A RESTRUCTURING HECHANISHN

FOR A CODASYL-TYPE DATA BASE

JAMES CARDEN

Ph.D.

University of Edinburgh
May 1983

Data Base ¥anaoemert Systems are obsarved to operate in
distinct epvironRents within organisations. These
environments are classified as t*Centralised' and *Devolved!?
and dJdifferent types of data base management systems are
considered as more apprropriate to each. The centralised data
base is closely associated with an evolutionary model of the

ntire organisation vhereas each devolved data base is a
tool used by an individval or group to analyse information
necessary to that person's function within the organisation.

The requirements for a Restructuring Mechanism to allow a
centralised*data base to be altered in structure to reflect
alterations in the organisation and enhancements to the
nodel) are identified. Strategies to aliow such a mechanisn
to operate concurrently with normal application progranm
access to the data base are postulated. In particular Open
Dynamic and Closed Dynamic restructuring techniques are
described. RAlthough nro =vidence has been found of a siailar
restructuring mechanisa in published research or as
implemented in a proprietary data base management system its
relevance to other tyres of data base change which have been
described elsewhere are considered.

Sixteen primitive restructuring tasks are described 1in
3detail and strategies for their execution are outlined.
Application programs are classified as transparent or opaque
to each task. The effect of each task on the routines
processing data base access by application programs is also
examined .

To illustrate the effectiveness of the restructuring tasks
an implementation of a CODASYL-type Data Base HMapagement
Svstem has been developed on the Fdinburgh NMulti Access
Svstem (EMAS). The imrlementation is then used to run
avplication programs operatirg on a dJdata base modelling a
British Bark. Various types of restructurings may be carried
out on the data base using Open or Closed Dynamic
strategies.

Conclusions are drawn that a Restructuring Mechanism 1is an
essential ingredient for a Data 3Base Management System to
211ow the data base to reflect the ever-chanaing structure
of an organisatiomal data model. The mechanism proposed in
the thesis 1is considered to be functional, ccnverient and
efficient for the population of wusers it 1is designed . to
serve - the data processing professionals.

Ackrowledaements.

I would like to thanrk my wifc Carol and my children
Steven, Neil ard Claire for survivirg the rival attentions
of ay books and computer terminal for so many evenings over
the last seven years. :

Thanks are also due to my supervisors Dr. Geoff Stacey and
Professor Sidney Michaelson.

Finally, I would 1like to thank my employers, the Bank of
Scotland, for spomsoring me in this vork.

Declaratiorn,

This thesis has been composed by me.

It describes my own work carried out between
May 1976 and HMay 1983.

CAAPTER 1

CHAPTER 2

CHARPTER 3

CHAPTER 4

ndex.
IRTEODUCTION.

The Evolution of Data Base Management Systenms.
Definition of Data Base. ’
Objectives of the Thesis.

DATA ANALYSIS AND DATA NODELLING.

Existing Modelling Techniques.

The Three/Four Schema Data Model.

Preparation of the Data Model.

Manifestations of the Data Hodel.

The Data Base Management System Model.

Classifications of D8MS Users.

Classifications of DBMS Nodels.

Centralised and Devolved Data Bases.

Evaluation of the Data Base Management
System Nodels.

CUREBENT IMPLEMENTATIONS OF DATA BASE
BANAGEMENT SYSTEMS.

The Hierarchical Dhata Model.

The Network Data Model.

The Relational Data Model.

The Intermal Structure of Data Base
Management Systems.

RESTRUCTURING A DATA BASE.

Changes to Computer Systenms.

Difficulties Associated with Changing Computer
Applications.

Change as seen by Data Base Management Systems.

Restructuring a Devolved Data Base.

Restructuring a Centralised Data Base.

Restructuring Strategies.

Principles of Restructuring.

Objectives for a Restructuring Mechanism.

CH2PTPR 5 — OTHFR APPROACHYS TO DATA BASF CHANGE.

The Spectrum of Data Base Change.

Logical Changes and Structural Changes.
Application Program Stability.

Changes to Physical rather than Logical Structure.
Restructuring Techniques.

Pacilities for Change in Existing Implementations.

CARPTER 6 — A PROPOSED RESTRUCTURING MECHANISM FOR A
CODASYL DATA BASE.

Structure of the Proposed Restructuring Mechanissa.
Open and Closed Restructuring Strategies.
2pplication Program Interface.

Fmulation of Previous Schema Versions.

CHAPTER 7 - THE PRYRITIVE RESTRUCTURING TASKS.

Introduction.
Syntactic Considerations.
Subsidiary Control of Restructuring.
Conditional Execution of Tasks and
Concurrent Tasks.
Addition of a HNew Data Item to an
Existing Record.
Deletion of a Redundant Data Item from an
Existing Record.
Amendment to the Pormat of a Data Item.
Allocation of Storage to a Source or KResult
Data Iten.
Amendment to the Value Range of a Data Itenm.
Intra-record Structure Amendment.
Migration of a Data Item between Records.
Adding a New Record to the Data Base.
Splitting Data Items from an Existing
Record to form a Wew Record.
Deletion of a Redundant Record.
Amerdmert to a Record Key.
Addition of a New Set to the Data Base.
Deletion of a Redundant Set.
Addition of a New Member Record to an Existing Set.
Removal of a M¥ember Record from an Existing Set.
Amendment to the Order of a Set.

2]
i
-
v
3
!
=
o
|

CHAPTER 9 -

APPENDIX 1

APPENDIX 2
APPENDIX 3

APPENDIX 4

AN IMPLFMENTATION OF A DATE BASE MANAGEZMENT
SYSTEM SUPPORTING RESTRUCTURING.

Introduction.

System Structure.

Interaction between Application Programs arnd
Restructuring Tasks.

The Data Manipulation Language Commands.

The Bank Data Base.

Data Base Programs.

The Restructuring Tasks.

Comparison Between Restructuring Strategies.

SUMMARY AND CORCLUSIONS.

Summary.

The Functionality of the Restructuring Mechanism.

The Convenience of the Restructuring Mechanism.
The Efficiercy of the Restructuring Mechanism.
The Future of Data Base Management Systens.

Future Developments of the Work Recorded Here.

Structure of the Implementation of a Data Base
Management Systen.

The Bank Data Base and Application Progranms.
The Restructuring Tasks.

Consumption of Computer Resources by the
EHAS Implementation.

Chapter 1_-_Introduction.

The Rvolution of Data Base Management Systenmns.

Data processing made a dramatic impact on the operational
procedures of industry and commerce during the 1950's and
1960's. Using fairly primitive techniques of data capture

“
on urit record devices, computer systems were implemented to
update master files of data held on magnetic tape by
processing against the captured iransactions. Suitable
control ard statistical reports were printed and distributed
to appropriate users within the organisation.

The art of Systems Analysis, as it came to be known, was a
new professional discipline which came into use within large
organisations. The functions and procedures used by the
organisation to achieve its commercial objectives would be
examined in detail with a view to devising even better
methods by performing the same or superior tasks using the
new technology. The radical approach of the
computer-oriented systenms analysts (whose training
encouraged them to have no preconceptions as to the value of
even the most firmly established practices) in many cases
led not only to the introduction of well defined érocedures
but also to the remﬁval of unnecessary operations. A wideﬁ
variety of the routine functions within large organisations
(at that time only the largest could invest in the expensive
computer ecquipment) were made more efficient in this way but
by the start of the 1970s the proliferation of such
comnputer -based systems within organisations began to reveal

. some of the limitations »f this piecemeal approach.

Although the individval computer systems normally served
their oricginal purpose admirably, they tended to be rather
inflexible when modified to serve other functions. Eyén if
it were possible to design a system which was flexible
enough to handle all future requirements it is unlikely that

even the most innovative Systems Analyst would have the

h)

precognition to foresee all eventualities.

The development of discrete systems in isolation from each
other also often led to the same déta being maintained in
different ways and this in turn inevitably led to
inconsistencies between the output of different systems
which should otherwise have been compatible.

Having identified the problems, the data processing
community has searched for solutions in two general
directions:

The computer programs themselves have been recognised as
contributing to the inflexibility by being difficult to
maintain by anyone except the original author. Particularly
since computers have become faster and cheaper, and
consequently program efficiency less of a constraint, this
situation has been remedied by standardising programming
practice to make programs more comprehensible and less error
prone. Various metﬂodologies of Structured Programming have
been advocated and programming languages have been refined
over the years.

Programs are not the only cause of system inflexibility and
it has long been a goal to migrate from a set of disjoint
computer systems to an integrated set of systems using the

organisation's data as a common resource.

Orpce again various methodologies of Structured Data have
been advocated and techniques have been developed for shared
access to the data. The relative reduction in cost and
increased storage capacity of direct ‘access devices have
contributed significantly to this developument. Although

magnetic discs have been available for many years their

.

relatively high cost in comparison to magnetic tape led
computer installations to use them prudently. Typically they
would be used for specialised purpéses such as operating
system software, program libraries and sort workfiles with
the storage of application data being restricted to the use
of small 'index*' files. In many cases the use of the medium
has now expanded to such an extent that 1t is common to
consider holding ‘'master' files of many hundreds of millions
of characters on disc. Tape is often considered more as an
archival medium. The inherent ability of disc to provide
access to particular data records without having to examine
the other records held on file made the medium particularly
suitable for data capture and retrieval applications using
on-line remote terminals. Such systems often have advantages
over batch processing systems (because of the absence of
input documents and printed reports) and have risen to

proninence in recent years.

Definition_of Data BRase.

The view of an organisation's data as a shared resource has
become kxnown to the lay community of computer users as the
organisation's Data Base. Although this definition of 'Data

Base' may scem rather imprecise it is difficult to improve

on it. Indeed the term is nov synonymous with the terms
"£ile®* and 'collection of files'.

Data processing practitioners have allocated more specific
objectives to the term which have implied a more narrow
definition but differences 1in emphasis on individual

objectives have led in the past to seemingly different

*

definitions.

Rather than attempting to formulate a precise
definition we will adopt an empirical approach by

considering four generally agreed objectives of a Data Base.

1. To remove the difficulties of fragmented data caused by
the development of ad-hoc computer systenms.

This 1implies that some nmechanism for a single central
description of the data must exist and that this description
is available either explicitly or implicitly for all
applications to use vwhen necessary. As a by-product it is
implied that data bases provide centralised capabilities for
countrol of quality and integrity of data while maintaining

suitable privacy constraints (FPRY & SIBLEY).

2. To provide a simple yet powerful mechanism to allow
applications to interact with the data base. In particular
to remove the Dbottleneck imposed by traditional systems in
their inability to provide swift answers to unforeseen

enguiries. (CODD & DATE).

3. To 1isolate the programs interacting with the database

from technological 1inovation in the form of improved data
storage devices with different characteristics, different
access methods and different techniques for linking data to
reflect changing access patterns. This objective is termed

providing resilience to reorganisation.

*

4. To isolate the programs interacting with the data base
from changes in the Jdescription of the actual elements
making up that data base and of chanées in the relationships
between these elements. Such changes are seen as inevitable
as a result of correspording changes in the organisation.
This objective is termed providing resilience to

restructuring.

The last two of these objectives have been particularly
confused in the past since they have been described under
the general heading of Data Independence. Some authors have
attempted to bring out the distinction by using the terﬁs
Physical Data Independence and Logical Data Independence

(FRY & SIBLEY) (LEFKOVITZ).

Some of these objectives have been addressed outwith the
area normally considéred to be the province of Data Base:
Many organisations have examined the interrelationships
between their computer systems and attempted to rationalise
them by imposing rigid internal standards on the way in
vhich programs are permitted to interact with data on file.
Technigues for the tandardisation of methods of file

description have been introduced. In particular these are of

Value during the system design process to enable analysts to
ascertain whether the data they wish to use is already
collected by some other systen.

Disc file access methods have been developed which allow
concurrent access by more than one application and these are
now fairly common (eg IB¥-VSAM).

Operati;g systems have relegated the definition of device
addresses, disc and tape serial numbers, record and block
length and other device-dependent information to Job Control
Language and Systems Catalogues.

Program libraries have become sophisticated, especially by
providing facilities for straightforward methods of amending
prograr source code via onk-line terminals. Together with the
widespread adoption of modular programming techniques it has
become possible to localise the definition of data on
existing files (and their input/output access routines) to
single modules accessible by all progranms (¢e.9g. PANVALET).
Data Dictionary packages are now comingtinto use wﬁich
provide cross—-indices between Progranms, Files and Job
Control Lanquage Procedures in conjunction with statistics
on data access patterns for conventional application
programs as well as programs running under a Data Base

Management System /XEPHOK/.

The remaining chapters of this thesis address the following

0

objective

.

1. To observe that there are two distinct environments in
wvhich data base management systems may be used. The
"Centralised" environment where the.data base is a common
resource providing a universally applicable model of the
organisation and the "Devolved™ environment where the data
base reflects an information model held to be correct by
some group of individuals within the organisation. Purther,
it will be noted that the different requirements of each of
these environments may be better serviced by different types

of 3ata base management systems.

2. To consider that changés in the logical structure of the
data base are likely to have more widespread implications
throughout the organisation in the centralised environment
than in the devolved environment because the same structure
must serve a multiplicity of users. Consequently, although
facilities to altef the structure of the data will be
required for both centralised and devolved data bases, they
will often be of only limited value for a devolved data
base. On the other hand, the structure of +the the
centralised data base for many organisations can be expected
to be relatively volatile, and a sophisticated restructuring

mechanism will be essential to allow the data model to

evolve.

3. To propose a restructuring mechanism for a CODASYL data
base managemrent system. This type of network data base is
considered to be a good example of a data base management
systen sq}table for use by the professional data processing
practitioners who are seen as retaining responsibility for

maintenance of the centralised data base.

4. To demonstrate that a restructuring mechanism along the
lines proposed can be implemented whereby alterations can be
made to application programs to reflect the revised
structure, where necessary, without interrupting the
availability of these programs to service the demands of

their end users.

Chapter 2 covers the process of accumulating a data
structure to adequately model the organisation maigtaining
the data base. VNot only will this highlight the differences
between centralised and devolved data bases but it will also
identify the iterative nature of the data model of the

single centralised data base of the organisation.

Chapter 3 examines some types of data base management
systems and discusses their relevance to either centralised

or devolved data base environments.

Chapter 4 describes how researchers and implementors of data

base management systems have considered the problem of

allowing the structure of the data to change.

Chapter 5 considers how the structuore of centralised data

bases will alter through time. 1In particular it shows how

changes to application systems will dictate changes to the

logical structure of the data on which they operate. As a
hY

result, other applications must be in a position to react to

the structural change.

Chapter 6 looks at how the network data base structure
proposed by the CODASYL Data Base Task Group could support

such a restructuring mechanisn.

Chapter 7 gives details of the primitive restructuring tasks
which are relevant to the clauses defining the CODASYL data

base structure in its Data Definition Language.

Chapter 8 describes the implementation of a CODASYL-type

data base management system and associated restructuring

mechanism on the EMAS multi-access system.

Chapter 9 summarises how the proposed restructuring
mechanism meets the objectives set out above. It also

idexntifies areas vwhere further research will be required.

Appendices are nsed to illustrate how the restructuring
mechanism could be utilised for a centralised data base
maintained by a British Bank. Several application programs

and restructuring tasks have been written for the EMAS

- 10 -

implementation in order to achieve this.

- 11 -

Chapter_2 -_Data_Analysis_and_Data Modelling.

Large organisations can be viewed in many different ways
and it is often difficult to provide a single all-purpose
picture of the entire enterprise. As business organisations
in particular have become Bore sophisticated, efficiency has
dictated that formal modelling techniques be devised.
Models have been especially useful in areas of Management
Services such as Operational Researeh, Organisation and

Methods ard Work Study and in many cases they have been

adopted as the tools of the Systems Analyst.

BExisting Modelling Technigues.

It 1is interesting to examine three typical modeling
techniques each of which is designed to present a picture of
the organisation in some way:

a) Organisational Chart.

This would be 1likely ¢to show a pyramidal reporting
structure within the organisation with individuvals (or
classes of individuals) shown as nodes on a hierarchical
diagram. Other cross—hierarchy relationships denoted by
additional links between nodes would reflect
responsibilities outéide line management. Relationships
with 1individvals and other organisations in the "“outside
world® are also identified in such charts.

This model would mainly be of use in Personnel Departments
where it could be viewed 1in conjunction with Job

Descriptions and Staffing Level values to provide a

mechanism for evaluating possible changes in working

practice.
b) Flowcharts.

Prior to their use in describing the 1logic of cozputer
systems and programs; flowcharts were (and still are) used
to describe the transmission of information +throughout the
organisat?on and to and from the outside world.

Repetitive tasks (which are particularly suitable for
flowcharting) were an early target for computerisation and
systems analysts have often worked closely with
0&M/Mork-Study practitioners in this area. 1In many
organisations virtually all the routine work interacts with
computer systems in some way.

¢c) Critical Path Aralysis Diagrams.

A Critical Path Analysis Diagram shows interrelationships
between different activities carried out within the
organisation in order to achieve some particular complex

task.

There are numerous other models within organisations which
do not have such an obvious visual manifestation. For
example the profitability of a commercial organisation will
be governed by its ability to plan its business and monitor
its actual execution 'against the plan. The current plan is
therefore a vital part of +the organisational modgl as are
such techrigues as Management Accounting which aré designed

to measure actual performance against the plan.

Those models which do have a visual manifestation assist

the observer in assimilating sonme aspect of the

- 13 -~

organisation. It is of interest to note also that there is a
common feature in the preparation of such models in that the
architect of the model must firstly identify discrete types
of elements on which data is known or can be collected.
These provide the nodes for the model. The differences
between the models are found in the «criteria used to
“

establish relationships betveen these elements. By analogy
various diagrams of the human body can be drawn showing
blood circulation, central nervous éystem, skeleton etc.
Just as a physician will choose to examine one of these
diagrams of the body for some purpose he has in mind, one or
other of the wmodels can be used when it is required to
consider the organisation from a particular viewpoint.

The distinction between the models and the organisation
itself is one of a one-to-many mapping where each element in
the model (often called an Entity) represents a number of
actual occurrences of that classification of object within
the organisation. EBach individual object (such as each nut
and bolt or each member of staff) will of course be unique
but the generic term is sufficient to provide a meaningful
model. Once it has been seen fit to define the existence of
a class of objects in the model it may be inferred that each
actual object has somé properties which may be quantified in
some way. The term Attribute has been used to describe such

properties of entities.

- 14 -

Por example an organisational chart of a Bank might be as

follows:

General Manager

-
-

District Manager

Branch HManager

ff

<AL BT}

St

Thus the single entry on the <chart of "Bank Manager"™ would
convey the impression of the few hundred people in control
of the bank®s branches. Equally (although not necessarily
stated on the chart) the entity Baﬁk Manager would have
Attributes of Branch Name, Manager's Name, Lending Limit
etc.

A General Purpose Data Model of an organisation must
therefore provide for recording not only attributes whiéh
are associated with particular entities but also details of
the patterns of associations between different occurrences
of entities (including different occurrences of the same
entity).

Large organisations' tend to Dbe complex evolutionary
organisas and the task of preparing a model which confains
all entity interrelationships is often formidable - thus the
advantages of only considering particular classes of
interrelationship as in the Organisational Chart, Plowchart
and Critical Path Analysis diagram. Rather the preparation

of the entire model is an 1iterative ©process with the

- 15 -

possibility that a totally comprehensive model can never be
achieved /FLORY apd XOQULOUDJIAN/.

Organisations Aiffer widely in both size and complexity and
it may be that there should be a difference in emphasis on
different aspects of the general purpose model to take

advantage of such differences. Thus for example the Bank is

*

a large organisation with perhaps hundreds of branches and
millions of accounts but nevertheless with relatively few
entities and a correspondingly straighfforuard model. On the
other hand a model of a manufacturing organisation even with
a limiﬁed product-line wmight be complex and constantly
changing to reflect a changing marketplace. In sonme
circumstances time can be a fundamental consideration for
all entities while in others the "current" situation is all
that is required /SNUDGREN-75/.

Data models of Jdifferent organisations will also vary
significantly in the stability of the values of attributes
in particular occurrences of entities. For 9x$mple one could
contrast a model of a library where once information on a
book has been gathered it is unlikely to change (unless it
is incorrect) against a model of a bank where the balance of
an account is constantly altering to reflect the effect of
financial ttansactioné. Further the patterns of retrieval
can be significantly different; where a book borrower may
base his choice on BAuthor, Title, Subjecf Matter or some
more obscure criterion, 1in other environments (such as the
bank) retrieval is often a straightforward matter based on a
unique identification KAM & ULLMAN/. PFor example the

account number is all that is required in to obtain a bank

- 16 -

balance and in most circuastances this would either be known

or encoded on a plastic card.

The Three/Four Schema Data Model.

The process of developing a formal model of an organisation

has been studied by several researchers. A significant

Y

contribution was made in 1975 by the report of the
ANSI/SPARC organisation on the architecture of data Dbase
management systems /YORMARK/. 1In the‘ present context the
report proposed that a Conceptual Schema should exist which
vas maintained by a person or group known as an Enterprise
Administrator. To emphasise the magnitude of the task of
prevaring and maintaining the schema as a true model of the
organisation it might have been better to use the tern
'*Enterprise Analyst' to describe this individual or group of
individuals. Without attempting to standardise the contents
of this schema the report identified interfaces between it
and more application—orientéd and data-storage-oriented
definitions in the form of an External Schema and an
Internal Schema maintained by an Application Administrator
and Data Base Administrator respectively. The
personalisation of these functions by the allocation of a
name reminiscent of a.job title is most significant. It can
be argued that by doing so it can be tacitly assumed that
for these tasks to be performed well new skills will be
required by the individuals performing the functions. It may
be that many of the skills are a generalisation of those
already possessed by the Systems Analysts but inevitably

some will be entirely new, particularly in the area of

'Enterprise Apalysis?'

The idea of a Conceptual Schema in particular has been
developed 1in a report by an ISO Technical Working Party
published in 1982 /ISO/. This report establishes the aims of
a Conceptual Schema as :

(a) To describe the "Universe of Discourse™ as a model of

*s

the entire enterprise in a manner suitable for easy
interpretation. It follows that this model may not
necessarily be concerned with the. constructs of any
particular implementation of a computerised DBHS.

(b) To control the information base used by computer
systens.

The existing types of Data Base Management Systems are
considered by the Report as somewhat inadequate to serve the
first purpose of the Conceptual Schema but sufficient in
many respects for the second.

A ‘'Four-Schema' philosophy is therefore suggested where the
Conceptual SChéma is written in a suitable language (for
which the report draws up some basic requirements) and tg}s
is then subjected to a (manual) conversion to become the

Data Base Schema in the terms supported by the Data Base

Management System used by the organisation.

Preparation Of The Data Model.

Many approaéhes to the development of a methodology for
establishing the data model have been advocated. Often
these are extensions and standardisations of the established
techniques for data analysis and fact recording developed

over the previous two decades /JACKSON/.

Data Analysis is not an art practiced by the Systems
Analyst in isolation and there must Dbe an ongoing
involvement by each end user such that a mutually acceptable
view is achieved between him and the analyst rather than an
artificial structure being imposed /SHUDGREN-78/.

The importance of information flow of the various processes

“
operating on the data to the structure of the model has been

highlighted in such techniques as User Task Analysis and

Information System Architecture /IBHM-UTAS/,/IBM-DA/.

Manifestations of the Data Model.

Diagramatic techniques have been devised to enable the
Enterprise Administrator to assimilate the model of an
organisation which he 1is in the process of creating and to
allow analysts to Jjudge the impact of proposed new systems
and changes to existing systems. These provide a pictorial
representatipn of the most general system of entities and
the relationships between them /eg CHEN/. ;n particular they
allov relationships to be represented wher; one element in
one class may relate to many elements in another class where
each of these may relate to many elements in the first class
(ie a many-to-many mapping). Like the flowcharts and other
diagrams referred tol previously the manifestation of the
data model as a chart does not reference individual
occurrences of entities but uses generic terms for the
various classes of entity and relationship.

Non-Diagramatic descriptions of the Data Model have also
been proposed which use 1linguistic syntax to specify not

only the structure of the model but also all other

constraints which apply to it. The objectives of such
representations are probably more oriented towards providing
a precise description of the model than a repreéentation
which can be assimilated easily so that a particular area of
interest can be readily identified /SHIPMAN/.
A

Por example a simplified data model of a bank as shown
below would illustrate that there were entities Customer,
Branch, Account and Credit Card and éhese were related by
the following associations:

Customer's Credit Cards - Where a customer could have
zero or more credit cards (eg where the customer was a
business or husband/wife)

Customer's Accounts - Where a customer may have one or
more accounts at one or more branches.

Branch's Accounts - ®here a branch may have omne or more
accounts of which some may belong to the same customer.

Regular Payments - Where funds are transferred between
one account and another on a regular basis. The same account
may be the payee of more than one payment and similarly the

same account may be the beneficiary of more than one

payment. NOn £
A o |cPE NurnBER
Customer |AIDRESS ‘ Branc 1ANACER

Customer’s
CredT
6’a (JS

Customer's
Accoun Ts

Cred (T |CARDNuNger

AecounT
Cavd |NONE €ngossep

N

OuTsTand; ’9 DATE
Ttanseclions) VOLUE

DG Lim T T

- 20 -

The effort required to produce a generalised data model in
mAny organisations would be significant and there would be a
constant requirement for refinement to cater for changes in
the organisation and better perception of the accuracy of
the model. In addition to the chart giving the structure of
the data model there is often a more detailed manifestation

A Y
in the shape of a Data Dictionary which provides a vehicle
for recording all information known about the organisation's
information — the Meta-Database. A&s ;ell as describing all
attributes of each entity in terms of their meaning, format
and value range etc the Data Dictionary would also describe
how attributes relate to other attributes, how entities
relate to other entities, how application programs relate to
bo th entities and attributes and how entities are

distributed in terms of numbers of occurrences and frequency

of access.

The Data_Base Maraagement System Model

We have seen that it is desirable to establish a general
purpose data model of an organisation primarily to simplify
human perception of that organisation for those individuals
who wish to study and improve its operation. Givenm that a

shared pool of data can be established on computer files in

-

the form of a data base, an abstraction of that generalised
data model can be made in the form of a Data Base Management
System Model. In this model the varioﬁs processes which are
undertaken by the organisation are represented by executioﬁs
of application ©programs which interact with the data base
using the conventions of some database management system or
systems. The requirement to produce an abstraction of the
generalised data model stems from the data structures
supported by existing data base management systems. The
fairly simple structuring primitives of many data base
management systems may tend to produce an apparently more
complex model than the 1less formal reguirements of the
geﬁéralised data model but they have the significant
advantage of providing straightforward access paths for the
application programs. There is a parallel in this process to
the abstraction which has been necessary to transform the
rich language of spéech and the written wvord into the
rigidly structured programming languages necessary to

communicate with the computer.

- 22 -

Classifications of DBMS users.

People interact with computers on different levels. Thus,

for example, the following individuals may be identified.
The System Programmers who write and wmaintain Operating
Systems and other hardware-specific software.

The OperaEing Staff who schedule program runs and optimise
system throughput.

The Application Design and Programming Staff who transfer
English-like requests from End Userg into a series of
accesses and manipulations of data.

The Fnd Users who provide information to the coamputer
system and obtain information from it. These have been
further divided into various categories. Sophisticated Users
are able to convert their own requests for information into
meaningful instructions to the system. Casual Users can
présent a request for information in a "natural" fashion to
the computer which interprets that request and processes it.
Parametric Users provide data in standard formats and
interpret output in a roatine manner prescribed for them by
the Systems Analyst. /LUCKING-74Ar/ /SKITH & SMITH/ /MINSKY/.

The categorisation of this "nest of symbiotic parasites" is
not straightforwvard since individuals may fall into more
" than one category and'the categories themselves may overlap.
Thus, for example, several application computer systems have
been designed which allow "parametric users"™ to specify
fairly complex retrieval requests vwhich would normally be
considered as the province of the Sophisticated End-User or

the Application Programmer.

- 23 -

Most professions have had many hundreds of years to evolve
suitable breakdowns of tasks to be performed by well defined
categories of individuals. The computer industry, on the
other hand, has evolved the above groupings ir only two or
three decades. There is therefore a general feeling that

this might not be the "right™ breakdown at least in terms of

Y

the proportions of individuals in each category. This view
is reinforced by the ever decreasing real cost of computer
equipment with the corresponding losg of significance of
program efficiency and by the ever increasing capabilities
of programming languages and operating systems.

It was into this environment of fairly well established
classes of computer user that the Data Base HManagement
System Model emerged. The original requirement came from
the application design and programming staff who were
becoming avare of the inflexibility and mutual
incompatibility of their existing systems. It was natural
therefore that the first types of model were based on
generalisations of the techniques used for data processing

within these conventional application systens.

- 24 -

Classifications of DBMS Models

The constraints of sequential record processing imposed on
magnetic-tape-based systems had allowed hierarchical record
relationships to become commonplace. Almost universally
magnetic tape master files would hold@ records of different
formats (distinguished by a data field) in an order such
that data c;mmon to a group of records would be held in a
record of another type preceding that group. Thus for
example a bank's master file might ‘hold its records in
branch order with the records for each branch in custonmer
order and all account records for each customer following
that customer record. Thus evolved the Hierarchical Data
Base Management System /IBM-INMS/.

The amount of abstraction required to represent typical
generalised organisational data models as hierarchies might
well be significant and the eventual data base management
system model might obscure some of the fundamental structure
of the original data model. It is likely that théré will be
additional structure t*hidden* within the application
programs.

While the relationship between records in a hierarchial
data model 1is essentially specified by their order it is
possible to define a Qore general data model structure by
representing record relationships by a mechanism outwith the
records themselves. Thus emerged the Network -Data Base
Management Systems /CODASYL-71/ /IDS-II/ /IDMS/.

In both of the above approaches the data base management
system models were devised on an empirical basis with a

knowledge of what types of computer systems could be

- 25 -

produced by the Systems Programmers to be used in turn by
the Application Programmers to run programs with reasonable
efficiency. There is a parallel here with the evolution of
programning languages such as FORTRAN and COBOL where
enhancements tend to be a compromise betwveen what is

desirable and what is achievable.

A}

A more radical approach to the structure of the
computerised data model 1led to the development of the
Relational Data Model where each type 6f record was disjoint
and record relationships were established in an ad-hoc
fashion by correspondence of value between attributes in the
records. /CODD-70/ /RSTRARAN/

The differences in approach of these types of computerised
data models may be seen to be associated with differences in
emphasis on the priorities of the various objectives of a
data base management system /STOCKER/. The ‘“traditiopal"®™
approaches of the network and hierarchical _data base
management systenms are oriented ‘towards the goal of_
providing the professional Application Programmer with a
mechanism for interacting with the data base in a manner
similar to that adopted for conventional files. At the same
time the shared nature of the database is considered but
left relatively tcaﬁsparent to the programmer. It is
important to remember that the épplication programs which
have constituted the bulk of compﬁterised systems over the
last 20 years have often been complex not so much because of
their interaction with data held on secondary storage
devices but more simply because they had complex functions

to perform. This situation is perhaps best illustrated by

- 26 -

reference to the program specifications from which the
programs were written. After due analysis of the business
functions these wounld typically take many weeks or months to
write and would run to many pages of text. No matter how
sophisticated programming languages may become in the future
they cannot be expected to be simpler than today's program
~

specifications.

The Relational Data Model has been more oriented towards a
realignment of the functions of the vﬁrious computer users
to provide a more immediate access to the data base for End
Users. In particular ad-hoc queries could be satisfied
without the need to reference application programmers.
Indeed this is a laudable objective but it has limitations
since many of the benefits of computerisation have accrued
from the thorough analysis of business practices and
information requirements. Indiscriminate interrogation and
update of a data base could 1lead to wasted resources within
the organisation as a. whole because individuals were not
sufficiently disciplined to pursue activities specifically
related to their jobs. Equally it would be more difficult to
exercise <control over individuals expending effort in
retrieving information which had already been obtained by

someone else.

Ccentralised and Devolved Data BRases.

One possible scenario for the future symbiosis of the
different approaches to data base management systems is to
postulate two distinct classes of DBHMS which could have

properties in common but which vere designed to serve very

- 27 -

different user requirements.
The two proposed classes will be termed Centralised angd
Devolved Data Bases and their interrelationship is shown in

the following diagram:

o8 | ‘Qbf,

ZPEvoLye
J(J“‘ & - GésE ©

B
g ﬁ”ﬁtmmmp
i End A

i\ User

The CﬁNTRALISED DBMS would be the province of the data
processing practitioners and would support application
programs where data is captured and updated in a constrained
environment devised by Systems Analysts so that it can be

guaranteed as correct and unambiguous to all current and

- 28 -

future users within the organisation. The shared nature of
this data places grave responsibilities on the designers of
application systems to ensure that a single coherent data
base structure exists. Furthermore the desire to satisfy the
requirements of the entire organisation and not Jjust
particular sections who have identified known requirementé
~

implies that it would be advantageous for individual
programs to view the data base as a strict subset of this
mutually agreed overall structure. .

The second class of DBMS may be termed a DEVOLVED Data
Base in the sense that many such data bases could exist
within a single organisation. The concept of Devolved Data
Bases is very different from that of a Distributed Data Base
wvhere the physical placement of the organisation's one and
only data base 1s scattered between a number of locations.
Each Devolved Data Base, on the other hand, would be under
the control of a (sophisticated) End User who would handle a
complete spectrum of tasks which would be considered as the

\ .
province of Data Base Administrator, Application Programmer
as well as End User in a Centralised Data Base environment.
Whether all Devolved Data Bases are held together at a
central site or whether they are held on their own
microcomputers is a éatter for individual implementations
and must take into account the computing resources available
within the organisations. Nevertheless the concept of the
Devolved Data Base reflects the different requirements of
different classes of users within organisations and is valid

however it is implemented.

The Devolved Data Base can be considered as comprising

- 29 -

three sections as follows:

The first section vould be an abstraction of the data held
on the central data base as updated by the programs designed
and written by the data processing professionals and
consequently universally agreed as ‘correct' throughout the

organisation. The structure of this data could be similar to

“

the single logical data base structure of the centralised
data base of the organisation but there would be no
requirement for it to be a strict subéet. It may be that a
comprehensive mapping 1language which converted from one
structure to the other would be adequate to define the
ahstraction from one view to the other but it might be nmore
appropriate for specialised application programs operating
directly on the Centralised Data Base to provide the
interface. Thus, for example, a bank's economist might t*see?
the currernt financial position of the bank for hi$ purposes
as a table of average balances of each bank branch. The
logical structure of each branch with 1its many accounts
could be abstracted to \this view either by defining a
relationship as an algorithm for calculating the average
balance per branch or by an application program being
prepared which would perforn the desired manipulation
whenever this informétion is required. It might even be
desirable to run the program at appropriate times to provide
snapshots such as end of month positions.

In a similar vein, the second section would consist of data
describing the world outside the organisation. Like the
first section, this could be guaranteed as correct, this

time by the source in the outside world which provided the

- 30 -

information (ie an external Centralised Data Base). The
data would not therefore be updated by the end user himself
unless he was acting as an agent for the actual source.
Abstraction of the data into a structure suitable to the end
user-would be the responsibility of the end user himself and
to this extent he vwould perform the role of Data Base
~
Administrator on his own devolved data base. Examples of
this type of data within a devolved data base of a bank's
econonist would be census informﬁtion or government
statistics.

The final section of a devolved data base would be composed
of information captured by the end user himself (or by
parametric end users acting on behalf of a sophisticated end
user) and guaranteed as correct only in the opinion of that
end user. Since this responsibility for update 1lies solely
with this individual user there is a possibility that the
data will be ambiguous in that another user would be free to
hold dif ferent values for the same data at the same time if
he saw fif to do so. To continue with the example of a
bank's econonist, data of this type would be the type of
information which he would supply to his model of the

national economy which would dictate (in his opinion) how

that economy would perform in the future. It is therefore

possible that two economists, even in the same organisation,
would have different opinions as to which factors would most
influence the economy and what values these parameters would
adopt. Por this section of a devolved data base the role of
Data Base Administrator vould be almost entirely devolved to

the End User himself. The intimate association between the

- 31 -

user's meta—-data~base and actual data base for this type of
data would seem to advocate a method of programming where
the two are virtually indistinguishable. Such techniques
have been proposed /e.g. SHIPMAN/ but it is important to
view them within this somewvhat restricted context of one

part of a devolved data base since their evident advantages

.

in the ability to alter the meta-data just as easily as the
actual data are less apparent when that data has to be
shared between different users. Thé timescale for the
implementation of changes which effect several users will
necessarily be longer than that for changes to a single
user's own data in his devolved data Dbase. Inevitably some
measure of consultation would be necessary in the
centralised environment - the raison-d‘'etre for the
Application Administrator.

In different environments it is likely that one or other of
the three sections will dominate the devolved data base of a
particular end user. For example some end users would
operate entirely on their own self contained data base
while others would operate entirely on an abstraction of the
organisation's centralised data Dbase. The Application
Administrator will have an important role to play in any
event although it woﬁld be more passive than some of his
other tasks by ensuring that data held within the
self-contained sections of devolved data bases was not, in
fact, of more general interest throughout the organisation
and therefore a candidate for inclusion in the centralised
data base. If this were to be the case no doubt there would

be debate betwveen the End User and the Application

- 32 -

Administrator as to the desirability of this alteration
since the ability to make changes without inconveniencing
other users would be lost.

The identification of the two classes of data base leads to
the consideration of the status of the output derived from
the application programs operating on the centralised data

*.
base as against that obtained from end user programs or

queries on devolved data bases. FPor the former it |is
realistic to expect the results to bé accepted as correct
universally throughout the organisation for if some
individual disputes the results this should provoke an
analysis of the cause of the objection so that the alleged
anomaly can be resolved or at least explained. Por the
latter the results need only be accepted as the product of a
single end user®s analysis. Individuals within the
organisation may disagree with them if they see fit and they
may attempt to convince the originator oftheh"inaccuracy.
Thus, for example, a figqure giving the total number of
current employees of an organisation should be immutable but
the projected figure for a year ahead could well differ
depending on the criterion used to predict the extent of the
organisation's activities.

It is the 'visionaries' within organisations who have the
task of planning for the future who are the prime candidates
for becoming sophisticated end users of their own devolved
data bases. Although relatively few in number it is on the
success of these forecasts that the future prosperity of the
organisation will depend. They will not be computer

professionals and the benefits of the 'user-friendliness® of

- 33 -

self-contained, non-procedural, query-oriented Relational

approach will be much more apparent.

- 34 -

Bvaluation of the_Data_Base Management System Models.

The view that different types of Data Base MNanagement
Systems should be oriented towards different classes of user
is supported by MICHAELS et al under the following headings:

(a) Convenience - the merits of the various approaches were

.

partly subjective based on the users background and personal
preferences. Relational for non-computer-specialists and
Network or Hierarchical for applicatioﬂ programmers.

(b) Selective Power - Relational languages are complete
because they <can express any query expressible in the
relational calculus. The other approaches are conmplete in
the sense that most programming languages are complete (i.e.
it is always possible to express the query in a logical form
with the suitable use of conditional expressions and other
procedural techniques).

(c) Conciseness - the Data Selection Language of the
Relational Data Model tends to involve fe;er pen strokes or
key depressions than the procedural approach. This is not to
say that such queries are quicker to prepare since the
formulation of the guery may require fairly time consuming
thought processes especially for non-mathematically oriented
users. | -

(d) Language Level - The Relational non-procedural language
may be said to be a higher level than that of the procedural
approaches. It nevertheless remains: a stylised language
which must be learned by those who wish to use it. It does
not allow the Casual End User to communicate with the

computer in as free a way as that individual would expect to

- 35 -

communicate with another human being.

(e) Complexity — The ability to utilise details of data
access and physical placement tends to lead to more complex
and 1less logically data independent programs. Since the
advent of the storage schema this criticism can now more
properly only be aimed at particular implementations of the

~

Netwvork and Hierarchical approaches.

The relative future importance of the.various types of Data
Base Management Systems will depend to some extent on the
eventual distribution of the various classes of data base
user. Such predictions are difficult to make, especially in
the rapidly changing technology of the computer industry. In
1974, for example, CODD & DATE predicted a vast increase in
the population of sophisticated end users and casual users
over the following 10 years to such an extent that they
significantly outnumbered professional programmers. No such
dramatic reversal is in'f&ct apparent and the reasonsvfor
this +trend may well highlight why the hierarchical and
network approaches will continue to dominate data base usage
techniques (albeit in the restricted community of data
processing professionals).

Although the_population of sophisticated end users may not
have increased as mnuch as expected, the population of‘
parametric users has increased to such an extent that
virtually the entire population can be said to interact with
computers especially using such devices as self service
banking terminals and Teletext keyboards connected to

televisions. While the data processing comnmunity can satisfy

- 36 -

the requirements of users without those wusers having to
expand their skills to interrogate data bases by becoming
sophisticated or casual end users there is little motivation
for the lay community to learn such skills.

Oon the other hand the difficulties encountered by the
professioni} programmers in modifying 1large computer
application systems and the resultant long 1lead time for
even the most trivial change have more and more been
counteracted by users acquireing ‘the skills of the
application prograngers. The availability of cheap
microcomputers with easily tailored package programs oOr
simple home-grown BASIC programs has allowed data to be
maintained (often including data also handled by the
mainframe computer) and analysed without access to the
centralised data base. There is 1little evidence of
non-professionals finding even *old-fashioned' procedural
lanquages of this type too complex once they have sufficient
motivation to learn the 1language. Unfortunately this trend
could eventually lead +to the problems of inconsistency\and
incompatibility which data base vas intended to overcome.

The accuracy of the data on the data base is vital for all

applications but particularly for financial or personnel

data bases. In such environments it is essential that

information is only updated using recognised procedures. To
allow even the most senior executive of a bank to alter the
balance 'on an account at his whim would be 1ludicrous, as
would be to allowv personnel department staff to add a new
member of staff without going through the recognised

selection procedures. There are therefore tasks which must

O SR

- 37 -

always be properly analysed and the current state of the art
dictates that the end result of such an analysis will be
programs writter to support data base interaction on a
record by record basis as handled by the hierarchial and

network data models.

DaTe Base Seope Dala Base TTeracTion

Hi"I_‘Vo/llme Ad-Ho c
\ - Sean Kuer
Execalive J Rare
Low Volyme niddle ﬂjyreja'[c
an ‘ imalion Re / /
j / ﬂanajem&tr T,./-’o T (7“ ‘

Sinj/e F . I RouTin
Actess qnc'(lona
/ Employ ces Freziuen't'

Orjanisa‘n’or.a | Struclure) Fre quency

In the diagram above it can be seen that the needs of the
different categories of employees vary widely. The 1large
number of *"shop floof“ employees tend to require the same
information over and over again on different entity
occurrences, often so that they can supply new or updated
information. They are 1likely, therefore, alwvays to be
classified as parametric users. On the other hand the
executives of the organisation should from time to time

require information which has never been required before and

- 38 -

is unlikely to be required again. Perhaps surprisingly such
individuals are also likely to remain parametric users since
it would probably be a more efficient use of their time to
communicate their request to a data processing professional

(possibly one well versed in query languages) than for then
to attempt to communicate directly with the computer. It is
perhaps the middle management (particularly those involved
in determining future strategy) who regquire the query
lanquage of the sophisticated end usef but while management
is functionally or organisationally structured these
jndividuals are unlikely to require access to the entire
data base. An abstraction of the centralised data base would
alvays seem desirable in conjunction with the
toutside-world' and 'self—contained: sections of a devolved
data base for each such end user.

Thus although the Relational approach wvith its emphasis on
interacting with the data base via queries by sophisticated
end users 1is perhaps a more fertile ground for novel
academic research the other more traditional approaches are
likely to grow rather the diminish in importance and
therefore cannot be neglected. The primary functions of the
network and the hierarchial data base models have been well
understood for some time and there are many implementation;.
The more peripheral aspects such as the ability of these
nodels to }eact to change have not as yet caused users much
inconvenience and have therefore remained relatively

unexplored. As the usage expands, howvever, such topics will

assume greater importance and deserve detailed attention.

- 39 -

Chapter_ _3 - Current _Implementations _of Data__Base

Manaagement Systems

The three most widely used types of Data Base Management
systems will be considered in this chapter. A more detailed
descriptiog can be found in DATE's book ™An Introduction‘to
Database Systems". By describing both their differences .and
similarities, especially within the context of Centralised
and Devolved Data Bases, the areas wﬂere Restructuring will
be important will be highlighted so that they can be

developed in later chapters.

The Hierarchical Data Model.

The Hierarchical data model is important mainly because IBM
have established it as a de-facto industry standard by
promotion of their product Information Management Systenm
(IMS) with its associated data manipulation language DL/1
/IBN-INS/.

In a Hierarchical Data Base Management System a data base
is defined as an inverted tree structure. Each node of the
tree is termed a segment. The tree is headed by a root
segment supported by a hierarchy of dependent segments.
Hierarchies provide Q'simple, easily understood structure on

which to establish a data base.

- 4o -

Thus in a banking example the hierarchy might be:

BRANCH

cecceeeeCUSTONFER e ceeenes

- - -

CURRENT DEPOSIT LOAN
ACCOUNTS BACCOUNTS ACCOUNTS

A}

In this case the branch is the root segment and this has a
single type of dependent in the form of the customer segment
which has in turn 3 dependents: Curfent Accounts, Deposit
Accounts and Loar Accounts. Since the dJdependent segments
are on the same level of the tree they are called twin
segnents. This type of structure has an implied order which
corresponds to that wused in the past for conventional
sequential files - each group of occurrences of a type of
dependent segment is preceded by the occurrence of the
segment on which it is dependent (i.e. its parent where it
is the child). Where more than one type of segment is on the
same level of the hierarchy there is a convention that all
occurrences of each type of segment are presented together
after their parent working from left to right in the diagram
(twin segments in IMS parlance). Thus in the example above
all current accounts for the same customer would be
presented in order .before all Deposit Accounts and Loan
Accounts. Corresponding to this ordering 1is the concept of
a concatenated kevy. The concatenated key of a segment
consists of those data items which distinguish individual
occurrences of that segment from other sibling occurrences
of the same segment together with those data 1items which

perform the same function for its parent segment and the

- 31 -

parent's parent right up to the root.

Data bases are normally mirrored in the different types of
files used to hold either the entire data base or particular
types of segment on disc. It is likely therefore that the
entire information maintained on an organisation will be
heldAon a number of data bases with the responsibility of
utilising ;onsistent information from different data bases
resting entirely with application programs. The impact of
this situation can be minimised by thé definition of Logical
Data Bases which utilise segments from existing Physical
Data Bases to establish a hierarchy of segments which was
not previously apparent and which would not require the
duplication of physical records.

Thus, for example, in the bank data base if customers could
have accounts at more than one branch it would be possible
to define the following structure of a distinct logical data

base.
CUSTOMER

BRA&CR

Application Programs interact with data Dbases through
Program Specification Blocks which are merged with the
object versions of application programs by the Linkage
Editor. These block$ present the programs with the daga
retrieved-from or to-be-inserted-as 1individual segment
occurrences. It is the responsibility of the program itself
to provide the definition of the data items in each segment
in a format appropriate to the source programming language
being used - this definition would typically be obtained

from a library of such definitions maintained for the

purypose.

A data base may be traversed using the data manipulation
language DL/1 which allows the following operations:

A GET UNIQUE command allows the program to retrieve a
particular occurrence of a particular type of segment

)
together with its parents if required. Before the comemand is
issued the name of the required segment and the names of any
parent segments Tequired together with the desired values
for all data items in all concatenated keys must be placed
in an area known as a Segment Search Arqument.

The data base may also be traversed sequentially in the
order described above by the use of a GET NEXT command. This
process may either start at the beginning of the data base
(the first occurrence of the root segment) or from the
current position of the program on that data base as
established by previously executed commands. All types of
segment may be presented to the program in which caSe'tbe
command is said to be ungqualified. Alternatively only
segments of a particular type may be presented (still in the
data base order) by placing the segment name in the Segment
Search Argument area.

A restricted fora .of the get next command presents the
program only with those segment occurrences vwhich are
children of the same parent occurrence. This is the.GET NEXT
WITHIN PARENT command.

New occurrences of segments may be added to the data base
using the INSERT command. The full concatenated key for the

segment wmust be provided in the Segment Search Argument

- 43 -

area. If cccurrences of that type of segment with that value
of concatenated YXey already exist on the data base an
minsert rule™ (which must be specified when the data base is
being defined by the data administrator) is invoked to
determine whether the occurrence is to be placed before or
after the gxisting occurrences or vhether the insert is to
be prohibited.

Existing occurrences of segments may be modified by use of
the REPLACE command. Once again the nev value of the
segment must be provided, together with the concatenated key
in the Segment Search Argument. An important constraint on
the use of the Replace command is that the record to be
modified must have previously been retrieved by the program
usirg a CGet Unigue, Get Next or Get Next Within Parent
command Wwith a ™Hold"™ option to indicate that the record is
likely to be modified. This procedure avoids the problem of
inconsistent update where two programs wish to update the
same segment occurrence after both have retrieved the same.
wraw" version of the segment. In such a situation the second
get with hold would be rejected by IMS and the application
program would have to take appropriate action (possibly to
try agair in the hope that the segment had by now been
updated by the first progranm).

Existing seqment occurrences may be éeleted from the data
base using the DELETE comnmand. Once .again this must be

preceded by a get with hold command. '

Although IMS is 1limited in its ability to provide a

satisfactory computerised model of an entire organisation in

- oy -

that such a model must be composed only of hierarchies it is
probably today's most widely used data base management
system. Despite the overheads that it places on the computer
on which it runs it provides an unparalleled mechanism for
the security of the data held on its data bases in the event
of any type of hardware or software failure. As wvell as
utility programs to back up data bases to magnetic tape from
time to time (even while the data bases are being updatéd)
/IBM-DBRC/ and restore these to disc'when necessary, a Log
Tape is constantly updated with data base changes. In the

event of a catastrophic failure various levels of recovery

may be undertaken including, if necessary, the most recent:

changes held in program buffer areas retrieved from the
contents of memory at the time of the failure.

I®Ss is also widely used as a teleprocessing monitor. It
supports a subsystem known as .Nessage Format Services which
makes it particularly convenient fo; the development of

Visual Display Unit oriented applications /IBM-NFS/.

Although DL/1 is the recognised data manipulation language,

higher level approaches are also available such as . the
Automated Development Facility /IBM-ADF/. Information
retrieval facilities for non-professional programmers
(sophisticated end users) are also availablg

/2ASYTRIEVE-INS/.

- 45 -

The Networx Data Model.

Adhile recognising the practical advantages of the

Hierarchical Data Model its severe limitations of not
normally permitting an organisation to be modeled as a
single dagé base are apparent. At about the same time as INS
was evolving, other computer manufactures were developing
systems which were less restrictive in the required pattern
of record relationships. In 1969 thé CODASYL organisation
published a survey of current systems /CODASYL-69/ and later
recognised the requirement for a uniformity of approach. In
13971 the CODASYL Data Base Task Group published a report
which suggested a sophisticated method of providing‘ a
conputerised model based on network rather than hierarchical
record relationships /CODASYL-71/.

It is significant that the proposals contain various
constrainps which prevent the most general nmodel of
many-to4many record interrelationships from . being
computerised. A measure of compromise was reached be%ween a
totally flexible modeling technique and a mechanism vhich
would make it unduly complex for application programs to
pavigate the data base and perhaps could not be implemented
vithout imposing undﬁe processing overheads.

ITn addition to the definition of the contents of classes of
recordsAthe network data base management system permits the
definition of relationships between individual record
occurrences as "Sets™ on a one-to-many basis. Thus one type

of record is the Owner of the set and another (possibly the

same) type of record is the Member. In fact there may be

- 46 -

more than one type of member for each owner. Effectively
Sets are a two level hierarchy which are used to 1link
records to produce an arbitrarily complex network. The
pe twork, however, is of a special type since any individual
record occurrence can only contribute to a maximum of one
occnrrence\of each type of set of which it is an owner and a
maximum of one occurrence of each type of set which it is a
member.

A recognised way of diagramatically ¥epresenting a network
of this type was developed by Bachman for the system IDS

which predated the CODASYL report /BACHMAN/. The bank data

base would be represented as follows:

Branch Customer

Branc/\ CusTomer s
Accoun TS PccounTy

BecounT

This structure is more versatile than the illustration

given previously for the hierarchical data model since it

- 47 -

allows individual customers to hold accounts at more than
one branch.

The CODASYL report uses the term Schema for the formal
description of the network. Here each record is described in
teras of the data items it contains using a syntax not

unlike that used by COBOL for the definition of the contents

-

A)

of the records on files. Further each set is described in
terms of its owner and member records together with certain
gualities which the set possesses ;uch as whether all
occurrences of the records must be participants in sonme
occurrence of the set. Rules may also be supplied to
de termine the set occurrence appropriate to each individual
record occurrence.

The original 1971 report also used the Schema to record
information on how the records and sets would be structured
on the secondary storage medium. At the time several
commentatofs critisised the effect of this situation as it
applied to Physical Data Independence. This is an example
where the 1imprecise use éf the term data independence has
been a handicap. The authors of the report considered
themselves to have tackled the problem of physical data
independence by postulating a Device Media Control Language
which they suggested‘ would differ from implementation to
implementation but would preserve the data base management
system from the 1idiosyncrasies of different operating
systems. The critics considered physical data independence
to be resilience of applications to changes in physical data
structure thus allowing overall performance to be tuned.

Sadly this area of dispute overshadowed debate on the

- 48 -

facilities provided by the proposed system and of the
limitations imposed by the constraints inherent in it when
considered against a totally abstract data model. In 1978,

however, the criticisms were largely ansvered by a CODASI# y—

Journal of Development which moved physical structure

properties from the Schema to a Storage Schema designed ﬁbh;“

)

facilitate such definitions /CODASYL-78/. A é@rther”
refinement was made in a later Journal of Development-in

1981 /CODASYL-81/. ‘

The CODASYL proposals also suggested how application
programs would communicate with the data base. Each such
program would contain a Sub-Schema which provided the
program with a definition of that portion of the data base
which was to be of interest. In this case the authors.
considered this procedure to provide a measure of logical
data independence. Probably because of considerations on
wvhat could be implemented with reasonable efficiency thé
proposali restrict the sub-schema to be a strict subset of
the schema conforming to the same pattern and saﬁe
conventions for record, set and data item names. Aside from
security benefits there would seem to be little to be gained

in the way of convenience in this restriction of the

sub-schema to be a subset of the schema as it wvould often be . .

simple for the programmer to copy the entire schema directly
into his program (assuming the language was compatible)
rather than go to the trouble of preparing a sub-set of it.
One advantage of minimising the scope of individual
sub-schemas would be that so 1long as each sub-schena

remained a subset, the schema itself could grow without

- 49 -

alteration or recompilation of existing programs. A more
sophisticated mapping between schema and sub-schema would be
a feasible proposition but in the fipnal analysis it is
perhaps the arguments for a single data base structure
within each organisation (as outlined in the previous
cbapterf wgich best éupport the CODASYL approach.
Individual record occurrences are transferred to and from
programs via an area reserved by egch program for this
purpose - the User Work Area. A Data Manipulation Language
is also proposed which is sufficiently powerful to pernmit
application programs to interact with the data base at least
as easily as they could store and retrieve data from
conventional tape and disc files. The level of interaction,
like that of ¢the hierarchical data base management systen,
is designed to support the type of programs that had élready
proved bapableofsdﬁng'ﬁw proeblems: of parametric end users as-
identified by Systens Analysts and implementéd by
professional Programmers.

The Data Manipulation Language for COBOL supports the
following commands /CODASYi-COBOL-JOD/:

A FIND command effectively points the application program

to a particular record in the data base. Rumerous versions

-of the command are available which would allow a record to .. .

be retrieved "out of the blue™ by supplying values of key
data items or to be retrieved because of its relationship to
another record previously accessed by the program. I§ is by
this mechanism too that the set construct is used to allow
the program +to navigate through the netwvork of data base

record occurrences with a particular set occurrence.

- 50 -

Once a record has been retrieved from the data base the GET
command allows ore or more data items to be transferred to
the application program User Work Area where they can then
be manipulated like any other item of data. The separation

of the PFind and Get functions also seems to indicate that

the CODASYL authors are protecting programs from the groﬁth.;-~

of additional data items in records in the schema. It is

only rarely that a program could'imprpve its performance by
carrying out additional operations betvween execqtions of the
two commands and this 1is therefore unlikely to be the
justification. In fact there are implementations of the
CODARSYL proposals which provide an OBTAIN command which is a
combination of a FIND followed by a GET.

The remainder of commands of the Data Manipulation Language
allow records to be added to the data base and to particular
set occurrences in a similar way to the hierarchical data
base management system. Existing record occurrences can be
modified or deleted. Deadlock and inconsistent update are
prevented by the use of explicit HOLD and RELEASE commands

within the language.

The Relational Data Model. -

The Relational model arose as an alternative to the other
traditionally-based data base management systems following
the publication of a paper by E.P. Codd of IBM's San Jose -
laboratory in 1970 /CODD-70/. Motivated by the need for a
tool to free end users from the frustrations of having to

deal with the "clutter of storage representations®™ Codd

- 51 -

reverted to first principles and suggested that entities
were n-ary relationships of their n attributes. As such, the
power of algebraic operators could be brought to bear on the
data without the requirement of conventional .
record-at-a-time programming techniques.
codd also proposed techniques for establishing the -
computerised model in a particularly desirable format by the
process of normalisation. As outlined in Chapter 2 this
process is now seen more as a tool for the data analysis
exercise which is necessary for the conversion of an
abstract organisational model to a data base management
system model of whatever type. The technique is not a
property of the relational data model in particular.
Unfortunately many of the published papers on the Relational
Da ta Model discuss both npormalistion and the
computer-oriented aspects of the model and the distinction
between the two is not always made.

Thus the basis of the Relational Data. Model 1is the
partitioning of the data base into groups of occurrences of
relations of various types. The model makes no attempt to
establish how these relations will be held on storage media
but presumably implementors could choose some point in the
spectrum betveen disjoint "files"™ (one per relation) and a-
totally interrelated structure where all possible
combinations between pairs of relations (based on equality .
of value of attributes with the same name in each relation)
would be manifested by appropriate 1indices or pointers.
Tdeally the Data Base Administrator could determine how

particular associations between relations would be

- 52 -

represented. That 1is there would be some form of storage
schema which 1indicated which relationships were to be
supported by indices, which by pointers and which would be
established when required at rum time. This physical data
independence is an important aspect of the model and is
evident byﬁ the absence of a construct to permit permanént’
relationships between relations to be visible to application
programs. It is the responsibility of application progranms
themselves to establish such relationships as part of their
own logic especially by the use of the "Join"® set-type
operator. Codd has since suggested éxpansion of the model to
allow relations to be defined which have more meaning to the
eventual sophisticated end uses and data base designers.
/CODD-79/. Here the data base is considered to consist of
"Base relations™ which are defined without reference to
other relations and "Derived relations" which provide more -
“natural" views of the data base. The Base Relations would .
have a direct physical tepresehtation on the data base.asj
record occurrences. The Derived Relations, on the other
hand, would be synthesised from the Base Relations by the
data base management system (not the application proérams)

when required by the use of the projection and Join

operations as specifdied in the schema definitions of the . - .. .

Derived Relations.

The data definition language for the Relational Data Model
consists of fewer constructs' than either the Hierarchical
Data Model or Network Data Model since only the relations
(and not the relationships between them) have to be

specified.

53

The relations have the following properties:
(1) There is no duplication in the rows of the relation
(ie no two individual tuples or occurrences are identical).
(2) Row order is insignificant.
(3) Column (ie attribute) order is insignificant.

(4) All table entries (attribute values) are atomic.

Further, each relation must contaiq at least one set of
attributes (sets of Candidate Key attributes) with the
following properties:

(1) No two rows of the relation may have the same value
for the concatenation of the attributes.
(2) If any attribute is dropped from the set of attributes

then the uniqueness property of (1) is lost.

For each set of base relations one candidate key must be
selected as the Primary key. The columns of the relation are
referred to as domains and the domains of all primary keys
are known as the Primary Domains of the data base.

similarly to the other computerised data models the
Relational Data Model supports a Data Manipulation Language.
This langquage allowvs individual tuples to be Inserted,
Modified or Deleted where the values of one of the candidate
keys must be supglied by the application program wishing to
operate on that tuple. In order to maintain data Dbase
consistency, however, the operation must not result in
violation of any of the rules for base relations or
candidate keys aiven above or of either of the followving

data base update rules:

- 54 -

(1) ¥o Primary Key is allowed to be null or have a null
component.

(2) Suppose an attribute A of a compound (i.e.
multi—-attribute primary key) of a relation R is defined on a
primary domain D. Then at all times for each value v of A in
R there must exist a base relation (say S) with a simple-

primary key (say B) such that v occurs as a value of B in S.

7here the Relational Data Model differs significantly fron
the Hierarchical and VNetwork models is in the way in which
the Data Hanipulation Language allows application programs
to establish which tuples of relations on the data base are
of interest because they satisfy some selection criterion.
The distinction is that the result of such selection will
often be more than one tuple occurrence and conventional
programming languages are not structured to process groupé
of records as a whole. They are structured to process each
-record in a group sequentially or based on thg values of key
data iteas. It may be, however, that the .object of the
selection is simply the display of selected tuples on a
Visual Display Unit or Printer or the creation of a more
conventional extracte@ file (which may be viewed as another
‘relation) to be processed later by a program written in a
.suitable language. In such cases the ability to select
tuples based on such a criterion is an important benefit.

Selection is made by the use of the following operators:

RESTRICT - Establish the set of tuples in a relation R
vherc some attribute gqualifies on the basis of a sinmple

algebraic expression involving some constant (or table of

- 5§ -

constants) or some other attribute defined on the same
domain.
PEOJECTION - Drop all but certain columns of R and then

drop redundant duplicate rows.

THETA-JOIN - LET TWETA be one of the =six binary operators
EQ, NE, LT< GE, GT, LE and 1let the two relations R and S
have common domains B1 and B2. The theta-join 1is the
concatenation of the rows of R with Lovws of S whenever THETA
holds between values of BT and 32.

RQUI-JOIN (where the relation is equality) results 1in two
identical columns in the resultant relation.

NATORAL~-JOIN is the Equi-join where one of the redundant

columns is removed.

The above operators may be said to constitute a relational
algebra and implementations have utilised this situation
/CHAHBERLAIN-76/.

Another technigue for allowing sets of qualifying tuples to
be established is in the mathematical notation of the
relational calculus. Here the criterion is defined using two
elements normally separated by a colon. The left hand side
gives the target of the selection and the right hand side
gives the qualification. Thus to select all bank accounts
with a halance of over £10,000 would require an expression
of the form.

G®T ACCOUNT.NUMRER : Account. Balance LT 10000

Many implementors have used the solid wrathematical basis

vrovided by the relationral calculus to devise more "natural®

querv lancuauges to allow end uses to 1interact conveniently

with the data basme /PIROTTE/.

Sysiem ¥ is verhaps the wost sigrificant implementation of
the Helational Data Model /CHAMBERLAIN-81/ and this supports
not anly éueries of the type described above but also the
lanwuage SQL /I3%-SQL/ which supports the
Insert/ﬁpﬁéte/nelete operations in addition to the
relational algebra vhen embedded ir a host programming
language such as PL/1 or COBOL. SQL ‘also makes a further
distinctiorn between ad-hoc queries (which are 1interpreted
and »rocessed as and when they are supplied to SQL in real
tim=) and 'canned' programs (where SQL expressions are coded
into conventional application programs written in high level
lanauages). It is at this point that the similarities between
the HAierarchical and Network Data Models on one hand and the
Relational Data ¥odel on the other become apparent: the act
of «compilation imposes a vermanence on the interaction
ba2tween oprogranm and data base which restricts data
independence and this effect is common to all models. It is
important to realise that this compilation eXercise 1s not
sn2lely necessary to bencfit program efficiency by avoiding
continual interpretation but is demanded because the data
base intcrface will typically form only a portion of an
application progranm Qhere a great deal of the logic 1is
likely to be corcerned with how data 1is manipulated and
revartel after 1t is rectrieved or captured and formatted
pefore it i stored. Currently compilation is essential to
allow such programs to run repeatedly without undue use of

comnuter rrocessing time.

- 57 -

Internal_Structure of Data Base Management Systems.

We have seen that there are a variety of items of computer
softvare which fall under the general title of Data Base
Management Systems - notably the three types described
above. Despite each such systen having its own unique
external manifestation (primarily because each is oriented
towards a specific class of user, _be it end user o7
professional .programmer) it is possible to infer the
existence of a set of constructs which will form the basis.
of the internal representation of any Data Base Management
System. This is notwithstanding the freedon of design which
individual DBHS implementors will possess which willA
inevitably lead to peripheral differences betwveen
implementations. There 1is even some Jjustification in
sugqestiﬁq that a standard internal data base format could
be established which would be a target for all implementors
such that divergence of external appearance would be solely
directed towards different communities of users. Thus, for .
exanple, a centralised data base could be updated by the
application programs written by the professional programmers
for a network or hie;archial data base and at the same time
accesged by the relational ad—hoc queries of sophisticated
end users vwithout the requirement for an abstraction process
to incorporate this data into a section of each end user's
devolved data base.

Hovever the main reason for introducing internal data base
structure into this thesis 1is so that the action of a

Restructuring Mechanism can be considered in a fairly general

- 58 -

context. Thus the following elements of the 1internal

structure of a Data Base Management System are identified.

The Object Schema.

This element may be seen as a table with each entry -
corresponQing to an occurrénce of one of the constructs upon
which the external representation of the DBES is based.
Thus in the CODASYL environaent there'would be one éntry for
each type of record specified in the Schema plus one entry
for each type of set. Similarly in the Relational
environment there would be one entry for each type of base
relation and one for each type of derived relation.

Within each table entry there would be a number of
sub-entries describing how that particular occurrence of
that D3MS construct will be physically represented on a
secondary storage medium by the DBMS. Thus for CODASYL
record the position and@ format of each attribute would
appear, together with details of which attributes can be
found on which storage record and how storage records are
linked together.

