
Statistical software for small computers, designed
for use by non-professional statisticians

By Cheng Tai Gan

A dissertation presented to the University of
Edinburgh for the degree of Master of Philosophy.

1982.

;,

Abstract

A user-friendly computer program for testing the equality

of means and elementary statistical calculations is developed on

a microcomputer for non-professional statisticians. The program

is aimed at reducing the misuse of statistics. Users are asked a

number of questions and then are directed to enter their data if

answers to the questions are satisfactory. The program examines

the data provided by the users and then provides elementary

calculations of statistics and selects a test statistic for

testing the equality of means. Comments or warnings are issued

to users where necessary.

Statistical methods involved in the program are reviewed.

Contrary to what many people may believe, the use of non-

parametric methods for testing the equality of means in order

to avoid the normality assumption (which is required by the

parametric tests) does not protect us from a possibility of

misuse or misinterpretation of statistics when the distributional

properties of data are not known. It is often more dangerous

than using parametric tests. There are of course situations

where non-parametric methods are appropriate.

New algorithms are developed where no satisfactory

algorithms exist. Proofs are given for new algorithms or

generalized algorithms.

Acknowledgement

I wish to thank Mr. W. Lutz and Dr. C. C. C. Aitken for the
advice and encouragement they have given me over the past
two years.

fle1rti on

I hereby declare that this dissertation has been composed by
myself and that the work reported is my own.

I

Contents

page
Chapter One Introduction 1

1.1. General introduction 1

1.2. A brief review of the misuse of

statistics in medical journals 3

1.3. Purposes of the project 5

1.4. The choice of test statistics 6

Chapter Two Statistical details 10

2.1. Introduction 10

2.2. Criteria for selecting statistical

methods 15

2.3. Notation 16

2.4. Testing of normality 16

2.5. Tests of a single mean 19

2.6. Tests of equality of two means 22

2.7. Tests of equality of several means 24

2.8. The estimation of the power A of a

transformation 29

2.9. The detection of 'outliers' 30

2.10. Fisher's g-statistics 30

2.11. Summary 31

Chapter Three Algorithms 32

3.1. Criteria for selecting algorithms 32

3.2. Calculations of upper quantiles

and percentile points 32

3.3. Randomization tests 43

3.4. Rank tests 50

3.5. Calculations of means and sums of

deviations about the mean 55

3.6. Sorting algorithm 56

3.7. Plotting algorithm 57

Chapter Four Program development 59

4.1. Program design 59

4.2. Computer languages 62

4.3. The use of flow-charts 63

4.4. The wording of questions 64

4.5. The use of GOTO-statements 65

4.6. Program validation 65

4.7. The use of range-check option 67

4.8. Program optimisation 68

4.9. Historical references 69

Chapter Five Program details 72

5.1. Introduction 72

5.2. Testing of assumptions 72

5.3. Conditions for use of the test

statistics 73

5.4. Program documentation 75

References 86

Appendix Program listing and examples

-1-
Chapter One

Introduction

Section 1.1. General introduction.

A number of statistical techniques are widely used

by non-statisticians, for example medical doctors. These users

may have little statistical knowledge and may be unaware of

the assumptions on which the methods depend. It is not

unreasonable to assume that they are primarily concerned with the

conclusions they can draw or support after applying statistical

methods. Few users are likely to question the validity of the

statistical methods, and especially if the results of these

statistical methods support their prior beliefs. Sometimes,

statistical analyses are only done because many journals require

data to be treated statistically. In many situations, these users

find it hard to get statistical advice even if they wish it.

With the spread of computing facilities, users may be

tempted to use computers for their statistical analyses if

programs are available, or by writing their own programs,

without paying sufficient attention to statistical aspects or

computational accuracy. The spread of microcomputers may make

the situation even worse. Users may be tempted to think that

they can do data analysis if they know how to use statistical

computer programs; they may even feel that it is sufficient

for them to feed their data into chosen programs and the

computers will do the rest for them. Users may even try analyses

by 'trial and error' and then see which analysis supports their

prior beliefs.

-2-

Dissuading or stopping such users from using statistics

beyond their competence is not practical. It is difficult to

convince them that certain statistical techniques are beyond

their competence, especially if they have done some elementary

statistics. It is also not practical to complicate computing

facilities (Gentleman (1979, page 94)) as a means to discourage

them from using statistics. There is no practical way of

stopping anyone with elementary computing skills writing a

program to execute, for example, a t statistic.

Reid and Lemon (1980) suggest that the education of users is

a possible solution to the misuses of statistics by users. This

is ideally true, but is unlikely to be practical for many people.

Data seldom satisfy the underlying assumptions on which

statistical methods depend. Many statistical properties are not

really quantified and the interpretations depend heavily on the

actual data in the example being studied. All this makes user

education difficult. It is unreasonable to expect most users to

be knowledgeable about the robustness of various tests or the

choice of a suitable transformation. Knowing a little can be more

dangerous than knowing nothing. It has also to be remembered that

they have to channel almost all their energy to their own field

of study and the study of statistics also requires mathematical

skills which they may not have time to master.

These users should not be blamed for misuses of statistical

techniques. Statisticians should offer them help where possible.

By the careful design of programs, the number of misuses of

statistics can be reduced.

-3-

Before we start designing programs for these users, it is

instructive to review the common types of mistakes.

Section 1.2. A brief ,review of the misuse of statistics

in medical journals.

Badgley (1961) analysed 103 articles published in 1960

in two Canadian medical journals and found 24.3% of the papers

contained errors as shown in Table 1. Schor and Karten (1966)

published a detailed analysis of the uses of statistical methods

in 295 papers published in 1964 from 10 leading medical journals;

53% of these papers were acceptable and 47% were not, (see

Table 2). Gore et al (1977) analysed papers in the British

Medical Journal during three months of 1976 and they found 42%

of the papers had at least one error as shown in Table 3. Glantz

(1980) gave an analysis of the use of Student's t-test in one

volume each of Circulation Research and Circulation; 46% of

the articles In Circulation Research and 27% of the articles in

Circulation used the t-test when an analysis of variance or

multiple comparisons tests should have been used, (see Table 4).

Some of the errors found in the above review articles which

could reasonably be dealt with by computer programs are

1. Errors with Student's t-test : which are mainly

Use of the two sample t-test on paired data.

Assumption of equality of variances.

The testing of multiple hypotheses.

2. Violation of distributional assumptions.

-4-

It is important to note that the actual percentages of

misuses could be higher than the findings in the above review

articles. The raw data are not usually published and without the

raw data a thorough examination of the validity of the

statistical methods is not possible.

It is also important to note that any assessment of the

validity of the statistical methods involves subjective

judgements and the criteria used are also to some extent

arbitrary.

Table 1.

Appropriate statistical analysis 	 42.7%

I Inappropriate statistical analysis 	24.3%

Additional Analysis required 	 33.0%

Table 2.

Number of errors per study by type bf study

Numberl Number 	- Numberof Averagenumber
Type •read not acceptable errors of errors per

unacceptable
study

Analytical 149 108 253 2.34
case

Description 146 32 39 1.22

Total 295 	I 140 I 	292 I 	2.09

-5-

Table 3.

n % of total % of paper that
used statistics

No statistical analysis 15 19 --

Acceptable use of
statistical method 30 39 48

At least one error 32 42 52

Table 4.

No statistical analysis 	20 	25 	--

Appropriate use of t-test 	16 	20 	27

Inappropriate use of t-test 	36 	46 	61

Analysis of variance 	 7 	9 	12

Section 1.3. Purposes of the project.

Glantz (1980) concluded that the system of review of

articles submitted to journals had not been able to control the

inappropriate use of statistics. Popular computer programs,

for example BMDP and SPSS do not help users to avoid misapplying

statistical methods. Given that users are allowed to choose

their own test statistics, it is almost impossible to prevent

them misusing these methods.

The main aims of this project are to develop a computer

program which will help non-professional statisticians avoid

these pitfalls and to develop this type of program on a

microcomputer.

-6-

Section 1.4. The choice of test statistics.

There are several ways of designing programs which may

decrease the number of misuses of statistical methods. A

common approach is to issue warnings to the users. This has not

proved to be useful as the warnings are usually ignored. A

computer program which does not continue with the analysis when

any 'violation' of the assumptions is detected is unlikely to be

attractive to users who may feel they have wasted their time

entering the data.

If users are allowed to choose the test statistics, then it

is difficult to avoid the misuses mentioned above. Users may

select the few statistical methods they know and use them

inappropriately. Thus it was decided not to permit users to

choose their own test statistics. After a series of questions

and answers, users may be asked to enter their data; the

program will test underlying statistical assumptions and select

a test statistic. This approach should reduce the misuse of

statistics. If users are prevented from choosing their test

statistics, then misuses such as applying the two-sample Student

t-test to paired observations and multi-group hypotheses are

eliminated provided the users answer the questions correctly

and honestly.

In developing the program the following assumptions have

been made

Many users know only a little about statistics.

Prior information about the underlying statistical

distributions is very rarely available, and even if it is

available, users are not always able to use it.

-7-

(3) Users know that they want to test the equality of mean

responses between various groups.

Fisher's g-statistics and the coefficient of variation of

variances (see 2.7. (A) for its definition) are not frequently

used by medical doctors. It is questionable whether programs for

such users should provide the g-statistics and the coefficient

of variation of variances with which they are not familiar or

may have difficulty with the interpretation. The question would

be best answered by another more fundamental question, that is

whether or not such users should be allowed to handle their own

data. The answer to this question is of course "yes" due to

practical reasons and no one can stop others from handling their

own data.

It is commonly taken for granted that the mean plus or minus

twice the standard error provides an estimate of the 95%

confidence interval. If data are very skewed and the sample size

is small then this interval may be incorrect. Fisher's

9 1 -statistic is a measure of symmetry, it can provide a rule

of thumb as to the validity of this interval. Fisher's

92-statjstjc Is a measure of 'peakedness' and 'tailedness', not of

'peakedness' only, (see Finucan (1964)). If all these statistics

9 1
1 92 and the coefficient of variation of variances are small,

then the test statistics are very likely to be valid.

Gore et al (1977) found that an inadequate description of

the basic data makes it difficult for the readers to visualise the

data. In the discussion of the paper by Stigler (1977), It is

suggested that sample skewness and kurtosis should be calculated

routinely as measures of distributional shape. Pearson and Please

(1975) demonstrated the close relation between the validity of

various tests and skewness and kurtosis. They also pointed Out

that testing for normality cannot be a substitute for information

about distributional properties provided by skewness and kurtosis.

Fisher's g-statistics and the coefficient of variation of

variances are good 'rules of thumb' for the validity of various

test statistics. The misuse or misinterpretation of various test

statistics should not be ascribed to the provisions of

Fisher's g-statistics and the coefficient of variation of group

variances. The problems start with the data, lack of statistical

understanding and the nature of statistical practice. For example,

users are told that for the one sample Student's t-test to be

valid, data must be of a bell-shaped distribution. However,

statisticians themselves may apply the one sample t-test to ah

apparently U-shaped distribution as they know that the t-statistic

converges extremely rapidly to normality for symmetrical

distributions (see for examples Geary (1947) and Ractcliffe (1968)).

It is important to note that sample skewness and kurtosis

can be seriously affected by a few extreme observations. Mean and

variance are also affected as well but to a lesser extent. The

sample skewness and kurtosis can be poor measures of

distributional shape. On the other hand, because of their

sensitivity to extreme observations which usually provide more

information about the spread of the data, they also provide more

information about distributional shapes. The point here is that it

-9-

is difficult to have robust and yet informative measures of

distributional shape.

Brief guidelines and interpretation of various statistics

can be stored on disk and users should be able to obtain access to

them there.

- 10 -
Chapter Two

Statistical details

This chapter describes and reviews all the statistical

methods involved in the program. The details of the actual

implementation will be given in chapter 5.

Section 2.1. Introduction.

First the validity of various test statistics is discussed

in the context of the departure from the 'true' p-value under

ideal conditions. It is well-known that this is related to

the skewness and kurtosis of the distribution. Lee and

Gurland (1977) show that the one-sample t-test can behave very

differently in situations with the same population skewness and

kurtosis. However, in practice, one cannot distinguish many

distributions clearly, thus skewness and kurtosis are still

good indicators of the validity of a test statistic. Usually,

information about the skewness and kurtosis of a population is

not available. These parameters have to be estimated from the

data and their estimations require a fairly large sample size,

especially for kurtosis. Unless we can estimate them with

sufficient accuracy, the theoretical results which depend on

them will not be as useful as they may appear to be. Simulation

studies are more useful in the sense that more insight into the

behaviour of various tests can be achieved even though they do

not prove any theory. Real life data are also likely to be very

different from simulated data as, for example there may be tied

observations or observations from mixed populations which we may

not be able to identify.

- 11 -

Another problem is that of measuring robustness. It is very

vague to say, for example, that the F-test is robust to the

departure of normality provided the error distribution is not

too skewed and has well-behaved tails. The theoretical results

described below are not very useful for developing computer

programs which are proof to misuses unless robustness can be

quantified. If sample sizes are small, one may just have to take

the validity of the test statistic by faith. Furthermore, the

interpretation of "smallness" of sample sizes is also connected

with the behaviour of the data, (see for example Ractcliffe

(1968)).

Apart from independence, normality is the most important

factor regarding the successful development of a 'misuses proof'

computer program. If the data are normally distributed, there is

always a test of significance which is at least approximately

valid. Welch's versions of the t-test and F-test do not assume

equality of variances but do assume normality. If one has a

very powerful general test for the equality of variances, a

valid test statistic and multiple comparisons procedure could

then be used. Such a test statistic does not seem to exist.

Usually, the fewer assumptions a test statistic makes, the

less powerful it is.

Another problem concerns tests for the equality of

population variances in cases involving more than one sample.

Gans (1981) finds that using the F-test as a preliminary test of

the equality of variances of two samples does not give enough

- 12 -

protection against a possible misuse of Student's t-test and he

suggests unconditional use of the Welch t-test when sample

sizes are not equal. The inability of the F-test to detect

inequality of variances is not surprising as it is very

sensitive to kurtosis. Lauer and Han (1974) suggest using the

F-test with widely varying significance levels depending on

the sample sizes. This may seem statistically unsatisfactory

as the F-test itself takes account of sample sizes. Bartlett's

test for the equality of variances is also well-known for its

sensitivity to non-normality. Box's modified Bartlett's test

and Dunn's multiple comparisons procedure are asymptotic tests.

It is not clear how large the sample sizes must be before these

tests are valid in a practical context. Other more robust tests

usually suffer from lack of power.

The pitfall of the joint assessment of normality for several

groups is that individual non-normality cannot be identif led. In

addition, an extreme non-normal sample could be masked by other

normal samples. However, in practice, we may be more interested

In 'combined' normality. It is rare that in a set of samples, one

or two samples are very 'non-normal' while others are very

'normal'.

It is tempting to turn to non-parametric methods if the

assumption of normality is suspected to be false. Wetherill

(1960), Pratt (1964) and Hilgers (1982) have pointed out the

danger of turning to Wilcoxon rank sum test when the violation

of the assumption of normality is suspected. Teir-Walsh and

Toothaker (1974) examined the normal distribution and two

- 13 -

exponential distributions and made a similar point about the

use of the Kruskal-Wallis and Normal Scores tests. Strictly

speaking, the Wilcoxon rank sum test is a test for the identity

of two populations. To use it as a test of shift in location,

we must then assume that the two populations have identical

shapes. This is a more demanding assumption than the

normality assumption required by the t-test knowing that the

t-test is not sensitive to non-normality. One has almost no way

of making a numerical check on the identity of distributional

shapes. Similarly, the Kruskal-Wallis test assumes data from

populations with identical shapes which is also more demanding

than the F-test. Conover and Iman (1981) show the close relation

between parametric statistics and non-parametric rank test

statistics. This raises the possibility that, in most cases, the

use of a rank transformation is just a waste of information,

though the authors have a different motive in their article.

A rank transformation may also change the intended null

hypothesis, an outcome of which non-professional statisticians

may be unaware. Thus the use of a rank transformation is likely

to complicate the interpretation of the statistics. It is, of

course, also true that, the use of parametric tests can lead to

rejection of the null hypothesis of the equality of means because

of other differences, for example the inequality of variances.

However, this danger seems to be a lesser one. A parametric

transformation changes the intended null hypothesis of the

equality of means of original data. Thus complications may also

occur in the interpretation of data. However, this complication

- 14 -

seems to be lesser than that of the rank transformation and more

definite advice can be given to the users. As the testing of

underlying assumptions is to some extent arbitrary, automatic

transformation of data to achieve normality or the equality of

variances is undesirable. A better approach seems to be to

produce parallel analyses.

The assumptions of normality and of the equality

of variances are tested. The independence of the data is not

tested. In single effect analysis, data do not usually have a

natural order and common sense is more important than formal

statistical testing. The program questions the users about this.

Moreover, there are many types of dependency. The problem is

basically a statistical one rather than a computing one. The

detection or estimation of a parameter to measure dependence is

likely to depend on the order in which the data are presented.

More harm is likely to be done by developing programs for non-

professional statisticians to work with dependent data. Users

should seek the advice of statisticians when working with

dependent data.

A statistician may feel uncomfortable about conditioning

his statistic on a set of tests of preliminary assumptions

which are in fact to some extent also arbitrary. However,

these preliminary tests may be better than no check at all,

and the testing of these assumptions will also provide some

more information about the data.

It should be noted that the above discussion is from a

computing point of view rather than a statistician's point of

view.

- 15 -

Section 2.2. Criteria for selecting statistical methods.

Many statistical techniques are available. Each one has

its own merits and limitations. Thus the following criteria are

adopted.

Statistical considerations : A test which is robust within

a wider class of distributions is usually preferred.

Implementation considerations : They must be easily

implemented on computers. This rules out certain methods,

for example, the Studentized Range test for multiple

comparisons as this test requires reference to tables at

various required significance levels which cannot be

easily computed. Most tables are for a very limited number of

combinations of values for the parameters, and interpolation

may then be necessary.

Definiteness or subjectivity : Test statistics which are more

definite and involve less subjective judgements are preferred.

For example, the Chi-Square goodness of fit test for

normality is ruled out because a change in the number of

intervals may lead to a different value.

Popularity Popular tests are given first priority.

Consistency For example, the Welch F-test is chosen for

testing the equality of means in case of the inequality of

variances instead of other alternatives because the Welch

t-test is used for the case of two samples. Reasons for the

use of the Welch t-test will be given later.

- 16 -

Section 2.3. Notation.

Let x 1 (i=1,2,...,k, j=1,2,.... 3' n1) be the j
th independent

observation on the random variable X. with. mean Ui and variance 4.
Define 	

k
vi = ni-i, 	N =

ni
xi. =

. xij/ni
j=1

ei = xij_xi.

x =
.. 	 ii 3

IN

ni

=

k
= vis/(N - k)

1

and R(xij) be the rank of x 1 in the overall sample. Tied

observations are treated by averaging their corresponding ranks.

Define

ni
R =

j=1

Section 2.4. Testing of normality.

(A) Single sample assessment.

Let z (i=i,2,..,n) be independent observations on a

random variable Z and z(1) ~z(2)<.... ~z(be

the order statistics. Shapiro and Wilk (1965) present a test

of normality,

\

/

- 17 -

2 (5 a1Tz(J))
1=1

2 (zçz)
1=1

n
where z = 	z r/n

1=1

The coefficients ai,nare given in Shapiro and Wilk (1965)

for n<50. A comprehensive simulation study by Shapiro et al

(1968) indicates that W is a powerful omnibus test for

normality.

Small values of W signify abnormality of Z. This test is a

one-sided test, it does not distinguish positive and negative

skewness, long-tailedness and flat-toppedness. A study by

Chen (1971) indicates that the W test is sensitive to non-

normality in contaminated normal distributions.

Shapiro et al (1968) also find that the test based on sample

skewness and kurtosis can serve as a good test for the

departure from normality. Bowman and Shenton (1975) give

confidence contours for a test based on sample skewness and

kurtosis, but this cannot be implemented on the computers.

For n>7, D' Agostino (1970) gives a transformation of sample

skewness to normality as follows,

n 	 n
Let 	g = n1/2 	(z1-z) 3/((z _z) 2) 3 ' 2

i=1 	• 	1=1

- g((n+1)(n+3)) 1/2
- 	6(n-2)

- 18 -

b = 3(n2+27n-70)(n+1)(n+3)
(n-2)(n+5)(n+7)(n+9)

= _14(2(b_1)) 1 / 2

(ln(w))_1/2

a = [2/(w2_1)]_ 1 / 2 then

Y = 61n(a+(a2+1)11'2)

is approximately distributed as the standard normal

distribution. Simulation results in D' Agostino (1970)

indicate that this approximation is remarkably accurate. A

study by Pearson et al (1977) indicates that tied observations

can have serious effects on the Shapiro-Wilk statistic and a

hardly significant effect on sample skewness.

(B) Joint assessment for multi-sample problem.

Wilk and Shapiro (1968) give a joint test statistic for

several independent samples based on the W-statistic mentioned

above. Let W be the W-statistic of the ith sample and

be the corresponding significance level actually

attained for jth sample and F be the cumulative

distribution of W.

Suppose

OCi = F(w1)

Gi 	 t2

= 1(2 TI
)_1/2 e2dt

for some Gi., then

G = G /k1 ''2 ii

- 19 -

is distributed as the standard normal distribution. G

can be obtained by the equation,

w1-a

Wi
)

na i 1,n
where 	a

ni- i

and Y and 6 are given in Shapiro and Wilk (1968).

Simulation results in Wilk and Shapiro (1968) indicate that G

performs very well.

A joint assessment based on the sample skewness is given in

Pearson and Hartley (1972) as follows

Let P = 1-Q 1 = Pr(g1 ~ obsrved value)

If all the distributions of the samples are positively skewed,

then one can use -2ln(Q) and -21n(P) if all the
i 	 i

distributions of samples are negatively skewed, both

statistics are then distributed as chi-square with 2k degrees

of freedom.

For a two-sided test, one can define

	

R = 2Q1 	if

= 2P 1 	if g 1<O

then -21n(R1) is distributed as chi-square with

2k degrees of freedom.

Section 2.5. Tests of a single mean.

For simplicity, we drop the first subscript i as i=1

throughout this section. For testing uu
0'

we have the

following tests

- 20 -

Student's t-test.

If X is normally distributed, we have

=

distributed as t-distribution with v degrees of freedom.

Deviations from normality are usually quantified in terms of

values of population skewness,

= E(X-u) 3 10

and kurtosis,

2 = E(X-u) /o'-3.

Geary (1947) obtained the following expansions for moments

of t,

E(t) = -Y1/(2n2) - 0013 / 2)

Var(t) = 1 + 2/n + 7Y/(4n) + 0(n 2),

Y1 (t) = -2Y1 /n 	-O(n
1/2 	-3/2

)

Y 2 (t) = 2(3 - 	+ 6Y)/n + 0(n 2)

which are described in Pearson and Please (1975). These

results suggest that t is more sensitive to skewness than

kurtosis and agree with the simulation studies by

Racteliffe (1968), Pearson and Please (1975), Bowman et al

(1977) and Posten (1979) of t-statistics sampling from

a wide variety of distributions. A good review article

is Cressie (1980).

Randomization test and signed-rank Wilcoxon test.

Let Yj=xj-u0 (j=1,2..,n) and Z j be the absolute value of

y3 . If X is symmetrically distributed about u, we have

the following tests

Maw

Randomisation test.

Let S be the sum of all positive Yj'S and P be the

number of subsets of {Z j : j=1,2,..n} with sum

less than or equal to S, then the significance

probability = 2P

against the alternative hypothesis u<u.

In the presence of zeros, they are dropped first and

n is reduced accordingly. This test is described in

Pratt and Gibbons (1981).

Signed-rank Wilcoxon test.

For large n, the randomisation test computation becomes

too heavy. If the z 1 are replaced by their ranks,

we have the signed-rank Wilcoxon test,

W = sum of ranks of positive Y j 'S

E(w) = n(n+1)/4 and

Var(w) = n(n+ 1)(2n+1)/ 24- (d -d)/48

where dt is the number of z r 's equal to the tth

smallest value of the z r 's and e Is the number of ties.

Zeros are dropped before ranking as suggested by Wilcoxon.

Pratt (1959) shows that some difficulties may occur in

the Wilcoxon's procedure of zero treatment and he

suggests that zeros be dropped only after ranking.

Conover (1973) shows that each procedure has its own

merits. To be consistent with the treatment of zeros in

the randomisation test, Wilcoxon's procedure is adopted.

If the xi 's are differences of paired-observations and

- 22 -

the null hypothesis is that of no treatment effect, then

the symmetry assumption is unnecessary.

Section 2.6. Tests of equality of two means.

(A) Two-sample t-test.

If the Xi 's are normally distributed and 	then

t = (x1 _x2)/[s (n 1+n 1)h/' 2]

is distributed as the t-distribution with n 1+n2-2 degrees of

freedom. It is well-known that t is robust against non-normality

and inequality of variances if sample sizes are equal. Studies

by Pearson and Please (1975) and Posten (1978) Indicate this.

A simulation study by Posten (1978) IndIcates that for

population skewness O<Y1 ~2.0 and kurtosis - 1.6~ Y2~4 .8,

the t-test performs remarkably well and It is good enough

for practical purposes. Graphs in Pearson and Please (1975)

Indicate that the two-sample t-test is more robust against

non-normality than the one-sample t-test.

(!)
Welch t-test.

If the Xi 's are normally distributed, but the variances are

not assumed to be equal, Welch (1947, 1949) gives

wt = (x1 _x2)/(s /n1+s /n2) 1 ' 2

which is approximately distributed as the t-distribution

with d degrees of freedom where

d

- 23 -

Mickey and Brown (1966) prove that

Pr(t 1 (c) ~ Pr(wt<c) ~ Pr(t<c)

where t 1 is distributed as the t-distribution with min(v 1 ,v2)

degrees of freedom and t2 is distributed as the t-distribution

with v 1+v2 degrees of freedom. It can be shown that d falls

in the range of min(v 1 ,v2) and v 1+v2 . Thus the Welch t-test

should provide a good approximation provided the sample

sizes are not too small. Murphy (1967), Lee and Gurland (1975)

and Gans (1981) all find that the Welch approximation works

remarkably well. Murphy and Gans also find that the Welch

t-test is more robust against non-normality than the

ordinary t-test.

(C) Two-sample randomisation and Wilcoxon rank sum tests.

If the populations are identically distributed except for

possibly a difference in location, we have

Two-sample randomisation test.

Let P be the number of subsets of {x. : i=1,2, i=12..n}

with n1 elements and sum less than or equal to1 x1 , then

the significance probability =
P/(1')

1

against the alternative hypothesis u 1 <u2 .

This test is described in Pratt and Gibbons (1981).

Wilcoxon rank sum test.

For large sample sizes, the randomisation test computation

becomes too heavy. If x jj 's are replaced by their ranks,

we have the Wilcoxon rank sum test,

- 24 -

w
r

	
ni 	

E(Wr) = n 1 t(21(N+1)) and

e
Var(W) = n n2[(N+1) - 	(d -d)/(N(N_ 1))]/ 12 r 	1 t= 1

where dt is the number of Xjj 'S equal to the t th smallest

value of the Xjj 'S and e is the number of ties.

Wetherill (1960) shows that the Wilcoxon rank sum test is a

little more robust against the inequality of variances but

much more sensitive to skewness and kurtosis than the t-test.

(D) Testing of equality of variances.

Let F=s/s, then F is F-distributed with v 1 and v2

degrees of freedom under the assumption of normality.

Various studies (Gayen (1950), Finch (1950) and Pearson

and Please (1975)) have shown that F is very sensitive

to kurtosis but insensitive to skewness.

Section 2.7. Tests of equality of several means.

(A) Analysis of variance F-test.

Assuming normality and equality of variances, we have

k
F = 	n)s 1(xx)2/((k-1 2)

1=1

distributed as F-distribution with k-i and N-k degrees of

freedom.

Inequality of the variances has little effect on F if the

sample sizes are equal. Non-normality also has little

effect if the distribution of the errors is not too skewed

and has well behaved tails. However, inequality of the

- 25 -

variances can have a serious effect on the F-statistic if

the sample sizes are not equal. Correlation among the

data is the most serious departure from the assumptions

(see Box (1954), Scheffe (1959, chapter 10), Seber (1980,

chapter 5)). Box (1954) shows that if the variances are not

equal, then the F-test is dependent on the spread of the

distribution of the variances measured by the coefficient of

variation of variances,

k
[

2 2 	- 	• 2 2 1/2
c = i= 1 v1(c- oP') /(N k)((r)

k
where 2 	2

= 	vioj/(N-k)

(!) Welch F-test.

Assuming normality, we have the Welch F-statistic

k 	2 wf = I w (x -50 /[(k-1)(1+2(k-2)f)1 i=i I i.

k 	 k
where w = n 1/s, u = 	w, 	= 	wx /ui.

i=1 	i=1

k
f = (k2-1) 	(1_wj/u) 2 /(ni.-1)

i= 1

and wf is approximately distributed as F-distribution

with k-i and (30' degrees of freedom.

This test is described in Brown and Forsyth (1974). They

find that wf Is robust under the Inequality of variances,

the asymptotic approximation of wf is valid if each

sample has at least 10 observations and it is not

unreasonable down to 5 observations.

Other possible test statistics are given by James (1951)

- 26 -

and Brown and Forsythe (1974). Dijkstra and Warter (1981)

find that none of the tests is uniformly better than the

other two.

Kruskal-Wallis test.

If the populations are identically distributed except for

possibly a difference in location, then the F-statistic

based on ranks (see Conover and Iman (1981)),

Fr = (N-k)H/[(k-1)(N-1-H)1

is approximately distributed as the F-distribution with k-i

and N-k degrees of freedom where the Kruskal-Wallis test

statistic,

k 	 e
H = 12 	n (Ri_(N-I-1)/ 2) 2 /[N(N+i)(1_ 	(d -dt)/(N3-N))]

i=1 	 t=1

is approximately distributed as chi-square with k-i

degrees of freedom where d is the number of the x's
 ij

equal to the tth smallest value of xii's and e is the

number of ties. The chi-square approximation of the Kruskal-

Wallis test does not take account of the sample sizes.

Multiple comparisons.

If the null hypothesis of the equality of the means is

rejected at the oc level of significance, then a

multiple comparisons procedure may be performed to judge

which groups are different from which others.

(a) The null hypothesis rejected by the F-test.

The Bonferroni method produces 100(1 - cr)% joint

confidence interval of u 1-u 1 , ij as

- 27 -

	

3 	p
-x. ±t 	s(n i .

where Y = /(k(k-1)) and t 	 is the upper percentile

point of the t-distribution with P=ni+n_2

degrees of freedom.

(b) The null hypothesis rejected by the Welch F-test.

A test similar to the Welch t-test called the T 2

procedure in Dunnett (1980b) is used. The 100(1 -

joint confidence interval for u_u, ij is

2 2 1/2 x -x. ± 	(s

	

J. 	
) i. 	. jiI

where u 	= (s/n-4s 2 	2 /n) /[S
4
 /(fl 2 V)+s/(flVj)] ij 	 j 	j j

y = [(-

and t / Ujj is the)' upper percentile point of the

t-distribution with Ujj degrees of freedom.

(C) The null hypothesis rejected by the Kruskal-Wallis test.

Dunn's method is used and two samples are judged to be

different if

e
IR -Rt>Zy E(N(N2 1)

t= 1

where Z y is the upper)= oc /(k(k-1)) percentile

point of the standard normal distribution. This

procedure is described in Daniel (1978, page 214).

When variances are equal, Dunnett (1980a) and Stoline (1981)

- 28 -

recommend the Tukey-Kramer method which is based on the

Studentized range distribution. On practical consideration,

the Bonferroni method is chosen.

When variances are unequal, the T 2 procedure is found

to be conservative by Dunnett (1980b). Other possible

procedures are also given in Dunnett (1980b). T 2 is

chosen partly because of practical considerations. An

extensive list of references can be found in Stoline (1981).

No study of Dunn's procedure has been found.

(E) Testing equality of variances.

k
Let M=(N-k)ln(s2)- 	(n1-i)ln(s). Box (1953) shows

i= 1

that for any parent distributions with the same population

kurtosis Y2 ,
M/(i+y2 /2) is asymptotically distributed

as the chi-square distribution with k-i degrees of freedom.

If the parent distribution is normal,)'2=O, then for small

sample sizes, Bartlett (1937) shows that M/(i+A) is

distributed as chi-square with k-i degrees of freedom, where

A = (3(k-1)) (v -(N-k))

This is the traditional test called Bartlett's test and it

is well-known that it is very sensitive to non-normality and

is the "best" test if the parent distributions are normal (see

Gartside (1972), Layard (1973) and Geng et al (1979)).

For a reasonable estimate of
'2
 quite large sample

sizes are needed. Layard (1973) finds that

- 29 -

k
= N'

2
- 2 2 	3 = 	(e jj)

ij

is badly biased when sampling from non-normal distributions

and suggests

e.

2 2 (e jj)
ij

as an estimate of Y based on empirical results. To be

consistent with other parts of the program, an estimate by

Anscombe (1961) is used, that is

4

N3 	 r+2 ij 	3

	

2 = r(r+2)(1+(N-1)p 4)-3N 	(e) -
ij ii

where r = N-k and 1+(N-1)p 2 - r

Section 2.8. The estimation of the power A of a transformation.

When non-normality of data is detected and no suitable test

statistic without assuming normality is available, transformation

of the data may be necessary. An estimate of A is given by

Anscombe in the discussion of Box and Cox (1964). The estimate

= 1-27x/[3(2+Y)s1

23
N e

where 	= 	 ij ij

(1+(N-I)p 3)(r5 e) 2 3/2
ij ii

r and p are defined as in the last section (2.7. (E)).

- 30 -

Section 2.9. The detection of 'outliers'.

Let L and U be the lower and upper 25% quartiles of a given

sample respectively and d=1.5(U-L). A data point which is below

L or above U with a distance of d or more is declared as an

'outlier'.

Section 2.10. Fisher's g-statistics.

As Fisher's g-statistics can provide good "rules of thumb"

for the validity of various test statistics and can also provide

information about the distributional properties of data, it is

useful to provide users with g 1 and 92 statistics.

When the sample size is small, g 2 is not very useful and

hence it is not provided. Let z (i=1,2,..,n) be a random sample,

k 	 n 	
2 z = 	zi/n 	k2 = 	(Z j Z) /(n-1)

1=1 	 1=1

n
k3 = n 	(z-z) /[(n-1)(n-2)] 	and

1=1

n 	
22

= { 	(z-z
•
) n(n+1)/(n-1) - 3((z-z)))/[(n-2)(n-3)]

then Fisher's g 1 and 92 statistics are defined as follows

k
g1 	

1'2 	
and

k

92 = -

2

- 31 -

Section 2.11. Summary.

In this chapter, we describe and review various test

statistics involved in the program. The general conclusion is

that the use of non-parametric rank tests for testing the

equality of means in order to avoid the normality assumption

(which is required by the parametric tests) does not protect us

from a possibility of misuse or misinterpretation of statistics

when the distributional properties of data are not known. It is

often more dangerous than using parametic tests. The conclusion

drawn from this review coupled with the problem of computational

complexity of randomization tests which will be mentioned in the

chapter 3 lead to the decisions determining the choice of the

test statistics which will be given in the chapter 5.

