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Abstract 

A user-friendly computer program for testing the equality 

of means and elementary statistical calculations is developed on 

a microcomputer for non-professional statisticians. The program 

is aimed at reducing the misuse of statistics. Users are asked a 

number of questions and then are directed to enter their data if 

answers to the questions are satisfactory. The program examines 

the data provided by the users and then provides elementary 

calculations of statistics and selects a test statistic for 

testing the equality of means. Comments or warnings are issued 

to users where necessary. 

Statistical methods involved in the program are reviewed. 

Contrary to what many people may believe, the use of non-

parametric methods for testing the equality of means in order 

to avoid the normality assumption (which is required by the 

parametric tests) does not protect us from a possibility of 

misuse or misinterpretation of statistics when the distributional 

properties of data are not known. It is often more dangerous 

than using parametric tests. There are of course situations 

where non-parametric methods are appropriate. 

New algorithms are developed where no satisfactory 

algorithms exist. Proofs are given for new algorithms or 

generalized algorithms. 
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Chapter One 

Introduction 

Section 1.1. General introduction. 

A number of statistical techniques are widely used 

by non-statisticians, for example medical doctors. These users 

may have little statistical knowledge and may be unaware of 

the assumptions on which the methods depend. It is not 

unreasonable to assume that they are primarily concerned with the 

conclusions they can draw or support after applying statistical 

methods. Few users are likely to question the validity of the 

statistical methods, and especially if the results of these 

statistical methods support their prior beliefs. Sometimes, 

statistical analyses are only done because many journals require 

data to be treated statistically. In many situations, these users 

find it hard to get statistical advice even if they wish it. 

With the spread of computing facilities, users may be 

tempted to use computers for their statistical analyses if 

programs are available, or by writing their own programs, 

without paying sufficient attention to statistical aspects or 

computational accuracy. The spread of microcomputers may make 

the situation even worse. Users may be tempted to think that 

they can do data analysis if they know how to use statistical 

computer programs; they may even feel that it is sufficient 

for them to feed their data into chosen programs and the 

computers will do the rest for them. Users may even try analyses 

by 'trial and error' and then see which analysis supports their 

prior beliefs. 
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Dissuading or stopping such users from using statistics 

beyond their competence is not practical. It is difficult to 

convince them that certain statistical techniques are beyond 

their competence, especially if they have done some elementary 

statistics. It is also not practical to complicate computing 

facilities (Gentleman (1979, page 94)) as a means to discourage 

them from using statistics. There is no practical way of 

stopping anyone with elementary computing skills writing a 

program to execute, for example, a t statistic. 

Reid and Lemon (1980) suggest that the education of users is 

a possible solution to the misuses of statistics by users. This 

is ideally true, but is unlikely to be practical for many people. 

Data seldom satisfy the underlying assumptions on which 

statistical methods depend. Many statistical properties are not 

really quantified and the interpretations depend heavily on the 

actual data in the example being studied. All this makes user 

education difficult. It is unreasonable to expect most users to 

be knowledgeable about the robustness of various tests or the 

choice of a suitable transformation. Knowing a little can be more 

dangerous than knowing nothing. It has also to be remembered that 

they have to channel almost all their energy to their own field 

of study and the study of statistics also requires mathematical 

skills which they may not have time to master. 

These users should not be blamed for misuses of statistical 

techniques. Statisticians should offer them help where possible. 

By the careful design of programs, the number of misuses of 

statistics can be reduced. 



-3- 

Before we start designing programs for these users, it is 

instructive to review the common types of mistakes. 

Section 1.2. A brief ,review of the misuse of statistics 

in medical journals. 

Badgley (1961) analysed 103 articles published in 1960 

in two Canadian medical journals and found 24.3% of the papers 

contained errors as shown in Table 1. Schor and Karten (1966) 

published a detailed analysis of the uses of statistical methods 

in 295 papers published in 1964 from 10 leading medical journals; 

53% of these papers were acceptable and 47% were not, (see 

Table 2). Gore et al (1977) analysed papers in the British 

Medical Journal during three months of 1976 and they found 42% 

of the papers had at least one error as shown in Table 3. Glantz 

(1980) gave an analysis of the use of Student's t-test in one 

volume each of Circulation Research and Circulation; 46% of 

the articles In Circulation Research and 27% of the articles in 

Circulation used the t-test when an analysis of variance or 

multiple comparisons tests should have been used, (see Table 4). 

Some of the errors found in the above review articles which 

could reasonably be dealt with by computer programs are 

1. Errors with Student's t-test : which are mainly 

Use of the two sample t-test on paired data. 

Assumption of equality of variances. 

The testing of multiple hypotheses. 

2. Violation of distributional assumptions. 
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It is important to note that the actual percentages of 

misuses could be higher than the findings in the above review 

articles. The raw data are not usually published and without the 

raw data a thorough examination of the validity of the 

statistical methods is not possible. 

It is also important to note that any assessment of the 

validity of the statistical methods involves subjective 

judgements and the criteria used are also to some extent 

arbitrary. 

Table 1. 

Appropriate statistical analysis 	 42.7% 

I Inappropriate statistical analysis 	24.3% 

Additional Analysis required 	 33.0% 

Table 2. 

Number of errors per study by type bf study 

Numberl Number 	- Numberof Averagenumber 
Type •read not acceptable errors of errors per 

unacceptable 
study 

Analytical 149 108 253 2.34 
case 

Description 146 32 39 1.22 

Total 295 	I 140 I 	292 I 	2.09 
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Table 3. 

n % of total % of paper that 
used statistics 

No statistical analysis 15 19 -- 

Acceptable use of 
statistical method 30 39 48 

At least one error 32 42 52 

Table 4. 

No statistical analysis 	20 	25 	-- 

Appropriate use of t-test 	16 	20 	27 

Inappropriate use of t-test 	36 	46 	61 

Analysis of variance 	 7 	9 	12 

Section 1.3. Purposes of the project. 

Glantz (1980) concluded that the system of review of 

articles submitted to journals had not been able to control the 

inappropriate use of statistics. Popular computer programs, 

for example BMDP and SPSS do not help users to avoid misapplying 

statistical methods. Given that users are allowed to choose 

their own test statistics, it is almost impossible to prevent 

them misusing these methods. 

The main aims of this project are to develop a computer 

program which will help non-professional statisticians avoid 

these pitfalls and to develop this type of program on a 

microcomputer. 
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Section 1.4. The choice of test statistics. 

There are several ways of designing programs which may 

decrease the number of misuses of statistical methods. A 

common approach is to issue warnings to the users. This has not 

proved to be useful as the warnings are usually ignored. A 

computer program which does not continue with the analysis when 

any 'violation' of the assumptions is detected is unlikely to be 

attractive to users who may feel they have wasted their time 

entering the data. 

If users are allowed to choose the test statistics, then it 

is difficult to avoid the misuses mentioned above. Users may 

select the few statistical methods they know and use them 

inappropriately. Thus it was decided not to permit users to 

choose their own test statistics. After a series of questions 

and answers, users may be asked to enter their data; the 

program will test underlying statistical assumptions and select 

a test statistic. This approach should reduce the misuse of 

statistics. If users are prevented from choosing their test 

statistics, then misuses such as applying the two-sample Student 

t-test to paired observations and multi-group hypotheses are 

eliminated provided the users answer the questions correctly 

and honestly. 

In developing the program the following assumptions have 

been made 

Many users know only a little about statistics. 

Prior information about the underlying statistical 

distributions is very rarely available, and even if it is 

available, users are not always able to use it. 
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(3) Users know that they want to test the equality of mean 

responses between various groups. 

Fisher's g-statistics and the coefficient of variation of 

variances (see 2.7. (A) for its definition) are not frequently 

used by medical doctors. It is questionable whether programs for 

such users should provide the g-statistics and the coefficient 

of variation of variances with which they are not familiar or 

may have difficulty with the interpretation. The question would 

be best answered by another more fundamental question, that is 

whether or not such users should be allowed to handle their own 

data. The answer to this question is of course "yes" due to 

practical reasons and no one can stop others from handling their 

own data. 

It is commonly taken for granted that the mean plus or minus 

twice the standard error provides an estimate of the 95% 

confidence interval. If data are very skewed and the sample size 

is small then this interval may be incorrect. Fisher's 

9 1 -statistic is a measure of symmetry, it can provide a rule 

of thumb as to the validity of this interval. Fisher's 

92-statjstjc Is a measure of 'peakedness' and 'tailedness', not of 

'peakedness' only, (see Finucan (1964)). If all these statistics 

9 1
1 92  and the coefficient of variation of variances are small, 

then the test statistics are very likely to be valid. 

Gore et al (1977) found that an inadequate description of 

the basic data makes it difficult for the readers to visualise the 

data. In the discussion of the paper by Stigler (1977), It is 

suggested that sample skewness and kurtosis should be calculated 



routinely as measures of distributional shape. Pearson and Please 

(1975) demonstrated the close relation between the validity of 

various tests and skewness and kurtosis. They also pointed Out 

that testing for normality cannot be a substitute for information 

about distributional properties provided by skewness and kurtosis. 

Fisher's g-statistics and the coefficient of variation of 

variances are good 'rules of thumb' for the validity of various 

test statistics. The misuse or misinterpretation of various test 

statistics should not be ascribed to the provisions of 

Fisher's g-statistics and the coefficient of variation of group 

variances. The problems start with the data, lack of statistical 

understanding and the nature of statistical practice. For example, 

users are told that for the one sample Student's t-test to be 

valid, data must be of a bell-shaped distribution. However, 

statisticians themselves may apply the one sample t-test to ah 

apparently U-shaped distribution as they know that the t-statistic 

converges extremely rapidly to normality for symmetrical 

distributions (see for examples Geary (1947) and Ractcliffe (1968)). 

It is important to note that sample skewness and kurtosis 

can be seriously affected by a few extreme observations. Mean and 

variance are also affected as well but to a lesser extent. The 

sample skewness and kurtosis can be poor measures of 

distributional shape. On the other hand, because of their 

sensitivity to extreme observations which usually provide more 

information about the spread of the data, they also provide more 

information about distributional shapes. The point here is that it 
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is difficult to have robust and yet informative measures of 

distributional shape. 

Brief guidelines and interpretation of various statistics 

can be stored on disk and users should be able to obtain access to 

them there. 
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Chapter Two 

Statistical details 

This chapter describes and reviews all the statistical 

methods involved in the program. The details of the actual 

implementation will be given in chapter 5. 

Section 2.1. Introduction. 

First the validity of various test statistics is discussed 

in the context of the departure from the 'true' p-value under 

ideal conditions. It is well-known that this is related to 

the skewness and kurtosis of the distribution. Lee and 

Gurland (1977) show that the one-sample t-test can behave very 

differently in situations with the same population skewness and 

kurtosis. However, in practice, one cannot distinguish many 

distributions clearly, thus skewness and kurtosis are still 

good indicators of the validity of a test statistic. Usually, 

information about the skewness and kurtosis of a population is 

not available. These parameters have to be estimated from the 

data and their estimations require a fairly large sample size, 

especially for kurtosis. Unless we can estimate them with 

sufficient accuracy, the theoretical results which depend on 

them will not be as useful as they may appear to be. Simulation 

studies are more useful in the sense that more insight into the 

behaviour of various tests can be achieved even though they do 

not prove any theory. Real life data are also likely to be very 

different from simulated data as, for example there may be tied 

observations or observations from mixed populations which we may 

not be able to identify. 
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Another problem is that of measuring robustness. It is very 

vague to say, for example, that the F-test is robust to the 

departure of normality provided the error distribution is not 

too skewed and has well-behaved tails. The theoretical results 

described below are not very useful for developing computer 

programs which are proof to misuses unless robustness can be 

quantified. If sample sizes are small, one may just have to take 

the validity of the test statistic by faith. Furthermore, the 

interpretation of "smallness" of sample sizes is also connected 

with the behaviour of the data, (see for example Ractcliffe 

(1968)). 

Apart from independence, normality is the most important 

factor regarding the successful development of a 'misuses proof' 

computer program. If the data are normally distributed, there is 

always a test of significance which is at least approximately 

valid. Welch's versions of the t-test and F-test do not assume 

equality of variances but do assume normality. If one has a 

very powerful general test for the equality of variances, a 

valid test statistic and multiple comparisons procedure could 

then be used. Such a test statistic does not seem to exist. 

Usually, the fewer assumptions a test statistic makes, the 

less powerful it is. 

Another problem concerns tests for the equality of 

population variances in cases involving more than one sample. 

Gans (1981) finds that using the F-test as a preliminary test of 

the equality of variances of two samples does not give enough 
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protection against a possible misuse of Student's t-test and he 

suggests unconditional use of the Welch t-test when sample 

sizes are not equal. The inability of the F-test to detect 

inequality of variances is not surprising as it is very 

sensitive to kurtosis. Lauer and Han (1974) suggest using the 

F-test with widely varying significance levels depending on 

the sample sizes. This may seem statistically unsatisfactory 

as the F-test itself takes account of sample sizes. Bartlett's 

test for the equality of variances is also well-known for its 

sensitivity to non-normality. Box's modified Bartlett's test 

and Dunn's multiple comparisons procedure are asymptotic tests. 

It is not clear how large the sample sizes must be before these 

tests are valid in a practical context. Other more robust tests 

usually suffer from lack of power. 

The pitfall of the joint assessment of normality for several 

groups is that individual non-normality cannot be identif led. In 

addition, an extreme non-normal sample could be masked by other 

normal samples. However, in practice, we may be more interested 

In 'combined' normality. It is rare that in a set of samples, one 

or two samples are very 'non-normal' while others are very 

'normal'. 

It is tempting to turn to non-parametric methods if the 

assumption of normality is suspected to be false. Wetherill 

(1960), Pratt (1964) and Hilgers (1982) have pointed out the 

danger of turning to Wilcoxon rank sum test when the violation 

of the assumption of normality is suspected. Teir-Walsh and 

Toothaker (1974) examined the normal distribution and two 
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exponential distributions and made a similar point about the 

use of the Kruskal-Wallis and Normal Scores tests. Strictly 

speaking, the Wilcoxon rank sum test is a test for the identity 

of two populations. To use it as a test of shift in location, 

we must then assume that the two populations have identical 

shapes. This is a more demanding assumption than the 

normality assumption required by the t-test knowing that the 

t-test is not sensitive to non-normality. One has almost no way 

of making a numerical check on the identity of distributional 

shapes. Similarly, the Kruskal-Wallis test assumes data from 

populations with identical shapes which is also more demanding 

than the F-test. Conover and Iman (1981) show the close relation 

between parametric statistics and non-parametric rank test 

statistics. This raises the possibility that, in most cases, the 

use of a rank transformation is just a waste of information, 

though the authors have a different motive in their article. 

A rank transformation may also change the intended null 

hypothesis, an outcome of which non-professional statisticians 

may be unaware. Thus the use of a rank transformation is likely 

to complicate the interpretation of the statistics. It is, of 

course, also true that, the use of parametric tests can lead to 

rejection of the null hypothesis of the equality of means because 

of other differences, for example the inequality of variances. 

However, this danger seems to be a lesser one. A parametric 

transformation changes the intended null hypothesis of the 

equality of means of original data. Thus complications may also 

occur in the interpretation of data. However, this complication 
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seems to be lesser than that of the rank transformation and more 

definite advice can be given to the users. As the testing of 

underlying assumptions is to some extent arbitrary, automatic 

transformation of data to achieve normality or the equality of 

variances is undesirable. A better approach seems to be to 

produce parallel analyses. 

The assumptions of normality and of the equality 

of variances are tested. The independence of the data is not 

tested. In single effect analysis, data do not usually have a 

natural order and common sense is more important than formal 

statistical testing. The program questions the users about this. 

Moreover, there are many types of dependency. The problem is 

basically a statistical one rather than a computing one. The 

detection or estimation of a parameter to measure dependence is 

likely to depend on the order in which the data are presented. 

More harm is likely to be done by developing programs for non-

professional statisticians to work with dependent data. Users 

should seek the advice of statisticians when working with 

dependent data. 

A statistician may feel uncomfortable about conditioning 

his statistic on a set of tests of preliminary assumptions 

which are in fact to some extent also arbitrary. However, 

these preliminary tests may be better than no check at all, 

and the testing of these assumptions will also provide some 

more information about the data. 

It should be noted that the above discussion is from a 

computing point of view rather than a statistician's point of 

view. 
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Section 2.2. Criteria for selecting statistical methods. 

Many statistical techniques are available. Each one has 

its own merits and limitations. Thus the following criteria are 

adopted. 

Statistical considerations : A test which is robust within 

a wider class of distributions is usually preferred. 

Implementation considerations : They must be easily 

implemented on computers. This rules out certain methods, 

for example, the Studentized Range test for multiple 

comparisons as this test requires reference to tables at 

various required significance levels which cannot be 

easily computed. Most tables are for a very limited number of 

combinations of values for the parameters, and interpolation 

may then be necessary. 

Definiteness or subjectivity : Test statistics which are more 

definite and involve less subjective judgements are preferred. 

For example, the Chi-Square goodness of fit test for 

normality is ruled out because a change in the number of 

intervals may lead to a different value. 

Popularity Popular tests are given first priority. 

Consistency For example, the Welch F-test is chosen for 

testing the equality of means in case of the inequality of 

variances instead of other alternatives because the Welch 

t-test is used for the case of two samples. Reasons for the 

use of the Welch t-test will be given later. 
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Section 2.3. Notation. 

Let x 1  (i=1,2,...,k, j=1,2,.... 3' n1 ) be the j 
th  independent 

observation on the random variable X. with. mean Ui  and variance 4. 
Define 	

k 
vi = ni-i, 	N = 

ni 
xi.  = 

. xij/ni 
j=1 

ei = xij_xi.  

x = 
.. 	 ii 3 

IN 

ni 

= 

k 
= vis/(N - k) 

1 

and R(xij) be the rank of x 1  in the overall sample. Tied 

observations are treated by averaging their corresponding ranks. 

Define 

ni 
R = 

j=1 

Section 2.4. Testing of normality. 

(A) Single sample assessment. 

Let z (i=i,2,..,n) be independent observations on a 

random variable Z and z(1) ~z(2)<.... ~z( 	be 

the order statistics. Shapiro and Wilk (1965) present a test 

of normality, 

\ 

/ 
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2 (5 a1Tz(J)) 
1=1 

2 (zçz) 
1=1 

n 
where z = 	z r/n 

1=1 

The coefficients ai,nare given in Shapiro and Wilk (1965) 

for n<50. A comprehensive simulation study by Shapiro et al 

(1968) indicates that W is a powerful omnibus test for 

normality. 

Small values of W signify abnormality of Z. This test is a 

one-sided test, it does not distinguish positive and negative 

skewness, long-tailedness and flat-toppedness. A study by 

Chen (1971) indicates that the W test is sensitive to non-

normality in contaminated normal distributions. 

Shapiro et al (1968) also find that the test based on sample 

skewness and kurtosis can serve as a good test for the 

departure from normality. Bowman and Shenton (1975) give 

confidence contours for a test based on sample skewness and 

kurtosis, but this cannot be implemented on the computers. 

For n>7, D' Agostino (1970) gives a transformation of sample 

skewness to normality as follows, 

n 	 n 
Let 	g = n1/2 	(z1-z ) 3/( 	(z _z ) 2 ) 3 ' 2  

i=1 	• 	1=1 

- g( (n+1)(n+3) ) 1/2 
- 	6(n-2) 
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b = 3(n2+27n-70)(n+1)(n+3) 
(n-2)(n+5)(n+7)(n+9) 

= _14(2(b_1)) 1 / 2  

( ln(w) )_1/2 

a = [2/(w2_1)]_ 1 / 2  then 

Y = 61n(a+(a2+1)11'2) 

is approximately distributed as the standard normal 

distribution. Simulation results in D' Agostino (1970) 

indicate that this approximation is remarkably accurate. A 

study by Pearson et al (1977) indicates that tied observations 

can have serious effects on the Shapiro-Wilk statistic and a 

hardly significant effect on sample skewness. 

(B) Joint assessment for multi-sample problem. 

Wilk and Shapiro (1968) give a joint test statistic for 

several independent samples based on the W-statistic mentioned 

above. Let W be the W-statistic of the ith  sample and 

be the corresponding significance level actually 

attained for jth  sample and F be the cumulative 

distribution of W. 

Suppose 

OCi = F(w1 ) 

Gi 	 t2 

= 1(2 TI 
)_1/2 e2dt 

for some Gi.,  then 

G = G /k1 ''2  ii 
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is distributed as the standard normal distribution. G 

can be obtained by the equation, 

w1-a 

Wi 
 ) 

na i 1,n 
where 	a  

ni- i 

and Y and 6 are given in Shapiro and Wilk (1968). 

Simulation results in Wilk and Shapiro (1968) indicate that G 

performs very well. 

A joint assessment based on the sample skewness is given in 

Pearson and Hartley (1972) as follows 

Let P = 1-Q 1  = Pr(g1  ~ obsrved value) 

If all the distributions of the samples are positively skewed, 

then one can use -2ln(Q) and -21n(P) if all the 
i 	 i 

distributions of samples are negatively skewed, both 

statistics are then distributed as chi-square with 2k degrees 

of freedom. 

For a two-sided test, one can define 

	

R = 2Q1 	if 

= 2P 1 	if g 1<O 

then -21n(R1) is distributed as chi-square with 

2k degrees of freedom. 

Section 2.5. Tests of a single mean. 

For simplicity, we drop the first subscript i as i=1 

throughout this section. For testing uu
0' 

we have the 

following tests 
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Student's t-test. 

If X is normally distributed, we have 

= 

distributed as t-distribution with v degrees of freedom. 

Deviations from normality are usually quantified in terms of 

values of population skewness, 

= E(X-u) 3 10 

and kurtosis, 

2 = E(X-u) /o'-3. 

Geary (1947) obtained the following expansions for moments 

of t, 

E(t) = -Y1/(2n2) - 0013 / 2 ) 

Var(t) = 1 + 2/n + 7Y/(4n) + 0(n 2 ), 

Y1 (t) = -2Y1 /n 	-O(n 
1/2 	-3/2 

 ) 

Y 2 (t) = 2(3 - 	+ 6Y)/n + 0( n 2 ) 

which are described in Pearson and Please (1975). These 

results suggest that t is more sensitive to skewness than 

kurtosis and agree with the simulation studies by 

Racteliffe (1968), Pearson and Please (1975), Bowman et al 

(1977) and Posten (1979) of t-statistics sampling from 

a wide variety of distributions. A good review article 

is Cressie (1980). 

Randomization test and signed-rank Wilcoxon test. 

Let Yj=xj-u0  (j=1,2..,n) and Z j  be the absolute value of 

y3 . If X is symmetrically distributed about u, we have 

the following tests 
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Randomisation test. 

Let S be the sum of all positive Yj'S and P be the 

number of subsets of {Z j  : j=1,2,..n} with sum 

less than or equal to S, then the significance 

probability = 2P 

against the alternative hypothesis u<u. 

In the presence of zeros, they are dropped first and 

n is reduced accordingly. This test is described in 

Pratt and Gibbons (1981). 

Signed-rank Wilcoxon test. 

For large n, the randomisation test computation becomes 

too heavy. If the z 1  are replaced by their ranks, 

we have the signed-rank Wilcoxon test, 

W = sum of ranks of positive Y j 'S 

E(w) = n(n+1)/4 and 

Var(w) = n(n+ 1 )( 2n+1 )/ 24- (d -d)/48  

where dt  is the number of z r 's equal to the tth 

smallest value of the z r 's and e Is the number of ties. 

Zeros are dropped before ranking as suggested by Wilcoxon. 

Pratt (1959) shows that some difficulties may occur in 

the Wilcoxon's procedure of zero treatment and he 

suggests that zeros be dropped only after ranking. 

Conover (1973) shows that each procedure has its own 

merits. To be consistent with the treatment of zeros in 

the randomisation test, Wilcoxon's procedure is adopted. 

If the xi 's are differences of paired-observations and 
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the null hypothesis is that of no treatment effect, then 

the symmetry assumption is unnecessary. 

Section 2.6. Tests of equality of two means. 

(A) Two-sample t-test. 

If the Xi 's are normally distributed and 	then 

t = ( x1 _x2 )/[ s ( n 1+n 1 )h/' 2 ] 

is distributed as the t-distribution with n 1+n2-2 degrees of 

freedom. It is well-known that t is robust against non-normality 

and inequality of variances if sample sizes are equal. Studies 

by Pearson and Please (1975) and Posten (1978) Indicate this. 

A simulation study by Posten (1978) IndIcates that for 

population skewness O<Y1 ~2.0  and kurtosis - 1.6~ Y2~4 .8, 

the t-test performs remarkably well and It is good enough 

for practical purposes. Graphs in Pearson and Please (1975) 

Indicate that the two-sample t-test is more robust against 

non-normality than the one-sample t-test. 

(!) 
Welch t-test. 

If the Xi 's are normally distributed, but the variances are 

not assumed to be equal, Welch (1947, 1949) gives 

wt = ( x1 _x2 )/( s /n1+s /n2 ) 1 ' 2  

which is approximately distributed as the t-distribution 

with d degrees of freedom where 

d 
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Mickey and Brown (1966) prove that 

Pr(t 1 (c) ~ Pr(wt<c) ~ Pr(t<c) 

where t 1  is distributed as the t-distribution with min(v 1 ,v2 ) 

degrees of freedom and t2  is distributed as the t-distribution 

with v 1+v2  degrees of freedom. It can be shown that d falls 

in the range of min(v 1 ,v2 ) and v 1+v2 . Thus the Welch t-test 

should provide a good approximation provided the sample 

sizes are not too small. Murphy (1967), Lee and Gurland (1975) 

and Gans (1981) all find that the Welch approximation works 

remarkably well. Murphy and Gans also find that the Welch 

t-test is more robust against non-normality than the 

ordinary t-test. 

(C) Two-sample randomisation and Wilcoxon rank sum tests. 

If the populations are identically distributed except for 

possibly a difference in location, we have 

Two-sample randomisation test. 

Let P be the number of subsets of {x. : i=1,2, i=12..n} 

with n1  elements and sum less than or equal to1 x1  , then 

the significance probability = 
P/(1') 

1 

against the alternative hypothesis u 1 <u2 . 

This test is described in Pratt and Gibbons (1981). 

Wilcoxon rank sum test. 

For large sample sizes, the randomisation test computation 

becomes too heavy. If x jj 's are replaced by their ranks, 

we have the Wilcoxon rank sum test, 
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w 
r 

	
ni 	

E(Wr) = n 1 t(21(N+1)) and 

e 
Var(W ) = n n2[(N+1) - 	(d -d)/(N(N_ 1 ))]/ 12  r 	1 t= 1 

where dt  is the number of Xjj 'S equal to the t th  smallest 

value of the Xjj 'S and e is the number of ties. 

Wetherill (1960) shows that the Wilcoxon rank sum test is a 

little more robust against the inequality of variances but 

much more sensitive to skewness and kurtosis than the t-test. 

(D) Testing of equality of variances. 

Let F=s/s, then F is F-distributed with v 1  and v2  

degrees of freedom under the assumption of normality. 

Various studies (Gayen (1950), Finch (1950) and Pearson 

and Please (1975)) have shown that F is very sensitive 

to kurtosis but insensitive to skewness. 

Section 2.7. Tests of equality of several means. 

(A) Analysis of variance F-test. 

Assuming normality and equality of variances, we have 

k 
F = 	n 	 )s 1(xx)2/((k-1 2  ) 

1=1 

distributed as F-distribution with k-i and N-k degrees of 

freedom. 

Inequality of the variances has little effect on F if the 

sample sizes are equal. Non-normality also has little 

effect if the distribution of the errors is not too skewed 

and has well behaved tails. However, inequality of the 
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variances can have a serious effect on the F-statistic if 

the sample sizes are not equal. Correlation among the 

data is the most serious departure from the assumptions 

(see Box (1954), Scheffe (1959, chapter 10), Seber (1980, 

chapter 5)). Box (1954) shows that if the variances are not 

equal, then the F-test is dependent on the spread of the 

distribution of the variances measured by the coefficient of 

variation of variances, 

k 
[ 	

2 2 	- 	• 2 2 1/2 
c = i= 1 v1(c- oP' ) /( N k)((r) 

k 
where 2 	2 

= 	vioj/(N-k) 

(!) Welch F-test. 

Assuming normality, we have the Welch F-statistic 

k 	2 wf = I w (x -50 /[(k-1)(1+2(k-2)f)1 i=i I i. 

k 	 k 
where w = n 1/s, u = 	w, 	= 	wx /ui. 

i=1 	i=1 

k 
f = (k2-1) 	( 1_wj/u) 2 /(ni.-1 ) 

i= 1 

and wf is approximately distributed as F-distribution 

with k-i and (30' degrees of freedom. 

This test is described in Brown and Forsyth (1974). They 

find that wf Is robust under the Inequality of variances, 

the asymptotic approximation of wf is valid if each 

sample has at least 10 observations and it is not 

unreasonable down to 5 observations. 

Other possible test statistics are given by James (1951) 
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and Brown and Forsythe (1974). Dijkstra and Warter (1981) 

find that none of the tests is uniformly better than the 

other two. 

Kruskal-Wallis test. 

If the populations are identically distributed except for 

possibly a difference in location, then the F-statistic 

based on ranks (see Conover and Iman (1981)), 

Fr = (N-k)H/[(k-1)(N-1-H)1 

is approximately distributed as the F-distribution with k-i 

and N-k degrees of freedom where the Kruskal-Wallis test 

statistic, 

k 	 e 
H = 12 	n (Ri_(N-I-1 )/ 2 ) 2 /[N(N+i)( 1_ 	(d -dt)/(N3-N))] 

i=1 	 t=1 

is approximately distributed as chi-square with k-i 

degrees of freedom where d is the number of the x's 
 ij 

equal to the tth smallest value of xii's  and e is the 

number of ties. The chi-square approximation of the Kruskal-

Wallis test does not take account of the sample sizes. 

Multiple comparisons. 

If the null hypothesis of the equality of the means is 

rejected at the oc level of significance, then a 

multiple comparisons procedure may be performed to judge 

which groups are different from which others. 

(a) The null hypothesis rejected by the F-test. 

The Bonferroni method produces 100(1 - cr)% joint 

confidence interval of u 1-u 1 , ij as 
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3 	p 
-x. ±t 	s(n i . 

where Y = /(k(k-1)) and t 	 is the upper percentile 

point of the t-distribution with P=ni+n_2 

degrees of freedom. 

(b) The null hypothesis rejected by the Welch F-test. 

A test similar to the Welch t-test called the T 2  

procedure in Dunnett (1980b) is used. The 100(1 - 

joint confidence interval for u_u, ij is 

2 2 1/2 x -x. ± 	(s 

	

J. 	
) i. 	. jiI 

where u 	= (s/n-4s 2 	2 /n) /[S 
4 
 /(fl  2  V)+s/(flVj)] ij 	 j 	j j  

y = [( - 

and t / Ujj is the )' upper percentile point of the 

t-distribution with Ujj  degrees of freedom. 

(C) The null hypothesis rejected by the Kruskal-Wallis test. 

Dunn's method is used and two samples are judged to be 

different if 

e 
IR -Rt>Zy  E(N(N2 1) 

t= 1 

where Z y  is the upper )= oc /(k(k-1)) percentile 

point of the standard normal distribution. This 

procedure is described in Daniel (1978, page 214). 

When variances are equal, Dunnett (1980a) and Stoline (1981) 
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recommend the Tukey-Kramer method which is based on the 

Studentized range distribution. On practical consideration, 

the Bonferroni method is chosen. 

When variances are unequal, the T 2  procedure is found 

to be conservative by Dunnett (1980b). Other possible 

procedures are also given in Dunnett (1980b). T 2  is 

chosen partly because of practical considerations. An 

extensive list of references can be found in Stoline (1981). 

No study of Dunn's procedure has been found. 

(E) Testing equality of variances. 

k 
Let M=(N-k)ln(s2 )- 	(n1-i)ln(s). Box (1953) shows 

i= 1 

that for any parent distributions with the same population 

kurtosis Y2 , 
M/(i+y2 /2) is asymptotically distributed 

as the chi-square distribution with k-i degrees of freedom. 

If the parent distribution is normal, )'2=O,  then for small 

sample sizes, Bartlett (1937) shows that M/(i+A) is 

distributed as chi-square with k-i degrees of freedom, where 

A = (3(k-1)) ( 	v -(N-k) ) 

This is the traditional test called Bartlett's test and it 

is well-known that it is very sensitive to non-normality and 

is the "best" test if the parent distributions are normal (see 

Gartside (1972), Layard (1973) and Geng et al (1979)). 

For a reasonable estimate of 
'2 
 quite large sample 

sizes are needed. Layard (1973) finds that 
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k 
= N'

2  
- 2 2 	3  = 	(e jj ) 

ij 

is badly biased when sampling from non-normal distributions 

and suggests 

e. 

2 2 (e jj ) 
ij 

as an estimate of Y based on empirical results. To be 

consistent with other parts of the program, an estimate by 

Anscombe (1961) is used, that is 

4 

N3 	 r+2 ij 	3 

	

2 = r(r+2)(1+(N-1)p 4 )-3N 	( e) - 
ij ii 

where r = N-k and 1+(N-1)p 2  - r 

Section 2.8. The estimation of the power A of a transformation. 

When non-normality of data is detected and no suitable test 

statistic without assuming normality is available, transformation 

of the data may be necessary. An estimate of A is given by 

Anscombe in the discussion of Box and Cox (1964). The estimate 

= 1-27x/[3(2+Y)s1 

23 
N e 

where 	= 	 ij ij 

(1+(N-I)p 3  )(r5 e ) 2 3/2 
ij ii 

r and p are defined as in the last section (2.7. (E)). 
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Section 2.9. The detection of 'outliers'. 

Let L and U be the lower and upper 25% quartiles of a given 

sample respectively and d=1.5(U-L). A data point which is below 

L or above U with a distance of d or more is declared as an 

'outlier'. 

Section 2.10. Fisher's g-statistics. 

As Fisher's g-statistics can provide good "rules of thumb" 

for the validity of various test statistics and can also provide 

information about the distributional properties of data, it is 

useful to provide users with g 1  and 92  statistics. 

When the sample size is small, g 2  is not very useful and 

hence it is not provided. Let z (i=1,2,..,n) be a random sample, 

k 	 n 	
2 z = 	zi/n 	k2  = 	( Z j Z ) /( n-1) 

1=1 	 1=1 

n 
k3  = n 	(z-z ) /[(n-1)(n-2)] 	and 

1=1 

n 	
22 

= { 	(z-z
• 
 ) n(n+1)/(n-1) - 3( 	(z-z ) ) )/[(n-2)(n-3)] 

then Fisher's g 1  and 92  statistics are defined as follows 

k 
g1 	

1'2 	
and 

k  

92 = - 

2 
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Section 2.11. Summary. 

