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Abstract 

In this thesis, atomic force microscopy (AFM), transmission electron 

microscopy (TEM) and optical microscopy techniques were used to investigate 

systematically the self-assembled nanostructure behaviour of two different types of 

spin-cast polymer thin films: poly(isoprene-b-ethylene oxide), PI-b-PEO diblock 

copolymers and  [poly(9,9-dioctylfluorene-co-benzothiadiazole)]:poly[9,9-

dioctyfluorene-co-N-(4-butylphenyl)-diphenylamine], F8BT:TFB conjugated 

polymer blends. In the particular case of the polymer blend thin films, the 

morphology of their composites with cadmium selenide (CdSe) quantum dot (QD) 

nanoparticles was also investigated. For the diblock copolymer thin films, the 

behaviour of the nanostructures formed and the wetting behaviour on mica, varying 

the volume fraction of the PEO block (fPEO) and the average film thickness was 

explored. For the polymer blend films, the effect of the F8BT/TFB blend ratio (per 

weight), spin-coating parameters and solution concentration on the phase-separated 

nanodomains was investigated. The influence of the quantum dots on the phase 

separation when these were embedded in the F8BT:TFB thin films was also 

examined. 

It was found that in the case of PI-b-PEO copolymer thin films, robust 

nanostructures, which remained unchanged after heating/annealing and/or ageing, 

were obtained immediately after spin coating on hydrophilic mica substrates from 

aqueous solutions. The competition and coupling of the PEO crystallisation and the 

phase separation between the PEO and PI blocks determined the ultimate 

morphology of the thin films. Due to the great biocompatible properties of the PEO 
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block (protein resistance), robust PEO-based nanostructures find important 

applications in the development of micro/nano patterns for biological and biomedical 

applications. 

It was also found that sub-micrometre length-scale phase-separated domains 

were formed in F8BT:TFB spin cast thin films. The nanophase-separated domains of 

F8BT-rich and TFB-rich areas were close to one order of magnitude smaller (in the 

lateral direction) than those reported in the literature. When the quantum dot 

nanoparticles were added to the blend thin films, it was found that the QDs prefer to 

lie in the F8BT areas alone. Furthermore, adding quantum dots to the system, purer 

F8BT and TFB nano-phase separated domains were obtained. Conjugated polymer 

blend thin films are excellent candidates for alternatives to the inorganic 

semiconductor materials for use in applications such as light emitting diodes and 

photovoltaic cells, mainly due to the ease of processing, low-cost fabrication and 

mechanical flexibility. The rather limited optoelectronic efficiency of the organic 

thin films can be significantly improved by adding inorganic semiconducting 

nanoparticles. 
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AFM topography image of poly(isoprene-b-ethylene oxide) PI-b-PEO thin film spin cast on 

mica. Colour-scale is in nanometres. Red arrows in the inset indicate the crystal boundaries. 

(Kalloudis et al. Langmuir, 2013, 29, 2339-2349). 
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Polymer thin films have many uses in a wide range of industrial, biomedical 

and micro/nano-electronic applications. Polymer-based thin films are in fact a part of 

our daily lives due to their presence in paints, coatings, packaging, adhesives, 

dielectrics and in many other applications. At the same time the continuing 

expansion of polymer thin films into new technologies and applications has attracted 

the interest of scientists to further investigate their properties and responses to 

various interfaces [1] and intermixing with other inorganic materials [2]. 

More precisely, polymer blends and block copolymer thin films can be tailored 

to exhibit specific mechanical, optical, electric and chemical properties. For example 

functional surfaces have been produced using polymer blend and diblock copolymer 

films, which may serve as templates for nanolithography [3] or in biomedical field 

[4]. Furthermore, in the rapidly growing field of polymer electronics, optoelectronic 

properties of polymer films (mainly blends of polymers) have been investigated and 

the first devices have appeared on the market [5]. 

Polymer blends and block copolymers form various nano-structures or nano-

patterns on surfaces via the process of self-assembly. Self-assembly is a 

breakthrough technique as a manufacturing method in nanotechnology. In polymer 

self-assembly the desired structural morphology is a consequence of the properties of 

the molecules that are used. Conversely, in conventional techniques such as 

lithography, the desired structure must be separated from a larger block of matter. In 

general, self-assembly manufacturing (or so called “bottom-up”) is an excellent 

alternative to lithography (or so called “top-down”) due to lower costs, easier 

processing and faster production of materials in larger quantities [6]. 
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In this thesis we study the self-assembled structural morphology at the nano-

scale produced by a diblock copolymer and polymer blends on surfaces. To 

investigate the nano-structures we exploited the imaging capabilities (at the 

molecular scale) of atomic force microscopy (AFM). We also use other techniques 

such as transmission electron microscopy (TEM) and optical microscopy. 

This work has been divided in the following chapters and appendices: 

In Chapter 2, some general aspects of polymers on surfaces and polymer blends are 

presented and the experimental techniques of atomic force and transmission electron 

microscopy are described. 

In Chapter 3, we study the nanostructure morphology of a series of amphiphilic 

semi-crystalline poly(isoprene-b-ethylene oxide) diblock copolymers with various 

block fractions spin cast on mica from aqueous solutions. We used atomic force 

microscopy to reveal the effect of the different block lengths on the nanostructural 

evolution; both near and away from the mica surface. 

In Chapter 4, AFM and TEM are used to investigate the morphology of low 

molecular weight conjugated polymer-blend spin-cast thin films. The polymers are: 

F8BT (poly[9,9-dioctylfluorene-co-benzothiadiazole]) and TFB (poly[9,9-

dioctyfluorene-co-N-(4-butylphenyl)-diphenylamine]). We consider the effect of the 

polymer blend ratio, annealing, spin-coating speed/time and the solution 

concentration on the lateral and vertical morphology of the phase separated domains 

at the nanoscale. 
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In Chapter 5, AFM and TEM techniques were used to investigate the structural 

morphology of the F8BT:TFB polymer blends mixed with inorganic nanoparticles, 

cadmium selenide quantum dots (CdSe QDs) for the first time. We investigated the 

dispersion of the quantum dots in the F8BT:TFB polymer matrix and surface and the 

effect of the QDs on the nanophase separation of the blends. 

In Chapter 6, conclusions and plans for future work are presented. 

Finally in Appendices A & B & C, we present some additional AFM images, height 

profiles for the systems studied (A & B) and the publications, talks and presentations 

came out of this thesis (C). 
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AFM phase image of a symmetric poly(isoprene-b-ethylene oxide) PI-b-PEO thin film spin cast 

on mica (the size of the image is 20 × 20 μm
2
). 
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2.1 General Aspects of Polymers on Surfaces 

Polymeric materials find widespread applications due to their adaptable 

properties, cost-efficiency and relatively simple production techniques. The science, 

which is dedicated to the synthesis of polymers, is able to almost fully control the 

structural behaviour of these materials in their bulk state. However, the situation 

becomes more complicated when the polymeric materials are transferred onto solid 

surfaces (polymer thin films). The interaction between the polymeric material and 

the substrate, along with the thickness of the polymeric film, leads to the formation 

of different structures compared with the structures in the bulk of the polymer [1]. 

The interactions and confinement effects of polymers when in the vicinity of solid 

surfaces constitute an important scientific field with consequences for technological 

fields such as nanotechnology, nano-electronics, biotechnology and biomedical 

applications. 

Polymers, which are adsorbed onto a solid surface, or polymers, which are 

close to the surface, exhibit interesting properties. Polymers on surfaces are great 

candidates for use in colloidal stabilization [2], nanoscale surface patterning [3], 

friction modification [4], DNA microarrays [5] and adhesion [6]. There are two basic 

ways that the polymers can be attached on the substrate: chemisorption (i.e. 

anchoring with chemical bonds, grafting – strong interactions) or physisorption, 

where the chains of the polymer and the surface interact with van der Waals forces 

(weak interaction). The physisorption and the resulting conformational relaxation of 

the polymer chain are driven by the competition between the entropic repulsion and 

the drop in energy from binding monomers to the substrate [7]. Several previous 
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studies have been focused on the thin film properties of polymer systems such as 

block copolymers [8], polymer blends [9] and end-grafted polymers [10,11]. 

Blending of polymers has been proved to be a cost-effective and easy 

processing technique for preparing materials with flexible applications. The physical 

properties of the blends on surfaces depend strongly on the resulting morphology on 

submicrometre length scales, sizes which can be difficult to characterise by 

conventional microscopy techniques. Furthermore, the morphologies of block 

copolymers and their blends in bulk and on solid surfaces has been an important 

subject of research over recent decades [12]. The mechanical properties of the 

polymer blends depend on their composition, morphology and interface structure. 

The blend morphology mainly depends on the interface parameters and the polymer 

composition [13]. Thus, in order to understand and control the phase separation, 

miscibility, adhesion, and interface phenomena of polymers, it is crucial to 

extensively investigate the nanometre-scale structures and morphologies of polymers 

and their blends. Transmission electron microscopy techniques (TEM) have been 

extensively and successfully applied in order to investigate the bulk and thin film 

morphology of the polymer blends and block copolymers [14]. However several 

limitations of the TEM technique have made atomic force microscopy (AFM) 

techniques the most popular imaging and characterisation tool in the science, which 

deals with the polymer on surfaces [15]. 
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2.2 Thermodynamics of Polymer Mixtures 

Mixing two polymers usually results in a system that exhibits a complete phase 

separation due to the repulsive forces between the compounds occurred by the 

chemical incompatibility between the polymers [16]. For complete mixing of two 

polymers the following condition is required: 

  m     m      m                                                       (   ) 

where ΔGm, ΔHm, and ΔSm are the changes of the Gibb’s free energy, the enthalpy 

and the entropy of mixing at given temperature T, respectively. 

For one-phase stable systems of binary mixtures with composition φ (in some 

cases, e.g. copolymers, also denoted by f) at a given temperature T and pressure p, 

the criteria for phase stability are: 

  m    , (
 
 
  m

 
 
φ

)
 ,  

                                                    (   ) 

 Miscible, is a polymer blend which exhibits homogeneity at the molecular 

level and associated with the negative value of the free energy of mixing and the 

domain size is comparable to the dimensions of the macromolecular segment. The 

value of TΔSm is always > 0 since there is an increase in the entropy on mixing. 

Consequently, the ΔGm depends on the value of the enthalpy of mixing ΔHm. The 

polymers mix to form a single phase only when the entropic contribution to free 

energy is higher than the enthalpic contribution: 

  m      m                                                                (   ) 
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In general, the miscibility of the polymer blends increases with the increase of 

the pressure. The effect depends on the enthalpy (or heat) of mixing ΔHm: when ΔHm 

< 0, the miscibility is increased by compression, while when ΔHm > 0, the miscibility 

is decreased. 

Figure 2.1 presents a schematic phase diagram obtained from Utracki [16], 

highlighting the three regions with different degree of miscibility: a) the single-phase 

miscible region lying between the binodals, b) the four metastable (fragmented) 

regions between the binodals and the spinodals and c) the two phase-separated 

immiscible regions, lying over and below the spinodals. The diagram highlights also 

the two critical solution temperature points, the lower point (LCST) at higher 

temperature and the upper (UCST) at lower temperature. Phase diagrams with both 

the LCST and the UCST points usually refer to low molar mass mixtures. Phase 

diagrams of polymer blends usually show either LCST (most commonly) or UCST 

[16]. 

 

Figure 2.1 Phase diagram for liquid mixtures obtained from ref. [16], with the upper and the 

lower critical solution temperatures, UCST and LCST respectively. 
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The binodals, shown in Figure 2.1, separate the one-phase (miscible) and the 

metastable region, while the spinodals separate the metastable and the two phase-

separated regions. The conditions for phase-separation are given by the following 

[16]: 

 pinodal                            (
 
 
  m

 
 
φ

)
 ,  

                                         (   ) 

      

Critical point            (
 
 
  m

 
 
φ

)
 ,  

  (
 
 
  m

 
 
φ

)
 ,  

                           (   ) 

The phase-separation process occurs when a single-phase system suffers a 

change of composition or temperature or pressure that drives it to pass into either the 

metastable or the spinodal region. In the particular case, where the system enters 

from the single-phase to the metastable region, the phase separation occurs by the 

mechanism of slow nucleation followed by growth of the phase separated domains.
 

In contrast, when the system jumps from a single-phase into the spinodal region of 

immiscibility the phases separate spontaneously by a mechanism called spinodal 

decomposition [16]. 

2.2.1 Flory-Huggins Solution Theory 

Flory-Huggins solution theory [17, 18] is a simple mathematical model of 

thermodynamics, which deals with the polymer solutions. This model considers that 

no-change in the volume during mixing occurs (ΔVm = 0), the entropy of mixing is 

given only by the number of re-arrangements during polymer mixing and that the 

enthalpy of mixing is caused by interactions of different segments. Given that this 
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theory is based on a mean-field model, only average interactions are taken into 

account. The main challenge was to find a better estimation for the entropy of 

mixing, as the polymer solutions exhibit substantial deviations from values expected 

for ideal solutions. This challenge was successfully overcome independently by 

Flory and Huggins using a cubic lattice model [17, 18]. 

 According to Flory and Huggins, assuming random mixing of two polymers 

and ΔVm = 0, the entropy of mixing in polymer solutions is given by: 

Δ m      [
φ
 

  
lnφ

 
  

φ
 

  
ln φ

 
   φ

 
φ
 
]                                                   (   ) 

where, φ is the volume fraction of the components in the solution, r is the number of 

polymer segments, which is proportional to the degree of polymerization N and R is 

the gas constant. As it can be seen from the eq. 2.6 the entropy of mixing is inversely 

proportional to the length of polymer components (degree of polymerisation).  

Furthermore, the Flory-Huggins theory estimates that the enthalpy of mixing 

(considering nearest neighbour interactions between the two components) is given 

by: 

Δ m      φ φ                                                                                      (   ) 

where,   is the so-called Flory-Huggins binary interaction parameter. A high positive 

  indicates a repulsive interaction between the polymers and leads to positive Δ m, 

which tends to inhibit the solution process. On the other hand, a negative   implies an 
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attractive interaction and leads to negative Δ m, which results in complete 

dissolution. 

 Finally, the free energy of mixing in the Flory-Huggins theory for binary 

systems is given by [19]: 

Δ m     [
φ
 

  
ln φ

 
  

φ
 

  
lnφ

 
   φ

 
φ
 
]                            (   )  

The first two terms in the eq. 2.8 are related to the entropy of mixing and the last 

term is related to the enthalpy of mixing. 

2.3 Introduction to Atomic Force Microscopy 

In general, scanning probe microscopy (SPM) is a family of advanced 

techniques which are widely used for surface analysis [20]. The most versatile and 

most adaptable member of the SPM family is atomic force microscopy (AFM). The 

atomic force microscope was first reported by Binnig, Quate and Gerber of IBM in 

1986 [21] and followed on from their work on scanning tunnelling microscopy 

(STM) [22], for which they were awarded the Nobel Prize for Physics [23]. It was 

suggested as a means of studying non-conducting surfaces on an atomic scale, 

combining the principles of the STM and a stylus profilometre, and imaging by 

effectively “feeling” the sample surface. AFM provides unparalleled topography, 

adhesion and mechanical sample details in the order of the sub-nanometre scale. 

Polymers on surfaces, a continuously expanding field of research from biotechnology 

to nano-electronics, have been extensively studied by AFM [15]. The ability to 
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manipulate the polymeric materials in the nanometre and molecular scales has 

increased the importance of AFM applications to polymer technology [15]. 

In the atomic force microscope the surface is scanned with a sharp tip, which 

is mounted on a miniature cantilever as shown in the schematic of the AFM in Figure 

2.2. The tip is one of the AFM’s most important parts, as it “touches” the surface, 

giving rise to the image through its force interaction with the specimen’s surface. 

Usually the tips have a pyramidal shape. Typical pyramidal tips have pyramid height 

~ 2 – 3 μm and ~ 30 – 50 nm radius apex. The tip is important, as it the one which 

determines the capabilities of the system to provide atomic resolution analysis of the 

sample’s surface. 

The tip, which is mounted at the end of the cantilever, approaches and then 

touches the surface through a piezoelectric (piezo) cylinder the “z-scanner” as shown 

in Figure 2.2. The scanners in the AFM are made from piezoelectric materials, which 

expand and contract proportionally to an applied voltage. The sensitivity of the 

scanners depends on the piezo movement and on the piezo voltage. The deflection of 

the cantilever is monitored through an optical element. A laser beam is aligned to 

focus on the cantilever’s end and is reflected from its top side onto a photodetector, 

which is capable of detecting movement of the tip in the atomic scale. The 

electronics of the system guide the tip to scan the study area through the x – and y – 

piezo (x y – scanner in Figure 2.2). Finally, the AFM images are recording the force 

interaction between the surface and the tip, during sample scanning. The whole 

scanning process is illustrated in Figure 2.2.  
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Figure 2.2 Schematic drawing of the AFM (obtained from Baclayon and co-workers [33]). 

 Typically the AFM works in two basic modes: Contact mode, where the tip 

apex is in continuous contact with the surface [15] and tapping mode, where the tip is 

in intermittent contact with the surface [24]. 

2.4 Contact Mode AFM 

The contact mode, where the tip scans the sample in close contact with the 

surface, is the common mode used in atomic force microscopy. When using this 

mode the sample is driven in z-direction by the z-piezo, forcing the cantilever to be 

deflected. As soon as the surface reaches the tip, the deflection of the cantilever can 

be pre-specified through the electronics. This process is known as the instrument’s 
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operating set-point. During scanning, if the measured deflection is different from the 

set-point (the tip meets objects on the surface), the feedback applies a signal to the 

piezo to raise or lower the sample relative to the cantilever to reinstate the desired 

value of deflection. The signal that the feedback applies to the piezo is a measure of 

the height of objects on the scanning surface. However, due to the constant contact of 

the tip with the surface, problems with the excessive tracking forces applied by the 

tip to the sample are likely to occur. For this reason, soft samples such as polymer 

surfaces are not best studied in contact mode. 

2.5 Tapping Mode AFM  

The constant need to develop an AFM technique to avoid surface damage is 

one of the largest reasons for the development of tapping mode AFM  [24]. In this 

mode, short, intermittent contacts between the tip and the surface minimize the 

deformation of the sample. During scanning, the cantilever vibrates at close to its 

resonance frequency [15] and moves in the direction of the sample to a distance 

smaller than its oscillation amplitude. During scanning, as soon as the tip reaches the 

sample’s surface, the feedback will always try to keep the cantilever at constant 

amplitude. This constant amplitude can be defined by the system user and is called 

amplitude set-point (Asp). Consequently, when the tip meets an object the cantilever 

has a less space to oscillate, leading to a decrease in amplitude. On the other hand, 

when the tip meets a well-like structure, then it has more space to oscillate and the 

amplitude increases. In both situations, the feedback modifies the z-position of the 

piezo in order to maintain the cantilever amplitude at the user-defined set-point. 
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2.6 Amplitude Imaging AFM 

We have already mentioned in the Tapping mode of operation, the feedback 

loop tries to maintain the amplitude of oscillation constant adjusting the z-piezo. The 

voltage needed to keep the amplitude constant can be collected into an (error signal) 

image. The advantage of this imaging is that provides a high (sharp) contrast 

between the features on the studied film surface. 

2.7 Phase Imaging AFM 

Phase imaging is a powerful extension of tapping mode AFM, which provides 

nanometre scale information about surface structure often not revealed by other 

scanning probe microscopy techniques. By performing phase mapping during a 

tapping mode scan, phase imaging goes beyond simple topographical mapping to 

detect variations in composition, adhesion, friction, viscoelasticity, and perhaps other 

properties. In phase imaging, the phase shift of the cantilever oscillation relative to 

the signal sent to the cantilever’s piezo driver is simultaneously monitored and 

recorded by the AFM’s controller. The phase shift is very sensitive to variations in 

material properties such as adhesion and viscoelasticity [25]. 

2.8 Force Spectroscopy 

Until now we have highlighted the high-resolution imaging capabilities of the 

AFM, but it is also a powerful tool for sensitive force measurements. The AFM tip is 

able to probe an extremely small interaction area and this gives it a high sensitivity to 

small forces. The cantilever that holds the tip acts as a very soft spring, which makes 

these forces accessible. These cantilevers are usually made of silicon or silicon 
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nitride ~ 100 – 200 μm long, allowing measurable forces at the scale of pico-

Newtons. These forces are of the order of magnitude needed to break a hydrogen 

bond for example [26]. In general, the tip moves towards and away from the sample 

in the normal direction. The vertical position of the tip, along with the deflection of 

the cantilever, are recorded and converted to force-distance curves. The application 

of these experiments range from the nano-mechanical investigations of elastic 

properties to protein unfolding [27]. 

 Figure 2.3 (left) presents a typical force-distance curve, consisting of the 

approach (dashed line) and the retrace (line) parts. In Figure 2.3 (right), the 

movement of the cantilever and the tip during the force-spectroscopy experiment is 

depicted. The cantilever approaches the surface from a starting ‘safe’ distance from 

the surface in order not to incur any interactions between the tip and the surface and 

the deflection of the cantilever does not change (region A in Figure 2.3). As the 

distance between the tip and the sample decreases, the cantilever starts to bend 

(jumps to contact), due to the van der Waals forces between the tip and the surface 

(region B in Figure 2.3). After the contact between the surface and the tip, the 

cantilever bends away from the surface, changing its deflection and giving rise to the 

straight line of the force-distance curve (region C in Figure 2.3). Subsequently, 

depending on the relative stiffness of the cantilever and depending also on the nature 

of the sample, the tip can indent or compress the surface. After the maximum 

approach, the cantilever then is withdrawn and a hysteresis might appear due to the 

attractive tip-surface interactions, such as adhesive forces (regions D, E in Figure 
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2.3). Finally, as the withdrawal continues, the tip looses contact with the surface and 

returns to its initial position (region F in Figure 2.3). 

 

 

Figure 2.3 “Idealized force-distance curve describing a single approach-retract cycle of the 

AFM tip, which is continuously repeated during surface scanning. The AFM tip is approaching 

the sample surface (A). The initial contact between the tip and the surface is mediated by the 

attractive van der Waals forces (contact) that lead to an attraction of the tip toward the surface 

(B). Hence, the tip applies a constant and default force upon the surface that leads to sample 

indentation and cantilever deflection (C). Subsequently, the tip tries to retract and to break 

loose from the surface (D). Various adhesive forces between the sample and the AFM tip, 

however, hamper tip retraction. These adhesive forces can be taken directly from the force-

distance curve (E). The tip withdraws and looses contact to the surface upon overcoming of the 

adhesive forces (F).” Figure obtained from Shahin and co-workers [28]. 

 The result of a force measurement is a measure of the photodetector current, 

Ip and the height position of the piezo, Zp. In order to generate a force-distance curve, 

the Ip and the Zp need to be converted into force and distance respectively [29]. 

 In order to obtain meaningful results from the force-distance analysis, the 

exact spring constant of the cantilevers used is required. Cantilevers purchased by 
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manufacturers are generally delivered together with a data sheet, which gives the 

cantilever specifications. Properties such as the spring constant have generally been 

calculated from the cantilever geometry, and have not been experimentally 

measured. There are two major methods to accurately determine the cantilever’s 

accurate spring constant; the measurement of the spring constant using a reference 

cantilever and the measurement of the spring constant using the thermal noise. More 

details about these two methods, as well as other methods can found in the review 

paper of Cappella et al. [34]. In the present study, the thermal noise method was used 

to determine the spring constant. 

2.9 Limitations of AFM 

Although the AFM can be used to investigate the surface of a wide variety of 

materials (polymers, metals, glasses, semiconductors, cells, bacteria etc.), it suffers 

from limitations in achieving atomic resolution. The tip attached on the cantilever is 

not ideally sharp. As a result an AFM image does not reflect the actual sample 

topography, but the interaction between the tip and the surface of the studied 

material. Advanced sharper probes (typically made by a carbon nanotude) have been 

produced in order to overcome this limitation; however the cost of these probes does 

not allow their use in everyday AFM imaging. 

Finally, it should be noted that the AFM used for imaging the samples of this 

thesis, was calibrated approximately twice per year in the x, y, z-directions using a 

calibration grid. 



Chapter 2                Basics of Polymers on Surfaces, Polymer Blends, AFM and TEM 

 21 

2.10 Introduction to Transmission Electron Microscopy 

Transmission electron microscopy (TEM) operates on the same basic 

principles as the light microscopes, but it uses electrons instead of light. It is well 

known that what can we see with light microscopes is limited by the wavelength of 

light. TEM uses electrons as a “light source” and their much shorter wavelength (de 

Broglie wavelength) make it possible to get a resolution a thousand times better than 

with a light microscope. The instrument is able to study small details in the cell or 

different materials down to near atomic levels, which is tens of thousands times 

smaller than the smallest resolvable object in a light microscope. The capability for 

high magnifications has made the TEM a valuable tool in medical, biological, 

polymer and materials research.  

In general, TEM is a technique in which a beam of electrons is transmitted 

through a specimen and interacts with the specimen as it passes through. An image is 

produced from the interactions of electrons transmitted through the specimen. As 

shown in Figure 2.4, a light source at the top of the microscope emits the electrons, 

which pass through a column of the machine under vacuum. Condensed 

electromagnetic lenses are used in order to focus the electrons in a very thin beam. 

Subsequently, the focused beam passes through the specimen. Depending on the 

density of the specimen some of the electrons of the beam are scattered and 

disappear. The electrons which have not been scattered reach a fluorescent screen at 

the bottom of the microscope, giving rise to a ‘shadow image’ of the specimen. The 

different parts of the specimen are displayed in varied darkness, according to their 

density. The image is generated and captured mainly through a CCD camera. There 
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are three important mechanisms which generate image contrast in the TEM: mass-

thickness contrast, diffraction contrast-bright field and phase contrast [29-32]. In this 

thesis we used mass-thickness and bright-field mechanisms. 

 

Figure 2.4 General outline of a TEM describing the route of electron beam in a TEM (Taken 

from JEOL 2000FX Handbook) 

2.10.1 Mass-thickness contrast 

Mass-thickness contrast is the basic imaging mechanism in biological and non-

crystalline (e.g. glass) TEM applications [32]. It is well known that the interaction 

between heavy atoms and electrons is stronger than the interaction with light atoms. 

If the thickness of the films is relatively homogeneous, the areas in which the heavy 

atoms are concentrated appear with darker contrast than the contrast of the light 

atoms (mass contrast). In addition, when the focused beam reaches the sample more 
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electrons will be scattered from the thick areas than the thin. As a result thick areas 

appear dark (thickness contrast). However, it is likely that a thick area with light 

atoms may exhibit the same contrast as a thinner area with heavier atoms. 

