-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Archive

Using Dialogue Acts in dialogue strategy

learning: optimising repair strategies

Matthew Frampton

Doctor of Philosophy
Institute for Communicating and Collaborative Systems
School of Informatics
University of Edinburgh

2008

https://core.ac.uk/display/429733523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

A Spoken Dialogue System’s (SDS’s) dialogue strategy $iesaivhich action it will
take depending on its representation of the current di@@gutext. Designing it by
hand involves anticipating how users will interact with thestem, and/or repeated
testing and refining, and so can be a difficult, time-consgni@isk. Since SDSs in-
evitably make understanding errors, a particularly imgairtissue is how to design
“repair strategies”, the parts of the dialogue strategycWlaittempt to get the dialogue
“back-on-track” following these errors.

To try to produce better dialogue strategies with less time effort, previous re-
searchers have modelled a dialogue strategy as a sequiatision problem called
a Markov Decision Process (MDP), and then applied Reinfoss# Learning (RL)
algorithms to example training dialogues to generate disdcstrategies automatically.
More recent research has used training dialogues condwatedimulated rather than
real users and learned which action to take in all dialogugesas, (a “full” as op-
posed to a “partial” dialogue strategy) - simulated usdmainore training dialogues
to be generated, and the exploration of new dialogue camttpresent in an original
dataset. As yet however, limited insight has been providet avhich dialogue con-
textual features are important to include in the MDP and whgteed, a full dialogue
strategy has not been learned from training dialogues wigalistic probabilistic user
simulation derived from real user data, and then shown téxweil with real users.

This thesis investigates the value of adding new lingwuadiifemotivated contextual
features to the MDP when using RL to learn full dialogue styas for SDSs. These
new features are recent Dialogue Acts (DAs). DAs indicagertite or intention of an
utterance in a dialogue e.g. “provide-information”, aretdnce being a complete unit
of a speaker’s speech, often bounded by silence. An acqui@babilistic user simula-
tion learned from real user data is used for generatingitr@aialogues, and the recent
DAs are shown to improve performance in testing in simutaiad with real users.
With real users, performance is also better than other congpkearned and hand-
crafted strategies. Analysis of the strategies, and fudimsulation experiments show
how the DAs improve performance through better repairagias. The main findings
are expected to apply to SDSs in general - indeed our stestege learned and tested
on real users in different domains, (flight-booking versusrist information). Com-
parisons are also made to recent research which focusesnaltifgaunderstanding
errors in SDSs, but which does not use RL or user simulations.

Acknowledgements

| wish to thank my thesis superviser Oliver Lemon for his ekpe and guidance.
| would also like to thank Kallirroi Georgila for technicassistance, and a nhumber
of people who provided me with useful feedback on my reseatalarious stages.
These include Steve Renals, Mark Hepple, Mirella Lapateqdtii Shimodaira, Mark
Steedman, Diane Litman, Joel Tetreault, and the anonyneviesvers of papers which
| submitted. Finally | would also like to thank the people wdwied as subjects in my
user evaluation experiments.

Declaration

| declare that this thesis was composed by myself, that th& wantained herein is
my own except where explicitly stated otherwise in the tert that this work has not
been submitted for any other degree or professional quatiiic except as specified.

(Matthew Framptoh

Table of Contents

1 Introduction 1
1.1 Motivation 1
1.1.1 Concepts and issues involved in designing a dialogatgy 3
1.1.2 Using Reinforcement Learning in dialogue strategygfeand
the scope of previousresearch 6
1.2 Thesiscontributions 8
1.3 Thesisoverview 11
1.3.1 Chapter 2: Markov Decision Processes and Reinfoncelnearn-
NG . . o e e 11
1.3.2 Chapter 3: Previous research on Reinforcement Lreaiofi
dialogue strategies oL 11
1.3.3 Chapter 4. The Reinforcement Learning setup and jobof
conceptexperiments oo 11
1.3.4 Chapter 5: Learning with real user data: n-gram useuls-
tionexperiments 12
1.3.5 Chapter 6: Testing the learned strategiesonread user . . 13
1.3.6 Chapter 7: Investigating the role of Dialogue Actsaarhing
repairstrategies 13
1.3.7 Chapter 8: Summary and conclusions 14
2 Markov Decision Processes and Reinforcement Learning 15
2.1 Introduction 15

2.2 Advantages of using Reinforcement Learning for diatkognanagement 16

2.3 Definingtheproblem, 17
2.4 TheMarkov Property 18
2.5 Markov DecCiSion Processes 20
2.6 Valuefunctions 20
2.6.1 Definitions for state and state-action value funstion. . . . 21
2.6.2 Bellman equations for value functions 21
2.6.3 Bellman optimality equations for value functions 23
2.6.4 Deriving the optimal policy from a value function 24
2.7 Dynamic Programming 25
2.7.1 Policyevaluation 25
2.7.2 Policyimprovement 26
2.7.3 Generalized Policy Iteration 28

2.8 Model-based and simulation-based approaches to tgachalogue

strategies 28
2.8.1 The model-basedapproach 28
2.8.2 The simulation-based approach 29
2.9 Generating and using soft training policiesinRL 31
2.9.1 Action selection for soft training policies 31
2.9.2 On-policy versus off-policy methods 32
2.10 MonteCarloLearning. 32
2.10.1 Policy Evaluation 33
2.10.2 Example of a Monte Carlo algorithm 34
2.11 Temporal Difference Learning 34
2.11.1 Policyevaluation 35
2.11.2 Anon-policy TDL algorithm: Sarsa 35
2.12 Eligibility Traces 36

2.12.1 Eligibility Traces as a bridge between MC and TDL rodth. 37

2.12.2 Accumulating versus replacing Eligibility Traces 38

2.13 Summary e e e e e 39
3 Previous research on Reinforcement Learning of dialoguetsategies 41
3.1 Introduction 41

3.2

3.3

3.4

3.5

3.6

3.1.1 Properties shared by all approaches: slot statugésainitia-
tive and confirmation actions 43

Early theory and proof-of-concept: Levin and Pieraict897 and 2000 43

3.2.1 State features and actionset, 43
3.22 Rewardfunction 44
3.23 Usersimulation 45
3.2.4 Experimentalresults 46
325 Summary e e 47

RL using data from real users: initial results from Siegal. 1999-2002 48

3.3.1 State featuresand actionsets 49
3.3.2 Rewardfunctions oL 50
3.3.3 Experimentalresults 50
Predicting user satisfaction and defining reward: Wa2k®0 52
3.4.1 State featuresandactionsets 52
3.4.2 PARADISE and the reward function 54
3.4.3 Experimentalresults 56

Learning with simulated users and ASR errors:

PietquinandRenals 2002 56
3.5.1 State features and actionsets 57
3.5.2 Rewardfunctions oL 57
3.5.3 A sstochastic user and error simulation 58
3.5.4 Experimentalresults 60

A goal-directed user simulation and error model withbaiailities
learned from data: Scheffler and Young2002 61

Vi

3.7

3.8

3.9

3.6.1 State features and actionsets 61

3.6.2 Rewardfunction 62
3.6.3 Usersimulationand errormodel 62
3.6.4 Experimentalresults 63

Reinforcement Learning for both user and system: Emglisd Hee-

man 2005 64
3.7.1 State features and actionsets 65
3.7.2 Rewardfunctions 66
3.7.3 User simulation using Reinforcement Learning 66
3.7.4 Experimentalresults 66

Alternative learning approaches and feature seleddaak and Chick-

ering 2005 67
3.8.1 State featuresandactionsets 68
3.8.2 Rewardfunctions 70
3.8.3 Usersimulation 70
3.8.4 Experimentalresults 70

Feature selection in RL for tutorial dialogue systemstrdault and

Litman2006 e 71
3.9.1 Statefeaturesandactionsets 72
3.9.2 Rewardfunctions oL 73
3.9.3 Experimentalresults 74

3.10 Learning in large state spaces via a generalisatiomadetienderson,

Lemon and Georgila 2005-2008 75
3.10.1 DATE Dialogue Acttaggingscheme 76

3.10.2 State features and action set for Linear Functiorréypmation 78

3.10.3 Reward function 79
3.10.4 Stochastic User simulations 80
3.10.5 Experimentalresults, 81

Vii

3.11 Summary andopenproblems
3.11.1 Learningmethods.
3.11.2 Comparingthe Statespaces
3.11.3 Differentreward functions
3.11.4 User simulation and error modelling methods 85
3.11.5 Openproblems,

3.12 Conclusion

The Reinforcement Learning setup and proof-of-concept eperiments 89

4.1 Introduction

4.2 The experimental setup for Reinforcement Learning 90
421 Introduction.
4.2.2 Overviewofasingleexchange
4.2.3 The reinforcement learner’'s parameter settings 93
4.2.4 Bayesian Network user simulation

4.3 Experiment 1: a first attempt at improving the learnedtsgy with

the userslast Dialogue Act 100

4.3.1 Hypothesis: Adding the user’s last Dialogue Act to stege

will improve the learned strategy 101

4.3.2 Staterepresentations,

4.3.3 The actionsetforthelearner

434 Therewardfunction 102
435 Results 102
4.3.6 Analysis 103

4.4 Experiment 2: a second attempt at improving the leartrategy with

theuserslast Dialogue Act 106

4.4.1 Hypothesis: Adding the user’s last Dialogue Act to stete

will improve the learned strategy 106

4.4.2 Staterepresentations

viii

4.4.3 The actionsetforthelearner 107
444 Therewardfunction 108
445 Resultsandanalysis 108

4.5 Experiment 3: scaling-up and investigating differeatning reward
functions 108

4.5.1 Hypothesis 1. Scaling up to a more commercially-séali
number of slots does not cause intractability 910

4.5.2 Hypothesis 2: Rate of learning will be fastest with alt-tr-

nothing” training reward function 110
45.3 State Representation 110
4.5.4 The actionsetforthelearner 111
455 Resultsandanalysis 112
4.6 SUMMANY e e e e e 114
Learning with real user data: n-gram user simulation expeiments 116
5.1 Introduction 116
5.2 Experimental methodology 711
5.2.1 The reinforcement learner’s parameter settings 119
5.2.2 The n-gram user simulations and their limitations 119
5.2.3 Trainingandevaluation. 123

5.3 Three slot experiment to investigate the usefulneseaant Dialogue
ACES . . . 124

5.3.1 Hypothesis: Adding recent Dialogue Acts to the staliam-

prove the learned strategy 124
5.3.2 Staterepresentations, 125
5.3.3 The actionsetforthelearner 125
5.3.4 Therewardfunction, 126
5.3.5 The Dialogue Manager’s context updaterules126
536 Results 127

53.7 Analysis 130

5.4 Four-slot experiment to investigate the usefulnesgodémt Dialogue

ACES . . . 146
54.1 Introduction. 146
542 Results 147
543 Analysis 151
5.5 Conclusion: Adding recent Dialogue Acts to the stateroues the
learned strategy 155
Testing the learned strategies on real users 158
6.1 Introduction 158
6.2 Relatedwork 159
6.3 Methodology 161
6.3.1 Overview of the TownInfosystem 161
6.3.2 Actionretrievalagent L. 164

6.3.3 Porting strategies from the COMMUNICATOR to the Town-

Inffodomain 166
6.3.4 Evaluation methodology 167
6.4 Results. 169
6.5 Analysis 171
6.5.1 The DA2 Strategy versus the Slot-Status and hantedrsirate-
0IES . . . e 171
6.5.2 The DA2 Strategy versus the Hybrid Strategy of Heraters
etal. (2008) 174
6.6 Summary e e 180
Investigating the role of Dialogue Acts in learning repairStrategies 182
7.1 Introduction 182
7.2 Are Dialogue Acts only useful for repair strategies? 183

7.3

7.4

7.5

7.6

7.2.1 Hypothesis: Dialogue Acts improve the learned sgsately

through better repair strategies for SSFU states 84 1
7.2.2 Methodology 184
7.2.3 ResultsandAnalysis 185

7.2.4 Conclusion: Dialogue Acts improve the learned siratmly
through better repair strategies for SSFU states 85 1

Are Dialogue Acts useful for choosing which repair siggtto use? . 186

7.3.1 Hypothesis: Dialogue Acts are useful for choosingcihie-

pair strategytouse 187
7.3.2 Methodology 187
7.3.3 ResultsandAnalysis 189
7.3.4 Conclusion: Dialogue Acts are useful for choosingolhie-

pair strategytouse 192
Repair strategies that avoid repetition. 193

7.4.1 Hypothesis: Any kind of sensible avoidance of refmetits an

optimalrepairstrategy L. 194
7.4.2 Methodology 194
743 ResultsandAnalysis 195

7.4.4 Conclusion: Any kind of sensible avoidance of repmtitis
not guaranteed to be an optimal repair strategy 197

Experiment to investigate the relative importance efltst user and
systemturns L 197

7.5.1 Hypothesis: The last user turn is more important tharlast

systemturn 198
7.5.2 Methodology 198
753 Results 198

7.5.4 Conclusion: The last user turn is more important thandst
systemturn 202

Previous research on repair strategies for
non-understandingerrors e 203

Xi

7.6.1 Introduction. 203

7.6.2 Exploring human non-understanding error repaiteggias: Skantze
2003 . . 203

7.6.3 Using the Wizard-of-Oz method to study non-undeditan
error repair strategies: Bohus and Rudnicky 2005 8 20

7.6.4 Comparison with the findings of the experimental wdrhs

thesis 215
7.7 Chaptersummary e 217
8 Summary and conclusions 219
8.1 Thesissummary e 219

8.1.1 Preliminary proof-of-concept Reinforcement Leagexperi-
MeNnts e 220

8.1.2 Learning with real user data: n-gram user simulatipegments222
8.1.3 Testing the learned strategiesonrealusers 224

8.1.4 Investigating the role of Dialogue Acts in learningag strate-

OIBS . . . e e 225
8.2 Conclusionsand futurework 722
A Bayesian Network user simulation probability table 233
B Spoken Dialogue System user evaluation questionnaire 238
Bibliography 244

Xii

Chapter 1

Introduction

1.1 Motivation

Spoken Dialogue Systems (SDSs) are human-computer ioésrthat enable humans
to have spoken dialogues with computers, and can be useat @itlplace of, or as
a complement to the traditional Graphical User Interfac&ljGThe motivation for
SDSs is that since spoken dialogue enables humans to efiiggrdfand productive
interactions with one another, given sufficiently advantathnology, the same can
be true for human-computer interactions. Figure 1.1 is plgcal representation of
a generic SDS and shows the key basic components. One ofdbegmnents is the
Dialogue Manager (DM), the main functions of which are tomhain a representation
of the current dialogue context, and based on this reprasent to specify which ac-
tion the system will take next. This is likely to be one or mateerances, (units of
speech, often bounded by silence), but might also be sonee kitiid of action such as
a database query to retrieve information for the user. ThésDhapping between rep-
resentations of dialogue contexts and system actions wikiag adialogue strategy
and clearly the dialogue strategy should be designed tommsgia dialogue’s overall
chances of success, however this may be defined. It is dialstyategy design for
SDSs to which this thesis directly relates.

The next section here introduces some of the main concegtsames which are re-
lated to dialogue strategy design and which are partigutatévant to the experimental
work of this thesis. In doing so, it tries to give an impressod how designing a dia-
logue strategy by hand can be a complicated and time-congutask. This fact has

Chapter 1. Introduction

Speech

User

Speech

Automatic | Text Natural
Speech » Language
Recogniser Understanding
Dialogue Act
Dialogue <« = Database
Manager
Dialogue Act
Text-to Natural
Speech = Language
Synthesiser Téxt | Generation

Figure 1.1: The basic architecture of a generic Spoken Dialogue System; The input

components, (the Automatic Speech Processing and Natural Language Understand-

ing components), try to interpret user utterances, and the output components, (Natural

Language Generation and Text-To-Speech synthesiser), generate utterances; The Dia-

logue Manager (DM) maintains a representation of the dialogue context and executes

a dialogue strategy; A Dialogue Act (DA) is defined in Section 1.2 as a representation

of the role/intention of an utterance in a dialogue.

been the spur for a field of research whose goal is to produter lokalogue strategies

with less time and effort, and whose basic approach has loeeseta particular kind

of algorithm to automatically derive dialogue strategiesif appropriate datasets. It

is this field of research that this thesis seeks to extendsarfslection 1.1.2 goes on

to outline the scope of previous research and motivate thererental work of later

chapters.

