hyperarticulate speech
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which caused more Automatic Speech Recognition (ASR) errors and hence longer di-

alogues and lower task completion. This raises the possibility, that finding the optimal

repair strategy in an SSFU state is very simple because any “sensible” avoidance of

repetition will always be optimal. Here we define any of the repair strategies that

emerged from the Reinforcement Learning (RL) to be “sensible” i.e. repeat, switch

focus, give helpor backtrack(see Section 5.3.7.2 for definitions). Hence if this were

true, as regards choosing which repair strategy to apply in an SSFU state, the recent

DAs are useful, simply because they enable the learned strategy to avoid repetition.

Using machine learning to optimise repair strategies in SSFU states would then seem

unnecessary. We suspect that the proposition which we are describing here is false be-

cause despite often avoiding repetition, the DA1 and DA2 Strategies still use repetition

in various SSFU states. However, in the experiment here, we investigate further.

7.4.1 Hypothesis: Any kind of sensible avoidance of repetit ion is

an optimal repair strategy

For any Slot-Status Features Unchanged (SSFU) state, any “sensible” repair strategy

which avoids repeating the last system action will always beoptimal. Here we define

a “sensible” repair strategy as any of those which emerged from the Reinforcement

Learning (RL) experiments of Chapter 5 i.e.repeat1, switch focus, give helpor back-

track.

7.4.2 Methodology

In order to test the hypothesis, we tested new strategies with the n-gram simulations.

Each of these strategies follows either the Slot-Status or DA2 Strategies until the state

is a Slot-Status Features Unchanged (SSFU) state, and then they always use a “sensi-

ble” repair strategy which avoids repeating the last systemaction. We define the new

strategies here in terms of these repair strategies:

1. Switch Focus (SF): In SSFU states, this strategy always switches focus to a dif-

ferent unfilled/unconfirmed slot.
1Recall that therepeatstrategy repeats the original question / attempted confirmation which led to

the first SSFU state in a sequence of consecutive SSFU states.Hence if the current SSFU state is not the
first, then this repair strategy does not necessarily mean repeating the previous system action e.g. see
the Give Help and Repeat (GHR) Strategy described above.
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2. Give Help and Repeat (GHR): In a first-visit SSFU state, this strategy always

gives help, and then if the state remains an SSFU state, on thenext system turn, it

repeats the original question/confirmation. So long as the state remains an SSFU

state, the strategy will continue to alternate in this way between first giving help

and then repeating the original question/ confirmation on consecutive system

turns.

3. Give Help and Switch Focus (GHSF): This is like the GHR Strategy except that

instead of repeating the original question/confirmation, this strategy switches

focus.

Note that if there are no unfilled/unconfirmed slots to switchfocus to, the SF and

GHSF Strategies continue to follow the learned strategy which they are following in

non-SSFU states i.e. the Slot-Status or DA2 Strategy. We originally tested versions of

these strategies that used the DA2 Strategy learned actionsin non-SSFU states. If the

hypothesis was correct, then we expected these new strategies to perform at least as

well as the DA2 Strategy, otherwise the hypothesis would be incorrect. It was possible

however that this was not a totally controlled test, becausethe new hand-coded repair

strategies might have sometimes taken the DA2 Strategy intoa state which had not

been sufficiently explored during training and hence in which the learned action was

sub-optimal. As a result the SF, GHR and GHSF Strategies might show worse per-

formance than the DA2 Strategy despite the hypothesis beingcorrect. For this reason,

we also tested versions of the SF, GHR, and GHSF Strategies which used the Slot-

Status Strategy learned actions in non-SSFU states. The state space for the Slot-Status

Strategy was small and so we could be confident that all non-SSFU states had been

fully explored. It was still possible to test the hypothesisin the same way as before

by comparing the performance of the SF, GHR and GHSF Strategies with the DA2

Strategy. This is because in previous experiments, (see Section 7.2.1), we have already

established that the DA2 Strategy does not perform better than the Slot-Status Strategy

in non-SSFU states.

We now describe the results.

7.4.3 Results and Analysis

We found no significant difference in performance dependingon whether the new

strategies followed the DA2 or Slot-Status Strategy in non-SSFU states. Table 7.8
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Av. Score Conf. Slots Length

4→ 5 gram = (a)

RL Baseline (a) 47.57 100 10.49

SwitchFocus (a) 51.98 100 9.60

HelpSwitchFocus (a) 53.18 100 9.36

HelpRepeat (a) 53.93 100 9.21

DA2 Strategy (a) 59.15* 100 8.17*

5→ 4 gram = (b)

SwitchFocus (b) 52.04 100 9.59

HelpSwitchFocus (b) 53.26 100 9.35

HelpRepeat (b) 54.36 100 9.13

RL Baseline (b) 55.59 100 8.88

DA2 Strategy (b) 59.75* 100 8.05*

RL Baseline (av) 51.58 100 9.68

SwitchFocus (av) 52.01 100 9.60

HelpSwitchFocus (av) 53.22 100 9.36

HelpRepeat (av) 54.15 100 9.17

DA2 Strategy (av) 59.45* 100 8.11*

Table 7.8: Testing the strategies, average reward achieved per dialogue over 1000

test dialogues. a = strategy tested with 4-gram; b = strategy tested with 5-gram; av =

average; * improvement on strategy in above row with significance level p < 0.005

shows the results obtained when the new strategies followedthe DA2 Strategy in non-

SSFU states. The three new strategies were all found to perform significantly worse

than the DA2 Strategy. This indicates that the hypothesis isincorrect - whenever the

state is an SSFU state, it is not the case that regardless of the values of the slot-status

and Dialogue Act (DA) features, any “sensible” repair strategy which avoids repetition

will always be optimal.
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7.4.4 Conclusion: Any kind of sensible avoidance of repetit ion is

not guaranteed to be an optimal repair strategy

Prior to this experiment we had established that the Dialogue Acts (DAs) of the last

system and user turns were useful to the learner in choosingwhich repair strategy to

apply in different Slot-Status Features Unchanged (SSFU) states - their usefulness was

not limited to simply identifying SSFU states. The finding ofthis experiment relates

to this problem ofwhich repair strategy to apply in different SSFU states. Here we

have established that it is not the case that any “sensible” repair strategy which avoids

repeating the last system action is guaranteed to be optimal. If it were then this would

mean finding the optimal repair strategy in any SSFU state wasa simple task, and

would make the kind of machine learning approach used in thisthesis unnecessary.

The problem is more complex than this, but the experimental work of this thesis has

shown a method for tackling it effectively i.e. using Reinforcement Learning (RL)

with a realistic user simulation, and a state which represents recent DAs.

We now move on to an experiment which investigates the relative importance of the

DAs of the last system and user turns.

7.5 Experiment to investigate the relative importance

of the last user and system turns

We have previously demonstrated that with slot-status features already in the state,

adding the Dialogue Acts (DAs) of both the last system and user turns produces a better

learned strategy than if only the DA(s) of the last user turn are added. Here we now

address the question of which is more important - the DAs of the last user turn, or the

DA of the last system turn. This is an interesting question, and it is potentially also an

important one for future usages of Reinforcement Learning (RL) in dialogue strategy

design. For example, if a strategy-designer used a more fine-grained DA schema to

that used here, in order to maintain tractability, it may become necessary to choose

between including the DAs of the last system or user turns in the state. The decision

of which to include in the state would then depend on which waslikely to improve the

learned strategy the most. Indeed, although it seems unlikely based on our previous

results, we are yet to rule out the possibility that when the DA of the last system turn
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is included in the state, the DA(s) of the last user turn become redundant. If this were

the case, then we could sacrifice the DAs of the last user turn and so decrease the size

of the state space, thus making learning faster/more tractable.

7.5.1 Hypothesis: The last user turn is more important than t he

last system turn

Given that slot-status features are already represented inthe state, adding the DAs

of the last user turn will produce a greater improvement in the learned strategy than

adding the DA of the last system turn.

7.5.2 Methodology

In order to test the above hypothesis, we learn a new strategy, the “SysDA Strategy”,

for which the following features are represented in the state:

1. a slot-status feature for each slot with the values “empty”, “filled” and “con-

firmed”,

2. the DA of the last system turn.

Clearly, if the SysDA Strategy fails to outperform the DA1 Strategy, then this sug-

gests that the hypothesis is correct. It will also be interesting to see how the SysDA

Strategy’s performance compares to that of the DA2 Strategy.

We now describe the results.

7.5.3 Results

The results in Table 7.9 show that the SysDA strategy significantly outperforms the

Slot-Status Strategy, but is significantly outperformed byboth the DA1 and DA2 Strate-

gies. The fact that it fails to perform as well as the DA1 Strategy means that the hy-

pothesis is true.

We now provide analysis in order to explain the performance of the SysDA Strategy as

compared to the Slot-Status, DA1 and DA2 Strategies.
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Features Av. Score Conf. Slots Length

4→ 5 gram = (a)

Slot-Status (a) Slots-Status 47.57 100 10.49

SysDA (a) + Last Sys DA 56.36** 100 8.73

DA1 (a) + Last User DA(s) 58.00 100 8.40

DA2 (a) + Last Sys & User DAs 59.14 100 8.17

5→ 4 gram = (b)

Slot-Status (b) Slots-Status 55.59 100 8.88

SysDA (b) + Last Sys DA 56.92* 100 8.62

DA1 (b) + Last User DA(s) 59.12 100 8.18

DA2 (b) + Last Sys & User DAs 59.77 100 8.05

Slot-Status (av) Slots-Status 51.58 100 9.68

SysDA (av) + Last Sys DA 56.64** 100 8.67

DA1 (av) + Last User DAs 58.56 100 8.29

DA2 (av) + Last Sys & User DAs 59.46 100 8.11

Table 7.9: Testing the learned strategies after 50000training dialogues, average reward

achieved per dialogue over 1000 test dialogues. a = strategy trained using 4-gram

and tested with 5-gram; b = strategy trained with 5-gram and tested with 4-gram; av =

average; * Better than Slot-Status (p < 0.05) but worse than DA1 (p < 0.05); ** Better

than Slot-Status (p < 0.005) but worse than DA1 (p < 0.05).

7.5.3.1 Analysis

Let us first consider why it is that the SysDA Strategy outperforms the Slot-Status

Strategy. As per-usual, we find significant behavioural differences in Slot-Status Fea-

tures Unchanged (SSFU) states. Whereas the Slot-Status Strategy almost always uses

therepeatrepair strategy in SSFU states, (see Figure 5.5), the SysDA Strategy is more

likely to use alternatives such asswitch focusandgive help. As we know, this can

prove more effective at getting the dialogue “back-on-track”, and so reduce the num-

ber of turns required to fill and confirm all of the slots. Beloware examples of the

SysDA Strategy using these alternative repair strategies.In Table 7.10, the SysDA

Strategy switches focus between slots 2 and 1, and in Table 7.11, it gives help and then
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repeats its previous action.

SysDA state representation System DA User DA(s)

[empty,empty,filled,askSlot1] icSlot3 askSlot2 yes(slot3)

[empty,empty,confirmed,icSlot3askSlot2] askSlot1 [out-of-domain]

[empty,empty,confirmed,askSlot1] askSlot2 [asr rejection]

[empty,empty,confirmed,askSlot2] askSlot1 slot1

Table 7.10: An example dialogue snippet where the SysDA Strategy switches focus

between slots 2 and 1; ic = “implicit confirm”.

SysDA state representation System DA User DA(s)

[confirmed,empty,empty,icSlot1askSlot2] askSlot3 [out-of-domain]

[confirmed,empty,empty,askSlot3] giveHelp [asr rejection]

[confirmed,empty,empty,giveHelp] askSlot3 [out-of-domain]

[confirmed,empty,empty,askSlot3] giveHelp [asr rejection]

[confirmed,empty,empty,giveHelp] askSlot3 slot3

Table 7.11: An example dialogue snippet where the SysDA Strategy uses the give help

function and then repeats the original question; ic = “implicit confirm”.

