

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429733514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formal modelling and approximation-based
analysis for mode-switching population

dynamics

Paul Piho

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy
Laboratory for Foundations of Computer Science

School of Informatics
University of Edinburgh

2020

Abstract
This thesis explores aspects of model specification and analysis for population dynam-
ics which arise when modelling complex interactions and communication structures in
agent or component collectives. The motivating examples come from the design of
man-made systems where the optimal parametrisations for the behaviours of agents or
components are not known a priori. In particular, we introduce a formal modelling
framework to support the specification of control problems for collective dynamics in
a high-level process algebraic language. A natural choice for the underlying semantics
is to consider continuous time Markov decision processes due to their close relation to
continuous time Markov chains that have traditionally been used as the mathematical
model in numerous high-level modelling languages for stochastic dynamics.

Although the theory of the resulting decision processes has a long history, the
practical considerations, like computation time, present challenges due to the problem
of state space explosion when considering large systems with complex behaviours. State
space explosion problems are especially apparent in formal modelling paradigms where
the specification of models usually happens at a component or an agent level in terms
of a discrete set of states with defined rules for composing the specified behaviours into
the dynamics of a system. Such specifications often give rise to very large models which
are costly to analyse in full detail. However, when analysing models of collectives we
are usually interested in the resulting macro-scale dynamics in terms of some aggregate
measures. With that in mind, the second aspect of analysing collective dynamics that
is considered in this thesis relates to fluid, linear noise and moment closure-based
approximation methods which aim to give a good representation of the macro-scale
dynamics of the models while being computationally less costly to analyse.

We address a class of models where the population structure results from the as-
sumption that components or agents can only be distinguished from each other based on
the state they are in and focus on the particular cases where the population dynamics
can be separated into a discrete set of modes. Our study of these models is motivated
by considering information propagation via broadcast communication where the be-
haviour of components can change drastically when new information is received from
the rest of the population. We consider existing approximation methods for resulting
stochastic processes and propose a novel approach for applying these methods to mod-
els incorporating broadcast communication where each level of information available to
the collective corresponds to a discrete dynamic mode. The resulting approximations
combine continuous dynamics with discrete stochastic jumps and are not immediately
simple to treat numerically. To that end we propose further approximations that al-
low for a computationally efficient analysis. Finally, we demonstrate how the formal

iii

modelling framework in conjunction with the developed approximation methods can
be used for an example in policy synthesis.

iv

Lay Summary

Mathematical models are an important tool in the study of real-world systems and
phenomena. Typically such models are highly simplified or abstracted representations
of their real-world counterparts. The value of the constructed models lies in their
predictive power. A good model allows us to make predictions about the real-world
behaviours of the systems and reason about their properties. In the case of engineered
systems a good model helps us to design the system so that it behaves as desired in
practise. We concentrate on collectives, like robot swarms, and study a certain kind
of mathematical models, called continuous time Markov decision processes, and use
them to describe the dynamics of the collectives together with the choices we can make
in designing or controlling the behaviour of the individual components making up the
collective.

The models of collective dynamics described above are often complex to specify
directly and thus it is useful to express them in specialised languages which allow the
construction of the underlying mathematical model to be automated. To that end
we propose an extension to an existing language that allows for a concise description
of collective dynamics along with the possible control or design choices. Secondly,
once we have constructed a model we have to find a way to analyse it. As more
components are considered the size of the model grows, making the computational
analysis of the model behaviour slow. In order to alleviate that problem there exist
approximation methods that derive a simplified model which acts as a good proxy for
the properties of interest but is faster to analyse. We study a certain class of models
where components in the collective are allowed to broadcast knowledge about their
environment to the rest of the collective changing its dynamics. As a contribution we
show a novel application of existing approximation methods to this class of models and
propose further approximations that help us make computationally efficient analyses
of the constructed models.

v

Acknowledgements

First, I would like to express how exceedingly thankful I am to my supervisor Jane
Hillston for her patience, support and honesty in guiding me through the past years. Her
insight and experience have been invaluable in shaping this thesis and my development
as a researcher.

My time as a student in Informatics Forum has been made thoroughly enjoyable
by a number of great friends and colleagues. Especially I would like to mention Dan,
Philip, Caoimhín, Daniel, Amna, Reese and Vanya form my PPar cohort who have
been part of this journey from the very beginning till the end and have been a fantastic
company. I would like to thank Ludovica, Michalis, Anastasis and Maria for being
welcoming and for stimulating discussions and help.

I would like to thank my parents and my sisters for their support and understanding.
Last but definitely not least I thank Julie for her kind unwavering encouragement and
keeping me reasonably sane.

This work was supported by the Engineering and Physical Sciences Research Council
(grant EP/L01503X/1), EPSRC Centre for Doctoral Training in Pervasive Parallelism
at the University of Edinburgh, School of Informatics.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.
A preliminary version of the materials presented in Chapters 3 and 6 has previously
appeared in [104]. Parts of Chapters 4 and 5 are under review for publication [103].

(Paul Piho)

vii

Table of Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Structure . 3

2 Background 5

2.1 Stochastic population dynamics . 5

2.1.1 Definitions . 5

2.1.2 Random time change representation 8

2.1.3 Transient analysis . 8

2.2 Hybrid stochastic systems . 10

2.3 Model reduction techniques . 11

2.4 Continuous approximation methods . 11

2.4.1 Fluid approximation . 12

2.4.2 Linear noise approximation . 13

2.4.3 Moment closure approximations 15

2.5 Formal modelling . 16

2.5.1 Collective adaptive resource-sharing Markovian agents 17

2.5.2 Model checking . 21

2.6 Stochastic decision processes . 22

3 Model specification 25

3.1 Semantics . 26

3.1.1 Store . 27

3.1.2 Environment . 30

3.1.3 Resolving non-determinism . 31

3.1.4 Interleaving semantics . 32

3.1.5 Population model . 43

3.2 Policy synthesis . 44

ix

4 Approximations for mode-switching dynamics 47

4.1 Mode-switching population models . 48
4.2 Transition-based partitioning . 49
4.3 Approximations . 53

4.3.1 Fluid approximation methods . 54
4.3.2 Linear noise approximation . 59
4.3.3 Moment based approximations 60

4.4 Results . 66
4.5 Conclusion . 68

5 Heuristic marginalisation based computational strategies 69

5.1 Marginal dynamics . 70
5.2 Time-inhomogeneous Markov process . 73

5.2.1 Filtering heuristics . 73
5.3 Fluid approximation . 75

5.3.1 Direct coupling . 77
5.3.2 Iterative method . 79

5.4 Linear noise approximation . 83
5.5 Moment closure approximation . 84
5.6 Results . 86
5.7 Conclusions . 91

6 Synthesis example 97

6.1 Carma-C model . 97
6.2 pCTMDP model . 99
6.3 Policy synthesis . 101
6.4 Discussion . 103

7 Conclusions 107

Bibliography 111

A Hybrid linear noise theorem 121

B Conditional moments 123

B.1 Proof of Lemma 1 . 123
B.2 Conditional moments for the running example 124

C Filtering distribution 125

x

D Carma-C model of policy synthesis example 127

xi

Chapter 1

Introduction

The overarching story of this thesis is motivated by the notion of collective systems
which encompasses examples of robot swarms, wireless sensor networks and insect
swarms. When analysing the dynamics of such systems, we run into the problem that
even when considering significantly abstracted or simplified behaviours and communi-
cation rules, the emergent behaviour of the systems is often hard to predict or verify. It
is harder still to know a priori how to design the behaviour and capabilities of individual
components or agents in such collectives in order to achieve a system level objective.

Computational modelling and simulation methods provide a useful way to study
and predict behaviours of such complex systems. The approach taken here starts with
formal methods, in particular stochastic process algebras with continuous time Markov
chain (CTMC) semantics [14, 71, 88], as a useful framework for modelling collective
systems by allowing compositional definitions of complex models and feature formal
semantics that allow for automation of model creation. The thesis deals with problems
in the following two directions:

• Model specification: How to formally specify models for policy synthesis prob-
lems for collective systems based on capabilities of individual components and the
desired system behaviour.

• Model analysis: How to perform computationally efficient analysis of the re-
sulting models.

In general, continuous time Markov decision processes (CTMDPs) are a well-studied
mathematical model in control theory and operations research providing a natural
formalisation of policy synthesis problems. In the context of formal modelling and as
an extension to CTMCs they are a good fit for the similar compositional semantics
that are available for CTMCs. Note however that, like all discrete state modelling
paradigms, CTMDPs suffer from the state space explosion problem. This makes policy

1

2 Chapter 1. Introduction

synthesis for CTMDP models a computationally challenging problem.
In many cases such computational challenges can be addressed by appealing to

specially structured models. A large body of work exists linked to CTMCs where
the structure of the model corresponds to that of the interacting populations (popula-
tion CTMCs, pCTMCs). The developed continuous state approximation methods, like
fluid [83], linear noise [122] and moment closure approximations, can also help with
analysis and policy synthesis problems for population processes stated in terms of the
CTMDP framework [46]. The optimisation problems arising from applications of fluid
approximations are known in the control theory literature as mean field control prob-
lems [13] with swarm robotics emerging as a recent application field of such continuous
state approximation methods as a means for controller design [49].

The first aim of this thesis is to construct a framework that bridges the gap in
the formal high-level modelling and policy synthesis problems for collectives, such as
robot swarms, resulting in a high-level compositional approach for specifying CTMDP
models for collective dynamics. Secondly we consider systems composed of a homoge-
neous collective of agents or components and study the limitations of continuous state
approximations. Notably, it is not trivial to apply the existing approximation methods,
for example, when modelling the effects of communication and information available
to the agents within a population on the macro-level behaviour of the population. As
a particular example we consider models where agents are equipped with knowledge,
they are able to learn about their environment through experience and share this infor-
mation with the population through broadcast communication. A consequence of this
is that an action of a single agent (a broadcast) can change the macro-level dynamics
of the whole population. For example, the objectives of agents may change as more
information is acquired, leading to a change in the overall behaviour of the popula-
tion. In this thesis we focus our attention on cases of models which incorporate such
information cascades and consequent shifts in behaviour.

1.1 Contributions

In this thesis we present the following extensions to the existing body of work.

• We give alternative operational semantics for the Carma process algebra [88] for
formally specifying policy synthesis problems in the CTMDP framework. This
is an extended version of the ideas published in [104] which allows for non-
determinism in the Carma component descriptions. The non-determinism is
interpreted as possible control actions or decisions that can be taken.

• We concentrate on CTMC models of populations which capture the idea of broad-

1.2. Structure 3

cast communication between the components in the system and demonstrate the
applicability of existing hybrid-continuous approximation methods which com-
bine continuous state approximations with discrete stochastic jumps. Prelimi-
nary work on utilising fluid approximation-based results was published in [104]
and elaborated on in the paper [103].

• The arising hybrid-continuous approximations are non-trivial to simulate or anal-
yse numerically. Thus we propose additional approximate constructions aimed at
describing the population dynamics in a computationally efficient manner. The
proposed constructions form a part of [103].

• We highlight the progress made towards a cohesive formal framework for pol-
icy synthesis problems of collective dynamics through a simple swarm robotics-
inspired example. The example given in this thesis is based on the one published
as a part of [104].

1.2 Structure

The structure of the thesis is given as follows. The fundamental definitions and overview
of relevant literature for the discussions in this thesis are presented in Chapter 2. In
Chapter 3 we set up the formal modelling framework for the study of collective dynamics
and the related parameter and policy synthesis problem. In particular, we introduce the
CTMDP semantics for the existing Carma process algebra. In Chapter 4 we shift our
focus to population models. More specifically we introduce mode-switching population
dynamics and present how existing hybrid-continuous approximations to continuous
time Markov chains with a population structure can be adapted for the analysis of
such models. Chapter 5 addresses the problem of simulation of the approximations
constructed in the previous chapter. Chapter 6 gives a worked example on policy
synthesis for a simple model of a collective system. The intention of this chapter is
mainly to present how the ideas discussed in the main content chapters of this thesis
fit together into a cohesive framework for policy and parameter synthesis for collective
dynamics. We end the thesis with concluding observations and a discussion on future
research directions in Chapter 7.

Chapter 2

Background

This chapter is used to establish the background and relevant literature references.
The work in this thesis is based on the continuous time Markov chain (CTMC) view
of dynamical behaviour. Thus, the first part of this chapter gives a definition of such
stochastic processes and discusses the relevant numerical analysis methods. We also
present the particular class of such models, namely population CTMCs (pCTMCs),
which are going to be considered throughout this thesis as an underlying mathematical
model for collective dynamics. This view, that represents the behaviour of a system
through transitions between a discrete set of states, stems from the application of tools
from formal methods in computer science to modelling dynamics of systems. Secondly,
we give an overview of model reduction techniques and approximation methods that
have been developed to ease the computational burden when analysing pCTMC models.
The methods of fluid approximation, linear noise approximation and moment closure
are introduced in more detail as they feature heavily in Chapters 4 and 5. We follow
this with a discussion of formal modelling languages for high level specification of
CTMC models. In particular, we introduce the Carma [88] process algebra – a formal
modelling paradigm for stochastic collective dynamics – which has served as a starting
point for much of the work presented in this thesis. As the overall motivation comes
from control problems for large collectives we finally introduce the decision processes
closely related to CTMCs.

2.1 Stochastic population dynamics

2.1.1 Definitions

The mathematical underpinnings of the models under consideration in this thesis are
well established and the basic definitions related to stochastic processes and CTMCs
(the terminology “Markov jump process” is also common) given below are standard

5

6 Chapter 2. Background

and can be found in texts like [99].
A Markov process is a time-indexed family of random variables {X(t), t ∈ [0,∞)}

such that the future behaviour of the process is not dependent on its past. In the rest
of the thesis we are going to employ the notation X to denote a Markov process. The
process X is a Markov process if for all collections of times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn and
states i1, i2, . . . , in we have

P(X(tn) = in |X(tn−1) = in−1, . . . ,X(t0) = i0) = P(X(tn) = in |X(tn−1) = in−1)

A particular example of a Markov process that is going to be discussed throughout
this thesis is the continuous time Markov chain (CTMC). A CTMC is defined via its
infinitesimal generator matrix describing the rates or intensities with which the CTMC
moves between its states. For any t ∈ [0,∞) let Q be a matrix with (i, j)-th entry
defined by q(i, j) such that the following properties hold.

1. 0≤−q(i, i)<∞

2. 0≤ q(i, j) for i 6= j

3.
∑
j q(i, j) = 0

With that in mind we can define a CTMC in terms its Q matrix in the following
way [99].

Definition 1 (Continuous time Markov chain). Let X be a Markov process with values
in a countable set E. Write Q= (q(i, j) | i, j ∈ E) for the associated generator matrix.
For all n≥ 0, all times 0≤ t0 ≤ t1 ≤ ·· · ≤ tn+1 and all states i0, · · · , in+1

P(X(tn+1) = in+1 |X(t0) = i0, · · · ,X(tn) = in) = p(in+1; tn+1 | in; tn)

satisfying the following Kolmogorov forward equation

∂

∂t
p(j; t | i;s) =

∑
k

p(k; t | i;s)q(k,j), on (s,∞) with p(j;s | i;s) = δij (2.1)

where δij is the Kronecker delta taking the value 1 if i and j are equal and taking the
value 0 otherwise. Equation 2.1 is often referred to in biochemical modelling literature
as the chemical master equation. For CTMCs and stochastic processes in general the
function p(j; t | i;s) defining the probability that the state of the process at time t is j
given at time s the state was s, is called the transition density.

When the generator matrices are constant and not dependent on time, as in the
definition above, the CTMC is said to be time-homogeneous. Otherwise the CTMC is
said to be time-inhomogeneous.

2.1. Stochastic population dynamics 7

Example 1. We can consider the Poisson process, which is usually interpreted as a
counting process for arrival events, as a simple example of a time-homogeneous CTMC.
Suppose the CTMC X takes values in the set {0,1,2, . . .} with the generator matrix Q
defined by

q(i, j) =


λ for j = i+ 1

−λ for j = i

0 otherwise

(2.2)

The defined process corresponds exactly to the Poisson process with arrival rate λ.

An important special instance of a CTMC is given by the population CTMCs which
consider a more compact representation of the state space when modelling systems
of indistinguishable agents or components. The population CTMCs are going to be
the main mathematical framework in this thesis. The corresponding definition below
constructs a model where the state of the system is represented by a counting vector
identifying the number of agents or components in each of the possible states the
components can be in. In biochemical literature these counts are usually referred to as
species populations.

Definition 2 (Population continuous time Markov chain (pCTMC)). A pCTMC is
defined by a tuple P = (X,T ,X0) where

• X = (X1, . . . ,XK) ∈ ZK≥0 is a variable with the i-th entry representing the current
count of agents or components in state i ∈ S.

• T is a set of transitions of the form τ = (rτ ,vτ) where

– rτ : ZK≥0→ R≥0 is the rate function associating transition τ with the rate of
an exponential distribution depending on the state of the model.

– vτ : ZK≥0→ ZK is a function which gives the net change for each population
variable in X caused by transition τ .

• X0 is the initial state of the model.

In many cases one is interested in the systems where the total number of components
or agents remains fixed throughout the evolution of the system. While this is a rather
strict condition it is nevertheless often satisfied when modelling man-made or engineered
systems.

Definition 3. A pCTMC P = (X,T ,X0) is called conservative if
∑K
j=1X

N
j = N for

all times t≥ 0.

8 Chapter 2. Background

2.1.2 Random time change representation

Poisson processes and CTMCs are connected through the exponential distribution. In
particular, the inter-arrival times of the Poisson process and the waiting times in each
of the CTMC states are both exponentially distributed. This allows us to construct
a representation of (time-inhomogeneous) CTMCs in terms of time-changed Poisson
processes. Results on fluid approximation in Section 2.4.1 and the discussion in Chap-
ter 4 make use of this convenient representation. In addition, it is the basis for many
simulation algorithms for CTMCs.

Note that for any countable state CTMC we can always make a choice of coordi-
nates that would translate the CTMC into a Rd-valued jump process. In the case of
population processes [41] occupancy measures interpreted as counts or proportions of
individuals in each of the possible states are often natural choices for such coordinates.
The idea is then to express the Markov process in terms of a set of Poisson processes,
with the rate parameters dependent on the state of the process, counting the number of
times a given transition has happened. A simple example of this would be a birth-death
process which can be expressed in terms of two Poisson processes – one counting the
number of births and the other the number of deaths that have occurred. Knowing
the initial population size and the count of births and deaths that have occurred up to
a given time is then sufficient to know the population size at that time. Similarly, in
pCTMC models from the previous section each transition is associated with a Poisson
process counting the number of times the transition has occurred.

In slightly more detail, suppose X is a CTMC over states in Rd with an infinitesimal
generator matrix defining the transition intensities of the form q(k,k+ l) = βl(k). That
is, we write q(k,k+ l) = βl(k) for transition intensities of the CTMC inducing a change
l ∈ Rd in the state of the CTMC. It can then be shown that X satisfies

X(t) = X(0) +
∑
l

lYl

(∫ t

0
βl(X(s))ds

)
(2.3)

where Yl are independent Poisson processes with rate parameter 1, the initial condi-
tion X(0) is non-random and l ∈ Rd. The time parameter of the Poisson process is
transformed t 7→

∫ t
0 βl(X(s))ds so that the Poisson process Yl counts the number of

jumps of size l. The birth-death chain example discussed above would be a R-valued
jump process with two Poisson processes Y1 and Y−1 counting the births and deaths
respectively.

2.1.3 Transient analysis

Most of the literature on CTMCs deal with the time-homogeneous case. Such CTMCs
admit a unique solution to the Kolmogorov forward equation given by the matrix

2.1. Stochastic population dynamics 9

exponential as below.

P (s, t) = e(t−s)Q =
∞∑
k=0

Qk(t−s)k

k!

It follows that the transient state distribution of the CTMC at time t, denoted πt, is
given by

πt = π0×etQ

with π0 denoting the initial probability distribution. This gives us a probability dis-
tribution over the state space of the CTMC at time t. Numerical calculations of this
matrix exponential are non-trivial but a wealth of approximate numerical methods
exist. A comprehensive overview of approximate numerical methods based on direct
computations of the transient state distribution and, for example, uniformisation [61]
methods is given in [117].

For the time-inhomogeneous case the situation is more complicated as it is no longer
true that the solution to the Kolmogorov forward equation is given by e

∫ t
s
Q(τ)dτ . The

relevant analytical treatment of solutions to non-homogeneous Kolmogorov equations
can be found in [51] and a presentation of non-homogeneous CTMCs in the context
of simulated annealing in [118]. Although more complex, the desirable property of
being able to model time-dependent behaviour through time-inhomogeneous CTMCs
has led to extensions of numerical approximation techniques for transient analysis from
time-homogeneous cases to time-inhomogeneous [120, 121].

In practice, however, the numerical approximation methods for transient analy-
sis for the time-homogeneous cases as well as time-inhomogeneous cases are usually
infeasible due to large numbers of states that have to be considered even in simple
modelling scenarios. The Stochastic Simulation Algorithm, introduced in the context
of chemical kinetics [59], gives a method for simulating exact Monte Carlo realisations
of time-homogeneous CTMCs. The algorithm relies on the property of CTMCs that
in each state the time to the next jump is exponentially distributed, allowing one to
generate realisations of CTMC trajectories by repeatedly sampling from exponential
distributions. With enough realisations the estimates for the statistical properties of
the process are expected to converge to their true values. For time-inhomogeneous cases
related simulation approaches presented in [7, 75, 123] have been proposed. However,
in order to obtain accurate estimates for the transient state distributions one needs to
gather a large number of such realisations which for complex models becomes compu-
tationally expensive. To combat this, one can appeal to model reduction techniques
or continuous approximation methods. Such methods are discussed in Sections 2.3
and 2.4, respectively.

10 Chapter 2. Background

2.2 Hybrid stochastic systems

Another class of Markov processes, which is discussed in Chapters 4 and 5 of this thesis,
is continuous time Markov processes Y (t) = (X(t),Z(t)) taking values in hybrid state
space E = Rd×Q where Q is a finite set. Process Y is thought of as a joint process
where the continuous part of dynamics is described by the variable X and the discrete
part by Z. Two examples of this are piecewise deterministic Markov processes [43]
and jump diffusion processes [94] which both describe a continuous evolution coupled
with stochastic jumps. There are different ways in which one can define such stochastic
processes. To be consistent with the definition of CTMCs given before we characterise
these hybrid processes in terms of their transition density functions according to [12,
43, 68].

The first process we consider is commonly known as the jump diffusion process. The
continuous part of the process models a fluid flow subject to random perturbations while
the jump process corresponds to discrete events. The corresponding transition density
is given by

d

dt
p(x′,z′; t | x,z;s) = L∗p(x′,z′; t | x,z;s) +

∑
k

p(x′,k; t | x,z;s)qx′
Z (k,z′)

where L∗ is the forward generator corresponding to a diffusion process such that

L∗p(x′,z′; t | x,z;s) =−
∑
i

∂i
[
Fi(x)p(x′,z′; t | x,z;s)

]
+
∑
i

∑
j

∂i∂j
[
Gij(x′)p(x′,z′; t | x,z;s)

]
(2.4)

The above generator describes the probability density that the state of the process Y
at time t is (x′,z′) given the state at time s was (x,z) in terms of elements Fi of the
drift vector F and Gij of the diffusion matrix G.

The second process is an example of piecewise deterministic Markov process [43]
where the corresponding transition density is derived, for example in [12], as

d

dt
p(x′,z′; t | x,z;s) = L∗1p(x′,z′; t | x,z;s) +

∑
k

p(x′,k; t | x,z;s)qx′
Z (k,z′)

where L∗1 is the forward generator corresponding to the deterministic evolution. In
fact, setting the diffusion matrix G to 0 in Equation 2.4, thus eliminating the random
perturbations from the fluid flow, gives us the desired generator.

L∗1p(x′,z′; t | x,z;s) =−
∑
i

∂i
[
Fi(x′)p(x′,z′; t | x,z;s)

]
(2.5)

There are several examples of works where the hybrid processes arise as limit behaviours
of CTMCs. In particular, in Chapter 4 we are going to consider [18] where piecewise

2.3. Model reduction techniques 11

deterministic Markov processes are derived as limit behaviours for pCTMCs where
some sub-populations of components are present in large quantities while others in
small. The limiting results are given by a piecewise deterministic Markov process
where the continuous evolution approximates the dynamics of components present in
high quantities while the state changes of components in low quantities correspond to
discrete jumps.

2.3 Model reduction techniques

As alluded to in Section 2.1.3, in order to alleviate the computational cost of stochastic
simulation of complex CTMC models there exist a large number of model reduction
techniques. At a high level these techniques work by constructing and analysing a
simplified model based on the original one. As one might expect such simplifications
result in loss of information about the behaviour. By reasoning about the inherent
properties of the original models the aim is to have the simplified model act as a good
proxy for studying properties of the CTMC behaviour.

The first category of methods make use of the lumpability property of Markov
chains [30, 32, 82]. Such methods partition the state-space of the CTMC into sets of
states so that the new process defined by the transitions between the classes of the
partition is a CTMC. In practise, such partitions often result from symmetries in the
model [60]. A prime example of this comes from considering models of indistinguishable
agents where a population CTMC presents an example of a partitioning of the state
space to represent the counts of individual agents in each of the possible states. The
second class of techniques relies on time-scale separation [23, 35, 110]. In particular, the
original process in decomposed into weakly interacting fast sub-processes. These fast
sub-processes are assumed to reach their equilibrium distribution independently from
each other. The slow sub-process, resulting from the composition of fast sub-processes,
is then simulated based on the equilibrium states of the fast sub-processes.

2.4 Continuous approximation methods

In many cases the structure of pCTMCs allows us to make use of the continuous
approximation techniques presented in this section. The aim of such methods is to
approximate the moments of the transient probability distribution over pCTMC states
by relaxing the discrete-state process defined by the original pCTMC to a continuous-
state process that in many cases admits more efficient solution methods. Here we give a
brief overview of the methods of fluid, linear noise and moment closure approximations
in the context of pCTMCs defined in Definition 2. A recent thorough overview of the

12 Chapter 2. Background

methods from the perspective of biochemical modelling applications can be found, for
example, in [114].

2.4.1 Fluid approximation

Fluid (sometimes called mean field) approximation methods describe the mean be-
haviour of a stochastic pCTMC model through a deterministic ordinary differential
equation (ODE) model. In particular, it turns out that under certain assumptions the
sample paths of the pCTMC can be guaranteed to lie, with high probability, close to
the solution of a differential equation [41]. These methods have been applied in various
contexts – epidemiology, modelling biological and ecological systems [24, 111], perfor-
mance modelling of computer networks [72, 128] and model checking [15], to name a
few. The exposition and theoretical results in this section are based on the seminal
work by Kurtz [83] with the full details on the relevant theory of Markov processes
being available for the interested reader in references [41] and [50].

The results presented here are asymptotic in the limit of infinite population of
conservative pCTMCs. In particular, let PN =

(
XN ,T N ,XN

0

)
with XN ∈ ZK≥0 be a

conservative pCTMC over a homogeneous population of size N . The fluid approxima-
tion of PN arises from considering a change of variable that maps the pCTMC PN to a
process P̂N = (X̂, T̂ N ,X̂N

0) describing the evolution of normalised population variables
corresponding to proportions of population in each of the K states. The assumption of
having a conservative pCTMC here is used to achieve the appropriate scaling of pop-
ulation variables. While other assumptions can be made to derive fluid approximation
results, in the context of this thesis the assumption of having a fixed population of
agents is the most natural.

First, we define the rescaled state of the system as X̂N def= 1
NXN and analogously

the initial condition as X̂N
0

def= 1
NXN

0 . Secondly, the transitions in T̂ N are of the form
τ̂ = (r̂Nτ , 1

N vτ) where r̂Nτ is the rate function over normalised state variables. For the
asymptotic results on the convergence of the sequence {X̂N}N∈N as stated by Kurtz [83]
we need the rates to be density dependent. Formally, for all τ ∈ T N there exists a
Lipschitz continuous function fNτ : RK → R≥0 such that

rτ (XN) =NfNτ

(
XN

N

)

The normalised rate function is then given by

r̂N
(

XN

N

)
= fNτ

(
XN

N

)

Finally, the constructed normalised pCTMC P̂N is defined by a RK-valued CTMC X̂N

2.4. Continuous approximation methods 13

with the jump intensities given by

qN (i, j) =
∑

τ∈T̂ N |vτ=j−i

r̂τ (i)

In particular, the rate of moving from state i to j is given by adding the rates of
transitions which can cause the transition.

Under the assumption that fNτ converges uniformly, asN→∞, to a locally Lipschitz
continuous function fτ we can construct the drift vector

F (x̂) =
∑
τ∈T̂ N

vτfτ (x̂)

and state the following theorem.

Theorem 1 (Deterministic approximation theorem [83]). With X̂N
0 we assume there

exists a point x̂0 such that limN→∞ ‖X̂N
0 − x̂0‖ = 0 almost surely. Then for every

t ∈ [0,∞) and ε > 0 we have

P
(

lim
N→∞

sup
u≤t
|X̂N (u)− x̂(u)|> ε

)
= 0

where x̂ is a solution to dx̂
dt = F (x̂) with x̂(0) = x̂0.

In particular, the discrete stochastic behaviour of the pCTMC is approximated
by a continuous deterministic one which corresponds to the limiting behaviour of the
stochastic process as the considered population size N approaches infinity.

Notably, the fluid approximation result relies on the specific structure of pCTMCs.
More general structures, with emphasis on models that are “close” to having the pop-
ulation structure, have been considered recently in [95]. Secondly, fluid approximation
results guarantee convergence to the asymptotic limit but in order for the approxima-
tion to give a good empirical approximation we need that each of the components in
the population to be present in large quantities. This can be seen as a rather limiting
condition from the modelling perspective. The work in [18] aims to relax that require-
ment by dealing with populations where one might encounter sub-populations with
small or fixed sizes and uses piecewise deterministic Markov processes as the limiting
process. We are going to refer to the methods that combine continuous approxima-
tions of certain variables with discrete representation of the rest as hybrid-continuous
approximations.

2.4.2 Linear noise approximation

Although the fluid approximation provides a computationally very efficient way to
study population dynamics by considering the limiting behaviour through a wealth of

14 Chapter 2. Background

available ODE solvers, we lose information about the stochastic behaviour. While this
might not be a big limitation when considering very large populations, systems with
a population in the order of hundreds of individuals exhibit a behaviour that is in-
trinsically probabilistic. In such cases the linear noise approximation, or central limit
approximation, provides an improved estimation over the fluid limit of the stochastic
dynamics of the system. In particular, the stochastic fluctuations around the aver-
age deterministic behaviour, given by the fluid approximation, are approximated by a
Gaussian process. In the following, we give a concise exposition of the relevant result
based on [50, 122].

Define a stochastic process VN (t) def=N
1
2
(
X̂N (t)− x̂(t)

)
capturing rescaled fluctua-

tions of the CTMC X̂N around the fluid limit x̂. One can prove that the sequence VN

converges in distribution to the stochastic process {V(t) ∈Rn | t ∈R} such that at any
time t the distribution of V is a multivariate Gaussian with mean E(t) and covariance
C(t). The mean E(t) and covariance C(t) are given as solutions to the following ODE
systems 

d
dtE(t) = JF(x̂(t))E(t)

E(0) = 0
d
dtC(t) = JF(x̂(t))C(t) +C(t)JTF(x̂(t)) +G(x̂(t))

C(0) = 0

where JF(x̂(t)) denotes the Jacobian of the limit drift F calculated along x̂(t) and

G(x̂) =
∑
τ∈T̂ N

vτvTτ fτ (x̂)

Theorem 2 (Linear noise approximation theorem). With the above notation suppose
that

lim
N→∞

VN (0) = V0

Then VN (t) converges in distribution to V(t).