In this chapter, we describe and review various test 

statistics involved in the program. The general conclusion is 

that the use of non-parametric rank tests for testing the 

equality of means in order to avoid the normality assumption 

(which is required by the parametric tests) does not protect us 

from a possibility of misuse or misinterpretation of statistics 

when the distributional properties of data are not known. It is 

often more dangerous than using parametic tests. The conclusion 

drawn from this review coupled with the problem of computational 

complexity of randomization tests which will be mentioned in the 

chapter 3 lead to the decisions determining the choice of the 

test statistics which will be given in the chapter 5. 
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Chapter Three 

Algorithms 

This chapter describes all the algorithms necessary to 

carry out all the computations of statistics described in 

chapter 2 and the associated functions. Proofs are given for 

new or generalized algorithms. 

Section 3.1. Criteria for selecting algorithms. 

There are many algorithms available for a given task. Thus 

the following criteria are adopted in selecting algorithms. 

Accuracy considerations : An algorithm which is accurate is 

always preferred. It may be meaningless to achieve, say, 

5 decimal accuracy for p-value calculations. However, if 

it can be achieved at little cost, there seems no reason not 

to achieve it. Giving an accurate answer is always a good 

thing. It also gives users confidence in the program. 

Practical considerations : If an algorithm requires a lot 

more codes or computations but has little advantage in 

accuracy over others, it is avoided. 

Section 3.2. Calculations of upper quantiles and percentile 

points. 

Let z(x) be the density function and Q(x) be the upper 

quantile of the standard normal variable x, that is, 

2 

z(x) = (2 fl)1/2  e  2 	and 

OD 

Q(x) = z(t)dt 
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(A) Normal distribution. 

Moran (1980) gives 

2 
w x 	+ 5 ne 9Sifl(n23x)] 

3(2)1/2 	n=1 

approximately and suggests truncation at n=12 will give 9 

decimal accuracy for xI<7.0.  This of course cannot be 

achieved with single precision calculations. 

Quantiles for x=0.00(0.02)5.20 are produced and compared 

with table 2 in Pearson and Hartley (1972), they agree with 

all six decimals except a few of them differ by 10 6 . 

There is a loss of accuracy due to the subtraction made 

in (1), but this is of no practical importance. 

There is a computational advantage if the series in (1) is 

coded in a step-down manner, that is descending in n or 

adding small terms first. 

Other algorithms are given by Cooper (1968a) and Hill (1973) 

and described by Kennedy and Gentle (1980). They do not 

appear to be superior to (1). No comparison is made. 

Conversely, given a quantile q=Q(x), one wants to evaluate 

the corresponding percentile point x, and Bailey (1981) gives 

the approximation, 

for q>1.01x10 6 , 

x = t 1 [1-i-O.0078365t-0.00028810i4+O.00O0043728t] 

where 	t1 = [-rt/2 ln(4pq)]1'2,  p>1/2 and q1-p. 

and for q1.01x1069 

(1) 
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= t + 0.1633 + 0.5962 

t 	t 

where 	u = -2 ln(q) and t2 = [ u_ln(2nu)] 11'2  

Approximations of percentile points are computed at various 

values of q, they appear to be very accurate. 

(B) Student t-distribution. 

Let Q(t,v) be the upper quantile of the t-distribution with 

v degrees of freedom. From Abramowitz and Stegun (1964, 

Formulae 26.7.3, 26.7.4), one has an exact series expansion, 

Q(t,v) = (1-A(t,v))/2 	where 

A(t,v) = .[z+sin(z)cos(z)(1+.cos2(z)+..-t-l3 (v..2) cos2.4..(v-3) 	v-3 (z))] 
TV 

if v>1 and odd, 

ifv=1, 
VT 

= sin(z)[1+cos2 (z)-i4.cos4 (z)+. ~l. 3 ..(v_3 ) cosv_2 ( z )1 
2.4..(v-2) 

if v is even, 

where 	z = tan'( 1/2' 
V 

2 
sin2 (z) =  

t +v 

cos2(z) 
=•____ t +v 

Cooper (1968b) who obtained the above formula differently 

has coded this algorithm using straight-forward term by 

term evaluation. His coding suffers from 

(a) Exponent underf low and hence a check against underf low 

is needed when a term is evaluated and added successively. 

Cooper's routine contains no check against exponent 

underf low. 
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Large rounding error. 

Slow computing speed. 

Using 'nested multiplications' known as Homer's method gives 

a numerically more stable algorithm as the coefficient of 

cos2 (z) in the series decreases as the power of cos2 (z) 

increases (see Carnahan et al (1969. page 6)). 

A recurrence relation for the 'nested multiplications' is 

used by Hill (1970) and is described in Kennedy and 

Gentle (1980). Changing division to multiplication, one 

obtains a slightly clearer recurrence relation. 

C 
V 

= 1, 

Ck = Ck+l b (k-1)/k + 1, k=v-2, v-4,.., 3 or 2. 

then 

A(t,v) = 	+ (ab)1'2 C3 ] 	if v is odd, 

= a 1/2C2 	 if v is even. 

where 	a = sin2 (z), 	b = cos2 (z) and 

C3  = 1 if v = 1. 

One notices that less operations are required by using 

Homer's method and exponent underf low is impossible in 

evaluating C as Ck ~ 1 for all k. 

The above exact computation works well if the number of 

degrees of freedom is small. Thus for more than 20 degrees 

of freedom, the Cornish-Fisher type approximation is used. 

Q(t,v) = Q(x) 
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where 

x = z[1 + z
2+3 - 4z6+33z4+240z 2+855 

10 d(d.8z4+100) 

z = [ a ln(1 + 	
) 31/2 

V 

a=v-0.5, 	d=48a 2 

which is described in Kennedy and Gentle (1980) and is shown 

by El Lozy (1982) to be extremely accurate. 

Quantiles with the similar t and v values in tables in 

Hartley and Pearson (1950a) are produced and compared. They 

agree with all five decimal places except a few of theni 

differ in the fifth decimal place. There is a loss of 

accuracy when A(t,v) is very small or near 1, but this is of 

no practical significance. 

Conversely, given a quantile q=Q(t,v), one wants to evaluate 

the corresponding percentile point t, Fisher and Cornish 

(1960) give the following approximation, 

= 	1 + 
x2+1  + 5x4+16x2+3 

96n2  

3x6+19x4+17x2-15 

+ 	384n3  

+ 79x8+776x6+1482x4-1920x2-945 

92160n4  

+ 27x 0+339x8+930x6-1782x4-765x2+17955 ]  

36 8640n5  

where x may be obtained from (A) above. 

This approximation has been shown to be very accurate by 

Sahai and Thompson (1974). The Homer's method is used to 

evaluate t. 
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(C) F-distribution. 

Let Q(f,v 1 ,v2 ) be the upper quantile of the 

F-distribution with v 1  and v2  degrees of freedom. 

From Abramowitz and Stegun (1964, formulae 26.6.4,26.6.5., 

26.6.6., 26.6.8), one has the following exact expansions. 

For v1  and v2  both odd, 

Q(f,v 1 ,v2 ) = 1-A(t,v2 ) + B(v 1 ,v2 ) 

where A(t,v2 ) is defined as in the series expansion 

for the t-distribution but with 

= 
tan' v1f 1/2 

(-;.;_) 
1 and t = (v 1 f) /2  

B(v 1 ,v2 ) = 0, 

v -1 
L 

2 	2' 
=  

TV 
1/2 v _2-2 

.  
2 

if v 1=1, 

V2  
sin(z) cos (z) 

v +1 	 (v 2 	2 	1  2 	
sin 1  (z)] 

+1)(v+3)..(v+v-4) 	v -3 
sin2(z)+..+ 3 . 5 

if V2  M. 

A recurrence relation for the evaluation of the finite series 

in B(v 1 ,v2 ) is 

C 	=1, 
V 1  

v = v2  - 2, 

Ck = Ck+2 a (k+v) /k + 1,• k=v 1-2,... ' 3 

where a = sin 2 (z) and C3  = 0 	if 

thus 
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V -1 

B(v1,v2) 	
2 
1/2 	-2 	

sin(z)cos 2 (z)C3  

( 22 )! 

For v 1  even, one has 

cos2(z) = 	 .79 v2+v1f = 

sin2(z) = v
1 f 

= l -y, v2+v1 f 

Q(f,v 1 ,v2 ) 

v2  / 2 

v 	 v2(v2+2)..(v2+v 1-4) 	(v -2)12 

2 . 4 . . (v1-2) (1-y) 

(2) 

or 

Q(f,v 1 ,v2 ) 

(v1+v2-2)/2 
=y 

[1_
v 1+v2-2 	(v1+v2-2)..(v2+2) 1 

+•••12 . 4 	.. (v 1-2) 	y 

---- (3) 

Ling (1978) finds that formula (3) Is more underf low or 

overflow prone than (2). One notices that y is bounded by 1. 

When (1-y) is small, 
(1_)n 

 converges to zero faster 

than (11.) and yfl  as n increases and thus in fact (2) 

can be more (exponent) underf low prone than (3). However, (3) 

is more overflow prone than (2). One can protect (2) from 

exponent underf low in evaluating its series expansion by 

'nested multiplications'. Thus (2) Is superior to (3). A 

recurrence relation for the series evaluation in (2) is similar 
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to that for B(v 1 ,v2 ) above with k terminating at k=2. 

For even v2  and odd v 1 , by the reflexive relation, 

1 F(v1,v2) = F 1 (v2 ,v 1 ) 

one obtains 

Q(f ,v 1  ,v2 ) 

v 1 /2 	v 	v1 (v1+2)..(v2+v1-4) (v2-2)/2 
= 1-(1-y) 	[1-I--y+...F 2 • 4 . 
	.(v2-2) y 

(4) 

Ling (1978) did not seem to realise that formula (4) is a 

direct result of (2) by applying the reflexive relation and 

suggested that when v1  is odd and v2  is even, the use of the 

reflexive relation and (2) is superior to (4). 

When v 1  > 40 or v2  > 40, an approximation by Paulson (1942), 

Q(f,v1 ,v2 ) = Q(x) 	approximately 

where 

f"3 [1-2/(9v2 ) 1-[1-2/(9v)] 
x = 
	[2/(9v1 )+f 2 / 32/(9v2 )] 1 / 2  

is used. This approximation is well-known and very accurate. 

When v 1  < 15, the accuracy of this approximation drops 

and thus the reflexive relation is used, and it appears to be 

more accurate. 

All the recurrence relations f or the evaluations of Q(f,v 1 ,v2 ) 

are numerically more stable than term by term evaluations as 

the coefficients in the finite series decrease as their power 
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of y or (l-y) increases, (see Carnahan et al (1969, page 6)). 

The calculations of the quantiles of the F-distribution 

are so far the most difficult ones because more parameters are 

involved. The quantiles at various combinations of v 1 , v2  

and f are produced and compared with the tables of 

F-distribution in Pearson and Hartley (1972). They agree 

very well. 

(D) Chi-square distribution. 

Let Q(c2 ,v) be the upper quantile of the Chi-square 

distribution c 2  with v degrees of freedom. From 

Abramowitz and Stegun (1964, formulae 26.4.4., 26.4.5), one 

has 

Q(c2  ,v) 

v-i 

	

2 	2r-1 
= 2Q(x) + 2z(x) 2 	

. 3. ...(2r-1) 	if v is odd, r= 1 

v-2 
-r 

	

(2n)h1'2 z(x)[1+ 	C 

2 	4 . . .2r 
if v is even, 

.  r= 1 

where 

x= 1c. 

Similarly, by applying Homer's method, one has the 

recurrence relation, 

R=O, 

2 

Rk = 'k+2 k' 

Q(c2  ,v) 

= 2 Q(x) + 2 z(x) 

=0 

= (2 T1 )
1 /' 2 z ( x)[1+R2 ] ,  

k=v-2,v-4,...,2 or 1, 

if x 0 and v is odd, 

If x = 0, 

if v is even. 
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This recurrence relation has an exponent underf low protection 

built into it like others. Since the coefficient of c 2  

Is getting smaller as r increases, the above relation is 

numerically more stable than term by term evaluations 

(see Carnahan et al (1969,page 6)). 

For large degrees of freedom (040), Q(c 2 ) v) is approximated 

as Q(x) where 

x = w+a/3-wa2 /36-(w2--13)a3 /1620+7(6w3+17w)a4 /38886+.. 

a = (2/n)h/ 2  

w = ( c2. v_vin( c2 /v )) 11' 2  

and w has the sign of (c2-v). 

This approximation Is described and is shown to be very 

accurate by El Lozy (1982). 

Quantiles with parameters similar to the tables of the 

Chi-square distribution in Hartley and Pearson (1950b) 

are produced and compared, they agree very well. 

Remark A statistical analysis of numerical stability of 

'nested multiplications' is given by HenricI (1964, 

page 316-317). 

(:.) Rank tests. 

(a) Signed-rank Wilcoxon test. 

The upper quantlle is approximated as 

= Q(x) +N2+31 	(x3-3x) z(x). 1ON?N+1 )(2N+1) 

where x = 
IW-E(W) I - + 
[var(W)] 1/2 



- 42 - 

where W, E(W) and Var(W) are given in 2.5. (B) (b). 

This approximation has been shown to be very accurate by 

Claypool and Holbert (1974) provided N is not too small. For 

small N, a randomisation test on the original data can be 

used and its algorithm is given in the next section. 

Wilcoxon rank sum test. 

The upper quantile is approximated as 

n1+n2+n1n2+n1+n23 	
z(x) 

Q(x) + 20n1 n2 (n1+n2-f-1) 

_1 

where x = ______________ 
[var(W)] 1/2 

where W rO E(Wr) and  Var(Wr)  are given in 2.6.(D). 

This approximation has been shown to be very accurate by 

Verdooren (1963) provided sample sizes are not too small. 

For small sample sizes, a randomisation test on the original 

data can be used and its algorithm is given in the next 

section. 

Kruskal-Wallis test. 

The upper quantile of the Kruskal-Wallis test is 

approximated by an approximation given by Wallace (1959), 

that is the F-statistic on ranks as given in 2.7(C) and 

with reference to the F-distribution. 

This approximation is not conservative (see Iman and 

Davenport (1976)), but in general, it is more accurate than 

the chi-square approximation. 
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Section 3.3. Randomisation tests. 

Green (1977) gives algorithms for one and two sample 

randomisation tests. He uses heuristic arguments to eliminate 

unnecessary computations. His algorithms are based on keeping 

track of partial sums and reversed partial sums. The present 

algorithms described below are more systematic and proofs of 

validity are easier and are expected to be faster than 

Green's algorithms as the combination generator described below 

is very efficient and heuristic arguments eliminate a large 

amount of unnecessary computations. However, no comparison 

is made. 

(A) Generations of combinations in lexicographic order. 

Mifsud (1963) gives an algorithm for generating m 

combinations out of n objects in lexicographical order. 

Gentlemen (1975) gives essentially the same algorithm. 

Page and Wilson (1979, page 117) again give a similar 

algorithm which is adopted from Shen (1962). A recent 

study by Aki (1981) indicates that Mifsud's algorithm is the 

fastest existing combination generator. In what follows, I 

shall describe the algorithm given by Page and Wilson and 

show how it can be modified into a much faster and more 

suitable algorithm for developing algorithms for 

randomisation tests. A theoretical analysis of the modified 

algorithm is also given. 
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(a) Page-Wilson's algorithm and its improvement. 

Denote n objects by {1,2,...n} and let 

Am = {a1 ,a2 ,...,a} (1~m~n)  be an m combination 

of n objects in lexicographical order. The algorithm 

generates the next combination as follows 

Find the largest I such that a < n-m+i. 

Add 1 to ai. 

Perform the substitutions, a=a_ 1+l j=i+1,...,m. 

One notices that as 1~i~m,  it is useful to define h=m+1-i 

so that 1~h~m  and one then has the equivalent algorithm 

as follows 

Find the smallest h such that am+lh<n+l_h. 

Add 1 to alh. 

Perform the substitutions, a=a_ 1+l j=(m+1-h)+1,...,m. 

One notices that with the above modification, the application 

of backtrack programming technique is easier. Essentially, a 

combination C consists of two subsets C1 = {ai,a2 , .. , aii} 

and C2 = {ai,...,a M 
 } such that a 1>a 1+1, a.=aj 1+1  for 

j>i and C2  has h elements. C 1  is empty when the algorithm is 

initialized with the first combination {1,2,..,m}. When C 1  is 

empty and a=n, all possible combinations are generated. 

Suppose B is the combination generated next to C and h' is 

the smallest integer such that al_h,<n+lh.  Thus B consists 

of two parts, B1{b1,b2,..,b1, 
1 
 and B2={b 1 ,...,b} such 

that b.b. 1+1, j>i', bl>b1 1+1  and B2  has h' elements 

where i'm-I-l-h'. If a m  <n, it is trivial that h'=l, bm m 
a +1 

i'=i=m and B1 
1  =C . If a 	

3 
m =n, since a. i-i =a +1, for j>i and 
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a1)a1_ 1+1, h'=h+l, B1={a1 ,a2 ,..,a12 } and B2={a1_ 1+1,...,a11+h'}. 

Hence, one can conclude that the search of h is unnecessary, 

h can take only two values, that is 1 when a m<n and 

'old' h +1 when a=n. 

Thus, one has 1=iu if a(n and i='old' i -1 if am=n. 

One thus arrives at a very simple algorithm as follows: 

If am<n, then set i=m, add 1 to am.  Go to 4. 

Subtract 1 from I and set p=a 1-i+1. 

Perform the substitutions )  a 
i 
 =J+p l  j=i,...,m. 

Deliver the combination. 

One may Initialize the above algorithm as a=n, 1=2 

and a 1=Q. The first combination generated will be 

{1,2...,m}. When a 1 =n+1-m, all combinations are 

generated. 

(b) A theoretical analysis of the modified combination generator. 

Let us consider the following Pascal implementation, 

a[m] :=n; 
I: =2; 
a[1] :=O; 
last : =n-m+1; 
REPEAT 

IF a[m]<n  THEN BEGIN 
a[m] :=a[m]+1; 
i : =m; 

END ELSE BEGIN 
I : = i-i; 
p:=a[1]-i+1; 
FOR j:=i TO m DO 

a[j] :j+p; 
END; 
{* deliver combination here *} 

UNTIL a[1]=last; 
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The number of executions of each of a[m]<n  and  a[1]=1ast  is 

(). The number of executions of i:=m is 
(fl)_(t)• 

 The 

number of executions of each of i:=i-1 and of p:=a[i]-i+i  is 

Note that h=m+1-i as given in (a), thus the number 

of executions (additions) of a[m]:=a[m]+i  plus that of 

a[j]:=j+p is equal to the sum of all h's immediately after 

the generations of combinations. 

Noting that n and m are arbitrary except 1~m~n,  we can 

calculate the sum of all h's recursively. The sum of h=1 is 

Since h=2, i.e. i=m-1 only if a=n and am_ln_1 

immediately before the generations of combinations, the 

sum of all h=2 is 2 times that of h'=h-i=i in generating rn'=m-i 

combinations out of n'n-i objects. Thus the sum of h=2 is, 

2r I 	1)(fl 2 )]  
''rn-i 	m-2 

Generally, the sum of all h=j is 

•f (n+ij\(nj 
JL+1_j/ 'm-j 

Hence the number of additions of a[m]:=a[m]+1  plus that of 

a[j]:=j+p is equal to 

i [ 

m 
- - . 

	

m 
J= 1 

(fl+i)( +l) 

Let us Count the number of operations of execution of the 

s:=e as the number of operations in evaluating e plus 

the assignment command tt:=It.  The 'cost' of addition, 
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subtraction, assignment and comparison are considered to be 

equal. Thus the total number of operations (excluding 

looping indexing) is about 

3()+2(i )+4(n_1) 

=5()+6(' 

The method of analysis above is different from that of 

Mifsud's algorithm described in Reingold et al. (1977, page 181). 

Experimental operation countings of Mifsud's algorithm .are 

given by Al (1981). 

(B) Calculation of the one-tailed probability of a two sample 

randomisation test. 

Suppose x 1 ,x2 ,...,x are n numbers in ascending order 

and that one wants to calculate the number of in (mKn) 

combinations of xs whose sum is less than or equal 

to a given number S. Without loss of generality, assume that 

rn-i 
S +x 	S where S = x , otherwise one can eliminate on 	 oi=li 

Xn and reduce n accordingly. 

Suppose C and B are combinations of {1,2...,n} described in 

(A) (a), that is, 

C= {ai,a2,..,aj_i,ai,.. , am} 

B = {ai,a2,...,aj_i, .... ,am..i,a in 	 in 
+i} 	if a <n. 

B = {ai,a2,...,ai2,ai_i+i,..,aii+h+i} 	if a m 
 =n. 

B2 = {ai_i+1 ,......,ai_1+h+ 1 } 

i-i 
S 1  = 	Xa 

j=i j 
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m 

	

S2 = 	x a. 

S= S 1+S 
C 	

2 

One has sum of x 
J
's, jOB, SbS'l  + S' 2  

S' 1 S 1 	 ifa<n. 
m 

	

= S 1 -x 	if a =n. 
a11 	m 

	

SI 2 = x +1 	
if a <n. 

	

a 	 m 
m 

= 	x 	if a =n. 

	

jB2 	
In 

where 

Two heuristic arguments can be used to eliminate 

unnecessary computations when the sum of a combination is 

greater than S, 

If C 1  (given in (A) (a) above) is empty, i.e. i=1, 

we exhaust all possible combinations. 

We can start to backtrack as Xj 	X 	j=a+l,..n. 

The above algorithm is simple and mathematically correct, but 

this does not imply its implementation on computers will 

always give the correct answer. The problem is that computers 

can only represent a discrete and finite set of numbers. If 

data are small in values and the checking of equality of two 

(real) numbers are not avoided by applying the trichotomy law 

of real numbers, the implementation of the above algorithm 

can give us wrong answers. For example, 

Sample 1 data 1.0, 2.0, 3.0, 4.0, 5.0 

Sample 2 data 3.0, 4.0, 4.0, 4.0, 5.0 

gives the correct p-value = 0.174603 

Sample 1 data 0.1, 0.2, 0.3, 0.4, 0.5 

Sample 2 data 0.3, 0.4, 0.4, 0.4, 0.5 

gives a wrong p-value = 0.071429 
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Green's Fortran routine suffers from this problem. An 

obvious solution is to convert all data to integers first 

and then do the computations. From a computing point of view, 

this is not very good as there is an overflow problem. By 

scaling up data before doing any computations and applying 

the trichotomy law of real numbers, one can avoid the problem 

of comparing two real numbers on computers in implementing 

the above algorithm. The scaling factor should make the data 

more "discrete" and thus the factor should effect the 

representations of numbers on the computers. A suitable 

factor is 2.0x10 4 . 

(C) Calculation of the one-tailed probability of one sample 

randomisation test. 

Using the identity, 

n (n)2n 
m m=O 

the above algorithm for the two sample randomisation test can 

be used for the one sample randomisation test. However, one 

more heuristic argument can be introduced. That is, if there 

exists k<n such that there is no k combination whose sum is 

less than or equal to observed sum, then no j combination 

(jk+1,..,n) need be considered. 

One may be interested in knowing how fast an algorithm for 

the one sample randomisation test can be. Shamos (1976) has 

proved that the randomisation test for matched-pairs is 

NP-hard. For an introduction to computational complexity 

theory and NP-problems, see for example Reingold et al (1977, 

chapter 9). This result tells us that one should not waste 
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time looking for a fast algorithm for a matched-paired 

randomisation test because it cannot possibly exist. 

The present algorithm has exponential-time complexity (if the 

heuristic arguments are not used). From the identity of the 

binomial expansion given above, we see that this remark also 

applies to the calculation of a two-sample randomisation test. 

Section 3.4. Rank tests. 

Berchtold (1979) gives an algorithm for the signed rank 

Wilcoxon test which in fact is a special case of an algorithm given 

by Lehmann (1975, page 131). Pittner (1981) gives an algorithm 

for the Mann-Whitney test. Kuinmer (1981) gives an algorithm for the 

two sample Wilcoxon test and he uses Berchtold's algorithm to prove 

his algorithm and points Out that his algorithm can be used to 

calculate any rank statistics. However, none of the algorithms 

calculate the 'tied correction factor', namely k 3-k for a 

tied group of k data. In what follows, I shall prove a very 

simple result from which various algorithns can be derived. 

Let R(z) be the rank of number z in the usual sense and ties are 

treated by averaging their corresponding ranks. 

(A) Basic result, algorithms and proofs. 

Result (1): 

Let z 1 ,z2 ,...,z be a sequence of real numbers. Define 

d 
ii 	i 

= z -z. 
J 	

ij,1~ i,j~n 

ri = { #dij>0 : 1j~n} 

= { #z. : z <z,  1~j~n, ji} 
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= { #d=0 : 1jn 

= {#z : z=z1 , 1~j~n, ji} 

then 

R(z 1 ) = 1+r+A/2 	and for 1 ~k~n, 

k 
R(z ) = k+{ #d 

ij 	 ij >0 : 1 ~i~k,1~j~n}+{ #d =0 : 1 ~i~k,1~j~n}/2. 
i=1  

Proof 

Without loss of generality, assume that 

zjzi+l•••zi+A, )~o and z Oz for j#i,...,i+A 

then 

R(zi) 
= 
A 1~i 2 ( 1+rj+( 1+ri)+A)} 

= 1 + r+A/2. 

k 	 k 	k 
R(z) = k+ r4+ 

• 
 

= k+{ #d>0 : 1 ~i~k,1~j~n}+{ #di.=0 : 1 ~i~k,1~j~n}/2 

(a) Signed-rank Wilcoxon test algorithm. 

Let x , i=1,2,..,n be a random sample and assume 

x 1 &0 for all i. 

Define 	di = x1-txI 	ij,1K1,jn 

p = { #x>O : 1~i~n} 

and W be the sum of ranks of all positive X i 's, then 

the signed-rank Wilcoxon test 

W = p+{ #d..>0 	1~ i,j~n}+{#d1 .=0 : 1 ~ i,j~n}/2. 
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Proof 

Let z,=I x,l for all i and e 1 .=z 1-z 	i&j,  1Ki,j~n 

then by the Result (1), 

w = p+{ #e 1 .>O : x1>O, 1~i,j~n}+{  #eO : x1>O, i1,2,...n}/2. 

But d ij 
 = 
xi3 
-x.I>O 1ff xi 

 >0 and e
ii  >0 

d 1 . = 	= 0 1ff x1>O and e 1 . = 0 

thus the result follows. 

Remark This algorithm is different from Berchtold's algorithm. 

Wilcoxon rank sum test algorithm. 

Let x, 1=1,2,.. ,n and y., j=1,2,..m be two random samples. 

Define 

= xj_Xj 	i0j,1 ~i,jKn. 

dj+ = X1-Y j  1~j~m 

and W be the sum of ranks of x 
i 
 's, then 

r  

Wr = n+{ I! d 1 >0 : 1 ~iKn,1~ jKn+m}+{ 1/ d 1 .=0 : 1KiKn,1Kjn+m}/2 

Proof 

Define 

z 1  = x, i=1,2,..n. 

= y,  

then the result follows from Result (1). 

Kruskal-Wallis test algorithm. 

Let x1 , i=1,2,..k, j=1,2,..,n1  be k independent random 

samples of size n1 , 1=1,2,..,k. 

Define 

Pjj  = Xjj_Xsk s=1,2..p, k=1,2,. . ,n, s#i or kj 
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then the rank sum of sample i, 

Ri = ni  + { #P i >O}+{ #=O}/2 

and hence the Kruskal-Wallis statistic, 

12 k   
H = N(N+1) 	

n(R - 
	2 

k 
where N = 	n can be calculated accordingly. 

i= 1 

Proof 

Since in ranking the ith  sample against other samples, 

the division of other samples is immaterial, one can 

consider all the other samples as 'one' sample and rank 

th 
i sample against it. The result follow from the 

algorithm for the Wilcoxon rank sum test. 

Remark One computer procedure is needed for calculating rank 

sums for the signed-rank Wilcoxon, the Wilcoxon rank sum 

and the Kruskal-Wallis tests. The algorithm for the 

signed-rank Wilcoxon test is redundant. 

Algorithms for other rank statistics can be derived in a 

similar way. 

(B) Improvement of algorithms. 

All the algorithms stated above can be further improved to 

take account of the 'tie correction factor'. 

Without loss of generality, consider a sequence of numbers 

z 1 , 1=1,2,.. .n and define 
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= z 1-z, 	1~ i<j~n 

A =o n 

	

A1 = { #z 1  : z.=z 1 ,i<j<n}, 	1~ i<n. 

If d 1 0 0, then d j >O if and only if dji<O  so when 

comparing z and Z j  one adds 1 to either R(z) or R(z) 

but not both. Similarly, d 1 .=0 if and only if d 1=O so 

when comparing z and z., if d=O one adds 0.5 to both 

R(zi) and R (Z j )• Now suppose that zj=zi+1=  ... =zj1 

(k~1) is a k-fold tie and d 1 #0 for ji+1,...,i+k-1. By the 

definition of d i,,  one gets Ai+1=k_i j=1,2,...k. Thus for 

any k-fold tie k~2,  there exists one and only one 

This implies that the number of ties is identified by the 

number of A=i. Thus the number of ties is equal to 

{ #A 1 ]. : i=1,2,..,n}. One also knows that the last value 

of A in a group of k-fold ties (k~2) is zero and the 

number of A equal to zero is equal to that of A=i. 

Thus the number of tied observations in z 1 , i=1,2,...,n 

is { #A i>o} + { #A 1=11. However, one may be more interested 

in the largest tie group and it can be easily calculated. 

For the 'tied correction factor' of statistics, a common 

factor of k-fold ties is k3-k. Note that 

k = A+i and A 1+1=k_J, j=1,2,..,k. 

k 
k3-k = 	[(A 	+1) 3-(A 	+1)-(A 3  

j=1 	 i+j-1 	i+ _ 1  4 j+ . 1 )] 

k 
=3A 	(A 	+1) 
j=1 	i+j-1 
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In programming, dj must not be evaluated and it is used 

for mathematical convenience. The comparison of two numbers 

should be direct. However, if the actual implementation of 

comparison on computers is not by direct comparison, for 

example Z j>Z j  is evaluated as z 1-z>O then it makes 

not much difference. 

One may also have a problem in comparing two real numbers on 

computers. In practice, data are fairly discrete and the 

checking of equality of two real numbers can be avoided by 

applying the trichotomy law of real numbers, thus it should 

not cause much problem. 

Exact analyses of the above algorithms for rank tests 

are impossible. It is obvious that the time complexity of all 

algorithms are polynomial. The storage complexity is 

almost optimal i.e. minimal storage as almost no extra space 

is needed to carry out all the computations. No analysis is 

attempted here. 

Section 3.5. Calculations of means and sums of deviations about 

the mean. 

Formulae for calculations of means and sums of deviation about 

the mean are required for computing basic statistics and test 

statistics. Many articles have been published about algorithms for 

mean and sums of squares, (Welford (1962), Neely (1966), Young and 

Cramer (1971) and Ling (1974)). Ling (1974) finds that formulae 

are generally data dependent and no one is consistently better 

than any others, but generally, two-pass formulae are better. 
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Formulae used for computing mean and power sums of deviations 

about the mean are as follows 

n 
N 1  = 
i 

n 
= 

1 

M2  = P 1 /n 

Mean, N = M1+M2  which is known as Neely's algorithm. 

= 2_n4 

n 	
= P3-3M2P2+2n14 

= P4-4M2P3+6P2M-3nM 

Section 3.6. Sorting algorithm. 

A sorting procedure is required to sort the data in the 

ascending order to carry out for example the Shapiro-Wilk test 

for normality. The sorting algorithm is translated from the 

Algol's version of the sorting procedure due to Singleton (1969). 

All the five GOTO statements are eliminated. A remark on the 

algorithm is given by Griffin and Redish (1970). 
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Section 3.7. Plotting algorithm. 

For plotting histograms, a plotting algorithm is required. 

A number of algorithms for plotting graphs have been published, 

(Thayer and Storer (1969), Nelder (1976) and Stirling (1981)). 

All these algorithms start with trying to get a "neat" step-size. 

For a computer program running without the users' intervention, 

they do not seem to be very satisfactory. A better algorithm 

should also take the number of data points into consideration. 

For example, it is generally undesirable to have the number of 

intervals more than the number of data points. Thus the number 

of intervals required should be "estimated". An algorithm which 

takes account of the consideration mentioned above should use 

the range of data and the number of data points to get a "neat" 

step-size and an "estimated" number of intervals. A limit to 

the number of intervals is necessary in a computer program. 

Denote the rounded up number of z by round(z). Let R be 

the range and S be a number such that 1.0<RS<10.0 where 

f or some integer p and let k=round(RS). Suppose the limit of 

the number of intervals is about 20 and the number of data 

points is n. The algorithm is as follows 

If 5<k<11 then step=S and N=k. Go to (3). 

Set Q=20R, N=round(Q/round(Q/k)). 

If N is odd and N>5 then increase N by 1. 
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If N=14 or N=18 then increase N by 2. 

step = NS/20. 

If step > 3.0 then round up step to an integer. 

(3) If N<=10 and N<n then half the step. 

If N>20 or N>n then double the step. 

Number of intervals=round(range/step). 

The "estimation" of the first plotting position is dependent on 

the output device and a suitable value for outputs on the 

screen or line printers is round(max/step+1) multiplied by 

step which is larger than the maximum value of the data where 

max is the maximum value of the data. The number of intervals 

may have to be increased by 1 or 2 in order to cover the minimum 

value of the data. 
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Chapter Four 

Program Development 

Since the recognition of software problems, an extensive 

study of programming methodology has been done by computer 

professionals. Experience has shown the application of 

methods contributed by computer professionals has improved 

program quality. This chapter describes the ideas and the steps 

in the development of our program. 

Section 4.1. Program design. 

A computer program consists of two main components, data 

structure and algorithms. One has thus two possible ways of 

starting a program. One is to specify or develop the algorithms 

first. Another is to specify the data structures and leave the 

algorithms until later. The latter approach, that is the data 

structure oriented approach is adopted in designing the program. 

In general, a program may be seen as a black box as shown below. 

Input (data) ---> I Black Box I ---> Output (data) 

Obviously, one needs at least three modules, one for input, 

one for output and the other for carrying out the necessary 

operations (black box). After a few refinements, the following 

data flow diagram may be constructed. 
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Main program 
(data structure) 
( manager 	) 

Question Data I Elementary 
answer 	jentry statistics 

I 	 calcula- 

I I  Itions 

Assumption 
testings 

I 	I 	I 
Further Output 
Icalcu- module 
lations1 

One has thus specified the basic module interface and data 

flow of the program. Arrows show the directions of flow of the 

data. Conceptually, it is useful to imagine a data structure 

manager who passes data to and receives data from the various 

modules. No communication is allowed between modules. 

Each module can now be treated independently and may be 

further subdivided into various sub-modules. Such divisions are 

continued until each sub-module or sub-sub-module does an 

identifiable task which is small enough to be solved without 

much effort. It is useful to imagine local data structure 

managers who pass data to and receive data from their sub-

ordinates. A hierarchical diagram may look as shown below. 



