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Abstract 

Cropland management practices have traditionally focused on maximising the production 

of food, feed and fibre. However, croplands also provide valuable regulating ecosystem 

services, including carbon (C) storage in soil and biomass. Consequently, management 

impacts the extents to which croplands act as sources or sinks of atmospheric carbon 

dioxide (CO2). And so, reliable information on cropland ecosystem C fluxes and yields 

are essential for policy-makers concerned with climate change mitigation and food 

security.  

Eddy-covariance (EC) flux towers can provide observations of net ecosystem exchanges 

(NEE) of CO2 within croplands, however the tower sites are temporally and spatially 

sparse. Process-based crop models simulate the key biophysical mechanisms within 

cropland ecosystems, including the management impacts, crop cultivar, soil and climate 

on crop C dynamics. The models are therefore a powerful tool for diagnosing and 

forecasting C fluxes and yield. However, crop model spatial upscaling is often limited by 

input data (including meteorological drivers and management), parameter uncertainty and 

model complexity. Earth observation (EO) sensors can provide regular estimates of crop 

condition over large extents. Therefore, EO data can be used within data assimilation (DA) 

schemes to parameterise and constrain models. 
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Research presented in this thesis explores the key challenges associated with crop model 

upscaling. First, fine-scale (20-50 m) EO-derived data, from optical and radar sensors, is 

assimilated into the Soil-Plant-Atmosphere crop (SPAc) model. Assimilating all EO data 

enhanced the simulation of daily C exchanges at multiple European crop sites. However, 

the individually assimilation of radar EO data (as opposed to combined with optical data) 

resulted in larger improvements in the C fluxes simulation. Second, the impacts of reduced 

model complexity and driver resolution on crop photosynthesis estimates are investigated. 

The simplified Aggregated Canopy Model (ACM) – estimating daily photosynthesis using 

coarse-scale (daily) drivers – was calibrated using the detailed SPAc model, which 

simulates leaf to canopy processes at half-hourly time-steps. The calibrated ACM 

photosynthesis had a high agreement with SPAc and local EC estimates. Third, a 

model-data fusion framework was evaluated for multi-annual and regional-scale 

estimation of UK wheat yields. Aggregated model yield estimates were negatively biased 

when compared to official statistics. Coarse-scale (1 km) EO data was also used to 

constrain the model simulation of canopy development, which was successful in reducing 

the biases in the yield estimates. And fourth, EO spatial and temporal resolution 

requirements for crop growth monitoring at UK field-scales was investigated. Errors due 

to spatial resolution are quantified by sampling aggregated fine scale EO data on a 

per-field basis; whereas temporal resolution error analysis involved re-sampling model 

estimates to mimic the observational frequencies of current EO sensors and likely cloud 

cover. A minimum EO spatial resolution of around 165 m is required to resolve the 

field-scale detail. Monitoring crop growth using EO sensors with a 26-day temporal 

resolution results in a mean error of 5%; however, accounting for likely cloud cover 
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increases this error to 63%. 
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Lay summary 

Variability in crop yield is strongly determined by climate and management factors. Crop 

growth also generates large land-atmosphere exchanges of carbon dioxide (CO2), which 

is a dominant greenhouse gas. And so, reliable estimates of crop growth and yield, to 

support a growing population, are essential for policy-makers concerned with climate 

change and food security.  

Computer-based crop models mathematically describe the key biophysical processes of 

crop growth in response to regular (e.g. half-hourly to daily) weather observations and 

management. The models can therefore estimate daily crop development, net CO2 

exchanges and yield. However, crop models have often been calibrated at field-scales, and 

thus can lack validity when applied to generate regional-scale estimates. Satellite Earth 

observation (EO) data, on the other hand, can provide information over large areas, which 

can be used to update the crop model estimates. 

The essence of the research compiled within this thesis is to explore crop modelling 

approaches, including the integration of EO data, for spatially upscaling estimates of crop 

vegetation CO2 exchanges and yield. Findings from the four main research chapters can 

be summarised as: 
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1) Data from optical and radar EO sensors can be used to update and improve a crop 

model simulation of daily CO2 exchanges. 

2) A simple model of crop photosynthesis can be calibrated to reproduce estimates 

from a more detailed model. The simple model requires relatively minimal inputs 

and runs at much higher computational speeds and, therefore, could feasibly be 

used to generate regional-scale estimates.  

3) Crop models can produce reasonable regional-scale estimates of yield. Integrating 

models with coarse-scale (1 km) EO data shows potential for improving these 

estimates. 

4) EO sensors that have a spatial resolution of around 165 m can be used to resolve 

the field-scale detail of typical UK croplands. When using multi-temporal optical 

EO data to monitor crop growth, errors from current sensors can be as large as 

63% when accounting for the likely cloud cover over dominant UK growing areas.     
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CHAPTER 1 

General Introduction 

1.1. Cropland ecosystems in the 21st century: the 

importance and key challenges 

Globally, agricultural ecosystems are entirely managed, with farming practices being 

applied on a range of spatial and temporal scales (Porter and Semenov, 2005; Reichstein 

et al., 2013). This agricultural land cover includes croplands – defined throughout this 

thesis as land devoted to the production of cultivated crops (FAO, 2002). At the beginning 

of the 21st century, croplands occupied around 12% of the Earth’s ice-free land surface 

(Wood, 2000; see Figure 1.1) with around 33% and 20% of this land located in Europe 

and North America, respectively (Ramankutty et al., 2008).  
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Figure 1.1: The IIASA-IFPRI global map of the percentage likelihood of croplands for the 

baseline year 2005. Data is derived from merging land cover products that are spatially 

aggregated to 0.0083° (≈ 1 km) resolution. Additional calibrations include the integration of 

national and sub-national cropland statistics from the Food and Agricultural Organisation 

(FAO) and the International Food Policy Research Institute (IFPRI, source: Fritz et al., 2015). 

 

Cropland ecosystems are essential for sustaining human life and environmental well-being 

(Zhang et al., 2007; Robertson et al., 2014). The Millennium Ecosystem Assessment 

(MEA, 2005) classifies ecosystem services into four interrelating categories: provisioning, 

regulating, cultural and supporting services. Traditionally, cropland management 

practices have focused on the provisioning services; most notably maximising yields in 

the production of food, feed, fibre and, more recently, bioenergy (Foley et al., 2005; 

Power, 2010). 

Since the arrival of ‘Green Revolution’ technologies – from around the late 1950s – there 

have been continual developments in agricultural machinery, agrochemicals and 

high-yielding crop cultivars. These advancements have mainly been driven by increased 
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profits for farmers and higher grain yields (Tilman et al., 2001; Gordon et al., 2010). 

Coupled with a 12% increase in the global cropland area (Foley et al., 2005), these 

technological achievements have resulted in a roughly two-fold increase in world grain 

yields over the past 40 to 50 years (Tilman et al., 2001). As a more recent example, wheat 

crop – one of the most important crops grown worldwide – has seen an increase in 

production of around 9% between 1990 and 2010 (FAO, 2015). Consequently, this global 

increase in crop production has generally outpaced population growth in the majority of 

regions (Dorigo et al., 2007). 

Due to the combination of a rising population, dietary change and increasing income, the 

Food and Agricultural Organisation (FAO) of the United Nations estimate that a 70% 

increase in cereal crop yield is required to meet the increase in global food demand 

between the years 2000 to 2050 (Alexandratos and Bruinsma, 2012). Furthermore, Tilman 

et al. (2011) estimates that general food production needs to increase by 100 to 110% by 

2050. Although higher crop production can be achieved through increasing the available 

cropland area, it is estimated that intensification (including increases in the input of 

fertilisers, pesticide and irrigation) will account for 80% of the future yield increases 

(Alexandratos and Bruinsma, 2012). However, there is a growing awareness of the 

detrimental impacts of intensive cropland management on the supporting ecosystem 

services, such as biodiversity and nutrient cycling, and regulating ecosystem services, 

including water and climate regulation (Power, 2010; Robertson et al., 2014). 
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The role of croplands in regulating global climate change, through greenhouse gas (GHG) 

emissions, is of notable concern (Smith et al., 2014). In 2005, total agricultural production, 

including croplands, accounted for an estimated 12-14% of global annual anthropogenic 

GHG emissions (IPCC, 2007). Among the principal GHGs affected by croplands is that 

of carbon dioxide (CO2). This CO2 is mainly released through disturbances to the soil and 

biomass carbon (C) pools, for instance tillage/ploughing and the management of crop 

residues (Ceschia et al., 2010).  

Feeding a growing population whilst adapting to a more sustainable means of production 

– required to preserve essential ecosystems services – pose major challenges to 

policy-makers concerned with food security and climate change (Foley et al., 2011; 

Bajzelj et al., 2014; Johnson et al., 2014). At regional to global scales, the trade-offs 

associated with management practices are further compounded by spatial and temporal 

variability in climate, culture and socio-economic conditions (Power, 2010). This includes 

variability in planting and harvest dates, crop rotation, tillage, fertilisation, irrigation and 

pest control (Lokupitiya et al., 2009). For instance, the European Union (EU-28), with 

croplands occupying around a quarter (24.7%) of the land area (Eurostat, 2013b), presents 

a mosaic of crop varieties, developmental stages and growth periods. This diversity is a 

consequence of spatio-temporal variations in soil and climatic conditions, together with 

local and regional production requirements. And so, this variability results in a broad 

range of management techniques – causing uncertainty when generalising the impacts of 

specific activities on crop C budgets (Osborne et al., 2010).  
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1.2. Crop C budgets and the impacts of management 

When compared to unmanaged natural vegetation, crops have a stronger uptake of 

atmospheric CO2 as they are generally more productive due to intensive management 

(MacBean and Peylin, 2014). Specifically, crop gross primary production (GPP) gained 

through biomass production is estimated to contribute around 15% of global CO2 fixation 

(Malmstrom et al., 1997). However, in contrast to the volume of literature on crop yield, 

research investigating crop C budget processes and emissions associated with 

management has been scarce (Sus et al., 2010; Ciais et al., 2011).   

Climate and management practices strongly influence the key crop C cycle processes, 

including the net fixation of atmopheric CO2, termed net ecosystem exchange (NEE). 

NEE expresses the balance between the total amount of C released through total 

ecosystem respiration (𝑅𝑅total) and the uptake of atmospheric CO2 used in photosynthesis 

(i.e. GPP): 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅total − 𝐺𝐺𝐺𝐺𝐺𝐺 

where 𝑅𝑅total is the sum of autotrophic respiration (𝑅𝑅a, the respiration from vegetation) and 

heterotrophic respiration (𝑅𝑅h, total respiration from animals and microbes): 

𝑅𝑅total = 𝑅𝑅a + 𝑅𝑅h 

Approximately half of the GPP is used by 𝑅𝑅a for the maintenance and production of new 

Equation 1.1 

Equation 1.2 
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vegetation (Waring et al., 1998), and the remaining fraction of GPP, defined as the net 

primary production (NPP), is partitioned throughout the vegetation organs (Penning de 

Vries et al., 1989). 

𝑁𝑁𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑅𝑅a 

In cropland ecosystems, further to the release of C due to 𝑅𝑅total (including 𝑅𝑅h of the soil 

and vegetation micro-organisms), a fraction of C is exported through harvest removal 

(Figure 1.2). However, some C remains as crop residue and soil organic carbon (SOC). 

Management modifies the SOC pool either by removing C through 𝑅𝑅a, due to 

tillage/ploughing, or the additional C by applying manure (Ciais et al., 2011). And so, 

through increasing crop residue in soils, farming practices can potential be adapted to 

sequester atmospheric CO2, thereby mitigating the negative impacts of climate change 

(Smith et al., 2007; Zhang et al., 2015).   

Equation 1.3 
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Figure 1.2: Schematic representation of the key components of the cropland C cycle, 

including ‘off-site’ fluxes of exported C (crops 25% and milk/meat products 10%) and imported 

C (livestock feed 35%, fuel and fertilisers 10%). Within the cropland ecosystem (i.e. field) 20% 

of total GPP is allocated to crop residuals (CR). About 15% of the total crop harvest C is 

allocated to feed livestock, 20% of which is then respired by the livestock and a further 20% 

is returned to the cropland ecosystem as organic fertiliser (OF) (adapted from: Smith et al., 

2010). 

1.3. Crop C budget measuring and modelling 

approaches 

Reliable information on the magnitude and spatial variability of C fluxes across cropland 

landscapes are essential for understanding the processes that drive the crop C cycle (Sus 

et al., 2010; Zhang et al., 2015). In recent decades, eddy-covariance (EC) flux towers have 

been used to provide direct NEE flux measurements at plot/field-scales (Baldocchi, 2003; 



GENERAL INTRODUCTION 

8 

Ceschia et al., 2010; Smith et al., 2010; Xiao et al., 2011). EC data, such as that available 

from the Global FLUXNET regional network (fluxnet.ornl.gov, Figure 1.3), is recorded 

at high frequencies within the spatial extents of the sensor ‘footprint’, which can vary from 

hundreds of meters to several kilometres due to changeable wind speed and direction 

(Schmid, 1994). Although EC datasets are available for multiple locations, crop types, 

seasons and climate regimes, globally the tower sites are sparsely distributed and C fluxes 

remain inherently under-sampled (Zheng et al., 2014). Complex terrain and typically 

heterogeneous spatial distributions of vegetation within the footprint (e.g. multiple fields 

and hedgerows) also undermines the assumptions involved with the EC approach, which 

causes uncertainty in NEE observations (Baldocchi, 2003; Finnigan et al., 2003; Hollinger 

and Richardson, 2005). Further uncertainty arises from empirically estimating values 

when gap-filling incomplete time-series datasets (Williams et al., 2005; Osborne et al., 

2010) 

Figure 1.3: EC flux towers in a maize/wheat crop rotation field located in Lamasquère, 

south-west France (source: fluxnet.ornl.gov). 
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Approaches to modelling the impacts of variable environmental drivers on the cropland C 

budget include empirical and process-based models. Empirical models assume a statistical 

relationship between an agronomic variable (e.g. biomass or yield) and a predictor, such 

as mean temperature (e.g. Lobell and Burke, 2010; Lobell, 2013) or Earth observation 

(EO) vegetation indices (e.g. Mkhabela et al., 2011; Kogan et al., 2013). When compared 

to process-based approaches, empirical models require less input data and are generally 

more straightforward to implement. However, since the calibration is based on historical 

observations, empirical models can lack validity when applied to other growth seasons, 

crop cultivars and locations that differ to those used to develop the statistical relationship 

(Fang et al., 2011; Casa et al., 2012; Ma et al., 2013; Huang et al., 2015; Lobell et al., 

2015). 

An alternative to empirical modelling is the use of process-based crop growth models 

(referred to hereafter as crop models). Crop models provide a framework to link 

knowledge of the key biophysical mechanisms within cropland ecosystems (Casa et al., 

2012; Asseng et al., 2013). For instance, these main processes can including soil-plant 

water balances integrated with existing models of leaf-level photosynthesis (e.g. Farquhar 

and von Caemmerer, 1982) and transpiration (Penman-Monteith equation, see Jones, 

1992). The interactions between management, crop genetic traits, soil type and 

meteorology are mathematically described in the models, and their subsequent impacts on 

crop C dynamics (including development and dry-matter partitioning) are simulated 

Figure 1.4).  
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Figure 1.4: Schematic of a basic crop model structure driven by temporally frequent 

(half-hourly to daily) meteorological data. At each model time-step, partitioning of C is 

determined based on the development status and the rate of photosynthesis. The 
photosynthetic rate is determined by crop growth parameters and the degree of light (i.e. solar 

radiation) intercepted by the canopy, which is governed by the LAI and crop growth 

parameters. The partitioned C is allocated to the crop organs (e.g. root, stem, leaves and 

grain) as dry matter (adapted from: Dorigo et al., 2007). 

Crop models, often evaluated using EC data, are typically crop-specific (e.g. 

CERES-Wheat, Singh et al., 2008; and SPAc, Sus et al., 2010). Among the most important 

crop-specific parameters are those affecting the development rate; for instance cardinal 

temperatures and optimum photoperiod, which control the timings of key phenological 
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stages within the vegetative and reproductive phases (Wang and Engel, 1998; Boote et al., 

2013). In the case of winter cereal crop development, models also incorporate the impacts 

of vernalisation – defined throughout this thesis as the exposure of crops to low 

temperatures in order to promote flowering in the following spring months (Streck et al., 

2003). 

Since crop models account for the main vegetation and environmental processes they are 

generally more robust when compared to empirical approaches (Dorigo et al., 2007). 

Additionally, in contrast to the EC method, crop models provide a more complete analysis 

of the crop C balance by simulating the processes (e.g. photosynthesis and respiration) 

that result in gains and losses of C (Boote et al., 2013). And so, the models are a powerful 

tool for diagnosing and forecasting the seasonal variability of crop C fluxes and yield in 

response to climate change (Wong and Asseng, 2006; Sus et al., 2010; Ciais et al., 2011). 

In addition to meteorological driving data, crop models often require large amounts of 

inputs, including that related to soil characteristics, management practices and plant traits. 

Due to the generally high spatial and temporal variability of these model inputs, which 

consequently challenges the capabilities of making direct measurements, this input data is 

rarely available (Launay and Guerif, 2005; Becker-Reshef et al., 2010; Kogan et al., 

2013). Furthermore, when compared to standard land-surface models, detailed crop 

models – simulating complex leaf-level process over multiple canopy layers – typically 

require a large number of parameters (Valade et al., 2013). These parameter values are 
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often unknown, and are therefore based on expert knowledge that can be subjective (Ziehn 

et al., 2012; Rafique et al., 2015) or through model calibration using observations (Tang 

and Zhuang, 2009). And so, parameters uncertainty, combined with the extensive input 

data requirements, often limits the spatial-temporal upscaling of the models (Lobell and 

Burke, 2010; Xu et al., 2011; Ma et al., 2013; Zhao et al., 2013; Huang et al., 2015). 

However, applying crop models at regional to global extents is becoming increasing 

important to support management decisions on issues related to climate change (Challinor 

et al., 2004; Bondeau et al., 2007; Asseng et al., 2011; Rötter et al., 2012) and food 

security (Godfray et al., 2010). 

1.4. Earth observation (EO) cropland applications 

1.4.1. EO data for crop monitoring 

The synoptic, timely and repetitive coverage of satellite EO sensor data, including optical 

reflectance and radar backscatter, can provide spatially and temporally consistent 

information on actual crop growth over large areas (Zhao et al., 2013). The exploitation 

of EO data covering croplands has been an active area of researched since the launch of 

the Multi-spectral Scanner System (MSS) on Landsat 1 in 1972, which was initially used 

for classifying maize and soybean producing areas (Bauer and Cipra, 1973). Continual 

developments in EO sensors, and associated technologies, has led to ever-increasing 

volumes of EO data at higher spatial and temporal resolutions. Consequently, the 

availability of EO data has given rise to a multitude of cropland EO applications – existing 
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across a range of crop types and spatial scales (Delecolle et al., 1992; Fritz et al., 2008; 

Becker-Reshef et al., 2010; Atzberger, 2013; Franch et al., 2015). These EO applications 

generally include yield forecasting (e.g. Mkhabela et al., 2011; Bolton and Friedl, 2013), 

crop condition monitoring (e.g. Zhengwei et al., 2011) and crop mapping (e.g. Conrad et 

al., 2010; Pittman et al., 2010). 

The wide-spread utility of EO data and methods has led to the development of gridded 

products that correlate with crop vegetation, including leaf area index (LAI), fraction of 

absorbed photosynthetically active radiation (FAPAR), soil moisture, normalised 

difference vegetation index (NDVI) and evapotranspiration. Most notably, NDVI (e.g. 

Figure 1.5) and LAI are a good indicator of crop condition and are closely related to other 

agronomic variables of interest, including yield, biomass, crop nitrogen uptake and water 

stress (Mkhabela et al., 2011; Casa et al., 2012). In particular, LAI (defined throughout 

this thesis as the one-sided leaf area per unit horizontal ground area; Campbell and 

Norman, 1989) is one of the most common vegetation canopy variables that are derived 

from EO data. EO LAI products include the eight-day LAI estimates available from the 

MODIS sensor at 1 km spatial resolution since the year 2000 (Knyazikhin et al., 1998; 

Yang et al., 2006). 
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Figure 1.5: Normalised Difference Vegetation Index (NDVI) calculated from a SPOT-6 

multi-spectral imagery acquisition on the 9th March 2014 covering a cropland landscape 

located in Lincolnshire, UK. Field boundaries are included (black lines) using the Ordnance 

Survey MasterMap Topographic Layer features (source of original SPOT-6 image: Airbus 

Defence and Space). 

Past studies have investigated the direct use of EO data for estimating crop production and 

yields (e.g. Becker-Reshef et al., 2010; Mkhabela et al., 2011; Kogan et al., 2013). These 

approaches have been based on empirical relationships between historical yield 

observations and reflectance-based vegetation indices. For instance, the period of 

maximum leaf area of cereal crops coincides with that of flowering and grain filling 
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(Mkhabela et al., 2011), therefore yield is closely correlated with maximum LAI (Forbes 

and Watson, 1992; Franch et al., 2015). For wheat crops, studies also demonstrate a 

positive linear correlation between yield and the seasonal peak NDVI (Tucker et al., 1980; 

Mahey et al., 1993; Smith et al., 1995). Mkhabela et al. (2011) evaluated the potential of 

MODIS NDVI for forecasting the yields of multiple crop types and growing seasons at 

regional-scales. Through regression-based analysis with official crop yield statistics, this 

study demonstrated that MODIS NDVI can be used to predict crop yield to within ±10% 

of the reported yield. Similarly, Becker-Reshef et al. (2010) developed an empirical model 

for forecasting winter wheat yields in Kansas. When this calibrated model was 

independently validated in Ukraine, the forecasted wheat yields for the years 2001 to 2008 

were also within ±10% of the official statistics when applying the model six weeks prior 

to harvest. 

In order to capture the key developmental stages involved with crop growth, EO sensors 

require a high temporal resolution – including daily to weekly observations (Moulin et al., 

1998; Launay and Guerif, 2005). However, the use of high temporal resolution EO data 

is typically at the expense of a reduction in spatial resolution, defined throughout this 

thesis as the ground sampling distance that is within the sensor’s instantaneous field of 

view (Lillesand et al., 2008).  

Previously crop monitoring studies have involved the use of moderate to coarse spatial 

resolution EO sensors (250 m to 1 km, e.g. de Wit and van Diepen, 2007; Xu et al., 2011; 
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Wu et al., 2012; Kogan et al., 2013). Using 250 m spatial resolution MODIS data, 

Wardlow et al. (2007) discriminated individual fields that were at least 32.4 ha in size in 

an area located in the United States Central Great Plains region. Fritz et al. (2008) also 

demonstrated that the MODIS time-series data was suitable for mapping field sizes of 

around 75 ha in a dominant crop producing region in Russia. However, the use of medium 

to low spatial resolution sensors is typically insufficient for retrieving biophysical 

variables at field sizes < 25 ha (Doraiswamy et al., 2004). Such field sizes are typical 

across the European Union (EU-28) where the average size of an agricultural holding is 

only 14.4 ha (Eurostat, 2013a). To resolve the spectral detail, these relatively small and 

fragmented fields require finer spatial resolution sensors, such as imagery available from 

the Landsat-8 sensor that has a pixel size of around 30 m, i.e. smaller than the average 

field across most of the EU-28 regions. 

1.4.2. Radar EO data 

The availability of sufficiently clear observations from optical sensors is challenged by 

the presence of cloud cover – the extent of which varies both temporally and spatially 

(Whitcraft et al., 2015). And so, cloud obscurity can result in observations gaps in a 

multi-temporal analysis of crop growth. However, radar backscatter (σ°) derived from 

Synthetic Aperture Radar (SAR) sensors can provide fine scale observations and, using 

active microwave signals, they are relatively unaffected by clouds. 

Where, optical sensors are sensitive to biochemical properties of crops (including 
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chlorophyll-a), SAR sensors are more responsive to the water content and structural 

elements of the crop, such as the size and shape of leaves and stem (Ulaby et al., 1984). 

Therefore, an approach that utilises data from both sensors, can be complimentary and 

potentially improve the estimation of crop variables (Doraiswamy et al., 2005; Shang et 

al., 2009). 

Past SAR crop monitoring research has focused on the degree of SAR σ° with respect to 

the sensor characteristics, including the wavelength and polarisation (e.g. McNairn, 2008; 

Baghdadi et al., 2009; McNairn et al., 2009). In particular, comparisons have been made 

between different radar frequency bands, the majority of which have been conducted using 

C-band (4 to 8 GHz). Generally, higher frequencies, such as the X-band (8 to 12 GHz) 

and C-band, interact with the heads of crops in the upper part of the canopy; whereas lower 

frequencies, such as L-band (1 to 2 GHz), penetrate deeper into the canopy (Inoue et al., 

2002; Jiao et al., 2010). Experiments in Baronti et al. (1993) concluded that agricultural 

crops were not visible at the P-band (0.25 to 0.5 GHz) frequency; however, the higher 

frequency C-band provided a significant amount of backscatter, even for moderate crop 

growth. 

In addition to the waveband, the interaction of a SAR sensor signal with a crop canopy is 

also dependant on the horizontal and vertical structure of the target vegetation (Shang et 

al., 2009). Therefore, investigations have also been carried out with different polarisations 

(i.e. orientations) of the transmitted and received signal (McNairn et al., 2002). Generally, 
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differences in the vegetation structure, through changes in crop growth, can be detected 

with vertically (VV) polarised signals; whereas, horizontally (HH) polarised SAR signals 

are less attenuated by vegetation and therefore penetrate the canopy further – providing 

more information regarding the soil conditions (Ferrazzoli et al., 1999; McNairn and 

Brisco, 2004). Using a C-band SAR sensor (ERS-1), Paloscia (2002) observed that 

VV-polarised σ° of narrow-leaf crops (e.g. wheat) decreases with increasing biomass, 

whereas the σ° of broad-leaf crops (e.g. sunflowers) increases with biomass. The high 

attenuation rates of VV-polarised signal can partly be attributed to the predominantly 

vertical orientation of the stems and ears of the narrow-leaf crop structure (Ferrazzoli et 

al., 1999). Furthermore, Ferrazzoli et al. (1999) found that σ° is dominated by soil early 

in the season and during the drying stages, whereas leaf scattering is more dominant in 

the middle of the season. 

1.5. Integrating EO data and crop models  

When compared to crop models, EO data cannot directly resolve the environmental 

interactions and mechanisms of crop growth dynamics. However, EO data can estimate 

the condition and phenology of vegetation over large areas (Xu et al., 2011). And so, 

EO-derived data can potentially be exploited to initialise and parameterise crop models; 

thereby supporting their spatial and temporal upscaling (de Wit and van Diepen, 2007; Xu 

et al., 2011). EO data can also compliment models by correcting for processes that are 

either incorrectly represented or not included in the model structure (Huang et al., 2015). 

Such processes can include those relating to land management activities and disturbance 
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events – for instance, damage caused by frost, wind, hail, disease, weeds and pests – that 

could lead to variability in cropland C fluxes and yield (Xiao et al., 2011; Zhao et al., 

2013). 

Several model-data fusion approaches for integrating crop models with EO data during 

the growing season have been reviewed (e.g. Delecolle et al., 1992; Clevers et al., 1994; 

Bouman, 1995; Fischer et al., 1997; Moulin et al., 1998; Dorigo et al., 2007; Dente et al., 

2008). Generally, past studies make a distinction between model forcing and data 

assimilation (DA) strategies: calibration (or re-initialisation) and updating (Figure 1.6). 

The forcing approach involves the direct use of EO data; thus replacing the modelled value 

at either some or all of the time-step.  A key issue with the forcing method is that the EO 

data are assumed to be error-free (Ines et al., 2013). Furthermore, due to satellite orbital 

parameters and cloud cover, if replacing all of the modelled values, the EO temporal 

frequency is typically insufficient to match that of the model time-steps and some 

interpolation is necessary, which can introduce uncertainty (Dorigo et al., 2007; Yuping 

et al., 2008).  
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Figure 1.6: Approaches for integrating crop models with EO time-series estimates of the 

model state variables (e.g. LAI), including (a) calibration (or re-initialisation), (b) forcing and 

(c) updating (adapted from: Dorigo et al., 2007). 

DA methods have been applied to constrain simple models, or model components, with 

observations (Smith et al., 2013; Luo et al., 2015). The calibration DA method (also 

known as variational assimilation) includes re-initialising (e.g. sowing or emergence date, 

Brown and de Beurs, 2008; Yuping et al., 2008; Sus et al., 2013) or re-parameterising 

(e.g. canopy and growth parameters) crop models until an optimum agreement is achieved 

between the simulated state variables and the EO time-series estimates (Delecolle et al., 

1992; Bouman, 1995; Dorigo et al., 2007; Ines et al., 2013). For instance, Xu et al. (2011) 

optimised emergence date and minimum temperature of the WOFOST model based on 
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MODIS LAI for improving regional winter wheat yield estimates. 

In recent years, studies have evaluated the assimilation of EO data and crop models using 

the updating DA approach (also known as sequential DA). This approach is based on the 

assumption that updating the state variable at one time-step improves the simulation 

accuracy at subsequent time-steps where EO measurements are unavailable (Dorigo et al., 

2007). Since uncertainties exist in both models and observations, updating DA algorithms 

aim to provide an optimum solution for combining models and observations when 

minimising the uncertainty of a state variable. For instance, the ensemble Kalman Filter 

(EnKF, Evensen, 2003) algorithm assigns the relative weight of the model and observation 

uncertainty in the calculation of updated state estimates. And so, accurately determining 

the uncertainty in models and observations is of fundamental importance when applying 

the sequential DA algorithm (Williams et al., 2005; Zhao et al., 2013). 