That the SysDA Strategy is significantly outperformed by theDA1 and DA2 Strategies

can again be explained by behavioural differences in SSFU states. We now provide ex-

amples of behavioural differences in SSFU states, and startby referring again to Table

7.10, and comparing the DA2 Strategy’s action choices in thecontexts represented by

the SysDA state in the third row, (an SSFU state). Whereas theSysDA Strategy obvi-

ously always switches focus from slot 1 to 2, if the last user response is recognised as

out-of-domain, then the DA2 Strategy will alsoswitch focus, but if it is an ASR rejec-

tion, then it will instead use therepeatrepair strategy by re-asking slot 1. Table 7.12

shows the relevant state-action pairs for a second example of behavioural differences

between the SysDA and DA2 Strategies in SSFU states. Here we see that at the start

of a dialogue in which the first user utterance(s) fails/failto fill a slot-value, the SysDA

Strategy will always use therepeatrepair strategy. The DA2 Strategy will most often

use therepeatrepair strategy as well, but on occasion, when the last user DA is “yes”,

it will give help.

Finally, Table 7.13 shows example dialogue snippets conducted using the SysDA Strat-

egy and the DA2 Strategy. Slots 1 and 3 have already been filledand confirmed, and
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DA2 state representation DA2 Strategy SysDA Strategy

[empty,empty,empty,askSlot1,user(out-of-domain)] askSlot1 askSlot1

[empty,empty,empty,askSlot1,user(asrrejection)] askSlot1 askSlot1

[empty,empty,empty,askSlot1,user(no)] askSlot1 askSlot1

[empty,empty,empty,askSlot1,user(yes)] giveHelp askSlot1

Table 7.12: The table shows learned actions in different states for the DA2 and SysDA

strategies (trained with the 5-gram simulation). For the SysDA strategy, the state rep-

resentation is always the same i.e. “[empty,empty,empty,askSlot1]”, and hence the

learned action is always the same.

all that remains is to confirm slot 2. The SysDA Strategy struggles because the user

is supplying DAs other than “user(slot2)” in response to theaction “askSlot2”. Ide-

ally the Dialogue Manager (DM) is trying to produce the following sequence of DAs “

askSlot2,user(slot2),expConfSlot2”, because this is thesequence which maximises the

probability of the next user DA being “yes(slot2)”. This would of course change the

Slot 2 status feature to “confirmed”, meaning that all of the slots were “confirmed”,

and the DM could query the database and obtain+100 reward. However, without

knowledge of the last user DA(s), the SysDA Strategy does notknow whether the last

user response was “user(slot2)” or something else e.g. “user(out-of-domain)”, which

would make the current state an SSFU state. Since the most common user response

in training in these situations was “user(slot2)”, the reinforcement learner has learned

to assume that the last user response was “user(slot2)”, andso the strategy alternates

between “askSlot2”, and “expConfSlot2” on consecutive turns. The DA2 Strategy is

sensitive to the last user DA(s), and so behaves differentlyand is more successful in

these situations. In the example dialogue snippet, the DA2 Strategy only goes on to

attempt to explicitly confirm slot 2 when the previous user response is “slot2”, and this

allows it to confirm the final slot in fewer turns on average, producing higher reward.

To summarise then, the examples presented here seem to show that the last user DAs

play a crucial role in identifying SSFU states, and also in determining which repair

strategy is likely to be most effective, In addition, they show that the slot-status features

and last system DA cannot be used to reliably infer the last user DAs.
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Speaker SysDA Strategy DA2 Strategy

System: expConfSlot2 expConfSlot2

User: out-of-domain out-of-domain

System: askSlot2 askSlot2

User: out-of-domain out-of-domain

System: expConfSlot2 askSlot2

User: out-of-domain slot2

System: askSlot2 expConfSlot2

User: slot2 yes(slot2)

System: expConfSlot2 dbQuery

User: yes(slot2)

System: dbQuery

Table 7.13: At the start of this dialogue snippet, the status of the first slot is “confirmed”,

the second, “filled”, and the third “confirmed”. Without an explicit representation of the

last user DA(s), the SysDA Strategy struggles to confirm the second slot.

7.5.4 Conclusion: The last user turn is more important than t he

last system turn

The hypothesis was correct - assuming that the slot-status features are already present

in the state, adding the last system DA produces a significantimprovement in the

learned strategy, but not as great as the improvement produced by adding the DA(s)

of the last user turn. As usual, test performance differences between strategies are

caused by different repair strategies in SSFU states - the SysDA Strategy’s SSFU re-

pair strategies are more effective in general than those of the Slot-Status Strategy, but

less so than those of the DA1 and DA2 Strategies. Hence if we doaway with the DAs

of the last user turn, then we will obtain inferior repair strategies in SSFU states. The

DAs of the last user turn are important for identifying SSFU states and for choosing

a repair strategy, and they cannot always be reliably inferred from the last system DA

and the slot-status features.

This was the last experiment which we describe here, and so wenow move on to the

review of relevant previous research on repair strategies for Spoken Dialogue Systems
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(SDSs). Apart from describing this previous research, we also compare its findings

with our own.

7.6 Previous research on repair strategies for

non-understanding errors

7.6.1 Introduction

In this section, we review recent previous research on repair strategies for non- under-

standing errors in human-machine dialogue. This includes Skantze (2003)/Chapter 4

of Skantze (2007) and Bohus and Rudnicky (2005). Recall thata non-understanding

error is defined as a user utterance for which the system has failed to obtain any in-

terpretation, as opposed to amisunderstanding error, which is where the system ob-

tains an incorrect interpretation. We review this work because of its relevance to this

thesis - we have found that adding recent Dialogue Acts (DAs)to the state represen-

tation produces better repair strategies for states in which the Slot-Status Features are

Unchanged, (SSFU states), and non-understanding errors are a major cause of SSFU

states, (see Figure 5.6). Since neither Skantze nor Bohus and Rudnicky use Rein-

forcement Learning (RL) or user simulations, their experimental methodology is quite

different to ours. We describe the experimental methodology and findings of Skantze

and Bohus and Rudnicky in Sections 7.6.2 and 7.6.3 respectively. In Section 7.6.4, we

then draw comparisons between the findings of Skantze and Bohus and Rudnicky, and

those of the experimental work of this thesis.

7.6.2 Exploring human non-understanding error repair stra tegies:

Skantze 2003

Skantze (2003) describes an experiment which explores non-understanding recovery in

human-human dialogues with a view to drawing lessons for Spoken Dialogue Systems

(SDSs). Hence a speech recogniser is used to introduce errors into the dialogues and

the general experimental setup is designed to make the results more transferable to

human-computer dialogue.

In the next section, we describe the methodology, and in the section after that, the
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results.

7.6.2.1 Methodology

In the experiment described in Skantze (2003), pairs of humans are given the task of

speaking to each other, where one takes on the role of the system (referred to as the

“operator”), and the other, the role of the “user”. Since they are sitting in different

rooms, the operator and user cannot directly hear one another’s utterances. The user

speaks into a speech recogniser, and the operator’s only knowledge about the user’s

utterances comes from the speech recognition results as displayed on a screen. The

user hears distorted versions of the operator’s utterances- a vocoder does the distorting.

The user and operator do not meet before or during the experiment, and both are fully

informed about the experimental setup.

Why then did Skantze use this basic experimental setup? First of all, the use of a speech

recogniser produces the kinds of errors which occur in human-computer dialogues, and

so enables Skantze to investigate how humans try to recover from them. Since the in-

tention was for the results to be relevant to SDSs, it was necessary to make the subjects’

dialogues like possible human-computer dialogues, and forthis, the speech recogniser

is very important. This is because the different propertiesof human-computer and

human-human dialogues (Fraser and Gilbert, 1991) arise from the limitations that real

SDSs impose on the dialogue, and speech recognition is regarded as the biggest of

these limitations in most complex SDSs. The reason for the subjects not meeting, and

for the distortion of the operator’s utterances is to make itharder for the subjects to

form assumptions about one another and so establish common ground. This is desir-

able because lack of common ground in human-computer dialogues is another of the

limitations which makes them different from human-human dialogues.

Skantze compares his experimental setup to the “Wizard-Of-Oz” method. To design

SDSs that can handle the various situations that occur in human-computer dialogue e.g.

miscommunication, data of such interactions must first be collected, and the Wizard-

Of-Oz method is commonly used to collect such data before an SDS is actually built.

Here the operator (the “wizard”) simulates parts of the system, but the user is told

that they are speaking to a computer - it is assumed that usersbehave differently if they

think they are interacting with a machine (Dahlback et al., 1993). Skantze preferred not

to tell the user that they were talking to a machine, and henceuse the “Wizard-Of-Oz”
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method. He was concerned that the operator’s behaviour might be affected so that the

collected data was based on a priori assumptions about the users’ behaviour, and how

a system is supposed to react to them. Hence it might not coverother unanticipated

interaction patterns. To further support his decision not to use Wizard-of-Oz, he refers

to Amalberti et al. (1993). Amalberti et al. obtained results which suggest that at least

after an initial stage, a user’s linguistic behaviour is less affected by their conceptions

about the speaker e.g. whether they are speaking with a machine, than it is by their

experience of the interaction.

We move on now from describing the justification for Skantze’s basic experimental

setup and give other details about the methodology. Firstly, the domain selected for

the experiment is pedestrian navigation on a simulated campus, and the user converses

with the system, (the human operator), in order to get directions and find their way

to a specific location. To know where the user is, the system (operator) relies on

the user’s description of their surroundings. There are 16 subjects - 8 users and 8

operators, ranging in age from 16 to 42. Five different scenarios are given to each pair

of subjects, and so there are 40 dialogues in total. For the speech recognition results

displayed on the screen, a colouring scale is used in order toefficiently provide the

operator with information about the confidence scores of thewords. Words that have

higher confidence scores are coloured in darker tones, whilewords that have lower

confidence scores are coloured in lighter tones. In order to facilitate turn-taking, an

indicator on the screen tells the operator whether the user is speaking.

After each scenario, the subjects filled out a questionnaireabout the interaction. The

questionnaires consisted of a number of statements, and foreach there was a choice of

seven levels of agreement ranging from “strongly disagree”to “strongly agree”. One

of the statements on the users’ questionnaire was “we did well in solving the task”.

Skantze conducted a PARADISE-style multiple regression (see Section 3.4) in order

to see whether various objective measures of the dialogue were good predictors for

this. After the whole experiment, both the user and operatorwere interviewed. For

the users, the questions mainly concerned how well they thought that they had been

understood, and if they had understood the vocoder.

In order to investigate the kinds of recovery strategies used by the operators, and how

successful they were, each user utterance was also annotated with regard to how well

it was immediately “understood” by the operator. “Understood” here means that the

operator continued the dialogue with one interpretation, knowing that it may turn out to
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be incorrect. To estimate the level of understanding, the speech recognition result and

the operator’s reaction to the utterance were considered. The degree of understanding

was classified into the four categories presented in Table 7.14.

Label Meaning

FULL Full understanding: The full intention of the utterance wasunderstood.

PARTIAL Partial understanding: Only a part of the full intention wasunderstood.

NON Non-understanding: No part or fragment of the intended message (with

the possible exception of a single vague word) was understood.

MIS Misunderstanding: The operator continued with an interpretation that was

not in line with the user’s intention.

Table 7.14: Skantze (2003)’s annotation scheme for degrees of understanding for each

user utterance.

We now move on to describe the results.

7.6.2.2 Results

The 40 dialogues contained 736 user utterances (18.4 per dialogue on average), and

the mean utterance length was 6.7 words. There were a lot of errors in the recognition

results - the Word Error Rate (WER) was about 40%. This was expected due to the

users’ unrestricted speech, and the fact that the bigram language model used was lim-

ited: 250 training utterances with a vocabulary of 350 wordsand 19 classes. 7.3% of

the words were out of vocabulary. There was a large variationin the different opera-

tors’ understanding i.e. the proportion of user utterancesthat wereFull understandings

versusPartial understandingsversusNon-understandingsversusMisunderstandings.