- 32 -
Chapter Three

Algorithms

This chapter describes all the algorithms necessary to

carry out all the computations of statistics described in

chapter 2 and the associated functions. Proofs are given for

new or generalized algorithms.

Section 3.1. Criteria for selecting algorithms.

There are many algorithms available for a given task. Thus

the following criteria are adopted in selecting algorithms.

Accuracy considerations : An algorithm which is accurate is

always preferred. It may be meaningless to achieve, say,

5 decimal accuracy for p-value calculations. However, if

it can be achieved at little cost, there seems no reason not

to achieve it. Giving an accurate answer is always a good

thing. It also gives users confidence in the program.

Practical considerations : If an algorithm requires a lot

more codes or computations but has little advantage in

accuracy over others, it is avoided.

Section 3.2. Calculations of upper quantiles and percentile

points.

Let z(x) be the density function and Q(x) be the upper

quantile of the standard normal variable x, that is,

2

z(x) = (2 fl)1/2 e 2 	and

OD

Q(x) = z(t)dt

- 33 -

(A) Normal distribution.

Moran (1980) gives

2
w x 	+ 5 ne 9Sifl(n23x)]

3(2)1/2 	n=1

approximately and suggests truncation at n=12 will give 9

decimal accuracy for xI<7.0. This of course cannot be

achieved with single precision calculations.

Quantiles for x=0.00(0.02)5.20 are produced and compared

with table 2 in Pearson and Hartley (1972), they agree with

all six decimals except a few of them differ by 10 6 .

There is a loss of accuracy due to the subtraction made

in (1), but this is of no practical importance.

There is a computational advantage if the series in (1) is

coded in a step-down manner, that is descending in n or

adding small terms first.

Other algorithms are given by Cooper (1968a) and Hill (1973)

and described by Kennedy and Gentle (1980). They do not

appear to be superior to (1). No comparison is made.

Conversely, given a quantile q=Q(x), one wants to evaluate

the corresponding percentile point x, and Bailey (1981) gives

the approximation,

for q>1.01x10 6 ,

x = t 1 [1-i-O.0078365t-0.00028810i4+O.00O0043728t]

where 	t1 = [-rt/2 ln(4pq)]1'2, p>1/2 and q1-p.

and for q1.01x1069

(1)

- 34 -

= t + 0.1633 + 0.5962

t 	t

where 	u = -2 ln(q) and t2 = [u_ln(2nu)] 11'2

Approximations of percentile points are computed at various

values of q, they appear to be very accurate.

(B) Student t-distribution.

Let Q(t,v) be the upper quantile of the t-distribution with

v degrees of freedom. From Abramowitz and Stegun (1964,

Formulae 26.7.3, 26.7.4), one has an exact series expansion,

Q(t,v) = (1-A(t,v))/2 	where

A(t,v) = .[z+sin(z)cos(z)(1+.cos2(z)+..-t-l3 (v..2) cos2.4..(v-3) 	v-3 (z))]
TV

if v>1 and odd,

ifv=1,
VT

= sin(z)[1+cos2 (z)-i4.cos4 (z)+. ~l. 3 ..(v_3) cosv_2 (z)1
2.4..(v-2)

if v is even,

where 	z = tan'(1/2'
V

2
sin2 (z) =

t +v

cos2(z)
=•____ t +v

Cooper (1968b) who obtained the above formula differently

has coded this algorithm using straight-forward term by

term evaluation. His coding suffers from

(a) Exponent underf low and hence a check against underf low

is needed when a term is evaluated and added successively.

Cooper's routine contains no check against exponent

underf low.

- 35 -

Large rounding error.

Slow computing speed.

Using 'nested multiplications' known as Homer's method gives

a numerically more stable algorithm as the coefficient of

cos2 (z) in the series decreases as the power of cos2 (z)

increases (see Carnahan et al (1969. page 6)).

A recurrence relation for the 'nested multiplications' is

used by Hill (1970) and is described in Kennedy and

Gentle (1980). Changing division to multiplication, one

obtains a slightly clearer recurrence relation.

C
V

= 1,

Ck = Ck+l b (k-1)/k + 1, k=v-2, v-4,.., 3 or 2.

then

A(t,v) = 	+ (ab)1'2 C3] 	if v is odd,

= a 1/2C2 	 if v is even.

where 	a = sin2 (z), 	b = cos2 (z) and

C3 = 1 if v = 1.

One notices that less operations are required by using

Homer's method and exponent underf low is impossible in

evaluating C as Ck ~ 1 for all k.

The above exact computation works well if the number of

degrees of freedom is small. Thus for more than 20 degrees

of freedom, the Cornish-Fisher type approximation is used.

Q(t,v) = Q(x)

- 36 -

where

x = z[1 + z
2+3 - 4z6+33z4+240z 2+855

10 d(d.8z4+100)

z = [a ln(1 + 	
) 31/2

V

a=v-0.5, 	d=48a 2

which is described in Kennedy and Gentle (1980) and is shown

by El Lozy (1982) to be extremely accurate.

Quantiles with the similar t and v values in tables in

Hartley and Pearson (1950a) are produced and compared. They

agree with all five decimal places except a few of theni

differ in the fifth decimal place. There is a loss of

accuracy when A(t,v) is very small or near 1, but this is of

no practical significance.

Conversely, given a quantile q=Q(t,v), one wants to evaluate

the corresponding percentile point t, Fisher and Cornish

(1960) give the following approximation,

= 	1 +
x2+1 + 5x4+16x2+3

96n2

3x6+19x4+17x2-15

+ 	384n3

+ 79x8+776x6+1482x4-1920x2-945

92160n4

+ 27x 0+339x8+930x6-1782x4-765x2+17955]

36 8640n5

where x may be obtained from (A) above.

This approximation has been shown to be very accurate by

Sahai and Thompson (1974). The Homer's method is used to

evaluate t.

- 37 -

(C) F-distribution.

Let Q(f,v 1 ,v2) be the upper quantile of the

F-distribution with v 1 and v2 degrees of freedom.

From Abramowitz and Stegun (1964, formulae 26.6.4,26.6.5.,

26.6.6., 26.6.8), one has the following exact expansions.

For v1 and v2 both odd,

Q(f,v 1 ,v2) = 1-A(t,v2) + B(v 1 ,v2)

where A(t,v2) is defined as in the series expansion

for the t-distribution but with

=
tan' v1f 1/2

(-;.;_)
1 and t = (v 1 f) /2

B(v 1 ,v2) = 0,

v -1
L

2 	2'
=

TV
1/2 v _2-2

.
2

if v 1=1,

V2
sin(z) cos (z)

v +1 	 (v 2 	2 	1 2 	
sin 1 (z)]

+1)(v+3)..(v+v-4) 	v -3
sin2(z)+..+ 3 . 5

if V2 M.

A recurrence relation for the evaluation of the finite series

in B(v 1 ,v2) is

C 	=1,
V 1

v = v2 - 2,

Ck = Ck+2 a (k+v) /k + 1,• k=v 1-2,... ' 3

where a = sin 2 (z) and C3 = 0 	if

thus

- 38 -

V -1

B(v1,v2) 	
2
1/2 	-2 	

sin(z)cos 2 (z)C3

(22)!

For v 1 even, one has

cos2(z) = 	 .79 v2+v1f =

sin2(z) = v
1 f

= l -y, v2+v1 f

Q(f,v 1 ,v2)

v2 / 2

v 	 v2(v2+2)..(v2+v 1-4) 	(v -2)12

2 . 4 . . (v1-2) (1-y)

(2)

or

Q(f,v 1 ,v2)

(v1+v2-2)/2
=y

[1_
v 1+v2-2 	(v1+v2-2)..(v2+2) 1

+•••12 . 4 	.. (v 1-2) 	y

---- (3)

Ling (1978) finds that formula (3) Is more underf low or

overflow prone than (2). One notices that y is bounded by 1.

When (1-y) is small,
(1_)n

 converges to zero faster

than (11.) and yfl as n increases and thus in fact (2)

can be more (exponent) underf low prone than (3). However, (3)

is more overflow prone than (2). One can protect (2) from

exponent underf low in evaluating its series expansion by

'nested multiplications'. Thus (2) Is superior to (3). A

recurrence relation for the series evaluation in (2) is similar

- 39 -

to that for B(v 1 ,v2) above with k terminating at k=2.

For even v2 and odd v 1 , by the reflexive relation,

1 F(v1,v2) = F 1 (v2 ,v 1)

one obtains

Q(f ,v 1 ,v2)

v 1 /2 	v 	v1 (v1+2)..(v2+v1-4) (v2-2)/2
= 1-(1-y) 	[1-I--y+...F 2 • 4 .
	.(v2-2) y

(4)

Ling (1978) did not seem to realise that formula (4) is a

direct result of (2) by applying the reflexive relation and

suggested that when v1 is odd and v2 is even, the use of the

reflexive relation and (2) is superior to (4).

When v 1 > 40 or v2 > 40, an approximation by Paulson (1942),

Q(f,v1 ,v2) = Q(x) 	approximately

where

f"3 [1-2/(9v2) 1-[1-2/(9v)]
x =
	[2/(9v1)+f 2 / 32/(9v2)] 1 / 2

is used. This approximation is well-known and very accurate.

When v 1 < 15, the accuracy of this approximation drops

and thus the reflexive relation is used, and it appears to be

more accurate.

All the recurrence relations f or the evaluations of Q(f,v 1 ,v2)

are numerically more stable than term by term evaluations as

the coefficients in the finite series decrease as their power

- 40 -

of y or (l-y) increases, (see Carnahan et al (1969, page 6)).

The calculations of the quantiles of the F-distribution

are so far the most difficult ones because more parameters are

involved. The quantiles at various combinations of v 1 , v2

and f are produced and compared with the tables of

F-distribution in Pearson and Hartley (1972). They agree

very well.

(D) Chi-square distribution.

Let Q(c2 ,v) be the upper quantile of the Chi-square

distribution c 2 with v degrees of freedom. From

Abramowitz and Stegun (1964, formulae 26.4.4., 26.4.5), one

has

Q(c2 ,v)

v-i

	

2 	2r-1
= 2Q(x) + 2z(x) 2 	

. 3. ...(2r-1) 	if v is odd, r= 1

v-2
-r

	

(2n)h1'2 z(x)[1+ 	C

2 	4 . . .2r
if v is even,

. r= 1

where

x= 1c.

Similarly, by applying Homer's method, one has the

recurrence relation,

R=O,

2

Rk = 'k+2 k'

Q(c2 ,v)

= 2 Q(x) + 2 z(x)

=0

= (2 T1)
1 /' 2 z (x)[1+R2] ,

k=v-2,v-4,...,2 or 1,

if x 0 and v is odd,

If x = 0,

if v is even.

- 41 -

This recurrence relation has an exponent underf low protection

built into it like others. Since the coefficient of c 2

Is getting smaller as r increases, the above relation is

numerically more stable than term by term evaluations

(see Carnahan et al (1969,page 6)).

For large degrees of freedom (040), Q(c 2) v) is approximated

as Q(x) where

x = w+a/3-wa2 /36-(w2--13)a3 /1620+7(6w3+17w)a4 /38886+..

a = (2/n)h/ 2

w = (c2. v_vin(c2 /v)) 11' 2

and w has the sign of (c2-v).

This approximation Is described and is shown to be very

accurate by El Lozy (1982).

Quantiles with parameters similar to the tables of the

Chi-square distribution in Hartley and Pearson (1950b)

are produced and compared, they agree very well.

Remark A statistical analysis of numerical stability of

'nested multiplications' is given by HenricI (1964,

page 316-317).

(:.) Rank tests.

(a) Signed-rank Wilcoxon test.

The upper quantlle is approximated as

= Q(x) +N2+31 	(x3-3x) z(x). 1ON?N+1)(2N+1)

where x =
IW-E(W) I - +
[var(W)] 1/2

- 42 -

where W, E(W) and Var(W) are given in 2.5. (B) (b).

This approximation has been shown to be very accurate by

Claypool and Holbert (1974) provided N is not too small. For

small N, a randomisation test on the original data can be

used and its algorithm is given in the next section.

Wilcoxon rank sum test.

The upper quantile is approximated as

n1+n2+n1n2+n1+n23 	
z(x)

Q(x) + 20n1 n2 (n1+n2-f-1)

_1

where x = ______________
[var(W)] 1/2

where W rO E(Wr) and Var(Wr) are given in 2.6.(D).

This approximation has been shown to be very accurate by

Verdooren (1963) provided sample sizes are not too small.

For small sample sizes, a randomisation test on the original

data can be used and its algorithm is given in the next

section.

Kruskal-Wallis test.

The upper quantile of the Kruskal-Wallis test is

approximated by an approximation given by Wallace (1959),

that is the F-statistic on ranks as given in 2.7(C) and

with reference to the F-distribution.

This approximation is not conservative (see Iman and

Davenport (1976)), but in general, it is more accurate than

the chi-square approximation.

- 43 -

Section 3.3. Randomisation tests.

Green (1977) gives algorithms for one and two sample

randomisation tests. He uses heuristic arguments to eliminate

unnecessary computations. His algorithms are based on keeping

track of partial sums and reversed partial sums. The present

algorithms described below are more systematic and proofs of

validity are easier and are expected to be faster than

Green's algorithms as the combination generator described below

is very efficient and heuristic arguments eliminate a large

amount of unnecessary computations. However, no comparison

is made.

(A) Generations of combinations in lexicographic order.

Mifsud (1963) gives an algorithm for generating m

combinations out of n objects in lexicographical order.

Gentlemen (1975) gives essentially the same algorithm.

Page and Wilson (1979, page 117) again give a similar

algorithm which is adopted from Shen (1962). A recent

study by Aki (1981) indicates that Mifsud's algorithm is the

fastest existing combination generator. In what follows, I

shall describe the algorithm given by Page and Wilson and

show how it can be modified into a much faster and more

suitable algorithm for developing algorithms for

randomisation tests. A theoretical analysis of the modified

algorithm is also given.

- 44 -

(a) Page-Wilson's algorithm and its improvement.

Denote n objects by {1,2,...n} and let

Am = {a1 ,a2 ,...,a} (1~m~n) be an m combination

of n objects in lexicographical order. The algorithm

generates the next combination as follows

Find the largest I such that a < n-m+i.

Add 1 to ai.

Perform the substitutions, a=a_ 1+l j=i+1,...,m.

One notices that as 1~i~m, it is useful to define h=m+1-i

so that 1~h~m and one then has the equivalent algorithm

as follows

Find the smallest h such that am+lh<n+l_h.

Add 1 to alh.

Perform the substitutions, a=a_ 1+l j=(m+1-h)+1,...,m.

One notices that with the above modification, the application

of backtrack programming technique is easier. Essentially, a

combination C consists of two subsets C1 = {ai,a2 , .. , aii}

and C2 = {ai,...,a M
 } such that a 1>a 1+1, a.=aj 1+1 for

j>i and C2 has h elements. C 1 is empty when the algorithm is

initialized with the first combination {1,2,..,m}. When C 1 is

empty and a=n, all possible combinations are generated.

Suppose B is the combination generated next to C and h' is

the smallest integer such that al_h,<n+lh. Thus B consists

of two parts, B1{b1,b2,..,b1,
1
 and B2={b 1 ,...,b} such

that b.b. 1+1, j>i', bl>b1 1+1 and B2 has h' elements

where i'm-I-l-h'. If a m <n, it is trivial that h'=l, bm m
a +1

i'=i=m and B1
1 =C . If a 	

3
m =n, since a. i-i =a +1, for j>i and

- 45 -

a1)a1_ 1+1, h'=h+l, B1={a1 ,a2 ,..,a12 } and B2={a1_ 1+1,...,a11+h'}.

Hence, one can conclude that the search of h is unnecessary,

h can take only two values, that is 1 when a m<n and

'old' h +1 when a=n.

Thus, one has 1=iu if a(n and i='old' i -1 if am=n.

One thus arrives at a very simple algorithm as follows:

If am<n, then set i=m, add 1 to am. Go to 4.

Subtract 1 from I and set p=a 1-i+1.

Perform the substitutions) a
i
 =J+p l j=i,...,m.

Deliver the combination.

One may Initialize the above algorithm as a=n, 1=2

and a 1=Q. The first combination generated will be

{1,2...,m}. When a 1 =n+1-m, all combinations are

generated.

(b) A theoretical analysis of the modified combination generator.

Let us consider the following Pascal implementation,

a[m] :=n;
I: =2;
a[1] :=O;
last : =n-m+1;
REPEAT

IF a[m]<n THEN BEGIN
a[m] :=a[m]+1;
i : =m;

END ELSE BEGIN
I : = i-i;
p:=a[1]-i+1;
FOR j:=i TO m DO

a[j] :j+p;
END;
{* deliver combination here *}

UNTIL a[1]=last;

- 46 -

The number of executions of each of a[m]<n and a[1]=1ast is

(). The number of executions of i:=m is
(fl)_(t)•

 The

number of executions of each of i:=i-1 and of p:=a[i]-i+i is

Note that h=m+1-i as given in (a), thus the number

of executions (additions) of a[m]:=a[m]+i plus that of

a[j]:=j+p is equal to the sum of all h's immediately after

the generations of combinations.

Noting that n and m are arbitrary except 1~m~n, we can

calculate the sum of all h's recursively. The sum of h=1 is

Since h=2, i.e. i=m-1 only if a=n and am_ln_1

immediately before the generations of combinations, the

sum of all h=2 is 2 times that of h'=h-i=i in generating rn'=m-i

combinations out of n'n-i objects. Thus the sum of h=2 is,

2r I 	1)(fl 2)]
''rn-i 	m-2

Generally, the sum of all h=j is

•f (n+ij\(nj
JL+1_j/ 'm-j

Hence the number of additions of a[m]:=a[m]+1 plus that of

a[j]:=j+p is equal to

i [

m
- - .

	

m
J= 1

(fl+i)(+l)

Let us Count the number of operations of execution of the

s:=e as the number of operations in evaluating e plus

the assignment command tt:=It. The 'cost' of addition,

- 47 -

subtraction, assignment and comparison are considered to be

equal. Thus the total number of operations (excluding

looping indexing) is about

3()+2(i)+4(n_1)

=5()+6('

The method of analysis above is different from that of

Mifsud's algorithm described in Reingold et al. (1977, page 181).

Experimental operation countings of Mifsud's algorithm .are

given by Al (1981).

(B) Calculation of the one-tailed probability of a two sample

randomisation test.

Suppose x 1 ,x2 ,...,x are n numbers in ascending order

and that one wants to calculate the number of in (mKn)

combinations of xs whose sum is less than or equal

to a given number S. Without loss of generality, assume that

rn-i
S +x 	S where S = x , otherwise one can eliminate on 	 oi=li

Xn and reduce n accordingly.

Suppose C and B are combinations of {1,2...,n} described in

(A) (a), that is,

C= {ai,a2,..,aj_i,ai,.. , am}

B = {ai,a2,...,aj_i, ,am..i,a in 	 in
+i} 	if a <n.

B = {ai,a2,...,ai2,ai_i+i,..,aii+h+i} 	if a m
 =n.

B2 = {ai_i+1 ,......,ai_1+h+ 1 }

i-i
S 1 = 	Xa

j=i j

- 48 -

m

	

S2 = 	x a.

S= S 1+S
C 	

2

One has sum of x
J
's, jOB, SbS'l + S' 2

S' 1 S 1 	 ifa<n.
m

	

= S 1 -x 	if a =n.
a11 	m

	

SI 2 = x +1 	
if a <n.

	

a 	 m
m

= 	x 	if a =n.

	

jB2 	
In

where

Two heuristic arguments can be used to eliminate

unnecessary computations when the sum of a combination is

greater than S,

If C 1 (given in (A) (a) above) is empty, i.e. i=1,

we exhaust all possible combinations.

We can start to backtrack as Xj 	X 	j=a+l,..n.

The above algorithm is simple and mathematically correct, but

this does not imply its implementation on computers will

always give the correct answer. The problem is that computers

can only represent a discrete and finite set of numbers. If

data are small in values and the checking of equality of two

(real) numbers are not avoided by applying the trichotomy law

of real numbers, the implementation of the above algorithm

can give us wrong answers. For example,

Sample 1 data 1.0, 2.0, 3.0, 4.0, 5.0

Sample 2 data 3.0, 4.0, 4.0, 4.0, 5.0

gives the correct p-value = 0.174603

Sample 1 data 0.1, 0.2, 0.3, 0.4, 0.5

Sample 2 data 0.3, 0.4, 0.4, 0.4, 0.5

gives a wrong p-value = 0.071429

- 49 -

Green's Fortran routine suffers from this problem. An

obvious solution is to convert all data to integers first

and then do the computations. From a computing point of view,

this is not very good as there is an overflow problem. By

scaling up data before doing any computations and applying

the trichotomy law of real numbers, one can avoid the problem

of comparing two real numbers on computers in implementing

the above algorithm. The scaling factor should make the data

more "discrete" and thus the factor should effect the

representations of numbers on the computers. A suitable

factor is 2.0x10 4 .

(C) Calculation of the one-tailed probability of one sample

randomisation test.

Using the identity,

n (n)2n
m m=O

the above algorithm for the two sample randomisation test can

be used for the one sample randomisation test. However, one

more heuristic argument can be introduced. That is, if there

exists k<n such that there is no k combination whose sum is

less than or equal to observed sum, then no j combination

(jk+1,..,n) need be considered.

One may be interested in knowing how fast an algorithm for

the one sample randomisation test can be. Shamos (1976) has

proved that the randomisation test for matched-pairs is

NP-hard. For an introduction to computational complexity

theory and NP-problems, see for example Reingold et al (1977,

chapter 9). This result tells us that one should not waste

- 50 -

time looking for a fast algorithm for a matched-paired

randomisation test because it cannot possibly exist.

The present algorithm has exponential-time complexity (if the

heuristic arguments are not used). From the identity of the

binomial expansion given above, we see that this remark also

applies to the calculation of a two-sample randomisation test.

Section 3.4. Rank tests.

Berchtold (1979) gives an algorithm for the signed rank

Wilcoxon test which in fact is a special case of an algorithm given

by Lehmann (1975, page 131). Pittner (1981) gives an algorithm

for the Mann-Whitney test. Kuinmer (1981) gives an algorithm for the

two sample Wilcoxon test and he uses Berchtold's algorithm to prove

his algorithm and points Out that his algorithm can be used to

calculate any rank statistics. However, none of the algorithms

calculate the 'tied correction factor', namely k 3-k for a

tied group of k data. In what follows, I shall prove a very

simple result from which various algorithns can be derived.

Let R(z) be the rank of number z in the usual sense and ties are

treated by averaging their corresponding ranks.

(A) Basic result, algorithms and proofs.

Result (1):

Let z 1 ,z2 ,...,z be a sequence of real numbers. Define

d
ii 	i

= z -z.
J 	

ij,1~ i,j~n

ri = { #dij>0 : 1j~n}

= { #z. : z <z, 1~j~n, ji}

- 51 -

= { #d=0 : 1jn

= {#z : z=z1 , 1~j~n, ji}

then

R(z 1) = 1+r+A/2 	and for 1 ~k~n,

k
R(z) = k+{ #d

ij 	 ij >0 : 1 ~i~k,1~j~n}+{ #d =0 : 1 ~i~k,1~j~n}/2.
i=1

Proof

Without loss of generality, assume that

zjzi+l•••zi+A,)~o and z Oz for j#i,...,i+A

then

R(zi)
=
A 1~i 2 (1+rj+(1+ri)+A)}

= 1 + r+A/2.

k 	 k 	k
R(z) = k+ r4+

•

= k+{ #d>0 : 1 ~i~k,1~j~n}+{ #di.=0 : 1 ~i~k,1~j~n}/2

(a) Signed-rank Wilcoxon test algorithm.

Let x , i=1,2,..,n be a random sample and assume

x 1 &0 for all i.

Define 	di = x1-txI 	ij,1K1,jn

p = { #x>O : 1~i~n}

and W be the sum of ranks of all positive X i 's, then

the signed-rank Wilcoxon test

W = p+{ #d..>0 	1~ i,j~n}+{#d1 .=0 : 1 ~ i,j~n}/2.

- 52 -

Proof

Let z,=I x,l for all i and e 1 .=z 1-z 	i&j, 1Ki,j~n

then by the Result (1),

w = p+{ #e 1 .>O : x1>O, 1~i,j~n}+{ #eO : x1>O, i1,2,...n}/2.

But d ij
 =
xi3
-x.I>O 1ff xi

 >0 and e
ii >0

d 1 . = 	= 0 1ff x1>O and e 1 . = 0

thus the result follows.

Remark This algorithm is different from Berchtold's algorithm.

Wilcoxon rank sum test algorithm.

Let x, 1=1,2,.. ,n and y., j=1,2,..m be two random samples.

Define

= xj_Xj 	i0j,1 ~i,jKn.

dj+ = X1-Y j 1~j~m

and W be the sum of ranks of x
i
 's, then

r

Wr = n+{ I! d 1 >0 : 1 ~iKn,1~ jKn+m}+{ 1/ d 1 .=0 : 1KiKn,1Kjn+m}/2

Proof

Define

z 1 = x, i=1,2,..n.

= y,

then the result follows from Result (1).

Kruskal-Wallis test algorithm.

Let x1 , i=1,2,..k, j=1,2,..,n1 be k independent random

samples of size n1 , 1=1,2,..,k.

Define

Pjj = Xjj_Xsk s=1,2..p, k=1,2,. . ,n, s#i or kj

- 53 -

then the rank sum of sample i,

Ri = ni + { #P i >O}+{ #=O}/2

and hence the Kruskal-Wallis statistic,

12 k
H = N(N+1) 	

n(R -
	2

k
where N = 	n can be calculated accordingly.

i= 1

Proof

Since in ranking the ith sample against other samples,

the division of other samples is immaterial, one can

consider all the other samples as 'one' sample and rank

th
i sample against it. The result follow from the

algorithm for the Wilcoxon rank sum test.

Remark One computer procedure is needed for calculating rank

sums for the signed-rank Wilcoxon, the Wilcoxon rank sum

and the Kruskal-Wallis tests. The algorithm for the

signed-rank Wilcoxon test is redundant.

Algorithms for other rank statistics can be derived in a

similar way.

(B) Improvement of algorithms.

All the algorithms stated above can be further improved to

take account of the 'tie correction factor'.

Without loss of generality, consider a sequence of numbers

z 1 , 1=1,2,.. .n and define

- 54 -

= z 1-z, 	1~ i<j~n

A =o n

	

A1 = { #z 1 : z.=z 1 ,i<j<n}, 	1~ i<n.

If d 1 0 0, then d j >O if and only if dji<O so when

comparing z and Z j one adds 1 to either R(z) or R(z)

but not both. Similarly, d 1 .=0 if and only if d 1=O so

when comparing z and z., if d=O one adds 0.5 to both

R(zi) and R (Z j)• Now suppose that zj=zi+1= ... =zj1

(k~1) is a k-fold tie and d 1 #0 for ji+1,...,i+k-1. By the

definition of d i,, one gets Ai+1=k_i j=1,2,...k. Thus for

any k-fold tie k~2, there exists one and only one

This implies that the number of ties is identified by the

number of A=i. Thus the number of ties is equal to

{ #A 1]. : i=1,2,..,n}. One also knows that the last value

of A in a group of k-fold ties (k~2) is zero and the

number of A equal to zero is equal to that of A=i.

Thus the number of tied observations in z 1 , i=1,2,...,n

is { #A i>o} + { #A 1=11. However, one may be more interested

in the largest tie group and it can be easily calculated.

For the 'tied correction factor' of statistics, a common

factor of k-fold ties is k3-k. Note that

k = A+i and A 1+1=k_J, j=1,2,..,k.

k
k3-k = 	[(A 	+1) 3-(A 	+1)-(A 3

j=1 	 i+j-1 	i+ _ 1 4 j+ . 1)]

k
=3A 	(A 	+1)
j=1 	i+j-1

- 55 -

In programming, dj must not be evaluated and it is used

for mathematical convenience. The comparison of two numbers

should be direct. However, if the actual implementation of

comparison on computers is not by direct comparison, for

example Z j>Z j is evaluated as z 1-z>O then it makes

not much difference.

One may also have a problem in comparing two real numbers on

computers. In practice, data are fairly discrete and the

checking of equality of two real numbers can be avoided by

applying the trichotomy law of real numbers, thus it should

not cause much problem.

Exact analyses of the above algorithms for rank tests

are impossible. It is obvious that the time complexity of all

algorithms are polynomial. The storage complexity is

almost optimal i.e. minimal storage as almost no extra space

is needed to carry out all the computations. No analysis is

attempted here.

Section 3.5. Calculations of means and sums of deviations about

the mean.

Formulae for calculations of means and sums of deviation about

the mean are required for computing basic statistics and test

statistics. Many articles have been published about algorithms for

mean and sums of squares, (Welford (1962), Neely (1966), Young and

Cramer (1971) and Ling (1974)). Ling (1974) finds that formulae

are generally data dependent and no one is consistently better

than any others, but generally, two-pass formulae are better.

- 56 -

Formulae used for computing mean and power sums of deviations

about the mean are as follows

n
N 1 =
i

n
=

1

M2 = P 1 /n

Mean, N = M1+M2 which is known as Neely's algorithm.

= 2_n4

n 	
= P3-3M2P2+2n14

= P4-4M2P3+6P2M-3nM

Section 3.6. Sorting algorithm.

A sorting procedure is required to sort the data in the

ascending order to carry out for example the Shapiro-Wilk test

for normality. The sorting algorithm is translated from the

Algol's version of the sorting procedure due to Singleton (1969).

All the five GOTO statements are eliminated. A remark on the

algorithm is given by Griffin and Redish (1970).

- 57 -

Section 3.7. Plotting algorithm.

For plotting histograms, a plotting algorithm is required.

A number of algorithms for plotting graphs have been published,

(Thayer and Storer (1969), Nelder (1976) and Stirling (1981)).

All these algorithms start with trying to get a "neat" step-size.

For a computer program running without the users' intervention,

they do not seem to be very satisfactory. A better algorithm

should also take the number of data points into consideration.

For example, it is generally undesirable to have the number of

intervals more than the number of data points. Thus the number

of intervals required should be "estimated". An algorithm which

takes account of the consideration mentioned above should use

the range of data and the number of data points to get a "neat"

step-size and an "estimated" number of intervals. A limit to

the number of intervals is necessary in a computer program.

Denote the rounded up number of z by round(z). Let R be

the range and S be a number such that 1.0<RS<10.0 where

f or some integer p and let k=round(RS). Suppose the limit of

the number of intervals is about 20 and the number of data

points is n. The algorithm is as follows

If 5<k<11 then step=S and N=k. Go to (3).

Set Q=20R, N=round(Q/round(Q/k)).

If N is odd and N>5 then increase N by 1.

- 58 -

If N=14 or N=18 then increase N by 2.

step = NS/20.

If step > 3.0 then round up step to an integer.

(3) If N<=10 and N<n then half the step.

If N>20 or N>n then double the step.

Number of intervals=round(range/step).

The "estimation" of the first plotting position is dependent on

the output device and a suitable value for outputs on the

screen or line printers is round(max/step+1) multiplied by

step which is larger than the maximum value of the data where

max is the maximum value of the data. The number of intervals

may have to be increased by 1 or 2 in order to cover the minimum

value of the data.

- 59 -
Chapter Four

Program Development

Since the recognition of software problems, an extensive

study of programming methodology has been done by computer

professionals. Experience has shown the application of

methods contributed by computer professionals has improved

program quality. This chapter describes the ideas and the steps

in the development of our program.

Section 4.1. Program design.

A computer program consists of two main components, data

structure and algorithms. One has thus two possible ways of

starting a program. One is to specify or develop the algorithms

first. Another is to specify the data structures and leave the

algorithms until later. The latter approach, that is the data

structure oriented approach is adopted in designing the program.

In general, a program may be seen as a black box as shown below.

Input (data) ---> I Black Box I ---> Output (data)

Obviously, one needs at least three modules, one for input,

one for output and the other for carrying out the necessary

operations (black box). After a few refinements, the following

data flow diagram may be constructed.

- 60 -

Main program
(data structure)
(manager)

Question Data I Elementary
answer 	jentry statistics

I 	 calcula-

I I Itions

Assumption
testings

I 	I 	I
Further Output
Icalcu- module
lations1

One has thus specified the basic module interface and data

flow of the program. Arrows show the directions of flow of the

data. Conceptually, it is useful to imagine a data structure

manager who passes data to and receives data from the various

modules. No communication is allowed between modules.

Each module can now be treated independently and may be

further subdivided into various sub-modules. Such divisions are

continued until each sub-module or sub-sub-module does an

identifiable task which is small enough to be solved without

much effort. It is useful to imagine local data structure

managers who pass data to and receive data from their sub-

ordinates. A hierarchical diagram may look as shown below.

Module A 1

// \%,44_____

Module All Module Al2

ii

Module A 2 I

Module A21
	

Module A22

1/
	

/V/

- 61 -

Module A

The above diagram is conceived as a data flow diagram, not

only as a diagram for indicating the division of tasks. Lower

levels receive data from higher levels and can do only tasks

as directed by the higher levels. So far, algorithmic aspects

are ignored and it is assumed that all the necessary algorithms

are available. At this stage, one is concerned with what is to

be done with a given set of data, not how it is to be done. The

problem of computer languages is not considered. In practice,

one has to identify some of the difficult or time-consuming

modules during the design process. For example, time has to be.

allowed for the development of new algorithms where none exists.

If algorithms cannot be developed in a reasonable time or

no polynomial-time algorithms can possibly exist, changes

may have to be made. Algorithms also affect data structures.

One may also have to consider the programming language to

be used, for example 'clean' data communications between

modules are impossible in Basic. The above approach is still

- 62 -

applicable, though, even if implementation is to be in an

unstructured language. It is always possible to translate

a structured solution to an unstructured language.

In the above approach, algorithms are operations or

actions on data structures. The following example illustrates

the idea.

Problem : Calculation of signed-rank Wilcoxon test.

Input 	: A set of data.

Output : The signed-rank Wilcoxon test (data).

Input data ---> I Action ----> The signed-rank Wilcoxon test

How the Wilcoxon test is to be calculated is the job of

4 Action". If data are to be sorted, it is the job of "Action"

to call a sorting routine to act on the data. The algorithms

of "Action" have no direct connection with the input and output.

As long as the specified output is met, the problem is solved.

Section 4.2. Computer Languages.

It is perhaps more useful to compare various languages

rather than to look for a perfect language. For a microcomputer,

the two widely available languages are Basic and Pascal. Some

comparisons between these two languages follow

- 63 -

Basic

Poor degree of

standardisation.

Poor data structuring.

Variable names are

usually not meaningful

Codes are generally

difficult to read.

All variables are

global and none can

Pascal

Good degree of

standardisation.

Powerful data structuring.

Variable names can be meaningful

and more self-explanatory.

Codes are more readable.

Variables can be localised

or passed to procedures

be passed to routines 	(routines) as parameters.

as parameters. 	 I

Whilst some other arguments favour Basic, the

above arguments are sufficient for me to favour Pascal.

These arguments are in fact central to programming.

There are also additional powerful facilities in the UCSD

(University of California at San Diego) Pascal system.

Section 4.3. The use of flow-charts.