Among the updating DA algorithms used for integrating EO data and crop models (e.g. 

particle filter, Kalman Filter) the EnKF algorithm is one of the most widely used (Ines et 

al., 2013). The EnKF is based on Bayes’ theorem where new observations are used to 

update the probability of an estimate. The algorithm represents the model and observation 

uncertainty with a Monte Carlo ensemble (i.e. probability distribution) around the mean 

state variable. The EnKF then produces a probabilistic estimate of the state variable by 

combining the forecasted and observed values. 

Past studies, have used the EnKF for providing sequential updates of LAI with the aim of 
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improving estimates of yield (Ines et al., 2013; Zhao et al., 2013; Li et al., 2014; Huang 

et al., 2016) and net C fluxes (e.g. Revill et al., 2013, see Chapter 2; Sus et al., 2013). 

Zhao et al. (2013) demonstrated the EnKF algorithm for coupling MODIS LAI and the 

pyWOFOST model and successfully reducing errors in maize yield estimates at 22 (out 

of 24) sites located in China. In particular, with the assimilation of LAI, Zhao et al. (2013)  

achieved improvements in yield estimates at sites that were exposed to adverse 

meteorological conditions. Research in de Wit and van Diepen (2007) investigated the 

assimilation of soil moisture; specifically, the EnKF was applied to assimilate soil water 

index estimates to reduce uncertainties in the WOFOST model regional-scale maize yield 

estimates. Although assimilating soil moisture improved estimates for the majority of 

regions, the course-scale (~ 25 km) scatterometer derived data used by de Wit and van 

Diepen (2007) was unable to resolve small-scale land management practices – notably 

irrigation systems. Ines et al. (2013) applied the EnKF to assimilate AMSR-E soil 

moisture and MODIS LAI into the DSSAT-CSM-Maize model for simulating 

multi-annual (2003-2009) yields in Story County in the United States. When compared to 

observations, only slight improvements were achieved when assimilating the LAI and soil 

moisture independently. However, the yield estimates improved more when LAI and soil 

moisture were assimilated simultaneously.  

1.6. Thesis overview and key research questions 

The overarching aim of this thesis is to address the challenges associated with the spatial 

upscaling of crop models – in particular the limitations due to parameter uncertainty, 
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model complexity and input data requirements. Four key interrelated research chapters 

(Chapters 2, 3, 4 and 5) evaluate approaches that could support the scaling (from fields to 

regional extents) of crop C budget models (Figure 1.7). 

Figure 1.7: Structure of thesis with arrows indicating links between chapters. 

Chapter 2 describes the assimilation of EO-derived LAI estimates, using the EnKF DA 

algorithm, for sequentially updating the Soil-Plant-Atmosphere crop (SPAc) model of 

crop development and C fluxes. Data from high spatial resolution (20-30 m) optical and 

radar EO sensors are used to empirically retrieve LAI estimates within the winter wheat 

growing seasons at six European field sites. The performance of SPAc (both with and 

without the DA) for estimating LAI, NEE and yield is evaluated using field-scale 
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observations of C stocks and fluxes. The key research questions addressed are: 

1) To what extent can the assimilation of EO-derived LAI improve the NEE flux

estimates of winter cereal crops at the field-scale?

2) Is the model DA framework valid for multiple European cropland sites?

Chapter 3 determines the impacts of reduced model complexity and driver resolution when 

simulating winter cereal crop photosynthesis. The simplified Aggregated Canopy Model 

(ACM) was used to simulate daily photosynthesis using minimum driving data. ACM is 

calibrated based on estimates from the detailed SPAc model, which simulates leaf-level 

processes at half-hourly time-steps across multiple canopy layers. The calibrated ACM 

outputs are compared to SPAc and independent photosynthesis estimates, which were 

derived from EC data. Both models are also evaluated when driven by local and gridded 

meteorology data to answer the following research questions: 

3) How does model complexity influence estimates of photosynthesis?

4) How do single-site and multi-site photosynthesis calibrations compare across

European field sites?

5) How do the complex and simple model photosynthesis estimates compare when

driven by gridded atmospheric re-analysis data?

Chapter 4 uses a novel model-data fusion framework for the regional and multi-annual 
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(2000-2013) assessment of UK winter wheat yields. Spatial datasets delineating wheat 

growing areas are used to extract 8-day 1 km MODIS LAI. The relationship between the 

MODIS LAI and official regional yield statistics was quantified. The use of MODIS LAI 

for constraining the crop model yield estimates was also evaluated using the yield data.  

6) What is the empirical relationship between MODIS LAI and crop yields across

UK regions?

7) What is the accuracy of grid-scale crop model yield estimates when aggregated

to regional-scales?

8) Can MODIS LAI be used to constrain and improve the model estimates of

yield?

Chapter 5 quantifies errors associated with the spatial and temporal resolutions of optical 

EO sensors when resolving crop growth at UK field-scales. Fine-scale (5 m) images were 

spatially aggregating to simulate a continuum of images from medium to coarse-scale EO 

sensors. To approximate errors due to spatial resolution, per-field samples were extracted 

from the aggregated datasets and compared to that from the fine-scale image. Temporal 

resolution errors were estimated by removing LAI estimates from a daily LAI dataset – 

generated using a crop model – in order to mimic the temporal resolution of current EO 

sensors.  LAI values were further removed on potentially cloudy days. The filtered LAI 

time-series are then statistically compared to the original LAI time-series. The quantified 
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errors were used to solve the questions: 

9) What is the minimum EO sensor spatial resolution required to monitor crops at

field-scales that are characteristic of UK agriculture?

10) How does temporal resolution and likely cloud cover influence the

effectiveness of optical EO sensors for tracking winter wheat crop growth over

a cropland landscapes?

11) What are the expected benefits of the dual Sentinel-2 constellation (i.e.

Sentinel-2A and 2B) for multi-temporal crop monitoring at UK field-scales?
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2.1. Introduction 

Agricultural intensification over the past 40 to 50 years, achieved by ‘Green Revolution’ 

technologies and an increase in cropland area (Foley et al., 2005), has resulted in an 

approximate doubling in worldwide cereal production between 1970 to 2010 (FAO, 

2015). Through changes to carbon (C) storage and emissions – associated with 

management activities – croplands also provide opportunities for climate change 

mitigation (Smith et al., 2007; Power, 2010; Zhang et al., 2015). In 2012, around one 

quarter (24.7%) of the European Union (EU-27) land area was occupied by croplands 

(Eurostat, 2013). This land area presents a mosaic of crop cultivars, phenological stages 

and growth periods due to spatio-temporal variations in soil and climatic conditions. In 

the EU, spatial variability in regional-scale crop growth and production is further driven 

by changes in the Common Agricultural Policy. These environmental and policy changes 

result in a broad range of cropland management techniques (e.g. tilling intensity, use of 

fertilisers and irrigation) causing uncertainty when generalising the impact of specific 

activities on crop C budgets (Osborne et al., 2010).  

There is considerable uncertainty involved in quantifying C dynamics, particularly when 

identifying whether, and under what conditions, landscapes act as sources or sinks of C 

(Quaife et al., 2008). Flux towers can provide measurements of the net ecosystem 

exchanges (NEE) at local scales (~1 km2) via the eddy-covariance (EC) technique 

(Baldocchi, 2003). However, complex terrain and heterogeneous spatial distributions of 



CHAPTER 2 
 

29 
 

vegetation within the sensor ‘footprint’ undermine the assumptions of the EC technique, 

which introduces measurement uncertainty (Hollinger and Richardson, 2005). Globally 

the tower sites are also sparsely distributed and data-gaps are always present. Where EC 

towers provide direct measurements of the net land-atmosphere CO2 exchanges only, a 

more complete analysis of crop C dynamics and yield relies on simulations using 

process-based crop models (Jones et al., 2003; Boote et al., 2013; Zhang et al., 2015), 

which are often linked to C flux observations for validation. The models require reliable 

input parameters, including management interventions, plant traits, soil properties and 

meteorological driving data at points within the model domain. Therefore parameter 

estimates are the largest source of model uncertainty (Launay and Guerif, 2005) and a 

particular challenge is to derive these parameters across the model spatial and temporal 

extents. 

Earth observation (EO) data can be combined with models to provide objective updates 

of state variables describing crop condition over landscape scales. This model-data fusion 

can be achieved via data assimilation (DA) algorithms that are based on the assumption 

that estimates from neither observations nor models are perfect but a combination of the 

two, weighted by a specified uncertainty, will produce more realistic model updates 

(Williams et al., 2005). Research has demonstrated how DA can link regional-scale 

models with moderate to coarse spatial resolution EO sensors (250 m to 1 km, e.g. de Wit 

and van Diepen, 2007; Xu et al., 2011; Wu et al., 2012; Kogan et al., 2013; Huang et al., 

2016). These sensors have high temporal resolutions – from daily to weekly time-scales – 
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that are suitable for capturing the key developmental stages of crop growth (Launay and 

Guerif, 2005; Whitcraft et al., 2015a). However, the spatial resolution of these sensors is 

typically insufficient for retrieving biophysical variables at field sizes less than 25 ha 

(Doraiswamy et al., 2004), such as fields that are characteristic of European croplands. 

These smaller fields require higher spatial resolution sensors (e.g. < 20 m, SPOT 2–6). 

However, the use of high resolution EO sensors is typically at the expense of a lower 

temporal resolution – potentially leading to gaps in acquisitions during critical growth 

stages. The presence of clouds (i.e. cloud cover obscurity) can also affect the availability 

of suitable optical EO imagery (Whitcraft et al., 2015b); thus resulting in further 

reductions in the number of observations. The spatial/temporal resolution trade-off, 

compounded with the issue of cloud cover obscurity, can partly be addressed by using 

Synthetic Aperture Radar (SAR) sensors. SAR provide high resolution data and, since 

they operate using microwave energy, SAR sensors are relatively unaffected by cloud 

cover. Furthermore, where optical EO sensors are sensitive to the biochemical properties 

of crops, SAR sensors are more responsive to the water content and structural elements of 

the vegetation, such as the size and shape of leaves (Shang et al., 2009). 

In this research we demonstrate a framework for the assimilation of leaf area index (LAI) 

estimates, retrieved from optical and SAR EO sensors, to update the LAI simulated by a 

cereal crop model of C dynamics over European croplands. Our specific objectives were 

to: first, determine the potential of a DA technique for improving the simulated daily NEE 

fluxes, along with the at-harvest cumulative NEE, of winter wheat crops at the field-scale. 



CHAPTER 2 
 

31 
 

The accuracy of the DA, when assimilating optical and SAR LAI estimates individually 

and synergistically, is evaluated by comparing model outputs to independent observations 

from flux towers at European sites. Second, establish if the same methodology (including 

model calibrations) is applicable for improving the relationship between the simulated and 

observed values at multiple European field sites; thereby providing a proof-of-concept for 

future spatial upscaling activities. And so, we address the following research questions: 

1) To what extent can the assimilation of EO-derived LAI improve NEE flux 

estimates of winter cereal crops at the field-scale? 

2) Is the model DA framework valid for multiple European cropland sites? 

Innovations of this study include the sequential assimilation of data derived from both 

optical and SAR high spatial resolution EO sensors, thus increasing the number of 

within-season observations. It is hypothesised that the multi-sensor approach improves 

the model performance at the field-scale by more effectively tracking the canopy 

development of cereal crops, which is critical for seasonal C balances (Sus et al., 2010). 

2.2. Data and Methods 

This section first presents an outline of the study sites and data for driving and validating 

the model framework. Second, a description of the pre-processing and LAI retrieval 

approaches applied to the EO data are provided. Third, a brief overview of the SPAc model 

is given along with details on the DA algorithm implemented in this research. 
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2.2.1. Study sites and data 

This study investigates one winter wheat (Triticum aestivum) growing season at six 

different European field sites (Figure 2.1); located in France (Auradé, Lamasquère and 

Grignon), Germany (Klingenberg and Gebesee) and Switzerland (Oensingen). These 

specific crop sites and seasons were selected as they were also used by Sus et al. (2010) 

in the development of the crop C cycle model used in this study; thereby allowing 

comparisons to this previous research. 

 
Figure 2.1: Map showing the locations of six European winter wheat crop sites/seasons. 

 

As well as different management techniques, the sites vary in latitude (43.5-51.1°N) and 
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longitude (1.1-13.5°E) and show significant variations in temperature (annual average 6 

to 11 °C) and precipitation (mean annual values from 327 to 1051 mm). Consequently, 

the sites had different growing periods, in terms of both the sowing and harvest date and 

the overall length of the growing season (i.e. sowing to harvest) – ranging from 245 to 

346 days. Field sizes also varied from 1.5 to 97.6 ha (Table 2.1), and the terrain across 

each field site can be considered level to very gently sloping. 

Table 2.1: List of study sites and meteorological observations between sowing and harvest, 

including growth period length (from sowing to harvest), average temperature (Av. temp.) and 

precipitation (Precip.) for winter wheat crop seasons covering years from 2005 to 2007. Also 

included are the number of multi-temporal SPOT-2/4 and ERS-2 EO scenes that were 

available for this analysis. 

 

 

For each of the cropland sites, data was sourced from the Global FLUXNET database 

Site

Field 

size 

(ha.)

Sowing 

date

Harvest 

date

Period 

(days)

Av. 

temp. 

(°C)

Precip. 

(mm)

SPOT 2/4 

scenes

ERS-2 

scenes

Auradé 22.35 27.10.05 29.06.06 245 9.7 374 3 4

Grignon 19.45 21.10.05 15.07.06 267 8.2 327 3 3

Lamasquère 12.11 18.10.06 15.07.07 270 11.3 531 5 5

Klingenberg 97.60 25.09.05 06.09.06 346 6.0 607 3 6

Oensingen 1.50 19.10.06 16.07.07 270 10.2 1051 0 6

Gebesee 93.50 09.11.06 07.08.07 271 10.6 447 4 4
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(fluxnet.ornl.gov), which included EC daily NEE flux tower measurements made 

throughout the growing seasons. The NEE datasets consisted of aggregates of half-hourly 

observations. Gap-filling was applied to the original data using the Marginal Distribution 

Sampling method (Reichstein et al., 2005). However these datasets were filtered such that 

only days comprising of aggregates of original data (i.e. days consisting of 48 observations 

without gap-filled estimates) were used in this analysis, consequently between 15% and 

45% of the values were rejected.  

Meteorological observations collected at each site, used to drive the crop C cycle model, 

included half-hourly radiation, temperature, wind speed, humidity and precipitation. 

Cartographic information detailing the physical extents of the FLUXNET field sites were 

digitised and subsequently used in the processing and extraction of EO data. Additional 

site information, recorded at dates during the crop growing seasons, included soil texture 

data (i.e. clay/sand ratio), site management (e.g. sowing/harvest dates and applied 

fertilisers), crop yield and LAI. These LAI observations, used to evaluate the model 

performance and to calibrate the EO LAI retrieval algorithms, were available for all sites 

except for Gebesee. 

2.2.2. Earth observation LAI retrieval 

Earth observation data and pre-processing 

A total of 18 SPOT (Satellite Pour l'Observation de la Terre) cloud-free images and 28 

ERS-2 (European Remote Sensing) SAR scenes (PRI data format) were sourced from 
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ESA under a Category-1 agreement. The specific EO scenes were selected to cover all 

study sites and growing seasons (Table 2.1). The level-2A processed SPOT images 

consisted of a combination of SPOT-2 and SPOT-4 data. The multi-temporal SPOT scenes 

were sourced for the growing seasons at all sites with the exception of Oensingen where 

sufficiently cloud-free images were unavailable. Each SPOT scene had a spatial resolution 

of 20 m and included multi-spectral measurements, centred on green (500–590 nm), 

visible red (610-680 nm) and near-infrared (790-890 nm) wavelengths. 

For each site, pre-processing of the SPOT scenes included applying a geometric correction 

to one scene. Using the Universal Transverse Mercator (UTM) coordinate system, this 

process involved correcting the image to within one SPOT pixel (20 m), using the digitised 

field boundaries and the nearest-neighbour resampling algorithm. Using the single-date 

geo-referenced scene, image-to-image geometric registration was then applied to the 

remaining multi-temporal images. 

For each pixel (p), the SPOT image pixels were converted from the raw radiometric digital 

numbers (DN) to top-of-atmosphere radiance (L) for each spectral band (b) using the 

absolute radiometric calibration coefficients (i.e. GAIN and BIAS) available in the 

imagery metadata: 

𝐿𝐿b(p) =
𝐷𝐷𝐷𝐷p
𝐺𝐺𝐺𝐺𝐺𝐺𝐷𝐷b

+ 𝐵𝐵𝐺𝐺𝐺𝐺𝐵𝐵b 

The time-series of images for each site were normalised to reduce the effects of variable 

Equation 2.1 
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sun angle, which involved dividing the pixel values by the sine of the solar elevation angle, 

which was also reported in the image metadata. Since the field sites were relatively flat, 

no further corrections were applied to reduce the differences in scene illumination due to 

the slope of terrain relative to the solar elevation and azimuth (as applied in Chapter 5). 

Atmospheric normalisation was applied to correct for spectral differences due to variable 

atmospheric conditions across the SPOT imagery time-series. Due to the absence of 

field-based atmospheric data, the relative image-based correction technique of 

pseudo-invariant targets was applied (Lu et al., 2002). For each field site, this correction 

procedure first involved normalising all images to a standard reference scene, which was 

chosen as the most cloud-free image. Second, using the criteria outlined in Eckhardt et al. 

(1990), surface features with a spectral reflectance signal, which were assumed to be 

constant throughout a crop growth season (hence invariant targets), were selected. These 

features included man-made structures, such as car parks and roof tops, and inland water 

bodies. Once the target features were identified in the reference scene, based on the 

spectral differences in the target features in the reference scene, the remaining scenes were 

corrected band-by-band. 

Pre-processing of the ERS-2 SAR (C-band; VV-polarisation) data included deriving the 

backscatter coefficient (σ°), expressed in decibels (dB), by using the processing steps 

described in Laur et al. (2004) that are accurate to within ± 0.4 dB. This process includes 

corrections for range spreading losses, application of absolute calibration constants and 
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terrain corrections to derive local incident angle using the SRTM (Shuttle Radar 

Topography Mission) digital elevation model. Similarly to the SPOT scenes, the ERS data 

were also geometrically registered to UTM, to match the boundaries of the cropland sites 

to within one ERS-2 pixel (12.5 m). 

LAI retrieval from EO data 

Simplified empirical retrieval algorithms were used for estimating LAI from the EO data. 

The mean within-field reflectance value, with pixel sample sizes between 226 (Grignon) 

to 695 (Klingenberg), was extracted from the SPOT scenes for each band and used to 

calculate the Weighted Difference Vegetation Index (WDVI, Clevers, 1988; 1991). The 

WDVI is an orthogonal index used to reduce the effect of soil reflectance, which 

influences the relationship between the scene reflectance and LAI. This relationship is 

specifically related to moisture, as reflectance decreases with increasing soil moisture 

content. However this decrease is independent of wavelengths between 400 and 1000 nm 

(Clevers, 1988). For each SPOT scene, the WDVI was calculated using: 

𝑊𝑊𝐷𝐷𝑊𝑊𝐺𝐺 = 𝑅𝑅NIR − 𝛾𝛾.𝑅𝑅VIS 

The 𝑅𝑅NIR and 𝑅𝑅VIS parameters correspond to the reflectance values in the near-infrared 

and visible red sensor wavebands, respectively. The ratio of reflectance in the 

near-infrared and visible red wavebands (𝑅𝑅NIR: 𝑅𝑅VIS) for bare soil (i.e. before crop 

emergence) is shown as 𝛾𝛾. Across all cropland sites the 𝛾𝛾 value ranged from 0.75 to 1.98. 

Equation 2.2 
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The LAI was then retrieved based on a linear relationship between all WDVI and the 

ground measured LAI at all sites. Therefore, a single calibration was determined from this 

regression approach that could be used to estimate LAI from WDVI for all sites; thus 

allowing for the potential use in further spatial upscaling studies of European croplands: 

𝐿𝐿𝐺𝐺𝐺𝐺 = 𝑚𝑚.𝑊𝑊𝐷𝐷𝑊𝑊𝐺𝐺 + 𝑐𝑐 

where 𝑚𝑚 and 𝑐𝑐 (calibrated as 𝑚𝑚 = 0.23, 𝑐𝑐 = -1.57) are the slope and intercept coefficients 

of the linear fit between the WDVI and LAI. This calibration involved matching each 

WDVI measurement to an in-situ LAI measurement made on a date that approximately 

corresponded to the SPOT acquisition. A sensitivity analysis was carried out to investigate 

any temporal disparity in canopy development between the measured LAI and SPOT 

WDVI dates to within ±10, ±7 and ±5 days. It was found that the inclusion of more 

measurements from accepting temporal difference of ±10 days reduced the 

root-mean-square error (RMSE) of SPOT estimated LAI compared to ground 

measurements from 0.70 (±5 days) to 0.24 (±10 days), with the corresponding negative 

bias being less than 1.31 m2 m-2 in both cases.  

The mean within-field σ° value was extracted from the calibrated ERS scenes. The number 

of pixels used in this averaging procedure depended on the size of the field sites and varied 

significantly from 49 (Oensingen) to 4845 (Gebesee). The LAI values were then estimated 

from this mean σ° by empirically modelling the relationship between σ° and the 

Equation 2.3 
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corresponding measured LAI value ±10 days of ERS acquisition dates. 

2.2.3. Ecosystem model and assimilation 

Ecosystem model description 

The C cycle was simulated at the cropland sites using the Soil-Plant-Atmosphere (SPA) 

model (Williams et al., 1996; 2001), with modifications for C allocation (Williams et al., 

2005) and croplands (Sus et al., 2010). SPA simulates the ecosystem C cycle and 

water-balance at the point-scale over fine temporal (half-hourly) and vertical scales (ten 

canopy and twenty soil layers) using half-hourly drivers: air temperature (°C), wind speed 

(m s-1), shortwave radiation (W m-2), vapour pressure deficit (hPa) and precipitation (mm). 

The model integrates leaf-level processes including photosynthesis, using the Farquhar 

model (Farquhar and von Caemmerer, 1982), and transpiration, determined using the 

Penman-Monteith equation (see Jones, 1992). These two processes, scaled up to make 

canopy-scale predictions, are linked to a radiative transfer scheme – tracking absorption, 

reflectance and transmittance of direct and diffuse irradiance. Furthermore, 

photosynthesis and transpiration are linked at leaf-level by a model of stomatal 

conductance. The stomatal conductance is varied to optimise C uptake, but also to 

maintain leaf water potential above a minimum value, explicitly linking vapour phase 

losses with hydraulic transport.  

Sus et al. (2010) applied modifications to SPA in order to develop SPA v2-Crop (referred 

to henceforth as SPAc), which involved defining a crop-specific C partitioning scheme 
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based on empirical observations of crop growth cycles (Penning de Vries et al., 1989). 

This C partitioning scheme describes the fraction of assimilated C that is allocated 

amongst the roots, leaves, stem and storage (i.e. grain) organs as a function of 

development stage. The development stage is calculated as the accumulation of daily 

development rates, which is a function of temperature, photoperiod and vernalisation 

(until emergence, Streck et al., 2003). SPAc has previously been tested and parameterised 

by Sus et al. (2010) over the same European FLUXNET sites/seasons used in this analysis 

(see Appendix section A1 for the specific SPAc parameters used for winter wheat).  

Assimilation algorithm 

By assimilating the EO-derived LAI, the model can propagate these estimates throughout 

the model state vector, according to error covariance, and forward to subsequent 

time-steps when EO data is unavailable. The ensemble Kalman Filter (EnKF, Evensen, 

2003) DA algorithm was used to produce a probabilistic estimate of LAI by combining 

the forecasted and observed values, which are weighted according to the relative 

uncertainty assigned to the modelled and EO LAI estimates. This updated LAI is then 

used to update the full model state vector, which consisted of all the above and below 

ground biometric variables. The EnKF approach represents the model and observation 

error statistics with a Monte Carlo ensemble (i.e. probability distribution) of state 

variables, where the mean of the ensemble is the best estimate and the error covariance is 

determined by the variance of the state variables. For each ensemble member the basic 
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analysis steps for the EnKF can be written as:  

𝐺𝐺a = 𝐺𝐺f + 𝑃𝑃e𝐻𝐻(𝐻𝐻𝑃𝑃e𝐻𝐻T + 𝑅𝑅e)−1(𝐷𝐷 − 𝐻𝐻𝐺𝐺) 

where 𝐺𝐺a represents the analysed state vector updated by the forecasted state 𝐺𝐺f. 𝑃𝑃e and 

𝑅𝑅e represent the model and observation covariance matrices. 𝐻𝐻 is the observation 

operator, which consists of a probability matrix that relates the model state vector to the 

data, and (𝐷𝐷 − 𝐻𝐻𝐺𝐺) represents the innovation vectors. 

Ecosystem model setup and determination of uncertainty 

Initial simulations with the SPAc model were undertaken without DA (referred to 

henceforth as the ‘forward mode’) using only the input vegetation, soil parameters and 

meteorological driver data available for each site. A detailed overview of the parameters 

fitted in SPAc, along with nominal values and references, can be found in Sus et al. (2010) 

and Appendix Section A1. Experimentation was then carried out using the EnKF 

algorithm (referred to hereafter as ‘EnKF DA’) to assimilate the EO-derived LAI into 

SPAc at time-steps corresponding to 12 noon on the same day as the EO acquisitions (i.e. 

no other assimilations were performed on the remaining 23 hours of the day). 

As the EnKF technique is based on the assumption that both SPAc and EO data are 

uncertain descriptions of the cropland ecosystem processes, it was necessary to quantify 

the uncertainties of the model and EO-derived LAI. Ideally, observation error variances 

are detailed in the instrument specifications (Williams et al., 2005). However, the 

Equation 2.4 
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pre-processing techniques applied to retrieve the SPOT and ERS LAI estimates, including 

geometric, atmospheric and radiometric corrections, would have introduced additional 

uncertainty into the EO data (Quaife et al., 2008). Therefore, EO data uncertainty was 

estimated individually for SPOT and ERS based on the random error (i.e. R2) between 

ground measured LAI and the LAI derived from the empirical analysis – calculated as 

38% and 24% for the SPOT and ERS data, respectively. The model variance was then 

quantified by an iterative procedure where the prescribed value was adjusted until at least 

68% of the ground measured LAI were within ±1 standard deviation of the SPAc daily 

LAI estimates with the EnKF DA (Williams et al., 2005). 

The influence of the EnKF ensemble size that represented the mean LAI values was 

evaluated by assessing the outputs from using 50, 100 and 250 members based on the 

RMSE between the observed and modelled daily NEE. It was found that an ensemble size 

of 50 members reduced the RMSE between observed and modelled NEE with little or no 

improvements noticed beyond this size. This observation is also consistent with the study 

by Sus et al. (2013) for the assimilation of MODIS LAI and with de Wit and van Diepen 

(2007) for the assimilation of soil moisture estimates. Therefore, the EnKF experiments 

were carried out using model outputs from 50 members only. 

Comparisons were carried out between the LAI values simulated by SPAc – both in the 

forward model and the EnKF DA – to the ground measurements of LAI available at each 

site. Further experimental analysis was conducted to assess the DA of EO measurements 
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for improving the simulation of daily C fluxes, at-harvest cumulative NEE and yield at 

each site, including the assimilation of ERS LAI and SPOT LAI estimates both 

synergistically and individually, by comparison to independent EC data. 

2.3. Results 

This section first presents the results from retrieving LAI estimates from the EO data. 

Second, an evaluation of the SPAc model is given – both in the forward model and the 

EnKF DA – for the simulation of LAI, NEE and yield when compared to the FLUXNET 

site data.  

2.3.1. LAI retrieval results 

There was a reasonable correlation (R2 = 0.62, P < 0.05, Standard Error = 0.11 m2 m-2) 

between all multi-temporal WDVI values at Auradé, Grignon, Lamasquère and 

Klingenberg with the corresponding (within ±10 days) ground measured LAI values 

(Figure 2.2a). For the remaining sites SPOT imagery was either unavailable (Oensingen) 

or ground measured LAI was not recorded (Gebesee). Overall, the LAI derived from the 

WDVI (RMSE = 0.60) showed a slightly negative bias when compared to measured values 

with a mean bias (i.e. mean SPOT LAI minus ground measured) of -0.05 m2 m-2. However, 

the mean error for Klingenberg (0.87 m2 m-2) had a much stronger positive bias when 

compared to the other sites. 

A strong exponential relationship (R2 = 0.76, P < 0.05, Standard Error = 0.06 m2 m-2) 
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existed between all mean ERS σ° values and ground LAI measurements within ±10 days 

of the ERS acquisition (Figure 2.2b). Using the coefficients (A and B) calibrated from this 

exponential fit the LAI was then estimated:  

𝐿𝐿𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐵𝐵.𝜎𝜎° 

where 𝐺𝐺 = 0.087 and 𝐵𝐵 = -0.257. As was the case with the WDVI calculation, this 

exponential fit was determined globally between all σ° and measured LAI values. 

Equation 2.5 
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Figure 2.2: Regression of ground measured LAI (LAIG) against a) SPOT WDVI (dashed grey 

line) and b) ERS-2 σ° (solid grey line). 
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Overall, the LAI values retrieved from the ERS σ° using Equation 2.5 were overestimated, 

with a mean bias of 0.15 m2 m-2 (RMSE = 0.54), compared to measured LAI. The LAI 

and σ° relationship weakens and becomes negatively biased with decreasing σ° below 

around -14 dB (Figure 2.2b). This change is significant for Grignon, where the σ° is -14.8 

dB, and the estimated LAI value is around 1.6 m2 m-2 less than that of the measured. 

