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Abstract
Parametric speech synthesis has received increased attention in recent years follow-

ing the development of statistical HMM-based speech synthesis. However, the speech

produced using this method still does not sound as natural as human speech and there

is limited parametric flexibility to replicate voice quality aspects, such as breathiness.

The hypothesis of this thesis is that speech naturalness and voice quality can be

more accurately replicated by a HMM-based speech synthesiser using an acoustic glot-

tal source model, the Liljencrants-Fant (LF) model, to represent the source component

of speech instead of the traditional impulse train.

Two different analysis-synthesis methods were developed during this thesis, in or-

der to integrate the LF-model into a baseline HMM-based speech synthesiser, which is

based on the popular HTS system and uses the STRAIGHT vocoder. The first method,

which is called Glottal Post-Filtering (GPF), consists of passing a chosen LF-model

signal through a glottal post-filter to obtain the source signal and then generating

speech, by passing this source signal through the spectral envelope filter. The sys-

tem which uses the GPF method (HTS-GPF system) is similar to the baseline system,

but it uses a different source signal instead of the impulse train used by STRAIGHT.

The second method, called Glottal Spectral Separation (GSS), generates speech by

passing the LF-model signal through the vocal tract filter. The major advantage of the

synthesiser which incorporates the GSS method, named HTS-LF, is that the acoustic

properties of the LF-model parameters are automatically learnt by the HMMs.

In this thesis, an initial perceptual experiment was conducted to compare the LF-

model to the impulse train. The results showed that the LF-model was significantly

better, both in terms of speech naturalness and replication of two basic voice qualities

(breathy and tense). In a second perceptual evaluation, the HTS-LF system was better

than the baseline system, although the difference between the two had been expected to

be more significant. A third experiment was conducted to evaluate the HTS-GPF sys-

tem and an improved HTS-LF system, in terms of speech naturalness, voice similarity

and intelligibility. The results showed that the HTS-GPF system performed similarly

to the baseline. However, the HTS-LF system was significantly outperformed by the

baseline. Finally, acoustic measurements were performed on the synthetic speech to

investigate the speech distortion in the HTS-LF system. The results indicated that a

problem in replicating the rapid variations of the vocal tract filter parameters at tran-

sitions between voiced and unvoiced sounds is the most significant cause of speech

distortion. This problem encourages future work to further improve the system.
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Chapter 1

Introduction

Speech is one the most important forms of communication between humans. The

message to be spoken is formulated in a person’s mind and expressed in the form of

speech signals in a structured way, i.e. using the symbolic representation of the hu-

man language (phones, words, etc.), so that it can be interpreted and understood by the

listener. The speech production system is commanded by the brain which controls a

series of movements of articulators, such as vocal folds, tongue, and lips. The energy

necessary for producing the airflow in the respiratory system is generated by a pressure

drop in the lungs. For voiced sounds, the flow of air through the glottis causes the vocal

folds to vibrate and the air stream is modulated into pulses. The rate of vibration of the

vocal folds is called fundamental frequency (F0) and its main perceptual effect is the

pitch. Voiced sounds, such as vowels, are characterised by a periodicity pattern. The

frequency structure of these sounds is also regular and it is characterised by a set of

harmonics, i.e. frequency components multiples of the fundamental frequency. These

harmonics are emphasised near the resonance frequencies of the vocal tract (pharyn-

geal and oral cavities), which are called formants. If there is passage of air through the

nasal cavity, then the resonances of the nasal cavity are also excited. Variations in the

vocal tract shape, such as lips opening, and tongue placement, change the formants and

contribute to differentiation between different types of speech sounds (e.g. the phones

/aa/ and /b/). Unvoiced sounds are excited either by creating a rapid flow of air through

one or more constrictions, at some point between the trachea and the lips, or by mak-

ing a closure at the point of constriction and abruptly releasing it. The first acts like

a turbulent noise source while the second produces a transient excitation followed by

turbulent flow of air, such as the excitation of the stop consonant /p/.

For a long time humans have developed systems to produce “human-like” speech.

1



Chapter 1. Introduction 2

Nowadays, automatic text-to-speech synthesisers can produce speech which sounds

intelligible and natural. Although the quality of the synthetic speech has yet to fully

match the quality of human speech, these systems have been successfully used in day-

to-day applications, like screen readers to help people with visual impairments, text-to-

speech systems to help people with speech impairments to communicate, and systems

to convert written news to speech.

1.1 Speech Synthesis Methods

The earliest text-to-speech systems are based on a parametric speech production model,

which represents speech by two components: the glottal source and the vocal tract

transfer function. The traditional systems represent the vocal tract transfer function as

a sequence of formant resonators, such as the Parametric Artificial Talker (PAT) syn-

thesiser (Lawrence, 1953) and the MITalk system (Klatt, 1982). For this reason, they

are often called formant synthesisers. These systems generate the speech signal using

a set of acoustic rules derived by human experts, which describe how the parameters

(fundamental frequency, formants, etc.) vary from one speech sound to another. Artic-

ulatory speech synthesis is another method which uses the knowledge about the speech

production system for producing speech. However, this method uses the physical the-

ory to describe the vocal tract shape and to model how the articulators of the speech

production system change with time.

Techniques based on concatenating pre-recorded fragments of speech have been

rising in popularity since the 1970s until today. These methods avoid the difficult

task of deriving acoustic rules, because natural speech segments contain the phonetic

information and the dynamic properties of speech sounds. However, for synthesis by

concatenation it is necessary to record a relatively large amount of speech data. The

traditional concatenative synthesisers use a speech model to represent the recorded

speech fragments in terms of acoustic features. This technique allows the size of the

speech database to be reduced and acoustic aspects of speech to be modified, such as

pitch and formants. From the mid 1990s, the concatenation of units of natural speech

started to become more popular than using a parametric model of speech. This was

facilitated with the development of the storage and processing power of computers,

which permitted to use more complex algorithms for searching the speech fragments

and larger speech databases. State-of-the-art concatenative synthesisers, which are

called unit-selection synthesisers, concatenate speech units of variable length without
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applying signal processing (or very little processing), in order to obtain high speech

naturalness (Campbell and Black, 1996).

Statistical speech synthesis is a relatively recent approach in which a statistical

model, typically the Hidden Markov Model (HMM), is used to learn automatically

the acoustic properties of the different speech sounds. This method uses a speech

model as in formant synthesis, but does not require acoustic rules derived by humans.

Hybrid systems which combine the concatenation method with the formant and statis-

tical speech synthesises methods respectively, have also been successfully used, e.g.

Högberg (1997); Plumpe et al. (1998).

1.1.1 Formant Synthesisers

Formant speech synthesisers generate the speech signal entirely from rules on the

acoustic parameters, which are derived by human experts from speech data. Most

of the parameters describe the pitch, formant/antiformant frequencies and bandwidths.

In general, the synthetic speech sounds smooth since the variation of the formant fre-

quencies is also driven by rules, which are determined using physical constraints. For

example, the maximum allowable slopes of the formant in the transition between two

sounds is determined by the speed of the articulators which produce those sounds

(Huang et al., 2001).

Voiced sounds, such as vowels, are synthesised by passing a periodic source sig-

nal through a filter which represents the formant frequencies of the vocal tract. For

unvoiced speech, the source signal is usually modelled as white random noise instead.

The synthesis filter can be constructed by cascading second-order filters (each repre-

senting a resonance of the vocal tract). For example, the Parametric Artificial Talker

(PAT) synthesiser (Lawrence, 1953) consists of a sequence of formant filters in parallel

and the source (excitation of the filter) is either an impulse train or noise. Alternatively,

a parallel structure of the format resonators can also be used, such as in the different

versions of the Orator Verbis Electris (OVE) system (Fant, 1953; Liljencrants, 1968).

The most sophisticated formant synthesisers use different structures to model the vo-

cal tract of vowels, nasals and consonants. For example, the cascade structure is com-

monly used to model voiced sounds, whereas the parallel model is commonly used to

synthesise unvoiced consonants. Formant synthesisers often use a sophisticated exci-

tation model. For example, a mixed excitation model which is the combination of a

periodic and a noise component of the source, is typically used to synthesise voiced
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fricatives and to add aspiration noise in voiced sounds. Excitation models which in-

clude glottal parameters to control the shape of the glottal pulse, are also commonly

used in these systems, e.g. Klatt (1987).

The large number of parameters (up to 60) and the difficulty in estimating formant

frequencies and bandwidths makes the analysis stage of formant synthesisers complex

and time-consuming. In general, speech generated using these systems is intelligible.

They can also synthesise speech which sounds very close to the original speech by

manual tuning the acoustic parameters of the systems, as shown by Holmes (1972)

who synthesised a number of utterances using his system by manually adjusting the

formant tracks. However, automatic formant synthesis does not sound natural, mainly

due to incomplete phonetic knowledge and limitations of the acoustic model used in the

systems to describe the variability and details of speech. The major advantage of this

speech synthesis method is that is offers a high degree of parametric flexibility which

allows voice characteristics to be controlled and expressive speech to be modelled by

deriving specialised rules. For example, the Affect Editor program (Cahn, 1989) uses a

formant synthesiser, the DECTalk synthesiser of Allen et al. (1987), in order to produce

emotional speech by controlling several parameters related to pitch, timing, articulation

and voice quality (e.g. breathiness). This synthesiser uses a glottal source model which

allows different voice effects to be produced. Formant speech synthesisers are also

suitable for memory-constrained applications because they require a small memory

footprint.

Although most formant synthesisers are driven by rules, statistical modelling of the

formant parameters using HMMs has also been explored (Acero, 1999). Even using a

full data-driven approach to generate the parameters, it has proved difficult to further

improve formant synthesisers.

1.1.2 Articulatory Synthesisers

Articulatory synthesisers describe speech in terms of articulatory features of the vocal

generation system, as opposed to acoustic parameters in formant synthesisers. They

use a physical theory to describe the vocal tract shape and to simulate how the articu-

lators of the speech production system change with time, such as the Dynamic Analog

of the Vocal Tract (DAVO) synthesiser of Rosen (1958) and the VocalTractLab synthe-

siser (Birkholz, 2010). The main issue in articulatory synthesisers is how to control the

articulatory parameters in order to produce a certain speech sound, e.g. parameters of
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the vocal tract tube area function and parameters which describe the tongue position.

Typically these systems are driven by rule and use an acoustic source-filter model, in

a similar way to formant synthesisers. However, the complexity of the articulatory-

acoustic mapping is complex and makes it hard to determine what articulatory pa-

rameter should be used in order to produce a given acoustic signal. For example, the

same speech sound can be produced with very different combinations of articulator po-

sitions, which makes the articulatory-to-acoustic mapping a difficult problem to solve

(many-to-one possible mappings). State-of-the-art articulatory speech synthesisers can

produce high-quality speech for isolated sounds, such as vowels. However, speech

quality is significantly degraded when these systems are used to synthesise continuous

speech, due to problems in modelling co-articulation effects and more complex sounds.

Despite the progress of articulatory speech synthesis in recent years, this method is not

yet feasible enough for text-to-speech applications.

1.1.3 Concatenative Synthesisers

In concatenative speech synthesis the problem is to select the fragments of recorded

speech for a given phonetic sequence. In general, the segments to be concatenated have

different phonetic contexts, since they are generally extracted from different words. As

result, there is usually an acoustic and prosodic mismatch at the concatenation points

which might produce distortion. In principle, the larger the speech database, the more

likely it is that a good sequence of units may be found, and the better is the quality of

the output speech. Typically, short speech units, such as diphone (starting at the middle

of one phone and ending at the middle of the next phone) or phone units, are used so

as to obtain a speech database of an affordable size.

Diphone concatenation synthesisers were widely used in the 1990s, as they could

produce intelligible speech with a relatively small amount of speech data. The diphone

join points are in the most stable part of the phone, which reduces the effect of audi-

ble discontinuities which occur at the join points. A careful corpus design is usually

performed in order to obtain a relatively small (e.g. one hour long) and phonetically

balanced inventory of diphone units. These systems typically use an analysis-synthesis

method. For example, the Linear Predictive Coding (LPC) model (Markel and Gray,

1976) and the harmonic model (Dutoit, 1993), which are described in Section 2.1, are

commonly used in diphone concatenation synthesisers to parameterise the speech sig-

nal and resynthesise speech using the speech parameters. The main advantages of using



Chapter 1. Introduction 6

a parametric model when compared to a speech waveform is the lower storage require-

ment and the parametric flexibility which enables the transformation of acoustic prop-

erties of speech. For example, speech parameters can be interpolated in order to obtain

smoother transitions at the concatenation points and they can be transformed in order

to reproduce prosodic and voice quality variations. Diphone concatenation systems

often use signal processing techniques to manipulate acoustic characteristics of the

units, such as the Time-Domain Pitch-Synchronous Overlap-and-Add (TD-PSOLA)

for pitch and duration transformations (Moulines and Charpentier, 1990). Although

diphone synthesisers can produce more natural speech than formant synthesisers, the

use of a parametric model and signal processing usually produce unnatural speech

quality. For example, LPC diphone synthesisers are characterised by a “buzzy” speech

quality.

The concatenation-based systems which produce the most natural sounding speech

are the unit-selection synthesisers, e.g. the Festival Multisyn system (Clark et al.,

2007b). In these systems, units of variable size are selected from a large speech

database upon minimisation of the target and the concatenation costs. The target cost

indicates how well each unit matches the ideal unit segment for each utterance, while

the concatenation cost refers to how well each unit joins to the previous unit. In the

unit-selection method, the speech units are usually not modified and a large speech

corpus is used (usually not less than 6 hours of speech), in order to obtain high-quality

speech. However, it is impossible for the speech database to cover all aspects of speech

variability. Therefore, occasionally there are bad joins which result in audible speech

artifacts. The tradeoff of using natural speech units to improve speech naturalness by

unit-selection synthesisers is the lower control of voice characteristics due to reduced

parametric flexibility. For example, another large speech corpus needs to be recorded

in order to build a voice for a new speaker. Also, it is hard to synthesise speech with

different speaker styles or voice qualities using these systems. One way to overcome

this problem is to use signal processing to transform acoustic properties of the speech

signal. However, the required degree of speech modifications often degrade speech

quality, e.g. Murray and Edgington (2000). An alternative to signal processing is to

use different speech inventories for each speaking style, e.g. Iida et al. (2000). How-

ever, recording additional speech corpus is demanding in terms of time and money.

Also, the complexity of the speech corpus preparation, storage requirements and unit

search techniques of these systems usually increase with the number of different speech

inventories used.
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1.1.4 Statistical Synthesisers

Statistical parametric speech synthesis is a relatively recent approach which has been

summarised by Black et al. (2007) as “generating the average of some set of similarly

sounding speech segments”. The statistical model which has been used more often for

speech synthesis is based on the Hidden Markov Model (HMM). HMMs have been

applied successfully to speech recognition from the late 1970s. However, they have

been used for speech synthesis for only about two decades. In comparison with formant

synthesisers, HMM-based speech synthesisers are also fully parametric and require a

small footprint, but they have the advantage that they are fully automatic. In other

words, the difficult task of deriving the rules in formant synthesisers is overcome by the

automatic training of the HMMs. These systems typically use vocoding techniques to

extract the speech parameters from recorded speech and to generate the speech signal

using a source-filter model, which is generally different from the formant model used

by formant synthesisers.

HMM-based speech synthesisers can produce high-quality speech. In particu-

lar, they permit more natural sounding speech to be obtained than from conventional

rule-based synthesisers or diphone concatenation synthesisers. However, the synthetic

speech generated by current statistical speech synthesisers does not sound as natural as

that generated by state-of-the-art unit-selection systems (Black et al., 2007; King and

Karaiskos, 2009), mainly because the statistical speech synthesisers produce a “buzzy”

and muffled speech quality. The “buzzy” or robotic quality is mainly associated with

the vocoding technique used to generate speech from the parameters. In particular, the

excitation of voiced sounds is typically modelled using a simple impulse train, which

often produces the “buzzy” speech quality. On the other hand, the muffled quality is re-

lated to over-smoothing of the speech parameter trajectories measured on the recorded

speech, which is caused by statistical modelling. Nevertheless, HMM-based speech

synthesis is considered to be more robust than unit-selection (Black et al., 2007). This

difference between the two methods is because unit-selection produces speech arte-

facts, when occasional bad joins occur, while HMM-based speech synthesisers pro-

duce speech which sounds smoother.

The major advantage of HMM-based speech synthesisers is their higher para-

metric flexibility compared to unit-selection systems. The HMM parameters of the

synthesiser can be interpolated (Yoshimura et al., 1997) or adapted (Tamura et al.,

1998, 2001) from one speaker to another using a small amount of the target speak-
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ers speech data. HMM adaptation techniques have also been used to transform voice

characteristics, e.g. specific voice qualities and basic emotions (Yamagishi et al., 2003,

2007a; Barra-Chicote et al., 2010), in HMM-based speech synthesis. However, HMM-

based speech synthesisers typically do not model glottal source parameters, which are

strongly correlated with voice quality. In contrast, formant synthesisers often use a

glottal source model which enables the control of voice characteristics related to the

glottal source.

HMM-based speech synthesisers can be classified into two general types. Tradi-

tional systems are speaker dependent, i.e. they are built using a large speech corpus

from one speaker. The other type is called speaker independent HMM-based speech

synthesis. In this case, statistical average voice models are created from several speak-

ers’ speech data and are adapted using a small amount of speech data from the target

speaker (Yamagishi and Kobayashi, 2007).

1.1.5 Hybrid Systems

There have been several attempts to combine the advantages of rule-based or statis-

tical approaches with the naturalness obtained using unit-selection. Several hybrid

approaches using formant synthesis and data-driven methods have been proposed. For

example, Högberg (1997); Öhlin and Carlson (2004) proposed data-driven formant

synthesisers which use a unit library of formant parameters extracted from recorded

speech in order to better model detailed gestures than the original rules of the for-

mant synthesiser. These systems keep the parametric flexibility of the original rule-

based model and the possibility to include both linguistic and extralinguistic knowl-

edge sources. Another type of hybrid approach uses HMMs to calculate the costs for

unit-selection systems (Rouibia and Rosec, 2005; Ling and Wang, 2006) or as a prob-

abilistic smoother of the spectrum of the vocal tract across speech unit boundaries

(Plumpe et al., 1998).

1.2 Contributions of the Thesis

Nowadays, automatic text-to-speech synthesisers can produce speech which sounds

intelligible and natural. However, there is still a gap between synthetic and human

speech which seems hard to bridge with the formant, articulatory, and concatenative

synthesis methods. HMM-based speech synthesis is a more recent method which can
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produce speech of comparable quality to the unit-selection method and it has a great

potential of development.

Emerging applications, such as spoken dialogue systems, e-books, and computer

games, demand expressive speech and high parametric flexibility from the speech syn-

thesisers to control voice characteristics. Also, there has been an increasing interest

from manufacturers to integrate the latest speech technology in portable electronic

devices, such as PDAs and mobile phones. Unit-selection and rule-based synthesis

methods have significant limitations for these applications. On one hand, formant and

articulatory synthesisers traditionally offer parametric flexibility to control the type of

voice, but they typically produce unnatural speech quality. On the other hand, the unit-

selection systems, which provide the most natural quality, are very limited in terms

of the control of voice characteristics and the synthesis of expressive speech. Also,

these systems typically require a large inventory of speech units and high computa-

tional complexity which are inappropriate for the small memory footprint requirement

of portable devices. Meanwhile, HMM-based statistical speech synthesisers are fully

parametric and can produce high-quality speech. The main characteristics of these

systems are summarised below:

• high-quality speech and robustness to variations in speech quality.

• fully parametric.

• fully automatic.

• small footprint.

• easy to transform voice characteristics.

• new languages can be built with little modification.

• speaking styles and emotions can be synthesised using a small amount of data.

These characteristics make this technique very attractive, especially for applications

which expect variability in the type of voice and a small memory footprint.

In terms of speech quality, HMM-based speech synthesisers can produce more nat-

ural sounding speech than formant synthesisers. Also, they are typically more robust

to variations in speech quality than unit-selection systems. Whereas concatenative

synthesisers occasionally produce speech segments with very poor quality, statistical

synthesisers produce speech which sounds smooth. However, speech synthesised using
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HMMs does not sound as natural as speech obtained using unit-selection. This effect

is related to the limitations of the parametric model of speech used by HMM-based

speech synthesisers. In particular, these systems commonly use a simple impulse train

to model the excitation of voiced speech, which produces a buzzy quality.

The major advantage of the statistical method when compared with unit-selection

is that it offers the flexibility to synthesise speech with different speakers’ voices and

speaking styles, by using speech data spoken with the target voice characteristics.

However, these systems generally allow a more limited control of voice characteristics

than formant synthesisers. The main reason for this is that most statistical synthesisers

use a speech model which does not separate the different components of speech (glot-

tal source, vocal tract resonance, and radiation at the lips), unlike formant synthesisers.

As a consequence, current HMM-based speech synthesisers do not allow glottal source

parameters which are important for voice transformation to be controlled.

The objective of this thesis is to improve the excitation model in HMM-based

speech synthesis. The method is to develop a synthesiser which uses an acoustic glottal

source model, instead of the traditional impulse train. This work is based on the fol-

lowing hypothesis: A glottal source model improves the quality of the synthetic speech

when compared to the simple impulse train.

The motivations to use glottal source modelling in HMM-based speech synthesis

are:

• Reduce buzziness of synthetic speech.

• Better modelling of prosodic aspects which are related to the glottal source.

• Control over glottal source parameters to improve voice transformations.

The speech production system, which consists of exciting a vocal tract filter with

a glottal source signal, has been extensively studied in the literature. However, speech

models which use a simpler representation of the excitation, instead of the glottal

source, are often preferred in speech technology applications. The main reason for this

is that the methods to estimate the glottal source and the vocal tract filter are usually

complex and not sufficiently robust. Therefore, the problem of improving the speech

quality in HMM-based speech synthesis by using an acoustic glottal source model is

not expected to be easy to solve. The following are important factors to be considered

in this work:
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• Degradation in speech quality due to errors in the glottal and vocal tract param-

eter estimation.

• Degradation in speech quality due to statistical modelling of the glottal and vocal

tract parameters.

• Incorporation of the source-filter model into the HMM-based speech synthesiser.

The contributions of this thesis are:

Glottal Post-Filtering (GPF): transforms the Liljencrants-Fant (LF) model of the

glottal source derivative into a spectrally flat signal. This method allows speech

to be generated using the LF-model and a synthesis filter which represents the

spectral envelope. The major advantage is that it allows voice transformations by

controlling the LF-model parameters. This method is described in Section 6.3.

The results of a HMM-based speech synthesiser which uses GPF for generating

speech are presented in Section 8.4.

Glottal Spectral Separation (GSS): analysis-synthesis method to synthesise speech

using a glottal source model (e.g. the LF-model) and the vocal tract transfer

function. This method can be divided into three processes: 1) parameters of the

glottal source model are estimated from the speech signal; 2) spectral effects

of the glottal source model are removed from the speech signal; 3) vocal tract

transfer function is estimated as the spectral envelope of the signal obtained in

2). The description and results of this method are presented in Sections 6.4 and

6.6 respectively.

Robust LF-model parameter extraction: method for estimating the LF-model pa-

rameters, which uses a non-linear optimisation algorithm to fit the LF-model to

the glottal source derivative signal. The initial estimates of the iterative method

are obtained using amplitude-based techniques which were developed during

this work. They are used to estimate the parameters directly from the glottal

source derivative. The LF-model parameter estimation method is described in

Section 6.5.

HMM-based speech synthesiser using LF-model: system which models the excita-

tion of voiced sounds as a mix of the LF-model signal and white noise. This syn-

thesiser also uses the GSS method to estimate the vocal tract parameters from the
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speech signal and the LF-model parameters. The LF-model, noise, and spectral

parameters are modelled by HMMs and used by the system to generate speech.

The first version of this system is described in Chapter 7. Improvements which

were made to the system are described in Section 8.2. The evaluation of the

first and second versions of the synthesiser are presented in Sections 7.4 and 8.4

respectively.



Chapter 2

Speech Modelling

The speech waveform can be used as a speech model, such as in unit-selection speech

synthesisers (concatenate fragments of recorded speech). However, a more suitable

and convenient speech model than the recorded speech waveform is often employed in

speech applications, such as the extraction of acoustic or linguistic information from

the speech signal, transformation of acoustic properties of speech, speech coding (com-

pacted representation of speech), or speech synthesis (e.g. in formant and HMM-based

speech synthesis systems). A speech analysis method is used to convert the speech sig-

nal into a different representation, i.e. to estimate the parameters of the speech model.

This method usually decomposes the speech signal into the source and filter compo-

nents, which are considered to be independent. For example, the acoustic model of

speech production typically represents the source as the derivative of the signal pro-

duced at the glottis and the filter as the vocal tract system. The speech waveform can

be reconstructed from the speech parameters using a synthesis method. In the case of

the source/filter model, speech is generated by passing the source signal through the

synthesis filter.

The next section gives an overview of the general types of speech models. Subse-

quently, Section 2.2 describes in more detail the acoustic model of speech production,

focusing on the glottal source component. Specifically, this section reviews the general

types of glottal source models (in Section 2.2.2), the most commonly used methods to

estimate the glottal source and the vocal tract components from the speech signal (in

Section 2.2.3), and the methods to parameterise the glottal source signal (in Section

2.2.4).

13
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2.1 Parametric Models of Speech

Most parametric speech synthesisers use a source-filter model of speech. In this model,

an excitation signal passes through a synthesis filter to generate the speech signal. The

excitation is typically assumed to be aperiodic for voiceless speech and quasi-periodic

for voiced speech. There are two general types of source-filter model. One is based

on the speech production model, which represents the excitation of voiced sounds as

the glottal signal produced at the vocal folds and the synthesis filter as the transfer

function of the vocal tract system. For example, formant synthesisers typically use

this speech model, e.g. Klatt and Klatt (1987). The other type of source-filter model

consists of representing the source as a spectrally flat signal and the synthesis filter

as the spectral envelope of the speech signal. For example, state-of-the-art HMM-

based speech synthesisers typically use this type of source-filter model. Both types of

source-filter model traditionally represent the excitation of unvoiced speech as white

noise.

The next section gives a general overview of the speech production model. Then,

three parametric models of speech which are commonly used in speech synthesis are

described: the harmonic/stochastic model, the linear prediction spectrum and the cep-

strum.

2.1.1 Speech Production Model

The speech production model assumes that speech is a linear and stable system, which

consists of an excitation, a vocal tract filter and a radiation component.

The vocal tract transfer function can be represented by the z-transform (Quatieri,

2001):

V (z) = A
∏

Mi
k=1(1−akz−1)∏

Mo
k=1(1−bkz)

∏
Ci
k=1(1− ckz−1)∏

Ci
k=1(1− c∗kz−1)

, (2.1)

where (1− ckz−1) and (1− c∗kz−1) are complex conjugate poles inside the unit circle

with |ck|< 1. These complex conjugate poles model the resonant or formant structure

of the vocal tract. The zeros (1−akz−1) and (1−bkz) are due to the oral and nasal tract

constrictions. The vocal tract shape determines the acoustic realisation of the different

classes of sounds (phones /aa/,/b/,etc.).

The excitation of unvoiced sounds, E(z), can be modelled as white noise. In the

case of voiced speech, the excitation represents the glottal source signal, g(n). This ex-
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citation is modelled as an impulse train convolved with g(n). That is, E(z) = P(z)G(z),

where P(z) represents the spectrally flat impulse train. The glottal source signal is

characterised by a decaying spectrum. It is often approximated by two time-reversed

exponentially decaying sequences over one glottal cycle (Quatieri, 2001), that has z-

transform

G(z) =
1

(1−βz)2 (2.2)

For β < 1, G(z) represents two identical poles outside the unit circle. The duration of

the glottal pulse is perceptually related to the pitch, while its shape is strongly corre-

lated with voice quality.

The models in (2.1) and (2.2) assume infinite glottal impedance. All loss in the

system is assumed to occur by radiation at the lips. The radiation has a high-pass

filtering effect, which is typically modelled with a single zero, i.e.

R(z) = 1−αz−1 (2.3)

Under the assumption of vocal tract linearity and time-invariance, speech produc-

tion can be expressed as the convolution of the excitation and the vocal tract impulse

response. Then, the z-transform of the speech output can be represented as

S(z) = E(z)V (z)R(z) (2.4)

This model can be simplified by representing the excitation by a spectrally flat signal

and the synthesis filter by the spectral envelope, H(z), i.e.

S(z) = E(z)H(z) (2.5)

For voiced speech, H(z) includes the vocal tract transfer function, the radiation effect,

and aspects of the glottal source. For example, the spectral tilt (decaying spectrum

characteristic) of the glottal source is incorporated into H(z), since the excitation is

spectrally flat.

The simplified source-filter model of (2.5) is widely used in speech coding, syn-

thesis and recognition. The main reasons for the popularity of this model are that

the spectral envelope representation is typically sufficient for these applications and

it can be estimated using efficient techniques, such as linear prediction and cepstral

analysis. These two methods are described in Sections 2.1.3 and 2.1.4 respectively.

In contrast, techniques which accurately estimate the vocal tract transfer function are
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typically more complex and less robust than the spectral envelope estimation meth-

ods. The methods to analyse the glottal source and vocal tract are described later in

Section 2.2.3.

2.1.2 Harmonic/Stochastic Model

The spectral representation of the speech signal is often used in speech synthesis and

coding applications. For example, the channel vocoder developed by Dudley et al.

(1939), which is the earliest speech vocoder, uses a bank of analog bandpass filters

to represent the time-varying spectral magnitudes of the speech signal in different fre-

quency bands. Each filter has a bandwidth between 100 Hz and 300 Hz. For covering

the frequency band 0−−4 kHz, 16 to 20 filters are commonly used (Deller et al.,

1993). During synthesis, the input of the bandpass filters is obtained using pulse or

noise generators. The outputs of the bandpass filters are then summed to produce the

speech signal.

The spectral periodicity characteristic of voiced sounds can be used to model speech

more effectively than using the whole spectrum (as in the filterbank speech model of

the channel vocoder). The harmonic model takes into account this periodicity infor-

mation. It represents the speech signal s(n) as a periodic signal, s̃p(n), which is a sum

of L harmonic sinusoids:

s̃p(n) =
L−1

∑
l=0

Al cos(nlw0 +φl), (2.6)

where Al and φl are the amplitudes and phases of the harmonics, respectively. The

frequency of each harmonic is an integer multiple of the fundamental frequency w0 =

2πF0.

During analysis, the problem of estimating the set of parameters {w0,Al,φl} can

be solved by calculating the least-squares minimisation of the following squared error,

e.g. Dutoit (1997):

E(w) = |S(w)− S̃p(w)|2, (2.7)

where S(w) and S̃p(w) are the short-time Fourier transforms of s(n) and s̃p(n), re-

spectively. The error E(w) can be interpreted as a stochastic component of the signal,

which can be modelled as white Gaussian noise. In this case, a voiced/unvoiced deci-

sion can be computed from the ratio between the energies of S(w) and E(w), that is, a



Chapter 2. Speech Modelling 17

measure of the signal-to-noise ratio (SNR). For SNR values below a given threshold,

the speech frame is classified as unvoiced.

Speech can also be represented as the sum of a harmonic and stochastic compo-

nents, i.e. s(n) = s̃p(n)+ s̃r(n). The stochastic signal s̃r(n) is typically modelled using

band limited noise signals, whose energy is computed from E(w), e.g. Dutoit (1997).

In general, hybrid harmonic/stochastic (H/S) models produce more natural speech than

purely harmonic models.

In speech synthesis, H/S models have been mainly used to increase the degree

of parametric flexibility of concatenative speech synthesisers. For instance, they have

been used to allow large prosodic variations and to modify a speaker’s voice. However,

the effect of spectral variations between concatenation segments degrades speech qual-

ity. This effect can be reduced using a spectral smoothing algorithm, but the problem

of phase discontinuities in these models is more difficult to solve.

2.1.3 Linear Predictive Coding

Linear predictive coding (LPC) or linear auto-regressive (AR) modelling represents

the speech samples, s(n), as a linear combination of past samples plus some error

(Makhoul, 1975), that is,

s(n) =
p

∑
k=1

aks(n− k)+ e(n), (2.8)

where ak is the k-th order LPC coefficient, and e(n) is the LPC residual. In the fre-

quency domain, this model represents an all-pole filter applied to the residual E(z),

that is,

S(z) = E(z)
1

A(z)
, (2.9)

where

A(z) =
K

1+∑
p
k=1 akz−k , (2.10)

and K is the gain of the filter. The coefficients of A(z) can be calculated by minimising

the error between the actual speech samples and predicted ones, i.e. by minimising the

following prediction error:

e(n) = s(n)− s̃(n) = s(n)−
p

∑
k=1

aks(n− k) (2.11)
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The most commonly used methods to calculate the prediction coefficients are the auto-

correlation and the covariance methods (Deller et al., 1993). The first requires analysis

windows at least 15 ms long (typically they have a duration comparable to that of sev-

eral glottal cycles). In this interval, the losses vary as a function of the time-varying

glottal impedance and the vocal tract might also change. Both factors may cause the

source and vocal tract estimates obtained using the autocorrelation method to be less

accurate. The advantage of the covariance method is that it can estimate the filter using

a very short-time window, corresponding to the closed phase of a single pulse (phase

during which the vocal folds are closed and there is no airflow through the glottis).

LP analysis assumes that speech can be represented as an all-pole model, i.e. the

all-pole filter 1/A(z) represents the different speech components of speech production

(glottal source, vocal tract and radiation). In this model, the LPC spectrum is an ap-

proximation of the spectral envelope of the short-time signal. On the other hand, the

LP residual E(z) is an approximately flat signal. In the frequency domain, the resid-

ual can be calculated from the speech signal S(z) using the inverse filtering technique,

which can be represented using (2.9) as follows:

E(z) = S(z)A(z) (2.12)

A typical criterion to select p, the order of the LPC analysis, is to use 1 complex

pole per each kHz of the total speech bandwidth (equal to half the sample rate) to

model the resonances of the vocal tract, plus 2 to 4 poles to model the radiation and

glottal effects (Huang et al., 2001). For example, 12 to 14 poles are typically used for

the LPC analysis of speech sampled at 16 kHz (8 kHz frequency band). The higher

the p, the lower the prediction error. However, for too high p values the LPC filter fits

to the amplitude spectrum of the speech signal. As result, the glottal source and vocal

tract components are poorly separated. For example, it is desirable to separate the

periodicity of the speech signal from the LPC filter, because the periodicity is assumed

to be modelled by the residual.

The conventional LPC vocoder models the residual of voiced sounds as an impulse

train (Deller et al., 1993). Figure 2.1 shows the source-filter model of this vocoder.

During analysis, the vocoder estimates F0, and performs a voiced/unvoiced classifi-

cation. During synthesis, F0 is used to generate an impulse train, for voiced speech.

Then, this signal is filtered by the all-pole filter to generate the speech waveform. Un-

voiced speech is synthesised using white noise as the input into the all-pole filter. The

all-pole filter is usually minimum-phase (contains only poles inside the unit circle) so
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that it is stable.
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Figure 2.1: Speech synthesis using LPC.

One limitation of the all-pole model of speech is that it does not accurately model

voiced sounds which contain zeros in the speech model, such as nasals or voiced frica-

tives. Another problem of the conventional LPC vocoder is that speech synthesised

with the impulse train does not sound natural. This can be explained by the strong

harmonic structure of the impulse train, which has the effect of producing a robotic or

“buzzy” speech quality.

There are other LPC-based vocoders which use a better representation of the resid-

ual than the impulse train (Deller et al., 1993). For example, the residual excited linear

prediction (RELP) vocoder transmits a low-pass filtered version of the residual in ad-

dition to the parameters of the basic LPC vocoder. A low-pass filtered version of the

residual permits to transmit the speech parameters at a lower bit rate than using the

original residual signal. The residual is regenerated using a bandwidth regeneration

algorithm and then the resulting signal is passed through the all-pole filter to generate

the speech waveform. An alternative to the RELP vocoder is the code-excited linear

prediction (CELP) vocoder, which produces speech at a lower bit rate than RELP. In

the CELP vocoder a relatively large number of residual signals are computed from

recorded speech and stored in a codebook of zero-mean Gaussian sequences. Speech
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is synthesised by passing a residual sequence which belongs to the codebook through

a filter that is defined by the LPC coefficients. During analysis, the vocoder com-

pares the original speech with speech synthesised with the residual sequences of the

codebook, in order to find the sequence which minimises the residual error (difference

between the two signals). The index of this sequence is transmitted by the vocoder

together with the LPC coefficients and used to select the excitation from the codebook

during the synthesis part. Multipulse LPC vocoders use a short sequence of pulses

whose amplitudes and locations are optimised during speech analysis, in order to ob-

tain higher speech quality compared to the conventional LPC vocoder which uses a

sequence of simple identical pulses (impulse train). Another method for improving

the speech quality of the basic LPC synthesis method is to mix noise with the impulse

train for generating voiced speech. For example, the mixed-excitation linear prediction

(MELP) vocoder classifies wide frequency bands of a speech segment as voiced or un-

voiced. The voiced bands are modelled by the spectrum of the impulse train, whereas

unvoiced bands are modelled by the noise spectrum.

In speech coding, the LPC coefficients are often converted to equivalent representa-

tions. For example, line spectral frequency (LSF) coefficients are often obtained from

the LPC coefficients (Deller et al., 1993). LSFs have the property that their complex

conjugate zeros lie on the unit circle. The advantages are that these parameters have

better quantisation properties, result in low spectral distortion than conventional LPC

coefficients, and the LPC filter obtained using LSFs is stable. LSFs have also been

successfully used in HMM-based speech synthesis, e.g. Ling et al. (2006a), whereas

LPC parameters appear to be less suited to statistical modelling.

2.1.4 Cepstrum

The cepstrum can be described as a homomorphic transformation (Deller et al., 1993),

in which a convolution z(n) = x(n) ∗ y(n) is converted into a sum ẑ(n) = x̂(n)+ ŷ(n).

The speech signal s(n), is assumed to be the convolution of two components. One

component, the excitation signal e(n), has its energy concentrated at the high frequen-

cies of the spectrum. Conversely, the other component, which is the impulse response

of the vocal tract system h(n), has its energy concentrated at the low-frequency part

of the spectrum. The speech cepstrum, cs(n) = ce(n)+ ch(n), can be used to sepa-

rate these excitation and vocal tract components. The cepstral analysis of speech is

usually performed by calculating the short-term real cepstrum of the speech signal.
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This can be computed using the short-term discrete Fourier transform (DFT) and the

logarithm function, as shown in Figure 2.2. The analysis window, w(n−m), which

ends at time m, is typically implemented as a Hamming window, with duration of 20-

40 ms. The function of the logarithm is to decompose the magnitude of the speech

spectrum, |S(w)|, into a linear combination of the magnitudes of the excitation and

impulse response parts, |E(w)| and |H(w)| respectively. That is,

log |S(w)|= log |E(w)|+ log |H(w)| (2.13)

The real cepstrum discards phase information, which makes the analysis simpler (avoids

the process of phase unwrapping). The phase information is usually neglected in

speech processing applications because it is not considered to be important to the

perceptual speech quality. For example, the phase is not necessary to calculate the

minimum-phase impulse response of the vocal system, h(n). Nevertheless, the phase

information can be preserved using the complex spectrum of the speech signal. The

complex spectrum is calculated similarly to the real spectrum, but the logarithm is

applied to S(w), instead of computing the logarithm of |S(w)|.
The two components of the cepstrum, ce(n) and ch(n), can be separated by lifter-

ing (analogous to the filtering in the frequency domain) the speech cepstrum, cs(n).

The component ch(n) has its energy concentrated at smaller values on the time axis,

whereas ce(n) has its energy concentrated at larger values on the time axis. Next, ch(n)

and ce(n) can be obtained by using a “low-time” and “high-time” lifters respectively.

For example, ch(n) can be estimated by multiplying the cepstrum cs(n) by a low-time

lifter given by

l(n) =

{
1, 0 < n < L

0, otherwise
, (2.14)

where L is a value chosen, such that ĥ(n)≈ 0 for n > L and ĥ(n)≈ ch(n) for 0 < n < L.

Typically, l(n) is a time window of 2-3 ms.

Deller et al. (1993) describes the basic cepstral vocoder, which uses a simple model

of the excitation. In this vocoder, it is assumed that voiced speech can be generated

by exciting a slowly varying vocal system filter by a periodic signal, while unvoiced

speech is generated by exciting the filter with white noise. The vocal system response

is calculated as shown in Figure 2.2. F0 and the voiced/unvoiced classification are also

estimated during analysis. The synthesis system is shown in Figure 2.3. First, the

cepstral component ch(n) is processed in order to calculate an estimate of the filter
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impulse response, ĥ(n). Next, the speech signal is obtained as the convolution of ĥ(n)

with the excitation, which is an impulse train or noise. Speech can also be synthesised

by passing the excitation through the spectral envelope synthesis filter, Ĥ(w).

As in the case of LPC vocoders, the speech quality of the cepstral vocoders can be

improved using a better model of the excitation. For example, Deller et al. (1993) de-

scribes another cepstral vocoder, which uses an iterative analysis-by-synthesis method

to determine the optimal voiced excitation (Chung and Schafer, 1990). Speech is syn-

thesised by exciting the vocal tract impulse response, using a different excitation for

unvoiced, voiced and mixed speech.

In speech recognition, mel-frequency cepstral coefficients (MFCCs) are commonly

used to represent of the vocal system impulse response (Mermelstein, 1976). The dif-

ference of the mel-cepstrum (defined by the MFCCs) to the real cepstrum is that a

non-linear frequency scale is used. This mel-scale approximates the perceptual char-

acteristics of the human auditory system. MFCCs are also known to perform well in

HMM-based speech synthesis.

w(m−n)

DFT .log |  |
Speech

s(n)

hLow−time

Lifter
DFT log |H(w)|

^
c  (n)^

sc  (n)

Real
cepstrum

IDFT

Figure 2.2: Block diagram of the method for estimating the impulse response of the

vocal system by cepstral analysis, where w(m−n) is an analysis window.
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^
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Figure 2.3: Block diagram of a typical cepstral vocoder synthesiser.
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2.2 Glottal Source Modelling

This section initially presents a more detailed description of the speech production

model (which was introduced in Section 2.1.1), focusing on the glottal source compo-

nent of speech. In the subsequent sections, the main types of glottal source models and

typical analysis methods which are used to estimate both the glottal source parameters

and the vocal tract filter parameters will also be described.

2.2.1 Source-Filter Theory of Speech Production

The mechanical properties that influence the generation of sounds in the vocal tract

are often described in terms of elementary electrical theory (e.g. impedance per unit

area) and well known results of waves on transmission lines (Stevens, 1998; Flanagan,

1972). The next section reviews the quantitative description of the speech production

system based on this type of analysis and how it relates to the linear acoustic source-

filter model which is explored in this thesis (the model defined by the glottal source

derivative and the vocal tract filter). Section 2.2.1.2 describes the glottal source com-

ponent of speech in more detail using the electrical theory formalism. Although this

voice source representation was not used in this work, it helps to show the complex-

ity of the glottal flow and to explain its important acoustic characteristics, such as the

asymmetry of the glottal pulse. Then, Section 2.2.1.3 discusses one of the limitations

of the source-filter model which is the assumption that the source and filter compo-

nents are independent. One of the effects of neglecting the source-filter interaction is

the ripple component of the glottal source signal, which cannot usually be correctly

modelled.

2.2.1.1 Speech Production Model

The acoustic analysis of speech production describes the propagation of the sound

wave through the vocal cavities from the lungs to the radiating surface at the lips. To

simplify the analysis, the vocal cavities are divided into contiguous parts (Stevens,

1998). This model depends on the assumption that the cross-sectional area perpendic-

ular to the air stream is approximately constant and that the length l of the approx-

imating sections are kept short compared to the minimum wavelength of the sound

wave λ (8l < λ). Each section can be described in terms of the electric theory by the

impedance Z:
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Z = 1/wCs + jwLs +Rs (2.15)

The compliance Cs represents the compressibility of the air, the inertia Ls is associated

with the mass of the air which opposes acceleration, the resistance Rs represents the

energy losses that can occur in the walls due to viscous friction and heat conduction,

and w is the frequency (rad/s).

A model of the respiratory system can be divided into subglottal, glottal and supra-

glottal systems. Meanwhile, the supraglottal system can be divided into the following

general major regions: larynx tube, the vocal tract (pharynx region and the oral cavity),

the nasal tract and the radiating ports (formed by the lips and teeth, and by the nostrils).

The simplified electric circuit of this system (Flanagan, 1972) is shown in Figure 2.4.

In this model the sound pressure is analogous to the voltage and the volume velocity

to the current in an electric line. The pressure drop in the bronchial and tracheal tubes

due to the subglottal impedance Zs is small, because they are relatively large. Conse-

quently, the subglottic pressure source Ps is approximately equal to the lung pressure

Pl , which is in general nearly constant to maintain a certain vocal effort throughout the

utterance. The air flow through the glottis can make the vocal folds vibrate because

of their mass and elastic characteristics. The quasi-periodic opening and closing of

the cords varies the series impedance Zg = Rg+ jwLg. This impedance is time-varying

and non-linear. While the subglottal system can be considered to have an unconstricted

configuration, there are changes in the configurations of the supraglottal cavities (they

are equivalent to the impedance Zt in Figure 2.4). For example, the narrow passage

at the place where the tongue is humped, the variable constriction of the velum at the

nasal tract entry, and the constriction at the lips or teeth.

Zs Zt

Rg
Lg

Pl Ps Pt

Ug

Pg

U0

Figure 2.4: Equivalent circuit of the general parts of the respiratory system.
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The source of excitation of the vocal tract can be approximated by a volume ve-

locity source. According to Flanagan (1972), this approximation is valid under the

assumption that the acoustic impedance of the glottis, Zg, is usually large compared to

the impedance of the supra- and sub-glottal cavities, Zs and Zt , respectively. He indi-

cates that this assumption is true at least over most of the glottal cycle and over most

of the frequency range of interest for speech.

If the output of the vocal tract is taken as the volume velocity u0 at the lips, then the

transfer function of the vocal tract with volume excitation ug at the glottis is given by

u0/ug. This is an all-pole transfer function for non-nasalised vowels (Stevens, 1998).

Assuming time-invariant linearity of the vocal tract, the Fourier transform (FT) of the

sound pressure pr(w) at distance r from the lips is given by

Pr(w) = G(w)V (w)R(w), (2.16)

where G(w) is the FT of the source, V(w) is the transfer function of the vocal tract, and

R(w) is the radiation characteristic.

The block diagram in Figure 2.5 shows the filtering of the source by the vocal

tract. This source-filter model is equivalent to the speech production model of (2.4).

It is often convenient to refer to the time derivative of the glottal flow, u′g(t), as the

source. It has the same meaning of shifting the differentiation of the radiation function

to the source. With u′g(t) as source, the filter function is constrained to the all-pole

function of the supraglottal pathways (Fant, 1982).

Source
Vocal Tract

Filter
Radiation

Vocal Tract

Filter
Dif. Source

Ug

U’g

Speech pressure

waveform

Speech pressure

waveform

Figure 2.5: Source-filter model of speech production.

2.2.1.2 Voice Source

The glottal flow can be computed as a function of the glottal area A(t) and the pres-

sure source Ps (Flanagan, 1972). According to the circuit of Figure 2.4 and assuming
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the subglottic pressure Ps is equal to the transglottal pressure Pt (at most frequencies

the driving point impedance Zt of the vocal tract is small compared with the glottal

impedance), then the volume velocity ug(t) satisfies

Ps = ug(t)Rg(t)+
d
dt

[Lg(t)ug(t)] (2.17)

From Flanagan (1972), the inertia of the acoustic mass of the air in the glottis can be

approximated by Lg(t)= lρ/A(t), where l is the length of the glottis, ρ is the air density

and A(t) is the cross-sectional area of the adjacent tubes to the glottis airways (larynx

and pharynx). The main effect of the inertia is to cause a slower increase of the vol-

ume velocity when the area is increasing and a more rapid decrease in volume velocity

during the closing phase of the glottis. That is, the inertia contributes to the skewness

of the volume velocity waveform and causes a steeper slope during the glottal closing

phase (Stevens, 1998). There are other factors which might introduce additional skew-

ness in the waveform of the glottal air flow, such as the effect of a considerably narrow

vocal tract constriction. Figure 5.1 shows an example of the glottal flow waveform

calculated using an acoustic glottal source model, the Liljencrants-Fant (LF) model.

The skewness characteristic of the glottal flow can be observed in this figure.

The glottal resistance Rg(t) of (2.17) can be approximated by a linear combination

of viscous and dynamic terms, Rv(t) and Rd(t), respectively. That is, Rg(t) is given by

(Flanagan, 1972):

Rg(t) = Rv(t)+ kRd(t)'
12dµ
A3(t)

+0.875
ρug(t)
2A2(t)

, (2.18)

where µ is the coefficient of viscosity, d is the thickness of the glottis, and k is a real

constant. The numerical approximation of Rg(t) in (2.18) was obtained from steady

flow measurements on models of the human larynx (Flanagan, 1972). The approxima-

tion holds within 10% for 0.1 6 w 6 0.2 (mm), Ps 6 64 cm H2O at small w and for

ug 6 2000 cc\ sec. Over most of the open cycle of the vocal cords, the glottal resis-

tance is determined by the kinetic part, Rd(t). However, if the area and flow velocity

are sufficiently small, the viscous term Rv(t) predominates.

Equations (2.18) and (2.17) show that the calculation of the glottal source signal

is complex. For example, (2.18) is a non-linear, first-order equation with non-constant

coefficients. For an arbitrary glottal area A(t), this equation is not easily integrated.

Nevertheless, Flanagan (1972) calculated a rough estimate of the glottal volume veloc-

ity from the resistance expression (2.18) and by neglecting the effects of inertia Lg(t)
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in (2.17). For these calculations, the glottal area A(t) was measured from high speed

motion pictures of the glottis and the subglottic pressure Ps was estimated from the

sound intensity and direct tracheal pressure measurements.

The viscous term in Rg has the effect of sharpening the leading and trailing edges

of the volume velocity wave. This is equivalent to increasing the amplitude of the

high-frequency components in the glottal spectrum. Meanwhile, the asymmetry of the

glottal volume flow produces an irregular spectrum. That is, the spectral minima are

neither equally spaced nor as pronounced as for the case of a symmetrical glottal signal

(Flanagan, 1972). The correlation between properties of the glottal source waveform

and its spectrum will be further discussed in Section 5.3.1 for the case of the LF-model

of the glottal source derivative.

2.2.1.3 Source-Filter Interaction

The volume velocity of airflow ug(t) is related to the subglottic pressure Ps through the

non-linear equation (2.17). This equation assumes the transglottal pressure is constant

and neglects the pressure drops at the sub- and supraglottal loads. However, the inter-

action between source and filter can cause significant changes in the volume velocity

air flow, e.g. Ananthapadmanabha and Fant (1982). In general, only the effects of the

first formant of the vocal tract and subglottal system on ug(t) are significant, because

the inductance associated with higher formants is small.

Zt

Usc Zg

Zs
Ug U0

Figure 2.6: Norton’s equivalent circuit of the respiratory system shown in Figure 2.4.

In the previous section, the volume velocity ug(t) represented the true glottal flow

in the circuit of Figure 2.4. The voice source can also be modelled by using its Norton’s

equivalent circuit (Flanagan, 1972; Ananthapadmanabha and Fant, 1982), which is

shown in Figure 2.6. In this case, the voice source is represented by the short-circuit

source (Fant, 1981). The current source usc is calculated by short-circuiting the input
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load. From (2.17), it is given by

usc(t) =
Pl

Zg(t)
(2.19)

The true glottal flow can be related to the short-circuit flow by the following equation

(Ananthapadmanabha and Fant, 1982):

Ug(s) =Usc(s)
[

s2 +2α0s+ω2
0

s2 +2α1s+ω2
1

]
, (2.20)

where α0 and ω0 are variables of a complex conjugate zero which depend on the pa-

rameters of the load, while α1 and ω1 are the variables of the complex conjugate pole

which depend both on the load and the Norton’s source impedance. The above equa-

tion was obtained by assuming the glottal impedance to be equal to the dynamic glottal

resistance and also stationary for calculating the Laplace transform.

The complex conjugate pole pair in (2.20) is responsible for a ripple component

of the source (Ananthapadmanabha and Fant, 1982). In the time domain, this can be

interpreted as the source of the transient response of the vocal tract load, where the

transients are excited at the points of discontinuity or epochs in usc. In the frequency

domain, Ananthapadmanabha and Fant (1982) indicate that ripple is equivalent to a

time varying bandwidth and resonant frequency modulation. That is, the spectrum of

the ripple component is a bandpass type signal with a peak close to the first formant

frequency F1. For high F1 vowels the maximum glottal bandwidth component could

be large, causing the “truncation” of the F1 response.

The use of the short-circuit source usc(t) instead of the true glottal flow ug(t) has

the advantage of being determined independently of the articulation, avoiding the lin-

ear source-filter dependency. Thus, usc(t) can be easily modelled from a knowledge

of glottal area function and lung pressure (Ananthapadmanabha and Fant, 1982), as

it does not contain superimposed ripple components. However, the vocal tract filter

function becomes very complex because it is time varying and non-linear as a conse-

quence of the glottal impedance. Also, separate transfer functions have to be specified

for open and closed phases of the glottal cycle. A practical problem is that this vocal

tract filter is difficult to estimate from recordings of real speech using techniques such

as inverse filtering. Alternatively, if the source function is defined by ug(t) the filter

transfer function is simpler and constrained to the all-pole filter for non-nasal vowels.

The use of the true glottal flow also has the advantages that it can be studied experi-

mentally using inverse filtering and requires the specification of only the closed phase
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transfer function. For example, the coefficients of the all-pole filter can be calculated

efficiently using LPC analysis. However, the source ug(t) depends on the particular

vocal tract configuration, which will introduce ripple components whenever the glottis

is open. In this case, modelling the glottal flow signal is more difficult because the true

glottal source signal is more complex, as shown in Section 2.2.1.2, and the superim-

posed ripple makes it more difficult to accurately estimate the glottal flow parameters.

2.2.2 Glottal Source Models

2.2.2.1 Physical Models

Most aerodynamic-mechanical vocal fold models are inspired by the two-mass model

of Ishizaka and Flanagan (1972). This model approximates each vocal fold by a self-

oscillating system characterised by a lower mass, an upper mass, a mechanical com-

pliance for each mass and a coupling compliance. The cycle of vibration of the vocal

folds is described by aerodynamic equations of motion of the mass-spring-damper sys-

tem in terms of the glottal rest area, sub-glottal pressure, cord-tension parameters and

the vocal tract shape. Moreover, the glottal excitation of this model is computed by

incorporating source-tract interaction.

Typically, physical models can simulate very well a large variety of shapes of the

glottal flow. They can also produce several natural effects related to the vocal tract

interaction, such as oscillatory ripple. For these reasons, physical models are typically

appropriate to study the mechanisms responsible for the behavior of the source and to

be integrated into a full articulatory model. However, the price paid for the high flexi-

bility and detailed description of the source is the high complexity of the models, such

as the number of parameters involved. For example, nineteen parameters have to be

estimated in the two mass model (Ishizaka and Flanagan, 1972). Physical models are

often difficult to control and typically require manual tuning of the parameters. Also,

the relationship between acoustic and physical parameters is not well known, which

brings limitations to the use of a physical model to generate different voice qualities.

Nevertheless, there have been studies which contributed to a better understanding of

the variation of the acoustic parameters with those of a production model, e.g. Scia-

marella and d’Alessandro (2002); Hirtum et al. (2003).

Improvements to the conventional two-mass model of Ishizaka and Flanagan (1972)

have been proposed in literature, such as the three-mass model of Story (2003) and the

adapted two-mass model of Pelorson et al. (1994). These models generally give a
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more detailed description of the glottal system, but they result in increased complexity

and number of parameters. On the other hand, simpler physical models than the con-

ventional two-mass model, such as the one-mass model proposed by Avanzini et al.

(2001), require fewer parameters and allow better controllability, but are typically less

accurate.

2.2.2.2 Glottal Area Models

In the two-mass model, the vocal folds are observed from above the glottis. Glottal

area models are characterised by an additional vertical cross-sectional description of

the movement of the vocal folds, which permits a more realistic description of the folds

contact.

The glottal area model of Titze (1984) is a good example of this type of model. It

uses a kinetic description of the air and the vocal fold tissue. Titze (1984) derived a

function for the tissue displacement from the glottal midline in terms of three config-

uration parameters which have physiological significance (abduction quotient, shape

quotient, and phase quotient), the fundamental frequency of vibration, and three other

parameters related to the geometry of the glottis and the vocal folds. The displace-

ment function is used to determine the glottal area, the vocal fold contact area and the

glottal volume velocity. For the glottal airflow estimation a first-order non-linear in-

teraction between source and vocal tract is assumed and two additional parameters are

used. They are the lung pressure and the effective vocal tract area that combines the

subglottal and supraglottal areas.

An advantage of the typical glottal area models is that the model parametrisation

of the glottal area and vocal fold contact area can be done from electroglottography

(EGG) and photoglottography (PGG) measurements, respectively. When compared

with physical models, the typical glottal area models have the disadvantages that they

do not explore the self-oscillatory nature of vocal fold vibration and their description

of the vocal fold movement is less detailed.

2.2.2.3 Acoustic Time-domain Models

A typical way of describing the source signal is in terms of a small set of parameters

which are often coefficients of mathematical functions. Such models stylise the glottal

pulse either in terms of the glottal flow signal or in terms of the glottal flow derivative.

Models of the glottal flow, ug(t), are often based on the analysis of the integrated
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inverse filtered sound pressure signal or the inverse filtered volume velocity waveform

at the mouth, e.g. Rothenberg et al. (1975). Rosenberg (1971) studied several pulse

shape models with adjustable pulse amplitude, width, and skew. One of them, known

as the “Rosenberg model”, was composed of two trigonometric segments to model the

glottal opening and closing phases, respectively, which had a slope discontinuity at

glottal closure. Hedelin (1984) proposed a LPC vocoder which used a similar model.

Fant (1979) also used a model described by cosine functions in order to control the

pulse shape of the glottal source, by varying the amplitude of the cosine segment over

the closing phase.

Models of the glottal flow derivative, u′g, are used more often than models of the

glottal flow, ug. A great advantage of the first type of models is that they can be ob-

tained directly from the inverse filtered speech signal. The glottal flow derivative also

has the advantage of modelling the characteristics of the airflow around the significant

instants of glottal onset and glottal closure more accurately.

The glottal flow derivative can be represented by a unique function, such as the

exponential decreasing sine of the Liljencrants model (L-model), which is described

by Fant et al. (1985). This model has an abrupt flow termination and does not represent

the progressing closure after this flow discontinuity, which is an important aspect of

the flow derivative shape. In order to overcome this limitation, u′g is often described

by a piecewise linear representation of u′g. For example, the A-model proposed by

Ananthapadmanabha (1984) uses two independent cosine functions, which model the

rise and fall of u′g by a smooth curve respectively. This model has the advantage that

it allows for a progressive closure after the maximum closing discontinuity, by using

an additional parabolic function. Fant et al. (1985) proposed the LF-model which is

an extension of the L-model. The difference between the two is that the LF-model has

an additional exponential function to model the final part after the flow discontinuity.

Fant et al. (1985) argued that the LF-model provides a better overall fit to the flow

waveforms obtained by inverse filtering compared with the A-model. The LF-model

is very popular as it gives a good approximation of u′g, can represent a wide variety of

glottal flow shapes, and is simple (defined by six independent parameters). This model

is described in detail in Chapter 5. Other acoustic models have also been developed

from the point of view of being computationally more efficient or to overcome some

of the limitations of the LF-model, e.g. Qi and Bi (1994); Veldhuis (1998); Schoentgen

(1993).

Polynomial functions are also often used to model the glottal source. Fujisaki and
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Ljungqvist (1986) proposed a source derivative model composed of a set of polyno-

mial segments, in which the level of detail was controlled by varying the number of

parameters from three to six. Other polynomial models can be found in literature with

varying complexity (number of parameters typically vary from four to nine), e.g. Price

(1989); Funaki and Mitome (1990); Lobo (2001).

Milenkovic (1993) proposed a glottal source representation which is more general

than a polynomial model. It consists of representing a glottal pulse waveform as the

weighted sum of basis functions pk(t), as follows:

g(t) =
m

∑
k=1

wk pk(t), 0 < t < T, (2.21)

where wk are the weighting coefficients of the basis functions, which control the pulse

shape, and T is the pulse length. Milenkovic (1993) used four polynomial basic func-

tions (m = 4) of order n = 4. The coefficients of the polynomials were calculated using

a set of assumptions about the glottal pulse shape. Other papers have also proposed

source models which use polynomials as basis functions, such as Thomson (1992);

Kaburagi and Kawai (2003); Schnell (2006).

Another way of modelling the voice source is to use wave shape functions. A

wave shape function transforms a sinusoid into any desired waveform. For example,

Schoentgen (2003) represents the glottal signal as the combination of two wave shape

polynomial functions. In this model, the source is represented by a sum of power series

of sines and cosines.

2.2.2.4 Acoustic Frequency-domain Models

Voice source modelling in the frequency domain allows those spectral characteristics

of the source with perceptual significance to be modelled, which simple time-domain

models cannot represent. For example, the spectral tilt, amplitude of the first few

harmonics and bandwidth of the first formant are important spectral parameters of the

source, which can be modelled in the frequency domain. A general disadvantage of

these models is that the details of the pulse shape cannot be described as well as in the

time domain, especially around the glottal closure.

A typical method of modelling the voice source spectrum consists of representing it

by an impulse response. This is the case of the model proposed by Doval et al. (2003),

which represents the glottal flow signal as the impulse response of a causal-anticausal

linear filter. The filter is an all-pole that has two anticausal poles to represent the
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“glottal formant” and one causal pole for the spectral tilt filter. The “glottal formant”

represents the maximum peak in the spectrum located at lower frequencies, while the

spectral tilt is equivalent to a first order low-pass filter with a relatively high cut-off

frequency and slope -6 dB/oct. Instead of an all-pole filter, Hong et al. (1994) models

the voice source as the output of an all-zero filter. This filter is driven by an excitation

signal that is the sum of an impulse train with noise.

2.2.3 Methods to Estimate the Source and the Vocal Tract

The parameterisation of the glottal source is usually performed using an estimate of

the glottal source signal. Several methods have been proposed for the estimation of the

glottal source and vocal tract filter from the speech signal. However, this problem is

not easy to solve, because it is difficult to effectively separate the source from the vocal

tract. The glottal parameters can also be measured from other signals obtained during

the speech production process, like the EGG signal. In this thesis, the glottal source

derivative is estimated from the speech signal in order to estimate the parameters of

an acoustic glottal source model. The following sections give an overview of the main

methods for separation and estimation of the glottal source signal and the vocal tract

filter, from the speech signal.

2.2.3.1 Inverse Filtering Using Pre-emphasis

An estimate of the voice source signal can be obtained using inverse filtering. This

technique consists of applying a filter to the speech signal, S(z), with a transfer func-

tion which corresponds to the inverse of the vocal tract system, V (z). This technique

requires the calculation of the vocal tract. A simple method to estimate V (z) is to per-

form LPC analysis on the speech signal, as described in Section 2.1.3. The estimated

LPC parameters are used for inverse filtering the speech signal in order to obtain the

residual, i.e. E(z) = S(z)/V (z), where V (z) = 1/A(z) is an all-pole model of speech.

However, this method does not accurately separate the source from the vocal tract, be-

cause the all-pole filter models the spectral envelope of the speech signal instead of the

true vocal tract. The spectral envelope incorporates the vocal tract component, the radi-

ation effect and glottal source characteristics, such as the spectral tilt. As a result, the

residual is approximately a spectrally flat signal, instead of having the characteristic

decaying spectrum of the voice source.

Pre-emphasis of the speech signal prior to the LPC analysis is a technique often
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used to obtain a better estimate of the vocal tract transfer function. This method con-

sists of passing the speech signal through a pre-emphasis filter, which increases the

relative energy of the speech spectrum at higher frequencies. Typically, the filter has

the following form:

M(z) = 1−αz−1, (2.22)

where α is set close to one (the typical values range from 0.96 to 0.99) for voiced

sounds and approximately equal to zero for unvoiced speech (not emphasised). The

pre-emphasis filter is similar to the filter used to model the radiation effect (a zero

near z = 1) of the speech production system which is described in Section 2.1.1. In

the all-pole model of speech, the glottal source component is usually represented as

a minimum-phase glottal filter with two real poles near z = 1 (Deller et al., 1993).

Although this representation of the source is compatible with the all-pole model of

speech, it does not model the maximum-phase component of the glottal source which

has the effect of producing an asymmetric pulse shape. In this case, the zero of the lip

radiation is assumed to cancel the spectral effect of one of the glottal poles. By using

pre-emphasis, the effect of the second glottal pole is also cancelled. For this reason,

LPC spectrum calculated using pre-emphasis approximates better the vocal tract. That

is, the glottal source effects are better removed from the LPC spectrum.

The residual obtained from pre-emphasis LPC analysis can be represented by:

E(z) = S(z)A(z)/M(z) (2.23)

This residual has a decaying spectrum due to the effect of 1/M(z). As result, E(z)

approximates better the glottal source signal than the conventional LPC residual, which

is spectrally flat. However, the attenuation due to 1/M(z) is not a correct model of the

spectral tilt. For example, the attenuation in the spectrum of E(z) is always the same,

whereas the tilt of the source varies.

Inverse filtering can also be performed using a different filter than the all-pole filter

calculated through LPC analysis. For example, Alku and Vilkman (1994) uses the

discrete all-pole (DAP) modelling (El-Jaroudi and Makhoul, 1991) to estimate the

vocal tract transfer function by first eliminating the effect of the voice source to the

speech spectrum with the help of a filter library. The DAP-technique gives a better

estimate of the spectral envelope that is less biased towards harmonic frequencies than

the conventional LPC-analysis.
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2.2.3.2 Closed-phase Inverse Filtering

When the glottis is closed, the speech waveform is only a function of the vocal tract.

Therefore, the vocal tract filter can be exactly estimated by performing the LPC analy-

sis on the closed phased, e.g. by using the covariance method, and inverse filtering the

speech signal. This approach, known as closed-phase inverse filtering (Wong et al.,

1979), is often used to calculate the glottal flow waveform. The main difficulties with

this technique are to estimate the closed phase (instants of glottal closure and opening)

and the effects of the source-tract interaction when there is airflow through the glottis

during the closed phase (the glottis does not close completely). This latter effect is

more common in higher pitched voices (females, children) and non-modal voice qual-

ities such as breathy and whispery voices. The parameterisation of the glottal source

may also be difficult in closed-phase analysis of high fundamental frequency speech

because the number of speech samples is small.

In traditional LP inverse filtering and closed-phase inverse filtering the vocal tract

filter is assumed to be time-invariant and the source is considered to be the true glottal

flow (derivative) signal, as explained in Section 2.2.1. In this case, the source contains

the effects of the vocal tract interaction, specifically the ripple. This random com-

ponent makes more difficult to fit a source model to the inverse filtered signal when

estimating the model parameters (Milenkovic, 1986). Plumpe et al. (1999) proposed

a model-based method for estimation of the glottal source which takes into account

certain source characteristics such as ripple or non-typical glottal waveform shapes

(which influence the inverse filtering results). They estimate the glottal flow derivative

using closed-phase inverse filtering and use the LF-model to capture its coarse struc-

ture. The fine structure of the waveform is obtained by subtracting the LF-model signal

from the inverse filtered signal.

2.2.3.3 Iterative Inverse Filtering

In the time domain, the influence of the source on the vocal tract estimation can be

avoided by performing the analysis on the closed-phase, such as in the closed-phase

inverse filtering technique. The source can also be separated from the vocal tract using

iterative methods, in the frequency domain.

In the iterative adaptive inverse filtering (IAIF) method (Alku et al., 1991), the

glottal source and the vocal tract are estimated iteratively using the inverse filtering

technique. The glottal flow is first modelled as a low-order all-pole signal (2 poles).



