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INTRODUCTION

In 1925, on the basis of their work on atomic spectra,
(1)

Uhleribeck and Goudsmit postulated that the electron had a

mechanical moment and a magnetic moment and to these properties
(2)

they ascribed the name of spin. In 1928 Dirac , by means of a

proper relativistic treatment of the wave equation, showed that

the electron spin was a necessary consequence of the principle

of relativity. In the following year Mott^^ showed that by

means of a suitable scattering process an initially unpolarized

electron beam should become partially polarized, and further that

a partially polarized electron beam, when scattered, should produce

an angular distribution of scattered electrons which would depend

on the azimuthal angle (i.e. that angle measured around the

direction of the incident beam),

A considerable number of unsuccessful attempts were made to

detect the effects predicted by the Mott scattering theory^ ^ ^
(13)

but in 1942 Skull, Ghase and Myers carried out an experiment

which gave results in qualitative agreement with some of the pre¬

dictions of the Mott theory. Since then several experiments

have been carried out to investigate more closely the various

aspects of the scattering process but quantitative agreement

between theory and experiment is still lacking in some important

details.

Interest in this field was considerably increased at the
(14)

end of 1956 when Lee and Tang advanced the hypothesis that

parity was not conserved in weak interactions. One of the



ii.

consequences of this theory was that the electrons from |u -decay
should he longitudinally polarized. In a second paper Lee and

(15)
Yang ' postulated that the neutrino could be adequately

described by a two-component theory. The work of Lee and Yang

initiated a series of experiments which has considerably increased

our knowledge of the nature of weak interactions.

The experiment described in this thesis was carried out

to test, as accurately as possible, one of the predictions of

the two-component theory, by measuring the degree of longitudinal

polarization of the ^3 -particles emitted by unaligned nuclei.



CHAPTER 1.

THE NATURE OP WEAK INTERACTIONS

"l .1 The conservation of parity in weak interactions

( 1
Prior to the work of Lee and Yang an apparent contra¬

diction had arisen in the study of K particles. In particular

the (= ©+) and the (=■ T+) particles had been found

to have the same lifetimes and the same masses, within the limits

of experimental error, and this, together with the fact that both

particles had the same nuclear interactions, suggested that they

were simply different decay modes of the same particle . By

consideration of the decay schemes of the two particles, together

with the use of the conservation laws of angular momentum and

spin momentum, it was shown that irrespective of the initial

spin asigned to the K particle, the ©+and T+ mesons were
(16)

particles of different parity . Various attempts were made to
(1 *17 18)

explain the apparent contradiction but without success * * .

The problem prompted Lee and Yang to investigate the status

ox the law of conservation of parity and they found that in strong

interactions there was considerable experimental evidence for its

acceptance but that in weak interactions there was no such evidence

The type of evidence required was that from experiments which

determined whether weak interactions differentiated left from right

since the principle of parity conservation demands that Nature

should give rise indifferently to left-handed and right-handed

situations. If, in fact, parity was not conserved in weak inter¬

actions then the K particle problem was solved since the 63 * and

T+ mesons could be said to be two different decay modes of the

same particle which necessarily had a single mass and a single

life-time.



1.2 The classic experiment of Wu

The first experiment to detect the non-conservation of
(19)

parity was carried out by Wu et al 7 . To do this they

Measured the angular distribution of the electrons from the ^3 **

deQay of polarized nuclei. If & be the angle between the spin

of the parent nucleus and the direction of the emitted j3 -particle
then an asymmetry of distribution between © and TT- Q clearly

constituted a break-down of parity conservation in -decay.
60

Co was chosen as the source of -particles because of the

relative ease with which Co^ nuclei could be polarized by the

Eose-Gorter method^ . The direction of polarization of the

nuclei was reversed by reversing the direction of the applied

magnetic field thus enabling the elimination of spurious effects.

The numbers of electrons emitted in a fixed direction obtained

with opposite settings of the magnetic field were compared and a

large asymmetry was obtained.

1.3 The two-component theory of the neutrino

(15)
The results of Wu's experiment prompted Lee and Yang

(also independently Landau^ ^ and Salam^22^) to consider a hitherto

rejected theory of the neutrino, namely the two-component theory.

This particularly simple theory of the neutrino was originally put
(23)

forward by Weyl 7 but had been rejected because it violated

the conservation of parity. As a result of Wu's experiment

this objection was no longer valid.

In the two-component theory the neutrino has only one spin

state, that is the spin is always parallel or always anti-parallel

to the momentum. The helicity K of a particle is defined by



the relationship
A A

_ -' ^

A
X is defined as a unit vector in the spin direction of the

particle or photon and ^ as the momentum of the particle or

photon in the laboratory space, According to the two-component

theory the neutrino has a helicity of £ 1 and the anti-neutrino

a helicity of 7 1, the upper signs applying for a S,T transition

and the lower signs for a V,A transit ion^^^, Under the parity

operator designated by F, K changes sign because under space
A /JS A Ainversion p -> — p , I —> I, and since the two-component

theory of the neutrino stipulates that the sign of the helicity

of the neutrino is fixed, then parity is not conserved,

1.4 |3 -decay
The fact that parity was not conserved in weak interactions

required modifications to be made to the theory of -decay.

Prior to 1956 the generally accepted Hamiltonian describing j3 -
( 2k)

decay was based on the original work of Fermi and was

characterized by five coupling constants which were measures of

the relative strengths of the possible interactions. The most

general Hamiltonian density which was invariant under proper

Lorentz transformations,under time reversal and under space in¬

version, which conserved leptons and which did not include deriva¬

tives of the fermion field, was given by the following expression,

+ C-v ( f> ftjj. Xjj. )
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+ z CT C. pk cr^ ^ )(ipe cr^ <^v)
Cfl C p^ X/JL %s pn )( pe Yjx. Ys pir )

+ C p C pp, Xj pn X pe pzr^l
+ A.c.

(-^M-Zr ~~ 2. C. Yy <^2-T <^u. )

■where all the C's, or at least their ratios, are real. Cg,

Cy, C^, and Cp are the coupling constants for the scalar (s),
vector (V), tensor (T), axial-vector (a) and pseudoscalar (p)

(25)
interactions .

The most general Haxniltonian density which conserves leptons,

which does not include derivatives of the fermion field, which

is invariant under proper Lorentz transformations, hut which is

not invariant under space inversion nor time reversal is given hy

the following expression.

I-U. — C IjLf, pn X Cj pe p2r + Qs pe p 2J- )

+ C pfy fa pi\)( C-v pe fa. pzr ^V pe fa ^5 P*P
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+ i ( ^ 0^ C-T + ^^5" 4**^
"~ ^ fa fa *j>lJ(- (-R ^e fa {Js2S + ^-R ^e <^- ^ir)
"+• C ^ ^n)(Cp (^>e ^ ^ir + ^-p ^e ^zr)
+• kc.

■where parity conservation demands either all G^' = 0 (even
couplings) or all G^ = 0 (odd couplings). Time-reversal in-
variance requires that all the coupling constants he real with

respect to one another. The two-component neutrino theory

requires that the parity-conserving and the parity non-conserving

coupling constants he equal in magnitude.

i.e. C. = i C *
x x

It can he shown to a first approximation that the S and Y

nuclear matrix elements vanish unless there he no change in spin

or parity in a transition (Fermi selection rule). Similarly, to

a first approximation, the T and A nuclear matrix elements vanish

unless there he no change in parity and a spin change of 0 or

- 1 (hut not 0 0) in a transition (Gamow-Teller selection rule).

From evidence regarding the absence of Fierz interference

terms together with the electron-neutrino angular correlation

results available in 1956, though the position regarding the

latter was by no means clear, it was thought at that time that

°V2 << C 2 and Ca2 << Cr2
s



1.5 The detection of interference terms in weak interactions

The reason why the numerous experiments carried out in the

field of p -decay before 1956 could not provide an answer to
the question of parity conservation in weak interactions was that

the phenomena studied contained no interference terns between

the coupling constants for parity-conserving and parity non-

conserving interactions. In order to detect such interference

a pseudoscalar, formed out of the experimentally measured quanti¬

ties, had to be obtained, a pseudoscalar being defined as an

observable which is invariant under rotation but which reverses

sign under reflection.

It was recognised that the problem of the detection of such

interference phenomena was essentially that of the observation

and the determination of the helicity of particles and photons

since it could be shown that if a non-zero helicity was observed

then parity could not be conserved in the interaction from which

the particles and photons resulted. Further by the measurement

of the sense and the degree of the particle and the photon

polarization, information could be obtained regarding the nature

of the relevant interactions. Consequently it was necessary to

develop a range of techniques for the determination of the polar¬

ization of electrons, positrons, <$ -rays and neutrinos,

1,6 p- y circular polarization technique
One of the predictions of the two-component theory of the

neutrino is that in -decay the electron spin direction is

correlated with its momentum direction and by the application of
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the principle of the conservation of angular momentum to the

nuclear disintegration it can be shown that the spin of the

residual nucleus is correlated with the direction of the /3 -emission.
Further if the residual nucleus emits a X -ray then, except for

pure Fermi transitions and for transitions in which the If -emitting

state has zero spin, the % -ray is circularly polarized. The

study of the circular polarization of the X -ray, together with a

knowledge of the direction of the emitted f3> -particle, provides

essentially the same information as that obtained from an experi-
(19)ment such as Wu's 7 but the former technique has two advantages

over the latter insofar as less expensive equipment is required and

a wider range of nuclei can be studied by its use.

The helicity of the f -rays, emitted at an angle 0 to the

/3> -direction, is given by the expression

= £ £ A cos 0 / • fc> -1

(+ for right-handed polarization, - for left-
handed polarization).

The parameter A depends on a number of factors, namely, the

interaction matrix elements and coupling constants, the relative

amount of Fermi to Gamow-Teller interactions and a factor dependent

on the spins of the initial and final states and the multipole

order of the -rays. Theoretical values of A for different
(27

types of transitions have been evaluated by several authors *

28, 29)
♦

The spin dependence of the Compton scattering cross-section

has been utilized in the experimental study of the circular

polarization of -rays, by scattering the rays in magnetized
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iron^ . This technique can only "be used for nuclei with

suitable fi - X decay characteristics and, moreover, the X -

ray energy must he such that the photo-electric effect and the

pair production effect in the magnetized iron are small. Several
( 31-35)

experiments have been carried out using this technique

and the results obtained are in agreement with the following con¬

clusions.

(a) Parity is not conserved in pure Gamow-Teller transitions

and the predictions of the two-component theory for these

transitions are correct to within an accuracy of about

(b) The velocity and the cosine dependence of the expression

for the helicity of the X -ray (1.6.1) have been verified

to within an accuracy of about 10%.

(c) The existence of interference terms in mixed Fermi and

Gamow-Teller interactions has been established and since

such interference can only exist if the neutrino emitted

in the Fermi channel is of the same helicity as the neutrino
7

emitted in the Gamow-Teller channel then the combination

.

of interactions must be S and T or V and A, or possibly all
(36)

four. The work of Burgy et al on the decay of polarized

neutrons indicates that the interference is maximal.

1.7 The longitudinal polarization of f3 -particles
(1 5 21 22)

It has been pointed out by several authors^ * * ' that

if parity is not conserved in weak interactions then the j3 -

particles emitted from unaligned nuclei should be longitudinally

polarised. The expected degree of polarization has been evaluated

for different types of transitions by several groups^^'
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(37)
In particular, Curtis and Lewis have shown that for allowed

transitions the degree of polarization (p) should take the

following form:

P =

where Eg is the energy or vne jj -parxicxe, in unixs or mc , ana
d and b are quantities involving the Fermi and Gamow-Teller

matrix elements and the coupling constants. If the two-component

theory of the neutrino is valid and if either of the following

conditions is satisfied,

(a) Cv = CA = 0 and Cg = -C^ : 0^ = -C^
(I,) 0S = 0T = 0P = 0 and 0A=0A' : 0,, = ^',

then d = 1 and b = 0 and the degree of polarization is given by
4* "V

P = - = where the negative sign applies to the case of electrons

and the positive sign to the case of positrons.

Since the predicted degree of electron polarization depends

directly on the f3 -particle velocity it is most desirable that
investigations be made over as wide a range of electron energy as

possible. For this purpose three general techniques have been

developed, namely the investigation of the polarization of

bremsstrahlung produced by electrons ©f energy greater than 1 MeV,

the Miller scattering of electrons in the energy range 400 keV -

1 MeV and the Mbtt scattering of electrons in the range 50 keV -

750 keV.

1.8 The bremsstrahlung technique

The direct determination of the longitudinal polarization of

1 Ze 1.1 I
0 1

e



10

j3 -particles of energy greater them 1 IfeV, y. would be difficult
(40)

but it has been shown that, under suitable conditions,

longitudinally polarized electrons produce circularly polarized

external bremsstrahlung and essentially the same information can

be obtained from the study of the polarization characteristics of

the bremsstrahlung as from the examination of the electron

polarisation. Another process which has proved of interest in

this field is that of the production of internal bremsstrahlung

during -emission and K-capturej in both cases the photon

production is due to a displacement of charge density during the

decay process.

Schopper and Galster ' (also, independently, Boehm and
(39)

Wapstra ) detected the circular polarization of both internal

and external bremsstrahlung by means of Compton scattering with

the oriented electrons available in magnetized iron; if the

bremsstrahlung is circularly polarized then the number of quanta

scattered in a particular direction changes when the direction of

magnetization is reversed and from the study of such changes it is

possible to determine the sense and magnitude of the polarization.

Goldhaber et al^^"^ obtained essentially the same information by

measuring the variation in transmission of bremsstrahlung through

magnetized iron on the reversal of the direction of magnetization.

Such work has shown that the general technique is suitable for

the study of the polarization of high-energy electrons («■ 1)c

and the results obtained in this energy region agree with the

predictions of the two-component theory to within an accuracy of

(5 - 10)^58~43). This work has also shown that the helicity of

the electron is negative. Similar results have been obtained



11.

from the study of the hremsstrahlung accompanying K-capture^1 .

These methods tend to lose their efficiency and accuracy at

energies lower than about 1 MeV since various effects which

may reasonably be neglected at higher energies become considerably

more important at lower energies.

1 .9 Mjoller scattering

In the energy range 400 keV - 1 MeV the most direct method

of determining the longitudinal polarization of -particles

is by the use of the Jailer scattering technique, which makes use

of the fact that the electron-electron scattering cross-section

depends on the relative spin orientation of the incident and

scattering electron. Jailer scattering leads to an asymmetry

because of the indistinguishability of elementary particles and is,

essentially, a low-energy effect which can be extended to higher

energies.

In a normal killer scattering experiment a well-collimated

beam of ^3 -particles is allowed to strike a thin, highly satu¬
rated, magnetic foil which has a large component of electron spin

in the direction of the incident beam and the initial and the

scattered electrons are recorded in coincidence in counters which

preferably select energy spectra such that the sum of the energy

losses in the two counters is equal to the incident electron

energy. The variation in the coincidence rates between opposite

directions of the magnetic field in the foil is a measure of the

degree of the longitudinal polarization of the initial electron

beam. Experiments^^ based on this technique have yielded

results in reasonable agreement with the predictions of the
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two-component theory hut it would appear that the method is not

capable of giving results of high accuracy, at least at present,

due to uncertainties in the determination of the magnetic field

in very thin foils and also in the amount of plural scattering

taking place at the scattering foil. This latter restriction

tends to be relatively more important for electrons of energy

less than 500 keY.

1.10 Bhabha scattering

Theoretically the scattering of high-energy positrons by

polarized electrons should lead to an asymmetry due to the

dependence of the positron-electron annihilation rate on the

relative spin directions of the two particles^^* ^-9).
experiment has been reported, however, which makes use of this

theory.

1.11 Mott scattering

The use of the Mott scattering theory for the detection

of electron polarization depends on the presence of a spin-

dependent term in the scattering of an electron by a nucleus.

If a beam of transversely polarized electrons is scattered by

a foil (of high Z value) then an azimuthal asymmetry results and

the measurement of this asymmetry leads to a knowledge of the
(30)

sense and the degree of the electron polarization . In

principle the Mott scattering technique has a greater sensitivity

than the other methods in the energy range 40 keV - 200 keV and

it is precisely in this region that the velocity dependence of

the polarization can best be established. The results obtained

by the use of Mott scattering are discussed in Chapter 3.
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1 .12 The determination of the polarization of positrons

In principle thebremsstrahlung technique and the Mott

scattering technique may be vised for polarization measurements on

positrons as well as on negatrons but in practice it has been found

necessary to develop more efficient methods for the examination of

positron polarization. The experimental techniques which have

been devised to measure the degree and sense of the longitudinal

polarization of positrons may be divided into two categories,

namely those which require the positrons to be slowed down to

near zero-energy and those which make use of an annihilation-in-

flight technique.

1 .13 The formation of positronium

Positronium is formed in two states, namely in the singlet

state when the positron and electron spins are anti-parallel and

in the triplet state when the positron and electron spins are

parallel. In the presence of a magnetic field it is found that

if the incident positrons have their spins parallel to the magnetic

field then the formation of the singlet state is preferred and

if anti-parallel to the field, the formation of the triplet

state is preferred. The polarization of the incident positron

beam can therefore be examined by the determination of the relative

abundance of the two positronium states. Due to magnetic quenching
■

both states decay in effectively the same way but the triplet state

has a longer lifetime than the singlet state and consequently has

a greater opportunity to "thezmalize" with the result that the

two-photon annihilation of the triplet state has a narrower angular

correlation than that of the singlet state. Page and Heinberg(50)
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22
determined the longitudinal polarization of positrons from Na

"by studying the angular correlation of the two-photon annihilation

yield. Their results were not accurate, due primarily to the

difficulty of estimating the amount of depolarization which tool

place when the positrons were "being slowed down, hut their work

was sufficiently conclusive to show that the positron helicity

was of opposite sign to that of the electron.