2.3.2. Ecosystem model results: forward mode 

Some clear differences in the magnitude of the SPAc simulated peak LAI values in the 

forward mode can be seen when compared to the ground data (Figure 2.3). Particularly, 

this can be seen for Auradé where the simulated LAI is overestimated by 1.3 m2 m-2 and 

Grignon where the LAI is underestimated by 1.6 m2 m-2. 

The overall timings of the peak LAI in the forward mode simulation generally matched 

the ground measured LAI. The exception was Klingenberg, where the simulated peak LAI 

value was around 25 days later than the ground measurements. However, this apparent 

discrepancy in timing could be due to a lack of field measurements around the time of 

maximum LAI. 
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Figure 2.3: Modelled time-series LAI plots in the forward mode (grey dots) compared to EnKF 

DA of all EO LAI estimates (black line) for sites a) Auradé, b) Grignon, c) Lamasquère, d) 

Klingenberg, e) Oensingen and f) Gebesse. Including ground measured LAI and EO-derived 

LAI values with error bars showing the standard deviation. Note: No standard deviation of the 

ground measured LAI was reported for Klingenberg.  
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The overall seasonal trends and timings of the observed NEE fluxes of the crops were 

reproduced by SPAc in the forward mode simulation (Figure 2.4). For all sites there is a 

progressive decrease in NEE – from early in the season onwards – in response to an 

increase in C uptake (i.e. increase in sink strength) as the crops develop. The date of 

minimum NEE (i.e. peak C uptake) varies between different sites ranging from early May 

(Auradé (a), Lamasquère (c) and Oensingen (e)) to early-mid June (Klingenberg (d)). 

After the maximum C uptake the observed and simulated values show a relatively sharp 

increase in NEE, corresponding to crop maturity, and become a net source of C at or 

around the harvest date.  
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Figure 2.4: Comparison of daily NEE between observed and modelled, forward mode (grey 

line) and EnKF DA of all EO LAI estimates (black line), for a) Auradé, b) Grignon, c) 

Lamasquère, d) Klingenberg, e) Oensingen and f) Gebesee. 
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2.3.3. Ecosystem model results: assimilation of EO data 

Simulated LAI 

The SPAc EnKF DA simulation decreased the simulated peak LAI values for Auradé (a), 

Grignon (b), Lamasquère (c) and Oensingen (e) by an average of 0.18 m2 m-2. However, 

for sites Klingenberg (d) and Gebesee (f), where the EO estimated peak LAI was higher 

than the simulated value, the DA significantly increased this maximum value by a mean 

of 1.84 m2 m-2. The timing of the peak LAI was also adjusted by the DA when compared 

to the forward mode. This adjustment was most notable for Lamasquère, with the 

maximum LAI being 12 days later with DA; whereas Klingenberg and Gebesee were 9 

and 7 days earlier, respectively. 

With adjustments in both the magnitude and timing of the simulated LAI, a linear fit (R2) 

between the observed and simulated LAI (Table 2.2) showed that the EnKF DA improved 

the overall modelled and ground measured LAI relationship by an average of 43% when 

compared to the forward mode. This improvement was noted for all sites with the 

exception of Auradé where the DA reduced the strength of the relationship by 19%.   
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- 377

(-452/-291)
0.61

0.49
4.60

4.57
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0.85
0.86

0.70
1.06

-471
-694

(-819/-580)

-593

(-674/-509)
0.75

0.87
4.52

4.47
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0.78
0.82

0.98
0.92
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-747
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0.69

0.84
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Simulated C fluxes 

The assimilation of all EO LAI estimates resulted in some clear adjustments in the 

magnitudes of daily fluxes (Figure 2.4). Specifically, based on an analysis of the NEE 

residuals (i.e. observed minus modelled) the sink strength is reduced at Grignon, 

Oensingen and Gebesee by an average of 1.85 g C m-2 per day. Furthermore, the residuals 

show a progressive increase in the difference between the forward mode and EnKF DA 

estimates (i.e. forward mode minus DA values) from the beginning of the year to an 

average of 1.12 g C m-2 at the date of maximum C uptake, whereas this average difference 

was only 0.02 g C m-2 60 days earlier. 

With regards to the R2 between the observed and modelled NEE values (Table 2.2), the 

DA strengthened this relationship by an average of 6% for sites Auradé, Grignon, 

Lamasquère and Klingenberg. However, the observed-modelled relationship was 

weakened by an average of 4% for Oensingen and Gebesee. The slope of this linear fit 

was also adjusted by DA, and for the majority of these sites, with a value less than 1, this 

value was increased by 9%, from 0.69 to 0.75 with DA. 

Estimated yields 

The simulated yield statistic (i.e. total mass of C allocated to the storage organ at harvest) 

was underestimated at all sites when compared to observed values (Table 2.3). When 

comparing the average difference across the sites, the magnitude of this underestimation 

with the EnKF DA (47%) was greater than that in the forward mode (38%). Specifically, 
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in the EnKF DA simulation there was an improvement of 10% between the measured and 

modelled yield for Klingenberg, however for Auradé the yield was further underestimated 

by 35% when compared to the forward mode. 

Table 2.3: At-harvest yield values (g C m-2) from comparing measured and SPAc estimates 

in the forward mode (i.e. no DA), DA of ERS LAI (DA ERS), DA of SPOT LAI estimates (DA 

SPOT) and the DA of both ERS and SPOT LAI estimates. 

 

 
 

2.3.4. Synergistic and individual DA comparison of ERS and SPOT results 

Assimilating the ERS and SPOT LAI estimates synergistically reduced the RMSE of the 

forward mode daily NEE simulations by an average of 10% for three out of the six sites 

(Table 2.4). However, the assimilation of ERS LAI estimates alone improved the 

simulation for five out of six sites, by an average of 13%. Gebesee was an exception to 

this as the assimilation of EO LAI in all cases appears to increase the RMSE when 

Sites
At-harvest yield (gC m-2)

Measured Forward DA ERS DA SPOT DA ERS and SPOT

Auradé 283 237 119 149 138

Grignon 350 223 169 179 179

Lamasquère 394 247 239 217 215

Klingenberg 318 223 219 154 254

Oensingen 255 175 174 N/A N/A

Gebesee 387 82 69 76 65



CARBON CYCLING OF EUROPEAN CROPLANDS: A FRAMEWORK FOR THE ASSIMILATION OF 
OPTICAL AND MICROWAVE EARTH OBSERVATION DATA 
 

54 
 

compared to the forward mode. 

Table 2.4: RMSE values from comparing the observed and modelled daily NEE of SPAc in 

the forward mode (no DA), DA of ERS LAI estimates (DA ERS), DA of SPOT LAI (DA SPOT) 

and the DA of both ERS and SPOT LAI estimates. 

 

 
 

With the EnKF DA, the increase in agreement between the model and observations is also 

reflected by the at-harvest cumulative NEE (Table 2.5). The observed mean cumulative 

NEE was -399 g C m-2. The model forward mode estimates of the cumulative NEE were 

lower than observed for nearly all sites with a mean cumulative NEE of -506 g C m-2, 

thereby over-estimating the sink strength by 107 g C m-2 (27%). The assimilation of all 

EO-derived LAI had a mean cumulative NEE of -438 g C m-2, thus the mean difference 

between the measured and modelled cumulative NEE was only 33 g C m-2 (8%). 

Sites
Daily NEE RMSE (gC m-2 per day)

Forward DA ERS DA SPOT DA ERS and SPOT

Auradé 2.08 1.53 1.64 1.56

Grignon 1.67 1.53 1.58 1.66

Lamasquère 2.02 1.91 1.82 1.98

Klingenberg 2.19 1.97 2.03 2.22

Oensingen 1.92 1.65 N/A N/A

Gebesee 1.95 2.26 2.98 2.69

Average 1.97 1.81 2.01 2.02
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Furthermore, although the RMSE of the simulation of daily NEE at Gebesee was not 

reduced with DA, the synergistic assimilation of both ERS and SPOT LAI improves the 

estimated cumulative NEE by over 50% when compared to the forward mode at this site. 

However, with the individual assimilation of ERS LAI alone the mean cumulative NEE 

was only -421 g C m-2, representing a difference of only 22 g C m-2 (6%) when compared 

to that of the measured. 

Table 2.5: At-harvest cumulative NEE values (g C m-2) from comparing measured and SPAc 

estimates in the forward mode (no DA), DA of ERS LAI estimates (DA ERS), DA of SPOT LAI 

(DA SPOT) and the DA of both ERS and SPOT LAI estimates. 

 

 

2.4. Discussion 

This section first includes an evaluation of the LAI retrieval approaches. Second, the 

performance of the SPAc model with the DA is analysed. Third, the validity of applying 

Sites
At-harvest cumulative NEE (gC m-2)

Measured Forward DA ERS DA SPOT DA ERS and SPOT

Auradé -476 -639 -338 -396 -377

Grignon -471 -694 -543 -565 -593

Lamasquère -549 -747 -650 -561 -602

Klingenberg -287 -361 -329 -158 -340

Oensingen -369 -426 -250 N/A N/A

Gebesee -242 -170 -418 -718 -279
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the model framework to multiple cereal crop sites is discussed along with 

recommendations for future research. 

2.4.1. LAI retrieval and assimilation 

With the image processing techniques applied in this research, a reasonable linear 

relationship was established between all WDVI values and LAI ground measurements 

within ±10 days of the SPOT acquisitions (Figure 2.2a). This relationship suggests that a 

single empirical approximation can adequately describe the relationship between WDVI 

and LAI across multiple European winter wheat sites. 

The relationship between all ERS σ° and ground measured LAI (within ±10 days) was 

approximated by a single exponential function (Figure 2.2b). This strong exponential 

relationship is consistent with research by Macelloni et al. (2001) for narrow leaf crops. 

Furthermore, the RMSE between the ERS-derived LAI and measured LAI was reduced 

by 11% when compared to the LAI estimated from the WDVI. This improvement 

highlights some of the key operational advantages of SAR over optical sensors for 

multi-temporal analysis. Specifically, SAR sensors are unaffected by localised 

atmospheric conditions, thus making them less site specific. Additionally, since it was not 

necessary to apply atmospheric corrections to the ERS data, this prevents the inclusion of 

the potential uncertainties involved with the atmospheric normalisation step. 

The higher sensitivity of σ° to LAI, when compared to that of the WDVI, can be attributed 
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to the frequency and polarisation of the ERS sensor. Specifically, C-band frequency (5.3 

GHz) provides significant amounts of σ° even for moderate crop growth, i.e. early in the 

growth season (Baronti et al., 1993). Paloscia (2002) mentions that VV-polarised σ° from 

small-leaf crops (including wheat) decreases with increasing biomass. This is partly due 

to the attenuation of the VV-polarised signal by the predominantly vertical orientation of 

the wheat crop structure, including the stem and ears (Ferrazzoli et al., 1999). 

The use of EO-derived LAI for adjusting the peak simulated LAI value is clearly 

dependant on the timing of EO acquisitions. This timing sensitivity was particularly the 

case for Grignon and Klingenberg where the peak EO LAI days approximately coincided 

with the maximum LAI day simulated by SPAc. For Grignon, the maximum LAI in the 

forward mode is similar to that of the ERS LAI acquired around the same day; therefore 

the peak LAI value remains the same between the forward mode and the EnKF DA (Figure 

2.3). However, the SPOT LAI value for Klingenberg, derived around the same date as the 

peak LAI simulated in the forward mode, resulted in an increase in maximum LAI when 

the EnKF was applied. 

At sites where the SPAc forward mode peak LAI values, and the corresponding NEE sink 

strengths were higher than observed, it would have been expected that the forward mode 

simulation overestimated the grain yield. However, although the DA technique was 

successful in reducing the yield predicted at these sites, in some cases this had the 

consequence of underestimating this value even further when compared to observations. 
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This issue of yield estimation suggests weaknesses in the structural representation and 

calibration of yield formation in SPAc. As recommended by Sus et al. (2010), further 

research should be applied to better constrain the C allocation parameterisation, 

particularly for the allocation to the roots. 

2.4.2. The quality of simulated C fluxes 

Generally, the modelled daily NEE matched the magnitude of the observed values more 

closely with the assimilation of EO LAI estimates (Figure 2.4). For three out of the six 

sites the overall representation of winter wheat C flux dynamics by SPAc was improved 

with a mean reduction in RMSE of 10%. However, for the majority of sites the 

assimilation of all EO LAI estimates was more significant at reducing the simulated sink 

strength, suggesting that SPAc is slightly negatively biased when compared to 

observations. These findings are similar to those reported in Sus et al. (2010) and also 

have the consequence of a lower at-harvest cumulative NEE (i.e. overestimate of net C 

uptake) for most sites. However, for the majority of sites, an increase in the slope value of 

the measured versus modelled linear regression with the assimilation of all EO LAI 

estimates suggests that the assimilation technique is also successful at reducing model 

biases. 

A greater improvement in the simulation was achieved with the assimilation of ERS LAI 

estimates alone, as opposed to synergistically (i.e. with SPOT estimates). This 

improvement is likely due to a stronger correlation between the ERS σ° and LAI, when 
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compared to that of the WDVI and LAI. This enhanced simulation when using the ERS 

LAI only is reflected both in the RMSE of daily fluxes and the at-harvest cumulative NEE 

when compared to observations. 

The extent to which the differences between modelled and observed values are minimised, 

particularly around the period of peak C uptake, is also dependant on the timings of the 

assimilated LAI estimates. This is evident for sites Grignon, Lamasquère and Klingenberg 

where LAI values are assimilated on days that approximately correspond to the day of 

peak simulated LAI. Therefore this maximum LAI value is adjusted, which then varies 

the magnitude of daily NEE values accordingly. This was also discussed in Launay and 

Guerif (2005), where the model performance for crop yield estimates was improved when 

the timings of assimilated EO acquisitions coincided with growth stages in the vegetative 

phase when crop condition is expressed through canopy development. 

2.4.3. Is the model framework valid for multiple cropland sites? 

Although the sites selected in this analysis are not considered wholly representative of the 

full variations in European winter wheat crop growing conditions, their spatial distribution 

covers a relatively large area of western-central Europe. With the assimilation of EO data, 

an overall improvement in daily C flux modelling was achieved for up to five out of six 

sites. This suggests that the techniques reported here, including parameterisation and LAI 

retrieval calibrations, are sufficiently accurate and can reliably enhance the forecasting of 

winter wheat C fluxes at multiple European sites under different climate conditions. A 
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specific example of this is demonstrated by the precision of the simulated NEE at 

Lamasquère and Klingenberg. These sites represented the largest variation in latitude and 

average temperature, along with growth seasons in different years. In spite of this, with 

the DA of ERS LAI alone, the RMSE of the forward mode simulated NEE fluxes was 

reduced by 5% and 10% for Lamasquère and Klingenberg, respectively; whereas that of 

the at-harvest cumulative NEE was improved by 49% and 43%. 

Further proof of concept regarding the multi-site applicability of this framework, 

including the derivation of LAI, is demonstrated at Gebesee. Ground measured LAI was 

not available for this site, therefore LAI values were estimated from EO data only using 

retrieval algorithms calibrated using measurements from the remaining sites. The 

synergistic assimilation of ERS and SPOT estimates had the result of improving the 

at-harvest cumulative NEE value by around 50% when compared to the forward mode. 

2.4.4. Recommendations for further EO data and model developments 

This study evaluates the assimilation of LAI estimated from ERS and SPOT EO sensor 

data, an intrinsic area of development would be to assess the model accuracy with 

measurements from alternative sensors. Moreover, it is expected that the model 

framework, including the EnKF DA and LAI retrieval techniques, is sufficiently versatile 

to facilitate measurements from sensors operating at different spatial and temporal 

resolutions to those used in this study. This multi-sensor framework would also be 

appropriate for the inclusion of data from future EO missions, including ESA's Sentinel-1 
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that consists of a dual satellite constellation (i.e. Sentinel-1A and 1B; Torres et al., 2012). 

Research should also focus on updating additional model state variables to further improve 

the precision of the model. Specifically, soil moisture measurements could enhance the 

simulation of water-balance, as demonstrated in de Wit and van Diepen (2007), and 

improve the simulation of root allocation. Soil moisture estimates can also be retrieved 

from dedicated EO sensors, such as the Soil Moisture and Ocean Salinity (SMOS) sensor 

(Kerr et al., 2012) and Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 

2010). 

The model framework was successfully calibrated and applied at the point-scale using 

within-field mean LAI estimates. Future research could involve investigating the spatial 

implementation of this modelling approach. Furthermore, if the current model framework 

was applied spatially over large areas, where input data regarding spatially heterogeneous 

soil and meteorological conditions are typically unavailable, it is anticipated that the 

integration of EO observations would become more valuable for updating state-variables. 

2.5. Conclusion 

A technique for simulating cropland C dynamics has been presented and evaluated over 

six European cropland sites with varying environmental conditions. The framework 

consisted of deriving LAI estimates from SPOT and ERS satellite measurements using 

empirical retrieval algorithms – calibrated using ground measured values. Generally, 

when compared to the WDVI values calculated from SPOT imagery, a stronger 
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exponential relationship existed between all ERS σ° and ground measured LAI when 

applied across all sites. 

The EnKF sequential DA algorithm was used to update the LAI simulated by SPAc. The 

modelled outputs were compared to ground measured LAI and NEE flux data. For three 

out of the six study sites, the assimilation of all EO LAI estimates resulted in a mean error 

reduction in NEE estimates of around 10%. However, when assimilating the ERS 

estimated LAI only, this error was reduced by around 13% for the majority of the sites. 

Further improvements to the simulation were achieved with the DA approach based on 

the increased accuracy of at-harvest cumulative NEE estimates. For most sites, in the 

forward mode this value was consistently lower than observed by around 27%; therefore 

the overall sink strength was overestimated. Assimilating all EO LAI estimates resulted 

in this value being overestimated by 8%; however assimilating only the ERS LAI 

estimates resulted in the cumulative NEE being overestimated by 6%.  

The results highlights weaknesses in the SPAc parameterisation, specifically those related 

to allocation to roots and storage organs; nonetheless it is concluded that this DA 

approach, particularly the use of radar sensors alone, provided a superior means of 

quantifying the overall extents to which croplands are sources or sinks of C at harvest. 

Specific refinements should be made to the C allocation scheme as a function of 

development, with the overall aim of improving the prediction of harvested yield. Such 

changes would also allow for an improved crop C simulation, not only in the contexts of 
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C cycling and climate change, but also crop yield forecasting and food security. Future 

studies could also focus on improving the modelling of C fluxes by assimilating additional 

state variables from different EO satellite sensors. Furthermore, owing to the intrinsically 

high variability in soil and meteorological conditions over large areas, it is expected that 

a technique allowing for the spatial implementation of the current framework would rely 

more heavily on the assimilated EO measurements. 

2.6. Summary 

This study has evaluated the sequential DA of optical and radar EO data for constraining 

the SPAc model estimates of daily fluxes and stocks at the point-scale. By assimilating 

EO-derived LAI the simulation of cumulative daily C fluxes was improved by over 50% 

when compared to the simulation without DA. Furthermore, it was demonstrated that the 

same model framework, including parameterisations, can be applied to generate reliable 

estimates across multiple cereal crop sites of differing climatic conditions. In the next 

chapter (Chapter 3), the validity of using a simplified crop model – simulating 

canopy-scale processes at daily time-steps – is assessed based on the output of SPAc and 

FLUXNET data.  
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3.1. Introduction 

The importance of Croplands with regards to their ecosystems services, along with the 

challenges associated with food security and climate change, were discussed in Chapter 

1. Crop ecosystems are also entirely managed, with farming practices being applied on a 

range of spatial and temporal scales. This variability in human intervention causes 

significant uncertainty when investigating feedbacks between climate and the crop C 

balance (Porter and Semenov, 2005; Reichstein et al., 2013).  

Eddy-covariance (EC) flux towers, such as those within the Global FLUXNET regional 

network, can provide continuous measurements of ecosystem-level C fluxes (Baldocchi 

et al., 2001). Although these observations span multiple locations, crop cultivars, seasons 

and climate regimes, the tower sites are sparsely distributed and C fluxes remain 

inherently under-sampled (Zheng et al., 2014). Alternatively, process-based crop models 

simulate the key processes involved in regulating ecosystem C exchanges, including 

photosynthesis and respiration (Williams et al., 1996; Wattenbach et al., 2010). While EC 

data are direct observations of net ecosystem exchanges (NEE) only, models offer a more 

complete analysis of processes, and can predict future C budgets under variable climate 

and management regimes (Ciais et al., 2011; Osborne et al., 2013; Challinor et al., 2014).  

Discrepancies between modelled and observed fluxes are due to errors in data (including 

EC measurements and meteorological drivers) and model uncertainties, such as poorly 

calibrated parameters, errors in initial state estimates and uncertainties in the 
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representation of ecosystem processes (Williams et al., 2009; Kuppel et al., 2012). Errors 

in EC data can be attributed to complex terrain and heterogeneous spatial distributions of 

vegetation within the sensor footprint (Hollinger and Richardson, 2005). Croplands have 

the advantage of generally being located in more level terrain where mechanisation is 

possible. While fields are relatively homogeneous in advanced agriculture, European field 

sizes are small enough for the sample flux footprint to overlap with adjacent fields. For 

crop models, the most sensitive parameters related to C exchange are those determining 

photosynthesis and development (Streck et al., 2003; Sus et al., 2010).  

Agricultural production is strongly influenced by climate (Hansen, 2002), therefore errors 

in meteorological drivers lead to uncertainties in model C budget estimates (Ciais et al., 

2011). And so, past crop C models, such as the Soil-Plant-Atmosphere crop model (SPAc, 

Sus et al., 2010) and ORCHIDEE (Krinner et al., 2005), have been applied and evaluated 

at relatively data-rich sites using fine temporal scale (e.g. half-hourly) drivers. However, 

at regional to global scales, the number of sites with available fine scale meteorology 

observations is grossly inadequate; therefore, due to the complex demands for inputs, the 

practical application of these models is limited (Sheffield et al., 2006). 

When compared to standard land-surface models, detailed crop models simulating 

leaf-level process over multiple canopy layers typically require a large number of input 

parameters (Valade et al., 2013). Since exact parameter values are difficult to specify they 

are often based on some expert knowledge (Newlands et al., 2012), but uncertainties 
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associated with prior parameter estimates can result in large variations in simulated C 

fluxes (Knorr and Heimann, 2001; Ziehn et al., 2012). Calibrated parameters can be overly 

tuned to particular sites (Kuppel et al., 2012), presenting complications when scaling-up 

models for providing regional estimates (Fox et al., 2009; Spadavecchia et al., 2011; 

Newlands et al., 2012). Additionally, parameterising complex models that run at fine 

temporal scales is often prohibited by computational processing time (Valade et al., 2013; 

Rafique et al., 2015). This computational demand is particularly significant when 

optimising parameters and updating state variables (e.g. Chapter 2) through an ensemble 

of model runs over large areas where parameters may be expected to vary with space. 

Here we aim to address the limitations associated with the spatial upscaling of crop C 

models – specifically the issues related to model complexity, meteorological driver 

requirements and computational demand. We first use Bayesian inference to calibrate a 

simple model of photosynthesis based on the output from a previously validated and more 

complex model. Second, we explore the impacts of using gridded meteorological driver 

data, as opposed to local observations. We compare photosynthesis estimates derived from 

the Aggregated Canopy Model (ACM, Williams et al., 1997) to the 

Soil-Plant-Atmosphere crop (SPAc) model. Our main objective is to determine the 

viability of using a simple model (i.e. ACM), with a single calibration of photosynthesis, 

when driven by atmospheric re-analysis data. We hypothesise that the increase in 

uncertainty linked to model and driver simplification is uncorrelated with, and similar in 

magnitude, to the uncertainty in driving the more complex SPAc model with sparse driver 
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data. In particular, we address the following research questions: 

1) How does model complexity influence estimates of photosynthesis? 

2) How do single-site and multi-site photosynthesis calibrations compare across 

European cereal crop sites? 

3) How do the complex and simple model photosynthesis estimates compare when 

driven by atmospheric re-analysis data? 

The novelty of this research is the investigation of parameter and driver uncertainty on 

model estimates of crop C fluxes. Furthermore, the associated reductions in model 

complexity and temporal resolution allows ACM to run at higher computational speeds; 

thus increasing the efficiency for future experimentation. Such experiments include the 

application of ACM in a data assimilation framework (such as that detailed in Chapters 2 

and 3) where large model ensembles are required at multiple locations. 

3.2. Data and Methods 

A brief overview of the FLUXNET study sites, used to calibrate and validate the 

modelling approaches, is first provided. Second, details of the two photosynthesis 

modelling approaches (i.e. SPAc and ACM) are given, along with the calibrations applied 

to ACM. Third, the technique used to temporally downscale atmospheric reanalysis data 

(from 3-hourly to half-hourly resolutions), in order to generate the driving data for SPAc, 
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is described. 

3.2.1. Study sites 

This analysis uses a total of eight European winter wheat crop sites and seasons (Figure 

3.1). These sites comprise of the six locations detailed in the research carried out in 

Chapter 2 (see section 2.2.1) with the addition of two sites that are located in Belgium 

(Lonzee) and France (Avignon). Since this research involves assessing the performance 

of a simplified model, the rational for selecting these additional sites was to provide a 

more thorough evaluation of the multi-site ACM calibration. Specifically, Auradé, 

Klingenberg, Lonzee and Oensingen were selected as calibration sites as they broadly 

covered the spatial extents of all eight sites. The remaining four sites – Grignon, 

Lamasquère, Gebesee and Avignon – were used for validating the multi-site ACM 

calibration.  

With a range in latitude (43.5-51.1°N) and longitude (1.1-13.5°E), the locations of all 

eight sites span a large area of western-central Europe. Consequently, the sites also show 

variability in the overall length of the growing season (from sowing to harvest), ranging 

from 245 days (Auradé) to 342 days (Klingenberg), and seasonal average daily 

temperatures: from 7°C (Klingenberg) to 14°C (Avignon). 
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Figure 3.1: Locations of the eight winter wheat crop sites used in this analysis, indicating 

sites used for calibrating (solid triangle) and validating (solid circle) the daily photosynthesis 

model (ACM). Growing seasons/years are shown in brackets. 

 

Site data that was available from the Global FLUXNET database (Level-4 processing) 

consisted of in-situ daily and half-hourly meteorological observations, which were used 

to drive ACM and the more complex SPAc model, respectively. Daily gross primary 

productivity (GPP), estimated from aggregated half-hourly EC data (Baldocchi et al., 

2001), were used for validating photosynthesis estimates from both models. Additional 

FLUXNET data used in this analysis consisted of soil texture (i.e. clay/sand ratio) and 

management information (sowing and harvest dates). 
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To evaluate the use of spatially averaged atmospheric re-analysis data for driving the two 

photosynthesis models, we use the Princeton dataset. Princeton is a 3-hourly 1.0˚ 

resolution (≈ 111 km) dataset developed by the Land Surface Hydrology Research Group 

at Princeton University with applied bias corrections (see Sheffield et al., 2006). The 

Princeton data also has a near-global coverage and thus could supply the driving data for 

any regional application of a crop C cycle model. 

3.2.2. Photosynthesis models 

Soil-Plant-Atmosphere crop (SPAc) model 

The SPAc model (see Sus et al., 2010 for a full description) simulates cropland ecosystem 

photosynthesis and water-balance at point-scales over fine temporal (half-hourly) and 

vertical scales (ten canopy and twenty soil layers). Leaf-level processes are scaled up to 

make canopy-scale predictions. Furthermore, the leaf and canopy-scale simulations are 

linked to a radiative transfer scheme: tracking absorption, reflectance and transmittance 

of direct and diffuse irradiance. Photosynthesis, simulated using the Farquhar model (see 

Farquhar and von Caemmerer, 1982), and transpiration, determined using the 

Penman-Monteith equation (Jones, 1992), are linked at leaf-level by a model of stomatal 

conductance. The stomatal conductance varied accordingly to optimise C uptake whilst 

maintaining leaf water potential above a minimum value – explicitly linking vapour phase 

losses with hydraulic transport. The specific SPAc parameters used for simulating winter 

wheat crop growth, from Sus et al. (2010), are listed in Appendix section A1. 
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Aggregated Canopy Model (ACM) 

ACM generates photosynthesis from daily inputs of irradiance, atmospheric CO2, 

daylength, leaf area index (LAI), soil water availability, minimum and maximum 

temperature. To generate GPP from these drivers, ACM uses fixed variables and a series 

of aggregation equations (listed in Appendix sections B1 and B2) that are designed to 

reproduce the daily GPP estimates made by SPAc. The equations use a set of 10 unitless 

coefficients (listed in Table 3.1) that are fitted to create a response surface. This response 

surface scales the daily accumulation of half-hourly SPAc photosynthesis estimates in 

order to predict whole-canopy photosynthesis using only coarse-scale (daily) driving data. 

In essence, ACM is designed to capture and emulate the detailed behaviour of the SPAc 

photosynthesis routines whilst operating at a reduced temporal scale and, consequently, 

higher computational speeds.  

The SPAc photosynthesis simulation is restricted when soil moisture is unavailable, either 

from drought or from freezing conditions. ACM does not simulate the energy balance and 

temperature of soils, therefore we implement a simple switch so that photosynthesis 

occurs only when daily average temperature is greater than 0.0°C (i.e. GPP = 0.0 g m-2 d-1 

otherwise). This temperature-linked switch acts as an ecological constraint on C 

accumulation during cold days that typically coincide with key winter cereal crop 

developmental stages, including tillering and stem extension. 
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Table 3.1: List of ACM scalar coefficients, including priori minimum and maximum bounds, 

single-site mean and multi-site calibrated values. Brackets shown next to the single-site mean 

calibrations show the range in values across the eight sites. The multi-site calibrated 

coefficients were derived from four of the sites (i.e. calibration sites). The coefficients are used 

in a series of equations used to generate daily photosynthesis estimates (see Appendix 

section B2). 
 

