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Abstract
Humans’ perceptual experience of color is very different from what one might expect,
given the light reaching the eye. Identical patterns of light are often perceived as differ-
ent colors, and different patterns of light are often perceived as the same color. Even
more strikingly, our perceptual experience is that hues are arranged circularly (with
red similar to violet), even though single-wavelength lights giving rise to perceptions
of red and violet are at opposite ends of the wavelength spectrum. The goal of this
thesis is to understand how perceptual color space arises in the brain, focusing on the
arrangement of hue. To do this, we use computational modeling to integrate findings
about light, physiology of the visual system, and color representation in the brain.

Recent experimental work shows that alongside spatially contiguous orientation pref-
erence maps, macaque primary visual cortex (V1) represents color in isolated patches,
and within those patches hue appears to be spatially organized according to percep-
tual color space. We construct a model of the early visual system that develops based
on natural input, and we demonstrate that several factors interact to prevent this first
model from developing a realistic representation of hue. We show these factors as in-
dependent dimensions and relate them to problems the brain must be overcoming in
building a representation of perceptual color space: physiological and environmental
variabilities to which the brain is relatively insensitive (surprisingly, given the impor-
tance of input in driving development). We subsequently show that a model with a
certain position on each dimension develops a hue representation matching the range
and spatial organization found in macaque V1—the first time a model has done so. We
also show that the realistic results are part of a spectrum of possible results, indicating
other organizations of color and orientation that could be found in animals, depend-
ing on physiological and environmental factors. Finally, by analyzing how the models
work, we hypothesize that well-accepted biological mechanisms such as adaptation,
typically omitted from models of both luminance and color processing, can allow the
models to overcome these variabilities, as the brain does.

These results help understand how V1 can develop a stable, consistent representation
of color despite variabilities in the underlying physiology and input statistics. This in
turn suggests how the brain can build useful, stable representations in general based on
visual experience, despite irrelevant variabilities in input and physiology. The resulting
models form a platform to investigate various adult color visual phenomena, as well as
to predict results of rearing experiments.
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Chapter 1

Introduction

1.1 Color vision

When we look at a rainbow, we see a spectrum of colors. The sun’s light has been
dispersed by water droplets, and the colors seen vary by wavelength. In a simpler
configuration, shining white light—i.e. light with a flat spectral power distribution—
into a prism results in a similar spectrum of colors (figure 1.1(a)). A number of features
of this simple and familiar spectrum are, however, puzzling:

• We perceive bands of color, with varying widths and varying brightnesses—but
none of these three phenomena matches the spectral distribution of solar power
(figure 1.1(c)).

• We can see that red and violet are at opposite ends of the spectrum, yet in a space
that describes human judgments of perceptual similarity between colors, red and
violet are adjacent (figure 1.1(b))

• Some colors do not appear in the spectrum at all. For example, colors between
red and violet (such as magenta) can only appear using a mixture of wavelengths,
yet these seem just as colorful and distinct as those experienced for monochro-
matic light.

These observations indicate that the colors we perceive (perceptual color space) and
the light reaching our eyes at any point (wavelength space) are not as clearly related as
we might imagine.

Beyond the spectrum of colors we see from the dispersion of white light, there are
many other phenomena that illustrate how the light entering our eyes at a particular

1
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(a) Sunlight dispersed by a prism
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Figure 1.1: Perception of color. Wavelength space is the spectral power
distribution of light coming to the eye. In (a), white light from the sun is dis-
persed according to wavelength by a prism. We perceive bands of color (of
varying widths and perceived brightnesses), and we judge long- and short-
wavelength light as being similar to each other, as shown by the joining of
red and blue in (b). (b) perceptual color space: hue arranged in a circle
so that similar hues are close together, with chroma shown radially. A third
dimension of color vision, lightness, is not shown. Approximately circular
spaces like this can be constructed from human judgments of similarities
of pairs of hues. (c) The blue line plots solar irradiance at the Earth’s sur-
face, showing power is reasonably constant over much of the visible range
of wavelengths. The red line plots human relative sensitivity as a function
of wavelength, showing we are typically most sensitive to mid-spectrum light
(in daylight). A 550nm light typically appears yellow, and for a given physical
power will appear much brighter than e.g. 650nm (“red”) light. Note: colors
shown in (a) and (b) are only approximate. Solar irradiance and V(λ) data
from Wyszecki and Stiles (1982).
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location does not predict the color we perceive. For instance, lights of different spec-
tral power distributions viewed in isolation can give rise to the same perceived color
(metamerism; Brainard 2003), or increasing only the luminance of a stimulus can
change its perceived color (e.g. even a single wavelength of light appearing red can
instead appear yellow as luminance is increased—the Bezold-Brücke effect; Purdy,
1931).