The use of flow-charts as a development aid has been

criticized by many computer scientists. One of the reasons is

that flow-charts do not depict data structures which are central

to programming. However, flow-charts can be very useful in

documentation. Users or maintenance programmers can grasp the

basic logic of a program without much effort by studying the

associated flow-charts. Flow-charts are used as an aid in the

documentation after the program has been completed.

- 64 -

Section 4.4. The wording of questions.

It is very difficult to have questions which are useful,

concise and informative. For example, the use of the term

'statistical independence' is not comprehensible to many but a

long explanation is undesirable and may not necessarily convey

the precise meaning. Questions are also required to be useful.

If randomization is regarded as a standard practice, then a

question about randomization is necessary. There are however

situations where randomization is impossible. Experiments

may be done without control groups because it is impossible

to have control groups, for example patients may be very ill and

they have to be treated immediately. It is not clear whether or

not these questions should be asked. If one sticks closely to

the theoretical requirements, too many data sets may be

rejected and users are likely to become frustrated. Users

may even try to by-pass questions (see Sales (1980)) as they

are primarily interested in the results produced by applying

statistical methods.

The questions in the program were revised a number of

times and raised the following topics

What kind of data are being presented ?

The number of data collected per case and the number

of groups.

Whether or not the data are in the form of paired-

observations (if only two groups).

Whether or not there is any connection between cases.

Whether or not randomization has been done.

- 65 -

The possibility of differences in the populations because of

factors other than that which the users intend to compare.

The importance of the order in which the data are collected.

Users are required to answer all these questions as

necessary. This may possibly make it more difficult to

by-pass questions as users may not know which questions

they have answered 'wrongly'.

Section 4.5. The use of GOTO-statements.

The UCSD Pascal system has a compiled-time option for the

use of GOTO-statements. It is required to instruct the compiler

if COTO-statements are to be used. GOTO-statements usually make

a program difficult to read. Theoretically, it is possible, with

structured languages to develop programs without GOTO-statements.

One may argue that it is unwise to evaluate Boolean expressions

or make use of extra codes for the GOTO-free programs. The

elimination of GOTO-statements does not automatically lead to

better programs. However, no COTO-statement is used in the

present program.

Section 4.6. Program validation.

Program validation consists of testing and verification.

Howden (1980) used several techniques to uncover 92 errors in

IMSL (International Mathematical and Statistical Library)

programs. The main difficulty is that programs are dynamic

objects. This is even more difficult on microcomputers as many

debugging and testing aids are not readily available.

- 66 -

(A) Program testing.

It is important to distinguish between experimenting and

testing. Testing is an organised process to uncover errors and

unexpected performance in programs, it is not to show programs

are working on a few selected samples of inputs. Test data will

necessarily be a small sample of all possible inputs. Testing

is thus inadequate for achieving a complete understanding of

logical or performance features. However, testing is a

necessary and fundamental step to reveal certain obvious

and unexpected performances. Special attention should be paid

to the performance under 'boundary conditions'. It is important

to ensure that a program or a procedure should not be fatal in

'boundary conditions' even if it has to perform in a degraded

way, for example by loss'of accuracy. One example is a routine

by Cooper (1968) which cannot handle 'boundary conditions'

(small t-values with large degrees of freedom). This routine can

be said to have been subject to experiment but not tested. The

claim of 11 decimal places accuracy is doubtful.

Procedures are developed and tested independently

wherever possible . However, not all procedures can be tested

independently because they rely on or require Information

from other procedures. The majority of procedures, usually also

the more difficult procedures, can be tested independently.

After each procedure has been tested, the program is Integrated

by including these modules. At the beginning, some modules may

be empty or have only a few statements which may be deleted at

a later stage. For example, one needs only simple input and

- 67 -

output for testing some parts of the program. The intended input

and output modules can be integrated at a later stage when

necessary. It is obvious that the question-answer module can be

the last one to be integrated. Each procedure is integrated

into its 'residence' module only when it is necessary. This can

also save us hours, or even days, of unnecessary compilations

and re-compilations for debugging and testing. Any new errors

are almost certainly due to the inclusion of new procedures.

(B) Program verifications.

Basically, there are two approaches to verification, the

static approach and the construètive approach. The static

approach regards a program as a mathematical object and uses

assertions and mathematical proofs. For a 'large' program,

the static approach is not practical and thus the second

approach is adopted. Verification is done through careful

construction.

Section 4.7. The use of the range-check option.

The UCSD Pascal system has a compiled-time option which

allowed us to turn of f the range check. If a (small) procedure

has been analysed and validated it may be sensible to turn

off the range-check if the procedure is time-critical. For

example, it is sensible to turn of f the range-check in the

randomization test procedure because of its amount of

computations. However, it is not sensible to turn off the

range-check for a 'large' program to minimise the computing

time as program testing can never show the absence of bugs.

- 68 -

Section 4.8. Program qptimisation.

The most important property of any computer program is its

correctness. If a program is not correct, optimisation will be

meaningless. Program structure has a tremendous effect on

program correctness (which is the main objective of structured

programming). Optimisation must therefore take program

structure into consideration. It is insufficient to optimise a

program for computing time and storage. If a program or

procedure has been validated, one can then transform it

into a more efficient program or procedure. However, in the

process of transformation (optimisation), it is important that

its correctness must be maintained.

Optimization should also take maintenance into

consideration. Thus clarity of a program should not be traded

off against speed and storage. If a time-critical procedure

cannot be reconciled with clarity, it is important to make

such a procedure 'disposable'. If a maintenance programmer

has difficulty in understanding it, he can then dispose of

the procedure and replace it by a new procedure or a better

algorithm. Disposability is a desirable property.

The switching off of a range-check is of course a

potentially dangerous way of optimisation against time. One

should not do this unnecessarily. Unless it is certain that no

polynomial-time algorithm can possibly exist, it is better to

look for a new algorithm if the current algorithm is far too

slow. An exponential-time algorithm behaves quite

independently of computer power.

- 69 -

Section 4.9. Historical references.

This section concerns various points which have been

learnt through producing the program to which reference can be

made in the future and mistakes may possibly be avoided.

(A) Computing experiences.

(a) The use of a microcomputer as a machine It was a mistake to

use a microcomputer as a machine to develop the program. It

may be reasonable to use microcomputers to develop 'small'

programs. They are not suitable for the development of 'large'

programs. Microcomputers may be cheap, but they are very

expensive in terms of man power. For example, it takes more

than 15 minutes to compile a program of three thousand

lines. If a compiled listing is required, then it would take

more than half an hour. Many may consider this as reasonable,

but it is unwise to use a microcomputer as there are more

powerful machines equipped with powerful software, for

example editor and file management. This does not mean one

should not use microcomputers at all. A better approach may

be to develop the programs on larger machines and then

transfer them to a microcomputer if they are to be run on it.

However, one may argue that one has to develop programs

on the target machines because all machines have their own

peculiarities. This argument is not necessarily true as

it is possible to develop parts which are different from

'standard' languages on the target machines. In the case of

Pascal, input and output are the least well-defined, and one

may develop input/output module on the target machine and

develop the other modules on a larger machine.

- 70 -

(b) Coding was done too early : Coding should have been delayed as

long as possible as it is the simplest part of program

development. More time should have been spent on the design

(including the design of algorithms) so that changes after

coding are minimised. Program testing is one of the most

time-consuming activities in program production. It is unwise

to spend time on debugging as bugs should have been avoided

in the first place. Careful thought and design are even more

important if the development is on a microcomputer as testing

is a lot harder in terms of error messages, time taken and

system software facilities.

Some may argue that program development is an evolutionary

process and that a complete design is not possible. One

can always find something which should have been added or

coded in a more understandable way. This can be very true

when there Is no historical reference to which one can

refer but It should not preclude the need of design.

(!) Changes.

(a) The estimation of the power of a transformation

The Box-Cox estimation of the power of a transformation was

first programmed; it was found that a considerable amount

of time was needed to do all the computations.

This was later changed to Anscombe's estimation which

requires much less computations and Is more suitable for an

interactive program.

- 71 -

(b) A test of accuracy of the data : A chi-square test of

accuracy on the distribution of the last digits of the data

points was originally programmed. No definite advice can be

given to the users as the accuracy largely depends on the

kind of data. The test can be very crude as data are entered

in the free format. Equally important, users are likely to

ignore this kind of advice; for this reason, it was later

deleted.

- 72 -
Chapter Five

Program details

This chapter describes the details of the program.

Examples of outputs and the listing of the program are

in the Appendix.

Section 5.1. Introduction.

It is generally known that the most authoritative

documentation of a program is the program text itself, not any

comments inserted in the text to explain computational processes.

If the program text itself is not readable, comments serve little

purpose.

Theoretically, one should document a program during the

coding process. In practice, one may choose to code first and

document later.

Section 5.2. Testing of assumptions.

Testing of normality.

Data are declared "normal" if both the Shapiro-Wilk test and

the test based on the g 1 -statistic do not detect any

departure from normality. The significance level for both

tests is 5%.

Testing of the equality of variances.

Variances are declared "unequal" if the coefficient of

variation of variances is greater than or equal to 1 or

variances are significantly different at 5 % level of

significance detected by test statistics.

- 73 -

Section 5.3. Conditions for use of the test statistics.

The conditions for the use of each test are very arbitrary

and some may seem unreasonable. For example, one may argue that

it is impossible to assess the distributional properties or the

equality of variances if sample sizes are small. However,

conditions have to be set for each test for practical purposes.

The details of each individual test are given in chapter 2

In all cases, non-parametric tests may be used only on original

(untransformed) data.

(A) Testing of single mean.

(a) The Student's t-test.

This test is used if one or more of the following conditions

are met.

Data are normally distributed.

Sample size is at least 80.

Sample size is at least 15 and data are symmetrically

distributed.

When non-parametric tests are not used.

(b) The signed-rank Wilcoxon test.

This test is used if all the following conditions are met.

Data are paired-observations.

Data are not normally distributed.

Sample size is less than 80, but greater than 15

(excluding zeros).

(c) The one-sample randomisation test.

This test is used if the conditions (1) and (2) for the

signed-rank Wilcoxon test are met and the sample size

(excluding zeros) is not more than 15.

- 74 -

(B) Testing of two means.

(a) The Wilcoxon rank sum test.

This test is used If all the following conditions are met.

Data are scores.

Data are symmetrically, but not normally distributed

and variances are equal.

At least one of the group has a sample size of at least

10.

(b) The two-sample randomisation test.

This test is used if both the following conditions are met.

Data are symmetrically but not normally distributed.

Both sample sizes are less than 10.

(c) The two-sample t-test.

This test Is used if nonparametric tests are not used and

one or more of the following conditions are met.

Variances are equal.

Sample sizes are equal.

At least one of the groups has a sample size of less

than 10.

(d) The Welch t-test.

This test is used when none of the other three tests is

suitable.

(C) Testing of several means.

(a) The Kruskal-Wallis test.

This test is used if all the following conditions are met.

(1). Data are scores.

(2) '-Data are symmetrically but not normally distributed

and variances are equal.

- 75 -

The average sample size is not less than 4, that is

sample sizes are not too t smalltI.

(b) The F-test.

This test is used if the Kruskal-Wallis test is not used and

one or more of the following conditions are met.

Data are normally distributed and variances are equal.

Sample sizes are equal and the coefficient of variation

of variances is less than 1.

At least one of the samples has a sample size of less

than 10.

(c) The Welch F-test.

This test is used if the other two tests are not used.

Section 5.4. Program documentation

Title : Mean

Date : June 1982.

Machine : Apple II plus microcomputer with 64 K of memory.

Medium : Both source codes and object codes on disk.

Language : Apple UCSD Pascal (Version 11.1)

Synopsis : A program for

Calculation of mean, median, standard

deviation, standard error of mean,

maximum and minimum, the range and

Fisher's g-statistics.

Testing the equality of means for one,

two or more samples.

11

- 76 -

It consists of the following test statistics

One and two sample Student t-test.

One and two sample randomisation tests.

Two sample Welch t-test.

Signed-rank Wilcoxon and Wilcoxon rank sum

tests.

Kruskal-Wallis test.

Analysis of variance F-test and Welch F-test.

Multiple comparisons.

The program also gives confidence intervals for

one and two sample problems where parametric

tests are used.

P-values are also given.

Description

The program examines data provided by the users

and selects a test statistic for testing the

equality of means or provides elementary

calculations of statistics. For elementary

statistical calculations (without testing a

hypothesis), a comment is issued to users if data

are skewed. For testing hypotheses, a warning is

issued to users if any departure from the

underlying statistical assumptions is detected.

For testing the equality of several means,

multiple comparisons are performed at one of

the levels 0.01, 0.05, 0.10, 0.15, or 0.20 if

the p-value is less than 0.20. The level is

- 77 -

chosen such that it is the smallest of the values

given above which is greater than the p-value.

The program also suggests a transformation for

data if a suitable transformation is found in

order to achieve normality or the equality of

variances. Alternatively, users may choose to

transform their data themselves. Transformations

provided for are square root, logarithmic,

reciprocal and arcsine and users are free to

choose their own transformation from these four.

An analysis on the original data is always given.

A note is given to users if a transformation of

the data has been made.

A comment is also given in each of the following

situations

One or more samples have data with

values at least half of which are equal.

One or more samples are not symmetrically

distributed.

Outlying observations are present where

"outlying" is as defined in 2.10 of chapter 2.

Inputs

(A) Inputs from the keyboard.

Inputs are interactive and all inputs from the

key-board are validated by the program.

The three commands which can be used at any point

- 78 -

of the program are

HELP or help : This gives users suitable

help at any point of the program. No help

will be given if the problem is trivial.

QUIT or quit : This stops the program and

returns to the operating system level. It is

not an interrupt command.

REJ or rej : This is a backward eliminator.

It rejects inputs backwardly one by one.

Users are asked to re-type their input if

an input is rejected.

Users need not have to count the number of

observations for each group, the input terminator

for data for a group is END or end. The program

counts the number of data points for a group

and it responds interactively to the users.

Data can be validated sample by sample and

the following features are provided

Display of data on the screen.

Making corrections.

Making deletions.

Making additions.

The program interprets all strings starting with

the above three commands and the input terminator

as commands and the input terminator respectively.

- 79 -

(B) Inputs from disk files.

The validation of inputs from disk file is done

by the system.

Help files which may be accessed by the procedure

readfile are

"datakind.text" : for explaining kinds of data.

"inform.text" 	for information about the

program.

"paired.text" : for explaining paired-

observations.

"random.text" : for explaining whether or not

randomisation has been done.

"biased.text" : for explaining whether or not

the data reflect differences

of means of the intended factor.

"connect.text" for explaining whether

or not cases are related.

"order.text t' : for explaining whether or not

there is an order effect on

the data.

"explain.text" for explaining the meanings

of statistics.

"addconst.text" : for explaining that a

constant must be added before

a transformation is made.

The data files which are accessed by the procedure

shapirowilktest are "shapwilk.3t030" and

11shapwilk.31t050". For a given sample size

(n>2), the components in the files are in

following order

Coefficients a 1 as described in 2.9.

Significance level at 5% level.

Normalization factors given by Shapiro and

Wilk (1968).

11 shapwilk.3to30' t is for sample sizes from 3 to

30 and the other is from 31 to 50.

Outputs

The following outputs are given

(1) The data are given

in their original form for each case, or

as the differences of the two members of

each pair for paired data, or

as the differences for each observation

from a given theoretical mean, or

as the differences of two observations

from each case, or

as transformed data of (a) or (d).

The data are given in the order in which

they are entered. Sample sizes are also

given.

(2) Histograms.

(3) Summary of statistics mean, median,

standard deviation, standard error,

maximum and minimum values, the range

and Fisher's g 1 and 92 statistics.

(4) A test statistic and a table for the

analysis of variance (if applicable).

- 81 -

P-value.

Confidence interval (if applicable).

Pairs of groups with sample means which

have been found to be significantly

different (If applicable).

Sums of ranks and means of sums of ranks for

each group (if applicable).

Comments or warnings.

Validation of the outputs is done by the system.

Outputs can be on the screen or on the printer.

No limit on the number of copies of outputs may

be made. A notice is issued to users if they

have not had a hard-copy output.

Restrictions

(A) Data entry

The maximum number of groups is 20.

The maximum number of data for a group is

the integral part of 400 divided by

the number of groups.

These two restrictions can be easily changed.

Data entry is restricted to the keyboard, but

it can be changed by modifying the input

module (with no change in other modules).

Data can only be validated sample by sample

and once data for a sample are accepted, they

cannot be changed. A warning is issued to

users if there is no chance of further changes

of data for a sample.

- 82 -

Range-check

No run-time range-check is performed in the

procedure randomisationtest.

Possible changes for other environments

The following UCSD Pascal features which are

either different from or not provided in the

Standard Pascal are used

Function POS in the global procedure

matchstr. This can be removed by writing an

equivalent funçt ion.

Function LENGTH in the global procedure

getdata. This can be removed by writing an

equivalent function.

EXIT (from a procedure) in procedures

verifydata, validatedata, keyindata,

readdata and quit. These may be removed by

the use of GOTO statements or boolean variables.

Declaration of STRING as a type of packed

array of characters.

Provision of a procedure for STRING output.

Removal or replacement of the USES TRANSCEND.

The overlay feature SEGMENT.

Change ATAN to ARCTAN in procedure

dotransformation.

Flow-charts

(A) Calling sequence of modules for testing

hypothesis.

- 83 -

Begin

Question-
answering

1

Read in data

Elementary calculation,
)- 	Transforming data (second call only)

Assumption testing; P-value
calculation for parametric and rank
tests (second and fourth call only)

Test statistic calculation,
confidence interval or
multiple comparisons (second and
and fourth only)

P-value and/'--
No

	

	 or confidence interval
or multiple comparison

Yes

Print results

Yes
—4— ansf orm data ?

End

- 84 -

(B) Flow-chart for "read in data" module.

Testing the:retical me 	
No

es

Read in
theoretical mean

Initialise ij=O

1=1+1

.1

I 	i=i+' 	I

LNo 	inish engteruin

Yes

Validate data for group I

Calculate data and sample
size for group i

-ba
Eliminate

ta/Difference
— all equal,sample si r—

small 	 group i

No

Yes

For other modules, the programs texts are

self-explanatory.

- 85 -

juA in the Apple UCSD Pascal system

The system procedure READLN and READ may not

read data properly at the end of a data disk

file. A redundant number is added at the end

of each (numerical) data file. READLN does

not allow back-spacing for entering real

numbers from the key-board.

RafaranrPc-

ABRANOWITZ M. and STEGUN I. A. (Eds.) (1964)
Handbook of Mathematical Functions
U. S. Department of Commerce
National Bureau of Standards. Applied Mathematics Series
No. 55, Washington.

A1<L S. G. (1981) A comparison of combination generation
mehtods. ACM Trans. Math. Softw. 7, 1, 42-45.

ANSCOMBE F. J. (1961) Examination of residuals.
Fourth Berkeley Symposium on Math. and Prob.
Edited by Neyman J., 1-36.

BADGLEY R. F. (1961) An assessment of research method reported
in 102 scientific articles from two Canadian medical journals.
Can. Med. Assoc. J., 85, 246-250.

BAILEY B. J. R. (1981) Alternatives to Hasting's
approximation to the inverse of the normal cumulative
distribution function. App. Stat. 30, 3, 275-276.

BARTLETT M. S. (1937) Properties of sufficiency and statistical
tests. Proc. Roy. Soc. 160, 268-282.

BERCHTOLD (1979) A program for the Wilcoxon Signed Rank test.
Biometrical J. 21, 2, 167-169.

BOWMAN K. 0. and SHENTON L. R. (1975) Omnibus test contour for
departure from normality based on 	and JL,. Biometrika, 62,
243-250.

, BEAUCHAMP J. and SHENTON L. (1977) The
distribution of t-Statistic under non-normality.
Inter. Stat. Rev. 45, 233-242.

BOX G. E. P. (1953) Non-normality and test of variances.
Biometrika, 40, 318-335.

(1954) Some theorems on quadratic forms applied in
the study of analysis of variance problem I. Effect of
inequality of variance in one-way classification.
Ann. Math. Stat. 25, 290-302.

and COX D. R. (1964) An analysis of transformations
(with discussion). J. Roy. Stat. Soc. B 26 , 211-252.

BROWN M. B. and FORSYTHE A. B. (1974) The small sample
behaviour of some statistics which test the equality of
several means. Technometrics, 16, 1, 129-132.

CARNAHAN B., LUTHER H. A. and WILKS J. 0. (1969)
Applied numerical methods.
John Wiley & Sons Inc.

- 87 -

CHEN E. H. (1971) The power of the Shapiro-Wilk W test for
normality from the contaminated normal distribution.
j. Amer. Stat. Assoc. 66, 760-762.

CLAYPOOL P. L. and HOLBERT D. (1974) Accuracy of Normal and
Edgeworth approximations to the distribution of the
Wilcoxon signed rank statistic. J. Amer. Stat. Assoc. 69,
255-258.

CONOVER W. J. (1973) On methods of handling ties in the
Wilcoxon Signed-Rank procedure. J. Amer. Stat. Assoc. 68,
985-988.

and IMAN R. L. (1981) Rank transformation as a
bridge between parametric and non-parametric statistics.
The Amer. Stat. 35, 3, 124-129.

COOPER B. E. (1968a) Algorithm AS 2 : The normal integral.
. Stat. 17, 186-188.

(1968b) Algorithm AS 3 : The integral of
Student t-distribution. App. Stat. 17, 189-190.

CRESSIE N. (1980) Relaxing assumptions in one sample t-test.
The Aust. J. Stat. 22, 2, 143-153

DANIEL W. W. (1978)
Applied nonparametric Statistics.
Houghton Miff un Company.

D' AGOSTINO R. B. (1970) Transformation to normality of null
distribution of 9 1 . Biometrika, 57, 679-681.

DIJKSTRA J. B. and WERTER P. S. P. J. (1981) Testing the
equality of several means when the population variances are
unequal. Comm. Stat. Simul. Comp. 310 (6), 557-569.

DUNNETT C. W. (1980a) Pairwise multiple comparisons in the
homogeneous variances, unequal sample size case.
J. Amer. Stat. Assoc. 75, 789-795.

(1980b) Pairwise multiple comparisons in the
unequal variances case. J. Amer. Stat. Assoc. 75, 796-800.

EL LOZY M. (1982) Efficient computation of the distribution
functions of Student's, Chi-squared and F to moderate
accuracy. 3. Stat. Comp. Simul. 14, 179-189.

FEIR-WALSH B. J. and TOOTHAKER L. E. (1974) An empirical
comparison of the ANOVA F-test, normal scores test and
Kruskal-Wallis test under violation of assumptions.
Educational and Psychological measurement, 34, 789-799.

FINCH D. J. (1950) The effect of non-normality on the z-test
when used to compare the variances in two populations.
Biometrika, 37, 186-189.

- 88 -

FINUCAN H. M. (1964) A note on kurtosis. J. Roy. Stat. Soc
B26, 111-112.

FISHER R. A. and CORNISH E. A. (1960) The percentile points of
distributions having known cumulants. Technometrics, 2,
209-226.

CANS D. J. (1981) Use of a preliminary test in comparing two
sample means. Comm. Stat. Simul. Comp. BlO, 2, 163-173.

GARTSIDE P. S. (1972) A study of methods for comparing several
variances. J. Amer. Stat. Assoc. 67, 342-346.

GAYEN A. K. (1950) The distribution of the variance ratio in
random samples of any size drawn from non-normal universes.
Biometrika, 37, 236-255.

GEARY R. C. (1947) Testing for normality. Biometrika, 34,
209-242.

GENG S., WANG W. J. and MILLER C. (1979) Small sample size
comparisons of tests for homogeneity of variances by Monte-
Carlo. Comm. Stat. Simul. Comp. B8, 4, 379-389.

GENTLEMAN J. F. (1975) Algorithm AS 88 : Generation of nCr
combinations by simulating nested FORTRAN DO loop.

Stat. 24, 374-376.

(Ed.) (1979)
Proceed. of the Comp. Sd. and Stat.: 12th Annual Symposium
on the Interf ace.
University of Waterloo, Waterloo, Ontario, Canada.

GLANTZ S. A. (1980) Biostatistics : How to detect, correct and
prevent errors in the medical literature. Circulation, 61, 1,
1-6.

GORE S., JONE I. C. and RYTTER E. C. (1977) Misuses of
statistical methods: Critical assessment of articles in
B. M. J. from January to March 1976. Br. Med. J. 1, 85-87.

GREEN B. F. (1979) A practical interactive program for
randomization tests of of location. The Amer. Stat. 31, 37-39.

(1980) FORTRAN routine for randomization tests
(private communication). Department of Psychology, The
Johns Hopkins University, Baltimore, Maryland 21218, U. S. A.

GRIFFIN R. and REDISH K. A. (1970) Remark on Algorithm 347
[Ml]: An efficient algorithm for sorting with minimal storage.
Comm. Assoc. Comp. Mach. 13, 54.

- 89 -

RARTLEY H. 0. and PEARSON E. S. (1950a) Tables of probability
of integral of the t-distribution. Biometrika, 37, 168-172.

and - - - - - - - (1950b) Tables of the
x2-integral and of the cumulative Poisson distribution.
Biometrika, 37, 313-325.

HENRICI P. (1964)
Elements of numerical analysis.
Wiley International Edition.
John Wiley & Sons.

HILGERS R. (1982) On the Wilcoxon-Mann-Whitney-test as a
nonparametric analogue and extension of t-test. Biometrical
J. 1, 24, 3-15.

hILL G. W. (1970) Algorithm 395 	Student's t-distribution [S14].
Comm. Assoc. Comp. Mach. 3, 10, 617-619.

HILL I. D. (1973) Algorithm AS 66 : The normal integral.
p. Stat. 22, 424-427.

HOWDEN W. E. (1980) Applicability of software validation
techniques to scientific programs. ACM Trans. Prog. Lag. and

2, 3, 307-320.

IMAN R. L. and DAVENPORT J. M. (1976) New approximation to the
exact distribution of the Kruskal-Wallis test statistic.
Comm. Stat. Theory and Method, A5, 14, 1335-1348.

JAMES G. S. (1951) The comparison of several groups of
observations when the ratio of population variances are
unknown. Biometrika, 38, 324-329.

KENNEDY W. J. JR. and GENTLE J. E. (1980)
Statistical Computing.
Marcel Dekker Inc. New York and Basel.

KUNMER G. (1981) Formula for the computation of the Wilcoxon
test and other rank test. Biometrical J. 23, 3, 237-243.

LAYARD M. W. J. (1973) 'Robust large sample tests for
homogeneity of variances. J. Amer. Stat. Assoc. 68, 195-198.

LAUER G. N. and HAN C. P. (1974) Power of Cochran's test in
Behrens-Fisher problem. Technometrics, 16, 545-549.

LEE A. F. S. and GURLAND J. (1975) Size and power of test of
equality of means of two normal populations with unequal
variances. J. Amer. Stat. Assoc. 70, 933-941.

and ------(1977) One sample t-test when
sampling from a mixture of normal distribution.
Ann. Stat. 5, 4, 1, 802-807.

- 90 -

LEHMANN E. L. (1975)
Nonparametrics : statistical methods based on ranks.
Holden Day Inc.
Mcgraw Hill International Book Company.

LING R. F. (1974) Comparison of several algorithms for
computation means and variances. J. Amer. Stat. Assoc. 69,
859-866.

(1978) A study of the accuracy of some
approximations for t, x 2 , and F tail probabilities.
J. Amer. Stat. Assoc. 73, 274-283.

MICKEY M. R. and BROWN H. B. (1966) Bounds on the distribution
function of Behren-Fisher statistics. Ann. Math Stat. 37,
639-642

MIFSUD C. J. (1963) Algorithm 154 : Combination in
lexicographical order. Comm. Assoc. Comp. Mach. 6, 3, 103.

MURPHY B. P. (1967) Some two Sample tests when the variances
are unequal : A simulation study. Biometrika, 54, 679-683.

MORAN P. A. P. (1980) Calculation of the normal distribution
function. Biometrika, 67, 675-676.

NEELY P. H. (1966) Comparison of several algorithms of
computation of means, standard deviations and correlation
coefficients. Comm. Assoc. Comp. Mach. 7, 496-499.

NELDER J. A. (1976) Algorithm AS 96 : A simple algorithm for
scaling graphs. App. Stat. 25,]., 94-96.

PAULSON E. (1942) An approximation normalization of the
analysis of variance distribution. Ann. Math. Stat. 13,
233-235.

PAGE E. S. and WILSON L. B. (1979)
An introduction to computational combinatorics.
Cambridge Computer Science Text 9.

PEARSON E. S. and HARTLEY H. 0. (Eds.) (1972)
Biometrika tables for statisticians, Volume 2.
Cambridge University Press.

, D' AGOSTINO R. B. and BOWMAN K. 0. (1977) Tests
for departure from normality : Comparison of power.
Biometrika, 64, 231-246.

and PLEASE N. (1975) Relation between the shape
of population distribution and the robustness of four simple
statistics. Biometrika, 62, 223-241.

- 91 -

PITTNER P. M. (1981) An algorithm for the Mann-Whitney U-test.
Biometrical J. 23, 1, 105-107.

POSTEN H. A. (1978) The robustness of the two-sample t-test
over the Pearson-system. J. Stat. Comp. Simul. 6, 295-311.

(1979) The robustness of the one sample t-test
over the Pearson-system. J. Stat. Comp. Simul. 9, 133-149.

PRATT J. W. (1959) Remarks on zeros and ties in the Wilcoxon
Signed-Rank procedures. J. Amer. Stat. Assoc. 54, 655-667.

(1964) Robustness of some procedures for the two
sample location problem. J. Amer. Stat. Assoc. 59, 665-680.

and GIBBONS J. D. (1981)
Concepts of nonparametric theory.
Springer series in statistics, Springer-Verlag.

RACTCLIFFE J. F. (1968) The effect on the t-distribution of
non-normality in the sampled population. App. Stat. 17, 42-48.

REID A. J. and LEMON J. S. (1980) A review of interactive
statistical packages in British universities and polytechnics.
COMPSTAT 80, Proced. in Comp. Stat. Physica-Verlag.Wien.

REINGOLD E. M., NIEVERGELT J. and DEO N. (1977)
Combinatorial algorithms.
theory and practice.
Prentice-Hall, Inc. Englewood, Cliff,
New Jersey 07632.

SAIIAI H. and ThOMPSON W. 0. (1974) Comparisons of approximations
to percentiles of t, x2 and F-distributions.
J. Stat. Comp. Simul. 3, 81-93.

SALES D. J. (1980) Testing for inconsistent uses of variates
in regression models. COMSTAT 80, Proceed. in Conp. Stat.
Physica-Verlag Wein.

SCHOR S. and KARTEN I. (1966) Statistical evaluation of
medical journal manuscripts. J. Amer. Med. Assoc. 195,
1123-1127.

SCHEFFE H. (1959)
The analysis of variance.
John Wiley & Sons In. New York.

SEBER C. A. F. (1980)
The linear hypothesis : a general theory.
Griffin's Statistical Monographs and Courses No. 19.
(second edition).

SHAMOS M. I. (1976) Geometry and Statistics : Problems at the
interface, in Algorithm and Complexity new directions and
recent results. Edited by Traub J. F., 251-280.

- 92 -

SHAPIRO S. S. and WILK M. B. (1965) An analysis of variance
test of normality (complete sample). Biometrika, 52, 591-611.

and ------ (1968) Approximation for the null
distribution of the W-statistic. Technometrics, 10, 861-866.

and - - - - - and CHEN M. J. (1968) A
comprehensive study of various tests for normality.
J. Amer. Stat. Assoc. 63, 1343-1372.

SHEN M. K. (1962) On the generation of permutations and
combinations. BIT, 2, 228-231.

SINGLETON R. C. (1969) An efficient algorithm for sorting with
minimal storage [Ml]. Comm. Assoc. Comp. Mach. 12, 185-187.

STIGLER S. M. (1977) Do robust estimators work with real data ?
(with discussion). Ann. Stat. 5, 1055-1098.

STIRLING W. D. (1981) Algorithm AS 168 : Scale selection and
formatting. App. Stat. 30, 339-344.

STOLINE M. R. (1981) The status of multiple comparisons in
one-way ANOVA designs. The Amer. Stat. 35, 134-141.

THAYER R. P. and STORER R. F. (1969) Algorithm AS 21 : Scale
selection and formatting. App. Stat. 30, 3, 339-344.

VERDOOREN L. R. (1963) Extended tables of critical values for
Wilcoxon's test statistic. Biometrika, 50, 177-186.

WALLACE D. L. (1959) Simplified Beta-approximations to the
Kruskal-Wallis H-test. J. Amer. Stat. Assoc. 54, 225-230.

WELCH B. L. (1947) The generalization of "student" problem
when several different population variances are involved.
Biometrika, 34, 28-35.

(1949) Further note on Aspin's tables and on
certain approximation to the tabled function. Biometrika,
36, 293-296.

WELFORD B. P. (1962) Note on a method for calculating
corrected sums of squares and products. Technometrics, 4,
419-420.

WETHERILL C. B. (1960) The Wilcoxon test and non-null
hypothses. J. Roy. Stat. B, 27, 402-418.

WILK M. B. and SHAPIRO S. S. (1968) The joint assessment of
normality of several independent samples. Technometrics, 10,
825-839.

YOUNGS E. A. and CRAMER E. M. (1971) Choice of sums and sums
of product algorithms. Technometrics, 13, 657-665.