If a beam of very slow positrons is directed into a piece of

iron, magnetized either parallel or anti-parallel to the direction

of the beam, then it can be shown that positronium can be formed

between all the incident positrons and the slow conduction electrons

in the iron, but that only the positrons whose spins are parallel

to the magnetic field can form positronium with the relatively
(51)

fast polarized d-electrons . The relative abundance of the

two types can be determined by the examination of the angular

distribution of the two-photon annihilation yield. Hanna and
(51)

Preston have carried out experiments using this technique

and although the accuracy they achieved was poor, their results

did show that for all transitions studied, the emitted positrons

had positive helicity.

1.14 The annihilation-in-flight technique

(52)It can be shown that when polarized positrons are annihi¬

lated in an unpolarized material the high energy photons in the

two-quanta annihilation are almost completely circularly polarized

in the direction of the positron beam. Ey the study of the

polarization characteristics of the annihilation photons, using
(53)

a method similar to that described in 1.8., Peutsch et al were
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thus able to investigate the longitudinal polarization of

positrons, They obtained, the result that positrons produced in

Fermi transitions had positive helicity and their results were not

inconsistent with the predictions of the two-component theory,

Boehm et al^"^ also used an annihilation-in-flight technique to
13

investigate the polarization of positrons from N , which was of

particular interest since it was a mixed transition. Their

results showed that positrons from Fermi and from Gamow-Teller

transitions had the same helicity,

1.15 Conclusions to be drawn from the -parity experiments
- .. . .. ,, .. ... ... ... . .... •> ; ;. .. ,.. ... ... ...... .. .... > ... .. . ' -

From the considerable amount of experimental evidence obtained

by the methods outlined in the above paragraphs it was clear that

parity was not conserved in weak interactions and further that

the degree of longitudinal polarization of -particles was

+ ▼
- c, for all types of transitions, at least to within an accuracy

of (5 - 10)Jg, There was ohly one known exception to the latter
(i-7 55)

statement namely the decay of RaE * .

The above range of experiments did not, however, give infor¬

mation as to the exact nature of the covariants which participate

in the fundamental (3 -interaction.

1.16 The helicity of the neutrino and the nature of the fl -inter-
action
rir1 ———or

The nature of the (i -interaction and the helicity of the

neutrino are very closely connected since an interaction which

yields the Fermi radiation with a neutrino of positive helicity

(i.e. a right-handed neutrino) is known as the scalar (s) coupling

while one yielding a neutrino of negative helicity (i.e. a left-

handed neutrino) is called the vector (V) coupling. Similarly an
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interaction which yields the Gamow-Teller radiation with a neutrino

of positive helicity is called the tensor (T) coupling while an

axial-vector (A) coupling produces neutrinos of negative helicity.

Most of the information on the relative magnitudes of the various

possible types of interactions has come from electron-neutrino

correlation measurements. Although at one time the weight of the
(26)

experimental evidence indicated the opposite conclusion it now

appears certain that the ^3 -coupling has a VA forn/"^'
1 .17 The direct determination of the helicity of the neutrino

/ rQ\

In 1958 Goldhaber et al ' carried out an experiment to

determine the helicity of the neutrino. Their experiment was

"based on the following facts, namely that in the case of K capture,

the residual nucleus must recoil with a momentum equal and opposite

to that of the neutrino and therefore a knowledge of the direction

of the recoiling nucleus determines the neutrino momentum direction

and also from the conservation of angular momentum, that a know¬

ledge of the helicity of the recoil nucleus implies a knowledge

of the helicity of the neutrino. Further if the recoiling nucleus

is polarized then any emitted X -ray must be circularly polarized

and consequently the problem of the measurement of the helicity

of the neutrino is essentially reduced to the problem of the identi¬

fication, and the measurement of the degree and sense of the

circular polarization, of the X -ray emitted in a direction opposite

to that of the neutrino momentum.

The circular polarization of the -rays was analysed by trans¬

mission through magnetized iron (1.8). The direction of the

emitted neutrinos was selected by resonant scattering of the emitted
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% -rays since the conditions necessary for this type of scattering

were best fulfilled by those X -rays which were emitted in a

direction opposite to that of the neutrinos, which had an energy

comparable to that of the neutrinos and which were emitted before

the recoil energies of the nuclei were lost. The results of

Goldhaber et al indicated that the Gamow-Teller interaction was

predominantly axial-vector (A), at least for positron emitters,
(56)

in agreement with the work of Herrmannsfeldt et al .

1.18 Conclusion

The results on the longitudinal polarization of electrons

and positrons together with the conclusions to be drawn from the

ft - X circular polarization measurements and from the experiments
on the helicity of the neutrino may be explained in terms of the

two-component theory of the neutrino with real coupling constants

and also

=7 " V

°A = V

Sr
■a— >\j —1

A

(There is little experimental evidence on the question of

the reality of the coupling constants).
Moreover the results are in agreement with a Universal Fermi

( 59)
interaction of the form V-A. As shown by Sakurai the principle

of lepton conservation is also established provided the following

three conditions are satisfied:

[a) the ft -interaction consists of a linear combination of V-A
[b) the longitudinal polarization of e+ is + | ♦

'c) the amount of V-A interference is maximal.
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CHAPTER 2.

A REVIEW OF MOTT SCATTERING

2.1 Mott scattering

Dirac's relativistic wave equation, which successfully

accounted for many of the phenomena interpreted as being due to

the spin of orbital electrons, also predicted that the free

electron should have a spin and, in consequence, that each electron

wave should be characterized by a definite direction other than

that of propagation. On this basis an electron beam should

therefore be capable of exhibiting polarization. In 1929 Mott^
showed that if an unjolarized electron beam be scattered by the

Coulomb field of a nucleus then, under certain conditions, the

scattered beam should be partially polarized and further that

this polarization should be capable of being observed experimen¬

tally by the presence of an azimuthal asymmetry in a second

Coulomb scattering. The polarization and the asymmetry effects

in Mott scattering are due to the interaction of the electron spin

with the non-uniform magnetic field, through which the electron

moves in the Coulomb field of the nucleus.

The scattering must be considered as a relativistic, quantum-

mechanical process since the effect of the non-uniform magnetic

field on the electron is negligible except when the electron

is travelling with a relativistic velocity. The scattering must

be treated as a quantum-mechanical problem since a 100 keV

electron has a De Broglie wavelength of 'v 3 x 10"''0 cms and for
o

an electron of such energy to be scattered through an angle of 90
-11

by a gold nucleus its classical impact parameter must be /^10 cms.

There is, however, an interesting classical model of the process
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2.2 A classical model
I

For simplicity the quantum-mechanical definition of an un-

polarized electron beam is chosen, namely that half the electrons

in the beam have their spins parallel to a certain direction and

the other half have their spins anti-parallel to this direction;

for convenience we choose the direction to be at right-angles to

the paper so that half the electrons have their spins pointing

into the paper (spin-down) and half the electrons have their spins

pointing out of the paper (spin-up). Consider such a beam

incident on a nucleus of charge Ze (figure 1(a)). If there

is no interaction between the non-uniform magnetic field surround¬

ing the nucleus (the magnitude of which may be obtained by a

Lorentz transformation of the nuclear electric field from the

laboratory system to a co-ordinate system in which the electron

is at rest) and the magnetic moment of the electron then the

electrons proceed along path (a). For the case when the inter-
-

action is not zero then for electrons with spin-up the Coulomb

force and the spin-orbit force act in conjunction and the electrons

proceed along path (b). For electrons with spin-down the Coulomb

force and the spin-orbit force are in opposition and the electrons

proceed along path (c). To enter the detector spin-up electrons

must be incident along the impact parameter b^ and spin-down
electrons must be incident along impact parameter b (fig. 1(B)).o

But the number of electrons incident along a certain impact

parameter is proportional to the magnitude of that impact parameter

and since b^ > b^ then more spin-up electrons than spin-down
electrons enter the detector and consequently a partially-polarized

beam is produced. For the case of the incidence of this partially

polarized beam on a second scattering nucleus only the excess of
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Figure 1. Azimuthal Asymmetry on Double Scattering
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spin-up electrons need "be considered, since the remainder will

produce a symmetrical distribution. For a spin-up electron

incident at the "bottom of the nucleus then the Coulomb force and

the spin-orbit force act in conjunction and the electron is

scattered through an angle Q (figure 1(c)): for a spin-up

electron incident at the top of the nucleus the Coulomb force and

the spin-orbit force are in opposition and the electron is

scattered through an angle which is less than © . For a spin-

up electron, incident at the top of the nucleus, to be scattered

through an angle © it must be incident along an impact

parameter b (b < b.) and since there are more electrons incident
o o 1

along impact parameter b^ than along impact parameter bQ an
asymmetry in scattering results.

By the use of a classical model it is possible therefore to

illustrate the production of a transversely polarized electron

beam by a scattering process and also the presence of an asymmetry

in the scattering of a transversely polarized electron beam.

By considering the dependence of the scattering angle and of

the relative magnitudes of the Coulomb force and the spin-orbit

force on the classical impact parameter and on the atomic number

of the scatterer, it is possible to obtain in a qualitative way

the angular dependence and the Z dependence of the Mott asymmetry.

Since the spin-orbit force depends on a Lorentz transformation and

consequently tends to zero as the electron energy tends to zero and

further, since the spin-orbit force is proportional to the magnetic

moment of the electron and consequently is inversely proportional

to the relativistic mass of the electron with the result that the

V
spin-orbit force approaches zero as — -> 1, it is possible toc
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explain the energy dependence of the Mott asymmetry by the use

(60)
of the classical model . The full relativistic quantum-

mechanical treatment of the problem must be used however in order

to obtain the actual values of the expected asymmetry.

2.3 The Matt theory

By applying the Dirac relativistic wave equation to the
(3)

scattering problem Mott ' found that the wavefunction, in

asymptotic form, describing the scattering process could be

expressed in the following way:

^ ^ fl ea + C flf (0) B g(0) e. ^Jej' 31.3.1

^ Bea+[ Bf(0)^ 2.3.1

a = lI0z ~ l JUiKir " z) 31.3.3

j) = ukV ^ l X hrL Kr 2.3.Ji

-f(B) = ^C-l^'F(0)+ &(B)1 a .3.5

cj(0) = -£■ 0 1 ft1 cxfi(-i) F(6) +tan@) Gr(8J] 31.3.b
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sSL

f(9)=ij:o(-ir[iq h-u+dqjp^(ocG) a.3.7

&(0) = 41 (-1)18 [ Jfc1 Cx - (£+1)'2C*. J e (cco 0) aai

Cx ^-e^rfe-U)
reA+i+ ifc)

J1 = + U2-<A.;Ji

oC = Ze2
■Re

a.3.1

23.10

23.11

f - eC 3,313.
0

3' = X(t-fr)L■' |3 = £ 33.13

Js = mo c 6 2.3 Hi

tfl-p'J*

The double scattering cross-section is given by

orC0., Q., 02.) = crf0Jcrf0J[j+ P(9JP(6Joozfij 2.3.15
with Q the first scattering angle, Oz the second scattering
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angle and cf) z the angle between the plane of the second
scattering and the plane containing the electron source, the

first scattering nucleus and the second scattering nucleus (the

azimuthal angle).

Also

CJ (9,)= imjiz+i a. 3.ib

o-rej- igfeji" a.3.17

l-ffer+lgceji1- .

a 3. is

pea) = L
ifiejr+ ig(©jr

a.3.i9

From equation 2.3.16 it is clear that there is no asymmetry

produced by the single scattering of an unpolarized beam and

from equation 2,3.15 it follows that the double scattering

cross-section has an azimuthal asymmetry. The Mott asymmetry

factor is given by

m,ej = pf©.) p(©j a..3.ao
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Because of the slow convergence of the series for both P(0)

and G-(g) , numerical calculations of the single scattering cross-

section CT (©) and the polarization P(0) are difficult. Of

the calculations published^^ "~^7) most accurate are those of

Sherman^ but these do not include the effects of the screening

of the nuclear scattering field by the atomic electrons. In
(66)

some earlier work by Mohr and Tassie the screening effects

were taken into account but their calculations were neither so

accurate nor so extensive as those of Sherman.

2.4 Experiments on Mott scattering (1928-1942)

The experiments^"*12^ carried out in the period 1928 - 1942

to observe the asymmetry in a double scattering experiment, as

predicted by the Mott theory, were unsuccessful. In some of

the early work done by Cox et al^^ and later by Chase^"^,
asymmetries were detected but they could not be explained on the

basis of the Mott theory. It is interesting to note that it is

possible that these early investigations were the first experiments

to show evidence of the non-conservation of parity in weak inter¬

actions since a possible explanation for the obtained asymmetries

is that they were due to the longitudinal polarization of electrons

Another of the early experiments in which an asymmetry was found

was that of Kikuchi but subsequent work has shown that

the asymmetry was most likely of ins tinmental origin.

The experiments carried out in the period 1928 - 1942 served

to draw attention to the type of effects which can mask the true

polarization asymmetry.
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2.5 The elimination of Instrumental asymmetries

In early work attempts were made to eliminate instrumental

asymmetries hy careful attention to the gecanetry of the apparatus

but this was not particularly satisfactory and in most of the later

work the instrumental asymmetries were determined by replacing

the first or second gold scattering foils by aluminium scattering

foils. Since the atomic number of aluminium is considerably

smaller than that of gold and since the polarization asymmetry is

proportional to the atomic number of the scatterer then, to a

reasonable degree of approximation, any asymmetry obtained with

an aluminium scattering foil can be ascribed to instrumental

causes and can be measured.

2.6 Elastic scattering

It is essential to have pure elastic scattering in order to

show up the polarization asymmetry. Inelastic scattering can

reduce the asymmetry in two ways; firstly by a simple reduction

in the electron energy before the large angle scattering takes

place and secondly by depolarization of the beam due to a change

in the spin direction of the incident electron during the

inelastic collision.

The rate of energy loss in gold for electrons is two MeV
2 —5

per grr/cm and with gold foils of thickness 10 cms the energy

( 68)
loss and the resultant effect on the asymmetry are negligible .

(68^
Hose and Bethe have evaluated the effect of spin flip

in inelastic collisions between the incident electrons and the

atomic electrons consistent with the condition that the energy

loss be much less than the initial energy of the incident electron.
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They found that for 100 keV electrons scattered at gold foils
-5

of thickness 10 cms the effect is a negligible source of

depolarization.

2.7 Single scattering

The opposite of single scattering is multiple scattering

where the scattering in a target consists of more than one large-

angle scattering together with a number of small-angle scatterings.

In 1922 Wentzel^ gave as a criterion for single scattering of

the Rutherford type that the angle 9 , at which scattering is

observed, should be several times greater than k W where ¥ is

given by the following expressipn:

w . 2cot-1 fV ("JL_ ) * 2.1.1Ze Vrrnt J
where eV is the kinetic energy of the electron, Z is the atomic

number of the scatterer, n is the number of atoms per unit volume

of the scatterer and t is the thickness of the scattering foil.

It has been customary to consider scattering as single at
(70)

angles greater than 12 ¥. Chase and Cox applied a more

empirical test to single scattering and found that provided t be

taken as the mean length of path in the foil of the electrons

scattered at an angle 0 and not as that of an undeflected

electron then Wentzel's criterion was satisfactory.

Rose and Bethe evaluated the degree of depolarization

caused by multiple scattering in gold foils and found, that for a

-5
foil-thickness of approximately 10 cms and for electrons of

energy 100 keV incident on the foil at an angle of 45° the

depolarization due to multiple scattering is less than
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2.8 Exchange scattering

An electron beam can be depolarized by exchange scattering,

that is a scattering process in which the outgoing electron has

the opposite spin orientation to that of the incident electron.

**5
This effect is extremely small for gold foils of thickness 10 cms

under normal conditions, since only the valence electrons of gold

can participate in the exchange process^ .

2.9 Miscellaneous scattering problems

The difficulties associated with the creation of bremsstrah-

lung in the apparatus, with electron sources which also emitted

X-radiation, with electron guns which emitted beams, the

characteristics of which varied with time, and with the scattering

of electrons from parts of the apparatus other than the scattering

foils, were encountered in early work in this field^* *** ^ .

2.10 Plural scattering

The presence of the effects discussed in the above paragraphs

was known to and allowed for by some of the early workers but

nevertheless no positive detection of the Mott asymmetry was made
I

until 1942. There were two reasons for the failure of the early

experiments. Firstly when criteria for single scattering were

evaluated it was assumed that the probability of scattering at a

large angle by a combination of two deflections of the same order

of magnitude could be ignored. Secondly when electron beams

were incident on scattering foils at angles other than 90° it was

assumed that no more allowance for obliquity had to be made than

to use the oblique thickness as the effective thickness of the foil.

That such assumptions were wrong was shown theoretically by
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(71)
Goertzel and Cox and experimentally by Skull, Chase and

Myers^1 .

It was found by Chase and Cox^"^ that when an unpolarized

electron beam was incident on a target foil (fig. 2 (a)) then the

scattered intensity for a given scattering angle © depended o n

which side of the foil thedetector was located. They found that

the detector on the so-called reflection side received more

electrons than the detector placed on the transmission side. This
.

transmission-reflection asymmetry was explained by Goertzel and
(71)Cox as being due to plural scattering which is a combination

'

of two deflections of the same order of magnitude. The detector
.

on the reflection side of the foil received electrons scattered

o
once through 90 together with electrons scattered twice through

45° whereas the detector on the transmission side of the foil

received electrons scattered once through 90° together with elec-
o

trons scattered once at an angle of 135 and then through an angle

of 45° (fig. 2(B)). Because of the difference in scattering
o o

cross-section between scattering angles of 45 and 135 more

electrons entered thedetector placed on the reflection side than

that on the transmission side.