The phenomena mentioned so far have been for relatively simple configurations of
light, unlike a typical natural scene, which contains surfaces as well as an illuminant.
When we consider natural scenes, a number of other interesting observations arise. For
example:

• Different spectral power distributions reaching the eye at a point can appear as
the same color, depending on surroundings. Figure 1.2 shows that we have a
degree of color constancy, here demonstrated by our ability to “discount the
illuminant”. This ability to separate the underlying reflectance of an object—
a fixed property of the object—from the illuminant is something we take for
granted, but is a key feature of color vision.

• On the other hand, a physically identical object presented in different contexts
can appear different colors, even if the light it reflects to our eyes is the same
in all cases (figures 1.3(a) and 1.3(b)). The context could be spatial—i.e. the
object’s color may appear to change because of surrounding colors—or the con-
text could be temporal—i.e. the object’s color may appear to change because of
colors previously viewed (figure 1.4).

Clearly, the color vision system is not attempting to reconstruct or distinguish spectral
power distributions from the light reaching the eye. So, what is its goal? We consider
this question in the next section.

1.2 Purpose of color vision

Under low-power light, a lump of coal appears black and a sheet of paper appears
white. Under high-power light, the coal still appears black, and the paper still appears
white. However, in the second situation the amount of light coming into the eye (the
radiance) from the coal is higher than the radiance from the paper in the first situation.
Our visual system is more concerned with how an object reflects light relative to other
objects than it is with radiance. Reflected light from an object, relative to its surround-
ings, gives information about the object itself, rather than about the illuminant. We are
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Figure 1.2: Chromatic adaptation: “discounting the illuminant”. The right-
hand flag appears reddish in both images, despite being entirely gray in the
left image (the circles beneath show the physical reality). This is simulating
our adaptation to the illuminant, and is an important feature of our vision,
helping to recognize objects despite changes in illuminant. Images reprinted
from Kitaoka (2012).

looking for things to eat, or things that will eat us; we need to be able to distinguish
objects regardless of viewing conditions. The example above is for lightness, but the
situation is similar for color. Whether an object is lit by midday sun or golden-hour
light before sunset, reflecting much more long-wavelength light to our eyes in the sec-
ond case, we still want to recognize the object (figure 1.5). Similarly, in a particular
scene, the light returned from one surface may vary greatly from one end to the other,
but the surface will usually still appear as one color, helping us to recognize the surface.

In addition to irrelevant external variety, our visual system must also deal with irrele-
vant internal variety. For instance, our eye’s color equipment varies across the retina
(chapter 2), but we need to recognize objects as the same wherever they occur in our
field of view. And, as we age, our lens becomes increasingly yellow, but again we need
stable identification of objects over time, rather than to continually perceive that our
lens is changing.

We have seen how perceptual color space—with its separation of color into dimensions
including chroma and circular hue—differs from wavelength space. We have also seen
that color vision involves comparisons across space and time to help recognize the
underlying properties of objects, giving us a degree of “color constancy”. These are
two key features of color vision, and there has been much research into both, but we
still do not understand clearly how either occurs. This thesis aims to contribute towards
understanding the first aspect: how does the transformation from wavelength space to
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(a) All six eyes are physically identical (gray), but the eyes on the left
appear colored due to the surrounding hues.