 
 
 
 
 

Description of 

coefficient
Symbol

Prior 

min/max 

coefficient 

range 

Mean single-site 

calibrated coefficient 

(min/max range)

Multi-site 

calibrated 

coefficient

Nitrogen use efficiency α1 1*10-8 / 200 14.97 (2.42 / 32.58) 10.38

Daylength coefficient α2 1*10-8 / 5 0.05 (1.78 x 10-8 / 0.37) 0.04

Canopy CO2

compensation point
α3 1*10-8 / 30 4.46 (3.73 x 10-8 / 21.36) 2.70 x 10-4

Canopy CO2 half 

compensation point
α4 1*10-8 / 500 187.97 (27.70 / 472.87) 83.18

Daylength constant α5 1*10-8 / 4 0.04 (0.01 / 0.07) 0.03

Hydraulic coefficient α6 1*10-8 / 10 2.27 (5.49 x 10-8 / 9.87) 4.54

Maximum canopy 

quantum yield
α7 1*10-8 / 200 4.69 (2.12 / 12.38) 3.86

Temperature coefficient α8 1*10-8 / 5 0.01 (1.36 x 10-8 / 0.02) 4.10 x 10-3

LAI-Canopy quantum 

yield coefficient
α9 1*10-8 / 50 0.35 (2.62 x 10-4 / 0.72) 0.38

Water potential constant α10 1*10-8 / 50 0.27 (1.16 x 10-8 / 2.02) 2.72 x 10-8
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3.2.3. Data Assimilation Linked Ecosystem Carbon Crop (DALECc) model 

The DALECc model provides the half-hourly and daily LAI inputs to both the SPAc and 

ACM photosynthesis models, respectively, and simulates C mass-balance and allocation 

when driven by the GPP estimates (Figure 3.2). The model structure consists of C 

pools/stores that are linked by allocation fluxes (i.e. rate of C allocated to plant tissues) or 

litterfall fluxes (i.e. rate of C removed from tissues, Figure 3.3). The model includes a 

crop-specific C allocation scheme that consists of a look-up table defining the C allocation 

to the plant organs (foliage, stem, storage and root) based on empirical observations (see 

Penning de Vries et al., 1989). Allocation fractions assigned at each time-step are a 

function of developmental stage (DS), ranging from -1 (sowing) to 2 (maturity). The DS 

is calculated based on the accumulation of daily development rates, which are determined 

from the key developmental responses: daily temperature, photoperiod and vernalisation 

(until emergence only, Wang and Engel, 1998; Sus et al., 2010). 
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Figure 3.2: Outline of the experimental design of the study. Rectangles show models; 

rhombuses are datasets; solid lines are inputs; dashed lines are inter-comparisons. The daily 

photosynthesis model (ACM, left-hand side) can be driven by either climate reanalyses data 
(Princeton meteorological data) or daily aggregated local observations (FLUXNET 

meteorological data). The half-hourly photosynthesis model (SPAc, right-hand side) can be 

driven by either temporally downscaled estimates of the reanalyses data, or directly from the 

local half-hourly FLUXNET meteorology. A single crop development and carbon cycle model 

(DALECc) can be driven by either daily (from ACM) or half-hourly (from SPAc) estimates of 

photosynthesis. DALECc provides daily or half-hourly LAI updates (i.e. for ACM or SPAc, 

respectively) in order to generate successive photosynthesis estimates. Experimental tests 

include inter-comparisons between downscaled reanalyses data with FLUXNET 

meteorology; along with an evaluation of ACM (multi-site calibration) and SPAc GPP with 

independent FLUXNET GPP estimates. 
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Figure 3.3: Schematic of the Data Assimilation Linked Ecosystem Carbon crop (DALECc) 

model structure, including a carbon (C) allocation scheme based on crop developmental 

stage – calculated from daily accumulations of effective temperature, photoperiod and 

vernalisation (until emergence). The GPP used to drive DALECc is estimated from either the 

daily photosynthesis model (ACM) or the half-hourly photosynthesis model (SPAc). The 
calculated C allocation fractions (A) set the C allocation to the five C pools. Allocated C is 

removed from the system as either harvest export or through heterotrophic respiration from 

the crop litter and soil organic matter (SOM) C pools. 

 

3.2.4. ACM cropland photosynthesis calibration 

In this research we calibrated the 10 ACM coefficients based on the daily simulation of 

SPAc photosynthesis for winter cereal crops. This calibration was applied on a single-site 
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basis (i.e. at each of the eight sites individually) and then we merged the datasets from the 

four calibration sites to develop a single multi-site calibration. The calibration steps we 

carry out can be summarised as: (1) run SPAc once at each site using the local half-hourly 

FLUXNET drivers to generating daily outputs of GPP; (2) use the FLUXNET daily 

datasets to produce ACM meteorological drivers: minimum and maximum temperature, 

irradiance and atmospheric CO2 (fixed at 393 ppm). For the LAI values – also required to 

drive ACM – we used the daily accumulation of LAI estimates, as generated by SPAc 

driving DALECc in the previous step. We assumed that soil moisture was not limiting at 

any location or time (we chose years when the recorded drought stress was not significant) 

and so the same soil moisture parameter for ACM was set in all cases; (3) Use SPAc GPP 

estimates to calibrate the ACM constants.  

We use the Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC) approach (e.g. 

Xu et al., 2006; Hill et al., 2012; Ziehn et al., 2012, amongst others) to calibrate the ACM 

cereal crop coefficients. The likelihood function for ACM coefficient x given SPAc GPP 

values c (p(c|x)) can be expressed as: 

p(c|x)  = 𝑒𝑒
−0.5 ∙ ∑ (𝑀𝑀(𝑥𝑥)−𝑐𝑐)2 

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠2𝑖𝑖  
 

where M(x) is the ACM GPP based on coefficient combination x, and σspa is the Gaussian 

uncertainty in SPAc GPP: σspa was set to 2 g C m-2 day-1, which approximates the mean 

relative uncertainty previously quantified for SPAc (see Revill et al., 2013; thesis Chapter 

Equation 3.1 
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2). In accordance with Bayes’ theorem, based on the likelihood p(c|x) the probability 

density function (PDF) of x given SPAc GPP values c (p(x|c)) can be expressed as follows: 

p(x|c)  ∝ p(c|x) ∙  p(x) 

where p(x) is the prior probability of x.  For each ACM coefficient a log-uniform prior 

value and min/max range is prescribed (see Table 3.1) – these were determined from some 

preliminary runs whereby the bounds were progressively increased until the accepted 

coefficient space was unconstrained. To determine p(x|c), we use the MHMCMC to draw 

2 x 106
 samples of x, from which the probability distribution p(x|c) can be adequately 

approximated: a full description of the MHMCMC algorithm used in this study can be 

found in Bloom and Williams (2015). 

To avoid correlations between subsequent samples only every 10th iteration was used to 

estimate the posterior coefficient distributions (Ziehn et al., 2012) and so a total of 2 x 105 

samples remained. The MHMCMC algorithm was applied five times (i.e. five chains) 

each with randomly selected initial prior values, in order to verify convergence between 

the p(x|c) distributions of each ACM constant. We also considered a burn-in time for each 

chain, defined here as the cut-off time before convergence to the PDF maximum (Ziehn 

et al., 2012). Specifically, the first 50% of accepted values were discarded as burn-in time 

estimates. The calibrated values were selected from the union of the remaining values in 

all five chains based on the most likely value assigned (i.e. the coefficient set x with the 

Equation 3.2 
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highest corresponding p(x|c)). We test convergence of the five MHMCMC chains of 

accepted constant values using the Gelman-Rubin (G-R) diagnostic method (Gelman and 

Rubin, 1992). 

3.2.5. Gridded meteorological driver disaggregation 

The use of gridded meteorological products with regional to global coverage are essential 

to support and evaluate the spatial application of the photosynthesis models. And so, to 

complement the FLUXNET site-scale meteorological data, we constructed half-hourly 

and daily drivers (for the SPAc and ACM models, respectively) from the Princeton data. 

Temporal downscaling (i.e. to half-hourly resolutions) through cubic spline interpolation 

was first applied to the reanalysis datasets of temperature, precipitation, atmospheric 

pressure, wind speed, specific humidity and shortwave radiation.  

The vapour pressure deficit (VPD), as required by SPAc, was estimated by first 

calculating the saturation vapour pressure (SVP) based on an empirical relationship to the 

interpolated temperature (see Monteith and Unsworth, 1990). Second, using the 

interpolated specific humidity and atmospheric pressure, we estimated the partial pressure 

(pp) of water vapour (see Roberts, 2010). We then estimated the relative humidity (RH = 

pp/SVP) and VPD, expressed as follows: 

VPD =  �1 −  �
RH
100

�� ∙ SVP  

In this research we considered the 3-hourly temporal coverage of the Princeton radiation 

Equation 3.3 
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to be too sparse for a reliable interpolation that could be used directly by SPAc. Therefore, 

we first constructed half-hourly estimates of the extraterrestrial radiation: a function of 

latitude, day of year and time (see Allen et al., 1998). The relative shortwave radiation 

(i.e. ratio of actual to clear sky solar radiation) was then calculated as the fraction of the 

half-hourly interpolated Princeton values to the extraterrestrial radiation and thus used to 

express atmospheric attenuation (i.e. cloudiness). The half-hourly extraterrestrial radiation 

values were then multiplied by the daily averages of these half-hourly ratios. Essentially, 

this daily averaged ratio was used to scale the half-hourly potential radiation accordingly 

to reflect the degree of cloudiness. Daily drivers for ACM (minimum/maximum 

temperature and daily radiation) were then determined from the disaggregated half-hourly 

datasets. 

3.2.6. Approaches for evaluating model performance 

We analysed outputs from the temporal disaggregation routine applied to the Princeton 

data when generating both the half-hourly and daily drivers. However, we focus on 

irradiance and temperature estimates only as these variables are considered as the major 

environmental factors determining winter wheat development (Streck et al., 2003). The 

disaggregated data were compared to FLUXNET site-level observations, and metrics were 

calculated: root-mean-square-error (RMSE) describing the average estimated-measured 

differences and the normalised mean bias (NMB) quantifying model over or 

under-predictions. We also compute the traditional R2 regression statistic (least-squares 
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coefficient of determination).  

This study evaluates the calibration of a simple photosynthesis model when compared to 

estimates made by a more complex model. And so, where Sus et al. (2010) compared 

SPAc to independent EC data at the cereal crop sites, here we primarily focus our analysis 

between the ACM calibrations (single-site and multi-site) and SPAc outputs. We first 

compare ACM and SPAc estimates from using the local FLUXNET drivers (i.e. daily and 

half-hourly for ACM and SPAc, respectively), where disparities between the models were 

statistically summarised. For the multi-site calibration, we further extended this analysis 

to compare the ACM and SPAc photosynthesis relationship at the calibration and 

validation sites. Since reanalysis data has not been previously used to drive SPAc, we then 

compared the ACM (multi-site calibration only) and SPAc outputs – with both models 

driven using the disaggregated Princeton data – to GPP derived from the FLUXNET EC 

data. 

3.3. Results 

The results from the temporally downscaling procedure applied to generate the irradiance 

and temperature estimates are present here first. Second, the photosynthesis estimates 

from the calibrated ACM and SPAc models – both using local meteorological drivers – 

are compared to each other and the FLUXNET photosynthesis predictions. Third, 

estimates from the two models are evaluated when driven using the downscaled reanalysis 

data. 
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3.3.1. Meteorological disaggregation routine 

Irradiance 

There was a strong correlation (mean R2 = 0.76) between the half-hourly disaggregated 

irradiance estimates from the Princeton data and FLUXNET Level-4 site-scale 

observations, as reported in W m-2 (Table 3.1 and Auradé example Figure 3.4). 

Furthermore, across all sites there was a relatively small range in R2 (0.71 ≤ R2 ≤ 0.85). 

From a linear fit, the sites showed positive intercept and slope values less than 1 

suggesting similar biases, along with an NMB range from 13% to 54% (mean NMB = 

27%). However, the Lonzee site, which had a slope value greater than 1 and the most bias 

(NMB = 54%), was a notable exception to this. Across all sites, the RMSE of the 

half-hourly irradiance estimates ranged from 96 to 134 W m-2 (mean RMSE = 111 W m-2). 
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Table 3.2: Summary statistics evaluating half-hourly predictions of solar irradiance and 

temperature, produced from temporally disaggregating 3-hourly Princeton reanalysis data, 

used to drive SPAc. Comparisons are made against half-hourly FLUXNET Level-4 site-scale 

observations from sowing to harvest across eight crop sites. Metrics include 

root-mean-square-error (RMSE) and normalised mean bias (NMB). 

 

Site

Half-hourly irradiance Half-hourly temperature

R2 slope
Intercept 

(W m-2)

RMSE

(W m-2)

NMB 

(%)
R2 slope

Intercept 

(°C)

RMSE 

(°C)

NMB 

(%)

Auradé 0.79 0.86 45.52 104.88 16.63 0.79 0.90 2.02 3.35 11.27

Grignon 0.76 0.89 45.47 101.59 25.57 0.67 0.78 3.18 4.05 16.89

Klingenberg 0.75 0.83 44.28 102.16 16.24 0.74 0.85 2.77 4.53 25.79

Avignon 0.85 0.91 35.62 95.78 13.31 0.77 0.86 2.70 3.61 7.84

Lonzee 0.75 1.09 49.99 119.23 54.04 0.63 1.07 -1.95 4.82 -10.9

Lamasquère 0.74 0.91 54.72 122.38 30.93 0.55 0.85 2.74 5.19 9.09

Gebesse 0.74 0.86 47.08 109.78 21.33 0.62 1.04 -3.77 5.76 -31.68

Oensingen 0.71 0.93 57.24 134.38 35.68 0.52 0.74 0.20 5.95 -24.41

Average 0.76 0.91 47.62 111.27 26.72 0.66 0.89 0.99 4.66 0.49
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Figure 3.4: Comparisons of the disaggregated 3-hourly 1.0˚ resolution reanalysis data to 

FLUXNET Level-4 half-hourly observations shown for Auradé. Example time-series plots, for 

radiation (top-left panel) and temperature (bottom-left panel), for disaggregated (dashed line) 

and FLUXNET (grey line) values, shown for day of year 80 to 100 (21st March – 10th April). 
Scatter plots comparing disaggregated and FLUXNET values, for radiation (top-right panel) 

and temperature (bottom-right panel), over the entire crop growth season at Auradé. Metrics 

include the root-mean-square-error (RMSE) and normalised mean bias (NMB). 

 

The daily irradiance estimates, as derived from sampling the half-hourly disaggregated 

values, compared to the daily FLUXNET Level-4 observations, reported in MJ m-2 d-1 
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(Table 3.3 and Auradé example Figure 3.5), show a similar degree of bias (mean NMB = 

22%) to that of the half-hourly estimates. There was also a similarly strong correlation 

(0.59 ≤ R2 ≤ 0.78). Across all sites, the RMSE of the daily irradiance estimates ranged 

from 3.62 to 5.03 MJ m-2 d-1 (mean RMSE = 4.17 MJ m-2 d-1). 

Table 3.3: Summary statistics evaluating daily average predictions of solar irradiance and 

temperature, used as driver datasets for ACM, produced from sampling the half-hourly 

time-series of disaggregated Princeton 3-hourly reanalysis data. Comparisons are made 

against daily FLUXNET Level-4 site-scale observations from sowing to harvest across eight 

European crop sites. 

 

Site

Daily irradiance Daily temperature

R2 slope

Intercept 

(MJ m-2

d-1)

RMSE

(MJ m-2

d-1)

NMB 

(%)
R2 slope

Intercept 

(°C)

RMSE 

(°C)

NMB 

(%)

Auradé 0.73 0.72 5.66 3.79 16.88 0.85 0.91 1.95 2.55 11.22

Grignon 0.78 0.83 4.57 3.66 26.48 0.85 0.88 1.97 2.61 12.55

Klingenberg 0.75 0.79 4.28 3.68 16.46 0.88 0.99 1.71 3.12 24.23

Avignon 0.78 0.84 4.06 3.62 13.17 0.88 0.86 2.99 2.24 10.38

Lonzee 0.63 0.82 4.88 4.61 32.58 0.59 0.84 1.79 3.63 0.81

Lamasquère 0.62 0.74 6.73 4.57 31.65 0.59 0.72 4.39 3.54 10.79

Gebesse 0.70 0.78 4.70 4.40 19.10 0.61 0.86 0.05 4.36 -13.72

Oensingen 0.59 0.71 5.64 5.03 19.39 0.55 0.64 2.63 4.33 -10.14

Average 0.70 0.78 5.07 4.17 21.96 0.73 0.84 2.19 3.30 5.77
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Figure 3.5: Plots of daily radiation and temperature estimates extracted from the 

disaggregated 3-hourly 1.0˚ resolution reanalysis data compared to FLUXNET Level-4 daily 

observations shown for Auradé. Time-series plots, for radiation (top-left panel) and 

temperature (bottom-left panel), for disaggregated (dashed line) and FLUXNET (grey line) 

values are shown for all day between sowing and harvest. Scatter plots comparing 

disaggregated and FLUXNET values, for radiation (top-right panel) and temperature 

(bottom-right panel), also shown for the entire crop growth season at Auradé. 
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Temperature 

The half-hourly time-series of disaggregated temperature estimates explained an average 

of 66% of the variability recorded across all observations (Table 3.2 and Figure 3.4). The 

overall correlation range (0.52 ≤ R2 ≤ 0.79) of the half-hourly temperature estimates to the 

FLUXNET site-level observations was larger when compared to that of the half-hourly 

irradiance values. Based on a linear fit, Lonzee and Gebesse both had negative intercepts 

and slopes greater than 1, whereas the remaining sites had positive intercepts and slopes 

less than 1 suggesting the degree of biases in the temperature was not consistent across all 

sites. Although the average bias was low (mean NMB = 0.49%), the range in NMB values 

(-32% ≤ NMB ≤ 26%) across all sites was large. The RMSE of the half-hourly temperature 

estimates ranged from 3.35 to 5.95°C (mean RMSE = 4.66°C). 

Similarly to the half-hourly values, the analysis of the daily temperature estimates when 

compared to the FLUXNET observations across all sites (Table 3.3 and Figure 3.5) show 

a relatively low bias (mean NMB = 6%). However, the range in NMB values (-14% ≤ 

NMB ≤ 24%) was smaller when compared to the half-hourly analysis. Furthermore, the 

daily estimates have a generally stronger correlation to the observations (0.55 ≤ R2 ≤ 0.88) 

when compared to the half-hourly values, and the RMSE had a smaller magnitude, from 

2.24 to 4.36°C (mean RMSE = 3.30°C). 
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3.3.2. Model comparisons 

Convergence analysis 

For a qualitative determination of the convergence, we compared the five MHMCMC 

chains for both the single-site and multi-site calibrations. For the majority of constants the 

interquartile ranges in accepted values across the five chains are both similar in magnitude 

and share a degree of overlap. Furthermore, the G-R test values for each coefficient (1.00–

1.12) were all close to 1 indicating convergence (Xu et al., 2006). 

Single-site calibration 

ACM was run using a local calibration of constants (listed in Table 3.1) and local 

meteorology drivers (i.e. FLUXNET) for all days within each crop growth season (i.e. 

sowing to harvest). From evaluating the time-series GPP estimates by comparing to SPAc 

(Table 3.4 and Figure 3.1), for all eight sites there was a significant correlation between 

ACM and SPAc estimates (mean R2 = 0.97), the range in R2 values (0.95 ≤ R2 ≤ 0.98) was 

also small. The RMSE ranged from 0.87 g m-2 d-1 (Gebesse) to 1.22 g m-2 d-1 (Oensingen) 

with a mean RMSE of 1.09 g m-2 d-1. The slope of the linear fit ranged from 0.95 to 1.23; 

however for the majority of sites this value was greater than 1 indicating some positive 

biases (mean NMB = 6%). 
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Figure 3.6: Plots (shown for Auradé only) comparing ACM and SPAc GPP estimates 

including ACM calibrations: single-site (a, b) and multi-site (c, d) using local meteorological 
drivers. ACM (multi-site calibration) and SPAc estimates – both models using disaggregated 

drivers – are also shown (e, f). Time-series consist of ACM (black line; grey shading indicating 

5/95% confidence interval), SPAc (dashed black line) and FLUXNET estimates (black 

asterisks), including a black arrow indicating harvest (H) date. Scatter plots compare ACM 

and SPAc estimates, including 1:1 line (grey line). 
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Multi-site calibration 

Similarly to the single-site calibration, from comparing the ACM GPP generated using 

the multi-site calibrated constants (listed in Table 3.1) to SPAc estimates, with both 

models using the FLUXNET drivers (Table 3.4 and Figure 3.6), a high correlation (mean 

R2 = 0.96) was achieved between the two models at all sites. The range in R2 values (0.93 

≤ R2 ≤ 0.97) was relatively small. The RMSE results between ACM and SPAc were also 

comparable, ranging from 0.98 g m-2 d-1 (Auradé) to 1.48 g m-2 d-1 (Oensingen) with a 

mean value of 1.16 g m-2 d-1. When compared to the single-site ACM constants, the use 

of the multi-site calibration showed a slight reduction in the biases of estimates, 

demonstrated by a decrease in the mean slope (from 1.09 to 1.05) and an increase in the 

intercept (from -0.13 to -0.06 g m-2 d-1). Moreover, although differences in the degree of 

biases exist at individual sites, the difference in the average NMB for the single-site (6%) 

and multi-site (4%) were very similar. 

When evaluating the performance of the multi-site ACM calibration specifically at the 

validation sites the mean correlation to SPAc (mean R2 = 0.96) was the same as that for 

the calibration sites. The mean RMSE values were also similar in magnitude, being 1.15 

g m-2 d-1 and 1.18 g m-2 d-1 for the calibration and validation sites, respectively. However, 

the mean NMB indicated a positive increase in bias between the calibration (mean NMB 

= 0%) and validation sites (mean NMB = 7%). 
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Local versus disaggregated meteorological drivers 

We compared differences between the multi-site calibrated ACM and SPAc model GPP 

estimates when both models are driven by the disaggregated meteorological data (Table 

3.4 and Figure 3.6). For the majority of sites, there was a strong correlation between GPP 

predictions from the two models (0.64 ≤ R2 ≤ 0.98). However, with an R2 value of 0.64, 

this correlation for Lonzee was significantly weaker when compared to other sites. 

Furthermore, with an intercept value of 3.07 g m-2 d-1, a linear regression indicated biases 

in the Lonzee predictions. Compared to the relationship between the two models when 

using local drivers, the range in RMSE values across the sites was relatively large: from 

0.82 g m-2 d-1 (Auradé) to 3.78 g m-2 d-1 (Lonzee). This corresponds to a large inter-site 

range in NMB values (-33% ≤ NMB ≤ 67%). 

3.3.3. Model comparison with FLUXNET photosynthesis 

Using the disaggregated gridded drivers, we compared ACM (using the multi-site 

calibration) and SPAc predictions to GPP estimates derived from FLUXNET EC data 

(Table 3.5 and Figure 3.7). For both models, overall there was a consistent and similarly 

strong correlation to the FLUXNET data across all sites: ACM (0.61 ≤ R2 ≤ 0.88) and 

SPAc (0.52 ≤ R2 ≤ 0.88). The overall degree of biases in estimates from ACM (mean 

NMB = 32%) and SPAc (mean NMB = 35%) were also comparable. However, the range 

in SPAc biases (-45% ≤ NMB ≤ 88%) was larger when compared to the ACM estimates 

(3% ≤ NMB ≤ 59%). 
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Table 3.5: Summary statistics of ACM (multi-site coefficient calibration) and SPAc GPP 

estimates compared to FLUXNET GPP, when both models are driven with the disaggregated 

meteorological data. Indicating the ACM multi-site calibration (c) and validation (v) sites.  

 
 

Site 

(calibration or 

validation)

ACM (multi-site calibration) SPAc

R2 slope
Intercept 

(g m-2 d-1)

RMSE (g 

m-2 d-1)

NMB 

(%)
R2 slope

Intercept 

(g m-2 d-1)

RMSE (g 

m-2 d-1)

NMB 

(%)

Auradé (c) 0.86 1.30 1.15 2.38 58.78 0.84 1.42 1.64 2.73 82.57

Grignon (v) 0.61 0.98 2.26 3.94 54.74 0.85 1.28 1.67 2.69 69.86

Klingenberg (c) 0.73 1.13 0.47 3.38 26.72 0.52 1.14 2.45 5.42 88.33

Avignon (v) 0.88 0.88 2.74 1.91 41.42 0.88 0.80 1.36 2.14 5.94

Lonzee (c) 0.78 0.89 1.19 2.96 9.75 0.86 0.68 -0.80 2.56 -45.25

Lamasquere (v) 0.79 1.08 0.61 2.72 19.80 0.80 1.25 0.34 3.04 31.56

Gebesse (v) 0.84 1.52 -0.32 2.73 42.96 0.69 1.24 0.02 3.38 24.69

Oensingen (c) 0.78 1.02 0.01 3.13 2.57 0.74 1.04 0.93 3.64 20.19

Average 0.78 1.10 1.01 2.89 32.09 0.77 1.11 0.95 3.20 34.74
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Figure 3.7: Plot comparing ACM GPP (multi-site calibration and disaggregated 

meteorological drivers) for all eight crop sites to FLUXNET estimates. The plot includes the 

1:1 line (grey dashed line). Note: for simplicity, only weekly aggregates of GPP are shown 

here. 

 

The range in RMSE between ACM and FLUXNET GPP (from 1.91 to 3.94 g m-2 d-1) is 

smaller when compared to that between ACM and SPAc (from 0.82 to 3.78 g m-2 d-1). 

From the linear fit there was an average slope of 1.10 indicating an overall positive bias 

in ACM GPP predictions compared to FLUXNET. For the ACM estimates at Lonzee, 

although having a relatively weak correlation and large biases when compared to SPAc 

(R2 = 0.64, NMB = 67%), the correlation was stronger when comparing to FLUXNET 

estimates at this site (R2 = 0.78, NMB = 10%). 
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Similarly to the comparison between ACM and SPAc, when comparing ACM 

photosynthesis to the FLUXNET data there was a consistently high correlation at the 

calibration (mean R2 = 0.79) and validation sites (mean R2 = 0.78). The error was also 

similar between these two groups of sites with a mean RMSE of 2.96 g m-2 d-1 and 2.83 g 

m-2 d-1 for the calibration and validation sites, respectively. However, the estimates at the 

validation sites were more positively biased (mean NMB = 40%) when compared to those 

at the calibration sites (mean NMB = 24%). 

3.4. Discussion 

The use of ACM for reproducing the photosynthesis estimates of the SPAc model is first 

discussed here. Second, the performance of both the models when driven by the 

downscaled meteorological data is evaluated. Third, the limitations and implications of 

the ACM calibrations are discussed.  

3.4.1. Reduced model complexity 

The application of ACM when driven with site-level meteorological data had a 

consistently high correlation to SPAc GPP estimates for both single-site and multi-site 

calibrations (Table 3.4). Therefore, a reduction in model complexity, including temporal 

resolution (i.e. from half-hourly to daily time-steps), does not significantly diminish the 

overall accuracy of photosynthesis estimates at daily timescales. 
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3.4.2. Single-site versus multi-site calibration 

The analysis between the ACM coefficient MHMCMC chains, derived from SPAc GPP 

estimates, indicated convergence when comparing across eight sites for both the 

single-site and multi-site calibrations. Therefore, the overall ACM coefficient calibration 

approach detailed here, including sample size, was sufficient when searching the available 

space (i.e. prior upper and lower bounds) defined for each of the 10 ACM constants. 

When comparing all the single-site and multi-site ACM calibrations with SPAc (Table 

3.4) the accuracy and biases in ACM GPP were consistent in magnitude. Similar results 

in Kuppel et al. (2012), albeit for a deciduous broadleaf forest application, demonstrated 

that NEE estimates generated using a multi-site coefficient optimisation were also as good 

as those achieved using a single-site optimisation. 

Although an increase in bias was observed at the validation sites, the correlation of the 

multi-site calibrated ACM to SPAc was equally high when compared to that of the 

calibration sites. Furthermore, with an increase in mean model error of only 0.02 g m-2 d-1, 

the overall effectiveness of the model was not significantly reduced when applied at the 

validation sites. Consequently, from using only four calibration sites, we have produced a 

generic and robust ACM calibration of winter wheat photosynthesis; generating estimates 

that are comparable to outputs from a site-specific calibration and a more complex model. 

However, we acknowledge that the crop seasons and sites selected in this analysis were 

not considered to be drought-stressed and soil moisture was assumed to be fixed across 
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all sites. 

3.4.3. Performance of spatially aggregated drivers 

From the temporal disaggregation procedure that was applied to the Princeton reanalysis 

data (i.e. from 3-hourly to half-hourly estimates), the temperature and irradiance estimates 

generally had a high agreement with the independent FLUXNET observations. However, 

there were biases in the two datasets across all sites. This bias was particularly the case 

for the half-hourly temperature estimates that indicated a large range of positive and 

negative biases (-32% ≤ NMB ≤ +26%) in the Princeton data. 

We evaluated the use of the temporally disaggregated reanalysis data for driving SPAc. 