The average breakdown was approximately 55%Full understandings, 20%Partial un-

derstandings, 23%Non-understandings, and 2%Misunderstandings. Hence, very few

of the user utterances wereMisunderstandings. This means that when misrecogni-

tions occurred, the operators were very good at deciding which words were correct,

and which were not. When there were a lot of misrecognitions,this resulted inPartial

understandingor Non-understanding, instead ofMisunderstanding. Thus the opera-

tors were very good at error detection. The proportion of full understandings might

seem high given the high WER, but note that all words do not have to be correctly

recognised for full understanding, and moreover, the WER was not equally distributed
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between utterances - some had very low WER and some very high.Despite the numer-

ous non-understandings, users reported in the post-dialogue interview that they were

almost always understood. Skantze (2003) also found that the subjects seemed to im-

prove at the task over the five sessions - the proportion ofNon-understandingsand the

number of user utterances, (a measure of the length of the dialogue), both decreased

after subsequent sessions (one-way repeated measures Analysis Of Variance ANOVA
2;p < 0.05).

Interestingly, the analysis of the operators’ error recovery strategies revealed that the

operators did not routinely signal non-understanding whenfaced with incomprehen-

sible speech recognition results i.e. instead of theSignalNonUnderstandingrepair

strategy, they often preferred to useAssertRoute, (state the route which the user should

be following), orRequestPosition, (ask the user for their current position). It was also

found that there were significantly lessNon-understandingsand significantly more

Partial Understandingsfollowing RequestPositionsthan there were followingSignal-

NonUnderstandings(χ2 Goodness-of-fit test3: degrees of freedom4 = 3; χ2 = 12.52;

p< 0.01). i.e. in general,RequestPositionwas better at getting the dialogue “back-on-

track”, and hence was a more effective repair strategy thanSignalNonUnderstanding.

No deviation from the general distribution was found afterAssertRouteandSignal-

NonUnderstanding. Skantze states that the better understanding of utterances follow-

ing RequestPositionwas probably explained by the fact that they constrain the vocabu-

lary and syntax of the response to the domain and the languagemodels, thus increasing

speech recognition performance. However, it is also noted that non-understanding may

often lead to error spirals, where the user just repeats the non-understood utterance and

perhaps starts to hyperarticulate, which is likely to worsen the speech recognition per-

formance, (see Section 6.5). If, as we would expect,SignalNonUnderstandingis more

likely to produce such error spirals, this could be another reason for its worse perfor-

mance.

Skantze then goes on to report the results for the PARADISE-style multiple regres-

sion analysis which investigates which objective dialoguemeasures were good pre-

2One-way repeated measures ANOVA, (see page 127 of Greene andD’Oliveira 2001), compares
how a within-subjects experimental group performs in threeor more conditions. It assumes that the dif-
ferences between matched values are Gaussian and compares whether the mean in any of the conditions
differs significantly from the aggregate mean.

3Theχ2 Goodness-Of-Fit Test, (see page 257 of Sheskin 2007), uses theχ2 distribution to test the
null hypothesis that the frequency distribution of certainevents observed in a sample is consistent with
a particular theoretical distribution.

4The number of degrees of freedom is equal to the number of possible outcomes minus 1.
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dictors of task success. It was found that the only factors that contributed weretime

for task completionand thenumber of non-understandings that the operator had sig-

nalled (both had a negative effect). It is interesting then that neither thenumber of

non-understandingsnor theWERper se had any effect on the user’s experience, but

only cases where the user was made aware of the non-understanding.

Here now, we summarise the experiment’s main findings. Firstly, the results showed

that the operators did not routinely signal non-understanding when faced with incom-

prehensible speech recognition results. Instead they tried to ask task-related questions

that confirmed their hypothesis about the user’s position. This strategy led to fewer

non-understandings of the subsequent user utterance, and thus to a faster recovery

from the problem. When they did signal non-understanding, this had a negative effect

on the user’s experience of task success. Despite the numerous non-understandings,

users reported that they were almost always understood.

We now move on to describe Bohus and Rudnicky (2005). There iscommon ground

with Skantze (2003) in terms of results, but differences in the basic experimental setup

and the scope of the experimental aims.

7.6.3 Using the Wizard-of-Oz method to study non-understan ding

error repair strategies: Bohus and Rudnicky 2005

This section describes Bohus and Rudnicky (2005), which presents an empirical anal-

ysis of non-understanding errors and ten non-understanding repair strategies. There is

common ground with Skantze (2003) because both examine the performance of dif-

ferent non-understanding repair strategies, and as we willsee, their basic findings with

respect to this are very similar. However Bohus and Rudnickyalso consider other is-

sues relevant to non-understanding error repair strategies, and uses a different kind of

experimental setup. In contexts in which there has been no non-understanding error,

Bohus and Rudnicky’s system employs a fixed dialogue strategy, and then in con-

texts in which there has been, the Wizard-Of-Oz method is used in order to investigate

whether the performance of non-understanding error repairstrategies can be improved

by engaging them at certain times. Given results which suggest that this is possible,

Bohus and Rudnicky apply supervised learning to the experimental data in order to try

to learn such a policy. Prior to all this, Bohus and Rudnicky also examine the source

of non-understanding errors and their impact on dialogue performance.
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We start now by describing Bohus and Rudnicky’s experimental methodology in greater

detail.

7.6.3.1 Methodology

Bohus and Rudnicky (2005) collected data based on interactions between 46 real users

and an information slot-filling Spoken Dialogue System (SDS) called “RoomLine”

(Bohus, 2003), which is an SDS for making conference room reservations. RoomLine

is a phone-based mixed-initiative system which has access to live information about

schedules and characteristics (e.g. size, location, Audio/Visual equipment) of 13 con-

ference rooms in two different buildings. To make a room reservation, the system finds

the list of available rooms that satisfy an initial set of user-specified constraints/slot-

values, and engages in a follow-up negotiation dialogue to present this information

to the user and identify which room best matches their needs.The system uses two

parallel SPHINX-II Automatic Speech Recognition (ASR) engines, configured with

telephone-based acoustic models5 and a trigram statistical language model6. The re-

sulting top hypothesis from each engine is parsed using the Phoenix robust parser

(Ward 1994). Subsequently, semantic confidence scores are computed for each hypoth-

esis and the winning hypothesis is forwarded to the RavenClaw-based Dialogue Man-

ager (DM) (Bohus and Rudnicky, 2003). For output, the systemuses atemplate-based

Natural Language Generation (NLG) module and the Theta Text-To-Speech (TTS)

synthesizer (Cepstral 2004).

In the experiment described in Bohus and Rudnicky (2005), the real users interacted

with RoomLine under two different conditions - thewizard condition, and thecontrol

condition. Under both of these conditions, all aspects of the system, (including a fixed

dialogue strategy), were identical apart from when there was a non-understanding er-

ror, at which point there was a choice of ten possible non-understanding error repair

strategies. Under the wizard condition, the Wizard-Of-Oz method was used to deter-

mine which repair strategy to engage i.e. although the user is under the impression

that there is no human involvement, it is in fact a human operator (the “wizard”, in

this case the first author), who makes the decision. By contrast, under the control con-

5An acoustic model is used by a speech recogniser to recognisespeech. It is created by taking audio
recordings of speech, and their text transcriptions, and using software to create statistical representations
of the sounds that make up each word.

6A statistical language model assigns a probability to a sequence of words by means of a probability
distribution.
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dition, the choice of which repair strategy to engage was random. The ten possible

non-understanding error repair strategies were:

• AskRepeat(AREP) “Can you please repeat that?”,

• AskRephrase(ARPH) “Can you please try to rephrase that?”,

• Reprompt(RP) “Would you like a small room or a large room?”,

• DetailedRePrompt(DRP) “I’m sorry, I don’t think I understood you correctly.

Right now I’m trying to find out if you would prefer a small roomor a large

one.”,

• Notify(NTFY) “Sorry, I’m not sure I understood what you said...”,

• Yield(YLD) [the system remains silent, and thus implicitlynotifies the user that

a non-understanding has occurred],

• MoveOn(MOVE),

• YouCanSay(YCS) [the system tell the user what he or she can say at this point

in the dialogue],

• TerseYouCanSay [a terser version of the YouCanSay strategy],

• FullHelp(HELP) [the system provides a longer help message which includes an

explanation of the current state of the dialogue].

In making his choice, the wizard had live access to the user’sspeech and several other

system state variables via a Graphical User Interface (GUI)(e.g. ASR result, confi-

dence score, semantic parse). The wizard informs the systemof his choice via the

GUI. Based on the collected data, Bohus and Rudnicky then derived results for the

source of understanding errors, theimpact of non-understandings on dialogue perfor-

mance, performance of non-understanding repair strategies, user responses to repair

strategies, control versus wizard, andlearning a policy.

We now move on to describe Bohus and Rudnicky’s results.
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7.6.3.2 Results

In this section, we describe Bohus and Rudnicky (2005)’s results, starting with the

source of non-understanding errors and their impact on dialogue performance.

• The source of non-understanding errors and their impact on dialogue per-

formance: Bohus and Rudnicky first report that the majority of errors are seen

to originate at the Signal (i.e. speech recognition level) but at the same time, a

large number of non-understandings, and a smaller but stillsignificant number

of misunderstandings are caused by either out-of-application utterances (out-

side of the application’s functionality), or out-of-grammar utterances (within

the domain and scope of the application, but outside of the system’s grammar).

The next results concern the impact of non-understanding errors on overall di-

alogue performance. These results were obtained by using a logistic regression

model 7 to assess how well the frequency of non-understandings and misun-

derstandings predicted task success - hence the independent variables were the

frequency of non-understandings in a session, and the frequency of misunder-

standings, and the dependent variable was a binary task success indicator. Each

data-point corresponded to an entire dialogue session. Adding the frequency of

non-understandings to the model increased the average datalog-likelihood from

the majority baseline of−0.5200 to−0.4306 (p < 10−4 in a likelihood ratio

test8). Then, adding the frequency of misunderstandings to the model further

increased the average log-likelihood of the data to−0.2795 (p < 10−4).

We now move on to describe Bohus and Rudnicky’s results whichrelate to the

performance of the different non-understanding error repair strategies.

• The performance of non-understanding error repair strategies:

Bohus and Rudnicky report that according to logistic ANOVA,the mean re-

covery rates of the 10 strategies can be divided into three tiers, where there are

statistically significant differences between tiers, but not within. The top tier con-

tains theMoveOn, HelpandTerseYouCanSaystrategies, the second tier contains

Reprompt, YouCanSayandAskRephrase, and the bottom tier containsDetaile-

7Logistic regression, (see page 1581 of Sheskin 2007), is a model used for prediction of the prob-
ability of an event. It is therefore a form of regression thatis used when the dependent variable is
dichotomous (or binary). It can use several predictor variables (either numerical or categorical).

8A likelihood-ratio test, (see Sheskin 2007), is a statistical test for making a decision between two
hypotheses based on the ratio of the maximum probability of aresult under these two hypotheses.
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dReprompt, Notify, AskRepeatandYield. TheAskRepeatrecovery strategy was

seen to induce the largest number ofrephrase responses(64%), theMoveOn

strategy, the largest number ofchange responses(52%), and theAskRephrase

andNotify strategies, the largest number ofrephrase responses(64%). Further

analysis showed that the best recovery performances were attained bychange re-

sponses, which is what we would expect given that theMoveOnandHelpstrate-

gies performed the best, and that these both induced a large number ofchange

responses.

We now move on to describe Bohus and Rudnicky’s results whichrelate to the

comparison of the system’s performance under the wizard versus the control

condition. Here Bohus and Rudnicky were investigating the hypothesis that the

performance of the non-understanding error repair strategies can be improved by

engaging them at more appropriate times.