Module A 1 

// \%,44_____ 

Module All Module Al2 

ii 

Module A 2 I 

Module A21 
	

Module A22 

1/ 
	

/V/ 
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Module A 

The above diagram is conceived as a data flow diagram, not 

only as a diagram for indicating the division of tasks. Lower 

levels receive data from higher levels and can do only tasks 

as directed by the higher levels. So far, algorithmic aspects 

are ignored and it is assumed that all the necessary algorithms 

are available. At this stage, one is concerned with what is to 

be done with a given set of data, not how it is to be done. The 

problem of computer languages is not considered. In practice, 

one has to identify some of the difficult or time-consuming 

modules during the design process. For example, time has to be. 

allowed for the development of new algorithms where none exists. 

If algorithms cannot be developed in a reasonable time or 

no polynomial-time algorithms can possibly exist, changes 

may have to be made. Algorithms also affect data structures. 

One may also have to consider the programming language to 

be used, for example 'clean' data communications between 

modules are impossible in Basic. The above approach is still 
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applicable, though, even if implementation is to be in an 

unstructured language. It is always possible to translate 

a structured solution to an unstructured language. 

In the above approach, algorithms are operations or 

actions on data structures. The following example illustrates 

the idea. 

Problem : Calculation of signed-rank Wilcoxon test. 

Input 	: A set of data. 

Output : The signed-rank Wilcoxon test (data). 

Input data ---> I Action ----> The signed-rank Wilcoxon test 

How the Wilcoxon test is to be calculated is the job of 

4 Action". If data are to be sorted, it is the job of "Action" 

to call a sorting routine to act on the data. The algorithms 

of "Action" have no direct connection with the input and output. 

As long as the specified output is met, the problem is solved. 

Section 4.2. Computer Languages. 

It is perhaps more useful to compare various languages 

rather than to look for a perfect language. For a microcomputer, 

the two widely available languages are Basic and Pascal. Some 

comparisons between these two languages follow 
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Basic 

Poor degree of 

standardisation. 

Poor data structuring. 

Variable names are 

usually not meaningful 

Codes are generally 

difficult to read. 

All variables are 

global and none can 

Pascal 

Good degree of 

standardisation. 

Powerful data structuring. 

Variable names can be meaningful 

and more self-explanatory. 

Codes are more readable. 

Variables can be localised 

or passed to procedures 

be passed to routines 	(routines) as parameters. 

as parameters. 	 I 

Whilst some other arguments favour Basic, the 

above arguments are sufficient for me to favour Pascal. 

These arguments are in fact central to programming. 

There are also additional powerful facilities in the UCSD 

(University of California at San Diego) Pascal system. 

Section 4.3. The use of flow-charts. 

The use of flow-charts as a development aid has been 

criticized by many computer scientists. One of the reasons is 

that flow-charts do not depict data structures which are central 

to programming. However, flow-charts can be very useful in 

documentation. Users or maintenance programmers can grasp the 

basic logic of a program without much effort by studying the 

associated flow-charts. Flow-charts are used as an aid in the 

documentation after the program has been completed. 
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Section 4.4. The wording of questions. 

It is very difficult to have questions which are useful, 

concise and informative. For example, the use of the term 

'statistical independence' is not comprehensible to many but a 

long explanation is undesirable and may not necessarily convey 

the precise meaning. Questions are also required to be useful. 

If randomization is regarded as a standard practice, then a 

question about randomization is necessary. There are however 

situations where randomization is impossible. Experiments 

may be done without control groups because it is impossible 

to have control groups, for example patients may be very ill and 

they have to be treated immediately. It is not clear whether or 

not these questions should be asked. If one sticks closely to 

the theoretical requirements, too many data sets may be 

rejected and users are likely to become frustrated. Users 

may even try to by-pass questions (see Sales (1980)) as they 

are primarily interested in the results produced by applying 

statistical methods. 

The questions in the program were revised a number of 

times and raised the following topics 

What kind of data are being presented ? 

The number of data collected per case and the number 

of groups. 

Whether or not the data are in the form of paired-

observations (if only two groups). 

Whether or not there is any connection between cases. 

Whether or not randomization has been done. 
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The possibility of differences in the populations because of 

factors other than that which the users intend to compare. 

The importance of the order in which the data are collected. 

Users are required to answer all these questions as 

necessary. This may possibly make it more difficult to 

by-pass questions as users may not know which questions 

they have answered 'wrongly'. 

Section 4.5. The use of GOTO-statements. 

The UCSD Pascal system has a compiled-time option for the 

use of GOTO-statements. It is required to instruct the compiler 

if COTO-statements are to be used. GOTO-statements usually make 

a program difficult to read. Theoretically, it is possible, with 

structured languages to develop programs without GOTO-statements. 

One may argue that it is unwise to evaluate Boolean expressions 

or make use of extra codes for the GOTO-free programs. The 

elimination of GOTO-statements does not automatically lead to 

better programs. However, no COTO-statement is used in the 

present program. 

Section 4.6. Program validation. 

Program validation consists of testing and verification. 

Howden (1980) used several techniques to uncover 92 errors in 

IMSL (International Mathematical and Statistical Library) 

programs. The main difficulty is that programs are dynamic 

objects. This is even more difficult on microcomputers as many 

debugging and testing aids are not readily available. 
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(A) Program testing. 

It is important to distinguish between experimenting and 

testing. Testing is an organised process to uncover errors and 

unexpected performance in programs, it is not to show programs 

are working on a few selected samples of inputs. Test data will 

necessarily be a small sample of all possible inputs. Testing 

is thus inadequate for achieving a complete understanding of 

logical or performance features. However, testing is a 

necessary and fundamental step to reveal certain obvious 

and unexpected performances. Special attention should be paid 

to the performance under 'boundary conditions'. It is important 

to ensure that a program or a procedure should not be fatal in 

'boundary conditions' even if it has to perform in a degraded 

way, for example by loss'of accuracy. One example is a routine 

by Cooper (1968) which cannot handle 'boundary conditions' 

(small t-values with large degrees of freedom). This routine can 

be said to have been subject to experiment but not tested. The 

claim of 11 decimal places accuracy is doubtful. 

Procedures are developed and tested independently 

wherever possible . However, not all procedures can be tested 

independently because they rely on or require Information 

from other procedures. The majority of procedures, usually also 

the more difficult procedures, can be tested independently. 

After each procedure has been tested, the program is Integrated 

by including these modules. At the beginning, some modules may 

be empty or have only a few statements which may be deleted at 

a later stage. For example, one needs only simple input and 
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output for testing some parts of the program. The intended input 

and output modules can be integrated at a later stage when 

necessary. It is obvious that the question-answer module can be 

the last one to be integrated. Each procedure is integrated 

into its 'residence' module only when it is necessary. This can 

also save us hours, or even days, of unnecessary compilations 

and re-compilations for debugging and testing. Any new errors 

are almost certainly due to the inclusion of new procedures. 

(B) Program verifications. 

Basically, there are two approaches to verification, the 

static approach and the construètive approach. The static 

approach regards a program as a mathematical object and uses 

assertions and mathematical proofs. For a 'large' program, 

the static approach is not practical and thus the second 

approach is adopted. Verification is done through careful 

construction. 

Section 4.7. The use of the range-check option. 

The UCSD Pascal system has a compiled-time option which 

allowed us to turn of f the range check. If a (small) procedure 

has been analysed and validated it may be sensible to turn 

off the range-check if the procedure is time-critical. For 

example, it is sensible to turn of f the range-check in the 

randomization test procedure because of its amount of 

computations. However, it is not sensible to turn off the 

range-check for a 'large' program to minimise the computing 

time as program testing can never show the absence of bugs. 
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Section 4.8. Program qptimisation. 

The most important property of any computer program is its 

correctness. If a program is not correct, optimisation will be 

meaningless. Program structure has a tremendous effect on 

program correctness (which is the main objective of structured 

programming). Optimisation must therefore take program 

structure into consideration. It is insufficient to optimise a 

program for computing time and storage. If a program or 

procedure has been validated, one can then transform it 

into a more efficient program or procedure. However, in the 

process of transformation (optimisation), it is important that 

its correctness must be maintained. 

Optimization should also take maintenance into 

consideration. Thus clarity of a program should not be traded 

off against speed and storage. If a time-critical procedure 

cannot be reconciled with clarity, it is important to make 

such a procedure 'disposable'. If a maintenance programmer 

has difficulty in understanding it, he can then dispose of 

the procedure and replace it by a new procedure or a better 

algorithm. Disposability is a desirable property. 

The switching off of a range-check is of course a 

potentially dangerous way of optimisation against time. One 

should not do this unnecessarily. Unless it is certain that no 

polynomial-time algorithm can possibly exist, it is better to 

look for a new algorithm if the current algorithm is far too 

slow. An exponential-time algorithm behaves quite 

independently of computer power. 
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Section 4.9. Historical references. 

This section concerns various points which have been 

learnt through producing the program to which reference can be 

made in the future and mistakes may possibly be avoided. 

(A) Computing experiences. 

(a) The use of a microcomputer as a machine It was a mistake to 

use a microcomputer as a machine to develop the program. It 

may be reasonable to use microcomputers to develop 'small' 

programs. They are not suitable for the development of 'large' 

programs. Microcomputers may be cheap, but they are very 

expensive in terms of man power. For example, it takes more 

than 15 minutes to compile a program of three thousand 

lines. If a compiled listing is required, then it would take 

more than half an hour. Many may consider this as reasonable, 

but it is unwise to use a microcomputer as there are more 

powerful machines equipped with powerful software, for 

example editor and file management. This does not mean one 

should not use microcomputers at all. A better approach may 

be to develop the programs on larger machines and then 

transfer them to a microcomputer if they are to be run on it. 

However, one may argue that one has to develop programs 

on the target machines because all machines have their own 

peculiarities. This argument is not necessarily true as 

it is possible to develop parts which are different from 

'standard' languages on the target machines. In the case of 

Pascal, input and output are the least well-defined, and one 

may develop input/output module on the target machine and 

develop the other modules on a larger machine. 
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(b) Coding was done too early : Coding should have been delayed as 

long as possible as it is the simplest part of program 

development. More time should have been spent on the design 

(including the design of algorithms) so that changes after 

coding are minimised. Program testing is one of the most 

time-consuming activities in program production. It is unwise 

to spend time on debugging as bugs should have been avoided 

in the first place. Careful thought and design are even more 

important if the development is on a microcomputer as testing 

is a lot harder in terms of error messages, time taken and 

system software facilities. 

Some may argue that program development is an evolutionary 

process and that a complete design is not possible. One 

can always find something which should have been added or 

coded in a more understandable way. This can be very true 

when there Is no historical reference to which one can 

refer but It should not preclude the need of design. 

(!) Changes. 

(a) The estimation of the power of a transformation 

The Box-Cox estimation of the power of a transformation was 

first programmed; it was found that a considerable amount 

of time was needed to do all the computations. 

This was later changed to Anscombe's estimation which 

requires much less computations and Is more suitable for an 

interactive program. 



- 71 - 

(b) A test of accuracy of the data : A chi-square test of 

accuracy on the distribution of the last digits of the data 

points was originally programmed. No definite advice can be 

given to the users as the accuracy largely depends on the 

kind of data. The test can be very crude as data are entered 

in the free format. Equally important, users are likely to 

ignore this kind of advice; for this reason, it was later 

deleted. 
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Chapter Five 

Program details 

This chapter describes the details of the program. 

Examples of outputs and the listing of the program are 

in the Appendix. 

Section 5.1. Introduction. 

It is generally known that the most authoritative 

documentation of a program is the program text itself, not any 

comments inserted in the text to explain computational processes. 

If the program text itself is not readable, comments serve little 

purpose. 

Theoretically, one should document a program during the 

coding process. In practice, one may choose to code first and 

document later. 

Section 5.2. Testing of assumptions. 

Testing of normality. 

Data are declared "normal" if both the Shapiro-Wilk test and 

the test based on the g 1 -statistic do not detect any 

departure from normality. The significance level for both 

tests is 5%. 

Testing of the equality of variances. 

Variances are declared "unequal" if the coefficient of 

variation of variances is greater than or equal to 1 or 

variances are significantly different at 5 % level of 

significance detected by test statistics. 
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Section 5.3. Conditions for use of the test statistics. 

The conditions for the use of each test are very arbitrary 

and some may seem unreasonable. For example, one may argue that 

it is impossible to assess the distributional properties or the 

equality of variances if sample sizes are small. However, 

conditions have to be set for each test for practical purposes. 

The details of each individual test are given in chapter 2 

In all cases, non-parametric tests may be used only on original 

(untransformed) data. 

(A) Testing of single mean. 

(a) The Student's t-test. 

This test is used if one or more of the following conditions 

are met. 

Data are normally distributed. 

Sample size is at least 80. 

Sample size is at least 15 and data are symmetrically 

distributed. 

When non-parametric tests are not used. 

(b) The signed-rank Wilcoxon test. 

This test is used if all the following conditions are met. 

Data are paired-observations. 

Data are not normally distributed. 

Sample size is less than 80, but greater than 15 

(excluding zeros). 

(c) The one-sample randomisation test. 

This test is used if the conditions (1) and (2) for the 

signed-rank Wilcoxon test are met and the sample size 

(excluding zeros) is not more than 15. 
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(B) Testing of two means. 

(a) The Wilcoxon rank sum test. 

This test is used If all the following conditions are met. 

Data are scores. 

Data are symmetrically, but not normally distributed 

and variances are equal. 

At least one of the group has a sample size of at least 

10. 

(b) The two-sample randomisation test. 

This test is used if both the following conditions are met. 

Data are symmetrically but not normally distributed. 

Both sample sizes are less than 10. 

(c) The two-sample t-test. 

This test Is used if nonparametric tests are not used and 

one or more of the following conditions are met. 

Variances are equal. 

Sample sizes are equal. 

At least one of the groups has a sample size of less 

than 10. 

(d) The Welch t-test. 

This test is used when none of the other three tests is 

suitable. 

(C) Testing of several means. 

(a) The Kruskal-Wallis test. 

This test is used if all the following conditions are met. 

(1). Data are scores. 

(2) '-Data are symmetrically but not normally distributed 

and variances are equal. 
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The average sample size is not less than 4, that is 

sample sizes are not too t smalltI. 

(b) The F-test. 

This test is used if the Kruskal-Wallis test is not used and 

one or more of the following conditions are met. 

Data are normally distributed and variances are equal. 

Sample sizes are equal and the coefficient of variation 

of variances is less than 1. 

At least one of the samples has a sample size of less 

than 10. 

(c) The Welch F-test. 

This test is used if the other two tests are not used. 

Section 5.4. Program documentation 

Title : Mean 

Date : June 1982. 

Machine : Apple II plus microcomputer with 64 K of memory. 

Medium : Both source codes and object codes on disk. 

Language : Apple UCSD Pascal (Version 11.1) 

Synopsis : A program for 

Calculation of mean, median, standard 

deviation, standard error of mean, 

maximum and minimum, the range and 

Fisher's g-statistics. 

Testing the equality of means for one, 

two or more samples. 
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It consists of the following test statistics 

One and two sample Student t-test. 

One and two sample randomisation tests. 

Two sample Welch t-test. 

Signed-rank Wilcoxon and Wilcoxon rank sum 

tests. 

Kruskal-Wallis test. 

Analysis of variance F-test and Welch F-test. 

Multiple comparisons. 

The program also gives confidence intervals for 

one and two sample problems where parametric 

tests are used. 

P-values are also given. 

Description 

The program examines data provided by the users 

and selects a test statistic for testing the 

equality of means or provides elementary 

calculations of statistics. For elementary 

statistical calculations (without testing a 

hypothesis), a comment is issued to users if data 

are skewed. For testing hypotheses, a warning is 

issued to users if any departure from the 

underlying statistical assumptions is detected. 

For testing the equality of several means, 

multiple comparisons are performed at one of 

the levels 0.01, 0.05, 0.10, 0.15, or 0.20 if 

the p-value is less than 0.20. The level is 
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chosen such that it is the smallest of the values 

given above which is greater than the p-value. 

The program also suggests a transformation for 

data if a suitable transformation is found in 

order to achieve normality or the equality of 

variances. Alternatively, users may choose to 

transform their data themselves. Transformations 

provided for are square root, logarithmic, 

reciprocal and arcsine and users are free to 

choose their own transformation from these four. 

An analysis on the original data is always given. 

A note is given to users if a transformation of 

the data has been made. 

A comment is also given in each of the following 

situations 

One or more samples have data with 

values at least half of which are equal. 

One or more samples are not symmetrically 

distributed. 

Outlying observations are present where 

"outlying" is as defined in 2.10 of chapter 2. 

Inputs 

(A) Inputs from the keyboard. 

Inputs are interactive and all inputs from the 

key-board are validated by the program. 

The three commands which can be used at any point 
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of the program are 

HELP or help : This gives users suitable 

help at any point of the program. No help 

will be given if the problem is trivial. 

QUIT or quit : This stops the program and 

returns to the operating system level. It is 

not an interrupt command. 

REJ or rej : This is a backward eliminator. 

It rejects inputs backwardly one by one. 

Users are asked to re-type their input if 

an input is rejected. 

Users need not have to count the number of 

observations for each group, the input terminator 

for data for a group is END or end. The program 

counts the number of data points for a group 

and it responds interactively to the users. 

Data can be validated sample by sample and 

the following features are provided 

Display of data on the screen. 

Making corrections. 

Making deletions. 

Making additions. 

The program interprets all strings starting with 

the above three commands and the input terminator 

as commands and the input terminator respectively. 
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(B) Inputs from disk files. 

The validation of inputs from disk file is done 

by the system. 

Help files which may be accessed by the procedure 

readfile are 

"datakind.text" : for explaining kinds of data. 

"inform.text" 	for information about the 

program. 

"paired.text" : for explaining paired-

observations. 

"random.text" : for explaining whether or not 

randomisation has been done. 

"biased.text" : for explaining whether or not 

the data reflect differences 

of means of the intended factor. 

"connect.text" for explaining whether 

or not cases are related. 

"order.text t' : for explaining whether or not 

there is an order effect on 

the data. 

"explain.text" for explaining the meanings 

of statistics. 

"addconst.text" : for explaining that a 

constant must be added before 

a transformation is made. 

The data files which are accessed by the procedure 

shapirowilktest are "shapwilk.3t030" and 

11shapwilk.31t050". For a given sample size 

(n>2), the components in the files are in 



following order 

Coefficients a 1  as described in 2.9. 

Significance level at 5% level. 

Normalization factors given by Shapiro and 

Wilk (1968). 

11 shapwilk.3to30' t  is for sample sizes from 3 to 

30 and the other is from 31 to 50. 

Outputs 

The following outputs are given 

(1) The data are given 

in their original form for each case, or 

as the differences of the two members of 

each pair for paired data, or 

as the differences for each observation 

from a given theoretical mean, or 

as the differences of two observations 

from each case, or 

as transformed data of (a) or (d). 

The data are given in the order in which 

they are entered. Sample sizes are also 

given. 

(2) Histograms. 

(3) Summary of statistics mean, median, 

standard deviation, standard error, 

maximum and minimum values, the range 

and Fisher's g 1  and 92  statistics. 

(4) A test statistic and a table for the 

analysis of variance (if applicable). 
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P-value. 

Confidence interval (if applicable). 

Pairs of groups with sample means which 

have been found to be significantly 

different (If applicable). 

Sums of ranks and means of sums of ranks for 

each group (if applicable). 

Comments or warnings. 

Validation of the outputs is done by the system. 

Outputs can be on the screen or on the printer. 

No limit on the number of copies of outputs may 

be made. A notice is issued to users if they 

have not had a hard-copy output. 

Restrictions 

(A) Data entry 

The maximum number of groups is 20. 

The maximum number of data for a group is 

the integral part of 400 divided by 

the number of groups. 

These two restrictions can be easily changed. 

Data entry is restricted to the keyboard, but 

it can be changed by modifying the input 

module (with no change in other modules). 

Data can only be validated sample by sample 

and once data for a sample are accepted, they 

cannot be changed. A warning is issued to 

users if there is no chance of further changes 

of data for a sample. 
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Range-check 

No run-time range-check is performed in the 

procedure randomisationtest. 

Possible changes for other environments 

The following UCSD Pascal features which are 

either different from or not provided in the 

Standard Pascal are used 

Function POS in the global procedure 

matchstr. This can be removed by writing an 

equivalent funçt ion. 

Function LENGTH in the global procedure 

getdata. This can be removed by writing an 

equivalent function. 

EXIT (from a procedure) in procedures 

verifydata, validatedata, keyindata, 

readdata and quit. These may be removed by 

the use of GOTO statements or boolean variables. 

Declaration of STRING as a type of packed 

array of characters. 

Provision of a procedure for STRING output. 

Removal or replacement of the USES TRANSCEND. 

The overlay feature SEGMENT. 

Change ATAN to ARCTAN in procedure 

dotransformation. 

Flow-charts 

(A) Calling sequence of modules for testing 

hypothesis. 
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Begin 

Question- 
answering 

1 

Read in data 

Elementary calculation, 
)- 	Transforming data (second call only) 

Assumption testing; P-value 
calculation for parametric and rank 
tests (second and fourth call only) 

Test statistic calculation, 
confidence interval or 
multiple comparisons (second and 
and fourth only) 

P-value and/'-- 
No 

	

	 or confidence interval 
or multiple comparison 
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Print results 
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—4— ansf orm data ? 

End 
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(B) Flow-chart for "read in data" module. 

Testing the:retical me 	
No 

es 

Read in 
theoretical mean 

Initialise ij=O 

1=1+1 

.1 

I 	i=i+' 	I 

LNo 	inish engteruin 

Yes 

Validate data for group I 

Calculate data and sample 
size for group i 

-ba
Eliminate

ta/Difference  
— all equal,sample si r— 

small 	 group i 

No 

Yes 

For other modules, the programs texts are 

self-explanatory. 
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juA in the Apple UCSD Pascal system 

The system procedure READLN and READ may not 

read data properly at the end of a data disk 

file. A redundant number is added at the end 

of each (numerical) data file. READLN does 

not allow back-spacing for entering real 

numbers from the key-board. 
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APPKNDIX : PROGRAM LISTING AND EXAMPLES 



PROGRAM LISTING 



PROGRAM MEANPROGRAN(DATAKIND.TEXT,INFORI4.TEXT,PAIRED.TEXT,RANDOM.TEXT, 
BIASED.TEXT,CONNECT.TEXT,ORDER.TEXT,EXPLAIN.TEXT, 
SHAPWILK.3TO30,SHAPWILK3 1T050,ADDCONST.TEXT); 

(*$S-I-*) (*SWAppING MODE FOR MORE SPACE*) 
(*************************************) 
(* 
(* A PROGRAM FOR ONE EFFECT ANALYSIS *) 
(* BY CHENG-TAI GAN JUNE, 1982. 	*) 
(*************************************) 

USES TRANSCEND (*LIBRARY ROUTINES FOR TRANSCENTAL FUNCTIONS*); 

CONST MAXGROUP= 20; 	(*MAXIMTJM NUMBER OF GROUP *) 
LIMIT = 400; 	(*MAXIMUM NUMBER OF ALL DATA*) 

TYPE GROUPINDEX 	= 1..MAXGROUP; 
DATAINDEX 	= 1..LIMIT; 
DATASET 	= ARRAY [DATAINDEX] OF REAL; 
GROUPSIZE 	= ARRAY [GROUPINDEX] OF O..LIMIT; 
GROUPSTAT 	= ARRAY [GROUPINDEX] OF REAL; 
DATATYPE 	= (SCORE,CONTINUOUS ,COUNT,BINOMIAL); 
TYPEOFTRANSFORNATION = (IDENTITY, SQUAREROOT,LOGARITHMIC ,RECIPROCAL, 

ARCSINE); 

STATISTIC = RECORD 
MEAN 	GROUPSTAT; 
MEDIAN 	: GROUPSTAT; 
VARIANCE : GROUPSTAT; 
CV 	REAL; 

Gi 	: GROUPSTAT; 

G2 	: GROUPSTAT; 

MINIMUM : GROUPSTAT; 

MAXIMUM : GROUPSTAT; 

(*M[I] 	=MEAN OF GROUP I 
(*MEDIAN[I] =MEDIAN OF GROUP I *) 
(*VARJANCE[I]VARIANCE OF GROUP 1*) 
(*COEFFICIENT OF VARIANTION 
(*oF ALL GROUP VARIANCES 
( *G1[I]FISHER'S Gi-STATISTIC OF *) 
(*GROUP I 
( *G2 [I]FISHER'S G2-STATISTIC OF *) 
(*GROUP I 
( *MINIMUM[I]MINIMUM OF DATA FOR *) 
(*GROUp I 
( * j(IWJM[I]}4AXIWJM OF DATA FOR *) 
(*GROUP I 

END; 



TEST = RECORD 
NAME 	: STRING; (*NAME OF TEST STATISTIC 

(*FOR ELEMENTARY CALCULATIONS, *) 
(*NAME'T_STATISTIC' FOR CONS- *) 
(*TRUCTING CONFIDENCE INTERVAL *) 

VALUE 	: REAL; (*VALUE OF TEST STATISTIC *) 
RANKSUM 	: GROUPSTAT; ( *RANKSUM[I]=RANKSUM OF GROUP I ) 

(*FOR ONE-SAMPLE PROBLEMS, 
(*pSUM[21 IS THE SUM OF RANKS *) 
(*OF NEGATIVE NUMBERS 

TIECORR 	: REAL; (*TIE CORRECTION FACTOR FOR RANK *) 
(*STATISTIC *) 

RANKSUMTEST : BOOLEAN; (*TRUE ONLY IF A RANK STATISTIC *) 
(*Is USED 

RANDOMTEST 	: BOOLEAN; (*TRUE ONLY IF RANDOMIZATION 
(*TEST IS USED *) 

DISTRIBUTION: (TDISTRIBUTION,FDISTRIBUTION,KRUSKALWALLIS, 
SIGNEDWILCOXON , TWOWILCOXON ,RANDOM); 

DFN 	: INTEGER; 

DFD 	: INTEGER; 

NOOFNONZERO : INTEGER; 

PVALUE 	: REAL; 

SIGLEV 	: REAL; 

VALID 	: BOOLEAN; 

END; 

INTERVAL = RECORD 
UPPERLIMIT : REAL; 
LOWERL IMIT : REAL; 

END; 

(*DEGREES OF FREEDOM OF NUMERATOR*) 
(*FOR PARAMETRIC TESTS 
(*DEGREES OF FREEDOM OF DENOMINA_*) 
(*TOR FOR PARAMETRIC TESTS 	*) 
(*No. OF DATA NOT EQUAL TO ZERO *) 
(*FOR PURPOSE OF APPROX. P-VALUE *) 
(*OF SIGNED RANK WILCOXON TEST *) 
(*ONE_SIDED P-VALUE OF TEST 
(*STATISTIC 
(*SIGNIFICANCE LEVEL, TWO-SIDED *) 
(*FOR ONE OR TWO SAMPLE PROBLEMS *) 
(*TRUE IF TEST IS VALID, FALSE *) 
(*OTHERWISE 

(*uppER LIMIT OF CONFIDENCE LEVEL*) 
(*LOWER LIMIT OF CONFIDENCE LEVEL*) 

GRAPH 	= RECORD 
FREQUENCY 	: ARRAY [GROUPINDEX,1..25] OF INTEGER; 

( *FREQUENCY[I,K]FREQUENCY OF *) 
(*GROUp I IN INTERVAL K 	*) 

NOOFINTERVAL 
HEIGHT 
STEP 
MAXMIDPOINT : 
DECPL 
REPRESENTCASE: 

END; 

1..25; (*NO  OF INTERVAL OF HISTOGRAMS *) 
1..60; (*HEIGHT OF HISTOGRAM 	 *) 
REAL; 	(*STEP  SIZE OF INTERVALS 
REAL; 	(*MAXIMIJM OF MIDPOINTS ON SCALE *) 
INTEGER;(*NO. OF DECIMAL PLACES ON SCALE*) 
INTEGER;(*NO. OF CASES AN * REPRESENTS *) 



VAR 
DESCRIPTIVESTATISTIC 	STATISTIC; 
TESTSTATISTIC 	 TEST; 
CONFIDENCEINTERVAL 	: INTERVAL; 
HISTOGRAM : GRAPH; 
DATA : DATASET; 	(*DATA OF ALL GROUPS WITH ORIGINAL ORDER 
X 	: DATASET; (*DUPLICATE OF DATA, BUT IN ASCENDING ORDER BY *) 

(*GRoup, OR USE TO CARRY INFORMATION 

GPSIZE 	: GROUPSIZE; (*GPSIZE[I]=GROUP  SIZE OF GROUP I 
DATAKIND : DATATYPE; (*KIND OF DATA IS BEING PRESENTED 

GROUP, (*NUMBER OF GROUP, SET TO 1 IF PAIRED-GROUPS 
TOTAL, (*TOTAL NUMBER OF DATA CASES 
MINGPSIZE, (*MINIMUM OF GROUP SIZES OF ALL GROUPS *) 
MAXGPSIZE, (*MAXIMUM OF GROUP SIZES OF ALL GROUPS *) 
GPSIZEALLOW,(*MAXIMUM OF GROUP SIZE ALLOWED FOR EACH GROUP 
OUTLIER, (*TOTAL NUMBER OF OUTLIERS OF GROUPS 
PROBLEM, (*PROBLEM NUMBER WHICH USERS CHOOSE 
DIFFPAIR (*TOTAL NUMBER OF PAIRS OF GROUPS WITH 

(*DIFFERENCES IN MEANS 
INTEGER; 

BSS, (*BETWEEN GROUPS SUM OF SQUARES 
WSS, (*WITHIN GROUPS SUM OF SQUARES 
MSE, (*MEAN SQUARE ERROR 
ADDCONST, (*NUMBER ADDED TO EACH DATA POINT BEFORE MAKING 

(*TFSFoPTION 
MINDATA, (*MINIMUM OF ALL DATA 
THEOMEAN, (*THEORETICAL MEAN TO BE TESTED 
KURTOSIS (*KURTOSIS OF RESIDUALS OF ALL GROUPS *) 

REAL; 

NORMAL, (*TRUE ONLY IF ALL DATA FOR GROUPS ARE NORMAL *) 
SYMMETRY, (*TRUE ONLY IF ALL DATA ARE NORMAL OR DATA FOR *) 

(*EVERY GROUP IS SYMMETRICAL *) 
EQVARIANCE, (*TRUE ONLY IF VARIANCES ARE 'EQUAL' 
PAIRED, (*TRUE ONLY IF DATA ARE PAIRED OBSERVATIONS 
EXAMINEDATA, (*CONTROL TO ASK FOR EXAMINING DATA AND/OR 

(*TESTING ASSUMPTIONS IF NEEDED 
GETTEST, (*CONTROL TO ASK FOR COMPUTING TEST STATISTIC *) 

(*TRUE IF NEEDED 
GETPVALUE, (*CONTROL TO ASK FOR COMPUTING P-VALUE 

(*TRUE IF NEEDED *) 
WANTTRANSFORM, (*CONTROL TO ASK FOR TRANSFORMING DATA *) 

(*TRUE IF WANTED 
TESTTHEOMEAN, (*TRUE ONLY IF TESTING THEORETICAL MEAN *) 
TAKEDIFFERENCE, (*TRUE IF DATA ARE PAIRED OR TWO DATA FROM A *) 

(*CASE ARE COLLECTED, FALSE OThERWISE 
TOOMANYEQ, (*TRUE IF AT LEAST ONE GROUP HAS HALF OR MORE OF *) 

(*ITS DATA EQUAL, FALSE OTHERWISE 
RESUME, (*TRUE IF PROGRAM OR ANALYSIS IS CONTINUED, 

(*FALSE OTHERWISE *) 
NONSTOP (*CONTINUE INFINITELY UNTIL OUT OF THIS PROGRAM *) 

(*ALWAYS TRUE 
BOOLEAN; 

TRANSFORM : TYPEOFrRANSFORNATION; 



FUNCTION T(I,J : INTEGER) : INTEGER; 

(*4AppING MULTIPLE ARRAY INTO ONE DIMENSIONAL ARRAY DATA, OR x*) 

FORWARD; 

PROCEDURE QUIT(S : STRING); 

(*CO}414.ND: 'QUIT'*) 

FORWARD; 

FUNCTION HELP(VAR S : STRING) : BOOLEAN; 

(*CO4.ND: 'HELP'*) 

FORWARD; 

FUNCTION REJECT(VAR S : STRING) : BOOLEAN; 

(*CO44.ND: 'REJECT'*) 

FORWARD; 

FUNCTION ENDING(VAR S : STRING) : BOOLEAN; 

(*INPUT TERMINATOR:  'END'*) 

FORWARD; 

FUNCTION MATCHSTR( 	STR 	: STRING; 
VAR SOURCE : STRING) : BOOLEAN; 

(*TCHING STR WITH SOURCE*) 

FORWARD; 

PROCEDURE READSTR(HELPREJVALID BOOLEAN; 
VAR ANSWER 	: STRING); 

(*PROCEDURE FOR READING STRING*) 

FORWARD; 



PROCEDURE READINTEGER(MIN )MAX 	: INTEGER; 
HELPREJVALID BOOLEAN; 
VAR S 	: STRING; 
VAR DATUM 	INTEGER); 

(*pROC)jJRE FOR READING INTERGER *) 

FORWARD; 

PROCEDURE GETDATA(PROMPT,FORM : STRING; 
LOWERBOUND,UPPERBOUND : REAL; 
VAR S 	: STRING; 
VAR DATUM : REAL); 

(*PROCEDURE FOR READING DATA, REAL AND INTEGER*) 

FORWARD; 

PROCEDURE READFILE(FILENANE STRING); 

(*READING FILENANE FROM DISK AND OUTPUT IT ON SCREEN*) 

FORWARD; 

(*$IQUESTION .TEXT*) 

(* $IREADDATA. TEXT*) 

(*$IsTAT.TT*) 

(*$IASSuMIST.TERT*) 

(*$I CALCULATE.TEXT*) 

(*$I#5 :RESULT.TEXT*) 

FUNCTION T; 

(*DECLARED FORWARD..PARA:( I,J : INTEGER*) 

BEGIN 
T:=(I_1)*GPSIZEALLOW+J; 

END (*T*); 

PROCEDURE QUIT; 

(*DECRED FORWARD..PARA:(S : STRING*) 

BEGIN 
IF MATCHSTR('QUIT' ) S) OR MATCHSTR('qult',S) THEN 

EXIT(MEANPROGRAM); 
END (*QUIT*); 



FUNCTION HELP; 

(*DECLARED FORWARD..PARA:(VAR S : STRING*) 

BEGIN 
HELP:=MATCHSTR('HELP',S) OR MATCHSTR('he1p',S); 

END (*HELP*); 

FUNCTION REJECT; 

(*DECRED FORWARD..PARA:(VAR S : STRING*) 

BEGIN 
REJECT:=MATCHSTR('REJ' ,S) OR MATCHSTR('rej' ,S); 

END (*REJECT*); 

FUNCTION ENDING; 

(*DECLARED FORWARD. .PARA:(VAR S : STRING*) 

BEGIN 
ENDING:=MATCHSTR('END' ,S) OR MATCHSTR('end' ,S); 

END (*ENDING*); 

FUNCTION MATCHSTR; 

(*DECRED FORWARD..PARA:(STR :STRING; VAR SOURCE : STRING*) 

VAR MATCH:BOOLEAN; 

BEGIN 
MATCH:=POS(STR, SOURCE)=1; 
IF MATCH THEN 

SOURCE:=STR; (*STRIP SOURCE TO STR*) 
MATCH STR: =MATCH; 