The distinction between the 1logical structure of a data
base and its physical manifestation is less significant in
the Object Schema than it is in the external representation
of that schema. Schemas and Storage Schemas must assist in
the human perception of the data base struocture by
Enterprisc Administrator and Systems Analyst/End User alike
and although it is valid to avoid references to physical
storage details in order to achieve a more comprehensible

data base model this argument is not applicable to the

Object Schema which is not viewed directly by a human being.
The other advantage of a distinct Storage Schema - that it
can be re-organised without altering the Schema - can be
achieved equally well whether the Object Schema contains
physical storage information or whether this information

were to be held in an Object Storage Schena.

The Object_Sub-Schemas.

This d&ata base element is derived from the Sub Schenas
associated with application programs when they are compiled.
The sub-schema mnust provide the compiler with details of
the structure of that subset of the data base to be viewed
by that program. In particular the contents of the records
transferred between program and data base via the user work
area must be defined in terms compatible with the constructs
use@ for data item representation in the the 1language in
which the program is written. Thus in addition ‘to using
appIOpriate Data Manipulation Language commands to achieve
the transfer the program must be capable of referring to the
data items within the user work area anywhere in its logic
using instructions iq the normal syntax of the language. So
that the compiler can create valid addresses when compiling
such instructions (or at least delay their resolution to
module linkage editor time or even start of run time) it is
normal to bind the sub-schema to the program fairly strongly
at compilation time. If the sub-schema alters for any
reason it is likely that the program must be recompiled.

Equally if the proaram is altered the sub-schema will

60

re-bound when it is re-compiled.

3

ut the Sub-schema is more than just the definition of some
of the data items used by the program. When the program is
eventually run the Data Base Hanagement System must access
the Object Sub-Schema so that it can determine vwhat
manipulations will be necessary in order to- transfer data
between data base and program user work area. The Object
Sub-Schema may therefore also be considered as a table
similar to the Object Schema. Entries 1in each table are
matched each time the program is run and it is therefore
essential that they are never incompatible. If either the
object schema or object sub-schema 1is altered for .any reason
it must therefore be one of the functions of the appropriate
software to check for compatibility. It is this inherent
abilitv of allowing schema and sub-schema to alter without
the requirement to change the other which provides much of
the resilience to restructuring which is so desirable in any

Data 3ase Management Systenm.

A e — i S b o A e S e .

Operating Systems normally support routines which handle the
transfer of data between programs and secondary storage in
respoase to the TInput/Output instructions embedded in
conventional programming languages. Similarly Data Base
Manacement Systems must provide ‘routines which handle the
transfer of data between programs and data base in response
to> Data Manipulation Language commands. As we have seen,

howaver, these routines must be more sophisticated than

- 61 -

those of the operating system since they nust manipulate
data items by reference to both object schema and object
sub-schemna.

Different implementations may bind the routines 1into the
programs at compilation time or module linkage editor time.
An examplg of this approach is the concept of Batch INMS
programs as opposed to on-line Message Processing INS
programs working in conjunction with'a central INMS Control
Program. The alternative to binding the routines 1into the
application programs is to have 1library copies of the
routines available for execution when required. This type
of binding has the advantage that the routines themselves
may be amended if recuired without having to recompile the

application prograns.

Database_ Records.

The bulk of the data base will, of course, normally be
occupied by occurrences of storage records. The 1981
CODASYL Journal of Development has described in some detail
how these records would relate to the 1logical records
defined ir the Scheqa and it would seem that this approach
would be relevant to the comprehensive implementation of any
class of DBMS. Logical records themselves will not exist as
distinct entities, they will simply be agglomerations of
storage records.

Zzach occurrence of a storage record will be characterised
by a uniaue storage address within the data base. The

method of construction of the address will depend on the

62

implementation dbut typically it would be composed of the
volume number of some disc pack together with an address on
that pack. The 1981 COD2SYL Journal of Development suggests
that all storage records will contain a version number so
that they may Dbe reorganised without impacting any
applicatiqp programs. This thesis proposes a further
version number which is applicable to each 1logical record
rather than any of its constitugnt storage records.
Nevertheless this version number must be held somewhere for
each record occurrence and iaplementors could hold it on
each correspondina storage record or possibly only on the
first such storage record for each 1logical record
occurrence. Alternatively a mapping between storage record
version numbers and schema record version numbers vwould be
feasible such that a range of storage record versions were

equivalent to the same schema record version number.

Peripheral Data.

The final element in the internal structore of a Data Base
Management System covers several miscellaneous items of data
which must be held.‘ In addition to a library of Data Base
Procedures, a table of Onen Area Indicators and a Free Space
Directory it is particularly important that a mechanism
exists to allow application programs to navigate from one
record occurrence to another using the constructs of the
Data Base Management System being supported. The debate on
procedurality of Data “anipulation Language i1s concerned

with whether the D3BMS or the program should perform the

- 53 -

navigation - but for the internal organisation of any DBMS
inter-record association is alvays essential if continual
exhaustive searches of the data are to be avoided.

Physical juxtaposition is the simplest method of
associating two ‘records but data bases invariably require
one record occurrence to be associated in different ways
wvith different record occurrences and this approach is not
feasible 1in this case. Purther it‘ presents problems if
another record occurrence 1is to be inserted between two
associated records. More practical inter-record
relationships can be implemented using pointers embedded
wvithin data base storage records (like the schema recorad
version number, either repeated on each corresponding
storage record or only present on the first record) which
can either point to an entry in an index containing record
addresses or can theaselves: conéist of an address.
Alternatively indexes can be set up for each type of
relationship containing the address of record occurrences.

with a cross index of record key to index entries.

- 64 -

Chapter U4 — Restructurinra a_Data_ Base.

Changes To_Computer Svstems.

The rapid@ growth of computerisation over the last 30 years -
has presqpted many challenges to the data processing
professionals who have nurtured the science through its
formative years. One particularly'siqnificant challenge has
beer to allow the computer-based application systems to
react to change. Analysis of wuser requirements normally
provided a sound basis for the development of systems to
allow data to change in value in an orderly, efficient and
controlled manner. It has become apparent, however, that
changes to the systems themselves, and especially to the
structure of the data they maintain, cannot be achieved
without a great deal of .effort on the part of the data
processing staff.

The effort required to produce systems in the first place
in terms of &nalysis, design and programming effort is often--
significant and can have a profound effect on the structure
of each system and may even determine whether the system is
developed at all. .The process can be 1likened to the
architectural and ciQil engineering effort required to
create, say, a new building — investment in Research and
Developmernt at this stage should, in gereral, be reflected
in the quality of the finished product. But where computer
systems differ from buildings 1is that they tend to alter
continuously throughout their lifetimes. Perhaps buildings,

too, would alter to reflect changing patterns of wusage if

this were practicable, Perhaps 1t 1is inherent in human
nature that 1f something can be altered then it will be
altered but if alteration is impossible then methods will be
devised of coping with the unaltered article. The ‘'soft?t
nature of computer programns makes them theoretically
amenable t? virtually any required change without actually
scrapping and rewriting the original systen. This is
something of a new environment for any professional
discipline - design of computer systems is an evolutionary
process whereas other creative processes result in an
immutable end product. There 1is, therefore, no established
criterion with which to compare the effort of change with
the effort of creation but it appears that such changes
require a disproportionate amount of programmer time.
Individual changes are often made on a piecemeal basis and
are justified on their own merits, but it could well be that
the objective of such changes could be achieved with far
less effort if the <change had been incorporated into the
original system design. There 1is, however, a measure of
creativity within the human thought process which is
stimulated by the practical‘achievement of aims and it is
thercfore wunlikely that the art of analysis can ever be
refined to such an extent that all possible future -
directions can be foreseen and even if they are whether they
can be incorporated into an economically feasible systen
design.

The problem of constant system maintenance therefore
appears to be one that will plaque computer installations

for the foreseeable future. Any way in which its comsumption

- 66 -

cf programming resources can be reduced will be most
desirable. As an example of the current extent of this
problem the workload of the 80 programmers and systems
analysts in the Bank of Scotland 1is such that only about 10
would be engaged in the development of new systems at any
time. Thq‘remainder spend their time on the onerous task of
amending existing programs or writing new programs to be
incorporated into existing systems. Further, as the usage
of its computer by any organisation increases over the years
the design of existing systems imposes wmore and more
constraints on the design of new systems since interface
between systems 1is virtually unavoidable and is often
desirable.

In the embryonic stage in the installation of a computer
application there are often a multiplicity of changes
reguired to correct errors in the system design or
programming which become apparent only when the systenm has
become operational. Essentially the system has not quite
met the requirements for which it was designed even if sohe
of these requirements were not identified as requirements by
the eventual system user when he was being consulted at the
design stage or were not even identified by the analyst when
he was collating all relevant facts from all users. No
matter how vell analysed and carefully tested, the
shortcomings of a system will not be apparent until tﬁe
system has been put into practice as a tool for those human
beings it is designed to serve - the "End Users"™. Althouéh
it is important to minimise the extent of these

shortcomings, and thus the modifications required to correct

- 67 -

them, the changes at this time are largely expected (at
least in general terms) and the effort required to carry
them out can be scheduled and costed as part of the systen
development plan.

Today many systems have long ago "bedded in"™ in this way
but they are still changing. Often the useré of the systeams .
have identified areas where enhancements would allow them to
perform their allotted task within ‘the organisation more
satisfactorily. The motivatior for such proposed changes
can stem from influences outside the user's immediate frame
of reference which have altered the end user's Jjob in soame
subtle way. Alternatively some individual may simply have a
creative thought which puts a different perspective on the
analysis on which the system was desigrped. Indeed the
activities of any organisation are a moving target for
analysis and it is only rarely that all future eventualities
can be foreseen and taken account of in an original system
design. It is this on-going system enhancement effort which
is the major drain on valuable programmers time in many

computer installations.

Difficulties Associated with Changina Computer

Applications.

It is important ¢to establish a perspective on thevreasons
why changes to computer systems are so time consuming. Once
a suagested chanae to a computer system has been mooted the
analyst must determine how it <can best be incorporated into

the system desian. Typically this 1is not a source of

- 68 -

inordinate analysis ard design effort. HMany changes consist
of enhancements to the content and/or presentation of systenm
input or output or even the addition of new forms of input
angd output. Thus the replacement of a
punched-card-input/printed-output batch computer system by
an on-liqg Visual Display Unit input/output system might
involve little change to the system structure - only to the
timescale of transaction processing by the systenm. A good
systeam design will be amenable to such changes and it should
be fairly obvious how the design philosophy can best be
expanded to cater for the alteration.

Once a change to the design has been agreed it must be
implemented by changes to the comrputer programs in the
system. In the early days of programming it was frequently
the case that the programs themselves were fragile in that
they could .not be changed easily. 1In particular this was
the case where they were written 1in low level languages and
used *tricky' techniques to minimise program execution time
or memory size. Often the clever trick of one programmer
would become the millstone round the neck of a maintenance
programmer several vyears later. Discipline in programming
practices, especial}y with well defined programming

standards together with the widespread use of structured and

modular programming in high level lanquages, has
significartly reduced this problem in recent years.
Nevertheless the most fundamental systenms of many

organisations tended to be developed many years ago and
there are many legacies of programs of this type.

The most time consuming source of maintenance effort comes

- 69 -

from the requirement to ensure that each change is
adequately tested and {perhaps most importantly) has no
adverse effect on all of the existing functions of the
system. The establishment of comprehensive system test beds
are vital to this operation but each successive change to a
systen wil% require execution of an adequate set of tests to -
prove that no existing function of the system has
inadvertantly been corrupted together with additional tests
specific to the change being made. The time required to
implement a change to a system is therefore dependant on the
complexity of the system as well as the complexity of the
change.

There is therefore most scope for reducing the time taken
to amend computer systems by the introduction of techniques
which minimise the effort to re-test the entire systen.
Techniques which compartmentalise the system such that the
extent of testing is 1limited are desirable and Data Base
Management Systems provide such a techhique in the area of

the storage of data on secondary media.

Change_as_Seen_by Data Base_ Hanagement Systenms.

The use of a Data Base Management System does not remove the
reguireaent té change computer systenms. Exactly the
opposite -~ the presence of the DBMS encourages users to
think of the system as flexible andithey are therefore even
less reluctant to propose enhancements. One of the reasons
why organisations install a Data Base Management System in

the first place is with the intention of making change less

- 70 -

traumatic for data processing staff and end users alike.
Yhether eyisting D3MS offerings achieve this objective is a
matter of debate but is it evident that Data Base Management
Systems should have some contribution to make to the smooth
implementation of system changes. Preferably changes should
be transpagent to all programs with the exception of those
programs whose changes dictated the data base change in the
first place. Even these prograas shou}d be presented with a
realistic migration path to ease the effort required for
their modification.

The classes of data independence offered by Data Base
¥anagement Systems are intimately associated with the

reasons why changes to application systems are postulated.

The requirement for Physical Data Independence stems fron
the m@motivation to alter systems because they consunme
computer resources in some way which is contrary to the
interests of the computér installation as a whole. - The
pressure for change normally comes from the computer
operations staff and in particular from the Data Base
Administrator in his resource monitoring role. It may be
that the monitoring bas identified a system which consumes
more than its share of processing or input/output resources
and overtures would be made to ascertain whether changes
could be made <such that the system could operate in a
different fashion and thereby consume less resources
(possibly at the expense of overall run times). Date Base
Management Systems permit certain of these types of changes

without change to the ©programs themselves and therefore

- 71 -

remove the requirement to re-test the system. Occasionally
the users of a system may observe that critical response or
deadline constraints are not being met and will therefore
suggest a system change. Such a change might imply that the
system could respond more satisfactorily if it utllised its
processing‘ or input/output resources differently. Once
again the Physical Data Independence of Data Base Management
Systems promises some measure of resi}ience of applications
to the reorganisations necessary to accommodate such
changes. Since the 1logic in the application systems is not
considered to be unsatisfactory in either of the above
situations it must be considered as a constraint on the
design of any DBMS that as much flexibility in this area is
provided as possible. This applies equally to Centralised
Data Bases and to Devolved Data Bases. The mapping of the
(conceptual) schema onto the (internal) storage schema is
generally the vehicle for achieving this progranm
transparency. The more sophisticated this mapping the more
changes can be made without the knowledge of either fhe
application programmers or the end users. The Data Base
Administrator can aonitor the usage of the DBMS and
reorganise as necessary until an optimum operational
environmenrt can be achieved. It is feasible to design the
data base management system such that it organises its own
data storaqge and thus achieves this optimisation
automatically /STOCKER & DEARNLEY/ /BATORY/.

There are other types of change which result from an
inadequacy of computer resources and these often require

stored data structure to be altered:

- 72 -

The computer used to process the data may change.

The operating system may change or be upgraded.

The Data Base Management System may change or be upgraded.
The medium used to store the data may be altered such that
access has different characteristics.

The physigal disc pack used to store the data may fail or
require backup.

The data may be required 1in a more economical format
(better clustered - less unutilised free space etc - garbage
collection).

The technigques used to represent inter-record relationships

may be revised in the light of usage.

Technigques to handle these types of change are common and
although the causes of the changes are very different the
processes for implementing them may use common logic. In
particular some of the routines used by the DBHS for
accessing data on the data base may be equally kvalid for
reorgqanising that data. An example would be the 1logic to
avoid deadlock which would be necessary if a record is being
modified because it 1is being reorganised or if it is being

updated by an application progran.

Logical Data Independence 1is not concerned with the
consumption of computer resources but, rather with the
evolution of computer systems to reflect the changing
requirements of the end users. Within this context it is
apparent that two different philosophies have developed

(either by accident or by design) and this 1s why the

categorisations of Centralised and Devolved Data Bases have
beenr suggested.

The Devolved Data Base approach tends to advocate a stable
data base environment for each restricted compunity of users
of each devolved data base. It is parficulariy important
that querigs can be formulated in a consistent manner which
re€flects the structure of the enquirer's perceived universe
which is not envisaged as altering significantly as time
pisses.

The Centralised Pata Base Management System cannot rely on
a stable perceived universe and correspondingly stable
progranms since 1t must cater for a multiplicity of users.
The types of DBNS designed for this environment 1limit the
perception of each application program by the sub-schera
construct but retain its universal applicability by ensuring
that each sub-schema is a subset of the schema. Any record
or set quoted ir a sub-schema must have a corresponding
entry in the schenma albeit that that entry contains
additional memher record types (for a set) or additional
data iteas (for a record). If an application system change
js identified which requires a change in the sub-schena used
by its programs it may therefore be necessary to alter the
schema to maintain the continuity between the two. "~ But
altering the schema must imply also the alteration of any
sub-schamas covering the area being changed and this in turn
would require modification of the programs which used those
sub-schemas. Pestructurina in a Centralised Data Base
environment 1is therefore a facility provided to aid the

productivity of the application programmers when they modify

- 74 -

computer systems in response to the changing requirements of
tae users of those systems. It should winimise the effort
to wmodify the programs and by restricting the areas of
change should reduce the extent of the retesting required to
deponrstrate that the new structure adequately supports all
applicatiogs. Although the restructuring 1is performed by
the Data Base Administrator it is not carried out at his
behest and he personally receives no tanqible behefit from
it. It 1is a more complex subject than reorganisation and
mist be viewed 1in conjunction with other aspects of

application systems evolution.

Restructuring_a_Devolved_Data Base.

¥e have seen that the stability of the perceived universe
of any particular user corresponding to his own devolved
data base reduces the frequency of restructuring of that
data base. The definition of the devolved data base ensures
that the changing requirements of other individuals within
the same organisation have no impact. The three sections of
the devolved data base support this stability to different

extents:

The abstraction of the centralised data base will alter
onlyvy very rarely. This reflects the inherent stability of-
the corporate goal ‘of the organisation. Although each
sectinon within it m@may be a microcosm of change the overall
ohjectives of most organisations are well defined - to

rofit in a section of commerce where the organisation has
q

- 75 -

expertise, to manufacture some class of artifact etc. - and
the coamonrly used items of data within this framework will
remain constant. Even when this data changes it will be
possible to maintain the stability of the abstraction by
altering the mapping from centralised to devolved data base
to comnpensate for the change. Alternatively if an
application program is providing the interface it can be
altered by the data processing staff to reflect the new
structure of centralised data base while retaining the same
output to the devolved data base. This situation has a
parallel in the way a centralised application would alter to
reflect a structural change while retaining its existing
output (e.qg. printouts, displays etc.). In a banking
exanple a program to identify all customers who had exceeded
their overdraft 1limit and present their information to a
devolved data base for the use of the 1lending control
department would require change if the limit were to be
applied on a customer (rather than account) basis but it
must still identify the correct deviant accounts.

Occasionally a change to the central data base will
necessitate an alteration to the devolved data Dbase user's
perceived wuniverse and thus to the abstraction of the
centralised data base. In such circumstances the end user
must alter his programs if they are to reflect what he now
considers to be the '"true"™ structure of the organisation’'s

data.

Devolved data base users are also entitled to expect a

degree of stability for the section of their data Dbase

- 76 -

giving information on the "outside world". They must decide
vhat information is to be considered within +their universe
and it is therefore their own prerogative to ignore any new
information which becomes available if they do not consider
it relevant. If the outside world does undergo an
irrevocable change there is 1little alternative buf to
incorporate the change into the devolved data base and make

appropriate changes to the end user's prograams.

The third section of a Devolved Data Base, where the user
captures and updates the data himself, is likely to alter
from time to time at the wuser's discretion. This data,
however, is the sole responsibility of the end user and is
outwith the control of the Data Base Administrator. As
such, its change cannot impact on any other users and change
to structure with appropriate 'change to programs is an
exercise which can be undertaken by the end user himself in

isolation from all other end users.

Just as it was observed that many of the routines required
by the software to reorganise a data base for any of a
multiplicity of reasons would be commonly used it is likely
that structural changes could be achieved within the general
design philosophy of a devolved data base. It is - the
motivation behind the change which is different and this may

indicate a shift in the priorities of the software.

- 77 -

Pestructuring a_ Centralised Data_ Base.

This thesis 1is primarily concerned with the restructuring
of the single centralised data base maintained as a common
resource for _a vide -spectrum of end users by application
programs wéitten by professional data processing staff. The
data processing department may be considered as a service
centre within the organisation which'is prepared to bear
some inconvenience when the data base is restructured in the
interests of keeping their entire 1library of programs
operating on a sinéle consistent data base structure. It
would often be in the interests of the data processing
department to view its data model of the organisation as a
continuously altering but instantaneously accurate picture
of the "current™ state of the organisation. A universally
applicable data base management system model is desirable at
this level in preference to a plethora of such models which
reflected the view of the organisation at times in the past
when individual systems vere implemented or modified. This.
approach is particularly true for the 'strategic' systems of
the installation which carry out important roles such as
data value update but as a consequence of their central
position within the framework of systenms require
modification fairly frequently. Other more peripheral
programs within systems wmight present less pressure for
modification if this can be avoided. ' In addition to the
provision of facilities to restructure the data base and to
allow appropriate changes to programs the restructuring

mechanism must therefores provide for emulating historical

78

states of the data base structure against the current state.
This emulation would allow decisions to be taken as to which
programs to update but this is considered as a less
desirable approach than modification of all systems at the
.time of the restructuring since it defers program change
rather thag dispenses with it. The decision as to whether a
program should be considered as strategic or periphéral‘
should be the province of the Appl;cation Administrator
since long term convenience must be weighed against short
term implementation cost and it is important that the result
is not coloured by the interests of the individual entrusted
with the system modification which necessitated the the-
change 1ir the data base structure. To enable a phased
implementation of system changes the restructuring mechanism
should provide for the possibility of considering some
strategic programs as non—-critical such that they are

modified at some convenient time after the restructuring.

Io(@al'.‘py Guqnje /ee7q£ red

!

U/oo(ate Schema To Ke PlecT
N@u S’Cruchfe

For S]s Tems Tnvolveol in
(Ccr 0[aa:\ e ES Lab/ts/\
WheThes Perc,'ohem’ or S‘&Je

Pertf}\y \
STvrale
2

EmulaTe Old STeuctute A/re(Sub-Schen
P Leave Cretually . and Pogea, ’—ji o
ro(7 ram Una [Tered Rep/&;Neu Structure

- 79 -

The timing of changes can be more critical in a centralised
data base than 1in a devolved data base since rather than a
single user or closely associated group of users there will
be many users all wvwith diffefent claims on the availability
of the data. ¥here enhancements to a system are the cause
of the reitructuring it is reasonable to expect users of
that system to sacrifice availability of their data for some
time but where a system is not alteriqg in its function it
is more difficult to present such arguments for
unavailability. In some circumstances the option of making
data unavailable is just not feasible because of the pature
of the data base - one only has to consider Airline
Reservation Systems and Bank data bases supporting 24-hour
automated teller machines. Such considerations apply not
only to the restructuring of these types of data base but
also to virtually the entire spectrun of their
reorganisation /LUCKING-7HB/; Thus there may be no available
time slot when a restructuring operation may be run on‘soms
centralised data bases to the exclusion of normal prograﬁ
access. Furthermore the nature of the programs and data
involved in certain fundamental data base structural changes
vould often demand that a period of parallel running would
be required to convince auditors that the change was having

the desired effect.

Eestructurina_Strategies.

In situations where a data base can be made unavailable to

its user (s) for some period of time the most straightforward

- 80 -

approach to restructuring would be carry it out in discrete
stages. This would normally be appropriate for any devolved
data base and in many occasions for a centralised data base.
The following steps would be typical:-

(@) Unload the data Dbase in accordance with the
correspond%ng schema to some backup storage medium (e.g.
magnetic tape).

(b) Alter the schema to reflect thg desired change.

(c) Alter the data Dbase backup to ensure that it
corresponds with the revised schema.

(d3) Reload the data base from the backup in accordance

with the revised schema.

Such a process 1is an example of a Static Restructuring
Strategy. A variatiorn may be obtained by operating on the
data base in-situ rather than on- a backué copy but this'may
~present practical difficulties for certain types of change.
Some of the operations in this procedure are convenient
since they are required in any DBMS td facilitate the
integrity of the data by occasional archive and recovery as
required. Garbage collection, too, is convenient using this
approach since it is. easier to position data efficiently
vhen it is reloaded in its entirety.

There are some types of static restructuring where data is
still available to end users for the duration of the
restructuring. The data base, for example, may be archived
while it is still being updated /IBM~-DBRC/ or certain access
paths may be altered while the data base is on-line /VAO/.

#here a restructuring mechanisa is implemented which allows

the Schema, the application programs and the data Dbase
jtself to alter while the data base continues to be accessed
by application prograas (inéluding those being altered) that
pechanism may be said to provide a Dynamic Restructuring
Strateqgy.

)

Princivles of Restructuring.

A Restructuring MNechanism (Static or Dynamic) must operate
on the three elements of the Data Base Management System.
(a) The Schema.
(b The Data Base (possibly in the form of a back up
copy) -
(c) The Application Programs.

The cause of the restructuring is a requirement for program
modification in one or more uapplicatibn systems which
establishes the revised structure of the data base and,
therefore, its description %ithin the schema. The change in
turn may require changes to‘other application systeﬁs. We
have seen that the schema has both a source and object
manifestation as do application programs. The established
techrique for alterinq application programs 1is to alter the
source and TrTecompile to produce a revised object version;
The use of texf editors has made this operation relatively
straightforward. It does, however, 1imply a lack of
continuity between each succeeding version of a program and
it is this 1lack of control over program change which
‘requires exhaustive system testing after each modification.

The close relationship hetween the schema, sub-schema and

- 82 -

data hase makes the problem of continuity even more acute if
the Schema 1is to be amended. The schema must always reflect
the actual structure of the data base and the sub-schemas
must always be subsets of the schema. No implementation of
a data base management system can permit an error to be made
such that there is an anomaly in this situation. But the -
more tightly the DBMS can preserve this continuity the less
responsibility 1is left for demonstrating its accuracy by
system retesting.

The following approaches might be used by data base systems‘

to achieve this end.

lq[),oloac‘\ | - Schema Ke’comf{/a {ion

oLD " Amend Via NEw
y SouRcE
e . TexT Editov W iins |
ieOMP;.'e ‘eomp‘ le
|27}
et 2ty
OQTEcT
Sgéﬂ” ' / SCHENR
eonPARE é «———— ey
VA1 DA
oLD _— \%%'Zme
DATA. BASE :
/)pprvac/\ Q- ObiecT Schema ”aaliﬂc'ca'(i:m
ORIGINAL
sSourcé :
ScHERA
seneo® CHANGES
@omp;'e
UPDHTE SuA 25:;5{76
LIBR
- - b g B Sieg
SCHENA
l . / & Decompe le NEw
3 ?
a7 BASE Dhﬂ? BASE SCHENA
A

1 s —— — -
I — NExT erantE I

— — — T "NExT CHaneE

-83_

The first approach therefore has the advantage that it
utilises an existing item of software 1in the text editor in
addition to two utilities which the DBMS must provide (viz:
the Schema Compiler and a Compare and Validity wutility).
The second procedure uses 3 DBMS utilities (Schera Conmpiler,
Opdate anqi Validate utility and a Decompiler). Note that
schema compilation is only required once in the lifetime of
a data Dbase since the object sqhema it creates 1is
subsequently updated by successive runs of the Update and
Validate Utility. In the circumstances it is reasonable to
suppose that the compiler would alse be used to set up an
initial data base (i.e. a data base with no records or
inter-record relationships but with sufficient "hooks" to
allow application programs to add record occurrences vwhen
they eventually run). The Schema Changes can be described
in a langﬁage similar ¢to that wused for the original
definition of the Source Schema and it 1is therefore likely
that some of the logic for the Update and Validate Utility
could be incorporated from the Schema Compiler.

Wwher the implementor of a Data Base Management Systenm
decides how 1t will incorporate restructuring he must
therefore choose one.of these alternative approaches. He
must conéider the relative complexity of the various iteams
of system software as cos constraints within the design of
the D34S but other factors such as the "user friendliness"
of a system able to identify errors interactively will also
be important. In the past the consideration of
restructuring as Aa peripheral aspect of the overall data

base system has tended to favour the "schema amendment and

recompilation" approach but there are many attractions to
the "nsbject schema amendment"™ approach when restructuring is

integral to the DBMS design.

Objectives for_a_ Restructuring Mechanism.

)

AR restructuring mechanism npust be a versatile tool at the
disposal of the Data Base Administratqr to allow him to act
on behalf of the application systenms designers and
programmers so that they can modify their systems as
circumstarnces dictate while retaining a single centralised
view of the organisation®s data base as a shared resource.
It must be powerful enough to allow a wide range of logical
data structure changes ¢to be performed. It may be that
different mechanisms are appropriate for Centralised and
Devolved data bases since the objectives for the stability
of application programs are somewhat different. A choice of
Static or Dynamic strategies must be available so that the
Data Base Administrator can take the desirability of
continuous availability of the section of data base to be

restructured into consideration.

The mechanism must be functional. It nmust serve the
practical needs of the Data Base Administrator in that it
will permit him to perform common changes conveniently.
Like the design of a programming language the design of the
restructuring mechanism will be a compromise between the
provision of a limited set of primitive constructs with many

invocations of each construct required to describe a desired

- B85 -

charae ard the provision of a complex set of operations
which has the potential to specify restructurings concisely.
In the latter case the required education of the Data Base
Administrator in the language <could bhecome the critical
factor.

“

The mechanism must be convenient. The Data Base
Administrator must be able to speqify his restructuring
requirements in a straichtforward manner while at the same
time being allowed to exercise his discretion as to the most
appropriate strategy for the change being made. He must also
take into consideration the status of the data base at the

time of the change.

The mechanism must be efficient. Restructuring is always a
means to an end rather than an end in itself and it is
therefore incumbent on the restructuring mechanism to
consume as little computer resources as necessary. A Static
Strategy mnust allow the restructuring +to complete within
some target timescale which is acceptable to the end users
who have been deprived of access to their data base. A
Dynamic Strategy must allow application programs to continue
to access the data base while it 1is under way with any
deagradation of response during this period being kept within

agreed limits.

- gé -

Chapter 5 - _Other_ Apnproaches to_Data Base_ Change.

The process of continual evolution of the logical
structure of a «centralised data base together with the
parallel process of evolution of the application programs
operating‘on it is the particular aspect of data base change
addressed in this thesis. From time to time the data base
must be restructured so that it can continue to be an
accurate model of the organisation which maintains it. In
particular the CODRSYL proposals for a data base management
system suggest a definition of restructuring as the
operation of altering the data base schema and the
consequences thereof (as opposed to the alteration of the
storage schema (reorganisation) or the sub-schemas).

Although little research work has so far been
concentrated into this type of <change within data base
management systems there are several sources where
developments ha§e been described in closely related areas.
This chapter considers those areas where there 1is sone
measure of commonality and notes where previously described
techniques will be applicable. 1In some cases differences in
approach between the proposals described here and those

described elsewhere are highlighted.

The_ Spectrum of Data_ Base_Change.

We have seen in Chapter 2 that a data base may consist of

4 types of schema:

- 37 -

i) The Conceptual Schema

b) The Data Ease Schema

c) The Storage (or IYnternal) Schenma

2) The Sub-Schemas (or External Schena)

In the Qierarchy of muotual dependence of these scheras a
change to the storage schema (within certain limitations)
should not require changes to the qonceptual schema, the
data base schema or to anvy sub-schema. The motivation for
such changes would be to reduce performance overheads.

Similarly, certain changes to sub-schemas should affect
néither the data base schema nor the sStorage schema. They
would be an 1inevitable consequence of certain types of
enhancenents to application programs where a change 1in the
programn's ‘'view' of the data base was required.

Changes to the schema, on the other hand, cannot
gquarantee to preserve the integrity of the storage schema or
the sub-schemas since both are dependant on the structure of
the schema for their own structure.

Ry the same token a change to the Conceptual Schema would
normally dictate <changes to the Data Base Schema (and
consequently changes to the Storage Schema and Sub-schemas)
sirce this 1is essentially a translation of the Conceptual
Schema into the constructs of the Data Description Language

of some Data Base Manragement Systenm.

In a tutorial paper published 1in 1979, Sockut and
Goldberg aive an overview of those requirements which they

vicw as necessary for handling changes to a data base

_gg-

/SOCXJT & GOLDBERG/. They use the term 'reorganisation! és
a generic description of the entire spectrum of change from
‘restructuring®' for changes to logical data structure to
‘reformatting' for changes to the way in which data is held
on storage media. The spectrum of change is illustrated by
several exgmples ranging from (at the restructuring end) -how
the data base would be expected to react to changes in the
reporting structure of the employees of the organisation
nodelled in the data base to (at the reformatting end) how
clustering technigues for the data on disc could be altered
to improve performance. By broadly equating the CODASYL
Schema to the ANSI/SPARC Conceptual Schema, Sockut and
Goldberg consider restructuring to relate to changes in the
definitions of attributes and to changes in the
relationships between them. They make the observation that
the. schema to sub-schema mapping will often imply that
application programs need not alter if the schema alters, so
long as the sub-schema which they use has remained
unchanged. There 1is also some discussion of the reverse
process of altering the sub-schema without changing the
schema. The tutorial does not address the motivation behind
data base restructuripg and in particular does not discuss
its close relationship to the process of application systen
evolution. This contrasts with the approach taken 1in this
thesis which emphasises the need for program evolution in
the centralised data base environment while at the same time
identifying particular situations where application program

changes will not be necessary.

- ' —

The spectrum of data hase chanpges was also described in
the CODASYL Proposals when they were first published in 1971
/CODASYL-71/. In particular the distinction was drawn
between changes in the logical data structure described in
the schema and the changes necessary from performance ot
security/integrity considerations. In the subsequent
Journals of Development this view has not radically altered
/CODASYL-78, CODASYL-81/.

The proposals are mainly concerned with the description
of a Data Definition Language (and, in the earliest version,
a Data Manipulation Language which has subsequently been
moved into particular lanquage specifications) and do not
claim to be a complete specification of a DBHES. Thus
certain areas such as Restructuring have been mentioned but
not described in detail. 1In particular the reguirement of a
DBMS to support restructuring is recognised at two points in
the report.

a) In section 2.3.6. a System Support Function is
postula£ed which "permits modification of a schema or
sub-schema and causes the changes to be reflected in the
data base itself. Without such a language, changes to the
schema can only be made by developing an entirely new schenma
and restructuring the data base in accordance with the new
schema®.

b) TIn section 2.3.7. the report recognises that the Data
Base Administrator must have facilities to allow him to
"sodify the schema and compile the changes into the object
schema (and to) modify the data base to reflect changes in

the schema and storage schema'.

_@@-

Tt has, therefore, been recognised that the schema and
sub-schema will alter from time to time and also that it is
probably more desirable to have a mechanism which changes
the schema and data base together rather than one vwhich
alters the data base by examining consecitive editions of
the schema. This approach is adopted in the individual
restructuring tasks identified in Chapter 7. It is the
jdentification of these tasks which has brought to light the
limitations of a Data Definition Language which only permits
the description of the data base structure at a single point
in time. While recognising the applicability of the style
of syntax for data definition described in the proposals,
enhancements have been made here to provide a language which
describes how the data structure is to alter. The
requirement for a description of the current data base
structure is considered as a problem of data retrieval from
an object version of the schema and not directly related to
the process of data capture of the definiti?n of the
structure. Although such changes to the proposéd DDL are
largely cosmetic it is important that the vital significance
of a convenient mechanism to support changes to data base
structure is made more apparent to data base management
system implementors and users alike. The encapsulation of
the DDL vithin a language which supports changing structure
underlines the fundamental requirement for the Data
ﬂanipulation Language Execution Routines to operate in an
environment of changing programs, changing data Dbase

structure and changing object schema.

- QI-

The book "The Codasyl Apvroach to Data Base Management®
/DLLE/ devotes a chapter to Restructuring. It 1is observed
that restructuring is a vital requirement which has been
given little attention and is only described in passing in
the Data Base Task Group report. In common with the view
expressed in this thesis, restructuring is defined (in the
CODASYL context) as amendment to the schema while
reorganisation "is an amendment to the storage schema.
Garbage Collection is considered in its own right as a
utility which can operate on the data base without change to
either the Schema or the Storage Schena. Elementary
restructuring tasks are identified in much the same way as
those of Chapter 7. They are classified as additive,
subtractive and modificational but they are not described in
any detail nor 1is their impact on application programs
discussed. Olle admits that Restructuring is a topic.which
is "...often mentioned but never discussed in detail®". This
thesis is intended to provide such detai}.

There 1is evidence to support thé view that other
researchers have also recognised the relationship between
Restructuring and the information architecture aspect of the
maintenance of a cegtralised data base /KAY/. Conversely
the relevance of reorganisation to systen perforﬁance (in
both centralised and developed environments) is apparent.
Pacilities to generate the revised schema and to populate
the data base using a mapping from old to new schema are
required. Kay also suggests that research is needed into:

3) Impact on Sub-Schemas and Progranms.

b) Impact on the Data Storage Description Language. In

-qg_

particular can this be automatically generated from changes
in the schema?

c) Impact on the Data Base itself. What are the
criteria for it +to change in the event of particular types
of restructuring?

The detailed consideration of the individual
restructuring tasks in Chapter 7 particularly addresses (a)
and (c¢) although the importance of (b) m@must also be

recognised.

The CODASYL framework has been said to support an
intuitive concept of entities, attributes and relationships
/TAYLOR and FRAVNF/. They reflect the ideas which have
evolved with system design over the years and in many
practical situations it 1is wuseful to consider certain
"things" as concrete entities and othér *"things" as abstract
relationships. As a consequence this flexible model of the
organisation, although easily understood by computer
professionals and end uéers alike, is rather volatile and a
volatile model must be amenable to change. Furthermore the
facility to describe the same logical structure in more that
one way (eg Repeatiqg Groups and Sets) implies that there
will be a requirement to move from one representation to
another as the modeller®s perception of the "best" approach

alters.

Logical Changes_and Structural Changes.

Restructuring is generally considered to cover changes in

- g3 -

the Data Base Schema required as a conseguence of changes in
the Conceptual Schema in addition to <changes on the Data
Base Schema which reflect decisions to alter how this will
be wmapped from an unchanged Conceptual Schema. The
" restructuring as a consequence of the change of mapping has
received attention from some researchers in the recent past.
NAVATHE, for example, sees restructuring as "...a tool
designed to 1increase the latitude of a database user with
respect to the choice of structure. This class of change
has been particularly attractive since it is evident that
since the logical structure of the data has not changed
there is no theoretical requirement for application programs
to change. In practice, however, the close relationship
between program and schema has implied changes and
suégestions have been made for automatic programr amendment
techniques. Althoudh such changes only cover part of the
structural changes discussed in Chapter 7 they are reflected
in sggantically equivalent sequences of DML commands and the
work of other researchers will undoubtedly be relevant in
this context.

Sockut and Goldberg discuss this particular aspect of
restructuring at some length in their tutorial. They
suggest that the Conceptual Schema is the model which is
free of all physical storage constraints and its amendment
is therefore equivalent to "pure" restructuring. In
individual implementations it would be difficult to
formulate such a clear definition since constructs vwhich
would possibly be more appropriate at a lower level tend to

be included at higher levels for the convenience of the

- %4’} -

implementation, Like 0Olle®s approach, they suggest that
attributes can be added, deleted, combined, split or
renamed and they further categorise the important class of
change where an attribute migrates from one record to
another as "“Reorganisation on the String Level*®". Examples
are given gf changes in structure which can be achieved by
introducing new classifications of records and migrating
data items to these records.

Fhere a set has an owner record of "Project™ and a member
record of ‘“employee"™ it may be that each enmployee record
contains a data item of "lonrgevity" which indicates whether
that employee is Permanent or Temporary. It 1is therefore
feasible to alter this structure by giving the set two types
of member records (viz "Permanent Employee® and "Temporary
Employee®") and thus dispense with the data item. This
chahge car, of course, take place 1in either direction and a
decision to undertake it is more 1likely to be influenced by
programming considerations than changes in the
organisational model. Typically it might become apparent
that most application programs only require access to the
permanent employees and it would be more convenient to have
these grouped as disﬁinct set members rather than always
Ademanding a test on the Longevity data item to determine

vhether a particular data item is of interest.

In a thesis for the University of Aberdeen WILSON also
identifies the requirement to switch between 1logically
equivalent data structures. The relationship between pupils

and teachers at a school may either be represented as a set

_@35-

"Teagches" with ownar of "Teacher™ and member of YPupil®
where more than one pupil record way actually relate to the
same teacher. Alternatively the same relationship may be
represented by an "Is Taught By"™ set vhere the owner record
is "pupil' and the member record is "Teacher". 1In this case
there will %be more than one teacher record for the same
pupil. A detailed example is also included for a data base
of sheep and the mnultiplicity of relationships caused by
their breeding. Although the Conceptual model in this
instance is both simple and stable (viz:— a ram and a ewe
are related by a mating to produce other sheep) there are
several alternative data base models for converting this
relationship into the set construct (IDS in this case). It
is desirable to be able to switch from one data base model
to another on the light of experience gained from the types

of application programs required-to -analyse the data base.

Hierarchical Data Base Management Systems provide a
structure which is amenable to certain types of change
without impacting on the formulation of queries /DALE &
DALE/. Thus if a query relates to data items 1in a cascade
of nodes within the pierarchy some re-ordering of these
nodes may take place without altering the query.

The criterion for allowvable restructuring operations is
based on the concept of a "Broom Set"™ of nodes for each node
within the hierarchy. These are both the "™Ancestor™ and
"pescendant” nodes of the node itself. Thus in the diagranm

the 3room set of B are A, D and E

- -
- -

B C

- - - -
- - - -

D E F G
A restructuring is allowable if every broom set 1in the
original structure exists at least as a subset of a broom
set in the new structure.

NAVATHE and FPRY have considered several equivalent
structures where hierarchies are enmbedded into more general
network structures. They consider such transformations as
Compression (replacing two consecutive levels in a hierarchy
by a sirngle 1level), Assembly Merging (replacing twin
segments at the same level by a single segment) and
Inversion (the inherent relationship which exists between
each lower level in a hierarchy and the levels above it to
form another hierarchy). They recognise that schema
modification is just one type of data base éhanqe and make
the point that demarcation between restructuring and data

processing is fuzzy.

Application Proaram Stability.

To allow application programs to remain intact in spite
of a restructuring is a legitimate objective since it will
eliminate the expensive and time consuming exercise of
progranm modification and re—testing. However in a
centralised data base environment this objective must be

balanced against the sometimes contradictory objective of

- @7_

having all application programs operate on subsets of the
same basic data structure. This objective of a unified data
structure is less apparent vhen applied to the collection of
devolved data bases 1linked to the same centralised data
base. The objective here is more for the stability of each
devolved data base (and the application programs which run
on it) despite changes on the corresponding centralised data

base.

The Proposals for restructuring tasks in Chapter 7 identify
the criteria which may be applied to an application progranm
to determine whether it will be stable under that task but,
equally importantly, provide a route whereby application
programs vwhich must change are alloved ¢to do so in a
controlled manner without a moratorium onr running then

during the restructuring.

Other researchers have concentrated their attention on
techniques with the principal objective of preserving

application program stability.

An in-place restructure has been implemented at the
University of Pennsylvania /GERRITSEN & MORGAN/ /BEAVER/
which allowvs the data base schema to evolve but which leaves
any record occurrences existing at the time of the change in
the format corresponding to the schema applicable when they
wvere vwritten (a process similar to that required for open
dynamic restructuring). Programs, too, may be at various

levels corresponding to schemas which were operative in the

past. The system then carries out a coptinual emulation of
records and program-—-access-paths by performing up to two
translations each time a record occurrehce is accessed
during an application program run. The first translation is
to a corresponding record (c-record) which is in thé format
defined in the current schema. The second translation is
from the c-record to the generation in force when the
program was compiled. Thus if n versions of the schema have
existed in the past the number of possible transformations
is 2(n-1) rather than n(n-1) which would be possible if a
single translation were made from the actual generation of
the record to the generation of the program which required
it. The limitation on the complexity of transformation
simplifies the implementation of the system but it does
impose significant overheads each time a data base record
not in the current schema format 1is accessed by a progranm
compiled under a previous schema. Limitations are placed on
the types of change which are permitted by use of thg
primitive operations of IRCORPORATE, EXCISE and CHANGE oﬁ

sets, records and data items.

Relational data bgse management systems provide sone
measure of stability to the views of the entire data base
held by application programs /ARORA & CARLSON/. Because of
the essential simplicity of the concept of a relation and
the lack of a construct corresponding to a set it is likely
that the entire data Dbase can evolve by continually
expanding the scope of the base relations. The derived

relations used by application programs would remain stable

@q

since they would be projections of the base relations.
Certain classes of restructuring are said to possess a
“Loss—-less property" where any previous relation can be
recreated by the natural join of relatioﬁs created by the
restructuring. That is any derived relations created from
the previous base relation can still be created from the

join of the newv base relations.

Another proposed technigue which would lead to the
increased stability of programs is the concept of record
sub-types /PALMER/. Where different types of entity have
several properties in common it may be convenient to have a
generic name which can describe their similar qualities in
addition to the specific name for that type of record.
Application programs would not reference the generic nanme
and this would allow a more concise description of the data
in the schema. It would also permit new sub-types to be

added without disturbing the existing sub;types.

Changes_to_Physical Rather_ than_ Logical Structure.

The main thrust in proposing and implementing mechanisms for
data base change has been in the area of reorganisétion of
the way in which data is held on its storage media without
altering its logical relationships and therefore without
altering the application programs which run on it. Thus the
data base can be tuned to optimise its consumption of
computer resources. The CODASYL proposals now provide a

convenient distinction between restructuring (altering the

- 160 -

schema) ard reorganisationr (altering the storage schema) but
in other data base management systems the differentiation is
less clear cut. Research in this area does form the basis
of the techniques proposed for restructuring in this thesis
since in both situations data base storage records must be
manipulated to reflect the new storage schema. If the
schema alters then the storage schema must also alter to

correspond with it.

The EXPRESS project at IBM /SHU et al/ has tackled an
exercise which nany computer installations must undertake,
that of converting a large number of well established
conventional data files into the structures demanded by a
data base management system. A source is quoted where 100
ad-hoc COéOL programs were required to convert 29
application files to data base strﬁcture. The effort in
designing, coding and ensuring the accuracy of such programs
is one factor which tends to discourage organisations from
moving to data base systems in the first place, especially
vhen existing applications have been running successfully
for many years. EXPRESS requires forms to be completed
giving a non-procedura} description of how the data is to bhe
converted. The structure of the .source file and the target
data base must be specified wusing a lanquage 'DEFINE' which
is similar in concept to the CODASYL DDL or the DBD of INS
but is more generalised than either so that it can handle
the wide variety of structures on application files. The
language 1is oriented towards the hierarchies typical of

COBOL files. JYithin a hierarchy the items of data may be

optional, variable 1length or self-describing and a
user-extensible picture facility is provided.

A further language - *'CONVERT®' is used to specify how the
target structure is to be derived from the source. The
primitives of the language are:-

(a) SL}CB - Porm a flat file from part of the
hierarchy.

(b) SELECT - Provide the selection criteria to extract
hierarchies from an existing hierarchy while retaining the
same form.

(c) GRAPT - Porm a large tree by joining two existing

trees.

In addition, data may be manipulated by operations such as
SOM, MAX, MIN, AVE, SORT.

EXPRESS translates 'the non-procedural description of the
conversion into PL/1 programs which are run in 3 stages as
follows;

(a) ~The READ step

This stage checks for inconsistencies between the
specified structure of the source files and the actual
structure and also trapsfers the source files to an internal
file in a standardised format.

(b) The CONVERT step

This derives a further file in the standardised format
based on the input file and the conversion procedures.

(c) The LOAD step

This uses the facilities of the target system (eg IMS) to

load the output of (b) onto the target data bases.

- 102 -

Although the read and convert steps may be combined it is
suggested that this nmight be unwise because of a potentially
high error rate.

BRXPRESS is therefore designed as a tool to assist in the
process of setting up a data base but could also be used to
convert frgp one structure to another or even from one type
of data base management system to- another (eg IMS to

Relational).

The CODASYL Journals of Development in 1978 and 1981 not
only describe a Data Storage Description Language for the
storage schema but also indicate how that storage schema may
be altered to facilitate reorganisation. Like the main text
of the journal of development, the appendix describing the
DSDL does so on a clause by clause basis but it still
provides for a static picture of the data base storage
structure rather than a langquage which allows the Data Base
Administrator to indicate how that structure 1is to alter
from its former state to a new (reorganised) state. The
significant change in this area between the 1978 and 1981
JOD's is that storage records have been given version
numbers much like thqse proposed here for the main schema.
Itiis not proposed, however, that there must be a connection
between schema version number and storage schema version
numnber. They are 1logically distinct and any connection
would be set up purely for the convenience of the
implementation. Fqually, strategies for reorganisation as
Static, Background and Incremental have been identified much

like the Static, Open Dynamic and Closed Dynamic strategies

- 103 -

for Restructuring proposed here. These alternative
strategies all have some merits in different circumstances
so that the Data Base Administrator has the ability to
determine which will be most appropriate for a particular
reorganisation. By mixing the strategies, and in particular
by inclusign of the open dynamic (incremental) strategy the
data base may contain many versions of the same storage
record at the same time. The object version of the storage
schema will therefore contain multiple descriptions of each
type of record (ore for each possible version) each of which
must map onto the object version of the schenma.

It is evident, therefore, that any implementation of a
CODASYL DBMS which supports reorganisation in accordance
with the proposals of the JOD could utilise the same
techniques at the physical data storage level for
restructuring of the schema. But reorganisation is a far
more straightforward (if less frequent) procedure as the
Journal of Development recognises "Although the schema may
change because of changes in the organisation'’s data or
functional requirements, such changes are likely to occar
much less frequently than changes to the storage schema made
for performance anq other reasons", The Data Base
Administrator may carry out any type of reorganisation- - "in
the knowledge that his activities bhave no effect on the
Schema itself and therefore on the application programs
running against the data base'".

Storage records may differ from logical schema records in
either of two ways or by a combination of both:

(a) The schema Tecord may be divided 1into several

- (ot -

subsections with each being held as a unique storage record.
Thus if certain data items are generally referenced more
frequently than others they can be grouped together and
placed on a storage device with a more rapid response tinme.
Storage records for the same schema record are
interconneq}ed by means of pointers.

(b) Different occurrences of schema records may require
different response times and their partitioning into storage
records may reflect this situation.

The discussion on restructuring in this thesis treats
schema records as being entire since, where a schema record
is represented by more than one storage record, these must
be linked so that the schema data structures are preserved.
The precedent for this viewv is taken from the JOD itself
where the discussion of set types and the reorganisation of
the way in which they are physically represented considers
schema records to be entire (ie effectively they have a
single address) .

The principal tasks which can be nundertaken for a
reorganisation are:

a) To alter the way in vhich schema records are
partitioned into storage records.

b) To alter the representation- of a set from direct
pointers to indirect pointers via an index (and vice versa).

c) To alter the method of indexing the stbrage records
for access by key or via set and for:- clustering or
sequencing the records in storage.

Thus, although the work described here was carried out

independently of the Data Base Administration Working Group

- 0@5-

which produced the DSDL, there is a great deal of similarity
in the +two approaches. Nevertheless restructuring of the
schema 1is undertaken for very different reasons fron
reorganising the storage schema and, far from always being
transparent to applicationrn programs, restructuring will
often be a _conseguence of a change to some program and will
require changes to other programs to maintain a consistent
sub-schema to schema mapping. It is m@most likely that an
implementation which supported both reorqganisation and
restructuring would use the same routines to modify the

contents of the stored data in both situations.

Other research work has addressed the problemn of
portability of data between data base management systenms
/PRY & JBRIS/. This activity would probably be as traumatic
as conversion to data base in the first place but as more
sophisticated systems are developed in years to come it will
undoubtedly be necessary to convert from time to time. The
Data Translation Project has concentrated on the development
of a language for the definition of any data structure. With
such a language at least the vehicle will exist for mapping
from the old structure to a target (standard) definition and
from there to the new structure. The sequence would be

Read-Restructure-¥Write /MERTER & FRY/.

Restructurina Technigues.

The techniques proposed for handling the various

restructuring tasks under both open and closed dynamic

- (06 -

recstructuring strategies in Chapter 7 are based on the
allocation of a version mumber to each record occurrence ang
corresponding sub-lists in the object schema for each
version. FPor each task, sequences of operations are
described which allow application programs to continue to
operate dgring restructuring albeit that some of these
programs will alter to reflect the revised structure of the
data.

The desirability of continued application progran
availability during both reorganisation and restructuring
has been widely recognised. Sockut and Goldberg devote a
proportion of their tutorial to the discussion of such
techniques. They firstly examine possible techniques for
static reorganisation as either "in place" or "unload and
reload" but they recognise that application program access
to the sections of data base being updated is likely to be
prohibited. The possibility of concurrent reorganisation is
then discussed and although it is recognised as feasible the.
anthors identify it as a possibly excessive consumer of
computer resources. They make the distinction that a very
large data base is "one whose reorganisation by reloading
vould take 1longer than the users can afford to have the
database unavailable". Such data bases are typical of the
centralised data bases vhere restructuring will be a vital
requirement.

Sockut's studies - of the performance of concurrent
reorganisations /SOCKUT-78/ predict. some degradation in
user response time. Por an Incremental Reorganisation

Sockut has used the Seek, Latency and Read/Write times of a

- 107 -

disc drive to measure the degredation for a single-disc data
base. By assuminag a Markov Chain Queueing Model, Sockut has
used a Stochastic Process to measure the Expected User
Response Time and Expected Reorganisation Time for different
User Arrival Rates. His conclusions are:

1. Results generally agree with intuition as follows:

2. As user utilisation increases then user response tine
and reoganisation time increase. Therefore, if the user load
varies, (eg it 1is low at night) then reorganisation should
be performed during slack periods.

3. As the amount of work performed in one reorganisation
step increases (ie the number of records reorganised before
an interrupt caused by a user access is serviced) the user
response time increases hut the time taken to reorganise the
entire data base decreases.

4, Por typical values of ©User Arrival Rate and Work
performed by EBach Reorganisation Step both User Response
Time and Reorganisation Time have values which can be

considered as reasonable in many situations.

Degradation 1is inevitable since overheads such as
ameniments to pointegs and locations of records are being
incurred wvhich would not exist 1if the reorganisation were
not being performed. The important aspect is not so much
that there are overheads but that they can be channeled in
such a way as to utilise resources which would otherwise be
wasted and at the same time do not appreciably degrade
response time for application programs. The techniques of

open and closed dynamic restructuring do just that. For an

- 08 -

open restructuring there is an additional processing
overhead in manipulating data to the up-to-date format if it
is retrieved but there is no additional Input/Cutput
overhead. Por a closed restructuring it is important that
the restructuring always has a lower priority than any
applicatiog program so the the additional Input/Output
operations of progressing through the data base in the
preferred direction does not delay an Input/Output access
regquest by an application program. Restructuring is
essentially an ad-hoc operation carried out in response to
an 1identified change in data structure. So long as the
resultant overhead is m®minimal (even if it is apparent) the
Data Base Administrator should be able to persuade users
that it is the price they will have to pay (for a limited
period of time) for the structural enhancement.
Reorganisation, on the other hand, is identified by Sockut
and Goldberg as an ongoing requirement to tune the overall
performance of the data base with no obvious benefit to
individual users. The Data Base Administrator would
therefore find it more difficult to "sell"™ any degradation

of response time.

The system which has been implemented at the University
of Pennsylvania supports concurrent reorganisation.
Although it is claimed to be "restructuring®* in its
literature this is é;mething of a misnomer at least in the
terminology of the CODASYL proposals since the essential

structure of programs and data base is maintained. The

system supports nothing akin to Closed Dynamic Restructuring

- [@q-

and appears to make no distinction between programs which
are transparent to the change and those which must alter as

a consequence,

Wilson also describes techniques which would be used to
provide a%restructuring mechanism. The precepts of his
approach, however, are rather different. By recognising
that data base management systems tend to be massive .items
of software he utilises the facilities provided by the DBMS
itself to provide source, transitional and target schemas.
Given that a source schema exists and that a target schema
can be identified which will describe the desired data base
structure, Wilson proposes a Transition Schema Synthesis
La nguage (TSSL) . This would enable the Data Base
Administrator to describe an interim transition schema which
enconmpasses both structures and at the same time would
generate code to convert from the source schema to the
transiiion schema and from the transition schemi to the
target schema. A further Restructure Control Languaée would
then be used to group the generated code into restructure
programs and to generate a stream of runs of these progranms
to effect the restructuring.

The Data Base Control System can therefore remain largely
intact since the programs generated for the restructure are
executed as run units Jjust 1like applicationAprogram run
units. By judicious use of established data base concepts
such as sets with owner of SYSTEM, data base procedures to
alter data item format, and SOUORCE and RESULT data items to

micrate data between owrer and member records of sets, an

- o -

environmert is set up which gquarantees the integrity of the
data by relying on the existing facilities provided by the
DBMS for this purpose.

By demonstrating that coexistent restructuring is
feasible and can be implemented without prohibitive
degradatio& to existing applications by the expedient of
sectionalising the activities into a number of discrete run
units, Wilson has underlined the relevance of research in
this area. The approach of this thesis, however, is
somevhat different in that it does not assume any contraints
imposed by the structure of existing systems. Rather it
assumes that, to allow application programs to evolve so
that they reflect the new structure vhile at the same time
cbntinuing to operate for the duration of the restructuring,

significant DBMS redesign would be required.

Pacilities for Chanae in BExisting Implementations.

\
Both Sockut And Goldberg and Wilson have described the

reorganisation facilities provided by several existing
implementations of data base management systems. They also
recognise that very little is currently provided by way of
restructuring although the distinction between the two itenms
is particularly vague for existing sof tware since
implementations do not tend to support a separate storage
schema but rather have many of their storage concepts
defined in the schema. I have written to several
manufacturers recently (late 1982) and their response

indicates that Wilson's conclusions are still valid that

- fhy -

"__.it is necessary to perform certain restructures in
stages interposing one-off application programs between each

stage"™ /IDMS/,/ADABAS/,/TOTAL/,/1BHB-INS/.

The technigues used by INS for "“off-line" restructuring
vill now Qg described as a_ typical example of how far
existing implementations facilitate .change.

IMS supports hierarchical data base structures and an
organisational model will therefore normally consist of a
number of data bases. The full network can be modelled by
superimposing logical data base structures which transcend
the physical data base structures by means of pointers .
between then. The structure of both the logical and
physical data bases is defined on the Data Base Description
(DBD) library and this is therefore roughly equivalent to.
the CODASYL Schena.

The process for restructuring an IMS data base operates

as follows:-

An Image Copy unload program is run which uses the Data
Base Description to write the physical data base (together
with its pointers fqr logical data bases) to a standard
format of sequential file. The DBD Library Modification
Program is then used to modify the Data Base Description as
required. Finally the Reload Program uses the new DBD to
carry out any necessary modifications to the data base
before recreating it on disc. RNo updates may be carried out
on the data base by application programs for the duration of

this exercise.

-2 -

Functions which may be performed on the data base are as

follovws: -

() An existing segment (ie Record) type can be deleted
" from the DBD provided all segments of this type were deleted
from the data base prior to the execution of the Unload
Utility.

(b) New segmenrt types can be added to the DBD provided
they do not change either the hierarchic relationship among
existing segment types or the concatenated keys of logically
related segments.

(c) Apy field (ie Data Item) except the one for the
sequence field of a segment can be changed, added or
deleted. No attempt is made by IMS, however, to alter the
data content of a segment.

(d) Existing seément lengths can be changed. IMS cannot
alter the data content, however, except to truncate data if

the s%gment is made smaller.

These restructuring functions are consistent with the
level of transparency offered to application programs by IHNS
wvhen they access a Qata base. Each program must have a
corresponding Prbgram Specification Block (PSB) on the PSB
Library. Bach PSB - consists of a number of Prograsn
Communication Blocks (PCB) with one such PCB corresponding
to each data base accessed. Thus the PSB roughly
corresponds to the CODASYL Sub-Schema. The PSB gives a view
which limits the program's ability to access data (eg it

could indicate that the program may read but not write or

- 0103 -

update the dJdata base) - thus the data base could still be
accessed during restructuring.

Application Programs need only be 'sensitive' to certain
of the segments of the data Dbase. This allows the
restructuring to delete and insert segments transparently to
the program. Programs may also be sensitive to segments
wvhen they 1issue subroutine calls to access the data base
using the DL/I Sub-language. This is done by gualifying the
DL/I Call by Segment Search Arguments giving the name of the
segment to be retrieved.

Further, the program need only be 'sensitive' to certain
fields in a segment. This allows fields to be deleted and
inserted transparently to the program. Unlike CODASYL there
is no definition of data item format on the DBD or PCB and
there is therefore no question of amendment to data itenm
fofmat.

The process of unloading and reloading a data base can be
very swift (perhaps taking only a few minutes) but the usage
of pointers to cater for logical data base structures may
extend the reload process out of all proportion. The
pointers on the reloaded records (i.e. to other physical
data bases) will not.present any problems but any pointers
.on other data bases to the data base being reloaded wiil
have to be altered to reflect the new addresses of records
on that data base. If this were to be done by direct access
to the records containing the pointers there would probably
be a significant overhead in disc head movement and
therefore in overall execution time. Sorting and

overwriting the pointers sequentially could reduce the

- 004 -

overhead.

It is overheads such as this that make installations
reluctant to reorganise their data base but so 1long as the
overhead is inevitable they would be more prepared to accept
(and even encourage) change if it vere to be carried out by
the consumption of otherwise spare resources and without

degradation in response times.

- 1§ -

9!
1=

apter 6 - n proposed Restructurinag__Mechanism__For__a

CODASYL Data_Base

We have seen that there is a spectrum of approaches to the
provision of a data base management system from those
primarily directed to the devolved data bases under the
control of their own sophisticated end users to those
directed towards the professional data processing community
controlling the single centralised data base of the
organisation. We have observed that there is a
corresponding spectrum in the requirements for a
Restructuring Mechanise from one extreme where the desire
for application program stability is the prime concern to
the other where there is an attraction in an instantaneously
accurate Dbut constantly altering data model of the
organisation.

The Data Base Management System Nodel proposed by the
CODASYL Data Base Task Group is orieﬁted towards the
professional data processing community for use on the
centralised data base of each organisation. The structure
of the Data Definition Language encourages a single data
base within the orggnisation and the procedural Data
Manipulation Language embedded irn common host languages like
COBOL and FORTRAN is in keeping with the languages which are
typically used by data processing professionals.

It is therefore proposed that a Restruéturing Hechanism to
support a data base set up in accordance with the CODASYL
proposals should be directed tovards the same community of

users. In particular the mechanism must facilitate the

- 6 -

maintenance of an evolutionary schema which provides a
single comprehensible description of the central data base
supported by the application programs of the data processing
department. It must assume that there 1is a Data Base
Administrator who 1is responsible for the accuracy and
universal 9pp1icability of that mwmodel since it 1is this
individual who will perform all restructurings. While
retaining as much application program stability as possible,
the mechanism must cater for as wide a scope of change as
possible, if necessary vwhile allowing an orderly set of

changes ir application prograems.

Structure of the Proposed Restructuring Mechanism.

The proposed mechanism is not a single identifiable item of
software in addition to the already defined facilities
offered by the CODASYL DBHS. Rather it is a series of
refinements to the proposals such that they are enhanced to
support an evolving data base rather than the instantaneous
picture they currently paint. The object elements of a data
base management system have already been described. The
proposed restructuring mechanism involves enhancements to
the following aspects of these object elements in the

CODASYL environment.

(a) The Schena Amendment Language.
The CODASYL proposals describe in detail the Data
Description Language used to define the logical structure of

the data Dbase. It is proposed that this language be

- W7 -

replaced by a Schema Am~ndment Language which would retain
the spirit of the nrigiral DDL in both its syntax and level
of user (i.e. Data Base Administrator) involvement.

The kernel of the language will continue to consist of
clauses similar to those already detailed in the 'CODASYL
Journal of Development. These clauses will specify the
structure of the records in the data base in terms of the
data items they contain together with details of the network
of inter-record relationships using the Set construct.
However, rather than describing a fixed picture of the data
structure each group of clauses will be prefixed by a
further clause describing how the existing data base
structure is to alter to accommodate the structure defined
by the clauses to follow. Only on the very first run of the
Schema Amendment Facilities will there be no schema to
update but on this occasion the language would still be
meaningful if the syntax were considered to operate on a
null schema (i.e. only additive operations would be valid).\

Built round the syntax for data structure amendment will be
instructions which the Data Base Administrator can supply to
determine the order 1in wvhich the sequence of changes is to
be carried out and hqw each such change will relate to the
other changes to be made at the same restructuring run.

Purther, the lanquage will allow the Data Base
Administrator to specify the strategy he is to adopt for a
particular ‘restructuring run. In addition to a simple
static strateqgy it is proposed that two types of dynamic
strategy would also be available. This choice will allow

the Data Base Administrator the widest possible scope for

- Uag -

conducting any particular restrucruﬁn5~f in the manner most

appropriate to the prevailing circumstances.

(b) The Data Manipulation Language Execution Routines.

It is envisaged that there will ' 'be circusstances when
applicatiqon programs are made awvare that a restructuring is
taking place while they are runhing. In particular,
proarams vill be classified as transparent or opagque to a
particular restructuring depending on wvhether there is a
requirement to alter their 1logic as a consequence of the
restructuring or whether they can remain intact.

When a restructuring is under way there is a requirement
for the Data Manipulation Language Execution Routines to be
aware of its existence no matter whether the routine is
being executed as a result of a DML call from a transparent

Oor an opague program.