2.10.2 Bright Field Contrast 

Bright field (BF) or the reversible Dark Field (DF) is the most common 

contrast mechanism for crystalline materials. A small aperture (diameter ~ 5 - 7  μm) 

is inserted in the objective lens to intercept the diffracted beam and only allow the 

transmitted beam to form an image. This process is known as BF or DF imaging. 

2.10.3 Limitations of TEM 

Regardless of the great advantages and capabilities of the TEM, this technique 

exhibits several drawbacks. In TEM imaging the resolution is inversely proportional 

to the volume of the sample. The smaller the volume the higher the resolution, thus 

TEM is suitable only for low volume samples. In addition, TEM images are two-

dimensional projections of three-dimensional structures. Furthermore, TEM uses a 

high energy beam, which may cause damage to the sample. Finally, the sample 

preparation process (thin specimens containing no volatile components) for TEM, 

increases the limitations of the system. All the limitations mentioned above may be 

overcome by using atomic force microscopy techniques as mentioned in the previous 

parts. On the other hand, AFM is a surface specific technique, giving few or no 

information about the composition inside the film. Combining both techniques a 

detailed analysis of the surface structural behaviour and compositions can be 

achieved. 
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PI-b-PEO, fPEO = 0.49, spin coated on mica at 4,000 rpm. The average polymer thickness is ~ 13 

nm. 
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3.1 Introduction 

Amphiphilic semi-crystalline block copolymers composed of hydrophobic-

hydrophilic blocks have attracted the attention of scientists in fields of nano-

electronics and in bio-technology [1]. The great variety of self-assembled nano-

structures exhibited by these polymers, either in bulk or dispersed in solvents, is the 

result of the interaction between the molecular structure and the interplay of the 

blocks. Both the stable phase separation of the blocks and the polymer’s capacity to 

respond under selective physical or chemical conditions have been exploited in 

lithography and as sensors (surface responsive materials) [2]. 

Herein, the structural behaviour of three amphiphilic semi-crystalline 

poly(isoprene-b-ethylene oxide) block copolymers (PI-b-PEO) with different PEO 

volume fraction (fPEO = 0.32, 0.49 and 0.66), spin coated on mica surfaces in ambient 

conditions from aqueous solutions, was investigated by atomic force microscopy. We 

focus on the dependence of the resulting thin film nanostructures on the molecular 

characteristics (fPEO and molecular weight) and the adsorbed amount − quantified by 

the average polymer thickness (APT). The nanostructures obtained immediately after 

spin coating were proven to be robust and remained unchanged after 

heating/annealing and/or ageing. The affinity of the PEO block for the highly 

hydrophilic substrate (freshly cleaved mica) and the tendency of the hydrophobic and 

low surface energy PI to dewet and be at the free interface, caused the soft PI-b-PEO 

micelles to collapse leading to the formation of two-dimensional, crystallised, 

dendritic networks over mica. We show that for all three polymers, the monolayer 

thickness can be predicted by a model consisting of a PEO crystallised layer (directly 
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on top of mica) of the same thickness in all cases and a PI brush layer on top. In 

thicker areas, polymer material self-assembled into cone-like multi-lamellar bilayers 

on top of the crystallised monolayer and oriented parallel to the substrate for both 

symmetric and asymmetric diblock copolymers with the lowest fPEO. We also 

compare the lateral morphology of the films and discuss the thickness heterogeneity, 

which results from the complex coupling and competition of crystallisation kinetics, 

phase separation and wetting/dewetting phenomena highlighting the role of the two 

blocks to inhibit or enhance certain morphologies. We show that the deviation of the 

fPEO = 0.32 thin film from its bulk phase structure (cylinders in hexagonal lattice) 

continues for several lamella bilayers away from the substrate. For the asymmetric 

PI-PEO polymer with the higher PEO volume fraction (fPEO = 0.66) and higher APT, 

laterally extensive stacks of flat-on (2D) lamellae crystallites formed on the surface, 

demonstrating the crucial role of crystallisation of the PEO block in this case. 

3.2 Background 

Diblock copolymers, macromolecules composed of two chemically distinct 

blocks that are covalently linked together, are one of the most well-known self-

assembling systems [3]. They have received considerable attention as the building 

blocks for advanced nanotechnologies based on “bottom-up” fabrication methods 

[4]. Thin films of diblock copolymers have shown promise for use and applications 

in various technological sectors spanning from biotechnology [5] to nanoelectronics 

[6]. In contrast to the lithographic methods (“top-down” fabrication) the formation of 

nanopatterns driven by the self-assembly of diblock copolymers offers a combination 

of simple preparation, “low-cost” processing and efficient nanodevices [7]. 
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Poly(isoprene-b-ethylene oxide) block copolymers (PI-b-PEO) in particular, have 

been used as structure-directing molecules for the fabrication of mesostructured 

inorganic materials which find applications in molecular engineering (catalysis, 

membranes and separation technology) [8]. The low glass transition temperature (Tg) 

of both the PEO and the PI blocks (~ - 60 °C), leads to high mobility at room 

temperatures resulting in fast developing of long-range nano-domains [8]. 

Thermodynamic incompatibility between the blocks could drive the diblock 

copolymer molecules to develop self-assembled periodic ordered nanostructures via 

microphase separation. The microphase separation of diblock copolymers is 

primarily determined by the overall degree of polymerization N, the temperature 

dependent [1] A-B segment–segment interaction (Flory-Huggins) parameter  , and 

the volume fraction of the A or B block, fA or fB [9]. The parameter  N determines 

the degree of segregation of the blocks. When  N < 10; entropic terms between the 

blocks prevail resulting in a disordered phase. When  N > 10; enthalpic terms 

dominate causing an order-to-disorder (ODT) transition where the unlike blocks 

segregate into a variety of ordered periodic microstructures [1]. Below the 

temperature where the order-disorder transition occurs (TODT), the diblock 

copolymers undergo microphase separation between the unlike blocks which form 

into ordered structures [10]. For nearly symmetric compositions (fA ≈ fB), the blocks 

tend to phase separate into domains with alternate layers, known as lamellar phase. 

For asymmetric compositions, phases such as hexagonal and spherical could be 

obtained [1].  



Chapter 3                       Diblock Copolymer Nanostructures Self-Assembled on Mica     

 31 

When the diblock copolymer is composed of a crystallisable block and an 

amorphous block; the complexity of the system increases significantly [11-14]. The 

microphase morphology in such systems depends on the melting temperature Tm of 

the crystallisable block, the glass transition temperature (Tg) of the amorphous block 

(Tg < Tm < TODT) [15], the copolymer composition and the phase separation strength 

( N) [1,11]. In particular, the phase behaviour of a series of PI-b-PEO has been 

studied by Floudas et al. [16,17], using small-angle X-ray scattering (SAXS). They 

have constructed a detailed phase diagram of the PI-b-PEO system based on block 

copolymers spanning the composition range 0.05 < fPEO < 0.8, where fPEO is the PEO 

volume fraction. Typical areas of the phase diagram are: cylinders packed in a 

hexagonal lattice for fPEO ≈  .  ,  N > 45 and fPEO ≈  .75, 45    N < 53; for  N > 55 

and 0.35 < fPEO < 0.8 the phase reverts to crystalline lamella (Lc); while for fPEO ≈ 

0.50 and between 40 <  N < 55 the phase is (amorphous) lamellae (Lam). 

When diblock copolymers are confined into supported thin films, the nature 

and strength of the interfacial interactions in the asymmetric interfaces 

(polymer/solid and polymer/air interface) influence the thin film morphology, phase 

separation and orientation of the blocks [1]. For symmetric diblock copolymers (f ≈ 

0.5) the lamellar structure remains the typical thin-film morphology. If there is 

preference of one of the blocks for any of the interfaces involved (substrate or free 

interface), parallel to the substrate orientations of the lamella are observed [1]. If the 

same block has a higher affinity for both the free surface and substrate, then this 

block will wet both interfaces (symmetric wetting) and the film thickness is given by 

nL0, where n is an integer corresponding to the number of the period, and L0 is the 
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length of the period of the microdomain morphology. On the other hand, if different 

types of blocks segregate to the interfaces (asymmetric wetting) the film thickness is 

given by (n + 1/2)L0 [18]. However, if the thickness of the thin film is not 

commensurate with these quantized thicknesses, for overall thickness below ~L0 the 

substrate is only partly covered while for a higher thickness, holes and islands are 

formed [19].  

For asymmetric diblock copolymer thin films (f ≠  .5) the affinity of one block 

to the substrate can alter the bulk morphology (cubic, hexagonal) to lamella [20], 

which is also theoretically shown by Turner et al. [21] for asymmetric hexagonal 

phase diblocks. Recently, Papadakis et al. [22] have studied the morphology of spin-

cast thin films of low-molar-mass cylinder-forming PI-PEO diblock with fPEO ≈  . 8, 

from toluene solutions onto silicon wafers. Upon spin-coating, their films were 

annealed above the Tm of the PEO block (32 °C) for several minutes. AFM images 

revealed the formation of hexagonally packed, amorphous PEO cylinders lying 

parallel to the substrate and surrounded by a PI matrix. However, several months 

later, they have observed that the surface morphology had dramatically changed. 

Terraced finger-like bilayer lamella patterns with the PI on top were formed over a 

monolayer located directly on the silicon wafer. They argued that this structural 

transition, from hexagonal to lamellar is due to a significant but slow mass transport 

(in a period of about 5 months), which ultimately leads to terracing. The annealing 

was not capable of bringing the system into lamella formation which is attained only 

after significant aging. In an earlier study on PI-PEO diblocks performed by Glynos 

and co-workers [23], it was shown that the “gentle” deposition of PI-b-PEO (fPEO ≈ 
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0.66) micelles from aqueous solutions on freshly cleaved mica substrates resulted in 

the collapse of the micelles producing flat polymer nanoislands of well-defined 

thickness. The favourable interaction between the ultrathin water layer of mica and 

the hydrophilic PEO block [23], as well as the flexibility of the PI block played a 

crucial role for the dissociation of the micelles resulted in close-to equilibrium 

structures in cast films. 

PEO-based thin films have important biomedical applications as PEO is 

biocompatible and exhibits protein resistance [24,25]. Although one of the unique 

attractions of PEO is its water solubility [26,27] (which is related to its biomedical 

properties), studies of the fundamentals of PEO-based thin films have mainly used 

organic solvents combined with heat treatment for the formation of 

micro/nanopatterns on surfaces. In this study, we focus on the formation of thin films 

of PEO-based diblock copolymers from water solutions and we show that the use of 

water solutions and the hydrophilic freshly-cleaved mica gave the mobility needed 

for the PEO-based copolymers to form rapidly robust multi-layered structures 

without requiring any prior annealing or ageing. We used three different 

poly(isoprene-b-ethylene oxide), PI-b-PEO, block copolymers with fPEO = 0.32, 0.49, 

and 0.66 (and the corresponding homopolymers for comparison) so that we study the 

effect of the volume fraction of the hydrophilic and crystallisable block in the thin 

film morphology. We considered the effect of the polymer film thickness to establish 

the differences between ultrathin and thicker films; i.e. approaching-bulk behaviour. 

We present and discuss the dependence of the nanostructures on the surface 

coverage, the molecular weight, and the composition (fPEO) of the polymers. We 
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found that immediately after spin coating both the symmetric and asymmetric 

polymers formed a stable dendritic monolayer on top of mica, nucleated at the 

thicker areas of the film. We show that a model consisting of a PEO crystallised 

layer (directly on top of mica) with a set thickness (as measured for two PEO 

homopolymers) and a PI brush above compares very well with the experimental 

results. Above the monolayer the symmetric, fPEO = 0.49, and the asymmetric 

polymer with lower percentage of PEO, fPEO = 0.32, formed multi-lamellae bilayer 

terraces. However, when the fraction of the PEO block took a value of 0.66, we 

observed the formation of 2D layered spherulitic-like areas. We discuss the complex 

interplay of wetting/dewetting, phase separation and crystallisation kinetics which 

affects the lateral morphology of the films. 

3.3 Experimental 

3.3.1 Materials and Characterization 

A series of poly(isoprene-b-ethylene oxide), PI-b-PEO, block copolymers were 

synthesised using anionic polymerization high vacuum techniques by Pispas and co-

workers [23] and their molecular characteristics along with their molecular structures 

are shown in Table 3.1. 
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Table 3.1 Chemical and Physical Properties of the three PI-b-PEO copolymers. 

Code 

Mw
a
 

(kg/mol) 

Mw/Mn 

% wt 

PI
b
 

fPEO
c
 

Mw, PEO 

(kg/mol) 

Mw, PI 

(kg/mol) 

Tm
d
  

(°C) 

Tc
d
  

(°C) 

 N
e 

IEO1 22.8 1.05 63 0.32 
8.4 14.4 

52 26 131 

IEO2 16.4 1.08 46 0.49 
8.9 7.6 

55 29 99 

IEO3 20.7 1.03 29 0.66 
14.7 6.0 

60 39 140 

  

a 
From size exclusion chromatography (SEC) 

b
 From 

1
H NMR. 

c 
Block copolymer composition, 

calculated from Nn* = N*n,PI + N*n,PEO = Nn,PI (ρ*ΕΟ/ρ*Ι)
1/2

 + Nn,PΕΟ (ρ*Ι/ρ*ΕΟ)
1/2

 and  f = N*n,PEO/(N*n,PI 

+ N*n,PEO), where Nn,i are the degrees of polymerisation of each bloc k and ρ*i are the molecular 

densities. For the densities we have used the values 0.895 and 1.120 g/cm
3
 for PI and PEO, 

respectively [17]. 
d
 From DSC measurements (temperature ramp 10

o 
C/min, values from second 

cycle). 
e
   = 65/Τ + 0.125 [16], T ≈ 300 K. N is the degree of polymerization. We note that the order-

disorder transition temperature is TODT ≈ 47  K [17]. 

 

Although the polymers are of similar total molecular weight we note the 

following: for the first two polymers, the PEO molecular weight is essentially the 

same (8.4 kg/mol for fPEO = 0.32 and 8.9 kg/mol for fPEO = 0.49), but the fPEO is 

different because the molecular weight of PI is different (14.4 kg/mol for fPEO = 0.32 
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and 7.6 kg/mol for fPEO = 0.49). Only in the case of fPEO = 0.66, we increased 

substantially the PEO molecular weight (14.7 kg/mol) while the PI block has a 

smaller molecular weight of 6.0 kg/mol. The asymmetric polymer with fPEO = 0.66 

(IEO3) in aqueous solutions forms spherical micelles, while the other two polymers 

with less volume fraction of PEO form cylindrical and spherical micelles [23, 28]. 

3.3.2 Sample Preparation and AFM measurements 

Water solutions (deionised water, DI, with resistivity of  8.  ΜΩ∙cm) of the 

different PI-PEO block copolymers were prepared in three different concentrations 

(~ 10
-3

 g/g, ~ 2 × 10
-3

 g/g, ~ 10
-2

 g/g). The solutions were heated at 60 °C overnight 

before use to ensure the complete dilution of the sample [28,29]. Films were 

prepared by spin-coating filtered droplets of the solutions onto freshly cleaved mica 

substrates. The spin coating speed and time remained constant in all cases. The 

samples were then gently dried under a stream of nitrogen. Subsequently, they were 

imaged in ambient conditions at relative humidity of 30 – 38 %, in tapping mode. We 

used two AFM instruments: a Bruker AFM Multimode/Nanoscope IIIa (Bruker, 

Santa Barbara, CA, USA), equipped with a J-scanner (x-y range ≈  4  μm) and the 

NanoWizard II JPK AFM (JPK Instruments AG, Berlin, Germany). RTESP and/or 

RTESPA Bruker cantilevers with a nominal spring constant and resonance frequency 

of 40 N/m and 300 kHz, were used to image the samples. In order to minimize the 

interaction force between the tip and the substrate (but without losing contact) “light 

tapping” was used by keeping the set-point amplitude ratio rsp = Asp/A0 close to 1 

(where A0 and Asp are the free oscillation amplitude and the reduced scanning set-

point amplitude of the cantilever, respectively) [30-32]. Images were processed and 
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the layer heights were measured using the software Scanning Probe Image Processor 

(SPIP, Image Metrology, Hørsholm, Denmark). 

Generally, thin films of semi-crystalline diblock copolymers prepared by spin-

coating in ambient conditions, result in the crystallisation of the film leading to the 

some thickness heterogeneity [33]. For this reason, the average thickness of each 

polymer film was determined by calculating the total volume per unit area of the 

observed structures (eq. 3.1); we refer to this thickness as the average polymer 

thickness (APT). For polymer concentrations ~ 1 × 10
-3

 g/g the APT was found to be 

≈ 7 nm ±   nm, for concentrations ~   ×   
-3

 g/g the APT was ≈    nm ±   nm and 

for concentrations ~ 1 × 10
-2

 g/g the APT was ≈ 4  nm ± 5 nm. It is worthwhile 

noting that we have imaged several sample surfaces after about 7 months or more 

(stored in controlled humidity/temperature environment) and the images showed the 

same morphology signifying that our preparation protocol produced stable structures 

as far as ageing is concerned. In addition no changes were observed when the 

different PI-PEO thin film samples were annealed at 65 °C (i.e. above melting 

temperature) for several minutes and cooled at room temperature. 

APT   
pixel volume × number of pixels

area of scan 
                                      ( . ) 

Furthermore, we used two molecular weights of PEO: MW = 8 kg/mol (Mw/Mn 

= 1.04, Polymer Source Inc. Quebec, Canada) and MW = 14 kg/mol (Mw/Mn = 1.08) 

synthesized by Pispas and co-workers and one molecular weight of PI: MW = 10 

kg/mol (Mw/Mn = 1.05) synthesized by Pispas and co-workers by anionic 

polymerization [34,35] to investigate the behaviour of the corresponding 
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homopolymers at the same conditions as the diblocks. Separate DI water solutions of 

PEO and toluene solutions of PI were prepared (same concentrations as with 

diblocks) and spin cast thin films on mica (using the same protocol) were prepared 

and imaged with AFM (Figure 3.1). PEO forms flat dendrite-like patterns, which 

become denser as the solution concentration increases (Figures 3.1a, b and c). In 

contrast, PI forms spherical caps on mica which become less frequent but larger with 

concentration were (Figures 3.1d, e, f). These results confirmed the tendency of the 

hydrophobic PI to dewet on mica, unlike the hydrophilic PEO which prefers to 

spread on mica. 

 

Figure 3.1 Typical AFM height images (maximum values in the colour  scales are: 15, 14, 85, 

125, 215, 410 nm for a, b, c, d, e, f, accordingly) of (a), (b), (c) PEO  and (d), (e), (f) PI thin films 

from three different solution concentrations (10
-3

 g/g, 2 × 10
-3

 g/g and 10
-2

 g/g). 
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3.4 Results and Discussion 

Figure 3.2 shows typical AFM images from the polymer films measured in this 

study. It is clear that the observed structures formed on mica depend on the PI-b-PEO 

polymer characteristics and the average polymer thickness, APT. In all cases a thin 

first layer which has a 2D dendrite morphology was formed directly on the mica 

surface. On top of the first layer, and depending on the APT and the fPEO, we 

observed thicker flat layers the thicknesses of which are approximately double of the 

thickness of the first layer as shown in Figure 3.3, which summarizes measurements 

based on cross-sections of many AFM images (some examples are given in the 

Appendix A). In what follows, we discuss in detail the formation and structure of the 

first layer and then we proceed to morphology of the thicker layers as the average 

polymer thickness increases from APT ≈ 7 to    and 4  nm. 
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Figure 3.2 AFM height images demonstrating the typical thin film morphologies for fPEO = 0.32, 

0.49 and 0.66 PI-b-PEO block copolymers in relation to their average polymer thickness 

(resulting from different concentrations used during spin coating). The height scale for the 

images from a - i is: 157 nm, 73 nm, 49 nm, 233 nm, 242 nm, 190 nm, 160 nm, 113 nm, 43 nm, 

respectively. 
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Figure 3.3 (a) First thin layer thickness against the average polymer film thickness for each of 

the three PI-b-PEO diblock copolymers (blue triangle bullets: fPEO = 0.32, Mw = 22.8 kg/mol, 

black square bullets: fPEO = 0.49, Mw = 16.4 kg/mol and red circle bullets: fPEO = 0.66, Mw = 20.7 

kg/mol; (b) thickness of the second layer (on top of the first thin layer) plotted against the 

average polymer thickness of the PI-b-PEO; (c) thickness of the first and second layer for the 

three PI-b-PEO diblock copolymers. We note that thickness values resulted from several height 

profiles taken across the observed structures. Some additional typical ones are presented in 

detail in the Appendix A (Figures A1 – A3). 
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3.4.1  Monolayer Formation on Mica 

It is important to point that all the polymer concentration solutions used in our 

study were above the critical micelle concentration (cmc) of the corresponding PI-

PEO polymers. Hence, when in solution, the PI-PEO had micellar structures. 

Nevertheless, upon spin coating the micelles were deformed and eventually 

disassociated. The combination of the soft/flexible PI core and the strong affinity of 

the PEO corona with the water layer of mica is the cause of the break-up of the 

micelles. This argument is also supported by a previous study, where they found that 

PI-b-PEO micelles, which were gently deposited on mica from water solutions, 

dissociated forming thin polymer monolayer islands with the PEO block wetting the 

substrate while the PI block dewetted mica [23]. The disassociation of the micelles 

upon deposition on surfaces has also been seen in other systems [36,37]. Mica in 

ambient conditions is hydrophilic owing to its polar character [38-41] and wetted 

with an ultrathin water layer [42]. The hydrophilic/water soluble PEO block aided by 

the presence of water, has the tendency to wet the substrate (Figure 3.1). The PI 

block prefers to wet the free interface (film/air) due to its lower surface tension 

compared to PEO (γPI ≈    mN/m, γPEO ≈ 45 mN/m) [43,44]. 

Figure 3.3a indicates that the thickness of the first layer (monolayer) formed at 

mica substrate is strongly related to the APT on each film. The higher the APT, the 

greater the thickness of the monolayer is; nevertheless, there seems to be an 

asymptotic behaviour to a maximum value as the surface coverage increases. 

Increasing the APT causes a higher surface coverage of the PI-PEO molecules on the 

substrate. At high surface coverage, the PI-PEO molecules attached by the PEO 
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block to the mica, stretch away from the substrate to avoid overlapping resulting in a 

thicker layer; this is similar behaviour to a dense polymer ‘brush’ [45]. We also 

observe that the fPEO = 0.66 polymer forms thinner monolayers (see also Figures and 

height profiles in the Appendix A) compared to the other two polymers; as the 

fraction of the PEO decreases (the fraction of the PI block increases) the thickness of 

the monolayer increases accordingly. This could be attributed to a thinner brush 

formed due to the short length of the PI molecules resulting in thinner monolayers. 

To confirm this point we have calculated the thickness of the monolayer. AFM 

studies on PEO (8 kg/mol and 14 kg/mol) thin films on mica revealed that the 

average thickness (DPEO) of a dendrite structure formed on mica is ~ 6.5 nm ± 1 nm 

(Appendix A, Figures A4 and A5). The thickness value remained unaffected by any 

change of the solution concentrations and by the change of the PEO molecular 

weight. The chain lengths of the fully extended PEO of MW 8 kg/mol and 14 kg/mol 

are LPEO = luNPEO = 51 nm and 89 nm respectively (the PEO monomer length is lu = 

0.2783 nm) [46]. In order to match the fully extended values of the PEO chains with 

the average thickness of the PEO on mica, the PEO chain must be folded 

approximately 8 times for the PEO 8 kg/mol and 13 times for the PEO 14 kg/mol 

[16]. Thus, we expect that the PEO block chains in the PI-b-PEO systems would be 

approximately 8 times folded for fPEO = 0.32 (Mw,PEO = 8.4 kg/mol) and fPEO = 0.49 

(MW,PEO = 8.9 kg/mol) and 13 times folded for fPEO = 0.66 (MW,PEO = 14.4 kg/mol) on 

mica, respectively [16]. In PI-b-PEO thin films, a unit cell of PEO has an area A = 

absin(β), where a = 0.805 nm, b = 1.304 nm and β = 125.4
o
 and contains 4 fully 

stretched chains/parts of chains [22,46]. In our case, for fPEO = 0.32, 0.49  the PEO 
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block is folded in a way to correspond to ~9 fully stretched parts of chain, and thus 

each PI block is confined to an area of ~2.3A. For fPEO = 0.66, the PEO is folded so 

that it contains ~14 stretched parts and thus each PI block is confined to an area of 

~3.5A. The volume of the PI block for each PI-PEO system (Table 3.2) is calculated 

based on its density (0.895 g/cm
3
) [17] and molecular weight (Mw,PI, see Table 3.1). 

This volume is divided by the corresponding area and provides the thickness of the 

PI brush layer presented in Table 3.2. Finally, the sum of the average PEO thickness 

on mica (DPEO ~ 6.5 nm) and the thickness of the PI brush (DPI), gives the thickness 

of the PI-PEO monolayer on mica shown in Table 3.2 These values compare very 

well and are within the thickness range of the measured by AFM average PI-PEO 

monolayer thickness presented in Table 3.2 and also in Figure 3.3a. 