• Wizard versus control: The impact of the wizard policy was assessed both

on overall dialogue performance and on local non-understanding recovery per-

formance metrics. The wizard policy does lead to statistically significant per-

formance improvements on a number of metrics, but the improvements appear

mostly within the non-native population i.e. in the group ofusers that had more

difficulties using the system. For example, while no task success improvement

can be detected for native users, there is a large task success improvement for

non-native users (31.6 to 57.4%). Despite this increase in task success rate, no

statistically significant differences can be detected withrespect to user satisfac-

tion - Bohus and Rudnicky state that the small number of samples and the large

variance of this metric lead to wide confidence bounds on the mean estimates

and preclude reliable comparison. Statistically significant improvements for the

non-native users were observed again on the local recovery performance met-

rics - recovery Word Error Rate (WER), recovery concept utilityand recovery

efficiency. Recovery WERis the average WER for the user turns following non-

understanding recovery attempts,recovery concept utilitymeasures the average

number of concepts correctly acquired by the system from theuser’s response,

andrecovery efficiencyextendsrecovery concept utilityby normalising for the

amount of time spent during recovery. Before moving on, we should note here

that while Bohus and Rudnicky seem to have shown a policy thatimproves the

performance of non-understanding error repair strategiesby engaging them at
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more appropriate times, this policy cannot be used by a system. This is because

the wizard chose which repair strategy to engage based on thefull audio signal

(i.e. human-level speech recognition), and hence used information which the

system would not have access to at runtime.

Looking at the individual repair strategies, a statistically significant improvement

was detected only forAskRepeat. Bohus and Rudnicky state that not gaining sta-

tistically significant improvements for the other nine repair strategies can poten-

tially be explained by the fact that the wizard’s decision task was quite difficult,

even with access to the full audio signal. To maintain the illusion that the users

were interacting with an autonomous system the wizard had tochoose one of

ten repair strategies in a very short time interval: 1 or 2 seconds. This selection

task is easier for some of the strategies than for others, andas a result, a number

of repair strategies such asYouCanSay, Reprompt, andDetailedRepromptwere

very rarely engaged by the wizard and so the confidence intervals on their per-

formance estimates are very wide and preclude accurate comparisons. We will

return to this issue in Section 7.6.4 where we compare the findings of Skantze

(2003) and Bohus and Rudnicky (2005) to those of this thesis.

We now move on to describe Bohus and Rudnicky’s results whichrelate to trying

to use the collected data to learn a policy for engaging the non-understanding

repair strategies.

• Learning a policy from data: Having established that the performance of the

non-understanding repair strategies can be improved by a policy which engages

them at the right time, Bohus and Rudnicky attempt to learn such a policy from

data. For each repair strategy, a logistic regression modelis fitted to training data

in order to predict whether that repair strategy will be successful based on various

contextual features. Here, successful means that “the nextuser turn is correctly

understood by the system.” The training data for each model is derived from the

turns in the uninformed dialogues in which a non-understanding occurred and

the strategy of interest was engaged. The contextual features used include:

– features from the speech recognition level - the number of words, the signal

and noise levels, the number of and proportion of words tagged as uncon-

fident by the speech recogniser,

– features from the language understanding level - features reflecting the



Chapter 7. Investigating the role of Dialogue Acts in learning repair Strategies 214

quality of the parse,

– features from the dialogue management level - information about the dia-

logue state, history of the dialogue up to that point (e.g. how many previous

consecutive non-understandings have been encountered, the average confi-

dence score so far).

Two policies are learned, the first of which,max-recovery-rate, aims to maxi-

mize the recovery rate by choosing the repair strategy with the maximum like-

lihood of success, while the second,max-recovery-efficiency, aims to maximize

the recovery efficiency. A preliminary estimate of the performance of these poli-

cies is obtained by looking at what happened in the data for the wizard condition

when the wizard happened to make the same decisions as the learned policy.

While the wizard’s overall recovery rate was 50.1%, within the subset of in-

stances where the wizard made the same decision as themax-recovery-rate pol-

icy, it was significantly higher at 69.8%. Similarly, on the instances where the

wizard agreed with themax-recovery-efficiency policy, the recovery efficiency

performance was 2.02, significantly higher than the overall wizardrecovery effi-

ciency(0.81), and the uninformed policyrecovery efficiency(0.00).

Bohus and Rudnicky acknowledge a number of problems with thelearned poli-

cies. First of all, the performance of the individual predictors is not very good

due to the small number of training instances. Indeed, no information is given

as to which contextual features were good predictors, and which not, and there

is no qualitative analysis of the learned policies. Bohus and Rudnicky also state

that there are problems with the evaluation method:

“Given that both the wizard and the learned policy strive to maximize
performance, the distribution of the subset of non-understandings where
they agree might not be representative for the true distribution of non-
understandings - these might be the cases where it’s easier to tell
which strategy should be used to recover. Ultimately, a new user study
where the system runs with the learned policy is required in order to
robustly evaluate its performance.”

We now move on to compare the findings of Skantze (2003) and Bohus and Rudnicky

(2005) with those of the experimental work of this thesis.
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7.6.4 Comparison with the findings of the experimental work o f

this thesis

Let us start here by considering the results concerning the relative performance of dif-

ferent repair strategies. Recall that following non-understanding errors, Skantze (2003)

and Bohus and Rudnicky (2005) found that their better performing repair strategies did

something other than signal the non-understanding to the user / ask the user to repeat

/ re-prompt. Skantze’sRequestPositionrepair strategy significantly outperformedSig-

nalNonUnderstandings, and Bohus and Rudnicky’sMoveOnandHelp repair strategies

performed the best, significantly outperformingAskRepeatandReprompt. Indeed Bo-

hus and Rudnicky foundAskRepeatto be one of the worst performing repair strategies.

Bohus and Rudnicky also showed that the best performing repair strategies induced the

highest number ofchange responses, and the worst performing, the highest number of

repeats. All of this coincides with the results that we have obtainedin learning dia-

logue strategies using stochastic user simulations whose probabilities are derived from

real user data. We have found that in states in which the Slot-Status Features were

Unchanged (SSFU states), (often due to non-understanding errors), rather than tore-

peat, (the equivalent of Bohus and Rudnicky’sRepromptrepair strategy), representing

recent DAs in the state causes the reinforcement learner to often learn toswitch fo-

cus, (the equivalent of Bohus and Rudnicky’sMoveOn), occasionally togive help, (the

equivalent of Bohus and Rudnicky’sHelp), and sometimes tobactrack, (no equivalent

in Skantze 2003 or Bohus and Rudnicky 2005). Engaging these new repair strategies in

the SSFU states in which they had been learned enabled the Dialogue Manager (DM)

to get the dialogue “back-on-track” more quickly on average, and so achieve task com-

pletion in fewer turns. Additionally, in the real user experiment of Chapter 6, overuse

/ misuse of ourrepeatrepair strategy was shown to be potentially very destructive.

Engaging this repair strategy usually caused the user to repeat themselves and as a re-

sult, they often became frustrated. They were then more likely to adopt an irritated /

hyperarticulated tone which caused more ASR errors, and hence longer dialogues and

less chance of task completion.

It is also worth mentioning here that the case ofBacktrackinghighlights a key advan-

tage of the Reinforcement Learning (RL) approach. The methodology used by Bohus

and Rudnicky for example meant that all of the repair strategies had to be designed

and pre-programmed in advance - no new effective repair strategies emerged from this

work. Backtrackingis a repair strategy that we did not initially think of, and hence
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explicitly program in advance, but instead which “emerged”from the RL. It is an ex-

ample of how given the freedom to do so, the reinforcement learner can take its basic

action set and maybe sometimes apply actions in novel unanticipated ways. This might

be achieved by combining actions. For example, we did not experiment with this, but it

could have proved advantageous in certain contexts to allowcombinations of our four

different repair strategies in a single system turn e.g. “give help + repeat”.

Let us now move on to consider Bohus and Rudnicky’s results concerning the perfor-

mance of the wizard versus the control policy. Like Bohus andRudnicky here, we

have obtained results to suggest that overall dialogue performance can be improved

by engaging repair strategies at more appropriate times. However, recall that unlike

our learned strategies, Bohus and Rudnicky’s wizard policycannot be used by a real

SDS because the wizard had access to the full audio signal i.e. it assumes human-level

speech recognition. As regards the individual repair strategies, recall that Bohus and

Rudnicky found the wizard policy to produce a significant improvement in the perfor-

mance ofAskRepeat, (the repair strategy which was most likely to make the user repeat

themselves) . This certainly makes sense given what we said in the last paragraph about

the destructive effect of overuse / misuse ofrepeatin the real user experiment of Chap-

ter 6. We should comment here on the fact that Bohus and Rudnicky were unable to

detect statistically significant improvements for the other nine repair strategies. Recall

that Bohus and Rudnicky suggested this was because the wizard’s decision task was

difficult, particularly for certain repair strategies, andas a result these were rarely en-

gaged. This kind of problem does not occur in the RL approach used in this thesis. Use

of a user simulation also makes it much easier to generate a large number of example

dialogues and so obtain statistically significant results.Of course, as has been stated

before, the user simulation must be sufficiently realistic if any useful insights are to be

drawn based on the resulting data.

We have seen then that Skantze (2003) and Bohus and Rudnicky (2005) made useful

findings with regard to the performance of different non-understanding repair strate-

gies. However, unlike in the experimental work of this thesis, their aims and method-

ology meant that they did not produce a full dialogue strategy which takes advantage

of their findings, and which can be implemented in a Spoken Dialogue System (SDS)

and shown to work well with real users. Skantze made no attempt to learn a dia-

logue strategy, while Bohus and Rudnicky used Supervised Learning (SL) in order to

learn a partial dialogue strategy i.e. a policy for which repair strategy to use following
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non-understanding errors, but there are problems with this. These have already been

mentioned in Section 7.6.3.2 and include poor performance by the individual predic-

tors due to the small number of training instances, and problems with the evaluation

method.

Apart from producing full dialogue strategies which have been shown to work well

both in simulation and with real users, in this thesis, we have also made additional

findings with respect to recent Dialogue Acts (DAs) and repair strategies. In our RL

experiments, we have found the DAs of the last system and userturns to only be useful

in Slot-Status Features Unchanged (SSFU) states - they enable the learner to identify

SSFU states and are also important in choosingwhich repair strategy to apply. Any

sensible repair strategy which avoids repetition will not necessarily be optimal, and so

the role of the DAs in determining which repair strategy to use is more complicated

than simply telling the learner what the previous system action was. We have also

shown the DA(s) of the last user turn to make a greater contribution to improving the

learned strategy in SSFU states than the DA of the last systemturn.

We now move on to provide a summary of this chapter.

7.7 Chapter summary

In this chapter we tested a number of hypotheses which were formed based on the

results and analysis of the experiments of Chapters 5 and 6. The first experiment de-

scribed in this chapter successfully tested the hypothesisthat the Dialogue Acts (DAs)

of the last system and user turns are only improving the learned strategy with respect to

better repair strategies in Slot-Status Features Unchanged (SSFU) states. The second

experiment then showed that as regards these repair strategies, the DAs are useful not

only for identifying SSFU states, but also in choosingwhich repair strategy to apply.

There was the possibility that despite this finding, the taskof choosing the appropri-

ate repair strategy in any SSFU state is very simple because any repair strategy which

avoids repeating the last system action is guaranteed to be optimal. This hypothesis

was formed based on the analysis of the real user experiment in Chapter 6, where we

found the Slot-Status Strategy’s poor performance to be caused by overuse of repe-

tition. However the third experiment showed this hypothesis to be false - evidently,

finding the optimal repair strategy in an SSFU state is more complicated than this. The

final experiment of this chapter then found that given the slot-status features are already
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present in the state, adding the last system DA produces a significant improvement in

the learned strategy, but not as great as the improvement produced by adding the DA(s)

of the last user turn. The results and analysis showed that the SSFU repair strategies

should ideally be sensitive to the DAs of the last user turn, and that these user DAs

cannot always be reliably inferred from the last system DA and the slot-status features.

