
A RESTRUCTURING MECHANISM

FOR A CODASYL-TYPR DATA BASE

JAMES CARDEN

Ph.D.
University of Edinburgh 	

NJ
May 1983 	

:

bs t r act

ti.tti. 3a se 	.a naoe it Systems are obs3 rved to operate in
distinct enviroamnts within organjsations. These
environments are classified as 'Centralised' and 'Devolved'
and different types of data base management systems are
considered as more appropriate to each. The centralised data
base is closely associated with an evolutionary model of the
entire organisation whereas each devolved data base is a
tool used by an individual or group to analyse information
necessary to that person's function within the organisation.
The requirements for a Restructuring Mechanism to allow a

centralised 'data base to be altered in structure to reflect
alterations in the organisation arid enhancements to the
model are identified. Strateuies to allow such a mechanism
to operate concurrently with normal application proaram
access to the data base are postulated. In particular Open
Dya:.nic and Closed Dynimic restructuring techniques are
described. Although no vidence has been found of a. similar
restructuring mechaniso in published research or as
implemented. in a proprietary data. base management system its
relevance to other tyres of data base change which have been
described elsewhere are considered.
Sixteen primitive restructuring tasks are described in

detail and strategies for thëi.r execution are outlined.
Application programs are classified as transparent or opaque
to each task. The effect of each task on the routines
processing data base access by application programs is also
examined.

To illustrate the effectiveness of the restructuring tasks
an implementation of a DASYL-type Data Base Management
System has been developed on the Edinbutah Multi Access
S7s tern (EM AS) . The implementation is then used to run
apelication programs operating on a. data base modelling a
British Bank. Various types of restructurings may be carried
out on the data base using Open or Closed Dynamic
strategies.

Conclusions are drawn that a Restructuring Mechanism is an
essential inqredi.ent for a Data Base Management System to
allow the data base to reflect the ever-chanQing structure
of an organ isatiorial data. model. The mechanism proposed in
the thesis is considered to be functional, convenient and
efficient for the population of users it is designed . to
servo - the data Processing professionals.

Acr.ow ledu eipents.

I would like to thapk my vifc Carol 	d my children
Stven, Neil ar.d Claire for surviving the rival attentions
of my books and computer terminal for so many evenings over
the last seven years.

Thanks are also due to my supervisors Dr. Geoff Stacey and
Professor Sidney Michaelson.

Finally, I would like to thank my employers, the Bank of
Scotland, for sponsorina me in this work..

De cia ration.

This thesis has ha composed by e.

It ciescrihcs my own work carried out between
May 1976 and May 1983

In i

C9APTR 1 - ITFODtJCT101'.

The Evolution of Data Base Management Systems.
Definition of Data Base.
Objectives of the Thesis.

CHAPTER 2 - DATA ANALYSIS AND DATA MODELLING.

Existing Modelling Techniques.
The Three/Your Schema Data Model.
Preparation of the Data Model.
Manifestations of the Data Model.
The Data Base Management System. Model.
Classifications of DBMS Users.
Classifications of DBMS Models.
Centralised and Devolved Data Bases.
Evaluation of the Data Base Management

System Models.

CHAPTER 3 - CURRENT IMPLEMENTATIONS OF DATA BASE
MANAGEMENT SYSTEMS.

The Hierarchical Data Model.
The Network Dat.a Model.
The Relational Data Model.
The Internal Structure of Data Base

Management Systems.

CHAPTER 4 - RESTRUCTURING A DATA BASE.

Changes to computer Systems.
Difficulties Associated with Changing Computer

Applications.
Change as seen by Data Base Management Systems.
Restructuring a. Devolved Data Base.
Restructuring a Centralised Data Base.
Restructuring Strategies.
Principles of Restructuring.
Oblectives for a Restructuring Mechanism.

CH PT?R 5 - OTHPR APPROACHPS TO DATA BASE CHANGE.

The Spectrum of Data Base Change.
Logical Changes and Structural Changes.
Application Program Stability.
Changes to Physical rather than Logical Structure.
Restructuring Techniques.
Facilities for Change in Existing Implementations.

CHAPTER 6 - A PROPOSED RESTRUCTURING MECHANISM FOR A
- CODASYL DATA BASE.

Structure of the Proposed Restructuring Mechanism.
Open and Closed Restructuring Strategies.
Application Program Interface.
Emulation of Previous Schema Versions.

CHAPTER 7 - THE PRIMITIVE RESTRUCTURING TASKS.

Introduction.
Syntactic Considerations.
Subsidiary Control of Restructuring.
Conditional Execution of Tasks and

Concurrent Tasks.
Addition of a New Data Item to an

Existing Record.
Deletion of a Redundant Data Item from an

Existing Record.
Amendment to the Format of a Data Item.
Allocation of Storage to a Source or Result

Data Item.
Amendment to the Value Range of a Data Item.
Intra—record Structure Amendment.
Migration of a Data Item between Records.
Adding a New Record to the Data Base.
Splitting Data Items from an Existing

Record to form a New Record.
Deletion of a Redundant Record.
Amendment to a Record Key.
Addition of a New Set to the Data Base.
Deletion of a Redundant Set.
Addition of a New Member Record to an Existing Set.
Removal of a Member Record from an Existing Set.
Amendment to the Order of a Set.

Ci.P71?1 B - AN 1MPLFME1TATO 1q OF A DATA BASE NANAGEMNT
SYSTEM SUPPORTING RESTRUCTURING.

Introduction.
System Structure.
Interaction between Application Programs and

Restructuring Tasks.
The Data Manipulation Language Commands.
The Bank Data Base.
Data Base Programs.
The Restructuring Tasks.
Comparison Between Restructuring Strategies.

CHAPTER 9 - SUMMARY AND CONCLUSIONS.

Summary.
The Functionality of the Restructuring Mechanism.
The Convenience of the Restructuring Mechanism.
The Efficiercy of the Restructuring Mechanism.
The Future of Data Base Management Systems.
Future Developments of the Work Recorded Here.

APPENDIX 1 - Structure of the Implementation of a Data Base
Management System.

APPENDIX 2 - The Bank Data Base and Application Programs.

APPENDIX 3 - The Restructuring Tasks.

APPENDIX 4 - Consumption of Computer Resources by the
ENAS Implementation.

-1-

Chanter 1 - Introduction.

The Rvolutionof Data Base Ma naqement

Data processing made a dramatic impact on the operational

procedures of industry and commerce during the 1950 9 s and

1960 9 s. Using fairly primitive techniques of data capture

on unit record devices, computer systems were implemented to

update master files of data held on magnetic tape by

processing against the captured transactions. Suitable

control and statistical reports were printed and distributed

to appropriate users within the organisation.

The art of Systems Analysis, as it came to be known, was a

new professional discipline which came into use within large

organisations. The functions and procedures used by the

organisation to achieve its commercial objectives would be

examined in detail with a view to devising even better

methods by performing the same or superior tasks using the

new technology. The radical approach of the

computer-oriented systems analysts (whose training

encouraged them to have no preconceptions as to the value of

even the most firmly established practices) in many cases

led not only to the introduction of well defined procedures

but also to the removal of unnecessary operations. A wide

variety of the routine functions within large organisations

(at that time only the largest could invest in the expensive

computer equipment) were made more efficient in this way but

by the start of the 1970s the proliferation of such

computer-based systems within organisations began to reveal

some of the limitations of this piecemeal approach.

-2-

Althouq - h the individual computer systems normally served

their oriqinal purpose admirably, they tended to be rather

inflexible when modified to serve other functions. Even if

it were possible to design a system which was flexible

enough to handle all future requirements it is unlikely that

even the most innovative Systems Analyst would have the

precognition to foresee all eventualities.

The development of discrete systems in isolation from each

other also often led to the same data being maintained in

different ways and this in turn inevitably led to

inconsistencies between the output of different systems

which should otherwise have been compatible.

Having identified 	the problems, the 	data processing

community has searched for solutions in two general

directions:

The computer programs themselves have been recognised as

contributing to the inflexibility by being difficult to

maintain by anyone except the original author. Particularly

since computers have become faster and cheaper, and

consequently program efficiency less of a constraint, this

situation has been remedied by stand.ardising programming

practice to make programs more comprehensible and less error

prone. Various methodologies of Structured Programming have

been advocated and programming languages have been refined

over the years.

Programs are not the only cause of system inflexibility and

it has long been a goal to migrate from a set of disjoint

computer systems to an integrated set of systems using the

ocoanisation's data as a common resource.

-3-

Once again various methodologies of Structured Data have

been advocated and techniques have been developed for shared

access to the data. The relative reduction in cost and

increased storage capacity of direct access devices have

contributed significantly to this development. Although

magnetic discs have been available for many years their

relatively high cost in comparison to magnetic tape led

computer installations to use them prudently. Typically they

would be used for specialised purposes such as operating

system software, program libraries and sort workfiles with

the storage of application data being restricted to the use

of small 'index' files. In many cases the use of the medium

has now expanded to such an extent that it is common to

consider holding 'master' files of many hundreds of millions

of characters on disc. Tape is often considered more as an

archival medium. The inherent ability of disc to provide

access to particular data records without having to examine

the other records held on file made the medium particularly

suitable for data capture and retrieval applications using

on-line remote terminals. Such systems often have advantages

over batch. processing systems (because of the absence of

input documents and printed reports) and have risen to

prominence in recent years.

Definition of Data Base.

The view of an organisation's data as a shared resource has

become known to the lay community of computer users as the

organisation's Data Base. Although this definition of 'Data

Base' may seem rather imprecise it is difficult to improve

- LI -.

on it. Indeed the term is now synonymous with the terms

'file' and 'collection of files'.

Data processing practitioners have allocated more specific

objectives to the term which have implied a more narrow

definition but differences in emphasis on individual

objectives have led in the past to seemingly different

definitions.

Rather than 	attempting to 	formulate a 	precise

definition 	we will 	adopt an 	empirical approach 	by

considering four generally agreed objectives of a Data Base.

To remove the difficulties of fragmented data caused by

the development of ad-hoc computer systems.

This implies that some mechanism for a single central

description of the data must exist and that this description

is available either explicitly or implicitly for all

applications to use when necessary. As a by-product it is

implied that data bases provide centralised capabilities for

control of quality and integrity of data while maintaining

suitable privacy constraints (FRY & SIBLEY).

To provide a simple yet powerful mechanism to allow

applications to interact with the data base. In particular

to remove the bottleneck imposed by traditional systems in

their inability to provide swift answers to unforeseen

enquiries. (CODD & DATE)

3. To isolate the programs interacting with the database

- 5 -

from technological inovation in the form of improved data

storage devices with different characteristics, different

access methods and different techniques for linking data to

reflect changing access patterns. This objective is termed

providing resilience to reorqanisat ion.

. To isolate the programs interacting with the data base

from changes in the description of the actual elements

making up that data base and of changes in the relationships

between these elements. Such changes are seen as inevitable

as a result of corresponding changes in the organisation.

This objective is termed providing resilience to

restructuring.

The last two of these ob jectives have been particularly

confused in the past since they have been described under

the general heading of Data Independence. Some authors have

attempted to bring out the distinction by using the terms

Physical Data Independence and Logical Data Independence

(FRY & SIBLEY) (LEFKOVITZ)

Some of these objectives have been addressed 	outwith the

area normally considered to be the province of Data. Base:

Many orcanisations have examined the interrelationships

between their computer systems and attempted to rationalise

them by imposinq rigid internal standards on the way in

which programs a.re permitted to interact with data on file.

Techniques for the standardisation of methods of file

description have been introduced. In particular these are of

-6-

viiue durinq the system design process to enable analysts to

ascertain whether the data they wish to use is already

collected by some other system.

Disc file access methods have been developed which allow

concurrent access by more than one application and these are

now fairly common (e(T TB-VSA.M)

Operating systems have relegated the definition of device

addresses, disc and tape serial numbers, record and block

length and other device-dependent information to Job Control

Language and Systems Catalogues.

Program libraries have become sophisticated, especially by

providing facilities for straightforward methods of amending

program source code via on-line terminals. Together with the

widespread adoption of modular programming techniques it has

become possible to localise the definition of data on

existing files (and their input/output access routines) to

single modules accessible by all programs (e.g. PANVALET).

Data Dictionary packages are now coming into use which

provide cross-indices between Programs, Files and Job

Control Language Procedures in conjunction with statistics

on data access patterns for conventional application

programs as well as programs running under a Data Base

Management System /XEPllO!/. -

- 7 -

ObIt2tives of the Ii

The remaining chapters of this thesis address the following

objectives:-

To observe that there are two distinct environments in

which data base management systems may be used. 	The

"Centralised" environment where the data base is a common

resource providing a universally applicable model of the

organisation and the "Devolved" environment where the data

base reflects an information model held to be correct by

some group of individuals within the organisation. Further,

it will he noted that the different requirements of each of

these environments may be better serviced by different types

of data base management systems.

To consider that changes in the logical structure of the

data base are likely to have more widespread implications

throughout the organisation in the centralised environment

than in the devolved environment because the same structure

must serve a multiplicity of users. Consequently, although

facilities to alter the structure of the data will be

required for both centralised and devolved data bases, they

will often be of only limited value for a devolved data

base. 	On the other' hand, 	the structure of the the

centralised data base for many organisations can be expected

to be relatively volatile, and a sophisticated restructuring

mechanism will be essential to allow the data model to

evolve.

To propose a restructuring mechanism for a CODASYL data

base management system. 	This type of network data base is

considered to be a good example of a data. base management

system suitable for use by the professional data processing

practitioners who are seen as retaining responsibility for

maintenance of the centralised data base.

To demonstrate that a restructuring mechanism along the

lines proposed can be implemented whereby alterations can be

made to 	application programs to reflect 	the revised

structure, where necessary, without interrupting the

availability of these programs to service the demands of

their end users.

Chapter 2 covers the process 	of accumulating a data

structure to adequately model the organisation maintaining

the data base. Not only will this highlight the differences

between centralised and devolved data bases but it will also

identify the iterative nature of the data model of the

single centralised data base of the organisation.

Chapter 3 examines some types of data base management

systems and discusses their relevance to either centralised

or dvolved data base environments.

Chapter 4 describes how researchers and implementors of data

base management systems have considered the problem of

allowing the structure of the data to change.

Chapter 5 considers how the structure of centralised data

bases will alter through time. In particular it shows how

changes to application systems wil-1 dictate changes to the

logical structure of the data on which they operate. As a

result, other applications must be in a position to react to

the structural change.

Chapter 6 looks at how the network data base structure

proposed by the cODASYL Data Base Task Group could support

such a restructuring mechanism.

Chapter 7 gives details of the primitive restructuring tasks

which are relevant to the clauses defining the CODASYL data

base structure in its Data Definition Language.

Chapter 8 describes the implementation of a CODASYL-type

data base management system and associated restructuring

mechanism on the ENAS multi-access system.

Chapter 9 	summarises how 	the proposed 	restructuring

mechanism meets the objectives set out above. 	It also

identifies areas where further research will be required.

Appendices are used to illustrate how the restructuring

mechanism could be utilised for a centralised data base

maintained by a British Bank. Several application programs

and restructuring tasks have been written for the ENAS

- 10 -

implementation in order to achieve this.

Large organisations can be viewed in many different ways

and it is often difficult to provide a single all-purpose

picture of the entire enterprise. As business organisations

in particular have become more sophisticated, efficiency has

dictated that formal modelling techniques be devised.

Models have been especially useful in areas of Management

Services such as Operational Research, Organisation and

Methods and Work Study and in many cases they have been

adopted as the tools of the Systems Analyst.

Existipq Model1inTechnues.

It is interesting to 	examine three typical modeling

techniques each of which is designed to present a picture of

the organisation in some way:

a) Organisational Chart.

This would be likely to 	show a. pyramidal reporting

structure within the organisation with individuals (or

classes of individuals) shown as nodes on a hierarchical

diagram. Other cross-hierarchy relationships denoted by

additional links between nodes would reflect

responsibilities outside line management. Relationships,

with individuals and other organisations in the "outside

world" are also identified in such charts.

This model would mainly be of use in Personnel Departments

where it 	could be 	viewed in 	conjunction with 	Job

Descriptions and 	Staffing Level values to 	provide a

mechanism for 	evaluating possible changes 	in working

- 12 -

pract;ice.

b) Flowcharts.

Prior to their use in describing the logic of computer

systems and programs, flowcharts were (and still are) used

to describe the transmission of information throughout the

organisation and to and from the outside world.

Repetitive tasks (which are particularly suitable for

flowcharting) were an early target for computerisation and

systems analysts have often worked closely with

O&M/Work-Study practitioners in this area. In many

organisations virtually all the routine work interacts with

computer systems in some way.

C) Critical Path Analysis Diagrams.

A. Critical Path Analysis Diagram shows interrelationships

between different activities carried out within the

organisation in order to achieve some particular complex

task.

There are numerous other models within organisations which

do not have such an obvious visual manifestation. For

example the profitability of a commercial organisation will

be governed by its ability to plan its business and monitor

its actual execution against the plan. The current plan is

therefore a vital part of the organisational model as are

such techniques as Management Accounting which are designed

to measure actual performance against the plan.

Those models which do have a visual manifestation assist

the 	observer 	in 	assimilating some 	aspect 	of 	the

- 13 -

orginjsation. It is of interest to note also that there is a

common feature in the preparation of such models in that the

architect of the model must firstly identify discrete types

of elements on which data is known or can be collected..

These provide the nodes for the model. The differences

between the models are found in the criteria used to

establish relationships between these elements. By analogy

various diagrams of the human body can be drawn showing

blood circulation, central nervous system, skeleton etc.

Just as a physician will choose to examine one of these

diagrams of the body for some purpose he has in mind, one or

other of the models can be used when it is required to

consider the organisation from a particular viewpoint.

The distinction between the models and the organisation

itself is one of a one-to-many mapping where each element in

the model (often called an Entity) represents a number of

actual occurrences of that classification of object within

the organisation. Each individual object (such as each nut

and bolt or each member of staff) will of course be unique

but the generic term is sufficient to provide a meaningful

model. Once it has been seen fit to define the existence of

a class of objects in the model it may be inferred that each

actual object has some properties which may be quantified in

some way. The term Attribute has been used to describe such

properties of entities.

- 1(4 -

For example an organisational chart of a. Bank might be as

follows:

General Manager

District Manager

Branch. Manager

Staff

Thus the single entry on the chart of "Bank Manager" would

convey the impression of the few hundred people in control

of the bank's branches. Equally (although not necessarily

stated on the chart) the entity Bank Manager would have

Attributes of Branch Name, Manager's Name, Lending Limit

etc.

A General Purpose Data Model of an organisation must

therefore provide for recording not only attributes which

are associated with particular entities but also details of

the patterns of associations between different occurrences

of entities (including different occurrences of the same

entity).

Large org-anisations 	tend to be 	complex evolutionary

organisms and the task of preparing a model which contains

all entity interrelationships is often formidable - thus the

advantages of only considering particular classes of

interrelationship as in the Organisational Chart, Flowchart

and Critical Path Analysis diagram. Rather the preparation

of the entire model is an iterative process with the

- 15 -

possibility that a totally comprehensive model can never be

achieved /FLORY and KOULOUDJIAN/.

Organisations differ widely in both size and. complexity and

it may be that there should be a difference in emphasis on

different aspects of the general purpose model to take

advantage of such differences. Thus for example the Bank is

a large organisation with perhaps hundreds of branches and

millions of accounts but nevertheless with relatively few

entities and a correspondingly straightforward model.. On the

other hand a model of a manufacturing organisation even with

a limited product-line might be complex and constantly

changing to reflect a. changing marketplace. In some

circumstances time ca-n be a fundamental consideration for

all entities while in others the "current" situation is all

that is required /SNUDGREN-75/.

Data models of different organisations will also vary

significantly in the stability of the values of attributes

in particular occurrences of entities. For example one could

contrast a model of a library where once information on a

book has been gathered it is unlikely to change (unless it

is incorrect) aqainst a model of a bank where the balance of

an account is constantly altering to reflect the effect of

financial transactions. Further the patterns of retrieval

can be significantly different; where a book borrower may

base his choice on Author, Title, Subject Matter or some

more obscure criterion, in other environments (such as the

bank) retrieval is often a straightforward matter based on a

unique identification /YAM & ULLMAN/. For example the

account number is all that is required in to obtain a bank

- 16 -

balance and in most circumstances this would either be known

or encoded on a plastic card.

The Three/FourSchema Data Model

The process of developing a forma.l model of an organisation

has been studied by several researchers. A significant

contribution was made in 1975 by the report of the

ANSI/SPARC organisation on the architecture of data base

management systems /YORNARK/. In the present context the

report proposed that. a Conceptual Schema. should exist which

was maintained by a person or group known as an Enterprise

Administrator. To emphasise the magnitude of the task of

preparing and maintaining the schema as a true model of the

organisation it might have been better to use the term

'Iiterprise Analyst' to describe this individual or group of

individuals. Without attempting to standardise the contents

of this schema the report identified interfaces between it

and more application-oriented and data-storage-oriented

definitions in the form of an External Schema and an

Internal Schema maintained by an Application Administrator

and Data Base Administrator respectively. The

personalisation of these functions by the allocation of a

name reminiscent of a job title is most significant. It can

be argued that by doing so it can be tacitly assumed. that

for these tasks to be performed well new skills will be

required by the individuals performing the functions. It may

be that many of the skills are a generalisation of those

already possessed by the Systems Analysts but inevitably

some will be entirely new, particularly in the area of

- 17 -

'Enterprise Analysis'

The idea of a Conceptual Schema in particular has been

developed in a report by an ISO Technical Working Party

published in 1982 11501. This report establishes the aims of

a Conceptual Schema as

(a) To describe the "Universe of Discourse" as a model of

the entire enterprise in a manner suitable for easy

interpretation. It follows that this model may not

necessarily he concerned with the constructs of any

particular implementation of a computerised DBMS.

(h) To control the information base used by computer

systems.

The existing types of Data Base Management Systems are

considered by the Report- as somewhat inadequate to serve the

first purpose of the Conceptual Schema but sufficient in

many respects for the second.

A 'Four-Schema' philosophy is therefore suggested where the

Conceptual Schema is written in a suitable language (for

which the report draws up some basic requirements) and this

is then subjected to a (manual) conversion to become the

Data Base Schema in the terms supported by the Data Base

Management System used by the organisation.

Preparation Of The Data Model.

Many approaches to the development of a methodology for

establishing the data model have been advocated. Often

these are extensions and standardisations of the established

techniques for data analysis and fact recording developed

over the previous two decades /JACKSON/.

- 18 -

Data Analysis is not an art practiced by the Systems

Analyst in isolation and there must be an ongoing

involvement by each end user such that a mutually acceptable

view is achieved between him and the analyst rather than an

artificial structure being imposed /1NUDGREN-78/.

The importance of information flow of the various processes

operating on the data to the structure of the model has been

highlighted in such techniques as User Task Analysis and

Information System Architecture /IBM.-UTAS/,/IBN--DA/.

Manifestations of the Data Model.

Diagramatic techniques have been devised to enable the

Enterprise Administrator to assimilate the model of an

organisation which he is in the process of creating and to

allow analysts to judge the impact of proposed new systems

and changes to existing systems.. These provide a pictorial

representation of the most general system of entities and

the relationships between them /eg CLEEN/. In particular they

allow relationships to be represented where one element in

one class may relate to many elements in another class where

each of these may relate to many elements in the first class

(ie a many-to-many mapping). Like the flowcharts and other

diagrams referred to previously the manifestation of the

data model as a chart does not reference individual

occurrences of entities but uses generic terms for the

various classes of entity and relationship.

Non-DIagramatiC descriptions of the Data Model have also

been proposed which use linguistic syntax to specify not

only the structure of the model but also all other

- 19 -

constraints which apply to it 	The objectives of such

representations are probably more oriented towards providing

a precise description of the model than a representation

which can be assimilated easily so that a particular area of

interest can be readily identified /SFIIPMAN/.

For example a simplified data model of a bank as shown

below would illustrate tha t there were entities Customer,

Branch, Account and Credit Card and these were related by

the following associations:

Customer's Credit Cards - Where a customer could have

zero or more credit cards (eg where the customer was a

business or husband/wife)

Customer's Accounts - Where a customer may have one or

more accounts at one or more branches.

Branch's Accounts - where a branch may have one or more

accounts of which some may belong to the same customer.

Regular Payments - Where funds are transferred between

one account and another on a regular basis. The same account

may be the payee of more than one payment and similarly the

same account may be the beneficiary of more than one

payment.
., 	 Coe M'i'18Fs

eqsrDnle (2'ss 	 rxaAc n

; ra:ci'
14

01-€dr QPI7NCY7IMI 	 PeCOdAr L
(I 	In(6t

PY
Q 	 1 1404-

- 20 -

The effort required to produce a generalised data model in

many organisations would be significant and there would be a

constant requirement for refinement to cater for changes in

the organisation and better perception of the accuracy of

/ the model. In addition to the chart giving the structure of

the data model there is often a more detailed manifestation

in the shape of a Data Dictionary which provides a vehicle

for recording all information known about the organisation's

information - the Meta-Database. As well as describing all

attributes of each entity in terms of their meaning, format

and value range etc the Data Dictionary would also describe

how attributes relate to other attributes, how entities

relate to other entities, how application programs relate to

both entities and attributes and how entities are

distributed in terms of numbers of occurrences and frequency

of access.

1

- 21 -

The Data Base Management System Model

Ie have seen that it is desirable to establish a general

purpose data model of an organisation primarily to simplify

human perception of that organisation for those individuals

who wish to study and improve its operation. Given that a

shared poel of data can be established on computer files in

the form of a data base, an abstraction of that generalised

data model can be made in the form of a Data Base Management

System Model. In this model the various processes which are

undertaken by the organisation are represented by executions

of application programs which interact with the data base

using the conventions of some database management system or

systems. The requirement to produce an abstraction of the

generalised data model stems from the data structures

supported by existing data base management systems. The

fairly simple structuring primitives of many data base

management systems may tend to produce an apparently more

complex model than the less formal requirements of the

generalised data model but they have the significant

advantage of providing straightforward access paths for the

application programs. There is a parallel in this process to

the abstraction which has been necessary to transform the

rich language of speech and the written word into the

rigidly structured programming languages necessary to

communicate with the computer.

- 22 -

Class ifi.cati ons of DBIS users.

People interact with computers on different levels. Thus,

for example, the following individuals may be identified.

The System Programmers who write and maintain Operating

Systems and other hardware-specific software.

The Operating Staff who schedule program runs and optimise

system throughput.

The Application Design and Programming Staff who transfer

English-like requests from End Users into a series of

accesses and manipulations of data.

The End Users who provide information to the computer

system and obtain information from it. These have been

further divided into various categories. Sophisticated Users

are able to convert their own requests for information into

meaningful instructions to the system. Casual Users can

present a request for information in a "natural" fashion to

the computer which interprets that request and processes it.

Parametric Users provide data in. standard formats and

interpret output in a routine manner prescribed, for them by

the Systems Analyst. /LUCKING-74A/ /SMITFT & SNITff/ /MINSKY/.

The cateqorisation of this "nest of symbiotic parasites" is

not straightforward since individuals may fall into more

than one category and the categories themselves may overlap.

Thus, for example, several application computer systems have

been designed which allow "parametric users" to specify

fairly complex retrieval requests which would normally be

considered as the province of the Sophisticated End-User or

the Application Programmer.

- 23 -

Most professions have had many hundreds of years to evolve

suitable breakdowns of tasks to be performed by well defined

categories of individuals. The computer industry, on. the

other hand, has evolved the above groupings in only two or

three decades. There is therefore a general feeling that

this might not be the "right" breakdown at least in terms of

the proportions of individuals in each category. This view

is reinforced by the ever decreasing real cost of computer

equipment with the corresponding loss of significance of

program efficiency and by the ever increasing capabilities

of programming languages and operating systems.

It was into this environment of fairly well established

classes of computer user that the Data Base Management

System Model emerged. The original requirement came from

the application design and programming staff who were

becoming aware of the inflexibility and mutual

incompatibility of their existing systems. It was natural

therefore that the first types of model were based on

generalisations of the techniques used for data processing

within these conventional application systems.

- 24 -

Classifications of DBMS Models

The constraints of sequential record processing imposed on

magnetic-tape-based systems had allowed hierarchical record

relationships to become commonplace. Almost universally

magnetic tape master files would hold records of different

formats (distinguished by a data field) in an order such

that data common to a group of records would be held in a

record of another type preceding that group. Thus for

example a bank's master file might hold its records in

branch order with the records for each branch in customer

order and all account records for each customer following

that customer record. Thus evolved the Jlierarchica]. Data

Base Management System /IBM-INS/.

The amount of abstraction required to represent typical

generalised organisational data models as hierarchies might

well be significant and the eventual data base management

system model might obscure some of the fundamental structure

of the original data model. It is likely that there will be

additional structure 'hidden' within the application

programs.

While the relationship between records in a hierarchial

data model is essentially specified by their order it is

possible to define a more general data model structure by

representing record relationships by a mechanism outwith the

records themselves. Thus emerged the Network Data Base

Management Systems /CODASYL-71/ /IDS-II/ /IDMS/.

In both of the above approaches the data base management

system models were devised on an empirical basis with a

knowledge of what types of computer systems could be

- 25 -

produced by the Systems Programmers to be used in turn by

the Application Programmers to run programs with reasonable

efficiency. There is a parallel here with the evolution of

programming languages such as FORTRAN and COBOL where

enhancements tend to be a compromise between what is

desirable and what is achievable.

A more 	radical approach 	to the structure of the

computerised data model led to the development of the

Relational Data Model where each type of record was disjoint

and record relationships were established in an ad-hoc

fashion by correspondence of value between attributes in the

records. /CODD-70f /ASTRAHAN/

The differences in approach of these types of computerised

data models may be seen to be associated with differences in

emphasis on the priorities of the various objectives of a.

data base management system /STOCKER/. The "traditional"

approaches of the network and hierarchical data base

management systems are oriented towards the goal of

providing the professional Application Programmer with a

mechanism for interacting with the data base in a manner

similar to that adopted for conventional files. At the same

time the shared nature of the database is considered but

left relatively transparent to the programmer. It is

important to remember that the application programs which

have constituted the bulk of computerised systems over the

last 20 years have often been complex not so much because of

their interaction with data held on secondary storage

devices but more simply because they had complex functions

to perform. This situation is perhaps best illustrated by

- 26 -

reference to the program specifications from which the

programs were written. After due analysis of the business

functions these would typically take many weeks or months to

write and would run to many pages of text. No matter how

sophisticated programming languages may become in the future

they cannot be expected to be simpler than today's program

specifications.

The Relational Data Model has been more oriented towards a

realignment of the functions of the various computer users

to provide a more immediate access to the data base for End

Users. In particular ad-hoc queries could be satisfied

without the need to reference application programmers.

Indeed this is a laudable objective but it has limitations

since many of the benefits of computerisation have accrued

from the thorough analysis of business practices and

information requirements. Indiscriminate interrogation and.

update of a data base could lead to wasted resources within

the organisation as a whole because individuals were not

sufficiently disciplined to pirsue activities specifically

related to their jobs. Equally it would be more difficult to

exercise control over individuals expending effort in

retrieving information which had already been obtained by

someone else.

Centralised and Devolved Data Bases.

One possible scenario for the future symbiosis of the

different approaches to data base management systems is to

postulate two distinct classes of DBMS which could have

properties in common but which were designed to serve very

— 27 -

different user requirements.

The two proposed classes will be termed Centralised and

Devolved Data Bases and their interrelationship is shown in

the following diagram:

/ 	oPHO7E\ 	\

	

I 	't)

t&1

peyc

D1L

	

(: 	osrkTJ,

'Ss/•.

	

S 	 -

The CENTRALISED CENTBALISD DBMS would be the province of the data

processing practitioners and would support application

programs where data is captured and updated in a constrained

environment devised by Systems Analysts so that it can be

guaranteed as correct and unambiguous to all current and

- 	•.SOPHl5S1,i

2/I

future users within the organisation. 	The shared nature of

this data places grave responsibilities on the designers of

application systems to ensure that a single coherent data

base structure exists. Furthermore the desire to satisfy the

requirements of the entire organisation and not just

particular sections who have identified known requirements

implies that it would be advantageous for individual

programs to view the data base as a strict subset of this

mutually agreed overall structure.

The second class of DBMS may be termed a DEVOLVED Data

Base in the sense that many such data bases could exist

within a single organisation. The concept of Devolved Data

Bases is very different from that of a Distributed Data Base

where the physical placement of the organisation's one and

only data base is scattered between a number of locations.

Each Devolved Data Base, on the other hand, would be under

the control of a (sophisticated) End User who would handle a

complete spectrum of tasks which would be considered as the

province of Data Base Administrator, Application Programmer

as well as End User in a Centralised Data Base environment.

Whether all Devolved Data Bases are held together at a

central site or whether they are held on their own

microcomputers is a matter for individual implementations

and must take into account the computing resources available

within the organisations. Nevertheless the concept of the

Devolved Data Base reflects the different requirements of

different classes of users within organisations and is valid

however it is implemented.

The Devolved Data Base can be considered as comprising

- 29 -

three sections as follows:

The first section would he an abstraction of the data held

on the central data base as updated by the programs designed

and written by the data processing professionals and

consequently universally agreed as 'correct' throughout the

organisation. The structure of this data could be similar to

the single logical data base structure of the centralised

data base of the organisation but there would be no

requirement for it to be a strict subset. It may be that a

comprehensive mapping language which converted from one

structure to the other would be adequate to define the

abstraction from one view to the other but it might be more

appropriate for specialised application programs operating

directly on the Centralised Data Base to provide the

interface. Thus, for example, a bank's economist might 'see'

the current financial position of the bank for hiá purposes

as a table of average balances of each bank branch. The

logical structure of each branch with its many accounts

could be abstracted to this view either by defining a

relationship as an algorithm for calculating the average

balance per branch or by an application program being

prepared which would, perform the desired manipulation

whenever this information is required. It might even be

desirable to run the program at appropriate times to provide

snapshots such as end of month positions.

In a similar vein, the second section would consist of data

describing the world outside the organisation. Like the

first section, this could be guaranteed as correct, this

time by the source in the outside world which provided the

- 30 -

information (ie an external Centralised Data Base) . 	The

data would not therefore be updated. by the end user himself

unless he was acting as an agent for the actual source.

Abstraction of the data into a structure suitable to the end

user would be the responsibility of the end user himself and

to this extent he would perform the role of Data Base

Administrator on his own devolved data base. Examples. of

this type of data within a devolved data base of a bank's

economist would be census information or government

statistics.

The finial section of a devolved data base would be composed

of information captured by the end user himself (or by

parametric end users acting on behalf of a sophisticated end

user) and guaranteed as correct only in the opinion of that

end user. Since this responsibility for update lies solely

with this individual user there is a possibility that the

data will be ambiguous in that another user would be free to

hold different values for the same data at the same time if

he saw fit to do so. To continue with the example of a

bank's economist, data of this type would be the type of

information which he would supply to his model of the

national economy which would dictate (in his opinion) how

that economy would perform in the future. It is therefore

possible that two economists, even in the same organisation,

would have different opinions as to which factors would most

influence the economy and what values these parameters would

adopt. For this section of a devolved data base the role of

Data Base Administrator would be almost entirely devolved to

the End User himself. The intimate association between the

- 31 -

user's meta-data-base and actual data base for this type of

data would seem to advocate a method of programming where

the two are virtually indistinguishable. Such techniques

have been proposed /e.g. SHIPNANI but it is important to

view them within this somewhat restricted context of one

part of a devolved data base since their evident advantages

in the ability to alter the meta-data just as easily as the

actual data are less apparent when that data has to be

shared between different users. The timescale for the

implementation of changes which effect several users will

necessarily be longer than that for changes to a single

user's own data in his devolved data base. Inevitably some

measure of consultation would be necessary in the

centralised environment - the ra.ison-d'etre for the

Application Administrator.

In. different environments it is likely that one or other of

the three sections will dominate the devolved data base of a

particular end user. For example some end users would

operate entirely on their own self contained data base

while others would operate entirely on an abstraction of the

organisation's centralised data base. The Application

Administrator will have an important role to play in any

event although it would be more passive than some of his

other tasks by ensuring that data held within the

self-contained sections of devolved data bases was not, in

fact, of more general interest throughout the organisation

and therefore a candidate for inclusion in the centralised

data base. If this were to be the case no doubt there would

be debate between the End User and the Application

- 32 -

Administrator as to the desirability of this alteration

since the ability to make changes without inconveniencing

other users would be lost.

The identification of the two classes of data base leads to

the consideration of the status of the output derived from

the application programs operating on the centralised data

base as against that obtained from end user programs or

queries on devolved data bases. For the former it is

realistic to expect the results to be accepted as correct

universally throughout the organisation for if some

individual disputes the results this should provoke an

analysis of the cause of the objection so that the alleged

anomaly can be resolved or at least explained. For the

latter the results need only be accepted as the product of a

single end user's analysis. Individuals within the

orQanisation may disagree with them if they see fit and they

may attempt to convince the originator of their inaccuracy.

Thus, for example, a figure giving the total number of

current employees of an organisation should be immutable but

the projected figure for a year ahead could well differ

depending on the criterion used to predict the extent of the

organisation's activities.

It is the 'visionaries' within organisations who have the

task of planning for the future who are the prime candidates

for becoming sophisticated end users of their own devolved

data bases. Although relatively few in number it is on the

- success of these forecasts that the future prosperity of the

organisation will depend. They will not be computer

• professionals and the benefits of the 'user-friendliness' of

- 33 -

self-contained, non-procedural, query-oriented Relational

approach will be much more apparent.

- 34 -

!Qn 	the _Da ta Base Ma.nagmenttem_Md.

The view that different types of Data Base Management

Systems should be oriented towards different classes of user

is supported by MIC!TABLS et al under the following headings:

Convenience - the merits of the various approaches were

partly subjective based on the users background and personal

preferences. 	Relational for non-computer-specialists and

Network or Hierarchical for application programmers.

Selective Power - Relational languages are complete

because they can express any query expressible in the

relational calculus. The other approaches are complete in

the sense that most programming languages are complete (i.e.

it is always possible to express the query in a logical form

with the suitable use of conditional expressions and other

procedural techniques).

(C) Conciseness - the Data Selection Language of the

Relational Data Model tends to involve fewer pen strokes or

key depressions than the procedural approach. This is not to

say that such queries are quicker to prepare since the

formulation of the query may require fairly time consuming

thought processes especially for non-mathematically oriented

users.

(d) Language Level - The Relational non-procedural language

may be said to be a higher level than that of the procedural

approaches. It nevertheless remains, a stylised language

which must be learned by those who wish to use it. It does

not allow the Casual End User to communicate with the

computer in as free a way as that individual would expect to

- 35 -

communicate with another human being.

(e) Complexity - The ability to utilise details of data

access and physical placement tends to lead to more complex

and less logically data. independent programs. Since the

advent of the storage schema this criticism can now more

properly only be aimed at particular implementations of the

Network and Hierarchical. approaches.

The relative future importance of the various types of Data

Base Management Systems will depend to some extent on the

eventual distribution of the various classes of data base

user. Such predictions are difficult to make, especially in

the rapidly changing technology of the computer industry. In

1974, for example, CODD & DATE predicted a vast increase in

the population of sophisticated. end users and casual users

over the following 10 years to such an extent that they

significantly outnumbered professional programmers. No such

dramatic reversal is in fact apparent and the reasons for

this trend may well highlight why the hierarchical and

network approaches will continue to dominate data base usage

techniques (albeit in the restricted community of data

processing professionals)

Although the population of sophisticated end users may not

have increased as much as expected, the population of

parametric users has increased to such an extent that

virtually the entire population can be said to interact with

computers especially using such devices as self service

banking terminals and Teletext keyboards connected to

televisions. While the data. processing community can satisfy

- 36 -

the requirements of users without those users having to

expand their skills to interrogate data bases by becoming

sophisticated or casual end users there is little motivation

for the lay community to learn such skills.

On the other hand the difficulties encountere'i by the

professional programmers in modifying large computer

application systems and the resultant long lead time for

even the most trivial change have more and more been

counteracted by users acquireing the skills of the

application programmers. The availability of cheap

microcomputers with easily tailored package programs or

simple home-grown BASIC programs has allowed data to be

maintained (often including data also handled by the

mainframe computer) and analysed without access to the

centralised data base. There is little evidence of

non-professionals finding even 'old-fashioned' procedural

languages of this type too complex once they have sufficient

motivation to learn the language. Unfortunately this trend
\

could eventually lead to the problems of inconsistency and

incompatibility which data base was intended to overcome.

The accuracy of the data on the data base is vital for all

applications but particularly for financial or personnel

-data bases. In such environments it is essential that

information is only updated using recognised procedures. To

allow even the most senior executive of a bank to alter the

balance on an account at his whim would be ludicrous, as

would be to allow personnel department staff to add a new

member of staff without going through the recognised

selection procedures. There are therefore tasks which must

- 37 -

always be properly analysed and the current state of the art

dictates that the end result of such an analysis will be

programs written to support data base interaction on a

record by record basis as handled by the hierarchial and

network data models.

J& 13-se Seope

\ WijAVolctrne
\. sea/)

Lou Vc'/qne
s. Scan

(,1ddIe

114 1)aem€, 1-

To- &ce IeicTon

1cI4/oc 	/
Que 	

/1

re 4Te

PO 1vf,J T,oi

SiieIe 	
FRnctjQna I

Emplo y eec

Oanrio,a I 97YOC IG101C - 	 Fequenc >i

\

In the diagram above it can be seen that the needs of the

different categories of employees vary widely. The large

number of "shop floor" employees tend to require the same

information over and over again on different entity

occurrences, often so that they can supply new or updated

information. They are likely, therefore, always to be

classified as parametric Users. On the other hand the

executives of the organisation should from time to time

require information which has never been required before and

- 38 -

is unlikely to he required again. Perhaps surprisingly such

individuals are also likely to remain parametric users since

it would probably be a more efficient use of their time to

communicate their request to a data processing professional

(possibly one well versed in query languages) than for them

to attempt to communicate directly with the computer. It is

perhaps the middle management (particularly those involved

in determining future strategy) who require the query

language of the sophisticated end user but while management

is functionally or organisationally structured these

individuals are unlikely to require access to the entire

data base. An abstraction of the centralised data base would

always seem desirable in conjunction with the

'outside -world' and 'self-contained sections of a devolved

data base for each such end user.

Thus although the Relational approach with its emphasis on

interacting with the data base via queries by sophisticated

end users is perhaps a more fertile ground for novel

academic research the other more traditional approaches are

likely to grow rather the diminish in importance and

therefore cannot be neglected. The primary functions of the

network and the hierarchial data base models have been well

understood for some time and there are many implementations.

The more peripheral aspects such as the ability of these

models to react to change have not as yet caused users much

inconvenience and have therefore remained relatively

uneolored. As the usage expands, however, such topics will

assume greater importance and deserve detailed attention.

cllaptEK 	 Data Base

Manaup-ment Systems

The three most widely used types of Data Base Management

Systems will be considered in this chapter. A more detailed.

description can be found in DATE's book "An Introduction to

Database Systems". By describing both their differences and

similarities, especially within the context of Centralised

and Devolved Data Bases, the areas where Restructuring will

be important wil.l be highlighted so that they can be

developed in later chapters.

The Hierarchical Data Model.

The Hierarchical data model is important mainly because IBM

have established it as a de-facto industry standard by

promotion of their product Information Management System

(IMS) with its associated data manipulation language DL/1

/IBM-IMS/.

In a Hierarchical Data Base Management System a data base

is defined as an inverted tree structure. Each node of the

tree is termed a segment. The tree is headed by a root

segment supported by a hierarchy of dependent segments.

Hierarchies provide a simple, easily understood structure on

which to establish a data base.

- 	 -

Thus in a banking example the hierarchy might be:

BRANCH

CUSTOMER

CURRENT 	DEPOSIT 	LOAN
ACCOUNTS ACCOUNTS 	ACCOUNTS

In this case the branch is the root segment and this has a

single type of dependent in the form of the customer segment

which has in turn 3 dependents: Current Accounts, Deposit

Accounts and Loan Accounts. Since the dependent segments

are on the same level of the tree they are called twin

segments. This type of structure has an implied order which

corresponds to that used in the past for conventional

sequential files - each group of occurrences of a type of

dependent segment is preceded by the occurrence of the

segment on which it is dependent (i.e. its parent where it

is the child). Where more than one type of segment is on the

same level of the hierarchy there is a convention that all

occurrences of each type of segment are presented together

after their parent working from left to right in the diagram

(twin segments in IMS parlance) . Thus in the example above

all current accounts for the same customer would be

presented in order before all Deposit Accounts and Loan

Accounts. Corresponding to this ordering is the concept of

a concatenated key. The concatenated key of a segment

consists of those data items which distinguish individual

occurrences of that segment from other sibling occurrences

of the same segment tocrether with those data items which

perform the same function for its parent segment and the

- 	 -

parent's parent right up to the root.

Data bases are normally mirrored in the different types of

files used to hold either the entire data base or particular

types of segment on disc. It is likely therefore that the

entire information maintained on an organisation will be

held on a. number of data bases with the responsibility of

utilising consistent information from different data bases

resting entirely with application programs. The impact of

this situation can be minimized by the definition of Logical

Data Bases which utilise segments from existing Physical

Data Bases to establish a hierarchy of segments which was

not previously apparent and which would not require the

duplication of physical records.

Thus, for example, in the bank data base if customers could

have accounts at more than one branch it would be possible

to define the following structure of a distinct logical data

base.
CUSTOMER

BRANCH

Application Programs interact with data bases through

Program Specification Blocks which are merged with the

object versions of application programs by the Linkage

Editor. These blocks present the programs with the data

retrieved-from or to-be-inserted-as individual segment

occurrences. It is the responsibility of the program itself

to provide the definition of the data items in each segment

in a format appropriate to the source programming language

being used - this definition would typically be obtained

from a library of such definitions maintained for the

- 	 -

purpose.

A data base may be traversed using the data manipulation

language DL/1 which allows the following operations:

A GET UNIQUE command allows the program to i -etrieve a

particular occurrence of a particular type of segment
'I

together with its parents if required. Before the command is

issued the name of the required segment and the names of any

parent segments required together with the desired values

for all data items in all concatenated keys must be placed

in an area. known as a Segment Search Argument.

The data base may also be traversed sequentially in the

order described above by the use of a GET NEXT command. This

process may either start at the beginning of the data base

(the first occurrence of the root segment) or from the

current position of the program on that data base as

established by previously executed commands. All types of

segment may be presented to the program in. which case the

command is said to be unqualified. Alternatively only

segments of a particular type may be presented (still in the

data base order) by placing the segment name in the Segment

Search Argument area.

A restricted form of the get next command presents the

program only with those segment occurrences which are

children of the same parent occurrence. This is the GET NEXT

ITfIIN PARENT command.

New occurrences of segments may be added to the data base

using the INSERT command. The full concatenated key for the

segment must be provided in the Segment Search Argument

- 	 -

area. If occurrences of that type of segment with that value

of concatenated key already exist on the data base an

"insert rule" (which must be specified when the data base is

being defined by the data administrator) is invoked to

determine whether the occurrence is to be placed before or

after the existing occurrences or whether the insert is to

be prohibited.

Existing occurrences of segments may be modified by use of

the REPLACE command. Once again the new value of the

segment must be provided, together with the concatenated key

in the Segment Search Argument. An important constraint on

the use of the Replace command is that the record to be

modified must have previously been retrieved by the program

using a Get Unique, Get Next or Get Next Within Parent

command with a "Hold" option to indicate that the record is

likely to be modified. This procedure avoids the problem of

inconsistent update where two programs wish to update the

same segment occurrence after both have retrieved the same.

"raw" version of the segment. In such a situation the second

get with hold would be rejected by IS and the application

program would have to take appropriate action (possibly to

try again in the hope that the segment had by now been

updated by the first program)..

Existing segment occurrences may be deleted from the data

base using the DELETE command. Once again this must be

preceded by a get with hold command..

Although INS is limited in its ability to provide a

satisfactory computerised model of an entire organisation in

- 1314 -

that such a model must be composed only of hierarchies it is

probably today's most widely used data base management

system. Despite the overheads that it places on the computer

on which it runs it provides an unparalleled mechanism for

the security of the data held on its data bases in the event

of any type of hardware or software failure. As well as

utility programs to back up databases to magnetic tape from

time to time (even while the data bases are being updated)

/IBM-DBRC/ and restore these to disc when necessary, a Log

Tape is constantly updated with data base changes. In the

event of a catastrophic failure various levels of recovery

may be undertaken including, if necessary, the most recent

changes held in program butter areas retrieved from the

contents of memory at the time of the failure.

IMS is also widely used as a teleprocessing monitor. It

supports a subsystem known as Nessage Format Services which

makes it particularly convenient for the development of

Visual Display Unit oriented applications /IBM-MFS/.

Although DL/1 is the recognised data manipulation language,

higher level approaches are also available such as the

Automated Development Facility /IBM-ADF/. Information

retrieval facilities for non-professional 	programmers

(sophisticated 	end 	users) 	are 	also 	available

/TA SYTRI EV1-I!S/.

- (45 -

 Model.

While 	recognising the 	practical advantages of 	the

Hierarchical Data Model its severe limitations of not

normally permitting an organisation to be modeled as a

single data base are apparent. At about the same time as IS

was evolving, other computer manufactures were developing

systems which were less restrictive in the required pattern

of record relationships. In 1969 the CODASYL organisation

published a survey of current systems /CODASYL-69/ and later

recognised the requirement for a uniformity of approach. In

1971 the CODAS!L Data Base Task Group published a report

which suggested a sophisticated method of providing a

computerised model based on network rather than hierarchical

record relationships /CODASYL-71/.

It is significant that the, proposals contain various

constraints which 	prevent the most general 	model of

many-to-many record interrelationships from being

computerised. A measure of compromise was reached between a

totally flexible modeling technique and. a mechanism which

would make it unduly complex for application programs to

navigate the data base and perhaps could not be implemented

without imposing undue processing overheads.

In addition to the definition of the contents of classes of

records the network data base management system permits the

definition of relationships between individual record

occurrences as "Sets" on a one-to-many basis. Thus one type

of record is the Owner of the set and another (possibly the

same) type of record is the Member. In fact there may be

- 46 -

more than one type of member for each owner. Effectively

Sets are a two level hierarchy which are used to link

records to produce an arbitrarily complex network. The

network, however, is of a special type since any individual

record occurrence can only contribute to a maximum of one

occurrence of each type of set of which it is an owner and a

maximum of one occurrence of each type of set which it is a

member.

A recognised way of diagramatically representing a network

of this type was developed by Bachman for the system IDS

which predated the CODASYL report /BACHMAN/. The bank data

base would be represented as follows:

This structure is more versatile than the illustration

given previously for the hierarchical data model since it

- 117 -

allows individual customers to hold accounts at more than

one branch.

The CODASYL report uses the term Schema for the formal

description of the network. Here each record is described in

terms of the data items it contains using a syntax not

unlike that used by COBOL for the definition of the contents

of the records on files. Further each set is described in

terms of its owner and member records together with certain

qualities which the set possesses such as whether all

occurrences of the records must be participants in some

occurrence of the set. Rules may also be supplied to

determine the set occurrence appropriate to each individual

record occurrence.

The original 1971 report also used the Schema to record

information on how the records and sets would be structured

on the secondary storage medium. At the time several

commentators critisised the effect of this situation as it

applied to Physical Data Independence. This is an example

where the imprecise use of the term data independence has

been a handicap. The authors of the report considered

themselves to have tackled the problem of physical data

independence by postulating a Device Media Control Language

which they suggested would differ from implementation to

implementation but would preserve the data base management

system from the idiosyncrasies of different operating

systems. The critics considered physical data independence

to he resilience of applications to changes in physical data

structure thus allowing overall performance to be tuned.

Sadly this area of dispute overshadowed debate on the

LE

facilities provided by the proposed system and of the

limitations imposed by the constraints inherent in it when

considered against a totally abstract data model. In 1973,

however, the criticisms were largely answered by a CODASYL

Journal of Development which moved physical structure

properties from the Schema to a Storage Schema designed to

facilitate such definitions /CODASYL-78/. A further

refinement was made in a later Journal of Development in

1981 /CODASYL-81/.

The CODASYL proposals also suggested how application

programs would communicate with the data base. Each such

program would contain a Sub-Schema which provided the

program with a definition of that portion of the data base

which was to be of interest. In this case the authors

considered. this procedure to provide a measure of logical

data independence. Probably because of considerations on

what could be implemented with reasonable efficiency the

proposals restrict the sub-schema to be a strict subset of.
\

the schema conforming 	to the same pattern 	and sane.

conventions for record, set and data item names. Aside from

security benefits there would seem to be little to be gained

in the way of convenience in this restriction of the

- sub-schema to be a subset of the schema as it would often be

simple for the programmer to copy the entire schema directly

into his program (assuming the language was compatible)

rather than go to the trouble of preparing a sub-set of it.

One advantage of minimising the scope of individual

sub-schernas would be that so long as each sub-schema

remained a subset, the schema itself could grow without

- 	 -

alteration or recompilation of existing programs. 	A more

sophisticated mapping between schema and sub-schema would be

a feasible proposition but in the final analysis it is

perhaps the arguments for a single data base structure

within each organisation (as outlined in the previous

chapter) which best support the CODASYL approach.

Individual record occurrences are transferred to and from

programs via an area reserved by each program for this

purpose - the User Work Area. A Data Manipulation Language

is also proposed which is sufficiently powerful to permit

application programs to interact with the data base at least

as easily as they could store and retrieve data from

conventional tape and disc files. The level of interaction,

like that of the hierarchical data base management system,

is desiqned to support the type of programs that had already

proved capable ooIv.n9 the problems- of parametric end users as -

identified by Systems Analysts and implemeitid by

professional Programmers.

The Data Manipulation Language for COBOL supports the

following commands /CODASYL-COBOL-JOD/:

A FIND command effectively points the application program

to a particular record in the data base. Numerous versions

of the command are available which would allow a record to

be retrieved "out of the blue" by supplying values of key

data items or to be retrieved because of its relationship to

another record previously accessed by the program. It is by

this mechanism too that the set construct is used to allow

the program to navigate through the network of data base

record occurrences with a particular set occurrence.

- 50 -

Once a record has been retrieved, from the data base the GET

command allows one or more data items to be transferred to

the application program User Work Area where they can then

be manipulated like any other item of data. The separation

of the Find and Get functions also seems to indicate that

the CODASYL authors are protecting programs from the growth - -.: - .

of additional data items in records in the schema. It is

only rarely that a program could improve its performance by

carrying out additional operations between executions of the

two commands and this is therefore unlikely to be the

justification. In fact there are, implementations of the

CODASYL proposals which provide an OBTAIN command which is a

combination of a FIND followed by a. GET.

The remainder of commands of the Data Manipulation Language

allow records to be added to the data base and to particular

set occurrences in a similar way to the hierarchical data

base management system. Existing record occurrences can be

modified or deleted. Deadlock and inconsistent update are

prevented, by the use of explicit HOLD and RELEASE commands

within the language.

The Relational Data Model. 	 -. -

The Relational model arose as an alternative to the other

traditionally-based data base management systems following

the publication of a paper by E.F. Codd of IBM's San Jose

laboratory in 1970 /CODD-70/. Motivated by the need for a

tool to free end users from the frustrations of having to

deal with the "clutter of storage representations" Codd

- St -

reverted to first principles and suggested that entities

were n-ary relationships of their a attributes. As such, the

power of algebraic operators could be brought to bear on the

data without the requirement of conventional.

record-a t -a -time programming techniques.

Codd also proposed techniques for establishing the

computerised model in. a particularly desirable format by the

process of normalisation. As outlined in Chapter 2 this

process is now seen more as a tool for the data analysis

exercise which is necessary for the conversion of an

abstract organisational model to a data base management

system model of whatever type. The technique is not a

property of the relational data model in particular.

Unfortunately many of the published papers on the Relational

Data Model discuss both nornialistiofl. and the

computer-oriented aspects of the model and the distinction

between the two is not always made.

Thus the basis of the Relational Data Model is the

partitioning of the data base into groups of occurrences of

relations of various types. The model makes no attempt - to

establish how these relations will be held on storage media

but presumably implenentorS could choose some point in the

spectrum between disjoint "files" (one per relation) and a .- ,.

totally interrelated structure where all possible

combinations between pairs of relations (based on equality

of value of attributes with the same name in each relation)

would be manifested by appropriate indices or pointers.

Ideally the Data Base Administrator could determine how

particular associations between relations would be

- 52 -

represented. That is there would be some form of storage

schema which indicated which relationships were to be

supported by indices, which by pointers and which would be

established when required at run time. This physical data

independence is an important aspect of the model and is

evident by the absence of a construct to permit permanent11

relationships between relations to be visible to application

programs. It is the responsibility of application programs

themselves to establish such relationships as part of their

own logic especially by the use of the "Join" set-type

operator. Codd has since suggested expansion of the model to

allow relations to be defined which have more meaning to the

eventual sophisticated end uses and data base designers

/CODD-79/. ITere the data base is considered to consist of

"Base relations" which are defined without reference to

other relations and "Derived relations" which provide more

"natural" views of the data base.. The Base Relations would

have a direct physical representation on the data base as: -. H

record occurrences. The Derived Relations, on the other -

hand, would be synthesised from the Base Relations by the

data base management system (not the application programs)

when required by the use of the projection and join

operations as specified in the schema definitions of the

Derived Relations.

The data definition language for the Relational Data Model

consists of fewer constructs than either the Hierarchical

Data Model or Network Data Model since only the relations

(and not the relationships between them) have to be

specified.

- 53 -

The relations have the following properties:

There is no duplication in the rows of the relation

(ie no two individual tuples or occurrences are identical).

Row order is insignificant.

Column (ie attribute) order is insignificant.

(U) All .table entries (attribute values) are atomic.

Further, each relation must contain at least one set of

attributes (sets of Candidate Key attributes) with the

following properties:

No two rows of the relation. may have the same value

for the concatenation of the attributes.

If any attribute is dropped from the set of attributes

then the uniqueness property of (1) is lost.

For each set of base relations one candidate key must be

selected as the Primary key. The columns of the relation are

referred to as domains and the domains of all primary keys

are known as the Primary Domains of the data base.

Similarly to the other 	computerised data models the

Relational Data Model supports a Data Manipulation Language.

This language allows individual tuples to be Inserted,

Modified or Deleted where the values of one of the candidate

keys must be supplied by the application program wishing to

operate on that tuple. In order to maintain data base

consistency, however, the operation must not result in

violation of any of the rules for base relations or

candidate keys given above or of either of the following

data base update rules:

- 54 -

No Primary Key is allowed to be null or have a null

component

Suppose 	an attribute 	A of 	a compound 	(i.e.

multi—attribute primary key) of a relation R is defined on a

primary domain B. Then at all times fot each value v of A in

B there must exist a base relation (say S) with a simple

primary key (say B) such that v occurs as a value of B in S.

Where the Relational Data Nodel differs significantly from

the Hierarchical and Network models is in the way in which

the Data Manipulation Language allows application programs

to establish which tuples of relations on the data base are

of interest because they satisfy some selection criterion.

The distinction is that the result of such selection will

often be more than one tuple occurrence and conventional

programming languages are not structured to process groups

of records as a whole. They are structured to process each

record in a group sequentially or based on the values of key

data items. It may be, however, that the object of the

selection is simply the display of selected tuples on a

Visual Display Unit or Printer or the creation of a more

conventional extracted file (which may be viewed as another

relation) to be processed later by a program written in a

suitable language. In such cases the ability to select

tuples based on such a criterion is an important benefit.

Selection is made by the use of the following operators:

RESTRICT - Establish the set of tuples in a relation B

where some attribute qualifies on the basis of a simple

algebraic expression involving some constant (or table of

constants) r,r ste othtr attribute defined on the same

dornin

PROJECTION - Drop all but certain columns of B and then

drop redundant duplicate rows.

THTh-JOIN - LET T!'EPA he one of the six binary operators

EcJ, NE, LT, GE, GT, LE and let the two relations B and S

have common domains Dl and 82. The theta-join is the

concatenation of the rows of B with rows of S whenever THETA

holds between values of TO and 32.

QUI-JOIN (where the r'lation is equality) results in two

identical columns in the resultant relation.

ATrJRAL-JOIN is the Equi-join where one of the redundant

columns is removed.

The above operators may be said to constitute a relational

algebra and implementations have utilised this situation

/CH .MBER LAIN-76/.

Another technique for allowing sets of qualifying tuples to

be established is in the mathematical notation of the

relational calculus. 1Tor- the criterion is defined using two

elements normally separated by a colon. The left hand side

gives the target of the selection and the right hand side

gives the qualification. Thus to select all bank accounts

witi a. balance of over £10,000 would require an expression

of Vie form.

(ER 	Account. Balance LT 10000

ianv iffiDlementors have used the solid mathematical basis

provided by the relational calculus to devise more "natural"

query lan('UaUPS to allow end uses to interact conveniently

- 	 -

i tt tho Thta hie /PIR0TrF/.

is t.Qrh3.pS 'he most significant implementation of

the e1ational Data Model /CflAM3SRLAIN-81/ and this supports

not only queries of the type described above but also the

linuaqe SQL /IM-SQL/ which supports the

Insert/iJpdte/Delete operations in addition to the

reLitional algebra when embedded in a host programming

lanquage such as PL/1 or COBOL. SQL also makes a further

distinction between ad-hoc queries (which are interpreted

and orocessed as and when they are supplied to SQL in real

time) and 'cannel programs (where SQL expression& are coded

into conv'ntional application programs written in high level

11nTuaes). It is at this point that the similarities between

the fterarchical and Network Data Models on one hand and the

Relational Data Model on the other become apparent: the act

of copi1ation imposes a permanence on the interaction

between program and data base which restricts data

independence and this effect is common to all models. It is

important to realise that this compilation exercise is not

solely necessary to benifit program efficiency by avoiding

contririflal jnternretat.ion but is demanded because the data

base interface will typically form only a portion of an

application program where a great deal of the logic is

lie l? to be concerned with how data is manipulated and

roporte.1 after it is retrieved or captured and formatted

betre it is stored. Currently compilation is essential to

al lo such prograu. to run repeatedly without undue use of

cornouter rocessinq time.

- 57 -

In terna l _Structure _of Data Base ManaementSst

We have seen that there are a variety of items of computer

software which fall under the general title of Data Base

Management Systems - notably the three types described

above. Dspite each such system having its own unique

external manifestation (primarily because each is oriented

towards a specific class of user, be it end user o1

professional .proarammer) it is possible to infer the

existence of a set of constructs which will form the basis

of the internal representation of any Data Base Management

System. This is notwithstanding the freedom of design which

individual DBMS implementors will possess which will

inevitably 	lead 	to 	peripheral differences between

implementations. There is even some justification in

suggesting that a standard internal data base format could

be established which would be a target for all implementors

such that divergence of external appearance would be solely

directed towards different communities of users. Thus, for

example, a centralised data base could be updated by the

application programs written by the professional programmers

for a network or hierarchial data base and at the same time

accessed by the relational ad—hoc queries of sophisticated

end users without the requirement for an abstraction process

to incorporate this data into a section of each end user's

devolved data base.

However the main reason for introducing internal data base

structure into this thesis is so that the action of a

Restructurinq Mechanism can be considered in a fairly general

- .58 -

context. 	Thus the following elements of the internal

structure of a Data Base Management System are identified.

Th_Jbi.ct_Schema.

This element may be seen as a table with each entry

corresponing to an occurrence of one of the constructs upon

which the external representation, of the DBMS is based.

Thus in the CODASYL environment there would be one entry for

each type of record specified in the Schema plus one entry

for each type of set. Similarly in the Relational

environment there would he one entry for each type of base

relation and one for each type of derived relation.

W'ithin each table entry there would be a number of

sub-entries describing how that particular occurrence of

that D3MS construct will be physically represented on a

secondary storage medium by the DBMS. Thus for CODASYL

record the position and format of each attribute would

appear, together with details of which attributes-can be

found on which storage record and how storage records are

linked together.

The distinction between the logical structure of a data

base and its physical manifestation is less significant in

the Object Schema than it is in the external representation

of that schema. Schemas and Storage Schemas must assist in -

the human perception of the data base structure by

Enterprise Administrator and Systems Analyst/End User alike

and althou.ah it is valid to avoid references to physical

storage details in order to achieve a more comprehensible

data base model this argument is not applicable to the

- 	 -

Object Schema which is not viewed directly by a human being.

The other advantage of a distinct Storage Schema - that it

can be re-organised without altering the Schema - can be

achieved equally well whether the Object Schema contains

physical storage information or whether this information

were to be held in an Object Storage Schema.

IhQ_ -sch

This data base element is derived from the Sub Schemas

associated with application programs when they are compiled.

The sub-schema must provide the compiler with details of

the structure of that subset of the data base to be viewed

by that program. In particular the contents of the records

transferred between program and data base via the user work

area must he define.1 in terms compatible with the constructs

used for data item representation in the the language in

which the program is written. Thus in addition to using

appropriate Data Manipulation Language commands to achieve

the transfer the program must be capable of referring to the

data items within the user work area anywhere in its logic

using instructions in the normal syntax of the language. So

that the compiler can create valid addresses when compiling

such instructions (or at least delay their resolution to

module linkage editor time or even start of run time) it is

normal to bind the sub-schema to the program fairly strongly

at compilation time. If the sub-schema alters for any

reason it is likely that the program must be recompiled.

Equally if the prociram is altered the sub-schema will

- 60 -

re-boun.1 when it is re-compiled.

But the Sub-schema is more than just the definition of some

of the data items used by the program. When the program is

eventually run the Data Base Management System must access

the Object Sub-Schema so that it can determine what

manipulations will be necessary in order to transfer data

between data base and program user work area. The Object

Sub-Schema may therefore also be considered as a table

similar to the Object Schema. Entries in each table are

matched each time the program is run and it is therefore

essential that they are never incompatible. If either the

object schema or object sub-schema is altered for any reason

it must therefore be one of the functions of the appropriate

software to check for compatLbility. It is this inherent

ability of allowing schema and sub-schema to alter without

the requirement to chanqe the other which provides much of

the resilience to restructuring which is so desirable in any

Data Base Management System.

Data ta n inulation Lanouaae Execution Routines.

Operating Systems normally support routines which handle the

transfer of data between programs and secondary storage in

response to the Input/Output instructions embedded in

conventional programming languages. Similarly Data Base

Manaaeaient Systems must provide routines which handle the

transfer of data between programs and data. base in response

to Data Maninulation Language commands. As we have seen,

how-vor, these routines must be more sophisticated than

- 61 -

those of the operating system since they must manipulate

data items by reference to both object schema and object

sub-schema.

Different implementations may bind the routines into the

programs at compilation time or module linkaqe editor time.

An example of this approach is the concept of Batch INS

programs as opposed to on-line Message Processing INS

proqrams working in conjunction with a central INS Control

Program. The alternative to binding the routines into the

application programs is to have library copies of the

routines available for execution when required. This type

of binding has the advantage that the routines themselves

may be amended if reauired without having to recompile the

application programs.

Database Records.

The bulk of the data base will, of course, normally be

occupied by occurrences of storage records. The 7981

CODASYL Journal of Development has described in some detail

how these records would relate to the logical records

defined in the Schema. and it would seem that this approach

would be relevant to the comprehensive implementation of any

class of DBMS. Logical records themselves will not exist as

distinct entities, they will simply be agglomerations of

storage records.

Each occurrence of a storage record will be characterised

by a unique storage address within the data base. The

method of construction of the address will depend on the

- 	 -

implementation but typically it would be composed of the

vo1ue nuiher of some disc pack together with an address on

that pack. The 1981 CODPSYL Journal of Development suggests

that all storage records will contain a version number so

that they may be 	reorganised without impacting any

application programs. 	This thesis proposes a further

version number which is applicable to each logical record

rather than any of its constituent storage records.

Nvertheless this version number must be held somewhere for

each record occurrence and implementors could hold it on

each corresponding storage record or possibly only on the

first such storage record for each logical record

occurrence. Alternatively a mapping between storage record

version numbers and schema record version numbers would be

feasible such that a range of storage record versions were

equivalent to the same schema. record version number.

Pafipheral

The final element in the internal structure of a Data Base

Management System covers several miscellaneous items of data

which must be held. In addition to a. library of Data Base

Procedures, a table of Open Area Indicators and a Free Space

Directory it is particularly important that a mechanism

exists to allow application programs to navigate from one

record occurrence to another using the constu.cts of the

Data Base Management System being supported. The debate on

procedurality of Data 'anipulation Language is concerned

with whether the DBMS or the program should perform the

- 63 -

navigation - but for tho internal organisation of any DBMS

inter-record association is always essential if continual

exhaustive searches of the data are to be avoided.

Physical 	juxtaposition 	is the 	simplest method of

associating two records but data bases invariably require

one record occurrence to be associated in different ways

with different record occurrences and this approach is not

feasible in this case. Further it presents problems if

another record occurrence is to be inserted between two

associated records. More practical inter-record

relationships can be implemented using pointers embedded

within data base storage records (like the schema record

version number, either repeated on each corresponding

storage record or only present on the first record) which

can either point to an entry in an index containing record

addresses or can themselves consist of an address.

Alternatively indexes can be set up for each type of

relationship containing.,the address of record occurrences

with a cross index of record key to index entries.

- 64 -

Chances ro Computer Svstems .

The rapid growth of computerisation over the last 30 years

has presented many challenges to the data processing

professionals who have nurtured the science through its

formative years. One particularly significant challenge has

been to allow the computer-based application systems to

react to change. Analysis of user requirements normally

provided a sound basis for the development of systems to

allow data to change in value in an orderly, efficient and

controlled manner. It has become apparent, however, that

changes to the systems themselves, and especially to the

structure of the data they maintain, cannot be achieved

without a great deal of effort on the part of the data

processing staff.

