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HMM-based speech synthesis system [Yoshimura et al. ‘00]

- Vocoded (but smooth and stable)

- Generate speech parameters from statistics 
Spectral, excitation, and duration parameters

- Easy to change speaker characteristics 
Spectral, excitation, and duration parameters 
can easily be adapted to new speakers (or emotions)

Introduction

Blizzard Challenge: open evaluation of speech synthesis 
                                      systems using common database

2005: Basic system + STRAIGHT, GV, & HSMM
2006: 2005 + full-covariance modeling
2007: 2006 + speaker-adaptive approach

Entry from HTS (HMM-based Triple S) working group



STRAIGHT with mixed excitation
Parameter generation algorithm 
considering global variance (GV) : 
       Diagonal covariance GV pdf

Hidden semi-Markov model (HSMM)

Parameter generation algorithm 
considering GV :
       Full covariance GV pdf

Full covariance modeling: 
       MLLT/ Semi-tied covariance

 2005

 2006

 2007 

STRAIGHT with mixed excitation

CSMAPLR+MAP speaker adaptation 

Hidden semi-Markov model (HSMM)

Parameter generation algorithm 
considering GV :
       Full covariance GV pdf

Full covariance modeling: 

Strategy: 
Speaker-dependent approach

    Adaptive training & adaptation

       CSMAPLR transforms

Speaker-adaptive approach  

History & The New HTS-2007 System

Mixed-gender acoustic modeling

Average voice model



HSMM-based 
CSMAPLR+MAP adaptation

Overview: HTS-2007

HSMM-based 
speaker adaptive training

STRAIGHT mel-cepstrum, 
F0, Aperiodicity measures

Parameter generation 
considering GV using 
full covariance GV pdf

STRAIGHT mel-cepstral 
vocoder with mixed excitation

Full covariance modeling 
using CSMAPLR transforms

Training of MSD-HSMM

Context-dependent 

multi-stream MSD-HSMMs
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- HSMM-based adaptation and adaptive training 
                        [J. Yamagishi et al. IEICE Trans. 2007]  

Comparison points in this talk

- CSMAPLR+MAP speaker adaptation  
                        [J. Yamagishi et al. ICASSP 2007]  
- Mixed-gender modeling [J. Yamagishi et al. SSW6]  
- Analysis/comparison of speaker-dependent and 
  speaker-adaptive approaches using 3 to 30 min. of data
                        [J. Yamagishi et al. ICASSP 2006]  

- Full-covariance modeling using CSMAPLR transforms
- Analysis/comparison of speaker-dependent and speaker-
  adaptive approaches using 1 to 8 hours of speech data

Reports in previous talks

Report in this talk



Diagonal covariance:
     Ignore within-frame correlations
Full-covariance: 
     Direct modeling: 
           Number of model parameters drastically increases
           Estimation accuracy becomes worse

Full-Covariance Modeling
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Diagonal precision (inverse cov.) matrix of state  
Approximated full precision matrix of state
Square transform  matrix

An approximation method to full-covariance matrix 
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CSMAPLR Full Covariance Modeling

Precise approximation

Robust estimation even from limited amount of data

Speaker adaptation:
         Mean:           (Piecewise) linear regression
         Covariance:  From diagonal to full

Advantages w.r.t. full-covariance modeling
Multiple transforms can be estimated

Structural MAP (SMAP) criterion [K. Shinoda et al. ‘01] 
can be used to estimate the multiple transforms

CSMAPLR Transform
transform for mean transform for covariance 

µ̂i = Ai
−1µi −A−1

i bi Σ−1
i = A"

i Σ−1
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µi bimean vector of state bias vector of statei i



Speaker-dependent vs adaptive approach
Comparison of speaker-dependent and adaptive approaches
                                           [J. Yamagishi et al. ICASSP 2006]

Speaker-adaptive (SA) approaches outperform speaker-dependent 
(SD) approach using 5 to 30 minutes of speech data.

How about more than 30 minutes of speech data? 
      6 minutes, 1 hour, and 8 hours
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Experimental Conditions: English

Database

CMU-ARCTIC database
      4 male speakers & 2 female speakers  
      6,780 utterances 
ATRECSS (Blizzard Challenge 2007) corpus
      1 male speaker
      6,579 utterances 

Sampling rate 16 kHz

Spectral Analysis  512-order STRAIGHT analysis 

Feature Vector
 0–24 or 0–40 STRAIGHT mel-cepstrum,
 logarithmic F0, 5 aperiodicity measures,
 and their delta, delta-delta parameters

Model
Context-dependent state-tied multi-stream 
5-state left-to-right MSD-HSMM   
Gaussian pdf: Single mixture, Diagonal covariance



Experimental Conditions

Evaluation 
Methods

 MOS test (naturalness)
      1: poor — 5: natural
 CCR test (similarity)
      1: very dissimilar — 5: very similar to reference 

# of subjects  33 persons

# of test 
sentences 14 sentences randomly chosen from 50 sentences

Calibration 
system  Festival speech synthesis system (unit-selection)



Experimental results: MOS scores



Experimental results: Similarity 



Experimental Conditions: Japanese

Database

ATR Japanese speech database (B-set, C-set)
      7 male speakers & 5 female speakers  
      5,230 utterances 
Japanese speech database of NIT and TIT
      3 male speakers & 1 female speakers
      2,012 utterances 

Sampling rate 16 kHz

Spectral Analysis  512-order STRAIGHT analysis 

Feature Vector
 0–40 STRAIGHT mel-cepstrum,
 logarithmic F0, 5 aperiodicity measures,
 and their delta, delta-delta parameters

Model
Context-dependent state-tied multi-stream 
5-state left-to-right MSD-HSMM   
Gaussian pdf: Single mixture, Diagonal covariance



Experimental results: Japanese
MOS (Naturalness)

Similarity

Significant

1 2 3 4 5
Score

2007:Diagonal

2006

2005

2007:CSMAPLR

1 2 3 4 5
Score

2007:Diagonal

2006

2005

2007:CSMAPLR



Demonstration: Various Voices

The HTS-2007 system can adapt the average voice model into ...

US English

Male Female

Indian English

Male Male

Celebrity

Can you guess the celebrity?
A: George W. Bush (GWB)
(another sample)



Conclusions
HTS-2007 System: High-quality speaker-adaptive speech synthesis

Other Findings

comparable to the speaker-dependent approaches eve in 
the case of 8 hours of speech data

significantly better than the speaker-dependent approaches 
in the case of realistic amount of speech data (<< 8 hours)

significantly better than the Festival unit-selection system
   HTS-2007 (6 min.) was comparable to Festival (1 hour)
   HTS-2007 (1 hour) was comparable to Festival (8 hours)

Full-covariance modeling:

       Improves similarity of synthetic speech
High-order mel-cepstral analysis:

       Improves similarity when large amount of data is available
       Degrades naturalness when amount of speech data is limited



Online demonstration of HTS-2007
HTS-2007(39, diagonal), HTS-2005, & Festival Systems

http://www.cstr.ed.ac.uk/projects/festival/morevoices.html

- 2 Scottish males
- 1 Scottish female
- 3 English males
- 1 English female 
- 4 American males
- 2 American females

Currently 5 unit-selection and 23 HTS voices are available

Please compare these systems yourselves 

E-mail jyamagis@inf.ed.ac.uk

http://www.cstr.ed.ac.uk/projects/festival/morevoices.html
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