The failure of such experiments as those of Dymond and Richter
(9 11)x » ' was therefore probably due to the fact that they used both

scattering foils in the reflection position (that is both the

incident and scattered beams were on the same side of the foil) and

consequently, because of the presence of plurally scattered elec¬

trons in the beam incident on the second scattering foil, their

experiments did not satisfy the single-scattering criterion.



Figure 2. Reflection-Transmission Effect.
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(13)
Skull, Chase and Myers carried out two sets of experi¬

ments, one with both scattering foils in the reflection position

and the other with both foils in the transmission position (that
is the incident and scattered beams were on opposite sides of

the foil). In the first they obtained results in agreement with

those of Eymond whereas in the second they obtained results in

reasonable agreement with the predictions of the Matt theory.

Their results were verified shortly afterwards by Trounson and

Simpson^ .

2.11 Further investigations into the Mott scattering theory

Since the work of Trounson and Simpson the double scattering

experiment has been repeated, with relatively minor modifications,

by six groups^ 72-78) a v^ew examining experimentally the

various predictions of the Mott scattering theory. The four

effects which have been studied are

(a) the cosine dependence in azimuth of the asymmetry,

(b) the dependence of the asymmetry on the atomic number

of the seatterers,

(c) the angular dependence of the asymmetry,

and (d) the energy dependence of the asymmetry.

2.12 The azimuthal dependence and the Z dependence of the

Mott asymmetry

The best agreement between theory and experiment has been

obtained in the experiments which have measured the angular

dependence in azimuth of the asymmetry^ In
o o

the angular range © = 80 - 140 and the energy range

E = 60 keV - 130 keV no significant discrepancy between
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theory and experiment has been encountered. It should be noted

however that such agreement between theory and experiment is proof

only of the correctness of the concept that the first scattering

produces a transversely polarized electron beam and that the

second scattering acts as a detector of transversely polarized

electrons, and not as a proof of the detailed theory of Mott

scattering.

The only experimental evidence from double-scattering experi¬

ments on the dependence of the Mott asymmetry on the atomic number

of the scatterer comes from an experiment by Louisell, Pidd and
(75)Crane which was designed to measure the gyromagnetic ratio

of thefree electron. In this experiment use was made of Mott

scattering and, as a check on the validity of the results

obtained, one of the gold foils was replaced by a silver foil

and the resultant reduction in asymmetry measured. The accuracy

of this particular aspect of their work was not, however, high.

2.13 The energy dependence and the angular dependence of the
Mott asymmetry

Most of the work in double-scattering experiments has been

concentrated on the angular dependence and on the energy dependence

of the Mott asymmetry.
(73)

Shinohara and Ryu ' studied the energy dependence of the

Mott asymmetry in the energy range 45 keV - 92 keV and

obtained some agreement with theory but the instrumental asymmetry

of their apparatus was not measured and this reduced the value of
(74)

their work. In later experiments Ityu extended the range of

scattering angles and energies studied and found that in some



30

cases the discrepancies between theory and experiment were as

high as 50%, In Ryu's experiment the first foil was in the trans¬

mission position but the second foil appeared to be in the

reflection position.
( 76)

Bettus carried out a fairly extensive study of the energy

dependence of the Mott asymmetry in the electron energy range

80 keV - 200 keV and found large discrepancies between theory

and experiment at low energies but at high energies the discrepan¬

cies were only of the order of 10$. Because of the large second

scattering angle (120°) used it was necessary for each counter,

in turn, to view the reflection side of the scattering foil.
/ *70^

Schneider and Barnard carried out an experiment similar to that

of Pettus but, by the use of a smaller second scattering angle,

were able to use the transmission side of both foils. They

worked in the electron energy range 60 keV - 100 keV and in

this range obtained asymmetries which were only about half the valu

of those predicted by theory.

One feature common to the above experiments was that no

attempt was made to determine the energy of the electrons recorded

at the counters, the only control over the electron energy being at
(77)

the electron gun. In their experiment Pidd and Nelson chose to

investigate the angular dependence of the Mott asymmetry at one

energy (121 keV). They first obtained a set of asymmetry values

with no energy discrimination at the counters and these values were

in rough agreement with those obtained in the experiments discussed
/ "7i "7fC "70 N

above ' ' and not with the predictions of the Mott scattering

theory. They repeated their measurements with energy discrimin-
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ation at the counters and the results obtained in this way

agreed relatively well with the Mott theory except at large

scattering angles (120° - 140°) where the discrepancies were

sufficiently small to be explained by plural scattering. The

authors were unable to explain why the presence of energy dis¬

crimination at the counters made such a large difference to their

measurements since analysis of their results gave the conclusion

that approximately one-third of the electrons recorded with no

energy discrimination had suffered energy losses of 0 - 40 keV

while travelling between the gun and the counters. Theoretically

the most probable energy loss at scattering at gold foils of
-5

thickness 10 cms of 121 keV electrons is approximately

125 eV and the probability of a loss in excess of ten times the
(77)

most probable loss is only a few percent .

2.14 The present status of the Mott scattering theory

In view of the difficulties encountered in obtaining a

satisfactory explanation for the observed energy losses in the

work of Pidd and Nelson, it is difficult to assess the importance

of this effect in earlier double-scattering experiments. It is

interesting to note that prior to the work of Pidd and Nelson, the

best agreement between theory and experiment had probably been
(13)

obtained by Skull, Chase and Myers who carried out their
( 76)

measurements using 400 keV electrons while Pettus obtained

better agreement between theory and experiment for 200 keV

electrons than for 80 keV electrons. These results could be

explained by the fact that energy losses tend to be more serious

for low energy electrons than for high energy electrons, particu¬

larly in view of the nature of the energy dependence of the Mott
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asymmetry.

The above explanation for the observed discrepancies between

theory and experiment cannot be accepted as conclusive, however,

since effects due to multiple and plural scattering, and the

corrections to the theory for the screening effects of the atomic

electrons are all more important at low energies.

The theory of plural scattering put forward by Goertzel

and Cox^^ is only capable of putting a lower limit on the
/ *71 ^

magnitude of the effect. Ryu evaluated the effect of plural
o

scattering at a gold foil, oriented at 45 to both the incident
o

and scattered beams, for a scattering angle of 90 but his

theory was unsuccessful in explaining his experimental results.

Recently a theory for the multiple scattering of electrons
(79)

in thin foils has been put forward by Mahlochlegel and Koppex '

and Wegener^ has made calculations on the effects of both

multiple and plural scattering on the Mott asymmetry. Since

plural scattering effects are much more important than multiple

scattering effects in normal double-scattering experiments the work

of the last named author appears to be more relevant to this field.

However the application of Wegener's theory is restricted to the

case of an electron beam incident normally on the scattering

foil and is further limited by the condition that the combined

effects of multiple and plural scattering on the Mott asymmetry

must be considerably smaller than the asymmetry itself. With the

normal scattering foil thicknesses, electron energies and scatter¬

ing angles used, this latter condition is seldom fulfilled in

double-scattering experiments.
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Another explanation for the better agreement between theory

and experiment obtained at high, as opposed to low, energies

may lie in the fact that screening corrections are larger at low

energies than at high energies. As already pointed out (2.3)

accurate values of these corrections are not yet available but it
(77)

is interesting to note that Pidd and Nelson* ' interpreted

their results as indicating the existence of a screening effect

at least at a scattering angle of 80°.

2.15 Modifications to the Mott theory

Due to the lack of agreement between theory and experiment,

attempts have been made to modify the Mott scattering theory by

the introduction of deviations from the Coulomb scattering field

other than those due to screening effects * . In view of

the results of Fidd and Nelson together with the work described

in 3.2 it is extremely doubtful whether such modifications are

applicable.

2.16 Complete verification of the Mott theory

It has been pointed out by Tolhoek* 1 and also by Schopper

that for a complete verification of the Mott scattering theory it

would be necessary to determine the change in polarization of an

initially polarized electron beam due to a scattering process.

The latter author examined the effects which would be expected

to appear in such a second-order experiment but no experimental

evidence is available on this question at present.
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CHAPTER 3.

THE LONGITUDINAL POLARIZATION OF /3 —PA PTTfiT.TES

.

■

3.1 The use of Mott scattering
.

The use of Mott scattering for the measurement of the

longitudinal polarization of |3 -particles had an advantage
> over the other methods employed for this purpose insofar as

considerable experience in its use in the measurement of electron

polarization had been acquired prior to 1956. Since Mott

scattering could only be used to detect transverse polarization

however, it was necessary to devise methods for the conversion

of the longitudinal polarization of -particles into a trans-
'

;
!

verse polarization before the scattering took place. The three

methods which have been successfully developed for this purpose
.

are discussed in the following paragraphs. In each case the

scattering foil and counter system used in conjunction with the

"spin-rotator" have been very similar to those discussed in

Chapter 2, with the exception that only one scattering foil had

to be used.

3.2 The electrostatic deflection technique

If an electron enters a transverse electric field than its

momentum direction is changed due to the interaction of the

electric field with the electronic charge but its spin direction

remains almost unaltered and it is therefore possible to vary

(30
the angle between the momentum direction and the spin direction^

With reference to figure 3, if & longitudinally polarized electron

beam enters the space between the cylindrically-shaped electric



Figure 3 The Electrostatic Deflection Technique
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field plates B and C at the point A then, as shown schematically
-

in the diagram, the beam which emerges at the point D has a

transverse component of polarization.

One of the main advantages of this method lies in the fact

that the transverse electric field acts as an energy selector.

This technique has the disadvantage that no method exists whereby

a null measurement can be obtained with a gold scattering foil

nor is it possible to reverse the direction of the asymmetry

(cf. method 3). In consequence, errors due to incorrect position¬

ing of the source relative to the electric field and to the non-
.

uniform deposition of the source material are difficult to

eliminate^^.
The general method of deflection in an electrostatic field

has been used by several groups^ ^5-89) an(^ their work is

summarized in Table 1. The low values of P/~ obtained by
/ o,\

Praunfelder et al ; were due to depolarization effects in the

scattering foils . Depolarization effects in the scattering

foils and also in the rather thick sources used by Langevin-Joliot

et al^^0^ were probably the reason for the low values

of P/g obtained in their experiments. The other results are

consistent with the predictions of the two-component theory within
■

the limits of the rather large experimental errors.

The presence of electrons in the beam emergent from the

electric field which have been scattered at the electric field

plates reduces the degree of polarization of the beam. This
(88)

effect has been studied by Bienlien et al by using the

electric field plates, employed in their polarization experiments,

as part of a ^3-ray spectrometer. By varying the magnitude of



Table 1.

Results on the longitudinal polarization of p --particles
obtained by the -use of the method described in 3.2

Group Source Energy
keV ,

Foil
thickness f 9 X

(30

Fraunfelder

et al^
o 60Co 50

68
77
77

.150

.150

.050
,15G

108° 95°-l40° 0.1
0.34
0.82
0.71

100
15
17
30

De Waard

and Foppema
(85)

Co (a)
Sc^6(b)
P32 (0
Tm17°(d)
Au198(e)

170 .05-.25G 90° 90°

Relative
measurements

Pa/P* - 1

I^/Fd = 1

PG/P® = 1

15

N.Q.

N.Q.

Vishnevsky
at 1«*>

Cu^ 145 .12, .240
.12, .24G

90° 90° 1.03

0.79

14

19

Langevin-Joliot
at al<88«>

Langevin-Joliot
and Marty
(89(b))

Sr90

S*

204
204
128
128

128

0.40
0.40
0.2G
0.2G

0.26G
0.350

127°20"

127°20"

99°-l29°

99°-l29°

0.70
0.57
0.38
0.32

0.67
0.62

36
38
65
63
35
38

Bienlien

at al'88'
n 60Co 160 Various

G

110° 120° 0.96 6

Malone

at al<87>
_ 60
Co 200 Various <

G

N.Q. 70° 1.03 5

vjy is the angle turned through by the electron momentum
while traversing the electrostatic field,

0 is the scattering angle: N.Q. ■= not quoted in text,
2

Foil thicknesses are quoted in units of mgr/cm ,

G signifies gold foils,

X is the quoted percentage error on the P/~ result,o
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the applied potential they studied the energy distribution of

the electron beam transmitted by the electric fieldj they

obtained a linear Kurie-plot down to an electron energy of 150 keV

and consequently they assumed that above this energy the effect

of inelastic scattering could be ignored. Further advantages of

working with relatively high energy electrons in this type of

experiment are that the depolarization effects at the source and

the effects of plural and multiple scattering at the scattering

foil are reduced and that the screening effects are likely to be

of less importance though Bienlien et al encountered difficulties

with the last named effect at an electron energy of 160 keV.

Bienlien et al^^^ have used their apparatus to investigate

the energy dependence of the Mott asymmetry for electrons in the

energy range 120 keV - 210 keV at a scattering angle of 120°.
They measured the Mott asymmetry for Au, Ce, Ag and Cu scattering

foils. At high energies their results were in agreement with

the theoretical calculations of Sherman^^ and the discrepancies

which they observed at low energies between theory and experiment

were attributed to the effects of screening.

The same group have also investigated the angular dependence

of the Mott asymmetry for electrons of energy 155 keV over the
o 0(101)

angular range 40 - 150 . Within the limits of the accuracy

of their work ( ^ 10$) they obtained asymmetry values in agreement
( 67)

with the calculations of Sherman . The accuracy of their

results was not sufficiently good to indicate the magnitude of

the screening corrections. A possible conclusion to be drawn

from the consideration of their results together with those of



Pidd and Nelson is that the Mott scattering theory is correct

and that the suggested modifications to it are unnecessary (2.15).

3.3 The Multiple scattering technique

The second technique which has been used to convert the

longitudinal polarization of an electron beam into a transverse

one is that of multiple scattering at a foil of low atomic number.

By virtue of the low atomic number of the scatterer the spin-orbit

force is very small and consequently the Coulomb field of the

nucleus is primarily responsible for the scattering:, raider such

conditions the momentum vector of an incident electron is rotated

through a much larger angle than that of the spin vector with

the result that the polarization direction is altered. The

theory of such a scattering process has been worked out by

Bernardini et al^^^.
The main advantage of this method is its simplicity, since

no electric or magnetic fields are required for its operation.

In the other two methods, however, the electric and magnetic

fields act as energy selectors and the absence of such discrimin¬

ation in the multiple-scattering technique constitutes a serious

difficulty since the degree of polarization is, in theory, directly

proportional to the electron velocity. It is not only necessary

to know the range of electron energies recorded but it is also

necessary to take into account the energy dependence of the

multiple scattering at the first foil, of the multiple and plural

scattering at the second foil and of the scattering cross-section

at both foils (for a full discussion of these effects see reference

92). The magnitude of these effects are difficult to evaluate

accurately and it is for this reason that the stated accuracy
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of the work of Alikhanov et al^°^ has "been questioned^ .

The multiple-scattering technique has been used quite exten-
(90 — 96}

sively ~ and the results obtained by the use of this method

are shown in Table 2. Due to the presence of the phenomena

described in the previous paragraph the method is not suitable

for the attainment of accurate absolute values of the degree of

electron polarization and its main application has been to the

relative measurement of the degree of polarization of electrons

from different types of interactions, particularly for transitions

with approximately the same shape ofJ3 -spectrum and approximately
the same end—point energy.

( 93}
Bilhring and Heinzte ' have used this technique to determine

.

the ratio of the longitudinal polarization ofj3 -particles from
RaE to that ofJ3 -particles from Tl^f and . RaE is a

particularly interesting decay since it is the only case that

has been reported which gives rise to electrons which do not have

a full (t?) degree of polarization^"^. Biihring and Heintze have

been able to account for this discrepancy by the use of the nuclear

matrix elements suggested by the characteristics of the RaEJ5 -

spectrum.

Using the same apparatus as that employed for the RaE measure-
/Ql\

ments, Buhringv investigated thedegree of longitudinal polariz-
166

ation of J3 -particles from Ho in order to obtain an estimate
for the pseudoscalar contribution to the interaction. On the

basis of the two-component theory of the neutrino, the results

obtained placed an upper limit of 3 x 10""^ on the pseudoscalar

contribution.



Table 2.

Results on the longitudinal polarization of j3--particles
obtained by the use of the method described in 5.3

Reference Source Energy
ke-V»

1st Foil .2nd Foil
thickness f G p/V'

c
X

(95) P32 >900 A1 2.50 90° 75° C.f.P. N.Q.

(96) ^2(a)
Au198(b)

^250 A1 90° 73° P&/Pb = 1 N.Q.

(91) Sr9°+ Y9° 200-400 A1 0.250
-20.8 Fb 30° 135° 0.82 18

(92) T12°4(c)
Au198(d)
Sr9° (e)
+ Y90

> 200 Gu 0.730
1.95 Fb

90° 135° Pd/Pc = 0.98
I^/P® = 0.99
Pd/P® =0.97

5

3

4

(95) RaE (f)
H2Q4(g)
Y91 (h)

250-600 Gu N.Q. 90° 135° F^/P8 = 1.016
F^P8 = O.83

1.5

2

(94) Hol66(i)
^2 (J)

250
-600

Cu N.Q. 90° 135° FVF3 = .992 2

(90)* Sr9°+Y9°
Tm170
Sm153
Lu177
Re177
Au198

145-650 A1 0.12-1.97
G

90° 112.5° ' 0.99

0.98

0.98

1.00

1.06

0.97

5*

3

5

6

11

6

For explanation of symbols see next page



Table 2 (contd.)

G s gold: A1 = aluminium: Tb = lead: Cu = copper

2
The thicknesses of the 2nd scattering foils are quoted in mg/cm .

is the angle of scattering at the 1st scattering foil

0 is the angle of scattering at the 2nd scattering foil

N.Q. not quoted in text.