The immediate consequence of the above theorem is that X̂N (t) converges in distri-
bution to X̃(t) = N−

1
2 V(t) + x̂(t). In particular, the linear noise approximation takes

the deterministic approximation and perturbs it with Gaussian noise. An equivalent
characterisation of the limiting process is stated by the following stochastic integral
equation

X̃(t) = X̃0 +
∫ t

0
F (X̃(s))ds+N−

1
2

∫ t

0
G(X̃(t))dWs (2.6)

where Ws is the n-dimensional Wiener process. Note that the linear noise approxima-
tion is again stated in terms of limiting behaviour as the population size grows. How-
ever, the results, by incorporating a noise model, aim to give a better understanding of

2.4. Continuous approximation methods 15

the system’s behaviour for moderately sized populations than the fluid approximation.
As with fluid approximation a large number of works have applied such results. For
example, in recent years there have been a number of works applying the results in the
model checking context [19, 22, 36].

2.4.3 Moment closure approximations

The last class of continuous approximation techniques we are going to discuss are the
moment closure methods. Such methods have been popular in the study of stochastic
effects in chemical reaction networks modelled by the chemical master equation. Note
that the master equation is equivalent to the Kolmogorov forward equation for CTMCs
in Definition 1 and is simply the terminology used in biochemical and biological mod-
elling literature. Using the notation introduced for pCTMCs before we can formulate
the so-called master equation for a population CTMC P = (X,T ,X0) in the following
way

∂

∂t
p(X(t)) =

∑
τ∈T

rτ (X(t)−vτ)p(X(t)−vτ)−
∑
τ∈T

rτ (X(t))p(X(t)) (2.7)

where the vτ are the changes induced in the state vector X by some action τ and rτ
corresponds to the rate at which the action τ is expected to happen.

Instead of attempting to solve the Equation 2.7 directly, which is usually not pos-
sible, one can attempt to give a description of the resulting time-evolution of the prob-
ability distribution p(X(t)) in terms of its moments [6]. In particular,

d

dt
E [h(X(t))] =

∑
τ∈T

E [(h(X(t) +vτ)−h(X(t))rτ (X(t)))]

where h is a chosen polynomial function. The above equation for moments follows
from the application of Dynkin formula [101] to the pCTMC. The exact ODEs for the
moments of X can then be found by choosing an appropriate polynomial function h.
For example, choosing h : X(t) 7→X(t) gives us the mean of the process X(t)

d

dt
E [X(t)] =

∑
τ∈T

vτrτ (X(t))

Similarly, we can recover the evolution of covariance C [X(t)] by choosing h : X(t) 7→
X2(t) and noting that by definition

C [X(t)] = E
[
X2(t)

]
−E [X(t)]2

The difficulties arise if the transition functions rτ are anything other than linearly de-
pendent on the state variables. The moment expressions above then depend on higher
order moments resulting in an infinite system of coupled differential equations. Mo-
ment closure methods like normal [125], lognormal [116] and Poisson [100] closure put

16 Chapter 2. Background

different assumptions on the properties of the transient distribution to derive a closed
set of moment equations. For example, normal moment closure assumes a multivariate
normal distribution for the population variables. The general downside of moment clo-
sure methods, in common with the other continuous approximation methods, is that
whether or not the assumptions are well founded depends on the problem at hand and
is generally difficult assess a priori. A comparison of different moment closure meth-
ods in the context of stochastic chemical kinetics can found in [114]. In the context
of stochastic process algebra models moment closure methods have, for example, been
applied in [53, 63]. The hybrid-continuous version of moment closure approximation is
presented in [65] and is going to be discussed in more detail in Chapter 4.

2.5 Formal modelling

Direct construction of Markov chain models for complex systems is often cumbersome
and error-prone. To deal with that problem there exist a number of formal modelling
languages that allow for automated construction of CTMC models from a high-level
specification via well-defined semantic rules.

One large class of examples consists of stochastic process algebras like PEPA [71],
sCCP [16], stochastic π calculus [107] and Carma [88], which are based on classical
process algebras CCS [96] and CSP [74]. These languages give a high-level tool for the
description of interactions, communications and synchronisations between collections
of agents or processes. While languages like CCS and CSP provide a qualitative de-
scription of the system — possible configurations of the system (system states) and ac-
tions denoting transitions between the configurations — the stochastic process algebras
aim to incorporate quantitative information. In particular, the actions are associated
with delays. The above examples, notably PEPA which was one of the first process
algebras to incorporate quantitative timing properties, assume that the duration of
actions follows the exponential distribution making them suitable for describing com-
plex CTMCs. When modelling delays, other assumptions could be made, which would
give rise to non-Markovian processes. A large amount of research has been concerned
with extending process algebras to model different aspects like location dependent be-
haviour (PALOMA [52], MELA [89]) and attribute based communication (Carma [88],
attributed π [78], SCEL [45]) to create more expressive languages.

Notable alternative approaches to stochastic process algebras are stochastic Petri
nets [10] which provides a straightforward graphical notation for the description of step-
wise processes, chemical reaction networks [76, 37] and rule-based modelling paradigms
like Kappa [27] and ML-rules [92].

2.5. Formal modelling 17

In the above we have concentrated on quantitative modelling formalisms where the
underlying mathematical model is a CTMC. There exist many formal modelling lan-
guages that use alternative semantics. The most relevant ones to this thesis model con-
tinuous time processes. From the process algebra side there are, for example, HYPE [55]
and HyPA [40] which aim to capture hybrid systems. In such systems the dynamics
of the components exhibit both discrete and continuous behaviour. In addition, Petri
net-based formalisms, like hybrid Petri nets [42, 62] and fluid stochastic Petri nets [77],
have been proposed over the years and combine deterministic continuous evolution with
discrete stochastic transitions.

For model specification, the work in this thesis concentrates on stochastic process
algebras and, in particular, Carma. The language features a set of communication
primitives that, in conjunction with attribute-based filtering of communication part-
ners, are capable of capturing a versatile set of communication behaviours. The set of
communication primitives in Carma correspond to broadcast and unicast making it
particularly suitable for open collectives, like robot swarms, where the participants of
the communications cannot be known ahead of time.

2.5.1 Collective adaptive resource-sharing Markovian agents

In the following, we introduce a particular stochastic process algebra named Carma [88],
which was developed as part of the QUANTICOL project [3]. Carma will serve as
the basis for constructing models of collective dynamics in this thesis. Carma is an
expressive high-level language that was designed for modelling and reasoning about
Collective Adaptive Systems (CAS) where heterogeneous populations of autonomous
agents cooperate towards common goals. The distinctive features of the Carma lan-
guage are a rich set of communication primitives enabling attribute-based broadcast
and unicast communication, a way to specify the behaviour agents depending on the
locally available information and explicit representation of the environment for testing
under different scenarios. The language, along with the developed analysis tools (avail-
able as an Eclipse Plug-In [1]) have been used, for example, in modelling pedestrian
movement [56], urban transportation services [129] and availability of cloud services [90].

Syntax

Here we follow the most recent description of the syntax of the language given in [88]
where the language has the structure as depicted in Figure 2.1. In particular, a system
S in Carma consists of a collective N operating in an environment E denoted

S
def=N in E

18 Chapter 2. Background

Figure 2.1: Structure of Carma models.

The collective N consists of a set of interacting components C, or agents, modelling the
behaviour of the system.

N
def= C |N ‖N

The description of the components consists of two parts. First, the behaviour of the
component depends on the knowledge available to it, captured in its local store γ. The
behaviour of the component is defined by the process P . In particular,

P
def= 0 | (P,γ)

The precise meaning of a store is a mapping from a set of attribute names to a set of
values

γ
def= {a1 7→ v1, . . . ,an 7→ vn}

For example, in many scenarios the spatial distribution of agents can be taken into
consideration by defining a location attribute for the agents. In the semantics, the at-
tributes are used to provide support for attribute-based communication and behaviour.
For example, if two agents are too far from each other their ability to communicate
with each other might be limited. The processes, defining the possible behaviours of
individual agents, are given by the following grammar

2.5. Formal modelling 19

P,Q
def= nil

|act.P

|P +Q

|P ‖Q

| [π]P

|A (A 4= P)

act
def= α∗ [πs]〈~e〉σ

|α [πr]〈~e〉σ

|α∗ [πs] (~x)σ

|α [πs] (~x)σ

e
def= a | my.a | x | v

πs,πr,π
def= > | ⊥ | π ./ π |¬π | π∧π | · · ·

In particular, processes are defined using standard constructs from process algebras
literature — action prefix (.), choice (+), and parallel composition (‖). In addition,
the definition of the inactive process nil, process kill that removes the component from
the system and guards on processes are allowed. The action primitives are defined for
broadcast and unicast output in the forms α∗ [πs]〈~e〉σ and α [πs]〈~e〉σ, respectively, and
for broadcast and unicast input in the forms α∗ [πr] (~x)σ and α [πr] (~x)σ, respectively.
The following notation is used:

• α denotes an action type which is used to distinguish between different actions.

• πs,πr,π denote boolean predicates that have to be satisfied before the action can
be executed. As mentioned previously, the communication in Carma is attribute-
based and thus such guards are used to filter out communication partners based
on attributes such as location or communication range.

• e is an expression built using appropriate combinations of values, attributes and
variables. In the semantics, the expressions are evaluated over the sending com-
ponent’s local store and passed on to the receiving component.

• x is a variable which takes on the values that were communicated to the receiving
process by the sender.

• σ is a function from Γ→Dist(Γ) where Dist(Γ) is the set of probability distri-
butions over set of possible stores Γ. The function σ thus denotes a store update
and defines how the given store is changed as a result of an action.

• ~· notation is used to indicate a sequence of elements.

To give a small example for the notation we consider the following broadcast output
and input actions.

send∗[loc == my.loc]〈1〉{◦}

send∗[◦](x){message 7→ x}

20 Chapter 2. Background

The action type send∗ is used to distinguish the action from other broadcast actions in
the system. The filter of the output action makes sure that the message 1 can only be
received by a component with the same location attribute loc as the sender. Finally,
the update defined in the input action writes the received message to the receiver’s
local store.

In relation to the components forming a collective the environment models all as-
pects that are intrinsic to the context in which the components operate and mediates
the interactions between the components. For example, the environment deals with
the idea that where the component is will have an effect on what it can do. This is
achieved by letting the environment determine the parameters defining the duration
and the probability of success of actions.

In detail, an environment is defined by a global store γg that models the overall
state of the system and an evolution rule ρ. The evolution rule gives, depending on the
current time, the global store and the current state of the collective, a tuple of functions
ε= 〈µp,µw,µr,µu〉 called the evaluation context. The functions composing the evalua-
tion context regulate the system behaviour by setting rates of actions, probabilities of
receiving broadcast and unicast messages and how the environment changes after an
action is performed.

• µp(γs,γr,α) gives the probability that a component with local store γr can receive
a broadcast message from a component with local store γs when α is executed.

• µw(γs,γr,α) defines the weight, which is used to compute the probability that a
component with store γr can receive a unicast message from a component with
store γs when α is executed. A unicast message can only be received by a single
component in the system. However, a priori there may be more than one eligible
receiver for the message. The probability of a given receiver being chosen as
the communication partner results from normalising the weight over the sum of
weights of all possible receivers.

• µr(γs,α) computes the execution rate of the action α executed at a component
with store γs.

• µu(γs,α) defines the updates on the environment (global store and collective)
induced by the action α of the component with store γs.

Semantics

Formal semantics of stochastic process algebras are usually defined via Structured Oper-
ational Semantics (SOS) in the style proposed by Plotkin [105]. Such semantics consist
of a collection of rules in the form

2.5. Formal modelling 21

Premise1, · · · ,P remisen
Conclusion

giving rise to Labelled Transition Systems defining a set of states, set of actions and the
corresponding set of transition relations. In the context of stochastic process algebras
this structure can usually then be easily translated to a numerical CTMC model or
simulated directly via the Stochastic Simulation Algorithm.

The semantics of the Carma language is defined in the FuTS (state-to-function
transition systems) framework [44] which offers a more compact representation of op-
erational semantics compared to small step SOS. The formal rules are used to give
precise meaning or semantics to the syntax in the previous section in terms of time-
inhomogeneous CTMCs. In general, the transition rules in FuTS are given as triplets
s

λ
f where s denotes a source state, λ the label of the transition and f the contin-

uation function associating each state s′ with some value. In the case of Carma, and
other stochastic process algebras, the continuation functions would give, for example,
the transition rate from the state s to any other state of the system. The formal se-
mantics of Carma, as presented in [88], are not going to be replicated here but serve
as a template for the semantics presented in Chapter 3. Another application of FuTS
can be seen later in Chapter 3 where we extend the Carma semantics to cover cases
of non-determinism for uses in the context of control problems for collective dynamics.

2.5.2 Model checking

One of the important problems considered in the field of formal methods is model check-
ing. We can think of a model as representing our understanding of the system under
study. Model checking techniques aim to check whether or not this model satisfies a
specification given in terms of logic formulae. A classical example of such a specifica-
tion from concurrency theory is freedom from deadlocks which ensures that in a set
of processes accessing a shared resource there is a process that will eventually make
progress. The specifications are formulated in one of the many precisely defined log-
ical frameworks like Continuous Stochastic Logic [8], Probabilistic Computation Tree
Logic [64] or Linear Temporal Logic [106] with tools like PRISM [84] and STORM [47]
providing an interface between model checking techniques and model specifications in
formal languages. While much of the work on model checking has concentrated on
temporal properties, features beyond temporal ones, like space, have also been subject
to study [54, 97].

Note that exact model checking algorithms for CTMCs rely on transient and steady
state probability analysis. As already mentioned, this presents scalability issues when
considering complex models of large systems. An alternative is provided by statistical
model checking where finitely many sample trajectories of a stochastic system are used

22 Chapter 2. Background

to infer whether the samples provide statistical evidence for the satisfaction of the
logical specification [5, 86].

Finally, much of the interest in the formal methods community into stochastic
approximation methods like fluid, central limit and moment closure approximation
have been motivated by conducting efficient model checking on population models [19,
21, 22, 36].

2.6 Stochastic decision processes

The exposition so far has concentrated on construction of CTMC models for which
the dynamics are fully specified. However, in many applications we have to consider
sources of non-determinism in the behaviour of the systems. This has led to the de-
velopment of extensions to Markov chains that aim to incorporate non-determinism
into the model description. Notable examples like Interval Markov Chains (IMC) [79]
and Constraint Markov Chains (CMC) [34] are based on the discrete time version of
Markov chains. The non-determinism in those models results from the idea that the
transition parameters are constant but we might be uncertain about the exact values.
A similar idea in the context of CTMCs was considered in [58] to incorporate data and
uncertainty into process algebra models in a meaningful way.

In this thesis we opt for another view on non-determinism with a long history, where
the non-determinism is defined by the possible behaviours of a controller or a decision
maker. In particular, continuous time Markov decision processes and their discrete
time counterparts [108] have seen applications in the control of queueing systems [98,
124], epidemic and population processes [46, 85] making them a natural choice for an
underlying mathematical model to bridge the gap between formal languages and control
problems in collective dynamics.

Definition 4. A continuous-time Markov decision process (CTMDP) is defined by the
tuple

{S,A, q(i, j | a)}

where S is the countable set of states, A is the set of actions and q(i, j | a) gives the
transition rates i→ j given the control action a.

Throughout this thesis we are going to denote the feasible set of actions from state
i ∈ S as A(i) and assume that A =

⋃
i∈SA(i). We make use of this in Chapter 3

where the action space of a CTMDP is constructed by specifying the feasible actions
for each state of the model. In terms of the action space we are not restricting our view
to discrete action spaces but rather allow any set of actions over which a probability
distribution can be defined.

2.6. Stochastic decision processes 23

The evolution of CTMDPs is described by the following: after the process reaches
some state and an action is chosen, the process performs a transition to the next state
depending only on the current state and the chosen action. The time it takes for state
transitions to happen is governed by an exponential distribution with a rate given by
the function q in Definition 4. The actions at every such step are chosen according to
some policy as defined below.

Definition 5. A policy is a measurable function π :R≥0×S×A→ [0,1] which for every
time t ∈ R≥0, state s ∈ S and action a ∈ A(s) assigns a probability π(t,s,a) that the
action a is chosen in s at time t. In other words policy π defines a distribution over
actions in any state of the CTMDP at time t. We call a policy where for every t ∈R≥0

and s ∈ S we have that π(t,s,a) ∈ {0,1} a deterministic policy. A policy π independent
of t is a stationary policy.

Analogously to CTMCs one can define the population version of the CTMDPs.

Definition 6. A population CTMDP (pCTMDP) is a tuple (X,T ,A,β) defined by:

• X = (X1, · · · ,Xn) ∈ S = Zn≥0 where each Xi takes values in a finite domain Di ⊂
Z≥0.

• β is a function such that β(a,X) returns a boolean value indicating whether action
a ∈ A is available from state X.

• T is a set of transitions of the form τ = (a,vτ , rτ (X)) such that β(a,X) = 1, vτ is
an update vector specifying that the state after execution of transition τ is X+vτ
and rτ (X) is a rate function.

In order to give semantics to the above definition of a population CTMDP we
associate it with the equivalent CTMDP in the following way:

• the state and action space of the corresponding CTMDP is the same as for the
population CTMDP.

• the set of feasible actions for state i ∈ S, denoted A(i), is defined by

A(i) = {a ∈ A | β(a, i) = 1}

• the rate function q is defined as

q(i, j | a) =
∑

τ∈T ,τ=(a,vτ ,rτ (j)),i=j+vτ

rτ (i)

24 Chapter 2. Background

Note that both in the case of CTMDPs and pCTMDPs fixing a policy π resolves the
non-determinism in the model with the resulting dynamics corresponding to a CTMC
or a pCTMC respectively. The final piece missing for defining an optimisation problem
is a reward or a cost function which maps a chosen policy to a real value. There
are many ways in which a cost or reward can be defined. A common approach for
defining a reward function, for example, is as a function of the expected behaviour
of the resulting CTMC or pCTMC. As an example, suppose a pCTMC resulting from
policy π consists of two counting variables, Xπ

1 ,X
π
2 , and it is desirable to haveXπ

1 >X
π
2 .

A simple instance of a reward function in terms of the expected behaviour can be given
by associating policies π such that E(Xπ

1)> E(Xπ
2) with reward 1 and 0 otherwise.

The two related problems considered in the context of CTMDPs are model checking
and optimisation. Model checking is considered in the formal methods community and
often relates to the computation of time-bounded reachability properties [9, 31, 33]. In
particular, what is the probability of reaching a given state within some time bound.
Optimisation on the other hand has a long history, for example in operations research,
and deals with optimal policies given a reward or a cost function on the CTMDP
trajectories [29, 112].

Chapter 3

Model specification

One of the main motivations for the construction and study of stochastic models of
engineered systems is the desire to learn how to better optimise aspects of the system’s
behaviour. For example, in the case of performance modelling one concentrates on the
quality of service (QoS) measures like service availability, throughput and latency or
resource usage. As discussed in Section 2.6, CTMDP models are widely used in various
stochastic optimisation problems in reinforcement learning and operations research.
We argue that, in the formal modelling context, the CTMDP semantics are a natural
extension of the more common CTMC semantics for high-level compositional descrip-
tions of optimisation problems. Thus, the aim of this chapter is to provide a view
of process algebraic model specification where optimisation problems are constructed
directly from the syntactic description of the model.

In particular, we concentrate our efforts on the CTMDP dynamics of population
processes motivated by the study of collective adaptive systems and propose a novel
semantics for the Carma process algebra that introduces non-determinism into the
derived transition system. The introduced non-determinism will have two intuitive
interpretations:

• The non-determinism arises from the possible control actions that can be taken
by components at the local level or by a global policy maker at the system level.

• The non-determinism arises from the parameters governing the actions being
unknown.

While expressed in the same CTMDP framework the differences arise from how the
two types of non-determinism are treated in the analysis of the resulting models. We
are going to mostly concentrate on the first interpretation where the interest lies in
finding optimal or approximately optimal policies given some well-defined optimality
criterion. However, we are also going to make a note that uncertainty in the parameters

25

26 Chapter 3. Model specification

can easily be considered in the context of the same framework both independently or
combined with the interpretation of non-determinism as possible control actions. For
example, the following are possible when considering uncertainty in parameters.

• Observation data from a real system is used in the cost function for optimisation
in order to parametrise a model in a way that gives a good representation of the
observed system’s behaviour. Such parameter synthesis problems are common,
for example, in modelling of biological systems. That is, the possible ways to
resolve non-determinism can be differentiated based on how well they fit the data
available from the real system we are modelling.

• A combination of parameters can be considered — those corresponding to control
actions and those corresponding to unknown parameters in the system. Interest-
ing optimisation problems would then arise from synthesising optimal policies
given some aspects of the system’s behaviour remain uncertain.

Further study of these cases will be left for further work and, instead, in this thesis we
will mostly give examples for the interpretation of non-determinism in the constructed
models as possible control actions.

In this chapter we are going to consider the existing Carma process algebra as
a starting point and endow it with alternative semantics based on CTMDP models.
We adopt the Carma syntax given in Section 2.5.1 without changes and extend the
FuTs style semantics presented in [88] to the CTMDP based framework. The high-level
idea for the semantics is that the control actions are encoded in terms of attributes
in knowledge stores where the values of such attributes are left partially specified —
instead of particular values we define the value domains for the attributes. The idea
for the semantics appears in [104].

3.1 Semantics

In order to distinguish between the CTMC and CTMDP semantics of Carma we refer
to Carma-C when discussing the language equipped with CTMDP semantics. To begin
we are going to follow [88] and introduce some additional notation referring to the sets
of syntactic structures of interest. Let Sys be the set of systems S, and Col be the set
of collectives N , where a collective is either a component C in the set of components
Comp or the parallel composition of collectives.

In order to relate syntactic descriptions of Carma-C models to CTMDPs we are
going to define the set of admissible controls via the stores. Instead of fully specifying
store variables, as done in Carma, we allow them to take values in a general set

3.1. Semantics 27

defined in the model. The set of feasible actions in the underlying CTMDP (as in
Definition 4) then corresponds to possible refinements of store variables to particular
values. Throughout this chapter we are going to use the following example to illustrate
the presented semantics. Before presenting the example let us make a comment about
notation. We are going to use ◦ to denote trivial contents and expressions. In the case
of message contents ◦ would denote an empty message and in the case of filters and
guards it denotes trivial expressions always evaluating to true.

Example 2. Let us consider a simple foraging-inspired scenario where robots need
to locate a target by exploring and sensing their local environment and then move to
the location of the target. Components in the system correspond to the robots with
the following behaviour: robots can move on a grid, take measurements from their
location and broadcast this information to the rest of the swarm. The model we use to
describe the behaviour of the individual robots is illustrated in Figure 3.1. The exploring
behaviour is modelled through the robots performing a random walk over a finite set of
locations with a specified graph topology. This behaviour is specified through the action
random∗. Once the target is known to the robots the movement towards it is specified by
the directed walk modelled by the action directed∗. The action sense∗ models the robot
taking measurements of its locale and broadcasting the result to the swarm – the current
location is broadcast if the location corresponds to the target and an empty message is
sent otherwise. The addition of the broadcast input action for sense∗ makes each robot
capable of sending and receiving the information about the target location. The action
fail∗, resulting in the robot not performing further actions, models failure.

Explore | ListenNil | Listen

[πr]random∗[◦]〈◦〉

+ [πd]directed∗[◦]〈◦〉

+ [πs]sense∗〈M(loc)〉

[πf]fail∗[◦]〈◦〉

[πs]sense∗[◦]((x,y))

Figure 3.1: Behaviour of individual Robot components.

3.1.1 Store

The store in Carma is a function that maps attribute names to particular values which
are then used in the semantics for the transition rate calculations. In Carma-C, we

28 Chapter 3. Model specification

instead define the store as a function that maps attribute names to permitted value
domains. Thus, a store γ maps a set of attribute names a0, . . . ,an in its domain to
the value domains of the attributes. This introduces non-determinism in the choice of
particular store values. In order to make this idea precise we first concentrate on the
definition of a store. In particular, let

• Attr be the set of attribute names a0,a1, . . .;

• ValDom be the set of value domains V0,V1, . . . which define the sets of allowable
values for the store variables.

• For a subset A ⊆ Attr we define the store γA : A→ ValDom as a function
mapping the attributes to their respective value domains. We denote the space of
all possible stores by Γ. We are going to use the following notation: if a0, · · · ,an ∈
A⊆Attr then the corresponding store γA is given by

{a0 7→ V0, · · · ,an 7→ Vn}

for some value domains V0, · · · ,Vn.

The idea above encompasses the original Carma semantics as fully determined store
attributes can be modelled by value domains defined by singleton sets.

Example 3. For the running example we define the local store of each robot consisting
of attributes loc giving the location of the robot, and target holding the set of locations
identified as targets. Figure 3.2 illustrates the effects of actions on the local stores. We
define actions random∗ and directed∗ so that they change the location of the robot. The
former picks, with uniform probability, a target location reachable from location (x,y),
such that the corresponding update is denoted by R(x,y). The latter picks a location
that takes the robot closer to the closest target in L, where the update is denoted by
D((x,y),L). If the robot’s location corresponds to a target location the action sense∗

sends the coordinates of the location otherwise it broadcasts an empty message. Denote
by M((x,y)) the function that evaluates to empty set if the location (x,y) is not a
target and to {(x,y)} if it is. In addition the message updates the sender’s own store
of known targets while the corresponding input action adds the received message to the
list of known targets.

We note here that all updates act element-wise on all the store values. In order to
make sure that for example the location of the robot is always known exactly we simply
need to take care that the value domain corresponding to location always gets updated
to another singleton value domain.

We use guards to activate and deactivate processes depending on the state of the
store. Although it is natural to describe the guards here we have to keep in mind that in

3.1. Semantics 29

γ = {loc = {(x,y)}

target = {L}}

γ = {loc = {R(x,y)}

target = {L}}

γ = {location = {(x,y)}

source = {L∪ (x′,y′)}}

γ = {loc = {(x,y)}

target = {L∪M(x,y)}}

γ = {loc = {D((x,y),L)}

target = {L}}

random∗〈◦〉

directed∗〈◦〉

sense∗((x′,y′)) sense∗〈M(x,y)〉

Figure 3.2: Local component store changes induced by actions.

the semantics the evaluation of them happens after fixing a control action. Specifically,
the guard πr for random∗ is true when the attribute target corresponds to the empty
set – target location has not yet been found. Conversely, the guard for directed∗ is true
when the attribute target defines a non-empty set of locations. The guard πf for fail∗

evaluates to true everywhere except when the robot is at the target location.
With the above set-up the processes Explore and Listen in Figure 3.1 are precisely

given by the following syntactic expressions:

Explore def=[πr]random∗[◦]〈◦〉{loc 7→R(loc)}.Explore +

+ [πd]directed∗[◦]〈◦〉{loc 7→D(loc, target)}.Explore

+ sense∗[◦]〈M(loc)〉{target 7→ target∪M(loc)}.Explore

+ fail∗[◦]〈◦〉.nil

Listen def=sense∗[◦](x){target 7→ target∪x}.Listen

The component Robot is given by the parallel composition of the two processes and a
store defining the value domains for the attributes loc and target.

Robot def=
(
Listen‖Explore,{loc 7→ {(x,y)}, target 7→ {∅}}

)
Note that in this case both of the value domains are defined to contain a single value
— location (x,y) in the case of attribute loc and the empty set in the case of attribute
target. The store updates above describe the possible evolutions of the store

{loc 7→ {(x,y)}, target 7→ {∅}}

For example, in the case of the action random∗ we apply the random function R to each
location in the value domain of loc (in this case containing just the location (x,y)). This
gives us the distribution over the stores of the form

{loc 7→ {R(x,y)}, target 7→ {∅}}

that can result from the action random∗.

30 Chapter 3. Model specification

3.1.2 Environment

As in Carma, the environment in Carma-C models aspects intrinsic to the context,
where the agents under consideration are operating. It sets the rates of actions and
mediates the interactions between components. For a system S ∈ Sys we say that the
environment E is defined by the global store γg and an evolution rule ρ. The evolution
rule ρ is defined as a function which, given any refinement or resolution of the store
values in the system definition, the process state of the collective and the current time,
returns a tuple of ε= 〈µp,µw,µr,µu〉 called the evaluation context. The functions given
by the evaluation context are interpreted as follows: µp expresses the probability of
receiving a broadcast; µw associates each unicast interaction with a weight that is used
to calculate the probability that a given component receives the unicast message; µr
specifies the execution rates of actions; µu determines the updates on the environment
store and the collective. For example, these updates can be used to introduce arrivals of
new components into the collective. In order to precisely define the evaluation context,
however, we need to define what exactly is meant by the instantiation or resolutions of
the stores with non-deterministic values. Before doing that let us continue the running
example by defining the environment for it.

Example 4. For the running example we define the following environment: the global
store γg defines store attributes failr ∈ [0,∞) and senser ∈ [0,∞) corresponding to the
failure rate of individual robots and the rate of broadcast output action sense∗; the
probability of receiving the broadcast for the sense∗ action is set to 1; the constant
rate of spontaneous actions random∗ and directed∗ is given by rm; we set µu such that
the global store remains unchanged through the evolution and no new components are
introduced. The non-determinism in the behaviour of the system arises as only the viable
ranges of rates for actions sense∗ and fail∗ are given rather than a particular value or
a distribution over the values that would allow probabilistic choice to be made. Note
that the example considers both types of non-determinism mentioned in the introduction
to this chapter. The failure rate of robots is expected to be not known while the rate
of sensing is a decision about the behaviour of the robots we should expect to make,
and optimise for, when designing the behaviour. As mentioned in the introduction of
this chapter an appropriate resolution to non-determinism could also relate to observed
dynamics of a real system. For example, we might have experimental data for the failure
rate of robots.

3.1. Semantics 31

3.1.3 Resolving non-determinism

In order to make sense of the evaluation context we first discuss how the non-determinism
in the model is resolved. In the context of policy synthesis problems there are going to
be better and worse ways to resolve non-determinism based on the defined optimality
criteria. This aspect will be discussed in Section 3.2. At this stage we are only going
to consider how possible ways to resolve the non-determinism in a model are treated
in the context of the semantics of Carma-C. To that end let us consider a system S

defined by

S
def= (P1,γ1) | · · · | (Pn,γn) in (γg,ρ)

The set of control actions A(S) available from S is defined by the following: let A(S)
be a set of functions such that for all γ ∈ {γ1, · · · ,γn,γg}, f ∈A(S) maps all attributes
a in the domain of γ to particular value in γ(a). The following notation

f(γ)(a) = x

denotes the value of attribute a∈Attr being x∈ γ(a) given the control action f . That
is, a set of feasible control actions from a system S is the set of possible functions that
fix the store values. Later on we will consider control policies which specify how a f
control action is going to be chosen for a given state of the system and time t. In the
formal semantics we introduce a refinement step labelled by a chosen control action f
that transforms S into

Sf
def= (P1,f(γ1),γ1) | · · · | (Pn,f(γn),γn) in (f(γg),γg,ρ)

The corresponding rule is given by the following in the FuTS style [44]

S
def=
(
(P1,γ1) | · · · | (Pn,γn)

)
in (γg,ρ) ∈ Sys f ∈ A(S)

A-Choice
S→ [(P1,f(γ1),γ1) | · · · | (Pn,f(γn),γn) in (f(γg),γg,ρ) 7→ 1]

Namely, given a system S and control action f , the rule A-Choice gives us the corre-
sponding resolved system Sf . More precisely, the continuation Sf is assigned value 1
while all other continuations get value 0 thus separating resolved components reach-
able via control action f from unreachable. Note that the resolution keeps track of the
unresolved version store. This allows us to define the store updates on the unresolved
store depending on the chosen control action. For example, the space of control actions
for a system can thus change during the evolution. Let us define the sets Sysf , Colf

and Compf as sets of systems, collectives and components after application of f . We
assume that elements of Sysf , Colf and Compf are derived only from elements in
Sys, Col and Comp for which f is sufficient to fully resolve the non-determinism in

32 Chapter 3. Model specification

the behaviour. We call such sets resolved systems, collectives and components, respec-
tively. Finally, we complete our construction of the evaluation context ρ by defining it
as a function on resolved system S.