Chapter 1. Introduction 3

1.1.1 Concepts and issues involved in designing a dialogue s trat-

egy

Designing a dialogue strategy by hand, even for a relatisighple Spoken Dialogue
System (SDS), can be a difficult and time-consuming procé&ks. limitations of an
SDS mean that human-machine dialogue is quite differenaiare to human-human
dialogue (Fraser and Gilbert, 1991), and that action clsomast be made based on
sometimes highly imperfect representations of the diadoguntext - representations
that potentially include a lot of information, varying ammas of which will be either
relevant, inaccurate (e.g. as a result of Automatic Speadoghition (ASR) errors),
or irrelevant. Thus, designers of a dialogue strategy may ne@ spend a large amount
of time anticipating how potential users will interact witie system, and/or on re-
peated testing and refining. In this section, we use an exadiglogue to introduce
relevant concepts and terms, and to try to give an impressgitme non-trivial nature
of dialogue strategy design.

1.1.1.1 Information-slot-filling Spoken Dialogue Systems

Table 1.1 shows a hypothetical dialogue between a user andTdwninfo” SDS
(Lemon et al., 2006b) which is used in an experiment desdribethis thesis, and
whose purpose is to help the user to find local restaurants aoa hotels. The Town-
Info system is an example of amformation-slot-fillingSDS, (“slot-filling” for short),
and most of the relevant previous research, and all of thererpntal work in this the-
sis concerns dialogue strategy design for informatiot#llong SDSs. Information-
slot-filling SDSs attempt to obtain preferences from the,(§# slots), and then based
on these preferences, (slot-values), they retrieve arsgptsuitable entries from a rel-
evant information source such as a database. Preferendes tve TownInfo system
asks the user for includgpee.g. type of foodprice-rangeandlocation Of course, if
no options are found, then a sensible dialogue strategyaskithe user to relax one or
more of their preferences, while if there are many optionantit will ask for further
preferences, (assuming that there are further preferéaeek for).

Chapter 1. Introduction 4

Turn System transcript Turn User (ASR)

1 Welcome to the TownInfo tourise information systerj, 2 i want a restaurant
how may i help you?

Did you say restaurant? 4 yes

What kind of food are you looking for? 6 [asr_rejection]

Would you like it to be cheap, reasonable or expensiveB [out-of-domain]

Would you like it to be cheap, reasonable or expensive20 | reasonably priced

11 | Areasonably-priced restaurant, in what area of town? 12 | [out-of-domain]

13 | I can answer simple requests such as ..., howmay || 14 | achinese restaurant

help you?
15 | A chinese restaurant, in what area of town? 16 | no french
17 | Afrench restaurant, in what area of town? 18 | central
19 | Did you say central? 20 | yes

21 | Please wait a moment while | find a reasonably-priced

central French restaurant. The first of two options ...

Table 1.1: A hypothetical example dialogue between a tourist information Spoken Dia-
logue System and a user. The transcript for the user’s utterances is that generated by

the speech recogniser.

1.1.1.2 Understanding errors in Spoken Dialogue Systems

Due to the limitations of their input components, (the Autdim Speech Recognition
(ASR) and Natural Language Understanding (NLU) compongei@BSs inevitably
make understanding errordlon-understandingare a first broad category of under-
standing error, and these occur when the system fails toroaty interpretation for
what the user just said, or is not confident enough to chooped@fi interpretation.
In this thesis, we define a non-understanding to mean thasybiem failed to ob-
tain a “within-domain” interpretation - an interpretatiovhich means something to
the system in question e.g. for the TownInfo system, somgthelating to the type,
price or location of a restaurant/hotel/bar, or one of a ks®lof simple commands
such as “Start over”). Turns 6, 8, and 12 in Table 1.1 are thexeexamples of non-
understanding errors. In turn 6, there is @8R rejectionwhich means that either
the ASR component could not form a hypothesis for what the st said with a
sufficient degree of confidence to consider it reliable, at thfailed to form any hy-

Chapter 1. Introduction 5

pothesis at all. By contrast, in turns 8 and 12, the ASR corapbforms a hypothesis
for what the user said, but no within-domain interpretatan be derived from it and
so the utterance is considered “out-of-domain”. Often gsthcases, the original user
utterance is in fact within-domain and is considered outl@hain due to ASR errors
(misrecognised words). The second broad category of utaghelieg error ignisun-
derstandings These occur when the SDS forms an interpretation whichtismiane
with the user’s intentions, and for an information-slolifity SDS, this would mean
that the system has obtained an incorrect slot-value. m1@rin Table 1.1, following
the system’s attempt to confirm an incorrect slot-value,uer indicates the misun-
derstanding error.

1.1.1.3 The non-trivial nature of dialogue strategy design . repair strategies and

initiative

To try to give more of an impression of the non-trivial natafedialogue strategy

design for SDSs, we now consider “repair strategies”, thtspd a dialogue strategy
which try to get the dialogue “back-on-track” following uerdtanding errors. We start
with repair strategies for non-understandings.

Following a non-understanding error then, it is often uaclhich repair strategy is
best to use. For example, should the system repeat the prenigt caused the non-
understanding, (turn 9), or is this a bad thing to do becatusdikely to frustrate the
user and cause another non-understanding? Alternatstebyld the SDS switch fo-
cus to a different slot, (turn 7), but if so, which one, or slddtinstead use some kind
of “give help” function, (turn 13) in order to inform/remiritie user of the system’s
capabilities/limitations? As the number of possible repaategies available to the di-
alogue strategy designer increases, the opportunitieake more appropriate choices
for the current dialogue context may also increase, but sieenill the complexity of
the problem of finding these most appropriate choices. Likadion choices, the
decision of which repair strategy to apply must be based enirtformation in the
system’s representation of the dialogue context, but wifatmation is important is
also likely to be unclear. Again, as the amount of infornratio the representation
increases, the opportunities to make better repair siyatiegices may also increase,
but so will the complexity of the problem.

Which repair strategies are best to use following diffenggdr indications of misun-

Chapter 1. Introduction 6

derstanding errors is another potential area for uncéytaifor example, in turn 17
it seems sensible for the system to re-confirm the problem @lot doing so might
disconcert the user), but had the system already failed dauof times to correctly
fill this slot, would it instead be better to give up and mové& omorder to try to detect
misunderstanding errors in the first place, a dialogueegyatay use implicit and
explicit confirmation, (turn 11 is an example of the formerddurn 19, of the latter).
However, the dialogue strategy designer may not wish theesys over-use confir-
mation for fear of irritating the user, and so this then pnés¢he problem of deciding
when it is necessary to confirm, and when not.

A further important concept in dialogue strategy designolis related to understand-
ing errors and repair strategies, and which will be menticagain at various points in
this thesis, isnitiative. The concept of “having the initiative” can be loosely defirmes
having the greater control in directing the dialogue. Imsus and 7, the system has the
initiative because it asks for a specific piece of informatiBy contrast, in turns 1 and
13 it asks open-ended questions and so invites the user pdysay within-domain
information that they please, thus giving the initiativethe user. Table 1.1 may be
referred to as anixed-initiativedialogue, because sometimes the system has the initia-
tive, and sometimes the user. Another problem for the disdsjrategy designer then,
is to decide when it is appropriate for the system to take tit@&ative, and when to
give it to the user. For example, if the system asks an opdeeequestion at the start
of the dialogue, then this might often induce users to supgyeater number of pref-
erences in their first turn. This could be a desirable or unalgle outcome depending
on whether such user turns are likely to be subject to uraledsig errors. If they
are, then it will probably set the system back in its goal afcessfully completing the
dialogue, but if they are not, then the opposite is true.

1.1.2 Using Reinforcement Learning in dialogue strategy de sign

and the scope of previous research

Due to the difficult nature of designing dialogue strategmsvious researchers have
begun to investigate howachine learningcan be applied to the problem. Machine
learning is a broad subfield of artificial intelligence, ah@oncerns algorithms and
technigues that allow computers to “learn” to perform a thglextracting rules and
patterns from (usually large) appropriate datasets. Fadogue strategy design, start-

Chapter 1. Introduction 7

ing with Levin and Pieraccini (1997), previous researcherge chosen to use a ma-
chine learning approach which involves modelling a diakgtrategy as a sequential
decision problem called a Markov Decision Process (MDP).MDP is defined in
terms ofstates actionsand numericatewards and in the case of a dialogue strat-
egy, states are system representations of the dialoguextpattions correspond to
system actions, and higher rewards are assigned to dialoagoieh have favourable
conclusions e.g. task completion, short length, high uagsfaction. The goal then
is to find the action in each state which,on average will |eaithé¢ greatest long-term
reward. Happily, Reinforcement Learning (RL) algorithmdyich work using trial-
and-error search, can be applied to example training di@®g order to try to solve
this problem, and in doing so, generate a dialogue stratagyraatically.

If we are to use RL to learn which is the best action to take lipagsible contexts,
(“full” as opposed to “partial” dialogue strategies), ther require a large number of
training dialogues. In general, generating a sufficierdhgé number of training dia-
logues with real users will be infeasible due to time and fpbgsost constraints, and
SO a user simulation, a predictive user model for simulatisgr responses (Schatz-
mann et al., 2006), must be used instead. This user simulatigst simulate real
users as accurately as possible. If it does not accuratelylaie real users, then we
risk learning a dialogue strategy that may work well with tiser simulation, but not
with real users. Ideally, to create an accurate user siioalaan empirical approach
should be taken, and this means creating a stochastic nselasion whose probabil-
ities are derived from real user data Bapervised Learning (Slelg. Georgila et al.
(2005a). SL algorithms are machine learning algorithmsctvigienerate a function
that maps inputs to desired outputs - in the case of a uselaiony inputs are rep-
resentations of the dialogue context, and outputs are esponses. If taking this
approach to create a user simulation requires first catigetew data, then it could be-
come very time-consuming. However, the finding made by Leetal. (2006a) that
a strategy learned in one information slot-filling domaitiglit-booking), can work
well in another, (tourist information) is encouraging. Flsuggests that at least for
information-slot-filling systems, it should be unneceggarcollect new training data
for every different domain, and indeed that data from d#ferslot-filling domains can
be pooled.

In any case, in using RL to learn full dialogue strategiedy &@cheffler and Young

LIf the output of the function is a continuous value, then itadledregression and if it predicts a
class label of the input object, then itdgssification

Chapter 1. Introduction 8

(2002) has used a stochastic user simulation whose priegbdre derived from real
user data, but Scheffler and Young’s learned strategy wathenttested and shown to
work well with real users. Additionally, like other previsuesearch which involved
learning full dialogue strategies with a user simulatiag (€ietquin and Renals 2002),
Scheffler and Young included little contextual informatiarthe RL state - onlyslot-
statusfeatures (e.g. for each information slot, whether it is dilnd/or confirmed),
and no linguistically-motivated features. Hence it pr@gdittle insight as to what
contextual features should be represented in the statedonihg a better dialogue
strategy and why. Henderson et al. (2005, 2008), where aglialstrategy was learned
from a fixed dataset, is the only example of previous resdaralhnich a large amount
of contextual information is included in the RL state. Sunlamount would have been
intractable for standard RL, and so Henderson et al. applidgibrid RL/Supervised
Learning (SL) approach where the SL component restricteddharned strategy to
states for which there was data, and additionally the RL aomept was augmented
with a generalisation technique in order to generalise fafyserved to unobserved
states. However, including all of the available contexfeatures in the RL state did
not provide insights as to which were important and why, dretd is no qualitative
analysis of the learned strategy. Indeed there is also tkstigm of how well the
learning approach really worked - would it be possible toriess good as, or an even
better dialogue strategy with much less information in tiagesand standard RL?

1.2 Thesis contributions

The work of this thesis concerns the issues described abbve.main aims are to
identify new contextual features which can improve theredrstrategy if included in
the RL state, and to understand why they cause improvem@&iten what was said
above, our basic approach must therefore be to train fulbgiee strategies with accu-
rate user simulations, and then to confirm that they work wigh real users by testing
them on real users. Following a set of preliminary RL expents, this is what we go
on to do. The new contextual features which we choose to foouwse linguistically-
motivated, namely recent Dialogue Acts (DAs). A Dialogud fgA), alternatively
referred to as apeech agtor adialogue moveis a concept from semantic and prag-

Chapter 1. Introduction 9

matic theory of languadgSearle, 1969), and is used to indicate the role or intention
of an utterance within a dialogue. For example, if we weredbng@ a DA-schema
for utterances in TownInfo dialogues, we might represent &in Table 1.1 with a
DA such as “requesfiood type”, and turn 18 with “providdood location”. Various
DA-schemas have been designed to fit the needs of previcemsrobs and descriptions
can be found in the literature e.g. Dialogue Act Markup ine3al’/Layers (DAMSL)
(Core and Allen, 1997), Dialogue Act Tagging scheme for Eatibn of SDSs (DATE)
(Walker and Passonneau, 2001). Besides investigatingsttfelness of recent DASs,
other aims of this thesis are to investigate whether ounkzhstrategies outperform
a state-of-the-art hand-crafted strategy, and the Hyhtrgt&yy of Henderson et al.
(2008), and if so, to understand why.

The main contributions of this thesis can be summarised|bs\s:

e A complete literature review of previous research on usihgddearn dialogue
strategies is provided.

e Analysis is made of suitable RL parameter settings for iegrdialogue strate-
gies, and of the effect on the learned strategy of differeward functions based
on task completion and dialogue length.

e When training and testing with different stochastic usemsations whose prob-
abilities are derived from real user data, results showatlding the DAs of the
last user and then system turn to the slot-status featuesogl in the state pro-
duces significant incremental improvements in the leartradegy. Our learned
strategies are also shown to achieve better evaluatiorst¢ban the Hybrid
Strategy of Henderson et al..

e Results from real user tests show that a strategy trainddamié of these user
simulations, and with a state containing slot-status andneDA features, sig-
nificantly outperforms both a strategy learned with only-sliatus features, and
a state-of-the-art hand-crafted strategy. Again, ounkedustrategy also achieves
better evaluation scores than the Hybrid Strategy of Hesufeet al..

¢ Analysis is made of the Hybrid Strategy of Henderson et aH,iais compared
to our learned strategies to show that it is apparently nogvhear optimal. An

2Semantics is loosely defined as the study of meaning in rid&urguage, and pragmatics, as the
study of the ability of speakers to communicate more thant vehexplicitly said.

Chapter 1. Introduction 10

explanation for why this is the case is provided - this exateom centres on the
size of the state-action space used by Henderson et al..

e Analysis of the learned strategies and the real user expatjmand further RL
experiments show how the recent DAs are improving the lebstrategy:

— The DAs are only making significant improvements to the ledrstrategy
with respect to better repair strategies in states in whietstot-status fea-
tures are unchanged, (most often due to non-understantdioig)e- they
are not producing improvements with respect to dealing w#ér indica-
tions of misunderstanding errors, nor in portions of dial®g which there
is smooth progress i.e. slots are being filled and confirmexvever, we
do observe a general trend for the reinforcement learneato to maintain
focus on the problem slot following user indications of nmidarstanding
errors.

— The DAs are important both because they can be used to igevitéther
the slot-status features are unchanged and hence thatias&ptegy is
required, and also for then choosiwyichrepair strategy to apply. For ex-
ample, our best learned strategy is more likely to repeatré@gious action
following an ASR rejection, but to switch focus to a new sloltdwing a
user utterance that is recognised as out-of-domain.