Chapter 2. Speech Modelling 36

This model is estimated by LPC analysis and its spectral effects are removed from the

speech signal. Then, the resulting signal is used to obtain the initial estimate of the

vocal tract using linear prediction. The glottal source waveform is also estimated by

inverse filtering the speech signal using the estimated all-pole model. Next, a second

estimate of the vocal tract and glottal source is performed similarly using a higher

order parametric model of the glottal flow. The IAIF method is described in more

detail in Section 4.5.2.2, given that it was adopted in this thesis. Unlike the closed-

phase inverse filtering method, the IAIF method performs the analysis on the whole

pitch period. Thus, due to source-filter interaction, the linear prediction will contain

slight formant frequency and bandwidth errors which results in formant ripple in the

estimated excitation.

Another iterative approach is to use a glottal source model to first eliminate the

source effect on the input speech, then a pitch-synchronous analysis can be performed

over the whole pitch period. In general, this method needs an adequate initialisation

of source parameters and an iterative adaptive algorithm to optimise the parameters of

the source model and the vocal tract filter simultaneously. For example, Fröhlich et al.

(2001) uses the LF-model to represent the glottal source derivative and the DAP algo-

rithm for inverse filtering. A similar method was used by Alku and Vilkman (1994),

but using LP analysis and a low-order finite impulse response (FIR) filter to model the

glottal source.

2.2.3.4 Glottal Inverse Filtering

The glottal source can be explicitly represented using the autoregressive with exoge-

nous input (ARX) model of speech production as follows:

s(n) =−
p

∑
k=1

aks(n− k)+g(n)+ e(n), (2.24)

where s(n) is the speech signal, g(n) is the glottal source derivative (glottal source

combined with the radiation effect), ak are pth-order time-invariant coefficients of the

all-pole filter, and e(n) is the prediction error. Since g(n) is not known (it is the exoge-

nous input), it is usually described using a glottal source model. The glottal and vocal

tract parameters can be calculated simultaneously using an optimisation algorithm to

minimise an error measure. This error is often equal to the predicted mean-square error

(MSE) of one pitch period, i.e. ε = ∑
p
m=1 e2(m). Several methods using the ARX pro-

cess combined with a glottal source model have been proposed to estimate the source
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and the vocal tract, such as the glottal AR (GAR) of Fujisaki and Ljungqvist (1986),

the glottal LPC of Hedelin (1984) and the AR-model proposed by Isaksson and Mill-

nert (1989). The method proposed by Fröhlich et al. (2001) is similar to glottal inverse

filtering using the ARX model. However, it is based on the DAP technique for inverse

filtering, which was modified to include a model of the glottal flow as integral part.

The source and the vocal tract filter can also be estimated using a pole-zero repre-

sentation of the speech signal, instead of the all-pole model used by conventional in-

verse filtering. The following autoregressive moving average (ARMA) process models

speech with both poles and zeros:

s(n) =−
p

∑
k=1

aks(n− k)+
q

∑
j=1

b jg(n− j)+g(n)+ e(n), (2.25)

where b j are qth-order coefficients (MA coefficients). In the frequency domain, this

model can be represented by

S(z) =
B(z)
A(z)

G(z)+
E(z)
A(z)

, (2.26)

where S(z), G(z) and E(z) are the z-transform of s(n), g(n) and e(n), respectively.

The vocal tract transfer function, H(z) = B(z)/A(z) is equivalent to an infinite impulse

response (IIR) filter. By setting G(z) = 0, (2.26) is equivalent to the LPC model of

(2.9) and by setting B(z) = 1 it corresponds to the ARX model of (2.24). The ARMA

model allows a better representation of speech than AR models, especially for nasals,

fricatives and stop consonants. The main disadvantage is the increased computational

complexity to estimate the parameters of the pole-zero model. Another difficulty is

to determine which poles and zeros model the glottal source excitation. However,

the ARMA model can be combined with a glottal source model to estimate the glot-

tal source and vocal tract filter, e.g. Fujisaki and Ljungqvist (1987). Krishnamurthy

(1992) also uses a pole-zero model for the vocal tract but he uses different transfer

functions during the closed phase and the open phase, to avoid the ripple effect. For

representing the glottal source derivative, he uses the LF-model.

Time-varying ARX and ARMA models have also been used to estimate the pa-

rameters of a glottal source model and the vocal tract jointly. In this case, the AR

and MA time-varying coefficients are represented as a j(n) and b j(n), respectively.

These extended models are able to better represent the time-varying characteristic of

the vocal tract and the source-tract interaction. In this case, the resulting glottal source

signal is not expected to have ripple effects. For example, Ding et al. (1995) used
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the Rosenberg-Klatt (RK) model to represent the glottal source derivative and a time-

varying AR model. The source and vocal tract parameters are estimated simultane-

ously using the Kalman filtering algorithm. Fu and Murphy (2006) also used a method

based on the ARMA model and Kalman filtering for the estimation of the glottal and

vocal tract parameters, but they use the LF-model to represent the glottal source deriva-

tive.

The Glottal-ARMAX model used by Funaki et al. (1999) is an extension of the time-

varying Glottal-ARMA model, which also models white Gaussian inputs. This model

can be represented by:

S(z) =
B(z)
A(z)

U(z)+
B(z)
A(z)

G(z)+E(z), (2.27)

where U(z) is an unknown white Gaussian input. Funaki et al. (1999) adopted the RK-

model to represent the glottal source excitation G(z) and used an extended Kalman

filter to estimate the glottal source, the white noise and the vocal tract parameters

jointly.

Inverse filtering using Glottal-AR and Glottal-ARMA models can give more ac-

curate estimates of the vocal tract and glottal source, than inverse filtering using AR-

based models. The main disadvantages of using a more complete model of speech

production are the increased complexity and convergence problems of the iterative

optimisation algorithms. Also, the performance of the methods usually depends on a

good estimation of the number of poles and zeros, which is a difficult problem to solve.

2.2.3.5 Causal and Anticausal Component Separation

The glottal source signal has characteristics of anticausality, as explained by Doval

et al. (2003). They indicated that if this signal is extended “to the right (towards pos-

itive times) as if it was causal, this will result in an indefinitely increasing (eventually

oscillating) waveform”. On the other hand, when the glottal flow signal is extended

“to the left (towards negative times) as if it was anticausal, then this will result in a de-

creasing (eventually oscillating) waveform”. According to them, the skewness of the

glottal pulse towards the right part is also a characteristic of anticausality. Based on

the assumption that the glottal source is a mixed phase signal, Doval et al. (2003) pro-

posed a causal-anticausal linear model (CALM) of the voice source. In this model, the

minimum- and maximum-phase components of the glottal flow pulse are described as

an anticausal and causal linear filter, respectively. The spectral effect of the minimum-
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phase characteristic is the spectral tilt at higher frequencies, while the maximum-phase

effect is mainly related to a peak in amplitude spectrum at lower frequencies (“glottal

formant”). In this case, the source-filter model of speech can be divided into the im-

pulse train excitation, the causal-anticausal linear component of the glottal source and

the minimum-phase transfer function of the vocal tract.

The source and filter components can also be described as the anticausal and causal

components of speech respectively. In this case, the minimum-phase part of the glottal

source is combined with the minimum-phase transfer function of the vocal tract. The

advantage of this model is that there are analysis methods that can effectively separate

the causal and anticausal components of the speech signal in the frequency domain.

Bozkurt (2005) proposed to separate the causal and anticausal components of speech

using the zeros of the z-transform (ZZT) signal representation. The ZZT is an all-zero

representation of the z-transform of the speech signal x(n), which is defined as the set

of roots, Zm, of the z-transform polynomial X(z), as follows:

X(z) =
N−1

∑
n=0

x(n)z−n = x(0)z−N+1
N−1

∏
m=1

(z−Zm), (2.28)

where N is the length of the times series. The ZZT-decomposition method to separate

the anticausal and causal components consists of splitting the roots of X(z) into two

subsets, ZAC and ZC. That is,

X(z) = x(0)z−N+1
M0

∏
k=1

(z−ZAC,k)
Mi

∏
k=1

(z−ZC,k) (2.29)

The first group of roots, ZAC, is determined as the roots which have modulus greater

than one (lie outside the unit circle) and correspond to the anticausal component. Con-

versely, the second group, ZC, corresponds to the roots which have modulus less than

one (lie inside the unit circle) and correspond to the causal component. Bozkurt (2005)

used a Blackman window with a size of two pitch periods and centered at the glottal

closing instant (GCI) to obtain the short-time signals. The roots of a high order polyno-

mial were then calculated and separated. The glottal source and the vocal tract transfer

function (combined with the spectral tilt of the source) can be obtained from the ZAC

and ZC by computing the DFT, respectively. According to Bozkurt (2005), the GCI

detection is required to obtain separate patterns of the minimum and maximum-phase

contributions. The decomposition algorithm also uses a voiced/unvoiced classification,

as the analysis can only be performed for voiced frames. The main limitations of this

source-tract estimation method is the computational complexity to compute the roots
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of the high degree polynomial and the incomplete separation of the source component

from the vocal tract, i.e. the minimum-phase contribution of the voice source (related

to the spectral tilt) is not separated.

Drugman et al. (2009a) showed that the minimum- and maximum-phase compo-

nents of the speech signal x(n) can also be effectively separated using the complex

cepstrum x̂(n). This method is based on the characteristic of x̂(n) that is either positive

or negative, depending on whether x(n) is causal or anticausal respectively. Then, the

causal and anticausal components of x(n) can be estimated as the positive and negative

parts of x̂(n). The following relationship between x̂(n) and the ZZT of x(n) (Steiglitz

and Dickinson, 1977; Drugman et al., 2009a) shows that the source-tract decomposi-

tion is similar using the cepstrum and ZZT representations:

x̂(n) =

{
∑

M0
k=1

(ZAC,k)
n

n , n < 0

∑
Mi
k=1

(ZC,k)
n

n , n > 0
(2.30)

Drugman et al. (2009a) compared the cepstrum decomposition method with the ZZT

decomposition method and the results showed that they produced similar estimates of

the glottal source and the vocal tract transfer function. The cepstrum decomposition

method has the advantage that it is computationally more efficient, but it requires a

robust phase unwrapping algorithm.

2.2.4 Parameterisation of the Glottal Source

Glottal source parameters can be estimated directly from the glottal waveform, e.g.

Gauffin and Sundberg (1989); Alku et al. (2002). Usually they are calculated from

measurements of the glottal signal like zero crossings, minima, maxima, amplitudes,

etc. These methods are typically simple but they have some disadvantages. One is

that the integer values of the estimated sample points or amplitudes of the samples

do not always coincide with the values of the time and amplitude parameters (may be

non-integers), respectively. Consequently, the intrinsic errors can be large. The distur-

bance present in the estimated flow signals, e.g. aspiration noise and formant ripple,

can also influence the position and amplitude of the parameters and contributes to the

total error. For example, methods based on empirical derived amplitude thresholds or

determination of zero crossings, e.g. Arroabarren and Carlosena (2003), usually are

not robust to noise.

Another approach consists of fitting a voice source model to the glottal source

signal. In general, fitting methods use a glottal source model, unlike direct estimation
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methods which may or may not use a voice source model. A major advantage of using a

source model is that the estimated source parameters can be used for speech synthesis.

The fitting method is often performed in the time domain, e.g. Ananthapadmanabha

(1984); Strik and Boves (1994). However, there are also methods which optimise the

parameters in the frequency domain, e.g. Oliveira (1993); Alku and Vilkman (1996);

Kane et al. (2010); Ó Cinnéide et al. (2010), or both in the time and frequency domain,

e.g. Fant (1993); Nı́ Chasaide and Gobl (1993).

The fitting procedure tries to minimise the error between the samples of the fitted

signal and the samples of the glottal source signal. A simple root-mean-square error

can be used, or more sophisticated error functions may be needed to emphasise rel-

evant aspects (e.g. the slope of the spectrum). For the fitting procedure a non-linear

optimisation technique is usually employed. Also, an initial estimate of the parameters

is necessary, which is often obtained using direct estimation methods.

Fitting a glottal source model to the data has many advantages compared with direct

estimation techniques (Strik, 1998). For example, the use of a glottal source model per-

mits to determine the optimal model fit for the whole period, which makes the method

robust for disturbances present in the glottal signals (e.g. ripple). In contrast, direct

methods try to locate events in the glottal source signal, such as maximal amplitude or

zero crossing, and disturbances may lead to significant errors in the estimated param-

eters. Also, fitting methods make it possible to estimate parameters which are difficult

to estimate from direct measurements, such as the spectral tilt. Another advantage of

fitting methods is that they can estimate an exact parameter value because they fit a

continuous curve of the source model to the glottal source signal, whereas a parameter

value estimated by direct methods corresponds to a sample point of the glottal source

signal (the time-resolution depends on the sampling frequency). However, the major

problem of model matching methods is to define the trade-off between the accuracy

of the temporal and the spectral match. Another important problem is that a glottal

source model cannot describe all the observed glottal flow signals. This problem may

be overcome by using a more detailed source model.
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HMM-based Speech Synthesis

3.1 Introduction

HMMs have been successfully used in automatic speech recognition (ASR) from the

mid-1970s, e.g. Baker (1975), but recently they have been used for speech synthesis

too. At first, HMMs were used to automatically estimate synthesis parameters for the

selection of sub-word units in a concatenation speech synthesiser, e.g. Donovan and

Woodland (1995). This type of hybrid synthesiser was often called trainable speech

synthesiser, because speech data was used to train a set of decision-tree state-clustered

HMMs. For example, Donovan and Woodland (1995) aligned the training data to the

state-clustered HMMs and used the HMM state segmentation to define the speech units

for unit selection. Moreover, Tokuda et al. (1995a) proposed a fully automatic and

parametric speech synthesiser using HMMs. Both HMM-based speech synthesisers

and hybrid systems (which combine HMMs with the concatenation of recorded units)

have been increasing in popularity in the recent years.

Although the same underlying HMM technology has been used for speech syn-

thesis and ASR, there are differences between the two applications (Zen et al., 2007a,

2009; Ostendorf and Bulyko, 2002; Dines et al., 2009). HMM-based speech recog-

nition and synthesis systems share the type of parameters of the probabilistic models

and use similar methods to learn the probability distribution. More specifically, they

train the HMMs by optimising the HMM probability distribution given the sequence

of speech features vectors and the sequence of sub-word units, e.g. phones. However,

text-to-speech using the trained HMMs can be viewed as the inverse problem of speech

recognition. ASR is related to the estimation of a word sequence from the input acous-

tic features using the HMMs. In contrast, speech synthesis relates to the estimation of

42
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speech parameter sequences from input text using the HMMs.

Statistical models for ASR aim to normalise away speech parameter variations, to

improve the recognition accuracy. For example, aspects of speech related to prosodic

and noise variations are typically avoided, because they are not important to the word

and sub-word units classification and they might degrade the performance of the speech

recogniser. Conversely, statistical speech synthesis tries to preserve those aspects of

speech variation which contribute to speech naturalness. For example, the F0 parameter

is used by HMM-based speech synthesisers to reproduce prosodic aspects of speech,

whereas this parameter is not typically used in speech recognition. In general, the

contextual factors used to model short-term dependencies between the phone units

represented by the HMMs are also more detailed in speech synthesis than recognition.

This is related to the fact that contextual dependencies have an important effect on

synthetic speech quality.

The duration model of the conventional HMM, which is used for speech recogni-

tion, is also not adequate for synthesis because it does not capture the temporal struc-

ture of speech correctly. Therefore, improved duration models are typically used in

HMM-based speech synthesis.

This chapter first introduces the general definitions of HMMs, which are character-

istic of speech recognition. Then, the main extensions of the HMM commonly used in

speech synthesis are described.

3.2 Overview of Basic HMMs

3.2.1 Definition

3.2.1.1 Structure

A hidden Markov model (HMM) is a finite state machine which changes from state i to

state j each time step. At each time t that a state j is entered, a continuous observation

vector ot is generated from the state output probability distribution b j(ot). For a state

sequence of length T , q = {q1,q2, ...,qT}, the sequence of observations is defined as

O = {o1,o2, ...,oT}. For example, mel-cepstral coefficients are often the elements of

the continuous observation vector o in ASR. A HMM λ is defined by the transition

probabilities from state i to state j, ai j, the state probability distribution, b j(o), and

the initial state probabilities, π j. Figure 3.1 shows an example of a 3-state left-to-right

HMM. In speech recognition and speech synthesis applications, left-to-right models
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are typically used. Within this chapter, HMMs are assumed to be left-to-right. The

transition probabilities of a left-to-right HMM satisfy aii + ai j = 1, where aii is the

probability of remaining in the same state i. The following parameter constraints are

also assumed:

N

∑
j=1

π j = 1 (3.1)

∫
∞

−∞

b j(o)do = 1 (3.2)

1 2 3

o  1 o  2 o  3 o  4 o  5 o  6 . . . o  
T

b  (o )1 1 b  (o )1 2 b  (o )1 3 b  (o )2 4 b  (o )2 5 b  (o )3 6
b  (o )3 T

. . .

π

a11

a12

a22 a33

a231

Observations:

     State Densities:

Figure 3.1: A 3-state left-to-right HMM with illustration of an observation sequence and

the state output probability distributions associated with each state.

3.2.1.2 Output Probability Distribution

In continuous distribution HMM, the probability distribution b j(o) is usually modelled

by K-mixtures of Gaussian distributions as follows:

b j(o) =
K

∑
k=1

r jkN
(
o,m jk,U jk

)
(3.3)

N
(
o,m jk,U jk

)
=

1√
(2π)L|U jk|

exp
(
−1

2
(o−m jk)

>U−1
jk (o−m jk)

)
, (3.4)

where r jk, m jk, and U jk are the mixture weight, S-dimensional mean vector (S is the

dimension of o), and L×L full covariance matrix of mixture component k of state j,
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respectively. |U jk| represents the determinant of U jk. When the elements of the contin-

uous observation vector o are assumed to be independent and a single Gaussian is used

(K = 1), the full covariance matrix can be restricted to its diagonal elements (diago-

nal covarince matrix). The mixture weights of a N-state HMM satisfy the following

stochastic constraint: 
K

∑
k=1

r jk = 1, 1≤ j ≤ N

r jk > 0, 1≤ j ≤ N, 1≤ k ≤ K,

(3.5)

so that b j(o) satisfies the constraint (3.2).

3.2.2 Assumptions

The operation of a HMM is based on the following conditional independence assump-

tions (Rabiner, 1989):

• a state, given the previous state, is statistically independent of all other states.

• an acoustic observation, given the state that generated it, is statistically indepen-

dent of all other observations.

The first assumption can be used to calculate the probability of a state sequence, q =

{q1,q2, ...,qT}, given the model λ, by multiplying the state transition probabilities:

P(q|λ) =
T

∏
t=1

aqt−1qt , (3.6)

where aq0q1 is the initial state probability, which can also be represented by πq1 .

Under the observation independence assumption, the probability of an observation

sequence, O = (o1,o2, ...,oT ), given the HMM λ and the state sequence q, can be

calculated by multiplying the output probabilities of each state, as follows:

P(O|q,λ) =
T

∏
t=1

bqt (ot) (3.7)

3.2.3 Duration Model

The conventional HMM has no explicit duration model. However, the temporal struc-

ture of the continuous observations o can be modelled implicitly by the transition prob-

abilities. The following exponential probability distribution of each state i arises from

the model structure:



Chapter 3. HMM-based Speech Synthesis 46

pi(di) = adi−1
ii (1−aii), (3.8)

where di is the state duration (number of consecutive observations in state i), and aii is

the state self-transition probability.

The implicit duration model of a HMM is associated with a basic segment. For

example, if the basic segment is a phone, the duration model is a phone-based duration

model. The prior probability of a state sequence q = {q1,q2, ...,qT} can be calculated

as:

P(q|λ,T ) =
N

∏
i=1

pi(di), (3.9)

with the constraint:

N

∑
i=1

di = T, (3.10)

where N is the total number of states and T is the total length of the sequence of states.

3.2.4 Observation Probability Calculation

3.2.4.1 Optimisation Problem

A common problem for HMMs is the computation of P(O|λ), i.e. the probability of

the continuous observation sequence O given the model λ. For example, this problem

is solved in the decoding part of a speech recogniser. In this case, the probability of

the observation sequence of an unknown word is calculated for every word model (se-

quence of HMMs estimated in the training part) and the word model which maximises

a given criterion is selected (Rabiner, 1989). Although the continuous observation se-

quence O is known, the underlying state sequence is hidden. Therefore, the probability

of O given the model λ can be calculated by summing over all possible state sequences

q, that is,

P(O|λ) = ∑
q

P(O,q|λ), (3.11)

where P(O,q|λ) is the probability that the observation sequence O is generated by the

model λ moving through the state sequence q. This joint probability can be obtained

by using the Bayes’ theorem and the statistical independence assumptions of (3.6) and

(3.7), as follows:
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P(O,q|λ) = P(O|q,λ)P(q|λ) =
T

∏
t=1

bqt (ot)aqt−1qt (3.12)

Then, from (3.11) and (3.12), P(O|λ) is given by:

P(O|λ) = ∑
q

T

∏
t=1

bqt (ot)aqt−1qt (3.13)

However, this equation is not practical to solve, because it is too computationally de-

manding. A more effective way to compute P(O|λ) is to use a recursive algorithm such

as the forward-backward algorithm, e.g. Rabiner (1989). The probability P(O|λ) can

also be approximated by finding the optimum state sequence, q∗, which maximises

P(q|O,λ), e.g. Rabiner (1989). This problem is equivalent to maximising P(q,O|λ)
and can be solved by using the Viterbi algorithm (Viterbi, 1967; Rabiner, 1989). The

Viterbi algorithm is typically used to compute q∗ and P(O|λ) in speech recognition.

3.2.4.2 Viterbi Algorithm

The Viterbi algorithm computes the optimum state sequence, q∗, given an observation

sequence O and the model λ, i.e. solves the problem

q∗ = argmax
q

P(q,O|λ) (3.14)

The best state sequence is calculated by using the following recursion (Rabiner, 1989):

δt+1( j) = b j(Ot+1) max
16i6N

{δt(i)ai j}, (3.15)

where

δt(i) = max
Qt

P(qt = i,Ot |λ) (3.16)

is the maximum probability of the partial observations sequence Ot = {o1,o2, ...,ot},
along a single path Qt = {q1,q2, ...,qt}which ends in state i, at time t. It is initialised by

setting δ0(i) = 1 for the initial entry state and zero for all other states, where 1 6 i 6 N

and N is the number of states of λ. The maximisation argument is recorded in each

iteration, i.e.

Ψt( j) = arg max
16i6N

δt(i−1)ai j (3.17)
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At the end of the induction process, the probability of the most likely path is calculated

as:

P∗ = max
16i6N

δt(i) (3.18)

and the best state sequence is obtained by backtracking, as follows:

q∗T = arg max
16i6N

δT (i) (3.19)

q∗t = Ψt+1(q∗t+1), t = T −1,T −2, · · · ,1 (3.20)

3.2.5 Model Parameter Estimation

3.2.5.1 Optimisation Problem

Another important problem for HMMs is to calculate the optimal model parameters,

which best describe a given observation sequence. This problem can be described as:

λ
∗ = argmax

λ

P(O|λ) = argmax
λ

∑
q

P(O,q|λ) = argmax
λ

∑
q

P(O|q,λ)P(q|λ) (3.21)

The HMM λ which globally maximises P(O|λ) for a certain optimisation criterion,

such as the maximum likelihood, is difficult to determine because both the λ parameters

and q are unknown. However, the parameters of λ can be estimated by calculating the

solution which maximises P(O|λ) locally. The Baum-Welch algorithm (Baum et al.,

1970), also called the expectation-maximisation (EM) algorithm, is typically used to

find this solution, e.g. Rabiner (1989); Young et al. (2006). This method is described

in the next section.

The HMM training part of a speech recogniser can be regarded as an optimisation

procedure with a known word sequence Z = {z1,z2, ...,zS}. In this case, (3.21) can be

written as

λ
∗ = argmax

λ

P(O|Z,λ) (3.22)

In general, a text analysis procedure is used to assign contextual factors to the word

sequence Z and to map it into a sequence of context-dependent sub-word units, such

as sequence of phones. Each context-dependent unit is then modelled by a different

context-dependent HMM, e.g. a triphone HMM. The context-dependent factors are
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related to accent, lexical stress, part-of-speech, etc. In the training part, the phonetic

context of the models needs to be initialised and the observation sequences segmented

into states. The initial model could be one already created from another set of speakers,

or it could be obtained from a uniform distribution of each word into states (Rabiner,

1989). The segmentation can be performed by using the Viterbi algorithm to find the

best state sequence.

3.2.5.2 Baum-Welch Algorithm

The HMM parameter estimation method using the Baum-Welch algorithm consists of

maximising the following auxiliary function of current model λ′ and new λ:

A(λ′,λ) = ∑
q

P(O,q|λ′) logP(O,q|λ) (3.23)

A(λ′,λ) is maximised over λ to improve λ′ in the sense of increasing the likelihood of

the HMM λ, P(O,q|λ), e.g. Rabiner and Juang (1993). The parameters of λ are the

initial i-th state probability πi, the transition probabilities, ai j, and the coefficients of

the mixture density function of (3.4): r jk, m jk, and U jk. From (3.12), the likelihood of

a continuous HMM λ for the hidden state sequence q, P(O,q|λ), can be given by

logP(O,q|λ) = logπq0 +
T

∑
t=1

logaqt−1qt +
T

∑
t=1

logbqt (ot) (3.24)

Equations (3.23) and (3.24) can be used to derive the formulae to calculate the HMM

parameters, as described in (Rabiner, 1989). The re-estimation formulae of the initial

and transition probabilities are given by:

πi =
α0(i)β0(i)

∑ j=1 NαT ( j)
(3.25)

ai j =
∑

T
t=1 αt−1(i)ai jb j(ot)βt( j)

∑
T
t=1 αt−1(i)βt−1(i)

, (3.26)

where αt(i) is the probability of the partial observation sequence from one to t of state

i, at time t. On the other hand, βt(i) is the probability of the partial observation from t

to T , i.e.

αt(i) = P(o1,o2, ...,ot ,qt = i|λ) (3.27)

βt(i) = P(ot+1,ot+2, ...,oT |qt = i,λ) (3.28)
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The forward-backward algorithm (Rabiner, 1989) can be used to calculate recursively

αt(i), the forward probability, and βt(i), the backward probability, as follows :

α1(i) = πibi(o1), 1 6 i 6 N (3.29)

αt+1( j) =

[
N

∑
i=1

αt(i)ai j

]
b j(ot+1), 1 6 t 6 T −1 (3.30)

1 6 j 6 N (3.31)

βT (i) = 1, 1 6 i 6 N (3.32)

βt(i) =
N

∑
j=1

ai jb j(ot+1)βt+1( j), t = T −1,T −2, ...,1 (3.33)

1 6 i 6 N (3.34)

tt+1

α  (i) β       (j)t t+1

.. .
...

S j S i

S1

S2

SN

S1

S2

SN

a   1j

a   2j

a   Nj a   iN

a   i1

a   i2

t t+1

β  (i)t
α       (j)t+1

Figure 3.2: Illustration of the computation of the forward and backward probabilities,

αt(i) and βt( j), respectively.

Figure 3.2 illustrates the calculation of αt+1(i) and βt(i). The probability of reach-

ing state S j at time t +1 via state Si at time t is obtained by summing αt(i)ai j over all

the N possible states Si at time t, with 1 6 i 6 N. Then, the forward probability αt+1( j)
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is obtained by multiplying this sum by the probability of the observation ot+1 at state

j, b j(ot+1). At each time t the forward probability αt+1( j) is computed for all states j.

On the other way, the backward probability βt(i) is calculated by summing over i the

product of the transition probability ai j, the probability of the observation ot+1 in state

j, and the probability of the partial observation sequence ot+1,ot+2, . . . ,oT .

The parameters of the output probability distribution, which is given by (3.3) and

(3.4), can be calculated using the forward and backward variables. The maximum

likelihood re-estimation formulae for these parameters are given by

r jk =
∑

T
t=1 γt( j,k)

∑
T
t=1 ∑

K
k=1 γt( j,k)

(3.35)

m jk =
∑

T
t=1 γt( j,k)ot

∑
T
t=1 γt( j,k)

(3.36)

U jk =
∑

T
t=1 γt( j,k) · (ot−m jk)(ot−m jk)

>

∑
T
t=1 γt( j,k)

, (3.37)

where k indexes the mixture component of P(ot) and γt( j,k) is the probability of being

in state j and component k at time t, which is given by

γt( j,k) =

[
αt( j)βt( j)

∑
N
j=1 αt( j)βt( j)

][
r jkN (ot ,m jk,U jk)

∑
K
k=1 N (ot ,m jk,U jk)

]
(3.38)

3.3 Extension to Speech Synthesis

3.3.1 Speech Feature Generation Algorithm

In HMM-based speech synthesis, the generation of the optimal speech feature se-

quence, O∗, given the model λ is more complex than the problem of finding the best

state sequence in the decoding operation of ASR. This is because for speech synthesis

both the observation and the state sequences are unknown. In this case, the optimisa-

tion problem is the following:

O∗ = argmax
O

P(O|λ,T ) (3.39)

3.3.1.1 Optimisation Problem

For a given continuous HMM λ, the problem of generating the speech parameter vector

sequence O = (o1,o2, ...,oT ) from λ is to maximise the likelihood function P(O|λ,T )
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with respect to O, as follows:

O∗ = argmax
O

P(O|λ,T ) = argmax
O ∑

q
P(O,q|λ,T ) (3.40)

The problem of calculating the probability P(O,q|λ,T ) for a known observation O
and hidden state sequence q, which was described by (3.11) and (3.12), can be solved

using the Viterbi algorithm. However, in (3.40) both O and q are unknown and there

is no known method to analytically solve this problem. Nevertheless, the optimum

O∗ which locally maximises P(O|λ,T ), can be calculated using an EM-based iterative

optimisation algorithm (Tokuda et al., 2000). In this case, the state sequence (state and

mixture sequence for a multi-mixture HMM) is unobservable.

Another method to estimate the optimal speech parameter sequence, consists of

maximising P(O,q|λ,T ) with respect to O and q, e.g. Tokuda et al. (2000). This

method approximates the optimum sequence in a similar manner to the Viterbi al-

gorithm, as follows:

O∗ ' argmax
O

(
max

q
P(O,q|λ,T )

)
= argmax

O

(
max

q
P(O|q,λ,T )P(q|λ,T )

)
(3.41)

This problem cannot be solved using the Viterbi algorithm described in Section 3.2.4.2,

because q and O have to be determined simultaneously. However, it can be divided into

the following two optimisation problems:

q∗ = argmax
q

P(q|λ,T ) (3.42)

O∗ = argmax
O

P(O|q∗,λ,T ) (3.43)

It is computationally expensive to obtain the analytical solution of these problems, be-

cause of a too high combination of possible state sequences. In order to overcome

this limitation, Tokuda et al. (1995b,a) proposed an effective method, which is typi-

cally faster than using the EM-based algorithm to solve the optimisation problem of

(3.40). The Viterbi and the EM-based algorithms used to calculate the optimum O∗

will be described in Sections 3.3.1.3 and 3.3.1.4 respectively. First, the importance

of the dynamic features for parameter generation in HMM-based speech synthesis is

explained.

In general, the speech parameter trajectories generated using static features only are

not smooth. For example, this can be shown by considering the optimisation problem
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of (3.41). Assuming that the state output probabilities are independent, the solution

for the optimisation problem O∗, given q∗, can be obtained by using the following

equation

P(O|q∗,λ,T ) =
T

∏
t=1

bq∗(ot) (3.44)

The optimal speech parameter vector sequence O∗ is the one that maximises bq(ot)

for t = {1,2, ...,T}. The result is a sequence of mean vectors of the optimum state

sequence q∗ (Tokuda et al., 1995b).

Figure 3.3 shows an example of the sequence of mean output vectors obtained

from the HMMs to synthesise a speech segment. This figure was obtained from Ma-

suko (2002), with permission of the author. The variations between mean parameter

vectors at transitions of states are often sufficiently high to produce discontinuities in

the parameter trajectories, which cause degradation of the synthetic speech quality.

This parameter discontinuity problem can be avoided using dynamic features, which

are explained next.

/i//a/ /lis//lis/

0.2

1.5

c
(
1
)

1 20 40 60 80
Frame number

Figure 3.3: Example of the mean vector of the 1st -order mel-cepstral coefficient gener-

ated by the HMMs to synthesise a segment of speech which consists of two phones and

is delimited by segments of silence. This figure is a modified version of Figure 4.1 from

Masuko (2002), which is used in this thesis with permission of the author. The original

figure was modified by the author of this thesis in order to only show the trajectory of

the mean vectors for the 1st -order mel-cepstral coefficient.
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3.3.1.2 Dynamic Features

The HMM has important limitations to model the time-varying characteristic of the

speech observations. On one hand, the time-dependency of the observation vector se-

quence within a state cannot be represented, because the statistics of the observations

of each state are stationary. This is the reason why the HMM generates a stepwise

mean trajectory. On the other hand, the dependency between the output density func-

tion of a state and other states cannot be modelled under the observation independence

assumption of (3.7). These problems can be overcome by using a different model

from HMM which takes into account explicit dynamics of the speech signal, such as

segmental HMMs (Russell, 1993) and Hidden Dynamic Models (Deng, 1998). How-

ever, the use of such models generally results in increased computational complexity.

In ASR and HMM-based speech synthesis the typical method used to capture time

dependencies is to augment the original static feature vector with dynamic features.

The dynamic features are calculated as a linear combination of several adjacent static

features. This augmented feature vector is able to capture short-term dependencies,

because it depends on the adjacent frames. When the HMM is used as a generative

model, the speech feature sequence is determined so as to maximise the likelihood of

the output probability distribution using the constraints between static and dynamic

features. By using the relationships between static and dynamic features, the HMM

generates a smooth parameter trajectory instead of the piecewise stationary sequence

of mean vectors.

The advantage of using augmented feature vectors is that the typical dynamic pro-

gramming algorithms used to solve the HMM statistical problems can be used, e.g. the

Viterbi and EM algorithms. However, the observation vectors are assumed to be statis-

tically independent and the correlations between them are not taken into account in the

training. As result, the constraints imposed on the generation of the speech features

are from the output static features and do not represent the temporal constraints of the

training data. This problem can be overcome by using the trajectory-HMM (Tokuda

et al., 2004; Zen et al., 2007b). In this trajectory model, the probability density func-

tion is defined as a function of the static features and explicit relationships between the

static and dynamic features are imposed through the normalisation of the original like-

lihood P(O|q,λ). The Viterbi and EM algorithms can also be used for trajectory-HMM

but the computations are typically more complex than for the standard HMM.

The SD-dimensional parameter vector with static and dynamic features, ot , can be
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represented by

ot =
[
c>t ,∆

(1)c>t , ...,∆
D−1c>t

]>
, (3.45)

where ct and ∆dct are the S-dimensional static and the d-th dynamic feature vectors,

respectively. In HMM-based speech synthesis these vectors are usually calculated as

follows:

ct = [ct(1),ct(2), ...,ct(M)]> (3.46)

∆
(d)ct =

Ld
+

∑
τ=−Ld

−

w(d)(τ)ct+τ, (3.47)

where w(d)(τ) is a window coefficient for calculating the d-th dynamic feature, L0
− =

L0
+ = 0 and w(0)(0) = 1. The number of dynamic feature vectors is often two (D = 3).

That is, the observation feature vector ot is defined by the static coefficients, its delta

and delta-delta coefficients. These delta and delta-delta features are typically obtained

by using the following equations:

∆ct =
∑

l
τ=−l(ct+τ− ct)

∑
l
τ=−l τ2

(3.48)

∆
2ct =

1
2

∑
l
τ=−l τ2ct+τ− 1

L(∑
l
τ=−l τ2)(∑l

τ=−l ct+τ)

∑
l
τ=−l τ4−1

, (3.49)

where L = 2l +1 is the width of the window used to calculate the dynamic features at

frame t. For example, a three-frame window is used in the HTS synthesiser (Tokuda

et al., 2009), which is defined by the following formulas:

∆ct = 0.5ct−1−0.5ct+1 (3.50)

∆
2ct = 0.25ct−1−0.5ct +0.25ct+1 (3.51)

In general, the dynamic features used in ASR are different from those given by

(3.48) and (3.49). For example, the HTK toolkit (Young et al., 2006) uses the following

formulas to calculate the delta and delta-delta features for ASR:

∆ct =
∑

n
τ=1(ct+τ− ct)

2∑
n
θ=1 θ2 (3.52)
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∆
2ct =

∑
n
τ=1(∆ct+τ−∆ct)

2∑
n
θ=1 θ2 , (3.53)

where n is the half size of the window used to compute the dynamic feature at frame

t. For example, choosing n = 2 yields the following formulas to calculate the dynamic

features (Zhang, 2009):

∆ct =−0.2ct−2−0.1ct−1 +0.1ct+1 +0.2ct+2 (3.54)

∆
2ct = 0.04ct−4 +0.04ct−3 +0.01ct−2−0.04ct−1−0.1ct

−0.04ct+1 +0.01ct+2 +0.04ct+3 +0.04ct+4 (3.55)

The dynamic coefficients which are typically used for speech synthesis seem to

produce smoother trajectories than the coefficients used for ASR (Zhang, 2009). In

general, the smoother trajectories are preferred for the speech synthesis application.

However, Zhang (2009) showed that the ∆ and ∆2 features used in ASR performed

better in the recognition task than the ∆ and ∆2 used in speech synthesis.

Figure 3.4 shows an example of the first order mel-cepstral parameter and its dy-

namic parameters generated by a HMM-based speech synthesiser. This figure was

obtained from Masuko (2002), with permission of the author. Dashed lines indicate

means of output distributions, grey areas indicate the regions within standard devia-

tions, and solid lines represent the parameter trajectories generated by the HMMs. In

general, the generated trajectories are close to the mean of static features in the central

states of the HMMs, since the variances of static and dynamic features are small. In

contrast, at the first and last states of the HMMs, the trajectories are more dependent on

the values of the previous and preceding frames. Nevertheless, the parameter variances

at the transition states are sufficiently high to obtain smooth trajectories.

3.3.1.3 Method using the Viterbi Algorithm

Tokuda et al. (1995b) proposed a method to solve the optimisation problem given by

(3.41). That is, the maximisation of P(O,q|λ,T ) with respect to the sequence of obser-

vation vectors O and the state sequence q. This problem is solved in a similar manner

to the Viterbi algorithm. It consists of searching for the optimum state sequence and

solving a set of linear equations. In order to obtain smooth trajectories using dynamic

trajectories, P(O,q|λ,T ) is optimised under the constraints of (3.47).
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Figure 3.4: Example of the trajectory of the 1st -order mel-cepstral coefficient generated

by the HMMs using dynamic features, to synthesise a segment of speech. The last two

plots represent the dynamic features generated by the HMMs. The variance is higher

in the transition between states, which permits to obtain smooth trajectories using the

parameter generation algorithm. This figure is part of Figure 4.1 from Masuko (2002)

which is used in this thesis with permission of the author.

In the case of a continuous mixture HMM, λ, Tokuda et al. (1995b) considered

the mixtures components of the output distribution bq(ot) to be sub-states. Under this

assumption, P(O,Q|λ,T ) is maximised with respect to O and Q, where

Q = {(q1,k1),(q2,k2), · · · ,(qT ,kT )} (3.56)

is the state and mixture sequence, i.e. (q,k) is the k-th mixture of state q. The method

described in the following paragraphs considers multi-mixture components but the

same method can be used for a single mixture HMM (Tokuda et al., 1995a).

For finding the linear equations used to solve the optimisation problem, the super-

vector made from all of the continuous parameter vectors, i.e. O =
[
o>1 ,o

>
2 , ...,o

>
T
]>,

is arranged in the following matrix form, by using the conditions of (3.47):

O = WC, (3.57)
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where

C = [c1,c2, ...,cT ]
> , (3.58)

W = [w1,w2, ...,wT ]
> , (3.59)

wt =
[
w(0)

t ,w(1)
t ,w(2)

t

]
, (3.60)

w(n)
t =

[
0S×S

1st
, · · · ,0S×S,

w(n)(−L(n)
− )IS×S

(t−L(n)
− )−th

, · · · , w(n)(0)IS×S

t−th
, · · · , w(n)(−L(n)

+ )IS×S

(t+L(n)
+ )−th

,

0S×S, · · · ,
0S×S

T−th

]>
, n = 0,1,2 (3.61)

and 0S×S and IS×S are the S× S zero matrix and identity matrix, respectively. The

dimensions of O, C, w and W are respectively 3MT , MT , T , and 3MT ×MT . By

using (3.57), the optimisation of O, being Q∗ known, is given by

O∗ ' argmax
O

P(O|Q∗,λ,T ) = argmax
C

P(WC|Q∗,λ,T ) (3.62)

This problem can be solved by maximising logP(WC|Q∗,λ,T ) with respect to C, that

is:

∂ logP(WC|Q∗,λ,T )
∂C

= 0 (3.63)

Typically, the probability density P(WC|Q∗,λ,T ) is assumed to be a Gaussian distri-

bution, which can be represented by

P(WC|Q∗,λ,T ) = 1√
(2π)3ST |U|

exp
(
−1

2
(WC−M)>U−1(WC−M)

)
, (3.64)

with

M =
[
m>q1,k1

,m>q2,k2
, ...,m>qT ,kT

]>
(3.65)

U−1 = diag
[
U−1

q1,k1
,U−1

q2,k2
, ...,U−1

qT ,kT

]
, (3.66)

where mqt ,kt is the 3S× 1 mean vector and Uqt ,kt is the 3S× 3S covariance matrix,

associated with the kt-th mixture of ct at the state qt . The speech parameter vector
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sequence, C, which maximises P(O,Q|λ,T ) can be calculated by solving the following

set of linear equations, which are obtained from (3.63) and (3.64):

W>U−1WC = W>U−1M (3.67)

Then, the problem of maximising P(O,Q|λ,T ) = P(O|Q,λ,T )P(Q|λ,T ), with respect

to c and Q, is solved by evaluating P(O|Q,λ,T ) for all Q, using (3.67). However, these

computations are very complex because there are too many combinations of sub-state

sequences. Tokuda et al. (1995b,a) proposed a fast recursive algorithm to obtain an

optimal or sub-optimal solution of c and Q, by using special properties of (3.67).

The optimum state sequence q∗ of (3.42) can be estimated independently of O,

by maximising P(q|λ,T ) with respect to q, as given by (3.42). Considering mix-

ture components, q∗ can also be estimated by P(q|λ,T ). In this case, P(O,Q|λ,T ) =
P(O,k|q,λ,T )P(q|λ,T ) and P(O,k|q,λ,T ) is maximised with respect to O and k. For

solving the optimisation problem q∗, the probability of a state sequence q, given the

HMM λ, can be calculated as:

P(q|λ,T ) =
N

∏
n=1

pqn(dqn), (3.68)

where pqn(dqn) is the state duration probability distribution associated with state qn.

The state sequence q∗, which maximises P(q|λ,T ) is calculated by solving a set of

linear equations obtained from (3.68), e.g. by using the Viterbi algorithm.

A key difference between the parameter generation algorithm in HMM-based speech

synthesis and the decoding process in ASR is that the optimal state q∗ is calculated

without reference to the observations for speech synthesis, unlike in ASR. This differ-

ence is clear by comparing the conditional probability of the state sequence P(q|λ,T )
given by (3.68) with that used in ASR, which is given by (3.14). Since (3.68) depends

only on the state duration probability pqn(dqn), an explicit duration model is typically

used in HMM-based speech synthesis, e.g. a Gaussian density function. Duration mod-

elling is discussed later in Section 3.3.4. On the other hand, accurate duration mod-

elling is not as important to ASR as to statistical speech synthesis.

3.3.1.4 Method Using the Forward-Backward Algorithm

Tokuda et al. (2000) proposed another method to estimate O, which consists of solving

the optimisation problem of (3.40). That is, the problem of maximising the likelihood
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function P(O|λ,T ), with respect to O. The critical point of this likelihood is estimated

by maximising the following auxiliary function of the Baum-Welch algorithm:

A(O,O′) = ∑
q

P(O,q|λ,T ) logP(O′,q|λ,T ), (3.69)

where O and O
′

are the current and new parameter vector sequences, respectively.

Tokuda et al. (2000) used the same matrix form given by (3.57) for the calculation

of the optimal sequence of static features vectors C
′
, that is, O

′
= WC

′
. Under this

condition, C
′
which maximises A(O,O′) is given by the following equations:

W>U−1WC′ = W>U−1M, (3.70)

where

U−1 = diag
[
U−1

1 ,U−1
2 , ...,U−1

T

]
, (3.71)

U−1
t = ∑

q,k
γt(q,k)U−1

q,k , (3.72)

U−1M =

[
U−1

1 m1
>
,U−1

2 m2
>
, ...,U−1

T mT
>
]>

, (3.73)

U−1
t mt = ∑

q,k
γt(q,k)U−1

q,kmq,k, (3.74)

and the occupancy probability γt(q,k) is defined by

γt(q,k) = P(qt = (q,k)|O,λ,T ) (3.75)

The set of equations given by (3.70) has the same form as (3.67). The optimum O∗ is

calculated by using (3.70) and an EM algorithm to maximise the likelihood function

P(O|λ,T ), with respect to O. Tokuda et al. (2000) proposed the following recursive

algorithm to calculate O∗:

1. Choose an initial parameter vector sequence C.

2. Calculate γt(q,k) using the forward-backward algorithm.

3. Calculate U−1 and U−1M by (3.71) to (3.74), and solve (3.70).

4. Set C = C′. Go to 2 until a certain convergence condition is satisfied.
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When compared with the Viterbi-based method of the previous section, this EM-

based method has the advantage that Q∗ can be considered unobservable, i.e. both the

mixture sequence and the state sequence can be marginalised. In this method the op-

timum state sequence, q∗, can also be calculated independently of O by maximising

P(q|λ,T ) with respect to q. In this case q∗ can be calculated by using the Viterbi algo-

rithm as in Section 3.3.1.3 and the mixture sequence k is assumed to be unobservable.

3.3.2 Multi-space Distribution HMM

The observation vector used in HMM-based speech synthesis consists of a speech pa-

rameter vector, which describes the acoustic properties of a speech segment. For exam-

ple, mel-cepstral coefficients and F0 are parameters often used to describe the spectrum

and to model the pitch of a speech segment, respectively. The spectral parameters of

the observation vector typically represent the spectral envelope of the speech signal.

They can be modelled by a continuous HMM because the spectral envelope is as-

sumed to vary slowly across contiguous speech frames. However, F0 patterns cannot

be modelled by conventional discrete or continuous HMMs, because the values of F0

are not defined in unvoiced regions of speech (unvoiced speech is considered to be

non-periodic). Tokuda et al. (1999) proposed a solution to this problem which con-

sists of using a hidden Markov model based on a multi-space probability distribution

(MSD-HMM) to model F0. This multi-space probability distribution (MSD) is more

general than either a discrete or continuous mixture distribution and allows a proba-

bility distribution to be represented as a mix of discrete and continuous distributions.

Figure 3.5 shows the structure of a MSD-HMM.

The MSD consists of G spaces, Ω = {Ω1,Ω2, ...,ΩG}, and each space Ωg has its

probability wg, where ∑
G
g=1 wg = 1. In general, the MSD used to model F0 consists

of two spaces: Ω = {Ω1,Ω2}. Ω1 is a zero-dimensional space associated with the

unvoiced regions, while Ω2 has one-dimensional normal distribution to model F0 in

the voiced regions. An F0 observation is represented by a continuous random variable

y and a set of space indices Y , as represented by

o = (Y,y), (3.76)

where Y = 1 for the unvoiced region and Y = 2 for the voiced region. The output

probability distribution of an N-state MSD-HMM is defined by
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b j(o) = ∑
g∈X(o)

w jgN jg(V (o)), (3.77)

where V (o) = y, X(o) = Y , w jg is the weight of N jg and N jg(V (o)) is the probability

density function of the continuous observation vector V (o) of state j and space g.

Although, N jg does not exist for Ω1, N j1 is assumed to be equal to one, for simplicity

of notation.

The parameters of MSD-HMMs can be estimated using the Baum-Welch algo-

rithm, e.g. Yoshimura (2002). Each state i is assumed to have G probability density

functions (G = 2 to model F0 in voiced and unvoiced regions). The formulae to calcu-

late the model parameters are derived from the auxiliary function given by (3.23) and

the following likelihood:

logP(O,q, l|λ) =
T

∑
t=1

(
logwqt lt + logaqt−1qt + logNqt lt (V (ot))

)
, (3.78)

where q = {q1,q2, ...,qT} is a possible state sequence and l = {l1, l2, ..., lT} is a se-

quence of spaces indices which is possible for the observation sequence O. The

stochastic constraints of wg are given by ∑
G
g=1 wg = 1.
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Figure 3.5: A 3-state left-to-right MSD-HMM, which uses a discrete probability density

function (p.d.f.) for the unvoiced space and continuous p.d.f. for the voiced space.
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3.3.3 Detailed Context Classes

In ASR and HMM-based speech synthesis, a HMM typically represents a phone unit

and an utterance or word is associated with a sequence of HMMs. However, the use

of a phone as a context-independent unit (called monophone) has the limitation of not

modelling the contextual variation between phones which is characteristic of natural

speech. For example, if a vowel is followed by ‘n’ or ‘m’ its pronunciation is influenced

by the nasalisation effect. In general, context-dependent phone models are used to

model short-term dependencies.

Typically, the method used to model the context-dependency of a phone is to use

a unique phone model for every possible pair of left and right neighbours (called tri-

phone). This is a practical method because it still uses a phone model. However, the

number of triphones models is much higher than the number of monophones. That

is, if the the number of phones is P, the number of triphones is P3. This increase in

the number of models usually causes data sparsity problems. In order to avoid this

problem, model parameters are typically clustered using decision trees and the param-

eters are tied together in each cluster. Figure 3.6 shows an example of a decision tree,

which is a modified version of Figure 3.4 from Yamagishi (2006). The author of the

original figure gave me permission to modify and use the original figure in this thesis.

In Figure 3.6, the notation a− p+ b denotes the triphone corresponding to the phone

p, preceded by phone a and followed by phone b.

A decision tree is built using a top-down optimisation procedure. Starting from

the root, each state is split into two by finding the question which partitions the states

in the parent node so as to maximise a given criterion, e.g. increase in log likelihood

(Young et al., 2006). Once the trees are built each node has a context related question,

except the terminal nodes, which have state output distributions. For speech synthesis,

unseen models can be obtained by going down the tree until the unseen context reaches

a leaf node. The stopping decision rule used in decision tree construction is important

because an overly large tree will be overspecialised to training data, whereas a small

tree gives a poor modelling of the data. All states in each leaf node are then tied to

form a set of clustered models.

Decision tree-based clustering smoothes the model parameters, since the parame-

ters associated with the same tree leaf-node are averaged in order to re-estimate the

model parameters. Smoothing is important to the robustness of the statistical mod-

elling by HMMs. For example, it is effective in reducing speech variability due to
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Figure 3.6: Illustration of the decision tree-based clustering typically used in HMM-

based speech synthesis. This figure is a modified version of Figure 3.4 from Yamagishi

(2006), which is used in this thesis with permission of the author of the original figure.

the speaker and environment conditions, in speech recognition. However, too much

smoothing of the model parameters is one of the problems in HMM-based speech

synthesis, e.g. Yan et al. (2009). Due to the over-smoothing problem, HMMs cannot

accurately model the speech variability, which is important to the quality of the syn-

thetic speech. This over-smoothing effect makes the synthetic speech sound blurred

and muffled.

In ASR, each phone model usually has three states and the models are clustered at

state-level with phonetic decision trees. That is, all states i of a phone are grouped at

the root of the tree. Then, they are split according to the questions in each node, until

all states have reached the leaf nodes. This type of tree avoids the confusion between

phones, which is important to the word recognition accuracy. For example, the ques-
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tions in each node are commonly related to the phonetic class of the left and right phone

of the tri-phone model, e.g. if the right phone is a nasal or a consonant. On the other

hand, HMM-based speech synthesis typically uses five-state models with a shared de-

cision tree per state. In this case, the states in the leaf nodes are tied to states from

other models and clustered together. This type of tree-based clustering avoids the data

sparsity problem and the parameters are shared more efficiently across models. Also, it

allows more effective modelling of supra-segmental effects, which is particularly im-

portant to model the F0 parameter (Dines et al., 2009). HMM-based speech synthesis

typically uses richer contextual information for building the decision tree than ASR.

The use of a wide range of contextual information avoids the over-smoothing effect

of the HMMs, because it allows the prosodic aspects and the speech variability to be

more accurately modelled. Other techniques to reduce the over-smooting effect of the

model parameters have been proposed. For example, Tokuda et al. (2000) proposed

to increase the number of Gaussian mixtures in each leaf node. The size of the deci-

sion trees can also be increased to reduce the over-smoothing effect, but they might

produce perceived discontinuities in the synthetic speech, if they get overspecialised

to the training data (Tokuda et al., 2000). Yan et al. (2009) also proposed to use rich

context models to model the training data. In this approach, the conventional parame-

ter tree-based tying is used to estimate the optimal rich context model sequence, obtain

the variance parameter of the models, and map unseen labels into seen models.

3.3.4 Duration Modelling

The exponential state duration distribution of the conventional HMM, given by (3.8),

is usually inappropriate to model the duration of speech. The main problem with this

model is that the probability of state occupancy decreases exponentially with time.

For example, Vaseghi (1995) argues that “the likelihood of emerging from the current

state increases with the increasing state residency and at a rate that depends on the

distribution of state duration”. Ferguson (1980) extended the HMM theory to include

the explicit duration model HMM, in which duration is modelled by a non-parameteric

mass function for each state. The explicit duration HMM is also often called Hidden

Semi-Markov Model (HSMM). Different types of continuous distributions have been

proposed to model the duration in HSMM, e.g. the Poisson distribution (Levinson,

1986) and the Gamma distribution (Russell and Moore, 1985).

Several applications of HSMMs in speech recognition can be found in the litera-



Chapter 3. HMM-based Speech Synthesis 66

ture, such as Levinson (1986); Ratnayake et al. (1992). In general, the re-estimation

algorithms for a HSMM are considerably more computationally complex than the con-

ventional Viterbi and backward-forward algorithms used for estimation of HMM pa-

rameters (Yu, 2010). In order to avoid this complexity, speech recognisers typically

use the Viterbi and backward-forward algorithms to estimate the HSMM parameters.

However, the extension of the HMM parameter estimation methods to HSMM is still

more complex than the conventional methods (Gales and Young, 2007; Yu, 2010). In

general, the improvement in recognition accuracy due to explicit duration modelling is

also not significant (Gales and Young, 2007). For these reasons the HSMM is rarely

used in current speech recognisers.

In general, state-of-the-art HMM-based speech synthesisers use explicit duration

distributions. One reason is that for the generation of speech parameters from the

HMMs, the optimum state sequence is calculated using only the state duration prob-

ability (observation sequence is unknown), as explained in Section 3.3.1.3. On the

contrary, in the decoding operation of a speech recogniser the probability distribu-

tion of the observation sequence is calculated and used to obtain the optimum state

sequence using the Viterbi algorithm. Moreover, duration modelling is important in

speech synthesis, because it significantly improves the quality of the synthetic speech,

as shown by Zen et al. (2004). Also, HSMM increases the performance in the speaker

adaptation of the average models of an independent HMM-based speech synthesiser to

the target speaker, e.g. Yamagishi and Kobayashi (2005).
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Figure 3.7: A 3-state left-to-right HSMM.

Figure 3.7 shows the structure of the HSMM. Zen et al. (2004) suggest to use the

Gaussian distribution for the duration model, in order to be consistent with the proba-
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bility distribution used for the acoustic model. In this case, the duration distribution of

a state i with length di (equal to the number of frames in state i) can be represented by

a Gaussian density function, as follows:

pi(di) =
1√

2πσ2
i

exp
(
−(di−µi)

2

2σ2
i

)
, (3.79)

where µi and σi are the mean and variance of the duration distribution of state i, re-

spectively. The distribution pi(di) represents the probability of being di frames at state

i.

In HMM-based speech synthesis, the parameters of an N-state HSMM are typically

estimated using the backward-forward algorithm, e.g. Zen et al. (2004); Yamagishi and

Kobayashi (2005). However, the backward and forward probabilities of (3.29) to (3.34)

are modified to take into account the duration probability distribution, as follows:

α
∗
0( j) = π j (3.80)

α
∗
t ( j) =

t

∑
d=1

N

∑
i=1,i 6= j

α
∗
t−d(i)ai j p j(d)

t

∏
s=t−d+1

b j(os), 1 6 t 6 T (3.81)

β
∗
T (i) = 1 (3.82)

β
∗
t (i) =

T−t

∑
d=1

N

∑
j=1, j 6=i

ai j p j(d)
t+d

∏
s=t+1

b j(os)β
∗
t+d( j), 1 6 t 6 T (3.83)

In the previous equations, the sum over all possible state durations increases the com-

plexity of the forward and backward probabilities computation, when compared with

the conventional algorithm. The formulae to re-estimate the mixture weights, mean,

and covariance matrix of the state output probability distribution (Zen et al., 2004;

Yamagishi and Kobayashi, 2005) suffer from the same increase in complexity, when

compared to the formulae given by (3.36) to (3.37). According to Yamagishi and

Kobayashi (2005), the duration distribution parameters can be calculated in the Baum-

Welch re-estimation as:

µ j =
∑

T
t=1 ∑

t
d=1 γ∗t ( j)d

∑
T
t=1 ∑

t
d=1 γ∗t ( j)

(3.84)
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σ
2
j =

∑
T
t=1 ∑

t
d=1 γ∗t ( j)(d−µ j)

2

∑
T
t=1 ∑

t
d=1 γ∗t ( j)

, (3.85)

where µ j and σ2
j are the mean and variance of the duration Gaussian distribution at

state j, respectively. γ∗t ( j) is a probability of generating a serial observation sequence

{ot−d+1, ...,ot}, that is,

γ
∗
t ( j) =

N

∑
i=1,i6= j

α
∗
t−d(i)ai j p j(d)

t

∏
s=t−d+1

b j(os)β
∗
t ( j) (3.86)

The re-estimation formulas for HSMM can also be extended to model F0, by using

MSD-HSMM (Zen et al., 2004).

For speech synthesis, the state duration di is determined by the parameter gener-

ation algorithm. Each state duration probability distribution of the N-state HSMM λ

can be estimated by maximising the following log likelihood, with respect to the state

sequence q:

logP(q|λ,T ) =
N

∑
i=1

log pi(di), (3.87)

under the constraint

T =
N

∑
i=1

di (3.88)

Assuming that the duration density pi(di) in state i is modelled by a single Gaussian

distribution with mean µi and variance σi, the duration of each state of the optimal q
can be calculated as (Yoshimura, 2002):

di = µi +ρσ
2
i (3.89)

ρ =

(
T −

N

∑
i=1

µi

)
/

N

∑
i=1

σ
2
i (3.90)

The speaking rate of the synthetic speech can be controlled by ρ, because it is asso-

ciated with T through (3.88). For example, Yoshimura et al. (2000) indicate that the

speaking rate becomes faster or slower when ρ is set to a negative or positive value,

respectively, and equal to the average speaking rate when ρ = 0.
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3.4 HTS System

3.4.1 System Overview

The HTS system is a popular HMM-based speech synthesiser, which is available on-

line (Tokuda et al., 2009). The basic structure of this system is shown in Figure 3.8.

Most HMM-based speech synthesisers have a similar structure, which can be divided

into the analysis, training and synthesis parts.

Speech Database

Speech Analysis

Training of MSD-HSMM

Excitation

parameters
Spectral

parameters

Speech signal

Context-dependent MSD-HSMMs

and duration models

Speech Parameter

Generation

Text 

Labels

Text analysis

Contextual

labels

Speech Waveform

Generation

Excitation

parameters
Spectral

parameters

Synthesised 

Speech

Synthesis Part

Training Part

Figure 3.8: An overview of the basic HMM-based speech synthesis system.
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During analysis, excitation and spectral parameters are extracted for each utterance

of the speech corpus. For example, logF0 is generally used as an excitation parameter.

The spectral parameters are often defined by mel-cepstral coefficients or line spectral

frequencies, which are adequate features for statistical modelling. The phonetic labels

can be obtained from the text, e.g. by using a text analyser. Typically, they also have

context information, such as phone identity, phone boundaries, syllable, etc. The time

label boundaries do not need to be estimated if the speech database is phonetically

labelled or if a flat-start training of the HMMs is to be used. Otherwise, they can

be calculated from the recorded utterances and their text transcriptions using a time

alignment technique, such as the Viterbi algorithm, e.g. Young et al. (2006); Yoshimura

(2002).

In the training part, the phonetic labels and the speech features are used to model

context-dependent HMMs. In this process the statistical parameters of the HMMs are

calculated. Then, decision trees which describe all the contextual factors are used to

cluster the trained HMMs.

At the synthesis stage, the context-dependent labels are obtained from the input text

and they are used by the speech parameter generation algorithm to generate the speech

features. The excitation signal is calculated using the excitation features, which then

passes through the synthesis filter to obtain the speech signal. The synthesis filter used

in HTS is defined by the spectral features.

3.4.2 Analysis

Phonetic, linguistic, and prosodic parameters are estimated from the sentences of the

recorded speech corpus using the text analysis tools of the FESTIVAL unit-selection

speech synthesiser (Black et al., 2004). This information is represented by the HTS

system in the form of labels which are used for training the context-dependent phone

models (HMMs). Most contexts are related to counts, positions and distances of

stressed and accented syllables, and stretches from phone to utterance level context.

Examples of the contextual information used for English are given below:

• preceding, current, succeding phones.

• position of current phone in current syllable.

• number of phones in preceding, current, succeding syllable.

• accent of preceding, current, succeding syllable.
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• number of preceding, succeding stressed syllables in current phrase.

• position of current word in current phrase.

• number of syllables in current utterance.

Spectral and excitation parameters are also estimated from the speech corpus. The

spectrum estimated by HMM-based speech synthesisers typically represents the spec-

tral envelope of the speech signal. The conventional method to estimate the envelope

in HTS is mel-cepstral analysis. However, the spectral envelope can also be computed

using other methods in HTS. For example, there is also a HTS demo which uses the

STRAIGHT vocoder to compute the spectral envelope. The fundamental frequency is

extracted using an F0 estimation algorithm, e.g. the F0 detector of the Entropic Speech

Tools (ESPS) which uses the Robust Algorithm for Pitch Tracking (RAPT) of Talkin

and Rowley (1990). The HTS demo using STRAIGHT also extracts aperiodicity mea-

surements, which are used to generate the excitation signal during speech synthesis.

3.4.3 Statistical Modelling

Typically, the HMM topology used in HTS is a five-state left-to-right HMM. Each state

output density function can be modelled by a single Gaussian or Gaussian mixture dis-

tributions. In general, the covariance matrix of each Gaussian mixture component

takes the form of a diagonal covariance matrix. This covariance matrix is significantly

more advantageous than the full covariance matrix, in terms of computational com-

plexity. The spectrum is modelled by a continuous HMM while F0 is modelled by a

MSD-HMM.

The observation feature vector at time t, ot , has a multi-stream structure. F0 and

mel-cepstrum are modelled by different streams because they are assumed to be inde-

pendent. The dynamic features, ∆ and ∆2, of the logF0 and spectral parameters are also

included in the feature vector. The state duration densities are modelled by Gaussian

distribution and the dimension of state duration density is equal to the number of states

in the HMM.

In HTS, the re-estimation of the model parameters is performed using the Hidden

Markov Model Toolkit (HTK) version 3.4 (Young et al., 2006). This training procedure

uses the maximum likelihood estimation criterion. Finally, the spectral parameters, F0

and state duration are clustered independently because they have their own influential

contextual factors.
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3.4.4 Speech Feature Generation Algorithm

The problem of generating the speech parameter vector sequence O from the HMM

λ, for a given word transcription W, is to maximise the output probability distribution

with respect to O, as follows:

O∗ = argmax
O

P(O|W,λ,T ) (3.91)

One way to solve this problem is to use the recursive method based on the expectation-

maximisation (EM) algorithm, which was described in Section 3.3.1.4. The HMGenS

tool of the HTS system allows speech parameters to be generated using this algorithm.

Another way to solve the optimisation problem is to use the Viterbi-based method

described in Section 3.3.1.3. HTS includes a small run-time synthesis engine, called

hts engine, which generates speech parameters based on this method. The synthe-

sis engine works without the HTK/HTS libraries and it is faster than HMGenS. The

hts engine program is indicated for application development purpose.

3.4.5 Synthesis

3.4.5.1 Source-filter Model

The speech waveform generation technique which is conventionally used in HTS is to

pass the excitation signal through a synthesis filter, which is defined by the spectral

parameters. For voiced speech, the excitation is the impulse train generated using

the F0 parameter. The synthesis filter is a variable Mel Log Spectrum Approximation

(MLSA) filter (Imai, 1983). For unvoiced speech, the excitation is modelled as white

noise.

A more sophisticated method to generate speech in HTS is to use the STRAIGHT

vocoder (Kawahara et al., 1999b). In this case, the excitation of voiced speech is

obtained from the F0 and the aperiodicity parameters by mixing the impulse train with

noise. STRAIGHT uses a minimum-phase filter which is different from the MLSA

synthesis filter. The STRAIGHT vocoder is described in Sections 4.3.3 and 6.2.

HTS and most HMM-based speech synthesisers produce speech by shaping a spec-

trally flat excitation signal with the spectral envelope. This is the type of source-filter

model used to synthesise speech by the MLSA filtering and STRAIGHT methods.

Figure 3.9 shows an example of the transfer function of the HTS synthesis filter, the

spectra of the impulse train, the noise, and the synthetic speech signal. In this ex-
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ample, the voiced excitation is modelled as an impulse train, without adding a noise

component to this signal (as in STRAIGHT).
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Figure 3.9: Example of the speech synthesis method used by HTS, which consists of

shaping a spectrally flat excitation with the spectral envelope.

3.4.5.2 MLSA Filter

The MLSA filter used in HTS to synthesise speech is obtained from the mel-cepsturm

H(e jw), which is represented by the M-order mel-cepstral coefficients c(m) as follows:
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H(z) = exp
M

∑
m=0

c(m)z̃−m, (3.92)

where z̃−1 is an all-pass function given by

z̃−1 =
z−1−α

1−αz−1 , |α|< 1 (3.93)

The phase response of this all-pass function has characteristics related to the perceptual

model of the human auditory system. For example, it approximates the mel-scale (Fant,

1973), for the sampling rating of 16 kHz, when α = 0.42. The minimum phase transfer

function of the mel-cepstrum, D(z), is estimated from the mel-cepstrum by using the

unbiased estimation of the logarithmic spectrum (Imai and Furuichi, 1988), as follows:

H(z) = KD(z) = exp
M

∑
m=0

b(m)Φm(z), (3.94)

where K = expb(0) is a gain factor and

D(z) = exp
M

∑
m=1

b(m)Φm(z) (3.95)

b(m) =


c(m) m = M

c(m)−αb(m+1) 0≤ m < M

(3.96)

Φm(z) =


1, m = 0

(1−α2)z−1

1−αz−1 z̃−(m−1), m > 1

(3.97)

However, D(z) cannot be realised directly as a digital filter because it is not a ra-

tional function. HTS uses the algorithm proposed by Fukada et al. (1992) to perform

the quantisation of the mel-generalised cepstrum D(z) . Basically, it consists of ap-

proximating the exponential transfer function D(z) by a rational function RL(F(z)), as

follows:

D(z) = exp(F(z))' RL(F(z)) (3.98)

RL(F(z)) =
1+∑

L
l=1 AL,lF(z)l

1+∑
L
l=1 AL,l(−F(z))l

, (3.99)

where AL,l(l = 1,2, ...,L) are the coefficients of the function RL and
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F(z) =
M

∑
m=1

b(m)Φm(z) (3.100)

The coefficients AL,l are optimised so as to minimise the maximum of the log approx-

imation errors |EL(F(z))|= | logD(z)− logRL(F(z))|.
The MLSA filter proposed by Fukada et al. (1992) is implemented as a stable

minimum-phase IIR filter with a two stage cascade structure, i.e.