APPKNDIX : PROGRAM LISTING AND EXAMPLES

PROGRAM LISTING

PROGRAM MEANPROGRAN(DATAKIND.TEXT,INFORI4.TEXT,PAIRED.TEXT,RANDOM.TEXT,
BIASED.TEXT,CONNECT.TEXT,ORDER.TEXT,EXPLAIN.TEXT,
SHAPWILK.3TO30,SHAPWILK3 1T050,ADDCONST.TEXT);

(*$S-I-*) (*SWAppING MODE FOR MORE SPACE*)
(*************************************)
(*
(* A PROGRAM FOR ONE EFFECT ANALYSIS *)
(* BY CHENG-TAI GAN JUNE, 1982. 	*)
(*************************************)

USES TRANSCEND (*LIBRARY ROUTINES FOR TRANSCENTAL FUNCTIONS*);

CONST MAXGROUP= 20; 	(*MAXIMTJM NUMBER OF GROUP *)
LIMIT = 400; 	(*MAXIMUM NUMBER OF ALL DATA*)

TYPE GROUPINDEX 	= 1..MAXGROUP;
DATAINDEX 	= 1..LIMIT;
DATASET 	= ARRAY [DATAINDEX] OF REAL;
GROUPSIZE 	= ARRAY [GROUPINDEX] OF O..LIMIT;
GROUPSTAT 	= ARRAY [GROUPINDEX] OF REAL;
DATATYPE 	= (SCORE,CONTINUOUS ,COUNT,BINOMIAL);
TYPEOFTRANSFORNATION = (IDENTITY, SQUAREROOT,LOGARITHMIC ,RECIPROCAL,

ARCSINE);

STATISTIC = RECORD
MEAN 	GROUPSTAT;
MEDIAN 	: GROUPSTAT;
VARIANCE : GROUPSTAT;
CV 	REAL;

Gi 	: GROUPSTAT;

G2 	: GROUPSTAT;

MINIMUM : GROUPSTAT;

MAXIMUM : GROUPSTAT;

(*M[I] 	=MEAN OF GROUP I
(*MEDIAN[I] =MEDIAN OF GROUP I *)
(*VARJANCE[I]VARIANCE OF GROUP 1*)
(*COEFFICIENT OF VARIANTION
(*oF ALL GROUP VARIANCES
(*G1[I]FISHER'S Gi-STATISTIC OF *)
(*GROUP I
(*G2 [I]FISHER'S G2-STATISTIC OF *)
(*GROUP I
(*MINIMUM[I]MINIMUM OF DATA FOR *)
(*GROUp I
(* j(IWJM[I]}4AXIWJM OF DATA FOR *)
(*GROUP I

END;

TEST = RECORD
NAME 	: STRING; (*NAME OF TEST STATISTIC

(*FOR ELEMENTARY CALCULATIONS, *)
(*NAME'T_STATISTIC' FOR CONS- *)
(*TRUCTING CONFIDENCE INTERVAL *)

VALUE 	: REAL; (*VALUE OF TEST STATISTIC *)
RANKSUM 	: GROUPSTAT; (*RANKSUM[I]=RANKSUM OF GROUP I)

(*FOR ONE-SAMPLE PROBLEMS,
(*pSUM[21 IS THE SUM OF RANKS *)
(*OF NEGATIVE NUMBERS

TIECORR 	: REAL; (*TIE CORRECTION FACTOR FOR RANK *)
(*STATISTIC *)

RANKSUMTEST : BOOLEAN; (*TRUE ONLY IF A RANK STATISTIC *)
(*Is USED

RANDOMTEST 	: BOOLEAN; (*TRUE ONLY IF RANDOMIZATION
(*TEST IS USED *)

DISTRIBUTION: (TDISTRIBUTION,FDISTRIBUTION,KRUSKALWALLIS,
SIGNEDWILCOXON , TWOWILCOXON ,RANDOM);

DFN 	: INTEGER;

DFD 	: INTEGER;

NOOFNONZERO : INTEGER;

PVALUE 	: REAL;

SIGLEV 	: REAL;

VALID 	: BOOLEAN;

END;

INTERVAL = RECORD
UPPERLIMIT : REAL;
LOWERL IMIT : REAL;

END;

(*DEGREES OF FREEDOM OF NUMERATOR*)
(*FOR PARAMETRIC TESTS
(*DEGREES OF FREEDOM OF DENOMINA_*)
(*TOR FOR PARAMETRIC TESTS 	*)
(*No. OF DATA NOT EQUAL TO ZERO *)
(*FOR PURPOSE OF APPROX. P-VALUE *)
(*OF SIGNED RANK WILCOXON TEST *)
(*ONE_SIDED P-VALUE OF TEST
(*STATISTIC
(*SIGNIFICANCE LEVEL, TWO-SIDED *)
(*FOR ONE OR TWO SAMPLE PROBLEMS *)
(*TRUE IF TEST IS VALID, FALSE *)
(*OTHERWISE

(*uppER LIMIT OF CONFIDENCE LEVEL*)
(*LOWER LIMIT OF CONFIDENCE LEVEL*)

GRAPH 	= RECORD
FREQUENCY 	: ARRAY [GROUPINDEX,1..25] OF INTEGER;

(*FREQUENCY[I,K]FREQUENCY OF *)
(*GROUp I IN INTERVAL K 	*)

NOOFINTERVAL
HEIGHT
STEP
MAXMIDPOINT :
DECPL
REPRESENTCASE:

END;

1..25; (*NO OF INTERVAL OF HISTOGRAMS *)
1..60; (*HEIGHT OF HISTOGRAM 	 *)
REAL; 	(*STEP SIZE OF INTERVALS
REAL; 	(*MAXIMIJM OF MIDPOINTS ON SCALE *)
INTEGER;(*NO. OF DECIMAL PLACES ON SCALE*)
INTEGER;(*NO. OF CASES AN * REPRESENTS *)

VAR
DESCRIPTIVESTATISTIC 	STATISTIC;
TESTSTATISTIC 	 TEST;
CONFIDENCEINTERVAL 	: INTERVAL;
HISTOGRAM : GRAPH;
DATA : DATASET; 	(*DATA OF ALL GROUPS WITH ORIGINAL ORDER
X 	: DATASET; (*DUPLICATE OF DATA, BUT IN ASCENDING ORDER BY *)

(*GRoup, OR USE TO CARRY INFORMATION

GPSIZE 	: GROUPSIZE; (*GPSIZE[I]=GROUP SIZE OF GROUP I
DATAKIND : DATATYPE; (*KIND OF DATA IS BEING PRESENTED

GROUP, (*NUMBER OF GROUP, SET TO 1 IF PAIRED-GROUPS
TOTAL, (*TOTAL NUMBER OF DATA CASES
MINGPSIZE, (*MINIMUM OF GROUP SIZES OF ALL GROUPS *)
MAXGPSIZE, (*MAXIMUM OF GROUP SIZES OF ALL GROUPS *)
GPSIZEALLOW,(*MAXIMUM OF GROUP SIZE ALLOWED FOR EACH GROUP
OUTLIER, (*TOTAL NUMBER OF OUTLIERS OF GROUPS
PROBLEM, (*PROBLEM NUMBER WHICH USERS CHOOSE
DIFFPAIR (*TOTAL NUMBER OF PAIRS OF GROUPS WITH

(*DIFFERENCES IN MEANS
INTEGER;

BSS, (*BETWEEN GROUPS SUM OF SQUARES
WSS, (*WITHIN GROUPS SUM OF SQUARES
MSE, (*MEAN SQUARE ERROR
ADDCONST, (*NUMBER ADDED TO EACH DATA POINT BEFORE MAKING

(*TFSFoPTION
MINDATA, (*MINIMUM OF ALL DATA
THEOMEAN, (*THEORETICAL MEAN TO BE TESTED
KURTOSIS (*KURTOSIS OF RESIDUALS OF ALL GROUPS *)

REAL;

NORMAL, (*TRUE ONLY IF ALL DATA FOR GROUPS ARE NORMAL *)
SYMMETRY, (*TRUE ONLY IF ALL DATA ARE NORMAL OR DATA FOR *)

(*EVERY GROUP IS SYMMETRICAL *)
EQVARIANCE, (*TRUE ONLY IF VARIANCES ARE 'EQUAL'
PAIRED, (*TRUE ONLY IF DATA ARE PAIRED OBSERVATIONS
EXAMINEDATA, (*CONTROL TO ASK FOR EXAMINING DATA AND/OR

(*TESTING ASSUMPTIONS IF NEEDED
GETTEST, (*CONTROL TO ASK FOR COMPUTING TEST STATISTIC *)

(*TRUE IF NEEDED
GETPVALUE, (*CONTROL TO ASK FOR COMPUTING P-VALUE

(*TRUE IF NEEDED *)
WANTTRANSFORM, (*CONTROL TO ASK FOR TRANSFORMING DATA *)

(*TRUE IF WANTED
TESTTHEOMEAN, (*TRUE ONLY IF TESTING THEORETICAL MEAN *)
TAKEDIFFERENCE, (*TRUE IF DATA ARE PAIRED OR TWO DATA FROM A *)

(*CASE ARE COLLECTED, FALSE OThERWISE
TOOMANYEQ, (*TRUE IF AT LEAST ONE GROUP HAS HALF OR MORE OF *)

(*ITS DATA EQUAL, FALSE OTHERWISE
RESUME, (*TRUE IF PROGRAM OR ANALYSIS IS CONTINUED,

(*FALSE OTHERWISE *)
NONSTOP (*CONTINUE INFINITELY UNTIL OUT OF THIS PROGRAM *)

(*ALWAYS TRUE
BOOLEAN;

TRANSFORM : TYPEOFrRANSFORNATION;

FUNCTION T(I,J : INTEGER) : INTEGER;

(*4AppING MULTIPLE ARRAY INTO ONE DIMENSIONAL ARRAY DATA, OR x*)

FORWARD;

PROCEDURE QUIT(S : STRING);

(*CO}414.ND: 'QUIT'*)

FORWARD;

FUNCTION HELP(VAR S : STRING) : BOOLEAN;

(*CO4.ND: 'HELP'*)

FORWARD;

FUNCTION REJECT(VAR S : STRING) : BOOLEAN;

(*CO44.ND: 'REJECT'*)

FORWARD;

FUNCTION ENDING(VAR S : STRING) : BOOLEAN;

(*INPUT TERMINATOR: 'END'*)

FORWARD;

FUNCTION MATCHSTR(STR 	: STRING;
VAR SOURCE : STRING) : BOOLEAN;

(*TCHING STR WITH SOURCE*)

FORWARD;

PROCEDURE READSTR(HELPREJVALID BOOLEAN;
VAR ANSWER 	: STRING);

(*PROCEDURE FOR READING STRING*)

FORWARD;

PROCEDURE READINTEGER(MIN)MAX 	: INTEGER;
HELPREJVALID BOOLEAN;
VAR S 	: STRING;
VAR DATUM 	INTEGER);

(*pROC)jJRE FOR READING INTERGER *)

FORWARD;

PROCEDURE GETDATA(PROMPT,FORM : STRING;
LOWERBOUND,UPPERBOUND : REAL;
VAR S 	: STRING;
VAR DATUM : REAL);

(*PROCEDURE FOR READING DATA, REAL AND INTEGER*)

FORWARD;

PROCEDURE READFILE(FILENANE STRING);

(*READING FILENANE FROM DISK AND OUTPUT IT ON SCREEN*)

FORWARD;

(*$IQUESTION .TEXT*)

(* $IREADDATA. TEXT*)

(*$IsTAT.TT*)

(*$IASSuMIST.TERT*)

(*$I CALCULATE.TEXT*)

(*$I#5 :RESULT.TEXT*)

FUNCTION T;

(*DECLARED FORWARD..PARA:(I,J : INTEGER*)

BEGIN
T:=(I_1)*GPSIZEALLOW+J;

END (*T*);

PROCEDURE QUIT;

(*DECRED FORWARD..PARA:(S : STRING*)

BEGIN
IF MATCHSTR('QUIT') S) OR MATCHSTR('qult',S) THEN

EXIT(MEANPROGRAM);
END (*QUIT*);

FUNCTION HELP;

(*DECLARED FORWARD..PARA:(VAR S : STRING*)

BEGIN
HELP:=MATCHSTR('HELP',S) OR MATCHSTR('he1p',S);

END (*HELP*);

FUNCTION REJECT;

(*DECRED FORWARD..PARA:(VAR S : STRING*)

BEGIN
REJECT:=MATCHSTR('REJ' ,S) OR MATCHSTR('rej' ,S);

END (*REJECT*);

FUNCTION ENDING;

(*DECLARED FORWARD. .PARA:(VAR S : STRING*)

BEGIN
ENDING:=MATCHSTR('END' ,S) OR MATCHSTR('end' ,S);

END (*ENDING*);

FUNCTION MATCHSTR;

(*DECRED FORWARD..PARA:(STR :STRING; VAR SOURCE : STRING*)

VAR MATCH:BOOLEAN;

BEGIN
MATCH:=POS(STR, SOURCE)=1;
IF MATCH THEN

SOURCE:=STR; (*STRIP SOURCE TO STR*)
MATCH STR: =MATCH;

END (*MATCHSTR*);

PROCEDURE READSTR;

(*DECLARED FORWARD..PARA:(HELPREJVALID : BOOLEAN; VAR ANSWER : STRING*)

BEGIN
(*$I_*) 	(*T1Jp,N I/O CHECK OFF*)
REP EAT

WRITE(' (Y OR N)
READLN(AN SW ER) ;
QUIT(ANSWER);
IF HELPREJVALID AND (REJECT(ANSWER) OR HELP(ANSWER)) THEN

EXIT(READ STR)
ELSE IF ENDING(ANSWER) OR REJECT(ANSWER) THEN

WRITELN('YOU CANNOT USE ',ANSWER,' HERE.');
IF ANSWER='y' THEN 	(*ALWAYS RETURN ANSWER IN CAPITAL LETTERS*)

ANSW ER: =
ELSE IF ANSWER='n' THEN

ANSWER:='N';
UNTIL (ANSWER='Y') OR (ANSWER='N');
WRIT EL N
(*$I+*) (*1/0 CHECK BACK ON*)

END (*READ5TR*);

PROCEDURE READINTEGER;

(*DECLARED FORWARD..PARA:(MIN,MAX : INTEGER; HELPREJVALID : BOOLEAN;*)
(* 	 VAR S : STRING; VAR DATUM : INTEGER 	*)

(*MIN & MAX ARE POSITIVE INTEGERS AND MIN<MAX 	 *)

VAR P,Q,TFI1PDATUM : REAL;

BEGIN
P:=MIN-0.5;
Q:=MAX+0.5;
REPEAT

(*SET BOUNDS TO LARGE VALUE TO FREE THE BOUND CHECK IN PROCEDURE*)
(*GETUATA. *)
GETDATA('TYPE IN A NUMBER. ','INTEGER',-1.OE37,1.OE37,S,TEMPDATUM);
IF HELPREJVALID AND (REJECT(S) OR HELP(S)) THEN

EXIT (READINTEGER)
ELSE IF ENDING(S) OR REJECT(S) THEN

WRITELN('YOU CANNOT USE ',S,' HERE.')
ELSE IF (P<TEMPDATUM)<>(TEMPDATUM<Q) THEN

WRITELN('MUST BE BETWEEN ',MIN,' AND ',MAX,' INCLUSIVE.');
UNTIL (P<TE24PDATUM)=(TFNPDATUM<Q);
DATUM: =ROUND(TEMPDATUM);
WRIT FiN;

END (*READINTEGER*);

PROCEDURE GETDATA;

(*DECLARED FORWARD..PARA:(PROMPT,FORM : STRING 	 *)
(* 	 LOWERBOUND,UPPERBOUND : REAL 	*)

VAR S : STRING; VAR DATUM : REAL*)

VAR SIGN,LEN,I,SPACE : INTEGER;
BLANK,SUCCESS : BOOLEAN;
P : REAL;

PROCEDURE NEXTCHAR;

BEGIN
SUCCESS :=LEN=I;
IF NOT SUCCESS THEN

I:=I+1;
END (*NE)(TCHAR*);

BEGIN
(*$I_*) (*TUpJ I/O CHECK OFF*)
REPEAT

REPEAT
WRITE(PROMPT);
READLN(S);
LEN:=LENGTH(S);
BLANK: =TRUE;
IF LEN>30 THEN

WRITELN('>>ENTRY TOO LONG.')
ELSE

WHILE (LEN>O) AND BLANK DO
IF S[LEN]=' ' THEN 	(*ELIMINATE

LEN: =LEN-1
ELSE

BLANK:=FALSE;
UNTIL NOT BLANK;

QUIT(S);
IF HELP(S) OR ENDING(S) OR REJECT(S) THEN

EXIT(GETDATA);

(*START CONVERT S TO A NUMBER, DATUM*)

SPACES AT THE BACK*)

SUCCESS :=FALSE;
DATUM: =0;
SIGN: = 1;

WHILE S[I]=' ' DO
I:=I+1;

SPACE :=I-1;
IF I<LEN THEN

IF (S[I]='-') THEN BEGIN
SIGN:=-1;
I:=I+1;

END ELSE IF S[i]='-e-' THEN
I: =1+1;

(*SIGN1 MEANS POSITIVE*)

(*ELIMINATE SPACES IN THE FRONT*)

(*NUMBER OF SPACES*)
(*CHK SIGN*)

(*INTEGPJ PART*)
WHILE (NOT SUCCESS) AND (S[I] IN ['0'..'9'1) DO BEGIN

DATUM:=10*DATUM+ORD(S[I])_ORD('0');
NEXTCHAR;

END;

(*FFCTION PART*)
IF FORM='NUMERIC' THEN BEGIN

IF (S[I]='.') AND (LEN-SPACE>1) THEN
NEXTCHAR;

P:=1.O;
WHILE (NOT SUCCESS) AND (SEll IN ['0'..'9'1) DO BEGIN

P:=P*1.OE_1;
DATUM:=DATUM+(ORD(S[I])_ORD('O')) *P;
NEXTCHAR;

END;
END;

IF SUCCESS THEN BEGIN
DATUM: =SIGN*DATUM;
SUCCESS :=((LOWERBOUND<=DATUM)=(DATUM<=UPPERBOUND));
IF NOT SUCCESS THEN

WRITELN('MUST BE BETWEEN ',LOWERBOUND,' AND' ,UPPERBOUND: 10:2,
INCLUSIVE.');

END ELSE BEGIN 	 (*REPORT ERROR*)
WRITELN(' " :(LENGTH(PROMPT)+I),' ERROR I ');
WRITELN(FORN,' OR COMMAND OR INPUT TERMINATOR EXPECTED.');

END;
UNTIL SUCCESS;
(*$I+*) (*1/0 CHECK BACK ON*)

END (*GETDATA*);

PROCEDURE READFILE;

(*DECJED FORWARD..PARA:(FILENAME : STRING*)

VAR F : TEXT;
S : STRING;

BEGIN
(*$I+*) (*1/0 CHECK ON*)
RESET(F,FILENAME);
WHILE NOT EOF(F) DO BEGIN

READLN(F,S);
WRITELN(S);

END;
CLOSE(F);

END (*R1JFILE*);

BEGIN 	 (* 	MAIN PROGRAM
NONSTOP :=TRUE;
WHILE NONSTOP DO BEGIN

QUESTION(TESTSTATISTIC,
PROBLEM ,GROUP,
THEOMEAN ,ADDCONST,
DATAKIND,
TRANSFORM,
WANTTRANSFORM ,PAIRED , TAKED IFFERENCE,
TESTTHEOMEAN ,GETTEST ,GETPVALUE,RESUME);

IF RESUME THEN
READDATA(DATA,

GPSIZE,
GROUP, TOTAL, GPSIZEALLOW,
DATAKIND,
THEOMEAN,
PAIRED ,TAKEDIFFERENCE,
TESTTHEOMEAN ,RESUME);

WHILE RESUME DO BEGIN
EXAMINEDATA :=TRUE;
RESUME :=FALSE;

BASICSTAT (DATA,X,
DESCRIPTIVESTATISTIC,
TESTSTATISTICS,
HISTOGRAM,
GPSI ZE,
GROUP,TOTAL,
OUTLIER,MINGPSIZE ,MAXGPSIZE,
BSS , WSS ,MS E,KURTOSIS ,MINDATA, ADDCONST,
TRANSFORM,
WANTTRANSFORM ,PAIRED, TOOMANYEQ);

REPEAT
ASSUMPTIONDISTRIBUTION(EXAMINEDATA, GETPVALUE,

X,
DESCRIPTIV ESTATI STIC,
TESTSTATISTIC)
GP SIZE,
PROBLEM ,GROUP , TOTAL,
BSS,WSS,MSE,KURTOSIS,
NORMAL, EQ VARIANCE , SYMMETRY);

CALCULATION(GETTEST,
DATA,X,
DESCRIPTIVESTATISTIC,
TESTSTATISTIC,
CONFIDENCEINTERVAL,
TRANSFORM,
GP SIZE,
DIFFPAIR,
BSS,MSE,
GROUP ,TOTAL ,MINGP SIZE,
MAXGPSIZE ,GPSIZEALLOW,
NORMAL , EQ VARIANCE,
SYMMETRY,
TESTTHEOMEAN,
DATAKIND);

UNTIL NOT GETPVALUE;

PRI NTRESULT S (DATA, X,
DESCRIPTIVESTATISTIC,
TESTSTATISTIC,
HISTOGRAM,
CONFIDENCEINTERVAL,
GPSIZE,
DAT AKIND,
PROBLEM ,GROUP, TOTAL , OUTLIER, DIFFPAIR,
THEOMEAN ,BSS , WSS ,MSE,MINDATA,ADDCONST,
TRANSFORM,
PAIRED , TAKED IFFERENCE ,NORMAL , SYMMETRY,
TESTTHEOMEAN , TOOMANYEQ,
WANTTRANSFORM ,RESUME);

IF RESUME THEN BEGIN (*POSSIBLE ONLY FOR PROBLEM 2*)
GETTEST :=TRUE;
GETPVALUE :=TRUE;

END;
END;

END;
END (*IN PROGRAM*).

SEGMENT PROCEDURE QUESTION(VAR TESTSTATISTIC : TEST;
VAR PROBLEM,GROUP : INTEGER;
VAR THEOMEAN,ADDCONST : REAL;
VAR DATAKIND 	: DATATYPE;
VAR TRANSFORM 	: TYPEOFTRANSFORMATION;
VAR WANTTRANSFORM,PAIRED,TAKEDIFFERENCE : BOOLEAN;
VAR TESTTHEOMEAN,GETTEST,GETPAVLUE 	BOOLEAN;
VAR RESUME 	 BOOLEAN);

VAR POINT : INTEGER; (*DATA POINT PER CASE *)

PROCEDURE CONSULTSTATISTICIAN;

FORWARD;

PROCEDURE DEFINITION;

FORWARD;

PROCEDURE PAUSE;

(*pAUSE A WHILE TO INSTRUCT USERS*)

FORWARD;

PROCEDURE CLEAR;

BEGIN
PAIRED :=FALSE;
RESUME :=FALSE;
THEOMEAN : =0.0;
ADDCONST :=0.O;
TRANSFORM: =IDENTITY;
WANTTRANSFORN: =FALSE;

END;

PROCEDURE CHOOSEPROBLEM(VAR PROBLEM : INTEGER);

VAR DUMMYSTR : STRING;

BEGIN
PAGE(OUTPUT);
WRITELN;
WRITELN('THIS PROGRAM CAN DEAL WITH THE FOLLOWING PROBLEMS.');
WRITELN;
WRITELN('WHICH ONE OF THESE IS YOUR PROBLEM ?');
WRIT ELN;
WRITELN('l. CALCULATIONS OF MEAN, STANDARD DEVIATION, MEDIAN, RANGE,');
WRITELN(' 	NO TESTING HYPOTHESIS.');
WRITELN('2. COMPARISON OF MEANS OR ONE WAY ANALYSIS OF VARIANCE.');
WRITELN('3. INFORMATION ABOUT THIS PROGRAM.');
WRITELN('4. BRIEF EXPLANATIONS OF STATISTICS.');
WRITELN('5. STOP.');
READINTEGER(1 ,5 ,FALSE,DUMMYSTR,PROBLEM);

END;

PROCEDURE GETINFORMATION(FIRSTQUES : INTEGER;
VAR GROUP,POINT : INTEGER;
VAR DATAKIN]) : DATATYPE;
VAR PAIRED,RESUME : BOOLEAN);

VAR NOQUESASK
QUESNO
DU}1MYINT
QUESASK
DUMMYSTR, R
KINDOFDATA

0..10;

INTEGER;
ARRAY [1..10] OF 1..10;
S,U,V,W : STRING;

PROCEDURE ANSWER(L,U 	 INTEGER;
HELPFILENAME 	: STRING;
VAR QUESNO,DATUM : INTEGER;
VAR INFORM 	: STRING);

BEGIN
IF QUESNO<3 THEN

READINTEGER(L , U, TRUE, INFORM, DATUM)
ELSE

READSTR(TRUE, INFORM);
IF HELP(INFORM) THEN BEGIN

QUESNO:=QUESNO-1;
DEFINITION;
IF HELPFILENAME<>'NOHELP' THEN

READFILE(HELP FILENAME);
END ELSE IF REJECT(INFORN) THEN BEGIN

IF QUESNO=FIRSTQUES ThEN
EXIT(GETINFORMATION);

QUESNO:=QUESASK[NOQUESASK] -1 ;
NOQIJESASK:=NOQIJESASK-1;

END ELSE BEGIN
NOQUESASK : =NOQUESASK+1;
QUESASK[NOQUESASK] : =QUE SNO;

END;
WRITELN;

END (*5WER*);

PROCEDURE GETDATAKIND(VAR DATAKIND : DATATYPE);

VAR KINDOFDATA :

BEGIN
WRITELN('WHAT KIND OF DATA DO YOU HAVE ?');
WRITELN('l. SCORES ASSIGNED TO CASES, BUT NOT BINARY DATA.');
WRITELN('2. MEASUREMENT OR CONTINUOUS SCALE DATA.');
WRITELN('3. COUNTS.');
WRITELN('4. BINOMIAL PROPORTIONS.');
ANSWER(1 , 4, 'DATAKIND .TEXT' ,QUESNO ,KINDOFDATA, DUMMYSTR);
CASE KINDOFDATA OF

DATAKIND:=SCORE;
DATAKIND : =CONTINUOUS;
DATAKIND:=COUNT;
DATAKIND : =BINOMLAL;

END;
END (*GETDATAKIND*);

PROCEDURE cHECKRANDOMIZATION(VAR QUESNO : INTEGER; VAR S : STRING);

BEGIN
CASE QUESNO OF

WRITELN('DO YOU ALLOCATE TREATMENTS TO CASES AT RANDOM');
WRITELN('DO YOU ASSIGN CASES TO TREATMENTS AT RANDOM');
BEGIN

WRITELN('DO YOU DIVIDE CASES RANDOMLY INTO GROUPS AND');
WRITE('THEN ALLOCATE TREATMENTS TO GROUPS');

END;
END;
IF QUESNO<7 THEN

WRITE('AND THEN FORM GROUPS FROM CASES WITH THE SAME TREATMENT');
WRITE(' ?');
ANSWER(O,O,'RANDOM.TEXT' ,QUESNO,DUMMYINT,S);

END (*CHECKp.AJDOMIZATION*);

BEGIN
S:='Y';
R:='N';
NOQUESASK : =0;
QUESNO : =FIRSTQUES;
WHILE QUESNO<=10 DO BEGIN

CASE QUESNO OF
GETDATAKIND(DATAKIND);
BEGIN

WRITELN('HOW MANY GROUPS DO YOU HAVE ?
ANSWER(1 ,MAXGROUP, 'NOHELP' ,QUESNO ,GROUP ,DUMMYSTR);

END;
BEGIN

WRITELN('HOW MANY DATA DO YOU COLLECT FROM EACH CASE ?
WRITELN('l. ONE.');
WRITELN('2. TWO.');
WRITELN('3. MORE THAN TWO OR UNEQUAL.');
ANSWER(1 ,3, 'NOHELP' ,QUESNO,POINT,DUMMYSTR);

END;

4: 	IF (GROUP=2) AND (POINT=1) THEN BEGIN
WRITELN('ARE YOUR OBSERVATIONS PAIRED ?');
ANSWER(O,O, 'PAIRED.TEXT' ,QUESNO,DUMHYINT,W);
PAIRED:=W='Y';

END;
5,6,7: IF (NOT PAIRED) AND (GROUP>1) THEN BEGIN

S:='N';
CHECKRANDOMIZATION(QUESNO , S);
IF S='Y' THEN

QUESNO:=7;
END ELSE

S:='Y';
BEGIN

WRITELN('IS IT POSSIBLE THAT THERE ARE FACTORS OTHER',
THAN');

WRITELN('THE ONE WHICH YOU WISH TO INVESTIGATE WHICH MAY'
);

WRITELN('LEAD TO A DIFFERENCE IN YOUR DATA ?');
ANSWER(O,O,'BIASED.TEXT' ,QUESNO,DUHMYINT,R);

END;
BEGIN

IF (GROUP>1) AND (NOT PAIRED) THEN
WRITE('BETWEEN GROUPS OR WITHIN A GROUP,

WRITELN('IS THERE ANY CONNECTION BETWEEN');
IF PAIRED THEN

WRITE('PAIRS ?')
EL SE

WRITE('CASES ?');
ANSWER(O,O, 'CONNECT.TEXT' ,QUESNO,DUHMYINT,U);

END;
BEGIN

WRITELN('IS THE ORDER IN WHICH YOU COLLECT');
WRITE('YOUR DATA IMPORTANT ?');
ANSWER(O,O, 'ORDER.TEXT' ,QUESNO,DUMMYINT,V);

END;
END;
QUESNO:=QUESNO4-1;

END;
RESUME :=(POINT<=2)

AND (S='Y')
AND (R='N')
AND (U='N')
AND (V='N');

IF NOT RESUME THEN
CONSULTSTATISTICIAN;

END (*GETINFOTION*);

PROCEDURE PROCESSINFORMATION(VAR TESTSTATISTIC : TEST;
VAR DATAKIND 	: DATATYPE;
VAR TRANSFORM 	: TYPEOFTRANSFORMATION;
VAR GROUP,POINT,PROBLEM : INTEGER;
VAR TESTTHEOMEAN,GETTEST,GETPVALUE : BOOLEAN;
VAR PAIRED) TAKEDIFFERENCE : BOOLEAN);

BEGIN
WITH TESTSTATISTIC DO BEGIN

RANDOMTEST:=FALSE;
RANKSUMTEST :=FALSE;
IF PROBLEM=1 THEN BEGIN

TESTTHEOMEAN: =FALS E;
TAKEDIFFERENCE :=FALSE;
SIGLEV:=0.05;
NAHE:='T-STATISTIC';
GETTEST :=FALSE;
GETP VALUE :=FALSE;

END ELSE IF PROBLEM=2 THEN BEGIN
TESTTHEOMEAN:=(GROUP=1) AND (POINT=1);
GETTEST : =TRUE;
GETPVALUE :=TRUE;
IF PAIRED THEN

GROUP:=1; 	(*RESET GROUP TO 1*)
TAKEDIFFERENCE:=PAIRED OR (POINT=2);
IF DATAKIND=BINOMIAL ThEN

TRANSFORM: =ARCSINE;
END;

END;
END;

PROCEDURE CONSULTSTATISTICIAN;

(*DECLARED FORWARD*)

BEGIN
WRITELN;
WRITELN('CARE ABOUT YOUR DATA IS NECESSARY.');
WRITELN('PLEASE CONSULT YOUR STATISTICIAN.');
WRITELN('TYPE RETURN KEY TO CONTINUE.');
READLN;

END (*CONSULTSTATISTICIAN*);

PROCEDURE PAUSE;

(*DECJED FORWARD*)

VAR I : INTEGER;

BEGIN
WRITELN;
WRITELN('TYPE CTRL AND S SIMULTANEOUSLY TO STOP OUTPUT ON TILE SCREEN.');
WRITELN('HIT ANY KEY TO CONTINUE.').;
FOR I:=1 TO 12000 DO (*NOTHING, JUST PAUSE A WHILE*)

END (*pAUSE*);

PROCEDURE DEFINITION;

BEGIN
WRITELN('DEFINITIONS
WRITELN('l: A ''CASE" IS ONE SINGLE EXPERIMENTAL SUBJECT, E.G. A PATIENT.'