— Choosing an optimal repair strategy is not simply a case obsimg any
“sensible” repair strategy which avoids repeating the joev system ac-
tion. The hypothesis that it was originated from analysishef real user
experiment which showed that both a strategy learned withsiot-status
features and the hand-crafted strategy over-used repetitstates in which
the slot-status features were unchanged - this irritatecutiers, causing
them to hyperarticulate / adopt an irritated tone, whichummtled to more
ASR errors and hence longer dialogues and lower averageadasfletion.

— Including the DAs of both the last system and user turns presletter
repair strategies - taking out the DAs of the last user tuwh asing only
the DA of the last system turn causes a deterioration in padace.

e Our findings are compared to those of relevant previous relsean handling
non-understanding errors in SDSs - Skantze (2003)/ChdumteEkantze (2007)
and Bohus and Rudnicky (2005).

Chapter 1. Introduction 11
1.3 Thesis overview

This section provides an overview of the thesis. It sumreartbe contents of each
chapter, and where this includes experimental work, it gigses some information
about the methodology.

1.3.1 Chapter 2: Markov Decision Processes and Reinforceme nt

Learning

This chapter introduces Markov Decision Processes (MDiRsReinforcement Learn-
ing (RL) in the context of their application in this thesis.

1.3.2 Chapter 3: Previous research on Reinforcement Learni ng of

dialogue strategies

This chapter summarises and analyses the work of the ditfeesearch groups who
have made significant contributions with regards to usinghi@eement Learning
(RL) to learn dialogue strategies for Spoken Dialogue 3ystéSDSs). Throughout
the presentation, a comparative analysis of the previaesareh is provided, lessons
learned are presented, and further work as carried out imebearch described in
Chapters 4 to 7 of this thesis is motivated. See also Frangidriemon (2008b) for
an extended version of the literature review containedigd¢hapter.

1.3.3 Chapter 4: The Reinforcement Learning setup and proof -of-

concept experiments

This chapter first introduces our basic Reinforcement LiegrRL) experimental

setup and then goes on to describe three preliminary RL ewpats, (see also Framp-
ton and Lemon 2005). In introducing the basic experimerdgalfs we discuss how
best to set the reinforcement learner’s parameters fanilegudialogue strategies. The
experiments here are considered preliminary because gew gtochastic user sim-
ulation whose probabilities are not learned from real usd¢a d instead they are set
based on intuition and an initial analysis of relevant dafhe experiments of this
chapter may be preliminary, but nevertheless, they enabte investigate a number

Chapter 1. Introduction 12

of relevant issues. These include how and why adding recebdue Acts (DAS)
to the state might improve the learned strategy, whether piossible to scale up to
a commercially-realistic number of slots, how differenpég of reward function af-
fect the learned strategy and the implications of this f@igl@ng reward functions for
learning dialogue strategies.

1.3.4 Chapter 5: Learning with real user data: n-gram user si mula-

tion experiments

This chapter describes two experiments in which slot-filldialogue strategies are
learned and tested with stochastic user simulations whadmpilities are learned via
Supervised Learning (SL) from real user data i.e. n-grametsoghose probabilities
are learned from the COMMUNICATOR data (Walker et al., 200{k#ght-booking
domain). An n-gram model models sequences of n items, (hdi@logue turns rep-
resented as Dialogue Acts (DAs), and predicts the next it@sed on the previous n-1
items.

In the first experiment of this chapter, dialogue strategredearned for a system with
three information slots, and in the second, for a systemfeithinformation slots, (see
also Frampton and Lemon (2006) for a summary of the fourestperiment). These
experiments investigate whether the learned strategy eamproved if the DAs of
the last system and user turns are added to the state. Sa@Athare found to im-
prove the learned strategy, detailed analysis is conductedder to investigate why.
The main reasons for conducting the second 4-slot expetimelnde to accumulate
more evidence for how the recent DAs improve the learnedesjyaand to show that
the RL problem remains tractable with a more commerciagtistic number of slots.
Another main reason is to compare performance with the ldyRti/SL Strategy of
Henderson et al. (2008). A meaningful comparison is posdible because the Hy-
brid Strategy was tested with a user simulation derived f@@MMUNICATOR data
which has been shown to produce very similar simulated digde to the n-gram sim-
ulations (Georgila et al., 2006). Prior to describing thpexkments, this chapter also
discusses the limitations of the n-gram simulations wipeet to accurately simulat-
ing real users, and the implications this has for learniadpdjue strategies.

Chapter 1. Introduction 13

1.3.5 Chapter 6: Testing the learned strategies on real user s

This chapter describes an experiment in which we implenvembf our learned three-
slot strategies and a state-of-the-art hand-craftedegtyah a slot-filling Spoken Di-
alogue System (SDS) and test them on real users. The SDS wieialse here -
the TownInfo SDS (Lemon et al., 2006b) - operates in the sbimformation domain
and so we must first transfer our learned strategies to ttesnaltive domain by treat-
ing them as generic slot-filling strategies. The first ledrarategy tested here was
learned with a state containing only the slot-status festuand the second, with ad-
ditional state features for the Dialogue Acts (DAS) of thst Isystem and user turns.
Hence here we are investigating the relative performandbesfe different strategies
in testing with real users. Various evaluation measureth blbjective and subjective,
are collected, and we provide analysis to explain perfocealifferences between the
strategies. Again we are also able to compare results watliditbrid RL/Supervised
Learning (SL) Strategy of Henderson et al. (2008), becaukeea-slot version of the
Hybrid strategy was tested on real users with the same SRharsame evaluation
measures were collected, (see Lemon et al. 2006a). We prawaysis of the Hybrid
strategy itself in order to explain its relative performenand discuss why the learning
approach used by Henderson et al. produced the strategi wilicl.

1.3.6 Chapter 7: Investigating the role of Dialogue Acts in | earning

repair strategies

Based on the results and analysis of the experiments in €fsapiand 6, a number of
hypotheses were formed as to why the recent DAs improvecetr@éd strategy. In
this chapter, these hypotheses are investigated furtfeurmew experiments where
new strategies are learned and tested with the n-gram dionga(see also Frampton
and Lemon (2008a) for a summary of these experiments). Taeofithe n-gram

simulations here is justified because of the positive resbiained in the real user
experiment of Chapter 6. The hypotheses tested here ak telaepair strategies, and
the role of recent DAs in learning more effective repair tetgées. Having described
these experiments, we then compare our findings with retguavious research on
repair strategies for Spoken Dialogue Systems (SDSs) kant3e (2003) and Bohus
and Rudnicky (2005). This previous research did not inveleenforcement Learning
(RL) or user simulations, and so the experimental methagols quite different to

Chapter 1. Introduction 14

that employed in the experimental work of this thesis.

1.3.7 Chapter 8: Summary and conclusions

The final chapter discusses the contributions made in tlesigho the research field
of using Reinforcement Learning (RL) to design dialoguatsties, and to dialogue
management for Spoken Dialogue Systems (SDSs) in gendralmmarises these
contributions and assesses theirimpact. Based on how thayckexisting knowledge,
their limitations, and the overall state of the field, themiea also suggests areas for
future research.

Chapter 2

Markov Decision Processes and

Reinforcement Learning

2.1 Introduction

A Markov Decision Process (MDP) isdecision-theoretic stochastic planningodel

- it provides a mathematical framework for modelling demismaking in situations
where outcomes are partly random and partly under the dafttibe decision-maker,
(also known as the agent). Based on an MDP representatioriesactions between
the agent and its environment, a Reinforcement Learning éRjorithm can then be
used to try to learn which action the agent should take irerbffit situations in or-
der to achieve a specified long-term goal. In the experinhewmek of this thesis,
the MDP-RL framework is applied to dialogue management.s ltised to learn a
slot-filling dialogue strategy as a Dialogue Manager (DMgracts with a stochastic
simulation which simulates both a user, and the input coraptsof a slot-filling Spo-
ken Dialogue System (SDS) - the Automatic Speech RecognfA&R) and Natural
Language (NLU) components. Here the agent is the dialoguag®, its goal is to fill
and confirm the slots in as few turns as possible, and theamaent is the stochastic
user/ASR/NLU simulation.

The purpose of this first background chapter then is to initedVIDPs and RL in
the context of their application in the experimental workitug thesis. It will cover
all of the required concepts and formal definitions, but veetsh the next section by
providing reasons why the MDP-RL framework is applied tdatime management.

15

Chapter 2. Markov Decision Processes and Reinforcement Learning 16

2.2 Advantages of using Reinforcement Learning for

dialogue management

Markov Decision Processes (MDPs) and Reinforcement Liegr(iRL) are used for
designing dialogue strategies because they are thougld &ble to produce better
strategies with less time and effort than the standardivaked hand-coding approach.
As a statistical learning approach, the MDP-RL framewofkrsfseveral key potential
advantages over rule-based hand-coding (Lemon and Rie207):

data-driven development cycle,

provably optimal action policies,

a precise mathematical model for action selection,

reduced development and deployment costs for industry,

greater robustness in the face of noise/uncertainty.

Amongst the various statistical learning approaches whndapht be applied to dia-
logue management, RL is made very attractive by its two medtuires. The first of
these features is that RL danningso as to maximise long-term reward. Planning is
a branch of Artificial Intelligence that concerns the reatisn of strategies or action
sequences. A sequence of actions which maximises rewané ing-term is exactly
what we want from a dialogue strategy - in general, and cdytan task-oriented dia-
logues, it is only at the end of the dialogue that we can saythen®r not the dialogue
was successful i.e. the task was successfully completed)dér is satisfied. For ex-
ample, in a flight-booking dialogue, we cannot say whethersystem has provided
the user with a suitable flight until the end. The second ofsRhain features is its
use of trial-and-error search. This is important in leagrardialogue strategy, because
there are likely to be a very large number of possible strasgg explore, and so some
degree of automated trial-and-error experimentationlvélrequired.

We now start a thorough introduction to MDPs and RL. In thetisextion, we begin
by providing a formal definition of the problem which the MR- framework is used
to tackle.

Chapter 2. Markov Decision Processes and Reinforcement Learning 17
2.3 Defining the problem

The agent and environment interact at each of a sequencewétth time steps,=
0,1,2,3... 1. At each time step, the agent receives some representation of the envi-
ronment’s states € S, whereSis the set of possible states, and on that basis selects an
action,a € A(s), whereA(s) is the set of actions available in state The mapping
from states to probabilities of selecting each possible®ads called the agentjgolicy

and is denoted, whereTg (s, a) is the probability thasy = aif 5 = s. In the case of
dialogue management then, states represent the dialogtextd actions correspond

to system actions, (e.g. generating a particular utte)aarel a policy is a dialogue
strategy. One time step later, in part as a consequenceaditits1, the agent receives

a real number as a rewand, 1 € [1, and finds itself in a new stats,, 1. This reward

is computed by a function of the state, which we refer to ageiard function The
purpose or goal of the agent is formalised in terms of thisarewunction - in dia-
logue management, it is designed so that it gives highermatard to dialogues with
favourable outcomes e.g. task completion, short lenggh bser satisfaction.

Informally then, the problem which we are trying to solveadind the policy which
maximises the total amount of reward which the agent resdiee not immediate
reward, but cumulative reward in the long run. More spedificave seek to find the
optimal policyrt*, which is the policy that maximises tlexpected returfor all states.
The return, denote&;, is some particular function of the reward sequence, denote
ree1,ree2,reses, ..., and since the return is a random variable, the expectethristiits
population mean.

The return can be defined differently for two different typdgask - episodicand
continuing In an episodic task, the agent-environment interactianraly breaks
down into a sequence of separate episodes. For examplegaeimanagement is an
episodic task in which each dialogue is an episode. In efgasks then, the return is
simply the sum of rewards:

R =ra+re2+rys+..+rr (2.1)

LWe restrict attention to discrete time to keep things as irap possible, even though many of the
ideas can be extended to the continuous-time case (e.gel@earand Tsitsiklis 1996, Werbos 1992,
Doya 1996).

2The dialogue context is represented by information derfvenh the Spoken Dialogue System’s
(SDS’s) representation of the dialogue context.

Chapter 2. Markov Decision Processes and Reinforcement Learning 18

whereT is a final time step. By contrast, in a continuing task, thenagavironment
interaction does not break down into identifiable episothes$,goes on continually
without limit e.g. a robot with a long life-span. The abovenfwilation is problematic
for continuing tasks because the final time step would bew, and the return which
is what we are trying to maximise could itself easily be irt@niTherefore, we need
to usediscountingin order to determine the present value of future rewardd,san
seek to maximise the expected discounted return, rathertiigeexpected return. The
expectedliscounted returis:

R =rei+ Y2+ Vs +ot+= 5 Y (2.2)
k=0

whereyis a parameter, 8 y< 1, called thediscount rate If y < 1, the infinite sum has
a finite value as long as the reward sequefigé is bounded. Wheg = 0, the agent

is only concerned with maximising immediate rewardsti;g;. Asy approaches 1, it
takes future rewards into account more strongly i.e. it bee®more far-sighted. We
can then unify the definition of the return for episodic andtewious tasks by writing

it as:

-
R = Z Vkrt+k+1 (2.3)
k=0

and including the possibility that = o, (i.e. we are dealing with a continuing task),
ory=1, (i.e. we are dealing with an episodic task). As stated epdialogue man-
agement is an episodic task, and so weysetl in the RL experiments described in
this thesis.

Here we have provided a formal definition of the kind of proble® which the MDP-
RL framework is applied. We now move on to describe MDPs, dad 81 the next
section by introducing their defining characteristic - tharkbv property.

2.4 The Markov Property

The previous section stated that the agent chooses whigndot take based on a
function of a signal from the environment called the envinemt’s state. Hence, an
ideal state signal is one which contains all of the relevafdrmation and nothing

Chapter 2. Markov Decision Processes and Reinforcement Learning 19

more. A state signal that succeeds in retaining all releirdotmation is said to be
Markoy, or to have théMarkov property(Sutton and Barto, 1998).

We now formally define the Markov property for the RL problefthe mathematics
can be kept simple if it is assumed that there are a finite nuwibsates and reward
values - this enables us to work in terms of sums and proltiakitiather than integrals
and probability densities, but we could easily extend tduide continuous states and
rewards if required. When the agent takes an aciahtimet, the environment will
respond at timeé+ 1 with a rewardr;1 and a new statg 1. It is possible that this
response depends on everything that has happened eartiespdhe dynamics must
be defined in terms of the complete probability distributidhis is shown in Equation
2.4 where the notatioRr(A|B) means “the probability of event A occurring given that
event B occurs”.

Pr{ss1=5,r+1="rls,a;,"Mn, % 1,1, ,,5,30} (2.4)

However, if the state signal has the Markov property, thes theans that the en-
vironment’s response depends only on the state and actibmat, and hence the
environment’s dynamics can be defined as:

Pr{st1=9,rn+1=r|s,a} (2.5)

for all $,r,5 anda;. In other words, a state signal has the Markov property, arad i
Markov state, if and only if Equation 2.5 is equal to 2.4. Hen€an environment has
the Markov property, then its one-step dynamics enable peetdict the next state and
expected reward given the current state and action, andloive that Markov states
provide the best possible basis for choosing actions.

RL algorithms can still be applied when the state signal is-karkov, but assum-
ing tractability, their performance will improve as thetstapproaches being Markov.
Hence in any problem to which the MDP-RL framework is applibére is a challenge
to identify all or as much as possible of the relevant infaiorarequired for producing
a Markov state signal. By identifying contextual featurdscln when represented in
the state enable an RL algorithm to learn an improved diaagtategy, this thesis
can be said to make a contribution towards producing a monmkdtaViDP state for
dialogue management.

Chapter 2. Markov Decision Processes and Reinforcement Learning 20

Now that we have introduced the defining characteristic offdD the Markov prop-
erty - we move on in the next section to provide a formal de@inibf an MDP.