The effort required to produce systems in the first place

in terms of analysis, design and programming effort is often -

significant and can have a profound effect on the structure

of each system and may even determine whether the system is

developed at all. The process can be likened to the

architectural and civil engineering effort required to

create, say, a new building - investment in Research and

Development at this stage should, in general, be reflected

in the quality of the finished product. But where computer

systems differ from buildings is that they tend to alter

continuously throughout their lifetimes. Perhaps buildings,

too, would, alter to reflect changing patterns of usage if

- 65 -

this were practicable. 	Perhaps it is inherent in human

nature that if something can be altered then it will be

altered but if alteration is impossible then methods will be

devised of coping with the unaltered article. 	The 'soft'

nature of 	computer programs makes them theoretically

amenable to virtually any required change without actually

scrapping and. rewriting the original system. 	This is

something of 	a new environment for any professional

discipline - design of computer systems is an evolutionary

process whereas other creative processes result in an

immutable end product. There is, therefore, no established

criterion with which to compare the effort of change with

the effort of creation but it appears that such changes

requite a disproportionate amount of programmer time.

Individual changes are often made on a piecemeal basis and

are justified on their own merits, but it could well be that

the objective of such changes could be achieved with far

less effort if the change had been incorporated into the

original system design. There is, however, a measure of

creativity within the human thought process which is

stimulated by the practical achievement of aims and it is

therefore unlikely that the art of analysis can ever be

refined to such an extent that all possible future

directions can be foreseen and even if they are whether they

can be incorporated into an economically feasible system

design.

The problem of constant system maintenance therefore

appears to he one that will plague computer installations

for the foreseeable future. Any way in which its comsumption

- 66 -

of programming resources can be reduced will be most

desirable. As an examole of the current extent of this

problem the workload of the 80 programmers and systems

analysts in the Bank of Scotland is such that only about 10

would be engaged in the development of new systems at any

time. The remainder spend their time on the onerous task of

amending existing programs or writing new programs to be

incorporated into existing systems. Further, as the usage

of its computer by any organisation increases over the years

the design of existing systems imposes more and more

constraints on the design of new systems since interface

between systems is virtually unavoidable and is often

desirable.

In the embryonic stage in the installation of a computer

application there are often a multiplicity of changes

required to C.orrect errors in the system design or

programming which become apparent only when the system has

become operational. Essentially the system has not quite

met the requirements for which, it was designed even if some

of these requirements were not identified as requirements by

the eventual system user when he was being consulted at the

design stage or were not even identified by the analyst when

he was collating all relevant facts from all users. No

matter how well analysed and carefully tested, the

shortcomings of a system will not be apparent until the

system has been put into practice as a tool for those human

beings it is designed to serve - the "End users". Although

it is important to minimise the extent of these

shortcomings, and thus the modifications required to correct

- 67 -

them, the changes at this time are largely expected (at

least in qeneral terms) and the effort required to carry

them out can be scheduled and costed as part of the system

development plan.

Today many systems have long ago "bedded in" in this way

but they are still changing. Often the users of the systems

have identified areas where enhancements would allow them to

perform their allotted task within the organisation more

satisfactorily. The motivation for such proposed changes

can stem from influences outside the user's immediate frame

of reference which have altered the end user's job in some

subtle way. Alternatively some individual may simply have a

creative thought which puts a different perspective on the

analysis on which the system was designed. Indeed the

activities of any organisation are a moving target for

analysis and it is only rarely that all future eventualities

can be foreseen and taken account of in an original system

design. It is this on-going system enhancement effort which

is the major drain on valuable programmers time in many

computer installations.

Difficulties 	Associated 	with 	Chajnn 	Comp uter

Aoolications.

It is important to establish a perspective on the reasons

why changes to computer systems are so time consuming. Once

a suggested change to a computer system has been mooted the

analyst must determine how it can best be incorporated into

the system desian. Typically this is not a source of

- 68 -

inordinate analysis and design effort. Many changes consist

of enhancements to the content and/or presentation of system

input or output or even the addition of new forms of input

and output. Thus the replacement of a

punched-card-input/printed-output batch computer system by

an on-line Visual Display Unit input/output system might

involve little change to the system structure - only to the

timescale of transaction processing by the system. A good

system design will be amenable to such changes and it should

be fairly obvious how the design philosophy can best be

expanded to cater for the alteration.

Once a change to the desin has been agreed it must be

implemented by changes to the computer programs in the

system. In the early days of programming it was frequently

the case that the programs themselves were fragile in that

they could not be changed easily. In particular this was

the case where they were written in low level languages and

used 'tricky' techniques to minimise program execution time

or memory size. Often the clever trick of one programmer

would become the millstone round the neck of a maintenance

programmer several years later. Discipline in programming

practices, especially with well defined programming

standards together with the widespread use of structured and

modular programming in high level languages, has

significantly reduced 	this problem 	in recent 	years.

Nevertheless the most fundamental systems of many

organisations tended to be developed many years ago and

there are many legacies of programs of this type.

The most time consuming source of maintenance effort comes

- 69 -

from the requirement 	to ensure that each 	change is

adequately tested and (perhaps most importantly) has no

adverse effect on all of the existing functions of the

system. The establishment of comprehensive system test beds

are vital to this operation but each successive change to a

system will require execution of an adequate set of tests to -

prove that no existing function of the system has

inadvertantly been corrupted together with additional tests

specific to the change being made. The time required to

implement a change to a system is therefore dependant on the

complexity of the system as well as the complexity of the

chnge.

There is therefore most scope for reducing the time taken

to amend computer systems by the introduction of techniques

which minimise the effort to re-test the entire system.

Techniques which compartmentalise the system such that the

extent of testing is limited are desirable and Data Base

Management Systems provide such a technique in the area of

the storage of data on secondary media.

ghan ge 	Seen by Data BaseNanagementStems.

The use of a Data Base Management System does not remove the

requirement to change computer systems. Exactly the

opposite - the presence of the DBMS encourages users to

think of the system as flexible and they are therefore even

less reluctant to propose enhancements. One of the reasons

why organisations install a Data Base Management System in

the first place is with the intention of making change less

- 70 -

traumatic for data processing staff and end users alike.

Whether existing DBMS offerings achieve this objective is a

matter of debate but is it evident that Data Base Management

Systems should have some contribution to make to the smooth

implementation of system changes. Preferably changes should

be transparent to all programs with the exception of those

programs whose changes dictated the data base change in the

first place. Even these programs should be presented with a

realistic migration path to ease the effort required for

their modification.

The classes of data independence offered by Data Base

Management Systems are intimately associated with the

reasons why changes to application systems are postulated.

The requirement for Physical Data Independence stems from

the motivation to alter systems because they consume

computer resources in some way which is contrary to the

interests of the computer installation as a whole. - The

pressure for change normally comes from the computer

operations staff and in particular from the Data Base

Administrator in his resource monitoring role. It may be

tha.t the monitoring has identified a system which consumes

more than its share of orocessing or input/output resources

and overtures would be made to ascertain whether changes

could be made such that the system could operate in a

different fashion and thereby consume less resources

(possibly at the expense of overall run times). Date Base

Management Systems permit certain of these types of changes

without change to the programs themselves and therefore

- 71 -

rethove the requirement to re-test the system. Occasionally

the users of a system may observe that critical response or

deadline constraints are not being met and will therefore

suggest a system change. Such a change might imply that the

system could respond more satisfactorily if it utilised its

processing, or input/output resources differently. Once

again the Physical Data Independence of Data Base Management

Systems promises some measure of resilience of applications

to the reorganisations necessary to accommodate such

changes. since the logic in the application systems is not

considered to he unsatisfactory in either of the above

situations it must be considered as a constraint on the

design of any DBMS that as much flexibility in this area is

provided as possible. This applies equally to Centralised

Data Bases and to Devolved Data Bases. The mapping of the

(conceptual) schema onto the (internal) storage schema is

generally the vehicle, for achieving this program

transparency. The more sophisticated this mapping the more

changes can be made without the knowledge of either the

application programmers or the end users. The Data Base

Administrator can monitor the usage of the DBMS and

reorganise as necessary until an optimum operational

environment can be achieved. It is feasible to design the

data base management system such that it organises its own

data storage and thus achieves this optimisation

automatically /STOCKR & DEARNLEY/ /BATORY/.

There are other types of change which result from an

inadequacy of computer resources and these often require

stored data structure to be altered:

- 72 -

The computer used to process the data may change.

The operating system may change or be upgraded.

The Data Base Management System may change or be upgraded.

The medium used to store the data may be altered such that

access has different characteristics.

The physical disc pack used to store the data may fail or

require backup.

The data may be required in a more economical format

(better clustered - less unutilised free space etc - garbage

collection)

The techniques used to represent inter-record relationships

may be revised in the light of usage.

Techniques to handle these types of change are common and

although the causes of the changes are very different the

processes for implementing them may use common logic. In

particular some of the routines used by the DBMS for

accessing data on the data base may be equally valid for

reorqaflisiTLg that data. An example would be the logic to

avoid, deadlock which would be necessary if a record is being

modified because it is being re-organised or if it is being

updated by an application program.

Loqical Data Independence is 	not concerned with the

consumption of computer resources but, rather with the

evolution of computer systems to reflect the changing

requirements of the end users. Within this context it is

apparent that two different philosophies have developed

(either by accident or by design) and this is why the

- 73 -

ca taorisatioDS of Cent.talised and Devolvti Data Bases have

been sugciested.

The Devolved Data Base approach tends to advocate a stable

data base environment for each restricted community of users

of each devolved data base. It is articulat1y important

that gueris can be formulated in a consistent manner which

reflects the structure of the enquirer's perceived universe

which is not envisaqed as altering significantly as time

passes.

The Centra.lised Data Base Management System cannot rely on

a stable perceived universe and correspondingly stable

proqramS since it must cater for a multiplicity of users.

The types of DBMS designed for this environment limit the

perception of each application program by the sub-schema

construct but retain its universal applicability by ensuring

that each sub-schema is a subset of the schema. Any record

or set quoted in a sub-schema must have a corresponding

entry in the schema albeit that that entry contains

additional member record types (for a set) or additional

data items (for a record) . If an application system change

is identified which requires a change in the sub-schema used

by its programs it may therefore be necessary to alter the

schema to maintain the continuity between the two. But

altering the schema must imply also the alteration of any

sub-schemaS covering the area being changed and this in turn

would require modification of the programs which used those

sub-schemas. F.estructutin(T in a Centralised Data Base

etivironment is therefore a facility provided to aid the

productivity of the application programmers when they modify

- 714 -

computer systems in response to the changing requirements of

t:.he users of those systems. It should minimise the effort

to modify the programs and by restricting the areas of

chanqe should reduce the extent of the retesting required to

demonstrate that the new structure adequately supports all

applications. Although the restructuring is performed by

the Data Base Administrator it is not carried out at his

behest and he personally receives no tangible benefit from

it. It is a more complex subject than reorganisation and

must be viewed in conjunction with other aspects of

application systems evolution.

Restructuring a Devolved Data Rase.

We have seen that the stability of the perceived universe

of any particular user corresponding to his own devolved

data base reduces the frequency of restructuring of that

data base. The definition of the devolved data base ensures

that the changing requirements of other individuals within

the same organisation have no impact. The three sections of

the devolved data base support this stability to different

extents:

The abstraction of the centralised data base will alter

only very rarely. 	This reflects the inherent stability of

the corporate goal of the organisation. 	Although each

section within it may be a microcosm of change the overall

objectives of most organisations are well defined - to

profit in a section of commerce where the organisation has

- 75 -

exper:tise, to manufacture some class of artifact etc. - and

the commorJy used items of data within this framework will

remain constant. 2ven when this data changes it will be

possible to maintain the stability of the abstraction by

altering the mapping from centralised to devolved data base

to compe;sate for the change. Alternatively if an

application program is providing the interface it can be

altered by the data processing staff to reflect the new

structure of centralised data base while retaining the same

output to the devolved data base. This situation has a

parallel in the way a centralised application would alter to

reflect a structural change while retaining its existing

output (e.g. printouts, displays etc.) . In a banking

example a program to identify all customers who had exceeded

their overdraft limit and. present their information to a

devolved data base for the use of the lending control

department would require change if the limit were to be

applied on a customer (rather than account) basis but it

must still identify the correct deviant accounts.

Occasionally a change to the central data base will

necessitate an alteration to the devolved data base user's

perceived universe and thus to the abstraction of the

centralised data base. In such circumstances the end user

must alter his programs if they are to reflect what he now

considers to be the "true" structure of the organisation's

data.

Devolved data base users are also entitled to expect a

decree of stability for the section of their data base

- 76 -

crivinq information on th "outside world". They must decide

what information is to he considered within their universe

and it is therefore their own prerogative to ignore any new

information which becomes available if they do not consider

it relevant. If the outside world does undergo an

irrevocable' change there is little alternative but to

incorporate the chanqe into the devolved data base and make

appropriate changes to the end user's programs.

The third section of a Devolved Data Base, where the user

captures and updates the data himself, is likely to alter

from time to time at the user's discretion. This data,

however, is the sole responsibility of the end user and is

outwith the control of the Data Base Administrator., As

such, its change cannot impact on any other users and change

to structure with appropriate change to programs is an

exercise which can be undertaken by the end user himself in

isolation from all other end users.

Just as it was observed that many of the routines required

by the software to reorganise a data base for any of a

multiplicity of reasons would be commonly used it is likely

that structural chancres could be achieved within the general

design philosophy of a devolved data base. It is -the

motivation behind the change which is different and this may

indicate a shift in the priorities of the software.

- 77 -

Pestructuring -2 Centralised Data Base.

This thesis is primarily concerned with the restructuring

of the single centralised data base maintained as a common

resource for a wide spectrum of end users by application

programs written by professional data processing staff. The

data processing department may be considered as a service

centre within the organisation which is prepared to bear

some inconvenience when the data base is restructured in the

interests of keeping their entire library of programs

operating on a single consistent data base structure. It

would often be in the interests of the data processing

department to view its data model of the organisation as a

continuously altering but instantaneously accurate picture

of the "current" state of the organisation. A universally

applicable data base management -system model is desirable at

this level in preference to a plethora of such models which

reflected the view of the organisation at times in the past

when individual systems were implemented or modified. This

approach is particularly true for the 'strategic' systems of

the installation which carry out important roles such as

data value update but as a consequence of their central

position within the framework of systems require

modification fairly frequently. Other more peripheral

programs within systems might present less pressure for

modification if this can be avoided. In addition to the

provision of facilities to restructure the data base and to

allow appropriate changes to programs the restructuring

mechanism must therefor" provide for emulating historical

- 78 -

states of the data base structure against the current state.

This emulation would allow decisions to be taken as to which

programs to update but this is considered as a less

desirable approach than modification of all systems at the

time of the restructuring since it defers program change

rather than dispenses with it. The decision as to whether a

program should be considered as strategic or peripheral

should be the province of the Application Administrator

since long term convenience must be weighed against short

term implementation cost and it is important that the result

is not coloured by the interests of the individual entrusted

with the system modification which necessitated the the

change it the data base structure. To enable a phased

implementation of system changes the restructuring mechanism

should provide for the possibility of considering some

strategic programs as non-critical such that they are

modified at some convenient time after the restructuring.

centy Ch4nje R€ recL

I, I 	 , 	-1 t2 Ph __
L4,OQtate ,c,1em4. ' o!\erIecl.

IVeQ

Ir Fô 	Tems 	io/ved in
0' 'aije

WAeze,'flroiI O(E-CrJe C_

Efte OIc/Stroc7(e 	 IIre ç -w / 	 . 	/
t1nc Le4ve 	 and Pr(q 	To

rro ra., tine freeot 	 f?eP/ec.4 Ne(qcr(

- 79 -

The tjminq of changes can be more critical in a centralised

data base than in a devolved data base since rather than a

single user or closely associated group of users there will

be many users all with different claims on the availability

of the data. where enhancements to a system are the cause

of the restructuring it is reasonable to expect users of

that system to sacrifice availability of their data for some

time but where a system is not altering in its function it

is more difficult to present such arguments for

unavailability. In some circumstances the option of making

data unavailable is just not feasible because of the nature

of the data base - one only has to consider Airline

Reservation Systems and Bank data bases supporting 2 14-hour

automated teller machines. Such considerations apply not

only to the restructuring of these types of data base but

also to virtually the en-tire spectrum of their

reorganisation /LUCKING-74B/. Thus there may be no available

time slot when a restructuring operation may be run on some

centralised data bases to the exclusion of normal program

access. Furthermore the nature of the programs and data

involved in certain fundamental data base structural changes

would often demand that a period of parallel running would

be required to convince auditors that the change was having

the desired effect.

Pestructurina Strateqies.

In situations where it data base can be made unavailable to

its user(s) for some period of time the most straightforward

- P0 -

approach to restructuring would he carry it out in discrete

staQes. This would normally be appropriate for any devolved

data base and in many occasions for a centralised data base.

The following steps would be typical:-

Unload the data base 	in accordance with the

corresponding schema to some backup storage medium (e.g.-

magnetic tape)

Alter the schema to reflect the desired change.

Alter the data base backup to ensure that it

corresponds with the revised schema.

Reload the data base from the backup in accordance

with the revised schema.

Such a process is an example of a Static Restructuring

Strategy. A variation may be obtained by operating on the

data base in-situ rather than on- a backup copy but this may

present practical difficulties for certain types of change.

Some of the operations in this procedure are convenient

since they are required in any DBMS to facilitate the

integrity of the data by occasional archive and recovery as

required. Garbage collection, too, is convenient using this

approach since it is easier to position data efficiently

when it is reloaded in its entirety.

There are some types of static restructuring where data is

still available to end users for the duration of the

restructuring. The data base, for example, may be archived

while it is still being updated /IBM-DBRC/ or certain access

paths may be altered while the data base is on-line /VAO/.

Where a restructuring mechanism is implemented which allows

- 81 -

the Schema, the application programs and the data base

itself to alter while the data base continues to be accessed

by application programs (including those being altered) that

mechanism may be said to provide a Dynamic Restructuring

Strategy.

R6structurin g.

A Restructuring Mechanism (Static or Dynamic) must operate

on the three elements of the Data Base Management System.

The Schema.

The Data Base (possibly in the form of a back up

copy).

The Application Programs.

The cause of the restructuring is a requirement for program

modification in one or more application systems which

establishes the revised structure of the data base and,

therefore, its description within the schema.. The change in

turn may require changes to other application systems. We

have seen that the schema has both a source and object

manifestation as do application programs. The established

technique for altering application programs is to alter the

source and recompile to produce a revised object version.

The use of text editors has made this operation relatively

straightforward. It does, however, imply a lack of

continuity between each succeeding version of a program and

it is this lack of control over program change which

requires exhaustive system testing after each modification.

The close relationship between the schema, sub-schema and

- 	 -

data base makes the problem of continuity even more acute if

the Schema is to be amended. The schema must always reflect

the actual structure of the data base and the sub-schemas

must always be subsets of the schema.. No implementation of

a daa base management system can permit an error to be made

such that there is an anomaly in this situation. But the

more tightly the DBMS can preserve this continuity the less

resoonsibility is left for demonstrating its accuracy by

system retesting.

The following approaches might be used by data base systems

to achieve this end.

OPPOCICh I 	Sceta eeCO,/4O4

SOEIRCE
4 NEW

- SouRc-
,,e Ilj9 1e,ct £dto,' cii174

D6 1
5cM419

S3SCH'1I9
4 	 V02 Y

os-P 1Pi-6ftS
ftTh'\ &AsE

- Objeë1ScAe40 0Tt 0 f

OR, fSNI9(..
Soe4r2c4

eompile 	

ScWE-i7

- - 	

SCHE0

of- Li - 	

-

sc 'i
	VA IJ)ATC

44__— 	(3 (,?fZ I
OqTecr

I 	
}) 	

\4

tIEW

o 	

WI

3TR Asf 	 8As 	Oiê174

—---I

- 	 - - - - - I

- 83 -

'rh 	first approach thcrefore has the advantage that it

utilises an existing item of software in the text editor in

addition to two utilities which the DBMS must provide (viz:

the Schema Compiler and a Compare and Validity utility)

The second procedure uses 3 DBMS utilities (Schema Compiler,

Update and Validate utility and a Decompiler) . Note that

schema compilation is only required once in the lifetime of

a data base since the object schema it creates is

subsequently updated by successive runs of the Update and

Validate Utility. In the circumstances it is reasonable to

suppose that the compiler would also be used to set up an

initial data base (i.e. a data base with no records or

inter-record relationships but with sufficient "hooks" to

allow application programs to add record occurrences when

they eventually run) . The Schema Changes can be described

in a language similar to that used for the original

definition of the Source Schema and it is therefore likely

that some of the logic for the Update and Validate Utility

could be incorporated from the Schema Compiler.

When the implementor of a Data Base Management System

decides how it will incorporate restructuring he must

therefore choose one of these alternative approaches. He

must consider the relative complexity of the various items

of system software as cost constraints within the design. of

the D3MS but other factors such as the "user friendliness"

of a system able to identify errors interactively will also

be important. In the past the consideration of

restructuring as a peripheral aspect of the overall data

base system has tended to favour the "schema amendment and

- 84 -

recompilation" aDproach but there are many attractions to

the "object schema amendment" approach when restructuring is

inteciral to the DBMS design.

objectives for a Restructuring -Mechanism.

A restructuring mechanism must be a versatile tool at the

disposal of the Data Base Administrator to allow him to act

on behalf of the application systems designers and

programmers so that they can modify their systems as

circumstances dictate while retaining a single centralised

view of the organisation's data base as a shared resource.

It must be powerful enough to allow a wide range of logical

data structure changes to be performed.. It may be that

different mechanisms are appropriate for Centralised and

Devolved data bases since the objectives for the stability

of application programs are somewhat different. A choice of

Static or Dynamic strategies must be available so that the

Data Base Administrator can take the desirability of

continuous availability of the section of data base to be

restructured into consideration.

The mechanism must be functional. 	It must serve the

practical needs of the Data Base Administrator in that it

will permit him to perform common changes conveniently.

Like the design of a programming language the design of the

restructuring mechanism will be a compromise between the

provision of a limited set of primitive constructs with many

invocations of each construct required to describe a desired

- E15 -

charge aid the provision of a complex set of operations

which has the potential to specify restructurings concisely.

In the latter case the required education of the Data Base

Administrator in the language could become the critical

factor.

The mechanism must 	be 	convenient. 	The Data 	Base

Administrator must be able to specify his restructuring

requirements in a straightforward manner while at the same

time being allowed to exercise his discretion as to the most

appropriate strategy for the change being made. He must also

take into consideration the status of the data base at the

time of the change.

The mechanism must be efficient. Restructuring is always a

means to an end rather than an end in itself and it is

therefore incumbent on the restructuring mechanism to

consume as little computer resources as necessary. A Static

Strategy must allow the restructuring to complete within

some target timescale which is acceptable to the end users

who have been deprived of access to their data. base. A

Dynamic Strategy must allow application programs to continue

to access the data base while it is under way with any

degradation of response during this period being kept within

aqreed limits.

The process of continual evolution of the logical

structure of a. cntralised data base together with the

parallel process of evolution of the application programs

operatingon it is the particular aspect of data base change

addressed in this thesis. From time to time the data base

must be restructured so that it can continue to be an

accurate model of the organisation which maintains it. In

particular the CODASYL proposals for a data base management

system suggest a definition of restructuring as the

operation of altering the data base schema and the

consequences thereof (as opposed to the alteration of the

storage schema (reorqanisation) or the sub-schetuas).

Although little research work has so far been

concentrated into this type of change within data base

management systems there are several sources where

developments have been described in closely related areas.

This chapter considers those areas where there is some

measure of commonality and notes where previously described

techniques will be applicable. In some cases differences in

approach between the proposals described here and those

described elsewhere are highlighted.

The_Spectrum of Data Base Chang

lie have seen in Chapter 2 that a data base may consist of

4 types of schema:

WOM

The Conceptual Schema

h) 	The Data Pase Schema

The Storage (or Internal) Schema

The Sub-Schemas for External Schema)

In the hierarchy of mutual dependence of these schemas a

change to the storage schema (within certain limitations)

should not require changes to the conceptual schema, the

data base schema or to any sub-schema. The motivation for

such changes would he to reduce performance overheads.

Similarly, certain changes to sub-schemas should affect

neither the data. base schema nor the storage schema. They

would be an inevitable consequence of certain types of

enhancements to application programs where a change in the

program's 'view' of the data base was required.

Changes to the schema, on 	the other hand, cannot

guarantee to preserve the integrity of the storage schema or

the sub-schemas since both are dependant on the structure of

the schema for their own structure.

By the same token a change to the Conceptual Schema would

normally dictate changes to the Data Base Schema (and

consequently changes to the Storage Schema and Sub-schemas)

since this is essentially a translation of the Conceptual

Schema into the constructs of the Data Description Language

of some Data Base Manaaement System.

In a. tutorial paper published in 1979, Sockut and

Goldberg aive an overview of those requirements which they

view as necessary for handling changes to a data base

/SOCJT & GOCDBEBG/. They use the term 'reorganisation' as

a generic description of the entire spectrum of change from

'restructuring' for changes to logical data structure to

'reformatting' for changes to the way in which data is held

on storage media. The spectrum of change is illustrated by

several examples ranging from (at the restructuring end) how

the data base would be expected to react to changes in the

reporting structure of the employees of the organisation

modelled in the data base to (at the reformatting end) how

clustering techniques for the data on disc could be altered

to improve performance. By broadly equating the CODASYL

Schema to the ANSI/SPARC Conceptual Schema, Sockut and

Goldberg consider restructuring to relate to changes in the

definitions of attributes and to changes in the

relationships between them. They make the observation that

the schema to sub-schema mapping will often imply that

application programs need not alter if the schema alters, so

long as the sub-schema which they use has remained

unchanged. There is also some discussion of the reverse

process of altering the sub-schema without changing the

schema. The tutorial does not address the motivation behind

data base restructuring and in particular does not discuss

its close relationship to the process of application system

evolution. This contrasts with the approach taken in this

thesis which emphasises the need for program evolution in

the centralised data base environment while at the same time

identifying particular situations where application program

changes will not he necessary.

-

The spectrum spectrum of data base changes was also described in

the CODASYL Proposals when they were first published in 1971

/CODASTh-71/. In particular the distinction was drawn

between changes in the logical data structure described in

the schema and the changes necessary from performance ot

security/i4ltegrity considerations. In the subsequent

Journals of Development this view has not radically altered

/CODASYL-78, CODASYL-81/.

The proposals are mainly concerned with the description

of a Data Defi.nition Language (and, in the earliest version,

a Data Manipulation Language which has subsequently been

moved into particular language specifications) and do not

claim to be a complete specification of a DBMS. Thus

certain areas such as Restructuring have been mentioned but

not described in detail. In particular the requirement of a

DBMS to support restructuring is recognised at two points in

the report.

In section 2.3.6. a System Support Function is

postulated which "permits modification of a schema or

sub-schema and causes the changes to be reflected in the

data base itself. 	Without such a language, changes to the

schema can only be made by developing an entirely new schema

and restructuring the data base in accordance with the new

schema".

In section 2.3.7. the report recognises that the Data

Base Administrator must have facilities to allow him to

"modify the schema and compile the changes into the object

schema (and to) modify the data base to reflect changes in

the schema and storage schema".

It his, therefore, been recognised that the schema and

sub-schema will alter from time to time and also that it is

probably more desirable to have a mechanism which changes

the schema and data base together rather than one which

alters the data base by examining consecutive editions of

the schent.' This approach is adopted in the individual

restructuring tasks identified in Chapter 7. It is the

identification of these tasks which has brought to light the

limitations of a Data Definition Language which only permits

the description of the data base structure at a single point

in time. While recognising the applicability of the style

of syntax for data definition described in the proposals,

enhancements have been made here to provide a language which

describes how the data. structure is to alter. The

requirement for a description of the current data base

structure is considered as a problem of data retrieval from

an object version .of the schema and not directly related to

the process of data capture of the definition of the
\

structure. Although such changes to the proposed DDL are

largely cosmetic it is important that the vital significance

of a convenient mechanism to support changes to data base

structure is made more apparent to data base management

system implementors and users alike. The encapsulation of

the DDL within a language which supports changing structure

underlines the fundamental requirement for the Data

anipulation Language Execution Routines to operate in an

environment of changing programs, changing data base

structure and changing object schema.

-

The book "The Co1asy1 Approach to Data Base Management"

/OLLE/ devotes a chapter to Restructuring. It is observed

that restructuring is a vital requirement which has been

given little attention and is only described in passing in

the Data Base Task Group report. In common with the view

expressed in this thesis, restructuring is defined (in the
1.

CODASYL context) as amendment to the schema while

reorganisation is an amendment to the storage schema.

Garbage collection is considered in its own right as a

utility which can operate on the data, base without change to

either the Schema or the Storage Schema. Elementary

restructuring tasks are identified in much the same way as

those of Chapter 7. They are classified as additive,

subtractive and modificational but they are not described in

any detail nor is their impact on application programs

discussed. 011e admits that Restructuring is a topic which

is "...often mentioned but never discussed in detail". This

thesis is intended to provide such detail.

There is evidence to support the view that other

researchers have also recognised the relationship between

Restructuring and the information architecture aspect of the

maintenance of a centralised data base /KAY/. Conversely

the relevance of reorganisation to system performance (in

both centralised and developed environments) is apparent.

Facilities to generate the revised schema and to populate

the data base using a mapping from old to new schema are

required. Kay also suggests that research is needed into:

Impact on Sub-Schemas and Programs.

Impact on the Data Storage Description Language. In

particular can this be automatically generated from changes

in thc schema?

c) 	Impact on

criteria for it to

of restructuring?

The detailed

restructuring tasks

and (c) although

recognised.

the Data Base itself. 	What are the

change in the event of particular types

consideration 	of 	the 	individual

in Chapter 7 particularly addresses (a)

the importance of (b) must also be

The CODASYL framework has been said to support an

intuitive concept of entities, attributes and relationships

/TAYLOR and FRANK/. They reflect the ideas which have

evolved with system design over the years and in many

practical situations it is useful to consider certain

"things" as concrete entities and other "things" as abstract

relationships. As a consequence this flexible model of the

organisation, although easily understood by computer

professionals and end users alike, is rather volatile and a

volatile model must be amenable to change. Furthermore the

facility to describe the same logical structure in more that

one way (eg Repeating Groups and Sets) implies that there

will be a requirement to move from one representation to

another as the modeller's perception of the "best" approach

alters.

Lica1 Chanoes and Structural Changes.

Restructuring is generally considered to cover changes in

the Data Fae Schema required as a consequence of chanqes in

the Conceptual Schema in addition to changes on the Data

Base Schema which reflect decisions to alter how this will

be mapped from an unchanged Conceptual Schema. The

restructuring as a consequence of the change of mapping has

received attention from some researchers in the recent past.

NAVATHE, for example, sees restructuring as "a tool

designed to increase the latitude of a database user with

respect to the choice of structure. This class of change

has been particularly attractive since it is evident that

since the logical structure of the data has not changed

there is no theoretical requirement for application programs

to change. In practice, however, the close relationship

between program and schema has implied changes and

suggestions have been made for automatic program amendment

techniques. Although such changes only cover part of the

structural changes discussed in Chapter 7 they are reflected

in semantically equivalent sequences of DML commands and the

work of other researchers will undoubtedly be relevant in

this context.

Sockut and Goldberg discuss this particular aspect of

restructuring at some length in their tutorial. They

sugoest that the Conceptual Schema is the model which is

free of all physical storage constraints and its amendment

is therefore equivalent to "pure" restructuring. In

individual implementations it would be difficult to

formulate such a clear definition since constructs which

would possibly be more appropriate at a lower level tend to

be included at higher levels for the convenience of the

impletnent.itiori. 	Like 011e's approach, they suggest that

attributes can be addd, deleted, combined, split 	or

renamed and they further categorise the important class of

change where an attribute migrates from one record to

another as "Reorganisation on the String Level". Examples

are given of changes in structure which can be achieved by

introducing new classifications of records and migrating

data items to these records.

There a set has an owner record of "Project" and a member

record of "employee" it may be that each employee record

contains a data item of "longevity" which indicates whether

that employee is Permanent or Temporary. It is therefore

feasible to alter this structure by giving the set two types

of member records (viz "Permanent Employee" and "Temporary

Employee") and thus dispense with the data item. This

change can, of course, take place in either direction and a

decision to undertake it is more likely to be influenced by

programming considerations than changes in the

organisational model. Typically it might become apparent

that most application programs only require access to the

permanent employees and it would be more convenient to have

these grouped as distinct set members rather than always

demanding a test on the Longevity data item to determine

whether a particular data item is of interest.

In a thesis for the University of Aberdeen WILSON also

identifies the requirement to switch between logically

equivalent data structures. The relationship between pupils

and teachers at a school may either be represented as a set

"Teaches" with owner of "Teacher" and member of "Pupil"

where more than one pupil record may actually relate to the

same teacher. Alternatively the same relationship may be

represented by an "Is Taught By" set where the owner record

is "Pupil" and the member record is "Teacher". In this case

there will be more than one teacher record for the same

pupil. A detailed example is also included for a data base

of sheep and the multiplicity of relationships caused by

their breeding. Although the Conceptual model in this

instance is both simple and stable (viz:- a ram and a ewe

are related by a mating to produce other sheep) there are

several alternative data base models for converting this

relationship into the set construct (IDS in this case). It

is desirable to be able to switch from one data base model

to another on the light of experience gained from the types

of application programs required-to analyse the data base.

Hierarchical. Data Base Management Systems provide a

structure which is amenable to certain types of change

without impacting on the formulation of queries /DALE &

DALE/. Thus if a query relates to data items in a cascade

of nodes within the hierarchy some re-ordering of these

nodes may take place without altering the query..

The criterion for allowable restructuring operations is

based on the concept of a "Broom Set" of nodes for each node

within the hierarchy. These are both the "Ancestor" ahd

"Descendant" nodes of the node itself. Thus in the diagram

the Broom set of B are A, D and E

A

B

D E F C

A restructurina is allowable if every broom set in the

original structure exists at least as a subset of a broom

set in the new structure.

RAVATHE and 	FPY have 	considered several 	equivalent

structures where hierarchies are embedded. into more general

network structures. They consider such transformations as

Compression (replacing two consecutive levels in a hierarchy

by a single level) , Assembly Merging (replacing twin

segments at the same level by a single segment) and

Inversion (the inherent relationship which exists between

each lower level in a hierarchy and the levels above it to

form another hierarchy). They recognise that schema

modification is just one type of data base change and make

the point that demarcation between restructuring and data

processing is fuzzy.

Aopligation Program Stability.

To allow application programs to remain intact in spite

of a restructuring is a legitimate objective since it will

eliminate the expensive and time consuming exercise of

program modification and re-testing. However in a

centralised data base environment this objective must be

balanced against the sometimes contradictory objective of

- c77_

havin'i all application programs operate on subsets of the

same basic data structure. This objective of a unified data

structure is less apparent when applied to the collection of

devolved data bases linked to the same centralised data

/ base. The objective here is more for the stability of each

devolved data base (and the application programs which run

on it) despite changes on the corresponding centralised data

base.

The Proposals for restructuring tasks in Chapter 7 identify

the criteria which may be applied to an application program

to determine whether it will be stable under that task but,

equally importantly, provide a route whereby application

programs which must change are allowed to do so in a

controlled manner without a moratorium on running them

during the restructuring. -

Other researchers have concentrated their attention on-

techniques with the principal objective of preserving

application program stability.

An in-place restructure has been implemented at the

University of Pennsylvania /GERRITSEN & NORGAN/ /BEAVER/

which allows the data base schema to evolve but which leaves

any record occurrences existing at the time of the change in

the format corresponding to the schema applicable when they

were written (a process similar to that required for open

dynamic restructuring). Programs, too, may be at various

levels corresponding to schemas which were operative in the

past. The system then carries out. a continual emulation of

records and program-access-paths by performing up to two

translations each time a record occurrence is accessed

during an application program run. The first translation is

to a corresponding record (c-record) which is in the format

defined in the current schema. The second translation is

from the c-record to the generation in force when the

program was compiled. Thus if n versions of the schema have

existed in the past the number of possible transformations

is 2(n-1) rather than n(n-1) which would be possible if a

single translation were made from the actual generation of

the record to the generation of the program which required

it. The limitation on the complexity of transformation

simplifies the implementation of the system but it does

impose significant overheads each time a data base record

not in the current schema format is accessed by a program

compiled under a previous schema. Limitations are placed on

the types of change which are permitted by use of the

primitive operations of INCORPORATE, EXCISE and CHANGE on

sets, records and data items.

Relational data base management systems provide some

measure of stability to the views of the entire data base

held by application programs /ARORA & CARLSON/. Because of

the essential simplicity of the concept of a relation and

the lack of a construct corresponding to a set it is likely

that the entire data base can evolve by continually

expanding the scope of the base relations. The derived

relations used by application programs would remain stable

since they would be projections of the base relations.

Certain classes of restructuring are said to possess a

"Loss-less property" where any previous relation can be

recreated by the natural join of relations created by the

restructuring. That is any derived relations created from

the previous base relation can still be created from the

join of the new base relations.

Another proposed technique which would lead to the

increased stability of programs is the concept of record

sub-types /PALNR/. Where different types of entity have

several properties in common it may be convenient to have a

aeneric name which can describe their similar qualities in

addition to the specific name for that type of record.

Application programs would not reference the generic name

and this would allow a. more concise description of the data

in the schema. It would also permit new sub-types to be

added without disturbing the existing subs-types.

Chaqes to Physical Rather than Logical Structure.

The main thrust in proposing and implementing mechanisms for

data base change has been in the area of reorganisation of

the way in which data is held on its storage media without

altering its logical relationships and therefore without

altering the application programs which run on it. Thus the

data base can be tuned to optimise its consumption of

computer resources. The CODASYL proposals now provide a

convenient distinction between restructuring (altering the

schema) arA reorqanisatioP (altering the storage schema) but

in other data base management systems the differentiation is

less clear cut. Research in this area does form the basis

of the techniques proposed for restructuring in this thesis

since in both situations data base storage records must be

manipulated to reflect the new storage schema. If the

schema alters then the storage schema must also alter to

correspond with it.

The EXPRESS project at IBM /S1TU et al/ has tackled an

exercise which many computer installations must undertake,

that of converting a large number of well established

conventional data files into the structures demanded by a

data base management system. A source is quoted where 100

ad-hoc COBOL programs were required to convert 29

application files to data base structure. The effort in

designing, coding and ensuring the accuracy of such programs

is one factor which tends to discourage organisations from

moving to data base systems in the first place, especially

when existing applications have been running successfully

for many years. EXPRESS requires forms to be completed

giving a non-procedural description of how the data is to be

converted. The structure of the source file and the target

data base must be specified using a language 'DEFINE' which

is similar in concept to the CODASYL DDL or the DBD of INS

but is more generalised than either so that it can handle

the wide variety of structures on application files. The

lanquane is oriented towards the hierarchies typical of

COBOL files. within a hierarchy the items of data may be

IO'(

optional, 	variable lenqth 	or 	self-describing and 	a

user-extensible picture facility is provided.

A further language - 'CONVERT' is used to specify how the

target structure is to be derived from the source. The

primitives of the language are:-

SLICE 	- Form a flat file from part of the

hierarchy.

SELECT - Provide the selection criteria to extract

hierarchies from an existing hierarchy while retaining the

same form.

(C) GRAFT - Form a large tree by joining two existing

trees.

In addition, data may be manipulated by operations such as

SUN, 1AX, MIN, AVE, SORT.

EXPRESS translates the non-procedural description of the

conversion into PL/1 programs which are run in 3 stages as

follows:

The READ step

This stage 	checks for inconsistencies between the

specified structure of the source files and the actual

structure and also transfers the source files to an internal

file in a standardised format.

The CONVERT step

This derives a further file in the standardised format

based on the input file and the conversion procedures.

The LOAD step

This uses the facilities of the target system (eg INS) to

load the output of (b) onto the target data bases.

Although the read and convert steps may be combined it is

suga(-sted that this might be unwise be cause of a potentially

high error rate.

EXPRESS is therefore designed as a tool to assist in the

process of setting up a data base but could also be used to

convert from one structure to another or even from one type

of data base management system to another (eg INS to

Relational).

The CODASYL Journals of Development in 1978 and 1981 not

only describe a Data Storage Description Language for the

storage schema but also indicate how that storage schema may

be altered to facilitate reorganisation. Like the main text

of the journal of development, the appendix describing the

DSDL does so on a clause by clause basis but it still

provides for a static picture of the data base storage

structure rather than a language which allows the Data Base

Administrator to indicate how that structure is to alter

from its former state to a new (reorganised) state. The

significant change in this area between the 1978 and 1981

JOD's is that storage records have been given version

numbers much like those proposed here for the main schema.

It is not proposed, however, that there must be a connection

between schema version number and storage schema version

number. They are logically distinct and any connection

would, be set up purely for the convenience of the

implementation. equally. strategies for reorganisation as

Static, Background and Incremental have been identified much

like the Static, Open Dynamic and Closed Dynamic strategies

for 	flestru.cturinq 	proposed here. 	These 	alternative

strategies all have some merits in different circumstances

so that the Data Base Administrator has the ability to

determine which will he most appropriate for a particular

reorganisation. By mixing the strategies, and in particular

by inclusion of the open dynamic (incremental) strategy the

data base may contain many versions of the same storage

record at the same time. The object version of the storage

schema will therefore contain multiple descriptions of each

type of record (one for each possible version) each of which

must map onto the object version of the schema.

It is evident, therefore, that any implementation of a

CODASYL DBMS which supports reorganisation in accordance

with the proposals of the JOD could utilise the same

techniques at the physical data storage level for

restructuring of the schema. But reorganisation is a far

more straightforward (if less frequent) procedure as the

Journal of Development recognises "Although the schema may

change because of changes in the organisation's data or

functional. requirements, such changes are likely to occur

much less frequently than changes to the storage schema made

for performance and other reasons". The Data Base

Administrator may carry out any type of reorganisation-- - "in

the knowledge that his activities have no effect on the

Schema itself and therefore on the application programs

running against the data base".

Storage records may differ from logical schema records in

either of two ways or by a combination of both:

(a) 	The schema record may be divided into several

-

subsections with each being held as a unique storage record.

Thus If certain data items are generally referenced more

frequently than others they can be grouped together and

placed on a storage device with a more rapid response time.

Storage records for the same schema record are

interconnected by means of pointers.

(b) Different occurrences of schema records may require

different response times and their partitioning into storage

records may reflect this situation.

The discussion on restructuring in this thesis treats

schema records as being entire since, where a schema record

is represented by more than one storage record, these must

be linked so that the schema data structures are preserved.

The precedent for this view is taken from the JOD itself

where the discussion of set types and the reorganisation of

the way in which they are physically represented considers

schema records to be entire (ie effectively they have a

single address)

The principal tasks which can be undertaken for a

reorganisation are:

To alter the way in which schema records are

partitioned into storage records.

To alter the representation of a set from direct

pointers to indirect pointers via an index (and vice versa)

C) To alter the method of indexing the storage records

for access by key or via set and for- or

sequencing the records in storage.

Thus, aithouch the work described here was carried out

independently of the Data Base Administration Working Group

-

which pro1uced the DSDL, there is a. great deal of similarity

in the two approaches. 	Nevertheless restructuring of the

schema is undertaken for 	very different reasons from

reorganising the storage schema and, far from always being

transparent to application programs, restructuring will

often be a consequence of a change to some program and will

require changes to other programs to maintain a consistent

sub-schema to schema mapping. 	It is most likely that an

implementation which supported 	both reorganisation and

restructuring would use the same routines to modify the

contents of the stored data in both situations.

Other research 	work has addressed the 	problem of

portability of data between data base management systems

/?RY & JERIS/. This activity would probably be as traumatic

as conversion to data base in the first place but as more

sophisticated systems are developed in years to come it will

undoubtedly be necessary to convert from time to time. The

Data Translation Project has concentrated on the development

of a language for the definition of any data structure. With

such a language at least the vehicle will exist for mapping

from the old structure to a target (standard) definition and

from there to the new structure. The sequence would be

Read-Restructure-Write /T1ERTN & PRY/.

RestructurinaTecfl

The techniques 	proposed for 	handling the 	various

restructuring tasks under both open and closed dynamic

rctructu.rinq strategies in Chapter 7 are based on the

allocation of a version number to each record occurrence and

corresponding sub-lists in the object schema for each

version. For each task, sequences of operations are

described which allow application programs to continue to

operate during restructuring albeit that some of these

programs will alter to reflect the revised structure of the

data.

The 	desirability of continued application 	program

availability during both reorganisation and restructuring

has been widely recognised. Sockut and Goldberg devote a

proportion of their tutorial to the discussion of such

techniques. They firstly examine possible techniques for

static reorganisation as either "in place" or "unload and

reload" but they recognise that application program access

to the sections of data base being updated is likely to be

prohibited. The possibility of concurrent reorganisation is

then discussed and although it is recognised as feasible the.

authors identify it as a possibly excessive consumer of

computer resources. They make the distinction that a very

large data base is "one whose reorganisation by reloading

would take longer than the users can afford to have the

database unavailable". Such data bases are typical of the

centralised data bases where restructuring will be a vital

requirement.

Sockut's studies of the 	performance of 	concurrent

reorganisations /SOCKUT-78/ predict some degradation in

user response time. For an Incremental Reorganisation

Sockut has used the Seek, Latency and Read/Write times of a

disc drive to measure the degredation for a. single-disc dat.a

base. By assuminq a Narkov Chain Qu.eueing Model, Sockut has

used a Stochastic Process to measure the Expected User

Response Time and Expected Reorganisation Time for different

User Arrival Rates. flis conclusions are:

Results generally agree with intuition as follows:

Its user utilisation increases then user response time

and reoganisation time increase. Therefore, if the user load

varies, (eg it is low at night) then reorganisation should

be performed during slack periods.

As the amount of work performed in one reorganisation

step increases (ie the number of records reorganised before

an interrupt caused by a user access is serviced) the user

response time increases but the time taken to reorganise the

entire data. base decreases.

For typical values of User Arrival Rate and Work

Performed by Each Reorganisation Step both User Response

Time and Reorganisation Time have values which can be

considered as reasonable in many situations.

Degradation is 	inevitable since overheads such 	as

amendments to pointers and locations of records are being

incurred which would not exist if the reorganisation were

not being performed. The important aspect is not so much

that there are overheads but that they can be channeled in

such a way as to utilise resources which would otherwise be

wasted ad at the same time do not. appreciably degrade

response time for application programs. The techniques of

open and closed dynamic restructuring do just that. For an

open restructuring 	thre is an 	additional processing

overhead in manipulating data to the up-to-date format if it

is retrieved but there is no additional Input/Output

overhead. For a closed restructuring it is important that

the restructuring always has a lover priority than any

application program so the the additional Input/Output

operations of progressing through the data base in the

preferred direction does not delay an Input/Output access

request by an application program. Restructuring is

essentially an ad-hoc operation carried out in response to

an identified change in data. structure. So long as the

resultant overhead is minimal (even if it is apparent) the

Data Base Administrator should be able to persuade users

that it is the price they will have to pay (for a limited

period of time) for the structural enhancement.

Reorganisation, on the other hand, is identified by Sockut

and Goldberg as an ongoing requirement to tune the overall

performance of the data base with no obvious benefit to

individual users. The Data Base Administrator would

therefore find it more difficult to "sell" any degradation

of response time.

The system which has been implemented at the University

of Pennsylvania supports concurrent reorganisation.

Although it is claimed to be "restructuring" in its

literature this is something of a misnomer at least in the

terminology of the CODASYL proposals since the essential

structure of programs and data base is maintained. The

system supports nothing akin to Closed Dynamic Restructuring

and appears to make no distinction between programs which

are transparent to the change and those which must alter as

a consequence.

Wilson also describes techniques which would be used to

provide a restructuring mechanism. The precepts of his

approach, however, are rather different. By recognising

that data base management systems tend to be massive items

of software he utilises the facilities provided by the DBMS

itself to provide source, transitional. and target schemas.

Given that a source schema exists and that a target schema

can be identified which will describe the desired data base

structure, Wilson proposes a Transition Schema Synthesis

Language (TSSL) . This would enable the Data Base

Administrator to describe an interim transition schema which

encompasses both structures and at the same time would

generate code to convert from the source schema to the

transition schema and from the transition schema to the

taraet schema. A further Restructure Control Language would

then be used to group the generated code into restructure

programs and to generate a stream of runs of these programs

to effect the restructuring.

The Data Base Control System can therefore remain largely

intact since the programs generated for the restructure are

executed as run units just like application program run

units. By judicious use of established data base concepts

such as sets with owner of SYSTEM, data base procedures to

alter data item format, and SOURCE and RESULT data items to

micrate data between owner and member records of sets, an

- 11W

environtaeut is set up which guarantees the integrity of the

data by relying on the existing facilities provided by the

DBMS for this purpose.

By 	demonstrating that coexistent restructuring 	is

feasible and can be implemented without prohibitive

degradation to existing applications by the expedient of

sectionalising the activities into a number of discrete run

units, Wilson has underlined the relevance of research in

this area. The approach of this thesis, however, is

somewhat different in that it does not assume any contraints

imposed by the structure of existing systems. Rather it

assumes that, to allow application programs to evolve so

that they reflect the new structure while at the same time

continuing to operate for the duration of the restructuring,

significant DBMS redesign would be required.

Facilities for _Chanaein Existing Implementations.

N
Both Sockut And Goldberg and Wilson have described the

reorganisation facilities provided by several existing

implementations of data base management systems. They also

recognise that very little is currently provided by way of

restructuring although the distinction between the two items

is particularly vague for existing software since

implementations do not tend to support a separate storage

schema but rather have many of their storage concepts

defined in the schema.. I have written to several

manufacturers recently (late 1982) 	and their response

indicates that Wilson's conclusions are still valid that

- 	 -

"..it is necessary to perform certain restructures in

stages interposing one-off application programs between each

stage" /IDNS/,/DABAS/,/TOTL/,/IBM-INS/.

The techniques used by INS for "off-line" restructuring

will now be described as a typical example of how far

existing implementations facilitate change.

INS supports hierarchical data base structures and an

organisational model will therefore normally consist of a -

number of data bases.. The full network can be modelled by

superimposing logical data base structures which transcend

the physical data base structures by means of pointers

between them. The structure of both the logical and

physical data bases is defined on the Data Base Description

(DBD) library and this is therefore roughly equivalent to.

the CODASYTL Schema. -

The process for restructuring an INS data base operates

as follows:-

An Image Copy unload program is run which uses the Data

Base Description to write the physical data base (together

with its pointers for logical data bases) to a standard

format of sequential file. The DBD Library Modification

Program is then used to modify the Data Base Description as

required. Finally the Reload Program uses the new DBD to

carry out any necessary modifications to the data base

before recreating it on disc. No updates may be carried out

on the data base by application programs for the duration of

this exercise.

-

Functions which may be performed on the data base are as

follows: -

An existing segment (ie Record) type can be deleted

from the DBD provided all segments of this type were deleted

from the data base prior to the execution of the Unload

Utility.

New segment types can be added to the DBD provided

they do not change either the hierarchic relationship among

existing segment types or the concatenated keys of logically

related segments.

(C) Any field (Ic Data Item) except the one for the

sequence field of a segment can be changed, added or

deleted.. No attempt is made by IMS, however, to alter the

data content of a segment.

(d) Existing segment lengths can be changed. INS cannot

alter the data content, however, except to truncate data if

the segment is made smaller.

These restructuring functions are consistent with the

level of transparency offered to application programs by IMS

when they access a data base. Each program must have a

corresponding Program Specification Block (PSB) on the PSB

Library. Each P58 consists of a number of Program

Communication Blocks (PCB) with one such PCB corresponding

to each data base accessed. Thus the PSB roughly

corresponds to the CODASYL Sub-Schema. The PSB gives a view

which limits the program's ability to access data (eg it

could indicate that the program may read but not write or

- oo-

 -

update the data base) - thus the data base could still be

accessed (luring restructuring.

Application Programs need only be 'sensitive' to certain

of the segments of the data base. This allows the

restructuring to delete and insert segments transparently to

the program. Programs may also be sensitive to segments

when they issue subroutine calls to access the data base

using the DL/1 Sub—language. This is done by qualifying the

DL/I Call by Segment Search Arguments giving the name of the

segment to be retrieved.

Further, the program need only be 'sensitive' to certain

fields in a segment. This allows fields to be deleted and

inserted transparently to the program. Unlike CODASYL there

is no definition of data item format on the DBD or PCB and

there is therefore no question of amendment to data item

format. -

The process of unloading and reloading a data base can be

very swift (perhaps taking only a few minutes) but the usage

of pointers to cater for logical data base structures may

extend the reload process out of all proportion. The

pointers on the reloaded records (i.e. to other physical

data bases) will not present any problems but any pointers

on other data bases to the data base being reloaded will

have to be altered to reflect the new addresses of records

on that data. base. If this were to be done by direct access

to the records containing the pointers there would probably

be a significant overhead in disc head movement and

therefore 	in 	overall execution 	time. 	Sorting 	and

overwriting the pointers sequentially could reduce the

- 0046 -

overhead.

It is overheads such as this that make installations

reluctant to reorganise their data base but so long as the

overhead is inevitable they would be more prepared to accept

(and even encourage) change if it were to be carried out by

the consum.ption of otherwise spare resources and without

degradation in response times.

-

CODASYL Data Base

We have seen that there is a spectrum of approaches to the

provision of a data base management system from those

primarily directed to the devolved data bases under the

control of their own sophisticated end users to those

directed towards the professional data processing community

controlling the single centralised data base of the

organisation. 	We 	have observed that there 	is a

corresponding spectrum in the requirements for a

Restructuring Mechanism from one extreme where the desire

for application program stability is the prime concern to

the other where there is an attraction in an instantaneously

accurate but constantly altering data model of the

organisation.

The Data Base Management System Model proposed by the

CODASYL Data Base Task Group is oriented towards the

professional data processing community for use on the

centralised data base of each organisation. The structure

of the Data Definition Language encourages a single data

base within the organisation and the procedural Data

Manipulation Language embedded in common host languages like

COBOL and FORTRAN is in keeping with the languages which are

typically used by data processing professionals.

It is therefore proposed that a Restructuring Mechanism to

support a data base set up in accordance with the CODASYL

proposals should be directed towards the same community of

users. Tn particular the mechanism must facilitate the

-

maintenance of an evolutionary schema which provides a

single comprehensible description of the central data base

supported by the application programs of the data processing

department. It must assume that there is a Data Base

Administrator who is responsible for the accuracy and

universal •applicability of that model since it is this

individual who will perform all restructurings. While

retaining as much application program stability as possible,

the mechanism must cater for as wide a scope of change as

possible, if necessary while allowing an orderly set of

changes IL application programs.

Structure of the Prosed Restruc turing Mechanism.

The proposed mechanism is not a single identifiable item of

software in addition to the already defined facilities

offered by the CODASYL DBMS. Rather it is a series of

refinements to the proposals such that they are enhanced to

support an evolving data base rather than the instantaneous

picture they currently paint. The object elements of a data

base management system have already been described. The

proposed restructuring mechanism involves enhancements to

the following aspects of these object elements in the

CODASYL environment.

(a) The Schema Amendment Language.

The CODASTL 	proposals describe 	in detail 	the Data

Description Language used to define the logical structure of

the data base. 	It is proposed that this language be

- 087 -

replaced by a Schemi Awndment Language which would retain

the spirit of the original DDL in both its syntax and level

of user (i.e. Data Base Administrator) involvement.

The kernel of the language will continue to consist of

clauses similar to those already detailed in the CODASYL

* Journal of Development. These clauses will specify the

structure of the records in the data base in terms of the

data items they contain together with details of the network

of inter-record relationships using the Set construct.

However, rather than describing a fixed picture of the data

structure each group of clauses will be prefixed by a

further clause describing how the existing data base

structure is to alter to accommodate the structure defined

by the clauses to follow. Only on the very first run of the

Schema Amendment Facilities will there be no schema to

update but on this occasion the language would still be

meaningful if the syntax were considered to operate on a

null schema (i.e. only additive operations would be valid) •

Built round the syntax for data structure amendment will be

instructions which the Data Base Administrator can supply to

determine the order in which the sequence of changes is to

be carried out and how each such change will relate to the

other changes to be made at the same restructuring run.

Further, the language will allow the Data Base

Administrator to specify the strategy he is to adopt for a

particular restructurinq run. In addition to a simple

static strategy it is proposed that two types of dynamic

strategy would also he available. This choice will allow

the Data Base Administrator the widest possible scope for

- ll87 -

cond tic tina any particular restructurtfl5-; in the manner most

appropriate to the prevailing circumstances.

(b) The Data Manipulation Language Execution Routines.

It is envisaged that there will be circumstances when

application programs are made aware that a restructuring is

taking place while they are running. In particular,

oroQrams will be classified as transparent or opaque to a

particular restructuring depending on whether there is a

requirement to alter their logic as a consequence of the

restructuring or whether they can remain intact.

When a restructuring is under way there is a requirement

for the Data Manipulation Language Execution Routines to be

aware of its existence no matter whether the routine is

being executed as a result of a DML call from a transparent

or an, opaque program.

Oven and Closed Restr act urig Strategies.,

The CODASTL approach to a network Data Base Management

System proposes a procedural data manipulation language

embedded in a host language such as COBOL or FORTRAN. This

language supports interaction between program and data base

on a record-at-a.-time basis. This situation permits the

support of two types of dynamic restructuring strategies

which can be used at the Data Base Administrator's

discretion.

An Open Dynamic Strategy allows the Restructuring Mechanism

to effect the required changes to data base records only

when the records have been retrieved from the data base for

update by a Data manipulation Language Execution Routine in

response to a DML call by some application program.

Similarly when new record occurrences are being added to the

data base by application programs the restructuring will be

taken into account and the appropriate DML execution routine

will, write the records in the revised format. This strategy

has the advantaQe that it takes the opportunity to

restructure individual record occurrences after these have

been retrieved from the data base on its secondary storage

medium (an action that was necessary in any case) to be

updated and replaced on that medium (a further action

required in any case). The strategy therefore means that

the Restructuring Mechanism imposes no additional

Input/Output overhead on the DBMS as a whole and this may

therefore act as a powerful justification for its use in

situations where I/O efficiency is at a premium. Typical

instances would be where a large data base was subject to

fairly frequent and widespread update by application

programs or alternatively in data bases where access was so

infrequent that the majority of records are never likely to

be accessed by application programs and the act of

restructuring them is not considered worth while. It is

evident that at any moment in the duration of an open

dynamic restructuring the data base will contain record

occurrences in different formats (i.e. those which happen to

have been updated and those which do not) . It is feasible

that more than ore restructuring will be under way at the

same time since each such restructuring will not be complete

until all record occurrences of the types beinq restructured

have been updated by somo application program. A convenient

method of identifying such differences in format is to

allocate a version number to each record occurrence such

that a11 occurrences in the same format have the same value

of versionnumber. Although the open strategy imposes some

processing overheads at the time at which it is initiated

(ie the schema must be amended) , and no additional

input/output overhead at any time, it may well impose small

processing overheads on the DBMS Data Manipulation Language

Execution routines for a considerable period of time. This

prolonged overhead is due to the continuing necessity to

examine version numbers on records as they are retrieved

from the data base even if only to confirm that the record

occurrence is at the "current" version.

A Closed Dynamic Strateciy on the other hand operates rather

like an application program in that it modifies each record

occurrence in turn to reflect the required restructuring.

The process would be a background function to the DBMS which

would always interrupt the restructuring when necessary to

allow an application program to access the data base

whenever it requires to do so. The Closed Dynamic

Restructuring therefore operates like the lowest priority

application program under the control of the DBMS. Like an

application program, the restructuring operation must not be

permitted to give rise to a deadlock or inconsistent update

situation in the data base and the DBMS must therefore take

steps to lock each record occurrence from application update

between its retrieval and update by the restructuring.

-

S.i.mii.rly the retructurinq must wait for any record it

requires if that record has been locked by the DBMS because

an update by an application is pending. The objective of

the restructuring mechanism would be to limit the duration

of these periods of locking to timescales comparable with

those normally experienced due to the interaction of

different application programs. For most restructuring

tasks the locking period will be the time taken to retrieve,

process and update a single record occurrence although in

some cases an entire set occurrence will be locked for the

time taken to retrieve, process and update each of its

constituent record occurrences. It is envisaged that the

locking mechanism employed by the DBMS to protect

application programs will be adequate to also handle the

closed restructuring since it imposes no limitations which

do not already apply to application programs using CODASYL

DNL.

Under the Closed Strategy all record occurrences involved

in the restructuring are therefore updated to their revised

format within a finite timescale (i.e. the duration of the

restructuring run). For the period between the initiation

of the restructuring and its completion the data base is

said to he in a Transitional State. That is, some record

occurrences will have been restructured while others will

not.

further feature of the open strategy is that it may

support a period of parallel running while both the old and

new formats of data base cau co-exist. This interim period

takes place after the transitional period and allows the

-

1)ata -r3 as 	ministrat.Or to run Audit Programs to confirm

that the data base has indeed been restructured as required

and that no data has been lost as a result. 	When The Data

Base Administrator for more 	likely the organisation's

computer auditors) is satisfied that all is well the

parallel running state can be terminated and the data base

can resume a stable state - the restructured state. The

period of parallel running may, also provide an opportunity

for the analysts to confirm that their application programs

are either producing identical results to those produced

prior to the restructuring or that any deviation can be

attributed to known factors.

For the Restructuring Mechanism to progress through the

desired record occurrences in an orderly fashion in a closed

restructuring it is essential that a "Preferred Direction"

exists for each record type. This is a path through the

record occurrences of that type such that the DBMS and the

restructuring mechanism are always aware of how far the

restructuring has progressed. One such suitable path would

be that provided by a set with the owner of the SYSTEM and

member records consistino of all occurrences of the record

type in question based on some suitable key data. items. An

alternative would be simply to progress through the entire

data base in physical address sequence and detect each

instance of the primary storage record occurrence of the

required type. A marker indicating the point along the

preferred direction that the restructuring has currently

reached would serve many of the functions of the version

number in an open strategy. That is, during the

-

tr.3nsit1onl phase and the parallel run state the DBMS can

ascertain whether a particular record occurrence (which it

is required to read or write from the data base in response

to a Dt1L command from an application program) has been.

restructured or not. Certain types of restructuring,

however, require the modification of more than one type of

record concurrently and the appending of a version number to

each record occurrence permits modification to be carried

out on one of these types of record in an order different

from that record's preferred direction. We shall see in

Chapter 6 that this facility is convenient for restructuring

tasks involving entire set occurrences.

Application Proaram Interface.

The objective of the proposed restructuring mechanism for a

CODASYL data base is to provide the community of data

processing professionals, for whom this type of DBMS is

primarily directed, with a tool by which their application

programs can evolve in parallel with the evolution of the

data base itself. The effect 01 change on this community

has already been discussed in Chapter 1 and it is important

that the mechanism for data base restructuring in such an

environment tackles the problem of change in such a way as

tr, minimise the activities at the application level while

recognising that it is changes to applications which

necessitate restructurinos. Some measure of involvement at

the application level is therefore inevitable for any

restructuring -

-

Nevrthe1ess 	the 	most. cesi.rahle 	situation 	for 	an

application proqraJfl is to 	remain stable throughout a

restructuring and the proposed 	mechanism ensures that

programs will chanae only when it is essential for them to

(10 so. Programs which have this desirable property of

operating during and after a restructuring in exactly the

same way as they did beforehand and are classified as

TRANSPARENT to that restructuring. It may be that the way

in which the DBMS interprets DML commands from the programs

is different as a result of the restructuring but this

situation does not affect their transparency. The CODASYL

Schema. to Sub-Schema mapping is the main vehicle for

achievina this transparency since it is evident that the

formulators of the proposals were well aware of the

advantages of restricting the view of the data base for each

application program to that subset of the data base that is

of interest to that program. Where some part of the data

base structure outwith the area viewed by a particular

application program and its sub-schema is altered it follows

that that program will be transparent. More importantly,

however, the proposed restructuring mechanism identifies a

wide variety of circumstances in which, application programs

which operate within the sector of data base beina

restructured are still transparent. This can be attributed.

to a combination of the DML commands they issue and the type

of restructuring being pc'rformed

Other programs may be OPAQUE to the restructuring being

carried out. That is, the logic of these programs must

chanqe in some way to reflect the revised data base

-

'tructure. it is in th- amernent to these programs that

the analysis and prqramnincj effort will be required and

where a thorough study of the criterion for and extent of

any necessary charae will pay the highest dividend. In the

proposed mechanism a pragmatic approach to this subject is

adopted such that the types of restructuring which can be

undertaken are identified by considering a number of

Primitive restructuring tasks and for each such task a

criterion for transparency (and therefore opacity) is

established. It. is, of course, possible that some programs

will be required to change as a consequence of the

restructuring because they are to use the enhanced data base

structure in some way. In general, however, changes of this

type are less problematical to the programmer since the

program can be upgraded at any convenient point in time

after the restructuring is complete.

Given that an opaque program must change because of the

restructuring, that program must assume at least two states

during the process - the original and final versions. For

some restructuring tasks the transfer from one state to

another is an instantaneous event coinciding with some

identifiable event in the execution of the restructuring

(when it is initiated, when it is complete, or some point in

time in between) . For t.her restructuring tasks, however,

there is a period of time during the restructuring when

neither the initial or first state of the program is

applicable and for which a third (intermediate) state is

required. The smooth implementation of a closed

restruurinq is dependent on the simplicity of transition

- 9 16-

between these states. It is not proposed to describe how

the operating system can schedule the correct version of

each program at the correct time (or how this operation can

be subjected to satisfactory controls) since such procedures

are already well established /PANXEC/.

However it is worth stressing the importance of adequate

testing of application systems prior to this point since the

restructuring mechanism does not control the validity of the

program change. Testing is still seen as a manual operation

requiring the skill of the systems analyst since the input

and/or output of the system are also likely to change

because of the restructuring in addition to the changes in

the data base interaction. Insight is therefore required as

to which tests will be necessary to prove - that the final

version of the program is 'correct'. In some-circumstances,

however, the program must alter while retaining the same

input and output for its community of parametric users. In

such situations it may be that one sequence - of DNL commands

in the original version of the program can be replaced

without ambiguity by another sequence of DL commands in the

final version. The second sequence of commands can be said

to be semantically equivalent to the first sequence within

the context of the restructuring being preformed. The

criterion for semantic equivalence is not straightforward

since, in practice, sequences of DML commands in programs

may be executed in different 	ways by use of normal

conditional program instructions. 	Where sequences are

unbroken by such instructions it may be possible to replace

them by a semantically equivalent set without a manual

- O7-

chariqe to the program and even without any re-testing.

Semantic equivalence is alluded to from time to time in the

following chapter where the individual restructuring tasks

are described.

It is envisaged that Audit Programs will be required to

assist in the restructuring function so that those within

the organisation who are responsible for scrutinising

changes to the applicition systems may be given the

opportunity to satisfy themselves that no information has

been lost and that no data has been deliberately or

accidentally corrupted. These programs will be written

specifically for this purpose and they must therefore have

available to them the data base in both the old and new

structures. The period of parallel running as described

previously provides this environment but the programs will

differ from normal application programs in that their Data

Manipulation Language must provide the ability to specify

which structure is to be accessed for a particular command.

Even in the parallel running phase it is desirable for an

application program to view only one structure - whether

that structure is the old or the new will depend on both the

type of restructuring and the logic of the program.

Occasionally, however, it may be that the requirements of

the program in conjunction with the type of processing being

performed imply that neither structure is universally

applicable and a mixture of both is required - this is

particularly true in the transitional phase where the

processing required from a program may well depend on

whether the record it has accessed has been restructured or

- §200-

not. To ,llow for thes" somewhat 	specialised requirements

to 	view both data base structures concurrently 	it 	is

eroposed that the Data Manipulation Language of the CODASYL

Proposals be enhanced to allow the version number of records

to be specified in certain instances (notably the FIND

command) . The default formats of commands would still not

require a version number. Thus, for example, an Audit

Program could issue a FIND for a version 5 account record

with a number 123456 followed by a FIND for a version 6

account record with the same number together with a. FIND for

the version 6 customer record which if the 'owner' of that

account. If the restructuring from version 5 to version 6

was to miorate the balance from the account record to the

customer record the program would demonstrate that both

values are identical. Where application programs utilise

these enhancements to the DL to enable them to quote

version numbers the programs are classified as "Version

Specific".

Emulation _of Previous Schema Versions.

The approach taken by' the proposed restructuring mechanism

reco'nises that restructurings are generally necessary as a

result of changes to one or more application systems.

Although the requirement to chanqe other application systems

to cater for the revised structure is less obvious it is

arau:d that it is isirable in order to preserve a single

orcnisationa1 data model for the use of all application

proorams maintained by an oranisatiofl'S Data Processing

-

DeL irtnieat -. It must he conceded, however, that the decision

not to change an npp1icttion program (but instead to allow

it to operate on an emulated version of the structure which

v--is applicable when it was written) can be justified in some

circumstances and must therefore he supported by the

proposed restructuriiflg mechanism. In the context of the

terms already defined, this emulation of a previous schema

is equivalent to an extended period of parallel running

where certain programs operate on the old schema structure.

The proposed restructuring mechanism supports emulation of

previous schemas by allowing application programs to be

"Imolicit:.ly Version Specific". A program is said to be

implicitly version specific when the DBMS associates each

One of its DML commands automatically with the version

number of the record or set type to which it relates which

was applicable when the program was compiled (or to be more

precise, when it was first put into production) . Although

the DML commands within the programs do not therefore

contain an explicit version number in the way that audit

proarams must, it is possible for the DBMS to append the

numbers applicable at compilation time. So long as a period

o jarallel runnirq is in operation the same mechanism used

for explicit version specific DL commands will ensure that

the required old data base structure is presented to such

roqrams.

An extended period of parallel running could he a most

expensive overhead for a computer installation in terms of

storaae capacity and computer processiflq resources and it is

unlikely that emulation in this way would be countenanced

f er i')n . 	t Ds t.; 	ie A'i nistra tor would view omula tion as

an id to providi.nQ a "breathing space" to allow

modifications to less critical proirams to be scheduled when

time is available from the relevant programmers.

It a larae numh"r of programs were to be in this category

and it was not considered desirable to amend them another

aoproach. to emulation would be necessary. One possibility

woui' be to hold record, occurrences at their "current"

version and translate individual occurrences to previous

versions as and when necessary in response to the DML

coma.nds from the implicitly version specifi.c programs.