Open and Closed Restructuring Strateqies.\

The CODASYL approach to a network Data Base MNanagement
System proposes a procedural data manipulation language
embedded in a host language such as COBOL or FORTRAN. This
language supports interaction between program and data base
on A record-at-a-time bhasis. This situation permits the
support of two types of dynamic restructuring strategies
which can be used at the Data Base Administrator's
discretion,

An Open Dynamic Strategy allows the Restructuring Mechanism

to effect the required changes to data base records only

- 9 -

when the records have been retrieved from the data base for
update by a Data Manipulation Langquage Execution Routine in
response to a DML call by some application program.
Similarly when new record occurrences are being added to the
data base by application programs the restructuring will be
taken intq.account‘and the appropriate DML execution routine
will write the records in the revised format. This strategy
has the advantage that it takes the opportunity to
restructure individual record occurrences after these have
been retrieved from the data base on 1its secondary storage
medium (an action that was necessary in any case) to be
updated and replaced on that medium (a further action
reguired in any case). The strategy therefore means that
the Restructuring Mechanism imposes no additional
Input/Output overhead on the DBMS as a whole and this may
therefore act as a powerful justification for its use in
situations where I/0 efficiency is at a premium.. Typical
instances would be where a large data base was subject to
fairly frequent and widespread update by application
programs or alternatively in data Dbases where access was so
infrequent that the majority of records are never likely to
be accessed by application programs and the act of
restructuring them 1is not considered worth while. It is
evident that at any moment in the duration of an open
dyramic restructuring the data base will contain record
occurrences in different formats (i.e. those which happen to
have been updated and those which 4o not). It is feasible
that more than ore restructuring will be under way at the

same time since each such restructuring will not be complete

- 139 -

until all record occurrences of the types being restructured
have been updated by some application program. A convenient
method of identifying such differences 1in format 1is to
allocate a version rumber to each record occurrence such
that ‘all occurrences in the same format have the same value
of version number. Although the open strategy imposes sonme
processing overheads at the time at which it is initiated

(ie the schemna must be amended), and no additional
input/output overhead at any time, it may well impose small
processing overheads on the DBMS Data Manipulation Language
Execution EKoutines for a considerable period of time. This
prolonged overhead is due to the continuing necessity to
examine version numbers on records as they are retrieved
from the data base even if only to confirm that the record
occurrence is at the "current" version.

A Closed Dynamic Stratea& on the other hand operates rather
like an application program in that it modifies each record
occurrence in turn to reflect the required restructuring.
The process.would be a background function to the DBMS which
wvould always interrupt the restructuring vhen necessary to
allow an application program to access the data base
vhenever it require; to do so. The Closed Dynamic
Restructuring thereforé operates like the lowest priority
application program under the control of the DBNMS. Like an
application program, the restructuring operation must not be
permitted to give rise to a deadlock or inconsistent update
situation in the data base and the DBMS must therefore take
steps to lock each recoré occurrence from application update

between 1its retrieval and update by the restructuring.

- 80 -

Similarly the restructuring must wait for any record it
requires if that record has been locked by the DBMS because
an update by an application 1is pending. The objective of
the restructuring mechanism would be to limit the duration
of these periods of locking to timescales comparable with
those norpally experienced due to the interaction of
different application progranms. For most restructuring
tasks the locking period will be the time taken to retrieve,
process and update a single record occurrence although in
some cases an entire set occurrence will be locked for the
time taken to retrieve, process and update each of its
constituent record occurrences. It 1is envisaged that the
locking mechanism employed by the DBMS to protect
application programs will be adequate to also handle the
closed restructuring since it imposes no limitations which
do not aiready apply to application programs using CODASYL
PML.

Under the Closed Strategy all record occurrences involved
in the restructuring are therefore updated to their revised
format within a finite timescale (i.e. the duration of the
restructuring run). Por the period between the initiation
of the restructuring'and its completion the data base is
said io be in a TPTransitional State. That 1s, some record
occurrences will have been restructured while others will
not.

A further feature of the open strategy is that it may
support a period of parallel running while both the o0ld and
new formats of data base can co-exist. This interim period

takes place after the transitional period and allows the

- yaa-

Pata Base Admiristrator to run Audit Programs to confirm
that the data base has indeed heen restructured as required
and that no data has been lost as a result. When The Data
Base Administrator (or more likely the orgarnisation's
computer auditors) is satisfied that all is well the
parallel Eunning state can be terminated and the data base
can resume a stable state - the restructured state. The
period of parallel running may also provide an opportunity
for the analysts to confirm that their application programs
are either producing identical results to those produced
prior to the restructuring or that any deviation can be
attributed to known factors.

For the Restructuring Mechanism to progress through the
desired record occurrences in an orderly fashion in a closed
restructuring it is essential that a "Preferred Direction"
exists for each record type. This is a path through the
record occurrences of that type such that the DBMS and the
restructuring mechanism are always awvare of how far the
restructuring has progressed. One such suitable path would
be that provided by a set with the owner of the SYSTEM and
member records consisting of all occurrences of the record
type in question based on some suitable key data items. An
alternative would he simply to progress through the entire
data base in physical address sequence and detect each
instance of the primary storage record occurrence of the
required type. A marker indicating the point along the
preferred direction that the restructuring has currently
reached would serve many of the functions of the version

number in an open stratéqy. That is, during the

- 023_

transitioral phase and the parallel run state the DBHS can
ascertain whether a particular record occurrence (which it
is required to read or write from the data base in response
to0 a DML command from an application program) has been
restructured or not. Certain types of restructuring,
however, require the modification of more than one type of
record concurrently and the appending of a version number to
each record occurrence permits modification to be carried
out on one of these types of record in an order different
from that record's preferred direction. We shall see 1in
Chapter 6 that this facility is convenient for restructuring

tasks involving entire set occurrences.

Application Program_Interface.

The objective of the proposed restructuring mechanism for a
CODASYL data base is to provide the community pf data
processing professionals, for whom this type of DBMS is
primarily directed, with a tool by which ‘their application
programs can evolve in parallel with the evolution of the
data base itself. The effect of change on this community
has already been discussed in Chapter 1 and it is important
that the mechanism for data base restructuring in such an
envivronment tackles the problem of change in such a way as
t> minimise the activities at the application level while
recognising that it is changes to applications which
nacessitate restructurinas. Some measure of involvement at

the application level is therefore inevitable for any

restructuring.

- 026 -

Nevertheless the most desirable situation for an
application vprogram 1is to remain stable throughout a
restructuring anédé the proposed mechanism ensures that

programs will chanage only when it is essential for them to
do so. Programs which have this desirable property of
operating guring and after a restructuring in exactly the
same way as they did Dbeforehand and are classified as
TRANSPARENT to that restructuring. It may be that the way
in which the DBMS interprets DML commands from the progranms
is different as a result of the restructuring but this
situation does mnot affect their transparency. The CODASYL
Schema to Sub-Schema mapping is the main vehicle for
achievina this transparency since it is evident that the
formulators of the proposals were vell aware of the
advantages of restricting the view of the data base for each
application program to that subset of the data base that is
of interest to that proqgram. Hhere. some part of the data
base structure outwith the area viewed by a particular
application program and its sub-schema is altered it follows
that that program will be transparent. More importantly,
however, the proposed restructuring mechanism identifies a
wide variety of circuystances in which application progranms
which operate within the sector of data base being
restructured are still transparent. This can be attributed
to a combination of thec DML commanrds they issue and the type
of restructuring being performed-.

Other programs may be OPAQUZ to the restructuring being
carried out. That is, the 1logic of these programs must

chanqe in some way to reflect the revised data base

- 12§ -

=+ructure. It i< in the amendment to these programs that
the analysis and prograsmasing effort will be required and
vwherec a thorough study of the criterion for and extent of
any necescary charae will pay the highest dividend. In the
proposed mechanism a pragmatic approach to this subject is’
adopted such that the types of restructuring which can be
undertaken are identified by considering a number of
primitive restructuring tasks and for each such task a
criterion for transparency (and therefore opacity) is
established. It is, of course, possible that some programs
will be required to change as a consequence of the
restructuring because thsy are to use the enhanced data base
structure in Some way. In general, however, changes of this
type are less problematical to the programmer since the
program can be upgraded at any convenient point in time
after the restructuring is complete.

Given that an opaque program must change because of the
restructuring, that program must assume at least two states
during the process - the original and final versions. For
some restructuring tasks the transfer from one state to
another 1is an instantaneous event coinciding with sone
identifiable event in the execution of the restructuring
(vhen it is initiated, when it is complete, or some point in
time in Dbetween) . For other restructuring tasks, however,
there is a periocd of time during the restructuring when
neither the initial or first state of the program is
applicable and for which a third (intermediate) state is
required. The smooth implementation of a closed

res*ructuring is dependent on the simplicity of transition

- 126 -

be tween these states. It is not proposed to describe how
the operating system can schedule the correct version of
each program at the correct time (or how this operation can
be subjected to satisfactory controls) since such procedures
are already wvell established /PANEXEC/.

However‘}t is worth stressing the importance of adequate-
testing of application systems prior to this point since the
restructuring mechanism does not control the validity of the
program change. Testing is still seen as a manual operation
requiring the skill of the systems analyst since the input
and/or output of the system are also likely to change
because of the restructuring in addition to the changes in
the data base interaction. Insight is therefore required as
to which tests will be necessary to prove that the final.
version of the program is ‘*correct'. 1In sdme.circumstances,
however, the program must alter while retaining the sanme
input and output for its community of parametric users. In.
such situations it may be that one sequence of DML cqemands
in the original version of the program can be reﬁlaced
without ambiguity by another sequence of DML commands in the
final version. The second sequence of commands can be said
to be semantically eguivalent to the first sequence within
the context of the restructuring being preformed. The
criterion for semantic equivalence 1is not straightforward
since, in practice, sequences of DML commands in programs
may be executed in different vays by use of normal
conditional program instructions. where sequences are
unbroken by such instructions it may be possible to replace

them by a semantically equivalent set without a manual

- 127 -

chanade to the program and even without any re-testing.
Semantic equivalence is alluded to from time to time in the
following chapter where the individual restructuring tasks
are described.

It is envisaged that Audit Programs will be regquired to
assist in _ the restructuring function so that those within
the organisation who are responsible for scrutinising
changes to the application systems may be given the
opportunity to satisfy themselves that no information has
been lost and that no data has been deliberately or
accidentally corrupted. These programs will be written
specifically for this purpose and they must therefore have
available to them the data base in.both the old and new
structures. The period of parallel running as described
previously provides this environment but the programs will
differ from normal application programs in that their Data
Manipulation Language must provide the ability to specify
which structure is to be accessed for a particular command.
Even in the parallel running phase it is desirable for an
application program to view only one structure - whether
that structure is the old or the new will depend on both the_
type of restructur;ng and the logic of the program.
Occasionally, however, 1t may be that the requifements of
the program in conjunction with the type of processing being
performed imply that neither structure 1is auniversally
applicable and a wmixture of both is required - this is
particularly true in the transitional phase where the
processing required from a program may well depend on

whether the record it has accessed has been restructured or

- 02@-

not. To allow for thesr somewhat specialised requirements
t5 view both data basme structures concurrently 1t is
proposed that the Data Manipulation Language of the CODASYL
Proposals be enhanced to allow the version number of records
to be specified in certain instances (notably the PFIND
commangd) . ghe default formats of commands would still not
require a version number. Thus, for example, an Audit
program could 1issue a FIND for a version 5 account record
with a number 123856 followed by a FPIND for a version 6

+h the same number together with a FIRD for

e

ccount record w
the version 6 customer record which if the ‘owner*® of that
account. If the restructuring from version 5 to version 6
was to migrate the bhalance from the account record to the
customer Tecord the program would demonstrate that both
values are identical. Where application programs utilise
these enhancements to the DML to enable them to quote
version npumbers the programs are classified as “"Yersion

Specific".

Emulation of Previous Schema Versions.

The approach taken by the proposed restructuring mechanise
recogﬂises that restructurings are generally necessary as a
result of changes to one or more application systenms.
Although the reguirement to chanqe other application systens
to cater for the revised structure is less obvious it is
aragu«d that it is lesirable in order to preserve a single
orcanisational data model for the use of 2ll avpplication

proarams maintaired by an organisation's Data Processing

- ﬂzq/_

Daepvartment. It must he conceded, however, that the decision
not t» change an applicition program (but instead to allow
it to operate on an emulated version of the structure which
wvas applicable when it was written) can be justified in some
circumstances and aust therefore he supported by the
proposed rgstructuriing mechanism. In the context of the
terms already defined, this emulation of a previous schema
is egquivalent to an extended period of parallel running
where certain programs operate on the old schema structure.
The proposed restructuring mechanism supports emulation of
previous sSchemas by allowing application programs to be
wImplicitly Version Specific". A program is said to Dbe
inmplicitly version specific wvhen the DBHNS associates each
one of its DML commands automatically with the version
numher of the recoord or set type to which it relates which
was avplicable when the program was compiled (or to be more
precise, when it was first put into production). Although
the DML commands within the programs do not therefore
contain ar explicit version number in the wvay that audit
proarans must, it is possible for the D#MS to append the
numhers applicable at compilation time. So long as a period
of wparallel running is i operation the same mechanism used
for explicit version specific DML commands will ensure that
the required old data base structure is presented to such
PCOGrams.

An extended period of parallel rurning could be a wost
expersive overheacd for a compurter installation in terms of
storage caracitv and computer processing resources anrd it 1is

unlikely that emulation in this way would be countenanced

—_ 03@-

for 1oug. & Data Zasc Bdeinistrator would view cmulation as
an aid to providing 4 "hreathing space"™ to allow
modifications to less critical programs to be scheduled when
time is available from the relevant programmers.

It a larae number of programs were to he 1in this category
and it vas not considered desirable to amend them another
apprnach to emulatior would be necessary. One possibility
woull be to hold record occurrences at their “current®
version and translatc individual occurrences to previous
versions as and when necessary in response to the DML
comzands from the implicitly version specific progranms.
Pranslation from the o0ld structure to the new would also be
reguired to enable data base records to be updated by the

version specific prooram=. Although this approach has been

g

#ilson at the University of Aberdeen and to

[
e

«
™
0]
or
™
Q

iqated

[8

some axtent hy the University of Pennsylvania (See Chapter
5) and wight well have to be incorporated irto any
commercially viable restructuring mechanism, 1t will not be
considered further in this thesis because it caters for a
lone term multiolicity of vproaram views of the same data
base. This is considered as generally undesirable for the
Centralisecd Data RBase Management System model used by the
systems analysts an? oprogrammers to maintain the single

centralised data base of the organisation.

- 039_

Chapter 7 - The Primitive Restructuring Tasks

Introduction

This chapter gives details of 16 primitive restructuring
tasks which would be available to the Data Base Administrator
to allow him to alter the logical structure of the CODASYL
data base schema and the corresponding data records. The
tasks have been identified by consideration of each clause

in the COﬂASYL Data Description Language in turn with a view
to establishing how the structural element defined by that
clause may be expected to change. On this basis it is
claimed that the set of tasks is a complete one in the same
sense that the CODASYL DDL is complete - (i.e. experience has
shown that a language at this level satisfied the majority
of requirements for the definition of a data base structure
in a concise manner and the primitives are at a sufficiently
low level to allow any structure to be defined).

The sufficiency of the set of tasks to define any desired
change in structure is satisfied by the inclusion of tasks to
add and delete data items, records and sets (since these are
the primitives of the CODASYL DDL). It will always be possible
to create any desirable structure by the addition of new data
items, records or sets followed by the deletion of the data
items, records and sets which they supercede. Allocation of
actual occurrences of the new data can be achieved by inter-
posing application programs between the addition and deletion
exercises to use the about-to-become-redundant data to
populate the new data. Such an approach is, of course, less
than satisfactory in that specific application programs will
have to be written and the timescale of adding, populating
and deleting may prohibit runs of normal application programs.
Further, since the mapping between schema and sub-schema 1is
achieved by equality of data item name, record name and set
name in both, either a mechanism to allow names to be
retained would have to be supported or sub-schemas would have
to alter. This subject is discussed in further detail under
each specific task.

132~

Syntactic Considerations

The CODASYL Proposals describe a Data Definition Language

which allows the logical structure of a data base as it exists

at some point in time to be defined. The tasks identified

in this chapter are described in terms of a Schema Amendment
Language which is essentially the same as the DDL but is
encompass;d with further clauses which describe how the
structure is to change - the retained DDL elements will

describe the new structure where relevant.

The first example of such a clause is the requirement to

give each restructuring exercise carried out on a data base

a unique identification - '""The Restructure Name'., It is
envisaged that this would be a useful reference for an Audit
Trail whereby at any time in the future the exercise which
resulted in a particular section of the entire data base
structure can be established. In addition to an identification
of the restructure run the Data Base Administrator must
indicate the name of the data base he wishes to restructure
(this is in keeping with the Data Base Name clause in the DDL)
and which strategy he wishes to be used for its implementation.

The previous chapter describes alternative strategies.

Thus it is proposed that the initial clause of each run to
restructure a data base will be the following

Restructure - Name - 1
RESTRUCTURE Data-Base-Name

USING STATIC

()
()

'E OPEN DYNAMIC %_ STRATEGY
()

CLOSED DYNAMIC (WITH PARALLEL RUN)

133~
Subsidiary Control of Restructuring

The concepts of Open and Closed Dynamic Restructuring,

and Parallel Running after a restructuring)create an
environment for the Data Base Administrator where he has a
legacy of restructuringswhich were initiated in the past
but which still have an imﬁact on the current contents of
the data base. The gestructuring mechanism must therefore
permit him to indicate that these on-going operations are

to be considered as complete.

If a Closed Dynamic Strategy with Parallel Run has been used
then the Data Base Administrator may indicate that the period
of parallel running is to be terminated by presenting the
following text to the Restructuring Mechanism.

TERMINATE RESTRUCTURE PARALLEL RUN Restructure-Name-1

In response to this the Restructuring Mechanism must alter
the Object Schema by removing all reference to data held in
the o0ld structure (this would be done as a matter of course
if the closed restructuring were being performed without
parallel running as described in detail under the individual
tasks later in this chapter). Furthermore all occurrences
of data in the old structure which were being maintained in
conjunction with corresponding occurrences in the new
structure (again see details under individual tasks) would
have to be deleted from the data base.

Similarly, if an Open Dynamic Restructuring has been carried
out, the Data Base Administrator must reach a point where he
considers that all relevant data has been restructured (i.e.
it has been updated by some application program). Even if
this assumption is correct, the schema will still contain

references to this structure which are now, in fact,

_03@} -
redundant and these must be removed. This activity can be
initiated by specifying.
TERMINATE OPEN RESTRUCTURE Restructure-Name-1
It would be realistic for the Restructuring Mechanism to
check thaf there were actually no occurrences of data records
in the old structure before it took the irrevocable step of
amending the object schema.
However the Data Base'Administrator must be in a position of
being confident that there are no remaining old format records
and he must be provided with sufficient information to reach
this conclusion. In addition to other statistical information
on the distribution of data records on the data base it is
therefore proposed that the number of occurrences of each
versionbof each (or selected) record defined on the schema
can be displayed by specifying
DISPLAY COUNTERS (OF Record-Name-1)

Conditional Execution of Tasks and Concurrent Tasks

The remainder of this chapter gives details of the individual
restructuring tasks. For any particular restructuring to

be performed on a data base, however, it is likely that a
number of these tasks will be required for different data
items, records etc. The syntax of the restructuring language
must therefore be such that tasks are completed in a
predefined sequence. Normally a task would not commence
until its predecessor was complete but in some situations
(detailed under the individual tasks) it will be convenient
for the restructuring mechanism to handle tasks relating to

the same record type(s) at the same time. The restructuring

- 138 -
language must therefore permit the Data Base Administrator
to indicate which tasks he wishes to have executed concurrently.
It may also be the case that certain tasks should only be
executed if a previously executed task has been successful.
The language must also allow the Data Base Administrator to

specify such conditions.

Techniques for specification of concurrent and conditional
execution of tasks are not described in detail here since
they are common in other classes of operating system software

(e.g. Job Control Language).

Note that there is no suggestion that more than one closed
restructuring should be permitted to take place at the same
time (although certain records may not have been restructured
despite an open dynamic restructuring on them in the past)
since it is considered that the Data Base Administrator should
always be in control of this operation and he can therefore

schedule tasks as he sees fit.

-136 -

Task 1 - Addition of a new data item to an existing

record

Data Base Administrators will often require to add a
new data item to an existing record. It may be that

the physicai entity to which the record relates has
changed in some way and that the new data item is to
apply to some new property of the entity. It may simply
be that the data item was omitted when the record was

created.

Program Categorisation

Transparent Programs - Programs which do not require the

new data item and therefore do not include it in their

sub-schema definition of the record if they have one.

Opaque Programs - Programs which wish to take advantage

of the new data item and include it in their processing.

Concurrent Tasks

More than one data item may be added to the same record

concurrently.

Syntax

Two elements are required when defining the task:-

a. Details of the new data item as described in the

Codasyl Proposals.

b. An indication of where the data item is to appear
within storage records and in the logical schema

record structure.

-137 -
The proposed syntax is as follows:-

ADD DATA ITEMEiE,f,ggE% Data-Item-1 in Schema-Record-Name-1

level number Data-Item-2 etc. (as in CODASYL Proposals)

STORAGE [(BEFORE Date-Item-3 inj{Storage Record 1
AFTER)

IN NEW RECORD

Without attempting to give a rigorous definition of the
syntax we can see that the new data item (Data-Item-2)
is placed logically before or after an existing data
item (Data-Item-1) in the schema record (Schema-Record-
Name-1). It will be stored before or after nominated
data items (Data-Item-3) in existing Storage Records
(Storage-Record-1) or will be the only data item in a
new Storage Record. (Repetition of the last clause is
necessary to cater for records with alternative storage

structures).

The definition of the data item itself must cover all
the Schema and Storage Schema entries as described in
the Codasyl Proposals. Note that source and result data
items with storage allocated may not be added directly
by using this task. They must be added without the
storage clause and this clause added later (possibly as
a subsequent step in the same restructuring) using

Task 4.

-1038 -

Population of the Data Base

An optional clause may be added to the basic syntax
which will allow the data item to be populated as it

is created. The clause is a COBOL 'compute' statement
which may reference other data items in the same record
as well as literal constants. If this clause is not
included the new data item will be allocated null values

for each occurrence.

An Open Dynamic Restructuring Strategy

If an Open Dynamic Strategy is adopted for this task no
data base recérds are modified at the time of the
restructuring. Only the object schema entry for the
record containing the new data item-is amended to hold
an additional sub-1list giving details of this new
(version n) format of record. The list for the record
may already contain details of other previous versions

and these must remain.

The alteration to record occurrences will therefore take
place from the time of the restructuring when record
occurrences are added to the data base or existing
occurrences are modified by application programs. All
such record occurrences will be written to the data
base in the version n format. Where a new occurrence

is to be written)the values for the data items will have

been supplied in the normal way via the application pro-

gram's user work area. If the new data item is not

- 139 -

included in the sub-schema for such a program the data
item on the data base record will be allocated null
values. Where an existing record occurrence is being
modified and the new data item has not been included in
the sub-schema the population algorithm will be used to
evaluate\it using the data items on the original version

of the record.

The data base management system must also handle requests
by application programs to retrieve record occurrences
from the data base. Individual occurrences may be at any
one of a number of versions but since the version number
is held with the record the DBMS can establish which
object schema sub-list to access to determine the format
of the record. 1If the program sub-schema references the
new data item and the record version retrieved is n (or
greater) the DBMS can perform the normal process of trans-
ferring the data item from data base record to User Work

Area.

If the retrieved record version is less than n the value
of the data item must be calculated using the Population
Algorithm. It may be necessary to also evaluate other

data items since data items quoted in the algorithm ma&

themselves have been added in some previous restructuring.

When a sub-schema is compiled it is likely that an
implementation will ensure that all data items defined

in the sub-schema also exist in the schema. Opaque

ﬂ%@

programs referring to a new data item cannot therefore

be scheduled (in their revised form) until after the
restructuring since their sub-schemas could not compile
until after the restructuring had altered the schema.
From that point onwards, however, the Data Base
Administrator can choose an appropriate point for their
introduction (for example it will often be convenient

to synchronise the introduction of enhancements to the
data capture logic to allow the new data item to be

given values). There is some justification for implemen-
tations to allow data items to be defined in a sub-schema
which do not exist in the schema (see note in Task 2).

In this case any reference to such data items would
result in null values being returned and any attempt to
give such data items values would not be effective. On
this basis, however, the Data Base Administrator would

be free to schedule opaque programs before restructuring

took place if he so desired.

A Closed Dynamic Restructuring Strategy

A Closed Dynamic strategy cannot be considered as an
instantaneous event. The restructuring mechanism must
access all record occurrences in turn by progressing
along the Preferred Direction until all have been pro-
cessed. The Data Base is in a Transitional State while
this takes place. When it has read each reéord occur-

rence the restructuring mechanism will upgrade it from

-0## -

version m to version n as described above for an open
strategy. The new data item will be included by
allocating null values or executing the Population
Algorithm. Finally, the record will be written as
version n to the data base and)if there is not to be a
period qf parallel running)the version m record occur-

rence will be deleted.

Transparent programs can operate on the data base
before, during and after the restructuring since any
retrieved record can be presented to the program using
the object schema sub-1list containing the definition of
that version of record. Any records written to the data
base during and after the restructuring will be at
version n (if the restructuring mechanism subsequently
tries to restructure such a record it can establish that
it does not have to do so by referencing the version
number). Once again, in a parallel'running sitﬁation
version m records will also be written where m is the

previous version of the record.

New versions of Opaque Programs will be introduced by
the data base administrator at some point in time either
during or after the restructuring based on some external
factor such as the scheduling of amended data capture
procedures. In either case the DBMS can handle Data

Manipulation Langauge Commands as follows:-

Record occurrences written to the data base will be

- 04'2_

version n as above. If the new data item appears in
the sub-schema of the program writing the record it
will be allocated the value given to it by the program.
Otherwise if the record is being written by a program
which does not include the new data item in its sub-
schema the Data Base Management System will firstly
determine where the record is to be stored relative to
the position in the Preferred Direction currently being
processed by the Restructuring Mechanism. If the
record is to be stored before this position and it is a
modified version of an existing record the data item
will retain its value from that record (which must have
been version n). If the record is a new record being
stored (once again before the Current Restructuring
Mechanism position) the Population Algorithm will be
used. After the current position both existing and new
records will have the data item evaluated using the
Population Algorithm. After the Transitional Period
during Parallel Running the data item will always be
stored as null values since this is how the Data Base

Management System will eventually operate.

Records retrieved from the data base may be at version
m if the restructuring mechanism has not yet reached
that point and the DBMS must therefore execute the
Population Algorithm to provide a value for the new
data item before supplying this to the application pro-

gram's User Work Area. If the record retrieved is at

—”¢3 -

version n the value can be moved directly to the User

Work Area.

-0@@ -

existing record

Function

It is likely that certain data items will become
redundant during the life of a data base. For example,
the enti%y to which the data item relates may have
changed in such a way that the data item is no longer
relevant or even meaningful. This situation must be
distinguished from that in which a data item is tem-

porarily not accessed by application programs.

More specifically a data item is redundant if it is
not referenced by any sub-schema or from elsewhere
within the schema (other than in its own data item

entry) and is to remain so.
The function of the Restructuring Task is two-fold:-

a. to ensure that the data item is redundant.
b. to avoid allocating space for the data item in
record occurrences.

Syntax

The proposed syntax is as follows:-

DELETE data-item-1 FROM Schema-Record-Name-1

Task Validation

The Restructuring Mechanism must firstly ensure that the

task is valid.

- g_%" -

The deletion of the data item must not alter the self-
consistency of the data base. The 1lists for all records
in the Object Schema must be examined to ensure that the
data item in question is not referenced in a SOURCE or
RESULT clause -in some other record. The list for the
record containing the data item must also be examined to
ensure tﬁat it is not a key data item or does not appear

in a Set Occurrence Selection Clause for any set for

which it is a member.

Further, the deletion of the data item must not lead to
inconsistency between object schema and sub-schemas. That
is, the data item should not appear in the corresponding
record description of any sub-schema. As we have seen in
Task 1, consistency between schema and sub-schema will
normally be checked as each new sub-schema is added to the
sub-schema library and it should be feasible to access the
library for each sub-schema referencing the record in
question to re-execute the check against the revised schema.
This check is not necessary for additive tasks such as

Task 1 because the inherent transparency of the schema to
sub-schema mapping ensures that the sub-schemas remain con-
sistent with the schema in these cases. If an invalid task
has been specified the Restructuring Mechanism will not

alter the data base in any way.

It is, however, feasible that implementors will not

insist that data items in the sub-schema exist in the

- U@L@_

schema - perhaps they will generate a warning message.
This situation could be advantageous in this task since
application programmers would be likely to utilise sub-
schemas which had already been defined (e.g. those
referencing all data items in a record) for convenience.

h)

Program Categorisation

Transparent - All Programs (although in some cases it
might be necessary to recompile sub-

schemas and rebind programs to them).

Opaque - None. As we have seen the task should
only be executed if no sub-schema (and
therefore no program) references the

data item to be deleted.

Concurrent Tasks

A Data Item can be deleted from a record concurrently
with other Data Items being added to the same record
although deleted data items may not be referenced in
Population Algorithms of subsequent data item
additions. More than one data item can be deleted

from the same record concurrently.

The strategies for the deletion of a data item are
similar to those for the addition of a new data item

but there are fewer inherent problems since there

-067 -
are no Opaque Programs to cater for.

There is a great deal to recommend a Closed Dynamic
Strategy in this case since it allows the DBMS to

take immediate advantage of the free space. Once
again,_}he data base will be in a Transitional State
with different versions of records on the data base but
the DML execution routines can use the version number
on any retrieved record to determine whether the
record is in the old or new format (as we have seen

the data item itself cannot be required by any program).

Re-use of Data Item Names

If successive Open Dynamic Restructurings are carried
out on a record such that a data item is deleted and
a new data item with the same name is later added,
there is a potential ambiguity in that some record
occurrences will hold the old version of the data
jtem and others will hold the new depending on how
they have been accessed by application programs.

In particular, if an application program accesses

a. storage record occurrence it must be provided with

null values rather than the redundant value.

The Technique adopted might simply be to prohibit the
re-use of data item names and there is therefore

no primitive task to allow a data item to be renamed.

-068 -

Function

When the Data Base Administrator originally defines a
data base he must decide on the most appropriate
format\to hold each data item. This decision cannot
be taken lightly and must take into consideration the
range of values the data item mighf take at that time
and in the future. The Data Base Administrator must
also take into account whether the predominant likely

usage of the data item will be for arithmetic or display.

Circumstances might be such that the original decisions
on certain data items eventually prove inappropriate and
the format of these data items must be altered to reflect

the new range of values or revised usage.

The Codasy¥l Proposals are structured to cater for
variations in data ifem format as held on the data base
and as processed by application programs. A conversion
between data base format and program format (as defined
in the Sub-Schema) is carried out by the Data
Manipulation Languége Execution Routines when

necessary.

Syntax

The proposed syntax of this task is as follows:-

-”@»Q -

AMEND FORMAT OF Data-Item

TO (PICTURE Picture-Clause - 1)
% TYPE Type-Clause - 1 %

The format of the Picture and Type Clauses are given in
the Codasyl Proposals.

RY

Expansion or Contraction of Data Item Format

It is possible that an alteration to the format of a

data item will result in the revised format being suitable
for holding all existing data item occurrences (e.g. where
a data item originally defined as a 6-digit number is
amended to become a 7-digit number). We shall term this
type of amendment as an expansion of the data item's

format.

On the other hand, certain changes in format might mean
that some existing occurrences cannot be held under the
new format (e.g. where a data item originally defined
as a 7-digit number is amended to become a 6-digit
number any occurrences with a value greater than

999999 could not be held). This type of amendment

we shall term as a contraction of format.

Program Categorisation

Transparent Programs

(a) Programs which do not refer explicitly to

the data item.

-850 -

(b) Existing Programs which read (but do not write)
a record where the data item is being contracted

in format.

(c) Programs which write (but do not read) a record

where the data item is being expanded in format.

.

Opaque Programs

(a) Programs which write a record where the data item

is being contracted in format.

(b) Programs which read a record where the data item

is being expanded in format.

Transparent programs can operate during and after the
restructuring since the type of format change is com-
patible with the type of data item transparency incor-
porated into the sub-schema to schema mapping. For
example, if a program reads a 7-digit numeric data.
item with a sub-schema format of PICTURE 9(8) this is
equally transparent if the data item on the data base
record is contracted to 6-digits. It is significant
that the sub-schema format is not compatible if the
program attempts to write a record to the data base in
either case (i.e. a value of over 9999999 or 999999
could have been given to the data item by the program
but such a value could not be written to the data base

record).

-181 -

Concurrent Tasks

The format of a Data Item can be amended while other
data items are being deleted from or added to the same

record.

The fogmat of more than one data item in the same record

may be amended concurrently.

An Open Dynamic Implementation Strategy

In an Open Dynamic Strategy all existing occurrences will
remain at their present version but when records are added
or replaced on the data base by application programs they
will be written as version n with the data item in the new
format. When a record is retrieved from the data base;
the DBMS must use its version number together with the
object schema sub-list for that version of the record to

perform a suitable schema to sub-schema mapping.

All records written to the data base will be at version
n. In a contraction of data item format this may mean
that the DBMS discovers incompatible record occurrences
at this point (e.g. if a data item is being reduced from
7 to 6 digits any occurrence with a value more than
999999 cannot be written). Such eventualities can onl-
be reported to the Data Base Administrator as and when
they take place réther than at the time of the
restructuring if this type of strategy is used.
Furthermore, the Data Base Management System must write
something to the data base. Null Values would seem to

be the best choice although some implementors might

consider truncation appropriate.

- 183 -

This strategy would only be applicable to certain opaque

programs operating on the data item being amended:

(a) Programs which read (but do not write) the record

where the data item is being expanded in format.

(b) Programs which write (but do not read) the record

.

where the data item is being contracted in format.
In these cases the revised version of the program must
be scheduled before the restructuring takes place since
the sub-schema to schema mapping will allow them to
operate successfully during that time. For example,
if a data item is expanded from 6 digits to 7 digits
any programs which read (but do not write) the record

with a sub-schema definition of PICTURE 9(6) must be

altered to refer to it at least as PICTURE 9(7).

A Closed Dynamic Implementation Strategy

For an expansion of data item format a Closed Dynamié
Strategy is straightforward. The Restructuring
Mechanism can proceed through the data base in the
Preferred Direction and transform each occurrence to
the new format (this always being possible for an
expansion). As for task 1 the DBMS can retrieve
version m and n records from the data base and transfer
the data to the program User Work Area as version n.
This procedure implies that the new version of opaque
programs must be scheduled to coincide with the start

of the Transitional State.

-153 -

RESTRUCTURE RESTRUCTURE
START END
P <— 1T RANSITIoN —>

T ~

7

/

Po Po -
g

Alternafively, a Version-Specific version of the program
can be used to cover the Transitional State. This could
operate indefinitely but it would probably be replaced
by the revised version at some convenient time after

the restructuring is complete.

INTRODucE DisconrinuE
VERSION SPECIFIC RESTRUCTURE RESTRY CTURE. VERSION SPEciFre
PRoSRAM START End PRoYRAN
pf I=TRANS IT 1 ON—>4
N
7
/ . 74
\/ers('oﬁs pec: pl't)
b | FR(Po S

For a contraction in format the Restructuring Mechanism
might encounter certain data items which are'incompatible
with the new format as described above for the open
strategy. In this case the Data Base Administrator can
opt to '"Roll Back'" the Data Base to its original format

if such an occurrence is detected.

- 084 -

Even if he opted to have all such occurrences reported
to him this would be more satisfactory than the open
strategy where discrepancies were reported at arbitrary
times in the future determined by the frequency of
record modification by application programs. In other
respects this type of amendment can be carried out in

the same way as an expansion of format.

Data Items Referenced Elsewhere in The Schema

If the data item whose format is being amended is
referenced elsewhere in the Schema the Restructuring

Mechanism must take this into account.

The data item may be referenced in the SOURCE clause

of another data item. If the STORAGE IS NOT REQUIRED
clause has been specified for this data item the DBMS

can cater for the change of format since it must access
the original data item any time the source data item is
required. We have already seen how this can be accomplished.
If the STORAGE IS NOT REQUIRED clause is not included the
Restructuring Mechanism must amend the source data item

as well as the original data item. In a Closed Dynamic
Strategy the source record can be amended immediately
after the original record and its version too amended

to n. The source records are not necessarily amended

in their "Preferred Direction'" but they should nevertheless
all be altered when the restructuring is complete since
there is a one-to-one relationship between source and

original data items.

-18S-

In an Open Dynamic Strategy a similar situation applies
and the DBMS can alter the source record whenever the
original is modified. Suppose, however, that the source
record has to be modified for some other reason. The
DBMS in this case would be required to also modify the

corresponding original record.

The Data Item being amended may be referenced in the KEY
clause for its record and in this case the format change
must be reflected in the corresponding index in addition
to the record itself. When a record alters from version
m to version n in either Open or Closed Dynamic Strategy
with one or more data items involved in the change being
key data items the DBMS must set up a new index for the
record. This can be done as the restructuring takes
place by removing entries from the existing index to

the new index as the corresponding records are altered.
If a Parallel Running State is required old index

entries will not be removed.

For example, suppose the data base consists of four

occurrences of the same record as follows:
ADDRESS ADRRESS RDgaess HDERESS
1

‘

Kev="A’ ’P“r“;ﬁev:‘@'l Dala |KEY="B| DaTa |kEY=D'|DaTa

The original index would be:

I ||>
F{po|w|—

-186 -

Now if the "Preferred Direction" for the record is
address sequence and Closed Dynamic Restructuring has
amended the records at addresses 1 and 2 there would be

two indices as follows:

VERSION M V ERS1ON n
! NDEX | NDEX

B 3 A :
D 4 e 9

That is the original index has lost two entries (for
the amended records at addresses 1 and 2) and the new

index has gained entries for these records.

In the Transitional State of a Closed Dynamic
Restructuring and after an Open Dynamic Restructuring
the DBMS may have to access both indices to satisfy
a request from an application program to FIND a
record based on the value supplied for a key data
jtem. The sub-schema to schema mapping can be

used to format the index key appropriately in each
case. If, however, the DBMS has to alter an index
entry because a record occurrence key data item has
been MODIFIED it can access the correct index
jmmediately by reference to the version number held

in the record occurrence itself.

-1§7 -

Task 4 - Allocating Storage to a Source or Result

Data Item

Certain Data Items may be derivable from other data
items either on the same record occurrence or on other

occurrences of records related by a set occurrence.

The addition of such data items to a record is straight-
forward if no storage is to be reserved for them

within record occurrences since this only involves an
amendment to the schema entry to indicate how the data
item is to be evaluated if it is rTequired by an
application program. If storage is required, however,
the restructuring mechanism must operate as in the
addition or deletion of a new data item but the
population must be carried out using the Source or

Result Algorithm.

Syntax

(INTRODUCED)

STORAGE REQUIRED (py5coNTINUED)

Concurrent Tasks

This task may be executed concurrently with any of
the previous tasks operating on data items in the

same record.

-185& -

Program Categorisation

Transparent - All programs including those which refer

to the source or result data item.
Opaque - None.

Y

Population‘of'the‘Data‘BaSe

The following method of population of the data item can
be carried out when a version n record is written to the
data base in either an Open or Closed Dynamic Strategy

(see Task 1).

For a SOURCE data item the corresponding data item in
the owner record occurrence must be accessed and this

value allocated to the new data item.

For a RESULT data item the value can be derived by
executing the appropriate procedure using data items
in the record itself and in corresponding member

record occurrences.

-89 -

The Codasyl Proposals allow many of the functions of data
jtem validation to be performed by the DBMS rather than
the application programs themselves. The range of values
which a data item may take 1is likely to alter from time
to time either in a predictable fashion (e.g. the
acceptable range for an employee number data item might
expand or contract to reflect the size of a company's
workforce) or because of unforeseen changes of the

data item's usage.

In the schema the value range for a data item may be
specified in one of two ways - as a number of discrete
ranges of values or as a procedure to be executed to give
a 'VALID' or 'INVALID' result. This may, therefore, be
amended by adding, deleting or amending ranges or by

introducing or discontinuing a data base procedure.

Syntax

There are a number of alternative formats to this task
all of which can be carried out concurrently if

required.

" Format (a) - (Only one such entry per task)

(INTRODUCED)
(DISCONTINUED)

CHECK NONNULL
Format (b) - (Only one such entry per task or two entries
with the first indicating DISCONTINUED and

the second INTRODUCED)

-l6o -

1 (INTRODUCED)

CHECK procedure-name-1 \,qconNTINUED)

Format (c)
CHECK VALUE RANGE INTRODUCED AS
[NOT]1iteral-1 THRU literal-2

Format ™ (d)
CHECK VALUE RANGE DISCONTINUED WAS
[NoT[1iteral-1 THRU literal-2

Format (e)

CHECK VALUE RANGE AMENDED FROM
[NOT] 1iteral-1 THRU literal-2
TO[NOT] literal-3 THRU literal-4

For simplicity we have assumed that data base procedures

may not be altered without a change in procedure name.

Classification of Amendment

The net effect of the set of entries to alter the
acceptable value range of a data item may either

expand or contract that range (where some discrete
ranges have been expanded and others contracted we

shall consider the net effect as a contraction).

The constraints imposed by the ranges and procedures
may make the validation procedures (performed by the
DBMS when it modifies or stores records on the data

base) either more or less rigorous.

-6l -

Program Categorisation

Transparent - All Programs whether they reference

the data item in question or not.

Opaque - None.

We shall consider separately the strategies required
where the data item validation procedures are to

become more rigorous and less rigorous.

For an amendment to make the procedures less rigorous
the Restructuring Mechanism need only alter the object
schema to reflect the new criteria. The data base
itself need not change and the record version number
will not be altered. All existing data item occurrences

will still be valid under the new criterion.

For an amendment to make the procedures more rigorous

there is the possibility that certain existing occurrences
of the data item in question will no longer be valid under
the new criterion. There are two strategies which the

Data Base Administrator can adopt to detect such occurrences

as follows:

An Open Dynamic Technique would result in the validation
being carried out when a record is retrieved from the

data base by the DBMS in response to a request by an

162 -

application program - this would be in addition to the
normal procedure of carrying out the validation when
the record is modified or stored. The validation need
only be performed once on each record occurrence. This
could be ensured if each successfully validated record
was modified to version n as previously described for
other ta;ks. Validation would then only be performed
on reading version m records. On the other hand, if a
data item occurrence did not satisfy.the validation
criterion the situation would be reported to the Data
Base Administrator and the data base record would remain

at version m.

A Closed Dynamic Technique would allow the Data Base
Administrator to obtain a report of all occurrences with
an unacceptéble value at the time of the restructuring.
The Restructuring could take appropriate action if any

such occurrences were found. Possible actions are:-

(a) To leave the occurrence unchanged and not implement

the revised value range.

(b) To set the occurrence to null values and continue

to examine other occurrences.

In this case the DBMS would use the new (more rigorous)
criterion for data item validation as required for record
occurrences being written by application programs during
the Transitional State. This means that existing record

version numbers need not be altered.

-163 -

Concurrent Tasks

All of the previous tasks may be executed concurrently
with the amendment to the value range of a data item

in the same record.

The value range for more than one data item in the same

record can be altered concurrently.

'0@4}'

Task 6 - Intra Record Structure Amendment

Introduction

In the Codasyl Proposals the structure of a record in the
schema and storage schema is defined in much the same

way as Cobol defines records on traditional files.
The record is divided into elements of three types:-

Data Items
Data Aggregates

Vectors

Each elementis allocated a level number and the
nesting of elements within each other allows the

most general format of record to be defined.

" 'Function

The principal operation réquired for an amendment to
record structure is to allow the number of
repetitions of a data item to be altered. Repet-
jtions of a data item may be contiguous (a Vector)

or sepafated by corresponding repetitions of other
data items (part of a data aggregate). It is
evident that this task will be necessary since
assumptions made on the number of repetitions of data
items when the data base was created will often have

to be revised in the light of experience.

- 16§ -

Szntax

A variety of formats are proposed for this task to
allow the variation in the number of repetitions
of the data item to manifest itself in the number

of occurrences of a data aggregate or vector.

In particular, since an elementary data item is a vector
with a single occurrence a data item may be elevated to
become a vector or a vector may be reduced to a data

item.

Format (a)

(Vector-1)
AMEND OCCURS VALUE OF (Data Aggregate-1) IN Record-Name-1
(Data Item-1)
(Data Identifier-1) (Data Identifier-2)
FROM (Integer-1) TO (Integer-2)
Format (b)

INTRODUCE Data-Aggregate-2 OCCURS n TIMES

TO COVER Data-Item-2 TO Data-Item-3

IN Record-Name-2

(The data aggregate will assume the lowest level number
of the covered data items and all covered data item

levels will be increased by 1)

Format (c)
_ _ (BEFORE) _ _
MOVE Data-Item-4 to CAFTER) Data-Item-5
IN Record-Name-3
(where Data-Item-5 is part of a data aggregate this

will have the effect of adding Data-Item-4 to that

- 166 -

data-aggregate and amending its level accordingly).

There is little point in moving a data item to a new
position in a record while retaining the same number
of repetitions since the schema to sub-schema mapping
ensures that data item position within data base

records. is transparent to application programs.

" Program Categorisation

Transparent - All programs which do not reference the
record whose structure is being amended.
Programs which reference the record but
do not reference data items whose number

of repetitions are being altered.

Opaque - Programs which reference data items
whose number of repetitions are being

altered.

" Concurrent Tasks

The structure of a record may be altered concurrently
with any of the preceding tasks in any of its data
items whether their number of repetitions is being

amended or not.

Where the number of repetitions of a data item is being
amended by altering the record structure, the restructuring

mechanism must determine which existing repetitions

=167 -

must be removed from the record and which new
repetitions (possibly with allocated values) must

be added to the record.

Often if additional repetitions are being created they

will become the 'last' in the record and will be

allocated null values or some other suitable value.

But if the new repetitions are to be inserted elsewhere, an
additional clause will be required to specify their

position as well as their value.

Equally, if repetitions are to be removed, these too
will often be the ‘'last! on the record but other
repetitions could be removed using an additional

clause.

If the number of repetitions varies from one record
occurrence to another (depending on the value of

another data item) it may be necessary to quote both
types of clause to cater for all possible changes in

format.

As for previous tasks an Open Dynamic- Strategy involves
an amendment to the object schema to incorporate an
additional list giving the new structure of the

record under version n.

-168 -

Any new records stored or modified on the data base
will be written in the new structure while records
read from the data base to satisfy a GET from an
application program may be either version m or n.
The DBMS must continue to allow application programs
to "see" the previous record format even if the
record retrieved is version n. It can do this by
having a version number implied in-each of its DML
commands based oﬁ the version of data base operative

when the program was compiled.

For example, suppose the data base holds a record

with a vector of 5 elements. A restructuring could be
carried out to add a 6th entry (with null values
initially) before the existing 5 to produce a 6-element

vector.

If an old version application program-were to STORE
or MODIFY an occurrence of the record it will be
written with all 6 elements even though the program
only '"sees' it with 5. If a record with 5 elements
is retrieved for a GET by an application program the
DBMS can provide thesé values directly to the program
but if a record with 6 elements is retrieved the
program must take the restructuring into account and

only provide the program with those 5 that it requires.

- 169 -

Eventually, however, application programs will wish to
take advantage of the new record structure. In these
circumstances, the DBMS must therefore be aware of
which structure is required by a particular program
and this can be done by associating a version number
with the program (or sub-schema). Any program with

a version number of n or greater will be provided
with the new structure while programs with versions

lower than n will be provided with the old structure.

In our example above, a version n program could be
written referencing the vector with its full 6 elements.
This could access existing version n occurrences and

be provided with the correct values. If it were td
access occurrences with a lower version the DBMS would
have to transfer the five elements from the record to
the program as the last 5 elements in its vector with
the first element being set to null values. Records
written by the version n program will alwayg have the

full 6 elements in the vector.
EXTERN
RESTRycTuRE EvewT

f%r ‘ | >
A, | J/Jo/ -

...

In a Closed Dynamic Strategy all existing record occur-
rences will have their structure amended during the
restructuring. Any programs referencing the data

items having their repetitions altered must be

- 170~

modified at some point during this process since the
original versions must operate before the restructuring
and the final version afterwards. If possible, the Data
Base Administrator would arrange that such programs were

not run during the Transitional Period.

Suppose, -however, that there is a requirement to execute
a program during the Transitional Period. The approach
adopted above for Open Restructurings could be taken to
allow the program to "see" the old structure or the new
structure for the duration of the restructuring. Even
this might not be sufficient and it may be that the pro-
gram would have to be modified twice - once to become
Version Specific so that it could take appropriate
action depending on the version number of each record
retrieved and once more to adopt its final form. It
should be noted that the Version Specific program would
continue to operate successfully after the restructuring
although it would contain redundant coding which it would

be advisable to remove eventually.

Another consideration is where the restructuring is to
involve a period of parallel running once all records
have been modified.. In this case, the revised records
supplement rather than replace the existing records.
The old record structure continues to exist during the
restructuring and the old versions of the programs

can therefore continue to operate on these record

- 190 -

versions during the Transition and Parallel Running

RESTRUCT URIN
Phases. €nd . Exrta
TRueT) PARALEL PARALLEL XTER NG &
Res%ﬁa{c Hhirt sTanT EnD EVENT
ID T —
P
/ . 174
P o /Do (Ve:s:o,\Spedpvc P fo)
=
) frup§Version Specilie

In the diagram RT is a Transparent Program which can
operate before, during and after the restructuring
since it does not reference the data item whose number

of repetitions is being altered.

Py is an Opaque Program which is to take advantage

of the change in the number of repetitions. A new
version of the program (Pg) is scheduled for introduction
to coincide with the start of the transitional period.
If i; finds a record which has had the number of
répetifions altered it can recognise it by its version
number and process its data accordingly. If it finds
a record in the original form it can proceed as

before. The program is therefore now version specific.
Once the Transitiopal Phase is complete all records
vill be read and written in the new format (during

the Parallel Run they will also be written in the

old format but this is irrelevant to this program).
Some time later, therefore, the logic to process
records in the old format can be removed and the
program will be no longer Version Specific (i.e. it is

. %
version Po).

0272

PAUDIT is an ad-hoc program which ensures that the
Restructuring has been performed successfully by examin-
ing both old and new formats of the same record occur-
rence and checking their compatibility. Once this
program has been run successfully, the Data Base
Adminiitrator can decide to terminate the period of

parallel running.

Semantically Equivalent Programs

As we have seen, opaque programs will be required to alter
in their data base access only in so far as they use GET
and MODIFY to transfer data between User Work Area and data
base record. In general these changes must be co-ordinated
with other changes to the logic of the programs to determine
how the amended number of occurrences of the data item in

the record are to be handled.

One specific instance, however, leads itself to a process
of automatic conversion of the DML commands issued by a
program to a corresponding set of commands which are
semantically equivalent under the new structure. This
equivalence takes advantage of the fact that a data

item within a data aggregate or vector which has only one
repetition is equivalent to a simple data iteﬁ once it has
been transferred to the User Work Area. Thus GET (VALUE)
will be equivalent to GET (VALUE (1)) if the data item VALUE
is being embedded in a vector with one repetition. Although

the frequency of this type of structural change may well be

-023 -

limited (it could be said that it'does not actually alter the
structure), the existence of a mechanism for automatic
program conversion would encourage Data Base Administrators
to approach alterations to the number of repetitions of data
items in a\phased manner with the intermediate state being

that data items within vectors or data aggregates had only

one repetition.

" Task 7 - Migration of a Data Item Between Records

" Function

. When the Data Base Administrator originally defines

a Data Base, he will form the data base records by group-

Y

ing data items which he considers to relate to the same
entities from the real world. For certain data items
it might be difficult to decide to'which entity (and,
therefore, to which record) they relate. Later, it
may well become apparent that certain data items

would more properly be part of other records than those

in which they were originally included.

If it is to allow data items to be moved from one record
to another the restructuring mechanism must have some
criterion to use to determine which occurrence of

the destination record is to receive each occurrence

of the data item from the source record. It is proposed
that two means of establishing this criterion will be

available: -

(a) The source and destination records are owner and
member or member and owner of a set already

defined in the data base.

(b) The source and destination records are related
by equality of value of certain specified data
items. This relationship may be considered as

a special case of the set relationship where the

-07§ -

record association is implicit in the data item

values rather than explicitly defined by means of

set pointers or indices. In the description which
follows the set terminology is therefore used except
where special consideration must be given to this type

of implicit set.

Both types of record relationship allow for the
possibility of one-to-many and many-to-one relation-
ships between record occurrences although a simple
one-to-one relationship is not excluded. In both
cases, both source and destination record
occurrences must actually exist to which the data

item will be removed and added respectively.

In normal circumstances, the data item will be
removed from each occurrence of the source record
and added to each occurrence of the destination
record. If necessary, however, the data item may be

retained in the source record.

The proposed syntéx for this task is as follows:-
MOVE Data-Item - 1 FROM Record-Name - 1
TO Record-Name - 2

(ALONG Set-Name - 1)
(USING EQUALITY OF (data-item 1 ...))

DISTRIBUTION BY REPETITION
DISTRIBUTION BY EQUALITY
DISTRIBUTION BY Procedure-Name - 1

E{ETAIN SOURC]E]

- 176 -

The distribution clause is necessary to define how
the data item is to be populated in the destination

record.

For Distribution by Repetition the data item can be

a Vector (or part of a repeating group) in the source
record ‘and move (as an elementary data item) to the
destination record with each repetition of the data
item assuming a value in one of the destination member
records in turn. The number of repetitions of the
data item in the sourée record must therefore exactly
equal the number of occurrences of the destination
record or occurrences can be created to accommodate
them. Similarly, Distribution by Repetition may take
place from member to owner where an elementary data

item becomes a vector in the owner record.

For Distribution by Equality the value of the data item
in the Owner record (if this is the source of the
migration) is allocated to all occurrences of the

data item in the destination (member) record occurrences.
For migration from member to owner all member records

in the same set occurrence must have the same value

for the migrating data item in which case this value

is allocated in the destination (owner) record.

For Distribution by Procedure, the specified pro-
cedure is executed to give value(s) for the data
item in the destination record(s) based on value(s)

in the source record(s).

-127-

The Clause 'RETAIN SOURCE' is optional. If included
the data item is retained in each occurrence of the
source record in addition to being copied to the

destination record.

" Program Categorisation

Transparent - Programs which do not reference the

data item being moved.

Opaque - Programs which reference the data item

being moved.

This task can be executed concurrently with any of
the previous tasks where they are operating on data

items in the source record.

More than one data item may be moved concurrently

from the Source to the Destination Record.

In a closed dynamic strategy the restructuring
mechanism must move a data item from an owner
record occurrence to one or more member record
occurrences or from one or more member record

occurrences to an owner record occurrence.

=178 -

The restructuring mechanism therefore operates on all the
record occurrences in a set occurrence to perform the
necessary migration and access to all record occurrences
jn the set by application programs will therefore be
precluded while this is done.

*.

Each set occurrence is established by progressing through
occurrences of the owner record in the preferred direction.
Each such record will be at some version m kn). Using
the appropriate set pointers all member record
occurrences can then be retrieved. These will be at

some other version p (Kn). Following reference to the
Distribution Clause the restructuring mechanism can
thenallocate values to the data item in the destination
record(s) using values found in the source record(s).
When this has been done all records can be written back
to the data base in their new format at version n.

Since the set relationship precludes one member record
occurrence being related to more than one owner record
and assuming membership of the set is mandatory (i.e. all
member records must be related to some owner) when all
owner records have been processed the restructuring is

complete.

The use of version numbers allows the DBMS to process
accesses to the source and destination records by
Transparent Programs before, during ana after the
restructuring in the same way that it handles the

addition and deletion of data items in Tasks 1 and 2.

-179-

As we have seen, there may be some delay in servicing
accesses to records while the set occurrence in which
they participate is being processed by the Restructuring
Mechanism. Opaque Programs will see the data item as

held in the source record before the restructuring

and the destination record thereafter. There are
various methods whereby opaque programs can operate

during the transitional period:-

(a) The Opaque Program can be made Version Specific

ExTERNAL RESTRucTURE RESTRucTURE ExXTERN HL
EVENT STROT EnD EVENT
\ /e
/
P’O - - \IPO(VQ'S.“" S‘OOciAcJ (»)

| | |

In the knowledge that the restructuriﬁg is to take
place the program can be amended to process records

in different ways depending oh their version numbers.
If their version is less than n then the data item will
appear in the source record but not in the destination.
If their version is greater than or equal to n the
data item will appear in the destination record but
not in the source. " Any new records written to the

data base will be written at either version n or their
original version depending on whether the corresponding
set owner record would have been processed by the

Restructuring Mechanism.

og@

The introduction of the Version Specific Program need
not coincide with the start of the restructuring since
it will operate satisfactorily before this point where
no version n records exist. Similarly, it need not

be discontinued after the restructuring since it will
operate. satisfactorily when all records are at version n.
Introduction is likely to be linked to some external
event such as the introduction of new data capture
procedures. Amendment to become non-Version Specific
is likely to be influenced by feasibility of expending
programming effort to make the program more efficient

to run.

(b) The Original Version of the Opaque Program can

lel running

is required
RESTRUCT uRE . RESTRUCT4RE END . PR picke RN
START , PoRBLLEL Run STORT END

Co | | Al

| | 7l

In this case occurrences of the source record containing

the migrating data item will continue to exist up to the
end of the parallél run and there is therefore no
difficulty for the DBMS to satisfy requests from
application programs to retrieve the data item from

the source record. During and after the restructuring
there may also exist versions of the source and destin-
ation records in the new format and the DBMS must handle
any new or updated records by performing or reperforming

the data item migration for these records.

-8 -

(c) The amended version of the Opaque Program can be

introduced to coincide with the start of the

restructuring
RESTRucTURE RESTRuCTYRE
START Evd

Po A’

—,
-l

During the restructuring, application programs may require
to retrieve, update or insert.records which have or have
not been restructured. If the record has been restructured
(or is to be added at a position prior to the current
point of the restructuring in the preferred direction)
there is no difficulty since the migrating data item will
be in the destination record as expected by the program.
If, however, the restructuring has not yet reached the
point occupied or to be occupied by the record the DBMS
must perform the migration on that set occurrence before
servicing the request by the application program. 4This

is similar to the technique described in Task 1 (Déta

Item Addition) where the restructuring mechanism may
encounter already restructured records but it can recog-
nise these as being at version n and progress onto the

next occurrence.

As values for the destination data item are calculated
by the restructuring mechanism it is possible that incon-
siétencies are detected between the Distribution Clause
and the actual values on the data base record. For

example, if the clause indicates distribution

- 192-

by repetition the number of occurrences of the member
record may not correspond with the number of repetitions
of the data item in the source record. Similarly, if
the clause indicated distribution by equality and
migration is from member to owner all values

of the data item in the member records may not be equal.
As for previous tasks the Data Base Administrator hés the
option of '"rolling back'" the restructuring or allocating
some value to the migrating data item and reporting the

situation.

An Open Dynamic Implementation Strategy

The object of an open strategy will be to migrate the
data item only when this is necessary because of access

to individual record occurrences by application progfams.
To accomplish this, it is essential that the set or
equivalent data items used as the basis for the migration
remain stable (i.e. are not themselves restructured) while
occurrences of the old format of records remain on the

data base.

The mechanism for handling each migration is similar to the
type (c) Closed Strategy described above where a record

to be retrieved, updated or added to the data base had not
(yet) been restructured. To obtain this effect it is
essential that any opaque programs are scheduled in their

revised form to coincide with the start of the restructuring.

-183 -

In this task the requirement to restructure a complete

set occurrence as a unit may impose significant limit-
ations on the use of an Open Dynamic Strategy. Accesses
by application programs may have to wait for an appreciable
time until the complete set has been processed. Consider-
ations must be given to the feasibility of rest;ucturing

a set even if the migrating data item only has to be
retrieved to service an application program request.

Unlike other tasks it may be desirable to perform the
migration in this case to avoid subsequent accesses

to the complete set occurrence.

Once again an open strategy may impose difficulties on

the Data Base Administrator in monitoring errors detected
when a data item is migrating (e.g. a discrepancy in the
actual number of occurrences of the destinatidn-record).

Such errors can only be detected when application programs
happen to access records and the DBMS therefore restructures
them, and the timing of this will often be outwith the control

of the Data Base Administrator.

- 18-

Semantically Equivalent Programs

In general, opaque programs will alter significantly if a

data item which they use migrates from one type of record

to another. In particular if distribution is by procedure it

is not likely that it will be possible to automatically convert
such programs so that they can operate on the revised structure.
Furthermore where the logic of a program permits complex

paths with a variety of combinations of DML commands (i.e.
where a program may branch to an instruction between DML
commands) no simple logic path may reflect the new structure.
Nevertheless in certain instances it may be possible to convert

programs to semantically equivalent versions.

For example if distribution is by equality (or by repetition
where the data aggregate has one repetition) programs with an
un-interrupted flow of

FIND OWNER
FIND CORRESPONDING MEMBER OF MIGRATORY SET

O EIND MEMBER
FIND CORRESPONDING OWNER OF MIGRATORY SET.

may be modified automatically such that the GET for the

migrating data item appears after both FINDS.

- gg)g-

Task 8 - Adding a New Record to a Data Base

Function

One of the principal areas of expansion of a data base is
where the organisation modelled in the data base identifies
a new éhtity which must be represented by a corresponding

data base record.

Program Categorisation

Transparent Programs - Programs which do not require the
new record and do not include it

in their sub-schema.

Opaque Programs -~ Programs which are to be amended
to include the new record in their

processing.

Concurrent Tasks

No other tasks may operate concurrently with this task

since it is instantaneous.

Syntax

The proposed syntax for this task is as follows:-

ADD Record-name - 1

DEFINITION - As for the Schema Entry in the Codasyl
Proposals

STORAGE - As for the Storage Schema Entry in the

Codasyl Proposals.

- 186-

Implementation

The task results in a list giving details of the new
record being added to the Object Schema. At this time,
no record occurrences will exist on the data base since
these will be added by later tasks or by application

.

programs.

- 187~

Function

Where a number of related data items constitute a record
it may Become apparent that certain of these data items
are related in some special way which could be more
easily utilised if they were separéte from the remaining
data items. Thus, the original record will be split

with each occurrence becoming two distinct records.

Note that this task is distinct from Task 7 (Data

Item Migration) in that a new record occurrence is
created when the data items are split where the require-
ments for a relationship by set or data item equality
implies that record occurrences must exist to receive

migrating data items.

" Program Categorisation

Transparent Programs - Programs which do not reference

data items being split.

Opaque Programs - Programs which reference the

data items being split.

- Syntax

The proposed syntax for this task is as follows:-

-198-

SPLIT Data-Item-1 FROM Record-Name-1
To Record-Name-2
or COPY Data-Item-1 FROM Record-Name-1

To Record-Name-2

The difference between the clauses is that the second form
results in the data item remaining in the original record
as well as being included in the new record. This is
particularly useful for data items which identify

record occurrences and provides for relating the split

records using a set.

Concurrent Tasks

This task can be executed concurrently with any of the
previous tasks where they are operating on the data

items of the original record.

More than one data item may be split or copied\from

the same original record to one or more new records.

A Closed Dynamic Implementation Strategy

By progressing through the original record occurrences
in turn the restructuring mechanism can create new
versions of the split records and write each to the

data base at version n.

As for Task 7 (Migration of a data item between
records) there are three possibilities for the scheduling

of the new versions of opaque programs.

- 169 -

A Version Specific version of the program can be used to
handle data base access during and immediately after the

restructuring.

The new version can be scheduled for introduction to
coincide with the end of a period of parallel running
with the original version operating on the old record

versions during the restructuring and parallel run.

The new version can be scheduled for introduction to
coincide with the start of the restructuring. An
attempt by an application program to access a record
which has not yet been restructured will result in the

DBMS performing the restructuring on that record before

servicing the request.

As for a Closed Strategy the techniques used to
service accesses to the data items.Split from fhe main
record can be handled by performing the restructuring
if this has not already been done. In this case,

this can be ascertained since the absence of a record
occurrence implies that the restructuring has not

taken place.

- 9o -

Semantically Equivalent Programs

The opportunity exists for the conversion of programs to
sementically equivalent forms operating on the revised data
base structure if the splitting of data items from a record
to a new record is'combined with the creation of a new set
combining the two records (see Task 12). The one-to-one
relationship between the records will imply that each set

of occurrences has one owner and exactly one member. Any
programs accessing the original record by the FIND command
can have this DML callextended by addition of a further FIND
MEMBER command for the new record. Similarly a STORE or
MODIFY command can be replaced by two STORE commands or by a
MODIFY, FIND MEMBER, MODIFY command sequence respectively.

Where data items are copied to the new record there should

be no requirement to modify programs which do not STORE or
MODIFY the data items. If STORE or MODIFY is used, however,
the program must be altered to reference the copied data items

in both types of record.

-J19r -

Function

It may be that an entity on which data has previously
been mgintained is no longer relevant to an organisation's
needs. The Data Base Administrator must therefore have
the ability to delete all occurrences of such a record
from the data base to free the stdrage space for useful

records.

Before a record can be deleted the restructuring
mechanism must ensure that it is indeed redundant.

A redundant record is one which is not referenced in
any sub-schema and is not referenced in. the Object
Schema other than in its own record definition. In
particular, the record must not be the owner or
member of any set (member records can be removed
from sets ﬁsing Task 15 and sets with this record

as owner can be deleted using Task 13).

Program Categorisation
Transparent Programs - All programs

Opaque Programs - None

Concurrent Tasks

No tasks may be executed concurrently with this task.

-199 -

Syntax

The proposed syntax for this task is as follows:

DELETE Record~Name - 1

Implementation

The restructuring mechanism has two functions to

perform to execute this task:-

(a) To remove the list for the deleted record

from the Object Schema.

(b) To delete all occurrences of the record from

the data base.

The record occurrences can be deleted by progressing
through them in the preferred direction and using the
mechanism adopted by the DBMS for the deletion of
individual records by application programs. One method
of doing this is to maintain a '"free space directory" and
the storage occupied by the record occurrences can be
added to this directory. Another technique is to

mark records as due for deletion to be physically

deleted later by a 'garbage collection" utility.

-163-

Task 11 - Amendment to a Record Key

Function

A number of keys (a key being a collection of data
items) may be defined for a record. For each key there
is a co;responding index which allows an individual
occurrence of the record to be addressed directly when
provided with the required values of the data items in

that key.