2.5 Markov Decision Processes

A Markov Decision Process (MDP) is a Reinforcement Learr(Rh) task that sat-
isfies the Markov property (Sutton and Barto, 1998). If thetestand action spaces
are finite, then it is called inite MDP. Finite MDPs are particularly important to the
theory of RL, and the theory presented in the rest of this wramplicitly assumes
that the environment is a finite MDP. An MDP for an agent is defioy a tuple,
{S A T,R}, whereSis the set of states that the agent can bé\iis, the set of possible
actions which the agent can take,defines a transition probability distribution over
the state space (sometimes called the transition matrix)Ras the expected reward
distribution. As previously stated, in the case of dialogw@agement, states represent
the dialogue context, and actions correspond to systemmrastfe.g. generating a par-
ticular utterance, presenting some information to the)ugére couple{T, R} defines
the one-step dynamics of the system:

T& = Pr{spi=s|s=sa=a} (2.6)
Ry = Efrals=sa=as1=5} 2.7)

whereE denotes the expected value, (population mean).

Having defined both the problem to which the MDP-RL framewisrlapplied, and
MDPs themselves, we now shift focus to RL. Since almost alBRjorithms are based
on estimatingzalue functionsvalue functions are our starting point.

2.6 Value functions

Almost all RL algorithms are based on estimatiggue functions either functions

of states that estimate how good it is for the agent to be ivengstate, or functions
of state-action pairs that estimate how good it is to perfargiven action in a given
state. The notion of “how good” here is defined in terms of expe return, and
since the rewards that the agent can expect to receive irutheefdepend on what

Chapter 2. Markov Decision Processes and Reinforcement Learning 21

actions it will take, value functions are defined with reggeqarticular policies. In
the first subsection here, we provide formal definitions tatesand state-action value
functions.

2.6.1 Definitions for state and state-action value function S

VT(s) denotes the value of an individual statender a policyr - it is the expected
returnR when starting irs at timet and followingTt thereafter. For MDPsY™(s) is
defined formally as:

V() = ExfRI% = 8} = En{ 3 ¥riskenls = 5} (2.8)
k=0

Q"(s,a) denotes the expected return when starting &t timet, taking actiona, and
following Ttthereatfter. It is defined as:

Q¥sa) =En{Rls =sa=a} =En{) Yruwils=sa=a} (2.9
k=0

In the next subsection, we now go on to introduce Bellman ggpsfor value func-
tions. We do this because Bellman equations are fundamenEfnamic Program-
ming (DP), and although DP is not used in the experimentakwbthis thesis, it is
introduced a little later in this chapter because it progida essential foundation for
the understanding of RL algorithms.

2.6.2 Bellman equations for value functions

Reinforcement Learning (RL) algorithms make use of thetfa&t value functions sat-
isfy particular recursive relationships. For any policgnd any stats, the consistency
condition given below in Equation 2.10 holds between theealfs and the value of
its possible successor states. The reader can refer bagkitai&ns 26 and 27 for the
respective definitions of andR.

Chapter 2. Markov Decision Processes and Reinforcement Learning 22

V(s) = En{Rl|s=s}
= En{ Z Vkrt+k+1‘5t =s}
k=0

= En{rer1+y Z Vkrt+k+2|st = s}
k=0

= Z T(s,a) gTsa;[Rgé +VETr{k§OVkrt+k+2|St+1 =9}
= Ymsa)) TER +W(S)] (2.10)
a S

The last line of Equation.20 is theBellman Equatiorfor V™, and it tells us the value
of a state in terms of the values of its successor states. Ktem in states, then
the agent can take any of a set of actions, and this in turnledtl to one of several
next statess, along with a reward. The Bellman equation averages over all the
possibilities, weighting each by its probability of ocdng, and tells us that the value
at the start state must equal the (discounted) value of theoted next state, plus the
reward expected along the way.

In the same way as for the state value function, the stateraalue function can also
be re-written:

Q'(s,a) = Ex{R|s=sa=a}
= En{k;\/krt+k+l|st =sa =a}

= En{rya+y %Vkrt+k+2‘st =S & = a}
k=

— Z Ta{R —i—VEn{VkZ Vkrt+k+2‘9t = s}}
=0

SeS

= S TR+ WTE)} (2.11)

SeS

Above, the last line of Equation 21 is the Bellman equation f@"

We now go on to describe Bellman optimality equations fougdlnctions i.e. Bell-
man equations for the value function of the optimal policy.

Chapter 2. Markov Decision Processes and Reinforcement Learning 23

2.6.3 Bellman optimality equations for value functions

Value functions can be used to rank policies. A politig defined to be better than or
equal to another policy if its expected return is greater than or equal to that tr
all states i.e. if and only i¥/™(s) > V'(s) for all s€ S. There is always at least one
policy that is better than or equal to all other policies - dipgimal policy denotedt'.
Optimal policies share the same state-value function, kvisicalled the optimal value
function and is denoted &&". V* is defined as, forabec S

V*(s) = max; V'Y(s) (2.12)

where the notatiomax, specifies the value of which produces the greatest value for
the expression that follows it. Optimal policies also stiaeesame optimal state-action
value function, denote®x, which is defined as, for ai € Sanda € A(s), (possible
actions ins):

Q*(s,a) = maxy Q'(s) (2.13)

We can writeQ* in terms ofV* as follows:

Q'(s,a) =E{rp1+W'(s1)|ls =sa=a} (2.14)

SinceV* is the value function for a policy, it must satisfy the sedirsistency condition
given by the Bellman equation for state values, but becauisethhe optimal value
function, its consistency condition can be written in a sgpiform without reference
to any specific policy. This leads us to the Bellman equat@mn/f, or theBellman

optimality equationwhich intuitively expresses the fact that the value of sestader
an optimal policy must equal the expected return for the &etsvn from that state.

Chapter 2. Markov Decision Processes and Reinforcement Learning 24

Vi(s) = mawx Q" (s a)
= max Er{R|s=sa=a}

= maxy En{ %Vkrt+k+l|st —sa —a}
k=

= max E{r1+y %kat+k+2\5t =s,a=a}
k=

= max E{rgi+W(sta)ls =sa=a} (2.15)
= max) PR +WT(s)) (2.16)
s

The last two equations (25 and 216) are two forms of the Bellman optimality equa-
tion for V*. The Bellman optimality equation f@* is given by Equation A7:

Q*(S7a) = E{rt+1+yma)%.’ Q*(&+17a/)}
= gPSaS[RSngyma)@ Q*(sd)] (2.17)

For finite MDPs, the Bellman optimality equation has a unigakition independent
of the policy.

We now go on to describe how to derive the optimal policy framoatimal state or
state-action value function.

2.6.4 Deriving the optimal policy from a value function

If we haveV*, then it is relatively easy to determine an optimal policyor €ach
state, the optimal action or actions are those which lealaméew state with highest
value. Of course, to know what the possible new states aragee to know about the
environment’s dynamics, (see Section 2.5). The optimatpdd said to beyreedywith
respect to/*. In computer science, the term greedy describes any sead#rision
procedure that selects alternatives based only on locahorediate considerations,
without taking account of the possibility that such a setectnay prevent future access

to even better alternatives. However, in the cas¥gfthe greedy policy is optimal

in the long-term sense becausealready takes into account the reward consequences
of all possible future behaviour. If we hag", then finding the optimal action(s)

Chapter 2. Markov Decision Processes and Reinforcement Learning 25

in each state is even easier - for any s>éhe optimal action or actions maximise
Q*(s,a). Since we do not need to know about possible successor,statedo not
require knowledge of the environment’s dynamics.

Now that we have described Bellman equations, we are in @igo$o introduce Dy-
namic Programming (DP). As stated previously, although ®Rat used in the ex-
perimental work of this thesis, we describe it here becaupeovides an essential
foundation for the understanding of RL algorithms.

2.7 Dynamic Programming

Dynamic Programming (DP) refers to a collection of algariththat can be used to
compute optimal policies given a perfect model of the emnnent as a Markov De-
cision Process (MDP). They are of limited utility in Reinfement Learning (RL)

both because of their assumption of a perfect model, anduseaaf their great com-
putational expense, but they have been used to learn pdidiague strategies from
a corpus of human-machine dialogues e.g. Singh et al. (1B8%), (Section 3.3),

Walker (2000), (Section 3.4), and Tetreault and Litman @0(Bection 3.9). They are
important theoretically - other RL methods can be viewedt&sts to achieve much
the same as DP, only with less computation and without asgymperfect model of

the environment.

DP involves two interacting processepalicy evaluationand policy improvement
These are described in the next two subsections respectielbsection 2.7.3 then
describes how DP uses these two processes in combinatiosdnto learn an optimal

policy.

2.7.1 Policy evaluation

Policy evaluation is the process of computing the stataevélinctionV™ for an arbi-
trary policyrt How then can we do this? If the environment’s dynamics anegdetely
known, then the Bellman equation, (Equatiod@®), is a system ofS| simultaneous
linear equations inS unknowns, (S denotes the number of statesSy and policy
evaluation is achieved by solving this system. One way totfiedsolution is by using
iterative policy evaluationwhich is an example of aiterative methodor solving a
system of linear equations. Unlikkrect methodswhich attempt to solve the system

Chapter 2. Markov Decision Processes and Reinforcement Learning 26

in one-shot, iterative methods find successive approxanatio the solution starting
from an initial guess. An iterative method is preferred fotigy evaluation because
of the number of variables involved - iterative methods dnle & cope with a much
larger number, and the number involved in policy evaluatsolikely to make direct

methods prohibitively expensive.

The first step in iterative policy evaluation is to make ariteaby choice for an initial
approximation of the value function, (N.B. the terminaltstaf there is one, must be
given the value 0). Note, the first approximation of the vdlugction is denoted/,

the second/y, the thirdV, etc. On each iteration, iterative methods generate succes-
sive approximations using what is called@odate rule and in the case of generating
successive approximations'df', we can use the Bellman Equation as an update rule.
In each iteration then, iterative policy evaluation appligjuation 2.18 to every state

in the state space in what is often referred to asvaepthrough the state space, and
thus produces a new approximation of the value function/.e;.

Vira(s) = En{resr+Wk(s+1)ls = s}
_ zn(s,a)ngg[Rgngka(d)]
) (2.18)

The sequenc¥y can be shown in general to convergeMB ask tends to infinity
(k — =), under the same conditions that guarantee the existen¢&.oln practice,
iterative policy evaluation must be halted short of thisteAfeach iteration / sweep
through the state space, we can find the greatest amount loh we value of any
state has changed between this and the last approximatithre afalue function i.e.
maxes [Vkt1(S) —Vk(S)|. A typical stopping criterionis to then stop when this amount
is considered sufficiently small.

We now go on to describe the other process required to learmmgtimal policy policy
improvement

2.7.2 Policy improvement

Policy evaluation is necessary fpolicy improvemert the process of finding a better
policy. As we shall see, we improve on an original policy by éach state, choosing
an action which is greedy with respect to this original pgticzalue function.

Chapter 2. Markov Decision Processes and Reinforcement Learning 27

Policy improvement is performed by making use of a genesalltecalled thepolicy
improvement theoreth The policy improvement theorem tells us thattiand Tt are
any pair of deterministic policies such that for sl S

Q"(s,(s)) >V™(s) (2.19)

then the policy’ must be as good as, or better thamne. it must obtain greater or
equal expected return from all states S

VAAVL (2.20)

Consider a scenario then where we take an original patiapd change the action in
one states to produce a new policyt. If as a result of this single change, strict in-
equality holds in Equation 2.19, then we will have succeed@doducing an improved
policy. We can easily extend from considering such a sinigénge inm, to consider-

ing changes adll states taall possible actions, selecting at each state the action that
appears best according@'(s,a). In other words, we consider the new greedy policy,
0, given by Equation 2.21.

m(s) = maxQ'(sa)
= max E{rii1+ W (s+1)|s =sa=a}
= max) PR +W(s)] (2.21)

This greedy policyit takes the action that looks the best after one step of loaichhe
according to/™. By construction, the greedy policy meets the conditiorthefpolicy
improvement theorem (Equation 2.19), and so we know thatasigood as, or better
than the original policy. Hence we make a new policy whichrowes on an original
policy by choosing actions which are greedy with respechéomvalue function of the
original policy.

Having introduced policy evaluation and policy improvememe are now ready to
explain how Dynamic Programming (DP) finds the optimal pobg combining these
two processes under a framework cali@eneralized Policy Iteration (GPI)

3The interested reader can refer to page 95 of Sutton and BE388) to see how the policy im-
provement theorem is derived.

Chapter 2. Markov Decision Processes and Reinforcement Learning 28

2.7.3 Generalized Policy Iteration

The termGeneralized Policy Iteratiol{GPI) refers to the general idea of letting the
policy evaluation and policy improvement processes itareorder to find an optimal
policy. If both the evaluation and improvement processabikse, then the value
function and policy must be optimal. The value function 8isdés only when it is
consistent with the current policy, and the policy stabgisnly when it is greedy with
respect to the current value function. Thus both procegabgise only when a policy
has been found that is greedy with respect to its own evalu&tinction. This implies
that the Bellman optimality equation (Equatiorl@) holds, and thus that the policy
and the value function are optimal. Almost all Reinforceiregarning (RL) methods
are well described as GPI - they all have identifiable padieied value functions, with
the policy always being improved with respect to the valuecfion, and the value
function always being driven toward the value function fo policy.

Having introduced Dynamic Programming (DP), we are now iretidn position to
describe RL algorithms which are able to learn from samglems, and hence which
do not require a complete model of the environment’s dynamidowever, before
doing this, we now provide an overview of the two main leagapproaches for using
RL to train dialogue strategies, one of which involves D &g other, RL algorithms
that learn from sample returns. We discuss the relativeteefithe two approaches.

2.8 Model-based and simulation-based approaches to

learning dialogue strategies

Two different learning approaches can be distinguishederipus research on using
RL to train dialogue strategies, and like Schatzmann eR@D®), we refer to these as
themodel-based approaand thesimulation-based approacitere, we will begin by
describing the model-based approach.

2.8.1 The model-based approach

As we will see in Chapter 3, the model-based approach wasmseel in earlier re-
search between 1998-2002 e.g. Singh et al. (1999, 2002keW@000). The model-
based approach uses a corpus of dialogues in which stasitimas have been logged

Chapter 2. Markov Decision Processes and Reinforcement Learning 29

in order to estimate the transition probabilitie¢see Section 2.5), and so build a com-
plete model of the environment. Parameter estimation calobe based on the relative
frequency of occurrence of each transition, (simdi@ximum Likelihood Estimation
(MLE)):

T(s.a 5 = SoUNS,23) (2.22)
count(s, a)

Dynamic Programming (DP) can then be used to learn the oppoiey, (here di-
alogue strategy). In practice, DP is only used to learn thergb action in certain
states for which the corpus contains exploratory data g¢agesin which the system
must choose whether or not to take the initiative, (see &edtil.1.3 for a definition
of initiative). For the corpus to be suitable for model-lwhtEarning of full dialogue
strategies, it should ideally contain exploratory datadibstates, and this is very un-
likely to be the case. Even if the corpus did contain such, diagse is then the issue of
DP’s high computational expense to contend with. Apart ftbis, the model-based

approach has a number of other significant deficiencies,hwhaiude:

1. Available corpora may well not be large enough to reliaddjimate transition
probabilities for practical systems.

2. When learning from a fixed corpus, the Dialogue Manager \D&h only use
state-action combinations that were explored at the timbetorpus data col-
lection - it cannot try out new strategies since no transipoobabilities can be
computed for unseen state-action combinations.

3. Itis necessary to know the state-space and action setsemation in advance
so that the corpus can be annotated correspondingly fon&ishig the state tran-
sition probabilities.