D(z)' RL(F1(z))RL(F2(z)), (3.101)

where

F1(z) = b(1)Φ1(z) (3.102)

F2(z) =
M

∑
m=2

b(m)Φm(z) (3.103)

The cascade form is used to obtain a more accurate approximation of the rational func-

tion D(z). Fukada et al. (1992) indicates that this cascade filter approximates the ex-

ponential transfer function D(z) with sufficient accuracy (|EL(F(z))| ≤ 0.24 dB).

3.5 Conclusion

HMMs have been used for ASR since several decades ago. Meanwhile, HMM-based

speech synthesis is a more recent application of the HMM in speech technology. The

two types of technologies use the same generative model and similar algorithms for

computing the HMM parameters and to evaluate the likelihood P(O|λ) in the decoding

part of the speech recogniser and in the feature generation of the statistical synthesiser,

respectively. However, the statistical models in speech recognition are used to de-

code an unknown word sequence from a sequence of observed speech feature vectors,

whereas they are used to estimate the speech parameters from the input word sequence

in statistical speech synthesis. For this reason, the speech recogniser is implemented

in a way that maximises the discrimination between classes of sounds and to be robust

to speech variability factors, such as speaker, environmental, and pronunciation vari-

ability. On the other hand, the statistical speech synthesiser aims to generate the most

natural sounding speech as possible and to model the speech variability details which

are characteristic of human speech, such as aspects related to speaker identity and
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expressiveness. This contrast between the properties of speech synthesis and recogni-

tion using HMMs, yields to several differences between the implementation of the two

methods. The main characteristics of HMM-based speech synthesis which differ from

ASR are reviewed in the next paragraphs and summarised by the following list:

• speech feature generation algorithm takes into account derivative constraints not

required in ASR.

• explicit duration modelling which is not required in ASR.

• context-dependent HMMs with richer contextual information than that used in

ASR.

• multi-space distribution HMMs to model F0 parameter, which is not typically

modelled in ASR.

• higher order of the spectral feature vector.

The training parts of a speech synthesiser and recogniser are very similar. In

both technologies, the HMM parameters are typically estimated using the forward-

backward algorithm. The Viterbi algorithm is commonly used in the decoding part of

the speech recogniser to maximise the likelihood P(q,O|λ), with respect to the state

sequence q, given a sequence of observation feature vectors O and the model λ. The

Viterbi method can also be used for speech feature generation in statistical speech syn-

thesis, but in this case it is used to maximise the likelihood P(q|λ) with respect to

q, because the observation sequence is unknown. The optimum state sequence, q*,

is then used to generate the sequence of speech features by maximising P(O|q*,λ).
The forward-backward algorithm is also often used to generate the speech features in

speech synthesis by maximising locally the likelihood P(O|λ) with respect to O. The

speech feature generation algorithm based on the Viterbi algorithm is simpler than the

forwad-backward method, but the second typically gives better results.

The dynamic features, e.g. ∆ and ∆2, are typically used in ASR in order to improve

the acoustic modelling. In speech synthesis they are also used by the speech feature

generation algorithm to impose derivative constraints on the speech parameters so that

the parameter trajectories are smooth. This function of the dynamic features is crucial

for statistical synthesisers to produce high-quality speech.

The traditional left-to-right continuous HMM used for ASR is extended to the left-

to-right HSMM for speech synthesis. HSMM models the duration explicitly, e.g. by a
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Gaussian probability distribution. The main reasons for this difference are that speech

duration has an important effect on the synthetic speech quality and it is not accu-

rately modelled using the implicit transition probabilities of the HMM. Explicit dura-

tion modelling is very important in speech synthesis because the duration of the syn-

thetic speech is determined by the state probability density functions when the Viterbi

algorithm is used to maximise the likelihood P(q|λ). In contrast, the improvement to

the implicit duration model of the basic HMM has small impact on the increase of the

recognition accuracy. This can be explained by the fact that the observation sequence

is taken into account in the decoding part, i.e. the Viterbi algorithm is used to maximise

P(q|O,λ).

Both ASR and statistical speech synthesis generally use context-dependent HMMs,

e.g. tri-phone models, to better model contextual factors. Also, the tree-based cluster-

ing is used by both applications to avoid data sparsity and overcome problems with un-

seen models. In speech synthesis, it is important to model many details of the context

dependencies between speech units. The reason for this is that they capture aspects

of speech variability which are important for the perceptual quality of the synthetic

speech. In contrast, speech recognisers usually obtain better results when speech vari-

ability effects are smoothed, e.g. variability due to the voice characteristics related to

the speaker’s identity. For these reasons, the context-dependent information used by

HMM-based speech synthesisers is typically more detailed than that used by speech

recognisers.

Another difference between the HMM structure of the speech synthesiser and the

recogniser systems is that the first uses a MSD-HMM for modelling F0. In general,

this parameter is not modelled in ASR but it is very important in speech synthesis,

especially to capture the prosodic aspects of speech. MSD-HMM are used to model

F0 by a discrete distribution for unvoiced speech and by a continuous distribution for

voiced.

The typical structure of a HMM-based speech synthesiser can be divided into the

analysis, training, and synthesis parts. For analysis, excitation and spectral parameters

are extracted from the speech signal, e.g. F0 and mel-cepstral coefficients. The spectral

parameters usually represent the spectral envelope of the short-term speech signal. In

the training part, the HMM parameters are calculated by using the sequence of ob-

servation feature vectors. Each feature vector consists of the excitation and spectral

parameters, including the dynamic features. Its structure is a multi-stream, e.g. F0 and

spectral parameters are assumed to be independent and they are modelled in separate
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streams. During synthesis, the excitation signal is obtained by using the speech param-

eters generated by the HMMs. For example, F0 is often used to produce an impulse

train, which models the periodic characteristics of the voiced excitation. For unvoiced

speech, the excitation is typically modelled as white noise. Speech is usually obtained

by shaping a spectrally flat excitation with the spectral envelope, which is represented

by the spectral parameters. For example, the conventional synthesis method used in

the HTS system (Tokuda et al., 2009) consists of passing a spectrally flat excitation

through the MLSA filter, which is defined by the mel-cepstral coefficients.



Chapter 4

Source Modelling Methods in

Statistical Speech Synthesis

4.1 Introduction

Typically, HMM-based speech synthesisers generate speech by passing a spectrally flat

excitation signal through a synthesis filter. This filter represents the spectral envelope

of the speech signal, such as in the HTS system which was described in Section 3.4.

The excitation of voiced speech can be modelled as an impulse train, which only

enables to control the pitch of the synthetic speech. However, the quality of the syn-

thetic speech obtained with the impulse train is poor. One way to improve the quality

is to use a mixed excitation signal, which is obtained by adding a noise component to

the periodic pulse train. In HMM-based speech synthesis, the weighting of the noise

and periodic signals is typically performed in the frequency domain by using a mixed-

multiband excitation model. The impulse train signal might also be processed, e.g. by

using a phase manipulation technique, in order to represent non-periodic characteris-

tics of the spectrum of the excitation.

Another problem of the impulse train is that it does not represent the shape char-

acteristics of the glottal source signal. For example, the residual signal obtained by

inverse filtering gives a better approximation of the glottal source derivative as the

energy of the residual signal is distributed along the fundamental period whereas the

energy of the impulse train is only concentrated at one instant of the period. As an

attempt to further improve the quality of the synthetic speech, other source modelling

approaches have been proposed for HMM-based speech synthesis, which try to better

approximate the voiced excitation to the residual. These are called residual modelling

79
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methods in this chapter.

Another method that has been used to improve the source modelling of the statisti-

cal speech synthesisers consists of using a more accurate estimate of the glottal source

signal than the residual signal. The conventional inverse filtering method does not cor-

rectly separate important characteristics of the source from the vocal tract, such as the

spectral tilt. Section 2.2.3 described methods which can more accurately separate the

glottal source from the vocal tract components of speech. However, such methods con-

sider a different source-filter model of speech, which was explained in Section 2.1.1.

That is, the source signal is no longer spectrally flat (it has a decaying spectrum) and

the synthesis filter represents the vocal tract transfer function instead of the spectral

envelope. This type of source-filter representation has also been employed in HMM-

based speech synthesis. In this case, speech can be synthesised using a glottal source

model or a real glottal flow signal which is transformed using glottal source parameters

(trained by the synthesiser).

This chapter gives an overview of the main types of excitation models which have

been used in HMM-based speech synthesis and the way these models have been in-

corporated into the statistical speech synthesisers. That is, the analysis, synthesis and

statistical modelling parts of the synthesisers will be mainly reviewed in terms of the

excitation.

4.2 Simple Pulse/Noise excitation

The simplest excitation model used in HMM-based speech synthesis consists of switch-

ing between a sequence of delta pulses (impulse train signal) and white Gaussian noise

for segments of voiced and unvoiced speech respectively. The first versions of the HTS

system described in Section 3.4 used this type of excitation.

4.2.1 Analysis

An advantage of the pulse/noise excitation is that it only requires a voiced/unvoiced

speech detector and the estimation of the F0 parameter, which is used to model the

pitch of the voiced excitation.
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Figure 4.1: Speech synthesis using the simple excitation model.

4.2.2 Synthesis

Figure 4.1 shows the block diagram of the speech waveform generation technique of

HMM-based speech synthesisers which use the simple pulse/noise excitation model,

e.g. Yoshimura et al. (2000); Tokuda et al. (2002). This figure also shows an example

of the impulse train and the noise excitation signals. The impulse train signal consists

of single pulses, which are spaced by the pitch period T0 = 1/F0. Speech is generated

by passing the excitation signal through the synthesis filter which is obtained from the

spectral envelope parameters. For example, the MLSA filter which was described in

Section 3.4.5.2 is typically employed in the HTS system.

The spectra of the noise excitation and the impulse train are approximately flat.

These signals also have the same power as they are both shaped by the spectral enve-

lope of the speech signal. Figure 4.2 shows an example of the white noise and impulse

train spectra. Typically, the noise signal is obtained by generating random values from

a normal distribution with zero mean and unit variance. On average, the power of this

noise signal is one. The power of an impulse train excitation x(n), with length N, can



Chapter 4. Source Modelling Methods in Statistical Speech Synthesis 82

1 2 3 4 5 6 7 8
0

5

10

15

20

Frequency (kHz)

L
o
g
 A

m
p
li
tu

d
e
 (

d
B

)

Spectrum of the impulse train

1 2 3 4 5 6 7 8
0

5

10

15

20

Frequency (kHz)

L
o
g
 A

m
p
li
tu

d
e
 (

d
B

)

Spectrum of the white noise

Figure 4.2: Spectra of the impulse train (left) and white noise (right) components of the

simple excitation model, respectively.

be calculated as

Px =
1
N

N

∑
n=1

(x(n))2 (4.1)

In order to ensure consistency between the energy of the noise and the impulse train

signals, the amplitude of the pulses generated by the synthesiser is equal to
√

N0, in

which N0 is the number of samples of the pitch period. From (4.1), the resulting

impulse train has power equal to one, which matches the power of the noise signal.

However, the pulse amplitude which is determined from an energy constraint of the

excitation signal does not correctly model the amplitude variations which are char-

acteristic of the voice source signal, such as amplitude variations at the instants of

maximum excitation (maximum of the real glottal flow derivative). The amplitude

variations of the delta pulse could have a negative effect on the speech quality if they

were not modelled correctly. For example, Fant (1997) indicated that variations of the

amplitude of maximum excitation are related to variations in voice effort. Also, he

found that there are dynamic changes of this amplitude parameter within an utterance,

which are related to intonation patterns, and that it has a characteristic phrase contour

(initial rise, declination, and fall at the end).

The main problem of the simple impulse train excitation is that it produces a

“buzzy” speech quality due to the strong harmonic structure of this signal. The strong

periodicity of the impulse train is clear in the example of Figure 4.2. Also, the pulse/noise

model is unable to correctly represent the excitation of speech sounds which are char-

acterised by the mix of a periodic with a noise component, such as voiced fricatives.
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4.2.3 Statistical Modelling

The acoustic modelling topology of HMM-based speech synthesisers which use the

pulse/noise excitation is usually similar to that of the HTS system, described in Sec-

tion 3.4.3. Table 4.1 summarises the structure of the HMM model in this type of

synthesisers. The streams for spectral parameters (representing the spectral envelope)

are modelled by Gaussian distributions. F0, its ∆ and ∆2 are modelled by a Multi-

Space probability Distribution (MSD) HMM. Each of these parameters is modelled

using a Gaussian distribution in the voiced space and a discrete distribution in the un-

voiced space. The distributions for spectral and F0 parameters are typically clustered

independently using different decision trees for each type of speech parameter.

Streams Probability Distributions

Spectrum Gaussian

F0 Multi-space

Table 4.1: HMM structure which is characteristic of HMM-based speech synthesisers

using a simple pulse/noise excitation.

4.3 Multi-band Mixed Excitation

4.3.1 Introduction

Different types of Multi-Band mixed Excitation (MBE) models have been used in

HMM-based speech synthesis in order to reduce the buzziness of the impulse train.

In general, the MBE signal is modelled in the frequency domain using a technique that

mixes the spectrum of a harmonic signal with the spectrum of a noise signal. This

section gives an overview of the most relevant MBE models which have been used in

HMM-based speech synthesis.

4.3.2 Mixed Multi-band Linear Prediction (MELP) Vocoder

The first statistical HMM-based speech synthesiser to use a MBE model was proposed

by Yoshimura et al. (2001). This system was developed by incorporating a MELP
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vocoder into the standard HMM-based speech synthesiser with simple excitation of

Yoshimura et al. (2000). MELP was first used for low-bit rate speech coding (2.4

and 4.8 kHz sampling frequencies) by McCree and Barnwell III (1995). Recently, the

MELP vocoder has also been integrated into the statistical speech synthesiser proposed

by Gonzalvo et al. (2007). Abdel-Hamid et al. (2006) have also used a MBE model

similar to the one of MELP in order to improve the speech naturalness of an Arabic

HMM-based speech synthesiser.

4.3.2.1 Analysis

The excitation parameters used by the MELP vocoder are F0, voicing strengths of the

speech signal in different frequency bands and the Fourier magnitudes of the harmon-

ics of the residual signal. The residual is calculated by inverse filtering the speech

signal using the LPC coefficients, while the Fourier magnitudes are obtained by com-

puting the fast Fourier transform (FFT) of the residual signal.

For the two HMM-based speech synthesisers which use MELP (Yoshimura et al.,

2001; Gonzalvo et al., 2007), the voicing strengths are calculated from the speech sig-

nal (sampled at 16 kHz) using the analysis method of the wide-band MELP vocoder

proposed by Lin et al. (2000). First, the speech signal was bandpass-filtered into five

frequency bands: 0-1, 1-2, 2-4, 4-6, and 6-8 kHz. Next, the voicing strength in each

frequency band is estimated by the maximum autocorrelation of the signal which is

bandpass filtered in that frequency band. The autocorrelation is often used to mea-

sure the periodicity of speech signals, as it is high for voiced and low for unvoiced

speech. The autocorrelation analysis is performed around the pitch lag, by calculating

the correlation coefficient at delay t (Lin et al., 2000), as follows:

ct =
∑

N−1
n=0 snsn+t√

∑
N−1
n=0 snsn ∑

N−1
n=0 sn+tsn+t

, (4.2)

where sn represents the bandpass filtered signal at sample n and N is the the size of the

pitch analysis window.

Both HMM-based speech synthesisers estimate the Fourier series magnitudes as

the largest DFT magnitudes of the residual signal within the frequency bands corre-

sponding to each pitch harmonic, as in the MELP vocoder of McCree and Barnwell III

(1995). The synthesiser of Yoshimura et al. (2000) uses the first ten pitch harmonic

magnitudes while the system of Gonzalvo et al. (2007) uses the first thirty magnitudes.
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Figure 4.3: Typical speech waveform generation technique of HMM-based speech syn-

thesisers which use the mixed excitation model of the MELP vocoder.

4.3.2.2 Synthesis

Figure 4.3 shows the general block diagram of the speech waveform generation method

of HMM-based speech synthesisers which use the excitation model of MELP.

The MELP vocoder produces the spectrum of the periodic pulse signal from the

input Fourier coefficients, by setting the magnitudes of the first harmonics (placed

at frequencies multiples of F0) equal to the normalised Fourier magnitudes and by

synthesising the remaining harmonics with a fixed magnitude value of one. Each phase

of the harmonics is set equal to zero, in order to align the harmonics into a single pulse

per pitch period. This ensures phase coherence between the synthetic speech frames

when they are concatenated using the Pitch-Synchronous Overlap-and-Add (PSOLA)

technique (Moulines and Charpentier, 1990), as the single pulse is located always at

the same position within the frame using this technique. Note that if all the magnitude

values are equal to one, the resulting spectrum is equivalent to that of the impulse train

(an example of this spectrum is shown in Figure 4.2). Finally, the pulse waveform is

calculated from the Fourier magnitudes and F0 by inverse DFT of one pitch period in

length.
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MELP uses an aperiodicity flag to decide if the pulse train of voiced speech is pe-

riodic or aperiodic. If speech is classified as aperiodic than each pitch period length

of the pulse is varied with a pulse position jitter. The HMM-based speech synthesiser

proposed by Gonzalvo et al. (2007) does not use position jitter, while the system of

Yoshimura et al. (2001) performs this aperiodicity transformation by using the same

method of the wideband MELP vocoder proposed by Lin et al. (2000). This vocoder

estimates the aperiodicity flag according to the voicing strengths and synthesises the

jittery speech by varying 25% of the pitch length. The aperiodic pulses and the noise

component of the mixed excitation have different functions in the vocoder. The main

goal of the mixed excitation is to reduce the buzzy quality while the jitter destroys

the periodicity of the synthetic speech in order to reduce the tonal noises. Another

function of jitter, indicated by McCree and Barnwell III (1995), is to reproduce the er-

ratic glottal pulses in speech frames located at voicing transitions (transitions between

voiced and aperiodic speech) or the vocal fry effect of speech.

The frequency bands of the filters used for mixing the pulse train (voiced filter)

and white noise (unvoiced filter) are calculated from the bandpass voicing strengths. A

frequency band is assigned to the voiced filter if the measure of voicing strength in that

band is above a certain threshold, and to the unvoiced filter if the voicing strength is

lower than the threshold. Figure 4.4 illustrates the mixing of an impulse train (without

using position jitter) with a noise signal using the method of the MELP vocoder. The

frequency bands assigned to each filter are represented in grey.

The two HMM-based speech synthesisers proposed by Yoshimura et al. (2000) and

Gonzalvo et al. (2007), respectively, use the MLSA filter to synthesise speech instead

of the conventional LPC synthesis filter of the MELP vocoder. The MLSA filter is

often used in HMM-based speech synthesis because it can be obtained directly from

the mel-cepstral coefficients and it is computationally efficient.

Finally, synthetic speech is filtered by a pulse dispersion filter in order to introduce

time-domain spread of the energy over the pitch period and enhance speech quality.

The dispersion filter reduces the peak-to-valley ratio (spectral parameter) of band-

pass filtered signals in frequencies away from the formants. According to McCree

and Barnwell III (1995), the smaller peakiness of the bandpass filtered natural speech

compared with the synthetic speech could be “due to a secondary excitation peak from

the opening of the glottis, aspiration noise resulting from incomplete glottal closure, or

a small amount of background noise which is visible in between the excitation peaks”.

The pulse dispersion filter which is used by both HMM-based speech synthesisers
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Figure 4.4: Example of the frequency bands assigned to the spectra of the pulse train

and noise signals, respectively. The shaded regions in the plots represent the frequency

bands of the bandpass filters which are used to obtain the periodic and non-periodic

components of the excitation, respectively.

(Yoshimura et al., 2000; Gonzalvo et al., 2007) is a 130th order FIR filter derived from

a spectrally flattened triangle pulse.

4.3.2.3 Statistical Modelling

Both synthesisers of Yoshimura et al. (2000) and Gonzalvo et al. (2007) respectively,

which use the MELP excitation model, have a similar HMM structure. These systems
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model the spectral envelope of speech, FFT magnitudes and voicing strengths using

Gaussian distributions. Each HMM state has four data streams for mel-cepstral coef-

ficients, F0, bandpass voicing strengths and Fourier magnitudes. Each stream contains

the static, the first order and second order derivatives. The mel-cesptral coefficients,

bandpass voicing strengths and Fourier magnitudes are modelled by diagonal Gaus-

sian distributions, respectively. Meanwhile, the F0 parameters are modelled by three

multi-space distributions (MSD), for the static vector and its first and second order

derivatives, respectively. The HMM structure of the speech synthesisers which use the

MELP vocoder is summarised in Table 4.2. The main characteristic of this statistical

model is the higher number of data streams, when compared with the synthesisers with

simple excitation.

The context-dependent HMMs are clustered using decision trees, which were de-

scribed in Section 3.3.3. HMM-based speech synthesisers which use the simple ex-

citation model (pulse/noise model) typically use separate decision trees to model the

mel-cepstrum and F0, as they have different contextual factors. For the same reason,

the distributions for the bandpass voicing strength and the Fourier magnitude are also

clustered independently from F0 and the spectrum, in the synthesisers which use the

MELP vocoder. However, the state occupation statistics used for clustering the voicing

strength and Fourier magnitude parameters are calculated from the mel-cepstrum and

F0 streams only.

Streams Probability Distributions

Mel-cepstrum Gaussian

F0 Multi-space

Voicing Strengths Gaussian

Fourier Magnitudes Gaussian

Table 4.2: Information about the statistical model used by the HMM-based speech syn-

thesisers with MELP vocoder.
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4.3.3 STRAIGHT Vocoder

STRAIGHT (Speech Transformation and Representation using Adaptive Interpolation

of weiGHT spectrum) is a high-quality system for speech modification (Kawahara

et al., 1999b). This system incorporates a mixed excitation model described by Kawa-

hara et al. (2001), which consists of weighting the periodic and noise components using

aperiodicity measurements of the speech signal.

4.3.3.1 Analysis

The Nitech-HTS 2005 system of Zen et al. (2007a) uses an implementation of the

STRAIGHT vocoder to extract the spectral envelope and aperiodicity measurements

from the speech signal. STRAIGHT represents both the spectrum and aperiodicity

of the speech signal by FFT coefficients, which are not suitable for statistical mod-

elling due to their high-dimensionality. Nitech-HTS 2005 overcomes this problem by

converting the amplitude spectrum to mel-cepstral coefficients and by averaging the

aperiodicity measurements in five frequency bands: 0-1, 1-2, 2-4, 4-6, and 6-8 kHz.

The aperiodicity measure used by STRAIGHT consists of the ratio between the

lower and upper smoothed spectral envelopes of the short-time speech signal (Kawa-

hara et al., 2001). The upper envelope, |SU |2, is calculated by connecting spectral

peaks (typically located at the harmonic frequencies) and the lower envelope, |SL|2, is

calculated by connecting spectral valleys (located around the middle point of two har-

monic frequencies). Next, the aperiodicity is calibrated by a table-look-up, averaged

and weighted by the speech power spectrum |S(w)|2 to obtain the final aperiodicity

measurement PAP(w):

PAP(w) =

∫
wERB(λ;w) |S(λ)|2 Γ

(
|SU |2
|SL|2

)
dλ∫

wERB(λ;w) |S(λ)|2 dλ
, (4.3)

where wERB(λ;w) represents a simplified auditory filter shape for smoothing the power

spectrum at the center frequency w and Γ() represents a table-look-up operation to

calibrate the spectral ratio obtained from simulation results using known aperiodic

signals.

The method used by the STRAIGHT vocoder to calculate the spectral envelope and

the aperiodicity component are explained in more detail in Section 4.3.3.1.
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Figure 4.5: Speech waveform generation method of the Nitech-HTS 2005 system,

which uses the mixed excitation model of the STRAIGHT vocoder.

4.3.3.2 Synthesis

The block diagram of the synthesis part of the Nitech-HTS 2005 system is shown

in Figure 4.5. This system synthesises speech pitch-synchronously by using frames

with length equal to twice the length of the pitch period (a fixed length for unvoiced

speech). For unvoiced speech frames, white Gaussian noise is uniformly distributed

along the unvoiced excitation frame. For voiced frames, the system generates a multi-

band mixed excitation signal similarly to STRAIGHT, in order to reduce the buzzy

quality caused by the impulse train signal. The weighting of the noise and the periodic

components of the excitation is performed by multiplying the amplitude spectrum of

each signal by a stepwise function, respectively. The two stepwise functions are dif-

ferent and they are defined by a constant weight value in each frequency band. The

speech synthesiser obtains the stepwise functions from the aperiodicity parameters de-

fined for the five frequency bands. Figure 4.6 shows an example of the voiced and

unvoiced weighting functions used to synthesise a speech frame by the system. The
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Figure 4.6: Example of the weighting functions of the periodic and noise components

generated by the Nitech-HTS 2005 system, which uses a mixed excitation model similar

to that of STRAIGHT.

amplitude spectrum of the signal obtained by mixing an impulse train with the noise,

using these weighting functions, is shown in Figure 4.7. The weighting functions used

by STRAIGHT are smoother than those of the HMM-based speech synthesiser, be-

cause the length of the aperiodicity parameters vector is the same as the number of the

frequencies components of the Fourier transform of the speech (which is obtained with

1024 point FFT).

The Nitech-HTS 2005 system also employes the STRAIGHT method for manip-

ulation of the phase of the delta pulse, in order to reduce the buzzy timbre. This

method consists of using an all-pass filter function Φ(w) of the excitation pulse (delta

pulse), which is based on the group delay design using random numbers. The desired

spread σg of the target group delay function τg is calculated by the following equations

(Kawahara et al., 2001):

τg(w) = ρ(w)
σgx(w)√

1
2π

∫
π

−π
|x(w)|2 dw

(4.4)

x(w) = F−1 (Ws(τ)N(τ)) , (4.5)

where F−1 denotes the inverse fast Fourier transform (IFFT) and N(τ) is the initial

random group delay function obtained by weighting Gaussian white noise, n(t), with

the function Ws(τ), in the spatial frequency domain. In this equation, ρ(w) represents

a frequency-weighting function used to control the temporal energy spread in each

frequency region of the pulse excitation. The phase characteristic of the excitation
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Figure 4.7: Example of the spectrum of the mixed excitation obtained with STRAIGHT

(without phase manipulation).

Φ(w) is calculated by integrating τg(w). Figure 4.8 shows the effect of the group delay

manipulation on the pulse signal. The two signals were obtained using the MATLAB

version of STRAIGHT. Note that the pulse signal shown in Figure 4.8, without phase

manipulation, is slightly different from the traditional delta pulse which is used by

Nitech-HTS 2005. The segment of the pulse train e(n) used by STRAIGHT, which is

shown in Figure 4.8, is calculated as

e(n) =− h(n)

∑
2N0
k=1 h(n)

+1, (4.6)

where N0 is the number of samples of the pitch period T0 and h(n) is a Hanning window

with length equal to twice the pitch period length. The signal e(n) is multiplied by
√

N0
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Figure 4.8: Effect of the group delay manipulation performed by STRAIGHT on the

simple pulse signal. In this example, the pitch period of the pulse excitation is equal to

7.6 ms and the standard deviation of random group delay was set equal to the standard

value used by STRAIGHT of 0.5 ms.
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Figure 4.9: Phase spectra of a delta pulse and a pulse generated by STRAIGHT using

group delay manipulation.

to have the same power as the noise signal. Figure 4.9 shows the phase spectra of a

delta pulse and a phase-processed pulse used by STRAIGHT.

STRAIGHT reconstructs a speech signal by convolving the excitation signal with

a minimum-phase impulse response which is obtained by calculating the complex cep-

strum of the speech spectrum (Kawahara et al., 2001). This method is described in

more detail in Section 6.2.3. The Nitech-HTS 2005 system uses a MLSA filter in-

stead of the STRAIGHT minimum-phase filter for generating the speech waveform.

Finally, the system concatenates the synthetic speech frames using the PSOLA tech-

nique (Moulines and Charpentier, 1990).
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4.3.3.3 Statistical Modelling

The general characteristics of the statistical model of the Nitech-HTS 2005 system are

presented in Table 4.3. The statistical model has three streams for mel-cepstrum, F0

and aperiodicity parameters. The spectral and aperiodicity parameters are modelled by

single diagonal Gaussian distribution while F0 and its first and second derivatives are

modelled by an MSD each.

Streams Probability Distributions

Mel-cepstrum Gaussian

F0 Multi-space

Aperiodicity Gaussian

Table 4.3: Information about the statistical model used by the Nitech-HTS 2005 system.

A decision tree is separately constructed for each state position of spectrum, F0,

aperiodicity measurements, and state duration. Zen et al. (2007a) give information

about the number of leaf nodes of constructed decision trees for the different types of

features, for different voices built with this system. The number of nodes for the ape-

riodicity measurements (minimum of 676 and maximum of 924) is of the same order

of the number of nodes for the spectral parameters (minimum of 859 and maximum of

1021) but it is significantly lower than the number of nodes for F0 (minimum of 1691

and maximum of 2090) on average.

4.3.4 Harmonic-plus-Noise Model

The HMM-based speech synthesisers of Kim et al. (2006), Kim and Hahn (2007),

and Drugman et al. (2009b) respectively employ the hybrid harmonic/stochastic or

Harmonic-plus-Noise Model (HNM) of speech (Stylianou, 2001, 1996), in order to

combine the periodic and noise components of the excitation. The HNM has also been

used to represent the speech signal in HMM-based speech synthesis by Banos et al.

(2008) and Hemptinne (2006), but the following sections only describe the methods

which use the HNM for excitation modelling.

The HNM divides the spectrum of the speech signal into two bands separated by the

maximum voiced frequency, Fm. The low-frequency band is composed of a harmonic
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structure, while the high-frequency band contains a modulated noise component.

4.3.4.1 Analysis

The harmonic part of the speech signal in HNM is described by a sum of harmonics:

sh(t) =
L(t)

∑
k=−L(t)

Ak(t)e jkw0(t)t , (4.7)

where L(t) represents the number of harmonics included in the harmonic part, w0(t)

is the fundamental frequency and Ak(t) is a complex number which represents the

amplitude and phase of the harmonic k. The number of harmonics depends on w0(t)

and Fm.

The method proposed by Stylianou (2001) to calculate Fm is based on a peak pick-

ing algorithm. Spectral peaks are searched for along the spectrum of the speech signal

and they are classified as voiced or unvoiced depending on a threshold based test,

called the “harmonic test”. After applying a smoothing filter to the resulting values of

the harmonic test, Fm is estimated as the highest voiced frequency.

Stylianou (2001) describes the noise component of the HNM, sn(t), using a time-

varying autoregressive (AR) model, h(τ, t), and a time-domain modulation imposed by

a parametric envelope, e(t), as follows:

sn(t) = e(t) [h(τ, t)∗b(t)] , (4.8)

where ∗ denotes convolution and b(t) is white Gaussian noise. The HNM uses modu-

lated noise in order to better represent the time-domain characteristic of the noise, as

the noise in natural speech usually is not spread uniformly over the whole pitch period

(it appears as noise bursts, instead). The noise parameters used by Stylianou (2001) are

the coefficients of the AR filter (10th order) and ten values of speech variance, which

are estimated per speech frame using ten sub-windows.

The HMM-based speech synthesiser proposed by Kim et al. (2006) uses a two-band

excitation model which is a simplification of the conventional HNM. The excitation pa-

rameters used by this synthesiser are F0 and FM only. The spectral parameters are the

LSF coefficients calculated from the speech signal. The synthesiser also uses a differ-

ent method to estimate the FM parameter than the original HNM method (Stylianou,

2001), in order to improve the robustness of the analysis. This technique estimates

FM from the normalised correlation of the high-pass filtered speech R f
n,HB, which is

calculated using the following equations:
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R f
n,HB(τ) =

∑
N−1
n=0 s f

HB(n)s
f
HB(n+ τ)√

∑
N−1
n=0

{
s f

HB(n)
}2

∑
N−1
n=0

{
s f

HB(n+ τ)
}2

(4.9)

s f
HB(n) = h f

HPF ∗ s(n), (4.10)

where τ is the number of samples of the pitch period, N is the pitch analysis window

size, h f
HPF is the high-pass filter with cut-off frequency f and s f

HB(n) is the filtered

high-band speech. First, each speech frame is classified as voiced or unvoiced and F0

is calculated. Next, if the input frame is voiced it is filtered sequentially with high-pass

filters of increasing cut-off frequencies and R f
n,HB is calculated for each signal. FM is

estimated as the lowest cut-off frequency which satisfies R f
n,HB < 0.5. This method

is based on the assumption that speech is characterised by a more irregular harmonic

structure at higher frequencies. The autocorrelation of a signal is excepted to increase

with its degree of periodicity (autocorrelation is close to one for a periodic signal and

close to zero for an aperiodic signal). Then, if the signal is aperiodic, a lower cut-off

frequency f would result in higher R f
n,HB.

Recently, a more accurate method to estimate the maximum voiced frequency

has been proposed by Han et al. (2009), in order to improve the quality of HMM-

based speech synthesis using HNM. This technique consists of employing an iterative

analysis-by-synthesis scheme to minimise spectral distortion and estimate the optimal

FM. The initial estimate of FM for the iterative algorithm is calculated from the nor-

malised correlation of high-pass filtered speech.

The HMM-based speech synthesiser proposed by Drugman et al. (2009b) also uses

the idea of HNM to model the excitation. However, the model of the harmonic com-

ponent is different from the model described by (4.7). The parameters of the periodic

excitation are the principal components (Jolliffe, 2002) of the residual calculated by

inverse filtering, instead of the harmonic amplitudes and phases of the speech signal.

Also, the maximum voiced frequency is set equal to a constant value FM = 4 kHz.

In general, the statistical speech synthesisers which use a two-band excitation

model (Kim et al., 2006; Kim and Hahn, 2007; Drugman et al., 2009b) do not es-

timate the all-pole coefficients and the variance parameters of the HNM (Stylianou,

2001). The AR parameters of the noise are not modelled by the synthesisers because

the spectrum of the excitation model is assumed to be approximately flat. In these sys-

tems, the amplitude spectrum of the unvoiced speech signal is shaped by the synthesis

filter, which represents the spectral envelope.
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Figure 4.10: Synthesis part of a HMM-based speech synthesiser which uses the max-

imum voiced frequency parameter of the HNM to mix the harmonic and noise parts of

the mixed excitation.

4.3.4.2 Synthesis

The harmonic part of the HNM is synthesised by a sum of sinusoids using (4.7), which

are calculated from the estimated F0, amplitudes of the harmonics and their phases.

The noise component of the speech signal is obtained by filtering a unit-variance white

Gaussian noise through the all-pole filter and modelling the envelope of the resulting

signal using the variance parameters, as described by the noise model in (4.8). For

synthesising a voiced speech frame, the noise component is also high-pass filtered with

cut-off frequency FM and then it is multipled by a time-domain envelope (parametric

triangular function) synchronized with the pitch period. The noise and harmonic parts

are shifted to be centered on the center of gravity of the harmonic part (Stylianou,

2001) . Then, the periodic and noise signals are added together pitch-synchronously.

Figure 4.10 shows the synthesis part of the HMM-based speech synthesiser pro-

posed by Kim et al. (2006), which uses FM to model the two-band mixed excitation.

It is similar to the synthesis method used by the HMM-based speech synthesiser using
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Figure 4.11: Mixing of a low-pass filtered impulse train with high-pass filtered white

noise. In this example, the cut-off frequency of the filters is 4 kHz. The shaded regions

in the upper left and right plots represent the frequency bands of the low- and high-pass

filters, respectively.

MELP, which is illustrated in Figure 4.3, except the bandpass filters and the voicing

strength decisions are different. Also, the synthesiser with HNM does not use the

harmonic amplitudes of the periodic pulse (which are used by MELP) to generate the

periodic pulse train. The position jitter and the pulse dispersion techniques are the

same as used by MELP. The HMM-based speech synthesiser with HNM uses fifteen

pairs of the 6th-order Butterworth low- and high-pass filters, which are designed with
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0.5 kHz step increment within the 8 kHz frequency band. The maximum voiced fre-

quency parameter is used to select the low- and high-pass filters during synthesis. The

filters divide the full bandwidth into the lower and higher frequency band. The low-

and high-pass filters are applied to the pulse and the white noise signals, respectively.

Then, the mixed excitation is obtained by adding the filtered signals together. Fig-

ure 4.11 illustrates the mixing of an impulse train signal with a noise signal using the

low- and high-pass filters of the excitation model, in the frequency domain. In this

example, FM = 4 kHz. This system does not perform the amplitude modulation of the

noise, which is used in the conventional HNM (Stylianou, 2001).

The statistical speech synthesiser of Drugman et al. (2009b) uses the parameters

of the residual signal to model the harmonic part of the HNM. The synthesis of this

periodic excitation is described in the next section. The noise component is synthesised

using (4.8). However, the autoregressive-model h(τ, t) is always the same and acts as a

high-pass filter, with cut-off frequency FM = 4 kHz and slightly attenuated in the very

high frequencies (near 8 kHz). The variance parameter of the noise in the HNM is

not modelled by this system. The noise is modulated by a pitch-dependent triangular

window only.

4.3.4.3 Statistical Modelling

Table 4.4 shows the general characteristics of the statistical model used by the HMM-

based speech synthesisers with HNM. Each data stream contains the static, delta and

delta-delta features. The maximum voiced frequency parameters are modelled with

a multi-space probability distribution because they are not estimated for unvoiced

speech.

Streams Probability Distributions

LSP Gaussian

F0 Multi-space

Maximum Voiced Frequency Multi-space

Table 4.4: Information about the statistical model used by the HMM-based speech syn-

thesisers with HNM.



Chapter 4. Source Modelling Methods in Statistical Speech Synthesis 100

The acoustic modelling part of the system proposed by Drugman et al. (2009b),

which uses the residual parameters to model the periodic excitation of the HNM, is

described later in Section 4.4.3.3.

4.3.5 Speech Quality

By using a multi-band mixed excitation in HMM-based speech synthesis, the qual-

ity of the synthetic speech can be significantly improved compared with the simple

pulse/noise excitation. However, the speech quality achieved by the state-of-the art

synthesisers which use this type of excitation is still far from the quality of human

speech.

The results of the experiment conducted by Yoshimura et al. (2001) in order to

evaluate their HMM-based speech synthesiser which uses the MELP vocoder indicated

that modelling the Fourier magnitudes, the jitter processing and the pulse dispersion

had a small effect on the synthetic speech quality. According to these results, the main

contribution to the improvement in speech quality by using MELP is the mix of the

noise and periodic components of the excitation (by using the bandpass filters, which

are controlled by the voicing strength parameters).

4.4 Residual Modelling

4.4.1 Introduction

The residual obtained by inverse filtering the speech signal contains more character-

istics of the voice source than the pulse train signal. For example, the residual cal-

culated for voiced speech better approximates the energy contour of the voice source,

compared to the impulse train. The residual also contains more detail of the source,

compared to both the simple pulse and the multi-band mixed excitation models which

were described in Section 4.3. For example, the residual contains phase information

and non-linear effects which are not represented by those excitation models.

HMM-based speech synthesisers which use the multi-band excitation model of the

MELP and STRAIGHT vocoders perform signal processing on the pulse train in order

to better mimic the non-harmonic characteristics of the source However, the param-

eters which are use to control the degree of voicing in these synthesisers are usually

calculated heuristically from the speech signal, e.g. the voicing strength parameters of

the MELP vocoder and the maximum voiced frequency of the HNM.
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Figure 4.12: Mixed excitation model based on a multipulse signal and adaptive filtering.

This section presents an overview of the statistical speech synthesisers which use

the waveform of the residual signal to model the relevant characteristics of the source.

4.4.2 Multipulse-based Mixed Excitation

4.4.2.1 Excitation Model

The speech synthesiser described by Maia et al. (2007a) is based on the Nitech-HTS

2005 system (Zen et al., 2007a) but it uses a different excitation model to the STRAIGHT

multi-band mixed excitation. They proposed a model which is based on state-dependent

filters and pulse trains. This model resembles multipulse excitation linear prediction

coding algorithms, such as the one used by the Code Excited Linear Prediction (CELP)

vocoder of Guerchi and Mermelstein (2000). Figure 4.12 shows the block diagram of

this excitation model. The periodic component of the excitation is represented by a

multipulse signal (defined by the positions p j and the amplitudes a j of the pulses) and

the coefficients of a voiced filter, Hv(z). The input of the pulse train to the voiced filter

yields a signal which is intended to be as similar as possible to the residual. The noise

component is modelled by the coefficients of an unvoiced filter, Hu(z), which weights

the white noise in terms of the spectral shape and power.

4.4.2.2 Analysis

Figure 4.13 shows the system used by Maia et al. (2007a) to estimate the filters and

optimise the positions and amplitudes of the multipulse t(n), by minimising the error

w(n) between the input residual signal e(n) and the periodic component v(n). The

goal of pulse optimisation is to approximate the voiced excitation v(n) to e(n) as much

as possible, in a way to remove the short and long-term correlation of the unvoiced
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Figure 4.13: System used to maximise the likelihood of the residual given the excitation

model.

excitation, u(n), during the filter calculation. The function of Hu(z) is to remove the

remaining long term correlation from the signal u(n).

The transfer functions of the voiced and unvoiced filters, respectively, are given by

Hv(z) =

M
2

∑
l=−M

2

h(l)z−l (4.11)

Hu(z) =
1

G(z)
=

K
1−∑

L
l=1 g(l)z−l

, (4.12)

where M and L are the respective orders of the filters, and K is the gain of the unvoiced

filter.

The residual vector e = [e(0) . . .e(N−1)]T is the sequence of all the residual sam-

ples, with length N, which are computed from the speech database. As shown in the

analysis system in Figure 4.13, the unvoiced excitation vector u = [u(0) . . .u(N−1)]T

is given by

u(n) = e(n)−v(n), (4.13)

where [·]T means transposition and v = [v(0) . . .v(N−1)]T is the voiced excitation

vector. The error vector w can be represented by

w = Gu, (4.14)

where G is an N×(N+L) matrix containing the overall impulse response of the inverse

unvoiced filter G(z). Maia et al. (2007a) compute a voiced and unvoiced filter for all

the HMM states, {1, . . . ,S}, along the entire database. The residual segments which
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are used to calculate the impulse responses for each state s are obtained using Viterbi

alignment of the speech database. G contains the impulse responses G̃ j,s for all the j-

speech segments, which are assigned to a state s. Since the filters are state-dependent,

the overall voiced excitation v is given by

v = A1h1 + . . .+AShS, (4.15)

where hs = [hs(−M/2) . . .hs(M/2)]T is the impulse response vector of the voiced filter

for state s and As is the overall pulse train matrix where only the pulse train positions

belonging to state s are non-zero.

By using (4.13) to (4.15), the likelihood of e given the excitation model is

P [e|Hv(z),Hu(z), t(n)] =
1√

(2π)N(
∣∣GT G

∣∣)−1
e−

1
2 [e−∑

S
s=1 Ashs]

T GT G[e−∑
S
s=1 Ashs] (4.16)

The state-dependent filter Hv(z) is calculated by maximising the log likelihood. Thus,

the vector of coefficients of the voiced filter hs for each state s, can be obtained from

∂ logP [e|Hv(z),Hu(z), t(n)]
∂hs

= 0, (4.17)

which results in

hs =
[
AT

s GT GAs
]−1 AT

s GT G

[
e−

S

∑
k=1,k 6=i

Alhl

]
(4.18)

Maia et al. (2007a) solve this linear system by considering the least-squares formula-

tion for the design of a filter (Jackson, 1996).

The state-dependent filter Hu(z) is obtained from another expression of the log

likelihood. The coefficients of G(z) are calculated as

∂ logP [e|Hu(z)]
∂K

= 0 (4.19)

This equation can be solved by performing autoregressive spectral analysis on u(n)

over speech segments belonging to the state s. Maia et al. (2007a) first estimate the

mean autocorrelation function for each state and then calculate the filter coefficients

using the Levinson-Durbin algorithm (Markel and Gray, 1976). The all-pole structure

based on LP coefficients, which is given by (4.12), was chosen because of its simplicity

and to ensure the stability of Hu(z).
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Maia et al. (2007a) proposed a method to optimise the pulse positions and am-

plitudes of t(n) similar to the technique used by the MELP coders of McCree and

Barnwell III (1995); McCree et al. (1996). The algorithm consists of minimising the

mean squared error ε = 1
N wT w of the system shown in Figure 4.13. The expression

for this error is

ε =
1
N

[
e−

S

∑
s=1

Ashs

]T

GT G

[
e−

S

∑
s=1

Ashs

]
(4.20)

Figure 4.14 shows the block diagram of the recursive algorithm proposed by Maia

et al. (2007a) to estimate iteratively the filters Hv(z) and Hu(z), and optimise the po-

sitions and amplitudes of t(n). In the HMM-based speech synthesiser of Maia et al.

(2007a), the residual signal is extracted by inverse filtering the speech signal with the

Mel Log Spectrum Approximation (MLSA) model. Figure 4.15 shows an example

of the residual waveform calculated by inverse filtering the speech signal using the

mel-generalised cepstral coefficients. The pulse positions are first obtained from the

pitch-marks and each voiced filter is initialised by hs(n) = δ(n), which means that the

initial pitch pulses are given by the pitch-marks in e(n). In the recursive algorithm,

the pulses are optimised by calculating the pulse positions and amplitudes from (4.20)

and keeping the filters Hv(z) and Hu(z) constant for each state. Next, the coefficients

of the voiced filter
{

hs(−M
2 ), . . . ,hs(

M
2 )
}

and the coefficients of the inverse unvoiced

filter {gs(1), . . . ,gs(l)} and its gain Ks, are calculated for each state s using (4.18) and

(4.19), respectively. The stop criterion is obtained from the voiced filter variation tol-

erance and the maximum number of iterations.

4.4.2.3 Synthesis

Speech is synthesised according to the excitation model represented in Figure 4.12.

The input multipulse and white noise sequences are filtered through the voiced and

unvoiced filters, respectively. The resulting noise component is high-pass filtered with

cut-off frequency of 2 kHz (Maia et al., 2007b), in order to avoid the synthesis of

rough speech. Next, the harmonic and noise components are added together to produce

the mixed excitation. In the unvoiced regions, no pulses are assigned to the periodic

component of the excitation. Finally, the excitation signal is passed through a MLSA

filter defined by the mel-cepstral coefficients.

Although the estimation of pulse positions and amplitudes of the multipulse signal

t(n) is performed at the training phase in the HMM-based speech synthesiser of Maia
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Figure 4.14: Closed-loop algorithm for joint filter calculation and multipulse optimisation.

Figure 4.15: Segment of a residual signal calculated by inverse filtering the speech

signal using the mel-generalised cepstral coefficients. The mel-generalised spectral

analysis of speech was performed with α = 0.42, γ = −1/3, order 39, and windows

with duration 25 ms.

et al. (2007a), this system utilises the traditional impulse train generated from F0 at

run-time. They plan to introduce some multipulse models to be utilised at run-time

synthesis.
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4.4.2.4 Statistical Modelling

The HMM-based speech synthesiser of Maia et al. (2007a) models F0 and the mel-

cepstral coefficients using a method similar to that used by the HTS system, which

is described in Section 3.4.3. The trained HMMs are clustered by building different

decision trees for F0 and spectrum parameters, in both systems.

The states used to train the voiced and unvoiced filter parameters are not the same

as the states which are used to train the F0 and the spectrum parameters. The states

{1, . . . ,S} of the multipulse-based excitation are obtained after the training of the

HMM-based speech synthesiser and are regarded as leaves of some decision-trees gen-

erated for the spectrum stream. For filter calculation, each excitation state must con-

stain a certain number of speech segments. These segments are obtained by mapping

their corresponding full-context labels onto the clustered states of the referred decision-

trees. The boundaries of the speech segment are generated by Viterbi alignment of the

database after the training of F0 and the mel-cepstral coefficients.

Maia et al. (2007a) use phonetic and phonemic questions only, and they adjust

parameters which control the size of the trees to obtain small trees. The number of

state clusters used by the system is S = 131. Using smaller decision-trees to represent

the states of the multipulse excitation reduces the computational complexity of the

system by using a smaller number of states than the number used to model F0 and the

mel-cepstral coefficients. The method of deriving the filter states from the spectrum

stream relies on the assumption that the residual sequences are highly correlated with

the spectral parameters from which they were obtained.

The number of additional parameters used to model the excitation compared with

the simple excitation is equal to the sum of the number of voiced and unvoiced filters

coefficients times the number of states S, that is S(M+L+2). The filter orders in the

synthesiser of Maia et al. (2007a) are M = 512 and L = 256, respectively. The general

structure of the HMMs used by this system is given in Table 4.5.

4.4.3 Pitch-synchronous Residual Frames

The HMM-based speech synthesisers proposed by Drugman et al. (2009c,b) are a mod-

ified version of the HTS version 2.1 (Tokuda et al., 2009). The main alteration was the

integration of a source model based on pitch-synchronous (PS) residual signals calcu-

lated from the recorded speech, which replaced the impulse train.

The two systems, which use the PS-residuals, parameterise the residual frames us-
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Streams Probability Distributions

Mel-cepstrum Gaussian

F0 Multi-space

Voiced and Unvoiced filters Gaussian

Table 4.5: Statistical model used by the HMM-based speech synthesisers which uses

a multipulse and adaptive filters to model the excitation.

ing the same method. However, they differ in the way the residual signal is generated

from the excitation parameters for synthesising speech. The system proposed by Drug-

man et al. (2009c) uses a codebook of typical residual frames to obtain real segments

of the residual, from the excitation parameters. On the other hand, the system from

Drugman et al. (2009b) uses a deterministic stochastic model of the residual.

4.4.3.1 Analysis

The residual is calculated by performing Mel-Generalised Cepstral (MGC) analysis on

the speech signal and by inverse filtering the short-time signal using the MGC coef-

ficients. Figure 4.15 shows a segment of a residual signal calculated using the MGC

coefficients. This residual signal was calculated by choosing α = 0.42 and γ =−1/3,

which are the same values used for MGC analysis by the systems of Drugman et al.

(2009c,b).

The analysis of the residual is perfomed pitch-synchronously by segmenting the

signal into frames with duration equal to twice the fundamental period and centered at

the Glottal Closure Instants (GCI). Both speech synthesisers (Drugman et al., 2009c,b)

use the GCI detector proposed by Drugman and Dutoit (2009). This method first cal-

culates the time intervals where the GCI are expected to occur, from the mean-based

signal y(n) of the speech waveform s(n). The mean-based signal is given by

y(n) =
1

2N +1

N

∑
m=−N

w(m)s(n+m), (4.21)

where w(m) is a window of length 2N+1. Drugman and Dutoit (2009) proposed to use

a Blackman window whose duration is between 1.5 and 2 times the average pitch period

T0,mean (they used a duration of 1.75T0,mean). The final step of the GCI estimation is
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to estimate the glottal closure as the strongest peak of the linear prediction residual

within each interval.

The source parameters used by the speech synthesisers of Drugman et al. (2009c,b)

are F0 and the coefficients calculated by Principal Component Analysis (PCA), e.g.

Jolliffe (2002), of the PS-residual frames. PCA decomposes the short-time signal on

an orthogonal basis defined by a set of eigenvectors and its coefficients. The residual

parameters trained by the synthesisers are the coefficients of the eigenvectors.

The short-time residual signals are normalised in both length and energy before

applying PCA, in order to ensure the coherence of the data set. In general, the number

of PCA coefficients which are selected is lower than the length of the residual signal,

in order to achieve dimensionality reduction. Drugman et al. (2009b) suggest that 15

eigenvectors calculated by PCA is sufficient to obtain high-quality coding results.

The effect of shortening the residual frames by resampling (decimation) is to ex-

pand the spectrum of the residual signal. Thus, the resulting normalised frames repre-

sent a low-frequency signature of the original residual frames. Drugman et al. (2009c,b)

assume that the time-scale transformation of the residual preserves the shape param-

eters of the source signal, such as the open quotient (measures the normalised dura-

tion of the open phase) and the speed quotient (measures the asymmetry of the glottal

pulse). However, the shape of the residual obtained by inverse filtering is not a correct

representation of the shape of the glottal source, for the reasons explained in Sec-

tion 2.2.3.1. Thus, it is not clear that the resampling of the residual frame preserves the

shape characteristics of the source signal.

The HMM-based speech synthesiser of Drugman et al. (2009c) uses a codebook-

based method to map the normalised residual frames to a set of residual frames which

were extracted from the speech database. In this approach, the Resampled and en-

ergy Normalized (RN) frames have a length of 20 samples. Figure 4.16 shows the

method used to build the codebooks. The RN frames are clustered using the K-means

algorithm, resulting in approximately 100 centroids. The RN frame associated with

each centroid is obtained by selecting the ten closest RN frames to each centroid and

retaining the longest frame candidate. The longest frame is chosen in order to avoid

the appearance of “energy holes” in the spectrum of the synthetic speech. That is, by

choosing the longest residual frame the spectral compression effect of time-scaling the

residual frame to have a normalised length is reduced. A codebook of real residual

frames contains the residual signals assigned to each centroid of the RN codebook.

The speech synthesiser of Drugman et al. (2009b) uses the RN frames as part of
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Figure 4.16: Method used to build the codebooks of residual frames.

a harmonic plus stochastic model (or HNM) of the excitation, which was described

in Section 4.3.4. Basically, the HNM divides the speech spectrum into two parts and

models the lower and higher frequency regions by a harmonic and a noise signal, re-

spectively. The maximum voiced frequency FM delimits the frequency bands of the

two components. (Drugman et al., 2009b) uses the RN frames to represent the har-

monic part of the excitation for voiced speech. In this system the maximum voiced

frequency has a constant value, FM = 4 kHz. This approach assumes that the low-

frequency signature of the RN frames is a good approximation of the low-pass filtered

(with cut-off frequency 4 kHz) version of the real residual signal. The use of this HNM

for the excitation avoids the mapping of the RN frames to the real residual frames, e.g.

using the codebook technique. The HMM-based speech synthesiser using HNM was

developed in order to overcome problems associated with the codebook-based tech-

nique, in particular to improve the quality of female synthetic speech. This synthesiser

chooses the pitch value F∗0 of the RN frames using the following condition:

F∗0 ≤
FN

Fm
F0,min, (4.22)

where FN and F0,min denote respectively the Nyquist frequency and minimum pitch

value measured from the speech database, which is associated with a given speaker.

The normalised pitch is restricted by the condition (4.22) in order to avoid the appear-

ance of “energy holes” in the spectrum of the synthetic speech.

4.4.3.2 Synthesis

Figure 4.17 shows the method to synthesise voiced speech by the system which uses a

codebook of pitch-synchronous residual frames (Drugman et al., 2009c). The excita-
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Figure 4.17: Speech synthesis part of the HMM-based speech synthesiser which uses

a codebook of pitch-synchronous frames to model the excitation.

tion parameters are F0 and the PCA coefficients. First, the RN residual frame (residual

signal normalised in pitch and energy) is obtained by linear combination of the eigen-

vectors, using the PCA parameters. Then, the closest residual frame (with the original

length and energy) to the RN frame is selected from the codebook by using the mean

square error criterion. Next, the selected residual signal is resampled to the target

pitch, which is given by F0. Resampling of the residual changes its spectrum. Nev-

ertheless, Drugman et al. (2009c,b) assume that the time-scaling transformation pre-

serves the important parameters of the voice source, which are related to voice quality
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Figure 4.18: Synthesis of voiced speech frames by the statistical speech synthesiser

which uses the HNM and pitch-synchronous residual frames to model the excitation.

(such as the open quotient and the speed quotient).

The block diagram of the method to synthesise voiced speech by the synthesiser

which uses the HNM (Drugman et al., 2009b) is shown in Figure 4.18. The RN resid-

ual frame is generated using the PCA parameters, as in the codebook-based method.

However, the RN residual signal is used to represent the harmonic component (low-

frequency part) of the HNM instead of using a codebook. This signal is resampled

to obtain the desired pitch period and then it is added to the noise component (high-

frequency part) to obtain the excitation of voiced speech. For unvoiced speech, the

excitation is modelled as white Gaussian noise only. The technique to synthesise the

stochastic part of this mixed excitation model has been described in Section 4.3.4.

Basically, it consists of high-pass filtering the white noise (beyond Fm = 4 kHz) us-

ing an autoregressive model and modulating the energy envelope of the signal with a

pitch-synchronous triangular window.

4.4.3.3 Statistical Modelling

The acoustic modelling part of the two statistical speech synthesisers which use PS

residual frames to model the excitation is similar since they use the same type of acous-

tic features. The main adjustment made to the training part of the HTS system was to

integrate a new data stream for the PCA parameters of the excitation model. This
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stream has the same structure as the F0 stream. The PCA parameters and its first and

second derivatives are modelled by a multi-space probability distribution, respectively.

The general properties of this type of statistical model are presented in Table 4.6.

Streams Probability Distributions

Mel-generalised cepstrum Gaussian

F0 Multi-space

PCA coefficients Multi-space

Table 4.6: Statistical model used by the HMM-based speech synthesisers which use

PS-residual frames to model the excitation.

4.4.4 Speech Quality

The results of the evaluation of HMM-based speech synthesisers using residual mod-

elling (Maia et al., 2007a; Drugman et al., 2009c,b) show that these systems performed

considerably better than the standard HMM-based speech synthesiser which uses the

simple pulse/noise model. These results give support to the hypothesis that the residual

signal better approximates the glottal flow first derivative waveform and better models

the source characteristics of voiced speech, when compared with the impulse train.

The results reported by Drugman et al. (2009b), for the system which uses PS

residual frames, were obtained by using the first eigenvector of the normalised residual

frames only. In this case, the PCA parameters of the excitation do not need to be

trained by the statistical speech synthesiser. The higher order eigenvectors were not

used because experiments showed that they did not produce audible differences in the

synthetic speech.

The speech synthesiser using a multipulse-based excitation model (Maia et al.,

2007a) obtained similar results to a conventional HMM-based speech synthesiser which

uses the multi-band mixed excitation model. The disadvantage of the multipulse model

compared with the mixed multi-band excitation is that it requires many more param-

eters to model the excitation, e.g. 512 coefficients for the voiced filter and 256 filter

coefficients for the unvoiced filter (Maia et al., 2007a). Drugman et al. (2009c,b) eval-

uated the HMM-based speech synthesisers using PS residual frames against a baseline
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system which uses simple excitation. However, they also plan to evaluate their systems

against a standard HMM-based speech synthesiser using multi-band mixed excitation.

Residual-based models of the excitation do not represent all aspects of the glottal

source signal, since inverse filtering does not accurately separate the source character-

istics from the speech signal. For example, there are characteristics of the source, such

as the spectral tilt (decaying spectrum at higher frequencies), which are not correctly

modelled by the residual signal. In particular, the spectral tilt of the glottal source is

incorporated into the spectral envelope of speech, as inverse filtering does not remove

the spectral tilt from the speech spectrum.

The filter coefficients of the multipulse model and the PCA coefficients of the resid-

ual are not adequate for controlling voice quality in the HMM-based speech synthe-

sisers, because their correlation with voice quality is not known. For example, they do

not allow acoustic characteristics of the glottal source which are correlated with voice

quality to be easily modified, such as the open quotient (duration of the glottal pulse)

and the speed quotient (asymmetry of the glottal pulse).

4.5 Glottal Source Modelling

4.5.1 Introduction

The conventional inverse filtering technique, which was described in Sections 2.1.3

and 2.2.3.1, does not produce an accurate estimate of the glottal source signal. The

HMM-based speech synthesiser utilising Glottal Inverse Filtering (GIF) proposed by

Raitio et al. (2008) uses an analysis method that more accurately estimates the glottal

source signal and the vocal tract transfer function than inverse filtering. This system

uses a better approximation of the glottal source signal than the delta pulse, in order to

produce higher-quality speech than the HMM-based speech synthesiser which uses the

simple pulse/noise excitation. Another advantage of using GIF is that it separates the

glottal source from the vocal tract components of speech. This enables the statistical

speech synthesiser to model the source and the vocal tract independently, which is

consistent with the theory of speech production.
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Figure 4.19: Flowchart of the IAIF method. The glottal source signal g(n) and the

vocal tract transfer function Hvt2(z) are calculated through an iterative algorithm using

adaptive all-pole modelling.

4.5.2 Glottal Inverse Filtered Signal

4.5.2.1 Excitation Model

The HMM-based speech synthesiser of Raitio et al. (2008) represents the source by

a signal calculated using a GIF method. The parameters calculated by GIF are used

to model both the spectra of the vocal tract and the glottal source. For synthesising

voiced speech, the system generates the excitation signal by using the source parame-

ters to modify the real pulse calculated by GIF. The noise component of this excitation

is modelled by the spectral energy of the noise in five frequency bands. Thus, this ex-

citation model is comparable to a multi-band mixed excitation in which the traditional

impulse train is replaced by a transformed real glottal pulse.

4.5.2.2 Analysis

The GIF method used by the speech synthesiser (Raitio et al., 2008) is the Iterative

Adaptive Inverse Filtering (IAIF) method (Alku et al., 1991), which was introduced in

Section 2.2.3.3. This is an automatic method for estimation of the glottal flow wave-

form and the vocal tract spectrum of voiced speech. Figure 4.19 shows the block
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Figure 4.20: Waveform of the glottal source signal calculated using the IAIF method,

from a speech frame with duration 20 ms. The analysis was performed pitch-

synchronous using an analysis window centered at the estimated glottal epoch.

diagram of this technique. First, the speech signal is inverse filtered using the coeffi-

cients of the first order LPC analysis, in order to remove the effect of the spectral tilt

associated with the glottal source and the lip radiation. Next, the initial estimate of the

vocal tract, Hvt1(z), is calculated by performing LPC analysis of order p on the output

signal (typically, p is between 10 and 12 for 8 kHz sampling frequency). The glottal

source signal g1(n) is calculated by inverse filtering the speech signal using Hvt1(z)

and by canceling the lip radiation through integration. The all-pole model of the re-

sulting glottal source signal, Hg1(z), is calculated by LPC analysis of order g (typically

between 8 and 10 for 8 kHz speech). Then, a second estimation of the vocal tract and

the glottal source is conducted. The spectral effect of the glottal source, which is rep-

resented by Hg2(z), and the lip radiation are canceled from the speech signal through

inverse filtering and integration respectively. The final model of the vocal tract, Hvt2(z),

is obtained by applying LPC analysis of order p to the filter output. Finally, the second

estimate of the glottal flow signal, g2(n), is obtained by canceling the spectral effect

of the vocal tract, given by Hvt2(z), and the lip radiation from the speech signal. Fig-

ure 4.20 shows an example of a glottal source signal (sampled at 16 kHz) calculated

by IAIF using LPC orders p = 20 and g = 10. These orders are equal to those used

by Raitio et al. (2008) to analyse speech sampled at 16 kHz. In this example, the three

peaks with maximal amplitude that can be observed in Figure 4.20 correspond to the

instants of maximal amplitude of three glottal pulses, respectively.
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Figure 4.21: Block diagram of the analysis method used by the HMM-based speech

synthesiser with glottal source modelling.

Figure 4.21 shows the block diagram of speech analysis which is performed by the

HMM-based speech synthesiser using glottal source modelling (Raitio et al., 2008).

First, speech is high-pass filtered in order to remove any low-frequency distortions and

is segmented using rectangular windows. The energy parameter is calculated directly

from the speech waveform, while the spectral energy of the noise is calculated for

five frequency bands (0-1, 1-2, 2-4 4-6 and 6-8 kHz) from the amplitude spectrum of

the speech signal obtained by FFT. The IAIF method is used to extract the vocal tract

spectrum Va(z) and the glottal source signal ga(n) from the short-time speech signal

(sampled at 16 kHz). Next, the spectral envelope of the glottal flow pulses Ga(z) is

parameterised using LPC analysis. The LPC orders of Va(z) and Ga(z) are 20 and 10

respectively. Finally, the F0 parameter is also estimated from the glottal source signal

using the autocorrelation function. The LPC parameters of the voiced and unvoiced

spectrum are converted to LSF parameters, as the LSF representation is more adequate

for statistical modelling. During speech analysis, one glottal flow pulse is selected and

stored as the library pulse, in order to be used for speech synthesis.

The IAIF method is not used for the analysis of unvoiced speech, as the source

component of this type of speech does not represent the glottal source. For unvoiced

speech, Raitio et al. (2008) uses conventional LPC analysis of order 20 for estimating

the spectral envelope. In this case, the spectrum of the excitation spectrum is obtained

by inverse filtering.
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Figure 4.22: Overview of the method to synthesise voiced speech by the HMM-based

speech synthesiser using glottal source modelling.

4.5.2.3 Synthesis

The HMM-based speech synthesiser using GIF (Raitio et al., 2008) generates the

speech waveform using the method shown in Figure 4.22. A simple method to synthe-

sise the periodic excitation from the spectral parameters of the glottal source is to shape

an impulse train with the source spectrum. However, Raitio et al. (2008) proposed a

different method. First, the glottal flow signal (from the pulse library) is interpolated

and scaled in magnitude to obtain a glottal pulse with the desired period length and

energy. Next, the glottal pulse train is filtered by an adaptive IIR filter which flattens

the spectrum of the glottal pulse train and applies the source spectrum represented by

the LPC coefficients. The transfer function of the filter is given by

HIIR(z) =
Gs(z)
P(z)

, (4.23)

where Gs(z) is the target all-pole spectrum and P(z) denotes the amplitude spectrum

of the library pulse. The goal of using a real glottal source pulse is to capture the ape-

riodicity characteristics which exist in the real glottal signal. The noise is weighted

using the spectral energy parameters in five frequency bands and added to the periodic

excitation to obtain the multi-band mixed excitation. The two components of the ex-
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citation are added pitch-synchronously by using F0 to control the duration of the noise

signal.

For unvoiced speech, the excitation is synthesised by scaling the energy of the white

noise signal. In this case, the spectral energy parameters and the voice source spectrum

are not used. Also, the synthesis filter is defined by the parameters of the unvoiced

spectrum (represents the spectral envelope) instead of the vocal tract spectrum.

A formant enhancement method (Ling et al., 2006a) is applied to the LSFs gen-

erated by the speech synthesiser in order to compensate for the averaging effect of

statistical modelling. The resulting voiced and unvoiced LSFs are converted to the

LPC parameters of the synthesis filter.

4.5.2.4 Statistical Modelling

The training method of the statistical speech synthesiser using glottal source modelling

(Raitio et al., 2008) is similar to that of the HTS system, which was described in

Section 3.4.3. The main differences between the two systems are in the statistical

model structure and the HMM parameter values, such as stream weights, and global

variance factors. Another difference is that the system with glottal source modelling

uses LSF parameters to represent the vocal tract and source spectra instead of the mel-

cepstral coefficients used by the HTS system to represent the spectral envelope.

The HMM topology of the system which uses the glottal pulse is a 5-state left-to-

right model. The feature vectors for mel-cepstrum, F0, source spectrum, and spectral

energies are each assigned to individual streams. Each feature and its derivatives (delta

and delta-delta features) are modelled as a continuous probability distribution (Gaus-

sian) streams, except F0 and its derivatives. The F0 parameters are modelled by the

conventional MSD (because they are not defined in unvoiced regions). Note that the

stream used for the vocal tract spectrum contains both the spectrum estimated by the

IAIF method for voiced speech and the spectrum estimated by conventional inverse

filtering for unvoiced speech. The stream of the voice source spectrum also contains

two types of spectrum: the glottal source spectrum and the unvoiced speech spectrum.

The structure of the HMM is summarised in Table 4.7.

In the synthesiser proposed by Raitio et al. (2008), the decision tree state-tying is

performed for each stream. The contextual features used for the decision tree cluster-

ing, such as phone level and higher-level phonological features (e.g. word prominence,

and clause type) were extracted using a front-end for Finnish, since the system was

built to synthesise Finnish speech.
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Streams Probability Distributions

Vocal tract spectrum (LSP) Gaussian

Voice source spectrum (LSP) Gaussian

F0 Multi-space

Spectral energies Gaussian

Energy Gaussian

Table 4.7: General characteristics of the statistical model used by the HMM-based

speech synthesiser with glottal source modelling.