Translation from the old structure to the new would also be

recuired to enable data base records to be updated by the

version specific prociram. Although this approach has been

invc-'stioated by i.ison at th.e University of Aberdeen and to

some extent by the University of Pennsylvania (S(--.e Chapter

5) and miqh,t well have to be incorporated into any

commercially viah].e restructuring mechanism, it will not be

copsiiered further in this thesis because it caters for a

lone tern multiplicity of program views of the same data

base. This is considered as qenerally undesirable for the

Centralised Data 9ase anaqement System model used by the

s'rtems analysts and orogrammers to maintain the single

centralised data base of the organisation.

-

Chapter 7 - The Primitive Restructuring Tasks

Introduction

This chapter gives details of 16 primitive restructuring

tasks which would be available to the Data Base Administrator

to allow him to alter the logical structure of the CODASYL

data base scheme and the corresponding data records. The

tasks have been identified by consideration of each clause

in the CODASYL Data Description Language in turn with a view

to establishing how the structural element defined by that

clause may be expected to change. On this basis it is

claimed that the set of tasks is a complete one in the same

sense that the CODASYL DDL is complete - (i.e. experience has

shown that a language at this level satisfied the majority

of requirements for the definition of a data base structure

in a concise manner and the primitives are at a sufficiently

low level to allow any structure to be defined).

The sufficiency of the set of tasks to define any desired

change in structure is satisfied by the inclusion of tasks to

add and delete data items, records and sets (since these are

the primitives of the CODASYL DDL). It will always be possible

to create any desirable structure by the addition of new data

items, records or sets followed by the deletion of the data

items, records and sets which they supercede. Allocation of

actual occurrences of the new data can be achieved by inter-

posing application programs between the addition and deletion

exercises to use the about-to-become-redundant data to

populate the new data. Such an approach is, of course, less

than satisfactory in that specific application programs will

have to be written and the timescale of adding, populating

and deleting may prohibit runs of normal application programs.

Further, since the mapping between schema and sub-schema is

achieved by equality of data item name, record name and set

name in both, either a mechanism to allow names to be

retained would have to be supported or sub-schemas would have

to alter. This subject is discussed in further detail under

each specific task.

-vu-

Syntactic Considerations

The CODASYL Proposals describe a Data Definition Language

which allows the logical structure of a data base as it exists

at some point in time to be defined. The tasks identified

in this chapter are described in terms of a Schema Amendment

Language which is essentially the same as the DDL but is

encompassed with further clauses which describe how the

structure is to change - the retained DDL elements will

describe the new structure where relevant.

The first example of such a clause is the requirement to

give each restructuring exercise carried out on a data base

a unique identification - "The Restructure Name". It is

envisaged that this would be a useful reference for an Audit

Trái.l whereby at any time in the future the exercise which

resulted in a particular section of the entire data base

structure can be established. In addition to an identification

of the restructure run the Data Base Administrator must

indicate the name of the data base he wishes to restructure

(this is in keeping with the Data Base Name clause in the DDL)

and which strategy he wishes to be used for its implementation.

The previous chapter describes alternative strategies.

Thus it is proposed that the initial clause of each run to

restructure a data base will be the following

Restructure - Name - 1

RESTRUCTURE Data-Base-Name

USING (STATIC)
()

_(OPEN DYNAMIC 	 STRATEGY
()

(CLOSED DYNAMIC (WITH PARALLEL RUN))

-n-
Subsidiary Control of Restructuring

The concepts of Open and Closed Dynamic Restructuring)

and Parallel Running after a restructuring) create an

environment for the Data Base Administrator where he has a

legacy of restructuringswhich were initiated in the past

but which still have an impact on the current contents of

the data base. The restructuring mechanism must therefore

permit him to indicate that these on-going operations are

to be considered as complete.

If a Closed Dynamic Strategy with Parallel Run has been used

then the Data Base Administrator may indicate that the period

of parallel running is to be terminated by presenting the

following text to the Restructuring Mechanism.

TERMINATE RESTRUCTURE PARALLEL RUN Restructure-Name-1

In response to this the Restructuring Mechanism must alter

the Object Schema by removing all reference to data held in

the old structure (this would be done as a matter of course

if the closed restructuring were being performed without

parallel running as described in detail under the individual

tasks later in this chapter). Furthermore all occurrences

of data in the old structure which were being maintained in

conjunction with corresponding occurrences in the new

structure (again see details under individual tasks) would

have to be deleted from the data base.

Similarly, if an Open Dynamic Restructuring has been carried

out) the Data Base Administrator must reach a point where he

considers that all relevant data has been restructured (i.e.

it has been updated by some application program). Even if

this assumption is correct, the schema will still contain

references to this structure which are now, in fact,

-O3c -

redundant and these must be removed. This activity can be

initiated by specifying.

TERMINATE OPEN RESTRUCTURE Restructure-Name-1

It would be realistic for the Restructuring Mechanism to

check that there were actually no occurrences of data records

in the old structure before it took the irrevocable step of

amending the object schema.

However the Data Base Administrator must be in a position of

being confident that there are no remaining old format records

and he must be provided with sufficient information to reach

this conclusion. In addition to other statistical information

on the distribution of data records on the data base it is

therefore proposed that the number of occurrences of each

version of each (or selected) record defined on the schema

can be displayed by specifying

DISPLAY COUNTERS (OF Record-Name-1)

Conditional Execution of Tasks and Concurrent Tasks

The remainder of this chapter gives details of the individual

restructuring tasks. 	For any particular restructuring to

be performed on a data base, however, it is likely that a

number of these tasks will be required for different data

items, records etc. The syntax of the restructuring language

must therefore be such that tasks are completed in a

predefined sequence. Normally a task would not commence

until its predecessor was complete but in some situations

(detailed under the individual tasks) it will be convenient

for the restructuring mechanism to handle tasks relating to

the same record type(s) at the same time. The restructuring

language must therefore permit the Data Base Administrator

to indicate which tasks he wishes to have executed concurrently.

It may also be the case that certain tasks should only be

executed if a previously executed task has been successful.

The language must also allow the Data Base Administrator to

specify such conditions.

Techniques for specification of concurrent and conditional

execution of tasks are not described in detail here since

they are common in other classes of operating system software

(e.g. Job Control Language).

Note that there is no suggestion that more than one closed

restructuring should be permitted to take place at the same

time (although certain records may not have been restructured

despite an open dynamic restructuring on them in the past)

since it is considered that the Data Base Administrator should

always be in control of this operation and he can therefore

schedule tasks as he sees fit.

-63(6 -

Task 1 - Addition of a new data item to an existing

record 	 -

Data Base Administrators will often require to add a

new data item to an existing record. It may be that

the physical entity to which the record relates has

changed in some way and that the new data item is to

apply to some new property of the entity. It may simply

be that the data item was omitted when the record was

created.

Program Categorisation

Transparent Programs - Programs which do not require the

new data item and therefore do not include it in their

sub-schema definition of the record if they have one.

Opaque Programs - Programs which wish to take advantage

of the new data item and include it in their processing.

Concurrent Tasks

More than one data item may be added to the same record

concurrently.

Syntax

Two elements are required when defining the task:-

Details of the new data item as described in the

Codasyl Proposals.

An indication of where the data item is to appear

within storage records and in the logical schema

record structure.

-II" -

The proposed syntax is as follows:-

ADD DATA ITEM(E) Data-Item-1 in Schema-Record-Name-1

level number Data-Item-2 etc. (as in CODASYL Proposals)

(STORAGE (BEFORE
J 	 ,t.

Date-Item-3 in1Storage Record
AFTER

J 	 1 	 ••' I 	 I

tIN NEW RECORD 	 J 	 J
Without attempting to give a rigorous definition of the

syntax we can see that the new data item (Data-Item-2)

is placed logically before or after an existing data

item (Data-Item-1) in the schema record (Schema-Record-

Name-1). It will be stored before or after nominated

data items (Data-Item-3) in existing Storage Records

(Storage-Record-1) or will be the only data item in a

new Storage Record. (Repetition of the last clause is

necessary to cater for records with alternative storage

structures).

The definition of the data item itself must cover all

the Schema and Storage Schema entries as described in

the Codasyl Proposals. Note that source and result data

items with storage allocated may not be added directly

by using this task. They must be added without the

storage clause and this clause added later (possibly as

a subsequent step in the same restructuring) using

Task 4.

NFEM

Population of the Data Base

An optional clause may be added to the basic syntax

which will allow the data item to be populated as it

is created. The clause is a COBOL 'compute' statement

which may reference other data items in the same record

as well 'as literal constants. If this clause is not

included the new data item will be allocated null values

for each occurrence.

An Open Dynamic Restructuring Strategy

If an Open Dynamic Strategy is adopted for this task no

data base records are modified at the time of the

restructuring. Only the object schema entry for the

record containing the new data item is amended to hold

an additional sub-list giving details of this new

(version n) format of record. The list for the record

may already contain details of other previous versions

and these must remain.

The alteration to record occurrences will therefore take

place from the time of the restructuring when record

occurrences are added to the data base or existing

occurrences are modified by application programs. All

such record occurrences will be written to the data

base in the version n format. Where a new occurrence

is to be written) the values for the data items will have

been supplied in the normal way via the application pro-

gram's user work area. If the new data item is not

- 9 3 9F -

included in the sub-schema for such a program the data

item on the data base record will be allocated null

values. Where an existing record occurrence is being

modified and the new data item has not been included in

the sub-schema the population algorithm will be used to

evaluate it using the data items on the original version

of the record.

The data base management system must also handle requests

by application programs to retrieve record occurrences

from the data base. Individual occurrences may be at any

one of a number of versions but since the version number

is held with the record the DBMS can establish which

object schema sub-list to access to determine the format

of the record. If the program sub-schema references the

new data item and the record version retrieved is n (or

greater) the DBMS can perform the normal process of trans-

ferring the data item from data base record to User Work

Area.

If the retrieved record version is less than n the value

of the data item must be calculated using the Population

Algorithm. It may be necessary to also evaluate other

data items since data items quoted in the algorithm may

themselves have been added in some previous restructuring.

When a sub-schema is compiled it is likely that an

implementation will ensure that all data items defined

in the sub-schema also exist in the schema. Opaque

programs referring to a new data item cannot therefore

be scheduled (in their revised form) until after the

restructuring since their sub-schemas could not compile

until after the restructuring had altered the schema.

From that point onwards, however, the Data Base

Administrator can choose an appropriate point for their

introduction (for example it will often be convenient

to synchronise the introduction of enhancements to the

data capture logic to allow the new data item to be

given values). There is some justification for implemen-

tations to allow data items to be defined in a sub-schema

which do not exist in the schema (see note in Task 2).

In this case any reference to such data items would

result in null values being returned and any attempt to

give such data items values would not be effective. On

this basis, however, the Data Base Administrator would

be free to schedule opaque programs before restructuring

took place if he so desired.

A Closed Dynamic Restructuring Strate

A Closed Dynamic strategy cannot be considered as an

instantaneous event.. The restructuring mechanism must

access all record occurrences in turn by progressing

along the Preferred Direction until all have been pro-

cessed. The Data Base is in a Transitional State while

this takes place. When it has read each record occur-

rence the restructuring mechanism will upgrade it from

-O 4 8 -

version m to version n as described above for an open

strategy. The new data item will be included by

allocating null values or executing the Population

Algorithm. Finally, the record will be written as

version n to the data base and) if there is not to be a

period of parallel running) the version in record occur-

rence will be deleted.

Transparent programs can operate on the data base

before, during and after the restructuring since any

retrieved record can be presented to the program using

the object schema sub-list containing the definition of

that version of record. Any records written to the data

base during and after the restructuring will be at

version n (if the restructuring mechanism subsequently

tries to restructure such a record it can establish that

it does not have to do so by referencing the version

number). Once again, in a parallel running situation

version m records will also be written where m is the

previous version of the record.

New versions of Opaque Programs will be introduced by

the data base administrator at some point in time either

during or after the restructuring based on some external

factor such as the scheduling of amended data capture

procedures. In either case the DBMS can handle Data

Manipulation Langauge Commands as follows:-

Record occurrences written to the data base will be

- 0 -

 version n as above. If the new data item appears in

the sub-schema of the program writing the record it

will be allocated the value given to it by the program.

Otherwise if the record is being written by a program

which does not include the new data item in its sub-

schema the Data Base Management System will firstly

determine where the record is to be stored relative to

the position in the Preferred Direction currently being

processed by the Restructuring Mechanism. If the

record is to be stored before this position and it is a

modified version of an existing record the data item

will retain its value from that record (which must have

been version n). If the record is a new record being

stored (once again before the Current Restructuring

Mechanism position) the Population Algorithm will be

used. After the current position both existing and new

records will have the data item evaluated using the

Population Algorithm. After the Transitional Period

during Parallel Running the data item will always be

stored as null values since this is how the Data Base

Management System will eventually operate.

Records retrieved from the data base may be at version

m if the restructuring mechanism has not yet reached

that point and the DBMS must therefore execute the

Population Algorithm to provide a value for the new

data item before supplying this to the application pro-

gram's User Work Area. If the record retrieved is at

- l7 	-

version n the value can be moved directly to the User

Work Area.

-

Task 2 - Deletion of a Redundant Data Item from an

existing record

Function

It is likely that certain data items will become

redundant during the life of a data base. For example,

the entity to which the data item relates may have

changed in such a way that the data item is no longer

relevant or even meaningful. This situation must be

distinguished from that in which a data item is tem-

porarily not accessed by application programs.

More specifically a data item is redundant if it is

not referenced by any sub-schema or from elsewhere

within the schema (other than in its own data item

entry) and is to remain so.

The function of the Restructuring Task is two-fold:-

to ensure that the data item is redundant.

to avoid allocating space for the data item in

record occurrences.

Syntax

The proposed syntax is as follows:-

DELETE data-item-1 FROM Schema-Record-Name-1

Task Validation

The Restructuring Mechanism must firstly ensure that the

task is valid.

-D(c-

The deletion of the data item must not alter the self-

consistency of the data base. The lists for all records

in the Object Schema must be examined to ensure that the

data item in question is not referenced in a SOURCE or

RESULT clause in some other record. The list for the

record containing the data item must also be examined to

ensure that it is not a key data item or does not appear

in a Set Occurrence Selection Clause for any set for

which it is a member.

Further, the deletion of the data item must not lead to

inconsistency between object schema and sub-schemas. That

is, the data item should not appear in the corresponding

record description of any sub-schema. As we have seen in

Task 1, consistency between schema and sub-schema will

normally be checked as each new sub-schema is added to the

sub-schema library and it should be feasible to access the

library for each sub-schema referencing the record in

question to re-execute the check against the revised schema.

This check is not necessary for additive tasks such as

Task 1 because the inherent transparency of the schema to

sub-schema mapping ensures that the sub-schemas remain con-

sistent with the schema in these cases. If an invalid task

has been specified the Restructuring Mechanism will not

alter the data base in any way.

It is, however, feasible that implementors will not

insist that data items in the sub-schema exist in the

-

schema - perhaps they will generate a warning message.

This situation could be advantageous in this task since

application programmers would be likely to utilise sub-

schemas which had already been defined (e.g. those

referencing all data items in a record) for convenience.

Program Categorisation

Transparent - All Programs (although in some cases it

might be necessary to recompile sub-

schemas and rebind programs to them).

Opaque 	- None. As we have seen the task should

only be executed if no sub-schema (and

therefore no program) references the

data item to be deleted.

Concurrent Tasks

A Data Item can be deleted from a record concurrently

with other Data Items being added to the same record

although deleted data items may not be referenced in

Population Algorithms of subsequent data item

additions. More than one data item can be deleted

from the same record concurrently.

Implementation Strategies

The strategies for the deletion of a data item are

similar to those for the addition of a new data item

but there are fewer inherent problems since there

-O7 -

are no Opaque Programs to cater for.

There is a great deal to recommend a Closed Dynamic

Strategy in this case since it allows the DBMS to

take immediate advantage of the free space. Once

again, the data base will be in a Transitional State

with different versions of records on the data base but

the DML execution routines can use the version number

on any retrieved record to determine whether the

record is in the old or new format (as we have seen

the data item itself cannot be required by any program).

Re-use of Data Item Names

If successive Open Dynamic Restructurings are carried

out on a record such that a data item is deleted and

a new data item with the same name is later added,

there is a potential ambiguity in that some record

occurrences will hold the old version of the data

item and others will hold the new depending on how

they have been accessed by application programs.

In particular, if an application program accesses

a. storage record occurrence it must be provided with

null values rather than the redundant value.

The Technique adopted might simply be to prohibit the

re-use of data item names and there is therefore

no primitive task to allow a data item to be renamed.

-o-

Task 3 	Amendment to the' 'Fo'rniat of a Data' I't*em

Ftinc't i'on

When the Data Base Administrator originally defines a

data base he must decide on the most appropriate

format to hold each data item. This decision cannot

be taken lightly and must take into consideration the

range of values the data item might take at that time

and in the future. The Data Base Administrator must

also take into account whether the predominant likely

usage of the data item will be for arithmetic or display.

Circumstances might be such that the original decisions

on certain data items eventually prove inappropriate and

the format of these data items must be altered to reflect

the new range of values or revised usage.

The Codasyl Proposals are structured to cater for

variations in data item format as held on the data base

and as processed by application programs. A conversion

between data base format and program format (as defined

in the Sub-Schema) is carried out by the Data

Manipulation Language Execution Routines when

necessary.

Syntax

The proposed syntax of this task is as follows:-

RUM

AMEND FORMAT OF Data-Item

TO (PICTURE Picture-Clause - 1)
()

(TYPE 	Type-Clause - 1)

The format of the Picture and Type Clauses are given in

the Codasyl Proposals.

ExDansion or Contraction of Data Item Format

It is possible that an alteration to the format of a

data item will result in the revised format being suitable

for holding all existing data item occurrences (e.g. where

a data item originally defined as a 6-digit number is

amended to become a 7-digit number). We shall term this

type of amendment as an expansion of the data item's

format.

On the other hand, certain changes in format might mean

that some existing occurrences cannot be held under the

new format (e.g. where a data item originally defined

as a 7-digit number is amended to become a 6-digit

number any occurrences with a value greater than

999999 could not be held). This type of amendment

we shall term as a' contraction of format.

Program CategOrisation

Transparent Programs

(a) Programs which do not refer explicitly to

the data item.

Existing Programs which read (but do not write)

a record where the data item is being contracted

in format.

Programs which write (but do not read) a record

where the data item is being expanded in format.

Opaque Programs

Programs which write a record where the data item

is being contracted in format.

Programs which read a record where the data item

is being expanded in format.

Transparent programs can operate during and after the

restructuring since the type of format change is com-

patible with the type of data item transparency incor-

porated into the sub-schema to schema mapping. For

example, if a program reads a 7-digit numeric data.

item with a sub-schema format of PICTURE 9(8) this is

equally transparent if the data item on the data base

record is contracted to 6-digits. 	It is significant

that the sub-schema format is not compatible if the

program attempts to write a record to the data base in

either case (i.e. a value of over 9999999 or 999999

could have been given to the data item by the program

but such a value could not be written to the data base

record).

-,Ss -

Concurrent Tasks

The format of a Data Item can be amended while other

data items are being deleted from or added to the same

record.

The format of more than one data item in the same record

may be amended concurrently.

An Open Dynamic Implementation Strategy

In an Open Dynamic Strategy all existing occurrences will

remain at their present version but when records are added

or replaced on the data base by application programs they

will be written as version n with the data item in the new

format. When a record is retrieved from the data base,

the DBMS must use its version number together with the

object schema sub-list for that version of the record to

perform a suitable schema to sub-schema mapping.

All records written to the data base will be at version

n. In a contraction of data item format this may mean

that the DBMS discovers incompatible record occurrences

at this point (e.g. if a data item is being reduced from

7 to 6 digits any occurrence with a value more than

999999 cannot be written). Such eventualities can oni-

be reported to the Data Base Administrator as and when

they take place rather than at the time of the

restructuring if this type of strategy is used.

Furthermore, the Data Base Management System must write

something to the data base. Null Values would seem to

be the best choice although some implementors might

consider truncation appropriate.

- 069-

This strategy would only be applicable to certain opaque

programs operating on the data item being amended:

Programs which read (but do not write) the record

where the data item is being expanded in format.

Programs which write (but do not read) the record

where the data item is being contracted in format.

In these cases the revised version of the program must

be scheduled before the restructuring takes place since

the sub-schema to schema mapping will allow them to

operate successfully during that time. For example,

if a data item is expanded from 6 digits to 7 digits

any programs which read (but do not write) the record

with a sub-schema definition of PICTURE 9(6) must be

altered to refer to it at least as PICTURE 9(7).

A Closed Dynamic Implementation Strate

For an expansion of data item format a Closed Dynamic

Strategy is straightforward. The Restructuring

Mechanism can proceed through the data base in the

Preferred Direction and transform each occurrence to

the new format (this always being possible for an

expansion). As for task 1 the DBMS can retrieve

version m and n records from the data base and transfer

the data to the program User Work Area as version n.

This procedure implies that the new version of opaque

programs must be scheduled to coincide with the start

of the Transitional State.

R ESi(UC1 AI 4C 	 REST91sC7-U/?C

51.AIr 	 END

Alternatively, a Version-Specific version of the program

can be used to cover the Transitional State. This could

operate indefinitely but it would probably be replaced

by the revised version at some convenient time after

the restructuring is complete.

VIRSsôAl SP&'F'c 	 S1RL4C7uE 	 vS,o'i 5pc,c,c
Pof?Ai1 	 S1*i- 	 6w) 	 Of? 0 &41917

For a contraction in format the Restructuring Mechanism

might encounter certain data items which are incompatible

with the new format as described above for the open

strategy. In this case the Data Base Administrator can

opt to "Roll Back" the Data Base to its original format

if such an occurrence is detected.

Even if he opted to have all such occurrences reported

to him this would be more satisfactory than the open

strategy where discrepancies were reported at arbitrary

times in the future determined by the frequency of

record modification by application programs. In other

respects this type of amendment can be carried out in

the same way as an expansion of format.

Data Items Referenced Elsewhere in The••S chema

If the data item whose format is being amended is

referenced elsewhere in the Schema the Restructuring

Mechanism must take this into account.

The data item may be referenced in the SOURCE clause

of another data item. If the STORAGE IS NOT REQUIRED

clause has been specified for this data item the DBMS

can cater for the change of format since it must access

the original data item any time the source data item is

required. We have already seen how this can be accomplished.

If the STORAGE IS NOT REQUIRED clause is not included the

Restructuring Mechanism must amend the source data item

as well as the original data item. In a Closed Dynamic

Strategy the source record can be amended immediately

after the original record and its version too amended

to n. The source records are not necessarily amended

in their "Preferred Direction" but they should nevertheless

all be altered when the restructuring is complete since

there is a one-to-one relationship between source and

original data items.

In an Open Dynamic Strategy a similar situation applies

and the DBMS can alter the source record whenever the

original is modified. Suppose, however, that the source

record has to be modified for some other reason. The

DBMS in this case would be required to also modify the

corresponding original record.

The Data Item being amended may be referenced in the KEY

clause for its record and in this case the format change

must be reflected in the corresponding index in addition

to the record itself. When a record alters from version

in to version n in either Open or Closed Dynamic Strategy

with one or more data items involved in the change being

key data items the DBMS must set up a new index for the

record. This can be done as the restructuring takes

place by removing entries from the existing index to

the new index as the corresponding records are altered.

If a Parallel Running State is required old index

entries will not be removed.

For example, suppose the data base consists of four

occurrences of the same record as follows:
1U1SS

I 	 1 	 3 	 L. rKEY:: 'A ' i:p&tc4 II(Ey:'eI 	L;< D4T4 	 I
The original index would be:

Now if the "Preferred Direction" for the record is

address sequence and Closed Dynamic Restructuring has

amended the records at addresses 1 and 2 there would be

two indices as follows:

	

VERSION at
	

L

	

3
	

A

	

4
	 e

That is the original index has lost two entries (for

the amended records at addresses 1 and 2) and the new

index has gained entries for these records.

In the Transitional State of a Closed Dynamic

Restructuring and after an Open Dynamic Restructuring

the DBMS may have to access both indices to satisfy

a request from an application program to FIND a

record based on the value supplied for a key data

item. The sub-schema to schema mapping can be

used to format the index key appropriately in each

case. If, however, the DBMS has to alter an index

entry because a record occurrence key data item has

been MODIFIED it can access the correct index

immediately by reference to the version number held

in the record occurrence itself.

-In-

Task 4 - Allocating Storage to a Source or Result

Data Item

Certain Data Items may be derivable from other data

items either on the same record occurrence or on other

occurre.nces of records related by a set occurrence.

The addition of such data items to a record is straight-

forward if no storage is to be reserved for them

within record occurrences since this only involves an

amendment to the schema entry to indicate how the data

item is to be evaluated if it is required by an

application program. If storage is required, however,

the restructuring mechanism must operate as in the

addition or deletion of a new data item but the

population must be carried out using the Source or

Result Algorithm.

Syntax

STORAGE REQUIRED (INTRODUCED)(DISCONTINUED)

Concurrent Tasks

This task may be executed concurrently with any of

the previous tasks operating on data items in the

same record.

-060-

Progr 'a 'ft 'Ca't'e'g'oi's a ti'on

Transparent - All programs including those which refer

to the source or result data item.

Opaque 	- None.

Popu1atjo; of 'the' Dat 'Base

The following method of population of the data item can

be carried out when a version n record is written to the

data base in either an Open or Closed Dynamic Strategy

(see Task 1).

For a SOURCE data item the corresponding data item in

the owner record occurrence must be accessed and this

value allocated to the new data item.

For a RESULT data item the value can be derived by

executing the appropriate procedure using data items

in the record itself and in Corresponding member

record occurrences.

OMER

Task 5 - Amendment to the Value Rane of •a 	Item

The Codasyl Proposals allow many of the functions of data

item validation to be performed by the DBMS rather than

the application programs themselves. The range of values

which a data item may take is likely to alter from time

to time either in a predictable fashion (e.g. the

acceptable range for an employee number data item might

expand or contract to reflect the size of a company's

workforce) or because of unforeseen changes of the

data item's usage.

In the schema the value range for a data item may be

specified in one of two ways - as a number of discrete

ranges of values or as a procedure to be executed to give

a 'VALID' or 'INVALID' result. This may, therefore, be

amended by adding, deleting or amending ranges or by

introducing or discontinuing a data base procedure.

Syntax

There are a number of alternative formats to this task

all of which can be carried out concurrently if

required.

Format (a) - (Only one such entry per task)

CHECK NONNULL (INTRODUCED) (DISCONTINUED)

Format (b) - (Only one such entry per task or two entries

with the first indicating DISCONTINUED and

the second INTRODUCED)

IBM

CHECK procedure-name-1 (INTRODUCED)
(DISCONTINUED)

Format (c)

CHECK VALUE RANGE INTRODUCED AS

[NOT]literal-1 THRU literal-2

Format •' (d)

CHECK VALUE RANGE DISCONTINUED WAS

[NOT]literal-1 THRU literal-2

Format (e)

CHECK VALUE RANGE AMENDED FROM

[NOT] literal-1 THRU literal-2

TO[NOJT literal-3 THRU literal-4

For simplicity we have assumed that data base procedures

may not be altered without a change in procedure name.

Classification of Amendment

The net effect of the set of entries to alter the

acceptable value range of a data item may either

expand or contract that range (where some discrete

ranges have been expanded and otheis contracted we

shall consider the net effect as a contraction).

The constraints imposed by the ranges and procedures

may make the validation procedures (performed by the

DBMS when it modifies or stores records on the data

base) either more or less rigorous.

-DO -

Program C ategorisatio n

Transparent - All Programs whether they reference

the data item in question or not.

Opaque 	- None.

Implementation Strategies

We shall consider separately the strategies required

where the data item validation procedures are to

become more rigorous and less rigorous.

For an amendment to make the procedures less rigorous

the Restructuring Mechanism need only alter the object

schema to reflect the new criteria. The data base

itself need not change and the record version number

will not be altered. All existing data item occurrences

will still be valid under the new criterion.

For an amendment to make the procedures more rigorous

there is the possibility that certain existing occurrences

of the data item in question will no longer be valid under

the new criterion. There are two strategies which the

Data Base Administrator can adopt to detect such occurrences

as follows:

An Open Dynamic Technique would result in the validation

being carried out when a record is retrieved from the

data base by the DBMS in response to a request by an

/C2

application program - this would be in addition to the

normal procedure of carrying out the validation when

the record is modified or stored. The validation need

only be performed once on each record occurrence. This

could be ensured if each successfully validated record

was modified to version n as previously described for

other tasks. Validation would then only be performed

on reading version in records. On the other hand, if a

data item occurrence did not satisfy the validation

criterion the situation would be reported to the Data

Base Administrator and the data base record would remain

at version m.

A Closed Dynamic Technique would allow the Data Base

Administrator to obtain a report of all occurrences with

an unacceptable value at the time of the restructuring.

The Restructuring could take appropriate action if any

such occurrences were found. Possible actions are:-

To leave the occurrence unchanged and not implement

the revised value range.

To set the occurrence to null values and continue

to examine other occurrences.

In this case the DBMS would use the new (more rigorous)

criterion for data item validation as required for record

occurrences being written by application programs during

the Transitional State. This means that existing record

version numbers need not be altered.

-'1' -

Concurrent Tasks

All of the previous tasks may be executed concurrently

with the amendment to the value range of a data item

in the same record.

The value range for more than one data item in the same

record can be altered concurrently.

-864 -

Task 6 - Intra Record Structure Amendment

Introduction

In the Codasyl Proposals the structure of a record in the

schema and storage schema is defined in much the same

way as Cobol defines records on traditional files.

The record is divided into elements of three types:-

Data Items

Data Aggregates

Vectors

Each element is allocated a level number and the

nesting of elements within each other allows the

most general format of record to be defined.

Ci,yitt4rrt

The principal operation required for an amendment to

record structure is to allow the number of

repetitions of a data item to be altered. Repet-

itions of a data item may be contiguous (a Vector)

or separated by corresponding repetitions of other

data items (part of a data aggregate). 	It is

evident that this task will be necessary since

assumptions made on the number of repetitions of data

items when the data base was created will often have

to be revised in the light of experience.

-9". -

Syntax

A variety of formats are proposed for this task to

allow the variation in the number of repetitions

of the data item to manifest itself in the number

of occurrences of a data aggregate or vector.

In particular, since an elementary data item is a vector

with a single occurrence a data item may be elevated to

become a vector or a vector may be reduced to a data

item.

Format (a)

(Vector-i)
AMEND OCCURS VALUE OF (Data Aggregate-1) IN Record-Name-1

(Data Item-1)

FROM (Data Identifier-1) TO (Data Identifier-2) (Integer-1) 	(Integer-2)

Format (b)

INTRODUCE Data-Aggregate-2 OCCURS n TIMES

TO COVER Data-Item-2 TO Data-Item-3

IN Record-Name-2

(The data aggregate will assume the lowest level number

of the covered data items and all covered data item

levels will be increased by 1)

Format (c)

MOVE Data-Item-4 to (BEFORE) (AFTER) Data-Item-5

IN Record-Name-3

(where Data-Item-5 is part of a data aggregate this

will have the effect of adding Data-Item-4 to that

-U4-

data-aggregate and amending its level accordingly).

There is little point in moving a data item to a new

position in a record while retaining the same number

of repetitions since the schema to sub-schema mapping

ensures that data item position within data base

records is transparent to application programs.

Pr 'o'gram Categor isation

Transparent - All programs which do not reference the

record whose structure is being amended.

Programs which reference the record but

do not reference data items whose number

of repetitions are being altered.

Opaque 	- Programs which reference data items

whose number of repetitions are being

altered.

Concurrent Tasks

The structure of a record may be altered concurrently

with any of the preceding tasks in any of its data

items whether their number of repetitions is being

amended or not.

Population of the Data Bas e

Where the number of repetitions of a data item is being

amended by altering the record structure, the restructuring

mechanism must determine which existing repetitions

-1167-

must be removed from the record and which new

repetitions (possibly with allocated values) must

be added to the record.

Often if additional repetitions are being created they

will become the 'last' in the record and will be

a1locaed null values or some other suitable value.

But if the new repetitions are to be inserted elsewhere, an

additional clause will be requiredto specify their

position as well as their value.

Equally, if repetitions are to be removed, these too

will often be the 'last' on the record but other

repetitions could be removed using an additional

clause.

If the number of repetitions varies from one record

occurrence to another (depending on the value of

another data item) it may be necessary to quote both

types of clause to cater for all possible changes in

format.

An Ope'Dyamic rmpi ient a tion Strategy

As for previous tasks an Open Dynamic-Strategy involves

an amendment to the object schema to incorporate an

additional list giving the new structure of the

record under version n.

-I6' -

Any new records stored or modified on the data base

will be written in the new structure while records

read from the data base to satisfy a GET from an

application program may be either version m or n.

The DBMS must continue to allow application programs

to "see" the previous record format even if the

record retrieved is version n. It can do this by

having a version number implied in each of its DML

commands based on the version of data base operative

when the program was compiled.

For example, suppose the data base holds a record

with a vector of 5 elements. A restructuring could be

carried out to add a 6th entry (with null values

initially) before the existing S to produce a 6-element

vector.

If an old version application program-were to STORE

or MODIFY an occurrence of the record it will be

written with all 6 elements even though the program

only "sees" it with S. 	If a record with S elements

is retrieved for a GET by an application program the

DBMS can provide these values directly to the program

but if a record with 6 elements is retrieved the

program must take the restructuring into account and

only provide the program with those 5 that it requires.

ONE

Eventually, however, application programs will wish to

take advantage of the new record structure. In these

circumstances, the DBMS must therefore be aware of

which structure is required by a particular program

and this can be done by associating a version number

with th'e program (or sub-schema). Any program with

a version number of n or greater will be provided

with the new structure while programs with versions

lower than n will be provided with the old structure.

In our example above, a version n program could be

written referencing the vector with its full 6 elements.

This could access existing version n occurrences and

be provided with the correct values. If it were to

access occurrences with a lower version the DBMS would

have to transfer the five elements from the record to

the program as the last 5 elements in its vector with

the first element being set to null values. Records

written by the version n program will always have the

full 6 elements in the vector.
£d(74Ne9 4.

ve.,ir
P-i-

ri L 1
l0

AClose'dDynainic 	nio"Strategy

In a Closed Dynamic Strategy all existing record occur-

rences will have their structure amended during the

restructuring. Any programs referencing the data

items having their repetitions altered must be

I7r'

modified at some point during this process since the

original versions must operate before the restructuring

and the final version afterwards. If possible, the Data

Base Administrator would arrange that such programs were

not run during the Transitional Period.

Suppose, however, that there is a requirement to execute

a program during the Transitional Period. The approach

adopted above for Open Restructurings could be taken to

allow the program to "see" the old structure or the new

structure for the duration of the restructuring. Even

this might not be sufficient and it may be that the pro-

gram would have to be modified twice - once to become

Version Specific so that it could take appropriate

action depending on the version number of each record

retrieved and once more to adopt its final form. It

should be noted that the Version Specific program would

continue to operate successfully after the restructuring

although it would contain redundant coding which it would

be advisable to remove eventually.

Another consideration is where the restructuring is to

involve a period of parallel running once all records

have been modified. In this case, the revised records

supplement rather than replace the existing records.

The old record structure continues to exist during the

restructuring and the old versions of the programs

can therefore continue to operate on these record

- 170 -

versions during the Transition and Parallel Running

Phases. 	 fmD
R F- S'fR C f Lfq 	 piqm9fai. 	 PakAt.LL

P -i-

(00 	.
/

Po'(Ve ,so,S,oec;

PA ., 3IckVSO. ScI'

—

'I
 p0

>

/

In the diagram !T is a Transparent 'Program which can

operate before, during and after the restructuring

since it does not reference the data item whose number

of repetitions is being altered.

P0 is an Opaque Program which is to take advantage

of the change in the number of repetitions. A new

version of the program (P g) is scheduled for introduction

to coincide with the start of the transitional period.

If it finds a record which has had the number of

repetitions altered it can recognise it by its version

number and process its data accordingly. If it finds

a record in the original form it can proceed as

before. The program is therefore now version specific.

Once the Transitional Phase is complete all records

will be read and written in the new format (during

the Parallel Run they will also be written in the

old format but this is irrelevant to this program).

Some time later, therefore, the logic to process

records in the old format can be removed and the

program will be no longer Version Specific (i.e. it is
I,

version P0).

afkffl

AUDIT is an ad-hoc program which ensures that the

Restructuring has been performed successfully by examin-

ing both old and new formats of the same record occur-

rence and checking their compatibility. Once this

program has been run successfully, the Data Base

Administrator can decide to terminate the period of

parallel running.

Semantically Equivalent Programs

As we have seen, opaque programs will be required to alter

in their data base access only in so far as they use GET

and MODIFY to transfer data between User Work Area and data

base record. In general these changes must be co-ordinated

with other changes to the logic of the programs to determine

how the amended number of occurrences of the data item in

the record are to be handled.

One specific instance, however, leads itself to a process

of automatic conversion of the DML commands issued by a

program to a corresponding set of commands which are

semantically equivalent under the new structure. This

equivalence takes advantage of the fact that a data

item within a data aggregate or vector which has only one

repetition is equivalent to a simple data item once it has

been transferred to the User Work Area. Thus GET (VALUE)

will be equivalent to GET (VALUE (1)) if the data item VALUE

is being embedded in a vector with one repetition. Although

the frequency of this type of structural change may well be

-

limited (it could be said that it does not actually alter the

structure), the existence of a mechanism for automatic

program conversion would encourage Data Base Administrators

to approach alterations to the number of repetitions of data

items in a phased manner with the intermediate state being

that data items within vectors or data aggregates had only

one repetition.

Task 7 Migration of a Data em Between Records

Finction

When the Data Base Administrator originally defines

a Data Base, he will form the data base records by group-

ing data items which he considers to relate to the same

entities from the real world. For certain data items

it might be difficult to decide to which entity (and,

therefore, to which record) they relate. Later, it

may well become apparent that certain data items

would more properly be part of other records than those

in which they were originally included.

If it is to allow data items to be moved from one record

to another the restructuring mechanism must have some

criterion to use to determine which occurrence of

the destination record is to receive each occurrence

of the data item from the source record. It is proposed

that two means of establishing this criterion will be

available: -

The source and destination records are owner and

member or member and owner of a set already

defined in the data base.

The source and destination records are related

by equality of value of certain specified data

items. This relationship may be considered as

a special case of the set relationship where the

record association is implicit in the data item

values rather than explicitly defined by means of

set pointers or indices. In the description which

follows the set terminology is therefore used except

where special consideration must be given to this type

of implicit set.

Both types of record relationship allow for the

possibility of one-to-many and many-to-one relation-

ships between record occurrences although a simple

one-to-one relationship is not excluded. In both

cases, both source and destination record

occurrences must actually exist to which the data

item will be removed and added respectively.

In normal circumstances, the data item will be

removed from each occurrence of the source record

and added to each occurrence of the destination

record. If necessary, however, the data item may be

retained in the source record.

Syntax

The proposed syntax for this task is as follows:-

MOVE Data-Item - 1 FROM Record-Name - 1

TO Record-Name - 2

(ALONG Set-Name - 1)
(USING EQUALITY OF (data-item 1 ...))

(DISTRIBUTION BY REPETITION

DISTRIBUTION BY EQUALITY

CDISTRIBUTION BY Procedure-Name - 1

[RETAIN SOURCE]

'7'

The distribution clause is necessary to define how

the data item is to be populated in the destination

record.

For Distribution by Repetition the data item can be

a Vector (or part of a repeating group) in the source

record 'and move (as an elementary data item) to the

destination record with each repetition of the data

item assuming a value in one of the destination member

records in turn. 	The number of repetitions of the

data item in the source record must therefore exactly

equal the number of occurrences of the destination

record or occurrences can be created to accommodate

them. Similarly, Distribution by Repetition may take

place from member to owner where an elementary data

item becomes a vector in the owner record.

For Distribution by Equality the value of the data item

in the Owner record (if this is the source of the

migration) is allocated to all occurrences of the

data item in the destination (member) record occurrences.

For migration from member to owner all member records

in the same set occurrence must have the same value

for the migrating data item in which case this value

is allocated in the destination (owner) record.

For Distribution by Procedure, the specified pro-

cedure is executed to give value(s) for the data

item in the destination record(s) based on value(s)

in the source record(s).

-Q'7-

The Clause 'RETAIN SOURCE' is optional. If included

the data item is retained in each occurrence of the

source record in addition to being copied to the

destination record.

?rogramCategorisation

Transparent - Programs which do not reference the

data item being moved.

Opaque 	- Programs which reference the data item

being moved.

Concurrent Tasks

This task can be executed concurrently with any of

the previous tasks where they are operating on data

items in the source record.

More than one data item may be moved concurrently

from the Source to the Destination Record.

A Closed Dynamic Impiemehtation Strategy

In a closed dynamic strategy the restructuring

mechanism must move a data item from an owner

record occurrence to one or more member record

occurrences or from one or more member record

occurrences to an owner record occurrence.

The restructuring mechanism therefore operates on all the

record occurrences in a set occurrence to perform the

necessary migration and access to all record occurrences

in the set by application programs will therefore be

precluded while this is done.

Each set occurrence is established by progressing through

occurrences of the owner record in the preferred direction.

Each such record will be at some version m (n). Using

the appropriate set pointers all member record

occurrences can then be retrieved. These will be at

some other version p ((n). Following reference to the

Distribution Clause the restructuring mechanism can

thallocate values to the data item in the destination

record(s) using values found in the source record(s).

When this has been done all records can be written back

to the data base in their new format at version n.

Since the set relationship precludes one member record

occurrence being related to more than one owner record

and assuming membership of the set is mandatory (i.e. all

member records must be related to some owner) when all

owner records have been processed the restructuring is

complete.

The use of version numbers allows the DBMS to process

accesses to the source and destination records by

Transparent Programs before, during and after the

restructuring in the same way that it handles the

addition and deletion of data items in Tasks 1 and 2.

muz

As we have seen, there may be some delay in servicing

accesses to records while the set occurrence in which

they participate is being processed by the Restructuring

Mechanism. Opaque Programs will see the data item as

held in the source record before the restructuring

and the - destination record thereafter. There are

various methods whereby opaque programs can operate

during the transitional period:-

(a) 	The Opaque Program can be made Version Specific
S7RuCrs 9trfue74.4E ffI2.

fVE11

JPO&VSLO .tc.IIIC
	 ro

In the knowledge that the restructuring is to take

place the program can be amended to process records

in different ways depending on their version numbers.

If their version is less than n then the data item will

appear in the source record but not in the destination.

If their version is greater than or equal to n the

data item will appear in the destination record but

not in the source. Any new records written to the

data base will be written at either version n or their

original version depending on whether the corresponding

set owner record would have been processed by the

Restructuring Mechanism.

-,o -

The introduction of the Version Specific Program need

not coincide with the start of the restructuring since

it will operate satisfactorily before this point where

no version n records exist. Similarly, it need not

be discontinued after the restructuring since it will

operate' satisfactorily when all records are at version n.

Introduction is likely to be linked to some external

event such as the introduction of new data capture

procedures. Amendment to become non-Version Specific

is likely to be influenced by feasibility of expending

programming effort to make the program more efficient

to run.

(b) 	The O'r'i'g'ii'ai Version of the. ..p'ague Program can

continue' 'to' rtn' where 'a' period of parallel running

i's required
1t4C7 W ((s7c7q4t. 60A1p.

PmLt. Rvii SIPAT

In this case occurrences of the source record containing

the migrating data item will continue to exist up to the

end o,f the parallel run and there is therefore no

difficulty for the DBMS to satisfy requests from

application programs to retrieve the data item from

the source record. During and after the restructuring

there may also exist versions of the source and destin-

ation records in the new format and the DBMS must handle

any new or updated records by performing or reperforming

the data item migration for these records.

(c) The amended version of the Opaque Program can be

introduced to coincide with the start of the

restructuring

R
S14,Z7

P0

During the restructuring, application programs may require

to retrieve, update or insert, records which have or have

not been restructured. If the record has been restructured

(or is to be added at a position prior to the current

point of the restructuring in the preferred direction)

there is no difficulty since the migrating data item will

be in the destination record as expected by the program.

If, however, the restructuring has not yet reached the

point occupied or to be occupied by the record the DBMS

must perform the migration on that set occurrence before

servicing the request by the application program. This

is similar to the technique described In Task 1 (Data

Item Addition) where the restructuring mechanism may

encounter already restructured records but it can recog-

nise these as being at version n and progress onto the

next occurrence.

As values for the destination data item are calculated

by the restructuring mechanism it is possible that incon-

sistencies are detected between the Distribution Clause

and the actual values on the data base record. For

example, if the clause indicates distribution

-

by repetition the number of occurrences of the member

record may not correspond with the number of repetitions

of the data item in the source record. Similarly, if

the clause indicated distribution by equality and

migration is from member to owner all values

of the 'data item in the member records may not be equal.

As for previous tasks the Data Base Administrator has the

option of "rolling back" the restructuring or allocating

some value to the migrating data item and reporting the

situation.

An Oten Dynamic Implementation Strate

The object of an open strategy will be to migrate the

data item only when this is necessary because of access

to individual record occurrences by application programs.

To accomplish this, it is essential that the set or

equivalent data items used as the basis for the migration

remain stable (i.e. are not themselves restructured) while

occurrences of the old format of records remain on the

data base.

The mechanism for handling each migration is similar to the

type (c) Closed Strategy described above where a record

to be retrieved, updated or added to the data base had not

(yet) been restructured. To obtain this effect it is

essential that any opaque programs are scheduled in their

revised form to coincide with the start of the restructuring.

-

	

-

In this task the requirement to restructure a complete

set occurrence as a unit may impose significant limit-

ations on the use of an Open Dynamic Strategy. Accesses

by application programs may have to wait for an appreciable

time until the complete set has been processed. Consider-

ations must be given to the feasibility of restructuring

a set even if the migrating data item only has to be

retrieved to service an application program request.

Unlike other tasks it may be desirable to perform the

migration in this case to avoid subsequent accesses

to the complete set occurrence.

Once again an open strategy may impose difficulties on

the Data Base Administrator in monitoring errors detected

when a data item is migrating (e.g. a discrepancy in the

actual number of occurrences of the destination record).

Such errors can only be detected when application programs

happen to access records and the DBMS therefore restructures

them, and the timing of this will often be outwith the control

of the Data Base Administrator.

I

Semantically Equivalent Programs

In general, opaque programs will alter significantly if a

data item which they use migrates from one type of record

to another. In particular if distribution is by procedure it

is not likely that it will be possible to automatically convert

such programs so that they can operate on the revised structure.

Furthermore where the logic of a program permits complex

paths with a variety of combinations of DML commands (i.e.

where a program may branch to an instruction between DML

commands) no simple logic path may reflect the new structure.

Nevertheless in certain instances it may be possible to convert

programs to semantically equivalent versions.

For example if distribution is by equality (or by repetition

where the data aggregate has one repetition) programs with an

un-interrupted flow of

FIND OWNER
FIND CORRESPONDING MEMBER OF MIGRATORY SET

or FIND MEMBER
FIND CORRESPONDING OWNER OF MIGRATORY SET.

may be modified automatically such that the GET for the

migrating data item appears after both FINDS.

- gush -

Task 8 - Adding a New Record to •a Data Base

Function

One of the principal areas of expansion of a data base is

where the organisation modelled in the data base identifies

a new entity which must be represented by a corresponding

data base record.

Program Categorisation

Transparent Programs - Programs which do not require the

new record and do not include it

in their sub-schema.

Opaque Programs 	- Programs which are to be amended

to include the new record in their

processing.

Concurrent Tasks

No other tasks may operate concurrently with this task

since it is instantaneous.

Syntax

The proposed syntax for this task is as follows:-

ADD Record-name - 1

DEFINITION - As for the Schema Entry in the Codasyl

Proposals

STORAGE 	- As for the Storage Schema Entry in the

Codasyl Proposals.

-

Implementation

The task results in a list giving details of the new

record being added to the Object Schema. At this time,

no record occurrences will exist on the data base since

these will be added by later tasks or by application

programs.

Task 9 - Splitting Data Items'from' aJi Existing Record

to form a New Record

Function

Where a number of related data items constitute a record

it may become apparent that certain of these data items

are related in some special way which could be more

easily utilised if they were separate from the remaining

data items. Thus, the original record will be split

with each occurrence becoming two distinct records.

Note that this task is distinct from Task 7 (Data

Item Migration) in that a new r ecord occurrence is

created when the data items are split where the require-

ments for a relationship by set or data item equality

implies that record occurrences must exist to receive

migrating data items.

Program....ategorisation

Transparent Programs - Programs which do not reference

data items being split.

Opaque Programs 	- Programs which reference the

data items being split.

Syntax

The proposed syntax for this task is as follows:-

11'

SPLIT Data-Item-1 FROM Record-Name-1

To 	Record-Name-2

or COPY Data-Item-1 FROM Record-Name-1

To 	Record-Name-2

The difference between the clauses is that the second form

results in the data item remaining in the original record

as well as being included in the new record. This is

particularly useful for data items which identify

record occurrences and provides for relating the split

records using a set.

Concurrent Tasks

This task can be executed concurrently with any of the

previous tasks where they are operating on the data

items of the original record.

More than one data item may be split or copied, from

the same original record to one or more new records.

A Closed Dynamic Implementation Strategy

By progressing thrOugh the original record occurrences

in turn the restructuring mechanism can create new

versions of the split records and write each to the

data base at version n.

As for Task 7 (Migration of a data item between

records) there are three possibilities for the scheduling

of the new versions of opaque programs.

- iif -

A Version Specific version of the program can be used to

handle data base access during and immediately after the

restructuring.

The new version can be scheduled for introduction to

coincide with the end of a period of parallel running

with the original version operating on the old record

versions during the restructuring and parallel run.

The new version can be scheduled for introduction to

coincide with the start of the restructuring. An

attempt by an application program to access a record

which has not yet been restructured will result in the

DBMS performing the restructuring on that record before

servicing the request.

An Open Dynamic Implementation Strat'e

As for a Closed Strategy the techniques used to

service accesses to the data items split from the main

record can be handled by performing the restructuring

if this has not already been done. In this case,

this can be ascertained since the absence of a record

occurrence implies that the restructuring has not

taken place.

Semantically Equivalent Programs

The opportunity exists for the conversion of programs to

semantically equivalent forms operating on the revised data

base structure if the splitting of data items from a record

to a new record is combined with the creation of a new set

combining -the two records (see Task 12). The one-to-one

relationship between the records will imply that each set

of occurrences has one owner and exactly one member. Any

programs accessing the original record by the FIND command

can have this DML callextended by addition of a further FIND

MEMBER command for the new record. Similarly a STORE or

MODIFY command can be replaced by two STORE commands or by a

MODIFY, FIND MEMBER, MODIFY command sequence respectively.

Where data items are copied to the new record there should

be no requirement to modify programs which do not STORE or

MODIFY the data items. If STORE or MODIFY is used, however,

the program must be altered to reference the copied data items

in both types of record.

IMMIM

Task 10 -Deletion of a Redundant Record

Function

It may be that an entity on which data has previously

been maintained is no longer relevant to an organisation's

needs. The Data Base Administrator must therefore have

the ability to delete all occurrences of such a record

from the data base to free the storage space for useful

records.

Before a record can be deleted the restructuring

mechanism must ensure that it is indeed redundant.

A redundant record is one which is not referenced in

any sub-schema and is not referenced in. the Object

Schema other than in its own record definition. In

particular, the record must not be the owner or

member of any set (member records can be removed

from sets using Task IS and sets with this record

as owner can be deleted using Task 13).

Program Categorisation

Transparent Programs - All programs

Opaque Programs 	- None

Concurrent Tasks

No tasks may be executed concurrently with this task.

Syntax

The proposed syntax for this task is as follows:

DELETE Record-Name - 1

Implem&ntation

The restructuring mechanism has two functions to

perform to execute this task:-

To remove the list for the deleted record

from the Object Schema.

To delete all occurrences of the record from

the data base.

The record occurrences can be deleted by progressing

through them in the preferred direction and using the

mechanism adopted by the DBMS for the deletion of

individual records by application programs. One method

of doing this is to maintain a "free space directory" and

the storage occupied by the record occurrences can be

added to this directory. Another technique is to

mark records as due for deletion to be physically

deleted later by a "garbage collection" utility.

Task 11 - Amendment to a Record Key

Function

A number of keys (a key being a collect ion of data

items) may be defined for a record. For each key there

is a corresponding index which allows an individual

occurrence of the record to be addressed directly when

provided with the required values of the data items in

that key.

The use of the key is to some extent up to the host

programming language in which the DML commands are to be

embedded. It may be that a program can retrieve a record

by providing values for any of its data items (if no key

exists for these data items the appopriate record will be

obtained by sequential searching). More likely, however,

the program must quote the values of data items for one

of the keys defined in the schema for the record.

Program Categorisation

Transparent Programs - Program which do not reference

that key

Opaque Programs 	- Programs which use the key being

amended to address records on the

data base. New versions of each

program can only be scheduled when

the restructuring is complete.

- .11?' -

Concurrent Tasks

The task may be performed concurrently with any of the

previously defined tasks operating on data items of the

record to which the key relates where the restructuring

is being done using a Closed Dynamic Strategy.

Syntax

The proposed syntax for this task is as follows:-

Format (a)

ADD NEW KEY TO Record-Name-1

Key-Name-1 (Key Clause as defined in Codasyl Proposals)

Format (b)

DELETE KEY Key-Name - 2 FROM Record-Name - 2

Format (c)

ADD ASCENDING I DESCENDING Data-Item - 1 TO KEY Key-Name - 3

IN Record-Name - 	cBEFORE AFTER Data Item - 2

Format (d)

DELETE Data Item - 3 FROM KEY Key-Name - 4 IN Record-Name - 4

Format (c)

DUPLICATES IN KEY Key Name - 5 OF Record-Name - 5

INTRODUCED AS FIRST7

DISCONTINUED 	

LAST

Implement at i on 'Strategy!

-B-

Imp lementa't ion' 'Strate'gy

The amendment to record keys does not require alteration

to record occurrences on the data base and their

version number, therefore, need not alter. The

restructuring mechanism need only operate on the index

corresponding to the key being altered.

Where a key is deleted the restructuring mechanism

need only delete the corresponding index.

Where a key is being added or amended it will be

necessary to set up a new index and this can be done

as follows:-

All occurrences of the record in question can be

processed in the preferred direction and the key data

items extracted so that an index entry can be made.

It will probably be more efficient to create the index

by sorting the index entries after they have all been

created rather than by creating the index directly by

adding each entry as it is processed. In any event such

an operation can continue without hindering application

programs which reference the record since opaque programs

which are to use the new key cannot be scheduled until it

is complete. Some application programs will add.new

occurrences of the record and amend and delete existing

occurrences. These will continue to result in any

existing indices being updated. The DBMS need take

no additional action if the restructuring mechanism

has not yet reached this occurrence when progressing

along the preferred direction. If the restructuring

mechanism has passed the position occupied or to be

occupied by the record occurrence the DBMS must take

the necessary steps to add, amend or delete the entry

from tFe index being set up.

If an index is being amended the last step in the

restructuring will be to alter the Object Schema

entry for. the key to the record to provide the

address of the new index rather than the old.

If a new or amended key includes a DUPLICATES ARE NOT

ALLOWED clause it is possible that duplication of

occurrences of the record are detected when the index

is set up. The restructuring will not be successful

in this case and the new index will not come into

operation (the old index remaining if there was one).

The offending occurrences will be reported to the

Data Base Administrator.

If the DUPLICATES Clause is discontinued it is not

even necessary for the restructuring mechanism to set

up a new index. All that is required is for the

Object Schema definition of the key to be altered to

indicate that there is no restriction on duplicate

values of the key.

Special consideration must also be given to the

introduction of a DUPLICATES ARE FIRST/LAST Clause

-8 	-

since this implies that the distinction between record

occurrences with equal values for the key in terms of

their presentation to application programs will be the

chronological or inverse-chronological order of their

insertion onto the data base. This implies some form of

date/tjme stamping of records as they are added to the

data base.

-Rn-

Task 12 Addition: of a New Set to the Data Base

Function

The network of relationships between records on the

data base is established using the Set construct. In

this way one type of record (the owner) is associated

with one or more other types of record (the members).

In any set occurrence there will be one occurrence of the

owner record and zero or more occurrences of each of the

member records.

It may be necessary for the Data Base Administrator to

alter the network for many reasons during the lifetime of

the data base. The introduction of new records relating

to new entities, unforeseen inter-record relationships

and the correction of errors in the initial network

definition are typical examples.

The following tasks consider various methods of network

modification. In this task we consider the addition

of a new set to define the association between existing

records.

Program Categorisation

Transparent - All programs which do not require the set

in question including those which reference

the owner and member records without using

the set.

Opaque 	- Programs which wish to take advantage

of the new set relationship.

Concurrent Tasks

No tasks may operate concurrently with this task.

Syntax

The proposed syntax for the task is as follows:-

ADD SET Set-Name - 1

DEFINITION (Definition of the Set as described in

the Codasyl Proposals).

STORAGE 	(Definition of the set storage mechanism

as described in the Codasyl Storage Schema

Proposals).

(INITIAL SELECTION OF Member-Record - 1 IS BY Procedure - 1)

The Initial Selection Procedure is required to provide

a means of allocating record occurrences to particular

set occurrences where the set has no SET SELECTION

procedure (e.g. where record occurrences would normally

be added by application programs using the INSERT DML

command). The procedure differs from the Set

Selection Procedure since it must have the ability to

provide a result of "no owner" where membership of a

set is not mandatory to provide for occurrences of

a member record which are not members of any set

occurrence.

Implementation Strategy

The principal objective in implementing this task is to

set up the pointers (and, if necessary, indices) which

identify occurrences of the set. The Codasyl Proposals

describe First and Last Owner Record Pointers and Next,

Prior and Owner Member Record Pointers. Each Pointer

will be associated with one of the storage record occur-

rences corresponding to each record occurrence. They

may point to another storage record occurrence or to an

index entry depending on whether direct or indirect

pointers are used.

Each storage record will already have other pointers

associated with it corresponding to sets where the

record is an owner or member. If the pointers for the

new set are added after all existing pointers there

is no requirement to alter the existing version number

of the record since all existing programs can continue

to operate using these pointers. It may be more con-

venient, however, to position the new pointers at some

point within the storage record which displaces existing

pointers and in this case the version number of the

records must be increased to n. For the duration of the

restructure, therefore, some record occurrences will

be at version n and others will be at lower versions

and the DML Execution Routines must take this into

account. From the start of the restructuring any new

occurrences of the records will be written as version n

with the correct 	pointers. In particular, if

the set being added has mandatory membership the

pointers in the new record will be set to the

value determined by the Set Selection Procedure.

Similarly, if a member record occurrence at version n

is deleted from the data base the pointers in its

corresponding owner record occurrence and adjacent

member record occurrences will be reset appropriately

(these too must be at version n as described below).

To perform the restructuring dynamically the restructuring

mechanism would operate as follows:-

Each set occurrence is associated with a unique owner

record occurrence and the restructuring mechanism

must firstly establish the existence of each such set

by progressing through all occurrences of the owner

record in the "Preferred Direction". Each record

will be written back to the data base as version n,

with the pointer for the new set allocated a value

indicating that no member records currently exist for

that set.

When all owner record occurrences have been processed

the Restructuring Mechanism will set the pointers on

each occurrence of each member record by once again

progressing through these in the preferred direction.

The appropriate owner record is identified using

the Initial Selection or Set Selection Procedure.

MWITIC

Addition of the member to the set can then use the

techniques used by the DML Execution Routines for adding

records to sets when requested to do so by an application

program. For a chronologically ordered set (INSERTION

IS FIRST, LAST) the Restructuring Mechanism is not in

a position to determine the order of the set which must,

therefore, be random for existing records although any

records subsequently adde.d will be positioned correctly.

Once this process is complete, the set has been fully

established and the modified versions of the Opaque

Programs can be scheduled for execution.

Task 13 - Deletion of a Redundant Set

Function

The Data Base Administrator may also require to amend

the network by deleting redundant sets to free the

space occupied by unused pointers and indices. For

sets where insertion is automatic the deletion would

remove the requirement of the DML Execution Routines

to update the pointers when record occurrences are

added to or removed from the Data Base.

Before a set can be deleted the restructuring

mechanism must ensure that it is indeed redundant.

A redundant set is one which is not referenced in any

sub-schema and the restructuring mechanism must

reference all sub-schemas to ensure that this is the

case.

Program Cate go ris ati on

Transparent - All programs

Opaque 	- None (since no sub-schema can contain

the set no program can reference it).

Concurrent Tasks

No task may operate concurrently with this task.

En
Syntax

The proposed syntax for this task is as follows:-

DELETE SET Set-Name - 1

ImiDlementation Strate

The Restructuring Mechanism must firstly free the space

allocated to pointers in the owner and member record

occurrences. It can do this by progressing through

thoese records in the preferred direction and writing

version n records to the data base which do not contain

these set pointers.

Once this operation is complete the index for the set

can be deleted if the set uses indirect pointers.

-c-

Task 14 Addition of a New Meber Record to an Existing

Set

function

Since a Set links one type of owner record to a number

of types of member records the Data Base Administrator

may require to add a new type of member record to those

present for an existing set.

P rogr am Cat egor is a tio n

Transparent - Programs which do not refer to the set.

Programs which always refer to explicit

record names (other than the record being

added) when 'Finding' records via the

set.

Opaque 	- Programs which wish to take advantage

of the set membership of this new record.

Programs which do not explicitly refer

to member record name when 'Finding'

via the set.

Concurrent Tasks

No task may operate concurrently with this task.

Syntax

The proposed syntax for this task is as follows:-

ADD MEMBER Record-Name - 1 TO SET Set Name - 1

DEFINITION (definition of set membership as described

in the Codasyl Proposals)

INITIAL SELECTION IS BY Procedure - 1

Implementation Strategy

The strategy used for this task is identical to that used

for the second phase of task 12 (adding a new set) except

that the DML Execution Routines must be capable of

handling requests for access to the set being

modified by application programs whose view of the set

does not reference the new record. This is possible

because at all times the pointer chains for the set

are self-consistent. It may be that certain pointer

chains have occurrences of the new record at version n

but the DML Execution Routines can pass through these

pointers to the next occurrence of the type of record

they require.

Once the restructuring is complete the new version of

opaque programs which reference the set as containing

the new record can be scheduled.

Task 15 	Removal of a Member ' *Re 'tord from an E'xistin Set

Function

A further method whereby the Data Base Administrator

could alter the network would be to remove an existing

member record from participation in an existing set.

By implication, other members would still remain in

the set since if this were not the case the set could

be deleted as detailed in Task 13. The removal of the

record from the set might be necessary as a prelude to

the deletion of the record or might reflect a loss of

the relationship between the entity represented by

that record and that represented by the owner record of

the set.

Program Categorisation

Transparent - Programs which do not refer to the set.

Programs which always refer to explicit

record names (other than the record

being removed) when 'Finding' records via

the set.

Opaque 	- Programs which do not explicitly refer to

member record name when 'Finding' via

the set.

Concurrent Tasks

No tasks may operate concurrently with this task.

Syntax

The proposed syntax for this task is as follows:-

REMOVE Record-Name - 1 FROM Set-Name - I

Implementation Strategy

This task can be implemented by the restructuring mechanism

in progressing through all occurrences of the record in

question in the preferred direction. Each occurrence will

be read as version m and written back as version n

(without the pointers for the set). In addition the•

adjacent record occurrences in the set occurrence must

be accessed and their pointers amended to point to each

other rather than the removed record (this is similar

to the operation carried out to operate the. DML Remove

command).

As for the previous task this operation maintains set

integrity at all times whether occurrences of the removed

record are at version n or m. Transparent program can,

therefore, continue to operate during the restructuring.

Where a program uses the FIND command to navigate

through the set without explicitly referencing record

names, its results would be unpredictable during the

restructuring since it may or may not be presented with

an occurrence of the removed record depending on

whether the restructuring mechanism has reached that

point. A modified version can be scheduled for

-201 -

introduction at some convenient point before the

restructuring which ignores any occurrences of the

removed record if they are presented. This procedure

is similar to that used in previous tasks for Version

Specific programs although in this case only the name

of the etrieved record need be examined rather than

its version. Similarly, it may be useful to schedule

a further version of the program after the restructuring

is complete which does not contain the logic to examine

the record name since none will now be found.

Task 16' '- Anien'dn'en't' 'to' 'the Order' 'of a ' *Set

Function

The order of ,a set will often be a significant factor in

the processing efficiency and storage requirements of the

application programs which use it. Once again the Data

Base Administrator must originally define an order which

he considers the most appropriate for each set on the

data base. Later it may become apparent that access to

the records in the set by application programs would

overall be more efficient if the set were in a different

order.

It is, of course, possible to define a completely new

set (Task 12) which is identical to the old in all

aspects except the set order. The Data Base Administrator

may not consider the overheads associated with maintain-

ing the indices and pointers for both sets acceptable.

Program 'Cat'egor'isation

Transparent - Programs which do not reference the

set.

Programs where the order of the set

is irrelevant to the logic performed.

Opaque 	- Programs where the set order affects

the logic performed.

- 	Uo. -

Concurrent Tasks

No tasks may operate concurrently with this task.

Syntax

The proposed syntax for this task is as follows:-

AMEND ORDER OF SET Set-Name-1

This is followed by the Order Clause and any necessary

Key Clauses as defined in the Codasyl proposals.

I urni eme ntat ion St rate

The following strategy may be used to process the

task while allowing application programs access to

each set occurrence in one order or the other during

the restructuring. An attempt to access a set

occurrence which is actually being restructured at

that time will be delayed until this has been done.

The restructuring mechanism will progress through

the occurrences of the owner record of the set. For

each it will retrieve all occurrences of associated

member records by following the pointer chain for the

set in question. When this has been done it will use

the Order and Key Clauses specified on the task to

re-order that set occurrence. The pointers will be

re-set appropriately and all records written back as

version n. When all occurrences of the owner record

have been processed so have all set occurrences and

the task is complete.

-

Transparent programs where the set order is irrelevant

may, therefore, be supplied with records in either the

old or new order for a particular set occurrence

depending on whether it has been processed by the

restructuring mechanism. 	However, a consistent set

occurrence is always presented.

Opaque Programs can continue to operate during the

restructuring in much the same way as in Task 7 (Mig-

ration of a Data Item). As in that case there are

three possible techniques:-

(a) The Opaque Program can be made Version Specific

Since the Version Number of any retrieved

tenant record of a set occurrence determines the

order of that set (Version n for the new order,

some lower version for the old order) the program

can take whatever action is appropriate for the

order of the set retrieved.

Any records added to the set will be at the

version appropriate to that set occurrence -

thus they may be restructured later when the

restructuring mechanism reaches that point.

The version specific program can be introduced

at some convenient point before the restructuring

and it will operate on the old set order until

the restructuring commences. Similarly, it can

be replaced by a non-version—specific program

at some convenient point after the restructuring

is complete.

The original version of the Opaque Program can

perate during the restructuring where a period

of parallel running is required.

The restructuring mechanism will leave occurrences

of owner and member records of' the set on the data

base as well as writing new records at version n

if a period of parallel running is required. Up

until the end of the parallel running period there

will therefore always be set occurrences in the old

order and these will be presented to theopaque

program since it is implicitly version specific as

previously described. Any attempt to add a record

to a set occurrence in the old order must be

examined by the DBMS and if there is a corresponding

set occurrence in the new order the record must

also be added there at the appropriate point.

An amended version of the opaque program using

the set in the new order must be scheduled for

introduction to coincide with the end of the

period of parallel running.

The amended version of the opaque program can be

introduced to coincide with the start of the

restructuring.

-

If the program requires access to a set occurrence

prior to the point currently reached by the

restructuring mechanism the DBMS has no difficulty

in servicing the request since the set is in the

desired order.

If access is required to a set occurrence after

the current restructuring point the DBMS must

perform the restructuring on that set before

servicing the request. The restructuring

mechanism will eventually reach this point but

it can determine that that set occurrence has

already been restructured since the owner

record is at version n.

--

Semantically Equivalent Programs

It may be possible to convert programs which use a set,

whose order is being changed where all member records are

processed in a consistent manner. In general a sequence

of "FIND then process" for each member record occurrence could

be replaced by a series of FINDs followed by a sort of the

records retrieved with the processing being performed in the

exit from the sort.

2i

Chapter 8 - An Implementation of a Data Base Management

System Supporting Restructuring

Introduction

A Data Base Management System supporting Restructuring has

been implemented on the Edinburgh Regional Computing Centre

Multi-access System EMAS. The system is designed as a

teaching aid to allow those interested in the interaction of

restructuring tasks and DML calls by application programs to

experiment and create situations where they consider that

contention for shared resources might pose problems for the

logic of the restructuring mechanism. The basic system cannot

therefore be considered as a practical data base management

system since it is interactive with the user on an operation-

by-operation basis such that it continually prompts the user

to establish which course of action to take and also informs

the user of the results of each action. However, a further

version of the system has also been created which interacts

with the user at a higher level such that he must indicate

only which application programs and/or restructuring tasks

he wishes to initiate. In this case the usage of computer

resources is reported when each task is complete so that the

user can guage the overheads associated with the operations

performed.

System Structure

Both versions of the system consist of a single FORTRAN

program of some 3,000 instructions. There is a primary entry

point where data is accepted from the interactive terminal and

this dictates which one of a number of alternative paths the

program should follow based on a code which the user must key.

2/?

There are three main sections of the program.

The Application Programs

The first section of the program contains a set of

sequences of instructions each of which would normally

be performed by an application program in a fuliscale

database management system. Those which have been

written so far illustrate the types of function which

would be required from the application programs

operating on a data base maintained by a British Bank.

Each application program has a corresponding code

number and the user may initiate a run of any desired

program by keying its code number when prompted to do

so by the DBMS. In addition, the application programs

may request input from the user to simulate the process

of data capture. The programs will prompt the user by

indicating the type of data required.