END (*MATCHSTR*); 



PROCEDURE READSTR; 

(*DECLARED FORWARD..PARA:(HELPREJVALID : BOOLEAN; VAR ANSWER : STRING*) 

BEGIN 
(*$I_*) 	(*T1Jp,N I/O CHECK OFF*) 
REP EAT 

WRITE(' (Y OR N) 
READLN( AN SW ER) ; 
QUIT(ANSWER); 
IF HELPREJVALID AND (REJECT(ANSWER) OR HELP(ANSWER)) THEN 

EXIT( READ STR) 
ELSE IF ENDING(ANSWER) OR REJECT(ANSWER) THEN 

WRITELN('YOU CANNOT USE ',ANSWER,' HERE.'); 
IF ANSWER='y' THEN 	(*ALWAYS RETURN ANSWER IN CAPITAL LETTERS*) 

ANSW ER: = 
ELSE IF ANSWER='n' THEN 

ANSWER:='N'; 
UNTIL (ANSWER='Y') OR (ANSWER='N'); 
WRIT EL N 
(*$I+*) (*1/0 CHECK BACK ON*) 

END (*READ5TR*); 

PROCEDURE READINTEGER; 

(*DECLARED FORWARD..PARA:( MIN,MAX : INTEGER; HELPREJVALID : BOOLEAN;*) 
(* 	 VAR S : STRING; VAR DATUM : INTEGER 	*) 

(*MIN & MAX ARE POSITIVE INTEGERS AND MIN<MAX 	 *) 

VAR P,Q,TFI1PDATUM : REAL; 

BEGIN 
P:=MIN-0.5; 
Q:=MAX+0.5; 
REPEAT 

(*SET BOUNDS TO LARGE VALUE TO FREE THE BOUND CHECK IN PROCEDURE*) 
(*GETUATA. *) 
GETDATA('TYPE IN A NUMBER. ','INTEGER',-1.OE37,1.OE37,S,TEMPDATUM); 
IF HELPREJVALID AND (REJECT(S) OR HELP(S)) THEN 

EXIT ( READINTEGER) 
ELSE IF ENDING(S) OR REJECT(S) THEN 

WRITELN('YOU CANNOT USE ',S,' HERE.') 
ELSE IF (P<TEMPDATUM)<>(TEMPDATUM<Q) THEN 

WRITELN('MUST BE BETWEEN ',MIN,' AND ',MAX,' INCLUSIVE.'); 
UNTIL (P<TE24PDATUM)=(TFNPDATUM<Q); 
DATUM: =ROUND(TEMPDATUM); 
WRIT FiN; 

END (*READINTEGER*); 



PROCEDURE GETDATA; 

(*DECLARED FORWARD..PARA:( PROMPT,FORM : STRING 	 *) 
(* 	 LOWERBOUND,UPPERBOUND : REAL 	*) 

VAR S : STRING; VAR DATUM : REAL*) 

VAR SIGN,LEN,I,SPACE : INTEGER; 
BLANK,SUCCESS : BOOLEAN; 
P : REAL; 

PROCEDURE NEXTCHAR; 

BEGIN 
SUCCESS :=LEN=I; 
IF NOT SUCCESS THEN 

I:=I+1; 
END (*NE)(TCHAR*); 

BEGIN 
(*$I_*) (*TUpJ I/O CHECK OFF*) 
REPEAT 

REPEAT 
WRITE(PROMPT); 
READLN(S); 
LEN:=LENGTH(S); 
BLANK: =TRUE; 
IF LEN>30 THEN 

WRITELN('>>ENTRY TOO LONG.') 
ELSE 

WHILE (LEN>O) AND BLANK DO 
IF S[LEN]=' ' THEN 	(*ELIMINATE 

LEN: =LEN-1 
ELSE 

BLANK:=FALSE; 
UNTIL NOT BLANK; 

QUIT(S); 
IF HELP(S) OR ENDING(S) OR REJECT(S) THEN 

EXIT(GETDATA); 

(*START CONVERT S TO A NUMBER, DATUM*) 

SPACES AT THE BACK*) 

SUCCESS :=FALSE; 
DATUM: =0; 
SIGN: = 1; 

WHILE S[I]=' ' DO 
I:=I+1; 

SPACE :=I-1; 
IF I<LEN THEN 

IF (S[I]='-')  THEN BEGIN 
SIGN:=-1; 
I:=I+1; 

END ELSE IF S[i]='-e-'  THEN 
I: =1+1; 

(*SIGN1 MEANS POSITIVE*) 

(*ELIMINATE SPACES IN THE FRONT*) 

(*NUMBER OF SPACES*) 
(*CHK SIGN*) 



(*INTEGPJ PART*) 
WHILE (NOT SUCCESS) AND (S[I]  IN ['0'..'9'1) DO BEGIN 

DATUM:=10*DATUM+ORD(S[I])_ORD( '0'); 
NEXTCHAR; 

END; 

(*FFCTION PART*) 
IF FORM='NUMERIC' THEN BEGIN 

IF (S[I]='.')  AND (LEN-SPACE>1) THEN 
NEXTCHAR; 

P:=1.O; 
WHILE (NOT SUCCESS) AND (SEll  IN ['0'..'9'1) DO BEGIN 

P:=P*1.OE_1; 
DATUM:=DATUM+(ORD(S[I])_ORD('O')) *P; 
NEXTCHAR; 

END; 
END; 

IF SUCCESS THEN BEGIN 
DATUM: =SIGN*DATUM; 
SUCCESS :=((LOWERBOUND<=DATUM)=(DATUM<=UPPERBOUND)); 
IF NOT SUCCESS THEN 

WRITELN('MUST BE BETWEEN ',LOWERBOUND,' AND' ,UPPERBOUND: 10:2, 
INCLUSIVE.'); 

END ELSE BEGIN 	 (*REPORT ERROR*) 
WRITELN(' " :(LENGTH(PROMPT)+I),' ERROR I '); 
WRITELN(FORN,' OR COMMAND OR INPUT TERMINATOR EXPECTED.'); 

END; 
UNTIL SUCCESS; 
(*$I+*) (*1/0 CHECK BACK ON*) 

END (*GETDATA*); 

PROCEDURE READFILE; 

(*DECJED FORWARD..PARA:( FILENAME : STRING*) 

VAR F : TEXT; 
S : STRING; 

BEGIN 
(*$I+*) (*1/0  CHECK ON*) 
RESET(F,FILENAME); 
WHILE NOT EOF(F) DO BEGIN 

READLN(F,S); 
WRITELN(S); 

END; 
CLOSE(F); 

END (*R1JFILE*); 



BEGIN 	 (* 	MAIN PROGRAM 
NONSTOP :=TRUE; 
WHILE NONSTOP DO BEGIN 

QUESTION(TESTSTATISTIC, 
PROBLEM ,GROUP, 
THEOMEAN ,ADDCONST, 
DATAKIND, 
TRANSFORM, 
WANTTRANSFORM ,PAIRED , TAKED IFFERENCE, 
TESTTHEOMEAN ,GETTEST ,GETPVALUE,RESUME); 

IF RESUME THEN 
READDATA( DATA, 

GPSIZE, 
GROUP, TOTAL, GPSIZEALLOW, 
DATAKIND, 
THEOMEAN, 
PAIRED ,TAKEDIFFERENCE, 
TESTTHEOMEAN ,RESUME); 

WHILE RESUME DO BEGIN 
EXAMINEDATA :=TRUE; 
RESUME :=FALSE; 

BASICSTAT (DATA,X, 
DESCRIPTIVESTATISTIC, 
TESTSTATISTICS, 
HISTOGRAM, 
GPSI ZE, 
GROUP,TOTAL, 
OUTLIER,MINGPSIZE ,MAXGPSIZE, 
BSS , WSS ,MS E,KURTOSIS ,MINDATA, ADDCONST, 
TRANSFORM, 
WANTTRANSFORM ,PAIRED, TOOMANYEQ); 

REPEAT 
ASSUMPTIONDISTRIBUTION(EXAMINEDATA, GETPVALUE, 

X, 
DESCRIPTIV ESTATI STIC, 
TESTSTATISTIC )  
GP SIZE, 
PROBLEM ,GROUP , TOTAL, 
BSS,WSS,MSE,KURTOSIS, 
NORMAL, EQ VARIANCE , SYMMETRY); 

CALCULATION( GETTEST, 
DATA,X, 
DESCRIPTIVESTATISTIC, 
TESTSTATISTIC, 
CONFIDENCEINTERVAL, 
TRANSFORM, 
GP SIZE, 
DIFFPAIR, 
BSS,MSE, 
GROUP ,TOTAL ,MINGP SIZE, 
MAXGPSIZE ,GPSIZEALLOW, 
NORMAL , EQ VARIANCE, 
SYMMETRY, 
TESTTHEOMEAN, 
DATAKIND); 

UNTIL NOT GETPVALUE; 



PRI NTRESULT S (DATA, X, 
DESCRIPTIVESTATISTIC, 
TESTSTATISTIC, 
HISTOGRAM, 
CONFIDENCEINTERVAL, 
GPSIZE, 
DAT AKIND, 
PROBLEM ,GROUP, TOTAL , OUTLIER, DIFFPAIR, 
THEOMEAN ,BSS , WSS ,MSE,MINDATA,ADDCONST, 
TRANSFORM, 
PAIRED , TAKED IFFERENCE ,NORMAL , SYMMETRY, 
TESTTHEOMEAN , TOOMANYEQ, 
WANTTRANSFORM ,RESUME); 

IF RESUME THEN BEGIN (*POSSIBLE ONLY FOR PROBLEM 2*) 
GETTEST :=TRUE; 
GETPVALUE :=TRUE; 

END; 
END; 

END; 
END (*IN PROGRAM*). 



SEGMENT PROCEDURE QUESTION(VAR TESTSTATISTIC : TEST; 
VAR PROBLEM,GROUP : INTEGER; 
VAR THEOMEAN,ADDCONST : REAL; 
VAR DATAKIND 	: DATATYPE; 
VAR TRANSFORM 	: TYPEOFTRANSFORMATION; 
VAR WANTTRANSFORM,PAIRED,TAKEDIFFERENCE : BOOLEAN; 
VAR TESTTHEOMEAN,GETTEST,GETPAVLUE 	BOOLEAN; 
VAR RESUME 	 BOOLEAN); 

VAR POINT : INTEGER; (*DATA POINT PER CASE *) 

PROCEDURE CONSULTSTATISTICIAN; 

FORWARD; 

PROCEDURE DEFINITION; 

FORWARD; 

PROCEDURE PAUSE; 

(*pAUSE A WHILE TO INSTRUCT USERS*) 

FORWARD; 

PROCEDURE CLEAR; 

BEGIN 
PAIRED :=FALSE; 
RESUME :=FALSE; 
THEOMEAN : =0.0; 
ADDCONST :=0.O; 
TRANSFORM: =IDENTITY; 
WANTTRANSFORN: =FALSE; 

END; 

PROCEDURE CHOOSEPROBLEM(VAR PROBLEM : INTEGER); 

VAR DUMMYSTR : STRING; 

BEGIN 
PAGE(OUTPUT); 
WRITELN; 
WRITELN('THIS PROGRAM CAN DEAL WITH THE FOLLOWING PROBLEMS.'); 
WRITELN; 
WRITELN('WHICH ONE OF THESE IS YOUR PROBLEM ?'); 
WRIT ELN; 
WRITELN('l. CALCULATIONS OF MEAN, STANDARD DEVIATION, MEDIAN, RANGE,'); 
WRITELN(' 	NO TESTING HYPOTHESIS.'); 
WRITELN('2. COMPARISON OF MEANS OR ONE WAY ANALYSIS OF VARIANCE.'); 
WRITELN('3. INFORMATION ABOUT THIS PROGRAM.'); 
WRITELN('4. BRIEF EXPLANATIONS OF STATISTICS.'); 
WRITELN('5. STOP.'); 
READINTEGER(1 ,5 ,FALSE,DUMMYSTR,PROBLEM); 

END; 



PROCEDURE GETINFORMATION(FIRSTQUES : INTEGER; 
VAR GROUP,POINT : INTEGER; 
VAR DATAKIN]) : DATATYPE; 
VAR PAIRED,RESUME : BOOLEAN); 

VAR NOQUESASK 
QUESNO 
DU}1MYINT 
QUESASK 
DUMMYSTR, R 
KINDOFDATA 

0..10; 

INTEGER; 
ARRAY [1..10] OF 1..10; 
S,U,V,W : STRING; 

PROCEDURE ANSWER(L,U 	 INTEGER; 
HELPFILENAME 	: STRING; 
VAR QUESNO,DATUM : INTEGER; 
VAR INFORM 	: STRING); 

BEGIN 
IF QUESNO<3 THEN 

READINTEGER( L , U, TRUE, INFORM, DATUM) 
ELSE 

READSTR( TRUE, INFORM); 
IF HELP(INFORM) THEN BEGIN 

QUESNO:=QUESNO-1; 
DEFINITION; 
IF HELPFILENAME<>'NOHELP' THEN 

READFILE(HELP FILENAME); 
END ELSE IF REJECT(INFORN) THEN BEGIN 

IF QUESNO=FIRSTQUES ThEN 
EXIT(GETINFORMATION); 

QUESNO:=QUESASK[NOQUESASK] -1 ; 
NOQIJESASK:=NOQIJESASK-1; 

END ELSE BEGIN 
NOQUESASK : =NOQUESASK+1; 
QUESASK[ NOQUESASK] : =QUE SNO; 

END; 
WRITELN; 

END (*5WER*); 



PROCEDURE GETDATAKIND( VAR DATAKIND : DATATYPE); 

VAR KINDOFDATA : 

BEGIN 
WRITELN('WHAT KIND OF DATA DO YOU HAVE ?'); 
WRITELN('l. SCORES ASSIGNED TO CASES, BUT NOT BINARY DATA.'); 
WRITELN('2. MEASUREMENT OR CONTINUOUS SCALE DATA.'); 
WRITELN('3. COUNTS.'); 
WRITELN('4. BINOMIAL PROPORTIONS.'); 
ANSWER( 1 , 4, 'DATAKIND .TEXT' ,QUESNO ,KINDOFDATA, DUMMYSTR); 
CASE KINDOFDATA OF 

DATAKIND:=SCORE; 
DATAKIND : =CONTINUOUS; 
DATAKIND:=COUNT; 
DATAKIND : =BINOMLAL; 

END; 
END (*GETDATAKIND*); 

PROCEDURE cHECKRANDOMIZATION(VAR QUESNO : INTEGER; VAR S : STRING); 

BEGIN 
CASE QUESNO OF 

WRITELN('DO YOU ALLOCATE TREATMENTS TO CASES AT RANDOM'); 
WRITELN('DO YOU ASSIGN CASES TO TREATMENTS AT RANDOM'); 
BEGIN 

WRITELN('DO YOU DIVIDE CASES RANDOMLY INTO GROUPS AND'); 
WRITE('THEN ALLOCATE TREATMENTS TO GROUPS'); 

END; 
END; 
IF QUESNO<7 THEN 

WRITE('AND THEN FORM GROUPS FROM CASES WITH THE SAME TREATMENT'); 
WRITE(' ?'); 
ANSWER(O,O,'RANDOM.TEXT' ,QUESNO,DUMMYINT,S); 

END (*CHECKp.AJDOMIZATION*); 

BEGIN 
S:='Y'; 
R:='N'; 
NOQUESASK : =0; 
QUESNO : =FIRSTQUES; 
WHILE QUESNO<=10 DO BEGIN 

CASE QUESNO OF 
GETDATAKIND(DATAKIND); 
BEGIN 

WRITELN('HOW MANY GROUPS DO YOU HAVE ? 
ANSWER(1 ,MAXGROUP, 'NOHELP' ,QUESNO ,GROUP ,DUMMYSTR); 

END; 
BEGIN 

WRITELN('HOW MANY DATA DO YOU COLLECT FROM EACH CASE ? 
WRITELN('l. ONE.'); 
WRITELN('2. TWO.'); 
WRITELN('3. MORE THAN TWO OR UNEQUAL.'); 
ANSWER(1 ,3, 'NOHELP' ,QUESNO,POINT,DUMMYSTR); 

END; 



4: 	IF (GROUP=2) AND (POINT=1) THEN BEGIN 
WRITELN('ARE YOUR OBSERVATIONS PAIRED ?'); 
ANSWER(O,O, 'PAIRED.TEXT' ,QUESNO,DUMHYINT,W); 
PAIRED:=W='Y'; 

END; 
5,6,7: IF (NOT PAIRED) AND (GROUP>1) THEN BEGIN 

S:='N'; 
CHECKRANDOMIZATION(QUESNO , S); 
IF S='Y' THEN 

QUESNO:=7; 
END ELSE 

S:='Y'; 
BEGIN 

WRITELN( 'IS IT POSSIBLE THAT THERE ARE FACTORS OTHER', 
THAN'); 

WRITELN('THE ONE WHICH YOU WISH TO INVESTIGATE WHICH MAY' 
); 

WRITELN('LEAD TO A DIFFERENCE IN YOUR DATA ?'); 
ANSWER(O,O,'BIASED.TEXT' ,QUESNO,DUHMYINT,R); 

END; 
BEGIN 

IF (GROUP>1) AND (NOT PAIRED) THEN 
WRITE('BETWEEN GROUPS OR WITHIN A GROUP, 

WRITELN('IS THERE ANY CONNECTION BETWEEN'); 
IF PAIRED THEN 

WRITE('PAIRS ?') 
EL SE 

WRITE('CASES ?'); 
ANSWER(O,O, 'CONNECT.TEXT' ,QUESNO,DUHMYINT,U); 

END; 
BEGIN 

WRITELN('IS THE ORDER IN WHICH YOU COLLECT'); 
WRITE('YOUR DATA IMPORTANT ?'); 
ANSWER(O,O, 'ORDER.TEXT' ,QUESNO,DUMMYINT,V); 

END; 
END; 
QUESNO:=QUESNO4-1; 

END; 
RESUME :=(POINT<=2) 

AND (S='Y') 
AND (R='N') 
AND (U='N') 
AND (V='N'); 

IF NOT RESUME THEN 
CONSULTSTATISTICIAN; 

END (*GETINFOTION*); 



PROCEDURE PROCESSINFORMATION(VAR TESTSTATISTIC : TEST; 
VAR DATAKIND 	: DATATYPE; 
VAR TRANSFORM 	: TYPEOFTRANSFORMATION; 
VAR GROUP,POINT,PROBLEM : INTEGER; 
VAR TESTTHEOMEAN,GETTEST,GETPVALUE : BOOLEAN; 
VAR PAIRED ) TAKEDIFFERENCE : BOOLEAN); 

BEGIN 
WITH TESTSTATISTIC DO BEGIN 

RANDOMTEST:=FALSE; 
RANKSUMTEST :=FALSE; 
IF PROBLEM=1 THEN BEGIN 

TESTTHEOMEAN: =FALS E; 
TAKEDIFFERENCE :=FALSE; 
SIGLEV:=0.05; 
NAHE:='T-STATISTIC'; 
GETTEST :=FALSE; 
GETP VALUE :=FALSE; 

END ELSE IF PROBLEM=2 THEN BEGIN 
TESTTHEOMEAN:=(GROUP=1) AND (POINT=1); 
GETTEST : =TRUE; 
GETPVALUE :=TRUE; 
IF PAIRED THEN 

GROUP:=1; 	(*RESET GROUP TO 1*) 
TAKEDIFFERENCE:=PAIRED OR (POINT=2); 
IF DATAKIND=BINOMIAL ThEN 

TRANSFORM: =ARCSINE; 
END; 

END; 
END; 

PROCEDURE CONSULTSTATISTICIAN; 

(*DECLARED FORWARD*) 

BEGIN 
WRITELN; 
WRITELN('CARE ABOUT YOUR DATA IS NECESSARY.'); 
WRITELN('PLEASE CONSULT YOUR STATISTICIAN.'); 
WRITELN('TYPE RETURN KEY TO CONTINUE.'); 
READLN; 

END (*CONSULTSTATISTICIAN*); 

PROCEDURE PAUSE; 

(*DECJED FORWARD*) 

VAR I : INTEGER; 

BEGIN 
WRITELN; 
WRITELN('TYPE CTRL AND S SIMULTANEOUSLY TO STOP OUTPUT ON TILE SCREEN.'); 
WRITELN('HIT ANY KEY TO CONTINUE.').; 
FOR I:=1 TO 12000 DO (*NOTHING, JUST PAUSE A WHILE*) 

END (*pAUSE*); 



PROCEDURE DEFINITION; 

BEGIN 
WRITELN( 'DEFINITIONS 
WRITELN('l: A ''CASE" IS ONE SINGLE EXPERIMENTAL SUBJECT, E.G. A PATIENT.' 

); 
WRITELN('2: A ''GROUP" IS A COLLECTION OF CASES, E.G. 10 PATIENTS.'); 
WRITELN; 
WRITELN('COMMANDS : TYPE'); 
WRITELN(' ''HELP" FOR HELP.'); 
WRITELN(' ''QUIT" TO STOP.'); 
WRITELN(' "REJ" FOR IMMEDIATE REJECTION OR BACKWARD ELIMINATION.'); 
WRITELN; 
WRITELN( 'NOTATIONS 
WRITELN(' ''Y" STANDS FOR YES.'); 
WRITELN(' ''N" STANDS FOR NO.'); 
WRITELN; 

END (*DEFINITION*); 

BEGIN 	 (*PROCEDURE, QUESTION*) 
CLEAR; 
REPEAT 

CHOOSEPROBLEM(PROBLEM); 
PAGE(OUTPUT); 
IF PROBLEM0 THEN BEGIN 

WRITELN('PLEASE ANSWER CAREFULLY.'); 
WRI TELN; 
DEFINITION; 
WRIT ELN( 'QUESTIONS BEGIN:-'); 
WRIT ELN; 

END; 
CASE PROBLEM OF 

BEGIN 
GROUP:=1; 
POINT := 1; 
GETINFORMATION(9,GROUP,POINT,DATAKIND,PAIRED,RESUME); 

END; 
GETINFOR14ATION(1 ,GROUP ,POINT,DATAKIND ,PAIRED ,RESUME); 

3; BEGIN 
PAUSE; 
READFILE( 'INFORN.TEXT'); 
PAUSE; 

END; 
BEGIN 

PAUSE; 
READFILE( 'EXPLAIN.TEXT'); 
PAUSE; 

END; 
QUIT('QUIT'); 

END; 
UNTIL RESUME; 
PROCESSINFORI1ATION(TESTSTATISTIC, 

DATAXIND, 
TRANSFORN, 
GROUP ,POINT ,PROBLEN, 
TESTTHEOMEAN ,GETTEST,GETPVALUE, 
PAIRED ,TAKEDIFFERENCE); 

END 	 (*QJJESTION*); 



SEGMENT PROCEDURE READDATA(VAR DATA DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR GROUP,TOTAL,GPSIZEALLOW : INTEGER; 
VAR DATAKIND : DATATYPE; 
VAR THEOMEAN REAL; 
VAR PAIRED,TAKEDIFFERENCE : BOOLEAN; 
VAR TESTTHEOMEAN,RESUME : BOOLEAN); 

TYPE TEMPDATAARRAY [1..2,1..LIMIT] OF REAL; 
PROMPTDATA=ARRAY [1..2] OF STRING; 

PROCEDURE VALIDATEDATA(VAR Y : TF24PDATA; 
VAR PROMPT : PROMPTDATA; 

DATAFORNAT,SUBJECT : STRING; 
LOWERBOUND ,UPPERBOUND : REAL; 
NOOFSUBJECT,I,L : INTEGER; 

VAR ADDITION : BOOLEAN); 

(*FOR VALIDATING DATA*) 

FORWARD; 

PROCEDURE KEYINDATA( VAR Y : TFI4PDATA; 
VAR PROMPT : PROMPTDATA; 

DATAFORMAT : STRING; 
LOWERBOUND,UPPERBOUND : REAL; 

VAR I,J,L : INTEGER; 
VAR SUBJECT,MESSAGE : STRING; 

VERIFY 	: BOOLEAN); 

(*FOR INPUTTING DATA*) 

FORWARD; 

PROCEDURE CALCULDATAGPSIZE(VAR Y : TE24PDATA; 
NOOFSUBJECT,I : INTEGER; 
TAKEDIFFERENCE : BOOLEAN; 

VAR DATA : DATASET; 
VAR GPSIZE : GROUPSIZE; 

THEOMEAN : REAL); 

(*FOR TAKING DIFFERENCES OF OBSERVATIONS IF TWO OBSERVATIONS FROM *) 
(*RACf[ CASE OR ASSIGNING OBSERVATIONS TO ARRAY DATA AND SAMPLE SIZES*) 

FORWARD; 

PROCEDURE INSTRUCTION; 

(*Hjp INSTRUCTION*) 

FORWARD; 



PROCEDURE DATAPLEASE; 

(*INpUT INSTRUCTION*) 

FORWARD; 

PROCEDURE NOTICE; 

(*GIVE NOTICE TO USERS*) 

FORWARD; 

PROCEDURE EXPLAINMEAN(DATAKIND : DATATYPE); 

(*(pJATIoN FOR USERS *) 

FORWARD; 

PROCEDURE CHECKGROUPLEFT( 	NOOFGROUPLEFT INTEGER; 
VAR RESUME : BOOLEAN); 

(*CHECK THE NUMBER OF GROUPS LEFT*) 

FORWARD; 

PROCEDURE READINDATA( 	DATAXIND : DATATYPE; 
PAIRED, TAKEDIFFERENCE , TESTTHEOMEAN : BOOLEAN; 

VAR GROUP,TOTAL,GPSIZEALLOW : INTEGER; 
VAR DATA 	DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR THEOMEAN : REAL; 
VAR RESUME : BOOLEAN); 

(*IN PROCEDURE FOR INPUTTING DATA*) 

VAR PROMPT : PROMPTDATA; 
Y : TEMPDATA; 
LOWERBOUND,UPPERBOUND : REAL; 
GPNO,GPACCEPT,GPREJECT,J,K,L,NOOFSUBJECT : INTEGER; 
MESSAGE, SUBJECT ,DATAFORNAT : STRING; 
ADDITION,NOTALLEQUAL : BOOLEAN; 



PROCEDURE SEUPPROMPT; 

(*SETTING UP PROMPT FOR DATA*) 

BEGIN 
SUBJECT:='CASE 
IF TAKEDIFFERENCE THEN BEGIN 

L:=2; 
IF PAIRED THEN BEGIN 

SUBJECT:='PAIR '; 
PROMPT[1]:='FIRST GROUP 
PROMPT[2]:='SECOND GROUP 

END ELSE BEGIN 
PROMPT[1]:='FIRST OBSERVATION 
PROMPT[2]:='SECOND OBSERVATION 

END; 
END ELSE BEGIN 

L:=1; 
PRONPT[1] :='OBSERVATION 

END; 
CASE DATAKIND OF 

SCORE, CONTINUOUS : LOWERBOUND : -1.0 E30; 
COUNT,BINOMIAL 	: LOWERBOUND:=O; 

END; 
IF DATAKIND=BINOMIAL THEN BEGIN 

UPPERBOUND: =100; 
NOTICE; 

END ELSE 
UPPERBOUND:=1 .0E3O; 

IF DATAKIND=COUNT THEN 
DATAFORNAT :=' INTEGER' 

ELSE 
DATAFORNAT :='NU}IERIC'; 

END (*5UppROMpT*); 

BEGIN 
S ETU P PROMPT 
GPSIZEALLOW:=LIMIT DIV GROUP; 
WRITELN('NOTE: 1. NUMBER OF GROUPS = ',CROUP); 
WRITELN(' 	2. MAXIMUM NUMBER OF DATA PER GROUP ALLOWED = 

GPSIZEALLOW,'.'); 

DATAPLEAS E; 
IF TESTTHEOMEAN THEN 

REPEAT 
GETDATA('ENTER YOUR THEORETICAL MEAN ','NUMERIC',LOWERBOUND, 

UPPERBOUND ,MESSAGE,THEOMEAN); 
IF HELP(MESSAGE) THEN BEGIN 

INSTRUCTION; 
EXPLAINMEAN ( DATAKIND) 

END ELSE IF REJECT(MESSAGE) OR ENDING(MESSAGE) THEN 
WRITELN('YOU CANNOT USE ',MESSAGE,' HERE.'); 

UNTIL NOT HELP(MESSAGE); 



GPNO:=0; 
GPACCEPT:=1; 
GPREJECT : =0; 
TOTAL :=O; 
REP EAT 

WRITELN; 
GPNO:=GPNO+1; 
NOOFSUBJECT :=O; 
REPEAT 

REPEAT 
NOOFSUBJECT:=NOOFSUBJECT+1; 
KEYINDATA(Y ,PROMPT, DATAFORMAT , LOWERBOUND , UPP ERBOUND, 

GPNO ,NOOFSUBJECT ,L, SUBJECT ,MESSAGE,FALSE); 
UNTIL ENDING(MESSAGE); 
NOOFSUBJECT :=NOOFSUBJECT-1; 
ADDITION :=FALSE; 
VALIDATEDATA(Y ,PROMPT, DATAFORMAT, SUBJECT , LOWERBOUND , UPPERBOUND, 

NOOFSUBJECT , GPNO ,L ,ADDITION); 
UNTIL NOT ADDITION; 
CALCULDATAGPSIZE(Y ,NOOFSUBJECT ,GPACCEPT , TAKEDIFFERENCE, 

DATA,GPSIZE,THEOMEAN); 
IF GPSIZE[GPACCEPT]<3  THEN BEGIN 

GPREJECT : =GPREJECT+ 1; 
WRITELN('GROUP SIZE OF THIS GROUP IS TOO SMALL.'); 
CHECKGROUPLEFT(GROUP-GPREJECT ,RESUME); 

END ELSE BEGIN 
K:=T(GPACCEPT,1); 
J : 
REPEAT 

J:=J+1; 
NOTALLEQUAL:=DATA[J]<>DATA[K]; 

UNTIL (JGPSIZE[GPACCEPT])  OR (NOTALLEQUAL); 
IF NOTALLEQUAL THEN BEGIN 

TOTAL: =TOTAL+GPSIZE[GPACCEPT]; 
GPACCEPT : =GPACCEPT+ 1; 

END ELSE BEGIN 
GPREJECT :=GPREJECT+1; 
WRITELN; 
IF TAKEDIFFERENCE THEN 

WRITE('DIFFERENCES OF ',PROMPT[l],' AND ',PROMPT[21) 
ELSE 

WRITE(PRONPT[1] , 
WRIT ELN( 'ARE ALL EQUAL.'); 
IF GROUP=2 THEN 

WRITELN('THERE IS NO POINT IN DOING THE COMPARISON.'); 
CHECKGROUPLEFT(GROUP-GPREJECT ,RESUME); 

END; 
END; 

UNTIL GPNO=GROUP; 
GROUP :=GPACCEPT-1; 
IF (GROUP=1) AND (GPSIZE[1]<80) THEN 

(*RE_DEFINE GPSIZEALLOW IN CASE SIGNED-RANK WILCOXON TEST*) 
(*IS USED, THIS IS FOR THE USE OF PASSING DATA TO THE 	*) 
(*PROCEDURE FOR CALCULATING RANK SUMS, PRODUCES NO 
(*SIDE EFFECT. 	 *) 
GPSIZEALLOW:=LIMIT DIV 2; 

IF GPREJECT>O THEN 
WRITELN('NUMBER OF GROUPS ELIMINATED FROM THE ANALYSIS IS 

GPREJECT,'.'); 
END (*RJINDATA*); 



PROCEDURE VALIDATEDATA; 

(*DECTARED FORWARD*) 
(*pAJ:( VAR Y : TEMPDATA; VAR PROMPT 
(* 	DATAFORMAT,SUBJECT : STRING 
(* 	LOWERBOUND,UPPERBOUND : REAL 

• NOOFSUBJECT,I,L : INTEGER 
VAR ADDITION : BOOLEAN 

VAR DUMHY,CHANGE : STRING; 
NOCHANGE : BOOLEAN; 
Q 	: INTEGER; 

: PROMPTDATA*) 

PROCEDURE VERIFYDATA(VAR Y 	TEMPDATA; 
VAR PROMPT PROMPTDATA; 

DATAFORNAT,SUBJECT : STRING; 
LOWERBOUND , UPPERBOUND : REAL; 
Q,NOOFSUBJECT,I,L : INTEGER; 

VAR ADDITION : BOOLEAN); 

VAR J,K,R : INTEGER; 
MESSAGE 	: STRING; 

PROCEDURE CHECKCOMHAND(MESSAGE : STRING); 

BEGIN 
IF REJECT(MESSAGE) THEN 

EXIT(VERIFYDATA) 
ELSE IF HELP(MESSAGE) THEN 

INSTRUCTION; 
END; 

PROCEDURE MAKECHANGE( VAR Q,J,NOOFSUBJECT : INTEGER; 
SUBJECT : STRING; 
PROMPT : PROMPTDATA); 

VAR MESSAGE : STRING; 

BEGIN 
REPEAT 

WRITE('WHICH ',SUBJECT); 
CASE Q OF 

WRITELN('TO BE CORRECTED ? 
WRITELN('TO BE DELETED ? 