C.f.P. comparable with full polarization

X is the quoted accuracy of the P/^ results.c

* for a discussion of these errors see text.
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3.4 The crossed fields technique

The third method which has been developed to change the

longitudinal polarization of an electron beam into a transverse

one utilizes crossed electric and magnetic fields. This

technique is discussed in detail in Chapter 4 but essentially its

operation depends on the fact that for one particular electron

velocity the forces on the electron due to the electric and
.

magnetic fields are equal in magnitude and opposite in direction

with the result that electrons of this particular velocity pass

undeflected through the fields. The electric field due to a

parallel-plate condenser (which is normally used to provide the

electric field) has no effect on the magnetic moment of the

electron but the magnetic field exerts a couple on the magnetic

moment which therefore precesses as the electron traverses the

crossed fields. Hence it is possible to control the sense of

polarization of an electron beam. This technique has not been

used so extensively as the other two probably because of the

technical difficulties associated with the production of electric

fields of the required magnitude and with the attainment of

magnetic fields which are sufficiently uniform over the required

distances. The results obtained by the three groups who have
:

used this method are summarised in Table 3.

The first two groups^^chose to keep the electron path

length in the crossed fields constant and varied the sense of the

transverse polarization and consequently the sign of theazimuthai

asymmetry by reversing the direction of both the electric and

magnetic fields. For the satisfactory operation of this technique

the electrons, having left the crossed fields region, must be



Table 3

Results on the longitudinal -polarization of f3 -particles
obtained "by the use of the method described in 3.4

Group Source Energy
keY

Spin
Control

Foil
Thickness © *5 x

%

Cavanagh
at

„ 60Co

Au198
128 i9o°

Various

G

90° 0.65
0.98

0.95

20

11

21

Alikhanov

et al^
ap»+ y90 300

750

±90° 0.5370

1.9G £>8oo 0.80

1.15

25

'35
300 0.17G 105° 1.10 17

Mikaelyan
and Spivak
(99)

P32 (a)
Sm153(b)
lu177(C)
Hol66(a)
ln114(e)

340 +90° 0.55

G

120° Relative
Measurements

Pa/Pb = 1.047*

P°/Pb =0.945

Pd/Pb = 0.930

Pe/Pb = 0.965
Absolute
Measurement

1.1

1.3

1.3

3.1

Sm153 340 +90° .18, .36,
.55 G

120° 0.90 4

The thicknesses of the scattering foils are quoted
in mg/cm^.

© is the scattering angle
/V

X is the quoted accuracy of the P/=- resultsc

* for a discussion of these values see text.
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unaffected "by the sense and the magnitude of either the electric

or the magnetic field. For these conditions to be fulfilled the

electric and magnetic fringe fields must be as small as possible.

Further, since it would be likely that some of the effects

associated with the fringe fields would change sign on reversal

of the field directions, then any systematic errors introduced

by these effects would be unlikely to be apparent in the relevant

magnitude of the measured asymmetries and would therefore be

(97)difficult to eliminate. The technique used by Cavanagh et al

and Alikhanov et has the advantage, however, that it can

be used over a range of electron energies without changing the

position of the scattering foil or the counters (of the method

described in Chapter 4).
It appears that the effects of multiple and plural scatter¬

ing were not taken into account in the work of Alikhanov et al

though these effects would probably have been small for the

electron energies studied. Cavanagh et al eliminated these

effects from their final results by measuring the asymmetries for

a range of thicknesses of scattering foil and extrapolating the

measurements to zero foil thickness. (See Chapter 5).

Both groups investigated the azimuthal dependence of the

scattering asymmetry and obtained good agreement with theory.
(99)

The work of Mikaelyan and Spivak , us ing the crossed

fields technique, differed from that of the other two groups

insofar as no attempt was made to reverse the direction of the

polarization-asymmetry by reversing the directions of the

electric and magnetic fields. Further, for the relative
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measurements, the instrumental asymmetry was not measured and

consequently it would appear possible that the non-uniform

deposition of the source materials on the source-holders was

the reason for the varying degrees of polarization obtained for

the different sources. Since the sign of the polarization

asymmetry was not reversed during the course of the experiment

it would appear possible that inherent asymmetries in the gold

foils used for the absolute measurement introduced an effective

instrumental asymmetry, for which correction was not made. It

must be concluded, therefore, that although the statistical

accuracy of the work of Mikaelyan and Spivak was considerably

better than that achieved by the other two groups, their experi¬

mental technique was more prone to give rise to systematic

errors.

(97)
Cavanagh et al studied the degree of polarization of

electrons in the energy range 58 keV - 178 keV by applying

potentials ranging from -70 KV to +50 KV to the source thus

eliminating the troublesome effects associated with the direct
( 80 8J ^

investigation of low energy electrons * . By such a technique

it was hoped to place an upper limit on the magnitude of a Coulomb

term in the expression for the degree of polarization but their

work was not sufficiently accurate to do this.
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CHAPTER

THE THSOEI OF THE EXPERIMENT

4»1 The proposed experiment

At the time when this experiment was begun (Autumn, 1957)
the position in the field of weak interactions was very confused

due to conflicting experimental evidence on the degree of longi¬

tudinal polarization of J3 -particles from different types of
interactions, and on the nature of the coupling constants inj3 -

(108 109 51 53)
decay ' ' ' . In particular the electron polarization

experiments gave results of relatively poor statistical accuracy

and the methods used to obtain these results appeared likely to

give rise to systematic errors.

In order to obtain good statistical accuracy in a measurement

of the velocity dependence of the electron polarization the Mott

scattering technique was chosen because the velocity dependence
V

could best be investigated in the region — = 0.4 - 0.7 and it was
v

precisely in this region that Mott scattering had a higher sensi-
(97)

tivity than the other methods •

As discussed in the previous chapter, three methods have been

used to transform the longitudinal polarization ofJ3 -particles
into a transverse polarization namely by deflection in an electro¬

static field, by multiple scattering and by using crossed electric

and magnetic fields. Because of the difficulties associated with

the first two methods, particularly in their application to the

measurement of absolute values of the degree of polarization, the

third technique was adopted. The idea was conceived that, by

varying the position of a radioactive source placed in crossed
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electric and magnetic fields, that is "by varying the time spent

"by the emitted |3 -particles in the crossed fields, the polarization
direction could be altered in a way unlikely to introduce appreciable

systematic errors.

In order to convert the longitudinal into a transverse

polarization, electrons from a radioactive source were allowed to

pass through crossed electric and magnetic fields, the relative

values of which were chosen to select electrons of a convenient

energy (100 keV) while the absolute value of the magnetic field

was selected so that the electron spin axis would be rotated
c

through an angle of 90 in the time taken for an electron to

traverse approximately one-third of the total length of the crossed

fields. By means of a movable radioactive source the electron

path length could be varied and hence the electron spin axis

could be rotated through any angle between 0° and 270°. On

emerging from the crossed fields the electrons were acted on by

the magnetic field alone and consequently traversed a circular

path before being incident, at an angle of 90°, on a gold foil.
O o

Electrons scattered through an angle in the range 110 -165 were

detected by means of two electron-sensitive plates placed

symmetrically with respect to the electron beam (Figure 4) . It

was considered that the large degree of control over the direction

of the spin of the electron incident on the scattering foil should

lead to results of good statistical accuracy.

4.2 The basic theory of the experiment

It can readily be shown that for electrons of velocity V

to pass undeflected through crossed electric and magnetic fields,

the following relation must hold:

V = | Jr.9..I
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where V is in metres/sec, E is the electric field strength in
2volts/metre and B is the magnetic flux density in wehers/metre .

The influence of electric and magnetic fields on the spin

orientation of electrons in a Beam has "been calculated according

to the Pauli spin theory and the Dirac theory'and also "by

the use of a consistent set of covariant classical equations of

motion^1 Prom such work it follows that if an electron travels

a distance JL metres through crossed electric and magnetic fields

then its spin axis is rotated through an angle © , where O is

given "by the following equation.

0 e_ B2 £ (1 - ]32) / n 3^
— radians ch.oL.oL

o E

where e and are the charge and the rest mass of the electron,

respectively, E and B are defined as above and J^) is the ratio
of the velocity of the electron to the velocity of light in vacuo.

Strictly speaking equation 4.2.2 is valid only when the gyro-

magnetic ratio of the free electron is equal to 2.

4.3 The equations of motion for an electron in crossed fields

It is a general characteristic of electron polarization
I
experiments that a certain amount of depolarization occurs due to

the spread of electron energies and to the finite dimensions of the

electron beams.

aT
/p To H.T

Figure 5
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Consider an electron emitted in the x-y plane at an angle

to the x-axis from the source at 0 (Figure 5). The electric

field E is in the -y direction and the magnetic field B in the

-s direction (i.e. directly into the paper). If the initial

velocity of the electron "be vq, with x and y components xq and yQ
and if the velocity of the electron at a later time t be v, with

• »

x and y components x and y, then the equations of motion are given

by the following expressions;

my = -Bex + Ee <k3.|

mx = Be£ Ji.3.2.

From the principle of the conservation of energy it follows

that

m (x2 + y2) = ^ mv2 + Eey eti.3.3

If © he the angle between the electron momentum direction and

the x-axis at time t then, provided both (the value of 6 at

time t = 0) and Q are small, the following equations are valid
i t

0 = 1° and 0 = cJi.3 ,<Ji
°

Integrating equation 4.5.2 once with respect to time and substi¬

tuting the resultant expression (with the appropriate boundary

conditions) into equation 4.3."I we obtain

y . .(St fy - (St ) *0 .2a Ji-3.5J 1 ni / / m

By the use of this equation together with the relationship

2 • 2 • 2 i q /
v=x^+y &[■ J. bo o o

•

and, on making the assumption that yo is small, we obtain

y = -

» • 2Be
m j -y +(isf° " (4 <4 3.7

o
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4.4 The transmitted energy range

For the special case when the electron is emitted in the

x direction with velocity vq + <5vq then equation 4.3.5 takes
the form

2

y = flal y - (*2.) X (Vo + ^Vo) +eE Ji-efr./
J 1 m I m

By the use of equation 4.2.1, equation 4.4.1 reduces to

Be] 2y /Be) ,£v Xi.Ji.Xy = -

i.e. y =- w2 ^ y + <5v j di. c/i. 3
where w = Be Ji ■ . <^i

m

The solution of equation 4.4.3, under the appropriate conditions

leads to an expression for the range of electron energies, q) E,

transmitted By a defining slit of width t urns, of the form

~ t x icf2 h- <h-5
E

9

where E is the mean electron energy in keV. Under the condition

that E and B were set to transmit electrons of energy 100 keV and

taking into account the height of the source, the width of the slit

and the geometry of the apparatus, it was found By use of equation

4.4.5 that electrons in the energy range (98 - 103)keV emerged

from the slit.

4.5 The angular range of the transmitted electron

In order to calculate the magnitude of the depolarization

effects in the Beam it was necessary to determine the magnitude of

■;he solid angle subtended at the source By the slit.
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From equation 4.3*7 it is clear that electrons of initial

velocity vq, emitted at an angle 0O to the x axis, oscillate
about a line which is at a distance X above the x axis where X is

given by the relationship

(*o)2
X =
(f

Be
m

2
JT .5.1

The periodic time of the oscillation is given by the expression

2jrm <^.5.SL
Be

The solution of equation 4.3.7 is

y =/—— ] y ^ + A sin (wt + 8. ) ch- 5 ■ 3
(2eftro/ 0

On inserting the appropriate conditions into equation 4.5.3 the

following expression is obtained

2 Be

V A 2 mv Q /

ir ° + rfl ° X (1 + T/Sin(wt +£)
df. 5- 0^

By inserting the appropriate values for m, v , B and e into

equation 4.5.4 and, making the assumption that 0O is small,

equation 4.5.4 gives the result

y^ 27 0O (y is in mms and 0 Q in radians)
For the height of slit used in this experiment

© t ^
o

The angle 0o has been obtained by assuming that the

electron moves only in the x-y plane. From the consideration

of the path of an electron emitted by the source at an angle (f>



to the x-y plane then, from calculations similar to those carried

out in the determination of the value of 0O , it was found that

electrons emitted in the angular range (j) = - 2-§° about the
central position were incident on the scattering foil.

4.6 Depolarization effects in the crossed fields

The electron energy range gives rise to depolarization in

two distinct ways. Firstly, electrons of different velocities

have their spin directions rotated by different amounts due to the

variation in the time spent by the electrons in the crossed fields.

Secondly, because of the different paths followed in the crossed
■

fields, electrons of different velocity which are emitted from the

source at the same angle, will not emerge from the defining slit

at the same angle and therefore will not be incident on the

scattering foil at the same angle.

The angular spread of the electron beam results in depolariza¬

tion since, if electrons are emitted at different angles by the

source, then the initial spin directions, and therefore the spin

directions after traversal of the crossed fields, are different.

Further, electrons of the same energy emitted at different angles

by the source spend different times in the crossed fields and

consequently their spin directions are rotated through different

angles.

Alikhanov et al^"^ have shown that if an electron of

velocity vq has its spin direction rotated through an angle <f>0
when traversing crossed fields then an electron of velocity v has

its spin rotated through an angle when traversing the same

crossed fields, where a> is given by the following expression.
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sin * ■
sin

o Jl . t.
v * r< vv f rk I— - 1 + 1 - o cos ©V

V ° 2 i
Vol

L C —' / . 2
sxn

J2 \f 2
1 - ~ V 1 - Vo

C2 /1 2V c

where to -^11[1-fe)Tv ■ k. 2.

p °
o

.£ "being the path length of the electron in the magnetic field

{in cmsJ, H the magnetic field strength in oersteds and pQ the
©Vmomentum in units of corresponding to the velocity vq defined

by the relationship o = — .

T H

The application of equation 4.6.1 to electrons with the

largest and smallest values of energy and emission angles,

consistent with the condition that they "be finally emergent from

the defining slit, (i.e. E = 103 keV, E = 98 keV : ©= +2°,
G = -2° t *j> = +2^°, cj> = -2-g°) together with the consideration
of the work of Mendlowitz and Case^^^ on the depolarization

effects in a double-scattering experiment carried out in a

magnetic field, led to the conclusion that the depolarization

effects due to the energy range and to the finite dimensions of

the electron beam were less than 1$ in this experiment.

A particularly useful property of the crossed fields technique

lies in the fact that a fairly large error (e.g. 10$) in the angle

of rotation of the spin axis in the crossed fields leads to only

a very small error (^1$) in the polarization asymmetry value.

This fact has been experimently verified by Mikaelyan and Spivak^-^,
Because of the presence of this factor it is permissible to neglect
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the effect of the acceleration of the electrons in the crossed

fields by the electric field. For example, with reference to

equation 4.6.1, if v = 0.6 c (121 keV) and VQ = 0.55 c (100 keV)
and if the parameters of the crossed fields be chosen such that

<$o = 90°, then it is found that <f> = 82°, but since it is the
cosine of the angle of deviation which is of importance, the

resulting discrepancy is only about 1$.

Depolarization effects may also arise from the presence of

non-uniformities in the magnetic and in the electric fields.

The depolarization occurs partly because the spins of the electrons

in different parts of the beam precess through different angles,

due to the varying magnitude of the magnetic field, and partly

because electrons, in different parts of the beam follow paths

which are not geometrically similar, with results identical to

those discussed at the beginning of this section.
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CHAPTER 5.

THE APPARATUS

5.1 The vacuum chamber

The apparatus was contained in a rectangular "brass "box which

was securely clamped between the pole-faces of the permanent

magnet (5.2) and which was continuously evacuated to a pressure
-J, -5

of 10 "h - 10 mms Hg. The breakdown potential of the electric
■

field depended rather critically on the quality of the vacuum and

care was taken to maintain the pressure at as low a value as

possible,

5.2 The magnetic field

A large permanent cobalt steel magnet, originally designed by
(110)Cockcroft et al , supplied the transverse magnetic field,

the strength of which could be adjusted by passing a suitable

current through six energising coils surrounding the laminated

steel magnet arms. The current for adjusting the magnetic field

was obtained from the 230 volts D.C. mains through a reversing

switch and adjustable series resistances. The most important

feature of the magnet, as far as this experiment was concerned,
( 1 1 1 }

was its ability (as originally investigated by Ellisv' ') to

provide a uniform magnetic field, to better than 1$, over a distance

of 23 cms and it was in this region that the experiment was carried

out. The fact that the air gap between the pole-pieces of the

magnet was only 5.5 cms constituted a difficulty (5.17)•
The magnetic field strength was measured in two ways, firstly

by the use of a search-coil and a Grassot fluxmeter, which had

previously been calibrated by means of a Hibbert standard and
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secondly by measuring the radii of curvature of electrons from

three conversion electron lines of known Hj> values from the
spectrum of Th(B C) , using a well-defined slit system and

photographic plates. A field strength of approximately 350 gauss

was used and its value was known to better than 1%. No variation
■

was noted in the magnitude of the magnetic field over long periods.

5.3 The electric field

The power to supply the electric field was obtained from

H.T. apparatus capable of providing 100 KV D.C. and consisting of

an H.T. variac, a large transformer, a rectifier and an r-c

smoothing device (figure 6(A)). Difficulty was experienced

in getting ordinary resistances to operate satisfactorily under

the experimental conditions and a liquid resistance was used

(Figure 6(b)). The h.T. ripple was measured using a resistance
'

chain and a double-beam c.r.o. Under the operating conditions

the ripple was approximately 0.02%. The H.T. output voltage was

calibrated against the input voltage of the transformer using a

resistance chain together with an electrostatic voltmeter. The

absolute value of the H.T. voltage was known to better than 1%.

Slow fluctuations were noted in the input voltage, which was

obtained from the mains, and manual adjustments were made to
.

the H.T. variac during the course of the experiments to correct

for this effect.

It was necessary to produce an electricfield of approximately

60 KV/cm between two rectangular plates, 18.8 cms in length and

0.5 inches in breadth (figure 7(A)). An attempt was made to
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produce the field by applying a voltage of 60 KV across a plate

gap of 1 cm but, because of the limited space available for input

connections to the field plates, considerable trouble was exper¬

ienced with corona discharge and consequently the effective gap

between the plates was reduced to 6 mns with a consequent decrease

in the necessary voltage. The lower plate was made of duralumin

in order to reduce scattering and, to achieve the required field

strength without electrical breakdown, the upper plate was

enclosed in a trough of insulating material (figure 7(B)).