(b) The same four components (“green”, “red”, “yellow”, and “blue”)
are used in all three images. On the right, green and red squares are
shown in isolation; these squares are physically the same in the mid-
dle image but are surrounded by blue and yellow, and appear to have
changed color. On the left, the smallest squares are still the same four
colors, but are smaller, making the effect even stronger.

Figure 1.3: Spatial chromatic adaptation. (a) An example of chromatic
induction (simultaneous contrast): the perceived color is shifted away from
the inducer. Images reprinted from Kitaoka (2013). (b) Another example of
chromatic induction (assimilation): the perceived color is shifted towards the
inducer. The above phenomena demonstrate that color depends on more
than the physical stimulus at one location.

Figure 1.4: Temporal chromatic adaptation. Fixate on the left-hand cross for
30 seconds, then look at the right-hand cross; you will see colored circles
on backgrounds colored differently from the original image. The color we
perceive depends on more than the physical stimulus at the current time.
Images reprinted from Kitaoka (2008).
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Figure 1.5: Reflectance vs. radiance. Illumination from a source such as
the sun, after it has interacted with the Earth’s atmosphere and reaches the
surface, has a spectral power distribution (see figure 1.1(c)) that can vary
dramatically. We see an object when it reflects light to our eyes; the spectral
reflectance of an object is a property of the object itself, and describes the
relative fraction of light it reflects as a function of wavelength. However, the
spectral power distribution of light actually returned to our eyes (“scattered”
light in the illustration, a product of the illuminant and reflectance spectra)
varies greatly because of changes in the illuminant. Our visual system is
more concerned with information about objects than about illuminants: a
blue object is perceived in both these cases, despite the very different light
reaching the eyes. Adapted from Wandell (1995).

perceptual color space happen in the early visual system? Understanding perceptual
color space is an important step on the way to understanding color vision, and for
understanding how our perceptual experiences in general are constructed by our brain.

Before we proceed to the next section, a note to the reader: we will be covering several
different fields in the following chapters, so a glossary of terms is given in appendix B,
along with a list of acronyms in appendix A.

1.3 Explaining perceptual color space

In this thesis we will investigate how the transformation from wavelength space (WS)
to perceptual color space (PCS) could occur in the early visual system. We will argue
below that complete genetic specification of PCS seems unlikely, while at the same
time it is not obvious what physical characteristics of light reaching the eye would ex-
plain important features of PCS such as hue being circular (Lotto and Purves, 2002).
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Light Eye Brain Behavior

Recording

Figure 1.6: Learning about the representation of perceptual experience in
the brain. We can learn about the representation of color in the brain by
e.g. presenting stimuli, and then recording activity in neurons in the brain
(typically in laboratory animals, using various methods, such as with micro-
electrodes, or non-invasively with various imaging techniques). We can also
learn about the representation of color in the brain through behavioral out-
puts of humans (or other animals). For instance, we could test whether hu-
mans are able to distinguish various pairs of stimuli, such as two different
wavelengths of light, or two of the physically identical eyes in figure 1.3(a).

The transformation must happen in the brain, starting from light first reaching the pho-
toreceptors. What is the physical mechanism that could account for the transformation?
Furthermore, what factors combine to drive the development of such a mechanism?
That is, why should we have this particular mechanism, as opposed to other possible
color-processing machinery? This thesis aims to contribute towards answering these
questions. We begin by considering where in the brain PCS is represented, since this
will at least give us a bound on the mechanisms involved.

1.3.1 Where does perceptual color space arise?

By “where PCS is represented in the brain”, we mean a representation of color stimuli
that is organized in a way that reflects aspects of PCS. One of the main aims of neu-
roscience is to understand how neurons represent our perceptual experiences, and how
those perceptions give useful information about the world (e.g. Zaidi et al. 2013). As
illustrated in figure 1.6, we can do this by (a) asking humans to perform tasks, such
as testing if they perceive two colors to be different (i.e. learn about perception based
on behavior), and (b) recording patterns of brain activity in humans and animals when
they are observing particular stimuli.