4.5.3 Speech Quality

The speech synthesiser which employes GIF uses a library pulse (with a single pulse)

to synthesise speech for a given speaker. The excitation model used by this system

can be used to modify voice characteristics of the synthetic speech, e.g. by building

different library pulses for different speaking styles.

The system uses a real glottal pulse to generate the excitation signal, in order to

reproduce the fine characteristics of the glottal source signal. However, the interpo-

lation of the real glottal pulse for controlling the pitch may affect the speech quality,

because it produces an “energy hole” in the spectrum of the synthetic speech. Also,

this time-scaling transformation does not take into account the variation of the source

characteristics with F0. Several papers show that the glottal parameters are correlated

with F0, such as Strik and Boves (1992); Tooher and McKenna (2003); Fant (1997).

This correlation is discussed in Section 5.3.3.

Raitio et al. (2008) conducted an evaluation to compare their statistical speech

synthesiser utilising GIF to the HTS system which uses a simple pulse/noise excitation

model (described in Section 3.4). The same Finnish voice was built using the two

systems for the evaluation. The system of Raitio et al. (2008) was clearly better than

the system which used the simple excitation model.
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Spectrum Periodic Mixed Process. of

excitation excitation periodic excit.

Pulse/Noise spec. env. impulse - -

MELP spec. env. harmonics voiced & unvoiced jitter

of residual bandpass filters

STRAIGHT spec. env. impulse spectral phase

weighting processing

HNM spec. env. harmonics voiced LP filter & jitter

unvoiced HP filter

Residual spec env. filtered sum with -

filters multipulse filtered noise

Residual spec. env. pitch-sync. voiced LP filter & time-scaling

frames residual 1 unvoiced HP filter

Glottal vocal tract real glottal spectral time-scaling

source pulse weighting

Table 4.8: General characteristics of the main excitation models used in HMM-based

speech synthesis.

4.6 Conclusion

Recently, several methods have been proposed to improve source modelling in HMM-

based speech synthesis. Table 4.8 summarises the general characteristics of the exci-

tation models which were reviewed in this chapter. In general, the multi-band mixed

excitation, the residual-based, and the glottal source models outperform the simple

pulse/noise model. However, the speech quality achieved by the HMM-based speech

1Pitch-synchronous residual frames have been modelled using a codebook or HNM. In the first case,
the voiced and unvoiced filters of the mixed excitation were not used.
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synthesisers using improved excitation models to the pulse/noise is still far from the

naturalness of human speech. Further improvements are necessary to produce more

natural speech by statistical speech synthesisers and glottal source modelling is one of

the aspects which has room for more developments.

The main limitations found in the current excitation models used in HMM-based

speech synthesis are :

• correlation between F0 and source parameters is not modelled.

• signal processing of the excitation signal may deteriorate speech quality.

• reduced control over voice quality.

The excitation models described in this chapter do not seem to be appropriate to model

the correlation between the characteristics of the glottal pulse shape and the fundamen-

tal frequency, F0. This explains the fact that all the parameters of the excitation models

are trained separately from F0 by the HMM-based speech synthesisers. For example,

the LPC parameters of the glottal source spectrum, used by the synthesiser of Raitio

et al. (2008), and the PCA coefficients of the residual signal, used by the synthesiser of

Drugman et al. (2009c,b), are both modelled using an individual stream of the HMM.

Since the correlation between the F0 and the source parameters is not modelled by the

HMM-based synthesisers, assumptions about the characteristics of the source signal

are usually made by the systems during synthesis. For example, the systems proposed

by Drugman et al. (2009c) and Raitio et al. (2008) generate the periodic excitation

using the source parameters and then resample the resulting signal to reproduce the

target pitch. However, this time-scale transformation relies on the assumption that the

correlation between the important time parameters of the source pulse and its duration

(the period T0) is linear and has slope of one. In other words, this assumption means

that when the pitch period changes, the important shape parameters of the glottal pulse

(e.g. the relative duration of the pulse duration with the period and the asymmetry of

the pulse) remain the same. Past studies have showed that the behaviour of the glottal

parameters with F0 might not be a direct proportion, e.g. Strik and Boves (1992) and

Tooher and McKenna (2003). The correlation between the glottal source parameters

and T0 is discussed in Section 5.3.3.

The time-scale transformations of the excitation to obtain the desirable pitch, which

are used by Drugman et al. (2009c,b) and Raitio et al. (2008), could deteriorate the

quality of the synthetic speech because they cause compression and expansion of the
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spectrum. The phase manipulation techniques used by some HMM-based speech syn-

thesisers with multi-band mixed excitation could also produce speech artefacts if the

amount of randomness added to the phase is not appropriate.

Another limitation of the excitation models which have been used in HMM-based

speech synthesis, is that they do not offer parametric flexibility to easily control the

voice quality of the synthetic speech. The multi-band mixed excitation models used by

the statistical synthesisers allow the amount of noise of voiced speech to be controlled

and, in some cases, the position jitter and the phase of the pulse train too. However,

they do not represent many aspects of the excitation which are important for voice

quality, such as the glottal pulse shape. The voice quality control offered by speech

synthesisers which use the residual modelling methods is also limited. Both the co-

efficients of the adaptive filters used by Maia et al. (2007a), and the PCA parameters

used byDrugman et al. (2009c,b), do not have acoustic meaning. Thus, the control of

the acoustic properties which are related to voice quality (e.g. the waveform and the

spectral characteristics of the glottal flow) using this type of parameter is difficult.

The HMM-based speech synthesiser using glottal source modelling of Raitio et al.

(2008) uses the LPC parameters of the voice source to model a glottal pulse from a

library pulse. One way to transform voice quality using this system could be to use

a larger library of glottal pulses for different voice qualities. However, this technique

would still have problems for modelling glottal source dynamics related to voice qual-

ity, e.g. the variation of voice quality along an utterance. Another way to modify voice

quality using this system could be to transform the LPC coefficients. This option also

has some difficulties because these parameters are not directly related to the time and

spectral-characteristics of the glottal source signal.

In this thesis, an acoustic glottal source model, the Liljencrants-Fant (LF) model

(Fant et al., 1985), is used to model the periodic component of the excitation in HMM-

based speech synthesis. This glottal source model is described in the next chapter. One

advantage of using the LF-model when compared with the source model represented by

a real pulse is that it permits the correlation between F0 and the other glottal parameters

to be modelled, as the F0 parameter is described by this model. Another advantage is

that the LF-model parameters are strongly correlated with voice quality and they can

be controlled for achieving voice transformation.



Chapter 5

Acoustic Glottal Source Model

5.1 Introduction

A wide variety of models have been proposed in the literature to represent the glottal

source signal. For example, the most commonly used types of glottal source model

were described in Section 2.2.2, such as physical, acoustic, and pole-zero models. In

general, acoustic glottal source models use mathematical functions to represent the

curves of the glottal source waveform. Typically, the parameters of these models de-

scribe acoustic properties of the source, e.g. the instant and amplitude of the glottal

pulse peak. Acoustic models of the glottal source derivative are usually preferred over

models of the glottal flow signal because they better describe relevant voice source

characteristics, such as how rapid the vocal folds close.

This chapter describes the Liljencrants-Fant (LF) model (Fant et al., 1985), which

is a popular acoustic model of the glottal source derivative signal. The LF-model

is defined by a small set of parameters, including the fundamental period T0. One

advantage of using this model in HMM-speech synthesis is the possibility to model

the correlation between the glottal parameters of the model and T0. Another important

aspect of this model is the correlation between its parameters and voice quality.

5.2 LF-model

5.2.1 Waveform

Figure 5.1 shows a segment of the glottal flow derivative, eLF(t), and the corresponding

glottal flow waveform, uLF(t), which were obtained using the LF-model. The signal

123



Chapter 5. Acoustic Glottal Source Model 124

0

T
0

t
o

t
a

t
p

t
e

t
c

T
op

T
cl

T
c

Time

U
0

u
L
F
(t
)

0

T
a

T
0

t
o

t
a

t
p

t
e

t
c

E
e

Time

e
L
F
(t
)

LF-model Waveform

Glottal Flow Waveform Obtained with LF-Model 

Figure 5.1: Top: segment of the LF-model waveform and representation of the glottal

parameters during one fundamental period of the model. Bottom: segment of the glottal

flow calculated by integration of the LF-model.

uLF(t) was calculated by integrating eLF(t). Analytically, the LF-model is defined by

an exponentially increasing sine wave, followed by a decaying exponential function,

and completed with a zero amplitude section, as described by the following equations:

eLF(t) =


e1(t) = E0eαt sin(wgt), to ≤ t ≤ te

e2(t) =− Ee
εTa

[e−ε(t−te)− e−ε(tc−te)], te < t ≤ tc

e3(t) = 0, tc < t ≤ T0

(5.1)
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∫ T0

0
eLF(t)dt = 0 (5.2)

e1(te) = e2(te) =−Ee, (5.3)

where wg = π/tp. Equations 5.2 and 5.3 represent the zero energy balance and ampli-

tude continuity constraints, respectively. The value of the parameter to is arbitrary, as

it represents the start of the LF-model. In this work, to is assumed to be zero and it

is omitted in the formulas that describe the LF-model. In general, the parameters α,

E0 and ε are derived from (5.2) and (5.3). Therefore, the LF-model given by (5.1) can

be defined by the six parameters: tp, te, Ta, tc, T0, and Ee. Figure 5.1 represents these

parameters for a cycle of the source model.

The LF-model parameters represent the following characteristics of the flow deriva-

tive waveform:

• to: instant of glottal opening, when the vocal folds start to open.

• tp: instant of maximum flow, which corresponds to a zero of the flow derivative.

• te: instant of maximum excitation, when the vocal folds close abruptly.

• Ta: duration between te and ta (ta is the point where the tangent to the decaying

exponential at t = te hits the time axis).

• tc: instant of complete closure of the vocal folds.

• T0: duration of the glottal flow cycle (fundamental period).

• E0: amplitude scaling of the sine wave.

• Ee: amplitude of maximum excitation.

• wg: angular frequency of the sine wave, which is related to the rise time of the

glottal flow.

• α: growth factor, which represents the ratio of Ee to the peak height of the expo-

nentially increasing sine wave, Ei.

• ε: exponential time constant.
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The region between the start of the glottal pulse and the instant of maximum air-

flow, is called the opening phase and has duration Top = tp− to. At tp, the vocal folds

start to close and the flow amplitude decreases until the abrupt closure of the glottis

(discontinuity in the derivative of the LF-model) at the instant of maximum excitation,

te. The time interval Tcl = te−tp is the duration of this closing phase. The time interval

which corresponds to the duration when the vocal folds are opened and there is airflow

through the glottis (duration equal to Top +Tcl) is called the open phase. The next part

represents the transition between the open phase and the closed phase, which is called

return phase (the return phase is often assumed to be a part of the open phase). The

duration of the return phase is given by Ta = ta− te and it measures the abruptness of

the closure. Finally, the closed phase is the region of the glottal cycle when the vocal

folds are completely closed and it has duration Tc = T0− tc.

The decaying exponential function, given by e2(t) in (5.1), represents the return

phase. Often, this expression is used to represent both the return phase and the closed

phase. This simplification avoids the calculation of the parameter tc, by making tc = T0,

as suggested by Fant (1997). In general, this is a good approximation because e2(t) is

close to zero for t > tc. By using this approximation, (5.1) can be reduced to the terms

e1(t) and e2(t) as follows:

eLF(t) =


e1(t) = E0eαt sin(wgt), to ≤ t ≤ te

e2(t) =− Ee
εTa

[e−ε(t−te)− e−ε(tc−te)], te < t ≤ T0

(5.4)

The LF-model parameters must satisfy physical constraints because they have an

acoustic meaning (e.g. the time parameters must be positive) and there are parame-

ter settings which produce a distorted flow derivative waveform. The following pa-

rameter limits are based on the LF-model parameter ranges reported by Doval and

d’Alessandro (1997):

• Ee > 0

• T0 > 0

• 0 < Ta ≤ T0− te

• 0 < te ≤ 3tp/2 and te ≤ T0

• 0 < tp ≤ te
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The constraint te ≤ 3/2tp ensures that the negative maximum of the flow derivative is

Ee and the condition Ta ≤ T0− te ensures that the return phase is a decreasing expo-

nential.

5.2.2 Parameter Calculation

The LF-model in (5.4) is defined by four time-parameters: tp, te, Ta, and T0. In ad-

dition, one of the two amplitude parameters needs to be given: Ee or E0. Typically,

Ee is chosen as the waveform parameter and (5.4) to (5.3) are solved for E0, e.g. Fant

et al. (1985). The angular frequency can be calculated directly from wg = πtp. The

remaining parameters (ε and α, and E0) are obtained using the energy and continuity

constraints of (5.2) and (5.3).

5.2.2.1 Calculation of ε

The parameter ε is calculated by solving the equation below.

εta = 1− e−ε(tc− te), (5.5)

which results from imposing the continuity constraint e2(te) =−Ee on (5.4).

5.2.2.2 Calculation of α and E0

The values of α and E0 can be calculated by solving the following equations:

∫ te

0
e1(t)dt +

∫ T0

te
e2(t)dt = 0 (5.6)

Ee =−E0eαte sin(wgte) (5.7)

Equation (5.6) is equivalent to (5.2), which represents the assumption that the energy

balance of the glottal flow derivative is zero over the fundamental period. On the other

hand, (5.7) is obtained from e1(te) =−Ee.

The first integral in (5.6) is obtained using the indefinite integral of e1(t), which is

given by

U1(t) =
E0eαt (αsin(wgt)−wg cos(wgt))+wg

α2 +w2
g

(5.8)

Fant et al. (1985) proposed the following approximation to calculate the second

integral in (5.6):
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U2(t) =
∫ T0

te
e2(t)dt ∼= Eeta

2
ka, (5.9)

where

Ka =


2, Ra < 0.1

Ka = 2−2.34R2
a +1.34R4

a, 0.1≤ Ra < 0.5

Ka = 2.16−1.32Ra +0.64(Ra−0.5)2 0.5≤ Ra

, (5.10)

with Ra = ta/(T0− te).

Then, the parameter α is the root of the following non-linear equation, which is

obtained from (5.6) to (5.9).

eαte(αsin(wgte)−wg cos(wgte))+wg

α2 +w2
g

∼= −eαte sin(wgteta)
2

Ka (5.11)

After α is calculated, the scale factor E0 can be determined from (5.7).

5.2.3 Dimensionless Parameters

The parameters of the LF-model can also be expressed as dimensionless quotients,

which are often used to describe the shape of the glottal source signal. The following

dimensionless parameters are based on the ratios of the glottal time intervals described

in Section 5.2.1:

• Open quotient, which measures the relative duration of the open phase:

OQ =
To +Ta

T0
=

te +Ta

T0
(5.12)

• Speed quotient, which measures the ratio between the opening and closing times:

SQ =
Top

Tcl
=

tp

te− tp
(5.13)

• Return quotient, which measures the relative duration of the return phase:

RQ =
Ta

T0
=

ta− te
T0

(5.14)
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Amplitude ratios have also been used to describe the glottal pulse waveform. For

example, the amplitude quotient is the ratio between the amplitude of the glottal flow

peak, U0, and the amplitude of maximum excitation, Ee:

AQ =
U0

Ee
(5.15)

Variations of the dimensionless parameters and additional parameters can also be

found in the literature. They represent different quotients, which describe specific

properties of the source signal. For example, the open quotient can also be defined by

the reduced form OQe = Te/T0, in which the return phase is not included in the open

phase. Often, the closing quotient, CQ =
tc−tp

T0
, and the opening quotient, OQop =

tp
T0

,

are used to describe the relative duration of the closed phase and the opening phase

Top, respectively.

Fant (1995) has also derived a set of dimensionless parameters which are more

correlated with the relevant waveshape characteristics of the LF-model (such as glottal

pulse asymmetry), than the time instants ta, tp, te and tc. These dimensionless parame-

ters are called the R-parameters:

Rg =
T0

2Top
=

T0

2tp
(5.16)

Rk =
te− tp

tp
(5.17)

Ra =
Ta

T0
(5.18)

The R-parameters are comparable to the parameters given by (5.12) to (5.14). In par-

ticular, RQ and Ra are equivalent. SQ is the inverse of Rk but they both represent

the skewness of the glottal waveform. Fant (1995) also related the OQ with the R-

parameters by the formula:

OQ =
1+Rk

2Rg
+Ra (5.19)

In addition, Fant (1995) also proposed the Rd parameter, which is closely related to the

amplitude quotient:

Rd =
U0

Ee

F0

110
(5.20)
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The Rd parameter can be used to control Rg, Rk, and Ra by using the following approx-

imation:

Rd = (1/0.11)(0.5+1.2Rk)(Rk/4Rg +Ra) (5.21)

Fant (1995) estimated this equation from the geometrical constraints of the LF-model.

He reported that this approximation holds with an accuracy of 0.5 dB for Rd < 1.4 and

with a maximum error of 1.7 dB at Rd = 2.7. An interesting property of Rd is that

increasing values of this parameter result in increasing values of the OQ parameter.

5.2.4 Spectral Representation

The spectrum of the LF-model is characterised by a spectral peak at the lower fre-

quencies, often called the “glottal formant”, and the spectral tilt (attenuation at higher

frequencies). Figure 5.2 shows the stylised spectrum of the LF-model proposed by

Doval and d’Alessandro (1997). In this figure the spectral peak is centered at the fre-

quency Fg and the spectral tilt is characterised by the attenuation above the frequency

Fc.
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Figure 5.2: Linear stylization of the LF-model spectrum.
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5.2.4.1 Glottal Formant

Typically, the spectrum of the glottal flow signal u(t) is represented by two identical

poles in the real axis (Doval and d’Alessandro, 1999). This model represents the effect

of the glottal formant. It and can be described in the frequency domain by

Ug(s) =
U0

(1+ s/sr)2 , (5.22)

where Ug(s) represents the Laplace transform of u(t), sr is a real pole and G0 is a gain

factor. This spectral representation corresponds to a first order low-pass system with

cut-off frequency Fg = sr/2π and gain U0. The transfer function of the filter is defined

by two asymptotic lines, with slopes of 0 dB/oct and -12 dB/oct for frequencies below

and above the cut-off frequency, respectively.

The spectrum of the glottal flow derivative can be obtained by adding a zero to

Ug(s) at f = 0:

Eg(s) =U ′g(s) =
sU0

(1+ s/sr)2 +u(0) (5.23)

Assuming that the glottal source waveform starts at the instant of glottal opening to = 0,

then u(0) = 0 in (5.23), as in the LF-model (uLF(0) = 0). The effect of adding the zero

to Ug(s) is to produce two asymptotic lines with slopes +6 dB/oct and -6 dB/oct, which

are represented by the stylised spectrum of the LF-model shown in Figure 5.2. The

crossing point of these lines is a spectral peak which is located at Fg. This frequency

is equal to the cut-off frequency of Ug(s). However, the asymptotic behavior of the

spectral peak is equivalent to a second order linear filter, instead of the first-order

low-pass filter of Ug(s). For this reason, the spectral peak is often called the “glottal

formant”.

Doval and d’Alessandro (1999) showed that the spectrum of the time-domain glot-

tal flow derivative models are generally characterised by the “glottal formant”, al-

though they are modelled by different equations. For example, the KLGLOTT88

model used by the Klatt speech synthesiser (Klatt and Klatt, 1987) has the same spec-

tral characteristics as Eg(s) but it can be represented by a 3-order low-pass filter, with

a double real pole and a simple pole (Doval and d’Alessandro, 1997).

The spectrum Ug(s) in (5.22) is characteristic of the glottal flow with an abrupt

glottal closure that corresponds to the truncation of the waveform at the instant of

maximum excitation. In the case of the LF-model, this is equivalent to setting the
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duration of the return phase to zero (Ta = 0). When Ta is positive, the contribution of

this parameter to the spectral tilt must be considered.

5.2.4.2 Spectral Tilt

Several glottal source models have a return phase component to simulate a smooth

closure of the vocal folds, e.g. the LF-model and the KLGLOTT88 model of Klatt and

Klatt (1987). Typically, this is an additional low-pass filter with order one or two. The

return phase of the LF-model acts as a low-pass filter of order one. A first order filter

with cut-off frequency Fc can be represented by the following transfer function:

H(s) =
1

1+ s
2πFc

(5.24)

This first order low-pass filter contributes to the spectral tilt with an additional -6 db/oct

for frequencies above Fc.

The spectral representation of the LF-model is obtained by combining the glottal

formant with the spectral tilt effects: ELF(s) = Eg(s)H(s). This spectrum is stylized

into three lines with +6 db/oct, -6 db/oct and -12 db/oct slopes, respectively, as shown

in Figure 5.2.

5.2.4.3 Spectral Parameters

Doval and d’Alessandro (1997) defined the general spectrum of the glottal flow deriva-

tive using five parameters:

• Ag: maximum amplitude of the glottal spectral peak.

• F0: fundamental frequency.

• Fg: glottal spectral peak.

• Qg: quality factor of the glottal spectral peak.

• Fc: spectral tilt cut-off frequency.

The parameters Ag, Fg, and Fc are represented in Figure 5.2. The quality factor Qg is

a characteristic of the second order low-pass filter associated with the glottal formant.

Basically, this parameter measures the difference in dB between the maximum of the

spectrum and the amplitude Ag. Doval and d’Alessandro (1997) also indicate that

the variation of the quality factor mainly affects the amplitude of the first harmonics,
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with the glottal formant frequency Fg and the asymptotes remaining approximately

unchanged.

5.2.5 Phase Spectrum

5.2.5.1 Filter Transfer Function

Doval et al. (2003) proposed to describe the LF-model as the impulse response of

an anticausal filter and a causal filter. They also showed that this representation is

compatible with the time and spectral characteristics of the glottal source derivative,

which were described in the previous sections.

In general, the glottal pulse is skewed to the right, which can be observed in the

example of Figure 5.1. This time domain behavior is the evidence of anticausality.

For the LF-model, the open phase (defined as the duration until the instant of max-

imum excitation te) has the characteristics of a second-order anticausal filter and the

return phase can be described as the impulse response of a first-order causal filter

(Bozkurt, 2005; Doval et al., 2003). Under this assumption, Doval et al. (2003) defined

the LF-model as the impulse response of a linear all-pole filter that has two anticausal

poles to represent the glottal formant, one causal pole for the spectral tilt and a zero

to get the glottal flow derivative. For this filter to be stable, the anticausal poles must

be outside the unit circle and the causal pole inside the unit circle on the z-plane. The

z-transform of this transfer function can be represented by:

HLF(z) =
Gz

(1+a1z+a2z2)(1−aT Lz−1)
, (5.25)

where a1 and a2 represent the anticausal poles, aT L is the causal pole, and G is the

filter gain. Doval et al. (2003) also derived formulas to calculate the coefficients of

this filter from the parameters of the LF-model: OQ, SQ, and Ee. Finally, Doval et al.

(2003) suggested to model the truncation of the open phase with the return phase by

the convolution with a sine cardinal function in the frequency domain. The spectral

effect of this operation is to enlarge the glottal formant and create ripples.

5.2.5.2 Mixed-phase Model

In general, the source-filter models used in HMM-based speech synthesis are minimum-

phase. Basically, the minimum-phase speech model is all-pole, in which the poles are

causal and stable (inside the unit-circle in the z-plane). For the case of the simple
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Figure 5.3: Phase spectra of the anticausal component of the LF-model signal, causal
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excitation of voiced speech (impulse train), the speech signal is simply the impulse

response of a minimum-phase filter. The transfer function of this filter is linear-phase

and represents only the magnitude spectrum of the speech signal.

The importance of the phase information for speech quality and to model the voice

characteristics of the speaker has been demonstrated by several papers in the past, e.g.

Quatieri (1979); Murthy et al. (2004). Recent work by Gardner (1994) and Bozkurt

(2005) suggested that a mixed-phase model of voiced speech (when a minimum-phase

system is excited by a maximum-phase signal) is more appropriate than the minimum-

phase model due to the maximum-phase characteristic (anti-causality) of the source

signal.

The LF-model is a mixed-phase signal (has both causal and anticausal properties)

and it can be represented by a stable all-pole linear filter, as explained in the previous

section. Therefore, the convolution of the LF-model with the minimum-phase filter

of the vocal tract produces a mixed-phase speech signal. This source-filter model of

speech is expected to give a better representation of the phase spectrum, when com-

pared with the traditional impulse response of the minimum-phase filter (represents the

spectral envelope).

Figure 5.3 shows the phase spectra associated with the anticausal component of the

LF-model (exponentially increasing sine wave, which represents the open phase), the

causal component (decaying exponential, which represents the return phase), and the

combination of the two components (phase spectrum of the LF-model signal).
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Figure 5.4: General form of the glottal flow pulse obtained with the shape and scale

parameters of Doval and d’Alessandro (1999) for the LF-model. The return phase com-

ponent of the LF-model is not considered in this representation (Ta is set equal to zero).

5.3 LF-model Correlates

5.3.1 Spectrum

5.3.1.1 Scale and Shape Parameters of the Glottal Waveform

Doval and d’Alessandro (1999) showed that the five spectral parameters of the glottal

flow derivative spectrum (Ag, F0, Fg, Qg and Fc) were correlated with a set of five

time-domain parameters of the glottal flow waveform:

• U0: maximum amplitude of the glottal flow.

• T0: fundamental period.

• OQe: open quotient, calculated without considering the return phase as part of

the open phase (OQe = te/T0).

• αm: asymmetry coefficient, which is the ratio between the glottal opening dura-

tion, Top, and the effective duration of the open phase, OqT0.

• Ta: return phase time constant.

Figure 5.4 shows the representation of these parameters for a cycle of the LF-model

waveform. The time-domain parameters used by Doval and d’Alessandro (1999) are

related to the LF-model parameters by the formulas: αm = tp/te = SQ/(1+ SQ) and

OQe = te/T0.
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The parameters U0, T0, and OQe are scale parameters. These parameters have the

same effect on the spectrum of the glottal flow model, independently of the mathemat-

ical expressions used by each time-domain model. The spectral effects described by

Doval and d’Alessandro (1999) for these parameters are:

• U0: amplitude scaling of the glottal flow, which changes the spectral gain by the

same proportion.

• T0: scales the spectrum in the opposite direction. For example, depending on

whether T0 increases or decreases, the spectrum of the glottal flow signal is con-

tracted or expanded by the same amount respectively.

• OQe: scales the spectral envelope in the opposite direction.

The parameter αm is related to the specific shape characteristics of each glottal

source model and affects mainly the characteristics of the glottal formant.

Doval and d’Alessandro (1999) characterised different glottal flow models by their

normalised glottal flow waveform ng(t), which is obtained by setting Av = 1, T0 = 1,

and OQe = 1. This waveform depends on the shape parameter αm only. For example,

Doval and d’Alessandro (1999) calculated the following expression for the normalised

glottal flow of the LF-model:

ng(t) =
1+ eat (aαm

π
sin(πt/αm)− cos(πt/αm)

)
1+ eaαm

, (5.26)

where a is a parameter equivalent to the parameter α of the LF-model, which can be

obtained from the implicit equation ng(1) = 0 (energy balance condition).

Finally, Doval and d’Alessandro (1999) derived the following formulas that corre-

late the frequency parameters with the scale and shape parameters of the glottal flow

waveform:

F0 = 1/T0 (5.27)

Ag = E0
√

en(αm)in(αm) (5.28)

Fg =
1

2πOQeT0

√
en(αm)

in(αm)
(5.29)

Qg = qg(αm), (5.30)
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where in(αm), en(αm) and qg(αm) are functions of the asymmetry coefficient αm. The

parameter en represents the maximum excitation of the normalised glottal flow ng(t),

while in is the integral of ng(t).

5.3.1.2 Glottal Formant

The glottal spectral peak or glottal formant depends mainly on the open quotient and

the asymmetry coefficient. From (5.29), the open quotient is inversely proportional to

the glottal formant. On the other hand, the asymmetry of the glottal waveform, which

is quantified by αm or SQ, is assumed to be directly proportional to the bandwidth of

the glottal formant (d’Alessandro et al., 2006).

In general, the glottal peak affects the source spectrum in the low to mid-frequency

range. For example, d’Alessandro et al. (2006) indicated that “a typical value of the

asymmetry coefficient (2/3) and for normal values of the open quotient (between 0.5

and 1), the glottal formant is located slightly below or close to the first harmonic”.

They also suggested that for both lower values of the open quotient OQ and higher

asymmetry coefficients, the glottal formant can reach higher order harmonics such as

the fourth.

5.3.1.3 Spectral Tilt

The main spectral effect of the return phase is to change the cut-off frequency Fc of

the low-pass filter associated with the spectral tilt. This frequency depends on the

expression used to represent the return phase by the glottal flow model. A typical

impulse response of this filter is a decreasing exponential with time constant Ta. The

cut-off frequency of this filter is:

Fc =
1

2πTa
(5.31)

Doval and d’Alessandro (1997) calculated analytically the following expression for

the Fc of the LF-model:

Fc =
1

2πTa
+

a
2π

+
1
tp

cot
(

π

(
1+

te− tp

tp

))
, (5.32)

where a is the same as in (5.26). However, the Fc parameter of the LF-model mostly

depends on the return phase parameter Ta and it is often approximated by the simpler

expression given by (5.31), e.g. Fant et al. (1985).
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5.3.1.4 Dimensionless Parameters

The dimensionless parameters of the LF-model (OQ, SQ, and RQ) are directly related

to the glottal formant and the cut-off frequency of the spectral tilt filter. They can also

be characterised by their effect on the overall spectrum of the glottal source. Accord-

ing to Fant (1995) and Doval et al. (2003), the spectral correlates of the LF-model

parameters can be described by:.

• Open quotient (OQ): the main spectral effect is to shift the energy between the

lower frequency and the higher frequency harmonics. An increase of the OQ has

the spectral effect of expanding the frequency scale (equivalent to a frequency-

scale operation) and shifting the energy from the lower to the higher frequencies.

In the other way, a decrease of the OQ compresses the frequency scale and moves

the energy from the higher to the lower frequencies. This parameter also affects

the amplitude of the first harmonics in the voice source spectrum. An increased

value of the OQ is correlated with an increase in the amplitude of the lower

harmonics.

• Speech quotient (SQ): mainly affects the amplitude of the first harmonics. In

general, increased SQ (asymmetry of the glottal pulse) results in increased am-

plitude of the lower frequency harmonics and a deepening of the spectral dips.

• Return quotient (RQ): the major effect is to change the spectral amplitudes at

higher frequencies. The smaller the RQ, the more the energy in the higher fre-

quency part of the spectrum.

5.3.1.5 Spectrum Measurements

In addition to the time- and frequency-domain parameters of the LF-model, different

types of spectral parameters have also been used to represent the glottal source spec-

trum. In general, they are measurements of the spectral tilt and measurements of the

relationship between the intensity of the fundamental frequency and its harmonics, e.g.

Childers and Lee (1991); Hanson and Chuang (1999); Gobl (1989). This section de-

scribes the relevant source spectrum aspects found in the literature which are correlated

with the LF-model.

One of the most perceptually important spectral measures which appears to be

correlated with the LF-model parameters is the ratio between the amplitude of the first

harmonic, H∗1 , and the second harmonic, H∗2 , of the source spectrum. The notation
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H∗1 is used to distinguish this parameter from H1, which is often used to represent the

amplitude of the first harmonic in the speech spectrum. Typically, the amplitudes H∗1
and H∗2 are obtained by removing the spectral contribution of the vocal tract transfer

function. For example, Fant (1995) used formulas to estimate and remove the spectral

influence in the low frequency range of the first and second formant amplitudes. Fant

(1995) derived the following numerical expression of the logarithmic ratios (in dB) as

the result of a regression analysis of the Rd parameter:

H∗1 −H∗2 =−7.6+11.1Rd (5.33)

From the experimental results of Fant (1995), this equation is a good approximation

for 0.3<Rd < 2.7 and typical values of the LF-model parameters. Both Rd and OQ are

related through (5.19) and (5.21). As expected, Fant (1995) also obtained a correlation

between the open quotient and the amplitude ratio, which is given by:

H∗1 −H∗2 =−6+0.27exp(0.055OQe), (5.34)

where OQe is defined without the return phase, i.e. OQe = te/T0. This equation is valid

within 0.5 dB in the range 0.3 < OQe < 0.7.

The glottal formant depends mainly on the OQ parameter and the asymmetry co-

efficient, αm = SQ/(1+SQ), e.g. d’Alessandro et al. (2006). If the glottal formant is

near F0 it will change mainly the relative amplitudes of the first harmonics. Doval and

d’Alessandro (1997) proposed another expression for the amplitude ratio of the first

two harmonics, which depends on the OQ and the SQ= 1/Rk. It is given by the follow-

ing expression for 1 dB approximation and common parameters ranges (0.3<Rk < 0.6

and 1 < Rg < 1.3):

H∗1 −H∗2 = 12
(

Oq

0.7

2)(
1−
(

1− Rk

0.7

2))
−6 (5.35)

Fant (1995) derived the following equation for the ratio between the amplitude of

the first harmonic and the harmonics of order n, H∗n , of the glottal source derivative

spectrum (for n well above one):

H∗1
H∗n

=
U0F0

Ee
kπ

2

√
1+

f 2

F2
a
, (5.36)

where the parameters U0 and Ee are the amplitude of the glottal pulse and the ampli-

tude of maximum excitation, respectively. The constant k is close to one for normal
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phonation (OQ around 0.5) but can reach values as small as 0.5 for OQ = 0.35 and

Rd=0.3. Equation (5.36) was obtained using formulas of H∗1 and H∗n respectively. The

formula of H∗1 was derived from measurements of the radiation effect of a recorded

voiced sound and from knowledge of the glottal flow and F0 data (Fant and Lin, 1988).

The second was obtained using the spectral representation of the LF-model (-6 dB/oct

slope above Fg and additional -6 dB/oct above Fa). Equation (5.36) also indicates that

U0 is proportional to the level of the voice fundamental, H∗1 , and that Ee is proportional

to the amplitude of the harmonics at higher frequencies than the fundamental.

The spectral tilt is often measured by the ratio of the amplitudes of the first har-

monic and a formant of higher order than one. For example, the amplitude ratio be-

tween the first harmonic and the third formant has been used to measure the spectral

tilt by Hanson and Chuang (1999). The ratio H∗1/H∗n can also be used to measure the

spectral tilt, e.g. by choosing H∗n close to the third formant. The effect of the return

phase parameter Ra = 1/Ta on the spectral tilt is also represented in (5.36).

Fant (1995, 1997); Stevens (1998) suggested that the parameters Ee and Ta are also

correlated with the bandwidth of the formants. For example, Fant (1995) obtained

the following empirical formulas from measurements on the estimated glottal source

signal:

∆B1 = 250
(

F1

500

)2 Ra

12
(5.37)

∆B2 =
∆B1

2
Ra

F1

F2
, (5.38)

where ∆B1 and ∆B2 are the bandwidth variations of the first and second formants, ∆B1

and ∆B2 respectively. F1 and F2 represent the first and second formant frequencies

respectively.

5.3.2 Voice Quality

The shape parameters of the LF-model, which were described in Section 5.2.3, have

been widely used to study the voice quality of speech signals because they are strongly

correlated with the type of phonation, e.g. Fant (1995); Keller (2005). The phonetic

properties of these parameters are summarised below:

• Open quotient (OQ): the relative duration of the glottal pulse to T0 is mainly

related to the level of vocal folds abduction/adduction and the pressed-lax di-

mension of the glottis. Increased degrees of the OQ are associated with wider
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opening of the glottis (when the vocal folds are more abducted) and lower ten-

sion in the glottis.

• Speed quotient (SQ): the asymmetry of the glottal pulse is affected by both the

pressed-lax and vocal effort dimensions. In general, the skewness of the glottal

pulse (higher SQ) increases with the tension of the vocal folds and with the vocal

effort (voice loudness).

• Return quotient (RQ): the abruptness of the glottal closure is mainly related to

the vocal effort dimension. A louder voice is typically associated with a longer

return phase (larger return duration Ta) and higher spectral tilt. When the loud-

ness is lower, the glottal closure tends to be more abrupt, resulting in a lower

attenuation of the higher frequency region of the source spectrum.

This section reviews mainly the voice quality correlates of the OQ, SQ, and the RQ

parameters because they are considered to be the most important LF-model parameters

related to phonation type and they are used to synthesise speech with different voice

qualities in this work. However, other acoustic correlates of voice quality can be found

in the literature. These include amplitude based parameters, such as the amplitude

of maximum excitation of the LF-model, Ee, the maximal amplitude of the glottal

pulse, U0, or the peak-to-peak ratio, U0/Ee. Often, frequency-domain parameters are

also used to study the type of voice. In general, they measure the variations in the

spectral amplitude at the frequencies of the first harmonics, the overall spectral slope

of the source spectrum, and the harmonic-to-noise ratio, e.g. Childers and Lee (1991);

Hanson and Chuang (1999).

The research on acoustic correlates of voice quality is typically limited to a small

group of “major” voice types. For example, Gobl (1989) studies modal, breathy, whis-

pery and creaky voices. The following relations between the acoustic parameters of the

LF-model and four major types of voice quality are based on the papers by Childers

and Ahn (1995); Gobl (1989); Fant (1995); Keller (2005); Alku et al. (1997).

• Breathy: high symmetry of the glottal pulse that corresponds to a small SQ.

There is a general lack of tension of the vocal folds and highly abducted phona-

tion, which results in a high OQ. Typically, the vocal folds do not close com-

pletely, which is associated with a slow glottal closure (high RQ). The incom-

plete glottis closure also creates the effect of glottal leakage and the production
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of aspiration noise. Also, the air flows through the glottis at a high rate when

the vocal folds are widely opened which causes additional turbulent noise.

• Whispery: small OQ and RQ as a consequence of low adductive tension. This

voice type mainly differs from the breathy voice by its lower OQ and higher

skewness of the pulse (high SQ), due to a very small glottal opening. Audible

frication noise is also a characteristic of whispery speech.

• Tense: very adducted phonation (short glottal open interval), with a small OQ

and low RQ (short return phase). The asymmetry of the glottal pulse is large

(as well as the SQ) as an effect of the increased vocal folds tension when com-

pared with the modal voice (neutral voice quality). The lax voice quality has the

opposite effect on these voice quality parameters of the LF-model.

• Creaky: similar characteristics to the tense voice, with high adduction of the

vocal folds and high asymmetry of the glottal pulse. Therefore, the voice quality

parameters show a similar behavior as those of the tense voice: small OQ, small

RQ, and high SQ. This voice type is also characterised by the diplophony effect

(two pulses appear during one fundamental period), in which two different pulses

appear to occur within one glottal pulse cycle.

RQ and Ra SQ and 1/Rk OQe 1/Rg

Breathy High Low Very High Low

Whispery Very High High High High

Tense Low High Low Low

Creaky Low High Low Low

Table 5.1: Summary of the relations between the dimensionless parameters of the LF-

model and four key voice qualities, obtained from the literature.

Table 5.1 summarises the voice quality correlates of the LF-model parameters, tak-

ing as reference the modal voice (normal phonation). In this table, the open quotient

is defined without the return phase (OQe = Te/T0), because OQe appeared to be more

commonly used for studying voice quality correlates than OQ, from the papers we
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found. Nevertheless, the OQ parameter (defined with the return phase) has a simi-

lar behavior to the OQe parameter for these voice qualities, according to the results

obtained by Childers and Lee (1991); Karlsson and Liljencrants (1996); Alku et al.

(1997).

The OQe, SQ, and RQ parameters are closely related to the R-parameters with:

RQ = Ra, SQ = 1/Rk, and OQe = (1+Rk)/(2Rg). Therefore, the R-parameters have

similar correlates to the different voice qualities, as shown in Table 5.1. The Rd pa-

rameter increases with OQ and decreases with SQ, according to (5.21). Fant (1997)

suggested that this property was perceptually important to describe a range of voice

qualities, from a tense male voice with low Rd (low OQ and high SQ) to a breathy

voice with high Rd (high OQ and small SQ).

There are voice qualities which appear to be acoustically similar. For example,

the patterns of the acoustic parameters for the tense and creaky voices are the same

in Table 5.1. This could be a limitation of the LF-model parameters to model certain

acoustic properties which are important to differentiate the two voice qualities. For

example, the LF-model does not model aspiration noise and diplophony, which are

distinguishable characteristics of a creaky voice when compared with a tense voice.

Nevertheless, effects such as the aspiration noise have been successfully modelled by

adding pitch-synchronously amplitude modulated noise to the LF-model signal, e.g.

Gobl (2006).

Table 5.1 was derived from voice quality correlates reported in the literature. In

general, these studies calculated averages of LF-model parameter estimates over dif-

ferent vowels, for each voice quality. In this type of analysis, the phonetic context and

the dynamics of the parameters is not taken into account. For example, Nı́ Chasaide

and Gobl (1993); Tooher and McKenna (2003) observed that voice quality varied along

a vowel and is affected by the preceding phone. This type of voice quality variation is

associated with aspects of prosody of which an overview is given in the next section.

5.3.3 Prosody

In general, there is a correlation between the LF-model parameters and F0 = 1/T0. In

particular, if the main voice quality parameters of the LF-model (OQ, SQ, and RQ) are

assumed to be constant along a speech segment, the parameters ta, tp, te, and tc should

vary by the same proportion as T0. However, this is not the case for most of the time.

For example, Strik and Boves (1992); Tooher and McKenna (2003) observed that the
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time-parameters of the LF-model typically increase with T0, by measuring the parame-

ters for a small set of short speech segments. Most importantly, both studies found that

the time parameters are characterised by different constants of proportionality (contour

slopes) for the same acoustic sound, under a limited T0 range. Nevertheless, the cor-

relation between the LF-model parameters and F0 is not well known and contradictory

results have also been reported. For example, Strik and Boves (1992) found a high cor-

relation between Ta and T0, in contrast to the results obtained by Tooher and McKenna

(2003).

The measurements of the voice quality parameters (Rg, Rk and Ra) by Strik and

Boves (1992) and Tooher and McKenna (2003) also showed significant correlation

of these parameters with F0. Moreover, Tooher and McKenna (2003) found that the

correlation between the time parameters of the LF-model and F0 appeared to have been

influenced by contextual factors, e.g. the preceding phone. This result is compatible

with previous studies about the contextual effect on the voice source. For example,

Nı́ Chasaide and Gobl (1993) indicated that when the vowel is preceded by a voiceless

stop, it becomes increasingly breathy-voiced.

The maximum amplitude of the excitation, Ee, also shows a strong correlation with

F0. For example, Fant (1997) suggested that Ee increases proportionally to F p
0 (p in the

range of 1.5 to 2) up to a maximum value, which is speaker dependent (e.g. depends

wether the speaker is a male or female).

Finally, the voice source appears to be important for different aspects of prosody.

For example, results have been published which show the correlation of the LF-model

parameters with stress, pitch accent and the phrase contour, e.g. Carlson et al. (1989);

Fant (1997); Fant and Kruckenberg (1996); Iseli et al. (2006); Nı́ Chasaide and Gobl

(2004).

5.4 LF-model Compared with Other Source Models

The LF-model has been extensively used to study the voice source and it is often con-

sidered as the reference for comparison with other glottal source models. This model

has been used in different areas of speech research, such as speech synthesis, analysis

of voice qualities and pathological voices, models of speech production, etc. There-

fore, its potential has been largely explored and its limitations have been reported in

the literature.
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5.4.1 Limitations

The limitations of the LF-model found in the literature are summarised as follows:

• complexity of the model parameter calculations.

• parametric oscillator, which requires external timing control.

• model parameters are not independent.

• limited parameters to control the shape of the glottal pulse.

• signal phase is not a parameter.

5.4.1.1 Complexity of the Model Parameter Calculations

The numerical complexity of the LF-model signal calculation is mostly related with

solving the non-linear equations (5.5) and (5.7) to obtain the parameters ε and α, re-

spectively.

The non-linear nature of the functions in (5.1) may also make the estimation of the

LF-model parameters difficult. For example, when the parameters of the LF-model

are calculated by fitting the model to observed glottal source signals, a non-linear op-

timisation algorithm is required. In general, the performance of this iterative method

depends on good estimates of the initial conditions and might be affected by conver-

gence problems, e.g. becoming stuck in local minima.

There are other types of source model which are simpler to calculate and to fit to

data than the LF-model. For example, the coefficients of a polynomial based model

can be easily calculated by fitting the observed glottal source signals linearly to the

model, e.g. Fujisaki and Ljungqvist (1986); Thomson (1992). Simplified approxima-

tions of the LF-model have also been proposed in order to reduce the computational

complexity, e.g. Qi and Bi (1994); Veldhuis (1998).

5.4.1.2 Parametric Oscillator

The LF-model was described by Schoentgen (1993) as a parametric oscillator “that is

driven by periodically changing the values of one or more of its parameters” . This

is a general characteristic of the acoustic models which represent the amplitude and

shape of a glottal pulse over a fundamental period. The main limitation of parametric

oscillators is that the cycle duration of the model is controlled externally. For example,
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the calculation of the LF-model signal requires the estimation of T0 and the instants

of maximum glottal excitation (epochs) beforehand. The other parameters can be ob-

tained pitch-synchronously from the observed glottal source signal, e.g. by fitting each

of the two curves of the model pitch-synchronously to the derivative of the glottal

pulse. However, pitch-synchronous analysis is typically affected by errors in the epoch

estimates.

Another disadvantage of parametric oscillators is that the frequency and charac-

teristics of the pulse shape cannot be controlled instantaneously (they are constant

throughout the pitch cycle). Schoentgen (2002) reported that this limitation does not

allow fine control over prosodic and phonatory timbre features.

In contrast to parametric oscillators, self-sustained oscillators generate their own

timing. In general, this is the case of the physical models of the glottal source, e.g.

Ishizaka and Flanagan (1972). There are also other types of glottal source model with

the flow-induced oscillation property. For example, the polynomial shaping model

(Schoentgen, 2002) and an adapted LF-model (Schoentgen, 1993).

5.4.1.3 Dependency Between Model Parameters

The five parameters of the LF-model (time and amplitude parameters) are not indepen-

dent due to the constraint that the glottal flow derivative has energy balance zero over

the pitch period. Thus, if any parameter changes, the LF-model waveform has to be

calculated again. Furthermore, Schoentgen (2002) argued that the modification of one

parameter requires the prediction of the remaining parameters because the relationship

between the control parameters of the LF-model cannot be expressed analytically.

In general, physical models do not have this problem because the parameters have a

physical meaning and they can be controlled independently. For example the two-mass

model proposed by Ishizaka and Flanagan (1972) has nineteen independent parame-

ters, such as the relative length of the vocal folds and the sub-glottal pressure.

There are also acoustic models in which the parameters control different acoustic

aspects of the source signal and they can be modified without the need to readjust

the other parameters of the model. For example, the model proposed by Schoentgen

(1993) is represented by two linear mathematical expressions in which the coefficients

are independent.
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5.4.1.4 Limitation to Control the Glottal Pulse Shape

The LF-model cannot reproduce all the observed characteristics of the glottal pulse

shapes. For example, there are glottal effects such as diplophony and aspiration noise,

which cannot be represented by the LF-model.

In general, physical models can reproduce a more diverse range of pulse shapes

than the LF-model because they are able to represent more complex shapes observed

in the glottal source signal. Typically, the polynomial models can also produce a wider

variety of shapes than the LF-model because they can fit to a wider range of curves.

However, the LF-model parameters have acoustic meaning, in contrast to most poly-

nomial models, which allows a more intuitive control of the glottal pulse shape.

5.4.1.5 Signal Phase

The LF-model does not allow the control of phase through its parameters. However,

the control over the phase of the source signal is a relevant aspect to transform and syn-

thesise more complex shapes of the glottal flow waveform and transform voice quality.

For example, Hanquinet et al. (2005) synthesised disordered speech by manipulating

several parameters of the source, including the phase. They used a glottal source model

based on a sinusoidal shaping function that transformed a periodic input signal into the

desired waveshape. This model allowed them to control the vocal jitter and the vo-

cal frequency tremor characteristics of the excitation by manipulating the phase of the

sinusoidal driving function.

5.4.2 Advantages

Despite the limitations described in Section 5.4.1, the LF-model also has attractive

properties. The following list indicates the main characteristics which motivated the

use of the LF-model in this work.

• good approximation of the glottal flow derivative.

• small number of parameters.

• good control over the source signal shape.

• can be represented using spectral parameters.

• correlation with voice quality and prosody.
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• mixed-phase signal.

• good performance in speech synthesis applications.

• can be used to synthesise speech pitch-synchronously.

• popular and extensively studied in the literature.

5.4.2.1 Waveform

In general, the LF-model gives a good representation of the glottal source derivative. In

this work, the LF-model is expected to accurately model the excitation signals which

are calculated for different speech corpora (each corpus contains speech spoken by a

speaker). The voice corpora used in this thesis were built for speech synthesis appli-

cations by asking a speaker to read text sentences. Typically, this type of corpus has

limited speech expressiveness. The problem of fitting the LF-model to irregular source

pulse shapes is assumed not to be important in this thesis because the voice quality

variety of the speech corpus used to build the speech synthesisers is assumed to be

relatively low.

The complexity due to LF-model parameter estimation is also not important in this

work because the parameters are extracted from the speech corpus once during the

speech analysis part of the HMM-based speech synthesiser (before the training of the

statistical models).

5.4.2.2 Number of Parameters

Another great advantage of the LF-model when compared with other glottal source

models, especially the physical models, is the small number of parameters. This is

an important factor to take into account in HMM-based speech synthesis because the

memory requirements and complexity of the system typically increases with the num-

ber of speech parameters used to train the statistical models. Also, the amount of

data required to obtain good statistical modelling typically grows with the number of

parameters modelled by the HMMs.

5.4.2.3 Voice Quality and Prosodic Correlation

The control over the pulse shape provided by the LF-model is considered to be large

enough for this work. One of the objectives of this thesis is to use a glottal source model
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for speech synthesis which gives a good parametric flexibility to transform basic voice

qualities. Past work have already showed that the LF-model parameters can be used to

model a set of “basic” voice qualities, e.g. Gobl (1989); Fant (1995).

In this thesis, the incorporation of the LF-model into a HMM-based speech synthe-

siser also enabled us to model the prosody and voice quality correlates of the LF-model

parameters by the HMMs, in order to improve the quality of the synthetic speech.

5.4.2.4 Spectral Representation

The LF-model also gives the possibility of modelling the voice source using spectral

parameters. In this work, the spectral representation of the LF-model is used to design

a glottal post-filter which flattens the LF-model spectrum. This method is proposed for

the integration of the LF-model into the HMM-based speech synthesiser in Section 6.3.

5.4.2.5 Mixed-phase Signal

The mixed-phase characteristic of the LF-model (related to the causal and anticausal

characteristics of the glottal flow) is assumed to be a good model of phase for voiced

speech.

The LF-model does not give the parametric flexibility to control the phase. Phase

manipulation could be a useful feature to transform speech or introduce randomness

to the phase of the harmonic part of the excitation, but it goes behind the scope of this

work. Nevertheless, the HMM-based speech synthesisers developed during this thesis

use both the LF-model and the STRAIGHT vocoder. It is possible to manipulate the

phase of the speech signal in these systems by using STRAIGHT.

The LF-model limitation of not allowing fine control over the instantaneous fre-

quency is not considered to be important in this work. Speech synthesised pitch-

synchronously using glottal pulses with the duration of the pitch period for the exci-

tation generally provides good time-resolution. For example, the HMM-based speech

synthesiser of Zen et al. (2007a) generates speech pitch-synchronously by passing an

excitation signal (such as the impulse train) with duration equal to two times the fun-

damental period through a synthesis filter and by using overlap-and-add to concatenate

the short-time speech signals.
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5.4.2.6 Pitch-synchronous Synthesis

Speech can be easily synthesised pitch-synchronously using the LF-model as the ex-

citation. For example, the PSOLA technique (Moulines and Charpentier, 1990) can

be effectively performed using the LF-model (by centering the overlap windows at the

instants of maximum excitation te).

5.4.2.7 Reference Source Model

Another advantage of using the LF-model is that it is a reference glottal source model

used in different speech research fields, such as speech synthesis, speech analysis, and

voice quality transformation. For example, a model of the flow derivative has been

successfully used in the popular synthesiser proposed by Klatt and Klatt (1987). This

model allows the synthesiser to control several aspects related to voice quality, such as

spectral tilt, the open quotient, and breathiness.

5.5 Conclusion

The LF-model is a popular acoustic model of the glottal source derivative. It gives

a very good approximation to the glottal source waveform using a small number of

parameters (five or six).

This model can also be represented in the frequency domain using a small set of

parameters. Furthermore, the relationship between the time- and frequency-domain

parameters of the LF-model can be described by equations, which is very useful in

order to represent the glottal source signal either in terms of its shape or spectral prop-

erties.

The LF-model parameters are strongly correlated with voice quality and prosody.

Formulae of these LF-model correlates have also been proposed in the literature. These

correlations are important in this work because one of the goals is to improve voice

quality modelling and control by using the LF-model.

The main problems of the LF-model are the complexity of the waveform genera-

tion and limitations in terms of representing some details of the glottal source signal.

However, these factors were not considered to be relevant because the applications of

the LF-model in this work did not require synthesis of speech in real-time and the

LF-model signal appeared to generally fit well to the glottal source derivative signal in

these applications. How well the LF-model signal fitted to the glottal source deriva-
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tive signal in the application of an HMM-based speech synthesiser using glottal source

modelling is further discussed in Section 8.4.5.5.



Chapter 6

Analysis/Synthesis Methods

6.1 Introduction

Three different methods for speech analysis-and-synthesis have been used in this work.

One is the STRAIGHT vocoder (version V40 006b) and the other two have been de-

veloped in this thesis in order to synthesise speech using the LF-model parameters.

The source-filter model used by STRAIGHT (V40 006b) describes speech as the

convolution of a spectrally flat excitation by the spectral envelope of the speech signal.

For speech analysis, it extracts the spectral envelope, the F0 and aperiodicity param-

eters from the speech signal. For synthesis of voiced speech, a mixed multi-band

excitation is the input to the synthesis filter defined by the spectral parameters. In the

case of unvoiced speech, the excitation is modelled as white noise.

The second method is called Glottal Post-Filtering (GPF) and uses the same source-

filter model as STRAIGHT. It also uses STRAIGHT analysis to calculate both the

spectral envelope and the aperiodicity parameters. However, this method generates

the periodic component of the mixed excitation by passing a chosen LF-model signal

through a glottal post-filter, instead of using an impulse train (as in STRAIGHT).

The third method, called Glottal Spectral Separation (GSS), uses a different source-

filter model to represent voiced speech. In this model, the excitation is represented by

the glottal source signal and the synthesis filter by the vocal tract transfer function.

First, this method estimates the glottal parameters from recorded speech. Then, the

vocal tract transfer function is estimated by separating the glottal source characteristics

from the speech signal and calculating the spectral envelope of the resulting signal. In

this work, the GSS method is implemented using the LF-model to represent the glottal

source and STRAIGHT to compute the spectral envelope. The GSS method generates

152
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the excitation signal by mixing the LF-model signal with a noise component and then

performs the convolution of this excitation signal with the vocal tract transfer function

to obtain the speech signal.

One advantage of combining the GPF method and the GSS method with the anal-

ysis method used by STRAIGHT is that the spectral envelope extraction technique

of this vocoder is very robust and it also estimates aperiodicity measurements, which

can be used to mix a noise signal with the LF-model signal, in order to improve the

naturalness of the synthetic speech. Another advantage is that the LF-model can be

consistently compared against the impulse train in terms of speech quality by compar-

ing speech synthesised with the GSS and STRAIGHT methods, respectively.

6.2 STRAIGHT

In this work the STRAIGHT version V40 006b was used, because this was the only

STRAIGHT version which was publicly accessible (through the following webpage:

http://www.wakayama-u.ac.jp/˜kawahara/index-e.html).

This section describes the methods used by STRAIGHT V40 006b. The latest ver-

sion of the STRAIGHT vocoder is called TANDEM-STRAIGHT (Kawahara et al.,

2008). This version uses a unified approach to estimate the F0, aperiodicity and spec-

trogram, which is simpler than the methods used in STRAIGHT V40 006b.

6.2.1 Speech Model

A quasi-periodic speech signal s(t) can be represented by a sinusoidal model, which is

given by the sum of amplitude and phase modulated harmonics:

s(t) = ∑
k∈N

αk(t)sin(2π fk(t)+θk(t)), (6.1)

where αk(t), fk(t) and θk(t) are the amplitudes, frequencies, and phases of the har-

monics, respectively.

The speech model used by STRAIGHT (Kawahara et al., 1999b) represents speech

in terms of the instantaneous angular frequency of the harmonic component k, i.e.

ωk(t) = dφk/dt, where φk(t) = 2π fk(t)+θk(t) is the instantaneous phase. This model

is similar to the sinusoidal model and it is described by Kawahara (1997) as
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s(t) = ∑
k∈N

αk(t)sin
(∫ t

t0
(kω(τ)+ωk(τ))dτ+φk(to)

)
, (6.2)

where ω(τ) is the instantaneous frequency and ωk(τ) is a slowly varying component of

the k-th harmonic (frequency modulation).

6.2.2 Analysis

6.2.2.1 F0 Estimation

Different methods to estimate F0 based on instantaneous frequency have been em-

ployed in STRAIGHT (Kawahara, 1997; Kawahara et al., 1999a, 2005). This section

describes the method called the “Time-domain Excitation extraction based on a Mini-

mum Perturbation Operator” (TEMPO), which is proposed by Kawahara (1997) and is

used by STRAIGHT (V40 006b). TEMPO estimates F0 as the instantaneous frequency

of the fundamental component of the signal. This corresponds to the instantaneous fre-

quency of the harmonic k = 1, in (6.2).

The instantaneous frequency is calculated using a method based on the continuous

wavelet transform (CWT) of the speech signal s(t). This CWT is represented by:

D(t,τc) = |τc|−
1
2

∫
∞

−∞

s(t)ψ∗
(

t−u
τc

)
du, (6.3)

where ψ(t) is the wavelet function, τc represents the scale factor of the wavelet, and ∗

represents the operation of complex conjugate. Kawahara (1997) uses a Gabor func-

tion for the wavelet, g(t), which is defined by the multiplication of a Gaussian by a

sinusoidal function:

ψ(t) = g(t−1/4)−g(t +1/4) (6.4)

g(t) = e−π

(
t
η

)2

e− j2πt , (6.5)

where η > 1 is a parameter that represents the frequency resolution of the wavelet

transfer function.

The CWT represented in (6.3) is equivalent to filtering the speech signal with mul-

tiple bandpass filters , which have the shape of the wavelet function and cover different

parts of the spectrum, respectively. The scale factor of the wavelet, τc, defines the

frequency fc at which the output of each filter channel is maximum. The output of
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each filter, D(t,τc), represents the amplitude envelope and instantaneous phase of the

spectral components of the signal in the frequency band centered at fc.

Kawahara (1997) estimates the fundamental frequency by assuming that the signal-

to-noise ratio of the output of the filters is higher for the filters which have a frequency

fc closest to F0. He defines a parameter Mτc , called “fundamentalness”, which mea-

sures this effect. Mτc is calculated from D(t,τc) and it is used to obtain the filter which

maximises the “fundamentalness”. Finally, F0 is calculated as the average of the in-

stantaneous frequency using the outputs of the obtained filter and its neighbours. The

instantaneous frequency f0(t) of a filter output signal D(t,τc) is defined by

f0(t) =
1

2π

d argD(t,τc)

dt
(6.6)

The results reported by Kawahara (1997) indicate that this method is very accurate

and its performance is comparable to other popular F0 detection methods, such as the

Average Magnitude Difference Function (AMDF) method of de Cheveigné (1996) and

the RAPT algorithm (Talkin, 1995).

6.2.2.2 Spectral Envelope

The power spectrum of the speech signal is calculated by using a pitch-adaptive Short-

term Fourier Transform (SFT) analysis. Kawahara et al. (1999b) propose to use two

compensatory time windows to calculate the spectrogram.

First, a convolution of the speech signal with a pitch-adaptive window is performed.

The time window is given by the convolution of a Gaussian function wg(t) with a

second order cardinal B-spline function h(t):

wp(t) = wg(t)�h(t/t0) (6.7)

wg(t) = e−π

(
t

ηt0

)2

(6.8)

h(t) =


1−|t|, |t|< 1

0, otherwise

, (6.9)

where � represents convolution and t0 is the instantaneous fundamental period (is a

function of time). The resulting window wp(t) is also a second order spline function.
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Figure 6.1 shows the shape of the Gaussian time window and the second order spline

function.
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Figure 6.1: Gaussian time window (dashed line) and the basis function of the second-

order cardinal B-spline window (solid line).

The main objective of the convolution of the speech signal with wp(t) is to smooth

the spectrogram in the frequency domain. Kawahara et al. (1999b) argue that this type

of smoothing is robust to variations and estimation errors of the fundamental period,

T0.

The periodicity of the speech signal along the time domain also produces phase

interference in the spectrogram. This effect is reduced in STRAIGHT by setting the

length of the window wp(t) equal to twice the fundamental period. For example, if a

short window which provides good spectral resolution (length comparable to T0) has

a different length from a multiple of T0, then the spectrogram shows periodicity along

the time domain.

Another special property of the window wp(t) is the equivalent relative resolution

in both time and frequency domain (Kawahara et al., 1999b). The following formula

of the FT of wg(w) shows that the analysis window size also adaptively changes in the

frequency domain, in terms of the fundamental frequency F0.

Wg(w) =
t2
0√
2π

e−π

(
w

ηw0

)2

, (6.10)

where w0 = 2π f0. This characteristic also reduces phase interference caused by peri-

odic variations in the frequency domain.

However, the smoothing operation is not enough to remove the periodic interfer-

ence. According to Kawahara et al. (1999b), there is still periodic interference in the
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spectral valley areas. In STRAIGHT this problem is overcome by using “a compen-

satory window that produces maxima where the original spectrogram has holes”. The

compensatory window of wp(t) is given by

wc(t) = wp(t)sin
(

π
t

T0

)
(6.11)

This window represents a sinusoidal modulation which converts the frequency of the

harmonics and shifts their phases towards the opposite directions by the desired amounts.

Figure 6.2 shows the general shape of the compensatory window.
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Figure 6.2: Gaussian time window (dashed line) and the respective compensatory win-

dow (solid line).

Two power spectra, Po(w, t) and Pc(w, t), are calculated using the original window

wp(t) and the compensatory window wc(t), respectively. Then, the power spectrum of

the speech signal is represented as a weighted squared sum of the power spectra:

Pτ(w, t) =
√

P2
o (w, t)+ξP2

c (w, t), (6.12)

where ξ is a blending factor, which is selected so that it minimises the temporal vari-

ation of the resulting spectrogram. Figure 6.3 a) shows an example of the speech

spectrum calculated by STRAIGHT using the compensatory windows to remove the

periodicity.

The power spectrum Pτ(w, t) has minimal interferences from the speech spectrum

periodicity but the resulting spectral envelope is typically over-smoothed. Kawahara

et al. (1999b) indicate that the main reason for this over-smoothing effect is the iso-

metric Gaussian time window wg(t), which also contributes to the smoothing of the
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Figure 6.3: Top: Comparison of the amplitude spectrum calculated by STRAIGHT and

the amplitude spectrum calculated by conventional SFT analysis using a Hamming win-

dow, for a 40 ms speech frame. Bottom: spectral envelope calculated by STRAIGHT

from the speech spectrum.

spectrum calculated by SFT. This effect is associated with the limited frequency res-

olution caused by the time-frequency trade-off problem (a high frequency resolution

implies low time resolution and vice-versa). The combined contribution of both wg(t)

and h(t) makes spectral smoothing excessively high. Kawahara et al. (1999b) propose

a quasi-optimal smoothing function h(t) which reduces the smoothing effect of wg(t).

This function consists of three second-order cardinal B-spline functions. Figure 6.3

shows the spectral envelope calculated by STRAIGHT from the speech spectrum with
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reduced periodicity, which was obtained using the quasi-optimal smoothing function.

Figure 6.4 also shows an example of the spectral envelopes calculated for a voiced

speech frame, using STRAIGHT and LPC analysis respectively. STRAIGHT can more

accurately estimate the spectral envelope than the LPC vocoder (Makhoul, 1975), in

general. On of the reasons for this is that STRAIGHT better removes the periodicity

effects of the speech signal than the conventional autocorrelation method for LPC anal-

ysis (Makhoul, 1975). Also, STRAIGHT analysis takes into account the fine variations

in F0 along the time, whereas the autocorrelation method has a poorer F0 resolution.
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Figure 6.4: Spectral envelopes calculated with STRAIGHT and with the Levison-Durbin

method of LPC analysis, for a speech frame.

6.2.2.3 Aperiodicity Measurements

STRAIGHT measures the aperiodicity of a speech signal using the phase of the funda-

mental component and the power spectrum calculated with appropriate time windows

(Kawahara et al., 2001).

The TEMPO method described in Section 6.2.2.1 can be used by STRAIGHT to

calculate the phase of the fundamental. Kawahara et al. (2001) propose another method

to calculate the phase of the fundamental, which is based on the concept of fixed-point

analysis of a mapping from the center frequencies of the analysing wavelet to their
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output instantaneous frequencies.

Before the calculation of the power spectrum, the effects of F0 variation along the

time domain are removed from the speech signal by performing time warping using

the inverse function of the phase of the fundamental. The resulting signal has approx-

imately constant F0 and a regular harmonic structure. Kawahara et al. (2001) assume

that the aperiodic components are the frequency components between the harmonics

in the amplitude spectrum of this signal.

The smooth power spectrum is calculated along the new time axis by using a

method similar to the spectral envelope estimation method described in the previous

section. The analysis time-window is also the convolution of a Gaussian function

(slightly stretched) with a second-order cardinal B-spline function. In this case, the

B-spline function is tuned to F0 on the new time axis and it is designed to have zeros

between harmonic components. Kawahara et al. (2001) indicate that “a power spec-

trum calculated with this window provides the energy sum of periodic and aperiodic

components at each harmonic frequency and provides the energy of the aperiodic com-

ponents at each in-between frequency”. Based on this assumption, the aperiodicity is

measured as the ratio between the lower and upper smoothed spectral envelopes of the

short-time signal.

The upper envelope, |SU(w)|2, is calculated from the speech spectrum by con-

necting spectral peaks and the lower envelope, |SL(w)|2, is calculated by connecting

spectral valleys. Figure 6.5 a) shows an example of the spectral peaks obtained by

STRAIGHT for a speech frame. Next, the aperiodicity measurement PAP(w) is calcu-

lated from the upper and lower envelopes using (4.3). Figure 6.5 b) shows an example

of the aperiodicity spectrum calculated for a voiced speech frame. Typically, the over-

all slope of the aperiodicity curve is positive because the SNR is lower at the high

frequency region than at the lower part of the speech spectrum (for voiced speech).

6.2.3 Synthesis

6.2.3.1 Source-Filter Model

Speech can be synthesised from the STRAIGHT parameters using the sinusoidal model

represented by (6.1). However, Kawahara (1997) proposes the method SPIKES (Syn-

thetic Phase Impulse for Keeping Equivalent Sound), as it is easier to implement and

allows more control over speech characteristics. Basically, this technique represents

the synthesis filter by a minimum-phase impulse response, H(w, t), and uses an all-
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Figure 6.5: Example of the aperiodicity spectrum calculated for a voiced speech frame.

Top: amplitudes of the spectral peaks and valleys obtained from the amplitude spec-

trum of the speech signal, by STRAIGHT. Bottom: lower and upper spectral envelopes

calculated by STRAIGHT and the resulting aperiodicity spectrum.

pass filter, Φ(w), to transform the phase characteristics of the impulse train excitation.