ACM (multi-site calibration) was then driven based on the daily aggregates (e.g. minimum 

and maximum temperature) of the half-hourly time-series of estimates. The GPP estimates 

from both models demonstrated a high agreement (Table 3.4). This observation indicates 

that the uncertainty associated with a reduction in model complexity is uncorrelated with 

that of a more complex model when driven with disaggregated meteorological data. And 

so, the use of disaggregated drivers satisfies our previous hypothesis: the propagation of 

driver data uncertainty impacts the two models to a similar degree.  

Although selected as a calibration site, the GPP generated at Lonzee was a notable 

exception to the high correlation between the ACM and SPAc estimates, which can be 

attributed to the ACM temperature-linked photosynthesis switch that prevents 
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photosynthesis when the daily average temperature was < 0.0°C. By preventing 

photosynthesis and, hence C accumulation, during cold days this ACM modification was 

effective at delaying crop development. However, the Lonzee growth season had a large 

number of days where the average temperature was < 0.0°C; furthermore these days 

coincided with key crop developmental stages. On the other hand, SPAc uses half-hourly 

drivers to simulate leaf-level processes within multiple canopy layers, and thus resolves 

photosynthesis at much finer temporal resolutions. Although the daily average 

temperatures used by ACM were less than 0.0°C, a large proportion of the disaggregated 

half-hourly time-series was greater than 0.0°C; therefore SPAc continued to simulating 

photosynthesis for some of the half-hourly periods during these days. 

The bias range across individual site estimates was much larger for SPAc when compared 

to ACM (Table 3.5). We deduce this bias is a consequence of biases in the original 

Princeton reanalysis product, which was temporally (3-hourly) and spatially (1.0˚) 

aggregated. These biases would have propagated into the SPAc model at a higher 

frequency when compared to ACM, which corresponded to larger biases in SPAc 

photosynthesis estimates. In spite of this, the overall ACM and SPAc relationships to 

FLUXNET estimates were similar in terms of accuracy and biases. As was the case for 

the ACM and SPAc comparison, there was a positive increase in the mean bias when 

applying the multi-site calibration at the validation sites. However, comparisons of ACM 

to FLUXNET estimates at the calibration and validations sites also showed a similar 

correlation and error. And so, a simpler model can produce reliable estimates of 
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photosynthesis even when driven with coarse-scale meteorological data. 

3.4.4. Limitations and implications for future research 

We acknowledge that the sites/seasons selected for analysis in this study are by no means 

representative of winter cereal crop conditions as a whole. However, the spatial 

distributions of the eight sites do span a relatively large area of western-central Europe; 

therefore, we would anticipate a similar model performance when applied at alternative 

winter wheat sites within this geographical extent. Although we equally divided eight sites 

for calibration and validation, due to the scarcity of European field-scale observations of 

cereal crop meteorology and photosynthesis, the multi-site ACM calibration could not be 

substantially validated against data from independent field sites. Nonetheless, we 

hypothesise that a similar accuracy in photosynthesis predictions could be achieved if the 

multi-site ACM calibration was applied at alternative western-central European winter 

wheat sites. 

Generally, outputs from driving ACM with estimates from the applied disaggregation 

routine were promising. Given the wide-scale (global) coverage of the Princeton 1.0° 

3-hourly reanalysis product used here, this shows potential for the spatial upscaling of 

ACM. It is also worthy of note, that errors existing in the SPAc model, due to parameter 

uncertainty and inadequacies in process understanding (see evaluation in Sus et al., 2010), 

would have invariably transferred to ACM through calibration. However, we anticipate 

that a reduction in model uncertainty, along with improvements in predictions, could be 
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achieved by combining ACM with additional observations within a model-data fusion 

framework. For instance, the research presented in Chapter 2 using SPAc has 

demonstrated that the sequential assimilation of Earth observation (EO) derived LAI 

estimates improves the estimation of C fluxes. However, the simplicity of ACM compared 

to SPAc, particularly in terms of computational demand, offers a more practical means of 

updating state variables through such data assimilation schemes involving a large 

ensemble of model runs. 

3.5. Conclusion 

Previous approaches to simulating the crop C cycle have used detailed models operating 

at fine spatial and temporal scales, with extensive and often uncertain parameterisations 

in order to resolve leaf-level processes. As a result, the spatial upscaling of these models 

is highly susceptible to errors and constraints stemming from fine temporal scale 

meteorological driver data and site-specific parameterisations. The computational costs of 

complex models also prohibit ensemble crop C cycle analyses at continental-scales. To 

this end, we evaluated the use of a simplified model framework that simulates aggregated 

canopy processes using comparatively coarse temporal scale meteorological data. We 

further reduced model complexity by applying a generic multi-site photosynthesis 

calibration and used disaggregated drivers instead of local observations.  

Outputs from the simplified model using a multi-site calibration closely reproduced (range 

in RMSE 0.98 to 3.78 g m-2 d-1) those of the more complex SPAc model when both models 
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are driven with either local or disaggregated data. This strong relationship between the 

two models also existed when the multi-site calibrated model was evaluated at 

independent sites. Similar results were achieved when comparing the two models to 

site-level EC data. However, due to parameter uncertainty and meteorological driver 

availability, we argued that the use of simpler models with reduced parameterisation are 

more favourable for further studies involving the spatial upscaling of crop C simulations. 

Additionally, the increased computational efficiency, as a consequence of a decrease in 

model complexity, is more applicable for model-data fusion experiments that would 

potentially enhance the representation of cropland C fluxes. 

3.6. Summary 

This research has demonstrated the use of a simplified model (i.e. ACM) for simulating 

photosynthesis within cropland ecosystems. ACM was calibrated and evaluated – based 

on photosynthesis estimates generated by the more complex SPAc model and EC data – 

at the winter cereal crop FLUXNET sites used in Chapter 2. The validity of ACM when 

driven with course spatial and temporal scale meteorological data is further tested. 

Single-site and multi-site ACM calibrations had a high agreement with the SPAc 

estimates. From individually comparing the ACM (multi-site calibration) and SPAc 

photosynthesis predictions to FLUXNET estimates, the errors in the photosynthesis 

estimates were similar when both models were driven with the course-scale 

meteorological data. Therefore ACM – requiring only daily spatially aggregated 

meteorological drivers – can reliably reproduce the output from a more complex model. 
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And so, the next chapter (Chapter 4) exploits the simplicity of ACM (i.e. operating at 

higher computational speeds using reduced input parameters) for the estimation of winter 

wheat crop C stocks and fluxes at region-scales. 



 

CHAPTER 4 

Model-data fusion approaches for 

the regional and multi-annual 
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yields 
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4.1. Introduction 

Variations in crop yield are strongly influenced by climate (Hansen, 2002; Osborne and 

Wheeler, 2013), however the specific impacts of climate on yield remains uncertain 

(Tubiello et al., 2007). Cropland ecosystems are also entirely managed with human 

interventions applied on a range of spatial and temporal scales (Porter and Semenov, 2005; 

Reichstein et al., 2013); causing further uncertainty when investigating feedbacks between 

climate and crop growth (Smith et al., 2010; Sus et al., 2010). However, understanding 

the complexity of agricultural production at a regional-scale, including the environmental 

interactions, is essential for policy-makers concerned with food security and climate 

change (Becker-Reshef et al., 2010; Lobell and Burke, 2010; Ewert et al., 2011; Hawkins 

et al., 2013; Li et al., 2014). 

Crop models integrate multiple crop physiological mechanisms – simulating the key 

interactions between soil, vegetation, management and climate (Wattenbach et al., 2010; 

Martre et al., 2015). The models, driven by meteorological data, can estimate daily crop 

growth and are a powerful tool for evaluating the causes of variability in crop carbon (C) 

dynamics, including yield (Wong and Asseng, 2006; Coucheney et al., 2015). 

Typically, crop models are developed and calibrated at field-scales under the assumptions 

of homogenous field conditions (Balkovič et al., 2013), therefore their regional 

application is complicated by factors concerning input data requirements and parameter 

uncertainty. Specifically, the models often require a large number of input data on crop 
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cultivar, soil characteristics and management information that, due to the complexity of 

cropping patterns over agricultural landscapes, are often uncertain or unavailable (Kogan 

et al., 2013; Ma et al., 2013; Huang et al., 2015). When compared to standard land-surface 

models, detailed crop models that simulate leaf-level processes, such as the 

Soil-Plant-Atmosphere crop model (SPAc, Sus et al., 2010), involve extensive and 

uncertain parameterisations that are difficult to calibrate (Lobell and Burke, 2010; Valade 

et al., 2013; Huang et al., 2015). To evaluate leaf-level processes (e.g. photosynthesis), 

complex models also operate at fine temporal scales (e.g. hourly time-steps); thus making 

the models computationally intensive when calibrating parameters through an ensemble 

of runs over multiple points and growing seasons. 

Satellite Earth observation (EO) sensors offer a synoptic and repetitive coverage – 

providing temporally consistent information on crops over large geographical extents 

(Dente et al., 2008; Chen et al., 2011). Atzberger (2013) discusses areas where EO derived 

data can support the analysis of crops, including yield forecasting, phenological 

monitoring and the mapping of crop types and distributions. There is also a growing 

volume of standardised EO products, most notably MODIS leaf area index (LAI) 

estimates (Knyazikhin et al., 1998; Yang et al., 2006), thus allowing for a regional-scale 

analysis over multiple crop growing seasons. Through empirical regression, studies have 

directly used EO data for forecasting regional crop yields (e.g. Becker-Reshef et al., 2010; 

Mkhabela et al., 2011; Kogan et al., 2013). However, empirical approaches are typically 

calibrated using historical observations; consequently they may only be applicable for a 
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specific growth season, crop cultivar, developmental stage or geographical location (Fang 

et al., 2011; Ma et al., 2013; Huang et al., 2015; Lobell et al., 2015). 

The assimilation of EO data into crop models has been applied to enhance the simulation 

of C dynamics, including yield and net land-atmosphere C fluxes (e.g. De Wit et al., 2012; 

Revill et al., 2013; see Chapter 2; Sus et al., 2013; Zhao et al., 2013). High temporal 

resolution EO sensors, such as MODIS (e.g. 8-day LAI estimates), are essential for precise 

crop growth monitoring applications in order to capture the key developmental stages 

(Launay and Guerif, 2005; Whitcraft et al., 2015).  

Studies assimilating MODIS data have been conducted in North America where the 

average field size is at least comparable to the 1 km resolution LAI product. For example, 

Fang et al. (2011) achieved a reasonable agreement with official statistics when 

assimilating MODIS LAI into the CERES-Maize model for estimating corn yields in 

Indiana with reported field sizes of around 240 ha. Ines et al. (2013) assimilated MODIS 

LAI into the DSSAT-Crop model and reduced errors in yield estimates when compared 

to multi-annual (2003-2009) statistics for Iowa. However, to accurately resolve the detail 

within small (< 25 ha) fields, such as those that are characteristic of European croplands, 

the use of MODIS LAI is challenged by sub-pixel heterogeneity (Doraiswamy et al., 2004; 

Duveiller and Defourny, 2010). And so, as opposed to using MODIS LAI directly in a 

sequential data assimilation (DA) framework (such as that detailed in Chapter 2), 

alternative variational assimilation approaches have combining models and EO data to 
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calibrate phenological parameters (e.g. minimum temperature, Xu et al., 2011) or 

management-related information (e.g. sowing or emergence date, Brown and de Beurs, 

2008; Sus et al., 2013). 

In 2013, the UK was the eighth largest producer of cereal crops (predominantly winter 

wheat) in the European Union (Eurostat, 2015). Cereal crops also account for around 50% 

of the UK cropland area (DEFRA, 2015). Studies evaluating the performance of crop 

models against extensive time-series of European regional yield statistics (e.g. Balkovič 

et al., 2013) are rare. Furthermore, to our knowledge, studies combining models with EO 

data – specifically for UK regional yield and net C flux estimates – are non-existent. To 

this end, here we conduct a spatially explicit approach for multi-annual (2000-2013) 

winter wheat yield estimates at UK regional-scales by integrating agricultural census data, 

MODIS LAI and a crop model. Our specific objectives are to: first, quantify the 

relationship between MODIS LAI and official regional yield data. This established 

relationship further allows us to test a filtering method for refining the selection of winter 

wheat crop areas derived from merging multi-temporal census data. Second, assess the 

spatial upscaling of crop model estimates generated at local scales (1 km) for reproducing 

the regional yield statistics. Third, through constraining the simulated phenology during 

the vegetative period, we evaluate the fusion of the model with the MODIS LAI for yield 

estimates in a DA framework. We further assess this model-data fusion method by 

establishing a relationship between the simulated net C fluxes and yield statistics. The 

following research questions are addressed: 
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1) What is the empirical relationship between MODIS LAI and crop yields across

UK regions?

2) What is the accuracy of crop model yield estimates at the grid-scale when

aggregated to regional-scales?

3) Can MODIS LAI be used to constrain and improve the model estimates of yield

and net C fluxes?

The novelty of this research is the combined use of a crop-specific model and EO data for 

resolving UK regional crop yield and net C fluxes over a 14-year period. A further 

innovation is the regional application of the simplified photosynthesis model – calibrated 

and evaluated in Chapter 3 – that uses only daily meteorology drivers; therefore 

minimising the model complexity associated with computational demand and input driver 

data requirements. 

4.2. Data and Methods 

First, a brief overview of the study regions is presented, followed by a description of the 

data used to parameterise, drive, calibrate and validate the regional application of the 

model framework. Second, an overview of the crop C budget modelling approach is given. 

Third, the technique used to constrain the crop model canopy development simulation is 

provided, along with the experimental design used to evaluate the performance of the 

model-data fusion. 
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4.2.1. Study regions 

This research focuses on multi-annual (2000-2013) winter wheat (Triticum aestivum) crop 

production across six UK administrative regions: East Midlands, West Midlands, 

Yorkshire & the Humber, North East, South East and Eastern England. These specific 

regions were selected as they were identified as the most dominant UK wheat producing 

regions from a 2013 survey conducted by the UK Department for Environmental Food 

and Rural Affairs (DEFRA, 2013). 

4.2.2. Data description and pre-processing 

Spatial datasets 

To provide spatial estimates of annual wheat crop areas, we used the Agcensus datasets 

developed by Edinburgh University Data Library consisting of DEFRA Agricultural 

Census results aggregated to 2 km grid squares. Specifically, we used the wheat crop and 

total cereal crop area Agcensus data categories, which were available for the years 2000, 

2004 and 2010 only. In order to minimise the impacts of spatial and temporal variability, 

using a Geographical Information System (GIS) we first selected 2 km cells where the 

estimated wheat growing area was greater than 50% of the total cereal crop area; this 

process was repeated for each of the three annual datasets. Through GIS overlay analysis, 

we further reduced the grid cell selection to those that only existed across all three years. 

Essentially we merged the three datasets to produce a single spatially and temporally 

consistent gridded dataset that delineated the dominant (i.e. > 50%) wheat crop producing 



CHAPTER 4 

110 

areas. Therefore, it was assumed that wheat production was dominant at these selected 2 

km2 cells across the entire study period (2000-2013). 

MODIS LAI data processing 

The MODIS LAI data product (combined Terra and Aqua product; Level-4 MCD15A2) 

was sourced from the NASA Reverb Earth Observing System Data and Information 

System (EOSDIS, 2009). This LAI data, consisting of 8-day composites at 1 km 

resolution, was extracted to cover the selected 2 km cells of the merged census dataset 

over the entire 14-year study period. Consequently, there were approximately four 

MODIS time-series points for each of the cells per year. Using the available MODIS 

Quality Assurance (QA) data on cloud status, we also applied a filter to include only 

observations on days that were not flagged as cloudy and that the main retrieval algorithm 

provided the best possible results at the time of acquisition. In order to ensure that an LAI 

value was available for each day of the wheat crop growing season, cubic spline 

interpolation was also applied to the filtered MODIS LAI time-series. 

Regional crop yield data 

To quantify the empirical relationship between the MODIS LAI and yield, and to evaluate 

the regionally aggregated crop model estimates, official statistics on UK regional wheat 

yields (tonnes/hectare, t ha-1) were sourced from DEFRA (DEFRA, 2015) for the full 

study period (i.e. 2000-2013). These were derived from the reported wheat production and 

area that was collated during DEFRA’s annual agriculture surveys. We further applied a 
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correction to the yield statistics to remove moisture content, which is standardised by 

DEFRA to be 14.5% for all cereal crops. 

Meteorological driving data 

In order to drive the crop model used in this research, meteorological data was acquired 

for each of the 1 km MODIS LAI points. These meteorological drivers were sourced from 

the 1 km resolution gridded Climate, Hydrology and Ecology research Support System 

(CHESS) dataset,  which was developed by the Centre for Ecology and Hydrology (CEH, 

2014). Specifically, daily estimates of minimum and maximum temperature and surface 

downwelling short-wave radiation were retrieved from CHESS. 

Crop Calendar Dataset (CCD) 

Information on management dates – specifically the sowing and harvest date, which was 

required to initialise the regional application of the crop model – was sourced from the 

gridded (5' x 5') CCD developed by Sacks et al. (2010). The CCD is a single global dataset 

that was produced based on the relationship between archived climate statistics and 

observed management dates. For this study, the average sowing and harvest dates for 

winter wheat – being 31st September (day 304) and 27th July (day 208), respectively – 

were the same across all UK regions. In spite of this, since our model approach accounts 

for winter cereal crop dormancy (i.e. vernalisation) and senescence, we do not anticipate 

a high sensitivity to sowing/harvest dates at regional-scales. 
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Empirical regression-based analysis 

We determined the relationship been annual DEFRA yield and the maximum MODIS LAI 

through regression-based analysis for each of the six regions. Past regression models 

relating vegetation indices to yield differ depending on factor including crop type and 

environmental conditions (Mkhabela et al., 2011). However for cereal crops, research in 

Forbes and Watson (1992), along with a preliminary analysis conducted using sample data 

in this study, revealed a reasonable correlation between the maximum LAI of cereal crops 

and yield. Therefore, for each region, we aggregated the MODIS LAI data by first 

calculating the maximum LAI estimate per year for each of the selected 2 x 2 km grid 

cells. Second, we calculated the mean maximum LAI across all cells per year and region. 

Consequently, for each of the six regions, this procedure generated one mean maximum 

LAI value per year. The regression analysis was then applied to evaluate the annual 

regional yields with the aggregated MODIS LAI. 

Knowledge-based MODIS LAI point filtering 

Given the scale mismatch between the 2 km resolution wheat area map and the 1 km 

MODIS LAI, the selection of MODIS LAI points was filtered for each year. As the spatial 

and temporal extents of this analysis are relatively large, reducing the number of MODIS 

LAI points through filtering is also favourable in terms of computational efficiency. This 

filtering involved combining an analysis of the full range in LAI time-series with a 

knowledge of winter wheat phenology under UK environmental conditions. In order to 

reduce the MODIS LAI uncertainty due to land cover misclassification, research in Zhao 
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et al. (2013) involved the removal of maize crop sites based on the maximum MODIS 

LAI value. Similarly, in this research we analysed the MODIS LAI time-series at each 

point and removed points that were not considered representative of winter wheat. Using 

crop growth observations detailed in Sylvester-Bradley et al. (2008), the filtering criteria 

was based on two conditions: 1) maximum LAI must not exceed 7.5 m2 m-2, and 2) the 

monthly mean LAI values must increase progressively from February to April. MODIS 

time-series that did not meet the filter criteria were therefore excluded from subsequent 

analysis. 

4.2.3. Data Assimilation Linked Ecosystem Carbon crop (DALECc) model 

DALECc model description 

To simulate the impacts of meteorological conditions on crop growth and yield, we apply 

the DALECc model at the filtered 1 km MODIS LAI points within each region. DALECc 

is the C allocation scheme used in the more detailed SPAc model (Sus et al., 2010), which 

has previously been described and evaluated at the plot/field scales in Chapters 2 and 3.  

The DALECc model structure (see Chapter 3: Figure 3.3) consists of C pools/stores that 

are linked by allocation fluxes (i.e. rate of C allocated to plant tissues) or litterfall fluxes 

(i.e. rate of C removed from tissues). The model simulates cropland ecosystem C 

mass-balance and allocation at daily time-steps when driven by predictions of gross 

primary production (GPP), which is simulated using the Aggregated Canopy Model 

(ACM, Williams et al., 1997). The net primary production (NPP) is estimated based on 
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the GPP remaining after subtracting autotrophic respiration. In this research, we fix the 

autotrophic respiration fraction for winter wheat to 0.44 (Monje and Bugbee, 1998). The 

NPP is then partitioned according to a crop-specific C allocation scheme, which consists 

of an empirically-derived look-up table (see Penning de Vries et al., 1989) defining the 

specific fractions of NPP that are allocated to the plant organs (i.e. foliage, stem, storage 

and root). The allocation fractions assigned at each time-step are a function of 

developmental stage (DS), ranging from -1 (sowing) to 2 (maturity). The DS is calculated 

based on the accumulation of daily development rates (𝐷𝐷𝐷𝐷), which in turn are determined 

from the key developmental responses: temperature 𝑓𝑓(𝑇𝑇), photoperiod 𝑓𝑓(𝑃𝑃) and 

vernalisation 𝑓𝑓(𝑉𝑉) (Streck et al., 2003; Sus et al., 2010). 

𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑓𝑓(𝑇𝑇) × 𝑓𝑓(𝑃𝑃) × 𝑓𝑓(𝑉𝑉) 

where 𝐷𝐷𝐷𝐷max is the maximum possible developmental rate parameter. It is assumed that 

𝐷𝐷𝐷𝐷max is different in the pre-anthesis (𝐷𝐷𝐷𝐷pre, i.e. vegetative stages, where DS <1) and 

post-anthesis (𝐷𝐷𝐷𝐷post, i.e. reproductive stages, where DS >1) phases (Streck et al., 2003). 

Furthermore, in the vegetative stages 𝐷𝐷𝐷𝐷 is calculated using 𝑓𝑓(𝑇𝑇), 𝑓𝑓(𝑃𝑃) and 𝑓𝑓(𝑉𝑉) (until 

emergence only), whereas only 𝑓𝑓(𝑇𝑇) is used during the reproductive stage.  

In addition to estimating the regional yield, DALECc was also used to quantify the net C 

fluxes. Specifically, we estimate the daily net ecosystem exchange (NEE), i.e. NEE equals 

NPP minus heterotrophic respiration. The heterotrophic respiration is the sum of the 

temperature dependant respiration fluxes from animals and microbes. 

Equation 4.1 
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ACM photosynthesis model description 

ACM operates within DALECc to provides estimates of GPP from daily inputs of global 

radiation (MJ m-2 day-1), atmospheric CO2 (ppm), leaf area index (LAI, m2 m-2) and 

maximum and minimum temperature (°C). To generate GPP from these drivers, ACM 

consists of a series of aggregation equations that use a set of fixed variables and 10 unitless 

coefficients (see Appendix sections B1 and B2 for further details). These coefficients, 

previously calibrated for winter wheat crops (as detailed in Chapter 3), create a response 

surface that scales the daily accumulation of half-hourly SPAc GPP in order to predict 

whole-canopy GPP using only coarse-scale (daily) driving data. In essence, ACM is 

designed to capture and emulate the detail behaviour of the SPAc leaf-level photosynthesis 

routines whilst operating at a reduced temporal scale (i.e. daily instead of half-hourly 

time-steps).  

4.2.4. DALECc phenology calibration 

We adjust the DALECc simulation of developmental rate based on the MODIS LAI 

time-series. Specifically, this calibration entailed adjusting the maximum developmental 

rate during pre-anthesis only (𝐷𝐷𝐷𝐷pre), i.e. the 𝐷𝐷𝐷𝐷post parameter remained fixed. The crop 

development is partly expressed through LAI, which is proportional to the foliar C pool 

(via leaf carbon per area). Therefore, varying the 𝐷𝐷𝐷𝐷pre parameter changes the 

developmental rate; thus impacting the DALECc LAI estimates during the vegetative 

period that can be directly compared to MODIS LAI. 
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We use a Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC) approach (e.g. 

Xu et al., 2006; Hill et al., 2012; Ziehn et al., 2012; Bloom and Williams, 2015; amongst 

others) to calibrate 𝐷𝐷𝐷𝐷pre 56T. Where the likelihood function for the 𝐷𝐷𝐷𝐷pre 56T value 𝑥𝑥56T given the 

MODIS LAI values c, 𝑝𝑝(𝑐𝑐|𝑥𝑥)56T, can be expressed as follows: 

𝑝𝑝(𝑐𝑐|𝑥𝑥)  = 𝑒𝑒
−0.5 ∙ ∑ (𝑀𝑀(𝑚𝑚)−𝑐𝑐)2 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2𝑚𝑚  

where 𝑀𝑀(𝑥𝑥) is the DALECc LAI based on the 𝐷𝐷𝐷𝐷pre value 𝑥𝑥, and σmodis is the Gaussian 

uncertainty assigned to the MODIS LAI: 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 was set to 2.0 m2 m-2 based on a previous 

analysis between MODIS LAI and field measurements of LAI at winter wheat sites 

available through the Global FLUXNET database (fluxnet.ornl.gov). In accordance with 

Bayes’ theorem, based on the likelihood function 𝑝𝑝(𝑐𝑐|𝑥𝑥) the probability density function 

(PDF) of 𝑥𝑥 given MODIS LAI values 𝑐𝑐, 𝑝𝑝(𝑥𝑥|𝑐𝑐), can be expressed as follows:  

𝑝𝑝(𝑥𝑥|𝑐𝑐) ∝ 𝑝𝑝(𝑐𝑐|𝑥𝑥) ∙ 𝑝𝑝(𝑥𝑥) 

where, 𝑝𝑝(𝑥𝑥) is the prior probability of 𝑥𝑥. We prescribe a log-uniform prior 𝐷𝐷𝐷𝐷pre of 0.04 

(as detailed in Streck et al., 2003) along with minimum and maximum values, set to 0.009 

and 0.5, respectively. This 𝐷𝐷𝐷𝐷pre range was determined from some preliminary runs 

whereby the bounds were progressively increased until the accepted parameter space was 

unconstrained. To determine 𝑝𝑝(𝑥𝑥|𝑐𝑐) (i.e. the range of likely 𝐷𝐷𝐷𝐷pre values), we use the 

MHMCMC to draw 5000 samples of 𝑥𝑥, from which the probability distribution 𝑝𝑝(𝑥𝑥|𝑐𝑐) 

Equation 4.2 

Equation 4.3 
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can be adequately approximated. 

Per region, we apply this MHMCMC calibration of 𝐷𝐷𝐷𝐷pre at each of the knowledge-based 

filtered 1 km points. A single regional posterior 𝐷𝐷𝐷𝐷pre is then retrieved per year by 

selecting the median value from the most likely 𝐷𝐷𝐷𝐷pre parameter in the distribution of 

samples generated at each of the 1 km points. And so, we assume a fixed 𝐷𝐷𝐷𝐷pre parameter 

per region for each year. 

4.2.5. Experimental design and evaluation 

We evaluate the linear fit of the regional DEFRA yield to the mean maximum MODIS 

LAI based on the slope and R2 regression statistic (least-squares coefficient of 

determination). This analysis was also carried out both with and without the 

knowledge-based filtering applied to the MODIS LAI in MATLAB (version: R2012a). 

To assess the performance of DALECc, we initially aggregated the model outputs (i.e. 

from 1 km grid-scale to regional-scale) by calculating the mean maximum LAI, mean 

yield and the mean cumulative NEE (i.e. the sum of daily NEE between sowing and 

harvest date) of the grid scale estimates for each region and year (Figure 4.1). Metrics 

were then calculated to quantify the relationship between the mean maximum LAI values 

and the mean maximum MODIS LAI from the knowledge-based filtered points; whereas 

the regional mean yield estimates were compared to the DEFRA yield. In addition to the 

R2 value, these metrics included the root-mean-square-error (RMSE) describing the 
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average estimated-measured differences and the normalised mean bias (NMB) 

quantifying model over- or under-estimations. In order to evaluate the use of MODIS LAI 

as a model constraint, we compared the aggregated model outputs when DALECc was 

run with the nominal (i.e. prior) 𝐷𝐷𝐷𝐷pre and posterior 𝐷𝐷𝐷𝐷pre separately (i.e. before and 

after the 𝐷𝐷𝐷𝐷pre calibration). 
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Figure 4.1: Schematic summarising the model-data fusion framework for combining and 

evaluating the use of DALECc and MODIS LAI for the regional estimation of crop yields. 1) 

Grid-scale (1 km) processing involved generating drivers and initialising the DALECc model: 

extraction of sowing and harvest dates from a Crop Calendar Dataset (CCD) and daily 

meteorological drivers (temperature and short-wave radiation) from the CHESS dataset. If 

the development rate during pre-anthesis parameter (𝐷𝐷𝐷𝐷pre) is being calibrated, we combine 

the DALECc LAI from an ensemble of runs with MODIS LAI within a Metropolis-Hastings 

Markov Chain Monte Carlo (MHMCMC) data assimilation algorithm, which generates a 

probability distribution function (PDF) of likely 𝐷𝐷𝐷𝐷pre values. Alternately, DALECc can be run 

once using the regional median value from a previously generated PDF of 𝐷𝐷𝐷𝐷pre  values. 2) 

DALECc outputs at the grid cells are regionally upscaled by selecting the mean LAI and yield 

values. From the MHMCMC PDF the median of the most likely 𝐷𝐷𝐷𝐷pre value per year was 

selected as the calibrated value and re-used to run DALECc. 3) Validation of the DALECc 

LAI and yield estimates by comparing to MODIS regional mean LAI and DEFRA yield 

statistics, respectively. 
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4.3. Results 

The linear correlation between DEFRA yield statistics and the mean maximum MODIS 

LAI is first evaluated here. Second, the DALECc model estimates of LAI, yield and 

cumulative NEE are presented both with and without the 𝐷𝐷𝐷𝐷pre calibration. 