Example 5. In the case of the running example the resolution of non-determinism
corresponds to making explicit the values for global store attributes failr and senser. For
example, suppose f is defined such that f(γ)(failr) = rf and f(γ)(senser) = rs. The local
store for each Robot component is resolved trivially as the value domains are defined
as singleton sets. Note that this description of the store values does not mean the rates
cannot change in time, as our choice of the control action f can change in time and
resolve the store attributes to different values. This is discussed later in this chapter.

3.1.4 Interleaving semantics

The second stage of the semantics determines the rates at which a system changes state
given a control action. This is achieved through construction of functions Cf , Nε,f and
St,f parametrised by a chosen control action f . The function Cf takes a resolved
component in Compf and an action label and returns a probability distribution over
components in Comp. Components assigned a non-zero probability are reachable from
the resolved component. The function, Nε,f builds on Cf to describe the behaviour
of collectives. Based on a resolved collective in Colf and an action label it returns
a probability distribution over Col. As before non-zero probabilities are assigned to
reachable collectives. Finally, function St,f takes a resolved system in Sysf and an
action label and returns a function over systems Sys that specifies the rate at which
the transitions happen. Note that in general this can also depend on time. Thus the
semantics describe the evolution of an unresolved system to a resolved system via a
control action and after which it becomes, again, an unresolved system. This provides a
mechanism for changing the available control actions based on the state of the system.
The semantic rules for the second step resulting in the transition rates between systems
closely match the semantics given for Carma in [88]. The main difference is that in the
case of Carma-C semantics we need to decide how the evolution of stores is treated.
As mentioned, we opt for the construction where store updates are performed on the
unresolved stores where the exact update to be performed can depend on the chosen
control action.

Semantics of components

We start the definition of CTMDP semantics for Carma by considering single com-
ponents and their evolution. The rules in this section are simple extensions of the

3.1. Semantics 33

Nil Cf [(nil,f(γ),γ), `] = ∅ Zero Cf [(0,f(γ),γ), `] = ∅

Cf [(P,f(γ),γ), `] = C1 Cf [(Q,f(γ),γ), `] = C2
Plus Cf [(P +Q,f(γ),γ), `] = C1⊕C2

f(γ) |= π Cf [(P,f(γ),γ), `] = C
Guard Cf [([π]P,f(γ),γ), `] = C

f(γ) 6|= π
Guard-F Cf [([π]P,f(γ),γ), `] = ∅

Cf [(P,f(γ),γ), `] = C1 C[(P,f(γ),γ), `] = C2
Par Cf [(P |Q,f(γ),γ), `] = C1 |Q⊕P | C2

A
4= P Cf [(P,f(γ),γ), `] = C

Rec Cf [(A,f(γ),γ), `] = C

Figure 3.3: Component semantics — base rules.

corresponding rules given for Carma in [88]. The only notable difference is that we
assume that some control action f has been chosen which means that the rules operate
on a set of resolved components Compf . The next state, however, is going to be an
unresolved component in Comp. In particular, we aim to define the function

Cf : Compf ×Labf → [Comp→ R≥0]

The construction from resolved into unresolved components is going to be made possible
by the fact that the components in Compf carry with them the information about the
unresolved store definitions.

At the component level we are going to work with the set of labels Labf associated
with the defined action types and generated by the following grammar:

` :=α∗[π]〈v〉,f(γ)

| α∗[π] (v) ,f(γ)

| α[π]〈v〉,f(γ)

| α[π] (v) ,f(γ)

These labels contain the reference to the action which is performed, the values trans-
mitted with the given action and the resolved store. The function Cf is defined so
that for any component C resolved by action f and transition label `, C[C,`] gives the
weights of possible next states of C resulting from transition `. If Cf [C,`] = C and
C (C ′) =w then C ∈Compf evolves to C ′ ∈Comp with a weight w when ` is executed.
Function Cf is formally defined in Figure 3.3 dealing with composition rules for the
processes and Figures 3.4 and 3.5, which define the rules for broadcast and unicast
actions respectively. In the following we give a description of the defined rules.

34 Chapter 3. Model specification

JπsKf(γ) = π′s JeKf(γ) = v p = σ(f(γ),γ)
B-Out Cf [(α∗[πs]〈e〉σ.P,f(γ),γ),α∗[π′s]〈v〉,f(γ)] = (P,p)

JπsKf(γ) = π′s JeKf(γ) = v ` 6= α∗[π′s]〈v〉,f(γ)
B-Out-F Cf [(α∗[πs]〈v〉σ.P,f(γ),γ), `] = ∅

f(γr) |= πs f(γs) |= πr[v/x] p = σ[v/x](f(γ))
B-In Cf [(α∗[πr](x)σ.P,f(γr),γr),α∗[πs](v),f(γs)] = (P [v/x],p)

` 6= α∗[πs](v),f(γs)B-In-F Cf [(α∗[πr](v)σ.P,f(γr),γr), `] = ∅

f(γr) 6|= πs∨f(γs) 6|= πr[v/x]
B-In-F2 Cf [(α∗[πr](x)σ.P,f(γr),γr),α∗[πs](v),f(γs)] = ∅

Figure 3.4: Component semantics — broadcast rules.

Nil, Zero The rule Nil states that the inactive process cannot perform any action. The
function Cf gives the 0 constant function for all labels. Similarly, Zero defines
function Cf to be 0 constant function when evaluated for the component given
by the 0 process.

Guard and Guard-F These rules deal with guards on processes. If the guard π is satis-
fied, the component [π](P,f(γ),γ) behaves as (P,f(γ),γ). Otherwise no compo-
nent is reachable from [π](P,f(γ),γ). The guard π is satisfied if π(f(γ)) returns
true. If this is true we say f(γ) |= π.

Plus, Par and Rec These rules define the standard operations for process algebra
which deal with process composition at the component level: choice, parallel
composition and recursion. For choice, the expression C1⊕C2 is used to denote
the function that maps each component term C ∈Comp to C1(C)+C2(C). That
is, C is reachable if it is reachable from either P or Q. In other words, if either
C1(C) or C2(C) are non-zero.

For parallel composition we define how the processes P |Q interleave. Firstly, we
define for each component C and process Q

C |Q=

0 C ≡ 0

(P |Q,γ) C ≡ (P,γ)

where the notation Q | C is defined symmetrically.

Now for each C : Comp→R≥0 and process Q, C1 |Q (respectively P |C2) denotes
the function that maps each term of the form C |Q (respectively P |C) to C1(C)
(respectively C2(C)) while the others are mapped to 0. Thus, C |Q or P | C are

3.1. Semantics 35

reachable if C is reachable from P (corresponding to C1(C) non-zero) or C is
reachable from Q (corresponding to C2(C) non-zero).

Finally, for completeness we have the standard rule Rec which allows recursive
definitions of processes in the language.

Broadcast output To start, the rule B-Out states that a broadcast output α∗[πs]〈v〉σ
sends a message JeKf(γ) to all components where JeKf(γ) denotes the evaluation of
the expression e with respect to the resolved store f(γ). Note that the evaluation
of the message is dependent on the resolved store. This allows, for example, the
definition of a set of control actions corresponding to a set of messages that the
component can decide to send.

Similarly, JπsKf(γ) denotes the predicate expression πs evaluated with respect to
the resolved store f(γ). The local stores resulting from the execution of an action
are determined by the update σ which takes the resolved store f(γ), the unre-
solved store f(γ) and returns a probability distribution p = σ(f(γ),γ) ∈ Dist(Γ)
over the unresolved stores.

The outcome is given by the probability distribution (P,p) defined by

(P,p)(C) =


1 P ≡Q|kill ∧ C ≡ 0

p(γ) C ≡ (P,γ)

0 otherwise

That is, the process evolution to P is given syntactically and the probability of
evolving to a component C can only be non-zero if C is defined by the process
P . Moreover, the above defines that if kill is specified in the process P then
the only possible outcome is a component defined by the 0 process. If kill is
not specified then the probability of the component evolving to C is given by the
defined probability distribution on the set of unresolved stores Γ.

The rule B-Out-F states that the broadcast output can only be involved in labels
of the form α∗[πs]〈v〉,f(γ). That is, the output action can only happen over the
label which matches the syntactic definition of the action.

Broadcast input Similarly to the output action the rule B-In states that the com-
ponent α∗[πr](x)σ.P,f(γr) can perform the action labelled α∗[πr](v),f(γr), with
the next states given by probability distribution (P [v/x],p). The evolution of the
component is found when the input message v is substituted into the expressions
given in terms of x.

36 Chapter 3. Model specification

JπsKf(γ) = π′s JeKf(γ) = v p = σ(f(γ),γ)
U-Out Cf [(α[πs]〈v〉σ.P,f(γ),γ),α[πs]〈v〉,f(γ)] = (P,p)

JπsKf(γ) = π′s JeKf(γ) = v ` 6= α[πs]〈v〉,f(γ)
U-Out-F Cf [(α[πs]〈v〉σ.P,f(γ),γ), `] = ∅

f(γr) |= πs f(γs) |= πr[v/x] p = σ[v/x](f(γr),γr)U-In Cf [(α[πr](x)σ.P,f(γr),γr),α[πs](v),f(γs)] = (P [v/x],p)

` 6= α[πs](v),f(γs)U-In-F Cf [(α[πr](v)σ.P,f(γ),γ), `] = ∅

f(γr) 6|= πs∨f(γs) 6|= πr[v/x]
U-In-F2 Cf [(α[πr](v)σ.P,f(γ),γ),α[πs](v)] = ∅

Figure 3.5: Component semantics — unicast rules.

The rule B-In-F is identical to B-Out-F and states that the broadcast input is
only defined for the labels of the form α∗[πs]〈v〉,f(γ).

The rule B-In-F2 models the fact that if the receiving component’s store does
not satisfy the filter set by the sender of the broadcast message or if the received
values do not satisfy the receiver’s requirements then the component does not
receive the broadcast message.

Unicast The semantic rules for the unicast communication at the component level
mirror the broadcast rules precisely.

Example 6. We continue the running example to briefly demonstrate the application
of the semantic rules at the component level. Here we are going to analyse the resolved
component

Robot def=
(
Explore‖Listen,{loc 7→ (x,y), target 7→ ∅},

{loc 7→ {(x,y)}, target 7→ {∅}}
)

resulting from the parallel composition of processes for Explore and Listen. Note that
in this case the unresolved store, corresponding to loc and target attributes, has value
domains defined as singleton sets and thus any choice of control action would give the
same behaviour at the component level. To get an idea of how the semantics rules
are used we consider, as an example, the application of B-Out and B-Out-F to the
following sub-process in the definition of process Explore.

sense∗[◦]〈M(loc)〉{target = target∪M(loc)}.Explore

3.1. Semantics 37

The application of the said rules would give us

Cf
[(

sense∗[◦]〈M(loc)〉{target 7→ target∪M(loc)}.Explore, (Process description)

{loc 7→ (x,y), target 7→ ∅}, (Resolved store)

{loc 7→ {(x,y)}, target 7→ {∅}}
)
, (Unresolved store)

sense∗[◦]〈M(x,y)〉,{loc 7→ (x,y), target 7→ ∅}
]

(Transition label)

= (Explore,p)

The resulting expression (Explore,p) defines the following function over the unresolved
components Comp

(Explore,p)(C) =

1 for C ≡ (Explore,{loc 7→ {(x,y)}, target 7→ {{M(x,y)}})

0 otherwise

Thus, when it comes to the component Robot performing the broadcast action sense∗

there is just one possible outcome for the said component. Namely, that the process
describing the robot evolves to Explore ‖Listen and all the sets in the value domain
(in this case just ∅) corresponding to the attribute for the identified targets target gets
updated with theM(x,y). If the location (x,y) is a target then we get target 7→ {{(x,y)}}
and target 7→ {∅} otherwise. Similarly, applying rules B-In, B-In-F and B-In-F2 to the
sub-process Listen gives

Cf
[(

sense∗[◦](x){target 7→ target∪x}.Listen, (Process description)

{loc 7→ (x,y), target 7→ ∅} (Resolved store)

{loc 7→ {(x,y)}, target 7→ {∅}}
)
, (Unresolved store)

sense∗[◦](M(x,y)),{loc 7→ (x,y), target 7→ ∅}
]

(Transition label)

= (Listen[M(x,y)/x],p)

Again, the resulting expression (Listen[M(x,y)/x],p) is defined over components in
Comp. In particular, we get

(Listen[M(x,y)/x],p)(C) =


1 for C ≡

(
Listen,{loc 7→ {(x,y)},

target 7→ {{M(x,y)}}}
)

0 otherwise

where, again, the precise form of the component C for which the probability is 1 depends
on whether the location (x,y) is a target or not. The rules are similarly applied to all
of the defined processes and allows us to derive the full set of unresolved components
that are reachable in a single step from the resolved component.

38 Chapter 3. Model specification

Semantics of collectives

Following the framework in [88] the next step is to consider the transitions at the
collective level. We define the operational semantics at the collective level via the
function

Nε,f : Colf ×LabfI → [Col→ R≥0]

The function Nε,f is defined in Figure 3.6 and describes how a collective reacts when
a message is received. Thus, only input labels corresponding to broadcast and unicast
are considered with the label set LabI composed of labels in the following form:

`
def=α∗[π](v),f(γ)

|α[π](v),f(γ)

The function Nε,f is parametrised with respect to the evaluation function obtained from
the environment where the collective operates as well as the chosen control action that
resolves the non-determinism. Again, apart from having to deal with choice of control
action and the transition from a resolved store to an unresolved store, the definitions
given in Figure 3.6 mirror the relevant definitions from [88]. The explanations of the
rules are summarised below.

Zero States that the inactive component is unaffected by the broadcast messages.

Broadcast The rule Comp-B-In states that if a resolved component (P,f(γ),γ) can
receive a broadcast message over the name α (C[(P,f(γ),γ),α∗[πr](v),f(γ)] =
N 6= ∅) then the component receives the message with probability µp(f(γ),α∗)
while the message is not received with probability 1−µp(f(γ),α∗). The resulting
probability is renormalised to indicate that each element in P receives the message
with the same probability. We use ⊕N to denote

∑
N∈ColN (N).

Comp-B-In-F gives that if a component is not able to receive a broadcast message
(C[(P,f(γ),γ),α∗[πr](v),f(γ)] = ∅) then the component remains unchanged with
probability 1.

Finally, B-In-Sync models the fact that when two collectives operate in parallel
then potentially both of them can receive a broadcast message.

Unicast As with the component level rules the collective rules for unicast mirror the
broadcast ones.

Example 7. We return to the running example to demonstrate the application of the
semantics rules in this section. Let us consider a collective given by only two resolved
components.

Collective def= Robot ‖Robot

3.1. Semantics 39

Zero Nε,f [0, `] = ∅

Cf [(P,f(γ),γ),α∗[πs](v),f(γ)] =N N 6= ∅ ε= 〈µp,µr,µu,µw〉Comp-B-In

= µp(f(γ),α∗) N⊕N + [(P,γ) 7→ (1−µp(f(γ),α∗))]
Nε,f [(P,f(γ),γ),α∗[πs](v),f(γ))

Cf [(P,f(γ),γ),α∗[πs](v),f(γ)] = ∅
Comp-B-In-F

Nε,f [(P,f(γ),γ),α∗[πs](v),f(γ)] = [(P,γ) 7→ 1]

Cf [(P,f(γ1),γ1),α[πs](v),f(γ2)] =N N 6= ∅ ε= 〈µp,µr,µu,µw〉Comp-U-In
Nε,f [(P,f(γ1),γ1),α[πs](v),f(γ2)] = µw(f(γ1),f(γ2),α) N⊕N

Cf [(P,f(γ2),γ2),α[πs](v),f(γ1)] = ∅
Comp-U-In-F

Nε,f [(P,f(γ2),γ2),α[πs](v),f(γ1)] = ∅

Nε,f [N1,α
∗[πs](v),f(γ)] =N1 Nε,f [N2,α

∗[πs](v),f(γ)] =N2B-In-Sync
Nε,f [N1 ‖N2,α

∗[πs](v),f(γ)] =N1 ‖N2

Nε,f [N1,α[πs](v),f(γ)] =N1 Nε,f [N2,α[πs](v),f(γ)] =N2U-In-Sync
Nε,f [N1 ‖N2,α[πs](v),f(γ)] =N1 ‖N2⊕N1 ‖N2

Figure 3.6: Collective semantics.

In addition, suppose that the probability of successfully receiving the broadcast is 1 for
all resolved sender (γs) and receiver (γr) component stores:

µp(f(γs),f(γr),sense∗) = 1

The application of rules Comp-B-In and Comp-B-In-F to either of the Robot compo-
nents then gives us the following:

Nf,ε
[(

Robot,{loc 7→ (x,y), target 7→ ∅} (Component, Resolved store)

{loc 7→ {(x,y)}, target 7→ {∅}}
)
, (Unresolved store)

sense∗[◦](M(x,y)),{loc 7→ (x,y), target 7→ ∅}
]

(Transition label)

=
(
Explore ‖Listen[M(x,y)/x],p

)
+ [(Robot,{loc 7→ {(x,y)}, target 7→ {∅}}) 7→ 0]

with

(Explore ‖Listen[M(x,y)/x],p)(C) =


1 C ≡

(
Robot,{loc 7→ {(x,y)},

target 7→ {{M(x,y)}}}
)

0 otherwise

In this case, by definition whenever a broadcast input action happens the Robot is guar-
anteed to accept it and change its store accordingly. If we had more Robot components

40 Chapter 3. Model specification

in the collective the rule B-In-Sync would combine the effects of the transitions due to
a given broadcast action into a single transition on the collective.

Semantics of systems

At the system level, given we have resolved the non-determinism in the components,
we are interested in calculating the transition rates. Let us consider the set of labels
LabfS given by the following grammar:

`
def=α∗[πs]〈v〉,f(γ)

| τ [α[πs]〈v〉,f(γ)]

Thus, the actions are labelled by the firing broadcast or unicast output action and
the resolved store of the component performing the action. Our aim is to give a rule
which, given a system S ∈ Sysf resulting from resolving the non-determinism through
applying some control action f , calculates the rate of transition from S to S′ ∈ Sys
for any action label `. Analogously to Carma the operational semantics of Carma-C
systems are defined through the function

St,f : Sysf ×LabfS → [Sys→ R≥0]

This function, indexed by the chosen control action, calculates the rates of transition
for any system at a given time t. In detail, for any resolved system S and any label
` ∈ LabfS , if St,f [S,`] = S then S (S′) is the rate of the transition from S to S′ over
label `. If S (S′) = 0 then S′ is not reachable from S via `. The rules defined in
this section are again modified from [88] to make explicit the dependence on a chosen
control action.

Firstly, we combine the outcomes of broadcast output performed by the resolved
component C, given by C , and the complementary input performed by N , given N .
The result is multiplied by the rate of action induced by the environment:

µr(f(γ),α∗[πs]〈v〉)

This is done in the rule, named Sync, given below.

Nε,f [N,α∗[πr](v),f(γ)] = N

Cf [C,α∗[πs]〈v〉,f(γ)] = C

ε= 〈µp,µr,µu,µw〉

Sync
bSyncε,f (C,N,α∗[πs]〈v〉,f(γ)) = µr(f(γ),α∗[πs]〈v〉) ·C ‖N

The function bSyncε gives the rate at which a given new state is reached via the broad-
cast synchronisation between component C and collective N over label α∗[πs]〈v〉,f(γ).
Similarly, the rules below regulate the unicast communication.

3.1. Semantics 41

Nε,f [N,α[πs](v),f(γ)] = N 6= ∅
Cf [C,α[πs]〈v〉,f(γ)] = C

ε= 〈µp,µr,µu,µw〉

Sync-U
uSyncε,f (C,N,α[πs]〈v〉,f(γ)) = µr(f(γ),α[πs]〈v〉) ·C ‖ N

⊕N

Nε,f [N,α[πs](v),f(γ)] = ∅
Sync-U-F

uSyncε,f (C,N,α[πs]〈v〉,f(γ)) = ∅

Note that the additional rule Sync-U-F implements the blocking nature of unicast
communication. If there are no available receivers in the system the unicast output
action will not be performed.

The final step is to combine the definitions given up to this point into a top level
semantic rule for our language. To that end we start by considering any system S at
time t resolved by a control action f which results in a resolved system of the form
At(S,f) = N in (f(γg),γg,ρ). We suppose that the evaluation context is of the form
ρ(t,f(γg),γg,N) = ε= 〈µp,µw,µr,µu〉 and that the update on the global store is given
by µu(f(γg),γg,α∗) = σ. Next we consider what happens if several components in a
collective are capable of inducing a broadcast synchronisation over the same label. We
combine these rates to get the total rate of synchronisation by summing the outcome of
rule Sync over all possible senders C ∈N and multiply it by the multiplicity of C ∈N ,
denoted N(C). We say that, given these premises, the result is a function mapping the
resolved system with the given label to a function Sys→ R≥0.

In more detail, the rules Sys-B and Sys-U given below say the following. For each
resolved collective N , N : Col→ R≥0, S : Sys→ R≥0 and p ∈ Dist(Γ), denoting the
distributions over unresolved stores, we let N in (p,ρ) denote the function mapping
each system N ′ in (γ,ρ) to N (N ′) ·p(γ). That is, every resolved system is assigned a
function that maps any given unresolved system definition to a rate parameter.

∑
C∈NN(C)bSyncε,f (C,N −C,α∗[πs]〈v〉,f(γ)) =N

ρ(t,f(γg),γg,N) = ε= 〈µp,µr,µu,µw〉 µu(f(γg),γg,α∗) = σ

At(S,f) =N in (f(γg),γg,ρ)

Sys-B
St,f [N in (f(γg),γg,ρ),α∗[πs]〈v〉,f(γ)] =N in (σ(f(γg),γg,ρ)

∑
C∈NN(C)uSyncε,f (C,N −C,τ [α∗[πs]〈v〉,f(γ)]) =N

ρ(t,f(γg),γg,N) = ε= 〈µp,µr,µu,µw〉 µu(f(γg),γg,α∗) = σ

At(S,f) =N in (f(γg),γg,ρ)

Sys-U
St,f [N in (f(γg),γg,ρ), τ [α∗[πs]〈v〉,f(γ)]] =N in (σ(f(γg),γg,ρ)

Example 8. For this final step of the semantics we need to define the rates of actions

42 Chapter 3. Model specification

prescribed by the environment. For example, suppose that after resolving the store by f
the rate of sense∗ becomes

µr(f ({failr 7→ [0,∞),senser 7→ [0,∞)}) ,sense∗) =

µr({failr 7→ rf ,senser 7→ rs},sense∗) = rs

As before in this chapter we briefly illustrate the steps taken to construct the system
level transitions. We start by constructing the function bSyncε,f using the rule Sync.

bSyncε,f
[
Robot, (Component)

Robot ‖Robot, (Collective)

sense∗〈M(x,y)〉,{loc 7→ (x,y), target 7→ ∅}}
]

(Transition label)

= rs · (Robot,p1)‖ (Robot,p2)

where

(Robot,p1)‖ (Robot,p2)(N) =



1 N ≡
(
Listen ‖Explore,{loc 7→ {(x,y)},

target 7→ {{M(x,y)}}}
)

‖
(
Listen ‖Explore,{loc 7→ {(x,y)},

target 7→ {{M(x,y)}}}
)

0 otherwise

Thus, the synchronisation over the broadcast action sense∗ has the effect of changing
the local store values for identified targets target to include the location (x,y) depending
on whether it is specified as a target by function M or not. Finally applying Sys-B
gives the transition rates in the following way:

St,f
[
Robot ‖Robot in

(
{failr 7→ rf ,senser 7→ rs},

{failr 7→ [0,∞),senser 7→ [0,∞)},ρ
)
, (System)

sense∗[πs]〈M(x,y)〉,{loc 7→ (x,y), target 7→ ∅}
]

(Transition label)

= (Robot,p1)‖ (Robot,p2) in
(
σ
(
{failr 7→ rf ,senser 7→ rs},

{failr 7→ [0,∞),senser 7→ [0,∞)},ρ)
)

which evaluates to the rate 2rs for system descriptions consisting of collective

N ≡
(
Listen ‖Explore,{loc 7→ {(x,y)}, target 7→ {{M(x,y)}}}

)
‖
(
Listen ‖Explore,{loc 7→ {(x,y)}, target 7→ {{M(x,y)}}}

)
and the global store

γg = {failr 7→ [0,∞), target 7→ [0,∞)}

3.1. Semantics 43

For other system descriptions the rate corresponding to broadcast action sense∗ is given
by 0.

3.1.5 Population model

In this section we describe how the semantics defined in this chapter can be seen to give
rise to a CTMDP for a given syntactic description of a model. Here we are interested
in population CTMDP models as defined in Section 2.6 motivated by the study of
collective behaviour.

The population CTMDP modelMN = (X,T ,A,β) for a system S ∈ Sys can be de-
rived iteratively based on the assumption that components with the same configuration
(same process state and store) are indistinguishable. We start with S consisting of a
collective C1 ‖ · · · ‖CN operating in an environment E . The function Cf can be used to
determine all possible future configurations of each of the components Ci. If the union
of all possible component configurations is finite we can define the finite state space S
of M as the space of counting vectors specifying all possible future configurations of
the system S.

For each state s∈S we have a set Syss⊂Sys of corresponding unresolved Carma-C
systems with a set of feasible actions A(s). For the derivation of the population model
we need to add a restriction that any control action acts in the same way on the set
of indistinguishable components — that is, the components that are indistinguishable
before the application of the control action remain indistinguishable after. The rates
corresponding to chosen actions and the reachable states are found using the function
St,f . Given a control action f denote the system S resolved by f by Sf . The rate of
transition from s ∈ S to s′ ∈ S at time t given control action f is then given by∑

S∈Syss

∑
S′∈Syss′

∑
`∈LabS

St,f [Sf , `](S′)

Example 9. When considering the running example suppose there is a unique target
location in the system at (1,1). Let us denote the component given by the process
Listen ‖Explore at location (x,y) (that is loc = {(x,y)}) byRobot((x,y),0) if target = {∅}

Robot((x,y),1) otherwise

Suppose the system is given by the collective

Collective def=Robot((x,y),0)[100]

denoting a parallel composition of 100 replicas of the Robot((x,y),0) component. Fixing
the number of available locations gives us a finite set of possible future configurations

44 Chapter 3. Model specification

of the system. The population variables would simply count the numbers of Robot
components in each location that share the same knowledge about the target. The choice
of actions for each configuration of the system involves specifying the attributes failr and
senser.

3.2 Policy synthesis

Even with the constructed CTMDP model that relates to the Carma-C specification
we are only partway towards establishing an optimisation problem. In order to do that
we need to establish some optimality criteria by defining a cost or a reward function
for the model. Consider a population model MN = (XN ,T ,A,β) derived from a
Carma-C model with N components. Consider the functional QN : Π→ R, where Π
is the space of possible policies. As an example, deterministic and stationary policies
could be considered. The optimisation problem is thus defined as maximising some
defined functional QN , i.e., finding a policy π∗ that satisfies

QN [π∗] = sup
π∈Π

QN [π]

Suppose we fix a policy π and consider the resulting pCTMC model denoted PNπ .
As before, let XN

π (t) denote the stochastic process describing the time-evolution of the
pCTMC. Let V : DS → R be a reward function on the space of trajectories of the
stochastic process XN

π (t). The corresponding reward functional on the space of policies
is then given by

QN [π] def= V (XN
π (t))

Example 10. Take a state reward function r : S →R≥0 mapping the states of the CT-
MDP to positive real values. Define a value function corresponding to reward function
r and policy π as the expected finite time-horizon (0≤ t≤ T) cumulated reward:

QN [π] def= V (XN
π (t)) def= E

∫ T

0
r(XN

π (t))dt

Example 11. A simple example of an optimality criterion would involve associating
a non-zero reward with trajectories where a certain proportion (say 80%) of the com-
ponents reaches the target location by time T . The control policies for the CTMDP
arising from the running example come from the non-determinism in the definitions
of attributes failr and senser. The conceptual differences in the two sources of non-
determinism lead to the following considerations:

• Suppose that the failure rate as well as sensing rate is something we can control. In
the case of failure rate this would then correspond to a robustness characteristic of

3.2. Policy synthesis 45

the components and we might want to associate a cost for making the components
more robust.

• Suppose that the failure rate is not something we can control. In that case we can
decide to construct a space of policies where a policy is deterministic with respect
to the attribute senser but assigns a fixed probabilistic policy for the attribute failr.

In the context of the modelling framework described in this chapter we think of
choosing a particular optimality criterion as part of the modelling process. For ex-
ample, in the context of logical specification of desired behaviours of the system, the
construction of the formal specification based on informal requirements is seen as part
of the process of constructing or choosing an optimality criterion. Similarly, when in-
corporating data from real-life systems there are again decisions to be made about the
precise way in which the available data is used. For example, choosing an appropriate
metric for optimisation. Finally, in the context of multi-objective optimisation where
one might deal with conflicting goals, there are choices to be made with respect to
relative importance of the goals.

There are various aspects that can make the constructed policy synthesis problems
difficult to solve. In formal modelling the optimality criteria for policy synthesis are
commonly specified in a chosen logic. This makes it straightforward to define the value
function in terms of satisfaction of the logical specification. However, model-checking
the constructed models against a logical specification is highly non-trivial. Moreover,
in the area of multi-objective optimisation it is often the case that the objectives are in
conflict with each other making the optimisation problem difficult. In the rest of the
thesis we are going to concentrate on the problem where, after defining a suitable value
function applying exact solution methods quickly becomes infeasible with increasing
model size. This is similar to the analysis and model-checking of pCTMCs.

Fixing a policy and using stochastic simulation methods is an option for gathering
Monte-Carlo estimates for the values of the chosen function for different policies in the
chosen policy space. An application of this idea was, for example, considered in [11]
for time-dependent policies that maximise a reachability criterion. It can be easily
seen that stochastic approximation methods like fluid, linear noise and moment closure
approximation can, in many cases, be used to estimate the defined value function for
given policies with potential for computationally efficient approximate solutions. An
example of this idea in the discrete time setting can, for example, be seen in [57].
However, the class of models arising from Carma-C presents non-trivial challenges
in applying the said approximation methods. This is due to the use of broadcast
communication. For example, in order to apply fluid approximation, informally, we rely
on the effect of actions being bounded as more components are introduced to the system.

46 Chapter 3. Model specification

In the following chapters we are going to consider this problem and propose a class of
population systems for which the problems arising from broadcast communication can
be mitigated.

Chapter 4

Approximations for
mode-switching dynamics

As pointed out in Chapter 3, exact solutions to the arising optimisation problems are
generally out of the question apart from in very trivial cases. In this chapter, motivated
by Section 3.2, we concentrate on the CTMC dynamics of the population models arising
from fixing a control policy to a Carma-C model and study the applicability of existing
approximation methods. When trying to apply methods like fluid, linear noise and
moment closure approximations to the resulting population models we quickly notice
the issues arising from application of broadcast communication. Namely, the existing
methods make one of the following assumptions:

• The effects of transitions in the system are density dependent. Intuitively this
means that the effects of individual transitions becomes in some sense “small” as
larger and larger population sizes are considered allowing us to leverage fluid and
linear noise approximation results.

• The state space can be partitioned according to variables corresponding to com-
ponents that exist in the system in high-copy number and those that exist in
low-copy numbers, allowing one to apply various hybrid approximation methods
where part of the system description is kept discrete while the rest is given a
continuous approximation.