The Data Manipulation Language Routines

Application programs communicate with the data base

by issuing calls to FORTRAN subroutines which directly

correspond with the DML commands identified in the

CODASYL proposals. Details of the commands are given

in Appendix 1.

The DML routines require a Schema to provide them

with a description of the data base and a Sub-schema to

indicate how that program is to restrict its view of the

entire data base. The Schema is an array held in the

COMMON area between the subroutines and the application

programs. The subschema is an array containing data

item names and is passed from program to subroutine as an

argument to the CALL instruction.

The Data Base itself is held as a FORTRAN Direct

Access file such that each record occurrence has a

unique address given by its relative position on the

file;. Records are not clustered with others of the

same record type or with others in the same set

occurrence but are simply added at the next available

position on the file when they are STORED. To allow

records of certain types to be retrieved by their key

the prime data file is also supported by a number of

index files. One such file is maintained for each

version of each one of a number of record types (viz.

Customer Records and Account Records at the present time).

These files too are FORTRAN direct access files with

the relative position of the record indicating the key

of the corresponding record in the prime data file.

This approach was necessary to overcome the absence of

file indexing facilities in FORTRAN.

C. 	The Restructuring Tasks

In addition to initiating a run of an application

program, the user of the system may also choose from a

number of codes which allow him to initiate Restructuring

Tasks. Those currently available correspond to actions

which would realistically be expected in a Bank Data Base

but in general are similar to the primative tasks described

in Chapter 7. Tasks may use either an open or closed

strategy at the user's discretion.

Like application programs, the restructuring tasks

are, in fact, sections of the main FORTRAN program

although in a fuliscale data base they would be system

routines at the same level in the system hierarchy as

application programs. This similarity of interface

level is reflected in the structure of the demonstration

system.

Interaction b•ete•en 	 and

Restructuring Tasks

The implementation illustrates to the user how the

Restructuring Mechanism can operate concurrently

with application programs.

For tasks using Closed strategies the user is

offered the choice of initiating application programs

or continuing with the restructuring after each

record (or set of records) has been restructured.

Thus, the user can experiment with the effects

of initiating different application programs operating

on records which have been restructured or are as

yet to be restructured as the case may be. This

contrasts with the situation for most small data

bases in a "live" data base system where a closed

restructuring might be completed so quickly that

there would be no opportunity to experiment with

its various types of interaction with the application

programs.

Since the system always informs the user of the

actions it is taking as a result of DML commands

by application program the user can observe the

algorithms being carried out to cater for the

handling of records and sets affected by the

- Qll -

restructuring.

As a particular case of a Closed Restructuring it is

possible to restructure using Parallel Running

where not only does the new data base structure

gradually materialise but the old structure remains

until such time as it is deemed to be no longer

necessary.

For an Open Restructuring only the schema is

initially altered to reflect the change in data

base structure. The user can then observe how

the data base itself subsequently alters as

application programs add new records to the data

base and modify existing records.

The Data Manipulation Languageommands

Application Programs may use the following Data

Manipulation Language Commands to access the

Data Base.

IND....ype 1)

Records may be retrieved from the data base by

supplying values for up to three concatenated key

data items. Thus, for example, an Account

record could be retrieved by providing the relevant

account number.

The system retrieves the record by access to the appropriate

record on the appropriate index file. The index corresponding

to the most recent version of the record is searched first

followed by the previous version if necessary until all have

been exhausted.

FIND (Typç 2)

Records may also be retrieved by navigating along the inter-

record relationships in the data base using the SET construct.

Thus, if a program is currently processing an Account record,

the corresponding Customer record could be obtained by

navigating to the owner of the corresponding occurrence of

the Customer's Accounts set. This navigation is achieved

by the use of NEXT,PRIOR,OWNER,FIRST and LAST pointers held

with each record occurrence and corresponding to each set

of which it is a member or owner.

GET

Data items from the record currently being processed

(possibly having been previously retrieved from the data base

by use of one of the FIND commands above) are made available

to the application program in the User Work Area. Thus, if

an Account Record is being processed the Balance of that

account may be made available in the User Work Area by using

the GET command.

DELETE

The record currently being processed may be removed from the

data base by using the DELETE command. The corresponding

entry on an index file is also removed.

STORE

New records may be added to the data base by supplying values

for their constituent data items in the application program

User Work Area. The record will be allocated the next available

position on the prime data file. An entry will also be

added to the appropriate Index File.

MODIFY

The value of a data item in the record currently being

processed can be altered by an application program supplying

a revised value in its User Work Area. Thus, if an Account

record is being processed, the balance can be modified by

adding the value of any transaction to the previous figure.

INSERT

The record currently being processed can be added to a set

of which that type of record is a member. The schema

determines the occurrence of the corresponding owner record

with which the new member is to beassocated. This is

established by equality of value between data items in the

records.

The set pointers in the record being inserted must be updated

by the system in addition to those in the corresponding member

record and those of an adjacent member record if such a record

exists.

REMOVE

The record currently being processed can also be removed from

any set of which it is a member. It is a necessary pre-

requisite before a record can be deleted (see above) that

it has been removed from all sets of which it is a member.

The set pointers must be deleted from the record being

removed and those of the owner record and any adjacent member

records must be modified accordingly.

The Bank Data Base

The initial structure of the hypothetical bank data base

is as follows:-

The Account is the basic unit of operation of the bank

and a data base record is maintained for each bank account.

An account is identified by its account number, is held at

a specific branch of the bank and belongs to a particular

customer. Any customer may hold any number of accounts at

one or more branches (indeed this is common practice for

business customers)

The following data is therefore held for each Account:-

Account Number

Branch Number

Customer Number
Account Type (Current, Deposit, Loan, etc.)

Balance

A data base record is also maintained for each Branch of

the bank containing the following data:-

Branch Number

Branch Name
Designation Codes (Urban, Rural, East, West, etc,)

Further, a record is maintained for each Customer of the

Bank containing the following items of data:-

Customer Number
Customer Name

The inter-relationship between Customer and Account records

is represented by the Customers' Accounts set with an owner

record of Customer and a member record of Account.

-12.24 -

Diagramatically, the data base is therefore as follows:-

CUSTOMER 	 BRANCH

CUSTOMERS'
'\ACCOUNTS

'1 	ACCOUNT

Data...ase....rogras

Initially, the bank has a number of application programs

operating on the data base as described below. Full

details of the programs are given in Appendix 2.

The' ...ala nc'e....aiculation program calculates the net

balance for any specified customer by navigating

through his account records using the customers

accounts set. When initiated, the program firstly

requests the customer number for which the balance is

required and the user types this through his terminal.

The program then uses the customer number as a

parameter to the first type of FIND command (i.e.

Find a record given the value of a key data item).

This establishes the record for the correct customer

as the current of run unit. GET is then used to

retrieve the customer's name. A loop of inst'ructions

is then carried out to FIND the first and subsequent

account records of the customer's accounts set. For

each account record found the command GET is used to

transfer the contents of the Balance data item to the

program - user work area. The program then uses the

balance to increment a running total of the net

balance. When all account records have been found

the program prints the final net balance on the user's

terminl.

Table 1 - Balance Calculation Record and Set Usage

ACTION

RECORD FIND 1 FIND 2 GET STORE MODIFY INSERT

ACCOUNT X X

CUSTOMER X X

BRANCH

CUSTOMERS
ACCOUNTS X

The Transaction Posting program allows the balance of an

account to be modified by the value of a Debit or Credit

transaction (ie the transaction is posted to the account).

In a live banking data base this would form part of a

double entry book-keeping system handling transactions from

various sources such as branch terminals, cash dispensing

machines and cheques remitted by other banks. In this

implementation the program requests the user to enter the

account number and value to be posted on his terminal. A

FIND command of the first type is then used to establish the

correct account record as the current of run unit. This

is followed by a GET to transfer the balance to the user

work area.

The value of the transaction is then added to the

balance (still in the user work area) and a MODIFY

is then carried out to update the account record with

the revised balance. Before the run terminates the

program prints the new balance on the user's terminal.

Table 2 - Transaction Posting. .Re.co.r.d and .Set. Usag-e

ACTION

F/S
CORD FIND 1 FIND 2 GET STORE MODIFY INSERT

ACCOUNT X X X

CUSTOMER

BRANCH

CUSTOMER'S
ACCOUNTS

Existing customers may open any number of new accounts at

any of the bank branches. The Open New Account program is

used in such cases to set up a new account record with

an initial balance of zero. It also adds the new account

record to the set of such records for that customer. The

program does this by firstly requesting the branch,

account number customer number and account type from the

user via his terminal. These data items are then moved

to the user work area together with a value of zero for the

balance. The STORE command is then used to add the new

record in the user work area to the data base. The INSERT

command is then used to add the new record to the Customer's

Accounts set.

Table 3 - Open New Account. Record and Set. Usage.

ACTION
FIND 1 FIND 2 GET STORE MODIFY INSERT

rRECORD

ACCOUNT X X

CUSTOMER x

BRANCH

CUSTOMER'S _x
ACCOUNTS

The Statistics Print program provides statistics on the

bank's customers. The first type of FIND command is

used to retrieve each customer record in turn from the

data base. As each record is found it is counted.

When all records have been found the program prints the

number of customers on the user's terminal.

Table 4 - Statistics. Print Record and Set. .Us.ag.e

ACTION

FRECORD FIND 1 FIND 2 GET STORE MODIFY INSERT

CCOUNT

CUSTOMER X

BRANCH

CUSTOMER'S
ACCOUNTS

The Add New Customer program allows a new customer record to

be added to the data base. When the program is run the

customer will have no accounts since these will be added later

-o-

by one or more runs of the Open New Account program.

The user enters the customer number and name of the new

customer on his terminal and the program moves these to its

user work area. The record is then added to the data base

when the program issues the STORE command.

.'

Table 5 - Add New Customer Record and Set Usage

ACTION
RECORD FIND 1 FIND 2 GET STORE MODIFY INSERT

ACCOUNT

CUSTOMER x

BRANCH

CUSTOMER'S
ACCOUNTS

The Amend Customer Details program is used to alter the

customer's name as currently held on .,a customer record.

The user enters the customer number and amended name on his

terminal. The program uses the first type of FIND command

to retrieve the appropriate customer record from the data

base. It then moves the revised name to the user work

area and issues a MODIFY command to alter the data base

record.

Table 6 - Amend CustonierDetails Record and Set Usage

ACTION

FRECORD FIND 1 FIND 2 GET STORE MODIFY INSERT

COUNT

CUSTOMER X X

BRANCH

CUSTOMER'S
ACCOUNTS

The Restructuring Tasks

The implementation allows a number of restructuring tasks

to be carried out on the data base. These tasks are

a subset of those described in Chapter 3 and the syntax

used has been simplified for ease of use on the inter-

active terminal. Full examples of the restructuring

tasks are given in Appendix 3.

Adding a Customer's Age Group to the Customer Record

Let us suppose that the bank has found that customers

of certain age groups have tended to be attracted to

its services. Certain marketing strategies will be

oriented to these classes of customers while others

will be directed to the remaining age groups. To

measure the effectiveness of these revised marketing

techniques the bank requires statistics on the

distribution of its customers by age group. Since

this data is not currently maintained on the data base,

before any statistics can be produced a new data item

(age group) must be added to the customer record.

The Data Base Administrator has an option open to him

as to which strategy he is to use to carry out this

restructuring task. Both open or closed strategies

would be applicable and these are now considered

separately.

The first step in an Open restructuring is to define

a new version of the customer record on the schema

which is identical to the previous version except

that it also contains age group. For example, the

age group can be added adjacently to the Customer

Number data item. Thus immediately after this

Operation has taken place the schema has a definition

of both the old and new versions of the customer

record. The data base is unchanged by the restructuring

and all occurrences of the customer record therefore

remain at the old version.

From the point of the restructuring the 'Add New

Customer' and 'Amend Customer Details' programs will

write new version:records to the data base. These

programs have not altered and therefore do not contain

the age group in their definition of the customer

record - the sub schema to schema mapping for the new

version record ensures that null values are written for

this data item. The 'Amend Customer Details' program

must also read customer records from the data base

before it modifies them. These records may be at the

old version but may also be at the new version if they

have just been written by the 'Amend Customer Details'

or 'Add New Customer' programs. Once again the sub-

schema to schema mapping for each version ensures

that since the programs do not reference the age group

the difference in version is not apparent to the programs.

At some convenient point in time after the restructuring

the Data Base Administrator must ensure that amended versions

of the 'Add New Customer' and 'Amend Customer Details'

programs which cater for the new data item are scheduled

in preference to the previous version. This point in

time is dictated by the introduction of revised procedures

for branch staff submitting data to the programs such

that they include age group. From this point the new

version customer records written by the programs will

include real values for age group. This is done

by the 'Add New Customer' including the age group in

its:sub-schema. The 'Amend Customer Details' program

must also include the age group in its sub-schema but

since the record to be modified is accessed using FIND

with no GET to the age group there is no difficulty

in accessing old versions of the customer record for

modification.

The 'Statistics Print' program does not reference

the Age Group data item initially but since the

objective of the restructuring is to provide the

bank Executive with statistics on the distribution of

customers by age group the program must be modified

to take this new data item into account. As for

the 'Amend Customer Details' program a run of the

'Statistics Print' may encounter both old and new

versions of the customer record. In this case, however,

where a new version record is found the program must

GET the new data item so that it can use it in its

analysis. For old version records it must not attempt

to GET age group since this data item does not exist

at that version. To overcome this problem the program

must examine the version number of each record accessed

and take appropriate action (i.e. the program must be

made version specific). It would be likely that the

Data Base Administrator would continue to run the existing

version of the program for some time after the restructuring

until age groups had been supplied for a fair proportion

of the customers by the 'Add New Customer' and 'Amend

Customer Details' programs. Only from this time will

the revised version come into use. Eventually, all

customer records might contain the age group data item

but this may be a considerable period of time later.

It would then be possible to introduce a third (non-

version—specific) version of the program which always

used GET to obtain the age group data item from each

customer record accessed.

The 'Calculate Balance' program accesses the customer

record but only uses GET to access the customer name,

there being no requirement to ever access the new data

item by this program. The sub-schema to schema mapping

ensures that the program will operate correctly whether

old ornew version records are accessed.

The 'Transaction Posting' and 'Open New Account'

programs do not reference the customer record and

are therefore transparent to this restructuring

task.

Table 7 - Chronological Chart of Open Restructuring to
Add Age Group to Customer

Schedule Revised 	Schedule Revised
Restructuring Maintenance Programs 	Analysis Programs

DD NEW CUS OMER (OLD) 1,ADD NEW CUSTOMER (NEW;

AMEND CUSTOMER DETAILS (OLD)j AMEND CUSTOMER DETAIL (NEW)

STATISTICS RINT (OLD) TATISTICS

CALCULATE BALANCE

OLD VERSION
CUSTOMER
RECORDS

NEW VERSION CUSTOMER RECORDS WRITTEN

WRITTEN

Fable 8 - Program Transparency for Open Restructuring to
Add Age Group

: 	

NOT

.77AM

TRANSPARENCY DO

PROGRAM REFERENCE
TRANSPARENT

OPAQUE VERSION
SPECIFIC

DD NEW CUSTOMER X

MEND CUSTOMER DETAILS X

STATISTICS PRINT X

CALCULATE BALANCE X

TRANSACTION POSTING 	X

rflVM MW A('rc1TMT

Now consider a Closed strategy to add the age group to

the customer record. The Data Base Administrator would

firstly choose some time when the data base was not

very volatile (e.g. overnight) and would schedule the

restructuring to run at this time. After adding

detail. of the new version of the customer record to

the schema the restructuring mechanism will progress

through each customer record occurrence and expand it

at the appropriate point to accommodate the new age

group data item by inserting null values. During this

process the data base is in a transitional state. The

'Add New Customer' and "Amend Customer Details' programs

will continue to operate during the transitional

period in the form that they did beforehand. If the

'Amend Customer Details' program encounters a

restructured record the sub-schema to schema mapping

for the new version record will, ensure that the program

operates correctly. As for an open strategy new version

records will always be written by both programs with

the sub-schema to schema mapping allowing null values to

be allocated to age group. Then it may be that the

restructuring mechanism encounters a new version record

as it is progressing through the occurrences but it can

recognise this as having been restructured and take no

further action. The 'Statistics Print' would probably not

be run during the Transitional Restructuring Period if it

were the old version could continue to run as for an open

strategy.)

After the restructuring is complete a revised

version of the program can be introduced which GETs the age

group from each customer record. This version of the

program will consider the age group of a customer with

null values in this data item as unknown. The 'Calculate

Balance', 'Transaction Posting' and 'Open New Account'

programs are not affected by this restructuring since

they do not reference the new data-item and operate

satisfactorily whether they access the new format or old

format of customer record.

Table 9 - Chronological Chart of Closed Restructuring to
Add Age Group to Customer

Schedule Schedule
Restructuring Restructuring Revised Revised Analysis

Start End Maintenance Programs Programs

ADD NEW (uS'•TOMER''(oLD: 'DD 	IEW 'CUSTOMER (1)

AMEND 'cir (OLD)' AME 'CUSTOMER DETAIl S '(NEW)

STATISTI(S PRINT

.

STA ISTICS PRINT
r'OMER DETA....

' (OLD ')''','''''''
'' '' R44 N . (NEW)

CAL'CULATF BALANCE''''''''''''''''''''''

OLD VERSI)N OLD OR NE1
CUSTOMER VERSION NEW VERSION CUSTOMER RECORDS
RECORDS CUSTOMER READ AND WRITTEN
READ & RECORDS
WRITTEN READ NEW

VERSION
WRITTEN

Cable 10 - Program Transparency for Closed Restructuring
to add Age Group

TRANSPARENCY

PROGRAM

DO

REFERENCE
TRANSPARENT OPAQUE VERSION SPECIFIC

DD NEW CUSTOMER x

MEND dUSTOMER DETAIlS X

STATISTICS PRINT X

CALCULATE BALANCE X

TRANSACTION POSTING X

)PEN NEW ACCOUNT X

Deleting a Customer's 'Age' Group from....he Customer 'Record

Just as the bank could find it necessary to add age group

to the customer record, it could then decide that this data

was no longer relevant to its statistical reports and that

the' data item need therefore no longer, be captured and

maintained. This process would most likely be\carried out

using a closed restructuring to allow the Data Base Admin-

istrator to take advantage of the free space thus made

available.

Firstly the Data Base Administrator must arrange that

revised versions of the'Add New Customer' and 'Amend

Customer Details' programs are brought into use which do

not reference the age group data item. This must be

synchronised with the introduction of revised procedures

within bank branches such that age group is no longer

supplied as data to these programs. Both before and

after this point the programs will write customer

records with age group but latterly this data item will

have null values because of the sub-schema to schema

mapping. The Data Base Administrator will then schedule

the restructuring for some time when it woul-d have

minimal impact on normal data base processing (e.g.

overnight). The restructuring will progress through

each customer record occurrence and will write a new

version record without the age group data item. As

for adding a data item the 'Add New Customer' and

'Amend Customer Details' programs can continue to operate

while this is done and they will always write new

version customer records which will be ignored by the

restructuring mechanism if they are subsequently

encountered. The 'Statistics Print' must also be

modified so that its sub-schema does not reference the

age group. This revised version can be run at any

time before, during or afterthe restructuring as

desired. The 'Calculate Balance', 'Transaction Posting'

and 'Open New Account' programs are, once again, unaffected

by the restructuring.

2C#)

Table 11 - Chronological Chart of Closed Restructuring
to. Delete Age Group

Schedule Revised Restructuring Restructuring
Programs Start End

DD NEW
USTO?v 	(OLD) ADD NEW CUSTOMER (1 W)
MEND C ISTOMER
DETAILS (OLD) AM ND CUSTOMER DET.P LS (NEW)
STATIStICS
PRINT ()LD)

STATISTICS PRINT (N W)

CALCULI 'E BALANCE

OLD VERSION CUSTOMER OLI OR NEW VERSION FEW VERSION OF
RECORDS READ AND CU FOMER RECORDS USTOMER RECORDS
WRITTEN MM BE READ NEW READ & WRITTEN

• VERSION WRITTEN

Table 12 - Program Transparency for Deleting Age Group

TRANSPARENCY

PROGRAM

DO
NOT TRANSPARENT OPAQUE

.

VERSION
SPECIFIC

DD NEW CUSTOMER . X

MEND CUSTOMER DETAI] S X

STATISTICS PRINT . 	 . 	• . 	X.

CALCULATE BALANCE . X

rRANSACTION POSTING X

)PEN NEW ACCOUNT X

Expanding the Balance Data Item

The bank originally considered £99,999 as the largest

balance which could be maintained for an account and the

balance data item on the account record was formatted

accordingly.

-

Inflation took its toll and this figure eventually no

longer provided a realistic maximum and a format sufficient

to hold £999,999 is now required. This task will

now be illustrated for a closed strateg r since many of

the considerations for an open strategy are also covered

in thi§ case.

The Data Base Administrator must firstly arrange for a

version specific version of the 'Transaction Posting'

program to be brought into use at some convenient point

prior to the restructuring. The program would examine

the version number of each.:.-account record retrieved

and handle the balance accordingly (for old version records

the balance would be printed as S digits, for new version

records the balance would be printed as 6 digits).

Thus, the branches supplying data to the 'Transaction

Posting' program would not be aware that the program

had been amended since all records would be at the old
\

version when retrieved and would be written back as the

old version since the restructuring would not yet be

under way.

The restructuring 'itself will then commence at a later

time when the data base is not volatile (e.g. overnight).

The restructuring mechanism will progress through each

account record in turn, expanding the record to accommodate

the expanded balance and then writing it back to the data

base as the new version. If a 'Transaction Posting'

run is required during this transitional phase it may

encounter either an old or new version of the account

17

record but, as we have seen, since the program is version

specific, either type of record will be handled satis-

factorily, although now new version records will always be

written.

The 'Calculate Balance' program also accesses the

balanc data item from the account record but unlike the

'Transaction Posting' program it does not modify the data

item. Therefore, assuming that the program will cater for

the larger of the two formats (i.e. 6 digits) the program

is transparent and there is no requirement to make it version

specific.

Tabl.e 1.3 - Chronological Chart. to Expand Balance Data Item

Schedule Revised Restructuring 	Restructuring
Transaction Posting I Start End

TRANS POST. 	TRANSACTION. 	'.O.S.T.ING (VERSION. .SPECIFIC)

CALCULATE B] LANCE
-9

OLD VERSION RECORDS OLD OR NEW VERSION NEW VERSION
READ AND WRITTEN READ NEW VERSION READ & WRITTEN

WRITTEN

-3-

Table 14 - Program Transparency for Expanding Balance
.Data Item .

T RA DO VERSION
PROGRAM NOT TRANSPARENT OPAQUE SPECIFIC REFERENCE.. . 	 . 	 .

DD NEW CUSTOMER X 	. 	 . .

MEND CUSTOMER DETAI S 	X

STATISTICS PRINT X

CALCULATE BALANCE 	. X

TRANSACTION POSTING X

)PEN NEW ACCOUNT x

Contracting the Balance Data Item

As a converse to the previous task the bank might require to

reduce the space allocated to the balance data item on the

account record from S digits to 4 digits. In this case,

there is no question of a version specific'Transaction

Posting' program since the existing program will continue to

operate on the reduced size of data item because of the sub-

schema to schema mapping. One effect of the change,

however, would be that any attempt to store or modify a

record with a balance of more than £9999 would fail after

the restructuring was under way. Equally, any record with a

balance of more than £9999 could not be restructured success-

fully.

Table 15 - Program Transparency for Contracting Balance
Data Item.

RANSPA REN

PROGRAM

DO
NOT

REFERENCE.
TRANSPARENT OPAQUE VERSION SPECIFIC

DD NEW CUSTOMER X

AMEND 'CUSTOMER DETAILS X

STATISTICS PRINT X

CALCULATE BALANCE X

TRANSACTION POSTING X

)PEN NEW ACCOUNT X

Intra-Record Structure Amendment

Although the implementation does not support vectors or

repeating groups of data items some of the characteristics

of altering intra-record structure are illustrated by

allowing the position of data items to be interchanged.

In fact, the position of data items is irrelevant to

application programs because of the sub-schema to schema

mapping. All programs are therefore transparent to the

transposition of data items within records (say the Customer

Number and Branch Number within the Account Record).

Cable 16 - Program Transparency for Inter-Changing
Customer. Number. and Branch Number.....

TRANSPARENCY DO VERSION
PROGRAM NOT TRANSPARENT OPAQUE SPECIFIC REFERENCE

DD NEW CUSTOMER X . 	 . 	 .

AMEND 'CUSTOMER DE.TAI S 	X

STATISTICS PRINT X

:ALCuLATE BALANCE X .

TRANSACTION POSTING X

)PEN NEW ACCOUNT X .

Migration of Balance from Account to Customer Record

The bank may make a policy decision to consider a

customer's net balance as the primary indication of his

solvency rather than the separate balances in his

individual accounts. A corresponding restructure of the

data base to migrate the balance data item from the account

record to the customer record would then be in order.

This task, like those discussed previously, could be

carried out using a closed strategy at some time when

the data base was not volatile. 	Each customer record

would be accessed in turn and for each such record accessed

the restructuring mechanism will use the set pointers

to access all corresponding account records. New

versions of the customer record and the corresponding

account records are then written back to the data base

having added the values in the balance data item from

each of the account records to produce the value for this

-

data item in the new version customer record. If

parallel running is being carried out the old version

records will remain on the data base. Note that applica-

tion programs have no opportunity to access the data base

while this operation is being carried out on a particular

set occurrence.

Before the restructuring commenced the Data Base

Administrator must have ensured that, the "Transaction

Posting" program was made version specific so that it

could update the balance of an old version Account record

if it encountered one or find the appropriate customer

record and then update the balance on this if a new

version account record was encountered. If parallel running

is taking place and a new version record is encountered

the program must not only update the balance on the

associated new version customer record, but also on the

corresponding old version account record which will still

be on the data base (addressed by a pointer on the new

version record). Similarly, a version specific version

of the 'Calculate Balance' program must be brought into

use before the restructuring so that the balance is

derived directly from new version customer records and

by summation of balances on account records for old

version records. In a parallel running situation an

Audit program will also be run which will not only

obtain the balance from the customer record but will

also access the old version account records and

recompute the balance. The two values will be compared

and an error reported if they are not equal.

After the restructuring and period of parallel running

(if applicable) are complete, further versions of the

'Calculate Balance' and 'Transaction Posting' programs

will be introduced which operate only on new version

customer and account records.

Table 17 - Chronological Chart for Migration of Balance to
Customer Record

Schedule Version 	Restructure 	Restructure Schedule New
Specific Programs 	Start 	 End Version Programs

OLD) TRANSAC ION POSTING
(VERSION SPECIFIC)

OLD)- -CALCULJV E BALANCE ---(NEW) --- -

(VERSION SPECIFIC) bi
OLD VERSION RECORDS 	OLD AND NEW VERSION NEW VERSION RECORDS
READ AND WRITTEN 	RECORDS READ AND READ AND WRITTEN

WRITTEN

JTable. .18 - Program Transparency. Balance. Data. Item Migration
TRANSPARENCY

PROGRAM

DO
NOT

RB.FE RENCE
TRANSPARENT OPAQUE VERSION SPECIFIC

ADD NEW CUSTOMER . 	 X

AMEND CUSTOMER DETAIl S. 	.

STATISTICS PRINT X

CALCULATE BALANCE 	. X

TRANSACTION POSTING X

)PEN NEW ACCOUNT 	. X

Amendment to the Key for the Account Record

The key for the account record is originally a two-digit

account number. It may be that the restriction of a

two-digit number proves inadequate and this must be

expanded to three digits in a similar way to the

expansion of the balance data item above. The mechanism

to carry out this expansion is as for a normal data item

but the DBMS must cater for the existence of both old

and new format records during the transitional phase.

Thus if the 'Transaction Posting' program is run during

the transition there ar two possible ways of selecting

the desired account record - either characters 1 to 2 of

an old version record or characters 1 to 3 of a new version

record being equal to the specified account number. When

the restructuring is complete all account records will be

at the new version and once again a single criterion (the

three-digit account number) will be used if the 'Transaction

Posting' program is run at this time.

If the key is being altered to encompass more than the

existing account number data item there is no requirement

to alter record occurrences since the implementation

uses set pointers rather than set indices and the restructur-

ing is therefore an instantaneous event. Suppose that

the account type is added to the key - all that is

required is that the schema entry for the old version

of the account record is amended to record this fact.

This change to the schema requires alterations to

application programs. For example, after the restructur-

ing the 'Transaction Posting' program must provide the

type of account in addition to the account number for each

account record to be found. The scheduling of the new

version of the program and the associated changes to

branch procedures must therefore coincide exactly with

the restructuring.

Table 19 - Chronological Chart of Add
Account Type. to. Record Key

Restructuring

TRANSACTION POSTING '(O'LD') 	TRANSACTION POSTING '(NE

ACCOUNT NUMBER SUPPLIED 	ACCOUNT TYPE AND NUMBER
TO ACCESS RECORD 	 SUPPLIED TO ACCESS

RECORD

Table 20 - Program Transparency for Amending
• 	Account 	Record 	Key....................

TRANSPARENCY

PROGRAM 	. 	 ' 	 ..

DO
NOT

REFERENCE.
TRANSPARENT OPAQUE VERSIONSPECIFIC

ADD NEW CUSTOMER

AMEND. .CUS.T.OME.R D.E.TA.L S... 	X

STATISTICS PRINT...... X........ . .

CALCULATE. BALANCE......X..

. TRANSACTION. POSTING...

)PEN NEW ACCOUNT X

.X ...

-

Addition of the Branch Accounts Set

There is a relationship between the Branch record and

the account record (the Branch number is held on the

account record) but let us suppose that the Data Base

Administrator neglected to define the set when the data

base was., created since there was no obvious requirement

to use the relationship in any application program.

Eventually a requirement for the relationship arose in

that a program was required to calculate the net balance

of all accounts at a Branch.

The diagrammatic representation of the data base is

therefore as follows:

CUSTOMER
	

BRANCH

CUSTOMERSN 	 BRANCH
ACCOUNTS 	 ACCOUNTS

ACCOUNT

The Data Base Administrator therefore has to set up the

new set using a Closed restructuring strategy. The

restructuring mechanism can do this by firstly progress-

ing through the Branch records so that they have their

version number increased to reflect that they have had

pointers allocated as First and Last Owner Record

Pointers for the new set. Then the restructuring

- Wt7 -

mechanism can progress through the account records,

and having derived the appropriate set occurrence for

each member record, it can add Next, Prior and Owner

Member Record Pointers to each record and modify the

pointers of the owner record appropriately. Once

again, the record version number is also increased.

From the start of the restructuring a new version of

the 'Open New Account? program must be scheduled so

that if any new records are written to the data base,

they will also be inserted into the 'Branch accounts'

set in addition to the 'Customer's accounts' set.

The 'Calculate Balance' program is transparent to this

restructuring task since, although it too uses pointers

in the account record 1 the DBMS can ensure that the

correct pointers are used whether an old or new version

account record has been accessed.

A new program will be required after the restructuring

is complete. The 'Calculate Branch Balance' program

will navigate through all account records in an occurrence

of the Branch Accounts set and calculate the net balance.

When all such account records in the set have been

accessed the program prints the balance on the user's

terminal.

Table 21 /

9 NO MOM

Table 21 - Chronological Chart for adding
Branch Accounts Set

Restructuring:
start 	end

	

OPEN NEW •ACCOUNT (OLF 	OPEN NEW ACCOUNT (NEW)

CALCULAjTE BALANCE

	

I 	 CALCULATE BRANCH BALAN

Table 22 - Program Transparency for adding
Branch Accounts Set

TRANSPARENCY
DO 	. VERSION NOT TRANSPARENT OPAQUE SPECIFIC

PROGRAM 	
:

REFERENCE

ADD NEW CUSTOMER X

AMEND CUSTOMER
DETAILS X

STATISTICS PRINT X : I

CALCULATE :

BALANCE X 	I :

TRANSACTION I :

POSTING 	. X 	:

OPEN NEW. ACCOUNT I

CALCULATE BRANCH I 	I
BALANCE NEW PROGRAM

1-nLison Between Re:.

 order order to demonstrat;r that it is feasible to implement

the concepts of Open and Closed Dynamic Restructuring

Strategies within a practical Data Base Management System

designed to meet the requirements of the community of users

of a shared centralised data base several runs of the

version of the EMAS implementation which reports resource

consumption rather than individual operations were also

made. Like the tutorial version, he resource-monitor

version is based on a monolithic FORTRAN program which

simulates application programs in sections of its coding.

These 'programs' call DML subroutines where appropriate.

Restructuring operations are also simulated by sections of

the program in conjunction with a general-purpose

restructuring routine.

In fact, those instructions which are used in the tutorial

environment to illustrate to the user the activities being

performed on the data base and schema by the DML routines

have been removed. Similarly the activities being carried

out by the restructuring routine are no longer reported. In

their place, logic has been added to inform the user of the

extent of the computer resources being expended on the

executions of application programs which he has initiated..

The resultant system therefore gives a similar interface to

the end user to that which he would expect from a full scale

implementation and in addition it incorporates a resource

usaoe monitor.

EMAS measures resource consumption 	in terms of the

following parameters:

C.P.U. Time

Connect Time

Page Turns

Allocated Charge

The values of these parameters for the current EMS session

are displayed to the user both before and after the

application program run. Thus the differences will provide ..a

measure of the resources used. The number of DML calls and

records restructured during the run are also provided to

give a perspective on the activities performed. The number

of reads and writes to the prime data file and index files

are also given as a measure of the Input/Output activity.

The EMAS multi-user environment is very different from that

which would apply to a DBMS supporting a large centralised

data base. For example all files used by a program are

effectively an extension of that program's virtual memory at

run time. Thus Input/Output accesses are reflected in Page

Turn activity although this must also cover paging caused by

execution switching between different sections of the

program object code and also contention for the use of

resources with other applications running at the same time.

It is important, therefore, that the measurements produced

by 3MAS itself are treated only as relative to each other in

so far as this is possible. The absolute values of the

figures can in no way serve as a guide as to how efficient a

full implementation of such a DBMS might be. Nevertheless

they do provide a basis for comparison (of CP9 time in

particular) both in normal, circumstances and during a

restructuring. it is well known that Data Base Management

Systems of this type (ea. INS) consume significant amounts

of cmputer resources and it is the objective of this

enhancement to the EMAS implementation simply to demonstrate

that both Open and Closed Dynamic Restructurings would not

impose further overheads which were of an order of magnitude

greater than those imposed by the DBMS itself.

The usage of Index Files gives a particularly deceptive

picture of potential resource consumption since page turns

are often required in switching between prime data and index

whereas straightforward sequential searching through the

prime data is relatively inexpensive. This is only true, of

course, when the volume of data is small and retrieval by

sequential search could not be tolerated in a practical

implementation of a DBMS.

Appendix 4 gives details of activities on the Bank data

base which illustrate the consumption of resources by

"Off-Line" Static, In-place Static, Closed Dynamic and Open

Dynamic strategies.

Summary

This thesis has identified a problem which will have a

profound effect on the rate of acceptance of data base1.

management systems by the data processing community. The

ability to manipulate the structure of a centralised data

base will be a vital element in enabling a satisfactory data

model to be maintained.

The approach to the problem differs from that of other

researchers in the motivation for the provision of a

restructuring mechanism. 	Existinq implementations provide

reorganisation facilities to allow 	the consumption of

computer resources to be tuned when the placement of data on

secondary storage devices has led to inefficiency. Other

implementors have observed that the same logical data

structure may be represented in different ways within a data

base schema and it is therefore possible to transfer from

one representation to another. The desirability of

application program stability is considered as paramount in

both situations although it is more difficult to achieve in

the second than in the first.

When restructuring is viewed as a. tool to allow the data

base administrator to maintain a continuously evolving data

model the desire for application program stability must be

weighed aaainst other factors. If stability can be achieved

it is beneficial, but it must be viewed in the context that

- X7-

it wa:; chances to the ipplication systems which probably

dictated the data structure change in the first place. It

is also likely that maintenance of application programs will

be more straightforward if they all operate on subsets of

the same data base structure. The approach here is

therefore, to propose a restructuring mechanism which will

allow the organisational data model to evolve while

providing facilities to permit application programs to alter

to reflect the new structure as conveniently as possible.

This chapter discusses how well this objective has been

achieved -

The Functionality of the Restructurin Mechanism.

The adequacy of the restructuring mechanism to perform the

tasks which data base administrators will demand of it can

only be demonstrated by empiric evidence. The same comment

can also be made of the CODAS!L Data Base Task Group

proposals and indeed of any programming language. The

distinction between a 'good' and. a 'bad' language or data

base management system tends to be based on subjective

considerations such as the background of the user (the data

base administrator in this case) , the amount of data which

must be supplied and the ease of assimilation of the final

result. After due consideration the data base task group

adooted the record and set construct and a syntax similar to

that of COBOL. undoubtedly, the reason for this was that is

was seen as an extension of the techniques used for data

2cy

definition in conventional data processinq. For this reason

the restructurinq mechanism is based on a clause-by-clause

analysis of the DBTG proposals and the syntax retains the

style of the Data Definition Language. To this extent it is

therefore maintained that the proposed mechanism will be

acceptable within the professional data processing

community. It may be that the mechanism (and indeed the

record and set concept) would not be acceptable outside this

community but the contention is that a data processing

profession will continue to exist and it is they who will be

responsible for the maintenance of the single centralised

data base of each organisation.

Given, this restriction on the population likely to come into

direct contact with the restructuring mechanism the

experiments described for realistic restructuring tasks on a

Bank data base illustrate its applicability to many

practical situations.

It must also 	be possible to implement 	the proposed

restructuring tasks and in Chapter 7 at least one

implementation strategy (in addition to the process of

unloading and reloading the data base) has been described.

The interaction between restructuring mechanism and the data

base management system can. be somewhat complex but varies

from task to task. The protocols to be observed for each

task have been described, in Chapter 7 such that application

programs are always presented with a consistent data base

structure even while the data base is in the process of

retrUcturincr. The strategies postulated in general. allow

restructurings to take place with minimal impact on those

application programs operating on the data base elements

being restructured and with little or no impact on other

application programs. For each task the level of impact has

beeL identified and criteria have been established for the

catiorisation of application programs as transparent or

ooaque.

The absolute requirement for accuracy in the data held on a

centralised data base has been catered for by the provision

of version specific programs and a parallel running state

where both the old and new structures can co-exist. The

potential for computer fraud could become so rampant as the

sophistication of access to stored data increases that it is

vital that a controlling mechanism is provided so that

auditors can satisfy themselves that restructurings have

been carried out satisfactorily. Similarly some measure of

control must be exercised over the initiation of runs of new

versions of application programs.

The Convenience of the Restructurina Mechanism.

A centralised data base will inevitably be a vital resource

for the organisation which uses it. It follows that the

data base must be available whenever possible and in many

cises must be available continuously. Restructuring by

unloading and reloading the data base (or even part of it)

is therefore more than an inconvenience and tends to become

•T iMpoSSibility. The techniques for dynamic restructuring

out:iined in Chapter 7 are therefore essential to the success

of a restructuring mechanism for a centralised data base.

On the other hand, such considerations are not so relevant

to devolved data bases because of their restricted

communities of users and often because of the size of

devolved data bases. When their users are absent from their

terminals will lie dormant (e.g. at weekends) and may be

restructured using a static mechanism at these times.

The interrelationships between the restructuring mechanism

and data base management system (particularly the Data

Manipulation Language Fxecution Routines) described in

Chapter 7 and demonstrated in Chapter 8 serve to draw the

attention of future DBMS implementors to the central

position which restructuring must occupy in their system

design. Only if such considerations are taken into account

at an early stage in the design process will a DBMS be

produced which will provide Data Base Administrators with a

suf!iciently versatile tool with which to restructure their

data bases on a tjmescale consistent with the rate at which

they are presented with changes in the real world which

their data bases model. Existing data base management

systems such as INS, IDS/Il and IDMS would requite

siqnificant redesiari to incorporate a satisfactory

restructuring mechanism but this could be achieved without

compromising existing aptlication programs and is therefore

considered to he eminently desirable. Only when

sop-isticated restructurino mechanisms are available will

-ag- -

thlcl concept of a data base really be exploited by the data,

processinq industry. Although data base management systems

have been available for several years there is little

evidence of them being widely used as the basis for the most

fundamental applications within organisations - those

applications which were tackled in the early days of

computerisation. In many cases the primitive data storage

techniques of 	early application systems have been

perpetuated because 	the advantages of flexibility of

structure are not apparent in today's data base management

systems and consequently there has been little motivation

for system redesign. A sophisticated restructuring

mechanism provides such flexibility and should encourage

data processing departments to undertake such redesign of

their basic application systems. Great care must be taken

in assessing statistics on the current usage of data base

management systems since in many cases the philosophy of

data base is not being used to best advantage with several

disjoint applications because of the limited way in which

existing data base management systems can respond to

external change.

The decomposition of a restructuring into a sequence of

primitive tasks as postulated in Chapter 7 also has an

element of convenience for the Data Base Administrator.

More complex tasks may be devised by combinations of the

primitive tasks and no doubt these could be retained on a

library for possible subsequent use. The use of concurrent

tasks would provide benfits in terms of the total elapsed

timc of a restructuring and the use of conditional tasks

would provide for an escape mechanism in the event of a

failure of a previous task. Overall, a language will be

provided in which the Data Base Administrator will be

expected to become proficient and once he has done so he

will be able to conduct even the most complex restructuring

with ease and confidence. Further, the use of a specialised

language does not compromise the process of exploration of
F 	 V

the structure of the centralised data base by interested

parties other than the Data Base Administrator himself.

Systems analysts, casual users and sophisticated end users

are examples of individuals who would have a requirement to

navigate the meta data base (the object version of the

schema) in a manner appropriate to their own background and

knowledge of the data structure.

The Efficiency of the Res tructuri _Mechanism.

The efficiency of a restructuring mechanism will be an

important constraint on its acceptance by the data

processing community. Data Base Management Systems have

often been notorious in their consumption of computer

resources when compared with those required for conventional

techniques for data storage and retrieval. Nevertheless,

the consumption of computer resources should be an

acceptable price to pay for all of the advantages which a

DBMS provides - so long as the additional overheads are not

out of all proportion to the resources required to run the

application system in the first place. Similarly, a

- 3 -

rc;t.rnctur1nq taechinism 	which operates 	dynamically in

cDfljuctiOfl with the DBMS itself must be expected to impose

further overheads. 	Some measure of overhead will be

acceptable but there 	will come a 	point at which

restructuring techniques would impose intolerable overheads.

Static Restructuring is considered to impose intolerable

overheads for many centralised data bases. Open and Closed

Dynamic Restructurings, however, are considered to be

compatible with existing data base access patterns since

they normally operate on a record by record basis and any

degradation in system response time should be limited to

that of a single record access. In many cases such

degradation could be expected in normal operation where one

run unit is required to wait on the initiation of a data

access by another run unit. For both open and closed

techniques the restructuring is a subsidiary operation and

should not unduly degrade response during periods of intense

application program activity.. An open strategy will impose

additional CPU activity since each record occurrence may

have to be restructured once it has been retrieved from the

secondary storage medium. In the EMkS implementation this

increase in activity is significant but in a full scale

implementation (where the DBMS and restructuring mechanism

were written in a low level language) it could be expected

that this ratio would be considerably reduced. Nevertheless,

so long as this were to he n overhead to be incurred for a

fairly short period of time (say a day), and even then only

by those programs which were updating the records to be

restructured, many installations would be able to carry the

overhead without appreciable degradation of response time

for application programs. Processing power is becoming a

much more freely available commodity and many installations

normally run at far less than peak capacity.

A. closed strategy will impose additional Input/Output

overheads and will imply a different pattern of disc head

movement than the norm (viz: continual movement back to the

sequence of records currently being restructured after each

interruption due to a DNL call by an application program)

Judicial choice of the timing of the restructuring will

dictate its overall impact on response time. So long as it

is scheduled to coincide with periods of relative inactivity

of application programs it should be completed in a

reasonable timescale without adversely affecting the

response times.

The nature of the implementation of the DBMS and

restructuring mechanism has precluded the collection of

adequate statistical information to permit a meaningful

conclusion to be reached on the overheads which could be

expected from a full—scale restructuring mechanism. The

100% increase in CPU time which is evident from the

experiments quoted in Appendix 4 must be considered more as

an upper bound than a practical value. Since the DBMS was

written in FORTRAN (as were the restructuring operations and

the application programs themselves) the total CPU overhead

tends to dwarf any attributable to one particular source.

The lack of such statistics however, are not considered to

imply, that a restructuring mechanism would be prohibitively

expensive in processing power - on the contrary the work of

Sockut (in his case to reorganise the storage records to

ivc better overall data. base performance) supports the idea

that concurrent alterations to data base records together

with access by application programs will be feasible.

Similarly the Data Base Ad.ministration Working Group assume

that a concurrent reorganisation mechanism can be

implemented without unduly degrading application program

response. The restructuring mechanism proposed here would

use the same techniques as a reorganisation mechanism such

as that suggested by Sockut - indeed it would use the same

techniques as the DML execution routines to protect against

deadlock etc.

The efficiency of the proposed restructuring mechanism

stems from the ability of the Data Base Administrator to

choose a strategy appropriate to the section of the data

base being restructured and the characteristics of the

application programs operating on it. It does not preclude

restructuring using a static strategy of \unload-amend-reload

nor does it restrict restructuring by the population of new

records and sets using ad-hoc application programs where

this is seen to be the most convenient approach.

Future 	Ba se

The debate on the relative merits of different types of data

base management systems is likely to continue within the

data proc-'ssing community for many years to come. Just as

in the field of proqramming languages, the ingenuity of

researchers will probably yield increasingly sophisticated

ways in which human be-iris can store and retrieve data.

It is the contention of this thesis, however, that the

most fertile round for such research will be in the area of

devolved data bases where emphasis can be placed on the

retrieval of information (be it information captured by some

central incontrovertible source or data captured by-the user

of the devolved data base himself). Not only will such

developments be concerned with the formulation of the

retrieval requests in a concise, unambiguous manner but they

will also address ways of directing the end user

(particularly casual users) towards information which may be

relevant to his request but the existence of which he may be

unaware.

Equally, research will identify techniques for the capture

of data to be held on devolved data bases and for mapping

data from the centralised data base into a more easily

assimilated form on the devolved data bases (e.g. by

snapshotting at conv\enient times such as end of month).

Nevertheless, data captured directly by end users (without

formal controls having been established by a Systems

Analyst) cannot be universally agreed as correct within the

organisation. At best the data can be considered as likely

to be correct because its values fall within previously

defined constraints.

The equation of research into retrieval and capture of data

on devolved data bases with research into techniques for the

maintenance of centralised data bases cannot be considered

as valid. It would be naive to assume that the maintenance

of centralised data bases will be in the hands of anyone

-2 -

other than data processinu professionals for the foreseeable

future (if only because this would ensure that the

orcjanisation has some control over the accuracy of the data

used for its own data model). The direction of research in

this area should be directed towards an gradually increasing

level of sophistication of the software tools available to

the fltta Base Administrator and Application Programmer. The

eiiormous investment in procedural programs, for example,

presents a formidable barrier to anything but an enhancement

to an existing procedural language. The concepts of

centralised and devolved data bases should contribute to the

categorisation of research work towards particular types of

individual.

Coincidentally, computer hardware appears to be developing

in a direction which would tend to support the concepts of

centralised and devolved data bases. More and more powerful

mainframe computers are being developed which will permit

more parametric users to interact with a centralised data

base in a manner prescribed for them by the systems analyst.

Oa the other hand microcomputers with large scale storage

available on disc are now commonplace. These will probably

be the ideal vehicle for holding'devolved data bases where

the end users of the data can have control of its structure

as well as its contents so long as any informatif "on derived

from it is viewed purely within this context.

This thesis considers that the CODASYL proposals are

oriented towards the centralised data base maintained by the

dit.a processing professionals. The restructuring strategies

are particularly relevant in this area as are the techniques

for illowiiq several atplication programs to alter in a

controlled manner to reflect the revised structure. The

work recorded here has little relevance in the devolved data

base environment.

Future Developments of the Work Recorded Here.

The groundwork has 	been laid in this 	thesis for a

restructuring mechanism which would be compatible with a

commercially available CODASYL Data Base Management system

such as IDS/II or IDMS. A significant investment in

redesign would be required by the implementors of such an

item of software and it is probable that the Data Base

Administration Working Group proposals for a storage schema

would have to be implemented (together with a corresponding

re-organisation mechanism) before the provision of a

restructuring mechanism. Perhaps the impetus for such an

enhancement to CODASYL data base implementations should come

from the inclusion of a restructuring mechanism in a future

cODASYL Data Base Journal of Development. This thesis should

not only identify the requirement for the committee to

consider proposals fo,r a restructuring mechanism but also it

should provide the basis of what those proposals would

eventually contain.

Certainly the professional data processing community is

particularly amenable to software produced as a result of

published standards since it results in compatibility of

view between different computers and operating systems.

Conversely, such soft.ware tends to have a long gestation

period because 	of its 	formulation in 	committee and

subsequent consideration by interested parties. Once again

this can be contrasted with the type of software which might

be produced as a result of research into some area of

devolved data bases where standardisation might-well be of

little va]pe especially if the end product could be used by

end users with the minimum of training.

- Al .1 -

	

221)il 	The. S tructure_°t_ th e _11 _I mPItt2Q1

of A Data iSe' Manaaenient System.

The implementation (if a Data Base Management System

(RS) on the 'EM AS multi-access system is based on the

CODSL proposals. In its basic form it is a teaching aid

and all actions carried out on the data base are described

to the user as they are performed.

In its second, more realistic, form the interactive user

may initiate runs of application programs and restructuring

tasks and the system will reSOnd by indicating how much

computer resources these operations have consumed.

ftgjaq.e of Data

The data base itself is held on a FORTRAN direct access

file such that each record is addressed by its relative

record number within the file. Each record contains the

following sections:

The Record 	Type. 	The 4-character 	mnemonic

ilentifyin.g the record as an occurrence of a particular type

of record is held.

The Record Version. Similarly the version number of

ch occurrence is held on record.

The Data. All data is held in character format for

eas' of reference. To allow numeric data items to be

- A1.2 -

sub 1ect'ci toar ith.ne tic these are converted to binary when

hel I in an application prooram User Work Area.

(ci) The Pointers. Painters are held which associate the

record occurrence with other record occurrences in the sane

set occurrence. 	A numbr of pointers are held since the

record may belong to more than one set occurrence. 	The

value held in each pointer is the address of the associated

record.

(e) The Parallel Record Tag 	if parallel running is

taking place this further pointer is used to associate a

record occurrence with the address of that same occurrence

at another version.

The index Files.

! number of FOkTBN direct access files are maintained as

Tnde x Files for the prime data file. 	This approach is

necessary to 	overcome the 	absence of 	file indexing

facilities in FORTRAN.

The FORTN rile number is used to indicate the type of

record to which th' ii:dex relates and. also the version

number of the records covered by that index. In a file

number of ab th' irst digit (a) indicates the record type

and the second diqit (h) the version number. By convention

Customer records are i'dexed by files 11, 12, 13 etc,

Account records by files 21, 22, 23 etc and Branch records

by iiPS 31, 32, 33 etc.

- A1.3 -

3ich Index File contains an entry for any record held on

the prime data file (FORTRAN File 1) with the corresponding

record type and version number. The only data on that

record will be the address of the appropriate data record.

Any entries with a value of zero and any entries absent from

the file will imply that there is no record in the prime

data file for that version of that record. Thus a value of

25 for the 3rd record on file 11 will indicate that the 25th

record on the prime data file will contain a Customer record

at version 1 for Customer Number 3.

Thus in a parallel running situation two indices for the

same record type may indicate that the same prime record

occurrence exists but these will actually be at different

addresses since they have different versions.

Note that indexing in this way is limited to one data

item per record type. If further data items are included in

a key then synonyms must be distinguished by successive

examination.

The Schema

The description of the data base is held as an array in the

COMMON area between the various Data Manipulation Language

Execution Routines.

The following information is held:-

(i) There are entries for each type of record (each

having up to 10 possible current version numbers). Records

are identified by a 4-character record name.

- A1.4 -

Each version of each record can have up to 10 data

items each identified. by a 4-character data item name. The

schema holds the start and end position of the data item and

its FORTRAN format.

The record 	may have 	up 	to 10 	pointers

corresponding to its set membership.. Owner (First and Last)

and Member (Next, Prior and Owner) Pointers may be used.

tip to three concatenated data items may be used as

the record key.

Details of the sets forming the data base are also

held in array. For each set the set name is held with the

name of the owner record plus one of its data items which is

to be used for Set Occurrence Selection. Similarly, the

names of up to 4 member records are held with corresponding

data item names for Set Occurrence Selection (i.e set

occurrence selection is based on equality of value between

the data item quoted in the member record with that quoted

in the owner record) . Finally, an indication of whether new

member record occurrences are to be added first or last in

the set occurrence is held.

ecia1 Req isters

The following 'Special Registers' are variables held in

the program COMMON 	area which may be 	referenced by

- A1.5 -

application programs. 	Under no circumstances should their

value be modified by a program - this may only be done by

the DNL subroutines. 	All Special
Registers are integer

fuliwOEdS.

ICURTP - This is the type of record which is Current of Run

Unit. The record name is held as four alpha-numeric

characters in FORTRAN format A4.

ICURNT - This IS the address of the record which is Current

of Run Unit. It is an integer held in a binary fuliword.

ICURVB - This is the version number of the record which is

Current of Run Unit. It too is an integer held in a binary

fullwOrd.

nle Iser work Area

Data IS transferred between application programs and Data

Base via a location known as the User Work Area. The use of

the area differs between DNL commands and is described under

each command. In all cases, the area is an integer

1-dimensional array of io entries held in the FORTRAN COMMON

area, viz. INTEGER IUWA(10).

The Sub-Schem

Certain DML commands reference a Sub-schema for the data

base being accessed. The implementation does not require a

- A1.6 -

sub-schema for all commands and where it is required only a

list of data item names is necessary. This is provided in

an integer 1-dimensional array of 10 elements with each

containing the name of a data item as four alpha-numeric

characters in FORTRAN format P4. The array is passed as a

parameter to the relevant routine as described below,
'I

viz. INTEGER ISLJBSC(10)/'ANCO','CtTNO','BRNO','ACTP','BALC'/

The Data -Mani pulation Language Commands

The CODASYL DDLC Proposals do not now extend to details

of the various DNL commands but the CODASYL COBOL 1978

Journal of Development contains specifications for COBOL DML

commands and a COBOL-format Sub Schema. The commands used

for the implementation generally follow this specification

although they use a FORTRAN format.

Calling _Sequence

DML Commands are executed by calling a FORTRAN subroutine

for the desired command. The subroutine call contains a

parameter list which is specific to each command.

Thus the following sequence of commands would be used to

find a record

CALL FTND1 (IREC,I1CYY1,IKEY2,IKEY3,TERR)

In this case the command is FIND1 where the parameters

- A1..7 -

IRFC, IKEY1, IKY2, IKEY3 and IERR are described in detail

below.

IhI ND Command

FIND is used by application programs to navigate through

the data' base. There are two formats of the command to

correspond to different. methods of access to the data base

records - by record key and by set relationship.

FIND does not transfer data from data base to application

program but rather it establishes a record as the Current of

Run Unit and the application program can then perform

various actions on it (c.g. delete it, get data items from

it)

FIND of the First Type - Using Key Data Items

The first format of Find allows the application program

to provide values for key data items of a specified type of

record and the DBMS will establish the currency of the

corresponding record.

If more than one occurrence is present with the same key

data item values the first such occurrence will become the

current record. If no occurrence is present with these

values of key data items an error will be indicated, to the

application program.

The DBMS executes the command by accessing the index file

corresponding to the most recent version of the record using

- Al_S -

the first key data item. In a full implementation the index

would be based on all key data items concatenated together

but this has not been feasible within the limits of FORTRAN

file accessing facilities. Nevertheless the system will be

able to determine whether an occurrence of the required

record with the required key value actually exists for that

version. If no entry exists on the index for the most

recent version the system will then access the index for the

previous version. This process will continue until all

indices for the record have been examined and only if no

entry has been found in any, will the system return an error

code to the application program indicating that the required

record does not exist.

Another limitation in the above technique for record

indexing is that only a nominated data item may act as key

and it must be numeric since it will be the relative record

number on the search of the index file. The basic

interactive version of the system therefore supports a
\

simplistic technique for retrieval of records 'based on keys

- a sequential search through the prime data file. All 3

key data items are used in this search and, by successive

examination in decreasing order of version number, different

key data items may be used as the key depending on the

version number.

The Parameter List to the Routine is as follows:-

Parameter 1 - The Record Name - This is a integer variable

containing the name of the record to be found as four

- A1.9 -

alphanumeric characters.

Parameter 2 - The First Key Data

variable containing the value for

Values for Numeric Data Items must

FORTRAN binary format and values f

must be supplied as left-justified

Item - This is an integer

the first key data item.

be supplied in the normal

r Alphanumeric Data Items

in character format.

Parameter 3 - The Second Key Data Item - This is an

integer variable as for the First Key Data Item. If only

one key data item applies to the record being accessed this

parameter should be set to spaces.

Parameter t 	- The Third Key Data Item - This too is an

integer variable. It has a value of spaces if no third key

data item is applicable to the record to be found.

Parameter S - The Error Code - This is an integer

variable. On return from the routine it contains a binary

number indicating whether the command has been successful.

A value of zero is used for success and one for failure. In

particular, if no occurrences of the record exist on the

data base with a value of the key data items equal to that

supplied, a value of 1 will be returned.

For example, the following sequence of instructions would

be used to FIND a record type CUST with two key data items;

the customer number of 25 and the first for characters of

the name equal to CARD.

- A1.1O -

INTEGER KCUST/'CUST'/,KCARD/'CARD'/,ISPACE/' '/

I = 25

CALL PIND1(KCUST,KCARD,I,ISPACE,IERR)

IF (IERR.E.0) GO TO 99

FIND of the Second Type Using Set Relationships

Given that the existing Current Record of Run Unit is the

Owner or Member of the set quoted on the command, this

format of FIND allows the program to navigate to the first

or last member record (from the owner record), to the next

or prior member records (from a member record) or to the

Owner record (again, from a member record)

Since the DBMS has the current record of run unit, it can

examine the set pointers associated with that record. By

further examination of the schema entry for that version of

the record i\t can determine which pointer to use to provide

the address of the desired record.

The Parameter List to the Routine is as follows:-

Parameter 1 	- The Record Name - This is an integer

variable containing the name of the record to be found as

four alphanumeric characters.

Parameter 2 - The Set Name - This too is an integer

variable containing the name of 	the set along which

navigation is to take place. Again, this is held as four

- A1.11 -

alphanumeric characters.

Parameter 3 - Type of Navigation - This is an integer

variable containing a mnemonic of four alphanumeric

characters indicating which type of navigation is required.

The following types are possible:
'I

PEST - The current record of run unit must

be the owner of the set an the found record will be the

first member record occurrence in the corresponding set

OCCURRENCE.

LAST - The current record of run unit must

be the owner of the set and the found record will be the

last member record occurrence in the corresponding set

occurrence.

NEXT - The current record of run unit must

be a member of the set and the found record will be the next

member record occurrence in the same set occurrence.

PRIR - The current record of run unit must

be a 'member of the' set and the found record will be the

prior member record occurrence in the same set occurrence.

OW?R - The current record of run unit must

be a member of the set and the found record will be the

owner record occurrence of that set occurrence.

- A1.12 -

Parameter 4 	- The Error Code - This is an integer

variable. On return from the routine it contains a binary

number indicating whether the command has been successful.

A value of zero is used for success and one for failure. In

particular, if navigation of PEST or LAST is used and there

are no member record occurrences in that set occurrence a

value of one will be returned. If navigation of NEXT is

used and the current record of run unit is the last in that

set occurrence a value of one is returned. Similarly, if

navigation of PRIR is used and the current record of run

unit is the first in that set occurrence a value of one is

returned.

For example if the current record of run unit is a

Customer Record the following sequence of instructions would

be used to find the first account record in the set of

customers accounts for that customer.

INTEGER KACNT/'ANCT'/,KCtIAC/'CtYAC'/,KFRST/'FRST'/

CALL PIND2 (KACNTT,KCUAC,KFRST,IERR)

IF (IERR.NE.0) GO TO 99

TheDELETE Command

Record occurrences may be removed from the data base by

using the DELETE command. Before this can be done the

record must be removed from all sets of which it is a member

by using the REMOVE command (see below) The record to be

deleted is the Current of Run Unit. Any index entry for the

- A1.13 -

record in question will also be deleted.

The Parameter List for the Routine is as follows:-

Parameter 1 - The Record Name - This is an integer

variable containing the name of the record to be deleted as

four alphanumeric characters. A record of this type must be

the Current of Run Unit.

Thus the following sequence of instructions would be used

to delete an account record.

INTEGER KACNT/'ACWF'/

CALL DELETE (KACNT)

The GET Command

The GET Command transfers the value of a single data item in

the Current Record of Run Unit from the Data Base to the

User Work Area of the Application Program.

Knowing the version number of the current record of run

unit (this having been established by FIND, etc.) the

routine can access the appropriate entry in the schema for

that version of the record. From this the position and

format of the data item can be established and the DBMS can

therefore carry out any necessary transformation of format

to provide the data item in the user work area.

The Parameter List for the Routine is as follows:-

S.

- A1.14 -

Parameter 1 	- The Data Item Name - This is an integer

variable containing the name of the data item to be

retrieved from the data base as four alphanumeric

characters. This data item must be defined in the schema

entry for the current version of the Current Record of Run

Unit. 	14

The value of the retrieved data item is stored in the

first element of the User Work Area Array (IUWA(1)).

Alphanumeric Data Items are provided left justified in the.

fuliword and Numeric Data Items are pri)vided in FORTRAN

Binary Format.

The following sequence of instructions would be used to

GET the Balance from the Account record assuming it has

already been established as Current of Run Unit:-

INTEGER KBALc/'BALC'/

CALL GET (KBALC)

IBAL = IBAL + IUWA(1)

The STORECommand

The STORE command is used to add a new record occurrence

to the Data Base. The value of the data items in the record

are provided by the application program in the User Work

Area.

The routine will examine the schema entry for the record

in question. If more than one version of the record is

present it will use the description of the highest version

/

- A1.15 -

number (i.e. that most recently defined) to establish the

position and format of the data items. A comparison is made

between the list of data items in the sub-schema and that in

the schema and any not included in the sub-schema definition

will be set to a default value of spaces. At this point the

record does not belong to any set since the INSERT command

must be used to establish set membership and all- set

pointers are, therefore, set to zero..

The system maintains a record of the next available

position within the prime data file (this is held in the

first record of the file which does not, in fact, hold

data). When this free 'slot' is allocated by the STORE this

'Free Space Pool' indicator is updated to point to the

following record. Note that the system does not re-utilise

records freed as a result of DELETE commands. Since the

record is stored at the most recent version the appropriate

index entry is updated to point to the new record.

The Parameter List for the Routine is as follows:-

Parameter 1 - The Record Name - This is an integer

variable containing the name of the record to be added to

the data base as four alphanumeric characters.

Parameter 2 - The Sub Schema Name - This is an integer

array of 10 elements with each element containing the name

of a data item to be stored in the new record occurrence.

Fewer than 10 data items may be specified in which case the

rightmost elements are set to spaces.

- k1.16 -

The User Work Area must contain the values for each data

item quoted in the sub schema with each entry corresponding

element for element in each array. Alphanumeric Data Items

must be supplied as left justified in the fuliword and

Numeric Data Items must be supplied in FORTRAN Binary

Format.

The following sequence of instructions would be used to

STORE a new Account Record (Number 07) for Customer 1,

Branch 3, Account Type 'CA' and Balance of Zero:-

INTEGER KSUBSC/'BBNO', .A(OS,'ACTP','BALC',5*' 'f

INTEGER LcACNTf'ACNT'/,KCA/'CA'/

IIJWA (1) =3

IUWA (2) =7

IUWA (3)=1

IUWA (LI) KCA

IUWA(5)=O

CALL STORE (KACNT,KSUBSC)

TheMODIFY Command

The MODIFY Command is similar to STORE in that it results

in a record being written, to the data base but in this case

the new record supersedes an existing record occurrence -

the existing current record of run unit.

The record is modified by having one of its data items

altered in value.

Where a record is to be modified and the version number

- 	 -_._• t 	 -- 	 S 	- 	
I - - •'- 	 -• 	 • 	 . 4 5:tJ- -t 	 ct,..: 	 "-

- A1.17 -

of the existing current record of run unit is not the most

recently defined version of that record the record

occurrence is restructured to this latest version before it

is modified. This allows the data base to support open

restructurings by performing the restructuring in primary

storage when a record has been retrieved and before it is

written back to secondary storage by the modify thereby

incurring no additional Input/Output operation.

In normal circumstances the Index Entry for the record

being modified will not change (assuming that the value of

the key data item has not altered) but where an open

restructuring has taken place such that the version number

of the record has altered then the index entry for the

record must be transferred to the new index file for that

new version. If parallel running is taking place the new

version of the record will be added to the data base at the

next available 'slot' as described previously for STORE and

the existing version will also be retained in its original

position. Furthermore the entry for the new version will be

included in the appropriate index file and that for the

original version will be retained in its index file

The Parameter List for this routine is as follows:-

Parameter 1 - The Data Item Name - This is an integer

variable containing the name of the data item to be modified

as four alphanumeric characters. The data item must be

defined in the schema entry for the current version of the

Current Record of Run Unit.

- A1.18 -

The new value to which the data item is to be modified is

supplied by the application program as the first element in

the User Work Area Array (ITJWA(1)). Alphanumeric Data Items

are supplied left justified in the fulivord and Numeric Data

Items are 'provided in FORTRAN Binary Format.

The following sequence of instructions would be used to

MODIFY the Balance of an Account record assuming that it has

already been established as Current of Run Unit:-

INTEGER KBALC/'BALC'/

IUWA(1) = 100

CALL MODIFY (KBALC)

The INSERT Comm an d.

INSERT is used to add the current record of run unit into

a set of which it is a member. The actual occurrence of the

set to receive the record and the point at which this record

is to be added within the set occurrence is determined by

the data supplied for that set in the schema.

The routine establishes the value of the data item in the

Current of Run Unit record to be used for matching with a

corresponding data item in the owner record in much the same

way as an application program would get one of the data

items in that record.

When this value has been established it is used by the

routine in much the same way as an application program would

use FIND 1 to determine the address and version of the

- AL19 -

corresponding owner record. A further record may also be

required (e.g. if a new 'last' member is being inserted the

previous 'last' member is required) and the DBMS will alter

the pointers of all records to reflect the new member. In

doing so, the routine uses the insertion rule specified in

the schema for the position of insertion of records into the

set. In this implementation only positions of first or last

in the member record occurrences for the set occurrence are

permissible but in a full implementation indices would be

required for each set occurrence to allow records to be

inserted based on key data item at a particular point within

the set occurrence. These indices would be distinct from

those which have been established to reference records based

on the values of key data items.

Parameter 1 - The Set Name - This is an integer variable

containing the name of the set into which the Current Record

of Run Unit is to be inserted as four alphanumeric

characters. The set must be defined on the Schema with the

record type of the Current Record of Run Unit as a member.

The following sequence of instructions would be used to

INSERT the Current Record of Run Unit (An Account Record)

into the Customer's Accounts Sets.

INTEGER KCtJAC'/CUAC'/

CALL INSERT (KCUAC)

Note that all record occurrences must be added to sets

using INSERT. The implementation does not support automatic

-. 	 _....'....'..'. 	.. 	-. 	 . 	--

- A1.20 -

set insertion.

The REMOVE Comman d

REMOVE serves the opposite function to INSERT. It allows

an application program to end membership of a set occurrence

for the current record of run unit.

The routine firstly examines the pointers for the set in

question from the current record of run unit. From these

the address of the owner record and adjacent member records

can be determined by examination of the entry for that

version of the current record on the schema. The pointers

on the current record, adjacent member records and the owner

record are then altered to set up a chain of pointers which

no longer includes the current record.

The Parameter List for the routine is as follows

Parameter 1 - The Set Name - This is an integer variable

containing the name of the set from which the Current Record

of Run Unit IS to be removed as four alphanumeric

characters. The set must be defined on the Schema with the

record type of Current Record of Run Unit as a member.

Th e following sequence of instructions would be used to

REMOVE the Current Record of Bun Unit (An Account Record)

from the Customer's Accounts Set.

INTEGER KCUAN/'CUAC'/

- &1 .21 -

CALL REMOVE (KCUAC)

—A2.1 -

Appendix 2

The Bank Data Base and Application Programs

The Account is the basic unit of operation of the bank

and a data base record is maintained for each bank account.

An account is identified by its account number and is held

at a specific branch of the bank and belongs to a particu-

lar customer. Any customer may hold any number of accounts

at one or more branches (indeed this is common practice

for business customers).

The following data is, therefore, held for each account:-

Account Number

Branch Number

Customer Number

Account Type (Current, Deposit, Loan, etc.)

Balance

A data base record is also maintained for each branch of

the bank containing the following data:-

Branch Number

Branch Name

Designation Codes (Urban, Rural, East, West, etc.)

Further, a record is maintained for each customer of the

bank containing the following items of data:-

Customer Number

Customer Name

The inter-relationship between Customer and Account

--A 2.2—

Records is represented by the following set:-

Customer's Accounts - Owner Customer

Member Account.

- A 2,3—

The Initial Data Base and Schema

The Schema for this data base is shown in Figure 1.

Figure 2 shows the initial contents of the data base

as follows:

Customer Number 01 is A. JONES who holds

Account Number 01 at Branch 01 which is a

Current Account (CA) with a Balance of £11.

He also holds Account 04 at Branch 01 which

is also a Current Account with a balance of

£44.

Customer Number 02 is J. SMITH who holds Account

Number 02 at Branch 01 which is a Current

Account with a balance of £22. He also holds

Account 03 at Branch 02 which is a Deposit

Account (DA) with a balance of £33.