);
WRITELN('2: A ''GROUP" IS A COLLECTION OF CASES, E.G. 10 PATIENTS.');
WRITELN;
WRITELN('COMMANDS : TYPE');
WRITELN(' ''HELP" FOR HELP.');
WRITELN(' ''QUIT" TO STOP.');
WRITELN(' "REJ" FOR IMMEDIATE REJECTION OR BACKWARD ELIMINATION.');
WRITELN;
WRITELN('NOTATIONS
WRITELN(' ''Y" STANDS FOR YES.');
WRITELN(' ''N" STANDS FOR NO.');
WRITELN;

END (*DEFINITION*);

BEGIN 	 (*PROCEDURE, QUESTION*)
CLEAR;
REPEAT

CHOOSEPROBLEM(PROBLEM);
PAGE(OUTPUT);
IF PROBLEM0 THEN BEGIN

WRITELN('PLEASE ANSWER CAREFULLY.');
WRI TELN;
DEFINITION;
WRIT ELN('QUESTIONS BEGIN:-');
WRIT ELN;

END;
CASE PROBLEM OF

BEGIN
GROUP:=1;
POINT := 1;
GETINFORMATION(9,GROUP,POINT,DATAKIND,PAIRED,RESUME);

END;
GETINFOR14ATION(1 ,GROUP ,POINT,DATAKIND ,PAIRED ,RESUME);

3; BEGIN
PAUSE;
READFILE('INFORN.TEXT');
PAUSE;

END;
BEGIN

PAUSE;
READFILE('EXPLAIN.TEXT');
PAUSE;

END;
QUIT('QUIT');

END;
UNTIL RESUME;
PROCESSINFORI1ATION(TESTSTATISTIC,

DATAXIND,
TRANSFORN,
GROUP ,POINT ,PROBLEN,
TESTTHEOMEAN ,GETTEST,GETPVALUE,
PAIRED ,TAKEDIFFERENCE);

END 	 (*QJJESTION*);

SEGMENT PROCEDURE READDATA(VAR DATA DATASET;
VAR GPSIZE : GROUPSIZE;
VAR GROUP,TOTAL,GPSIZEALLOW : INTEGER;
VAR DATAKIND : DATATYPE;
VAR THEOMEAN REAL;
VAR PAIRED,TAKEDIFFERENCE : BOOLEAN;
VAR TESTTHEOMEAN,RESUME : BOOLEAN);

TYPE TEMPDATAARRAY [1..2,1..LIMIT] OF REAL;
PROMPTDATA=ARRAY [1..2] OF STRING;

PROCEDURE VALIDATEDATA(VAR Y : TF24PDATA;
VAR PROMPT : PROMPTDATA;

DATAFORNAT,SUBJECT : STRING;
LOWERBOUND ,UPPERBOUND : REAL;
NOOFSUBJECT,I,L : INTEGER;

VAR ADDITION : BOOLEAN);

(*FOR VALIDATING DATA*)

FORWARD;

PROCEDURE KEYINDATA(VAR Y : TFI4PDATA;
VAR PROMPT : PROMPTDATA;

DATAFORMAT : STRING;
LOWERBOUND,UPPERBOUND : REAL;

VAR I,J,L : INTEGER;
VAR SUBJECT,MESSAGE : STRING;

VERIFY 	: BOOLEAN);

(*FOR INPUTTING DATA*)

FORWARD;

PROCEDURE CALCULDATAGPSIZE(VAR Y : TE24PDATA;
NOOFSUBJECT,I : INTEGER;
TAKEDIFFERENCE : BOOLEAN;

VAR DATA : DATASET;
VAR GPSIZE : GROUPSIZE;

THEOMEAN : REAL);

(*FOR TAKING DIFFERENCES OF OBSERVATIONS IF TWO OBSERVATIONS FROM *)
(*RACf[CASE OR ASSIGNING OBSERVATIONS TO ARRAY DATA AND SAMPLE SIZES*)

FORWARD;

PROCEDURE INSTRUCTION;

(*Hjp INSTRUCTION*)

FORWARD;

PROCEDURE DATAPLEASE;

(*INpUT INSTRUCTION*)

FORWARD;

PROCEDURE NOTICE;

(*GIVE NOTICE TO USERS*)

FORWARD;

PROCEDURE EXPLAINMEAN(DATAKIND : DATATYPE);

(*(pJATIoN FOR USERS *)

FORWARD;

PROCEDURE CHECKGROUPLEFT(NOOFGROUPLEFT INTEGER;
VAR RESUME : BOOLEAN);

(*CHECK THE NUMBER OF GROUPS LEFT*)

FORWARD;

PROCEDURE READINDATA(DATAXIND : DATATYPE;
PAIRED, TAKEDIFFERENCE , TESTTHEOMEAN : BOOLEAN;

VAR GROUP,TOTAL,GPSIZEALLOW : INTEGER;
VAR DATA 	DATASET;
VAR GPSIZE : GROUPSIZE;
VAR THEOMEAN : REAL;
VAR RESUME : BOOLEAN);

(*IN PROCEDURE FOR INPUTTING DATA*)

VAR PROMPT : PROMPTDATA;
Y : TEMPDATA;
LOWERBOUND,UPPERBOUND : REAL;
GPNO,GPACCEPT,GPREJECT,J,K,L,NOOFSUBJECT : INTEGER;
MESSAGE, SUBJECT ,DATAFORNAT : STRING;
ADDITION,NOTALLEQUAL : BOOLEAN;

PROCEDURE SEUPPROMPT;

(*SETTING UP PROMPT FOR DATA*)

BEGIN
SUBJECT:='CASE
IF TAKEDIFFERENCE THEN BEGIN

L:=2;
IF PAIRED THEN BEGIN

SUBJECT:='PAIR ';
PROMPT[1]:='FIRST GROUP
PROMPT[2]:='SECOND GROUP

END ELSE BEGIN
PROMPT[1]:='FIRST OBSERVATION
PROMPT[2]:='SECOND OBSERVATION

END;
END ELSE BEGIN

L:=1;
PRONPT[1] :='OBSERVATION

END;
CASE DATAKIND OF

SCORE, CONTINUOUS : LOWERBOUND : -1.0 E30;
COUNT,BINOMIAL 	: LOWERBOUND:=O;

END;
IF DATAKIND=BINOMIAL THEN BEGIN

UPPERBOUND: =100;
NOTICE;

END ELSE
UPPERBOUND:=1 .0E3O;

IF DATAKIND=COUNT THEN
DATAFORNAT :=' INTEGER'

ELSE
DATAFORNAT :='NU}IERIC';

END (*5UppROMpT*);

BEGIN
S ETU P PROMPT
GPSIZEALLOW:=LIMIT DIV GROUP;
WRITELN('NOTE: 1. NUMBER OF GROUPS = ',CROUP);
WRITELN(' 	2. MAXIMUM NUMBER OF DATA PER GROUP ALLOWED =

GPSIZEALLOW,'.');

DATAPLEAS E;
IF TESTTHEOMEAN THEN

REPEAT
GETDATA('ENTER YOUR THEORETICAL MEAN ','NUMERIC',LOWERBOUND,

UPPERBOUND ,MESSAGE,THEOMEAN);
IF HELP(MESSAGE) THEN BEGIN

INSTRUCTION;
EXPLAINMEAN (DATAKIND)

END ELSE IF REJECT(MESSAGE) OR ENDING(MESSAGE) THEN
WRITELN('YOU CANNOT USE ',MESSAGE,' HERE.');

UNTIL NOT HELP(MESSAGE);

GPNO:=0;
GPACCEPT:=1;
GPREJECT : =0;
TOTAL :=O;
REP EAT

WRITELN;
GPNO:=GPNO+1;
NOOFSUBJECT :=O;
REPEAT

REPEAT
NOOFSUBJECT:=NOOFSUBJECT+1;
KEYINDATA(Y ,PROMPT, DATAFORMAT , LOWERBOUND , UPP ERBOUND,

GPNO ,NOOFSUBJECT ,L, SUBJECT ,MESSAGE,FALSE);
UNTIL ENDING(MESSAGE);
NOOFSUBJECT :=NOOFSUBJECT-1;
ADDITION :=FALSE;
VALIDATEDATA(Y ,PROMPT, DATAFORMAT, SUBJECT , LOWERBOUND , UPPERBOUND,

NOOFSUBJECT , GPNO ,L ,ADDITION);
UNTIL NOT ADDITION;
CALCULDATAGPSIZE(Y ,NOOFSUBJECT ,GPACCEPT , TAKEDIFFERENCE,

DATA,GPSIZE,THEOMEAN);
IF GPSIZE[GPACCEPT]<3 THEN BEGIN

GPREJECT : =GPREJECT+ 1;
WRITELN('GROUP SIZE OF THIS GROUP IS TOO SMALL.');
CHECKGROUPLEFT(GROUP-GPREJECT ,RESUME);

END ELSE BEGIN
K:=T(GPACCEPT,1);
J :
REPEAT

J:=J+1;
NOTALLEQUAL:=DATA[J]<>DATA[K];

UNTIL (JGPSIZE[GPACCEPT]) OR (NOTALLEQUAL);
IF NOTALLEQUAL THEN BEGIN

TOTAL: =TOTAL+GPSIZE[GPACCEPT];
GPACCEPT : =GPACCEPT+ 1;

END ELSE BEGIN
GPREJECT :=GPREJECT+1;
WRITELN;
IF TAKEDIFFERENCE THEN

WRITE('DIFFERENCES OF ',PROMPT[l],' AND ',PROMPT[21)
ELSE

WRITE(PRONPT[1] ,
WRIT ELN('ARE ALL EQUAL.');
IF GROUP=2 THEN

WRITELN('THERE IS NO POINT IN DOING THE COMPARISON.');
CHECKGROUPLEFT(GROUP-GPREJECT ,RESUME);

END;
END;

UNTIL GPNO=GROUP;
GROUP :=GPACCEPT-1;
IF (GROUP=1) AND (GPSIZE[1]<80) THEN

(*RE_DEFINE GPSIZEALLOW IN CASE SIGNED-RANK WILCOXON TEST*)
(*IS USED, THIS IS FOR THE USE OF PASSING DATA TO THE 	*)
(*PROCEDURE FOR CALCULATING RANK SUMS, PRODUCES NO
(*SIDE EFFECT. 	 *)
GPSIZEALLOW:=LIMIT DIV 2;

IF GPREJECT>O THEN
WRITELN('NUMBER OF GROUPS ELIMINATED FROM THE ANALYSIS IS

GPREJECT,'.');
END (*RJINDATA*);

PROCEDURE VALIDATEDATA;

(*DECTARED FORWARD*)
(*pAJ:(VAR Y : TEMPDATA; VAR PROMPT
(* 	DATAFORMAT,SUBJECT : STRING
(* 	LOWERBOUND,UPPERBOUND : REAL

• NOOFSUBJECT,I,L : INTEGER
VAR ADDITION : BOOLEAN

VAR DUMHY,CHANGE : STRING;
NOCHANGE : BOOLEAN;
Q 	: INTEGER;

: PROMPTDATA*)

PROCEDURE VERIFYDATA(VAR Y 	TEMPDATA;
VAR PROMPT PROMPTDATA;

DATAFORNAT,SUBJECT : STRING;
LOWERBOUND , UPPERBOUND : REAL;
Q,NOOFSUBJECT,I,L : INTEGER;

VAR ADDITION : BOOLEAN);

VAR J,K,R : INTEGER;
MESSAGE 	: STRING;

PROCEDURE CHECKCOMHAND(MESSAGE : STRING);

BEGIN
IF REJECT(MESSAGE) THEN

EXIT(VERIFYDATA)
ELSE IF HELP(MESSAGE) THEN

INSTRUCTION;
END;

PROCEDURE MAKECHANGE(VAR Q,J,NOOFSUBJECT : INTEGER;
SUBJECT : STRING;
PROMPT : PROMPTDATA);

VAR MESSAGE : STRING;

BEGIN
REPEAT

WRITE('WHICH ',SUBJECT);
CASE Q OF

WRITELN('TO BE CORRECTED ?
WRITELN('TO BE DELETED ?

END;
READINTEGER(1 ,NOOFSUBJECT,TRUE,MESSAGE,J);
CHECKCOMMAND(MESSAGE);

UNTIL NOT HELP(MESSAGE);
WRITELN;

CASE Q OF
WRITE('CORRECTION
WRITE('DELETION

END;
WRITELN(SUBJECT,J);
IF Y[1,J]>1.0E36 THEN BEGIN

WRITELN(' DELETED ALREADY
END ELSE BEGIN

WRITELN('DATA ENTERED.');
FOR R:=1 TO L DO

WRITELN(PROMPT[R] ,Y[R,J] :14:3);
END;

END (*KECpANGE*);

BEGIN
CASE Q OF

BEGIN (*DISPLAY DATA ON THE SCREEN*)
WRITE(PROMPT[1] :29);
IF L=2 THEN

WRITE(PROMPT[2] :18);
WRI TELN;
FOR J:=1 TO NOOFSUBJECT DO BEGIN

WRITE(SUBJECT ,J :3);
FOR R:=1 TO L DO

IF Y[R,J]>1.OE36 THEN
WRITE('DELETED' :16)

ELSE
WRITE(Y[R,J] :15:3);

WRIT ELN;
END;

END;
REPEAT (*MAKING CORRECTION*)

MAKECHANGE(Q,J,NOOFSUBJECT ,SUBJECT ,PROMPT);
DATAPLEAS E;
KEYINDATA(Y ,PROMPT , DATAFORNAT , LOWERBOUND , UPPERBOUND,

I ,J ,L,SUBJECT ,MESSAGE,TRUE);
CHECKCOMMAND(MESSAGE);
WRITE('ANY MORE CORRECTIONS ?');
READSTR(TRUE ,MESSAGE);
CHECKCOMMAND(MESSAGE);

UNTIL MESSAGE='N';
REPEAT (*NAKING DELETION*)

MAKECHANGE(Q ,J ,NOOFSUBJECT ,SUBJECT ,PROMPT);
WRITE('ANY MORE DELETIONS ?');
READSTR(TRUE,MESSAGE);
CH ECKCOMMAND (ME S SAGE)
IF NOT REJECT(MESSAGE) THEN (*DO DELETION*)

FOR R:=1 TO L DO
Y[R,J]:=1.OE37; 	(*SET TO ILLEGAL INPLJT*)

UNTIL MESSAGE='N';
BEGIN (*MAKING ADDITION*)

ADDITION: =TRUE;
WRITELN;
WRITELN('DATA ENTRY CONTINUES.');
EXIT(VALIDATEDATA);

END;
END;

END (*VERIFYDATA*);

BEGIN
WRIT ELN;
IF GROUP>1 THEN

WRITELN('THIS IS GROUP ',I);
WRITELN;
NOCHANGE : =FALSE;
WRITELN('DO YOU WANT TO DISPLAY, CORRECT, DELETE OR ADD ANY DATA ?');
READSTR(FALSE,CHANGE);
REPEAT

WHILE CHANGE='Y' DO BEGIN
WRITELN;
WRITELN('NOTE: YOU CAN DO ANY ONE OF THE FOLLOWING FIRST.');
WRITELN;
WRITELN('WHAT DO YOU WANT 7');
WRITELN('1. DISPLAY DATA.');
WRITELN('2. ERROR CORRECTION.');
WRITELN('3. DELETION.');
WRITELN('4. ADDITION.');
READINTEGER(1,4,FALSE,DUMMY,Q);
REPEAT

VERIFYDATA(Y ,PROMPT ,DATAFORMAT, SUBJECT ,LOWERBOUND , UPPERBOUND,
Q,NOOFSUBJECT ,I,L,ADDITION);

WRITELN;
WRITELN('ANY MORE DISPLAY,
READS TR(FALSE, CHANGE)

UNTIL (CHANGE'N') OR (Q=1);
END;
IF CHANGE='N' THEN BEGIN

WRITELN('WARNING : LAST CHANCE
GROUP.');

FOR YOU TO MAKE CHANGES FOR THIS',

CORRECTION, DELETION OR ADDITION 7');

WRI TELN;
WRITE('DO YOU WANT TO MAKE ANY MORE CHANGES ?');
READ STR(FALSE, CHANGE)
NOCHANGE :=CHANGE='N';

END;
UNTIL NOCHANGE;

END (*VALIDATE)ATA*);

PROCEDURE KEYINDATA;

(*DECLARED FORWARD*)
(*P.A:

(VAR Y : TEMPDATA; VAR PROMPT : PROMPTDATA*)
DATAFORNAT : STRING
LOWERBOUND,UPPERBOUND : REAL

(* VAR I,J,L : INTEGER
(* VAR SUBJECT,MESSAGE : STRING

VERIFY : BOOLEAN

VAR K : INTEGER;
DATUM REAL;

BEGIN
WRITELN;
IF GROUP>1 THEN

WRITE('GROUP ',I:2,'
WRITELN('THIS IS ',SUBJECT,J);

WHILE K<=L DO BEGIN
GETDATA(PROMPT[K] , DATAFORNAT ,LOWERBOUND ,UPPERBOUND ,MESSAGE ,DATUM);
IF HELP(MESSAGE) THEN

INSTRUCTION
ELSE IF ENDING(MESSAGE) THEN BEGIN

WRI TELN;
IF VERIFY THEN

WRITELN('YOU CANNOT USE END HERE.')
ELSE IF J=1 THEN

WRITELN('AT LEAST ONE MORE GROUP EXPECTED.')
ELSE IF K=2 THEN

WRITELN('ONE MORE DATA POINT EXPECTED I')
ELSE

EXIT(KEYINDATA);
DATAPLEASE;

END ELSE IF REJECT(MESSAGE) THEN BEGIN
WRIT ELN;
IF VERIFY THEN

WRITELN('YOU CANNOT USE REJ HERE.')
ELSE IF (K=1) AND (J=1) THEN

WRITELN('NO DATA TO BE REJECTED.')
ELSE BEGIN

K: =L+ 1-K;
IF K=L THEN

J:=J-1;
WRITELN(PROMPT[K],'OF ',SUBJECT,J,' REJECTED.');
WRITE('RE-ENTER

END;
END ELSE BEGIN

Y[K,J] :=DATUM;
K: =K+ 1;

END;
END;

END (*KEyINDATA*);

PROCEDURE CALCULDATAGPSIZE;

(*DECLARED FORWARD*)
(*PARA: (VAR Y : TEMPDATA; NOOFSUBJECT,I :INTEGER
(* 	 TAKEDIFFERENCE : BOOLEAN; VAR DATA : DATASET*)
(* 	 VAR GPSIZE : GROUPSIZE; THEOMEAN : REAL 	*)

VAR J,K:INTEGER;

BEGIN
K: =T (I , 0);
IF TAKEDIFFERENCE THEN BEGIN

FOR J:=1 TO NOOFSUBJECT DO IF Y[1,J]<1.OE37 THEN BEGIN
K:=K+1;
DATA[K] :=Y[1,J] -Y[2,J];

END;
END ELSE

FOR J:=1 TO NOOFSUBJECT DO IF Y[1,J]<1.OE37 THEN BEGIN
K: =K+ 1;
DATA[K] :=Y[1,J]_THEOMEAN;(*THEOMEAN IS INITIALIZED TO 0*)

END;
GPSIZE[I] :=K-T(I,O);

END (*CALCULDATA*);

PROCEDURE NOTICE;

(*DECRED FORWARD*)

BEGIN
WRITELN;
WRITELN('IMPORTANT
WRITELN('PLEASE ENTER DATA AS PERCENTAGES BUT LEAVE % OUT.');
WRITELN('EXAMPLE: ENTER 0.70 OR 70 % AS 70 •');

END (*NOTICE*);

PROCEDURE EXPLAINMEAN;

(*DECLARED FORWARD. .PARA : (DATAKIND : DATATYPE*)

BEGIN
WRITELN('SINCE YOU HAVE ONE GROUP AND ONE DATA ITEM FROM EACH CASE, YOU
WRITELN('ARE COMPARING YOUR EXPERIMENTAL MEAN WITH A THEORETICAL MEAN.');
IF DATAKIND=SCORE THEN BEGIN

WRITELN('WARNING: IT MAY BE MEANINGLESS TO COMPARE AN EXPERIMENTAL');
WRITELN('MEAN OF SCORES ASSIGNED TO CASES WITH A THEORETICAL MEAN.');

END;
INSTRUCTION;

END (*EXINMEAN*);

PROCEDURE CHECKGROUPLEFT;

(*DECLARED FORWARD. .PARA: (NOOFGROUPLEFT : INTEGER; VAR RESUME : BOOLEAN*)

BEGIN
IF NOOFGROUPLEFT>1 THEN BEGIN

WRITELN;
WRITELN('THIS GROUP WILL BE ELIMINATED FROM THE ANALYSIS.');

END ELSE BEGIN
WRITELN('TYPE RETURN KEY TO CONTINUE !');
READLN;
RESUME:=FALSE;
EXIT(READDATA);

END;
END;

PROCEDURE INSTRUCTION;

(*DECLPkRED FORWARD*)

BEGIN
WRITELN;
WRITELN('COMNANDS : 	TYPE');
WRITELN(' ''HELP" FOR HELP.');
WRITELN(' "QUIT" TO STOP.');
WRITELN(' ''REJ" FOR IMMEDIATE REJECTION OR BACKWARD
WRITELN('INPUT TERMINATOR : ''END" FOR DATA ENTRY OF
WRITELN;
WRITELN('NOTATIONS :#);
WRITELN(' ''Y" STANDS FOR YES.');
WRITELN(' ''N" STANDS FOR NO.');
WRITELN;

END (*INSTRjJCTION*);

PROCEDURE DATAPLEASE;

(*DECLARED FORWARD*)

BEGIN
WRITELN;
WRITELN('PLEASE ENTER YOUR DATA.');
WRITELN;

END;

BEGIN 	 (*PROCEDURE, READDATA*)
WRITELN;
INSTRUCTION;
READ INDATA(DATAKIND,

PAIRED , TAKED IFFERENCE , TESTTHEOMEAN,
GROUP, TOTAL, GPSIZEALLOW,
DATA, GPSIZE , THEOMEAN,
RESUME);

WRITELN;
WRITELN('PLEASE WAIT !');
WRITELN;
WRITELN('ANALYSIS IN PROGRESS.');

END 	 (*RDATA*);

ELIMINATION.');
A GROUP.');

SEGMENT PROCEDURE BASICSTAT(VAR DATA,X DATASET;
VAR DESCRIPTIVESTATISTIC STATISTIC;
VAR TESTSTATISTIC : TEST;
VAR HISTOGRAM GRAPH;
VAR GPSIZE : GROUPSIZE;

GROUP,TOTAL : INTEGER;
VAR OUTLIER,MINGPSIZE,MAXGPSIZE : INTEGER;
VAR BSS,WSS,MSE,KIJRTOSIS,MINDATA,ADDCONST : REAL;
VAR TRANSFORM : TYPEOFTRAN SFORNAT ION;
VAR WANTTRANSFORM ,PAIRED ,TOOMANYEQ : BOOLEAN);

(*x IS DUPLICATE OF DATA BUT IN ASCENDING ORDER*)

VAR MAXDATA : REAL; (*MAXIMUM OF ALL DATA*)

PROCEDURE DOTRANSFORNATION(TRANSFORM TYPEOFTRANSFORMATION;
VAR DATA : DATASET;
VAR GPSIZE: GROUPSIZE;

GROUP : INTEGER;
ADDCONST REAL);

(* TRANSFORMING DATA 	*)

CONST ONERADIAN=57.2957795 (*DEGREES*);

VAR I,J : INTEGER;
P : REAL;

BEGIN
CASE TRANSFORM OF

SQUAREROOT

LOGARITHMIC

RECIPROCAL

ARCSINE

FOR I:=1 TO GROUP DO
FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO

DATA[J] :=SQRT(DATA[J]+ADDCONST);
FOR I:=1 TO GROUP DO

FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO
DATA[J] :=LOG(DATA[J]+ADDCONST);

FOR I:=1 TO GROUP DO
FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO

DATA[J] :=1/(DATA[J]+ADDCONST);
FOR I:=1 TO GROUP DO

FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO BEGIN
P:=DATA[J];
IF P<=O THEN

P :=O.25/GPSIZE[I]
ELSE IF P>=99.9995 THEN

P:100-0.25/GPSIZE[I];
(*ATAN(.)ARCSINE(p) IN RADIAN*)
DATA[J] :=ONERADIAN*ATAN(SQRT(P/(100-P)));

END;
END;

END (*DOTRANSFORMATION*);

PROCEDURE CALSTATISTIC(VAR DATA : DATASET;
VAR GPSIZE : GROUPSIZE;
VAR GROUP,TOTAL 	: INTEGER;
VAR MEAN,VARIANCE,G1,G2 : GROUPSTAT;
VAR BSS,WSS,MSE,CV,KURTOSIS REAL;
VAR TRANSFORM : TYPEOFTRANSFORMATION);

VAR I,J,L,U,DF : INTEGER;

SS,DEVPWRTHREE,DEVPWRFOUR,GM,TEMPMEAN,N : REAL;
P1 ,P2,P3,P4,M2,SQM2,NSQM2,P,SQP,SUMP3,SUMP4 : REAL;

FUNCTION G1STAT(N : INTEGER;
DEVPWRTHREE,SUMOFSQ : REAL) : REAL;

(*CALCUTE FISHER'S G1_STATISTIC*)

BEGIN
G1STAT:=N*SQRT(N_1)*DEVPWRTHREE/((N_2)*SUMOFSQ*SQRT(SUMOFSQ));.

END (*G1STAT*);

FUNCTION G2STAT(N : INTEGER;
DEVPWRFOUR,SUMOFSQ REAL) : REAL;

(*CALCUTE FISHER'S G2_STATISTIC*)

BEGIN
G2STAT:=(N_1.0)*(N*(Nf1.0)*DEVPWRFOUR_3*(N_1.0)*SQR(SUMOFSQ))/

((N_2.0)*(N_3 .0)*SQR(SUMOFSQ));
END (*G2STAT*);

PROCEDURE GETTRANSFORMKURTOSIS(GM,SS3, SS4,WSS,MSE : REAL;
GROUP,TOTAL,DF : INTEGER;
VAR TRANSFORM 	TYPEOFT RAN SFORMAT ION;
VAR KURTOSIS : REAL);

VAR D,P,R,PWR,SKEWNESS : REAL;

BEGIN
(*E5TIMATE POWER OF TRANSFORMATION, PWR 	*)
(*CALCUTE KURTOSIS & SKEWNESS OF RESIDUALS*)

P:=TOTAL;
R:=SQR(GROUP/(DF*(P_1 .0)));

(*KURTOSIS OF ALL RESIDUALS*)
KURTOSIS :=SQR(P)*P*((DF+2.0)*SS4/(DF*SQR(WSS))-3 .O/P)/

(DF*(DF+2.0)*(1 .0+(P_1.0)*SQR(R))_3.O*P);

(*SKEWNESS OF ALL RESIDUALS*)
D:=2+KURTOSIS;
IF (TRANSFORM=IDENTITY) AND (D<>O) THEN BEGIN

SKEWNESS :=SS3*SQR(TOTAL)/
(DF*WSS*SQRT(DF*WSS)*(1+(P_1.0)*R*SQRT(R)));

PWR:=1.0_2.0*SKEWNESS*GM/(3.0*D*SQRT(MSE));
IF PWR<-O.60 THEN

TRANSFORM: =RECIPROCAL
ELSE IF PWR<0.25 THEN

TRANSFORM: =LOGARITHMIC
ELSE IF PWR<O.8 THEN

TRANSFORM: =SQUAREROOT;
END;

END (*GETTRANSFORMKURTOSIS*);

BEGIN
WSS:=O.O;
SUMP3 :=O.O;
SUMP4:=O.O;
FOR I:=1 TO GROUP DO BEGIN

L : =T (I, 1);
U:=T(I,GPSIZE[I]);
TEKPMEAN:=O.O;
FOR J:=L TO U DO

TEMPMEAN:=TEMPMEAN+DATA[J];
TEYIPMEAN :=TEMPMEAN/GPSIZE[I]; (*FIRST ESTIMATE OF MEAN*)

(*CALCULATE MEAN, VARIANCE, WITHIN GROUPS SUM OF SQUARES,WSS*)
(*G1 & G2 STATISTICS.

P1 :=O.O;
P2 :=O.O;
P3 :=O.O;
P4 =0 • 0;
FOR J:=L TO U DO BEGIN

P :=DATA[J] -TEMPMEAN;
SQP:=SQR(P);
P1 :=P1+P;
P2 :=P2+SQP;
P3 :=P3+SQP*P;
P4 :=P4+SQR(SQP);

END;
N:=GPSIZE[I];
M2:=P1/N;
SQM2 :=SQR(M2);

MEAN[I]: =TEMPMEAN+M2;
NSQM2 :=N*SQM2;
SS : =P2-NSQM2;
WSS : =WSS+SS;
VARIANCE[I] :=SS/(N-1);

DEVPWRTHREE : =P3_M2*(3*P2_2*NSQM2);
DEVPWRFOUR : p4_4*M2*p3+SQ* (6*P2_3*NSQM2);

(*CALCULATE SUMS OF DEVIATIONS FROM MEAN TO THE POWER OF THREE,*)
(*SIJN.p3 & FOUR SUMP4 OF ALL RESIDUALS.

IF DEVPWRFOUR>(1.OE37-SUMP4) THEN (*GIVE USERS MESSAGE*)
WRITELN('MESSAGE : OVERFLOW MAY OCCUR. DATA VARY GREATLY.');

STJMP3 =SUMP3+DEVPWRTHREE;
SUMP4 =SUMP4+DEVPWRFOUR;

G1[I] :=G1STAT(GPSIZE[I] ,DEVPWRTHREE, SS);
IF GPSIZE[I]>49 THEN

G2[I]:=G2STAT(GPSIZE[I],DEVPWRFOUR,SS);
END;
DF : =TOTAL-GROUP;
MSE:=WSS/DF; 	 (*MEAN SQUARE ERROR*)

IF GROUP>1 THEN BEGIN
GM: =0.0;
FOR I:=1 TO GROUP DO

GM:=GMfGPSIZE[I] *MEAN[I];
GM:=GM/TOTAL; 	 (*FIRST ESTIMATE OF GRAND MEAN*)

(*CALCULATE GRAND MEAN, BETWEEN GROUPS SUM OF SQUARES, BSS*)
(*COEFFICIENT OF VARIATION OF VARIANCES, CV. 	 *)

P1 :=O.O;
P2 :=O.O;
P3 : =0.0;
FOR I:=1 TO GROUP DO BEGIN

P:=MEAN[I] -GM;
P1 :=P1+GPSIZE[I] *P;
P2 :=P2+GPSIZE[I] * SQR(P);
P3 :=P3+(GPSIZE[I]_ 1 .0) * SQR(VARIANCE[I]_MSE);

END;
GM:=GM+P 1/TOTAL;
BSS:=P2-SQR(P1)/TOTAL;
CV:=SQRT(P3/DF)/MSE;

GETTRANSFORNKURTOSIS(GM,SUMP3, SUMP4,WSS,MSE,GROUP,TOTAL,DF,
TRANSFORN,KURTOSIS);

END;
END (*CAL5TATI5TIC*);

PROCEDURE SORT(VAR Z 	: DATASET;
VAR GPSIZE : GROUPSIZE;

GROUP : INTEGER);

(*SORT Z IN ASCENDING ORDER BY GROUPS*)
(*j(IMUM NUMBER OF ITEMS OF Z IS (2 TO POWER BOUND+1)_1*)

CONST BOUND=8;

VAR ORDER : BOOLEAN;
A,AA : REAL;
I,P,Q,J,K,PP,PQ,L,S : INTEGER;
IU,IL : ARRAY [O..BOUND] OF INTEGER;

BEGIN
FOR I:=1 TO GROUP DO BEGIN

P:=T(I,1);
Q:=T(I,GPSIZE[I]);

(*SORT FROM Z[P] TO Z[Q] IN ASCENDING ORDER *)

PP:=P;
ORDER:=(Q-P)>10;
REPEAT

IF ORDER THEN
REPEAT

PQ:=ROUND((P+Q)/2);
A:=Z[PQ];
K: =P;
L : =Q;
IF Z[P]>A THEN BEGIN

Z[PQ] :=Z[P];

Z[P] :=A;
A:=Z[PQ];

END;
IF z[Q]<A THEN BEGIN

Z[PQ] :=Z[Q];
Z[Q] :=A;
A:=Z[PQ];
IF Z[P]>A THEN BEGIN

Z[PQ] :=Z[P];
Z[P] :=A;
A:=Z[PQ];

END;
END;
REP EAT

REPEAT
L:=L-1;

UNTIL Z[L]<=A;
AA:=Z[L];
REPEAT

K:=K+1;
UNTIL Z[K]>=A;
IF K<=L THEN BEGIN

Z[L] :=Z[K];
Z[K] :=AA;

END;
UNTIL K>L;
IF L-P>Q-K THEN BEGIN

IL[S] :=P;
IU[S] :=L;
P:=K;

END ELSE BEGIN
IL[S] :=K;
IU[S] :=Q;
Q : =L;

END;
S:=S+1;

UNTIL Q-P<11;
ORDER:=(P=PP) AND (P<Q);
IF NOT ORDER THEN BEGIN

FOR P:=P+1 TO Q DO BEGIN
A:=Z[P];
K:=P-1;
IF Z[K]>A THEN BEGIN

REPEAT
Z[K+1] :=Z[K];
K:=K-1;

UNTIL Z[K]<=A;
Z[K+1} :=A;

END;
END;
S:=S-1;
IF S>=O THEN BEGIN

P:=IL[S];
Q:=IU[S];
ORDER:=(Q-P)>1O;

END;
END;

UNTIL S<O;
END;

END (*SORTING*);

PROCEDURE MEDIANEQDATA(VAR X 	: DATASET;
VAR GPSIZE : GROUPSIZE;
VAR GROUP 	INTEGER;
VAR MEDIAN : GROUPSTAT;
VAR TOOMANYEQ : BOOLEAN);

(*CALCUJTE MEDIANS AND CHECK WHETHER TOO MANY*)
(*DATA POINTS IN A GROUP ARE EQUAL

VAR I,L : INTEGER;
W REAL;

BEGIN
TOOMANYEQ :=FALSE;
FOR I:=1 TO GROUP DO BEGIN

L:=T(I,(GPSIZE[I] DIV 2));

TOOMANYEQ:=(GPSIZE[I]>4) AND ((X[T(I,1)]=W) OR (X[T(I,GPSIZE[I])]=W));
IF ODD(GPSIZE[I]) THEN

MEDIAN[I] :=X[L+1]
ELSE

MEDIAN[I] :=O.5 * (W+X[L+ 1 J);
END;

END (*CALMEDIA.N*);

PROCEDURE CALMINMAX(VAR X DATASET;
VAR GPSIZE : GROUPSIZE;
VAR GROUP,MINGPSIZE,MAXGPSIZE INTEGER;
VAR MINIMUM,MAXIMUM : GROUPSTAT;
VAR MINDATA,MAXDATA REAL);

(*CALCUTATE MINIMUM & MAXIMUM OF DATA FOR EACH GROUP AND MINIMUM *)
(*OF ALL DATA MINDATA, AND MINIMUM AND MAXIMIJN OF GPSIZES

VAR I : INTEGER;

BEGIN
FOR I:=1 TO GROUP DO BEGIN

MINIMUM[I] :=X[T(I,1)];
MAXIMUM[I] :=X[T(I,GPSIZE[I])];

END;
MINDATA :=MINIMUM[1];
MAXDATA:=MAXIMUN[1];
MINGPSIZE:=GPSIZE[1];
MAXGPSIZE:=GPSIZE[1];
FOR I:=2 TO GROUP DO BEGIN

IF GPSIZE[I]<MINGPSIZE THEN
MINGPSIZE : =GPSIZE[I]

ELSE IF GPSIZE[I]>MAXGPSIZE THEN
MAXGPSIZE:=GPSIZE[I];

IF MINIMUN[I]<MINDATA THEN
MINDATA:=MINIMUM[I];

IF MAXIMUM [I] >MAXDATA THEN
MAXDATA : =MAXIMUM [I];

END;
END (*CALMINMAX*);

PROCEDURE CHECKOUTLIEREQDATA(VAR X 	: DATASET;
VAR GPSIZE GROUPSIZE;
VAR GROUP,OUTLER : INTEGER;
VAR TOOMANYEQ 	: BOOLEAN);

(*CHECK OUTLIERS AND WHETHER OR NOT TOO MANY*)
(*EQUAL VALUED DATA POINTS IN A GROUP

VAR I,J,K,L,U:INTEGER;
W: REAL;

BEGIN
OUTLIER:=O;
FOR I:=1 TO GROUP DO

IF GPSIZE[I]>4 THEN BEGIN

(*GET INDICES OF LOWER AND UPPER 25% QUARTILES OF CUT OFF POINTS*)

J:=GPSIZE[I] DIV 4;
L:=T(I,J);
U:=T(I,(GPSIZE[I] -J));
W:=1.5* (X[U]_X[L]);
TOOMANYEQ:=TOOMANYEQ OR (W=O);
FOR K:=T(I,1) TO L-1 DO

IF W<(X[L]-X[K]) THEN
OUTLIER:=OUTLIER+1;

FOR K:=U+1 TO T(I,GPSIZE[I]) DO
IF W<(X[K]-X[U]) THEN

OUTLIER:=OUTLIER+1;
END;

END (*{ECKOUTLIEREQDATA*);

PROCEDURE CONSTRUCTHISTOGRAN(VAR HISTOGRAM GRAPH;
VAR X DATASET;
VAR GPSIZE GROUPSIZE;

GROUP,MAXGPSIZE : INTEGER;
MINDATA,MAXDATA : REAL);

VAR MARK : ARRAY [1. .25] OF REAL;
TIMES,Q,RANGE : REAL;
I,J,K,MAXFREQUENCY : INTEGER;

FUNCTION ROUNDREAL(Q : REAL) : REAL;

(*ROUND Q TO AN 'INTEGER' IN REAL*)

VAR R : REAL;

BEGIN
R:=O.O;
WHILE Q>32766.0 DO BEGIN (*TO AVOID OVERFLOW*)

R: =R+3 27 66 .0 ;
Q: =Q-3 27 66 .0

END;
ROUNDREAL : =R+ROUND(Q);

END (*ROUNDR*);

PROCEDURE GETSTEPNOOFINTERVALDECPL(RANGE : REAL;
MAXGPSIZE: INTEGER;
VAR STEP : REAL;
VAR NOOFINTERVAL,DECPL : INTEGER);

VAR R,SCALEFACTOR,Q : REAL;
N : INTEGER;

BEGIN
R:=RANGE;
SCALEFACTOR:=1 .0;
WHILE R<1.O DO BEGIN

SCALEFACTOR: =SCALEFACTOR/ 10.0;
R:=R*10 .0;

END;
WHILE R>10.0 DO BEGIN

SCALEFACTOR:=SCALEFACTOR*10 .0;
R:=R/10.0;

END;

N:=ROUND(R);
IF (5<N)=(N<11) THEN

STEP:=SCALEFACTOR
ELSE BEGIN

Q:=20.O*R;
N:=ROUND(Q/ROUND(Q/N));
IF ODD(N) AND (N>5) THEN

N:=N+1;
IF (N=14) OR (N=18) THEN

N:=N+2;
STEP :=N*SCALEFACTOR/20.O;

IF STEP>3.0 THEN
STEP :=ROUNDREAL(STEP);

END;

N:=ROUND(RANGE/STEP); (*FIRST ESTIMATE OF NO. OF INTERVAL*)

IF (N<=10) AND (N<MAXGPSIZE) THEN 	(*NO. OF INTERVALS TOO FEW*)
STEP:=0.5*STEP

ELSE IF (N>20) OR (N>MAXGPSIZE) THEN (*NO. OF INTERVALS TOO MANY*)
STEP :=2.0*STEP;

NOOFINTERVAL :=ROUND(RANGE/STEP);

IF (STEP<1.OE-3) OR (STEP>1.OE3) THEN
DECPL:=O

ELSE IF STEP<=0.05 THEN
DECPL:=5

EL SE
DECPL:=3;

END (*GETSTEpNOOFINTVALDECPL*);