4.3.1. Empirical analysis of MODIS LAI to DEFRA yield statistics 

The mean maximum MODIS LAI had a weak correlation (mean R2 = 0.27) with the 

DEFRA yield statistics (Figure 4.2 and Table 4.1). This correlation was only slightly 

improved when applying the knowledge-based filtering (mean R2 = 0.29). The Eastern 

England region, which had the largest proportion of wheat crop area, had a correlation of 

R2 = 0.34 (unfiltered) and R2 = 0.37 (filtered).  
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Figure 4.2: Regression analysis between DEFRA yield and the mean maximum MODIS LAI 

shown for the Eastern England from 2000 to 2013, including a comparison between the fitted 

line (grey) for (a) unfiltered and (b) filtered MODIS LAI points. 
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Table 4.1: Regression analysis statistics from comparing DEFRA yield to the mean maximum 

MODIS LAI from 2000 to 2013. Including the percentage coverage of dominant (> 50%) wheat 

area per region as estimated by merging multi-temporal census data and a comparison 

between the number of unfiltered and filtered MODIS LAI points. Weighted averages, 

reported for the R2 and slope of the linear fit, are calculate based on the number of unfiltered 

and filtered points. 

From the linear fit for both the unfiltered and filtered points the year 2012 was a notable 

outlier where the mean maximum MODIS LAI overestimated the yield for all six regions. 

Although not explicitly tabulated in this paper, as a further investigation we removed the 

DEFRA yield and MODIS LAI for 2012 and regenerated the linear fit. With the removal 

of the 2012 data, the correlation was greatly improved with a mean R2 of 0.52 (unfiltered) 

and 0.53 (filtered). This increase in correlation with the removal of 2012 data was largest 

for the West Midlands region, where the R2 increased from 0.10 to 0.57 (unfiltered) and 

Unfiltered MODIS Filtered MODIS 

Region 

Estimated 
Percentage 

coverage 
(per region) 

MODIS 
points 

used per 
year R2 Slope 

MODIS 
points used 

per year 
(average) R2 Slope 

North East 2% 183 0.52 1.11 152 0.59 1.01 

West Midlands 3% 471 0.10 0.43 388 0.17 0.62 

Yorkshire & Humber 4% 808 0.01 -0.19 416 0.00 0.05 

South East 4% 993 0.25 0.79 148 0.28 1.04 

East Midlands 13% 2402 0.17 0.74 1447 0.18 0.74 

Eastern England 29% 6501 0.34 0.67 3372 0.37 1.06 

Weighted average - - 0.27 0.63 - 0.29 0.88 
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from 0.17 to 0.57 (filtered). 

Although the overall increase in the correlation between the mean maximum MODIS LAI 

and DEFRA data was small, the knowledge-based filtering resulted in a large reduction in 

the number of MODIS LAI points. Specifically with the mean annual number of points 

used in this analysis decreasing by 48%. 

4.3.2. DALECc estimates 

LAI estimates 

From initialising DALECc with the prior 𝐷𝐷𝐷𝐷pre value the correlation between the mean 

maximum model LAI to that of the MODIS LAI (for the filtered points only) was poor 

with a mean R2 of 0.05 (Figure 4.3 and Table 4.2). The RMSE was high (mean RMSE = 

2.59 m2 m-2) and all regions showed a positive NMB (+26% ≤ NMB ≤ +91%) indicating 

that the aggregated DALECc outputs over-estimated the MODIS mean maximum LAI by 

an average of 80%. 
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Figure 4.3: Regression analysis between mean maximum DALECc LAI and mean maximum 

MODIS LAI shown for the Eastern England from 2000 to 2013. Plot includes the fitted (grey) 

and 1:1 (black dashed) lines to show a comparison between the (a) prior and (b) posterior 

calibrations of the 𝐷𝐷𝐷𝐷pre parameter. 
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Table 4.2: Regional regression-based analysis of DALECc mean maximum LAI to MODIS 

mean maximum LAI, including a comparison between prior and post calibrations of the 

𝐷𝐷𝐷𝐷pre parameter. Metrics include: linear fit statistics (R2 and slope), root-mean-square-error 

(RMSE) and normalised mean bias (NMB). Weighted averages are calculate based on the 

number of filtered MODIS points (see Table 4.1). 

From running DALECc at each of the points with the posterior 𝐷𝐷𝐷𝐷pre value there was a 

large improvement in the correlation (mean R2 = 0.34) when compared to that from using 

the prior 𝐷𝐷𝐷𝐷pre. Using the posterior 𝐷𝐷𝐷𝐷pre also resulted in a large reduction in the mean 

RMSE, from 2.59 m2 m-2 (prior 𝐷𝐷𝐷𝐷pre) to 0.83 m2 m-2 (posterior 𝐷𝐷𝐷𝐷pre). This reduction 

in error coincides with a decrease in bias, with the mean NMB reducing from +80% to 

+14%. This reduction in bias is also indicated by an increase in slope from 0.22 to 0.86 

for the prior and posterior 𝐷𝐷𝐷𝐷pre R parameters, respectively. Hence, the model-data fusion 

resulted in a significant improvement in LAI simulations when compared to MODIS. 

Prior 𝑫𝑫𝑹𝑹𝐩𝐩𝐩𝐩𝐩𝐩 Post 𝑫𝑫𝑹𝑹𝐩𝐩𝐩𝐩𝐩𝐩 

Region R2 Slope 
RMSE 

(m2 m-2) 
NMB 
(%) R2 Slope 

RMSE 
(m2 m-2) 

NMB 
(%) 

North East 0.51 0.98 1.92 28 0.25 0.83 0.85 4 

West Midlands 0.18 0.45 2.26 36 0.03 0.26 0.67 -4 

Yorkshire & Humber 0.15 0.49 1.84 26 0.02 -0.37 1.25 8 

South East 0.03 -0.37 2.23 47 0.41 1.23 0.95 -19 

East Midlands 0.00 -0.10 3.34 90 0.50 1.17 0.51 9 

Eastern England 0.03 0.29 2.44 91 0.34 0.94 0.92 20 

Weighted average 0.05 0.22 2.59 80 0.34 0.86 0.83 14 
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Comparing simulated and recorded yield estimates 

From using the prior 𝐷𝐷𝐷𝐷pre value the correlation between the aggregated DALECc yield 

estimates and the regional DEFRA yield data was poor, with a mean R2 of 0.07 (Figure 

4.4 and Table 4.3). The mean RMSE was 0.73 t ha-1 and all regions showed a negative 

NMB (-14% ≤ NMB ≤ -3%, mean NMB = -11%) indicating that the aggregated DALECc 

mean annual yield under-estimated the DEFRA yield. 

Figure 4.4: Regression analysis between the regional mean yields estimated by DALECc 

and the DEFRA yield statistics for the Eastern England region from 2000 to 2013. Plot 

includes the fitted (grey) and 1:1 (black) lines to show a comparison between the (a) prior and 

(b) posterior calibrations of the 𝐷𝐷𝐷𝐷pre parameter. 
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Table 4.3: Regional regression-based analysis between the regional mean yields estimated 

by DALECc to DEFRA yield statistics, including a comparison between prior and post 

calibrations of the 𝐷𝐷𝐷𝐷pre R parameter. Weighted averages are calculate based on the number 

of filtered MODIS points (see Table 4.1). 

From using the posterior 𝐷𝐷𝐷𝐷pre parameter, there was a slight increase in the mean 

correlation coefficient between the DALECc and DEFRA yield (mean R2 = 0.12) when 

compared to that of the prior 𝐷𝐷𝐷𝐷pre. Across all regions, except for the East Midlands and 

Eastern England, the mean RMSE was increased – with the overall mean RMSE 

increasing from 0.71 t ha-1 to 0.73 t ha-1 for the prior and posterior 𝐷𝐷𝐷𝐷pre, respectively. 

Nonetheless, using the posterior 𝐷𝐷𝐷𝐷pre parameter reduced the overall negative bias in the 

DALECc yield estimates (-7% ≤ NMB ≤ 8%, mean NMB = -4%). There was also an 

increase in the mean slope of the linear fit from 0.16 (prior 𝐷𝐷𝐷𝐷pre) to 0.40 (posterior 

Prior 𝑫𝑫𝑹𝑹𝐩𝐩𝐩𝐩𝐩𝐩 Post 𝑫𝑫𝑹𝑹𝐩𝐩𝐩𝐩𝐩𝐩 

Region R2 Slope 
RMSE 
(t ha-1) 

NMB 
(%) R2 Slope 

RMSE 
(t ha-1) NMB (%) 

North East 0.51 0.70 0.69 -8 0.25 0.83 0.85 4 

West Midlands 0.18 0.32 0.42 -3 0.03 0.26 0.67 -4 

Yorkshire & Humber 0.15 0.35 0.79 -10 0.02 0.37 1.25 8 

South East 0.11 0.20 0.79 -11 0.00 0.06 1.04 3 

East Midlands 0.03 0.09 0.85 -10 0.07 0.37 0.84 -6 

Eastern England 0.01 0.13 0.67 -14 0.21 0.43 0.60 -7 

Weighted average 0.07 0.18 0.73 -11 0.12 0.39 0.78 -4 
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𝐷𝐷𝐷𝐷pre). Overall, the model-data fusion of LAI improved the bias and slope, whilst the 

RMSE was only slightly increased. Additionally, the DALECc yield estimates for 2012 

had a much higher agreement with the DEFRA yield when compared to that of the annual 

mean maximum MODIS LAI. 

Comparing cumulative NEE to recorded yield estimates 

From comparing the at-harvest cumulative sum of NEE to the DEFRA yield (Figure 4.5 

and Table 4.4), there was an overall increase in the correlation coefficient from using the 

prior 𝐷𝐷𝐷𝐷pre (mean R2 = 0.09) to the posterior 𝐷𝐷𝐷𝐷pre (mean R2 = 0.22). This increase in 

correlation was most notable for the East Midlands and Eastern England regions, where 

the mean R2 increased by 33% and 19%, respectively. For all regions, large differences in 

the slope of the slope of the linear fit were also observed, with the mean slope reversing 

from positive (0.29), using the prior 𝐷𝐷𝐷𝐷pre, to a negative regression (-0.74) when using 

the posterior prior 𝐷𝐷𝐷𝐷pre. 
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Figure 4.5: Regression analysis between the regional mean cumulative NEE estimated by 

DALECc and the DEFRA yield statistics for the Eastern England from 2000 to 2013. Plot 

includes the fitted line (grey) showing a comparison between the (a) prior and (b) posterior 

calibrations of the 𝐷𝐷𝐷𝐷pre 13T parameter. 
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Table 4.4: Regional regression-based analysis between the regional mean cumulative 

(sowing-harvest) NEE estimated by DALECc to DEFRA yield statistics, including a 

comparison between prior and post calibrations of the 𝐷𝐷𝐷𝐷pre 13T parameter. Weighted averages 

are calculate based on the number of filtered MODIS points (see Table 4.1). 

4.4. Discussion 

The relationship between the DEFRA yield and the mean maximum MODIS LAI is first 

discusses. Second, the use of the MODIS LAI for constraining the model estimates is 

evaluated. Third, a discussion of the limitations and recommendations of the model and 

spatial datasets used is provided. 

4.4.1. Empirical relationship between regional yield and MODIS LAI 

This study demonstrated a linear relationship between the mean maximum MODIS LAI 

Prior 𝑫𝑫𝑹𝑹𝐩𝐩𝐩𝐩𝐩𝐩 Post 𝑫𝑫𝑹𝑹𝐩𝐩𝐩𝐩𝐩𝐩 

Region R2 Slope R2 Slope 

North East 0.13 0.74 0.23 -1.17 

West Midlands 0.24 1.37 0.22 -0.11 

Yorkshire & Humber 0.11 1.07 0.09 0.47 

South East 0.19 1.23 0.15 -0.07 

East Midlands 0.07 0.58 0.21 -0.37 

Eastern England 0.05 -0.59 0.27 -1.59 

Weighted average 0.09 0.29 0.22 -0.74 
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and DEFRA yield statistics across a 14-year period. For cereal crops the time of peak LAI 

coincides with that of flowering and grain filling (Mkhabela et al., 2011), therefore yield 

is closely correlated with maximum LAI (Forbes and Watson, 1992). And so, the results 

presented here are consistent with past research, such as that in Mkhabela et al. (2011) 

and Franch et al. (2015), which report a correlation between EO-derived maximum 

vegetation indices and crop yields.  

For the year 2012 there was a substantial deviation from the mean maximum MODIS LAI 

and DEFRA yield relationship as the linear fit over-estimated the yield. On further 

examination we found that the removal of the 2012 data from this analysis improves the 

filtered MODIS LAI and DEFRA yield correlation by an average of 45%. This outlier can 

be attributed to relatively low yields in 2012 that were a consequence of unfavourable 

weather. These poor meteorological conditions, which lead to high levels of disease during 

the spring and summer months, included low sunlight levels during the grain filling period 

(DEFRA, 2012). Given the relatively coarse spatial resolution (1 km) of the MODIS 

product, it is unlikely that this LAI time-series would have fully resolved these adverse 

conditions that were specific to the crop vegetation. 

Knowledge-based filtering was applied to the MODIS data, which involved removing 

MODIS points with a corresponding LAI time-series that did not represent the timing of 

winter wheat canopy development. From applying this filtering only relatively small 

improvements for each region were achieved in the MODIS LAI and DEFRA yield 
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correlation. However, the filtering also reduced the number of points used per year by an 

average of 48%. Therefore, since the filtering maintained the MODIS LAI and DEFRA 

yield relationship, we consider this filtering to be a fundamental step for improving the 

computational efficiency of the subsequent model-data processing framework. A 

reduction in computational demand would be particular favourable if, for instance, the 

MHMCMC algorithm was extended to calibrate multiple model parameters 

simultaneously or a larger ensemble of model iterations were required to generate 

accepted parameter estimates. 

4.4.2. Using DALECc and MODIS LAI for regional yield estimation 

The performance of the DALECc prior and posterior 𝐷𝐷𝐷𝐷pre parameters were evaluated 

on an individual basis. Using the prior 𝐷𝐷𝐷𝐷pre value we demonstrated a mean error in yield 

of 0.71 t ha-1 when compared to DEFRA data. Similar research in Balkovič et al. (2013), 

involving a European-wide crop model implementation over an 11-year period (1997–

2007), reported an average RMSE in winter wheat yield estimates of 1.20 t ha-1. DALECc 

therefore compares favourably with these more complex models. 

The yield was under-estimated by DALECc for all regions; whereas the mean maximum 

LAI was over-estimated when compared to the MODIS LAI. Since yield is proportional 

to maximum LAI (Forbes and Watson, 1992), we would have hypothesized that if LAI 

was over-estimated so too would be the yield; therefore this result was unexpected. This 

inconsistency can be attributed to the development-linked C allocation scheme used by 
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DALECc. In the early developmental stages – during the vegetative phase – a relatively 

large proportion of the net primary productivity is allocated to the leaves of the crop; 

whereas allocation to the storage organ (i.e. the grain) does not dominate until the later 

reproductive phase. DALECc also simulates senescence due to self-shading, which is a 

function of leaf area, i.e. senescence occurs if LAI is higher than a threshold value (set to 

4.0 m2 m-2). Consequently, high LAI (i.e. above the threshold value) increases the rate of 

senescence and effectively shortens the later reproductive period, thus causing less C to 

be allocated to the storage organ.  

We previously noted that from the mean maximum MODIS LAI and DEFRA yield 

analysis the MODIS LAI over-estimated the yield for the year 2012. However, this 

anomaly did not occur in the DALECc yield estimates. The DALECc drivers include daily 

global radiation and therefore would have accounted for the low sunlight levels during the 

grain filling period, which was partly responsible for the relatively low 2012 wheat yields 

(DEFRA, 2012). 

Using the posterior 𝐷𝐷𝐷𝐷pre parameter slightly increased the error in the yield estimates 

(mean RMSE = 0.73 t ha-1); however, when compared to results from using the prior 

𝐷𝐷𝐷𝐷pre value, the bias in the yield estimates was reduced for the majority of regions. This 

overall reduction in bias coincides with a reduction in the bias of the LAI estimates when 

compared to the MODIS LAI for all regions. As previously noted, by causing the crop to 

senesce too early (via self-shading from increasing LAI) the prior 𝐷𝐷𝐷𝐷pre parameter had 
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the consequence of reducing the yield. However, by calibrating the 𝐷𝐷𝐷𝐷pre parameter we 

reduced the rate of crop development during the vegetative period thus decreasing the rate 

of senescence. Decreasing the senescence rate had the impact of extending the 

reproductive phase of the crop, which in turn allowed more C to be allocated to the storage 

organ. Specifically, with the prior 𝐷𝐷𝐷𝐷pre, the simulated vegetative and reproductive phase 

durations were 95 and 22 days, respectively. However, with the posterior 𝐷𝐷𝐷𝐷pre, the 

vegetative period was reduced to 50 days and the reproductive phase was increased to 34 

days. 

In addition to the DALECc yield estimates, we compared the simulated cumulative NEE 

(i.e. sum of daily NEE estimates between sowing and harvest) to the DEFRA yield. It 

would have been hypothesised that since a proportion of the NPP is allocated to the storage 

organ there would be a relationship between the NEE and DEFRA yield. Since the 

posterior 𝐷𝐷𝐷𝐷pre parameter allowed more C to be allocated to the storage organ a weak 

negative correlation was observed; where a decrease in the cumulative NEE (i.e. increase 

in the ecosystem’s C uptake) corresponded to larger DEFRA yields. However, this trend 

was not observed when using the prior 𝐷𝐷𝐷𝐷pre where a smaller proportion of C is allocated 

to the storage organ. 
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4.4.3. Limitations and recommendations 

DALECc model 

The model-data fusion method was successful at reducing the errors and positive biases 

in the DALECc and MODIS LAI correlation for all regions. Therefore, the 

over-estimation of DALECc LAI (i.e. without constraining the phenology) highlights 

limitations with the nominal parametrisations used for simulating winter wheat; 

particularly those governing the developmental rate during the vegetative period. 

However, since the DALECc developmental parameters have only been evaluated at 

field-scales (see Sus et al., 2010; Wattenbach et al., 2010), a regional-scale application of 

the model using the same parameterisations would have been expected to be uncertain. 

The weak correlation between the DALECc and DEFRA yield – existing both with and 

without the calibration of 𝐷𝐷𝐷𝐷pre – indicates that the model is unable to capture the 

inter-annual variability in yield. During the reproductive phase (i.e. during maximum C 

allocation to the storage organ) the DALECc daily developmental rate is determined by 

the temperature response function, which uses fixed cardinal temperatures. However, at 

regional-scales cropland landscapes present a broad range of cultivated wheat species, 

each having different temperature thresholds (i.e. minimum, maximum and optimal 

temperature) requirements for development. This variability in temperature sensitivity 

causes uncertainty when calculating the developmental rate during yield formation. 

Specifically, from calibrating the DayCent model, Rafique et al. (2015) demonstrated that 
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corn yield estimates were highly sensitive to a maximum temperature dependency 

parameter. Therefore, an approach for resolving this limitation in DALECc would include 

extending the model-data fusion approach to calibrate the maximum developmental rate 

during post-anthesis (i.e. 𝐷𝐷𝐷𝐷post), which would effectively scale the temperature response 

function. 

Land cover and EO data 

Through merging 2000, 2004 and 2010 Agcensus datasets, in order to generate a single 

dataset determining wheat producing areas, we assumed that the regional crop growing 

areas were fixed across the time period (2000-2013) used in this analysis. However, due 

to a host of socioeconomic factors, including those related to the Common Agricultural 

Policy, we accept that this assumption was an over simplification of the dynamics of UK 

croplands. Therefore, the use of additional temporal datasets on wheat crop producing 

areas would be expected to reduce the uncertainty, due to land cover misclassification, in 

the analysis of the MODIS LAI and model estimates. 

Given the relatively small UK field sizes, the 1 km MODIS LAI, used in the 

knowledge-based filtering, would have consisted of a mixture of reflectance responses 

from different vegetation types and land cover classes. And so, covering the dominant 

crop growing areas delineated from the multi-temporal census data, we would recommend 

the use of data from higher resolution EO sensors (e.g. SPOT-6/7 or Landsat-8 with a 

spatial resolution of 6 m and 30 m, respectively). Image-based classification approaches 
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could then be applied to the higher resolution EO scenes, which could also be combined 

with ancillary map data, to resolve the crop coverage on a per-field basis (e.g. Hill et al., 

2011; Löw et al., 2013).  

In addition to the intra-pixel heterogeneity of the 1 km MODIS data, the global LAI 

product was designed for all vegetation types (i.e. not specifically for agricultural 

vegetation) and the LAI for crops is generally under-estimated (Fang et al., 2011; 

Duveiller et al., 2013). Therefore, using the MODIS LAI to calibrate the  𝐷𝐷𝐷𝐷pre parameter 

would have introduced uncertainty into the model. Nonetheless, given the relatively short 

revisit time (i.e. every 8 days) and large area coverage, we consider the use of the MODIS 

product to be effective at tracking crop phenology. An alternative approach, such as that 

detailed in Huang et al. (2015; 2016), would be to adjust the MODIS LAI time-series with 

LAI estimates derived from high resolution EO sensors (e.g. 30 m resolution Landsat-TM 

5). This multi-sensor integration could potentially generate an updated LAI time-series 

that simultaneously resolves the spatial heterogeneity of UK cropland landscapes whilst 

capturing the key phenological stages. However, due to a lack of standardised LAI 

products, deriving LAI from high resolution EO sensor data requires extensive field-scale 

observations (Huang et al., 2015), which is seldom available – particularly for a 

regional-scale application. 

It is anticipated that forthcoming EO sensors, most notably the launch of the Sentinel-2 

satellite pair (Torres et al., 2012), will address the spatial-temporal resolution trade-offs 
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of EO data by increasing the observational frequencies whilst maintaining high spatial 

resolutions. The optical Sentinel-2 sensors are also expected to include LAI maps (see 

Martimor et al., 2007) and therefore would be readily available for use in the model-data 

framework described in this research. 

4.5. Conclusion 

Through the integration of crop model outputs with MODIS LAI and agricultural census 

data, this research presents a framework for the regional estimation of UK winter wheat 

yields. We demonstrate that there is a relationship (mean R2 = 0.29) between regionally 

averaged mean maximum MODIS LAI and official yield statistics in the UK. Although 

negatively biased for all regions (mean NMB = -12%), the accuracy of the regionally 

aggregated model yield estimates was reasonable (mean RMSE = 0.71 t ha-1) when 

evaluated using the yield data. We investigated the use of the MODIS LAI time-series for 

adjusting the crop model parameter that determines the developmental rate during the 

vegetative stages. From using the MODIS LAI as a constraint, negative biases in the 

model yield estimates were reduced for the majority of the regions (mean NMB = -5%), 

however the estimation error was slightly increased (mean RMSE = 0.73 t ha-1). This error 

increase is likely due to the scale mismatch between UK field sizes and the 1 km MODIS 

LAI. Consequently, we consider the model-data fusion approaches detailed here to be a 

benchmark when evaluating the inclusion of finer-scale EO-derived data that would be 

expected to capture UK agriculture more accurately. 
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4.6. Summary 

A model-data fusion framework for generating UK winter wheat crop yield estimates at 

regional-scales has been presented. Multi-annual crop model yield estimates, generated 

using the ACM photosynthesis calibration detailed in Chapter 3, were spatially aggregated 

from 1 km to UK regions and evaluated using the yield data. These aggregated crop model 

yield estimates were negatively biased with a RMSE of 0.71 t ha-1. The use of 1 km 

resolution MODIS LAI time-series is further evaluated for constraining the model 

simulation of canopy development. Constraining the model with MODIS LAI reduced the 

negative bias in regional yield estimates by 50%, however the RMSE increased to 0.73 t 

ha-1. Due to sub-pixel heterogeneity, it is likely that the 1 km MODIS LAI is insufficient 

at resolving crops fields that are characteristic of UK agriculture. To this end, the next 

chapter (Chapter 5), aims to quantify the errors associated with the spatial and temporal 

resolution of EO sensors for resolving crop growth at UK field-scales. 
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5.1. Introduction 

Data derived from satellite Earth observation (EO) sensors can be a valuable tool for 

providing timely and synoptic information on crops over large geographical extents 

(Dente et al., 2008; Rembold et al., 2015). Consequently, EO sensors have been exploited 

to support crop monitoring since the launch of Landsat 1 in 1972 (Bauer and Cipra, 1973). 

Continual developments in EO sensors, and associated technologies, has led to increasing 

volumes of EO data available at higher spatial and temporal resolutions, which in turn has 

given rise to multiple cropland usages of EO data. Atzberger (2013) discusses EO 

cropland applications, including yield forecasting, phenological monitoring and the 

mapping of crop types and distributions. These applications span a range of spatial and 

temporal scales, therefore the careful consideration of the spatial and temporal resolutions 

of EO sensors is essential when meeting the demands of a particular application (Xie et 

al., 2008; Duveiller and Defourny, 2010; Mulla, 2013; Whitcraft et al., 2015). 

Spatial resolution determines the capability of an EO sensor for accurately recording the 

spatial detail of crops at field-scales, such as that which could support precision 

agricultural management applications (Mulla, 2013). Specifically, spatial resolution is 

defined throughout this thesis as the ground sampling distance (GSD) that is within the 

sensor’s instantaneous field of view (IFOV, Lillesand et al., 2008). Furthermore, spatial 

resolution determines the area covered by the smallest pixel; therefore spatial resolution 

is inversely proportional to pixel size, i.e. as spatial resolution improves the coverage of 

the smallest pixel decreases (Mulla, 2013).  
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The range of typical EO sensor spatial resolutions can broadly be defined as high (< 10 

m; e.g. SPOT-6/7, Pleiades-1) to medium (10 - 250 m; e.g. Landsat-7/8) and low (250–

5000 m; e.g. MODIS, AVHRR). Globally, cropland landscapes present a mosaic of fields 

that vary in size, shape and fragmentation. And so, for a given cropland application, the 

spatial resolution requirements are dependent on the geographical location (Duveiller et 

al., 2008; Duveiller and Defourny, 2010). For instance, using 250 m resolution MODIS 

data, Wardlow et al. (2007) discriminated individual fields that were at least 32.4 ha in 

size in an area located in the United States’ Central Great Plains region. Additionally, Fritz 

et al. (2008) demonstrated that the MODIS data was suitable for mapping field sizes of 

around 75 ha in a dominant crop producing region in Russia. However, in some areas, the 

pixels derived from coarse-scale (i.e. relative to the field sizes) MODIS data can comprise 

of a mixture of land cover types, which complicates the accurate retrieval of biophysical 

variables from EO data (Delecolle et al., 1992; de Wit and van Diepen, 2007). In 

particular, the use of medium to low spatial resolution sensors is typically insufficient for 

retrieving biophysical variables at field sizes less than 25 ha due to sub-pixel heterogeneity 

(Doraiswamy et al., 2004). These smaller fields, such as those across the European Union 

(EU-28) where the average size of an agricultural holding is only 14.4 ha (Eurostat, 2013), 

require EO data from medium to high spatial resolution sensors. 

Due to technical constraints, an increase in the spatial resolution of an EO sensor is 

typically at the expense of a reduction in temporal resolution. The temporal resolution of 

an EO sensor is further complicated by the degree of overlap between image swaths from 
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adjacent orbits, which varies with latitude. However, for simplicity, the research presented 

in this chapter defines temporal resolution as the absolute temporal resolution – equal to 

the time taken by the satellite EO sensor platform to complete one orbital cycle (Maini 

and Agrawal, 2014). High temporal resolution EO sensors, such as MODIS near-daily 

surface reflectance products, are essential for monitoring crop phenology in order to 

capture the key developmental stages (Launay and Guerif, 2005; Duveiller et al., 2008). 

In addition to the temporal resolution, the capabilities of optical EO sensors for acquiring 

a sufficiently clear view of a croplands is often severely limited by cloud cover (Moran et 

al., 1997; Whitcraft et al., 2015). Although the presence of clouds within an EO scene can 

be detected and masked out (see Zhu and Woodcock, 2012), this results in irregular gaps 

in observations throughout the crop growing season.  

Generally, the degree of cloud cover varies temporally, for instance clouds have 

significant diurnal cycles with maximum coverage in the afternoon (Cairns, 1995) and  

seasonal cycles with a maximum during the summer (Wylie et al., 2005). Clouds also 

exhibit spatial trends, with the mean annual coverage being higher around the equator and 

temperate latitudes when compared to that of the tropics (Rossow and Schiffer, 1999). 

And so, when considering the optimum EO acquisition strategy for a multi-temporal crop 

monitoring activity it is necessary to determine the extents to which cloud cover varies 

over a particular landscape throughout a growing season. Whitcraft  et al. (2015) 

investigated the frequency of which an optical EO sensors can probabilistically obtain a 

cloud-free view of global croplands. The analysis by Whitcraft  et al. (2015) included 
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determining the likelihood of cloud cover based on daily 1 km MODIS reflectance quality 

assurance (QA) cloud flags over a 10-year period. 