Table 3.2 Calculation details for the PI brush 

Polymer, 

fPEO 

Average 

thickness of 

PEO 

monolayer, 

DPEO (nm) 

Number 

of 

stretched  

parts of 

chain 

Interfacial 

area for 

each PI 

block ( × 

A) 

PI 

block 

volume 

(nm
3
) 

Thickness 

of PI 

brush, DPI 

(nm) 

DPEO + DPI 

(nm) 

Average 

first layer 

thickness 

(nm)  

0.32 6.5 9 2.3 26.7 13.6 20.1 21.0 ± 3.6 

0.49 6.5 9 2.3 14.0 7.1 13.6 13.0 ± 2.8 

0.66 6.5 14 3.5 11.1 3.7 10.2 11.0 ± 3.6 
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The monolayer has a two-dimensional dendrite morphology. The dendrites 

started growing from the thicker areas of the film (nucleation points) and are typical 

for the crystallisation of PEO homopolymers and copolymers containing PEO-blocks 

in ultrathin film geometries [1,13,33,47-50]. We note that at room temperature our 

system is below Tm ≈ 55 °C. The thicker areas act as a ‘reservoir’ feeding the 

dendrite formation as water evaporates in similar fashion to other studies, where the 

feeding proceeds during cooling from molten state [47]. Their expansion- growth 

across the substrate is associated with a diffusion-limited crystallisation mechanism 

[51,52]. Although most of the studies based on PEO homopolymer and copolymers 

require annealing above the melting point of the PEO block in order to form the 

dendritic monolayer, in all our thin films on mica dendrite formation was formed 

without any prior heat treatment. Moreover, we annealed several thin films above the 

corresponding Tm (see Table 3.1) and we observed no changes to the dendrite 

structures on mica; the structures were unaffected. To investigate further this 

behaviour, we spin coated PI-PEO thin films on (lightly cleaned by 50/50 

isopropanol/methanol mixture) silicon (with a native silicon oxide surface) 

substrates. Typical AFM images of PI-PEO (fPEO = 0.49, APT = 13 nm) thin films on 

mica and on silicon substrates are presented in Figures 3.4a and b respectively. Over 

mica we observed the formation of the dendritic structures, while over the silicon 

substrate (which was lightly cleaned by 50/50 isopropanol/methanol mixture) a more 

flat and featureless monolayer was formed. The results showed no evidence of 

dendrite patterns, which agrees with other studies of amphiphilic diblock copolymer 

films prepared from selective solvent solutions on less-hydrophilic substrates [41]. 
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Hence our data highlight the importance of the highly hydrophilic mica surface 

(when freshly cleaved) and its hydrated ultrathin surface layer on the formation of 

the observed structures; the presence of water is enhanced as we use aqueous 

solutions. These conditions provide the necessary mobility required for the quasi-2D 

diffusion limited crystallisation [49]. 

 

Figure 3.4 (a) AFM topography image of the 13 nm film (PI-b-PEO block copolymer with fPEO = 

0.49) (b) AFM topography image of the same film on Si wafer. The focus is on the morphology 

of the first layer (monolayer). 

When the average thickness of the polymer material on the substrate is less 

than the thickness of the half lamellar period in the bulk (for asymmetric wetting as 

in our case), the amount of polymer is not enough to form a full monolayer 

[33,39,53]. The half lamellar bulk values for our polymers can be approximated by 

the half of the asymptotic bilayer thickness values (Figure 3.3) and are roughly 20.5, 

14 and 15 nm for fPEO = 0.32, 0.49 and 0.66, respectively; these values are in 

agreement with measurements of the bulk lamella thickness of similar molecular 

weights of the same polymer [16]. Thus, for an average film thickness (APT) of 7 nm 
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we expect only partial coverage in all cases as actually seen in the corresponding 

images (Figures 3.2a-c). At APT = 13 nm, we are still away from the half lamella 

thickness for fPEO = 0.32 and to some extent for 0.66, but for fPEO = 0.49 we are close 

to half lamella and full coverage (Figure 3.2e).  

For fPEO = 0.66 in particular at higher concentrations, we have observed that 

there is a tendency for the monolayer to be covered by the excess material which 

could be due to PEO crystallisation which proceeds faster when away from the 

substrate [33]. This faster crystallisation during the rapid spin-coating process could 

deplete material and prevent full coverage. At even higher concentrations (APT = 41 

nm) the substrate is fully covered as expected (Figure 3.2i) and also for the polymer 

with fPEO = 0.49 (the occasional holes in Figure 3.2h are due to the dewetting on top 

of the monolayer to be discussed later) but surprisingly for fPEO = 0.32 the monolayer 

is far from being completely formed (Figure 3.2g). We note that there is a complex 

coupling and competition between wetting and phase separation into lamella layers at 

high segregation strengths ( N = 131 at T ≈     K [17] according to the mean field 

theory [9], for fPEO = 0.32) [54]. Furthermore, this last outcome could be the result of 

the rapid formation of the thin film due to spin-coating and (i.e. the kinetics of the 

process). It seems that the polymers which contain higher volume fractions of PEO 

are capable of more rapid evolution. Reiter and co-workers [33], who have 

extensively studied the kinetics of the crystalline dendrite patterns on the substrate 

from annealed semi-crystalline diblock systems, found that this is a relatively slow 

process compared to the formation of lamellar or crystalline lamellar structures away 

from the substrate. The dendrite patterns started growing from the thicker areas 
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towards the substrate and that the maximum length of dendrite patterns significantly 

varied. In our case, for fPEO = 0.32 the influence of the large hydrophobic PI block 

could perturb the diffusion/crystallisation of the diblock on the substrate and slow 

things even more, resulting in partial coverage. 

3.4.2 Thicker Areas: Cone-Like Lamellae and Crystalline Lamellae 

The symmetric polymer thin film behaviour (fPEO = 0.49) is characterised by 

the formation of thick multilayer cone-like structures on top of the dense dendrite 

layer (Figure 3.2e and Figure 3.5). The excess material dewetted autophobically on 

the chemically identical monolayer [55]. More precisely, the different chain 

conformation between the molecules attached on mica and molecules which are free 

in the overlying layers introduces entropic effects which inhibit the polymer to 

spread on a surface of the same material [56,57]. Autophobic phenomena driven by 

entropy differences have been reported in other polymer brush as well as in cross-

linked systems [57-61]. The reason for cone-like terraced lamellar structures stems 

from the competition between the edge tension, which drives polymer from the 

higher smaller layers to lower larger ones, and the edge repulsion which inhibits two 

neighbouring edges approaching each other [62,63]. Each step corresponds to a 

lamella bilayer, arranged as PI-PEO/PEO-PI (as shown in the schematics of Figure 

3.5f). The terraced structures observed consisted from 4 up to 8 lamella layers, with 

lamellar height L ≈  6 nm which is approximately double the thickness of the 

corresponding first monolayer (L/2) as shown in the graph of Figure 3.3c as well as 

in the height profile of Figure 3.5d and in the Appendix (Figure A2). This is the 

typical asymmetric wetting structures for symmetric block copolymer thin films 
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[1,19,62,64,65]. The thickness L of the second layer (Figure 3.3b) depends on the 

total molecular weight of the polymers and this compares well with other study, 

where an increase in the lamella thicknesses with increasing the Mw of the diblock 

copolymer chain has been reported [66]. 

 

Figure 3.5 (a) High contrast AFM topography image highlighting the cone-like terraced 

structure in the PI-PEO with fPEO = 0.49, APT ≈ 13 nm; (b) AFM amplitude image (amplitude 

scale: 616 mV) of (a); (c) AFM phase image (angle units: degrees) of the area presented in (a); 

(d) Height profile of the corresponding image, the cone-like structures consist of 5 layers; (e) 

AFM 3D image of a different cone-like terraced area of the 13 nm film (PI-b-PEO block 

copolymer with fPEO = 0.49) containing 8 layers, the size of the image is 20 × 20 μm
2
 and the z-

scale is 242 nm; (f) Schematic representation of the first thin monolayer directly over the mica 

substrate and the lamella orientation on top of the monolayer. 

The asymmetric wetting behaviour (affinity of PEO block with the mica 

substrate and segregation of PI at the free interface, due to its lower surface tension 

compared to the PEO counterpart) is also confirmed by the phase imaging of Figure 

3.5c. It is clear that the areas occupied from the polymeric structures appear with the 

same colour (orange); indicating the material is the same, i.e. the PI block is on top in 

all cases. We note that the main contrast difference in the phase [30,67,68] arises in 
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the areas where the hole reaches the mica substrate (dark brown colour) and stems 

from the differences in the mechanical/adhesive properties between the viscoelastic 

PI areas and stiff mica: similar behaviour (low surface energy block in the free 

interface) was found in the studies of the PB-PEO systems [69] and the PS-PEO 

systems [33,70]. 

In the case of the fPEO = 0.32, cone-like structures and terraces (Figure 3.6 and 

Figures 3.2a, d, g) are present but not as well formed. The amplitude signal images 

reveal more clearly the fine details of the topography (compare Figures 3.5b and 

3.6c). The steps/edges are much sharper for the symmetric polymer (see also Figures 

3.5 and 3.6b). It is important to point out that in the asymmetric case of the PI-PEO 

with fPEO = 0.32 the bulk structure is a hexagonal phase as reported by Floudas and 

co-workers [17]. The lamella structure in the thin film geometry occurs due to the 

strong affinity of the PEO block with mica; i.e. interfacial interactions induce 

lamellar ordering. Li et al. studied an asymmetric polyethylene-b-poly(styrene-r-

ethylene-r-butene) (short crystalline – long amorphous blocks as in our case for fPEO 

= 0.32) on silicon wafer substrates (annealed for several hours at 77 °C) and they 

observed that the lamella structure was retained for only one bilayer [20]. In our case 

the presence of water and the strongly hydrophilic mica when freshly cleaved, drive 

the formation of the lamellar structures without any heat treatment, i.e. as-cast films. 

Furthermore, in our case, we show that the lamella continues to several layers albeit 

with decreasing order. The thickness of the lamellar spacing, or else the thickness of 

the layers, decreased significantly only after the third terrace as shown in Figure 3.7. 

The lamella morphology becomes unfavourable for this asymmetric polymer as we 
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move away from the substrate and the system will eventually obtain its bulk 

structure. 

 

Figure 3.6 (a) AFM 3D topography image highlighting the cone-like terraced structure in the 

PI-PEO with fPEO = 0.32, APT ≈ 7 nm; the size of the image is 9 × 9 μm
2
 and the z-scale is 147 

nm; (b) height profile of the corresponding image, the cone-like structures consist of 4 layers on 

top of the first layer; (c) AFM amplitude image (amplitude scale: 542 mV) of (a). 
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Figure 3.7 (a) Thickness/height of consecutive terraces/layers of a cone-like structure (moving 

away from the substrate), for two different PI-b-PEO diblock copolymers (asymmetric and 

symmetric). 

Papadakis et al. [22] studied the morphology of spin cast thin films of 

asymmetric PI-b-PEO (fPEO ≈  . 8), on silicon wafers. They found the formation of 

hexagonally packed PEO cylinders (lying parallel to the substrate plain) in a PI 

matrix in their films on top of silicon wafer substrates after spin coating and short 

annealing times (several minutes). The cylinder PEO domains were not crystallised 

at this ’right after preparation’ stage.  However, several months later they found an 

amorphous flat layer formed on the substrate with a crystallised PEO dendrite layer 

forming on top surface. The initial hexagonal packed morphology was destroyed by 

the PEO crystallisation, resulting in crystalline lamellae structures, oriented parallel 

to the substrate. The crystallised dendrite layer was terraced (multi-lamellar 

structure). This very slow crystallisation process was explained in terms of the 

necessary significant mass transport that has to take place in order the terraced 

structured to be formed. Slow crystallisation is typical in similar systems [44]. In our 

case, we acquire similar terraced crystallised structures immediately after spin-
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coating and drying. The reason for such an enhanced crystallisation process can be 

attributed to the strong hydrophilic nature of the freshly cleaved mica substrate along 

with the use of aqueous solutions and consequently the presence of water which aids 

in the attainment of such surface structures; such a system could accommodate an 

enhanced mass transport that is necessary for the crystallised   terraced structures. 

It is important to point out that our results cannot be explained by any swelling 

effects of the PEO block due to the water solutions used. Although water plays an 

important role in the formation of films its thickness on top of mica is of the range of 

0.2 to 2 nm [71,72] and cannot result in a significantly swollen PEO block. In case of 

swelling, our symmetric polymer system (fPEO = 0.49) should have different 

morphological behaviour (behave like fPEO >> 0.5), other than lamellae with equal 

thickness bilayers formed on top of the monolayer. Also, annealing the films above 

the melting temperature or leaving the films in ambient conditions for months did not 

produce any significant difference in the morphology of the structures which were 

proven thus, to be very robust. 

For the symmetric polymer film and for larger APT (Figure 3.2h), the typical 

morphology involves extensive and uniform lamellar layers, covering large portions 

of the monolayer (which covers the whole mica surface). Holes give details for the 

number of layers formed on the monolayer and indicate autophobic dewetting. A 

recent study from Zhang and co-workers [54] on the nearly symmetric poly(styrene)-

block-poly(ε-caprolactone) diblock thin films, revealed that lamellae structures 

(although they usually appear after annealing) are in fact metastable structures, 
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resulting from the coupling of dewetting (autophobic behaviour) and microphase 

separation. However, although these structures are metastable, if one of the blocks is 

semi-crystalline, below Tm, they are robust [20,70].  

For the fPEO = 0.66, the mica substrate has been fully covered and the film 

structure consists of two to three dense dendrite layers formed on top of a dense 

dendritic monolayer with clear crystal boundaries (Figure 3.8a). The AFM image in 

Figure 3.8b highlights the 2D spherulitic-like morphology of this film. The 

morphology is spherulitic-like with radial centrosymmetric organization, typical for 

PEO-based systems [48,73,74]. These semi-crystalline structures indicate that the 

crystallised PEO block dominates the overall morphology of the film and the growth 

occurs along the mica surface. The abundance of crystallised PEO molecules led to 

the formation of stacks of ‘flat-on’ crystalline lamellae in accordance with the bulk 

properties of this polymer [17]. The ‘flat-on’ orientation of the crystalline lamella 

compares well with similar studies on thin films (thinner than 200 nm) [48,75]. The 

crystallisation of a lower PEO layer induces the crystallisation of the subsequent 

PEO layer, with the amorphous PI molecules lying within the crystallized layers 

[33,70,73]. Lamellar bilayers, guided by the crystallisation of the PEO were also 

observed at Neto et al. study in a PS-b-PEO system with fPEO ≈  .65 [70]. 
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Figure 3.8 (a) (b) AFM topography images from different areas of the 41 nm film with fPEO = 

0.66. Note the dendrite layer observed inside a whole of the film in image (a). Arrows in image 

(b) indicate crystal boundaries (colour scales are in nanometres). 

3.5 Conclusions 

We studied the morphology of thin PI-b-PEO films prepared by spin-coating 

by varying the crystallisable/hydrophilic block (PEO) volume fraction and the 

concentration of the polymers in aqueous solutions. Stable ordered nanodomains 
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immediately after spin coating were observed in all cases, not affected by 

heating/annealing and ageing.  

We have argued that the interactions between the hydrophilic mica surface and 

the hydrophilic PEO block played a crucial role and resulted in the collapse of the 

micelles and the formation of a crystallised dendritic thin monolayer on top of the 

mica. Our results are consistent with a monolayer consisting of a PEO layer of the 

same thickness in all cases (directly on top of mica) and a PI brush with a varying 

layer thickness. The growth of these patterns which started from the thicker areas of 

the film (which played the role of nucleation centres) is associated with a diffusion 

limited crystallisation mechanism. This mechanism can be slow and account for the 

varying lateral spreading of the monolayer during the rapid spin-coating.  

In thicker areas, the excess of polymer material which did not wet the mica 

self-assembled into lamellae bilayers as result of the coupling between autophobic 

dewetting and phase separation behaviour. For the symmetric diblock copolymer 

(fPEO = 0.49) the preferred morphology are tall cone-like lamellae structures which 

are uniform and well-formed while for the asymmetric one with the lower PEO 

volume fraction (fPEO = 0.32) they deteriorate as we move away from the substrate. 

In the case of the asymmetric PI-PEO polymer with a higher PEO volume fraction 

(fPEO = 0.66) and for relatively high average polymer thickness, the morphology is 

characterised by laterally extensive stacks of flat-on (2D) lamellae crystallites on the 

surface.  
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The monolayer and bilayer lamellar thicknesses depend on PI-b-PEO 

composition, molecular weight and surface coverage (average polymer thickness) of 

each film. Increasing the concentration (and consequently the APT) causes the PI-

PEO molecules to stretch away from the interface to avoid overlapping resulting in 

thicker layers. 

A conclusion coming from the comparison between the three polymers is that 

the volume fraction of the PEO played a crucial role in the observed structures. At 

the highest concentration studied, the polymer with the lowest volume fraction of the 

PEO (fPEO = 0.32) formed dewetted cone-like patterns on top of the semi-continuous 

monolayer. The wetting increased with the increase of the volume fraction of the 

PEO (fPEO = 0.49) and lamellar layers were formed on top of a fully formed 

monolayer. Finally when the volume fraction of the PEO reached the maximum 

value studied herein (fPEO = 0.66) multi-crystalline lamellar structures have covered 

the substrate. The PEO content is crucial in determining the overall morphology of 

these kinetically trapped but robust structures. 

The structures were formed right after the spin coating process, using aqueous 

solutions without the need of annealing. This is an intriguing result as self-

assembled, robust structures based on block copolymers and produced by 

environmentally-friendly processing routes can be important for many applications. 

For example, exploiting the biocompatibility of the PEO block and the coupling 

between microphase separation and dewetting in thin films, in combination with the 
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PEO crystallinity, robust patterns with useful biological/biomedical properties can be 

produced by water-processing alone. 
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AFM height image of F8BT:TFB 1:2 polymer blend thin film (colour scale units are in nm). 
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4.1 Introduction 

Conjugated polymer blends are organic semiconductors that have proved to be 

excellent alternatives to inorganic semiconductors for use in devices such as 

photovoltaic and light emitting diodes [1]. The much less complicated techniques to 

mix and prepare thin films of conjugated polymers compared with the high-energy, 

sophisticated and expensive preparation techniques of the inorganic competitors, in 

combination with the very good electroluminescence efficiency are the reasons 

which made conjugated polymers very popular. 

Burroughes et al. [2], have first reported electroluminescence produced from a 

polymer based diode using poly(phenylene vinylene) (PPV). Since then, several 

other polymer-based diodes were investigated for their electroluminescence 

efficiency. Polyfluorene-based conjugated blends are one of the most popular organic 

semiconductors, exhibiting great semiconducting performance [3] and achieving the 

production of the first full colour displays [4]. More precisely thin films of the 

electron-transporting F8BT [poly(9,9-dioctylfluorene-co-benzothiadiazole)] and 

hole-transporting TFB poly[9,9-dioctyfluorene-co-N-(4-butylphenyl)- 

diphenylamine] polymer blends as active materials in LEDs have been very 

successful in improved device efficiency, such as higher electroluminescence (higher 

than 18 lm/W) and outstanding firmness under long-lasting process (more than 5,000 

h at 100 cd/m
2
) [5,6].  

The structural behaviour of F8BT:TFB polymer blends in thin films determines 

the overall performance and function of the devices [7]. For that reason the extensive 
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and in depth study of the mixing, solubility and phase-separation behaviour is of 

paramount importance. Kim and co-workers have studied the phase separation 

behaviour of F8BT:TFB blends [7]. Furthermore, Yim and co-workers have lately 

reported that F8BT and TFB polymer blends with at least one molecular weight Mn < 

10 kg/mol do not exhibit any measureable lateral phase-separated structures [3]. 

However, they used polymer pairs with a substantial difference between their 

molecular weights. Furthermore, there are still several questions which were left 

unanswered, such as the effect of the concentration, spin-coating speed and 

annealing. 

In this chapter, we show that F8BT:TFB polymer blend thin films with both Mn 

< 10 kg/mol exhibit sub-micrometre and nano–scale phase-separation. A large 

number of samples were prepared from p-xylene solutions of 14 mg/ml and 20 

mg/ml and the weight (w/w) blend ratio varied from 0:1 to 1:4 and from 1:0 to 4:1. 

The spin coating speed was varied from 2,000 to 5,000 rpm. Finally the annealing 

process was applied to a few of the thin films. 

We found for the first time and present the formation of sub-micrometre length 

scale phase-separated domains in F8BT:TFB thin films with blend ratios 1:1, 1:2, 1:3 

and 1:4 for both solution concentrations with Mn < 10 kg/mol. Sub-micrometre phase 

separated domains have been reported only in F8BT:TFB 3:1 thin films (in thin films 

with significantly higher molecular weights) [7]. 

Two different phase-separation trends were found, one for 1:1 thin films which 

is caused due to spinodal decomposition and one for 1:2, 1:3 and 1:4, the cause of 
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which is nucleation and growth. Although it is known that the phases are not 

completely pure, we are the first to present high resolution AFM images showing the 

structure of the impurities (nano-phase separation) in the F8BT:TFB thin films with 

1:4 blend ratio. The spin coating speed and concentration do not appear to affect the 

structures laterally in a substantial degree, however there are some important changes 

noted in the vertical sizes of the domains. Furthermore, the evolution of the 

structures from 1:2 to 1:4 blends was also extensively investigated. 

4.2 Background 

4.2.1 Semiconductor Materials and Light Emitting Diodes 

Materials which have conductivity that lies between that of conductors and 

non-conductors (insulators) are known as semiconductors. Conventional 

semiconductors are made by single inorganic crystalline materials such as silicon and 

germanium, or compounds such as cadmium selenide or gallium arsenide. The basic 

characteristics of the semiconductors are the well-defined optical properties such as 

the bandgap and electrical properties such as the conductivity, mobility and electron 

affinity. The conductivity of the semiconductors originates from the free mobility of 

the electrons and the holes (absence of electrons). The conductivity properties of the 

semiconductors can be modified by doping the materials with the appropriate 

dopants (electrons or holes). In the case where a semiconductor is doped with excess 

of electrons it is called n-type semiconductor, while in the case where it is doped 

with excess of holes, the semiconductor is called p-type. 
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The semiconductor devices usually include junctions of n-type and p-type 

semiconductors. A typical example of a single p-n junction is the light emitting diode 

(LED). LED semiconductor devices are low-voltage light sources (compared with 

the conventional light sources) widely used in our everyday life (flat panels, visual 

signals) and in industry (aviation lighting, automotive lighting, sensors, LED printers 

etc). LEDs emit light through the phenomenon of electroluminescence. As shown in 

the schematic of Figure 4.1, when the diode is biased (current flows), electrons from 

the n-type semiconductor recombine with holes from the p-type, producing photons 

i.e. light. The exact colour of the light depends on the band gap (the gap between the 

conduction and the valance band) of the semiconductor device. In order for the LED 

to achieve the desirable optical properties, the semiconductors inside the LED need 

to be doped with electron or holes as mentioned above. For example when the 

semiconductor In2O3 is doped with Sn, a transparent conductive semiconductor 

material is formed with great applications in optoelectronics. However mixing and 

doping the inorganic semiconductors requires high energy and complicated 

techniques which are not cost-effective. 

 

Figure 4.1 Schematic representation of the electroluminescence process in an inorganic-based 

only light emitting diode. 
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Molecular materials, on the other hand, can be synthesized and mixed to create 

the desirable semiconductor properties through easier and less expensive techniques 

compared to inorganic semiconductors. The wide variety of molecular materials with 

semiconductor properties (in combination with the constant need for smaller and 

lower-cost devices) has made them promising candidates for replacing the expensive 

inorganic semiconductors. Single-molecule devices with wire, rectifiers, storage and 

switching properties have been successfully demonstrated that can substitute the 

silicon technology [8]. Furthermore, over the last years, small-molecule technology 

(or vacuum-deposited molecular layers) [9], as well as polymer technology (or 

conjugated polymers) [2], have been great competitors in performance and efficiency 

with the inorganic crystalline semiconductors in fields such as the display industry 

[10]. However the vacuum-deposited molecular layer technology has been proven to 

exhibit a long-term instability (re-crystallisation and other structural changes). A way 

to overcome this structural instability is to move from molecular to macromolecular 

materials. Conjugated polymers could offer both good charge transfer and stability 

over long times [2]. 

4.2.2 Conjugated Polymers 

Conjugated polymers are organic semiconductors; the semi-conducting 

behaviour originates from the delocalised π-electron bonding in their backbone 

structure. Friend et al. [11] in their review article describe the process as follows: 

“The π bonding and the π
*
 antibonding orbitals form delocalised valence and 

conduction wavefunctions, which support mobile charge carriers.” The polymeric 

properties of this type of semiconductors lead to the formation of more flexible, 
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robust structures, increased device efficiency, improved overall performance [12] 

and at the same time lower-cost manufacturing using solution-processing of film-

forming polymers [13], compared with the inorganic semiconductors. For these 

reasons LEDs and photovoltaic diodes or photodiodes (PD, convert light into current 

or voltage; the opposite process of a LED) consisting of conjugated polymer-based 

thin films have received considerable attention over the last decade [1,7,14,15]. A 

typical polymer LED/PD is made from a polymer film as the active layer sandwiched 

between an anode (ITO) and a cathode (metal). Usually the polymer film is a blend 

of an A and a B conjugated polymer. The A polymer is n-type (donor) semiconductor 

and the B polymer is p-type (acceptor) semiconductor. Figure 4.2 presents a 

schematic representation of a typical PD. The morphological behaviour when the two 

polymers are blended to produce the polymer-based active layer plays a crucial role 

in the overall efficiency and performance of the diodes [7]. Therefore, it is of 

paramount important to understand in depth the polymer structures formed on solid 

surfaces on the nano-scale. 

 

Figure 4.2 Schematic cross section of the layered donor/acceptor polymer photovoltaic cells; 

image is taken from Alam and co-workers [15]. 
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 The technique used the most for processing the conjugated polymers is 

blending, where two or more polymers are mixed in order to achieve discrete 

morphology and physical properties of the polymeric mixture in the solid state, 

without the synthesis of new polymers [1]. Phase-separated structures resulting from 

demixing of the conjugated polymers determine the ultimate optoelectronic 

performance of the devices. Therefore it is crucial to achieve control of the phase-

separation, in order to develop devices with the desired properties. Phase-separation 

in conjugated polymer blends usually occurs after solvent quenching, where the 

polymers are dissolved in a non-selective solvent and form a homogeneous solution, 

which phase-separates when the solvent evaporates from the solution. When the 

blended polymer solution is being transferred onto a solid substrate, usually via spin-

coating [16] an ultrathin or thin film forms. Polymer-blend thin films, typically 

exhibit different compositions to the compositions they exhibit in the bulk, because 

each component tends to have different surface energy (and thus different 

interactions with the substrate and the free interface). The phase-separated domains 

can have a circular-like shape of one phase in a homogenous matrix of the other 

phase [1]. The circular-like shape can be either island-like (extended out of the 

surface) or well-like (extended into the film) [17]. The resulting film morphology 

and the phase-separated domain size are highly affected by factors such as the 

polymer blend ratio (the polymers mass fraction in the blend), the solvent, the spin 

coating parameters (spin speed, time) and the nature of the substrate [1]. In this study 

we considered the effect of the polymer blend ratio, spin speed and time in various 

blend ratios of a given conjugated polymer blend. 
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4.2.3 Polyfluorene-Based Conjugated Polymer Blends 

Since the first report in the 1970s that polymers can be conductive (Nobel Prize 

in Chemistry 2000) [18], a new area of interest in polymer technology was born. 