Having described the final experiment, we then provided a review of recent related

research on repair strategies for Spoken Dialogue Systems i.e. Skantze (2003) and

Bohus and Rudnicky (2005). Both Skantze and Bohus and Rudnicky investigated non-

understanding error repair strategies and used a differentexperimental methodology to

here - neither used Reinforcement Learning (RL) or user simulations, We found com-

mon ground with this previous work in regard to results concerning the performance

of different repair strategies - it seems that following a non-understanding error, it is

often preferable to do something other than signal the non-understanding / repeat the

previous system action. Unlike this thesis, this previous work did not produce full dia-

logue strategies which take advantage of these findings, andwhich have been shown to

work well with both simulated and real users. The insights provided by this thesis with

respect to recent Dialogue Acts (DAs) and their role in learning better repair strategies

are also novel.



Chapter 8

Summary and conclusions

8.1 Thesis summary

Designing dialogue strategies for the Dialogue Manager (DM) component of a Spoken

Dialogue System (SDS) is a potentially very complicated task, and so if it is done by

hand, it may involve a time-consuming test-and-refine process. A particularly impor-

tant issue in dialogue strategy design, is how best to limit the number of understanding

errors made by the SDS, and how best to deal with them when theyoccur. This is

because the limitations of the input components i.e. the Automatic Speech Recog-

nition (ASR) and Natural Language Understanding (NLU) components mean that in

general, SDSs may frequently make understanding errors, more so than humans. Due

to the complicated nature of designing dialogue strategies, over the past 10 years, re-

searchers have begun investigating whether a machine learning technique called Rein-

forcement Learning (RL) can be successfully applied to the problem. RL algorithms

are used to learn a series ofactionsto take in differentstatesso as to achieve some goal

specified by areward function, and this makes them appropriate for dialogue strategy

design - within any dialogue, our ideal dialogue strategy should choose a series of

system actions in different dialogue contexts so as to maximise the chances of a suc-

cessful conclusion e.g. task completion, high user satisfaction. Substantial progress

has been made in the previous research, but none involved training full dialogue strate-

gies with accurate stochastic user simulations whose probabilities are derived from

real user data, and then going on to show that the resulting learned strategy works

well with real users e.g. better than a hand-crafted strategy. In general, the previ-

ous researchers also included very limited contextual information in the RL state, and

219
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little insight was gained as to which contextual features were important and why. For

example, in learning dialogue strategies for information-seeking/slot-filling SDSs, pre-

vious researchers e.g. Levin and Pieraccini (1997), Scheffler and Young (2001), Singh

et al. (2002), Pietquin and Renals (2002), Singh et al. (2000) have generally used only

slot-based features i.e. whether or not a slot has been filledand the confidence score

associated with any supplied value. At the opposite extreme, by using a Hybrid RL /

Supervised Learning (SL) approach, and augmenting the RL component with a gener-

alisation technique, Henderson et al. (2005) was able to include a very large amount of

contextual information in the RL state. However again, thiswork gave little insight as

to which contextual features are important and why, and there is the question of how

the Hybrid strategy performs relative to one learned with a much smaller state space

and standard RL.

This thesis has presented experimental work on these issues, and here we will make a

brief summary of their contributions.

8.1.1 Preliminary proof-of-concept Reinforcement Learni ng exper-

iments

Chapter 4 discussed issues related to how best to set the reinforcement learner’s pa-

rameters. The points which we raised regarding which kind ofEligibility Traces (ETs)

to use, and how high to set the initial Q-values parameter apply especially when rel-

atively little contextual information is represented in the state e.g. just the slot-status

features. This is because, at least during the early stages of training, the reinforcement

learner may frequently take dead-end actions i.e. action which do not lead to a change

in state. Assuming that only the slot-status features are represented in the state, an

example occurs if the system asks for a slot value for which italready has the correct

value, and then the simulation re-supplies this correct value. If the system goes on to

successfully complete the dialogue and so receives a high reward, accumulating ETs

will propagate back reward to the dead-end state-actions, and the greater the number

of times which a dead-end state-action was visited, the greater the amount of reward

that will be propagated back. As a result, we may well find the reinforcement learner

learns dead-end state actions. To guard against this, we prefer to use replacing ETs

which whenever the state changes, set the trace for any dead-end actions which were

taken in the previous state to zero. However, given that we are using these replacing
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ETs, we must be careful not to set the initial Q-values too high else we are still likely to

learn dead-end actions. This is because a large proportion of early training dialogues

end in low reward, and such ETs propagate this low reward backonly to the non-dead-

end actions. Hence if the initial Q-values are set too high, then the dead-end action’s

Q-value will remain high while that of the non-dead end action will be greatly reduced.

Then, due to it’s relatively high Q-value, assuming we are using ε-greedy or softmax

action selection, the reinforcement learner will be very likely to continue selecting the

dead-end action when it re-visits this state. This may be corrected in time, but learning

will certainly be significantly slowed as a result.

Moving on to the experiments of Chapter 4 themselves, in the analysis of our first

experiment, we described possible circumstances under which representing the user’s

last Dialogue Act (DA) in the state would be important for learning to deal with user

indications of misunderstanding errors. If users prefer their indications of misunder-

standing errors to be immediately addressed i.e. for the system to focus on the problem

slot, (which seems like a reasonable assumption), then clearly if the problem slot can-

not be inferred from the slot-status features alone, the reinforcement learner requires

the user’s last DA. Such ambiguous states could occur if the system has switched fo-

cus between slots earlier in the dialogue (e.g. as a repair strategy following a non-

understanding error), or if the user does not indicate the misunderstanding error imme-

diately following the incorrect confirmation, but waits until a later turn.

The second experiment demonstrated a first simple case in which adding another fea-

ture to the slot-status variables in the state enables the reinforcement learner to learn

a more effective strategy, in this case for a 2-slot system. Previous researchers who

have used RL to learn full strategies have included only slot-status information in the

state e.g. Levin and Pieraccini (1997), Levin et al. (1998),Pietquin and Renals (2002).

Training and testing is conducted using a Bayesian Network user simulation, the prob-

abilities for which are supplied using intuition, and the feature added to the state is

the DA of the last user turn. Adding this feature enables the learner to learn to give

help when asked. The user simulation is impatient and if it asks for help and does not

receive help in the next system turn, there is a 90% chance that it will hang-up (end

the dialogue). According to a reward function that gives+100 for a correct database

query, (0 otherwise) and−1 for each system turn, adding the Dialogue Act (DA) of the

last user turn produces a 52% (p < 0.05) increase in average reward in testing

In the third and final experiment, we went on to find that if the user’s last DA is rep-
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resented in the state, the RL problem remains tractable if wescale up from 2 to a

more commercially realistic 4 slots. We also found that an “all-or-nothing” reward

function i.e. a function that gives a large positive reward if all of the slot-values are

correct, else nothing, can produce faster learning than a “partial” reward function i.e

a function that gives a small positive reward for each correct slot-value. A “mixed”

reward function which gave very small positive reward for each correct slot-value, and

a large positive reward if all of the slot-values were correct i.e. a mix of the other

two reward functions produced faster learning than the “partial” reward function, but

slower than the “all-or-nothing” reward function. These findings have important impli-

cations for how best to design reward functions for learningdialogue strategies. The

“all-or-nothing” reward function worked well here becausethe system did not have

to deal with unobtainable slot-values - this might happen because the system cannot

recognise the user’s accent when trying to communicate the slot-value. If unobtainable

slot values is a problem which real SDSs have to deal with, then we should attempt to

learn strategies that can cope. This would mean that we should train with a user sim-

ulation that is capable of simulating unobtainable slot-values, Assuming we train with

a user simulation that does simulate unobtainable slot-values, then an all-or-nothing

reward function is clearly not ideal. Thinking about this scenario led us to propose an

“as-good-as-possible” reward function which provides a large positive reward as long

as all of the obtainable slots are filled, otherwise nothing.This reward function is an

all-or-nothing reward function and so will help to speed up learning, but it will not

penalise the reinforcement learner for failing to fill and confirm an unobtainable slot.

To use such a reward function, in each dialogue, the user simulation would have to tell

the reinforcement learner whether any of the slots were unobtainable.

8.1.2 Learning with real user data: n-gram user simulation e xperi-

ments

In Chapter 5, we found that when training with accurate stochastic simulations whose

probabilities are derived from real user data, including inthe state the DAs of both the

last system and user turns in addition to slot-status features produces strategies which

perform better in testing in simulation. Note that we used a simple “all-or-nothing”

training reward function based only on dialogue length and whether or not all of the

slots are confirmed when the system queries the database i.e.task completion. We

found that the DAs of the last system and user turns produced improvements for both
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3 and 4-slot learned strategies. As stated in Section 8.1.1,past research has in general

included only slot-status information in the state when using RL to learn full strategies

e.g. Levin and Pieraccini (1997), Levin et al. (1998), Pietquin and Renals (2002).

We were able to make a meaningful performance comparison with the 4-slot Hybrid

RL/Supervised Learning (SL) Strategy of Henderson et al. (2008). This is because

the Hybrid Strategy was tested with a linear function approximation user simulation

derived from COMMUNICATOR data, (see Section 3.10.4), which has been shown to

simulate very similar dialogues to the n-gram simulations (Georgila et al., 2006). Our

learned strategies were found to achieve much higher scoresin testing for dialogue

length and the number of slots that are filled/confirmed when the system queries the

database.

Chapter 5 described analysis of our learned strategies and found that the DAs were en-

abling the reinforcement learner to learn more effective repair strategies in Slot-Status

Features Unchanged (SSFU) states, (most often caused by non-understanding errors

i.e. ASR rejections or user utterances that are recognised as out-of-domain). These

repair strategies were more effective in the sense that theywere more likely to ensure

that the next state was not also an SSFU state - they were better at getting the dia-

logue back-on-track. The four different types of repair strategy which we observed

in the learned strategies in SSFU states wererepeat, switch focus, give helpandback-

track. Whereas the Slot-Status Strategy apparently over-used therepeatrepair strategy,

adding the recent DAs to the state caused the learned strategy to make greater use of the

other three types. Qualitative analysis of the learned strategies suggested that the DAs

of the last system and user turns were important for identifying SSFU states and hence

that some kind of repair strategy was required, and then alsoin making the choice of

whichrepair strategy to apply. For example, our best learned strategy was more likely

to use therepeatrepair strategy following an ASR rejection, but theswitch focusre-

pair strategy following a user utterance that is recognisedas out-of-domain. We were

unable to find what looked like any significant improvements in the learned strategy

outside of SSFU states e.g. in dealing with user indicationsof misunderstandings, and

in portions of dialogue in which there was smooth progress towards the goal of filling

and confirming all of the slots. However, a general trend was noticed for the learned

strategies to focus on the problem slot following a user indication of a misunderstand-

ing error i.e. they would re-ask / attempt to re-confirm the problem slot rather than

shift focus to a new slot.
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We also noted that if the intention is to use the learned strategies with real users in an

SDS, then the user simulation for training the strategies should be as realistic as pos-

sible. Hence, we also pointed out the limitations of the n-gram simulations. We noted

that no dataset is perfect, and hence there may be problems with the COMMUNICA-

TOR data which mean the n-gram simulations are not as realistic as they might be. In

addition, we highlighted the key weakness of the n-gram model itself i.e. the fact that

it is not sensitive to dialogue context from earlier thann−1 turns ago, (3 or 4 turns in

our case depending on whether we were using the 4 or 5 gram simulation). It seems

that real users must sometimes take account of contextual information from turns ear-

lier than the last 3 or 4, and so this assumption is false at least some of the time. For

example, it is responsible for the n-gram simulations’ failure to simulate “impossible-

to-fill” slots, - a phenomenon which did occasionally occur in the COMMUNICATOR

data. It also means that if DAs are added to the state in order starting with the most

recent, only those of the lastn−2 turns can potentially produce improvements in the

learned strategy, e.g. the last 3 turns in the case of a 5-gramsimulation. Furthermore,

the n-gram models are only sensitive to previous DAs - they are not sensitive to other

features of the dialogue context. Taking account of other features of the dialogue con-

text may produce more realistic user simulations with whichwe could then potentially

train better dialogue strategies.