It is anticipated that forthcoming optical EO sensors will address the spatial-temporal 

resolution trade-offs of EO data. Specifically, the European Space Agency (ESA) 

Sentinel-2 sensor will operate in a dual-platform configuration (i.e. Sentinel-2A & 2B; 

Torres et al., 2012), which will essentially increase the temporal resolution whilst 

maintaining high spatial resolutions of up to 10 m in four spectral bands (Verrelst et al., 

2015). In spite of this, high temporal resolution and long-term archives generated by 

coarser sensors, such as MODIS and MERIS, would still be of value when performing a 

multi-annual analysis of crops over specific areas (Duveiller et al., 2012; Brown et al., 

2013; Löw et al., 2013; Mulla, 2013). These EO datasets could also be used, for instance, 

for initialising and constraining (via a data assimilation framework) a regional-scale crop 

model application for carbon (C) fluxes and yield estimates, such as that evaluated in 

Chapters 2 and 4. However, the effectiveness of such assimilation schemes is largely 

dependent on accurately specifying the uncertainty of both the model and EO data 

(Williams et al., 2005; Zhao et al., 2013). 

This study characterises errors associated with the spatial and temporal resolution of 

optical EO sensors for targeting field-scale cereal crop growth monitoring applications 

across UK landscapes. This analysis first involved quantifying the spatial resolution errors 

associated with using medium to low resolution EO sensors for resolving UK fields. This 
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error was determined by spatially aggregating pixels within fine spatial resolution EO 

imagery in order to produce a continuum of images with progressively coarser pixel sizes. 

The spectral detail of the aggregated images was then sampled on a per-field basis and 

compared to that of the original fine-scale image. Second, by resampling the output from 

a crop-specific C cycle model (DALECc, see Chapter 3), the impacts of EO temporal 

resolution when monitoring winter wheat crop growth were simulated. The likely spatial 

and temporal impacts of cloud cover on the optical EO time-series was further 

investigated. The key research questions addressed in this research were: 

1) What is the minimum EO sensor spatial resolution required to monitor crops at 

field-scales that are characteristic of UK agriculture?  

2) How does temporal resolution and likely cloud cover influence the effectiveness 

of optical EO sensors for tracking winter wheat crop canopy development over 

cropland landscapes? 

3) What are the expected benefits of ESA’s Sentinel-2 satellite pair (i.e. Sentinel-2A 

and B) for multi-temporal crop monitoring at UK field-scales? 

The novelty of this research is an analysis of both the spatial and temporal resolution of 

EO sensors that are required for monitoring field-scale crop growth – specifically across 

UK landscapes. Furthermore, the use of outputs from the calibrated DALECc model 

provides a synthetic time-series of realistic observations that could be further sampled to 



EARTH OBSERVATION SPATIAL AND TEMPORAL RESOLUTION REQUIREMENTS FOR CROP 
GROWTH MONITORING AT UK FIELD-SCALES 
 

146 
 

mimic EO sensor temporal resolution and cloud cover. 

5.2. Methods and data 

In this section, a brief overview of the areas selected for analysis is first provided. Second, 

the pre-processing applied to the optical EO imagery is detailed, including the retrieval of 

LAI estimates, pixel aggregation and the field-scale sampling of pixel values using a field 

mask derived for each of the areas. Third, the development of a synthetic LAI time-series, 

designed to mimic the typical EO sensors temporal resolution, is described along with 

estimates of daily cloud cover over the cropland areas.   

5.2.1. Selection of Areas of Interest (AOI) 

A total of 24 Areas of Interest (AOIs) – each covering a 6 x 6 km area of the UK – were 

used in this analysis (Figure 5.1). Four AOIs were selected within six key wheat producing 

UK administrative regions: East Midlands, West Midlands, Yorkshire & the Humber, 

North East, South East and Eastern England. The selection of the AOIs was based on a 

two-fold criteria: first, areas were identified where wheat crop production was greater than 

50% of the total arable cropland area. These areas were based on a 2010 Agcensus dataset 

(as used in Chapter 4), which was developed by the University of Edinburgh Data Library 

and consisted of DEFRA Agricultural Census results aggregated to 2 km grid squares. 

Second, in order to minimise uncertainties due to atmospheric affects, the optical EO data 

(SPOT-6) of the AOIs had to be 100% cloud-free at the time of acquisition. 
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Figure 5.1: Map showing the locations of 24 Areas of Interest (AOIs) each covering a 6 x 6 

km area of a dominant (> 50%) UK wheat producing region. 
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5.2.2. SPOT-6 image processing 

Image pre-processing 

The SPOT-6 (Satellite Pour l'Observation de la Terre) Ortho product imagery was sourced 

from Airbus Defence and Space under an ESA Category-1 agreement. This data, which 

was subset to the spatial extents of each AOI, comprised of georeferenced (OSGB 

1936/British National Grid) multi-spectral SPOT-6 optical imagery at a spatial resolution 

of 5 m. Only one image acquisition date was selected per AOI. The SPOT-6 image 

acquisition  dates used ranged from the 3rd May to 18th July 2013, which coincide with the 

key vegetative and reproductive phases of UK wheat crops (Sylvester-Bradley et al., 

2008).  

Pre-processing applied to the SPOT-6 data included conversion of the raw radiometric 

digital numbers at each pixel to top-of-atmosphere radiance for each band using the 

absolute radiometric calibration coefficients available in the imagery metadata. This 

conversion was performed using Equation 2.1 shown in Chapter 2. Topographic 

normalisation was then applied to the SPOT-6 subsets, which involved reducing 

differences in the scene illumination that were due to the slope and aspect of terrain 

relative to the solar elevation and azimuth. This procedure was carried out in ERDAS 

Imagine (version: 2013) using a Lambertian Reflection model (Smith et al., 1980; Colby, 

1991). Inputs to this model included solar elevation and azimuth, also available from the 

image metadata, and Ordnance Survey (OS) Terrain 5 m digital elevation data, which was 
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used to estimate slope and aspect. Since only one imagery scene per AOI is used in this 

analysis, no further pre-processing was applied to normalise atmospheric conditions in the 

SPOT-6 subsets – as would otherwise be required for a multi-date comparison (Kalubarme 

et al., 2003). It is also assumed that atmospheric affects are uniform across each of the 6 

x 6 km AOIs. 

LAI retrieval 

LAI is a good indicator of crop status and is among the most common vegetation canopy 

variables that are retrieved from EO data (Casa et al., 2012). Therefore, the SPOT-6 

subsets were used to generate LAI maps for each of the AOIs (for example see East of 

England, AOI 1; Figure 5.2). This LAI was retrieved empirically by first calculating the 

Weighted Difference Vegetation Index (WDVI, Clevers, 1988; 1991). The WDVI is an 

orthogonal index used to reduce the effect of soil reflectance, which influences the 

relationship between the scene reflectance and LAI. For each SPOT scene, the WDVI was 

calculated using: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 − 𝛾𝛾.𝑅𝑅𝑉𝑉𝑁𝑁𝑉𝑉 

where 𝑅𝑅NIR and 𝑅𝑅VIS correspond to the reflectance values in the near-infrared and visible 

red sensor wavebands, respectively. The ratio of reflectance in the near-infrared and 

visible red wavebands (𝑅𝑅NIR: 𝑅𝑅VIS) for bare soil (i.e. before crop emergence) is shown as 

𝛾𝛾. Results in Revill et al. (2013, presented in Chapter 2 of this thesis) demonstrated a 

range in 𝛾𝛾 values from 0.75 to 1.98 across multiple cereal crop sites. Therefore, in this 

Equation 5.1 

 



EARTH OBSERVATION SPATIAL AND TEMPORAL RESOLUTION REQUIREMENTS FOR CROP 
GROWTH MONITORING AT UK FIELD-SCALES 
 

150 
 

study, the mean 𝛾𝛾 value (1.37) is used in Equation 5.1. The LAI was then retrieved based 

on an assumed linear relationship with the WDVI:  

𝐿𝐿𝐿𝐿𝑊𝑊 = 𝑚𝑚.𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + 𝑐𝑐 

where  𝑚𝑚 and 𝑐𝑐 are the slope and intercept coefficients of the linear fit between the WDVI 

and LAI. The coefficient values used (𝑚𝑚 = 0.23, 𝑐𝑐 = -1.57) were also previously derived 

in Chapter 2 based on the relationship between WDVI to LAI fields measurements. 

 
Figure 5.2: Example Leaf area index (LAI) map generated for AOI 1 in the East of England 

region. 

  

 

 

Equation 5.2 
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5.2.3. Generating field masks 

A binary field mask was generated to identify target areas (i.e. agricultural fields, see 

Table 5.1) within each AOI for subsequent overlay analysis with the SPOT-6 LAI 

estimates. This field mask was generated using OS MasterMap (OSMM) Topography 

Layer vector data. The OSMM data, which covers the UK at fine spatial scales (1:1 250 

to 1:10 000), was extracted and clipped to the extents of each AOI. Based on the OSMM 

attribute information, the polygons were then filtered using ESRI’s ArcMap (version: 

10.1) GIS software spatial querying tools. This filtering specifically entailed selecting 

polygons that had a ‘Theme’ classification of ‘Land’ and a ‘Legend’ classification as 

‘Natural surface’. This selection of target areas was further refined by removing land that 

was less than 1 ha. A buffer zone of -5 m was then applied to the remaining land polygons 

in order to minimise the influence of hedgerows and ensure a representative within-field 

spectral sample when combined with the LAI estimates. 
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Table 5.1: Number and average size (including 5/95-percentile range) of all fields delineated 

by the crop masks generated for each of the Areas of Interest (AOI). 

 
 

Region AOI Number of fields
Average field size and 5/95-

percentile range (hectares)

North East

1 432 3.58 (1.12/8.23)

2 453 5.8 (1.18/18.55)

3 369 7.07 (1.11/25.07)

4 316 5.96 (1.19/14.95)

Yorkshire and 

The Humber

1 295 10.43 (1.34/30.67)

2 516 5.05 (1.12/14.90)

3 285 11.26 (1.36/31.15)

4 302 10.23 (1.17/34.96)

West Midlands

1 443 5.76 (1.20/16.63)

2 625 3.90 (1.11/9.45)

3 591 4.02 (1.12/10.88)

4 545 4.76 (1.19/11.10)

East Midlands

1 425 6.80 (1.19/22.17)

2 480 5.65 (1.26/14.68)

3 327 9.22 (1.25/24.87)

4 283 10.24 (1.13/34.93)

Eastern 

England

1 285 10.88 (1.40/35.75)

2 157 19.64 (1.08/102.29)

3 254 12.49 (1.22/41.03)

4 276 10.62 (1.17/34.67)

South East

1 275 6.87 (1.13/26.16)

2 333 7.14 (1.13/25.14)

3 298 4.67 (1.09/14.37)

4 307 8.41 (1.16/31.08)

Median

Average

-

-

322

370

6.97 (1.17/24.97)

7.93 (1.18/26.40)
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5.2.4. LAI data aggregation and sampling 

Pixel aggregation 

In order to determine the uncertainty from using medium to coarse-scale EO data, for each 

AOI, pixels from the fine scale SPOT-6 LAI image (referred to hereafter as the base 

image) were spatially aggregated (Figure 5.3). This spatial aggregation, achieved through 

the averaging of neighbouring pixels, was increasingly applied from 10 to 1000 m in 

increments of 5 m. And so, including the 5 m base image, this process resulted in a 

continuum of 200 EO-derived LAI maps of increasingly coarser pixels, which were used 

to emulate data acquired from EO sensors of differing spatial resolution. 
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Figure 5.3: Schematic outlining the processing steps used to quantify the uncertainty of 

within-field LAI estimates when using images of increasing pixel sizes. This processing 

framework included: 1) spatially aggregating a fine-scale (5 m) base image to produce a 

continuum of images with increasingly coarser pixel sizes (from 10 to 1000 m). 2) A field 

mask, generated from Ordnance Survey MasterMap data, is used to delineate fields. 3) All 

images were combined with the field mask to isolate target fields within the AOIs. 4) Statistics 

were generated from sampling LAI pixels within each of the target fields. 5) Statistics 

generated from each of the aggregated images are compared to the base image to calculate 

differences in within-field LAI estimates from using larger pixels. 
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Per-field sampling and analysis   

Through GIS overlay analysis of the field mask with the continuum of LAI maps, pixel 

statistics were produced for each of the AOIs (Figure 5.3). The statistics generated for 

each of the target fields in the crop masks, included the pixel population, standard 

deviation, minimum and maximum and mean LAI values. This set of field statistics was 

tabulated for all LAI maps, including that of the base image. Furthermore, when sampling 

individual fields, the applied GIS analysis selected pixels that either wholly or partially 

covered a given field (i.e. as opposed to sampling pixels within the field only, see Figure 

5.4). And so, this sampling strategy ensured that a given field was covered by a minimum 

of one pixel regardless of the pixel size relative to that of the field.  
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Figure 5.4: Example images from within the East of England region demonstrating the 

sampling strategy used to select pixel (pale blue boxes) overlaying a given field. Shown for 

10 m (left) and 250 m (right) pixel sizes. Pixel sample values are also shown as probability 

distributions. 

The statistic from sampling the aggregated images were systematically compared to those 

of the base image (i.e. base image minus aggregated image), thus providing an evaluation 

of the differences in mean field values due to increasing pixel sizes. The mean absolute 

difference between the base LAI map and the aggregated image maps is used to calculate 

a percentage error on a per-field basis: 
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𝐿𝐿𝐿𝐿𝑊𝑊 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (%) = �
(𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 𝑖𝑖𝑚𝑚𝑏𝑏𝑖𝑖𝑒𝑒 − 𝑏𝑏𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑏𝑏𝑎𝑎𝑒𝑒𝑎𝑎 𝑖𝑖𝑚𝑚𝑏𝑏𝑖𝑖𝑒𝑒)

𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 𝑖𝑖𝑚𝑚𝑏𝑏𝑖𝑖𝑒𝑒
� × 100 

Using the calculated mean LAI error, recommendations are made regarding pixel size 

requirements for the operational monitoring of UK field crops. High spatial resolution 

sensors (i.e. smaller pixel sizes) would increase the likelihood of resolving the field-scale 

detail. However, due to the spatial-temporal resolution trade-offs of EO sensors, inferring 

a recommended maximum pixel size (i.e. minimum resolution) would be more useful. 

This mean maximum pixel size, calculated for each region, was selected as the pixel size 

at which the rate of increase in LAI error with increasing pixel size becomes less than or 

equal to zero. And so, beyond this quantified pixel size, it was assumed that values from 

larger pixels were no larger representative of the fields. 

5.2.5. Simulating EO temporal resolution and cloud cover 

Generating synthetic LAI time-series 

A synthetic experiment was carried out to determine the influence of EO sensor temporal 

resolution when monitoring winter wheat canopy development – expressed through 

changes in LAI. Daily LAI estimates were first generated using the process-based Data 

Assimilation Linked Ecosystem Carbon crop (DALECc) model. Using meteorological 

drivers and daily photosynthesis estimated from the calibrated Aggregated Canopy Model 

(ACM, see Chapter 3 for further details), DALECc simulates C allocated according to a 

crop-specific C partitioning scheme. And so, since the model has been parameterised and 

Equation 5.3 
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validated based on observations at multiple winter wheat sites, DALECc can produce 

realistic estimates of daily LAI. This LAI time-series (referred to henceforth as ‘LAItruth’) 

was simulated between the average sowing and harvest dates of UK winter wheat – 31st 

September (sowing date) and 27th July (harvest date) – according to a Crop Calendar 

Dataset developed by Sacks et al. (2010).  

The LAItruth was generated at 1 km points for each of the 6 x 6 km AOIs (i.e. 36 LAI 

times-series per AOI) by driving DALECc using the 1 km gridded Climate, Hydrology 

and Ecology research Support System (CHESS) data developed by the Centre for Ecology 

and Hydrology (CEH, 2014). The LAItruth dataset was then resampled by removing LAI 

values to mimic the typical temporal resolution of current optical EO sensors. Three 

additional LAI time-series were generated, each with a different LAI temporal frequency: 

every 10, 16 and 26 days (referred to as LAItruth-10 LAItruth-16 and LAItruth-26), which 

correspond to the temporal resolutions of the Sentinel-2, Landsat-7/8 and SPOT-6/7 EO 

sensors, respectively. 

Estimating likelihood of cloud cover 

To determine the likely impact of cloud cover on an optical EO sensors time-series used 

to monitor crop development, the daily probability of a clear-sky view (i.e. no cloud cover) 

was estimated for within each of the AOIs. Daily cloud observations covering the spatial 

and temporal extents of this study were non-existent, therefore the probability of cloud 

cover was estimated from a MODIS EO data product using a similar approach to that of 
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Whitcraft  et al. (2015). Specifically, this method included analysing 11-years 

(2001-2011) of daily 250 m resolution MODIS Terra Surface Reflectance (MOD09GQ) 

quality assurance (QA) data (Figure 5.5). For each year, the QA layer information on 

cloud state (i.e. ‘cloudy’ or ‘clear’ flag) data was used to determine all cloudy 250 m pixels 

for a given day of year. From repeating this procedure over the multi-annual period, 11 

cloud cover observations existed for each day of year. Then, for each of these days, the 

probability of obtaining a clear-sky observation (referred to hereafter as ‘Pclear’) was 

calculated by dividing the number of clear-sky observations by the total number of 

observations:  

𝑃𝑃clear(day) =  
number of clear sky observations

total number of observations
 Equation 5.4 
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Figure 5.5: Schematic detailing the processing chain used to calculate the probability of 

cloud-free (Pclear) observation: example shown for the East of England region (AOI 1). The 

250 m MODIS Terra Surface Reflectance (MOD09GQ) quality assurance (QA) data is used 

to determine all clear (and cloudy) days between 2001 and 2011. For each day of year, Pclear 

is calculated by dividing the number of clear observations by the total number of observations 

(adapted from: Whitcraft et al., 2015). 

 

The daily Pclear values were combined with the LAItruth-10, LAItruth-16 and LAItruth-26 

datasets to mimic reductions in EO acquisitions due to cloud cover obscurity. This 

processing step involved removing the LAI values on days that had a corresponding Pclear 

value of less than 1. Therefore, this filtering assumed a ‘worst case scenario’ where only 
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LAI observations were retained on days that were certain to be cloud-free based on daily 

cloud observations over an 11-year period. Furthermore, due to the difference in grid cell 

sizes (i.e. 250 m and 1 km), combining the Pclear values with the LAI time-series essentially 

disaggregated the 1 km points within the AOIs, and thus increased the number of LAI 

sample points within each AOI – from 36 to 576 points.  

All the LAItruth-10, LAItruth-16 and LAItruth-26 synthetic datasets, both with and without the 

Pclear filtering were gap-filled (via linear interpolation) so that the values could be directly 

compared to the original LAItruth datasets (Figure 5.6). Metrics were generated, such as 

the normalised root-mean-square-error (RMSE), in order to quantify the impacts of EO 

temporal resolution, combined with likely cloud cover, for monitoring winter wheat 

growth over UK landscapes. 
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Figure 5.6: Example plot from the East of England region (AOI 1) comparing DALECc model. 

daily LAI estimates (black asterisks, LAItruth) to a 16-day linearly interpolated sample (blue 

dots, LAItruth-16 ) along with the 16-day interpolation of  LAI observations filtered for likely cloud 

cover (green dots, LAItruth-16 + cloud cover filtering).  

 

5.3. Results 

The results from estimating the errors associated with reductions in EO sensor spatial 

resolution when resolving UK fields is first presented. Second, the quantified errors due 

to EO temporal resolution and cloud cover obscurity are provided. 

5.3.1. LAI estimation with pixel size 

Generally, from comparing the base image statistics to each of the aggregated images, the 

error and uncertainty in LAI estimates increased with increasing pixel size for all regions 
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(Figure 5.7). The recommended maximum pixel size had a mean value of 165 m – ranging 

from 100 m (West Midlands) to 225 m (East Midlands). Based on the 5/95-percentile 

range, these recommended maximum pixel sizes corresponded to a mean LAI uncertainty 

of 3.27%, which ranged from 0.85% (East of England) to 6.63% (East Midlands).  

The increase in mean LAI error between the recommended maximum pixel size and the 

largest pixel size (1000 m) were relatively small: ranging from only 0.24% (East 

Midlands) to 5.01% (West Midlands). However, the uncertainty progressively increased 

from the recommended maximum pixel size. In particular, from sampling the 1000 m 

sized pixels the average 5/95-percentile range was 17.86%, with this value ranging from 

6.78% (East of England) to 29.44% (East Midlands).   
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Figure 5.7: Plots of the mean error in field-scale LAI estimates (blue line) with increasing 

pixel size. Mean uncertainty is estimated by comparing field-scale LAI estimates between the 

base image (5 m pixel size) and spatially aggregated images that are then averaged across 
four areas of interest (AOI). The 5/95th-percentile range (blue shading) is estimated from the 

per-field values from AOIs. The recommended maximum pixel size (black asterisk) marks the 

point where the rate of increase in uncertainty with grid size is less than or equal to 0.  

 

5.3.2. Evaluating EO temporal resolution and cloud cover 

Each of the linearly interpolated LAItruth-10, LAItruth-16 and LAItruth-26 time-series were 

compared to the original LAItruth datasets and used to calculate a regional mean normalised 
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RMSE (Table 5.2). Without the cloud cover filtering the mean normalised RMSE values 

were generally consistent across all regions with an average of 0.15%, 0.81% and 5.16% 

for the LAItruth-10, LAItruth-16 and LAItruth-26 time-series, respectively. Applying the cloud 

cover filtering significantly increased errors when comparing the LAI time-series to the 

LAItruth dataset with the mean normalised RMSE increasing to 28%, 48% and 63% for the 

LAItruth-10, LAItruth-16 and LAItruth-26, respectively. Furthermore, with the cloud cover 

filtering, all three time-series had greater regional variability; where the mean error was 

generally larger in the North East and Yorkshire & Humber when compared to the West 

Midlands and South East regions.  
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Table 5.2: Comparison of the regional mean normalised root-mean-square (RMSE) from 

comparing daily LAI values to three LAI time-series that differ in the frequency of 
observations: every 10 (LAItruth-10), 16 (LAItruth-16) and 26-days (LAItruth-26). Comparisons are 

also made when removing potentially cloudy days from the three time-series.  

 

 

5.4. Discussion 

The estimated errors due to EO sensor spatial and temporal resolutions are first discussed 

in the context of operational UK field-scale crop monitoring. Second, the research findings 

are used to discuss the likely benefits of the Sentinel-2 satellite pair for UK crop 

monitoring applications. Third, the caveats and limitations of this analysis are highlighted.  

   

Mean normalised RMSE

Region LAItruth-10 LAItruth-16 LAItruth-26
LAItruth-10 + 

cloud

LAItruth-16 + 

cloud

LAItruth-26 + 

cloud

North East 0.144 0.833 5.032 66.865 58.749 96.590

Yorkshire & the Humber 0.137 0.787 5.923 28.490 56.594 93.044

West Midlands 0.142 0.759 5.668 3.591 27.637 33.322

East Midlands 0.150 0.809 5.153 27.130 68.709 73.887

Eastern England 0.155 0.859 3.726 16.184 25.413 27.219

South East 0.148 0.789 5.474 27.463 50.596 51.513

Average 0.146 0.806 5.163 28.287 47.950 62.596
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5.4.1. EO errors and uncertainty 

Spatial resolution errors 

Fine scale EO imagery was spatially aggregated to generate a continuum of progressively 

larger pixels in order to approximate images acquired from medium to coarse-scale EO 

sensors. By sampling the aggregated image pixels within target fields, it was possible to 

tracks errors associated with using lower spatial resolution EO sensors to retrieve values 

from UK fields. The calculated mean maximum pixel size (i.e. the coarsest spatial 

resolution required to adequately resolve fields) ranged from 100 to 225 m. And so, it can 

be inferred that UK field sizes are generable indiscernible using EO sensors with a spatial 

resolution of less than 225 m. This range in coarsest pixel size is also comparable to that 

approximated by Duveiller and Defourny (2010) where these sizes ranged from 120 to 

300 m for regions located in China, Belgium, France and the Netherlands.     

Temporal resolution and cloud cover 

A synthetic LAI time-series was generated by removing daily LAI estimates, generated 

using the DALECc model, in order to mimic the typical temporal resolutions of EO 

sensors. A comparison of the sampled and linearly interpolated LAI to the original daily 

time-series indicated that an observation frequency of only 26 days – corresponding to a 

relatively low temporal resolution EO sensor – can capture crop canopy development with 

an error of only 5.16%.  

In an operation context, it would be expected that the frequency of optical EO acquisitions 
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would be reduced due to cloud cover obscurity. Therefore, days that were likely to be 

cloudy during the crop growing season were removed from the resampled LAI datasets. 

By accounting for the likely cloud cover, errors in the interpolated LAI time-series can be 

as high as 63% for the 26-day LAI dataset. Furthermore, even when using a higher 10-day 

temporal resolution EO sensor the errors would be expected to increase from 0.15% to 

28% due to cloud cover. This result indicates that the accuracy of using EO data for 

monitoring UK crop growth is much more sensitive to cloud cover when compared to that 

of the temporal resolution of the sensor.    

5.4.2. Benefits of the dual Sentinel-2 constellation 

The launch of the second Sentinel-2 satellite (i.e. Sentinel-2B) – planned for mid-2016 – 

is expected to improve operational crop monitoring when compared to the capabilities 

offered by current high spatial resolution sensors. Each of the Sentinel-2 sensors will 

provide multi-spectral observations with a spatial resolution of 10 m (for four visible and 

near-infrared bands), 20 m (for six red-edge/shortwave-infrared bands) and 60 m (for three 

atmospheric correction bands). Based on the error analysis for resolving the detail within 

typical UK field sizes, these spatial resolutions correspond to a mean error of 1.24% (10 

m), 2.47% (20 m) and 5.93% (60 m).  

The operational Sentinel-2 satellite pair are designed to deliver observations covering the 

terrestrial land surface every five days. Assuming cloud-free conditions, this temporal 

resolution will provide an average of 68 observations within the average UK winter wheat 
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growing season – i.e. 31st September (sowing date) and 27th July (harvest date). 

Consequently, from analysing the temporal resolution errors, this large number of 

observations would correspond to a low mean error of only 0.1% when comparing 

between the daily estimates and the linearly interpolated 5-day estimates. However, when 

accounting for image obscurity due to cloud cover over the UK cropland areas, this mean 

error could increase to 23%. With the cloud cover, the number of available Sentinel-2 

acquisitions within the growing season could potentially be reduced to only 17, which is 

equivalent to an EO sensor with a temporal resolution of 20 days. The temporal analysis 

results of this research are within the bounds of that estimated in Verrelst et al. (2015) 

where, considering the presence of cloud cover, the Sentinel-2 satellites are expected to 

deliver imagery every 15-30 days. 

Based on the temporal and spatial resolutions, it is likely that Sentinel-2 would become a 

major source of future EO data. However, given the spatial and temporal extents of past 

and present sensors, the use of archived EO data from would still be of value. For instance, 

in the context of precision agriculture, Mulla (2013) mentions that fine scale EO data – 

such as that from Landsat, SPOT and QuickBird – would allow an analysis of fields over 

multiple crop growth seasons/years in order to identify potential managements zones. This 

archived EO data can be further combined with real-time data (i.e. Sentinel-2) in order to 

refine the locations of the management zones. An accurate quantification of the likely 

spatial and temporal resolution errors, as detailed in this research, is also valuable when 

combining EO data with models within a data assimilation framework (Ines et al., 2013; 
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Revill et al., 2013, see Chapter 2; Sus et al., 2013; Zhao et al., 2013; Li et al., 2014; Huang 

et al., 2016).  

5.4.3. Research caveats 

This research has an explicit focus on the spatial and temporal resolution errors when 

using EO sensor for monitoring crop growth at the field-scale. However, a major source 

of error and uncertainty is typically introduced in the retrieval of LAI (Doraiswamy et al., 

2004; Fang et al., 2011; Casa et al., 2012), which was not considered in this analysis. For 

instance, the empirical LAI retrieval approach was based on a calibration that was derived 

from LAI observations at the field sites detailed in Chapter 2. And so, since the 

coefficients used in equations 5.1 and 5.2 were based on a statistical relationship at 

alternative fields sites, they may not be valid for the cropland areas investigated in this 

study. In spite of this, Wei et al. (2015) discusses the importance of EO-derived 

normalised difference vegetation index (NDVI), calculated using the red and near-infrared 

wavebands only, for monitoring crop phenology. 

The premise of the temporal resolution analysis is based on the absolute temporal 

resolution, i.e. the number of days between two consecutive EO acquisitions of exactly 

the same area at the same viewing geometry. However, there is often overlap between 

images acquired from adjacent orbits and EO sensors can also be pointed accordingly to 

image the same area in different orbits (NRC, 2014). Therefore, the actual temporal 

resolution of EO sensors is typically higher than that reproduced in the synthetic LAI 
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time-series.  

In the simulation of potential cloud cover, observations on days that were flagged as 

cloudy, based on an 11-year analysis of MODIS 250 m QA layer data, were removed from 

the synthetic LAI time-series. This is a gross simplification for two reasons: first, if a 

given day of year is flagged as cloudy even once over the entire 11-year period then it is 

removed from the LAI time-series. This procedure assumes a worse-case scenario in 

which only days that were 100% cloud-free throughout the period were retained in the 

LAI dataset. This analysis could have been extended to include probability thresholds to 

evaluate the impacts of cloud cover obscurity. For instance, Whitcraft  et al. (2015) used 

probability thresholds of 70%, 80% and 90% for of clear-sky observations during four key 

phenological dates. However, Whitcraft et al. (2015) used MODIS QA data at 1 km 

resolution which is likely to exceed the size of some cloud elements. Second, the cloud 

cover analysis is also simplified due to the assumption of the entire 250 m MODIS pixel 

being occupied by cloud. As cloud cover is typically fragmented, realistically it is possible 

that a fraction of a 250 m pixel area on a given day of year would encompass areas that 

are sufficiently cloud-free.  