Electroluminescence from a polymer based diode using poly(phenylene vinylene) 

(PPV) was first reported by Burroughes et al. [2]. Since this seminal work, 

considerable progress was made with tuning the conjugated polymer properties to 

achieve increased conductive, emissive and electroluminescence efficiency. In 

particular blue emission was achieved making possible the production of full colour 

displays with the use of poly(fluorene)-based conjugated polymer blends [4]. 

The phase-separation behaviour of thin films made by poly(fluorene)-based 

conjugated polymer blends, which exhibit photo-induced charge transfer and 

photovoltaic performance has been extensively investigated by the Friend group at 

the Cavendish Laboratory [3,5,7,14,19-23]. Arias et al. [20] studied the morphology 

and performance of conjugated polymer blended thin films consisted by F8BT 

[poly(9,9-dioctylfluorene-co-benzothiadiazole)] and PFB [poly(9,9-dioctylfluorene-

co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine)] parts on an ITO 

substrate. They used scanning probe microscopy techniques to study the structural 

behaviour of the films, which influences the performance of polyfluorene blend-

based devices. They found that by varying the solvent, the substrate temperature and 

the saturation of the atmosphere over the film, the phase-separated domain sizes 

could be varied from tens of nanometres up to tens of microns. In addition they 

found that the nanoscale sized phase-separated structures, produced by rapid solvent 

evaporation (in this case chloroform) during spin coating, led to more efficient 
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photovoltaic performance. The performance of vertically segregated LEDs and the 

effect of the structural behaviour on device performance was also studied by 

Corcoran et al. [21] using the same method as Arias et al. [20]. They used blended 

films consisted of the electron transporting polymer F8BT and the hole-transporting 

polymer poly[9,9 -dioctyfluorene-coN-(4-butylphenyl)-diphenylamine] (TFB) on 

poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) PEDOT:PSS coated 

ITO substrates. The effect of the solvent and the spinning conditions can be used to 

control the phase-separation in the F8BT:TFB polymer blend films. Vertically 

segregated light emitting diodes by F8BT:TFB blends have been fabricated with 

increased device efficiency relative to laterally phase-separated devices.   

Thin films of F8BT:TFB polymer blends as active materials in LEDs have 

been very successful in improved device characteristics, such as higher 

electroluminescence (higher than 18 lm/W) and outstanding firmness under long-

lasting use (more than 5,000 h at 100 cd/m
2
) [5,6]. More precisely, the F8BT:TFB 

blend with 1:1 w/w, was found to produce LEDs with remarkably high brightness 

and efficiency, even at low operational voltage [24,25]. The light emission kicks in at 

operational voltages of 1.9 V with a peak efficiency of 16 lm/W, at 2.2 V and 100 

cd/m
2
. The level of the luminescence was found at 1,000 cd/m

2
, obtained at 2.4 V 

and at 30,000 cd/m
2
 at 5 V [24,26]. 

First AFM investigations of the morphology of spin-cast F8BT:TFB blend thin 

films with 1:1 weight ratio  have revealed that the surface consists of micrometre-

size well-like domains (dark wells) in a homogeneous phase (bright areas) 

[24,25,27]. Increasing the weight fraction of the TFB part, island-like domains 
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extending out of a homogenous layer were formed. On the other hand, for higher 

weight fraction of the F8BT polymer, the thin film morphology is characterised by 

sub-micrometre well-like domains (200 – 300 nm diameter for 2:1 w/w). 

Furthermore, the molecular weight of the polymer was also found to affect the film 

morphology [24,28]. 

Later, Kim et al. [7] has extensively studied the spin-cast thin film morphology 

of F8BT:TFB blended polymers, dispersed in p-xylene solutions onto ITO substrates 

by AFM, micron-Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). 

They have experimentally determined the phase diagram of a F8BT:TFB:p-xylene 

ternary blend system at 22 
o
C, which is a useful tool for predicting the thin-film 

formation during the spin-coating process (Figure 4.3). Their study showed that the 

TFB part is more soluble in p-xylene than the F8BT part, which exhibits a limited 

solubility (~ 3.5%) in this solvent; we also note that the F8BT part has a higher 

surface energy (4 −45 mJ/m
2
) than the TFB ( 5−4  mJ/m

2
) [7,29]. According to 

these solubility trends, during solvent evaporation an F8BT-rich phase will form at 

an early stage. As the concentration of the polymer in the system increases, two 

phases would form. One would be F8BT-rich and the other would be TFB-rich. In 

further compositional analysis Kim et al. have studied these micron-scale lateral 

phase-separated domains, using micro-Raman spectroscopy. These domains are not 

pure at the nanoscale. Furthermore, vertical phase segregation also occurred, with the 

TFB part which has the lower surface energy segregating at both air and substrate 

interfaces. Kim et al. [7], who have performed XPS and variable photoelectron 

takeoff-angle experiments on the ITO side of the F8BT:TFB 3:1 thin film, claimed 
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that the preference of the TFB polymer to wet the substrate might be related to the 

solvent concentration gradient across the film thickness during the solvent 

evaporation process. Furthermore, the enrichment of the TFB polymer (which has 

lower surface energy) in the interfaces and the depletion of the F8BT, which has 

higher surface energy than the TFB from the film interfaces, are consistent with the 

thermodynamic driving force to reduce the interface energies, in (otherwise) weak 

substrate-polymer interactions. 

 

Figure 4.3 Phase diagram for the ternary blend system, F8BT + TFB + p-xylene, obtained by 

Kim et al. [7]. 

Kim et al. suggested a typical polymer concentration of   −20 mg/ml and spin 

casting to achieve a final film thickness of 100 nm.  Based on their observations, they 

have also proposed a simple model for the evolution of structure of the F8BT:TFB 

blend thin films during spin-coating (Figure 4.4), which is crucial for the ultimate 
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performance of the conjugated-based LEDs. As presented at Figure 4.4, when the 

substrate starts to spin the solution would spread over the substrate to the edges (step 

1). As the solvent evaporates and in accordance with the phase diagram of Figure 

4.3, the F8BT-rich + solvent regions will phase-separate at low solid contents (step 

2). For blends with 1:1 ratio this process will occur via the spinodal decomposition 

(i.e. initiated by density fluctuations of the respective polymer concentrations), whilst 

for compositions that are strongly enriched in one or the other polymer, the process 

would be initiated by nucleation and growth of specific polymer-rich areas. As more 

solvent evaporates, the phases continue to eject the ‘guest’ polymer material; 

however some of this material is entrapped as smaller domains into the larger phase-

separated domains, until the system reaches the glass transition temperature (Tg), 

which results in polymer chain motions stopping and the existing structure freezes 

(step 3). After this step the solvent continues to evaporate, however the phase-

separated morphologies were already determined. The final film structure (step 4) for 

the particular example of low F8BT content blends, comprises of a crater-like 

surface, probably due to the pinning of the triple-phase boundary (F8BT-rich, TFB-

rich and air) while the solvent continues to evaporate. XPS experiments have shown 

that a TFB wetting layer is formed at the film-substrate interface and the existence of 

a TFB capping layer on top of the F8BT-rich craters (film-air interface). 
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Figure 4.4 Proposed model for the development of the thin-film phase-separated structure in 

F8BT:TFB blends during the spin coating process according to Kim et al. [7]: Step 1: spin-off, 

step 2: solvent evaporation, step 3: morphology frozen in, step 4: thin film formation. 

Kim et al. [7] have also performed studies on junctions directly on ITO without 

applying a hole-injection/transporting layer (PEDOT:PSS), since the TFB wetting 

layer was found to be present at the anode interface (substrate). Results have shown 

that it is possible to prepare LEDs which include an ultrathin layer of F8BT:TFB 

polymer blend alone as efficient as with the existence of an additional PEDOT:PSS 

layer. 

Later, Yim et al. [3], have performed studies on vertically and laterally phase-

separated thin-film structures of F8BT:TFB blends with molecular weight variations 

as presented in Figure 4.5. For their study they used AFM, XPS and 
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photoluminescence (PL) spectroscopy techniques. They found that blend films that 

consist of at least one low molecular weight polymer (Mn < 10 kg/mol, Figures 4.5a-

g), show no micrometre lateral phase-separation. Only vertical phase segregation did 

occur, driven by the difference of the polymer molecular weights in the blends. They 

stated that the film-air interface was found to be enriched by the lower molecular 

weight polymer (i.e. shorter length) polymer, due to the surface free energy of end 

groups and conformational entropy factors [3]. On the other hand, when there are no 

low molecular weight polymers in the blend, micrometre lateral phase-separation 

was observed (Figures 4.5e, f, h and i). However, neither Yim et al. nor Kim et al. 

have performed studies on F8BT:TFB polymer blends with similar and at the same 

time low molecular weights (Mn < 10 kg/mol). The use of low molecular weight 

polymers in the polymer blend could be beneficial for maintaining high efficiency of 

the devices at high drive voltages [3]. More precisely, the TFB which is an 

amorphous polymer with bulky and twisted triarylamine units in the backbone, 

exhibits gradual decrease in the hole mobility with increasing its molecular weight 

[3]. Thus, the extensive study of thin film morphologies in this direction is of 

paramount importance. 
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Figure 4.5 (a-i) Photoluminescence (PL) images of ca. 80-100 nm thick F8BT:TFB blend films 

(1:1 by weight) with different molecular weights of each homopolymer, under blue excitation 

(2.85 eV). The bright regions in these PL images correspond to F8BT-rich phases while the dark 

regions correspond to TFB-rich phases. The corresponding AFM images (20 μm × 20 μm) are 

included in the insets. AFM images in (a-d) and (g) are on a 20 nm height scale, while those in 

(e), (f) (h), and (i) are on a 70 nm height scale. No measurable lateral phase-separation in (a-d) 

and (g) within the resolution of both PL and AFM images here. The PL efficiency values (%) of 

the blend films are also shown (Figure and the Figure caption obtained from Yim et al. [3]). 
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Owing to the great advantages that the thin films of F8BT:TFB polymer blends 

exhibit in LED fabrication and the effect of the phase-separation behaviour in the 

overall performance of the LEDs, we applied atomic force microscopy and 

transmission electron microscopy techniques to further study this polymer system. 

The size of the domains appears to be extremely crucial for the ultimate performance 

and efficiency of the LEDs [3]. Both Yim and Kim et al. [3,7] used various 

substrates for the formation of thin films: pre-cleaned quartz substrates and oxygen-

plasma cleaned ITO-coated glass substrates with or without a ~60 nm thick 

poly(styrene sulfonate)-doped poly(3,4-ethylene dioxythiophene) (PEDOT-PSS) 

layer. They have not reported any changes in morphology due to the difference in 

substrates. For our fundamental studies, we used freshly cleaved mica which is a 

hydrophilic high energy mineral surface (similar in this way to chemically cleaned 

Quartz or ITO) which has the extra advantage of being atomically flat allowing for 

smoother thin films which can aid in high resolution imaging with AFM.  

We used the polymer blend ratios, solution concentration, spin coating 

parameters and the heat treatment, as tools to better understand the phase-separation 

behaviour of the spin cast blend films in the lateral direction. More precisely, we 

prepared a series of ultrathin films of low molecular weight F8BT:TFB polymer 

blends with concentration 20 mg/ml and 14 mg/ml, with various blend ratios ‘by 

weight’.  ome of the films were annealed at 200 
o
C for 12 h after spin coating. We 

found sub-micrometre lateral phase-separated domains (5 −5   nm) in the as spin 

cast thin films of F8BT:TFB polymer blends. We present the fine details of the 

morphology of the domains in the nano-scale for the first time. The exact structural 
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behaviour was found to be strongly dependent on the weight fractions of the F8BT 

and TFB blends. 

4.3 Experimental 

4.3.1 Materials 

The conjugated polymer blends studied consisted of F8BT (poly[9,9-

dioctylfluorene-co-benzothiadiazole]) parts (Mn = 6.2 kg/mol) and TFB (poly[9,9 -

dioctyfluorene-coN-(4-butylphenyl)-diphenylamine]) parts (Mn = 5.8 kg/mol), whose 

chemical structures are presented in Table 4.1. Polymers were purchased by 

American Dye Source, Inc. (Quebec, Canada). F8BT is an electron mobility polymer 

(n-type) [30,31] and TFB is a high hole mobility polymer (p-type) [32]. 

Table 4.1 Properties and Chemical Properties of the Polymers Studied 

Polymer Mn
a
 (kg/mol) Polydispersity Chemical Structure 

F8BT 6.2 7.4 

 

TFB 5.8 2.6 

 

               a
 From gel permeation chromatography (GPC) 

4.3.2 Polymer Solutions and Thin Films Preparation 

Polymer solutions were prepared by dissolving each conjugated polymer in p-

xylene purchased by Sigma-Aldrich Ltd. (Dorset, UK) to produce concentrations of 

20 mg/ml and 14 mg/ml. F8BT and TFB solutions were then mixed to produce 
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blends of various ratios from 4:1 to 1:4 by weight. The mixed solutions were placed 

on stirring/hot plate at 50 
o
C and 800 rpm and left overnight. The following day, 

droplets of the blended solutions (approximately 1 ml) were spin coated (spin coater 

SPIN150-NPP, SPS-Europe, Putten, the Netherlands) on freshly cleaved mica sheets 

(Agar Scientific, Essex, UK) in ambient conditions, producing ultrathin films 

(5 −    nm). The spin-coating speed was varied from 2,000 to 5,000 rpm while 

durations of 90 seconds were used. For 2,000 rpm thin films of thickness ~ 100 nm 

were produced, while for 4,000 and 5,000 rpm, 70 nm and 55 nm thin films were 

produced respectively. The film thickness values are in accordance with McNeill and 

co-workers study on thin films of F8BT:TFB blends [33]. The films were aged at 

room temperature for an average of 3 hours before characterisation. In one case we 

altered the spin coating duration from 90 to 30 seconds which did not provide 

different results while some of the ultra-thin films were annealed at 200 
o
C for 12 

hours or longer resulting in a substantial alteration of the morphology. In the 

schematic of Figure 4.6, all the different thin-films prepared are presented. 
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Figure 4.6 The conjugated F8BT:TFB polymer blend ultra-thin films prepared with 

concentrations 20 mg/ml and 14 mg/ml in different by weight blend ratio, spin coating 

parameters and in some occasions heat treatment. 

4.3.3 Atomic Force Microscopy 

A Bruker AFM Multimode/Nanoscope IIIa (Bruker, Santa Barbara, CA, USA), 

equipped with a J-scanner (x-y range ≈ 4  μm) and/or an E-scanner (x-y range ≈    

μm) was used to study the morphological behaviour of the F8BT:TFB blends 

ultrathin films. RTESP and/or RTESPA Bruker cantilevers with a nominal spring 

constant and resonance frequency of 40 N/m and 300 kHz respectively were used to 

image the samples. In order to minimize the interaction force between the tip and the 

substrate (but without losing contact) “light tapping” was used by keeping the set-

point amplitude ratio rsp = Asp/A0 close to 1 (where A0 and Asp are the free oscillation 

amplitude and the reduced scanning set-point amplitude of the cantilever, 
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respectively). Images were processed and the layer heights as well as the surface 

roughness were measured using the software Scanning Probe Image Processor (SPIP, 

Image Metrology, Hørsholm, Denmark). 

4.3.4 Transmission Electron Microscopy 

The F8BT:TFB ultrathin layers were lifted off from mica substrates by gently 

immersion into a de-ionized water bath and then placed on a 200 square mesh copper 

grid. The specimens were analysed in a FEI Tecnai T20 tunnelling electron 

microscope (TEM) EM (FEI, Oregon, United States of America), operated at 200 kV 

and equipped with an Olympus-SIS Megaview III CCD camera (Olympus Soft 

Imaging Solutions GmbH, Münster, Germany). We used an objective aperture of 20 

μm and defocus value of approximately    μm. The software used to process the 

TEM images is the Micrograph
™

 (Gatan, Abingdon, UK). 

4.4 Results 

In what follows we present the resulting phase-separated nanodomains from 

different concentrations of the F8BT:TFB polymer blend in p-xylene solutions (20 

mg/ml and 14 mg/ml) spin cast on mica. For the polymer blend with 20 mg/ml 

concentration, we considered the effect of the spin-coating parameters (2,000 – 5,000 

rpm), the heat treatment (annealing) and the F8BT:TFB polymer blend ratio (1:1, 1:4 

and 4:1 by weight) on the morphological behaviour of the thin films. For the polymer 

blend with 14 mg/ml concentration, we present the differences in the ultimate 

morphology of the thin films resulting from a larger variation F8BT:TFB blend ratios 

(1:1, 1:2, 1:3. 1:4, 2:1, 4:1, 1:0 and 0:1 by weight) for a specific spin-coating speed 

of 4,000 rpm. 
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4.4.1 F8BT:TFB Polymer Blends with concentration 20 mg/ml 

4.4.1.1 F8BT:TFB Polymer Thin Films with 1:1 blend ratio 

Figures 4.7a, b, c and d show typical AFM height images of the F8BT:TFB 

polymer blend films (1:1 by weight ratio) from p-xylene solutions (concentration 20 

mg/ml) spin cast on mica. The topography of the thin-film spin-coated at 2,000 rpm 

is characterised by the formation of wells, in which their diameter is in the sub-

micrometre scale (black areas in Figure 4.7a) in a higher-level layer (light yellow 

area in Figure 4.7a). The same morphological behaviour was observed when thin 

films were prepared by spin coating F8BT:TFB polymer droplets at 4,000 rpm 

(Figure 4.7b) and at 5,000 rpm (Figure 4.7c); however, the wells exhibit a slight 

decrease in their lateral size, increasing the spin coating rate. Furthermore, a thin film 

spin coated at 2,000 rpm, was then annealed at 200 
o
C, for 12 hours. In this case, as 

shown in Figure 4.7d, the morphology and the texture of the surface has changed 

drastically and the well-defined domains are absent. The well-morphology (prior to 

annealing) is very similar to the one observed by Kim et al. [7] albeit at much 

smaller scale (as our molecular weights are smaller) who have associated the wells 

with a low enclosed phase imbedded in a high matrix phase.       
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Figure 4.7 Tapping mode AFM images, 10 × 10 μm
2
, of F8BT:TFB (1:1 by weight ratio)  thin-

films on mica spin coated (concentration 20 mg/ml) at (a) 2,000, (b) 4,000, (c) 5,000 rpm for 90 

seconds; (d) annealed film of the case (a) at 200 
o
C, for 12 hours (colour scales are in 

nanometers). 

Figure 4.8 presents AFM zoomed images of the F8BT:TFB, 1:1 by weight 

blend ratio thin films with different spin coating speeds, highlighting the well 

structures (Figures 4.8a, c, e), along with height profiles taken across the zoomed 

images (Figures 4.8b, d, f). We observe that the height between the matrix layer and 

the lower lying domains (depth of the wells) lowers as we increase the spin coating 

speed. In the case of spin coating at 2,000 rpm the height is ≈  6 nm (Figure 4.8b), 

while in the case of spin coating at 4,000 and 5,000 rpm the height decreases to ≈    
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nm (Figure 4.8d) and ≈    nm (Figure 4.8f), respectively. Several wells from 

different images have been considered and the graph of Figure 4.9 shows the relation 

between the well average depth and the spin-coating speed. 

 

Figure 4.8 (a) (c) (e) AFM height images (the scan size is for a: 1.1 × 1.1 μm
2
, for c: 1.5 × 1.5 μm

2
 

and for e: 1.3 × 1.3 μm
2
) focused on a representative well structure formed from F8BT:TFB 

films (concentration: 20 mg/ml) with 1:1 by weight blend ratio spin coated at 2,000, 4,000 and 

5,000 respectively. (b) (d) (f) Height profiles from the corresponding AFM images, taken across 

the well structures. 
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Figure 4.9 Well depth against the spin-coating speed applied to prepare F8BT:TFB blend thin 

films (concentration: 20 mg/ml) with 1:1 by weight blend ratio. 

4.4.1.2 F8BT:TFB Polymer Blend thin films with 1:4 weight ratio 

Figure 4.10a and c shows the structural behaviour of the F8BT:TFB films with 

blend ratio 1:4, spin coated at 4,000 rpm (Figure 4.10a) and at 5,000 rpm (Figure 

4.10c). In both cases the polymer blend has phase-separated into several island-like 

structures surrounded by a lower-level matrix. This is the opposite case to that 

presented in 4.4.1.1 section and Figures 4.7 and 4.8. According to height profiles 

taken across the images of Figures 4.10a and c, the average height of the islands was 

14 nm and 9 nm, accordingly (Figures 4.10b and d).   
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Figure 4.10 (a) (c) Typical AFM height images (scan size for a: 1.3 × 1.3 μm
2
 and for c: 1.1 × 1.1 

μm
2
) of F8BT:TFB polymer blends films with 1:4 by weight ratio (concentration 20 mg/ml). 

Spin coated at 4,000 rpm and 5,000 rpm respectively; (b) (d) height profiles of the 

corresponding AFM images, highlighting the height of the island structures. 

4.4.1.3 F8BT:TFB Polymer Blend thin films with 4:1 weight ratio 

Figure 4.11 presents AFM height images of F8BT:TFB thin films with blend 

ratio 4:1 spin coated at 2,000 rpm (Figure 4.11a), 4,000 rpm (Figure 4.11b) and 

5,000 rpm (Figure 4.11c). The morphology of the films is characterised by several 

ridges and well-like domains which become less frequent by increasing the spin 

coating speed. In addition, the roughness of the thin-films increases with the spin 

coating speed; the root mean square (RMS) for the 2,000 rpm, 4,000 rpm and 5,000 
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rpm thin films is 4 ± 1 nm, 8 ± 1.2 nm and 11 ± 1.8 nm respectively. The roughness 

was determined from AFM images with scan size ~ 4 × 4 μm
2
. 

 

Figure 4.11 (a) (b) (c) Representative AFM height images of F8BT:TFB polymer blends films 

with 4:1 by weight ratio, from concentration 20 mg/ml and spin coated at 2,000, 4,000 and 5,000 

rpm respectively (scan size for a: 3.4 × 3.4 μm
2
, b: 4.4 × 4.4 μm

2
 and for c: 3.4 × 3.4 μm

2
). The 

height scale unit is nm. 

4.4.2 F8BT:TFB Polymer Blend thin films from concentration 14 

mg/ml 

The morphology of F8BT:TFB thin films in various blend ratios, from 

solutions with 14 mg/ml, spin coated at 4,000 rpm was also investigated. 

4.4.2.1 F8BT:TFB Polymer thin films with 1:1 by weight ratio 

Figure 4.12a presents the phase-separated structures in the F8BT:TFB thin film 

with 1:1 blend ratio. The morphology of the film does not differ with the morphology 

of the corresponding thin film with concentration 20 mg/ml (Figure 4.7b). Following 

the structural trend of the higher concentration annealed thin films, the annealed 

sample of the F8BT:TFB, with 1:1 blend ratio at 14 mg/ml concentration, as 

presented in Figure 4.12b does not obtain a clear well morphology. 
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Figure 4.12 Typical AFM height images of the F8BT:TFB polymer thin films with 1:1 blend 

ratio (14 mg/ml), spin coated at 4,000 rpm for 90 seconds (a) as cast and (b) annealed at 200 
o
C 

for 12 hours (scan size for a and b: 10 × 10 μm
2
, z-scale in nm). 

Furthermore, to investigate the phase-separated domains in thin-films of 

F8BT:TFB, we used the transmission electron microscopy technique (TEM). The 

TEM image of Figure 4.13a revealed the clear formation of the phase-separated 

domains. The dark-brown well-like domains observed in AFM height images (Figure 

4.13b) are presented in TEM with bright grey colour and the light yellow in AFM 

matrix which surrounds the wells is presented in TEM with a dark grey colour. The 

difference in TEM contrast originates from the difference in the electron waves 

scattered through the thin film. From comparing the TEM and AFM images, we 

observe that the sizes of the domains seen in both images do agree. The TEM 

contrast is due to the difference in thickness but could also be enhanced by the 

difference in the content of heavy atoms (F8TB contains the heavier atoms) 

indicating that this is the main constituent of the thickest domains (matrix/continuous 

phase) which is consistent with the results of Yim et al. [3] (see also Figure 4.5). The 

F8BT:TFB 1:1 film presented in Figure 4.12a is further processed using SPIP to 
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remove some small artefacts (bright spots on film surface) caused probably from dust 

and presented in Figure 4.13b. Height profile of the image in Figure 4.13b, presented 

in Figure 4.13c reveals that the depth of the wells is ≈  6 nm, lower than the 

corresponding depth of the 20 mg/ml thin film (Figure 4.8c). 

 

Figure 4.13 (a) TEM image of the F8BT:TFB polymer thin film with 1:1 blend ratio, spin coated 

at 4,000 rpm for 90 seconds. (b) AFM height image of the same thin film (scan size is: 6 × 6 

μm
2
); (c) height profile corresponding to the white line of image (b). 

Finally, Figure 4.14 presents an AFM phase image (Figure 4.14b) and the 

corresponding height image (Figure 4.14a) taken from the F8BT:TFB 1:1 thin film.  

The phase separation into two phases is evident in both the topography and the phase 
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images, but interestingly, the high-lying domains look ‘grainy’ indicating some 

intermixing at the free interface as will be discussed in detail later (section 4.5). 

 

Figure 4.14 AFM height (a) and the corresponding phase (b) images (7 × 7 μm
2
) of F8BT:TFB 

thin film with 1:1 blend ratio (14 mg/ml solution concentration), spin coated at 4,000 rpm for 90 

seconds (z-scale in (a) nm and (b) degrees). 

4.4.2.2 F8BT:TFB Polymer Blend Thin Films with 1:2, 1:3 and 1:4 by 

weight ratio 

Thin films of conjugated F8BT:TFB polymer blends  with 1:2, 1:3 and 1:4 

blend ratios from 14 mg/ml concentration solutions were also prepared. The big 

scan-size (≈    ×    μm
2
) AFM height images of Figure 4.15 present the typical 

topography of the thin film with blend ratio 1:2 (Figure 4.15a), 1:3 (Figure 4.15d) 

and 1:4 (Figure 4.15g). Island-like domains were formed on the film surface 

surrounded by a lower-lying matrix (continuous phase). As shown in the smaller scan 

size AFM images of Figure 4.15b, e and h, the islands are oblong and/or multi-

shaped in the case of the 1:2 blend and as the fraction of the F8BT part decreases the 

islands become smaller and more rounded. Furthermore line-scan profiles of Figure 
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4.15c, f and i, which corresponds to the white lines of the AFM height images, show 

that the height of the islands decreases with the decrease of the F8BT part. 