There are also two branch records on the Data

Base. Branch 01 is BIGTOWN Branch. Branch 02

is SMALLTOWN Branch.

Data Base Programs

The Bank has a number of application programs operating

on the data base as described below.

Runs of the programs are initiated by the user keying

an appropriate two-digit code on his interactive

terminal. The user may then also key a further single

—A 24—

digit code indicating the version of the program he

wishes to run. This is a simplified way of demon-

strating that various versions will be required at

various points during different restructurings.

Details of when the different versions will be required

are given under the individual restructuring tasks in

Appendix 3.

c --< -A2.5-

 Data:29

THE 	CURRENT 	SCHE

RECORD 	TYPE 	CUST 	VEESION 	1
DATA 	ITEM 	CNUN 	START 	AT 	1 	END AT 2 FORMAT .12)

- (DATA 	ITE' 	NAM1 	START 	AT 	3 	EN, D AT 6 FORMAT ,A4)
DATA 	hEW 	PAM2 	START 	AT 	7 	END AT 1C FORMAT ,A4)
DATA 	ITEM 	AM3 	START 	AT 	11 	END AT 14 FORMAT ,A)

>- C SET 	NAME 	CUAC 	POINTER 	TYPE 	FDST
SET NAME 	CtJAC 	PCINTER 	TYPE 	LAST

. 	4. I(Y 	DATA 	ITEM 	CNUM

RECORD 	TYPE 	ACT 	VERSION 	1
DATA 	IT 	ACNO 	START 	AT 	1 	END AT 2 FORMAT ,12)

C DATA 	IT 	Fl 	ERNO 	START 	AT 	3 	END AT 4 FORMAT ,12)
DATA 	ITEM 	CUF4O 	START 	AT 	S 	END AT 6 FORMAT ,12)
DATA 	ITEM 	BALC 	START 	AT 	7 	END AT 11 FORMAT ,I5)

C DATA 	ITEM 	ACTP 	START 	AT 	12 	END AT 13 FORMAT ,A?)
SET 	NAME 	CLAC 	POINT 	TYPE 	NEXT -
SET 	NAME 	CUAC 	POINTER 	TYPE 	FRIR

C SET 	NAME 	CUAC 	POINTER 	TYPE 	OWN R
KEY 	DATA 	ITEM ACHO

C RECORD 	TYPE 	0RC 	VERSION 	1
DATA 	IT EV 	SNUP 	START 	AT 	1 	END AT 2 FORMAT ,I2)
DATA 	ITEM 	ENM1 	START 	AT 	3 	END AT 6 FORMAT ,A4)

C DATA 	ITEM 	EN-12 	START 	AT 	7 	D AT 10 FORMAT ,A4)
DATA 	ITEM 	E NMI 3 	START 	A. T 	11 	END AT 14 FORMAT ,A4)

-'- DATA 	ITEM 	LOCN 	START 	AT 	15 	END AT 15 FOR-4T Al
C. KEY 	DATA 	ITEM BNUM

SET NAME 	CLAC
C OWNER 	RECORD 	TYPE 	CUST 	MATCIING DATA ITEM 	CNUM

MUIEER 	RECCRD 	TYPE 	ACr4T MATCHING DATA ITEM CUNO
POSITION 	OF 	NEW 	INSERTS 	- 	LAST

\
C

Data 30
F ' We IL

(*** 	THE 	CURRENT 	DATA 	EASE ***

•.:-,. ADD R-- CORD 	VRSN 	DATA POINTERS 	 TAG
-. . __

1 	CUST 	1 	1JCES,ALAN 2 6 	o a 	a o 0 0 0 a 	0
2 	AC NIT 	1 	1 	1 	1 	11 CA 6 0 	1 0 	0 0 	0 0 	0 0 	0

p C 3 	COST 	1 	2SMITH 	JES 4 5 0 0 0 0 0 0 0 0 	0
- 	.. L 	ACNT 	1 	2 	1 	2 	22 CA 5 0 3 0 0 0 0 0 0 0 	0

5 	AC NIT 	1 	322 	33A 0430060000 0
C 6 	.'CNT 	1 	1 	1 	4L CA 0 2 	1 0 	0 0 	0 0 	0 0 	C

7 	1IRCF- 	1 	1EIGtiWN 	U 0 0 0 0 0 0 0 0 0 0 	0
..- -rCF 	I 	2SLLT0WN 	; 0 U 	C 6, 	0 	U 	U 	0 	0 	C. 	0 -

- A2.6 —

The 'Balance Calculation' Program

This program calculates the net balance for any specified

customer by navigating through his account records.

The run is initiated by the user entering an input type

of 01 on his interactive terminal. The program requests

the Customer Number for which the balance is required and

the user types this through his terminal. The customer

number is then used by the program as a parameter to a

FIND command of the first type (i.e. Find a record given

the value of a key data item). This establishes the

correct customer record as current of run unit. GET is

then used to retrieve the customer's name. A loop of

instructions is then carried out to FIND the 'First'

and subsequent Account records in the 'Customer's Accounts'

set using a FIND command of the second type (i.e. Navigate

through a set based on the Current of Run Unit which is

Owner or Member of that set).

For each Account record found the command GET is issued

by the program to transfer the contents of the Balance

data item to the program User Work Area. When all Account

records in the set have been found the program prints the

sum of the account balances on the user's terminal.

Figure 3 is a Listing of the Program

Figure 4 shows a run of the program to calculate the net

balance for Customer 01.

C
—A27—

C
10 wRITE(6,172(r

WTTE(,?C11)
EA(5, ~ c)IPVEr

IF(IPV.F 1 . 1)1, C 1 C 	J1)
IF(IPVER.E.?)'CTC 	5U?0

132J FOPr'AT 	:***PUN 	CF 	SAL 	CALCLJLATICN 	ppOrrAM***')

5010 WRITE 	(,1005)

(C 	INPUT 	TYPE 	01 	PEGUI rI ES 	EYCUTICN 	OF 	THE 	CALCULATE 	BALANCE 	PROGRAM

C 	USING 	A 	SPECIFIED 	CUSTO M ER 	NUMEE

READ 	(5,1002) 	ICUST
1CO2 FORMAT 	(12)

• 1005 FOP'AT 	(' 	TYPE 	CUSTO"EO 	NUMBER')

I6.ALO
(_ C

C 	DIAL COMMAND 	FINn1 	IS 	USED 	TO 	ESTABLISH 	A 	CURRENT RECORD 	OF RUN

C 	UNIT 	FOR 	A 	CUSTOMER 	PECOO 	WITH 	THE 	SUPPLIED 	CUSTOMER 	NUMBER

C C
CALL 	FItD1 (MCIJST,ICUST,ISFACE,ISPACE,IEPP)

• 11 IF 	(IERP.NE.1) 	OC 	TO 	17
URITE(6,1007)ICIJST

1007 FORMAT 	(' 	CUSTOMER 	',12,' 	OT 	FOUND 	')

GO 	TO 	1
- 	 17 CALL 	GET(NAM1)
8001 IWN1ItJWA(1)

CALL 	GEI(KNAM2)
C CO2 IWr2rIUW(1)

- CALL 	GET(N.)
8CC3 1WN3=ItJt.(1)

CALL 	FIND2(KACNT,KCUAC.KF PST ,IEPR)
12 IF 	(IERR.EO.1) 	(C 	TO 	1

(CALL 	r-ET(KBALC)
14 IPAL=IBAL+I1!WP(1)

CALL 	FIND2 	(ACNT,KCUAC,M rExT,1 	R)
15 IF 	(IERP.NE.1) 	00 	TO 	12

WRITE 	(t,10L0)ICUST.IWN1 ,IwN2,IWN.IBAL
1060 FORMAT 	(BALANCE 	FOP 	C1ISTOME 	',12,' 	',3M,' 	IS 	1 ,14)

• 	 •. 16 WPITE(6,1321)
• 1321 FORMAT(** 4 EF4 0 	OF 	FALANCE 	CALCULATION 	RUN***')

00 	TO 	5

(5020 WQITE(,1COr)
• 	

. READ 	(5,100?) 	ICUST
- IBAL=0

(CALL 	FIND1 	(CUST,ICUST,ISPACE,ISPACE.IERR)
5021 IF 	(IEPP.NE.1)GO 	TO 	5027

WRITE 	(6,1007) 	ICUST
• 	 .. 	 (GO 	TO 	5C26

5027 CALL 	GET 	(KIAP1)
5C1 IWN1=IUWA(1)

(CALL 	GET(NAM2)
5CC? JWN2=IUWA(1)

CALL 	GET(KNAr'3)
(5003 IN3IUWP(1)

IF 	(ICUVP.EQ.1) 	CO 	TO 	5004
CALL 	(ET(V9ALC)

C: 5C05 TP•ALIUUA(1)
GO 	TO 	5CC

5004 CALL 	FI0?(yACNT,CUPC,MFST,TEP)

(SC?? IF 	(rP.Eo.1)ce 	10

CALL 	1•ET(KPALC)
5C21. IFALII 1 L 4 I1lt(i)

C A LL 	FI0? 	(CNT,KCIC,KsTT,IEPJ)

50?5 IF 	IEP.E.1) 	(C 	To 	5j

cc(5 WE IT, 	(,1C LC)
(

(. 1)

-A2.8-

 :.;i• 	L Data: 01

RU 	CF BALANCE CALCULATION PROG-RA

	

, 	TYPE VaRSICN NUMER OF PROGRAM
Data:1
TYPE CUSTO'ER NUMeER

	

,, 	Oata:U1

• 	 ***FOLLOWI 	INFORMATION IS FROM 'FINDl'***
t 	DBMS IS SEARCHING FOR

RECORD TYPE CUST VERSION 1
• 	 - 	 WITH CHARACTERS 	1 10 	2 EDLAL TO

1
RECORD FOUND AT AUORESS 	1 VERSION
'FID1' CONPLETEC

FOLLOWINO INFORM ATION IS FROM 'G.T'
CHARACTERS 3 TO 6
OF RECORD TYPE CUS1 VSIO1J 	1 AT ADDRESS 	1 A:–

ONE
'GET' COMPLETD*

***FOLLOWIt 	INFORI'!ATIC. IS FROM 'GET' , **
• 	 - 	 CHARACTEPS 	7 TO 1C

Fure 4

OF RECORD TYPE CUST VERSIO, 	1 AT ADDRESS 	1 ARE:-
AL 	 -.

'GET' 	COPLETED

FOLL OW 	NG 	INFORMATION 	IS 	FROM 	'C ET'
• 	 ••

CHARACTERS 	11 	TO 	14

• 	 '.1 OF 	RECORD 	TYPE 	CUST 	VE:5ION 	1 	AT 	ADDRESS 1 	ARE:
 – N
'GET' 	CGidPLEIEO*

• ***fOLLCI 	INFGRHATIDr: 	1.5 	FRON 	'FIr.02'***
• VALUE 	IN 	PCINtO 	1

ç) OF 	RECORDTYPE 	CUST 	'JERSI CI'i 	1 	AT 	ADDRESS
IS 	2
VERSION 	CF 	RECORD 	TYPE 	ACNT 	AT 	THIS 	ADDRESS IS
***'Fjj' 	COMPLTEC* -

FOLLOING INFOATI3\ 	IS 	FO1 	'GET'

'J CHARACTERS 	7 	TO 	11
• OF 	RECORD 	TYPE 	ACNT 	RSIO 	1 	AT 	ODRESS 2 	ARE:-

1I
'GET' 	COMPLETED*

• 	 •- ***FOLLOWI NO 	IN FORM .T!ON 	IS 	FRO1 	'F IND2' ***
VALUE 	IN 	PCINTER 	1
OF 	RECORD 	TYPE 	ACNT 	VS1ON 	1 	AT 	ADDRESS 	2

• IS 	6

•
VERSION 	CF 	RECORD 	TYPE 	ACNT 	AT 	THIS 	ADDRESS 15
*** 1 FIND2' 	COMPLETEC*k

FOLLOWING 	INFORMATION 	IS FROM 	'GT'
• 	 . CHARACTERS 	7 	TC 	11

• OF 	RECORD 	TYPE 	AC141 	VERSION 	1 	AT 	ADDRESS 6 	ARE: –
Li 44

• **'GET' 	COMPLèTO***

—FOLLOWING 	INFORMATION 	IS 	FROM

VALUE 	IN 	PCINTER 	1
OF 	RECORD 	TYPE 	PCNT 	VERSICN 	1 	4T 	ADLRESS 	6
IS 	0
'FIN02' 	COMPLETED
BALANCE 	FOR 	CUSTOMER 	1 	JON ES,ALAN 	IS 	55

• \, ***(OF 	EALANCE 	CALCULATICN 	RUk*

• • ••••.- 	 -S. 	 ...•

4

• - -- •

-
-' 1W-- - 	 •.

—A 29—

The 'Transaction Posting' Program

This program allows the balance of an account to be

modified by the value of a Debit or Credit transaction

which has been performed on the account (i.e. the

transaction is posted to the account). In practice,

such transactions could be obtained from various sources

such as branch terminals, cash dispensing machines and

cheques remitted by other banks.

The program requests the Account Number and Value to be

Posted and the user enters these on his terminal. A

FIND command of the first type is then used to establish

the correct record as current of run unit followed by a

GET to transfer the Balance to the User Work Area. The

value of the transaction is then added to the Balance

(still in the User Work Area) and a MODIFY is then

carried out to update the account record with the correct

balance. Before the run terminates, the new balance is

printed on the user's terminal.

Figure 5 is a Listing of the program.

Figure 6 shows a run of the program to post a Credit of

£10 to Account 02.

(_ C
C —A2.1O-

• C

C C
• 	

. 20 WPITE(6,132?)
1322 FOPMA.T 	('C**PuN 	CF 	TPASACTICN 	POST INr 	PROr.R4Mk*')

(WFITE(,211)
PEAD(5,2015)jPVE

 • IF(IPVER.EO.1)GOTC 	5030 	 ore ______
IF(IPVEP.Eo.2)QTc 	5040

.5 -
IF(IPVEF..EQ.3)r,OTC 	5050

. 1F(IPVEP.EO.4)0TC 	5060
C STOP 	77

5030 WPITE 	(,1062)
• 1042 FORMAT 	(TYPE 	ACCOUNT 	NOWRER 	AND 	VALUE 	TO 	PE POSTED') S 	 .

(READ 	(5,1045) 	IACCNO,IVAL
1045 FORMAT 	(12.15)

CALL 	FID1(KACNT,jACCNO,I SPACC,ISPACE,IEP)
(21 IF(IERP_NE.,) 	f0 	TO 	2 7

WR1TE(6,104)Ja.cC
106 FORMAT(' 	ACCOUNT 	',-12,' 	NOT 	COUND 	')

((0 	TO 	2F
C
C 	FID1 ESTAFLISI-'ES 	THE 	ACCOUNT 	S°ECIFIE', 	AS 	THE

(C 	CUPENT OF 	PUN 	uNIT
C

• 27 CALL 	GET 	(KEALC)
C 24 IUWA(1)=TUW4(1)4IAL

CALL 	MCDIFY(kEALC)
26 WRITE 	(6.105C) 	IVL,IUwA(1) -

C 1050 FORMAT 	(' 	 TPANSCTION 	OF 	',I5,' 	POSTED 	- 	NEW 	BALANCE ,I5) 28 WPITE(6,132)

1323 FOPAT 	(' 	 ***FND 	CF 	TRANSACTION 	POSTING 	RUN***')
C O 	TO. 	5

INTEE
. INTEGER 	KBPAC/'EQAC'/

C 5C40 WRITE 	(6,1042)
• 	 .

- READ 	(5,1065) 	IACCNO,IVAL
• CALL 	FIND1(ACNT.IACCNO,I SPACE,ISPACE,IERR)

5041 IF 	(rERR.NE. 	CO 	TO 	5047 .•, 	.-.
WRITE 	(6 0 10L6) 	IACCNO

S GO 	TO 	504
• 	

- 	 :. 	 • 	 • 	
-

5047 CALL 	GET 	(KBALC)-
5C44 IUWA(1)=IUWA(1)+IWAL

S

CALL 	•OOIFV(KBALC)
C 5046 IF 	(ICURVR.EQ.1) 	GO 	TO 	5O9

WRITE 	(6,1051) 	IVLL,I1IwA(1)

(

1051 FORMAT 	(' 	 TRANSACTION 	OF 	5 ',I5,' 	PCSTED 	- 	 FEW 	P.LANCE 	1',I6) GO 	TO 	504
5069 WRITE 	(6,1050) 	1AL,!Uw(1)
5CL8 WRITE 	(6,1 7 3)

(GO 	TO 	S 	 •

V 	 •V 	

. 	 .:

5050 WRITE 	(,102) V

PEO 	(5,1C45) 	IccNo,TVAL 	—A2.11—
(T CALL 	F!NOl 	(CI.JT,rAccNo,jsPAcE,rspcEIQ)

5051 IF 	(I 	P.NE.1) 	00 	TO 	5057
WR I TE 	(',1046) 	IACCN0
60 	TO 	505?

5057
IF 	(ICURVR.EQ.1) 	CO 	TO 	5555

if

- CALL 	FIND3(IERP)
• 	

:. IF(IERR.NE.1) 	00 	TO 	7001
V 	

:

WPITE(6,7002)
• 7CO2 FORMAT 	(' 	NO 	VERSION 	1 	ACCOUNT 	RECORD 	FOUND 	') • 	 . 	 - 	

. S (V 00 	TO 	5556
7001 CALL 	C,ET(1BALC)

V 	
V 	•.

IIJWA(1)=IUWA(1)4IVAL
(CALL 	WODIFY(KBALC)

WRITE (6,7003) IV AL ,ItJWA(1)
7003 FORMAT(' 	TRANSACTION 	OF 	$',IS,' 	POSTED'

NEW 	ACCOUNT 	BALANCE 	',I6)
5556 CALL 	FIND2 	(CUST,KCUAC,KCWNR P IEPR)

V 5052 IF 	(IERP.NE.1) 	00 	TO 	5055
WRITE 	(6,1047)

V

.1047 FOPAT 	(' 	CORRESPCNDINO 	CUSTOE R 	RECOP0 	NOT 	FOUND')
GO 	TO 	5C5

V (V

5055 CALL 	GET 	(KBALC)
5054 IUWA(1)=jt!WA(1)4J1

V:. CALL 	MODIFY 	(K8ALC)
V

•
(5056 WPITE 	(6,7C4) 	IVAL,TUWA(1)

V

?C04 F0R.AT(' 	TRANSACTION 	OF 	',I5,' 	POSTED'
- 	NEL 	CUSTeMER 	ALANC 	',5)

V 5058 WRITE 	(6,1323)
V 00T0 6

5555 CALL 	GET(KeALC)
C

V CALL 	MODIFY(kBPLC)
V WRITE 	(6,7003) 	IVAL,IUWA(1)

r.o 	TO 	5058
5060 WRITE 	(6,1147)
1147 FORMAT 	(' 	TYPE 	ACCOUNT 	NUBER, 	ACCOUNT 	TYPE AND VALUE TO BE 	POSTED C

S READ 	(5,1048) 	IACCNO,IACCTP,IVAL
'V 104 FORMAT 	(12,1Y,A2,1w,15)

V 	 j C CALL 	FIND1 	(KACNT,IACCNO,IACCTPISPACEIERP) • 	

V 5061 IF 	(IERR.NE .1) 	GC 	TO 	5C67
WRITE V(6,1049) 	IACCNO,IACCTP

(
1049 FORMAT 	(' 	ACCOUNT 	NUMER 	'.12, 	TYPE 	',A2,' 	NOT FOUND')

• GO 	TO 	5C68
- 	 .:- 5067 CALL 	GET(KBALC)

C 5066 IUWA(1)=IUWA(1)4IVAL
V CALL 	MODIFY 	(KBALC)

5C66 WPITE(6,1r50) 	IvL,IuwA(1)
• 	 V 	 V 	

• ç V
5068 WPITE(6,1323

rO 	TO 	5
V... V 	

••• V

V V 	 S V 	 •

- • 	-
—A2.12-

•• Data:C2

C
- ***RUN 	CF 	I 	SACTICN 	PCSTINt 	P0GR*** é __ aMre

T Y P 	VR -"ICN 	tUM' 	('1 	PRCG - Pr'

(Data 	1 TYPE 	
ACCOUNT NUX 	ER 	AN 0 VLLE 	TO 	BE P csT:o

Data :02 	CO1

FCjLc,J 	 iS 	FPO M 	FiD1'
DBMS 	IS 	S_ARCHING 	FOR

(RECORD 	TYPE 	ACNT 	v:psIoN 	1
WITH 	CHARACTERS 	1 	TO 	2 	EQLAL 	TO

* - 2

C RECORD 	FCUND 	AT 	ADDRESS 	4 	VERSION 	1
***'FINDl' 	COPLETE0**

(***FOLL0,IN(INF0RPrLO 	FROM 	CET'***
. CHARACTERS 	7 	TO 	11

OF 	Ft 010 	TYPE 	ACI 	V- 	iOt 	1 	AT 	1D'_S) 	4
• C 22

'GET' 	COPPL:Tk

C ***FCLLCwr h 1c 	1.1 F 	ATION 	IS 	FROM 	'MOCjFy'** -:
CHARACTERS 	7 	TO 	11
OF 	RECORD 	TYPE 	AC NT 	VT Cri 	1 	AT 	ADDRESS 	4 .--•.*- C, HAVE 	BEEN 	ALTERSO 	TO 	 -

32
'MODIFY - 	

..-T 	•. 	:. C. TRANSACTION OF 	1, 	10 	POSTS C 	- 	NEW 	BALANCE 	5 32
ENr. 	OF 	TRANSACTION 	POSTING 	RUN 5•_

. Data:U

THE 	CURRENT 	OATP 	EASE
C

ADD 	RECORD 	VRSN 	DATA POINTERS

(1 	CUST 	1 	1JCN:S,ALAP 2 6 6 0 0 0 0 0
2 	AC NT 	1 	1 	1 	1 	11 CA

0 0
6 	0 1 0 0 0 0 0 0 	0

3 	CUST 	1 	2SP'ITH,JAMES 4 	5 0 0 	0 0 0 0 0 0 C 4 	ACNT 	1 	2 	1 	2 	32 CA 5 0 3 0 0 0 0 0 	0 0
5 	AC NT 	1 2 	 2 	2 	-4 3 CA 0 4 	3 0 	0 0 0 0 	0 C. 6 	A C N T 	1 	4 	1 	1 	44 CA 0 2 	1 0 	0 0 0 0 0 , C 7 	e? C 	1 	1BIGTOWN 	U o 	0 	0 0 	0 	0 	Ci o 	o 	c-
8 	BACH 	1 	2StALLTOWN 	R 0 U 0 0 0 0 0 0 0 U

—A2.3 -

The 'Onen New Account' Program

An existing customer may open any number of new accounts

at any of the bank branches. This program sets up a new

account record for the account with an initial balance

of zero. It also adds the new account record to the set

of such records for that customer.

The run is initiated by the user entering an input type

of 03 on his interactive terminal. The program requests

the Branch, Account Number, Customer Number and Account

Type for the new account and these are read from the

user's terminal to the User Work Area where (together

with a value of zero for the balance) they are used with

the STORE command to add the new record to the data base.

The INSERT command is then used to add the new record

to the Customer's Accounts Set. Before the run terminates

a confirmatory message is printed on the user's terminal.

Figure 7 is a listing of the program.

Figure 8 shows a run of the program to open a new account

number 5 at branch 02 for Customer 01.

qv

C
• C —A2.14-

80 wPITE(6,132)
• 1324 F0R1AT('O***PUN 	CF 	OPEN 	NEW 	ACCOUNT 	ppOr,PAM***')

•
WPITE(6,2011)

• oEAD(5,2015) 	IPVEP
• 	 . IF 	(IPVER.EO.1) 	CO 	TO 	5070

(
IF(IPVER.EQ.2) 	CO 	TO 	500
STOP 	77

- 5070 WRITE 	(6,1070)

•
1C70 FORMAT 	(' 	TYPE 	BRANCH 	, 	ACCOUNT 	NUMBER 	, 	CUSTOIER , 	ACCOUNT 	TYPE')

READ 	(5,1075) 	IUWA(1),IUWP(2),IUWA(3),ItJWA(4)
1075 FORMAT 	(12,1X,12,1X.12.1X,A2)

C IUWA(5)0
•.• CALL 	STORE 	(KACT,KSUBSC) -

CALL 	INSRT 	(KCUAC)

C 36 WRITE 	(6,1115)
• 1115 FORMAT 	(' 	NEW 	ACCOUNT 	OPENED')

WPITE(6,1325)

(
1325 FORMAT('***END 	OF 	OPEN 	NEW 	ACCOUNT 	PUN***')

• CO 	TO 	5
5080 WPITE 	(,1070)

• (
READ 	(5,1C75) 	IUW(1),IUWU2),IUWA(3),IUWA(4)
IUWA(5)0
CALL 	STORE 	(KACIT.KSUPSC)

• CALL 	INSRT 	(KCUAC)
CALL 	INSPT 	(KCRPC)

......• 	. 5C87 WRITE 	(6,1115)
WRITE 	(6,1325)
O TO 	5

C -

C C C
- 	

r

4
C

S. t 	C 	 C

•

—A2.15-
Data: O3

RUN OF (PEN NEW ACCOUNT PROGRAM

TYPE yE RSI CN NUMbER OF ? uGRA

• 	 Data:1

L 	TYPE bRANC- , ACCOUNT UU7'EER , CUSTOMER , ACCOUNT TYPE

• 	Data:U2 05 01 CA 	
l71

FOLLOWING IFCRNPTI0N IS FROM 'STCRE'

• 	THE FOLLOWING NEW RECORD

• 	 IS BEING ADDED TO TE DATA EASE

• 	RECORD TYPE ACNT
• 	VERSI ON' 	1

ALL POINTERS ZERO
UNINITI ALISED CHARACTERS SPACES
CHARACTERS 3 TO 4 SET Te

2
CHARACTERS 	1 T' 	2 ST T

5
CHARACTERS 	S TO 6 SET T

• 	 CHARACTERS 12 TO 13 SET TO :

-

CA
• 	 CHARACTERS 	7 TO 11 SET TC

0
RECORD HAS 	ESN STORED •T .DORESS 	9

***'STORE' COPLETED**

** 	FOLLCWING INFOR1ATION IS FROM ' INSERT'***

• 	-

'CHARACTERS 	5 TC, 	6

OF RECORD TYPE ACNT VERSION 	1 4T ADDRESS 	9 P S

- 	

1
• 	.. 	 DBMS IS SEARCHING FCR RECCRC TYPE CUST VERSION 	1

WITH CHARACTERS 	1 TO 	2 Er CAL TO

• 	 :-'LJ 	1
• 	RECORD FOUND AT ADDRESS 	1

RECORD-TYPE AND VERSION OF RECORD AT ADDRESS 6 ARE :-

ACNT 1
POINTER 	1 OF DECOR C 1Y 	ACT ADDRESS 	6 VSRSI (N 	1

• 	 . 	 HAS BEEN ALTERED TO 	c
POINTER 	2 CF R ECOR C IYPE A (NT ADDRESS 	9 VERSI CN 	1

HAS BEEN ALTERED TO a
POINTER 	3 OF RECORC TYP 	ACNT ADDRESS 9 VERSICN 1

• . 	 U HAS BEEN ALTERED 10 	1

POINTER 	2 OF RE.OR C TYPE CIST ADDRESS 	1 VERSI CN 	1

HAS BEEN ALTERED TO 9
***'INSERT' CONPLETEDk**
NEW ACCOUNT OPENED
END OF OPEN NEW ACCOUNT RLN*

• 	 1

• 	 • 	•, 	Data:30

	

—7--- 	

*** THE CURRENT DATA EASE ***

ADD RECORD VRSN DATA 	 FOINTERS 	• 	TA

Li
• 	 1 	CUST 	1 	1JONES,ALA6 	 2 9 0 0 0 0 0 0 0 0 	0

2 	AC NT 	1 	1 1 1 	11 (A 	 6 0 1 0 0 0 0 C. 0 J 	C

	

L' 	3 	CUST 	1 	2SVI TV, ,JANES 	 4 5 0 0 0 0 0 0 0 0 	0

• 	4 	ACNT 	1 	2 1 2 	-1 2 CA 	 5 (J 3 0 0 0 0 0 0 0 	C

5 	ACNT 	1 	3 2 2 	33C.4 	 0 4 3 00 0 0 0 0 0 	0

6 	AC NT 	1 	A 1 1 	44CA 	 9 2 1 0 0 0 0 0 0 . 	Ci
• 	

7 	ER CH 	1 	16I(T11;WX 	U . 	 ci 0 0 0 0 CI CI 0 0 c 	o

• 	 S 	E R C H 	1 	2SNALLTOtN 	B 	 0 C) (3 0 0 0 0 0 0 C 	(1

9 	ACNT 	1 	5 2 1 	Z; CA 	 0 6 1 0 0 0 0 0 0 0 	0

.1 	 .•. 	•-.:

	

- 	-.--'••
_\ 	I 	 • 	.-.'

¶ 	 •.- y

I 	 :E

- A2.1ó -

The 'Statistics Print' Program

This program provides statistics on the bank's customers.

The run is initiated by the user entering an input type

of 04 on his interactive terminal.

The first type of FIND command is used to retrieve all

Customer Records in turn from the data base. The GET

command is used to obtain the Customer Number from each

found record to allow the program to progress onto the

next record. As each record is found, it is counted.

When all records have been found the program prints the

record count and terminates.

Figure 9 is a Listing of the program.

Figure 10 is a run of the program.

-

(
C 	 —A217— F t
c 	

3Q

	

,40 	WRITE 	(6 	2010) 	 **

	

2010 	FOPNT(O**P 	CF
	STATISTICS 	PINT 	PROGRAM*')

WRITE(,2Lll) -•
C 	2C11 	FORMAT(' 	TYPE

	VERSION 	NUIF 	OF 	PROfRAM')

REAO(5,2015UP\I
2015 	FORMAT(I1)

IF 	(IPUER.EQ.1) 	GOTO 	41

IF(IPVE..?) 	Gob 	65

STOP7?
C 	41 	I0CST0

ICLJST=1
CALL 	FINDl(KCUST,ICt1ST,ICE,ISC1

C 	42 	IF(IERR 	EQ 	1) 	CO 	10 	44

CALL 	GET(KCNU)
43 	IF(IUWA(1) 	EQ 	99) 	GO 	TO 	

1.4

- ICUSTIUWA(1) 41

INoCST=JNoCSTl FINDl(KCUST,IT,ISCE,ISCE,TE
-

'

CALL

C 	 O iO 42
44 	WITE(6,2012)0cST

- 2C12 	FORNAT(' 	NU!BER 	OF 	CUSTOMERS

C 	
WPITE(6,1327)

1327 	FOR'AT(' 	***END 	OF 	STATISTICS 	PRINT 	RUN***')

GO 	10 	5

(
65 	INOCST=C

IAGES(1)0
• 	•:i 	 •' IACES(2)L

C 	 IAGES(3)=0
IACES(4)=C

- 	 - 	

-

IACES(5)f

(

ICUST1
CALL 	F IND1 (VCUST,ICUST,IS,l SPACE.IFRR)

46 	IF(IERP 	EQ 	1) 	GO 	TO 	4 -

• 	
- 	 -- 	 •••-- 	

-- C 	 CALL 	GET(YCNUM)

-
47 	IF 	(ItJWA(1) .EQ.99) 	GO 	TO 	

£
0

ICUST=1 	1)+1

C 	
INOCSTINOCST4l

•
IACE1

- 	 -
•;.. .- c

(
C 	 IN SPECIAL 	REGISTER
C 	HOlE 	THAT 	RECORD 	VERSION 	

IS

C 	C
IF(ICURVP 	EQ 	1)GO 	TO 	19

CALL 	CET(KACE)
• 	 - 8040 	jAC,E=IU'4A(1)

IF 	(IAGE.EQ.C) 	IAGE=1
-

- 49 	IAGES(IAGE)1PGES(1E)4l

C 	
CALL 	FINDl(KCUST,ICtT,ICE,ISCE,R

- GO 	TO 	66
- • - 48 	WPITE(6,2012)1t0CST

•

• 	 --
WRI1E(6,201)IPGfl

2C13 	FOPAT(' 	NUMBER 	ITP 	UNKNOWs 	
AGE 	GROUP 	- 	 ',12)

UP ITE (6,2 	14) 12 ,1 	GES(2)
WPITE(6.2Jl1.)13,-1 PGES ('

(WPITE(6,2c1L)I4,
wITE(6,2c1L)I5,IS (5)

CUF 	1,' 	- 	 '

(
2C14 	FOT(• 	 f, Ufl F EP 	T 	1E 	,I 	,I2)

URJTE(6,12 7)

GC 	TO 	5

—A2.18-
-

C qreIO
Data 	01.

(OF 	STATISTICS 	PRINT 	F)GcA***
TYPE 	VE R S I C K 	NUt'EER 	OF 	PROCRAM
Data:l

FOLLCwTG 	INFOtcf1 ATiOJ 	IS 	FROM 	'FINDl'
DBMS 	IS 	SEARCHING FOR

(RECORD 	TYPE 	CUST 	VERSION 	1
WITH 	CHPRACTEf:5 	1 	10 	2 	EQUAL 	TO

(RECORD 	FOUND 	AT 	ADDRESS 	1 	VERSION 	1
'FIND1' 	CofPLETED

FOLLOIr. 	1N FORM 	 TJONIS 	FROM 	'GET'
• 	 .. 	

. CHARACTEPS 	1 	TO 	2
OF 	RECORD 	TYPE 	CIJST 	VERSJO 	1 	AT 	ADDPESS 	1

Cl
ARE:

—

• 	 S 	.S . **'GET 	CC;LETD***

(***F0LLOWIt-G 	INFORMATION 	IS 	FROM 	'FINDl'***
DBMS 	is 	SACRINC 	FOR
RECCRD 	TYE 	CUST 	VERSION 	1

C WITH 	CHAR;CTERS 	1 	10 	2 	EQLAL 	TO
2

RECORD 	FCUU 	AT 	ADDRESS 	3 	VERSION 	1
' C ***'FflD1 1 	COPLTED***

FOLLOWIN(IN FORM 	 TION 	IS 	FROM 	'GET'
C CHARACTERS 	1 	10 	2

OF 	RECORD 	TYPE 	COST 	VERSION 	1 	AT 	ADDRESS 	3 A RE:-
. 2

(**'FT' 	cOrLrLD***

***FOLLOWING 	INFORMATION 	IS 	FROM 	I F IND1 I ***
DBMS 	IS 	SEARCHING FOR
RECCRD 	TYPE 	CtJST 	VERSION 	1

•:. WITH 	CHARACTERS 	1 	10 	2 	E1AL 	TO
C 3

NO 	RECORD 	FOUND
'fTD1 	COPLETEC

......... • . 	 • 	 ••• C NUMBER 	OF 	CUSTOMERS 	- 	2
END 	OF 	STATISTICS 	FRINT 	RUN

—A2.19—

The 'Add New Customer' Program

This program allows a new customer to be added to the

data base. At this stage, the customer has no accounts

but these can be added by running the 'Open New Account'

Program. The program is initiated by the user entering

08 on hts interactive terminal.

The user enters the customer number and name of the new

customer on his terminal and the corresponding record

with these data items is added to the data base using

the STORE command. Before the run terminates a confir-

matory message is printed.

Figure 11 is a Listing of the program.

Figure 12 shows the program being run to add a New

Customer 03.

Ct 	 -

S.
•5;

C A2.20—
C- C

C
C

• 	 -. 	 . 	 . C- 80 WRITE ,(6,1360)
• 	 1. 	S 	

•. ,•• 	 • 1360 FORMAT,('O*** 	RUN 	OF 	THE 	ADD 	NEW CUSTOMER 	PROGRAM ***')
WRITE 	(6,1361)

C 1361 FORMAT 	(' 	TYPE 	VEPSIOP4 	NUMBER 	OF PRCGRAM') 	F 	ii READ 	(5,1362) 	IPVER -

1362 FORMAT 	(Ii)
(IF 	(IPVEP 	EQ 	1) 	GO 	TO 	31

IF 	(IPVEP.EQ.2) 	GC 	TO 	85
STOP 	8C

•.---• 	-S. C 81 WRITE 	(6,1363)
- 	 . 	 •. 	 .

.
- 1363 FORMAT 	(' 	TYPE 	CUSTOMER 	NUMEEP 	AND NAWE')

READ 	(5,1364) 	IUWA(1),IUW$(2),IUWA(3),IUWA(4)

C- 1364 FORWAT 	(12,1X,3P4)
CALL 	STORE(KCUST,KsUPS2)

82 WRITE 	(6,165)

(
1365 FORMAT 	(' 	NEW 	CUSTOMER 	ADDED')

- WRITE 	(6,1366)
1366 FORMAT 	(' 	ENn 	OF 	NEW 	CUSTOMER RUN

:- r_i_.,-•-.
85

60 	TO 	5
WPITE(6,1367)

1367 FORMAT 	(' 	TYPE 	CUSTOMER 	NUr4EEP,NAME 	AND 	ACE GROUP')
C- READ 	(5,136R) 	(IU6A(II),II=1,5)

S CALL 	STORE 	(KCUST,KSUBS3)
1368 FORMAT 	(12,1X,3A4,1x,I1)

' C 86 GO TO 	82
C
C

- 	 • • 	 S. 	 - 	 • 	*.. 	 .

S

.5. 	 S

-ç 	 3

V.
-

.: - s-

5- 4 	 -•

• 	 • •.• 	 S. 	 • 	 .

'S

S -

—A2,21-

I
RU!-! 	OF 	THE 	ADD 	CUSTCMER 	PROGRAM 	***

Id

(I TYPE 	VCSICN 	WU.&ER 	OF 	PROGIA1
Data:1 TYPE 	

CUSTOtEP, NUfEER 	AND 	NAME

C Data:03 	c.REEN,IAARY

FOLLO.IIG 	INFORMATION 	IS 	FROM 	'STORE'

THE 	FOLLCING 	NEW 	RECORD
.. 	.. IS 	BEING 	ADDED 	TO .TFE 	DATA 	EASE

C RECORD 	TYPE 	CUST
VERSION 	1 	 -

. 	
. 	 - ALL 	POINTERS 	ZERO

. (uN1NITrALIsEDcHAAcTERs 	SPACES
CHARACTERS 	1 	TO 	2 	ST 	TO

3
(CMARACTt 	3 	TO 	6 	SET 	TC 	-

GREE
CHARACT_F 	7 	T(1C 	ET 	IC 	-

C N,MP
CHARACTERS 	11 	TO 	14 	SET 	IC 	-
R

C PECORD 	H 	t\ 	STOi-0 	IT 	bCDtESS 	10
.- ***'STO' 	COMF

NEW 	CUSTOMER 	ADDED

S

*** 	Ek 	'F 	NEW 	CUSTC.ER 	RU4

S.

Data:30

C
*** THE 	CUFREUT 	DATA 	EASE ***

C ADD 	RECORD 	VRSN 	DATA POINTERS T

1CUST11JONES,ALAN 	-—— - 0
2 	ACNT 	1 	1 	1 	1 	11 CA 6 0 1 0 0 0 0 0 0 0

p 3 	CUST 	1 	2SrITH,J AMES 4 5 0 0 0 0 0 0 0 0
4 	AC NT 	1 	212 	32 CA 50 30000000

4
(5 	AC NT 	1 	3 	2 	2 	33 CA 0 4 30 0 0 00 0 0

6 	ACNT 	1 	4 	1 	1 	44 CA 9 2 1 0 0 0 00 0 Li
7 	BRCP 	1 	1BIG70N 	Ii 0 0 C C 0 0 0 0 0 0
8 	PCH 	1 	2SM.4LLTO6N 	R 0 0 0 0 0 0 0 0 0 0
9 	•CNT 	1 	5 	2 	1 	CCA 0 6 1 0 0 0 0 0 0 0

10 	COST 	1 	3EEN,MPRY 0 0 00 0 0 0 0 0 0

- A2.22—

The 'Amend Customer Details' Program

This program allows the user to alter the details

currently held on the customer record (i.e. the Customer

Name) for a particular customer. The run is initiated

by the user entering an input type of 09 on his inter -

active terminal.

The user enters the customer number and the amended name

on his terminal. The program uses the first type of FIND

to retrieve the appropriate record from the data base.

It then moves the revised name to the User Work Area

and issues a MODIFY Command to alter the data base

record.

Figure 13 is a Listing of the program.

Figure 14 shows a run of the program to amend the name

of Customer 02 from J. Smith to W. Brown.

C
C

—A2.23— c

- C
90 WRITE 	(6,130)

1380 FORMAT 	('O*** 	OUN 	OF 	AMENP 	CUSTOMER 	DETAILS 	PR0RAM 	,

:.. ç
.

WRITE. (6,1381)

.'. 1381 FORMAT 	(' 	TYPE 	VERSION 	wUPED 	OF 	PRCGPAM 	' I
READ 	(.5,1382) 	IPVER 	

r
1382 FORMAT 	(Ii)

IF 	(I P V E R 	E 	1) 	CO 	TO 	91

IF 	(IPVEP 	EQ 	2) 	GC 	TO 	991

STOP 9c
91 WRITE 	(,1383)

C 1383 FORMAT 	(' 	TYPE 	CUSTOMER 	NL!MPER 	AND 	AMENDED 	AE')
- READ 	(5,1384)ICUST,NAW1 ,NPM2,NAM3

• 	 . 	 . 	 • 1384 FORMAT 	(12,1Y,3A4)

992 CALL 	FIND1(CCUST.ICUST,ISACE,ISPACE,IEPR)

92 IF 	(IERR.NE.1)GO 	TO 	97

WPITE(6,100 7) ICUST

(
GO TO 	98

97 IUWA(1)NAM1
CALL 	MODIFY(IUãAM1)

(- C 93 IUWA(1)NP1 2
CALL 	ODIFY(KNAM2) 	-

94 IUWA(1)NAP3
CALL 	MODIFY(KNAM3)

: 95 IF 	(IPVER.EQ.1) 	GO 	TO 	99

IF 	(IPVER 	EQ 	2) 	GC 	TO 	96

ç STOP 	90
96 IUWA(1)IACE

- CALL 	MODIFY(KAGE)

C 99 WRITE 	(6,1337)
.1387 FORMAT 	(' 	CUSTOMER 	DETAILS 	AMENDED')

••••. •. .: 	.. 98 WRITE 	(6,138)
.......

C 1388 FORMAT 	(' 	** 	END OF 	AMEND 	CUSTOMER 	DETAILS 	RUN

GO TO 	5
- 	

* •.w 991 WRITE 	(6,1385)

C 1385 FORMAT 	(' 	TYPE 	CUSTOMER NUMEER, 	AMENDED NAPE AND AGE GROUP
READ 	(5,1386) 	ICUST,NAM1,P4AM2.NAM3,IAGE

1386 FORMAT 	(12,1X,3A4.1X,I1)

-• 	•. C GO TO 992
- C - 	 - 	 -.

- 	
2

•-

*** RU'. 	F 	 cuSTct.F. DETAILS 	C 9 A***
TYPE V F SICN 	 CF PROGFcAM

Data: 1
TYPE CLJSTOf'ER NLH'OER ANC PMEDED NAME
Data: 02 FR CWN, WALTE F

FOLLOIt..f. It" FORFAPTION IS FROM 'FINDl'*
DENS IS SEARCHING FOR
RECORD TYPE c,JST VERSION 1
WITH CHARACTE?S 	1 10 	2 EQUAL TO
2
RECORD FOUND AT ADDRESS 3 VERSION 1
'FIND1 COMPLETED

FOLLOWINC INFORMATION IS FROM 'MODIFY'
CHARACTERS 3 TO 6
OF RECORD TYPE CUST VERSION 1 AT ADDRESS 	3
HAVE SEEN ALTERED IC
BROW
***'MODIFY' COMPLETED-**

FOLLOWING INFOM.ATIOf IS FROM 	ODIFY'
CHARACTERS 7 TO 10
OF RECORD TYP. COST VSION 	1 AT ADDRESS
HAVE BEEN ALTERED TC
N ,WA
—'MODIFY' CO.iPLETED***

FOLLOWINC INFORMATION IS FROM 'MODIFY
CHARACTERS 11 TO 16
OF RECORD TYPE COST VERSION 1 AT ADDRESS 	3
HAVE BEEN ALTERED TC
LTER
'MODIFY' COMPLETED
CUSTOMER DETAILS AMF.NCEO
*** END OF AMEND CUSTOMER DETAILS RUN ***

F1'uie !t

.4 	
)

— A2 • 24-
(

(Data:.'

C

C

C

C
0

• 	 4r C

3 C

C .41ç;

: Data:30

***\1- HE CURRENT DATA 	BASE 	***

C:
ADD RECORD VRSN DATA POINTERS

C 1 COST 1 1JCNES,ALAfN 2 9 0 0 0 0 0 0 0 0
2 ACNT 1 1 	1 	1 	11 CA 6 0 	1 0 0 0 0 0 0 0
3 CUST 1 2BROWN,WALTER 4 5 0 0 0 0 0 0 0 0

C- 4 AC NT 1 21 	c, 	3Z (A 5030000000
S AC NT 1 3 	2 	2 	33 DA fl 	6 	3 	C) 0 0 0 0 0 0

6 'CNT 1411 L4 CA 9210000000
7 ERCH 1 1EIGTOwN 	U 0 0 00 0 0 0 0 0 U
S RC}4 1 2-Sr-ALL TOWN 	R 0 0 C 0 0 0 U U 0 U
9 CT 1 521 	OCA 0610000000

(10 CUST 1 RT:N,P c 0 0 0 0 0 0 0 0 0

(..•- .

- A3. 1 -

Appendix 3

The Restructuring Tasks

In Chapter 7 various restructuring tasks were postulated

-for the bank data base.

In this appendix actual runs of the programs involved

are demonstrated. For most of the restructuring tasks

it is necessary to invoke different versions of certain

of the application programs described in Appendix 2

since these programs are not transparent to the task

being performed. The listings of the programs given in

Appendix 2 show the differences in logic for the various

versions of the programs.

—A3.2 -

Open Restructuring to add Age Group to the Customer Record

The user initiates an 'Add Data Item' restructuring by

entering code 20 on his terminal. The DBMS responds by

requesting details of the new data item and the position

in the record to which it is to be added. Since in this

example an open restructuring strategy is to be used only

the schema is altered at this point to reflect the exist-

ence of the new data item in the latest version of this

record.

Thus when the schema is printed there are definitions

for both version 1 and version 2 of the Customer record

with version 2 containing the new AGE data item. The

original version of the 'Add New Customer' program

(version 1) will continue to run before and after the

schema has been altered and thus there is no difficulty

in adding customer 3 (Anne Black) to the data base. The

record for this customer is at version 2 but since the

program has not supplied a value for the AGE the DBMS

defaults this data item to spaces.

Eventually a new version of the Add New Customer program

is introduced and customer 4 (Carol White) can be seen

being added using version 2 of the program. This version

is similar to version 1 but contains logic to accept

the age group and to store it on the new customer record.

As can be seen the DBMS responds to this change in pro-

gram logic by indicating that AGE has been given an

explicit value.

- A3.3 -

Similarly, the Amend Customer Details program will run

after the restructuring has been initiated. The run of

this program shown gives details of the operations

carried out to amend the name of customer 1 to Jack Jones

and also to allocate him an age group of 2. Since the

DBMS always searches for the most recent version of a

record first) an attempt is made to find a version 2

record for this customer. When no such record is found

a successful attempt is made to find a version 1 record.

Each data item in the record is now modified in turn by

the program. For the first modify the DBMS detects that

the record is not at the most recent version and there-

fore restructures the record before actually performing

the modification logic. This is not necessary for sub-

sequent modifications since the record is now at version

2.

The Calculate Balance program requires the Customer Name

from the Customer record and the run of this program at

version 1 shows that the DBMS can detect the revised

position of this data in providing it to the program via

the 'GET' command.

The Statistics Print has been deliberately enhanced to

examine the version number of each Customer record

accessed so that it can assume an unknown age group for

all records which have not been restructured. The run

shown of this program at version 2 demonstrates selective

calls to the GET routine for AGE only for customers 1, 3

—A3.4 -

and 4 which as we have seen above have been modified or

added since the restructuring was initiated. Note too

that since customer 2 has a null value of zero for this

data item the program assumes an unknown age group for

this customer.

• 	• .:..:.J:
1•

- G

I.
:(

C

C

—

C

(

-. .-.• C

A . C.

• 	•

• 	 i•• •,•.• 	•i.

- :

RA

- A3.5-

Data :2

S7i C' F A t)D 0TL I T -c- fl RESTRUC TL; RINC
TYPE OPEF C? LSD FOR TYPE OF R2-STRUCTURING
FOLLOE 0 	'v 	CCRD NAFE , DATA ITEN NAME ,LE.GTH AND FORMAT
AND ADJ AC MT DAT?. I 1E 	OF DATA ITEM TO BE ADDED
Data :GRE;, CUT AGE 	01 ,11 	ct4u
,*OP..(%' RET1UCTURlNE NOW UNDER WAY*

Data : 29

*** THE CURRENT SCHEMA ***

RECORD TYPE CUST VERSION 2
DATA IT 	CMU 	START PT 	1 ENO AT 	2 FORMAT ,I2)
DATA ITEM LPE 	START PT 	3 ND AT 	3 FORMAT ,Il)
DATA ITEM 	START AT 	4 EN AT 	7 FoRMAT ,A4)
DATA ITEM f , AM? STAR AT 5 END AT 11 FORMAT A4)
DATA ITEf f.p3 STPR1 PT 12 END AT 15 F)RMPT , P4.)
SET NAME CUAC POINTER TYPE FR ST
SET N 	CUAC POINTER TYPE LAST
KEY D ,TA ITEM CUM

RECORD TYPE CL'ST VERSION 	1
DATA IrE 	CNU 	START tT - 1 END AT 	2 FORMAT ,12)
DATA ITEM MAM1 STAR1 AT 	3 END AT 6 FORMAT ,A4)
DATA ITEM NAN2 START AT 	7 END AT 10 FORMAT ,A4)
DATA IT EM KAr- 1 3 START AT 11 END AT 14 FORM PT ,P.4
SET NAME CUPC POINTER TYPE FRST
SET NA E CUAC POINTER TYPE LAST
KEY DATA ITEM CNUM

	

END AT 	2 FORMAT ,I)
END AT 4 FORMAT ,12)
END AT 6. FORMAT ,12)
END AT 11 FORMAT ,15)
END AT 13 FORMAT ,A2)
?EXT
FRI R
OtNR

C 	iN
 RECORD TYPE EFCH VER

DATA ITEM' FUt START
DATA ITEM ENM1 START
DATA !IEM EP2 s TAR T
DATA ITEM 2NP3 START
DATA ITE LCC START
KEY •):-YP 111(

SET r-:
OWN:E' 	fc TV - CLST ,iTC'rI'P DATA ITEM CftjV

t 1Y 2 	PCT 	ITCHIN, DLT. ITEM CU
PISII 	• 	• 	: 	- L'T

C

C-

C 	RECORD TYPE ACNT VERSION
DATA ITEM PCNC START AT 1
DATA ITEP ERNO START AT 3
DATA ITEM CUNO STAR1 AT .5
DATA ITEM EALC. START AT 7
DATA- ITEM ACTP STAR 1 PT 12
SET - NAME CUAC POINTER TYPE
SET NAME CUAC POINTER TYPE
SET NAME CUAC POINTER TYPE

(KEY DATA II2M ACNO

510
AT
PT
PT
IT

J 	1
1 END
3 END
7 E.&

11 END
15 E.O

AT 	2 FORPT ,12)
AT 	FORPAT ,A4)
AT 1C FORPAT ,A4)
AT 14 FORMAT 	A4)
At 15 F0P?AT 	Al)

C

C

*** 	CF Ti": P; 	NW CUSTG'.CR 	ROhA' ***
TYPE vRICN UMER OF PPOCRAM

Data: 1
TYPE CUS1OtER NUMbER :P.NV NAVE

Data:03 ELCM,ANNE

***FOLLCWIf IHFORMP7IO 	J FPO

THE FOLLCWING NEW RECORD
IS eEIHE ADDED TO TEE DATA EASE

	

. 	RECORD TYPE CUST
VERSION 2
ALL POINTERS ZERO

	

C 	IJNINITIALISED CHARACTERS SPACES
CHARACTERS 1 TO 2 ST TO -

V 	3
c CHARACTERS L TO 7 SET IC -

BLAC
CHARACTERS 	8 TO 11 SET IC

	

(K,AN
CHARACTERS 12 TO 1 5 SET TC
NE

	

(RECORD HAS EE.: S TO 1E 	T !D):ESS 	c
ST(JRE' COPFLETED
NEW CUSTCMER ADE

ED CF NEW CUSTCER PL

C

Data:C

& £
*** 	RIJ 	CF 	THE 	ADD 	NE 	CUSTOMER 	PROGRAM

TYPE 	VERSICN NUMEER OF 	PROGRAM

(Data:2
TYPE 	CIJS1OER 	NUMEER,NAME 	AND 	AGE GROUP

J 	'* Data 	04 	WHITE,CARrL 	3

-
FOLLOWING 	INFORMATION 	IS FROM 'STORE'
THE 	FOLLCWING NEW 	RECORD

(IS 	BEING 	ADDED 	TO TEE 	DATA 	EASE

RECORD 	TYPE 	CUST

(VERSION 	2
ALL 	POINTERS 	ZERO
UNINITIALISED 	CHARACTERS 	SPACES

(CHARACTERS 	1 	10 	2 	ST 	TO

4
CHARACTERS 	L 	TO 	7 	SET 	TC 	:-

C WHIT
- . CHARACTERS 	8 	IC 	11 	ST 	TC 	:

-

E,CA

(CHARCTES 	12 	TC 	15 	.T 	IC 	:-
R) L
CHP.RACTPS 	j 	:> 	T 	T 	:-

C 3
RECOfl 	HS 	 TC'f 	.1 	ESS iC.

**$r
(

rj 	W 	CL 	T 1 -

• —A3.7-

• 	 •:
(

• 	c1REt4T 	i.T,' 	- 	-.
C

ADD 	k.:C C' 	V:SN 	OAT, FCINTERS

•.:;' 	•:- 1 	cusi 	1 	1J0S,ALAN 2 6 0 0 0 0 0 0 0 0 	0 2 	;-CNT 	1 	lii 	11 CA 6U100c0o00 	0
- 3 	CUST 	1 	2SIIh,J0FS 4 	3 	6 0
C 4 	hCT 	1 	212 	22 CA 563 0000008 	0 5 	ACNT 	1 	322 	33A 04-O0000 	6 	0 -•

C
6 	AC NT 	1 	4 	1 	1 	44Cc
7

0 2 	1 0 0 0 0 0 0 C 	U DCH 	1 	1BIGIOWN 	U 0 0 8 0 	0 0 0 C) 0 U 	8 8 	CRCH 	1 	2SF'ALLTOj 	R 0 0 0 0 0 0 0 0 0 0 	0
(

9 	CU ST 	2 	3 	ELPCK,At4NE 0 0 0 0 0 0 0 0 0 0 	0 10 	CUST 	2 	43HITE,CA.ROL 0 0 0 0 0 0 0 0 0 0
• .

0

Data:Q9

***RUN 	CF 	CUSTC F R. 	DETAILS 	PRO0RAW**
TYPE 	V 	F S 	(MJr.P.R 	OF 	P R CG
Data:

C TYPE 	C1s TO. 	 cp 	UrEF 	MjN ED F 0 	NM 	AN D 	(C- 	OUp
Data::'-:I 	J0rsES,JACr

Q ***FOLCIFC 	It. FORM A TION 	is 	FRO 	'FINDl'***
DS 	I 	tPCHJNC 	FC
RECORD 	TYPE 	CUST 	VRTO 	2

C WITH 	CUFCTEpS 	1 	10 	2 	EQLAL 	TO

. NONE 	HA S 	5ECf-4 	FCUD 	S C 	DE, s , S 	IS 	tjoW 	SEPRCHI,\(FO
RECORD 	TYPE 	CUST 	VERSION 	1
WITHC 	FCTS 	1 	10 	2 	CG LL 	TO

1

C. RECORD 	FCUtD 	.T 	ADDR E SS 	1 	VERSION 	1
'FINDj• 	COPLETE

***FOLLOWIKIG 	INFORMATIOu 	IS 	FROM 	'MODIFY

*** 	F0LLCWIic 	INFORf'ATICN 	IS 	FROM RESTRUCTURING ROUTINE 	***
C VERSION 	NUPFER 	OF 	Rc COP D 	TYPE 	CUST 	AT 	ADDRESS 	1

IS 	BEUC 	ALTERED 	TO 	2
CHARACTERS 	1 	TO 	2 	WPE 	FRPREVIOUSLY'-

C 1
CHARACTEFS 	3 	TC 	6 	w 	FREVIOUSLY
JONE

(CHAR?CT, 	' 	TO 	10 	L 	DE 	FE'vIOUSLY
S,AL
CHAR^CTERS 	11 	T 	1 	 FR E VIOUSLY

(
AN
CHARCTEc51 	IC 	2 	EEEJ 	SET 	TO

(Tr 	. 	 • 	 -I. 	S-I 	TO 	SP.CES
CHACiE 	1 	7 	HV 	E 	ST 	T3
JON:

C cHpA:rEs 	 11 	 ST 	TO 	:

-
S,AL

 7 1. 	- 	 . 	 .-;-

- CHARACTERS 	4 	TO 	7

(
OF 	RCOR D 	TYF_ 	CUST 	V 	PE1CN 2 	AT ADDRESS 	1 	 -A3.8 -
HAVE 	:- - EN 	ALTERED 	TC

• 	 V 	 • JONE

C. ***Ot;IF'r' 	COPLETEDA*

***FOLLOIPC ¶HFOPMATION 	IS F?O' 	'MODIFY
- (CHARACTERS 	& 	TO 	11

OF 	RECORD 	ivp: 	cusi 	VERSION 2 	AT 	ADDRESS
HAVE 	bF\ 	ALTERED 	TC

,i C S,JA çV

'MODIFY 	COMPLETED
VVVVVVV _VVV 	 V 	 - -

FOLLOWING 	INFORMPTION 	IS FROM 	'ODIFY'
CHARACTERS 	12 	TO 	1

OF 	RECORD 	1YP: 	CUST 	V=RSION 2 	AT 	ADDRESS
C HAVE 	E 	E N 	ALTERED 	IC

• c
In Y - 	JI''LI :t'

C

V 	

V 	 V 	 V

VV, VV 	 V• 	 V

V 	

V (•

A.

VV 	

•

- C
V 	

V 	
V

- 	t V• 	 •: ; 	 :-
C

V 	 : C

***FO LL. 0If\f ItFOMATIOu IS FRO; 	fOIFy**VV
CHARACTERS 	3 TO 3
OF RECORD TYPE CUST VSRSICN 	2 AT ADVRESS 	1
HAVE 	EEt ALTERED TC
2
***'MOIFy 	COVPLI:TED—ti, -
CUSTO'ER DETAILS ftENCEC

CF 	CUSTCrEP DETAILS RUN

Data :3u

THE CURRENT DATA EASE

ADD RECORD VRSN DATA 	 POINTERS

1 CUST 2 12JOIcES,-JACK 2 6 0 0 0 	0.0 0 0 0
2 ACNI 1 11•1 	V11CA 6010V000000

3 CUST 1 2Sr'ITH, JAM -CS 4 5 	0 0 0 0 0 0 0 0
4 PCNT 1 2 	1 	2 	22 CA 5 0 3 0 0 0 0 0 0 0
5 AC NT' 1 3 	2 	2 	33CA 0 4 	3 0 0 0 0 0 0 U
6 AC NT 1 4 	1 	1 	L4CA U 2 	1 	0 0 0 0 Ci 0 	G-
7 BRCH 1 18IGl OWN 	LI 0 C 0 0 C 0 0 0 0 0
E BRCH 1 2S MALL TON 	R 0 Ci 	1 	0 0 0 0 0 0 U
9 CUST 2 3 	i-LiC,A!L 0 0 0 0 Ci 	0 0 0 0 0

10 CUSI 2 L3HITE,CAROL 0 0 0 0 0 	C. 0 0 0 0

S • . ,., 	 . .- .. -. .. 	 - .

Dt:Ci 	
- A39-

C ..
*** R UI 	O 	V CLkNC 	CPLjI_A',J(J 	POP..t.t'**

- 	 . TYPE 	V 	R 	Cp 	NL I~'Z' ~ K 	CF 	P (_
Dt:1
TYPE 	CUSTOU:

C
I * ,r*FULLCti.0 	INFORM A TION 	IS 	FRO 	'FVM'**,

DBMS 	IS 	S EPRC H ING 	FOR

-
C

RECORD 	TYPE 	CUST 	VER SI O N
WITH 	CHARACTERS 	1 	10 	/ 	EoAL 	TO

was on
1

-

C RECORD 	FCUo 	AT 	ADDRE S S 	1 	YERSION
***"FENDl 	COPLETEC**+

(***FQLLO jL 	I N FORMATION 	IS 	F R OM 	CET'*** M 	 - CHARACTERS 	4 	TO 	7
OF 	WORD 	TY P E 	CUST 	VSi0t. 	2 	AT 	ADD R ESS 1 	ARE: -

kof
...

C JON:
'GET' 	CO'PLETE*

D ***FQLLCIf(P FOr1PIr 	I S
• CHARACTERS 	S 	TO 	11

CF 	RECORD 	TYPE 	CLIST 	V E R SION 	2 	AT 	ADD R ESS
C;

1 	ARE:

-
s,j
** 'CET 	C 	IrT0***

(***FLLOwi 	iNF0cFTION 	i 	FR0t- 	(;T'**.*
• 	 . CHAP.ACTES 	12 	TC 	15

CF 	RCCPD 	TYPE 	CUST 	YER E IO 	2 	AT 	FLDRESS 1 	ARE:-

' 	 *

I

c CK
corLrED***

(***FQLLcUf 	1IFC'Rt"pTiOJ 	IS 	F R OM 	'rIc'***
. . 	 •' 	 •- •. 	 .

VALUE 	IN PCP4TEF 	1
-

OF 	R E CORC 	TYPi 	CUST 	Vt SION 	2 	LT 	ADDR E SS
C

'

 IS 	2
VERSION 	OF 	RECORC 	TYPE 	ACNT 	AT 	THIS 	ADDRESS I S 	1
'FItD2' 	COMPLTEC

. c
FOLLCIC 	IFORMTION 	IS 	FPOV 	'GET'
CHARACTEPS 	7 	TO 	11

(OF 	RECCRD 	TYPE 	ACt1 	V E RSION 	1 	AT 	ADDRESS 2 ARE 	-

I 	'JrrLcIc.s 	 -

***FOLLOWING INFORMATION! IS FROM 'FIND? ***
VALUE IN PCINTER 1

-

	

OF RECORD TYPE ACNT VERSICN 1 AT ADDRESS 	2
IS 6

VERSION CF RECORD TYPE ACNT AT THIS ADDRESS IS

C 	***'FjtL2' COIPLETE***

***FQLLCItE INFORMATICN IS FROP VET O ***
C 	CHAPAC1EPS 	7 TO 11

OF RECORD TYPE ACNT IERSION 	1 AT ACDESS 	6 ARE:-
44

(** 'EST' CLT.D***

***FOLEC.fls 	KF07MATTON Y S
(VALUE IN PCflT? 1

OF RECCk 	TY 	 VSI C - 	AT A 7 DW SS
IS 0

(.

* * * ' F r 	•- .

-- 	 -

1 	 4

S . 	
. 	 •.. 	

-. 	 ..

Data Cl 	 —A3.10 —
 :

. ***RU N 	CF 	EALPr4CE 	CALCULATION 	PROGRPM***

TYPE 	V 	R SI C' 	tUMBP 	OF 	PROGRAM
5 Data:1

• 	 .'• 	 - 	 . TYPE 	CUSTOMR 	tUt.YER

S 	 - Data:02

S 	 .• 	 S . 	 - • ***FOLLOit.(- 	1rFOPMP.TI0N 	IS 	FROM 	FIND1'***

• 	 . 	 . 	 - DENS 	71 	SE 	PCHING 	F C.
• 	 .5. 	

5. 	 ••• 	 .

RECORD 	TYE 	CUET 	VESIO t, 	2

-

.. WITH 	Cf.T?S 	1 	10 	2 	0LL 	TO
• 	 :. 	 • 2

• NONE 	H''S 	E.5. 	FUMD 	SC 	C CPS 	IS 	NOW 	SEARCHING 	FOR

5

RECORD 	TYPE 	OUST 	VERSION 	1

.5 WITH 	CHPAC1.3 	1 	10 	2 	ëQLAL 	TO

5 	
.

• 	 S
, RECOR 	F.UC 	..T 	AOO?S 	VE.SIOh 	1

***'FI!f1' 	CCi'LETEC* ~ k

FOLLO:IFO 	IN FO 	 (4 ATIO N 	IS 	FiO;• 	'CET'***
- CHARACIEIS 	f 	TO 	6

S. 	 . 	 .

OF 	RCORU 	TY 	CUS1 	VERSION 	1 	AT 	ADDRESS 	3 	ARE:- 	 S

• . SMIT
'G_T 	OfrPI 	TU*

-

***FOLLOjN 	Ti CRflTION 	IS 	FROM c:T'**
• 	 • 	

•,.•.•
CHARACTEkS 	7 	TO 	10

S 	 ••

CF 	RECORD 	T 	 E 	GUST 	VE:1I0 N 	1 	AT 	ADDRESS 	3 	ARE:

-

S H,JA
S 	

j5-• **'T' 	COL-TID***

***FOLLQWINO 	INFORMATION 	IS 	FROM 	'GET'**
• 	 - 	 - 	

. 	 S CHARACTERS 	11 	TO 	14
S 	 5 OF 	ROCOCO 	TYPE 	OUST 	VSiSION 	1 	AT 	ADDRESS 	3 	ARE:-

MES
• **'GET' 	COfrFLETED***

•••. 	
-

(. ***FOLLCI 	IhFORRPTIOr 	IS 	FROM 	FID2'***
S 	

.••
VALUE 	IN 	PCItT 	1

S 	 • .; .c: OF 	RECORD 	T 	PI 	CUST 	VERSION 	1 	AT 	ADDRESS 	3.
i IS 	4

• 	 .: VERSIO' 	CF 	REC0D 	T YF 0 	AC t. T 	AT 	THIS 	ADDRESS 	IS
***'FJN[. 	CCMFL 	IF- C*i*

***FOLLOt,T NC 	1 N FORMATION 	IS 	FRO" 	'GET
CHARACTERS 	7 	TO 	11
OF 	RECORD 	TYC 	ACN1 	:IIO 	1 	AT 	ADDRESS 	4 	ARE:-

S 	 •5 	 •: 	- S 22
'CET 	CO, 	 P1TED*

• 	 S 	

S 	 S

FOLGIC 	JI.FCRMPIIc.N 	IS 	FO 	'FIND2'
VALUE 	IN 	PCI;.TSP 	1
OF 	R000RO 	TYP = 	CrT 	VORSION 	1 	T 	ADDRESS 	4

-

IS 	5
VERSION 	CF 	R--CORD 	T YPO 	SACNT 	AT 	THIS 	PDPRE 55 	IS
***'FID' 	COf-LEtEC**

• 	 . 	 S ** 	FOLLCWII\C 	I. F0.M AT ION 	IS 	FROM' GET'***
CHAP.ACTES 	7 	IC 	11

S OF 	REOCRO 	TY - E 	ACN1 	VEREJON 	1 	AT 	ADDRESS 	5AE:-
• 	 • 33

'GT' 	COL-TD*

FOLL06INC 	INFORM A TION 	IS 	FROM 	'F IND2 '

.. VALUE 	IN 	POINTER 	1
- OF 	RECORD 	lYRE 	ACi'T 	VERSION 	1 	AT 	ADORESS 	5

• 	 .. 	 -. 	 - IS 	0

S
'FIHDE' 	COMPLITED

BALANCE 	FOR 	CCST0ER 	2 	StI1H,JAME3 	IS 	55
• 	

• 	
- **aE.'40 	CF 	EALANCE 	C PLCULATICM 	RU4***

• 	 . 	

S

_4T\.• 	 -

	

S 	
S 	 • 	 • 	 •••• 	 S 	 ••.. 	•, 	 • 	 -.- 	•,•. 	 - 	

• 	 S

	

--.•-..I• 	 . • 	 :- 	 -•
.- 	 •'.-

' 5_ 	 - 	 - • 	 S - 	

—A3.11-

- 	 .•..f"

p 	 -

4 	-

(.

FOLLCWIND JNFORMTION IS FROM 'FIr.!Dl'
DBMS IS SE - RCHING FOR
RECORD TYPE OUST VERSYOH 2
WITH CHARACTERS 	1 TO 2 ELAL TO

NONE HAS BEM FOUND SO DBMS IS NOW SEARCHING FOR
RECORD TYPE CLIST VERSION 	1
WITH CHARACTERS 1 TO 2 EQ1AL TO
2

RECORD FOUND AT ADDRESS I VERSION
'FIN Dl' COMPLETED***

FOLLCWIG INFORMPTION IS FROM ' GET'
CHARACTERS 1 TO 2
OF RECORD TYPE CUSI 4ERSION 1 AT ADDRESS 	3 ARE:-
2

'' .coc'PLETED*
\

C 	***FOLLOWflc ITFOPMPTION IS FROM 'FINDl'***
DBMS IS SEARCHING FCR
RECORD TYPE CUST VERSION 2

C-. 	WITH CHARACTERS 1 TO 	2 Ec.IPL TO
-: 	 3

RECORD FOUND AT ADDRESS 	c VERSION 	2
C. 	***'FJNDT' COMPLETEC***

....