This research demonstrates that cloud cover can potentially result in observations gaps in 

an optical EO time-series used to monitor crop growth stages. However, the use of crop 

canopy variables derived from Synthetic Aperture Radar (SAR) sensors can provide 

fine-scale observations and, using active microwave signals, they are unaffected by 
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clouds. And so, as demonstrated in Chapter 2, this research recommends the combined 

use of high resolution optical and SAR EO sensor data, which will effectively increase the 

frequency of observations within the growing season.  

5.5. Conclusion 

Determining the appropriate spatial and temporal resolutions of an EO sensor is of 

fundamental importance for meeting the requirements of a particular agricultural 

application. In the context of operational crop growth monitoring at typical UK 

field-scales (estimated as 7.93 ha), this research approximates errors linked to the typical 

spatial and temporal resolutions of current optical EO sensor missions. The minimum EO 

spatial resolution of around 165 m is required to resolve UK fields – although higher 

resolutions would be expected to reduce the error and uncertainty in the per-field 

estimates. When accounting for cloudy days, which could potentially obscure 

observations, EO sensors with a 26-day absolute temporal resolution (e.g. SPOT-6/7) 

could have errors up to 63%. However, due to overlap of the imaged area between adjacent 

orbits of the EO instrument platform, the actual temporal resolution of the sensor would 

be much higher. The degree of cloud cover estimated in this analysis is likely to be 

over-estimated; correspondingly, the error associated with crop monitoring would be 

lower. When extrapolating this analysis framework to data that could be derived from the 

dual Sentinel-2 sensors, the likely errors were estimated to be only 1.24% and 23% for the 

spatial and temporal resolution of the Sentinel-2 mission, respectably. 
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5.6. Summary 

Where the previous chapter (Chapter 4) discussed the scale mismatch between 1 km 

MODIS LAI data and UK field sizes, this research quantifies the errors associated with 

optical EO sensor spatial and temporal resolution – specifically for UK field-scale crop 

monitoring. Generally, this analysis has demonstrated that an EO sensor with a spatial 

resolution of greater than 225 m is required to resolve the within-field detail. When 

accounting for likely cloud cover, EO sensors with a temporal resolution of 26 days could 

have errors of up to 63%.  
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6.1. Key research outcomes 

In this section the original key questions, as outlined in Chapter 1 (Section 1.6), are 

restated, followed by a summary of the results and discussions from research Chapters 2 

to 5. 

6.1.1. Impact of assimilating EO data on simulated C fluxes 

In Chapter 2, leaf area index (LAI) estimates, derived from optical (SPOT-2/4) and SAR 

(ERS-2) Earth observation (EO) data, were assimilated into the Soil-Plant-Atmosphere 

crop (SPAc) model. The ensemble Kalman Filter (EnKF) sequential data assimilation 

(DA) algorithm was used to update the simulation of LAI estimates. Improvements in the 

simulated net ecosystem exchange (NEE) fluxes with the assimilation of optical and SAR 

EO-derived LAI estimates – both individually and synergistically – were evaluated based 

on a comparison to FLUXNET eddy-covariance data. The following research questions 

were answered:  

1) To what extent can the assimilation of EO-derived LAI improve NEE flux 

estimates of winter cereal crops at the field-scale? 

2) Is the model DA framework valid for multiple European cropland sites? 

From assimilating all EO LAI estimates the simulation of the at-harvest cumulative NEE 

fluxes was improved by an average of 69% when compared to the estimate error without 
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the DA of LAI.  However, a greater improvement in the cumulative NEE of 79% was 

achieved from assimilating the SAR LAI only (i.e. as opposed to the combination of 

optical and SAR estimates). This improvement suggests that the model framework, 

including the parameterisation and LAI retrieval calibration coefficients, are sufficiently 

accurate and can reliably enhance the forecasting of winter wheat C fluxes at multiple 

European crop sites of differing climatic conditions. 

6.1.2. Evaluating simplified modelling approaches 

The impacts of reduced crop model complexity, including the spatio-temporal resolution 

of meteorological driving data, are investigated in Chapter 3. The simplified Aggregated 

Canopy Model (ACM) was used, which requires only minimal parameters and runs at 

daily time-steps. ACM is calibrated based on the output of the more detailed SPAc model 

that operates at half-hourly time-steps whilst simulating leaf-level processes. The 

calibration was applied across eight European winter wheat sites and was further evaluated 

when using gridded atmospheric re-analysis drivers (i.e. as opposed to local 

meteorological observations), in order to answer the questions:  

1) How does model complexity influence estimates of photosynthesis? 

2) How do single-site and multi-site photosynthesis calibrations compare across 

European cereal crop sites? 

3) How do the complex and simple model photosynthesis estimates compare when 



CHAPTER 6 
 

177 
 

driven by atmospheric re-analysis data? 

The calibrated ACM model generally had a consistently high correlation to SPAc 

photosynthesis estimates. Therefore, a reduction in model complexity, including temporal 

resolution (i.e. half-hourly to daily time-steps), does not significantly diminish the overall 

accuracy of photosynthesis estimates at daily timescales. From comparing between 

outputs from the single-site and multi-site ACM calibrations to SPAc estimates, accuracy 

and biases in ACM photosynthesis estimates were consistent in magnitude. And so, a 

generic and robust ACM calibration for winter wheat photosynthesis was produced. With 

both models driven with atmospheric re-analysis data, the ACM photosynthesis estimates 

also had a high agreement with the SPAc model. Therefore, the propagation of driver data 

uncertainty impacted the two models to a similar degree.  

6.1.3. Model-data fusion for regional upscaling 

In Chapter 4, a model-data fusion framework was evaluated for the estimation of winter 

wheat yields at six UK regions between the years 2000 to 2013. The DALECc model – 

driven by photosynthesis estimates from the ACM multi-site calibration detailed in 

Chapter 3 – was used to produce regional crop yield estimates that are validated using 

official yield statistics. Through a calibration of canopy development, coarse-scale (1 km) 

MODIS EO LAI estimates were also used to constrain the DALECc estimates to answer 

the questions: 
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1) What is the empirical relationship between MODIS LAI and crop yields across 

UK regions? 

2) What is the accuracy of grid-scale crop model yield estimates when aggregated to 

regional-scales? 

3) Can MODIS LAI be used to constrain and improve the model estimates of yield? 

A weak linear relationship (mean R2 = 0.29) existed between the mean maximum MODIS 

LAI and yield data. For cereal crops the time of peak LAI coincides with that of flowering 

and grain filling (Mkhabela et al., 2011), therefore yield can be correlated with maximum 

LAI (Forbes and Watson, 1992). The DALECc model yield had a mean error of 0.71 t ha-1 

when compared to official yield statistics over the 13-year period. The use of the MODIS 

LAI was not successful in reducing errors in DALECc yield estimates, which is likely due 

to sub-pixel heterogeneity in response to scale mismatches between the 1 km LAI product 

and relatively small UK field sizes. However, a decrease in the model biases was achieved 

using the LAI data for the majority of regions. This overall reduction in bias also coincided 

with a reduction in the bias of the DALECc LAI estimates when compared to the MODIS 

LAI. 

6.1.4. EO data spatial and temporal resolution requirements for crop 

growth monitoring 

Errors linked to EO sensor spatial and temporal resolution for UK crop monitoring were 
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quantified. The spatial resolution errors were determined by aggregating high resolution 

(5 m) LAI pixels to reproduce estimates from medium (10-250 m) to coarse-scale (> 250 

m) EO sensors. Using a field mask, per-field samples were made from the aggregated 

images and compared to those from the original fine-scale data. Analysing temporal 

resolution errors involved resampling daily LAI estimates from the DALECc model 

(calibrated and evaluated in Chapters 2 and 3) to mimic the observation frequencies of 

current sensors. The LAI data was also filtered to remove observations on potentially 

cloudy days. The data was then compared to the original daily times-series in order to 

evaluate the impacts of reducing the observation frequency. The following questions were 

answered: 

1) What is the minimum EO sensor spatial resolution required to monitor crops at 

field-scales that are characteristic of UK agriculture?  

2) How does temporal resolution and likely cloud cover influence the effectiveness 

of optical EO sensors for tracking winter wheat growth over cropland landscapes? 

3) What are the expected benefits of the dual Sentinel-2 satellite constellation (i.e. 

Sentinel-2A and 2B) for multi-temporal crop monitoring at UK field-scales? 

The calculated mean maximum pixel size (i.e. the coarsest spatial resolution required to 

adequately resolve fields) ranged from 100 to 225 m. This range in coarsest pixel size is 

also comparable to that approximated by Duveiller and Defourny (2010) where sizes 
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ranged from 120 to 300 m for multiple European regions. Errors in using optical EO data 

for crop growth monitoring over UK croplands were 28%, 48% and 63% for a temporal 

resolution of 10 days (e.g. Sentinel-2), 16 days (e.g. Landsat-7/8) and 26 days (e.g. 

SPOT-6/7), respectively. 

Based on the spatial resolution errors analysis, the 10 m spatial resolution of Sentinel-2 

EO data would be expected to have a mean error of 1.0% with a 5/95-percentile range of 

±0.5%. Therefore, the spatial resolution of Sentinel-2 would be expected to accurately 

resolve the spatial detail within typical UK field sizes. The forthcoming launch of the 

second Sentinel-2 satellite will effectively increase the current temporal resolution – from 

10 to 5 days. And so, based on the temporal analysis accounting for potential cloud cover, 

a 5-day temporal resolution corresponds to an error of 23.3% when monitoring winter 

wheat crop growth.   

6.2. Research findings: opportunities for industry 

The EO data processing and modelling approaches evaluated in this thesis demonstrate 

benefits to support the monitoring of crop growth and yield in an operational and 

commercial context. The generalised framework detailed in Chapter 5 could be applied to 

any cropland landscape to determine the optical EO spatial and temporal resolutions 

required to resolve field-scale detail. This information can then be used to monitor the 

within-field spatial variability in crop growth condition (e.g. Figure 6.1), data on which 

would be required to support decision-making in applications of precision agriculture 
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(Mulla, 2013). For instance, EO data could be used to distinguish sub-regions of fields 

that could be used as management zones that could each receive customised inputs of 

fertilisers and herbicides. The analysis of additional imagery throughout a crop season 

could then be used to modify the extents of management zones and update the inputs. 

Furthermore, Hedley  (2015) estimates that using spatio-temporal crop condition maps in 

conjunction with GPS-enabled automated guidance technologies, used by agricultural 

vehicles, can increase management efficiencies by up to 15% to 30% (e.g. through 

reducing overlaps and gaps when applying fertilisers).   

 
Figure 6.1: Example SPOT-6 normalised difference vegetation index (NDVI) image indicating 

the spatial variability of crop growth at the field-scale (source: Airbus Defence and Space). 

 

The benefits of EO data in supporting the agri-business sector will be further enhanced by 

the fully operational Sentinel-1 and Sentinel-2 (SAR and optical) EO satellite pairs, data 
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from which will also be available for commercial use free of charge. The high spatial and 

temporal resolutions offered by these Sentinel sensors will potentially develop upon the 

current cropland monitoring capabilities. And so, these developments could improve 

information on crop production through the timely delivery of information on crop status, 

crop area and yield forecasts (Bontemps et al., 2015). In particular, the use of Sentinel 

data would be a valuable contribution to the Group on Earth Observation’s Global 

Agricultural Monitoring (GEOGLAM) framework (Justice and Becker-Reshef, 2007). 

GEOGLAM is a G20-mandated activity for crop monitoring using EO data (Soares et al., 

2011; Whitcraft et al., 2015), which specifically aims to integrate satellite EO data and 

ground observations to provide services, including the regular monitoring of both climatic 

variables and condition of multiple crop types at local, national and global scales 

(GEOGLAM, 2015). 

Although EO sensors can determine the crop condition at a given point in time, the 

field-scale spatial variability in yield is due to a combination of factors, including water 

stress, nutrients, rooting depth, soil properties, drainage, weather, pests and management 

(Thorp et al., 2008). The use of the detailed SPAc model can capture some of the causes 

of yield variability that are related to weather and management. Specifically, the simulated 

developmental rate, and subsequent carbon allocation to yield, is calculated based on daily 

observations of temperature and radiation. The overall length and timing of the crop 

growing period is further dependant on the sowing and harvesting dates. As demonstrated 

in Chapter 2, available fine scale EO data can be sequentially assimilated into SPAc (or 
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DALECc) in order to update the model state variables. Crop models, applied at points 

within a field to generate daily estimates, can therefore compliment the information 

inferred from EO sensors and further contribute towards the precision farming toolkit.  

Although areas of development were highlighted with the SPAc and DALECc models, 

particularly with regards to C allocation to grain (as discussed in Chapters 2 and 4), the 

use of models combined with EO data can potentially provide a powerful framework for 

the reliable forecasting of crop yields that would have considerable economic benefits at 

a range of spatial scales. For instance, the regional-scale analysis detailed in Chapter 4 

demonstrated the use of only coarse-scale EO data for reducing biases in yield estimates. 

At regional to national-scales, in terms of global agricultural markets, crop prices are 

volatile due to fluctuations in crop production – in response to climate variability 

(López-Lozano et al., 2015). And so, crop yield forecasts at regional-scales are essential 

for providing objective information that can be used to ensure national food security whilst 

minimising economic risks. 

6.3. Recommendations for future research 

Chapter 2 demonstrated the sequential DA of high resolution EO data for improving the 

performance of the SPAc model. Furthermore, the photosynthesis simulated by SPAc can 

be reproduced the using a simpler model – ACM (detailed in Chapter 3) – that operates at 

daily (as opposed to half-hourly) time-steps; thus reducing driver requirements and 

decreasing the computational demand. And so, based on these findings, a future research 
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direction would be to apply the same sequential DA scheme to update the DALECc C 

allocation model when driven using ACM photosynthesis estimates. Since ACM can also 

generate photosynthesis when driven with spatially aggregated meteorological data, this 

sequential DA approach could offer a more practical solution for estimating C fluxes at 

alternative crop sites where information on management inputs is less well known. 

Research in chapter 4 evaluates the regional-scale application of DALECc, driven with 

the ACM photosynthesis multi-site calibration (detailed in Chapter 3). MODIS LAI was 

also used to constrain the DALECc simulation of canopy development. Reductions in the 

model biases were achieved; however, due to the average UK field size (estimated as 7.93 

ha, see Chapter 5: Table 5.1) it is likely that the 1 km spatial resolution of MODIS LAI 

was largely insufficient for resolving the field-scale detail. And so, the research in Chapter 

4 was considered a benchmark for future research involving the use of higher spatial 

resolution EO sensor data, which would resolve the field-scale detail more accurately.  

In addition to LAI, existing EO products with regional to global coverage include MODIS 

daily (and 8-daily) surface reflectance at 250 m spatial resolutions. Although the spatial 

resolution of this MODIS data is less than the minimum resolution required for UK crop 

monitoring, which was estimated as 225 m (see Chapter 5), it is expected that significant 

improvements could be achieved when compared to the 1 km LAI data used in Chapter 4. 

However, the MODIS reflectance product – comprising of data centred on the red and 

near-infrared wavebands – cannot be directly assimilated into DALECc and would require 

the retrieval of LAI through either empirical or physical-based models. 
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Retrieving accurate LAI estimates from EO data is challenging and typically limits the 

validity of a DA scheme when applied at regional-scales and alternative crop types 

(Doraiswamy et al., 2004; Fang et al., 2011). Chapter 2 demonstrated the use of an 

empirical algorithm for retrieving LAI based on a relationship between EO data and 

ground measured LAI. However, since this empirical relationship was established locally 

it may not be valid over large areas (Yuping et al., 2008). As an alternative to this 

empirical approach, further studies could investigate the coupling of DALECc to a 

radiative transfer model, which can be parameterised to simulate the key absorption and 

scattering properties of light within a crop canopy. Through a knowledge of the 

illumination geometry, radiative transfer models, such as the Scattering by Arbitrary 

Inclined Leaves (SAIL; Verhoef, 1984, 1985) model, essentially incorporates an 

understanding of the processes that link canopy biophysical variables to canopy 

reflectance (Baret et al., 2000). And so, future research could involve the coupling of 

DALECc to a calibrated and inverted radiative transfer model (e.g. Koetz et al., 2005; 

Yuping et al., 2008; Ma et al., 2013). Thus, this radiative transfer model inversion could 

allow for the direct use of EO reflectance data to simulate LAI, which could then be used 

to update the DALECc model estimates. 

Research in Chapter 5 hypothesized the impacts of temporal gaps in optical EO data, 

including that due to cloud cover, when monitoring crop growth across UK landscapes. 

Furthermore, in Chapter 4, the 8-day composite MODIS LAI estimates were filtered to 

remove days that were flagged as cloudy. However, both studies could include an 
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evaluation of filtering algorithms used for the gap-filling of LAI time-series. For instance, 

the Savitzky-Golay filter (SG, Savitzky and Golay, 1964) has been commonly applied to 

smooth the noise in MODIS LAI and NDVI data products used to monitor crop growth 

(e.g. Fang et al., 2011; Xu et al., 2011; Zhao et al., 2013; Huang et al., 2015; Wei et al., 

2015; Yao et al., 2015; Huang et al., 2016). 

Accurately determining the uncertainty of EO data, along with the crop model uncertainty, 

is an important pre-requisite for sequential DA schemes. Therefore, the research detailed 

in Chapter 5 – investigating uncertainty linked to optical EO sensor spatial and temporal 

resolutions – could be extended to using within a sequential DA scheme. Specifically, 

noise could be added to the synthetic LAI time-series estimates to mimic the uncertainties 

due to spatial heterogeneity. This LAI data, further filtered to reflect EO sensor temporal 

resolution and cloud cover obscurity, could then be assimilated into the DALECc model. 

This DA approach potentially provides a powerful synthetic analysis, which could allow 

for the evaluation of uncertainty, combined with the timings and frequencies of 

assimilated estimated, on simulated crop canopy development and yield. 

Crop models have typically been calibrated and evaluated to simulate the dynamics of 

crop growth under optimum environmental conditions, i.e. business-as-usual scenarios 

(Zhao et al., 2013). For instance, the SPAc and DALECc models evaluated in this thesis 

simulate the maximum possible development of crops as a function of temperature, 

photoperiod and vernalisation (see Chapter 4: Section 4.2.3). However, other factors, 

including soil moisture, can also influence the developmental rate of crops (Penning de 
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Vries et al., 1989; Sus et al., 2012). And so, additional research could investigate the 

impacts of adverse conditions, such as drought, on crop model estimates.  

6.4. Summary conclusions 

The research chapters (Chapters 2 to 5) of this thesis addressed the key issues associated 

with the spatial and temporal upscaling of crop model estimates of C fluxes and stocks. 

These issues broadly included evaluating approaches for combining models with EO data, 

investigating the model complexity and determining EO data resolution requirements for 

operational crops monitoring over UK landscapes. The conclusions from this research can 

be summarised as: first, the assimilation of fine-scale optical and radar EO data can 

improve crop model estimates of daily and cumulative C fluxes. However, the individual 

assimilation of radar data (i.e. without being combined with optical data) resulted in 

further enhancements in the C flux estimates. Second, a simplified model of cereal crop 

photosynthesis – simulating canopy-scale processes at daily time-steps – can be calibrated 

to reproduce estimates generated from a more complex, and thus more computationally 

intensive model, which simulates leaf-level processes at half-hourly time-steps. 

Furthermore, a high agreement existed between the two models, and with independent 

photosynthesis estimates, when both models were driven with 1.0˚ resolution (≈ 11.13 

km) gridded meteorological data. Third, coarse-scale (1 km) EO data can be used to 

constrain models and reduce biases in regional-scale estimates of canopy development 

and yield. However, the use of higher resolution EO sensors would be expected to improve 
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the yield estimates. And fourth, a minimum EO spatial resolution of around 165 m is 

required to resolve the average field-scale detail of UK croplands. Furthermore, 

Monitoring crop growth using EO sensors with a 26-day temporal resolution resulted in a 

mean error of 5%; however, accounting for likely cloud cover increased this error to 63%. 
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APPENDIX A 

A1. SPAc model winter wheat parameters 

Table A.1: List of SPAc model parameters, including units, nominal values and 

corresponding cited sources, that are used to simulate winter wheat crop growth and 

development (adapted from: Sus et al., 2010). 

Parameter 
symbol 

Name Unit 
Nominal 
value 

Source 

Nfrac 

Fraction of leaf nitrogen 

content per unit area on 

cumulative leaf area for 

four canopy layers (from 

top to bottom). 

Fraction 

0.33 (layer 1), 

0.27 (layer 2), 

0.22 (layer 3), 

0.18 (layer 4). 

Hirose and Werger (1987)  

gplant Stem conductance mmol m−2 s−1 MPa−1 5 
Adjusted to match leaf specific 

conductance from Liu et al. (2005) 

Ψ1 
Minimum leaf water 

potential 
MPa −1.9 Johnson et al. (1987) 

I Stomatal efficiency – 1.007 
Adjusted to maintain max. gs <400 

mmol m−2 s−1 (Ye and Yu, 2008) 

C Leaf capacitance mmol m−2 MPa−1 2000 Estimated (Williams et al., 1996) 

Rr Root resistivity MPa s g mmol−1 10 
Adjusted to match leaf specific 

conductance from Liu et al. (2005) 

Vcmax 
Maximum carboxylation 

capacity 
μmol m−2 s−1 64 

Wullschleger (1993), Tambussi et al. 

(2005) 

Jmax 
Maximum electron 

transport rate 
μmol m−2 s−1 137 

Wullschleger (1993), Tambussi et al. 

(2005) 

Cla Carbon per leaf area gC m−2 19.5 Penning de Vries et al. (1989) 

rdc Decomposition rate h−1 2.3 × 10−5 Buyanovsky and Wagner (1987) 
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fa Fraction of GPP respired Fraction 0.44 Monje and Bugbee (1998) 

troot Turnover rate of roots h−1 6.25 × 10−3 Penning de Vries et al. (1989) 

mlit Mineralization rate of litter h−1 2.8 × 10−4 Buyanovsky and Wagner (1987) 

mSOM 
Mineralisation rate of 

SOM/CWD 
h−1 2.28 × 10−6 Buyanovsky and Wagner (1987) 

tlab Turnover rate of labile pool h−1 6.25 × 10−3 Penning de Vries et al. (1989) 

rtr 
Respiratory cost of labile 

transfers 
Fraction 0.2133 Goudriaan and Van Laar (1994) 

tar 
Turnover rate of 

autotrophic respiration pool 
h−1 0.07 

Adjusted to give ∼daily turnover of 

pool 

GDDem 
Temperature sum at 

emergence 
Degree days 125 Wang and Engel (1998) 

trlstem 

Rate of translocation of 

remobilisable carbon from 

stems 

h−1 8.3 × 10−3 Penning de Vries et al. (1989) 

rmax,v 
Maximum development 

rate in vegetative phase 
d−1 0.04 

Yan and Wallace (1998), Li et al. 

(2008) 

rmax,r 
Maximum development 

rate in reproductive phase 
d−1 0.035 Streck et al. (2003) 

Tmin 
Minimum temperature for 

development °C 0 Li et al. (2008) 

Topt 
Optimum temperature for 

development °C 24 Li et al. (2008) 

Tmax 
Maximum temperature for 

development °C 35 Li et al. (2008) 

Tmin,vn 
Minimum temperature for 

vernalization °C −1.3 Porter and Gawith (1999) 

Topt,vn 
Optimum temperature for 

vernalization °C 4.9 Porter and Gawith (1999) 

Tmax,vn 
Maximum temperature for 

vernalization °C 15.7 Porter and Gawith (1999) 

VDh 

Effective vernalization days 

when plants are 50% 

vernalized 

VD 22.5 Streck et al. (2003) 

LAIcr 

Critical leaf area index 

beyond which leaf 

senescence due to self-

shading occurs 

m2 m−2 4 Van Laar et al. (1997) 

dshmax 
Maximum value of relative 

death rate due to shading 
h−1 1.25 × 10−3 Van Laar et al. (1997) 
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PHcr 

Minimum (or critical) 

photoperiod for 

development 

h 8.25 Streck et al. (2003) 

PHsc 
Photoperiod sensitivity 

coefficient 
– 0.25 Streck et al. (2003) 
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APPENDIX B 

B1. Aggregated Canopy Model (ACM) variables 

Table B.1: List of fixed variables used in the ACM aggregation equations (see Appendix 

B2). 

Variable Value used Source 

Average foliar nitrogen (g m-2) 1.0 Estimated from Sus et al. (2010)  

Atmopheric CO2 (ppm) 393 
FLUXNET database 

(fluxnet.ornl.gov) 

Minimum leaf water potential (MPa) 2.0 Johnson et al. (1987) 

Soil water potential (MPa) 0. Williams et al. (1997) 

Soil-plant hydraulic resistance (fraction of total 

conductance) 
0.2 

Estimated from Williams et al. 

(2001) 
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B2. ACM derivation and equations 

Using the 10 scalar coefficients and fixed variables (listed in Table 3.1 of Chapter 3 

and Appendix Table B.1, respectively), ACM consists of aggregation equations, which 

are solved in sequence, in order to fit daily photosynthesis estimated by the fine-scale 

model. From Williams et al. (1997), the first governing equation assumes a linear 

relationship between GPP and total canopy nitrogen, which is estimated from the 

average foliar nitrogen (N) and leaf area index (LAI), also including the impacts of 

temperature on the metabolic processes: 

 

𝑝𝑝N = 𝑎𝑎1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑒𝑒−𝑎𝑎8𝑇𝑇 

 

where 𝑝𝑝N is the total canopy nitrogen-limited photosynthetic capacity (g m-2), 𝑇𝑇 is the 

average daily temperature (°C, determined from the daily minimum and maximum 

temperatures), 𝑎𝑎1 and 𝑎𝑎8 are the Nitrogen use efficiency and Temperature calibration 

coefficients, respectively. 

 

The fine-scale model, of which ACM is designed to emulate, simulates stomatal 

conductance that is responsive to atmospheric vapour pressure deficit, which in turn is 

related to temperature and temperature range. Therefore, ACM calculates the daily 

canopy conductance (𝑔𝑔𝑐𝑐), which determines the rate of carbon (C) fixation, as a 

function of daily temperature range (𝑇𝑇𝑑𝑑) and the soil-canopy water potential gradient 

(𝜓𝜓𝑑𝑑, MPa, the difference between the minimum leaf water potential and soil water 

potential) balanced by the total soil-plant hydraulic resistance (𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡): 

Equation B.1 
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𝑔𝑔c =
−𝜓𝜓𝑑𝑑  𝑒𝑒−𝑎𝑎10
𝑎𝑎6𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑇𝑇𝑑𝑑

 

 

where 𝑎𝑎10  and 𝑎𝑎6  are the water potential and hydraulic scalar coefficients, 

respectively. 

 

Using the 𝑝𝑝𝑁𝑁 and 𝑔𝑔𝑐𝑐 values, the internal CO2 concentration (𝐶𝐶𝑖𝑖) was then determined 

as a function of ambient atmospheric CO2 (𝐶𝐶𝑎𝑎): 

 

𝐶𝐶i =  
1
2

 �𝐶𝐶𝑎𝑎 + 𝑞𝑞 − 𝑝𝑝 + �(𝐶𝐶𝑎𝑎 + 𝑞𝑞 − 𝑝𝑝)2 − 4(𝐶𝐶𝑎𝑎𝑞𝑞 − 𝑝𝑝𝑝𝑝)� 

  

where 𝑞𝑞 =  𝑝𝑝 − 𝑘𝑘 and 𝑝𝑝 = 𝑝𝑝𝑁𝑁/𝑔𝑔𝑐𝑐. The rate of diffusion of atmospheric CO2 to the 

point of C fixation (𝑝𝑝𝐷𝐷) is calculated as a function of 𝑔𝑔𝑐𝑐 and the difference between 

𝐶𝐶𝑎𝑎 and 𝐶𝐶𝑖𝑖: 

 

𝑝𝑝D =  𝑔𝑔c (𝐶𝐶𝑎𝑎 − 𝐶𝐶i ) 

 

Since the diffusive constraints vary with irradiance (𝑁𝑁), a two-step calculation was 

applied in order to calculate the light limitation. First, the canopy-level quantum yield 

(𝐸𝐸0) that was calculated based on LAI: 

Equation B.1 

  

 

 

  

 

 Equation B.2 

 

 

Equation B.3 
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𝐸𝐸0 =
𝑎𝑎7 𝑁𝑁𝑁𝑁𝑁𝑁2

𝑎𝑎9 + 𝑁𝑁𝑁𝑁𝑁𝑁2
 

 

where 𝑎𝑎7  and 𝑎𝑎9  are the maxium canopy quantum yield and LAI-canopy quantum 

yield coefficients, respectively. The light limitation (𝑝𝑝I) is then calculated as: 

 

𝑝𝑝𝐼𝐼 =
𝐸𝐸0 𝑁𝑁𝑝𝑝𝐷𝐷 

𝐸𝐸0𝑁𝑁 + 𝑝𝑝𝐷𝐷 
 

 

The final calculation of daily GPP (𝑝𝑝T) is then made, which is a function of 𝑝𝑝I:  

 

𝑝𝑝T =  𝑝𝑝1 (𝑎𝑎5𝐷𝐷ms + 𝑎𝑎2) 

 

where 𝐷𝐷ms is the number of days (absolute) from the summer solstice (22 June/Julian 

day 173 in the Northern Hemisphere), 𝑎𝑎5  and 𝑎𝑎2  are the daylength constant and 

daylength coefficients. 

  

Equation B.4 

 

 

Equation B.5 

 

 

Equation B.6 
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