8.1.3 Testing the learned strategies on real users

Chapter 6 described how we tested two of our 3-slot learned strategies and a state-of-

the-art hand-crafted strategy on real users. The first of thelearned strategies which we

tested was learned with only the slot-status features (the Slot-Status Strategy), while

the second was learned with the slot-status features and theDialogue Acts (DAs) of

both the last system and user turns (the DA2 Strategy). The Spoken Dialogue System

(SDS) which was used, the TownInfo SDS, operates in the tourist information domain

and so we were required to port our learned strategies into this new domain by treating

them as generic slot-filling strategies.

We found the DA2 Strategy to outperform the Slot-Status Strategy. The DA2 Strategy

outperformed the Slot-Status Strategy in terms of Perceived Task Completion (PTC)

(90.91% versus 80.82%), and dialogue length (7.95 turns on average for the slot-filling

phase of the dialogue versus 8.98). Although the improvements were not significant,
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the DA2 Strategy also performed better according to three different subjective mea-

sures - “task ease”, “expected behaviour” and “re-use”. We also found the DA2 Strat-

egy to outperform the state-of-the-art hand-crafted strategy. The DA2 Strategy outper-

formed the state-of-the-art hand-crafted strategy in terms of perceived task completion

(90.91% versus 80.82%), and dialogue length (7.95 turns on average for the slot-filling

phase of the dialogue versus 8.46). Again, although the improvements were not sig-

nificant, the DA-strategy also performed better according to three different subjective

measures - “task ease”, “expected behaviour” and “re-use”.

Analysis of this real user experiment showed that the Slot-Status and state-of-the-art

hand-crafted strategies over-used the repeat repair strategy in Slot-Status Features Un-

changed (SSFU) states. Repeatedly asking the same questionoften annoyed the user,

and so was very likely to elicit hyper-articulate/irritated speech. This in turn is likely

to cause more speech recognition errors, and so longer dialogues and lower task com-

pletion. Hence this is an explanation for the inferior performance of the state-of-the-art

hand-crafted and Slot-Status Strategies as compared to theDA2 Strategy.

Although statistical tests were impossible, direct performance comparisons were pos-

sible with the Hybrid RL/SL Strategy of Henderson et al. (2008) because this too was

tested using the TownInfo Spoken Dialogue System (SDS). TheDA2 Strategy achieved

higher average perceived task completion (90.91% versus 80.8%) and lower dialogue

length (9.65 turns on average for the whole dialogue versus 11.6). The DA2 Strategy

also did better according to an overall score for the three different subjective measures:

“task ease”, “expected behaviour” and “re-use”. Qualitative analysis of the Hybrid

Strategy seemed to show that it was sub-optimal e.g. it made little effort to fill slots in

certain circumstance and would query the database with unfilled slots, and it seemed

to over-use the repeat repair strategy, the negative impactof which has just been de-

scribed above. It seems the main reason for the Hybrid Strategy being sub-optimal is

that it was trained with an enormous state-action space, andthe optimal strategy has

not yet been found - it only improves over the purely supervised strategy by 1.4%.

8.1.4 Investigating the role of Dialogue Acts in learning re pair strate-

gies

Having tested the strategies learned with the n-gram simulations both in simulation

and with real users, the results and analysis led us to form a number of hypotheses
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regarding how and why the recent Dialogue Acts (DAs) improved the learned strategy.

Since training with the n-gram simulations had produced learned strategies which gave

a positive result in the real user tests, we felt it was justified to use these simulations to

train and test new strategies for testing these hypotheses.

The first hypothesis which we tested was that the DAs were onlyimproving the learned

strategy with respect to more effective repair strategies in Slot-Status Features Un-

changed (SSFU) states. We obtained further supporting evidence for this hypothesis

by showing that a strategy learned with only the additional DA information in SSFU

states performed no better or worse than one learned with DA information in all states.

Next we learned strategies with states that explicitly represented whether the current

state was an SSFU state - one such strategy was learned with noDA information in the

state, and another with only the DAs of the last user turn. Neither of these strategies

performed as well as the DA2 Strategy and so this indicates that the DAs of the last

system and user turns are important not only in identifying SSFU states and hence that

a repair strategy is required, but also in then choosingwhich repair strategy to apply.

Despite this, it was still possible that the task of finding the best repair strategy to ap-

ply in any state was very simple because any “sensible” avoidance of repetition was

guaranteed to be optimal. Here we defined a “sensible” repairstrategy to be any of the

four types that emerged from our original RL experiments with the n-gram simulations

i.e. repeat, give help, switch focusandbacktrack. This hypothesis had been formed

based on analysis of the real user experiment which showed that the Slot-Status and

hand-crafted strategies performed relatively poorly because they over-used repetition

in SSFU states. In order to test the hypothesis, we tested different strategies which

followed one of our learned strategies except in SSFU states. Here they applied a

“sensible” repair strategy which did not involve repeatingthe previous system action.

These strategies were found to perform worse than the DA2 Strategy and so this re-

sult contradicts the hypothesis that any kind of “sensible”avoidance of repetition in an

SSFU state is guaranteed to be optimal.

In a final experiment we found that a strategy learned with theslot-status features and

the DA of the last system turn did not perform as well as the DA2Strategy. Hence the

DAs of the last user turn cannot be reliably inferred from theDA of the last system

action and the slot-status features, and given that they areimportant in learning effec-

tive repair strategies in SSFU states, not representing them caused the learned strategy

to deteriorate. This experiment also showed the DAs of the last user turn to be more
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important than the DA of the last system action - removing theDAs of the last user

turn from the state caused a greater deterioration in the learned strategy than removing

the last system DA.

Having conducted these additional experiments with the n-gram simulations, we then

went on to compare our findings on repair strategies with relevant previous research.

This relevant previous research included Skantze (2003)/Chapter 4 of Skantze (2007)

and Bohus and Rudnicky (2005) who both investigated repair strategies for non- under-

standing errors in human-machine dialogue. Neither Skantze nor Bohus and Rudnicky

used RL or user simulations and so their experimental methodology is quite different

to ours. Skantze created an environment in which human-human dialogues became

much more like human-machine dialogues and then studied howhis human subjects

tried to recover from non-understanding errors. Bohus and Rudnicky preferred to use

the Wizard-of-Oz methodology and where non-understandingerrors occurred, com-

pared the performance of choosing a repair strategy at random versus the human wiz-

ard’s choice. Both Skantze and Bohus and Rudnicky’s resultsconcerning the perfor-

mance of different repair strategies coincide with ours - they both found that when

non-understanding errors occur, it is often better to do something other than encour-

age the user to repeat themselves. However, in contrast to here, they did not produce

dialogue strategies which exploit these findings and which can be shown to work ef-

fectively both in simulation and with real users. The conclusions which we drew with

respect to the role of recent DAs in learning better repair strategies in SSFU states are

also original contributions.

8.2 Conclusions and future work

Here we consider the findings of this thesis, their limitations and the state of the re-

search field as a whole. Based on this, we draw conclusions andsuggest areas for

future research according to different themes:

• Recent Dialogue Acts can improve performance in testing in simulation and

with real users through better repair strategies: In the experimental work

of this thesis, we have succeeded in producing full slot-filling dialogue strate-

gies which work well both in simulation and with real users, and which out-

perform alternative approaches i.e. full dialogue strategies learned with a state
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containing only slot-status features (e.g. Pietquin and Renals 2002), the Hybrid

RL/Supervised Learning (SL) Strategy of Henderson et al. (2008), and a state-of-

the-art hand-crafted strategy. We have found that by including recent Dialogue

Acts (DAs) in the state in addition to the slot-status features, we are able to

learn better repair strategies for Slot-Status Features Unchanged (SSFU) states

- dialogue contexts in which progress has stalled due to communication prob-

lems e.g. non-understanding errors. This is an encouragingand useful finding

because the system’s behaviour in such dialogue contexts can be critical to the

dialogue’s overall success or failure. Once the dialogue enters such a context, if

the system fails to quickly get the dialogue back-on-track,then the user can soon

become very frustrated. The user is likely to adopt an irritated tone / hyperartic-

ulate, which will then cause more Automatic Speech Recognition (ASR) errors,

less chance of task completion and lower user satisfaction.Since the kind of

problem contexts which we are discussing here are a feature of human-machine

dialogue in general, this finding that recent DAs can be used to learn better repair

strategies should translate to other domains. Indeed, likeLemon et al. (2006a),

our real user experiment showed that a strategy learned in one slot-filling do-

main (flight-booking) can work well in another (tourist information). Here we

mapped between slots in the two domains based on their number(see Section

6.3.3), but in the future, dialogue strategy designers may find it more profitable

to map between slots based on how likely it is that a user’s value will be correctly

recognised - recall that Pietquin and Renals (2002) learneda strategy which asks

the slots in an order that is sensitive to Word Error Rate (WER) (see Section

3.5).

• The time and effort involved in developing accurate user simulations: Our

learned strategies may have worked well with simulated and real users, but we

should now also say something about the amount of time and effort which is

required to apply the RL approach advocated in this thesis. This very much de-

pends on whether data collection is required. In order to apply the approach of

this thesis, we first need data of dialogues between real users and Spoken Dia-

logue Systems (SDSs) which use different dialogue strategies. From this data,

we can then derive probabilities for accurate stochastic user simulations, which

in turn are used to interact with a Dialogue Manager (DM) and reinforcement

learner over a number of training dialogues in order to learndialogue strategies.
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The probabilities for the user simulations used in Chapters5 to 7 were derived

from an existing data source, (the COMMUNICATOR data Walkeret al. 2001a),

but if the design team of a commercial system decided that this was inadequate

for their needs, then collecting their own new data could obviously be very time-

consuming. Depending on time and cost constraints, and the complexity of the

domain, the designers may decide that this is not justifiableand hand-craft their

dialogue strategies instead. We should mention again though, the finding made

in Lemon et al. (2006a) and repeated here in this thesis, thata strategy learned in

one slot-filling domain e.g. flight-booking, can work well inanother e.g. tourist

information. This finding suggests that it should be unnecessary to collect new

training data for every different slot-filling domain, and indeed that data from

different slot-filling domains can be pooled. Even if systemdesigners in indus-

try do not use the RL approach for producing dialogue strategies, the research

community can use it to gain insights into which contextual features are impor-

tant in dialogue management and why e.g. as we have done for recent DAs in this

thesis. System designers in industry can use these insightsin order to hand-craft

better strategies than they would have otherwise.

• Possibilities for improving different aspects of the RL approach used in this

thesis: Although our learned strategies performed well in testing in simulation

and with real users, there is obviously still room for further improvements. Rep-

resenting the recent Dialogue Acts (DAs) in the state produced better repair

strategies for SSFU states, but these repair strategies cansurely be improved,

and furthermore, we did not detect significant improvementsin any other aspect

of the learned strategy e.g. not in dealing with user indications of misunder-

standing errors, nor in portions of dialogue in which there is smooth progress

towards the goal of filling and confirming all of the slots. Therefore we must

think about how the RL approach used in this thesis can be modified to find

further improvements.

Firstly, since our learned DA-strategies often employ different repair strategies

following ASR rejections and user utterances that are recognised as out-of-domain,

it might be useful to conduct a study to better understand why, and to con-

sider making more fine-grained distinctions between different kinds of non-

understandings e.g. distinguishing between user utterances that are within-domain

but recognised as out-of-domain due to ASR errors, versus user utterances that
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are really out-of-domain. If making such a distinction manually led to better

learned repair strategies, then it would motivate looking at how a real-time sys-

tem can try to make the same distinction automatically, e.g.by using Supervised

Learning (SL) to produce a model that makes predictions based on features in

the SDS’s representation of the dialogue context. A possible second thing to in-

vestigate is changing our training reward function, which only takes account of

task completion and dialogue length. Perhaps we could obtain subtle improve-

ments in the learned strategy in non-SSFU states with a reward function that

better models overall user satisfaction.