We now move on to describe the simulation-based approaelatoihg dialogue strate-
gies with RL.
2.8.2 The simulation-based approach

The simulation-based approach involves using an RL algorivhich is able to learn
from sample returns to learn a dialogue strategy as the gualdanager (DM) in-
teracts with a stochastic user simulation. This approaerefbre requires an accurate

Chapter 2. Markov Decision Processes and Reinforcement Learning 30

user model which generalises to unseen dialogue situatamusfor this reason, it is
more complex than model-based approaches. As stated iioisdcl.2, a stochas-
tic user simulation can be produced by training on a dialagupus using Supervised
Learning (SL). Assuming that the resulting user model isibd¢, the simulation-based
approach offers the following advantages:

1. The simulated user allows any number of training epistodse generated so
that the learning dialogue manager can exhaustively expih@ space of possible
strategies, and indeed learn full rather than partialegiat.

2. It enables strategies to be explored which are not in Hieitig data. The learn-
ing DM can deviate from known strategies and try out new andrdally better
strategies.

3. The system state space and action set do not need to befixddance, because
the system is not trained on corpus data. If the given reptagen turns out
to be problematic, then it can be changed and the systemairedtt using the
simulated user.

As a result of these advantages, in general, simulatioaebapproaches to learning
dialogue strategies have been preferred in more recerarodse.g. Pietquin and Re-
nals (2002), Scheffler and Young (2002), Frampton and Ler2085), Frampton and
Lemon (2006), Frampton and Lemon (2008a). Using SL to predaccurate user
models, and how to evaluate them is a an open and active cbsai@a (see Schatz-
mann et al. 2006). We will discuss these issues in the foligwahapter where we
review previous research on using RL to learn dialogueesiias.

We now return to our introduction to RL itself, and shift fecio RL algorithms which
are able to learn from sample returns, and hence do not eegiewmmplete model of the
environment’s dynamics. We will describe two differenteggiries of these algorithms
- Monte Carlo (MC) methods first, and then Temporal Diffeehearning (TDL).
However, since RL algorithms that learn from sample retanast use “soft” training
policies i.e. training policies which have a non-zero piuligy of selecting each action
in a state, in the next section, we first describe differeptag@ches for generating and
using soft training policies in RL.

Chapter 2. Markov Decision Processes and Reinforcement Learning 31
2.9 Generating and using soft training policies in RL

As stated above, Reinforcement Learning (RL) algorithnas lgarn from sample ex-
perience e.gMonte Carlo (MC)methods (see Section 2.10), afemporal Difference
Learning (TDL)methods (see Section 2.11) require “soft” training po8die. train-
ing policies which have a non-zero probability of selectgagh action in a state. In
the first subsection here then, we describe two differemastlection approaches for
producing a soft training policy.

2.9.1 Action selection for soft training policies

Two action selection methods for producing a soft trainiojqy are e-greedyand
softmaxaction selection. If using-greedy action selection, the parametes set to
a value O< € < 1, and then for each state, the learning agent has a praladfib of
selecting the action which currently has the highest Qe/alhen the learning agent
explored.e. it does not select the highest Q-value action, it cheesg@ally among the
other possible actions, and soitis as likely to choose thstwappearing action asitis
to choose the next-to-best. If some actions are clearlgb#tan others, then this will
produce redundant exploration and slower learning. TheX@®leements of Chapter 4
usee-greedy action selection.

Softmax action selection can do better in this respect,usecd varies the action se-
lection probabilities as a graded function of their coraeging current Q-values. This
can be implemented via@ibbsor Boltzmanrdistribution which chooses actianin
states with probability

(Q(sa)/1)
&QED)/1)

(2.23)
ZbeA(s)

wheree is the exponential function, ardis a positive parameter called tkempera-
ture. If we lower the temperature, then this increases the @iffee in selection proba-
bilities for actions that differ in their current Q-valuéihe RL experiments of Chapters
5 and 7 use softmax action selection.

We now go on to describe two alternative frameworks for imm@ating soft training
policies - “on-policy” methods and “off-policy” methods.

Chapter 2. Markov Decision Processes and Reinforcement Learning 32

2.9.2 On-policy versus off-policy methods

This section will briefly explain the difference between ardaoff-policy methods
and then give the reason for our decision to use an on-pddither than off-policy
algorithm in the Reinforcement Learning (RL) experimerft€bapters 4,5 and 7.

In explaining on-policy versus off-policy methods, it isefisl to refer to abehaviour
policy and anestimationpolicy. The behaviour policy is the policy which is used
to generate the training episodes, while the estimatioityd the resulting learned
policy. The difference between on-policy and off-policy timeds is that for an on-
policy method, one policy acts as both the behaviour andhesiton policy, while for
an off-policy method, the behaviour and estimation poickee separate. Hence in
an on-policy approach, the behaviour policy is necessauiigled by the estimation
policy e.g. if we are using-greedy action selection withset to 07, then 70% of the
time, the behaviour policy will select the action with thglmest Q-value according to
the estimation policy. However in an off-policy approadhgs the behaviour policy is
separate, it does not have to be guided by the estimatiooypdis a result, on-policy
methods tend to converge faster than off-policy methodsceSour RL experiments
were relatively slow to run, this is why we chose to use an olicp algorithm called
Sarsa, (see Section 2.11.2), rather than an off-policyralte.

Now that we have described how to generate soft trainingcigsli we are ready to
introduce a first category of RL algorithms that learn frormpée returns - Monte
Carlo (MC) methods.

2.10 Monte Carlo Learning

Monte Carlo (MC)learning methods can be used to estimate value functionfirathd
optimal policies without complete knowledge of the envir@nt. Instead, they require
only experience - sample sequences of states, actions amadse from on-line or
simulated interaction with an environment, (in the caseialiodue strategy learning,
a simulation of a user and the input components of a SpokdondRia System (SDS)).
MC methods have been used by previous researchers to ldadiafague strategies
e.g. Levin et al. (2000) (Section 3.2), Pietquin and Rer20€2), (Section 3.5), and
English and Heeman (2005), (Section 3.7). As with DynamisgRamming (DP),
MC methods can be described in terms of policy evaluationpatidy improvement.

Chapter 2. Markov Decision Processes and Reinforcement Learning 33

Policy improvement is performed in the same way as for DPhyechoosing actions
which are greedy with respect to the value function (seei@e2t7.2). This approach
works whether the policy which we are trying to improve isatstinistic or soft, and
the interested reader can refer to pages 122 - 124 in SutwBario (1998) where
equations are presented to show that the policy improvethentem assures that for
any e-soft policy, T, anye-greedy policy with respect tQ™ is guaranteed to be better
than or equal tat MC methods are instead distinguished by the way in whicl the
perform policy evaluation, and it is this that we focus onhia hext subsection.

2.10.1 Policy Evaluation

Monte Carlo (MC) policy evaluation involves estimating th@lue of a state/state-
action pair by averaging the returns observed after vigithat state/state-action pair.
An example of an MC policy evaluation method is #nseery-visitmethod, and if we
initially consider policy evaluation for states, ratheamhstate-action pairs, then this
estimated/™(s) as the average of the returns following all of the visitstgoccur-
rences 08), in a set of episodes. A simple every-visit MC method usesaign 2.24
as the update rule for a visited state, whigrés the actual return following timeand

a is a step-size parameter. Here the arrow notation is usettlicate that what is on
the left of the— is re-estimated as what is on its right. The step-size paeraehas
not been introduced before in this chapter, and the readlesegithat in Equation 2.24,
it determines the degree to which the new estimate of a staédlile moves towards
the return that follows its visit. For an environment thaedmot change over time, as
is the case in the experimental work of this thesis, it is appate to seti to decrease
as the number of visits to a state increagbs\zherek is the number of times that the
state in question has been visited. However for a non-siatyoenvironment, this is
not appropriate, and so for these cases, often set to a constant valueOa < 1.

V(s) < V(s) +a[R—V(s)] (2.24)

TheFirst-visit MC method is an alternative to thevery-visitMC method which aver-
ages just the returns following the first visit to each statathin each episode. Note
that if we lack knowledge of the environment’s dynamicsntiag can apply the first
and every-visit methods to evaluate state-action valuésrshan state values.

We now go on to give an example of a full MC algorithm

Chapter 2. Markov Decision Processes and Reinforcement Learning 34

2.10.2 Example of a Monte Carlo algorithm

The following on-policy Monte Carlo (MC) algorithm evalest the value of state-
actions by averaging returns following first-visits. It inopes the policy towards the
optimal e-greedy policy by making the training poligtgreedy with respect to the
Q-value.

For alls€ Sanda € A(s) set:
Q(s,a) arbitrarily;
Returngs, a) to an empty list;
Ttto thee-greedy policy.

Repeat forever:
(1) Generate an episode usimg
(2) For each pais, a appearing in the episode:
add the return following the first occurrencespé in the episode t&Returngs, a);
setQ(s,a) to the average of all of the returnsiReturngs, a).
(3) For eactsin the episode:
Set the learned acticai' to the actiora which produces the greatest value s, a);
for all a € A(s), setr(s,a), the probability thattwill take a, to:
eif a=a*;
else(1—¢)/(|A(s)| — 1).

This then completes the introduction to MC methods. We noweran to describe
another category of RL algorithms that like MC methods |lelaom sample returns
and hence do not require a model of the environment’s dyramic

2.11 Temporal Difference Learning

This section will introduce a category of Reinforcement rogag (RL) algorithm
called Temporal Difference LearningTDL). The RL experiments of Chapters 4, 5
and 7 use a TDL algorithm. As for Dynamic Programming (DP) & methods,
policy improvement is performed by choosing actions whish greedy with respect
to the value function. However, unlike MC methods, TDL algons perform policy

Chapter 2. Markov Decision Processes and Reinforcement Learning 35

evaluation based on partial rather than complete retunussa it is this that we focus
on in the next subsection.

2.11.1 Policy evaluation

While Monte Carlo (MC) policy evaluation involves estim@githe value of a stateby
averaging the returns observed after visits to that stat@pbral Difference Learning
(TDL) algorithms re-estimate the value of a stétes) based on the observed reward
r+1 and the estimate of the value of the subsequent $tgge 1). For example, the
simplest TDL method, known a6D(0) uses the update rule in Equation 2.25, where
the step-size parametardetermines the degree to which the new estimate moves in
the direction of the sum afi.,1 andV (s+1).

V(s) « V(s)+ Al + W) — V()] (2.25)

Since the TDL method bases its update in part on an existimg &, it is said to be
a bootstrappingnethod like Dynamic Programming (DP). Hence while MC method
wait until the end of the episode to determine the incremel(k) (only then isR;
known), TDL methods only wait until the next time step. THisn provides a potential
advantage over MC methods in terms of rate of learning. ifing episodes are long,
which they can be in training dialogue strategies, thenyiaggall learning until an
episode’s end can have a significant impact. Rate of leamiagga major concern of
ours in the RL experiments of Chapters 4, 5 and 7, and so thieiseason why we
chose to use a TDL algorithm. Note that TDL methods are soomgdning that the
TD(0) algorithm has been proved to converg&/tbwith probability 1 if the step-size
parameter decreases according to the usual stochastmxapption conditions given
on page 39 of Sutton and Barto (1998).

We now move on to describe a full TDL algorithm - the on-poladgorithm, Sarsa.

2.11.2 Anon-policy TDL algorithm: Sarsa

Sarsais an on-policy Temporal Difference Learning (TDL) algbnt which learns the

values of state-action pairs by considering transitionmfstate-action pair to state-
action pair. It performs the following update after evegnisition from a non-terminal

state.

Chapter 2. Markov Decision Processes and Reinforcement Learning 36

Qs &) «— Q(s,a) +afrer1+YQ(St+1,8+1) — Qs &) (2.26)

wherea is a constant step-size parameter.slf; is terminal, thenQ(s+1,a+1) is
defined as zero. This rule uses every element of the quintfigeents,

(st,a,M+1,%+1, &+1) that make up a transition from one state-action pair to thxé ne
and this gives rise to the nararsa Below is the general form of the Sarsa algorithm,
which like all on-policy methods, continually estimat®8 while at the same time
changingrttowards greediness with respeciQo:

For allse Sanda € A(s) set:
Q(s,a) arbitrarily
Ttto thee-greedy policy

Repeat for each episode
Choose actiom from start-state usingTt
Repeat for each step of the episode usid a terminal state:
Take actiora and observe the rewardand new state’;
choose actioa’ from s’ usingTr,
re-estimaté(s,a): Q(s,a) — Q(s,a) +afr +yQ(s,a) — Q(s,a)];
set the learned actiaar to the actiora which gives the greatest value fQ(s, a);
for all a € A(s), setri(s, a), the probability thattwill take a, to:
gifa=a’;
else(1—¢)/(JA(s)|—1).
s now becomes, anda’ becomes;

We have now introduced two different types of RL algorithmiaethearn from sample
returns - Monte Carlo (MC) methods and Temporal Differenearning (TDL). Since
they are used in our RL experiments, the next section intreslkligibility Traces

(ETs). ETs can be combined with almost any RL method in omlspeed up learning.

2.12 Eligibility Traces

Almost any Reinforcement Learning (RL) method, such as&aran be combined
with Eligibility Traces(ETs) to obtain a more general method that may learn more

Chapter 2. Markov Decision Processes and Reinforcement Learning 37

efficiently. When ETs are combined with Sarsa, the algorithealled Sarsa(), and
we use Sarsa] in all of the RL experiments described in Chapters 4,5 and 7.

We begin our introduction to ETs in the next section, by destg how they can
be seen as forming a bridge between Monte Carlo (MC) and Texhjfference
Learning (TDL) methods.

2.12.1 Eligibility Traces as a bridge between MC and TDL meth ods

Recall that a Monte Carlo (MC) policy evaluation method updahe estimate of
a state/state-action pair in the direction of the completarn i.e. thetarget of the
update is the complete return:

R =r1+ W2+ Vrgs+.y Uiy (2.27)

whereT is the last step of the episode. On the other hand, for simgreporal Dif-
ference Learning (TDL) updates, the target (correctly (th%lﬂlﬂt(l)) is the first reward
plus the discounted estimated value of the next state/atdien pair e.g.

Rt(l) =rep1+Wi(Sr1) (2.28)

wherey; (s 1) takes the place of the remaining ters, 2 +yry 3 +... +y" " 1rr.
In fact, it is possible to consider any number of steps, argkimeral, the n-step target
is:

Rt(n) =M1+ W2+ Vreas+ oY T+ YM(Sn) (2.29)
An n-step back-up is TDL because it still changes an eariemate based on how it
differs from a later estimate. TRJ is one particular way of averaging n-step back-
ups. This average contains all the n-step updates, eaclhtedigroportional ta" 1,
where 0< A < 1. A normalisation factor of + A ensures that the weights sum to 1.
The resulting update is toward a return, calledXxhereturn, defined by

R = (1-1) i)\”lR{(m (2.30)
n=1

If A =1, then updating according to thereturn is the same as the MC algorithm,
while if A =0, then it reduces tBt(l). It can be shown formally that TDL policy evalu-

Chapter 2. Markov Decision Processes and Reinforcement Learning 38

ation using n-step updates converges to the correct vahaer appropriate technical
conditions, (see Chapterl7of Sutton and Barto 1998).

The view of ETs presented in this section is often calledftineard view because it
is as if for each state visited, we are looking forward in tiimell the future rewards
and deciding how best to combine them. We now compare diffddads of ETs -
accumulatingandreplacing

2.12.2 Accumulating versus replacing Eligibility Traces

If &(s,a) denotes the Eligibility Trace (ET) for the state-actionrgaa, then araccu-
mulatingET can be defined as:

Ag_1(s,a)+1 if s=5 and a= &;
Q(S,a)—<y a-1(sa)+1 1 % & for all s,a

- yAe_1(s,a) otherwise

Hence at the start of each episodgs, a) has a value of zero, but then increases by
1 each time actiom is taken in states. If (s,a) is re-visited within an episode before
a(s,a) has fully decayed to zero, thex(s, a) will be driven greater than 1.