H(w, t) is obtained by calculating the complex cepstrum of the speech spectrum. This

type of impulse response is physically stable because the zeros of the z-transform are

all inside the unit circle. Each short-time speech signal yti is synthesised from one ex-

citation pulse located at the position i by using the following equation (represents the

inverse Fourier transform) from Kawahara et al. (2001):

yti(t) =
1√
2π

∫
∞

∞

H(w, ti)Φ(w)e jw(t)dw (6.13)
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The all-pass filter function Φ(w) is used because it has a completely flat spectrum, al-

lows a fine control of F0 and reduces the buzzy timbre by manipulating the phase of the

pulse excitation. Φ(w) is based on group delay design, as described in Section 4.3.3.2.

For synthesis of unvoiced speech, the excitation is modelled as white noise only.

STRAIGHT also adds a noise component to the impulse train in order to reduce

the “buzziness” effect caused by this signal. The weighting of the periodic and noise

components of the excitation is controlled by the aperiodicity parameters (Kawahara

et al., 2001).

Synthetic speech can be represented in terms of the minimum-phase impulse re-

sponse, H(w), and the FT of the mixed excitation signal, X(w), by:

Y (w) = X(w)H(w), (6.14)

where Y (w) is the FT of the synthetic speech. The impulse response is obtained by

calculating the complex cepstrum of the smooth spectral envelope. In other words,

speech is synthesised by passing the mixed excitation through the minimum-phase

filter, which represents the spectral envelope of the speech signal.

The mixed excitation is the sum of the periodic and noise components, which is

given by:

X(w) =
√

1/F0D(w)Φ(w)Wp(w)+N(w)Wa(w), (6.15)

where D(w) is the FT of the delta pulse, N(w) is the FT of white noise, and Φ(w)

represents the all-pass filter function. Finally, Wp(w) and Wa(w) are the weighting

functions of the periodic and noise components, respectively. The noise is modelled

by a random sequence with zero mean and unit variance. For the impulse train to have

the same energy as the noise signal, the pulse is multiplied by
√

1/F0.

6.2.3.2 Phase Manipulation

The all-pass filter design is based on the group delay function. The method to derive

the all-pass filter Φ(w) from the group delay was described in Section 4.3.3.2.

STRAIGHT uses all-pass filters in order to reduce the degradation in speech quality

associated with the strong periodicity of the pulse train, P(w). It introduces random-

ness in the phase of this signal by manipulating the group delay at higher frequencies.
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6.2.3.3 Pulse/Noise Weighting

The weighting functions, Wp(w) and Wa(w), are obtained from the aperiodicity pa-

rameters. Figure 6.6 shows an example of how the spectra of the impulse and noise

components of the excitation are mixed using the weighting functions. The impulse

signal, the all pass filter function, and the noise are spectrally flat. The weighting op-

eration determines the spectral energy balance between the pulse train and the noise.

The resulting mixed excitation signal also approximates a spectrally flat signal.
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Figure 6.6: Mixing of the impulse signal (a phase manipulated delta pulse) with the

noise to obtain the excitation signal.



Chapter 6. Analysis/Synthesis Methods 164

6.3 Glottal Post-Filtering (GPF)

The GPF method was developed during this thesis to combine the LF-model with the

spectral envelope of STRAIGHT. Basically, it consists of transforming the LF-model

signal into a spectrally flat signal. The resulting signal can be used to synthesise speech

instead of the impulse train. Although the excitation obtained using GPF does not

represent the glottal source signal, this excitation is expected to produce more natural

speech than the impulse train. This improvement is explained by the fact that the voiced

excitation of the GPF method contains the phase information of the LF-model, whereas

the phase of the impulse train is constant and equal to zero. Also, the GPF method can

be used to transform voice characteristics of the synthetic speech by modifying glottal

source parameters of the LF-model.

The GPF method was not directly compared against a baseline analysis/synthesis

method in terms of speech naturalness and voice transformation, in this work. How-

ever, the perceptual experiment presented in Section 8.4 evaluates the speech qual-

ity of an HMM-based speech synthesiser using the GPF method and an HMM-based

speech synthesiser using the STRAIGHT vocoder. Since these systems only differ in

the analysis/synthesis method, the performance of the GPF method is evaluated in the

application to HMM-based speech synthesis.

6.3.1 Speech Model

The speech model used by GPF is similar to the model used by STRAIGHT, which was

described in Section 6.2.1. The main difference to STRAIGHT is that GPF represents

the periodic component of the excitation by a transformed LF-model signal, instead

of the impulse train. A glottal post-filter is used to perform whitening of the LF-

model spectrum. This filter is computed during analysis and it is used to generate the

excitation signal during synthesis of speech (it remains unchanged for synthesis).

The excitation signal is represented by a mixed multi-band model, in which the

spectra of the periodic and noise components are weighted using the STRAIGHT ape-

riodicity parameters.

6.3.2 Analysis

In this work, STRAIGHT is used to extract the spectral envelope and aperiodicity

parameters. Besides these parameters, the LF-model parameters are also estimated in
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order to derive the transfer function of the glottal post-filter which is used to synthesise

speech.

6.3.2.1 LF-model

The LF-model is used by the GPF method to derive the glottal post-filter. Also, the

LF-model waveform is used to generate the excitation signal in order to synthesise

speech. In both cases, the same set of LF-model parameters is used, unless speech is

synthesised using voice quality transformation. In this case, the LF-model parameters

used to generate the excitation are different, but the glottal post-filter remains the same.

Voice transformation using GPF is described later in Section 6.3.4.

There is not a rule for the selection of the LF-model parameter values and differ-

ent sets of parameter values could be used. However, these values must satisfy the

constraints given in Section 5.2.1, in order to ensure that the LF-model waveform is

not distorted. One period of the LF-model waveform is calculated from the parameter

values of: tp, te, Ta, T0, and Ee. This signal is called the reference LF-model signal.

Figure 5.1 shows an example of the LF-model waveform and its parameters.

The reference LF-model signal is used to calculate the glottal post-filter and it is

also used for synthesising the speech signal. It has to be chosen carefully, because it

might affect the quality of the synthetic speech. For example, the duration of the LF-

model pulse (equal to the duration of the open phase) should not be much longer than

the minimum fundamental period (T0), which characterises the speaker’s voice. This

is to avoid problems with synthesis of speech with low T0 values, which are explained

in Section 6.3.3.2.

In this work, the LF-parameter values are obtained by measuring the average LF-

parameters and the minimum T0 values for the speaker’s voice.

6.3.2.2 Parameters of the Glottal Post-Filter

In the spectral domain, the LF-model can be approximated by the stylised spectrum

proposed by Doval and d’Alessandro (1997). This spectral representation was ex-

plained in Section 5.2.4. Basically, it represents the glottal source derivative using

three asymptotic lines with +6 dB/oct, -6 dB/oct and -12 dB/oct slopes, respectively.

Figure 6.7 a) illustrates this representation. The crossing point of the first two lines

corresponds to a peak (called glottal spectral peak or glottal formant) at the frequency

Fg. The second line is due to the spectral tilt which leads to an additional -6 dB/oct
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above the frequency Fc. The spectrum of the LF-model is characterised by these two

frequency parameters and a gain factor.

It is possible to design a filter which transforms the LF-model signal into an approx-

imately spectrally flat signal if the frequencies Fg and Fc of this model are known. The

stylised spectrum of the proposed filter is described by three linear segments, whose

slopes are symmetric to the slopes of the LF-model spectrum: -6 dB/oct, +6 dB/oct

and +12 dB/oct. The stylised transfer function of this filter is illustrated in Figure 6.7

b).
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Figure 6.7: Stylised spectrum of the LF-model (a) and its corresponding post-filter spec-

trum (b).

The formulas which describe the spectral correlates of the LF-model (explained in

Section 5.3.1) are used to calculate the frequency parameters of the glottal post-filter.

From Doval and d’Alessandro (1997), the frequency Fg is related to the LF-model

parameters by the following formula:

Fg =
1

2πOQeT0

√
en(αm)

in(αm)
, (6.16)

where OQe is the open quotient (OQe = te/T0), en represents the maximum excitation

of the normalised glottal flow ng(t), and in is the integral of ng(t). Equation (6.16)

can be used to calculate the variation of Fg in terms of the variation of the LF-model

parameters relative to a reference ng(t).

In this work, Fg is calculated by using the following formula from Doval and d’Alessandro

(1997), which is equivalent to (6.16):
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Fg =
1

2π

√
E
I
, (6.17)

where E is the amplitude of maximum excitation and I is the integral of the glottal flow

pulse. First, the LF-model signal is calculated by using (5.1) to (5.3). This LF-model

signal is defined by an abrupt closure (Ta = 0) because Doval and d’Alessandro (1999)

assume that Fg does not depend on Ta in (6.16) and (6.17). The resulting cycle of the

LF-model waveform is integrated to obtain the glottal flow pulse, uLF(t). Next, the

parameter I is calculated as the integral of the resulting pulse. In discrete time, the

integral of uLF(n) is equal to:

In =
1
Fs

N0

∑
n=1

uLF(n), (6.18)

where Fs is the sampling frequency and N0 is the length of the pulse. Finally, the

frequency Fg is calculated as

Fg =
1

2π

√
Ee ∗Fs

I
(6.19)

In this equation, the parameter Ee is multiplied by Fs, in discrete time, as it represents

the slope of uLF(n) at the instant of maximum excitation, te. The other parameter

used to design the glottal post-filter is the frequency Fc, which represents the cut-

off frequency of a low-pass filter associated with the spectral tilt of the source. It is

calculated as:

Fc =
1

2πTa
(6.20)

The frequencies Fg and Fc of the glottal post-filter are computed using the param-

eters of the reference LF-model signal (described in Section 6.3.2.1) and equations

(6.19) and (6.20) respectively. In this work, the stylised spectrum of the filter shown in

Figure 6.7 b) is implemented as a linear phase FIR filter.

6.3.3 Synthesis

6.3.3.1 Source-Filter Model

The source-filter model used by the GPF method to synthesise speech mainly differs

from the STRAIGHT model in the excitation part. The block diagram of the speech

synthesis method using the glottal post-filter is shown in Figure 6.8.
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Figure 6.8: Block diagram of the speech synthesis method using GPF.

In the GPF method the synthetic speech, Y (w), is obtained by:

Y (w) = X(w)H(w), (6.21)

where X(w) is the FT of a mixed multi-band excitation and H(w) represents the

transfer function of the synthesis filter. H(w) models the spectral envelope (as in

STRAIGHT) and it is calculated from the spectral parameters. The GPF synthesis

method uses a technique based on PSOLA (Moulines and Charpentier, 1990) to con-

catenate the synthesised speech frames, unlike the STRAIGHT synthesis method.

The excitation model of the GPF method is represented by

X(w) = KeELF(w)F(w)Wp(w)+N(w)Wa(w), (6.22)

where ELF(w) represents the FT of a periodic LF-model signal, F(w) represents the

transfer function of the glottal post-filter, N(w) is the FT of the white noise signal, and
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Ke is a gain factor. The weighting functions Wp(w) and Wa(w), are calculated using

the STRAIGHT aperiodicity measurements, as described in Section 6.2.3. The all-pass

filter function, which transforms the phase of the impulse in STRAIGHT, is not used

in this excitation model. The reason for this is to preserve the phase characteristics

of the LF-model, which were explained in Section 5.2.5. The scale factor Ke adjusts

the energy of the LF-model signal so that this signal has the same energy as the noise

signal.

6.3.3.2 LF-model

For synthesising speech without voice transformation, the LF-parameter values used

to generate the glottal source derivative waveform are the same as those used to derive

the glottal post-filter during analysis.

The GPF method does not model the correlation between the glottal pulse shape

and F0, because the spectral characteristics of the LF-model signal are lost when this

signal is transformed into a spectrally flat signal. However, when the duration of the

reference LF-model signal is adjusted, it is important to preserve its shape in order to

obtain a spectrally flat excitation. For controlling the pitch of the synthetic speech,

the reference LF-model waveform is either padded with zeros, or its closed phase is

truncated, in order to obtain a signal with duration equal to the fundamental period, T0.

This operation allows the pitch period to be controlled without affecting the spectrum

of the LF-model signal, unless the truncation region is longer than the closed phase of

the LF-model signal. If the length of the closed phase is not long enough to perform the

truncation, then the open phase of the glottal signal has to be truncated or decimated,

which alters the shape of the LF-model signal and its spectrum.

Interpolation or decimation of the LF-model are not used to control the pitch period

because they change the spectrum of the reference LF-model signal. Equations (6.16)

and (6.20) show that the spectrum of the LF-model changes if the duration of the glottal

pulse, te, or the duration of the return phase, Ta, vary. Since the glottal post-filter is

tuned to the reference LF-model spectrum, changes in the shape of the LF-model signal

used for synthesis deteriorate the whitening effect of the post-filter.

The problem of truncating the LF-model behind the closed phase can be avoided

by choosing the reference LF-model signal so that it has a short pulse duration (small

duration of the open phase). For example, the reference LF-model signal could be

selected so that it has the duration of the open phase (with duration equal to te +Ta)

close to the minimum fundamental period T0 = 1/F0 (characteristic of the speaker).
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The periodic component of the excitation is the concatenation of two LF-model

signals, which start at the instant of maximum excitation te. These signals are obtained

by adjusting the length of the reference LF-model signal (by truncating/padding with

zeros) to the target T0. That is, for synthesising the speech frame i, the first LF-model

signal has the duration T i−1
0 (equal to the period of the previous frame) and the second

has the duration T i
0 . The resulting LF-model waveform is approximately centered at the

instant of maximum excitation, te. The synthetic speech frames are concatenated using

the overlap-and-add technique with windows approximately centered at the instants of

maximum excitation. The overlap windows are asymmetric, to obtain perfect overlap-

and-add (they sum to one), as in the Pitch-Synchronous Time-Scaling (PSTS) method

(Cabral and Oliveira, 2005). Each overlap window is obtained by concatenating the

first half of a Hanning window with the second half of a Hanning window, which may

have different durations. The first part has duration T i−1
0 , whereas the second has

duration T i
0 .
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Figure 6.9: Transfer function of the glottal post-filter, on the top. On the bottom, the

amplitude spectra of a segment of the LF-model signal (with duration 25 ms) and this

signal after glottal post-filtering. The spectrum of the post-filtered LF-model signal is

approximately flat.
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Figure 6.10: Spectrum of a segment of the pulse train (with duration 25 ms).

6.3.3.3 Glottal Post-Filtering

Figure 6.9 shows an example of the transfer function of the glottal post-filter and the

spectral effect of this filter on the input LF-model signal. The spectrum of the impulse

train is shown in Figure 6.10, for comparison with the LF-model spectrum. These

figures show that the amplitude spectrum of the post-fitered LF-model is approximately

flat, similar to the amplitude spectrum of the impulse train.

In this work the glottal-post filter is implemented as a FIR filter so that it produces

a linear transformation of the phase of the LF-model signal, which does not affect

the perceptual quality of the speech signal (corresponds to a time shift of the speech

waveform).

Figure 6.11 shows an example of the signal obtained by passing the reference LF-

model signal through the glottal post-filter. The resulting signal has an amplitude peak

at the same point as the instant of maximum excitation of the LF-model signal, since

the phase information of the LF-model signal is preserved in the filtering operation.

The energy of the signal obtained using post-filtering is not concentrated into a single

point as in the delta pulse shown in Figure 4.8. The phase of the signal obtained by

post-filtering is also different from both the phase spectra of the delta pulse and the

pulse obtained using STRAIGHT, which are shown in Figure 4.9. This variation in

phase explains the difference between the waveforms of the STRAIGHT and GPF

pulses (Figures 4.8 and 6.11 respectively). The GPF pulse has the advantage that

it does not require phase processing and contains the mixed-phase characteristic of

glottal source signals, which was explained in Section 5.2.5.2. This phase information

of the excitation used in the GPF method is expected to reduce the “buzzy” quality,

which is often perceived when listening to speech synthesised with the impulse train.
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a) Time-domain waveforms b) Phase spectra
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Figure 6.11: Example of the signal obtained by passing the reference LF-model signal

through the glottal post-filter. This signal preserves the phase information of the LF-

model signal.

6.3.4 Voice Quality Transformation

The characteristics of the glottal source signal (used to represent the excitation) can be

modified using a different set of LF-parameter values to that which defines the refer-

ence LF-model signal. For example, if the return phase parameter Ta is decreased, the

spectral tilt of the LF-model signal decreases (lower attenuation at higher frequencies).

The variations in the LF-model spectrum produce similar changes in the spectrum of

the synthetic speech, as the glottal post-filter remains the same. Therefore, the GPF

method allows the voice characteristics of the synthetic speech to be modified. For ex-

ample, voice quality can be modified by controlling parameters of the LF-model which

are correlated with voice quality, such as the open quotient (OQ), speed quotient (SQ),

and return quotient (RQ).

The GPF method gives a limited control over the glottal source signal. One lim-

itation is that it does not allow the values of the glottal parameters to be directly set.

Nevertheless, it can be used to produce variations of the glottal characteristics, relative

to the speech signal which is synthesised using the reference LF-model signal. For ex-

ample, if we take a reference LF-model signal with OQ=0.6, then by using a LF-model

with lower OQ for synthesising speech, e.g. OQ=0.3, the resulting synthetic speech has

the spectral effects of decreasing the OQ.

Another problem with the voice quality transformation using GPF is that the degree

of glottal parameter transformations depends on the reference LF-model signal. For

example, if the OQ of the reference LF-model signal is low, decreasing the OQ of this
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signal has a small effect on the voice quality of the synthetic speech. Furthermore, a

short reference model signal does not allow very low scale factors of the LF-parameters

to be used, because the length of the LF-model signal is constrained by a minimum

number of samples.

Nevertheless, this voice transformation method can be used to produce the same

glottal parameter transformation effects on the synthetic speech along the utterance.

For example, if the analysed speech is spoken with modal voice, then the voice quality

parameters of the LF-model (e.g. OQ, SQ, and RQ) could be transformed by scale

factors to modify the modal voice quality of the synthetic speech.
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Figure 6.12: Reference LF-model waveform and LF-model signal obtained by increas-

ing the SQ of the reference LF-model signal by 40%.

Figure 6.12 shows an example of the reference LF-model waveform and the signal

obtained by increasing the SQ of the reference LF-model by 40%. Figure 6.13 a) shows

the difference between the spectrum of these two signals. The effect of increasing

the SQ of the reference LF-model signal is to decrease the spectral tilt (increase of

energy at higher frequencies) and to change the frequency and amplitude of the glottal

formant. The excitation is affected by the same variation, because the glottal post-filter

does not change. Figure 6.13 b) shows the spectrum of the two filtered signals. When

the input of the filter is the reference LF-model signal, the excitation is spectrally flat.

Meanwhile, when the SQ of the reference LF-model is increased, the spectrum of the

excitation is no longer flat. This variation in the spectrum of the excitation has the

same effect on the spectrum of the synthetic speech. As result, by changing the SQ

of the reference LF-model signal, the synthetic speech will exhibit a different voice

quality.
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Figure 6.13: a) Spectra of the reference LF-model signal and its modified version with

higher SQ; b) Spectra of the two glottal post-filtered LF-model signals.

6.4 Glottal Spectral Separation (GSS)

The GSS method developed in this thesis synthesises speech using an acoustic glottal

source model and the vocal tract transfer function. In particular, this method was

implemented using the LF-model to represent the glottal source.

6.4.1 Speech Model

The Glottal Spectral Separation (GSS) method assumes that voiced speech is the con-

volution of a glottal source signal with the vocal tract filter. In the frequency domain,

this speech model can be represented by
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S(w) = P(w)U(w)V (w)R(w), (6.23)

where P(w) is the FT of an impulse train, U(w) is the FT of a glottal pulse, V (w) is

the vocal tract transfer function and R(w) is the radiation characteristic, which can be

modelled by a differentiating filter. In this work, G(w) =U(w)R(w) is represented by

a multi-band mixed excitation model, which is a model of the glottal source derivative.

The LF-model was used in this work to represent the glottal source derivative in the

GSS method, as described Section 6.5.

The speech production model of (6.23) is different from the model used by the LPC

vocoder (Proakis and Manolakis, 1996) or STRAIGHT. These vocoders are based on

the following model:

S(w) = P(w)H(w) (6.24)

In this representation, the input excitation is represented by the impulse train and H(w)

represents the spectral envelope of S(w). The vocal tract, the lip radiation and the

glottal source effects are all incorporated into H(w).

6.4.2 Analysis

The block diagram of the GSS analysis method is illustrated in Figure 6.14. The glottal

source signal v(t) is estimated from the speech signal s(t) and the glottal parameters

are extracted from v(t). A smoothing operation on the glottal parameters is employed

in order to reduce possible estimation errors. The smoothed parameters are then used

to generate the spectrum of one glottal flow pulse, Ep(w). This signal is equivalent to

the spectral envelope of a periodic glottal source signal, E(w), since it does not have

harmonic components. Then, the spectral parameters are calculated by removing the

spectral characteristics of the source from the speech spectrum and by estimating the

spectral envelope of the resulting signal. In this work, the aperiodicity parameters and

the spectral envelope are calculated using the STRAIGHT vocoder.

For separating the spectral properties of the glottal source from the speech, the

speech spectrum is divided by the amplitude spectrum of one period of the glot-

tal source derivative, Ep(w). The FT of the resulting signal can be represented by

S(w)/Ep(w). From (6.23), this signal can be described by

S(w)
Ep(w)

= P(w)V (w)
U(w)R(w)

Ep(w)
(6.25)
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Figure 6.14: Block diagram of the analysis part of the GSS method.

Assuming that R(w) is modelled by the derivative function and that the estimated

Ep(w) is a good approximation of the glottal source derivative, then Ep(w)'U(w)R(w)=

G(w). Under this approximation, (6.25) can be rewritten as

S(w)
Ep(w)

' P(w)V (w) (6.26)

This equation shows that the vocal tract filter V (w) can be estimated as the spectral

envelope of S(w)/Ep(w), by comparison with the speech model of (6.24). This is how

the GSS method estimates the vocal tract transfer function.

The GSS analysis could also be performed using a model of the glottal flow instead

of its derivative. In this case, the glottal flow pulse generated from this model does not

include the radiation effect, unlike Ep(w). Then, the spectrum obtained using GSS is

the combination of the vocal tract and the radiation effect, i.e. V (w)R(w).

When the quotient between the speech and the source spectra is calculated, it is im-

portant that the duration of the glottal source signal is equal to the fundamental period.

For example, if the glottal source signal is longer than the fundamental period, then its

spectrum contains periodicity. A periodic source spectrum is not suitable for separat-
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Figure 6.15: Separation of the LF-model amplitude spectrum from the speech signal.

In this example, the spectrum of the speech signal is calculated by performing SFT on

a 40 ms voiced speech segment and using a Hamming window with the same duration.

ing the glottal source effects from the speech signal, because the relative position of

the source harmonics to the speech harmonics produces variations in the amplitude of

the resulting spectrum.

Figure 6.15 shows an example of the separation of the LF-model spectral effects

from the spectrum of a speech signal, S(w). The overall slope of the resulting spectrum,

S(w)/ELF(w), is close to zero (overall spectrum is approximately flat), because the

spectral tilt of the LF-model has been removed from the speech spectrum. Figure 6.16

shows the spectral envelope of the signal S(w)/ELF(w), which was calculated using

STRAIGHT. The estimated vocal tract is also flatter than the spectral envelope of the
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original speech signal S(w), due to the removal of the tilt characteristic of the LF-

model. The frequency of the first maximum peak is also different between the two

spectra because of the removal of the glottal peak characteristic of the LF-model by

GSS. In general, the signal S(w)/ELF(w) has a high DC component due to the very low

amplitude of ELF(w) near the zero frequency. This effect is because acoustic glottal

source models typically have a DC value approximately equal to zero. The high DC

component could affect the estimation of the spectral envelope. However, this problem

is not relevant when using STRAIGHT to compute the spectral envelope, because it

removes the DC component from the speech spectrum before computing the spectral

envelope.
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Figure 6.16: Spectral envelope of a 40 ms short-time speech signal calculated by the

GSS method, using the LF-model and STRAIGHT. The LF-model spectral effects are

first removed from the speech signal. This is the input signal to STRAIGHT, which

calculates a speech spectrum with reduced periodicity and estimates the spectral en-

velope. The spectral envelope of the speech signal calculated only using STRAIGHT is

also represented, for comparison.

6.4.3 Synthesis

6.4.3.1 Source-Filter Model

The GSS method synthesises voiced speech by using the following speech production

model:

Y (w) = P(w)G(w)V (w), (6.27)
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where P(w) represents the FT of a delta pulse train, G(w) represents the FT of the

glottal source derivative, V (w) is the transfer function of the vocal tract filter and Y (w)

is the FT of the synthetic speech.

The vocal tract filter is defined by the spectral parameters estimated using the GSS

method. For generating the source derivative, the following multi-band mixed model

is used:

G(w) = E(w)Wp(w)+KnN(w)|Ep(w)|Wa(w), (6.28)

where E(w) and N(w) represent the FT of the periodic component of the glottal source

derivative and white noise, respectively. Ep(w) represents the spectral envelope of the

glottal signal E(w) and Kn is a scale factor to normalise the energy of the noise relative

to the source signal. Finally, Wp(w) and Wa(w) are the weighting functions of the

periodic and aperiodic components of the excitation, respectively. Figure 6.17 shows

the flowchart of the speech synthesis method using this model.

Both E(w) and Ep(w) are calculated using the glottal parameters and F0. The

GSS method can be used with different types of glottal source models. In this work,

the LF-model is used to represent the glottal source derivative signal. However, the

glottal source model used for synthesis is expected to be the same as the model used

in the GSS analysis. If the source signal represents the glottal flow signal instead of its

derivative, the source-filter model described by (6.27) and (6.28) is still valid, because

the radiation effect is included in the vocal tract filter.

Similarly to the GPF method, the synthetic speech frames are concatenated us-

ing the overlap-and-add technique with asymmetric windows approximately centered

at the instants of maximum excitation of the LF-model signal, as described in Sec-

tion 6.3.3.2.

6.4.3.2 Glottal Source/Noise Weighting

The weighting functions, Wp(w) and Wa(w), are calculated from the aperiodicity pa-

rameters. In this work, the aperiodicity measurements are estimated using STRAIGHT

analysis. This vocoder applies Wp(w) and Wa(w) to the spectra of a delta pulse signal

and white noise, respectively. Next, it adds them together to yield the mixed excitation,

which is approximately flat. The delta pulse spectrum, D(w), and the noise spectrum,

N(w), are approximately flat and have the same energy. The noise has power one (zero

mean and unit variance noise), whereas the delta pulse has amplitude
√

N0 so that it
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Figure 6.17: Block diagram of the speech synthesis method using the parameters esti-

mated by the GSS method. The glottal source derivative waveform represented in this

figure was obtained using the LF-model, as an example.

has the same power as the noise. The weighting operation has been explained in more

detail in Section 6.2.3. The plots a) and b) of Figure 6.18 show the amplitude spectra

of the two excitation components before and after the weighting, respectively.

In contrast to the delta pulse, the glottal source signal is not spectrally flat and

its energy does not depend on the fundamental period only. In general, the shape

of the glottal source waveform depends on all the glottal parameters and its energy

varies with these parameters too. For this reason, either the glottal source signal or

the white noise have to be transformed so that the weighting operation is performed

correctly for synthesising speech using the GSS parameters. The solution proposed in

this thesis to combine the glottal source signal with the STRAIGHT mixed excitation

model is to shape the spectral envelope of the source derivative on the white noise

before the weighting operation. The spectral envelope of the source can be described
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Figure 6.18: Weighting effect on the mixed excitation components using the STRAIGHT

aperiodicity measurements and two types of periodic signals. In a) and b), the periodic

component is represented by the delta pulse. In c) and d) the mixed excitation is gener-

ated using the LF-model: c) amplitude spectrum of white noise shaped by the spectral

envelope of the LF-model, and d) effect of weighting on the modulated noise and LF-

model periodic signal.

as the impulse response D(w)Ep(w), in which Ep(w) is the transfer function of one

period of the glottal source signal. This technique can be represented by

Ng(w) = |Ep(w)|N(w), (6.29)

where Ng(w) is the frequency modulated noise. Figure 6.18 c) shows an example of

Ng(w), which was obtained using the LF-model signal as the modulating signal. Fig-

ure 6.18 d) shows the weighting effect on both the LF-model signal and the modulated

noise. In this example, the amplitude spectrum of the LF-model component of the
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excitation, E(w), has harmonics because it consists of two cycles of the LF-model

waveform.

Unlike the GPF method described in Section 6.3, which transforms a reference

LF-model signal into a spectrally flat signal, this method transforms the noise and

keeps the glottal source properties unchanged in the excitation. Therefore, the dynamic

variations of the glottal characteristics, such as the source tilt and the glottal formant,

can be modelled independently from the vocal tract spectrum.

6.4.3.3 Amplitude Scaling of the Noise

The periodic component of the excitation consists of two periods of the glottal source

signal. The noise excitation has the same duration as the periodic excitation and it

is scaled in amplitude for the two signals to have the same power. The white noise

N(w) (zero mean and variance one) has power equal to one, whereas the delta pulse

train P(w) has power 1/N0. The noise signal, Ng(w), is multiplied by the scale factor

Kn = 1/
√

N0 so that is has the same power as the source signal, P(w)E(w). It is

important that the amplitude scaling is performed on the noise instead of the periodic

component, in order to avoid the variation of amplitude parameters of the glottal source

model. For example, if the LF-model is used to model the glottal source derivative and

it is scaled in amplitude so that it matches the unit power of the delta pulse signal, then

the amplitude of maximum excitation of the LF-model, Ee, is altered.

6.4.4 Voice Quality

The glottal parameters estimated using the GSS analysis method can be modified to

transform characteristics of the glottal source signal used for generating speech. For

example, by implementing the GSS method using the LF-model, the shape of the glot-

tal source waveform used to synthesise speech can be easily modified. This method

can be used to transform voice characteristics of the synthetic speech, as the glottal

source parameters are strongly correlated with voice quality. Section 6.5.3 describes

an application of the GSS method using the LF-model for voice transformation.

Also, speech synthesis using the GSS method does not have the limitations of the

GPF method for voice transformation, as the glottal source waveform used by the GSS

synthesis method is not transformed by the glottal post-filter.
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6.4.5 GSS Compared with Other Analysis Methods

The separation and estimation of the glottal source and the vocal tract filter from the

speech signal is a difficult problem to solve, as explained in Section 2.2.3. This is

a blind separation problem, which is typically solved by making assumptions about

the speech model. For example, the speech model is generally assumed to be linear,

the vocal tract is often approximated by an all-pole filter and the glottal source by

an acoustic glottal source model or pole-zero representation. However, interaction

between the voice source and the vocal tract does also exist, which makes it even more

complicated to accurately estimate the glottal source and vocal tract components.

The glottal source and the vocal tract filter are often estimated from the speech sig-

nal using an iterative method which estimates these signals jointly, such as the iterative

inverse filtering and the glottal inverse filtering methods described in Sections 2.2.3.3

and 2.2.3.4 respectively. However, these methods typically use approximations which

are not always valid or depend on the initial values and the convergence of optimisation

algorithms. Another problem with methods which jointly estimate the source and the

vocal tract is that errors in the estimated source signal affect the vocal tract estimation

and vice-versa. As a consequence, the spectrograms of the vocal tract estimated us-

ing these methods are usually not as smooth as the spectrograms estimated by spectral

envelope estimation methods like the one used by STRAIGHT.

The GSS analysis-synthesis method overcomes problems commonly found in the

estimation of the source and the vocal tract filter by combining a method for glottal

source estimation with a method for spectral envelope extraction. The main goal is

to effectively separate the characteristics of a glottal source model from the speech

signal and to obtain smooth parameter contours for both the vocal tract spectrum and

the glottal source. It is important to correctly separate the glottal source and the spec-

trum parameters when they are modelled independently, e.g. by HMMs in a statistical

speech synthesiser. Also, smooth parameter trajectories avoid distortion of the syn-

thetic speech quality due to speech parameter discontinuities.

The GSS analysis method has several characteristics which are attractive for speech

synthesis applications. The following aspects of this method could be advantageous

compared with other methods which estimate the glottal source signal and the vocal

tract filter from speech:

• Errors in the glottal parameter estimates can be reduced before the source-tract

separation, e.g. using a smoothing technique.
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• Vocal tract transfer function can be estimated using a spectral envelope extrac-

tion technique which permits a smooth spectrogram to be obtained, e.g. using

STRAIGHT analysis.

• Smooth glottal parameter trajectories and smooth spectrogram can be recom-

bined for synthesis of high-quality speech.

• Vocal tract estimation does not need to be pitch-synchronous.

GSS estimates the glottal parameters before the vocal tract is calculated. Therefore,

errors in glottal parameter estimates can be attenuated before separating the source

effects from the speech signal. In contrast, methods which calculate the source and

the vocal tract parameters jointly, e.g. Alku et al. (1991); Fu and Murphy (2006), can

only easily reduce discontinuities in the source parameter trajectories after the source-

tract separation. Thus, the effect of glottal source estimation errors on the vocal tract

estimation is difficult to avoid in these methods. These errors may cause discontinuities

in the vocal tract parameter trajectories.

There are robust spectral envelope analysis methods which can produce a smooth

spectrogram, e.g. the technique used by STRAIGHT. By using such a method in GSS,

the estimated vocal tract spectrogram is expected to be smooth, under the assumption

that the trajectories of the estimated glottal parameters are also smooth. Therefore, the

extraction of smooth glottal source contours is a key factor to synthesise high quality

speech using GSS.

Typically, accurate vocal tract estimation methods are pitch-synchronous or require

the estimation of the closed phase. Such methods typically require a robust glottal

epoch detector. For example, Wong et al. (1979) proposed to perform the LPC analysis

on the closed phase in order to avoid errors caused by variations of the vocal tract

during the pitch cycle or caused by source-tract interaction. Alku et al. (1991) also

proposed to perform the LPC analysis over the pitch period in order to more accurately

estimate the glottal source signal and the vocal tract. In contrast, the estimation of

the spectral envelope does not usually require the detection of glottal instants. In this

work, the GSS analysis is implemented using STRAIGHT to compute the spectral

envelope. Although this vocoder uses a pitch-adaptive window to calculate the spectral

envelope, it does not require glottal epoch detection. However, the implementations

of the GSS method in this thesis use a pitch-synchronous technique to estimate the

glottal parameters. The next section describes the first implementation of the GSS

method using the LF-model and the STRAIGHT vocoder, which was performed in
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this work. During this work, this implementation was also applied to a HMM-based

speech synthesiser (as described in Section 7.3) and further improved (as described in

Sections 8.2 and 8.2.2).

6.5 Application of GSS Using LF-model

6.5.1 Estimation of the LF-model and Vocal Tract

6.5.1.1 F0 and Glottal Epochs

The fundamental frequency F0 and the glottal epochs were estimated in the first stage

of the GSS method, since they were used to estimate the glottal source derivative signal

pitch-synchronously. The glottal epoch parameter corresponds to the maximal ampli-

tude peak of the glottal flow derivative cycle (one period long), which is associated

with the glottal closure instant. Therefore, the glottal epoch was also used as an esti-

mate of the instant of maximum excitation of the LF-model, te.

Both F0 and the glottal epoch were estimated using the F0 and epoch detectors

(Talkin and Rowley, 1990; Talkin, 1995) of the ESPS tools. F0 values were calculated

using the get f0 function, while the epochs were calculated using the epochs function

and the estimated F0 values. In this way, the extracted epochs were consistent with the

F0 values, i.e. epochs were only estimated for voiced speech (F0 > 0). For unvoiced

speech frames, the F0 and epoch values were set equal to zero.

6.5.1.2 Glottal Source Signal Estimation

In this implementation of the GSS method, the inverse filtering technique with pre-

emphasis was used for estimation of the glottal source derivative signal, v(t). The

inverse filter coefficients were estimated by LPC analysis of the pre-emphasised speech

signal. This is a popular and simple method to obtain the LPC residual signal, which

was described in Section 2.2.3.1.

Speech frames, si(t), were sampled at 16 kHz and had duration equal to twice

the fundamental period. The coefficients of the inverse filter were calculated pitch-

synchronously (analysis window centered at the glottal epochs) from the pre-emphasised

speech signal (α=0.97), using the autocorrelation method (order 18) and a Hanning

window. Then, the derivative of the glottal volume velocity (DGVV), vi(t), was esti-

mated by inverse filtering the short-time signal si(t).
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Figure 6.19: Estimates of tc, to, and tp. Top: a pitch cycle of the LPC residual; Bottom:

integrated glottal source derivative signal (estimate of the glottal flow).

6.5.1.3 Initial Estimates of the LF-model Parameters

Initial estimates of the LF-model parameters, with the exception of te (estimated as

the glottal epoch), were obtained by performing direct measurements on the estimated

DGVV, vi(t). This short-time signal was one period long and delimited by two consec-

utive glottal epochs, which were indexed as i− 1 and i, respectively. Afterwards, the

estimated trajectories of the LF-parameters for each utterance were smoothed using the

median function, in order to alleviate estimation errors. The Ee parameter was directly

estimated from the residual signal as the absolute value of the amplitude of vi(t) at

the glottal closure instant (glottal epoch i− 1). Amplitude-derived measurements of

the glottal flow and its derivative were also used to estimate the glottal opening, max-

imum flow and complete closure instants: to, tp, and tc parameters of the LF-model

respectively.

The glottal flow signal, gi(t), was calculated by taking the integral of the short-time

DGVV signal, vi(t). The DGVV signal was high-pass filtered by a linear phase FIR

filter with cut-off frequency of 80 Hz prior to the integration, in order to reduce any

effects of low frequency amplitude fluctuation that result from the integration. Next,

the point of maximal flow amplitude Umax gave the instant tp and the point of minimum

flow amplitude Umin was the estimate of tc. Figure 6.19 shows an example of the tp and
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tc estimates. This method is based on techniques which estimate the glottal opening

and closing instants from the EGG signal, e.g. Krishnamurthy and Childers (1986).

The EGG signal is a measure of the vocal folds’ conductivity during phonation. The

closer the vocal folds are to each other, the higher the conductivity. The EGG signal

has similar characteristics to the glottal flow signal and it is frequently used to estimate

glottal source parameters.

Figure 6.19 shows an example of the to estimate. This parameter was calculated

from Umax, Umin, and the maximal value of vi(t), Emax, using the following equation

from Gobl and Nı́ Chasaide (2003):

to =
2(Umax−Umin)

πEmax
(6.30)

The short-time signal used to estimate the LF-model parameters started at the glottal

epoch. Therefore, the instant of maximum excitation was assumed to be equal to zero,

i.e. te = 0. However, the conventional LF-model signal starts at to = 0, instead of te.

This was not a problem, because te was calculated from to as te = T0− to.

The estimated glottal source signals often have a noise component, e.g. caused by

aspiration noise or ripple. Typically, the estimation of glottal parameters by direct mea-

surements is affected by the noise of the source signal, as explained in Section 2.2.4.

However, the amplitude-based measurements proposed in this section appeared to be

robust to the noise characteristics of the glottal source derivative signal, such as aspi-

ration noise and ripple.

The ta parameter is defined as the time instant where the tangent (slope) to the de-

caying exponential function of the LF-model at t = te hits the time axis. Figure 5.1

shows an example of the tangent in dashed line and the parameter ta. This parame-

ter usually is more difficult to estimate than the other LF-model parameters and few

methods to directly estimate ta from the glottal source signal can be found in the lit-

erature. Typically, it is estimated by fitting the LF-model signal to the DGVV signal.

However, the performance of the optimisation algorithm also depends on a good initial

estimate of this parameter. A simple method was developed in this work for estimating

ta. First, the derivative of the DGVV signal, d
[
vi(t)

]
/dt, was calculated. Next, the

peak of maximal amplitude of this signal over a relatively short-time interval starting

at the glottal epoch was detected. Figure 6.20 shows an example of the estimated peak,

which is represented by M. This amplitude M was the estimate of the decaying expo-

nential slope at t = te, as this slope is maximum at t = te (Figure 5.1 helps to visualise

this property). Finally, Ta was estimated as Ta = Ee/M.
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Figure 6.20: Estimation of ta. Top: a pitch cycle of the LPC residual; Bottom: derivative

of the residual signal.

Figure 6.21 a) shows the trajectories of the LF-model parameters estimated by

the direct methods described in this section, for a segment of speech. The LF-model

parameters are set equal to zero in the unvoiced regions, as they are not defined for

unvoiced speech.

6.5.1.4 Optimisation of the LF-model Parameter Estimates

Methods based on fitting a voice source model to the data are often used to accurately

estimate the glottal parameters. The to, tp, and Ta parameters were estimated using an

automatic method that fits the LF-model signal to the DGVV signal. In this application,

the five parameter version of the LF-model (without tc) was used, which is given by

(5.4). Therefore, the instant of complete glottal closure tc was not estimated.

The fitting method consisted of minimising the mean-squared error between the

LF-model and the short-time signal, vi(t), using a non-linear optimisation algorithm.

In this work, the Levenberg-Marquardt algorithm (Marquardt, 1963) was used to solve

this optimisation problem. The initial estimates for this iterative method were the

to, tp, and Ta values estimated by direct methods (described in Section 6.5.1.3). The

Levenberg-Marquardt method was implemented using the MATLAB function lsqnon-

lin. This function solves non-linear least squares problems of the form: min f 2(x),



Chapter 6. Analysis/Synthesis Methods 189

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time (s)
T
im

e
 (

s
)

T
0

t
c

t
e

t
p

T
a

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time (s)

T
im

e
 (

s
)

T
0

t
e

t
p

T
a

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time (s)

T
im

e
 (

s
)

T
0

t
e

t
p

T
a

a) LF-model parameters calculated with direct methods 

b) Parameters of the fitted LF-model 

c) Smoothed parameters of the fitted LF-model

Figure 6.21: Trajectories of the LF-model parameters estimated for a segment of a

recorded utterance. This segment corresponds to the words ”danger trail”, which is

located approximately at the middle of the utterance. The T0 contour is calculated

using the F0 detector of the ESPS tools. a) Trajectories estimated based on amplitude

measurements of the glottal source derivative; b) Trajectories estimated by fitting the

LF-model to the glottal source derivative; c) Smoothed trajectories of the parameters

estimated by the fitting method.

where f (x) is a cost function. In this work, the cost function used was f (x) = eLF(t)−
vi(t), where eLF(t) represents the LF-model signal. eLF(t) is a period of the LF-model

which starts at t = te. This starting instant was chosen so that it coincides with the
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Figure 6.22: Example of the LF-model fitted to a short-time signal of the glottal source

derivative signal.

glottal closure (glottal epoch) of the DGVV signal, vi(t). Note that te is different from

the conventional starting instant of the LF-model, which is the glottal opening to. Fig-

ure 6.22 shows an example of the LF-model signal fitted to a DGVV short-time signal.

After the fitting procedure, te was calculated as te = T0− to (te is equal to the duration

from the glottal opening instant to the instant of maximum excitation).

In the fitting method, the estimated instants of maximum excitation (epochs) were

chosen as the starting and ending points of the LF-model waveform, because the glot-

tal epochs were considered to be estimated more accurately than the other LF-model

parameters (estimated using direct methods). As a consequence the LF-model parame-

ter estimates using the fitting method depends on the performance of the glottal epoch

detector. Nevertheless, the glottal epoch estimation method used in this experiment

was assumed to be sufficiently robust and accurate.

Figure 6.21 b) shows LF-model parameter trajectories estimated for a segment of

speech by using the fitting method. These trajectories are also smoothed by the me-

dian function. This operation reduces trajectory discontinuities caused by estimation

errors. Figure 6.21 c) shows the smoothed trajectories of the LF-model parameters.

The smoothed curve of the Ee parameter (amplitude of maximum excitation) is shown

in Figure 6.23. In this example, Ee varies approximately in inverse proportion to T0.

This is consistent with the typical prosodic correlates of this LF-model parameter,

which are described in Section 5.3.3.

From Figures 6.21 b) and c), a strong correlation between glottal parameters and

T0 can be observed, with the exception of the parameter Ta. The parameters te and
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Figure 6.23: Trajectories of the Ee and T0 parameters calculated for a segment of a

recorded utterance. The segment corresponds to the words ”danger trail”, which is

located approximately at the middle of the utterance. In this example, the T0 param-

eter was scaled in amplitude by a constant factor for better comparing the T0 and Ee

trajectories.

tp appear to vary in direct proportion to T0, whereas the relationship between Ta and

T0 is not clear. There are also parts of the contours which show a different pattern of

variation with T0 than the linear. For example, a valley occurs on the trajectories of te
and tp from t = 2.35 to t = 2.4, whereas the T0 contour has an approximately constant

slope in this time interval. This might be related to variations of the glottal parameters

related to prosodic aspects, such as syllable stress. These variations of the LF-model

parameters with T0 are expected, according to the prosody correlates of the LF-model

parameters (discussed in Section 5.3.3).

6.5.1.5 Estimation of the Vocal Tract Spectrum

The spectral parameters were not estimated pitch-synchronously (using the glottal

epochs). The speech signal was segmented at 5 ms frame rate into 40 ms long frames,

s j(t), instead. This duration is equal to the default frame duration of STRAIGHT anal-

ysis. However, it was necessary to map each speech frame, s j(t), to a glottal epoch

i, because the LF-model parameters were calculated pitch-synchronously for speech

frames centered at the glottal epochs. This mapping was performed by finding the

closest glottal epoch i to the center of each short-time signal s j(t). The set of LF-

model parameter values associated with each selected epoch i was used to generate
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one period of the LF-model signal, ei
LF(t), starting at the glottal opening instant to.

The vocal tract filter was estimated by removing the source model effects from

the speech spectrum and calculating the spectral envelope of the resulting signal, as

described in Section 6.4.2. Each speech frame s j(t) was multiplied by a Hamming

window and zero-padded to have the length of 1024 samples, for the SFT analysis.

The LF-model signal ei
LF(t) was also zero-padded to 1024 sample points. Next, the

speech spectrum, S j(w), was divided by the amplitude spectrum of the LF-model sig-

nal,
∣∣E i

LF(w)
∣∣, in order to remove the glottal source model effects. That is,

V j(w) = S j(w)/
∣∣E i

LF(w)
∣∣ (6.31)

The spectral effects of
∣∣E i

LF(w)
∣∣ are mainly related to the glottal formant and the spec-

tral tilt characteristics of the LF-model. Finally, the STRAIGHT vocoder was used to

calculate the spectral envelope of the signal V j(w). For unvoiced speech, the spec-

tral parameters were estimated by computing the spectral envelope of S j(w) using

STRAIGHT.

6.5.2 Copy-synthesis

The speech synthesis method using the parameters estimated by GSS was described in

Section 6.4.3. Each voiced frame i of the excitation signal was generated by concate-

nating two periods of the LF-model waveform. They started at te and had durations

T i
0 and T i+1

0 , respectively. The first LF-model cycle was generated from the glottal

parameters estimated for the frame i: t i
e, t i

p, T i
a , and E i

e. The te and tp parameters of the

second cycle were calculated under the assumption that the dimensionless parameters

of the LF-model (OQ, SQ and RQ) were the same as the first cycle. That is, the glottal

parameters are assumed to vary linearly with the fundamental period. For example,

the tp estimate for the second cycle was t̂p = t i
pT i+1

0 /T i
0 . This linear approximation

for the variation of certain LF-model parameters is considered to be good because the

variation of the dimensionless parameters between contiguous frames is generally not

significant. The Ta and Ee parameters of the second cycle were set equal to the values

of the first cycle respectively, as they did not show significant variation with T0 from

the analysis measurements. In this application of the GSS synthesis method, the LF-

model signal is not mixed with the noise component. That is, the excitation of voiced

speech consists of the periodic component only. The reason to exclude the effect of

the noise component is to directly compare the LF-model signal against the impulse
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train, because the noise component could reduce the buzziness of the synthetic speech

caused by the impulse train and the LF-model signal. Moreover, the noise compo-

nent is expected to have the same effect on the quality of speech synthesised using

the STRAIGHT and GSS methods, because it is modelled using the same aperiodicity

parameters.

The spectrum of the synthetic speech frame, Si(w), was calculated by multiplying

the amplitude spectrum of the LF-model waveform by the vocal tract transfer function,

which is given by the spectral parameters (FFT coefficients). In this process, the LF-

model spectrum was calculated by performing the 1024 point FFT, using a Hamming

window. The speech waveform was generated by computing the IFFT of Si(w) and

removing the Hamming window effect from the resulting signal. Finally, the speech

frames were concatenated using a pitch-synchronous overlap-and-add technique de-

scribed in Section 6.4.3.1.

6.5.3 Voice Quality Transformation

In this application, the GSS analysis-synthesis method was used for voice transfor-

mation by modifying the LF-model parameters estimated for a speech signal and re-

synthesising the speech signal using the new parameters. For synthesis, the F0 and

spectral parameters remained the same. Speech spoken with modal voice was trans-

formed into breathy and tense voices by modifying the mean values of the OQ, SQ, and

RQ parameters of the LF-model. This method is described in the following paragraphs.

First, the LF-model parameters were estimated for sentences spoken with three

voice types: modal, breathy, and tense. Then, the mean values of the OQ, SQ, and RQ

parameters of the LF-model were calculated for each utterance, by using the formulas

given in Section 5.2.3. That is, these parameters were calculated for each speech frame

i by:

OQi =
t i
e +T i

a

T i
0

(6.32)

SQi =
t i
p

t i
e− t i

p
(6.33)

RQi =
t i
a− t i

e

T i
0

(6.34)

The next step was to calculate the variations of the mean values of the dimen-

sionless parameters between each voice quality and the modal voice. For example,
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Breathy Tense

∆OQ (%) ∆SQ (%) ∆RQ (%) ∆OQ (%) ∆SQ (%) ∆RQ (%)

utt. 1 2.5 -7.7 17.6 -3.2 51.8 73.9

utt. 2 10.0 0.2 13.2 -8.3 30.4 39.2

utt. 3 -2.5 -23.8 10.1 -6.4 15.4 24.4

utt. 4 5.6 -16.4 51.2 -4.04 14.0 47.8

utt. 5 5.9 -16.8 62.7 -6.3 1.7 24.8

Table 6.1: Percentage variation of the mean values of the LF-model parameters be-

tween a sentence spoken with a voice quality (breathy or tense) and the same sen-

tence spoken with modal voice. For example, the variation of the mean OQ for

an utterance spoken with breathy voice is calculated as ∆OQbreathy = (OQbreathy−
OQmodal)/OQmodal .

the variation of the mean value of the OQ for the breathy voice is ∆OQbreathy =

E[OQbreathy]−E[OQmodal], where E[x] represents the mean computed over the total

number of speech frames of an utterance. Table 6.1 shows the variation of the mean

values of the dimensionless parameters, which were calculated for five different utter-

ances. These values are given in terms of percentage of the modal voice mean values.

In general, the breathy voice had higher OQ, lower SQ, and higher RQ than the modal

voice. This behaviour observed for the LF-model parameters is in agreement with the

voice quality correlates of these parameters, which were described in Section 5.3.2.

For the tense voice, the five utterances had lower OQ, higher SQ, and higher RQ than

the modal voice. These results are also in acordance with the voice quality correlates,

with the exception of the RQ parameter, which is typically lower for the tense voice

compared with the modal voice. One possible explanation for this unexpected result

is the limitation of inverse filtering using pre-emphasis (described in Section 2.2.3) to

accurately estimate the DGVV signal. A major problem with this technique is that it

does not correctly separate the spectral tilt of the glottal source from the speech signal.

The RQ parameter is particularly affected by poor modelling of the spectral tilt by in-

verse filtering (using pre-emphasis), because this parameter is strongly correlated with
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the spectral tilt. The OQ and SQ are less influenced by the spectral tilt, which might

explain the expected variations of these parameters for the tense voice.

The range of the OQ, SQ, and RQ values in Table 6.1 (calculated for the five ut-

terances) is relatively large for the two voice qualities (breathy and tense). One of

the explanations for this result is that the values of the dimensionless parameters vary

significantly along an utterance and across utterances because they also depend on

prosodic factors, as explained in Section 5.3.3. Another factor is that it might be diffi-

cult for the speaker to reproduce the same type of voice quality along an utterance and

for the different utterances. Estimation errors of the LF-model parameters could also

contribute to the high variance values. Nevertheless, the voice quality transformations

were performed for each utterance using the values of OQ, SQ, and RQ calculated for

that utterance. For this reason, the variations of these parameters across utterances was

not considered to be important. Also, the general trend of variation of these parameters

(whether they increase or decrease) is similar for the different utterances as discussed

in the previous paragraph.

The transformed trajectories of the LF-model parameters were obtained by multi-

plying the measurements of the glottal parameters of the modal voice by scale factors,

so as to reproduce the target variation of the voice quality parameters (mean values of

OQ, SQ, and RQ). The formulas used to calculate the scale factors were derived from

the formulas of the voice quality parameters, given by (6.32) to (6.34), and from the

deltas of the mean values of the voice quality parameters. For example, for transform-

ing the voice quality of the speech frame i, from modal to breathy, the scale factors are

given by

ki
Ta
= 1+

∆OQbreathy

RQi (6.35)

ki
tp
=

t i
e

t i
p

∆SQbreathy +SQi

1+∆SQbreathy +SQi
(6.36)

ki
te =

T i
0

t i
e
(∆OQbreathy +OQi)−

ki
Ta

T i
a

t i
e

(6.37)

The scale factors used to transform a modal voice into a tense voice were also cal-

culated using the previous equations, but the delta parameters derived for the tense

voice (OQtense, SQtense, and RQtense) were used instead of the breathy parameters. Fig-

ure 6.24 shows the estimated trajectories of the LF-parameters for a segment of speech

spoken with modal voice and the transformed trajectories for synthesising that speech
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segment with breathy voice. The main effect of scaling the LF-parameters using (6.35)

to (6.37) is to change the mean component of the LF-parameter trajectories, while

the dynamic component of the LF-parameter trajectories remain approximately un-

changed. Thus, the local aspects of voice quality which are correlated with prosody are

preserved, such as voice quality variations in stressed syllables. On the other hand, the

mean values of the LF-model parameter trajectories which are expected to be related

to the overall voice quality of the utterance are modified by the scaling operations.
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Figure 6.24: Estimated trajectories of the LF-parameters for an utterance spoken with

a modal voice and the respective transformed trajectories which were calculated to

synthesise speech with a breathy voice.

6.6 Perceptual Evaluation of GSS Using LF-model

6.6.1 Overview

A forced-choice (AB) perceptual evaluation was conducted in order to compare the LF-

model with the impulse train, with respect to speech naturalness and parametric flexi-

bility for voice quality transformations. Speech was generated by copy-synthesis using

the GSS implementation with the LF-model, which was described in Section 6.5.2.

This method is suitable for comparing the LF-model with the impulse train because

the spectral parameters used to synthesise speech with the two excitation models can

be calculated using the same spectral envelope estimation technique. In addition to the
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comparison of these two excitation models, this experiment also permitted the eval-

uation of the performance of the GSS method for copy-synthesis and voice quality

transformations. Table 6.2 summarises the characteristics of the methods evaluated in

this evaluation.

Analysis-Synthesis Methods

GSS with LF-model Baseline Method

Inv. Filt. Pre-emphasis: LF-param.

Analysis ESPS tools: F0, epochs ESPS tools: F0, epochs

GSS: vocal tract STRAIGHT: spectral envelope

Excitation LF-model Impulse

Synthesis GSS synthesis FFT process. & OLA

Evaluation Naturalness, Voice quality

Table 6.2: Summary of the forced-choice (AB) perceptual test which was conducted to

compare the LF-model with the impulse train.

6.6.2 Recorded Speech

A male English speaker was asked to read ten sentences with a modal voice and two

different voice qualities: breathy and tense. He had listened to examples of tense

and breathy speech beforehand, which were obtained from the following University of

Stuttgart webpage: http://www.ims.uni-stuttgart.de/phonetik/EGG/page10.

htm. The sentences contained only sonorant sounds, as the study concerned voiced

speech. The use of other sounds, such as voiced fricatives and unvoiced speech could

decrease the performance of the epochs detector and increase the errors in the estimated

LF-parameters.

6.6.3 Synthetic Speech

Each utterance spoken with modal voice quality (neutral quality) was synthesised by

copy-synthesis using the GSS method, as described in Section 6.5.2. This method uses
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the LF-model to represent the glottal source derivative and the STRAIGHT vocoder to

compute the spectral envelope. The modal voice utterances were also synthesised us-

ing the impulse train instead of the LF-model. The speech synthesis method using the

impulse train was similar to the GSS method using the LF-model, with the exception

that the LF-model waveform was replaced by a delta pulse and the spectral parameters

represented the spectral envelope of speech (computed by STRAIGHT) instead of the

vocal tract. The delta pulse was placed at the instant of maximum excitation te (ap-

proximately at the center of the excitation), and had amplitude equal to
√

T0. The F0

values were the same for the two speech synthesis methods (estimated using the ESPS

tools).

Five sentences from the recorded speech corpus were also synthesised with breathy

and tense voices respectively by transforming the LF-model parameter trajectories of

the modal voice using the voice transformation method described in Section 6.5.3.

These transformations were performed using the ∆ values measured for these utter-

ances which are given in Table 6.2. In this experiment, speech synthesised using the

voice transformation method was compared to the resynthesised modal speech only,

because the main objective of the experiment was to show that the LF-model provides

more parametric flexibility for voice transformation than the impulse train. In the fu-

ture, more experiments could be conducted to better evaluate the performance of the

GSS method using the LF-model for voice transformation. For example, the trans-

formation of modal speech to reproduce a certain non-modal quality (e.g. breathy)

could be also compared to non-modal speech resynthesised using the GSS method or

recorded speech spoken with the same non-modal voice.

6.6.4 Experiment

6.6.4.1 Lab Experiment

The experiment was first conducted in a quiet room of the CSTR lab, using head-

phones. Twenty three students, who were all English native speakers, were paid to

participate in the test.

The listening test was divided into five parts. In the first, subjects were presented

with 20 pairs of stimuli (10 utterances, randomly chosen and repeated twice with the

order of the samples alternated). Each pair consisted of a sentence synthesised using

the LF-model and the same sentence synthesised using the impulse train. For each

pair, they had to select the version that sounded more natural. Each synthetic utterance
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used in the test had been previously scaled in amplitude to have the absolute value of

the maximal amplitude equal to that of the recorded utterance.

The second and third parts of the test were similar to the first, but the recorded

speech was compared to speech synthesised using the impulse train and speech syn-

thesised using the LF-model, respectively.

In the fourth part, listeners were first presented with two pairs of recorded utter-

ances in order to show them the difference between modal and tense voices. This

test consisted of 10 pairs, corresponding to 5 different sentences. Each pair contained

a sentence synthesised with modal voice (by copy-synthesis) and the same sentence

synthesised with the transformed trajectories of the LF-parameters which were calcu-

lated for the tense voice. Subjects had to select the speech sample that sounded most

similar to the tense voice. Finally, the fifth part was similar to the fourth, with the dif-

ference that sentences synthesised with breathy voice were used instead of sentences

synthesised with tense voice. In this part, listeners were asked to select the speech

sample that sounded most similar to breathy voice.

6.6.4.2 Web Experiment

The same experiment was also conducted on the web, after the lab evaluation. Twelve

listeners participated in the test, using headphones. The listening panel consisted of

students and staff from the University of Edinburgh, including seven speech synthesis

experts and ten native speakers. No payment was offered to the participants in this

experiment.

For the web experiment, each synthesised utterance was multiplied by a scale factor

so that the total speech power of the utterance was equal to the total power of the

respective recorded utterance. This amplitude scaling was different from the one used

in the lab test. The reason for this adjustment was to reduce the difference in loudness

between the synthetic and the recorded utterances of each pair, which was found in

the stimuli after the lab test had finished. The recorded utterances were systematically

perceived as louder than the synthetic speech. By using the power normalisation that

difference in loudness was reduced.

6.6.5 Results

The results obtained from the lab and web listening tests are shown in Figure 6.25. All

the results are statistically significant with p-value6 0.01.
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Figure 6.25: Preference rates and 95% confidence intervals obtained for each part of

the forced-choice test.

In general, speech synthesised using the LF-model sounded more natural than

speech synthesised using the impulse train. The preference for the LF-model was

significantly higher in the web test than in the lab evaluation. In the web test, the

participation of speech synthesis experts and the power normalisation of the speech

samples are possible causes of the difference in results to the lab test. The results

obtained in the two experiments were expected because the impulse train produces a

buzzy speech quality, whereas that effect is attenuated by using the LF-model to rep-

resent the excitation.

Synthetic speech obtained higher scores than expected when compared to recorded

speech, especially in the lab test. This result was unexpected, since the LF-model does

not represent all the details of the true glottal source signal. For example, the LF-model

cannot model certain voice effects such as aspiration noise, which is often perceived in

voiced speech.

A detailed analysis of the lab test results showed that six listeners clearly pre-

ferred the synthetic speech to the recorded speech. The same listeners also clearly

preferred speech synthesised using the impulse excitation to the LF-model. An ex-
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planation might be that a small number of listeners (six out of ten) preferred speech

spoken with a more buzzy voice quality over the natural voice of the speaker. Another

explanation might be that the differences in loudness, which were observed between

speech samples used in the lab test, influenced the perception of speech naturalness for

some listeners. Further experiments are necessary to test these hypothesis. However,

the differences between the results of the lab and web tests were not investigated be-

cause in both experiments the results showed a significant improvement of the speech

quality by using the LF-model instead of the impulse train.

The unexpectedly good results obtained by synthetic speech in the comparisons

against natural speech also indicate that the GSS synthesis method can produce high-

quality speech by copy-synthesis, either using the impulse train or the LF-model.

Speech synthesised using the transformed LF-parameter trajectories to reproduce

a breathy voice quality almost always sounded more breathy than speech synthesised

using the estimated trajectories for modal voice. The results obtained for speech syn-

thesised using the transformed LF-parameter trajectories to reproduce a tense voice

quality were not as good as those obtained for breathy voice. A possible reason to

explain this result is that speech features other than the LF-parameters are important to

correctly model this voice quality, e.g. the F0 parameter. Another factor which could

have negatively affected the results for tense voice is related to possible errors in the

estimation of the return phase parameter, Ta. This might be an important factor because

the measured variation of the mean return quotient (RQ = Ta/T0) between modal and

tense speech was different from that expected, as explained in Section 6.5.3. The ac-

curacy of the LF-model parameter estimation method was not evaluated in this work.

However, the LF-model signal seemed to fit well to the estimated glottal source deriva-

tive signal in several utterances used in this experiment, from the informal analysis of

these utterances by the author.

6.7 Conclusions

Three different analysis-synthesis methods have been described in this chapter. One

of them is the STRAIGHT vocoder. The other two were developed in this work in

order to use an acoustic glottal source model for synthesising speech, instead of the

impulse train used by STRAIGHT. These methods are called Glottal Post-Filtering

(GPF) and Glottal Spectral Separation (GSS) respectively. Table 6.3 summarises the

main characteristics of these methods with respect to the type of parameters extracted
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during analysis, the speech synthesis technique and the control over glottal source

characteristics.

Analysis Control

Source Spectrum Synthesis Glot. Source

aperiod. meas., Pulse phase proc.,

STRAIGHT F0 spectral envel. MBE gener., None

Min. phase filter.

Glottal F0, aperiod. meas., Post-filt. LF-model, LF-model

Post-filter. Post-filt. spectral envel. MBE gener., variations

coeffic. FFT proc. & PSOLA

Glottal F0, aperiod. meas., Glottal source model, glottal

Spectral Glottal spectral envel., MBE gener., source

Separation param. vocal tract FFT proc. & PSOLA model

Table 6.3: Summary of the characteristics of the analysis/synthesis methods.

One of the main advantages of STRAIGHT compared with other vocoders, such

as the LPC vocoder, is that it calculates a smooth spectrogram of the speech signal,

by effectively removing the periodicity characteristic of voiced speech. However,

STRAIGHT uses a delta pulse to model the periodic component of the mixed exci-

tation. This signal does not represent the glottal source characteristics and its spec-

trum has strong harmonics, which are typically associated with a buzzy speech quality.

STRAIGHT reduces the buzziness effect by processing the phase of the delta pulse and

by using a multi-band mixed excitation (MBE) model. This model consists of weight-

ing the periodic and noise components of the excitation, in the frequency domain, and

adding them together. Speech is synthesised by shaping the mixed excitation with the

spectral envelope, which is described by a minimum-phase filter.

The GPF and GSS methods represent the periodic part of the excitation using a

different signal from the impulse train. The periodic excitation signals used by these

methods allow glottal source characteristics to be controlled and have a spectrum with
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less periodicity than the impulse train. Although the GPF and GSS methods use a

different excitation model from the model used by STRAIGHT, this vocoder can be

easily incorporated into these methods to extract a smooth spectrogram.

The GPF method passes a chosen LF-model signal through a glottal post-filter, to

transform the LF-model signal into a spectrally flat signal. This signal is used to model

the periodic component of the mixed excitation. Speech is synthesised by shaping a

spectrally flat excitation signal with the spectral envelope, as in STRAIGHT. How-

ever, instead of using the minimum-phase filtering technique of this vocoder, speech

is synthesised multiplying the FFT parameters of the excitation with those of the spec-

tral envelope. The resulting short-time speech signals are overlapped-and-added using

windows centered at the instants of maximum excitation of the LF-model, te. A great

advantage of this method, when compared with STRAIGHT, is that the input LF-model

to the glottal post-filter can be changed during speech synthesis for voice transforma-

tion. Nevertheless, the control over the glottal source properties has some limitations

because the effects of the LF-model parameter variations on the speech signal depend

upon the glottal post-filter used.

The GSS method models speech as the convolution of the glottal source signal and

the vocal tract filter. The vocal tract transfer function is estimated by separating the

spectral effects of the glottal source from the speech signal and then calculating the

spectral envelope of the resulting signal. This method uses a mixed excitation model

which consists of mixing a glottal source signal with a random signal, in order to

better model the noise characteristics of speech. For generating a short-term speech

signal, the mixed excitation is convolved with the vocal tract filter (using FFT process-

ing). Then, the short-term speech signals are concatenated using a pitch-synchronous

overlap-and-add technique. The performance of the GSS analysis is mainly depen-

dent on the glottal source estimation, as the spectral envelope can be estimated using

a robust analysis method (e.g. the STRAIGHT method). Moreover, the effect of glot-

tal parameter errors on the estimation of the vocal tract filter can be reduced, e.g. by

performing a smoothing of the glottal parameter contours.

A forced-choice AB listening test was performed in order to compare the LF-model

with the impulse signal, in terms of speech naturalness and voice quality transforma-

tion. In this evaluation, the GSS method was used to synthesise speech using the LF-

model by copy-synthesis and to transform the voice quality of the synthetic speech.

The GSS method performed well in the evaluation, which indicates that it can be used

to produce high-quality speech. The results of this evaluation indicate that speech qual-
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ity can be improved by using the LF-model instead of the impulse signal for synthe-

sising speech. In this test, the LF-model was compared to the impulse signal, without

using the noise component of the mixed excitation. These results also show that the

LF-model offers higher parametric flexibility than the impulse train to model voice

quality.



Chapter 7

HMM-based Speech Synthesiser Using

LF-model: HTS-LF

7.1 Introduction

The LF-model was incorporated into a HMM-based speech synthesiser which uses

the STRAIGHT analysis-synthesis method. This system is an implementation of the

Nitech-HTS 2005 speech synthesiser (Zen et al., 2007a). Nitech-HTS 2005 is a very

popular speaker-dependent HMM-based speech synthesiser, which performed very

well against other speech synthesisers in the Blizzard Challenge 2005 (Zen et al.,

2007a). The Blizzard Challenge is an annual event in which participants are pro-

vided with a speech corpus and have to synthesise a set of test utterances. Then,

an overall evaluation of the synthesisers is conducted and the results can be exam-

ined in the Blizzard Challenge Workshop. Nitech-HTS 2005 has been used as the

reference HMM-based speech synthesiser in the Blizzard Challenge since 2006. An-

other motivation for using a system similar to the Nitech-HTS 2005 is that it is an

improved version of the HTS version 2.1 (Tokuda et al., 2009), which is publicly

available for research purposes. More recent HMM-based speech synthesisers have

been proposed, which obtained better results than the Nitech-HTS 2005 system, e.g.