 

Figure 4.15 (a) (d) (g) Typical AFM height images of the F8BT:TFB thin films with 1:2 (a), 1:3 

(d) and 1:4 (g) blend ratio  spin coated at 4,000 rpm (the scan sizes are ≈ 20 × 20 μm
2
); (b) (e) (h) 

Zoomed areas of the corresponding images (a) (d) and (g) (the scan size is: 5 × 5 μm
2
); (c) (f) (i) 

Height profiles taken across the corresponding zoomed images (white lines). 

Figure 4.16a presents a TEM image of the F8BT:TFB 1:4 thin film. The phase-

separation of the blends into rounded islands surrounded by a continuous phase of 

different phase is clear also by using TEM. However, this time the contrast is much 

reduced (see Figure 4.13a) presumably by the fact that the higher lying (mass 

heavier) F8BT-rich islands are less pure and further contaminated by the (mass 



Chapter 4                                                     Thin Films of Conjugated Polymer Blends              

 97 

lighter) TFB (which now exists at a much higher percentage) leading to reduced 

contrast. The AFM phase imaging of Figure 4.16c which corresponds to the AFM 

height image of Figure 4.16b, reveals that the surface of the phase-separated domains 

in this case (F8BT:TFB 1:4) are not pure domains of one polymer or the other. This 

will be discussed later in the discussion section. 

 

Figure 4.16. (a) TEM image of F8BT:TFB thin film with 1:4 by weight polymer blend ratio from 

14 mg/ml concentration solutions spin coated at 4,000 rpm for 90 seconds. (b) AFM height 

image (1 × 1 μm
2
, colour scale/z-scale: nanometres) of the same thin film along the 

corresponding (c) AFM phase imaging (z-scale: 24 degrees). 

Furthermore, a study of the rounded higher lying domains was also performed. 

Figure 4.17 presents 1 × 1 μm
2 

scan-size AFM images highlighting the islands 
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formed in F8BT:TFB blend films with 1:2 (Figure 4.17a), 1:3 (Figure 4.17b) and 1:4 

(Figure 4.17c) blend ratio. The coverage of the islands in the total surface, the 

number of islands per μm
2
, the diameter of the islands and the mean height 

difference from the lower lying matrix to the higher islands domains were studied. 

The red lines surrounded the islands of Figure 4.16 correspond to the limits of the 

studied structures. The red lines were chosen to be placed in areas where the step 

between the flat surface and the polymer domain is rapidly increasing to height 

values higher than 5 nm to exclude any steps caused by noise. 

 

Figure 4.17. (a) (b) (c) AFM height images of F8BT:TFB thin film with (a) 1:2, (b) 1:3, (c) 1:4 by 

weight polymer blend ratio (scan size of the images are: (1 × 1 μm
2
),  from 14 mg/ml 

concentration solutions spin coated at 4,000 rpm for 90 seconds; The red lines correspond to 

distinguish the borders of the polymeric islands. 

Plots of Figure 4.18 present the coverage of the islands (Figure 4.18a), the 

number of islands per μm
2
 (Figure 4.18b), the mean diameter of the islands (Figure 

4.18c) and the mean average height of the islands against the blend ratio of the 

F8BT:TFB thin films (Figure 4.18d). We observe that the coverage, the diameter and 

the height of the islands decreased with the decrease of the F8BT part in the blend. 

The opposite trend is obtained with the number of islands per square micrometre: the 

number of islands increased with decreasing the fraction of the F8BT part. 
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Figure 4.18. (a) Coverage of the islands, (b) the number of the islands, (c) the diameter of the 

islands and (d) the height of the islands formed in the F8BT:TFB thin films versus the by weight 

F8BT:TFB polymer blend ratio. 

4.4.2.3 F8BT:TFB Polymer Blend thin films with 0:1, 1:0, 2:1 and 4:1 by 

weight blend ratio 

The Figure 4.19 presents AFM height images of the F8BT:TFB thin films with 

0:1 (Figure 4.19a), 1:0 (Figure 4.19b), 2:1 (Figure 4.19c) and 4:1 (Figure 4.19d) 

blend ratio. The homopolymer TFB, formed a quite flat, uniform layer on the film 

surface, including several holes. Post-processing AFM analysis (shown in Figure B1 

of Appendix B) revealed that these holes are the “footprint” of the pyramid end of 

the cantilever’s tip. The flat layer appears to be relatively soft, as the tip of the 

AFM’s cantilever penetrated its surface forming small holes, even with imaging with 
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soft tapping (set-point amplitude ratio close to 1). This might be attributed to the 

residual solvent, which may have been trapped in the film. The homopolymer F8BT 

formed a relatively uniform layer with some irregular islands on top, which compares 

well with the literature on F8BT homopolymer thin films [1]. The thin films with 2:1 

and 4:1 blend ratio formed were similar but with several well-like stripes and some 

irregular islands formed at the top surface. 

 

Figure 4.19 AFM height images of (a) TFB homopolymer, (b) F8BT homopolymer, (c) 

F8BT:TFB polymer blend with 2:1 polymer blend ratio and (d) F8BT:TFB polymer blend with 

4:1 polymer blend ratio thin films, made from solutions with concentration 14 mg/ml and spin 

coated at 4,000 rpm for 90 seconds. 
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4.5 Discussion 

We presented AFM and TEM images of phase-separated domains in 

conjugated F8BT:TFB thin films with various blend ratios and spin coating 

parameters, from two different concentrations (20 mg/ml and 14 mg/ml) in p-xylene. 

As the F8BT:TFB blend ratio is varied, the surface morphology is altered. Two main 

morphological trends were observed; one for the F8BT:TFB 1:1 by weight ratio thin 

films and one for the F8BT:TFB with 1:2, 1:3 and 1:4 by weight ratios. For the 2:1 

and 4:1 polymer blend films, no clear morphology was seen. 

In the particular case of F8BT:TFB thin films with 1:1, the phase-separated 

morphology consists of well-like sub-micrometre lateral size domains ~ 0.4 ± 0.2 μm  

(dark areas in AFM height images of Figures 4.7, 4.8 and 4.12-4.14) in a continuous 

phase (bright areas in AFM height images of Figures 4.7, 4.8 and 4.12-4.14). Similar 

phase separated domains in F8BT:TFB 1:1 thin films were previously observed by 

other groups [1,3,7], but with micrometre phase-separation. Kim et al., who have 

analysed the lateral phase compositions of the F8BT:TFB 1:1, using optical 

microscopy under blue excitation (which results in green luminescence of the F8BT) 

and micro-Raman spectroscopy, reported that the brighter domains are F8BT-rich, 

while the darker well-like domains (~ 2 – 5 μm) are TFB-rich [7]. It is important to 

point out, that we have performed optical fluorescence microscopy under the same 

conditions as Kim et al. used, but we have not observed any domains, due to their 

significantly smaller size (no fluorescence results are included in this present study). 

The formation of the well domains within the continuous phase is formed due to the 

spinodal decomposition mechanism (by which a solution of two different polymers 
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with different solubility, chemical and physical properties, separate into distinct 

phases due to local density fluctuations which are amplified), in line with the 

F8BT:TFB phase diagram (see Figure 4.3, middle (50:50) compositions) [7], as well 

as in line with conventional polymers, such as the blend of the deuterated 

poly(methyl methacrylate) (dPMMA) and the poly(styrene-ran-acrylonitrile) (SAN) 

[34]. 

Increasing the TFB weight ratio in the blend to produce F8BT:TFB polymer 

blends with weight ratio 1:2, 1:3, 1:4, led the morphology to change drastically 

compared to the morphology of 1:1 thin films. Isolated island-like sub-micrometre 

size domains ~ 0.1 – 0.5 μm surrounded by a matrix were formed (Figures 4.10 and 

4.15-4.18), triggered by the process of the nucleation and growth mechanism in line 

to the phase diagram of this blend system (see Figure 4.3) and Kim et al. study [7]. 

The reason for this change in morphology (compared to the 1:1 film) is the presence 

of the more abundant TFB polymer. According to previous studies on the F8BT:TFB 

1:3 lateral domains [7], the continuous layer is TFB-rich, while the islands are F8BT-

rich. In contrast to our findings; the lateral size of the domains observed in ref. [7] is 

significantly higher, varying from 0.5 to 1.0 μm. 

The reason behind this difference (domains with lateral size significantly lower 

than the size of the domains reported in the literature) in both cases (F8BT:TFB 1:1 

and 1:2, 1:3, 1:4), lies on the coupling between the much lower molecular weight of 

the polymer blends we used (see Table 4.1), compared with Kim et al. [7] (Mn = 108 

kg/mol and Mn = 56 kg/mol for F8BT and TFB, respectively) and the fact that we 
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used polymers with similar Mn. It has been reported by Yim et al. that the size of the 

phase-separated domains is highly affected by the molecular weight of each polymer 

in the blend [3]. Performing studies on the morphology of F8BT:TFB thin films of 

different molecular weights, they stated that increasing the Mn, the domain sizes 

increase accordingly. The size of the lateral phase-separated domains is also affected 

by a complex coupling between the relative miscibility and viscosity of the 

homopolymers in the blend, as well as chain mobility varying during a rapid solvent 

evaporation. Thus, different molecular weight combinations of the two polymer parts 

of the blend can result in different blend phase-separated morphologies. Although 

Yim et al. [3] have investigated several molecular weights, both high and low, in all 

cases where lateral phase separation did not happen (or at least was not measurable) 

there was a relatively large difference between the molecular weights of F8BT and 

TFB (see Figure 4.5). To the best of our knowledge we are the first who have 

observed and investigated the phase separated domains in the sub-micrometre scale 

for this system and we associate this type of phase separation to the use of similar 

and low molecular weight polymers in the blend. The low molecular weights 

promote small domains (sub-micrometre) and the similar molecular weight 

introduces antagonistic factors to inhibit the dominance of a purely vertical phase 

separation (as observed by Yim et al. for his low molecular weight pairs which were 

of significantly different molecular weight, see Figure 4.5a). This finding is of great 

importance as both the use of low molecular weight polymers and sub-micrometre 

phase separation could result in the development of improved semiconducting 

devices [3]. 
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The distribution of the phases (consisted of lower lying and higher lying 

domains) formed in 1:1 and 1:4 films was also quantitatively analysed by post-AFM 

image processing and is presented in the graph of Figure 4.20. The depth distribution 

(per cent) confirms the existence of two main phases. The lower lying domains in the 

1:1 polymer films were significantly fewer than the lower-lying domains in films 

with 1:4 blend ratio. Furthermore, the percentage of the coverage of the higher 

domains as observed from the top of the films was also investigated and found ~ 

46% for 1:4 films and ~ 68% for 1:1 films. Comparing this last value with Kim and 

co-workers study [7], we observe that our case of the 1:1 thin film (of low and 

similar molecular weights) resembles the 3:1 thin film from the Kim et al. study 

(higher and dissimilar molecular weights), which is the only case that Kim and co-

workers have reported submicrometre lateral phase separation. In contrast to Kim et 

al. our F8BT:TFB films with 2:1 and 4:1 gave no clear morphology (Figures 4.11, 

4.19c and d). These results signify the importance of the molecular weight values for 

the resulting phase separation; the influence can be complex and unexpected as many 

factors change with the molecular weight of the two polymers. 
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Figure 4.20 Depth distribution of the lower-lying phases as calculated from AFM image analysis 

processor for 1:1 blend ratio (black rectangular) and for 1:4 blend ratio (red circle); the 

percentage of the corresponding higher phase is also presented. 

In both morphological trends (F8BT:TFB 1:1 and 1:2, 1:3, 1:4), the phases are 

not pure with one polymer. As already mentioned above, there are F8BT-rich and 

TFB-rich phases. This, has been identified by Kim and co-workers, who performed 

extensive micro-Raman spectroscopy techniques to further (quantitatively) examine 

the two different phases in 1:1 F8BT:TFB thin films [7]. They found that the F8BT-

rich phase consists of ~ 65 – 70% F8BT and 30 – 35% TFB and that the TFB-rich 

phase consists of ~75 – 80% TFB and 20 – 25% T8BT. They stated that this 

phenomenon originates from the fact that the lower molecular weight polymer in the 

blend system has the tendency to obtain purer phases, unlike the higher molecular 

weight polymer, which results in higher intermixing with the lower molecular weight 

polymer. In our case, although we have used low molecular weight polymers in the 

blend, the molecular weight is very similar (the molecular weight fraction of our 

system is close to 1). The TEM images of F8BT:TFB thin films with 1:1 (Figure 
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4.13a) and 1:4  (Figure 4.16a) blend ratio, show that the contrast between the phase 

separated domains is higher in the case of the 1:1 thin film. Noting that the TEM 

contrast could originate from the difference in the content of heavy atoms (F8TB 

contains the heavier atoms); the clear contrast between the higher-lying and the 

lower-lying domains enhances the argument of the purer phases (F8BT phase on top 

and TFB phase below) when the molecular weights of the polymers are relatively 

low. However, when we increased the volume fraction of one of the polymers in the 

blend (F8BT:TFB 1:4) the TEM contrast was lower, which is an indication of less 

purity in the domains. Thus, we assume that the weight ratio of each polymer blend 

could affect the purity of the phases. 

AFM phase imaging can reveal the fine details of the phase separation at the 

free interface (which can be different to the phase separated domains in the bulk of 

the film). The AFM phase image of F8BT:TFB 1:1 thin film shown in Figure 4.14b 

which is a large scan size, revealed some  phase contrast between the lower-lying and 

the higher-lying phase separated domains but interestingly the higher-lying domains 

look ‘grainy’ indicating intermixing of the capping layer. Furthermore, the AFM 

phase imaging in thin films of F8BT:TFB with 1:4 weight ratio shown in Figure 4.16 

exhibited a clear contrast between the periphery of the tall F8BT-rich domains and 

the rest of surface and a several small size ‘dark’ domains within the islands. These 

observations constitute first a direct proof of the TFB capping layer inside the islands 

as speculated by Kim et al. [7] using Raman spectroscopy which led to the model 

shown schematically in Figure 4.4 and second indicate a ‘grainy’ structure of this 

capping layer signifying that it is not a wetting layer. Our technique is much more 
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surface specific and beyond verifying the model reveals more information regarding 

the organisation of the surface layer (including the capping layer). The arrows in 

phase imaging in Figure 4.16c indicate the fine details of both the TFB capping layer 

and the TFB layer surrounding the island-like domains. It is clear that we do not have 

the formation of a wetting TFB layer but the formation of nanoscale-sized 

discontinuous TFB domains as indicated by Kim et al. measurements and thus 

speculated but never directly imaged. We present for the first time in high resolution 

imaging, the phase behaviour of the polymer blend in the nano-scale at the free 

interface.  

The phase separation, fine structure and purity of the domains in the nano-scale 

are of paramount importance for the fabrication of efficient LEDs and solar cells 

[23,35]. 

4.5.1 Thin film nano-phase separation: effect of spin coating, 

annealing and concentration parameters 

Apart from the analysis of the two different nano phase-separated 

morphologies in thin films of F8BT:TFB with 1:1 and 1:2, 1:3 and 1:4 blend ratios, 

the effect of the spin-coating parameters on the ultimate phase-separated domains in 

F8BT:TFB with 1:1 and 1:4 weight ratio thin films is also investigated in the nano-

scale. As observed in Figures 4.7, 4.8 and 4.10 the lateral structures change only 

slightly by varying the spin coating rate (few nanometres in the ~ 50 – 500 nm 

diameter). However the height difference between the lower lying and the higher 

domains is shifted by several nanometres (which is a significant percentage to the 

height differences typically in the range of 10 to 25 nm). As shown in the height 
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profiles of Figures 4.8b, d, f and Figures 4.10b, d, which correspond to the white 

lines of the AFM height images and the collective graph of Figure 4.9, the height 

difference between the phases decreases by increasing the spin rate by ~ 2 – 10 nm. 

This change in the height difference could be a valuable control parameter for the 

device processing and performance. The present study is the first presenting this 

structural trend. It is well-known that increasing the spinning rate, thinner films are 

formed. This reduction in the thickness reflects also on the thickness of the TFB-rich 

and F8BT-rich domains.  

Furthermore, another factor which affects the height-step between the phases is 

the solution concentration. For example in the case of F8BT:TFB thin films with 1:1 

blend ratio, spin coated at 4,000 rpm, from 20 mg/ml and 14 mg/ml solutions the step 

was ~ 21 and ~ 16 nm respectively. We attribute this to the thicker layers caused by 

the higher density of molecules, which leads to higher stretching of the polymers, 

similar behaviour with that of polymer brushes [36]. 

Finally, heat treatment was also applied to some F8BT:TFB blend thin films to 

investigate how this process would affect the stability of the phase-separated 

domains. Figure 4.7d, shows a representative AFM image from F8BT:TFB thin films 

with 1:1 blend ratio, annealed at 200 
o
C for 12 hours. Compared with the 1:1 films 

with no heat treatment, the heated film exhibited no lateral phase-separated domains 

and the typical 1:1 morphology has been lost. This is a key point as we have to 

consider that the well-formed phase-separated domains are unable to withstand this 

heat treatment, which is expected to be detrimental for the performance of the future 

devices, if these are going to be used in high temperature environment. 
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4.5.2 Lateral Size Transition of the Phases from F8BT:TFB with 

1:2 to 1:4 by weight blend ratio 

Figure 4.15 presents typical AFM images (large scan size: 20 × 20 μm
2
 and 

small scan size: 5 × 5 μm
2
) and the corresponding height profiles of F8BT:TFB thin 

films with blend ratios varying from 1:2 to 1:4. Interesting nanometre-length scale 

differences was observed in the phase-separated domains, which is possible to affect 

the functionality of the thin films applied in devices. A closer look at the small scan 

size images (Figures 4.15b, e, h), reveals that the higher lying phase (F8BT-rich), 

becomes more rounded and from the corresponding height profiles (Figures 4.15c, f, 

i), we observe that from 1:2 blend ratio to 1:3 and 1:4, the step between the lower 

and the higher lying domains decreases. A reason behind this transition might be the 

lower weight fraction of the F8BT polymer in the blend which results in smaller 

island-like domains as the TFB-rich continuous layer increases. 

Furthermore, quantitative analysis of the island-like domains (Figure 4.17), 

from   ×   μm
2
 scan size AFM images of F8BT:TFB 1:2, 1:3 and 1:4 showed in 

detail the change in morphology of the island-like domains. Post-processed data from 

the AFM, revealed that the coverage of F8BT-rich polymer islands decreases almost 

linearly with the increase of the weight fraction of TFB in the F8BT:TFB thin-films 

(~50%, ~45% ~ 39% for 1:2, 1:3 and 1:4 respectively, Figure 4.18a). Although the 

island’s coverage decreases, the number of islands per square micrometre increases 

by increasing the TFB part (Figure 4.18b). This reveals that more F8BT-rich 

(electron transporting) domains can form in (laterally) very small areas. More islands 

per square micrometre and lower surface coverage, unavoidably results in the 
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formation of islands with smaller diameter (~ 370 nm, ~ 300 nm and ~ 190 nm for 

1:2, 1:3 and 1:4 respectively, Figure 4.18c). Finally, we can deduce that the size in 

vertical direction of the islands by increasing the TFB part is also affected. It was 

found that the height decreased by few nanometres (Figure 4.18d), which can be 

crucial for the overall performance of the thin-film devices. Note that the calculated 

by line-scan profile heights reveal somewhat higher island domains compared with 

the calculations of Figure 4.18d. This difference is related with the peak-to-peak 

average measurement of the island heights obtained from post-processing AFM 

particle analysis (Figure 4.18d); in contrast with the relatively less-accurate line-scan 

profiles taken across the islands and the lower lying layer (Figure 4.15). 

4.6 Conclusions 

Herein, we performed an extensive investigation in the lateral phase separation 

and structural behaviour in nano-scale of low-molecular weight F8BT:TFB 

conjugated polymer thin films, with various blend ratios by weight, using AFM and 

TEM. We observed sub-micrometre phase-separated domains in the morphology of 

1:1, 1:2, 1:3 and 1:4 weight ratios F8BT:TFB thin films for first time. 

The 1:1 thin films showed a phase-separated F8BT-rich higher-lying 

continuous matrix interrupted by TFB-rich lower-lying wells with diameters in the 

sub-micrometre length scale (a result of the spinodal decomposition mechanism). 

Increasing the weight fraction of the TFB part, the thin films exhibited phase-

separation of a different morphology: TFB-rich flat continuous layer separated by 

many sub-micrometre length scale F8BT-rich islands extending out of the TFB-rich 
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layer (a result of the nucleation and growth mechanism). The (low) molecular weight 

of the polymers used in this study determined the (sub-micrometre) size of the 

domains in the thin films. We are the first to report a clearly seen sub-micrometre 

phase separation in polymer blends, which combine the use of two polymers with 

low (Mn < 10 kg/mol) molecular weight [3]. Furthermore, although it is already 

known that the phases in the film morphology are not completely pure, we are the 

first to present the exact morphology of the top free interface of the F8BT:TFB thin 

film with 1:4 blend ratio and show the formation of TFB nanodomains (and not a 

wetting layer).  

The two different phase-separation behaviours of F8BT:TFB 1:1 and 1:4 thin 

films were found not to be significantly affected in the lateral direction by adjusting 

the spin coating and solution concentration parameters, however the vertical step 

between the domains was found to be altered by several nanometres. Annealing the 

thin films at 200 
o
C was found to destroy the well-formed phase-separated domains. 

An extensive study on the phase transition of F8BT:TFB thins films with blend ratio 

of 2:1 to 4:1 was also performed, exhibiting no clear phase-separated domains. 

Finally, increasing the weight fraction of the TFB in the blend, producing thin films 

with 1:2, 1:3 and 1:4 weight ratio, more rounded, smaller (laterally and vertically) 

islands were formed.  

These detailed investigations on the F8BT:TFB thin films, are expected to be 

crucial for the determination of the functionality and the efficiency of the devices, as 
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even a small change in the film morphology in the nano-scale could affect the overall 

performance of the LEDs/solar cells [23, 35]. 
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AFM topography image of F8BT:TFB 1:4/CdSe composite thin film (colour scale units in nm). 
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5.1 Introduction 

Over the last decades, the unique property of the delocalization in π-conjugated 

polymer chains led to exceptional optoelectronic properties in polymer field [1]. Due 

to the low-cost synthesizing methods, conjugated polymers can be promising 

alternatives to the more expensive conventional inorganic materials in the 

development of optoelectronic devices. However, there are still many challenges to 

overcome in order to make the polymer-based devices more efficient and available to 

large scale applications such as displays, biomedical imaging & sensing, lab-on-a-

chip, solid-state lighting and photovoltaic devices [2]. 

Material-based concerns could negatively affect the performance and the 

functionality of the devices. For example the low carrier mobilities of the conjugated 

polymers due to the existence of electron traps in the structure, results in lower 

efficiency solar cell devices compared to the inorganic semiconductor materials. In 

addition, conjugated polymers used in light emitting diodes (LEDs), exhibit 

limitations on getting pure single-colour light with high quantum efficiency. This 

limitation originates from the fact that the emission spectra of the π-conjugated 

molecules are very broad (~ 50 – 100 nm), due to the vibrational and rotational 

movements inside the molecules. 

In the last few years, it has been effectively proven that the hybrid 

incorporation of inorganic semiconductor nanocrystals in the conjugated polymer 

blend system enhances the conjugates polymer’s optoelectronic/photovoltaic 

efficiency. The inorganic nanocrystals offer also extra device functionality to the 

organic-based structures [3]. 
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In this chapter, we will study the thin film morphology in the nanoscale of 

polyfluorene-based conjugated polymer blends mixed with inorganic semiconductor 

nanoparticles. For polymer blends we use the electron transporting F8BT and the 

hole transporting TFB, while for nanoparticles we use the cadmium selenide (CdSe) 

quantum dots (QDs). The polymer blend exhibits excellent optoelectronic and good 

photovoltaic behaviour, as well as a straight forward process of mixing [2]. 

We will focus on the effect of the QDs on the polymer phase-separation of the 

system comparing the results with the pure blend system studied in the previous 

chapter, using atomic force microscopy (AFM) and transmission electron 

microscopy (TEM) techniques. We will propose a mixing recipe of QD-polymer 

blend (PB), so that the phase-separation of the polymer blends would not be 

destroyed. Then, we will use AFM, TEM and optical microscopy techniques to study 

the dispersion and the accurate location of the quantum dots on the film surface. 

In the case when the F8BT:TFB blend ratio is 1:1, the quantum dots have 

effectively spread on the F8BT-rich surface and no QDs were observed on the lower 

lying TFB areas. On the other hand, when the F8BT:TFB blend ratio is < 1, where 

the F8BT areas are in the form of island structures surrounded by a TFB layer, the 

QDs would prefer to form large aggregates on the film surface. However several 

single quantum dots are also lying on the surface of the F8BT islands. Furthermore, 

the size of the island domains exhibit lower vertical and lateral dimensions compared 

with the pure blend systems studied in the previous chapter (one order of magnitude 

lower). We attributed this to the increase viscosity which the F8BT exhibit, due to 

the favourable interaction with the quantum dots. All the above led to the interesting 
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conclusion that the quantum dots prefer the surface of the F8BT to the surface of the 

TFB. 

The conclusion that the quantum dots would prefer to spread on the F8BT 

areas, is extremely crucial for the device functionality. The high electron transporting 

properties of the quantum dots is expected to support to the mobility of the electrons 

in the low electron transporting F8BT polymer. 

5.2 Background 

Over the last two decades, organic semiconducting materials (conjugated 

polymers) have become excellent alternatives to inorganic semiconductors [2]. The 

reason why the conjugated polymers have become so popular originates from the 

ease of fabrication, large processing, great flexibility to achieve the required 

properties for the devices and the low fabrication cost [4,5]. Thin films of conjugated 

polymers have been successfully applied to semiconducting devices such as light 

emitting diodes (LEDs), thin film transistors, biosensors and organic 

photovoltaics/solar cells [6]. 

In particular, conjugated polymer-based solar cells, which have been applied as 

low-cost alternatives to inorganic solar cells, exhibit solar power efficiencies of up to 

2.5% [7]. On the other hand, solar cells based on conventional but more expensive 

inorganic semiconductors could exhibit efficiencies which vary from 10% - 30% [8]. 