C-

C

4- 	
C-

-

1

- 	 . 	..-

-

***,jj I, CF STATISTICS 	I - i 	RrCp,Ac'**
TYPt V - :RSICI NUFR OF PROGRAM
Data:

FOLLCwI,c I N FoRTiON IS FROP. 'FIWDi'
DFS IS 	CING FO
kECO 	TYPE CUST VERSION
WITH CHARACTERS 	11 	2 EQIAL TO

1
RECORD FrUNC AT ADDRESS 	1 VERSION 2
***'FINDl' COMPLETED**

FOLLOWING INFORM TION IS FROM 'GET'
CHARACTERS 1 T 2
OF RECORD TYPE CUST vERSION 2 AT ADDRESS 	1 ARE:-
1

** 'GET' COPLETED***

FOLLOWING: !NFORMPTIOI IS FRON 	GET'
CHARACTERS 3 TO 3
OF RECORD TYPE OUST 	ESiO 	2 AT .iCDRESS 	1 11 RE:-

2
'GET' CC1-LETED

c

***FC.LL(kiI.,r 	IF.RMiIC, 	S 	FR3 V 	;ET'*,, —p3.12 - C CHAR .CTES 	1 	TO 	2
OF 	_COrC 	TYPE 	CURT 	IvERS o\ 	2 	AT 	AC-DRESS C 	E-
3

(**1cCi 	CCt'LETED*

FOLLOWING 	INFCRMpTION 	IS 	FROM 	'GET'
C CHARACTERS 	3 	TO 	3

. 	: OF 	RECORD 	TYPE 	CUS1 	VERSION 	2 	AT 	ADDRESS 9.FE:-

•. 	 S C **'GET' 	CO?LETED***

FOLLOWItG 	INFORMATION 	IS 	FROM 	'FINDl'
DENS 	IS 	SEARCHING 	FCR
RECORD 	TYPE 	COST VERSION 	2

- 	 - WITH 	CHARACTERS 	1 	TO 	2 	EQUAL 	TO

f7' RECORD FOUND 	AT 	ADDRESS 	1C 	VEPSION 	2
Yij; --: ***'FJiD1• 	COPLETEc***
*

***FOLLOWING 	N IFO 	ATIO 	IS 	FROM 	c-ET'
win CHAR,5CT3 	1 	TO 	2

- (OF 	:CD 	TYPE 	LUST 	ERSIO 	2 	1 	ACDRSS 1C 	-
4

** ' GET' 	i(rLT 	D*
. &- 	. 	- -)•

***rOLLCJC 	TNFORMTION 	IS 	FROM
. CHARACTERS 	3 	TO 	3

C OF 	RECCPD 	TYPE 	cusi 	VERSION 	2 	AT 	ADDRESS 10 A 	-

•

** 'GET' 	COPLETEO***

C
.................... ***FOLLowUG 	INFORMATION 	IS 	FROM 	'FINDP***

4 - 	'- DBMS 	IS 	SEARCHING FOR

C R:ccR 	TYPE 	COST 	VERSICI 	2
WITH 	CHARACTERS 	1 	TO 	2 	EQUAL 	TO

'.I-: • 	. 	- : - 5
C NONE 	HAS 	SEEN 	FOUND 	SC 	DBS 	IS'NOW 	SEARCHING 	FOR

RECORD 	TYPE 	COST 	VERSION 	1
...................

C
WITH 	CHARACTERS 	1 	TO 	2 	EQUAL 	TO

s
• NO 	RECORD 	FOUND 	 . 	S 	• 	•• 	 . . 	S

NUMBER
4

OF 	CUSTOMERS 	4
NUMBER 	WITH UNKNOWN 	AGE 	GFOLP - 	2
NUMBER

C.
 IN 	AGE 	GROUP 	2 	- 	1

NUMPER IN 	PC_ 	GROUP 	3 	- 	1
NUMBER 	IN 	ACE 	GROUP 	4 - 	C
NUMBER 	I 	Ac: 	GROUP 	5 	C

(***E4) 	C 	STATISTICS 	PRINT 	FUN***
S.
 ..N.

-••-•. 	••. -.
- •:. - 	 -- •. 	. 	. 	.: 	- 	••• 5' 	 -

-

- A3..13—

Closed Restructuring to add Age Group to Customer Record

The restructuring described above could also be carried

out using a closed strategy. In this case the DBMS

immediately searches for the first customer record on

the data base in address sequence and, in fact, finds

customer-1 at address 1. This record is then restruc-

tured by making space available for the new data item

while not actually allocating it a value. The schema is

also altered to reflect the existence of both version 1

and version 2 customer records. When the record is

restructured the user is invited to either continue to

allow the next customer record to be restructured or to

run an application program.

As before, the Amend Customer Details program is run

for customer 1 and since this record is at version 2

(having just been restructured) each data item can be

modified in a straightforward manner. Similarly, when

customer 3 (Anne Black) is added a version 2 record is

created as before.

The restructuring is then allowed to continue and the

record for customer 2 at address 3 is then restructured.

When the restructuring mechanism then encounters the

record for customer 3 at address 9 it discovers that

it is already at version 2 and need not therefore be

restructured.

Since no further customer records exist on the data

base the restructuring is now complete and the schema

—A3.14 -

can again be modified to remove the reference to the

obsolete version 1 customer record.

(

C

C

C

C

C

-•:

-A3.5

Data: 20

***STAIT Of ADD DT A ITEM RESTRLCTURING*p*
TYPE OPEN CR CLSD FOR TYPE CF RESTRUCTURING
FOLLOWED BY RECORD KANE - DATA ITEM NA.E,LENGTH AND FORMAT
AND ADJACENT DATA hEM OF DATA ITEM TO BE ADDED
Data:CLSD CUST Pet 	01 ,I1) CNUM
CL(SEC RESTRUCTUP.11C NOW UNDER WAY
RECOPJ TYPE CUST VERSION 1 FOUND
AT ADDRESS 1

*** FCLLCWING INFORAI1ON IS FROM RESTRUCTURING ROUTINE ***
VRSIOP YUKER OF R ECCRD lYRE CUST AT ADDRESS
IS BEING ALTERED TO 	2
CHARACTERS 1 TO 2 WERE PREVIOUSLY

CHARACTERS 3 IC 6 EKE EEVIOUSLY
JOKE
C4RCTERS 	11010 WERE FREVIOUSLY
S • AL
CHARAC75S 11 Tr 14 w;Ry R:VIOtJS LY
AN
CHARACTE.S 	1 IC 	2 HIVE E'Ecf , SET TO

CHARACfERS 	3 TO 3 AFE E.EItG SET TO SPACES
CHARACTERS 4 TO 7 HAVE EEEN SET IC
JONE

- M

- 	.. . 	::....

CHARACTERS 	ö 	10 	II 	HAVE 	LEEN 	SET 	TO
S_AL

.- 	CHARACTERS 	12 	IC 	15 	HAVE 	EN 	SET 	TO 	-
AN

• 	 . 	

•'.. 	 (
*** RECORD 	HAS 	SEEN 	F?2STRLCTURED 	***
IF NO 	OTHER 	REQUEST 	IS 	CUTSTAF:DINC 	TYPE 	REPLY 	21

................

—
•- 	 .J 	 .

555................'" •S 	 S_. 	 S 	 .'.. 	oz •.. 	 .

•• 	_••••_li 	 4

. 	 .

c 	I 	 ,

•••(
.5.

- 	

•- 	 cj
£,I5S5. 	

•'
—(

• '..
5. 	 -

f
S 	 .• 	 • 	 ••••.- 	

:.' 	

-: 	-

-

. 	 •

- 	 ••4 	 z •-" 'S 	

• 	 _. 	..._

3

.5 	 4

VVVV 	 C

C

c: -.

C

-VV

C

C

V 	
V 	•.:,.

(

C
D

C

C

• 	 V

.1

—A3.10 - 	 V

Da to:

TN:: CLREMr SCH EPA

RECORD TYPE COST VERSION 2
DATA ITEII CNUM START AT 	1 ED AT 	2 FORMAT ,2
DATA ITE' ACE 	START AT 	3 END AT 	3 FORMAT ,I1)
DATA ITEM NAM1 STPVRT AT 	6 END AT 	7 FORMAT ,A4)
DATA ITEM NAfe.2 START AT S END AT 11 FORMAT ,A4)
DATA ITEM NAM3 START AT 12 END AT 15 FORMAT ,A4)
SET NAME CUAC POINTER TYPE FAST
SET NAME CUAC POINTER TYPE LAST
KEY DATA ITEM CNUM

RECORD TYPE CUST VERSION 	1
DATA ITEM CMUM START FT 	1 END AT 2 fORAT ,12)
DATA ITEM KAP.1 START AT 	3 END AT 6 FORMAT ,A4)
DATA ITEM 	START AT 	7 END AT 10 FORMAT ,A4)
DATA ITEM KAM3 START 	T 11 END AT 14 FORMAT ,A4)
SET NAME CUAC POINTER TYPE FPST
SET NAE CUAC ?CXTER TYPE LAST
KEV DATA IT 	CNUM

RECORD TYPE ACNT VERSI(.lr 	1
DATP. IT EM ACUO START AT 	1 END AT 	2 FORMAT ,12
DATA IT 	RNO START PT 	3 END AT A FOR1T ,12)
DATA ITEM CUNO START A T 	5 ND A T 	6 FORMAT ,12)
DATA ITE EALC START AT 7 END AT 11 FORMAT ,15)
DATA ITEM ACTP STAR 1 PT 12 END AT 13 FORMAT ,A2)
SET NAE CLAC POI NT E R TYPE E X T
SET NAME CUAC POINTER TYPE FAIR
SET NAME CUAC POINTER TYPE OWMR
KEY DATA ITEM ACUD

RECORD TYPE BRCN VER S 10
	

1
DATA ITEM ENUM START AT
	

1 END AT 2 FORMAT ,I2)
DATA ITEM ENM1 START AT
	

3 END AT 6 FORMAT ,A4)
DATA ITEM ENN2 START AT 7 END T 10 FORMAT ,A4)
DATA ITEM ENMV3 START AT 11 END AT 14 FORMAT ,A4)
DATA ITEM LOCN START AT 15 END AT 15 FORMAT Al)
KEY, DATArTEMBNUM

L 	SET NAME 	CIAC
OWNER 	R ECORD 	TYPE 	CUST 	P'ATCI4ING DATA 	ITEM 	CNUM
NEMEC- 	RtCCOD 	TYPE 	AC 	T 	MPTCPNC DATA 	ITEM 	Cu 	0 -

(
	

POSITION 	OF 	NEW 	INSERTS 	- 	LAST
V- - 	 VV____V•_,_ 	,--. -.-.-- - 	

k

N

* 	 'S

¼ 	 •
-.

V V VS V 	
V

Si.

0

4 	 -

C 	 -A3.17-

C

C-

C

AN 4
4V

C

(

C:

-

: 	
(

D .-i t a :

*** RUV CF i46JD CUSTCME 	TA IL 	P ROGRA **

TYPE VICN L(iMER OF PROGRAM

Data :2
TYPE CUS1OER NUPBER, AMENDED NAME AND P(E GROUP

Data:G1 JCNES,J/'C(2

FOLLOING INFORMATION IS FROM 'FINDl'

DENS IS SFPRC.IF.4G F Ok
RECORD TYPE OUST VERSION 2

WITH CHARACTERS 1 TO 	2 EQLAL TO

1
RECORD FOUND AT ADDRESS 	1 VERSION 2

'FI'D1' COIP.LETED

FoLLcINc INFORMATION IS FROM'MODIFY'

CHARACTERS 4 TO 7
OF RECORD TYPE CUST VERSION 	2 AT ADDRESS 	10

HAVE tEEk PLTRED IC

JONE
COPLTED***

***voLLoIr\O INFORMATION IS FROI 00DIFV'*

CHARACTERS 	ETC 11

OF RSCOPC 1YP 	CUST VRS1UN 	2 IT ADDRESS

HAVE EEEN ALTERED TC

S ,JA
k 'MOD IFY' CU'PLETEO***

FOLLOWIN€ INFCRtTION IS FROM 'MODIFY'
V 	

(CHARACTERS 12 TO 15

- 	 OF RECORD TYPE CUST VERSION 2 AT ADDRESS 	1

HAVE ALTERED IC

- 	
.4' 	 ***'MOD jFY 	co,PLETED***

—FOLLOWING JNFONPTION IS FROM 'MODIFY ***
• ... :. 	CHARACTERS 	3 TO 	3

F 	 OF RECORD TYPE CUST VERSION 2 AT ADDRESS 	1

I HAVE BEEN ALTERED TO

'-1 	 ***'MODIFY COMPLETED**

C 	CUST0CR DETAILS 'AMENDED
*** END OF AMEND CUSTOMER DETAILS RUN ***

- ---------- - 	 -

40• 	 3 	
V 	 .4 	

-. 	 .4

4 	j

-4 	 4

0• • 	 V 	
0

-A3.18-

Data:t .

•*R I N 	CF 	THE 	ADD 	N: 	C US TI- tR 	PROORAM 	*

TYPE 	Vi PSI CN 	NUft E. E R 	OF 	PR

Data : 1
TYPE 	CUSIOfrET. 	NUftir 	NF
Data:3 	bLPCK,AN'

FCLLCII(IHF(PMETIC.I' 	S 	FO V 	'STCRE
c THE 	FOLLCW1!(Nw 	RECO

IS 	EEIIJ6 	.4 DDE 	ifl 	T 	z 	 D A T 	E 0

, RECORO 	T 	CUST
VERSI. 	2
ALL P0IF1R 	z

Li UNINITIPLISED 	CHPACT6PS 	SCES
CHPRACTERS 	1 	10 	2 	S 	TO

CHARACTES 	L 	T 	7 	E-T
BLAC
CHARACIEPS 	T? 	11 	S 	T 	TO 	:-

¼

CHA.CTES 	12 	TO 	15
• NE

_. RECOC 	hAS 	Ez2N 	:To 	T 	AFD -ESS
*-.-*sT)py 	C0t4PLEIEL**

Nit 	CUSTOER 	Ar)DC

•
H 	, *** 	EN!; 	CF 	N 	COST (CF 	. IN

• •----- 	- 	 .•

• Data:2l

Li RECORD 	TYPE 	CUST 	VERSION 	1 	FOUND

AT 	A D D 	555 	3

FOLLC.W I\O 	fl F ,-, R t ' Al T IC;. 	I S 	FRO' - 	RE STRUCTUPING 	pCUTINE 	***
VERSION 	NUfER 	OF 	? 	cor 	1YPS 	CUST 	AT 	ADD'ESS

IS 	BEING 	ALTERED 	TO
CHARACTERS 	1 	TO 	2 	WERi 	PREVIOUSLY
2

CHARACTERS 	3 	TO 	6 	V, -- F 	?-iVJOUSLV

Li SIT
CHARACTERS 	7 	TO 	10 	CE 	FEVIOUSLY

H ,J4

CHAR.\CTEPS 	11 	TO 	14 	hr 	:VIOIJSLY

CHARACTERS 	1 	TO 	E 	H 	c i-:N 	SET 	TO 	:-

• 2
CHARACTERS 	3 	T 	3 	S 	SINO 	S 	TO 	SRPCES

• CHARACTERS 	4 	TO 	7 	H.V5 	NECH 	SET 	TO 	:-

SHIT
CHARACTERS 	N 	TO 	11 	20:H 	SET 	TO
H,JA
CHARACTERS 	12 	TO 	15 	HAVE 	EESN 	SET 	TO 	:-

• NES
R 20000 	V AS 	Sih 	ST: LC TOR EO

• IF 	NO 	OTHER 	REGUEST 	:5 	CuTS1AhDIG 	TYPE 	REPLY 21

Data: 21

• 	 : RECORD 	TYPE 	COST 	 2 	FOUND
• AT 	ADDESS 	9

THIS 	RECORD 	HAS 	ALP.EADY 	E-=E N 	RESTRUCTURED 	AND NEED 	NOT BE 	ALTERED
•

IF 	NO 	0 THE1 	REQUEST 	I S 	OUTSIANDING 	TYPE 	REPLY 21

• 	 : 	
•

a

C

C

(

(

(

2

- C

C.-

'7

C

C

C

—A319--

(

	

CLOS :. 	STLCT11C CC, iv PITE

- Data:29

THE CUcREHT SCHEMA

RECORD TYPE CUST VERSION 2
DATA I T E A, C Q v START AT 	1 END AT 	2 FORMAT ,12)
DATA IT EPI PEE 	STAR I PT 	3 END AT 	3 FORMAT ,I1)
DATA IrEfr NAM1 START PT 	A EliD AT 	7 FORMAT ,A4)
DATA IT EM NAM2 START AT E END AT 11 FORMAT ,A4)
DATA ITEI tAV3 STARI AT 12 EWD AT 15 FORMAT ,P4.)
SET NAME CUAC POINTER TYPE FRST
SET NAME CUAC POINTER TYPE LAST
KEY DATA ITEM CNUM

RECORD TYPE ACt-U VERSION 	1
DATP ITEM ACHO START AT 	1 END AT 	2 FORMAT ,12)
DATA ITEM ERNO STAR I PT 	3 END AT 	k FORMAT ,I2)
DATA ITEM CUHO START PT 	5 END AT 	6 FORMPT ,I)
DATA ITEMMALE STRI PT 7 END U 11 FORMAT ,15)
DATA iTE" PCTP STPF.T "1 12 END AT 13 FORMAT ,2)
SET NP.E CUAC PCINTER TYPE NEXT
SET NAME CLAC POINTER TYPE PEIR
SET NAME CUAC POINTER TYPE CWNR
KEY DATA ITEM ACNO

RECORD TYFEERCH 	EP.SiOM 	1
DATA ITEM ENUN STAR 1 PT 	1 END AT 	2 FORMAT ,12:)
DATA ITEM ENM1 START PT END AT 6 FCRPT ,A4
DATA ITEM ENM2 START PT 7 END AT 10 FORMAT ,A4)
DATA ITEP ENM3 START AT 11 END AT 14 FORMAT ,A4:)
DATA ITEM LOCH START AT 15 END AT 15 FORMAT ,01)
KEY DATA ITEM DNIjM

SET NAME CUAC

OWNER RECORD TYPE CLET MATCHING DATA ITEM CNUM
MEMBER RECORD TYPE ACNT MPTCHING DATA ITEM CUNO
POSITION OF NEW INSERTS —LAST

Data: 30

*** THE CURRENT DATA EASE ***

• ADD RECORD V?SU DATA POINTERS
• 	 C

- 	 .-•. 1 C!JSI 2 121CtES,JACi< 2 	
6 	0 0 0 0 0 0 0 C

Al-
	 .. 2 CNT 1 1 	1 	1 	11 CA 6 	0 	1 0 0 0 	0 	C 0 0 C 3 COST Z 2 	sr•.rr,j.r s 	ü ü ü o o o c o L. CNT 1 1 C J U 3 C C 5 ctr 1 22 	.A 0 4 3U0 CUrt

(e, NT 1 1 	1 	L4C 0 	2 	1 	0 U U 	0 C U U
•(1 TEiCEW.' 	J C 	U 	• C 	U C

.LLT) .

2 . I•.-

- A3 .20 -

Closed Restructuring to delete the Age Group from the

Customer Record

The opposite function to that described above can also

be carried out using a closed strategy. To delete a

data item the user enters a code of 22 on his terminal.

In this case only the name of the data item to be

deleted and the name of its record are requested.

Once again the first customer record is immediately

found for customer 1 at address 1. This is then

restructured to version 3 by re-allocating the position

of subsequent data items.

Version 1 of the Amend Customer Details program can

once again be run and in this case there is no difficulty

in.operating on the record which has just been restruc-

tured. Similarly, version 1 of the Add New Customer

Program can be used to add a record for customer 4

(Carol White) at version 3.

The records for customers 2 and 3 are then restructured

and that for customer 4 bypassed since it is already at

version 3. Since the restructuring is then complete

the obsolete reference to the version 2 customer record

in the schema is then removed.

-

—A32J-

(.
Dat:2'

Sf 	OF 	DLTE r A 1A 	I1E' 	ESTUCTURING
TYPE 	.OPE 	CR 	CL 	FC 	TP 	CF 	RESTRUCTUIWG

7.

FOLLOD 	BY 	 !i 	DATA 	ITEF 	EE 	DELETED

C D a t a : CLSO 	CLST 	ME
CLCSEb 	RESTRUCTUI(f,.OW 	UNDER 	WAY
RECCD 	TYPE 	Ct.T 	VERStC 	2 	FOU 	0

• AT 	ARES 31 	1

FOLLCW ING 	flF0RATICN 	IS 	FROM RESTRUCTURING 	ROUTINE 	***
- (VERSION 	NUVEER 	CF 	R EC3Pt 	TYPE 	CUST 	AT 	ADDRESS

IS 	BEINC 	ALTERED 	TO 	3
• CHARACTERS 	1 	TO 	2 	WERE 	PREVIOUSLY

• 	
. 	 .:: C 1

CHARACTERS 	/ 	 TO 	7 	WERE 	PREVIOUSLY
JONE 	 -

C CHARACTERS 	S 	TO 	11 	W 	RE 	FRVIOUSLY
S,JA

• 	 .- CHARACTERS 	12 	TO 	15 	WERE 	FRVIOUSLY

• 	•:'. 	 •: CK

• . 	 . 	 . CHARACTERS 	1 	T(' 	2 	V 	E5: 	SET 	T 	:-
- 	

•--: -. 	 ' 	CHARACTERS 	3 IC 	6 HAVE EEEN SET TO
- 	•:..;;- 	 JONE

CHPRACTEE 	7 10 10 HAVE ECRN SET TO
* 	

C 	S , J A
CHARACTERS 11 TO 14 HAVE 	-N ST TO -

CK
PEt CR0 HAS E F: F N RFSTFLCTURED

*' . .- 	 •-- 	IF NO OTHER REQUEST IS CUTSTANDINC TYPE REPLY 21
• 	 ;• •,l:.. 	

.:.

Data 	29

• : 	.: 	•- *** 	THE
• 	 :

-.

CUFRENI SCHEMA 	**

	

•'-. 	-:- 	RECORD TYPE CUST VERSION 	3
c; DATA ITE' CUR START PT 1 END AT 2 FORMAT ,12)

DATA ITEMPPM1 STAR1 AT 3 END AT 6 FORMAT ,A4)
DATA lIEN -N2 START AT 7 END AT 10 FORMAT ,A4)
DATA lIEN hAM3 STAR lAT 11 END AT 14 FORMAT ,A4)

	

- . 	C 	SET WANE CLPC POINTER TYPE FRST
- - 	'•. - . . . 	 SET NkNE CUAC POI TER TYPE LAST

: 	• 	. 	 KEY DATA hEr CNUM

' (

RECORD TYPE CL'ST VERSION 2
DATA IT -11 C NU TA'T T 	1 N0 AT 2 FOPNPT 12)

DATA IT EP A CE C START /m T END MT 3 FOPAT IT)
-.• DATA ITE M1 STAR 1 AT 	4 END AT 7 FORAT ,A4)

• DATA IYEt STAR 1 PT ED AT 11 FORNAT ,A4:

(
DATA T7t ETR1 T 	12 LND AT 15 FORM AT ,A4)

SET CL'PC PCINTER TY: F.S1

SET .- CU.0 TYPE LT

(
KEY P Ii-- Ct.L • -

I Tff--•-- - 	 -

• 	 •:•. ;

R 	C 	T 	v 	LC i 	 —A3.22
(DT A 	T T Z. 	5 T . -- 	 T 	I .,T F 0 	 1,) ,u

0 	T 	r 	 i 	1 	T F(' 	 -T) ,T
0-1 	IT v V 	C I 	T1 	I 	- Ji 	'1 	6 F 	I 	I') (D 	' i 	EPLC 	.RT 	7 AT 	11 FPAT ,I) D;Tti 	JTr. 	tCT 	 1.7 	l ~ 0 	AT 	1 Z F(ri,T 	% 2

- ,;.. SET1Y 	CULPUIMTE 	T?E XT
C SET 	A l l E 	CUpc 	Pol f .TEIR 	TYPE FRIR

SET 	NAr E 	CUAC 	PCINT E R 	TYP F. CIF'R
KEV 	D 4 TA 	11'4 	.C4O

- RECORD 	TY t.0 	FPC- 	VER..t 1
DATA 	iTE F 	Et UP, 	SIT 	 1 	P T 	1 END 	AT 	2 FOPT 	I)

r C DATA 	IT Eiv 	Eti11 	STPF 	T END 	AT 	(FOR' AT ,14
DTA 	ITEr 	P2 	STAR 	T 	7 END 	AT 	10 FORPT D.TA 	ITE 	Fiw3 	TART 	PT 	11 END 	AT 	1 4

,AL)
FOP" AT ,A4) C DATA 	ITEV 	LCCN 	STAR 1 	AT 	15

KtY 	DATA IT 	te 	EtIM
END 	AT 	15 FORMAT 	Al

SET 	N,.WE 	CUAC
OWNER 	RECORD 	TYPE 	CUST 	MATC H ING 	DATA
MEMBER 	RECCIRD 	TYPE 	ACNT 	MATCHING 	DAT...

ITEM 	CNUM
ITEfr 	CUuo POSITION 	OF NEW 	INSERTS LAST

Dta:D
C

RUN 	OF 	Pfrro 	CUSrOMR 	OTAILS TYPE 	
VRSIC 	NUMBER 	OF 	PP. GIG

PROGRA' 	***
NAM

C 'Data;l
TYPE 	CUS TOE P 	NUMEE - 	NC 	PMFNDED N AM, E Data 	1 	JONES 	ALP,'

C .
: ***F.1LLCI NG 	IM FORM PTIQ, 	IS FROM 	'F3ND1'**

DErs 	IS 	: 	RLHINC 	FOR
-• RECORD 	TYPE 	CUST 	VERSION 	3

WITH 	CHARACTERS 	1 	10 	2 	EQLPL TO

(

RECORD 	FCUC 	AT 	ADDRESS 	1 VERSION 	3
COF4 PLETEC***

(***FOLLOUINC 	INFOPfpTIO 	IS FROM 	'MOt'IFY'***
3/ 	 ... CHARACTERS 	3 TO 	b -

OF 	RECORD 	TYPE 	CUST 	V -RSION 3 	AT 	ADDRESS 1
kAVE : BEEN 	ALTERED TO

'-' JONE \ 7 ***'MODIFY ' COMPLETED***
c

***FOLLCWflC 	INFCRMPTION 	IS •FROM 	•MODIFY •, **
CHARACTERS 	7 	TO 	10

C OF 	RECC.RP 	TYPE 	CUST 	V..IICN 3 	AT 	ADDRESS 	1
HAVE 	PEE 	LTRED 	IC

I S_AL
C *** 'MODIFY ' 	 COPLET ED***

***FOLLOj 	INFGRh.TJON IS FROM 'MCDIFY'** ••
• 	 : 	C. 	CHARACTERs 11 T 	14

OF PC'C.E TVP 	C1.ST VFSJCN 	3 AT 1D0RS 	1
E. LLr;[IC

L AN

IY '

CLSTO • 	 0 ''''''''''''''''' CUC1'...NFF
	CT'.1L5 	;r

-

S

C 	Dta: 	 -A3.23-

I

C

ft-2
C-

:

C-

C

C
• ..

C

C

CC IH: ;S. 	C'S 10ER PRDGAM 	**
TYPE V ?SICf. f:U 	OF PO&R
Data 1

TYPE CUSTOPER NUMBER AND NAME
Data :04 WH ITE,CARcL

FOLLC:ING INFORMATION IS FROM 'STORE'
THE FOLL(wItG tlEW RECORD
IS EEIG ADDED TO TE DATA EASE

RECORD TYPE CtJST
VERSION 3
ALL POINTS P.S ZERO
UNII\ITTPLISED CHARACTERS SPCES
CHARACTERS 	1 TC 2 SET TO
4

CHARACTERS 3 To 6 SET TC
WHIT
CHARACTE 	7 IC 10 SET IC
E ,CA
CHPRACTEtS 11 IC 14 SET TC
ROL
RECCF 	I"S C T1, STOTE 	T ACDc?53$ 1C
***'STORZS C1PLETEc**
NEW CUSTCMER ADrED
*** E.P CF t:w DUST CEP F IN ***

Data :21

RECORD TYPE CUSI VERSION 2 FOUND
AT ADDRESS 3

C *** FCI LCW INC. INFORMATION IFPO 	RD ST 	CTU RING POUTI 	*** --.• VERSION 	NUEER OF 	R ECCRD TYPE 	CUST 	AT 	ADDRESS 3 IS 	EEING 	ALTERED 10 3
C CHARACTERS 1 TO 	2 WERE PREVIOUSLY

2
CHARACTERS 4 TO 	7 W lzR E PREVIOUSLY

C SIT

Jt CHARACTERS 8T0 11 WERE FREVIOtJSLY
- 	 •- 	-'• H 	J A

-. CHARACrEs 12 TO 	15 WERE PREVIOUSLY
•

MS
. 	 ".

CHARACTERS 1 TO 	2 HAVE FEEN 	SET 	TO 	:-
C. 2

CARACTS 3 TO 	6 HAVE BEEN 	SET 	TO 	:

-
SNIT

C CHARACTERS 7 TO 	10 HAVE EE Eli 	SET 	TO
H,J
CHARACTERS 11 TO 	14 HAVE BEEN 	SET 	TO

C - 	
• 	 •:- 	' 	 • 	

- **
NTPLCTUSED ***

•
• IF 	NO 	OTEF -5T I:- 	cuTs Tt4D!hE 	TYP. 	PLY 	21

• 	 •. :

-

V

-

- - - 	
- 	 -5 	 -. c

- 	 -'--

-A3.24-
C

• 	 •• 	•

:y• 	•

D a t 	:21
RCORO 	TYPE 	CUST 	VESjQN 2 	FOUND

(. AT 	ADDRESS 	9

(

*** 	FJLLCWI:. INFORAT1CN IS 	FROM RESTRUCTURING 	ROUTINE VERSION 	NUER 	OF 	RECORD TYPZ 	COST 	AT 	ADDRESS 	c IS 	BEING 	ALTERED 	TO 3
CHARACTERS 	1 TO 	2 WPE PREVIOUSLY
3

CHARACTERS 	4 T 	7 WERE FRVIOUSLY
BLAC
CHARACTEPS 	E TO 	11 WERE PREVIOuSLY.
K, A N
CHARACTERS 	12 TO 	15 W REV!OUSLy

(NE
CHARACTES 	1 IC 	2 HVE E 	EN 	SET 	TO 	:-
3

(CHAR4CTFS 	3 TC 	6 - 	 -VE tEEJ 	SET 	TO
BLAC
CIfARACTE1S 	7 TO 	10 HIVE FEEN 	SET 	TO
K,AN
CHARACTERS 	11 TO 	14 HAVE EEEN 	SET 	TO
NE -

C. *** 	RECOF 	HAS ?FEN ESTfLCTURED *k*
IF 	NO 	OTHER 	RECUEST IS 	OUT31ANDING TYPE 	REPLY 	21

C 	Data:21.
RECORD TYPE COST VERSION 3 FOUND
AT ADDRESS 10

C 	THIS RECORD HAS ALREADY EEEPt RESTRUCTURED AND NEED hOT BE ALTERED IF NO OTHER REQUEST IS CL'TSTANDIN 	TYPE REPLY 21

C-

*** 	CLOSED 	REST

-:

S

V 	

V

 —A325 -

Data: 2

*** TN 	CJF.RcT 'S CH EP

I 	- RECC0 TYFE CUST VERSION 	3
DATA ITEP CNUP START 	AT 	1 	END AT 	2 	FORPT ,12)

V (DATA ITr1 N/.M1 START 	AT 	3 	END AT 	6 	FORMAT 	,A4)
DATA ITE P;AMZ START 	AT 	7 	END AT 	10 	FOPPT 	,A4)
DATA 17E A3 START 	AT 	11 	END AT 	14 	FORMAT 	,A4)

V

: 	
•-.

SET >AE CPC POITEP 	TYPE 	FRET
SET NAME CUAC POINTER 	TYPE 	LAST
KEY DATA ITEV CNLM

V

V

ç V V

V
RECORD TYPE ACNT VERSION 	1

V 	 -- 	 - 	
- - 	'V• DATA ITEM ACNO START 	PT 	1 	END AT 	2 	FORM AT ,12;

(DATA ITEr ERHO START 	AT 	3 	END AT 	4 	FOR M AT) ,12
- DATA TTE V CUNO STAR 1 	PT 	S 	EN D AT 	6 	FORAT ,12)

DATA IT 	V EALC START 	PT 	7 	EN D AT 	11 	F 	PMPT 	IS)
(TV DATA ITE V ACTP STAR 	AT 	12 	cND..AT 13 	FORMAT ,42)

SET NAME CUAC POINTER 	TYPE 	NEXT
V 	 - 	- 	V• 	

VV

SET NAME CUAC PCIT ER 	TYPE 	PR 	R
(SET N 4 M, E CIPC POINTER 	TYP a 	OwNR

KEY DVCTA ITEW PCPO

(RECQR' TYPE PrC4 VErjON 	1
DATA I T E ENLUV SAp7 	AT 	1 	END AT 	2 	FORT 	,12)

• 	.:VV DATA ITEfr EN1 ETARI 	?T 	3 	END AT 	6 	FORMAT 	,P4)
DATA IT EM ENP? START 	/T 	7 	END AT 	10 	FORMAT ,A4)

- DATA If EM E M'3 STAR 1 	AT 	11 	END AT 	14 	FORMAT ,A4)
DATA iTEM L C C N 5TA1 	A T 	15 	N D 15 	rCR'PT 	Al

C KEY DATA ITEM PNUM

:. SET NAVE CUAC
OWNER C RECORD TYPE CLJST 	ivATCFING DATA 	ITEM 	CNUrI
MEMBER RECCRD TYPE 	PCNT MATCHING DATA ITEM 	CU JO
POSITION CF 	NEW INS EFTS 	- 	LAST

1_
Data:30

...........

1S V

THE 	CURRENT DATA 	EASE
V

V 	
V

1
'.r 2

CUST
----- ---- — ------------ -------------------

1J0NS,ALAN 2 6 0 0 0 0 0 0 0 0
ACNT 1 1 	1 	1 	11 CA 6 0 10 0 0 00 0 0

(
3 CUST 3 2 SMITH 	JPM ES 4 5 0 0 0 0 0 0 0 0
4 AC NT 1 212 	22 (A 5030000000 V 	

VV 	
V. 5 ?CNT 1 1 	2 	2 	33cA 0 4 3 C 0 0 0 0 0 0

V
6 ACNT 1 411 	44CA 0210000000

VVV . V 7 5p I 1EIGIOWN 	U 0 0 0 0 0 0 0 0 0 0
S E?CF 1 2SALLTCN 	R V 	 0 0 0 0 0 0 0 0 0 0

V V 9 ru S 7 3 3LC,ANNE 3 0 0 0 0 0 0 00 0
10 CUT 4W!-IiE,C 0 CL 000000Lj ii , 	Oc

• 	• 	
. 	V

V 	 V

- A3.26 -

Closed Restructuring to expand the format of the Balance

flil 	T*m

To amend the format of a data item the user must enter

a code of 23 on his terminal. The DBMS responds by

requesting the new FORTRAN format of the data item.

In this case Balance changes from IS to 16.

The run of the Transaction Posting program prior to the

restructuring shows £10 being posted to account 02.

Once the restructuring is initiated the first account

record on the data base for account 1 at address 2 is

restructured to version 2 by accommodating an additional

character for the Balance data item. The schema is

altered to hold details of both version 1 and version 2

Account records. Account 2 is then similarly restructured.

The Transaction Posting program at version 2 is then run

to post a further £10 to account 2. The difference in

version is necessary to allow a balance of up to six

digits to be printed. The same version of the Transaction

Posting program is then used to post £10 to account 3.

Since this has not yet been restructured this is done

prior to the record being modified.

The restructuring mechanism is then allowed to continue

and on encountering the record for account 3 it detects

that there is no requirement for restructuring. When

account 4 is restructured the operation is complete and

the entry for version 1 of the account record on the

schema can be removed.

1

..:

(-A3.27-

Data
(

***RIj? 	C F 	T 	7 	cr 	P.;T
• 	: :... TYPEV 	p 	I CNU: 	OF 	2 ROGRAM

C Data 	2
TYPE 	 ur- 	VL1E 	t 	ES 	POSTED
Data 	C2 	CO1C

C
FOLLCtj 	C 	JN FO RM P lION 	IS 	FROM 	'F I M 1

DENS 	IS 	S E PRCHING 	FOR
17, C RECORD 	TYPE 	4CNT 	VERSION 	1

WITH 	CHARACTERS 	1 	10 	2 	rQLAL 	To

C RECO) 	FGUND 	AT 	ADDZSS 	4 	VERSIOI, 	1
COMPLETE C***

FOLLOWIbC !NFO -aM OTION 	IS 	FPO 	'GET'
CHARACTES 	7 	TO 	11
CFRECCRD 	TYPE 	ACN1 	VEPSJO 	1-AT 	ADDRESS 	4 AS;;: -

- **'GETS 	C0LET**

(***FOLL OWI N1, 	INFORMATION 	IS 	FROM 	'MOCIFY'***
CHARACTERS 	7 	TO 	11
OF 	RSCR5 	1YS 	ACNT 	VESSI: 	1 	AT 	ADDRESS 	4

(HAVE EN 	M_-RrD TO
32

DyS 	COMPLSTEO
TRANSACTION 	OF 	$ 	1G 	POSTEC 	- NEW 	E-ALANCE 32

f.
E N D 	CF 	TRANS ACT flr, 	CTiG 	RUN**

c

(, Data 30

*** 	THE 	CURRENT 	DATA 	EASE 	***

• ADD 	RECORD 	VRSN 	DATA
POINTERS 	 T/

(1 	CUST 	1 	1JCNFS,ALA
2 	ACNT 	1 	1 	1 	1

2 6 	0 0 	0 0 0 0 	0 0 	C
. .

11 CA
3 	CUST 	1 	2SITH,JMES

6 0 1 0 0 0 0 0 0 0 	C
AC NT 	1 	212 	32

4 5 0 0 0 0 0 0 0 0 	C (A
5 	ACNT 	1 	3 	2

5030000Q 	 C 2 	33A
6 0 4 30 0 0 00 0 0

C
P.NT 	1 	4.1 	1 	44CA

7
0

0 2 	10 	0 0 0 0 U 0 	0 ERCp. 	1 	1BICTQN 	U 0 0 0 0 S 	ECH 	1 	2SPALL TOWN 	R
0 0 0 0 C 0 	0

.. 0 0 0 0 0 0 0 0 0 0 	0
- C

C

•-• •.-. Data:3

STTOFptOffl 	JTS 	FOR MPTPSTPUCTUI TYP2 	 : 	CLD 	F(TVE 	(C 	RESTPLCTUPIIC C F0LL0- 	Y 	 , 	 IT 	 LNC-1 P. 	0 	N 	FOçT Dat?:CL.Sr 	A Cl.T 	_.- LC 	•
• ***CiCO 	ST1UCrt;::T 	I.G

(_ RC.' 	7' 	- 	 1 	i

5

'

-

_ 	Q

•...

-

C

C

C.

C

C

C

C

C

C

C

(.

(

	

• 	•. 	 .. 	;.

'• 	 FCRi!(' ! 	F 	 STUCTLRII,C. 	0uTINE •**

VERST' 	 :F pers 1 iYP:,ACT PT Jt',i3S 	2

IS OE' (- 	L T -,', 	T O

CAR'CTP 	1 TO 	2 W 	F v1OUSL.

CHARACTERS 3 TC 4 WERE FEVIGUSLY

CHARACTERS 	T' 	o ..RE FREVIOUSLY

CHARACTCS 7 TO 11 wE'E PREVIOUSLY

11
CHARACTERS 12 TO 13 .ERE PREVIOUSLY

CA:
CHARACTERS 	1 TC 2 HPVE EEEN SET TO

1
CHARACTEFS 3 TO 4 H;VE EEEN SET TO

CHARACTERS 5 TO & HAVE EEEN SET TO
1

CHARACTEfS 	7 TO 12 l-4'V2 FEE t.1 ST TO :-
11

CHARACTERS 13 TC 14 HPVE EEEN SST TO :

-
CA

RECORD HAS FN 	STRLCTUP.ED
IF NO OTFER pStjE5;T II CUTSTANDINE TYPE REPLY 21

Data :2°

THE CURREtT SCH F P '**

RECORD TYPE CUST VERSION 1
DATA ITEM CNUM START 	T 	1 END AT 	2 FORMAT ,12)

DATA !TEF, NAM1 START AT S END AT 6 FORMAT ,P.4)
DATA ITEM NAM2 START AT 7 END AT 10 FORMAT ,A4)
DATA ITEM NAM3 START AT 11 END AT 14 FORMAT ,A4)
SET NAME CLPC POINTER TYPE FRST
SET NPE CUAC POINTER TYPE LAST
KEY DATA ITEM CNUN

RECOROTYPE ACNT VERSION 2 	 -
:DATA ITEM ACNO START AT 1 END AT 2 FORMAT ,I2)
'DATA ITEI' ERNO' STAR l AT 	3 END AT 	4 FORMAT ,I2)

DATA ITEM CL'NO START AT 	5 END AT 6 FORMAT ,Ia)

DATA ITEM EALC START PT 	7 END AT 12 FORMAT ,I&)
DATA ITEM PCTP START AT 13 END AT 1L FORMAT ,A2)
SET NAME CUPC ?CINTER TYPE NEXT

SET NAME CLAC POINTER TYPE PRIR
SET NAME CUAC PCINTE TYPE CWr4P
KEY DATA ITEM ACNC

RECORD Ty;-- E PCNT VERSION 	1
DATA !TM ACNO STAR 1 	T 	1 ENO AT 	2 FOrM AT ,I2.)

OPTA ITEI 	Rku START -''F 	. ED AT 	& FORT R I?)

D.TA 17 V CU.t. 	 -T 	" 	T 	4 F.AT ,I)

DATA IJ L(•T 	 T 11 FPT

DATA £TEI ,'.CTP 	T1 -T 12 -N L' AT 1 	FOV 	T ,2)

	

SET r.AE CL.:C POirT 	IYP 	X1

SET : 	5 CUC 	I..T2- I °E 	ER

S - T 	. 	CL 	T 	TY 	.'1.:!

RECO 	TY 	 VE'SI(; 	1 	. 	 A3.29

"AT4 Jh _,\;. 	7,RT 	1 	G 	.T 	2 FOR!'1 ,T2)
(jt 	 T 	6 FtRfrT • i4)

DT' 	 T 	7 .: .T it.. FO'T ,A4)
DATi 	 TPR1 	i 11 	.O A 	11. FOP'IT ,A4)

(D/ -T a .TzJN LC... ST.R1 	T 1 3::i!) AT 15 FORT ,Ai.)

- 	 KZY 0 P TA hr 	bPtir'

C' 	SET NAME COAt.
OWNER R ECOFU TYPE CUST 	A1CING DATA I Et CNUH
MEMEER R2CCRD TYPE ACT M A TCHING DATA ITEM CUD

(POSITION OF NEW INS EP1 	- LAST

C

C

C 	** FOLLCWItC V FOPt'PTICN IS FROM RESTRUCTURING ROUTINE ***
V_PSION NU?E 	OF RECORD TYPE ACT AT ADDRESS
IS BEINIG ALTERED TO 	2

C. 	CHARACTERS 	1 TO 2 WERE PREVIOUSLY
2

CHARACTERS 3 TC 4 WERE FR EVI3USLY

(1
CHARACTERS 	I TO 	WERE kEVI0USLY

(CHARACTERS 	7 TO 11 WERE RREVIOUSLY

32
C H A RA C r 	TO 13 W? PREVIOUSLY

C CA
CHARACTEFS 	1 TO 2 PAVE EEE4 SET TO 	-

2

' 	(CHARAc'Er 	TO 4 HV E 	ST TO -

r 	 1
CHARACTERS 5 TO 6 HAVE FEEN SET TO -

CHARACTERS 	7 T' 12 HAVE E:EH S:T TO -
- 	 32

C 	CHARACTERS 13 T 	11. ',AVE eEEN ST TO -

CA
RC(.FD HAS FEcN RtSTPICTDRED

(IF NO OTHER REQUEST IS OUTS1ANDINC TYPE REPLY 21

-.'•.t?..... .
Data 02

c
::,.•. 	. 	. 	** ut.J OF TRANSACTION POSTING PPOGRA***

TYPE VFRSICF NUFLP OF PROGRAM

(
Data :2
TYPE ?CCGUt%T UtER ND VALI TO EE POSTED

	

. .: 	 Data:[2 [010

	

* FOLL C 6- 1 N C I ' F.Rm t I 10 	iS FRO!". • F I D i •
DFtS J 	SJC FOE.

(RECO°t TYP 	N 	V ESi ON, 	2

WITH CA'ACT-.2S 	1 10 	2 t'LAL TO
4,

(. 	RCO 	Ft.1i 	T

**F 	Cl,

Data :21

RECORD TYPE ACNT VERSION 1 FOUND

AT ADDRESS 4

11

t: tiJflMATI0N
 CHARACTERS 7 10 12

OF R ECO RO TYPE ACH 1 V E S 10

32
*'GET 	COPrFLETED***

2 AT ADDRESS 	4 ARE: -

f- 	***FGLLCW1 	IF0rMPTL, IS F' 	S10DIFYI**

CHARACTERS 7 . TO 12
OF RECORD TYPE PCNT 5(F 2 AT AD1.ES

. 	HAVE.BEE 	T.ERD TO

it *.*MOD.IFY' CO MPLETED** 	 . 	 - 	- 	•

e •TRA%SA.TIO OF S 	10 POSTED 	
LANC .- NE.5 	 42

01RANShICN POSTING RUN***

-:-.-Yi 	•- 	 -

DataU

***RUh CF TRANS4CTICN
POSTING PROGRAI***

Q TYPE VERSION NUMCER OF PROGRAM
• 	 . 	 . . 	 - 	 -

4 TYPE..ACCcU1.NUNSER AN VAL.LE TO EE POSTED

	

Data C3 CO1C 	 -

*i*FOLiO.WI1G 	INFORMATION
IS FROM 	1NV

DBMS. 	IS 	-SEARCHING FOR

RECOR.D 'TYPE.'.. 	VERSION
2

2
EQUAL TO

WITH 	CHARACTERS 	1 	TO

3
NONE 	HAS 	BEEN 	FOUND 	

SC 	OS 	IS -HOW 	SEARCHING
	FOR

RECORD 	TYPE ACNT VERSION
2

1
EQUAL 	TO WITH CHARACTERS 	1 .10 .

3
FCUtD 	AT 	ADDRESS . RECORD

5%jERSI0P 	1

.**'FIND1' 	•COMPLETEC*** -

INFORMATION IS 	FROM

%.. CHARACTERS 	7.10 11 	 -
-. 	0F RECCRD TYPE ACNT jERSIO 	

1 AT ADDRESS 	S A

33 	 -
COYPLETED*** 	 .

.***FOlL0WI 	
INFORMATION IS FROM 1140D1fy'***

FOLLCWIHG INFCR(ATICN IS FRO RESTRUCTURING ROUTINE

ER S110
RICORD,-1YPE ACN.T.A1 ADDRES.S ..5:..

C iS eEThG ALTERED TO Z
CHARACTERS 1 TO 2 WERE PREVIOUSLY

3
CHARACTERS 3 TO . 4 	ERE-FREV10US 	

- :-

2
•CCC 	c 10 6 WERE FREVIOUSLY

2
CHARACTERS 7 TO 11 WERE FREVIOUSLY

33
12 TO 13 WERE PREVIOUSLY
.- - 	 -. 	--

D A
1 	TO 2 HAVE GEEN SET TO 	-

CHARACTERS

(
3

3 	TO 4 HAVE GEEN SET TO
CHARACTERS

-. 	-. a
CHARACTERS r 	TO 6 HAVE EEEN ST TO

CHARACTERS 7 	Ic 12 HAVE FEEN SET TO 	:-

--'• 	
Ps;;. 	•-

• 	 '. 	
:

(
33

' 	 •• r 1L .'V t.S'TIQ
f 	tr 	'

.-

OF RECORD TYPE CHT VERSION 2 AT ADDRESS
HAVE BEE K ALTERED.--TC

43
'MQOIFY COMPI ETED 	 -

ØTiANSAC-TLD OF$ 	13S.TE -NEW BALANCE $
-.-43 Z 	 t

ENDCF TRASCTICN POST ItG RUN
.T

RECORD TYPE AC NT VERSION 2F0UND
SI ADDRESS 	 -

Q THIS RECORD HAS ALREAYBEENRESTRUCTURED' 	NEEDNOT BE- ALTERED
IF NO OTHER REQUEST IS OUTSTANDING TYPE REPLY 21

Data:21 	 -
RECORD - T.YPE ACNT VERSION 1 FOUND
AT ADDRESS 6 	 -

FOLLOW ING INFORMATION I S FROM RESTRUCTURING ROUTINE'***
VERSION NUPBER OF RECORD ;1YPE ACNT AT ADDRESS . C
IS BEING ALTEREDTO. 	2 	 . 	.
CHARACTERS iTO 2 wERE FREVIOUSLY 	.

..4.

-CHARACTERS 3 TO 4 WERE PREVIOUSLY
.........

CHARACTERS 5 TO 6 WERE PREVIOUSLY 	-

. CHARACTERS 7 TO 11 WERE FREVIOUSLY 	 -

CHARACTERS 12 TO-13 WERE REVIOUSLY
CA,
CHARACTERS 1 TO 	H?VE EEEN SET 1O -r
-. 4 	' 	 .7" 	•
CHARACTUS 3— TO - 4 H\ E E EN S-El TO

	

AV E 	-

CHARACTERS 5 TO 6 HAVE EEEN SET TO -

CHARACTERS 	7 TO 12 HAVE BEEN SET TO :—- . J

44 	 . 	. 	-. 	.
CHARACTERS 1.3 T014 HAVE EEEN SET TO':-

CA
RECORD PAS BEEN RESTRICTURED

IF NO OTHER REQUEST IS OUTSTANDING TYPE REPLY 21

Daita:21 	
RSTUCTRING COMPLETE

• C .

•.- 	t.

C

C

(I

(

(.

- • .

C

•

• 	 . 	 .. 	
. C

C

S

-A332 -

T! , - 	C;T 	 **...

RECO 	TYPE CUST VP. h5JOt
DATA IT EP CMj? ST:R I 	T 	1
DATA ITEf ?ir1 STAR 1 3T 	3
DATA iiEI tA1'2 STT AT 	7
DATA ITEM tAN3 START /T 11
SET R.tE CUAC PCINT. TYPE

SET r4A:; E CUC PCIt-rr ER TYPE
KEY DATA I TEr CNUM

RECORD 	TYPE 	ACNT 	VERSIO.j 2
DATA 	IT 	ACr0 	START 	AT 	1 EN 	AT 2 FORpT ,12) DATA 	ITEr' 	FRNO 	STARI 	T 	3 ES 	AT 4 FORMAT ,12) DATA 	hEr 	CLNo 	STflT 	AT 	S ND 	AT 6 FORMAT ,12) DATA 	ITEr 	EALC 	START 	AT 	7 END 	AT 12 FORAT ,16) DATA 	IT EP 	ACTp 	START 	AT 	13 END 	AT 14 FORAT A2) SET 	N4 e, E 	CLAC 	PCIrT EP 	TYPE
SET 	NAME 	CUAC 	POINTER 	TYPE FRIR
SET 	NM;E 	CL.Ac 	pc.1 NT ER 	TYPE OWNR
KEY 	D4TA 	ITEM 	ACru

RECOio 	TYPE 	E0C H 	VERso N 1
DATA 	1 	C 1, 	INUF 	START 	Z T 	1 E1D 	AT 2 F(iPA1 ,I) DATA 	ITE F1 	ENS. 1 	START 	AT 	3 END 	AT 6 FO P.M .Ar ,A4) DATA 	ITE 	Pt.M2 	START 	AT 	7 END 	AT 10 FORMAT ,A4) DATA 	ITEM 	ENM3 	START 	AT 	11
DATA

END 	AT 14 FORMAT ,P4) liE? 	LCCIJ 	START 	AT 	1D
KEY

END 	AT 45 FOP--AT Al) DATA 	ITEM, 	EPU1

SET NAME C1C
OWNER

RECORD TYPE CUST MAiCIING DATA ITEM CHUM
MEMEER RECCRD TYPE ACNT MATCHING DATA ITEM CUNO
PCSITlO, CF.,,:EW INSERTS - LAST

Data 30

*** THE CURRENT DATA EASE ***

ADD RECORD VRSN DATA
POINTERS

1 CUST 1 licNESIALAt,
2 ACN1 2 1 	1 	1 	11CA

2 6 0 0 0 C 0 0 0 C
3 C IIST 1 ZSMITH,JANES

6 0 	1 0 0 0 0 0 0 0
A C N T 2 2 	1 	2 	42C.A

4 5 	0 0 0 0 0 0 0 0
5 ACT 2 3 	2 	2 	430A

5 C. 	3 	0 0 0 0
6 Ac ?T 2 4 	1 	1 	L 4'-A 0 4 	3 0 0 0 0 0 U 0
7 SCH 1 15EGTOWN 	U

0 2 	1 	0 0 0 0 0 0 0'
LCM 1 S!ALLT0WN 0 U 0 0 0 0 0 0 0

•

-. .. .

E'C' AT 	2 FOR'j ,12)
END AT 	6 FCR.AT ,A4)

D AT 10 FCQrAT ,A4:)

4D AT 14 FOEM.T ,A4)
F5T
LAST

- A3 .33 -

A second run of the same restructuring is also shown.

In this case a run of the original version of the

Calculate Balance Program takes place after the record

for account 1 has been restructured. The DBMS responds

to the GET command from the program for the Balance

from both a version 1 and version 2 account record

but it uses the schema definition of each to supply

the correct data. Even though the program accesses

the version 1 record for account 4 the DBMS does not

restructure it since it has not been modified.

S

—A334—

t 7 	F-T,1'(T-r 	1**
TYP7 	 C.. L 	-. 	F 	" . 	F 	a - 	n u c 117 1 N G

• 	 T 	 - 	.-.i.-, 	LJ(i 	-
(t: 	 ..t.(

C7 	LZMA 1 N 	i. 	w% D ,
R-C 	 ..T

***M L C 	Vc 	TA F. 	 ...
(V 	F. S i,.O OPPEF 	C c ROCM 	TV F- - 	:-f. j 	A7 	ADVEH 	C

IZ&T:C 	AT.r il 	10

1

C"A"I

C"A 	 11 	 ..
C ii

C

(C-' 	 1 	T 	. 	 .. 	CI

CHAI 1 0 7 	 7. 	4 	.i 	 . 	Sri 	1' 	:-

C:r: 	:. 7 	6 	F c: 	.

C-4- 	--1 	7 	To 	12 	 3 -T 	1 c.
• 	

- : CLAr.T..I.0 	1 - - 	r 	1L

(- c-
** 	•c. - 	- 	-N 	-TtT 	***
IF 	T- 	-.1 	55 	 .(: 	TP 	--1y 	Zl

(*,*u- 	CP 	KLANC I 	CPLCLLT5I...
TYFA 	' 	(7' 	%v-rF 	:F 	- •

(TYP.: 	..3 Tt 1

FT)1
:fr: 	.
C: C1' 	- 	ST
TT- 	-- 	-

cC-.

C' 	 •

ChII
F

w.
r C . F. 	- 	C 0

1 	1 	ZU'CC CF 	r : CC. 	TY'

 -

 	C1;Si

(
**'ç:-• 	C 	 -L. 	1 	'

***FOLLOWjI(- 	IFC,EATJ)r 	11 fO 	'GET'**

C' CHARACTE.. 	11 	TC 	iL
OF 	RCCOJ 	1yP 	CUSI 	VSIOH 1 	AT 	AuDESS 1 	P:--

(**GET' 	CC'PLcTEU**
0

H' LL CIt'G 	1 P FOH .TIr• 	IS F'J 	'F

C VbUC 	I 	CJHT 	1
OF 	RC.IRD 	TYFE 	CUST 	V 	SICN 1 	AT 	4[R'EE

IS 	2

• C VERSI' 	CF 	RECORC 	I V ? E 	PC1'T AT 	THIS 	PDFRESS IS 	2
'FjC2' 	CCfFLITC

•-•

(***FOLLGkINC 	IFOR1ATION 	IS FROM 	ET'**
• CHARACTFS 	7 	TO 	12

- ('F 	R 	CCP 	T'r 	ACNT 	- qs10 2 	AT 	ID 	S 2 	" 	-

**

	

G;: T' 	CO7L 	TEC**

• (***FOLI(.lJj(C 	JUF0TL0 	IS F.PO t 	FI?D'**
• VALUE 	I. 	P 	; 7 	1

OF 	k 	R 	TV?: 	/C-.i 	V 	1 CICI. T 	t - 	C? :S 	C

C Is 	o
VERITY. 	CF 	FCC-PC 	T)' 	1.C1.T et T 	THIS 	f2ESS IC

• ***'FI°-C' 	C- 	LiEI"

FOLIOWIHG 	 IS FC 	'GT'

CHARACiES 	7 	TO 	11

(OF 	kCCCP D. 	TYPE 	ACH1 	VC-5I3H 1 	41 	AIDESS
44

• 	 . 	 • 	 •-. ** 'GET' 	COL&TFU***

FCLLCI 	IHFOR 	T0 	IS F?O 	'FI\DZ'
• 	

: 	 •:. 	 - VALUE 	I N 	PCINTR 	1

• (OF 	IC 	P.0 	T 	?E 	4CT 	vCRI.. -I 	AT 	1C[RESS 	C
• 	

. IS 	C
***'FflDi' 	COrPLE1EC* , *

C BALANCE 	FOP 	CUSTOEF 	1 	JONES,ALAN IS 	E
***EN 'i 	CF 	EALANCE 	CLCULAIIN RU"J**

••0

(

(

1
'0

Data :1

RECCRC I Y 	A I 	 CIT VE'SIOi - . 	1 EUJD

AT ,00r 	S 	L

* * * FL':,.Ir,. 	IFCPTIC 	IS FS(' A2TLiOTLEU.'- 	oT:HF **

VERSION' 	iNEI.- LF RECRr 1Y 	ACHT i.T Al L 	L

IS ESI(LLTSAzC. TO
CHPR4CTES 	1 1 	• 	j -

C1-iA.'CT ' 	. 	7 	- - 	• 	VTC!iLV

•l1

- 	
• 	. .. • 	I...

j t

CHARPCTEP5 	1 	TO 	2 'E 	SET 	TO 	:-

r -A3.36-

: •
CWARC1EPS 	 4 V. r.:N 	ST 	TO

• 	 . 	 •. C CHARACT 	5 	IC: IAV EE. 	SET 	TO

CHAflACTEFS 	7 	T 	12 FV' EEE' 	SET 	TO

C 22
CHARACTERS 	1.E 	TO 	14 HAVE EEE N 	SET 	IC

• 	 .. CA
. • C ***P, E CCO 	HAS 	FEEC RESTRLCTURED

IF 	NO 	UTHE 	REUE5T IS 	OUTSTANDING TYPE 	REPLY 	21

C

C Datd 	21

• 	 RECORD 	TYPE 	ACHI VERSION 1 	FOUND

AT 	4DDCSS 	5

• -.?- 	

F 	LLWfl'C 	1NF'RI'ATIC 	-IS 	FR.N 	STRLCTURIN& 	ROUTINE 	***
•' VERSIO 	UF F R 	OF 	RECORD 1YP 	ACHT 	IT 	DDRESS 	5

C• IS 	EEI.G 	ALTERED 	TO 2
CHAPACTEI.3 	1 	IC 	2 W 	E PRFVIOUSLY

C. CNARCTES 	T(I W EV!OUSLY

2
CHAACTE5 	II 	6 t FPVIOU&LY

2
CHARACTERS 	T C 11 W CVI3ULV

c
- C

-

CHAPACTE 	S 	12 	10 	13 W RI 	IOLSLY

• DP

1 	• 	• CHARMCrES 	1 	IC 	2 kV FEEH 	SET 	TO 	:-

CHARACTEFS 	3 	TO 	4 -V SCI TO 	-

- 	 -: •- . 	 •, ..,..*;y. 	•. 	•,'..
-

-

C C-ARA.TS 	5 	TO 	6 HAy EE:-:N 	SET 	TO 	-

2
CHARACTERS 	7 	TC 	12 HJE EEEI 	ST 	IC

(33
CARACTEF.S 	13 	TO 	14 HPVE FEEN 	SET 	TO

DA

C *** 	RECORD 	HPSEEEN RESTRLCTURED 	***

IF 	NO OTHEP REQUEST IS OUTSTANDINE 	TYPE REPLY 21

(
Data 	21

- 	
•-.--.••• 	 - 	 • 	 • 	 •:• RECORD 	TYPE 	ACNT 	VERSION 1 	FOUND

AT 	ADD-E55 	6

C
• *** 	FOLLC% 	IfU 	I.FCRf'AIICi IS 	FROP" 	RETEUCTURItG 	cCUT!.' 	**

VERSION 	NUfLFP 	OF 	R IC01 C TYPE 	ACNT 	!-T 	AODESS
• 	 . 	

• (IS 	2 11 	 ALTEED 	TO .

CAACTErS 	1 	TO 	
•

w-: RVIOUSLY

I 	L 6 P 'VISUSLY

f VCU.'LY

(1
CHA.

• - 	 - : 	 •..•. . . 	 -- 	-. 	.-

-

4-

CHAR.ACTES 1 	TO 	2 	HVE 	&EEN SET 	TO
— —

c 4 -A337-
CHARACTrS 3 	TO 	4 	Ij ftVE 	EEEU SET TO

1

C CHARACTERS 5 	TO 	6 	HAVE 	E 	EI SET TO
1

CHARACTERS 7 	Ic 	12 	HAVE 	SEEN SET 	TO
........- C. 44

CHARACTERS 13 	TO 	14 	HAVE 	EE EN SET 	TO
CA
*** 	RCC- RD H.4.S 	EE-EN 	RESTR1CTtJRED**
IF 	NO 	OTC REQUET 	1 	OUTiAHDINC TYPE 	RPLY 	21

....•.
	

: Cl

(Dsta 	21
CL')) F 	TVOCT LDJNC 	COMPLETE **

C

(Dta:O

THE 	CURREHT D.kTP 	EASE 	***

ADD 	PSECCD VRSN 	DATA POINTERS TA '.

• •
1 	CUST 1 	1JONES,ALAN 2 6 C 0 0 0 0 0 0 0 0

. 2 	ACNT 2 	1 	1 	1 	11CA 6 0 1 0 	0 0 0 0 0 0 0
• 	 --- 	. . 3 	OUST 1 	2SPITIJ,Ji,dEs 4 	5 0 0 0 0 0 0 0 0 0 -: 	•-;;::,.

(4 	AC 	 T 2 	2 	1 	2 	22CA 5 	0 3 0 0 0 0 0 0 0 0

•

5 	A C N T 2 	3 	2 	2 	330A 0 4 3 0 	0 0 	0 	0 	0 	C) 0 • 	 . 	 • 	 ;.. 6 	ACNT 2 	4 	1 	1 	4404 0 2 1 0 	0 0 0 0 0 0 0
C 7 	ERCH

S. 	SR CH -

1 	1EIG1OWN 	Ii
1 	2StALL70N

. 	 0.0.
-

0100. (LU 0 0 0 0
R - 0 0 00O 0 00000

71

_.i.

4 	Jc

¶

—A3. 38—

Closed Restructuring to contract the format of the

Balance Data Item

The Balance is now shown as being contracted from format

IS to 14.

Before the restructuring commences £9999 is posted to

account 01 to bring its balance to £10010. When the

restructuring attempts to restructure this record it

finds that the value will not fit into the 4 available

characters and the normal FORTRAN overflow convention

of substituting asterisks is used. All other account

records are then restructured and in these cases the

values of the balance can be accommodated in the avail-

able 4 digits.

When an attempt is made to post £9999 to account 02

there is once again an overflow since the new balance

of £10021 will not fit in 4 digits.

	

• 	•. 	- 	-2 	-. 	. 	.. -.

I.

I

	

-- .- 	 4 	 - 	 - 	-

-A3.3 9
Data:C2

•-(41 C
qtj,,. CF 1RftNSACTIC 	PCST1M3 PROCRAl

TYPE s..,FSIC N NU'bER OF PRCCRAM

Data 1
TYP ,,CCC'iJtl NUECP AND V LL TO EE POSTED

	

. 	 Data:C:1 c9c9

C
FOLLCWIMj INFORMATION IS FON 'FINDP
DES IS SEARCHING FOR

• 	 . • --• • -- 	
. 	C 	RECORD TYPE ACHT VERSION 	1

WITH CHARACTERS 	1 10 	2 EQIAL TO

• 	 . 	 C RECORD FCL'rD 1.1 A(DRESS 	2 	SIOt 	1

'FINCiP CONPLETEO

	

(
FOLLOtiirG INF0RNTION 13 FFO 	'C.ET'

CHARACTEPS 	7 TC 11

OF RCCDD TYP 	ACN1 VRSICt-. 	1 AT ADDR E SS 	2

	

C 	 11
. . 	

. 	 **'GET I COFLETED***

_,.. . .•

	

(***FOLLCWIM INFORMPTIOI IS FFON MCOIFY'***

CHARACT E1S 	7 TO 11 	 -

OF RECORD 1YPE PCNT VERICN 1 AT ADDRESS 	2

	

(HAVE EEEl ALTCIREi) TO

•
 10010

***'MOIFY 	COt?LETED**

(
TRANSACTION OF 	999 POSTE - E% ELNCE 1CO10

ED CF TA4 SAC 'ION PGSTIPC kUt

-

4

4 4 	 -

-

i

(Data 	 A3.40-

i 	p' 	.i: D PT? iTE F , FORMAT RSTR1TURIN(

TYPE OF-'E'. C' CLSI') F \ TVP: OF R STFUCTUNIG

FOLLOI 	'y iiCCR 	, DT 	ITEM NAE, LENGTh AND NEW FOi4.'T

Data:(,'-Sr PCT E.ALC t; 	,14)

CLCEc 	EST1UCTURI 	NOW IJND'P. WAY

RECOR 	TYPE ACNT VERSION 1 FOUWO

AT ADDRESS 2

(

(

C

C

C

C

C

(

-

' TtT
S

C

c

r •

.•• 	 i •'

7

• 	. 	.

* **
*** FOLLCWIN€- INFOR14P1ION IS FROM RESTRUCTURING ROUTIN
VERSION MJMOER OF RECORD TV FE ACNT AT ADDRESS 	2

IS 	BEING 	ALTERED TO

CHARACTERS 1 	TO 2 WERE FREVIOUSLY

1
CHARACTERS 3 TO 4 WERE FREVIOUSLY

1
CHARACTERS S 	TO 6 WERE PREVIOUSLY

1
CHARACTERS 7 	TO 11 WERE PREVIOUSLY

1 0010
CHARACTERS 12 	T 13 WERE FREVIOUSLY

CA
CHARACTERS 1 	TO 2 HPVE BEEN 	SET 	TO 	:-

1
CHARACTERS 3 TO 4 HAVE BEEN 	SET 	TO

1
CHARACTERS 5 	TO 6 WV2 BEEN 	521 TO

CHARACTERS 7 	TO 10 HAVE BEEN 	SET 	TO 	:-

CHPRP.CTERS 11 T 12 NAVE BEEN SET 	TO

CA
*** 	RECORD HAS 	EEEN PESTRI-cIURED ***

IF 	NO 	OTHER REQUEST IS 	OUTSTANDING TYPE 	REPLY 	21

(

Data: 21
RECORD TYPE ACNT VERSION 1 FOUND

AT ADDRESS

FOLLOWING P.M. IS 	FROM. 	R E: STRU CTURIN C 	ROUTINS 	**k

VERSION 	FUBER OF RECORD TYPE 	ACNT 	Al 	ADDRESS

IS 	BEING 	ALTERED TO 2

CHARACTERS :1.JO 2WERE FREVIOUSLY

2
CHARACTERS 	3 TO 4 WERE PREVIOUSLY

CHARACTERS 	5 TO 6 WEiE PREVIOUSLY

2
CHARACTERS 	7 IC 11 WERE PREVIOUSLY

22
CHARACTERS 	121013 WERE FREVIOUSLY

CA
CHRACTEPS 	1 TO 2 HVE BEEN 	SET 	TO

2
CHARACTERS 	3 TO 4 HAVE BEEN 	SET 	TO

CHARACTES 	E, 1: 6 H.VE EEE 	ST 	TO

CiARACTF'S 	7 TO 1L I'V E.N 	SrT 	TO

22
cFAFc7:s 	11 T r 12 E 	S ,--T 	TO 	:-

I'-.

—A3.41—

Data : 21
RECOR 	TYPE 	CT V O\ 1 	F)UaD
AT 	AD1)ESS 	5

FCLLCW1NC 	INFOP1 T1Ot' I' 	FROU' 	00 0TU C7U:IN(POUT!.NE ***
VRSIU; 	 OF R CCC 1Y 	CNT 	T 	(DJRESS

IS 	EEJJ:G 	ALTERED TO
CHARACT E0 	1 	TO I FN 	VIOtJSLV

CHASAC1E1 	IC' 4 k PP. 'VI3USLY

CHPRACTEFS 	5 	TO, 6 W"z PVJOIJSLY
_ 2

CHALCThS7 	Tr 11 ; 	- :VT405LV

33
CHARCIF0 	1 	0 1 'i0OUSLY
c
CH1CT 51 	1 	IC ~ s:r 	I'

CHARACTEPS 	3 	TO 4 iiE t- -7 ~z 	551 	T rl
2
CHRACTES 	5 	TO 6 hVE c-Er. 	SOT 	1')

2
CI4ARACTEV.S 	7 	10 10 EYN 	ST TO

33
• CHPP.PCTEFS 	11 	TO 12 :PV E SET 	TO

*** 	ROCOcO 	HA.S 	E0N 0TPI.CTUEO **
• IF 	NO 	OTHER 	REQUEST IS 	CUTS IANDINC 	TYPE 	REPLY 	21

• Dat':21

REC0P. 	TYPE 	ACNTVERIION 1 	FOUND
AT 	ADDFESS 	t

OLLCw INP 	IJFORMATiOH 10 	FROV 	RESTRU CTUPINO 	POUTINE
VRSI;Vi 	rU'6ER 	OF F, EURN 1YH 	AC.4T 	AT 	ADLESS

IS 	bSit(i 	ALTERED TO
CHARACTScS 	1 	TO 2 WERE RvIOUSLY

L

L CARACTOPS 	3 	TO L Wj PRVI0USLY

CHPPACTES 	5 	TO 6 wERE PiEVI0USLY

1
CHARACTERS 	7 	TO 11 : P/IC1ISLY

44

CHARACTERS 	12 	TO 13 5P0 EVIOIjSLY

CI-UCTERS 	1 	TO 2 FV EN 	ST 	IC:-

CPRACTERS 	3 	IC 4 H 	E EEJ' 	SET 	TO 	:-

CHAR.CiEF5 	I 	T 6 IiE 2: El 	3 c 	IC

CHAP.-CIE'5 	7 	TO 10 EYSH 	SET 	TO 	:-

1...