Yamagishi et al. (2007b). However, these systems are typically speaker-independent

and are not publicly available. The speaker-independent approach is commonly used

to synthesise multiple speakers’ voices and typically requires a larger speech corpus

(with speech from different speakers) than the speaker-dependent approach. In this

work, the speaker-dependent approach was chosen because this research concerns the

synthesis of a single speakers’ voice. Furthermore, the speech quality obtained with a

205
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speaker-dependent speech synthesiser is comparable to that obtained with a speaker-

independent system, if the size of the speech corpus which is used to build the first

type of synthesiser is large enough.

The HMM-based speech synthesiser using the LF-model which was developed

during this thesis is called HTS-LF. This system uses the Glottal Spectral Separation

(GSS) method (described in Section 6.4) for speech analysis and synthesis, instead of

the STRAIGHT vocoder used by the baseline system (implementation of the Nitech-

HTS 2005 system). The statistical modelling part of the baseline system was also

modified to incorporate the LF-model parameters. This adjustment mainly concerned

the structure of the statistical model, while the HMM training methods remained ap-

proximately the same.

This chapter first describes the baseline HMM-based speech synthesiser which uses

STRAIGHT for analysis and synthesis. Then, the parts of the HTS-LF system which

are different from the baseline system are described in Section 7.3.

7.2 Baseline System

The structure of the baseline HMM-based speech synthesiser which uses STRAIGHT

is similar to that of the HTS system, which was described in Section 3.4.1. In this

work, this baseline system is named HTS-STRAIGHT.

The HTS-STRAIGHT system analyses the text sentences of the speech corpus in

order to extract the phonetic labels and contextual factors. In this process, the sys-

tem generates context-dependent labels for English using the text analysis tools of the

FESTIVAL unit-selection speech synthesiser (Black et al., 2004). The factors of the

contextual labels are the same as those used in the conventional HTS system (Tokuda

et al., 2002). Examples of these parameters can be found in Section 3.4.2. The HTS-

STRAIGHT system also analyses the recorded speech to estimate the excitation and

spectral parameters. The excitation parameters are F0 and aperiodicity weights in

five frequency bands, while the spectral envelope parameters are mel-cepstral coef-

ficients. The aperiodicity measurements and the spectral envelope are computed using

the STRAIGHT analysis method. The phonetic and speech parameters are then used

to train the context-dependent HMMs and decision trees are used to cluster the trained

statistical models. For speech synthesis, the parameter generation algorithm uses the

statistical models to generate speech parameters from the input text. Finally, speech is

generated from the excitation and spectral parameters using the STRAIGHT synthesis
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method.

7.2.1 STRAIGHT Analysis and Synthesis

The baseline speech synthesiser uses the MATLAB programs of STRAIGHT for anal-

ysis and synthesis. This system requires higher computational time and memory for

running these MATLAB programs, compared with the HTS system (version 2.1) which

uses mel-cepstral analysis and MLSA filtering for synthesis. One reason for using

STRAIGHT is that it is a high-quality speech vocoder which has been successfully

implemented in the Nitech-HTS 2005 system. Also, the STRAIGHT analysis method

(estimation of the spectral envelope and aperiodicity parameters) can be combined with

the GSS analysis method to incorporate the LF-model into the HMM-based speech

synthesiser. The implementation of the GSS method using STRAIGHT performed

well in the copy-synthesis experiment presented in Section 6.6 and it is also expected

to perform well when integrated into the baseline HMM-based speech synthesiser.

7.2.1.1 Analysis

The fundamental frequency, F0, is estimated using the F0 detector of the ESPS tools

which is an implementation of the RAPT algorithm (Talkin, 1995). This method per-

forms similarly to the fixed-point analysis method used by STRAIGHT (Kawahara

et al., 1999b). However, the method of the ESPS tools was chosen in this work be-

cause it permitted the tuning of parameters of the F0 detector in order to obtain a more

accurate F0 estimate.

STRAIGHT is used to calculate the aperiodicity measurements and the FFT coef-

ficients of the spectral envelope of the short-time speech signal, as described in Sec-

tion 6.2.2. These parameters are transformed to features which are more suitable for

the statistical modelling. For the case of the spectral envelope, it is converted to a

representation in terms of mel-cepstral coefficients. For the aperiodicity, five weights

are obtained by averaging the aperiodicity amplitude spectrum in the five frequency

bands: 0-1, 1-2, 2-4, 4-6, and 6-8 kHz.

7.2.1.2 Synthesis

The method used by STRAIGHT to synthesise speech was described in Section 6.2.3.

For voiced speech, the excitation is obtained by weighting a pulse signal and white
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noise and adding them together. The weighting functions are calculated from the ape-

riocidity parameters. STRAIGHT generates the pulse by processing the phase of a

delta pulse, in order to reduce the strong periodicity of the impulse train signal and

improve speech naturalness. For unvoiced speech, the excitation is modelled as white

noise. Finally, the minimum-phase impulse response of the speech signal is calculated

from the mel-cepstral coefficients and then the speech signal is generated by convolv-

ing this impulse response with the excitation signal.

7.2.2 Statistical Modelling

7.2.2.1 Statistical Model

The statistical model is a five-state left-to-right HMM. Each state output density func-

tion is modelled by a single Gaussian probability distribution. The state duration is

also modelled by a Gaussian distribution. In this case, the HSMM structure described

in Section 3.3.4 is used to explicitly model the duration.

Each observation feature vector at time t, ot , consists of five streams: spectrum,

aperiodicity, logF0, ∆ of logF0 and ∆2 of logF0. The spectrum and aperiodicity pa-

rameters are modelled using a continuous probability distribution, while the last three

streams are modelled using a continuous distribution for the voiced and a discrete

distribution for the unvoiced space. A MSD-HMM (Tokuda et al., 1999) is used to

model these parameters. The aperiodicity parameters consist of the five frequency band

weights vt and their delta (∆) and delta-delta (∆2) parameters, whereas the spectral pa-

rameters are the static mel-cepstral coefficients ct , and their ∆ and ∆2 coefficients. In

this work, the number of mel-cesptral coefficients used is 39. Figure 7.1 shows the

structure of the speech parameter vector.

7.2.2.2 Context Clustering

There are many contextual factors (e.g. phonetic, prosodic and linguistic) that affect

spectrum, F0 and duration. Context-dependent HMMs are used to model these ef-

fects. However, it is difficult to cover all possible context-dependent units because the

amount of training data that is usually available does not include all combinations of

contextual factors. Similarly to the HTS system, HTS-STRAIGHT performs cluster-

ing of the trained HMMs using decision trees, which was described in Section 3.3.3.

The spectral, F0 and duration parameters are clustered independently because they

have their own influential contextual factors. The HTS-STRAIGHT system uses the
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Figure 7.1: Multi-stream structure of the speech feature vector, in the HTS-STRAIGHT

system.

minimum description length (MDL) criterion (Shinoda and Watanabe, 2000) for the

tree-based clustering.

The HMMs associated with leaf nodes in the decision tree which have a common

mean and variance are also tied in order to avoid data sparsity problems. For a set of

models of tied leaf nodes, U = {U1,U2, ...,UM}, the log-likelihood L(U) of U gener-

ating a set of T observation vectors, with ot having dimension L, can be approximated

by the following equation:

L(U) =
M

∑
m=1

T

∑
t=1

γt(m) logNm(ot ;µm,Vm)

= −1
2

M

∑
m=1

T

∑
t=1

γt(m)(L+L log(2π)+ log |Vm|) , (7.1)

where µm and Vm are the mean vector and the diagonal covariance matrix of the Gaus-

sian probability distribution Nm at node Sm, respectively. In this equation, γt(m) repre-

sents the probability of the observed frame ot being generated by the node Sm.

The MDL principle uses the description length parameter, l, to find the optimal

probabilistic models. The description length can be calculated as

l(U) =−L(U)+LM log

(
M

∑
m=1

T

∑
t=1

γt(m)

)
+C, (7.2)
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where C is the code length (assumed to be a constant), required to choose the model.

When a given node Sm associated with the model U is divided into two nodes, a new

model U ′ is calculated for the child nodes. The difference between the description

lengths before and after splitting, δl = l(U ′)− l(U) is used as the stopping criterion.

If δl < 0, then the node is divided. Otherwise, it is not divided.

7.2.2.3 HMM Parameter Estimation

The parameter calculation of a HMM λ with known phonetic transcription Z can be

described by the following optimisation problem:

λ
∗ = argmax

λ

P(O|Z,λ), (7.3)

where O is the sequence of speech parameter vectors obtained during analysis. The

HTS-STRAIGHT system uses the Baum-Welch algorithm, which was described in

Section 3.2.5 to solve this problem. State duration probability density functions are

estimated simultaneously with the other λ parameters, as they are modelled explicitly

by a HSMM (same optimisation problem as for a HMM). The HTS-STRAIGHT sys-

tem uses the the HTK-3.4 tools (Young et al., 2006) to implement the Baum-Welch

algorithm and to perform the necessary operations to calculate the HSMM parameters.

The main functions of the HTK tools (HTS versions of these tools) used for statistical

modelling are summarised below:

• HCompV: calculation of the global speech parameter mean and covariance.

• HInit: calculation of initial estimates for the HMM parameters by using the

speech parameters and the Viterbi alignment algorithm.

• HERest: calculation of the state duration probability density functions and Baum-

Welch re-estimation of the parameters of a single HMM using a set of speech

parameter vectors.

• HHEd: tying across selected HMMs and decision tree-based context clustering.

Figure 7.2 shows the block diagram of the HMM parameter estimation method

used by the HTS-STRAIGHT system, which can be divided into two parts. The first

is related to the HMM estimation without taking into account the context, i.e. training

of context-independent (CI) HMMs or monophone HMMs. The second concerns the

re-estimation of context-dependent (CD) HMMs, also called full-context HMMs.



Chapter 7. HMM-based Speech Synthesiser Using LF-model: HTS-LF 211

Embedded Re−estimation

Floor (HCompV)

Speech Feature Vectors

and Context Labels

Estimated HMMs

parameters

Initialisation CI−HMMs by

Segmental K−means

of CD−HMMs (HERest)

Embedded Re−estimation

State Tying and Tree−based

Clustering of Spectra, F0,

and Duration (HHEd)(HInit)

x1

of CI−HMMs (HERest)

Conversion CI−HMMs

to CD−HMMs (HHEd)

x1

Untying of Clustered

CD−HMMs (HHEd)

of CD−HMMs (HERest)

Embedded Re−estimation

Calculation Variance

Figure 7.2: Block diagram of the training procedure in the HTS-STRAIGHT system.

In the CI-HMM estimation part, HCompV is used to initially calculate the global

speech variance and a variance floor value. Next, HInit initialises the models by using

the speech feature vectors, the monophone labels (labels of the phone model without

context information) and the variance floor. This tool performs the segmentation of

the training observations by recursively clustering the vectors in each segment using

a K-Means based algorithm (Young et al., 2006) and using Viterbi alignment. The

parameters of the CI-HMMs are re-estimated by the HERest tool. This tool uses the

Baum-Welch algorithm (Baum et al., 1970; Young et al., 2006) to estimate the param-

eters of each HMM, from the phonetic transcriptions, the observation feature vectors

and the initial estimates of the model parameters. The Baum-Welch re-estimation is

performed more than once (twice in this case), in order to more accurately estimate the

HMM parameters. The next step is to clone the CI-HMMs into context-dependent sets

of models using HHEd and the labels with contextual information.

In the CD-HMM estimation part, the models are first re-estimated using HERest.

In general, the amount of training data is not sufficiently large to accurately model all

the contextual information by CD-HMMs and the more complex the model is (larger

amount of contextual information), the more data are needed. In order to avoid this

problem, HHEd is used to cluster the resulting CD-HMMs using decision trees and to

perform tying of the clustered models. Tied models can share their data and param-
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eters, which avoids the problem of data insufficiency. The mel-cepstral coefficients,

logF0, aperiodicity parameters, and duration are clustered using different decision

trees, respectively. The resulting models are re-estimated again. Finally, CD-HMM

estimation is refined by performing another iteration of the re-estimation and context-

clustering, after untying the clustered CD-HMMs.

7.2.3 Speech Parameter Generation

7.2.3.1 Algorithms

The problem of generating the speech parameter vector sequence O from the HMM λ,

for a given word sequence Z, is to maximise the output probability distribution with

respect to O, as follows:

O∗ = argmax
O

P(O|Z,λ) (7.4)

This problem can be solved using the recursive method based on the expectation-

maximisation (EM) algorithm, which was described in Section 3.3.1.4. The HTS-

STRAIGHT system implements the EM algorithm using the HMGenS tool, which is

publicly available on-line as part of the HTS (version 2.1) program (Tokuda et al.,

2009).

Similarly to the HTS system, HTS-STRAIGHT also provides a small run-time syn-

thesis engine, called hts engine, which generates speech parameters using a Viterbi-

based method (Tokuda et al., 2000), described in Section 3.3.1.3. hts engine works

without the HTK/HTS libraries and it is faster than HMGenS. However, the HMGenS

program was used in this work, because it uses an EM-based algorithm which is ex-

pected to more accurately generate the speech parameters than the hts engine program.

7.2.3.2 Global Variance

Speech parameter trajectories obtained using the methods described in the previous

section and using both static and dynamic features often are excessively smooth (Toda

and Tokuda, 2007). This is an effect of the statistical modelling, as it does not capture

details of the parameter trajectories of natural speech with sufficient accuracy.

Over-smoothing of the parameter trajectories causes the synthetic speech to sound

muffled. Several methods have been proposed in order to reduce this problem. For

example, Ling et al. (2006b) proposed a method to enhance the formants of the syn-
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thesised speech by using the linear spectral pair (LSP) parameters, instead of mel-

cepstral coefficients. The HTS-STRAIGHT system uses a parameter generation algo-

rithm which considers the global variance of the generated feature trajectory to reduce

the over-smoothing effect (Toda and Tokuda, 2007). This technique is described in the

following paragraphs.

Toda and Tokuda (2007) observed that the global variance (GV) of the spectral pa-

rameters estimated by the conventional parameter generation algorithm (implemented

using hts engine) was smaller than the GV measured for the same utterance of natural

speech. The generated trajectory was close to the mean vector sequence of the HMM.

The solution proposed by Toda and Tokuda (2007) consists of compensating for this

GV difference using a transformation of the feature trajectory.

The GV of a D-dimensional static feature vector c, over a time sequence with

duration T , is calculated as

v(c) = {v(1),v(2), ...,v(D)}> (7.5)

v(d) =
1
T

T

∑
t=1

(ct(d)− c̄(d))2 (7.6)

c̄(d) =
1
T

T

∑
τ=1

cτ(d), (7.7)

where ct = {ct(1),ct(2), ...,ct(D)}> is the static feature vector at frame t and c̄(d) is

the mean of the d-dimension of the static feature vector over the time sequence.

The parameter generation algorithm considering a Gaussian distribution λv for mod-

elling the GV (Toda and Tokuda, 2007) maximises the following likelihood:

P(O|λ,λv) = ∑
q

P(O,q|λ)wP(v(c)|λv), (7.8)

where w is the weight for controlling the balance between the likelihood of the HMM

model λ and the GV likelihood P(v(c)|λv). The probability density function of the GV

is represented by a Gaussian distribution with mean µv and with a diagonal covariance

matrix Uv, i.e.

P(v(c)|λv) =
1√

(2π)D|Uv|
exp
(
−1

2
(v(c)−µv)

T U−1
v (v(c)−µv)

)
(7.9)

Toda and Tokuda (2007) set w equal to the ratio of the number of dimensions between

the vectors v(c) and O, that is, w = 1/(3T ). The Gaussian distributions of λv and
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λ are independently trained from the speech corpus. The function of the likelihood

P(v(c)|λ,λv) is to increase the GV by the adequate amount.

The conventional parameter generation algorithm (without considering GV) is used

to generate an initial speech parameter trajectory. This algorithm calculates an optimal

observation feature vector O∗ and state sequence q∗, e.g. by solving (3.43) and (3.42).

Next, the following likelihood is maximised with respect to c under the condition that

q∗ is known:

L = log [P(O|q∗,λ)wP(v(c)|λv)] (7.10)

This optimisation is performed by using the iterative Newton-Raphson method (Kelley,

2003). The initial trajectory of this iterative algorithm, c′, is obtained by the following

linear transformation of the trajectory calculated with the conventional algorithm, c:

c′t(d) =

√
µv(d)
v(d)

(ct(d)− c̄(d))+ c̄(d) (7.11)

Toda and Tokuda (2007) indicate that c′ usually gives a larger value of the likelihood

L than c, when w = 1/(3T ).

7.3 Incorporation of the LF-model

For the integration of the LF-model into the baseline system, it was necessary to mod-

ify the analysis-synthesis method (STRAIGHT method) and adjust the statistical mod-

elling part. The GSS method is used to estimate the LF-model and the vocal tract

transfer function parameters from speech and to generate the speech waveform instead

of the STRAIGHT vocoder. The system which uses the GSS method and the LF-model

is called HTS-LF.

7.3.1 GSS Analysis

The GSS method for estimation of the LF-model and the vocal tract parameters is

implemented as in the copy-synthesis application, which was described in Section 6.5.

This method is summarised as follows:

1. F0 and glottal epochs: ESPS tools.
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2. Glottal source derivative: inverse filtering of the pre-emphasised speech sig-

nal (α = 0.97). In this operation, the inverse filter is obtained from the LPC

coefficients which are computed pitch-synchronously using Hanning windows

centered at the glottal epochs.

3. LF-model parameters (voiced speech): initial estimates using direct measure-

ments on the period of the LPC residual (delimited by two consecutive epochs)

and non-linear optimisation algorithm to fit the LF-model waveform to the resid-

ual signal. The resulting trajectories are smoothed in order to alleviate estimation

errors.

4. Vocal tract parameters (voiced speech): quotient between the speech spectrum

and the amplitude spectrum of the LF-model signal (one period long) and spec-

tral envelope computation of the resulting signal using STRAIGHT. The FFT

parameters of the envelope are converted to mel-cepstral coefficients.

5. Spectral envelope (unvoiced speech): STRAIGHT analysis and conversion of

the resulting FFT coefficients to mel-cepstral coefficients.

6. Aperiodicity parameters: STRAIGHT analysis and conversion of aperiodicity

measurements to weights in five frequency bands.

7.3.2 Statistical Modelling of the LF-parameters

7.3.2.1 Statistical Model

The structure of the statistical model of the HTS-LF system is similar to that of the

HTS-STRAIGHT system. It is a five-state left-to-right HSMM and both the state out-

put density function and the state duration are modelled by a single Gaussian distri-

bution. However, there is a difference in the feature data streams: the F0 parameter

vectors (including dynamic features) of the HTS-STRAIGHT system are replaced by

the LF-model parameter vectors in HTS-LF. That is, the feature vector of the HTS-

LF system consists of five streams: spectrum, aperiodicity, LF-parameters, ∆ of LF-

parameters, and ∆2 of LF-parameters. The LF-parameters are: log(1/te), log(1/tp),

log(1/Ta), log(Ee), and log(1/T0) = log(F0). The spectrum and aperiodicity parame-

ters are modelled by a continuous HMM with a diagonal covariance matrix, while the

last three streams are modelled by a MSD-HMM (Tokuda et al., 1999). MSD-HMM is

used to model the LF-parameters because they are not defined in the unvoiced regions.
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The prototype HMM definition file of HTS-STRAIGHT was modified in order to take

into account the LF-model parameters in HTS-LF. The length of the HTS-LF feature

vector has fifteen more parameters than that of HTS-STRAIGHT.

The LF-model parameters, their ∆ and ∆2 are modelled in different streams (three

streams are used). In each stream, the parameters are modelled by using a single

Gaussian distribution with diagonal covariance matrix for the voiced space. For the

unvoiced space, a single discrete distribution which outputs one symbol is used.

The LF-model and aperiodicity parameters are modelled in different streams be-

cause the periodic and noise components of the excitation are assumed to be indepen-

dent. The LF-model does not take into account the noise component of speech, such

as aspiration noise which is mainly produced during the open phase of the glottal cy-

cle. This might be a limitation for voice transformation using the HTS-LF system.

For example, accurate modelling of the aspiration noise is important to reproduce a

breathy voice correctly. The covariance between the LF-model and the noise of the

glottal source could be modelled by HMMs (using the same stream for both compo-

nents) if the glottal source model represented the correlation between the periodic and

noise components. In the opinion of the author, noise modelling in the HTS-LF system

could be improved by using a time-domain model of the noise which was compatible

with the LF-model. Such a model is further discussed in Section 10.3.1.2.

The clustering of the statistical models in the HTS-LF system is expected to result

in smaller decision trees for the LF-model parameters than those obtained for F0 in the

HTS-STRAIGHT system, because the feature vector is larger in HTS-LF and the MDL

is the same in the two systems. This effect related to the difference between the HMM

structure of the HTS-LF and the HTS-STRAIGHT systems was confirmed experimen-

tally for the voice built for these systems, which will be presented in Section 7.4.

7.3.2.2 HMM Parameter Estimation

The observation vector probability distributions of the HMM are calculated as in the

HTS-STRAIGHT system. The HMM training method in the HTS-STRAIGHT system

was described in Section 7.2.2.3. The decision trees used to cluster the LF-model

parameters in the HTS-LF system are built using the contextual factors used to cluster

F0 in the HTS-STRAIGHT system. These contextual factors are assumed to perform

well for the LF-model parameters because there is a strong correlation between F0 and

the other LF-model parameters. The stopping criterion used to build the decision trees

is also the same for the two speech synthesisers.
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Figure 7.3: Trajectories of the LF-model parameters estimated for an utterance by the

speech analysis method of the HTS-LF system and respective parameter trajectories

generated by the system for the same utterance.

7.3.3 Synthesis Using the LF-model

7.3.3.1 Speech Parameter Generation

The HTS-LF system uses the same parameter generation algorithm as HTS-STRAIGHT,

which was described in Section 7.2.3. However, the settings of this algorithm in HTS-

LF are adjusted to its HMM structure. For example, the dimension of the F0 feature

vector in the baseline system is lower than the dimension of the LF-model parameter

vector in the HTS-LF system.

Figure 7.3 shows an example of the LF-model parameters estimated for an utter-
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ance by the HTS-LF system during analysis and the trajectories of the same parameters

generated by the synthesiser. In general, the parameter generation algorithm produces

a smoother trajectory than the one obtained during speech analysis, mainly due to sta-

tistical modelling by the HMMs. One advantage of this smoothing effect is attenuation

of parameter discontinuities due to estimation errors in speech analysis. However, pa-

rameter smoothing by HMM-based speech synthesisers is typically excessively high

which causes synthetic speech to sound muffled. There are other types of errors which

can be occasionally observed in parameter contours generated by the HTS-LF system.

These errors are related to validity of the LF-model parameter constraints, given in

Section 5.2.1. For example, te is higher than the period T0 in a short speech region

located around the 0.8 s mark, in Figure 7.3. This problem might be related to errors in

the LF-model estimation and inaccurate modelling of glottal parameters by HMMs. An

algorithm was developed to reduce estimation errors of LF-model parameters, which

is described in Section 8.2.2. For accurately modelling glottal parameters by HMMs,

one possible solution is to use a sufficiently high amount of speech data for training.

7.3.3.2 Speech Waveform Generation

The HTS-LF system employes the speech waveform generation method described in

Section 6.5.2, which was used for the copy-synthesis application using GSS. This

method uses the LF-model and vocal tract filter parameters to synthesise speech. Con-

versely, the baseline HMM-based speech synthesiser (the HTS-STRAIGHT system)

uses the STRAIGHT synthesis method. The synthesis method used by the HTS-LF

system is summarised in the next paragraphs.

The excitation frame for voiced speech, gi(t), is obtained by mixing a periodic

and a noise component. The periodic signal consists of two periods of the LF-model

waveform, centered at the instant of maximum excitation te, while the noise is a ran-

dom sequence with the same duration as the periodic signal. The two components are

weighted in the frequency domain using the aperiodicity parameters and then added

together, as explained in Section 6.4.3.2. Next, the excitation is multiplied by a Ham-

ming window and zero-padded to 1024 samples to calculate the FFT, X i(w).

Speech is synthesised by calculating the convolution of the excitation signal with

the vocal tract transfer function. This operation is performed in the frequency domain

by multiplying the spectrum of the excitation by the vocal tract spectrum, i.e. Si(w) =

Pi(w)Gi(w)V i(w), where Pi(w) is the FT of a delta pulse train, Gi(w) is the FT of gi(t)

and V i(w) is the vocal tract filter which is obtained from the mel-cepstral coefficients.
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The next step is to calculate the speech waveform yi(t) by IFFT of Y i(w). Next, the

effect of the Hamming window used to calculate the excitation spectrum is removed

from yi(t). Finally, speech frames are concatenated using overlap-and-add windows

which are asymmetric and centered at the instants of maximum excitation.

7.4 Preliminary Evaluation of the HTS-LF System

7.4.1 AB Perceptual Test

A forced-choice AB listening test was carried out in order to evaluate the HTS-LF

system, by comparison with the HTS-STRAIGHT system. Table 7.1 summarises the

characteristics of the systems evaluated in this experiment.

Systems

HTS-LF HTS-STRAIGHT (baseline)

Inv. Filt. Pre-emphasis: LF-param.

Analysis ESPS tools: F0, epochs ESPS tools: F0, epochs

GSS: vocal tract STRAIGHT: spectral envelope

STRAIGHT aperiodicity STRAIGHT aperiodicity

Excitation Mixed LF-model & noise Mixed impulse & noise

Synthesis GSS synthesis STRAIGHT

Evaluation Speech Naturalness

Table 7.1: Summary of the HMM-based speech synthesisers used in the perceptual

experiment which was conducted to evaluate naturalness of the synthetic speech.

The US English BDL speech corpus (male speaker) of the CMU ARCTIC speech

database (Kominek and Black, 2004) was used to build the voices of the HTS-LF

and HTS-STRAIGHT systems, respectively. The size of the BDL speech corpus is

approximately one hour.

The stimuli consisted of 36 pairs of utterances: 18 utterances synthesised by each

system, randomly chosen and repeated twice with the order of the samples alternated.
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The type of sentences used for synthesis was of conversational speech, for example “I

would like to have a five star hotel”.

The evaluation was conducted via the web. Subjects were asked to listen to the

pairs of stimuli and for each pair they had to select the version (A or B) that sounded

best. They were able to listen to the files in any order, and as many times as they

wished. They were also instructed to make a random choice if they could not decide

on the version they preferred.

The listening panel was composed of students and staff from the School of Infor-

matics. Fourteen listeners participated in the test, of which six were native speakers of

English.

7.4.2 Results

The results of this perceptual experiment are shown in Table 7.2. The difference be-

tween the scores obtained by the HTS-LF and the HTS-STRAIGHT systems are sta-

tistically significant with p-value≤ 0.01.

HTS-STRAIGHT HTS-LF

Mean preference (%) 44.4 55.6

95% Conf. Interv. (%) [40.1 48.9] [51.1 59.9]

Table 7.2: Mean scores and 95% confidence intervals obtained by the two HTS synthe-

sisers in the AB forced-choice evaluation.

On average, the HTS-LF system obtained a higher rate of preference. However, the

improvement in performance by HTS-LF when compared with the baseline system was

lower than expected, based on the results of the previous evaluation described in Sec-

tion 6.6.5. In this previous experiment, speech synthesised by copy-synthesis using the

GSS method was significantly preferred (preference rate over 60%) over speech syn-

thesised using the impulse train. Examples of speech synthesised by the two systems

are accessible through the link http://homepages.inf.ed.ac.uk/cgi/jscabral/

hts-lf-model.html. From the results of this experiment, it is difficult to explain

why difference in speech quality between the HTS-LF and the HTS-STRAIGHT sys-

tems appears to be lower than the difference between the GSS method and the baseline

method in the copy-synthesis experiment. Possible factors to explain these results are:
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• Errors in the LF-model and vocal tract parameter estimation using GSS could

deteriorate the performance of the HTS-LF system.

• Statistical modelling of the LF-model parameters in the HTS-LF system might

be less accurate than statistical modelling of F0 in HTS-STRAIGHT.

• Excitation model of voiced speech used in the copy-synthesis evaluation (pe-

riodic component only) is different from that used by the HMM-based speech

synthesisers (multi-band mixed excitation) in this experiment.

• Method used to synthesise speech using the impulse train in the copy-synthesis

evaluation was different from the synthesis method (STRAIGHT vocoder) used

by the HTS-STRAIGHT system.

The importance of these factors is discussed in the next paragraphs. In order to reduce

the effects of the factors which are considered to be the most important, improvements

were made to the HTS-LF system which are presented in the next chapter. Although

these possible causes of speech distortion were not directly tested, further experiments

conducted in this work, which are presented in Sections 8.4 and 9.2, permitted to obtain

more conclusions about the causes of speech distortion in the HTS-LF system.

Errors in the LF-model parameter estimation are expected to have influenced the

performance of the HTS-LF system, because the method to estimate the glottal source

derivative (inverse filtering with pre-emphasis) might not be sufficiently accurate. For

example, Section 2.2.3 described more complex inverse filtering techniques which

are more accurate compared with inverse filtering using pre-emphasis. LF-model pa-

rameter errors could also affect spectral parameter estimation, as vocal tract parame-

ters are estimated by separating the LF-model from the speech spectrum in the GSS

method. Moreover, speech parameter discontinuities caused by estimation errors are

expected to have a more negative effect on the quality of speech obtained by HMM-

based speech synthesis than by copy-synthesis. This difference is because resynthe-

sised speech frames obtained by copy-synthesis are very similar to the original speech

frames, whereas speech parameter discontinuities might degrade statistical modelling

in HMM-based speech synthesis.

In order to improve the robustness of the GSS analysis a more accurate method

for glottal source estimation was implemented into the HTS-LF system, than inverse

filtering with pre-emphasis. Also, an algorithm for errors detection and correction of

the estimated LF-model parameters was developed in order to overcome errors related
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to parameter values outside their valid ranges. Figures 7.4 to 7.6 show examples of

the effect of these types of errors on the LF-model signal. The improvements for the

speech analysis are described in the next chapter.
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Figure 7.4: Example of a distorted LF-model signal for which the constraint te≤ 3/2tp is

not satisfied. In this example, te = 1.3tp for the original LF-model signal. The parameter

te was increased to obtain the distorted signal (te = 7/4tp), while the other parameters

remained the same (within their valid range of values).
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Figure 7.5: Example of a distorted LF-model signal for which the constraint te≤ 3/2tp is

not satisfied. In this example, te = 1.3tp for the original LF-model signal. The parameter

tp was decreased to obtain the distorted signal (tp = 2/5te), while the other parameters

remained the same (within their valid range of values).

The trajectories of the LF-model parameters generated by HTS-LF seem to be

smooth enough and similar to the trajectories measured on real speech, from visual

comparisons made for several utterances. An example of these trajectories is given in

Figure 7.3. Also, F0 modelling in the HTS-LF system does not appear to be affected
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a) LF-model waveforms b) Spectra of the LF-model signals
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Figure 7.6: Example of a distorted LF-model signal for which the constraint Ta ≤ T0− te
is not satisfied. In this example, Ta = 0.18 ms and T0− te = 2.2 ms for the original LF-

model signal. The parameter Ta was increased to obtain the distorted signal (Ta = 2.3

ms), while the other parameters remained the same (within their valid range of values).

by using a vector feature stream for the LF-model parameters (F0 is one of the param-

eters of this stream). For these reasons, statistical modelling of the LF-parameters in

the HTS-LF system is assumed not to significantly cause speech quality degradation

relative to the baseline system.

The noise component of the multi-band mixed excitation and the phase processing

of the impulse signal by STRAIGHT reduces the buzziness produced by the impulse

train. For this reason, the buzzy effect due to the impulse train is expected to be less

relevant in the comparison between the HTS-LF and HTS-STRAIGHT systems than in

the copy-synthesis experiment (voiced speech was synthesised using the conventional

impulse train signal without mixing it with noise).

From the author’s informal comparison of the speech synthesised by the two HMM-

based speech synthesisers in this perceptual evaluation, they sounded different for most

utterances. For some speech samples, the “buzzy” or “metallic” quality produced by

the HTS-STRAIGHT system was clearly higher, when compared with the HTS-LF

system. In other cases, speech synthesised with HTS-LF contained speech artefacts

which could be more perceptually important than the buzziness characteristic of the

HTS-STRAIGHT system. The most common and relevant speech artefacts perceived

for the HTS-LF system were related to an excessively high energy of the noise or

audible clicks in speech segments around the instants of voicing transition (voiced-to-

unvoiced and unvoiced-to-voiced). The high energy variations which were occasion-

ally observed in the synthetic speech are expected to be related to parameter modelling
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problems in the voicing transition regions. A method for reducing energy variations

between synthetic speech frames at voicing transitions was developed in order to avoid

this problem. However, this technique requires modelling the power parameter in the

HTS-LF system. This method is described in the next chapter, as an improvement

performed to the HTS-LF system.

7.5 Conclusion

The HMM-based speech synthesiser with LF-model (HTS-LF) is based on a high-

quality HMM-based speech synthesiser which uses the STRAIGHT vocoder (which

is referred in this work as HTS-STRAIGHT system). The GSS analysis-synthesis

method was integrated into the baseline system (HTS-STRAIGHT) so that the HTS-LF

system is able to use the LF-model. Table 7.3 summarises the characteristics of these

systems. They use a five-state left-to-right HMM with explicit duration modelling

(HSMM). The HMM training is performed using the typical EM algorithm for the

HMM parameter re-estimation and decision tree state tying clustering. A parameter

generation algorithm considering global variance is used in order to reduce the problem

of over-smoothed parameter trajectories.

The main differences between the HTS-LF and the HTS-STRAIGHT systems are

the multi-stream structure of the speech parameter vector and the analysis-synthesis

methods. HTS-STRAIGHT models F0, its ∆ and ∆2 parameters by using a stream

for each of these parameters, whereas HTS-LF models the five LF-model parameters,

their ∆, and ∆2 also using three streams. Both systems use the F0 detector of the ESPS

tools (Talkin, 1995) to estimate F0. The HTS-STRAIGHT system uses the STRAIGHT

analysis method to estimate the spectral envelope of the speech signal and the aperiod-

icity parameters. Meanwhile, the HTS-LF system uses the GSS method to extract the

LF-model and vocal tract filter parameters. The GSS method estimates the LF-model

parameters from the LPC residual (calculated by performing pre-emphasis inverse fil-

tering on the speech signal) and the spectral parameters are obtained by removing the

spectral effects of the LF-model from the speech signal and computing the spectral

envelope of the resulting signal using STRAIGHT. The aperiodicity parameters are

also calculated using STRAIGHT. The HTS-STRAIGHT system uses the MATLAB

version of STRAIGHT to generate the speech signal, while the HTS-LF system uses

the GSS synthesis method which generates speech from the LF-model and the vocal

tract filter parameters. Both methods use a multi-band mixed excitation which is ob-
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HTS-STRAIGHT HTS-LF

STRAIGHT LF-model estimation

Analysis ESPS tools: F0, epochs GSS & STRAIGHT

ESPS tools: F0, epochs

Synthesis STRAIGHT GSS synthesis

HMM 39 mel-sp.coef., 39 ∆, 39 ∆2 39 mel-sp.coef., 39 ∆, 39 ∆2

Feature 5 aperiodicity, 5 ∆, 5 ∆2 5 aperiodicity, 5 ∆, 5 ∆2

Vectors logF0, ∆, ∆2 5 log LF-param., 5 ∆, 5 ∆2

HMM struc. 5 states left-to-right; HSMM; MSD-HMM

Prob. Distr. Gauss. / Multi-space (F0) Gaussian / Multi-space (LF-param.)

Training EM algorithm and Tree-based clustering with MDL criterion

Par. Gener. Maximum Likelihood criterion with GV

Table 7.3: General characteristics of the HTS-STRAIGHT and HTS-LF systems.

tained by weighting the periodic and noise signals using the aperiodicity parameters

and adding them together.

An AB listening test was conducted in order to evaluate the speech naturalness

of the HTS-LF system, compared with the HTS-STRAIGHT system. From the re-

sults, speech synthesised with HTS-LF was slightly preferred on average over speech

synthesised with HTS-STRAIGHT. However, the results for the HTS-LF system were

expected to be better, as speech synthesised using the LF-model (by copy-synthesis)

was significantly preferred over speech synthesised using the impulse train, in the per-

ceptual evaluation presented in Section 6.6. A potential factor of speech distortion in

HTS-LF is the effect of peaks observed in the energy envelope of the synthetic speech

at voicing transitions, which were often associated with audible artefacts. Parameter

estimation errors during speech analysis could also be a cause of speech distortion in

the system. The next chapter describes improvements which were made to the HTS-LF

system in order to increase the robustness of the GSS analysis method and in order to
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avoid the energy peaks which occur in voicing transition regions.



Chapter 8

Improvements to the HTS-LF System

8.1 Introduction

The HTS-LF system described in the previous chapter was implemented using a simple

method for estimating the glottal source derivative from the speech signal, the inverse

filtering with pre-emphasis method. Although this is a simple technique, it does not

accurately separate the glottal source effects from the vocal tract filter, especially the

spectral tilt associated with the source. Inaccurate estimation of the glottal source could

contribute to errors in LF-model parameterisation, because such errors could produce

irregularities in the glottal source derivative waveform which are not represented by

the LF-model. For example, LF-model parameters must satisfy certain constraints

and inaccurate estimation of the glottal signal could result in a set of estimated glottal

parameters which are not valid and could produce a distorted LF-model waveform.

Also, problems in glottal source estimation could result in poor modelling of the source

characteristics by HMMs in the HTS-LF system. This chapter describes the iterative

inverse filtering method which was implemented into the HTS-LF system in order to

improve the accuracy of the glottal source derivative estimation. Also, an algorithm

to detect and correct LF-model parameter errors which was developed in this work

for improving the HTS-LF system will be described. In addition, a method to correct

energy envelope distortion in the speech frames around voicing transitions was also

developed in this thesis and integrated into the HTS-LF system.

The last part of this chapter presents a perceptual listening test which was con-

ducted in order to evaluate the HMM-based speech synthesisers developed during the

work of this thesis, which use the LF-model. The synthetic speech was evaluated in

terms of speech naturalness, intelligibility, and similarity of the synthetic voice to the

227
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original speaker’s voice. This experiment included the HTS-LF system which incorpo-

rated the improvements described in this chapter, the HTS-STRAIGHT system (base-

line system) described in Section 7.2, a modified version of this system which used

the Glottal Post-Filtering (GPF) method for synthesis, and other versions of the HTS-

STRAIGHT and the HTS-LF systems which were used to evaluate aspects related to

the excitation model and speech waveform generation technique.

8.2 Speech Analysis Improvements

8.2.1 Iterative Adaptive Inverse Filtering

The Iterative Adaptive Inverse Filtering (IAIF) method (Alku et al., 1991) was imple-

mented to calculate the glottal source derivative signal, in the GSS analysis stage of

the HTS-LF system. This method has also been used in the HMM-based speech syn-

thesiser proposed by Raitio et al. (2008), which models the excitation of voiced speech

using a glottal inverse filtered signal. Figure 8.1 shows the block diagram of the IAIF

technique. This method was introduced in Section 4.5.2.2 and its implementation in

the HTS-LF system is described in the following paragraphs.

 2

g1

g (t)
1

Inverse filtering

Integration

Inverse filtering

LPC Analysis (order p)

Inverse filtering

vt1

Integration

vt2

Inverse filtering

High−pass filtering

LPC analysis (order 1)

LPC analysis (order g)

H    (z)g2

H     (z)

Speech

s(t)

H     (z)

LPC Analysis (order p)

derivative,

(2nd estimation)

Glottal source

 v (t)

derivative,

(1st estimation)

Glottal source

 v (t)
  1

H    (z)

Figure 8.1: Flowchart of the IAIF method.
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Figure 8.2: Example of LPC analysis in the IAIF method: a) LPC analysis of the speech

signal (order one) for the first estimation of the spectral tilt associated with the glottal

source and the radiation; b) LPC analysis of the initial estimate of the glottal source

signal g1(t).

The IAIF method performs recursive LPC analysis pitch-synchronously. In the

HTS-LF system, each short-time speech signal si(t) is centered at the glottal epoch i,

has duration equal to two fundamental periods (delimited by the glottal epochs i−1 and

i+ 1) and is multiplied by a Hamming window with the same duration. The duration

of the speech frame is constrained to the interval of 20 ms to 30 ms, in order to obtain

a good time-frequency resolution in LPC analysis. The glottal epochs are estimated

using the ESPS tools (Talkin, 1995). Each short-time signal is high-pass filtered at

50 Hz in order to remove low-frequency fluctuations and is down-sampled to 8 kHz,

which is the same sampling frequency used by Alku et al. (1991).

The first inverse filtering operation of the IAIF method is comparable to a pre-

emphasis filtering operation. It removes from the speech signal a rough estimate of

the spectral tilt associated with the glottal source and the lip radiation. However, pre-

emphasis inverse filtering is typically performed by a time-invariant filter, whereas the

inverse filter in IAIF is calculated by first-order LPC analysis of the speech signal. The

IAIF method is expected to more accurately model the spectral tilt than pre-emphasis

inverse filtering, because in the IAIF method the spectral tilt is adapted to the input

speech signal. Figure 8.2 a) shows an example of the amplitude spectra obtained

by LPC analysis of order one, |Hg1(z)|, and the inverse of the pre-emphasis transfer

function, |L(z)|. The pre-emphasis is modelled by M(z) = 1−αz−1 = 1/L(z), with
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Figure 8.3: Segment of the glottal source derivative signal v2(t) calculated using the

IAIF method.

α = 0.97. The initial estimate of the vocal tract, Hvt1(z), is calculated by performing

LPC analysis of order p= 10 on the signal obtained by the initial inverse filtering (LPC

order one). The initial estimate of the glottal source derivative, v1(t), is calculated

by inverse filtering the speech signal with Hvt1(z). After cancelling the lip radiation

through integration, the all-pole model of the glottal source signal, Hg2(z), is calcu-

lated by LPC analysis of order g = 4. Figure 8.2 b) shows an example of the amplitude

spectrum of Hg2(z). The spectral effect of the glottal source (represented by Hg2(z))

and the lip radiation are canceled from the speech signal through inverse filtering and

integration, respectively. The second vocal tract estimate, Hvt2(z), is obtained by per-

forming another LPC analysis of order p = 10 to the output of the inverse filter. The

final estimate of the glottal flow derivative, v2(t), is obtained by canceling the spectral

effect of the vocal tract, Hvt2(z). The signal v2(t) is up-sampled to 16 kHz, in order

to obtain a good time resolution in estimation of the glottal time instants. Figure 8.3

shows an example of the glottal source derivative signal, v2(t).

8.2.2 Error Reduction in LF-model Parameters

LF-model parameters are constrained to the values indicated in Section 5.2.1, so that

the LF-model waveform can be calculated and does not have distortion. It is important

that the estimated LF-parameter values satisfy these constraints, in order to avoid pa-

rameter estimation errors by the GSS method and statistical modelling problems, in the
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Figure 8.4: Block diagram of the algorithm used to correct LF-model parameter values,

in order to avoid distortion in the LF-model waveform.

HTS-LF system. For example, a distorted LF-model signal would produce errors in the

vocal tract transfer function because the spectrum of the LF-model is used to estimate

the vocal tract filter. An algorithm to detect and correct errors in LF-model parameter

estimation was developed during this thesis, in order to improve the robustness of the

analysis and synthesis methods used by HTS-LF.

Figure 8.4 shows the algorithm developed to detect if the LF-model parameters

satisfy several constraints and to correct them, in order to avoid distortions in the LF-

model waveform. In the GSS method used by the HTS-LF system, the LF-parameters
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are estimated pitch-synchronously using frames of the glottal source derivative delim-

ited by glottal epochs (instants of maximum excitation). This method estimates the

instant of glottal opening, to, the return phase parameter Ta, the instant of maximum

flow, tp, and the amplitude of maximum excitation, Ee. The te parameter is calculated

as te = T0−to. First, tp is evaluated in order to find if it is lower than its minimum value

of 3/FS. If tp does not satisfy this condition then it is set equal to 3/FS. The same test

and correction operation is used for the parameter te but using a minimum value of

4/FS instead of 3/FS. These minimum values of tp and te were chosen empirically

so that they were sufficiently low based on typical range values of these parameters.

Subsequently, more constraints on the LF-model parameters are sequentially tested.

If a parameter does not satisfy a given constraint it is set equal to the closest value

within the possible interval of values for that parameter. In addition, if te is corrected,

then the constraint Ta > T0− te must be tested again. The error correction algorithm is

not used to improve the accuracy of the LF-model parameter estimation, but to adjust

the estimated LF-parameters so that they satisfy their constraints. This algorithm im-

proves the robustness of the LF-model parameter estimation, because an invalid set of

LF-parameter values could produce a significantly distorted LF-model waveform (as

shown in Figures 7.4 to 7.6). Figure 8.5 shows an example of a distorted LF-model sig-

nal (does not satisfy one of the LF-parameter constraints) and the resulting LF-model

signal after applying the error correction algorithm.

a) LF-model waveforms b) Spectra of the LF-model signals

0 1000 2000 3000 4000 5000 6000 7000 8000
−10

−5

0

5

10

15

20

25

30

35

Frequency (Hz)

A
m

p
lit

u
d
e
 s

p
e
c
tr
u
m

 (
d
B

),
 |
E

L
F
(w

)| After LF−parameter correction

Before LF−parameter correction

0

Time

e
L
F
(t
)

After LF−parameter correction

Before LF−parameter correction

Figure 8.5: Example of a distorted LF-model signal which does not satisfy the constraint

te ≤ 3/2tp, i.e. te = 7/4tp for this signal. The error reduction algorithm corrected this

signal by setting te equal to 3/2tp, while the other parameters remained the same (within

their valid ranges).
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parameter p, in the HTS-LF system.

8.3 Energy Adjustments of the Synthetic Speech

A method to adjust the energy of synthetic speech frames in the HTS-LF system was

developed in this work, in order to reduce discontinuities in the energy envelope of

the speech signal. For using this method in HTS-LF, the power parameter is estimated

from recorded speech and it is modelled by the HMMs.

8.3.1 Statistical Modelling of the Power

The power parameter of the speech frame si(n) is calculated as

p =
1
N

N

∑
n=1

(
si(n)

)2
, (8.1)

where N is the number of samples of the speech signal. This parameter is then mod-

elled in the same stream as the mel-cepstral coefficients which represent the vocal tract

transfer function. The power and spectral parameters are expected to be correctly mod-

elled in the same stream, as the power parameter is closely related to the c0 mel-cepstral

parameter. Figure 8.6 shows the structure of the speech parameter vector. The spectral

parameter vector consists of the logarithm of the power (log p) and the mel-cepstral

coefficients, c. The LF-model parameters, their dynamic features, and the aperiodicity

features, v, are modelled by different streams.



Chapter 8. Improvements to the HTS-LF System 234

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

A
m

p
lit

u
d
e

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

A
m

p
lit

u
d
e

a) Speech synthesised using the HTS-LF system without power correction 

b) Speech synthesised using the HTS-LF system (with power correction)    

Figure 8.7: Speech segment of an utterance synthesised using the HTS-LF system.

a) Speech synthesised without using the power correction algorithm of the HTS-LF

system; b) Speech synthesised using the power correction algorithm.

8.3.2 Synthesis Using Power Correction

The HTS-LF system performs a power adjustment of synthesised speech frames before

the overlap-and-add operation. The power correction method is used to reduce speech

quality degradation caused by excessively high energy variations around voicing tran-

sitions. Figure 8.7 a) shows an example of excessively high energy noise produced

by the HTS-LF system (without performing power correction) just before a transition

between unvoiced (silence) and voiced speech (around the 0.16 s mark), which causes

speech quality deterioration.

Two possible ways to perform the energy correction of the synthetic speech using

the power parameter have been considered in this work. One way is to transform
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the power of each speech frame so that it matches the power value generated by the

system for that frame (obtained using the HMMs). The other way is to only correct

the energy of the speech frames which are in the neighbourhood of voicing transitions.

The second solution was chosen because it produced better results than the first.

The time intervals Tv1 and Tv2 were derived heuristically from experiments in order

to correct the power before and after a voicing transition, respectively. For example, if

there is a voicing transition from the frame i to the frame i+1, then the power correc-

tion is applied to the frames within the voicing transition interval
[
t i−Tv1, t i+1 +Tv2

]
.

ti and ti+1 are the time instants of the central points of the frames i and i+ 1, respec-

tively. The power correction algorithm is described in the following paragraphs.

If a synthetic speech frame y j(n) is within a voicing transition interval it is scaled

in amplitude by a scale factor k j
p, that is,

ỹ j(n) = k j
py j(n) =

e j
t

e j
s
y j(n), (8.2)

where e j
s is the energy of the synthetic speech signal y j(n) and e j

t is the target speech

energy. The energy of the signal y j(n) with length N is calculated as

e j
s =

√
1
N

N

∑
n=1

(y j(n))2 (8.3)

The target energy is calculated using the power contour generated by the synthesiser

and the last synthetic speech frame ỹ j−1
p (n) that was corrected in power, as follows:

e j
t =

p j

p j−1

√
1
N

N

∑
n=1

(ỹ j−1(n))2
, (8.4)

where p j−1 and p j are the values of the power parameter generated by the synthesiser

for the frames j−1 and j, respectively.

When a synthetic speech frame y j(n) is not within a voicing transition interval, it

is scaled in amplitude by a scale factor k j
g, that is,

ỹ j(n) = k j
gy j(n) =

e′ jt

e j
s

y j(n), (8.5)

where the target energy e′ jt is now calculated as

e′ jt =
e j

s

e j−1
s

√
1
N

N

∑
n=1

(ỹ j−1(n))2 (8.6)
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In this equation, e j
s represents the energy of the synthetic speech frame y j(n) and e j−1

s is

the energy of the last speech frame (not corrected in power). This amplitude scaling of

the synthetic speech frames which are not in the voicing transition regions is performed

to obtain a smooth energy variation between the last frame of the voicing transition

region and the first frame of the non-transition region. This operation produces an

energy contour in the non-transition regions of voicing which is the same as if the

power correction was not performed in these regions, apart from a scale factor.

The amplitude scaling of the synthetic speech frames avoids the discontinuities

of the energy contour in voicing transition regions. However, the amplitude scaling

generally modifies the power of the speech frames in the non-transition region. This

effect is because the target energy of the speech frame e j
t is calculated from the energy

of the previous frame. For example, the energy correction of the last speech frame

yi−1(n) in a voicing transition region affects the energy of the first speech frame yi(n)

in the next non-voicing transition region. If yi(n) is scaled by the factor ki
p, then all the

frames in the same non-voicing transition region are scaled by the same amount. This

problem is overcome by scaling the whole voiced or unvoiced speech segment, v, by a

factor kv
t just after its last frame is synthesised. This global scale factor is calculated

for each voiced and unvoiced segment as to match the energy of the segment if no

power correction was performed, as follows:

kv
t =

√
∑

L
n=1 zp(n)

∑
L
n=1 zo(n)

, (8.7)

where N is the length of the voiced/unvoiced segment, zp(n) is the voiced/unvoiced

segment of speech synthesised with power correction and zo(n) is the voiced/unvoiced

segment of speech synthesised without power correction.

The description of the algorithm for power correction is summarised in the follow-

ing lists of steps.

Voiced-Unvoiced transitions:

1. amplitude scaling of each voiced frame j within
[
t i−Tv1, t i] by k j

p.

2. amplitude scaling of each unvoiced frame j within
[
t i+1, t i+1 +Tv2

]
by k j

p.

3. amplitude scaling of each remaining frame j of unvoiced segment v, by k j
g.

4. amplitude scaling of the whole unvoiced segment v by kv
t .
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Unvoiced-Voiced transitions:

1. amplitude scaling of each unvoiced frame j within =
[
t i−Tv1, t i] by k j

p.

2. amplitude scaling of each voiced frame j within
[
t i+1, t i+1 +Tv2

]
by k j

p.

3. amplitude scaling of each remaining frame j of the voiced segment v, by k j
g.

4. amplitude scaling of the whole voiced segment v by kv
t .

Figure 8.7 shows an example of the effect of the power correction algorithm on

the reduction of speech distortion in the HTS-LF system. In Figure 8.7 a), the speech

segment synthesised without the power correction algorithm contains noise with ex-

cessively high energy just before the transition between unvoiced (silence) and voiced

speech (around the 0.16 s mark). Figure 8.7 b) shows that the HTS-LF system using

power correction does not produce this speech artefact (high energy noise).

8.4 Evaluation of HMM-based Speech Synthesisers

Using LF-model

A subjective speech synthesis experiment was conducted in order to evaluate the HTS-

LF system which incorporates the improvements described in the previous sections, an

HMM-based speech synthesiser which incorporates the GPF method to generate the

speech waveform and other statistical speech synthesisers which are variations of the

HTS-STRAIGHT and the HTS-LF systems. The perceptual evaluation is based on the

Blizzard listening test setup, which was conceived by Black and Tokuda (2005). This

type of test was used mainly because it is adequate for evaluation of a relatively large

number of speech synthesisers and it was designed to evaluate different speech quality

aspects, such as speech naturalness, intelligibility, and similarity of the synthetic voice

to the original speaker’s voice.

The perceptual experiment conducted during this thesis is divided into four types of

test: evaluation of voice similarity, evaluation of speech naturalness by mean opinion

scores (MOS), evaluation of speech naturalness by forced-choice pairwise comparison,

and evaluation of intelligibility. The Blizzard test was adjusted in order to incorporate

the forced-choice part, since it did not originally include this type of speech naturalness

evaluation. This evaluation is more complex and much more complete than the AB
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listening test which was described in Section 7.4, in which the HTS-LF and HTS-

STRAIGHT systems were compared in terms of speech naturalness only. Moreover,

the experiment presented in this chapter includes the improved HTS-LF system and a

larger number of systems.

8.4.1 Systems

Table 8.1 gives an overview of the principal systems used in the perceptual evalua-

tion. The main goal of this experiment is to evaluate the speech quality of the follow-

ing three systems: HTS-STRAIGHT, HTS-STRAIGHT using Glottal Post-Filtering

(named HTS-GPF system) and HTS-LF. The baseline system (HTS-STRAIGHT) was

described in Section 7.2. The difference between the HTS-STRAIGHT and HTS-GPF

systems is during synthesis only. The first represents the excitation by mixing an im-

pulse train with a noise signal (multi-band mixed excitation model), while the second

uses a different signal to model the periodic component of the mixed excitation than

the impulse train used by HTS-STRAIGHT. This signal is obtained by whitening the

spectrum of a LF-model signal using a glottal post-filter, as described in Section 6.3.

Systems

HTS-LF HTS-STRAIGHT HTS-GPF

IAIF: LF-parameters

Analysis ESPS tools: F0, epochs ESPS tools: F0, epochs

GSS & STRAIGHT: v. tract STRAIGHT: spec. envelope

STRAIGHT aperiodicity STRAIGHT aperiodicity

Excitation Mix LF-model & noise Mix imp. & noise Mix GPF & noise

Synthesis GSS synthesis STRAIGHT FFT & OLA

Evaluation Naturalness, Intelligibility, Voice similarity

Table 8.1: Summary of the characteristics of the HTS-LF, HTS-GPF, and HTS-

STRAIGHT systems which were used in the perceptual evaluation (based on the Bliz-

zard test setup).
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Three other systems were also included in the experiment, which are variations of

the HTS-STRAIGHT and HTS-LF systems. Table 8.2 summarises the characteristics

of these systems. Two of them are versions of these synthesisers which do not use the

noise component of the multi-band mixed excitation: HTS-STR-PR and HTS-LF-PR,

respectively. These systems are used in order to study the effect of the noise component

of the excitation on speech quality. The remaining system is a modified version of the

HTS-STRAIGHT system, which uses a speech generation technique similar to that

of HTS-LF instead of STRAIGHT. It allows us to compare the HTS-STRAIGHT and

HTS-LF systems, avoiding any influence of the STRAIGHT vocoder on speech quality.

Systems

HTS-LF-PR HTS-STR-PR HTS-FFT

IAIF: LF-parameters

Analysis ESPS tools: F0, epochs ESPS tools: F0, epochs

GSS & STRAIGHT: v. tract STRAIGHT: spec. envelope

STRAIGHT aperiodicity STRAIGHT aperiodicity

Excitation LF-model Imp. Mix imp. & noise

Synthesis GSS synthesis STRAIGHT FFT & OLA

Evaluation Naturalness, Intelligibility, Voice similarity

Table 8.2: Summary of the characteristics of the HTS-LF-PR, HTS-STR-PR, and HTS-

STR-PR systems (the first is a variation of the HTS-LF system, while the others are

variations of the HTS-STRAIGHT system) which were used in the perceptual evaluation

(based on the Blizzard test setup).

8.4.1.1 HTS-LF

The HTS-LF system evaluated in this experiment incorporates the improvements de-

scribed in Sections 8.2 and 8.3. That is, it uses the IAIF method to estimate the glottal

source derivative signal, it uses an algorithm which corrects errors of the estimated
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LF-model parameters and it uses a technique to adjust the energy of synthetic speech

frames in voicing transition regions.

8.4.1.2 HTS-LF Without Noise Component of Excitation (HTS-LF-PR)

A version of the HTS-LF system which does not mix the LF-model signal with noise

was also included in the experiment. The goal of using this system is to evaluate

the importance of the noise component of the mixed excitation model of HTS-LF on

speech quality.

8.4.1.3 HTS-STRAIGHT

The HTS-STRAIGHT system was described in detail in Section 7.2. It uses MATLAB

STRAIGHT for analysis and synthesis. For speech synthesis, STRAIGHT processes

the phase of the impulse signal by using the group delay function, as described in

Section 4.3.3.2.

The original HTS-STRAIGHT system was modified in order to model the power

parameter of speech by the HMMs. This parameter and its dynamic features (∆ and ∆2)

were added to the stream feature vector of the spectral parameters, which were the 39th

order mel-cepstral coefficients ant their dynamic features. Thus, the power parameter

is modelled the same way as in the HTS-LF system. However, the power parameter

is not used for speech synthesis by HTS-STRAIGHT. The purpose of modelling the

power by HTS-STRAIGHT is to ensure that the difference in performance between the

HTS-LF and HTS-STRAIGHT systems is not influenced by the effect of modelling the

power parameter by HTS-LF. Although the power parameter modelling could affect the

acoustic modelling of the spectral parameters (they are both in the same data stream),

its effect is not expected to be significant. This assumption is based on the fact that the

power parameter is closely related to the first mel-cepstral coefficient.

8.4.1.4 HTS-STRAIGHT Without Noise Component of Excitation (HTS-PR)

A variation of the HTS-STRAIGHT system which does not use the noise component

of the mixed excitation was also used in the evaluation. This system has the same

characteristics as the original HTS-STRAIGHT system, with the exception that the

STRAIGHT synthesis program was modified so that it uses only the phase-manipulated

impulse signal as the voiced excitation. That is, neither the spectrum of the impulse
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signal is weighted using the aperiodicity parameters nor it is mixed with a noise com-

ponent. This system, which is named HTS-PR, was used in this experiment in order to

evaluate the effect of the noise component of the mixed excitation on speech quality.

8.4.1.5 HTS-STRAIGHT Using FFT-based Synthesis (HTS-FFT)

Another variation of the HTS-STRAIGHT system which was included in this evalu-

ation, called HTS-FFT, uses an FFT-based processing technique to synthesise speech

instead of STRAIGHT. This speech generation technique is similar to that used by the

HTS-LF system.

The HTS-FFT system generates the excitation signal of voiced speech similar to

the HTS-STRAIGHT system, by mixing a pulse signal (centered within a 1024 sam-

ple length frame to calculate the FFT) with a noise component. In this process, the

two components are weighted in the frequency domain using functions defined by the

aperiodicity parameters and added together. However, the phase of the pulse is not pro-

cessed by HTS-FFT, in contrast to HTS-STRAIGHT. Next, the amplitude spectrum of

the excitation is multiplied by the spectral envelope to obtain the speech spectrum.

Finally, the speech signal is obtained by IFFT of the spectrum and then it is pitch-

synchronously overlapped-and-added using a window centered at the pulse position.

The main differences between this synthesis method and the STRAIGHT synthesis

method are that STRAIGHT represents the speech spectrum by the minimum-phase

impulse response (which is calculated from the spectral parameters) and it does not

use the OLA technique.

The HTS-FFT system was used to compare the excitation model between the HTS-

STRAIGHT and the HTS-LF systems, avoiding any influence of the STRAIGHT

speech generation technique. Another reason for using the HTS-FFT system was to

evaluate the speech waveform generation technique of the GSS method, compared

with the STRAIGHT synthesis method (by comparing the HTS-STRAIGHT system

against the HTS-FFT system).

8.4.1.6 HMM-based Speech Synthesiser Using Glottal Post-Filtering (HTS-GPF)

A version of the HTS-STRAIGHT system which synthesises speech using the GPF

method was also developed. GPF was described in Section 6.3. Basically, it consists

of using a glottal post-filter to transform a LF-model waveform into a spectrally flat

signal. This signal is used to generate the mixed multi-band mixed excitation, instead
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of the delta pulse signal.

The HMM-based speech synthesiser using GPF (HTS-GPF) uses the MATLAB

STRAIGHT program to estimate the spectral envelope and aperiodicity parameters

from the speech signal, as the original HTS-STRAIGHT system. The glottal post-

filter is calculated by using the method described in Section 6.3.2.2. The way it was

derived in this experiment is described in the following paragraphs.

The first process in the glottal post-filter calculation was to measure the LF-model

parameters. The measurements were performed on eight utterances of the speech cor-

pus. For the estimation of the LF-parameters Ta, tp, and te, the LF-model was fitted

pitch-synchronously to the glottal source derivative signal, by using a non-linear op-

timisation algorithm. This LF-model estimation method was the same as that used in

the HTS-LF system, which was described in Section 7.3.1.

The LF-model measurements were used to calculate the mean values of the di-

mensionless parameters: OQ, SQ, and RQ. An estimate of the maximum F0 of the

speaker was also calculated. The te parameter of the reference LF-model was set ap-

proximately equal to the minimum T0 of the speaker. Next, the other time parameters

of the LF-model (tp and ta) were calculated by using the mean values of the dimen-

sionless parameters and (5.12) to (5.14). In this way, the LF-model signal was short

enough so as to avoid the problem of synthesising high-pitched speech (explained in

Section 6.3.3.2) and the dimensionless parameter values were equal to the mean values

obtained from the measurements.

Finally, the parameters of the glottal post-filter (the frequencies Fg and Fc) were

calculated from the mean values of the LF-model parameters, using the method de-

scribed in Section 6.3.2.2. The glottal post-filter was implemented as a 300th-order

FIR filter.

8.4.2 Speech Data

8.4.2.1 Speech Corpus

Two UK English speech databases were used to build the synthetic voices. They were

provided by the Centre for Speech Technology Research. One is about ten hours of

speech spoken by a male speaker which was obtained from the data released for the

Blizzard Challenge 2009 (King and Karaiskos, 2009). The second contained about

four hours of speech spoken by a female speaker. The male speech data is divided into

two different subsets. One consists of a smaller set of phonetically-balanced sentences
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taken from the CMU ARCTIC database (Kominek and Black, 2004), which is approx-

imately one hour long. The second corresponds to sentences selected from news texts.

Meanwhile, the female data corresponds to sentences selected from the news articles

and from a novel.

8.4.2.2 Synthetic Voices

Three synthetic voices were built for the HTS-STRAIGHT and the HTS-LF, respec-

tively, by using the speech databases. They were the following:

• Voice A: full voice from the male database.

• Voice B: voice from the ARCTIC subset of the male database.

• Voice C: female voice.

The acoustic models built for the HTS-STRAIGHT system were also used by the

modified versions of this system (HTS-FFT, HTS-STR-PR, and HTS-GPF). This was

possible because these modified systems differ from HTS-STRAIGHT only in terms of

the method used to generate the speech waveform. For the same reason, the statistical

models built for HTS-LF were used by the HTS-LF-PR system.

The phonetic labels of the speech data consisted of Festival utterance files created

using the Unilex lexicon (Fitt and Isard, 1999). In addition to the phonetic transcrip-

tion, they included contextual information such as segment, syllable, word and phrase

level information.

8.4.3 Experiment

8.4.3.1 Speech Samples

For the male voices (voices A and B), the test sentences were the same as those of

the Blizzard Challenge 2009 (King and Karaiskos, 2009), excluding the subsets which

corresponded to the Blizzard Challenge 2007 and 2008 test sentences. The selected

sentences were grouped in the following genres:

• 200 news sentences.

• 100 novel sentences.

• 100 Semantically Unpredictable (SU) sentences.



Chapter 8. Improvements to the HTS-LF System 244

The novel and news sentences of the Blizzard Challenge 2009 were not used for

the female speaker evaluation, because there were no recordings of the female speaker

reading these test sentences. Instead, the test sentences were selected from a subset of

sentences of the female speaker corpus, which was not used for voice building. This

subset consisted of 100 news sentences. Test sentences of the genre “novel” were not

used in the female voice listening test. However, the 100 SU sentences of the Blizzard

Challenge 2009 were used as test sentences for the female voice evaluation, as recorded

speech was not used to evaluate the SU sentences for this voice.

Each test sentence was synthesised by the six systems described in Section 8.4.1.

From these sentences, the required number of sentences was randomly selected. For

the full and ARCTIC male voices, the subset of sentences used for each of them con-

sisted of:

• 42 news sentences.

• 35 novel sentences.

• 21 SU sentences.

For the female voice, only news and SU sentences were used. The randomly se-

lected sentences consisted of 77 news sentences and 21 SU sentences.

8.4.3.2 Interface

The evaluation was conducted in a supervised perceptual lab at the University of Ed-

inburgh. This lab was equipped with several rooms, which were especially designed

for perceptual evaluations of audio. Each participant performed the evaluation in one

of these rooms by using a computer interface and headphones. The estimated duration

of the evaluation was 35 minutes.

The listening evaluation interface was based on the interface used for the Blizzard

Challenge 2009 (King and Karaiskos, 2009). However, some adjustments were made

to the original listening evaluation design. In the evaluation conducted in this thesis,

there were five sections and each section was divided into a certain number of parts.

The registration page contained instructions of the listening evaluation. Sections 1, 3,

4, and 5 of the test were very similar in design to sections of the Blizzard Challenge

2009, whereas Section 2 was designed specifically for this experiment. This section

was designed in order to evaluate speech naturalness using an ABX test. This type of

test has never been used in the Blizzard Challenge evaluations, apparently because it
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would require too many utterances and listeners (the Blizzard Challenge evaluation

usually includes a much higher number of systems). In this evaluation, the number of

systems is not as high as the typical number of systems evaluated in the Blizzard Chal-

lenge, so the problem of a limited number of samples or listeners was not considered

to be significant.

The listener tasks in each section of the test are described as follows:

• Section 1: Similarity (SIM) task. In each trial, listeners could play four reference

samples of the original speaker and one synthetic sample. They were instructed

to choose a response that represented how similar the synthetic voice sounded

to the voice in the reference samples on a scale from 1 (“Sounds like a totally

different person”) to 5 (“Sounds like exactly the same person”).

• Section 2: ABX task. In each trial, listeners heard one sample from each of two

systems (A and B samples) most of the time. The exception was when listeners

heard the same two samples (A and B were the same), which occurred once for

each system ordering of the data set (explained later in Section 8.4.3.4). The

samples of each pair corresponded to the same text sentence. For each pair of

samples A-B, they then chose one of the three possible possible responses: (“A

sounds more natural than B”), (“B sounds more natural than A”), and (“A and B

sound equally natural”).

• Section 3: Mean Opinion Score (MOS) part, with speech samples from the news

domain. In each trial, listeners heard one utterance and chose a score which rep-

resented how natural or unnatural the sentence sounded on a scale of 1 (“Com-

pletely Unnatural”) to 5 (“Completely Natural”).