END; 
READINTEGER(1 ,NOOFSUBJECT,TRUE,MESSAGE,J); 
CHECKCOMMAND(MESSAGE); 

UNTIL NOT HELP(MESSAGE); 
WRITELN; 



CASE Q OF 
WRITE('CORRECTION 
WRITE('DELETION 

END; 
WRITELN(SUBJECT,J); 
IF Y[1,J]>1.0E36  THEN BEGIN 

WRITELN(' DELETED ALREADY 
END ELSE BEGIN 

WRITELN('DATA ENTERED.'); 
FOR R:=1 TO L DO 

WRITELN(PROMPT[R] ,Y[R,J] :14:3); 
END; 

END (*KECpANGE*); 

BEGIN 
CASE Q OF 

BEGIN (*DISPLAY DATA ON THE SCREEN*) 
WRITE(PROMPT[ 1] :29); 
IF L=2 THEN 

WRITE(PROMPT[2] :18); 
WRI TELN; 
FOR J:=1 TO NOOFSUBJECT DO BEGIN 

WRITE( SUBJECT ,J :3); 
FOR R:=1 TO L DO 

IF Y[R,J]>1.OE36  THEN 
WRITE('DELETED' :16) 

ELSE 
WRITE(Y[R,J] :15:3); 

WRIT ELN; 
END; 

END; 
REPEAT (*MAKING CORRECTION*) 

MAKECHANGE(Q,J,NOOFSUBJECT ,SUBJECT ,PROMPT); 
DATAPLEAS E; 
KEYINDATA(Y ,PROMPT , DATAFORNAT , LOWERBOUND , UPPERBOUND, 

I ,J ,L,SUBJECT ,MESSAGE,TRUE); 
CHECKCOMMAND(MESSAGE); 
WRITE('ANY MORE CORRECTIONS ?'); 
READSTR(TRUE ,MESSAGE); 
CHECKCOMMAND(MESSAGE); 

UNTIL MESSAGE='N'; 
REPEAT (*NAKING DELETION*) 

MAKECHANGE(Q ,J ,NOOFSUBJECT ,SUBJECT ,PROMPT); 
WRITE('ANY MORE DELETIONS ?'); 
READSTR(TRUE,MESSAGE); 
CH ECKCOMMAND ( ME S SAGE) 
IF NOT REJECT(MESSAGE) THEN (*DO DELETION*) 

FOR R:=1 TO L DO 
Y[R,J]:=1.OE37; 	(*SET TO ILLEGAL INPLJT*) 

UNTIL MESSAGE='N'; 
BEGIN (*MAKING ADDITION*) 

ADDITION: =TRUE; 
WRITELN; 
WRITELN('DATA ENTRY CONTINUES.'); 
EXIT(VALIDATEDATA); 

END; 
END; 

END (*VERIFYDATA*); 



BEGIN 
WRIT ELN; 
IF GROUP>1 THEN 

WRITELN('THIS IS GROUP ',I); 
WRITELN; 
NOCHANGE : =FALSE; 
WRITELN('DO YOU WANT TO DISPLAY, CORRECT, DELETE OR ADD ANY DATA ?'); 
READSTR(FALSE,CHANGE); 
REPEAT 

WHILE CHANGE='Y' DO BEGIN 
WRITELN; 
WRITELN('NOTE: YOU CAN DO ANY ONE OF THE FOLLOWING FIRST.'); 
WRITELN; 
WRITELN('WHAT DO YOU WANT 7'); 
WRITELN('1. DISPLAY DATA.'); 
WRITELN('2. ERROR CORRECTION.'); 
WRITELN('3. DELETION.'); 
WRITELN('4. ADDITION.'); 
READINTEGER(1,4,FALSE,DUMMY,Q); 
REPEAT 

VERIFYDATA(Y ,PROMPT ,DATAFORMAT, SUBJECT ,LOWERBOUND , UPPERBOUND, 
Q,NOOFSUBJECT ,I,L,ADDITION); 

WRITELN; 
WRITELN('ANY MORE DISPLAY, 
READS TR( FALSE, CHANGE) 

UNTIL (CHANGE'N') OR (Q=1); 
END; 
IF CHANGE='N' THEN BEGIN 

WRITELN('WARNING : LAST CHANCE 
GROUP.'); 

FOR YOU TO MAKE CHANGES FOR THIS', 

CORRECTION, DELETION OR ADDITION 7'); 

WRI TELN; 
WRITE('DO YOU WANT TO MAKE ANY MORE CHANGES ?'); 
READ STR( FALSE, CHANGE) 
NOCHANGE :=CHANGE='N'; 

END; 
UNTIL NOCHANGE; 

END (*VALIDATE)ATA*); 



PROCEDURE KEYINDATA; 

(*DECLARED FORWARD*) 
(*P.A: 

( VAR Y : TEMPDATA; VAR PROMPT : PROMPTDATA*) 
DATAFORNAT : STRING 
LOWERBOUND,UPPERBOUND : REAL 

(* VAR I,J,L : INTEGER 
(* VAR SUBJECT,MESSAGE : STRING 

VERIFY : BOOLEAN 

VAR K : INTEGER; 
DATUM REAL; 

BEGIN 
WRITELN; 
IF GROUP>1 THEN 

WRITE('GROUP ',I:2,' 
WRITELN('THIS IS ',SUBJECT,J); 

WHILE K<=L DO BEGIN 
GETDATA(PROMPT[K] , DATAFORNAT ,LOWERBOUND ,UPPERBOUND ,MESSAGE ,DATUM); 
IF HELP(MESSAGE) THEN 

INSTRUCTION 
ELSE IF ENDING(MESSAGE) THEN BEGIN 

WRI TELN; 
IF VERIFY THEN 

WRITELN('YOU CANNOT USE END HERE.') 
ELSE IF J=1 THEN 

WRITELN('AT LEAST ONE MORE GROUP EXPECTED.') 
ELSE IF K=2 THEN 

WRITELN('ONE MORE DATA POINT EXPECTED I') 
ELSE 

EXIT(KEYINDATA); 
DATAPLEASE; 

END ELSE IF REJECT(MESSAGE) THEN BEGIN 
WRIT ELN; 
IF VERIFY THEN 

WRITELN('YOU CANNOT USE REJ HERE.') 
ELSE IF (K=1) AND (J=1) THEN 

WRITELN('NO DATA TO BE REJECTED.') 
ELSE BEGIN 

K: =L+ 1-K; 
IF K=L THEN 

J:=J-1; 
WRITELN(PROMPT[K],'OF ',SUBJECT,J,' REJECTED.'); 
WRITE( 'RE-ENTER 

END; 
END ELSE BEGIN 

Y[K,J] :=DATUM; 
K: =K+ 1; 

END; 
END; 

END (*KEyINDATA*); 



PROCEDURE CALCULDATAGPSIZE; 

(*DECLARED FORWARD*) 
(*PARA: ( VAR Y : TEMPDATA; NOOFSUBJECT,I :INTEGER 
(* 	 TAKEDIFFERENCE : BOOLEAN; VAR DATA : DATASET*) 
(* 	 VAR GPSIZE : GROUPSIZE; THEOMEAN : REAL 	*) 

VAR J,K:INTEGER; 

BEGIN 
K: =T ( I , 0); 
IF TAKEDIFFERENCE THEN BEGIN 

FOR J:=1 TO NOOFSUBJECT DO IF Y[1,J]<1.OE37  THEN BEGIN 
K:=K+1; 
DATA[K] :=Y[1,J] -Y[2,J]; 

END; 
END ELSE 

FOR J:=1 TO NOOFSUBJECT DO IF Y[1,J]<1.OE37 THEN BEGIN 
K: =K+ 1; 
DATA[K] :=Y[1,J]_THEOMEAN;(*THEOMEAN IS INITIALIZED TO 0*) 

END; 
GPSIZE[I] :=K-T(I,O); 

END (*CALCULDATA*); 

PROCEDURE NOTICE; 

(*DECRED FORWARD*) 

BEGIN 
WRITELN; 
WRITELN('IMPORTANT 
WRITELN('PLEASE ENTER DATA AS PERCENTAGES BUT LEAVE % OUT.'); 
WRITELN('EXAMPLE: ENTER 0.70 OR 70 % AS 70 •'); 

END (*NOTICE*); 

PROCEDURE EXPLAINMEAN; 

(*DECLARED FORWARD. .PARA : ( DATAKIND : DATATYPE*) 

BEGIN 
WRITELN('SINCE YOU HAVE ONE GROUP AND ONE DATA ITEM FROM EACH CASE, YOU 
WRITELN( 'ARE COMPARING YOUR EXPERIMENTAL MEAN WITH A THEORETICAL MEAN.'); 
IF DATAKIND=SCORE THEN BEGIN 

WRITELN( 'WARNING: IT MAY BE MEANINGLESS TO COMPARE AN EXPERIMENTAL'); 
WRITELN( 'MEAN OF SCORES ASSIGNED TO CASES WITH A THEORETICAL MEAN.'); 

END; 
INSTRUCTION; 

END (*EXINMEAN*); 



PROCEDURE CHECKGROUPLEFT; 

(*DECLARED FORWARD. .PARA: (NOOFGROUPLEFT : INTEGER; VAR RESUME : BOOLEAN*) 

BEGIN 
IF NOOFGROUPLEFT>1 THEN BEGIN 

WRITELN; 
WRITELN( 'THIS GROUP WILL BE ELIMINATED FROM THE ANALYSIS.'); 

END ELSE BEGIN 
WRITELN('TYPE RETURN KEY TO CONTINUE !'); 
READLN; 
RESUME:=FALSE; 
EXIT(READDATA); 

END; 
END; 

PROCEDURE INSTRUCTION; 

(*DECLPkRED FORWARD*) 

BEGIN 
WRITELN; 
WRITELN('COMNANDS : 	TYPE'); 
WRITELN(' ''HELP" FOR HELP.'); 
WRITELN(' "QUIT" TO STOP.'); 
WRITELN(' ''REJ" FOR IMMEDIATE REJECTION OR BACKWARD 
WRITELN('INPUT TERMINATOR : ''END" FOR DATA ENTRY OF 
WRITELN; 
WRITELN( 'NOTATIONS :#); 
WRITELN(' ''Y" STANDS FOR YES.'); 
WRITELN(' ''N" STANDS FOR NO.'); 
WRITELN; 

END (*INSTRjJCTION*); 

PROCEDURE DATAPLEASE; 

(*DECLARED FORWARD*) 

BEGIN 
WRITELN; 
WRITELN('PLEASE ENTER YOUR DATA.'); 
WRITELN; 

END; 

BEGIN 	 (*PROCEDURE, READDATA*) 
WRITELN; 
INSTRUCTION; 
READ INDATA( DATAKIND, 

PAIRED , TAKED IFFERENCE , TESTTHEOMEAN, 
GROUP, TOTAL, GPSIZEALLOW, 
DATA, GPSIZE , THEOMEAN, 
RESUME); 

WRITELN; 
WRITELN('PLEASE WAIT !'); 
WRITELN; 
WRITELN('ANALYSIS IN PROGRESS.'); 

END 	 (*RDATA*); 

ELIMINATION.'); 
A GROUP.'); 



SEGMENT PROCEDURE BASICSTAT(VAR DATA,X DATASET; 
VAR DESCRIPTIVESTATISTIC STATISTIC; 
VAR TESTSTATISTIC : TEST; 
VAR HISTOGRAM GRAPH; 
VAR GPSIZE : GROUPSIZE; 

GROUP,TOTAL : INTEGER; 
VAR OUTLIER,MINGPSIZE,MAXGPSIZE : INTEGER; 
VAR BSS,WSS,MSE,KIJRTOSIS,MINDATA,ADDCONST : REAL; 
VAR TRANSFORM : TYPEOFTRAN SFORNAT ION; 
VAR WANTTRANSFORM ,PAIRED ,TOOMANYEQ : BOOLEAN); 

(*x IS DUPLICATE OF DATA BUT IN ASCENDING ORDER*) 

VAR MAXDATA : REAL; (*MAXIMUM OF ALL DATA*) 

PROCEDURE DOTRANSFORNATION( 	TRANSFORM TYPEOFTRANSFORMATION; 
VAR DATA : DATASET; 
VAR GPSIZE: GROUPSIZE; 

GROUP : INTEGER; 
ADDCONST REAL); 

(* TRANSFORMING DATA 	*) 

CONST ONERADIAN=57.2957795 (*DEGREES*); 

VAR I,J : INTEGER; 
P : REAL; 

BEGIN 
CASE TRANSFORM OF 

SQUAREROOT 

LOGARITHMIC 

RECIPROCAL 

ARCSINE 

FOR I:=1 TO GROUP DO 
FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO 

DATA[J] :=SQRT(DATA[J]+ADDCONST); 
FOR I:=1 TO GROUP DO 

FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO 
DATA[J] :=LOG(DATA[J]+ADDCONST); 

FOR I:=1 TO GROUP DO 
FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO 

DATA[J] :=1/(DATA[J]+ADDCONST); 
FOR I:=1 TO GROUP DO 

FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO BEGIN 
P:=DATA[J]; 
IF P<=O THEN 

P :=O.25/GPSIZE[I] 
ELSE IF P>=99.9995 THEN 

P:100-0.25/GPSIZE[I]; 
(*ATAN(.)ARCSINE(p) IN RADIAN*) 
DATA[J] :=ONERADIAN*ATAN(SQRT(P/( 100-P))); 

END; 
END; 

END (*DOTRANSFORMATION*); 



PROCEDURE CALSTATISTIC(VAR DATA : DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR GROUP,TOTAL 	: INTEGER; 
VAR MEAN,VARIANCE,G1,G2 : GROUPSTAT; 
VAR BSS,WSS,MSE,CV,KURTOSIS REAL; 
VAR TRANSFORM : TYPEOFTRANSFORMATION); 

VAR I,J,L,U,DF : INTEGER; 

SS,DEVPWRTHREE,DEVPWRFOUR,GM,TEMPMEAN,N : REAL; 
P1 ,P2,P3,P4,M2,SQM2,NSQM2,P,SQP,SUMP3,SUMP4 : REAL; 

FUNCTION G1STAT(N : INTEGER; 
DEVPWRTHREE,SUMOFSQ : REAL) : REAL; 

(*CALCUTE FISHER'S G1_STATISTIC*) 

BEGIN 
G1STAT:=N*SQRT(N_1)*DEVPWRTHREE/((N_2)*SUMOFSQ*SQRT(SUMOFSQ));. 

END (*G1STAT*); 

FUNCTION G2STAT(N : INTEGER; 
DEVPWRFOUR,SUMOFSQ REAL) : REAL; 

(*CALCUTE FISHER'S G2_STATISTIC*) 

BEGIN 
G2STAT:=(N_1.0)*(N*(Nf1.0)*DEVPWRFOUR_3*(N_1.0)*SQR(SUMOFSQ))/ 

((N_2.0)*(N_3 .0)*SQR(SUMOFSQ)); 
END (*G2STAT*); 

PROCEDURE GETTRANSFORMKURTOSIS(GM,SS3, SS4,WSS,MSE : REAL; 
GROUP,TOTAL,DF : INTEGER; 
VAR TRANSFORM 	TYPEOFT RAN SFORMAT ION; 
VAR KURTOSIS : REAL); 

VAR D,P,R,PWR,SKEWNESS : REAL; 

BEGIN 
(*E5TIMATE POWER OF TRANSFORMATION, PWR 	*) 
(*CALCUTE KURTOSIS & SKEWNESS OF RESIDUALS*) 

P:=TOTAL; 
R:=SQR(GROUP/(DF*(P_1 .0))); 

(*KURTOSIS OF ALL RESIDUALS*) 
KURTOSIS :=SQR(P)*P*((DF+2.0)*SS4/(DF*SQR(WSS) )-3 .O/P)/ 

(DF*(DF+2.0)*(1 .0+(P_1.0)*SQR(R))_3.O*P); 

(*SKEWNESS OF ALL RESIDUALS*) 
D:=2+KURTOSIS; 
IF (TRANSFORM=IDENTITY) AND (D<>O) THEN BEGIN 

SKEWNESS :=SS3*SQR(TOTAL)/ 
(DF*WSS*SQRT(DF*WSS)*(1+(P_1.0)*R*SQRT(R))); 

PWR:=1.0_2.0*SKEWNESS*GM/(3.0*D*SQRT(MSE)); 
IF PWR<-O.60 THEN 

TRANSFORM: =RECIPROCAL 
ELSE IF PWR<0.25 THEN 

TRANSFORM: =LOGARITHMIC 
ELSE IF PWR<O.8 THEN 

TRANSFORM: =SQUAREROOT; 
END; 

END (*GETTRANSFORMKURTOSIS*); 



BEGIN 
WSS:=O.O; 
SUMP3 :=O.O; 
SUMP4:=O.O; 
FOR I:=1 TO GROUP DO BEGIN 

L : =T (I, 1); 
U:=T(I,GPSIZE[I]); 
TEKPMEAN:=O.O; 
FOR J:=L TO U DO 

TEMPMEAN:=TEMPMEAN+DATA[J]; 
TEYIPMEAN :=TEMPMEAN/GPSIZE[I]; (*FIRST ESTIMATE OF MEAN*) 

(*CALCULATE MEAN, VARIANCE, WITHIN GROUPS SUM OF SQUARES,WSS*) 
(*G1 & G2 STATISTICS. 

P1 :=O.O; 
P2 :=O.O; 
P3 :=O.O; 
P4 =0 • 0; 
FOR J:=L TO U DO BEGIN 

P :=DATA[J] -TEMPMEAN; 
SQP:=SQR(P); 
P1 :=P1+P; 
P2 :=P2+SQP; 
P3 :=P3+SQP*P; 
P4 :=P4+SQR(SQP); 

END; 
N:=GPSIZE[I]; 
M2:=P1/N; 
SQM2 :=SQR(M2); 

MEAN[ I]:  =TEMPMEAN+M2; 
NSQM2 :=N*SQM2; 
SS : =P2-NSQM2; 
WSS : =WSS+SS; 
VARIANCE[I] :=SS/(N-1); 

DEVPWRTHREE : =P3_M2*(3*P2_2*NSQM2); 
DEVPWRFOUR : p4_4*M2*p3+SQ* ( 6*P2_3*NSQM2); 

(*CALCULATE SUMS OF DEVIATIONS FROM MEAN TO THE POWER OF THREE,*) 
(*SIJN.p3 & FOUR SUMP4 OF ALL RESIDUALS. 

IF DEVPWRFOUR>(1.OE37-SUMP4) THEN (*GIVE USERS MESSAGE*) 
WRITELN('MESSAGE : OVERFLOW MAY OCCUR. DATA VARY GREATLY.'); 

STJMP3 =SUMP3+DEVPWRTHREE; 
SUMP4 =SUMP4+DEVPWRFOUR; 

G1[I] :=G1STAT(GPSIZE[I] ,DEVPWRTHREE, SS); 
IF GPSIZE[I]>49 THEN 

G2[I]:=G2STAT(GPSIZE[I],DEVPWRFOUR,SS); 
END; 
DF : =TOTAL-GROUP; 
MSE:=WSS/DF; 	 (*MEAN SQUARE ERROR*) 



IF GROUP>1 THEN BEGIN 
GM: =0.0; 
FOR I:=1 TO GROUP DO 

GM:=GMfGPSIZE[I] *MEAN[I]; 
GM:=GM/TOTAL; 	 (*FIRST ESTIMATE OF GRAND MEAN*) 

(*CALCULATE GRAND MEAN, BETWEEN GROUPS SUM OF SQUARES, BSS*) 
(*COEFFICIENT OF VARIATION OF VARIANCES, CV. 	 *) 

P1 :=O.O; 
P2 :=O.O; 
P3 : =0.0; 
FOR I:=1 TO GROUP DO BEGIN 

P:=MEAN[I] -GM; 
P1 :=P1+GPSIZE[I] *P; 
P2 :=P2+GPSIZE[I] * SQR(P); 
P3 :=P3+(GPSIZE[I]_ 1 .0) * SQR(VARIANCE[I]_MSE); 

END; 
GM:=GM+P 1/TOTAL; 
BSS:=P2-SQR(P1)/TOTAL; 
CV:=SQRT(P3/DF)/MSE; 

GETTRANSFORNKURTOSIS(GM,SUMP3, SUMP4,WSS,MSE,GROUP,TOTAL,DF, 
TRANSFORN,KURTOSIS); 

END; 
END (*CAL5TATI5TIC*); 

PROCEDURE SORT(VAR Z 	: DATASET; 
VAR GPSIZE : GROUPSIZE; 

GROUP : INTEGER); 

(*SORT Z IN ASCENDING ORDER BY GROUPS*) 
(*j(IMUM NUMBER OF ITEMS OF Z IS (2 TO POWER BOUND+1)_1*) 

CONST BOUND=8; 

VAR ORDER : BOOLEAN; 
A,AA : REAL; 
I,P,Q,J,K,PP,PQ,L,S : INTEGER; 
IU,IL : ARRAY [O..BOUND] OF INTEGER; 

BEGIN 
FOR I:=1 TO GROUP DO BEGIN 

P:=T(I,1); 
Q:=T(I,GPSIZE[I]); 

(*SORT FROM Z[P]  TO  Z[Q]  IN ASCENDING ORDER *) 

PP:=P; 
ORDER:=(Q-P)>10; 
REPEAT 

IF ORDER THEN 
REPEAT 

PQ:=ROUND((P+Q)/2); 
A:=Z[PQ]; 
K: =P; 
L : =Q; 
IF Z[P]>A  THEN BEGIN 

Z[PQ] :=Z[P]; 



Z[P] :=A; 
A:=Z[PQ]; 

END; 
IF z[Q]<A  THEN BEGIN 

Z[PQ] :=Z[Q]; 
Z[Q] :=A; 
A:=Z[PQ]; 
IF Z[P]>A THEN BEGIN 

Z[PQ] :=Z[P]; 
Z[P] :=A; 
A:=Z[PQ]; 

END; 
END; 
REP EAT 

REPEAT 
L:=L-1; 

UNTIL Z[L]<=A; 
AA:=Z[L]; 
REPEAT 

K:=K+1; 
UNTIL Z[K]>=A; 
IF K<=L THEN BEGIN 

Z[L] :=Z[K]; 
Z[K] :=AA; 

END; 
UNTIL K>L; 
IF L-P>Q-K THEN BEGIN 

IL[S] :=P; 
IU[S] :=L; 
P:=K; 

END ELSE BEGIN 
IL[S] :=K; 
IU[S] :=Q; 
Q : =L; 

END; 
S:=S+1; 

UNTIL Q-P<11; 
ORDER:=(P=PP) AND (P<Q); 
IF NOT ORDER THEN BEGIN 

FOR P:=P+1 TO Q DO BEGIN 
A:=Z[P]; 
K:=P-1; 
IF Z[K]>A  THEN BEGIN 

REPEAT 
Z[K+1] :=Z[K]; 
K:=K-1; 

UNTIL Z[K]<=A; 
Z[K+1} :=A; 

END; 
END; 
S:=S-1; 
IF S>=O THEN BEGIN 

P:=IL[S]; 
Q:=IU[S]; 
ORDER:=(Q-P)>1O; 

END; 
END; 

UNTIL S<O; 
END; 

END (*SORTING*); 



PROCEDURE MEDIANEQDATA( VAR X 	: DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR GROUP 	INTEGER; 
VAR MEDIAN : GROUPSTAT; 
VAR TOOMANYEQ : BOOLEAN); 

(*CALCUJTE MEDIANS AND CHECK WHETHER TOO MANY*) 
(*DATA POINTS IN A GROUP ARE EQUAL 

VAR I,L : INTEGER; 
W REAL; 

BEGIN 
TOOMANYEQ :=FALSE; 
FOR I:=1 TO GROUP DO BEGIN 

L:=T(I,(GPSIZE[I] DIV 2)); 

TOOMANYEQ:=(GPSIZE[I]>4) AND ((X[T(I,1)]=W) OR  (X[T(I,GPSIZE[I])]=W)); 
IF ODD(GPSIZE[I]) THEN 

MEDIAN[I] :=X[L+1] 
ELSE 

MEDIAN[I] :=O.5 * (W+X[L+ 1 J); 
END; 

END (*CALMEDIA.N*); 

PROCEDURE CALMINMAX(VAR X DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR GROUP,MINGPSIZE,MAXGPSIZE INTEGER; 
VAR MINIMUM,MAXIMUM : GROUPSTAT; 
VAR MINDATA,MAXDATA REAL); 

(*CALCUTATE MINIMUM & MAXIMUM OF DATA FOR EACH GROUP AND MINIMUM *) 
(*OF ALL DATA MINDATA, AND MINIMUM AND MAXIMIJN OF GPSIZES 

VAR I : INTEGER; 

BEGIN 
FOR I:=1 TO GROUP DO BEGIN 

MINIMUM[I] :=X[T(I,1)]; 
MAXIMUM[I] :=X[T(I,GPSIZE[I])]; 

END; 
MINDATA :=MINIMUM[ 1]; 
MAXDATA:=MAXIMUN[ 1]; 
MINGPSIZE:=GPSIZE[1]; 
MAXGPSIZE:=GPSIZE[ 1]; 
FOR I:=2 TO GROUP DO BEGIN 

IF GPSIZE[I]<MINGPSIZE THEN 
MINGPSIZE : =GPSIZE[ I] 

ELSE IF GPSIZE[I]>MAXGPSIZE THEN 
MAXGPSIZE:=GPSIZE[I]; 

IF MINIMUN[I]<MINDATA THEN 
MINDATA:=MINIMUM[I]; 

IF MAXIMUM [ I] >MAXDATA THEN 
MAXDATA : =MAXIMUM [I]; 

END; 
END (*CALMINMAX*); 



PROCEDURE CHECKOUTLIEREQDATA( VAR X 	: DATASET; 
VAR GPSIZE GROUPSIZE; 
VAR GROUP,OUTLER : INTEGER; 
VAR TOOMANYEQ 	: BOOLEAN); 

(*CHECK OUTLIERS AND WHETHER OR NOT TOO MANY*) 
(*EQUAL VALUED DATA POINTS IN A GROUP 

VAR I,J,K,L,U:INTEGER; 
W: REAL; 

BEGIN 
OUTLIER:=O; 
FOR I:=1 TO GROUP DO 

IF GPSIZE[I]>4 THEN BEGIN 

(*GET INDICES OF LOWER AND UPPER 25% QUARTILES OF CUT OFF POINTS*) 

J:=GPSIZE[I] DIV 4; 
L:=T(I,J); 
U:=T(I,(GPSIZE[I] -J)); 
W:=1.5* (X[U]_X[L]); 
TOOMANYEQ:=TOOMANYEQ OR (W=O); 
FOR K:=T(I,1) TO L-1 DO 

IF W<(X[L]-X[K])  THEN 
OUTLIER:=OUTLIER+1; 

FOR K:=U+1 TO T(I,GPSIZE[I]) DO 
IF W<(X[K]-X[U])  THEN 

OUTLIER:=OUTLIER+1; 
END; 

END (*{ECKOUTLIEREQDATA*); 

PROCEDURE CONSTRUCTHISTOGRAN( VAR HISTOGRAM GRAPH; 
VAR X DATASET; 
VAR GPSIZE GROUPSIZE; 

GROUP,MAXGPSIZE : INTEGER; 
MINDATA,MAXDATA : REAL); 

VAR MARK : ARRAY [1. .25] OF REAL; 
TIMES,Q,RANGE : REAL; 
I,J,K,MAXFREQUENCY : INTEGER; 

FUNCTION ROUNDREAL(Q : REAL) : REAL; 

(*ROUND Q TO AN 'INTEGER' IN REAL*) 

VAR R : REAL; 

BEGIN 
R:=O.O; 
WHILE Q>32766.0 DO BEGIN (*TO AVOID OVERFLOW*) 

R: =R+3 27 66 .0 ; 
Q: =Q-3 27 66 .0 

END; 
ROUNDREAL : =R+ROUND( Q); 

END (*ROUNDR*); 



PROCEDURE GETSTEPNOOFINTERVALDECPL( 	RANGE : REAL; 
MAXGPSIZE: INTEGER; 
VAR STEP : REAL; 
VAR NOOFINTERVAL,DECPL : INTEGER); 

VAR R,SCALEFACTOR,Q : REAL; 
N : INTEGER; 

BEGIN 
R:=RANGE; 
SCALEFACTOR:=1 .0; 
WHILE R<1.O DO BEGIN 

SCALEFACTOR: =SCALEFACTOR/ 10.0; 
R:=R*10 .0; 

END; 
WHILE R>10.0 DO BEGIN 

SCALEFACTOR:=SCALEFACTOR*10 .0; 
R:=R/10.0; 

END; 

N:=ROUND(R); 
IF (5<N)=(N<11) THEN 

STEP:=SCALEFACTOR 
ELSE BEGIN 

Q:=20.O*R; 
N:=ROUND(Q/ROUND(Q/N)); 
IF ODD(N) AND (N>5) THEN 

N:=N+1; 
IF (N=14) OR (N=18) THEN 

N:=N+2; 
STEP :=N*SCALEFACTOR/20.O; 

IF STEP>3.0 THEN 
STEP :=ROUNDREAL( STEP); 

END; 

N:=ROUND(RANGE/STEP); (*FIRST ESTIMATE OF NO. OF INTERVAL*) 

IF (N<=10) AND (N<MAXGPSIZE) THEN 	(*NO. OF INTERVALS TOO FEW*) 
STEP:=0.5*STEP 

ELSE IF (N>20) OR (N>MAXGPSIZE) THEN (*NO.  OF INTERVALS TOO MANY*) 
STEP :=2.0*STEP; 

NOOFINTERVAL :=ROUND(RANGE/STEP); 

IF (STEP<1.OE-3) OR (STEP>1.OE3) THEN 
DECPL:=O 

ELSE IF STEP<=0.05 THEN 
DECPL:=5 

EL SE 
DECPL:=3; 

END (*GETSTEpNOOFINTVALDECPL*); 



BEGIN 
WITH HISTOGRAM DO BEGIN 

RANGE : =MAXDATA-MINDATA; 
GETSTEPNOOFINTERVALDECPL(RANGE,MAXGPSIZE, STEP ,NOOFINTERVAL ,DECPL); 

MA.XMIDPOINT:=ROUNDREAL((MAXDATA+STEP)/STEP)*STEP; 

(*JUST NO. OF INTERVALS TO COVER MINDATA*) 

Q :=MAXMIDPOINT_(NOOFINTERVAL_1)*STEP; 
WHILE Q)'=MINDATA DO BEGIN 

Q :=Q-STEP; 
NOOF INTERVAL: =NOOFINTERVAT.rI-1; 

END; 
Q : =MAXMIDPOINT+O 5*  STEP; 
FOR I:=1 TO NOOFINTERVAL DO 

MARK[I] :=Q_I*STEP; 
MAXFREQUENCY :=O; 
FOR I:=1 TO GROUP DO BEGIN 

FOR K:=1 TO NOOFINTERVAL DO 
FREQUENCY[I ,K] :=O; 

FOR J:=T(I,GPSIZE[I]) DOWNTO T(I,1) DO BEGIN 
WHILE X[J]<MARK[K]  DO 

K:=K+1; 
FREQUENCY[I,K] :=FREQUENCY[I,K]+1; 

END; 
FOR J:=1 TO K DO 

IF FREQUENCY[I,J]>MAXFREQUENCY ThEN 
MAXFREQUENCY : =FREQUENCY[ I ,J]; 

END; 

IF (GROUP MOD 4 =0) THEN 
HEIGHT:=15 

ELSE IF GROUP<4 THEN 
HEIGHT:=60 DIV GROUP 

ELSE IF (GROUP MOD 3 =0) OR (GROUP=5) THEN 
HEIGHT: =20 

ELSE 
HEIGHT := 15; 

REPRESENTCASE:=(MAXFREQUNCY DIV HEIGHT)+1; 
END; 

END (*CONSTRUCTHISTOGRAM*); 

BEGIN 	 (*PROCEDURE, BASICSTAT*) 
WITH DESCRIPTIVESTATISTIC DO BEGIN 

IF WANTTRANSFORM THEN 
DOTRANSFORMATION(TRANSFORM,DATA,GPSIZE,GROUP ,ADDCONST); 

CALSTATISTIC(DATA,GPSIZE,GROUP ,TOTAL, 
MEAN,VARIANCE,G1,G2,BSS,WSS,MSE,CV,KURTOSIS,TRANSFORM); 

X:=DATA; 	 (*DUPLICATE DATA IN x*) 
SORT(X,GPSIZE,GROUP); 
MEDIANEQDATA(X,GPSIZE,GROUP,MEDIAN,TOOMANYEQ); 
CALMINMAX(X,GPSIZE,GROUP ,MINGPSIZE ,MAXGPSIZE ,MINIMUM,MAXIMUM, 

MINDATA,MAXDATA); 
CHECKOUTLIEREQDATA(X,GPSIZE,GROUP,OUTLIER,TOOMANYEQ); 
CONSTRUCTHISTOGRAM(HISTOGRAM,X,GPSIZE,GROUP,MAXGPSIZE,MINDATA,MAXDATA); 

END; 
END 	 (*BASIC5TAT*); 



SEGMENT PROCEDURE ASSUMPTIONDISTRIBUTION 
(VAR EXAMINEDATA,GETPVALUE BOOLEAN; 
VAR X : DATASET; 
VAR DESCRIPTIVESTATISTIC STATISTIC; 

	

VAR TESTSTATISTIC 	: TEST; 
VAR GPSIZE : GROUPSIZE; 

PROBLEM,GROUP,TOTAL INTEGER; 
BSS,WSS,MSE,KURTOSIS : REAL; 

VAR NORMAL ,EQVARIANCE, SYMMETRY : BOOLEAN); 

(* X IS DUPLICATE OF DATA *) 

PROCEDURE SHAPIROWILKTEST(VAR X DATASET; 
VAR VARIANCE : GROUPSTAT; 
VAR GPSIZE : GROUPSIZE; 

GROUP INTEGER; 
VAR NORMAL, SYMMETRY : BOOLEAN); 

(*DOING SHAPIRO-WILK TEST FOR NORMALITY*) 

FORWARD; 

PROCEDURE SKEWNESSTEST(VAR Gi 	GROUPSTAT; 
VAR GPSIZE : GROUPSIZE; 

GROUP : INTEGER; 
VAR NORNAL,SYMMETRY BOOLEAN); 

(*TESTING NORMALITY USING SAMPLE SKEWNESS*) 

FORWARD; 

PROCEDURE TESTEQUALVARIANCE( VAR VARIANCE : GROUPSTAT; 
VAR GPSIZE 	: GROUPSIZE; 

TOTAL,GROUP : INTEGER; 
CV,KURTOSIS : REAL; 

VAR EQVARIANCE 	BOOLEAN); 

(*TESTING EQUALITY OF VARIANCES*) 

FORWARD; 

FUNCTION TDIST(T : REAL; DF :INTEGER) : REAL; 

(*CALCUJATE ONE TAILED QUANTILE OF T_DISTRIBUTION*) 
(*WITH VALUE T AND DEGREES OF FREEDOM DF 	*) 

FORWARD; 

FUNCTION FDIST(F : REAL; V1,V2 : INTEGER) 	REAL; 

(*CALCUIATE UPPER TAILED QUANTILE OF F_DISTRIUTION*) 
(*WITH VALUE F AND DEGREES OF FREEDOM Vi AND V2 *) 

FORWARD; 



FUNCTION CHISQ(XSQ : REAL; DF : INTEGER) : REAL; 

(*CALCUTE UPPER-TAILED QUANTILE OF CHI-SQUARE DISTRIBUTION*) 
(*WITH VALUE XSQ AND DEGREES OF FREEDOM DF 

FORWARD; 

FUNCTION NOP.MALD(Y : REAL) : REAL; 

(*CALCUTE ONE-TAILED QUANTILE OF NORMAL DISTRIBUTION*) 

FORWARD; 

PROCEDURE TESTASSUMPTION( VAR X 	: DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR DESCRIPTIVESTATISTIC : STATISTIC; 
VAR NORMAL , SYMMETRY, EQVARIANCE : BOOLEAN; 
VAR PROBLEM,GROUP,TOTAL : INTEGER; 
VAR KURTOSIS : REAL); 

BEGIN 
WITH DESCRIPTIVESTATISTIC DO BEGIN 

NORMAL:=TRUE; 
SYMMETRY :=TRUE; 
IF PROBLEM=1 THEN 

SKEWNESSTEST(G1,GPSIZE,GROUP,NORNAL,SYMMETRY) 
ELSE BEGIN 

(*TESTING NORMALITY*) 
(*DECRE NORMAL IF BOTH SHAPIROWILKTEST*) 
(*AND TESTSKEWNESS DECALRE NORMAL*) 

SHAPIROWILKTEST(X,VARIANCE ,GPSIZE,GROUP,NORMAL ,SYMMETRY); 
SKEWNESSTEST(G1 ,GPSIZE,GROUP,NORNAL,SYMMETRY); 

END; 
IF GROUP>1 THEN 

TESTEQUALVARIANCE( VARIANCE ,GPSIZE ,TOTAL ,GROUP ,CV,KURTOSIS, 
EQVARIANCE) 