As mentioned in Chapter 4, the main reason why the inorganic semiconductors 

exhibit such a high efficiency lies in the higher intrinsic carrier mobilities, meaning 

that the charges are transferred to the electrodes more quickly. This would ultimately 
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reduce the current losses, increasing the device performance [9]. In the case of the 

conjugated polymers; their carrier mobilities are significantly low (~ 10
-4

 cm
2
/Vs), 

due to the existence of several electron traps such as oxygen [10]. For this reason, the 

need for adding another material with high electron transport properties, which 

would also provide an interface for charge transfer, is of paramount importance in 

order to achieve higher photovoltaic efficiency. In order to overcome this issue, 

small molecules of conjugated compounds have been mixed with polymers, at a 

concentration which would give way on the formation of percolation pathways 

enhancing the electron transport [7,11-13]. However, this solution produced devices, 

which suffered from limited efficiency because of a) not-enough charge transport 

[12] and b) structural defects in the molecules block the electron transfer [13]. 

In addition, devices such as mobile phones with colour displays, which are 

made with organic LEDs, are successfully and widely produced over the last 15 

years. Conjugated polymer based LEDs have the great advantage of colour 

tunability, which can be used to produce full-colour displays of red-green-blue 

(RGB) emitters. The images in polymer LEDs are generated through the process of 

fluorescence (electrons make transitions between orbital states of π – conjugated 

organic molecules) as explained in Chapter 4. However, even in the case of organic 

LEDs there are some limitations on getting pure single-colour light with high 

quantum efficiency. This limitation originates from the fact that the emission spectra 

of the π-conjugated molecules are very broad (~ 50 – 100 nm), due to the vibrational 

and rotational movements inside the molecules [14]. Ways to overcome this problem 

were also investigated by adding new materials in the system, such as europium 
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chelates, cyanine dyes and layered inorganic – organic perosvkite. But the desired 

emission and device durability was not achieved [15,16]. 

One of the most efficient ways to solve the charge transport limitations and 

increase the quantum efficiency is to mix the conjugated polymers with inorganic 

semiconductor materials. First, charge transfer was found that is increased between 

the inorganic material with high electron affinity and the conjugate polymer with low 

ionization potential [17,18]. In addition, Rehm et al. [19] noticed that when the 

polymers are chemically bound with the inorganic crystalline semiconductor 

nanoparticles which exhibit high electronic-state density, the charge transfers are 

significantly increased. Alivisatos and co-workers [9,17,18] were the first who 

successfully reported that by mixing conjugated polymers and inorganic 

semiconductor nanocrystals, efficient solar cells are being produced. In Figure 5.1a, 

the proposed by Alivisatos group photovoltaic cell is presented. They used the 

conjugated polymer poly(3-hexylthiophene) (P3HT) as the hole-accepting material 

blended with colloidal cadmium selenide (CdSe) nanorods, which is the electron 

transport material. They reported that their device achieved power conversion 

efficiency of 6.9%, obtained under 0.1 mW/cm
2
 illumination at 515 nm.  Second, the 

quantum efficiency is possible to be increased even by 50% in LEDs, by adding 

inorganic nanocrystals such as CdSe quantum dots. Coe and co-workers [20] 

prepared an inorganic/organic LED with a single layer of CdSe quantum dots placed 

between organic thin films, as shown in Figure 5.1b. They noticed that pairs of 

electrons and holes are captured directly on the QD surface, producing high 

recombination luminescence. Coe reported also that the efficiency of the device 
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prepared was 25 times higher than the efficiency obtained with other quantum-dot 

LEDs. 

 

Figure 5.1 (a) Inorganic (CdSe nanorods)/Organic (P3HT) solar cell device as obtained from 

Huynh et al. [9]: ‘(A) The structure of regioregular P3HT. (B) The schematic energy level 

diagram for CdSe nanorods and P3HT showing the charge transfer of electrons to CdSe and 

holes to P3HT. (C) The device structure consists of a film ~ 200 nm in thickness sandwiched 

between an aluminium electrode and a transparent conducting electrode of PEDOT:PSS, which 

was deposited on an indium tin oxide (ITO) glass substrate. The active area of the device is 1.5 

mm by 2.0 mm. This film was spin-cast from a solution of 90% wt % CdSe nanorods in P3HT in 

a pyridine-chloroform solvent mixture.’ (b) Inorganic (CdSe quantum dots)/Organic (TPD) 

light-emitting diode (LED) made by Coe et al. [20] and Figure obtained from Tsutsui et al. [14]: 

‘In this LED, a layer of cadmium–selenium nanocrystals, or quantum dots, is sandwiched 

between layers of electron-transporting and hole-transporting organic materials. An applied 

electric field causes electrons and holes to move into the nanocrystal layer, where they are 

captured in the quantum dots and recombine emitting photons. The spectrum of photon 

emission is narrow, characterised by its full width at half the maximum value (FWHM).’ 
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5.2.1 Inorganic Nanoparticles and Quantum Dots 

In general, nanoparticles are particles, in which the size of at least one 

dimension is less than 100 nm. The research interest in study and development of 

nanoparticles is very high, due to the variety of prospective applications, such as in 

biomedical, optical and electronic fields. The reason why nanoparticles are so 

popular lies in their small size. They act like a “bridge” between the bulk materials 

and the atomic and/or molecular structures. Unlike the physical properties of the bulk 

materials, which are constant and not affected by their size, the physical properties of 

the nanoparticles are highly dependent on their size. For example in the case of 

semiconductor nanoparticles, the quantum confinement such as the bandgap is size-

dependent. There are two main different types of nanoparticles: the inorganic 

nanoparticles such the cadmium selenide quantum dots (CdSe QDs) and the organic 

nanoparticles such as the fullerene-type ([6,6]-phenyl C61 butyric acid methyl ester 

or PCBM). In Figure 5.2, structures of the inorganic and organic nanoparticles, 

which are widely used in polymer/inorganic solar cells and LEDs, are presented. 

Typically the inorganic nanoparticles such as the CdSe are prepared using short 

chain surfactants, which have a chelating head group (such as the trioctylphosphine 

oxide or TOPO) and they usually act like colloids in a solution. Inorganic 

nanoparticles can be prepared with various shapes and sizes (quantum dots or 

nanocrystals, nanorods, tetrarods and hyperbranched). Owing to the quantum-

confined nature of the CdSe quantum dots [21], variation of the QD size gives 

continuous and controllable changes in fluorescent emission [22,23]. This turns the 
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CdSe QDs into useful materials for applications such as photovoltaic cells [24,25], 

LEDs [26], biosensors and bio-imaging [27]. 

 

Figure 5.2 Different types of selected inorganic and organic nanoparticles, used in 

organic/inorganic solar cells and LEDs as obtained from Saunders et al. [28]: ‘the structures 

shown in (a) are for CdSe nanoparticles. The structures shown in (b) are for nanoparticles used 

in organic nanoparticle–polymer PV cells and LEDs. The size ranges shown in (c) are estimates 

based on literature reports where the nanoparticles have been used in nanoparticle–polymer PV 

cells.’ 

Quantum dots (QDs), are nanoparticles of a semiconductor material mainly 

chalcogenides (selenides or sulfides) of metals like cadmium or zinc (CdSe or ZnS), 

which range from 2 to 10 nanometres in diameter, whose width is similar to ~ 50 

atoms. The excitons (pairs of electrons and holes, shown in Figure 5.3) in QDs are 
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confined in three-dimensions. As a result these materials have unique electronic 

properties, which lie between the properties of the bulk semiconductors and the 

properties of the discrete molecules [29]. The electronic properties of the quantum 

dots depend on the size and shape of the material; the smaller the size of the QDs, the 

larger the band gap. When the band gap is large enough (Figure 5.3) i.e. when the 

difference between the valence and conduction band is large enough, more energy is 

needed to excite the QD; as a result, more energy (higher frequency) will be released 

before the QD returns to its relaxation state, emitting sharper light (lower wavelength 

light due to the higher frequency). 

 

Figure 5.3. Quantum confinement in semiconductors such as the quantum dots, obtained from 

[30].  

The most important property of the QDs is the emission of photons under 

excitation, which are visible to the human eye. In addition, the wavelength of the QD 

depends only on the size of the dot and not from the materials, which it is made. The 

ability of controlling the size of the QDs, which results in tuning the emission 

wavelength (size quantization effect), makes the QDs very popular candidates for use 

in optoelectronics and other electronic devices. For example, when the size of the 
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QDs is relatively small, closer to the blue of the spectrum light is being emitted, 

while when the size of the QDs is big, then closer to the red light is being emitted. 

The size of the quantum dots would also make them excellent materials for building 

solar cells with enhanced efficiency, given the nanoscale nature of light absorption 

and photocurrent generation in solar energy conversion [9]. 

As a result, combining the unique optical properties of quantum dots with the 

electrical properties of conjugated polymers produces inorganic/organic composite 

alternatives for solar cells and LEDs. The cost of these composite devices can be 

significantly lower than the conventional inorganic semiconductors, because 

economical high-volume manufacturing techniques for polymer films can be 

employed. 

5.2.2  Mixing Nanoparticles with Conjugated Polymer Blends for 

Solar Cell and LED production  

Representative semiconductor devices such as solar cells of inorganic 

nanoparticles – conjugated polymers are usually prepared through a layer by layer 

process starting from the bottom to the top as presented in Figure 5.4 (obtained from 

Saunders et al. [31]). Each participating photoactive component can be deposited 

either from solution processing or could be prepared by low-temperature techniques.  

The bottom layer of the cell is the photoanode which is usually indium tin oxide 

(ITO)-coated glass. A hole transporting layer usually of PEDOT:PSS is spin cast 

onto the ITO anode [31]. In addition to the hole-transporting properties of the 

PEDOT:PSS, this layer is also used to link the Fermi Level of the photoanode to the 

valence band or else higher occupied molecular orbit (HOMO) of the conjugated 
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polymer. The photocathode, which is often made from aluminium, is usually 

deposited via thermal evaporation.  The typical layer thickness for each layer, 

proposed by Saunders et al. is also presented in Figure 5.4, suggesting that the total 

thickness of the solar cell is approximately 500 nm (excluding the glass substrate). 

 

Figure 5.4 Schematic of a typical nanoparticle-conjugated polymer solar cell device. Adapted 

from  Saunders et al. [28]: “electrons (e-) and holes (h+) are collected at the photocathode and 

photoanode, respectively. The hole transporting layer enhances hole transport to the 

photoanode. Typical ranges of layer thicknesses and PV cell areas are also shown.” 

The most crucial part for the functionality and efficiency of the solar cell 

device is the nanoparticles – polymer photoactive layer. The process of the 

photoactive layer preparation starts from the dispersion of the colloidal nanoparticles, 

in polymer solution and it is finalized with the evaporation of the solvent and the 

formation of the NP – polymer thin film, as shown in the schematics of Figures 5.5a 

and b obtained from Saunders et al. [28]. The nanoparticles are illustrated smaller 

than the polymer coils; this is typical for organic NP – polymer photoactive layer 

such as the PCMB-P3HT. In the case of inorganic NP – polymer such as the CdSe-

P3HT, the NPs will be larger than the polymer coils [28]. As presented in the 
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schematic of Figure 5.5b, up to 6 interfaces could be formed in the solar cell. 

According to Saunders, good interfacial contact is needed in order to increase the 

interfacial areas and decrease the series resistance across the cell. In addition good 

interfacial contact between the NP-polymer layer and the photocathode has been 

proven to be a key factor to the efficiency of the PCMB-P3HT solar cell [32]. 

 

Figure 5.5 (a) The colloidal nanoparticles (NP) mixed with the polymer solution to prepare the 

photoactive layer after solvent evaporation. (b) Schematic of the typical solar cell, presenting all 

possible interfaces formed. PC is the photocathode, HTL is the hole transporting layer, Pol is 

the polymer, PAn is the photoanode. Figure obtained from Saunders et al. [28]. 

The photoactive layer is usually prepared via the spin coating technique in inert 

environment [32]. Figure 5.6 shows what can be considered as general phase 

diagram of NP (colloid) /polymer/solvent, as obtained from Tuinier and co-workers 

[33] combining experimental, theoretical and simulation results. The mixture usually 
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contains more than 90% vol. of solvent prior spin coating. For the construction of the 

general phase diagram, several hypotheses were taken into account, such as the full 

solubility of the polymer in the solvent and at the same time the nanoparticles are 

assumed to remain dispersed in a binary nanoparticle-solvent system. The NPs would 

remain dispersed until their volume fraction reaches a critical value (η ~ 0.5), which 

is linked with the NPs size and shape, composition and solvent-NP interaction. On 

top of that, the phase diagram becomes more complicated when instead of one 

polymer like the P3HT, the system consists of conjugated polymer blends such as the 

F8BT:TFB. As shown in Figure 5.6, solvent evaporation (increase of the 

concentration φ) would result in a transition from a one phase to a two phase region. 

To this stage, high aggregation of the NP and phase-separation of the polymer is 

highly favoured as the volume fraction (η) of NP and the effective concentration 

(φ/φ
*
, where φ

*
 is the overlap concentration which signifies the onset of the 

semidilute regime) of the polymer increases. During spin coating, which is a highly 

controllable means of solvent evaporation, the extensive NP-aggregation and 

polymer phase-separation gives a “bicontinuous solid dispersion” [28]. To the best of 

our knowledge, there are no published phase diagrams for specific NP-polymer-

solvent systems for neither solar cells nor LED applications. 
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Figure 5.6 Phase diagram of a colloid (NP)-polymer mixture as obtained from Tunier et al. [33]. 

φ/φ
*
 is the effective concentration of the polymer and η is the volume fraction of the colloid 

(nanoparticles). 

5.2.3 F8BT:TFB Polymer Blends mixed with Quantum Dots to 

Produce Composite Thin Films for use in Semiconducting 

Devices 

Compared to the most commonly used and studied conjugated polymers such 

as the polyphenylenes, polythoiphenes, polypyrroles and polyanalines, polyfluorenes 

have the advantage of better processing, less sensitivity to chemical degradation i.e. 

increased durability. In the meantime polyfluorene-based LEDs and solar cells 

exhibit excellent efficiency [2]. The above make the polyfluorenes good candidates 

for further study to produce more efficient semiconductor devices. More precisely, as 

already mentioned in the previous Chapter, LEDs with excellent efficiency have 

been fabricated using a blend of the electron transport F8BT polymer and the hole 

transport TFB polymer [2]. Furthermore, same blends of F8BT:TFB polyfluorenes 
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have been used to prepare solar cells with satisfactory efficiency, but by replacing 

the hole-transport TFB with the PFB, the efficiency of the solar cell devices 

increased significantly [34]. Owing to the key role of the interface in conjugated 

polymer-based devices; the control of phase-separation after deposition on the solid 

substrate via spin coating is of paramount importance. This was extensively 

presented and studied in the previous chapter.  

Figure 5.7 presents the typical energy diagrams and the typical configuration of 

the devices for LEDs (left) and solar cells (right). The electron transporting (F8BT) 

polymer is presented as ETL and the hole transporting (TFB) as HTL. In the case of 

LEDs, holes and electrons are injected from the ITO anode and from the Al cathode, 

respectively. To enhance the carrier injection and reduce exciton loss at the polymer 

active layer-electrode interface, a thin layer of PEDOT:PSS and Calcium (Ca) could 

be added at the anode and cathode, respectively. On the other hand, the configuration 

of the solar cell device is similar to the LED; however, there is no need of 

PEDOT:PSS and Ca layers. In this case the exciton is photo-generated in the TFB 

polymer and dissociates when it reaches the energy barrier at the F8BT:TFB 

interface to allow carrier extraction [3]. 

 

Figure 5.7 Energy diagrams (left) and schematics (right) of F8BT:TFB polymer blends-based 

semiconductor devices for (a) LEDs and (b) solar cells. Figure obtained from ref. [3]. 
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However, the hole transporting part of the polyfluorene blends, yields 

conductivities higher than 1,000 Ω
-1

cm
-1

, a value which is very difficult to achieve in 

the electron transporting polymer. As a result the electron-transporting polymer, 

often affects the overall performances of polymer-based devices [2]. Inorganic 

nanoparticles such as the quantum dots, which exhibit excellent electron transporting 

properties, are proved to be excellent additives to the polymer blends, enhancing the 

device efficiency [3]. As a result mixing nanoparticles with the polyfluorene-blend 

solutions and study the structural behaviour on solid films after solvent evaporation 

is crucial for the progress in the efficiency of LED and solar cell devices. Despite the 

significance of the ability to control the phase-separation in polymer blend-NP 

systems, to the best of our knowledge few studies have investigated this aspect.  

Cloutier, in his chapter has recently reported the effect of lead-sulfite (PbS) 

colloidal quantum dots on the structural morphology of the F8BT:TFB blends and on 

the functionality of the optoelectronic devices [3]. Figure 5.8 (obtained from 

Cloutier), presents the TFB:F8BT blend system, which offers an ideal host system 

for semiconductor nanocrystals such as the PbS. He stated that this system provides 

heterostructures for low-cost and high-performance devices, which find application 

to lab-on-a-chip, flexible optoelectronics, night-vision and solar energy fields. 
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Figure 5.8 Quantum dots - polyfluorene-based LED heterostructures, obtained from Cloutier 

[3]: (a) F8BT:TFB energy system, which provides an excellent host system for nanocrystals such 

as the PbS. (b) The incorporation of PbS nanocrystals can migrate their operation to the near-

infrared (between 900 - 1600 nm), depending on the their size. 

According to Cloutier, the most efficient way to produce the heterostructures of 

F8BT:TFB and quantum dot nanoparticles is simply to mix the colloidal QDs with 

the polymer blend solution and then spin cast on the solid substrate to produce the 

active film. He assumed that after deposition, the QDs would spread homogeneously 

in the blended polymer film, but only the quantum dots which are placed within the 

interfaces (tens of nanometres area) would be active. The rest of the QDs would 

remain inactive. To achieve that, very large concentrations of QDs are needed, in 

order to increase the chances to obtain more active QDs in the film. However, this 

procedure might cause significant problems on the performance of the polymer blend 

film, which hosts the colloidal QDs.  

In order for Coultier to study the effect of the PbS quantum dots on the 

F8BT:TFB polymer blend film, he used confocal fluorescence mapping of 

F8BT:TFB films with and without the colloidal QDs. The vision intensity images, 

which are shown in Figure 5.9, present the structural behaviour and the phase-
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separation of the blended films without QDs (Figure 5.9a) and with embedded 

colloidal QDs (Figure 5.9b). According to Cloutier, the brighter domains shown in 

the images are F8BT-rich, while the darker domains are TFB-rich. It is obvious from 

the images that the domains in the films with the colloidal QDs are significantly 

smaller, compared with the domains observed in the film without the colloidal QDs. 

The reason why this is happening was not discussed in the Cloutier study. 

To this point, we should notice that the author of ref [3] did not specify the 

volume fractions of the F8BT and TFB blends, as well as the volume fraction of the 

colloidal QDs in the solution. Furthermore, by using only confocal microscopy 

techniques is too difficult to locate the QDs in the film and fully investigate the effect 

of the NPs on the ultimate nanophase-separation of the blends both in lateral and 

vertical dimensions. It is more than obvious that at this stage there are many more 

things to be done in order to fully understand and control the structural behaviour of 

the films. Then it would be possible to fabricate devices such as LEDs and solar cells 

with potentially improved performance. 

 

Figure 5.9 The effect of the QD on the F8BT:TFB blended films, as obtained from ref. [3]: 

“confocal fluorescence mapping of the domain structure for the same toluene-blended 

TFB:F8BT (a) without PbS QDs and (b) with PbS QDs. The scale bars are 3 μm. 
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Herein, we performed a first study of the effect of CdSe quantum dots on the 

phase behaviour of F8BT:TFB thin films. We prepared solutions of QDs – 

F8BT:TFB blends (with various polymer blend ratios) in three different mass ratios 

(2:1, 1:1, 1:2). Droplets of the solutions were then spin coated on freshly cleaved 

ultra-flat mica to produce ~ 70 – 80 nm thin films. The structural behaviour of the 

inorganic-organic thin films was investigated by tapping-mode atomic force 

microscopy (AFM, height and phase imaging). Furthermore, for the accurate 

detection of the QDs in the film, apart from the height and phase imaging AFM we 

also used adhesion imaging AFM (force curved based imaging mode), mass-

thickness contrast and dark field transmission electron microscopy (MTC and DF 

TEM) and optical microscopy with a fitted fluorescence camera. To the best of our 

knowledge we are the first who managed to determine the exact volume of QDs 

needed in order to maintain the phase-separation of the polymer blends and at the 

same time to detect several QDs across the film. In all cases, clusters of QDs on the 

top surface of the film were unavoidable.  

The first important observation is that the phase-separated domains although 

they maintained their shape, their size was decreased significantly. This change is 

crucial for the functionality of the film as an active part of the device, as the interface 

between the parts of the films is increased. Furthermore, we managed to locate the 

existence of several QDs away from the QD aggregates. These were located at the 

edge of the F8BT-rich areas close to the interface of F8BT-rich and TFB-rich 

polymers. From the techniques applied we have strong evidence that the QDs do not 

want to ‘lie’ on the TFB-rich phase. They would always prefer to segregate on the 
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film surface or within the F8BT-rich area. The preference of the QDs in one of the 

polymers, leads to higher viscosity of the system during spin cast. The latter would 

result in the earlier arrest of the phase separation, i.e. before the diffusion of the TFB 

polymer in the F8BT domains. 

Due to the importance of the interfaces in the polymer-based devices, our 

findings give promising tools for understanding and controlling, the phase-separation 

of the polymer blends and the behaviour of the QDs in the system. 

5.3 Experimental 

5.3.1 Materials 

Polymers: the conjugated polymer blends applied for our present study consisted of 

F8BT parts (Mn = 6.2 kg/mol) and TFB parts (Mn = 5.8 kg/mol), whose chemical 

structures are presented in Table 5.1. Polymers were purchased by American Dye 

Source, Inc (Quebec, Canada). 

Table 5.1 Properties and chemical structures of the Polymers Studied 

Polymer Mn
a
 (kg/mol) Polydispersity Chemical Structure 

F8BT 6.2 7.4 

 

TFB 5.8 2.6 

 

                      a
 From gel permeation chromatography (GPC). 
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Inorganic Nanoparticles: the inorganic nanoparticles (NP) Lumidot™
 
Cadmium 

Selenide (CdSe) quantum dots (QD) were purchased by Sigma - Aldrich Chemicals 

(Sigma-Aldrich Company Ltd., Dorset, United Kingdom). The properties of the 

quantum dots are presented in Table 5.2. The capping agent of the quantum dots is 

the hexadecylamine (HDA). 

Table 5.2 Properties of the Quantum Dots used. 

Quantum Dots Concentration 

(mg/mL) in 

toluene 

Fluorescence, 

λem (nm)
a
 

particle size 

(nm)
b
 

UV 

absorption 

(nm)
a 

CdSe 5 475-485 ~ 2.1 455-465 

a
 Quantum yield was measured following the procedure of Qu and co-workers [35]. 

b
 Particle size was 

determined by TEM according to the procedure of Yu and co-workers [36]. 

 
5.3.2 Inorganic Nanoparticle - Polymer Solutions 

First the polymer solutions were prepared by dissolving each conjugated 

polymer in p-xylene purchased by Sigma-Aldrich Ltd. (Dorset, United Kingdom) to 

produce a concentration of 14 mg/ml. F8BT and TFB solutions were then mixed to 

produce blends of various ratios 1:1, 1:2, 1:3 and 1:4 by weight. Second, the 

cadmium selenide quantum dots were dissolved in p-xylene. To achieve that, we first 

had to isolate the QDs from the toluene solution (as received) with centrifuge 

technique. 8 flasks of   ml capacity were filled with  5  μl QD-toluene solution and 

75  μl of methanol each. The flasks were shaken up-side down and then they were 

loaded on the centrifuge (MicroCentaur, MSE, London, United Kingdom). The filled 
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flasks were centrifuged at 1300 rpm for 30 minutes. After centrifuging, the QDs were 

found at the bottom of the flask having a distinctive yellow colour as shown in the 

schematic of Figure 5.10. The methanol/toluene solution was then removed from the 

flasks using a single-use glass pipette. Furthermore,  5  μl of p-xylene were added in 

every flask (8 flasks ×  5  μl     ml of p-xylene), to achieve the same concentration 

as purchased from the industry (5 mg/ml in toluene). Then the taps of the flasks were 

covered with a Teflon tape to ensure that the solution will not evaporate. The flasks 

were extensively shaken and their container was placed in a cleaved bottle. The 

bottle with the QDs in p-xylene was loaded in Ultrasonic bath (FB11002, 

Fisherbrand, Fisher Scientific, Loughborough, United Kingdom) for 60 minutes to 

ensure the complete dilution of the QDs in p-xylene. 

 

Figure 5.10 Schematic of the flask (8 in total) upon centrifuge at 1300 rpm for 30 min. The 

outcome consisted of a cluster of quantum dots with a distinctive yellow colour at the bottom of 

the flask and a colourless solution of methanol and toluene.  

At this point we were ready to mix the polymer blend solutions with the CdSe 

quantum dots. As shown in the hierarchy diagram of Figure 5.11, the 1:1, 1:2, 1:3 

and 1:4 conjugated polymer blends (PB) with concentration 14 mg/ml  were mixed 

with QDs with concentration 5 mg/ml in a weight ratio for the solutions of  1:1, 2:1 
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and 1:2. These correspond to 14:5, 28:5 and 14:10 mass ratios, respectively between 

the pure polymer blend and quantum dots. Exceptions are the conjugated polymer 

solutions with TFB or F8BT parts only, where the solutions were mixed only in a 

weight ratio of 2:1 (corresponding to 28:5 mass ratio between the pure polymer and 

quantum dots). 

 

Figure 5.11. Schematic of the organic-inorganic by weight blend solutions prepared for this 

study. 

5.3.3 Ultra-Thin-Film Preparation 

Droplets of the solutions presented in Figure 5.11, were spin coated (spin 

coater SPIN150-NPP, SPS-Europe, Putten, the Netherlands) at 4,000 rpm for 90 
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seconds, on freshly cleaved mica sheets (Agar Scientific, Essex, UK) in ambient 

conditions, producing ultrathin films (~60 - 80 nm). Upon spin cast the thin films 

were dried with a stream of nitrogen. 

5.3.4 Atomic Force Microscopy 

A Bruker AFM Multimode/Nanoscope IIIa (Bruker, Santa Barbara, CA, USA), 

equipped with a J-scanner (x-y range ≈  4  μm) or an E-scanner (x-y range ≈  4 μm) 

was used to study the morphological behaviour of the organic F8BT:TFB blends – 

inorganic QD thin films in the tapping-mode. RTESP and/or RTESPA Bruker 

cantilevers with a nominal spring constant and resonance frequency of 40 N/m and 

300 kHz respectively were used to image the samples. In order to minimize the 

interaction force between the tip and the substrate (but without losing contact) “light 

tapping” was used by keeping the set-point amplitude ratio rsp = Asp/A0 close to 1 

(where A0 and Asp are the free oscillation amplitude and the reduced scanning set-

point amplitude of the cantilever, respectively).  