• Section 4: Similar to MOS part of Section 3, but uses speech samples from the

novel genre instead of news domain.

• Section 5: Intelligibility task, using SU sentences. Listeners were instructed to

listen to one utterance in each trial and type what they heard. In the full male

voice, the computer interface allowed the subject to play the sample more than

once. The interface was modified for the evaluations of the ARCTIC and female

voices, so that the subject was able to only listen to the utterance once.
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8.4.3.3 Listeners

Ninety six undergraduate students from the University of Edinburgh were recruited to

participate in the evaluation. They were all native speakers of UK English, aged 18-25

and received monetary compensation for their participation.

8.4.3.4 Listener Groups and System Orderings

Subjects were equally distributed among the three evaluations associated with the dif-

ferent voices. For each evaluation, each listener was assigned to a group. The number

of groups was determined by the total number of systems in the evaluation, that is, the

number of groups was 7 (equal to 6 systems plus the original speaker). Since the total

number of listeners who participated in each voice evaluation was 32, there were three

listener groups with 4 listeners and four other groups with 5 listeners.

For Sections 1, 3, 4 and 5 of the test, system orderings were systematically varied

by using the Latin square design of the Blizzard setup (Fraser and King, 2007). Dis-

tinct Latin squares were constructed for all sections. The same Latin squares were used

to evaluate the three voices, as each listener could only participate on the experiment

once. The rows of a Latin square correspond to the listener groups and the columns

correspond to the sentences. Then, each cell (i, j) of a 7 x 7 square represented the

system that listener group i heard the sentence j. The sentence order was maintained

across listener groups but the system order varied. Also, the position of a system in

the Latin square of Section 3 (MOS news) was always different from its position in the

Latin square of Section 4 (MOS novel). That is, the order of each system was never

the same across the MOS sections. Moreover, the Latin Squares were designed so as

to minimise possible ordering effects.

The Latin square associated with Section 5 of the evaluation was adjusted specif-

ically for the female voice evaluation because there were no recordings of the female

speaker reading SU sentences, unlike for the male speaker. This modification was sim-

ilar to that described by Bennett (2005), which consisted of adding a row to an order

6 Latin square. The extra row was taken from another Latin Square of the same order.

As a consequence, a row was repeated in each Latin square.

Section 2 of the evaluation was designed similarly to the Multi-dimensional Scal-

ing (MDS) section of the Blizzard Challenge 2009 (King and Karaiskos, 2009). In

this section, each listener group was assigned to 7 of the total 49 possible pairings of

systems (including the original speaker). A Graeco-Latin square design was used to
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distribute the pairs across the listener groups so that each pair was only repeated once

in a different order, i.e. each system appeared once as the first and once as the second

of a distinct pair, in each row of the square.

The test sentences used in each section of the evaluation were divided into differ-

ent groups. Each sentence group was assigned to a Latin square (which determined the

system orderings). The test sentences were also different between all the groups, with

the exception of Section 2 of the test. In this section all the groups had the same set of

sentences, to obtain a sufficiently high number of data points for each pairwise com-

parison. Table 8.3 shows the number of sentence groups that composed each section of

the evaluation and the total number of sentences used in each section. The number of

sentence groups of each section of the evaluation was chosen based on the importance

which was given to each task, as the statistical significance of the results is strongly

dependent on the number of samples of the test. The effect of glottal source modelling

on speech naturalness was considered to be the most important aspect to be evaluated

in this experiment. Therefore, the ABX and the MOS sections were given a higher

number of sentence groups.

Number of Groups Total Number of Sentences

Section 1 (SIM) 3 21

Section 2 (ABX) 5 7

Section 3 (MOS) 4 28

Section 4 (MOS) 4 28

Section 5 (SUS) 3 21

Table 8.3: Number of sentence groups and total number of sentences of each section

of the evaluation.
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8.4.4 Results

The results of the perceptual evaluation are presented individually for each part of the

listening test, in the next sections.

8.4.4.1 Similarity

In the first section of the Blizzard setup evaluation, listeners rated the similarity of a

speech sample to the original speaker’s voice by using a five point scale, which is an

ordinal scale. The similarity results were analysed in terms of medians, as they are

statistically meaningful for such scale (Clark et al., 2007a). Unlike the median, it is

inappropriate to compare means on this type of scales.

Figure 8.8 shows the boxplot of the similarity scores between systems (including

the natural speech) and the original speaker, for the three evaluations: full male voice,

ARCTIC subset of the male voice, and female voice. The systems are ordered in

descending order of the MOS means, although the ordering is not a ranking (the means

are used to make the graphs more intuitive). The value of n in Figure 8.8 indicates the

number of data points, which is the same for all systems. The median is represented by

a solid bar across a box showing the quartiles. Whiskers extend to 1.5 times the inter-

quartile range and outliers beyond this are represented as circles. Pairwise Wilcoxon

signed rank tests between systems were calculated (α = 0.01), in order to determine

significant differences between systems.

Table 8.4 indicates the pairwise significance at 1% level (p-value6 0.01), for the

different evaluations (full male voice, ARCTIC male voice, and female voice). Besides

the median, the median absolute deviation (MAD), mean, and standard deviation (SD)

values are also presented in Tables A.1 to A.2 (in Appendix A.1). The p-values cal-

culated for the pairwise Wilcoxon signed rank tests are given in Tables A.3 to A.5 (in

Appendix A.1).

Natural speech is significantly more similar to the original speaker (p-value' 0)

than all other systems. This result was expected, because natural speech was spoken

by the original speaker. From Figure 8.8 and Table 8.4, the HTS-STRAIGHT system,

the HTS-FFT system, and the system using the GPF method (HTS-GPF) scored the

same, for all voices. These systems obtained a median score of 3 and are significantly

more similar to the original speaker than the systems which use glottal source mod-

elling (HTS-LF and HTS-LF-PR). The HTS-STR-PR system (HTS-STRAIGHT ver-

sion which uses simple excitation) obtained the same score as the other versions of the
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HTS-STRAIGHT system (HTS-STRAIGHT, HTS-FFT, and HTS-GPF), for the full

male voice. However, HTS-STR-PR scored significantly lower in similarity compared

with the same systems, for the female voice. The HTS-LF and HTS-LF-PR (HTS-LF

without noise component) systems are equally similar to the original speaker. Finally,

HTS-GPF is the only system which scored significantly higher than the HTS-STR-PR

system, for the ARCTIC voice.

S1 S2 S3 S4 S5

HTS-STRAIGHT (S1)

HTS-GPF (S2) none

HTS-FFT (S3) none none

HTS-STR-PR (S4) Fem. Fem., ARCTIC Fem.

HTS-LF (S5) All All All All

HTS-LF-PR (S6) All All All All none

Table 8.4: Significance difference of similarity scores between systems (p < 0.01), for

the three voices: male full voice, ARCTIC subset of male voice and female voice. “none”

means that the result is not significant for any voice and “All” means that it is significant

for all the voices.
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Figure 8.8: Similarity scores between systems and the original speaker (natural speech)

for the three voices: full male voice, ARCTIC subset of the male voice, and female voice.
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Figure 8.9: Mean opinion scores calculated for the news and novel sentences (Section 3

and 4 of the evaluation) and the three voices: full male voice, ARCTIC subset of the

male voice, and female voice.
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8.4.4.2 Naturalness - MOS

Mean Opinion Scores (MOS) were rated on a five point scale by the listeners, as in

the similarity task. Therefore, median scores were again used for comparison. The

MOS results were calculated for the Sections 3 and 4 of the evaluation together, which

correspond to the news and novel test sentences respectively. The analysis was not

performed for the news and novel test sentences separately, as to maintain the highest

possible number of listener responses in the MOS evaluation. Figure 8.9 presents the

MOS results for the three voices, by using a boxplot which is the same type as that

used to show the similarity scores in Figure 8.8. Results of the pairwise Wilcoxon

signed rank significance tests are shown in Table 8.5. Values of the median, MAD,

mean, SD, and p-values of the significance tests are also presented in Tables A.6 and

A.7 (in Appendix A.2). The p-values calculated are given in Tables A.8 to A.10 (in

Appendix A.2).

S1 S2 S3 S4 S5

HTS-STRAI. (S1)

HTS-GPF (S2) Full, Arctic

HTS-FFT (S3) Full none

HTS-STR-PR (S4) All Fem., Full Fem., Arctic

HTS-LF (S5) All All All All

HTS-LF-PR (S6) All All All All Fem., Arctic

Table 8.5: Significance difference of MOS scores between systems (p < 0.01), for the

three voices: male full voice, ARCTIC subset of male voice and female voice. “none”

means that the result is not significant for any voice and “All” means that it is significant

for all the voices.

From the results, natural speech is always significantly more natural than the syn-

thetic speech for every HMM-based speech synthesiser, with p-value' 0.

From Figure 8.8 and Table 8.5, the HTS-STRAIGHT system and its variations

(HTS-GPF, HTS-FFT, and HTS-STR-PR) are equally natural as each other and they

are all significantly more natural than the synthesisers which use glottal source mod-
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elling (HTS-LF and HTS-LF-PR), for all the voices.

Finally, the HTS-LF system is as natural as HTS-LF-PR (without noise excitation)

for the full and ARCTIC male voices. However, HTS-LF is significantly more natural

than HTS-LF-PR, for the female voice.

8.4.4.3 ABX - Naturalness

In the ABX task of the evaluation, subjects were presented with pairs of utterances

from different systems (the same sentence for each pair A-B), and were asked which

utterance sounded more natural (A or B). They also had the option to answer that both

utterances sounded equally natural (option X). Since this is a pairwise comparison test,

the results are presented in terms of preference rates of a system (including natural

speech) compared against a different system. The results of the preference rates and

significance tests (p-value) obtained for every system in the three evaluations (full male

voice, ARCTIC voice, and female voice) are presented in Appendix A.3. Table 8.6

summarises the statistical significance of the pairwise comparisons. The results which

are statistically significant are described in the following paragraphs.

Natural speech was significantly preferred (p-value� 0.01) over all systems with

preference rates higher than 90%, for the different voices.

S1 S2 S3 S4 S5

HTS-STRAIGHT (S1)

HTS-GPF (S2) none

HTS-FFT (S3) none none

HTS-STR-PR (S4) none none none

HTS-LF (S5) Full, Fem. Full, Fem. All Fem., Arctic

HTS-LF-PR (S6) All All All All none

Table 8.6: Significance difference of ABX pairwise comparisons between systems (p <

0.01), for the three voices: male full voice, ARCTIC subset of male voice and female

voice. “none” means that the result is not significant for any voice and “All” means that

it is significant for all the voices.
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Figure 8.10: Preference rates obtained from the ABX comparisons (which were sta-

tistically significant), for the comparisons of the different systems againts the HTS-LF

system. The results are presented for the different voices: full male voice, ARCTIC

subset of the male voice, and female voice.

Similar to the MOS results, the HTS-STRAIGHT system and its variations (HTS-

STR-PR, HTS-GPF, and HTS-FFT) are not significantly different between each other

in terms of speech naturalness. However, they are significantly more natural than the

synthesisers which use glottal source modelling (HTS-LF and HTS-LF-PR), in gen-

eral. The two types of HTS-LF systems are also equally natural as each other.

Figure 8.10 shows the significant preference rates obtained from the pairwise com-

parisons of the systems against HTS-LF, for the three voices. The HTS-STRAIGHT
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Figure 8.11: Preference rates obtained from the ABX comparisons (which were statis-

tically significant) for the comparisons of the different systems against the HTS-LF-PR

system. These results are presented for the different voices: full male voice, ARCTIC

subset of the male voice, and female voice.

based systems were generally preferred over the HTS-LF system at least 50% of the

time, whereas the highest preference rates obtained by the HTS-LF system against

these systems is about 12%. The highest preference rates obtained by the group of

HTS-STRAIGHT systems were around 80%, for the female voice. An exception to
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these results is that HTS-STRAIGHT was not significantly different from the HTS-

LF system for the ARCTIC male voice. In addition, the HTS-FFT and the HTS-

STRAIGHT-PR systems were significantly more natural than the HTS-LF system, for

the ARCTIC voice.

Figure 8.11 shows the significant preference rates obtained for the pairwise com-

parisons of the systems against the HTS-LF-PR system. From these results, all the

HTS-STRAIGHT based systems were significantly more natural than the HTS-LF-PR

system, with preference rates ranging from 50% to 90%, while the highest HTS-LF-PR

score was about 14%.

The pairwise comparison between a speech synthesiser which uses mixed exci-

tation against the same synthesiser using simple excitation was never significant at

p-value< 0.01 That is, HTS-LF and HTS-STRAIGHT were not significantly different

from the HTS-LF-PR and HTS-STR-PR systems, respectively.

8.4.4.4 Intelligibility

In Section 5 of the evaluation, subjects were presented with a SU sentence in each trial

and were asked to type in what they heard. A word error rate (WER) score for each

sample was calculated. This scale is an interval, so it is appropriate to compare WER

results in terms of the means. For the male voices, natural speech was also included

in the intelligibility evaluation. However, natural speech was not part of the stimuli

of the female voice, because no recorded SU sentences were available for this voice.

Figure 8.12 shows bar charts which represent the mean word error rates for the different

systems (obtained for the three voices). The statistical significance of these results is

shown in Table 8.7. The mean WER, SD values, and p-values of the significance tests

can be found in Appendix A.4.

The trends found in the similarity and naturalness results continue for intelligibility.

Natural speech is significantly more intelligible than the speech samples synthesised

by every system. Also, the HTS-STRAIGHT system and its variations (HTS-GPF,

HTS-FFT, and HTS-STR-PR) cannot be differentiated from one another in terms of

intelligibility. However, they are significantly more intelligible than the systems which

use glottal source modelling (HTS-LF and HTS-LF-PR). Moreover, HTS-LF and HTS-

LF-PR are equally intelligible.

The intelligibility of the systems was not compared across the different types of

voice (full male voice, ARCTIC voice and female voice), because certain evaluation

factors were different between them. For example, all the listeners were different be-
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tween the evaluations of the different voices. Furthermore, the intelligibility part of the

evaluation was slightly different between the full male voice and the other two voices.

In the first, subjects were instructed to listen to a speech sample once, although the

interface allowed them to play it more than once. The evaluation interface of the two

other voices was modififed so that listeners could only hear each sample once.

S1 S2 S3 S4 S5

HTS-STRAIGHT (S1)

HTS-GPF (S2) none

HTS-FFT (S3) none none

HTS-STR-PR (S4) none none none

HTS-LF (S5) All All All All

HTS-LF-PR (S6) All All All All none

Table 8.7: Significance tests of WER (p < 0.01), for the three voices: male full voice,

ARCTIC subset of male voice and female voice. “none” means that the result is not

significant for any voice and “All” means that it is significant for all the voices.
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Figure 8.12: Word error rates of the systems and natural speech for the three voices:

full male voice, ARCTIC subset of the male voice, and female voice. The natural speech

was not evaluated in the intelligibility task for the female voice.
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8.4.5 Discussion

8.4.5.1 HTS-STRAIGHT and HTS-LF Groups of Systems

Natural speech was always rated significantly better than synthetic speech, in all sec-

tions (SIM, ABX, MOS, and WER). Results show a clear difference in performance

between two groups of systems, for the three voices. The first group consists of HTS-

STRAIGHT and the different versions of this system (HTS-GPF, HTS-FFT, and HTS-

STR-PR). The second consists of the systems using glottal source modelling (HTS-LF

and HTS-LF-PR). In general, the systems in the HTS-STRAIGHT group scored sig-

nificantly higher than the systems in the HTS-LF group in terms of similarity to the

original speaker, naturalness, and intelligibility. However, it is not possible to state

which system of the HTS-STRAIGHT group is the best because there is not a system

which is significantly better than the others in any of the evaluation sections. For most

of the cases, the systems in the HTS-LF group are also equally natural, intelligible, and

similar to the original speaker.

8.4.5.2 HTS-GPF

The synthesiser which uses the GPF method (HTS-GPF) performed as well as the other

systems which use STRAIGHT and a multi-band mixed excitation (HTS-STRAIGHT

and HTS-FFT). This result indicates that the use of a flattened LF-model signal for

the excitation does not affect significantly the speech quality of the synthesiser, when

compared to the impulse signal. Nevertheless, HTS-GPF was expected to outper-

form HTS-STRAIGHT, because the LF-model obtained better results than the impulse,

when speech was synthesised using the GSS waveform generation method in the per-

ceptual experiment in Section 6.6. Nevertheless, the HTS-GPF system was expected

to outperform HTS-STRAIGHT, because the impulse train was assumed to have a

stronger harmonic structure than the spectrally flattened LF-model signal (strong har-

monic structure is a cause of buzziness), as explained in Section 6.3.3.3. Possibly,

the perceptual difference between the two signals (periodic components of the mixed

excitation) is not significant because both were mixed with noise.

8.4.5.3 GSS Synthesis Method

The type of synthesis method used by the HTS-STRAIGHT synthesiser, either the

STRAIGHT vocoder or the waveform generation technique of the HTS-FFT system,
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did not significantly affect the speech quality. Therefore, the synthesis method used by

the HTS-FFT system is competitive to the STRAIGHT method.

8.4.5.4 Mulit-Band Mixed Excitation Model

The results can also be analysed in terms of mixed excitation model versus simple

excitation model (which does not use the noise component of the mixed excitation).

The similarity to the original speaker is not significantly affected by the noise com-

ponent of the excitation for the male voice. However, for the female voice the HTS-

STRAIGHT system using simple excitation (HTS-STR-PR) is lower in similarity than

the HTS-STRAIGHT system using mixed excitation.

Using mixed excitation was shown to improve speech naturalness compared to

simple excitation, for the female voice, although this factor was significant for the

HTS-LF systems only. On the contrary, there was not a significant difference in nat-

uralness between the HTS-STRAIGHT system its version using simple excitationand

HTS ARCTIC subset of the male voice and the female voice.

8.4.5.5 Hypothesis to Explain the HTS-LF Results

The HTS-LF system was expected to produce higher speech quality than the HTS-

STRAIGHT system, because it uses a more accurate model of the glottal source than

the impulse train used by the HTS-STRAIGHT system. This hypothesis was supported

by the results obtained in the AB perceptual test (presented in Section 7.4.2), which

was conducted to evaluate the HTS-LF system using inverse filtering. Moreover, it

was expected that by using the IAIF method instead of inverse filtering in HTS-LF,

the preliminary results in Section 7.4.2 could be improved even further. However,

HTS-LF was outperformed not only by HTS-STRAIGHT but also by the HTS-FFT

system (which uses a speech waveform generation method similar to that of the HTS-

LF system instead of STRAIGHT).

The use of the GSS method for analysis and synthesis is not expected to be an

important reason for the speech quality degradation in the HTS-LF system, because

the GSS method performed well in the copy-synthesis experiment presented in Sec-

tion 6.6. However, the method used by GSS to estimate the glottal source derivative

signal from speech appears to have influenced the performance of the synthesiser. It is

assumed that when the IAIF method was used to more accurately estimate the glottal

source derivative signal, the statistical modelling or the parameter generation parts of
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the synthesiser unexpectedly performed worse. Errors in the LF-model parameter esti-

mation are also not expected to be an important cause of speech distortion, because the

LF-model waveform seemed to fit to the estimated glottal source derivative signal well.

The performance of the fitting method was considered acceptable based on the visual

comparison conducted by the author between the fitted LF-model signal and the re-

spective glottal source signal, for every speech frames of several utterances. Also, the

estimated LF-model parameters did not satisfy the LF-model constraints for a relatively

low number of speech frames per utterance, on average. This number of frames was

usually less than ten (an utterance typically had hundreds of voiced frames). Moreover,

the detected LF-parameter errors were always successfully corrected by the parameter

correction algorithm. Future experiments could be conducted for better evaluating the

robustness and accuracy of the LF-model parameter estimation method developed in

this work.

The hypothesis to explain the results of the HTS-LF system is that the vocal tract

representation of the voiced speech spectrum used by this speech synthesiser nega-

tively affects statistical modelling of the spectral parameters. The reason for this is

that the vocal tract representation is different from the spectral envelope used to model

unvoiced speech, which results in significant variations of the spectral parameters (es-

timated from recorded speech) between contiguous frames at voicing transitions. On

one hand, this spectral discontinuity could contribute to degradation of statistical mod-

elling. On the other hand, the speech parameter generation algorithm of the synthe-

siser is not appropriate for reproducing abrupt variations at voicing transitions, as it

was developed to generate a smooth parameter contour by using both the static and

delta parameters. Therefore, errors in the generated spectral parameter contours around

voicing transitions are assumed to be sufficiently high to deteriorate speech quality.

Speech energy distortion was observed in speech synthesised by the HTS-LF sys-

tem using inverse filtering (also observed for HTS-LF using IAIF), as described earlier

in Section 7.4.2. This type of distortion can also be explained by the hypothesis that the

spectrum is not modelled at voicing transitions correctly. Both the statistical modelling

and the speech generation algorithm attenuate the spectral variation between the spec-

tral envelope of unvoiced speech and the vocal tract representation of voiced speech at

voicing transitions. If the variations between the two types of spectral representation

is significant, then the error between the spectrum estimated from the original speech

and the spectrum generated by the system could produce the excessively high energy

variations observed in the synthetic speech.
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Speech distortions due to energy discontinuities are not a known problem in the

HTS-STRAIGHT system. This is explained by the fact that the energy of the synthetic

speech is determined by the spectral envelope of the speech signal in both unvoiced

and voiced regions, which is sufficiently smooth to be accurately modelled at voicing

transitions by the HMMs.

8.5 Conclusion

Several transformations performed on the HTS-LF system in order to improve the qual-

ity of the synthetic speech were described in this chapter. The IAIF method was im-

plemented into this system, since this method can more accurately estimate the glottal

source derivative than inverse filtering using pre-emphasis. The objective of this mod-

ification was to improve the estimation of the LF-model parameters and modelling

of the glottal source signal and vocal tract transfer function. In order to improve the

robustness of the LF-model parameter estimation, an algorithm to validate the con-

straints of the LF-parameters and correct this type of errors was also developed and

employed in the system for speech analysis and synthesis. Another modification made

to the system was to extend the spectral parameter vector used by HMMs to include the

speech power and to adjust the energy of the synthetic speech frames using this param-

eter. This method was used in order to overcome the energy distortion problem around

transitions of voiced-unvoiced and unvoiced-voiced sounds, in the HTS-LF system.

A perceptual evaluation based on the Blizzard test setup was conducted in order to

evaluate the performance of the two HMM-based speech synthesisers which use the

LF-model, developed in this work. One was the HTS-LF system (with improvements)

and the other was the HTS-GPF system, which is a variation of the HTS-STRAIGHT

system that uses the GPF method for synthesis. The baseline system was the HTS-

STRAIGHT system. Moreover, variations of these system were also included in the

evaluation. They were the HTS-LF system without using the noise component of the

excitation (the HTS-LF-PR system), the HTS-STRAIGHT system using simple exci-

tation (the HTS-STR-PR system), and a version of the HTS-STRAIGHT system which

used a speech waveform generation method similar to that of the HTS-LF system (the

HTS-FFT system), instead of the STRAIGHT synthesis method. The HTS-LF-PR and

HTS-STR-PR systems were both used in order to study the effect of the noise compo-

nent of the excitation on speech quality and the HTS-LF-FFT system was used in order

to evaluate the effect of the STRAIGHT synthesis method on speech quality, compared
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with the waveform generation method used by HTS-LF (GSS synthesis method).

The results of the perceptual evaluation based on the Blizzard test setup are sum-

marised as follows:

• HTS-STRAIGHT based systems (HTS-STRAIGHT, HTS-GPF, HTS-FFT, and

HTS-STR-PR) outperformed the HTS-LF based systems.

• HTS-GPF performed as well as HTS-STRAIGHT.

• the HTS-STRAIGHT system (with mixed excitation) was significantly better

than HTS-STR-PR (with simple excitation), in the speech naturalness test for

the full male voice and in the similarity test for the female voice. For the rest of

the results, there was no significant difference between the two systems.

• HTS-LF with mixed excitation performed better than HTS-LF without noise

component of the excitation, only in terms of speech naturalness for the female

voice. For all other parts of the evaluation, the performance was the same.

Part of the results of the perceptual evaluation were expected. The HTS-GPF sys-

tem was expected to perform at least as well as the HTS-STRAIGHT system, because

the spectrally flattened LF-model signal was expected to reduce the buzziness com-

pared to the impulse train. Also, the good performance of the waveform generation

technique of the GSS synthesis method, when compared to STRAIGHT, is supported

by the good results obtained by the GSS method in the copy-synthesis experiment

presented in Section 6.6.5. The positive results obtained by the mixed excitation com-

pared to the simple excitation for the female voice were also expected. They are in

agreement with other results reported in the literature, e.g. Yoshimura et al. (2001),

which show that the mixed excitation model improves speech naturalness in HMM-

based speech synthesis. The perceptual evaluation conducted in this work shows that

the mixed multi-band excitation can also be important to voice similarity, particularly

for the female voice. However, the mixed excitation model did not always improve

naturalness and similarity to the original speaker’s voice.

The results obtained by the HTS-LF system were expected to be at least as good

as those obtained by the HTS-STRAIGHT system. The preliminary evaluation of the

HTS-LF system (with inverse filtering instead of IAIF) indicated that this system could

outperform the HTS-STRAIGHT system. The explanation for the low scores obtained

by HTS-LF is that there is a problem in modelling the speech spectrum around voicing
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transitions. This problem is assumed to be caused by rapid fluctuation of the spectrum

at voicing transitions, related to the fact that spectral parameters represent the spectral

envelope for unvoiced speech, whereas they represent the vocal tract filter for voiced

speech. The deterioration in speech quality due to this problem appeared to be higher

in this perceptual evaluation (the HTS-LF system used the IAIF method) than in the

previous evaluation in which the HTS-LF system used inverse filtering (presented in

Section 7.4). The interpretation of this result is that the IAIF method estimates the

glottal source derivative signal more accurately than the inverse filtering technique,

which results in increased differences between the vocal tract representation of voiced

speech and the spectral envelope of unvoiced speech. For example, the spectral tilt of

the glottal source derivative estimated by IAIF is usually higher than the spectral tilt of

the residual calculated by inverse filtering with pre-emphasis.



Chapter 9

Analysis of Speech Distortion in the

HTS-LF System

9.1 Introduction

The preliminary evaluation of the HTS-LF system presented in Section 7.4 indicated

that this system was at least as good as the baseline, the HTS-STRAIGHT system. The

HTS-LF system was then modified in order to improve its speech analysis and in order

to reduce the speech distortion which was observed in the energy contour of the syn-

thetic speech around voicing transition instants (voiced-unvoiced and voiced-unvoiced

speech frame transitions). These improvements were described in Section 8.2. How-

ever, the results of the perceptual evaluation presented in Section 8.4 showed that the

upgraded HTS-LF system was significantly outperformed by the HTS-STRAIGHT

system.

The objective measurement experiment presented in this chapter was conducted

in order to investigate the causes of the unexpected poor speech quality of the HTS-

LF system. In this experiment, several speech properties were compared between the

synthetic speech produced by the HTS-LF and HTS-STRAIGHT systems. The general

aspects of the HTS-LF system which differentiate it from the HTS-STRAIGHT system

are summarised as follows:

• Speech analysis: LF-model and spectral parameter estimation.

• Statistical modelling: additional LF-parameters.

• Speech waveform generation method.

265
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The differences between the two systems and the hypothesis for the lower speech qual-

ity of the HTS-LF system are discussed in the following paragraphs.

The HTS-STRAIGHT system uses the STRAIGHT vocoder to estimate spectral

envelope parameters during speech analysis, whereas the HTS-LF system uses the GSS

analysis method. In this method, LF-model parameters are estimated from the speech

signal and they are then used to remove the spectral effects of the LF-model signal

from the speech spectrum. The vocal tract transfer function is estimated by computing

the spectral envelope of the resulting signal using STRAIGHT. Both systems compute

the F0 and aperiodicity parameters by using the RAPT algorithm (Talkin and Rowley,

1990) and STRAIGHT respectively. Based on the comparison of the analysis methods

used in the two systems, it is assumed that any problems during the analysis part of

the HTS-LF system which could explain the poor performance of this system are re-

lated to the LF-model estimation method and the voiced/unvoiced classification. The

relevant problem related to voicing classification in HTS-LF is that when a speech

frame is wrongly classified as voiced, the IAIF method incorrectly estimates the glot-

tal source derivative, since the excitation of unvoiced speech has the characteristics

of white noise. Consequently, LF-model parameter estimation errors will occur for

those speech frames. LF-model parameter errors also affect spectral parameter esti-

mation in the GSS method, because this method uses the amplitude spectrum of the

estimated LF-model waveform to separate the spectral characteristics of the the glottal

source (the spectral tilt and the “glottal formant”) from the speech signal. The case of

a speech frame being wrongly classified as unvoiced is not considered to be important,

as the effect of this error is the same as in the HTS-STRAIGHT system. That is, the

spectral parameters of unvoiced speech (represent the spectral envelope) and the F0

estimate are equal between the two systems.

The second point which differs between the two systems is the statistical mod-

elling. There are two factors which could deteriorate speech parameter modelling in

the HTS-LF system, when compared with the HTS-STRAIGHT system. One factor is

that errors in the LF-model parameter estimation degrade the modelling of the speech

features by HMMs. These errors might deteriorate not only the statistical modelling

of the LF-model parameters but also the spectral parameters which are calculated us-

ing the GSS method. F0 modelling could also be affected by LF-model parameter

errors, as the F0 and the other glottal source parameters are modelled in the same fea-

ture vector stream. The other factor which could deteriorate speech modelling is that

the HTS-LF system uses a different representation of the spectrum for voiced and un-
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voiced speech: the vocal tract transfer function and the spectral envelope, respectively.

In contrast, the HTS-STRAIGHT system represents the spectrum of voiced and un-

voiced speech by the spectral envelope. As result, for the HTS-LF system there is

a higher variation of the spectral parameters between contiguous frames at a voicing

transition than for the HTS-STRAIGHT system. The HMMs are not expected to accu-

rately model this rapid fluctuation of the spectrum, due to the averaging characteristic

of statistical modelling. Also, high spectral parameter discontinuities might degrade

the modelling of this type of parameter by continuous HMMs. For example, even if

the unvoiced and voiced speech frames of a voicing transition were modelled by differ-

ent HMMs states, discontinuities of the dynamic features of the spectrum (∆ and ∆2)

could occur due to the spectral mismatch in the voicing transition frames. In addition,

the feature generation algorithm of the HTS-LF system does not take into account the

abrupt fluctuations of the spectrum at voicing transitions, as the algorithm attempts

to generate smooth trajectories. The problem of correctly modelling spectral parame-

ters at voicing transitions in the HTS-LF system could explain the speech distortions

which were sometimes observed in speech synthesised by this system. As explained in

Section 7.4.2, these distortions were the excessively high energy of noise in unvoiced

frames next to voicing transitions and amplitude peaks in voiced frames next to voicing

transitions. The power correction algorithm used in the HTS-LF system was developed

in order to reduce these errors in the energy contour of the synthetic speech. However,

it might not solve this problem completely. Furthermore, the power correction cannot

solve possible spectral distortions of the synthetic speech, which are associated with

the limitation of the synthesiser to model rapid fluctuations of the spectral parameters

at voicing transitions.

The third difference between the HTS-LF and HTS-STRAIGHT systems is the

waveform generation technique. The first system uses the GSS synthesis method de-

veloped in this work, whereas HTS-STRAIGHT uses the STRAIGHT vocoder. How-

ever, the speech generation method is not expected to have contributed to the degrada-

tion of speech quality in the HTS-LF system. This assumption is based on the results

of the perceptual evaluation presented in Section 8.4.3, which showed that the HTS-

STRAIGHT system performed similarly when it used the original STRAIGHT vocoder

and when it used the same waveform generation method as that used by the HTS-LF

system.

The possible reasons for speech quality degradation in the HTS-LF system which

are considered in this experiment are:
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• Problem in modelling the spectrum in voicing transition regions by HMMs.

• LF-model parameter estimation errors.

• Voiced/unvoiced classification errors.

The statistical modelling problem, which is due to the mismatch between the vocal

tract representation and the spectral envelope at voicing transitions, is expected to be

the most significant cause of speech quality deterioration in the HTS-LF system. Er-

rors in the LF-model parameter estimation are assumed to be less important than the

statistical modelling problem, because the HTS-LF system performed reasonably well

in the preliminary evaluation presented in Section 7.4 (before the improvements to the

LF-parameter estimation were implemented in the synthesiser). Also, from informal

analysis of the F0 and LF-model parameter contours, they appear to be smooth and

similar to the contours obtained from the analysis of natural speech.

The next section describes the objective measurement experiment. In the subse-

quent sections, the methods used to measure each type of acoustic measurement are

described and the respective results are presented. The correlation coefficients between

the objective measurements and the perceptual test scores were also calculated and the

results are presented in Section 9.6. This chapter ends with the overall discussion of

the results and the conclusions.

9.2 Experiment

9.2.1 Overview

The objective measurement experiment described in this chapter consisted of measur-

ing acoustic differences between the synthetic speech signals generated by the HTS-LF

and HTS-STRAIGHT systems. Several types of acoustic characteristics, which are re-

lated to the speech energy, the spectral envelope of the speech signal and the glottal

source, were analysed in order to investigate the causes of speech distortion in the

HTS-LF system.

The HTS-LF and the HTS-STRAIGHT systems used in this experiment were the

same as those used in the perceptual evaluation presented in Section 8.4. This permit-

ted to examine if there was a correlation between the results of the acoustic measure-

ments and the perceived speech quality. One method used to analyse this correlation

consisted of plotting the results of the objective measurements in terms of the utterance
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number, in which utterances were sorted in ascending order of the respective percep-

tual test scores. The other method consisted of calculating the correlation coefficients

between the objective measurements and perceptual test scores.

The objective measurements were also analysed by comparing the degree of acous-

tic differences between voicing transition and non-transition regions of speech. The

reasons for performing this analysis were to test the hypothesis that the main problem

in the HTS-LF system is poor modelling of the spectrum in voicing transition regions

and to evaluate the performance of the energy correction technique of the HTS-LF sys-

tem. If the acoustic differences are higher in the voicing transition regions, then the

hypothesis that the main cause of speech distortion is the spectrum modelling prob-

lem at voicing transition is reinforced. This condition is based on the assumption that

the limitations of the LF-model parameter estimation method are expected to affect the

speech frames associated with the different classes of voiced sounds approximately the

same. For example, the LF-model estimation technique is assumed to perform simi-

larly for voiced speech frames near the voicing transitions and speech frames away

from transition regions (ignoring the effect of the LF-model errors due to incorrect

voiced speech classification). On the contrary, the hypothesised voicing detection er-

rors and the spectrum modelling problem at voicing transitions are assumed to be more

relevant for the unvoiced and voiced speech frames near the voicing transitions.

9.2.2 Speech parameters

The following types of speech parameters were studied in this experiment:

• Energy.

• Mel-cepstral coefficients of the spectral envelope.

• FFT representation of the spectral envelope.

• First and second formants (F1 and F2 respectively).

• Spectral tilt.

• Difference in amplitude of the first two harmonics (H1-H2).

• Signal-to-noise ratio (SNR).
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These parameter representations were chosen because they are perceptually important

to speech quality and they enabled to investigate different types of speech characteris-

tics. Energy discontinuities and its distance measurements were important to study the

energy distortions which were observed in the synthetic speech of the HTS-LF system.

Distance measurements of the spectral envelope were assumed to be the most relevant

measurements to evaluate the spectral errors. The F1 and F2 parameters were consid-

ered to be phonetically important and relevant for speech intelligibility. Finally, the

SNR, spectral tilt, and H1-H2 parameters were used because they are correlated with

the LF-model parameters and the last two are also measures of the speech spectrum.

9.2.3 Systems

The systems used in the objective measurement experiment were the HTS-LF and

HTS-STRAIGHT synthesisers, which were built for the full male voice used in the

perceptual evaluation presented in Section 8.4. Although this perceptual evaluation

was also conducted for the female voice and the ARCTIC subset of the male voice,

only the full male voice was used in the objective measurement experiment. The rea-

son for this choice is that the difference in performance between the HTS-LF and

HTS-STRAIGHT systems was in general similar for the three voices. Therefore, it is

assumed that the main factors which contribute to speech quality degradation in HTS-

LF are approximately the same for the three voices. For the energy measurements, a

version of the HTS-LF system which did not use the power correction algorithm was

also used. This was done in order to evaluate the performance of the power correction

method in reducing energy discontinuities in the synthetic speech.

The HTS-LF and HTS-STRAIGHT systems generate similar duration parameters

for the same test sentence, since duration is modelled in the same way by the two

synthesisers and the same speech data was used to build the full male voice for the

two systems. Nevertheless, the duration models of HTS-STRAIGHT were replaced

by the HTS-LF models. This was done to ensure the speech utterances synthesised by

the two systems were phonetically aligned. The alignment of the pair of synthesised

utterances was important in order to calculate the acoustic distance between the two

speech signals consistently.

Distance measurements between synthetic speech and recorded speech were not

performed in this evaluation. For carrying out this type of analysis it would be neces-

sary to perform the phonetic alignment of the recorded speech to the synthetic speech
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(e.g. performing a Viterbi alignment).

Some of the objective measurements, which were indicated in Section 9.2.2, were

obtained directly from the parameter values generated by the HTS-STRAIGHT and

HTS-LF systems, e.g. from the mel-cepstral coefficients. Other speech parameters,

such as the energy, were calculated from the synthetic speech waveform. For the HTS-

LF system, the synthetic speech was the same as the stimuli of this system which was

used in the perceptual evaluation presented in Section 8.4.3. However, the speech syn-

thesised by the HTS-STRAIGHT system which was used for the objective measure-

ment experiment was not the same as the speech synthesised by the HTS-STRAIGHT

system which was used in that perceptual evaluation. This difference was because the

duration models built for the HTS-STRAIGHT system were replaced by those of the

HTS-LF system. The alteration which was made to the duration models of the HTS-

STRAIGHT system in this experiment is assumed not to have an important effect on

speech quality, when compared with the utterances used in the subjective evaluation

presented in Section 8.4.3. This approximation is considered to be valid because the

duration model modification produces small variations in the phone and pause dura-

tions. Also this was informally verified for several sentences by listening to the ut-

terances synthesised by the two HTS-STRAIGHT versions. Based on the previous

assumption, the results of the perceptual evaluation presented in Section 8.4.3 were

used to evaluate the correlation of the objective measurement results with the percep-

tual speech quality for the HTS-STRAIGHT system.

9.2.4 Test Sentences

The test sentences used in this experiment were those of the MOS, SIM and SU parts

of the perceptual evaluation, which were described in Section 8.4.3. The sentences

of the ABX part of the perceptual evaluation were not considered in the objective

measurements because the ranking of the test sentences in terms of speech naturalness

was more difficult to perform with the ABX scores than with the MOS scores. This

is associated with the fact that the results from the ABX part are given as a forced-

choice preference rate of a system, when it is compared with another system (pair-wise

comparison).

The objective measurements were performed for the different set of sentences used

in the different parts of the listening test: SIM, MOS, and SU sentences. The results

of the correlation between objective measurements and perceptual test scores are pre-
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sented for the SIM, MOS and SU sentence genres in Section 9.6. However, the speech

distortion results for each type of objective measurement are presented only for the

sentence genres which were considered to be the most important for that measurement

type (such as energy or spectral envelope). One reason for making this simplification

was that studying the results in terms of the type of sentence was not considered to be

important for this work. Besides which, the results obtained for each objective mea-

sure were generally similar between the different sets of sentences. The results of the

different objective measures were plotted for the following type of sentences:

• Energy and spectral envelope measures: news domain sentences of MOS part.

• F1 and F2 formant distance: news domain of MOS part and SU sentences.

• H1-H2, spectral tilt, and SNR distances: news domain of MOS part, and SIM

sentences.

The results for the news sentences used in the MOS part of the perceptual evaluation

were used to compare the speech naturalness scores with the acoustic analysis results,

for all types of objective measurements. Also, the news domain group was selected

because it includes higher number of sentences compared with the novel genre.

Formant frequencies are particularly important to speech intelligibility. For this

reason, the results of formant distances were also plotted for the SU sentences (used

in the intelligibility evaluation part of the perceptual evaluation). Meanwhile, H1-H2,

spectral tilt, and SNR are typically more relevant for voice quality. For this reason, the

results of the objective measurements obtained for these parameters were plotted for

the sentences of the SIM part of the perceptual evaluation (associated with the voice

similarity test), instead of the SU sentences.

9.2.5 Voiced/Unvoiced Speech Classification

The objective measurements were performed on synthetic speech frames with duration

40 ms and segmented at a 5 ms frame rate. This frame shift was appropriate for the

classification of the analysis frames into voiced or unvoiced, because the synthesisers

generated speech at a 5 ms frame rate (there is a correspondence between analysis

frames and F0 values generated by the speech synthesiser).

Transitions between voiced and unvoiced speech frames (both voiced to unvoiced

and unvoiced to voiced transitions) were calculated for each test sentence using the
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F0 values that were generated by the speech synthesisers. That is, a speech frame was

classified as unvoiced if the respective F0 value was equal to zero and voiced otherwise.

An unvoiced-voiced transition was assigned to an unvoiced frame (with F0 = 0) that

was right before a voiced frame (F0 > 0), whereas the voiced-unvoiced transition was

considered to be the voiced frame which preceded an unvoiced frame. All speech

frames within a 50 ms time interval around a voicing transition were considered to be

in a voicing transition region. This duration of the voicing transition region is equal to

that which was derived heuristically for the power correction algorithm of the HTS-LF

system (described in Section 8.3.2).

Silence regions of the speech signal cannot be detected using F0. Although the

speech analysis can be performed in these regions, the estimated parameters values are

not relevant for this work and they affect the average values of the distance measures

calculated for the unvoiced speech frames which are not in the voicing transition re-

gions. This effect was reduced by performing the speech analysis on the region which

starts 30 ms before the first unvoiced-voiced transition and ends 30 ms after the last

voiced-unvoiced transition. This technique might discard some frames of unvoiced

speech at the start and end regions of an utterance. The advantage is that relatively

long segments of silence could be removed. By default, the parameters generated by

the HTS-LF and HTS-STRAIGHT systems do not include the phone durations. How-

ever, it is possible to modify the systems in order to obtain the phone durations. This

could be another solution to remove the silence regions.

9.3 Energy Distortion

The first version of the HTS-LF system, which was described in Chapter 7, occasion-

ally produced speech artefacts related to high amplitude peaks in the energy envelope

of the synthetic speech. This type of distortion was observed around voicing transition

points and was perceived by the author’s informal evaluation as audible “clicks” in

voiced speech segments and excessive noise in unvoiced segments. In order to over-

come this problem, the HTS-LF system was modified so as to model the power param-

eter of speech and so that it uses this parameter to adjust the energy of the synthetic

speech frames in the voicing transition regions. This power correction method, which

was described in Section 8.3, appeared to reduce the effect of the speech artefacts.

The number of energy discontinuities detected in speech synthesised by the HTS-

LF system was used as a measure of energy distortion and to verify the effect of the
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power correction algorithm on the reduction of these discontinuities. An energy dis-

tance measure was also used in order to evaluate the global effect of the power correc-

tion on the energy contour of the synthetic speech and to compare the energy distortion

between the transition and non-transitions regions of the speech signal.
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Figure 9.1: Energy contours (in dB) for part of a test utterance, which were calculated

from speech synthesised by the HMM-based speech synthesisers. These systems

were the HTS-STRAIGHT, the HTS-LF, and a version of the HTS-LF system which did

not use the algorithm for energy correction in the voicing transition regions.

9.3.1 Energy Discontinuities

Energy discontinuity detection was performed using a threshold-based method. First,

the energy parameter was calculated for the speech frames of each utterance synthe-

sised by the HTS-LF system, the HTS-LF system without power correction, and the

HTS-STRAIGHT system. Then, the energy contour of the synthetic speech produced

by the HTS-STRAIGHT system was scaled in amplitude so that the mean value of

the energy was equal to that of the utterance synthesised by the HTS-LF system. This

scaling operation was performed so that the range of energy values of the utterances

synthesised by the two systems was similar. Figure 9.1 shows the energy contours

obtained for the three systems, over a part of a test sentence. The voicing transition

regions are also represented in this figure. The next step of the energy discontinu-

ity detection was the calculation of delta values from the energy absolute values, as

∆e j = e j − e j−1, where j = 2, ...,N and N is the total number of frames. ∆e j is a
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measure of the speed of energy variation between contiguous frames. Energy dis-

continuities were detected using the ∆e j values (in dB) and by choosing an appropriate

threshold. Although the mean of the energy contour obtained for the HTS-STRAIGHT

system was adjusted, the range of energy values may differ between this system and

the two versions of the HTS-LF system. For this reason, the use of the same log∆e j

threshold to detect discontinuities for the HTS-STRAIGHT and the HTS-LF systems

might not be reasonable. However, if energy thresholds were determined for the HTS-

STRAIGHT system and the other two systems separately, the comparison of the results

of the two systems might also be incoherent. In order to overcome this problem, the

energy discontinuities in the speech signals synthesised by each of the HTS-LF sys-

tems were estimated by calculating the difference between the ∆e j of these systems

and the ∆e j of the HTS-STRAIGHT system, respectively. For each of the HTS-LF

systems, these parameters were calculated as

ϒ j = 10log10(∆e j)LF −10log10(∆e j)r, (9.1)

where (∆e j)LF is the ∆e j calculated for the speech frame j synthesised by one of the

HTS-LF systems and (∆e j)r is the ∆e j calculated for the speech frame j synthesised

by the HTS-STRAIGHT system. Finally, an energy discontinuity is detected in the

speech synthesised by one of the HTS-LF systems when ϒ j > Γ or ϒ j < −Γ, where

Γ is the amplitude threshold. The first condition corresponds to a “positive” discon-

tinuity, which represents a rapid increase in energy. Conversely, the second condition

corresponds to a “negative” discontinuity, which is associated with a deep decrease

in energy. These two types of discontinuities are distinguished here because they are

assumed to have different perceptual effects on speech quality. A sudden increase

in energy is expected to be more perceptually important than a decrease, because the

louder a speech artefact is, the higher the chance that it is perceived as unnatural. From

experiments, Γ = 10 dB was found to be an appropriate value to be used in this exper-

iment. Figure 9.2 shows the ∆e contours calculated over a part of a test sentence, for

the three systems. The estimated “positive” and “negative” discontinuities are also

represented in this figure. The effect of the power correction algorithm is clear in the

voicing transition region around 200 ms. Two “positive” discontinuities were detected

in this part for speech synthesised without power correction. This number was re-

duced to one when the power correction was used. However, the power correction has

the opposite effect on the “negative” discontinuities estimated in the transition region

around 500 ms. By attenuating high energy peaks, the power correction is expected to
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reduce audible speech artefacts. Meanwhile, the increase in the number of “negative”

discontinuities indicates that the algorithm might also produce an over-smoothing of

the energy in the voicing transition regions.

Finally, using HTS-STRAIGHT as the reference system to calculate ϒ j depends

on the assumption that energy discontinuities in synthetic speech are not a problem

for this system. This assumption is supported by the better results obtained for the

HTS-STRAIGHT system compared to the HTS-LF system in the perceptual evaluation

presented in Section 8.4.
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Figure 9.2: Delta energy (in dB) estimated over a part of a test sentence for the three

systems: HTS-STRAIGHT and the two HTS-LF systems (versions with and without

using power correction respectively). The points of energy discontinuity estimated for

the HTS-LF systems are also represented. They were obtained using the thresholds

Γ = 10 dB and Γ = −10 dB for the difference between their ∆e and the ∆er of the

HTS-STRAIGHT system.

9.3.2 Euclidean Distance

The Euclidean distance, DE , was also used as an objective measurement of energy

distortion. The DE parameter between two feature vectors, X and Y , is calculated as

DE(X ,Y ) =

(
n

∑
i=1

(Xi−Yi)
2

)1/2

(9.2)

This distance was calculated between the ∆e feature vectors of HTS-LF and the corre-

sponding feature vectors of the HTS-STRAIGHT system. The results were then used
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to calculate the mean value of this distance for the speech frames in the voicing transi-

tion regions of an utterance. The mean value of ∆e was also calculated over all speech

frames which were not in the voicing transition segments of an utterance. These mea-

surements were repeated for speech synthesised using the HTS-LF system without the

power correction technique.

9.3.3 Results

Energy discontinuities were classified as “positive” or “negative”, using the method

described in Section 9.3.1. They were detected by the conditions ϒ j > 10 dB and

ϒ j <−10 dB, respectively. In these equations, ϒ j represents the difference between the

energy delta ∆e j of the HTS-LF system and that of HTS-STRAIGHT, for the speech

frame j.

Figure 9.3 a) shows the mean number of “positive” discontinuities obtained for

the news domain test sentences of the MOS part of the perceptual test. The test sen-

tences are sorted in ascending order of their MOS scores. In this figure, it is clear that

the number of discontinuities in the voiced transition regions is substantially reduced

by using the power correction algorithm in the HTS-LF system. Although the power

correction does not have a significant effect on the reduction of the number of disconti-

nuities for some sentences, it does not appear to have the opposite effect of increasing

that number either. These results were expected and give support to the assumption

that the power correction reduces the speech distortion associated with excessively

high energy variations in voicing transition regions.

Figure 9.3 b) shows that the number of discontinuities detected in the non-transition

regions is lower than in the voicing transition regions for most of the utterances. This

result is in accordance with the hypothesis that there is more energy distortion in the

voicing transition regions, due to the spectral modelling problem around the speech

transition frames synthesised by the HTS-LF system. The number of discontinuities

detected in a speech region (either voicing transition or non-transition) could be posi-

tively correlated with the number of speech frames analysed in that region. Neverthe-

less, this assumption strengthens the hypothesis considered above, as the number of

speech frames in the voicing transition parts is around 30 to 40% of the total number

of frames.

Figure 9.4 shows the results obtained for the detection of “negative” discontinu-

ities in the energy contours of the synthetic speech. The number of discontinuities is
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Figure 9.3: Number of “positive” discontinuities detected in the energy contour, which

were estimated for the news domain sentences of the MOS part of the perceptual

evaluation. “Positive” discontinuities were detected by using the threshold condition

ϒ j > 10 dB. a) Discontinuities detected in voicing transition regions; b) Discontinuities

detected in non-transition regions. In both plots, the test sentences are sorted in as-

cending order of their respective perceptual test scores.
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Figure 9.4: Number of “negative” discontinuities detected in the energy contour, which

were estimated for the news domain sentences of the MOS part of the perceptual eval-

uation. “Negative” discontinuities were detected by using the threshold condition given

by ϒ j <−10 dB. a) Discontinuities detected in voicing transition regions; b) Discontinu-

ities detected in non-transition regions. In the two plots, the test sentences are sorted

in ascending order of their respective perceptual test scores.

higher around voicing transitions, as for the case of “positive” discontinuities. How-

ever, the power correction algorithm seems to have the opposite effect on the number

of “negative” discontinuities, compared with the effect on “positive” discontinuities.
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That is, the number of “negative” discontinuities increases when the power correc-

tion technique is used. This could be related to an over-smoothing of the energy in

the transitions, when compared with the same regions of speech synthesised by the

HTS-STRAIGHT system. This excessive reduction of the delta energy could deterio-

rate speech quality. Nevertheless, the perceptual effect of “positive” discontinuities is

assumed to be more perceptually important to speech distortion than the energy over-

smoothing effect.
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Figure 9.5: Mean values of the Euclidean distance between the energy of speech

frames synthesised by the HTS-LF and HTS-STRAIGHT systems, for each test sen-

tence. The sentences are sorted in ascending order of their respective perceptual test

scores. a) Calculated for frames in voicing transition regions; b) Calculated for frames

in non-transition regions.

The Euclidean distance (DE), which was calculated between the energies of speech

frames synthesised by the HTS-LF and HTS-STRAIGHT systems, was averaged over

all frames associated with each test sentence. Figure 9.5 shows the mean values of

DE obtained for each sentence, when either the power correction technique was used

or not. The results for voicing transition regions are shown in Figure 9.5 a). Un-

expectedly, the energy distance is generally higher in these regions, when the power

correction is used. The interpretation of this result is that the increase on the num-

ber of “negative” discontinuities has a stronger effect on the energy distance than the

reduction of “positive” discontinuities on average, when the power correction is used.

By comparing Figures 9.5 a) and b), the energy distance is generally lower in re-

gions which are away from voicing transition regions. Again, this result supports the

hypothesis that speech distortion is higher in voicing transition regions due to the sta-

tistical modelling problem. This could be a factor which contributes to the lower per-
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formance of the HTS-LF system, compared with HTS-STRAIGHT.

From Figure 9.5, the correlation between the mean energy distances and the MOS

scores is not clear. Nevertheless, Figure 9.5 a) indicates that the test sentences with

lowest scores are associated with relatively high distances.

9.4 Spectral Envelope Distortion

Spectral distance measures are commonly used in different fields of speech research.

For example, they have been used in speech recognition for evaluation of feature repre-

sentations (Gray and Markel, 1976). They have also been employed in speech coding

for the study of perceptual effects of speech distortions (Quackenbush et al., 1988) and

in unit-selection speech synthesis for prediction of audible discontinuities (Klabbers

and Veldhuis, 2001; Stylianou and Syrdal, 2001; Vepa et al., 2002).

9.4.1 Spectral Envelope

9.4.1.1 Distance Measurements

The Euclidean distance, given by (9.2), on mel-cepstral coefficients and the Kullback-

Leibler distance (Kullback and Leibler, 1951), DKL, on power spectra are two distances

widely used in speech synthesis, due to their good correlation with perceptually rele-

vant characteristics of speech quality, e.g. Klabbers and Veldhuis (1998); Wouters and

Macon (1998); van Santen (1997). In this experiment, the spectral envelope distances

are calculated using these two metrics. The DKL is a statistical measure, which con-

sists of calculating the distance between two probability distributions f (x) and g(x), as

follows:

DKL( f ,g) =
∫
( f (x)−g(x)) log

(
f (x)
g(x)

)
dx (9.3)

For the calculation of the spectral distance, f (x) and g(x) represent the spectral density.

The spectral density f (x) can be represented by:

f (x) =
∞

∑
n=−∞

r(n)e jnx (9.4)

r(n) =
1

2π

∫
π

−π

f (x)e jnxdx, (9.5)
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where r(n) are the Fourier coefficients. In this experiment, the functions f (x) and

g(x) are defined by the FFT coefficients which represent the spectral envelope of the

speech signals synthesised by the HTS-LF and HTS-STRAIGHT systems, respec-

tively. Meanwhile, the Euclidean distance, DE , was calculated between the feature

vectors of mel-cepstral coefficients.
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Figure 9.6: Trajectory of the 1st mel-cepstral coefficient (c1), which was obtained for the

HTS-LF and HTS-STRAIGHT systems (over a part of a test sentence)
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the HTS-LF and HTS-STRAIGHT systems (over a part of a test sentence)
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The mel-cepstral coefficients generated by the HTS-STRAIGHT system represent

the spectral envelope of the synthetic speech. The same parameters generated by the

HTS-LF system represent the vocal tract instead. This system generates speech by

convolving the excitation signal with the vocal tract spectrum, in which the periodic

component of the excitation consists of two periods of the LF-model waveform. For

calculating the spectral envelope of speech synthesised by the HTS-LF system, the

mel-cepstral coefficients of the vocal tract were converted to FFT parameters and then

they were multiplied by the amplitude spectrum of a single LF-model cycle (without

adding noise). The resulting spectrum does not contain harmonics and represents the

spectral envelope of the synthetic speech frame.

For computing the DKL measure, the mel-cepstral coefficients generated by the

HTS-STRAIGHT system were transformed to FFT coefficients. Meanwhile, the FFT

parameters which represent the spectral envelope in the HTS-LF system were con-

verted to mel-cepstral coefficients so as to compute the DE measure. Each FFT feature

vector of the two systems consisted of 512 coefficients and it was normalised in ampli-

tude by dividing the coefficients by their sum. The mel-cepstral coefficient vector was

defined by 38 elements (delta parameters were not used) and they were not normalised.

The normalisation was not required because the first mel-cepstral coefficient, which is

correlated with the energy of the signal, was not used to calculate the distance.

Figures 9.6 and 9.7 show the trajectories of the 1st and 2nd order mel-cepstral co-

efficients respectively, for a part of a test sentence. These examples show that there

are high amplitude discontinuities of these parameters around the voicing transitions,

for the HTS-LF system. In general, these discontinuities are not observed, or are less

significant, in the parameter trajectories obtained using the HTS-STRAIGHT system.

9.4.1.2 Results

Figure 9.8 a) shows the mean Euclidean distances between the feature vector of mel-

cepstral coefficients of HTS-LF (using power correction) and the vector of mel-cepstral

coefficients of HTS-STRAIGHT. The distance is generally higher in the voicing transi-

tion regions, than in the voiced and unvoiced regions which do not include the voicing

transitions parts. Also, the results obtained for these unvoiced and voiced regions are

similar to each other.

Figure 9.8 b) shows the mean Euclidean distances between the delta values of

the mel-cepstral coefficients. For the delta parameters, the mean distances calculated

for the voicing transition regions are also higher than the distances calculated for the
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a) Mean Distance between Mel-Cepstral Coef. b) Mean Distance between Delta of Mel-Cep. Coef. 
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Figure 9.8: Mean Euclidean distance between mel-cepstral feature vectors (represent

the spectral envelope) of the HTS-LF system and those of the HTS-STRAIGHT system,

for the test sentences (sorted in ascending order of their respective perceptual scores).

The results were calculated separately for three types of speech frames: in voicing

transition regions, voiced speech away from transition regions and unvoiced speech

away from transition regions. a) Mel-cepstral coefficients; b) Deltas of mel-cepstral

coefficients.

voiced and unvoiced speech regions which are not included in the voicing transition

parts. Moreover, the results obtained for the delta parameters show a clearer difference

between the voicing transition regions and the other regions, than the results obtained

for static mel-cepstral coefficients. The explanation for this is that the delta parameter

is more affected by the rapid fluctuations of the spectral envelope at voicing transitions,

as it represents the variation of the static parameter between consecutive frames.

The results obtained for the Kullback-Leibler distances between the FFT parameter

vector (represents the spectral envelope) of the HTS-LF and HTS-STRAIGHT systems

are shown in Figure 9.9. They are in accordance with the results obtained for the DE

measure.

The results obtained for the two distance measures of the spectral envelope show

that there is a significant difference between the spectrum of speech synthesised by

HTS-LF and that of the HTS-STRAIGHT system, in the voicing transitions parts.

In contrast, the distance between the spectral envelopes of the two systems is much

smaller in the non-transition regions. This result gives support to the hypothesis that

the HTS-LF system produces lower speech quality than the HTS-STRAIGHT system

due to the spectral modelling problem at voicing transitions.
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Figure 9.9: Mean Kullback-Leibler distance between FFT coefficient vectors (repre-

senting the spectral envelope) of the HTS-LF system and those of the HTS-STRAIGHT

system, for each test sentence (sorted in ascending order of their respective percep-

tual scores). The results were calculated separately for three types of speech frames:

in voicing transition regions, voiced speech away from transition regions and unvoiced

speech away from transition regions.

9.4.2 Formants

9.4.2.1 Distance Measurement

The formant distance measure is often used in the phonetics field for studying coartic-

ulation, e.g. van den Heuvel et al. (1996). It has also been used in speech synthesis,

e.g. as an objective measure of spectral discontinuity by Klabbers and Veldhuis (2001).

Formant errors may affect speech intelligibility, because the formants are important to

phone differentiation. The HTS-LF system was outperformed by the HTS-STRAIGHT

system in the intelligibility part of the perceptual test presented in Section 8.4. This

is one of the reasons why the distance between the vectors defined by the first two

formants (F1 and F2) of speech synthesised by the HTS-LF and HTS-STRAIGHT sys-

tems was included in the objective evaluation. Since formants are estimated from the

spectral envelope, they were also used as an indicator of spectral envelope distortion.

The formant frequencies, F1 and F2, were calculated using the formant tracker

of the ESPS/waves+ program, which employs a F0 tracking algorithm based on the

method of Talkin and Rowley (1990). The estimated formant frequencies were trans-

formed to a Mel-scale as proposed by Klabbers and Veldhuis (2001). This Mel trans-
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formation is given by

F∗ = 2595log
(

1+
F

700

)
(9.6)

Then, the Euclidean distance between the two dimensional feature vectors (each vector

consisting of the F∗1 and F∗2 values) of speech synthesised by the HTS-LF and HTS-

STRAIGHT systems was computed using (9.2).

a) Mean Formant Distance for MOS Sentences b) Mean Formant Distance for SU Sentences 

1 3 5 7 9 11 13 15 17 19 21 23 25 27

60

80

100

120

140

160

180

200

220

240

260 Non−voicing trans.

Voicing trans.

1 3 5 7 9 11 13 15 17 19 21

60

80

100

120

140

160

180

200

220

240

260 Non−voicing trans.

Voicing trans.

Test Utterance Number (sorted) Test Utterance Number (sorted)

M
e
a
n
 E

u
c
li
d
e
a
n
 F

o
rm

a
n
t 

D
is

ta
n
c
e

M
e
a
n
 E

u
c
li
d
e
a
n
 F

o
rm

a
n
t 

D
is

ta
n
c
e

Figure 9.10: Mean Euclidean distance between the feature vectors defined by the first

two formant frequencies of speech synthesised by the HTS-LF and HTS-STRAIGHT

systems respectively, for the following test sentences used in the perceptual evaluation:

a) Sentences of news domain used in the MOS part; b) SU sentences.

9.4.2.2 Results

Figure 9.10 shows the plots of the mean values of the Euclidean distance between the

pairs of formants (F∗1 and F∗2 ) of speech synthesised by the HTS-LF (using power cor-

rection) and HTS-STRAIGHT systems respectively. The results shown in Figures 9.10

a) and b) were obtained for the subset of news domain sentences of the MOS part of

the perceptual evaluation and the SU sentences (intelligibility part) respectively. For

both groups of sentences, the mean formant distances are higher in the voicing transi-

tion parts of voiced speech than in the remaining voiced regions on average. However,

there is no apparent correlation between the formant distance and the perceptual test

scores (MOS of speech naturalness for news sentences, and word error rates for SU

sentences). Also, the variation of mean formant distance between utterances is rela-

tively high. This effect might also be related to problems in the formant estimation, as

it is difficult to accurately estimate formants.
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It is expected that the higher values of mean formant distance observed in the voic-

ing transition regions are related to the lower scores in speech naturalness and intel-

ligibility for the HTS-LF system, compared with the HTS-STRAIGHT system in the

perceptual evaluation.

9.5 Distortion of Speech Related to the Glottal Source

9.5.1 Spectral Tilt

The spectral tilt property of speech considered in this experiment refers to the decay-

ing spectral characteristic of voiced speech, which is a perceptually important aspect

of speech. It is mainly associated with voice quality, as there is a strong correlation be-

tween spectral tilt and voice source characteristics. The relationship between spectral

tilt and the LF-model was described in Section 5.3.1. It is mainly correlated with the

return phase parameter, Ta, of this glottal source model. One reason for measuring the

spectral tilt was to study the effect of modelling LF-model parameters on the spectral

distortion, in speech synthesised by the HTS-LF system. The spectral tilt distance was

also used as an indicator of spectral envelope distortion in HTS-LF.

9.5.1.1 Distance Measurement

The spectral tilt of the speech signal was estimated using the method proposed by

Murphy (2001). It consists of the ratio of the power energy below a frequency Ft to

the energy above that frequency. Murphy (2001) calculated two spectral tilt measures,

R14 and R24, from the estimated periodogram (power spectral density) of the speech

signal. R14 represented the ratio between the energies from 0 to 1 kHz to the energy

from 1 to 4 kHz. Meanwhile, R24 was the level difference between the energies below

and above Ft = 2 kHz (up to 4 kHz). R14 and R24 were calculated in the work of this

thesis by using the FFT coefficients of the normalised spectral envelope (divided by

the sum of the elements), Hk, as follows:

R14 =
∑

N/Ny
k=1 |Hk|2

∑
N/2
k=N/8 |Hk|2

(9.7)

R24 =
∑

N/Ny
k=1 |Hk|2

∑
N/2
k=N/8 |Hk|2

, (9.8)
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where N = 512 is the total number of FFT coefficients and Ny = 8 kHz is the Nyquist

frequency (equal to half the sampling rate of the speech signal). For example, HN/8

corresponds to the frequency component at f = 1 kHz. The FFT coefficients repre-

senting the spectral envelope of the synthetic speech were obtained similarly as in

the spectral envelope measurements described in Section 9.4, for the HTS-LF and

HTS-STRAIGHT systems. Finally, the Euclidian distance between the spectral tilt

parameters of speech synthesised by the HTS-LF and HTS-STRAIGHT systems was

calculated using (9.2) for R14 and R24 respectively.

a) Mean Distance of Spectral Tilt R14 for MOS utt. b) Mean Distance of Spectral Tilt R14 for SIM utt. 
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Figure 9.11: Mean distance of the spectral tilt measure R14 between the HTS-LF and

the HTS-STRAIGHT systems, for the following sentences (sorted in ascending order

of their respective perceptual scores): a) Sentences of news domain used in the MOS

part of the perceptual evaluation, b) Sentences used in the voice similarity part (SIM)

of the perceptual evaluation.

9.5.1.2 Results

Figure 9.11 shows the mean values of the Euclidean distances between the spectral tilt

parameters, R14 and R24, of the HTS-LF and HTS-STRAIGHT systems. This figure

shows the results for the SIM and MOS sentences (news domain sentences). The

sentences are sorted in ascending order of the scores obtained for the voice similarity

and naturalness test sections of the perceptual evaluation respectively. The results

shown in Figure 9.11 indicate that the spectral tilt distance R14 is higher in the voicing

transition regions of voiced speech than in the remaining voiced parts. From this figure,

it is difficult to find a correlation between the perceptual test scores and the distance

measures, for both MOS and SIM sentences. Nevertheless, the three utterances with
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lowest MOS scores have the highest tilt distances, for the results obtained for voicing

transition regions.

The results obtained for R24 are shown in Figure 9.12. They are similar to those

of R14. Thus, the two spectral tilt distances are consistent with each other and with

the results of the previous spectral distance measures (spectral envelope and formant

frequencies) which were also higher in the voicing transition regions.

a) Mean Distance of Spectral Tilt R24 for MOS utt. b) Mean Distance of Spectral Tilt R24 for SIM utt. 
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Figure 9.12: Mean distance of the spectral tilt measure R24 between the HTS-LF and

the HTS-STRAIGHT systems. a) Sentences of news domain used in the MOS part of

the perceptual evaluation; b) Sentences used in the voice similarity part (SIM) of the

perceptual evaluation.

9.5.2 H1-H2

The difference in amplitude between the first two harmonics of the speech signal has

an important effect on voice quality and is correlated with the glottal source signal.

The correlation between H1-H2 and the LF-model parameters was described in Sec-

tion 5.3.1. This spectral parameter is mainly affected by the the amplitude peak (“glot-

tal formant”) of the spectrum of the LF-model in the lower frequencies. This peak is

more influenced by the SQ and OQ parameters than the RQ parameter of the LF-model.

9.5.2.1 Distance Measurement

The amplitudes H1 and H2 were estimated using the F0 contour generated by the

HMM-based speech synthesisers and the spectral envelope of the synthetic speech.

In this process, the frequency components associated with the harmonics H1 and H2
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were estimated as the closest components to F0 and 2F0, respectively. Next, H1-H2

was calculated as the difference between the amplitudes of the spectral envelope at the

respective frequencies. The spectral envelope was obtained for the HTS-STRAIGHT

and HTS-LF systems as described in Section 9.4. Finally, the Euclidian distance be-

tween the H1-H2 parameter of the two synthesisers was calculated.