Through techniques such as those mentioned above, combined with anatomical stud-
ies, we have an understanding of the primate early visual system. The basic pathway
of information flow from the eyes to visual cortex is shown in figure 1.7. We single
out visual cortex as a critical stage in the processing of visual input because it has been
found to represent features of the input in a particularly interesting way. We know, for
instance, that there are neurons tuned to various orientations, such that primary visual
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Figure 1.7: Early visual system. Light is transduced to neural signals by
photoreceptors at the back of the eye, on the retina. These signals then
travel through the brain, via the lateral geniculate nucleus of the thalamus, to
the visual cortex at the back and near the surface of the brain. The surface of
the visual cortex has a spatially organized representation of many features of
visual input (such as orientation and ocular dominance). There is evidence
that color is also spatially organized according to perceptual color. Image
reprinted from Strangor (2010).

cortex (V1) contains a spatially contiguous map for orientation preference, organized
retinotopically (Blasdel, 1992b; figure 1.8). A small area of map represents all orien-
tations possible at a given location on the retina, and orientation preference generally
varies smoothly. Additionally, the preferences are robust to various changes in the in-
put, such as changes in contrast (Sclar and Freeman, 1982). Coding for orientation
based on location in the map, i.e. a place code, is a reasonable assumption, because the
pattern of neural activity will give subsequent neural architecture a reliable indication
of the input orientation at each retinal location. While it is not the only coding possible,
this kind of coding is simple, and is assumed by a wide body of neuroscience (Arbib,
2002). There are co-located maps of various features, including ocular dominance,
motion direction, disparity, and spatial frequency, so it seems reasonable to look for a
similar map for color.

Identifying whether there is such an organization for color—and if so, where it is—has
been the subject of much research, but a definitive location has not yet been identified.
Many studies involve macaque monkey, because it has a trichromatic visual system
similar to our own, and shows similar performance on color vision tasks (chapter 2).
In the following chapter, we will break up the macaque early visual system into the
following key stages (illustrated in figure 1.9), and consider whether they show an
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Figure 1.8: Coding of orientation in visual cortex. Optical imaging of
macaque monkey V1 reveals neurons with preferences for edges of differ-
ent orientations. A monkey views a grating pattern, the orientation of which
is varied while the activities of neurons in visual cortex are recorded by an
optical camera. Each pixel is color-coded according to the orientation that
caused the strongest response at that location. The map is smoothed both
by the resolution of the camera, and in post-processing; an individual pixel
likely represents around 1000 neurons. Similar orientation preferences tend
to be nearby (the map is generally smooth), and many orientations are repre-
sented in a small area (giving good coverage). Orientation maps in macaque
V1 are well accepted, but an equivalent representation for color has been
more elusive. Scale bar: 1mm. Image reprinted from Swindale (2008); data
from Blasdel and Salama (1986).
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Figure 1.9: Color representation in the early visual system of primates. Sum-
mary of A: anatomy; B: physiology; C: perception. Light is absorbed by three
types of photoreceptor, randomly arranged on the retina, and with different
but broad and highly overlapping sensitivities. Individual cones cannot dis-
tinguish changes in wavelength from changes in physical intensity. Neurons
that project from the retina to the lateral geniculate nucleus appear to fall
into a few classes, and oppose the output of one cone type against another
(e.g. computing an L-M signal). While this allows detection of wavelength
changes, these cells do not appear to directly represent perceptual color
space. Recent exciting experimental work, however, indicates that there may
be spatial organization of cells in V1 according to PCS. Responses to color
stimuli are patchy, and within patches there appears to be an organization
according to hue. The following chapter will cover this material in more detail.
Adapted from Conway (2003).
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organization for PCS:

• Photoreceptors: Three classes of photoreceptor (L, M, and S cones) with dif-
ferent but broad and highly overlapping wavelength sensitivities, randomly ar-
ranged on the retina, present in highly variable ratios. The output of individual
cones cannot be used to distinguish wavelength from intensity, let alone predict
perceived color, and thus the cone activities have no obvious relationship to PCS.