Probably the most important factor in gaining further improvements is the user

simulation. The 4 and 5 gram simulations used in this thesis output actions based

on the DA tags of the last 3 and 4 turns respectively i.e. they are only sensitive

to the the DA tags of the last 3 and 4 turns. This is a useful approximation,

but surely real users are sensitive to additional features of the context, including

sometimes events that occurred earlier than 3 or 4 turns ago.If we can produce

user simulations which are sensitive to additional contextual features in a real-

istic manner, it becomes worthwhile to represent additional context in the state

because a reinforcement learner can then potentially learnfurther-improved re-

pair strategies. For example, recall that with respect to the limitations of the

n-gram simulations, we stated in Chapter 5 that although certain slot-values

in COMMUNICATOR dialogues were “impossible-to-fill” (e.g.because the

speech recogniser could not recognise the user), the n-gramsimulations failed to

simulate this. If we trained with a simulation that did simulate impossible-to-fill

slot values, then we could add a dialogue length feature to the state and poten-

tially learn dialogue strategies that give up asking for a particular slot-value after

a certain number of attempts and query the database anyway. Recall also that the

reward function ought to ideally award maximum reward for task completion in

such cases in order to speed up learning. On the point of increasing the amount

of dialogue history to which the n-gram simulations are sensitive, we could just

increase the value ofn, but in the case of the COMMUNICATOR data, the ac-

curacy of the n-gram simulations seemed to be deterioratingfor n > 4 due to

sparsity of data (see Georgila et al. 2006).

• The size of the state space and the problem of intractability: Note that if

we did have a user simulation which was sensitive to a greaternumber of con-
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textual features in a realistic manner, and as a result we included more features

in the RL state, it is likely that we would soon run up against serious problems

with intractability. One way to deal with the intractability problem is to apply

some kind of generalisation method as was used in producing the Hybrid RL/SL

Strategy of Henderson et al. (2008). However, as was shown inChapter 6, this

strategy seems to be sub-optimal, and this is presumably because of its enormous

state-action space. We should note though that much better performance could

surely have been obtained if rather than all of the availablecontextual features,

only the more important ones were represented in the state. It would be very

useful then if we could take the kind of dataset used by Henderson et al. (2008),

which contains a very large number of contextual features, and apply feature se-

lection techniques e.g. CFS Hall (1999) in order to automatically identify those

which are important. However the best way to do this is not obvious. One idea is

to approximate the dialogue management problem to a categorisation problem in

which we want to predict the current system action based on the contextual fea-

tures. We could take only dialogues in which the system is apparently behaving

“more optimally” e.g. dialogues with task completion, and then apply feature

selection to identify a subset of contextual features whichare predictive of these

“more optimal” system actions.

Hierarchical RL is another method for tackling larger state-action spaces, and

has already been used by Cuayáhuitl et al. (2007) to learn a simple slot-filling

dialogue strategy. It reduces the state-action space by exploiting prior knowl-

edge. Firstly, where it is thought appropriate, sub-problems are cast as different

examples of the same sub-problem, so allowing re-use of learned solutions e.g.

filling slot 1 and filling slot 2 could be considered as two different examples of

filling a slot. Additionally, for each sub-problem, only those features which are

considered relevant are included in the state representation. The findings of this

thesis then potentially provide prior knowledge which can be exploited by hi-

erarchical RL - a full dialogue strategy could be divided into the sub-problems

of filling / confirming slots when dialogue progress is smoothversus when it

has stalled, and additional recent DA state features could be used in learning a

solution for the latter.

• Using POMDPs as an alternative to MDPs:Another interesting avenue for fu-

ture research is to use Partially Observable Markov Decision Processes (POMDPs)
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rather than MDPs for RL of dialogue strategies - some work hasalready been

done in this area (Williams and Young, 2007). A POMDP is an extension of

an MDP, and is used for choosing actions when the entire world, or state-space

is not always directly observable. Since the true state of the world cannot be

uniquely identified, a POMDP reasoner must maintain a probability distribution,

called thebelief state, which describes the probabilities for each true state of

the world. Maintenance of the belief state is Markovian in that it only requires

knowledge of the previous belief state and the action taken.POMDPs are there-

fore able to handle uncertainty in a principled way, and since Automatic Speech

Recognition (ASR) and Natural Language Understanding (NLU) are error prone,

this makes them theoretically appealing for dialogue management. However, at

present POMDPs are computationally intractable to solve for optimal behaviour

for dialogue problems of realistic size. Assuming this intractability problem

can be overcome, it will be interesting to compare the performance of dialogue

strategies learned with POMDPs as opposed to MDPs, and in particular, their

confirmation and repair strategies.

To round off this thesis, we now provide a brief summary of itsmain contributions.

Firstly, we have shown that if we generate training dialogues with an accurate prob-

abilistic user simulation whose probabilities are derivedfrom real user data, then we

can use the MDP-RL approach to learn full dialogue strategies which work well with

real users. Secondly, we have also shown that adding recent DAs to the MDP produces

dialogue strategies which work better both in simulation and with real users. The final

main contribution concerns how the recent DAs improve the learned strategy - we have

shown how they produce better repair strategies for contexts in which the slot-status

features are unchanged and hence dialogue progress has stalled.
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Bayesian Network user simulation

probability table

SP SC H quiet slot1 slot2 slot3 slot4 s1234 no rep no yes ask help hang up

open question < two null 0 0.16 0.16 0.16 0.16 0.16 0 0 0 0.2 0

ask slot 1 < two null 0 0.8 0 0 0 0 0 0 0 0.2 0

ask slot 2 < two null 0 0 0.8 0 0 0 0 0 0 0.2 0

ask slot 3 < two null 0 0 0 0.8 0 0 0 0 0 0.2 0

ask slot 4 < two null 0 0 0 0 0.8 0 0 0 0 0.2 0

exp conf 1 < two null 0 0.1 0 0 0 0 0 0 0.9 0 0

exp conf 2 < two null 0 0 0.1 0 0 0 0 0 0.9 0 0

exp conf 3 < two null 0 0 0 0.1 0 0 0 0 0.9 0 0

exp conf 4 < two null 0 0 0 0 0.1 0 0 0 0.9 0 0

ask 1 ic 4 < two null 0 0.8 0 0 0 0 0 0 0 0.2 0

ask 2 ic 1 < two null 0 0.8 0 0 0 0 0 0 0 0.2 0

ask 3 ic 2 < two null 0 0.8 0 0 0 0 0 0 0 0.2 0

ask 4 ic 3 < two null 0 0 0 0.1 0.9 0 0 0 0 0 0

give help < two null 0.1 0 0 0 0 0 0 0 0.9 0 0

Table A.1: The probability table for the Bayesian Net User Simulation. SP = System

Prompt, SC = Slot Counter, H = History, ic = implicitly confirm

233
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SP SC H quiet slot1 slot2 slot3 slot4 s1234 no rep no yes ask help h u

open question < two slot 1 wrong 0 0.16 0.16 0.16 0.16 0.16 0 0 0 0.2 0

ask slot 1 < two slot 1 wrong 0 0.9 0 0 0 0 0 0.1 0 0 0

ask slot 2 < two slot 1 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

ask slot 3 < two slot 1 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask slot 4 < two slot 1 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

exp conf 1 < two slot 1 wrong 0 0 0 0 0 0 0.9 0.1 0 0 0

exp conf 2 < two slot 1 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

exp conf 3 < two slot 1 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

exp conf 4 < two slot 1 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

ask 1 ic 4 < two slot 1 wrong 0 0.5 0 0 0 0 0 0 0 0 0.5

ask 2 ic 1 < two slot 1 wrong 0.2 0 0 0 0 0.6 0.2 0 0 0 0

ask 3 ic 2 < two slot 1 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask 4 ic 3 < two slot 1 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

give help < two slot 1 wrong 0 0.1 0 0 0 0 0 0 0.9 0 0

open question < two slot 2 wrong 0 0.16 0.16 0.16 0.16 0.16 0 0 0 0.2 0

ask slot 1 < two slot 2 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

ask slot 2 < two slot 2 wrong 0 0 0.9 0 0 0 0 0.1 0 0 0

ask slot 3 < two slot 2 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask slot 4 < two slot 2 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

exp conf 1 < two slot 2 wrong 0.1 0 0 0 0 0 0 0 0 0 0.9

exp conf 2 < two slot 2 wrong 0 0.1 0 0 0 0 0.9 0 0 0 0

exp conf 3 < two slot 2 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

exp conf 4 < two slot 2 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask 1 ic 4 < two slot 2 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask 2 ic 1 < two slot 2 wrong 0 0 0.5 0 0 0 0 0 0 0 0.5

ask 3 ic 2 < two slot 2 wrong 0.2 0 0 0 0 0 0.6 0.2 0 0 0

ask 4 ic 3 < two slot 2 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

give help < two slot 2 wrong 0.1 0 0 0 0 0 0 0 0.9 0 0

open question < two slot 3 wrong 0 0.16 0.16 0.16 0.16 0.16 0 0 0 0.2 0

ask slot 1 < two slot 3 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask slot 2 < two slot 3 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

ask slot 3 < two slot 3 wrong 0 0 0 0.9 0 0 0 0.1 0 0 0

ask slot 4 < two slot 3 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

exp conf 1 < two slot 3 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

exp conf 2 < two slot 3 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

exp conf 3 < two slot 3 wrong 0 0 0 0.1 0 0 0.9 0 0 0 0

exp conf 4 < two slot 3 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

ask 1 ic 4 < two slot 3 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask 2 ic 1 < two slot 3 wrong 0.2 0 0 0 0 0 0.6 0.2 0 0 0

ask 3 ic 2 < two slot 3 wrong 0 0 0.5 0 0 0 0 0 0 0 0.5

ask 4 ic 3 < two slot 3 wrong 0.2 0 0 0 0 0 0.6 0.2 0 0 0

give help < two slot 3 wrong 0.1 0 0 0 0 0 0 0 0.9 0 0

Table A.2: The probability table for the Bayesian Net User Simulation. SP = System