Troughs were made of two materials, ebonite and polystyrene, the

former being more durable and more easily machined while the

latter is a better insulator. The insulating properties of

both types deteriorated with time and had to be replaced.

5.4 Errors in the electron velocity

As shown in 4.4, electrons in the energy range 98 keV -

105 keV emerged from the defining slit-under ideal conditions.

There were two possible sources of error in the value of the

selected energy range, the one arising from the incorrect setting

of the magnitudes of the electric and magnetic fields and the

other from the imperfect control of the input voltage during the

course of the experiments. It was considered that the maximum

error in the mean electron velocity due to both these effects

was about 2fc. By the use of equation 4.6.1 the change in the

electron spin precession due to such changes in the electron

velocity, was calculated and found to be negligible. It was

also calculated that such a change in the electron velocity would

produce a change of 0.5$ in the polarization asymmetry £5.1?)

(neglecting the effect of the variation in velocity on the
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angular distribution of the electrons, scattered by the foil, and

incident on the emulsion (5.17)) The most serious effect of a

2fo error in the mean electron velocity was the resulting 2fo

error in the theoretical degree of longitudinal polarization

(P = ~). However, since the final value of the longitudinal

polarization was calculated from the results of six different

experiments and since it would be expected that the above effects

would vary in a random way over these .experiments, then any

errors due to the uncertainty in the electron velocity would be

expected to appear in the statistical error of the final result

(7.9).
. .

5.5 The radioactive source
" " " " 1

A considerable number of factors affected the choice of a

suitable radioactive source for this experiment. It was

essential that no -radiation came from the source as the

presence of such radiation would have seriously affected the

electron-sensitive plates. In order to obtain results of good

statistical accuracy in a reasonable time, it was necessary to

have as large an electron counting rate as possible. This was

particularly true when using electron-sensitive plates as recorders

since the emulsion tended to peel from the glass backing if

placed in the vacuum for a period exceeding approximately twenty-

five hours. It was therefore necessary for the fb -spectrum of
the selected source to have a sufficiently low end-point energy

to provide a reasonable fraction of electrons with energy in the

range (98 - 103) keV. The source had to be carrier free and

had to have as small an amount of impurity in it as possible in

order to reduce depolarization effects (5.8). It was also
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necessary for the source to have a half-life at least of the

order of months.

35S appeared to satisfy these requirements and calculations

were made on the required source strength. It was possible to

evaluate the number of electrons incident on the scattering foil

for different strengths and positions of the source by making

suitable calculations on the known shape of the -spectrum of

g35 (106) an£ by the use of the resolving power of the crossed

fields and of the relevant solid angles, both of which had been

determined previously (4.4 and 4.5).

Using a corrected form of the Rutherford scattering cross-

(112) (62)section and the calculations of Doggett and Spencer on

the Mott cross-section, the elastic scattering cross-section of

the system was evaluated. From these data, together with a

knowledge of the angular distribution of the electrons incident

on the emulsion (5.1?) and of the solid angle subtended at the

foil by the collimating windows (5.14), it was possible to obtain

a simple relation connecting the thickness of the scattering foil,

the source strength, the source position and the total number of

electrons registered on the emulsions. Experiments were carried

out to check this relationship and fair agreement between theoret¬

ical and experimental results was obtained. On the basis of this

wor£ it was decided that, under the proposed conditions of the

experiment, a source strength of the order of (10 - 100) mC

was required.
35 /

A carrier free 100 mC source of S (an allowed transition

corresponding to Al = 0 (no ), end-point energy of 167.4 keV,

half-life of 87.1 days^ <">^) was obtained having a volume of 1.1 cc,

the amount of solid present being approximately 5 >1 g/cc.
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5.6 The preparation of sources

Sources were prepared by evaporating the radioactive liquid
2

onto thin aluminium foils (1 mg/cm ). The effective parts of

the source foilj-s were approximately 8 mms in breadth and 3 rums

in height. De Waard and Poppema^^ and possibly also
( 99)

Mkaelyan and Spivakv ' experienced trouble from the non-uniform

deposition of the source material on their foils. Under normal

conditions the additional depolarization effects due to non¬

uniform deposition would be negligible and the only result of

such an effect would be to introduce an additional instrumental

asymmetry. Since it would be expected that this additional

instrumental asymmetry would be the same for all source positions

it could be considered as part of the "normal" instrumental

asymmetry and treated accordingly (5.1$).

5.7 The source-holders

The source foils had to be earthed since, as is well-known

from work in |3 -ray spectroscopy, an unearthed foil charges up
and distorts the energy spectrum of the emitted particles. For

.

this condition to be satisfied, source-holders had to be designed

to withstand fields of 180 KV/cm, to be such as to produce as

little electron back-scattering as possible and to have sufficient

mechanical strength to stand up to considerable movement.

Of the source-holders designed and tested, two were reasonably

successful (figure 8). Source-holder E stood up well to the

electric field but the earthing foils tended to break down under

the mechanical stresses involved in the movement of the source.

No earthing difficulties were encountered with source-holder F

but slow deterioration of the insulation was noted and the various
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components had to be renewed regularly.

Source-holder E was used for the preliminary work and

source-holder P was used in the first set of experiments (6.1).
For the second set of experiments a new carrier-free source of

(volume 1.0 ml, strength 30 mC) was obtained and since a new

source-holder had to be constructed, the opportunity was taken
_

to make two improvements on source-holder F; the height was
'

increased to 0.55 cms and the connecting strip J-J was enclosed

on the top and the sides by a polystyrene trough. With these

modifications a very successful source-holder was obtained.

It was found that small particles of radioactive material

came off the sources and contaminated the apparatus. To

minimize this, pieces of thin aluminium foil (0.2 mg/cnf) were

placed over the sources. In the first set of experiments (6.1)
2

a thin piece of mica ( ^ 1 mg/cm ) was put over the defining

slit in order to prevent radioactive material getting into the

plate-foil holder (5.14-), an eventuality which would have had

serious consequences since even a weak source outside the crossed

fields would have contributed a proportionally large number of

electrons to the electron-sensitive plates. During the second

set of experiments no such piece of mica was put in position
,

since it was found that electrical breakdown took place along

its surface. The apparatus was regularly decontaminated using

a strong caustic-soda solution. It is considered that the decon¬

taminated equipment did not introduce a significant error into

the final result (6.2).

5.8 Depolarization at the source

Depolarization in the region of the source may occur due to
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backscattering in the foil on which the source is evaporated,

and also to multiple and large-angle scattering in the source

layer and in the foil covering the source. Many workers have

carried out investigations on the magnitude of these depolari¬

zation effects in conjunction with their experiments on electron

polarization (Chapter 3) but their results tend to be of signifi¬

cance only for the particular experiments from which they were

derived. This conclusion is drawn from the fact that the

depolarization effects are dependent on the energy of the electrons

studied, the end-point energy of the j3 -spectrum of the source
used, the thickness and the atomic number of both foils, the

thickness of the source layer, the atomic number and the atomic

weight of the source material and the geometry of the apparatus.

The degree of depolarization of J3 -particles due to multiple
and single scattering in the source layer has been evaluated

(79)
theoretically by Muhlochlegel and Koppe and more fully by

Mihlochlegel^ . As noted previously, one of the reasons for
35

choosing S as the source for this experiment was the fact that

it could be obtained in a carrier-free state and thus could be

used to make very thin sources^ it was estimated that the

sources used had a mean thickness of 20 ^ g/cm . Direct substi¬
tution of this value and the appropriate parameters for the

(105)
experiment into the formulae of Muhlochlegelv gave the result

that the depolarization in the source layer was less than 0,1%.

It was rather doubtful if the theory applied to such a small

source thickness, however, but consideration of the theoretical

value of the depolarization together with the experimental work
(92) .. (93)

of Heintze and Buhring and Heintze led to the conclusion
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that the depolarization due to this factor was considerably

less than 1$.
( 8R)

Pram the work of De Waard and Poppema , together with
(92)that of Heintze , it was clear that the depolarization due to

2
the presence of the 0.2 mg/cm aluminium foil in front of the

source was negligible.

The most serious depolarization in the source region was

2
due to backscattering in the 1 mg/cm aluminium foil on which

'

the sources used for both sets of experiments (6.1) were deposited.
(97)Prom the work of Cavanagh et al , together with that of

(92)
Heintze , it appeared that the depolarization due to back-

scattering was about rfo in this experiment.
I

5.9 The slit system
'

In order to improve the resolution and decrease the number

of electrons getting to the electron-sensitive plates without

first being scattered by the foil, a defining slit was fitted to

the end of the electric field plates (figure 9). In order to

reduce scattering, the sides of the slit were bevelled. The

bevelling was done by hand and since it was conceivable that this

might have introduced an instrumental asymmetry, different slits

were used in the two sets of experiments (6.1).
To improve the resolution and decrease the background still

further, a second defining slit was attached to the side of the
'

plate-foil holder nearest the electric field plates (5.1&) but

it was found that its presence gave rise to a sharp increase in

general background on the electron-sensitive plates (6.2) which

was attributed to the creation of low-energy bremsstrahlung

in the slit material. The second slit was therefore removed.
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5.10 The position of the source

The position of the radioactive source in the crossed fields

could be altered by means of a control rod which entered the box

through a vacuum seal (figure 10). The screw C fitted into

the block D on the source-holders (figure 8). The position of

the source relative to the electric field plates was known to

O.Qfo accuracy and the movements of the source were accurate to

within 0.2%, The errors in the changes of the spin precession

angles due to errors in the positions of the source were negligible.

The lower electric field plate, on which the source moved,

was securely attached to a large lead block which, in turn, was

firmly held between the walls of the magnet box so that the move¬

ments of the source did not disturb any other parts of the apparatus.

5.11 The electron beam emergent from the crossed fields

Since it was essential that the electron beam, after emerging

from the crossed fields, should be incident on the scattering foil
o

at an angle of 90 , it was necessary to know the electron path

accurately. This was done by exposing photographic plates (ilford

H.F.3) at right-angles to the beam at various distances from the

end of the electric field plates. As well as the expected trace

of the beam other images were found on the plates. After some

investigation it was decided that these were due to low-energy

bremsstrahlung created at or near the source and, since it was

unlikely that these would interfere with the experiment, they

were neglected.

It was known that electric field-plates of the type used in

this experiment had an end-effect insofar as the electric field
.

.

at the ends of the plates was weaker than that at the centre.
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The presence of such an effect might have affected the electron

path and so various arrangements of earthed plates were put at

the end of the electric field plates in order to reduce its magni¬

tude "but it was found that these were unnecessary as the end-effect

was small and its influence on the electron path reproducible.

The resulting small deviation in the electron path from that

expected on theoretical grounds was taken into account in the calcu¬

lations for the position of the scattering foil.

It was verified, using the photographic technique, that apart

from changes in intensity, the characteristics of the "beam emergent

from the crossed fields were independent of the position of the

source. This was an important property since any variation in

the beam position would have led to differences in the ranges of

scattering angles of the electrons accepted by the windows in

the plate-foil holder (5.17), and also to variations in the instru¬

mental asymmetry; both of these effects would have been very

difficult to take into account.

5.12 The effects of non-uniformities in the electric field

As well as having an effect on the trajectory of the electron

beam, the non-unifoimity of the electric field at the source and

at the end of the electric field plates could have had an effect

on the degree and sense of the polarization of the electron beam.

As discussed above, the end-effect of the field plates was small

but it was unlikely that the same was true of the non-uniformity

of the electric field at the source.

There was a volume in front of the source in which the

characteristics of the electric field were unknown and in this

region equation A.2.2 was not valid. The exact trajectories
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of the electrons and the amount of precession of the electron

polarization in this region could not be evaluated without a

detailed knowledge of the electric field. It was postulated

that the actual source at a distance JL from the end of the

field plates could, for all practical purposes, be replaced by

an imaginary, ideal source at a distance JL from the end of

the field plates ( JL ^ JL ) . Further, it was postulated that

the electrons were acted on by the full value of the electric

field immediately they left the imaginary source, that they had

the same degree of polarization as the electrons leaving the

actual source and that the angle between the electron polarization

and the momentum of the electrons at the imaginary source was p .

The main assumption contained in these postulations was that the

electrons suffered no depolarization while passing through the

region in which the electric field was non-uniform. No matter

the degree of complexity of the trajectories followed by the

electrons in this region, there would be no depolarization pro¬

vided all the electrons travelled along paths which were geometric¬

ally similar. Since there were no obvious asymmetries in the

geometry of the source-holders it was considered that this condition

was satisfied for the electrons which finally emerged from the slit.

The effects due to the non-uniformity of the electric field at

the end of the field plates would be much less than that at the

source and could be corrected for by small additions to the values

of JL and ^ so that the electrons could be considered to
0

have travelled a distance X. through crossed fields of the

required magnitude and the electron polarization to have turned

through an angle of \fs with respect to the electron momentum
' '

' '

during the time the electrons travelled in regions where the
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crossed fields were not of the required magnitude.

Let A0 "be the polarization asymmetry produced hy the

scattering of an initially longitudinally polarized electron beam

which has traversed a distance Jl. in crossed fields of the

required magnitude, and in so doing has its polarization direction

rotated through 90°. Then, for an electron beam which has traversed

£n under similar conditions and which has associated
i

with its initial polarization direction the angle , as defined

in the previous paragraph, the polarization asymmetry is given

by the following relation:

Ai = sin(KX" + +' ) 5.13.1
where K is defined by the expression

K£ = S-I&.Z.

i

Further, since the value of is independent of the

position of the source and since the magnitude of is

independent of the value of £ , then the value of the polariz¬

ation asymmetries A ^ and </\ ^ for the source positions
Ji"+ 2. and are given by the equations

A,. - KU'Vn) + V'J a. 3J.*.

A - /\0W[«Ce"+aeJ + v'J3 @-

By the use of equation 5.12.2 equations 5.12.3 and 5.12.4 reduce to

A„ = L «r' + v'J s.n.s

=-A0w[K«"t^j 5. la.fc
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It is to "be noted that the polarization asymmetries /\ ^

and must "be of opposite sign irrespective of the values

of -2- and ' . The asymmetry values /X} ^ , {X ^

and &3Q. , are of the form that were measured in this
experiment and, clearly values of A0 could be obtained by using

the above equations.

5.13 The determination of the electron energy

When the electrons emerged from the slit they were acted on

by the magnetic field and consequently traversed a circular path

of radius p, where p was given by the expression

P = I -5 I3 I

where e and m are the charge and mass of the electron in m.k.s.

units, respectively, B is the magnetic flux density in webers/

metre;, and v is the velocity of the electron in metres/sec. By

measuring the radius of curvature of the electron path using

photographic plates the electron velocity was determined from

equation 5.13.1. This was done for various values of the electric

and magnetic fields and the results compared with the values pre¬

dicted by equation 4.2.1. The experimental and theoretical

values for the electron velocity agreed to within 2fo.

The energy of the emergent electrons was also determined

using nuclear emulsions. An electron-sensitive plate was placed

at right-angles to the electron beam and given a short exposure.
.

After development the electron tracks were examined under a

microscope and, by the technique of grain-counting, the electron

energy was found to a fair degree of accuracy. Good agreement

was obtained between theoretical and experimental results over a

range of electric and magnetic field values.
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5.14 The plate-foil holder

The plate-foil holder (figure 11) was constructed of aluminium

in order to reduce electron scattering at the walls. The electron-

sensitive plates were contained in stirrups which were made to run

between the inner and outer walls of the plate-foil holder, that

is in spaces C and D. The position of the stirrups could be

altered by means of a control rod which entered the box through

a vacuum seal (similar in design to the source-control, figure 10)
and which enabled the position of the plates to be altered without

breaking the vacuum or switching off the H.T.

I i
1 1

1 1
1 1

/ I I

0
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Figure 12 The Foil-Holder

The scattering foils were placed in small holders (figure 12)

which were made to run in grooves A and B, cut in the inner walls

of the plate-foil holder. The foil holders were made of brass

for rigidity. Since it was known that the positions of the
(85 1 08^

scattering foils were important * , particularly when

comparisons were being made between aluminium and gold foils, the

position of the plate-foil holder was controlled at both top and
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bottom by guide pieces. This, together with the fact that both

the position of a foil on the foil-holder and the position of the

foil-holder in the grooves were easily reproducible, led to the

conclusion that the comparison of asymmetries was justified.

5.15 Mott scattering in a magnetic field

It is of interest to assess what effect an applied magnetic

field might have on the Mott scattering process. The spin

precession frequency in such an applied field is given by

where g is the gyromagnetic ratio of the free electron and where

the other quantities are defined as in 4.2.2.
5Within a region of about 10 wavelengths from the scatterer,

-5
that is about 10 cms for an electron of energy 100 keV, the

effect of the magnetic field upon the particle is negligible

compared with that of the scattering potential, since for a

magnetic field of 550 gauss the spin precession is of the order
-5

of 0.3 x 10 radians. Further, the change in orbit diredtion is

of the same order of magnitude as the spin precession and conse¬

quently in the above region the particle can be considered as

travelling in free space and the scattering is completely determined

by the scattering potential^ ^ .

5.16 The scattering foils
.

The azimuthal asymmetry in the Mott scattering of trans¬

versely polarized electrons depends on the following factors:

(a) the degree of electron polarization,

(b) the velocity of the electrons,
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(c) the atomic number of the seatterer,

(d) the degree to which the scattering is of the pure

single elastic type,

(e) the scattering angle,

(f) the angle of incidence on the foil.