ELSE 
EQVARIANCE :=TRUE; 

END; 
END (*TESTASSUTION*); 

PROCEDURE PVALUEANDSIGLEV( VAR TESTSTATISTIC : TEST; 
TOTAL 	: INTEGER); 

(*GETTING P-VALUE AND SIGNIFICANCE LEVEL, SIGLEV*) 



VAR P,Q,D,SQD : REAL; 

FUNCTION NORNALDENSITY(XSQ : REAL) : REAL; 

(*NOF.NAL DISTRIBUTION DENSITY*) 

CONST ONEDIVROOT2PI=0.39894228 	(*=1/ROOT(2.PI)*); 

BEGIN 
NORNALDENSITY :=ONEDIVROOT2PI*EXP(_XSQ/2); 

END (*NOp,vfLDSITy*); 

PROCEDURE CHOOSELEVEL(PVAL,A,B,C,D,E : REAL; 
VAR SIGLEV 	: REAL); 

(*CHOOSING THE LEVEL AT WHICH MEAN DIFFERENCES ARE SIGNIFICANT*) 

BEGIN 
IF PVAL<A THEN 

SIGLEV:=O.O 1 
ELSE IF PVAL<B THEN 

SIGLEV:=0.05 
ELSE IF PVAL<C THEN 

SIGLEV:=O. 1 
ELSE IF PVAL<D THEN 

SIGLEV:=0.15 
ELSE IF PVAL<E THEN 

SIGLEV:=0.2; 
IF (GROUP<3) AND ((SIGLEV>0.1) OR (SIGLEV=O)) THEN 

SIGLEV:=0.05; 	(*FOR CONSTRUCTING 95% CON. INTERVAL*) 
EN13 (*CHOOSELEVEL*); 

BEGIN 
WITH TESTSTATISTIC DO BEGIN 

SIGLEV:=O; 
D:=VALUE; 
CASE DISTRIBUTION OF 

FDISTRIBUTION: BEGIN (*F_DISTRIBUTION*) 
PVALUE:=FDIST(D,DFN,DFD); 
CHOOSELEVEL(P VALUE , 0 .0 1,0 .05 ,O . 1,0 . 15 ,O .2 

SIGLEV); 
END; 

TDISTRIBUTION: BEGIN (*T_DISTRIBUTION*) 
PVALUE:=TDIST(D,DFD); 
CHOOSELEVEL(PVALUE , 0 .005 ,O .0 25 ,O .05 ,O .0 75 ,O . 10, 

SIGLEV); 
END; 

KRUSKALWALLIS: BEGIN (*USE F-DISTRIBUTION APPROXIMATION*) 
PVALUE:=FDIST(DFD*D/(DFN*(TOTAL_1_D)),DFN,DFD); 
CHOOSELEVEL(PVALUE,0.01,0.05,0.1,0.15,0.2, 

SIGLEV); 
END; 



SIGNEDWILCOXON 
IF D>13 THEN 

PVALUE :=O 
ELSE BEGIN 

P :=NOOFNONZERO; 
SQD:=SQR(D); 
PVALUE:=NORNALD(D)+NORNALDENSITY(SQD)* 

(3*p*(p+1,0)_1.0)*D*(SQD_3) 
/(10*P*(P+1.0)*(2*P+1.0)); 

END; 
TWOWILCOXON 	: (*APpROX. WILCOXON TEST*) 

IF D>13 THEN (*PVALUE VERY SMALL*) 
PVALUE:=O 

ELSE BEGIN 
P:=GPSIZE[ 1]; 
Q:=GPSIZE[2]; 
SQD:=SQR(D); 
PVALUE:=NORMALD(D)+NORMALDENSITY(SQD)* 

(SQR(P )+SQR( Q )+P*Q+TOTAL) *D*  (SQD-3 ) / 
( 20 .0 *P*Q* (TOTAL+ 1.0 ) ) ; 

END; 
RANDOM 	: PVALUE:=VALUE; 

END; 
END; 

END (*PVALUEANDSIGLEV*); 

PROCEDURE SHAPIROWILKTEST; 

(*DECLARED FORWARD*) 
(*pJ: (VAR X : DATASF; VAR VARIANCE : GROUPSTAT*) 
(* 	VAR GPSIZE : GROUPSIZE; GROUP : INTEGER *) 
(* 	VAR NORMAL,SYMMETRY : BOOLEAN 	 *) 

VAR I,J,K,L,P,Q,R,FIRST : INTEGER; 
WILK : TEXT; 
COEF : ARRAY [1..30] OF REAL; 
D,W,H : REAL; 

BEGIN 

(*$I+*) (*TIJEN I/O CHECK ON*) 

H: =0; 
I:=O; 
REPEAT 

I : = 1+1; 
IF (GPSIZE[I]>2) AND (GPSIZE[I]<51) THEN BEGIN 

P:=P+1; 
IF CPSIZE[I]<31 THEN BEGIN 

FIRST:=3; 
RESET(WILK, 'SHAPWILK.3T030') 

END ELSE BEGIN 
FIRST:=31; 
RESET(WILK, 'SHAPWILK.3 1TO5O'); 

END; 
FOR J:=FIRST TO GPSIZE[I]  DO BEGIN 

K:=J DIV 2; 
FOR L:=1 TO K+3 DO 

READ(WILK,COEF[L]); 
END; 



Q:=T(I,GPSIZE[I])+1; 
R:=T(I,O); 
FOR J:=1 TO K DO 

W:=W+COEF[J] * (X[Q_J]_X[R+J]); 
W:=SQR(W)/(GPSIZE[I] *VARIANCE[I]); 
D:=W_GPSIZE[I] * SQR(COEF[ 1 ])/(GPSIZE[I]_ 1 ); 
IF D<=O THEN 

NORMAL: =FALSE 
ELSE 

H:=H+COEF[K+2]+COEF[K+3] *LN(D/(1_W));( * STANDARDISED NORMAL*) 
CLOSE(WILK); 

END; 
UNTIL (I=GROUP) OR (NOT NORMAL); 
IF (P>1) AND NORMAL THEN BEGIN 

H:=H/SQRT(P);(*STANDARDISED NORMAL*) 
NORMAL:=(H>-1 .645); 

END ELSE IF P=1 THEN 
NORNAL:=W>COEF[K+1]; 

END (*SPAPIROWIU(TEST*); 

PROCEDURE SKEWNESSTEST; 

(*DECR FORWARD*) 
(*pJ:( VAR Gi : GROUPSTAT; VAR GPSIZE : GROUPSIZE 	*) 
(* 	 GROUP : INTEGER; VAR NORMAL, SYMMETRY : BOOLEAN *) 

CONST ROOT1DIV6=0.40824829; 

VAR I,P,Q : INTEGER; 
ONESIDE,TWOSIDE,N,Z,W,C,D : REAL; 

BEG IN 
ONESIDE :=O; 
TWO SIDE :=O; 
P : =0; 
Q : =0; 
FOR I:=1 TO GROUP DO 

IF GPSIZE[I]>7 THEN BEGIN 
IF G1[I]>O  THEN 

Q:=Q#1; 
P:=P+1; 

END; 

REP EAT 
I: =1+1; 
N:=GPSIZE[I]; 
C:=ROOT1DIV6 *G1[I] * SQRT((N_2 ) * (N+ 1 ) * (N+3 )/(N* (N_ 1 ))); 
IF N>7 THEN BEGIN 

W: =SQRT(2*(3*(SQR(N)+27*N_70)*(N+1)*(N+3)/ 
((N_2)*(N+5)*(N+7)*(N1-9))_1) )-1; 

C:=C/SQRT(2/(W-1)); 
Z:=LN(C+SQRT(SQR(C)+1))/SQRT(0.5*LN(W));(*STANDARDIZED NORMAL*); 
SYMNETRY:=SYMMETRY AND (ABS(Z)<1.96); 



IF P>1 THEN BEGIN 
IF ABS(Z)>3 THEN 

NORMAL :=FALSE 
ELSE IF (Q=P) OR (Q=O) THEN 

ONESIDE :=ONESIDE_2*LN(NORMALD(Z)) 
ELSE 

TWOSIDE:=TWOSIDE_2*LN(2*NORMALD(Z)); 
END ELSE IF P=1 THEN 

NORMAL:=ABS(Z)<1 .96; 
END ELSE 

SYMMETRY:=SYMHETRY AND (ABS(C)<1.96); 
UNTIL (I=GROUP) OR (NOT SYMHETRY); 
P :=2*P; 
IF NORMAL THEN 

IF ONESIDE>OTHEN 
NORNAL:=CHISQ(ONESIDE,P)>=0.05 

ELSE 
NORMAL:=(CHISQ(TWOSIDE,P)>0.025) AND (CHISQ(TWOSIDE,P)<=0.975); 

END (*TESTSKENNES5*); 

PROCEDURE TESTEQUALVARIANCE; 

(*DECLAR FORWARD*) 
(*p: (VAR VARIANCE GROUPSTAT; VAR GPSIZE : GROUPSIZE*) 
(* 	 TOTAL,GROUP 
	

INTEGER; CV,KURTOSIS : REAL *) 
(* 	 EQ VARIANCE BOOLEAN 

VAR BARTEST,D : REAL; 
I,J,K : INTEGER; 

BEGIN 
EQVARIANCE:=CV<1;(*IF CV>=1 THEN VERY UNEQUAL*) 
IF EQVARIANCE THEN 

IF GROUP=2 THEN BEGIN (*F_TEST*) 
IF VARIANCE[11<VARIANCE[21 THEN 

J:=2 
ELSE 

J:=1; 
K:=3-J; 
EQVARIANCE:=(FDIST(VARIANCE[J]/VARIANCE[K],GPSIZE[J] - 1,GPSIZE[K] - 1) 

>0.05) 
END ELSE BEGIN (*BARLETT'S TEST*) 

D : =0; 
J:=GROUP-1; 
K: =TOTAL-GROUP; 
FOR I:=1 TO GROUP DO 

D:=D+(GPSIZE[I]_ 1 ) *LN(VARIANCE[I]); 
BARTEST :=K*LN(MSE)_D; 
IF (NOT NORMAL) AND (KURTOSIS>-2) THEN 

D:=1+0.5*KURTOSIS 	(*BOX'S ESTIMATE*) 
ELSE BEGIN 

D:=O; 	 (*BARTLETT'S ESTIMATE*) 
FOR I:=1 TO GROUP DO 

D:=D4-1/(GPSIZE[I]-1.0); 
D:=1+(D_1/K)/(3*J); 

END; 
EQVARIANCE:=(CHISQ(BARTEST/D,J)>0.05); 

END; 
END (*TESTEQUALVARIANCE*); 



FUNCTION TDIST; 

(*DECLARED FORWARD..PARA:( T : REAL; DF : INTEGER*) 

CONST ONEDIVPI=0.3 183098862 (*=1/PI*); 
UPPERBOUND 200; 
LOWERBOUND=1 .OE-15; 

VAR SINESQ,COSINESQ,Z,X,A,D : REAL; 
K : INTEGER; 

BEGIN 
T:=ABS(T); 
IF T>UPPERBOUND THEN 

TDIST:=0.0 
ELSE IF T<LOWERBOUND ThEN 

TDIST:=0.5 
ELSE IF DF<21 THEN BEGIN 

X:=SQR(T); 
D:=X+DF; 
COSINESQ :=DF/D; 
SINESQ :=X/D; 
IF DF=1 THEN 

A: =0 
ELSE BEGIN 

(*EXACT SERIES SUMMATION USING RECURRENCE RELATION*) 

A:=1; 
K:=DF-2; 
WHILE K>1 DO BEGIN 

A:=COSINESQ*A*(K_1)/K+1; 
K:=K-2; 

END; 
END; 
IF ODD(DF) THEN 

TDIST:=0.5_ONEDIVPI*(ATAN(T/SQRT(DF))+SQRT(COSINESQ*SINESQ)*A) 
ELSE 

TDIST :=O .5-0. 5*SQRT(SINESQ)*A; 
END ELSE BEGIN 

(*COpJISH_FISHER TYPE APPROXIMATION*) 

A:=DF-0.5; 
D:=48*SQR(A); 
Z:=A*LN(1+SQR(T)/DF); 
X:=SQRT(Z)*(1+(Z+3)/D1(Z*(Z*(4*Z+33)+240)+855)/ 

( 1O*D (twO .0 8* SQR(Z )+ 100) )) 
TDIST:=NORNALD(X); 

END; 
END (*TDIST*); 



FUNCTION FDIST; 

(*DECLARED FORWARD..PARA: (F REAL; V1,V2 :INTEGER*) 

CONST TWODIVPF0.6366197723675813430755351 (*2/pI*); 
ONETHIRD=0.333333333333 (*1/3*); 
TWOTHIRD=0.666666666667 (*=2/3*); 
TWODIVNINE=0.2222222222 (*=2/9*); 
UPPERBOUND= 1.0 E6; 
LOWERBOUND=1 .OE-15; 

VAR TE4PFDIST,COSINESQ,SINESQ,P,Q,A,B : REAL; 
'I : INTEGER; 
USEREFLEXIVE : BOOLEAN; 

FUNCTION POWER(X,V : REAL) : REAL; 

(*COMPUTE XTO THE POWER OF V*) 

CONST LNBOUND= 1.0 E-3 5; 
EXPBOUND=-86; 

VAR Q : REAL; 

BEGIN 
(*EQUATE POWER(X,V) TO ZERO IF TOO SMALL, GUARD AGAINST IJNDERFLOW*) 

IF X>LNBOUND THEN BEGIN 
Q:=V*LN(X); 
IF Q>EXPBOUND THEN 

POWER: =EXP(Q) 
ELSE 

POWER: =0 
END ELSE 

POWER:=0.O; 
END (*POWER*); 

FUNCTION FINITESERIES(Y : REAL; I,J : INTEGER) : REAL; 

(*COMPUTE EXACT SERIES EXPANSION OF F_DISTRIBUTION*) 

VAR C : REAL; 

BEGIN 
I:=I-2; 
J:=J-2; 
C:=1; 
IF (I-4-J)>O THEN 

(*RECURRENCE RELATION*) 
WHILE 1>1 DO BEGIN 

C :=C*Y*(I+J)/I+1 .0; 
I:=I-2; 

END; 
FINITESERIES:=C; 

END (*FINITE5ERIES*); 



BEGIN 
IF (F>UPPERBOUND) AND (V2>1) THEN 

FDIST:=O 
ELSE IF F<LOWERBOUND THEN 

FDIST:=1 
ELSE BEGIN 

USEREFLEXIVE:=((V1>1) AND (V2=1)) 
OR ((ODD(v1) AND (V1<41)) AND ((NOT ODD(V2)) AND (V2<41))) 
OR ((v1(15) AND (V2>40)); 

IF USEREFLEXIVE THEN BEGIN 
I:=V1; 
V1:=V2; 
V2:=I; 
F:=1/F; 

END; 
IF (v1<41) AND (V2<41) THEN BEGIN 

P:=V1*F; 
Q : =P+V2; 
SINESQ:=P/Q; 	(*SQUARE OF SINE(ATAN(SQRT(P/V2)))*) 
COSINESQ:=V2/Q; 
IF ODD(V1) AND ODD(V2) THEN BEGIN 

Q:=ATAN(SQRT(P/V2)); 
IF V2=1 THEN 

A: =TWOD IVPI*Q 
ELSE BEGIN 

A:=TWODIVPI*(QSQRT(COSINESQ*SINESQ)* 
FINITESERIES(COSINESQ,V2 , 1)); 

IF V1>1 THEN BEGIN 

(*c&jcuJATE Q=((V2_1)/2)1*) 
Q:=1; 
FOR I:=((V2-1) DIV 2) DOWNTO 2 DO 

Q:=Q*I; 

(*CJCUJTE P=2/(SQRT(PI)*((V2_2)/2)1)*) 
(*NOTE: (-1/2)!=ROOT(PI) 
P:=1; 
FOR I:=((V2-2) DIV 2) DOWNTO 0 DO 

P:=P*(I+0.5); 
P :=TWODIVPI/P; 
B:=P*Q*SQRT(SINESQ)*POWER(COSINESQ,0.5*V2)* 

FINITESERIES(SINESQ,V1 ,V2); 
END ELSE 

B:=O; 
END; 
TEKPFDIST:=1-(A-B); 

END ELSE 
TEMPFDIST:=POWER(COSINESQ,0.5*V2)*FINITESERIES(SINESQ,V1,V2); 

END ELSE BEGIN 
P :=TWODIVNINE/V1; 
Q :=TWODIVNINE/ V2; 
B:=POWER(F,ONETHIRD)*(1_Q)+P_1; 
B:=B/SQRT(P+Q*POWER(F,TWOTHIRD)); 
IF B>O THEN 

TEMPFDIST :=NORNALD(B) 
ELSE 

TEMPFDIST:=1-NORNALD(B); 
END; 
IF USEREFLEXIVE THEN 

FDIST 1-TEMPFDIST 
ELSE 

FDIST:=TFJIPFDIST; 
END; 

END (*FDIST*); 



FUNCTION CHISQ; 

(*DECJARfl) FORWARD. PARA:( XSQ : REAL; DF : INTEGER*) 

CONST ONETHIRD0.333333333333 (*1/3*); 
ROOTTWODIVPI=0.79788456 (*=SQUARE ROOT OF 2/PI*); 
LOWERBOUND=1 .OE-16; 
UPPERBOUND=1 .0E6; 
SERIESUPPERBOUND 105; 

VAR I : INTEGER; 
R,RSQ,X,A,ASQ : REAL; 

BEGIN 
IF XSQ<LOWERBOUND. THEN 

CHISQ:=1 .0 
ELSE IF XSQ>UPPERBOUND THEN 

CHISQ :=0 
ELSE IF DF<41 THEN BEGIN 

IF XSQ>SERIESUPPERBOUND THEN 
CHISQ :=0.O 

ELSE BEGIN 

(*EXACT SERIES SUMMATION USING RECURRENCE RELATION*) 

I :=DF-2,; 
R:=O; 
WHILE 1>0 DO BEGIN 

R:=(1+R)*XSQ/I; 
I:=I-2; 

END; 
IF ODD(DF) THEN 

CHISQ:=2*NORMALD(SQRT(XSQ))+ROOTTWODIVPI*EXP(_0.5*XSQ)*R/SQRT(XSQ) 
ELSE 

CHISQ:=EXP(_0.5*XSQ)*(1+R); 
END; 

END ELSE BEGIN 

RSQ :=XSQ_DF_DF*LN(XSQ/DF); 
R:=SQRT(RSQ); 
ASQ:=2.0/DF; 
A:=SQRT(ASQ); 
IF XSQ<DF THEN 

R:=-R; 
X:=R+A*(ONETHIRD_(RSQ_13 .0)*ASQ/162O.0) 

_ASQ*R*(1/36_7*ASQ*(6.0*RSQ+17.0)/38880.0); 
IF X>O THEN 

CHISQ :=NORNALD(X) 
ELSE 

CHISQ:=1-NORNALD(X); 
END; 

END (*QISQ*); 



FUNCTION NORMALD; 

(*DECLARED FORWARD..PARA:( Y :REAL*) 

CONST ONEDIVPI=0.3183098862; 
ONFDIV3ROOT2=0 .23570226; 
ROOT2DIV3=0.47140452; 
UPPERBOUND=5 .25; 
LOWERBOUND=1.OE-16; 

VAR I : INTEGER; 
X,P : REAL; 

BEGIN 
Y:=ABS(Y); 
IF Y<LOWERBOUND THEN 

NORMALD:=0.5 
ELSE IF Y<UPPERBOUND THEN BEGIN 

P :=ONEDIV3ROOT2*Y; 
X :=ROOT2DIV3*Y; 
FOR I:=12 DOWNTO 1 DO 

P :=P+EXP(_SQR(I)/9)*SIN(I*X)/I; 
NORMALD : =0. 5_ONEDIVPI*P; 

END ELSE 
NORMALD:=0.O; 

END (*NOffl4ALD*); 

BEGIN 	 (* PROCEDURE, ASSUMPTIONDISTRIBUTION *) 
IF EXAMINEDATA THEN BEGIN 

TESTASSUMPTION(X, GPSIZE , DESCRIPTIVESTATISTIC, 
NORMAL, SYMMETRY, EQVARIANCE, PROBLEM ,GROUP, TOTAL, 
KURTOSIS); 

EXAXINEDATA: =FALSE; 
END ELSE IF GETPVALUE THEN BEGIN 

PVALUEANDSIGLEV(TESTSTATISTIC, TOTAL); 
GETPVALUE:=FALSE; 

END; 
END 	 (*ASSUMPTIONDISTRIBUTION*); 



SEGMENT PROCEDURE CALCULATION( VAR GETTEST : BOOLEAN; 
VAR DATA,X : DATASET; 
VAR DESCRIPTIVESTATISTIC : STATISTIC; 
VAR TESTSTATISTIC 	: TEST; 
VAR CONFIDENCEINTERVAL : INTERVAL; 

TRANSFORM 	: TYPEOFTRANSFORMATION; 
VAR GPSIZE 	: GROUPSIZE; 
VAR DIFFPAIR : INTEGER; 

BSS,MSE : REAL; 
GROUP,TOTAL,MINGPSIZE : INTEGER; 
MAXGPSIZE,GPSIZEALLOW INTEGER; 
NORMAL , EQVARIANCE BOOLEAN; 

VAR SYMMETRY : BOOLEAN; 
TESTTHEOMEAN BOOLEAN; 
DATAKIND : DATATYPE); 

(* X IS USED FOR PASSING DATA TO FUNCTION RANDOMIZATIONTEST OR RANKTEST *) 
(* PROCEDURE, NOT NECESSARILY DUPLICATE OF THE DATA AND MAY CARRY RESULTS *) 
( ABOUT PAIRWISE COMPARISONS FOR MULTIPLE GROUPS AFTER SECOND CALL. 

FUNCTION RANDOMIZATIONTEST(VAR MEAN : GROUPSTAT; 
VAR Z 	: DATASET; 

N,M : INTEGER) : REAL; 

(*FOR CALCULATING ONE-SIDED P-VALUE OF RANDOMIZATION TEST*) 

FORWARD; 

FUNCTION ONESAMPLETTEST ( SAMPLEMEAN, SAMPLEVARIANCE : REAL; 
SAMPLESIZE : INTEGER) : REAL; 

(*FOR CALCULATING ONE SAMPLE TTEST*) 

FORWARD; 

FUNCTION TWOTTEST( VAR MEAN 	GROUPSTAT; 
VAR GPSIZE GROUPSIZE; 

MSE 	REAL) REAL; 

(*FOR CALCULATING TWO SAMPLE T_TEST*) 

FORWARD; 

PROCEDURE WELCHTTEST(VAR MEAN,VARIANCE : GROUPSTAT; 
VAR GPSIZE : GROUPSIZE; 
VAR DFD : INTEGER; 
VAR WELCHT : REAL); 

(*FOR CALCULATING WELCH T_TEST*) 

FORWARD; 



PROCEDURE WELCHFTEST(VAR MEAN,VARIANCE : GROUPSTAT; 
GROUP,DFN : INTEGER; 

VAR DFD : INTEGER; 
VAR GPSIZE : GROUPSIZE; 
VAR WELCHF : REAL); 

(*FOR CALCULATING WELCH F_TEST*) 

FORWARD; 

PROCEDURE RANKTEST(VAR Z 	: DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR RANKSUM : GROUPSTAT; 

GROUP,TOTAL : INTEGER; 
NAME : STRING; 

VAR VALUE,TIECORR : REAL); 

(*FOR CALCULATING RANK STATISTICS AND TIE CORRECTION FACTOR *) 

(*FOR SIGNED-RANK WILCOXON TEST, GROUP=2 AS POSITIVE NUMBERS*) 
(*ARE PASSED AS FIRST GROUP AND ABSOLUTE VALUES OF NEGATIVE *) 
(*NDMBERS AS THE SECOND GROUP. TOTAL IS THE NIJMBER OF 
(*NON_ZERO DATA 

FORWARD; 

FUNCTION INVERTDIST(P : REAL; N : INTEGER) : REAL; 

(*FOR CALCULATING THE UPPER PERCENTAGE POINT OF T_DISTRIBUTION*) 

FORWARD; 

FUNCTION INVERNORMAL(P REAL) : REAL; 

(*FOR CALCULATING THE UPPER PERCENTAGE POINT OF STD. NORMAL DISTRIBUTION*) 

FORWARD; 

PROCEDURE TESTOFSINGLEMEAN(VAR DATA,X : DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR DESCRIPTIVESTATISTIC STATISTIC; 
VAR TESTSTATISTIC : TEST; 

GPSIZEALLOW 	: INTEGER; 
VAR SYMMETRY : BOOLEAN; 

NORMAL,TESTTHEOMEAN BOOLEAN; 
TRANSFORM TYPEOFTRANSFORMATION); 

(*TEST OF SINGLE MEAN*) 

VAR I : INTEGER; 
GP : GROUPSIZE; 
TTEST,WILCOXTEST : BOOLEAN; 



BEGIN 
TTEST :=(GPSIZE[ 1]>80) 

OR NORMAL OR TESTTHEOMEAN 
OR ((GPSIZE[1]>15) AND SYMMETRY); 

WILCOXTEST :=(NOT TTEST) 
AND (TRANSFORNIDENTITY); 

WITH DESCRIPTIVESTATISTIC, TESTSTATISTIC DO BEGIN 
(*IF T-TEST NOT APPLY, TRY RANDOMIZATION TEST*) 
RANDOMTEST :=(NOT TTEST) 

AND (GPSIZE[1]<20) 
AND (TRANSFORM=IDENTITY); 

IF RANDOMTEST THEN BEGIN 
NOOFNONZERO : =0; 
FOR I:=1 TO GPSIZE[1] DO 

IF DATA[I]<>O THEN BEGIN 
NOOFNONZERO : =NOOFNONZERO+ 1; 
X[NOOFNONZERO] :=DATA[I]; 	(*X NOT DUPLICATE OF DATA*) 

END; 
RANDOMTEST :=NOOFNONZERO<16; 

END; 
IF RANDOMTEST THEN BEGIN 

DFN:=O; 
DFD:=O; 
RANDOMTEST : =TRUE; 
NAME:='PAIRED RANDOMIZATION'; 
VALUE :=RANDOMIZATIONTEST(MEAN ,X,NOOFNONZERO,NOOFNONZERO); 

(*THIp) PARAMETER IS REDUNDANT*) 
VALID :=TRUE; 
SYMMETRY:=TRUE; (*TRUE  UNDER NULL HYPOTHESIS*) 
DISTRIBUTION: =RANDOM; 

END ELSE IF WILCOXTEST ThEN BEGIN 
NAME:='PAIRED SIGNED-RANK WILCOXON'; 
DFN:=O; 
DFD:=O; 
RANKSUMTEST :=TRUE; 
GP [1]:  =0; 
GP[2] :=O; 
FOR I:=1 TO GPSIZE[1] DO 	(* X BEING USED TO PASS DATA, PASSING *) 

IF DATA[I]>O THEN BEGIN (* POSITIVE DATA AS FIRST GROUP 
GP[1]:=GP[1]+1; 	(* AND ABSOLUTE VALUES OF NEGATIVE *) 

X[GP[1]]:=DATA[I]; 	(* DATA AS SECOND GROUP 
END ELSE IF DATA[I]<O  THEN BEGIN 

GP[2] :=GP[2]+ 1 ; 
X[GP[2]+GPSIZEALLOW] := -DATA[I]; 

END; 
NOOFNONZERO:=GP[1]+GP[2]; 
R.ANKTEST(X,GP,RANKSUM,2,NOOFNONZERO,NAME,VALUE,TIECORR); 
DISTRIBUTION: =SIGNEDWILCOXON; 
SYMMETRY:=TRUE; (*TRUE  UNDER NULL HYPOTHESIS*) 
VALID:=TRUE; 

END ELSE BEGIN 
IF TESTTHEOMEAN THEN 

NAME: = 'ONE-SAMPLE T-TEST' 
ELSE 

NAME:='PAIRED T-TEST'; 
DFN:=O; 
DFD:=GPSIZE[1] - 1; 
VALUE:=ONESAMPLETTEST(MEAN[1] ,VARIANCE[1] ,GPSIZE[1]); 
DISTRIBUTION :=TDISTRIBUTION; 
VALID: =TTEST; 

END; 
END; 

END (*TESTOFSINGLF21EAN*); 



PROCEDURE TESTOFTWOMEANS(VAR X 	: DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR DESCRIPTIVESTATISTIC : STATISTIC; 
VAR TESTSTATISTIC : TEST; 

GROUP,TOTAL,MINGPSIZE : INTEGER; 
MSE : REAL; 
NORMAL , SYMMETRY, EQ VARIANCE : BOOLEAN; 
TRANSFORM : TYPEOFTRAN SFORMAT ION; 
DATAKIND : DATATYPE); 

(*TEST OF EQUALITY OF TWO MEANS*) 

BEGIN 
WITH DESCRIPTIVESTATISTIC, TESTSTATISTIC DO BEGIN 

RANDOMTEST :=(NOT NORMAL) 
AND SYMMETRY AND (TRANSFORM=IDENTITY) 
AND ((GPSIZE[11<10) AND (GPSIZE[21<10)); 

RANKSUMTEST : = (DATAKIND=SCORE) 
AND (NOT RANDOMTEST) 
AND (NOT NORMAL) 
AND (SYMMETRY AND EQVARIANCE) 
AND (TRANSFORN=IDENTITY); 

IF RANDOMTEST THEN BEGIN 
NAME:='TWO-SAMPLE RANDOMIZATION'; 
DFN:=O; 
DFD:=O; 
VALUE:=RANDOMIZATIONTEST(MEAN ,X,TOTAL,GPSIZE[ 1]); 
DISTRIBUTION: =RANDOM; 
VALID :=TRUE; 

END ELSE IF RANKSUMTEST THEN BEGIN 
NAME:='WILCOXON RANK SUM'; 
DFN:=O; 
DFD:=O; 
RANKTEST(X,GPSIZE,RANKSUM,GROUP,TOTAL,NAME,VALUE,TIECORR); 
DISTRIBUTION: =TWOWILCOXON; 
VALID: =TRUE; 

END ELSE IF (GPSIZE[1]=GPSIZE[2]) 
OR EQVARIANCE 
OR (MINGPSIZE<10) THEN BEGIN 

NAME:='TWO-SMIPLE T-TEST'; 
DFN:=1; 
DFD : =TOTAL-2; 
DISTRIBUTION: =TDISTRIBUTION; 
VALUE:=TWOTTEST(MEAN ,GPSIZE,MSE); 
VALID :=NORMAL OR SYMMETRY; 

END ELSE BEGIN 
NAME:='WELCH T-TEST'; 
DFN:=1; 
(*DFD TO BE ESTIMATED*) 

WELCHTTEST(MEAN ,VARIANCE,GPSIZE,DFD,VALUE); 
DISTRIBUTION: =TDISTRIBUTION; 
VALID : =NORMAL OR SYMMETRY; 

END; 
END; 

END (*TESTOFTWOMEANS*); 



I 

PROCEDURE TESTOFSEVERALMEANS(VAR X 	: DATASET; 
VAR GPSIZE : GROUPSIZE; 
VAR DESCRIPTIVESTATISTIC : STATISTIC; 
VAR TESTSTATISTIC : TEST; 

GROUP,TOTAL,MINGPSIZE,MAXGPSIZE : INTEGER; 
MSE : REAL; 
NORMAL, SYMMETRY, EQ VARIANCE : BOOLEAN; 
TRANSFORM : TYPEOFTRANSFORMATION; 
DATAKIND : DATATYPE); 

(*TEST OF EQUALITY OF SEVERAL MEANS*) 

VAR SIZENOTTOOSMALL : BOOLEAN; 

BEGIN 
SIZENOTTOOSMALL : =(TOTAL DIV GROUP)>3; 
WITH DESCRIPTIVESTATISTIC, TESTSTATISTIC DO BEGIN 

RANKSUMTEST :=SIZENOTTOO SMALL 
AND (DATAKIND=SCORE) 
AND (NOT NORMAL) 
AND (TRANSFORN=IDENTITY) 
AND SYMMETRY AND EQVARIANCE; 

DFN:=GROUP-1; 
DFD:=TOTAL-GROUP; 
IF RANKSUMTEST THEN BEGIN 

NANE:='KRUSKAL-WALLIS'; 
RANKTEST(X,GPSIZE,RANKSUM,GROUP,TOTAL,NANE,VALUE,TIECORR); 
VALID: =TRUE; 
DISTRIBUTION: =KRUSKALWALLI S; 

END ELSE IF EQVARIANCE 
OR (MINGPSIZE<10) 
OR ((MINGPSIZE=MAXGPSIZE) AND (CV<1)) THEN BEGIN 

NAME:='F-TEST'; 
DISTRIBUTION: =FDISTRIBUTION; 
VALUE:=BSS/(MSE*DFN); 
VALID : =NORIvIAL OR SYMMETRY; 

END ELSE BEGIN 
NANE:='WELCH F-TEST'; 
DISTRIBUTION: =FDISTRIBUTION; 
WELCHFTEST(MEAN,VARIANCE,GROUP,DFN,DFD,GPSIZE,VALUE); 
VALID :=NORNAL OR SYMMETRY; 

END; 
END; 

END (*TESTOFSEVEPMEANS*); 

PROCEDURE PAIRWISECOMPARISONORCONFIDENCEINTERVAL 
(VAR DESCRIPTIVESTATISTIC : STATISTIC; 
VAR TESTSTATISTIC : TEST; 
VAR GPSIZE : GROUPSIZE; 
VAR CONFIDENCEINTERVAL : INTERVAL; 
VAR X : DATASET; 

MSE : REAL; 
VAR GROUP,DIFFPAIR : INTEGER; 

EQVARIANCE : BOOLEAN); 

(*FOR CARRYING OUT PAIR-WISE COMPARISONS*) 
(*OR CONSTRUCTING CONFIDENCE INTERVAL *) 



VAR W,RECIPGPSIZE : GROUPSTAT; 
I,J,DF : INTEGER; 
Q,D,E : REAL; 

PROCEDURE CONSTRUCT(VAR CONFIDENCEINTERVAL : INTERVAL; 
VAR MEAN,VARIANCE : GROUPSTAT; 
VAR GPSIZE GROUPSIZE; 

GROUP,DFD 	: INTEGER; 
MSE,SIGLEV 	REAL); 

(*CONSTRUCT CONFIDENCE INTERVAL*) 

VAR U,D : REAL; 

BEGIN 
IF GROUP=1 THEN BEGIN 

U : =MEAN [1]; 
D:=INVERTDIST(SIGLEV/2,(GPSIZE[1]_1)) * SQRT(VARIANCE[ 1 ]/GPSIZE[ 1 ]) 

END ELSE BEGIN 
U:=MEAN[1] -MEAN[2]; 
D:=INVERTDIST(SIGLEV/2 ,DFD); 
IF EQ VARIANCE THEN 

D:=D* SQRT(MSE* (1/GPSIZE[1]+1/GPSIZE[2])) 
ELSE 

D:=D* SQRT(VARIANCE[1]/GPSIZE[1]+VARIANCE[2]/GPSIZE[ 2 ]); 
END; 
WITH CONFIDENCEINTERVAL DO BEGIN 

UPPERLIMIT:=U+D; 
LOWERLIMIT : =U-D; 

END; 
END (*CONSTRUCT*); 

PROCEDURE CONPARE(V,E REAL; VAR DIFFPAIR : INTEGER); 

(*DOING COMPARISON*) 

VAR .K : INTEGER; 

BEGIN 
IF ABS(V)>E THEN BEGIN 

DIFFPAIR : =DIFFPAIR+ 1; 
K:=2*DIFFPAIR_1; 
X[K] :=I; 	(*HERE X IS USED TO CARRY INFORMATION CONCERNING*) 
X[K+1]:=J; (*PAIRS WITH SIG. DIFFERENT MEANS. 