This is not the case witreplacingETs. The following definition for replacing ETs
shows thag (s,a) is setto 1 every timés, a) is visited:

1 if s=sand a=&;
a(s,a) = , for all s,a
yAa_1(s,a) otherwise

This definition is sometimes modified so that the ETs for theelected actions in a
visited state are set to zero:

1+yAa_i(s,a) if s=g and a= &;
a(sa)=1 0 if s=g and a a; for all s,a
yAe-1(s,a) ifs#s.

This is the specific kind of ET that we use in the RL experimef&Shapters 4, 5 and
7. Section 4.2.3.3 will explain why we choose this kind of B#eothe alternatives.
and Section 4.2.3.4 will explain why when using this kind df, &ve must be careful
not to set the initial Q-values too high.

Chapter 2. Markov Decision Processes and Reinforcement Learning 39
2.13 Summary

This chapter introduced Markov Decision Processes (MDiRgReinforcement Learn-
ing (RL) in the context of their application in the experinedwork of this thesis. The
MDP-RL framework is used for dialogue management becaussetlitought able to
produce better dialogue strategies with less effort thartréditional rule-based hand-
coding approach. As a statistical learning method, it hasraber of key potential
advantages over the traditional approach e.g. greatestnodss to noise and uncer-
tainty. Amongst other statistical learning methods, it éyattractive because RL
tries to produce a plan to maximise long-term reward, angl igiexactly what we
want for a dialogue strategy. In addition, RL uses trial-ener search which will be
necessary given a large number of possible dialogue steategexplore.

An MDP is defined in terms of actions (available to the agenwour case the Dialogue
Manager (DM)), states (representations of the state of nheament - in our case
the dialogue context), and numerical rewards as deternbgeddreward function, (a
function of the state which formalises the agent’s goal).oAqy is a mapping between
states and actions, (in our case, a dialogue strategy). NbB&sthe Markov property
which means that the new state which an agent transitioasitbthe reward it receives
as a result, depends only on the immediately prior state la@m@dction taken in that
state. The dynamics of an MDP are defined by the one-steptteamprobabilities,
(denoted here a8), and the expected rewards, (denoted herg)afor all states and
their allowable actions. RL algorithms are used to try toridhe optimal policy i.e. the
policy which maximises the expected return. The return isnetion of the sequence
of rewards produced by each interaction between the agdriharenvironment within
a single episode e.g. dialogue. Since the return is a randoiale, its expected value
is its population mean.

Value functions of policies are fundamental to all RL al¢foms - for each state or
state-action, they estimate the expected return whenrgidrom that state or state-
action and then following a particular policy thereaftetheToptimal value function

assigns to each state, or state-action, the largest expesiiern achievable by any
policy, and a policy whose value function is optimal is animmad policy. Dynamic

Programming (DP) is not used for learning full dialoguetstgées because it requires
complete knowledge of the environment, iTfeandR, and it is computationally expen-
sive. However, it has been used in what we referred to as alfbaded approach in

Chapter 2. Markov Decision Processes and Reinforcement Learning 40

order to learn partial dialogue strategies from a corpusuafidm-machine dialogues.
It was also described in this chapter because it provide®d basis for understanding
other RL algorithms. DP learns the optimal policy by using tfferent processes
- policy evaluation, and policy improvement. Policy evdloa computes the value
function for a particular policy. The Bellman equation fovaue function expresses
a relationship between the value of a state and the valués sificcessor states. If we
substitute all of the possible states into this equatiod,then solve the resulting set
of simultaneous linear equations, (typically through argative method), then we have
performed policy evaluation. Policy improvement is theqass of improving a policy

by making it greedy with respect to its own value function. eTgrocesses of pol-

icy evaluation and policy improvement interact under a #amrk called Generalised
Policy Iteration (GPI), and both stabilise only when theiimgat policy is found.

RL algorithms which learn from sample returns e.g. Montd@@iC) methods and
Temporal Difference Learning (TDL) do not require a full nebdf the environment,
and are less computationally expensive. They have beentadedrn full dialogue
strategies with a user and Automatic Speech RecognitioRjANatural Language
Understanding (NLU) simulation, in what we referred to asmautation-based ap-
proach. Learning from sample returns requires soft trgipiolicies i.e. training poli-
cies which have a non-zero probability of selecting eacloadh a state, and these
can be produced usirgggreedy or softmax action selection. On-policy and Offipol
methods are two different methods for using soft trainintjces in order to learn a
policy. The fundamental difference between MC and TDL mé¢his in the way in
which they perform policy evaluation - whereas MC methodduste a policy using
complete returns, TDL methods use partial returns. Eligybiraces (ETs) can be
seen as forming a bridge between MC and TDL methods, and casdukto speed up
learning.

Chapter 3

Previous research on Reinforcement

Learning of dialogue strategies

3.1 Introduction

This chapter will summarise and analyse previous researnalising Reinforcement
Learning (RL) to learn dialogue strategies for Spoken QawSystems (SDSs). Sev-
eral research groups have been working in this area in thelBagears (see Table
3.1), and significant progress has been made. Differentsigariation approaches
for training RL approaches to dialogue have previously lmexeyed by Schatzmann
et al. (2006), and where relevant, this chapter also dissssss related to user simula-
tions, but here our primary focus is on surveying the difiéRL systems themselves.
This includes surveying very recent work such as Hendersal @008), highlighting
the main advances, and pointing out open problems. For eéwerthe literature re-
view contained in this chapter which is extended to coveniptan and Lemon (2005,
2006, 2008a), the reader should refer to Frampton and LeRGH80).

For each research system developed by the groups, our enalffsompare:

e application domain of the SDS,
e RL technique,
e data set/corpus used,

e state features and action set,

41

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 42

Research publications

Summary

Levin and Pieraccini (1997

Proof-of-conceptthat a DM can be modelled as a
MDP & RL applied to learn a dialogue strategy.

Singh et al. (1999)
& Singh et al. (2002)

Learned/testegartial ISF strategies with real users state
features for slot-status & which ASR grammar used last.

Walker (2000)

As for Singh et al. but usin@ARADISE reward: predictsuser
satisfaction from dialogue efficiency/quality & task success.

Pietquin and Renals (2002) Learnedfull ISF strategy; goal-directed, part-stochastic

US; stochasti&S; hand-coded probabilities no real user
tests; only slot-status state features.

Scheffler and Young (2002

As for Pietquin & Renals byprobabilities for US & ES
learned from data; US & ES evaluated (unconvincing).

English and Heeman (2004

)Learnedboth the US & system strategies simultaneously

via RL, hence problem over accuracy of US.

Paek and Chickering (2005

)Learned v. simple strategies with MDR&n-Markov models
& model-specific automatic FS

Tetreault and Litman (2006

Learned partial strategies fortator system; evaluated
usefulness of state features; no real user tests.

Henderson et al. (2005)
& Henderson et al. (2008)

Hybrid RL/SL to learn full ISF strategy with v. large statgase
from fixed dataset; real user tests & comparison to handetod
strategy; no insights for which state features importantt&w

Table 3.1: Timeline of previous research on RL of dialogue strategies for SDSs; DM

= Dialogue Manager; MDP = Markov Decision Process; ISF = Information-Slot-Filling;

U/ES = User/Error Simulation; FS = Feature Selection; SL = Supervised Learning.

reward function,

user simulations,

error simulations,

experimental results

Automatic Speech Recognition (ASR)/ Natural Language Wstdading (NLU)

Throughout the presentation a comparative analysis of teequs research will be

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 43

given, lessons learned will be presented, and future relsehrections will be moti-
vated.

3.1.1 Properties shared by all approaches: slot status feat ures,

initiative and confirmation actions

In almost all of the systems discussed below, the task of iddeglie system is “slot-
filling”, which as stated in Section 1.1.1, involves coliagta set of preferences or
search constraints from the user (e.g. destination cigfepred food type). In gen-
eral, dialogue management action decisions such as ivdtjgsee Section 1.1.1), and
confirmation strategies are studied by all groups. In aoldjtall prior research uses
“slot-status” features in dialogue states, e.g. for eafrimation slot in the particular
domain, whether it is filled, the associated Automatic Shé&ecognition (ASR) Con-
fidence Level, whether it is confirmed. A CL is a number betw@emd 1 based on
acoustic measurements and defines how sure the system iset@drdormed correct
recognition. Some approaches also differentiate stateslizn the particular values of
filled slots. In the presentation below, we note cases wlesearch has used features
in addition toslot filled/confirmed status for the relevant task domain.

3.2 Early theory and proof-of-concept: Levin and Pier-

accini 1997 and 2000

Levin and Pieraccini (1997) contains the first presentatibthe concept of using a
Markov Decision Process (MDP) and Reinforcement LearriRig (o learn a dialogue
strategy. Levin et al. (1998) and Levin et al. (2000) thercdbed a first attempt at
putting the theory into practice. They used a Monte Carlo {MQorithm to learn a
dialogue strategy for an Air Travel Information System (8]

3.2.1 State features and action set

In learning strategies for the ATIS task, Levin et al. (1988)l Levin et al. (2000) used
state vectors consisting of the following fields, (in aduitto slot status):

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 44

1. the number of data tuples retrieved from the databased@iogato the user re-
quest,

2. a feature which records whether the system has alreadgmtexl data to the
user.

Possible system actions for learning include:

1. an open-ended question i.e. “How can | help you?”,

2. ask the user to provide information about a slot/spedifitbate of the task (e.g.
origin, airline, departure time etc.,

3. retrieve data from the database according to the cursamtrequest,
4. present the retrieved data to the user,

5. ask the user to relax a particular constraint e.g “Do yoodheionsidering other
airlines?”,

6. close the dialogue.

3.2.2 Reward function

In the ATIS domain, the system’s goal is to provide the use¢hwiformation about
flights in an efficient way. Efficiency here involves the dioatof the dialogue (in
turns), the cost of external resources (database refriamdl the effectiveness of the
system output to the user. Hence Levin et al. (2000) used ardefunction that was a
weighted sum of the following:

1. length of the dialogue in number of turns,
2. expected number of tuples retrieved from the database,
3. adata presentation cost functidp(No),

4. overall task success measure.

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 45

For the third term, the data presentation cost functigis the number of records that
are presented to the user, and generddifio) is zero forNg smaller than a reasonable
N*, and increases rapidly thereafter, whifedepends on the medium used to output
information to the user, (it is generally small for voice édscommunication, and
higher for display). The fourth term is an overall binaryiktasiccess measure that is
changed to “successful” if any data is presented to the uges assumed that there
have been no misunderstanding errors and so that the dathesdhe user request.

3.2.3 User simulation

Unlike other earlier research between 1998-2002, Levih. ¢2@00) applies the sim-
ulation -based approach for using Reinforcement Learnitig (o learn a dialogue
strategy, (see Section 2.8 for definitions of model and satmr-based approaches).
Levin et al.’s user simulation is partly-stochastic - it sigsigram and bigram mod-
els which generate a user response based on the previoesnsgstion. As in all
cases where a user simulation has been used for RL of diakigategies, training
dialogues between the system and user simulation are ctattivia abstract represen-
tations of utterances such as Dialogue Acts (DAs), (sead@ettl.1 for a definition of
a DA). This is because such abstract representations aex eagenerate than word
sequences, let alone speech signals, and they also mak&dt &asimulate Auto-
matic Speech Recognition (ASR) and Natural Language Utatetsg (NLU) errors.
Note that Levin et al. (2000) does not use any kind of errougition. Levin et al.’s
user simulation supplies slot values rather than abstigetivay from them. (For ex-
ample, if it is trying to fill the “destinatiorcity” slot, it will output something of the
form “destinationcity(Pittsburgh)” rather than just “destinatianity”.) This necessi-
tates the deterministic part of the simulation which ensaoasistent or goal-directed
behaviour, so that within a dialogue, the simulation alwsypplies the same values
for each slot e.g. the simulated user does not change its maiiftadvay through so that
it wants to fly to “Philadelphia” instead of “Pittsburgh”.

The simulation used unigram and bigram models for the falgvactions, whereX
andY can refer to any slot, including the same slot:

1. the number of values to supply in response to a greetind®éngy, n=0,1, 2,

2. which slot to supply a value for in response to a greetigg &(ORIGIN),
P(AIRLINE),

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 46

3. which value to supply given the slot eR(BostonORIGIN),P(Delta] AIRLINE),

4. supplying a value for slot X given that the system askedibblot Y e.g.
P(AIRLINEJAIRLINE), P(AIRLINE[DEPARTURET IME),

5. supplying values for N unsolicited slots given that thetegn has just asked
about slotX e.g.P(2|AIRLINE),

6. accepting the relaxation prompt given which slot theeystvishes to relax e.g.
P(yesAIRLINE) = 1—P(no/AIRLINE).

The original ATIS dialogue corpus (Walker et al., 1997) cbomly be used to estimate
the parameters for actions 1 and 2, because in this corpaisygtem never takes the
initiative, and does not ask constraining or relaxing goest Hence the parameters
for the other models were set using intuition. Levin et aDQ@) did not simulate
ASR/NLU errors. This simulation was not evaluated to askessrealistic it is.

As we will see, this is a fairly typical approach to user siatidn for RL in SDS,
featuring:

e partly deterministic and partly-stochastic behaviour,
e consistent/goal-driven behaviour,
e some probabilities are derived from appropriate data, sm@éand-coded,

e communication between the user simulation and system itneadh representa-
tions of utterances e.g. Dialogue Acts (DAS),

¢ no evaluation of the simulation quality.

Later in this survey, more recent research will be describedhich efforts are made
to establish the accuracy of the user simulation e.g. Seheffild Young (2002), Hen-
derson et al. (2008).

3.2.4 Experimental results

Levin et al. (2000) state that by the end of the training, tystesm had explored 111
states, and converged to the optimal strategy. A summanpisged of how the strat-
egy behaves. Firstly, the system always starts the dialbggeeeting. Depending on

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 47

the system state after getting the user response to thisrgyethe system, if needed,

proceeds by asking constraining questions until the ardgstination and airline are

specified. Note that the strategy does not take into accbentumber of database en-
tries that match the user’s constraints after every user(iig. the strategy continues
to ask for all constraints even if there is only 1 or O curre@sults). Next, the strategy

retrieves data from the database. After the retrieval afrsulting data set is empty,
(because the query was over-constrained), then the sydsgranding on the current

state, relaxes the airline or the departure time, and vesi@gain. If there are too

many flights in the data set, it asks for additional constsafa.g. the departure time)

and then retrieves again. If at any point during the dialayeeetrieved data set has a
reasonable number of flights, then the data is output andigih@gdie is closed.

Levin et al. (2000)’s evaluation is unsatisfactory for tb#dwing reasons:

e There is no quantitative evaluation of the learned strabagped on average final
reward.

e There are no quantitative comparisons to any other straggya hand-crafted
strategy, a random baseline strategy or some other kincoidel baseline strat-
egy, (only one strategy is learned in any case).

e As a result of the above deficiencies, no statistical sigaifoe results can be
reported.

e Thelearned strategy is tested with the same simulationwthibh it was trained.

The learned strategy is not tested on real users.

As we shall see later in this chapter, evaluation methodetobave become more
sophisticated in recent years e.g. Lemon et al. (2006a).

3.2.5 Summary

This early work was very important in pioneering the basioaapts and methods in
RL for Spoken Dialogue Systems (SDSs). All subsequent woilkl&on this approach
to some degree, but as we shall show, many aspects of the doétlgy have been
improved upon. We now describe work which closely followed initial presentation
by Levin and Pieraccini (1997).