CHPRCT-3 	11 	IC 12 -v EO6 	SET 	IC'
C •t
*** 	CGD 	S 	EcN - SIR ICTURED 	***
IF 	NO 	OTHER 	REICE5T IS 	CLTST AN' DIHG 	TYPO 	REPLY 	21

- 	

;;•_ •' '•

r

C. 	 1. (C

—A3.42--

	

(Dt:21

CLOSED RESTRLICTIRINC (OPLETE ***

C

	

C 	Data 02

- ***RUN OF TRANSACTION POSTING PROGRAN***
C TYPE VERSICJ NUMBER OF PROGRAM

D a t a : 1

TYPE ACCCUT tUM6ER AND VPLIE To BE POSTED

	

C 	Data:02 99c9

***fOLLCWIC INFORMATION IS FROM 'FINDi ***
DBMS IS SEARCHING F OR 	 -
RECORD TYPE ACNTERSI 	2
WITH CHARACTERS 1 10 	2 SGLAL TO

	

% (2
- 	 RECORD F(UI' AT ADDRESS 	4 v:sio,

F lu Dl 	COMP LTE**
C

***fjj C1c IN FORM ITION IS FPOM
CHARACTERS 7 Ic 10

	

(OF RECCRD TYPE ACN 1
22 	

VERSION 2 AT ADDRESS 4 A FE -

'GT 	COFL TD*

FOLLOUINC INFORMATION IS FROM 'MOCIFy'
CHARACTERS 7 TO 10

	

C 	OF RECORD TYPE ACNT VRSICN 2 AT ADDRESS 4 5 	 HAVE EcEN ALTERED TO
-!k- 21 .

	

(***'MODIFYI CCMPLETED**
TRA-NSACTION OF $ 9999 P C S T E C 	NEW BALANCE $10021 ..-,.:.. 	
END CF TRANSACTION POSTING RUN

.

• 	. .

D a t a 30

C *** THE CURRENT DATA EASE ***
ADD R17CCRD VRSN DATA

FOINTERS 	 TAG C
1 	UST 	1 	1JONtS ALAN
2 	ACNT 	2 	1 1 	

2 6 0 0 0 0 0 0 0 0 	0

	

1****CA 	
6 0 1 0 0 0 0 0 0 0 	0

	

(3 	CUST 	1 	2SWIIH,-JPMES 	
5 00 0 0 00 0 0 	0

- -. 	 4 	CNT 	2 	2 1 2****CA 	
5 0 3 0 0 0 0 0 0 0 	0 S 	tCNT 	2 	3 2 2 33Dp 	 C 	3 . 0 0 0 C 0 0 C 	C (6 	*C\T 	? 	1 1 44CA 	
J ? 1 C 0 0 0 0 0 0 	0 1 	1SIGI0UN 	U 	 C C U U Li 0 0 0 0 0 	() . 	¶.Cb 	1 	SNALLTCI4 	
C C 0 C) 0 0 0 C' 0 C 	(i (i..

- 	----- 	- - - -- --- r'-

—A3.43—

Restructuring to Interchange position of Customer 'Number

and Branch Number on Account Record

To interchange the position of two data items on the

same record the user enters a code of 26. The DBMS

responds by requesting the name of the record and the

data items to be interchanged.

As for previous examples only the schema is amended

and existing records are only restructured when they

are modified. In the example shown a new account number

5 is added to the data base.. Although this record is

added as version 2 with the data items interchanged the

original version of the program can continue' to be run.

In particular, note that the Store command continues to

process the data items in the sequence held in the sub-

schema although this is not the sequence for the version

2 data base record.

. 	
:: 	 > 	 •• 	. '

...
-

	

.. 	 .. 	
•.: 	 ;; 	 . . 	': 	'' 	 -' 	 . 	 -';•:

•

	

.... 	 : 	•'•:
.°.' •••.• 	

.:
:• •• 	 • 	' 	

.:

•1 • :. . 	
:.

• 	•
• 	 • 	': . 	: 	

••

0 .

-
-A3.44-

(

STFT 	CF 	INTERChM 	E 	C A T A 	I T E F CESTRUCTURIN (
TYPE 	GP EN 	CR 	CLSD FOR 	TYPE OF 	RESTRUCTURING
FOLLOW 	D 	BY 	RECORD 	F AF: 	AND AMtS OF 	DATA 	ITEMS

f K., C Data 	OPtr 	ACNT CUNO 	c NC
OPEN 	RE STRUCTURI NE NOW UNDER WAY

C Data 	29

*** THE 	CURRENT SCHEMA 	***

-
RECORD 	TYPE 	CUST VERSION 	1

AOM DATA 	ITEM 	CNU1 START 	AT 	1 END 	AT 2 	FORMAT ,12)

(DATA 	IT 	11 	FA'1 START 	AT 	3 END 	AT 6 	FCRPAT ,A4)
DATA 	I'TEFF 	NAM2 START 	AT 	7 END 	AT 10 	FORMAT ,A4)
DATA 	ITEM 	MAM3 START 	PT 	11 END 	AT TA 	FORMAT ,A4)

:. SET 	NAME 	CUAC POINTER 	TYPE FRST
• 	. 	.. 	

.• 	 . . SET 	ME 	CUAC PCITER 	TYPE LAST
KEY 	DATA 	ITEM CUUM

C
RECORD 	TYPE 	ACNT VERSION

DATA 	I TEM 	ACHO cTR1 	PT 	1 END 	AT 2 	FORMAT ,12)
DATA 	ITJ 	CIJNO STAR 	AT 	3 END 	AT 4 	FO RIM AT ,12)
DATA 	ITEM 	EPNO TAPT 	AT 	E CUD 	AT 6 	FORMAT ,12)

DATA 	iT : 	EPLC START 	AT 	7 END 	A T 11 	FORMAT ,I5

C DATA 	TTEM 	A C T P STAR 1 	AT 	12 END 	AT 13 	FORMAT ,A2)
- ST 	NA 4'E 	LLPC POINTER 	TYPE NEXT

SET 	NAPE 	CUAC POINTER 	TYPE FRIR

C SET 	NAME 	CUAC POINTER 	TYPE OWtJR
KEY 	DATA 	1TM ACNj

C RECORD 	TYPF 	ACNT VERSION 	1
. . DATA 	IT EM 	ACNO START 	AT 	1 END 	AT 2 	FORMAT ,I2)

DATA 	ITEM 	ERNO START 	AT 	3 END 	AT A 	FORMAT ,12)

C DATA 	TTEF 	CUNG START 	AT 	5 END 	AT 6 	FORMAT ,12)
DATA 	ITEM 	EALC START 	AT 	7 END 	AT 11 	FORMAT ,15)
DATA 	ITEM 	ACTP START 	AT 	12 END AT 13 	FORMAT ,A2)

fX- 0 SET NAME CIJAC POINTER TYPE NEXT
SET NAME CUAC POINTER 	TYPE PRIR
SE.T 	NAF'ECUAC POINTER 	TYPE OWNR

C KEY 	DATA 	ITEM ACNO

RECORD 	TYPEB°CH VERSION 	1

C DATA 	iTEM 	ENUM, START 	AT 	1 END 	AT 2 	FOR!4T ,12)
- DATA 	ITEF' 	EN'l STPRI 	AT 	3 ND 	AT 6 	FORMAT ,A4)

DATA 	TTM 	PNM2 START 	AT 	7 END 	AT 10 	FORM AT ,A4)

(DATA 	ITEF 	EPU3 START 	AT 	11 END 	AT 14 	FORMAT ,A4)
DATA 	ITE' 	LOCN STAR1 	AT 	15 END 	AT 15 	FORMAT AT

KY 	DTA 	IT..M b.Jr

SET 	CUAC

• 	. - 	- OWN 	k_;-CC- 	TYF 	CUST 	MATCHING 	DATA 	I 	Er 	Cr 1JM
MEMFE' 	RECRD TY= 7 	PCtT 	"ATCf4I'J& 	OATI- 	ITEM CUt-.O

• 	•- POSITJGt 	CF W 	i 	SPTS

(

Data:03
—A3,45—

***JN 	CF 	C P E N 	N 	.CCO LN 1 	POGR AM**
- TYPE 	VEFSIC N 	rU6ER 	OF 	RCGAM

• Dta:1
TYPE 	5;PNCR 	, 	ACCOUNT 	, 	CUSTOMER 	, 	 ACCOUNT TYPE

.j Dta:O2 	CS 	Cl 	C

FOLL CWl NG 	IN 	PT 10. 	IS 	FROM 	S TORE '
THE 	FOLLOWINO 	NSW 	RECO•D 	 0

IS 	BRING 	.40050 	TO 	TE 	DATA 	EASE

i RECOED 	TYPL 	ACFT

VERSION 	2
ALL 	PCT. NT.RS 	2
UNI NI TIALI SD 	Ch.RACTP$: 	E?ACES
CI4 ARACT 5 	5 	TO 	6 	ST 	T.

2
CHARACTERS 	1 	TO 	2 	SLI 	IC 	:-

OS 5
CHARACTERS 	TO 	4 	SET 	T(:-

• 	 :
1

CHARACTERS 	1 	IC 	13 	S c T 	T
CA

lLo CHARACTERS 	7 	TO 	11 	5-1 	TO
o

RECORD 	HAS 	EEEN 	STOP ED 	AT 	A CORE SS 	c
***'5T(' 	COPLETEr , *

ft 	FOLLOW INC 	INFOR 	TION 	I S 	F R OM 	ItJSERT '***
• L CHARACTERS 	3 	TO 	4

OF 	RECORD 	TYPE 	A C N T 	VP5I OH 	2 	AT 	ADDRESS 	9 	ARE

• 	 -. DBMS 	IS 	S 	RHINO 	FCO 	RSCCR C 	TYPE 	CLJST 	VERSIOU
• 	 : WITH 	CHARACTERS 	1 	Tu 	2 	ELAL 	TO 	:-

- 1
RECORD 	FCUrDAT 	A S 	1

• RECOD- TYPF 	AND 	VEP SIGN 	CF 	CORD 	AT 	ADDRiSS 	6 	ARE 	:-
ACNT 	1

• 	 •:. L POINTER 	1 	0F 	RECORO 	I Y 	A CrT 	ADDRESS 	6 	VERSICH
HAS 	FEE 	ALTERED 	TO
POINTER 	2 	OF 	RECORO 	TYPE 	CNT 	ADDRESS 	9 	VERSI CH 2

• L HAS 	EEE. 	ALTERED 	TO 	4
POINTER 	3 	CF 	PCORC 	TYPE 	CT 	ADDRESS 	9 	VERSI CN 2
HAS 	RERN 	ALTERED 	TO 	1

• 	 S POINTER 	2 	OF 	PECOR 0 	IYP 	CLST 	ADDRESS 	1 	VERSI UI 1
HAS 	BEEN 	ALTERED 	TO
'INSERT' 	CONPLETSD

-

NEW ACC CUT 	OPEN-ED
EI4I 	OF 	OPEN 	NEW 	ACCOUNT 	LN

Da t :30

*** THE CUREUT DATA EASE

ADD ?CCRO VRSN DATA 	 POINTERS 	 TAG

1 	GUST 	1 110NES,A1.A; 2 9 0 0 0 0 0 0 0 C 	0
2 	A C N T 	1 1 	1 	1 	11C.A 6 Ci 1 0 0 0 0 0 0 U 	0
3 	CUST 	1 2SNI1H,JA•ES 4 5 0 U 0 0 0 0 0 C 	0
4 	ACOT 	1 2 	1 	2 	22CA 5 0 3 00 0 0 0 0 0 	0
5 	•C NT 	1 3 	2 	2 	3CA 0 1. 3 0 0 0 0 C 0 0 	C
o 	AC NT 	1 411 	44 CA 9 10000000 0
7 	ENCH 	1 1EJGT0W. U 0 o C 0 0 0 0 C 	0 0 	C
8 	PRCH 	1 2S 	ALL Ti P 0 0 0 0 0 0 0 0 0 0 	0
9 	ACNT 	2 5 	1 	2 	ID CA 0 o 1 0 0 0 0 0 0 0 	0

c••_ ••

—A3.46 -

Migration of the Balance data item from the Account to

the Customer Record

Data Item Migration is performed by the user entering a

code of 27 on this terminal. Only a closed strategy

with parallel running is available in this example.

Each set occurrence is restructured as a single unit

and the user therefore only has an opportunity to

execute an application program when each set occurrence

has been restructured. The DBMS accesses each set by

searching for each customer record (the owner of the set)

in address sequence. The first customer record is for

customer 1 at address 1. The First Member record

pointer on this record is used to establish the address

of the first account in the set - account 1 at address 2.

Before this record is restructured the value in the

Balance data item is retained for later use. The restruc-

turing of the account record to version 2 results in the

balance data item being deleted. The Next—Member record

pointer on the account record shows the next account in

the set to be account 4 at address 6. Once again the

balance is extracted before the record is restructured.

In this case the value of the data item (44) is added

to that extracted from account 1 (Ul) to produce a

current net balance for the customer of £55.

The Next Member record pointer on this account has a

value of zero indicating that there are no further member

records. The original owner record is then restructured

—A3.47—

and the value of the net balance as calculated above

is allocated to the new data item.

The Schema and Data Base are displayed at this point.

Versions 1 and 2 of both the Customer and Account

records are defined at this stage. The Data Base con-

tains not, only the new version 2 Customer and Account

records but also the corresponding original version 1

records which have been moved to the first available

spare record slots on the data base. The parallel

record tag is used to associate each version 1 record

with its version 2 counterpart and vice versa.

The Transaction Posting program is run to post £10 to

account 2 which is still at version 1. Version 3 of

this program is version specific in that it examines the

version of the account record retrieved before it modi-

fies the balance - in this case, as previously, on the

account record. Note that in this example no restructur-

ing takes place prior to the modify because of the type

of restructuring taking place.

When £10 is posted to account 1 the program detects that

the account record is at version 2. The corresponding

customer record is then accessed and the balance on this

record modified accordingly. Since parallel running is

taking place the program then establishes the correspond-

ing version 1 account record as the current of run unit

using a third version of the FIND command. The balance

on this record is then modified by the £10 posting.

—A3.48—

Version 2 of the Calculate Balance Program is then run

to provide the balances for both customer 2 and customer

1. Like the Transaction Posting program this program

is version specific. Since customer 2 is at version 1

the program accumulates the customer balance by summation

of the balances on the associated account records. For

customer 1 (at version 2) the balance is derived directly

from that record.

The restructuring is then allowed to continue and the set

corresponding to customer 2 is restructured as before.

Since no further customers exist the restructuring is

complete after this point.

Parallel running, however, continues and in particular

a Balance Calculation Audit program is run which compares

the balance held on a version 2 customer record with

the sum of the balances on the associated version 1 account

records. This run is initiated by the user entering a

code of 10. The run verifies that the balance for customer

1 is the same in both cases.

Finally, the user can enter a code of 24 which terminates

the parallel running phase. This is done by removing the

schema entries for version 1 of both the Customer and

Account records, by setting the parallel run tag for all

version 2 Customer and Account records to zero on the

data base and by removing all version 1 Customer and

Account records.

—A3,49—

When version 3 of the Transaction Posting program is

run after parallel running is complete the call to

FIND3 returns a code indicating that no corresponding

Account record exists and no attempt is therefore made

to modify the balance on such a record.

V 	

V
V 	 V 	

V

V -

(VV

V 	 Dit:27
	 -A3,50 -

*** START OF MEt'BEF TO CWNER DATA ITEM MIGRATION ***
RESTRUCTURING USES CLOSED STRATEGY WITH PARALLEL PUN 	 I

	

•-•/ 	
TYPE SET NAME, SOURCE RECORD NAME.OATA ITEM NAME,
DESTINATION RECORD NAME AND ADJACENT DATA ITEM
Data:CU*C ACNT BALC CUST CNUM

: - 	 : 	''''• C
V .***CLVCSED RESTRUCTURING NOW UNDER .WAY***

RECORD TYPE CUST VERSION 1 FOUND 	 V

AT ADDRESS 1

(POINTER ' GIVES ADDRESS OF FIRST MEMBER AS 2
VERSICN OF RECORD TYPE ACNT AT THIS ADDRESS IS 1

- 	 CHARACTERS 7 TO 11
OF RECORD TYPE ACNT VERSION 1 PT ADDRESS 2 ARE -

p.
..... 	 FCLLOWING INFORMATION IS FRCM RESTRUCTURING ROUTINE ***
.• .. 	 - 	 VERSION NUMBER OF RECORD TYPE ACNT AT ADDRESS 2

7' 	 IS BEING ALTERED TO 2

(' 	CHARACTERS 	1 TO 2 WERE PREVIOUSLY
V

	

- 	CHARACTERS 3 TO 4 WERE PREVIOUSLY
1

CHARACTERS 5 TO 6 WERE PREVIOUSLY
• 	- 	': 	 1

V 	
(CHARACTERS 12 TO 13 W E P E PREVIOUSLY

V 	 CA

	

• --. 	 CHARACTERS 	1 TO 2 HAVE BEEN SET TO :-
1

CHARACTERS 3 TO 4 HAVE BEEN S-ETVTO

V. 	 .-, 	 •- 	 ... 	 1

A - 	.• •. 	 C
V 	CHARACTERS 	5 TO 6 HAVE BEEN SET TO

	

_ 	CHARACTERS 	7 TO 	E HAVE BEEN SET TO.: -
'' 	 (I 	CA

*** RECORD HAS BEEN RESTRUCTURED ***
POINTER 1 GIVES ADDRESS OF NEX VT MEMBER AS 6
VERSION OF RECORD TYPE ACNT AT THIS ADDRESS IS 1
CHARACTERS 	7 TO 11 	

V

OF-RECORD TYPE ACNT VERSION 1 AT ADDRESS 6 ARE :-
C 	"

43
FCLtOWIN INFORMATION IS FRCM RESTRUCTURING ROUTINE ***

VERSICN-NUMBER OF RECORD TYPE ACNT AT ADDRESS

IS 	BEING. ALTERED. ''L ' 	 VVVVVVVV

V 	

VVVVVV'• 	 V

CHARACTERS 1 TO 2 WEPE PREVIOUSLY
4

CHARACTERS 3 TO 4 WERE PREVIOUSLY

- (CHARACTERS 5 TO 6 WERE PREVIOUSLY

CHARACTERS 12 TO 13 WERE PREVIOUSLY
V 	 V V VVVV ...V CA V

CHARACTERS I TO 2 HAVE BEEN SET TO 	-

(
CHARACTERS 3 TO 4 HAVE BEEN SET TO 	:-

V 1

• 	 V
CHARACTERS 5 TO 5 HAVE PEEN SET TO

1
V

VV V

CHARACTERS 7 TO 12 HAVE PEEN 	SET 	TO 	:-

o Cç(rf' WAC " 	 Tr.PcTIIcr 	.*-

V.:

•.: -3

C

C

G

C.

C

(.

- 	 	 - 	
-. 	 --. 	 '?. 	 . 	 :. 	.,•j 	 .. ;

(*** 	FCLLOWTNP IMFCMATICN IS 	FP CAI 	RESTRUCTUpIr 	ROUTINE
VERSICH 	NUM PER' 	OF 	RECOf,t TYPE 	COST 	AT 	ADDRESS
IS 	FEIN(kLTEPz,D 	TO 2

(
CHARACTERS 1 TO 	2 WERE 	PREVIOUSLY

—A3,51—
CHARACTERS 3 TC 	6 WERE 	PREVIOUSLY

C JONE
CHARACTERS 7 10 	10 WERE 	PREVIOUSLY
S,AL

C CHARACTERS 11 TO 	14 WERE 	PREVIOUSLY
AN
CHARACTERS 1 TO 	2 HAVE 	BEEN 	SET TO 	-

ç 1
CHARACTERS 3 TO 	7 ARE 	BEING 	SET TO 	SPACES
CHARACTERS 8 TO 	11 HAVE 	BEEN 	SET TO

(
JONE

• CHARACTERS 12 TO 	15 HAVE 	BEEN 	SET 	TO
S.AL

(

CHARACTERS 16 TO 	19 HAVE 	BEEN SET 	TO 	:-
AN
*** 	RECORD HAS PEEN RESTRUCTURED 	***

C CHARACTERS 3 TO 	7
OF 	RECORD 	TYPE CUST VERSION 	2 	AT 	ADDRESS

• 	 ..•••• 	 • 	 . HAVE 	EEEN 	ALTERED TO
C 55

IF 	NO 	OTHER REQUEST IS 	CUTSTANDINO 	TYPE 	REPLY 	28

Date: 29

*** THE CURRENT SCHEMA ***

RECORD TYPE CUST VERSION
DATA ITEM CNUM START AT 1
DATA ITEM BALC START AT
DATA ITEM NA14.1 START AT 	8
DATA ITEM NAM2 START AT 12
DATA ITEM NAM3 START AT 16
SET NAME CUAC POINTER TYPE
SET NAME CUAC POINTER TYPE
KEY DATA ITEM CNUM

2
END AT 2 FORMAT .12)
END AT 7 FORMAT ,15)
END AT 11 FORMAT ,A6)
END AT 15 FORMAT ,A4)
END AT 19 FORMAT ,A4)
FRST
LAST

RECORD TYPE CUST VERSION 1 -
DATA ITEM CHUM START AT TEND, AT 2 FORMAT .12)
DATA ITEM NAM1 START AT 3 END AT 6 FORMAT ,A4)
DATA ITEM NAM2 START AT 7 END AT 10 FORMAT ,A4)
DATA ITEM NAM START AT 11 END AT 14 FORMAT ,A4)
SET NAME CIIAC POINTER TYPE FRST
SET NAME CUAC POINTER TYPE LAST
KEY DATA ITEM CHUM

C

C

RECORD TYPE ACNT VERSION
DATA ITEM ACNO START AT 	1
DATA ITEM BPNO START AT 3
DATA ITEw CUNO START AT 	5
DATA lIE" ACTF STPT AT 	7
SET NAPE CUAC P('IHTER TVPS
SET NAME CUAC POINTER TYDS
SET NAME CJC POINTP TvP-
KEY DATA TIEr ACNO

2
END AT 	2 FORMAT ,12)
END AT 	4 FORMAT .12)
END AT 	6 FORMAT ,12)
;-:Nn AT 	° FO'MAT ,A2)
NE -9 T
FRI P
OWr P

(RECORt 	TYPE 	PCNT 	VEPSION 1
1 ENt AT ? FOMAT ,12)

DATA 	ITEM A CNO 	START AT
3 AT EN I" AT L. FOPMT ,I?)

DATA BP NO 	STT
STPT Al 	5 ED AT 6 FORMAT , 	 -A3.52-

(
DATA 	ITEM
DATA 	ITEM

CIJ0
BALE 	START AT 	7 END AT 11 FORMAT ,15)

DATA 	1TE w ACTP 	START AT 	12 END AT 13 FORMAT ,A2)

(
SET 	NPE CUAC 	P0INTE TYP

SET 	NAME CUAC 	POINTER TYPE O

SET 	NAME CU.AC 	POINTER 1 Y P E OWN

KEY 	DATA ITEV 	ACNO

RECORD 	TYPE EPC' 	VERSION 1
AT 2 FORMAT ,12)

DATA 	ITEM BNUM 	
START
START BNM1

AT 	1
AT 	3

END
END AT 6 FORMAT ,A4)

•

DATA 	ITEM
DTA 	ITEM BNM2 	START AT 	7 END AT 10 FORMAT ,A4)

DATA 	ITEM BNM31START AT 	11 END PT 14 FORMAT ,P4)

DATA 	ITEM LOC 	START AT 	15 END AT 15 FORMAT ,Al)

KEY DATA ITEM 	PNU

C
' •i• 	•_ SET NAME 	CUAC

OWNER 	RECORD 	TYPE 	CUST 	MATCHING DATA
ITEM CNUM

(
MEMBER 	RECORD 	TYPE 	ACNT 	

MATCHINI

POSITION 	OF 	NEW 	INSERTS 	- LAST
DATA ITEM CUNO

C

C Dat:!O

*** 	TE 	CURRENT 	DATA 	EASE 	***

POINTERS T
ADD 	PECOPD VRSN 	DATA --

1 	CUST 	2 	1 	55JOP4ES,ALAN
2 6 0 0 0 0

0 0
0
0

0 0
0 0

0
0 	1(C 6 0 1 0

4A 	 " 2 	ACNT 	2 	1 	1 	1CA 4 5 0 0 0 00 0 0 0
- 3 	CUST 	1 	2SYIT4 	

JA M ES
0 3 0 0 0 0 0 0 0

c 4 	PCNT 	1 	2 	1 	2 	22CA
5

4 3 0 0 0 0 0 0 0
5 	ACNT 	1 	3 	2 	2 	33DA

0
0 2 1 0 0 000 0 0

6 	PCNT 	2 	4 	1 	1CA 0 0 0 0 0 0 0 0 0 0
4

C 7 	ERCH 	1 	1BICTOhN 	
U

0 0 0 0 0 0 0 0 0 0
8 	EPCH 	1 	2SMALLTOWN 	

R
0 0 0 0

9 	CUST 	1 	1JONL5,PLAN
2 6 0 0 0 0

0 0 0 0

C ic 	PENT 	1 	1 	1 	1 	I1CA
6
0

0
2

1
1

0
0

0 0
0 0 0 0 0 0

11 	PCNT 	1 	4 	1 	1 	44CA
-

Data:C2

C
***RUN OF 	TRANSACTION 	

PCSTING PROGRAM***

TYPE 	VERSION 	NUMBER 	OF 	FRO(RAM

•' 	'-'' C: Data:!
- 	

• TYPE 	ACCOUNT 	NUM8EP 	AND 	VALUE 	TC 	BE 	POSTED

Deta:C2 	COlD

c
***FOLLOWING 	INFOPMATIO' 	IS 	FROM 	

1 FIND1'***
DBMS 	IS 	SEcRcNINc' 	FOP

C RECORD 	TYPE 	ACNT 	VERSION 	2

WITH 	(NAPACTERS 	1 	TO 	2 	EQUAL 	
10

2
NONE 	'AS 	PEEN 	F0U'D 	SO 	CAMS 	IS 	NO 	FE4CHIN(FOR

RECORE 	TY°E 	PENT 	VSIO' 	1

WITP 	CHPPCTS 	1 	TO 	2 	:OUAL 	
TO

(2

***FOLLOWIN' 	INFOPMATION 	IS 	
FPO 	'(ET'*** -A3.53

CRACTEPS 	7 	T(' 	11
CN1 	V2SIO' 	1 	AT 	ADDRESS 	

APE:—

C OF 	RECORD 	TYPE
22

**'iE1 	COMPLETED* , *

• 	 •- C
***FOLLOWING 	INFORMATION 	IS 	FO' 	

lQDIFY'***

-

CHARACTERS 	7 	TO 	11

OF 	RECORD 	TYPE 	
PONT VERSION 	1 	AT 	ADDRESS 	4

HAVE 	EEEN 	ALTERED 	TO
-.

32
'MODIFY' 	COMPLETED —NEW 	CUSTONER 	BALANCE, 	32
TRANSACTION 	OF 	10 	FCSTED

***END 	OF 	TRANSACTION 	FCSTING
	RUN***

- 	 ••

-

C

-

Dat 	02

-

***PUN 	OF 	TRANSACTION 	POSTING 	
PROCRAM***

•
-.

TYPE 	vEpSION 	 OF 	FOCPAF

C
Data:3
TYPE 	ACCOUNT 	NUER 	AND 	VALUE 	

TC 	PE 	POSTED
• 	

- 	 :-
• 	 •• Data:Cl 	0010

C-

***FOLLOWING 	INFOPMATION 	IS 	FROV 	
IFTND1 9 ***

DPS 	IS 	SEAPCHImrz 	FOP

RECORD 	TYPE 	ACNT VERSION 	2

C WITH 	Cl-4PPACTEPS 	1 	TO 	2 	EQUAL 	
TO

I
RECORD 	FOUNDAT 	ADDRESS 	2 	

VERSION 2

•

C
*'FIND1' 	CONPLETED*** 	 -

*** 	FCLLOWIN€ 	INFORMATION 	IS 	FROM 	
'FIND3' 	***

OF 	CURRENT 	RECORD 	AT ADDRESS

: ç DBMS 	IS 	FOLLOWING 	TAG 	IC 	
EARLIER 	VERSION

TYPE 	PONT 	AT 	THIS 	ADDRESS 	IS VERSION 	OF 	RECORD
• 	

•-• * 	 'FIND3' 	COMPLETED

•

C
***FOLLOWING 	INFOQNTI0N 	IS 	FPOF 	

GET'***

-
:

CHARACTERS 	7 	TO 	11
ACNT 	VERSION 	1 	AT 	ADDRESS 	

10 	ARE:—

C OF 	RECORD 	TYPE

11
*'GET' 	COMPLETED** *

***FOLLOWING 	INFORMATION'IS 	
FROM 	MODIFY'***

• 	 : -' 	 • CHARACTERS 	7 	TO 	11
1 	FT 	ADDRESS 	10

• • 	 (
OF 	RECORD 	TYPE 	ACNT 	VERSION

•

HAVE 	EEEN 	ALTERED 	TO

21

• C ***'MCDIFY' 	COMPLETED*** —NEW 	ACCOUNT 	BALANCE 	21
• 	 •1 TRANSACTION 	OF 	% 	10 	POSTED

**FOLLOWING 	INFOqMATICN 	15 	FPO 	
IFTND2'***

VALUE 	IN 	POINTEF

OF 	RECORD 	TYPE 	ACNT 	VERSION 	
1 	FT 	ADDRESS 	10

IS 	1
VERSICN 	CF 	PECOFI) 	TYPS 	CIIST 	

AT 	THIS 	ADDRESS 	IS 	2

***'F 1ND2 	COPLETED**

(

***FOLLOWING 	INFc'ATI' 	IS 	FpOff 	
s(ET'***

(

CAACTES 	3 	IC 	7

V. 	ECO 	T 	CVST 	v'STO 	2 	
,T 	DDESS 	1 	APE:

c5

FOLLOWING 	INFCPATIO 	IS 	FPO 	'i0D1FY'
CHARACTERS 	3 	TO 	7 —A3,54-

• 	
.

(OF 	PECORO 	TYPE 	CtJST 	VESION 	2 	AT 	PDDPESS
HAVE 	FEE 	ALTERED 	TO

65

(
'MFy' 	CCFLFTED
TRANS ACTION 	OF 	I 	1(3 	PCSTED 	 –NEW 	CUSTOMER 	BALANCE 	65
***ENC 	OF 	TR.ANSPCTION 	PCSTIP(;UN**

-

Data 	Cl

C ***R(JN OF 	BALANCE 	CALCULATION 	PROGRAM***
TYPE 	VERSION 	N.IJrBEP 	OF 	FROCPAr
Data 	2

C TYPE 	CUSTOMER NUPER
Data 	C2

C ***FOLLOWING 	INFORMATIO 	IS 	FPO' 	'FINDl'***
DBMS 	IS 	SEARCHING 	FOR
RECORD 	TYPE 	CtJST 	VERSIOt'. 	2
WITH 	CHARACTERS 	1 	TO 	2 	EQUAL 	TO
2

NONE 	HAS 	BEEN 	FOUND 	SO 	DBMS 	IS 	NOW 	SEARCHING FOR
(

RECORD 	TYPE 	CUST 	VERSION 	1
WITH 	CHARACTEPS 	1 	TO 	2 	EQUAL 	TO
2

(
RECORD 	FOUND 	AT 	ADDRESS 	3 	VEPSIO 	1
'FINDlI 	COPLETED

(***FOILOWINr 	INFORMATION 	IS 	FROM 	'CET'***
CHARACTERS 	3 10 	6
OF 	RECORD 	TYPE 	CUST 	VERSION 	1 	AT 	ADDRESS 	3 ARE: -

(
SPIT
'GEI' 	COMPLETED*

FOLLOWING 	INFORMATION-IS 	FROM 	'GET'
CHARACTERS 	7 	TO 	10
OF 	RECORD 	TYPE 	OUST 	VERSION 	1 	AT 	ADDRESS 	3 ARE: -

C H,JA
'GET' 	COMPLETED*

(***FOLLOWING 	INFORMATION IS 	FROM 	CET'***
CHARACTERS 	11 	14 TO

- 	 ... OF RECORD TYPE 	CUST 	VERSION 	1 	AT ADDRESS 	3 ARE -
ES

(• COMPLETED*** ••

C
***FOLLOWING 	INFORMATION 	IS 	FPOP 	'FIND2 1 ***
VALUE 	IN POINTER 	1
OF 	RECORD 	TYPE 	OUST VERSION1 	AT 	ADDRESS 	3

C IS 	4
VERSICN 	OF 	RECORD 	TYPE 	ACNT 	AT 	THIS 	ADDRESS 	IS
'FINO2' 	CONPLETED

FOLLOWINC 	INFORMATION 	IS 	F°Or' 	'GET'
-

CHARACTERS 	7 	TO 	11 .

(OF 	RECORD 	TYPE 	ACNT 	VEIPSION 	1 	AT 	ADDRESS 	4 ARE:-
32

' 	 COMDLETED***
(.

FOLLOWINC 	INFOrATIOr 	IS 	FOt 	'FIND?*
• VALUE 	IN 	POINTER 	1

(
OF 	PECORD 	TYPE 	ACKT 	VEICF'I1 	AT 	ODESS 	4

• 	 .. 	 • IS 	5

FOLLOWING 	INFORMATION 	IS 	FO 	'GET' -A3.55 -

(
CHAP.ACTEPS 	7 	TO 	11

- OF 	RECORD 	TYPE 	ACNT 	VERSION 	1 	AT 	ADDRESS 	
5 ARE:–

33

.•.• (
'ET' 	COMPLETED*

FOLLOWING 	INFORMATION 	IS 	FROM 	'FINDZ'
•-•

'. C - VALUE 	IN 	POINTER 	1
.

OF 	RECORD TYPE 	ACNT VERSION 	1 	AT 	ADDRESS 	
5

IS' 	0

C .***'FIND2' 	COMPLETED*** -

•
M BALANCE 	FOR 	CUSTOMER 	2 	SITH,JMES 	IS 	65

***EN 	OF BALANCE 	CALCULATION RUN**

-

Data:C1

• . (***RUN OF 	BALANCE 	CALCULATION 	PROGRAM**
:

TYPE 	VERSION 	NUMPEP OF 	FPOGRAM

Data 	2
• C TYPE 	CUSTOMER 	NUMPEP

Data:C1

(
FOLLOWING 	INFOPMATJO 	IS 	FROM 	FIND1'

DBMS 	IS 	SEARCHING 	FOR

RECORD 	TYPE 	CUST VERSION 	2

WITH 	CHARACTERS 	1 	TO 	2 	EQUAL 	TO 	-

1
RECORD 	FOUND 	AT 	ADDRESS 	1 	VERSION 	2

(
'FINDl' 	COMPLETED

IS 	FROM 	'CET'*** —FOLLOWING INFOPMATICN

- 	
•. C CHARACTERS 	8 	TO 	11

OF 	RECORD 	TYPE 	CUST 	VERSION 	2 	AT 	ADDRESS
S

1 	ARE: -

:.; JONE

**'GET' 	
COMPLETED***

FOLLOWINC 	INFORMATION 	IS 	FROM 	'GETS

(
CHARACTERS 	12 TO 	15

1 	ARE - OF RECORD TYPE CUST VERSION 	2 AT ADDRESS

S,AL 4
COMPLETED***

$GET'*** ***FOLLOWING 	INFORMATION 	IS 	FROM

(
CHARACTERS 	16 	TO 	ic

OF 	RECORD 	TYPE 	CUST 	VERSION 	2 	AT 	ADDRESS
1 	ARE

AN

(
'GET' 	COMPLETED*

FOLLOWING 	INFORMATION 	IS 	FROM 	'r,ET'
• 	 .•".; CHARATEPS 	3 	TO 	7 	 •

OF 	RECORD 	TYPE 	CUST 	VERSION 	2 	AT 	ADDRESS
1 	ARE:

65
E1' 	COMPLETED*
BALANCE 	FOR 	CUSTOMER 	1 	JONES.ALAN 	IS 	

65

END 	OF 	BALANCE 	CALCULATION 	RUN

.... • 	 •• 	 •Te----------- 	 t• ---------------- ----: 	• 	 -.• 	 -

- 	•<.' '. 	:>:)-. ";:.. 	
. 	 2 	 - #'2 	 -

...:...
- -A3.56-

• 	V• Data.8
• 	'. 	 .': ? RECORD 	TYPE LUST VERSION 1 	FOUND

(AT 	ADDRESS 3
POINTER 	1 GIVES ADDRESS CF 	FIRST 	PEMBEP 	AS 	4
V ERSI CN 	OF RECORD TYPE 	RCNT AT 	THIS 	ADDRESS 	Is

• CHARACTERS 7 TO 11
OF RECORD TPE ACNT VESION 1 	AT 	ADDRESS 	4 	ARE 	:-

32

C
**

	

FOLLCWINC
•;•V

• INFORMATICN IS 	FRCM RESTRUCTURING 	ROUTINE ***
-9 VEPSICN 	NUMBER OF RECORD TYPE 	ACNT 	AT 	ADDRESS 	4

C IS BEING 	ALTERED TO 	2
;

CHARACTERS 1 	TO 2 	WERE, PREVIOUSLY

-: 2
CHARACTERS 3 TO 4 WERE PREVIOUSLY

CHARACTERS 5 	TO 6 WERE PREVIOUSLY
(V

2
CHARACTERS 12 	TO 13 	WERE PREVIOUSLY

V . CA

C. CHARACTERS 1 	TO 2 	HAVE PEEN 	SET 	TO 	:-
2

:'. 	. 	 :- 	 :V • 	. CHARACTERS 3 	TO 4 	HAVE BEEN 	SET TO

V

C
CHARACTERS 5 	TO 6 HAVE BEEN SET TO

2 V

C CHARACTERS 7 	TO P 	HAVE BEEN SET TO 	-
V: 	 V CA

RECORD HAS 	BEEN RESTRUCTURED 	***

POINTER 	1 GIVES ADDRESS OF 	NEXT rEMBER AS 	5
. VERSICN 	OF RECORD TYPE 	PCNT AT 	THIS 	ADDRESS 	IS
•• VV. 	 V• CHARACTERS 7 TO 11

(V OF 	RECORD 	TYPE 	ACNT VERSION 1 	AT 	ADDRESS 	5 	ARE 	-
3 .

*** 	FCLLCWING INFORMATICN IS 	FRCM 	RESTRUCTURING 	ROUTINE ***
VERSICN NUMBER OF RECORD TYPE ACNT AT 	ADDRESS 	5
IS BEING 	ALTERED TO 	2

V4V.J4
--'CHARACTERS. :V

V1119. 2VwVERE,.:.pREIousLy.2.._
.Iir.• 	

V 	
V:2 	

:.--- 	 :..:V 	
: 	

V

3
CHARACTERS 3 TO 4 WERE PREVIOUSLY 	. 	

. 	. .

(2
V 	

.V 	 V•

' CHARACTERS 5 	TO 6 WERE PREVIOUSLY
2

VV (V CHARACTERS 12 	TO 13 WERE PREVIOUSLY
V VV 	 .

V . CHARACTERS 1 	TO 2 HAVE BEEN 	SET TO 	:-

c
CHARACTERS 3 	TO 4 	HAVE BEEN 	SET 	TO 	:-

2 	 -
V 	V

(CHARACTEPS 5 	TO 6 	HAVE BEEN 	SET 	TO 	:- 	 V

V 2
V CHARACTERS 7 	TO P HAVE BEEN SET TO

(DA
*** 	RECORD HAS 	BEEN 	PESTQUCTUED 	***

- 	V POINTED 	1 r,IVES ADPOESS CF 	NEXT 	V EMBER 	AS 	0

V.. 	 ,

-

FCLLCWING 	INF(rATTCN 	IS 	ESTRUCTUING 	ROUTINE 	***
V E P S I C 	N()MPF F 	OF 	PECC 	TYPE 	CUST 	T 	ADDRESS 	3

C IS 	BEING 	ALTERED 	TO 	2
• CHARACTERS 	1 	TO 	2 WEE 	PREVIOUSLY 	 -A3.57- 2

C CHARACTERS 	3 	TO 	6 W EP E 	PREVIOUSLY
SPIT
CHARACTERS 	7 	TO 	10 WEE 	PREVIOUSLY

-- C H,JA
CHARACTERS 	11 	TO 	14 	WERE 	PREVIOUSLY
PES

(
CHARACTERS 	1 	TO 	2 HAVE 	PEEN SET TO 	-
2

-' CHARACTERS 	3 	TO 	7 APE BEING 	SET TO 	SPACES
CHARACTERS 	8 	TO 	11 	HAVE 	BEEN 	SET 	TO 	-
SPIT

- CHARACTERS 	it 	TO 	15 HAVE SEEN 	SET TO 	-

CHARACTERS 	16 	TO 	19 HAVE BEEN SET TO 	-

C *** 	RECORD 	HAS 	FEEN 	PESTPIJCTURFO 	***
CHARACTERS 	3 	TO 	7
OF 	RECORD TYPE 	CUST VERSION 	2 	AT 	ADDRESS 	3

(
HAVE 	EEEN ALTERED 	TO

2 65
IF NO 	OTHER 	REQUEST IS 	OUTSTANDING 	TYPE 	REPLY 	28

'---:

Data 	28
RESTRUCTURING 	COMPLETE 	- PARALLEL 	RUN 	CONTINUES 	***

(

Data 	29

C *** THE 	CURRENT 	SCHEMA 	***

RECORD 	TYPE 	COST VERSION 	2
- DATA 	ITE10. CHUM 	START 	AT 	1 	END 	AT 	2 FORMAT ,I2)

• DATA 	ITEW.BALC 	START-AT 	.3 	END 	AT 	7 	FORMAT 	.15) •• 	 •-
DATA iTEM NAM1 	START AT 	8 END - AT 11 	FORMAT ,A4)
DATA ITEM NAM2 	START 	AT 	12 	END 	AT 	15 	FORMAT 	,A4)
DATA 	ITEM NAM3 	START 	AT 	16 END 	AT 	19 	FORMAT ,A4)
SET NAPE 	CUAC 	POINTER 	TYPE 	FRST

- SET NAME 	CUAC POINTER 	TYPE 	LAST
KEY 	DATA 	ITEM 	CNUI4

V 	 ••
RECORD 	TYPE 	CUST VERSION 	1

. DATA 	ITEM CNUP 	START 	AT 	1 	END 	A 	2 	FORMAT 	,12)
DATA 	ITEM NAM1 	START 	AT 	3 	END 	AT 	6 	FORMAT 	,A4)
DATA 	ITEM 	NAP? 	START 	AT 	7 	END 	PT 	10 	FORMAT 	,A4) V

S
DATA 	ITEM NAM3 	START 	AT 	11 	ENDAT 	14 	FORMAT 	,A4)

• SET 	NAME 	CUAC 	POINTER 	TYPE 	FRST 	 -
• SET 	NAME 	CUAC 	POINTER 	TYPE 	LAST

- KEY 	DATA 	ITEM 	CNIJM

- 	 -S.

1:.

1 ..

, -.--

.

(PQR C 	TYPE 	ACNT 	VERSION 2
DATA ITEM 	ACJO 	START AT 	1 	EN!) AT 	2 FORMAT ,12) —A3.58
DATA 11EV 	SONO 	START AT 	3 	END AT 	4 FOP.VAT ,I2)

(DATA 11EV 	C%JNO 	STPT AT 	S 	END AT 	6 FORMAT ,12)
DATA 11EV 	ACIF 	START AT 	7 	END PT 	? FORMAT ,A?)

SET NAVE 	CUAC 	POINTER TYPE 	NEXT

SET NAME 	CUAC POINTER TYPE PRU
SET NAME 	CUAC POINTER TYPE 	OWNV
KEY DATA 	ITEM 	ACNO

(
.

	

RECORD
.

TYPE 	ACNT 	VERSION 1
DATA ITEM 	ACIC 	START AT 	I 	END AT 	2 FORMAT ,12)

C DATA ITEM BQNO 	START AT 	3 END AT 	4 FORMAT .12) ... -
.

DATA ITEM 	CUNO 	START AT 	5 	END AT 	6 FORMAT .12)
.2•,; . 	 DATA:ITEM BALC 	START AT 	7END AT 	11 FORMAT .,I5).

(DATA ITEM 	ACIP 	START AT 	12 	END AT 	13 FORMAT ,A2)
SET NAME 	CUAC POINTER TYPE NEXT

•,- SET NAME 	CUAC POINTER TYPE 	PRIR
SET NAME 	CUAC POINTER TYPE OWNR
KEY DATA 	11EV 	ACNO

C RECORD TYPE 	FPCM 	VERSION 1
DATA ITEM 	BNUM. 	START AT 	1 	END AT 	2 FORMAT ,12)
DATA ITEV 	BNV1 	START AT 	3 	END AT 	6 FORMAT ,A4)

(DATA ITEM 8NM2 	START PT 	7 	END PT 	10 FORMAT ,A4)
DATA ITEM BNV3 	START AT 	11 	END AT 	14 FORMAT ,A4)
DATA ITEM LOCN 	START AT 	15 	END AT 	15 FORMAT ,A1)

(KEY DATA 	ITEM 	PNIIM

SET NAME 	CUAC
c OWNER 	RECORD 	TYPE 	COST PATCHING DATA ITEM CNUV

MEMBER 	RECORD 	TYPE 	ACNT MATCNINC DATA ITEM CUNO
POSITION OF 	NEW 	INSERTS - LAST

C

er
Data: 30

*** C THE 	CURRENT 	DATA EASE 	***

ADD RECORD 	VkSN 	DATA POINTERS TA

-; 1 COST 	2 	1 65JONES,AIAN 2 6 0 0 00 0000
.2 ACNT 	- 2 	1_i 1CA 6 0 1 0 0 0 0 0 0 0 	10
\3 COST 	2 	2 65SMITH,JAPES ü p 0 00 	12
4 ACNT 	2 	2 	1 2Cft 5 0 - 3.0 0.0 0 0 0 0 	13
5 PCNT 	2 	3 	2 2DP 0 4 3 0 0 0 0 0 	0 0 	14

. 6 RCNT 	2 	4 	1 1 C A 0 2 	1 0 0 0 0 0 	0 0 	11
4 7 ERCH 	1 	1EIGTOb.N 	U 0 0 0 0 0 0 0 0 0 0 	0

8 ERCH 	1 	2SMALLTOWN 	P 0 0 0 0 0 0 0 0 0 0 	0
9 COST 	1 	1JONES,ALAN 2 6 0 0 0 0 0 0 0 0

H - 10 ACNT 	.1 	1 	1 1 	21CA 6 0 	1 0 0 0 0 0 0 0 	2
11 ACNT 	1 	4 	1 1 	44CA 0 2 	1 0 0 0 0 0 0 0

' C 12 COST 	1 	2SVI TH. ,JAMES 4 5 0 0 0 0 0-0 	0 0 	3
13 ACNT 	1 	2 	1 2 	32CA 5 0 3 0 0 0 0 0 0 0 	4

•:- 14 ACNT 	1 	. 	3 	2 2 	33DA 0 4 3 0 0 0 0 0 0 0 	5

C

(

C

• • 	- 	.- 	
•:t -

• •: 	ç 	DEt:lO 	 —A3.59—

***P1I? OF BALANCE CALCULATION 	
IJDIT PRO(PP*Ir

TYPE CIJSTOMEF NUMPL1
: Cl

FOLLOWING INFOPMPTI(' is FPOW IFJND1'*
DeNS IS SEARCHING FOR
RECORD TYPE CLIST VERSION 2
WITH CHARACTERS 1 TO 	2 EQUAL TO

I
RECORD FOUND AT ADDRESS 1 VERSION 2
'FINDl ' CO1PLETED

'***"FOLLOWING INFORMATION IS FROP'GET'***

CHARACTERS 3 TO 7
OF RECORD TYPE CUST VERSION 2 AT ADDRESS 1 ARE: —

65 	-
'C, Ei' COMPLETED*
CUST0rER BALANCE FROM VER 2 RECCRD IS 	65

***FOLLOWING INFORMATION IS FPO 	
IFIND2'***

VALUE IN POINTER 1
OF RECORD TYPE CUST VERSION 2 T ADDRESS

is 2
VERSION OF RECORD-TYPE PCNT AT THIS ADDRESS IS 2

' F 1ND2' COrPLETED

•---

FCLLOWINE INFORMATICN IS FCM 'FIND3'
DBMS IS FOLLOWING TAG TO EARLIER VERSION OF CURRENT RECORD AT ADDRESS 10

VERSICN OF RECORD TYPE PCNT AT THIS ADDRESS IS
*** 'FIND3' COMPLETED ***

FOLLOWING INFORMATION IS FPO 	-GET'

CHARACTERS 	7 TO 11
OF RECORD TYPE ACNT VERSION 1 AT ADDRESS 10 ARE:

21
'GET' COMPLETED*

FOLLOWING INFORMATION IS FROM FIND2'
VALUE IN POINTER 1
OF RECORD TYPE ACNT VERSION 1 AT ADDRESS 10

C 	1S6 VERSICN OF RECORD TYPE PC.NT ATJHIS ADDRESS IS 2 	- •

*,0FiND2' COMPLETED***
S 	

r 	 -
** FC1LOWIN 	INFORMATION 1S FROM 'FIND3' 	

• - -. 	 -. 	-

DBMS IS FOLLOWING-TAG-TO EARLIER VERSION OF CURRENT RECORD- AT ADDRES.S
1

VERSICN OF. RECORD TYPE PCNT AT THIS ADDRESS IS 1

.FIND3 1 . COMPLETED ***

'• ;;-.-••. • S....

-.• 	 .,
. t

.--J•;r- • ;- ',-

(

C

FOLLOWING INFORMATION IS 'FROM. 'GET'
CHARACTERS 7 TO 11
OF RECORD TYPE ACNT VERSION 1 AT ADDRESS 11 APE:-

44
CET' COMPLETED

***FOLLOWING INFORMATION IS FROM
1 FIND2***

VALUE IN POINTER 1
OF RECORD TYPE PCNT VEPSIO 	

1 El ADDRESS 11

IS 0
'FIND2' CO,PLETED
SUM OF ACCOUNT FALANCES FCR VIP 1 RECORDS IS 	65

END Oc BALANCE CALCULATION AUDIT RUN

C

C

•"? C

PARALLEL RUN COPLETE

Date :313

*** THE CURRENT DATA PASE ***

ADD RECORD VRSN DATA 	 FOINTERS

1 	(UST 	2 ' I

TAG

S

- 	 Dt:(. 	 —A3,60---

2
2 6 0 0 0 0 0 0 0 0 ACNT 2 1 	1 	1 C A 6 0 	1 0 0 0 0 0 0 0 1 3 CUST 2 2 	65SMITH,JArES 4 5 0 0 0 0 0 0 0 0 6

5
ACNT 2 2 	1 	2CA 5 0 0 0 0 0 0 0 0

- 6
ACNT
ACNT

2
2

3 	2 	2 D A 0 4 3 0 0 0 0 0 0 0 6 	1 	1CA 0 2 	1 0 0 0 0 0 0 0 7 FRCH 1 1PIC-TOWN 	U 0 0 a oo o•o o o o 8 ERCH 1. 2SMALLTOWN 	R 0 0 0 0 0 0 0 0 0 0

(

(Dat:29

THE 	CURRENT 	SCHEMA 	***
C

- 	
-

RECORC 	TYPE 	CUST 	VERSIOI. 2
DATA 	ITEM 	CNUM 	START 	AT 	1 END AT 	2 --FORMAT ,12) c DATA 	ITEM. 	BALC 	START 	AT 	3 END AT 	7 	FORMAT ,15)
DATA 	ITEM NAM1 	START 	AT 	8 END AT 	11 	FORMAT ,A4) DATA 	ITEM NAM2 	START 	AT 	12 END AT 	15 	FORMAT ,A4)

C DATA 	ITEM. NAPZ 	START 	AT 	16 END AT 	19 	FORMAT ,A4)
SET NAME 	CUAC 	POINTER 	TYPE FRST
SET NAME 	CUAC 	POINTER 	TYPE LAST

(
KEY 	DATA 	ITEM. 	CNUM. -

RECORD 	TYPE 	PCNT VERSION 2
C DATA 	ITEM 	ACNO 	START 	AT 	1 END AT 	2 	FORMAT ,12)

DATA 	ITEM BPNO 	START 	AT 	3 END AT 	4 	FORMAT .12)
DATA 	ITEM. 	CUNO 	START 	AT 	5 END AT 	6 	FORMAT .12)
DATA 	ITEM ACIP 	START 	AT 	.7
'SET

END AT 	8 	FOMAT ;A2)
NAME 	CLIAC POINTER 	TYPE NEXT

SET - NAME 	CUAC 	POINTER 	TYPE PRIR
8

(SET
'
NAME 	CUAC POINTER 	TYPE OUMP

KEY 	DATA 	ITEM 	ACNO

(RECORD 	TYPE 	EPCH VERSION 1
DATA 	ITEM 	BNUM 	START 	AT 	1 END AT 	2 	FORMAT ,12)

C DATA 	ITEM. 	BNP1 	START 	AT 	! END AT 	6 	FORMAT ,A4)
DATA 	ITEM BNM2 	START 	AT 	7 END AT 	10 	FORMAT ,A6)
DATA 	ITEM BNM3 	START 	AT 	11 END AT 	14 	FORMAT ,A4)
DATA 	ITEM. LOCN 	START 	AT 	15 END AT 	15 	FORMAT ,A1)
KEY 	DATA 	ITEM 	2HUM

• 	 . SET NAME 	CUAC

(OWNER 	RECORD 	TYPE 	COST 	MATCHING DATA 	ITEM 	CNUM
MEMPER 	RECORD 	TYPE 	PCPT 	MATCHJUG 	DATA 	ITEM 	CUNO
POSITION 	OF 	NEW 	IISE°Ts 	- 	LAST

0.
0
0
0
0
0
0
0

-" -

—A3,61---

Date 	£2

C ***J. 	OF 	TRANSACTION 	POSTING 	PROGRAM***

- TYPE 	VERSION 	NIJPBEP 	OF 	PROGRAM

Data 	3
TYPE 	ACCOUNT NUMBER 	AND VALUE TO 9E POSTED

D-eta 	C 	0010

FOLLOWING 	INFORrATI0 	IS 	FROM 	'F1t401'

& DBrS 	IS 	SEARCHING 	FOR

RECORD 	TYPE 	ACNT VERSION
	2

(S WITH 	CHARACTERS 	1 	TO 	2 	EQUAL 	10

RECORD 	FOUND 	AT 	ADDRESS 	2 	VERSION 	2

(***'FINDl' 	CO!IPLETED**

FCLLCWINr 	INFURIATICt 	IS 	FRCM 	'FIND3' V

DBMS 	IS 	FOLLOWING 	TAG 	TO 	EARLIER VERSION 	OF 	CURRENT 	
RECORD 	AT ADDRESS 	0

'FIND3' 	COMPLETED
NO VESION 	1 	ACCOUNT 	RECORD 	FOUND

C
FOLLOWING 	INFORMATION 	IS 	FROM 	'FIND2'

4-. VALUE 	IN 	POINTER 	3
OF 	PECORD.-TYPE 	ACNT 	VERSION 	2'AT 	ADDRESS 	2

'- 	 - is 	1
• VERSION 	OF-RECORD 	TYPE 	CUST 	AT 	THIS 	ADDRESS 	IS 	2

(S ***'FIN02' 	C0PPLETED***

FOLLOWING 	INFORMATION 	IS 	PROF 	'GET' On
CHARACTERS 	3 TO 	7
OF 	RECORD 	TYPE 	CUST 	VERSION 	2 	AT 	ADDRESS 	1 	ARE:– 	- -

65
**'G7' 	COMPLETED*

IS 	FROP 	'MODIFY'*** ***FOLLOWING 	INFORM ATIOP'
(S CHARACTERS 	3 TO 	7

OF 	RECORD 	TYPE 	CUST VERSION 	2 	AT 	ADDRESS

HAVE 	EEEN ALTERED 	TO 	 V

- - 75
'MCDIFY' 	COMPLETED

V TRANSACTION 	OF 	5 	10 	POSTED 	- 	NEU 	CUSTOMER BALANCE 	$ 	75

(S ***ENO OF 	TRANSACTION 	POSTING 	RUN***

At
-

-C

4. 	I ° 	
-

-

- 	 - - 	 - 	 .

C
•-.-- 	-. C -- C -A3,62 -

----:--- C
C -

C
• 	 -. 	 . 	 -

100 WRITE(6,7320) 	 -

.
7320 FORMAT 	('Q***RtJN 	CF 	BALANCE 	CALCULATION AUDIT 	

PPOGRAPI***')

c.

- 	 •. 	 - 	 . 	 -
WRITE: (6 0 1005) 	- 	 -.

.. 	 - 	
- j-- 	 -- READ 	(5,1002) 	ICUST

IBAL1=C
(: C

C 	DML COMMAND 	FIN D1 	IS 	USED 	TO 	ESTABLISH 	P 	CURRENT-RECORD 	OF RUN

- C 	UNIT FCR 	A 	CUSTOMER 	RECORD 	WITH THE 	SUPPLIED 	CUSTOMER NUMBER

c
CALL 	FIND1(KCUST,1CUST.ISPACE.ISCE,IER

• 101 IF 	(IERR.NE-.1) 	(-0 	TO 	107

- 	 : WRITEC6,7007)tCIJST
7C07 ') FORMAT 	(' 	CUSTOMER 	',12,' 	NOT 	FOUND

•------- -- - - v--- 	:y-. GO TO 	106

(- 107 IF 	(ICURVR.NE .2) 	GO 	TO 	1C9
-. CALL 	GET(KBALC)

lB AL2= I LIWA (1)
WRITE(6,7015) 	1EA12

•. 	
-. 	'•.--•- - 	 7C15 FORMAT 	(' 	CUSTOMER 	BALANCE 	FROM 	VER 	2 	RECORD IS

CALL 	FIND2(KACNT,KCUAC,KF

102 IF 	(IERR 	EQ 	1) 	GO 	TO 	105
CALL 	F1ND3(IERR)
CALL 	GET(KBPLC)

1C4 IBALIIBAL1 4 IUWA(1) 	-
CALL 	FIND2 	(KACNT,KCUAC.KMEXT.IERR)

105 IF 	(IEPR 	NE 	1) 	GC 	TO 	102

- C WRITE 	(6,7040)IBAL1
7040 FORMAT(' 	SUM 	OF 	ACCOUNT 	BALANCES 	FOR-VER 	1 	RECORDS 	IS',IS)

C
106 WRITE(6,7321) 	

I

-t C 7321 FORMAT(' 	***END OF BALANCE 	CALCULATION AUDIT RUN***')

GOTO5
-: 	- 	

-:---. 	-i - 109 -- 	 - WRIIE(6,7010)
• 	 - 	 . 	 . 	 - 	.: 	 - 	

• C 7010 FORMAT(' 	CUSTOMER 	RECORD 	IS 	NOT 	AT 	VERSION 	2') 	-
-.

• 	 - 	 .-
- 	

-
CO TO 	106

C
j 	

- C C

I
----- - 	 - -----:

' 	 /' 	$- -,
I 	 I

-• - 	
-

—A3.ó3—

Amendment to the Format of the Account Number (Key 'to

the Account Record)

Particular considerations apply when the format of a

key data item is altered. In this case the account

number in the account record is amended from format 12

to 13. 4s before, a closed restructuring strategy is

used and each Account Record is accessed and restruc-

tured in address sequence.

When the Transaction Posting program is run to post £10

to account 2 the DBMS uses the schema definition of

the version 2 account record to establish that it must

match using a three-digit number. The record is found

at address 2 in this way and the balance is modified as

normal.

When posting £10 to account 03 the DBMS firstly searches

for a version 2 account record using a three-digit account

number. In this case no match is found and the schema

is examined again so that a second search can be made for

a version 1 record using a two-digit account number.

In this case the record is found. Since the record is

to be modified it is restructured before this is done.

When the restructuring proceeds it finds Account 3 already

restructured. Account 4 is then restructured and the

restructuring is complete.

Data :2-'. 	 —A3.64 -

• 	 ***5T'T "F 	 !TEN 	RP.T RiSTRUCTURIKC 	**

TYP- OP -t. C:' CL S2 FO 	TYP •• CF PST:UCTU1ING

FOLLOED F''j 'ECOPD hAvZ , 	IFE" NATE, L:NGTF(AIC, NE

Data:CLS' .C(.T /Ci -C C. 	,I_)
- TUCiU IC NOW VDIR W .I***

RECO21 TYPF PCrIT VERSION 	1 FOUD

• 	 AT ADDi 	-

*** F(LLCW iNf- IN FORNP710h 15 FROM P ESTRU CiUOI;G ROUTINE ***

VERSION t.UEP LF 	ECT) 1Y FE ACNT IT ADDRESS 	2

IS RF X e ALTERED TO 	-

CHRACiEP S 	1 F(2 wFR F ;cVIOUSLY

CHARCT.S 	: Tn 	L W 0 1 1L 	•VT'JISLY

CHACTE 	C I 	 VJOUSLY

1
CHAPACTL71 	7 T. 11 WLQ. •V IuUSLY

11

	

•_. 	CAP..CTE'S 12 T -. 13.- 	 V IOU SLY

C
CHAR-Tr5 	11.. 	3 A, V= 	 j 	2T

1

	

-: •-, 	ChAACTE'.S 	1. T v 	5 -:.v 	? =w 5 ET TO

CHARCTE 	Tk 	7 	2 iEr: 	SI Ic

• 	 cHAAcrE: :- 	
• 	' 1 	- ; v - C.N SST TO :-

• 	 - 	-. 	11
CHARACTELK i: TO 14 N-V 	 ST TO :-

lN 1-ITMWED , * *

IF NO 	 : LT !4 CLTT"DIC TYPZ --PLY 21

	

L- 	Dta:,1
RECORD TY'- 	VES!O. 	1 FOUND

AT AODPECE 	+

	

• 	 *** FOLLCW INC Jr,FOCr-ATION IS FROM RESTRUCTURING ROUTIW. k**

VERSIO 	.UR f F WSC'?C TYPE ACWT AT lDDRESS 	4

	

L 	IS 5 	A LTCF:EC 10
CHARCTES 	1 1 1 	2 L, 10 	cR SVfUSLY

• 	 ,

CHARACTErS 	C. IC' 	1. , •:- 	- r 'iIOUSLY

CHAR.CTE- 	. T' 	6 N:E ORCV1CUSLY

	

. 	2
CHAR ACT .i 5 	7 T 	11 	 VIOUSLY

22
CHARACTEP 	1 	T 	13 W_ 	Rr.VIOUSLY

cH:rE - 5 	1 1 	3 -:vC.-E. 	SET 7
2

1 	5 W.V 	C•-. 	SET IC

CHARM EFS 	 7 - 'JC L 1 :1 SI TC

	

- 	:-

2
CHR.CTS', 	IC 1 	 _.- 	ST TO :-

• CHARACTERS 13 Ti 14 SAVE 	E-: SIT TO
CA
*** iCOCU i5 1 -14 1 iSTALCTURED ***

• 	 IF NO OTrF SEL.L'EE.T I 	CLTSTANDII'.I TYPE REPLY 21

(Data
-A3.65 -

 T H. 	U 	r 	T 	S Lb
.. 	

. (
RECC:) 	 jE5j) 	1
DATA 	IT SY 	CUt' 	START 	nT 	1 	ND AT 	2 F0Rt4T ,)
DATA 	ITEP 	tAM1 	START 	AT 	3 	END AT 	6 FURAT ,A4)
DATA 	1 T 	:0 	bF2 	STAR 	AT 	7 	EN) AT 	10 FORMAT ,A4)

-Z DATA 	.LF..fr 	t, A 	TART 	A T 	11rN D AT 	14 FOP'PT ,4
C SET 	NM 	CLAC 	POINTER 	TYP: 	FR:T

-.

SET 	N 	CtJAC 	POINTER 	TYPE 	LAST
KEY 	DATA 	ITEV 	CNUM

RECORD 	TYPE ACNT VERSION 	2
— 	- DATA 	ITE 16 	PCNO 	START 	i-I 	1 	:ND AT 	3 r 	 111 .13)

, 	- C DATA
	

IT 	ERNO 	START 	AT 	4 	END AT 	5 FORMAT ,IZ)
DATA 	hEr' 	CUNC, 	START 	AT 	6 	END AT 	7 FORMAT ,12) s DATA 	IT_fr 	EALC 	START 	AT 	E 	END AT 	12 FORMAT ,15)
DATA 	ITEr' 	ACTP 	START 	AT 	13 	END PT 	14 FORMAT ,A2)

- 	; SET 	NAfrE 	CUAC 	POINTER 	TYPE 	NEXT
SET NAME 	CUAC POINTER 	 RE 	PPIR
SET 	NAME 	CUAC 	POINTER 	TYPE 	CWNR -
KEY 	DATA 	I TEV 	ACNO

C RECORO 	T 	AC'4T 	VERSI)t 	1
DATA 	ITEr' 	tCNO 	START 	AT 	1 	END AT 	2 FORPT ,12) - 	. 	 . DATA 	17 EN 	ENO 	STAR T 	AT 	3 	END AT 	4 FOR'AT .12

C DATA 	I T F 1P 	CUNO 	ETARI 	AT 	5 	END AT 	6 FOPfflAT ,12)
DATA 	IT ER 	EALC 	START 	PT 	7 	END AT 	.11 FORMPT .15.)
DATA 	IT Cfe 	'CTP 	STAR 1 	AT 	12 	END AT 	13 FORMAT A2)

C SET 	CUAC 	POINTER 	TYPE 	NEXT -
SET 	H AP-2 	CUAC 	POINTER 	TYP E 	PRIR
SET 	Ne- Mi 	CLC POINTER 	rvp: 	OWNR

C KEY 	b,-TA 	ITN 	ACNC

RECORD 	TYPE 	SRCR VERSION 	1
c DATA 	IT EV 	EaUh 	START 	AT 	1 	ND

DATA
AT 	2 FORr.LT .12)

1TE' 	FNf41 	STAR 	AT 	3 	END AT 	6 FORM AT ,A4)
DATA 	1Er' 	E ff? 	S TART 	A T 	7ND A T 	10 FORMAT A4)

(DATA 	ITE 	EN r3 	STAR I 	AT 	11 	EN D AT 	14 FORMAT ,A4)
... DATA 	TT 	LCCN 	ST.-RT 	T 	1 	END AT 	15 FORMAT ,A1

- KEY 	DATA 	ITEM 	6NUP

SET 	NAME 	CUC
OWNER RECORD TYPE 	COST MATCHING DATA ITEM 	CNUM

C fEMEER 	RECORD TYPE 	PCNT MATCHING 	DATA ITEM 	CUNO
POSITION 	OF 	NEW 	INSERTS 	— LAST ...

t C Data 	30

THE 	CURRENT 	DATA 	EASE 	***
C

ADDRECc-D 	VPSN 	DATA POINTERS T

CUET 	1 	1J0N:3,ALAf 2 6 0 0 0 0 0 0
2 	;:T 	.' 	111 	11 	A 601000000C,

CLST 	1 	SJih,J/'ES L 5 	0Cj 	0 0 	0 0 	0 	C
C -CT 	 2 	1 	U 	2CI- 5

5 	1, T 	1 SC. 0L3000000C
•s 	1 	E 	1 	1 	4 4 CA 0 21 	U 	0 	0 	U 	Li

(7 	. 	 I 	1Tr 	1! C 0 0 0 0 0

(

Data:02
-A3,66—

** * RUN 	OF 	TPHSACTIc\ 	CT1G 	PO(RA*
TYPE 	V 	ICN 	t,.U#LER 	OF 	P : 0GRAM

(Data 	1
TYPE 	CCOUT 	fLifrc' 	PAND 	VALLE 	TO 	EE 	POSTED
Data 	r 	,, C, 1(j --&.-.-._

•

FOLLCIG 	INFORMATION 	IS 	FROM 	'FID1'*
U DBMS 	IS 	S'- ARCHING 	FOR

RECORD 	TYPE 	PCNT VERSION
WITH 	CHPRACTERS 	1 	10 	3 	10 UAL 	TO

C
2

RECORD 	FCUD AT 	 SiO 	2
C TAI 	 I

4'.W

FOLLCWNG INFORMPTJON IS FROM 'GET'
CHARACIEPS 	TO 12
OF RCC.D TYPE ACUI VERSION 2 AT ADDRESS 	4 ARE

 22
' ,SETe COWPLTED

vOLLcw!tO INFORNT1Cr IS FRO 	(tOCJIFY
CHARACTERS E 10 12

OF RECORD TYPE ACNT VERSICN 2 AT ADDRESS 4
HAVE PEEN ALTERED TO

32 	 -
'MODIFY' C0PLETEO
TRANSCTIO OF s 	10 POSTED - NEW BALANCE $
END CF TRANSACTION POSTING RUti

• 	
•-

C

(.4

32

C. 	Data:(J2

•:

e.

- 	 .

RUN OF TRANSACTION POSTING PROGRAM
TYPE VERSION NUlEER OF PROGRAM
Data1

TYPE ACCCU?T NUMBER AND VALUE TO EE POSTED
Data:03 coio:..