Factors (a) and (b) are not independent of each other since

Lee and Yang's theory predicts that the degree of electron
v

polarization is equal to j , The asymmetry is greatest for
electrons of velocity v = (0.6 -0.7)c (depending on the

scattering angle) but, on consideration of the required values

for the electric and magnetic fields (4.2.1) together with a

survey of the possible radioactive sources (5.5), it was decided

to work with electrons of velocity v = 0.55°, that is with

electrons of energy 100 keV.

Gold and aluminium scattering foils were used for the

determination of the degree of electron polarization and of the

instrumental asymmetry respectively because of their suitable

atomic numbers. Polarization-asymmetry values are available in
(6?)

the literature for these atomic numbers ' and these foils could

be obtained commercially.

From the theoretical and experimental vrork disclassed in

Chapter 2 it was clear that it was essential that very thin gold

foils should be used in this experiment. For gold foils of
-5

thickness 10 cms the most important source of error was due to

plural scattering, the effect of multiple scattering being of

secondary importance. For the ranges of energy and scattering

angle used in this experiment it could not be assumed that the

depolarization effects due to plural and multiple scattering
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were small and consequently use could not be made of the theory of

Wegener . There was, however, a considerable amount of

theoretical and experimental evidence^^' for the

concept that the depolarization effects in a foil due to plural

and multiple scattering were proportional to the thickness of the

foil. Therefore, by measuring the polarization asymmetries for

various thicknesses of foil and by extrapolating these values to

zero foil thickness, the effects of plural and multiple scattering

could be eliminated from the final result.

One of the important features of this experiment was that,

as a result of the ability to reverse the direction of the

transverse polarization of the electron beam and consequently

the sign of the polarization asymmetry, it was unnecessary to

measure the absolute value of the instrumental asymmetry. In

general it is difficult to obtain an accurate value of the

instrumental asymmetry since three factors contribute to the

asymmetry obtained with an aluminium foil. They are the small

but finite polarization-asymmetry, the instrumental asymmetry

(including the asymmetry due to the non-uniform deposition of

the source (5.6)) and the asymmetry due to the non-uniformity

in thickness of the aluminium foil, and it is difficult to assess

the magnitude of these various contributions to the total asymmetry.

It was, however, necessary to verify that the instrumental

asymmetry was independent of the position of the source in the

crossed fields and this was done using a rather thick aluminium
p

foil (10 mg/cm ).

5.17 The theoretical value of the polarization asymmetry for
this experiment

i The polarization asymmetry depends strongly on the scattering

I !
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angle, being very small at small angles and increasing sharply

at angles greater than 90°. Double-scattering experiments,

carried out to test the angular dependence of the Mott scattering

asymmetry, have, in general, found better agreement between

theory and experiment at relatively small scattering angles

( < 110°) than at large angles ( 2.13 ). These experiments

did not take into account the effects of multiple and plural

scattering, however, and the work of Biehlien et al^^^ has

shown that when such effects are eliminated from the results, the

agreement between theory and experiment is as good for large-angle

scattering as for small-angle scattering.

Because of the narrowness of the gap between the pole faces

of the magnet (5.2) it was necessary to work at large scattering

angles with the consequent disadvantage of the small scattering

cross-section at these angles.
'

The windows through which the scattered electrons entered
'

were cut in the inner walls of the plate-foil holder, care being

taken to ensure that they were symmetrical with respect to the

scattering foil in order to reduce the instrumental asymmetry.
2

It was found necessary to put thin aluminium foils (0.4 mg/cm )

over the windows in order to prevent light from corona discharges,

produced by the electric field, reaching the electron-sensitive

plates. The sides of the windows were bevelled to reduce

background.

In order to determine the degree of electron polarization

associated with the measured asymmetry it was necessary to have a

detailed knowledge of the range of angles through which the

electrons could be scattered in order to enter the windows in the
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plate-foil holder. Consideration was therefore given to the

general trajectory of an electron, incident normally on the

scattering foil and deflected through an angle 0 . With

reference to figure 13, if X, Y and Z he the distances travelled

in the x, y and z directions respectively by an electron scattered

through an angle 0 at the point (xp, y , O) before striking
the plate-foil holder or the emulsion, then the following

equations hold:

+ 0Co — p ccrz © - p [ Goo*"© + AXrri ©
5. II. I

Z =- p[<Ur^Q + AurC~e utz-tfj*Coify
s. n.x

= arctan (cot © sec (j> ) 5 • 17 • 3where

and
^ V + 7c

P /abn. © xj)
where p is identical to that defined by equation 3.13.1 snd the

angle ^ is as shown in figure 13.
The above equations were solved graphically giving the range

of values of Q and j) for which an electron would enter the
window, after being scattered from a certain point on the foil.

By means of repeated numerical integrations the angular distribution
'

of the electrons admitted by the window was determined (figure 14).

The angular variation of the Mott scattering cross-section
I

was taken into account using the calculations of Doggett and

Spencer^ . Sherman^"^ has published a very full set of

calculations on the Mott asymmetry factor for electron energies

in the range J3 = 0.2 to 0.9 and at scattering angles varying
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from 15° to 165°. These calculations were carried out for

scattering foils of atomic number Z = 13, 48 and 80. Sherman

and Nelson^^ have evaluated the Mott asymmetry factor for a

gold scattering foil (Z = 79) in the angular range 15° to 165° and

for electron energies corresponding to /3 = 0.49 and fc) = 0.59
From a comparison of the results of Sherman with those of Sherman

and Nelson (making interpolations where necessary) it was observed

that the percentage difference in the asymmetry factors for Z = 79

and Z = 80 was only slightly dependent on the energy and on the

scattering angle and for this reason it was possible to make

accurate corrections to Sherman's values for Z = 80 in order to

use them for a gold scattering foil. The average value of the

correction factor was 1.9% of the asymmetry value for Z = 80, in

agreement with the calculations of Alikhanov et al^^.
The effect of the azimuthal dependence of the Mott asymmetry

on the polarisation asymmetry was taken into account by considering

the range of azimuthal angles, through which the electrons had to

be scattered in order to reach the area of emulsion examined.

The calculation on the magnitude of the correction took only partial

account of the effect of the magnetic field on the paths of the

scattered electrons; it ignored completely the finite angular

spread of the incident electron beam. The magnitude of the cor¬

rection was 2.0$ and reduced the value of the expected asymmetry.

As shown in Table 4, the theoretical value of the asymmetry

( cSth^r) produced by the scattering of a fully polarized beam of
electrons of energy 100 keV, under the conditions of this experiment

was evaluated. The value obtained was

^theor ~ " 35*



Table 4«

©
(degrees)

c cosec^ D C.D.cosecS)
2

B <5, 4 ^2

110 .020 2.221 1.815 .081 .16 38.4 37.7 .60

115 -d-00K-\• 1.977 1.842 1.400 2.82 40.1 39.4 111.11

120 .826 1.778 1.866 2.742 5.51 41.3 40.5 223.16
125 1.368 1.616 1.886 4.169 8.39 41.6 40.8 342.31

130 1.952 1.482 1.904 5.509 11.09 41.1 40.3 446.93
135 2.494 1.373 1.920 6.572 13.22 39.9 39.1 516.90

140 3.026 1.283 1.933 7.502 15.09 37.8 38.1 i 559.84
145 3.237 1.209 1.945 7.608 15.31 35.1 34.5 528.20

150 3.026 1.149 1.955 6.797 13.68 31.6 31.0 424.08

155 2.224 1 .101 1.963 4.806 9.67 27.5 27.0 261.09
160 .991 1.063 1.969 2.073 4.17 22.6 22.2 92.57

165 .230 1.035 1.974 .454 .91 17.4 17.1 15.56

0 is the scattering angle
C is a measure of the number of electrons, scattered through

the relevant angle, at the foil, which enter the windows
(see figure 14).

D is a correction factor to the Rutherford scattering cross-
/ ^2)

section, taken from the work of Doggett and Spencer^ .

B is defined by the following expression

C.I

W
g _ C.D. cosec^" ^ x 100

I C.D.
4 ©

cosec
g

110

<!>i is the Mott asymmetry factor for z = 80 taken from the work
of Sherman^^ ,

6. is the Mott asymmetry factor for z = 79 calculated on the
(67)

basis of the work of Sherman and that of Sherman and

Nelson^11^.

4 = = 35.22^tW. 2L -i oo
110
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the sign depending on the direction of the polarization.
.

5.18 Errors in the theoretical value of the polarization as.-ymmetry
|

There was a considerable number of possible sources of error

in the value of & theor* Errors may have occurred in the
theoretical calculations of Doggett and Spencer but, since only

the relative magnitude of the values were of importance, it was

considered that such errors could reasonably be neglected. On

the other hand the theoretical values of Sherman were of considerable

importance in obtaining the theoretical value of the polarization

asymmetry and the presence of errors in these calculations is

discussed in 7.11. The value of ^theor WaS ca^cu^a^e^ *>or
electrons of velocity v = 0.55c whereas electrons in the energy

range (98 - 103) keV were incident on the foil. From an examin¬

ation of the velocity dependence of the polarization-asymmetry

it was found that the error from this source was negligible. In

obtaining the value of cS ^eor the assumption was made that the
electrons were incident normally on the scattering foil whereas

the calculations in 4.5 indicate that electrons were incident
o + o

on the foil in the approximate angular range 90 - 3 . Since,

however, it was the cosine of the angle of deviation from the normal

that was of importance in deriving the value of cS theor the error
due to the above angular range was less than 0.1%.

- Apart from errors in the work of Sherman the most likely

source of error in the value of was due to uncertainties
theor

in the determination of the scattering angle distribution, It

was calculated that a 1% error in the scattering angle distribution

would lead to an approximate error of 1% in the value of ^ theor *
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The values of the distribution were calculated independently of

one-another for values of 0 at 5° intervals between

0 = 110° and © = 165° and since a smooth curve could be

drawn through the points obtained in this way (figure 14) it was

considered that the error from this source was of the order of

5.19 The electron detectors

Nuclear emulsions were used as detectors principally because

of the technical difficulties associated with the satisfactory

operation of two electron counters of another type in the small

working gap between the pole faces of the magnet (5.2). The

nuclear emulsions had the advantage of being extremely reliable,

of being unlikely to have inherent asymmetries and of enabling

simultaneous energy determination and counting to be carried out.

Their main disadvantage lay in the fact that they were manufactured

weekly and that they had to be used as soon after processing as

possible, otherwise heavy backgrounds tended to mask the desired

effects. This, together with the fact that two days had to elapse

between exposure and microscope examination, tended to retard pro¬

gress in the preliminary stages of the experiment.

Ilford G5 electron-sensitive plates, with an emulsion thick¬

ness of 100 microns, were used. The development procedure adopted

was essentially that of Dilworth, Occhialini and Payne^"^.
Emulsions ■were examined using a microscope with an oil immersion

lens and also by a microphotometer. The latter did not appear

capable of giving sufficiently accurate results for this experiment

since it was difficult to translate microphotometer readings into

electron numbers and also because spurious effects, such as small

patches of surface stain, could give distorted galvanometer read¬

ings. The counting of electron tracks using the microscope,
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although probably considerably slower, appeared to be a more

satisfactory method of examination.
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CHAPTER 6.

THE EXPERIIvlMTAL PROCEDURE

6.1 The general experimental procedure

As previously discussed (if.l), exposures were taken for

three positions of the source, namely the "1 H " position, in

which transversely polarized electrons were incident on the

scattering foil, the "2H " position in which the electrons

incident on the scattering foil had a longitudinal polarization

in the direction opposite to that in which they were emitted,

and the "3 " position in which the electrons incident on the

scattering foil had a transverse polarization opposite in sense

to that in the "1SL " position. These statements regarding the

polarization directions do not take into account the effects

discussed in 5.11. The three exposures, corresponding to the

three positions of the source, were recorded on different areas

of the same electron-sensitive plates.

Two sets of experiments were carried out, using different

source foils, source-holders, defining slits and scattering foils,

with the object of finding if there were any systematic errors

associated with the design or the characteristics of these com¬

ponents. In the first set of experiments, exposures were taken

for each source position with no scattering foil, with an aluminium
2 2

foil and with 0.19 mg/cm and O.38 mg/cm gold foils in position.

After polarization-asymmetry values had been obtained for these

foil thicknesses, a second set of exposures were taken for each

source position, with no scattering foil, with an aluminium foil
2 2 2 2

and with 0.19 mg/cm , 0.57 mg/cm , 0.76 mg/cm and O.965 mg/cm
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gold foils in position.

The eight electron-sensitive plates in the first set and the

twelve electron-sensitive plates in the second set were developed

and examined in the way described in 5.18.

6.2 Background effects in the nuclear emulsions

The electron tracks observed throughout the emulsions could

be divided into three categories. Firstly, those which were due

to the presence of very small quantities of radioactive material

in the emulsion when manufactured. Secondly, due to cosmic

radiation and to the presence of if -emitting sources in the

laboratory the plates had a background of electron tracks. The

amount of this background depended on the time lapse between

manufacture and development and for this reason exposure times

should have been as short as possible. It was found that a plate,

placed in the plate-foil holder, received an additional background

which depended on the length of the exposure time. This effect

was attributed to the production of bremsstrahlung at the inelastic
35

scattering of electrons from S either inside or outside the elec¬

tric field plates, because even the most energetic electrons from
35

S could not have penetrated the walls of the plate-foil holder.

These three effects were grouped together under the term general

background, since they provided a nearly uniform density of electron

tracks over the whole plate.

Electrons from the beam were scattered into the windows of

the plate-foil holder from places other than the scattering foil.

It was also possible that electrons emitted from places other than

the source (e.g. from contaminated equipment) could have entered

the windows directly. These two effects were termed the specific
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background since, in both cases, the electrons were recorded on

only one part of the emulsion, namely that part opposite the window

in the plate-foil holder. The magnitude of the specific background

was measured by taking exposures for each source position with no

scattering foil in the holder.

It was noted that the presence of a scattering foil could

have increased the specific background in two ways. Firstly, some

of the electrons in the beam, when traversing the scattering foil,

were scattered in such a direction as to be incident on the inner

walls of the plate-foil holder and there was a small but finite

probability that such electrons were scattered by the plate-foil

holder so as to enter the windows. Considerations based on the

geometry of the plate-foil holder and on the thickness of the

scattering foils led to the conclusion that this effect was very

small. Secondly, electrons emitted from places other than the

source (e.g. from contaminated equipment) could have been scattered

by the foil into the windows. Hie number of such electrons regis¬

tered on the emulsions in a given time would not depend on the

position of the source and consequently would be of much greater

importance for the exposure corresponding to the "3-2." position

than for the exposure corresponding to the "1il " position. The

effect of the presence of such electrons would be to reduce the

polarization asymmetry and consequently, if such an effect were

present, the polarization asymmetry obtained with the source in

the "3JL " position would have been invariably smaller than that

obtained in the "1 JL " position, irrespective of the thickness of

the scattering foil. The results (Table 5) showed that this was

not the case and so it was concluded that this effect did not play

an important part in this experiment.
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6.3 The exposure times

Since at least part of the general background did not depend

on the exposure time but only on the time lapse between the manu¬

facture and the development of the emulsion, it was desirable to

keep the ratio of the former to the latter as high as possible.

There were, however, other factors which influenced this ratio.

If the exposure times were made too short the density of electron

tracks was small, and the process of examining the emulsions

became rather lengthy as large areas had to be scanned if the

total number of tracks counted was to be sufficiently high.

If, on the other hand, the exposure times were too long then the

density of electron tracks was large, with the result that the

| tracks tended to overlap, and the rate of counting was slow due

to the large time spent examining one field of view in the micro¬

scope.

The field of view in the microscope used was approximately

67 microns square. A 100 keV electron has a mean range of 46.7

microns and a mean number of grains per track of 43.3 in the type
( 1 1 5)

of emulsion used and under these conditions it was found

that the fastest and easiest counting conditions existed when

there were 2-6 electron tracks per field of view.

One other factor which indirectly affected the magnitude of

the exposure times was the decision to use one set of exposures

taken with an aluminium foil and one set of exposures taken with

no scattering foil, with more than one set of gold foil exposures.

I It was considered that such a procedure was permissible provided all

the sets were taken within a period of time small enough to be able

to neglect changes in source intensity and in background, and
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provided no changes were made in the apparatus which altered the

instrumental asymmetry. Changes in the background could have

occurred in two ways, firstly due to fluctuations in the cosmic

radiation intensity, which would have affected the general, but

not the specific background, and consequently would not have

influenced the polarization asymmetry results, and secondly by

a fall in the source activity. The effect on the polarization

asymmetry of a reduction in the source intensity during the course

of an experiment depended on several factors which included the

time interval between the background exposures and the gold foil

exposures, the ratio of the electron track density in the specific

background to that obtained in the gold foil exposure, the magni¬

tude of the polarization asymmetry and the half-life of the radio¬

active source. A first-order calculation was carried out on the

magnitude of this effect, making the assumptions that the specific

background was directly proportional to the beam intensity and that

no instrumental or foil asymmetries were present. It was found

that, under the most unfavourable conditions present in any of

the experiments, the variation in the source intensity introduced

an uncertainty of approximately 1 fo into the value of the relevant

polarization asymmetry. Since, however, some of the gold foil

exposures were taken before the background exposures and some

after, and since the resultant effect on the polarization asymmetry

was of opposite sign for the two cases then, to a large extent,

the error from this s ource was included in the statistical error

of the final asymmetry value because of the method used to calculate

the latter (7.8).
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6.4 The examination of the electron-serisitive plates

Criteria for the identification of tracks of 100 keV electrons

in the emulsion had "been developed during the grain counting work

carried out previously (5.13) and these were used when counting

the number of electron tracks. If the selection criteria were

constant but too strict, so that only a fraction of the 100 keV

electron tracks present in the emulsion were counted, the polariz¬

ation asymmetry values would not be affected since only the ratios

of the numbers of electrons in the positions on the various plates

were of importance (6.6). Alternatively, if the selection criteria

were constant but not strict enough, that is electrons which had

not been elastically scattered by the foil were also counted, then

either these "additional" electrons would have appeared in the

expostires taken with no scattering foil, in which case they would

have been eliminated from the final results, or they would have

been electrons which had undergone inelastic scattering at the foil.