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 48

3.3 RL using data from real users: initial results from

Singh et al. 1999-2002

This section describes the work of Singh et al. (1999, 200R)ch differs from that
of Levin et al. (2000) in that it uses the model-based as oggbts simulation-based
approach for using Reinforcement Learning (RL) to learredodjue strategy, (see Sec-
tion 2.8 for definitions of model and simulation-based apph®s). In addition, partial
rather than full strategies are learned, (action choiocesearned only in certain states,
not all states), and the exploratory data used by the reiafent learner is generated
by real, not simulated user interactions. Since the praitiabifor the stochastic user
simulation used by Levin et al. (2000) were set using impaitrather than learned from
data, we can say that Singh et al. (1999, 2002) pursue a nrorgyit data-driven ap-
proach. As we shall see further on in this survey, other rekess e.g. Walker (2000),
Tetreault and Litman (2006) have also used the model-bggaach and real user
interactions in order to learn partial strategies. Leagriunl strategies is perhaps not
realistic when RL is directly applied to dialogues collettgith real users. Learn-
ing full strategies rather than partial strategies obMptesquires a greater number of
training dialogues, but collecting dialogues with real ppased to simulated users is
costly in terms of time and possibly money. Even if thesexag&re not prohibitive,
real users cannot be expected to interact with a system vibieRploring different
actions in every state, many or most of which will be unreasts

Singh et al. (1999) describes 6 experiments in which theyyaiheir software tool
“RLDS” (Reinforcement Learning for Dialogue Systems) te TOOT train schedule
system. The TOOT system is a slot-filling system whose go#d itnd the user a
suitable train in the Amtrak train schedule. RLDS takes ao$étanscribed sample
dialogues, builds a Markov Decision Process (MDP) and tisexs a standard Dynamic
Programming (DP) algorithm calledhlue iterationin order to find the optimal value
function and strategy. RLDS was applied to a corpus of 14G#adialogues between
real users and TOQOT. In appropriate states, action choiees@arned for information
presentation, confirmation (whether and how to confirm utierances) and initiative
(system vs. mixed), while in other states the action choias fixed. The main aims
of the experiments described in Singh et al. (1999) were to:

1. confirm that the RLDS methodology and software producestively sensible
policies,

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 49

2. use the value functions computed by the RLDS softwaresoodier and under-
stand correlations between dialogue properties and peéioce.

In related work, Singh et al. (2002) collected sample diaksgbetween real users
and another slot-filling system called NJFun. The NJFunesggirovides users with

information about “fun” things to do in New Jersey. Here,réthavere 54 subjects

for training and 21 for testing, and this provided 311 tragndialogues and 124 test
dialogues. Like Singh et al. (1999), Singh et al. (2002) @itgmpted to learn which

action to take in certain states. In some states, they waniedrn whether to confirm

a slot value, and in others, whether the system should takmitiative.

3.3.1 State features and action sets

Singh et al. (1999) used different state features deperinige aim of the experiment.
The state features used for TOOT in the first experiment wereslot-status features
only. Here the aim was simply to check that RLDS was working eould learn a
sensible policy i.e. one which filled all of the slots, confanthem and then queried
the database. Subsequent experiments also used the fajlomo state features:

1. number of filled slots,

2. length of the dialogue.

One interesting experiment aimed to find a correlation betwbe value function and
the number of “distress indicators” in a dialogue - indicatihat the dialogue is poten-
tially in trouble e.gtimeoutsresets user requests for helfHence a feature that kept
track of the number of distress indicators was added to #ie stpresentation.

Singh et al. (2002) aimed to learn which of 2 actions (ini@tnd confirmation type)
to take in 42 different states (the other action choices \warel-coded). Each of these
states was represented using the following features:

1. whether the system has greeted the user (0 or 1),

2. which slot is being worked on (1-4),

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 50

3. confidence/confirmed (0,1,2 for low, medium and high ASRfidencé, 3,4 for
explicitly confirmed, and disconfirmed),

4. whether a value has been obtained for current slot (0 or 1),
5. how many times the current slot has been asked (0,1,2),
6. whether a non-restrictive or restrictive grammar wasl ({8eor 1),

7. whether there was trouble on any previous slot (0 or 1).

Some of the 42 states occurred when the system needed torasksk a slot, and then
the action choices were to retain the initiative or to givioithe user. The rest of the
42 states occurred when the system has just obtained a Blet wad then the action
choices are to confirm, or to move onto another slot. The systas trained with 54
users (311 dialogues) by taking random choices at thesésp@ihe “Exploratory for
Initiative and Confirmation” strategy), and collecting aads via task completion.

3.3.2 Reward functions

Singh et al. (1999) and Singh et al. (2002) only ever gave amw terminal dialogue
states. For the TOOT experiments, this terminal state wes obtained from a
question in the user satisfaction survey. This reward wasf the user said that they
would use the system again, 0 if they said “maybe”, aridif they said “no”. In
Singh et al. (2002) dialogue reward was automatically labdby a+1 in the case of
a completed task, or1 otherwise.

3.3.3 Experimental results

The main findings of the 6 experiments described in Singh.€18D9) were the fol-
lowing:
1. RLDS is capable of learning a sensible basic dialogueyoli

2. the value function grows roughly linearly with the numlwérconfirmed at-
tributes,

1As stated in Section 3.1.1, a speech recogniser can uset@anesisurements to indicate how sure
it is to have performed a correct recognition.

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 51

3. dialogues with a higher number of distress features hémeex value,
4. within the same length dialogue it is better to have ole@dimore attributes,
5. system initiative has higher value than mixed initiative

6. results are extremely similar using a reward functioredam whether the user
perceived the task to have been completed, rather than &slkacompletion.

Singh et al. (2002) found that the value function of the ledrstrategy was higher than
the average value of the random “Exploratory for Initiavel Confirmation” strategy
used during training. Task completion increased from 52%@ining to 64% in testing
(p < 0.059 in an independent samples t-test over subject méari)e experiments
had also involved collecting subjective evaluations fréwa tisers, but these were not
significantly different between the learned and randomcpesi

This work was the first to provide significant results showtimgt a learned policy can
perform well with real users of a dialogue system. Howevesrd are some unsatis-
factory elements to this result:

¢ the baseline strategy for comparison was random actiorcehoather than a
state-of-the-art hand-crafted strategy,

¢ the strategy was only learnt for a small number of choicetgpmather than for
the entire state-action space (all actions in all posstilies),

e only small state spaces were used (e.g. compared to Hendsrab 2008).

We now discuss the related work of Walker (2000), which usegifferent, data-driven,
methodology for determining the reward function for leami

2A t-test is any statistical hypothesis test in which the satistic has a Student’s t distribution if
the null hypothesis is true i.e. no difference exists betwta groups for the variable being compared,
(in this case the means). Population data from which sangikeale drawn are assumed to be normal,
and variances of the populations, equal. Fhealue gives the probability that the null hypothesis is
true. For information on independent samples t-tests, (amdomly selected groups), see page 427 of
Sheskin (2007), and on dependent samples, (two groups ethtchsome variable or the same people
tested twice i.e. repeated measures), see page 743.

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 52

3.4 Predicting user satisfaction and defining reward:

Walker 2000

Like Singh et al. (1999, 2002), Walker (2000) also descrdesxperiment in which a
partial slot-filling strategy is learned based on explanattata generated by real user
interactions. However, Walker makes an important novelrdaution with respect
to the reward function by proposing “PARADISE” (PARADIgmrf8ystem Evalua-
tion), which is a method for predicting a dialogue-arser satisfactioscore based on
metrics that can be easily collected by the system itseltti@®e 3.4.2 will introduce
PARADISE in detalil.

The particular Spoken Dialogue System (SDS) used by Wal¥)(q) is ELVIS (Email
Voice Interactive System) (Walker et al., 1998), the pugoaiswhich is to support ac-
cess to email over the phone. Q-learning, (an off-policy peral Difference Learning
(TDL) algorithm - see Sutton and Barto 1998), is applied topuas of 219 dialogues
between ELVIS and 73 different real users, (each user caouéa set of three email
tasks). In generating these dialogues, the system randexplpred alternate strate-
gies in appropriate states for initiative, reading messagel summarising folders, and
used fixed strategies elsewhere e.g. for requesting anddprgunformation. Hence
Reinforcement Learning (RL) is being used to learn actiavicgs for initiative, read-
ing messages and summarising folders. The learned stratégsted in 18 dialogues
with 6 new users. Training and testing dialogues are alluatet with a user satisfac-
tion score, which is computed from the user’s answers to aoenimf questions about
how the dialogue went.

3.4.1 State features and action sets

As stated above, Walker (2000) explores different actiariads with regard to initia-
tive, and summarising and reading messages. ELVIS exptaeslifferent types of
initiative action:

1. The system-initiative action constrains what the user say by requesting a
particular item of information.

2. The user-initiative action allows the user to take cdntfothe dialogue and
specify exactly what s/he wants to do next.

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 53

For the implementation of ELVIS used in Walker (2000), th@ick of initiative is
made early in the dialogue and then kept to for the remainderder to avoid con-
fusing the user. If the system is using a user-initiativatetyy but the user fails to
provide a recognisable response, then the system will takénttiative to repair the
situation before switching back to user-initiative acoE&LVIS explores 3 alternative
summarisation actions:

1. The Summarize-Both (SB) action uses both the sender argltiject attributes
in the summary.

2. The Summarize-System (SS) action summarises by subyjést ®ender based
on the current context.

3. The Summarize-Choice-Prompt (SCP) action asks the asgecify which of
the relevant attributes to summarise by.

Finally, ELVIS explores 2 different Read actions for reagimultiple messages fol-
lowing a user request e.g. “Read my messages from Kim.”:

1. The Read-First (RF) action involves summarising all efriiessages from Kim,
and then taking the initiative to read the first one.

2. The Read-Summary-Only (RSO) action provides infornmatiwat allows users
to refine their selection criteria.

Walker uses the following state features, which are desdribrther below:

1. KnowUserName (U): 0,1,

2. InitStrat (1): 0,SM,Ml,

3. SummsStrat (S): 0,SS,SCP,SB,

4. ReadStrat (R): 0,RF,RSO,RCP,

5. TaskProgress (P): 0,1,2,

6. CurrentUserGoal (G): 0, Read, Summarize,

7. NumMatches (M): 0, 1, N1,

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 54

8. WhichSelection (W): 0, Sender(Snd), Subject(Sub), te@inO),
9. KnowSelectionCriteria (SC): 0,1,

10. Confidence (C): 0,1,

11. Timeout (T): 0,1,

12. Help (H): 0,1,

13. Cancel (L): 0,1.

The KnowUserName (U) feature keeps track of whether ELVISAsithe user’'s name
or not. The InitStrat (I), SummStrat (S) and ReadStrat (R)uees keep track of
whether ELVIS has already employed a particular initiatrategy, summarise strat-
egy, or a reading strategy in the current dialogue, and Wéach strategy it was. The
TaskProgress (P) feature tracks how much progress the asenade in completing
the experimental task. The CurrentUserGoal (G) featureesponds to the system’s
belief about what the user’s current goal is. The WhichSeleqW) feature tracks
whether the system knows what type of selection criteriaufex would like to use to
read her messages. The KnowSelectionCriteria (SC) fetrtaakes whether the system
believes it understood either a sender name or a subject taose to select mes-
sages. The NumMatches (M) feature keeps track of how mangages match the
user’s selection criteria. The Confidence (C) feature igestiold variable indicating
whether the speech recogniser’s confidence that it unaerstbat the user said was
above a pre-set threshold. The Timeout (T) feature reptesea system’s belief that
the user said Help, and leads to the system providing cosfedific help messages.
The Cancel (L) feature represents the system’s belief bieatiser said Cancel, which
leads to the system resetting the state to the state beferashuser utterance was
processed. Walker reports that these state features modd©592 possible states but
that not all of these states occur.

3.4.2 PARADISE and the reward function

As stated previously, Walker (2000) proposes a methodatatigd PARADISE for de-
veloping predictive models of SDS performance (see als&&vadt al. 2000). Walker
(2000) describes an application of the methodology to thieitrg dialogues collected
with ELVIS. Recall that the training dialogues are genataising a strategy which

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 55

randomly explores action choices for initiative, readingssages and summarising
folders. At the end of each dialogue with ELVIS, the useriséaction is seen as the
sum of the following features, where each feature has somig\yEweight:

1. Actual Task Completion (0 or 1),

2. Perceived Task Completion (O or 1),
3. Task Ease (6 4),

4. Comprehension Ease{%),

5. System behaved as Expected-(0),

6. Future Use (6-4).

The value for Actual Task Completion was obtained from thsteay logs, but the

values for the other user satisfaction features; @in the list above) were supplied
by the users. The modelling techniqueyltivariate linear regressiof is then used

to learn to predict the user satisfaction score based on &d@auof metrics that can be
directly measured from the system logs. These metricsdieclu

1. Dialogue Efficiency Metrics - elapsed time, system tuasgy turns,

2. Dialogue Quality Metrics - mean ASR confidence score, remaolh timeouts,
(a timeout is when user response is detected within a ceatamunt of time),
Automatic Speech Recognition (ASR) rejections, user reguior help, user
requests to restart the dialogue, barge-ins, (interroptaf the system by the
user).

The resulting model is a PARADISE model for predicting usaistaction/SDS per-
formance.

In learning the action choices for initiative, reading neggess and summarising folders,
the actual user satisfaction score was used as reward,enosén satisfaction score as
computed by the PARADISE model.

SMultivariate linear regression, (see page 1433 of Shesd@v®, models numerical data byleast
squares functiowhich is a linear combination of the model parameters anéddpon> 1 independent
variables. A least squares function fits a model so that thecsthe squared residuals has its least value,
a residual being the difference between an observed vatlitharvalue given by the model.

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 56

3.4.3 Experimental results

Regarding PARADISE, a stepwise linear regression on theitigadata showed that
Task Completion, Mean Recognition Score (MRS), Barge-imib Rejection% were
significant contributors to User Satisfaction, accounfog39% of the variance iR-
squared . How well the model generalised to unseen data was testadavtén-fold
cross-validation® The averagdR? for the training set was 37% with a standard error
of 0.005, while the averagB? for the held-out 10% of the dialogues was 38% with
a standard error of.06. This suggests that the model will generalise to new ELVIS
dialogues.

Regarding the learned strategy, statistical analysisatdd a significant increase in
user satisfaction from training to test (p 087). Wherever the choice arises, the
learned strategy uses the System-Initiative and Readldétions. The learned strategy
uses the Summarize-Both action at the beginning of the gliepand then switches to
the Summarize-System action in later phases.

This work then shows that using a more data-driven defindfoeward leads to a bet-
ter learned strategy than a random strategy. We now turndthanstrand of research,
which has focused osimulatedusers and ASR systems rather than training with real
user data, (the simulation-based approach to learninggiial strategies - see Section
2.8.2).

3.5 Learning with simulated users and ASR errors:

Pietquin and Renals 2002

This section describes the work of Pietquin and Renals (R3@ich uses a Monte
Carlo (MC) algorithm and a stochastic user simulation toHemastrategy for a slot-
filling computer-dealing system. The novel feature of thrkvis that a simulated
Automatic Speech Recognition (ASR) system is introduced ithe Reinforcement

4R2, the “coefficient of determination”, (see page 1230 of Sire8R07), is the proportion of vari-
ability in a data set that is accounted for by a statisticatleloR? = 1 indicates that the fitted model
explains all variabilityR? = 0, no ’linear’ relationship between the dependent andpedeent variables,
andR? = 0.39, that approximately 39% of the variation in the dependarigble can be explained by
the independent variables, and the remaining 61% by unkwawables/inherent variability.

5In an n-fold cross-validation, the data is first divided int(usually equal-sized) portions, and then
in each of n folds, a different one of these portions is usetkfsting, while the remainder of the data is
used for training. Results are averaged across the n folds.

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 57

Learning (RL) environment. This ASR simulation simulateshbspeech recognition
errors and Confidence Levels (CLS), (recall that CLs werethiced in Section 3.1.1).
However, the probabilities for the user and ASR simulat&nesnot learned from data.

3.5.1 State features and action sets

For the computer-dealing application, each state is repted with the following slot-
status feature:

e A confidence feature for each of the 7 slots - undefined if shdillad, low or
high.