FOLLOWING INFORMATION IS FROM 'FINDl'
DBMS IS SEARCHING FOR
RECORD TYPE ACNT VER51ON 2
WITH CHARACTERS 	1 10 	3 EDLAL TO

3

NONE HAS EEEfl FOUND SO DhS IS NOW SERCHINc- FOR
RECORD TYPE ACNT VERSION 1
WITH CI4A.RACTFPS 	1 10 	2 ECLL TO
3

RECORD FOUND AT ADDRESS 	5 'JESIO
***'F it. U1 	COiPLTE**

***FQLLOI 	Jr- Fo,- TIoj IS
CHAP4Cts 	71011
OF sc:-.r TY 	1CI 1

-S 	
1 AT 	 5 A FE:- •-

(.

rT.

• 	:-'

OL;i 9 T J r 1 	F

***F eLL"wI;L 	IF(RiI.. T 	F D 	 T 	U 	T L F 0uTJ 	k*

VERS1 	.\l!1 	:F 	E :C.R. 1- 	CiT 	J-T 	tEEs

C. IS 	 LT 	.i 	TO
CHARAC1R S 	T, 	2 -R'I)1'SLV

C CHARCTE 	7 	TL 	w jp:jjy

CHARACTERS 	5 	TO 	6 	w 	RE PRVIOUSLY

(a
CHARACTERS 	7 	TO 	11 	WERE PREVIOUSLY

33
C CHARACTERS 	12 	T 	13 	W7RF E-RrVIOUSLY

DA
CHARACTERS 	1 	TON 3 	HAVE EEEN SET 	TO

C. .3
CHARACTERS 	4 	T 	5 	HAVE 6E EN SET 	TO

2
CHARACTERS 	6 	TO 	7 	HAVE E;-: TN 	SET 	TO

2
CHARACTERS 	F 	TO 	12 	WAVE EE EN 	SET 	TO 	:-

33
CHARACTERS 	13 	TO 	14 	PAVE FE=N 	SET 	T0 	:

—

DA

C *** 	RECORD 	HAS 	EEEN 	RESTRLCTIIP.ED 	***

CHARACTERS 	E; 	TO 	12

OF 	RECO PLI 	TYPE 	ACNT 	VERSION 2 	AT 	ADDRESS 	S

(HAVE 	eEEH 	ALTERED 	TO
43

'MOOIFY 	CO.PLETED

C TRANSACTION 	OF 	i. 	10 	POSTED 	- 	NEW 	BALANCE 	S 43

***END 	OF 	TRANSACTION 	POSTING 	RUN*k*

Data:21
RECORD TYPE ACNT VERSION 2 FOUND
AT ADDRESS 5

C 	THIS RE CCRU HAS ALREADY BEEN RESTRUCTURED AND NEED NOT BE ALTERED
IF NO OTHER REQUEST IS OUTSTANDING TYPE REPLY 21

C

D a t a : 2 1 	 -
RECORD TYPE ACNT VERSION 1 FOUND

AT ADDRESS 6 	-

c
*** FOLLCWINE INFORVATICN IS FROM RESTRUCTURING ROUTINE ***

VERSION rJUtBER OF RECORD TYPE ACNT AT ADDRESS 	6

(IS BEING ALTERED TO 2
CHARACTERS 	1 TO 2 WERE PREVIOUSLY

4

C 	CHARACTERS 3 Tw L WFE FOVIOUSLY
I

CHARACTERS 	S T 	6 WERE FREVIOUSLY

ci 	1
CHARACTERS 	7 ID 11 	:RE,IOUSLY

(CWARRCT::: 12 1') 1 L 	 PEVIOUSLY
CA
CHAFC 	1 TO 	3 	.i. V 	cD 	ST TO

v_ 	Si TO

-

,- 	-

:-
,

f'.

::•.
(

C

C

.-
iTM

_A

-

CHAFCTS 	? IC 12
44

CHARACTEk S 1 	14
CA
*** 	tCo
IF NO 	THE 	PEUEST

HAVE 	SiT I'j
-A368

H/1 V 	E EIN SiT TO :-

PSTLCIURE&
IS OUTSTPNOIN(E TYPE 	py 21

Data 21
*** CLOSED RESTR$JCT LRIN € COMPLETE ***

	

- 	Data 29

TI4F CUREN! SCHEMA — 	-
RECORD TYPE COST VERSION 1
DATA ITEt CNUF' START AT 	1 END AT 	2 FORMAT ,12)

	

(' 	DATA ITEM NAM1 START AT 3 END AT 6 FORMAT ,P4)
DATA ITEM NAM2 START AT 	7 END AT 10 FORN.AT _A4)

—DATA ITER NAM3 START AT 11 END AT 14 FORMAT ,A4)

	

(SET SANE CUAC POINTER TYPE FRST
SET NAME CIJAC POINTER TYPE LAST -
KEY DATA ITEM CUM

	

5< 	
(

RECORD TYPE AC NT VERSION 2 - - 	
- 	 DATA IT Ef, ACNO START AT 	1 END AT 	3 FORMAT 13)

	

c 	C 	DATA ITEM ER NO STRT AT 	4 [ND AT 	5 FORFAT 	Ic)
DATA ITE' CUNO STAR T PT 	6 END AT 	7 FO'IT ,12)

	

- 	DATA ITEN iPLC START AT 	ND AT 12 FORMAT 	IS)

	

'-4 	C 	DATA IT F-' ACTI- START AT 13 ;ND AT 1 4 FO MAT ,2)
SET NAME CUAC POINTER TYPE NEXT
S:T 	C1C POINTER TYP E PIR

	

(SET NAME CUAC POINTER TYPE CWNR 	-
KEY DATA ITEr ACNO

	

(RECORD TYPE HRCH VERSION 1
DATA ITEM ENUM START AT 	1 END AT 2 FOFVPT ,r) - 	 DATA IT.M ENM1 START PT 	. END AT 	6 FOR AT _44)

C DATA ITEr ErM2 START AT 7 EN D AT 10 FORMAT ,A4)
DATA IT Eft ENM3 START AT 11 EN D AT 14 FORMT P4
DATA ITEM LOCN START AT 15 END AT 15 FORMAT Al
KEY DATA ITEM BNUM

SET NAM C UAC

	

C' 	OWNER RECORD TYPE COST MATCHING DATA ITEM CMJM
1

	

	 MEMBER RECORD TYPE ACNT MATCHING DATA ITEM CUNO
POSITION OF NEW INSERTS — LAST

C

C

• 	• 	 C

C

C

Data :30

*** TI". CURREiT DATA EASE ***

ADD F 	C0D V[SIJ DATA PCINTERS 1_Ac,

1 CUST 1 1JC,E,LftI
, - cri

2 	0 0 0 0 0 6 0 0 	0 2 2 111 	11 CA 6C1ij0000C I 3 C5T 1 2SNTFI,JL:C C U L C 0 0 L 	C 4 A C N T 2 	1 	2 	32CA 5 	2 U U 2 	0 2
5 'Cr 2 3 	2 	43ü _A 0 4 	0 C C U C C o 'CNT 2 4 	1 	1 	'-i-CA
? •C- 1 11t..!

1. 1
1 I 	I

_ 2 	C

- A 3. ó9 -

Addition of the Account Type to the Account Record Key

The key to a record may be amended by a restructuring

initiated by the user entering a code of 25 on his

terminal. The DBMS amends the schema entry for the

record in question to reflect the revised key data

items provided by the user. In this implementation

this is all that is required, there being no need to

increase record version numbers.

The example shows a run of the Transaction Posting pro-

gram at Version 1 to post £10 to account 2. After the

restructuring, version 4 of this program is introduced.

This requests not only the account number but also the

account type from the user to-determine the account to

receive the.posting. The FIND1 command then carries

out a sequential search of the data base for a record

with the required values in both data items.

-. 	 - 	 (S 	 -

- 	 A3.70

***RUN CF TH.NSACTI CM POSTING
TYPE VERSJCN NUrBER OF PROG,AM

(Data:1
TYPE ACCOUNT NUM1iFR AND VLtJE TO BE POSTED

oata:02 C0 10

•55

- 	 s --.
(S

wl

***FOLLOWING INFORMATION IS FROM IFIND1 1 ***
DBMS IS SEARCHING FOR
RECORD TYPE ACNT VERSION 1
WITH CHARACTERS 1 10 2 EQUAL TO

2
RECORD FOUND AT ADDRESS 4 VERSION
'FIPIDl' COMPLETED

C ***FOLLOWING INFORMATION IS FROM 'GET'***
CHARACTERS 7 TO 11
OF RECORD TYPE ACN I VERSION 1 AT ADDRESS 6 ARE:-

22
GET' COMPLETED*

C. ***FOLLOWING INFORMATION IS FROM 'MODIFY'***
- 	CHARACTERS 7 TO 11

OF RECORD TYPE ACNT VERSICN 1 AT ADDRESS 4

C HAVE BEEN ALTERED TO
32

'MODIFY' COMPLETED

(TRANSACTION OF $
	10 POSTED - NEW BALANCE $ 	12

END OF TRANSACTION POSTING RUN

C Data:25

***START OF AEND RECORD KEY RESTRUCTURING ***

C 	TYPE RECORD NAME AND REVISED KEY DATA ITEMS
Data:ACNT ACNO ACTP
* 	RESTRUCTURING COMPLETE **

C

C

C

--• 	: - 	 . .-. 	C
Data 02

RUN OF TRANSACTION POSTING PROGRAM
TYPE VERSION NUMBER OF PROGRAM
Data: 4

'J Zr 	 TYPE ACCOUNT NUMBER, ACCOUNT TYPE AND VALUE TO BE POSTED
Data 02 CA 0010

55

C ***FOLLOWING INFORMATION IS FROM 'FINDl'***

S. 	 DBMS IS SEARCHING FOR

--I. - 	 RECORD TYPE ACt4T VERSION 	1

C WITH CHARACTERS 1 TO 2 EQUAL TO
2

.. 	. 	. 	 AND CHARACTERS 12 TO 13 ECUAL TO

(C

I..-

...

-- 	 RECORD FOUND AT ADDRESS 	4 VERSION 	I

***'FINDl I COiPLETED**k

C
FOLLO1C INFORMATION IS FROr 'GT'
CHARACTERS 	7 i 	11

(OF 	 TYF 	:CNI vsic: 	1 AT AGDPESS 	4 ARE:-

• . .• 	V. 	
- 	*** FOLLOINC' 1NORATION IS FROM 1 rOOIFY'***

	

• 	
A3.71

CHACTERS 7 TO ii 	
— 	-

(OF RECORI) TYPE ACNT VEPSI C
	1 AT ADDRESS 	4

	

• 	HAVE BE E 	ALTERED TO
- 	 4?

(
'FOIFY COVFLETEO
TRANSr.cTI.H OF 	10 POSTED - NEW BALANCE $

	42

END OF TRANSACTICN POSTING RUN

c

C
Data 29

(
** 1HE CURRENT SCHEMA *

3 -:- - 	•-

s 	
RECORD TYPE COST VERSION 1

C DATA

	

ITEM CNUM START AT 	1 END AT 2 FORMAT ,12)

DATA IT Er" NAM1 START AT 3 END AT 6 FORMAT ,A4)
'V

	

	 DATA IT E F, AM2 START AT 7 END AT 10 FORMAT ,A4)

C
.,VDATA ITEM NAM3 START AT 11 END AT 14 FORMAT ,A4)

fr -:• 	 SET NAME CUAC POINTER TYPE FRST
SET NAME CUAC POINTER TYPE LAST

	

. 	 (KEY DATA ITEM CNUM

RECORD TYPE ACNT VERSION 1

	

"#r 	C
DATA ITEM PCPO START AT 1 END AT 2 FORMAT ,I2)

	

---::?: 	DATA IT 	BRI4O START AT 	3 END AT
	4 FORMAT ,I2)

DATA IT EK CUNO START AT 5 ND AT 6 FORMAT 12)

(j DATA ITEM EALC START AT 7 END AT
11 FORMAl ,15)

DATA ITEM ACTP START AT 12 END AT 13 FORMAT ,A2)
SET NAME CUkC POINTER TYPE NEXT
SET NAME CUAC pOD.TER TYPE PRIR
SET NAME CUAC POINTER TYPE CWNR
KEY DATA ITEM ACNO 	 -

(
KEY DATA ITEM ACTP

RECORD TYPE BRCH VERSION 1

(, 	DATA IT 	
BNUM START AT 1 END AT 2 FORMAT ,IZ)

DATA ITEt' BNM1 START AT 3 END AT 6 FORMAT ,A4)

DATA ITEM ENM2 START AT 7 ND AT 10 FORMAT ,A1.)

(
DATA ITEM SNM3 START AT 11 END AT 14 FORMAT ,A4)

-> 	
DATA ITEM LOCN START AT 15 END AT 15 FORMAT ,A1)

.4
* 	 KEY DATA ITEM BNUM

-. 	-:
SET NAME CUPC
OWNER RECORD TYPE COST MATCHING DATA ITEM CNUM
MEMBER RECORD TYPE ACNT MATCHING DATA ITEM CUNO

' 	 POSITION OF\NEW INSERTS - LAST

•••
(

Data 30

** THE 	CURRENT DATA 	BASE 	***

POINTERS
- ADD RECORD VRSN DATA

2 600000000 - 	 • 	

-
1 COST 1 1JCES,A.LA N

6 0 1 	0 0 0 0 0 0 0
- 2 AC NT 1 1 	1 	1 	11 CA 5 o 0 0 0 0 0 0 0

V 	• CU ST 3 1 2SMIT}-J,JAME
5 0 3 0 0 0 0 0 0 0 -

4 ACNT 1 212 	2C. 0430000000
-' 	

••.• 	 V. -
AC NT 1 5 3 	2 	2 	33 DA 2 1 	0 0 0 0 0 0 0
AC WT 1 4 	1 	1 	44CA 0 0 0 0 0 0 0 0 0 0

(
7 FCH €

—A3 • 72 -

Addition of the Branch Accounts Set

To add a new set the user must enter a code of 17 on

his terminal. He must then supply the following:

The Name of the New Set

The Name of the Owner Record

The 'Name of a data item in the Owner Record to

be used for matching

The Name of the Member Record

The Name of.a data item in the Member Record

to be used for matching

The position at which new member records are

to be added to the set.

In this example the new set is "Branch Accounts" with an

owner of Branch (Matching Data Item Branch Number) and a

member of Account (Matching Data Item Branch Number).

New inserts are to be added first. The restructuring

uses a closed strategy.

The first branch record on the data base is found as

branch 1 at address 7. This is restructured to version

2 by the addition of two further pointers for the new

set (this operation is trivial in this case since the

original version of the record had no pointers defined)

both with a value of zero. Thus at this point there

are no member records in the Branch Accounts set for

branch 1. Similarly, the second Branch record is

restructured.

- A3,73 -

Since there are no further Branch records on the data

base a search is now made of each Account record in

address sequence. The first record is for account 1

at address 2. Like the branch record this record is

then restructured to accommodate three additional

pointers for the new set. Initially, these are set to

zero but the DBMS retrieves the value of the Branch

Number data item (in much the same way as it does for a

GET) and uses this value to find the Branch record with

the same value in its matching Branch Number data item.

In this case the Branch Number is 1 and the Branch

record is found at address 7. Pointers on both records

are then modified to reflect their tenancy of the new set.

The Transaction Posting program can still be run at

version 1 to post £10 to account 1 even though this

record is at version 2. Similarly, a run of the Calculate

Balance program has no difficulty in operating on the

account 1 record (at version 2) and on the Account 4

record (at version 1).

Further account records are then accessed at addresses 4,

5 and 6 and these are restructured to version 2. Where

necessary the pointers on any other existing version 2

account record which is the previous first member of

the set to which the new account is to be added are also

amended.

When the restructuring is complete a new program is run

to calculate the net balance for a branch by progressing

through the "Branch Accounts" set.

C 	O,t,:1i

C

• 	. C

• 	
•

(

(

C

'r C

C

€

C

C

C

C-

-A3,74 -
E 6 SE T r 	T1JCTLRjG x*

RESTRL TLkI 	(jSLiE CL)...0 	TATOGy
TYPz 	E T N A E ,':wE.EC)C' -1Y c' 	8 	FTCHI:(: CAT P IT' MENE 	RECORt) TYPt E TA1CPING DATA ITs
AND POSITION OF N E W IN ISEPTS
Data:EPfC ERCP ENUM, !LCNT ERNO FRST
CLflL RESTR'JCTUPENO NDW UNDER WAY
POINT-:.- S 1 TU F OF RECORD TYPE BRCH VERSION
AT ADORESS 	7 ARE
000 COO Co

VERSION N UPBER OF RECORD TYFE 8RCH AT ADDRESS 	7 IAS BEEN SET TO 2 POINTER 	1 HAS BEEN SET TO 0
POINTER 2 HAS BEEN SET IC 0
POINTER 3 HAS BEEN SET-IC 0
POINTER L HAS BEEN SET TO 0
POINTER 5 HAS BEEN SET IC 0
POINTEN 6 HAS DEEN SET TO 0
POINTER 7 HAS SEEN SET TO 0
POINTER 8 HAS BEEN SET TO 0
POINTER 9 HAS OEEN SETTC 0
POINTER 10. HAS BEEN SET TO 0
IF NO OTHER R- LtEST IS OUTSTANDING TYPE REPLY

Oat a : 1
POINTERS 1 TO 8 OF RECORD TYPE BRCH VERSION
AT ADDRESS S ARE
U 	00 COO Co

VERSION NU8ER OF 	RECORD TV FE 	3RCH 	AT 	ADDRESS 	S 	HAS 	BEEN 	SET 	TO 	2 POINTER 1 HAS BEEN SET TO 0
POINTER 2 HAS EEEN SET IC 0
POJNIT 3 HAS BEEN SET TO Q
POINTER 4 HAS BEEN SET IC 0
POINTER 5 HAS BEEN SET TO 0
POINTER 6 HAS BEEN SET TO 0
POINTER 7 HAS BEEN SET TO 0
POINTER 8 HAS BEEN SET IC 0
POINTER 9 HAS BEEN SET TO 0
POINTER 10 HAS BEEN SET TO C
IF NO OTHER REQUEST IS OUTSTANDING TYPE REPLY 18

Data: 18

POINTEr5 1 TO 7 OF RECORD TYPE ACNT VERSION
AT ADOE5S 2 ARE
601 COO C

VERSION t1BER OF R ECOR C TYPE ACNT AT ADO,EsS
POINTER 1 HAS BEEN SET TO 0
POINT6 TZ 	2 HS E-E E E N SET IC. U
POINTER 3 HAS BEEN SET IC U
POINT RC 	4 HAS 3 E E N SET T
POItTE: 	S HAS SEEN s:r T(0
POINT-.- 	6 F'i.S :EN S 1 TC 	1
POINi 	7 HC5 ?EEH SET IC)
POINT 	 P r, S LEH si TC

	

-EE 	S - T TC
POINT 	1 	- 	• 	T 	-

-

2 HAS BEEN SET TO 2

•1-

1'

; I

S

(Dr 	S C 	F
R:coi 	IYPT SPCPV 	Fi&

• 	 - WITH 	Cy ARPfTial1 	10 h LAL 1') 	:-
C 1

RECO 	F1J '.T
POINTEw 1 	OF 	P7CORD TYFE ACT VERSION 	2 	AT PDDRESS .
HAS 	bEl N ALTERED 	TO (I
POIrJT' . 	F 	RECORD TY 0 E Afl T VEPSION 	2 	AT ADDRESS 2 -
HAS E • 	 -.•.• 	- ALTERED 	TO /
POINTEP (1 	CF 	RECORD lYRE ?FCH VERS IOU 	2 	PT ADDRESS 7
HAS 	BFT N

-
ALTERFD,TO 2

POINTER 2 	(F 	P ECCR D TYRE r- 	CF' VES ION 	2 	AT PD DRS S 7
HAS 	EECN ALTERED 	TO C 2

IF 	hO 	GTHeR REQUEST IS 	O1T STAN DI6 	TYPE 	REPLY 19

C

\ Odta 	2

Copps 1
*** 	THE 	CURRENT SCHEtA ***

RECORD 	TYPE CU ST VERSI ON 1
DATA 	!TEE CNUy 	START AT 	1 ENO AT 	2 	FOPiPT ,12
DATA 	IT1 tA1 	STAR T C 4 7 	3 VND AT 	6 	FORMAT)
DATA 	ITEF U-"2 	SPT T 	7 END AT 	10 	FORMAT ,A4)
DATA 	1TEV NAM3 	START AT 	11 R D fT 	14 	FORMAT A4)
SET 	MAn E cuc 	PSI'TER TYr FRET
SET CLC 	PU 	\T-' TYPE Li-ST
KEY 	DATA ITEM 	CNU-

4 C.

of :

C

C.

RECORD TYPE ACNT VERSION
DATA ITEM PCN') START AT 	1
DATA ITE N EP.NO START AT 3
DATA ITAP CL'NO START AT 	5
DATA ITEF OALC START AT 	7
DATA I T E P ACTR START AT 12
SET NAVE ERAC POINTER TYPE
SET NAE E.RPC POINTER TYP
SET NAME OR.AC POINTER TYPE
SET NAME CUAC POINTER TYPE
SET NAME CUAC POINTER TYPE
SET NAME CUAC POINTER TYPE
KEY DATA ITEM ACNO

END A 	2 FORMAT ,12)
END AT 4 FORMAT ,12)
SNO AT 	6 F3RT ,12:
END AT 11 FORMAT ,15)
END AT 13 FORMAT ,A2)
NEXT

PR I R
CWNR
NE X I
PR I R
OWNR

RECORD TYPE ACUT VERSION 1
DATA ITEM ACNO START PT 1 END AT 2 FORMAT ,12)
DATA ITEM ERNO START AT 3 END AT 4 FORMAT ,12)

(DATA ITEM CUNO START AT 5 END AT 6 FORRAT _I2)
DATA ITEM EALC START AT 7 END AT 11 FORMAT ,15)
DATA ITV PCTA START PT 12 END AT 13 FORMAT ,P2.)

C 	SET NAME CU?C POINTER TYPE hEXT
SET NAME CUAC POINTEk TYPE PRIR
SET NAV E CUAC PCI:TER TYPE CW-:R

C 	KEY D A TA ITEM P.CMC

C

C

..

RECURO TYi5 ERCP VERSION
	

2
DATA TIEr eNUP START ,T 	1 ElD AT 	i FOPMT ,12)
DATA 11 E f kLV1 SIART AT 	3 Ei. AT 	t FO7AT 	A4)
DfTA ITEN 	PP2 3TR1 IT 	7 :N v 6 T 1 U FOPMAT ,,.4)
DATA 1 I? 	 TF1T -1 11

	
14 FOP' 1 ,t4)

DATA 	L.C. ETP1 1 T 1 	'D kT 15 FDP'Ai 	Al)
ST
	

ST
SET : 	 -: 	,.T- 	 L :• T
c -

'

41

TA 	NUMSTART 	AT 	1 	END 	AT 	2 	FORMAT 	,12)
D.TPk 	I 	E 	ENf'1 	START 	AT 	3 	END 	AT 	6 	FORMAT ,A4)

52

.1 DATA 	ITEM 	ENM2 	tTAkl 	AT 	7 	END 	AT 	10 FORMAT,A4) .

DATA 	IT 	PI 'BNT3 	START 	AT 	11 	N) 	AT 	16 	FORMAT 	,A4)
•

• DATA 	IT Eli. 	LOCN 	START 	AT 	15 	END 	AT 	15 	FORMAT 	Al
- 	 . KEY DATA 	ITEM BNUM - 	

-.

SET NAME 	CUAC
OWNER RECORD 	TYPE 	C L S T MATCHING 	DATA 	ITEM 	CNUM
MEMBER 	RECCRD 	TYPE 	ACNT 	tTCHING 	DATA 	ITEM 	CUNO
POSITION 	OF 	NEW 	INSERTS 	- LAST

SET 	NAME 	BRAC
OWNER R ECORD 	TYPE 	ERCM M1CNING 	DATA 	ITEM 	ENUM

.
MEMBER 	RECORD 	TYPE 	ACNT 	MATCHING 	DATA 	ITEM 	ERNO

• 	••.j
POSITION 	OF 	NEW 	INSERTS 	- 	 FP.ST

Data:30

• • ***

	

THE 	CURRENT 	DATA 	EASE 	***

• H ADD 	RECORD 	VRSN 	DATA 	 POINTERS 	 TAG

1 	CUST 	1 	1JGNES,A.LAt 2 6 0 0 0 0 0 0 0 0 	0
2 	ACWT 	2 	1 	1 	1 	11 CA 	 0 0 7 6 	0 	1 	0 0 	Ci 	0 	0

• 3 	COST 	1 	2SMITH,JPHES 	 4 5 0 0 0 0 0 0 0 0 	0
4 	AC NT 	1 	E 	1 	2 	22 CA 	 5 0 3 0 0 0 0 0 0 0 	0
5 	AC NT 	.1 	3 	2 	2 	330A 	 0 4 3 0 0 0' 0 0 0 0 	0 	H

• 6 	ACNT 	1 	4 	1 	1 	44CA 	 0 2 	1 0 	0 0 0 0 0 	0 	0
, 7 	9PCH 	2 	IBIGTOWN 	U 	 2 2 0 0 0 0 0 0 0 0 	0

• 	 .1 8 	SRCH 	2 	2SMALL TOWN 	R 	 0 0 0 0 0 0 0 0 0 0 	0

Data :02 	- --

•
•

• ***J4 	OF 	TRANSACTION 	POSTING 	PROGRAM***
TYPE VRSICN NUMBER 	OF 	PROGRAM

• H Data:1
• TYPE 	ACCCUNT 	NUMBER 	AND VALLE 	TO 	EE 	POSTED

Data:01 	0010

• ***FOLLOWING 	INFORMATION 	IS FROM 	'FINDP*** 0

• DBMS 	IS 	SEARCHING 	FOR
RECORD 	TYPE 	ACNT 	VERSION 	2
WITH 	CHARACTERS 	1 	TO 	2 	EL.AL 	TO

• 	
,

RECORI, 	FOUND 	AT 	ADDRESS 	2 	VERSION 	2
'p4D1' 	COMPLETE

,• ***FOLLOVING 	INFORMATION 	IS 	FROM 	GET'***
CHARACIFRS 	7 	TO 	11

• .-: OF 	RECORD 	TYPE 	ACNT 	VERSION 	2 	AT 	ADDRESS 	2 	ARE:-
11

'GET' 	COMPLETED*

•

FOLLOhING 	INFORMATION 	IS 	FRO' 	MODIFY'
CHARACTERS 	7 	TO 	11

•

OF 	RECORD 	TYPE 	ACNT 	VERS1CM 	2 	AT 	ADDRESS 	2 •

• HAVE 	BEN 	ALTERED 	TO
21

• ***'MODIFY' 	COMPLETEDk*
• 	 • TRANSACTION 	OF 	$ 	10 POSTED 	- NEW 	BALANCE 	S 	21

) 	OF 	TRANSACTION 	POSTING 	RUt-.

..-•. - - L . -' 	 - -

— .•- -' ' 	 c
.- 	._•l -. ,_c_ 4 - - 	

Y- • •,.,'-•• •0 •' 	 ;.-••- -. 	 •. 	 --: 	 •-•-"•-. 	0•• 	 •,

:: 	 :

Si

1 "

4 	- 	 -

• 	(Data:1 	 -
- 	-A3.77-

(

(

C-

•. C
• -:: 	.

C

C

•: (_

UV tLP'(: LLCL'L,TjCr f1,CRA?**

TYP:

Oat a :1

TYPE tUS 	11 i; t'Uic- Ic

I) at a : U 1

FOLLOWING. INFORMATION IS FROM 'FINDl'
DBMS IS SE ARCFING FOR
RECORD TYE CUST VERSION 1
WITH C 14AR4CTEF.S 	1 10 	2 EOLAL TO

1
RECORD FOUND AT ADDRESS 	1 VERSION 	1

** 'FIN 01' COMPLETE D***

FOLLOWING INFORMflION IS FROM GET'

CHARACTERS 3 TO 6
OF RECORD TYPE CUST VERSION 1 AT ADDRESS 1 ARE:-

JONE
'GET' COFIPLETED*

FOLLOWfl',G INFORMpTION IS FROM 'GET'
CHARACTERS 7 TO 10

OF RECORD TYPE CUST VERSION 1 AT ADDRESS
	

1 ARE:-
S,AL
'GET' COPPLETED*

FOLLOWING INFORMATION IS FROM 'GET'

V 	 CHARACTERS 11 T'3 14

V 	 C OF RECORD TYPE CUST VERSIOK 1 AT ADDRESS 	1 ARE:-
A N
'GET' COfrPLTED*

V •.V ,'; c
' •s_ •' _

-
C

V 	 ••
: C

/ C

t,ç -'

St C.

4

C V

V •V 	 •V 	 •.: 	 •'
V:

• 	
.V 	

..
•V

-. 	 • 	 :V

V
i • • V C

(

FOLLOING INFORMATION IS FROM 'FIND2'
VALUE IN POINTER 1

OF RECORD TYPE CUST VERSION 1 AT ADDRESS
IS 2

VERSION OF RECORD TYPE ACNT AT THIS ADDRESS IS 2
' FIN D2' COMPLETED

FOLLOING flVFOR fl, ATIOts IS FROM 'GET'
CHARACTERS 7 TO 11

OF RECORD TYPE ACNT VERSION 2 AT ADDRESS 2 ARE:-

	

21 	 . 	 .
'ET' COPLETE0* 	 V 	

•V

FOLLOWING INFORMATION IS FROM 'FIND2' -
VALUE IN PCThTEP 4

OF RECORD TYPE ACMT VERSION 2AT ADDRESS 2
IS 	6 	 V

VERSION OF RECORD TYPE ACNT AT THIS ADDRESS IS 	1
'FIND2' COMPLETED

***FOLLOWING INFORMATION IS FROM 'GET' ***
CHARACTERS 	7 Tr, 11

OF PECORD TYPE ACNT VERSION 1 AT ADDRESS 	6 ARE:-
44

'(-,ET' C0L-TED*

*** F'LL b.I tG 1 ,. Ft' 	' AT1O 	IS FO. 	'F i
VLU 	IN 	CI(-i• 	1
OF 	7 fV.r TY:• (tCf VI:ic. 	1 PT AFDRE5 	c

**'FT 	' 	c •.l ; •V: f • ._._

	

I • 	 • 	 •l 	• 	 -

Da ta 1 	 -A3.78 -
POIT 	' 1 TO 	 r' T y- 	CN r VErSION 	i

. 	E 	. 	 . 	AT 	 I- 	k
S .

: 	= 	. 	• 	

5
F 	CS 	1Y PE AC'T AT AES 	IHPS BU ST TO 	2 . . 	 POIT:(1 	5•:N 	 r: 	U S 	 •• 	

PcIiJiS _S . 	2 	iS 	,:T TO 	ij
. .. 	 C 	pUIFT:S 	H 	£EEN S:T T 	0

.5 	
•.\ 	

POINTE 	£ rS 	E 1-i ST TO 	5
_._S.S.iSSSSS.S 	 POINTER 	5 HAS FEEI 	SET T 	0

POINT 	HS rEN 3 T TO 3
POINTER 7 HAS bETh SET T 	U
POINTER 	$ HAS r= E E N SET TO 0

5- 	

-5 	
C'

PO INTER 0 HAS 5:EN ST IC U
POINTFP 1C HAS tsr' 3T TO 0

d 	
CHARACTERS . 3 TO 4

- 	
(5 	

OF RECORD TYPE ACT VPj0N 1 AT ADDRESS 	4 APE -
1

DBMS IS SEE ArCHIrC Ff?

C RECORD TYPE ERCH VERSION 2
.r 	 WITH CHARACTERS 	1 TO 	2 EQ UAL TO 	-

1
C 	RECORD F1 5 UrD AT ADDRESS 	7

RECORD-TYPE ACNT VERSION 2 FO4JND AT ADDRESS 2
POINTER 2 CF RECORC TYPE ACNT VSI0N 	2 AT ADDRESS 2
HAS BEEP ALTERED TO
POINTER 	1 OF PC0Pc IYP - MC4T VEPSION 	2 FT ADDRESS 4
HAS 61=aN ALTPED TO 	2 	-

- 	 (

POINTEP 	3 OF RE CC) RD IYF 	ACT VFRSIGN 	2 AT ADDRESS

V 	 HAS EN ALTRO TO 7
POINT_r 	1 OF >CORC TYPt BH VERSION 	2 AT ADDRESS 7 1 	

C. 	HAS 8 EE N ALTRCD TO 	.
4 	< 	 IF NO OTHER REDUESI I OLT STAN DINC TYPE RE PLY 1

ç.?

)

(Data 19
POINTERS 1 TO 7 OF RECORD TYPE ACNT VERSION 1
AT ADDRESS 	ARE

VERSION NUtER OF R COP 	1YPE ACNT AT ADDRESS 5 HAS BEEN SET TO 2
POINTER 	57 HAS BEEN ST TO 0 - 	 •S • 	 •5S - 	 > SS5

C POINTER 2 HAS BEEN ST IC 0
POINTER 3 HAS BEEN SET TO 0
POINTER 4 HAS BEEN SET IC 0
POINTER 5 HAS BEEN SET TO 4
POINTER. 6 HAS SEEN SETS. IC 3
POINTER 7 HAS BEEN S:T TO 0
POINTER 8 HAS BEEN SET TC 0
POINTER 9 HAS BEEN SIT TO 0
POINTER 10 HAS BEEN ST IC 0

C CHARACTERS 3 TO 4
•

kw

OF RECORD TYPE ACNT VERSION 	7 AT ADDRESS 	5 ARE :-
2

	

(DBMS IS SEARCIr C FCR
RECORD IYE BRC VERSION 2
WITH CHARACTERS 	1 TO 2 EQLL TO -

	

(2
RECORD F tJt'o AT ADF:S 	'
POINT - R 	1 CF R _CCC TYP 	41ST vpSj J 	2 AT ADDPS • 	 (HAS 	N ALTE.D TO

• 	 5

S 	
POINT:- 	CF C.COR 	IYFE 	Cis 	VERSION 	2 AT ADDRESS 	S
HAS Pt ILTE TC • 	 . 	

(POINT 	i OF PCOC 	rv• 	VESION 	2 AT .c) Dr, Es
HS F. 	, ssLT: 	TO

- 	 IT 	r1 S

Data:19 	 -A3,79-

POINTERS 	1 	TO 	7 	OF 	RECORD 	TYPE 4CKT 	VERSION 1

(
AT 	ADDRESS 	6 	ARE
0210 	COO

VERSION 	NUMEP 	OF 	RECORD 	TYPE ACNT 	AT 	ADDESS 6 	HAS PEEN 	SET TO 	2
C POINTER 	1 	HAS 	BEEN 	SET 	TO

POINTER 	2 	HAS 	FEEN 	SET 	TO 	0
POINTER 	3 	HAS 	BEEN SET 	TO 	0

C POINTER 	4 	HS 	BEEN SET 	TO 	0
POINTER 	5 	HAS 	SEEN 	SET 	TO 	2
POINTER 	6 	HAS 	BEEN 	SET 	TO 	1
POINTER 	7 	H A S 	PEEN 	SET 	TO 	0
POINTER 	8 	HAS 	BEEN 	SET 	TO 	0
POINTER 	9 	HAS 	BEEN 	SET 	TO 	0

I POINTER 	10 	HAS 	BEEN SET 	TO 	0
CHARACTERS 	3 	TO 	4

- : OF 	RECORD 	TYPE 	ACNT 	VEPSION 	1 4T 	ADDRESS 	6 ARE 	:-
(1

DPS 	IS 	SEARCHING 	FOR
RECORD 	TYPE 	EPCH 	VERSION 	2

(
WITH 	CHARACTERS 	1 	TO 	2 	EQUAL TO 	:-

RECORD 	FOUND 	AT 	ADDRESS 	7

(
RECORD—TYPE 	ACNT 	VESICN 	2 	FOUND 	AT 	ADDRESS 6
POINTER 	2 	OF 	RECORD 	TYFE 	ACNT VERSION 	2 	AT ADDRESS 6
HAS 	BEEN 	ALTERED 	TO 	6

(POINTER 	1 	OF 	PECCPD 	TYE 	ACNT VERSION 	2 	AT ADDRESS . 	 6
HAS 	BEEN 	ALTERED 	TO 	4
POINTER 	3 	OF 	RECORD 	TYPE 	PCNT VERSION 	2 	AT ADDRESS 6

C HAS 	BEEN 	ALTERED 	TO 	7
POINTER 	1 	OF 	RECCRD 	TYPE 	BPCH VERSION 	2 	AT ADDRESS 7
HAS 	BEEN 	ALTERED 	TO 	6

-- 	
- 	 ?- IF 	NO 	OTHER 	REQUEST 	IS 	OUTSTANDINr 	TYPE 	REPLY 1Q

Data: 10
*** CLOSED RESTRUCTURING COMPLETE ***

D t a: C6

*** PIN OF CALCULATE PANCH B4L4NCE PROGRAM***
YPE BRANCH NUBER

(Data:C1

FOILOwIN , INFOMATION IS FROF 'FINDl'
DPS IS SEARCHJNr FOR
PECOP r TYPE FRCW VERSION 2
WITH CHARACTERS 	1 TO 	2 EQUAL TO

PECORE FOUND 6T AflDES 	7 VESION 2
***FJNft1 	CO°tETFD**

—FOLLOWING !NF0;TiCr r 	 IT
CHPACTEcS 	Tr- 	6
OF 	rCC': TY 	fl-C" V 	 T 	 7

S

FOLLOwIN 	 - A3.80 - JNFO'ATION 	IS 	FOr' 	'rT.
CHARACTERS 	7 	TO 	1C

(OF 	RECORD 	TYE 	EPCH 	VERSION 	2 	AT 	ADDRESS 	7 	ARE:— OWN
'ET' 	CCMPLETED*

• 	C
FOLLOWING 	INFOjvATIO 	IS 	FROM 	'cET'
CHARACTERS 	1,1 	TO 	14
OF 	RECORD 	TYPE 	RCH 	VERSION 	2 	AT 	ADDRESS 	7 	ARE:—

- U
'(ElI 	COPLETED*

C
FOLLOWING 	1NFORP'4Iop 	IS 	FROM 	'FIND2'
VALUE 	INPOINTEQ 	1

C OF 	RECORD 	TYPE 	FPCI-' 	VES1ON 	2 	AT 	ADDRESS 	7 IS 	6
VERSICN 	OF 	RECORD 	TYPE 	CNT 	AT 	THIS 	ADDRESS 	IS 	2

C ***'FIND7' 	COMPLETED—*

FOLLOWING 	INFORMATION 	IS 	FROM 	'ET'
•

(CHARACTERS 	7 	TO 	11
OF 	PECOD 	TYPE 	ACNT 	VERSiON 	7 	AT 	ADDRESS 	6 	ARE:- 44

(
**'' 	COMPLETFD*

•

FOLLOWING 	INFORMATION 	IS 	FROM 	'FIND2'
• • 	

(VALUE 	IN 	POINTER 	1
OF 	RECORD 	TYPE 	ACNT 	VERSION 	2 	AT 	ADDRESS 	6
IS 	4

(VEPSICN 	OF 	RECORD 	TYPE 	PCNT 	AT 	THIS 	ADDRESS 	IS 	2
• ***FIND2S 	COfrPLETED***

C ***FOLLOWING 	INFORMATION 	IS 	FROM 	'GET****
•

CHARACTERS 	7 	TO 	11
OF 	RECORD 	TYPE 	ACNT 	VERSION 	2 	AT 	ADDRESS 	4 	ARE:- 22

'GET' 	COMPLETED*

• 	 (***FOLLOWING 	INFORMATION 	IS 	FROP'''FjND2'**
•

VALUE 	IN 	POINTER 	1
OF 	RECORD 	TYPE 	ACNT VERSION 	2 	AT 	ADDRESS 	4

(IS 	2
• VERSICH 	OF 	RECORD 	TYPE 	PCNT 	AT 	THIS 	ADDRESS 	IS 	2

• ***'FIND2I 	CC-P'PLETED***
C

FOLLOWING 	JNFOMATION 	IS 	F ROM 	'(ET'
CHARACTERS 	7 	TO 	11
OF 	RECORD 	TYPE 	ACNT 	, ERSION 	2 	AT 	ADDRESS 	2 	ARE:-

21
'(E1' 	COMPLETFD*

FOLLOWING 	JNFOPMATJON 	IS 	FROM 	'FIND?'
VALUE 	IN 	POINTEc 	1

(
O 	DECOPn 	TYE 	ACrT 	VEir 	2 	AT 	ADPESS 	2 " 	3
***'FJiuJf)? 	CCPLETED**i
BLPNCs 	FO 	EPC" 	1 	IfTON 	U 	IS 	7
END 	OF 	FP ANC J 	E'LLH.Cr- 	C AL fl'L ATI (N 	UN

V

	

) 	
)'

	

: 	C 	C 	•• 	 -- 	 •••—• 	 	
::.

	

: 	 . 	C
.: • ._ 	 . C 	 —A3.8—

C

	

- 	60 WRITE (é,1390)
1390 FORMAT ('O** RUN OF CALCULATE BPANCH BALANCE PROGRAM***')

WRITE (6,191)
1391 FORMAT ('TYPE BRAP'C' NUMBED')

/ 	 READ (5,1392) IERPN
- 	' 	

C 	1392 FO'AT (12)
IBALO
CALL FINDI (KBRCH,IeRAN,ISPACE,ISPACE,IEc'

_61'-:IF (IERR N 	1) 60 TO 62

	

.- --'. 	'-

WRITE '6' 1393)IERAN
1393 FORMAT (' BRANCH ',12,' NOT FOUND')

I 	 - C 	60 TO 66
.62 CALL GET

.- IWN1=IUWA(l)
CALL GET(KBNP2)

66 !wN2=IUWA(1)
fe:
- 	 CALL fET(KBN3)

65 IWN3IUWA(1)
••: . •.• .. • 	i 	 CALL F114D2 (KACNT,KBRAC,KFRST,IERR)

	

:• 	:.. 	• :. 	•• 	 66 IF (IERR.EQ.1) CC TO 68
:. 	•:; 	 C 	 CALL GET(KBALC)

660 IBALIFL4IUWA(1)

CALL FIND2(KACNT,K8RAC,KNEXI,IERR)

68 IF (IPR NE 1) ;o TO 66
- 	 WRITE (6,1394) IPRAN,IWt1,IhN2.IWN3,IBA1

1394 FORMAT (' BALANCE FOR BRANCH ',12,' ',3A4,' IS ',IS)
WQITE (6,1395)

- 	- 	 1395 FORMAT (' END OF ERANCH BALANCE CALCULATION RUN')
- 	GO TO 5

c

	

- 	 C
-

70 STOP 99
C.

	

C 	C INPUT-TYPE 09 ALLOWS.A.NEW CUSTOMER TO BE ADDED

zlia

74

OF Res

	

• 	 •-•• 	 • 	 - -- 	 ..

rt_

all

2.
-

; 	

t 	
1

-• - 	<- 	- 	
- 	 '...-:. ---: -

;- 	 *

- All_i -

Appendix 4 - Consumption of Computer Resources

By the EAS Implementation.

This appendix gives details of activities carried out on

the version of the EMAS implementation of a Data Base

Management, System where the usage of computer resources are

monitored and reported to the user. Resources required for

different restructuring strategies may be compared.

The Demonstrati o

The restructuriflqS described here are based on a data base

of 10 custom ers of the Bank. Each customer holds one or

more account depending on the type of restructuring being

demonstrated. In order to simulate a. "worst possible"

situation in terms of the clustering of the data all

customer records are placed together on the data base but in

the order 1,2,3,4,5,6,7,8,9.10. Thus a progression in key

sequence will not correspond with a progression in physical

placement sequence. Similarly, the account records are

grouped tog-ether after all of the customer records. Once

aoain this provides a useful distinction between logical and

physical order but also (since customer 1 holds account 1,

account 11, account 21 etc. and customer 2 holds account 2,

accouiit 12 etc.) te owner and member record occurrences of

each set occurrence are invariably physically separate.

Fianre I illustrates a 'Basic' Data Base where each

customer has one account.

POINTERS TAG

11 	11 	0 0 	0 0 0 0 0 0 0

12 	0 0 	0 0 0 0 0 0 0
13 	13 	0 0 	0 0 0 0 0 0 0
14 	14 	0 0 	0 0 0 0 0 C 0
15 	15 	0 0 	0 0 0 0 0 0 0
16 	16 	0 0 	0 0 0 0 0 3 0
17 	17 	0 0 	0 0 0 0 0 0 0
18 	18 	0 0 	0 0 0 0 0 0 0
19 	19 	0 0 	0 C) 0 0 0 0 0
2 	20 	0 0 	0 0 0 0 0 C 0

C) 0 0 0 0.0 0
C) 	0 	'\0 0 C) 0 0 0 0 0
0 	0 	3'\Q 0 0 0 0 0 0 0

dU 05 000

O 	0 	7 0 	O'\O 0 0 0 0 0
00800 . 0000 0

0 0 0 0 0

Poctite(lo rne
fis Yoz)

I?eco'd VP- C~Tôaê1 !.s 	 &4 A7

>

p.,)

Data 30

ADDRESS
Po iJe,,Moner Recoul

%, 1sT/le,,bet Reoa'd OP
êusiomeis /9cicqe7 &?V ** THE CURRENT DATA BASE

PLEASE TYPE START AND END
FOR DATA BASE PRINT
Data: 	1 	30

PotdiefYo us:7
IlQm bet Ot ge-t

ADD RECORD VRSN DATA

1 CUST i(PQS'Orne(Number
2 CUST 1 3
3 CUST 1 5
4 CUST 1 7
5 CUST 1 9
6 CUST 1 /Yb9(
7 CUST 1

eUs7o,ne(Nq,be(

AMT

8
9

CUST
CUST

1
1

6
8

f-c

co

.

 q4ifIfunbQ(

&41a,ue ,,/'
10 CUST 1 1
11 ACNT 1 1 A
12 ACNT 1 3 OCA
13 ACNT 1 5 1 	5 	OCA
14 ACNT 1 7 1 	7 	OCA
15 ACNT 1 9 1 	9 	OCA
16 ACNT 1 2 1 	2 	OCA
17 ACNT 1 4 1 	4 	OCA
18 ACNT 1 6 1 	6 	OCA
19 ACNT 1 8 1 	8 	OCA
20 ACNT 1 10 1 	10 	OCA

4 41Q

/1êmb(R&a(d 0r
@QS7ome(1CcOMT$ SeT

(No0-[he(#ein be ts is Yet)

- A14.3 -

"off-line" Static-Pe-structurinq.

A program has been written to load the basic data base with

each account record having a balance of zero. A simple,

conventional application program, it uses the CODASYL DNL

commands to STORE the 10 customer records, STORE the 10

account records and INSERT each account record into the

appropriate set occurrence of the customer's-accounts set

based on the customer number on that record. The

consumption of resources by the Load program gives some

measure of what would be required by the reload phase of an

"off-line" Static Restructuring. For such a restructuring

the amendment to record format would take place on the

sequential back-up copy of the data base. The unload and

reformatting phase would also require computer resources

Figure 2 shows a listing of the program to store 10

customer records and the store 10 account records and-insert

them into the appropriate set.

Figure 3 shows a run of the program. The Input/Output

activity consists of (a) 10 Stores of Customer records which

require 10 Prime Data File Writes and 10 Index Writes, (b)

10 stores of Account records which will also require 10

Prime Data File Writes and 10 Index Writes and (C) 10

Inserts of the Account records into the Customer's Accounts

sets which will require 10 Prime Data File Reads to retrieve

the owner Customer records together with 20 Prime Data File

Writes to update both Customer and Account records with

-

modified set pointers.

Thus there are 100 I/O operations which are reflected in

287 page turns and 6.12 seconds of CPtI usage.

N

-A 4. 5 —

110 WRITE (697416)
DO 9110 11920
ISTATS (I)0

9110 CONTINUE
CALL EMASFC('METER'95, 'DUMMV',O)

7416 FORMAT(9 3*** RUN OF DATA BASE LOAD
DO 111 1=1,992
IUWA(1)1
IUWA(2)ISPACE
IUWA (3)ISPACE
IUWA (4)ISPACE
CALL STORE(KCUST,kSUBS2)

111 CONTINUE
DO 112 1=2,1092
IUWA (1)I
IUWA (2) ISPACE
IUWA (3)ISPACE
IUWA (4)ISP ACE
CALL STORE(KCUST,KSUBS2)

112 CONTPIUE
DO 113 119992
IUWA (1)1
IUWA (2)I
IUWA (3) 1
IUWA (4) KC A
IUWA (5)0
CALL STORE (KACNT,KSUBSC)
CALL INSRT (KCUAC)

113 CONTINUE
DO 114 1=291092
IUWA (1) =1
IUWA (2) =1
IUWA(3)I
IUWA (4)KCA
LUWA (5)0
CALL STORE (KACNT,KSUBSC)
CALL INSRT (KCUAC)

114 CONTINUE
135 WRITE(6,7417)
7417 FORMAT('O*** END OF DATA BASE LOAD

CALL EMASFC ('FIETER',5, 'DUMMY',O)
WR ITE(6,9125)(ISTATS(I) ,11 ,8)
GO TO 5

ct

(PrO q (qr,1
%s Tin

'- 	(I

PROGRAM ***')

RUN ***')

Datall

. RUN OF DATA BASE LOAD PROGRAM
09105/83 '22.0 7.22 CPU= 25954 Secs CT 9 pins PT= 2644 Ch= 176p

*** END OF DATABASE LOAD RUN
09/05/83 22909.30 CPU: .31.66 Secs CT= 11
FIND1 CALLS 	0
FIND2 CALLS 	0
FIND3 CALLS 	0
'GET CALLS 	0
MODIFY CALLS 	0.
STORE CALLS 20
INSERT CALLS 10
RECORDS RESTRUCTURED 	0
INDEX READS 	0
INDEX WRIJTES 2-

'
0

PRIME DAfA READS 10
PRIME DATA WRITES 40

Mins PT= 2931 Ch= 215p

>

IL'
(b

- 	 -

in-Place Static Restructuring.

A Closed Dynamic Restructuring to alter the Balance data

item from 5 to £4 digits was run without an interruption by a

request for access by an application program. Figure 4 shows

the run.

This run required 20 reads from the Prime Data File (in

physical placement sequence) to cover the 10 Customer and 10

Account records. The 10 Account records are modified and

written back to the Prime Data File. A total of 30 I/O

operations. -

The run required 298 page turns and 5.16 seconds of CPU

time. The same order of magnitude as the off-line reload

operation.

DatQ:23

***START OF AMEND DATA ITEM FCRMAT RESTRUCTURING
0 	 09/05/83 22.10.10 CPU: 3.1969 Sècs CT: 11 Mins PT: 3036 Ch= 216p

TYPE OPEN OR CLSD FOR TYPE OF RESTRUCTURING 	 .
FOLLOWED BY RECORD NAME 	DATA ITEMNAME, LENGTH AND NEW FORMAT

DataCLSD ACNT BALC 4 04) 	. 	 .
CLOSED RESTRUCTURING FOW UNDER WAY

CLOSED RESTRUCTURING COMPLETE 	**

09/05/8322.13.00. 	CPU: 36.85 	S.ecs CT: 14 	Mins 	PT: 3334 	Ch 	250p

FIND1 CALLS 	0
FIND2 	CALLS 	0 	 . 	 . 	 .

jfli FIND3 	CALLS 	0 .

GET 	CALLS 	0
MODIFY 	CALLS 	0

'.. 	STORE. 	CALLS 	' 	. 	 . 	 0 	 ••• 	' 	 . 	 . 	 0 ..
. INSERT CALLS 	0

- RECORDS RESTRUCTURED ,10
INDEX 	READS 	- 	0 • 	 . 	 ,-- 	 . 	 0

0 	
'

INDEX 	WRITES 	0 	
.

PRIME. DATA 	READS 	2 	

PRIME 	DATA' WRITES' -10

L 	 - -

- A4.9 -

The "Pdd New Accounts" Proiram.

A demonstration application program has been written to add

a new account record for each customer by STOREing at the

next available free address on the data base and then

INSEBTing it into the appropriate occurrence of the

Customer's Accounts Set.

Figure 5 gives a listing of the program and a run is shown

in Figure 6.

The run required 180 page turns and used 3.18 seconds of CPU

time. The consumption of resources is therefore

approximately half of that required for a static

restructuring of a similar number of account records.

I

C
120 	WRITE 	(6,7418)

00 9120 	1=1,20 	 -A4.1O-
ISTATS(I)=o

:. ..9120 	CONTINUE .
(7418 FORMAT 	('*** RUt, OF ADDNEW ACCOUNTS PROGRAM ***)

CALL EMASFC 	('METER ',5,'D(JMMy,0)
00 	115 	1=1191992

(IUWA(1)=1
IUWA(2)=I 	 .
IUWA(3)=I-I0 .

(IUWA4=KCA
.

/-_ 	•--:z

. IUWA(5)=0

Y.~e

cn 	(ft1,

(
CALL 	STORE 	(KACNT,KStJBSC)
CALL'INSRT 	(KCUAC) iV &Q

115 	CONTINUE 	 .
-

00 	116 	1=12,20,2 (1 IUWA(1)=1 -

IUWA(2)=I
IUWA(3)=I-10
IUWA(4)=KCA
IUWi(5)=Q
CALL STORE 	(KCNT,KSUBSC)
CALL 	INSRT 	(KCUAC) S

116 	CONTINUE 	 	,. .

WRITE 	(6,7419)
7419 FORMAT 	('Q*** END OF ADC NEW ACCOUNTS RUN 	***) CALL 	EMASFC 	(9METER',5,9DUMMYS,0) S

WRITE 	(6,9125)(isTAr(I),I1,12)
9125 	FORMAT 	(' 	FIND1 	CALLS 	',139

*/ 	FIND2 	CALLS 	9 9139
*/ 	FIND 	CALLS 	',13, . S
*/ 9 9 	GET 	CALLS 	9 9139
*/ 	MODIFY 	CALLS 	'9139
*/ 	STORE 	CALLS 	',13,
*/,' 	INS ERT 	CALLS 	99139 -:

/ ,r 0 	RECORDS 	RESTRUCTURED 	9 9139
INDEX 	READS 	9 9139

* / q f 	INDEX 	WRITES 	',139
PRIME 	DATA 	READS 	',13, ..-...

*/ 	PRIME 	DATA 	WRITES 	913)

GOTO5 	 S 	S

-,

Datal2 	 -

** RUN OF ADD 	NEW ACCOUNTS PRCGRkM**"
03/05/83 	22.00.03 	CPU 	34021 	ecs 	CT= 34 	M i n s PT= 5503 Ch 	252p

. . *' . ' END 	-A-DO 	NWA 	NTtS.RUN ..* 	•. 	•.. 	. -

03/05/83 	22.01.16 	CPU 	38.02 	Secs CT 	35 	Mins PT 	5683'Ch 	277p
FIND1 CALLS 	0
FIND2 	CALL 	0 	

. 	 ,.. 	- 	 ...

FIND3 CALLS 	0

GET 	CALLS 	0
MODIFY CALLS 	0

'S'TOR'E 	CALLS 	tO
INSERT CALLS 	10

.

JJ
RECORDS RESTRUCTURtD 	0 . 	 .

INDEX•.READS...O..: 	
. 	 .

4 	 .

.

INDEX 	WRITES 	10
PRIME DATA READS 	20 . 	 -. . CIS PRIME. DATA 	WRITES 	40 	•.

--
. 	-..-,..

- A'1.12 -

The Cl.osed Restructurin(T While _AIILInA New 2L

A Closed Restructuring to reduce the length of the balance

data item on existing account records from 5 to 4 bytes was

performed such that after each record was restructured an

applicatifl program was invoked to add a new account record

to the data base. This run is shown in figure 7.

The effect of this operation is therefore a combination of

the "in-place" Static Restructuring and the "Add New

Accounts" application program and the total consumption of

resources is approximately equal to the sum of these

individual tasks. (433 page turns and 8.93 seconds of CPU

usage)

The situation demonstrated by this run is the worst possible

which can be encountered by a Closed Restructuring - it is

interruped each time a record is restructured and must add

a new record at another point in the data base. A queue of

application program requests for access could be serviced

during this interruption without further degrading the

response time. The overall increase in consumption of

resources between the run of the "Add. New Accounts" program

and the addition of the accounts (luring a closed

restructuring is of the order of 120% and there is a

corresponding increase in I/O activity (from 90 operations

to lfiO). If this figure is considered as an upper bound of

the increase in response time to which any application

proqtam would be subjected (because of the untypical nature

- lI.13 -

of the implementation) this should give some credence to the

view that a Closed Restructuring Strategy would not impose

intolerable overheads on a full scale Database Management

System.

- 	D a t a : 2 3

***START OF AMEND 	DATA 	ITEM FORMAT RESTRUCTURING 	*** 09/05/83 	22.20,43 CPU 	67.64 	Secs 	CT= 	22 	Min's 	PT=. TYPE OPEN OR 	CLSD 	FOR TYPE OF 5686 Ch= 455p
RESTRUCTURING FOLLOWED 	BY RECORD NAME 	, 	DATA 	ITEM NAME, 	LENGTH 	AND Data:CLSD.ACNT 	BALC 	4 	I4 NEW FORMAT

: **.*CLOSED RESTRUCTURING NOW UN 	WAY*** CLOSED RESTRUCTURING COMPLETE 	** 09/05/83 22
FIND1CALLS .25 0

.22 	CPU=- 76.57 	Séc 	Ct= 27 	Pins 	PT= 6129 Ch= 512p
FIND2 	CALLS 	0
FIND3 CALLS 	a

-

GET 	CALLS 	0
MODIFY CALLS 	0

.

STORE CALLS 	10
-

INSERT CALLS
c

10
RECORDS RESTRUCTJRErJ 	fo- N
INDEX READS 	0
INDEX 1J WRITES 	10
PRIME DATA READS 	50
PRIME DATA 	WRITES 	50

- i'.15 -

The "1 Postina" Procram.

The previous examples used a small data base of 10 customers

and 10 accounts. In order to defray any overheads incurred

by the small volumes the second example uses ten accounts

per customer.

An application program has been written to increment the

value of the balance data item of each account record by £1.

The order of - the account records ensures that this operation

is not equivalent to the progression in physical placement

sequence which would be undertaken by a Closed Restructuring

(i.e. it is 1,3,5 ... 99,2,4,6...100 and the program modifies

the accounts in numerical sequence)

Figure 8 gives a listing of the program.

Figure ' shows a run of the program. 658 page turns were

required and the program ran in 16.37 seconds of CPU time.

—A4,16

C 130 WR1T(6,913O) 	

eI Po~ APiy1

9130 FORMAT (

0***RUt TbpOST £1 To EACH AlCOIJNT*) 	
V

00 9131 1=1920
ISTATS (1) 7-0

9131 CÔNTINU 	 - CALL EMASFC c,METER,5,0UMMYO)

00 136 1J11,l°° - 	 --

CALL

	

	
,IJI,ISPACEII FIND4(KACNT

CALL GETL
IuWA(1)1 1l
CALL MODIFY.(KBALC)

136 CONTINUE

	

R1TE(6,9 132) 	
-

0*** END OF 9132 FORMAT (
£1 POSTING RU ***')

CALL EMASFC (,MET!t5,0UMMY1

WR ITE(6. ,9125TATI)
GOTO 5

C

-

-.. 	 - . 	 .-

C 	 'I 	 -. --- 	 . --

Data:l3

***RUN TO POST-(1 	TOECH AcOUNT**
CT: 54 Mins PT: 10649 Ch 895p

09/05/83 	22.52.36. 	CPU 	134.01 	Secs

* ** 	END OF 	L1 	POST ING RUN
CT:

0

60. Mins 	PT:. 11307Ch 999p
09I05183 	22.5822. 	CPU 	150.38' Sécs

FIND1 	CALLS 	100 	
• 0 .

FIND2 	CALLS 	0 	. 	 •0 	 • 0

.-. FIND3 CALLS 	0
GET 	CALLS

100 . • AODIFIY 	CALLS .

STORE 	ALL 	0
.

INSERT 	ALL 	a 	.

'- RECORDS'RESTRUCTUR 	-Q
INDEX READS 100

ç.

INEX WRITES 	0
PRMOAT.A READS 	100 Th
-PRIME DATA watTS100

•••.

- P'4.18 -

The Open RestruCtutifl.

The restructuring to reduce the length of the Balance data

item from 5 to U digits was carried out using an Open

Dynamic strategy. In order to ensure that existing account

records were accessed, the £1 Posting run was executed while

the restruceuring was under way.

Figure 10 shows 	the run while the 	restructuring is

operational. There is a substantial increase in resource

consumption to 2919 paae turns and 65. 149 seconds of CPU

time. There is no increase in I/O activity on the data base,

however, and if resources were available to provide

processing capacity the open strategy could provide a viable

alternative to a Static or Closed Dynamic Strategy for the

Data Base Administrator in certain circumstances.

Data: 23

* **START OF AMEND DATA ITEM FORMAT RESTRUCTURING ***
09105/33 22.59.00 	CPU= 150.40 Secs CT,= 60 Mins' PT 	11411 Ch= l000p
TYPE OPEN OR CLSD FOR TYPE OF RESTRUCTURING
FOLLOWED BY RECORD NAME , DATA ITEM NAME, LENGTH AND NEW FORMAT
Data:ODEN AJT BALC 	4 914)
OPEN RESTRUCTURING NOW UNDER 	y

Data 13

RUN 	TO 	POST 	£1 	TO 	EACH 	ACCOUNT
09/05/83 	23.00.07 	CPU= 	150946 	Secs 	CT= 	61 	Mins PT= 	11555 	Ch= 	1002p

** 	END 	OF 	£1 	POSTING RUN ***
09/05/33 	2 3.25.26 	CPU= 	215.95 	Secs 	CT= 	87 	Mins PT 	14474 	Ch= 	142Cp
FIND1 	CALLS 	100
FIND2 	CALLS 	0
FIND-3 	CALLS 	0
GET 	CALLS 	100
MODIFY 	CALLS

0
100

STORE 	CALLS 	0
INSERT 	CALLS 	0 (I\ 3
RECORDS 	RESTRUCTURED 	100
INDEX 	READS 	100 ?
INDEX 	WRITES 	0
PRIME 	DATA READS 	100 >
PRIME 	DATA 	WRITES 	100

IN

>

References.

ADABPIS - "The U3A.I3AS Introduction Manual" Published by

Software-AG Ref. ADA-410-000.

ARORA & CARLSON - "The Information Preserving properties
of Relational Data Base Transformations" 4th International
Conference on Very Large Data Bases (1978)

ASTRAAN 	"System P, A Relational Approach to Data Base
Management" - Transactions on Database Systems June 1976.

BACHMAN - "The Data Structure Set Model" - ACM SIGMOD
Workshop on Data Description Access and Control May 1974.

3ATORY - "Optimal File Design and Reorganisation Points"
Transactions on Database Systems March 1982.

BEAVER - "Dynamic Techniques for Restructuring a Conceptual
Schema - an Implementation" University of Pennsylvania
Working Paper Ref. 77-06-02 1977.

CHAMBERLAIN-76 - "Relational Database Management Systems"
- ACM Computing Surveys March 1976.

01ANBEBLAIN-81 - "Support for Repetitive Transactions and
Ad-hoc Queries in System E" - Transactions on Database
Systems March 1981.

- "The Entity Relationship Model - Towards a Unified
View of Data" - Transactions on Database Systems March 1976.

ODD & DATE - 	"Interactive support for ton-programmers:
The Relational and Network Approaches" - ACM SIGNOD Workshop
on Data Description Access and. Control May 1974

CODD-70 - 	"A Relational Model for Data for L'arge Shared
Data Banks" - CommunictiOfls of the ACM June 1970.

cODD-79 - "Expanding the Relational Model to Capture More
Meaning" Transactions on Database Systems December 1979.

CODASYL-69 - "A Survey of Generalised Data Base Management
Systems" Published by the CODASYL Systems Committee.

CODASYL-71 - 	"The CODSYL Data Base Task Group Report"
(1971) Available from the British Computer Society.

CODASTL-78 - "CODASYL Data Description Language Committee
Journal of Development 1978" Published by the Canadian
Government on behalf of CODASYL.

CODSYL-81 - 11C0JThSYL Data Description Language Committee
Journal, of Development 1981" Published by the Canadian
Government on behalf of CODASY'L.

CODASYL-COBOL-JOD - 	"CODASYL COBOL Committee Journa], of
Development 1978" 	Published by the Canadian Government on
behalf of CODASYL.

DALE & DALE 	- 	"Schema 	and. Occurrence 	Structure.
Transformations 	in 	Hierarchical Systems" ACM 	SIGMOD
International Conference on the Management of Data.

DATE - "An **Introduction to Database Systems" Published by
Addison-Wesley.

ESYTRIETE-IMS 	- "The EASYTRIEVE-IMS Reference Manual"
Published by PANSOPHIC Inc. Ref. 7809.

FLORY & KOULOUDJThN 	- "A Model and Method for Logical
Database Design" - 4th International Conference on Very
Lar•ge.'Databases (1978)

FRY & SIBLEY - "Evolution of Data Base Management Systems"
- ACM Computing Surveys March 1916.

FRY & JERIS - "Towards a Formulation and Definition of
Data Reorganisation" ACM SIGMOD Workshop on Data Description
Access and Control May 1974.

GIERRITSEN & MORGAN - "Dynamic Restructuring of Data Bases
with Generation Data Structures" University of Pennsylvania
Working Paper Ref. 75-12-02 1975.

IBM-AD? - "The INS Application Development Facility"
Published by IBM Ref. S1420-1931.

IBM-INS - "INS Data Base Administration Guide" Published
by IBM Ref. Sff20-9025

BM-VSAN - "Virtual Storage Access Method Planning Guide"
Published by IBM Ref. GC26-3799.

IBN-DBRC - "Data Base Recovery Control Feature General
Information Manual" Published by IBM Ref G1135-0010.

IBM-NFS 	 "INS Message Format Service User's Guide"
Published by IBM Ref. SH20-9053.

IBM-UTAS - "User Task Analysis System" From IBM-UK Course
EA12 - Data Base Analysis and Design.

"Data Analysis" 	Published by 	IBM 	Ref.
UK 26-810 1.

IBM-SQL - 	"SQL Data 	System Application 	Programming"
Published by IBM Ref. SH2$-5018.

lOS/Il 	- 	"IDS/IT Data 	Base Administrator's Guide"
Published by Honeywell Information Systems Inc.

IDMS 	- 	"ID?IS Concepts and Facilities" 	Published by
Cullinaine Corporation.

ISO - "Coñcepts and Terminology for the Conceptual Schema
and the Information Base" Published by the International
Standards Organisation (1982)

JACKSON - "The Design of Data Processing Systems" Michael
Jackson Systems Ltd. 1980.

KAM & ULLMAN - "A Model of Statistical Databases and their
Security" Transactions on Database Systems March 1977.

KAY ?1.9. - 	"Restructuring and Reorganisation" 	Working
Paper to the BCS/CODASYL Data Base Administration Working
Group (Feb. 1978).

LJFKOVITZ 	- 	"Data Management 	for On-Line Systems"
Published by Hayden 1974.

LUCKING-74A 	- "A Descriptive Methodology for Multiple
Views of an Information. Processing System" IFIP Working
Conference on Database Management 1974.

LUCKING-74B - "Advantages of the Data Structure Set Model"
- ACM SIGNOD Workshop on Data Description Access and Control
1974.

MERTEN & FRY - 'A Data Description Language Approach to
File Translation (The Data Translation Project)"

NICHAELS MTTTMAN CARLSON - "A Comparison of the Relational
and CODASYL Approaches to Data Base Management" ACM
Computing Surveys March 1976.

MINSKY 	- "On Interaction with Data Bases" ACM SOGMOD
Workshop on Data Description Access and Control 1974.

NAVATHE - "Schema Analysis for Data Base Restructuring"
Transaction on Database Systems June 1980.

NAVATE . FRY - 	"Restructuring for Large Databases - 3
levels of abstraction" Transaction on Database Systems June
1976.

OLLE - "The CODASYL Approach to Data Base Management"

PALMER - "Record Subtype Facilities in Database Systems"
14th International Conference on Very Large Databases 1978.

PANIEXEC - "The PANEYEC System Reference Manual" Published
by PANSOPHIC Inc. Ref 8205.

PANVALET 	- 	"The PANVALET System Reference Manual"
Published by PANSOPHIC Inc. Ref 2379.

PIROTTE - 	"High Level 	Data Base Query Languages"
International Seminar on Intelligent Question Answering and
Data Base Systems 1977.

SHIPNAN - "The Functional Data Model and the Data Language
DAPLEV' Transactions on Database Systems March 1981.

SMITH & SMITH - "Database Abstractions - Aggregation and
Generalisation" Transaction on Database Systems June 1977.

SNUDGREN 75 - "Theory of Data Bases" Published by Carter
1975.

SNLJDGREN 78 	- "Data Base Design in Theory and Practice"
4th International Conference on Very Large Databases 1978.

SITU et al - "EXPRESS A Data Extracting, Processing and
Restructuring System" Transactions on Database Systems June
1977.

SOCKtIT and GOLDBERG - 	"Data Reorganisation. Principles and
Practice" ACM Computing Surveys Dec. 1979.

SOCEcu!T78 - "A Performance Model for Computer Data Base
Reorganisation Performed Concurrently with Usage." Operations
Research Sept-Oct 1978.

STOCKER 	- 	"Efficient Organisation of 	Internal DBMS
Structure" 4th International Conference on Vary Large Data
Bases 1978.

STOCKER & DRARNLEY 	- 	"A 	Self Organisinq Data Base
Management System" IFIP Working Conference on Data Base
Management 1974.

TAYLOR & FRANK - "CODASYL Data Base Management Systems"
ACM Computing Surveys March 1976.

TOTAL - "The TOTAL Information System" - Cincom Systems Inc.
1982.

VAO 	- 	"A Dynamic 	Database Reorganisation Algorithm"
Transactions on Database Systems June 1876.

WILSON - "Data Base Restructuring - A Direction for
Aberdeen" University of Aberdeen Computer Centre 1978.

XPT1ON - "Buyer's Guide to Data Dictionaries" Published by
Xephon 1982.

YORMARK 	- "The ANSI/SPARC DBMS Model' 	Published by
North—Holland 1976.