As discussed in 2.6 this latter effect was small for the foil thick¬

nesses used. This argument does not take into account the small

effects discussed in 6.2. Considerable laxity was therefore

permitted in the choice of the selection criteria but it was

essential that once they had been established they should have

remained constant throughout the work. It was found, by repeated

examination of the same section of the emulsion, that the selection

criteria did vary initially, but after some practice consistency

was achieved.

In order to reduce still further the possibility of variations

in selection criteria influencing the final asymmetry values the



81

following scanning technique was adopted.

The microscope was set to view a particular strip of emulsion,

e.g. AB, at a distance y from the edge of the plate. Scanning

started at the point A and proceeded in the x direction, ten fields

of view in every forty being examined, until the point C was reached

The plate was then removed and another plate, chosen at random, put

in its place. Scanning continued along the same y-line but over a

different range of x values. The process was continued until all

plates had been examined in this way. The complete cycle was

repeated for the same y value but a different ten fields of view in

every forty were examined.

The double cycle completed, a new value of y, within the limits

y_j < y < y^, was chosen and the above procedure repeated. This
was carried out for six values of y. It was considered that this

technique reduced the effects of variations in selection criteria
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and also any effects due to variations in the density of electron

tracks in the exposed areas.

Consideration was given to the effect of inaccurate electron

counting. There was a finite probability that a certain fraction

of the 100 keV electron tracks present on the plates were not

counted. This was a different effect from that due to too strict

selection criteria since in that case the electron tracks were

examined, then rejected, whereas in this case the tracks were not

examined. The technique, previously described, of counting ten

fields of view in every forty in the first examination and another

ten in the second examination would be expected to bring to light

any variations in the accuracy of counting but could not give any

indication of the absolute degree of accuracy. Since the densities

of electron tracks in the exposures used to obtain a single asymmetry

value did not vary greatly, then as a first-order approximation it

was considered that the number of tracks missed was proportional

to the number of tracks counted. Under this assumption it can be

shown that the degree of accuracy of electx-on counting did not

influence the final asymmetry values.

6.5 The rate of counting and energy discrimination

After some practice it was found possible to count 1,750

electron tracks per day. Approximately 100,000 electron tracks

were counted in the scanning of the twenty plates. With the

above rate of counting, good energy discrimination could not be

achieved. From the consideration of the work of Ross and

Zajac^*^ it was concluded that electron tracks which had a number

of grains between 30 and 60 were counted, that is electrons of

energy between 75 keV and 120 keV (approximately) were accepted as
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being genuine.

6.6 The mathematical analysis of the results

Each plate had three exposed areas on it corresponding to

the three positions of the source. It was also necessary to

examine the unexposed areas in order to determine the general

background so that it could be subtracted from the counts recorded

for the exposed areas. This correction having been made, correc¬

tion was made for the specific background by subtracting the
.

number of electrons per field of view obtained from the exposure

taken with no scattering foil from the number obtained from the

exposure taken with a scattering foil. This was carried out for
!

the exposures taken for each source position.

Due correction was made for differences in the exposure times

and in the areas scanned by standardizing all measured quantities

to an exposure time of 100 minutes and by expressing the results

in terms of the average number of electron tracks per field of view.

Pull corrections having been made for background effects, a

set of values were obtained as shown diagram&tically in figure 16.
.

LGr^ and RG^ represented the average number of electrons per field
of view registered on the left-hand and right-hand emulsions (as

viewed by the source), the electrons having been emitted by the

source in the "1£ " position and having been scattered by a gold

foil. Similar definitions applied to the other quantities, A

representing an aluminium foil exposure reading and the 2 jH and

the 3 t subscripts denoting the fact that the electrons registered

in the particular exposure had been emitted by the source in the

2 I and 3& positions respectively. The values LG^, RG^, LA^ etc.
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were each the average of the readings obtained from the examin¬

ation of about 60 fields of view. For each foil, twelve sets of

the type shown in figure 16 were obtained, representing the double

cycles for each of the six values of y examined (6.4)*

The values LG^ ..... ..... » wer« expressed
in the following manner.

LG£ = G1(a1 + A ,j) b.b.l EG£ = G^a.,
K24 * °2<41 + AJ b b'3 * &2t42

= S3(a,+A5) b b-5 Sflj, .
^ t.t.7 ^ ^

M22 = *¥2 ^21= *V2

"51 = *,1 = ^

+ Ag) b. b. 3l
+A, ) b. b. di
+ Ag) b • b. b

b-b-S

b.b.io

b. b-ISL

The quantities G^, G^ and G^, were dependent on the following
three factors:

(a) the intensity of the electron beam incident on the scatter¬

ing foil,

(b) the value of the expression

e4d - J32) cosec4 f (see 5>5)

r»>02 c4jhk
4 0

when the cosec = term had been integrated over the

angular range of the scattered electrons admitted by

the windows (5.17) »

(c) the atomic number and thickness of the scattering foil.

The factor (b) was the same for both gold and aluminium foils

and the terms x, y and z, were introduced in order to take into

account variations in factor (c) and also possible variations

in factor (a), for the two foils.
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111
The quantities a^, a^, a^, a^ , a2 , a^ , were expressions for

the instrumental asymmetries for the three source positions and were

defined in the following way:

U£ b.b. 13 1 b.b.IJi
1 + 1 " +

M2jL b.b-15 1
_ M2£. b-blb

2 IA2£ + EA2i 2 LA2jL + HA2£
M5P U.H 1 b.b.

3 ~ 3 " M3* + E*3*

i.e. a. + a.1 = an + a."1 = a, + a,1 = 1 b. t>. I ^1 1 2 2 3 3

Using these equations it was possible to obtain values of

the instrumental asymmetry.

The quantities A A 2, A y A A A g, each
represented the sum of two asymmetries namely the polarization

asymmetry and the asymmetry due to non-uniformities in the gold

scattering foil (hereafter termed the foil asymmetry). One possible

assumption regarding the magnitude of these composite asymmetries was

that the following relationships were valid.

A1 = -A2 : A3 = ~A4 : A5 = -A6
Under this assumption the values of x, y and z could be expressed

thus:

x . <ai b.b.SLO "21! * "28 b.b.oil"

1% ♦ y = + ^22.

. - fc-b.aa

It was thus possible to determine the values of x, y and z from

the available data.
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I %

The problem of finding the values of A ^ A g was
essentially that of determining the values of G^ , G^ and G^.
Erom equations (6.6.7 - 6.6.12) the following relationships were

obtained:

I? _ x ,!i b.b.a.3 or _ x ffy. Lb.aJi
G1 " y • a2 * LAL or " y * 1 * EA£

h - 2 !i ^ U.a5 or _ S !il ^ t.b-ab
G ~ z * a * IA. ~ z * 1 • BA€1 3 Jl a^ Jt

i . z ^ fat.ai i fk. fia b.b.a?
G2 " * " *3 ' "21 ~ 2 V **

It was noted that any one value of G^ , G^ or G^ could be
obtained using any one of the following assumptions:

A1 = -A2 : A3 = -A4 : A5 = -A6 : A1 = -A$ tA2 =

~^6
The last two assumptions follow from the work discussed in 5. 12

It was therefore possible to obtain values of A^ ..... Ag using
any one of the above five assumptions.

Example

Assumption : A ^ = - A2
G = LG£ + EGfi (from 6.6.1)
- x a1 (LG + KG.) fcj.b.30 (from 6.6.23

2 = y * T2 * LA^" and 6.6.29)
1

= S • a1 • (»% + *0 b.b.3| (from 6.6.242 y ^ _ (L a.; ^ 6<6^9)
a2
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G . S.ii <=.b.3a. (from 6.6.25
3 z I»^£ and 6.6.29)

1
x a1 RA5£ fLG + KG ) t-t.55 (from 6.6.26

3 ~ z * 1 * BA ^ £ and 6.6.29)

By assuming that A ^ it was possible, therefore, to
obtain one value of A

^ and A ^ and two values for each of
A

3, A 4, A 5 and A g. This was achieved by substituting the
values of G^, G^ and G^, obtained from equations 6.6.29 - 6.6.33,
into equations 6.6.1 - 6.6.6 and by making use of equations 6.6.13

6.6.18. Similarly, results were obtained by the use of assump¬

tions A , = -A, and A c = - A,-.3 4 p o

Example

Assumption j A ^ = **^5
Prom the consideration of equations 6.6.1 - 6.6.6, 6.6.7 - 6.6.12,
and 6.6.23 - 6.6.28, it was found that the following equations

were valid.

Gr. ss »
1 a

1 + a3 x L&32 /

J (!<%+£ ii- b-b.35
1 + &3 1 1 " a,1 * ^

x i- 1 frr j. z rr )
2 " y * a2 • ' a1 + a3 ( + x * &1 ' LA% * ^34 J

G = **■
1 a

b b- 3b
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e - I fx 2 til f!2_ Tr 1
2 " ? • a/ • ^ ' »1 + *3 v ^ * i • ^ • EA3i • "V

b.t>.3 7

G = a . N . __X__ (ifi+ £ . . lg )3 •y.j • "*3f.)
t-1.3 S

1 1

a . i.it- fiji _J fiG .« !i- fk. !S l°3 * 1 • Mt • an ♦ a3 * • 1 • EA • K3ij
J> 1

Lb. 31

Using equations 6.6.34 - 6.6.39, together with equations

6.6.1 - 6.6.6 and 6.6.13 - 6.6.18, it was possible to obtain two

values each of A
^ , A A A A ^ and A g. Results were

obtained using the assumption A ^ = - Ag in a similar way.

Consideration was given to the suitability of using the

assumptions A ^ = Ag and A g = A^ but it was found that the
values of the polarization asymmetry obtained in this way were

less accurate by an order of magnitude than those obtained by

using equations 6.6.29 - 6.6.33 and 6.6.34 - 6.6.39, due to the

greater amount of data required; consequently these assumptions

were not used.

By the method outlined above eleven values each for

A-,# A2,A ylS±> A 5 andA g were obtained from one set of
results of the type shown in figure 16. With twelve sets of

results it was therefore possible to obtain 132 values for each of

the asymmetry values and the average of these 132 values for A ^,

A2. A 3, A 4, A 5 and A g, for each gold foil are contained in
Table 5.



Table 5

2
Gold Foil Thickness (mg/cm )

First set of

experiments
Second set of

experiments

0.19 0.38 0.19 0.57 0.76 0.965

a! -14.1 -16.6 -7.5 -7.3 -4.3 ,1 • 00

a; 10.9 14.4 7.5 6.7 2.5 2.3

a; 15.3 10.9 20.5 15.8 16.7 16.0

a; -17.2 -12.4 -22.9 -17.7 -20.0 -17.4

a; 14.3 13.0 18.7 9.5 20.4 9.0

<3 -14.9 -14.8 -20.5 -10.7 -22.9 -10.2

^7 are the asymmetry values obtained for the different

source positions; they are the algebraic sum of the polarization

asymmetry, the foil asymmetry and the instrumental asymmetry

(see text).
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CHAPTER 7.

DISCUSSION OF RESULTS

7.1 The instrumental asymmetries

By the use of equations 6.6.13 *• 6.6.18 the values of the

instrumental asymmetry for the different source positions were

calculated for the two sets of experiments (Table 6). The aver¬

age value of the instrumental asymmetry for each set of experiments

was calculated on the assumption that the instrumental asymmetry was

the same for each source position. It appeared that this was

certainly the case in the first set of experiments but the evidence

in favour of this assumption was not so strong in the second set

of experiments. The statistical accuracy of the individual

values in Table 5 did not permit the determination of the polariz¬

ation asymmetry for scattering at an aluminium foil nor the measure¬

ment of the aluminium foil asymmetry (5.16).

7.2 The elimination of foil and instrumental asymmetries

Examination of Table 5 gave the result that

a:±A: ■ 7.1.i
nor ms AT-Ar 73L.3L

- AJ + A-I
a constant for the different scattering foils used. This latter

fact suggested that the inequalities in 7.2.1 were due to some

property of the foils. The effect was ascribed to the presence

of variations in the thickness of the gold foil used and this,

although in the nature of an instrumental asymmetry, was not present

in the expos ures taken using an aluminium foil. The ability to

reverse the direction of the polarization asymmetry was very



Table 6

Instrumental
asymmetry

First set of

experiments
Second set of

experiments

a, 0.51 * .05 0.48 2 .01

a-x 0.49 - .03 0.53 2 .01

a3 0.52 - .01 0.46 2 .02

Average 0.51 2 .01 0.49 2 .01

For definitions of the instrumental asymmetries

see text.
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useful since, from the discussion in 5.12 it was clear that the

effects due to the foil asymmetry and to the instrumental asymmetry

could be accurately determined and hence eliminated from the results

by using the following relation:

A/-A/ = -A5t + A6t -40 7.A.3
where C is the algebraic sum of the foil asymmetry and the instrum¬

ental asymmetry. Equation 7.2.3 was valid only when the instrum¬

ental asymmetry was the same for all positions of the source. The

foil asymmetry and the instrumental asymmetry occurred in the

exposures for the "2 L" position, as well as in the "1 i. " and "3£ "
a T A T

positions, and consequently the appropriate A , and Zl . values
j k-

were adjusted by using the correction factor G. The asymmetry

values obtained after correction for the foil and instrumental

asymmetries are shown in Table 7.

7.3 Second-order effects due to foil asymmetries

The presence of rather large foil asymmetries, as shown in

Table 7, raised the question as to the type of errors introduced by

the non-uniform thickness of the foils used. The final value of

the polarization asymmetry (cS ) was obtained by measuring the

values of the polarization asymmetry ( A Q) obtained for the
different foil thicknesses and extrapolating to zero foil thiekness. -

Any errors in the mean thicknesses of the foils used would be in¬

cluded in the statistical error in c5 , because the effect of such

errors would be simply to increase the spread of the individual

values, and it is from the magnitude of this spread that the statis¬

tical error in is calculated.

Consideration must also be given to the question as to whether

the mean value of the thickness is the appropriate one to use when



Table 7

p
Gold Foil Thickness (mg/cm )

First set of

experiments
Second set of

experiments

0.19 0.38 0.19 0.57 0.76 0.965

A' -15.1 -15.8 -13.5 -8.8 -13.4 -7.1

A£ 11.9 13.6 13.5 8.2 11.6 5.6

A; 14.3 11.7 14.5 14.3 7.6 12.7

A: -16.2 -13.2 -16.9 -16.2 -10.9 -14.1

A* 13.3 13.8 12.7 8.0 11.3 5.7

J

J)<1 -13.9 -15.6 -14.5 -9.2 -13.8 -6.9

.... 0 -1 .0 +0.8 -6.0 -1.5 -9.1 -3.3

A* are the polarization asymmetry values obtained for

the different source positions. C is the algebraic sum of

the foil asymmetry and the instrumental asymmetry.
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taking into account the depolarization effects in the foil.

Basically the problem is whether or not the same amount of de¬

polarization occurs in two foils of the same mean thickness, one

of which is uniform and the other is non-uniform. Provided the

linear relationship between polarization asymmetry and foil thickness

(7.8) still exists for the thickest part of the non-uniform foil

(i.e. other effects such as inelastic scattering are not of import¬

ance) then it may be concluded that the amount of depolarization

is the same in both foils and consequently that the mean thickness

is the correct parameter to use when evaluating depolarization

effects.

7.4 Effects due to the non-uniformity of the electric field

at the source (a)

Prom an examination of the results in Table 7 it was clear

a c A c
that

^ and were not zero as would be expected from simple
theory (6.1). The discrepancies were almost certainly due to the

presence of a volume in front of the source where the magnitude

and the characteristics of the electric field were unknown (5. 12 ).

It was clear from the results that the electrons did not leave the

ideal source with their spin directions anti-parallel to their

momentum directions.

Prom the fact that A ^ was opposite in sign to both A^ and
ACG, it was concluded that the amount of spin precession which anP

electron experienced while traversing the region between the actual

source and the ideal source was greater than that which it would have

experienced in traversing an equal distance in crossed fields of

the correct magnitude. This was in agreement with the theoretical

predictions, since if a Lorentz transformation is applied to a
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system in which there is a magnetic field of the full value and an

electric field of reduced value (the values being defined by 4.2.1)

then the amount of spin precession in this case is greater than

that for a system in which both fields are of full value. An

accurate calculation of this effect was impossible owing to ignor¬

ance of the nature of the electric field in the source region.

From an examination of the results in Table 7 it was clear that

the effect was not small; indeed the magnitude of the effect

suggested that the electrons, whilst traversing the distance between

the real source and the ideal source, followed paths in which the

momentum direction experienced changes and the spin direction

remained constant (cf. the electrostatic field method 3.2) with

the effective result of a spin precession. As shown in 5.12, the

effects due to the non-uniformity of the electric field at the source

could be eliminated from the final results provided they were not

dependent on the position of the source in the crossed fields.

7.5 The polarization asymmetry values

From Table 7 it was clear that, to a fairly high degree of

accuracy, A ^ = -Ag^, A^G = - and A for all gold
foils examined. These facts were physical properties of the

results themselves, rather than consequences of the mathematical

analysis, since only one-fifth of the results were obtained on the

assumption that A ^ one-fifth on the assumption that
A, = -A, and a further one-fifth on the assumption that

3 4

A c = - ZU In this connection it was noted that although one-
5 o

fifth of the results were obtained by assuming that A ^ = A
the results were not in accordance with this assumption until the

correction factor G had been applied (Tables 5 and 7). The fact
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that the assumptions A ^ = -A^, A ^ were
used to obtain the values of x, y and z (6.6.20 - 6.6.22) which

were used throughout the calculations, modifies the above argument

to a small extent for the following reason. From an examination

of equations 6.6.30 - 6.6.39, it was clear that the factors x, J

and z could not introduce or remove discrepancies between the

polarization asymmetry values but could only alter the magnitude of

such discrepancies; from a scrutiny of the results obtained it

was concluded that such alterations were small.