The use of the key is to some extent up to the host
programming language in which the DML commands are to be
embedded. It may be that a program can retrieve a record
by providing values for any of its data items (if no key
exists for these data items the appopriate record will be
obtained by sequential searching). More likely, however,
the program must quote the values of data items for one

of the keys defined in the schema for the record.

Program Categorisation

Transparent Programs - Programs which do not reference

that key

Opaque Programs - Programs which use the key being
amendéd to address records on the
data base. New versions of each
program can only be scheduled when

the restructuring is complete.

- 194

Concurrent Tasks

The task may be performed concurrently with any of the
previously defined tasks operating on data items of the
record to which the key relates where the restructuring

is being done using a Closed Dynamic Strategy.

Syntax
The proposed syntax for this task is as follows:-

" Format (a)

ADD NEW KEY TO Record-Name-1

Key-Name-1 (Key Clause as defined in Codasyl Proposals)

" Format (b) -

DELETE KEY Key-Name - 2 FROM Record-Name - 2

ASCENDING
ADD iDESCENDING} Data-Item - 1 TO KEY Key-Name -~ 3

BEFORE
IN Record-Name - 3 EAFTER Data Item - 2

" Format (d)

DELETE Data Item - 3 FROM KEY Key-Name - 4 IN Record-Name - 4

Format (e)

DUPLICATES IN KEY Key Name - 5 OF Record-Name - 5

FIRST
INTRODUCED AS gLAST }}

DISCONTINUED

-”@g'_

Implementation Strategy

The amendment to record keys does not require alteration
to record occurrences on the data base and their

version number, therefore, need not alter. The
restructuring mechanism need only operate on the index

corresﬁonding to the key being altered.

Where a key is deleted the restructuring mechanism

need only delete the corresponding index.

Where a key is being added or amended it will be
necessary to set up a new index and this can be done

as follows:-

All occurrences of the record in question can be
processed in the preferred direction and the key data
items extracted so that an index entry can be made.

It will probably be more efficient to create the index
by sorting the index entries after they have all been
created rather than by creating the index directly by
adding each entry as it is processed. In any event such
an operation can continue without hindering application
programs which reference the record since opaque programs
which are to use the new key cannot be scheduled until it
is complete. Some application programs will add new
occurrences of the record and amend and delete existing
occurrences. These will continue to result in'any
existing indices being updated. The DBMS need take

no additional action if the restructuring mechanism

ﬂ@6

has not yet reached .this occurrence when progressing
along the preferred direction. If the restructuring
mechanism has passed the position occupied or to be
occupied by the record occurrence the DBMS must take
the necessary steps to add, amend or delete the entry

from the index being set up.

If an index is being amended the last step in the
restructuring will be to alter the Object Schema
entry for the key to the record to provide the

address of the new index rather than the old.

If a new or amended key includes a DUPLICATES ARE NOT
ALLOWED clause it is possible that duplication of
occurrences of the record are detected when the index
is set up. The restructuring will not be successful
in this case and the new index will not come into
operation (the old index remaining if there was .one).
The offending occurrences will be reported to the

Data Base Administrator.

If the DUPLICATES Clause is discontinued it is not
even necessary for the restructuring mechanism to set
up a new index. All that is required is for the
Object Schema definition of the key to be altered to
indicate that there is no restriction on duplicate

values of the key.

Special consideration must also be given to the

introduction of a DUPLICATES ARE FIRST/LAST Clause

=197 -

since this implies that the distinction between record
occurrences with equal values for the key in terms of
their presentation to application programs will be the
chronological or inverse-chronological order of their
insertion onto the data base. This implies some form of
date/time stamping of records as they are added to the

data base.

-198 -

Function

The network of relationships between records on the

data base is established using the Set construct. In
this w;} one type of record (the owner) is associated
with one or more other types of record (the members).

In any set occurrence there will bé one occurrence of the

owner record and zero or more occurrences of each of the

member records.

It may be necessary for the Data Base Administrator to
alter the network for many reasons during the lifetime of
the data base. The introduction of new records relating
to new entities, unforeseen inter-record relationships
and the correction of errors in the initial network

definition are typical examples.

The following tasks consider various methods of network
modification. In this task we consider the addition
of a new set to define the association between existing

records.

Program Categorisation

Transparent - All programs which do not require the set
in question including those which reference
the owner and member records without using

the set.

-199 -

Opaque - Programs which wish to take advantage

of the new set relationship.

Concurrent Tasks

No tasks may operate concurrently with this task.

Syntax
The proposed syntax for the task is as follows:-

ADD SET Set-Name - 1

DEFINITION (Definition of the Set as described in
the Codasyl Proposals).

STORAGE (Definition of the set storage mechanism
as described in the Codasyl Storage Schema
Proposals).

(INITIAL SELECTION OF Member-Record - 1 IS BY Procedure - 1) ..

The Initial Selection Procedure is required to provide
a means of allocating record occurrences to particular
set occurrences where the set has no SET SELECTION
procedure (e.g. where record occurrences would normally
be added by application programs using the INSERT DML
command). The procedure differs from the Set

Selection Procedure since it must have the ability to
provide a result of '"no owner" where membership of a
set is not mandatory to provide for occurrences of

a member record which are not members of any set

occurrence.

- 00-

Implementation Strategy

The principal objective in implementing this task is to
set up the pointers (and, if necessary, indices) which
identify occurrences of the set. The Codasyl Proposals
describe First and Last Owner Record Pointers and Next,
Prior anq Owner Member Record Pointers. Each Pointer
will be associated with one of the storage record occur-
rences corresponding to each record occurrence. They
may point to another storage record occurrence or to an
index entry depending on whether direct or indirect

pointers are used.

Each storage record will already have other pointers
associated with it corresponding to sets where the
record is an owner or member. If the pointers for the
new set are added after all existing pointers there

is no requirement to alter the existing version number
of the record since all existing programs can continue
to operate using these pointers. It may be more con-
venient, however, to position the new pointers at some
point within the storage record whicﬁ displaces existing
pointers and in this case the version number of the
records must be increased to n. For the duration of the
restructure, therefore, some record occurrences will

be at version n and others will be at lower versions

and the DML Execution Routines must take this into
account. From the start of the restructuring any new

occurrences of the records will be written as version n

_&@y -

with the correct pointers. In particular, if

the set being added has mandatory membership the
pointers in the new record will be set to the

value determined by the Set Selection Procedure.
Similarly, if a member record occurrence at version n
is deleted from the data base the pointers in its
corresponding owner record occurrence and adjacent
member record occurrences will be reset appropriately

(these too must be at version n as described below).

To perform the restructuring dynamically the restructuring

mechanism would operate as follows: -

Each set occurrence is associated with a unique owner
record occurrence and the restructuring mechanism
must firstly establish the existence of each such set
by progressing through all occurrences of the owner
record in the "Preferred Direction". Each record
will be written back to the data base as version n,
with the pointer for the new set allocated a value
indicating that no member records currently exist for

that set.

When all owner record occﬁrrences have been processed
the Restructuring Mechanism will set the pointers on
each occurrence of each member record by once again
progressing through these in the preferred direction.
The appropriate owner record is identified using

the Initial Selection or Set Selection Procedure.

~20X"

Addition of the member to the set can then use the
techniques used by the DML Execution Routines for adding
records to sets when requested to do so by an application
program. For a chronologically ordered set (INSERTION
IS FIRST, LAST) the Restructuring Mechanism is not in

a position to determine the order of the set which must,

therefore, be random for existing records although any

records subsequently added will be -positioned correctly.

Once this process is complete, the set has been fully
established and the modified versions of the Opaque

Programs can be scheduled for execution.

-03 -

Task 13 - Deletion of a Redundant Set

Function

The Data Base Administrator may also require to amend
the network by deleting redundant sets to free the
space dEcupied by unused pointers and indices. For
sets where insertion is automatic the deletion would
remove the requirement of the DML Execution Routines
to update the pointers when record occurrences are

added to or removed from the Data Base.

Before a set can be deleted the restrﬁcturing
mechanism must ensure that it is indeed redundant.

A redundant set is one which is not referenced in any
sub-schema and the restructuring mechanism must
reference all sub-schemas to ensure that this is the

case..

Program Categorisation

Transparent - All programs

Opaque - None (since no sub-schema can contain

the set no program can reference it).

Concurrent Tasks

No task may operate concurrently with this task.

2@4

Szgtax

The proposed syntax for this task is as follows:-

DELETE SET Set-Name - 1

Implementation Strategy

‘s

The Restructuring Mechanism must firstly free the space
allocated to pointers in the owner and member record
occurrences. It can do this by progressing through
thoese records in the preferred direction and writing
version n records to the data base which do not contain

these set pointers.

Once this operation is complete the index for the set

can be deleted if the set uses indirect pointers.

-208 -

- Task 14 - Addition of a New Member Record to an 'E'x‘i's't'ing

Set

" Function

Since a Set links one type of owner record to a number
of types of member records the Data Base Administrator
may require to add a new type of member record to those

present for an existing set.

Transparent - Programs which do not refer to the set.
Programs which always refer to explicit
record names (other than the record being
added) when 'Finding' records via the

set.

Opaque - Programs which wish to take advantage .
of the set membership of this new record.
Programs which do not explicitly refer
to member record name when 'Finding'

via the set.

Concurrent Tasks

No task may operate concurrently with this task.

- 264~

The proposed syntax for this task is as follows:-

ADD MEMBER Record-Name - 1 TO SET Set Name - 1

DEFINITION (definition of set membership as described
in the Codasyl Proposals)

INITIAE SELECTION IS BY Procedure - 1

Implementation Strategy

The strategy used for this task is identical to that used
for the second phase of task 12 (adding a new set) except
that the DML Execution Routines must be capable of
handling requests for access to the set being

modified by application programs whose view of the set
does not reference the new record. This is possible
because at all times the pointer chains for the set

are self-consistent. It may be that certain pointer
chains have occurrences of the new record at version n
but the DML Execution Routines can pass through these
pointers to the next occurrence of the type of record

they require.

Once the restructuring is complete the new version of
opaque programs which reference the set as containing

the new record can be scheduled.

Q@y

Function

A further method whereby the Data Base Administrator

could alter the network would be to remove an existing

kY

member record from participation in an existing set.

By implication, other members woulq still remain in

the set since if this were not the case the set could
be deleted as detailed in Task 13. The removal of the
record from the set might be necessary as a prelude to
the deletion of the record or might reflect a loss of
the relationship between the entity represented by

that record and that represented by the owner record of

the set.

Program Categorisation
Transparent - Programs which do not refer to the set.

Programs which always refer to explicit
record names (other than the record
being removed) when 'Finding' records via
the set.

Opaque - Programs which do not explicitly refer to
member record name when 'Finding' via

the set.

No tasks may operate concurrently with this task.

-208-
'Szhtax

The proposed syntax for this task is as follows:-

REMOVE Record-Name - 1 FROM Set-Name - 1

Implementation Strategy

This task can be implemented by the restructuring mechanism
in progressing through all occurrences of the record in
question in the preferred direction. Each occurrence will
be read as version m and written back as version n

(without the pointers for the set). In addition the-
adjacent record occurrences in the set occurrence must

be accessed and their pointers amended to point to each
other rather than the removed record (this is similar

to the operation carried out to operate the DML Remove

command) .

As for the previous task this operation maintains set
integrity at all times whether occurrences of the removed
record are at version n or m. Transparent prggram can,

therefore, continue to operate during the restructuring.

Where a program uses the FIND command to navigate
through the set without explicitly referencing record
names, its results would be unpredictable during the
restructuring since it may or may not be presented with
an occurrence of the removed record depending on
whether the restructuring mechanism has reached that

point. A modified version can be scheduled for

209 -

introduction at some convenient point before the
restructuring which ignores any occurrences of the
removed record if they are presented. This procedure

is similar to that used in previous tasks for Version
Specific programs although in this case only the name

of the tretrieved record need be examined rather than

its version. Similarly, it may be useful to schedule

a further version of the program after the restructuring
is complete which does not contain the logic to examine

the record name since none will now be found.

-9i0 -

Function

The order of a set will often be a significant factor in
the processing efficiency and storage requirements of the
applicékion programs which use it. Once again the Data
Base Administrator must originally define an order which
he considers the most appropriate for each set on the
data base. Later it may become apparent that access to
the records in the set by application programs would

overall be more efficient if the set were in a different

order.

It is, of course, possible to define a completely new

set (Task 12) which is identical‘to the old in all
aspects.except the set order. The Data Base Administrator
may not consider the overheads associated with maintain-

ing the indices and pointers for both sets acceptable.

Program Categorisation

Transparent - Programs which do not reference the
set.
Programs where the order of the set

is irrelevant to the logic performed.

Opaque - Programs where the set order affects

the logic performed.

- 2100 -

Concurrent Tasks

No tasks may operate concurrently with this task.

- Syntax

The proposed syntax for this task is as follows:-
AMEND ORDER OF SET Set-Name-1
This is followed by the Order Clause and any necessary

Key Clauses as defined in the Codasyl proposals.

Implementation Strategy

The following strategy may be used to process the
task while allowing application programs access to
each set occurrence in one order or the other during
the restructuring. An attempt to access a set
occurrence which is actually being restructured at

that time will be delayed until this has been done.

The restructuring mechanism will progress through

the occurrences of the owner record of the set. For
each it will retrieve all occurrences of associated
member reéords by following the pointer chain for the
set in question. When this has been done it will use
the Order and Key Clauses specified on the task to
re-order that set occurrence. The pointers will be
re-set appropriately and all records written back as
version n. When all occurrences of the owner record
have been processed so have all set occurrences and

the task is complete.

-2& -

Transparent programs where the set order is irrelevant
may, therefore, be supplied with records in either the
old or new order for a particular set occurrence
depending on whether it has been processed by the
restructuring mechanism.. However, a consistent set

occurrénce is always presented.

Opaque Programs can continue to operate during the
restructuring in much the same way as in Task 7 (Mig-
ration of a Data Item). As in that case there are

three possible techniques:-

(a) The Opaque Program can be made Version Specific

Since the Version Number of any retrieved

tenant record of a set occurrence determines the
order of that set (Version n for the new order,
some lower version for the old order) the program
can take whatever action is appropriate for the

order of the set retrieved.

Any records added to the set will be at the
version appropriate to that set occurrence -
thus they may be restructured later when the

restructuring mechanism reaches that point.

The version specific program can be introduced
at some convenient point before the restructuring
and it will operate on the old set order until
the restructuring commences. Similarly, it can

be replaced by a non-version-specific program

“213 -

at some convenient point after the restructuring

is complete.

The original version of the Opaque Program can

operate during the restructuring where a period

of parallel running is required.

The restructuring mechanism will leave occurrences
of owner and member records of the set on the data
base as well as writing new records at version n

if a period of parallel running is required. Up
until the end of the parallel running period there
will therefore always be set occurrences in the old
order and these will be presented to the.opaque
program since it is implicitly version specific as
previously described. Any attempt to add a record
to a set occurrence in the old order must be
examined by the DBMS and if there is a corresponding
set occurrence in the new order the record must

also be added there at the appropriate point.

An amended version of the opaque program using
the set in the new order must be scheduled for
introduction to coincide with the end of the

period of parallel running.

The amended version of the opaque program can be

introduced to coincide with the start of the

restructuring.

;2[)@ -

If the program requires access to a set occurrence
prior to the point currently reached by the
restructuring mechanism the DBMS has no difficulty
in servicing the request since the set is in the

desired order.

Y

If access 1s required to a set occurrence after
the current restructuring point the DBMS must
perform the restructuring on that set before
servicing the request. The restructuring
mechanism will eventually reach this point but
it can determine that that set occurrence has
already been restructured since the owner

record 1s at version n.

...2{/5_

Semantically Equivalent Programs

It may be possible to convert programs which use a set,

whose order is being changed where all member records are
processed in a consistent manner. In general a sequence

of "FIND then process'" for each member record occurrence could
be replaced by a series of FINDs followed by a sort of the
records retrieved with the processing being performed in the

exit from the sort.

-206-

Chapter 8 - An Implementation of a Data Base Management
System Supporting Restructuring

Introduction

A Data Base Management System supporting Restructuring has
been implemented on the Edinburgh Regional Computing Centre
Multi-access System EMAS. The system is designed as a
teaching ;}d to allow those interested in the interaction of
restructuring tasks and DML calls by application programs to
exberiment and create situations where they consider that
contention for shared resources might pose problems for the
logic of the restructuring mechanism. The basic system cannot
therefore be considered as a practical data base management
system since it is interactive with the user on an operation-
by-operation basis such that it continually prompts the user
to establish which course of action to take and also informs
the user of the results of each action. However, a further
version of the system has also been created which interacts
with the user at a higher level such that he must indicate
only which application programs and/or restructuring tasks

he wishes to initiate. In this case the usage of computer
resources is reported when each task is complete so that the

user can guage the overheads associated with the operations

performed.

System Structure

Both versions of the system consist of a single FORTRAN
program of some 3,000 instructions. There is a primary entry
point where data is accepted from the interactive terminal and
this dictates which one of a number of alternative paths the

program should follow based on a code which the user must key.

~207 -

There are three main sections of the program.

a.

The Application Programs

The first section of the program contains a set of
sequences of instructions each of which would normally
be performed by an application program in a fullscale
data\base management system. Those which have been
written so far illustrate the types of function which
would be required from the appli;ation programs
operating on a data base maintained by a British Bank.
Each application program has a corresponding code
number and the user may initiate a run of any desired
program by keying its code number when prompted to do
so by the DBMS. 1In addition, the application programs
may request input from the user to simulate the process
of data capture. The programs will prompt the user by

indicating the type of data required.

The Data Manipulation Language Routines

Application programs communicate with the data base

by issuing calls to FORTRAN subroutines which directly
correspond with the DML commands identified in the
CODASYL proposals. Details of the commands are given
in Appendix 1.

The DML routines require a Schema to provide them
with a description of the data base and a Sub-schema to
indicate how that program is to restrict its view of the
entire data base. The Schema is an array held in the
COMMON area between the subroutines and the application

programs. The subschema is an array containing data

- =2/8 -

item names and is passed from program to subroutine as an

argument to the CALL instruction.

The Data Base itself is held as a FORTRAN Direct
Access file such that each record occurrence has a
unique address given by its relative posifion on the
file. Records are not clustered with others of the
same record type or with others in the same set
occurrence but are simply added at the next available
position on the file when they are STORED. To allow
records of certain types to be retrieved by their key
the prime data file is also supported by a number of
index files. One such file is maintained for each
version of each one of a number of record types (viz.
Customer Records and Account Records at the present time).
These files too are FORTRAN direct access files with
the relative position of the record indicating the key
of the corresponding record in the prime data file.
This approach was necessary to overcome the absence of

file indexing facilities in FORTRAN,

The Restructuring Tasks

In addition to initiating a run of an application
program, the user of the system may also choose from a
number of codes which allow him to initiate Restructuring
Tasks. Those currently available correspond to actions
which would realistically be expected in a Bank Data Base
but in general are similar to the primative tasks described
in Chapter 7. Tasks may use either an open or closed

strategy at the user's discretion.

- 219 -

Like application programs, the restructuring tasks
are, in fact, sections of the main FORTRAN program
although in a fullscale data base they would be system
routines at the same level in the system hierarchy as
application programs. This similarity of interface
level is reflected in the structure of the demonstration

systém.

-220 -

The implementation illustrates to the user how the
Restructuring Mechanism can operate concurrently

with application programs.

For tasks using Closed strategies the user is

offered the choice of initiating application programs
or continuing with the restructuring after each
record (or set of records) has been restructured.
Thus, the user can experiment with the effects

of initiating different application programs operating
on records which have been restructured or are as

yet to be restructured as the case may be. This
contrasts with the situation for most small data
baées in a "live" data base system where a closed
restructuring might be completed so quickly that
there would be no opportunity to experiment with

its various types of interaction with the application

programs.

Since the system always informs the user of the
actions it is taking as a result of DML commands
by application program the user can observe the
algorithms being carried out to cater for the

handling of records and sets affected by the

- 22§ -

restructuring.

As a particular case of a Closed Restructuring it is
possible to restructure using Parallel Running
where not only does the new data base structure
gradually materialise but the old structure remains
until such time as it is deemed to be no longer

necessary.

For an Open Restructuring only the schema is
initially altered to reflect the change in data
base structure. The user can then observe how
the data base itself subsequently alters as
application programs add new records to the data

base and modify existing records.

" The Data Ma'n'i'pu'l'a't'i'o'n' Language ‘Commands

Application Programs may use the following Data
Manipulation Language Commands to access the

Data Base.

" FIND (Type 1)

Records may be retrieved from the data base by
supplying values for up to three concatenated key
data items. Thus, for example, an Account

record could be retrieved by providing the relevant

account number.

- 299~

The system retrieves the record by access to the appropriate
record on the appropriate index file. The index corresponding
to the most recent version of the record is searched first
followed by the previous version if necessary until all have
been exhausted.

FIND (Type 2)

Records may also be retrieved by navigating along the inter-
record relationships in the data base using the SET construct.
Thus, if a program is currently processing an Account record,
the corresponding Customer record could be obtained by
navigating to the owner of the corresponding occurrence of
the Customer's Accounts set. This navigation is achieved

by the use of NEXT,PRIOR,OWNER,FIRST and LAST pointers held
with each record occurrence and corresponding to each set

of which it is a member or owner.

GET

" Data items from the record currently being processed
(possibly having been previously retrieved from the data base
by use of one of the FIND commands above) are made available
to the application program in the User Work Area. Thus, if
an Account Record is being processed the Balance of that
account may be made available in the User Work Area by using
the GET command. 4

DELETE

The record currently being processed may be removed from the
data base by using the DELETE command. The corresponding

entry on an index file is also removed.

-223 -

STORE

New records may be added to the data base by supplying values
for their constituent data items in the application program
User Work Area. The record will be allocated the next available
position on the prime data file. An entry will also be

added to the appropriate Index File.

MODIFY

The value of a data item in the record currently being
processed can be altered by an applicétion program supplying
a revised value in its User Work Area. Thus, if an Account
record is being processed, the balance can be modified by
adding the value of any transaction to the previous figure.
INSERT

The record currently being processed can be added to a set

of which that type of record is a member. The schema
determines the occurrence of the corresponding owner record
with which the new member is- to be assocated.. This is
established by eduality of value between data items in the
records.

The set pointers in the record being inserted must be updated
by the system in addition to those in the corresponding member
record and those of an adjacent member record if such a record
exists.

REMOVE

The record currently being processed can also be removed from
any set of which it is a member. It is a necessary pre-
requisite before a record can be deleted (see above) that

it has been removed from all sets of which it is a member.

22¢

The set pointers must be deleted from the record being
removed and those of the owner record and any adjacent member

records must be modified accordingly.

288 -

The Bank Data Base

The initial structure of the hypothetical bank data base

is as follows:-

The Account is the basic unit of operation of the bank

and a data base record is maintained for each bank account.

An account is identified by its account number, is held at

)

a specific branch of the bank and belongs to a particular
customer. Any customer may hold any number of accounts at
one or more branches (indeed this is common practice for

business customers).

The following data is therefore held for each Account:-

Account Number

Branch Number

Customer Number

Account Type (Current, Deposit, Loan, etc.)
Balance

A data base record is also maintained for each Branch of

the bank containing the following data:-
Branch Number
Branch Name
Designation Codes (Urban, Rural, East, West, etc,)

Further, a record is maintained for each Customer of the
Bank containing the following items of data:-

Customer Number -
Customer Name

The inter-relationship between Customer and Account records
is represented by the Customers' Accounts set with an owner

record of Customer and a member record of Account.

- 426 -

Diagramatically, the data base is therefore as follows:-

CUSTOMER ' BRANCH

CUSTOMERS'
CCOUNTS

“ ACCOUNT

Initially, the bank has a number of application programs
operating on the data base as described below. Full

details of the programs are given in Appendix 2.

balance for any specified customer by navigating
through his account records using the customers
accounts set. When initiated, the program firstly
requests the customer number for which the balance is
required and the user types this through his terminal.
The program then uses the customer number as a
parameter to the first type of FIND command (i.e.
Find a record given the value of a key data item).
This establishes the record for the correct customer
as the current of run unit. GET is then used to
retrieve the customer's name. A loop of instructions
is then carried out to FIND the first and subsequent
account records of the customer's accounts set. For

each account record found the command GET is used to

- 227 -

transfer the contents of the Balance data item to the
program user work area. The program then uses the
balance to increment a running total of the net
balance. When all account records have been found

the program prints the final net balance on the user's

termindil.

Table 1 - Balance Calculation Recofd and Set Usage
ACTION

RECORD FIND 1| FIND 2| GET| STORE | MODIFY| INSERT

/SET

ACCOUNT X X

CUSTOMER X X

BRANCH

CUSTOMERS

ACCOUNTS X

The Transaction Posting program allows the balance of an

account to be modified by the value of a Debit or Credit
transaction (ie the transaction is posted to the account).
In a live banking data base this would form part of a
double entry book-keeping system handling transactions from
various sources such as branch terminals, cash dispensing
machines and cheques remitted by other banks. In this
implementation the program requests the user to enter the
account number and value to be posted on his terminal. A
FIND command of the first type is then used to establish the
correct account record as the current of run unit. This

is followed by a GET to transfer the balance to the user

work area.

-228-

The value of the transaction is then added to the
balance (still in the user work area) and a MODIFY
is then carried out to update the account record with
the revised balance. Before the run terminates the

program prints the new balance on the user's terminal.

.

Table 2 - Transaction Posting Record and Set Usage

ACTION
IRECORD FIND 1 | FIND 2 | GET | STORE | MODIFY | INSERT

/SET

ACCOUNT X . X : X

CUSTOMER

BRANCH

USTOMER'S
CCOUNTS

Existing customers may open any number of new accounts at

used in such cases to set up a new account record with

an initial balance of zero. It also adds the new account
record to the set of such records for that customer. The
program does this by firstly requesting the branch,

account number)customer number and account type from the
user via his terminal. These data items are then moved

to the user work area together with a value of zero for the
balance. The STORE command is then used to add the new
record in the user work area to the data base. The INSERT
command is then used to add the new record to the Customer's

Accounts set.

-229 -

Table 3 - Open New Account Record and Set Usage
ACTION

RECORD FIND 1 | FIND 2| GET | STORE |MODBIFY | INSERT
/SET AU
ACCOUNT ‘ S 4 X - X
CUSTOMER A S - , : - X
BRANCH

CUSTOMER'S X

CCOUNTS S0

The Statistics Print program provides statistics on the

bank's customers. The first type of FIND command is
used to retrieve each customer record in turn from the
data base. As each record is found it is counted.

When all records have been found the program prints the

number of customers on the user's terminal.

able 4 - Statistics Print Record and Set Usage ..

ACTION
RECORD FIND 1 | FIND 2 | GET } STORE | MODIFY } INSERT

/SET

ACCOUNT

CUSTOMER X

BRANCH

CUSTOMER'S
ACCOUNTS

The Add New Customer program allows a new customer record to

be added to the data base. When the program is run the

customer will have no accounts since these will be added later

-2 30 -

by one or more runs of the Open New Account program.

The user enters the customer number and name of the new
customer on his terminal and the program moves these to its
user work area. The record is then added to the data base

when the program issues the STORE command.

*

Table 5 - Add New Customer Record and Set Usage

ACTION

igCORD FIND 1 | FIND 2 | GET | STORE | MODIFY | INSERT
ET

ACCOUNT

CUSTOMER X

BRANCH

CUSTOMER'S
ACCOUNTS

The Amend Customer Details program is used to alter the

customer's name as currently held on .a customer record.

The user enters the customer number and amended name on his
terminal. The program uses the first type of FIND command
to retrieve the appropriate customer record from the data
base. It then moves the revised name to the user work
area and issues a MODIFY command to alter the dafa base

record.

-230 -

Table 6 - Amend CustomerDetails Record and Set Usage

ACTION
RECORD FIND 1 | FIND 2 | GET | STORE | MODIFY INSERT

/SET

ACCOUNT

CUSTOMER X X

BRANCH

CUSTOMER'S
CCOUNTS

The Restructuring Tasks

The implementation allows a number of restructuring tasks
to be carried out on the data base. These tasks are

a subset of those described in Chapter 3 and the syntax
used has been simplified for ease of use on the inter-
active terminal. Full examples of the restructuring

tasks are given in Appendix 3.

Adding a Customer's Age Group to the Customer Record

Let us suppose that the bank has found that customers
of certain age groups have tended to be attracted to
its services. Certain marketing strategies will be
oriented to these classes of customers while others
will be directed to the remaining age groups. To
measure the effectiveness of these revised marketing
techniques the bank requires statistics on the
distribution of its customers by age group. Since

this data is not currently maintained on the data base,

-23& -

before any statistics can be produced a new data item

(age group) must be added to the customer record.

The Data Base Administrator has an option open to him
-as to which strategy he is to use to carry out this
restructuring task. Both open or closed strategies
would ge applicable and these are now considered

separately.

The first step in an Open restructuring is to define

a new version of the customer record on the schema
which is identical to the previous version except

that it also contains age group. For example, the

age group can be added adjacently to the Customer
Number data item. Thus immediately after this
operation has taken place the schema has a definition
of both the old and new versions of the customer

record. The data base is unchanged by the restructuring
and all occurrences of the customer record therefore

remain at the old version.

From the point of the restructuring the 'Add New
Customer' and 'Amend Customer Details' programs will
write new versionffecords t§ the data base. These
programs have not altered and therefore do not contain
the age group in their definition of the customer
record - the sub schema to schema mapping for the new
version record ensures that null values are written for
this data item. The 'Amend Customer Details' program

must also read customer records from the data base

- 233 -

before it modifies them. These records may be at the

0ld version but may also be at the new version if they
have just been written by the 'Amend Customer Details'

or 'Add New Customer' programs. Once again the sub-
schema to schema mapping for each version ensures

that sance the programs do not reference the age group
the difference in version is not apparent to the programs.
At some convenient point in time after the restructuring
the Data Base Administrator must ensure that amended versions
of the 'Add New Customer' and 'Amend Customer Details'
programs which cater for the new data item are scheduled
in preference to the previous‘version. This point in
time is dictated by the introduction of revised procedures
for branch staff submitting data to the programs such
that they include age group. From this point the new
version customer records written by the programs will
include real values for age group. This is done

by the 'Add New Customer' including the age group in

its 'sub-schema. The 'Amend Customer Details' program
must also inciude the age group in its sub-schema but
since the record to be modified is accessed using FIND
with no GET to the age group there is no difficulty

in accessing old versions of the customer record for

modification.

The 'Statistics Print' program does not reference
the Age Group data item initially but since the

objective of the restructuring is to provide the

23@-

bank Executive with statistics on the distribution of
customers by age group the program must be modified

to take this new data item into account. As for

the 'Amend Customer Details' program a run of the
'Statistics Print' may encounter both old and new
versions of the customer record. In this case, however,
where a new version record is found the program must

GET the new data item so that it can use it in its
analysis. For old version records it must not attempt
to GET age group since this data item does not exist

at that version. To overcome this problem the program
must examine the version number of each record accessed
and take appropriate action (i.e. the program must be
made version specific). It would be likely that the
Data Base Administrator would continue to run the existing
version of the program for some time after the restructuring
until age groups had been supplied for a fair proportion
of the customers by the 'Add New Customer' and 'Amend
Customer Details' programs. Only from this time will
the revised version come into use. Eventually, all
customer records might contain the age group data item
but this may be a considerable period of time later.

It would then be possible to introduce a third (non--
version—specific) version of the program which always
used GET to obtain the age group data item from each

customer record accessed.

-236 -

The 'Calculate Balance' program accesses the customer

record but only uses GET to access the customer name,

there being no requirement to ever access the new data

ijtem by this program.

The sub-schema to schema mapping

ensures that the program will operate correctly whether

old or new version records are accessed.

The 'Transaction Posting' and 'Open New Account'

programs do not reference the customer record and

are therefore transparent to this restructuring

task.

Table 7 - Chronological Chart of Open Restructuring to
Add Age Group to Customer '

ADD NEW CUSFOMER (OLD

Schedule Revised

)

Restructuring Maintenance Programs

Schedule Revised
Analysis Programs

ADD NEW CUSTOMER (NEW)

AMEND CUSTOMER DETAIL

S (OLD

AMEND CUSTOMER DETAIL{ (NEW)

STATISTICS PRINT (OLD

)

CALCULATE BALANCE

' igATISTIC

OLD VERSION|
CUSTOMER

WRITTEN

RECORDS NEW VERSION CUSTOMER RECORDS WRITTEN

Table 8 - Program Transparency for Open Restructuring to

Add Age Group

PROGRAM o RE§§£ENCE TRANSPARENT| OPAQUE |{EEC 171
ADD NEW CUSTOMER X
AMEND CUSTOMER DETAILIS X

STATISTICS PRINT X
CALCULATE BALANCE X

TRANSACTION POSTING X

PNTA NEW ACCNHATINT Y

-236 -

Now consider a Closed strategy to add the age group to
the customer record. The Data Base Administrator would
firstly choose some time when the data base was not

very volatile (e.g. overnight) and would schedule the
restructuring to run at this time. After adding

detail’d of the new version of the customer record to

the schema the restructuring mechanism will progress
through each customer record occurrence and expand it

at the appropriate point to accommodate the new age
group data item by inserting null values. During this
process the data base is in a transitional state. The
'Add New Customer' and "Amend Customer Details' programs
will continue to operate during the transitional

period in the form that they.did beforehand. If the
'Amend Customer Details' program encounters a
restructured record the sub-schema to schema mapping

for the new version record will ensure that the program
operates correctly. As for an open strategy new version
records will always be written by both programs wifh

the sub-schema to schema mapping allowing null values to
be allocated to age group. Then it may be that the
restructuring mechanism encounters a new version record
as it is progressing through the occurrences but it can
recognise this as having been restructured and take no
further action. The 'Statistics Print' would probably not
be run during the Transitional Restructuring Period @f it
were the old version could continue to run as for an open

strategy.)

- 237-

After the restructuring is complete a revised

version of the program can be introduced which GETs the age
group from each customer record. This version of the
program will consider the age group of a customer with
null values in this data item as unknown. The 'Calculafe
Balance', 'Transaction Posting' and 'Opeﬁ New Account'
programs are not affected by this restructuring since

they do not reference the new data-item and operate
satisfactorily whether they access the new format or old

format of customer record.

Table 9 - Chronological Chart of Closed Restructuring to
Add Age Group to Customer

Schedule '
Restructuring Restructuring Revised Revigggegﬁii sis
Start End Maintenance Pro ramsy 1
Programs grams

"|ADD NEW (USTOMER (OLDY = ADD,
"|AMEND CUSTOMER DETAILY (OLD) {AMEND CUSTOMER DETAINS (NEW)

STATISTIQS PRINT STAJISTICS PRINT |
Yooy ol S D 7 o (NEW) _

EW CUSTOMER (NE

(A B " 4 ™ 184 _"
lcaLcuLaTH BALANCE -] 1 >
OLD VERSIPN OLD OR NE | g
CUSTOMER ' VERSION NEW VERSION CUSTOMER RECORDS '
RECORDS CUSTOMER READ AND WRITTEN
READ & RECORDS
WRITTEN READ NEW
VERSION

WRITTEN

Table 10 - Program Transparency for Closed Restructuring
to add Age Group _

o ROCRAN LRANSPARENCY REPE%ENCE TRANSPAR?NT OPAQUE | goio T o,

IADD NEW CUSTOMER X

AMEND CUSTOMER DETAIL|S X

STATISTICS PRINT X

CALCULATE BALANCE S X

TRANSACTION POSTING X

OPEN NEW ACCOUNT X

Just as the bank could find it necessary to add age group
to the customer record, it could then decide that this data
was no longer relevant to its statistical reports and that
the data item need therefore no longer be captured and
maintained. This process would most likely belcarried out
using a closed restructuring to allow the Data Base Admin-
istrator to take advantage of the free space thus made

available.

Firstly the Data Bése Administrator must arrange that
revised versions of the'Add New Customer' and 'Amend
Chstomer Details' programs are brought into use which do
* not reference the age group data item. This must be
synchronised with the introduction of revised procedures
within bank branches such that age group is no longer

supplied as data to these programs. Both before and

- 239 -

after this point the programs will write customer

records with age group but latterly this data item will
have null values becéuse of the sub-schema to schema
mapping. The Data Base Administrator will then schedule
the restructuring for.some time when it would have
minima} impact on normal data base processing (e.g.
overnight).. The restructuring will progress through
eéch Customer record occurrence-and will write a new
version record without the age group data item. As

for adding a data item the 'Add New Customer' and

'Amend Customer Details' programs can continue to operate
while this is done and they will always write new
version customer records which will be ignored by the
restructuring mechanism if they are subsequently
encountered. The 'Statistics Print' must also be
modified so that its sub-schema does not reference the
age group. This revised version can be run at any

time before, during or after \the restructuring as
desired. The 'Calculate Balance', 'Transaction Posting'
and 'Open New Account' programs are, once again, unaffected

by the restructuring.

-2&@ -

Table 11 - Chronological Chart of Closed Restructuring
to Delete Age Group

Schedule Revised Restructuring Restructuring
Programs Start End

ADD NE

CUSTO (OLD) AD) NEW CUSTOMER (NEW)

AMEND CUSTOMER
DETAILS| (OLD)

AMHEND CUSTOMER DETALLS (NEW)

STATIST{CS
[PRINT (pLD)

STATISTICS PRINT (N

[99]

W)

CALCULAYE BALANCE

y‘} Y +

. JOLD VERSION CUSTOMER

CORDS READ AND
RITTEN

OL) OR NEW VERSION
CUSTOMER RECORDS
MAY' BE READ NEW

VERSION WRITTEN

NEW VERSION OF
CUSTOMER RECORDS
READ & WRITTEN

Table 12 - Program Transparency for Deleting Age Group

TRANSPARENCY | DO : ——
PROGRANM RﬁgggENcé TRANSPARENT OPAQU; SPECIFIC
ADD NEW CUSTOMER . X
AMEND CUSTOMER DETATI|S X
STATISTICS PRINT X
CALCULATE BALANCE X
TRANSACTION POSTING X
DPEN NEW ACCOUNT X

Expanding the Balance Data Item

The bank originally considered £99,999 as the largest

balance which could be maintained for an account and the

balance data item on the account record was formatted

accordingly.

2%&’ ~

Inflation took its toll and this figure eventually no
longer provided a realistic maximum and a format sufficient
to hold £999,999 is now required. This task will

now be illustrated for a closed strategy since many of

the considerations for an open strategy are also covered

in this case.

The Data Base Administrator must firstly arrange for a
version specific version of the 'Transaction Posting'
program to be brought into use at some convenient point
prior to the restructuring. The program would examine
the version number of each-account record retrieved

and handle the balance accordingly (for old version records
the balance would be printed as S digits, for new version
records the balance would be printed as 6 digits).

Thus, the branches supplying data to the 'Transaction
Posting' program would not be aware that the program

\ﬁad been amended since all records would be at the old
version when retrieved and would be written back as the
old version since the restructuring would not yet be

under way.

The restructuring itself will then commence at a later

time when the data base is not volatile (e.g. overnight).
The restructuring mechanism will progress through each
account record in turn, expanding the record to accommodate
the expanded balance and then writing it back to the data
base as the new version. If a 'Transaction Posting'

run is required during this transitional phase it may

encounter either an old or new version of the account

’2@@2.'

record but, as we have seen, since the program is version
specific, either type of record will be handled satis~-

factorily, although now new version records will always be

written.

The 'Calculate Balance' program also accesses the

balancé data item from the account record but unlike the
'Transaction Posting' program it does not modify the data
item. Thefefore, assuming that the program will cater for
the larger of the two formats (i.e. 6 digits) the program

is transparent and there is no requirement to make it version

specific.

Table 13 - Chronological Chart to Expand Balance Data Item

Schedule Revised Restructuring Restructuring
"|Transaction Posting { Start End

TRAN. POST. | rRANSACTION [POSTING (VERSION. SPECIFIC)

(OLD)"g‘ﬁ

.. CALCULATE B NCE o o :
..‘I
|OLD VERSION RECORDS OLD OR NEW VERSION ! NEW VERSION
READ AND WRITTEN READ NEW VERSION READ & WRITTEN

WRITTEN

- 243-

Table 14 - Program Transparency for Expanding Balance

Data Item = . e
TRANSPARENCY DO VERSION
NOT TRANSPARENT{ OPAQUE
PROGRAM ' |REFERENCE! o . SRECIFIC
IADD NEW CUSTOMER X

AMEND CUSTOMER DETAIRS X

STATISTICS PRINT X

|CALCULATE BALANCE : X

TRANSACTION POSTING X
PPEN NEW ACCOUNT X

Contracting the Balance Data Item

As a converse to the previous task the bank might require to
reduce the space allocated to the balance data item on the
account record from 5 digits to 4 digits. 1In this case,
there is no question of a version specific'Transaction
Posting' program since the existing program will continue to
operate on the reduced size of data item because of the sub-
schema to schema mapping. One effect of the change,
however, would be that any attempt to store or modify a
record with a balaﬁce of more than £9999 would fail after
the restructuring was under way. Equally, any record with a
balance of more than £9999 could not be restructured success-

fully.

-84 -

Table 15 - Program Transparency for Contracting Balance

. Data Item
TRANSPARENCY DO
VERSION
NOT TRANSPARENT | OPAQUE
PROGRAM REFERENCE. T SPECIFIC
ADD NEW CUSTOMER X

AMEND TUSTOMER DETAILS X

STATISTICS PRINT X

CALCULATE BALANCE . . X
TRANSACTION POSTING X
OPEN NEW ACCOUNT : - X

Intra-Record Structure Amendment

Although the implementation does not support vectors or
repeating groups of data items some of the characteristics
of altering intra-record structure are illustrated by
allowing the position of data items to be inter;hanged.

In fact, the position of data items is irrelevant to
application programs because of the sub-schema to schema
mapping. All programs are therefore transparent to the
transposition of data items within records (say the Customer

Number and Branch Number within the Account Record).

- 2@5-

-[Table 16 ~ Program Transparency for Inter-Changing
Customer. Number and Branch Number ...

TRANSPARENCY| DO
NOT TRANSPARENT | OPAQUE
PROGRAM RE FERENCE

VERSION
SPECIFIC

ADD NEW CUSTOMER X

AMEND "CUSTOMER DETAILS X

STATISTICS PRINT X

CALCULATE BALANCE X
TRANSACTION POSTING X
ODPEN NEW ACCOUNT X

Migration of Balance from Account to -Customer Record

The-bank may make a policy decision to consider a
customer's net balance as the primary indication of his
solvency rather than the separate balances in his
individual accounts. A corresponding restructure of the
data base to migrate the balance data item from the account

record to the customer record would then be in order.

This task, like those discussed previously, could be
carried out using a closed strategy at some time when

the data base was.not volatile. Each customer record
would be accessed in turn and for each such record accessed
the restructuring mechanism will use the set pointers

to access all corresponding account records. New

versions of the customer record and the corresponding
account records are then written back to the data base
having added the values in the balance data item from

each of the account records to produce the value for this

- 26 -

data item in the new version customer record. If
parallel running is being carried out the old version
records will remain on the data base. Note that applica-
tion programs have no opportunity to access the data base
while this operation is being carried out on a particular

set occurrence.

.

Before the restructuring commenced the Data Base
Administrator must have ensured that. the '"Transaction
"Posting" program was made version specific so that it
could update the balance of an old version Account record
if it encountered one or find the appropriate customer
record and then update the balance on this if a new
version account record was encountered. If parallel running
is taking place and a new version record is encountered
the program must not only update the balance on the
associated new version customer record, but also on the
corresponding old version account record which will still
be on the data base (addressed by a pointer on the new
version record). Similarly, a version specific version
of the 'Calculate Balance' program must be brought into
use before the restructuring so that the balance is
derived directly from new version customer records and

by summation of balances on account records for old
version records. In a parallel running situation an
Audit program will also be run which will not only

obtain the balance from the customer record but will

also access the old version account records and

recompute

the balance.

_2@? -

and an error reported if they are not equal.

The two values will be compared

After the restructuring and period of parallel running

(if applicable) are complete, further versions of the

'Calculate Balance' and 'Transaction Posting' programs

will be introduced which operate only on new version

customer and account records.

Table 17 - Chronological Chart for Migration of Balance to
Customer Record

Schedule Version Restructure Restructure Schedule New

Specific Programs Start End Version Programs

OLD) ————— TRANSACT]ION POSTING 1—(NEW)
(VERSION |SPECIFIC) B

}9LD> CALCULATE BALANCE {NEW)
(VERSION |SPECIFIC) >

RECORDS READ AND

WRITTEN

READ AND WRITTEN

HOLD VERSION RECORDS OLD AND NEW VERSION NEW VERSION RECORDS
READ AND WRITTEN

Table 18 - Program Transparency Balance Data Item Migration

TRANSPARENCY DO VERSION
PROGRAM RﬁgggﬁNCE TRANSPARENT |OPAQUE SPECIFIC
ADD NEW CUSTOMER. X .
AMEND CUSTOMER DETAILS . X
STATISTICS PRINT X
CALCULATE BALANCE X
TRANSACTION POSTING X
PPEN NEW ACCOUNT X

- 2@%-

Amendment to the Key for the Account Record

The key for the account record is originally a two-digit
account number. It may be that the restriction of a
two-digit number proves inadequate and this must be
expanded to three digits in a similar way to the

expansion of the balance data item above. The mechanism

to carry out this expansion is as for a normal data item
but the DBMS must cater for the existence of both old

and new format records during the transitional phase.

Thus if the 'Transaction Posting' program is run during

the transition there ar two possible ways of selecting

the desired account record - either characters 1 to 2 of

an old version record or characters 1 to 3 of a new version
record being equal to the specified account number. When
the restructﬁring is complete all account records will be
at the new version and once again a single criterion (the
three-digit account number) will be used if the 'Transaction

Posting' program is run at this time.

If the key is being altered to encompass more than the
existing account number data item there is no requirement

to alter record occurrences since the implementation

uses set pointers rather than set indices and the restructur-
ing is therefore an instantaneous event. Suppose that

the account type is added to the key - all that is

required is that the schema entry for the old version

of the account record is amended to record this fact.

This change to the schema requires alterations to

application programs. For example, after the restructur-

- 249 -

ing the 'Transaction Posting' program must provide the
type of account in addition to the account number for each
account record to be found. The scheduling of the new
version of the program and the associated changes to
branch procedures must therefore coincide exactly with

the restructuring.

Table 19 - Chronological Chart of Add
Account Type to Record Key .

Restructuring

ACCOUNT TYPE AND NUMBER
SUPPLIED TO ACCESS
RECORD

ACCOUNT NUMBER SUPPLIED

TRANSACTION POSTING’(OLD)'I"' TRANSACTION POSTING (NEW) B
TO ACCESS RECORD >]

Table 20 - Program Transparency for Amending
. Account. Record Key.

TRANSPARENCY | DO VERSION
NOT TRANSPARENT |OPAQUE
PROGRAM |REFERENCE||.. . |SPECIFIQ
ADD NEW. CUSTOMER[.. .. X |

. JAMEND. CUSTOMER DETAINIS . X :

JSTATISTICS PRINT. . . | .. X

CALCULATE BALANCE . . | .. b X

{TRANSACTION POSTING .| B . X. |

IOPEN NEW ACCOUNT X

- 2.@@ -

Addition of the Branch Accounts Set

There is a relationship between the Branch record and
the account record (the Branch number is held on the
account record) but let us suppose that the Data Base
Administrator neglected to define the set when the data
base was, created since there was no obvious requirement
to use the relationship 1in any application program.
Eventually a requirement for the relatibnship arose in
that a program was required to calculate the net balance

of all accounts at a Branch.

The diagrammatic representation of the data base is

therefore as follows:

CUSTOMER BRANCH
CUSTOMERS BRANCH
ACCOUNTS ACCOUNTS
ACCOUNT -

The Data Base Administrator therefore has to set up the
new set using a Cloéed restructuring strategy. The.
restructuring mechanism can do this by firstly progress-
ing through the Branch records so that they have their
version number increased to reflect that they have had
pointers allocated as First and Last Owner Record

Pointers for the new set. Then the restructuring

- 281 -
mechanism can progress through the account records,
and having derived the appropriate set occurrence for
each member record, it can add Next, Prior and Owner
Member Record Pointers to each record and modify the

pointers of the owner record appropriately. Once

again, the record version number is also increased.

From the start of the restructuring a new version of
the 'Open New Account' program must be scheduled so
that if any new records are written to the data base,
they will also be inserted into the 'Branch accounts'
set in addition to the 'Customer's accounts' set.

The 'Calculate Balance' program is transparent to this
restructuring task since, although it too uses pointers
in the account record,the DBMS can ensure that the
correct pointers are used whether an old or new version

account record has been accessed.

A new program will be required after the restructuriﬁg

is complete. The 'Calculate Branch Balance' program .
will navigate through all account records in an occurrence
of the Branch Accounts set and calculate the net balance.
When all such account records in the set have been
accessed the prograﬁ prints the balance .on the user's

terminal.

Table 21 /

-2§2-

Table 21 - Chronological Chart for adding
Branch Accounts Set

Restructuring:
start end
OPEN NEW-ACCOUNT (OLI OPEN|NEW ACCOUNT (NEW) 44;
CALCULAIE BA|[LANCE - S.

CALCULATE BRANCH BALANQE

Table 22 - Program Transparency for adding
Branch Accounts Set

TRANSPARENCY
] po : : :
| __NOT - |TRANSPARENT |OPAQUE|gEROION
PROGRAM " | REFERENCE | | Ic
ADD NEW CUSTOMER X
AMEND CUSTOMER
DETAILS | X
STATISTICS PRINT X
CALCULATE . |
BALANCE | : X
TRANSACTION |
POSTING - X
OPEN NEW. ACCOUNT : 1 x o
CALCULATE BRANCH :
BALANCE | NEW PROGRAM

-AS$3 -

Comparison_Between Restructuring Strategies.

Tn order to demonstrat= that it is feasible to implement
the concepts of Open and Closed Dynamic Restructuring
Strategies within a practical Data Base Management Systemn
designed to meet the requirements of the community of users
of a shared centralised data base several runs of the
version of the EKAS 1implementation which reports resource
consumption rather than individual operations were also
made. Like the +tutorial version, he resource-monitor
version is based on a monolithic FORTRAR program which
simulates application programs in sections of its coding.
These ‘'programs' call DML subroutines where appropriate.
Restructuring'operations are also simulated by sections of
the program in conjunction with a general-purpose
restructuring routine.

In fact, those instructions which are use& in the tutorial
environment to illustrate to the user the activities being
performed on the data base and schema by the DHL routines
have been removed. Similarly the activities being carried
out by the restructuring routine are no longer reported. In
their place, logic has been added to inform the user of the
extent of the computer resources being expended on the
executions of application prograsms whiéh he has initiated.
The resultant system therefore gives a similar interface to
the end user to that which he would expect from a full scale
implementation and in addition it incorporates a resource
usaae monitor.

EMAS measures resource consumption in terms of the

follovwing parameters:

’
i

..2@9;-

a) C.P.U. Time

b} Connect Time

c) Page Turns

d) Allocated Charae
The values of these parameters for the current EMAS session
are displayed to the user both before and after the
application program run. Thus the differences will provide:a
measure of the resources used. The number of DML calls and
records restructured during the rugon are also provided to
give a perspective on the activities performed. The number
of reads and writes to the prime data file and index files
are also given as a measure of the Input/Output activity.
The EMAS multi-user environment is very different from that
which would apply to a DBMS supporting a large centralised
data base. FPor example all files used by a program are
effectively an extension of that program's virtual memory at
run time. Thus Input/Output accesses are reflected in Page
Turun activity although this must also cover paging caused by
execution switching between different sections of the
program object code and also contention for the use of
resources with other applications running at the same time.
It is 1important, thgrefore, that the nmeasurements produced
by Z=ZMAS itself are treaied only as relative to each other in
so far as this is possible. The absolute values of the
figures can in no way serve as a guide as to how efficient a
full implementation of such a DBMS might be. Nevertheless
they do provide a basis for comparison (of CPO time in
particular) both in normal circumstances and during a

restructuring. It is well krown that Data Base Management

255

(18

n

]

Syt ot this type (e.u. INS) consume significant amounts
of computer resources apd it 1is the objective of this
enhancement to the EMAS inplementation simply to demonstrate
that both Open and Closed Dynamic Restructurings would not
impose further overheads which were of an order of magnitude
greater than those imposed by the DBNS itself.

The usage of Index Piles gives a particularly deceptive
picture of potential resource consumption since page turns
are often required in switching between prime data and index
whercas straightforward sequential searching through the
prime data 1s relatively inexpensive. This is only true, of
course, when the volume of data is émall and retrieval by
sequential search could not be tolerated in a practical
implementation of a DBXS.

Appendix & gives details of activities on the Bank data
base whiéh illustrate the consumption of resources by

*"O0ff-Line" Static, In-place Static, Closed Dynamic and Open

Dynamic strategies.

25@

Chapter 9_- Summarv_ard Conclusions.

Summary

This thesis has identified a problem which will have a
profound _effect on the rate of acceptance of data Dbase
managemsent systems by the data processing community. The
ability to manipulate the structure of a centralised data
base will be a vital element in enabling a satisfactory data
model to be maintained.
/

The approach to the problem differs from that of other
researchers in the motivation for the provision of a
restructuring mechanism. Existing implementations provide
reorganisation facilities to allow the consumption of
computer resources to be tuned when the placement of data on
secondary storage devices has 1led to inefficiency. Other
implementors have observed that the same 1logical data
strocture may be represented in different ways within a data
base schema and it is therefore possible to transfer from
one representation to another. The desirability of
application program stability is considered as paramount in
both situations although it is more difficult to achieve in
the second than in the first.

7hen restructuring is viewed as a tool to allow the data
base administrator to maintain a continuously evolving data
model the desire for application program stability must be
veighed against other factors. If stability can be achieved

it is beneficial, but it must be viewed in the context thatb

- 287 -

it was chances to the application systems which probably
dictated the data structure change in the first place. It
is also likely that maintenance of application programs will
be more straightforward if they all operate on subsets of
the same data base structure. The approach here is
therefore to propose a restructuring mechanism which will
allow the organisational data model to evolve while
providing facilities to permit application programs to alter

to reflect the new structure as conveniently as possible.

This chapter discusses how well this objective has been

achieved.

The Functionalitv of the Restructuring Mechanism.

The adequacy of the restructuring mechanism to perforr the
tasks which data base administrators will demand of it can
only be demonstrated by empiric evidence. The same comment
can also be made of the CODASYL Data Base Task Group
proposals and indeed of any. programming language. The
distinction between a 'good®' and a 'bad*®* language or data
base management system tends to be based on subjective
considerations such as the background -‘of the user (the data
base administrator in this case), the amount of data which
must be supplied and the ease of assimilation of the final
result. After due consideration the data base task group
adopted the record and set construct and a syntax similar to
that of COBOL. Undoubtedly, the reason for this was that is

was seen as an extension of the techniques used for data

252 -

detinition in conventional data processing. For this reason
the restructuring mecharism is based on a clause-by-clause
analysis ot the DBTG proposals and the syntax retains the
style of the Data Definition Language. To this extent it is
therefore maintained that the proposed mechanism will be
acceptablg within the professional data processing
comaunity. It may be +that the mechanism (and indeed the
record and set corcept) would not be acceptable outside this
community but the contention 1is that a data processing
profession will continue to exist and it is they who will be
responsible for the maintenance of the single centralised

data base of each organisatior.

Given this restriction on the population likely to come into
direct contact with the restructuring mechanisn the
experiments described for realistic restructuring tasks on a
Bank data base illustrate its applicability to many

practical situations.

It must also be possible to implement the proposed
restructuring tasks and 1in Chapter 7 at least one
implementation strategy (in addition to the process of
unloading and reloading the data base) has been described.
The interaction between restructuring mechanism and the data
base management system can be sSomewhat complex but varies
from task to task. The protoéols to be observed for each
taskx have been described in Chapter 7 such that application
programs are alvays presented with a consistent data base

structure even vhile the data base 1is in the process of

- 289 -

restructurinag. The strategies postulated in aqeneral allow
restructurings to take vlace with minimal impact on those
application programs operating on the dJata base elements
being restructured and with 1little or no impact on other
application programs. For each task the level of impact has
been identified and criteria have been established for the
categorisation of application programs as transparent or

obaque.

The absolute requirement for accuracy in the data held on a
centralised data base has been catered for by the provision
of version specific programs and a parallel running state
where both the old and nmew structures can co-exist. The
potential for computer fraud could become so rampant as the
sophistication of access to stored data increases that it is
vital that a controlling mechanism 1is provided so that
auditors can satisfy themselves that restructurings bave
been carried out satisfactorily. Similarly some measure of
control must be exercised over the initiation of runs of new

versions of application programs.

The_Convenience_of the Restructuring Mechanism.

A centralised data base will inevitably be a vital resource
for the organisation which uses it. It follows that the
data base must be available whenever possible and in many
cises aust be available continuously. Restructuring by
unloading and relcading the data base (or even part of it)

is therefore more than an inconvenience and tends to become

-~ RE6@ -

4n impossibility. The techriques for dynamic restructuring
outlined in Chapter 7 are therefore essential to the success
of a restructuring mechanism for a centralised data base.
On the other hand, such consideratiqns are not so relevant
to devolved data Dbases because of ' their restricted
communities of users and often because of the size of
devolved data bases. When their users are absent from their
terminals will 1lie dormant (e.g. at weekends) and may be
restructured using A static mechanism at these times.

The interrelationships betwecen the restructuring mechanisn
and lata base management system (particularly the Data
Manipulation Language ¥Execution Routines) described in
Chapter 7 and demonstrated in Chapter 8 serve to draw the
attention of future DRNS implementors to the central
position which restructuring must occupy in their systenm
design. Only if such considerations are taken into account
at Aan early stage in the design process will a DBMS be
produced which will provide Data Base Administrators with a
sufficiently versatile tool with which to restructure their
data bases on a timescale consistent with the rate at which
they are presented with changes 1in the real world which
their dJdata bases wmodel. Existing data base managemeﬁt
systems such as IMs, IbS,/IT and IDMS would require
significant redesian to incorporate a satisfactory
Xrestructurinq mechanism but this could be achieved without
compromising existing apvlication programs and is therefore
considered to be eminently desirable. Oonly when

sopiisticated restructuring mechanisms are available will

- 261 -

the concept of a data base really be exploited by the data
processing industry. Althouqgh data base management systems
have been available for several years there 1is 1little
evidence of them being widely used as the basis for the most
fundamental applications within organisations -~ those
applicatigns which were tackled in the early days of
computerisation. In many cases the primitive data storage
techniques of early application systems have been
perpetuated because the advantages of flexibility of
structure are not apparent in today's data base management
systems and consequently there has been 1little motivation
for systen redesign. A sophisticated restructuring
mechanism provides such flexibility and should encourage
data processing departments to undertake such redesign of
their basic application systems. Great care must be taken
in assessing statistics on the current usage of data base
management systems since in many cases the philosophy of
data base is not being used to best advantage with several
disjoint applications because of the 1limited way in which
existing data base management systems can respond to

external change.

The decomposition of a restructuring into a sequence of
primitive tasks as postulated 1in Chapter 7 also has an
element of convenience for the Data Base Administrator.
More complex tasks may be devised by combinations of the
primitive tasks and no doubt these could be retained on a
library for possihle subsequent use. The use of concurrent

tasks would provide benefits in terms of the total elapsed

- 262 -

time of a restructuring and the use of conditional tasks
would provide for an escape mechanism 1in the event of a
failure of a previous task. Overall, a language will be
provided’ in which the Data Base Administrator will be
expected to become proficient and once he has done so he
will be able to conduct even the most complex restructuring
with ease and confidence. PFurther, the use of a specialised
language foes not compromise the process of~ exploration of
the structure of the centralised data base by 1interested
parties other than the Data Base Administrator himself.
Systems analysts, casual users and sophisticated end users
are examples of individuals who would have a requirement to
navigate the meta data base (the object version of the
schema) in a manner appropriate to their own background and

knovledge of the data structure.

The Efficiency of the Restructuring .Mechanism.

The efficiency of a restructuring mechanism will be aﬁ
important constraint on its acceptance by the data
processing community. Data Base Nanagement Systems have
often been notoriops in their consumption of computer
resources when compared with those required for conventional
techniques for data storage and retrieval. Nevertheless,
the consumption of <computer resources should be an
acceptable price to pay for all of the advantages which a
DAMS provides - so long as the additional overheads are not
out of all proportion to the resources required to run the

application system in the first place. Similarly, a

- 263 -

restructuring mechanism which operates dynamically in
conjunction with the DBMS itself must be expected to iﬁpose
further overheads. Some measure of overhead will be
acceptable but there will come a point at which
restructuring techniques would impose intolerable overheads.

Static gestructuring is considered to impose intolerable
overheads for many centralised data bases. Open and Closed
Dynamic Restructurings, '~ however, are considered to be
compatible with existing data base access patterns since
they normally operate on a record by record basis and any
degradation in system response time should be limited to
that of a single record access. In many cases such
degradation could be expected in normal operation where one
run unit is required to wait on the initiation of a data
access by another rum unit. For both open and closed
techniques the restructuring is a subsidiary operation and
should not unduly degrade response during periods of intense
application program activity. An open strategy will impose -
additional CPU activity since each record occurrence may
have to be restructured once it has been retrieved from the
secondary storage‘ medium. In the EMAS implementatidn this
increase in activity is sigpificant but in a full scale
implementation (where the DBMS and restructuring mechanism
were written in a low level lanquage) it could be expected
that this ratio would be considerably reduced. Nevertheless,
so long as this were to bhe an overhead to be incurred for a
fairly short period of time (say a day), and even then only
by those programs which were wupdating the records to be

restructured, many installations would be able to carry the

‘2@4’

overhead without appreciable degradation of response tinme
for application programs. Processing power is becoaing a
much more freely available commodity and many installations
normally run at far less than peak capacity.

A closed strategy will impose additional Input/Output
overheads‘and will imply a different pattern of disc head
movement than the norm (viz: continual movement back to the
sequence of records currerntly being restructured after each
interruption due to a DML call by an application program).
Judicial choice of the timing of the restructuring will
dictate its overall impact on response time. So long as it
is scheduled to coincide with periods of relative inactivity
of application programs it should be completed 1in a
rzasonable timescale without adversely affecting the
response times.

The nature of the implementation of the D3MS and
restructuring mechanism has precluded the collection of
adequate statistical information to permit a meaningfu}
conclusion to be reached@ on the overheads which could bé
expected from a full-scale restructuring mechanism. The
100% increase in CPU time which 1is evident from the
experiments quoted ip Appendix ¢ must be considered more as
an upper bound than a practical value. Since the DBMS was
written in PORTRAN (as were the restructuring operations and
the application programs themselves) the total CPU overhead
tends to dwarf any attributable to one particular source.
The lack of such statistics however, are not considered to
imply that a restructuring mechanism would be prohibitively

expensive in processing vower - on the contrary the work of

- 26§ -

Sockut {(in his case to reonrganise the storage records to
qgive better overall data base performance) supports the idea
that concurrent alterations to dJdata base records together
with access by application programs will be feasible.
Similarly the Data Base Administration Working Group assunme
that a _ concurrent reorganisation mechanism can be
implemented without unduly degrading application program
response. The restructuring mechanism proposed here would
use the same technigues as a reorganisation mechanism such
as that suggested by Sockut - indeed it would wuse the same
techniques as the DML execution routines to protect against
deadlock etc.

The efficiency of the proposed restructuring mechanisnm
stems from the ability of the ~Data Base Administrator to
choose a strateqgy appropriate to the section of the data
base being restructured and the characteristics of the
application programs operating on it. It does not preclude
restructuring using a static strategy of\uuload—amend~reload
nor does it restrict restructuring by the population of new
records and sets using ad-hoc application programs vhere

this is seen to be the most convenient approach.

The_Future_of_ Data Base Management_ Systems.

The debate on the relative merits of different types of data
base management systems is 1likely to corntinue within the
data processing community for many years to come. Just as
in the field of programming languages, the ingenuity of

researchers will probably yield increasingly sophisticated

- 2@@ -

ways in which human beings can store and retrieve data.

It is the contention of this thesis, however, that the
most fertile round for such research will be in the area of
devolved data bases where emphasis can be placed on the
retrieval of iﬁformation (be it information captured by some
central imcontrovertible source or data captured by the user
of the devolved data base himself). Not only will such
developnents be concerned with the formulation of the
retrieval requests in a concise, unambiguous manner but they
will also address ways of directing the end aser
(particularly casual users) towards information which may be
relevant to his request but the existence of which he may be
unavare.

Equally, research will identify techniques for the capture
of déta to be held on @evolved data bases and for mapping
d#ta from the centralised data base into a more easily
assimilated form on the devolved data Dbases (e.g. by
snapéhotting at conmgnient times such as end of month).
Nevertheless, data captured directly by end users (without
formal controls having Dbeen established by a Systems
Analyst) cannot be universally agreed as correct within the
organisation. At best the data can be considered as likely
to be correct because its values fall within previously
defined constraints.

The equation of research into retrieval and capture of data

maintenance of centralised data bases cannot be considered
as valid. It would be naive to assume that the maintenance

of centralised data bases will be in the hands of anyone

-2672 -

othor than data processinag professionals for the foreseeable
future (if only because this would ensure that the
oraanisation has some control over the accuracy of the data
used for its own data model). The direction of research in
this area should be directed towards an gradually increasing
level of gophistication of the software tools available to
the Data Base Administrator and Application Programmer. The
enormous investment in procedural programs, for example,
presents a formidable barrier to anything but an enhancement
to an existing procedural language. The concepts of
centralised and devolved data hases should contribute to the
categorisation of research work towards particular types of
individual.

Coincidentally, computer hardware appears to be developing
in a direction which would tend to support the concepts of
centralised and de%olved data bases. More and more powerful
mainframe computers are being developed which will permit
more-.parametric users to interact with a centralised data
base in a manner prescribed for them by the systems analyst.
On the other hand microcomputers with large scale storage
available on disc are nowv commonplace. These will probably
be the ideal vehicle for holding devolved data bases vhere
the end users of the data can have control of its structure
as well as 1its contents so long as any informatﬂgn derived
from it is viewed purely within this context.