Prompt, SC = Slot Counter, H = History, ic = implicitly confirm
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SP SC H quiet slot1 slot2 slot3 slot4 s1234 no rep no yes ask help h u

open question < two slot 4 wrong 0 0.16 0.16 0.16 0.16 0.16 0 0 0 0.2 0

ask slot 1 < two slot 4 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask slot 2 < two slot 4 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

ask slot 3 < two slot 4 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask slot 4 < two slot 4 wrong 0 0 0 0 0.9 0 0 0.1 0 0 0

exp conf 1 < two slot 4 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

exp conf 2 < two slot 4 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

exp conf 3 < two slot 4 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

exp conf 4 < two slot 4 wrong 0 0 0 0 0.1 0 0.9 0 0 0 0

ask 1 ic 4 < two slot 4 wrong 0 0 0.5 0 0 0 0 0 0 0 0.5

ask 2 ic 1 < two slot 4 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

ask 3 ic 2 < two slot 4 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask 4 ic 3 < two slot 4 wrong 0 0 0 0 0.5 0 0 0 0 0 0.5

give help < two slot 4 wrong 0.1 0 0 0 0 0 0 0 0.9 0 0

open question < two help 0.1 0 0 0 0 0 0 0 0 0 0.9

ask slot 1 < two help 0 0.1 0 0 0 0 0 0 0 0 0.9

ask slot 2 < two help 0 0 0.1 0 0 0 0 0 0 0 0.9

ask slot 3 < two help 0 0 0 0.1 0 0 0 0 0 0 0.9

ask slot 4 < two help 0 0 0 0 0.1 0 0 0 0 0 0.9

exp conf 1 < two help 0 0.1 0 0 0 0 0 0 0 0 0.9

exp conf 2 < two help 0 0 0.1 0 0 0 0 0 0 0 0.9

exp conf 3 < two help 0 0 0 0.1 0 0 0 0 0 0 0.9

exp conf 4 < two help 0 0 0 0 0.1 0 0 0 0 0 0.9

ask 1 ic 4 < two help 0 0.1 0 0 0 0 0 0 0 0 0.9

ask 2 ic 1 < two help 0 0 0.1 0 0 0 0 0 0 0 0.9

ask 3 ic 2 < two help 0 0 0 0.1 0 0 0 0 0 0 0.9

ask 4 ic 3 < two help 0 0 0 0 0.1 0 0 0 0 0 0.9

give help < two help 0.1 0 0 0 0 0 0 0 0.9 0 0

open question two plus null 0 0.16 0.16 0.16 0.16 0.16 0 0 0 0.2 0

ask slot 1 two plus null 0 0.4 0 0 0 0 0 0 0 0 0.6

ask slot 2 two plus null 0 0 0.4 0 0 0 0 0 0 0 0.6

ask slot 3 two plus null 0 0 0 0.4 0 0 0 0 0 0 0.6

ask slot 4 two plus null 0 0 0 0 0.4 0 0 0 0 0 0.6

exp conf 1 two plus null 0 0.1 0 0 0 0 0 0 0.9 0 0

exp conf 2 two plus null 0 0 0.1 0 0 0 0 0 0.9 0 0

exp conf 3 two plus null 0 0 0 0.1 0 0 0 0 0.9 0 0

exp conf 4 two plus null 0 0 0 0 0.1 0 0 0 0.9 0 0

ask 1 ic 4 two plus null 0 0.4 0 0 0 0 0 0 0 0 0.6

ask 2 ic 1 two plus null 0 0 0.4 0 0 0 0 0 0 0 0.6

ask 3 ic 2 two plus null 0 0 0 0.4 0 0 0 0 0 0 0.6

ask 4 ic 3 two plus null 0 0 0 0 0.4 0 0 0 0 0 0.6

give help two plus null 0.1 0 0 0 0 0 0 0 0.9 0 0

Table A.3: The probability table for the Bayesian Net User Simulation. SP = System

Prompt, SC = Slot Counter, H = History, ic = implicitly confirm
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SP SC H quiet slot1 slot2 slot3 slot4 s1234 no rep no yes ask help h u

open question two plus slot 1 wrong 0 0.16 0.16 0.16 0.16 0.16 0 0 0 0.2 0

ask slot 1 two plus slot 1 wrong 0 0.4 0 0 0 0 0 0 0 0 0.6

ask slot 2 two plus slot 1 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

ask slot 3 two plus slot 1 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask slot 4 two plus slot 1 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

exp conf 1 two plus slot 1 wrong 0 0.1 0 0 0 0 0.9 0 0 0 0

exp conf 2 two plus slot 1 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

exp conf 3 two plus slot 1 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

exp conf 4 two plus slot 1 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

ask 1 ic 4 two plus slot 1 wrong 0 0.4 0 0 0 0 0 0 0 0 0.6

ask 2 ic 1 two plus slot 1 wrong 0.3 0 0 0 0 0.3 0.3 0 0 0 0.1

ask 3 ic 2 two plus slot 1 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask 4 ic 3 two plus slot 1 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

give help two plus slot 1 wrong 0.1 0 0 0 0 0 0 0 0.9 0 0

open question two plus slot 2 wrong 0 0.16 0.16 0.16 0.16 0.16 0 0 0 0.2 0

ask slot 1 two plus slot 2 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask slot 2 two plus slot 2 wrong 0 0 0.4 0 0 0 0 0 0 0 0.6

ask slot 3 two plus slot 2 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask slot 4 two plus slot 2 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

exp conf 1 two plus slot 2 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

exp conf 2 two plus slot 2 wrong 0 0 0.1 0 0 0 0.9 0 0 0 0

exp conf 3 two plus slot 2 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

exp conf 4 two plus slot 2 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

ask 1 ic 4 two plus slot 2 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask 2 ic 1 two plus slot 2 wrong 0.4 0 0 0 0 0 0 0 0 0 0.6

ask 3 ic 2 two plus slot 2 wrong 0.3 0 0 0 0 0 0.3 0.3 0 0 0.1

ask 4 ic 3 two plus slot 2 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

give help two plus slot 2 wrong 0.1 0 0 0 0 0 0 0 0.9 0 0

open question two plus slot 3 wrong 0 0.18 0.18 0.18 0.18 0.18 0 0 0 0.1 0

ask slot 1 two plus slot 3 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask slot 2 two plus slot 3 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

ask slot 3 two plus slot 3 wrong 0 0 0 0.4 0 0 0 0 0 0 0.6

ask slot 4 two plus slot 3 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

exp conf 1 two plus slot 3 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

exp conf 2 two plus slot 3 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

exp conf 3 two plus slot 3 wrong 0 0 0 0.1 0 0 0.9 0 0 0 0

exp conf 4 two plus slot 3 wrong 0 0 0 0 0.1 0 0 0 0 0 0.9

ask 1 ic 4 two plus slot 3 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask 2 ic 1 two plus slot 3 wrong 0.3 0 0 0 0 0 0.3 0.3 0 0 0.1

ask 3 ic 2 two plus slot 3 wrong 0 0 0.4 0 0 0 0 0 0 0 0.6

ask 4 ic 3 two plus slot 3 wrong 0.3 0 0 0 0 0 0.3 0.3 0 0 0.1

give help two plus slot 3 wrong 0.1 0 0 0 0 0 0 0 0.9 0 0

Table A.4: Probability table continued. SP = System Prompt, SC = Slot Counter, H =

History, ic = implicitly confirm
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SP SC H quiet slot1 slot2 slot3 slot4 s1234 no rep no yes ask help h u

open question two plus slot 4 wrong 0 0.18 0.18 0.18 0.18 0.18 0 0 0 0.1 0

ask slot 1 two plus slot 4 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

ask slot 2 two plus slot 4 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

ask slot 3 two plus slot 4 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask slot 4 two plus slot 4 wrong 0 0 0 0 0.9 0 0 0 0 0 0.1

exp conf 1 two plus slot 4 wrong 0 0.1 0 0 0 0 0 0 0 0 0.9

exp conf 2 two plus slot 4 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

exp conf 3 two plus slot 4 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

exp conf 4 two plus slot 4 wrong 0 0 0 0 0 0 0.9 0.1 0 0 0

ask 1 ic 4 two plus slot 4 wrong 0 0 0.4 0 0 0 0 0 0 0 0.6

ask 2 ic 1 two plus slot 4 wrong 0 0 0.1 0 0 0 0 0 0 0 0.9

ask 3 ic 2 two plus slot 4 wrong 0 0 0 0.1 0 0 0 0 0 0 0.9

ask 4 ic 3 two plus slot 4 wrong 0 0 0 0 0.4 0 0 0 0 0 0.6

give help two plus slot 4 wrong 0.1 0 0 0 0 0 0 0 0.9 0 0

open question two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

ask slot 1 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

ask slot 2 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

ask slot 3 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

ask slot 4 two plus help 0.1 0 0 0 0.9 0 0 0 0 0 0.9

exp conf 1 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

exp conf 2 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

exp conf 3 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

exp conf 4 two plus help 0.1 0 0 0 0 0 0.9 0 0 0 0.9

ask 1 ic 4 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

ask 2 ic 1 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

ask 3 ic 2 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

ask 4 ic 3 two plus help 0.1 0 0 0 0 0 0 0 0 0 0.9

give help two plus help 0.1 0 0 0 0 0 0 0 0.9 0 0

Table A.5: Probability table continued. SP = System Prompt, SC = Slot Counter, H =

History, ic = implicitly confirm
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Spoken Dialogue System user

evaluation questionnaire

OVERALL INSTRUCTIONS:

You are driving towards a town that you don’t know well. You can speak to your

in-car information system to hear information about the town. The system will also

show you items on the map display.

Please REMEMBER to wait for the ‘BEEP’ before speaking!!

Try to complete the following tasks, using normal conversation as you would expect

to with a human. You will go through the 5 tasks three times, each time with a slightly

different version of the system. You can press the ‘stop’ button at the end of each task

when you have chosen a particular bar/hotel/restaurant to allow a pause for answering

the questions on the form. Use a cross to choose a number the first time through the

five tasks, a circle, the second time, and a square the third time. Press ‘go’ to continue

the dialogue.

If you have no preference about something that you are asked,you can say things

like ‘I don’t mind’ or ‘don’t know’ , and so on. You can ask the system for help but

the experimenter will not assist you with the tasks. If you are really struggling with a

task you can ask the system to restart or quit. If the system isfailing to recognise these

commands, press the stop button and tell the experimenter. Please tell the experimenter

238
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each time you complete the five tasks.

TASK 1:

You are on a business trip on your own. You need to find a hotel room in the mid-

dle of the town. Price is no problem.

Write the name of result that the system presented to you (e.g. FOG BAR) here:

—————————————————-

Was this the item that matched your search? Yes / No

Please indicate your degree of agreement with each statement below.

1:Strongly Disagree 2:Disagree 3:Neutral 4:Agree 5:Strongly agree

In this conversation, it was easy to get the information thatI wanted.

1 2 3 4 5

The system worked the way I expected it to, in this conversation.

1 2 3 4 5

Based on my experience in this conversation, I would like to use this system regularly.

1 2 3 4 5

TASK 2:

You are hungry and in the mood for some Chinese egg-fried-rice. You want to eat

somewhere near your hotel, which is in the centre of the town.You don’t want any-

thing too expensive, nor too cheap.
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Write the name of result that the system presented to you (e.g. FOG BAR) here:

—————————————————-

Was this the item that matched your search? Yes / No

Please indicate your degree of agreement with each statement below.

1:Strongly Disagree 2:Disagree 3:Neutral 4:Agree 5:Strongly agree

In this conversation, it was easy to get the information thatI wanted.

1 2 3 4 5

The system worked the way I expected it to, in this conversation.

1 2 3 4 5

Based on my experience in this conversation, I would like to use this system regularly.

1 2 3 4 5

TASK 3:

You just want to find somewhere for a beer, again near your hotel.

Write the name of result that the system presented to you (e.g. FOG BAR) here:
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—————————————————-

Was this the item that matched your search? Yes / No

Please indicate your degree of agreement with each statement below.

1:Strongly Disagree 2:Disagree 3:Neutral 4:Agree 5:Strongly agree

In this conversation, it was easy to get the information thatI wanted.

1 2 3 4 5

The system worked the way I expected it to, in this conversation.

1 2 3 4 5

Based on my experience in this conversation, I would like to use this system regularly.

1 2 3 4 5

TASK 4:

It is 6 months later and you are driving towards the same town.You want to take a

friend out for a luxurious meal, at a French place. Since you are driving it doesn’t

matter where the restaurant is located.

Write the name of result that the system presented to you (e.g. FOG BAR) here:

—————————————————-

Was this the item that matched your search? Yes / No

Please indicate your degree of agreement with each statement below.
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1:Strongly Disagree 2:Disagree 3:Neutral 4:Agree 5:Strongly agree

In this conversation, it was easy to get the information thatI wanted.

1 2 3 4 5

The system worked the way I expected it to, in this conversation.

1 2 3 4 5

Based on my experience in this conversation, I would like to use this system regularly.

1 2 3 4 5

TASK 5:

It is a year later, and you are on holiday. You need a single room somewhere for

the night but you are not fussy about where because you are driving.

Write the name of result that the system presented to you (e.g. FOG BAR) here:

—————————————————-

Was this the item that matched your search? Yes / No

Please indicate your degree of agreement with each statement below.

1:Strongly Disagree 2:Disagree 3:Neutral 4:Agree 5:Strongly agree

In this conversation, it was easy to get the information thatI wanted.

1 2 3 4 5
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The system worked the way I expected it to, in this conversation.

1 2 3 4 5

Based on my experience in this conversation, I would like to use this system regularly.

1 2 3 4 5
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