A C a c c c
The near equality of /X i and -Ag , A ^ and ~A^ >

A^0 and - notwithstanding the scanning technique used (6.4),
■was taken as an indication that the selection criteria and the

accuracy of counting had remained constant during the period of

examination.

Inspection of the asymmetry values in Table 7 revealed that,

for each foil, A ^ t A^^ -A^, A ^ ', the only
exception being the equality of A ^ and A^ for the 0.19 mg/cm^
gold foil exposures in the second set of experiments. Further, by

the use of the results in Table 7, the following results were

obtained

f aC \
= 1.15 - .04

= 0.85 - 0.03

= 0.87 - 0.02

the averages being taken over the results for all foils.
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Within the limits of the statistical accuracy of the ratios

it was clear that

and that
c \A„

-A* I 4 -JL
a: A v

(-AL
.-a: 4

f> 'Av

These relationships implied that the discrepancies between

A.,0 and A g0, A and C\ A, A and A were associated
with the direction of the polarization asymmetry.

The following results were obtained by summation of the

ratios from Table 7 over all foils:

\ 'I ,,,Ml iM = 2.02 - 0.03

fc> v—* -a?
x

3lo

'-Ac

'A
.-At,

-a:

= 1.02 - 0.04

= 1.01 I 0.05
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In theory, when -A^C -^2 ^^5° = > the results
for the above expressions would be 2, 1 and 1 respectively. From

this it was concluded that the factor which was causing to be

greater than A ^ » and A ^ to be less than - A gC, was equal in
magnitude and opposite in direction for the "1 Jl " and "3 £ " source

positions.

On the basis of these observations it appeared that the most

likely cause of the discrepancies was the fact that the asymmetry

values had been calculated before the foil and instrumental

asymmetries had been eliminated from the results rather than the

preferable but, unfortunately, impractical reverse procedure.

From Table 7 it was clear that the effect was not large and from

equations 6.6.29 - 6.6.39 it was recognised that due correction

could be made for the effect by giving equal weight to all values

of the polarization asymmetry in the final calculations.

The above theory to explain the discrepancies between the

values of -4 and A ^t A ^ and A ^ and could
only be justified if all the foil and instrumental asymmetries

were of the same sign. Five of the six foils used did satisfy

this condition. It was noted that it was statistically improbable

that the sum of the instrumental asymmetry and the foil asymmetry

should be of the same sign for five of the foils, particularly in

view of the smallness of the instrumental asymmetries (Table 6).
2 2

However, the 0.57 mg/cm and 0.76 mg/em gold foils were made up
2

of three and four layers, respectively, of the 0.19 mg/cm gold

foil and since these were cut from the same sheet and mounted on

the foil holders in a systematic way, it was not surprising that

they should have asymmetries of the same sense. It was rather
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difficult, vising the above theory, to explain why the asymmetry

values for the O.38 mg/cm gold foil followed the same pattern

(i.e. A 2° ! A : A cjG < - A^G) as those
for the other foils when the sum of the instrumental and foil

2
asymmetries for the O.38 mg/cm foil was of opposite sign to the

2
othersj the composite asymmetry for the O.38 mg/cm foil was

small, however, and it was considered that the effect might have

been the result of statistical fluctuations in the values of the

asymmetry factors used in the calculation of the magnitude of

C (7.2).

7.6 The effect of an instrumental asymmetry on a polarization

asymmetry

There were two effects (other than the one discussed in 7.5)
which could have caused discrepancies between the values of

A ° and A 2 * ^ 3° andA ^» A ^ and A both being due to
the effect of an instrumental asymmetry on a polarization asymmetry.

Firstly, if the windows in the plate-foil holder had subtended

different angular ranges at the scattering foil then the differential

scattering cross-section, integrated over the appropriate angular

ranges, would have been different for the two windows. Such an

effect would have appeared in both the aluminium and gold foil

exposures and hence could have been eliminated. The polarization

asymmetry value, ^ thaor <5-l6>' for the two windows would have
been different due to the angular dependence of the Mott scattering

asymmetry and, since such an effect would not have appeared in the

aluminium foil results, it could not have been easily eliminated

from the gold foil values. If such an effect were present, then

its existence would have been demonstrated in the following manner:
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either -A, > '• A^ ? " • A^ "7 At 7-4.1

or -a'< azc -. a;<'a; - a^ y.u

Secondly, if the range of azimuthal angles through which

electrons could be scattered in order to reach the emulsion were

different for the two windows in the plate-foil holder, then the

polarization asymmetry value, S -t^eor (5.16), for the two
windows would have been different due to the azimuthal dependence

of the Mott asymmetry. As above, such an effect would not have

appeared in the aluminium foil results and consequently would have

been difficult to eliminate from the gold foil values. The

presence of such an effect would have been demonstrated by

polarization asymmetry values which were of the form shown in

7.6.1 or in 7.6.2.

Since the experimental results contained in Table 7 were not

consistent with the conditions of 7.6.1 or 7.6.2 and since the

instrumental asymmetries were small (Table 6) it appeared that

the effects of the instrumental asymmetries on the polarization

asymmetry were not of importance in this experiment.

7.7 Effects due to the non-uniformity of the electric field
at the source (b)

I^r the use of equations - 5.12.6 and the results

contained in Table 7, the values of El" + were calculated for

each gold foil exposure (Table 8). For the case when the real

source and the ideal source coincide (5.12) then El" + y7 = 90°
and deviations from this value indicate the magnitude and the

importance of the volume in front of the source in which the



Table 8

2
Gold Foil Thickness (mg/cm )

First set of

experiments
Second set of

experiments

0.19 0.58 0.19 0.57 0.76 0.965

c -1.0 +0.8 -6.0 -1.5 -9.1 -3.3

la'+f
o o

J|2 + 1 52°i 1° 41°i 1° 30°i 1° £ i+ to
o o+iCM

A0 20.4-0.4 19.3-0.3 20.7^0.4 17.5±0.3 15.6-0.5 14.8*0.3

C is the algebraic sum of the foil asymmetry and the

instrumental asymmetry. The terms Kfi."+ vj/' are as defined
in 5.11.



99.

electric field is not uniform. There did not appear to be any

correlation between the values of Ki." + ^ and the respective

magnitudes of the foil and instrumental asymmetries, the foil

thicknesses or the final polarization asymmetry values (7.7).
i o

The fact that the values of K£M + y for the two 0.19 mg/cm
gold foils were almost identical was considered to be a coincidence.

Possible explanations for the variation in value of K£" + \fj'
during the experiments are discussed later (7.10). Such variations

did not introduce any uncertainties into the values of the polariza¬

tion asymmetries but theirexistence did raise the question as to

whether the value of K SL " + ^ changed as the source was moved

from the "1 J> " to the "2Q. " or to the "J>5L" position. If such

an effect did exist the basic principle of the experiment would

be invalid, since the comparison of the polarization asymmetry value;

obtained for the different source positions would not be permis¬

sible. The presence or absence of such an effect could only

be established by examination of the final asymmetry values (7.8).

7.8 The final polarization asymmetry values (A Q)
The value of the polarization asymmetry (A q) for each foil

was found by the insertion of the values in Table 7 into equations5.l2(l-k)

(Table 8). The errors in these values are purely statistical.

The required degree of statistical accuracy has been achieved, the
2

slightly poorer accuracy of the 0.76 mg/cm value being ascribed

to the large foil asymmetry present. By using the method of

least squares, the polarization-asymmetry value for a gold foil

of zero thickness was obtained from the results in Table 8, due

account being given to the varying degree of statistical accuracy

of the latter. The value obtained was
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<S ss (22. 05 - 0.16)$ (figure 17)

i,e. a statistical accuracy of about 3$.

7.9 The linear relationship between A and the foil thickness
°~

A number of important conclusions could be drawn from the

fact that the plot of polarization asymmetry (A Q) vs. foil
thickness was linear and that the spread of points about the line

-

was no more than would have been expected from the statistical

accuracy of the individual values.

Since the exposures for one foil thickness were examined in

a random order (6.4) and since the exposures for the different

foil thicknesses in the second set of experiments were not

examined in any particular order, then the linearity of the plot of

the polarization asymmetry value (AQ) vs. foil thickness suggested
that the selection criteria and the accuracy of electron track

'

counting had remained constant throughout the work.

It was noted that the points obtained in the first set of

experiments lay on the same straight line as those obtained in

the second set (6.1) and, since the two sets were carried out tinder

different conditions, it was considered that the experimental

technique was such as to eliminate any systematic errors associated

with the parameters which were different in the two experiments.

In particular, the fact that the results obtained using 0.19 mg/cm^
gold foil in the two sets were in agreement, within the statistical

errors, notwithstanding the fact that they had different foil

asymmetries, led to the conclusion that the final polarization

asymmetry values were reproducible.
'

The linear relationship between the measured polarization

asymmetry values and the foil thicknesses was a. clear indication
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that the value of K (L" + \f} had remained constant during the
exposures for one foil thickness (7.7). Since the value of

KJL" + i/>' apparently varied in a random way from the exposures

for one foil thickness to another then it would he reasonable to

expect that if such variations occurred during the exposures for

one foil thickness then they would result in a spread of points

about the line greater than that expected from the statistical

accuracy of the individual values.

7.10 Variations in the electric field at the source

It is clear from Table 8 that the value of KJL " + was

different fo®n the various experiments. From the discussion in

the last paragraph of the previous section it would appear equally

certain that the value of KtL" + if,' remained constant during

the exposures made for each experiment. The one significant

factor which emerges from an examination of the conditions under

which the experiments were carried out is that air was allowed into

the apparatus when the foils were changed between experiments but

not during the exposures made for one foil thickness. There are

three possible ways in which the entry of air into the apparatus

could have affected the electrical conductivity of the insulating

material surrounding the source (and consequently the characteristics

of the electric field near the source) namely by the deposition of

dust particles onto the surface of the insulator, by the chemical

interaction of the constituents of the air with the irradiated

polystyrene and by the absorbtion of water vapour by the polystyrene.

The presence of this last factor has been noted by workers carrying

out measurements on the dissipation factor of polystyrene and its

existence has led to discrepancies in the work published in this

field(116)
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The resultant electric field at the source is made up of two

components namely that due to the potential applied to the field

plates and that due to the accumulation of electrons from the

source on the polystyrene hood (5.7); the characteristics of

both components depend on the electrical conductivity of the walls

of the source-holder. The position is further complicated by the

fact that the form of the electric field due to the accumulation

of electrons on the source-holder will depend, to some extent, on

the characteristics of the electric field produced by the applied

potential and also by the fact that there are two separate mech¬

anisms by which the angle between the momentum direction and the

spin direction can he altered in the volume in front of the

source (7.4).

It would appear that a considerable amount of experimental

work would have to be carried out before any definite conclusions

could be reached on the precise nature of the effects which govern

the variations in the value of K JL" + .

7.11 The main systematic errors in cS .

As previously discussed (5.16), the effects of plural and

multiple scattering on the polarization asymmetry value <5 were

eliminated by extrapolating to zero the thickness of the scattering

foil. On the assumption that errors due to fluctuations in the

velocity of the electrons emergent from the crossed fields (5.4),
due to the time lapse between background exposures and gold foil

exposures (6.4), and due to uncertainties in the values of the

thicknesses of gold foil used (7.3), are contained in the statistical

error of the value of cS , then the main systematic errors in

the latter value are due to backscattering in the source foil (5.8),
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to depolarization in the crossed fields (4.6), and to uncertainties

in the calculated angular distribution (5.17). Prom the calcu¬

lations on the magnitudes of these effects it is to be concluded

that they give rise to an uncertainty of approximately 3$ in the

value of cS . It is 'worthy of note that of the three main sources

of systematic error listed above and of the minor sources of system¬

atic errors discussed in previous chapters, only one, namely the

error in the calculation of the angular distribution of the

electrons entering the windows (5.17), could have led to the value

of c5 being greater than the "correct" value of the polarization

asymmetry for this experiment. This factor is of particular

importance in assessing the significance of the value of P in the

following section.

7.12 The measured value of the degree of -polarization (P)

In order to use the measured value of the polarization asymmetry

to establish the degree of longitudinal polarization of the J3 -

particles examined, it was necessary to use theoretical calculations

on Mott scattering. As previously discussed (5.17), the most

accurate values obtainable were those of Sherman^^ and according

to these calculations, for the parameters of this experiment, a

fully polarized electron beam would have produced an asymmetry of

35.22$ (5.17). On this basis, the value of the asymmetry obtained

in this experiment gave the result that the degree of polarization

(P) of 100 keV electrons from was

P = 0.626 i 0.005

= (1.14 i 0.01) Jc
Prom the work of Alikhanov et al^98^ it was clear that the
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observed asymmetry was such that the fb -particle polarization was

negative (i.e. the preferred spin direction of the emitted electron

was anti-parallel to its momentum), in agreement with all results

published in this field.

7.13 The effects of screening.

The major part of the discrepancy between the measured value

of P and the value predicted by Lee and Yang on the basis of the

two component theory of the neutrino (i.e. P = J) is almost

certainly due to the fact that the theoretical values of the polariz¬

ation asymmetry computed by Sherman are for a pure Coulomb scatter-
(66)

ing field. In their calculations Mohr and Tassie ' did take into

account the screening effects of the atomic electrons but, because

of the particular energies studied (1.95 keV, 5.4 keV, 12.2 keV,

33 keV, 121 keV), it does not appear justifiable to interpolate

their results at an energy of 100 keV. It would also appear that

the results of Bohr and Tassie are not so accurate as those of

Sherman^1The values obtained by Mohr and Tassie, and by

Sherman, of the Mott asymmetry produced by the scattering of a fully

polarized beam of 121 keV electrons are shown in graphical form in
/ ■yy\ / « i I 1

figure 18 . As originally pointed out by Sherman and Nelson

there is a discrepancy of 50% between the two sets of values at a

scattering angle of 165°. Per two reasons, it is not permissible

to use the differences between the screened and unscreened values

for an electron energy of 121 keV to determine correction factors to

Sherman's values for 100 keV. Firstly, it would be expected that

the screening corrections at an energy of 100 keV would be larger than

those at an energy of 121 keV. Secondly, the angle at which the Mott

asymmetry is a maximum varies with energy and consequently the

differences between the two curves would also be expected to be
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energy-dependent; such an effect would be of considerable import¬

ance for the scattering angle range used in this experiment.

Prom a consideration of the values of Mohr and Tassie, and

of Sherman, it would appear reasonable to conclude that if the

effects of screening were taken into account, the measured degree

of polarization would be in much better agreement with that

predicted by theory.

7.14 Coulomb effects and the value of P

(29)
Jackson, Treiman and Wyld have obtained an expression

for the degree of longitudinal polarization of J3 -particles
emitted in allowed transitions. !They found that

p . ®i 1. u.i1 i, 11 —aw i1

where E is the energy of the electron, m is its mass and v its

velocity, and b and G may be obtained from the following

expressions:

- IMfPtta.&.CCsCs"- CvO+»2aai~jCC5CtCjO]
- a fU CT C C„ C'.'U .UMr Cl'+ C OJ

h
7. ut .a.

t j =*a, y fu [ i mfi 2c cs c * ♦ ciO +• im&t^(Ct c? ♦ a *)]
TW.3

111 ir' \i-

j = IMfi'CICslMCl WCj^lCl
+ iMj1(icTr+icjl-ic;iiwc;i1-GT1

1. \h.<h
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7. Ich.5

Z is the atomic number of the final nucleus

^ is the fine structure constant.

These expressions, which include all Coulomb effects, are

quite general in that no assumptions have been made as to

invariance with respect to space inversion, charge conjugation

or time-reversal.

For pure VA interactions it is clear that

■f " 1 7- 14-1- lo

If, however, the S and T type interactions contribute appreciably

then the degree of polarization is given by

P I + kmZol 7 ■ /<A • 7
V
c

where K is a measure of the contribution of the S and T type

interactions. Theoretically K can have any value between +1 and

-1 though, in view of the experimental work on the relative

magnitudes of the coupling constants discussed in chapter 1, it

would be surprising if the value of K differed much from zero.

For K = +1 and for electrons of energy 100 keV emitted from ■

35
S nuclei equation 7.12 gives the result

-f- ^ 1.058
c

Although no definite conclusions may be drawn from the measured

degree of polarization until accurate polarization asymmetry

values, which include the effects of screening, are available,
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it might be concluded that the experimental result indicates a

small Coulomb effect whose sign is positive.

A similar conclusion might be drawn from the work of Cavapagh

et al^^ on the degree of longitudinal polarization of -particles

from Co^°, in the energy range 58 keV - 178 keV (figure 19).



Q3-

MMETR
y

SO

100ISO200
ELECTRONENERGryCXeVJ Figure19.



108.

CHAPTER 8.

THE CONCLUSION

A new method for the determination of the degree of longi¬

tudinal polarization of j3 -particles has heen successfully
developed. The results obtained by its use are of better

statistical accuracy than any hitherto published. Further,

experimental evidence has been obtained which suggests that

the results are relatively free of systematic errors.

The degree of longitudinal polarization of 100 keVj3 -
35

particles from S is

P = (1.14 - 0.01) ~

It is estimated that the systematic error in the value of P is

about This value is not in agreement with that predicted by

Lee and Yang on the basis of the two component theory of the

neutrino. It is considered that the major part of the dis¬

crepancy between theory and experiment is due to the use of

theoretical values of the Mott asymmetry which do not include

the effects of the screening of the nuclear scattering field by

atomic electrons. Accurate theoretical values which include the

effects of screening are not, at present, available. The

experimental value of P does not exclude the possibility of the

presence of a small Coulomb effect in the degree of longitudinal

polarization. If such an effect exists then it would appear

that it is positive in sign.
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