This thesis considers that the CODASYL proposals are
oriented towards the centralised data base maintained by the
data processing professionals. The restructuring strategies

are particularly relevant in this area as are the techniques

- 268 -

for allowing several aoplication programs to alter in a
controlled mannher to reflect the revised structure. The
work recorded here has little relevance in the devolved data

base environment.

Puture Developments of the Work_ Recorded Here.

The groundwork has beer 1laid 1in this thesis for a
restructuring mechanism vhich would be coampatible with a
commercially availahle CODASYL Data Base Management systemn
such as IDS/XI or IDMS. A significant investment 1in
redesign would be required by the implementors of such an
item of software and it is probable that the Data Base
Administration Working Group proposals for a storage schena
would have to be implemented (together with a corresponding
reorganisation mechanismnm) before the provision of a
restructuring mechanism. Perhaps the impetus for such an
enhancement to CODASYL data base implementations should cone
from the inclusion of a restructuring mechanism in a future
CODASYL Data Base Journal of Development. This thesis should
not only identify the requirement for the committee to
consider proposals for a restructuring mechanism but also it
shounld provide the basis of what those proposals would
eventually contain.

Certainly the professional data processing community 1is
particularly amenable to software produced as a result of
published standards since it results in compatibility of
view between dJdifferent computers and operating systens.

Counversely, such softwvare tends to have a long gestation

__2@? -

pariod Dbecause of 1its formulation in committee and
subsequent consideration by interested parties. Once again
this can be contrasted with the type of software which might
be produced as a result of research into some area of
devolved data bases where standardisation might .well be of
little valyie especially if the end product could be used bf

end users with the mipnimum of training.

- A1.1 -

appeniix 1_-_The_ Structure of the EMAS Implementation

of _A_Data lase Management Svstem.

The implementation of a Data Base Management Systen
(PR4S) on the EMAS multi-access systen is based on the

CODASYL proposals. In its basic form it is a teaching aid

2}

and all actions carried out on the data base are described
to the user as they aré performed.

In its second, more realistic, form the interactive user
may initiate runs of application programs and restructuring
tasks and the system will respond by indicating how auch

computer resources these operations have consumed.

Storage of_ Data

The data bhase itself is held on a TFORTRAN direct access
file such that each record is addressed by its relative
record number within the file. Each record contains the

following sectionss

(a) The Record Type. The U-character mnemonic
jdentifying the record as an occurrence of a particular type

of record is held.

(b) The Recor? Version. Similarly the version number of

esach nccurrence is held on record.

(c) The Data. All data is held in character format for

easn of refererce. To allov numeric 3data items to be

- A1.2 -

subjected to arithmetic these are converted to binary when

hel? in an aprlication preagram User Work Area.

() The Pointers. Pointers are held which associate the
record occurrence with other record occurrences in the sane
set occurrence. A number of pointers are held since the
record gay belona to more than one set occurrence. The
value held in each pointer is the address of the associated

record.

(¢) The Parallel Record Tag. 1f parallel runcing is
takinas place this furthar pointer is used to associate a
recnrd occurrence with the address of that same occurrence

at another versior.

The Index Files.

2 number of POKTRAN direct access files are maintained as
Index Piles for the orime data file. This approach |is
necessary to overcome the absence of file 1indexing
facilities in FTORTRANW.

The FORTEAN Pile number is used to indicate the type of
record to which the index relates and also the version
number of the records covered by that index. In a file
number of ab the first digit (3) indicates the record type
and the sccond digit (b) the version number. By convention
Customer records are irdexed by files 11, 12, 13 etc,
Acconunt records by files 21, 22, 23 etc and Branch records

bv files 31, 32, 33 etc.

- A1.3 -

Zach Index File contains an entry for any record held on
the prime data file (FPORTRAN Pile 1) with the corresponding
record type and version number. The only data on that
record will be the address of the appropriate data record.
Any entries with a value of zero and any entries absent from
the file will imply that there is no record in the prime
data filg for that version of that record. Thus a value of
25 for the 3rd record on file 11 will indicate that the 25th
record on the prime data file will cbntain a Customer record
at version 1 for Customer Number 3.

Thus in a parallel runming situation two indices for the
same record type may indicate that the same prime record
occurrence exists but these will actually be at different
addresses since they have different versions.

Note that indexing in this way is 1limited to one data
item per record type. If further data items are included in
a key then synonyms must be distinguished by successive

examination.

The Schema

The description of the data base is held as an array in the
COMMON area between the various Data Manipulation Language
Execution Routines.

The following information is held:-

(i) There are entries for each type of record (each
having up to 10 possible current version numbers). Records

are identified by a #-character record name.

- A‘.u -

(ii) PRach version of each record can have up to 10 data
items each identified by a f#-character data item name. The
schema holds the start and end position of the data item and

its FORTRAN format.

(iii) The record may have up to 10 pointers
corresponding to its set membership.. Owner (First and Last)

and Member (Next, Prior and Owner) Pointers may be used.

(iv) Up to three concatenated data items may be used as

the record key.

(v) Details of the sets forming the data base are also
held in array. For each set the set name is held with the
name of the owner record plus one of its data items which is
to be used for Set Occurrence Selection. Similarly, the
names of up to 4 member records are held with corresponding
data item names for Set Occurrence Selection (i.e set
occurrence selection is based on equality of value between
the data item quoted in the member record with that quoted
in the owner record) . Pinally, an indication of whether new
member record occurrences are to be added first or last in

the set occurrence is held.

Special Registers

The following ‘'Special Registers® are variables held in

the program COMMON area which may be referenced by

- A1.5 -

application programs. uynder no circumstances should their
value be modified by a program = this may only be done by
the DHNL subroutines. 211 Special Registers are integer
fullwords.

ICURTP — This is the type of record which is Current of Run
A
Unit. The record name 1is held as four alpha-numeric

characters in FORTRAN format Al.

ICURNT - This is the address of the record wvhich is Current

of Run Unit. It is an integer held in a binary fullword.
ICURVR - This is the version number of the record vwhich is
current of Run Unit. It too is an integer held in a binary

fullword.

The User Work Area

pata is transferred between application programs and Data
Base via a location known as the User Work Area. The use of
the area differs between DML comrmands and is described under
each command. In all cases, the area is an 1integer
1-dimensional array of 10 entries held in the FORTRAN COMMON

area, viz. INTEGER IUWA (10) .

The Sub-Schemras

Certain DML comnands reference a sub-schema for the data

base being accessed. The implenentation does not require a

- A1.6 -

sub-schema for all commands and where it is required only a
list of data item names is necessary. This is provided in
an 1integer 1-dimensional array of 10 elements with each
containing the name of a data item as four alpha-numeric
characters in FORTRAN format A4. The array is passed as a
parameter to the relevant routine as described below,

~

viz. INTEGER ISUBSC (10) /*ANCO®,*CUNO*, *BRNO',*ACTP?', *BALC'/

The Data_Mapnipulation_language Commands

The CODASYL DDLC Proposals do not now extend to details
of the various DML coammands but the CODASYL COBOL 1978
Journal of Development contains specifications for COBOL DXL
commands and a COBOL-format Sub Schema. The commands used
for the implementation generally follow this specification

although they use a FORTEAN format.

Calling Sequence

DML Commands are executed by calling a FPORTRAN subroutine
for the desired command. The subroutine call contains a
parameter list vhich is specific to each command.

Thus the following sequence of conmmands woﬁld be used to

find a record
CALL PIND1(IREC,IKEY1,IKEY2,IKEY3,IERR)

In this case the command is FIND1 where the parameters

- A1.7 -

IREC, IKEY1, IKEY2, IKEY3 and IERR are described in detail

below.

The FIND_ Command

FIND is used by application programs to navigate through
the data = base. There are twvo formats of the command to
correspond to different methods of access to the data base
records - by record key and by set rélationship.

FIND does not transfer data from data base to application
program but rather it establishes a record as the Current of
Ran UOnit and the application Program can then perforn
various actions on it (¢.g. delete it, get data items from

it).
FIND of the First Type - Using Key Data Itenms

The first format of Find ailovs the application progran
to provide values for key data items of a specified type of
record and the DBMS will establish the currency of the
corresponding record.

If more than one occurrence is present with the same key
data item values thé first such occurrence will become the
current record. If no occurrence is present with these
values of key data items an error will be indicated to the

application program.

The DBMS executes the command by accessing the index file

corresponding to the most recent version of the record using

- 31.8 -

the first key data item. In a full implementation the index
would be based on all key data items concatenated together
but this has not been feasible within the limits of FORTRAR
file accessing facilities. Revertheless the system will be
able to determine vwhether an occurrence of the required
record with the required key value actually exists for that
version.‘ If no entry exists on the index for the nmost
recent version the system will then access the index for the
previous version. This process will continue until all
indices for the record have been examined amnd only if no
entry has been found in any, will the system return an error
code to the application program indicating that the required
record does not exist.

Another 1limitation in the above technique for record
indexing is that only a nominated data item may act as key
and it must be numeric since it will be the relative record
number on the search of the index file. The basic
inferactive vefsion of the system therefore supports a
simplistic technique for retrieval of record;\based on keys
- a sequential search through the prime data file. All 3
key data items are used in this search and, by successive
examination in decreasing order of version number, different
key data items maf be used as the key depending on ‘the

version number.
The Parameter List to the Routine is as follows:-

Parameter 1 - The Record Name - This is a integer variable

containing the name of the record to be found as four

- A1.9 -

alphanumeric characters.

Parameter 2 - The FPirst Key Data Item — This is an integer
variable containing the value for the first key data item.
Values for Numeric Data Items must be supplied in the normal
FORTRAN binary format and values for Alphanumeric Data Items

h Y
must be supplied as left-justified in character format.

Parameter 3 - The Second Key Data Item - This is an
integer variable as for the First Key Data Itenm. If only
one key data item applies to the record being accessed this

parameter should be set to spaces.

Parameter U4 — The Third Key Data Item - This too is an
integer variable. It has a value of spaces if no third key

data item is applicable to the record to be found.

Parameter 5 - The Error Code - This 1is an 1integer
variable. On return fron tﬂe routine it contains a binary
number indicating whether the command has been successful.
A value of zero is used for success and one for failure. In
particular, if no occurrences of the record exist on the
data base with a vélue of the key data items equal to that

supplied, a value of 1 will be returned.

Por example, the following sequence of instructions would
be used to FIND a record type CUST vwith two key data items;
the customer number of 25 and the first for characters of

the name equal to CARD.

- A1.10 -

INTEGER KCUST/'CUST'/,KCARD/'CARD®/,ISPACE/"® '/
I =25

CALL FIND1(KCUST,KCARD,I,ISPACE,IERR)

IF (IERR.NE.O) GO TO 99

FIND of the Second Type —_Using_ Set Relationships

Given that the existing Current Record of Run Unit is the
Owner or Member of the set quoted on the command, this
format of FIRD allows the program to navigate to the first
or last member record (from the owner record), to the next
or prior member records (from a member record) or to the
Owner record (again, from a member record).

Since the DBMS has the current record of run unit, it can
examine the set pointers associated with that record. By
further examination of the schema entry for that version of
the record it can determine which pointer to use to provide

the address of the desired record.
The Parameter List to the Routine is as follows:-

Parameter 1 - The Record Name - This is an integer
variable containing the name of the record to be found as

four alphanumeric characters.

Parameter 2 - The Set Name - This too is an integer
variable containing the name of the set along which

navigation is to take place. Again, this is held as four

alphanumeric characters.

Parameter 3 - Type of Navigation - This is an integer
variable containing a mnemonic of four alphanumeric
characters indicating vhicﬁ type of navigation is required.
The folloving types are possible:
~

FRST - The current record of run unit nust
be the owner of the set an the found record will be the
first member record occurrence in the corresponding set

OCCURRENCE.

LAST - The current record of run unit nust
be the owner of the set and the found record will be the
last member record occurrence in the corresponding set

occurrence.

NEXT - The current record of run unit must
be a member of the set and the found record will be the next

member record occurrence in the same set occurrence.

PRIR - The current record of run unit must
be a ‘member of the set and the found record will be the

prior member record occurrence in the same set occurrence.

ORNR - The current record of run unit must
be a member of the set and the found record will Dbe the

owner record occurrence of that set occurrence.

- A1.12 -

Parameter & - The Prror Code - This is an 1integer
variable. On return from the routine it contains a binary
number indicating whether the command has been successful.
A value of zero is used for success and one for failure. In
particular, if navigation of PRST or LAST is used and there
are no member record occurrences in that set occurrence a
value of ‘one will be returned. If navigation of ©NEXT is
used and the current record of run unit is the last in that
set occurrence a value of one is returned. Similarly, if
navigation of PRIR is used and the current record of run
unit is the first 1in that set occurrence a value of one is

returned.

Por example if the current record of run unit is a
Customer Record the following sequence of instructions would
be used to find the first account record in the set of

castomers accounts for that customer.
INTEGER KACNT/'ANCT'/,KCUAC/'CUAC'/,KFRST/*FRST'/
CALL FPIND2 (KACNT,RCUAC,KFRST,IERR)

IF (IERR.RE.O) GO TO 99

The DELETE Command

Record occurrences may be removed from the data base by
using the DELETE conmand. Before this can be done the
record must be removed from all sets of which it is a member
by using the REMOVE command (see below) The record to be

deleted is the Current of Run Unit. Any index entry for the

- A1.13 -

record in gquestion will also be deleted.

The Parameter List for the Routine is as follows:-

Parameter 1 - The Record Name - This is an integer
variable containing the name of the record to be deleted as
four alphanumeric characters. A record of this type must be

the Current of Run Unit.

Thus the following sequence of instructions would be used

to delete an account record.

IRTEGER KACRT/*ACNT*/

CALL DELETE (KACNT)

The GET Command

The GET Command transfers the value of a single data item in
the Current Record of Run Unit from the Data Base .to the
User Work Area of the Application Program.

Knowing the version number of the current record of run
unit (this having been established by PIND, etc.) the
routine can access the appropriate entry in the schema for
that version of the record. From this the position and
format of the data item can be established and the DBNS can
therefore carry out any necessary transformation of format

to provide the data item in the user work area.

The Parameter List for the Routine is as follows:—

U SR PRIIE SRR S S IR T E S L L

Parameter 1 - The Data Item FName - This is an integer
variable containing the name of the data item to Dbe
retrieved from the data base as four alphanumeric
characters. This data item must be defined in the schema
entry for the current version of the Current Record of Run

Unit. k)

The value of the retrieved data item 1is stored in the
first element of the User ¥Work Area Array (IUWA(1)).
Alphanumeric Data Items are provided left justified in the
fullword and Numeric Data Items are provided in FORTRAN
Binary FPormat.

The following sequence of instructions would be used to
GET the Balance from the Account record assuming it has

already been established as Current of Run Unit:-
INTEGER KBALC/"BALC'/
CALL GET (KBALC)

IBAL = IBAL + IUWA (1)

The STORE Command

The STORE command is used to add a new record occurrence
to the Data Base. The value of the data items in the record
are provided by the application program in the User Work
Area. ‘

The routine will examine the schema entry for the record
in question. If more than one version of the record is

present it will use the description of the highest version

namber (i.e. that most recently defined) to establish the
position and format of the data items. A comparison is made
between the list of data items in the sub-schema and that in
the schema and any not included in the sub—-schema definition
will be set to a default value of spaces. At this point the
record does not belong to any set since the INSERT command
mast be used to establish set membership and all set
pointers are, therefore, set to zero..

The system maintains a record of the next available
position within the prime data file (this is held in the
first record of the file wvhich does not, in fact, hold
data) . When this free 'slot® is allocated by the STORE this
'‘Pree Space Pool' indicator is updated ¢to point to the
following record. Note that the system does not re-utilise
records freed as a result of DELETE commands. Since the
record is stored at the most recent version the appropriate

index entry is updated to point to the new record.
The Parameter List for the Boutine is as follows:-

Parameter 1 - The Record VFName - This is an integer
variable containing the name of the record to be added to

the data base as four alphanumeric characters.

Parameter 2 - The Sub Schema Name - This is an integer
array of 10 elemenés with each element containing the name
of a data item to be stored in the new record occurrence.
Pewer than 10 data items may be specified in wvhich case the

rightmost elements are set to spaces.

- A1.16 -

The User Work Area must contain the values for each data
item quoted in the sub schema with each entry corresponding
element for element in each array. Alphanumeric Data Items
must be supplied as left justified in the fullword and
Numeric Bata Items nust be supplied in PORTRAN Binary
Format.

The following sequence of instruciions would be used to

STORE a new Account Record (Number 07) for Customer 1,

Branch 3, Account Type °CA' and Balance of Zero:-

INTEGER KSUBSC/'*BRNO®, °*ACNO*,"ACTP',*BALC®,5%* "/

INTEGER KACNT/'ACNT'/,KCA/'CA'/

TOWA (1) =3
TUWA (2) =7
I0WA (3) =1

TIUWA (4) =KCA
IOWA(5) =0

CALL STORE (RACNT,KSUBSC})

The MODIFY Command

The MODIFY Command is similar to STORE in that it results
in a record being written to the data base but in this case
the ‘new record supersedes an existing record occurrence -
the existing current record of run unit.

The record is modified by having one of its data items
altered in value.

7here a record is to be modified and the version number

R S I T N TR AT e i £ AR N S P KT s L B T el Wk A i

- A1.17 -

of the existing current record of run unit is not the most
recently defined version of that record the record
occurrence is restructured tp this latest version before it
is modified. This allows the data base to support open
restructurings by performing‘the restructuring in primary
storage when a record has been retrieved and before it is
written back to secondary storage by the modify thereby
incurring no additional Input/Output Qperation. ’

In normal circumstances the Index Entry for the record
being modified will not change (assuming that the value of
the key data item has not altered) but where an open
restructuring has taken place such that the version number
of the record has altered then the index entry for the
record must be transferred to the nev index file for that
new version. If parallel running is taking place the new
version of the record will be added to the data bése at the
next available 'slot® as described previously for STORE and
the existing version will also be retained in its original
position. Purthermore the entry for the new version vwill be
included in the appropriate index file and that for the

original version will be retained in its index file .
The Parameter List for this routine is as follows:-

Parameter 1 - The Data Itém Name - This is an integer
variable containing the name of the data item to be modified
as four alphanumeric characters. The data itenm musg be
defined in the schema entry for the current version of the

current Record of Runm Unit.

- A1.18 -

The new value to which the data item is to be modified is
supplied by the application program as the first element in
the User Work Area Array (IUWA(1)). Alphanumeric Data Itenms
are supplied left justified in the fullword and Numeric Data
Ttems are ‘provided in PORTRAN Binary Pormat.

The following sequence of instructions would be wused to
MODIFY the Balance of an Account record assuming that it has

already been established as Current of Run Unit:-
INTEGER KBALC/'BALC'/
IORA (1) = 100

CALL MODIFY (KBALC)

The INSERT Command

INSERT is used to add the current record of run unit into
a set of which it is a member. The actual occurrence of the
set to receive the record and the point at which this record
is to be added within the set occurrence is determined by
the data supplied for that set in the schenma.

The routine establishes the value of the data item in the
current of Run Unit record to be used for matching with a
corresponding data item in the owner record in much the same
wvay as an application program would get one of the data
items in that record.

When this value has been established it is used by the
routine in much the same way as an application program would

use PIND1 to determine the address and version of the

~ S P O e T T L T

- Al1.19 -~

corresponding owner reéord. A further record may also be
required (e.g. if a new ‘*last' member is being inserted the
previous ‘'last' member is required) and the DBMS will alter
the pointers of all records to reflect the new member. 1In
doing so, the routine uses the insertion rule specified in
the schema for the position of insertion of records into the
set. In this implementation only positions of first or last
in the member record occurrences for the set occurrence are
permissible but in a full implementation indices would be
regquired for each set occurrence to allow records to be
inserted based on key data item at a particular point within
the set occurrence. These indices would be distinct from
those which have been established to reference records based

on the values of key data items.

Parameter 1 - .Tﬁe Set Name - This is an integer variable
containing the name of the set into which the Current Record
of Run Unit is to be inserted as four alphanumeric
characters. The set must be defined on the Schema with the
record type of the Current Record of Run Unit as a member.
The following sequence of instructions would be used to
INSERT the Current Record of Run Unit (An Account Record)

into the Customer's Accounts Sets.

INTEGER KCUOAC'/COAC*/

CALL INSERT (KCUAQ)

Note that all record occurrences must be added to sets

using INSERT. The implementation does not support automatic

sl D it AN T e B mes e lSestenims s s mommis

set insertion.

The REMOVE Command

REMOVE serves the opposite function to INSERT. It allowvs
an application program to end nemhership_of a set occurrence
for the current record of run unit.

The routine firstly examines the pointers for the set in
guestion from the carrent record of run unit. From these
the address of the owner record and adjacent member records
can be determined by examination of the entry for that
version of the current record on the schema. The pointers
on the current record, adjacent member records and the owner
record are then altered to set up a chain of pointers which

no longer includes the current record.
The Parameter List for the routine is as follows:-

Parameter 1 - The Set ﬁame — This is an integer variable
containing the name of the set from which the Current Record
of Run Unit ijs to be removed as four alphanumeric
characters. The set must be defined on the Schema with the

record type of Current Record of Run Unit as a member.
The following sequence of instructions would be used to
REMOVE the Current Record of Run Unit (An Account Record)

from the Customer's Accounts Set.

INTEGER KCUAR/*CUAC'/

CALL

REMOVE

(KCURC)

at1.21

—A2,1—

Appendix 2

The Bank Data Base and Application Programs

The Account is the basic unit of operation of the bank
and a data base record 1is méintained for each bank account.
An account is identified by its account number and is held
at a spe;ific branch of the bank and belongs to a particu-
lar customer. Any customer may hold any number of accounts
at one or more branches (indeed this is common practice

for business customers).
The following data is, therefore, held for each account:-

Account Number

Branch Number

Customer Number

Account Type (Current, Deposit, Loan, etc.)
Balance

A data base record is also maintained for each branch of

the bank éontaining the following data:-

Branch Number
Branch Name

Designation Codes (Urban, Rural, East, West, etc.)

Further, a record is maintained for each customer of the

bank containing the following items of data:-

Customer Number

Customer Name

The inter-relationship between Customer and Account

~A2.2-

Records is represented by the following set:-

Customer's Accounts - Owner Customer

Member Account.

—A2¢3_

The Initial Data Base and Schema

The Schema for this data base is shown in Figure 1.

Figure 2 shows the initial contents of the data base

as follows:

Customer Number 01 is A. JONES who holds
Account Number 01 at Branch 01 which is a
Current Account (CA) with a Balance of £11.
He also holds Account 04 at Branch 01 which
is also a Current Account with a balance of

£44,

Customer Number 02 is J. SMITH who holds Account
Number 02 at Branch Ol which is a Current
Account with a balance of £22. He also holds
Account 03 at Branch 02 which is a Deposit

Account (DA) with a balance of £33.

There are also two branch records on the Data
Base. Branch 01 is BIGTOWN Branch. Branch 02

is SMALLTOWN Branch.

Data Base Programs

The Bank has a number of application programs operating

on the data base as described below.

Runs of the programs are initiated by the user keying
an appropriate two-digit code on his interactive

terminal. The user may then also key a further single

—A24—

digit code indicating the version of the program he
wishes to run. This is a simplified way of demon-
strating that various versions will be required at
various points during different restructurings.

Details of when the different versions will be required
are given under the individual restructuring tasks in

Appendix 3.

@ o N

[

SIS

A

 POSITION CF NZW INSERTS -

pata:z29
*t%x THE CURRENT SCHEMA %*xx

RECORD TYPE

DATA ITER ChUS START AT 1
DATA ITEM KAMT START AT 2
DATA ITEM NAMZ2 START AT 7
DATA ITEM NAM3 START AT 11

SET NAME CUAC POINTER TYPE
SET NAME CUAC PCINTER TYPE
REY DATA ITEM CNUM

RECGRD TYPE ACNT VERSION 1

DATA ITEE ACHO START AT 1
DATA ITEW¥ ERNC START AT 2
DATA ITEM CUNO START aT ¢
DATA ITEM BALC START AT 7
DATA ITE® ACTP START AT 1¢
SET NARE CUAC POINTER TYPE
SET NAME CUZC POINTER TYPE
SET NAME CUAC PGINTER TYPE
KEY DATA ITEmM ACNO

RECORD TYPE BRCH VERSION 1

DATA ITch EBNUP START AT 1
DATA ITENM ENMT START AT 2
DATA ITEM ENMZ2 START AT 7
DATA ITEM ENM3 START AT 11
DATA ITEM LGCN START AT 15

KEY DATA ITEM BNUM

SET NAME CLAC

CUST VERSION 1

END
END
END
END
FRST
LAST

AT
AT
AT
AT

END
thD
END
END
END
NEXT
FRIR
OWNR

AT
AT
AT
AT
AT

END
END
END
END
END

AT
AT
AT
AT
AT

2 FORBATY
6 FORMAT
1C FORMAT
14 FORMAT

2 FORMAT
4 FORMAT
& FORMAT
11 FORMAT
13 FORMAT

2 FORMAT
6 FORNMAT
10 FORMAT
14 FORMAT
15 FORMAT

OWNER RECORD TYPE CUST MATCHING DATA ITEM CNUM
MEMEER RECCRD TYFE ACNT (ATCHING DATA ITERM CUNO

Data:3C
x THE CURRENT DAT P EASE *

ADD RZCORD VRSN DATS

1 cusT 1 1JCHES ,ALA
2 ACNT 1 111 1
3 CUsT 1 ZSMITH, J AW
L ACNT 1 212 22
5 ACNT 1 2 ¢ e 23
& &CNT 1 & 1 L
7 2’CH 1 18 16 TuWN

% =nCh 1 2S Y LLL TOMN

LAST

*k

POINTERS

oS CVNO
O = tdtd D=
OooOoOLOOoo

-~
<

cCCcoownesEoN

Fi:ure]

- A2,6—

The 'Balance Calculation' Program

This program calculates the net balance for any specified

customer by navigating through his account records.

The run is initiated by the user entering an input type

of 01 on his interactive terminal. The program requests
the Cust;mer Number for which the balance is required and
the user types this through his terminal. The customer
number is then used by the program as a parameter to a
FIND command of the first type (i.e. Find a record given
the value of a key data itéﬁ). This establishes the
correct customer record as current of run unit. GET is
then used to retrieve the customer's name. A loop of
instructions is then carried out to FIND the 'First'

and subsequent Account records in the 'Customer's Accounts'
set using a FIND command of the second type (i.e. Navigate
through a set based on the Current of Run Unit which 1is

Owner or Member of that set).

For each Account record found the command GET is issued
by the program to transfer the contents of the Balance
data item to the program User Work Area. When all Account
records in the set have been found the program prints the

sum of the account balances on the user's terminal.

Figure 3 is a Listing of the Program
Figure 4 shows a run of the program to calculate the net

balance for Customer Ol1.

e

-A2,7—-

cooo

10 WRITZ(&,1320) :
{ w:rT.—:(é:?*?:H) Ftit(f€3
RTAD(S, e LiS)IPVER
IFCIPVEF.FELIIGETC 2018
C IF(IPVER.EG.ZIGCTC 5020
1320 FOPMAT ('Z4xs0UN CF SALANCE CALCULATICN PROFRAM2a®)
5010 WRITE (€,1C0%)

St ¢ INPUT TYPE 01 BEGUIRES EYECUTICN OF THE CALCULATE FALANCE FROGRAM
o) C USINEC & SPECTIFIED CUSTOMER NUMEER
1% pcap (5,1002) T1CUST
" C 1C02 FORMAT (12)
' 1005 FORMAT (' Tyeg CUSTOMER NUMBER')
184L=6G
C C

C DML COMMAND FINDPT IS USED TO ESTABLISH A CURRENT RECORD OF RUN
C UNIT FCF A CUSTOMER RECORD WITH THE SUPPLIED CUSTOMER NUMBER

c
¢ CALL FIND1CKCUST,ICUST,ISFACE,ISPACE,IERR)
- 11 IF (IER®.NE.T1Y ¢C TO 17
WRITE(6,1C087)ICUST
1007 FORMAT (' CUSTOMEF *,I2,' -NOT FOUND %)
: GO TO 1€
o T 17 CRLL GET(XNAMT)
8001 IwNi=TUWA(T)
CALL GET(KNAWM2)
¢ RC02 IwNZ2=IUWE(D)
. CAlL GET(KENART)
L0 TWR3I=IUWAC(1)
CALL FINDZ2(KACNT,KCUAC,KFRST,IERR)
12 IF (IERR.EG.1) GC TGO 1%
(o CALL FET(KBALC)
14 1BAL=TRAL+IHWA(CT)
CALL FINDZ2 (KACNT,KCUAC,KNEXT,IERR)

C 1S IF (IERR.NE.1) 60 TC 12
WRITE (€,1040)ICUST,IWNT, IWNZ ,IWNT, IBAL
o 1040 FORMAT (* RAOLANCEZ FOF CUSTONMER *,T2,°' °*,3A4,° 1S ',14)
RN G 16 WRITE(E,1321) :
1321 FORMAT(® *x+*+END OF FBLANCE CALCULATION RUN#x%")
G0 TO 5
C S020 WRITE(E,1C0%)
READ (5,1CC2) ICUST
IBAL=0
C CALL FINDT (KCUST,ICUST,ISPACE,ISPACE,IERR)

€021 IF C(IERR.NE.1) €Q TO 5C27
WRITE (€,1GC7) I1CUST
\ GO TO 5(2¢6
S027 CALL GET (KNAMI)
SCC1 IWNI=TUWAC(T)
C CALL GET(KNAFZ)
5C02 IWN2=IUWA(T)
CALL GET(KNEPZ)
(. SCC3 IWNZI=TIUNACT)
IF (ICUKVR_.E@.1) €0 TO 500¢
CALL FETC(KELALC)

(- SCO0S5 TBAL=IUWA(1)
N) GO0 TO SCC#
5004 CALL FIND2(KACNT,KCUAC,KERST, IEPE)
(5022 IF (IERF . EQ.1)FC TO =l2°¢

CALL GETU(KELLCQ)
SC?2L IFal=IrcLsTlwe(C9)
C CetlL FIMDY (KACNT, KCUAC KKIXT,IERR)
S0?25 IF (ISSR.NZ 1) rC To Shoe
SO WweITe (€,1040) FTOL3T,IWY Y TuNy , TUNR T321L
{ ENZFA WL TT (- %71

53
o

g gt

—A2,8—

Data:01

FL;ure4
*xxRUN CF BALAMCE CALCULATION PROGRAWM**%

& TYPE VZRCSICN NUMIZEZR OF FROGRAM
Data:1
TYPE CUSTO¥ZIR NUMEER

(s Data:01

***FOLLOWING IMFORMATION IS FROM 'FINDI'*¥xx
[DEMS IS SEARCHIMG FCR

RECCRD TYFE CUST VERSION 1

WITH CHARACTAEPS 1 10 Z teLAL TO
[1

RECORD FCUNMD 2T AULDRESS 1 VERSION 1

*kx "FINDT® COWFLETE Dx*x

P

. *x % FOLLOWIANG INFORMATION IS FROM 'GUT *%=
: CHARACTERS 3 TO 6
o OF RECORD TYFE CUST VIRSION 1 AT ADPDRESS 1 ARZ:-
OMNE
X% 'GET' COMPLESTHD*%x

%#FOLLOWINE INFORMATICN IS FROM 'GET'swx

CRARACTERS 7 TO 1C

OF RECORD TYPE CUST VERSICN 1 AT ADDRESS 1 ARE:-
.-'.&L .- - - - — -
**VGET® COWPLETED*%x* T ‘
L4

*** FOLLOWINE INFORMATION IS FROM "GET xxx
CHARACTERS 11 TG 14
& OF RECORD TYPZI CUST VEXSION 1 AT ADDRESS 1 A
N
** 'GET® COWPLETED*w%

)

n:

.
[}

*xk FOLLCWING INFGRMATION 135 FROM ‘FInDE**xxx

VALUZ IN PCINTZE 1
W OF REICGRPITYPE CUST VERSICHN 1 AT ADODRESS 1

Is 2

VERSIOGN CF RECCRD TYSE ECANT AT THIS LDDRZSS IS 1
(W) Xk %k *FINDZ" COMPL-TEDxxx

**%FOLLOWING INFORMATION 135 FROM 'GET'*#x
 CHARACTERS 7 TO 11
OF RECORS TYFZ ACNT VIRSION 1 AT AODRESS 2 ARE:-
11
 °GET' COFPLITSD=
L : , *2*FOLLOWING INFGRMATION IS FROM 'FIND2' %
S . & VALUS IN PCINTER 1

OF RZCORD TYPE ACNT V.PSION 1 AT ADDRESS 2
Is 6
| . ., % VERSION CF RECORD TYPE ACNT AT THIS ADDRESS IS 1
U *x%"FIND2' COMPLETE C#x=
ﬂl//’# \ A**FOLLOWING INFORMATICH IS FROM 'GIT'#*=*
<o L CHARACTERS 7 TC 1
GF RECOKD TYPE ACNT VERSION 1 AT ADDRESS & ARI:-
» 44

** "GET' COFPLeTRZD**x*

 ***FOLLOWING INFORMATION IS FFOM PFIRNDZ2 %+%*
VALUE IN PCINTER 1
OF RECORD TYPE ACNT VEZRSI(N 1 &T ADORESS 6
W« IS ©
*xk'FINDZ® COMPLETE D**x*
. BALANCE FCAR CUSTOMER 1 JONES,ALAN 13 5
‘\\, *%x*END CF EALANCE CALCULATICN RUN=*<%

- ot

w1

PRIl o

N S

—A 2.9_

The 'Transaction Posting' Program

This program allows the balance of an account to be
modified by the value of a Debit or Credit transection
which has been performed on the account (i.e. the
transaction is posted to the account). In practice,
such transactions could be obtained from various sources

such as branch terminals, cash dispensing machines and

cheques remitted by other banks.

The program requests the Account Number and Value to be
Posted and the user enters“these on his terminal. A
FIND command of the first type is then used to establish
the correct record as current of run unit followed by a
GET to transfer the Balance to the User Work Area. The
value of the transaction is then added to the Balance
(still in the User Work Area) and a MODIFY is then
carried out to update the account record with the correct
balance. Before the run terminates, tﬁe new balance is

printed on the user's terminal.

Figure 5 is a Listing of the program.
Figure 6 shows a run of the program to post a Credit of

£10 to Account 02.

LRI S

C 1
C c
' c — A2,10— !
c .
C c
G 20 WRITE(E,1322)
A 1322 FOPMAT (*Ux%x=RUN CF TPANSACTICN POSTING PROFRAM %% ")
’ C WEITECE,ZD11) c
’ REAC(S5,2015)IPVER i
IF(IPVER.EQ.1)GOTC SO30 Figure =
C IFC(IPVER.EQ.2)60TC 5040

ST IFCIPVER.EQ.3)606TC 5050
st ‘ TF(IPVER.EQ.L)GOTC 5060
‘ Co sTop 77
5030 WPITE (€,1042)
, 1042 FORMAT (' TYPE ACCOUNT MUMRER AND VALUE TO RE POSTED®)
e ¢ READ (5,1G45) I1ACCNO,IVAL
el .. 1045 FORMAT (I12,15)
: CALL FINDT(KACNT,IACCNO,ISPACE,ISPACE,IERR)
& 21 IF(IERR.NE.1) GO TO 27 :
deen RIS WRITE(6,1046)18CCNN
- ’ 1046 FORMAT(® ECCOUNT *,72,' NOT ESQUND *)

e

C 60 TO 2%
c
C FIMDY ESTARLISMES THE ACCOUNT SORCIFIED AS THE

(C CURPENT OF RUN UNIT
c

27 CALL GET (KEALC)
¢ 264 TUWACT)=TUWACT) +TVAL
i e e ot e CALL FOGPIFY(KEALC)
ICHEE A 26 WRITE (6,105C) IVAL,IUWA(T) A
C 1050 FORNMAT (* TPANSECTION OF <',I5,' POSTED - NEW BALANCE $°,15)
. 28 WRITE(&,1222)
1 1323 FORMAT (' *#4END CF TRANSACTION POSTING RUN* k*)
T - C GC T0 5

INTEGESR KERCH/'ECCH'/,KGNN1/'RNM1'/,KBN"2/'9NV2‘/,KBNN3/'BNF3'/
INTEGER KEBPAC/'GRAC'/

(5C40 WRITE (6,1042)

i READ (5,1C45) TACCNO,IvAL

2 CALL FINDI(KACNT,IACCNQ,ISPACE, ISPACE, IERR)

e o C 5041 IF (IERR.NE.1) €0 TO 5047
e WRITE (&,1046) IACCNO
G0 TO 5048
C 5047 CALL GET (KBALC)

-5C44 TUMACTI=TIUWA(T)+TIVAL
CALL ™ODIFY(KBALC)
C 5046 IF (ICURVF.EQ.1) GC TO 5049
WRITE (&,1051) TVaL,IuUWe(?)
1051 FCRMAT (* TRANSACTION GF $',15,° PCSTED - AEW EALANCE £°',16)
GO T0 sQ4f
5049 WRITE (£,1050) IVAL,IUWA(1)
5048 WRITE (6,12:3)
(G0 TO S

NI © " S050 WRITE (£,10L2)

PEAD (5,1045) 1ACCNO,TVAL —A2.11—
C COLL FINDY (KACKWT,T4CCNG, ISFACE,ISPACE, T£00)
5051 IF (IESR_NE.1) GC TO Sge7 _
WRITE (£,104€) IACCNG Fiquie S /65AT.)
C 60 TO 5052 —

ST SC57 IF (ICLRVR.ZG@.1) €0 TO 5555
okt i CALL FINPZ(IERR)

- A o IFCIERR.NE.1) GC TO 7001
SR , WRITE(E,7C02)
T 7C02 FORMAT (' NO VERSION 1 ACCOUNT RECORD FOUND *)

. S : 60 TO 55554
O o 7001 cALL GETCKBRALD)
I IURACI)=TUWAC1) +TVAL
C CALL POCIFY(KBALC)
WRITEC6,7003)IVAL,IUWACT)
7CC3 FORMAT(' TRANSACTION OF $',15,' POSTED®
*," - NEW ACCCUNT BALANCE %°,16)
= 5556 CALL FIND2 (KCUST,KCUAC,KCWNR,TERR)
5052 IF C(IERR.NE.1) 6O TO 5055
WRITE (6,1047)
ACL7 FORMAT (' CORRESPCNDING CUSTOPER RECORD NOT FOUND®)
60 TO 5C5%7
5055 CALL GET (kBALC)
554 TUMACT)=TUWACI)4TvaAL
CALL MOBIFY (KRALC)
5C56 WPITE (€,7C04) IVAL,TUWACT)
7CC4 FORMAT(®' TPANSACTION CF $°,15,' POSTED®
I*," - NEW CUSTOMER BALANCE $°,7I5)
5058 WRITE (6,1323)
60 TO S
5555 CALL GET(KBALC)
TUWACT)=TUWA (1) +TVAL
CALL MODIFY(KBALC)
WRITE (6,7CGC3) IveL,Iuwac)
GO TO 5C58
5060 WRITE (¢,1147)
1147 FORMAT (' TYPE ACCOUNT NUMBER, ACCOUNT TYPE AND VALUE TO BE POSTED
)
READ (5,1048) TACCNO,IACCTP,IVAL
1048 FORMAT (I2,1¥,A2,1%,15)
CALL FIND1 (KACNT,IACCNO,IACCTP,ISPACE,TERR)
5061 IF (IERR.NE.1) GC TG 5C67
' WRITE (6,1049) IACCNO,IACCTP
. 1049 FORMAT (' ACCOUNT NUMBER ',I2," TYPE ',A2," NOT FOUND')
€0 YO 5C68
5067 CALL GET(KBALC)
5064 TUWAC1)=TUWACT)+IVAL
CALL MOBIFY (KBALC)
5066 WRITE(6,1050) IVAL,IUWA(T)
C , . C 5068 WRITE(6,1323)
) L 60 TO 5

- A2.12—-
bata:l2

*%%xRUM CF TRANSACTILN PCSTIAG
TYPZ VERSION NUMELR OF PRGGLAM
pata:1

TYPE ACCOUNT NUYEER AND VALLS TO BE
pata:0z CO10

PROGR AP *x**

PCSTED

*xx FOLLCWINE TMFQRMATION
DEMS IS SZtRCHING FOR

RECORD TYPE ACNT VERSION 1

WITH CHARACTERS 1 710 2 EGLAL ToO
2

RECORD FCUND AT ADDRESS

*xk "FIND1' COMPLETE Do%xx

1S FROM 'FINDT'=xx=

x FOLLOWING INFORMATION I5 FRO®™
CHARACTE®RS 7 TC 11

OF RICOPD TYPE ACNT V=

22
% 'GET' COPPLETED#a%
*xk FGLLCWI MG
CHARACTERS 7 TO 11
OF RECORL TYPE ACNT VIASICH 1 AT ADDRISS
HAVE BEEN ALTZRZIOD TO -

32

*kxk"MODIFY ' CUMPLZTEo***

TRANSACTION OF 3% 10 POSTEC - MNEW BALANCE ¢
**kEND OF TRANSACTION POSTING RUN* %%
Data: sy
*** THE CURRENT DAT# EASE *%%
ADD RECORD VRSN DATA

1 CUST 1 TICNES ALAM

2 ACNT 1 111 11 CA

3 CUST 1 2SFITH,JAMES

4 ACHT 1 2 1 2 32 (A

S ACKNT 1 S e 2 ZZCA

6 ECNT 1 (A I 44 CA

7 SEN N 1 TEIGTOWN U

8 SkCH 1 2SMALLTOWN &

INFORMATION IS FROM *MOCIFY *+xx

FLgure é.

iz

POINTERS
26 GG
6 010
4 5GC0
50 20
94 360
0z10
Guco
0u oo

cooCcaoaoo
(SR oNaReNeNoNoeNal

)

[

Mmoooe

)

[pa o}

[

TAET S TN E N e o ey e e e s
Y i DR R I

The 'Open New Account' Program

An existing customer may open any number of new accounts
at any of the bank branches. This program sets up a new
account record for the account with an initial balance

of zero. It also adds the new éccount record to the set

of such Tecords for that customer.

The run is initiated by the user entering an input type
of 03 on his interactive terminal. The program requests
the Branch, Account Number, Customer Number and Account
Type for the new account aﬁd these are read from the
user's terminal to the User Work Area where (together
with a value of zero for the balance) they are used with
the STORE command to add the new record to the data base.
The INSERT command is then used to add the new record

to the Customer's Accounts Set. Before the run terminates

a confirmatory message is printed on the user's terminal.

Figure 7 is a listing of the program.
Figure 8 shows a run of the program to open a new account

number 5 at branch 02 for Customer Ol.

c
,
¢ —A2,14—
S : c .
B 3G WRITE(E,1324)
1324 FORMAT(*O%%xxPUN CF OPEN NEW ACCOUNT PROGRAM%4x')
... . C . wRITE(6,2011)
C : READ(5,2005) IPVER
IF (IPVER.EG.1) €C T0 507¢C
¢ IF(IPVER.E@.2Z) GO TO SOSC
sToP 77
5070 WRITE (6,1070) . .
(1070 FORMAT (* TYPE BRANCH , ACCOUNT NUMBER , CUSTOMER , ACCOUNT TYPE®™)

— READ (5,1075) TUWACT),IUWA(2) ,TUWA(3) TUWACL)
1075 FORMAT (12,1X%,12,1%,12,1Xx ,A2 ’
IUNA(5)=0 .
LR CALL STORE (KACMT,KSUBSC)
S CALL INSRT (KCUAC)
C 26 WRITE (€,1115)
) 1115 FORMAT (* NEW ACCGUNT CPENED®)
WRITE(E,1325)
(1325 FORMAT('###END GF OPEN NEW ACCOUNT PUN#x%')
GO T0 5
SCR0 WFITE (€,1070)
C READ (5,1075) TUMACT),TUWAC2) ,TUWACS) , TUWACL)
IUWA(5)=0
CALL STORE (KACNT,KSUBSC)
G CALL INSRT (KCURC)
CALL INSRT (KERRAC)
. SCR7?7 MRITE (6,111%5)
G WRITE (6,1325)
60 TO 5

et besand e

AN

s

Data:03

% *kRUN OF CPEZm NEW ACTCOUNT

TYPE VERSICN NUMSER OF
bata:1i
TYPE BRANCF , ACCOUKNT NUM

DataslUe TGS C1 C4

%% FOLLOWIRG INFORMATION]
THE FOLLOWING MEW RECORS

1S BPEING ADDED TO THE DATSA
RECORD TYFZI ACNT

VERSION 1

ALL POINTERS I8RO0
UNINITIALISED CHARACTERS ¢
CHARACTERS 3 T0 & SET T¢C

2

CHARACTEZRS 1 TC 2 8IT TC
5 :

CHARACTERS 5 TC 6 SET T¢
1

CHARACTERS 1¢ 1€ 13 S=ZT T0O

Ca

CHARACTERS 7 TG 11 ST TC

0
RECCRD HAS
*xk 'STORE®

SLEN STORED AT
COMPLETZ Dxx+
%x FOLLCWING INFORVFATION
CHARACTERS S TG 6
OF RZCORD TYPE ACNT V:zRSIC
1
DEMS IS SZARCHING
WITH CHARACTERS
1
RECORD FOUND AT ADDRESS 1
F

FCr RECL
1 170 2 €

RECORD-TYFE AND VERSIGN 9
ACNT 1

POINTER % OF RECORC TY"(
HAS BEEN ALTERZD TO &
POINTER 2 CF RECORET TYPE
HAS BEEN ALTERED TO &
POINTER 3 OF RECORE TYP:
HAS BEZN ALTERED TO 1
POINTER 2 CF RECORT TYPE

HAS BEEN ALTERED TO 6§
xkk *INSERT' COMPLZTED#®*x
NEW ACCOUNT OPENED

N1

—A2,15—

FROGRAN* %%

PR GGRAM

CUSTOMER ,

R,

S FROM ‘*STCRE®**%

EASE

0
(3
|)
(253
w

IS FROM "INSERT'#*+
a7
Re TYFE
GUAL TO

RZCORD AT ADDRESS
ACNT ADDRESS
ACNT ADDRESS
ACNT ADDRZISS ¢

CLST ADDRESS 1 VERS

#%kEND CF OFZIN NEW ACCOUNT RIN#®%* b
Data: 30
%x THE CURRENT DATE FASZ #*%x%
ADD RECOCRD VRSN DATA
1 CusT 1 TJONES ,ALARN
2 ACNT 1 1 11 11 (A
3 CUsST 1 ESPITH , JANMES
4 ACNT 1 2 1 2 *2CA
5 ACNT 1 32 2 33CA
6 RCNT 1 & 11 AN @
7 ERCH 1 18 IGTCWN U .
& SR CHE 1 251 ALL TOWN R
G ACNT 1 5 21 CCA

6

ARE

6 VIRSICN

9 VERSICN

ACCOUNT TYPE

FOINTERS

oooCcowvs

- OO=WWO =0

OO0 00O0O0O

_ Fﬁ;qre g

00000 U
0 o0C 0V
0 6G0O0GC
coQocoeo
000O06O
C 60 Qe
GGG 00
c0CcOC
00GO0OO

e

OO

Y r™~

—A2,16—

The 'Statistics Print' Program

This program provides statistics on the bank's customers.

The run is initiated by the user entering an input type

of 04 on his interactive terminal.

The first type of FIND command is used to retrieve all
Customer Records in turn from the data base. The GET
command is used to obtain the Customer Number from each
found record to allow the program to progress onto the
next record. As each record is found, it is counted.
When all records have been found the program prints the

record count and terminates.

Figure 9 is a Listing of the program.

Figure 10 is a run of the program.

—A217—

Figure q
WRITE (6,2010)

FORMAT(*O*=x~PUN CF STATISTICS PRINT PROGRAM*x')
MRITE(E,2C11)

FORMAT(® TYFE VERSTON NUMEER OF PROGRAM')
READ(S,Z01S)IPVER

FORMAT(T1)

1F (IPVER.E€.1) €CTO &1

IF(IPVER .EQ.2) GCTO 45

sTOP?77

1RocsT=C

1cusT=1

CALL FIND1(KCUST;ICUST,ISGACE,ISPACE,IERR)
If(IERR.EQ.1) €C TO 44

CALL GET(KCNUM)

IF(IUWAC1) EG.99) GO TO &4&

ICUST=IUWAC1)+1

INOCST=INOCST+1

cALL FIND1(KCUST,ICU$T,ISFACE,ISPACE,IEWR)
GO0 T0 42

WRITE(6,2012)INOCST

FORMAT(® NUMBER OF CUSTOMEPS - LI
weITE(E,1327)

FORMAT(® ##*xEND OF STATISTICS PRINT RUN#2*%")
GO T0 S

INOCST=C

1AEES(1)=0

IAGES(2)=C

IAGES(3)=0

1AGES(4)=C

IAEES(5)=(

1CUsST=1

CALL FIND1(KCUST,ICUST,ISFACE,ISPACE,IERR)
46 TFC(LERR.EG.1T) GO T0 43

CALL GETY(KCNUM) .

47 IF (IUMRCY) .EC.99) FO TO &8
ICUST=TuwWA(1)+1

INOCST=INOCST+1

I1AGE=1

NO TE..THAT RECORD VERSION IS 1IN SPECIAL REGISTER

IFCICURVR .EQ.1)60 TO 49
CALL GET(KAGE)
8040 TAGE=1UWA(T)
IF (1AGE.EQ.C) IAGE=1
49 IAGESCIAGE) =IAGES(TAGE)+1
T C CALL F1ND1(KCUST,ICHST,ISFACE,ISPACE,IEPR)
— Lt S G0 TO &6
') 48 WRITEC(E,2012)INOCST
WRITE(E,2012)1AGES(T)
2013 FORMAT(® NUMBER WITH UNKNOWN AGE GROUP - *',I2)
WRITECL,2214)12,TAGES(2)
(WRITE(S,2316)13,1ARES(™)
WRITE(&,2014)14 ,1#0ES(A)
WeITE(L,2C186)15,1AGES(S)
C 2C14 FOSMAT(® NUFMFER TN E6E c20uF ',I11,' - ',12)
URITE(6,1%27)
Ge 10 S

oy

—A2.18—

, . , Figure 10
Data:04

***QUN COF STATISTICS PRINT FROGRAM* =%
TYPE VERSICAN NUVMEER OF PR CCGRAM
Data:1

**«FOLLCWING INFGRMATION IS FROM *FIND1®*%xx
DBMS IS SEARCHING FOR
RECORD TYPE CUST VERSION 1
WITH CHARACTERS 1 T0 2 EQLAL TO

1 .

RECORD FOUNMD AT ADDRESS 1 VERSION 1
#kx"FINDT1® COMPLETEG#%*

**x FOLLOWINME INFORMATICN IS5 FROM 'SiT'axx
CHARACTCEPRS 110 2

OF RZCCRD TYPS CUST VERSION 1 AT ADD2ESS 1 ARz~
1

**PCET® (CRELETedxxx

A%k *FOLLOWILE INFORMATION IS FROM 'FINDT "xxx
DEMS 15 SFELRCHING FOR
RECCRD TY=Z CuST VERSION 1

WITH (HARZCTZES 1 70 ¢ TGLAL TO

2
RECORD FCUND &7 AODDRESS Iy
xx "FIHDT" COFMPLETE Di»

RSION 1

n

*** FOLLOWING INFORMATION IS FROM 'GET'%xxx
CHARACTERS 1 7¢ 2

OF RECCR2 TYFE CUST VERSION 1 AT AODRESS 3 AGRS:-
2

*k 'GET' COFFLETED**%

*x*FOLLOWING INFORMATION IS FROR *FINDT'xas
DBMS IS SEARCHING FOR -
RECCRD TYPE CUST VERSION 1
WITH CHARACTZERS 1 70 2 G LAL TO
3
NO RECGRp FCUND
xx"FINDT1' COMPLETED#~
NUMBSER OF CUSTOMERS - 2
Ax*END COF STATISTICS FRIKT RUN*+%

—A2,19—

The 'Add New Customer' Program

This program allows a new customer to be added to the

data base. At this stage, the customer has no accounts
but these can be added by running the 'Open New Account'
Program. The program is initiated by the user entering

08 on his interactive terminal.

The user enters the customer number and name of the new
customer on his terminal and the corresponding record
with these data items is added to the data base using
the STORE command. Before”the run terminates a confir-

matory message is printed.

Figure 11 is a Listing of the program.
Figure 12 shows the program being run to add a New

Customer 03.

io N
- L R TIL L P : . B n
; . WL il N o » .

R PR VIR T P A T . D L PO

Ll 5. - " PO
PARY SR TS IR« RS

—~A2,20-—-

cnooo; .

80 WRITE (€,1360)
1360 FORMAT (*C#*#** RUN OF THE ADD NEW CUSTOMER PROGRAM #x#°*)
WRITE (6,1361) .
1361 FORMAT (' TYPE VERSION NUFBER OF PRCGRAM')

READ (5,1362) -I1PVER Fléure I
1362 FORMAT (I1)

IF (IPVER.EG.1) GO TO 31
1F (IPVER.EG.2) GC TO 85
STCP 8C
81 WRITE (6,1363)
1263 FORMAT (' TYPE CUSTCMER NUMEER AND NAME')
READ (5,1364) TUWEA(1),IUWACZ) ,TUWAC3) , TUWAC(CL)
C 1364 FORMAT (I2,1X,304)
CALL STORE(KCUST,KSUBS2)
82 WPITE (£,1265)
C 1365 FORMAT (°* NEW CUSTOMER E&DDED')
WRITE (6,1366)
1366 FORMAT (* xx%x END OF NEW CUSTOMER RUN *%4')
60 TO 5
85 WRITE(6,1367)
1367 FORMAT (' TYPE CUSTOMER NUMBER,NAME AND AGE GROUP')
READ (5,136R8) (IUWA(II),II=1,5)
CALL STORE (KCUST,KSUBS3)
1368 FORMAT (I2,1X,384,1X,1I1)
86 60 TO 82

Pata: (%

*dkk PUN CF THe ACD hEtw CUSTCMER PROGRAM
TYPZ VZRSICKN WUMEER OF PROGEAM

:Dataz

TYPE CUSTCFER NUMEER ANC NARE

Pata:03 GREEN, MARY

*k*FOLLOWING INFORMATION
THE FOLLCWING NEW RECORD
IS BEING ADDEC TO .THE DATA EASE

IS FROM

RECCRD TYPE CUST
VERSION 1 2
ALL POINTERS ZeRO

UNINITIALISED CHARACTERS SPACES
CHARACTERS 1 TO 2 S:T TC .:-

3

CHARACTERS 3 TC 6 SET TC :
GREE

CHARACTEES 7 TC 10 SET TC :-
N,MA

CHARACTERS 11 76 14 SET TC :-
RY

RECORD HZAS N STORED
*k & 'STORE" COMFLETED»%x
NEW CUSTOMER ADDEGC

*%k % ENS OF MEW CUSTCRER RULN *x%

AT BACDRESS

Data:30
*%x THE CUFPRENT CATA BASE wix

ADD RECCRD VRSN DATA

- 1" CcUST 1 1JONES,ALAN
2- ACNT 1 111 1cCA
3 cusT 1 2SEITH,J AMES
L ACNT 1 212 32

*5 ACNT 1 322 I3pA
6 ACNT 1 4 11 L4CA
7 BRCH 1 1BIGTOWN u
8 P3CH 1 2SFALLTOWN R
9 ACNT T 5 21 GCA
10 cusT 1 3GEEEN,BARY

Fiqure 1
—e———

* % %

*STORE® *%%

10

POINTERS
2900000000
6010000000
£.50606000000
563C00000C60¢0
04 30000CO00
$§21C000060GC
cocco00000CG
G0O0CO0OO0DO0DO0GOGGCO
0510G6C0000O0
toococoodoo00C0C0C

- A2,22—-

The 'Amend Customer Details' Program

This program allows the user to alter the details
currently held on the customer record (i.e. the Customer
Name) for a particular customer. The run is initiated
by the user entering an input type of 09 on his inter-

active terminal.

The user enters the customer number and the amended name
on his terminal. The program uses the first type of FIND
to retrieve the appropriate record from the data base.

It then moves the revised ﬁéme to the User Work Area

and issues a MODIFY Command to alter the data base

record.

Figure 13 is a Listing of the program.
Figure 14 shows a run of the program to amend the name

of Customer 02 from J. Smith to W. Brown.

Al A0

N

X axXaNasKal

90

1380 FORMAT (°*0#**x 2UN OF AMEND CUSTOMER DETAILS PROGRAM °*

WRITE (6,13860)

Ak AAV)

1381 FORMAT (* TYPE VERSION NUFBER OF PRCGRAK *)

;1382

21
1383

1384
992
92
97
93
94

95-

96

99

.1387

98

1388

D997
1385

1386

WRITE: (6,1381)

READ (5,1382) IPVER
FCRMAT “(I1)

IF (IPVER.EG.1) GO TO 91
1F (IPVER.EG.2) GC TO 991
STOP 9C

WRITE (€,1383) s

’

Figqre 13

FORMAT (' TYPE CUSTOMER NUMBER AND AMENDED KAME®)

READ (5,1324)ICUST, NAMT NAMZ NAM3
FORMAT (12,1%,3A4)

CALL FIND1(KCUST,ICUST,ISFACE,ISPACE,IERR)

1F (IERR.NE.T)GO TO 97
WRITE(E,1007)ICUST

60 YO 98

IUWACT)=NAMI

CALL MODIFY(KNAM1T)
IUWAC1)=NAM?

CALL MOOIFY(KNAMZ)
IUWACT)=NAMS

CALL MODIFY(KNAM3)

1F (IPVER.EQ.1) GC TO 9¢
IF (IPVER.EQ.2Z) GC TO 96
sTeP 9C

IUWACT)=TAGE

CALL MODIFY(KAGE)

WRITE (€,13R7)

FORMAT (' CUSTOPER DETAILS AMENDED')
WRITE (6,13288)

FORMAT (" *x% END OF AMEND CUSTOMER DETAILS RUN Ahx?)

€0 T0 5

WRITE (6,1385):- - .
FORMAT (' TYPE CUSTOMER NUMEER, AMENDED
READ- (5,1386) ICUST,NAM1T,NAM2 NAM3, IAGE
FORMAT (I2,1%,3A4,1X%X,1I1)

60 TO 992

NANE AND AGE GROUP °

2

— A2.24—

Data:iis

kxx RUN TF PRZIED CUSTUMIR DITAILS PLUCYAN x%x%x
TYP: V- ESICN NUNEER CF PROGHAM

pata:l

TYPE CUSTOMEZR NUVEER ANC AP ENDED KAME

Data:02 ERCWH, WALTEE

k% x FOLLOWINE JWFORMATION IS FROM ‘*FINDI"%x#
,DEMS IS SEARCHIMG FOCR
RECCRD TYPE CUST VERSION 1
WITH CHARACTZ®S 1 10 ¢ f@CAL TO

2

RECORD FOUND aT ADDRESS 3 VERSION 1
*xx'FINDT1® COMPLETE DHa*xx

*%k%x FOLLOWINC INFORM ATION IS FROM 'MODIFY'%%x
CHARACTERS 3 TG 6

OF RECCRD TYPE CUST VERSION 1 AT ADORESS 3
HAVE BEEN ALTERED TC

BRCW

Ax*k "MODIFY® COMPLETED®*»

x+*FOLLCWING INFCRMATION IS FROM "MODIFY'+#x
CHARACTERS 7 Te 10

OF RECGRD TYFZ: CUST V:RSION 1 AT ADDR:ZSS 3
HAVE BEEN ALTERED TC

N, WA

4k "MODIFY® COMPLETED #x*

**k FOLLOWING INFOPRMATION IS FROM "MODIFY 'xx%%*
CHARACTERS 11 TC 14

OF RECORD TYPE CUST VERSICN 1 AT ADDRESS 3
HAVE BEEN ALTEZRED TC

LTER

*x % *MODIFY® COMPLETED**x%

CUSTOMER DETAILS AMENCZD

&% END CF AMEND CUSTCMER DETAILS RUN **x=*

Data:30

*%% \THE CURRENT DATA BASE ###

Fiiulc 14

ADD REZCORD VRSN DATA POINTERS

1 CUST 1 TIJCHES ,ALAN 29 00000
2 ACNT 1 17 11 11 CA 6 010 000¢0C
3 CusST 1 CBROWN WAL TER 4500000
4 ECNT 1 2 1 ¢ 32CA 5030000
5 ACKNT 1 I 2 ¢ 23pA 04 30000
é ECNTY 1 4 1 1 L& Ca g2 1C 000
7 FRCH 1 1B IGTOWN U cocoodGeo
§ CRCH 1 ZSMALLTCWN R CGuCeg 00O
9 ACAT 1 5 21 DCA 05103000
10 CUST 1 IERTEN M ARV cCoO0OO0CO00

S e - .~

T

COOCCoOOOOOO

coOocOoOoOooOoOo

— AJ, | —

Appendix 3

The Restructuring Tasks

In Chapter 7 various restructuring tasks were postulated

for the bank data base.

In this appendix actual runs of the programs involved
are demonstrated. For most of the restructuring tasks
it is necessary to invoke different versions of certain
of the application programs described in Appendix 2
since these programs are not traﬁsparent to the task
being performed. The listings of the programs given in
Appendix 2 show the differences in logic for the Qarious

versions of the programs.

—A3.2 -

Open Restructuring to add Age Group to the Customer Record

The user initiates an 'Add Data Item' restructuring by
entering code 20 on his terminal. The DBMS responds by
requesting details of the new data item and the position
in the record to which it is to be added. Since in this
example an open restrucfuring strategy is to be used)only
the schema is altered at this point to reflect the exist-
ence of the new data item in the latest version of this

record.

Thus when the schema is printed there are definitions
for both version 1 and version 2 of the Customer record
with version 2 containing the new AGE data item. The
original version of the 'Add New Customer' program
(version 1) .will continue to run before and after the
schema has been altered and thus there is no difficulty
in adding customer 3 (Anne Black) to the data base. The
record for this customer is at version 2 but since the
program has not supplied a value for the AGE the DBMS

defaults this data item to spaces.

Eventually a new version of the Add New Customer program
is introduced and customer 4 (Carol White) can be seen
being added using version 2 of the program. This version
is similar to version 1 but contains logic to accept

the age group and to store it on the new customer record.
As can be seen the DBMS responds to this change in pro-
gram logic by indicating that AGE has been given an

explicit value.

A3.3..

Similarly, the Amend Customer Details program will run
after the restructuring has been initiated. The run of
this program shown gives details of the operations
carried out to amend the name of customer 1 to Jack Jones
and also to allocate him an age group of 2. Since the
DBMS always searches for the most recent version of a
record f{rst)an attempt is made to find a version 2
record for this customer. When no such record is found
a successful attempt is made to find a version 1 record.
Each data item in the record is now modified in turn by
the program. For the firstvmodify the DBMS detects that
the record is not at the most recent version and there-
fore restructures the record before actually performing
the modification logic. This is not necessary for sub-
sequent modifications since the record is now at version

2.

The Calculate Balance program requires the Customer Name
from the Customer record and the run of this program at
version 1 shows that the DBMS can detect the revised

position of this data in providing it to the program via

the 'GET' command.

The Statistics Print has been deliberately enhanced to
examine the version number of each Customer record
accessed so that it can assume an unknown age group for
all records.which have not been restructured. The run
shown of this program at version 2 demonstrates selective

calls to the GET routine for AGE only for customers 1, 3

—~A3.4 —

and 4 which as we have seen above have been modified or
added since the restructuring was initiated. Note too
that since customer 2 has a null value of zero for this
data item the program assumes an unknown age group for

this customer.