• Retinal ganglion (and lateral geniculate) cells: The output from multiple cones
is compared in the cone-opponent retinal ganglion cells, allowing distinction
of wavelength from intensity. However, retinal ganglion cells typically cluster
around two axes defined by L vs. M and S vs. L+M cone opponency. These cone
opponencies describe only limited aspects of our PCS, and there is no evidence
for any spatial arrangement based on cells’ opponencies.

• V1: Along with the spatially contiguous orientation preference maps introduced
above, there appear to be patches of color-responsive cells. Within a color patch,
many perceptual hues appear to be represented, and the hues appear to be orga-
nized according to PCS.

While recent experiments in macaque indicate that V1 has some organization by PCS,
this has only recently been established, and there are still many aspects of this orga-
nization that need further testing. V1 is a relatively early and well understood visual
area, so results about hue organization in V1 are exciting because they may allow us to
link our currently abstract ideas of PCS with concrete and scientifically rigorous neural
anatomy and physiology.

1.3.2 How does perceptual color space arise?

In addition to the question of where PCS arises, we also do not know how the necessary
circuitry could arise. Complete genetic specification of PCS seems unlikely: we know
that both physiological and environmental variabilities are critical to the development
of color vision. For instance, in normal individuals, the region of V1 associated with
the foveola (a central region of the retina with no rod photoreceptors, only cones) does
not respond to dim light, but in individuals whose cones do not provide any signal, that
region of V1 does respond to rods (Baseler et al., 2002). This shows even fairly major
physical abnormalities can be adapted to during development. As for the importance
of visual input in shaping development, an example is that macaques reared under
abnormal color lighting make abnormal color similarity judgments vs. normally reared
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macaques (and humans), and completely lack color constancy (Sugita, 2004). Young
human infants are unable to perform laboratory tasks dependent on color vision, even
though their cones are fully developed (Hamer et al., 1982), suggesting an opportunity
for color vision to develop with visual input in humans too.

Intriguingly, however, the color vision system also seems relatively insensitive to both
physiological and environmental variability. The ratio and arrangement of the three
cone types and their effective sensitivities are variable between color-normal observers
(Hofer et al., 2005a; Stockman and Sharpe, 1999), but, despite this, different individ-
uals have broadly similar perceptual color spaces (Webster et al., 2000). Individuals
from environments with different color statistics have broadly similar color spaces as
well (Webster et al., 2002). Additionally, physiological responses can change over
an individual’s lifetime—the lens yellows with age, for instance, drastically reduc-
ing short-wavelength light reaching the retina—yet color perception remains largely
unchanged (chapter 2). This suggests that while the development of the color visual
system is driven by visual input, and can be affected by physiological variation, it also
adapts to many irrelevant variabilities in physiology and experience. In fact, we know
that even the adult color visual system is highly adaptable both to changes in phys-
iology (even incorporating completely new types of color receptor—Mancuso et al.,
2009) and to changes in environment (e.g. wearing red goggles for a week greatly
shifts color judgments, and leaves color judgments shifted afterward for a similarly
extended period until returning to normal; Neitz et al., 2002).

Since it seems that PCS has begun to appear by V1, we wish to know what transfor-
mations of visual input by or before V1 could account for PCS, how the necessary
wiring could develop based on input and known physiology, and how the system could
develop a reasonably stable PCS despite variabilities in physiology and input. Compu-
tational modeling of a working visual system can help integrate findings about natural
images, the physiology of the early visual system, and human behavior. Can we use
such modeling as a tool to show how the wiring necessary for PCS could arise through
development, while showing the observed relationship to the physiology and the envi-
ronment? To answer this, we will build a simple model incorporating known aspects
of visual system physiology, and using realistic natural input, to see if the model is
able to develop a realistic PCS. Since it is unclear where the necessary early visual
system structure comes from in animals, we can generate hypotheses from the model.
Along the way, we will see that understanding the neural representation of color is an
excellent model for understanding how the brain represents and processes information
in general because of the clear and qualitative differences between physical stimuli
(wavelengths) and their representation in PCS, as illustrated above. If we can find a
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specific location in the brain where the representation corresponds to the perceptual
experience, we can understand that circuitry as a model for other aspects of sensory
processing.