BEGIN
WITH HISTOGRAM DO BEGIN

RANGE : =MAXDATA-MINDATA;
GETSTEPNOOFINTERVALDECPL(RANGE,MAXGPSIZE, STEP ,NOOFINTERVAL ,DECPL);

MA.XMIDPOINT:=ROUNDREAL((MAXDATA+STEP)/STEP)*STEP;

(*JUST NO. OF INTERVALS TO COVER MINDATA*)

Q :=MAXMIDPOINT_(NOOFINTERVAL_1)*STEP;
WHILE Q)'=MINDATA DO BEGIN

Q :=Q-STEP;
NOOF INTERVAL: =NOOFINTERVAT.rI-1;

END;
Q : =MAXMIDPOINT+O 5* STEP;
FOR I:=1 TO NOOFINTERVAL DO

MARK[I] :=Q_I*STEP;
MAXFREQUENCY :=O;
FOR I:=1 TO GROUP DO BEGIN

FOR K:=1 TO NOOFINTERVAL DO
FREQUENCY[I ,K] :=O;

FOR J:=T(I,GPSIZE[I]) DOWNTO T(I,1) DO BEGIN
WHILE X[J]<MARK[K] DO

K:=K+1;
FREQUENCY[I,K] :=FREQUENCY[I,K]+1;

END;
FOR J:=1 TO K DO

IF FREQUENCY[I,J]>MAXFREQUENCY ThEN
MAXFREQUENCY : =FREQUENCY[I ,J];

END;

IF (GROUP MOD 4 =0) THEN
HEIGHT:=15

ELSE IF GROUP<4 THEN
HEIGHT:=60 DIV GROUP

ELSE IF (GROUP MOD 3 =0) OR (GROUP=5) THEN
HEIGHT: =20

ELSE
HEIGHT := 15;

REPRESENTCASE:=(MAXFREQUNCY DIV HEIGHT)+1;
END;

END (*CONSTRUCTHISTOGRAM*);

BEGIN 	 (*PROCEDURE, BASICSTAT*)
WITH DESCRIPTIVESTATISTIC DO BEGIN

IF WANTTRANSFORM THEN
DOTRANSFORMATION(TRANSFORM,DATA,GPSIZE,GROUP ,ADDCONST);

CALSTATISTIC(DATA,GPSIZE,GROUP ,TOTAL,
MEAN,VARIANCE,G1,G2,BSS,WSS,MSE,CV,KURTOSIS,TRANSFORM);

X:=DATA; 	 (*DUPLICATE DATA IN x*)
SORT(X,GPSIZE,GROUP);
MEDIANEQDATA(X,GPSIZE,GROUP,MEDIAN,TOOMANYEQ);
CALMINMAX(X,GPSIZE,GROUP ,MINGPSIZE ,MAXGPSIZE ,MINIMUM,MAXIMUM,

MINDATA,MAXDATA);
CHECKOUTLIEREQDATA(X,GPSIZE,GROUP,OUTLIER,TOOMANYEQ);
CONSTRUCTHISTOGRAM(HISTOGRAM,X,GPSIZE,GROUP,MAXGPSIZE,MINDATA,MAXDATA);

END;
END 	 (*BASIC5TAT*);

SEGMENT PROCEDURE ASSUMPTIONDISTRIBUTION
(VAR EXAMINEDATA,GETPVALUE BOOLEAN;
VAR X : DATASET;
VAR DESCRIPTIVESTATISTIC STATISTIC;

	

VAR TESTSTATISTIC 	: TEST;
VAR GPSIZE : GROUPSIZE;

PROBLEM,GROUP,TOTAL INTEGER;
BSS,WSS,MSE,KURTOSIS : REAL;

VAR NORMAL ,EQVARIANCE, SYMMETRY : BOOLEAN);

(* X IS DUPLICATE OF DATA *)

PROCEDURE SHAPIROWILKTEST(VAR X DATASET;
VAR VARIANCE : GROUPSTAT;
VAR GPSIZE : GROUPSIZE;

GROUP INTEGER;
VAR NORMAL, SYMMETRY : BOOLEAN);

(*DOING SHAPIRO-WILK TEST FOR NORMALITY*)

FORWARD;

PROCEDURE SKEWNESSTEST(VAR Gi 	GROUPSTAT;
VAR GPSIZE : GROUPSIZE;

GROUP : INTEGER;
VAR NORNAL,SYMMETRY BOOLEAN);

(*TESTING NORMALITY USING SAMPLE SKEWNESS*)

FORWARD;

PROCEDURE TESTEQUALVARIANCE(VAR VARIANCE : GROUPSTAT;
VAR GPSIZE 	: GROUPSIZE;

TOTAL,GROUP : INTEGER;
CV,KURTOSIS : REAL;

VAR EQVARIANCE 	BOOLEAN);

(*TESTING EQUALITY OF VARIANCES*)

FORWARD;

FUNCTION TDIST(T : REAL; DF :INTEGER) : REAL;

(*CALCUJATE ONE TAILED QUANTILE OF T_DISTRIBUTION*)
(*WITH VALUE T AND DEGREES OF FREEDOM DF 	*)

FORWARD;

FUNCTION FDIST(F : REAL; V1,V2 : INTEGER) 	REAL;

(*CALCUIATE UPPER TAILED QUANTILE OF F_DISTRIUTION*)
(*WITH VALUE F AND DEGREES OF FREEDOM Vi AND V2 *)

FORWARD;

FUNCTION CHISQ(XSQ : REAL; DF : INTEGER) : REAL;

(*CALCUTE UPPER-TAILED QUANTILE OF CHI-SQUARE DISTRIBUTION*)
(*WITH VALUE XSQ AND DEGREES OF FREEDOM DF

FORWARD;

FUNCTION NOP.MALD(Y : REAL) : REAL;

(*CALCUTE ONE-TAILED QUANTILE OF NORMAL DISTRIBUTION*)

FORWARD;

PROCEDURE TESTASSUMPTION(VAR X 	: DATASET;
VAR GPSIZE : GROUPSIZE;
VAR DESCRIPTIVESTATISTIC : STATISTIC;
VAR NORMAL , SYMMETRY, EQVARIANCE : BOOLEAN;
VAR PROBLEM,GROUP,TOTAL : INTEGER;
VAR KURTOSIS : REAL);

BEGIN
WITH DESCRIPTIVESTATISTIC DO BEGIN

NORMAL:=TRUE;
SYMMETRY :=TRUE;
IF PROBLEM=1 THEN

SKEWNESSTEST(G1,GPSIZE,GROUP,NORNAL,SYMMETRY)
ELSE BEGIN

(*TESTING NORMALITY*)
(*DECRE NORMAL IF BOTH SHAPIROWILKTEST*)
(*AND TESTSKEWNESS DECALRE NORMAL*)

SHAPIROWILKTEST(X,VARIANCE ,GPSIZE,GROUP,NORMAL ,SYMMETRY);
SKEWNESSTEST(G1 ,GPSIZE,GROUP,NORNAL,SYMMETRY);

END;
IF GROUP>1 THEN

TESTEQUALVARIANCE(VARIANCE ,GPSIZE ,TOTAL ,GROUP ,CV,KURTOSIS,
EQVARIANCE)

ELSE
EQVARIANCE :=TRUE;

END;
END (*TESTASSUTION*);

PROCEDURE PVALUEANDSIGLEV(VAR TESTSTATISTIC : TEST;
TOTAL 	: INTEGER);

(*GETTING P-VALUE AND SIGNIFICANCE LEVEL, SIGLEV*)

VAR P,Q,D,SQD : REAL;

FUNCTION NORNALDENSITY(XSQ : REAL) : REAL;

(*NOF.NAL DISTRIBUTION DENSITY*)

CONST ONEDIVROOT2PI=0.39894228 	(*=1/ROOT(2.PI)*);

BEGIN
NORNALDENSITY :=ONEDIVROOT2PI*EXP(_XSQ/2);

END (*NOp,vfLDSITy*);

PROCEDURE CHOOSELEVEL(PVAL,A,B,C,D,E : REAL;
VAR SIGLEV 	: REAL);

(*CHOOSING THE LEVEL AT WHICH MEAN DIFFERENCES ARE SIGNIFICANT*)

BEGIN
IF PVAL<A THEN

SIGLEV:=O.O 1
ELSE IF PVAL<B THEN

SIGLEV:=0.05
ELSE IF PVAL<C THEN

SIGLEV:=O. 1
ELSE IF PVAL<D THEN

SIGLEV:=0.15
ELSE IF PVAL<E THEN

SIGLEV:=0.2;
IF (GROUP<3) AND ((SIGLEV>0.1) OR (SIGLEV=O)) THEN

SIGLEV:=0.05; 	(*FOR CONSTRUCTING 95% CON. INTERVAL*)
EN13 (*CHOOSELEVEL*);

BEGIN
WITH TESTSTATISTIC DO BEGIN

SIGLEV:=O;
D:=VALUE;
CASE DISTRIBUTION OF

FDISTRIBUTION: BEGIN (*F_DISTRIBUTION*)
PVALUE:=FDIST(D,DFN,DFD);
CHOOSELEVEL(P VALUE , 0 .0 1,0 .05 ,O . 1,0 . 15 ,O .2

SIGLEV);
END;

TDISTRIBUTION: BEGIN (*T_DISTRIBUTION*)
PVALUE:=TDIST(D,DFD);
CHOOSELEVEL(PVALUE , 0 .005 ,O .0 25 ,O .05 ,O .0 75 ,O . 10,

SIGLEV);
END;

KRUSKALWALLIS: BEGIN (*USE F-DISTRIBUTION APPROXIMATION*)
PVALUE:=FDIST(DFD*D/(DFN*(TOTAL_1_D)),DFN,DFD);
CHOOSELEVEL(PVALUE,0.01,0.05,0.1,0.15,0.2,

SIGLEV);
END;

SIGNEDWILCOXON
IF D>13 THEN

PVALUE :=O
ELSE BEGIN

P :=NOOFNONZERO;
SQD:=SQR(D);
PVALUE:=NORNALD(D)+NORNALDENSITY(SQD)*

(3*p*(p+1,0)_1.0)*D*(SQD_3)
/(10*P*(P+1.0)*(2*P+1.0));

END;
TWOWILCOXON 	: (*APpROX. WILCOXON TEST*)

IF D>13 THEN (*PVALUE VERY SMALL*)
PVALUE:=O

ELSE BEGIN
P:=GPSIZE[1];
Q:=GPSIZE[2];
SQD:=SQR(D);
PVALUE:=NORMALD(D)+NORMALDENSITY(SQD)*

(SQR(P)+SQR(Q)+P*Q+TOTAL) *D* (SQD-3) /
(20 .0 *P*Q* (TOTAL+ 1.0)) ;

END;
RANDOM 	: PVALUE:=VALUE;

END;
END;

END (*PVALUEANDSIGLEV*);

PROCEDURE SHAPIROWILKTEST;

(*DECLARED FORWARD*)
(*pJ: (VAR X : DATASF; VAR VARIANCE : GROUPSTAT*)
(* 	VAR GPSIZE : GROUPSIZE; GROUP : INTEGER *)
(* 	VAR NORMAL,SYMMETRY : BOOLEAN 	 *)

VAR I,J,K,L,P,Q,R,FIRST : INTEGER;
WILK : TEXT;
COEF : ARRAY [1..30] OF REAL;
D,W,H : REAL;

BEGIN

(*$I+*) (*TIJEN I/O CHECK ON*)

H: =0;
I:=O;
REPEAT

I : = 1+1;
IF (GPSIZE[I]>2) AND (GPSIZE[I]<51) THEN BEGIN

P:=P+1;
IF CPSIZE[I]<31 THEN BEGIN

FIRST:=3;
RESET(WILK, 'SHAPWILK.3T030')

END ELSE BEGIN
FIRST:=31;
RESET(WILK, 'SHAPWILK.3 1TO5O');

END;
FOR J:=FIRST TO GPSIZE[I] DO BEGIN

K:=J DIV 2;
FOR L:=1 TO K+3 DO

READ(WILK,COEF[L]);
END;

Q:=T(I,GPSIZE[I])+1;
R:=T(I,O);
FOR J:=1 TO K DO

W:=W+COEF[J] * (X[Q_J]_X[R+J]);
W:=SQR(W)/(GPSIZE[I] *VARIANCE[I]);
D:=W_GPSIZE[I] * SQR(COEF[1])/(GPSIZE[I]_ 1);
IF D<=O THEN

NORMAL: =FALSE
ELSE

H:=H+COEF[K+2]+COEF[K+3] *LN(D/(1_W));(* STANDARDISED NORMAL*)
CLOSE(WILK);

END;
UNTIL (I=GROUP) OR (NOT NORMAL);
IF (P>1) AND NORMAL THEN BEGIN

H:=H/SQRT(P);(*STANDARDISED NORMAL*)
NORMAL:=(H>-1 .645);

END ELSE IF P=1 THEN
NORNAL:=W>COEF[K+1];

END (*SPAPIROWIU(TEST*);

PROCEDURE SKEWNESSTEST;

(*DECR FORWARD*)
(*pJ:(VAR Gi : GROUPSTAT; VAR GPSIZE : GROUPSIZE 	*)
(* 	 GROUP : INTEGER; VAR NORMAL, SYMMETRY : BOOLEAN *)

CONST ROOT1DIV6=0.40824829;

VAR I,P,Q : INTEGER;
ONESIDE,TWOSIDE,N,Z,W,C,D : REAL;

BEG IN
ONESIDE :=O;
TWO SIDE :=O;
P : =0;
Q : =0;
FOR I:=1 TO GROUP DO

IF GPSIZE[I]>7 THEN BEGIN
IF G1[I]>O THEN

Q:=Q#1;
P:=P+1;

END;

REP EAT
I: =1+1;
N:=GPSIZE[I];
C:=ROOT1DIV6 *G1[I] * SQRT((N_2) * (N+ 1) * (N+3)/(N* (N_ 1)));
IF N>7 THEN BEGIN

W: =SQRT(2*(3*(SQR(N)+27*N_70)*(N+1)*(N+3)/
((N_2)*(N+5)*(N+7)*(N1-9))_1))-1;

C:=C/SQRT(2/(W-1));
Z:=LN(C+SQRT(SQR(C)+1))/SQRT(0.5*LN(W));(*STANDARDIZED NORMAL*);
SYMNETRY:=SYMMETRY AND (ABS(Z)<1.96);

IF P>1 THEN BEGIN
IF ABS(Z)>3 THEN

NORMAL :=FALSE
ELSE IF (Q=P) OR (Q=O) THEN

ONESIDE :=ONESIDE_2*LN(NORMALD(Z))
ELSE

TWOSIDE:=TWOSIDE_2*LN(2*NORMALD(Z));
END ELSE IF P=1 THEN

NORMAL:=ABS(Z)<1 .96;
END ELSE

SYMMETRY:=SYMHETRY AND (ABS(C)<1.96);
UNTIL (I=GROUP) OR (NOT SYMHETRY);
P :=2*P;
IF NORMAL THEN

IF ONESIDE>OTHEN
NORNAL:=CHISQ(ONESIDE,P)>=0.05

ELSE
NORMAL:=(CHISQ(TWOSIDE,P)>0.025) AND (CHISQ(TWOSIDE,P)<=0.975);

END (*TESTSKENNES5*);

PROCEDURE TESTEQUALVARIANCE;

(*DECLAR FORWARD*)
(*p: (VAR VARIANCE GROUPSTAT; VAR GPSIZE : GROUPSIZE*)
(* 	 TOTAL,GROUP
	

INTEGER; CV,KURTOSIS : REAL *)
(* 	 EQ VARIANCE BOOLEAN

VAR BARTEST,D : REAL;
I,J,K : INTEGER;

BEGIN
EQVARIANCE:=CV<1;(*IF CV>=1 THEN VERY UNEQUAL*)
IF EQVARIANCE THEN

IF GROUP=2 THEN BEGIN (*F_TEST*)
IF VARIANCE[11<VARIANCE[21 THEN

J:=2
ELSE

J:=1;
K:=3-J;
EQVARIANCE:=(FDIST(VARIANCE[J]/VARIANCE[K],GPSIZE[J] - 1,GPSIZE[K] - 1)

>0.05)
END ELSE BEGIN (*BARLETT'S TEST*)

D : =0;
J:=GROUP-1;
K: =TOTAL-GROUP;
FOR I:=1 TO GROUP DO

D:=D+(GPSIZE[I]_ 1) *LN(VARIANCE[I]);
BARTEST :=K*LN(MSE)_D;
IF (NOT NORMAL) AND (KURTOSIS>-2) THEN

D:=1+0.5*KURTOSIS 	(*BOX'S ESTIMATE*)
ELSE BEGIN

D:=O; 	 (*BARTLETT'S ESTIMATE*)
FOR I:=1 TO GROUP DO

D:=D4-1/(GPSIZE[I]-1.0);
D:=1+(D_1/K)/(3*J);

END;
EQVARIANCE:=(CHISQ(BARTEST/D,J)>0.05);

END;
END (*TESTEQUALVARIANCE*);

FUNCTION TDIST;

(*DECLARED FORWARD..PARA:(T : REAL; DF : INTEGER*)

CONST ONEDIVPI=0.3 183098862 (*=1/PI*);
UPPERBOUND 200;
LOWERBOUND=1 .OE-15;

VAR SINESQ,COSINESQ,Z,X,A,D : REAL;
K : INTEGER;

BEGIN
T:=ABS(T);
IF T>UPPERBOUND THEN

TDIST:=0.0
ELSE IF T<LOWERBOUND ThEN

TDIST:=0.5
ELSE IF DF<21 THEN BEGIN

X:=SQR(T);
D:=X+DF;
COSINESQ :=DF/D;
SINESQ :=X/D;
IF DF=1 THEN

A: =0
ELSE BEGIN

(*EXACT SERIES SUMMATION USING RECURRENCE RELATION*)

A:=1;
K:=DF-2;
WHILE K>1 DO BEGIN

A:=COSINESQ*A*(K_1)/K+1;
K:=K-2;

END;
END;
IF ODD(DF) THEN

TDIST:=0.5_ONEDIVPI*(ATAN(T/SQRT(DF))+SQRT(COSINESQ*SINESQ)*A)
ELSE

TDIST :=O .5-0. 5*SQRT(SINESQ)*A;
END ELSE BEGIN

(*COpJISH_FISHER TYPE APPROXIMATION*)

A:=DF-0.5;
D:=48*SQR(A);
Z:=A*LN(1+SQR(T)/DF);
X:=SQRT(Z)*(1+(Z+3)/D1(Z*(Z*(4*Z+33)+240)+855)/

(1O*D (twO .0 8* SQR(Z)+ 100)))
TDIST:=NORNALD(X);

END;
END (*TDIST*);

FUNCTION FDIST;

(*DECLARED FORWARD..PARA: (F REAL; V1,V2 :INTEGER*)

CONST TWODIVPF0.6366197723675813430755351 (*2/pI*);
ONETHIRD=0.333333333333 (*1/3*);
TWOTHIRD=0.666666666667 (*=2/3*);
TWODIVNINE=0.2222222222 (*=2/9*);
UPPERBOUND= 1.0 E6;
LOWERBOUND=1 .OE-15;

VAR TE4PFDIST,COSINESQ,SINESQ,P,Q,A,B : REAL;
'I : INTEGER;
USEREFLEXIVE : BOOLEAN;

FUNCTION POWER(X,V : REAL) : REAL;

(*COMPUTE XTO THE POWER OF V*)

CONST LNBOUND= 1.0 E-3 5;
EXPBOUND=-86;

VAR Q : REAL;

BEGIN
(*EQUATE POWER(X,V) TO ZERO IF TOO SMALL, GUARD AGAINST IJNDERFLOW*)

IF X>LNBOUND THEN BEGIN
Q:=V*LN(X);
IF Q>EXPBOUND THEN

POWER: =EXP(Q)
ELSE

POWER: =0
END ELSE

POWER:=0.O;
END (*POWER*);

FUNCTION FINITESERIES(Y : REAL; I,J : INTEGER) : REAL;

(*COMPUTE EXACT SERIES EXPANSION OF F_DISTRIBUTION*)

VAR C : REAL;

BEGIN
I:=I-2;
J:=J-2;
C:=1;
IF (I-4-J)>O THEN

(*RECURRENCE RELATION*)
WHILE 1>1 DO BEGIN

C :=C*Y*(I+J)/I+1 .0;
I:=I-2;

END;
FINITESERIES:=C;

END (*FINITE5ERIES*);

BEGIN
IF (F>UPPERBOUND) AND (V2>1) THEN

FDIST:=O
ELSE IF F<LOWERBOUND THEN

FDIST:=1
ELSE BEGIN

USEREFLEXIVE:=((V1>1) AND (V2=1))
OR ((ODD(v1) AND (V1<41)) AND ((NOT ODD(V2)) AND (V2<41)))
OR ((v1(15) AND (V2>40));

IF USEREFLEXIVE THEN BEGIN
I:=V1;
V1:=V2;
V2:=I;
F:=1/F;

END;
IF (v1<41) AND (V2<41) THEN BEGIN

P:=V1*F;
Q : =P+V2;
SINESQ:=P/Q; 	(*SQUARE OF SINE(ATAN(SQRT(P/V2)))*)
COSINESQ:=V2/Q;
IF ODD(V1) AND ODD(V2) THEN BEGIN

Q:=ATAN(SQRT(P/V2));
IF V2=1 THEN

A: =TWOD IVPI*Q
ELSE BEGIN

A:=TWODIVPI*(QSQRT(COSINESQ*SINESQ)*
FINITESERIES(COSINESQ,V2 , 1));

IF V1>1 THEN BEGIN

(*c&jcuJATE Q=((V2_1)/2)1*)
Q:=1;
FOR I:=((V2-1) DIV 2) DOWNTO 2 DO

Q:=Q*I;

(*CJCUJTE P=2/(SQRT(PI)*((V2_2)/2)1)*)
(*NOTE: (-1/2)!=ROOT(PI)
P:=1;
FOR I:=((V2-2) DIV 2) DOWNTO 0 DO

P:=P*(I+0.5);
P :=TWODIVPI/P;
B:=P*Q*SQRT(SINESQ)*POWER(COSINESQ,0.5*V2)*

FINITESERIES(SINESQ,V1 ,V2);
END ELSE

B:=O;
END;
TEKPFDIST:=1-(A-B);

END ELSE
TEMPFDIST:=POWER(COSINESQ,0.5*V2)*FINITESERIES(SINESQ,V1,V2);

END ELSE BEGIN
P :=TWODIVNINE/V1;
Q :=TWODIVNINE/ V2;
B:=POWER(F,ONETHIRD)*(1_Q)+P_1;
B:=B/SQRT(P+Q*POWER(F,TWOTHIRD));
IF B>O THEN

TEMPFDIST :=NORNALD(B)
ELSE

TEMPFDIST:=1-NORNALD(B);
END;
IF USEREFLEXIVE THEN

FDIST 1-TEMPFDIST
ELSE

FDIST:=TFJIPFDIST;
END;

END (*FDIST*);

FUNCTION CHISQ;

(*DECJARfl) FORWARD. PARA:(XSQ : REAL; DF : INTEGER*)

CONST ONETHIRD0.333333333333 (*1/3*);
ROOTTWODIVPI=0.79788456 (*=SQUARE ROOT OF 2/PI*);
LOWERBOUND=1 .OE-16;
UPPERBOUND=1 .0E6;
SERIESUPPERBOUND 105;

VAR I : INTEGER;
R,RSQ,X,A,ASQ : REAL;

BEGIN
IF XSQ<LOWERBOUND. THEN

CHISQ:=1 .0
ELSE IF XSQ>UPPERBOUND THEN

CHISQ :=0
ELSE IF DF<41 THEN BEGIN

IF XSQ>SERIESUPPERBOUND THEN
CHISQ :=0.O

ELSE BEGIN

(*EXACT SERIES SUMMATION USING RECURRENCE RELATION*)

I :=DF-2,;
R:=O;
WHILE 1>0 DO BEGIN

R:=(1+R)*XSQ/I;
I:=I-2;

END;
IF ODD(DF) THEN

CHISQ:=2*NORMALD(SQRT(XSQ))+ROOTTWODIVPI*EXP(_0.5*XSQ)*R/SQRT(XSQ)
ELSE

CHISQ:=EXP(_0.5*XSQ)*(1+R);
END;

END ELSE BEGIN

RSQ :=XSQ_DF_DF*LN(XSQ/DF);
R:=SQRT(RSQ);
ASQ:=2.0/DF;
A:=SQRT(ASQ);
IF XSQ<DF THEN

R:=-R;
X:=R+A*(ONETHIRD_(RSQ_13 .0)*ASQ/162O.0)

_ASQ*R*(1/36_7*ASQ*(6.0*RSQ+17.0)/38880.0);
IF X>O THEN

CHISQ :=NORNALD(X)
ELSE

CHISQ:=1-NORNALD(X);
END;

END (*QISQ*);

FUNCTION NORMALD;

(*DECLARED FORWARD..PARA:(Y :REAL*)

CONST ONEDIVPI=0.3183098862;
ONFDIV3ROOT2=0 .23570226;
ROOT2DIV3=0.47140452;
UPPERBOUND=5 .25;
LOWERBOUND=1.OE-16;

VAR I : INTEGER;
X,P : REAL;

BEGIN
Y:=ABS(Y);
IF Y<LOWERBOUND THEN

NORMALD:=0.5
ELSE IF Y<UPPERBOUND THEN BEGIN

P :=ONEDIV3ROOT2*Y;
X :=ROOT2DIV3*Y;
FOR I:=12 DOWNTO 1 DO

P :=P+EXP(_SQR(I)/9)*SIN(I*X)/I;
NORMALD : =0. 5_ONEDIVPI*P;

END ELSE
NORMALD:=0.O;

END (*NOffl4ALD*);

BEGIN 	 (* PROCEDURE, ASSUMPTIONDISTRIBUTION *)
IF EXAMINEDATA THEN BEGIN

TESTASSUMPTION(X, GPSIZE , DESCRIPTIVESTATISTIC,
NORMAL, SYMMETRY, EQVARIANCE, PROBLEM ,GROUP, TOTAL,
KURTOSIS);

EXAXINEDATA: =FALSE;
END ELSE IF GETPVALUE THEN BEGIN

PVALUEANDSIGLEV(TESTSTATISTIC, TOTAL);
GETPVALUE:=FALSE;

END;
END 	 (*ASSUMPTIONDISTRIBUTION*);

SEGMENT PROCEDURE CALCULATION(VAR GETTEST : BOOLEAN;
VAR DATA,X : DATASET;
VAR DESCRIPTIVESTATISTIC : STATISTIC;
VAR TESTSTATISTIC 	: TEST;
VAR CONFIDENCEINTERVAL : INTERVAL;

TRANSFORM 	: TYPEOFTRANSFORMATION;
VAR GPSIZE 	: GROUPSIZE;
VAR DIFFPAIR : INTEGER;

BSS,MSE : REAL;
GROUP,TOTAL,MINGPSIZE : INTEGER;
MAXGPSIZE,GPSIZEALLOW INTEGER;
NORMAL , EQVARIANCE BOOLEAN;

VAR SYMMETRY : BOOLEAN;
TESTTHEOMEAN BOOLEAN;
DATAKIND : DATATYPE);

(* X IS USED FOR PASSING DATA TO FUNCTION RANDOMIZATIONTEST OR RANKTEST *)
(* PROCEDURE, NOT NECESSARILY DUPLICATE OF THE DATA AND MAY CARRY RESULTS *)
(ABOUT PAIRWISE COMPARISONS FOR MULTIPLE GROUPS AFTER SECOND CALL.

FUNCTION RANDOMIZATIONTEST(VAR MEAN : GROUPSTAT;
VAR Z 	: DATASET;

N,M : INTEGER) : REAL;

(*FOR CALCULATING ONE-SIDED P-VALUE OF RANDOMIZATION TEST*)

FORWARD;

FUNCTION ONESAMPLETTEST (SAMPLEMEAN, SAMPLEVARIANCE : REAL;
SAMPLESIZE : INTEGER) : REAL;

(*FOR CALCULATING ONE SAMPLE TTEST*)

FORWARD;

FUNCTION TWOTTEST(VAR MEAN 	GROUPSTAT;
VAR GPSIZE GROUPSIZE;

MSE 	REAL) REAL;

(*FOR CALCULATING TWO SAMPLE T_TEST*)

FORWARD;

PROCEDURE WELCHTTEST(VAR MEAN,VARIANCE : GROUPSTAT;
VAR GPSIZE : GROUPSIZE;
VAR DFD : INTEGER;
VAR WELCHT : REAL);

(*FOR CALCULATING WELCH T_TEST*)

FORWARD;

PROCEDURE WELCHFTEST(VAR MEAN,VARIANCE : GROUPSTAT;
GROUP,DFN : INTEGER;

VAR DFD : INTEGER;
VAR GPSIZE : GROUPSIZE;
VAR WELCHF : REAL);

(*FOR CALCULATING WELCH F_TEST*)

FORWARD;

PROCEDURE RANKTEST(VAR Z 	: DATASET;
VAR GPSIZE : GROUPSIZE;
VAR RANKSUM : GROUPSTAT;

GROUP,TOTAL : INTEGER;
NAME : STRING;

VAR VALUE,TIECORR : REAL);

(*FOR CALCULATING RANK STATISTICS AND TIE CORRECTION FACTOR *)

(*FOR SIGNED-RANK WILCOXON TEST, GROUP=2 AS POSITIVE NUMBERS*)
(*ARE PASSED AS FIRST GROUP AND ABSOLUTE VALUES OF NEGATIVE *)
(*NDMBERS AS THE SECOND GROUP. TOTAL IS THE NIJMBER OF
(*NON_ZERO DATA

FORWARD;

FUNCTION INVERTDIST(P : REAL; N : INTEGER) : REAL;

(*FOR CALCULATING THE UPPER PERCENTAGE POINT OF T_DISTRIBUTION*)

FORWARD;

FUNCTION INVERNORMAL(P REAL) : REAL;

(*FOR CALCULATING THE UPPER PERCENTAGE POINT OF STD. NORMAL DISTRIBUTION*)

FORWARD;

PROCEDURE TESTOFSINGLEMEAN(VAR DATA,X : DATASET;
VAR GPSIZE : GROUPSIZE;
VAR DESCRIPTIVESTATISTIC STATISTIC;
VAR TESTSTATISTIC : TEST;

GPSIZEALLOW 	: INTEGER;
VAR SYMMETRY : BOOLEAN;

NORMAL,TESTTHEOMEAN BOOLEAN;
TRANSFORM TYPEOFTRANSFORMATION);

(*TEST OF SINGLE MEAN*)

VAR I : INTEGER;
GP : GROUPSIZE;
TTEST,WILCOXTEST : BOOLEAN;

BEGIN
TTEST :=(GPSIZE[1]>80)

OR NORMAL OR TESTTHEOMEAN
OR ((GPSIZE[1]>15) AND SYMMETRY);

WILCOXTEST :=(NOT TTEST)
AND (TRANSFORNIDENTITY);

WITH DESCRIPTIVESTATISTIC, TESTSTATISTIC DO BEGIN
(*IF T-TEST NOT APPLY, TRY RANDOMIZATION TEST*)
RANDOMTEST :=(NOT TTEST)

AND (GPSIZE[1]<20)
AND (TRANSFORM=IDENTITY);

IF RANDOMTEST THEN BEGIN
NOOFNONZERO : =0;
FOR I:=1 TO GPSIZE[1] DO

IF DATA[I]<>O THEN BEGIN
NOOFNONZERO : =NOOFNONZERO+ 1;
X[NOOFNONZERO] :=DATA[I]; 	(*X NOT DUPLICATE OF DATA*)

END;
RANDOMTEST :=NOOFNONZERO<16;

END;
IF RANDOMTEST THEN BEGIN

DFN:=O;
DFD:=O;
RANDOMTEST : =TRUE;
NAME:='PAIRED RANDOMIZATION';
VALUE :=RANDOMIZATIONTEST(MEAN ,X,NOOFNONZERO,NOOFNONZERO);

(*THIp) PARAMETER IS REDUNDANT*)
VALID :=TRUE;
SYMMETRY:=TRUE; (*TRUE UNDER NULL HYPOTHESIS*)
DISTRIBUTION: =RANDOM;

END ELSE IF WILCOXTEST ThEN BEGIN
NAME:='PAIRED SIGNED-RANK WILCOXON';
DFN:=O;
DFD:=O;
RANKSUMTEST :=TRUE;
GP [1]: =0;
GP[2] :=O;
FOR I:=1 TO GPSIZE[1] DO 	(* X BEING USED TO PASS DATA, PASSING *)

IF DATA[I]>O THEN BEGIN (* POSITIVE DATA AS FIRST GROUP
GP[1]:=GP[1]+1; 	(* AND ABSOLUTE VALUES OF NEGATIVE *)

X[GP[1]]:=DATA[I]; 	(* DATA AS SECOND GROUP
END ELSE IF DATA[I]<O THEN BEGIN

GP[2] :=GP[2]+ 1 ;
X[GP[2]+GPSIZEALLOW] := -DATA[I];

END;
NOOFNONZERO:=GP[1]+GP[2];
R.ANKTEST(X,GP,RANKSUM,2,NOOFNONZERO,NAME,VALUE,TIECORR);
DISTRIBUTION: =SIGNEDWILCOXON;
SYMMETRY:=TRUE; (*TRUE UNDER NULL HYPOTHESIS*)
VALID:=TRUE;

END ELSE BEGIN
IF TESTTHEOMEAN THEN

NAME: = 'ONE-SAMPLE T-TEST'
ELSE

NAME:='PAIRED T-TEST';
DFN:=O;
DFD:=GPSIZE[1] - 1;
VALUE:=ONESAMPLETTEST(MEAN[1] ,VARIANCE[1] ,GPSIZE[1]);
DISTRIBUTION :=TDISTRIBUTION;
VALID: =TTEST;

END;
END;

END (*TESTOFSINGLF21EAN*);

PROCEDURE TESTOFTWOMEANS(VAR X 	: DATASET;
VAR GPSIZE : GROUPSIZE;
VAR DESCRIPTIVESTATISTIC : STATISTIC;
VAR TESTSTATISTIC : TEST;

GROUP,TOTAL,MINGPSIZE : INTEGER;
MSE : REAL;
NORMAL , SYMMETRY, EQ VARIANCE : BOOLEAN;
TRANSFORM : TYPEOFTRAN SFORMAT ION;
DATAKIND : DATATYPE);

(*TEST OF EQUALITY OF TWO MEANS*)

BEGIN
WITH DESCRIPTIVESTATISTIC, TESTSTATISTIC DO BEGIN

RANDOMTEST :=(NOT NORMAL)
AND SYMMETRY AND (TRANSFORM=IDENTITY)
AND ((GPSIZE[11<10) AND (GPSIZE[21<10));

RANKSUMTEST : = (DATAKIND=SCORE)
AND (NOT RANDOMTEST)
AND (NOT NORMAL)
AND (SYMMETRY AND EQVARIANCE)
AND (TRANSFORN=IDENTITY);

IF RANDOMTEST THEN BEGIN
NAME:='TWO-SAMPLE RANDOMIZATION';
DFN:=O;
DFD:=O;
VALUE:=RANDOMIZATIONTEST(MEAN ,X,TOTAL,GPSIZE[1]);
DISTRIBUTION: =RANDOM;
VALID :=TRUE;