— A3.5—
Data:z’

AASTART CF AOD DATE ITE¥ RESTRUCTURING#*%
TYPE 0P EZN CR LLED FOR TYP: OF RESTRUCTURING

FOLLOWED &Y KICCRE MAPE , DATA ITEM NAME,LENGTH &ND FGRMAT

AND ADJACEINT DATA 17E# OF DsTE ITEM TO EE ALDED
bata:GFEr CUST AGE D1 ,11) CNUN
*RXOP EN REZSTRUCTURING NOW UNDER WAY x%%

bata:z?¢
*x% THZ CURRENT SCHEMA %=x%

RECORD TYFE CUST VERSION 2

DATA ITEZM CWUi: START AT 1 ENU AT 2 FORMAT ,12)

DATA ITEY¥ s6E START AT X ¢ND AT 2 FORMAT ,I1)

DATA ITENM NAMYT STARY AT 4 SKD AT 7 FURMAT LA&L)

DPTA IVEV hAMZ START AT & ENB 4T 11 FORMAT ,A4)

DATA ITEF Rat3 START £T 12 EMD AT 15 FORMET , AL)

SET Na&ME CULC PCINTER TYPE FRST

SET MAME CUARC POINTER TYPI LAST

KEY DAV A TTEN CNUM

RECORD TYP: CUST VERSION 1

DATA ITEZr CNUM START &T 1 END AT 2 FORMAT ,12)

DATA ITEN WAMT START AT 3 SND AT & FORMAT SAL)

DATA ITEF MNANZ START AT 7 END AT 10 FORKET ,LAL)

DATA ITZ¥ NAM3 START AT 11 :5ND AT 14 FORMAT SRE)

SET NAME CUAC POINTER TYFE FRST

SET NAWEZ CUAC PCINTER TYPE LAST

KEY DATA ITEM CNUM

RECORD TYP:Z ACNT VERSIOK 1

DATA ITEF ACNC START AT 1 END AT 2 FORMAT ,LI2)

DATA ITEWM ERND START AT 2 END AT &4 FCRMAT ,12)

DATA ITEM (UNO START AT 5 END AT 6 FORMAT ,12)

DATA ITEF EALC. START AT 7 END AT 11 FORMAT ,IS5)
. DATA ITEFM ACTP START AT 12 END AT 13 FORKAT ,A2)

CSET NAME CUEC POINTER TYPE REXT

SET NAME CUEAC POINTER TYPE FRIR

SET NAYE CUAC POINTER TYPE OWNR

KEY DATE I72H ACNKNC

RECORES TYPE &RCH VERSION 1

DATA ITEF EixUM START AT 1 END AT 2 FORMAT ,12)

DATA ITEF ENMT START AT 2 END AT £ FORBAT ,A4)

DATA 17:zM EXPZ START #T 7 ENC AT 1C FCORIFAT ,L840)

DATA ITZIN ENKES START £T 11 EME AT 14 FORMAT , AL)

DATA ITEF LCCN START 2T 15 END AT 15 FORMAT)

KEY D=7A 1726 Enb¥

SET Her= Ctrl

OWNZ= TYST CUST #iTCHRIME DATA ITEN CHUH

MEMB- - TOoTY> FONT FETCHING DLTL ITEN CUGD

P2S1IT I oW 1L SEIRT, - LEST

Ipepag B e st T bt - . ety e -

T i B

— A3,6 —
C Data:i:

*x% RQUi. CF THE Aud NoWw CUSTINIR PROGAAN #vxk
. TYPE VEREICN NUMEER OF PROGRLM
pata:t

TYPE CUSTORER NUMBER ANC NAFZ
Data:U3 ELACK, ANNE

*%**xFOLLCWING INFORMATION IS FPO# 'STORE®#xx
THE FOLLCWING NEW RECORE
IS BEING ACDED TO TFHE DATE BASE

RZCORD TYPE CUST

VERSIGN 2

ALL POINTERS ZERO
UNINITIALISED CHARACTERS ESPPCES
CHARACTERS 1 TC¢C 2 SET 7O .:-

3
CHARACTERS & TG 7 SET TC :- -
BLAC
CHARACTERS & TG 11 SET TC .:-
K, AN
CHARACTERS 12 TG 15 SET TC :-
NE

RECORD HKES Efutt STORID AT ALDNZSS
*%xk'STOREY COpbLETED**%*

NEeW CUSTC¥ER ADDED

*k% ZHD CF NeW CUSTCHER RLUN %%x

e}

Data:C*%

*kkk RUM CF THE ADD NEw CUSTOGMER PROGRAM »*x
TYPE VZRSICN NUMEIR OF PROGRAM

bata:?2

TYPE CUSTONER NUMBER, NAME AND AGE GROUP
DPata:04 WHITE, CARCL 2

#2*xFOLLCWING INFORMATION IS FROM ‘*STORE®=*%x%
THE FOLLCWING NEW RECORD)
. 1S BEING ‘ACDED- TO TFE DATA EASE

RECORD TYPE CUST

VERSION 2

ALL POINTERS ZERO

UNINITIALISED CHARACTZRS CPACES

: (CHARACTERS 1 70 2 SET 7C 1:-
4
o CHARACTERS & TO 7 SET TC :-
7 C WHIT
- o CHARACTEZRS & 7€ 11 5c¢T T -
.0 E,CA
(CHARACTE®RS 12 TC 15 &eT TC :-
ROL
CHARACTIPS 2 TC 5 °.7 Tu :-
¢ 3
RECORD P23 =Uin STOR:IT AT £.pE25S 1L
AxEkPITTRTY CLEPLT T Lass
C Hiw CUTTET L ahe

. & . - .

—A3,7 —

=N
L4
5
-+
&
.
¢

¢
ADD R.:CCRO VSN DAT FCINTEERS
1 CUST 1 TI0HN 23 ,ALAEN <6 00 0QCQO0D0DUDC
2 ~CNT 1 111 11¢Ca 4 1300C00G06G0O0
3 CUST 1 CSPITH , JEFES R O I N O 1 s
4 ECNT 1 ¢ 1 ¢ 2 (A 5C30060C000C
5 ACNT 1 3 ¢ 2 23PA 0¢.2000C0CGC0CGO0CC
6 ACNT 1. 4 11 44 Ca 021006G0060GC
7 BRECH 1 1BIGTOUN u 66608 C000O0U
8 CRCH 1 28 MALLTCWN B CC6GGC00O0CO0O OO
-9 CuUST 2 3 ELACK,ENNE 00GOO0OO0CGOCGGC OO
10 CUsST Z 43WHITE,CAROL CCGCO0OO0GCOG0CGQCGU
\“_‘
bData: Q¢

**kx RUt CF ANEND CUSTCMER DETAILS PROGRAV #4%
TYPZ VEFSICr NUMEZIR OF PR CEwA#

Pata:? ‘

TYPE CUSTCMER NUMEER, 4MENDFD NAME AND LGe GREQUP
Data:izl JOMNES, JACK ¢

x FOLLCWINRG ILFORMATION IS FROM 'FINDY %xx
bRMS IZ SZPRCHIMG FCR
RECORE TYFE CUST VERFION 2
WITH CHARACTERS 1 30 Z EQULAL T¢C

1
NONZ HAS BEEN FLUND 3C ©5fS IS nOW SSARCHINCE FCOR
RECORD TYPRE CUST VEZRSION 1
WITH CHAROLCTERS 1 10 Z SfQLAL TO

1
RECORD FCUMD AT ADDRESS 1 VERSION 1
kk"FINDT" COMPLETE CH%»

***FOLLOWIRG INFORMATION IS FROM °*MODIFY ' %%+

*#% FOLLCWING INFORFATICN IS FROM RESTRUCTURING ROUTINE ### \
VERSION NUFEER OF RECORD TYPEZ CUST AT ADDRESS 1 R
IS BEING ALTERED TO 2

CHARACTERS 1 TO 2 WERE FREVIOQUSLY

1

CHARACTEFS 3 TC 6 Ww:I2: FPEIVIGUSLY

JONE

CHARACTERS 7 T0 10 w7°E FREVIOUSLY

S, AL

CHARACTZIRE 11 76 14 wi%: FREIVIOUSLY

AN

CHARACTZISS 1 YC 2 hIVL EESH SET TO o-
]

(CHARECTERS * 70 4 237 “71%, SIT1 TO SPLCES
CHARMTIIZFS & T® 7 HaV7 feanw $TI7 TO ==
JON:

C CHERACT IS T ESVE meet SIT OTO :-
S,AL

[T PR 1 - v L TOT o0 -

QOoOoOCCoO oo

!
1

t
|
}
|
i

.. L. e T L ~
ot eems sehe e e 'a P T T S PPNE PO AP

CRARACTERS & TO 7
OF RECHRD TYFZ CUST ViRCICN 2 AT ADORESS 1
HAVE TEK ALTZIRED TC

JONE

kAKX HQUIFY "' COMPLEITEDA%R

*xx FOLLOWING INFORM ATION IS FROM ‘MODIFY'x*x
CHARACTERS & TO 11

OF RECOCRD TYPZ CUST VERSION 2 AT ADDRESS 1
HAVE BEEN ALTERED TC

S,JA

%'MODIFY" COMPLETED®*%

*%*FOLLCWING INFCRMATION IS FROM 'MODIFY "+xx
CHARACTERS 12 7C 1% -

OF REZCORD TYP:Z CUST VIRSION 2 AT ADDRZESS 1
HAVE EEEN ALTZIRED TC

CK

*kx MO TFY " (OMPLETEOR%R

*x%x FOLLLOWINE INFORM2TION IS FROK "MOBDIFY'xxs+
CHARACTEERES 3 7C 3

OF RECOGRD TYPE CUST VIZSICN 2 AT ADDR
HAVE ==&t ALTCRED TC

2

*xkk "MOLIFY P (OMPLITARxAx
CUSTCKEER DETAHILS piINCEC
*%k*x TND CF Atcolih CUSTIOFSEF DETEAILS RUN *%3*

s 1

e

Data:iu

*xk% THZ CUREENT DATE TASE #x%x

ADD P2ElCRD VRSN DAT?
1 CUST 2 12JORES JACK
2 ACNT 1 111 11 CA
3 CusT 1 2SHITH , JAMES
4 ACNT 1 ¢ 1 2 c2ChA
S ACNT 1 2z I3cA
6 ACNT 1 ¢ 11 LLCA
7 8RCH 1 18 IGTOWN u
£ 8RCH 1 ES¥ALLTOKN R
C g Cusv 2 IORLACK, ANNE
16 CLUsST Z L3WHITZ, CARCL

PR e AT S
PO S N iy

~—A3.8 -
POINTERS
26 00000000
.6 010000000
45000000060
‘503000000GQG
04 3C000C¢00GC6
021000060600C
0CC0Q0COOO0OOD
06LOOCOGGCG OGO
c0Gc6dCcoouuo0o0O
Gooccococoa0

-y

v

— A3,9—

C& PR GERAN
Dats:1
TYPE CuSTONM:E NUNMATER

*batazt

#x%x FOLLCWING INFOOMATION IS FROM 'pIhD1' w4y
DEMS I5 SEARKCHING FOR
RECORD TYPE CUST VERSIGN ¢
WITH CHARACTERS 1 10 2 EQLAL TG
]
RECORD FCUBD AT ADDRZSS 1 VERSIGMN 2
%% “FIND1' CORPLETEL*%+*

*x*FOLLOWING INFORMATION IS FROM '"GET'www
CHARACTERS 4 TG 7

OF R:ZORD TYPE CUST VERSION 2 AT ADDRESS 1 A
JCONE

** *GET' COFPLETED**%*

b2

i

o
|

2+ % FOLLCWING INFORMATION 1S FROM 'GET'xxx
CHARACTERS & 70 11 '

CF RECORD TYPZ CUST VERSION 2 AT ABDRESS 1 a;
S,J&
A CCETY (OFPLITEDR**

a0

m
.
|

X AFOLLOWIAG INFORMATION I35 FROF ' TT7'%%%
CHARACTERS 1z TC 15
GF R=CCPD TYr& CUST VIRSIONL 2 AT ALDRESS 1 ARE:-

CK
**'GZT" COFPLETED*R*=%

*ExFOLLCWIKG INFCRMATION I8 FROM 'FINDZ'#*x%x
VALUZE IN PCINTER 1

CF RZCOFRC TYP: CUST VERSION ¢ 2T ADDRZ=SS 1 -
Is 2
VERSICN

CF RECORC TYPE ACNT AT THIS ADDRESS IS 1
*xx ‘FINDE®

COMPLETE Cx*x

#*% FOLLOWING INFORM ATION IS FROM 'GET'wxx
CHARACTEPS 7 TO 11
OF RECGRD TYPE ACNT VERSION 1 AT ADDRESS 2 ARE:-
i1
%"GET' COPFLETED## .

***FOLLOWING INFORMATION IS FROM ‘'FIND2® %+

VALUE IN PCINTER 1

OF RECORD TYPE A&CNT VERSICN 1 AT ADDRESS 2

IS 6

VERSION CF RECCRD TYPE ACHT AT THIS ADDRESS IS 1
*xx"FINDZ2" COMFLETEL**x

**k FCLLCWING INFORMATICN IS FROM 'GET'#x3#

CHARACTERS 7 T0 11

CF RECORD TYPE ACNT VERSION 1 AT APDRESS 6 PRE:-
44

*kPEETY COFFLITZORxy

*xx FOLLCWING INFOTMETION T3 FUO™ 'FINDZ'+#xx
VALUE IN BPCinT=& 1

OF RECCOR™ TYR" LORT V RSICH AT ATDErSR 4
15 0O

Kk k"F T Ot R IR A

RN - - - C

s

~’

)

(]

VData:O1

- x*x*kRUN CF EALANCE CALCULATION PROCRAM*®x*

TYPE VTRSICN HUMB:ZR OF PROGRAM
bata:1

TYPE CUSTOVMIR NUMSER

Data:(2

** X FOLLOWING IRFORMATION IS FROM 'FINDT'xw+
DEMS 15 SEAFCHING FCR
RECCRD TYPZ CUST VERSIGA 2
WITH Cv2RALTE23 1 10 ¢ :eULaL TO

4
NONE Hi§ B
RECSORD TYP

T

2. FCUND SC BUNMS IS NOW 3TARCHINCG FOR
c :

sSIomM 1
WITH CHeRATTLES 0 2 t@ilAL TO

2 o T

RECORG FLUNG 2T ADDPISE Y VERSION 1
*xAPFIHDTY COPPLITEC®+ &

x FOLLOWING IMFORMETION I3 FROW 'GET"ax+
CHARACTESRS X T¢ 6

CF RTLGRO TY™Z CUST VERSION 1 AT AGDRESS 3 ARE:~
SKHIT
2% "GIT' COFPLITID***

***FOLLOGING IMFORMATION 1S FROW *GET'#%x
CHARASTERS 7 T¢ 1C

CF RSCCRE TYZE CLST VEASION 1 AT ADDRESS 3 ARE:-
H,Jf
XK VGETY CONFL-TID%xx%

*** FOLLOWINC INFORMATION IS FROM 'GET* x+%x
CHARACTERS 11 TC 14

OF ReCORD TYPE CUST VERSION 1 AT ADDRESS 3 AREZ:-
MES
‘**'GET' COFPFLETED®* =

3

pT

]
o

*%% FQLLOWING INFO N IS FROM ‘*FINDZ2'"Ax*
VALUZ IN POINTLER
OF RECORE TYRPZI CU
IS ¢

VERSIO» CF RECOPD TYFE ACMT AT THIS ADORESS IS 1
*kk*FINDZ®' COMPLoTEEx*x

D oam

T VERSICN 1 AT ADDRZSS 3.

#**FOLLOWING INFORMETION I3 FROM™ 'GET'%4s

CHARACTZIRS 7 70 11 —
OF RECCRD TY®Z ACKT VERIION 1 AT ADDRZSS &4 ARE:-
¢2

C*x*TGET’ COMPL.TZDvk%

*kxFOLLOWIANC TH
VALUEZ IN PCILT
OF RECOARL YR
IS 5

VERSICH CF RICOKRD TYP: ACNT AT THIS ACDRESS IS 1
*AkkCFETNDEY COFPLETE %%

CRMATIGN IS5 FrOM 'FINDR2'*xxx
1

CNT V:IR3IION 1 AT ADDRESS 4

*%%x FOLLCWING INFOSMATION 15 FROM *GETx%*
CHARACTE:FS 7 7C M ;
OF RECCaD TYFE ACNT VERSION 1 AT ADDRESS S5 ARc
33
*%"GCIT' CONFLET=Dx%*x

**x*FOLLOVING IMFORMATICK I3 FROM 'FINDZ2'x*x
VALUZ IN FCINTER 1

OF RECCRD TYFEZ ACAT VERSICHN 1 AT ADDRESS 5
Is 0

xx"FINDZ' (OMPLEITED®«

BALANCE FOR CUSTOWEKR ¢ SFITH,J AKES Is 55
*k2EINO CF EALANCEZ CALCULATICM RUNx#=x

R S

***FOLLCUING INFORMETION IS FRO® 'FIND]*#xs
DEMS IS SEARCHING FOZ
RECORi TYPZ CUST VERSION ¢
WITH CHARACTERS 110 2 EGLAL TO

1
RECORD FZUND AT ADDRESS 1 VERSION 2
x'FIND1® COMPLETE bx4x

**x%FOLLOWING INFORK/TION IS FROM 'GET'#x%
CHARACTERS 1'TC 2)

OF RECORL TYPE CUST VERSION 2 AT ADDRESS 1 ARG :=-
1 ;
*%*GET* COFPLETED***
*x*FOLLOWIRC INFORMATION IS FRONM 'GET's#+
CHARACTERS 3 TO0 3

UF REZCORD TYPE CUST VERSION 2 AT ACDRESS 1 ARE;-
2

x "GETY COFFLETZDw®

** X FOLLCWING TRNFORMATION IS FROM ‘*FINDT"*%x*
DBMS IS5 SE#RCHING FCR

RECORD TYPE CUST VERSIOM 2
WITH CHARACTERS 1 TC 2 EQLAL TO

é
NONE HAS BEZN FOUND SO CBMS IS NOW SEARCHING FOR
RECORD TYPE CUST VERSION 1
WITH CHARACTERS 1 T& 2 EQULAL TO

2
RECORD FOUNC AT ADDRESS 2 VZIRSION 1
*kx"FINDT® COMPLETED#%%

*%*FOLLCWING INFORMATION IS FROM *GET'xx+
CHARACTERS 1 TO 2 .

OF RECCRD TYPE CUST VERSIOMN 1 AT ADDRESS 3 ARE:-
#°GET® - COPPLETED#¥ '\ .
***FOLLOWING IMNFORMATION IS FROM 'FINDT' %
DBMS IS SEARCHING FCR
RECORC TYPE CUST VERSION 2
WITH CHARACTERS 1 TC 2 EGUAL TO

2
RECORD FCUND AT ADBREZS 6 VERSION
*x%x *FINDT1' COMFLETED**%

c

. M hairobh £ S
- msmespemeeos oo

Lo 2 AT ADDRISS © mfi:~
T 3
©(*+'GET' C(CWSLETEDwx
T S *xx FOLLLOWING INFCRM ATION IS FROM 'GET'wkx
S F 0 CHARACYERS 3 To 3
el TR OF REZCORD TYPE CUST VERSION 2 AT ADDRESS 9 -4FE:-
. - - . . A Y

C ** "GET® COMPLETED# %%

#x*xFOLLOWING INFORMATION IS FROM YFINDT' %4
DEMS IS SEARCHING FCR
RECCORD TYPE CUST VERSION 2
WITH CHARACTERS 1 TO 2 EQUAL TO

4
RECORDL FOUNC AT AODRESS 1C VERSION 2
x"FJNDT" COMPLETEL#x+

-
X
»
P2
e
o
[I

TYPE CUST VERSION 2 2T ABDRZSS 1C AGZ:-

k PGETY COMFLITED%x*

***k FOLLCWING INFORMATION IS FROM 'GET'axx
CHARACTERS 3 70O 3

CF RECCRD TYFE CUST VERSION 2 AT ADDRESS 10 ARS:-
3

%x "GET' (OFFLETED&x

**k*FOLLOWING INFORMATION IS FROM *FINDT'%#+
DBMS IS5 SEARCHING FCR
RECCRG TYPE CUST VERSICA - 2
WITH CHARACTERS 1 10 2 EQUAL TO
5
NONE HAS BEEN FGUND SC DBMS IS NOW SEARCHING FOR
RECCRD TYPE CUST VERSION 1
WITH CHARACTERS 1 70 2 EQUAL TO
. 5 :
NO RECORD FQUND = . E - PO,
*xkx "FINDT' COMPLETED**x

NUMBER OF CUSTOMERS - 4

NUMBER "WITH UNKNOWN AGE GROUP -~ 2
NUMBER IN AGE GROUP 2 - 1

NUMEER IN AGZ GROUP 2 - 1

NUMBER IN AGE GROUP 4 - (

NUMBER IN AECZ GROULP 5 - (.

AkCND CF STATISTICS FRINT RUN%%

1

~

A3,12 —

— A3.13 —

Closed Restructuring to add Age Group to Customer Record

The restructuring described above could also be carried
out using a closed strategy. In this case the DBMS
immédiately searches for the first customer record on
the data base in address sequence and, in fact, finds
customer .1 at address 1. This record is then restruc-
tured by making space available for the new data item
while not actually allocating it a value. The schema is
also altered to reflect the existence of both version 1
and version 2 customer records. When the record is
restructured the user is invited to either continue to
allow the next customer record to be restructured or to

run an application program.

As before, the Amend Customer Details program is run
for customer 1 and since this record is at version 2
(having just been restructured) each data item can be
modified in a straightforward manner. Similarly, when
customer 3 (Anne Black) is added a version 2 record is

created as before.

The restructuring is then allowed to continue and the
record for customer 2 at address 3 is then restructured.
When the restructuring mechanism then encounters the
record for customer 3 at address 9 it discovers that

it is already at version 2 and need not therefore be

restructured.

Since no further customer records exist on the data

base the restructuring is now complete and the schema

— A3.14 —

can again be modified to remove the reference to the

obsolete version 1 customer record.

L et i

~-A3.15—

Pata:zl

xxSTA2T OF AUD PATA TITEM RESTRUCTURING==»
TYPE CFEN (R CLSD FCR TYPE CF RZSTRUCTURING

FOLLOWZD BY RcCORD ANAFEZ , DATA ITEM NAME _ LENGTH AND FCRMAT

AND ADJACENT DATA ITEM OF DRT& ITEM TO EBf ADDED
Data:CLSE CUST AGE 01 ,I1) CNuM

#x%CLOSEC RESTRUCTURINE NOW UNDER WAY*+#
RECORD TYPE CUST VERSION 1 FOUND

AT ADDRESS 1

*kk% FCLLCWING INFORFATION IS FROM RESTRUCTURING ROUTINE *xx

VERSIOr MUFEER GF RECCRD TYFE CUST AT APDRESS
IS BEING ALTSRED 70 ¢
CHARACTERS 1 TO 2 WERE
1
CHARACTERS 3 TC 6 wiRE FREVIOUSLY
JONE
CHARACTSRS 7 TO 1
S,AL
CHARACTE:
AN
CHARACTZAS 1 FC 2 HAVE ESel SET TO :-
1

-5

PR EVIOUSLY

o]

WERE FREVIOUSLY

11 T7 14 WER: ERVIQUSLY

b
-
"4

CHARACTERS 3 TC 3 AFT ZEING SET TO SPACES
CHARACTERS &4 TO 7 HAVE EEZEN SET TG @

JONE

CHARACTERS & TO 11 HAVE EZEM SZT TO -
S,AL

CHARACTERS 1¢ TG 15 HevE ESCEN SET TO :-
AN

%% RECORD KAS FEEN ReSTRULCTURED wxx

IF NO GTHER REGUEST IS GUTSTANKDING TYPRE RIPLY 21

Ry
W2

4w

—A3.16 —

bats:dc
*k*x THE CURRENT SCHEMA +42

RECORO TYFE CUST VERSION 2

DATA ITENM C(NUM START £T 1 =ML
DATA ITEV ACE START AT 2 zZND
DATA ITEF NAM1 START AT 4 EHU
DATA ITEV nANMZ START AT & END

DATA ITENM NaB3 START £7 12 END

SET NAME CUEC POINTER TYPE FRST
‘SET WAME CURC POINTER TYPE LAST

KEY DATA IT:SM CNup

RECORD TYPE CUST VERSION 1
DATA ITEF CNUK START AT
DATA ITEF MNAMT START AT END
DATA ITEN NopM2 START AT 7 END
DATA ITE¥ MNAM3 START FT 11 END

IND

d AN

SET NAME CUAC POINTER TYFE FRPST
SET NASE CUAC PGINTER TYPE LAST

KEY DATA ITix (MU

RECORD TYPE ACMT VERS

DATA ITEK ACHO START 1 cND
DATA ITEW® ESNO START AT I END
DATA ITEM CUNO START AT S =ND
DATA ITEr EALC START AT 7 END
DATA ITEF® RCTF START 2T 12 GEND
SET NAv
SET NAH
SET Naw
KcY DATA ITEM ACHC

nan an

RzZCORL TYPE BRCH VERSION 1

DATA ITE¥F ENUM START AT 1 END
DATA ITtP ENMT START AT 3 END
"DATA ITEN ENMZ START AT 7 END
DATA ITEM ENM3 START AT 11 END
DATA ITEE LOCN START AT 15 END,

KEY.DATA ITEN BNUM

SET NAME CUAC

CLAC POINTER TYFE REXT
CUAC POINTEZR TYPE FRIR
CUAC POINTER TYPE QWMR

AT
AT

1.3
~

AT

AT
AT
AT
8T

AT
AT
AT
AT
AT

AT
AT
AT
AT
AT

- e

- —

- —a

-t b -

SN (VAR B NI U35 V]

U=

e O N

FORNMAT
FORM &T
FORMAT
FORRAT
FORMAT

EORMAT
FORIAT
FORNMAT
FCRMAT

FORMAT
FORFKAT
FORMAT
FORFET
FORMAT

FCRMAT
FORMAT
FOGRmey
FORM AT
FORMAT

,12)
LI1)
LAL)
LAG)
L, A6

OWNER RECORD TYPE CUST FATCHING DATA ITEN CNUM
MEMBER RECCRD TYPE ACNT MATCHING DATA ITER

PCSITION OF NEW INSERTS - LAST

Cuno

TS

SN

2

c\

Dataced

*Fxk RUS CF EMeid CUSTOMER DETAILS PROGRAN *»xx
TYPE VLORSICh LUMEIR OF PRCERAM

bata:2

TYPE CUSTOPER NUMRER, &GMENDED MAME AHD AGE CGROUF
Data:01 JCANES,JARCK 2

%2 FOLLOWING INFORMATIOK IS FROM ‘'FINDI"*x#
DEMS IS SHRARCHING FCK
RECORD TYFE CUST VERSION ¢
WITH CRARACTERS 1 10 2 &QLAL TO

1
RECORD FCUND AT ADDRESS
*x % *FINDT® COMPLETED* %%

1 VZIRSION 2

*%** FOLLCWING INFORMATION IS FROM ‘*MODIFY'#xx
CHARACTERS & TO 7

OF RECORD TYPE CUST VERSICN
HAVE EESh ALTERED TC

JONE

*X*xkPHOLIFY !

"2 AT ADDRESS %

COMPLZTED®**

**x*FOLLGWING INFORRMATION IS FRO# 'MODIFY " «##
CHARACTERS & TC 11

OF RECORL TYP. CUST VIREICHN
HAVE SZEN a2LTZIRzZD TC

S,JA
xkx"[ACDIFY

2 KT ADDRESS 1

CUNPLETED*%%

**x*x FOLLOWING INFGRMETION IS FROM "MODIFY'=x#x
CHARACTERS 1z TG 15

OF RECORD TYPY CUST VERSICN
HAVE BEEN ALTERED TC

CK

*kxk*x "MODIFY’

2 AT ADDRESS 1

COMPLETED*#*x

*%*xFOLLOGWING JNFORMATICON IS FROM 'MODIFY®#x#
CHARACTERS 3 TC 3

OF RECORD TYPZ CUST VERSION
HAVE EZEN ALTERED TC

2

2 AT ADDRESS 1

 #*%"MODIFY® COMPLETED#%*%

CUSTOMER DETAILS AMENDED
k% END COF AMEND CUSTOMER DETAILS RUN #xx

>

w Data:lx

k%% RUYN CF TRE A00 N&w (U

STOM 2 POGERAM *x*
N TYPE VZESICHh NUFEIR QF FR Cf.A

bata:1l
TYPE CUSTONM:ZL NUFeclR INT RN
W Data:fZ bL&LK, ANNC

*xk FCLLCWING INFOBRATIOR 18 FROPM 'ITCRE #%%
\~ THE FOLLCWING Niw RECORT
IS ECING ADDED 7O T DRBTZ2 rAsE

\ RECC20 Tvsd cusT
VERSIZH 2
ALL POINTIRS 22310

W UNINITIALISZDL CHERACTEPS €82{3S
CHARACTZRS 10 2 S=7 T4 :-

-

‘ L. & CHARACTERS & 17 7 5-T TC .i-

ELAC

CHARACTERS 07T 11 5T TC -
[K, AN

CPA\HCT'"~ T TC 15 537%T 0 .-

NE&

0O

« RECORE KAS ZciN TTUfo® 2T ALDAESS
+ 'STORE' COMPLETE Lsr+

Mk CUSTOMER ADD:C

#h% CNG OCF NEW CUSTCORE RUN *#x

bData:zct
W RECORD TYP:Z CUST VERSION 1 FOUND
AT ADDTEZS 3

s *x%x FO LL’NI\G IYFORPATICE IS FROM RESTRUCTUPING ROUTINE 4>k
VERSION NUFEuR OF RECOPD TYPZ CUST AT ADDRESS 2
IS BEINCG ALTERED TO

W CHARACTERS 1 TC 2 VWZRe FRIVIOUSLY

2
CHARACTERS 3 TO & W F: +2sVIOUSLY
W SHIT
CHARPACTERS 7 TG 10 vix: F3EVIOUSLY
H,JA
W CHARACTERS 11 TC 14 &.7C “f:VIOUSLY
BiS -
N CHASACTERS 1 TG ¢ HAve zich SET TO :-
. oz
CHARALTEZRS 3 TC 3 &A% =:ING SiT TQ 5%ACE$
CHARACTERS L TO 7 HAVEI REIN SET TO :-
W SKHIT
: CHARACTERS & TO 11 MAvVE :f:H S3T TO :-
i H,JA
"=) CHARACTE®RS 12 TC 15 HAVEZ EEIN SET TO :-

_ : RES
- k% RITORD FAS TZAIN P oSTILCTURZID ** ¥
" IF NO OTHER RIGUEST I5 CUTSTANDING TYPE REPLY é

cata:c!
& RECOR® TYPE CUST VIRIION 2 FOUND

AT ADDTESS 9

THIS RECCOEC HAS ALRSAODY £It¢N RESTRUCTURED AfiC NEED NCT BE ALTERECD
(IF NC OTH:Zg RZQUEST IS GUTSTANDING TYPE REPLY 21

PO

e e IR TR RWA TR et T TR ML e It 8 e e -

—A3,19 —

Datis: 1 .
krxd CLOZT: ciSTRUCTURING [GMPLETE ax

Data:2s
*%k THE CUREENT SCHFMA %x#

RECORD TYPE CUST VERSION 2

DATA ITEk CATE START AT 1 ENG AT 2 FORMST ,I2)
DATA JTEV PEE STAERT #T 2 END AT 3 FORRAT ,I1)
DATA ITEN NAMY START £ET 4 END AT 7 FORMAT SAL)
DATA ITEF NABZ STERT AT & END AT 11 FCRMAT ,A4) '
DATA ITzk MAM3 START AT 12 END AT 15 FORNMAT , R4
SET NAmE CUAC POINRTER TYPE FRST

SET NAME CUAC PGINTER TYPE LAST

"KEY DATA ITEM CNUM A

RECORD TYPZ ACNT VERSION 1

DATA ITEF ACKO START 47 T END AT 2 FORKET ,1I2)
DATA ITE¥ ERNC START AT 2 END AT £ FORMAT LI2)
DATA ITEF CUNC START #7 S END AT & FORBAT ,L120)
DATA 1ITEN ERLC START AT 7 IZND AT 11 FORMET LI5)
DATA ITE® 2CTF START sT 12 EWD AT 1% FORNAT £2)

~

SET Wa“E CUAC PCINTER TYPE NEXT
SET NAME CLAC POINTER TYPE PRIR
SET MeME CUAC PCINTER TYPE CWNR
KEY DATA ITEM ACNO

RECCRD TYFE ERChH VERSION 1
DATA ITEZF ENUNM START AT
DATA ITEN ENK1 START AT
DATA ITEM ENMZ START 27
DATA ITEN EAM3 "START &T 1
DATA ITEM LCCN START £7 1
KEY DATA ITEM EBNUF

END AT 2 FORMAT ,I2)
END AT 6 FGRMAT ,A4)
END AT 10 FORMAT ,A4)
END AT 14 FORMAT ,Ad)
END AT 15 FORMAT , 1)

N =2 S A -

SET NAME CUAC
OWNER RECORD TYPE CLST MATCHING DATA ITEM ChUm
MEMBER RECCRD TYFE ACNT FATCHING DATA ITEM CUNO
ﬁPOSITION OF NEW INSERTS - LAST
5

\

Data:z0

(& *kx% THS CURRINT DATA FASE ixx

ADD RECORD VRSH CATS POINTERS
C ——— m - —— e eI P S,
1 cusy 2 1246028, JACK ¢ 60600C00CO0C
A &2 P ECNT 1 111 11 Ca 6 01000C0¢UC U0 g
i C T CLST < 2 SEITH,JARSS £ 506000050
L LINT 1 e 1 ¢ cc (A I G S L O A A
5 MR T 1 D7 oe 1A G4 2o ocCcur oy
L £ SONT 1 L LLCk 0z 1LLCOLCO O
s 4s 1 TEICICU T O T VI VIR
< - Lk 1 230 ALLTYwN B oo rog [A
¢ = s - R TR R T I A (Rl

— A3.20 —

Closed Restructuring to delete the Age Group from the

Customer Record

The opposite function to that described above can also
be carried out using a closed strategy. To delete a
data item the user enters a code of 22 on his terminal.
In this case only the name of the data item to be

deleted and the name of its record are requested.

Once again the first customer record is immediately -
found for customer 1 at address 1. This is then
restructured to version 3 by re-allocating the position

of subsequent data items.

Version 1 of the Amend Customer Details program can

once again be run and in this case there is no difficulty
in operating on the record whiéh has just been restruc-
tured. Similarly, version 1 of the Add New Customer
Program can be used to add a record for customer 4

(Carol White) at version 3.

The records for customers 2 and 3 are then restructured
and that for customer 4 bypassed since it is already at
version 3. Since the restructuring is then complete

the obsolete reference to the version 2 customer record

in the schema is then removed.

¢

‘DATA ITER NAMT START #7T

Datasz”

#**ST2R27 OF D*LETE LATA ITE¢ £E
TYPE OPEN C& CLSC FCR TYPF (F R
FOLLOWED BY FPSCCRE MNERS APD OAT
Data:sCLSP CLST &6%

2«%xCLCSED RESTRUCTURING HOW UNDER WAYR#x
RECCID TYPE CUST VERSIGh 2 FOUND

AT ADDRESY 1

STRUCTURING**%
ESTRUCTURING
£7ITEF TG EE DELETED

kk FOLLCWING INFORFMATICON IS FROM RESTRUCTURING ROUTINZ #xx
VERSION MAUMEERK QF RECORE TJYPE CUST AT ACDRESS 1

IS BEIMC ALTERED TG .)
CHARACTEES 1 TO0 2 W:ZRE PREVIOUSLY

e

1

CHARACTERS -4 TO 7 WERE FREVIOUSLY

JONE -

CHARACTERS & TO 11 WERE FRIVIOUSLY

s,JA

CHARACTERS 12 TO 15 WERE FRZVIOUSLY

cK

CHARACTEXS 1 TC 2 Wave Eis¥ SET TS -
1

CHARACTERS 3 TG 6 HAVE EZENM SET TO :-

JONE

CHARACTERS 7 T0 10 HAVE EZEd S£T TO -

S,JA

CHARACTERS 11 T0O 14 HAVE EEEN SET TO :-

CK

*kx DECCRD HAS ERGR RES

R RLCTURED #x%«*
IF NO OTHEF REQUEST IS

JUTSTANDINCG TYPE REPLY 21

[]

Data:29
k% THEY CUFRENT SCHENA *x%

RECORP TYPE CUST VERSION 3 T]
DATA -ITEP CNUM -START "AT END AT -2 -FORMAT ,I123.- - |,
END AT & FORMAT , R4’)
DATA ITER haMZ2 START AT END AT 10 FORMAT ,A4)

DATA ITEF RAM3 START A7 11 END AT 14 FORMAT LA4)

SET NAME CULAC PCINTER TYPFE FRST '

SET N&FE CUMC POIKRTER TYPE LAST

KEY DATA ITEM CNUM

~ A s

F3
SrTrTER TYPL LS

RECORD TYFE CUST VERSIONK 2
DATA IT:=M INUM STAR AT 1 IMD AT 2 FORMAT ,12)
DATA 1ITzM FGE START £1 > END AT 3 FORMRAT LI1)
DATA ITEX MAF1 START AT 4 FHD AT 7 FORMAT LA4L)
DATA ITEM N&FZ START 2T & END AT 11 FORMAT ,LAL)
DATA ITEM N:Ms ST2RT AT 12 INUD AT 135 FORMPAT ,AL)

NiDE CUAC PCIKTER TYFRE

”

B
st e R AN DN .
BRI 5 . e

«

v rman PR AE TN ¢ e s vyt -

"DATA ITEV ENU¥ START AT

RECCES Tyer SRSICH 1
DETA IT&¥ 2T AT 1

DATE [1ga AT AT

DeTA I7EFW T AT 3

DATA Ivew ART BT 7

DaTA IT:z# AT ET ¢

SET ANE CuAL PUINT-’ TYFE

SET HATE CUAC POINTER TYP:

SET MArE CUAC PLINTER TYPE

KEY DATA ITEM ACHO

RECORD TYFS GRCH VERSION. 1

DATA ITEN ENM1 STAKT AT
DATA ITEF ENMZ STHRT 27T
DFTA ITEV ENMNZ START AT 1
BATA ITEF LCCN START AT 1
KEY DATA T17TzZF ERUM

W= s -

SET NAME CUAC

OWNER RECORD TYPE CUST NATCRYNG

—A3.22 -

SND AT 2 FOPMAT L 17)
SHPOAT & FORMET L17)
SNGOAT A FYETAT L 1I2)
ENE AT 11 FoRway L I5)
HDOAT 12 FoamiY L az)
MEXT

FRIR

CHHR

END AT 2 FOR#AT ,12)
END AT 6 FGR™AT L84)
END AT 10 FORMAT ,AL)
ENC AT 14 FORRAT ,Lp4)
END AT 15 FORMAT A1)

DATA ITE¥ CNUM

MEMBER RECCRD TYPE ACAT MATCHING DATA ITEM CUND

PQSITION OF NZW INSERTS - L

Data:09

AST

¥k k RUN COF 2MEND CUSTOM:ZR DZT
TYP‘ VERSICN NUMBER OF PR GS5RAM

‘Data:z1

AILS PROGRAN #+%

TYPE CUSTO# ROHUMESE ANT PMMENDED NAME

Data:{: JOMES , ALAN

*xX*FOLLCWING INFORMATION IS FROM 'FINDY'+wa

DEMS IS SIERCHING FOR
RECORD TYPE CUST VERSION 3

WITH CHARACTERS 1 10 2 E@ULAL TO

1

RzCORD FCUNE AT ADDRESS 1 VERSION 3

xx 'FINDT® COMPLETE D#%

FOLLOWING INFORMATION IS FROM 'MODIFY'

CHARACTERS 3 TG 6

OF RECORD TYPE CUST VERSION
HAVE:BEEN ALTERED TO * ° .
JONE

*x*MOBIFY ' CONPLETED##%

3

\

AT ADDRESS 1

o er s

*** FOLLCWING INFCRMATION IS FROM "MODIFY®wax

CHARACYEERS 7 TC 10

OF RECGRP TYPE CUST VERSICN
HAVE REE® ZLTEZRED TC

S,AL

xkx '"HODIFY® COFPLETED%#%

***FOLLOWING INFGRMATION TS
CHARACTZRS 11 T2 14

OF PJ4C2L TYPY CULST V:ifSICN
HAVE ~" 206 LLTZ5:30 TC

AN

EEA SO LTFYY (U SUITE DA
CLITO "7 D . 7.7LS /My D

3

AT ADDRESS 1

FROM '"MCDIFY " wxw*

3

AT ACORTSS 1

XFE TN OF L5 R QUSTLRFFE BTTAILS pur s

— A3.23 —

Xk Kk 71) CF THz 2t CUSTCMER PROGIAM xxx
TYPE V. PSICK tUMgg
Data:1

TYPE CUSTCFER NUMBER ANL NAME
Bata:(s WHITZ,CARCGL

¥**FOLLCWING INFORMATION IS FROGHM *
THE FOLLCWING MEW RECORCE
18 BEI”GQﬁDGEU TO THE DATSA EASE

STCRE" *&%

RECORD TYPE cuST
VERSION 3
ALL POINTEES ZERO

UNINITIALISEDL CHARACTERS SEACES

PData:e?

AT ADDRESS

IF NO OThe

2

¢

IS BEING ALTFRED

RECORD TYEE CUST VERSION

**% FOLLCWING INFORMATICN I3
VERSION NUF=ER

CHARACTERS 1 TC 2 SET 7O 1:=
4

CHARACTERS % TG 6 SET TC ==

WHIT

CHARACTERS 7 TC 10 SET TC ::-

£,CA

CHARACTERS 11 TC 14 38T TC == '

ROL

RECCRE HLS iy STOR&s o7 ABDRESS 1C

(RAKISTGREY COMPLETE p#sx

NEW CUSTCMER ADNFD

Xxk EnD CF NEW CUSTCFZIR RUN Axx

2 FOUND

FROM RESTRUCTURING ROUTINE

* % &

F RECCRD TYFE CUST AT ADDRESS 2

70

2

I

CUTSTANDING

CHARACTERS 1 TC 2 WERE FREVIOUSLY
2
CHARACTERS & TO 7 WERE PREVIOUSLY
SHIT . ,) , : 3
* CHARACTERS 870 11 WERE FREVIOUSLY N
H,JA '
CHARACTERS 12 TO 15 WERE PREVIOUSLY
MES
CHARACTERS 1 TC 2 HAVE EZEN SET TO :-
2
CHARACTERS X TO 6 HAVE EZEN SET TO :-
SFIT
CHARACTEFS 7 TG 10 HAVE EZEN SET TO :-
H,Ja
CHARACTERS 11 70O 14 HAVE EESN SET TO :-
MES
*%% ICO0RD Ke: RESTRULCTURED #+x

TYFZI 2ZPLY 21

rmrm e~ mgeemeeraza

—A3,24 —

Deta:21
RZCORKL TYPEZ CusST VERSION ¢ FOUND
AT ADDRESS ¢
- .
**% FOLLCWING IMFORFMATICN IS FRONM RESTRUCTURING ROUTINE *x=
VERSION NUNEER OF RECORE .TYPE CUST AT ADDRESS ¢
IS BEING ALTERED T0 2
CHARACTERS 170 2 Wwepe FREVIOUSLY

3
CHARACTERS 4 TG 7 WERE FRIVIOUSLY
BLAC ,
CHARACTERS & TC 11 wiR:Z FREVIGUSLY-
K, AN
CHARACTERS 12 TO 15 &Rt SREVIOUSLY
NE
CHARACTEKS 1 TC 2 HAVE EEEN SET T :-
3
CHARACT:=ZRS I TC O Vi EIiN OSET TG Hid
BLAC
CHARACTERS 7 TC 10 HAVE EEEN SZT T :-
K, AN
CHARACTERS 11 TO 14 HAVE EZin SET To :-
NE .
***x RECOFD HAS HEEN Q:STRLCTUE;D % & %
IF NO OTHER RECUEST IS CUTSTANDING TYPZ REPLY 21

bata:21.

RECORD TYPE CUST VERSION 3 FOUND

AT ADDRESS 10

THIS RECCREC HAS ALREACY EEEN RESTRUCTURED AND NEED NOT BE ALTERED
IF NO OTHER REQUEST IS5 CUTSTANDING TYPZ REPLY 21

Data:21
i CLOSED

1WAT

RESTRUCTLRING C(OMPLETE *x+

kxx TH

CURReNT

SCH LA mwk

RECCRD TYFE CUST VERSION 3

DATA ITEP CNUKF START &7 1 Zup
DATA JITSM N&MT START AT 2 END
DATA ITeF KAMZ START AT 7 ENO
DATA ITEN NAM3 START AT 11 END
SET NA®E CLAC PCINTSR TYPE FRST
SET NAE CUAC POINTER TYPc LAST
KEY DATA ITEE CNUM

RECORD TYPE ACHT VERSION 1
DATA ITEM ACNO START 2T 1 ENO
DATA ITENM ERNC START AT X END
DATA ITE¥ CUNO START AT S EIND
DATA ITENM EALC START AT 7 END
DATA ITel ACTP START AT 12 &END-:AT
SET NAME CULC POINTER TYFE KEXT
SET HAME CUAC PCINTER TYPE PRIR
SET N&MEZ CLAC POINTER TYPI OWNR
KEY OATA ITEM ACKNO

RECORD TYPE BRCH VERSION 1
DATA ITEWN ©hUM START AT 1 END
DATZ ITEIM ENMT START AT 2 END
DATA ITel ENMZ START AT 7 END
DATA ITENM ENMI START AT 11 END
DATA ITEM LCCh START #T 135 zxNO

KEY DATA ITEM BNUM

SET NAME CUAC

GWNER R

€CORD TYFE

CuUsT

- b
s~ o

N = O NN

NS
wmsaOoN

FORMSLT
FORMAT
FORIAT
FORBAT

FORMAT
FORMAT
FORKAT
FORMAT

FORMAT

FORMAT
FORMAT
FORMET
FORMAT
FGRY AT

YN NN

> > >

,12)
, 86D
LAG)
LAL)

o b

-_ NN
~ W N W

VATCHEING DATA ITEH CNUM

MEMBZR RECCKRD TYPE ACNT MATCHING DATE ITEM CUNO

POSITION

bata:320

GF NEtW

INSERTS - LAST

'*t*.THg<CUFRENT DATA EASE ##x

ADD RECORD VRSN DATA

TN O SNEON W S NN -
-
¢

-

b
o
z
-

£ Ul d b D md o = ()

1JONES ALAN

111 1ca
ZSMITH,J AMES
212 zzew
322 3ita
411 44Ch
1B 16 TGMN u

ZSMALLTOWN R
TRLACK ,ANNE
LWETTE,C 2900

acoOocCcooowesoenN
[I o T oo B it B AT o N o T W T s B 0L Y
OO QR (NN =0
mCoDoCOOOO
POCOOLOBOO
k==X =N=]
cocCococOoOnOO
coooooococoo
DoooCcCcococoo
Moo o000

Closed Restructuring to expand the format of the Balance

Data Item

To amend the format of a data item the user must enter
a code of 23 on his terminal. The DBMS responds by
requesting the new FORTRAN format of the data item.

In this case Balance changes from I5 to I6.

The run of the Transaction Posting program prior to the
restructuring shows £10 being posted to account 02.

Once the restructuring is initiated the first account
record on the data base for account 1 at address 2 is
restructured to version 2 by accommodating an additional
character for the Balance data item. The schema is
altered to hold details of both version 1 and version 2

Account records. Account 2 is then similarly restructured.

The Transaction Posting program at version 2 is then run
to post a further £10 to account 2. The difference in
version is necessary to allow a balance of up to six
digits to be printed. The same version of the Transaction
Posting program is then used to post £10 to account 3.
Since this has not yet been restructured this is done

prior to the record being modified.

The restructuring mechanism is then allowed to continue
and on encountering the record for account 3 it detects
that there is no requirement for restructuring. . When
account 4 is restructured the operation is complete and
the entry for version 1 of the account record on the

schema can be removed.

Dataci-l.

*rxkRUA CF TwAr SACTICKR PosTING FROIGHR A x k%
TYPZ ViRIICN NUME.8 OF PROGRAM

Data:2 . .

TYPE ACCCURT NUNMPRZR AMD VALLE TC EE POST:S
Data:C2 (01C

‘kx*FGLLCWING INFORMATION IS FROM CFINDYI" %%
DEMS 7S SZARCHIMG FOR
RECORD TYFE ACAT VERSION 1
WITH CHARACTERS 1 10 2 fwLAL TO
?
RECORD FCUKND 4T ADDRESS 4 VZRSIONA 1
Ax% "FINCT" COMPLITE Cana
*** FOLLOWIKG INFORMATION IS FROM 'GET"#xs
CHARACTERS 7 T¢ 11
OF RECCRD TYPE ACNT VERSION 1-:AT ADDRESS 4 ARE:-
22
2 PGETY (ONFLITEDex+

*XXFOLLOWING INFORMATION IS FRQM YMODIFY'*ax
CHARACTERS 7 T0Q 11

OF RICORD TYFZ ACNT VERSION 1 AT ADORZISS ¢
A M T2RrD TC

AAXPHODIFY Y COMPLITED#2+ .

TRANSACTION OF § 16 PCSTED - NEW BALANCE § 2
**xEND CF TRANSACTICN PCSTIAG RUM*f!

Data:30

k%% THEZ CURREINT DATA EASE =4x

ADD RZCORD VRSN DATR POINTERS

1 cusT 1 TICNES ,ALAN 26 00000000
2 ACNT 1 111 11CA 6 01T000000GCO
3 CUsT 1 2SFITH,J2MES 450000-0000
3 ACNT 1 2 1 2 22¢A 503000000 CQC
5 ACNT 1 322 3¢a 0430000000
6 ACNTY 1 4.1 1 44 CA 02100000060
7 ERCH 1 181G TOKN U CcoO0O0CODODODGO
8 EXRCH 1 2SPALLTOWN R 00000000 OOUOQ

Data:cl

***STLRT CF ANZLS DAFO TTGM FORMAT RISTRUCTURING #%4

TYPE “SEAN 79 CLID FCT TY 5 €8 RISTALETURI» ¢

FOLLOW-"L =¥ 2. (00 Ngx | peTw JTow NAME, LENGTH AND N:W FORFAT

bate:CLST a

[N CLy LiLC 4 L)
*hkxk (L ONEp cSTRULCTURT 0 [0V UNDTS WeoYwaw
¢ .

<
RoCros TvooL (% wLr e 1 & -

—_

YO N r™ ™

%% FOLLCH
VERST &

X

CHARACTESRS
CA.
CHARACTERS

1
CHARACTEFS
-1

CHARACTERT

11
CHARACTERS
CA
*x*x RECCRO
IF NO OTEER

Ik,

L

13

HAS
8 P

Data:c®

kk ok THY

DATA
DATA
DATA
DATA

ITEWM
ITER
ITE®
ITEY

‘DATA ITEV
‘DATA ITEP
.DATA ITEW
DATA ITEW
‘DATA ITER
SET
SET
SET

KEY DATA I

[ExEal

CURRERT SCHEKZ

CNUR
NEMT
NAMZ
NANM3

ACNO
ERNO
CUNnNG
EALC
ACTP

NAME CUAC PCINTER
NAME CL&C POINTER
NAME CUAC PCIKTER

TEw

™

C

-
<

el
. (&

ST (B o W B I/ o)
n e

Ty W U Y

oo
T
A - T

~—

T

V-
A e
- o™

QT U

11

13

wWiRE

x
b
<
r

HAVE

TG €& HAVE

TO 12 HAHVE

TC 14 HFEVE

PN

RECGRD YYPE CUST VERSION

AT
AT
ET

START
START
START
START

RECORD.TYPE ACNT VERSION

START AT
START A7
START AT
START AT

START AT 13
TYPE
TYP
TYF

ACRC

NT VEGRSICAH
START 7

;
A

T

A T

R

1
>
-

[}

-

. r
)

-
PR
e —

c v
G
-t bt bl)
R
Ly -

-

102
)
R4

el

p)

Eay
"
g
£l
n

AT 11
SET NAME CLAC POINTER TYPE
SET NARE CUAC POINTER TYPE
KEY DATA ITEM CNUF

T QO U -

Iz
1Y
PEZvVIOUSLY
FREVIQUSLY
FRIVIQUSLY
PRIVIOUSLY
PREVIOUSLY
EEEN
EEEN TC

EEEN

11

£

n
I

EN 5T 1O

EeeN §

TTO

NTSTRLCTUREZD w¥ %
GUEST 1§ CUTSTANDING

* %k

1

1 END
I END
7 END
END
FRST
LAST

AT
3

AT 1
AT 1

~ o™

2
-END
END
END
END
END
NEXT
£ PRIR
&t CWNR

~UA (A -
b
-
OV N

e N R e
AR TNEAT I
e 2

P
L T -
- = =

~ N

TYPZ

SET T 1:-

FORMAT
FORMAT
FORMAT
FORMAT

FORKAT
FORMAT
FORMAT
FORMATY
FORMAT

FORM AT
FOR T
FORP AT
Foe
FCFM 2T

RePLY 21

bot bt g B
AL A NN
o N s

'

NN N NN

- VEFSIU —A3,29 —
DAT A STARY LT 1 ~T 2 FORWET ,72)
DAT 2 “TART ° T N ﬂ £ FURV AT L AL)
DaT2 $Ten ¥ =T 7oemt AT WL FORY 2T LL4)
DATA STERT €7 11 T0b AT 14 FORMAT LA44)
DrETA STARTY =T 33 2D AT 13 FOREAT L, 81)
K=y ShuR

SET Nare CUAC

OWNER RECCRD TYPE CUST FATCFING DATA ITt# CNUK
MEMEZR RECCHE TYPE £CWT MATCHING DATA ITEM CUNT
POSITION OF MEw INSERT> - LAST

~

Data:1
RECORD TYPE ACKT VERSION 1 FOUND
AT ADDRESS 4 :

*4% FOLLCWING IMFORNATICN IS FROM RESTRUCTURING ROUTINE #*x
VERSION NUFMEZR OF RECORD .IYPE ACNT 4T ADDRESS ¢

IS BEING ALTZRED TO 2

CHARACTERS 1 TO0 ¢ WERE PREVIOUSLY

ciAaacrsas 3 TC 4 WERE FREVIOUSLY
C;AQACTEFF = T8 A WEeRs FREVIOUSLY
CﬁARACTERS 7 TC 11 WERZ FREVIOUSLY
CHAiECTERS 1z TO 13 WFRE PREVIOUSLY
g:ARACTEES 1 TG 2 HAVE EEEN SET TO :-
CﬁARACTERS T 7O & PAVE EEEN SET TO :-
C;ARACTERS 5 TO 6 HEVE EEEN SET TO :-
CiARACTERS 7 T2 12 MAEVE EEENSZIT TGO :-
CHARiETEFS 13 TO 14 HAVE EEEN S=T TC :-
CA .

%% RECGRD HAS FEEN RESTRLCTURED *=xx
IF NO OTHER REGQUEST IS - OUTSTANDING TYPE REPLY 21

WETLED S T ekl s i e B AT e T T L et

L e =

*x**RUN OF TRANSACTION POSTING PROGRAMKx*
TYPE VERSICN NUFEBEER OF PR CGRAM

Pata:?

TYPE ACCCUANT NUMEZR AND WVELLE TO £ POSTED
bata:(¢ CL1C

¥ FOLLLWING [WFORMETION IS5 FROM 'pIAD1 "%«
DENMS TE SIATLRINE FOX

RECOCL TYPHL LT VERSIGE 2

WITE CHAPACTSRS 1 10 & t3LAL TO
ba

RECORT FLUMD T +0D2273 & WIFSTON

xE CFTOCYY C{FLTTInere

N3

A wFOLLOWING INFORMPTION IS FROK. 'GETIxxx * A3 o | i
CHARACTERS 7 TC 12 3,30 — . m R
OF RECORD TYPE ACNT VERSION 2 AT ADDRESS & ARE:-

32
t*'G‘T' CGFFLETED***
***FOLLCHI&C INFG?HPTION IS FROM ‘'MCDRIFY'x**

CHARACTERS - 7.70 . 12
OF RECURD TYPE ACNT VERSICN 2 AT ADDRESS 4
E |

N2 PLTERED T0

‘nouxrv' COHFL:T:D B s S
JRANSACTION OF 2 . 10 POSTED - NEW . BELANCE 42
" ZTRANSACTICN POSTING' RUN % #% -

Apsncrzou Posrxne PROGRAN***:""‘
"NUMBER: OF-PROGRAH P

"oa:a 03’ co1h“

*t*FOLLOHIkG INFOPMATIOK Is FROM “F;N01'**r
DBMS. IS SEARCHING FOR . :

RECORD TYFEIACNT VERSION. 2

WITH CHARACTERS .1 TO 2 EQUAL TO

e 3
," NONE HAS BEEN "FCUND SC DEFS IS NOW SEARCHING FOR

“RECORD TYPE ACNT VERSION 1
€. WITH CHARACTERS 1.70 _2 EQUAL TO
: 3

RECORD FCUND AT ADDRESS 5.VERSIOM 1
RiEe FIND1' COMPL:T‘C***) _

ww#FOLLONING INFORMATION 1S FROW GETTaRR

- CHARACTERS . 7.T0 11 e
%G RECORD- TYPE ACNT' veas:on 1 AT ADDRESS |5 AREI~. . .
'COPPLETED*** , L -

R0 M 'MODIFY'*** LT e

»

IGN IS FROM RESTRUCTURING ROUTINE";fi
7TYPE ACNT‘AT ADDRESS e T E

”gsxn
S=BE ING; A LTERED O
2

ATTE

REVIOUSLf,

@, CHARACTERS ‘3,104_4'ﬁéREiFREVIOUSLY7.* SRR s
BT T e T e) - S _
CHARACTERS 5 TO 6 WERE FREVIOUSLY : '

2 S
CHARACTERS 7 TO 11 WERE FREVIOUSLY
33

& CHARACTERS 12 TO 13 WERE PREVIOUSLY

DA
- =" CAARACTERS 1 TC 2 HAVE EEEN SET TO -

3
CHARACTERS 3 TO 4L WsVE EESN SET TO =~

2
€. CHARACTERS c TC & HAVE EEEN SET 70 :-
2

N SET TU -

m
Ny

CHARACTERS 7 TC 12 HAVE F

S St S C 33
¢ fecroTT AT OO0 1 Ho.yr L TER 5T 1

fa
i

. '-'/‘4, b

R Fid
"CHARACTERS 770 1
~"0F RECORD TYPE- ACNT.
§ @ _MAVE .BEEK ALTERED'TC
R A A S R

k% 'MOD LFY
STRANSACTION

QRO TTYPETACNT VERSION °
AT IADDRESS 75 -7 ' L . LR
: THIS:RECGCRD HAS ACREADY. BEEN RESTRUCTURED AND NEED "NOT

. IF: NO .OTHER REQUEST IS OUTSTANDING-TYPE REPLY 217 = '

¢ *Data:21 ’ . .
_ RECORD- TYPE ACNT VERSION 1 FOUND. ' o o
AT ADDRESS 6 : . T
wx% FOLLOWING INFORMATION I§ FROM RESTRUCTURING ROUTINE #%%
. VERSION NUMBER OF RECORD ;TY'FE ACNT AT ADORESS € R
IS BEING ALTERED'TO 2 ' S B
CHARACTERS 1° 70 2 WERE FREVIOUSLY o
SCHARACTERS ~3.70. 4:WERE_PREVIOUSLY .
- CHARACTERS. .5 T0_ 6 WERE PREVIOUSLY
LAY T A T e
", CHARACTERS 7 TO:11:WERE FREVIOUSLY . "~
Y
ERS 12-T0:13 -

WERE “FREVIOUSLY - % |
(EREFREVIOUSLY™... = o

%*'ggficuggthéééa 5]70 iéfnhﬁfﬂeseu“geT'%Gf
.4C;AQACTERS 7 TO 12 HAVE BEEN SET TO :;f..,3g I
_cuAazéTensrts T6‘1§jHA§E sés&‘sgr TO - ﬂ Co SR
“es RECORD WAS BEEN RESTRUCTURED ### o ; ~n L
IF NO OTHER REQUEST IS OUTSTANDING TYPE REPLY 21

pata:2l
x*%x CLOSED RESTRUCTULRING (OMPLET

E *%%
SEl N Ol K T

TR R T
RS

TR
LE A

R TR N

o

Dats:

*k Kk T

RECOR
DATA
DATA
DATS
DATA
SET ®
SET HA
KEY p:

[

Yoo CURnZ0T SCH

LTy
1Tek
ITEw

Iige

Pz CcU
(N
YT
YYD,

CUAC
Cux(C
IT:p

RECORD TYFE AC

DATA
DAT A
BATS
DATA
DATA
SET N

ITEN
ITEW
ITENW
iter
ITEN
AME

ECNG
ERNG
cuNo
EALC
ACTP
ceac

SET NA&ME Cuaic
SET NAME CUAC
KEY DATA I7zw

RECORL TYP: &&

DATA
DATA
DATA
DATA
DATA

ITgk
iTEW
ITEM
ITEY

vy o

ITEPV

ENGFE
ENMT
FAMZ
ENM3
LCCN

—A3,32 —

I3

* ki

ST VERSTON
STHET &7
STAR T 2T
STARTY 27
START 77 1

FCINTEZ. TvYP

PCINTEZR TYp

CNLUM

-

END
END
chD
N D
FPST
LAST

Mo = 0

NT VERSIOWN 2

START AT 1 iND aT
STERT FT % END &T
START 2T £ .Np 27
START AT 7 tnp AT
STERT AT 13 &no~ aT
ECINTER TYP? AZXT
FOINTESE TYP: FRIR

PCINTER TYP: OWNR

ACHY

CH VERSION 1 .
START ¢T 1 :EnNp AT
STERT AT 2 :znop AT
START AT 7 :tiidp AT
START £T 11 :NOD AT
START AT 15 END AT

KEY PATA ITEM BHUA

SET N

OWNER RECCRD TYFE CUST ¥aA

MEMEE R

bata:

BN 2

cuac

RECCRD TYPE ACNT MATCHING
PCSITION C¥F- N

30

W INSERTS - LAST

k%% THE CURRENT DATZ EASE ##x

ADD RECORD VRSN pATS

N VI NN -

Cusv
ACNT
CusT
I'\.NT
ACAT

ACNT
B3 CH
taCH

=W NN A SR e

TJCNES, ALAN

T 101 T1CA
SSMITH , JaMES

¢ 1 LeCA
e ¢ 43IDA
L 11 L4C A
15 TCTGU\ U
2SEALLTOMN R

-
Yo n

L N

(2

1z

o N

1C
14
i5

FOR® a7
FCR¥AT
CRFLT
FORMAT

FOR®AT
FCREAT
FORMAT
FORKAT
FORNAT

FGFN¥ AT
FORMAT
FOENMET
FORMEAET
FORY AT

Li2)
L)
JAG)
LAl

LIz)
,12)
L12)
L18)
LA2)

L1¢)
LAL)
LAL)
,86)
LA1)

TCHEING DATA ITEM CNUMm

DATA ITEM CUNO

[I = < I W BN G NFS)

-

AR S I VI NN

G
1
0
%
3
1
CI
¢

CoocoCOooO

CCcoDdDooco

—A3.33—

A second run of the same restructuring is also shown.
In this case a run of the original version of the
Calculate Balance Program takes place after the record
for account 1 has been restructured. The DBMS responds
to the GET command from the program for the Balance
from both a version 1 and version 2 account record

but it u;es the schema definition of each to supply

the correct data. Even though the program accesses

the version 1 record for account 4 the DBMS does not

restructure it since it has not been modified.

-~

N\

”~

Dotacr

LR 2N i

FUETLUCTLRT L %=

€t e
H

T
- e - R

IfP‘ .! - PR STUUNTIT ING

FULLL e by e bt W, (TR sk s, Liufio. aig

Date:r L, LT ALl v L)

Exk LT T ST L ITUAING KDL I BT W Yk

ReC€Clay Tx ALNT JETP510. 1 Foung

AT a0 z+, ¢

Ikok SO { 0w ING AP AEN TN T T care P IT ULTUYT SUTT
VERSI . LUFSIF 18 Ro{PL IYE: ACLT 47 OCFTES ¢
COALTLesL 00 .
L | ¢ M- TTevIGUILY
SES DTS 4y Ty FTOVIOUSLY

Chpgr-"7T 2 o Tomo e fe sy TIOUSLY

L A7 T L TR I T A TS TLILY
1
Cure-, 1001 1A EE Rt R 1
C
C=r T 17 PR Y] - L

Crpo2r, . - & kv T S .-

Y

* L% B T A TIUOTL 3 xx s

c . R -

It ! TE " - [A ot e TYRD =LY L1
data:

FERAFUT LF SELANCL CALILLOTION PADG Lhwsx

TYFZ ¥V 271 dn g »-0F P LLrtRh

Datinsl

rEKRFOLU] LT A A A L R 'FIE 0T crw
D ‘ < T Fu

RzC€7 = T LeST we T 1

RNITH A ! [; i-t T

1

gCL- ¢ ' N - [IR 1

xaw T 1° . e .~

Xk xE . 1 H oo ' TV e e
Chrt T
F N 1 T . i e

~

[

*rrFOlL Gy int AR KOIRoERO S laws
CHARACTELRS I S Y

SF CSLCEL TYRE CUST ViRTIfn 1 AT AIDSID
5, AL
FEOCITT CLNPLIT . Cako

i

*F*FOLL CRWING INFOURMATION I
CHARACTER: 11 TCO 14

OF R.ICORD TyPe CUST vZITSION 1 AT Aub%ESS 1

AN

*x*GET® (OFPLeTSD*xx
*** FOLLCWING InFOSH
VAlUL IN SQINRT-F
OF RZCIRD TYFE ¢
is 2

VERSIuv® CF RECORC T Y
*kx*FINLZ® CCMPLETECLD*

UST wzI®SICN 1 BT LDOURE

o

FROW CEETT Rnx

[Xe]

*k*FOLLCGWING INFORMATION IS FROY 'GIT'x+*»s

CHARACTSRS 7 TC 12

OF RECCRD TYPZ ACNT VIRSIOL 2 AT £BDRZISS 2 &;

11
*%k *GET' COMPL: Tilrax

s

ETIOr IS F&OF 'FIMDZ'#ww

ACMT AT THIS ADRBEESS 15

kx*x FOLL CWING THFORKNMETICNL 75 FROF 'FIMDZ'®*%

VALUEZ In P20 Y

OF R=CTERD TYR: f4MT VP CION 2 AT ADDR

k FOLILCUING INFORMZTICH T35 FROM *GET"x+x

CHARACZTEFZ 7 TC 11

CF KRICLCRD TYRPEZ ACKT VIesION 1 4T ADDRE

4L

xx PGETY COMPLeTERE* ¥

x%xFCLLCOWINE
VALUE IM P
CF RZC7R
Is C

%x %k 'FIN0c COVPLETE Dxww

BALANCT FOR CUSTO¥SF 1 JONES,ALAN Is
*x*ERND CF BEALAKNCE CALCULATICH RUN=x=x

kkk FuLLOWIhe IMFCRPMETIL, IS FROF RTETE
VERSIOM dUFZT~ UF SR IYeT ACKHT LT A

o
R
IS Ecit ¢ LLTsFel TO
3

CHARACTE=3S 1 Tr Wore CETVTICUSLY
4

CHEAPMTT 13 ST [LToNT ALY
1

CHAIAC. =1 7 T R TP Ul LY U 4
Z

CHARAZ -7+ % T 11 + oIy

cA_,.‘,V_ 1 €|.-’

&1
ACAT ViRsI(L, 1 AT ALCDRESS

o

AURNT AT THIS #DDRESS IS

NFORMATION IS5 FROV 'FINDZ'*¥x%
’: £

o

an
wn

1y
.
[}

ne

CHAR

r4
CHARLCTE®S 2 T0 & day,
1
CHARACT SRS 5 TC & KEve
é
CHARACTEES 7 TC 12 Havel
22
CHARACTERS 13 TG 14 HKHEVE
Ch
Akk PECCED HAS EHEZN REIST
IF NC UTHEFR RewlUctT IS O
~
Data:21

RECORD TYPE ACNT VERSION
AT ADDRESS 5

*kk FILLCWING IMFCRFMATIC
VERSION NUFPRFR OF RICORE

IS &R ING ALTERED TO 2
CHAFACTERS 1 T¢C Z WERE
2

CHARECTZ8S 2 TC & wint
2

CHARACTEFS ST [N
l

CHARALTERS 7 TC 11 W:RE

23

CHARACTER®S 1z TO 13 wWeEd:

DA

CHARACT ERS 1 7¢C 2 RAVE
kS

CHARACTEFRS 3 70 4 HAVE
ra

CHARACLTERS 5 T¢C & HAVE
2

CHARACTEERS T TC 12 HAVE

33

CHARACTEES 13 TC 14 HAVE

DA

*%% RZCORD HAS'FEEN REST

IF NO OTHEF REQUEST

bate:21

RECOGRD TYPS AKCNT VERSION

AT ADEL-ESS 5

xxx FOLLCWING INFCRFATIC

VERSION NUMLEPR OF RICORS

i3 F2I8G ALTEXZD 70 e

CFASACTERS 1 7¢ ¢ Wrdc
4

CHAP AT [S T L W, 7F
1

CHAS TTFFS ¢ To & =.%:
1

Y NETGE IR S & I

IS OUTSTANDINE TYPE REPLY 297 ~ 7

ce:N ST 1O -
e SeT TO -
c2EIN SET TG i:-
EzElh SET TC :-
RLCTURED #%x

UTSTANDING TYP:Z

PEPLY 21

1 FOUND

w+IS FRUM RESTRUCTURING ROUTINE #%%
TYP: ACNT AT 4DDRESS 5
FREVIOUSLY

FEIVIOQUSLY

FReVIOUSLY

FREVIOJUSLY

PREVIOUSLY

FEEN SET TO -

cceN SET TC -

tEaN SET 7O :-

EcEN SET TC :-

EEEN SET TO :-
RLCTURED xx#

1 FOUND
IS FREM BEXTRUCTURIMAG gCUTinn x+x*
JYPI ACNT LT ADDRESS 13

SRAVIOUSLY

TETVISUSLY

Fe v ICUSLY

SVIiabaly

;,....