Neither of these assumptions are satisfied in general for population models utilising
broadcast. If no additional constraints on the number of broadcast receivers is im-
posed, then the update corresponding to broadcast communication cannot be nor-
malised as done in standard fluid and linear noise approximation. On the other hand,
we are not dealing with hybrid behaviour in the sense of low and high copy numbers
of components which would allow for immediate application of the corresponding hy-

47

48 Chapter 4. Approximations for mode-switching dynamics

brid methods [18, 65]. In this chapter we show how a class of systems with broadcast
communication can be framed so that existing fluid, linear noise and moment closure
approximation methods are applicable. To that end we are going to introduce a way
of “partitioning” the state space based on the magnitude of certain transitions which
in our case correspond to information propagation through broadcast communication.
Each class within such a partition is going to give rise to one of the discrete dynamic
modes. In addition, we are going to extend the hybrid fluid limit results from [18] to the
case of linear noise approximation and demonstrate the usage of existing approximation
methods to the population models that feature broadcast communication.

4.1 Mode-switching population models

We start by defining an interesting class of stochastic population models. In particular,
we consider models where the dynamics of a population can be separated into modes
of behaviour. In [104] we argued that such models arise naturally from broadcast
communication in collective systems with modes corresponding to the information that
the collective has about its operating environment when broadcast is used to share
the information amongst components. The stochastic model we are going to consider
throughout the chapter is given by the following definition:

Definition 7. We define a mode-switching population system as a joint Markov process
Y(t) = (X(t),Z(t)) ∈ Zn×Z where we make the assumption that each transition only
changes the state of X(t) or Z(t) but not both. Moreover, suppose that

• conditional on Z = z, the process (X(t))t≥0 is given by a population process
Pz = (X,Tz,X0) with jump intensities qzX(x,x′).

• conditional on X = x, the process (Z(t))t≥0 is a continuous time Markov chain
with intensities qx

Z(z,z′).

The transition intensities for the joint process Y(t) = (X(t),Z(t)) are thus defined as

q(x,x′,z,z′) =


qzX(x,x′) for z = z′

qx
Z(z,z′) for x = x′

0 otherwise

This defines a fairly general class of stochastic processes encompassing, for exam-
ple, many stochastic gene expression models. In the context of the examples involving
changes in population dynamics due to broadcast communication the process X cor-
responds to the current state of the population and Z corresponds to the dynamic

4.2. Transition-based partitioning 49

mode being followed by the population. Similar models appear in works that consider
biological processes coupled with their environment [126, 127] and where the behaviour
of the environment is assumed to not depend on the behaviour of the population. As
discussed in the introduction to this thesis we are going to consider situations where
broadcast actions of a single component can bring about changes in the dynamics of
the population. In such case we can note that the population process X is going to
affect the mode-switching process Z and vice versa. In addition, there has been work on
models of biochemical systems where the model is partitioned into low and high-copy
number species with the two partitions treated differently [65, 66] with the low-copy
number species similar to the mode-switching process in our case. Finally, Definition 7
has conceptual similarities to hybrid automata [67] and stochastic hybrid systems [69]
in that models with different properties are coupled to describe the system. In the case
of hybrid automata and stochastic hybrid systems the continuous behaviour is coupled
with switching behaviour that depends on and also influences the continuous dynamics
of the system. In the case of Definition 7 we similarly consider population dynamics
coupled with a stochastic switching behaviour. The following example returns to a
simple swarm robotics-inspired example to motivate and exemplify the construction
and methods that follow.

Example 12. A basic example of a mode-switching process as described in Definition 7
is given by the same swarm foraging scenario as considered in Chapter 3 where the
robots are looking for a designated target area and gather to it. Unlike in Chapter 3,
however, we are not going to consider the failure of robots. The model is constructed
so that an exploration phase is followed by aggregating to the target area. The switch
from the exploration to the aggregation phase happens when an individual in the swarm
detects the target area and broadcasts this information to the rest of the swarm. When
the space in which the swarm exists has a graph structure we can build an example mode-
switching model by considering two population processes — one modelling a random
walk on the graph and the second, a directed walk towards to the target node. A simple
instance of such a model over a 2-by-2 grid is given by the transition diagrams for
individuals in the swarm depicted in Figure 4.1.

4.2 Transition-based partitioning

Note that in the context of this thesis the modelling workflow does not start with a
direct specification of the mode-switching population model as defined in the previous
section. Rather, in Chapter 3 we saw how Carma-C models under a chosen control
policy give rise to a pCTMC model. In this section we are going to give a construction

50 Chapter 4. Approximations for mode-switching dynamics

(0,0)

(0,1)

(1,0)

(1,1) B

1
2rm rm

1
2rm

1
2rm

rm 1
2rm

rs

(a) Before broadcast – random walk

(0,0)

(0,1)

(1,0)

(1,1) B

rm

rm

rm

(b) After broadcast – directed walk

Figure 4.1: Behaviour of individuals in the swarm model with 4 locations. The wavey
line denotes the broadcast message being sent out from location (1,1) with rate rs.
The parameters rm, rs give the movement rate between locations, sensing rate and
probability of detecting the location (1,1) as the target, respectively.

under which such a population model, derived from a Carma-C specification, can be
studied as a mode-switching population in Definition 7. The additional structure of
mode-switching systems allows us to apply existing fluid, linear noise and moment
closure-based approximations.

In order to characterise pCTMCs that fall into the subclass of mode-switching
population dynamics we are going to propose the following transition-based partitioning
method. We start with a pCTMC P = (X,T ,X0) with X ∈ Zkn where k corresponds
to the number of modes and n is the number of component states. Up to reordering of
the state-space we consider the projections proji such that for any element

x = (x1, · · · ,xn,xn+1, · · · ,x2n,x2n+1, · · · ,xkn) ∈ Zkn

the projection proji maps x to the value

proji (x) = (xin+1, · · · ,xin+n) ∈ Zn

Using this we define two types of transitions, called mode switches and population
transitions of the population process P based on their effect under the projections
above.

Definition 8. We then say that a transition τ = (vτ (X), rτ (X)) ∈ T is a mode switch
if there exists exactly one pair of projections proji and projj , i 6= j, defined above such
that for all x for which proji (x) 6= 0

• proji (vτ (x)) 6= 0 and projj (vτ (x))) 6= 0.

• proji (vτ (x)) =−projj (vτ (x)).

4.2. Transition-based partitioning 51

• proji (x +vτ (x)) = 0.

The first condition of the definition above defines a mode switch as a transition
that causes a non-zero change in the state of the pCTMC under exactly two different
projections. The transition is such that the change under the two projections is of equal
magnitude but opposite in direction. The third condition states that as a result of a
mode switch one of the two projections becomes zero. Note that if the state vector is
non-zero under a single projection then this is the case also after a mode switch. We
are going to use this property to classify population systems where the state remains
non-zero under a single, but possibly changing, projection throughout the evolution.
This is going to allow us to relate the pCTMCs arising from modelling broadcast
communication in Carma-C to a mode-switching population system in Definition 7.

Example 13. Consider the running example to illustrate the above definition for a
mode switch. Up to reordering of the state-space we can consider the first 4 copies of
Z to correspond to counts of robots at locations (0,1),(0,0),(1,0) and (1,1) that do not
have information about the target and the second 4 copies of Z to correspond to the
counts where the information about the target location is known. Thus, we have a copy
of Z4 for each level of information — in this case two levels. Suppose the state before
the broadcast is given by

(49,0,0,1,0,0,0,0)

corresponding to 49 robots in location (0,1) and 1 robot in location (1,1) with no knowl-
edge about the target location. An update corresponding to broadcast would be given
by

vτ (x) = (−proj1 (x),proj1 (x))

and, in particular, a transition from the state above would result in

(49,0,0,1,0,0,0,0) +vτ ((49,0,0,1,0,0,0,0)) = (0,0,0,0,49,0,0,1)

with the locations of robots staying the same but all of them gaining the knowledge
about the target location. It can be easily seen that the transition defined in such a way
satisfies the conditions for a mode switch in Definition 8.

Definition 9. We say that a transition τ = (vτ , rτ (X)) ∈ T is a population transition
if the update vector vτ 6= 0 is such that if

proji (vτ (x)) 6= 0

then for all j 6= i we have
projj (vτ (x)) = 0

52 Chapter 4. Approximations for mode-switching dynamics

The idea is that if the transition τ changes the state under the projection proji then it
leaves the state invariant under any other projection.

Example 14. It is easy to see then that the transitions corresponding to movement on
the grid in the running example can be characterised as population transitions.

These two types of transitions will suffice to characterise population systems that
can be separated into modes.

Definition 10. A pCTMC P = (X,T ,X0) with X ∈ Zkn, k ≥ 2, is mode separable, if
up to reordering of the state space there exist projections proj1 , · · · ,projk such that

• if proji (X0) 6= 0 then projj (X0) = 0 for i 6= j. Thus, the initial conditions are
non-zero under only one projection as defined above.

• if τ = (vτ (X), rτ (X))∈ T then either it is a mode switch as defined in Definition 8
or a population transition in Definition 9.

The above describes conditions under which a general pCTMC is mode separable.
We are dealing with a mode separable pCTMC whenever the projections can be found
such that transitions with respect to these projections satisfy the conditions in Defini-
tion 10. The above definition does not, however, specify how these projections should
be constructed. Note that Definition 10 defines a rather strict notion of a mode sepa-
rable system. The running example, for instance, can be modified so that each robot
in the swarm receives the broadcast message with a probability p < 1. This creates the
situation where robots that know of the target coexist in a system with ones that do
not. The above definition would not be able to define such cases as mode-switching
systems — the state of the pCTMC can only be non-zero under a single projection at
any given time. One could consider imperfect broadcast communication a more gen-
eral instance of mode switching where all possible outcomes of the broadcast message
correspond to a different mode. Constructions that allow this could be considered in
future work.

The final step is to specify the construction of mode-switching population models
from the pCTMCs that are mode separable according to Definition 10. In particular, a
mode separable pCTMC P = (X,T ,X0) gets translated into mode-switching population
process Y = (X′,Z) as follows:

• if proji (X(t)) 6= 0 then the mode process Z(t) = i.

• the state of the population X′(t) is given by
∑
iproji (X(t)).

• conditional on Z(t) = i the evolution of the population process X′ is given by the
population process Pi = (X′i,Ti,X0) where Ti consists of population transitions
vτ for which proji (vτ (X(t))) 6= 0.

4.3. Approximations 53

• the mode-switching process Z(t) changes according to mode switch transitions.

With that we have constructed a model from the mode-separable pCTMC for which we
can hope to apply existing hybrid methods where the population variables are given a
continuous description while the variable describing dynamics mode currently followed
remains discrete.

4.3 Approximations

The problem of constructing a useful and computationally efficient approximation to
the mode-switching dynamics as introduced above in Section 4.1, is intimately linked to
works in the context of modelling biochemical and biological processes. In particular,
previous works have considered the partitioning of the modelled species into two groups
— one for components occurring in low-copy numbers and the other for high-copy num-
bers. The hybrid methods would model the high-copy number components continuously
(sometimes deterministically) while the components with low-copy numbers are given a
stochastic description [48, 66, 93, 113]. Bortolussi [18] gives related convergence results
in the context of a stochastic process algebra based on the idea of fluid approximation for
systems where certain populations are approximated continuously while others are kept
discrete. The method of conditional moment closure [65] gives moment-based descrip-
tion of subsystem corresponding to high-copy number components and uses a stochastic
model for the low-copy subsystem. Finally, some analyses have considered dynamics
of stochastic reaction networks under fluctuating environments [70, 127] which aim to
construct a model of the reaction network dynamics decoupled from its environment.

In general, the following cases arise from the mode-switching models following Def-
inition 7.

• The dynamics of the switching process Z are independent of the marginal popula-
tion process X. An example would be given by considering Z as the environment
for the population process. In such examples, the population is affected by the
environmental process but not the other way round.

• The dynamics of the switching process Z depend on the marginal process X but
the behaviour of the population X is not affected by the switching process. In
such cases Z can be thought of as an observation variable modelling information
available about the population to some external observer.

• The dynamics of mode-switching process Z depend on the population process X
and vice versa. An example of such scenario is provided, for example, by models
involving broadcast communication as in Example 12.

54 Chapter 4. Approximations for mode-switching dynamics

In this thesis, we are mostly interested in the third case where we have the two-way
dependence between the mode-switching process and the population. The rest of this
chapter is dedicated to approximation methods that can be applied to study the dynam-
ics in such cases. Our main motivation stemming from the study of collectives where
broadcast communication plays an important role in the dynamics of the components.
In the running example used in this chapter we are going to interpret the states of the
mode-switching process as corresponding to the levels of information available to the
collective.

4.3.1 Fluid approximation methods

In order to analyse the mode-switching population system introduced in the previ-
ous section we are going focus on fluid approximation-based methods motivated by
application in mean-field control methods in swarm behaviours [49]. Note that Borto-
lussi [18] presents a comprehensive set of results on fluid limits of pCTMCs exhibiting
hybrid behaviour where the limiting behaviour is given in terms of piecewise determin-
istic Markov Processes (PDMP) [43]. For example, guarded behaviour, instantaneous
transitions and stochastic jumps coupled with a population structure were considered.
Here, we are going to leverage these results in the context of mode-switching population
systems.

Due to the construction of the mode-switching dynamics the most general treatment
of PDMPs is unnecessary for the discussion that follows. An aspect of the constructed
models that simplifies the analysis is that the transitions of the mode-switching process
do not change the state of the population variables. With this in mind we start by
giving a definition of a subclass of PDMPs sufficient here (a similar restriction was also
considered in [17]). The intuition is that a PDMP defines a process with continuous
deterministic dynamics interrupted by random switching.

Definition 11. (Simplified) piecewise deterministic Markov process (PDMP) [43] . Let
E be a countable set and M ⊂Rn a compact subset giving the domain of the continuous
evolution. We assume that

1. For all z ∈ E we have a smooth time-independent vector field F z :M → Rn such
that the ODE d

dty(t) =F z(y(t)), for each initial condition y(0)∈M , has a unique
solution such that y(t) ∈M for all t≥ 0.

2. All states z,z′ ∈E are identified with unit vectors ez,ez′ in R|E| and for all x∈M
there is a continuous time Markov chain defined via the infinitesimal generator
matrix Qx with entries qx(z,z′).

4.3. Approximations 55

We define the corresponding PDMP as a stochastic process (X(t),Z(t)) ∈ M ×R|E|

satisfying the equationX(t)
Z(t)

=

 X(0) +
∫ t

0 F (X(s))ds
Z(0) +

∑
z

∑
z′ 6=z(ez′−ez)Nzz′

(∫ t
0 q̄

X(s)(Z(s),z,z′)ds
)

where

F (X(t)) = F z(X(t)) if Z(t) = ez

q̄X(s)(Z(s),z,z′) =

q
X(s)(z,z′) if Z(s) = z

0 otherwise

and each Nzz′ is a time-changed Poisson process counting the number of transitions
from state ez to ez′.

We have defined the process Z in terms of the Poisson or random time change
representation of Markov chains [50] (described in Section 2.1.2) and constructed it so
that its state is always given by a unit vector in R|E|. As described in Section 2.1.2, the
time parameter is transformed based on the state of X and Z so that the process Nzz′

counts transitions from z to z′ only. This gives us a compact and simplified definition
of PMDPs. In the rest of the thesis we are going to use a shorthand and describe the
state space of Z by integer values. However, the underlying construction as a process
taking values in R|E| remains in place. Details and the definition of PDMPs in a more
general setting can be found in [43]. For the limit results in [18] the more general
definition was considered, for example, to deal with instantaneous transitions which
are not considered here.

In the following we are going to apply the results of [18] to conservative mode-
switching population systems as introduced in Definition 7. We denote the joint process
corresponding to a mode-switching population process of a fixed number of components
by (XN ,ZN) to indicate the population size N . For each state z of the mode-switching
process ZN we have a pCTMC PNz = (XN

z ,T Nz ,XN
0) corresponding to the population

dynamics for the given mode z. We are going to consider the following conditions:

1. The pCTMCs PNz scale for all z as described in Section 2.4.1 — the background
section for fluid approximations. In particular, for all z consider the scaled
pCTMC P̂Nz = (X̂N

z , T̂ Nz ,X̂N
0).

2. For the intensities qx,N
Z (z,z′) of the process ZN conditional on the state of the

population XN = x we require that there exists a Lipschitz continuous function
fNzz′ : RK → R such that

qx,N
Z (z,z′) = fNzz′

(x
N

)

56 Chapter 4. Approximations for mode-switching dynamics

and fNzz′ converges uniformly to a continuous function fzz′ as N →∞. Note that
the scaling for the mode-switching system or discrete variables follows different
rules and requires the rates to vary with the scaled population variables.

If the above conditions are satisfied then we can state the hybrid fluid limit theorem
in the context of the mode-switching population system as follows.

Theorem 3 (Hybrid fluid limit [18]). Let (XN ,ZN) be a mode-switching population
system satisfying the scaling conditions above and let (X̂N , ẐN) be the corresponding
scaled process. Suppose the initial conditions XN (0)→ x̂(0) and ZN (0)→ ẐN (0) al-
most surely. Then the sequence of scaled processes {(X̂N , ẐN)} converges weakly to a
piecewise deterministic process (x̂, Ẑ)x̂(t)

Ẑ(t)

=

 x̂0 +
∫ t
0 F (x̂(s)ds)

Ẑ(0) +
∑
z

∑
z′ 6=z(ez′−ez)Nz′z

(∫ t
0 f̄zz′(Ẑ(s), x̂(s))ds

)
where

F (x̂) =
∑
τ∈T̂z

fτ (x̂) if Ẑ(t) = z

f̄zz′(Ẑ(s), x̂(s)) =

fzz
′(x̂(s)) if Ẑ(s) = z

0 otherwise

The rates fτ for τ ∈ T̂z are given by the constructions in Section 2.4.1 applied to the
pCTMC P̂Nz = (X̂N

z , T̂ Nz ,X̂N
0) defining the process X̂N conditional on the state z of the

mode-switching process.

Proof. The result is a special case of the result proposed in [18]. The idea of the proof is
to consider the limiting behaviour of the process X̂N inductively between the stochastic
jumps of the process ZN . The details of the proof can be found in [18].

For cases like the running example we are not quite ready to apply the above
theorem yet. To see that let us consider the following example.

Example 15. Suppose each of the robots that reaches the location (1,1) is capable of
causing the mode switch at some rate rs. Let the mode corresponding to exploration
be denoted by Z = 0 and the mode corresponding to gathering to the target location be
denoted by Z = 1. The total rate at which the mode switch happens is given by the
number of robots at (1,1), denoted X11, multiplied by the rate rs. That is, we get

qX,N
Z (0,1) = rsX11

which does not satisfy the scaling requirement defined above for the mode switches due
to the dependence on the non-scaled population variables. Considering the limiting

4.3. Approximations 57

behaviour for such transitions would not lead to anything interesting. In particular,
taking N →∞, the limiting behaviour of the corresponding mode-switching process is
such that the probability

P(broadcast has happened by time t)→ 1 for all t > 0

Thus, the limit behaviour of the mode-switching process corresponding to a broadcast
message being sent is expected to immediately reach its absorbing state. While the limit
of the switching population constructed in such a way is valid it is not very useful when
our aim is to understand the behaviour of the system at a fixed finite population size
N .

In the following we construct an approximation dependent on the population size.
To that end, in order to leverage Theorem 3 in the case of the running example we
start by constructing a special instance of the mode-switching process ZN that fixes
the behaviour of the mode-switching process to a given population size.

Consider the fixed population of size Ñ and suppose for intensities qx,Ñ
Z (z,z′) of

the mode-switching process ZÑ given the state of the population process XÑ = x there
exists a Lipschitz continuous function f Ñzz′ : RK → R such that

qx,Ñ
Z (z,z′) = Ñf Ñzz′

(x
Ñ

)
We then construct a special instance ẐN of ZN such that the density-dependent scaling
inside fNzz′ is done according to the population size N which is then multiplied by the
population size Ñ that is kept constant. Effectively this fixes the behaviour of the
mode-switching process ZN to the case where the total population size is assumed to
be Ñ .

The choice of Ñ is entirely up to the modeller and is chosen based on the modelling
problem at hand. For example, if we are interested in the approximate behaviour of
the system with 100 homogeneous individual components we would set Ñ = 100. In
many scenarios the sensitivity to the chosen population size Ñ will also have to be
considered. In particular, we might be interested to find out how much the overall
dynamics of the population are expected to vary when varying Ñ around 100. Finally,
if our modelling interest lies in swarms of around 100 robots it would be inappropriate
to fix the population size Ñ for the approximation to a value an order of magnitude
lower or higher as the quantitative and qualitative properties of the resulting dynamics
will not give a good representation of the dynamics of interest.

The constructed process ẐN conditional on the state of the population XN = x is
a continuous time Markov chain with the intensities defined by

qx,N
Ẑ

(z,z′) = Ñf Ñzz′

(x
N

)

58 Chapter 4. Approximations for mode-switching dynamics

In particular, we fix the rate function of the switching process depending on the scaled
population variables to its behaviour at a chosen population level Ñ .

Example 16. Let us consider the running example. If again the population size at
the location (1,1) is X11 then the broadcast happens with rate rsX11. Similarly, the
broadcast for the scaled population process given population density X11

N at location (1,1)
happens with the rate Nrs X11

N . The special instance of the joint process at population
level 100 according to the construction above is then defined by saying that the rate of
broadcast is given by 100rs nN . This now satisfies the scaling condition for the mode-
switching transitions.

Note that the joint process (X̂N , ẐN), constructed from (XN ,ZN) via taking the
special instance of ZN , satisfies the conditions of Theorem 3 and thus converges weakly,
as N →∞ to the PMDP (x̂, Ẑ) with Ẑ defined by the intensities qi,N

Ẑ
as N →∞. As

mentioned, the motivation here is that while the behaviour of the population process
is taken to its asymptotic limit the behaviour of the mode-switching process is kept
fixed. Considering a sequence of such instances of the mode-switching process gives us
a better idea about how the hybrid limit in Theorem 3 is reached.

Example 17. For the running example we can easily see that the deterministic be-
haviour is given by the following drifts.

d

dt
x̂(t) =





rm(−x̂01(t) + 1
2 x̂00(t))

rm(−x̂00(t) + 1
2 x̂01(t) + 1

2 x̂10(t))

rm(−x̂10(t) + 1
2 x̂11(t) + 1

2 x̂00(t))

rm(−x̂11(t) + 1
2 x̂10(t))


for Ẑ(t) = 0



−rmx̂01(t)

rm(−x̂00(t) + x̂01(t))

rm(−x̂10(t) + x̂00(t))

rm(x̂10(t))


for Ẑ(t) = 1

(4.1)

with

x̂(t) =
(
x̂01(t) x̂00(t) x̂10(t) x̂11(t)

)T
and initial conditions given by

x̂(0) =
(
0 1 0 0

)T
Ẑ(0) = 0

4.3. Approximations 59

The difficulty of treating the approximation numerically still remains as Ẑ is a
random process depending on x̂ while x̂ depends on Ẑ. Although it is possible to sample
realisations of the time-inhomogeneous Poisson processes describing the evolution of the
mode-switching process the computational demand of the problem remains high. More
details on this will be given later in the results section of this chapter (Section 4.4).

4.3.2 Linear noise approximation

This section is a direct continuation of the discussion on hybrid fluid approximation
in the previous section. That is, we consider the perturbation of the deterministic ap-
proximation, constructed according to the fluid approximation results, with Gaussian
noise. We recall that while the hybrid approximation in the previous section takes into
account the stochasticity due to the mode-switching process, it treats the behaviour
within the modes in a deterministic manner. Perturbing the deterministic approxi-
mation with a Gaussian noise allows us to better capture the stochasticity within the
modes that exists due to the behaviour of the individual components. To that end let
(XN ,ZN) be a mode-switching population system satisfying the scaling conditions in
the previous section, let (X̂N , ẐN) be the corresponding scaled process.

Theorem 4 (Hybrid linear noise approximation). If the initial conditions X̂N (0)→
X̃(0) and ẐN (0)→ Z̃(0) almost surely then for all t < T <∞ the sequence of normalised
processes (X̂N , ẐN) converges weakly to a process (X̃, Z̃) given byX̃(t)

Z̃(t)

=

 X̃(0) +
∫ t
0 F(X̃(s))ds+N−

1
2
∫ t
0 G(X̃(s))dWs

Z̃(0) +
∑
z,z′(ez′−ez)Nzz′

(∫ t
0 ḡzz′(Z̃(s),X̃(s))ds

)
where Ws is the n-dimensional Wiener process and G(x) is the diffusion matrix defined
as follows.

G(x) =
∑
τ∈T̂z

vτvTτ fτ (x) if Z̃(t) = z

ḡzz′(Z̃(s),X̃(s)) =

fzz
′(X̃(s)) if Z̃ = z

0 otherwise

As a result the distribution of X̃ at time t is Gaussian given the full history of the mode-
switching system Z̃ up to time t. The vectors vτ are the changes to the state vector
induced by a given transition τ of the underlying pCTMC while fτ are the transition
rates as considered in Section 4.3.1.

Proof. The similar inductive reasoning that is used to prove the hybrid fluid limit
in [18] extends the convergence results to hybrid linear noise as stated above. Further
discussion and an outline of the proof is given in Appendix A.

60 Chapter 4. Approximations for mode-switching dynamics

The discussion on constructing a special instance of the mode-switching population
carries over immediately with no changes. However, as before, the problem of com-
putational realisation of the resulting approximations remains. Notably, the resulting
stochastic differential equation has, both a continuous evolution component and a jump
component. In comparison to the hybrid fluid approximation any simulation approach
for the constructed hybrid linear noise approximation would also have to deal with the
problem that the behaviour in between mode switches is stochastic. To illustrate the
approximation we refer again to the running example.

Example 18. The mean of the process was considered in the previous section so the
only thing left to characterise are the Gaussian fluctuations around the mean. This
relies on characterising the drift matrix for the noise process. In particular, if Ẑ(t) = 0
then

G(x) =


rm(x01 +x00) −rm(x01 +x00) 0 0

−rm(x01 +x00) rm(x01 + 2x00 +x10) −rm(x00 +x10) 0

0 −rm(x00 +x10) rm(x00 + 2x10 +x11) −rm(x10 +x11)
0 0 −rm(x10 +x11) rm(x10 +x11)


(4.2)

On the other hand, if Ẑ(t) = 1 then

G(x(t)) =


rmx01 −rmx01 0 0
−rmx01 rm(x00 +x10) −rmx00 0

0 −rmx00 rm(x00 +x10) −rmx10

0 0 −rmx10 rmx10)

 (4.3)

4.3.3 Moment based approximations

The one last approximation method left to discuss is based on an existing extension to
moment closure methods. Mirroring the sections on fluid and linear noise approxima-
tion, the aim is to have a moment-based description of the evolution of the population
variables while the mode-switching is kept discrete and stochastic. In particular, in the
following we discuss the applicability of the method of conditional moments presented
in [65] where a differential algebraic system of equations was constructed for the par-
titioning of a chemical reaction network model. The idea is to express the evolution of
the discrete subsystem in terms of conditional moments. A similar approach was also
considered in the context of linear noise approximation in [119]. The following lemma,
given in [65], provides us with a starting point. We are going to use E [h(X(t)) | z; t]
to denote the expectation of h(X(t)) conditional on the state Z(t) = z of the mode-
switching process. The notation h(X(t) = x) is used to denote the function h applied
to the value x of the random variable X(t).

4.3. Approximations 61

Lemma 1. For any sufficiently smooth test-function h : Rn→ Rn

d

dt
E [h(X(t)) | z; t]p(z; t) =

∑
x
h(X(t) = x) d

dt
p(x,z; t) +

∑
x
p(x,z; t) d

dt
h(X(t) = x)

(4.4)

Proof. Proof from [65] recreated in Appendix B.1.

The equations that describe the time-evolution of the conditional moments as well
as the probability density of the mode-switching process Z(t) can then be found by
applying the above lemma. First, by setting h in Equation 4.4 to be the constant
function returning the value 1 and substituting in the Kolmogorov forward equation
for d

dtp(x,z; t) we get

d

dt
p(z; t) =

∑
x

d

dt
p(x,z; t)

=
∑

x

[∑
z′,z 6=z′

qx
Z(z′,z)p(x,z′; t) +

∑
x′ 6=x

qzX(x′,x)p(x′,z; t)

−

 ∑
z′,z 6=z′

qx
Z(z,z′) +

∑
x′ 6=x

qzX(x,x′)

p(x,z; t)]

=
∑

z′,z 6=z′

[
E
[
qX
Z (z′,z) | z′; t

]
p(z′; t)

]
−p(z; t)

∑
z′,z 6=z′

E
[
qX
Z (z,z′) | z; t

]
(4.5)

Note that the terms corresponding to the population transitions that do not have a
direct effect on the mode variable cancel in the above expression. The conditional
expectations E

[
qX
Z (z,z′) | z; t

]
can be considered via Taylor expansion around the con-

ditional mean, E[X(t) | z; t]. Let us denote the said conditional mean by µ(z, t) and
note that it is a vector in Rn and thus define µi(z, t) as the i-th variable. The expansion
up to the second order moments then gives us the following.

E
[
qX
Z (z,z′) | z; t

]
≈ qµ(z,t)

Z (z,z′)+

1
2

n∑
i,j=1

∂2q
µ(z,t)
Z (z,z′)
∂Xi∂Xj

E [(Xi−µi(z, t))(Xj−µj(z, t)) | z; t]

The term E [(Xi−µi(z, t))(Xj−µj(z, t)) | z; t] is the conditional covariance of the pop-
ulation variables Xi and Xj . We are going to denote this quantity by cij(z, t). In
particular,

E
[
qX
Z (z,z′) | z; t

]
= q

µ(z,t)
Z (z,z′) + 1

2

n∑
i,j=1

∂2q
µ(z,t)
Z (z,z′)
∂Xi∂Xj

cij(z, t)

It is worth noting that the above expansion is exact if the infinitesimal rates qX
Z (z,z′) are

at most quadratic in the population variables. This results from the partial derivatives
∂3

∂XiXjXk
for any i, j and k vanishing.

62 Chapter 4. Approximations for mode-switching dynamics

Example 19. The running example considered throughout this chapter is special in
the sense that the transition rates for the population variables depend linearly on the
population variables leading to the following.