Hence each slot can be represented as either (0,undefibgdoyy)(or (1,high), mean-
ing that there are3possible states.

The action set contains 6 generic actions:
1. GREETING e.g. “How may | help you?”,
2. ASK: ask to constrain the value of a slot,
3. CONF: ask to confirm the value of a slot,
4. RELAX: ask to relax the value of a slot,
5. DBQUERY: perform a database query,

6. CLOSE: present data and close the dialogue session.

With 7 slots, this gives 24 different actions. When the dasgbwas queried, only
values with a high confidence level were used.

3.5.2 Reward functions

After each turn, the reinforcement learner receives a wWat is a weighted sum of
the following:

1. a negative reward if the final state has not yet been reached

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies
2. the number of database accesses,

3. the number of presented records,

4. the ASR Confidence Level (CL) for the user’'s most recemtratice,

5. a*“function of the modelled user’s satisfaction”.

Pietquin and Renals (2002) and Pietquin (2004) do not aggpgapvide details about
the “function of the modelled user’s satisfaction”.

0.4

; — Good Recognition CL
035} - -- Bad Fecognition CL

0.3

025k |

T
—
|

0.2

0.15

0.1 :

0.05

_——
1

| | =
o 07 0.8

Figure 3.1: A Confidence Level (CL) distribution for good and bad recognitions.

3.5.3 A stochastic user and error simulation

Like the simulation used by Levin et al. (2000), the simwalatused by Pietquin and
Renals (2002) is partly-stochastic and able to simulatediiritiative behaviour. An-
other common feature is that the purpose of its determengtéiment is to ensure that
the simulation maintains the same goal within an individdialogue - a main user

goal is randomly defined at the start of each dialogue andac&ms are consistent
with this goal. Here, since the domain is computer-deabingser goal describes a set
of specifications for a computer. A difference to the Levimlet(2000) simulation is

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 59

that for the Pietquin and Renals simulation, none of the gibdities are learned from
data - they are all supplied via intuition.

Pietquin and Renals (2002) and Pietquin (2004) denddtemean the number of slots,
g = the user goallg = the user knowledge at tinte s* = the slot which the system
has just asked aboui® = the slot which the user simulation provides a value for in
response to the system prompt. The user gadgfines the user’s preferred value for
each slot, and; records how many times the user has supplied a value for éaich s
The probabilities used by the user simulation then include:

1. probabilities associated with responses to greetind®rgGreetingg), P(u® |k, g),

2. probabilities associated with responses to constrginirestions e.g?(u|sP, k., g),

P(nsP),

3. probabilities associated with responses to relaxatiompts e.gP(yess®, k. g),

P(nojsP, k,9),

4. probability associated with user satisfacti®ticlosgs®, k;,g) i.e. the user sim-
ulation can indicate its dissatisfaction by closing thdatjae early, and so this
probability is set to increase with the number of times thatgimulation must
supply a particular slot value.

As stated at the start of Section 3.5, the novel feature sf\ark is that it uses a
stochastic ASR simulation which simulates ASR errors artguts Confidence Level
(CL) scores. Just as for the user simulation, the probagslfor the ASR simulation
are not learned from data - they are set using intuition.g8iatand Renals (2002)’s
ASR simulation uses different CL and error rate distribogidor a finite number of
recognition tasks, which include:

1. digits,
2. numbers,
3. dates,

4. unrestricted continuous speech.

A CL distribution is composed of two distinct curves respasy for good and bad
recognition results - Figure 3.1 represents a CL distrdsutiutput from a real ASR

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 60

system obtained using some of its training data (isolatedisjo As the two curves
cover each other, it is unavoidable to reject some wellgas®d utterances as well as
to accept a few bad recognition results by defining a singlél€éshold. The ASR
simulation used here receives lists of one or more slotevphirs from the user sim-
ulation, which it then splits into individual slot-valueeshents. The probability of it
simulating an ASR error for a particular slot-value pairtient dependent on the aver-
age Word Error Rate (WER) for the task in question. Note thasimulation assumes
that recognition errors only affect values of the slot-eapairs and that only words
occurring in the same context can be substituted with eauoér.otif the simulation
simulates an ASR error, then it produces a partial CL acogrth the “bad recogni-
tion” curve of the corresponding CL distribution, and if @&k not, then it produces a
partial CL according to the “good recognition” curve. A gldlCL is generated for the
list by multiplying all partial CLs.

3.5.4 Experimental results

Pietquin and Renals (2002) reports that after several g#ralsimulated dialogues, the
learned strategy stabilises and appears to be optimal. Ansuyndescription of the
strategy is provided: after greeting the user, the systess tlee ASK and RELAX
actions until it has enough information with a high Confidehevel (CL) to query the
database and return a set which is not empty, but not “to@’lafgo details are given
as to what “too large” means in practice.

Pietquin and Renals report that the ASR simulation affetbedorder in which the
ASK action was applied for each slot. The learned strategydisks questions about
values that present better recognition results e.g. nusnber example, it will ask for
a value for the RAM size slot before the computer brand slot.

This work then shows that reasonable dialogue strategreb&#rained in simulation
rather than with real data, and that with only slot-statwfees represented in the
state, the reinforcement learner can learn to ask the sl@ts order which is sensitive
to the likelihood of ASR errors. However, the evaluationeherlacking in the same
way as that of Levin (see Section 3.2.4) e.g. there is no gatné evaluation of the
learned strategy or testing with real users. We now preseilas work.

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 61

3.6 A goal-directed user simulation and error model with
probabilities learned from data: Scheffler and Young

2002

Scheffler and Young (2002), Scheffler (2002) use Q-learramgoff-policy Temporal

Difference Learning (TDL) algorithm - see Sutton and Bar®®8), Eligibility Traces

(ETs), a goal-directed user simulation and a system errateinio learn a dialogue
strategy for a slot-filling cinema information Spoken Dgle System (SDS). The er-
ror model simulates both Automatic Speech Recognition (A&l Natural Language
Understanding (NLU) errors. Unlike Pietquin and Renal0@Qhe user simulation
and error model are both trained on a corpus of real user ddta.user simulation
is also described in Scheffler and Young (2001), and is amsiie of a previous
user model described in Scheffler and Young (2000). Unlikeawin et al. (2000)

or Pietquin and Renals (2002), there is some evaluation ttbassess how realistic
the simulations are, and the performance of the learnetégirés compared to hand-

crafted baselines.

3.6.1 State features and action sets

Scheffler and Young (2002) used 5 different state repreSensacomposed from dif-
ferent combinations of the following features (in addittorslot-status):

1. slot currently in focus (Type, Day, Film, Cinema),

2. “InfoSource” (Default, Negated, Elicited, Unelicited)

3. confidence (Default,,0.3,...,10),

4. “ConfLevel” (Default, Low, High).
Of these 5 state representations, the one with the greatediar of state-action pairs
included features 1 and 3, in addition to standard slotistigatures. Once the impos-

sible state-action pairs had been ruled out, this stateseptation was left with 1298
possible state-action pairs.

The different actions which the learner had to choose betwesze:

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 62

1. Mixed Initiative - mixed initiative query for more information (availableciir-
rent slot is empty),

2. System Initiative - query for information on the current slot (available if camt
slot is empty),

3. Explicit confirmation - confirm the contents of the current slot explicitly,
4. Confirm all - confirm the contents of all slots,

5. Implicit confirmation - confirm the contents of the current slot implicitly while
querying for information on the next slot,

6. Accept - accept information in the current slot without confirmatit present,
and terminate if a complete transaction has been specified.

This action set allows for automatic design of the choiceveenh mixed and system
initiative and the confirmation strategy, (a choice betwewplicit confirmation, im-
plicit confirmation, and delaying confirmation until later)

3.6.2 Reward function

Scheffler and Young (2002) use a simple reward function tivasg reward at the end
of each dialogue. This reward function includes a per-tiengity and a task failure
penalty.

3.6.3 User simulation and error model

Asin Levin et al. (2000) and Pietquin and Renals (2002), #ex simulation of Schef-
fler and Young (2001, 2002) is partially-stochastic and ik dab simulate mixed-
initiative behaviour. Again, the deterministic elementtioé simulation is that it is
goal-directed - a main user goal is randomly defined at thé st&ach dialogue and
user actions are consistent with this goal. There is alsolbagtilistic error model.

The user simulation generates utterances using latticeshvane made up of nodes
and paths between these nodes. Nodes are probabilistitevmieistic choice points
relating to user behaviour. The deterministic choices aset on user state and so
ensure consistent goal-directed behaviour. The parasgiethe probabilistic user

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 63

behaviour choice points and error model are estimated lasedining data collected
with a prototype cinema information SDS. In all cases, pbiliges are estimated
from the data usindlaximum Likelihood Estimation (MLE®, For the probabilistic
user behaviour choice points, amentis a user action, and themntextis the previous
system action(s) and a representation of the internal tester. $-or the error model, an
event would be whether or not a recognition/understandiragy eccurred. Counts are
obtained for both specific and more general contexts, sdttisapossible taback-off
to a more general case whenever the number of training exarfglls below a certain
threshold.

The user simulation and error model are shown to simulaferdiit scenarios well

enough to perform relative predictions of their duratiokence some evaluation is
undertaken in order to assess how realistic the user andsemalations are, but be-
ing based only on the gross metric of dialogue duration, ¢heduation is not very

convincing. How best to evaluate the accuracy of user s is in fact an open

research question (see Schatzmann et al. 2006), and it $s@a& which we will refer

to again in Section 3.10.

3.6.4 Experimental results

In evaluating the learned strategies, Scheffler and Youd@4qPused two hand-crafted
strategies as baselines. The first used a small state spateentiog slot-status features
and feature 1 from Section 3.6.1, while the second used & lst@te space which

included additional features such as a confidence featnceadeature which counts
how many times each slot has been asked. The performance lefaitmed and hand-
crafted strategies was evaluated in test dialogues witluslee simulation according

to the reward function in Section 3.6.2. Of the learned sgias, those learned with
larger state spaces tended to outperform those learnecsmiditier state spaces, but
the improvement was not great. The learned strategies idoitpeed the small-state-

space-hand-crafted strategy by a large margin, and pegtbnoughly as well as the

large-state-space-hand-crafted system.

Like Levin et al. (2000) and Pietquin and Renals (2002), wsk then shows that
reasonable strategies can be learned using simulated bseagain:

count(EventConte
5P(EventContex) = —cc:(unt(cdntexp al

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 64

e testing and training are performed with the same user siioala
e no tests with real users were performed,

¢ the quality of the simulated users is not established caimvily - we are only
told that the user simulation and error model are shown tailsita different
scenarios well enough to perform relative predictions efrtdurations,

¢ the learned strategies are not shown to be better than latetistrategies.

We now discuss an alternative approach which treated bwoitated user and dialogue
manager as RL systems.

3.7 Reinforcement Learning for both user and system:

English and Heeman 2005

English and Heeman (2005) use Reinforcement Learning (RUgdrn the system
dialogue strategy for a collaborative task which requiresgystem and user to agree
on 5 pieces of furniture to place in a room. Both the systemws®t have private
preferences about which furniture items they want in therraog. “if there is a red
couch in the room, | also want a lamp”. The main novel featditbis work is that RL
is used to learn the user strategy simultaneously. The sdanagerithm is used for
both strategies - an on-policy Monte Carlo (MC) method. Tihars argue that their
approach is preferable to the more generally-acceptedapprof using a stochastic
user simulation for which the probabilities have alreadgrbderived from a human-
human or human-machine dialogue corpus. They state thatlivealvantages of the
more generally-accepted approach are:

1. significant time and effort is required to collect the sémngialogues for the
dialogue corpus, and then model user behaviour to produserasimulation,

2. the strategy that can be learned for the system is limiyeithéd complexity and
flexibility of the simulated user.

They claim that their approach avoids these disadvantdgegsas will be explained
in Section 3.7.4, it seems to be fundamentally flawed if ibidé used for learning
dialogue strategies for interacting with real users.

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 65

3.7.1 State features and action sets

The state representation for each of the system and usetsageludes the following
binary features:

[EEN

. Pending-Proposal,

N

. I-Proposed,
3. Violated-Preference,
4. Prior-Violated-Preferences,

5. Better-Alternative.

A Pending-Proposalindicates whether an item has been proposed but not accepted
or rejected.|-Proposed indicates whether the agent made the most recent proposal.
Violated-Preferenceindicates that the pending proposal has caused one or nwfe Vi
lations of the conversant’s private preferencedor-Violated-Preferencesindicates
whether the conversant had one or more violated preferemoes the pending pro-
posal was madeBetter-Alternative indicates that the agent thinks it knows an item
that would achieve a better score than the item currentlggsed.

The action set for each of the system and user agents includes

1. propose,

2. accept,

w

reject,
4. inform,

5. release turn.

The propose acceptand reject actions refer to proposing, accepting and rejecting
different items of furniture for the room. An agent uses itiferm action to inform
the other conversant of preferences that are violated bgutent proposal. Since a
turn does not finish until the speaker uses ridlease turn action, a single turn can
include multiple actions e.g.r&ject, followed by aninform and then gropose

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 66

3.7.2 Reward functions

The agents only receive non-zero rewards at the end of eathgde. The reward
function is a linear combination of the solution quality €)d the dialogue length (L),
taking the form:

Reward= w;S—wsL (3.2)

wherew; andw, are positive constants. The authors explore the effectsffefrent
values for the constants.

3.7.3 User simulation using Reinforcement Learning

The user simulation is also an RL agent and so which acti@kéd at any given time
is determined by:

1. the action selection method egggreedy and the relevant parameter’s value e.g.
€ (see Sutton and Barto (1998) or Section 2.9.1),

2. the Q-values for the different actions in the currentestat

3.7.4 Experimental results

English and Heeman report that they succeeded in learnstgrayand user dialogue
strategies that achieved comparable performance with-beaitbd system and user
strategy pairs. The authors also claim that the learne@systrategies are robust -
when the learned system strategies “conversed” with thd-eeafted user strategies,
the resulting dialogues had comparable solution qualitytiat the hand-crafted and
user strategies achieved together. They acknowledge hbeg tvas a lack of con-
vergence in the Q-values over a number of learning trialssymably because the
Reinforcement Learning (RL) problem becomes more compliéx two interacting
learning agents.

However, if the goal is to produce system strategies foraatitng with real users, then
the approach of using RL to simultaneously learn both théegysnd user strategies
seems to be fundamentally flawed. To learn a strategy whiatksmweell with real

users, we need to train with a simulation which accuratetyutates real users. For

Chapter 3. Previous research on Reinforcement Learning of dialogue strategies 67

example, we will see in the description of the experimentatinof this thesis, that
real users seem to respond better to different repair gtemten different contexts.
Hence, unless we train with an accurate simulation, we dagxyect to learn these
appropriate repair strategies. Therefore, it seems tleatyfe of co-training used by
English and Heeman cannot be relied on to produce optinekgiies for real users.

We now discuss work which presents a method for automatisalecting features to
include in the state, and which investigates alternativeéddrkov Decision Processes
(MDPs) for modelling the dialogue management problem.

3.8 Alternative learning approaches and feature selec-

tion: Paek and Chickering 2005

Alternatives to Markov Decision Processes (MDPs) for miuigthe dialogue man-
agement problem have been investigated by Paek and Chmgk&005). Unlike
MDPs, their models do not constrain the state space by th&dMassumption, (see
Section 2.4). Paek and Chickering are interested in whétisguossible to learn better
strategies with these alternative models, i.e. ones wiitdiiohigher reward. Paek and
Chickering also present a data-driven method for idemtgywhich features should be
represented in the MDP state. This data-driven method gkses to the alternative
non-Markovian models. First, an MDP is viewed as a specisé ¢ aninfluence
diagram which is a more general framework for graphical modellingttfacilitates
decision-theoretic optimisation. There are techniquessiarning th