P
P

TCHARACTERS”

4
CHARACTEZRS
1
CHARACTERS
1
CHARACTEKLS
44

" CA

IF NO OTHE®

Data:Z1
x CLOSID

Data: sl

&k THE

5 T0

7 T¢C

CHARACTERS 13 TC 14

**x Rc{UCRD HAS E

RzQU

F:STRUCTLRING

CURRENT

ADD RECCARD VKSH

._.:._2-. HE,:J.F -

ZEN
ST

4 MpyE
6 HAVE
12 HAVE EEEN

HAVE

ATA EASE #%x

DAT#

sl
e

1 TIONES , ALAN

3 111 T1CA
1 2SFITH ,JHCS

é 2 1 2 2¢CA
¢ 3 ¢ ¢ 32pa4
s 4 11 G4CA
1 1BIGTOWN . u

- 1. - Z2SKMALLTOWN R -

RESTRLCTURED;***
IS CUTSTANDING TYPE REPLY 21

(GMPLETE **x

Qoo aowveoN

oprr~cuvoo

SR WO =

[

oo LOoOO

1.

ccoocoooo

oOCooooco

QoQoooOo

[=N =N Kool oloNo]

TA
G 0
o a
U G
G [t
G 0
G 0
¢ ¢
0o

—A3,38 ~

Closed Restructuring to contract the format of the

Balance Data Item

The Balance is now shown as being contracted from format

I5 to I4.

Before the restructuring commences £9999 is posted to
account 01 to bring its balance to £10010. When the
restructuring attempts to restructure this record it
finds that the value will not fit into the 4 available
characters and the normal FORTRAN overflow convention
of substituting asterisks is used. All other account
records are then restructured and in these cases the
values of the balance can be accommodated in the avail-

able 4 digits.

When an attempt is made to post £9999 to account 02
there is once again an overflow since the new balance

of £10021 will not fit in 4 digits.

-

Data:€2 —A3,39—

kkRUN CF TRANSACTICN PCSTING PROCGRAMRx
TYPE VEFRSICN NUMEER OF PR CCRAM

data:l

TYPZ ACCCUAT WNUMBER AND VILLE TO EE POSTED
pata:C1 6969

*+%x FOLLCWING INFORMATION IS FRON 'FINDY"4xax
DEMS IS ST ARCHING FOR
RECORD TYPE ACNT VERSION 1
WITH CHARACTERS 1 10 2 EQlAL TO
1
RECORD FCURD

T ALDR
*xx'FINDTY COMNFLETE

58 ¢ VIESION 1
DxA®

®*n

L

*%xFOLLOWING INFORWATION I3 FROM ‘GET'%*x
CHARACTZRS 7 T¢ 11
COF R:CCRD TYPL ACNT VERSICH 1 AT ADDRZSS £ LRZ
11
#x "CET COMFLETED® %=

*%% FOLLCYWING INFORMETION IS FROM "MCCIFY ' +*x
CHARACTERS 7 70 11 -

OF RECORD TYPE ACNT VIRSICN 1 AT ACDREZSS z

HAVE =EEr ALTERED TC

10010

xx*MODIFY' CONPLETED***

TRANSACTION OF & 999¢ POSTEL - NEW BELANCE $1C010
xkkZND

Lt am mokem chadmaat et

.
o
[V

Data

— A3,40 —

£%x*ST22T OF AoMir DATA ITEIN FORMAT KeSTRUCTURING wx»
TYPZ OFEh CF LZLSD FOX TYP: OF RESTRUCTURIAG

EQLLOw=H Y R:ICCRD pixE , DETA LTEN NA®E , LENGTH AND NEW
Data:CLST ACNT EALC G4 ,14)

x+#%CLOSEC RESTRUCTURING NOW UNOZP WAYs*x

RECORS TYFE ACHNT VERSION 1 FOUND

AT ADDRESS 2

ax% FOLLCWING INFORMATION IS FROM RESTRUCTURING ROUTINE
VERSION NUNRER OF RECORD TYEs ACNT AT ADDRESS ¢
IS BEING ALTERED TO Z

CHARACTERS 1 T& 2 WERE FREVIOUSLY
1 ~

CHARACTERS 3 TCO & WERE FREVIOUSLY

-1 i

CHARACTERS 5 70O 6 WERE PREVIOUSLY
1

CHARACTERS 7 TO 11" WERE PREVIOUSLY

16010

CHARACTERS 12 TC 13 WERE FREVIOUSLY

CA A

CHARACTERS 1 TO Z HPAVE EZEN SET TO :-
1

CHARACTERS 3 TG & HAV:Z EEEN SET YO :-
1

CHARACTEES 5 TO & H2y: EZiH SZT TO :-
1

CHARACTERS 7 TO 1C HEAVE EZEN SET TO -

*k k%

CHPRACTEKS 11 TC 12 MAVE EZEN SET TQ -

Cha

xx% RECCRD HAS EESN RISTRULCTURED ***
IF NO OTHEIR REGUEST IS OUTSTANDING TYPE REPLY 21

pata:21
RECORD TYFE FCNT VERSION 1 FOUND
AT ADDRESS 4

#x% FOLLCWINGC INFOPM&TION IS FROM RE ESTRUCTURINE ROUTINE
VERSION NUFBER CF RECORD JYFE ACNT AT ADDRESS 4
IS EEING ALTERED TO 2

CHARACTERS™ 1.7@ 2 WERE FREVIQUSLY- . = oo o -
CﬁARACTERS 3 70 4 WERE PREVIOUSLY
C;ARAC TERS 5 TC 6 WERE PREVIOUSLY
CiARACTERS 7 TC 11 WERE FREVIOUSLY
CHAiiCTERS 12 T0 13 WERE FREIVIOUSLY
E:ﬁRACTEPS 1 TC 2 KAVE EBEEN SET TO :-
CiARACTEES 3 7C 4 WAVE EEEN SET TO ==
C;ARACT&?S 5 T: 6 HAVE EECH SIT TO &=
CHARACTeES 7 TC AL MOV EI.N SET TO -

22
CFARCTZES 11 T ¢ Hiye ELEG ST TO -

c-

FORKAT

4 kA

k&

= —A3.41—
w Dbata:cl
RECORL TYFF ACKNT VERSION 1 FOUGD
AT ADBRESS 5
-
*kk FCLLCWING INFORFE,TION T2 FROV RISTRUCTURIMNG POUTINZ &%
VERSIGw NhUr=ES OF RICCHL JYFPT ACNTY 27 FDORZES <
o IS ETING ALTERID TC v
CHARACT Z&S 1 72 2 uWiFz: s _VIOQUSLY

« CRARECT = TC & w Pt FROVIDUSLY
(‘ .

T
-
~

TG £ wens

CHARACTEFS FTEVIOUSLY
o 2
CHARICTIAS 7 76 11 w™i . 2 :-VIGUSLY
33
o CHARACTZFS 17 70 13 . ° £3 yidusLy
ch
. CHERECTETS 1 T{ ¢ iev’ 730 §IT 70 -
T
. CHARACTERS % TG & H/vE ¢I30 §5T Tn :-
. z .
i, CHARACTE®RS 5 TC 6 h2vi ¢i%r §TT T2 :-
“ 2
5 CHARACTERS 7 TO 10 Havi EE7M 32T TG :-
R 33
CHARACTERS 11 TC 12 MAVE edEd SET TO :-
D4
**% RICOSD HES EBEEN 2I3TRACTURSD #x%

IF NO GTEER REQUEST I35 CUTSTANDING TYPE REPLY 21

l

T

L Data:il
RECORY TYFE ACNT VER
AT ADDRESS &
“
VERSIOH RUMBER CF RE
s IS BIInG ALTERED TO
CHARACTZ2S 1 TG 2
L
W CHARA(CTIRS 3 70 ¢
1
CHARACTER 5 10 6
& 1
CHARACTERS 7 T¢ 11
44
W CHARACTERS 1¢ TC 13
Cr
CHgrECTERS 1 TC 2
(W 4
CHRRACTERS 3 TC 4
i
W CHaARACTERZ © To 6
1
CHARAECLTL™E: 7 TO 10
[Li
CHARACT--3 11 77 12
c:
o *x¥x 20670 FAS HeiN
£ NO HTHER REwlUEST

CION

cere

¢
WIRZ

ko
”
he]
'

1 F0UND

1Y k2

ACHT 87 ADLFESS

rReVIOUSLY

FRAVIQUSLY

FREVIQUSLY

TEEVISUSLY

FREVIOULSLY

EEIN SIT TO i
FTikSET TC :i-
EZEY 52T IC :-

xx% FOLLCWING INFORMATIGN 1% FROM 2&STRUCTUFING ROUTIND ##%_
¢

C
c
C
c

e

c

EEN

—A3,42—

Batasrzt
*** CLOISEL RESTRUCTULRINC (OBPLETE %%

{

bata:G2

]
***RUN COF TRAMSACTICH POSTING PROGRAMa#*x -
TYPE VERSICN NUMEER CF PROGRAM
bata:1 B
TYPE ACCCUMNT LKUMBER AND VALLE To EE POSTED L
Bata:02 §969

***xFOLLOWING INFORMATION IS FROM *FINDT®"w%x«
DEMS IS SEARCHING FCR -
RECCRD TYPE ACNT VERSIGA
WITH CHARACTERS 1 10 2 G ULAL TO

Z
RECORD FCUNB AT ADDFESS 4 VERSIGA 2
*rXCFINDTY COMFLETE Dk

***FOLLCWING IMFORMATION IS5 FROM *GiT'ssas

CHARACTERS 7 TC 10

OF RECCRD TYPS ACNT VERSION 2 AT ADDRESS 4 AfE:-
22

*HCGITT CONFLITSDax .

*HXFOLLOWING INFGREATION IS FROM 'HOCIFY 's#x
CHARACTERS 7 TC¢ 10

OF RECORD TYPE ACNT VERSICN 2 AT ADDRESS 4
HAVE EBcEN ALTERED TO

L2 & 3]

**% "MODIFY " CGMPLETED*#+

TRAKSACTION OF $ 9999 PCSTEL - NEW BALANCE $100321
***END CF TRANSACTION POSTING RUN ##*

T

Patdizo Y - S : SR

k THE CURRENT DATA BASE ##x%

ADD RECCRD VRSN DATS2 FOINTERS -TAG

1 CUST 1 TJONES ,ALAN 26 000000 (4 Y] 0
2 ECNT 2 T 1 Txk*x{p 6010000000 0
3 CusT 1 ESHITH,QPHES $¢5000000 (V] 0
4 AONT 2 ¢ 1 2%2xxCAL 50300006000 0
S EONT Z 32 2 2 23p¢s Ce¢2000000¢C C
[ACNT P4 4 11 44C A 221C 00000 ¢ o
7 EXCH 1 1BIGTOWN Y] CoCueooeouo g ¢ 0
b Sk Ch 1 ESFALLTCWLN R C006GO0OGEGOCOOTC 0

. = m e ae A ——

—A3.43 —

Restructuring to Interchange position of Customer Number

and Branch Number on Account Record

To interchange the position of two data items on the
same record the user enters a code of 26. The DBMS
responds by requesting the name of the record and the

data items to be interchanged.

As for previous examples only the schema is amended

and existing records are only restructured when they

are modified. In the example shown a new account number
5 is added to the data base. Although this record is
added as version 2 with the data items interchanged the
original version of the program can continue to be run.
In particular, note that the Store command continues to
process the data items in the sequence held in the sub-
schema although this is not the sequence for the version

2 data base record.

M

—A3,44—

Data:io

kx%x START CF INTERCHAKLGE CATA ITEF RESTRUCTURING #%=
TYPE GPEN CR CLSD FOR TYPE OF RESTRUCTURING '
FOLLOWED BY RECORD KANME AND NAMES OF DATA ITEMS

Data:GPEN AINT CUNO ERNGC

***xGPEM RESTRUCTURI NG NOW UNDER WAY x2x%

pata:2¢
k*x% THE CURRENT SCHEMA *%x

RECORD TYPE CUST VERSION 1

DATA ITEM CNUM START AT 1 END AT 2 FORMAT ,I12)
DATA ITE® NAMT START AT 2 END AT & FORMAT ,AL)
DATA ITEF MAMZ START AT 7 ENMD AT 10 FORMAT ,A&4)
DATA JTEM NAM3 START £T 11 END AT 14 FORMET , Al)
SET NAME CUAC POINTER TYPE FRST
SET WAME CUAC PCIMTER TYPE LAST
KEY DATA ITEM CHUM
RECORD TYPE ACNT VERSICN 2
DATA ITEM ACNG START AT 1 IND AT 2 FORMAT ,I2)
DATA ITEZ# CUNO START AT 2 EMD AT &4 FORNMAT ,I2)
DATA ITE¥ ERND START AT 5 END AT & FORMAT ,12)
DATA ITEZK EALC START AT -7 END AT 11 FORMAT ,IS)
OATA ITEM ACTP START AT 12 =nD AT 13 FORMAT ,A2)
SET NA®E CUAC PCIMTER TYPE REXT
SET NA¥E CUAC PCINTER TYPE FRIR
"SET NAME CUAC POINTER TYPE OWNR
KEY DATA ITEM ACND
RECORD TYPF ACNT VERSION .1
DATA ITEF ACNO START AT T EHD AT 2 FORMAT ,12)
DATA ITEM ERNO START AT 32 END AT 4 FORMAT ,12)
DATA ITEF CUNG START AT 5 END AT 6 FGRMAT ,I2)
DATA ITEF EALC START AT 7 END AT 11 FORWAT ,IS) -
DATA ITEF ACTP START AT 12 END AT 13 FORMAT ,A2)
“SET NAME CURC POINTER-TYPE NEXT -7 "-0 w:t
* SET NAME CUAC POINTER TYPE PRIR
SET MAME'CUAC POINTER TYPE OWNR
KEY DATA ITEM ACNG
RECORD TYPE ERCH VERSION 1
DATA ITEM ENUM START AT 1 END AT 2 FORHAT ,12)
DATA ITEW ENM1 START AT 2 END AT 6 FORMAT ,A4)
DATA ITEZF ENM2 START AT 7 END AT 10 FORMAT , 44)
DATA IT:=® ENR3 START AT 11 END AT 14 FOGRFAT ,A4)
DATA ITE¥ LOCN START AT 15 END AT 15 FORMAT ,A1)
KEY 2aTA& ITak BNUX
SET Nk T CUAC
OWNTE RZ(CEBR TYF: CUST MATCHING DATA IT2 CNU¥
FEMEZ, ESCLXD TYSE FCNT @ETCHING DATE ITEN CURD
PGSITICH CF i IRSIPTS - I %3

. -

3
3
.
K]

*x*RUN CF CPEN

-A3,45—

[

TYPE VZRSICh NUNMSER OF FrGGRAM
Pata:1l
TYPS SHANCH , ACCOUNT NUME: R , CUSTOMER
pata:(2 (S 61 C»
*xkx FOLLCWING INFORMATICN I5 FHROM
THE FOLLCWING NzZw RECORL
IS BEING ADDLED 7O THE DATA EASE
RECGLD TYPEL ACKNT
VERS IUH 2

ALL PCINTZRS Zzc@
UNINITIALISCD CEARACTEES SPACES
CHARACT 2 RS S T4 & 827 Ty :-

2
CHARACTERS 1 16 2 ST TC -

5

CHARARCTERS

Ca
CHARACTERE 7 TC 11 $-T7 7O :-
4]
RECORD HAS FEEN STORZD AT ACDRESS
&x *STORE" CORPLETE R<xx

h FOLLOWING INFORMATION I35 FROM
CHARACTZRS 3 T0 4
OF RZCCRD TYPD ACNT VERSIOH 2 AT

1
DEMS IS STARIHING FCLR RECCRCE TYRE (C
WITH CHKARACTERS 1 Tu ¢ EGLAL TO :

1
RZCORD FCUND AT ADLAZSS

RECORD-TYPE AND VEPSICGN O
ACNT 1 .

1
F

1 0F RECORC TYF: A(KT ADDR
ALTERED TO 3
2 OF RELORE TYP: ~CNT ADDP

ALTERED 7O £
3 CF R<CORT TYPF AaNT
ALTERED TC 1

SCCOLNT ORQOGR AMK* %

ADDRESS

ECCOUNT TYPE

'STOURE *x %

"INSERT " *x%

g &2FE

ST VERSIOH 1

™

FZCORD AT ADDR:iISS & A

VEESI (N
VERSI CH

VERSI (N

2 OF RECORD TYyP. CLST ADDRESS VERSI (¥

HAS BEZSN ALTEZRED 7O <

*xk P INSERT ' COMPLETED**=

MEW ACCCUNT OPENZID s

*+ END OF OPcthl NEWw ACCOURT i"LNxwx

pate:?l

*kk THZ CUSRENT DATA ZA3: 4&#

ABD 27CCRD VRSN DAY A FO
1 CUST 1 TJONES ,LLAN 2
2 ACNT 1 1 11 11C4 1<)
3 cUsST 1 ZSMI TH I ES A
4 ACHKT 1 21 2 zzZCAa 5
) SCRT 1 I ¢ ¢ IiCA 8]
& ACHT 1 4 11 664 CA g
7 SR CH 1 181G TICWN U]
8 BRCH 1 cSPMALLTGW R - 0
9 ECNT 2 3012 O0CA 0

. y

RE

-0 2N G =20

cCooooocoO

[o B o Y s Y o B o i avn 3 o i @)

COOCOCGDOO

[R P i B wn I o Y el e o}

CAQOQNOOOoOTOoOO

—A3,46 —

the Customer Record

Data Item Migration is performed by the user entering a
code of 27 on this terminal. Only a closed strategy

with parallel running is available in this example.

Each set eccurrence is restructured as a single unit

and the user therefore only has an opportunity to
execute an application program when each set occurrence
has been restructured. The DBMS accesses each set by
searching for each customer record (the owner of the set)
in address sequence. The first customer record is for
customer 1 at address 1. The First Member record
pointer on this record is used to establish the address
of the first account in the set - account 1 at address 2.
Before this record is restructured the value in the
Balance data item is retained for later use. The restruc-
turing of the account record to version 2 results in the
balance data item being deleted. The Next-Member record
pointer on the account record shows the next account in
the set to be account 4 at address 6. Once again the
balance is extracted before the record is restructured.
In this case the value of the data item (£44) is added

to that extracted from account 1 (£11) to produce a

current net balance for the customer of £55.

The Next Member record pointer on this account has a
value of zero indicating that there are no further member

records. The original owner record is then restructured

and the value of the net balance as calculated above

is allocated to the new data item.

The Schema and Data Base are displayed at this point.
Versions 1 and 2 of both the Customer and Account
records are defined at this stage. The Data Base con-
tains not_only the new version 2 Customer and Account
records but also the corresponding original version 1
records which have been moved to the first available
spare record slots on the data base. The parallel
record tag is used to associate each version 1 record

with its version 2 counterpart and vice versa.

The Transaction Posting program is run to post £10 to
account 2 which is still at version 1. Version 3 of

this program is version specific in that it examines the
version of the account record retrieved before it modi-
fies the balance - in this case, as previously, on the
account record. Note that in this example no restructur-
ing takes place prior to the modify because of the type

of restructuring taking place.

When £10 is posted to account 1 the program detects that
the account record is at version 2. The corresponding
customer record is then accessed and the balance on this
record modified accordingly. Since parallel running is
taking place the program then establishes the correspond-
ing version 1 account record as the current of run unit
using a third version of the FIND command. The balance

on this record is then modified by the £10 posting.

— A3,48—

Version 2 of the Calculate Balance Program is then run

to provide the balances for both customer Z and customer
1. Like the Transaction Posting program this program

is version specific. Since customer 2 is at version 1
the prbgram accumulates the customer balance by summation
of the balances on the associated account records. For
customer 1 (at version 2) the balance is derived directly

from that record.

The restructuring is then allowed to continue and the set
corresponding to customer 2 is restructured as before.
Since no further customers exist the restructuring is

complete after this point.

Parallel running, however, continues and in particular

a Balance Calculation Audit program is run which compares
the balance held on a version 2 customer record with

the sum of the balances on the associated version 1 account
records. This run is initiated by the user entering a

" code of 10. The run verifies that the balance for customer

1 is the same in both cases.

Finally, the user can enter a code of 24 which terminates
the parallel running phase. This is done by removing the
schema entries for version 1 of both the Customer and
Account records, by setting the parallel run tag for all
version 2 Customer and Account records to zero on the
data base and by removing all version 1 Customer and

Account records.

~A3,49—

When version 3 of the Transaction Posting program 1is
run after parallel running is complete the call to
FIND3 returns a code indicating that no corresponding
Account record exists and no attempt is therefore made

to modify the balance on such a record.

YR N T T)

72 0 0

@ |

')

A oo

Dete: 7

—A3,50 —

k&% START OF MEMEEF TO CWNER DATA ITEM MIGRATION #x«x

RESTRUCTURING
SEY NAME,

TYPE

USES CLOSED STRATEGY WITH PARALLEL PRUN
SOURCE RECORD NA¥E, DATA ITEM NAME,

DESTINATION RECORD NAME AND ADJACENT DATA ITEM
Datas CUAC ACNT BALC CUST CNUM

AT ADDRESS
POINTER 1
VERSICN OF*

" CHARACTERS
OF. RECORD-TYFE ACNT VESSION

'11

kw FCLLOUING INFORMATION 1S FRCM RESTRUCTURING ROUTINE
ERSICN NUMBER OF RECORD’ TYP: ACNT AT ADDRESS 2
IS BEING ALTERED

CHARACTERS
1
CHARACTERS
1
CHARACTERS
1
CHARACTERS
CA
CHARACTERS
1
CHARACTERS
1 .
CHARACTERS
1

-CHARACTERS .
‘CA

kA RECORD
POINTER 1
VERSICN CF
CHARACTERS

"OF- RECORD TYPE ACNT VERSION

- “VERSLCN- NUMBER "OF RECOPD
1S BEING. ALTERED 710 2‘_

CHARACTERS
4
CHARACTERS
1
CHARACTERS
1
CHARACTERS
CA
CHARACTERS
&4
CHARACTERS
1
CHARACTERS
1
CHARACTESRS
CA
A%+ JECQOCDP

“xx*CLCSED RESTRUCTURING NOW UNDER WAY%*#
RECORD YYPE CUST VERSIONW

jAFouno

1. ’ o

GIVES ADDRESS OF FIPST MEMBER AS 2

RECORD -TYPE ACNT AT .THIS ADDRESS IS- 1° - = -~
7 T0 11

1 AT -ADDRESS 2 ARE :~

k&

70 2

1 TO 2 WERE PREVIOUSLY
2 7O & WERE PREVIOUSLY
S TO 6 WERE PREVIOUSLY
12 TO 13 WEPE FREVIOUSLY
1 YO 2 HAVE BEEN SET TO :-
32 YO & HAVE BEEN SET.T70 :-
S TO 6 HAVE BEEN SET TO :-
7 TO & HAVE REEN SET 70 .:-

HAS BEEN RESTRUCTURED #%*

GIVES ADDRESS OF NEXT FEMBER AS 6

RECORD TYPE ACNT AT THIS ADDRESS IS 1-
7 10 11

T AT ADDRESS

6 ARE =~

‘TYPE- ACNT AT \DDRESS“ 6_

17702 WEPE PREVIOUSLY
2 70 & WERE PREVIOUSLY
5 YO 6 WERE PREVIOUSLY
12 TO 13 WERE PREVIOUSLY
1 TO 2 HAVE BEEN SET TO :-
2 TO L HAVE BEEN SET TO :-
S TO & HAVE PEEN SET TO :-
7 T0 8 HAVE FEEN SET TO :-
HAC FEeom DI ITLRCTHNED v+

ek FCLLOWING INFORMATICN IS FRCM SESTRUCTURING ROUTINE #+4
VERSICN NUMBER OF FECORD TYPE CHST AT ADDRESS 1
IS FEING BLTEPED T0 2 ’

CHARACTEQS 1 TG 2 UERE PREVIQUSLY

! —A3,51—
CHARACTERS 2 TC 6 WERE PREVICUSLY
JONE
CHARACTERS 7 TO 10 WERE PREVIOUSLY
S,AL
CHARACTERS 11 TO 14 WERE PREVIOUSLY
AN
CHARACTERS ‘1 T0 2 HAVE BEEN SET TO Hid
1

CHARACTERS 3 TO 7 ARE SEING SET TO SPACES
CHARACTERS 8 TC 11 WAVE BEEN SET TO :-
JONE . .
CHAPACTERS 12 T0O 15 HAVE BEEN SET TO :-
S,AL .
CHARACTEPS 16 TO 19 HAVE BEEN SET TO :-
AN
%% RECORD HAS PEEN RESTRUCTUFED #%#
CHARACTERS 3 T0 7
OF RECORD TYPE CUST VERSICN 2 AT ADDRESS 1
HAVE ESEN ALTERED TO

55

IF NO OTHER REQUEST IS CUTSTANDING TYPE REPLY 28

Proais
L Sy) . - —— -

— . o eRee e L L.l — -

Data;29
4 THE CURRENT SCHEMA %%«

RECORD TYPE (UST VERSION 2

DATA ITE¥ CNUM START AT 1 END AT 2 FORMAT ,12)
DATA ITEM BALC STARYT AT I END AT 7 FORMAT LI5)
DATA ITENM NAMT START AT & END AT 11 FORMAT SRG)
DATA ITE™ NAMZ2 START AT 12 END AT 15 FORMAT PLUD]
DATA ITEM® NAM2Z START AT 16 END AT 19 FORMAT ,A4)
SET NAME CUAC POINTER TYPE FRST

SET NAME CUAC POINTER TYPE LAST 4
KEY DETA ITENM CNUM ’

RECORD TYPE CUST VERSION 1

DATA ITEM CNUM START AT 1 END. AT 2 FORMAT ,12)
DATA ITEM NAMT START AT 3 END AT 6 FORMAT ,LA4)
DATA ITEM NANZ STAPT AT 7 END AT 10 FORMAT ,A&)
DATA ITEM NAMT START AT 11 END AT 14 FORMAT ,A4)
SET NBME CUAC POINTER TYPE FRST

SET NAME CUAC POINTER TYPE LAST

KEY DATA ITE® CNUM

RECORE TYPE ACNT VERSION 2
DATA ITEM ACNO STEART AT END AT

1 FORMAT ,12)
DATA ITEM BRNO START AT 3 END AT

[

7

FORMAT ,12)
FOOMAT ,12)
FORMAT ,A2)

DATE ITE™ CUNQO STAPT AT END 2T
DATA ITENM ACTF STEPT AT ENN AT
SET NAME CUAC PCINTER TYPE NEXT
SET NAME CUAC POINTER TYOT FRIP
SET N2ME (CUSC POINTSP TYPY QWAP
KEY DATE TTENM ACNO

NS~

O R L S O P P P
an S L L LU L el b

pINT VERSION 1

e U e N Rt Ll e S e e Te R e e th T e

e RECOREL TYPE

* b DATAE ITEM ACKO START AT 1 END AT ? pormMAT L12)
I DATE TTEM BENO STGRT AT I END 2T L ForMaT ,12)
¢ DATA ITEF CURNO ST&2T AT 5 END 2T 6 FORMAT ,12) —A3,52 —
DATA ITE™ BALC START AT 7 END AT 11 Foa®aT ,I5)
DATA ITEM ACTF STOST AT 12 END #T 13 FORMAT ,52)
C SET NEME CUEC PCINTER TYPF KEYT
’ SET NAME CUAC POINTER TYPE FRIC
SET NAME CUAC POINTER TYPE OWNP
KEY DATA ITEF ACNO
RECORE TYPE EFCH VERSION 1
DATA ITEM BNUF START AT 1 END AT 2 FORMAT ,I2)
DATA ITEM BNFM1 START AT 3 END AT & FORMAT SAL)
DATA ITEM BNFZ START AT 7 END AT 1C FORMAY ,A4)
pDATA ITEF BNFI-START AT 11 END AT 14 FORMAT ,A4)
. DATA ITEM LOCN START AT 15 ENR AT 15 FORMAT A1)
KEY DATA ITEM ENUX
SET NAME CUAC
"OWNER RECCRD TYFE CUST NMATCHING DATA ITEM CNUM
- MEMBER RECORD TYPE ACNT MATCHING DATA ITE® CUNO
POSITION OF NEW INSERTS - LAST
C pates:20
++%x THE CURRENT DATA BASE **x%
ADD PECOPD VRSN D2TA POINTERS
1 CUsST 2 1 SSJONES ,AL AN 26 00000000
2 ACNT -2 1 1 1C2 6010000000
2 CUST 1 2S¥ITH ,JAMES . 4500000000
[3 ACNT 1 2 12 22CA s030000000
5 ACNT 1 T 22 33DA 0430000000
é ACNT 2 &4 1 1C» 0210000000
7 ERCH 1 18IGTOWN u ooc000000Q0C0O
8 ERCH 1 2SMALLTOWN K 0000000000
S CUST 1 1JONES ,ALAN 26 00000000
1C ACNT 1 111 11CA. 6010000000
11 ACNT 1 4 11 44CA o21000000¢0
S —
pata:z(2
#x%RUN OF TRANSACTION PCSTING PROGRAM*»*
TYPE VERSION NUMBER OF FROGRAF
Data:z2
TYPE ACCOUNT NUMBE®R AND VALUE TC R2E POSTED
pataz(2 CG1D
«xxFOLLOWING INFOSMATION IS FRONM 'FINDT'xww
DEMS 1S SEARCHING FOP
C RECORL TYPE ACNT VERSION ¢
WITH CHARACTEFS 1 TO 2 EGUAL TO
2
C NONE HAS RESN FOUND SO CRMS IS NO SELBCHING FOS

RECOREL TYPE ACNT ViSSTION 1
WITH CHACACTESS 1 TC Z =GUAL
(¢ 2

70

™

N6

N o 8 O

M

~

Carate IR o

«*+FOLLOWING TNFONMATIGRN 1S FROV 'GET P awx

CHAPACTERS 7 TC¢ 11 —A3,53~—
OF RECORD TYFE ACNT VERSION 1 AT ADDRESS &L BAPE:-

z

¥

Ax"GET® COMPLETED A=

«x«fOLLOWING INFORMATION IS FROM "MODIFY'ax2
CHARACTERS 7 TO 11
OF RECORE TYPZ ACNT VERSION 1 AT ADDRESS 4
HAVE EEEN ALTERED TO
© 32
A% % MODIFY® COMPLETED*X*
TRANSACTION OF ¥ 1G FCSTED
=x*xENE OF TRAdgACTION PCSTING RUN2*#®

patasC2

*x%RPUN OF TRANSACTION PCSTING PROGRAMAX®
TYPE VEPSION NUNREE OF FROGRAM -

pate:?

TYPE ACCOUNT NUFRBEF AND VALUE T¢ RE POSTED
pata:C1 0010

x*%FOLLOWING INFORMATION IS FRONM 'FINDT'&&%
DEMS IS SEARCHINER FOR
RECORD TYPE ACNT VERSION 4
WITH CHARACTEPS 1 TO ¢ $quaL TO

1

RECOREC FCUND AT ADDRESS 2 VERSION 2
x4x*FIND1" COMPLETED***

«+% FCLLOWING IWFORMATICN IS FRCM 'FIND3' #x+

peMs IS FOLLOWING TAG 1C EARLIER VERSION CF CURRENT RECORD AT ADDRESS

VERSICN CF RECORD TYPE PCNT AT THIS ADDRESS IS 1
xx%x SFIND3Z' COMPLETED ***

«**FOLLOWING INFOOMATION IS FRONM °*GET'**x

CHARACTERS 7 T0 11

OF RECORD TYPE ACNTY VERSION 1 AT ADDRESS 10 ARE:-
11

x#'GET' COMPLETED*#*

 wa%xFOLLOWING INFORMATION IS FROW "MODIFY®*x¥

CHARACTERS 7 To 11
OF RECORD TYPE ACNT VERSION 1 AT ADDRESS 10
HAVE EEEN ALTERED TO ¢

21
*Ax"MCDIFY®' COMPLETED=®**
TRANSACTICN CF § 10 PCSTED -NEW ACCOUNT BALANCE

*+*FOLLOWING INFOSMATICN IS FROM 'FINDZ2 %x%*

VALUE IN POINTEF *

OF RECORD TYPE &CNT VEPSION 1 AT ADDRESS 10

Is 1

VERSICN CF FECOSB TYPE CUST AT THIS ADDRESS 1S 2
%% *FINDZ®' CONFPLETER®*~

*+%FOLLOWING INFOFMATION IS FRON PRIT xk%
cHaRACTERS X TC ?
GF SECOPN TYE: CUST vV.RSTON 2 4T ADDSESS 1 BRE:-
cs

retr- Ty AT T

~NEW CUSTONER BALANCE

32

21

PET UL FURRE PR UL L e AR Sl A

syt il Loty o e R R ST
S Y T TR0 T S Wb SWOLILL oo A WY, 228 gl e ARTLE S

**%FOLLOVING INFCPMATION TS FP0NM *MODIFY®' ase

CHARACTERS 2 To 7 — A3,54—
OF PECORM TYFE CUST VEZSION 2 AT BDDRESS 1

HAVE FECEN ALTERED TO

65
¢ ***PMODIFY® CCMFLETED#**+
TRANSACTICN OF § 1G PCSTED -NEW CUSTOMER BALANCE 65

***ENC OF TRANSACTION PCSTING RUN#»w

bata:C1’

***xRUN OF BALANCE. CALCULATION PROGRAM*xx
TYPE VERSION NMUMBER OF FROGRAM

Dats:z?2. _

TYPE CUSTOMER NUMBER

bata:z(2 .

**4FOLLOWING INFORMATION LS. FROM 'FIND1®#%w
-~ DBMS IS SEARCHING FOR

-RECORD TYPE CUST VERSICON 2

WITH CHARACTERS 1 TO 2 EQUAL 7@

2

NONE HAS EEEN FCUND SC CBMS IS NOW SEARCHING FOR

RECORD .TYPE CUST VERSION 1
e WITH CHARACTEFS 1 TO 2 EQUAL 70
S 2

' RECORD FCUND AT ADDRESS 3 VERSION 1

4'FIND1' COMPLETCD**w

2% *FOLLOWING INFORMATION IS FROM 'GET'x%x
CHARACTERS 3 T0 6

OF RECORD TYPE CUST VEFSION 1 AT ADDRESS 3 ARE:—
SMIT
"**"GET" COMPLETED*x%

"Akx*FOLLOWING INFORMATION ‘IS FROF 'GET'#%x
CHARACTERS 7 10 1C

OF RECORD TYFE CUST VERSION 1 AT ADDRESS 3 ARE:-
H,JA
AKX GET® COMPLETED=***

**AFOLLOWING INFORMATION IS FROW¥ °'GET'#xx

CHARACTERS 11 To 14 o o o
OF RECORD TYFE CUST VERSION 1 AT ADDRESS * 3 ARE:-.

-MES ' _ A ' N .

TAAVGET® COMPLETED#»x . _ . T : TS e T

#%2FOLLOWING INFORMATION IS FROF 'FIND2'#++

VALUE IN POINTER 1 _

OF RECORD TYFE CUST VERSION 1 AT ADDRESS 3

IS &

VERSICN CF RECORD TYPE ACNT AT THIS ADDRESS IS 1
*#%#*FIND2"' COMPLETED*%#

***FOLLOWING INFORMATION IS FPOM 'GET'+xx

CHARACTERS 7 TO 11

OF RECORD TYPE ACNT VERSION 1 AT ADDRESS & ARE:-
32

**'GET® COMPLETED*#+

***FOLLOWING INFORMATION IS FRON *FINDP*axs
- VALUE IN POINTER 1 :
A 4 OF PECCFD TYFE ACAT VESSICM 1 AT ABDRESS 4

T IS S

IR P

«axFOLLOWING INFORMETION IS FROF CSGET ' #2x* — A3 55—
CHARACTEPS 7 T0 11
OF RECORD TYFE ACNT VEERSION 1 AT ADDRESS S5 ARE:-
33
A%k*GET® COMPLETED*»*

K
b

*x+«FOLLOWING INFORMATION IS FFROF¥ PFIND2 ' *x%%

VALUE IN POINTER 1

OF RECORD TYPE ACNT VERSION 1 AT ADDRESS 5 -
1s° O N

k%% "FIND2" COMPLETED*#**

BALANCE FOR CUSTOMER 2 SMITH,JBMES IS 65 _
«*2ENT OF BALANCE CALCULATION RUN##x" == 7 T

'"CHARACTERS 12 TO s

'?f'GE?' COMPLETED %%

pata:C1 ‘ - N

*x*RUN OF BALANCE CALCULATION FPROGRAMA*x%
TYPE VERSION NUMBER OF FROGRAM

batasze

TYPE CUSTOMER NUMBER

batz:(1

*«*xFOLLOWING INFORMATION IS FROF SFIND1 %%
DBMS 1S SEARCHING FOR
RECORD TYPE CUST VERSION 2
WITH CHARACTERS 1 TO 2 EGQUAL T0O -

1
RECORD FOUND AT ADDRESS = 1 VERSION 2
#x*'FIND1"' COMPLETED**%

***xFOLLOWING IMFORMATICN IS FROF TGET ' kws
CHARACTERS & TO 11

OF RECORD TYPE CUST V:FSION 2 AT ADDRESS 1 ARE:-
JONE

«%#FOLLOWING INFORMATICA IS FROV fGETf*f*

‘0F RECORD TYPE'CUST VERSION 2°aT ADDRESS 1. ARE:-, [
S,AL ' . - :
A% ?GET® COMPLETED**+ :

FOLLOUING INFORMATION IS FROV 'GET'
CHARACTERS 16 T0 19

OF PECOPD TYPE CUST VERSION 2 AT ADDRESS 1 ARE:-
AN

*%x*GET* COMPLET:D***

«x*FOLLOVWING INFORMATICN IS FFOV¥ TGET " x%xx
CHARACTERS 3 TOo 7

OF RECORD TYFE CUST VcRSION 2 AT ADDRESS 1 ARE:-
- 68 f

kTGET' COMPLETED»%

BALANCE FOR (USTOMER 1 JONES,ALAN Is 65
*x#END OF BALANCE CALCULATION RUN®**

L e eyt - e A

I T AR I T St T
I woT T

- POINTER

Data:c8

— A3,56—

RECORD TYPE CUST VERSION

AT ADDRESS

CHARACTERS

OF RECORD T¥PE ACNT VERSION

32

k% FCOCLLCWINE INFORMATICN IS FRCM RESTRUCTUPRPING RCUTINE #*%

ks

>

7 70 11

1 FOUND

1 GIVES ADDRESS CF FIRST MEMBER AS
VERSICN OF RECORD TYPE ACNT AT THIS

1 PT ADDRESS

ADDRESS IS

4L ARE

VERSICN NUMBER OF RECORD TYPE ACNT AT ADDRESS
IS BREING ALTERED

CHARACTERS
2

CHARACTERS
1

CHARACTERS
2

CHARACTERS

cA '

CHARACTERS
2

CHARACTERS
1
CHARPACTERS
2
CHARACTERS
CA
%%k RECORD
POINTER 1
"VERSICN OF
CHARPACTERS

OF RECORD TYFE ACNT VERSION

33

*x% FCLLOWING INFORMATICN IS FRCM RESTRUCTURING ROUTINE x*x=»

1
3
5
12

5

7

T0

T0

10

T0

T0

T0

T0

70

T0 2
2 WERE

4 WERE
6 WERE
13 WERE
2 HAVE
4 HAVE
6 HAVE

8 HAVE

PREVIOUSLY
PREVIDUSLY
PREVIOUSLY
PREVIOUSLY
FEEN SET TO
BEEN SET TO
BEEN SET TO

BEEN SET TO

RAS BEEN RESTRUCTURED =*»x%

GIVES ADDRESS OF NEXT MEMBER AS
RECORD TYPE ACNT AT THIS ADDRESS IS

7 70 11

VERSICN NUMBER OF RECORD
IS BEING ALTERED

- CHARACTERS ~1°T0.

3
* CHARACTERS
2
"CHARACTERS
2
CHARACTERS
DA
CHARACTERS
3
CHARACTERS
2
CHARACTEFS
2
CHARACTERS
DA

**+ RECORD HAS EEENW
POINTE® 1 GIVES 2ADDPRESS

‘3
5

(N

S

7

T0
TC
76
T0
T0
T0

16

70 2

2 WERE

4 WERE
6 WERE
13 WERE
2 HAVE
4 HAVE
6 HAVE

& HAVE

TYPE ACNT AT ADDRESS S

PREVIOUSLY
PREVIOUSLY
PREVIOUSLY
BEEN SET TO
BEEN SET TO
BEEN SET TO

BEEN SET TO

RESTRUCTUFED #*%x%

1 AT ADDRESS

PREVIQUSLY: - 4.

5

5 RRE

CF NEXT MEMBER AS O

1

1

VERSICH NUMBREFR OF FECCRT T
¢ IS BEING ALTEREC TG
CHAPACTERS 1 TO 2 v

2

PE CUST AT ADDRESS 3

m ny

®E PREVIOUSLY

CHARACTERS 3 TO 6 WERE PPEVIOQUSLY

m

SPIT .
CHARACTERS 7 TC 10 WERE PREVIOUSLY
H,JA
_CHARACTERS 11,70 14 WERE PREVIOUSLY
MES

~ .
CHARACTERS 1 TO 2 HAVE PEEN SET TO :-
2

"CHARACTERS 3 TO 7 ARE BEING SET TO SPACES
CHARACTERS & TO 11 HAVE BEEN SET TO :-
D LUSWIT . .
CHARACTERS 12 TO 15 HAVE BEEN SET TO :-
H,J&A
CHARACTERS 16 TO 19 HAVE BEEN SET TO :-
MES
*4% RECORD HAS FEEN RESTRUCTURED #%+#
CHARACTERS 3 TQ 7
OF RECORD TYPE CUST VERSION 2 AT ADDRESS 3
"MAVE EEEN ALTERED TO
65
IF NO OTHER REQUEST IS CUTSTANDING TYPE REPLY 28

Data:28
*x% RESTRUCTURING COMPLETE - PAFALLSL RUN CONTINUES

PData:z29
*xk THE CURRENT SCHEMA A%z

RECORD TYPE CUST VERSION 2

DATA ITEM .CNUM START.AT 1 END AT 2 FORMAT ,12)
DATA ITEM BALC START AT v3 END-AT "7 FORMAT ,15) -
sDATA'ITEH NABT START AT -8 ENDTAT 11._FORMAT. ,A4)
"DATA ITEM ‘NAM2 START AT 12, END - AT 15 FORMAT ,A4)
'DATA ITEM NAM3 START AT 16 END AT 19 FORMAT ,A4)
SET NAME CUAC PCINTER TYPE FRST

SET NAME CUAC POINTER TYPE LAST

KEY DATA ITEM CNUM

RECORD TYPE CUST VERSION 1

DATA ITEM CNUM START AT 1 END AT 2 FORMAT ,12)
DATA ITE™ NAM1 START AT 3 END AT 6 FORMAT ,A4)
DATA ITEM NAMZ START AT 7 END AT 10 FORMAT ,A4)
DATA ITEM NAM3 START AT 11 END AT 14 FORMAT ,A4)
SET NAME CUAC POINTER TYPEZ FRST ’

¢ SET NAME CUAC POINTER TYPZ LAST

KEY DATA ITEM CNUM

A ke FCLLOWING INFORMATICN IS FICM SESTRUCTURING ROUTINE %%
. Y

~A3,57 -

kk*

AN

D

Q)

~KEY DATA ITEFM ACNC

RECORD TYPE ACNMNT VERSION 2

DATA JITEM ACNO START AT 1 END 2T 2 FORMAT ,12) —A3,58—
DATA ITEM BeNO STERT AT 3 END AT & FORMAT ,I12)
DATA ITEM CUNC START AT S ZND AT & FORMAT ,12)
DATA ITEM ACTF START AT 7 END AT & FORMAT ,LA2)
SET NAME CUAC POINTER TYPE NEXT

SET NAME CUAC POINTER .TYPE PRIP

SET NAME CUAC POINTER TYPE OWNP

KEY DATA ITEM ACNO

RECORC TYPE ACNT VERSION 1 ,

DATA ITEM ACNC START AT 1 END AT 2 FORMAT ,12)
DATA ITEM BRNC' START AT 3 END AT 4 FORMAT ,12)
DATA ITEM CUNO START AT 5 END AT 6 FORMAT ,12)
DATA ITEM BALC START AT -7 END AT 11 FORMAT ., I5).
DATA ITEK ACTP START AT 12 END AT 13 FORMAT ,A2)

SET NAME CUAC POINTER TYPE NEXT PR
SET NAME CUAC POINTER TYPE PRIR
SET NAME CUAC POINTER TYPE OWNR

RECOREC TYPE ERCH VERSION 1

DATA ITEM BNUM START AT 1 END AT 2 FORMAT ,I2)
DATA ITEM BNM1 START AT 3 END AT 6 FORMAT ,A4L)
DATA ITEM BNM2 START AT 7 END AT 13 FORMAT ,A4)
DATA ITEM BNNMZ START AT 11 END AT 14 FORMAT ,A4)
DATA ITEM LOCN START AT 15 END AT 15 FORMAT A1)

KEY DATA ITENM BNUM
SET NAME CUAC)
OWNER RECORD TYPE CUST MATCHING DATA ITEM CNUM

REMBER RECORD TYPE ACNT MATCHINCE DATA ITEM CUNO
POSITION OF NEW INSERTS - LAST

pata:l0
*** THE CURRENT DATA BASE #»%x

ADD RECORD VRSN DATA POINTERS S Ta

1 cusT 2 1 65JONE$ ALAN . 2600000000,
-2 ZACNT = 032, r . 13T 1CA - . L7 %6.0:1.070:070 0,00
3 cusT 2 2 6SSMITH JAPES 4500000000
& -ACNT 2 ..2°1 2¢Ch . " 50-3.060.00000
S ACNT 2 32 2ph 0430000000¢0
6 ACNT 2 ¢ 1 1ce 0210000000
7 ERCH 1 1EIGTOWN u 000000C0DO0OO
8 ERCH 1 2SEALLTOWN R DOO0O0D0DO0CO0O0O0O
9 CUsST 1 1JONES ,ALAN 26 000000O0CO0
10 ACNT 1 111 21cCa 6010000000
11 ACNT 1 4 11 4LcA 0210000000
12 CUST 1 ¢SMITH JAMES 4SS 000060000
12 PCNT * 212 32¢ca 5030000000
14 ACNT 1. 32 ¢ 33DA 0430000000

i S O pztz:10 —A3,59—
L\‘- ' exxpUN OF BALENCE CALCULATION 2UPIT PROGREKA*®
C' TYSE CUSTOMEF NUMPES
\ pate:l
1
' C wsxFOLLOWING INFOPMATIGN IS FRON 'FINDITwax

pEMS IS SEARCHING FCF

> RECORD TYPE CUST VERSION 2

WITH CHARACTERS 1 TO 2z EQUAL 10

~ 1

e RECORD FCUND AT ADORESS 1 VEPSION 2
N x#%*FIND1® COMPLETED¥**

o)

+*FOLLOWING INFORMATION IS FRO¥ 'GET®xx#
CWARACTERS. 3 70 7 -~
OF RECORD TYPE CUST VERSION 2 AT ADDRESS 1 ARE:-

N

65 - -
2% 'GET' COMPLETED*=*x*
CUSTONER BALANCE FROM VER 2 RECCRD IS 65

*%x*FOLLOWING INFORMATION IS FROF TFIND2 ' x%*

VALUE IN POINTER 1

OfF RECORD TYPE CUST VERSION 2 &T ADDRESS 1

1s 2

VERSICN OF RECORD -TYPE ACNT AT THIS ADDRESS IS 2
«x%x'FIND2* COFPLETED***

wxs FCLLOWING INFORMATICN IS FRCM TFINDIT wu*

DEMS. IS FOLLOWING TAG TC EARLIER VERSION CF CURRENT RECOZD AT ADDRESS 10
VERSICN OF RECORD TYPE ACNT AT THIS ADDRESS IS 1

x%s "FIND3' COMPLETED %%

*xxFOLLOWING INFORMATION IS FRO¥ 'GE{'***

CHARACTERS 7 TOC 1M

OF RECORD TYPE ACNT VERSION 1 AT ADDRESS 10 ARE:-
21

‘%% *GET" COMPLETED***

"xx*FOLLOWING INFORMATION ‘IS FROV TFIND2'*x%x%
VALUE IN POINTER 1

OF RECORD TYPE ACNT VERSION 1 AT ADDRESS 10

1S 6 .

VERSICN OF KﬁCOR IYPE J;yT AT - THIS ADDRESS IS 2
*#%tFIND2' COMPLETEDAR

& "t ~ ot - -
T

A -3

e 3

s+ FCLLOWINE INFORMATION IS FROW TEINDZ® axa. . T iTL T .
- peMS IS FOLLOWING.TAG'T0 EARLIER VERSION CF CURRENT RECORD. AT ADDRESS 1
VERSICN OF RECORD TYPE ACNT AT THIS ADDRESS 1s 1 o
#x% "FIND3' 'COMPLETED #4x

x**FOLLOWING INFORMATION IS FRONM 'GET'xx*
CHARACTERS 7 7O 11 :
OF RECORD TYFE ACNT VERSION 1 AT ADDRESS 11 ARE:-
L4 . ’
*x%xYCET® COMPLETED®**

+xsFOLLOWING INFORMATION IS FROP FIND2Twx*
VALUE IN FOINTER 1
T OF RECORD TYPE ACNT VERSIGN 1 AT ADDRESS 11
- C Is O
xx*x'FIND2" COMPLETED®**
SuM OF ACCOUNT BALANCES FCR VEF 1 RECORDS TS 6%
C «*x*END OF BALANCE CALCULATION AUDIT RUNw*=%

o

)

N

Detaczé
*a% PARALLEL RUN COBPLETE »#%

Data: 20

**%x THE CURRENT DATA RASE %*»

KEY DATA ITEF 2HUM

SET NAME (CUAC

OWNER RECORD TYPE CUST NMATCHING DATA ITEM CNUM
MEVPER RECOPD TYPE ACNT MATCHINEG DATA ITE® CUNO
PCSITION OF NEW IARSEPTS - LAST

v,

-
! OQOOQOOOI:
E |

1)

PR,

ADD RECORD VRSN DATA FOINTERS

1 CUST 2 1 6SJONES nLnN 26 0 00000O0O0
2 . ACNT 2 1 1.1Ca 6010000000
3 usv 2 3 65SMITH, JANES 4500000000
4 ACNT 2 2 1 2¢n 5030000000
5 ACNT 2 32 2p# 0430000000
"6~ ACNT 2 4 1 1ch - 62100060000
7 ERCH 1 18IGTOWN v 00000000CO0CO
8 ERCH 1 ZSMALLTOWN R . 000000000O0O0
Datsz:29

*%% THE CURRENT SCHEMA a#x

RECORE TYPE CUST VERSION 2

DATA ITEM CNUM START AT 1 END AT 2 FORMAT ,12)

DATZ ITEM BALC START AT 3 END AT FORMAT ,1I5)

DATA ITEM NAMT START AT & END AT 11 FORMAT ,A4)

DATA ITEM NAMZ START AT 12 END AT 15 FORMAT ,A4)

DATA ITEE NAKZ START AT 16 END -2T 19 FORMAT ,A4)

SET NAME CUAC POINTER TYPE FRST

SET NPME CUAC POINTER TYPE LAST

KEY DATA ITEM CNUM

RECORD TYPE ACNT VERSION 2

DATA ITEM ACNO START AT_ 1 END AT 2 FORMAT ,I2)

DATA ITEM BRNO START AT 3 END AT ¢ FORMAT ,12)

DATA ITEM CUNO START AT S END AT 6 FORMAT ,12)

DATA ITEM ACTP START AT .7 END AT 8 FORMAT ,A2)

TSET NAME CUAC POINTER TYPE NEXT i

SET NAME CUAC POINTER TYPE PRIR

- SET.NEME CUAC POINTER TYPE OWNR
" KEY DATA ITEM ACNO

RECORD TYPE ERCH VERSION 1

DATA ITEM BNUM START AT 1 END AT 2 FORMAT ,12)

DATA ITE™ BN®1 START AT 2 END AT & FORMAT LA4)

DATA ITEM BNPZ START AT 7 END AT 1G FOPMAT ,Al)

DATA ITEM BNMZ START AT 11 END AT 14 FORMAT ,A4)

DATA ITEM LOCN START AT 15 END AT 15 FORMAT ,A1)

a

SR)

~

2 3)
b

®
LN

B

Ka

LE

®

-e

o

o)

— A3,61—
pataz(2 -

*x*RUN Og TRANSACTION PCSTING PROGRAM***

'TYPE-VEPSION~NU&BER OF FROGRAM

Data:

~TYPE FCCOUNT NUMBER AND VALUE TC EBE POSTED

patas(1 0010
++#FOLLOWING INFORMATION IS FROF 'FINDT®##+
DBFMS IS SEARCHING FOR :
RECORD TYPE ACNT VERSION 2
WITH CHARACTERS 1 TO 2 EQUAL 10
1
RECORC FOUND AT ADDRESS 2 VERSION 2
#%x%*FIND1' CONPLETED**+*

«x% FCLLCWING INFORMATICN IS FRCM 'FINDI' *¥x

DEMS IS FOLLOWING TAG TO EARLIER VERSION CF CURRENT RECORD AT ADDRESS
xx% "FIND3' CCMPLETED =xwx

NO -VERSION 1 ACCOUNT RECORD FOUND

++*FOLLOWING INFORMATION IS FROM 'FINDQ2"#xx

VALUE IN POINTER 3)

OF RECORD: TYPE ACNT VERSION 2 AT ADDRESS 2

Is 1 '

. VERSICN OF RECORD TYPE CUST AT THIS ADDRESS IS 2

***'FINQZf COMPLETED®*»

" x**FOLLOWING INFORMATION IS FRONM 'GET® %

CWARACTERS 3 TO 7 : _
OF RECORD TYPE CUST VERSION 2 AT ADDRESS 1 ARE:-
65 § R ce . - R

'GET"COMPLETED***V N SV ,,.. i o

***FOLLOHING INFORMATION 1s Fnor 'Hooxrv'tt* o .
CHARACTERS - 3 T0-. 7 T S A
OF RECORD TYFE CUST VERSICN 2 AT Annasss 1 o ’
HAVE EEEN ALTERED TO ‘

75
%4 'MCDIFY' COMPLETED®*%
TRANSACTION OF % 10 POSTED - NEW CUSTOMER BALANCE $ 75

*%%END OF TRANSACTION POSTING RUN#*x

0

100
7320

c
C oML

WRITE(6,7320) - :
FORMAT ('O*%#RUN CF BALANCE CALCULATION AUDIT PROGRAM#*%%)
WRITE: (6,10€5) . - ~
READ (5,1002) ICUST

‘1BAL1=C : . -

COMMAND FIND1 IS ULSED TO ESTABLISH A CURRENT-RECORD OF RUN

C UNIT FCR A CUSTOMER RECORD WITH THE SUPPLIED CUSTOMER NUMBER

c
101
7C07

107

7C15

102

1C4
105

7040

106

7321

109

CALL FIND1(KCUST,ICUST,ISFACE,ISPACE,IERR)

1fF (IERR.NE.1) G0 TO 107

MRITECE,7C007)1CUST

FORMAT (® CMSTOMER *,I2," NOT FOUND ")

60 TO 106

IF (ICURVR.NE.2) €0 TO 1C9

CALL GET(KBALC)

IBAL2=TUWA(T)

WRITECE,7015) 1BAL2

FORMAT (® CUSTOMER BALANCE. FROM VER 2 RECORD IS *,I5)
CALL FIND2(KACNT,KCUAC,KFRST,IERR)

If (IERR.E0.1)-6C TO 105

CALL FIND3IC(IERR)

CALL GET(KBALC)

IBALY1=IBALT4IUWACY)

CALL FIND2 (KACNT,KCUAC,KNEXT,IERR)

IfF (IEPR.NE.1) GC TO 102

WRITE (6,7040)IBALY . , B
FORMAT (* SUM OF ACCOUNT BALANCES FOR.VER 1 RECORDS IS°®,I5)
WRITEC6,7321) - -~ ' -7 o0 et
FORMAT(® . #*+END OF BALANCE CALCULATION AUDIT:RUN#***) . ~.

60 TO0 5. -

WRITE(6,7010) N
FORMAT(® CUSTOMER RECORD IS NOT AT VERSION 2°) -

Amendment to the Format of the Account Number (Key ‘to

the Account Record)

Particular considerations apply when the format of a
key data item is altered. In this case the account
number in the account record is amended from format I2
to I3. As before, a closed restructuring strategy is
used and each Account Record is accessed and restruc-

tured in address sequence.

When the Transaction Posting program is run to post £10
to account 2 the DBMS uses -the schema definition of

the version 2 account record to establish that it must

match using a three-digit number. The record is found

at address 2 in this way and the balance is modified as

normal.

When posting £10 to account 03 the DBMS firstly searches
for a version 2 account record using a three-digit account
number. In this case no match is found and the schema

is examined again so that a second search can be made for
a version 1 rgcord using a two-digit account number.

In this case the record is found. Since the record is

to be modified it is restructured before this is done.

When the restructuring proceeds it finds Account 3 already
restructured. Account 4 is then restructured and the

restructuring is complete.

N~

*kxSTan T
TYPZ (P
FOLLOW:ZD
pata:CLS™
**xCL OS2
RECORYL T
AT ADD<Z

*kok
VERSION 1

hy Ry

TN e <
WO

S <l 1

-

[
N

FOLLCW INE

UbFER

€ - =iy

INFCR

[

IS BEINE ALTERLZOD 7O

CHARACTEP

-

ARPECT L

CHARACT 2 ®3

C#

CHARXIT=I 2

1

ChARACT Zwns

1
CHAKACT=F
1
CHARACLT Z!
11

1

CHARAUTES™

Ch
*xx 2T
IF NO

Data:dl
RECOHIT TY
AT ADDRES

5001

g7
5 1

Gy

e

T L
T 3
7.1
T. 013

—i
(&)

-

v 7
oy

Ml 3T

PAOALIKT VER
s 4

*x% FOLLCWINC

VIRSION

IS 523he

CHARACT Z®
2

CHARACT AT 3

1

CRARACTE®S

2

CHARSCTL: S

22

CHARACT ZFC

o
x
™
>3
-
.
1
i

R.ICCF

tUbke IR
ALTIRE

§ 01

3L
3 7
I

.

%]
-
[0

T 11
Te oN:

-

Ve

3

po)

(=
y
o
et
-
[

Y L5
i
E v

[l

>

STAND IKCE

EORMAT RSTR
CF

UMDTR W AT xax

FOUND

T oen

IVIZUSLY
NTOUSLY
LVTOUSLY
VIagusLy

TVIDUSLY

e SET OTO -
N SET TO -

iSET TGO -

TLAZD *x*
TAaDING TYPD

viGusLy

WIOUSLY

WICUELY

-VIOUSLY

tvIOUSLY

S5 ET TO -
ST T -
HOSFY T -

92}
L}
P
-
o
]

TULED *k %

UCT
PTSTRULTURING
L

DETA ITEM NAWED,

FROM RZSTRUCTURIKG RCUTIIE
< ACNT A7 ADDRESS

-FLY 21

€
W -
o

TYPE REPLY 21

URINE +x%x

SNETH AND hiw

-

[4

NG ROUTIM:I k=¥

\ eeAnN

¥k ok TH:- LUARcHT SCKRIMP axe

RECCGHD TYvT (UsT VETSINA 1
DATA ITZ¥ <l START aT 1 END AT
2

~ne

FORMAT ,icz)

DATA ITEF NAMY START AT eND AT £ FORMLT ,LR4)
DATA ITZ¥ MNAMZ START AT 7 END AT 10 FORMAT Lh4)
DATA ITEl KANMI START AT 11 SHD AT 14 FORMSAT S A6
SET NAME CULAC POINTER TYPZ FRST

SET N&akE CUAC POINTER TYPE LAST

KEY DATA 1Tt CNUNM

RECORD TYPE ACNT VERSION 2

DATA ITEP ACHNO START AT 1 END AT 3 FORMAT ,I3)
DATA ITE® ERNO START AT 4 END AT 5 FORHAT ,12)
DATA ITEF CUNC START AT £ END AT 7 FORHMAT ,12))
DATA IT:ZK EALC START AT & END AT 12 FORMEAT LI5)
DATA ITEM ACTP START AT 13 END AT 14 FORMAT +AR2)
SET NAME CUARC POIMNTER TYPE NEXT

SET NAME CUKC POINTER TYPE PRIR.

SET NAME CUAC POINTER TYPE CUNR

KEY DATA ITEM ACNO

RECORC TYFE ACNT VERSIOKN 1

DATA JTEF ALCND START AT 1 END AT 2 FORMEAT ,I2D)
DATA ITEM ERND START AT 3 END AT 4 FORM2T LI2)
DATA ITEF CUNGC START AT 5 END AT 6 FORNAT L12)
DATA ITEF EALT START AT 7 =MD AT 11 FORMET ,1I5)
DATA ITCK ACTP START 4T 12 END AT 13 FGRMAT , R2)

SET NAME CUAC POINTZR TYFE MNEXT
SET MNAMZ CUAC POINTZIR TYPE PRIR

SET NAME CUAC POINTER TYPI OWNR -
KEY DATA ITZM ACNOG

RECORD TYPZ BRCH VERSION 1

DATA ITEHF ENUNM START AT 1 ZWD AT 2 FORHMAT L12)
DATA 1TE¥ ENMT START 8T 2 END AT & FORKAT L ALY
DATA ITEF ENNM2 START AT 7 END AT 10 FORMAT ,LA4)
OATA ITEF ENM3 START AT 11 END AT 14 FORHMAT SAL)
DATA ITEN LCCN START AT 15 END AT 15 FORMAT ,AT)
KEY OATA ITEM BNUR : -

SET NAME CUAC
OWNER RECQORD TYFE CUST MATCHING DATA ITEM CNUM

MEMEER RECORD TYPE -ACNT MATCHING DATA ITEM CUNO St
POSITION GF NEW INSERTS - LAST

pata:30

*kk THZ CURRENT UCATA BASE *x#

ADD RECGED VRSH DAT2 POINTERS T
CUsT 1 1JON:ZS,ALEN 2600000000
z TN 2 111 11¢Ca 66100C000 D0
5 cUsT 1 2SI Th ,JiMES LT e 0006 C G (
C & oy ; P B PR) SU360U0000C
5 aCnT 1 f . Iiga GL3L060G0D0C
& s 14 11 agik 022160000 u
C 7 s 1 rRTEaTC v SR G T I VO O v S U

_?\h"ﬁ““’ I A

bata:lz —A3,66—

**x*RUKN OF TRAMSACTICN PCSTING PROCRAM*S %
TYPE V:ZZSICN NUMEER OF PR OGRAR

bata:1

TYPZ ZTUCCUNT NUREER AND VALLE TO EE POSTED
bata:fz L0110

)
x**FOLLOWIMG INFORMATION IS FROM 'FINDT1*%ays
pSMS IS SIZIARCHIMNG FOPR
REZCORD TYPE ACNT VERSION 2
~WITH CHARACTERS 1 T0 3 EGUAL TO
-2
RECOREC FCUND AT ADDR
Te

$S 4 vzZRSION 2
*x**FINDT*' COMPLE ol

Crx

*4#*FOLLOWING INFGRMATION IS FROF 'GET"##%

CHARACTEFS & TG 12

OF RZCCPD TYPI ACNT VERSICN 2 AT ADDRESS
22

**x'GET' (CHFLETED#%#

*x*k FOLLCWIRG INFORMETICK IS FROM *#QGIFy®#4
CHARACTE®S & Te 12
OF RECORD TYPE ACNT VERSICN 2 AT ADORESS 4
HAVE EEEN ALTERED TG

32)
XK TMODIFY " CGMPLEITEDx %% .
TRANSACTION OF § 1G POSTED - NEW BALANCE $
*%k*ZND CF TRANSACTIGN PUSTING RUK#*%=

ARE

Data:02

**k*RUN OF TRANSACTION POSTING PROGRAM*%x
TYPE VERSION NUMBER OF PROGRAM

Data:1 -

-TYPE ACCCUNT NUMBER AND VALUE TO EE POSTED .
bata:03 (G010 - -

***FOLLOWING INFOSMATION IS FROM "FINDI®%%wn

DBMS IS SEARCHING FOR

RECORD TYPE ACNT VERSION 2

WITH CHARACTERS 1 10 3 &
3

NONE HAS BZEN FOUND S5 DEFS

RECCRD TYPE ACNT VZRSION 1

WITH CHARACTERS 1 T0 ¢ &6
3

RECOZD FOUND AT PDDRESS S vEoa§IoNn 14

XXk CETEDTY CONPLETEC=%%

LAL 70O

IS M0W SEPRCHING

LAL 7¢

A**FCLLCWING INFOIMATION TS FEO“ "GST'esx

CRARACT EFRS 770 i

OF RICTAD TYRE LCNTY viesilu 1 AT FiDRESS 5
3>

krP0. T [ORIEY B x>

FOR

]
"

»T c';\"_\ - [P "
iy —A3,67—
*kkx FOLLCWINGL ITRFOGREMATILL N 2 SESITRPULTLRINTY SOUTINL +%x
VERSI®. SUML'F UF BE=COml IVe- ACHNT #7 £5DRESR .
(. 1S eTIve ALTICCL OTO &
CHARACTERs 1 T.L ¢ »75%1 ¢X:ivICUSLY
7
C CHARECTESS I To & w.if FRIVISUSLY
z
¢ CHARACTERS S TO 6 w+RE PREVIOUSLY
. 2
CHARACTERS 7 TO 11 WERE FREVIOUSLY
33
C CHARACTEPS 12z TL 13 WriRE FREVIQUSLY
DA .
CHARACTERS 1 TO~ 3 HAVE E€EEN SEZIT TO :-
C 3
CHARACTERS 4 TC 5 HAVE REEN SET TG :-
"2
& CHARACTERS 6 TO 7 HAVE EESM SET T0O :-
2
CHARACTERS & TO 12 HAVE EEEN SET TO :-
(5] 33
CHARACTERS 13 TO 14 HAVE FEEN SET TO :-
DA

¢ *%k* RECORD HAS EEEN REZSTRUCTURED *+=*
CHARACTERS & TG 1¢

OF RZCORD TYPL ACNT V
SREN ALTZREL TC

o

RSICGN ¢ AT ADDReSS

\n

[
x
x
<
[

*kk 'NODIFY ' (OMPLETED#®+
TRANKSACTION OF 3 10 PCSTEZC - NcW BALANCE § 43
*+x*END OF TRANSACTION POSTING RUN*&x

M

R

Data:21

RECORD TYPE ACNT VERSION 2 FOUND

AT ADDRESS 5

THIS RECCRD HAS ALREADY BZIEZN RESTRUCTURED AND MEED NOT BE ALTERED
IF NO OTHEER RZQUEST IS OUTSTANDING TYPE REFLY 21)

o

o™

¢ - bata:21 .