E
[
qX
Z (z,z′) | z; t

]
= q

µ(z,t)
Z (z,z′) (4.6)

That is, the expected rate at which the mode-switching happens only depends on the
expectation of the population state. The second aspect of the example that greatly sim-
plifies the problem is that the mode-switching is unidirectional and thus the transitions
into mode Z = 0 are associated with rate 0. Putting this into Equations 4.5 gives us

d

dt
p(z = 0; t) =−p(z = 0; t)µ4(0, t)rs (4.7)

The evolution p(z = 1; t) is given symmetrically by

d

dt
p(z = 1; t) = p(z = 0; t)µ4(0, t)rs

In general, the derived equations for the probability distribution of the mode-
switching process depend on conditional means. For example, the expressions for
d
dtp(z; t) in the running example depend on conditional mean µ4(0, t). To acquire an
expression for this mean we again leverage Lemma 1 by setting h : X 7→Xi. This is a
slight abuse of notation where the test-function h is thought to map the state of the
population variable X(t) = (X1(t), · · · ,Xn(t)) to a vector that takes the value of Xi(t)
in its i-th component and is 0 otherwise. Throughout the derivations that follow we
are going to use another similar shorthand where for any state x = (x1, · · · ,xn) we use
xi to denote the vector that has the value xi on its i-th component and is 0 otherwise.
With that in mind we get the following

d

dt
µ(z, t)p(z; t) =

∑
x
xi
d

dt
p(x,z; t) =

∑
z′,z′ 6=z

E
[
Xi(t)qX

Z (z′,z) | z′; t
]
p(z′; t)

−p(z; t)
∑

z′,z′ 6=z
E
[
Xi(t)qX

Z (z,z′) | z; t
]

+p(z; t)E
[∑

x
xiq

z
X(X(t),x) | z; t

]

4.3. Approximations 63

It is then useful to rewrite the last summand in the following way:

E
[∑

x
xiq

z
X(X(t),x) | Z(t) = z

]

= E

 ∑
x 6=X(t)

xiq
z
X(X(t),x) +Xi(t)qzX(X(t),X(t)) | z; t


= E

 ∑
x 6=X(t)

xiq
z
X(X(t),x)−

∑
x 6=X(t)

Xi(t)qzX(X(t),x) | z; t


= E

 ∑
x 6=X(t)

(xi−Xi(t))qzX(X(t),x) | z; t


Notice that although the sum above runs over all possible states of the population
variable X(t), in our case only a small number of transitions will have a non-zero
rate associated with them, namely the ones reachable via an update vector in the
corresponding pCTMC. Thus letting viτ denote the change induced by transition τ in
the variable Xi (again viτ is really a vector that is only non-zero in the i-th position)
gives us

E
[∑

x 6=X(t)
(xi−Xi(t))qzX(X(t),x) | z; t

]

= E

∑
τ∈Tz

(Xi(t) +viτ −Xi(t))rτ (X(t)) | z; t

= E

∑
τ∈Tz

viτrτ (X(t)) | z; t


To illustrate this derivation and make it specific let us consider again the running
example.

Example 20. By the above discussion we can evaluate the following derivative condi-
tional on Z(t) = 0.

d

dt
µi(0, t)p(z = 0; t) = p(z = 0; t)

(
−E

[
Xi(t)qX

Z (0,1) | z = 0; t
]

+E

∑
τ∈T0

viτrτ (X(t)) | z = 0; t

)

As before we are going to Taylor expand the parts involving expectations around the
conditional means and use the observation given by Equation 4.6.

E
[
Xi(t)qX

Z (0,1) | z = 0; t
]

= µi(0, t)µ4(0, t)rs+ rsci4(0, t)

Finally, again making use of the fact that the transitions depend linearly on the popu-
lation variables we can write down the equation corresponding to the evolution of the

64 Chapter 4. Approximations for mode-switching dynamics

conditional mean at location (0,1) as

d

dt
µ1(0, t)p(z = 0; t)

= p(z = 0; t)
[
µ1(0, t)µ4(0, t)rs+ rsc14(0, t) + 1

2µ2(0, t)rm−µ1(0, t)rm

]

Finally, this gives

p(z = 0; t) d
dt
µ1(0, t) = p(z = 0; t)

[
− rsc14(0, t) + 1

2µ2(0, t)rm−µ1(0, t)rm
]

Similar equations can be written down for the rest of the first order conditional moments
and can be found in Appendix B.2.

Next let us consider the higher order moments. That is for non-negative integers i1, · · · in
consider h : X(t) 7→

∏n
k=1(µk(z, t)−Xk(t))ik in Lemma 1 to get the equations for the

higher order conditional moments centred around the conditional mean µ(z, t).

d

dt
ci1···in(z, t)p(z; t)

=
∑

z′,z′ 6=z
E
[
qX
Z (z′,z)

n∏
k=1

(µk(z, t)−Xk(t))ik | z′; t
]
p(z′; t)

−p(z; t)
∑

z′,z′ 6=z
E
[
qX
Z (z,z′)

n∏
k=1

(µk(z, t)−Xk(t))ik | z; t
]

−p(z; t)E
[∑

x 6=X(t)
qzX(X(t),x)

n∏
k=1

(µk(z, t)−xk)ik

−
∑

x 6=X(t)
qzX(X(t),x)

n∏
k=1

(µk(z, t)−Xk(t))ik | z; t
]

As before the sums over values that the population variable X(t) can take are deter-
mined by the transitions τ ∈ Tz in the pCTMC corresponding to the state of the mode
variable. In particular,

E
[∑

x 6=X
qzX(X,x)

n∏
k=1

(µk(z, t)−xk)ik −
∑

x 6=X
qzX(X,x)

n∏
k=1

(µk(z, t)−Xk(t))ik | Z(t) = z

]

= E
[∑
τ∈Tz

rτ (X)
n∏
k=1

(µk(z, t)−Xk(t) +vkτ)ik −
∑
τ∈Tz

rτ (X)
n∏
k=1

(µk(z, t)−Xk(t))ik | z; t
]

Example 21. Again for the running example let us give an example of deriving the
evolution equation for the second order moments given Z(t) = 0. The covariance c14(0, t)

4.3. Approximations 65

is, for example given by
d

dt
c14(0, t)p(z = 0; t) =−p(z = 0; t)E

[
X4(t)rs

(
X1(t)X4(t)−X1(t)µ4(0, t)

−X4(t)µ1(0, t) +µ1(0, t)µ4(0, t)
)
| z = 0; t

]
−p(z = 0; t)E

[
rm
(
−0.5X1(t)X3(t) +X1(t)X4(t)

−X1(t)µ4(0, t)−0.5X2(t)X4(t) + 0.5X2(t)µ4(0, t)

+ 0.5X3(t)µ1(0, t)−X4(t)µ1(0, t)
)
| z = 0; t

]
Taking the Taylor expansion of the expectations leads to the following expression.

d

dt
c14(0, t)p(z = 0; t) =−p(z = 0; t)

[
rsµ4(0, t)c14(0, t) + 1

2rsc441(0, t)
]

−p(z = 0; t)
[
−1

2rmc13(0, t) + rmc14(0, t)− 1
2rmc24(0, t)

]
Finally we can give the evolution equation, as done in [65], in the following form.

p(z = 0; t) d
dt
c14(0, t) =−p(z = 0; t)

[
rsµ4(0, t)c14(0, t) + 1

2rsc441(0, t)
]

−p(z = 0; t)
[
−1

2rmc13(0, t) + rmc14(0, t)− 1
2rmc24(0, t)

]
+p(z = 0; t)rsµ4(0, t)c14(0, t)

≈−p(z = 0; t)
[
−1

2rmc13(0, t) + rmc14(0, t)− 1
2rmc24(0, t)

]
Notice that the above equation is not closed but depends on the third order moment. A
close set of moment equations together with the constraint

p(z = 0; t) +p(z = 1; t) = 1

results in a differential algebraic system (DAE). Rather than deriving the equations by
hand we rely on the CERENA toolbox for Matlab [80].

However, the method of conditional moments presents us with the difficulty of
finding initial conditions for the arising DAE. Even for the example above, this is not
trivial [102]. For example, a numerical solver, like Sundial IDAS [73], first requires
the problem first to be reduced to an ODE system by repeatedly differentiating the
algebraic equations with respect to the free variable. In addition one needs to provide
initial conditions:

p(z;0) d
dtp(z; t)|t=0

µ(z,0) d
dtµ(z, t)|t=0

cij(z,0) d
dtcij(z, t)|t=0

where in the case of p(z;0) = 0 the derivatives for moments are not readily available. A
detailed treatment of such structures in the context of biochemical processes is given
in [65].

66 Chapter 4. Approximations for mode-switching dynamics

4.4 Results

In this section we present the simulation results for the methods in the case of the run-
ning example with the population N = 100 in the finite time interval [0,10]. In addition
we present the execution times for the tested implementations of the methods. In par-
ticular, we are going to consider simulated trajectories of the hybrid fluid and linear
noise as well as the method of conditional moments. The hybrid fluid approximation for
the running example is given by Equation 4.1. Similarly, the noise processes detailing
the fluctuations around the fluid approximation are given by Equations 4.2 and 4.3.
The equations for the method of conditional moments are given in Appendix B.2.

Recall that the hybrid fluid and noise approximations consist of a continuous state
process coupled with a discrete jump process. In order to simulate such processes we
have used the comprehensive DifferentialEquations.jl package for Julia programming lan-
guage. The package supports setting up and simulating ODEs and stochastic differen-
tial equations (SDEs) coupled with jump transitions with time-varying rates. We have
utilised the packaged solver methods for simulations. In particular, the SDEs arising
from the hybrid noise approximation were solved using the discrete time-step Euler-
Heun method with time-step dt = 0.01. Similarly, the packaged stochastic simulation
algorithm is used for simulating the continuous time Markov chains. The conditional
moment closure example is constructed and simulated using the CERENA toolbox for
Matlab [80]. In all cases the models are translated into chemical reaction networks to
make use of the existing implementations.

As we can see from Table 4.1 the direct simulations of the resulting hybrid approx-
imations for population size N = 100 do not actually give us a reduction in simulation
times over simulating the complete pCTMC. As mentioned this is due to the mode
switches being defined with continuously varying rates making the simulation ineffi-
cient. Note however that increasing the population size would increase the size of the
discrete state space and thus the simulation time required by SSA. This is not the case
for the hybrid fluid and hybrid noise approximations where the population parameter
only affects the dynamics of the system but does not have a direct effect on the com-
plexity of the resulting simulation. The moment closure based method on the other
hand offers good speed-up. It has to be noted though that much of the computational
burden in the case of the moment-based method is in the symbolic construction of
the DAE system. Even for this simple example, with only 4 population variables, the
construction of the DAE system took approximately 3 minutes. On the other hand this
is a one-off cost and negligible when conducting studies where characterisation of the
dynamics under a large number of different parametrisations is needed.

Figure 4.2 shows the visual comparison of the accuracy of the methods for the

4.4. Results 67

running example with population size 100. All considered methods result in a good
agreement with the stochastic simulation. The high accuracy stems from the random
effects from mode-switching dominating the fluctuations in the population behaviour.
For example, not much accuracy is lost by moving to the hybrid fluid description where
the fluctuations in the population behaviour are not considered.

Table 4.1: Comparison of simulation times of 5000 trajectories for the running example
(seconds).

Population size N Hybrid fluid Hybrid noise MCM SSA

100 492.5 50.2 0.0073 5.3

0 2 4 6 8 10

Time

0

20

40

60

80

100

P
op

u
la

ti
on

at
a

gi
ve

n
lo

ca
ti

on

Location (1, 1)

Location (2, 2)

Stochastic simulation

Hybrid fluid approximation

(a) Hybrid fluid approximation simulation.

0 2 4 6 8 10

Time

0

20

40

60

80

100

P
op

u
la

ti
on

at
a

gi
ve

n
lo

ca
ti

on

Location (1, 1)

Location (2, 2)

Stochastic simulation

Hybrid noise approximation

(b) Hybrid linear noise approximation simula-
tion.

0 2 4 6 8 10

Time

0

20

40

60

80

100

P
op

u
la

ti
on

at
a

gi
ve

n
lo

ca
ti

on

Location (1, 1)

Location (2, 2)

Stochastic simulation

Conditional moments

(c) Method of conditional moments.

Figure 4.2: Comparison of population measures at locations (1,1) and (2,2). Graphs
show the intervals for one standard deviation above and below the mean.

68 Chapter 4. Approximations for mode-switching dynamics

4.5 Conclusion

In this chapter we defined mode-switching population models. These models are mo-
tivated by incorporating broadcast communication into the models of collectives. We
then applied methods that have been developed for the analysis of models where the
population variables can be partitioned into two sets, one corresponding to high-copy
and the other for low-copy number components. Note however that such partitioning
is not in general possible for population model incorporating broadcast. Instead we
proposed an alternative method for partitioning of the pCTMC state space which is
based on the “magnitudes” of transitions. The idea was to consider pCTMCs for which
we can identify disjoint subsets of the state space and two types of transitions.

• Population transitions: the state of the population before and after the transition
stays in the same subset of the state space. These transitions were assumed to
satisfy scaling conditions for the construction of the continuous part of the hybrid
fluid and linear noise approximations.

• Mode switches: the state of the population after the transition occupies a different
subset of the state space. Mode-switching process Z was constructed so that each
state of Z indicates whether a certain mode switch has happened or not. The
process Z corresponded to the discrete process in the constructed approximations.

We concluded the chapter with a brief execution time analysis which underlined the
computational challenges when applying the demonstrated methods. In the next chap-
ter we are going to address the problem that although the hybrid fluid and linear noise
approximation give excellent accuracy for the transient evolution of the running exam-
ple they are, for small populations, computationally worse than simulating the original
chain.

Finally, it is worth mentioning here that computational challenges are not the only
hindrances in the application of the presented methods. From a practical perspective,
for example, in the case of the method of conditional moments, we also ran into prob-
lems with the available software implementation in the package CERENA [80] which
had many bugs making the reliable implementation of more complex models than the
examples packaged with the tool, infeasible. Examples include ignoring arithmetic op-
erations in propensity definitions of reactions without error notifications and problems
with occasional and hard to spot incorrect initialisations of DAE systems.

Chapter 5

Heuristic marginalisation based
computational strategies

In Chapter 4 we concentrated on principled approximations to mode-switching popula-
tion processes. Such processes arise when considering information propagation through
broadcast communication. The main idea was to consider stochastic systems where
existing hybrid methods based on fluid, linear noise and moment closure approxima-
tions can be applied. However, as seen in Section 4.4, these the approximations are not
trivial to consider computationally via direct simulation or, in the case of conditional
moment closure, solving the underlying differential algebraic system of equations. In
this chapter we consider explicit constructions that avoid stochastic simulation of the
arising hybrid fluid and linear noise processes. Similarly, in the case of the constructed
systems of moment equations we are going to propose an additional approximation that
allows us to solve an ODE system rather than the more complex differential algebraic
system. Throughout the chapter we are going to refer to the running example of Chap-
ter 4 in order to exemplify the constructions. To begin we are going to present a recap
of the model here.

Example 22. As presented in Example 12 the running example features a simple swarm
foraging scenario where the dynamics of the robot population can be split into two modes
— a random walk on a graph structure shown with 4 nodes, and a directed walk towards
the node designated as the target location. The graph structure and the behaviours of
individual robots in the swarm are illustrated in Figure 5.1. The switch between those
two modes happens via a transition corresponding to a robot at (1,1) detecting it as
the target location and broadcasting this information to the rest of the swarm. Recall
that this results in a single robot in the swarm being able to change the dynamics of the
population. In Chapter 4 we constructed the hybrid fluid, linear noise and conditional
moment closure approximation for this example. In this chapter the resulting models

69

70 Chapter 5. Heuristic marginalisation based computational strategies

(0,0)

(0,1)

(1,0)

(1,1) B

1
2rm rm

1
2rm

1
2rm

rm 1
2rm

rs

(a) Before broadcast – random walk

(0,0)

(0,1)

(1,0)

(1,1) B

rm

rm

rm

(b) After broadcast – directed walk

Figure 5.1: Behaviour of individuals in the swarm model with 4 locations. The state
labelled B corresponds to the individual having detected a target and broadcast it to
the rest of the swarm. The parameters rm, rs give the movement rate between locations,
sensing rate and probability of detecting the location (1,1) as the target, respectively.

will be used to illustrate the discussion on computational treatment of the constructed
approximations. The model in the example is considered for a fixed parametrisation
rm = 1.0 and rs = 0.2. Later, in the results section of the chapter, we are going to
consider random parametrisations of rm and rs to gain a better understanding of how
the constructed approximations perform.

5.1 Marginal dynamics

We continue to use the notation (X,Z), that was set up in Chapter 4, to denote the
scaled mode-switching population system. Observe that, in many cases, we are inter-
ested in the macro-level behaviour of the marginal process X. This is the case, for
instance, if the success or failure of the swarm in Example 22 can be defined through
temporal behaviour of the population densities at the four locations. The naive ap-
proach to study such behaviour would be to marginalise out the effects of the switching
process Z. The difficulties arise from the fact that although the joint process (X,Z)
as well as the conditional processes X | Z and Z |X are Markov processes, this is no
longer the case with the marginal processes X and Z. For example, the transition rates
of the marginal process X at time t will depend on the history of the process X up to
time t. In the following we are going to denote a sample path defining an instance of
such history by xt− and the state of the history at time t by xt. We first note that
the change in probability density of the marginal process being in state x at time t

5.1. Marginal dynamics 71

conditional on the process history xs− is given by

∂

∂t
p(x; t | xs−) = ∂

∂t

∑
z′

p(x,z′; t | xs−)

= ∂

∂t

∑
z

∑
z′

p(x,z′; t | z,xs−)p(z;s | xs−)

That is, we consider the joint densities

p(x,z′; t∩z;s | xs−) = p(x,z′; t | z,xs−)p(z;s | xs−)

and marginalise out the mode-switching process Z. As the joint process (X,Z) is
Markov by construction the whole history xs− in the density p(x,z′; t | z,xs−) is re-
dundant and only the state xs is needed. From there, substituting in the Kolmogorov
forward equation for the underlying CTMC gives us the following expression for the
time-evolution of the conditional probability distribution of the marginal process X.

∂

∂t
p(x; t | xs−) = ∂

∂t

∑
z

p(z;s | xs−)
∑
z′

p(x,z′; t | xs,z;s)

=
∑
z

p(z;s | xs−)
∑
z′

[∑
x′
p(x′,z′; t | xs,z;s)qz

′
X(x′,x)+

∑
k

p(x,k; t | xs,z;s)qx
Z(k,z′)

]

The term p(x′,z′; t | xs,z;s) in the above expression denotes the probability that the
joint process (X,Z) takes the value (x′,z′) at time t, given it takes the value (xs,z)
at time s ≤ t. Analogous meaning is also used for the marginal probabilities p(x; t |
xs−) and p(z;s | xs−). Evaluating the above expression at time t = s, we can find
the time and history-dependent intensities for the marginal process X. Note that the
terms corresponding to jumps in the process Z vanish as they do not change the state
of the population process X directly but only through the effect the mode-switching
component Z of the process has on the transition rates of X. Thus we get

qX(xs,x) = ∂

∂t
p(x; t | xs− ;s)

∣∣∣
t=s

= EZ(s)|xs−

[
qZX(xs,x)

]
(5.1)

The above characterises the marginal process X in terms of the conditional distribution
of Z up to some sample path xt− of X.

d

dt
p(x; t | xt− ; t) = EZ(t)|xt−

[
qZX(xt,x)

]
(5.2)

As pointed out at the start of this section, the above equation describing the future
behaviour of the marginal process X at time t, depends on the history of the process up
to time t. Thus, in order to understand the marginal process X we have to reconstruct

72 Chapter 5. Heuristic marginalisation based computational strategies

the stochastic process Z at time t from a sample trajectory xt− of the population
process X. We use the notation

πt(z′) = p(z′; t | xt−)

to denote the probability of Z = z′ given a sample trajectory xt− . Following [28] we
can derive the evolution equation for the distribution πt(z′) in terms of the marginal
process X. We are going to follow the established terminology and call the distribution
πt(z′) a filtering distribution [101]. Construction of a useful approximate description
of the marginal process X thus relies on the problem of finding a sufficiently simple
description of the filtering distribution.

Note that the sample trajectory xt− is piecewise constant (and discontinuous) and
thus the time derivative p(z′; t | xt−) has discontinuities whenever xt− jumps. Thus,
the filtering distribution πt(z′) involves two processes: continuous evolution as long as
xt− is constant and discontinuous jumps whenever xt− jumps. The following evolution
equation is going to describe the continuous change in the filtering distribution at time
t given the state of the history at time t is xt = x.

d

dt
πt(z′) =

∑
z

πt(z)qx
Z(z,z′)−πt(z′)

[
qz
′

X(x,x)−Eπt
[
qZX(x,x)

]]
(5.3)

The first part,
∑
z πt(z)qx

Z(z,z′), can be recognised as the Kolmogorov forward equation
for the marginal mode-switching process Z consisting of transition that only change
the state of Z. The second part of the equation contains the information gained from
observing the trajectory xt− . The contributions of this part are more significant for
the states z′ that are not too unlikely given the trajectory xt− (that is, πt(z′) not too
small) and for which the flow out of state x differs from the expected flow out of x with
respect to the filtering distribution. That is, we gain information about the state of Z
from observing the trajectory of X due to the fact that the dynamics of X depend on
Z. If the process X jumps at time t then the filtering distribution straight after the
jump is given by

πt+(z′) = πt−(z′)qz′X(xt−,xt+)∑
z πt−(z)qzX(xt−,xt+) (5.4)

where xt− and xt+ denote the state of trajectory xt− before and after the jump respec-
tively. The trivial example of the filtering distribution happens when the dynamics of
the population variable X do not depend on the mode-switching process Z. In this case
the filtering distribution simply corresponds to the time-inhomogeneous CTMC given
by πt(z) =

∑
z πt(z)qxt

Z (z,z′). The above characterisation of the filtering distribution is
going to serve as the starting point for the approximations considered in this chapter.
The derivation of the above follows [28] exactly and is not recreated. However, the

5.2. Time-inhomogeneous Markov process 73

same idea is used to derive a filtering distribution for the hybrid fluid approximation
in Appendix C. Note that it would be equally valid to construct a filtering equation
for the process X given a history of Z. The choice made here to construct the filtering
equation for Z up to history of X is done based on Z being a comparatively simpler
process.

5.2 Time-inhomogeneous Markov process

The structure of the derived filtering equation is in general too complex to consider
directly [28]. In this section we are going to propose heuristic simplifications of the
problem that allow us to construct approximations to the marginal population dynam-
ics of process X. We start off by setting up the simplifications from the point of view
of the complete mode-switching population process (X,Z) defined in Section 4.2. The
constructions are then carried over to fluid, linear noise and moment closure approxi-
mations with minor modifications.

5.2.1 Filtering heuristics

The heuristics for the approximations presented in this chapter are going to rely on
observations about the following term in Equation 5.3.

πt(z′)
[
qz
′

X(x,x)−Eπt
[
qZX(x,x)

]]
Intuitively, this part accounts for the information gained by observing a sample trajec-
tory of X up to time t. Note that the above quantity is “small” if the transition rates
given the state of the mode-switching process z′ deviate little from the expected rates
with respect to the filtering distribution — qz

′
X(x,x)≈ Eπt

[
qZX(x,x)

]
. Intuitively, if the

population dynamics in different modes are not very different the observation contains
less information about the filtering distribution. For example, if the process X is statis-
tically independent of the process Z then we have the equality qz′X(x,x) =Eπt

[
qZX(x,x)

]
.

Similarly, we can consider the case where the first part of the evolution equation, Equa-
tion 5.3, dominates the contribution from the observations:

∑
z

πt(z)qx
Z(z,z′)� πt(z′)

[
qz
′

X(x,x)−Eπt
[
qZX(x,x)

]]
(5.5)

In either of these cases an approximation heuristic we can study is to ignore the addi-
tional information the history xt− gives us about the process Z and assume that the
Kolmogorov forward equation part of Equation 5.3 tells us everything about the evolu-
tion of the distribution of Z at time t given the history xt− . This allows us to treat the

74 Chapter 5. Heuristic marginalisation based computational strategies

continuous evolution of the filtering distribution as a time-inhomogeneous continuous
time Markov chain. Thus we get

d

dt
πt(z′) =

∑
z

πt(z)qx
Z(z,z′)

Similarly, we need to consider the discrete evolution of the filtering distribution. Again,
if Equation 5.5 holds then the filtering distribution before the jump in xt− is approx-
imately equal to the filtering distribution after the jump. This simplified form of the
filtering distribution is going to be used later in conjunction with fluid, linear noise and
moment-based approximations to construct an approximation to the mode-switching
system.

For the last part of this section we consider the situation where we have constructed
the distribution of the marginal process Z at time t. Suppose that this is enough to
describe the future behaviour of the marginal process X. In particular, we assume that
all memory effects are expressed through the marginal process Z at time t.

d

dt
p(x′; t | x; t)≈ EZ

[
qZX(x,x′)

]
(5.6)

That is, up to knowing the marginal distribution Z at time t, we treat the future
evolution of the marginal process X approximately as a time-inhomogeneous Markov
process. At this point it is important to remember that this construction is not valid for
the memory-dependent marginal processes considered in this thesis and in particular
the running example (Example 12) from Chapter 4. In the following example, however,
we are going to consider the above discussion in the case of the running example in
order to motivate further study of this simplification.

Example 23. Consider the approximate marginal evolution of the running example in
the time interval [0,T] assuming the distribution of Z at every point in the interval is
known. We can simulate this situation by performing stochastic simulation on the full
model (X,Z) to find the distribution of Z empirically. Given the empirical distribu-
tion we can simulate the time-inhomogeneous Markov process given by Equation 5.6.
One standard deviation above and below the mean for the population measures corre-
sponding to the locations (1,1) and (2,2) resulting from 1000 simulation runs of the
time-inhomogeneous process and the same statistics for the full mode-switching popula-
tion process simulated for 5000 runs are given for reference in Figure 5.2. The smaller
set of runs for the inhomogeneous process was chosen due to practical considerations
— even though the inhomogeneous model features a smaller state space it is computa-
tionally much more inefficient to simulate due to continuously varying rates.

Expectedly, the constructed time-inhomogeneous chain in Example 23 underestimates
the variance. This is due to the loss of information resulting from approximating the

5.3. Fluid approximation 75

0 2 4 6 8 10
Time

0

20

40

60

80

100

P
op

ul
at

io
n

at
a

gi
ve

n
lo

ca
ti

on
Location (1, 1)

Location (2, 2)

Original mode-switching process

Time-inhomogeneous approximation

Figure 5.2: Visual comparison of the time-inhomogeneous process constructed given the
knowledge of the mode-switching distribution for the running example and the original
mode-switching population process. Each maching pair of lines (e.g. dashed orange,
solid blue) shows one standard deviation above and below the mean. The mean itself
is not shown.

non-Markovian marginal process X with a process that, although time-inhomogeneous,
is Markovian. However, as a lower bound estimate for the population behaviour the
approximate time-inhomogeneous process does capture the mode-switching population
dynamics in a reasonably good manner and warrants further study. As noted in Ex-
ample 23 the simulation of the arising time-inhomogeneous processes is very inefficient
due to continuously changing rate parameters. The construction, however, does provide
some insight on how to take this forward. In particular, in the next section we look at
combining the arguments made in this section about the filtering distribution with the
results for hybrid fluid, linear noise and moment closure approximations in Chapter 4
in order to achieve a computationally efficient approximation.

5.3 Fluid approximation

In this section we will demonstrate the computational approaches based on the hybrid
fluid approximation to the scaled mode-switching process (X̂, Ẑ). In particular, let us
denote the limit PDMP constructed in Section 4.3.1 by (x̂, Ẑ). In the same way as
done for the process (X,Z) previously in Section 5.1 we consider the marginal process
x̂(t) given a sample trajectory xt− . Denoting the limit drift vector of the process x̂(t)
given the state of the mode-switching process is Ẑ(t) = z as Fz and the i-th component

76 Chapter 5. Heuristic marginalisation based computational strategies

of the vector as Fz
i we get

∂

∂t
p(x; t | xs− ;s) = ∂

∂t

∑
z

p(z;s | xs− ;s)
∑
z′

p(x,z′; t | xs,z;s)

=
∑
z

p(z;s | xs− ;s)
∑
z′

[
−
∑
i

∂iFz′
i (x)p(x,z′; t | xs,z;s)

+
∑
k

[
p(x,k; t | xs,z;s)qx

Z(k,z′)
]

where p(x,z′; t | xs,z;s) denotes the probability that the joint process (x̂, Ẑ) takes the
value (x,z′) at time t and the value (xs,z) at time s ≤ t. The above makes use of
the characterisation of the Kolmogorov forward equation for the transition density of
a stochastic hybrid systems which we briefly introduced in the background chapter,
Chapter 2. For full details see [12]. In particular, the expression depends on the
continuous evolution given by the limit drifts Fz and discrete jumps of the mode-
switching process. As in the previous section we use the fact that, according to the
construction of the mode-switching population systems in Definition 7, the discrete
jumps do not have a direct effect on the state of the population variables. Thus,
evaluated at t = s, we get the following time-evolution of the marginal process where
the contribution from the discrete jumps vanishes.

d

dt
p(x; t | xt−) = EẐ|xt−

[
−
∑
i

∂iFẐ
i (x)

]
Again we are going to consider the filtering distribution

πt(z′) = p(z′; t | xt−)

corresponding to the probability of Ẑ = z′ given the observed history xt− of the popula-
tion process x̂. Note that the sample paths of the population process x̂ are continuous.
Thus the filtering distribution can be shown to be

d

dt
πt(z′) =

∑
z

πt(z)qx
Ẑ

(z,z′)−πt(z′)
[∑

i

∂iFz′
i (x)−EẐ|xt−

[∑
i

∂iFẐ
i (x)

]]
where the first part of the equation can be recognised as the Kolmogorov forward equa-
tion for the marginal process Ẑ and the second part corresponds to the contribution
from observing the history xt− . The derivation of the filtering distribution follows
analogously to the one given for CTMCs in [28] and is given for completeness in Ap-
pendix C. As suggested in the previous section we are going to, as the first order
heuristic for deriving approximate dynamics, consider the following approximations.

d

dt
πt(z′)≈

∑
z

πt(z)qx
Ẑ

(z,z′) (5.7)

d

dt
p(x; t)≈ EẐ

[
−
∑
i

∂iFẐ
i (x)

]
(5.8)

5.3. Fluid approximation 77

Recall here that the only source of stochasticity that was left in the PDMP approxi-
mation of the mode-switching population process resulted from the jump process de-
scribing the mode-switching. However, in general this does not make the marginal
process x̂ or even the conditional distribution x̂(t) given the history xt− deterministic.
The stochasticity introduced by the mode-switching process Ẑ is still present in the
marginal process x̂. However, up to knowing the distribution Ẑ Equation 5.8 describes
a deterministic system with the time-derivative given by

d

dt
x̂(t) = EẐ

[
FẐ(x̂(t))

]
(5.9)

The question then is how to combine Equations 5.7 and 5.8 to construct an approxi-
mation to the marginal process x̂.

5.3.1 Direct coupling

The first approach we are going to consider for solving the system given in Equation 5.9
is to directly couple the approximate filtering distribution

d

dt
πt(z′) =

∑
z

πt(z)qx
Ẑ

(z,z′)

with the approximation of the deterministic drift given by

d

dt
x̂(t) = EẐ

[
FẐ(x̂(t))

]
=
∑
z

πt(z)Fz(x̂(t))

This is done by setting d
dtπt(z

′) =
∑
z πt(z)q

x̂(t)
Ẑ

(z,z′). If the number of modes is not
too large this can easily be solved as a system of ODEs.

Example 24. The running example features a single mode switch and thus we can
construct the following system of ODEs

d

dt
x̂(t) = πt(0)


rm(−x̂01(t) + 1

2 x̂00(t))
rm(−x̂00(t) + 1

2 x̂01(t) + 1
2 x̂10(t))

rm(−x̂10(t) + 1
2 x̂11(t) + 1

2 x̂00(t))
rm(−x̂11(t) + 1

2 x̂10(t))

+πt(1)


−rmx̂01(t)

rm(−x̂00(t) + x̂01(t))
rm(−x̂10(t) + x̂00(t))

rm(x̂10(t))


d

dt
πt(0) =−πt(0)rsx̂11(t)N

d

dt
πt(1) = πt(0)rsx̂11(t)N

where N is the chosen population size. According to the constructions presented in
Section 4.3.1 the jump rates of the mode-switching process depend on the population
size and accordingly we have linked the behaviour of the mode-switching process to a

78 Chapter 5. Heuristic marginalisation based computational strategies

0 1 2 3 4 5
Time

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y
Z

(t
)

=
1

Stochastic simulation

Direct coupling based approximation

Iterative approximation

(a) Comparison of empirical distribution for Z = 1 and the same distribution estimated from
the fluid approximation-based construction. The iterative method gives an improved estimate.