END; 
END (*C4pE*); 

BEGIN 
DIFFPAIR : =0; 
WITH DESCRIPTIVESTATISTIC, TESTSTATISTIC DO 

IF SIGLEV>O THEN BEGIN 
IF (GROUP<=2) AND (NOT RANDOMTEST) AND (NOT RANKSUMTEST) THEN 

CONSTRUCT( CONFIDENCEINTERVAL ,MEAN ,VARIANCE , GPSIZE, 
GROUP,DFD, 
MSE, SIGLEV) 

ELSE IF GROUP>2 THEN BEGIN 
IF EQVARIANCE THEN BEGIN 

Q :=SIGLEV/(GROUP*(GROUP_1 .0)); 



IF NANE='KRUSKAL-WALLIS' THEN BEGIN 
D:=INVERNORNAL(Q)*SQRT((TOTAL*(TOTAL+i .0)-TIECORR/ 

(TOTAL-1.0))/12.0); 
FOR I:=i TO GROUP DO 

W[I] :=RANKSUM[I]/GPSIZE[I] 
END ELSE (*NANE='F_TEST'*) BEGIN 

D:=INVERTDIST(Q,DFD)*SQRT(MSE); 
W:=MEAN; 

END; 
FOR I:=i TO GROUP DO 

RECIPGPSIZE[I] :=l/GPSIZE[I]; 
FOR I:=i TO GROUP-i DO 

FOR J:=I+1 TO GROUP DO 
COMPARE((W[I} -W[J]), 

(D* SQRT(RECIPGPSIZE[I]+RECIPGPSIZE[J])),DIFFPAIR); 
END ELSE (*NANE='WELCH F_TEST'*) BEGIN 

Q : =0.5*(1_EXP(2/(GROUP*(GROUP_1))*LN(1_SIGLEV))); 
FOR I:=i TO GROUP DO 

W[I] :=VARIANCE[I] /GPSIZE[I]; 
FOR I:=i TO GROUP-i DO 

FOR J:1+i TO GROUP DO BEGIN 
D:=W[I]+W[J]; 
DF :=ROUND(SQR(D)/ 

(SQR(W[I] )/(GPSIZE[I] - i.0)+SQR(W[J])/(GPSIZE[J] - i .0))); 
E:=INVERTDIST(Q,DF)*SQRT(D); 
COMPARE((MEAN[I]-MEAN[J]) , E,DIFFPAIR); 

END; 
END; 

END; 
END; 

END (*PAIRWISECOMPARISONORCONFIDENCEINTERVAL*); 

FUNCTION RANDOMIZATIONTEST; 

(*DECA[) FORWARD..PARA:(VAR MEAN GROUPSTAT; VAR Z : DATASET*) 
(* 	 N,M : INTEGER 
(*NO RANGE CHECK IN THIS PROCEDURE*) 

VAR K : INTEGER; 
OBSERSUM,COMB,C : REAL; 

PROCEDURE ARRANGEANDSCALEUPZ; 

(*j,pGE AND SCALE-UP Z TO MAKE ITS REPRESENTATION MORE DISTINCT*) 

VAR I,K : INTEGER; 

BEGIN 
(*$R_*) 	(*TURN OFF THE RANGE CHECK*) 

IF GROUP=2 THEN BEGIN 
(*RpJNGE Z TO EASE CALCULATION*) 
(*z[i] TO Z[M]  IS THE FIRST SAMPLE*) 
(*z[-i] TO  Z[N]  IS THE SECOND SAMPLE*) 

K: =T (2 ,0)-M; 
FOR I:=M+i TO N DO 

Z[I] :=Z[K+I]; 
END; 
FOR I:=i TO N DO 

Z[I]:=2.OE4*Z[I]; 
END (*ARRANGEANDSCALEIJPZ*); 



PROCEDURE GETOBSERSUM(VAR Z : DATASET; 
VAR OBSERSUM : REAL; 
VAR N,M : INTEGER); 

(*OBTAIN THE OBSERVED SUM*) 

VAR I,J,K : INTEGER; 

BEGIN 
(*$R_*) 	(*mj OFF THE RANGE CHECK*) 

OBSERSUM: =0; 
IF GROUP=1 THEN BEGIN 

(* OBSERSUM=MINIMUM(ABSOLUTE(SUM OF NEGATIVE Z), *) 
ABSOLUTE(SUM OF POSITIVE Z)) *) 

IF MEAN[1]>0 THEN BEGIN 
(*sIJM OF POSITIVE Z > SUM OF NEGATIVE Z*) 
FOR I:=1 TO N DO IF Z[I]<O  THEN 

OBSERSIJM:=OBSERSUM—Z[I]; 
END ELSE 

FOR I:=1 TO N DO IF Z[I]>O THEN 
OBSERSUM:=OBSERSUM+Z[I]; 

END ELSE BEGIN 

(*OBSERSUM IS THE SUM OF THE SAMPLE WITH SMALLER MEAN*) 
IF MEAN[ 1 ]>MEAN[ 2 ] THEN BEGIN 

J:=M+1; 
K: =N; 
M:=N—M; (*SET M TO SAMPLE SIZE OF SECOND SAMPLE*) 

END ELSE BEGIN 
J:=1; 
K: =M; 

END; 
FOR I:=J TO K DO 

OBSERSUM:=OBSERSU*Z[I]; 
END; 

END (*ETBSERSjJM*); 

PROCEDURE TAKEABSOLUTEZ; 

VAR I : INTEGER; 

BEGIN 
(*$R_*) 	(*TURN OFF THE RANGE CHECK*) 

FOR I:=1 TO N DO 
Z[I] :=ABS(Z[I]); 

END (*TAKFABSOLUTEZ*); 



PROCEDURE SORTZ; 

(*SORT Z IN ASCENDING ORDER*) 

VAR I,J : INTEGER; 
C : REAL; 

BEGIN 
(*$R_*) 	(*TURN OFF THE RANGE CHECK*) 
FOR I:=1 TO N DO 

FOR J:=I+1 TO N DO 
IF z[I]>Z[J]  THEN BEGIN 

C:=Z[I]; 
Z[I] :=Z[J]; 
Z[J] :=C; 

END; 
END (*SORTZ*); 

FUNCTION COUNT(VAR Z : DATASET; 
N,R : INTEGER; 
OBSERSUM : REAL) : REAL; 

(*COUNT NUMBER OF COMBINATIONS R OUT OF N NUMBERS WITH SUM<=OBSERSUM*) 

VAR A : ARRAY [1..20] OF 1..20; 
LAST,I,J,K : INTEGER; 
POSSIBLE,SUM,PARSUM,S : REAL; 

BEGIN 
(*$R_*) 	(*TTJpN OFF THE RANGE_CHECK*) 

SUM:=O; 
FOR I:=1 TO R DO BEGIN 

A[I] :=I; 
SUM:=SUN+Z[I]; 

END; 
IF SUM>OBSERSUM THEN 

COUNT : =0 
ELSE BEGIN 

POSSIBLE :=1; 
PARSUM:=SUM-Z[R]; 
S : =OBSERSUN-PARSUM; 
WHILE (z[N]>S)  AND (N>R) DO 

N:=N-1 (*ELIMINATE Z[N] * ); 
IF R=1 THEN 

POSSIBLE :=N 
ELSE IF R<N ThEN BEGIN 

LAST:=N+1-R; 
REP EAT 

IF K<N THEN BEGIN 
PARSUM:=SUM-Z[K]; 
S :=OBSERSUM-PARSUM; 
REPEAT 

K:=K+1; 
IF Z[K]>S  THEN 

K:=N (*SET CONTROL TO BACK_TRACK*) 
ELSE 

POSSIBLE :=POSSIBLE+1 
UNTIL K=N; 
J:=R; 

END ELSE (* K=N  *) BEGIN 



J:=J-1; 	 (*BACK_Tp.CK*) 

K:=A[J]; 
PARSUM:=PARSUM-Z[K]; 
SUM: =PARSUM; 
FOR I:=J TO R DO BEGIN 

K:=K+1; 
A[I] :=K; 
SUM : = SUM4-Z [ K] ; 

END (*K=A[R]  ON EXITING THIS LOOP*); 
IF SUM>OBSERSUM THEN BEGIN 

IF J=1 THEN 
A[1] :=LAST 

ELSE 
K:=N; 	(*SET CONTROL TO BACK_TRACK*) 

END ELSE (*SUM<=OBSERSUM*) 
POSSIBLE :=POSSIBLE+1; 

END; 
UNTIL A[1]=LAST; 

END; 
COUNT:=POSSIBLE; 

END; 
END (*COUNT*); 

FUNCTION COMBINATION(P,Q : INTEGER) : REAL; 

(*COMpUTE COMBINATION Q OUT OF P, THUS P>=Q*) 

FUNCTION FACTORIAL(W:INTEGER) :REAL; 

(*FACTORIAL OF w*) 

VAR F : REAL; 
J : INTEGER; 

BEGIN 
F:=1; 
FOR J:=W DOWNTO 2 DO 

F:=F*J; 
FACTORIAL: =F; 

END (*FACTORIAL*); 

BEGIN 
COMBINATION:=FACTORIAL(P)/(FACTORIAL(Q)*FACTORIAL(P_Q)); 

END (*COMBINATION*); 

BEGIN 
ARRANGEANDSCALEUPZ; 
GETOBSERSUM(Z,OBSERSUM,N,M); 
IF GROUP=1 THEN 

TAKEABSOLUTEZ; 
SORTZ; 
IF GROUP=1 THEN BEGIN 

COMB:=1.0; 	 (*THIS IS EQUAL TO COUNT(N,O)*) 
IF OBSERSUM>O THEN BEGIN 

K:=O; 
REPEAT 

K:=K+1; 
C:=COUNT(Z,N,K,OBSERSUM); 
COMB:=COMB+C; 

UNTIL (K=N) OR (C=O); 
END; 



(* IF OBSERSUM=O THEN ANY SUM OF A NON-EMPTY *) 
(* SUBSET OF Z[1]  TO Z[N] IS > OBSERSUM 	*) 

RANDOMIZATIONTEST : =COMB/ EXP (N*LN( 2)); 
END ELSE 

RANDOMIZATIONTEST :=COUNT(Z ,N,M, OBSERSUM)/COMBINATION(N ,M); 
(*$R+*) 	(*PGE_CHECK BACK ON*) 

END (*RANDOMIZATIONTEST*); 

FUNCTION ONESAIIPLETTEST; 

(*DECLARED FORWARD • .PARA: ( SAMPLEMEAN , SAMPLEVARIANCE : REAL*) 
(* 	 SAMPLESIZE :INTEGER 	 *) 

BEGIN 
ONESAMPLETTEST :=SAMPLEMEAN/SQRT(SAMPLEVARIANCE/SAMPLESIZE); 

END (*ONETTEST*); 

FUNCTION OTTEST; 

(*DECLARED FORWARD..PARA:(VAR MEAN : GROUPSTAT 	 *) 
(* 	 VAR GPSIZE : GROUPSIZE; MSE :REAL*) 

BEGIN 
TWOTTEST:=(MEAN[1]_MEAN[2])/SQRT(MSE * ( 1 /GPSIZE[ 1 ]+ 1 /GPSIZE[ 2 ])); 

END (*TWOTTEST*); 

PROCEDURE WELCHTTEST; 

(*DECLAR FORWARD*) 
(*PARA:(VAR MEAN,VARIANCE GROUPSTAT 	*) 
(* 	VAR GPSIZE : GROUPSIZE 
(* 	VAR DFD : INTEGER; VAR WELCHT : REAL*) 

VAR D,E,F REAL; 

BEGIN 
D:=VARIANCE[1]/GPSIZE[1]; 
E:=VARIANCE[2]/GPSIZE[2]; 
F:=D+E; 
DFD:=ROUND(SQR(F)/(SQR(D)/(GPSIZE[1]-1.0)+SQR(E)/(GPSIZE[2]-1.0))); 
WELCHT:=(MEAN[1] -MEAN[2])/SQRT(F); 

END (*WELCHTTEST*); 



PROCEDURE WELCHFTEST; 

(*DECLARED FORWARD*) 
(*PARA: ( VAR MEAN,VARIANCE : GROUPSTAT 
(* 	 GROUP,DFN : INTEGER; VAR DFD : INTEGER *) 

VAR GPSIZE : GROUPSIZE; VAR WEL.CHF : REAL *) 

VAR W : GROUPSTAT; 
I : INTEGER; 
R,S,U,WM,NN,DN : REAL; 

BEGIN 

S:=O; 
FOR I:=1 TO GROUP DO BEGIN 

WEll :=GPSIZE[I]/VARIANCE[I]; 
U:=U+W[I]; 
S:=S+W[I] *MEAN[I]; 

END; 
WM: = S / U; 
DN:=O; 
R:=O; 
NN:=O; 
FOR I:=1 TO GROUP DO BEGIN 

S :=MEAN[I] -WM; 
R:=R+W[I] * S; 
NN:=NN+W[I] *SQR(S); 
DN:=DN+SQR((U-W[I])/U)/(GPSIZE[I] -1  .0); 

END; 
NN:=(NN-SQR(R)/U)/DFN; 
S :=DN/(SQR(GROUP)-1.0); 
DFD:=ROUND(1/(3.0*S)); 
WELCHF:=NN/(1.0+2*(GROUP_2.0)*S); 

END (*WaCHFTEST*); 



PROCEDURE RANKTEST; 

(*DECRED FORWARD. .PARA:( Z DATASET; GPSIZE : GROUPSIZE 	*) 
RANKSUM GROUPSTAT; 

(* 	 GROUP,TOTAL INTEGER; 	 *) 
(* 	 NAME : STRING; VAR VALUE,TIECORR : REAL*) 

CONST ROOT24=4.8989795 	(*SQUARE ROOT OF 24*); 
ROOT12=3.4641016 	(*SQUARE ROOT OF 12*); 

VAR I,J,K,L,M,FOLD : INTEGER; 
P,Q,S : REAL; 

BEGIN 
FOLD: =0 ; 
TIECORR:=O; 
FOR I:=1 TO GROUP DO 

RANKSUM[I] :=GPSIZE[I]; 
FOR I:=1 TO GROUP DO 

FOR J:=T(I,1) TO T(I,GPSIZE[I]) DO BEGIN 
FOR K:=I TO GROUP DO BEGIN 

IF K>I THEN 
M:=T(K, 1) 

ELSE 
M:=J+1; 

FOR L:=M TO T(K,GPSIZE[K]) DO 
IF Z[J]<Z[L]  THEN 

RANKSUM[K] :=RANKSUM[K]+1 
ELSE IF Z[J]>z[L]  THEN 

RANKSUM[I] :=R.ANKSUM[I]+1 
ELSE BEGIN 

RANKSUM[I] :=RANKSUM[I]+O.5; 
RANKSUM[K] :=RANKSUM[K]+O.5; 
FOLD:=FOLD+1; 

END; 
END; 
IF FOLD>O THEN BEGIN 

TIECORR: =TIECORR+3*FOLD*(FOLD+1 .0); 
FOLD:=O; 

END; 
END; 

IF NANE='PAIRED SIGNED-RANK WILCOXON' THEN 

(*NOFLIZATION FOR APPROXIMATION OF P_VALUE*) 
VALUE:=ROOT24* (ABS(RANKSUM[1]_TOTAL* (TOTAL+1.0)/4)_0.5) 

/SQRT(TOTAL*(TOTAL+1 .0)*(2.0*TOTAL+1 .0)-O .5*TIECORR) 
ELSE IF NANE='WILCOXON RANK SUM' THEN BEGIN 

(*NOpj,1LIzATON FOR APPROXIMATION OF P_VALUE*) 
P:=GPSIZE[1]; 
Q:=GPSIZE[2]; 
VALUE:=ROOT 12* (ABS(RANKSUM[1]_0.5 *P* (TOTAL+1.0))_0..5)/ 

SQRT(P*Q*(TOTAL+1.O_TIECORR/(TOTAL*(TOTAL_1.0)))); 
END ELSE (*NANE='KRUSKAL_WALLIs'*) BEGIN 

P :=TOTAL; 
Q:=0.5*(P+1); 

FOR I:=1 TO GROUP DO 
S:=S+SQR(RANKSUM[I]_GPSIZE[I] *Q)/GPSIZE[I]; 

VALUE:=12.0*S/(P*(P+1)*(1_TIECORR/(p*(SQR(p)_1)))); 
END; 

END (*p(TEST*); 



FUNCTION INVERTDIST; 

(*DECLARED FORWARD. .PARA:( P : REAL; N : INTEGER*) 

(* P: P-VALUE, N: DEGREES OF FREEDOM 

VAR X,XSQ,A,B,C,D,E,Q : REAL; 

BEGIN 
X:=INVERNORMAL(P); 
XSQ:=SQR(X); 
A:=(XSQ+1 )/4 .0; 
B:=((5.0*XSQ+16.0)*XSQ+3.0)/96.0; 
C :=(((3 .O*XSQ+19.0)*XSQ+17)*XSQ_15)/384; 
D:=((((79.0*XSQ4776.0)*XSQ+1482)*XSQ_1920)*XSQ_945)/92 160.0; 
E : =(((((27.O*XSQ+339.0)*XSQ+930.0)*XSQ_1782.0)*XSQ_765.0)*XSQ+17955.0) 

/368640.0; 
Q:=1/N; 
INVERTDIST :=X* ( 1+Q*(A+Q* (Q* (C+Q* (4.Q*E))))); 

END (*IJERTDIST*); 

FUNCTION INVERNORMAL; 

(*DECLARED FORWARD..PARA:(VAR P : REAL *) 

CONST PIDIVTWO=1.570796327 (*=PI/2*); 
TWOPI=6.283185308 	(*=2.PI*); 

VAR T,TSQ : REAL; 

BEGIN 
IF P>1.01E-6 THEN BEGIN 

TSQ : =_PIDIVTWO*LN(4*P*( 1-P)); 
T:=SQRT(TSQ); 
INVERNORNAL:=T*(TSQ*(TSQ*(O.0000043728*TSQ_0.0002881O)+O.0O78365)+1); 

END ELSE BEGIN 
T:=_2*LN(P); 
TSQ:=T_LN(TWOPI*T); 
T :=SQRT(TSQ); 
INVERNORNAL:=T+(0. 1633-4-0.5962/T)/TSQ; 

END; 
END 

BEGIN 	 (*PROCEDURE, CALCULATION*) 
IF GETTEST THEN BEGIN 

GETTEST : =FALSE; 
IF GROUP=1 THEN 



BEGIN 	 (*PROCEDURE, CALCULATION*) 
IF GETTEST THEN BEGIN 

GETTEST :=FALSE; 
IF GROUP=1 THEN 

TESTOFSINGLEMEAN(DATA,X,GPSIZE,DESCRIPTIVESTATISTIC,TESTSTATISTIC, 
GP SIZEALLOW, SYMMETRY, NORMAL, TESTTHEOMEAN, 
TRANSFORM) 

ELSE IF GROUP=2 THEN 
TESTOFTWOMEANS(X,GPSIZE,DESCRIPTIVESTATISTIC, TESTSTATISTIC, 

GROUP, TOTAL ,MINGPSIZE ,MSE, 
NORMAL , SYMMETRY, EQVARLANCE ,TRANSFORM, DATAKIND) 

ELSE 
TESTOFSEVERALMEAN(X,GPSIZE,DESCRIPTIVESTATISTIC, TESTSTATISTIC, 

GROUP, TOTAL ,MINGPSIZE,MAXGPSIZE, 
MS E, 
NORMAL, SYMMETRY, EQVARIANCE, TRANSFORM ,DATAXIND); 

END ELSE 
PAIRWISECOMPARISONORCONFIDENCEINTERVAL(DESCRIPTIVESTATISTIC, 

TESTSTATISTIC, 
GPSIZE, 
CONFIDENCEINTERVAL, 
x, ,  
MS E, 
GROUP, DIFFPAIR, 
EQVARIANCE); 

END 	 (*CALCUJTION*); 



SEGMENT PROCEDURE PRINTRESULTS(VAR DATA,X : DATASET; 
VAR DESCRIPTIVESTATISTIC : STATISTIC; 
VAR TESTSTATISTIC 	: TEST; 
VAR HISTOGRAM 	 : GRAPH; 
VAR CONFIDENCEINTERVAL : INTERVAL; 
VAR GPSIZE : GROUPSIZE; 

DATAKIND : DATATYPE; 
PROBLEr4,GROUP,TOTAL ,OUTLIER : INTEGER; 
DIFFPAIR : INTEGER; 
THEOMEAN,BSS,WSS,MSE,MINDATA : REAL; 

VAR ADDCONST 	: REAL; 
VAR TRANSFORM : TYPEOFTRANSFORNATION; 

PAIRED,TAKEDIFFERENCE : BOOLEAN; 
NORMAL,SYMMETRY 	: BOOLEAN; 
TESTTHEOMEAN ,TOOMANYEQ: BOOLEAN; 

VAR WANTTRANSFORM,RESUME : BOOLEAN); 

VAR Z : TEXT; 
S,CHANNEL : STRING; 
HARDCOPY : BOOLEAN; (*TRUE ONLY IF A HARD COPY HAS BEEN PRODUCED*) 

PROCEDURE DRAWLINE( VAR Z : TEXT; 
D : INTEGER; 
TRAIL : CHAR); 

(*PROCEDURE FOR DRAWING LINE OF D LENGTH WITH TRAIL*) 

FORWARD; 

PROCEDURE CHOOSECHANNEL( VAR Z : TEXT; 
VAR CHANNEL : STRING; 
VAR HARDCOPY : BOOLEAN); 

VAR DUMMYSTR : STRING; 
J : INTEGER; 

BEGIN 
WRIT ELN; 
WRITELN('WHAT KIND OF OUTPUT DO YOU WANT ?'); 
WRITELN('NOTE: YOU MAY HAVE MORE THAN ONE OUTPUT,'); 
WRITELN(' 	THESE WILL BE PRODUCED SEQUENTIALLY.'); 
WRITELN('l. CONSOLE:'); 
WRITELN('2. PRINTER:'); 
READINTEGER(1 ,2 ,FALSE,DUMMYSTR,J); 
CASE J OF 

CHANNEL:='CONSOLE:'; 
CHANNEL:='PRINTER:'; 

END; 
IF NOT HARDCOPY THEN 

HARDCOPY:=(CHANNELO'CONSOLE:'); 
REWRITE(Z ,CHANNEL); 
WRITELN(Z, 'RESULTS'); 

END (*QjOOSEC}4N*); 



PROCEDURE PRINTDATA( VAR Z : TEXT; 
VAR DESCRIPTIVESTATISTIC : STATISTIC; 
VAR DATA : DATASF; 
VAR GPSIZE : GROUPSIZE; 

GROUP,TOTAL : INTEGER; 
ADDCONST 	: REAL; 
TESTTHEOMEAN ,PAIRED, TAKED IFFERENCE : BOOLEAN); 

VAR I,J : INTEGER; 

BEG IN 
WRITELN(Z,'DATA 
IF TESTTHEOMEAN THEN 

WRITELN(Z,'OBSERVATION - THEORETICAL MEAN') 
ELSE IF PAIRED THEN 

WRITELN(Z,'FIRST GROUP - SECOND GROUP') 
ELSE IF TAKEDIFFERENCE THEN 

WRITELN(Z,'FIRST OBSERVATION - SECOND OBSERVATION'); 
IF GROUP>1 THEN 

WRITELN(Z,'TOTAL NUMBER =',TOTAL); 
IF WANTTRANSFORM THEN BEGIN 

WRITE(Z,'TAKING '); 
CASE TRANSFORM OF 

SQUAREROOT 	: WRITE(Z,'SQUARE ROOT'); 
LOGARITHMIC : WRITE(Z,'LOGARITHM'); 
RECIPROCAL 	: WRITE(Z,'RECIPROCAL'); 
ARCSINE 	: WRITE(Z,'ARCSINE'); 

END; 
WRITE(Z,' (DATA'); 
IF ADDCONST<>O THEN 

WRITE(Z,' +',ADDCONST:8:3); 
WRITELN(Z,')'); 
IF TRANSFORM=ARCSINE THEN BEGIN 

WRITELN(Z,'NOTE: 0 IS COUNTED AS 0.25/GROUP SIZE AND 100'); 
WRITELN(Z,' 	AS 100-(0.25/GROUP SIZE) BEFORE TRANSFORMATION.'); 

END ELSE IF TRANSFORN=LOGARITHMIC THEN 
WRITELN(Z,'NOTE: THE BASE OF THE LOGARITHM IS 10.'); 

END; 
WITH DESCRIPTIVESTATISTIC DO 

FOR I:=1 TO GROUP DO BEGIN 
WRITELN(Z); 
IF GROUP>1 THEN 

WRITE(Z, 'GROUP' ,I:3); 
WRITELN(Z,'NUMBER =':12,GPSIZE[I]:4,'MINIMUM  =':13, 

MINIMUM[I] :10:3, 
'MAXIMUM =' :11,MAXIMUM[I] :10:3); 

FOR J:=1 TO GPSIZE[I]  DO BEGIN 
WRITE(Z,DATA[T(I,J)] :13:3); 
IF ((J MOD 6)=O) OR (J=GPSIZE[I])  THEN 

WRITELN(Z); 
END; 

END; 
WRITELN(Z); 

END (*PRINTDATA*); 



PROCEDURE PRINTHISTOGRAM(VAR Z : TEXT; 
VAR HISTOGRAM : GRAPH; 

GROUP 	: INTEGER); 

VAR I,J,K,P,Q,L,M : INTEGER; 

BEGIN 
WITH HISTOGRAM DO BEGIN 

WRITELN(Z, 'HISTOGRAM'); 
DRAWLINE(Z,9, 'I); 

I : =0; 
M:=60 DIV HEIGHT; 
REPEAT 

P:=I+1; 
L:=1; 
WRITELN(Z); 
WRITE(Z,'MIDPOINTS' :12); 
IF GROUP>1 THEN 

WRITE(Z,'GROUP' :7,P:3); 
WHILE (L<M) AND (P<GROUP) DO BEGIN 

P:=P+1; 
L:=L+1; 
WRITE(Z,'GROUP' :(HEIGHT-3),P:3); 

END; 
WRITELN(Z); 
DRAWLINE(Z,78, '-'); 
FOR J:=1 TO NOOFINTERVAL DO BEGIN 

WRITE(Z,(MAXMIDPOINT_(J_1)*STEP):12:DECPL,'  

REPEAT 
P:=P+1; 
L:=L+1; 
Q :=HEIGHT; 
K:=FREQUENCY[P,J]; 
WHILE K>=REPRESENTCASE DO BEGIN 

WRITE(Z,'*'); 
Q:=Q-1; 
K: =K-REPRESENTCASE; 

END; 
IF K>0 THEN BEGIN 

WRITE(Z, 'X'); 
Q:=Q-1; 

END; 
WRITE(Z,' ':Q); 

UNTIL (PGROUP) OR (L=M); 
WRITELN(Z); 

END; 
I:=I+L; 
DRAWLINE(Z,78, '-'); 

UNTIL I=GROUP; 
WRITE(Z,'NOTE : AN * REPRESENTS ',REPRESENTCASE,' CASE(S).'); 
IF REPRESENTCASE> 1 THEN 

WRITELN(Z,' AN X REPRESENTS LESS THAN ',REPRESENTCASE, 
CASES.'); 

WRITELN(Z); 
END; 

END (*pRINThISTOGRA*); 



PROCEDURE PRINTDESCRIPTIVESTATI STIC(VAR Z : TEXT; 
VAR DESCRIPTIVESTATISTIC : STATISTIC; 

GROUP : INTEGER); 

VAR I,J : INTEGER; 
A : REAL; 
PRINTALLG2 : BOOLEAN; 

BEGIN 
WRITELN(Z); 
WRITELN(Z,'SUMMARY' :42); 
DRAWLINE(Z,80, I'); 

IF GROUP>1 THEN 
WRITE(Z, 'GROUP') 

ELSE 
WRITE(Z,' 

WRITELN( Z,' MEAN 	MED IAN STD • DEV • STD • ERROR OF MEAN RANGE', 
'Gi' :7, 'G2' :9); 

DRAWLINE(Z,80,'-'); 
PRINTALLG2 : =TRUE; 
WITH DESCRIPTIVESTATISTIC DO BEGIN 

FOR I:=1 TO GROUP DO BEGIN 
IF GROUP>1 THEN 

WRITE(Z,I:3); 
A:=SQRT(VARIANCE[I]); 
WRITE(Z,MEAN[I]:1O:3,MEDIAN[I]:1O:3,A: 11 : 4 ,(A/SQRT(GPSIZE[I])): 13 : 4 , 

(MAxIMUM[I] -MINIMUM[I]): 14 : 3 ,G 1 [I] :8:3); 
IF GPSIZE[I]>49 THEN 

WRITELN(Z,G2[I]:10:3) 
ELSE BEGIN 

WRITELN(Z,'*' :7); 
PRINTALLG2 : =FALSE; 

END; 
END; 
DRAWLINE(Z,80,'='); 
IF GROUP>1 THEN 

WRITELN(Z,'COEFFICIENT OF VARIATION OF GROUP VARIANCES =',CV:6:3); 
END; 
WRITELN(Z,'NOTE: Gi AND G2 ARE FISHER''S G-STATISTICS.'); 
IF NOT PRINTALLG2 THEN 

WRITELN(Z,' 	* : TOO FEW DATA FOR USEFUL ESTIMATE.'); 
IF OUTLIER>O THEN BEGIN 

WRITELN(Z,' 	INTERPRET TABLE ABOVE WITH CARE, BECAUSE'); 
WRITELN(Z,OUTLIER:9,' DATA POINT(S) MAY BE TOO EXTREME.'); 

END; 
END (*PRINTDESCRIPTIVESTATISTIC*); 



PROCEDURE PRINTTESTSTATISTIC( VAR Z : TEXT; 
VAR TESTSTATISTIC : TEST; 
VAR GPSIZE 	: GROUPSIZE; 

BSS,WSS,MSE : REAL); 

VAR I : INTEGER; 

PROCEDURE PRINTRANKSUM(VAR Z : TEXT; 
VAR RANKSUM : GROUPSTAT; 
VAR GPSIZE : GROUPSIZE; 

NOOFNONZERO : INTEGER); 

VAR I : INTEGER; 

BEGIN 
WRITELN(Z); 
IF GROUP=1 THEN BEGIN 

DRAWLINE(Z,30, =1); 

WRITELN(Z,'RANK SUM':30); 
DRAWLINE(Z,30, '-'); 
WRITELN(Z,'POSITIVE DATA' ,RANKSUM[1]:15:1); 
WRIT ELN(Z, 'NEGATIVE DATA' ,RANKSUM[2]:15:1); 
DRAWLINE(Z,30,'='); 
IF NOOFNONZERO<GPSIZE[1] THEN 

WRITELN(Z,'NOTE: ZEROS ARE EXCLUDED FROM CALCULATIONS.'); 
END ELSE BEGIN 

DRAWLINE(Z,48, I'); 
WRITELN(Z,'GROUP 	RANK SUM GROUP SIZE MEAN OF RANK SUM'); 
DRAWLINE(Z,48,'-'); 
FOR I:=1 TO GROUP DO 

WRITELN(Z,I:3,RANKSUM[I]:1O:1,GPSIZE[I]:1O,(RANKSUM[I]/ 
GPSIZE[I]):16:3); 

DRAWLINE(Z,48,'') 
END; 

END (*pRIp(SjJM*); 

PROCEDURE PRINTANOVATABLE(VAR Z : TEXT; 
DFN,DFD : INTEGER; 
BSS,WSS,MSE : REAL); 

BEGIN 
WRITELN(Z,'ANALYSIS OF VARIANCE' :40); 
DRAWLINE(Z,60, '='); 
WRITELN(Z,'SOURCE','D. F.':15,' 	SUN OF SQUARES 

'MEAN SQUARES'); 
DRAWLINE(Z,60, '-'); 
WRITELN(Z,'BETWEEN GROUPS' ,DFN:6,BSS:18:4,(BSS/DFN):18:4); 
WRITELN(Z,'WITHIN GROUPS' ,DFD:7,WSS:18:4,MSE:18:4); 
DRAWLINE(Z,60, '-'); 
WRITELN(Z, 'TOTAL' ,(DFN+DFD) : 15, (BSS-I-WSS) : 18 :4); 
DRAWLINE(Z,60, '='); 

END (*PRINTANOVATABLE*); 



BEGIN 
WRITELN(Z); 
WITH TESTSTATISTIC DO BEGIN 

IF TESTTHEOMEAN THEN 
WRITELN(Z, 'THEORETICAL MEAN TESTED =' ,THEOMEAN:8:3); 

IF NAME='F-TEST' THEN 
PRINTANOVATABLE(Z ,DFN,DFD ,BSS,WSS,MSE) 

ELSE IF RANKSUMTEST THEN 
PRINTRANKSUM(Z ,RANKSUM,GPSIZE,NOOFNONZERO); 

WRITE(Z,'TEST STATISTIC IS ',NANE); 
IF ((NOT RANDOMTEST) AND (NOT RANKSUMTEST)) OR (GROUP>2) THEN BEGIN 

WRITELN(Z,'=' ,VALUE:1O:4); 
IF NOT RANKSUMTEST THEN BEGIN 

WRITE(Z,'WITH DEGREES OF FREEDOM ='); 
IF DFN>1 THEN 

WRITE(Z,DFN,' AND 
WRITELN(Z ,DFD); 

END; 
END ELSE IF RANKSUMTEST THEN 

(*SIGNED_PK WILCOXON TEST OR WILCOXON RANK SUM TEST*) 
WRITELN(Z, '=' ,RANKSUM[1] :12:1); 

WRITELN(Z); 
WRITE(Z,'P-VALUE =',PVALUE:8:6); 
IF GROUP<3 THEN 

WRITE(Z,' 	(ONE-SIDED)'); 
WRITELN(Z); 
IF (GROUP<3) AND (PVALUE<0.5) AND (NOT RANDOMTEST) THEN 

WRITELN(Z,'=' :9,(2*PVALUE):8:6,' 	(TWO-SIDED)'); 
WRITELN(Z); 

END; 
END (*PRINTTESTSTATISTIC*); 

PROCEDURE PRINTCONFIDENCEINTERVAL(VAR Z : TEXT; 
VAR CONFIDENCEINTERVAL : INTERVAL; 
VAR TESTSTATISTIC : TEST; 

TESTTHEOMEAN , TAKEDIFFERENCE : BOOLEAN; 
GROUP : INTEGER); 

(*COIDENCE INTERVAL FOR MEAN*) 