In addition, we used the advanced QI™ (quantitative imaging) mode developed 

by JPK Instruments (NanoWizard II AFM, JPK Instruments AG, Berlin, Germany) 

to obtain high resolution adhesion and height details of the composite thin films. This 

mode works without applying lateral forces in the film and at the same time it 

enables the constant control (in every pixel) of the vertical forces (tip-surface) i.e. it 

combines the advantages of both the tapping (minimal lateral/friction forces – ideal 

for soft samples) and the contact (high resolution) modes. QI™ mode is a force curve 
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based high-resolution imaging mode in which there is no need of adjusting neither 

the amplitude set-point nor the gain during imaging.  

According to JPK Instruments, the QI™ mode “uses a novel tip movement 

algorithm, which measures a real and complete force distance curve at every pixel of 

the image and gives all information about the local tip-sample interaction with high 

spatial resolution”. The interaction between the tip and the sample is possible to be 

controlled and minimised even down to a few picometres. In addition, it should be 

pointed out that in this novel mode, during the process of obtaining a force-distance 

curve there are no xy-movements ensuring that the curve is obtained under constant 

velocity. The latter is crucial for accurate and meaningful adhesion data, because of 

the coupling between the measured adhesion and the velocity during a force distance 

curve [ 7]. In the adhesion mapping in QI™ mode, the maximum unbinding force 

(the absolute value of the maximum force) is calculated during scanning and it is 

displayed in the adhesion image. To achieve this, the highest adhesion values are 

identified during the retraction step in the force-distance curve. In later adhesion data 

analysis, it is possible to navigate across the image and look at single force distance 

curves to distinguish between the different tip-surface interactions forces and 

perform a material analysis on the film surface. 

In this present work, the force of adhesion was measured and it is associated 

with the maximum (in absolute value) during retraction of the tip from the sample. In 

addition to the adhesion mapping the corresponding height images are also 

presented. The data for height imaging were generated from the (unique for every 
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pixel) force distance curve, having as a standard value the sensor height at the trigger 

point, which is set to small values in order to minimize the forces between the 

cantilever and the film surface. Mikromasch, CSC37 cantilevers with a nominal 

spring constant and resonance frequency of 0.3 N/m and 20 kHz respectively, were 

used to scan the samples. For the adhesion mapping the cantilever was automatically 

calibrated by the JPK machine using the thermal noise method and the spring 

constant was found to be 0.283 N/m. Images were processed and the layer heights 

were measured using the software Scanning Probe Image Processor (SPIP, Image 

Metrology, Hørsholm, Denmark) and the JPKSPM data processing (JPK Instruments 

AG, Berlin, Germany). 

5.3.5 Transmission Electron Microscopy 

 The composite PB:QD thin layers were lifted off from mica substrates by 

gentle immersion into a deionized water bath and then placed on a 200 square mesh 

copper grid. The specimens were analysed in a FEI Tecnai T20 tunnelling electron 

microscope (TEM) EM (FEI, Oregon, United States of America), operated at 200 kV 

and it is equipped with an Olympus-SIS Megaview III CCD camera (Olympus Soft 

Imaging Solutions GmbH, Münster, Germany). We used an objective aperture of 20 

μm and defocus value of approximately    μm. The software used to process the 

TEM images is the Micrograph
™

 (Gatan, Abingdon, UK). 
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5.4 Results and Discussion 

5.4.1 CdSe Quantum Dots on Mica 

Figure 5.12 presents AFM 2D and 3D height images of two different scanning 

areas (Figures 5.12a, b and c) and a phase image (Figure 5.12d) of colloidal CdSe 

nanoparticle quantum dots (from concentration 5 mg/ml) spin cast on mica. The 

quantum dots are spread homogeneously on the mica surface, without forming any 

clusters on the top surface. The average height of the quantum dots is ~ 2.15 ± 0.47 

nm (calculated by post-processing particle analysis performed in the image presented 

in Figure 5.12c), which compares very well with the nominal size of the QDs ~ 2.1 

nm. Note that the lateral size of the QDs is bigger than ~ 2.1 nm (~ 23.60 ± 7.2 nm), 

due to the tip-sample convolution (the probe tip apex diameter is larger than the 

features we image) [37]. Furthermore, phase imaging reveals a clear contrast 

between the dots and the layer below, confirming that there are no QD-rich layers 

formed on top of the mica and below the single QDs. The fact that the QDs are 

dispersed on mica, confirms that the quantum dots were diluted in the p-xylene, in 

agreement with earlier studies on CdSe quantum dots diluted in xylene solutions [38-

40]. This is an important result, as we can use the QD solutions to mix them with the 

polymer blends solutions (diluted in p-xylene) and produce thin films with 

potentially homogeneous distribution (if not affected by the phase separation). 
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Figure 5.12 (a) (b) AFM height images 2D and 3D of CdSe QDs spin cast on mica from p-xylene 

solution; the scan size of the image is 1.7 × 1.7 μm
2
 and the z-scale is 5 nm; (c) (d) AFM height 

(c) and phase (d) images of QDs on mica; the scan size of the image is 360 × 360 nm
2
 and the z-

scale for (c) is 5 nm and for (d) is 25 degrees. 

5.4.2 F8BT and TFB thin films mixed with QDs 

Figure 5.13 presents AFM height and phase images of thin films from F8BT 

(Figures 5.13a and b) and from TFB (Figures 5.13c and d) mixed with CdSe 

quantum dots in a weight ratio of 28:5. Thin film morphology of the F8BT mixed 

with QDs is characterised by a relatively flat layer with many small bright spots and 

some larger holes and fewer thicker islands. The wells are of diameter in the range of 

~ 50 – 200 nm. The phase contrast revealed that a uniform F8BT layer was formed 

direct on top of the mica, while the quantum dots were spread on top of the F8BT 

layer (small bright spots). The situation in the TFB mixed with QDs is significantly 
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different. In the height image (Figure 5.13c), the formation of several large islands 

formed on top of a flat layer were observed. The phase contrast of the corresponding 

height image revealed the formation of a clear lateral phase-separation. Alternate 

phases of TFB and QD were formed on top of the mica. Comparing, our findings on 

the F8BT-QD and TFB-QD with our findings on the F8BT and TFB thin films from 

the previous chapter, we conclude that the quantum dots do not wet the surface of the 

TFB polymer layer. A flat TFB layer was formed in TFB-only thin films, but adding 

the quantum dots, the flat layer is destroyed, forming two lateral phases instead: one 

phase TFB-rich and one phase QD-rich. On the other hand, in the F8BT case, the 

quantum dots have successfully wetted the F8BT layer. 

 

Figure 5.13 AFM height (a) (c) and phase (b) (d) images of F8BT mixed with CdSe QDs (a, b) 

and TFB mixed with CdSe QDs (c, d) thin films spin cast on mica (scan size: 2 × 2 μm
2
, colour 

scales in nm).  



Chapter 5            Thin Films of Conjugated Polymer Blend-Nanoparticle Composites 

 147 

5.4.3 Thin films of F8BT:TFB polymer blends mixed with 3 

different weight ratios of CdSe quantum dots. 

Figure 5.14 presents typical AFM height images of F8BT:TFB polymer blend 

(PB) thin films with blend ratio 1:1, 1:2, 1:3 and 1:4 (vertical columns), mixed with 

CdSe QDs in solution weight ratio 28:5, 14:5 and 14:10 (horizontal columns). 

The thin film of F8BT:TFB 1:1 with PB:QD 28:5 (Figure 5.14a) consists of 

well-like structures, which are surrounded by a higher lying matrix as observed in the 

previous chapter for the polymer blend alone indicating the same type of phase 

separation. However, on top of the matrix, some irregular island-like (with various 

sizes and shapes) structures were formed. Increasing the weight fraction of the QDs 

to 14:5 (PB:QD), the phase-separation was destroyed. Several irregular shaped 

island-like structures were formed on top of a uniform layer (Figure 5.14b). These 

islands became larger and fewer, when the QD fraction was increased to 14:10 

(Figure 5.14c). 

The thin film of F8BT:TFB 1:2 mixed with QDs in mass ratio of PB:QD 28:5 

(Figure 5.14d) consists of several island-like structures extended out of a 

homogeneous matrix as expected from the pure blend behaviour. On the top surface, 

few larger islands were formed. Thin films of the same F8BT:TFB blend but with 

PB:QD 14:5 (Figure 5.14e)  and PB:QD 14:10 (Figure 5.14f), exhibited irregular 

structural morphology with no clear phase-separated domains. Rounded island 

domains, which increased in size in the higher QD fraction, were observed on the top 

surface. 
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 Figure 5.14g presents the morphology of F8BT:TFB 1:3 with QDs in mass 

fraction PB:QD 28:5 thin film. The morphology is characterised by the formation of 

several small island-like domains spread across the film and extended out of a 

homogeneous matrix. At the top surface of the film larger (few) island-like domains 

are formed. Similarly to the previous cases, increasing the QD fraction in the system 

increases the larger islands on top (Figures 5.14h and i). However, it has to be noted 

that in this case (polymer blend with 1:3 ratio) the small domains remain when the 

colloidal quantum dots concentration was increased to PB:QD 14:5 indicating that 

the phase-separation could persist. 

Finally, thin films of F8BT:TFB 1:4 with QDs in weight fraction PB:QD 28:5 

consists of the expected phase separated island-like domains surrounded by a lower-

lying matrix (Figure 5.14j). Again, some larger structures were observed at the top 

surface. Increasing the weight fraction of the QDs in the system, the phase-separated 

domains seem to disappear and several larger irregular island structures were formed 

instead (Figures 5.14k and l). 
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Figure 5.14 Overview of typical AFM height images of F8BT:TFB polymer blend (PB) thin films 

spin cast on mica from four different blend ratios: 1:1, 1:2, 1:3 and 1:4 (rows), mixed with CdSe 

QDs in three PB:QD ratios:28:5, 14:5 and 14:10 (columns). The scan size of the images is 

approximately 10 × 10 μm
2
; the colour scales are in nm. 

From the Figure 5.14 presented above, we obtained valuable information for 

the phase behaviour of the polymer blend when mixed with CdSe QDs. 

Understanding of the phase evolution in blend thin films with QDs demands prior 

knowledge of the phase behaviour of the polymer blends. This knowledge was 
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obtained in the previous chapter where the F8BT and TFB parts were phase 

separated into discrete phases depending on the volume ratio of the blends. In this 

case, we observed that with the appropriate volume of QDs in the polymer blends, 

the phase-separation of the F8BT:TFB studied in the previous chapter remained the 

same. This was achieved at the lowest concentration of QDs: PB:QD 28:5. However, 

there are parameters such as the size and the interface of the phase-separated 

domains, which were affected from the QDs as will be analysed later. 

An earlier study on conventional blend (PMMA-SAN)/NPs (silica) composite 

thin films confirmed that when the fraction of the NPs in the system passes a critical 

point then large NP clusters are formed destroying the phase separation of the 

polymer blend [41]. In this fundamental study, the concentration of the NPs in the 

PMMA-SAN 1:1 system was increased from 0.5 wt% to 5 wt%. They found that the 

size of the phase-separated domains decreased when the weight fraction of the 

nanoparticles increased and was destroyed at 5 wt%. Stable bicontinuous structures 

in polymer blend-NP thin films at low nanoparticle fraction were also confirmed in a 

later study from Gam and co-workers [42]. Furthermore, more recent computer 

simulations performed by Araki et al. [43], showed significant transitions in the 

morphology of symmetric AB blends, with the addition of nanoparticles. They 

reported that at high concentrations of nanoparticles, the polymer A which prefers to 

cover the A-like nanoparticles is not enough, leading to the formation of a “wetting-

induced depletion”. This depletion enhances the formation of unusual morphologies 

as a function of the volume fraction of the nanoparticles. As a result the 
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concentration of the nanoparticles offers a simple process to control the overall 

morphology of immiscible polymer blend-nanoparticle mixtures.   

In addition to the general influence of the QDs in the total system, the detection 

of the position of the quantum dots in these films is essential in order to fully 

understand the structural behaviour of these composite films i.e. the exact effect of 

the QDs in the phase separated domains in the nanoscale. In this study we will focus 

on the thin films with PB:QD 28:5 only. In general, the rest of the films do not show 

any clear lateral phase-separated domains and it is likely that the quantum dots had 

formed large clusters in the films destroying the valuable -for the function of future 

device- interfaces. 

In Figure 5.15, we concentrate on AFM height images presenting the 

morphology of the F8BT:TFB 1:1 blended film embedded with QDs. There are three 

phases observed in the morphology of this film. The first two phases refer to the 

phase-separation of the F8BT and the TFB parts. As we extensively studied in the 

previous chapter, a TFB-rich layer has wetted the mica surface and an F8BT-rich 

layer with several well-like domains was formed on top of the wetted layer. Now 

using the QDs, we observe on top of the F8BT-rich layer several bright spots spread 

across the film surface. Later we are going to show that that these bright spots are 

small clusters of quantum dots. The zoomed AFM image of Figure 5.15a (small 

square in Figure 5.15b image) and the height analysis presented in Figure 5.15c 

reveal that the well-like domains have a typical depth 27 ± 4 nm and lateral 

dimensions  ~ 50 – 100 nm. We should note that the lateral size of the wells is 
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significantly smaller than the size of the corresponding F8BT:TFB 1:1 thin films 

without quantum dots (400 ± 200 nm) as presented in the previous chapter. This 

observation agrees with the Cloutier study on F8BT:TFB 1:1 thin films without 

quantum dots and with PbS quantum dots  [3]. He found using confocal microscopy 

that smaller (compared with the pure polymer blend thin films) phase-separated 

domains were obtained when quantum dots are embedded in the polymer blend 

system (Figure 5.9). 

 

Figure 5.15 (a) Representative AFM height image of F8BT:TFB 1:1 by weight ratio, mixed with 

QDs at a weight ratio of PB:QD 28:5 thin film spin cast on mica. (b) Zoomed area 

corresponding the white square of image (a); The scan size of the images are for (a) 10 × 10 μm
2
 

and for (b) 1.5 × 1.5 μm
2
; colour scales are in nm; (c) Line-scan profile which corresponds to the 

white line of image (b). 
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The polymer phase-separation between the F8BT:TFB blends (1:2, 1:3, 1:4) 

without and with quantum dots is presented in Figures 5.16a, b and c and in Figures 

5.16d, e and f, respectively. The comparison between the two systems reveals more 

clearly that the separation of the polymer blend in two phases: F8BT-rich and TFB-

rich, remains similar by adding the quantum dots. More precisely, the two black 

boxes in Figures 5.16a and d, highlight examples of identical F8BT-rich phase-

separated domains in F8BT:TFB 1:2 thin films without and with QDs. However, 

there are differences concerning the lateral and the vertical size of the polymer 

phase-separated domains and we should mention that in the case of the films with the 

quantum dots, the AFM height images exhibited a more blurred picture compared to 

the thin films without QDs. 

 

Figure 5.16 Typical AFM height images of F8BT:TFB thin films on mica with polymer blend 

ratio 1:2, 1:3 and 1:4 without (a), (b), (c) and with (d), (e), (f) quantum dots respectively. The 

scan size of the images is approximately 5 × 5 μm
2

 and the z-scale is in nm. The colour scales are 

~ 25 nm and ~ 5 nm for the thin films without and with QDs, respectively. The black boxes in (a) 

and (d), highlight the similar phase-separated domains formed in thin films without QDs and 

with QDs.  
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In the following graphs of Figure 5.17, the lateral and vertical difference of the 

phase-separated domains between the F8BT:TFB thin films without QDs and with 

QDs are presented, calculated by post-processing AFM imaging. The percentage of 

the islands coverage on the film surface decreased with the increase of the TFB part 

both for the systems with and without QDs in the same way. However, the thin films 

with QDs exhibited lower surface coverage in all cases than the thin films without 

QDs; the difference is in the range of ~15 – 20 % (Figure 5.17a). 

Furthermore, the lateral size of the island-like phase-separated F8BT-rich 

domains is presented in Figure 5.17b. In the case of the thin films with quantum dots, 

the diameter of the islands decreases from ~ 260 nm in the case of 1:2 polymer blend 

to ~ 160 nm in the case of 1:3 polymer blend and to ~ 120 nm in the case of 1:4 

polymer blend. These values are lower than the values in the system without the 

QDs. We should note that the exact diameter of the islands is difficult to calculate 

from the AFM, due to the tip-sample convolution. However, we are able to obtain 

reliable results concerning the tendency of the domain diameter to decrease by 

increasing the TFB fraction and that the domains from the QD-system are smaller 

than in the non QD-system. 

Finally, the vertical size (height) of the island-like domains for the QD-system 

versus the polymer blend ratio is plotted in Figure 5.17c. The height of the domains 

was significantly smaller (approximately one order of magnitude) than the height of 

the domains in non QD-system. The height of the islands decreased with increasing 

the fraction of the TFB part in the polymer blend (~ 3 nm, ~ 2 nm and ~ 1.5 nm for 
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1:2, 1:3 and 1:4, respectively). We should note that the height of the domains is 

calculated through the post-processing software from the height difference between 

the bottom area and the edge of the top surface of the islands, meaning that the rough 

surfaces of the isolated islands are not taken into account and that the bottom area 

might not be perfectly flat. 
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Figure 5.17 (a) Coverage of the islands, (b) diameter of the islands and (c) the height of the 

islands formed in the F8BT:TFB thin films versus the by weight F8BT:TFB polymer blend 

ratio; the red circles correspond to the thin films without QDs studied in the previous chapter, 

the black squares correspond to the thin films with QDs. 
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5.4.4 CdSe Quantum Dots Detection in F8BT:TFB thin films 

In the following part of the present chapter, we used adhesion AFM, phase 

imaging AFM, TEM and fluorescence microscopy, to locate the quantum dots on/in 

the film. From the height AFM imaging we have already observed that several 

clusters were formed at the top surface of the thin films. Generally, these clusters are 

smaller in the case of 1:1 thin films and become larger in 1:2, 1:3 and 1:4 films.  

5.4.4.1 Quantitative Analysis of Quantum Dots using AFM techniques 

The QI™ (quantitative imaging) mode atomic force microscope technique is 

applied on F8BT:TFB with QD thin films in order to determine quantitatively the 

different domains at the top of the film. Given the significant difference in the 

molecular architecture/composition between the inorganic quantum dots and the 

conjugated polymers, physical and mechanical properties such as density and 

stiffness are unique for each compound and will affect the adhesive properties. To 

this end, we performed QI™ AFM mapping of F8BT:TFB 1:1 and F8BT:TFB 1:2 

thin films, focusing on the phase-separated polymer domains and the bulk structures 

on top. The cantilever we used, which is made of n-type silicon, was calibrated (via 

the thermal method) and the spring constant was 0.283 N/m. Force – distance curves 

were obtained from every domain and some representative ones are presented in the 

graph of Figure 5.18. An example of a force – distance curve focused on the bulk top 

structure is presented in the black curve of the graph in Figure 5.18. The maximum 

force during the retraction curve provides the adhesion between the material in the 

bulk area and the tip and is ≈ 6.5 ± 1 nN. Furthermore, the force of adhesion of the 
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higher lying domains in the polymer phase-separated area (polymer network in 1:1 

polymer blends and island structures in 1:2 polymer blends) is ≈ 10 ± 2 nN (red 

dashed curve in the graph of Figure 5.18). Finally, the force – distance curve in the 

lower lying polymer domains (wells in 1:1 polymer blends and lower polymer matrix 

in 1:2 polymer blends) revealed that the force of adhesion is ≈  3 ± 2 nN (blue dotted 

curve in the graph of Figure 5.18). 

We already know from the previous chapter that the lower lying polymer 

domains in F8BT:TFB films are TFB-rich, while the higher domains are F8BT-rich. 

As a result the force values of the F8BT and the TFB parts are expected to be ≈ 10 ± 

2 nN and ≈  3 ± 2 nN, respectively. The similar surface tension values of the blends 

(F8BT ~ 4 −45 mJ/m
2
 TFB ~  5−4  mJ/m

2
) do not provide an obvious reason for 

the adhesion difference. In addition, both polymers, which are well below their glass 

transition temperature (F8BT ~ 99 
o
C, TFB ~ 156 

o
C [44]) are expected to exhibit 

similar low adhesion properties. However, we speculate that the TFB polymer part 

exhibits higher adhesion than the F8BT due to the water or solvent molecules which 

might be trapped inside the TFB domains. TFB polymer exhibits higher solubility in 

p-xylene than the F8BT polymer, so it is more likely that there would be more 

molecules of solvent trapped inside TFB part even after spin coating (this might be 

the reason behind the soft behaviour of the TFB film presented in the previous 

chapter and appendix B). The bulk structure on the top surface of the films exhibits 

lower adhesive force than the force of the polymer blends pointing to the conclusion 

that these aggregates does not consist of any of the polymers but of CdSe quantum 
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dots. This type of quantitative information for the quantum dots provides a very 

important tool to identify the nanoparticles across the total thin film area. 

 

Figure 5.18 Representative force-distance curves of CdSe quantum dots (black curve), F8BT 

(red dashed curve) and TFB (blue dotted curve), taken from the top surface of F8BT:TFB with 

1:1 and 1:2 polymer blend ratio mixed with QDs thin films. The curves refer to the retraction of 

the tip during QI™ AFM mapping. The x-axis refers to the piezo displacement as measured by 

the sensor in the AFM head and smoothed. The spring constant of the tip used is 0.2828 N/m. 

Figure 5.19 presents an AFM height image (Figure 5.19a) and the 

corresponding adhesion image (Figure 5.19b) of a F8BT:TFB 1:1 blend ratio thin 

film mixed with quantum dots. The different domains are shown using black arrows 

in the height image. We observe from both images that within the F8BT-rich higher 

lying phase, there are small CdSe QD aggregates. We cannot exclude the possibility 

of single QDs within this layer; however the small size of the QDs and the roughness 

of the polymer layer do not permit a clear observation of single QDs. Such small 

aggregates are not present in the lower lying TFB-rich domains (bright areas in the 
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adhesion image). Furthermore, there are areas where there is some segregation of 

QDs on top of the whole polymer layer. This is even more prominent in the case of 

F8BT:TFB 1:2 (with QDs) as shown in Figure 5.20 presenting the height (Figure 

5.20a) and the corresponding adhesion (Figure 5.20b) AFM image.   

Two valuable pieces of information are obtained from the height and the 

corresponding adhesion images (Figures 5.19 and 5.20) and force values of this 

system (Figure 5.18). The first is that there are quantum dots that are located in the 

form of either big or smaller aggregates across the film surface. The second valuable 

information is that we have not observed any CdSe quantum dots on the TFB – rich 

domains. The QDs have the tendency to spread on/in the F8BT-rich layer 

(F8BT:TFB 1:1), and when there is no continuous F8BT-layer available, they tend to 

form large aggregates (F8BT:TFB 1:2) at the top surface instead. These observations 

are in agreement with the comparison of the phase images of F8BT-QD and TFB-QD 

thin films presented in Figure 5.13. In the case of the TFB-QD thin film we have 

observed that the QDs and the TFB polymer have separated in two lateral alternate 

phases parallel to the substrate, meaning that the QDs do not find it favourable to 

cover the TFB; the opposite happens  in the case of F8BT film. 
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Figure 5.19 (a) Height and the corresponding (b) adhesion mapping of F8BT:TFB 1:1 mixed 

with QDs thin film. In height image, the dark well-like structures correspond to the TFB-rich 

domains, while the brown homogeneous matrix is F8BT-rich. The bright domains at the top 

correspond to the quantum dots. In the adhesion image the dark (low adhesion) correspond to 

QDs, the brown areas to F8BT-rich domains and the bright areas to TFB-rich domains. 

 

Figure 5.20 (a) Height and the corresponding (b) adhesion mapping of F8BT:TFB 1:2 mixed 

with QDs thin film. In height image, the dark brown lower lying layer corresponds to the TFB-

rich domain, while the lighter brown island-like structures are F8BT-rich. The bright domains 

at the top correspond to the quantum dots. In the adhesion image the dark (low adhesion) 

correspond to QDs, the less dark areas to F8BT-rich domains and the bright areas to TFB-rich 

domains. 
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5.4.4.2 Comparison between Tapping Mode AFM phase imaging of 

F8BT:TFB thin films without Quantum Dots and F8BT:TFB thin 

films with Quantum Dots. 

In the previous part, we confirmed that it is more favourable for the CdSe 

quantum dots to segregate in F8BT-rich areas and no QDs were observed in TFB-

rich areas. Herein we focus on the difference in the phase contrast in small scan-size 

areas between thin films without QDs and with QDs. The scanning areas chosen are 

away from the QD aggregates to investigate how the film characteristics differ from 

the polymer-only thin films in the nanoscale. Through the phase imaging, we expect 

that the inorganic nanoparticles would exhibit different phase contrast compared with 

the phase contrast of the polymer blends. 

Figure 5.21 presents AFM height (Figures 5.21a, c) and phase (Figures 5.21b, 

d) images of F8BT:TFB 1:1 thin films without quantum dots (Figure 5.21a, b) and 

with quantum dots (Figures 5.21c, d). In the case of the thin film without QDs, two 

clear phases are formed, one TFB-rich and the other F8BT-rich but as already 

discussed in the previous chapter there is some intermixing at the free interface in 

particular on top of the high lying F8BT-rich domains. However, in the case of the 

thin film with QDs, the ‘grainy’ structure is suppressed indicating that the presence 

of the quantum dots (not probed separately in these images) have hindered the 

formation of the capping layer.   
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Figure 5.21 Typical AFM height (a) (c) and phase images (b) (d) of F8BT:TFB 1:1 thin films  

without quantum dots (a), (b) and with quantum dots (c), (d). The z-scales are in nm for the 

height images and in degrees of the phase images.  

Furthermore, Figure 5.22 presents AFM height and phase images of F8BT:TFB 

1:4 thin films without QDs (Figures 5.22a, b) and with QDs (Figures 5.22c, d). As 

extensively investigated in the previous chapter, no QD thin films of F8BT/TFB 

blend ratio < 1 exhibit island-like phases surrounded by a homogeneous layer of the 

other phase. The island-like structures are F8BT-rich but they have a crater-like 

shape and they are ‘filled’ with a TFB capping layer. On the contrary, the height 

images of the QD thin films the islands have no crater appearance. As shown also in 
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the phase image in Figure 5.22d, the F8BT-rich areas do not exhibit a crater-like 

structure and no TFB areas (capping layer/grainy structure) are present inside the 

islands. A more homogeneous F8BT phase is formed instead. However, it has to be 

noted that the bright appearance of F8BT islands can be attributed to the presence of 

the quantum dots within the F8BT areas. 