0 2 4 6 8
Time

0

25

50

75

100

P
op

ul
at

io
n

de
ns

it
y

at
a

gi
ve

n
lo

ca
ti

on

Location (1,1)(SSA)

Location (1,1)(Direct coupling)

Location (1,1)(Iterative)

Location (2,2)(SSA)

Location (2,2)(Direct coupling)

Location (2,2)(Iterative)

(b) Empirical means for the locations (0,0) and (1,1) from 5000 stochastic simulation runs and
the fluid approximation-based constructions. The results from the iterative construction closely
match the means of the stochastic simulation.

Figure 5.3: Fluid approximation directly coupled with the probability density for mode-
switching.

population level of interest N . In the following calculations we set N = 100. The above
system can then be solved using standard ODE solvers for initial conditions

x(0) = (0,1.0,0,0) πt(0) = 1 πt(1) = 0

and parameters rm = 1, rs = 0.2. Figure 5.3 gives a visual comparison of the resulting
solution with the mean from 5000 runs of the stochastic simulation.

5.3. Fluid approximation 79

0 1 n−1 n · · ·

Figure 5.4: Pure birth
process.

0 1

Figure 5.5: Stochastic
switch.

01 11 0n 1n · · ·

Figure 5.6: Pure birth
process from stochastic
switch.

5.3.2 Iterative method

The method in the previous section of directly coupling the equations for approximate
probability density for the marginal process Ẑ arising from the heuristic approximations
of the filtering equation gives a reasonably good estimate for the mean of the marginal
population process in the case of the running example. However, from Figure 5.3a
we can see that even for this simple example the method does not accurately capture
the mode-switching dynamics. In this section we present a slightly modified method
based on the hybrid fluid approximation that in the case of a certain class of models
allow us to more accurately capture the mean dynamics. In particular, we consider
mode-switching processes which do not branch.

Non-branching mode-switching processes

We consider non-branching mode-switching processes Ẑ, where from each state there
is at most one transition out. This will allow us to set up an iterative construction
presented in this section. Two examples of such processes are pure birth (or death)
processes depicted in Figure 5.4 and a stochastic switch given in Figure 5.5. As long as
there is no branching the mode-switching processes featuring loops, like the stochastic
switch given in Figure 5.5, can be treated equivalently to pure birth processes. In
particular, we can unroll the loops by considering the process describing how many
times a given state has been visited. Supposing the stochastic switch is initially in
state 0 we would then consider the process depicted in Figure 5.6

The key characteristic of such non-branching processes is that we can characterise
their behaviour in terms of a sequence of first hitting time problems. To see that, let
us give a standard definition of first hitting times.

Definition 12. Let ϕ be a continuously differentiable function on the space RK+1 (state
space of the process (X,Z)) with ϕ(X,Z)> 0. Let h denote the first hitting time given
by

h= inf{t | ϕ(X(t),Z(t))≤ 0}

80 Chapter 5. Heuristic marginalisation based computational strategies

With that in mind, if hn denotes the first hitting time corresponding to reaching
the state n of the pure birth process in Figure 5.4 then the probability of the process
Z being in state n at time t can be given by

p(z = n; t) = p(hn ≤ t,hn+1 > t)

This corresponds to the joint probability that the state n has been reached before time
t but the state n+ 1 has not. Similarly, conditioned on hn+1 > t we have for the pure
birth structure that

p(z = n; t | hn+1 > t) = p(hn ≤ t)

In the next section we are going to use these observations to iteratively construct the
mean dynamics from the hybrid fluid approximation (x̂, Ẑ) under the approximate fil-
tering distribution that discards the history of the population process for the calculation
of the future behaviour.

Construction of mean dynamics

We propose an iterative method for constructing the marginal dynamics of x̂ in a finite
time interval [0,T]. For a non-branching mode-switching process Ẑ let us consider a
sequence of first hitting times h1,h2, . . . ,hn, . . . corresponding to mode-switching times
into state 1,2, . . . ,n, . . . of Ẑ. As before we are going to leverage the approximate
dynamics given by

d

dt
πt(z′)≈

∑
z

πt(z)qx
Ẑ

(z,z′) (5.10)

d

dt
p(x; t)≈ EẐ

[
−
∑
i

∂iFẐ
i (x)

]
(5.11)

Recall that the sum inside the expectation operator is given over the components of
the limit drift vector FẐ given the state of Ẑ. As the structure of the mode-switching
process is assumed to be non-branching we can conclude that

d

dt
x̂(t)≈

∑
j

p(hj < t,hj+1 ≥ t)FẐ
j (x̂(t)) (5.12)

Note that the sum above is given over the states of Ẑ. The iterative construction
we propose relies on conditioning the behaviour of the population on a limited set of
behaviours of Ẑ up to some time t. In that case, we let Ẑit− denote the mode-switching
process that takes values up to state i within the time interval [0, t] and consider the
probability distribution

p(z′; t | Ẑit−)

5.3. Fluid approximation 81

We can then take the derivative with respect to t and consider the time evolution of
the above distribution given that the mode-switching process is contained within the
singleton set {0} defined by a non-random initial condition.

d

dt
p(z′; t | Ẑ0

t−) = d

dt

[∫
xt−

p(z′; t | xt− , Ẑ0
t− ; t)p(xt− | Ẑ0

t−)dxt−
]

=
∫

xt−

[
p(xt− | Ẑ0

t−) d
dt
p(z′; t | xt− , Ẑ0

t− ; t) +p(z′; t | xt− , Ẑ0
t− ; t) d

dt
p(xt− | Ẑ0

t−)
]
dxt−

The integral above is taken over all possible trajectories of x̂ up to time t. As we have
assumed that the mode-switching process does not leave the singleton set {0} the term
p(z′; t | x, Ẑ0

t− ; t) is only non-zero if z′ = 0. Furthermore, the term p(z′; t | xt− , Ẑ0
t− ; t)

corresponds to our heuristic simplification of the filtering equation which discards the
history of the population process and makes the additional assumption that the mode-
switching process Ẑ stays in state 0, denoted πt(z′ | Ẑ0

t−).

d

dt
p(z′ = 1; t | Ẑ0

t−) =
∫

xt−
p(xt− | Ẑ0

t−)
∑
z

πt(z′ | Ẑ0
t−)qx

Ẑ
(z,1)dxt−

= Ex̂|Ẑ0
t−

[
πt(z′ | Ẑ0

t−)qx
Ẑ

(0,1)
]

= Ex̂|Ẑ0
t−

[
qx
Ẑ

(0,1)
]

(5.13)

The above gives the initial step in our iterative construction as under the assumption
that the switching process stays in state 0 there is only one possible trajectory of x̂. In
order to illustrate it let us briefly consider again the running example.

Example 25. If the population at location (1,1), given the mode-switching process is
in state 0 at time t, is denoted as x0

11(t) we get

Ex̂|Ẑ0
t−

[
qx̂
Ẑ

(0,1)
]

= q
x̂0

11(t)
Ẑ

(0,1)

Conditioning the population dynamics on Ẑ0
t− we can easily find the population variable

x̂0
11(t) by solving the following system.

d

dt
x̂0(t) = F0(x̂0(t)) =


rm(−x̂01(t) + 1

2 x̂00(t))
rm(−x̂00(t) + 1

2 x̂01(t) + 1
2 x̂10(t))

rm(−x̂10(t) + 1
2 x̂11(t) + 1

2 x̂00(t))
rm(−x̂11(t) + 1

2 x̂10(t))


Let us consider the same non-random initial conditions and parametrisation as previ-
ously.

x̂(0) =
(
0 1 0 0

)T
Ẑ(0) = 0

Based on Equation 5.13 we can find the cumulative rate corresponding to the mode
switch to state 1 — or equivalently cumulative rate out of state 0. This is given by

Λ1(t) =
∫ t

0
Ex̂|Ẑ0

s−

[
qx
Ẑ

(0,1)
]
ds

82 Chapter 5. Heuristic marginalisation based computational strategies

0.0 2.5 5.0 7.5 10.0
Time

0.0

0.1

0.2

0.3

R
el

at
iv

e
er

ro
r

fo
r

lo
ca

ti
on

(1
,1

)

Iterative

Direct coupling

Figure 5.7: Relative error between the empirical mean for the location (1,1) from
5000 stochastic simulation runs and the iterative and direct coupling approximations
constructed from the hybrid fluid approximation of the running example.

From that the cumulative distribution function corresponding to the first hitting time
of state 1 of Ẑ is given by

p(h1 ≤ t) = 1−e−Λ1(t)

This is enough to construct an approximation of the marginal behaviour of the popu-
lation process x̂ conditioned on Ẑ1

t− . That is, for the system that does not leave the
mode-switching states {0,1} we get

d

dt
x̂(t) = p(z = 0; t)F0(x̂(t)) +p(z = 1; t)F1(x̂(t))

= p(h1 > t)F0(x̂(t)) +p(h1 ≤ t)F1(x̂(t))

The general construction up to the k-th mode-switch for populations where the mode-
switching process has the pure birth structure can then be given by

d

dt
x̂(t) =

k∑
i=1

p(hi ≤ t)Fi(x̂(t))

where the distribution p(hk ≤ t) is found by constructing the mode-switching process
up to the (k−1)-th mode giving rise to the iterative construction.

Λk(t) =
∫ t

0
Ex̂|Ẑk−1

s−

[
qx
Ẑ

(k−1,k)
]
ds

p(hk ≤ t) = 1−e−p(hk−1≤t)Λk(t)
(5.14)

Example 26. Based on the discussion in this section and the trajectories from Exam-
ple 25 we can calculate the distribution p(h1 ≤ t) and solve the system

d

dt
x̂(t) = p(h1 > t)F0(x̂(t)) +p(h1 ≤ t)F1(x̂(t))

5.4. Linear noise approximation 83

where we use F0 to denote the drift giving the random walk over the grid structure in the
running example and F1 corresponds to the drift towards the target. In Figure 5.7 we
give a comparison of the resulting probability distributions for Ẑ(t) = 1 and the relative
errors for the population measure of location (1,1) between the stochastic simulation
and the fluid approximation based iterative construction. The distribution for Ẑ(t) = 1
and relative errors from the direct coupling method in the previous section are given
for comparison. Note that for this simple example this approach gives a more accurate
representation of the distribution Ẑ(t) = 1. In addition the relative error, if discarding
the values near t= 0.0 due to numerical precision when population levels are low, is im-
proved. In particular, the maximum relative error is diminished and the error reaches
values near zero faster. Both of the relative error trajectories feature points where the
error becomes zero. These points occur when the constructed solutions cross the em-
pirical estimate. In addition, note that the relative error of approximations approaches
0 as time increases. This is due to the existance of the absorbing state of the system
where all robots have reached the target location. Similar behaviour can be expected for
systems with no absorbing state but a unique attracting equilibrium state.

5.4 Linear noise approximation

The direct coupling and iterative constructions given for the fluid approximation can
be extended straightforwardly to the hybrid noise approximation (X̃, Z̃) to a mode-
switching population system (X,Z). In the same way as for the hybrid fluid approxi-
mation let us first consider the marginal process X̃ at time t given a sample trajectory
xt− . Recalling the forward equation for jump diffusion processes given in Section 2.2
we get

∂

∂t
p(x; t | xs− ;s) = ∂

∂t

∑
z

p(z;s | xs− ;s)
∑
z′

p(x,z′; t | xs,z;s)

= EZ̃|xs−

[∑
z′

−
∑
i

∂iFz′
i (x)p(x,z′; t | xs,z;s)

+
∑
i

∑
j

∂i∂jGN
ij (x)p(x,z′; t | xs,z;s) +

∑
k

p(x,k; t | xs,z;s)qx
Z̃

(k,z′)
]

where GN is the diffusion matrix scaled by the term N−
1
2 resulting from Proposition 4.

As before, due to the discrete jumps of Z̃ not changing the state of population variables,

84 Chapter 5. Heuristic marginalisation based computational strategies

we get

d

dt
πt(z′; t)≈

∑
z

πt(z)qx
Z̃

(z,z′) (5.15)

d

dt
p(x; t)≈ EZ̃

−∑
i

∂iFZ̃
i (x) +

∑
i

∑
j

∂i∂jGN
ij (x))

 (5.16)

Similarly to the hybrid fluid case, this results in a process that essentially amounts
to a diffusion process with time-dependent coefficients. The time-dependence results
from the evolution of the mode-switching process. At each time t the drift and dif-
fusion coefficients are given in terms of expectation with respect to the state of the
mode-switching process at time t. As is the case with the time-inhomogeneous CTMC
approximation to the marginal dynamics considered in Section 5.2 we expect the ap-
proximation to lose accuracy around the mode-switching times, giving us a coarse lower
bound on the variance of the model. However, the dynamics of the linear noise based
approximation can be given in terms of a system of ODEs which can be numerically
solved. In addition, the same direct coupling and iterative constructions as before can
be easily applied by coupling the filtering distribution and the marginal dynamics of X̃
through the approximate mean of X̃.

Example 27. The mean dynamics of the hybrid linear noise-based approximations re-
main the same as constructed in the previous section for the hybrid fluid case. Figure 5.8
presents the comparison of the direct coupling-based and iterative approximations with
respect to the results of 5000 independent stochastic simulation runs. In particular,
Figure 5.8b presents the variance corresponding to the population densities for loca-
tion (1,1) in the time-interval [0.0,10.0]. Expectedly, around the mode-switching time
the linear noise based approximation underestimates the standard deviation around the
mean. This results from our heuristic simplification of the filtering equation in Sec-
tion 5.3. The differences in the mean behaviours as constructed by the two methods
produce the very small differences in the variance estimates.

5.5 Moment closure approximation

In Chapter 4 we derived evolution equations for conditional moments according to [65].
While the method has been demonstrated in [65, 81] to be a good approximation to
systems exhibiting bistable or multi-modal behaviour is does have problems associated
with it. Notably, finding a consistent initialisation of the resulting differential algebraic
system is in most cases difficult. In this section we are going to leverage the filtering
heuristic and construction from Section 5.2. In particular, recall that we constructed a
time-inhomogeneous CTMC approximation to the marginal population process X by

5.5. Moment closure approximation 85

0.0 2.5 5.0 7.5 10.0
Time

0

25

50

75

100

P
op

ul
at

io
n

de
ns

it
y

at
a

gi
ve

n
lo

ca
ti

on
Location (1,1)(Iterative)

Location (1,1)(Coupled)

Location (2,2)(Iterative)

Location (2,2)(Coupled)

(a) Comparison of constructed trajectories. Solid and dashed lines correspond to one standard
deviation around the mean for the iterative and direct coupling based constructions respectively.
The difference between the two sets of results is a consequence of the methods giving a different
estimate for the mean behaviour.

0 2 4 6 8 10
Time

0

5

10

15

20

S
ta

nd
ar

d
de

vi
at

io
n

fo
r

lo
ca

ti
on

(1
,1

)

Stochastic simulation

Iterative

Direct coupling

(b) Comparison of standard deviation corresponding to the population measure at location
(1,1). The LNA-based approximations and the empirical normal distribution from 5000 stochas-
tic simulation runs are shown. Both iterative and direct coupling methods give highly similar
estimates for the variance of the process.

Figure 5.8: Approximation of the running example based on hybrid linear noise.

discarding the dependence on the history and assuming that all memory effects are
expressed through the state of the marginal process Ẑ at time t.

d

dt
p(x; t | xt−)≈ d

dt
p(x; t | x; t) = EZ

[
qZX(x, x̂)

]
(5.17)

This allows us to consider the standard moment closure approximation, described in
Section 2.4.3, for the mode-switching population model as considering time-dependent
rates changes little in the derivations. From there we can again use the coupling and
iterative methods which were already considered for hybrid fluid and linear noise based

86 Chapter 5. Heuristic marginalisation based computational strategies

approximations.

Example 28. The rates of population transitions of the running example are all linearly
dependent on a single population variable. This means that the moments of each order
are going to only depend on the moments up to the said order and not on the higher
order moments. In particular, the first two moments, expectation and variance, of the
population variables are going to coincide with the appropriately scaled version of the
linear noise approximation.

5.6 Results

In this section we conduct an empirical analysis of presented direct coupling and itera-
tive constructions of mean dynamics. For evaluation the approximations are compared
against the empirical mean from 5000 stochastic simulations trajectories. This large
number of trajectories was chosen to get a reliable estimate for the mean and standard
deviation statistics. To demonstrate the extensibility and scalability of the presented
modelling and analysis ideas, we first introduce a larger model inspired by maze navi-
gation.

Example 29. This example considers a 4-by-4 grid with connections between nodes
constructed as shown in Figure 5.9. The mode transitions happen, as before, through
instantaneous broadcast communication when a robot navigating the structure reaches
(2,2) or (3,3) and detects them as targets with rate rs. We assume that the robot can
give the rest of the swarm enough information to reach its location. This splits the
dynamics of the collective into three modes. First we have a random walk on the graph
structure. Secondly we have a directed walk towards (2,2) with a random exploration of
the states (1,3),(2,2),(2,3),(3,2) and (3,3). Finally, there is the mode corresponding
to a directed walk towards location (3,3). Analogously to the running example the entire
swarm is assumed to start at location (0,0).

The maze navigation example presented above has an absorbing state corresponding
to all the robots being in location (3,3). For a contrast, the following provides an
example where there is no such absorbing state.

Example 30. The second example we are going to consider extends the running ex-
ample, set up in Example 22, with an additional mode switch. Recall that the initial
dynamic mode in this example is given by a random walk on the graph structure over
a 2-by-2 grid in Figure 5.1. We are going to consider the case where, from the second
mode describing a directed walk towards (1,1), the population dynamics can revert back
to the initial mode. After reverting to the initial random walk dynamics the dynamics

5.6. Results 87

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)(3,3)

(2,2)

Figure 5.9: Spatial structure of the maze example.

will no longer change. We are going to say that the change from the second mode, de-
fined by the directed walk towards (1,1), to the third mode, defined by the random walk,
is caused again by a broadcast action sent out by a robot at location (1,1) happening at
rate 0.1rs.

Let us consider the direct coupling and iterative methods for the two examples at 5
different population levels (100,200,300,500,1000). In order to study the behaviour of
the approximations under different parametrisations we consider, for each population
level, 50 parameter values for rm and rs that are randomly sampled from the interval
(0,1). Thus we consider 50 different models operating over the same graph structure,
and for each of these we consider five different population levels, giving 250 models in
total. The resulting approximations for the maze example are computed for the finite
time intervals [0,100.0]. For the 2-by-2 grid example with three modes we use the time
interval [0,100.0] for population levels (100,200,300) and the time interval [0,10.0] for
population levels (500,1000). The solutions were saved at 1000 equally space sample
points. The shorter time interval for larger populations was chosen to avoid missing
the mode-switching behaviour due to discrete sampling of the trajectories. The results
from the approximations then compared to the population measures acquired from 5000
stochastic simulation runs. For the implementation of the moment closure method we
are, for the purpose of this chapter, going to set all third and higher order moments
to zero [125]. For the two examples considered in this section we can scale the results
of the linear noise based approximation up appropriately so that it coincides with the
moment closure based approximation. This is due to the rates of all transitions in these
models being linearly dependent on a single population variable. These are analogous
to unimolecular reactions in biochemical modelling literature. For that reason we are
going to consider them together in this section.

Table 5.1 gives an overview of the mean computation times for Example 29 based
on the maze navigation example. The experiments were implemented using Differen-

88 Chapter 5. Heuristic marginalisation based computational strategies

tialEquations.jl package [109] for the Julia programming language and run in batches
corresponding to the population size. In each case the timings of the calculations for
first parametrisations were not considered as they include the just-in-time compilation
overhead of Julia. The implementations of the examples considered are made available
at [2]. The size of the ODE system that was solved is reported as the bottom row of
the table. For example, in the case of the approximation resulting from the hybrid
fluid approximation introduced in Section 4.3.1 we can see that an ODE for each loca-
tion plus three filtering equations are needed (one for each state of the mode-switching
process). In the case of the iterative method we need to consider two ODEs describing
the hitting time distributions for the two mode switches. However, extra computation
time results from having to repeat the numerical integration of the ODE systems for
each iteration in the iterative constuction. Finally, note that although in the exam-
ple considered in this section moment closure and linear noise result in the same set of
equations our current implementation based on [6] relies on a large number of instances
of symbolic differentiaton and substitution, using the SymEngine library [4], which for
the maze example led to a relatively large upfront cost in terms of computation time.
The current implementation for the three modes of the maze example takes about 45
minutes. This, however, is a one off cost and can hopefully be greatly optimised.

Table 5.1: Comparison of mean computation times for the maze example (seconds).
Model dynamics in the finite time interval [0,100.0] are considered.

Hybrid fluid Linear noise/moments Sampled traj. (5000)
Pop. size Dir. cpl. Iter. Dir. cpl. Iter.

100 0.0010 0.15 0.0025 1.30 2.01
200 0.0011 0.14 0.0031 1.30 7.12
300 0.0013 0.15 0.0027 1.37 10.95
500 0.0011 0.15 0.0033 1.44 16.56
1000 0.0011 0.15 0.0033 1.44 27.22

ODEs 19 18 155 154

Hybrid fluid approximation

Table 5.2 presents an error analysis for the two examples considered in this section.
For the maze example we consider the approximations of the expected population at
location (3,3) while for the 2-by-2 example we consider the location (1,1). For each
experiment corresponding to a parametrisation of rm, rs and choice of population level
N we calculate the maximum absolute errors with respect to the empirical mean derived
from corresponding stochastic simulation runs. In order to make the absolute errors

5.6. Results 89

comparable we have normalised them based on the population size to reflect the error
in terms of the proportion of the considered population. For each of the population
levels the table displays the mean and standard deviation of these maximum errors as
well as the largest of the calculated maximum errors.

Although the iterative method creates some computational overhead in the imple-
mentation, we can see from Table 5.2 that in case of the larger maze example the
iterative construction offers better accuracy than directly coupling the approximate
filtering equations with the fluid drifts. However, in the case of the smaller 2-by-2
example we see that under centrain parametrisations the iterative construction does
not result in an improved approximation. In particular, Table 5.2 with N = 300 shows
the maximum errors 3.3% and 3.1% for the iterative construction and direct coupling
respectively. Finally, Figures 5.11 and 5.10 give the corresponding error surfaces for
the 4-by-4 maze and the three mode 2-by-2 example respectively at population levels
100 and 200. In particular, maximum errors for each of the parametrisations of rm
and rs are plotted. These indicate that the iterative construction deals better with the
parametrisations where the rate of movement parameter rm is much lower than the
parameter rs defining the rate of broadcasting.

Table 5.2: Comparison of mean maximum errors resulting from hybrid fluid based
approximations. As explained, the moment closure approximation values will, in this
case, coincide with the linear noise-based approximation. For the maze example the
errors are calculated for location (3,3). For the 2-by-2 example with three modes the
errors are calculated for location (1,1).

4-by-4 maze 2-by-2 three modes
mean (sd) max. max. mean (sd) max. max.

t ∈ [0,100.0] t ∈ [0,100.0]

N = 100 Direct coupling 14.5 (7.2)% 39.4% 2.4 (2.9)% 13.5%
Iterative 7.3 (3.2)% 17.4% 1.7 (1.6)% 6.9%

N = 200 Direct coupling 9.9 (6.3)% 33.7% 1.5 (1.8)% 8.5%
Iterative 4.3 (2.5)% 13.5% 1.2 (1.3)% 5.8%

N = 300 Direct coupling 7.8 (5.2)% 28.7% 1.1 (1.5)% 6.9%
Iterative 3.2 (1.9)% 10.1% 1.0 (1.1)% 5.1%

t ∈ [0,100.0] t ∈ [0,10.0]

N = 500 Direct coupling 5.9 (4.2)% 21.9% 0.8 (1.0)% 4.7%
Iterative 2.2 (1.4)% 7.1% 0.7 (1.0)% 4.1%

N = 1000 Direct coupling 4.0 (3.0)% 15.7% 0.6 (0.7)% 3.3%
Iterative 1.4 (1.0)% 4.9% 0.5 (0.8)% 3.4%

90 Chapter 5. Heuristic marginalisation based computational strategies

Table 5.3: Comparison of mean maximum errors for the population standard deviation
resulting from hybrid linear noise based approximations. For the maze example the
errors are calculated for location (3,3). For the 2-by-2 example with three modes the
errors are calculated for location (1,1).

4-by-4 maze 2-by-2 three modes
mean (sd) max. max. mean (sd) max. max.

t ∈ [0,100.0] t ∈ [0,100.0]

N = 100 Direct coupling 18.4 (7.9)% 41.5% 10.6 (7.9)% 35.0%
Iterative 18.4 (7.9)% 41.1% 10.6 (7.9)% 35.0%

N = 200 Direct coupling 13.6 (7.5)% 37.8% 7.9 (6.9)% 30.7%
Iterative 13.6 (7.5)% 37.8% 7.9 (6.9)% 30.7%

N = 300 Direct coupling 11.4 (7.0)% 34.8% 6.6 (6.1)% 27.4%
Iterative 11.4 (7.0)% 34.8% 6.6 (6.1)% 27.4%

t ∈ [0,100.0] t ∈ [0,10.0]

N = 500 Direct coupling 9.1 (6.2)% 30.6% 5.2 (5.2)% 23.3%
Iterative 9.1 (6.2)% 30.6% 5.2 (5.2)% 23.3%

N = 1000 Direct coupling 6.6 (4.9)% 24.4% 3.7 (4.0)% 18.2%
Iterative 6.6 (4.9)% 24.4% 3.7 (4.0)% 18.2%

Linear noise and moment closure

For the linear noise and moment closure-based approximations we are interested in
how much the approximations underestimate the variance of the population measures.
In this work we did not consider higher order moments. Table 5.3 presents the error
analysis for the standard deviation of the population measures resulting from the linear
noise/moment based approximation. Analogously to the error analysis for the means
we calculate the maximum absolute errors with respect to the empirical standard de-
viation derived from corresponding stochastic simulation runs. For comparison across
population levels we normalise them based on the population size to reflect the error in
terms of the proportion of the considered population. For each of the population levels
the table displays the mean and standard deviation of these maximum errors as well as
the largest maximum errors. Note that for these examples the constructed approxima-
tions can be used only as a rather coarse lower bound on the measures. Also note that
there is no notable difference between the direct coupling and iterative construction
when considering variance and standard deviation of the dynamics.

The Figures 5.13 and 5.15 give the error surfaces for the approximate standard
deviations for the three mode 2-by-2 grid example and the maze example respectively.
The shapes of these can be observed to match the corresponding ones for the means.

5.7. Conclusions 91

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) Direct coupling – population 100

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) Iterative – population 100

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(c) Direct coupling – population 200

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(d) Iterative – population 200

Figure 5.10: Error surfaces for the three mode 2-by-2 grid example. Displays the
randomly sampled pairs of rm and rs against the corresponding maximum errors for
the location (1,1).

Finally, Figures 5.12 and 5.14 give examples for the time-evolution of standard deviation
corresponding to population measures of specified locations of the model.

5.7 Conclusions

In this chapter, we presented an additional approximation to the hybrid fluid, linear
noise and moment closure-based approximations from Chapter 4. The approximation
was derived by considering the history-dependent marginal process corresponding to
dynamics of the population and discarding the effects of the history of such a marginal
process on its own future behaviour as a simple heuristic approximation. We have made
use of this approximation by coupling the resulting Kolmogorov equations for the mode-
switching process with the fluid, linear noise and moment closure approximation.

In addition we proposed an iterative construction that can be used to construct the
approximation from one mode switch to another and presented a comparison of the

92 Chapter 5. Heuristic marginalisation based computational strategies

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) Direct coupling – population 100

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) Iterative – population 100

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(c) Direct coupling – population 200

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(d) Iterative – population 200

Figure 5.11: Error surfaces for the maze example. Displays the randomly sampled pairs
of rm and s against the corresponding maximum errors for location (3,3).

computations times and an empirical study of the accuracy of the constructions for
two simple examples. Both the direct coupling and iterative constructions are orders
of magnitude faster than the direct simulation of the pCTMC. In addition we saw
that although our current implementation of the iterative method is slower than the
direct coupling, for most of the tested parametrisations of the two examples it gives
a better approximation of the mean dynamics. An interesting further question would
be under which general conditions does this happen and why. Additionally, it would
be interesting to consider higher order approximations for the effects of observation
history on the marginal process in order to extract a more refined approximation to
the marginal.

It is important to note that an efficient implementation of the iterative method
when there are a large number of mode switches in the time-interval of interest be-
comes increasingly difficult. Thus in the current state the method is feasible when
such switches in the dynamics of the population are rare. Similarly, as pointed out

5.7. Conclusions 93

0 20 40 60 80 100
Time

0.00

0.05

0.10

0.15

0.20

S
ta

nd
ar

d
de

vi
at

io
n

fo
r

a
gi

ve
n

lo
ca

ti
on

Iterative

Direct coupling

Stochastic Simulation

(a) Population 100. rm = 0.041 and rs =
0.537.

0 20 40 60 80 100
Time

0.00

0.05

0.10

0.15

0.20

S
ta

nd
ar

d
de

vi
at

io
n

fo
r

a
gi

ve
n

lo
ca

ti
on

Iterative

Direct coupling

Stochastic Simulation

(b) Population 100. rm = 0.667, rs =
0.102.

0 20 40 60 80 100
Time

0.00

0.05

0.10

0.15

0.20

S
ta

nd
ar

d
de

vi
at

io
n

fo
r

a
gi

ve
n

lo
ca

ti
on

Iterative

Direct coupling

Stochastic Simulation

(c) Population 100. rm = 0.665, rs =
0.744.

0 20 40 60 80 100
Time

0.00

0.05

0.10

0.15

0.20

S
ta

nd
ar

d
de

vi
at

io
n

fo
r

a
gi

ve
n

lo
ca

ti
on

Iterative

Direct coupling

Stochastic Simulation

(d) Population 100. rm = 0.954, rs =
0.153.

Figure 5.12: Standard deviations of the population densities at location (1,1) the three
mode 2-by-2 grid example. As seen previously in the running example, the standard
deviations resulting from the iterative and direct coupling methods match closely with
each other.

and highlighted by the error surfaces, time-scale separation plays an important role in
the experiments. Namely, even if only a few mode switches are considered we need
the mode switches to happen at a slower time-scale than the population transitions.
Finally, in this chapter we only considered transitions whose rates are linear in the pop-
ulation variables which lead to the situation where, up to appropriate scaling, linear
noise and moment closure-based approximation resulted in the same system of ODEs.
This last aspect is going to be considered in the next chapter featuring a small case
study which links together Chapters 3, 4 and 5.

94 Chapter 5. Heuristic marginalisation based computational strategies

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) Population 100.

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) Population 200.

Figure 5.13: Error surfaces for the standard deviation of the three mode 2-by-2 grid
example. Displays the randomly sampled pairs of rm and rs against the corresponding
maximum errors for the location (1,1).

0 20 40 60 80 100
Time

0.0

0.1

0.2

0.3

S
ta

nd
ar

d
de

vi
at

io
n

fo
r

a
gi

ve
n

lo
ca

ti
on

Iterative

Direct coupling

Stochastic Simulation

(a) Population 100. rm = 0.041 and rs =
0.537.

0 20 40 60 80 100
Time

0.0

0.1

0.2

0.3

S
ta

nd
ar

d
de

vi
at

io
n

fo
r

a
gi

ve
n

lo
ca

ti
on

Iterative

Direct coupling

Stochastic Simulation

(b) Population 100. rm = 0.667, rs =
0.102.

0 20 40 60 80 100
Time

0.0

0.1

0.2

0.3

S
ta

nd
ar

d
de

vi
at

io
n

fo
r

a
gi

ve
n

lo
ca

ti
on

Iterative

Direct coupling

Stochastic Simulation

(c) Population 100. rm = 0.665, rs =
0.644.

0 20 40 60 80 100
Time

0.0

0.1

0.2

0.3

S
ta

nd
ar

d
de

vi
at

io
n

fo
r

a
gi

ve
n

lo
ca

ti
on

Iterative

Direct coupling

Stochastic Simulation

(d) Population 100. rm = 0.954, rs =
0.153.