BEGIN 
WITH TESTSTATISTIC, CONFIDENCEINTERVAL DO 

IF (NOT RANDOMTEST) AND (NOT RANKSUMTEST) THEN BEGIN 
WRITE(Z,ROUND(100*(1_SIGLEV)):3,'% CONFIDENCE INTERVAL OF 
IF TAKEDIFFERENCE OR (GROUP=2)THEN 

WRITE(Z,'DIFFERENCE OF MEANS (FIRST-SECOND)') 
ELSE 

WRITE( Z, ' EXPERIMENTAL MEAN'); 
IF TESTTHEOMEAN THEN 

WRITELN(Z,' - THEORETICAL MEAN') 
ELSE 

WRITELN(Z); 
WRITELN(Z,' BASED ON ',NAME,' IS'); 
WRITELN(Z,'(',LOWERLIMIT:10:4,',':3,UPPERLIMIT:15:4,')'); 

END; 
END (*PRINTCONFIDENCEINTERVAL*); 



PROCEDURE PRINTPAIRWISEDIFFERENCE(VAR Z : TEXT; 
VAR X : DATASET; 
VAR TESTSTATISTIC : TEST; 

DIFFPAIR 	: INTEGER); 

VAR I,J : INTEGER; 

BEGIN 
IF DIFFPAIR>O THEN BEGIN 

DRAWLINE(Z,78, '-'); 
WRITELN(Z, 'MEANS ARE DIFFERENT AT' ,TESTSTATISTIC.SIGLEV:6:3, 

ol SIG. LEVEL.'); 
FOR I:=1 TO DIFFPAIR DO BEGIN 

J:=2*I; 
WRITELN(Z,'DUE TO DIFFERENCE OF MEANS OF GROUPS',ROUND(X[J -1]):4, 

AND',ROUND(X[J]):4); 
END; 
DRAWLINE(Z,78, '-'); 

END; 
END (*PRINTPAIRWISEDIFFERENCE*); 

PROCEDURE COMNENTFIRSTPROBLEM(VAR Z : TEXT; 
SYMMETRY : BOOLEAN); 

BEGIN 
IF NOT SYMMETRY THEN BEGIN 

WRITELN(Z,'COMMENT: DATA ARE NOT SYMMETRICAL, THE MEAN MAY BE A POOR'); 
WRITELN(Z, 'MEASURE OF CENTRAL TENDENCY, AND THE MEDIAN IS PREFERABLE.'); 

END; 
END (*COMNENTFIRSTPROBLEM*); 

PROCEDURE COMMENTSECONDPROBLEM(VAR Z : TEXT; 
TOOMANYEQ : BOOLEAN); 

BEGIN 
IF TOOMANYEQ THEN BEGIN 

WRITE(Z,'COMHENT: DATA 
IF GROUP>1 THEN 

WRITE(Z,'FOR AT LEAST ONE OF THE GROUPS 
WRITELN(Z,'HAVE TOO MANY EQUAL VALUES.'); 

END; 
END (*COMMENTSECONDPROBL*); 



PROCEDURE GIVEWARNING( VAR Z : TEXT; 
VAR TESTSTATISTIC : TEST; 

GROUP : INTEGER; 
NORMAL,SYMMETRY : BOOLEAN); 

BEGIN 
WRITELN(Z); 
WITH TESTSTATISTIC DO BEGIN 

IF (NOT VALID) OR (NOT SYMMETRY) THEN BEGIN 
WRITELN(Z, 'WARNING:'); 
DRAWLINE(Z,8, I'); 
IF NOT SYMMETRY THEN BEGIN 

WRITE(Z,'DATA I); 

IF GROUP>1 THEN 
WRITE(Z,'FOR AT LEAST ONE OF THE GROUPS 

WRITELN(Z, 'ARE NOT SYMMETRICALLY DISTRIBUTED.'); 
END; 
IF (NOT VALID) AND (NOT NORMAL) THEN BEGIN 

WRITELN(Z,'NORMALITY ASSUMPTION DOES NOT HOLD.'); 
WRITELN(Z,'EFFECTS OF DEPARTURE FROM THE ASSUMPTION CAN'); 
WRITELN(Z, 'INVALIDATE THE TEST STATISTIC.'); 
WRITELN(Z); 
WRITELN(Z,'YOU SHOULD CONSULT A STATISTICIAN.'); 
DRAWLINE(Z,33, 'I); 

END; 
END; 

END; 
END (*CIVENARNING*); 

PROCEDURE CONSULT(VAR Z : TEXT); 

BEGIN 
WRITELN(Z,'NOTE:'); 
WRITELN(Z,'l. THE NULL HYPOTHESIS IS NOW THE EQUALITY OF MEANS 
WRITELN(Z,' 	ON THE TRANSFORMED DATA.'); 
WRITELN(Z,'2. IF CONCLUSIONS DRAWN FROM ANALYSES ON UNTRANSFORMED DATA'); 
WRITELN(Z,' AND TRANSFORMED DATA ARE DIFFERENT THEN CHOOSE THE ONE IN'); 
WRITELN(Z,' WHICH BOTH Gi AND G2 (IF GIVEN) STATISTICS ARE SMALLER OR'); 
WRITELN(Z,' MORE EQUAL OTHERWISE CHOOSE THE ONE WITH THE MORE MEANINGFUL' 

); 
WRIT ELN(Z,' 	INTERPRETATION.'); 

END (*CONSULT*); 



PROCEDURE CHOOSETRANSFORMATION(VAR DATA 	: DATASET; 
VAR GPSIZE : GROUPSIZE; 

DATAKIND : DATATYPE; 
VAR TRANSFORM : TYPEOFTRANSFORNAT ION; 
VAR MINDATA,ADDCONST : REAL; 
VAR RESUME : BOOLEAN); 

VAR I,L : INTEGER; 
S 	: STRING; 

FUNCTION SOMEDATAAREZERO(VAR DATA : DATASET; 
VAR GPSIZE : GROUPSIZE) : BOOLEAN; 

(*CHKING FOR DATA EQUAL ZERO*) 

VAR I,J,I( : INTEGER; 

BEGIN 
IF MINDATA<O THEN BEGIN 

I : =0; 
REP EAT 

I:=I+1; 
J:=T(I,0); 
K:=T(I,GPSIZE[I]); 
REPEAT 

J : =J+ 1; 
UNTIL (DATA[J]=O) OR (J=K); 

UNTIL (I=GROUP) OR (DATA[J]=O); 
SOMEDATAAREZERO : =DATA[ J] =0; 

END ELSE IF MINDATA>O THEN 
SOMEDATAAREZERO : =FALS E 

ELSE 
SOMEDATAAREZERO : =TRUE; 

END (*SOMEDATASREZERO*); 

PROCEDURE FIXADDCONST(DATAKIND : DATATYPE; 
VAR MINDATA,ADDCONST : REAL); 

(*FIx MINIMUM VALUE TO BE ADDED BEFORE TRANSFORNATION*) 

VAR DATUM,LOWERBOUND,UPPERBOUND : REAL; 

BEGIN 
READFILE('ADDCONST.TEXT'); (*READ EXPLANATION FROM DISK FILE*) 
WRITE('NUMBER TO BE ADDED MUST BE '); 
IF (TRANSFORN=LOGARITHMIC) OR (TRANSFORM=RECIPROCAL) THEN 

WRITE('LARGER THAN') 
ELSE 

WRITE('AT LEAST'); 
WRITELN(ABS(MINDATA) :10:3); 
CASE DATAKIND OF 

SCORE,CONTINUOUS : LOWERBOUND:=-1 .0E30; 
COUNT,BINOMIAL : LOWERBOUND:=O; 

END; 
IF DATAKIND=BINOMIAL THEN 

UPPERBOUND : = 100 
ELSE 

UPPERBOUND:=1.OE30; 
REPEAT 

GETDATA('PLEASE ENTER A VALID NUMBER. ','NUMERIC', 
LOWERBOUND , UPPERBOUND, S ,DATUM); 

UNTIL ((DATUM>ABS(MINDATA)) 
AND ((TRANSFORN=RECIPROCAL) OR (TRANSFORM=LOGARITHMIC))) 

OR ((DATUM>=ABS(MINDATA)) AND (TRANSFORN=SQUAREROOT)); 
ADDCONST : =DATUM; 

END (*FIyDDCON5T*): 



BEGIN 
WRIT ELN; 
WRITELN('WHICH TRANSFORMATION DO YOU WANT TO TRY ?'); 
WRITELN('l. SQUARE ROOT.'); 
WRITELN( '2. LOGARITHMIC.'); 
WRITELN('3. RECIPROCAL.'); 
IF TRANSFORM=ARCSINE THEN BEGIN 

L : =5; 
WRITELN('4. ARCSINE.'); 

END ELSE 
L:=4; 

WRITELN(L,'. NOT TO PROCEED.'); 
WRITELN; 
IF TRANSFORM=IDENTITY THEN 

WRITELN('NO HELP GIVEN, BECAUSE NO SUITABLE TRANSFORMATION FOUND.') 
ELSE BEGIN 

WRITE('TRANSFORNATION SUGGESTED IS 
CASE TRANSFORM OF 

SQUAREROOT : WRITELN('SQUARE ROOT.'); 
LOGARITHMIC : WRITELN('LOGARITHMIC.'); 
RECIPROCAL : WRITELN('RECIPROCAL.'); 
ARCSINE 	: WRITELN('ARCSINE.'); 

END; 
END; 
WRIT FIN; 
READINTEGER(1 ,L,FALSE, S,I); 
RESUME:=I<L; 
IF RESUME THEN BEGIN 

CASE I OF 
BEGIN 

TRANSFORM: =SQUAREROOT; 
IF MINDATA<O THEN 

FIXADDCONST(DATAKIND ,MINDATA,ADDCONST) 
ELSE 

ADDCONST:=O; 
END; 
BEGIN 

TRANSFORM: =LOGARITHMIC; 
IF MINDATA<=O THEN 

FIXADDCONST( DATAKIND ,MINDATA, ADDCONST) 
ELSE 

ADDCONST:=O; 
END; 
BEGIN 

TRANSFORM: =RECIPROCAL; 
IF SOMEDATAAREZERO(DATA,GPSIZE) THEN 

FIXADDCONST(DATAKIND ,MINDATA,ADDCONST) 
ELSE 

ADDCONST:=O; 
END; 
BEGIN 

TRANSFORM: ARCSINE; 
ADDCONST : =0; 

END; 
END; 
WRITELN; 
WRITELN('PLEASE WAIT I ANALYSIS CONTINUES.'); 

END; 
END (*CHOOSETRANSFORNATION*); 



PROCEDURE DRAWLINE; 

(*DECRED FORWARD..PARA:(VAR Z : TEXT; D : INTEGER; TRAIL : CHAR*) 

VAR V : INTEGER; 

BEGIN 
FOR V:=1 TO D DO 

WRITE(Z,TRAIL); 
WRITELN(Z); 

END (*DRAWLINE*); 

BEGIN 	 (*suB_pRoBpI, PRINTRESULTS*) 
WRITELN; 
WRITELN('HERE IS YOUR RESULT.'); 
WRIT ELN; 
HARDCOPY: =FALSE; 
REPEAT 

CHOOSECHANNEL( Z ,CHANNEL ,HARDCOPY); 
PRINTDATA(Z ,DESCRIPTIVESTATISTIC, DATA, GPSIZE,GROUP ,TOTAL ,ADDCONST, 

TESTTHEOMEAN ,PAIRED , TAKEDIFFERENCE); 
PRINTHISTOGRAM(Z ,HISTOGRAM,GROUP); 
PRINTDESCRIPTIVESTATISTIC(Z ,DESCRIPTIVESTATISTIC, GROUP); 
CASE PROBLEM OF 

BEGIN 
COMMENTFIRSTPROBLEM( Z , SYMMETRY); 
PRINTCONFIDENCEINTERVAL(Z ,CONFIDENCEINTERVAL, 

TESTSTATISTIC, 
TESTTHEOMEAN , TAKED IFFERENCE, 
GROUP); 

END; 

BEGIN 
PRINTTESTSTATISTIC(Z,TESTSTATISTIC,GPSIZE,BSS,WSS,MSE); 
IF GROUP<3 THEN 

PRINTCONFIDENCEINTERVAL(Z ,CONFIDENCEINTERVAL, 
TESTSTATISTIC, 
TESTTHEOMEAN , TAKED IFFERENCE, 
GROUP) 

ELSE 
PRINTPAIRWISEDIFFERENCE(Z,X,TESTSTATISTIC, DIFFPAIR); 

COMMENTSECONDPROBLEM(Z ,TOOMANYEQ); 
GIVEWARNING( Z , TESTSTATISTIC,GROUP, NORMAL ,SYMMETRY); 

END; 
END; 
IF WANTTRANSFORM THEN 

CONSULT(Z); 
CLOSE(Z); 



WRITELN; 
IF NOT HARDCOPY THEN 

WRITELN('WARNING : YOU HAVE NOT GOT ANY OUTPUT ON THE PRINTER.'); 
WRITE('DO YOU WANT FURTHER OUTPUT ?'); 
READSTR(FALSE, 5); 
IF (PROBLEM=2) AND (S='N') AND (GROUP>1) THEN 

IF (NOT WANTTRANFORN) AND (DATAKIND<>SCORE) THEN BEGIN 
IF NOT TESTSTATISTIC.VALID THEN BEGIN 

WRITELN('NOTE: THE STATISTICAL ASSUMPTIONS ON WHICH THIS TEST'); 
WRITELN(' 	DEPENDS ARE NOT MET.'); 
WRITE('DO YOU WISH TO TRANSFORI4 YOUR DATA ?'); 

END ELSE 
WRITELN('DO YOU WISH TO ANALYSE YOUR DATA ON SOME OTHER', 

SCALE ?'); 
READSTR(FALSE, S); 
RESUME:=S='Y'; 
IF RESUME THEN BEGIN 

WRITELN; 
WRITELN('WARNING: THE RESULTS OF THE ANALYSIS JUST', 

NOW WILL BE LOST.'); 
WRITE('DO YOU WANT FURTHER OUTPUT ?'); 
READSTR(FALSE, S); 

END; 
END; 

UNTIL S='N'; 
IF RESUME THEN BEGIN 

CHOOSETRANSFORNATION(DATA,GPSIZE,DATAKIND ,TRANSFORN, 
MINDATA,ADDCONST ,RESUME); 

WANTTRANSFORN: =RESUME; 
END; 

END 	 (*pRIRE5ULT*); 



EXANPLES 



EXAMPLE 1. 

RESULTS 
DATA 
FIRST GROUP - SECOND GROUP 

NUMBER = 9 
	

MINIMUM = 	-5.000 MAXIMUM = 	9.000 

	

-1.000 
	

1.000 	-2.000 	-5.000 	2.000 	-1.000 

	

-1.000 
	

9.000 	-2.000 

HISTOGRAM 

MIDPOINTS 

10.000 ) 
9.000 ) * 
8.000 ) 
7.000 ) 
6.000 ) 
5.000 ) 
4.000 ) 
3.000 ) 
2.000 ) * 
1.000 ) * 
0.000 ) 

-1.000 ) *** 
-2.000 ) ** 
-3.000 ) 
-4.000 ) 
-5.000 ) * 
-6.000 ) 

NOTE : AN * REPRESENTS 1 CASE(S). 

SUMMARY 

NEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	Cl 	G2 

0.000 	-1.000 	3.9051 	1.3017 	14.000 	1.603 	* 

NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS. 
* : TOO FEW DATA FOR USEFUL ESTIMATE. 
INTERPRET TABLE ABOVE WITH CARE, BECAUSE 

1 DATA POINT(S) MAY BE TOO EXTREME. 

TEST STATISTIC IS PAIRED RANDOMIZATION 
P-VALUE = 0.531250 	(ONE-SIDED) 



EXAMPLE 2. 

RESULTS 
DATA 
TOTAL NUMBER =21 

GROUP 1 	NUMBER = 11 	MINIMUM = 

	

1.000 	1.000 	1.000 

	

2.000 	0.000 	0.000 

GROUP 2 	NUMBER = 10 	MINIMUM = 

	

0.000 	0.000 	0.000 

	

0.000 	1.000 	1.000 

HISTOGRAM 

0.000 MAXIMUM = 	4.000 

	

1.000 	1.000 	1.000 

	

4.000 	3.000 

0.000 MAXIMUM = 	5.000 

	

0.000 	0.000 	0.000 
5.000 

MIDPOINTS GROUP 
	

GROUP 2 

5.500 ) 
5.000 ) 
	 * 

4.500 ) 
4.000 ) * 
3.500 ) 
3.000 ) * 
2.500 ) 
2.000 ) * 
1.500 ) 
1.000 ) ****** 
	 ** 

0.500 ) 
0.000 ) ** 
	 * ** * * * * 

-0.500 ) 

NOTE : AN * REPRESENTS 1 CASE(S). 

SUMMARY 
= ============================= =============== 

GROUP MEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	Gi 	G2 

1 	1.364 	1.000 	1.2060 	0.3636 	4.000 	1.226 	* 

2 	0.700 	0.000 	1.5670 	0.4955 	5.000 	2.785 	* 

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.259 
NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS. 

* : TOO FEW DATA FOR USEFUL ESTIMATE. 
INTERPRET TABLE ABOVE WITH CARE, BECAUSE 

1 DATA POINT(S) MAY BE TOO EXTREME. 

TEST STATISTIC IS TWO-SAMPLE T-TEST= 	1.0937 
WITH DEGREES OF FREEDOM =19 

P-VALUE = 0.143888 	(ONE-SIDED) 
= 0.287775 	(TWO-SIDED) 

95% CONFIDENCE INTERVAL OF DIFFERENCE OF MEANS (FIRST-SECOND) 
BASED ON TWO-SAMPLE T-TEST IS 

( 	-0.6065 , 	1.9338) 
COMMENT: DATA FOR AT LEAST ONE OF THE GROUPS HAVE TOO MANY EQUAL VALUES. 

WARNING: 

DATA FOR AT LEAST ONE OF THE GROUPS ARE NOT SYMMETRICALLY DISTRIBUTED. 
NORMALITY ASSUMPTION DOES NOT HOLD. 
EFFECTS OF DEPARTURE FROM THE ASSUMPTION CAN 
INVALIDATE THE TEST STATISTIC. 

YOU SHOULD CONSULT A STATISTICIAN. 



EXAMPLE 3. 

RESULTS 
DATA 
TOTAL NIJMBER =60 

GROUP 	1 	NUMBER = 17 MINIMUM = 0.600 	MAXIMUM = 2.300 
1.230 2.300 1.250 1.000 0.900 0.800 
0.700 0.600 0.950 0.980 1.100 1.200 
1.100 1.100 1.200 1.300 1.200 

GROUP 	2 	NUMBER = 31 MINIMUM = 0.500 	MAXIMUM = 8.700 
0.500 1.500 1.500 1.400 1.350 1.440 
0.660 0.650 0.670 0.680 0.900 1.000 
1.000 1.200 1.400 1.300 1.500 2.300 
1.800 1.700 1.660 1.500 7.800 7.700 
7.900 8.000 6.000 6.500 6.300 6.200 
8.700 

GROUP 	3 	NUMBER = 12 MINIMUM = 0.560 	MAXIMUM = 0.980 
0.700 0.800 0.900 0.870 0.980 0.780 
0.800 0.900 0.560 0.660 0.780 0.800 

HISTOGRAM 

MIDPOINTS 	GROUP 1 GROUP 2 	 GROUP 3 

9.000 ) 
8.500 ) * 
8.000 ) *** 

7.500 ) * 
7.000 	) 
6.500 ) ** 
6.000 ) ** 

5.500 ) 
5.000 ) 
4.500 ) 
4.000 	) 
3.500 	) 
3.000 ) 
2.500) 	* * 
2.000 ) * 
1.500 ) 	** *********** 
1.000 ) 	************ **** 
0.500 ) 	** ***** *** 

0.000 ) 

NOTE : AN * REPRESENTS 1 CASE(S). 



SUMMARY 

GROUP MEAN MEDIAN 	STD. DEV. 	STD. ERROR OF MEAN RANGE Gi 	G2 

1 1.112 1.100 0.3652 	0.0886 1.700 2.088 	* 

2 2.991 1.500 2.8302 	0.5083 8.200 1.019 	* 

3 0.794 0.800 0.1148 	0.0331 0.420 -0.496 	* 

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.930 
NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS. 

* : TOO FEW DATA FOR USEFUL ESTIMATE. 
INTERPRET TABLE ABOVE WITH CARE, BECAUSE 

1 DATA POINT(S) MAY BE TOO EXTREME. 

TEST STATISTIC IS WELCH F-TEST= 	14.3380 
WITH DEGREES OF FREEDOM =2 AND 32 

P-VALUE = 0.000036 

MEANS ARE DIFFERENT AT 0.010 SIG. LEVEL. 
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 2 
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 3 
DUE TO DIFFERENCE OF MEANS OF GROUPS 2 AND 3 

WARNING: 
======== 
DATA FOR AT LEAST ONE OF THE GROUPS ARE NOT SYMMETRICALLY DISTRIBUTED. 
NORMALITY ASSUMPTION DOES NOT HOLD. 
EFFECTS OF DEPARTURE FROM THE ASSUMPTION CAN 
INVALIDATE THE TEST STATISTIC. 

YOU SHOULD CONSULT A STATISTICIAN. 



RESULTS 
DATA 
TOTAL NUMBER =60 
TAKING SQUARE ROOT (DATA) 

GROUP 	1 	NUMBER = 17 MINIMUM = 0.775 	MAXIMUM = 1.517 
1.109 1.517 1.118 1.000 0.949 0.894 
0.837 0.775 0.975 0.990 1.049 1.095 

1.049 1.049 1.095 1.140 1.095 

GROUP 	2 	NUMBER = 31 MINIMUM = 0.707 	MAXIMUM = 2.950 

0.707 1.225 1.225 1.183 1.162 1.200 
0.812 0.806 0.819 0.825 0.949 1.000 

1.000 1.095 1.183 1.140 1.225 1.517 
1.342 1.304 1.288 1.225 2.793 2.775 
2.811 2.828 2.449 2.550 2.510 2.490 
2.950 

GROUP 	3 	NUMBER = 12 MINIMUM = 0.748 	MAXIMUM = 0.990 
0.837 0.894 0.949 0.933 0.990 0.883 
0.894 0.949 0.748 0.812 0.883 0.894 

HI STOGRAM 

MIDPOINTS 	GROUP 1 GROUP 2 	 GROUP 3 

3.200 ) 
3.000 ) * 
2.800 	) **** 

2.600 ) ** 

2.400 	) ** 

2.200 ) 
2.000 	) 
1.800 	) 
1.600 	) 	* * 

1.400 	) ** 

1.200 ) 	*** ********** 

1.000 ) 	********** **** **** 

0.800 ) 	*** ***** ******** 

0.600 ) 

NOTE 	AN * REPRESENTS 1 CASE(S). 



SUMMARY 

GROUP MEAN MEDIAN 	STD. DEV. STD. ERROR OF MEAN RANGE G1 	G2 

1 1.043 1.049 0.1595 0.0387 0.742 1.312 	* 
2 1.561 1.225 0.7569 0.1359 2.242 0.838 	* 
3 0.889 0.894 0.0659 0.0190 0.242 -0.696 	* 

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.897 
NOTE: G1 AND G2 ARE FISHER'S G-STATISTICS. 

* : TOO FEW DATA FOR USEFUL ESTIMATE. 
INTERPRET TABLE ABOVE WITH CARE, BECAUSE 

1 DATA POINT(S) MAY BE TOO EXTREME. 

TEST STATISTIC IS WELCH F-TEST= 	17.0557 
WITH DEGREES OF FREEDOM =2 AND 35 

P-VALUE = 0.000007 

MEANS ARE DIFFERENT AT 0.010 SIG. LEVEL. 
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 2 
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 3 
DUE TO DIFFERENCE OF MEANS OF GROUPS 2 AND 3 

WARNING: 

DATA FOR AT LEAST ONE OF THE GROUPS ARE NOT SYMMETRICALLY DISTRIBUTED. 
NORMALITY ASSUMPTION DOES NOT HOLD. 
EFFECTS OF DEPARTURE FROM THE ASSUMPTION CAN 
INVALIDATE THE TEST STATISTIC. 

YOU SHOULD CONSULT A STATISTICIAN. 

NOTE: 
THE NULL HYPOTHESIS IS NOW THE EQUALITY OF MEANS 
ON THE TRANSFORMED DATA. 
IF CONCLUSIONS DRAWN FROM ANALYSES ON UNTRANSFORMED DATA 
AND TRANSFORMED DATA ARE DIFFERENT THEN CHOOSE THE ONE IN 
WHICH BOTH Gi AND G2 (IF GIVEN) STATISTICS ARE SMALLER OR 
MORE EQUAL OTHERWISE CHOOSE THE ONE WITH THE MORE MEANINGFUL 
INTERPRETATION. 



EXAMPLE 4. 

RESULTS 
DATA 
TOTAL NUMBER =22 

GROUP 1 	NUMBER = 11 	MINIMUM = 	53.000 MAXIMUM = 137.000 

	

57.000 	120.000 	101.000 	137.000 	119.000 	117.000 

	

104.000 	73.000 	53.000 	68.000 	118.000 

GROUP 2 	NUMBER = 11 	MINIMUM = 	22.000 MAXIMUM = 	96.000 

	

89.000 	30.000 	82.000 	50.000 	39.000 
	

22.000 

	

57.000 	32.000 	96.000 	31.000 	88.000 

HISTOGRAM 

MIDPOINTS GROUP 	1 GROUP 	2 
- 	

- 150.000 ) 
140.000 ) 	* 
130.000 ) 
120.000 ) 	**** 
110.000 ) 
100.000 ) 	** * 

90.000 ) ** 

80.000 ) * 
70.000 ) 	** 
60.000 ) 	* * 
50.000 ) 	* * 
40.000 ) * 
30.000 ) *** 

20.000 ) * 

NOTE : AN * REPRESENTS 1 CASE(S). 

GROUP MEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	Gi 	G2 

1 	97.000 - 104.000 	29.1067 	8.7760 	84.000 -0.411 	* 

2 	56.000 	50.000 	27.8352 	8.3926 	74.000 	0.333 	* 

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.045 	 - 
NOTE: GI. AND G2 ARE FISHER'S G-STATISTICS. 

* : TOO FEW DATA FOR USEFUL ESTIMATE. 

TEST STATISTIC IS TWO-SAMPLE T-TEST= 	3.3764 
WITH DEGREES OF FREEDOM =20 

P-VALUE = 0.001500 	(ONE-SIDED) 
= 0.003000 	(TWO-SIDED) 

99% CONFIDENCE INTERVAL OF DIFFERENCE OF MEANS (FIRST-SECOND) 
BASED ON TWO-SAMPLE T-TEST IS 

( 	6.4529 , 	75.5471) 



EXAMPLE 5. 

RESULTS 
DATA 
TOTAL NUMBER =24 

GROUP 1 	NUMBER = 6 	MINIMUM = 	56.000 MAXIMUM = 	95.000 
64.000 	72.000 	68.000 	77.000 	56.000 	95.000 

GROUP 2 	NUMBER 
78.000 

GROUP 3 	NUMBER 
75.000 

GROUP 4 	NUMBER 
55.000  

6 
91.000 

6 
93.000 

6 
66.000 

MINIMUM = 
97.000 

MINIMUM = 
78.000 

MINIMUM = 
49.000 

77.000 MAXIMUM = 
82.000 

.63.000 MAXIMUM = 
71.000 

49.000 MAXIMUM = 
64.000  

97.000 

	

85.000 	77.000 

93.000 

	

63.000 	76.000 

70.000 

	

70.000 	68.000 

HI STOGRAN 

MIDPOINTS GROUP 	1 GROUP 	2 GROUP 	3 GROUP 	4 

100.000 ) 
95.000) * * * 
90.000 ) * 
85.000 ) * 
80.000 ) ** * 
75.000 ) 	* * ** 
70.000 ) 	** * ** 
65.000 ) 	* * ** 
60.000 ) 
55.000 ) 	* * 
50.000 ) * 
45.000 ) 

NOTE : AN * REPRESENTS 1 CASE(S). 

SUMMARY 

GROUP MEAN MEDIAN 	STD. DEV. STD. ERROR OF MEAN RANGE G1 G2 

1 72.000 70.000 13.3417 5.4467 39.000 0.963 * 
2 85.000 83.500 7.7717 3.1728 20.000 0.679 * 
3 76.000 75.500 9.8793 4.0332 30.000 0.808 * 

- 4 62.000 65.000 8.2219 3.3566 21.000 ...0939 * 

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.462 
NOTE: G1 AND G2 ARE FISHER'S G-STATISTICS. 

* : TOO FEW DATA FOR USEFUL ESTIMATE. 



ANALYSIS OF VARIANCE 

SOURCE 	D. F. 	SUM OF SQUARES 	MEAN SQUARES 

BETWEEN GROUPS 	3 	1636.50 	 545.500 
WITHIN GROUPS 	20 	2018.00 	 100.900 

TOTAL 	 23 	3654.50 

TEST STATISTIC IS F-TEST= 	5.4063 
WITH DEGREES OF FREEDOM =3 AND 20 

P-VALUE = 0.006876 

MEANS ARE DIFFERENT AT 0.010 SIG. LEVEL. 
DUE TO DIFFERENCE OF MEANS OF GROUPS 2 AND 4 



EXAMPLE 6. 

RESULTS 
DATA 
TOTAL NUMBER =39 

GROUP 	1 	NUMBER = 	16 MINIMUM = 6.000 	MAXIMUM = 13.000 

12.000 13.000 12.000 8.000 8.000 9.000 
10.000 10.000 10.000 7.000 10.000 6.000 
7.000 7.000 7.000 7.000 

GROUP 	2 	NUMBER = 	23 MINIMUM = 6.000 	MAXIMUM = 17.000 

6.000 8.000 10.000 8.000 10.000 10.000 
11.000 11.000 17.000 16.000 15.000 14.000 
15.000 15.000 14.000 14.000 12.000 13.000 
13.000 12.000 12.000 13.000 13.000 

HISTOGRAM 

MIDPOINTS GROUP 	1 GROUP 	2 

18.000 ) 
17.000 ) * 

16.000 ) * 

15.000 ) *** 

14.000 ) *** 

13.000 ) 	* 
12.000 ) 	** *** 

11.000 ) ** 

10.000 ) 	**** *** 

9.000 ) 	* 
8.000 ) 	** ** 

7.000 ) 	***** 
6.000) * * 

5.000 ) 

NOTE : AN * REPRESENTS 1 CASE(S). 

SUMMARY 

GROUP MEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	G1 	G2 

1 	8.937 	8.500 	2.1438 	0.5359 	7.000 	0.510 	* 

- 2 	12.261 	13.000 	2.7339 	0.5701 	11.000 -0.490 	* 

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.224 
NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS. 

* : TOO FEW DATA FOR USEFUL ESTIMATE. 

GROUP 	RANK SUM GROUP SIZE MEAN OF RANK SUM 

1 	198.5 	16 	 12.406 
2 	581.5 	23 	 25.283 

TEST STATISTIC IS WILCOXON RANK SUM= 	198.5 

P-VALUE = 0.000372 	(ONE-SIDED) 
= 0.000744 	(TWO-SIDED) 



EXAMPLE 7. 

RESULTS 
DATA 
FIRST GROUP - SECOND GROUP 

NUMBER = 	30 MINIMUM = -3.000 MAXIMUM = 8.000 
-2.000 0.000 0.000 1.000 0.000 0.000 
4.000 4.000 1.000 1.000 5.000 3.000 
5.000 3.000 -1.000 1.000 -1.000 5.000 
8.000 2.000 2.000 2.000 -3.000 -2.000 
1.000 4.000 8.000 2.000 3.000 -1.000 

HI STOGRAM 

MIDPOINTS 

9.000 ) 
8.000 ) ** 
7.000 ) 
6.000 ) 
5.000 ) *** 
4.000 ) *** 
3.000 ) *** 
2.000 ) **** 
1.000 ) ***** 
0.000 ) **** 
-1.000 ) *** 
-2.000 ) ** 
-3.000 ) * 
-4.000 ) 

NOTE : AN * REPRESENTS 1 CASE(S). 

MEAN 	MEDIAN STD. DEV. STD. ERROR OF MEAN RANGE 	Gi 	G2 

1.833 	1.500 	2.7428 	0.5008 	11.000 	0.498 	* 

NOTE: Gi AND G2 ARE FISHER'S G-STATISTICS. 
* : TOO FEW DATA FOR USEFUL ESTIMATE. 

TEST STATISTIC IS PAIRED T-TEST= 	3.6611 
WITH DEGREES OF FREEDOM =29 

P-VALUE = 0.000498 (ONE-SIDED) 
= 0.000996 	(TWO-SIDED) 

99% CONFIDENCE INTERVAL OF DIFFERENCE OF MEANS (FIRST-SECOND) 
BASED ON PAIRED T-TEST IS 

( 	0.4532 , 	3.2135) 



EXAMPLE 8. 

RESULT S 
DATA 
TOTAL NUMBER =14 

GROUP 1 	NUMBER = 	5 MINIMUM = 1.000 	MAXIMUM = 9.000 
4.500 9.000 3.500 1.000 5.500 

GROUP 2 	NUMBER = 	5 MINIMUM = 2.000 	MAXIMUM = 11.000 
2.000 8.500 10.000 11.000 6.500 

GROUP 3 	NUMBER = 	4 MINIMUM = 7.000 	MAXIMUM = 14.000 

7.000 12.500 14.000 12.500 

HISTOGRAM 

MIDPOINTS GROUP 1 	 GROUP 2 

15.000 ) 
14.000 ) 
13.000 ) 
12.000 ) 

	

11.000 ) 	 * 

	

10.000 ) 	 * 

	

9.000) * 	 * 
8.000 ) 

	

7.000 ) 	 * 

6.000 ) * 
5.000 ) * 
4.000 ) * 
3.000 ) 

	

2.000 ) 	 * 

1.000 ) * 
0.000 ) 

NOTE : AN * REPRESENTS 1 CASE(S). 

SUMMARY 

GROUP 3 

* 
** 

* 

================================================================================ 
GROUP MEAN MEDIAN 	STD. DEV. 	STD. ERROR OF MEAN RANGE Gi 	G2 

1 4.700 4.500 	2.9283 	1.3096 8.000 0.458 
2 7.600 8.500 	3.5602 	1.5922 9.000 -1.137 	* 

3 11.500 12.500 	3.0822 	1.5411 7.000 -1.673 	* 

COEFFICIENT OF VARIATION OF GROUP VARIANCES = 0.176 
NOTE: Gi AND G2 ARE FISHER'S C-STATISTICS. 

* : TOO FEW DATA FOR USEFUL ESTIMATE. 

GROUP RANK SUM 	GROUP SIZE 	MEAN OF RANK SUM 

1 	22.0 	5 	 4.400 
2 	37.0 	5 	 7.400 
3 	46.0 	4 	 11.500 

========= == 

TEST STATISTIC IS KRUSKAL-WALLIS= 	6.4198 

P-VALUE = 0.023638 

MEANS ARE DIFFERENT AT 0.050 SIC. LEVEL. 
DUE TO DIFFERENCE OF MEANS OF GROUPS 1 AND 3 