 

Figure 5.22 Typical AFM height (a) (c) and phase images (b) (d) of F8BT:TFB 1:4 thin films  

without quantum dots (a), (b) and with quantum dots (c), (d). The z-scales are in nm for the 

height images and in degrees of the phase images. 

Thus, we could speculate from the surface analysis of these domains that by 

adding quantum dots in the system, we can achieve better phase-separation between 
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the blends. A reason why smaller F8BT phases were formed might be attributed to 

the kinetics of the phase separation of the F8BT:TFB polymer blend. Studies on 

polymer blend-NP systems, concluded that the polymer which has high affinity with 

the nanoparticles exhibit high viscosity, resulting in the hindering of the phase 

growth [41, 45]. Furthermore, Ginzburg et al. [46] concluded that the nanoparticles 

hamper interface motion, slowing down the domain growth. In addition, Tang and 

co-worker [47] stated that the nanoparticles inhibit the shape relaxation of the 

domains due to the excluded volume. Tanaka et al. [48] have also reported that the 

NPs can significantly affect the coarsening dynamics of the system. They stated that 

the NPs could ‘disturb’ the polymer flow inside the domains causing friction and 

slower domain motion. Theoretical studies based on the nanoparticle-polymer 

mixtures reported the existence of distinct phase separated domains in the early 

stages of thin-film formation [49,50] and a subsequent slowing of the domain growth 

in the later stages [51,52]. Later experimental studies [41,53], established the 

significant slowing of the phase separated domains, when nanoparticles are added in 

a polymer mixture. Thus, in our case, an effective increase of the F8BT viscosity due 

to the effect of the nanoparticles could also be the reason for the hindering the 

growth of phase separated domains and could also lead to less intermixing and purer 

(but smaller in size) phase-separated F8BT domains. 

Although, many experimental and computational studies focused on the 

kinetics of the formation of polymer-nanoparticle mixture composites have been 

published, little has been published on the thermodynamics (experimental or 

theoretical) related to the phase separation of these mixtures [52]. Therefore, there is 
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little knowledge on the effect of the nanoparticle size, volume fraction or 

composition on the overall phase separation. Ginzburg [54] and He et al. [55] used 

thermodynamic theory to reveal the effect of the nanoparticles on the miscibility of a 

polymer blend system of two homopolymers. They reported that decreasing the size 

of the nanoparticles, an immiscible phase-separated system can be tuned into a 

thermodynamically miscible single-phase system. They concluded that by varying 

the size of the nanoparticles, one can control the phase-separation behaviour. 

However, we should point out that these studies were performed without the use of a 

solvent in the system (ternary system), plus they used homopolymers as parts of the 

blend in which physical parameters such as the   (Flory-Huggins interaction 

parameter) is easier to be found, compared with the more complicated copolymers 

such as the F8BT or the TFB.  Furthermore, our experimental protocol (spin-coating) 

‘suffers’ from kinetic dominated phenomena (i.e. we could be far from equilibrium). 

5.4.4.3 Use of Transmission Electron Microscopy to Detect the 

Quantum Dots. 

As we have seen the direct detection of the quantum dots with AFM is not easy 

and straightforward. Furthermore, with AFM we confine ourselves to the study of the 

free interface alone. Owing to the significant difference between the inorganic 

quantum dot and the organic conjugated polymer densities, we used mass-thickness 

transmission electron microscopy (TEM) to detect the quantum dots in the film as 

their exact position will have consequences for the performance of devices. Indeed, 

in the TEM micrograph of Figure 5.23, the segregated quantum dots are presented in 

black colour. Apart from the big segregated QD domain, the F8BT:TFB 1:4 phase-
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separated domains are also clearly seen. The contrast is better than in the 

corresponding Figure of previous chapter for the same film without QDs indicating 

the presence of QDs in the F8BT domains. The red squares in the TEM image 

present three F8BT domains of particular interest. 

 

Figure 5.23 Mass-thickness contrast TEM image of F8BT:TFB 1:4 thin film with quantum dots. 

The phase-separated polymer blend domains (clear contrast) and the segregated QDs (dark 

cloud) are presented in the image. Three different areas in the interface of F8BT and TFB 

domains were studied for QD detection. The TEM experiment was performed by Marco Bigatti 

in the School of Physics, the University of Glasgow, Glasgow, UK. 

The three different areas highlighted in red circles in Figure 5.23, are presented 

separately in TEM micrographs of Figures 5.24a, b and c. The rectangle shapes in 

every TEM image (Figures 5.24a, b and c) highlight isolated quantum dots which lie 

on the F8BT:TFB interface. According to the literature, these quantum dots would be 
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functional and enhance the electron mobility in LED and solar cell devices [3], while 

the QD-rich clusters are not considered to be functional. We note that intensity 

profiles (insets in Figures 5.24a, b and c) taken across the rectangular shapes identify 

quantitatively isolated and not segregated quantum dots on the F8BT domains but 

close to the F8BT-TFB interface. Given the significant higher density of the 

inorganic quantum dots compared with the polymer blends, lower intensity (less 

electron diffraction) compared with the polymers is expected at the position of the 

QD. The intensity profiles revealed that in a lateral distance of 2 – 3 nm the intensity 

drops significantly. From the CdSe QD supplier we know that the size of the dots is 

~ 2.1 nm (Table 5.2). As a result we undoubtedly conclude that isolated dots lie on 

the F8BT domains and preferentially near the interface with the other polymer. It 

was almost impossible or very difficult to obtain this piece of information with the 

use of AFM techniques. AFM studies the free interface which might not be an 

accurate representation of what is happening inside the film. Furthermore, very small 

(~ 1 – 10 nm) lateral size domains within a relatively rough film surface suffer from 

tip-sample convolution effects. 
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Figure 5.24 (a), (b), (c) Mass-thickness TEM images of F8BT:TFB 1:4 mixed with QDs thin 

films. Inside the red circles, located near the interface between the F8BT and TFB phases green 

dashed rectangular shapes contain individual QDs. Intensity profiles across the dash 

rectangular shapes are also shown. 
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5.4.4.4 Supplementary Measurements. Optical Fluorescence Imaging 

and Bright-Field TEM. 

Figure 5.25 presents optical microscopy with fitted fluorescence camera 

images of F8BT:TFB 1:1 without QDs (Figure 5.25a) and with QDs (Figure 5.25b). 

The fluorescence camera is adjusted to the fluorescence emission of the quantum 

dots (see Table 5.2). The sample with QDs looks much brighter throughout the 

sample. The brighter spots of the image in Figure 5.25b correspond to areas where 

the quantum dots are denser; due to the lateral resolution we mainly observe the 

denser quantum dot aggregates (not the polymer-related phase separation areas 

which are at the submicrometre scale).  

 

Figure 5.25 F8BT:TFB 1:1 without QDs (a) and with QDs (b) images from optical microscope 

fitted on the JPK AFM (the AFM images were taken in this sample), featuring a fluorescence 

camera with the appropriate to CdSe QD (~ 480nm) fluorescence filters. 

Apart from mass-thickness TEM technique, we also applied bright-field TEM 

to perform element analysis in the big aggregates at the top surface of the film 

(Figure 5.26). Energy-dispersive X-ray spectroscopy (EDX) applied in the bright-
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field TEM images, revealed the existence of high concentration in Cd and Se 

elements at the big aggregates (the data generated by EDX analysis consist of spectra 

showing peaks corresponding to the elements making up the true composition of a 

sample being analysed). This verifies further our conclusion that the big clusters at 

the top surface of the film are QD-rich. Copper (Cu) and carbon (C) elements were 

also identified due to the TEM copper grid and the polymer blends that lie beneath 

the aggregates, respectively. 

 

Figure 5.26 Energy-dispersive X-ray spectroscopy (EDX) used for elemental analysis within the 

area of the red box at the inset bright-field TEM image. The studied area is focused on the 

quantum dot clusters at the film surface of F8BT:TFB 1:4 with QD thin films. Cd, Se spikes 

correspond to the quantum dots, C corresponds to the polymer blends and Cu corresponds to 

the TEM copper grid. 

5.5 Conclusions 

In this chapter, the thin film morphology of polyfluorene F8BT:TFB blends 

mixed with inorganic CdSe quantum dots (QD) was investigated for the first time 

and compared with the corresponding morphology of F8BT:TFB films. We prepared 

thin films of F8BT:TFB polymer blends (with blend ratio 1:1, 1:2, 1:3, 1:4) (PB) 

mixed with QDs, in which the weight ratio varied from 28:5 to 14:5 and 14:10. Thin 
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films of CdSe, F8BT and TFB – only were also prepared. We used AFM, TEM and 

optical microscopy techniques to study how the quantum dots have affected the 

phase-separation of the polyfluorenes, as well as to accurately detect the QDs on the 

film surface and within the film.  

We found that in PB:QD thin films, the clear phase-separated domains formed 

by the polymer blend and studied in the previous chapter, exist only when we mix 

the polymer blend and the quantum dots in a weight ratio of 28:5. Although the 

phase-separated domains were present, the size (diameter, height) of the phases was 

found to be significantly smaller. We attributed this to the higher effective viscosity 

of the polymer which favourably interacts with the quantum dots, in accordance with 

earlier similar studies on polymer blend-nanoparticle systems [41,42]. The only 

exception is the height of the higher-lying F8BT-rich layer in the F8BT:TFB with 1:1 

blend ratio. This was found that it has almost the same height of the F8BT-rich layer 

from 1:1 without QDs thin films.  

Force-distance curves and adhesion mapping revealed the existence of two 

morphology trends. One in the case of thin films with QDs and 1:1 F8BT:TFB blend 

(F8BT-rich layer formed on the top surface) and the other in the case of thin films 

with QDs and the weight fraction is F8BT/TFB < 1 (F8BT island-like structures 

were formed surrounded by a TFB layer). In the first case the quantum dots were 

spread in the F8BT-rich layer only and in a few cases they formed small aggregates, 

while in the second case the QDs formed larger aggregates. From these we 

concluded that the quantum dots find it more favourable to spread on top of an 
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F8BT-rich layer, while in the case where there is no such layer (weight fraction is 

F8BT/TFB < 1) the QDs prefer to segregate into large structures at the top surface 

(without of course excluding the presence of isolated QDs within F8BT areas in all 

cases). The fact that the quantum dots do not prefer the TFB areas is confirmed also 

by phase and height AFM imaging of TFB-only thin films, which exhibited lateral 

phase-separation between the QDs and the TFB, while the F8BT-only thin films 

indicated mixing between F8BT and QDs.  

AFM phase imaging revealed that the QDs suppress the formation of the 

capping layer and enhance the polymer blend phase separation leading to purer 

domains.  

Mass-thickness and bright-field TEM imaging of thin films with QD/PB were 

also performed to investigate the position of the CdSe quantum dots within the bulk 

of the film. The clear contrast between the polymer phases confirms the preferential 

segregation of QDs in the F8BT domains. Furthermore, intensity profiles in different 

areas of F8BT domains have shown that single quantum dots were lying at the 

interface of the F8BT polymer parts. These quantum dots are of significance as they 

are expected to contribute to the functionality of the thin film applied on a device. 

Finally, we should highlight the significance of our findings as the main 

conclusion is that the high electron transporting inorganic quantum dot prefers the 

surface of the low electron transporting organic F8BT to the surface of TFB. This 

intriguing conclusion combined with the straight forward mixing process provides a 

useful strategy to produce LEDs and PV cells with better efficiency compared to the 
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polymer only devices. However studies concentrated on improving the solubility of 

the quantum dots in the polymer blend solution have to be performed in the future, in 

order to avoid the large clustering of the quantum dots which do not contribute 

favourably to the performance of the devices. 
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(a) (b) (c) AFM images of polystyrene-b-poly(p-hydroxystyrene-g-ethylene oxide block-graft 

copolymer, fPEO  = 0.96, dip-coated (THF solutions) on mica. Images were captured at the same 

area, every 20 minutes indicating the wetting evolution of the polymer on the hydrophilic mica. 
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6.1 General Conclusions 

6.1.1 Diblock Copolymer Nanostructures Self-Assembled on Mica 

In the third chapter of this thesis, the morphology of thin PI-b-PEO diblock 

copolymer films prepared by spin coating, by varying the crystallisable, hydrophilic 

and biocompatible block (PEO) volume fraction and the concentration of the 

polymers in aqueous solutions was investigated. Stable ordered nanodomains 

immediately after spin coating were observed in all cases, not affected by 

heating/annealing and ageing. This is a useful result as self-assembled, robust 

structures based on block copolymers and produced by environmentally-friendly 

processing routes can be important for many applications. For example, exploiting 

the biocompatibility of the PEO block and the coupling between microphase 

separation and dewetting in thin films, in combination with the PEO crystallinity, 

robust patterns with useful biological/biomedical properties [1]  can be produced by 

water-processing alone. 

6.1.2 Thin Films of Conjugated Polymer Blends 

In the fourth chapter of this thesis, an extensive investigation in the lateral 

phase separation and structural behaviour in nanoscale of low molecular-weight 

F8BT:TFB conjugated polymer thin films, with various blend ratios by weight was 

performed, using AFM and TEM. Conjugated polymer thin films have been proven 

to be excellent candidates for replacing the conventional semiconductors used in the 

LED and photovoltaic (PV) devices. It was observed sub-micrometre phase-

separated domains in the morphology of 1:1, 1:2, 1:3 and 1:4 weight ratio F8BT:TFB 

thin films for first time. These detailed investigations on the F8BT:TFB thin films 
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are expected to be crucial for the determination of the functionality and the efficiency 

of the devices, as even a small change in the film morphology in the nanoscale could 

affect the overall performance of the LEDs/solar cells [6]. 

6.1.3 Thin Films of Conjugated Blend-Nanoparticle Composites 

In the fifth chapter of this thesis, the thin film morphology of polyfluorene 

F8BT:TFB blends mixed with inorganic CdSe quantum dots (QDs) was extensively 

investigated for the first time and compared with the corresponding morphology of 

F8BT:TFB films. It was found that smaller (approximately one order of magnitude 

smaller) polymer phase-separated domains were formed compared with the polymer 

blend only thin films. It was also observed, using AFM and TEM techniques, that 

apart from smaller or bigger quantum dot aggregates which were formed on the top 

of the film, some individual quantum dots were lying on or embedded in the F8BT 

polymer. Interestingly, some of them were close to the interface with the other 

polymer (TFB). No quantum dots were observed on the surface or inside the TFB 

polymer. These intriguing conclusions combined with the straight forward mixing 

process provides a useful strategy to produce LEDs and PV cells with better 

efficiency compared to the polymer only devices.  

6.2 Future Work 

6.2.1 Diblock Copolymer Nanostructures Self-Assembled on Mica 

The need of forming more stable and phase-controlled nanostructures for 

applications in fields such as drug/gene delivery applications requires studies on even 

more stable polymer systems than the diblocks. Amphiphilic grafted copolymers 
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with poly(ethylene oxide) being the hydrophilic side chains, were found to be 

excellent candidates for the production of stable biocompatible nano/micro-patterns 

[2]. Their advantage lies in the unique behaviour of these copolymers in solubility, 

surface wetting, blood compatibility, and crystalline structure [2-4]. Thus, the need 

of producing thin films of PEO-based amphiphilic grafted copolymers and then 

investigating their nanostructural morphology by high-resolution imaging techniques 

such the AFM is of paramount importance. A preliminary study is under way (see 

AFM images in Chapter’s 6 front-page page). 

6.2.2 Thin Films of Conjugated Polymer Blends 

While in LED applications, the F8BT:TFB blends have excellent performance, 

a study focused on photovoltaic cell applications reported that replacing the TFB 

polymer with the PFB polymer in the blend (F8BT:PFB) resulted in increased 

efficiency [7]. Arias and co-workers’ work [7] concentrated on the phase-separation 

of F8BT:PFB thin films and investigated how this affects the photovoltaic 

performance of the films; however, there are many issues to be resolved, e.g. again 

low molecular weight performance. We are aiming to prepare several F8BT:PFB thin 

films with the same preparation protocol with F8BT:TFB thin films, in order to 

obtain the best control of preparing efficient PV cells based on PFB. 

6.2.3 Thin Films of Conjugated Blend-Nanoparticle Composites  

Studies concentrated on improving the solubility of the quantum dots in the 

polymer blend solution have to be performed in the future, with the aim of avoiding 
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the large clustering of the quantum dots which do not contribute favourably to the 

performance of the devices. 

Finally, after the extensive study in the structural morphology of the 

inorganic/organic films and the important conclusions that relate to the device 

performance, we aim to initiate collaborations with appropriate groups and perform 

several optical and electrical measurements. 
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Appendix A: Further Images and Height Profiles for PI-b-PEO, 

PEO and PI Thin Films. 

PI-b-PEO block copolymer with fPEO = 0.32. In Figure A1 typical AFM 

images for three different average polymer thicknesses (APT ≈ 7 nm,    nm and 4  

nm) of the diblock copolymer with the lowest volume fraction of PEO are presented. 

In all cases, the film morphologies are characterized by the growth of structures, on 

both lateral and vertical direction on mica. In the APT ≈ 7 nm film (Figure A1a) we 

observe the formation of a semi-continuous flat-layer network with several ‘arms’ at 

the polymer mica interface with a thickness of ≈  7 nm. At the top of this first layer 

there is a thicker flat-layer network with a thickness about twice the first layer ≈  7 

nm. It is important to point out that some layered and terraced droplets/cone-like 

structures consisting of more than two layers were observed, with each layer having 

a thickness from 22 to 37 nm. The APT ≈    nm thin film (Figure A1c), exhibits a 

dendritic layer at the polymer-substrate interface, along with thicker layer islands 

formed on top. The height profile (Figure A1d) taken across the image of Figure 

A1c, shows that the thickness of the bottom layer is around 22 nm, while the thicker 

layer on top has a thickness again about double and of around 39 nm. In Figure A1e, 

the AFM image presents the typical morphology formed of the thicker film of ≈ 4  

nm in which the first layer at the polymer-mica interface has covered a bigger 

surface than the previous films. The first layer is about 24 nm thick.  The cone-like 

structures are more frequent than in the other two films. The height profile presented 

at Figure A1f shows that the thickness of the first layer is ≈  4 nm, while the 

subsequent layers at the cone-like structures have thickness ≈ 4  nm. 
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Figure A1 (a, c and e) Typical AFM height images for the PI-b-PEO block copolymer with fPEO 

= 0.32 of the (a) 7 nm film, (c) 13 nm film and (e) 41 nm film; (b, d and f) the corresponding 

height profiles indicated with the white lines in the AFM images. 
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PI-b-PEO block copolymer with fPEO = 0.49. Figure A2 presents the 

morphologies for the symmetric case of our diblock copolymer for APT ≈ 7,    and 

41 nm thin films. A dendritic layer was formed over mica surface in the case of the 

apt ≈ 7 nm film (Figure A2a). Above this layer several thicker layer islands spread in 

some areas of the film.  A height profile (Figure A2b) shows that the thickness of the 

dendritic layer is around 10 nm, while the islands thickness is around 24 nm. The 

APT ≈    nm film formed a flat layer on top of the mica substrate with several 

thicker structures on top (Figure A2c). Line-scan profile across the image of Figure 

A2c reveals that the thickness of the first layer is ≈  4 nm and the thickness of each 

layer on top is ≈  5 nm (Figure A2d). In APT ≈ 4  nm film, a much more extensive 

layer has been formed (full coverage) directly on top of the mica substrate. On top of 

this layer, a wide and thicker layer was formed followed by another layer (islands) in 

some locations. In Figure A2e, we present an area in which the mica substrate is 

visible at the bottom of the film through a small hole in the monolayer, in order to 

measure the thickness of the monolayer. These areas are scarce. According to the 

height profile (Figure A2f) the thickness of the first layer is around 15.5 nm, while 

the thickness of the layers above is ≈  8 nm. 
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Figure A2 (a, c and e) Typical AFM height images for the PI-b-PEO block copolymer with fPEO 

= 0.49 of the (a) 7 nm film, (c) 13 nm film and (e) 41 nm film; (b, d and f) the corresponding 

height profiles indicated with the white lines in the AFM images. 

PI-b-PEO block copolymer with fPEO = 0.66. Figure A3a shows an AFM 

image of the APT ≈ 7 nm film with fPEO = 0.66. A dendritic layer was formed across 
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the mica substrate. In some areas, thicker structures were observed on top of the first 

layer. According to the height profile (Figure A3b) taken across the image of Figure 

S3a, the thickness of the dendritic layer is around 8 nm, while the thickness of the 

thicker layer above is around 24 nm. Furthermore, Figure A3c presents the 

morphological behaviour of the APT ≈    nm film with fPEO = 0.66. The morphology 

is mainly characterised by two layers formed over the mica substrate. The bottom 

layer has a dendritic morphology. Some thicker layers (usually one or two) were 

developed on top of the dendritic layer. Height profile (Figure A3d), reveals that the 

dendritic layer has a thickness of ≈    nm, while the layer on top have thickness of ≈ 

27 nm. In Figure A3e, we present an AFM image from an area where the bottom 

(dendritic layer) of the APT ≈ 4  nm film with fPEO = 0.66 is visible and it is not as 

dense so that its thickness can be measured. The line scan profile (Figure A3f), 

shows that the bottom layer has a thickness of around 15 nm and the layer formed 

above has a thickness of around 30 nm. 
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Figure A3 (a, c and e) AFM height images for the PI-b-PEO block copolymer with fPEO = 0.66 of 

the (a) 7 nm film, (c) 13 nm film and (e) 41 nm film; (b, d and f) the corresponding height 

profiles indicated with the white lines in the AFM images. 

PEO 8 kg/mol homopolymer thin films. Figure A4 presents AFM images of 

the typical morphology of PEO 8 kg/mol (PEO8K) thin films from two 

concentrations 10
-3

 g/g and 2 × 10
-3

 g/g, along with the corresponding height 
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profiles. The typical morphology for the PEO8K thin film from 10
-3

 g/g is 

characterised by the formation of crystallized islands in a star-like morphology 

(Figure A4a). Height profile taken across the AFM image revealed that the average 

thickness of the star-like structures is 6.5 nm (Figure A4b). Furthermore, the 

morphology of PEO8K from 2 × 10
-3

 g/g is characterised from the formation of a 

layer with several fractal structures (Figure A4c). Height profile across the layer 

showed that the average thickness of the layers is 6.5 nm. 

 

Figure A4 (a) (c) AFM topography images and the (b) (d) corresponding height profiles of PEO 

(8 kg/mol) homopolymer thin films from (a) c = 10
-3

 g/g and (b) c = 2 × 10
-3 

g/g. 
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PEO 14 kg/mol homopolymer thin films. Figure A5 presents AFM images of 

PEO 14 kg/mol (PEO14K) thin films from two concentrations 10
-3

 and 2 × 10
-3

 g/g, 

along with the corresponding height profiles. The typical morphology for the 

PEO14K from 10
-3

 g/g is characterised by the formation of dendrite structures on top 

of the mica (Figure A5a). Height profiles across the dendritic structure showed that 

its thickness is ~ 7 nm (Figure A5b). In addition, more frequent (compared with the 

previous case) dendrite structures were formed observed in the morphology of 

PE014K thin films from 2 × 10
-3

 g/g solution concentration (Figure A5c). Height 

profiles across the image revealed that the thickness of the structure formed on mica 

is 6.2 nm (Figure A5d). 
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Figure A5 (a) (c) AFM topography images and the (b) (d) corresponding height profiles of PEO 

(14 kg/mol) homopolymer thin films from (a) c = 10
-3

 g/g and (b) c = 2 × 10
-3 

g/g. 
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Appendix B: Cross-Section Analysis of TFB thin film 

Figure B1a presents the typical morphology of the TFB thin film, spin cast on 

mica. The morphology is characterised by the formation of a relatively soft layer, 

with several holes. In the cross sectional analysis of Figure B1b, it is shown that the 

thickness of the holes is ~ 8 nm. We should note that the shape of the holes and their 

size, correspond to the characteristic shape and size of the AFM tip used for imaging 

(RTESP Bruker cantilevers, with nominal tip radius 8 nm). 

 

Figure B1 (a) Typical AFM image of TFB polymer thin film, spin-coated at 4,000 rpm for 90 

seconds; (b) cross sectional analysis of the holes observed at the top surface of the 

corresponding film. 
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Appendix C: Publications, Talks and Presentations based on the 

present PhD work. 

 “Conjugated Polymer Blend /Quantum Dot Nanoparticle Composites: Thin Film 

Morphology”, Michail Kalloudis, Marco Bigatti, Joachim Loos Paul Clegg and 

Vasileios Koutsos. In writing stage for publication for submission to the Journal 

of American Chemical Society (JACS) 

 “Thin Films of Poly(isoprene‑b‑ethylene Oxide) Diblock Copolymers on Mica: 

An Atomic Force Microscopy  tudy”, Michail Kalloudis, Emmanouil Glynos, 

Stergios Pispas, John Walker and Vasileios Koutsos. Langmuir, 2013, 29, 2339-

2349. 

 “Amphiphilic Diblock Copolymer Nanostructures on Hydrophilic  urfaces 

 tudied by Atomic Force Microscopy”, Michail Kalloudis, invited talk in 

European Microscopy Congress (EMC), July 2010, London, UK 

 “Amphiphilic Diblock Copolymer Nanostructures on Mica  urfaces studied by 

Atomic Force Microscopy”, Michail Kalloudis, Emmanouil Glynos, Stergios 

Pispas, John Walker and Vasileios Koutsos. Poster presentation in the 6
th

 

International Conference on Nanosciences and Nanotechnologies, Thessaloniki, 

Greece (13-15 July 2009). 

 “ tudy of Phase  eparation in Ultrathin Films of F8BT TFB Conjugated Polymer 

Blends by Atomic Force Microscopy”, Michail Kalloudis, Paul Clegg and 
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Vasileios Koutsos. Poster presentation in Scanning Probe Microscopy Congress, 

Edinburgh, UK, (22-23 June 2011). 

 “ tudy of Phase  eparation in Ultrathin Films of Conjugated Polymer Blends by 

Atomic Force Microscopy”, Michail Kalloudis. Poster presentation in Bruker 

Scanning Probe Microscopy Conference and User Meeting, Manchester, UK, (22-

23 November 2011). 
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