Figure 5.14: Standard deviations of the population densities at location (3,3) of the
maze example. As seen previously in the running example, the standard deviations
resulting from the iterative and direct coupling methods match closely with each other.

5.7. Conclusions 95

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) Population 100.

rm

0.0
0.2

0.4
0.6

0.8
1.0

r s

0.0
0.2

0.4
0.6

0.8
1.0

er
ro

r

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b) Population 200.

Figure 5.15: Error surfaces for the standard deviation of the maze example. Displays
the randomly sampled pairs of rm and rs against the corresponding maximum errors
for the location (3,3).

Chapter 6

Synthesis example

In the previous chapters we presented the main technical contributions of this thesis.
In particular, let us recall that Chapter 3 equipped the Carma process algebra with
CTMDP semantics for formal high-level specification of parameter and policy synthesis
problems. Chapters 4 and 5 dealt with theoretical approximations and computational
treatment of the arising population models. The aim of the following is to bring together
the ideas from these chapters and present an example on policy synthesis. In particular,
based on the running examples in the previous chapters, we construct a Carma-C
model so that the policy of the underlying decision process is given by a single store
attribute. We then make use of the approximation in Chapters 4 and 5 to decide for
which attribute values the model is expected to satisfy a given objective.

6.1 Carma-C model

The example considered in this chapter is a slightly modified version of the running
example presented in Chapters 4 and 5. In particular, we again consider the basic
foraging scenario. Let us start by formulating the example in the Carma-C language
which was presented in Chapter 3. Recall that the model considered mode-switching
behaviour in the context of a simple robot swarm where the exploration phase was
modelled by a random walk on a graph structure given in Figure 6.1.

When the robot detects the location (1,1) as the target it broadcasts a message to
the rest of the swarm. After such a message is sent out the dynamics of the swarm
change to that of a directed walk towards the location (1,1). In Carma-C we can
model the processes governing the behaviour of the individual robots as illustrated in
Figure 6.2. This is essentially the same as considered in Chapter 3, however in this
case we are not considering failure of robots. The rest of the model remains unchanged.
For the ease of presentation we are going to recall the relevant parts of the model here.

97

98 Chapter 6. Synthesis example

(0,0)

(0,1)

(1,0)

(1,1)

Figure 6.1: Spatial structure for the example.

That is, the broadcast actions random∗ and directed∗ describe a random walk and a
directed walk towards (1,1) respectively. Despite being defined as broadcast actions,
neither of these actions have any effect on the other robots in the collective. This is
achieved by setting the outgoing message to be empty. The guards πr and πd check
whether the target location is known or not and make sure only one of the actions
random∗ and directed∗ is enabled at a time.

The sense∗ action models the mechanism for mode-switching. In particular, the
broadcast output action models the robot detecting and sending the target location to
the rest of the swarm. The corresponding broadcast input action models the robot’s
ability to receive such a message. The resulting Carma-C expression for the robot
process with the store updates omitted is given below.

Explore def= [πr]random∗[◦]〈◦〉+ [πd]directed∗[◦]〈◦〉+ [πr]sense∗[◦](M(x,y))

Listen def= [πr]sense∗[◦]〈M(loc)〉

Robot def= Explore ‖Listen

The local store of each of the robots holds attributes for location, denoted loc, target,
denoted target and the robustness parameter, succp, taking values in the interval [0,1].
The store updates corresponding to each of the defined actions are given in Figure 6.3.
The actions random∗ and directed∗ change loc attribute of the robot component accord-
ing to functions R and D respectively. The function R corresponds to the next location
being selected uniformly from the set of available next locations defined by the graph
structure in Figure 6.1. Similarly, D corresponds to the next location taking the robot
closer to the target with some probability p, specified by the robustness attribute succp,
and to any of the other directly connected locations with probability 1−p. This defines
a distribution over the possible unresolved local stores the components can evolve to
and models the robots being unreliable with respect to navigation. Recall that in order
to be consistent with the semantics presented, the locations are defined as singleton sets
containing only the current location of the robot. The functions R and D are applied
element-wise to all elements in the set defining the value domain of the loc attribute as

6.2. pCTMDP model 99

illustrated in Figure 6.3. The sense∗ action updates the set of target locations. In the
case of this model this can only be an empty set or a set consisting of (1,1). Function
M either returns the singleton set consisting of location (1,1) or an empty set.

Explore | Listen

[πr]random∗[◦]〈◦〉

+ [πd]directed∗[◦]〈◦〉

+ [πs]sense∗[◦]((x,y))
[πs]sense∗[◦]〈M(loc)〉

Figure 6.2: Behaviour of individual Robot components.

γ = {loc = {(x,y)}

target = {L}}

γ = {loc = {R(x,y)}

target = {L}}

γ = {loc = {(x,y)}

target = {L∪M(x,y)}}

γ = {loc = {D((x,y),L)}

target = {L}}

γ = {loc = {(x,y)}

target = {L∪ (x,y)}}

random∗〈◦〉

directed∗〈◦〉

sense∗〈M(x,y)〉sense∗((x,y))

Figure 6.3: Local component store changes induced by actions.

Finally we are going to address the global store. In particular, we define two store
variables — one corresponding to the rate at which the actions random∗ and directed∗

happen, denoted mover. We specify the value domain for this variable to be [0,∞).
Similarly, we specify the value domain for the store attribute senser, corresponding to
the rate of the action sense∗, to be [0,∞). We define global updates in a way that
keeps the defined value domains unchanged throughout the evolution. The complete
Carma-C model is given in Appendix D.

6.2 pCTMDP model

In this section we are going to describe the resulting pCTMDP model. This model
results from the application of semantics described in Chapter 3. The application of
the semantics was demonstrated in Chapter 3 and is not replicated here.

Let us denote the state-space of the pCTMDP by the counting variables

X = (X01,X00,X10,X11,X
′
01,X

′
00,X

′
10,X

′
11)

100 Chapter 6. Synthesis example

The robots are distinguished through their state — in this case, the only part of the
robot component that changes is the location and whether the target location is known
or not.

The rates with which the actions are performed are linked to the global store vari-
ables mover and senser that are only specified through their value domains. This cor-
responds to the first part of the action space for the pCTMDP — at each state of the
model we need to specify the particular values of mover and senser being used. The
second part of the action space corresponds to the local succp attribute. In particular,
for each location we have to specify the particular value of succp from the interval [0,1].
A policy, according to the definition given in Section 2.6, then is a function

π : R≥0×Z8×R2
≥0× [0,1]8→ [0,1]

assigning a probability for each of the possible combinations of attributes mover, senser
and succp for each time t ∈ R≥0 and state x ∈ Z8. Remember, that the choice of succp
has to be made for each location giving rise to four copies of [0,1] in the signature of
the function. It is worth noting that the above corresponds to the non-trivial parts
of the policies π. To give a perfectly precise description according to the semantics in
Chapter 3 the policy would also have to assign values for each of the loc and target
attributes. However, as explained, the value domains for these remain singleton sets
throughout the evolutions and thus the choice of policy with respect to those attributes
is trivial. Let us denote this resulting space of probability distributions by Π. In the
rest of this chapter we are going to consider deterministic policies such that

π : R≥0×Z8×R2
≥0× [0,1]8→{0,1}

Application of a policy π to the pCTMDP corresponding to the model gives us be-
haviours of individual robots as given in Figure 6.4. The same model was considered
as a running example in Chapters 4 and 5. Here, we have made explicit that the tran-
sition rates depend on a chosen policy π. We have denoted by π(i,j)

1 (t,x) the rate of
robots moving out of location (i, j) at time t given the population state x under the
deterministic policy π. Similarly, π2(t,x) denotes the rate of sensing and broadcasting
the message about the target. The mode-switching population model follows for the
resulting pCTMC according to the construction in Section 4.2. In particular, as was the
case with the running examples of the previous chapter, the before broadcast behaviour
is treated as one mode of dynamics and the after broadcast behaviour as the other.

6.3. Policy synthesis 101

(0,0)

(0,1)

(1,0)

(1,1) B

1
2π

(0,0)
1 (t,x) π

(0,1)
1 (t,x)

1
2π

(0,0)
1 (t,x)

1
2π

(1,0)
1 (t,x)

π
(1,1)
1 (t,x) 1

2π
(1,0)
1 (t,x)

π2(t,x)

(a) Before broadcast – random walk

(0,0)

(0,1)

(1,0)

(1,1) B

π
(0,1)
1 (t,x)

π
(0,0)
1 (t,x)

π
(1,0)
1 (t,x)π

(0,0)
1 (t,x)

π
(1,0)
1 (t,x)

π
(1,1)
1 (t,x)

(b) After broadcast – directed walk

Figure 6.4: Behaviour of individuals in the swarm model with 4 locations under some
deterministic policy π.

6.3 Policy synthesis

A time-dependent policy for the described pCTMDP would lead to a time-inhomogeneous
pCTMC. In this section we are going to restrict the space of policies Π to those that
are stationary, or in other words, not dependent on time. A simple policy synthesis
problem would arise from considering policies that keep the movement rate constant
for all states of the system. We are going to make the situation slightly more complex
and consider policies where the transition rates are no longer linearly dependent on the
population variables. In particular, we consider the effects of congestion, whereby we
model the situation where the movement rate of the robots decreases as the density in
a given location increases. Congestion or interference is a common problem in swarm
robotics that usually leads to degraded performance [87, 91, 115]. This happens espe-
cially in the cases where robots are moving towards a common target region and have
to compete for available space. For this example we are considering one possible way
to capture such effects on the swarm behaviour.

In order to model the congestion effects we are going to construct the policy π so
that some maximum movement rate rm, given by the global store attribute mover, of
robots is multiplied by the exponential e−a×x, where x denotes the population density
at the given location. In particular, the rate of movement out of location (i, j) under
policy π becomes

π
(i,j)
1 (t,x) = rme

−a×xij

where xij is the population density at location (i, j). Such exponential degradation of
the performance of individual robots in a swarm was reported, for example, in [87].
The choice of the constant a here is arbitrary to give an example. The higher values of
a correspond to more severe effects of congestion while lower values would have lesser
effects on the dynamics. For example a= 0.5 would give that if the population density

102 Chapter 6. Synthesis example

at a given location is x= 1.0 then the rate of movement is given by 0.6065rm (rounded
to 4 decimal places), or roughly halved while a= 0.9 would give the rate of movement
as 0.4066rm. Finally, note that the effects of congestion could equivalently be taken
into account directly in the rate definitions for directed∗ and random∗.

For the stochastic simulation and moment closure-based approaches we will need
a function that gives the equivalent behaviour in the case of non-scaled population
variables. In particular, for a population of N robots consider e−a×

x
N . The meaning

of this model would be that if the entire swarm is in the same location the congestion
has the effect of approximately halving the rate of movement. In the context of the
running example we consider the synthesis of the succp parameter as a special case of
policy synthesis. In particular, how robust the behaviour of the robots should be for
the collective to satisfy its goal. We consider two objectives:

• The first considers only the mean behaviour of the models and requires 80% of
the swarm to reach the target location (1,1) in the finite time interval [0,10]. We
are going to refer to this as Obj1.

• The second one requires the probability of 80% of the swarm to reach the target
location (1,1) in the finite time interval [0,10] to be greater than 0.9. We are
going to refer to this as Obj2.

For the first case we are going to use the means from fluid approximation and moment
closure-based constructions in the calculations. For the second we assume that the
population variables are normally distributed and use the mean and variance from the
linear noise and moment closure approximations-based constructions in the objective
evaluations. We are going to treat the policy synthesis as a simple logistic regression
problem where we aim to separate the values succp based on whether the objectives
would be satisfied or not. This is akin to works on parameter synthesis which aim to find
the regions of the parameter space where a given specification is satisfied [26, 38, 25].

The set-up for this is standard: consider a linear function y = w0 +w1p of single
explanatory variable (in this case value of succp, denoted p) and a logistic function
σ(r) = 1/(1 + e−w0−w1p) where σ(p) is interpreted as the probability of success given
succp value p. We are going to expect the goal to be satisfied if σ(p)> 0.5. The weights
for the regression model are going to be fitted based on trajectories sampled using
stochastic simulation and the constructed approximations for 200 random succp values.
All calculations were done by fixing the values corresponding to store attributes mover
and senser to 1 and 0.1 respectively. In particular, we have considered the policy space
where these two attributes are kept constant while the value for succp is allowed to
change.

6.4. Discussion 103

For stochastic simulation experiments we ran 5000 replications for each of the con-
sidered failr parameters. The mean and standard deviation summary statistics of the
population variables were considered at 100 equally spaced sampling points in the time
interval [0,10]. The low sampling rate was chosen to keep the computation time for
constructing the summaries low. Tables 6.1 and 6.2 give the comparison of decision
boundaries, where σ(p) = 0.5, obtained for the two objectives for population levels 100
and 200, respectively. For both of the population levels, we sampled 200 succp values
and considered the approximations introduced in Chapter 5 to estimate whether the ob-
jectives are or are not satisfied. The value of the congestion parameter for experiments
shown in Tables 6.1 and 6.2 was set to 0.7. In order to get an idea of the sensitivity of
the performed analysis to the congestion parameter a, we have repeated the stochastic
simulations of the model for values a = 0.5 and a = 0.9. The results, summarised in
Table 6.3, give an indication of how the results of the parameter synthesis are affected
by our choice of parameter a. Expectedly, for higher values of a the behaviour of robots
needs to be more robust in order to satisfy the defined goals.

In the case of the smaller population size, N = 100, we see that for the mean-based
objective all methods give a good estimate for the decision boundary for succp. As was
the case with the experimental results in the previous chapter the iterative construction,
proposed in Chapter 5, gives an improvement over the direct coupling-based methods.
The experiments also reveal that in the case of this example the difference between
using a linear noise and moment-based construction is negligible, while the impact of
choosing between coupling and iterative constructions is more substantial. This can
largely be attributed to the fact that the iterative constructions seem to, at least in
most cases as seen in Chapter 5, do better at approximating the mean dynamics.

Table 6.1: Calculated decision boundaries (p bdy.) for the logistic regression problem.
Relative errors (rel. err.) are given with respect to the stochastic simulation results.
Population N = 100.

Fluid/LNA cpl. Fluid/LNA iter. Moment cpl. Moment iter. SSA

p bdy. rel. err. p bdy. rel. err. p bdy. rel. err p bdy. rel. err. p bdy.

Obj1 0.670 1.5% 0.680 < 0.1% 0.670 1.5% 0.680 < 0.1% 0.680
Obj2 0.713 5.7% 0.730 3.5% 0.717 5.2% 0.730 3.5% 0.756

6.4 Discussion

In this chapter we have presented a small example of policy synthesis which presents
a framework which fits together the ideas presented in this thesis. In particular, we

104 Chapter 6. Synthesis example

Table 6.2: Calculated decision boundaries (p bdy.) for the logistic regression problem.
Relative errors (rel. err.) are given with respect to the stochastic simulation results.
Population N = 200.

Fluid/LNA cpl. Fluid/LNA iter. Moment cpl. Moment iter. SSA

p bdy. rel. err. p bdy. rel. err. p bdy. rel. err p bdy. rel. err. p bdy.

Obj1 0.660 < 0.1% 0.660 < 0.1% 0.660 < 0.1% 0.660 < 0.1% 0.660
Obj2 0.680 2.5% 0.690 1.1% 0.690 1.1% 0.690 1.1% 0.698

Table 6.3: Decision boundaries (p bdy.) for the two objectives under three different
values of the congestion parameter a. Calculated values are based on the stochastic
simulation of the population model.

pop. N congestion param. a p bdy. Obj1 p bdy. Obj2

100 0.5 0.661 0.731
100 0.7 0.680 0.756
100 0.9 0.701 0.793
200 0.5 0.648 0.684
200 0.7 0.660 0.698
200 0.9 0.679 0.722

described a model expressed in the Carma-C language equipped with CTMDP se-
mantics and set up a simple policy synthesis problem where a single parameter can
be changed or controlled. The semantics of the language presented does not discrim-
inate against more complex cases like time-dependent or probabilistic policies. With
an appropriate choice of policy space we could, for example, consider scenarios where
the movement rate of the robots further degrades with time. Similarly, it is possible
to consider policies which put a distribution over the global store attributes mover and
senser modelling parameters whose exact value is unknown and can fluctuate over time.
The term imprecise has been previously used for such parameters [20] in the context of
underspecified pCTMCs.

When considering more complex scenarios such as these it is interesting to consider
the computational scalability of the presented analysis. For example, when considering
time-dependent policies we are faced with a different highly non-trivial problem of
conducting policy synthesis over a space of time-dependent functions. Constructing
the fluid, linear noise and moment-based approximations for a given time-dependent
function, however, presents few additional difficulties. Such approximation can then
be used, for example, in statistical methods based policy synthesis in [11] for faster
evaluations of individual policies.

6.4. Discussion 105

0.00 0.25 0.50 0.75 1.00
succp

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Figure 6.5: Example of a reward function for the model in this chapter sampled at 200
points.

The method of classifying these parameters into ones that satisfy the given objective
and the ones that do not via logistic regression is only one of the possible ways we can
consider such problems. Perhaps a more common approach from control theory would
be to directly optimise with respect to a constructed a reward function. In the case
of the above example we could quite easily construct a reward function on sample
trajectories that returns 1 if the objective is satisfied and 0 otherwise, giving rise to a
step function. As an additional refinement, a regularisation term can be added such that
if the objective is satisfied we penalise higher values of succp. On the other hand if the
objective is not satisfied we reward increasing succp. One such possible reward function
for the example in this chapter sampled at 200 points is given in Figure 6.5. Note that
even this simple reward function leads to an optimisation problem that is non-convex
and discontinuous. Additionally note that many of the interesting cases would feature
multiple objectives. Construction and optimisation of such multi-objective problems is
a well-established and active research field.

Chapter 7

Conclusions

In this thesis we studied two different but intimately linked aspects of analysing collec-
tive dynamics in the context of formal modelling methods. In particular, we considered
model specification and analysis motivated by policy synthesis problems for collective
dynamics. Our starting point was that of formal quantitative modelling through the
application of process algebra Carma.

As our first contribution we presented alternative semantics for the Carma pro-
cess algebra that allow for convenient compositional specification of policy synthesis
problems in the CTMDP framework. The existing CTMC-based semantics were shown
to extend naturally to CTMDPs by allowing non-determinism in the definitions of the
store attributes of the language.

The CTMDP models that arise from the defined high-level language Carma-C are
not generally tractable by exact numerical methods. Thus as the second point of interest
we considered the application of continuous state approximations to such models. The
application domain of collective and, in particular, population dynamics provide many
examples where fluid, linear noise and moment closure approximations can be used.
However, there is a large class of population models arising from Carma-C where such
approximations are not trivially applicable. In this thesis we studied situations where
the agents are equipped with knowledge; moreover we assumed that the agents can
learn about their environment through experience, and share that information within
the population through broadcast communication. We considered a class of models
where broadcast communication induces switches in the dynamics of the population.
Each level of information available to the collective corresponds to a different mode in
the underlying stochastic model. As a consequence we demonstrated an application of
existing hybrid-continuous approximations to such mode-switching systems. Moreover
we considered the computational difficulties arising when considering such models and
proposed further approximations for computationally efficient solutions. By making

107

108 Chapter 7. Conclusions

a heuristic simplification to the filtering equations, which describe the probability of
a given dynamic mode up to the history of the process, we examined two construc-
tions: directly coupling the simplified filtering equations with the fluid, linear noise
and moment-based approximation and an iterative construction. The results in Chap-
ter 5 showed that in our cases the iterative construction offered significantly better
approximation to the mean dynamics.

As a final step in this thesis we showed how the formal modelling language together
with the considered approximations form a cohesive framework for policy synthesis in
the case of collective dynamics. In particular, we constructed and analysed a simple
policy synthesis problem for a model stated in the defined Carma-C language.

There are a wealth of possible extensions that can be considered on the basis of
the work presented in this thesis. Here we are going to propose a few. From the point
of view of model specification and the constructed semantics for Carma-C, the ex-
amples presented give only a small sample of the policy synthesis problems that we
are able to consider. Firstly, the non-determinism induced via the definition of store
attributes in Carma-C models is amenable to various interpretations. In Chapter 6
we gave an example where the non-deterministic behaviour was considered as a con-
trollable parameter of the robots. However, it is also possible to consider cases where
the non-determinism is treated as uncertainty in parameters in the model identification
context — a cost function is constructed as a comparison between the model output
and measurement from a physical system. Similarly, we can combine interpretations of
non-determinism. For example, consider policy synthesis for collective systems where
we are uncertain about the precise effect of the environment on the dynamics. We
can consider problems of optimising for the controllable parameters of the model up to
uncertainty in the non-controllable ones. A deeper investigation of such problems in
the context of the considered process algebraic framework is left as future work.

The approximation methods considered in this thesis are applicable to homoge-
neous population models. In many real-life collective systems the populations will be
composed of heterogeneous components. While this limits the general applicability
of the analysis considered in this thesis there are many interesting cases that can be
explored further. For example, our models assumed “perfect” broadcast where com-
ponent always receive the sent message. A more realistic view would result from the
consideration of communication where components may fail to receive a message. Ex-
pressing such situations in Carma-C is simple. The semantics of the language allow us
to define a probability with which a given broadcast message is received by an eligible
component. This probability is again dependent on the store attributes — for example,
location of the receiver with respect to the sender. Such considerations would be a step

109

towards being able to apply the methods considered in a more general setting. How-
ever, whether or not the mode-switching dynamics can then still be separated from the
population dynamics in a way that leads to useful approximations remains to be seen.
Similarly, much more can also be said about methods for solving the arising policy syn-
thesis problems. For example, in this thesis we have only given a small example when
the policy space consists of stationary and deterministic policies but more complex
scenarios for the collective dynamics can be considered. It is moreover of interest how
far do the model structure based approximations extend when considering real-world
applications.

A further line of work we propose here deals with the iterative constructions for
approximations of population dynamics in Chapter 5. We have seen in Chapter 5 that
in most cases the iterative construction offers an improvement over directly coupling
the filtering equations, detailing the mode-switching behaviour, with the continuous
evolution of the population dynamics. For future work the general conditions and rea-
sons under which the iterative construction can be expected to provide an improved
approximation are of interest. The second aspect, related to the constructed approxi-
mations, to consider is efficient numerical solver methods for such approximations and
consideration of larger number of modes. Note that even when the number of modes
is potentially very large then in the context of transient evolution of the system we
might be only interested in a small subset. For example, if the probability of reaching
certain modes in a given finite time interval is low. This makes it possible to reduce the
number of ODEs considered for a finite time interval. While in this thesis we concen-
trated on applying the discussed heuristic constructions in the context of models arising
from broadcast communication, the iterative construction can also be considered as an
initial coarse approximation in other more commonly considered settings: in models
with a changing environment where the mode-switching behaviour of the system is not
dependent on the population dynamics [127]; situations where mode-switching results
from the behaviour of a small number of components in the system, leading to more
commonly studied hybrid models [66, 39]; and stochastic hybrid systems more gener-
ally when the number of switches happening in a transient time period under study is
small.

Bibliography

[1] CARMA Eclipse Plugin | QUANTICOL Toolset for the analysis of Collective
Adaptive Systems. http://quanticol.sourceforge.net/?page_id=27.

[2] Github repository for the implementation of examples. https://github.com/
pihop/ThesisSupplement.jl.

[3] A quantitative approach to management and design of collective and adaptive
behaviours. https://blog.inf.ed.ac.uk/quanticol/.

[4] SymEngine. https://github.com/symengine/symengine.

[5] G. Agha and K. Palmskog. A survey of statistical model checking. ACM Trans-
actions on Modeling and Computer Simulation, 28(1):6:1–6:39, 2018.

[6] A. Ale, P. Kirk, and M. P. H. Stumpf. A general moment expansion method
for stochastic kinetic models. The Journal of Chemical Physics, 138(17):174101,
2013.

[7] D. F. Anderson. A modified next reaction method for simulating chemical systems
with time dependent propensities and delays. The Journal of Chemical Physics,
127(21):214107, 2007.

[8] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time
Markov chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.

[9] C. Baier, H. Hermanns, J. Katoen, and B. R. Haverkort. Efficient computation
of time-bounded reachability probabilities in uniform continuous-time Markov
decision processes. Theoretical Computer Science, 345(1):2–26, 2005.

[10] G. Balbo. Introduction to generalized stochastic petri nets. In Proceedings of the
7th International Conference on Formal Methods for Performance Evaluation,
SFM 2007, page 83–131. Springer-Verlag, 2007.

[11] E. Bartocci, L. Bortolussi, T. Brázdil, D. Milios, and G. Sanguinetti. Policy
learning in continuous-time Markov decision processes using Gaussian processes.
Performance Evaluation, 116:84–100, 2017.

[12] J. Bect. A unifying formulation of the Fokker–Planck–Kolmogorov equation for
general stochastic hybrid systems. Nonlinear Analysis: Hybrid Systems, 4(2):357
– 370, 2010.

[13] A. Bensoussan, J. Frehse, and P. Yam. Mean Field Games and Mean Field Type
Control Theory. Springer New York, 2013.

111

http://quanticol.sourceforge.net/?page_id=27
https://github.com/pihop/ThesisSupplement.jl
https://github.com/pihop/ThesisSupplement.jl
https://blog.inf.ed.ac.uk/quanticol/
https://github.com/symengine/symengine

112 Bibliography

[14] M. Bernardo and R. Gorrieri. Extended Markovian process algebra. In U. Monta-
nari and V. Sassone, editors, CONCUR ’96: Concurrency Theory, pages 315–330.
Springer Berlin Heidelberg, 1996.

[15] Bortolussi and J. Hillston. Model checking single agent behaviours by fluid ap-
proximation. Information and Computation, 242:183–226, 2015.

[16] L. Bortolussi. Stochastic concurrent constraint programming. Electronic Notes
in Theoretical Computer Science, 164(3):65–80, 2006.

[17] L. Bortolussi. Limit behavior of the hybrid approximation of stochastic process
algebras. In Analytical and Stochastic Modeling Techniques and Applications, 17th
International Conference, ASMTA 2010, Cardiff, UK, June 14-16. Proceedings,
pages 367–381, 2010.

[18] L. Bortolussi. Hybrid behaviour of Markov population models. Information and
Computation, 247:37–86, 2016.

[19] L. Bortolussi, L. Cardelli, M. Kwiatkowska, and L. Laurenti. Central limit model
checking. ACM Trans. Comput. Logic, 20(4), 2019.

[20] L. Bortolussi and N. Gast. Mean field approximation of uncertain stochastic mod-
els. In 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2016, Toulouse, France, June 28 - July 1. Proceedings, pages
287–298, 2016.

[21] L. Bortolussi and J. Hillston. Fluid model checking. In Concurrency Theory - 23rd
International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September
4-7. Proceedings, pages 333–347, 2012.

[22] L. Bortolussi and R. Lanciani. Model checking Markov population models by
central limit approximation. In Quantitative Evaluation of Systems. Proceedings,
pages 123–138, 2013.

[23] L. Bortolussi, D. Milios, and G. Sanguinetti. Efficient stochastic simulation of sys-
tems with multiple time scales via statistical abstraction. In Computational Meth-
ods in Systems Biology - 13th International Conference, CMSB 2015, Nantes,
France, September 16-18. Proceedings, pages 40–51, 2015.

[24] L. Bortolussi and A. Policriti. Dynamical systems and stochastic programming:
To ordinary differential equations and back. Transactions on Computational Sys-
tems Biology, 11:216–267, 2009.

[25] L. Bortolussi, A. Policriti, and S. Silvetti. Logic-based multi-objective design
of chemical reaction networks. In Hybrid Systems Biology - 5th International
Workshop, HSB 2016, Grenoble, France, October 20-21. Proceedings, pages 164–
178, 2016.

[26] L. Bortolussi and S. Silvetti. Bayesian statistical parameter synthesis for linear
temporal properties of stochastic models. In D. Beyer and M. Huisman, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 396–
413. Springer International Publishing, 2018.

Bibliography 113

[27] P. Boutillier, M. Maasha, X. Li, H. F. Medina-Abarca, J. Krivine, J. Feret,
I. Cristescu, A. G. Forbes, and W. Fontana. The Kappa platform for rule-based
modeling. Bioinformatics, 34(13):i583–i592, 2018.

[28] L. Bronstein and H. Koeppl. Marginal process framework: A model reduction
tool for Markov jump processes. Physical Review E, 97:062147, Jun 2018.

[29] J. Bruno, P. Downey, and G. N. Frederickson. Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. Journal of the
ACM, 28(1):100–113, 1981.

[30] P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability, 31(1):59–75, 1994.

[31] P. Buchholz, I. Dohndorf, and D. Scheftelowitsch. Optimal decisions for contin-
uous time Markov decision processes over finite planning horizons. Computers &
Operations Research, 77:267–278, 2017.

[32] C. J. Burke and M. Rosenblatt. A Markovian function of a Markov chain. The
Annals of Mathematical Statistics, 29(4):1112–1122, 12 1958.

[33] Y. Butkova, H. Hatefi, H. Hermanns, and J. Krcál. Optimal continuous time
Markov decisions. In Automated Technology for Verification and Analysis, 2015.
Proceedings, pages 166–182, 2015.

[34] B. Caillaud, B. Delahaye, K. G. Larsen, A. Legay, M. L. Pedersen, and A. Wa-
sowski. Constraint Markov chains. Theoretical Computer Science, 412(34):4373–
4404, 2011.

[35] Y. Cao, D. T. Gillespie, and L. R. Petzold. The slow-scale stochastic simulation
algorithm. The Journal of Chemical Physics, 122(1):014116, 2005.

[36] L. Cardelli, M. Kwiatkowska, and L. Laurenti. Stochastic analysis of chemical
reaction networks using linear noise approximation. Biosystems, 149:26–33, 2016.

[37] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Comparing chem-
ical reaction networks: A categorical and algorithmic perspective. Theoretical
Computer Science, 765:47 – 66, 2019.

[38] M. Ceska, F. Dannenberg, N. Paoletti, M. Kwiatkowska, and L. Brim. Pre-
cise parameter synthesis for stochastic biochemical systems. Acta Informatica,
54(6):589–623, 2017.

[39] A. Crudu, A. Debussche, A. Muller, and O. Radulescu. Convergence of stochastic
gene networks to hybrid piecewise deterministic processes. Annals of Applied
Probability, 22(5):1822–1859, 10 2012.

[40] P. Cuijpers and M. Reniers. Hybrid process algebra. The Journal of Logic and
Algebraic Programming, 62(2):191 – 245, 2005.

[41] R. Darling and J. Norris. Differential equation approximations for Markov chains.
Probability Surveys, 5:37–79, 2008.

[42] R. David and H. Alla. On hybrid petri nets. Discrete Event Dynamic Systems,
11(1-2):9–40, 2001.

114 Bibliography

[43] M. Davis. Markov Models & Optimization. Chapman & Hall/CRC Monographs
on Statistics & Applied Probability. Taylor & Francis, 1993.

[44] R. De Nicola, D. Latella, M. Loreti, and M. Massink. A uniform definition of
stochastic process calculi. ACM Computing Surveys, 46(1):5:1–5:35, 2013.

[45] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A formal approach to
autonomic systems programming: The SCEL language. ACM Transactions on
Autonomous and Adaptive Systems, 9(2), 2014.

[46] A. de Palma and C. Lefevre. Individual decision-making in dynamic collective
systems. The Journal of Mathematical Sociology, 9(2):103–124, 1983.

[47] C. Dehnert, S. Junges, J. Katoen, and M. Volk. A storm is coming: A modern
probabilistic model checker. In Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany. Proceedings, Part II, pages 592–
600, 2017.

[48] A. Duncan, R. Erban, and K. C. Zygalakis. Hybrid framework for the simulation
of stochastic chemical kinetics. Journal of Computational Physics, 326:398–419,
2016.