END ELSE IF RANKSUMTEST THEN BEGIN
NAME:='WILCOXON RANK SUM';
DFN:=O;
DFD:=O;
RANKTEST(X,GPSIZE,RANKSUM,GROUP,TOTAL,NAME,VALUE,TIECORR);
DISTRIBUTION: =TWOWILCOXON;
VALID: =TRUE;

END ELSE IF (GPSIZE[1]=GPSIZE[2])
OR EQVARIANCE
OR (MINGPSIZE<10) THEN BEGIN

NAME:='TWO-SMIPLE T-TEST';
DFN:=1;
DFD : =TOTAL-2;
DISTRIBUTION: =TDISTRIBUTION;
VALUE:=TWOTTEST(MEAN ,GPSIZE,MSE);
VALID :=NORMAL OR SYMMETRY;

END ELSE BEGIN
NAME:='WELCH T-TEST';
DFN:=1;
(*DFD TO BE ESTIMATED*)

WELCHTTEST(MEAN ,VARIANCE,GPSIZE,DFD,VALUE);
DISTRIBUTION: =TDISTRIBUTION;
VALID : =NORMAL OR SYMMETRY;

END;
END;

END (*TESTOFTWOMEANS*);

I

PROCEDURE TESTOFSEVERALMEANS(VAR X 	: DATASET;
VAR GPSIZE : GROUPSIZE;
VAR DESCRIPTIVESTATISTIC : STATISTIC;
VAR TESTSTATISTIC : TEST;

GROUP,TOTAL,MINGPSIZE,MAXGPSIZE : INTEGER;
MSE : REAL;
NORMAL, SYMMETRY, EQ VARIANCE : BOOLEAN;
TRANSFORM : TYPEOFTRANSFORMATION;
DATAKIND : DATATYPE);

(*TEST OF EQUALITY OF SEVERAL MEANS*)

VAR SIZENOTTOOSMALL : BOOLEAN;

BEGIN
SIZENOTTOOSMALL : =(TOTAL DIV GROUP)>3;
WITH DESCRIPTIVESTATISTIC, TESTSTATISTIC DO BEGIN

RANKSUMTEST :=SIZENOTTOO SMALL
AND (DATAKIND=SCORE)
AND (NOT NORMAL)
AND (TRANSFORN=IDENTITY)
AND SYMMETRY AND EQVARIANCE;

DFN:=GROUP-1;
DFD:=TOTAL-GROUP;
IF RANKSUMTEST THEN BEGIN

NANE:='KRUSKAL-WALLIS';
RANKTEST(X,GPSIZE,RANKSUM,GROUP,TOTAL,NANE,VALUE,TIECORR);
VALID: =TRUE;
DISTRIBUTION: =KRUSKALWALLI S;

END ELSE IF EQVARIANCE
OR (MINGPSIZE<10)
OR ((MINGPSIZE=MAXGPSIZE) AND (CV<1)) THEN BEGIN

NAME:='F-TEST';
DISTRIBUTION: =FDISTRIBUTION;
VALUE:=BSS/(MSE*DFN);
VALID : =NORIvIAL OR SYMMETRY;

END ELSE BEGIN
NANE:='WELCH F-TEST';
DISTRIBUTION: =FDISTRIBUTION;
WELCHFTEST(MEAN,VARIANCE,GROUP,DFN,DFD,GPSIZE,VALUE);
VALID :=NORNAL OR SYMMETRY;

END;
END;

END (*TESTOFSEVEPMEANS*);

PROCEDURE PAIRWISECOMPARISONORCONFIDENCEINTERVAL
(VAR DESCRIPTIVESTATISTIC : STATISTIC;
VAR TESTSTATISTIC : TEST;
VAR GPSIZE : GROUPSIZE;
VAR CONFIDENCEINTERVAL : INTERVAL;
VAR X : DATASET;

MSE : REAL;
VAR GROUP,DIFFPAIR : INTEGER;

EQVARIANCE : BOOLEAN);

(*FOR CARRYING OUT PAIR-WISE COMPARISONS*)
(*OR CONSTRUCTING CONFIDENCE INTERVAL *)

VAR W,RECIPGPSIZE : GROUPSTAT;
I,J,DF : INTEGER;
Q,D,E : REAL;

PROCEDURE CONSTRUCT(VAR CONFIDENCEINTERVAL : INTERVAL;
VAR MEAN,VARIANCE : GROUPSTAT;
VAR GPSIZE GROUPSIZE;

GROUP,DFD 	: INTEGER;
MSE,SIGLEV 	REAL);

(*CONSTRUCT CONFIDENCE INTERVAL*)

VAR U,D : REAL;

BEGIN
IF GROUP=1 THEN BEGIN

U : =MEAN [1];
D:=INVERTDIST(SIGLEV/2,(GPSIZE[1]_1)) * SQRT(VARIANCE[1]/GPSIZE[1])

END ELSE BEGIN
U:=MEAN[1] -MEAN[2];
D:=INVERTDIST(SIGLEV/2 ,DFD);
IF EQ VARIANCE THEN

D:=D* SQRT(MSE* (1/GPSIZE[1]+1/GPSIZE[2]))
ELSE

D:=D* SQRT(VARIANCE[1]/GPSIZE[1]+VARIANCE[2]/GPSIZE[2]);
END;
WITH CONFIDENCEINTERVAL DO BEGIN

UPPERLIMIT:=U+D;
LOWERLIMIT : =U-D;

END;
END (*CONSTRUCT*);

PROCEDURE CONPARE(V,E REAL; VAR DIFFPAIR : INTEGER);

(*DOING COMPARISON*)

VAR .K : INTEGER;

BEGIN
IF ABS(V)>E THEN BEGIN

DIFFPAIR : =DIFFPAIR+ 1;
K:=2*DIFFPAIR_1;
X[K] :=I; 	(*HERE X IS USED TO CARRY INFORMATION CONCERNING*)
X[K+1]:=J; (*PAIRS WITH SIG. DIFFERENT MEANS.

END;
END (*C4pE*);

BEGIN
DIFFPAIR : =0;
WITH DESCRIPTIVESTATISTIC, TESTSTATISTIC DO

IF SIGLEV>O THEN BEGIN
IF (GROUP<=2) AND (NOT RANDOMTEST) AND (NOT RANKSUMTEST) THEN

CONSTRUCT(CONFIDENCEINTERVAL ,MEAN ,VARIANCE , GPSIZE,
GROUP,DFD,
MSE, SIGLEV)

ELSE IF GROUP>2 THEN BEGIN
IF EQVARIANCE THEN BEGIN

Q :=SIGLEV/(GROUP*(GROUP_1 .0));

IF NANE='KRUSKAL-WALLIS' THEN BEGIN
D:=INVERNORNAL(Q)*SQRT((TOTAL*(TOTAL+i .0)-TIECORR/

(TOTAL-1.0))/12.0);
FOR I:=i TO GROUP DO

W[I] :=RANKSUM[I]/GPSIZE[I]
END ELSE (*NANE='F_TEST'*) BEGIN

D:=INVERTDIST(Q,DFD)*SQRT(MSE);
W:=MEAN;

END;
FOR I:=i TO GROUP DO

RECIPGPSIZE[I] :=l/GPSIZE[I];
FOR I:=i TO GROUP-i DO

FOR J:=I+1 TO GROUP DO
COMPARE((W[I} -W[J]),

(D* SQRT(RECIPGPSIZE[I]+RECIPGPSIZE[J])),DIFFPAIR);
END ELSE (*NANE='WELCH F_TEST'*) BEGIN

Q : =0.5*(1_EXP(2/(GROUP*(GROUP_1))*LN(1_SIGLEV)));
FOR I:=i TO GROUP DO

W[I] :=VARIANCE[I] /GPSIZE[I];
FOR I:=i TO GROUP-i DO

FOR J:1+i TO GROUP DO BEGIN
D:=W[I]+W[J];
DF :=ROUND(SQR(D)/

(SQR(W[I])/(GPSIZE[I] - i.0)+SQR(W[J])/(GPSIZE[J] - i .0)));
E:=INVERTDIST(Q,DF)*SQRT(D);
COMPARE((MEAN[I]-MEAN[J]) , E,DIFFPAIR);

END;
END;

END;
END;

END (*PAIRWISECOMPARISONORCONFIDENCEINTERVAL*);

FUNCTION RANDOMIZATIONTEST;

(*DECA[) FORWARD..PARA:(VAR MEAN GROUPSTAT; VAR Z : DATASET*)
(* 	 N,M : INTEGER
(*NO RANGE CHECK IN THIS PROCEDURE*)

VAR K : INTEGER;
OBSERSUM,COMB,C : REAL;

PROCEDURE ARRANGEANDSCALEUPZ;

(*j,pGE AND SCALE-UP Z TO MAKE ITS REPRESENTATION MORE DISTINCT*)

VAR I,K : INTEGER;

BEGIN
(*$R_*) 	(*TURN OFF THE RANGE CHECK*)

IF GROUP=2 THEN BEGIN
(*RpJNGE Z TO EASE CALCULATION*)
(*z[i] TO Z[M] IS THE FIRST SAMPLE*)
(*z[-i] TO Z[N] IS THE SECOND SAMPLE*)

K: =T (2 ,0)-M;
FOR I:=M+i TO N DO

Z[I] :=Z[K+I];
END;
FOR I:=i TO N DO

Z[I]:=2.OE4*Z[I];
END (*ARRANGEANDSCALEIJPZ*);

PROCEDURE GETOBSERSUM(VAR Z : DATASET;
VAR OBSERSUM : REAL;
VAR N,M : INTEGER);

(*OBTAIN THE OBSERVED SUM*)

VAR I,J,K : INTEGER;

BEGIN
(*$R_*) 	(*mj OFF THE RANGE CHECK*)

OBSERSUM: =0;
IF GROUP=1 THEN BEGIN

(* OBSERSUM=MINIMUM(ABSOLUTE(SUM OF NEGATIVE Z), *)
ABSOLUTE(SUM OF POSITIVE Z)) *)

IF MEAN[1]>0 THEN BEGIN
(*sIJM OF POSITIVE Z > SUM OF NEGATIVE Z*)
FOR I:=1 TO N DO IF Z[I]<O THEN

OBSERSIJM:=OBSERSUM—Z[I];
END ELSE

FOR I:=1 TO N DO IF Z[I]>O THEN
OBSERSUM:=OBSERSUM+Z[I];

END ELSE BEGIN

(*OBSERSUM IS THE SUM OF THE SAMPLE WITH SMALLER MEAN*)
IF MEAN[1]>MEAN[2] THEN BEGIN

J:=M+1;
K: =N;
M:=N—M; (*SET M TO SAMPLE SIZE OF SECOND SAMPLE*)

END ELSE BEGIN
J:=1;
K: =M;

END;
FOR I:=J TO K DO

OBSERSUM:=OBSERSU*Z[I];
END;

END (*ETBSERSjJM*);

PROCEDURE TAKEABSOLUTEZ;

VAR I : INTEGER;

BEGIN
(*$R_*) 	(*TURN OFF THE RANGE CHECK*)

FOR I:=1 TO N DO
Z[I] :=ABS(Z[I]);

END (*TAKFABSOLUTEZ*);

PROCEDURE SORTZ;

(*SORT Z IN ASCENDING ORDER*)

VAR I,J : INTEGER;
C : REAL;

BEGIN
(*$R_*) 	(*TURN OFF THE RANGE CHECK*)
FOR I:=1 TO N DO

FOR J:=I+1 TO N DO
IF z[I]>Z[J] THEN BEGIN

C:=Z[I];
Z[I] :=Z[J];
Z[J] :=C;

END;
END (*SORTZ*);

FUNCTION COUNT(VAR Z : DATASET;
N,R : INTEGER;
OBSERSUM : REAL) : REAL;

(*COUNT NUMBER OF COMBINATIONS R OUT OF N NUMBERS WITH SUM<=OBSERSUM*)

VAR A : ARRAY [1..20] OF 1..20;
LAST,I,J,K : INTEGER;
POSSIBLE,SUM,PARSUM,S : REAL;

BEGIN
(*$R_*) 	(*TTJpN OFF THE RANGE_CHECK*)

SUM:=O;
FOR I:=1 TO R DO BEGIN

A[I] :=I;
SUM:=SUN+Z[I];

END;
IF SUM>OBSERSUM THEN

COUNT : =0
ELSE BEGIN

POSSIBLE :=1;
PARSUM:=SUM-Z[R];
S : =OBSERSUN-PARSUM;
WHILE (z[N]>S) AND (N>R) DO

N:=N-1 (*ELIMINATE Z[N] *);
IF R=1 THEN

POSSIBLE :=N
ELSE IF R<N ThEN BEGIN

LAST:=N+1-R;
REP EAT

IF K<N THEN BEGIN
PARSUM:=SUM-Z[K];
S :=OBSERSUM-PARSUM;
REPEAT

K:=K+1;
IF Z[K]>S THEN

K:=N (*SET CONTROL TO BACK_TRACK*)
ELSE

POSSIBLE :=POSSIBLE+1
UNTIL K=N;
J:=R;

END ELSE (* K=N *) BEGIN

J:=J-1; 	 (*BACK_Tp.CK*)

K:=A[J];
PARSUM:=PARSUM-Z[K];
SUM: =PARSUM;
FOR I:=J TO R DO BEGIN

K:=K+1;
A[I] :=K;
SUM : = SUM4-Z [K] ;

END (*K=A[R] ON EXITING THIS LOOP*);
IF SUM>OBSERSUM THEN BEGIN

IF J=1 THEN
A[1] :=LAST

ELSE
K:=N; 	(*SET CONTROL TO BACK_TRACK*)

END ELSE (*SUM<=OBSERSUM*)
POSSIBLE :=POSSIBLE+1;

END;
UNTIL A[1]=LAST;

END;
COUNT:=POSSIBLE;

END;
END (*COUNT*);

FUNCTION COMBINATION(P,Q : INTEGER) : REAL;

(*COMpUTE COMBINATION Q OUT OF P, THUS P>=Q*)

FUNCTION FACTORIAL(W:INTEGER) :REAL;

(*FACTORIAL OF w*)

VAR F : REAL;
J : INTEGER;

BEGIN
F:=1;
FOR J:=W DOWNTO 2 DO

F:=F*J;
FACTORIAL: =F;

END (*FACTORIAL*);

BEGIN
COMBINATION:=FACTORIAL(P)/(FACTORIAL(Q)*FACTORIAL(P_Q));

END (*COMBINATION*);

BEGIN
ARRANGEANDSCALEUPZ;
GETOBSERSUM(Z,OBSERSUM,N,M);
IF GROUP=1 THEN

TAKEABSOLUTEZ;
SORTZ;
IF GROUP=1 THEN BEGIN

COMB:=1.0; 	 (*THIS IS EQUAL TO COUNT(N,O)*)
IF OBSERSUM>O THEN BEGIN

K:=O;
REPEAT

K:=K+1;
C:=COUNT(Z,N,K,OBSERSUM);
COMB:=COMB+C;

UNTIL (K=N) OR (C=O);
END;

(* IF OBSERSUM=O THEN ANY SUM OF A NON-EMPTY *)
(* SUBSET OF Z[1] TO Z[N] IS > OBSERSUM 	*)

RANDOMIZATIONTEST : =COMB/ EXP (N*LN(2));
END ELSE

RANDOMIZATIONTEST :=COUNT(Z ,N,M, OBSERSUM)/COMBINATION(N ,M);
(*$R+*) 	(*PGE_CHECK BACK ON*)

END (*RANDOMIZATIONTEST*);

FUNCTION ONESAIIPLETTEST;

(*DECLARED FORWARD • .PARA: (SAMPLEMEAN , SAMPLEVARIANCE : REAL*)
(* 	 SAMPLESIZE :INTEGER 	 *)

BEGIN
ONESAMPLETTEST :=SAMPLEMEAN/SQRT(SAMPLEVARIANCE/SAMPLESIZE);

END (*ONETTEST*);

FUNCTION OTTEST;

(*DECLARED FORWARD..PARA:(VAR MEAN : GROUPSTAT 	 *)
(* 	 VAR GPSIZE : GROUPSIZE; MSE :REAL*)

BEGIN
TWOTTEST:=(MEAN[1]_MEAN[2])/SQRT(MSE * (1 /GPSIZE[1]+ 1 /GPSIZE[2]));

END (*TWOTTEST*);

PROCEDURE WELCHTTEST;

(*DECLAR FORWARD*)
(*PARA:(VAR MEAN,VARIANCE GROUPSTAT 	*)
(* 	VAR GPSIZE : GROUPSIZE
(* 	VAR DFD : INTEGER; VAR WELCHT : REAL*)

VAR D,E,F REAL;

BEGIN
D:=VARIANCE[1]/GPSIZE[1];
E:=VARIANCE[2]/GPSIZE[2];
F:=D+E;
DFD:=ROUND(SQR(F)/(SQR(D)/(GPSIZE[1]-1.0)+SQR(E)/(GPSIZE[2]-1.0)));
WELCHT:=(MEAN[1] -MEAN[2])/SQRT(F);

END (*WELCHTTEST*);

PROCEDURE WELCHFTEST;

(*DECLARED FORWARD*)
(*PARA: (VAR MEAN,VARIANCE : GROUPSTAT
(* 	 GROUP,DFN : INTEGER; VAR DFD : INTEGER *)

VAR GPSIZE : GROUPSIZE; VAR WEL.CHF : REAL *)

VAR W : GROUPSTAT;
I : INTEGER;
R,S,U,WM,NN,DN : REAL;

BEGIN

S:=O;
FOR I:=1 TO GROUP DO BEGIN

WEll :=GPSIZE[I]/VARIANCE[I];
U:=U+W[I];
S:=S+W[I] *MEAN[I];

END;
WM: = S / U;
DN:=O;
R:=O;
NN:=O;
FOR I:=1 TO GROUP DO BEGIN

S :=MEAN[I] -WM;
R:=R+W[I] * S;
NN:=NN+W[I] *SQR(S);
DN:=DN+SQR((U-W[I])/U)/(GPSIZE[I] -1 .0);

END;
NN:=(NN-SQR(R)/U)/DFN;
S :=DN/(SQR(GROUP)-1.0);
DFD:=ROUND(1/(3.0*S));
WELCHF:=NN/(1.0+2*(GROUP_2.0)*S);

END (*WaCHFTEST*);

PROCEDURE RANKTEST;

(*DECRED FORWARD. .PARA:(Z DATASET; GPSIZE : GROUPSIZE 	*)
RANKSUM GROUPSTAT;

(* 	 GROUP,TOTAL INTEGER; 	 *)
(* 	 NAME : STRING; VAR VALUE,TIECORR : REAL*)

CONST ROOT24=4.8989795 	(*SQUARE ROOT OF 24*);
ROOT12=3.4641016 	(*SQUARE ROOT OF 12*);

VAR I,J,K,L,M,FOLD : INTEGER;
P,Q,S : REAL;

BEGIN
FOLD: =0 ;
TIECORR:=O;
FOR I:=1 TO GROUP DO

RANKSUM[I] :=GPSIZE[I];
FOR I:=1 TO GROUP DO

FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO BEGIN
FOR K:=I TO GROUP DO BEGIN

IF K>I THEN
M:=T(K, 1)

ELSE
M:=J+1;

FOR L:=M TO T(K,GPSIZE[K]) DO
IF Z[J]<Z[L] THEN

RANKSUM[K] :=RANKSUM[K]+1
ELSE IF Z[J]>z[L] THEN

RANKSUM[I] :=R.ANKSUM[I]+1
ELSE BEGIN

RANKSUM[I] :=RANKSUM[I]+O.5;
RANKSUM[K] :=RANKSUM[K]+O.5;
FOLD:=FOLD+1;

END;
END;
IF FOLD>O THEN BEGIN

TIECORR: =TIECORR+3*FOLD*(FOLD+1 .0);
FOLD:=O;

END;
END;

IF NANE='PAIRED SIGNED-RANK WILCOXON' THEN

(*NOFLIZATION FOR APPROXIMATION OF P_VALUE*)
VALUE:=ROOT24* (ABS(RANKSUM[1]_TOTAL* (TOTAL+1.0)/4)_0.5)

/SQRT(TOTAL*(TOTAL+1 .0)*(2.0*TOTAL+1 .0)-O .5*TIECORR)
ELSE IF NANE='WILCOXON RANK SUM' THEN BEGIN

(*NOpj,1LIzATON FOR APPROXIMATION OF P_VALUE*)
P:=GPSIZE[1];
Q:=GPSIZE[2];
VALUE:=ROOT 12* (ABS(RANKSUM[1]_0.5 *P* (TOTAL+1.0))_0..5)/

SQRT(P*Q*(TOTAL+1.O_TIECORR/(TOTAL*(TOTAL_1.0))));
END ELSE (*NANE='KRUSKAL_WALLIs'*) BEGIN

P :=TOTAL;
Q:=0.5*(P+1);

FOR I:=1 TO GROUP DO
S:=S+SQR(RANKSUM[I]_GPSIZE[I] *Q)/GPSIZE[I];

VALUE:=12.0*S/(P*(P+1)*(1_TIECORR/(p*(SQR(p)_1))));
END;

END (*p(TEST*);

FUNCTION INVERTDIST;

(*DECLARED FORWARD. .PARA:(P : REAL; N : INTEGER*)

(* P: P-VALUE, N: DEGREES OF FREEDOM

VAR X,XSQ,A,B,C,D,E,Q : REAL;

BEGIN
X:=INVERNORMAL(P);
XSQ:=SQR(X);
A:=(XSQ+1)/4 .0;
B:=((5.0*XSQ+16.0)*XSQ+3.0)/96.0;
C :=(((3 .O*XSQ+19.0)*XSQ+17)*XSQ_15)/384;
D:=((((79.0*XSQ4776.0)*XSQ+1482)*XSQ_1920)*XSQ_945)/92 160.0;
E : =(((((27.O*XSQ+339.0)*XSQ+930.0)*XSQ_1782.0)*XSQ_765.0)*XSQ+17955.0)

/368640.0;
Q:=1/N;
INVERTDIST :=X* (1+Q*(A+Q* (Q* (C+Q* (4.Q*E)))));

END (*IJERTDIST*);

FUNCTION INVERNORMAL;

(*DECLARED FORWARD..PARA:(VAR P : REAL *)

CONST PIDIVTWO=1.570796327 (*=PI/2*);
TWOPI=6.283185308 	(*=2.PI*);

VAR T,TSQ : REAL;

BEGIN
IF P>1.01E-6 THEN BEGIN

TSQ : =_PIDIVTWO*LN(4*P*(1-P));
T:=SQRT(TSQ);
INVERNORNAL:=T*(TSQ*(TSQ*(O.0000043728*TSQ_0.0002881O)+O.0O78365)+1);

END ELSE BEGIN
T:=_2*LN(P);
TSQ:=T_LN(TWOPI*T);
T :=SQRT(TSQ);
INVERNORNAL:=T+(0. 1633-4-0.5962/T)/TSQ;

END;
END

BEGIN 	 (*PROCEDURE, CALCULATION*)
IF GETTEST THEN BEGIN

GETTEST : =FALSE;
IF GROUP=1 THEN

BEGIN 	 (*PROCEDURE, CALCULATION*)
IF GETTEST THEN BEGIN

GETTEST :=FALSE;
IF GROUP=1 THEN

TESTOFSINGLEMEAN(DATA,X,GPSIZE,DESCRIPTIVESTATISTIC,TESTSTATISTIC,
GP SIZEALLOW, SYMMETRY, NORMAL, TESTTHEOMEAN,
TRANSFORM)

ELSE IF GROUP=2 THEN
TESTOFTWOMEANS(X,GPSIZE,DESCRIPTIVESTATISTIC, TESTSTATISTIC,

GROUP, TOTAL ,MINGPSIZE ,MSE,
NORMAL , SYMMETRY, EQVARLANCE ,TRANSFORM, DATAKIND)

ELSE
TESTOFSEVERALMEAN(X,GPSIZE,DESCRIPTIVESTATISTIC, TESTSTATISTIC,

GROUP, TOTAL ,MINGPSIZE,MAXGPSIZE,
MS E,
NORMAL, SYMMETRY, EQVARIANCE, TRANSFORM ,DATAXIND);

END ELSE
PAIRWISECOMPARISONORCONFIDENCEINTERVAL(DESCRIPTIVESTATISTIC,

TESTSTATISTIC,
GPSIZE,
CONFIDENCEINTERVAL,
x, ,
MS E,
GROUP, DIFFPAIR,
EQVARIANCE);

END 	 (*CALCUJTION*);

SEGMENT PROCEDURE PRINTRESULTS(VAR DATA,X : DATASET;
VAR DESCRIPTIVESTATISTIC : STATISTIC;
VAR TESTSTATISTIC 	: TEST;
VAR HISTOGRAM 	 : GRAPH;
VAR CONFIDENCEINTERVAL : INTERVAL;
VAR GPSIZE : GROUPSIZE;

DATAKIND : DATATYPE;
PROBLEr4,GROUP,TOTAL ,OUTLIER : INTEGER;
DIFFPAIR : INTEGER;
THEOMEAN,BSS,WSS,MSE,MINDATA : REAL;

VAR ADDCONST 	: REAL;
VAR TRANSFORM : TYPEOFTRANSFORNATION;

PAIRED,TAKEDIFFERENCE : BOOLEAN;
NORMAL,SYMMETRY 	: BOOLEAN;
TESTTHEOMEAN ,TOOMANYEQ: BOOLEAN;

VAR WANTTRANSFORM,RESUME : BOOLEAN);

VAR Z : TEXT;
S,CHANNEL : STRING;
HARDCOPY : BOOLEAN; (*TRUE ONLY IF A HARD COPY HAS BEEN PRODUCED*)

PROCEDURE DRAWLINE(VAR Z : TEXT;
D : INTEGER;
TRAIL : CHAR);

(*PROCEDURE FOR DRAWING LINE OF D LENGTH WITH TRAIL*)

FORWARD;

PROCEDURE CHOOSECHANNEL(VAR Z : TEXT;
VAR CHANNEL : STRING;
VAR HARDCOPY : BOOLEAN);

VAR DUMMYSTR : STRING;
J : INTEGER;

BEGIN
WRIT ELN;
WRITELN('WHAT KIND OF OUTPUT DO YOU WANT ?');
WRITELN('NOTE: YOU MAY HAVE MORE THAN ONE OUTPUT,');
WRITELN(' 	THESE WILL BE PRODUCED SEQUENTIALLY.');
WRITELN('l. CONSOLE:');
WRITELN('2. PRINTER:');
READINTEGER(1 ,2 ,FALSE,DUMMYSTR,J);
CASE J OF

CHANNEL:='CONSOLE:';
CHANNEL:='PRINTER:';

END;
IF NOT HARDCOPY THEN

HARDCOPY:=(CHANNELO'CONSOLE:');
REWRITE(Z ,CHANNEL);
WRITELN(Z, 'RESULTS');

END (*QjOOSEC}4N*);

PROCEDURE PRINTDATA(VAR Z : TEXT;
VAR DESCRIPTIVESTATISTIC : STATISTIC;
VAR DATA : DATASF;
VAR GPSIZE : GROUPSIZE;

GROUP,TOTAL : INTEGER;
ADDCONST 	: REAL;
TESTTHEOMEAN ,PAIRED, TAKED IFFERENCE : BOOLEAN);

VAR I,J : INTEGER;

BEG IN
WRITELN(Z,'DATA
IF TESTTHEOMEAN THEN

WRITELN(Z,'OBSERVATION - THEORETICAL MEAN')
ELSE IF PAIRED THEN

WRITELN(Z,'FIRST GROUP - SECOND GROUP')
ELSE IF TAKEDIFFERENCE THEN

WRITELN(Z,'FIRST OBSERVATION - SECOND OBSERVATION');
IF GROUP>1 THEN

WRITELN(Z,'TOTAL NUMBER =',TOTAL);
IF WANTTRANSFORM THEN BEGIN

WRITE(Z,'TAKING ');
CASE TRANSFORM OF

SQUAREROOT 	: WRITE(Z,'SQUARE ROOT');
LOGARITHMIC : WRITE(Z,'LOGARITHM');
RECIPROCAL 	: WRITE(Z,'RECIPROCAL');
ARCSINE 	: WRITE(Z,'ARCSINE');

END;
WRITE(Z,' (DATA');
IF ADDCONST<>O THEN

WRITE(Z,' +',ADDCONST:8:3);
WRITELN(Z,')');
IF TRANSFORM=ARCSINE THEN BEGIN

WRITELN(Z,'NOTE: 0 IS COUNTED AS 0.25/GROUP SIZE AND 100');
WRITELN(Z,' 	AS 100-(0.25/GROUP SIZE) BEFORE TRANSFORMATION.');

END ELSE IF TRANSFORN=LOGARITHMIC THEN
WRITELN(Z,'NOTE: THE BASE OF THE LOGARITHM IS 10.');

END;
WITH DESCRIPTIVESTATISTIC DO

FOR I:=1 TO GROUP DO BEGIN
WRITELN(Z);
IF GROUP>1 THEN

WRITE(Z, 'GROUP' ,I:3);
WRITELN(Z,'NUMBER =':12,GPSIZE[I]:4,'MINIMUM =':13,

MINIMUM[I] :10:3,
'MAXIMUM =' :11,MAXIMUM[I] :10:3);

FOR J:=1 TO GPSIZE[I] DO BEGIN
WRITE(Z,DATA[T(I,J)] :13:3);
IF ((J MOD 6)=O) OR (J=GPSIZE[I]) THEN

WRITELN(Z);
END;

END;
WRITELN(Z);

END (*PRINTDATA*);

PROCEDURE PRINTHISTOGRAM(VAR Z : TEXT;
VAR HISTOGRAM : GRAPH;

GROUP 	: INTEGER);

VAR I,J,K,P,Q,L,M : INTEGER;

BEGIN
WITH HISTOGRAM DO BEGIN

WRITELN(Z, 'HISTOGRAM');
DRAWLINE(Z,9, 'I);

I : =0;
M:=60 DIV HEIGHT;
REPEAT

P:=I+1;
L:=1;
WRITELN(Z);
WRITE(Z,'MIDPOINTS' :12);
IF GROUP>1 THEN

WRITE(Z,'GROUP' :7,P:3);
WHILE (L<M) AND (P<GROUP) DO BEGIN

P:=P+1;
L:=L+1;
WRITE(Z,'GROUP' :(HEIGHT-3),P:3);

END;
WRITELN(Z);
DRAWLINE(Z,78, '-');
FOR J:=1 TO NOOFINTERVAL DO BEGIN

WRITE(Z,(MAXMIDPOINT_(J_1)*STEP):12:DECPL,'

REPEAT
P:=P+1;
L:=L+1;
Q :=HEIGHT;
K:=FREQUENCY[P,J];
WHILE K>=REPRESENTCASE DO BEGIN

WRITE(Z,'*');
Q:=Q-1;
K: =K-REPRESENTCASE;

END;
IF K>0 THEN BEGIN

WRITE(Z, 'X');
Q:=Q-1;

END;
WRITE(Z,' ':Q);

UNTIL (PGROUP) OR (L=M);
WRITELN(Z);

END;
I:=I+L;
DRAWLINE(Z,78, '-');

UNTIL I=GROUP;
WRITE(Z,'NOTE : AN * REPRESENTS ',REPRESENTCASE,' CASE(S).');
IF REPRESENTCASE> 1 THEN

WRITELN(Z,' AN X REPRESENTS LESS THAN ',REPRESENTCASE,
CASES.');

WRITELN(Z);
END;

END (*pRINThISTOGRA*);

PROCEDURE PRINTDESCRIPTIVESTATI STIC(VAR Z : TEXT;
VAR DESCRIPTIVESTATISTIC : STATISTIC;

GROUP : INTEGER);

VAR I,J : INTEGER;
A : REAL;
PRINTALLG2 : BOOLEAN;

BEGIN
WRITELN(Z);
WRITELN(Z,'SUMMARY' :42);
DRAWLINE(Z,80, I');

IF GROUP>1 THEN
WRITE(Z, 'GROUP')

ELSE
WRITE(Z,'

WRITELN(Z,' MEAN 	MED IAN STD • DEV • STD • ERROR OF MEAN RANGE',
'Gi' :7, 'G2' :9);

DRAWLINE(Z,80,'-');
PRINTALLG2 : =TRUE;
WITH DESCRIPTIVESTATISTIC DO BEGIN

FOR I:=1 TO GROUP DO BEGIN
IF GROUP>1 THEN

WRITE(Z,I:3);
A:=SQRT(VARIANCE[I]);
WRITE(Z,MEAN[I]:1O:3,MEDIAN[I]:1O:3,A: 11 : 4 ,(A/SQRT(GPSIZE[I])): 13 : 4 ,

(MAxIMUM[I] -MINIMUM[I]): 14 : 3 ,G 1 [I] :8:3);
IF GPSIZE[I]>49 THEN

WRITELN(Z,G2[I]:10:3)
ELSE BEGIN

WRITELN(Z,'*' :7);
PRINTALLG2 : =FALSE;

END;
END;
DRAWLINE(Z,80,'=');
IF GROUP>1 THEN

WRITELN(Z,'COEFFICIENT OF VARIATION OF GROUP VARIANCES =',CV:6:3);
END;
WRITELN(Z,'NOTE: Gi AND G2 ARE FISHER''S G-STATISTICS.');
IF NOT PRINTALLG2 THEN

WRITELN(Z,' 	* : TOO FEW DATA FOR USEFUL ESTIMATE.');
IF OUTLIER>O THEN BEGIN

WRITELN(Z,' 	INTERPRET TABLE ABOVE WITH CARE, BECAUSE');
WRITELN(Z,OUTLIER:9,' DATA POINT(S) MAY BE TOO EXTREME.');

END;
END (*PRINTDESCRIPTIVESTATISTIC*);

PROCEDURE PRINTTESTSTATISTIC(VAR Z : TEXT;
VAR TESTSTATISTIC : TEST;
VAR GPSIZE 	: GROUPSIZE;

BSS,WSS,MSE : REAL);

VAR I : INTEGER;

PROCEDURE PRINTRANKSUM(VAR Z : TEXT;
VAR RANKSUM : GROUPSTAT;
VAR GPSIZE : GROUPSIZE;

NOOFNONZERO : INTEGER);

VAR I : INTEGER;

BEGIN
WRITELN(Z);
IF GROUP=1 THEN BEGIN

DRAWLINE(Z,30, =1);

WRITELN(Z,'RANK SUM':30);
DRAWLINE(Z,30, '-');
WRITELN(Z,'POSITIVE DATA' ,RANKSUM[1]:15:1);
WRIT ELN(Z, 'NEGATIVE DATA' ,RANKSUM[2]:15:1);
DRAWLINE(Z,30,'=');
IF NOOFNONZERO<GPSIZE[1] THEN

WRITELN(Z,'NOTE: ZEROS ARE EXCLUDED FROM CALCULATIONS.');
END ELSE BEGIN

DRAWLINE(Z,48, I');
WRITELN(Z,'GROUP 	RANK SUM GROUP SIZE MEAN OF RANK SUM');
DRAWLINE(Z,48,'-');
FOR I:=1 TO GROUP DO

WRITELN(Z,I:3,RANKSUM[I]:1O:1,GPSIZE[I]:1O,(RANKSUM[I]/
GPSIZE[I]):16:3);

DRAWLINE(Z,48,'')
END;