9.5.2.2 Results

Figure 9.13 shows the mean values of the Euclidean distance between the H1-H2 val-

ues of the HTS-LF and HTS-STRAIGHT systems. Figure 9.13 a) shows the mean

distances for the news domain sentences of the MOS part of the perceptual evaluation

(speech naturalness part), while Figure 9.13 b) shows the results for the sentences of

the SIM part (voice similarity part).

a) Mean Distance of H1-H2 for MOS utt. b) Mean Distance of H1-H2 for SIM utt. 
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Figure 9.13: Mean H1-H2 distance between speech synthesised by the HTS-LF and

HTS-STRAIGHT systems, for the following sentences (sorted in ascending order of

their respective perceptual scores): a) News domain sentences used in the MOS part

of the perceptual evaluation; b) Sentences used in the voice similarity part (SIM) of the

perceptual evaluation.

The H1-H2 distances plotted in Figures 9.13 a) and b) do not seem to be a measure

which differentiates the voicing transition regions of voiced speech from the other

voiced regions. These results contrast with the previous results obtained for the other

spectral distance measures (distance measures of the spectral envelope and spectral

tilt). Also, a simple correlation between the distances and the perceptual test scores

(test sentences are sorted in ascending order) is not observed from these figures.
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The fact that the mean values of the H1-H2 distance are not higher in the voic-

ing transitions regions on average indicates that LF-model errors due to problems in

voiced/unvoiced classification are not significant. That is, if the voicing detection was

an important problem, there would be sufficiently high LF-parameter estimation errors

in the voicing transition segments that produced significant errors on the vocal tract

spectrum estimated by the GSS method. Such LF-model errors would affect the spec-

tral envelope of speech synthesised by the HTS-LF system, especially in terms of the

H1-H2 and spectral tilt parameters. However, the H1-H2 distance measured on the

synthetic speech does not seem to be dependent on the location of the speech frames

with respect to voicing transition regions.

Figures 9.13 a) and b) also show that the H1-H2 distance between speech syn-

thesised by the HTS-LF and HTS-STRAIGHT systems is relatively high for some

utterances, compared with distances obtained for other test sentences. The high val-

ues of the H1-H2 distance can be explained by the differences in the mixed excitation

model and spectrum representation between the HTS-LF and HTS-STRAIGHT sys-

tems. That is, HTS-LF uses the LF-model to generate the excitation and the vocal

tract spectrum, whereas HTS-STRAIGHT uses the impulse train (processed in phase)

to generate the excitation and the spectral envelope representation. Both the LF-model

signal and the vocal tract transfer function used by the HTS-LF system affect the H1-

H2 parameter. In contrast, H1-H2 is only influenced by the spectral envelope in HTS-

STRAIGHT. However, it is not possible to determine what system models H1-H2 the

best from these objective measurements. Other type of measurements, e.g. by compar-

ing H1-H2 estimated from speech synthesised by the two systems to H1-H2 estimated

from natural speech, could help to answer this question.

9.5.3 SNR

The SNR parameter is often used to evaluate speech quality in speech synthesis or

speech coding, e.g. Sluijter et al. (1995). The HMM-based speech synthesisers used in

this experiment model the noise component of voiced speech by mixing the periodic

component of the excitation with a noise signal in different frequency bands (multi-

band mixed excitation model). SNR is directly related to the aperiodicity parameters

modelled by the HTS-LF and HTS-STRAIGHT systems, as these parameters represent

the spectral weighting between the periodic and noise components of the excitation.

The SNR parameter has an important effect on speech naturalness of the speech
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synthesisers. For example, the noise component of the multi-band mixed excitation

model used in HTS-STRAIGHT generally has the effect of improving speech natural-

ness when compared with the simple excitation (excitation of voiced speech is mod-

elled as an impulse train only). However, the higher the energy of the noise component

the lower the SNR of the synthetic speech and an excessively low SNR might have the

opposite effect on speech naturalness, by producing noisy sounding speech. Therefore,

it is important to accurately model the SNR in the HMM-based speech synthesisers.

SNR is also important to model the speaker’s voice characteristics. For example, this

parameter is expected to be lower for the breathy voice when compared with modal

voice (“neutral” voice quality), due to the effect of aspiration noise in breathy voice.

9.5.3.1 Distance Measurements

To estimate the SNR, the powers of both the synthetic speech signal and the noise

component of the speech signal were calculated. The noise signal was obtained by

synthesising speech using the noise excitation only. Then, the SNR parameter was

calculated as the ratio of the speech signal power (synthesised using mixed excitation)

to the noise signal power. The distance between SNR values (in dB) of the two HMM-

based speech synthesisers was calculated using the Euclidean distance measure given

by (9.2).

9.5.3.2 Results

Figure 9.14 shows the mean Euclidean distance between the feature vectors which con-

sisted of the SNR of speech frames synthesised by the HTS-LF and HTS-STRAIGHT

systems respectively, for each test utterance. The plots a) and b) in Figure 9.14 rep-

resent the results for the MOS (news domain) and SIM sentences, respectively. Both

distances obtained for MOS and SIM sentences are generally higher in the voicing

transition regions of voiced speech than in the other voiced regions. However, the

correlation between the distances and the perceptual test scores does not seem to be

significant, in the two plots of Figure 9.14 (MOS and SIM sentences are sorted in

ascending order of the scores).

The SNR parameter was expected to be approximately equal between the two sys-

tems, because the aperiodicity parameters were extracted from the speech signal and

modelled using HMMs similarly by the two synthesisers. For explaining the relatively

high SNR distances in the voicing transition parts, two possible causes are consid-
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a) Mean Distance between SNR for MOS utt. b) Mean Distance between SNR for SIM utt. 
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Figure 9.14: Mean of the Euclidean distances of SNR between speech synthesised by

the HTS-LF and HTS-STRAIGHT systems, for each of the following sentences: a) Sen-

tences of news domain used in the MOS part of the perceptual evaluation; b) Sentences

used in the voice similarity part (SIM) of the perceptual evaluation.

ered. One reason is that poor modelling of the glottal source parameters in the voicing

transition regions by the HTS-LF system could result in unnatural LF-model wave-

forms generated by the synthesiser in these regions. Since the HTS-LF system uses

the LF-model signal to modulate the noise component of the excitation, the distortion

associated with the generated LF-model parameters could also affect the SNR. This

explanation of the results in the voicing transition regions is in accordance with the hy-

pothesis that voiced/unvoiced classification errors could deteriorate the LF-model pa-

rameter estimation and affect the glottal source modelling, as explained in Section 9.1.

The other factor is that the spectral envelope distortion in the voicing transition regions

of the synthetic speech (which is indicated by the results in Section 9.4) could produce

the higher SNR distance in the voicing transition regions. This hypothesis is based on

the assumption that the SNR variation between the speech signals synthesised by the

two systems depends on the variation on the respective spectral envelopes, because the

SNR of voiced speech tends to be lower at the high-frequency part of the spectrum

than at the low-frequency part. For example, a decrease in spectral tilt (increased ratio

of energy at the higher-frequency part of the speech spectrum to the lower-frequency

part) by HTS-LF when compared with the HTS-STRAIGHT system, could result in

lower SNR of the speech synthesised by the HTS-STRAIGHT system. That is, the

spectral tilt decrease emphasises the high-frequency part of the spectrum, which is

expected to have lower SNR than the low-frequency part. In Section 9.4, the possi-
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ble reasons which were used to explain the spectral envelope distortion in the voicing

transition regions were the spectral discontinuities related to the spectral representa-

tion mismatch (spectral envelope for unvoiced and vocal tract for voiced speech) and

voicing detection errors. In this case, these two problems are also considered to be the

most important to explain the higher SNR in voicing transition regions.

9.6 Correlation Between Acoustic Distances and Speech

Quality

The mean values of the objective measures calculated for each test utterance were

also used to calculate the correlation coefficients between the objective results and

the scores obtained for those utterances in the perceptual evaluation described in Sec-

tion 8.4.

The population correlations between each of the objective measure results pre-

sented in the previous sections (energy, mel-cepstral coefficients, FFT coefficients,

etc.) and the respective perceptual results were calculated separately for the test sen-

tences associated with the similarity to the speaker’s voice (SIM part), naturalness

(MOS part) and intelligibility (SU part) sections of the perceptual evaluation.

The population Pearson correlation between the mean distances X = {x1,x2, ...,xn}
and perceptual test scores Y = {y1,y2, ...,yn} was calculated by using the following

formula:

rxy =
∑

n
i=1(xi− x)(yi− y)

(n−1)sxsy
, (9.9)

where xi and yi are series of n measurements (i = 1,2, ...,n), x and y are the means and

sx and sy are the standard deviations of X and Y , respectively.

The correlation between perceptual test scores and objective distances was low

(|rxy| < 0.5) for all the cases. The correlation values can be found in Table B.1 (in

Appendix B). These correlation results are discussed in Section 9.7.2.
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9.7 Discussion

9.7.1 Speech Distortion

The results of the objective measurements showed that the acoustic distances between

speech synthesised by the HTS-LF and the HTS-STRAIGHT systems were in general

significantly higher for synthetic speech segments in voicing transition regions than for

speech in the other regions. Based on this result, it is assumed that speech distortion

in HTS-LF is significantly higher in the voicing transition regions. This result was

expected according to the hypothesis that speech distortion in the HTS-LF system

is related to discontinuities of the spectral parameters at voicing transitions. These

parameter discontinuities were explained by two possible factors. One factor was the

mismatch between the spectral representation of unvoiced and voiced speech (spectral

envelope and vocal tract respectively) at voicing transitions. The other factor was the

effect of possible voicing classification errors which resulted in poor estimation of the

LF-model parameters for the speech frames around voicing transitions.

The following are the possible causes of speech distortion in the HTS-LF system,

which were listed in Section 9.1:

• spectral modelling problem due to mismatch between spectral envelope and vo-

cal tract at voicing transitions.

• problems during analysis of voiced speech segments in voicing transition regions

due to voiced/unvoiced classification errors.

• systematic errors in estimation of the LF-model parameters.

The first two factors of the previous list are in accordance with the general results

of the objective measurements, as the acoustic distances between speech synthesised

by the HTS-LF and the HTS-STRAIGHT systems were significantly higher in voicing

transition regions than in the other speech regions. The higher acoustic distance in

voicing transition regions was observed for all the acoustic parameters analysed in the

experiment, with the exception of the H1-H2 parameter. This parameter is expected

to be particularly affected by errors in the LF-model parameter estimation, since the

H1-H2 parameter is strongly correlated with the LF-model parameters. However, the

H1-H2 distance measured on the synthetic speech frames did not seem to be dependent

on the location of frames with respect to voicing transition regions. This result indi-

cates that voicing decision errors might not be an important cause of speech distortion
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in voicing transition regions. On the other hand, poor modelling of abrupt spectral

fluctuations at voicing transitions mainly has the effect of smoothing these spectral

variations. Such distortion is expected to affect in particular the overall spectral en-

velope characteristic (e.g. spectral tilt), as opposed to detailed aspects of the spectrum

(such as the H1-H2 measure).

There is another point which suggests that LF-model estimation errors due to an

eventual voicing detection problem are less relevant for the speech distortion than the

spectral representation mismatch. It is the fact that LF-parameter errors cannot ex-

plain the higher acoustic distances of the spectral envelope and energy parameters in

the unvoiced speech frames which belong to the voicing transition regions (LF-model

parameters are not estimated and the spectral parameters represent the spectral enve-

lope, for unvoiced speech frames). In contrast, the mismatch between the spectral

representation of unvoiced and voiced frames can explain the higher acoustic distances

obtained for the unvoiced frames in voicing transition regions.

The last cause of speech distortion, systematic errors of the glottal parameters,

could be related to limitations of the method which was used in the HTS-LF system

to estimate the glottal source derivative signal (the IAIF method) or limitations of the

technique to estimate the LF-model parameters from the estimated source signal. For

example, the LF-model may not accurately fit to every glottal source signal or the

non-linear optimisation method which was used by the system to estimate the glottal

parameters may not be sufficiently robust. This type of errors in LF-model parameter

estimation is assumed to be systematic, i.e. it is expected to equally affect every speech

frame classified as voice. This assumption may not be completely true. For example,

the LF-model parameter estimation might not perform as well for voiced fricatives as

for vowels, because the estimation of the glottal source signal by LPC inverse filtering

is typically more difficult for voiced fricatives (these speech sounds are usually not as

stationary and periodic as vowels). However, in this experiment the important point

to consider is that the limitations of the LF-model parameter estimation method are

not significantly dependent on whether a voiced speech frame (correctly classified as

voiced) is near a voicing transition or not. It could happen that the speech frames

of a voiced fricative were just after an unvoiced speech segment and the analysis of

the LF-model parameters was poorer for these frames than others. Nevertheless, this

effect is assumed not to be significant on average, as voiced sounds whose analysis

is less accurate may also appear in non-transition regions of voicing. Given that the

LF-model parameter estimation method used in the HTS-LF system is assumed to
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perform similarly for the different voiced speech frames, its limitations are considered

to be less significant than the other two problems (due to voicing decision errors and

spectral representation mismatch) to explain the higher speech distortion in voicing

transition parts.

Finally, the results of the objective measurements have indicated that the power

correction technique, used in the HTS-LF system for synthesising speech, reduces the

number of high energy peaks in the voicing transition regions of the synthetic speech.

This effect contributes to reduce the speech energy distortion, although it seems not to

solve this problem completely. In addition, power correction does not reduce the other

types of speech distortion analysed in this experiment, in particular spectral distortion.

9.7.2 Correlation with Perceptual Test Scores

The acoustic differences between speech synthesised by the HTS-STRAIGHT and

HTS-LF systems were analysed in terms of the mean value of those measurements

calculated for a set of test sentences. Each set of sentences was associated with a given

task (naturalness, intelligibility, or voice similarity tasks) of the perceptual evalua-

tion described in Section 8.4. One way to study the correlation between the objective

measurements and the perceptual test scores was to plot the results of the objective

measurements in terms of the utterance number, in which utterances were sorted in

ascending order of the respective scores. For example, it was expected that the spectral

distance between the speech signals of the two systems was higher for test sentences

which obtained lower perceptual test scores of speech naturalness (MOS). In this case,

the mean value of the spectral distance was expected to decrease with the utterance

number. However, for all objective measurements, it has not been apparent from the

plots that the mean values of the acoustic measurements were correlated with the per-

ceptual results.

Another method which was used in this experiment to investigate the relationship

between the objective measurements obtained for the test utterances and the respective

perceptual results was to calculate the correlation coefficients between the two results.

However, we have found the correlation was also low for the different types of acoustic

measurements.

The following are considered to be possible reasons for the low correlation values

between objective and perceptual results:

• perceptual results obtained for each utterance are not adequate to study the per-
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ceptual effects of speech distortions that occur in specific locations within the

utterance.

• there is no direct relation between the degree of perceived distortion and the

acoustic measurements.

• speech quality degradation depended on a combination of different types of

acoustic distortion, but the analysis was done individually for each type of ob-

jective measurements.

• other speech aspects could be more important to speech quality degradation in

the HTS-LF system than those that were analysed in this experiment.

These factors are explained in the following paragraphs.

The first factor listed above indicates that the utterance level is not adequate to

study the correlation between the objective measurements and the perceived speech

quality, in this experiment. This assumption is based on the fact that by taking the

average of an objective measurement over all the analysis frames of an utterance, the

effect of a higher distance value at a certain region along the utterance is given less

emphasis than if the distance was averaged around that region. Also, the duration of

the utterance might affect the correlation value. For example, in the hypothetical case

that a speech frame k of an utterance has the highest distance value in that utterance, i.e.

Di = Dmax for i = k, and that the distance is much lower and approximately equal for

the rest of the speech frames, i.e. Di ≈ Dk for all i 6= k. Then, the longer the utterance

(more speech frames), the closer will be the mean distance to the value Dk. That is,

the longer the utterance, the lower is the effect of the point with a high distance value

on the mean distance. However, if the speech distortion in that utterance is mainly

associated with the highest distance value at a specific frame, the listener could judge

the perceptual quality of the whole utterance mainly based on that speech distortion

independently of the remaining speech frames of the utterance.

Another factor to explain the low correlation is that the acoustic differences be-

tween the HTS-LF and HTS-STRAIGHT systems might not be directly related to

speech distortion. That is, the acoustic variations between the synthetic speech signals

may or may not lead to speech distortion. Also the relationship between the measured

acoustic differences and the perceptual test scores may not be linear, whereas the cor-

relation coefficients calculated in this experiment measure a linear correlation between

two variables.
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The speech quality degradation in the HTS-LF system could also result from a

combination of different types of acoustic parameter distortion. However, the correla-

tion between objective measurements and perceptual test scores was analysed for each

type of acoustic measure individually, because the analysis of the correlation in terms

of the combination of different acoustic parameters is much more complex. In addi-

tion, there could be other types os acoustic measurements which were not analysed in

this experiment which contributed significantly to speech distortion in the system.

Other types of experiments could be done in the future in order to study the cor-

relation between perceptual results and objective measurements for short parts of an

utterance. For example, a perceptual test could be conducted using vowels or words

as the synthetic speech samples, instead of utterances. Additionally, other types of

acoustic parameters and distance metrics could be investigated.

9.7.3 Future Improvements for the HTS-LF System

Through the analysis presented in this chapter, the main cause of speech distortion in

the HTS-LF system is assumed to be the problem of modelling the spectral mismatch

between the spectral envelope of unvoiced speech and the vocal tract of voiced speech

at voicing transitions.

One way to reduce the speech distortion in the HTS-LF system could be to im-

prove the statistical modelling of speech in voicing transition regions. For example,

the spectral parameters could be modelled independently in the voiced and unvoiced

regions, using MSD-HMMs, as for F0. However, F0 is modelled using a discrete prob-

ability distribution for unvoiced speech and a continuous probability density function

for voiced speech. In the case of using a MSD-HMM for the spectral parameters, these

parameters should be modelled using two continuous distributions, one for voiced and

the other for unvoiced speech.

Another way to solve the spectrum modelling problem of the HTS-LF system is

to avoid the discontinuities of the spectral parameters at voicing transitions. These

discontinuities could be reduced by modelling the spectral envelope and the vocal tract

separately using different streams. That is, one stream would be used to model the

spectral envelope of unvoiced and voiced speech. The other stream would be used

to model the vocal tract transfer function. In this stream, the vocal tract spectrum of

unvoiced speech could be represented by the spectral envelope, as it is not possible

to estimate the vocal tract for unvoiced speech using the GSS analysis method (the
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spectrum of unvoiced speech is generally represented by the spectral envelope). In

order to avoid an abrupt fluctuation of the spectrum at voicing transitions, a smoothing

operation could be performed on the spectral envelope parameters of the unvoiced

frames in the neighbourhood of voicing transitions, while the vocal tract parameters

could remain the same. To synthesise unvoiced speech, the spectral parameters would

be obtained from the spectral envelope stream and to synthesise voiced speech they

would be obtained from the stream which contains vocal tract and spectral envelope

parameters. The HMM-based speech synthesiser proposed by Raitio et al. (2008) uses

a similar method to model the vocal tract spectrum of voiced speech and the spectral

envelope of unvoiced speech (by using separate streams). It is not clear from that paper

why the two types of spectra are modelled separately, but the reason could also be to

avoid the spectral mismatch at the voicing transitions.

9.8 Conclusion

The results of the perceptual evaluation presented in Section 8.4 showed that the

speech quality of the HTS-LF system is significantly lower than the quality of the

HTS-STRAIGHT system. In order to investigate the reasons for such a difference in

performance, the two systems were compared in terms of several acoustic characteris-

tics: speech energy parameters, spectral envelope parameters, and parameters related

to the glottal source (spectral tilt, H1-H2 and SNR). The conclusions of this experiment

are summarised as follows:

• acoustic difference between an utterance synthesised by HTS-LF and the same

utterance synthesised by HTS-STRAIGHT is generally higher for speech frames

in voicing transition regions than for speech frames away from those regions.

• results suggest that the problem of modelling abrupt spectral parameter varia-

tions at voicing transitions by the HTS-LF system (due to mismatch between

the spectral envelope and the vocal tract transfer function) is the most important

factor of speech distortion.

• correlation between the mean acoustic difference of utterances synthesised by

the two systems and the perceived speech quality of those utterances for the

HTS-LF system was not found.
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• the power correction technique used in the HTS-LF system reduces the number

of high amplitude peaks (energy discontinuities) in the voicing transition regions,

which seemed to be related to speech artefacts.

Apart from the spectral modelling problem at voicing transitions, errors in the LF-

model parameter analysis are also a possible cause of the high acoustic differences

observed between the speech synthesised by the HTS-LF and HTS-STRAIGHT sys-

tems. However, this second factor is considered to be less significant than the first,

based on the results.

The high acoustic distances between the speech signals of the two HMM-based

speech synthesisers, particularly around voicing transitions, is expected to be the main

cause of speech quality degradation in the HTS-LF system. However, this hypothe-

sis could not be verified in this experiment, as the correlation between the results of

the acoustic analysis and the results of the perceptual evaluation was not significant.

Since the speech distortion in the HTS-LF system has been found to be higher around

the voicing transitions, future experiments could be conducted to study the correla-

tion between acoustic measurements and perceived speech quality for speech segments

shorter than the utterances used in this experiment. Such experiments could give more

significant correlation results and prove the hypothesis that the speech distortion in

HTS-LF is mainly caused by the acoustic differences in voicing transition regions.

Further experiments using an improved HTS-LF system could also permit more con-

clusions to be obtained about the problems that caused the poor performance of the

HTS-LF system in the perceptual evaluation presented in Section 8.4. For example,

two methods were suggested for overcoming the problem of modelling the unvoiced

and voiced spectra at voicing transitions, in Section 9.7.3.
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Conclusions

Most current HMM-based speech synthesisers use a parametric model of speech that

consists of a spectrally flat excitation signal and a synthesis filter representing the spec-

tral envelope of the speech signal. The simplest excitation model used by these systems

consists of an impulse train for synthesising voiced speech and white noise for un-

voiced speech. However, speech synthesised using an impulse train typically sounds

robotic due to the strong periodicity characteristic of this signal. Recently, different

types of excitation models have been applied to statistical speech synthesis in order to

improve speech naturalness. In general, these models still assume that the excitation is

a spectrally flat signal but they represent more characteristics of the voiced excitation

in addition to the periodicity aspect, such as the noise and other non-periodic aspects.

However, these models typically do not describe the important characteristics of the

glottal source signal. In particular, this signal is characterised by a decaying spectrum

instead of being spectrally flat. The major problem of using an excitation model that

describes the glottal source is that this component of speech has to be separated from

the synthesis filter. That is, the synthesis filter has to represent the vocal tract transfer

function instead of the spectral envelope. In this work, the motivations for using the

glottal source excitation in HMM-based speech synthesis were:

• to model glottal source aspects and the vocal tract parameters independently.

• to take into account the correlation between the F0 and glottal parameters.

• to alleviate the robotic sound quality characteristic of the impulse train.

• to increase parametric flexibility for voice transformation.

301
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One advantage of modelling the spectrum separately from the glottal source is that

these components are assumed to be independent in the source-filter theory of speech

production. By modelling them separately it is expected that the glottal source and

spectrum modelling is improved. Also, the parameters of the glottal source model can

be modelled together with the F0 parameter so as to take into account the correlation

which exists between them. When compared to the impulse train, the glottal source

signal is less periodic and is a more realistic representation of the excitation of voiced

speech in the speech production system (the energy of the excitation is spread along

the period instead of being concentrated at one time instant). For this reason, the use

of a glottal source model instead of the impulse train to represent the excitation is

expected to reduce the robotic speech quality. Finally, the glottal source signal has

several properties which are strongly correlated with voice quality (such as breathiness

and creakiness). By using an excitation model that describes the glottal source, the

voice quality of the synthetic speech can be better controlled.

10.1 Analysis-Synthesis Methods

Very little research work can be found in the literature about using glottal source pa-

rameters in statistical speech synthesis. Moreover, there is not currently a HMM-based

speech synthesiser using glottal source modelling which permits glottal parameters

correlated with voice quality to be directly controlled. This limitation is because the

excitation parameters that have been modelled by current systems do not have a di-

rect relation with the properties of the glottal pulse. Moreover, any of the current

HMM-based speech synthesisers using glottal source modelling takes into account the

correlation between F0 and the glottal source parameters. The major contribution of

this thesis is the integration of an acoustic glottal source model, the LF-model, into a

baseline HMM-based speech synthesiser which is based on the HTS system. The LF-

model parameters can be used to control several aspects of the voice source which are

correlated with voice quality. Also, the correlation between the LF-model parameters

and F0 is taken into account in the speech synthesiser.

Two analysis-synthesis methods were developed in this work to integrate the LF-

model into the baseline system. They are reviewed in the next paragraphs:

1. Glottal Post-Filtering (GPF):

• Analysis: Calculation of the glottal post-filter from a chosen LF-model
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signal (which is stored so as to be used for synthesis).

• Synthesis of voiced speech:

i) Excitation of voiced sounds is generated by passing the stored LF-

model signal through a glottal post-filter, which works as a whitening

filter.

ii) Convolution of the spectrally flat excitation with the spectral envelope,

then overlap-and-add.

• Advantages:

i) Stored LF-model signal can be modified so as to transform the voice

characteristics of the synthetic speech.

ii) Excitation contains phase information of the LF-model signal, which

reduces buzziness.

2. Glottal Spectral Separation (GSS):

• Analysis of voiced speech:

i) Glottal source parameters (LF-model parameters) are estimated from

the recorded speech, e.g. using an inverse filtering technique for cal-

culating the glottal source signal.

ii) Spectral effects of the LF-model signal (generated using the LF-model

parameters) are removed pitch-synchronously from the speech signal

by dividing the amplitude spectrum of the speech by the amplitude

spectrum of the LF-model signal.

iii) Vocal tract spectrum is estimated by computing the spectral envelope

of the signal obtained in ii).

• Synthesis of voiced speech:

i) Generation of the excitation using the LF-model parameters.

ii) Generation of the vocal tract spectrum from the spectral parameters.

iii) Convolution of the excitation with the vocal tract spectrum, then overlap-

and-add.

• Advantages:

i) LF-model signal contains more phase information than the impulse

train, which reduces buzziness.
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ii) Glottal parameters can be used to control voice quality.

iii) Errors in the glottal parameter estimation can be alleviated before sep-

arating the glottal source aspects from the speech signal, e.g. by smooth-

ing the glottal parameter contours.

iv) Vocal tract spectrum can be computed using a robust spectral envelope

estimation method, as the glottal source and the vocal tract parame-

ters are estimated independently. In contrast, the typical source-tract

separation techniques estimate the glottal source and the vocal tract us-

ing the same model of speech, e.g by calculating the two components

jointly or iteratively.

The GPF method was integrated into the baseline HMM-based speech synthesiser

just by modifying the speech waveform generation technique of the system, as they use

the same spectral envelope and excitation parameters to generate the speech waveform.

The speech synthesiser using GPF was called HTS-GPF. The baseline system was

also modified in order to incorporate the GSS analysis-synthesis method and in order

to train the LF-model parameters by the HMMs. This system using glottal source

modelling was called HTS-LF.

10.2 Summary of the Results

The first perceptual evaluation in this thesis was conducted to test the hypothesis that

the use of the LF-model for speech synthesis improves speech naturalness and in-

creases the degree of parametric flexibility to control voice quality aspects, when com-

pared to the traditional impulse train. In this experiment, the GSS method was used

to synthesise speech by copy-synthesis using the LF-model. In this way, any potential

effect of statistical modelling on results was excluded. For synthesising speech us-

ing the impulse train, the same waveform generation and spectral envelope estimation

techniques as those of the GSS method were used. The results showed that:

• Speech synthesised using the LF-model sounded significantly more natural than

using the impulse train on average.

• Control over the LF-model parameters permitted to transform the voice quality

of the synthetic speech. Conversely, the impulse train did not permit to perform

the same voice transformations.
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Another perceptual evaluation was conducted in order to test the hypothesis that the

HTS-LF system produces more natural speech quality than the baseline system which

uses the impulse train for generating the excitation. In this case, the HTS-LF system

was compared against a synthesiser which used the STRAIGHT vocoder for analysis

and synthesis (called HTS-STRAIGHT system), in an AB forced-choice experiment.

For this experiment, the GSS method was implemented in the HTS-LF system using

a simple inverse filtering technique to estimate the glottal source derivative signal and

the STRAIGHT vocoder to compute the spectral envelope and aperiodicity parame-

ters. These aperiodicity parameters are also used by the HTS-LF system to weight the

spectra of the LF-model signal and the noise, in the generation of the mixed excitation

signal. However, in the perceptual experiment the noise component of the excitation

was not used, in order to exclude the effect of this component in the comparison of

the LF-model against the impulse train signals. The characteristics of the implemented

GSS analysis are summarised as follows:

• Inverse filtering with pre-emphasis for estimating the derivative of the glottal

volume velocity (DGVV) signal.

• Estimation of the LF-model parameters by fitting the LF-model waveform pitch-

synchronously to the DGVV signal, using a non-linear optimisation algorithm

and initial estimates obtained by direct measurements on the DGVV signal.

• STRAIGHT analysis for computing the aperiodicity parameters and the spectral

envelope of the signal obtained after removing the LF-model spectral effects

from the speech signal.

The results showed that speech synthesised using the HTS-LF system sounded slightly

more natural that speech synthesised using the HTS-STRAIGHT system. The results

obtained for the HTS-LF system were expected to be better in terms of speech nat-

uralness, because the LF-model clearly outperformed the impulse train in the copy-

synthesis experiment. For this reason, it is assumed that the statistical modelling of

the speech parameters in HTS-LF resulted in some speech quality degradation. This

effect could be caused by errors in the LF-model parameter estimation or a problem

in modelling the speech parameters by the HMMs. In particular, the author detected

speech artefacts produced by the HTS-LF system, which were not characteristic of the

HTS-STRAIGHT system. This type of distortion was related to high peaks observed
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in the energy envelope of the synthetic speech around voicing transition instants. Sub-

sequently, the HTS-LF system was modified in order to improve the estimation of

the LF-model parameters and reduce speech artefacts. These improvements are listed

below:

• Iterative adaptive inverse filtering method which is used to obtain a more accu-

rate estimate of the DGVV signal than using pre-emphasis inverse filtering.

• Algorithm for detecting and correcting errors of the estimated LF-model param-

eters.

• Technique for adjusting the energy of the synthetic speech frames which are in

the neighbourhood of voicing transitions using the power parameter.

A final perceptual evaluation was conducted in order to evaluate the HTS-GPF and the

improved HTS-LF systems. The main results of this evaluation were:

• The HTS-GPF system performed as well as the baseline system which used the

STRAIGHT vocoder for analysis and synthesis.

• The HTS-LF system did not perform as well as the baseline system in terms of

speech naturalness, intelligibility and similarity to the original speaker’s voice.

• The baseline system (HTS-STRAIGHT) performed similarly to a modified ver-

sion of this synthesiser which used the GSS waveform generation technique

(FFT processing and OLA instead of STRAIGHT synthesis).

In this evaluation the improved HTS-LF system was expected to outperform the base-

line system, as the first HTS-LF version obtained positive results in the preliminary AB

perceptual evaluation (the baseline system used in the two experiments was similar).

The results indicate that the speech distortion in the HTS-LF system is most likely to

be related to the speech analysis and the statistical modelling of the speech parameters,

since the waveform generation technique in HTS-LF performed well when it was em-

ployed in the baseline system. The main difference between the speech analysis in the

HTS-LF and baseline systems is the estimation of the LF-model parameters by HTS-

LF. Possible causes of errors in the estimation of the LF-parameters are poor estimation

of the DGVV signal, limitations of the LF-model parameterisation technique, and er-

rors in the voiced/unvoiced classification of the speech frames. These LF-parameter

errors could affect the statistical modelling of the speech parameters and explain the



Chapter 10. Conclusions 307

poor speech quality of the HTS-LF system. However, speech distortion seemed to be

particularly prevalent in voicing transition regions, from informal evaluation of several

utterances used in the formal perceptual experiment. This effect could be explained

by a problem in modelling rapid spectral parameter variations at voicing transitions,

as the spectrum represents the vocal tract transfer function for voiced speech and the

spectral envelope for unvoiced speech.

In order to investigate the causes of speech distortion in the HTS-LF system, objec-

tive measurements were performed on sentences synthesised by the HTS-LF and HTS-

STRAIGHT systems (same sentences which were used in the perceptual evaluation).

These measurements represented acoustic differences between the speech synthesised

by the two systems. The results of this experiment showed that:

• Acoustic differences related to the energy and spectral envelope are significantly

higher in the voicing transition regions than in the speech regions away from the

voicing transitions in general.

• Acoustic differences related to the glottal source (spectral tilt, H1-H2, and SNR),

were generally higher in the voicing transition regions, with the exception of the

H1-H2 distance measure.

• Correlation between the mean values of the objective measurements calculated

for the test sentences and the perceptual test scores obtained by the respective

sentences was low.

Although correlation between the objective measurements and the perceptual speech

quality was not found, it is assumed that the speech distortion in voicing transition re-

gions is the most important factor of speech quality degradation in the HTS-LF system.

In the experiment conducted in this work, it was not possible to verify this assump-

tion, because the perceptual speech quality was evaluated for whole utterances. That

is, the perceptual test scores could not be used to calculate the correlation between

speech quality and the high acoustic differences observed in the voicing transition re-

gions. The results of the objective measurements give support to the hypothesis that

the mismatch between the spectral envelope and the vocal tract spectrum, at the voic-

ing transitions, have a negative effect on the statistical modelling of the spectrum and

that it is the most important factor causing speech distortion in the HTS-LF system.

The robustness of the LF-model parameter estimation method is considered to be a

less important factor causing speech distortion, because it is assumed that this factor is
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not related to the higher acoustic differences observed in the voicing transition regions.

One reason for this assumption is that the LF-model parameter errors are expected to

affect all voiced speech frames in a similar manner on average. In addition, the LF-

model parameters are strongly correlated with the H1-H2 parameter, but the results

of the H1-H2 distance measure were similar for voiced speech in voicing transition

regions and away from the voicing transitions.

The HTS-LF system uses the LF-parameters for training the HMMs and then the

system uses these parameters to generate the excitation of voiced speech. This system

allows the shape of the LF-model signal which is used to represent the excitation to be

directly controlled, in order to transform voice characteristics of the synthetic speech.

The HTS-GPF system does not use the LF-model parameters for training the HMMs.

However, it passes a stored LF-model signal through a glottal post-filter for generating

the excitation of voiced speech. This system also permits characteristics of the glottal

source to be modified for voice transformation. However, the control over the glottal

source characteristics is more limited than in the HTS-LF system, because the LF-

model signal is used by the HTS-GPF system for generating a spectrally flat excitation,

instead of being used directly to represent the excitation. The disadvantage of the HTS-

LF system is that the speech quality is not as good as that of the HTS-GPF system.

Nevertheless, there is scope for improvement of the HTS-LF system in future research.

10.3 Future Work

10.3.1 Synthetic Speech Quality

Two main factors which affect speech quality in state-of-the-art HMM-based speech

synthesisers are the over-smoothing effect of speech parameter trajectories generated

by the HMMs and the quality of the speech vocoder employed in these systems. Tech-

niques have been proposed to reduce the excessive parameter smoothing, e.g. using a

parameter generation algorithm considering global variance (Toda and Tokuda, 2007).

The speech vocoding methods have also been improved in order to obtain more nat-

ural speech. For example, recent versions of the HTS system using the STRAIGHT

vocoder produce significantly more natural speech than the traditional HTS system

which generates voiced speech by passing an impulse train through the MLSA filter.

Due to both factors, details of speech relevant for speech naturalness are somehow

lost. Therefore, improving the statistical models to capture those speech details might
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not be sufficient if those details are poorly represented by the speech parameters in

the first place. Similarly, using better parametric models of speech might not have a

significant impact on speech quality if the statistical models cannot correctly capture

the increase in parameter detail. In this work, the main focus was to improve the para-

metric model of speech in HMM-based speech synthesis. In particular, the HTS-LF

system proposed in this thesis represents voiced speech by passing the LF-model sig-

nal through the vocal tract filter. This system could be further improved in the future

in terms of statistical modelling, the parametric model of speech and robustness of the

speech parameter estimation methods.

10.3.1.1 Statistical Modelling

One of the findings in the work of this thesis was that the typical method to model

the spectral parameters in HMM-based speech synthesis is not appropriate for the case

of using the vocal tract and spectral envelope representations for voiced and unvoiced

speech, respectively. In the opinion of the author, the use of the speech model which

represents the vocal tract and the glottal source for voiced speech is the way forward to

further improve speech quality. However, it is necessary to develop better methods for

statistical modelling of the spectral parameters using this type of speech representation.

In Section 9.7.3 two different methods were suggested to better model the abrupt vari-

ations of the spectral parameters at voicing transitions, in the HTS-LF system. They

are compared in more detail in the next paragraphs.

One method for modelling rapid variations of the spectral parameters at voicing

transitions consists of modelling the spectral envelope and vocal tract parameters in

the same feature vector stream using a MSD-HMM. This model is defined by two

spaces which are associated with continuous probability density functions (pdfs) for

each state. The first space is used to model the spectral envelope for unvoiced speech

and the second space is used to model the vocal tract for voiced speech. For each

state, the probability of the first and second spaces are defined by the probability

of the speech segments associated with that state being unvoiced or voiced respec-

tively. These probabilities should be equal to those calculated to model F0 using a

MSD-HMM so that the F0 values (voicing classification) is consistent with the spec-

tral representation. When the probability of the unvoiced space is higher than a given

threshold than the pdfs associated with the spectral envelope are used to generate the

spectral parameters. Otherwise, the pdfs associated with the vocal tract representation

are used. This method using a MSD-HMM to model the spectrum permits to model
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the spectral envelope and the vocal tract independently and allows abrupt variations of

the spectral parameters to occur at voicing transitions. The spectra of the first speech

frames at a voicing transition are assumed to be independent from the spectra of the

last speech frames before the voicing transition. However, the parameter generation

algorithm uses dynamic feature constraints. Then, there is a problem in estimating the

correct ∆ and ∆2 parameters for the first speech frames after a voicing transition. This

problem also exists in modelling F0 using a MSD-HMM.

The other method which could be used to better model the spectral parameters

around voicing transitions consists of using two feature streams for the spectrum. One

stream is used to model the spectral envelope for both unvoiced and voiced speech, as

in the baseline HTS-STRAIGHT system described in Section 7.2. The second stream

models the spectral envelope and the vocal tract parameters for unvoiced and voiced

speech, respectively. This stream is similar to that used in the HTS-LF system to

model the spectrum with the difference that a smoothing operation is performed on

the spectral envelope of the unvoiced speech frames closest to a voicing transition, in

order to produce a smoother transition between the spectral envelope and the vocal

tract spectra. The stream which models the spectral envelope only is used to synthe-

sise unvoiced speech. This spectral envelope is correctly modelled, because it was not

transformed by any smoothing operation during analysis. The other stream is used to

synthesise voiced speech using the vocal tract parameters. The vocal tract parame-

ters are expected not to be affected by abrupt variations at voicing transitions, given

that the spectral envelope was transformed during analysis to obtain smooth parameter

variations at voicing transitions.

Both methods described in the previous paragraphs alternate the spectral parame-

ters between those representing the spectral envelope for unvoiced regions and those

representing the vocal tract for voiced regions. The method which uses a MSD-HMM

has the advantage that it uses a single stream for the spectrum whereas the other method

requires two spectrum streams. Also the second method depends on the performance

of a spectral smoothing operation. For these reasons, the method using a MSD-HMM

to model the spectrum might be a more effective and simple solution. A great limita-

tion with these two methods is that they depend on the accuracy of the voiced/unvoiced

speech classification. Voiced/unvoiced classification errors during analysis affect neg-

atively the statistical modelling of the F0 parameter. By imposing the constraint that

the spectrum is represented by the spectral envelope and the vocal tract during un-

voiced and voiced speech respectively, spectrum modelling is also affected by the
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voiced/unvoiced decision. The ideal solution would be to model the vocal tract transfer

function for both unvoiced and voiced speech. Such spectrum is expected to be suffi-

ciently smooth as the articulators of the vocal tract system move relatively slow during

speech production. However, it is very difficult to accurately estimate the vocal tract

transfer function for unvoiced speech. Future work for improving the speech model in

HMM-based speech synthesis is further discussed in the next section.

Future evaluations of the HTS-LF system using the previous methods could permit

to conclude if these methods overcome the speech distortion at voicing transitions.

The HTS-LF system could also be evaluated using voiced-only utterances in future

experiments, such as in the evaluation of the GSS method presented in Section 6.6.

The use of this type of sentences could reduce the effect of speech distortion in voicing

transitions and permit to better evaluate the contribution of glottal source modelling

for improving the quality of voiced speech.

10.3.1.2 Parametric Model of Speech

State-of-the-art speech vocoders, such as the STRAIGHT vocoder, produce speech

which sounds very close to human speech. However, HMM-based speech synthesisers

cannot synthesise speech which sounds as natural as vocoded speech. This degradation

in speech quality compared to vocoded speech is expected as statistical modelling can-

not capture all details of the speech signal, whereas such details can be reconstructed

reasonable well using high-quality speech vocoders.

In speech coding the main challenge is to reduce the amount of speech parameters

preserving the high-quality of the vocoded speech. The speech quality of an HMM-

based speech synthesiser depends not only on the quality of the speech vocoder used by

the system but also on the performance of the parametric representation of the speech

signal for statistical modelling. For example, STRAIGHT is a high-quality speech

vocoder which has been successfully used in HMM-based speech synthesis. One of

the advantages of STRAIGHT for statistical modelling compared with other popular

vocoders such as the LPC vocoder is that STRAIGHT extracts a smoother spectrogram.

This characteristic is important because parameter discontinuities have a negative ef-

fect on acoustic modelling using HMMs. However, even using high-quality speech

vocoders in HMM-based speech synthesis there is a clear gap between the quality

produced using this method and vocoded speech. One way to further improve speech

quality in HMM-based speech synthesis is to use a different speech representation than

the typical spectral envelope of speech.
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Another important aspect of the speech model in HMM-based speech synthesis is

the separation of the spectrum characteristics that differentiate the speech units, e.g.

phones, from the prosodic aspects. It is expected that this separation reduces the vari-

ability of the spectrum and consequently improves statistical modelling. This hypoth-

esis motivated the representation of speech by the vocal tract and the glottal source

components, in this work. Since the glottal source component is mainly related to

prosodic and voice quality characteristics of speech, it is desirable to model the glottal

source independently from the spectrum, i.e. the vocal tract transfer function. The

speech model representing the glottal source and vocal tract is expected to improve

the statistical modelling of the spectrum and prosody characteristics, compared to the

spectral envelope representation of speech. The vocal tract transfer function is assumed

to vary sufficiently slow to be well modelled by the HMMs. However, separating the

glottal source from the vocal tract is a more complex problem than computing the

spectral envelope of speech. Errors in vocal tract parameter estimation cause parame-

ter discontinuities which affect negatively the statistical modelling by HMMs. In the

opinion of the author, a direction to further improve speech quality in HMM-based

speech synthesis is to develop methods to more accurately estimate the vocal tract and

the glottal source components of speech. The ideal case is to represent speech us-

ing smooth and accurate parameter trajectories of the vocal tract transfer function and

the glottal source signal. The GSS analysis/synthesis method developed in this work

is a step forward in meeting this criteria as explained in Section 6.4.5. Basically, it

attenuates parameter discontinuities of the vocal tract by performing a smoothing op-

eration on the glottal source parameter trajectories and using STRAIGHT to compute

a smooth spectrogram. If it was possible to accurately estimate the vocal tract filter

during unvoiced sounds, speech could be represented using an uniform and continuous

model of speech. Such a model is attractive for statistical modelling by HMMs and

gives a close representation of the real speech production model.

The aperiodic component of speech is also important for speech naturalness. State-

of-the-art HMM-based speech synthesisers model the noise component of speech in the

frequency domain, e.g. using a MBE model or HNM. However, such models cannot

represent well effects of the noise in the time-domain such as noise bursts or aspiration

noise, which contribute to speech naturalness and are important to reproduce certain

aspects of voice quality, such as breathiness (associated with aspiration noise). By

using a sophisticated model of the noise in the time-domain, the quality of statistical

speech synthesis could be improved. In particular, for the HTS-LF system it would be
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desirable to use a time-domain model of the noise which could be combined with the

LF-model. For example, aspiration noise is usually modelled as an amplitude modu-

lated noise signal with its energy concentrated in the open phase of the glottal cycle.

Therefore, aspiration noise could be combined with the LF-model signal by adding

them pitch-syncronously and by using the glottal pulse for performing the amplitude

modulation of the noise.

10.3.1.3 Hybrid Unit-selection/Statistical Speech Synthesis

The speech parameter trajectories generated by HMM-based speech synthesis can

also be used to select the natural speech units to concatenate using the unit-selection

method. The results of the evaluations conducted in the recent Blizzard Challenge

2010 (King and Karaiskos, 2010) indicate that this hybrid statistical/unit-selection ap-

proach can produce more natural speech than traditional unit-selection and HMM-

based speech synthesis. The typical disadvantages of this hybrid method is the high

computational complexity and memory requirements, which are not appropriate for

several applications which require a low memory footprint. This method also provides

low parametric flexibility for voice transformation. These reasons help to explain the

high interest in improving the speech quality in HMM-based speech synthesis. That

is, this method is suitable for a wider type of applications than unit-selection or hybrid

statistical/unit-selection speech synthesis.

10.3.2 Applications

HMM-based speech synthesis using an acoustic glottal source model can be used for

a wide range of applications. The following list indicates a set of topics where this

synthesis method could be used:

• Voice transformation.

• Study of correlation between voice quality and glottal source parameters.

• Study of correlation between glottal source and prosody.

• Similarity to the speaker’s voice (speaker’s voice adaptation).

• Application to languages in which good glottal source modelling is considered

to be important, such as Hindi.
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10.3.2.1 Voice transformation

The GPF method can be used to transform voice characteristics of the synthetic speech,

as explained in Section 6.3.4. Basically, it consists of using a different LF-model signal

as input to the glottal post-filter than the stored LF-model waveform. In this work, an

informal experiment was conducted in order to transform the voice quality of speech

synthesised using the HTS-GPF system (which was described in Section 8.4.1.6). This

experiment is described in Appendix C.

The HMM-based speech synthesiser using glottal source modelling which was de-

veloped during this thesis, the HTS-LF system, permits voice aspects of the synthetic

speech to be transformed by modifying the LF-model parameters which are generated

by the HMMs. This system allows the properties of the LF-model signal which is

used to generate the excitation of voiced speech to be directly controlled, unlike the

HTS-GPF system.

Formal perceptual experiments could be conducted in the future in order to evalu-

ate the performance of the HTS-LF and the HTS-GPF systems in reproducing specific

voice qualities. For example, the voice quality correlates of the LF-model parame-

ters described in Section 5.3.2 could be used to synthesise speech with different voice

qualities, e.g. breathy and tense.

In HMM-based speech synthesis, the parameters of the statistical models can be in-

terpolated or adapted for transforming the voice characteristics of the synthetic speech.

This transformation can be performed using a small amount of speech spoken with the

target voice, e.g. the voice of a different speaker. However, the characteristics of the

glottal source that are correlated with voice quality are typically incorporated into the

spectral envelope and they might not be correctly transformed because the spectral

envelope represents other speech characteristics in addition to the type of voice. The

HTS-LF system has the advantage that these statistical parameter transformations can

be performed independently for the glottal source and the spectral parameters, since

they are modelled independently. Experiments could be conducted in the future in or-

der to evaluate the performance of the HTS-LF system to transform the voice of the

synthetic speech using the adaptation or interpolation techniques.

Also, voice transformation using the HTS-LF and the HTS-GPF systems could be

improved by modelling other speech effects which are important to voice quality, e.g.

aspiration noise and jitter.
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10.3.2.2 Synthesis of Expressive Speech

The parametric flexibility to control glottal source aspects in the HMM-based speech

synthesisers using the LF-model can also be used to synthesise expressive speech. For

example, the techniques for voice transformation indicated in the previous section can

also be applied to synthesis of speech with different emotions, or to produce certain

speech effects (such as breathiness) which are difficult to synthesise without modelling

glottal source parameters.

10.3.2.3 Application to Different Languages

In most languages, people control the movement of the glottis to produce voiced

sounds with different pitches (determined by the rate of vibration of the vocal folds)

and for the realisation of voiced and voiceless phonation. For examples, vowels are

voiced sounds with a regular periodic pattern while unvoiced stop consonants are char-

acterised by a voiceless phonation, such as the phone /k/ in English. However, the

non-modal phonation, e.g. breathy or creaky, is also important to phonetic contrast

in several languages. For example, in Hindi the contrast between breathy and modal

voice is common in obstruents and nasals (Gordon and Ladefoged, 2001). The breathy

voice is characterised by vocal folds that are highly abducted and by turbulent air-

flow through the glottis, as described in Section 5.3.2. The contrast between creaky

and modal voice is also common in many languages (Gordon and Ladefoged, 2001).

Creaky voice is commonly used as a marker of prosodic boundaries, such as in Finnish

and English to mark vowel-initial words (Gordon and Ladefoged, 2001). In contrast

to breathy voice, creaky voice is typically associated with high adduction of the vo-

cal folds. More details about the characteristics of creaky phonation can be found in

Section 5.3.2.

The contrast between modal voice and other voice qualities which is relevant in

several languages could be more accurately modelled by a HMM-based speech syn-

thesiser using glottal source modelling, such as the HTS-LF system. In this thesis, a

Hindi voice was built using the HTS-STRAIGHT system (HMM-based speech synthe-

siser using STRAIGHT) which was described in Section 7.2. An example of speech

synthesised with this Hindi voice can be found at:

http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/demo.html

As future work, the Hindi voice could also be built using the HTS-LF system and

evaluated against the HTS-STRAIGHT system, as the HTS-LF system is expected to
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model the contrast between modal and breathy voice more accurately.

10.3.2.4 Correlation between Glottal Source Parameters and Prosody

Voice source dynamics are very important to prosodic aspects of speech, such as

stressed syllables and intonation. However, the study of the correlations between

glottal source parameters and speech prosody is usually performed on isolated speech

sounds, such as vowels, to facilitate the analysis and to obtain more accurate results.

The HTS-LF system could be used to extend the study of the prosodic correlates of

the glottal source to a wide range of acoustic realisations and to study supra-segmental

prosodic characteristics, by analysing the trajectories generated by the HMMs from

input test sentences.

10.4 Final Remarks

In this work, two different HMM-based speech synthesisers were developed which in-

corporate an acoustic voice source model, the LF-model. One is the HTS-GPF system

which represents the voiced excitation by passing the LF-model through a glottal post-

filter and the spectrum by the spectral envelope of speech. The other is the HTS-LF

system which uses the GSS method proposed in this thesis to estimate both the LF-

model and vocal tract parameters. This system uses these parameters for training the

HMMs and for generation of voiced speech in which the excitation is represented by

the LF-model. Both the HTS-GPF and HTS-LF systems are competitive to a standard

HMM-based speech synthesiser which uses the STRAIGHT vocoder.

The results of initial experiments conducted in this work to compare the LF-model

to the traditional impulse train excitation were positive and showed that using the LF-

model for speech synthesis could improve the speech quality. However, informal anal-

ysis of speech synthesised using the HTS-LF system indicated that there were some

problems in this system which caused speech degradation. Even after performing im-

provements to the HTS-LF system in order to solve these problems, this system was

not as successful as expected in a perceptual speech quality evaluation which was con-

ducted in this work. Possible causes of speech distortion in the HTS-LF system were

then investigated by conducting an objective measurement experiment. From the re-

sults of this experiment promising ideas to further improve the HTS-LF system have

been proposed.
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A great advantage of the HTS-LF and HTS-GPF systems compared to state-of-the-

art HMM-based speech synthesisers is that they provide control over acoustic glottal

parameters (the LF-model parameters). This is a valuable characteristic, especially

because glottal parameters can be transformed for more correctly reproducing different

voice qualities and synthesising more expressive speech, such as speech with vocal

emotions.

This thesis proposed analysis/synthesis methods to incorporate an acoustic glottal

source model into a HMM-based speech synthesiser. It also identified and investigated

several difficulties encountered in developing a HMM-based speech synthesiser using

glottal source modelling. Also, the speech synthesisers using the LF-model which

were developed in this work can be useful in a wide variety of applications, which

motivate future work. The expectations for glottal source modelling in HMM-based

speech synthesis are high and this thesis contributed to the study of important aspects

in this method. Moreover, we firmly believe the results of this work are very promising

in this line of research.



Appendix A

Results of the Evaluation Based on the

Blizzard Test Setup

A.1 SIM - Similarity

Median MAD Mean SD

full arctic full arctic full arctic full arctic

Natural 5 5 0.0 0.0 4.8 4.9 0.57 0.44

HTS-STRAIGHT 3 3 1.5 1.5 3.0 2.6 1.03 1.13

HTS-GPF 3 3 1.5 1.5 2.9 2.7 0.93 1.10

HTS-FFT 3 3 1.5 1.5 2.7 2.6 1.02 1.12

HTS-STR-PR 3 2 1.5 1.5 2.8 2.3 1.02 1.06

HTS-LF 2 2 1.5 1.5 2.3 2.0 0.94 0.99

HTS-LF-PR 2 2 1.5 1.5 2.3 2.0 1.01 0.98

Table A.1: Similarity scores for the full male voice and ARCTIC subset of the male

voice. Results are given for the different HMM-based speech synthesisers in terms of

the median, median absolute deviation (MAD), mean, and standard deviation (SD).
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Median MAD Mean SD

Natural 5 0.0 4.8 0.56

HTS-STRAIGHT 3 1.5 3.0 1.05

HTS-GPF 3 0.0 3.0 0.86

HTS-FFT 3 1.5 3.1 0.93

HTS-STR-PR 2.5 0.75 2.6 0.98

HTS-LF 2 1.5 2.1 0.87

HTS-LF-PR 2 1.5 2.0 1.06

Table A.2: Similarity scores for the female voice. Results are given for the different

HMM-based speech synthesisers in terms of the median, median absolute deviation

(MAD), mean, and standard deviation (SD).

S1 S2 S3 S4 S5

HTS-STRAIGHT (S1)

HTS-GPF (S2) 4.45E-1

HTS-FFT (S3) 1.11E-2 3.09E-2

HTS-STR-PR (S4) 9.77E-2 3.24E-1 1.85E-1

HTS-LF (S5) 3.81E-8 8.03E-8 1.06E-3 6.04E-6

HTS-LF-PR (S6) 6.38E-9 1.84E-7 2.18E-3 1.82E-5 9.59E-1

Table A.3: P− values of similarity scores calculated for the HMM-based speech syn-

thesisers, for the full male voice.
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S1 S2 S3 S4 S5

HTS-STRAIGHT (S1)

HTS-GPF (S2) 5E-1

HTS-FFT (S3) 8.5E-1 4.66E-1

HTS-STR-PR (S4) 6.44E-2 9.85E-3 3.61E-2

HTS-LF (S5) 1.20E-5 2.23E-7 4.40E-7 4.13E-3

HTS-LF-PR (S6) 2.05E-5 1.15E-6 1.30E-6 8.12E-3 6.77E-1

Table A.4: P− values of similarity scores calculated for the HMM-based speech syn-

thesisers, for the ARCTIC subset of the male voice.

S1 S2 S3 S4 S5

HTS-STRAIGHT (S1)

HTS-GPF (S2) 8.56E-1

HTS-FFT (S3) 3.58E-1 3.06E-1

HTS-STR-PR (S4) 7.08E-3 2.77E-3 6.51E-4

HTS-LF (S5) 2.22E-8 9.68E-8 4.19E-9 8.78E-6

HTS-LF-PR (S6) 2.84E-7 2.12E-7 3.83E-9 2.53E-5 6.20E-1

Table A.5: P− values of similarity scores calculated for the HMM-based speech syn-

thesisers, for the female voice.
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A.2 MOS - Naturalness

Median MAD Mean SD

full arctic full arctic full arctic full arctic

Natural 5 5 0.0 0.0 4.9 4.9 0.38 0.46

HTS-STRAIGHT 3 3 1.5 1.5 3.2 2.9 1.03 1.06

HTS-GPF 3 3 1.5 1.5 3.0 2.6 1.01 1.01

HTS-FFT 3 3 1.5 1.5 2.8 2.7 1.05 1.04

HTS-STR-PR 3 3 1.5 1.5 2.7 2.5 0.97 0.98

HTS-LF 2 2 1.5 1.5 2.2 1.9 0.96 0.95

HTS-LF-PR 2 1 1.5 0.0 2.0 1.7 0.97 0.90

Table A.6: MOS scores obtained for the HMM-based speech synthesisers, for the full

male voice and the ARCTIC subset of the male voice. Results are given in terms of the

median, median absolute deviation (MAD), mean, and standard deviation (SD).
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Median MAD Mean SD

Natural 5 0.0 4.9 0.26

HTS-STRAIGHT 3 1.5 3.1 0.94

HTS-GPF 3 1.5 2.9 0.91

HTS-FFT 3 1.5 3.0 0.95

HTS-STR-PR 3 1.5 2.6 0.97

HTS-LF 2 1.5 1.7 0.78

HTS-LF-PR 2 1.5 1.6 0.76

Table A.7: MOS scores obtained for the HMM-based speech synthesisers, for the fe-

male voice. Results are given in terms of the median, median absolute deviation (MAD),

mean, and standard deviation (SD).

S1 S2 S3 S4 S5

HTS-STRAIGHT (S1)

HTS-GPF (S2) 4.79E-3

HTS-FFT (S3) 1.2E-7 2.46E-2

HTS-STR-PR (S4) 1.54E-10 2.22E-3 3.27E-1

HTS-LF (S5) 3.46E-25 1.12E-20 5.33E-15 5.25E-10

HTS-LF-PR (S6) 4.15E-30 1.29E-23 2.49E-17 2.07E-17 1.14E-2

Table A.8: P− values of MOS scores calculated for the HMM-based speech synthesis-

ers, for the full male voice.
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S1 S2 S3 S4 S5

HTS-STRAIGHT (S1)

HTS-GPF (S2) 1.04E-3

HTS-FFT (S3) 2.75E-2 2.52E-1

HTS-STR-PR (S4) 9.50E-7 1.13E-1 9.11E-3

HTS-LF (S5) 6.13E-27 7.26E-18 9.86E-21 2.32E-14

HTS-LF-PR (S6) 5.63E-34 1.62E-26 1.18E-28 4.33E-23 1.04E-3

Table A.9: P− values of MOS scores calculated for the HMM-based speech synthesis-

ers, for the ARCTIC subset of the male voice.

S1 S2 S3 S4 S5

HTS-STRAIGHT (S1)

HTS-GPF (S2) 5.33E-4

HTS-FFT (S3) 6.53E-3 4.44E-1

HTS-STR-PR (S4) 2.53E-10 1.57E-4 5.71E-6

HTS-LF (S5) 1.93E-40 5.22E-33 9.04E-34 5.44E-27

HTS-LF-PR (S6) 3.37E-39 1.18E-35 4.10E-36 1.79E-30 1.13E-1

Table A.10: P− values of MOS scores calculated for the HMM-based speech synthe-

sisers, for the female voice.
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A.3 ABX - Naturalness

S1 S2 S3 S4 S5 S6 S7

Natural (S1) 97.7 97.6 97.5 95.2 97.5 97.6

HTS-STRAIGHT (S2) 2.3 15.0 7.5 34.1 69.8 75

HTS-GPF (S3) 2.4 5.0 9.5 26.8 70.7 72.1

HTS-FFT (S4) 2.5 7.5 9.5 11.9 52.4 54.8

HTS-STR-PR (S5) 4.8 2.4 4.9 2.4 51.2 78.0

HTS-LF (S6) 2.5 9.3 9.8 11.9 14.6 12.2

HTS-LF-PR (S7) 2.4 12.5 2.3 14.3 4.9 2.4

Table A.11: Preference rates (in percentage) from ABX comparisons obtained for the

HMM-based speech synthesisers, for the full male voice.

S1 S2 S3 S4 S5 S6 S7

Natural (S1) 97.7 97.6 95.0 92.9 97.5 100

HTS-STRAIGHT (S2) 0.0 7.5 12.5 22.0 53.5 57.5

HTS-GPF (S3) 2.4 10.0 4.8 9.8 48.8 62.8

HTS-FFT (S4) 5.0 7.5 2.4 4.8 50.0 73.8

HTS-STR-PR (S5) 4.8 2.4 4.9 4.8 63.4 61.0

HTS-LF (S6) 2.5 18.6 22.0 7.1 9.8 2.4

HTS-LF-PR (S7) 0.0 7.5 16.3 9.5 9.8 0.0

Table A.12: Preference rates (in percentage) from ABX comparisons obtained for the

HMM-based speech synthesisers, for the ARCTIC subset of the male voice.
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S1 S2 S3 S4 S5 S6 S7

Natural (S1) 100 96.8 96.7 100 100 100

HTS-STRAIGHT (S2) 0.0 26.7 16.7 19.4 81.3 93.3

HTS-GPF (S3) 0.0 3.3 0.0 19.4 80.6 65.6

HTS-FFT (S4) 3.3 13.3 12.9 29.0 59.4 93.8

HTS-STR-PR (S5) 0.0 0.0 19.4 0.0 77.4 71.0

HTS-LF (S6) 0.0 0.0 0.0 12.5 12.9 13.3

HTS-LF-PR (S7) 0.0 0.0 9.4 0.0 3.2 10.0

Table A.13: Preference rates (in percentage) from ABX comparisons obtained for the

HMM-based speech synthesisers, for the female voice.

S1 S2 S3 S4 S5 S6

Natural (S1)

HTS-STRAIGHT (S2) 5.1E-12

HTS-GPF (S3) 3.8E-11 6.4E-1

HTS-FFT (S4) 5.1E-12 1.0 1.0

HTS-STR-PR (S5) 4.1E-10 6E-2 2.1E-1 6.4E-1

HTS-LF (S6) 7.5E-11 4.2E-5 1.1E-4 7.9E-3 2.8E-2

HTS-LF-PR (S7) 3.8E-11 4.2E-5 1.6E-6 7.9E-3 7.8E-7 5.3E-1

Table A.14: P− values of preference rates calculated for the HMM-based speech syn-

thesisers, for the full male voice.
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S1 S2 S3 S4 S5 S6

Natural (S1)

HTS-STRAIGHT (S2) 2.0E-8

HTS-GPF (S3) 1.5E-9 1.0

HTS-FFT (S4) 1.1E-13 8.8E-1 1.0

HTS-STR-PR (S5) 7.5E-11 2.1E-1 7.6E-1 1.0

HTS-LF (S6) 3.8E-11 3.2E-2 1.2E-1 7.9E-3 7.6E-1

HTS-LF-PR (S7) 9.1E-13 2.2E-3 1.9E-3 1.5E-5 1.5E-3 1.0

Table A.15: P− values of preference rates calculated for the HMM-based speech syn-

thesisers, for the ARCTIC subset of the male voice.

S1 S2 S3 S4 S5 S6

Natural (S1)

HTS-STRAIGHT (S2) 2.3E-10

HTS-GPF (S3) 9.3E-10 2.0E-1

HTS-FFT (S4) 5.8E-8 8.6E-1 4.7E-1

HTS-STR-PR (S5) 9.3E-10 2.8E-1 1.0 1.5E-1

HTS-LF (S6) 1.9E-9 2.6E-6 4.7E-6 7.0E-3 8.8E-4

HTS-LF-PR (S7) 9.3E-10 5.8E-8 2.1E-3 1.5E-8 1.9E-4 8.6E-1

Table A.16: P− values of preference rates calculated for the HMM-based speech syn-

thesisers, for the female voice.
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A.4 WER - Intelligibility

Mean SD

full arctic fem. full arctic fem.

Natural 1.5 2.4 - 5.6 7.9 -

HTS-STRAIGHT 4.3 29.5 11.4 8.9 17.9 15

HTS-GPF 6.8 27.9 10.4 8.7 17.4 14

HTS-FFT 6.1 28.8 8.9 9.8 17.1 12

HTS-STR-PR 7.0 28.2 8.4 10.7 18.7 11

HTS-LF 10.0 45.4 21.0 13.4 19.1 18

HTS-LF-PR 11.1 45.1 21.9 13.1 20.2 19

Table A.17: Mean and standard deviation (SD) of the word error rates (in percentage)

obtained for the HMM-based speech synthesisers, for the three voices.
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S1 S2 S3 S4 S5 S6

Natural (S1)

HTS-STRAIGHT (S2) 1.1E-3

HTS-GPF (S3) 2.7E-6 1.4E-1

HTS-FFT (S4) 9.9E-6 8.6E-2 5.8E-1

HTS-STR-PR (S5) 3.4E-6 7.0E-2 9.1E-1 7.8E-1

HTS-LF (S6) 8.8E-9 2.0E-4 10.0E-3 2.2E-3 2.9E-2

HTS-LF-PR (S7) 7.1E-10 1.3E-5 3.4E-3 1.2E-3 8.2E-3 9.0E-1

Table A.18: P−values of the WER calculated for the HMM-based speech synthesisers,

for the full male voice.



Appendix B

Objective Measurements

MOS SIM SU

VT All VT All VT All

Positive Energy Disc. -0.03 0.016 0.22 0.21 -0.32 -0.23

Negative Energy Disc. 0.01 0.054 -0.01 0.03 0.12 0.05

DE of Energy 0.04 0.017 0.11 0.44 0.05 0.25

DE of mel-spec. coef. 0.13 0.054 0.26 0.23 0.32 0.47

DE of ∆ mel-spec. coef. 0.02 -0.083 0.17 0.06 -0.04 0.28

DKL of FFT coef. 0.12 0.061 0.27 0.22 0.13 0.48

DE of R14 0.06 -0.027 0.17 0.22 0.39 0.49

DE of R24 0.14 -0.003 0.15 0.21 0.23 0.44

DE of H1-H2 -0.11 -0.004 -0.02 0.18 0.05 0.49

DE of SNR -0.23 -0.079 0.07 0.27 0.12 0.21

Table B.1: Correlation coefficients between the objective measurements and the per-

ceptual scores, calculated for the parts of the test sentences in voicing transition regions

(VT) and for the whole test sentences (All).
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Appendix C

Voice Transformation Experiment

Using the HTS-GPF System

In the work of this thesis, an informal experiment was conducted in order to investigate

the effect of modifying the parameters of the LF-model used by the HTS-GPF synthe-

siser (which was described in Section 8.4.1.6) on the synthetic speech signal generated

by this system.

A small set of sentences were synthesised using the HTS-GPF system, for different

shapes of the input LF-model waveform. Speech synthesised using the reference LF-

model signal (stored LF-model signal), was considered to have neutral voice quality.

This is the voice quality which is obtained by synthesising speech using a spectrally flat

excitation in the HTS-GPF system, without performing any transformation to the ex-

citation or the synthesis filter (which represents the spectral envelope). Then, the sen-

tences were also synthesised with different voice characteristics by varying one of the

dimensionless parameters of the LF-model: open quotient (OQ), speed quotient (SQ)

and return quotient (RQ). These parameters were described in Section 5.2.3 and their

voice quality correlates were explained in Section 5.3.2. Each parameter was decreased

and increased by different degrees. For example, the OQ was multiplied by scale fac-

tors, which ranged from 0.2 to 1.8. Examples of the synthetic speech samples are

accessible at http://homepages.inf.ed.ac.uk/jscabral/hts-gpf.html. The

variation of voice characteristics with the degree of transformation of each LF-model

parameter can be clearly perceived by listening to the synthetic speech signals. More-

over, each parameter appears to have a different effect on the voice quality. This result

was expected, as the variation of each parameter has a different effect on the spectrum

of the LF-model (Doval and d’Alessandro, 1999). The voice quality transformations
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also seemed not to produce speech artefacts, even for relatively large degrees of trans-

formation of the LF-parameters. Further experiments need to be conducted for finding

the ranges of the LF-parameter variations which do not produce distortion in the syn-

thetic speech.
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Kawahara, H., Katayose, H., Cheveigné, A., and Patterson, R. D. (1999a). Fixed point

analysis of frequency to instantaneous frequency mapping for accurate estimation

of F0 and periodicity. In Proc. of EUROSPEECH, Budapest, Hungary.

Kawahara, H., Masuda-Katsuse, I., and Cheveigné, A. (1999b). Restructuring
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