[49] K. Elamvazhuthi and S. Berman. Mean-field models in swarm robotics: a survey.
Bioinspiration & Biomimetics, 15(1):015001, 2019.

[50] S. N. Ethier and T. G. Kurtz. Markov processes – characterization and conver-
gence. Wiley Series in Probability and Mathematical Statistics: Probability and
Mathematical Statistics. John Wiley & Sons Inc., New York, 1986.

[51] E. A. Feinberg, M. Mandava, and A. N. Shiryaev. On solutions of Kolmogorov’s
equations for nonhomogeneous jump Markov processes. Journal of Mathematical
Analysis and Applications, 411(1):261 – 270, 2014.

[52] C. Feng and J. Hillston. PALOMA: A process algebra for located Markovian
agents. In Quantitative Evaluation of Systems - 11th International Conference,
QEST 2014, Florence, Italy. Proceedings, pages 265–280, 2014.

[53] C. Feng, J. Hillston, and V. Galpin. Automatic moment-closure approximation of
spatially distributed collective adaptive systems. ACM Transactions on Modeling
and Computer Simulation, 26(4):26, 2016.

[54] D. Gabelaia, R. Kontchakov, Á. Kurucz, F. Wolter, and M. Zakharyaschev. Com-
bining spatial and temporal logics: Expressiveness vs. complexity. Journal of
Artificial Intelligence Research, 23:167–243, 2005.

[55] V. Galpin, L. Bortolussi, and J. Hillston. HYPE: hybrid modelling by composition
of flows. Formal Aspects of Computing, 25(4):503–541, 2013.

[56] V. Galpin, N. Zon, P. Wilsdorf, and S. Gilmore. Mesoscopic modelling of pedes-
trian movement using carma and its tools. ACM Transactions on Modeling and
Computer Simulation, 28(2), 2018.

[57] N. Gast, B. Gaujal, and J. L. Boudec. Mean field for Markov decision processes:
From discrete to continuous optimization. IEEE Transactions on Automatic Con-
trol, 57(9):2266–2280, 2012.

Bibliography 115

[58] A. Georgoulas, J. Hillston, D. Milios, and G. Sanguinetti. Probabilistic program-
ming process algebra. In Quantitative Evaluation of Systems - 11th International
Conference, QEST 2014. Proceedings, pages 249–264, 2014.

[59] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[60] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating
PEPA models. IEEE Transactions on Software Engineering, 27(5):449–464, 2001.

[61] W. Grassmann. Transient solutions in Markovian queueing systems. Computers
& Operations Research, 4(1):47 – 53, 1977.

[62] M. Gribaudo and A. Remke. Hybrid petri nets with general one-shot transitions.
Performance Evaluation, 105:22 – 50, 2016.

[63] M. C. Guenther, A. Stefanek, and J. T. Bradley. Moment closures for performance
models with highly non-linear rates. In M. Tribastone and S. Gilmore, editors,
Computer Performance Engineering, pages 32–47. Springer Berlin Heidelberg,
2013.

[64] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[65] J. Hasenauer, V. Wolf, A. Kazeroonian, and F. J. Theis. Method of conditional
moments (MCM) for the chemical master equation. Journal of Mathematical
Biology, 69(3):687–735, 2014.

[66] A. Hellander and P. Lötstedt. Hybrid method for the chemical master equation.
Journal of Computational Physics, 227(1):100–122, 2007.

[67] T. A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, 1996, pages 278–292. IEEE Computer Society, 1996.

[68] J. P. Hespanha. A model for stochastic hybrid systems with application to
communication networks. Nonlinear Analysis: Theory, Methods & Applications,
62(8):1353 – 1383, 2005. Hybrid Systems and Applications.

[69] J. P. Hespanha. Modelling and analysis of stochastic hybrid systems. IEE Pro-
ceedings - Control Theory and Applications, 153(5):520–535, 2006.

[70] A. Hilfinger and J. Paulsson. Separating intrinsic from extrinsic fluctuations in
dynamic biological systems. Proceedings of the National Academy of Sciences of
the United States of America, 108 29:12167–72, 2011.

[71] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, New York, NY, USA, 1996.

[72] J. Hillston. Fluid flow approximation of PEPA models. In Second International
Conference on the Quantitative Evaluaiton of Systems (QEST) 2005, Torino,
Italy. Proceedings, pages 33–43, 2005.

116 Bibliography

[73] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward. SUNDIALS: suite of nonlinear and differential/algebraic
equation solvers. ACM Transactions on Mathematical Software, 31(3):363–396,
2005.

[74] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1985.

[75] V. Holubec, P. Chvosta, M. Einax, and P. Maass. Attempt time Monte Carlo:
An alternative for simulation of stochastic jump processes with time-dependent
transition rates. EPL (Europhysics Letters), 93(4):40003, 2011.

[76] F. Horn and R. Jackson. General mass action kinetics. Archive for Rational
Mechanics and Analysis, 47(2):81–116, 1972.

[77] G. Horton, V. G. Kulkarni, D. M. Nicol, and K. S. Trivedi. Fluid stochastic
petri nets: Theory, applications, and solution techniques. European Journal of
Operational Research, 105(1):184 – 201, 1998.

[78] M. John, C. Lhoussaine, J. Niehren, and A. M. Uhrmacher. The attributed
pi calculus. In Computational Methods in Systems Biology, 6th International
Conference, CMSB 2008, Rostock, Germany. Proceedings, pages 83–102, 2008.

[79] B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic pro-
cesses. In Proceedings of the Sixth Annual Symposium on Logic in Computer
Science (LICS) 1991, Amsterdam, The Netherlands, pages 266–277, 1991.

[80] A. Kazeroonian, F. Fröhlich, A. Raue, F. J. Theis, and J. Hasenauer. CER-
ENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and
Analysis of Stochastic Chemical Kinetics. PLOS ONE, 11(1):1–15, 2016.

[81] A. Kazeroonian, F. J. Theis, and J. Hasenauer. Modeling of stochastic biological
processes with non-polynomial propensities using non-central conditional moment
equation. IFAC Proceedings Volumes, 47(3):1729 – 1735, 2014.

[82] J. G. Kemeny and J. L. Snell. Finite Markov chains. Undergraduate texts in
mathematics. Springer, New York, 1976. Reprint of the 1960 ed. published by Van
Nostrand, Princeton, N.J., in the University series in undergraduate mathematics.

[83] T. G. Kurtz. Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability, 7(1):49–58, 1970.

[84] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA. Proceedings, pages 585–591, 2011.

[85] C. Lefèvre. Optimal control of a birth and death epidemic process. Operations
Research, 29(5):971–982, 1981.

[86] A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: An overview.
In Runtime Verification - First International Conference, RV 2010, St. Julians,
Malta. Proceedings, pages 122–135, 2010.

[87] K. Lerman and A. Galstyan. Mathematical model of foraging in a group of robots:
Effect of interference. Autonomous Robots, 13(2):127–141, 2002.

Bibliography 117

[88] M. Loreti and J. Hillston. Modelling and analysis of collective adaptive systems
with CARMA and its tools. In Formal Methods for the Quantitative Evaluation
of Collective Adaptive Systems, Advanced Lectures, pages 83–119, 2016.

[89] L. Luisa Vissat, J. Hillston, G. Marion, and M. J. Smith. MELA: modelling
in ecology with location attributes. In Proceedings 14th International Workshop
Quantitative Aspects of Programming Languages and Systems, QAPL 2016, Eind-
hoven, The Netherlands, pages 82–97, 2016.

[90] H. Lv, J. Hillston, P. Piho, and H. Wang. An attribute-based availability model
for large scale IaaS clouds with CARMA. IEEE Transactions on Parallel and
Distributed Systems, 31(3):733–748, 2020.

[91] L. S. Marcolino, Y. T. dos Passos, Á. A. F. de Souza, A. dos Santos Rodrigues,
and L. Chaimowicz. Avoiding target congestion on the navigation of robotic
swarms. Autonomous Robots, 41(6):1297–1320, 2017.

[92] C. Maus, S. Rybacki, and A. M. Uhrmacher. Rule-based multi-level modeling of
cell biological systems. BMC Systems Biology, 5:166, 2011.

[93] S. Menz, J. C. Latorre, C. Schütte, and W. Huisinga. Hybrid stochastic-
deterministic solution of the chemical master equation. Multiscale Modeling &
Simulation, 10(4):1232–1262, 2012.

[94] R. C. Merton. Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics, 3(1):125 – 144, 1976.

[95] M. Michaelides, J. Hillston, and G. Sanguinetti. Geometric fluid approximation
for general continuous-time Markov chains. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 475(2229):20190100, 2019.

[96] R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[97] L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and M. Massink. Qualitative
and quantitative monitoring of spatio-temporal properties with SSTL. Logical
Methods in Computer Science, 14(4), 2018.

[98] J. Niño-Mora. Resource allocation and routing in parallel multi-server queues
with abandonments for cloud profit maximization. Computers & Operations Re-
search, 103:221–236, 2019.

[99] J. R. J. R. Norris. Markov chains. Cambridge series on statistical and probabilistic
mathematics; 2. Cambridge University Press, Cambridge, 1998.

[100] I. Nåsell. An extension of the moment closure method. Theoretical Population
Biology, 64(2):233 – 239, 2003.

[101] B. Oksendal. Stochastic Differential Equations (3rd Ed.): An Introduction with
Applications. Springer-Verlag, Berlin, Heidelberg, 1992.

[102] C. C. Pantelides. The consistent initialization of differential-algebraic systems.
SIAM Journal on Scientific and Statistical Computing, 9(2):213–231, 1988.

118 Bibliography

[103] P. Piho and J. Hillston. Fluid approximation based analysis for mode switching
population dynamics. (to be published).

[104] P. Piho and J. Hillston. Policy synthesis for collective dynamics. In 15th In-
ternational Conference on Quantitative Evaluation of SysTems (QEST 2018).
Springer, 2018.

[105] G. D. Plotkin. A structural approach to operational semantics. Report DAIMI-
FN-19, Computer Science Dept, Aarhus University, Denmark, 1981.

[106] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, pages 46–57,
1977.

[107] C. Priami. Stochastic pi-calculus. The Computer Journal, 38(7):578–589, 1995.

[108] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

[109] C. Rackauckas and Q. Nie. DifferentialEquations.jl – a performant and feature-
rich ecosystem for solving differential equations in julia. Journal of Open Research
Software, 5, 05 2017.

[110] C. V. Rao and A. P. Arkin. Stochastic chemical kinetics and the quasi-steady-
state assumption: Application to the Gillespie algorithm. The Journal of Chem-
ical Physics, 118(11):4999–5010, 2003.

[111] J. Ross. A stochastic metapopulation model accounting for habitat dynamics.
Journal of Mathematical Biology, 52(6):788–806, Jun 2006.

[112] M. H. Rothkopf. Scheduling with random service times. Management Science,
12(9):707–713, 1966.

[113] C. Safta, K. Sargsyan, B. J. Debusschere, and H. N. Najm. Hybrid dis-
crete/continuum algorithms for stochastic reaction networks. Journal of Compu-
tational Physics, 281:177–198, 2015.

[114] D. Schnoerr, G. Sanguinetti, and R. Grima. Approximation and inference meth-
ods for stochastic biochemical kinetics—a tutorial review. Journal of Physics A:
Mathematical and Theoretical, 50(9):093001, 2017.

[115] A. Schroeder, B. Trease, and A. Arsie. Balancing robot swarm cost and interfer-
ence effects by varying robot quantity and size. Swarm Intelligence, 13(1):1–19,
2019.

[116] A. Singh and J. P. Hespanha. Lognormal moment closures for biochemical re-
actions. In Proceedings of the 45th IEEE Conference on Decision and Control,
pages 2063–2068, 2006.

[117] W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

[118] D. W. Stroock. An Introduction to Markov Processes, volume 230 of Graduate
Texts in Mathematics. Springer, Heidelberg, 2nd edition, 2014.

Bibliography 119

[119] P. Thomas, N. Popović, and R. Grima. Phenotypic switching in gene regulatory
networks. Proceedings of the National Academy of Sciences of the United States
of America, 111, 2014.

[120] N. M. van Dijk. Uniformization for nonhomogeneous Markov chains. Operations
Research Letters, 12(5):283 – 291, 1992.

[121] N. M. van Dijk, S. P. J. van Brummelen, and R. J. Boucherie. Uniformization:
Basics, extensions and applications. Performance Evaluation, 118:8–32, 2018.

[122] N. Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland
Personal Library. Elsevier Science, 2011.

[123] M. Voliotis, P. Thomas, R. Grima, and C. G. Bowsher. Stochastic simulation of
biomolecular networks in dynamic environments. PLOS Computational Biology,
12(6):1–18, 06 2016.

[124] A. Waserhole and V. Jost. Pricing in vehicle sharing systems: optimization in
queuing networks with product forms. EURO Journal on Transportation and
Logistics, 5(3):293–320, 2016.

[125] P. Whittle. On the use of the normal approximation in the treatment of stochastic
processes. Journal of the Royal Statistical Society. Series B (Methodological),
19(2):268–281, 1957.

[126] C. Zechner, S. Deb, and H. Koeppl. Marginal dynamics of stochastic biochemical
networks in random environments. In European Control Conference, ECC 2013,
Zurich, Switzerland. Proceedings, pages 4269–4274, 2013.

[127] C. Zechner and H. Koeppl. Uncoupled analysis of stochastic reaction networks
in fluctuating environments. PLOS Computational Biology, 10(12):1–9, 12 2014.

[128] X. Zhang, G. Neglia, J. F. Kurose, and D. F. Towsley. Performance modeling of
epidemic routing. Computer Networks, 51(10):2867–2891, 2007.

[129] N. Zon and S. Gilmore. Data-driven modelling and simulation of urban trans-
portation systems using carma. In Leveraging Applications of Formal Methods,
Verification and Validation. Distributed Systems - 8th International Symposium,
ISoLA 2018, Limassol, Cyprus. Proceedings, Part III, pages 274–287, 2018.

Appendix A

Hybrid linear noise theorem

For convenience let us recall the hybrid linear noise theorem stated in Section 4.3.2.

Theorem 5 (Hybrid linear noise approximation). If the initial conditions X̂N (0)→
X̃(0) and ẐN (0)→ Z̃(0) almost surely then for all t < T <∞ the sequence of normalised
processes (X̂N , ẐN) converges weakly to a process (X̃, Z̃) given by(

X̃(t)
Z̃(t)

)
=

 X̃(0) +
∫ t

0 F(X̃(s))ds+N−
1
2
∫ t
0 G(X̃(s))dWs

Z̃(0) +
∑
z,z′(ez′−ez)Nez′−ez

(∫ t
0 gzz′(X̃(s))ds

)
where Ws is the n-dimensional Wiener process and G(x̂) is the diffusion matrix defined
as follows.

G(x̂) =
∑
τ∈T̂z

vτvTτ fτ (x̂) if Z̃(t) = z

As pointed out in Chapter 4 the proof of this fact is a straightforward application
of the work presented in [18] and for that reason we are only going to sketch some of
the main ideas for extending the existing result to our case. The proof relies on the
following statement of the linear noise approximation theorem. As done in Section 2.4.2
let us define a stochastic process VN (t) def= N

1
2
(
X̂N (t)− x̂(t)

)
capturing rescaled fluc-

tuations of the CTMC X̂N around the fluid limit x̂. In addition, consider a Gaussian
process {V(t) ∈ Rn | t ∈ R} with mean E(t) and covariance C(t) given as solutions to
the following ODE systems{

d
dtE(t) = JF(x̂(t))E(t)
E(0) = 0{
d
dtC(t) = JF(x̂(t))C(t) +C(t)JTF(x̂(t)) +G(x̂(t))
C(0) = 0

where JF(x̂(t)) denotes the Jacobian of the limit drift F calculated along x̂(t) and

G(x̂) =
∑
τ∈T̂ N

vτvTτ fτ (x̂)

Theorem 6 (Linear noise approximation theorem). With the above notation suppose
that

lim
N→∞

‖VN (0)−V(0)‖= 0 almost surely

Then VN (t) converges in distribution to V(t).

121

122 Appendix A. Hybrid linear noise theorem

The above differs from the statement of Theorem 2 only in the condition set on
the initial conditions. In particular, it is enough for the convergence of stochastic
fluctuations at time t = 0 to be almost sure rather than sure. To see that let us
observe that the proof of linear noise approximation given in [50] shows that the scaled
fluctuations are follow the equation

VN (t) = E(t)VN (0) +UN (t) +εN (t) +
∫ t

0
E(s)JF(x̂(s))(UN (s) +εN (s))ds

where εN (t) are some defined error terms and UN is a vector of Poisson processes
centered around their expectation and scaled by N−

1
2 . The weak convergence of VN

to V is then shown by proving that the convergence sups≤t |εN (s)| → 0 almost surely
as N → ∞ holds for the error terms and by noting that UN converges weakly to
time-inhomogeneous Brownian motion. Continuous mapping theorem is then used to
recover the weak convergence of VN to V. Note that the almost sure or convergence
in probability of VN (0) to V(0) is enough for the argument to work.

The next step of the proof is to show the following:

Lemma 2. Let X̂N be a sequence of normalised pCTMCs and X̃ = N−
1
2 V + x̂ with

V the limiting noise process defined according to Theorem 6 and x̂ the fluid limit of
X̂N . Moreover, let VN =

√
N(X̂N− x̂). If X̂N (0) converges weakly to X̃(0) and VN (0)

converges weakly to V(0) as N →∞ then

1. X̂N converges weakly as N →∞ to X̃.

2. supposing that TN0 and T0 are the first jump times of stochastic events with rates
λN and λ such that λN → λ uniformly for each compact set of RN then TN0
converges weakly to T0 as N →∞.

3. the state X̂N (TN0) converges weakly to X̃(T0) as N →∞.

Again, the proof of the above facts follows that of an almost identical result in [18].
The proof of Theorem 6 is then concluded via an inductive argument. The idea is
to restrict the attention to the joint process (X̂N

m, Ẑ
N
m) and the hybrid noise process

(X̃m, Z̃m) that perform at most m discrete jumps. Supposing that TN0 and T0 are the
first jump times of the processes ẐNm and Z̃m respectively note that the above lemma
shows the convergence of the sequence of joint processes (X̂N

m, Ẑ
N
m) to (X̃m, Z̃m) up to

the first discrete jump. The processes can then be restarted from the time TN0 and T0
repeating the arguments for the convergence up to the next jump and so on.

Appendix B

Conditional moments

B.1 Proof of Lemma 1
For convenience let us recall the statement of the lemma here.

Lemma 3. For any sufficiently smooth test-function h : Rn→ Rn

d

dt
E [h(X(t)) | z; t]p(z; t) =

∑
x
h(X(t) = x) d

dt
p(x,z; t) +

∑
x
p(x,z; t) d

dt
h(X(t) = x)

(B.1)

Proof. Consider a sufficiently smooth test function h : Rn→Rn. First by the chain rule
and the definition of conditional expectations we have the following.
d

dt

(
E
[
h(X(t)) | Z(t) = z

])
p(z; t)

= E [h(X(t)) | Z(t) = z] d
dt
p(z; t) +p(z; t) d

dt
E [h(X(t)) | Z(t) = z]

=
∑

x
h(X(t) = x)p(x; t | z; t) d

dt
p(z; t) +p(z; t) d

dt

∑
x
h(X(t) = x)p(x; t | z; t)

=
∑

x
h(X(t) = x)p(x; t | z; t) d

dt
p(z; t) +p(z; t)

∑
x
h(X(t) = x) d

dt
p(x,z; t)

+p(x,z; t) d
dt
h(X(t) = x)

Second, again by the chain rule, note that

p(x; t | z; t) d
dt
p(z; t) = d

dt
p(x,z; t)−p(z; t) d

dt
p(x; t | z; t)

Thus we get the following that concludes the proof.
d

dt

(
E
[
h(X(t)) | Z(t) = z

])
p(z; t)

=
∑

x
h(X(t) = x)

[
d

dt
p(x,z; t)−p(z; t) d

dt
p(x; t | z; t))

]

+p(z; t)
∑

x
h(X(t) = x) d

dt
p(x,z; t) +p(x,z; t) d

dt
h(X(t) = x)

=
∑

x
h(X(t) = x) d

dt
p(x,z; t) +

∑
x
p(x,z; t) d

dt
h(X(t) = x)

123

124 Appendix B. Conditional moments

B.2 Conditional moments for the running example
Equations for probability density of the mode-switching process Z(t).

d

dt
p(z = 0; t) =−p(z = 0; t)µ4(0, t)rs

d

dt
p(z = 1; t) = p(z = 0; t)µ4(0, t)rs

Equations for the first order conditonal moments (conditional means) of the population
variable X(t).

p(z = 0; t) d
dt
µ1(0, t) = p(z = 0; t)

[
− rsc14(0, t) + 1

2µ2(0, t)rm−µ1(0, t)rm
]

p(z = 0; t) d
dt
µ2(0, t) = p(z = 0; t)

[
− rsc24(0, t)−µ2(0, t)rm+µ1(0, t)rm+ 1

2µ3(0, t)rm
]

p(z = 0; t) d
dt
µ3(0, t) = p(z = 0; t)

[
− rsc34(0, t) + 1

2µ2(0, t)rm+µ4(0, t)rm−µ3(0, t)rm
]

p(z = 0; t) d
dt
µ4(0, t) = p(z = 0; t)

[
− rsc44(0, t) + 1

2µ3(0, t)rm−µ4(0, t)rm
]

p(z = 1; t) d
dt
µ1(1, t) = p(z = 0; t)rs

[
c14(0, t)−µ1(1, t)µ4(0, t) +µ1(0, t)µ4(0, t)rs

]
+p(z = 1; t)

[
− rmµ1(1, t)

]
p(z = 1; t) d

dt
µ2(1, t) = p(z = 0; t)rs

[
c24(0, t)−µ2(1, t)µ4(0, t) +µ2(0, t)µ4(0, t)rs

]
+p(z = 1; t)

[
µ1(1, t)rm−µ2(1, t)rm

]
p(z = 1; t) d

dt
µ3(1, t) = p(z = 0; t)rs

[
c34(0, t)−µ3(1, t)µ4(0, t) +µ3(0, t)µ4(0, t)

]
+p(z = 1; t)

[
µ2(1, t)rm−µ3(1, t)rm

]
p(z = 1; t) d

dt
µ4(1, t) = p(z = 0; t)rs

[
c44(0, t)−µ4(1, t)µ4(0, t) +µ4(0, t)2

]
+p(z = 1; t)

[
µ3(1, t)rm

]

Appendix C

Filtering distribution

We are going to work with the hybrid fluid limit PDMP (x̂, Ẑ), introduced in Sec-
tion 4.3.1, of a mode-switching population system and derive the evolution equation
for the filtering distribution πt(z′)

d

dt
πt(z′) = d

dt
p(z′; t | xt−) (C.1)

corresponding to the probability that the mode-switching process Ẑ is in state z′ given
a sample trajectory xt− of the population process. As mentioned Section 5.3 of this
thesis the derivation of the filtering distribution follows the same outline as given for
continuous time Markov chains in [28] and is presented here mainly for completeness of
presentation. The piece of background information needed in the following is how the
transition densities p(x̂, ẑ; t | x,z;s) of the considered PDMPs depend on time t. This is
characterised by the following forward or Fokker-Planck equation derived for example
in [12].

∂

∂t
p(x̂, ẑ; t | x,z;s) = L∗p(x̂, ẑ; t | x,z;s)

=−
∑
i

∂iFz
i (x)p(x,z′; t | xs,z;s)

+
∑
k,k 6=ẑ

[
p(x̂,k; t | x,z;s)qx

Z(k, ẑ)−p(x̂,k; t | x,z;s)qx
Z(ẑ,k)

]

Evaluated at t= s the above gives us

L∗p(x̂, ẑ;s | x,z;s) =
{
−
∑
i∂iFz

i (x) +
∑
k,k 6=z

[
qx
Z(k,z)− qx

Z(z,k)
]

for x̂ = x, ẑ = z

0 otherwise

The differences between the derivation in [28], that makes our case somewhat simpler,
is that we are only going to consider continuous sample paths xt− . The reason for that
is given in Section 4.3.1 where we assumed that the transitions affecting the mode-
switching process do no change the state of the population process directly. In order
to derive the Equation C.1 we are going to consider the value of πt+∆t(z′) and directly

125

126 Appendix C. Filtering distribution

apply the definition of a derivative. First of all, by leveraging Bayes’ rule, we get

πt+∆t(z′) = p(z′; t+ ∆t | x(t+∆t)−)

=
∑
z

p((z′; t+ ∆t)∩ (z; t) | xt− ∩xt+∆t)

=
∑
z

p(z′,xt+∆t; t+ ∆t | z,xt− ; t)πt(z)
p(xt+∆t; t+ ∆t | xt−)

=
∑
z

πt(z) [p(z′,xt; t | z,xt; t) + ∆tL∗p(z′,xt; t | z,xt; t) +o(∆t)]
1 + ∆tEẐ|xt−

[
−
∑
i∂iFẐ

i (x)
]

+o(∆t)
(C.2)

The last line results from the Taylor expansion of p(z′,xt+∆t; t+ ∆t | z,xt− ; t) around
t. Substituting Equation C.2 into the definition of a derivative we get

d

dt
πt(z′) = lim

∆t→0

πt+∆t(z′)−πt(z′)
∆t =

= lim
∆t→0

1
∆t

[∑
z

πt(z) [p(z′,xt; t | z,xt− ; t) + ∆tL∗p(z′,xt; t | z,xt; t) +o(∆t)]
1 + ∆tEẐ|xt−

[
−
∑
i∂iFẐ

i (x)
]

+o(∆t)

−
πt(z′)

[
1 + ∆tEẐ|xt−

[
−
∑
i∂iFẐ

i (x)
]

+o(∆t)
]

1 + ∆tEẐ|xt−
[
−
∑
i∂iFẐ

i (x)
]

+o(∆t)

]
(C.3)

Now let us concentrate on the numerator of the fraction insider the brackets of Equa-
tion C.3. First of all note that p(z′,xt; t | z,xt− ; t) is 1 exactly when z′ = z and zero
otherwise. In particular, we get

πt(z′) +
∑
z

πt(z)
[
∆tL∗p(z′,xt; t | z,xt; t) +o(∆t)

]
−πt(z′)

[
1 + ∆tEẐ|xt−

[
−
∑
i

∂iFẐ
i (x)

]
+o(∆t)

]
=
∑
z

πt(z)
[
∆tL∗p(z′,xt; t | z,xt; t) +o(∆t)

]
−πt(z′)

[
∆tEẐ|xt−

[
−
∑
i

∂iFẐ
i (x)

]
+o(∆t)

]
The above gives the numerator in Equation C.3. Multiplying the numerator by 1

∆t and
taking the limit ∆t→ 0 in both the numerator and denominator of Equation C.3 then
gives us

d

dt
πt(z′) =

∑
z

πt(z)L∗p(z′,xt; t | z,xt; t)−πt(z′)EẐ|xt−
[∑

i

∂iFẐ
i (x)

]
=
∑
z

πt(z)q(z,z′)−πt(z′)
[∑

i

∂iFẑ
i (x)−EẐ|xt−

[∑
i

∂iFẐ
i (x)

]]
as claimed in Section 5.3.

Appendix D

Carma-C model of policy
synthesis example

The purpose of this section is to give an extended description of the example Carma-C
model considered in Chapter 6. The only component in the model is one corresponding
to the robots. We start off by defining the local stores γl of the robot components. The
local stores hold the current location of the robot (loc), set of known target (target)
and the success probability of navigation towards the target (succp).

γl = {loc 7→ {{(x,y)}},
target 7→ {∅}
succp 7→ [0,1],
}

Next, we set up the processes defining the behaviour of robots along with the relevant
store updates.

Explore def=[πr]random∗[◦]〈◦〉{loc 7→ {{R(x,y)}}
+ [πd]directed∗[◦]〈◦〉{loc 7→ {{D(x,y)}}
+ [πr]sense∗[◦]〈M(x,y)〉{target 7→ {∅∪{M(x,y)}}

Listen def=[πr]sense∗[◦]((x,y)){target 7→ {∅∪{(x,y)}}

Robot def=Explore ‖Listen

The broadcast actions random∗ and directed∗ model a random walk and a directed walk
on a graph structure respectively. This is achieved through the use of updates defined
via functions R, D as described in Chapter 6. To recall, random function R maps
the current location of the robot uniformly to any of the locations directly connected
to it. The robot’s location is updated to the singleton set containing the resulting
value. The function D maps the current location to a connected location that is also
closer to the target location (1,1) with probability p corresponding to the attribute
succp. With probability 1− p any of the other directly connected locations is used.
Again the resulting singleton set is assigned as the value domain of location in the
update. The broadcast output action sense∗ models a robot gaining information about
the target location and broadcasting to the collective. The helper function M maps
the target location (1,1) to (1,1) and any other location to the empty set. Finally,
the corresponding input action models the robot being able to receive the broadcast
containing a known target locations.

127

128 Appendix D. Carma-C model of policy synthesis example

The guards are evaluated up to a chosen control action f in the following way.

πr =
{

true if f(γ)(target) = ∅
false otherwise

πd =
{

true if f(γ)(target) = {(1,1)}
false otherwise

Thus, the guards make sure that when the target location is known to the robots they
perform a directed walk towards the target while random walk is performed otherwise.

Components corresponding to the robots are defined as a pair composed of process
description and a store.

RobotComp def= (Robot,γl)

Collective is defined as a composition of N robot components.

Swarm def= RobotComp[N]

Global store γg defines the attributes mover and senser in terms of their value domains.

γg = {mover 7→ [0,∞),
senser 7→ [0,∞),
}

Evolution rule is given in terms of resolved store values, process state of the collective
and current time. Suppose f denotes the action chosen at time t and let γs and γr
denote the sender and receiver store respectively. Firstly, we define

µp(f(γs),f(γs),sense∗) = 1 for all stores γs and γr

In particular, a broadcast message is received with probability 1 by all eligible receivers.
There are no unicast actions in the model so the definition of µw is trivial. Supposing
f(γ)(mover) = rm, f(γ)(senser) = rs and a some fixed constant (chosen to be 0.7 in the
example in Chapter 6 we say that the rates of the actions are given as follows.

µr(f(γ),move∗) = rm×e−a×
x
N for all local stores γ

µr(f(γ),sense∗) =
{
rs for all local stores γ such that f(γ)(loc) = (1,1)
0 otherwise

The global store definitions do as well as the composition of the collective do not change
so µu is again trivial completing the description of the Carma-C model.

	Introduction
	Contributions
	Structure

	Background
	Stochastic population dynamics
	Definitions
	Random time change representation
	Transient analysis

	Hybrid stochastic systems
	Model reduction techniques
	Continuous approximation methods
	Fluid approximation
	Linear noise approximation
	Moment closure approximations

	Formal modelling
	Collective adaptive resource-sharing Markovian agents
	Model checking

	Stochastic decision processes

	Model specification
	Semantics
	Store
	Environment
	Resolving non-determinism
	Interleaving semantics
	Population model

	Policy synthesis

	Approximations for mode-switching dynamics
	Mode-switching population models
	Transition-based partitioning
	Approximations
	Fluid approximation methods
	Linear noise approximation
	Moment based approximations

	Results
	Conclusion

	Heuristic marginalisation based computational strategies
	Marginal dynamics
	Time-inhomogeneous Markov process
	Filtering heuristics

	Fluid approximation
	Direct coupling
	Iterative method

	Linear noise approximation
	Moment closure approximation
	Results
	Conclusions

	Synthesis example
	Carma-C model
	pCTMDP model
	Policy synthesis
	Discussion

	Conclusions
	Bibliography
	Hybrid linear noise theorem
	Conditional moments
	Proof of Lemma 1
	Conditional moments for the running example

	Filtering distribution
	Carma-C model of policy synthesis example