END (*pRIp(SjJM*);

PROCEDURE PRINTANOVATABLE(VAR Z : TEXT;
DFN,DFD : INTEGER;
BSS,WSS,MSE : REAL);

BEGIN
WRITELN(Z,'ANALYSIS OF VARIANCE' :40);
DRAWLINE(Z,60, '=');
WRITELN(Z,'SOURCE','D. F.':15,' 	SUN OF SQUARES

'MEAN SQUARES');
DRAWLINE(Z,60, '-');
WRITELN(Z,'BETWEEN GROUPS' ,DFN:6,BSS:18:4,(BSS/DFN):18:4);
WRITELN(Z,'WITHIN GROUPS' ,DFD:7,WSS:18:4,MSE:18:4);
DRAWLINE(Z,60, '-');
WRITELN(Z, 'TOTAL' ,(DFN+DFD) : 15, (BSS-I-WSS) : 18 :4);
DRAWLINE(Z,60, '=');

END (*PRINTANOVATABLE*);

BEGIN
WRITELN(Z);
WITH TESTSTATISTIC DO BEGIN

IF TESTTHEOMEAN THEN
WRITELN(Z, 'THEORETICAL MEAN TESTED =' ,THEOMEAN:8:3);

IF NAME='F-TEST' THEN
PRINTANOVATABLE(Z ,DFN,DFD ,BSS,WSS,MSE)

ELSE IF RANKSUMTEST THEN
PRINTRANKSUM(Z ,RANKSUM,GPSIZE,NOOFNONZERO);

WRITE(Z,'TEST STATISTIC IS ',NANE);
IF ((NOT RANDOMTEST) AND (NOT RANKSUMTEST)) OR (GROUP>2) THEN BEGIN

WRITELN(Z,'=' ,VALUE:1O:4);
IF NOT RANKSUMTEST THEN BEGIN

WRITE(Z,'WITH DEGREES OF FREEDOM =');
IF DFN>1 THEN

WRITE(Z,DFN,' AND
WRITELN(Z ,DFD);

END;
END ELSE IF RANKSUMTEST THEN

(*SIGNED_PK WILCOXON TEST OR WILCOXON RANK SUM TEST*)
WRITELN(Z, '=' ,RANKSUM[1] :12:1);

WRITELN(Z);
WRITE(Z,'P-VALUE =',PVALUE:8:6);
IF GROUP<3 THEN

WRITE(Z,' 	(ONE-SIDED)');
WRITELN(Z);
IF (GROUP<3) AND (PVALUE<0.5) AND (NOT RANDOMTEST) THEN

WRITELN(Z,'=' :9,(2*PVALUE):8:6,' 	(TWO-SIDED)');
WRITELN(Z);

END;
END (*PRINTTESTSTATISTIC*);

PROCEDURE PRINTCONFIDENCEINTERVAL(VAR Z : TEXT;
VAR CONFIDENCEINTERVAL : INTERVAL;
VAR TESTSTATISTIC : TEST;

TESTTHEOMEAN , TAKEDIFFERENCE : BOOLEAN;
GROUP : INTEGER);

(*COIDENCE INTERVAL FOR MEAN*)

BEGIN
WITH TESTSTATISTIC, CONFIDENCEINTERVAL DO

IF (NOT RANDOMTEST) AND (NOT RANKSUMTEST) THEN BEGIN
WRITE(Z,ROUND(100*(1_SIGLEV)):3,'% CONFIDENCE INTERVAL OF
IF TAKEDIFFERENCE OR (GROUP=2)THEN

WRITE(Z,'DIFFERENCE OF MEANS (FIRST-SECOND)')
ELSE

WRITE(Z, ' EXPERIMENTAL MEAN');
IF TESTTHEOMEAN THEN

WRITELN(Z,' - THEORETICAL MEAN')
ELSE

WRITELN(Z);
WRITELN(Z,' BASED ON ',NAME,' IS');
WRITELN(Z,'(',LOWERLIMIT:10:4,',':3,UPPERLIMIT:15:4,')');

END;
END (*PRINTCONFIDENCEINTERVAL*);

PROCEDURE PRINTPAIRWISEDIFFERENCE(VAR Z : TEXT;
VAR X : DATASET;
VAR TESTSTATISTIC : TEST;

DIFFPAIR 	: INTEGER);

VAR I,J : INTEGER;

BEGIN
IF DIFFPAIR>O THEN BEGIN

DRAWLINE(Z,78, '-');
WRITELN(Z, 'MEANS ARE DIFFERENT AT' ,TESTSTATISTIC.SIGLEV:6:3,

ol SIG. LEVEL.');
FOR I:=1 TO DIFFPAIR DO BEGIN

J:=2*I;
WRITELN(Z,'DUE TO DIFFERENCE OF MEANS OF GROUPS',ROUND(X[J -1]):4,

AND',ROUND(X[J]):4);
END;
DRAWLINE(Z,78, '-');

END;
END (*PRINTPAIRWISEDIFFERENCE*);

PROCEDURE COMNENTFIRSTPROBLEM(VAR Z : TEXT;
SYMMETRY : BOOLEAN);

BEGIN
IF NOT SYMMETRY THEN BEGIN

WRITELN(Z,'COMMENT: DATA ARE NOT SYMMETRICAL, THE MEAN MAY BE A POOR');
WRITELN(Z, 'MEASURE OF CENTRAL TENDENCY, AND THE MEDIAN IS PREFERABLE.');

END;
END (*COMNENTFIRSTPROBLEM*);

PROCEDURE COMMENTSECONDPROBLEM(VAR Z : TEXT;
TOOMANYEQ : BOOLEAN);

BEGIN
IF TOOMANYEQ THEN BEGIN

WRITE(Z,'COMHENT: DATA
IF GROUP>1 THEN

WRITE(Z,'FOR AT LEAST ONE OF THE GROUPS
WRITELN(Z,'HAVE TOO MANY EQUAL VALUES.');

END;
END (*COMMENTSECONDPROBL*);

PROCEDURE GIVEWARNING(VAR Z : TEXT;
VAR TESTSTATISTIC : TEST;

GROUP : INTEGER;
NORMAL,SYMMETRY : BOOLEAN);

BEGIN
WRITELN(Z);
WITH TESTSTATISTIC DO BEGIN

IF (NOT VALID) OR (NOT SYMMETRY) THEN BEGIN
WRITELN(Z, 'WARNING:');
DRAWLINE(Z,8, I');
IF NOT SYMMETRY THEN BEGIN

WRITE(Z,'DATA I);

IF GROUP>1 THEN
WRITE(Z,'FOR AT LEAST ONE OF THE GROUPS

WRITELN(Z, 'ARE NOT SYMMETRICALLY DISTRIBUTED.');
END;
IF (NOT VALID) AND (NOT NORMAL) THEN BEGIN

WRITELN(Z,'NORMALITY ASSUMPTION DOES NOT HOLD.');
WRITELN(Z,'EFFECTS OF DEPARTURE FROM THE ASSUMPTION CAN');
WRITELN(Z, 'INVALIDATE THE TEST STATISTIC.');
WRITELN(Z);
WRITELN(Z,'YOU SHOULD CONSULT A STATISTICIAN.');
DRAWLINE(Z,33, 'I);

END;
END;

END;
END (*CIVENARNING*);

PROCEDURE CONSULT(VAR Z : TEXT);

BEGIN
WRITELN(Z,'NOTE:');
WRITELN(Z,'l. THE NULL HYPOTHESIS IS NOW THE EQUALITY OF MEANS
WRITELN(Z,' 	ON THE TRANSFORMED DATA.');
WRITELN(Z,'2. IF CONCLUSIONS DRAWN FROM ANALYSES ON UNTRANSFORMED DATA');
WRITELN(Z,' AND TRANSFORMED DATA ARE DIFFERENT THEN CHOOSE THE ONE IN');
WRITELN(Z,' WHICH BOTH Gi AND G2 (IF GIVEN) STATISTICS ARE SMALLER OR');
WRITELN(Z,' MORE EQUAL OTHERWISE CHOOSE THE ONE WITH THE MORE MEANINGFUL'

);
WRIT ELN(Z,' 	INTERPRETATION.');

END (*CONSULT*);

PROCEDURE CHOOSETRANSFORMATION(VAR DATA 	: DATASET;
VAR GPSIZE : GROUPSIZE;

DATAKIND : DATATYPE;
VAR TRANSFORM : TYPEOFTRANSFORNAT ION;
VAR MINDATA,ADDCONST : REAL;
VAR RESUME : BOOLEAN);

VAR I,L : INTEGER;
S 	: STRING;

FUNCTION SOMEDATAAREZERO(VAR DATA : DATASET;
VAR GPSIZE : GROUPSIZE) : BOOLEAN;

(*CHKING FOR DATA EQUAL ZERO*)

VAR I,J,I(: INTEGER;

BEGIN
IF MINDATA<O THEN BEGIN

I : =0;
REP EAT

I:=I+1;
J:=T(I,0);
K:=T(I,GPSIZE[I]);
REPEAT

J : =J+ 1;
UNTIL (DATA[J]=O) OR (J=K);

UNTIL (I=GROUP) OR (DATA[J]=O);
SOMEDATAAREZERO : =DATA[J] =0;

END ELSE IF MINDATA>O THEN
SOMEDATAAREZERO : =FALS E

ELSE
SOMEDATAAREZERO : =TRUE;

END (*SOMEDATASREZERO*);

PROCEDURE FIXADDCONST(DATAKIND : DATATYPE;
VAR MINDATA,ADDCONST : REAL);

(*FIx MINIMUM VALUE TO BE ADDED BEFORE TRANSFORNATION*)

VAR DATUM,LOWERBOUND,UPPERBOUND : REAL;

BEGIN
READFILE('ADDCONST.TEXT'); (*READ EXPLANATION FROM DISK FILE*)
WRITE('NUMBER TO BE ADDED MUST BE ');
IF (TRANSFORN=LOGARITHMIC) OR (TRANSFORM=RECIPROCAL) THEN

WRITE('LARGER THAN')
ELSE

WRITE('AT LEAST');
WRITELN(ABS(MINDATA) :10:3);
CASE DATAKIND OF

SCORE,CONTINUOUS : LOWERBOUND:=-1 .0E30;
COUNT,BINOMIAL : LOWERBOUND:=O;

END;
IF DATAKIND=BINOMIAL THEN

UPPERBOUND : = 100
ELSE

UPPERBOUND:=1.OE30;
REPEAT

GETDATA('PLEASE ENTER A VALID NUMBER. ','NUMERIC',
LOWERBOUND , UPPERBOUND, S ,DATUM);

UNTIL ((DATUM>ABS(MINDATA))
AND ((TRANSFORN=RECIPROCAL) OR (TRANSFORM=LOGARITHMIC)))

OR ((DATUM>=ABS(MINDATA)) AND (TRANSFORN=SQUAREROOT));
ADDCONST : =DATUM;

END (*FIyDDCON5T*):

BEGIN
WRIT ELN;
WRITELN('WHICH TRANSFORMATION DO YOU WANT TO TRY ?');
WRITELN('l. SQUARE ROOT.');
WRITELN('2. LOGARITHMIC.');
WRITELN('3. RECIPROCAL.');
IF TRANSFORM=ARCSINE THEN BEGIN

L : =5;
WRITELN('4. ARCSINE.');

END ELSE
L:=4;

WRITELN(L,'. NOT TO PROCEED.');
WRITELN;
IF TRANSFORM=IDENTITY THEN

WRITELN('NO HELP GIVEN, BECAUSE NO SUITABLE TRANSFORMATION FOUND.')
ELSE BEGIN

WRITE('TRANSFORNATION SUGGESTED IS
CASE TRANSFORM OF

SQUAREROOT : WRITELN('SQUARE ROOT.');
LOGARITHMIC : WRITELN('LOGARITHMIC.');
RECIPROCAL : WRITELN('RECIPROCAL.');
ARCSINE 	: WRITELN('ARCSINE.');

END;
END;
WRIT FIN;
READINTEGER(1 ,L,FALSE, S,I);
RESUME:=I<L;
IF RESUME THEN BEGIN

CASE I OF
BEGIN

TRANSFORM: =SQUAREROOT;
IF MINDATA<O THEN

FIXADDCONST(DATAKIND ,MINDATA,ADDCONST)
ELSE

ADDCONST:=O;
END;
BEGIN

TRANSFORM: =LOGARITHMIC;
IF MINDATA<=O THEN

FIXADDCONST(DATAKIND ,MINDATA, ADDCONST)
ELSE

ADDCONST:=O;
END;
BEGIN

TRANSFORM: =RECIPROCAL;
IF SOMEDATAAREZERO(DATA,GPSIZE) THEN

FIXADDCONST(DATAKIND ,MINDATA,ADDCONST)
ELSE

ADDCONST:=O;
END;
BEGIN

TRANSFORM: ARCSINE;
ADDCONST : =0;

END;
END;
WRITELN;
WRITELN('PLEASE WAIT I ANALYSIS CONTINUES.');

END;
END (*CHOOSETRANSFORNATION*);

PROCEDURE DRAWLINE;

(*DECRED FORWARD..PARA:(VAR Z : TEXT; D : INTEGER; TRAIL : CHAR*)

VAR V : INTEGER;

BEGIN
FOR V:=1 TO D DO

WRITE(Z,TRAIL);
WRITELN(Z);

END (*DRAWLINE*);

BEGIN 	 (*suB_pRoBpI, PRINTRESULTS*)
WRITELN;
WRITELN('HERE IS YOUR RESULT.');
WRIT ELN;
HARDCOPY: =FALSE;
REPEAT

CHOOSECHANNEL(Z ,CHANNEL ,HARDCOPY);
PRINTDATA(Z ,DESCRIPTIVESTATISTIC, DATA, GPSIZE,GROUP ,TOTAL ,ADDCONST,

TESTTHEOMEAN ,PAIRED , TAKEDIFFERENCE);
PRINTHISTOGRAM(Z ,HISTOGRAM,GROUP);
PRINTDESCRIPTIVESTATISTIC(Z ,DESCRIPTIVESTATISTIC, GROUP);
CASE PROBLEM OF

BEGIN
COMMENTFIRSTPROBLEM(Z , SYMMETRY);
PRINTCONFIDENCEINTERVAL(Z ,CONFIDENCEINTERVAL,

TESTSTATISTIC,
TESTTHEOMEAN , TAKED IFFERENCE,
GROUP);

END;

BEGIN
PRINTTESTSTATISTIC(Z,TESTSTATISTIC,GPSIZE,BSS,WSS,MSE);
IF GROUP<3 THEN

PRINTCONFIDENCEINTERVAL(Z ,CONFIDENCEINTERVAL,
TESTSTATISTIC,
TESTTHEOMEAN , TAKED IFFERENCE,
GROUP)

ELSE
PRINTPAIRWISEDIFFERENCE(Z,X,TESTSTATISTIC, DIFFPAIR);

COMMENTSECONDPROBLEM(Z ,TOOMANYEQ);
GIVEWARNING(Z , TESTSTATISTIC,GROUP, NORMAL ,SYMMETRY);

END;
END;
IF WANTTRANSFORM THEN

CONSULT(Z);
CLOSE(Z);

WRITELN;
IF NOT HARDCOPY THEN

WRITELN('WARNING : YOU HAVE NOT GOT ANY OUTPUT ON THE PRINTER.');
WRITE('DO YOU WANT FURTHER OUTPUT ?');
READSTR(FALSE, 5);
IF (PROBLEM=2) AND (S='N') AND (GROUP>1) THEN

IF (NOT WANTTRANFORN) AND (DATAKIND<>SCORE) THEN BEGIN
IF NOT TESTSTATISTIC.VALID THEN BEGIN

WRITELN('NOTE: THE STATISTICAL ASSUMPTIONS ON WHICH THIS TEST');
WRITELN(' 	DEPENDS ARE NOT MET.');
WRITE('DO YOU WISH TO TRANSFORI4 YOUR DATA ?');

END ELSE
WRITELN('DO YOU WISH TO ANALYSE YOUR DATA ON SOME OTHER',

SCALE ?');
READSTR(FALSE, S);
RESUME:=S='Y';
IF RESUME THEN BEGIN

WRITELN;
WRITELN('WARNING: THE RESULTS OF THE ANALYSIS JUST',

NOW WILL BE LOST.');
WRITE('DO YOU WANT FURTHER OUTPUT ?');
READSTR(FALSE, S);

END;
END;

UNTIL S='N';
IF RESUME THEN BEGIN

CHOOSETRANSFORNATION(DATA,GPSIZE,DATAKIND ,TRANSFORN,
MINDATA,ADDCONST ,RESUME);

WANTTRANSFORN: =RESUME;
END;

END 	 (*pRIRE5ULT*);

EXANPLES

EXAMPLE 1.

RESULTS
DATA
FIRST GROUP - SECOND GROUP

NUMBER = 9
	

MINIMUM = 	-5.000 MAXIMUM = 	9.000

	

-1.000
	

1.000 	-2.000 	-5.000 	2.000 	-1.000

	

-1.000
	

9.000 	-2.000

HISTOGRAM

MIDPOINTS

10.000)
9.000) *
8.000)
7.000)
6.000)
5.000)
4.000)
3.000)
2.000) *
1.000) *
0.000)

-1.000) ***
-2.000) **
-3.000)
-4.000)
-5.000) *
-6.000)

NOTE : AN * REPRESENTS 1 CASE(S).

SUMMARY

NEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	Cl 	G2

0.000 	-1.000 	3.9051 	1.3017 	14.000 	1.603 	*

NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS.
* : TOO FEW DATA FOR USEFUL ESTIMATE.
INTERPRET TABLE ABOVE WITH CARE, BECAUSE

1 DATA POINT(S) MAY BE TOO EXTREME.

TEST STATISTIC IS PAIRED RANDOMIZATION
P-VALUE = 0.531250 	(ONE-SIDED)

EXAMPLE 2.

RESULTS
DATA
TOTAL NUMBER =21

GROUP 1 	NUMBER = 11 	MINIMUM =

	

1.000 	1.000 	1.000

	

2.000 	0.000 	0.000

GROUP 2 	NUMBER = 10 	MINIMUM =

	

0.000 	0.000 	0.000

	

0.000 	1.000 	1.000

HISTOGRAM

0.000 MAXIMUM = 	4.000

	

1.000 	1.000 	1.000

	

4.000 	3.000

0.000 MAXIMUM = 	5.000

	

0.000 	0.000 	0.000
5.000

MIDPOINTS GROUP
	

GROUP 2

5.500)
5.000)
	 *

4.500)
4.000) *
3.500)
3.000) *
2.500)
2.000) *
1.500)
1.000) ******
	 **

0.500)
0.000) **
	 * ** * * * *

-0.500)

NOTE : AN * REPRESENTS 1 CASE(S).

SUMMARY
= ============================= ===============

GROUP MEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	Gi 	G2

1 	1.364 	1.000 	1.2060 	0.3636 	4.000 	1.226 	*

2 	0.700 	0.000 	1.5670 	0.4955 	5.000 	2.785 	*

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.259
NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS.

* : TOO FEW DATA FOR USEFUL ESTIMATE.
INTERPRET TABLE ABOVE WITH CARE, BECAUSE

1 DATA POINT(S) MAY BE TOO EXTREME.

TEST STATISTIC IS TWO-SAMPLE T-TEST= 	1.0937
WITH DEGREES OF FREEDOM =19

P-VALUE = 0.143888 	(ONE-SIDED)
= 0.287775 	(TWO-SIDED)

95% CONFIDENCE INTERVAL OF DIFFERENCE OF MEANS (FIRST-SECOND)
BASED ON TWO-SAMPLE T-TEST IS

(-0.6065 , 	1.9338)
COMMENT: DATA FOR AT LEAST ONE OF THE GROUPS HAVE TOO MANY EQUAL VALUES.

WARNING:

DATA FOR AT LEAST ONE OF THE GROUPS ARE NOT SYMMETRICALLY DISTRIBUTED.
NORMALITY ASSUMPTION DOES NOT HOLD.
EFFECTS OF DEPARTURE FROM THE ASSUMPTION CAN
INVALIDATE THE TEST STATISTIC.

YOU SHOULD CONSULT A STATISTICIAN.

EXAMPLE 3.

RESULTS
DATA
TOTAL NIJMBER =60

GROUP 	1 	NUMBER = 17 MINIMUM = 0.600 	MAXIMUM = 2.300
1.230 2.300 1.250 1.000 0.900 0.800
0.700 0.600 0.950 0.980 1.100 1.200
1.100 1.100 1.200 1.300 1.200

GROUP 	2 	NUMBER = 31 MINIMUM = 0.500 	MAXIMUM = 8.700
0.500 1.500 1.500 1.400 1.350 1.440
0.660 0.650 0.670 0.680 0.900 1.000
1.000 1.200 1.400 1.300 1.500 2.300
1.800 1.700 1.660 1.500 7.800 7.700
7.900 8.000 6.000 6.500 6.300 6.200
8.700

GROUP 	3 	NUMBER = 12 MINIMUM = 0.560 	MAXIMUM = 0.980
0.700 0.800 0.900 0.870 0.980 0.780
0.800 0.900 0.560 0.660 0.780 0.800

HISTOGRAM

MIDPOINTS 	GROUP 1 GROUP 2 	 GROUP 3

9.000)
8.500) *
8.000) ***

7.500) *
7.000)
6.500) **
6.000) **

5.500)
5.000)
4.500)
4.000)
3.500)
3.000)
2.500) 	* *
2.000) *
1.500) 	** ***********
1.000) 	************ ****
0.500) 	** ***** ***

0.000)

NOTE : AN * REPRESENTS 1 CASE(S).

SUMMARY

GROUP MEAN MEDIAN 	STD. DEV. 	STD. ERROR OF MEAN RANGE Gi 	G2

1 1.112 1.100 0.3652 	0.0886 1.700 2.088 	*

2 2.991 1.500 2.8302 	0.5083 8.200 1.019 	*

3 0.794 0.800 0.1148 	0.0331 0.420 -0.496 	*

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.930
NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS.

* : TOO FEW DATA FOR USEFUL ESTIMATE.
INTERPRET TABLE ABOVE WITH CARE, BECAUSE

1 DATA POINT(S) MAY BE TOO EXTREME.

TEST STATISTIC IS WELCH F-TEST= 	14.3380
WITH DEGREES OF FREEDOM =2 AND 32

P-VALUE = 0.000036

MEANS ARE DIFFERENT AT 0.010 SIG. LEVEL.
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 2
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 3
DUE TO DIFFERENCE OF MEANS OF GROUPS 2 AND 3

WARNING:
========
DATA FOR AT LEAST ONE OF THE GROUPS ARE NOT SYMMETRICALLY DISTRIBUTED.
NORMALITY ASSUMPTION DOES NOT HOLD.
EFFECTS OF DEPARTURE FROM THE ASSUMPTION CAN
INVALIDATE THE TEST STATISTIC.

YOU SHOULD CONSULT A STATISTICIAN.

RESULTS
DATA
TOTAL NUMBER =60
TAKING SQUARE ROOT (DATA)

GROUP 	1 	NUMBER = 17 MINIMUM = 0.775 	MAXIMUM = 1.517
1.109 1.517 1.118 1.000 0.949 0.894
0.837 0.775 0.975 0.990 1.049 1.095

1.049 1.049 1.095 1.140 1.095

GROUP 	2 	NUMBER = 31 MINIMUM = 0.707 	MAXIMUM = 2.950

0.707 1.225 1.225 1.183 1.162 1.200
0.812 0.806 0.819 0.825 0.949 1.000

1.000 1.095 1.183 1.140 1.225 1.517
1.342 1.304 1.288 1.225 2.793 2.775
2.811 2.828 2.449 2.550 2.510 2.490
2.950

GROUP 	3 	NUMBER = 12 MINIMUM = 0.748 	MAXIMUM = 0.990
0.837 0.894 0.949 0.933 0.990 0.883
0.894 0.949 0.748 0.812 0.883 0.894

HI STOGRAM

MIDPOINTS 	GROUP 1 GROUP 2 	 GROUP 3

3.200)
3.000) *
2.800) ****

2.600) **

2.400) **

2.200)
2.000)
1.800)
1.600) 	* *

1.400) **

1.200) 	*** **********

1.000) 	********** **** ****

0.800) 	*** ***** ********

0.600)

NOTE 	AN * REPRESENTS 1 CASE(S).

SUMMARY

GROUP MEAN MEDIAN 	STD. DEV. STD. ERROR OF MEAN RANGE G1 	G2

1 1.043 1.049 0.1595 0.0387 0.742 1.312 	*
2 1.561 1.225 0.7569 0.1359 2.242 0.838 	*
3 0.889 0.894 0.0659 0.0190 0.242 -0.696 	*

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.897
NOTE: G1 AND G2 ARE FISHER'S G-STATISTICS.

* : TOO FEW DATA FOR USEFUL ESTIMATE.
INTERPRET TABLE ABOVE WITH CARE, BECAUSE

1 DATA POINT(S) MAY BE TOO EXTREME.

TEST STATISTIC IS WELCH F-TEST= 	17.0557
WITH DEGREES OF FREEDOM =2 AND 35

P-VALUE = 0.000007

MEANS ARE DIFFERENT AT 0.010 SIG. LEVEL.
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 2
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 3
DUE TO DIFFERENCE OF MEANS OF GROUPS 2 AND 3

WARNING:

DATA FOR AT LEAST ONE OF THE GROUPS ARE NOT SYMMETRICALLY DISTRIBUTED.
NORMALITY ASSUMPTION DOES NOT HOLD.
EFFECTS OF DEPARTURE FROM THE ASSUMPTION CAN
INVALIDATE THE TEST STATISTIC.

YOU SHOULD CONSULT A STATISTICIAN.

NOTE:
THE NULL HYPOTHESIS IS NOW THE EQUALITY OF MEANS
ON THE TRANSFORMED DATA.
IF CONCLUSIONS DRAWN FROM ANALYSES ON UNTRANSFORMED DATA
AND TRANSFORMED DATA ARE DIFFERENT THEN CHOOSE THE ONE IN
WHICH BOTH Gi AND G2 (IF GIVEN) STATISTICS ARE SMALLER OR
MORE EQUAL OTHERWISE CHOOSE THE ONE WITH THE MORE MEANINGFUL
INTERPRETATION.

EXAMPLE 4.

RESULTS
DATA
TOTAL NUMBER =22

GROUP 1 	NUMBER = 11 	MINIMUM = 	53.000 MAXIMUM = 137.000

	

57.000 	120.000 	101.000 	137.000 	119.000 	117.000

	

104.000 	73.000 	53.000 	68.000 	118.000

GROUP 2 	NUMBER = 11 	MINIMUM = 	22.000 MAXIMUM = 	96.000

	

89.000 	30.000 	82.000 	50.000 	39.000
	

22.000

	

57.000 	32.000 	96.000 	31.000 	88.000

HISTOGRAM

MIDPOINTS GROUP 	1 GROUP 	2
- 	

- 150.000)
140.000) 	*
130.000)
120.000) 	****
110.000)
100.000) 	** *

90.000) **

80.000) *
70.000) 	**
60.000) 	* *
50.000) 	* *
40.000) *
30.000) ***

20.000) *

NOTE : AN * REPRESENTS 1 CASE(S).

GROUP MEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	Gi 	G2

1 	97.000 - 104.000 	29.1067 	8.7760 	84.000 -0.411 	*

2 	56.000 	50.000 	27.8352 	8.3926 	74.000 	0.333 	*

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.045 	 -
NOTE: GI. AND G2 ARE FISHER'S G-STATISTICS.

* : TOO FEW DATA FOR USEFUL ESTIMATE.

TEST STATISTIC IS TWO-SAMPLE T-TEST= 	3.3764
WITH DEGREES OF FREEDOM =20

P-VALUE = 0.001500 	(ONE-SIDED)
= 0.003000 	(TWO-SIDED)

99% CONFIDENCE INTERVAL OF DIFFERENCE OF MEANS (FIRST-SECOND)
BASED ON TWO-SAMPLE T-TEST IS

(6.4529 , 	75.5471)

EXAMPLE 5.

RESULTS
DATA
TOTAL NUMBER =24

GROUP 1 	NUMBER = 6 	MINIMUM = 	56.000 MAXIMUM = 	95.000
64.000 	72.000 	68.000 	77.000 	56.000 	95.000

GROUP 2 	NUMBER
78.000

GROUP 3 	NUMBER
75.000

GROUP 4 	NUMBER
55.000

6
91.000

6
93.000

6
66.000

MINIMUM =
97.000

MINIMUM =
78.000

MINIMUM =
49.000

77.000 MAXIMUM =
82.000

.63.000 MAXIMUM =
71.000

49.000 MAXIMUM =
64.000

97.000

	

85.000 	77.000

93.000

	

63.000 	76.000

70.000

	

70.000 	68.000

HI STOGRAN

MIDPOINTS GROUP 	1 GROUP 	2 GROUP 	3 GROUP 	4

100.000)
95.000) * * *
90.000) *
85.000) *
80.000) ** *
75.000) 	* * **
70.000) 	** * **
65.000) 	* * **
60.000)
55.000) 	* *
50.000) *
45.000)

NOTE : AN * REPRESENTS 1 CASE(S).

SUMMARY

GROUP MEAN MEDIAN 	STD. DEV. STD. ERROR OF MEAN RANGE G1 G2

1 72.000 70.000 13.3417 5.4467 39.000 0.963 *
2 85.000 83.500 7.7717 3.1728 20.000 0.679 *
3 76.000 75.500 9.8793 4.0332 30.000 0.808 *

- 4 62.000 65.000 8.2219 3.3566 21.000 ...0939 *

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.462
NOTE: G1 AND G2 ARE FISHER'S G-STATISTICS.

* : TOO FEW DATA FOR USEFUL ESTIMATE.

ANALYSIS OF VARIANCE

SOURCE 	D. F. 	SUM OF SQUARES 	MEAN SQUARES

BETWEEN GROUPS 	3 	1636.50 	 545.500
WITHIN GROUPS 	20 	2018.00 	 100.900

TOTAL 	 23 	3654.50

TEST STATISTIC IS F-TEST= 	5.4063
WITH DEGREES OF FREEDOM =3 AND 20

P-VALUE = 0.006876

MEANS ARE DIFFERENT AT 0.010 SIG. LEVEL.
DUE TO DIFFERENCE OF MEANS OF GROUPS 2 AND 4

EXAMPLE 6.

RESULTS
DATA
TOTAL NUMBER =39

GROUP 	1 	NUMBER = 	16 MINIMUM = 6.000 	MAXIMUM = 13.000

12.000 13.000 12.000 8.000 8.000 9.000
10.000 10.000 10.000 7.000 10.000 6.000
7.000 7.000 7.000 7.000

GROUP 	2 	NUMBER = 	23 MINIMUM = 6.000 	MAXIMUM = 17.000

6.000 8.000 10.000 8.000 10.000 10.000
11.000 11.000 17.000 16.000 15.000 14.000
15.000 15.000 14.000 14.000 12.000 13.000
13.000 12.000 12.000 13.000 13.000

HISTOGRAM

MIDPOINTS GROUP 	1 GROUP 	2

18.000)
17.000) *

16.000) *

15.000) ***

14.000) ***

13.000) 	*
12.000) 	** ***

11.000) **

10.000) 	**** ***

9.000) 	*
8.000) 	** **

7.000) 	*****
6.000) * *

5.000)

NOTE : AN * REPRESENTS 1 CASE(S).

SUMMARY

GROUP MEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	G1 	G2

1 	8.937 	8.500 	2.1438 	0.5359 	7.000 	0.510 	*

- 2 	12.261 	13.000 	2.7339 	0.5701 	11.000 -0.490 	*

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.224
NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS.

* : TOO FEW DATA FOR USEFUL ESTIMATE.

GROUP 	RANK SUM GROUP SIZE MEAN OF RANK SUM

1 	198.5 	16 	 12.406
2 	581.5 	23 	 25.283

TEST STATISTIC IS WILCOXON RANK SUM= 	198.5

P-VALUE = 0.000372 	(ONE-SIDED)
= 0.000744 	(TWO-SIDED)

EXAMPLE 7.

RESULTS
DATA
FIRST GROUP - SECOND GROUP

NUMBER = 	30 MINIMUM = -3.000 MAXIMUM = 8.000
-2.000 0.000 0.000 1.000 0.000 0.000
4.000 4.000 1.000 1.000 5.000 3.000
5.000 3.000 -1.000 1.000 -1.000 5.000
8.000 2.000 2.000 2.000 -3.000 -2.000
1.000 4.000 8.000 2.000 3.000 -1.000

HI STOGRAM

MIDPOINTS

9.000)
8.000) **
7.000)
6.000)
5.000) ***
4.000) ***
3.000) ***
2.000) ****
1.000) *****
0.000) ****
-1.000) ***
-2.000) **
-3.000) *
-4.000)

NOTE : AN * REPRESENTS 1 CASE(S).

MEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	Gi 	G2

1.833 	1.500 	2.7428 	0.5008 	11.000 	0.498 	*

NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS.
* : TOO FEW DATA FOR USEFUL ESTIMATE.

TEST STATISTIC IS PAIRED T-TEST= 	3.6611
WITH DEGREES OF FREEDOM =29

P-VALUE = 0.000498 (ONE-SIDED)
= 0.000996 	(TWO-SIDED)

99% CONFIDENCE INTERVAL OF DIFFERENCE OF MEANS (FIRST-SECOND)
BASED ON PAIRED T-TEST IS

(0.4532 , 	3.2135)

EXAMPLE 8.

RESULT S
DATA
TOTAL NUMBER =14

GROUP 1 	NUMBER = 	5 MINIMUM = 1.000 	MAXIMUM = 9.000
4.500 9.000 3.500 1.000 5.500

GROUP 2 	NUMBER = 	5 MINIMUM = 2.000 	MAXIMUM = 11.000
2.000 8.500 10.000 11.000 6.500

GROUP 3 	NUMBER = 	4 MINIMUM = 7.000 	MAXIMUM = 14.000

7.000 12.500 14.000 12.500

HISTOGRAM

MIDPOINTS GROUP 1 	 GROUP 2

15.000)
14.000)
13.000)
12.000)

	

11.000) 	 *

	

10.000) 	 *

	

9.000) * 	 *
8.000)

	

7.000) 	 *

6.000) *
5.000) *
4.000) *
3.000)

	

2.000) 	 *

1.000) *
0.000)

NOTE : AN * REPRESENTS 1 CASE(S).

SUMMARY

GROUP 3

*
**

*

==
GROUP MEAN MEDIAN 	STD. DEV. 	STD. ERROR OF MEAN RANGE Gi 	G2

1 4.700 4.500 	2.9283 	1.3096 8.000 0.458
2 7.600 8.500 	3.5602 	1.5922 9.000 -1.137 	*

3 11.500 12.500 	3.0822 	1.5411 7.000 -1.673 	*

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.176
NOTE: Gi AND G2 ARE FISHER'S C-STATISTICS.

* : TOO FEW DATA FOR USEFUL ESTIMATE.

GROUP RANK SUM 	GROUP SIZE 	MEAN OF RANK SUM

1 	22.0 	5 	 4.400
2 	37.0 	5 	 7.400
3 	46.0 	4 	 11.500

========= ==

TEST STATISTIC IS KRUSKAL-WALLIS= 	6.4198

P-VALUE = 0.023638

MEANS ARE DIFFERENT AT 0.050 SIC. LEVEL.
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 3