RECORD .TYPE ACNT VERSION 1.FOUND

AT ADDRESS 6 . :

C \

xx%x FOLLCWINE IMNFORFATICN IS FROM RESTRUCTURING RCUTINZ #x%
VERSION NUNBER OF REZCORD TYPZ ACNY AT ADDRESS €

¢ IS BEING ALTERED TO 2

CHARACTERS 1 TO 2 WERT PFREVIOUSLY

4
C % . € CHERACTERS 3 T & Mzii FREVIOUSLY
S 1
LT CHARACTERS S TC €& wWIRE FREVIOUSLY
. ’ ¢ 4."‘ (1
CHARACTERS 7 T2 11 wzRS “REVIOUSLY
. LL
(CHARALCT 52 1z 7o 1z w -7 <7 PRIVIOUSLY
CA
. CHART LT Zu! 170 3 LJVI cZrw ST TCQ -
. - C. 3
CHAF- O 7 - o« Ve v VL v 3T TC -

1

B N I N o T

L
uT

TrLCeED B
IF MG OTHES

O~

BRI
"o
P

<o
ey e
v n
-

W n

Pata:21

CTuRe G

LR

STANCINEG TYPD NP

*x% CLOSED RESTRUCTULRING COMPLETE #%x%

Data:2%
*%% THE CURRENT SCHEMA »ws

RECORD TYPE CUST VERSION
DATA ITE¥F CNUF START AT 1
DATA ITEM NAMT START AT 32
DATA ITEF NAM2 START AT 7

~—DATA ITER NAM3 START AT 11
SET NAME CUAC POINTER TYPE
SET N&ME CUAC POINTER TYPE
KEY DATA ITE¥ CNUM

RECCRD TYPE ACNT VERSION
DATA ITE®M £CNC START &7 1
DATA ITEF BRNO START 8T &
DATA ITEM CUNO START 2T &
DATA ITE® EALC START AT ¢
DATA ITEM ACTP START &7 13
SET NAKE CUAC POINTER TYFE
SET NAME CUAC POINTER TYPE
SET NANE CUAC POINTER TYPE
KEY CATA ITEN ACNO

~RECORD TYPE BRCH VERSION
DATA ITEM ENUM START AT 1
DATA ITEF ENMIT START AT 3
DATA ITEX ENWZ START AT 7
DATA ITEF ENM3 START AT 11
DATA ITEM LOCN START AT 15

KEY DATA ITEM BNUA

SET NAME CUAC

1
END AT 2 FORMAT
END AT 6 FORM2T
END AT 10 FORBAT

END AT 14 FORMAT
FRST :
Last -
2
EIND AT X FORMAT
END AT S FORMAT
END AT 7 FORMAT
END AT 12 FORMAT
END AT 14 FORMAT
NEXT
PRIR
CWNR -
1
END AT 2 FORMAT
END AT & FORMAT
END AT 10 FORKAT

=D
END

AT 14 FORMAT
AT 15 FORMET

,12)
L, AL)
LAL)
LAL)

\

A T R N Y
R R S o)
[SRYI VIR
o M N

OWNER RECORD TYPE CUST MATCHING DATA ITEM CHRUM
MEMBER RECORD TYPE ACNT MATCHING DATA ITEM CUNO

POSITION OF NEW INSERTS -

Data:30

*kk THL CURRENT DATA 2ASE

ADD F=Z£OR2D VPSH

L AST

* k%

1 cusT 1 TJCNES L LA}
¢ UNT z 1 11 11¢e
I st 1 CIMITH,JLmES
4 AUNT : 1z 3zca
5 crs Z 372z Liog
6 CNT < L1 1 Ligs
7 c- 1 1L IGTaL! ¢
o 1 EEEEEE 1

PCINTEZRS

~ 0o

oY Y

TAG
CoOuLOLGOC ¢
oCcouceC o {
CL¢euo L C
u e 0D ([
cC oo cCc L
CCoL ¢ C ¢
[{.

—A3.69—

Addition of the Account Type to the Account Record Key

The key to a record may be amended by a restructuring
initiated by the user entering a code of 25 on his
terminal. The DBMS amends the schema entry for the
record in question to reflect the revised key data
items prgvided by the user. In this implementation
this is all that is required, there being no need to

increase record version numbers.

The example shows a run of the Transaction Posting pro-
gram at Version 1 to post £10 to account 2. After the
restructuring, version 4 of this program is introduced.
This requests not only the account number but also the
account type from the user to.determine the account to
receive the.posting. The FIND1 command then carries
out a sequential search of the data base for a recofd

with the required values in both data items.

[TN

a0

{;‘5

e o 0o @ N 60D

)

~ O

(

bata:lz) —A3.70 —
xx*RUN OF THAKNSACTICN PCSTING PROCGRANR X
TYPE VERSICN NUMBER OF PROGRAM

pota:l

TYPE ACCOUNT NUMBER AND VIALUE TO EE POSTED
pata:02 CG1U

*x%x FOLLOWING INFORMATION IS FROM *FINDT' %%
DEMS IS SEARCHING FOR

RECORD TYPE ACNT VERSION 1

WITH CHARACTERS 1 T0O 2 EQUAL TO

2
RECORD FOUND AT ADDRESS &4 VERSION 1

’***'FIND1' COMPLETE D% **

2%k % FOLLOWING INFORMATION IS FRO? CGET xxx
CHARACTERS 7 TO 11 \

OF RECORD TYPE ACNT VERSION 1 AT ADDRESS & ARE:-
22
*%x SGET® COPPLETED®***

**x FOLLOWING INFORMATION IS FROM ‘*MODIFY®#*2
CHARACTERS 7 TO 11
OF RECORD TYFE ACNT VERSICN 1 AT ADDRESS &
HAVE BEEN ALTERED TO

32
xxk*MODIFY* COMPLZTEDX**
TRANSACTION OF & 10 PGSTED - NEW BPALANCE % 12
«x*CND OF TRANSACTION POSTING RUN**x

pata:25

~%«%«%*START OF AFMEND RECORD KEY RESTRUCTURING #*x

TYPE RECORD NAME ANCD REVISED KEY DATA ITENMS
patazACNT ACNO ACTP -
xx*x RESTRUCTURING COMPLETE %%

bata:02

"wx#RUN OF TRANSACTION POSTING PROGRAMa#%
_.TYPE VERSION NUMBER OF PROGRAM :

patazé / ‘
TYPE ACCCUNT NUMBER, ACCOWNT TYPE AND VALUE TO BE POSTED
pata:02 CA 0010

#**FOLLOWING INFORMATION IS FROM TFINDI %+
DBMS IS SEARCHING FOR
RECOGRD TYPE ACNT VERSION 1
WITH CHARACTERS 1 10 2 EQUAL TO
2
AND CHARACTERS 12 TO 13 EGUAL TO
CA .
RECORS FOUAD AT ADDRESS 4 VERSION 1
*»x % *FINDT* CORPLETE Dx**

x**FOLLOWING INFORMATION I3 FROP PGET ' w*x
CHARACTERS 7 T2 11
OF 27482 TYFS SCNT V-83ICK 1 AT ADDPESS [

i

m

o
]

Lot

sx* FOLLOWING INFORBATICK 1S FROM ‘MOCDIFY®x**

ey 1 -
€

YA IO IS L AL PR g2 T6 A
AR SRR Sk G

YL 1 R 2 Moy Fab > P

R N et

cH2apaCTERS 7 TO 11 — A3.71 —
GF RECORD TYPE ACNT viERsSICN 1 AT ADDRESS &
HAVE BEEM ALTEKED TO
42
Ax & MO TEY"® COMPLETEO***
TRANSACTION OF % 10 POSTSO - HEW BFLANCE % 42
~x*END OF TRANSACTICH POSTING RUN®*w
pata:29
as'% THE CURRENT_SCHEMA *x*
RECORD TYPE CUST VERSION 1
DATA ITEK CNUM START ‘AT 1 END AT. 2 FORBAT ,12)
DATA ITEX NAM1 START AT 3 END AT 6 FORHKAT ,A4)
DATA ITEK NAM2 START AT. 7 END AT 10 FORMAT ,A4)
_DATA ITEM NAM3 START AT 11 END AT 14 FORMAT ,R4)
SET NAME CUAC POINTER TYPE FRST
SET NAHE CUAC POINTER TYPE LAST
KEY DATA ITEM CNUM . =
RECORD TYPE ACNT VERSION 1
¢ DATA ITEM ACKNO START AT 1 END AT 2 FORMAT ,I2)
DATA ITEN BRRC START AT 3 END AT 4 FORMAT ,I2)
DATA ITEM CUNO START AT 5 END AT & FORMAT ,12))
¢ DATA ITEM BALC START AT 7 END AT 11 FORMAT ,I5)
DATA ITEM ACTP START AT 12 END AT 13 FORMAT ,LA2)
SET WAME CUAC POINTER TYPE NEXT
‘@ SET NAME CUuAC POINTER TYPE PRIR
SET NAME CUAC POINTER TYPE CWNR
KEY DATA ITEM ACNO .
¢ KEY DATA ITEW ACTP
RECORD TYPE BRCH VERSION 1
G DATA ITEM EBNUM START AT 1 END AT 2 FORMAT ,12)
DATA ITEK ENM1 START AT 3 END AT 6 FORMAT ,LA&4)
BDATA ITEM ENM2 START AT 7 END AT 10 FORMAT ,A&)
(. OATA ITEM gN#3 START AT 11 END AT 14 FORMAT LAL)
DATA ITEM LOCN START AT 13 END AT 15 FORMAT A1)
KEY DATA ITEM BNUN :
¢ SET NAME CUAC -
‘OWNER RECORD TYPE CUST MATCHING ‘DATA ITEM CNUM
Z MEMBER RECOBDrTYPE»ACNTXH%TCHINGFQATA'ITEH)@UNO
.?OSITIONVOF\NEH'INSERTS - LAST 77 -
3]
@ pata:30
ax%x THE CURRENT DATA BASE **X
S ADD RECORD VRSN DATA POINTERS
C 1 cuUsT 1 1JCNES ,ALAN 2600
2 ACNT 1 1t 11 11 €A 6 010
3 CusT 1 2SMITH ,J ANES 4500
C é ACNT 1 2 12 L2Ch 5030
5 eCNT 1 3z 2 33 DA 0 & 320
6 ACRT 1 ¢ 11 L6 CA 0210
C 7 FECH 1 18 IGTOUWN U 0000
' T q SamalLToEY R ouceao

[N eNelalolale)
~TO0O0OO0O0O
cocoOQoOOOo
ol eR=ReReNolel=)

cCoOOODOO0
OO0 00

Addition of the Branch Accounts Set

To add a new set the user must enter a code of 17 on

his terminal. He must then supply the following:

The Name of the New Set

The Name of the Owner Record

The "Name of a data item in the Owner Record to
be used for matching

The Name of the Member Record

The Name of . a data item in the Member Record
to be used for matching

The position at which new member records are

to be added to the set.

In this example the new set is '"Branch Accounts'" with an
owner of Branch (Matching Data item Branch Number) and a
member of Account (Matching Data Item Branch Number).
New inserts are to be added first. The restructuring

uses a closed strategy.

The first branch record on the data base is found as
branch 1 at address 7. This is restructured to version
2 by the addition of two further pointers for the new
set (this operation is trivial in this case since the
original version of the record had no pointers defined)
both with a value of zero. Thus at this point there
are no member records in the Branch Accounts set for
branch 1. Similarly, the second Branch record is

restructured.

Since there are no further Branch records on the data
base a search is now made of each Account record in
address sequence. The first record is for account 1

at address 2. Like the branch record this record is
then restructured to accommodate three additional -.
pointers for the new set. Initialiy, these are set to
zero but‘the DBMS retrieves the value of the Branch
Number data item (in much the same way as it does for a
GET) and uses this value to find the Branch record with
the same value in its matching Branch Number data item.
In this case the Branch Nu&ber is 1 and the Branch

record is found at address 7. Pointers on both records

are then modified to reflect their tenancy of the new set.

The Transaction Posting program can still be run at
version 1 to post £10 to account 1 even though this
‘record is at version 2. Similarly, a run of the Calculate
Balance program has no difficulty in operating on the
account 1 record (at version 2) and on the Account 4

record (at version 1).

Further account records are then accessed at addresses 4,
S5 and 6 and these are restructured to version 2. Where
necessary the pointers on any other existing version 2
account record which is the previous first member of

the set to which the new account is to be added are also

amended.

When the restructuring is complete a new program is run
to calculate the net balance for a branch by progressing

through the "Branch Accounts'" set.

EATRULTURING a+4

=i STRATEGY

CO#D TYPZ & MAYCHINLE OLATS iT
TCPING DAT A ITEM
ER
T

" 3T (F LD wE
"TukI&t: USES
NEIE L Cwige
MEMEIR RECGRD TYPE N M3
€ AND PGS ITICN OF HEW INSER
Data:ERAC ERCE EBNUM ACN ERNO FREST
> RESTRUCTURING MOW UNDER WAY*#
TG £ OF ERCORD TYPE BRCH VEASIUHN 1
7 ARE

A
™

on
s
(=]

=
bul

0
-C VERSICH NUKESR OF RECARD TYEZ BRCH AT ADBRESS 7 HAS BZENMN S:iT TGO

POINTER 1 HAS BEEN SET T0 @

POINTER 2 HAS EEEZN SET TC 0

POINTER I HAS BEEN SET.TC O

POINTER 4 HAS BEEN SZT TO0 O

POINTER 5 HAS BEEN SET TC ©

PCINTEK & HAS CEEN SET TO G

POINTER 7 HAS BEEN SET TC O .
POINTER 8 HAS BEEM SET T0 O -
POINTER ¢ HAS SEEN SET TC O

POINTER 1C HAS EBEESN SET TO 6

IF NO OTHEZR REGUEST I3

CUTSTANDING TYFE RESLY 1&

Data:1:
POINTERS 1 T0 8 OF RECORD TYPE ERCH VERSIGN 1

AT ADDR2ZSS & ARE

g 0 0 ¢ ¢ 0 ¢ ¢Q -
VERSIOH NUFEER (F RECGRD T1YEE 3RCKE AT ADORESS £ HAS BIZN SET TO
POINTER 1 HAS EEEN SET TCe ©
POINTER 2 HAS EEEN SET TC O
POINTZR 32 HAS BZEN SET TO O
POINTZR & HAS HEEN SET TC O N
POINTEKR S HAS EEEN SET TO G
POINTER & HAS BEEN SET T¢C 0
POINTER 7 HAS EEEN SET TO O
POINTER & WALS BEEN SET TC O
POINTER 9 HAS BEEN SET T0 O
POINTER 10 HAS BEEN SET TC ©

UZST IS

IF NO OTHER REQ OUTSTANDING TYPEZ REPLY 18

Data:18
POINTZIRE 1 TO 7 OF &ZCORD TYPEZ ACNT VERSION 1
AT ADD?Z5S 2 RRE
& 0 1 C & G ¢
VERSION ANUNBER OF RECORD TYPE ACNT AT ADDRESS 2 HAS BEEN SET 19
PCINTIR 1 HAS EBEEN SET TC O
POINTER 2 HAS E2EN SEZT TC U
PGINTIR 35 MAS EBEEN SEZT TC 0
PCINTF® L KAS ZEEN S€T 76 o
POINT:Z® T KWaS ctin SI7T TC O
POINT ™ & H&t tZIN 5.7 TC 1
POINTZ" 7 KLy 283k S§5T TC
C POINT & » P&3 LEck SET T¢ o
FLINT L % mie “8Zn €T F0
PCINT ¢ 17 .~ "t 3.7 To .
C Citz, o7 Tl

1

RECO=O FrUMS WT wubf 08 3
POIKTES 1 GF 2ICORD TYeD ACKHT VERSICN 2z AT £#DOYESS
HAS HELN ALTREED TO
POINTER 5 SF RECGRD TYEE ACHNT VERSIGN 2 AT ARDDRESS
H&S &cih ALTERED TO 7
PGINTE? 1 CF RECORD TYFEZ S5CH VEZRSIGN 2 AT BGDRESS
HAS 55N ALTERED 7O Z
POINTZE Z CF RECCRE TYFE BSCH VERSIGN 2 AT PAELDRESS

: ALTeRED TO 2

H2k REQUEST IS OLTSTANDING TYPE FEPLY 19

Data: 26

**kx THE CUFRRENT SCHEMA %%

RECORD TYPE CUST VERSION 1

DATA ITEN (NU START 2 1 20D A 2 FORMAT ,12)
DATA IT:Zv KAMT STHRT AT 2 ZND AT 6 FORMET ,AL)
DATA ITEN KMARE START AT 7 ZHD AT 10 FORMAT ,LA4)
DATA ITe¥ NAM3 START 4T 11 END AT 14 FORMAT ,LA64)
SET MAYE CUAC PJINTER TY2c FRST

SET nEME CULC FUOINTER TYPE LiST

KEY DATA ITEx (NU»

RECORD TyYP:t ACNT VERSION 2

DATA ITEF ACNO START AT 1 END AT 2 FORKAT ,LI2)
DATA ITEN ERNCG START AT 2 END AT 4 FORMAT ,I2)
DETA IT:IF CUNO START #7 5 IND AT 6 FORWMAT ,12)
DATA ITEF EALC START A7 7 c&ND AT 11 FORMAT ,15)

DATA ITEF ACTF START AT 12 END AT 13 FORMAT ,A2)
SET NAME ERAC POINTER TYPE AEXT

SET NAME SRAC FOINTER TYP? PRIR

SET NAME ZRAC POINTER TYFE CWNR

SET NAME CUAC POINTER TYPE NEXT

SET MAME CUAC POINTER TYPE FRIR

SET NAME CUAC POINTER TYPZ OWNR

KEY DATAR ITEK ACNG

om

mom

RECORD TYPE ACNT VERSION 1

DATA ITEF ACNG START AT 1 END AT
DATA ITENM ERNO START AT 2 END AT
DATA ITE¥ CUMO START AT 5 END AT
DATA ITEW EALC START AT 7 END AT 1
DATA ITaZM ACT: START wT 12 END AT 1
SET NARE CUAC PCINMTER TYFE WEXT

SET MNAME CUZC POINTER TYPE PRIR

SET NAYE CURC PCINTER TYPE CWMR

KEY DaTA ITEM ALNC

FORNMAT ,12)
FORMAT ,12)
FORFAT ,12)
FORMAT ,1I5)
FORMET , A2.)

[VXRE o JF S0 N0

o

[¢1]

RECURD TYFZ ERCF VERSIGH 2
DATA ITCEF cdUR START #T 1 D AT ¢ FORMIT ,12)
DATA 172! RblI1 START AT 3 v AT € FUIXET LE4)
o BAT2 TT 2% - #M2 START 1T 7 Zhiv 2T 10 FORNET , aL)
om0 DATA ETTY MR OSTIET T 31 ARD AT 14 FORF T LE4)
- : : DETA TT0r LaCw ITART AT 1% INE AT 15 FOKTAT LAl)
’ o . ST74 9 T . Y. E3T
; - . (SET L Y& LD R IeT e TNee LenT
<Y - i '

rr=2

0 bR VOE. RSIOL) <™
NeTA ITEM ENUK START AT 1 END
DATA " ENRY OSTART AT 3 END
DATA . ENMZ START AT 7 END 1
DATA ITEN BNM3 START AT 11 =ND AT 1
DATA ITEM LOCN START AT 15 iND AT 1
KEY DATA ITEM BANUM

s
Cﬁ
FORM AT

2

6 FORMAT
0 FORMAT-
4
5

FORMAT ALY . -~
FORMAT A1) - v .0

19
.
o b n o,
'

SET NAME CUAC
) OWNER RECORD TYPE CLST MATCHING DATA ITEM CKUM
MEMBER RECCRD TYPS ACNT MATCHING DATA ITEM CUNO
POSITION OF NEW INSERTS - LEST

EEANE S

SET NAME BRAC

OWNER RECOPD TYPZ ERCH MATCHING DATA ITEM EBANUM
MEMBER RECCRD TYPE ACNT MEATCHIWG DATA ITEM BRNO
POSITION OF NEW INSERTS - FRST

Data:30
k THE CURRENT DATA EASE **x

ADD RECORD VRSN DAT?2 POINTERS
CUsTY
ACNT
’CUST
ACKT
ACKNT .-~
ACNT
AR CH
SR CH

w
MNP OWVOO

3

[

Q3 NN NN N =
NN ad ed o b D) -d
~
»
oNOoOOoVIESON
oocococoCcoeo
cocooocooo
Cooooo=o
=-N-X-Y-N-X-K-¥=)
coooooo0Q
coocoooon
QCQToooo

wv n

LTOWN R

bata:02

*x**RUN CF TRANSACTION POSTING PROGRAMa*x f}.
TYPE VIRSIGN NUMBER OF PROGRAM ;
bata:?)
TYPE ACCCUNT NUMBER AND VALLE TO EE FOSTED i
Data:01 CO10 ' ;

;

i

***FOLLOWING INFORMATION IS FROM *FINDT =
DEMS IS SEARCHING FOR

RECORD TYPE ACNT VERSIOK 2

. WITH CHARACTERS 1 TO 2 fwlAL TO

.\1 1 . :
7 & RECORDL FQUMND AT ADDRESS 2 VERSION 2 , -
A %% 'FIND1® COMPLETED* = :

(- *x* FOLLOWING INFORMATION I3 FROK *GET'xkxx
g CHARACTER> 7 70 11 L
4 OF RECCRD TYFE ACNT VERSIOM 2 AT ADDRESS 2 ARE:- - i
I *x"GIT' COMELETEO%%x ' . :

b
I}

**x FOLLOWING INFORMATIOM IS FROF 'MODIFY®x%x ‘<
CHARACTERS 7 TO 11
OF REZCORD TYPE ACNT VERSI{w 2 AT ADDRESS 2 ’ "
& HAVE 22Ef ALTIZIRED TO
21

*E X TMODIFY ' COMPLETED® %«
& TRANSACTIOMN OF $ 10 POSTEL - NEW BALANCE
**k*END OF TRANSACTICN PCSTIAG RUN*x*

m-,,
€

v
N

PO WENT A

an
(2
ny
-

ool

1
o .
g
g

o~

Data:il -

—A3,77— B o

Ak RU.. CF pALOLCE CALCULATICH PROCRAMkxx
TYP:2 V-KLZICH "UFec .2 OF PLGGT aM

pataci 3

TYFE CUSTCFLn RNuivetk
bata:C1

***FOLLOWING JHFORMATION IS FROM "FINDI® %4
DBMS 15 SEZARCHING FCR
RECORD TYFE CUST VERSION 1
WITH CHARACTERS 1 10 2 fwlLAL 70
1
RECORD FOUND AT ADDRZS5S 1 VERSION 1
2% FIND1' COMPLETEDa#=*

**x FOLLOWING INFORMATION IS FROM *GET ##=
CHARACTERS 3 TQ0 6)]

OF RECGKD TYFE CUST VERSION 1 AT ADDRESS 1 ARE:-
JONE ’
*#%"GET' COMPLETED**%

**xxFOLLOWING INFORWATION IS FROM 'GET'x*x+
CHARACT e &S 7 16 1C
OF RECCRD TYPE CUST VERSIONM -1 AT ACDDRESS 1 ARE:~
S, AL
k 'GET® COPPLETEDA%x

*xk FOLLCOWING INFORMATION I3 FROM '"GET'®x+%
CHARACTERS 11 TC 14

CF RECOEKED TYPE CUST VIRSIONW 1 AT ACDRESS 1 AREZ :—
AN N :
*x*GET" COFFLETED***

**xk* FGLLOWING INMFURMATION IS FROM °‘*FIND2' %%+
VALUE IN POINTER 1
OF RECCRD TYPE CUST VZRSICHN 1 AT ADDRESS 1

Is ¢ :
VERSION GF RECORD TYPE ACNT AT THIS ADDRESS IS 2
*xk 'FINDZ® COMPLETED**%

% FOLLOWING TNFORMATION IS FROM 'GET"#xx
CHARACTERS 7 TO 11
OF RECORD TYPE ACNT VERSION 2 AT ADDRESS 2 ARE:-
21 : : ' .
% 'GET' CONPLETED#» o A

**%x FOLLCWING INFORMATION IS FROM TFINDZ® aaw

"VALUE IN POINTEPR &

OF RECORD TYPE ACNT VERSION 2-AT ADDRESS 2

IS 6

VERSION CF RECORC TYPE ACMAT AT THIS ADDRESS IS 1
***'FINDZ' COMPLETED¥ %

Ax*FOLLOWING INFORMATION IS FROM 'GET'*xsx

CHARACTERS 7 T¢ 11

CF MeCGRD TYPEZ FCNT VERSION 1 AT ADDRESS 6
L4

A% 'GIT (COFFLETIL*%%

T
x
7t
.
|

*ARFOLLIUBING INFCRMATION I3 FFO@ 'FINDEZ'w*x
VLU= Fh BCIRTLS D
OF FIF™37 TYPL #ChWT V7§ lI(N T 27T AfDRISY ¢
Ie
*eRPET Nt O T I e

[: - 1 : o

el

AT

Cata:1=

PCINTIXZ 1 T0 7 4F
AT Apuaz3s & n7:

S O A G

VERSICN U

POINTZx § weyu
PCINT & RS ¢ N
PGINT " OHAL TEEN
PCINTEZ: L HAS ZtoH
POINTER 5 KAS FEEN
POINTER & HAS ECEN
POGINTER 7 HAS EBEEN
POINTER ¥ HAS EZgN
POINTER @ HAS BEEN
POINTER 10 HAS OBEEN
CHARACTERS (3 TC &

OF RECORD TYPE ACNT
1 .

WD PG WD

Sl e hen.

—A3,78 —
ACKT VERSION

0ED TYP

EA NS S I 2 NS TS S U BTN PR

Al el o] ot
-t
o

e

VERSI ON

DEMS 1S SEZARCHING FCPR
RECORD TYFPE ERCH VERSION 2

WITH CHARACTERS 1 70 2 :GUAL TO

1

RECORD FCUND AT ADDRESS 7

RECORD-TYPE ACNT VERSION 2

POINTER 2 CF RECOR
HAS BEEM ALTERED TO
POINTZR 1 CF RECOR
HAS EZZN ALTE=RED TO
POINTEXR 3 OF RECOR
HAS BEEN ALTERED 7O
POINT:zR 1 OF RECOR
HAS BEEN ALTEZRED TO

IF NO CTHER REQUES

Data:19

AT ADDRESS 5 ARE

0 4 3 ¢ 0 0
VERSION NUMBER OF R
POINTER 1 HAS BEEN
POINTER 2 HAS BEEN
POINTER 3 HAS EfcEN
POINTER &4 HAS BEEN

€& POINTER 5 HAS BEEN
*POINTER. 6 HAS BEEN
“POINTER '2° HAS BEEN
€ POINTSR & HWAS BEEN
“POINTER 9 HAS BEEN

.

C.:

POINTER 10 HAS BEEN

CHARACTERS 3 TO 4

OF RZCORD TYPE ACNT
2

]

L

I
v

£

3

- POINTERS 1 TC 7 OF REC

2 FOUND AT ADDRESS
TYPE ACNT VERSION 2 AT
?vpg ACNT VERSION 2 »T
svpé ACNT VERSION 2 AT
;YPé BRCH VERSION 2 AT

I3
I

COR

SET T0
SET TC
SET TO
SET TC
SET TO
SET. TC
ST TO
SET TC
SET TO
SIT T¢C

DBMS I35 SEARCHIKE F(R
RECORD TYPE BRCH VERSION 2

WITH CHARACTERS 1 7O

2

RECGRD FLUMND AT 20DREZSS &

POINT:R 1 CF RECORL TYFP-

ALTE8:zp VO

ERZD TC
1 0F p=Con
TC

ALHT
¥YFE AOnT
}YPZ Lo

-

o 1}

oo OoOwowmocc

ODCQOOOoOWwWPrOOQOO

2 EQLAL

ACHT AT ADDRESS

AT ADDRESS

AT ADDRESS

T0 :-

VERSION 2

<
1
v

wr
—
o
Z
~ny

"

S iaTe AR S

4

D TYPE ACNT AT ADDRESS

AT

AT

AT

1

L HAS BIEN

2
ADDRESS

FDDRESS
ADDRESS

ADDRESS

S CLTSTANDING TYPE REFLY 19

ORO TYPE ACNT VERSION 1

SET TO

S HAS EEEN SET TO

Uy

[y}

-~

Data:i® —A3.79—
POINTERS 1 TO 7 OF RECOFRD TYPE (CNT VERSICN 1
AT ADDRESS € ARE
¢ 2 1.0 G 0 0O
VERSICN NUMRER CF RECOWD TYYPE ACNT AT ADDPRESS & HAS FEEN SET TO

POINTER 1 HAS PFEEN SET To O
POINTER 2 HAS EBEEN SET 70 O
POINTER 3 HAS EFEEN SET TG O
POINTER 4 HAS EEEN SET TO O
POINTER 5 HRS EEEN SET TO 2
POINTER 6 HAS EEEN SET 7O 1
POINTER 7 HAS EEEN SET TO 0O
POINTER 8 HAS BEEN SET T0o O
POINTER @ HAS PEEN SET TO O
POINTER 10 HAS PEEN SET TC O

CHARACTEPS 2 TO 4
OF RECORD TYFE ACNT VERSION 1 AT ADDRESS 6 ARE :-
1
DE®S IS SEARCHING FOR
RECORD TYPE FER(CH VERSION 2
WITH CHARACTERS 1 TO ¢ EoUAL TO :-
1
RECORL FOUND AT AGBDRESS 7
RECORD-TYFE ACNT VEPSICN 2 FOUND AT ADDRESS &
POINTER 2 OF RECCRD TYFE ACNT VERSION 2 AT ADPDRESS &
HAS BEEN ALTERED TO 6
PCINTER 1 OF RECCRD TYFE ACNT VERSION 2 AT ADDRESS . 6
HAS BEEN ALTERED TO 4
PCINTER T OF RECCRD TYFE ACNT VERSION 2 AT ADDRESS 6
HAS BEEN ALTERED TO 7
POINTER 1 OF RECCRD TYFE BRCH VZRSION 2 AT ADDPRPESS 7
HAS BEEN ALTEFED TO &
IF NO OTHER REGUEST IS OQUTSTANDING TYPE PEFLY 19

Data: 19
#x% CLOSED RESTRUCTURING COMPLETE *%x

bata:z(é

**% RIN OF CALCULATE PPENCH BALANCE PROGRANM +#x
YPE BRANCH NUMEER
bata:(1

***FOLLOWING INFOSMATION IS FRONM *FIND1'%#s
DE¥S 1S SEARCHING FOR
RECORE TYPE ERCH WERSION 2
WITH (HACACTERS 1 TO 7 EQUAL TO

1
RECCRE FGUND ®T ARPBSESS 7 VE:SION 2
*A#'FINDT' COMPLETFD**a

**+FOLLONING INFOPMLTICHK TS FaQN AT *xaw
CHRPACTESS 270 £
GF SECCEDN JYEC BICu g rapne © 4T fnpa-cc Tt

vote -

2

s eemmn g T

R
i

M

et
I

— A3,80 —
**XFOLLOWING INFOSHATION IS FROM *RET'waw

CHARACTERS 7 TOo 10

OF RECORD TYFE BFCH VEKRSION 2 AT ADDRESS 7 ARE:-
OWN

R*PGET® COMPLETED=*%x

***FOLLOWING INFOPMATIOMN IS FROV 'CET' 4%
CHARACTERS 13 10 14
OF RECORD TYFE BFCH VERSION 2 AT ADDRESS 7 ARE:~
U .
*%'GET' COMPLETED+**

***FOLLOWING INFORMATION IS FRO™ 'FIND2®42x»

" VALUE IN POINTER 1

OF PECORD TYFE PRCH VESSION 2 AT ADDPESS 7

IS ¢ 2

VERSICN OF RECORD TYPE ACNT AT THIS ADDRESS IS 2
x"FIND2' CCMPLETED* #4

***FOLLOWING TNFORMATION IS FROM "GET® auw
CHAPACTERS 7 TG 11
OF PECORD TYFE ACNT VERSION 2 AT ADDRESS & ARE:-
44
*2GET' COMPLETED2w#

***FOLLOWING INFOFMATION IS FROGWN *FIND2® % %%

VALUE IN POINTEK 1

OF RECORD TYFE ACNT VERSIQON 2 AT ADDRESS 6

IS 4

VERSICN CF RECCRD TYPE ACNT AT THIS ADDRESS IS 2
***x"FINDZ2® COWMPLETED® %%

**AFOLLOWING INFOSMATICAN IS FROV 'GET " xax

CHARACTERS 7 TO 11

OF RECORD TYPE ACNT VERSION 2 AT ADDRESS 4 ARE:-
22

'GET' COMPLETED4

**+FOLLOYING INFORNMATION IS FRO¥ "FIND2®#*#x

VALUE IN POINTER 1 .

OF PECORD TYPE ACNT VERSION 2 AT ADDRESS 4

I1s 2

VERSICN OF FECOFD TYPE ACNT AT THIS ADDRESS IS 2
xk'FIND2' CCNPLETED# %+

***FOLLOWING JNFOSMATION IS FROW 'GET %¥

CHARACTERS 7 To 11

OF RECORD TYFE ACNT VWSKSION 2 AT ADDRESS 2 AFE:-
21

*%**GET® CCMPLETED®=*»

***FOLLOWING TNFOPMATICN [S FFO¥ 'FINDZ'"#ux
VALUE IN FOINTECS 1

OF PECOPD TYEF ACAT VERSIGHN ¢ AT ADDRESS 2
Ic G

x"FIND2® CONPLETEDx

BRLANCE FOF FE32KCH 1 T[GTOVN U iIs £7
END OF FPANCH ®ALALCE CALCULATICN 20N

— A3.81—

WRITE (€,1390) . .
FORMAT (*0Ox%* RUN OF CALCULATS BPFANCH BALANCE PROGRAM: - %% ')
MRITE (6,1391) .)
FORMAT ('TYPE BRANCH NUMBER')

READ.(5,1392) 1ERAN : ‘
FORMAT (12) S . } S

18AL=0 L - o .
CALL FINDT (xancn IERAN ISPACE ISPACE, IEPR) ‘
“1F - CIERR. NE.1) 60 _TO 62.

WRITE (6, 1393)IERAN
ZFORMATA(’ BRANCH *,12,°.NOT FOUND')" S o
60 TO €6 ’

CALL GET (KBNM1)

IWNT=TIURACT) ="

CALL GET(KENMZ)

IWN2=TUWACT)

CALL GET(KBNM3)

IWNZI=TUWAC(T)

CALL FIND2 (KACNT,KBRAC,KFRST,IERR)

IF (IERR.EQ.1) €GC TO 68

CALL GET(KBALC)

IBAL=1E8AL+IUWACT)

CALL FIND2(KACNT, KBRAC,KNEXT,IERR)

IF (IERR.NE.1) 60 _TO €6

WRITE (6,1394) IBRAN,IWNY IWN2,IWN3, IBAL : -
FORMAT (' BALANCE FOR BRANCH *,12,° 3A4, I1s °,1I5)
WRITE-(6,1395) - ’
FORMAT (' END OF ERANCH BALANCE CALCULATION RUN®)

GO T0 .S . S ; L

70 sToOP 99

‘u’d..,_y‘r

:j FAIDRY

';élw B

- A{j’1 pu

avpendix 4 - Consumption of Computer Resources

By the EMAS Implementation.

This appendix gives details of activities carried out on
the version of the EMAS implementation of a Data Base
Management Systeam where the usage of computer resources are
monitored and reported to the user. Resources required for

different restructuring strategies may be compared.

The hemonstration Data.

The restructurings described here are based on a data base
of 10 custom ers of the Bank. Each customer holds one or
more account depending on the type of restructuring being
demonstrated. In order to simulate a "worst possible®
situation in terms of the clustering of the data all
customer records are placed together on the data base but in
the order 1,2,3,4,5,6,7,8,9,10. Thus a progression in key
seqguence will not correspond with a progression in physical
placement segquence. Similarly, the account records are
grouped together after all of the cCustoker records. Once
again this provides a useful distinction between logical and
physical order but also (since customer 1 holds account 1,
account 11, account 21 etc. and customer 2 holds account 2,
account 12 etc.) the ownor and member record occurrernces of
each set occurrence are invariably physically separate.

Fiagure 1 illustrates a ‘'Basic' Data Base where each

customer has one account.

Datail30

PLEASE TYPE START AND END ADDRESS

FOR DATA BASE PRINT Lo inTecOnOoner pecofd : Te LAST
Data: 1 30 To ARST Membes Record OF ,62;“}: / oo SeT

CusTomer'
«%+ THE CURRENT DATA BASE ##x omer's HcaunTs SeT

ADD RECORD VRSN DATA POINTERS TAG

1ocusT 1 C D Customer Number ©c 0o 6 0 0 0 0 0 O

2 CusT 3 6 0 0 0 0 06 0 0 O

3 CUST 1 5 1313 0 0 ¢ 0 0 0 0 & O

4 CuUST 1 7 _ 14 14 0 0 0 0 ¢ 0 0o ¢ 0

5 CUST 1 9 Accoust Mumber 1515 0 0 6 ¢ 6 0 0 0 0

6 CUST 1 2 Branch Number 16 16 06 0 0 6 0 0 0 3 0

7 CcusT 1 4 o N 1717 0 0 0 0 0 0 0 9 O

8 CUST 1 6 ustomes [Vumbe ¢ 1818 6 0 o8 0 0 0 0 0 O

9 CuST 1 8 Balance (5DiqiTs) 1919 6 0 ¢ 0 0 6 0 0 0

10 CusT 11 20 0 0 ¢ ¢ 0 O O ¢ O

11 ACNT 1 A ecounT P ZD o0 6 0 0 ¢ 0 .9 0

12 ACNT 1 3 3 60 2\0 0 0 0 0 0 ¢ O

13 ACNT 1 51 5 0CA 0 3 6 6 0 0 0 0 0

14 ACNT 1 71 7 0CA 0 4 6 0o 0 0 0 0 9 Y
15 ACNT 1 31 9 0CA 0 5 o ¢ 0 0 0 3 ° Hs-
16 ACNT 1 21 2 0CA 0 6 No ¢ o 3 3 0 S
17 ACNT 1 41 4 GCA 0 7 6N\N0 0 0 0 0 @ o
18 ACNT 1 61 6 0CA 0 8 6 N 0 0 0 0 0 "
19 ACNT 1 81 8 3CA c 9 6 6NO0O ©0 0 0 0

20 ACNT 1 10 1 10 0CA ol 0 10 ¢ 0 0 0 0 ¢

/Oouue/% N51<T ﬂnnce/ o v[nTO(To DWNER
[embes Recorel PR Recol 6(CusT,) —_—c —
@asTomers ﬁccouaT.s Set CNoné AS yQL e‘o“[m Sfomeljﬂaaan(sSet

(NoOther rlembers As Yetr

z‘yv

- A4 .3 -~

woff-1ine"™ Static Restructuring.

A program has been written to load the basic data base with
each account record having a balance of zero. A simple,
conventional application program, it uses the CODASYL DML
commands to STORE the 10 customer records, STORE the 10
account records and INSERT each account record into the
appropriate set occurrence of the customert's-accounts set
based on the customer number on that record. The
consumption of resources by the Load program gives some
measure of what would be required by the reload phase of an
noff-line" Static Restructuring. For such a restrocturing
the amendment tq record format would take place on the
sequential back-up copy of the data base. The unload and
reformatting phase would also require computer resources

Pigqure 2 shows a 1listing of the program to store 10
customer records and the stdre 10 account records and .insert

them into the appropriate set.

Pigure 3 shows a run of the program. The Input/Output
activity consists of (a) 10 Stores of Customer records which
require 10 Prime - Data File Writes and 10 Index Writes, (b)
10 stores of Account records which will also require 10
Prime Data Pile Writes and 10 Index Writes and (c) 10
Inserts of the Account records into the Customer's Accounts
sets which will require 10 Prime Data File Reads to retrieve
the owner Customer records together with 20 Prime Data File

Writes to update both Customer and Account records with

- pl_ b4 -

modified set pointers.

Thus there are 100 I/0 operations vhich are reflected in

287 page turns and 6.2 seconds of CPU usage.

—A4-5 -
110 WRITE (647416) ﬁjcqqré? 51

DO 911C I=1+20 {) d [f —
ISTATS(I)=0 ﬁ@7fqrn tSCt07
91106 CONTINUE ¢ ¢
CALL EMASFC(*METER®959 *DUMMY*90)
7416 FORMAT(®3#»+* RUN OF DATA BASE LOAD PROGRAM w»ww?)
90 111 1214942
IUWACL) =T
IUWA(2)=ISPACE
IUWA (3)=ISPACE
IUNA (&)= ISPACE
. CALL STORE(KCUST4KSUBS2)
111 CONTINUE
DO 112 I=241042
IuWA (1) =1
IUWA(2)=ISPACE
IUWA (3)=ISPACE
JUWA (4)=ISPACE
CALL STORE(KCUSTsKSUBS2)
112 CONTINUE
DO 113 I=14942
IUWAC1)=1
IUWA(2) =1
IVUWAC(3) =1
IUWA(4)=KCA
IUNA(5)=0
CALL STORE (KACNT¢KSUBSC)
CALL INSRT (KCUAC)
113 CONTINUE
DO 114 1=241042
JIUWA (1) =1
IUWA(2)=1
IUWA(3)=1
IUWA (4)=KCA
IUWA(5)=0
CALL STORE (KACNT+KSUBSC)
CALL INSRT (KCUAC)

114 CONTINUE
135 WRITE(697417)

7417 FORMAT(*0x++ END OF DATA BASE LOAD RUN #**=x?)
CALL EMASFC(®METER®95e *DUMMY*40)

WRITE(S599125)CISTATS(I)1I=1+8)
GO TO0 5

Datatll

*** RUN OF DATA BASE LOAD PROGRAM ##»
05/0S/83 22.07.22 CPU= 25454 Secs CT= 9 Mins PT= 2644 Ch= 176p

x++ END OF DATA BASE LOAD RUN ###

09/05/83 22.09.30 CPU= 31466 Secs CT= 11 Mins PT= 2931 Ch= 215p
FIND1 CALLS 0 ‘ - ‘

FIND2 CALLS 0

FIND3 CALLS 0

GET CALLS o

‘\\

Q

%

MCDIFY CALLS 0
STORE CALLS 20
INSERT CALLS 10
RECORDS RESTRUCTURED
INDEX REAPS 0

INDEX ua?&zs 20
PRIME DATA READS 10
PRIME DATA WRITES 40

0

CJ"".?.S)9 bd'?d
nJas ‘

C

=4

14n)oM

211218, 2"

P

g ajnsz

-9°'YV -

- R4.T -

In-Place_Static Restructuring.

A Closed Dynamic Restructuring to alter the Balance data
item from 5 to 4 digits was run wvithout an interruption by a
request for access by an application program. Figure 4 shovs

the run.

This run required 20 reads from the Prime Data File (in
physical placement sequence) to cover the 10 Customer and 10
Accqunt~tecords. The 10 Account records are modified and
written back to the Prime Data PFile. A total of 30 I/O

operations.

The run required 298 page turns and 5.16 seconds of CPU
time. The same order of magnitude as the off-line reload

operation.

Data:23

++*START OF AMEMD DATA ITEM FCRMAT RESTRUCTURING *##

09/05/83 22.10410 .CPU= 31.69 Secs CI= 11 Mins PT= 3036 Ch= 216p

TYPE OPEN OR CLSD FOR TYPE OF RESTRUCTURING

FOLLOWED BY RECORD NAME s DATA ITEM NAMEs LENGTH AND NEW FORMAT RECERA
Data:CLSD ACNT BALC 4 114) B

- +#4CLOSED RESTRUCTUR ING NOW UNDER: HAY***' ‘ o

»**x CLOSED RESTRUCTURING COMPLETE ###

. 09705783 22e13.00. CPU= 36485 Secs CT=: 14 Mins PT= 3334 Ch= 250p

FIND1 CALLS O
FIND2 CALLS 0 ﬁ\
FIND3 CALLS O AN
GET CALLS "0 & D
MODIFY CALLS 0 A

_ STORE CALLS 0 N
INSERT CALLS 0 Yy

- RECORDS. RESTRUCTURED: S
INDEX READS O - N
INDEX WRITES 0 ks
PRIME DATA READS _20 L a
PRIME DATA WRITES 10 o5 @il . o

_vg 't v -—

1

Tg oJhb

- AB.9 -

The_"Add_New_Accounts" Prodram.

A demonstration application program has been written to add
a new account record for each customer by STOREing at the
next available free address on the data base and then
INSERTing _ it into the appropriate occurrence of the

Customer's Accounts Set.

Figure 5 gives a 1listing of the program and a run is shown

in Pigure 6.

The run required 180 page turns and used 3.18 seconds of CPU
time. The consumption of resources is therefore
approximately half of that required for a static

restructuring of a similar number of account records.

c

#
L3

7418
o ._CALL EMASFC ('NETER'!S"DUMMY"O)

120

9120

115

116

741¢

9125

/9 INDEX RLADS *4I3,

/4 PRIME DATA WRITES *,1I3)

WRITE (637418)
D0 9120 I=1,20
ISTATSCI)=0 .
CONTINUE ' ‘ LELY

FORMAT (*#+* RUN OF ADD NEW Accouwrs PROGRAH ...-,

DC 115 I=11,1942 | - A
IUMACD) =1 CERI L e
IUWAC2) =] N ' quure 5-
IUWA(3) =I-10 L ~ -
TUWAC4) =KCA /9

IUWA(S) =0 , ' ro fam AtShn .
CALL STORE (KACNTsKSUBSC) //{e Ioe,\Néqﬁ - A'ﬁs

CALL INSRT (KCUAC)
CONTINUE : 28 (4 m
DO 116 I=1242042 ' o Vg
IUWACL) =1
~TURAC2) =1

IUWA(3)=1~10

IUWA(4) =KCA

IUWA(S) =0 X ,

CALL STORE (KACNT4+KSUBSC) :) -

CALL INSRT (KCUAC) 4 o

QONTINUE e o LTt
WRITE (647419) T o ’ ’
-FORMAT "(*0+#++ END OF ADC NEW ACCOUNTS RUN #wsv)”
CALL EMASFC (*METER® 959 *CUMMY *0) :

WRITE (699125) (ISTATS(I)yI=1912) A . T
FORMAT (* FIND1 CALLS *43I3, - S,
/ FIND2 CALLS %913, '

/ FIND3 CALLS *413, ' .
/9 GET CALLS *413, A - . LT
*/9% MODIFY CALLS °*oI3,) I
/9 STORE CALLS 913,
/+° INSZRT CALLS *,1I3, _
/9 RECORDS RESTRUCTURED *413,

*/9% INDEX WRITES 9413, "
/9 PRIME DATA READS %413, ‘

60 TO S

‘Data: 12

*+ RUN OF ADD NEW ACCOUNTS PRQGRAM L

‘.

FIND2 CALLS

T ., FIND3 CALLS
GET CALLS

= MODIFY CALLS
STORE CALLS

:» .INSERT .CALLS

RECORDS RESTRUCTURED‘

#0INDEX.
"INDEX

PRIME
~ PRIME.

READS
WRITES
DATA

-03705/783 22+00.03.

“Tasx END OF .ADD NEW3ACCOUNTS RUN #is "
03/05/83 22.01.16
.- FIND17'CALLS .

READS
DATA WRITES

CPU= 34421

‘CPUZ 38.02 Secs CT= 35 Mins PTE’
S
0
o
0
10
10 iv

L : . - L

10 S

20
40

wm
o0

-

s O
e
>
!

fg”l" .%m' SRR S SRR

o
S
OO

s

T

LN
IS ﬂ_’ .
-y
N < JO

2

PRV

0

uan£Zb{szff~€if

o
A

}

ey ooy

/r

W

gy

De Wl -
— i

L

eqs‘CTf~34 Mins PT= 5503 Ch=z"252p . -

-Hi'yv -

- A8 .12 -

The_Closed Restructuring While Adding New BAccounts.

A Closed Restructuring to reduce the length of the balance
data item on existing account records fronm S'to 4 bytes was
pefformed such that after each record was restructured an
applicatiQgn program was invoked to add a new account record

to the data base. This run is shown in figure 7. .

The effect of this operation is therefore a combination of
the "in-place"™ Static Restructuring and the ™add New
Accounts® application progran ana the total consumption of
resources is approximately equal to the sum of these
individual tasks. (433 page turns and 8.93 seconds of CPU

usage)

The situation demonstréted by this run is the wvorst possible
which can be encountered by a Closed Restructuring - it is
interrup?ed each time a record is restructured and must add
a new reéord at another point in the data base. A queue of
application program requests for access could be serviced
during this interruption without further degrading the
response time. The overall increase in consumption of
resources between tﬁe run of the "Add New Accounts™ prodram
and the addition of the accounts during a closed
restructuring is of the order of 120% and there 1is a
corresponding increase 1in 1/0 activity (from 90 operations
to 140). If this figure 1is considered as an upper bound of
the increase in response time to which any application

program would be subjected (hecause of the untypical nature

- AL.T13 -

of the implementation) this should give some credence to the
view that a Closed Restructuring Strategy would not impose
intolerable overheads on a full scale Database Management

Systen.

3.
e

-~

Data:23

***START OF AMEND DATA ITEM FORMAT RESTRUCTURING «##
09/05/83 22.20,43 CPUz 67.64 Secs CT= 22 pMins PT= 5686 Ch= 455p -
TYPE OPEN OR CLSD FOR TYPE of RESTRUCTURING T
FOLLOWED BY RECORD NAME o DATA ITEM NAMEs LENGTH AND NEW FORMAT
DataiCLSD- ACNT BALC 4 ,14) : ’ :
***CLOSED RESTRUCTURING NOW UNCER WAY#*++ - |
*** CLOSED RESTRUCTURING COMPLETE - ### ‘ R
09/05/83 22.25.22 Cpu= 76.57 Secs CT= 27 Mins PT= 6129 Ch- 512p T
FIND1 CALLS 0 Co
FIND2 CALLS o

vy -

T e . . T T e e L L L e T

- FINDI CALLS "o SERE
GET CALLS g 3 | _ DT
MODIEY CALLS ~ o . - CoE o G g
STORE CALLS 10 e o Y
INSERT CALLS 10 L S L UERE SRR
RECORDS RESTPUCTURED_ 10 o ' S B
-INDEX- READS 0. ‘r-.:'l?"."_r:,"_ AR - ; :‘al ":.f »
INDEX WRITES 10 o 1;"3J.W*'

PRIME.DATA READS™ §077 . ' = < N
PRIME DATA NRITES Aso') o . - S

". 2 - ~,;'“~'T'Q§’. -

- AU.15 -

"

3
o ol
T

“¢1 Posting'_Frocram,

The previous examples used a small data base of 10 customers
and 10 accounts. In order to defray any overheads incurred
by the small volumes the second example uses ten accounts
per customer.
-

An application program has been written to increment the
value of the balance data item of each account record by £1.
The order of the account records ensures that this operation
is not eguivalent to the progression in physical placement
sequence which would be undertaken by a Closed Restructuring
(i.e. it is 1,3,5...99,2,4,6...1700 and the program modifies

the accounts in numerical sequence).

Pigqure 8 gives a listing of the program.

Figure ¢ shows a run of the program. 658 page turns were

required and the program ran in 16.37 seconds of CPU tinme.

- AA.]6—

1T

OO0 00
L)

L egram. Lts_‘fﬂj R
. . e Pstny lrogram.
130 WRITE(699130) R SIS A T?-‘iJiﬁ;xyf m: 2
9130 FORMAT(*0** *RUN 10 poST £1 10 EACH Atcoumrif*v)' -
. p0_9131 121,20 S ' L R
ISTATS(DI=J o
9131 CONTINUE :
caLL EMASFC (*METER® 959 *CUMMY "9 0
po 136 1JI=1+100 j?i'f';;”iﬁffi‘ -
caLL FINDQ(KACNTvIJI&ISPACEvISPACE’IERR)
CALL GET(KBALC) v '
TURACL) =TULA LI+
CALL MODIFY(KBALC)
136 CONTINUE
WMRITE(699132) , S .
g132 FORMAT (*0*** cND OF £1 POSTING RUN *x%x*%)
CALL EMASFC (YMETER .45y *DUMMY*+0)
uRITE(a,9125)4ISTATSQI).1:1,12)
G0 TO 5 E "

|p(‘)n

Data:l3d

*x*RUN TO POST/[I TO EACH ACCOUNT***

1 09/05/83 22452436, CPU- 134 01 Secs

»++ END OF f1 POSTING RUN ol

09405783 22.58.22 . CPU= 150% 38 Sécs

"FIND1 CALLS 100
FIND2 CALLS 0 -
FIND3 CALLS O
GET CALLS 100

- MODIFY CALLS 100

STORE;"CALLS 0"
"INSERT CALLS T o

. +RECORDS’RESTRUCTURED. -

INDEX READS 100

Lo INDEX WRITES - ;j”“Yag_.bvgﬂﬁ;; -

CT= 54 Mins PT= 10649 Ch= 895p
cr:-so.nihs PT= 11307. Ch= 999p

(

- A4.18 -

—— — a— ——— ——

The restructuring to reduce the length of the Balance data
jtem from 5 to U digits was carried out using an Open
Dynamic strategy. Ip order to ensure that existing account
records were accessed, the £1 Posting run was executed while

the restrucfuring vas under way.

Pigure 10 shovws the run while the restructuring 1is
operational. There is a substantial increase in resource
consumption to 2919 page turns and 65.49 seconds of CPU
time. There is no increase in I/0 activity on the data base,
however, and if resources vwere available to provide
processing capacity the open strategy could provide a viable
alternative to a Static or Closed Dynamic Strategy for the

Data Base Administrator in certain circumstances.

Data:23'

***START OF AMEND DATA ITEM FORMAT RESTRUCTURING *%x

(19/05/83 22439400 CPU= 150440 Secs CT= 60 Mins. PT= 11411 Ch= 100gp ¢
TYPE OPEN OR CLSD FOR TYPE OF RESTRUCTURING

FOLLOWED BY RECORD NAME 4 DATA ITEM NAME, LENGTH AND NEW FORMAT
DataldEN AINT BALC 4 414)

**+*0PEN RISTRUCTURING NOW UNDER WAY*w#

Data:13

««RUN TO POST £1 TO EACH ACCOUNT#x
09/05/83 23400407 CPU= 150446 Secs CT= 61 Mins PT= 11555 Ch= 1002p

**x END OF £1 POSTING RUN +xx»

09/G5/83 23.25425 CPU= 215.95 Secs CT= 87 Mins PT= 14474 Ch= 142¢0Cp
FIND1 CALLS 100

FIND2 CALLS 0 \QQ gQ
FIND3Z CALLS G 5 :F> >
GET CALLS 100 S o
MODIFY CALLS 160 R A
STORE CALLS 0 Q‘;).'(s
INSERT CALLS © @ NR
REZORDS RESTRUCTURED 100 . —
INDEX READS 100 2 < O
INDEX WRITES 0 5 4
PRIME DATA IADS 100 S > g
PRIMZ JATA WRITES 100 N <3

Ry N

AN

e N, ——

-81'vY -

Beferences.
ADABAS - "The RBARAS Introduction MNanual® Published by
software—-AG Ref. ADA-410-000.

ARORA & CARLSON - "The Information Preserving properties
of Relational Data Base Transformations"™ 4th International
Conference on Very Large Data Bases (1978).

ASTRAHAN _ "System R, A Relational Approach to Data Base
Management® - Transactions on Database Systems June 1976.
BACHMAN - mPhe Data Structure Set Model™ - ACM SIGMOD
Workshop on Data Description Access and Control May 1974.
3ATORY - noptimal Pile Design and Reorganisation Points"®
Transactions on Database Systems March 1982.

BEAVER - "Dynamic Technigues for Restructuring a Conceptual
Schema - an Implementation® University of Pennsylvania

working Paper Ref. 77-06-02 1977.

CYAMBERLAIN-76 - "Relatioral Database Management Systems"
- ACM Computing Surveys March 1976.

CHAMBERLAIN-81 - "Support for Repetitive Transactions and
Ad-hoc Queries in System R" - Transactions on Database
Systems Harch 1981.

C4JE¥ - "The Entity kelationship Model - Towards a Unified
View of Data"™ - Transactions on Database Systems March 1976.

CopD & DATE - ®"Tpnteractive support for Non-programmers:
The Relational and Network Approaches" — ACM SIGHOD workshop
on Data Description Access and Control Hay 1974

coDpD-70 - "s Relational Model for Data for Large Shared
Data Banks®"™ - Communications of the ACM June 1970.

copp-79 - "Expanding the Relationmal Model to Capture More
Meaning™ Transactions on Database Systems December 1979.

CODASYL-69 - "A Survey of Generalised Data Base Management
Systems" Published by the CODASYL Systenms Committee.

CODASYL-71 - "The COD?SYL Data Base Task Group Report“
(1971) Available from the British Computer Society.

CODASYL-78 - "CODASYL Data Description Language Committee
Journal of Development 19787 Published@ by the Canadian
Government on behalf of CODASYL.

CODASYL-&1 - W“CODASYL Data Description Language Committee
Journal of Developmaent 19817 Published by the Canadian
Government on behalf of CODASYL.

CODASYL-COEBOL-JOD - "CODASYL COBOL Conmmittee Journal . of
Development 1978*" Published by the Canadian Government on
behalf of CODASYL.

DALE & DALE - "Schema and Occurrence Structure
Transformations in Hierarchical Systens" ACM SIGMOD’
International Conference on the Management of Data.

DATE — "An “Introduction to Database Systems"™ Published by
Addison—-Wesley.

EASYTRIEVE-INMS - n"Phe EASYTRIEVE-IMS Reference Manual"™
Published by PANSOPHIC Inc. Ref. 7809.

PLORY & KOULOUDJIAN - ®p Model and Method for Logical
Database Design" - 4th International Conference on Very

Larcge Databases (1978)

PRY & SIBRLEY - "Bvolution of Data Base Management Systeas"
- ACM Computing Surveys March 1976.

FRY & JERIS - "Powards a PFormulation and Definition of
Data Reorganisation® ACM SIGMOD Workshop on Data Description
Access and Control May 1974.

GEZRRITSEN & MORGAVW - "Dynmamic Restructuring of Data Bases
with Generation Data Structures"™ University of Pennsylvania
Working Paper Ref. 75-12-02 1975.

IBR-ADF - wrhe INMS Application Development Facility"®
Published by IBM Ref. SH20-1931.

IBM-IMNS -~ "“IMS Data Base Administration Guide™ Published
by IBM Ref. SH20-9025

ITBM-VSAM - "Virtual Storage Access Method Planning Guide®™
Published by IBN Ref. GC26-3799.

IBM-DBRC - nm®pata Base Recovery Control Feature General
Information Manual®™ Published by IBM Ref GH35-0010.

IBN-MPS - "IMS MNessage Format Service User's Guide"
Published by IBM Ref. SH20-9053.

IBM-UTAS - "Oser Task Aralysis System™ From IBM-UK Course
FA12 - Data Base BAnalysis and Design.

ISK-~-DA - "Data Analysis® Published Dby 184 Ref.
UK25-8101.

I8M-S2L - "SQL Data System Application Programming'
Published by IBM Ref. SH24-5018. '

IDS/II - "IDS/IT Data Base Administrator’'s Guide"
Published by Honeywell Information Systems Inc.

IDMS - "TDKS Concepts and Pacilities" Published by
Cullinaine Corporation.

ISO - n"Conrcepts and Terminology for the Conceptual Schena
and the Information Base" Published by the International
Standards Organisation (1982)

JACKSON - "The Desion of Data Processing Systems™ Michael
Jackson Systems Ltd. 1980.

KAM & ULLMAN - *A Model of Statistical Databases and their
Security"™ Transactions on Database Systems March 1977.

KAY M.H. - “Restructuring and Reorganisation™ Working
Paper to the BCS/CODRSYL Data Base Administration wWorking
Group (Feb. 1978) .

LEPKOVITZ - "Data Management for On-Line Systems"
Published by Hayden 1974.

LOCKIRG—7U4A - ") pescriptive Methodology for HMultiple
Views of an Information Processing System" IFIP Working
Conference on Database Management 1974,

LUCKING-74B - "Advantages of the Data Structure Set Model"™
- ACM SIGMOD Workshop on Data Description Access and Control
1974,

MERTEN & PRY - "R Data Description Language Approach to
File Translation (The Data Translation Project)®

MICHAELS MITTMAN CARLSON - ™A Comparison of the Relational
and CODASYL Approaches to Data Base Management® ACH
Computing Surveys March 1976.

MINSKY - wop TInteraction with Data Rases™ ACM SOGMOD
Workshop on Data Description Access and Control 1974.

NAVATHE - eSchema Analysis for Data Base Restructuring®
Transaction on Database Systems June 1980.

NAVATHE & FRY - "Restructuring for Large Databases - 3
levels of Abstraction™ Transaction on Database Systems June
1976.

OLLE - "The CODASYL Approach to Data Base Management"™

PALMER - "Record Subtype Facilities in Database Systems"
4th International Conference on Very Large Databases 1978.

PANEXEC - "The PANEXEC System Reference Manual®” Published
by PANSOPHIC Inc. Ref 8205.

PANVALET = "The PANVALET System Reference Manual®
Published by PANSOPHIC Inc. Ref 2379.

PITROTTE - "High Level Data Base Query Languages"™
International Seminar on Intelligent Question Answering and
Data Base Systems 1977.

SHIPMAN - w"The Functional Data Model and the Data Language
DAPLEX" Transactions on Database Systems March 1981.

SMITH & SMITH — "®patabase Abstractions - Aggregation and
Generalisation® Transaction on Database Systems June 1977.
SNODGREN 75 - "Theory of Data Bases"™ Published by Carter
1975.

SNUDGREN 78 — "pata Base Design in Theory and Practice"

4th International Conference on Very Large Databases 1978.

SHU et al - "EXPRESS & Data Extracting, Processing and
Restructuring System™ Transactions on Database Systems June
1977.

SOCKOT and GOLDBERG - "Data Reorganisation Principies and
Practice™ ACM Computing Surveys Dec. 1979.

SOCKOT-78 - ®A Performance Model for Computer Data Base
Reorganisation Performed Concurrently with Usage®™ Operations
Research Sept-Oct 1978.

STCOCKER - ngfficient Organisation of Internal DBMS
Structure™ &8th Interrational Conference on Vary Large Data
Bases 1978. ‘

STOCKER & DEARNLEY - YA Self Organising Data Base
Management System™ IPIP Working Conference on Data Base
Management 1974, ' :

TAYLOR & TFRANK -~ "CODASYL Data Base Management Systems®
ACH Computing Surveys March 1976. g

TOTAL — "The TOTAL Informatinn System™ - Cincoa Systems Inc.
1982.

VAO - "A Dynamic Database Reorganisation Algoriﬁhm"
Transactions on Database Systems June 1876. '

WILSON - ®"Data Base PRestructuring - A Direction for
Aberdeen" Oniversity of Aberdeen Computer Centre 1978.

XEPHOR - "Buyer'®s Guide to Data Dictionaries"™ Published by
Yephon 1982.

YORMARK - "The ARSI/SPARC DBMS Model® Published by
North—-Holland 1976.