1.4 Goals of this thesis

The first goal of this thesis is to show that understanding the neural representation of
color is a useful model for understanding how the brain represents and processes in-
formation in general (goal 1). The second goal is to integrate findings about natural
images and the physiology of the early visual system, in the form of a simple compu-
tational model, to see whether such a model can develop a realistic perceptual color
space (goal 2). By analyzing the model, whether it successfully develops a realistic
perceptual color space or not, we should be able to generate hypotheses about where
the necessary early visual processing comes from in animals (goal 3). The final goal is
that the work done in this thesis should suggest future experimental work, and lead into
future modeling work, which together can be used to evaluate the hypotheses generated
(goal 4).

To achieve these goals, we demonstrate from existing work that in humans and macaque
a reliable perceptual color space arises from highly un-reliable underlying physiology,
and an environment that does not reflect perceptual color space (chapters 2 and 3).
In chapters 4 and 5, we identify five forms of environmental and physiological vari-
abilities not accounted for by current models, preventing the models from developing a
realistic representation of PCS, and we create a new model that does develop a realistic
representation of PCS. Below we outline our work in more detail, chapter by chapter.

1.5 Chapter summaries

• Chapter 2 outlines the background necessary for this thesis, and introduces im-
portant themes that our subsequent modeling work will tackle. We give an out-
line of color vision, examining the perceptual experience of color, input to the
color visual system, and the biological processes in between the two that perform
the transformation. We review how visual input and physiology have a critical
impact on the development of color vision, but at the same time we emphasize
large variabilities in both the physiology and environmental input that seem to
have a surprisingly small effect on the development of perceptual color space.
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In more detail, we review experimental results about orientation and color repre-
sentation in macaque V1, because this is the first area of the early visual system
in which there appears to be any organization according to PCS. Finally, we re-
view previous studies that have modeled the development of V1’s representation
of orientation and color. We show how these models have been successful in ex-
plaining some aspects of the data, but that importantly the models do not explain
key experimental findings about the spatial organization of hue in V1.

• The previous chapter showed that visual input is critical to the development of
color vision in animals. In chapter 3, we first review previous investigations
of the color statistics of natural scenes, in order to compare the distribution of
color percepts experienced with perceptual color space. We conclude that colors
in natural scenes appear to be highly unrepresentative of PCS. Since in sub-
sequent chapters we will be modeling the input-driven development of PCS in
V1, we need both to simulate the visual experience of an individual, and to un-
derstand the color statistics of this visual input. We take natural scenes to be
representative of visual experience, and analyze the color statistics of a number
of databases of calibrated color images of natural scenes. In agreement with pre-
vious analyses of natural scenes, we find that these databases contain a highly
non-uniform sampling of perceptual color space, with some colors being present
in large quantities, while others rarely or never occur. Experimental evidence
from animals is for a relatively perceptually uniform representation in V1 and
secondary visual cortex, so this raises an interesting problem for input-driven
developmental models. How can such a model learn a reasonably uniform per-
ceptual color space from such biased input?

• Having seen in previous chapters that it is not obvious how an organization of
color cells by perceptual space should arise (WS and PCS are quite different; vi-
sual experience is a highly non-uniform sampling of PCS; there is a large amount
of physiological variety), in chapter 4 we begin to model the development of the
early color visual system. We start from the modeling work reviewed in chap-
ter 2, first addressing a number of problems that prevent previous models from
developing orientation and color maps in a realistic fashion. The result is our
first model, which we call the naive model , and which—having improved the
previous most successful model—becomes the best available model of the de-
velopment of orientation and color selectivity in V1. However, we show that
while the model develops a realistic spatially contiguous orientation map and
forms color (CR) patches, as in macaque, the organization of hue representation
does not agree with data from macaque. Crucially, the naive model does not
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support coding of hue based on spatial location. We speculate that the model,
unlike the visual system, is not able to adapt to important variabilities in input
and physiology.

• The challenge in chapter 5 is to create a model like the naive model, but that
can replicate the experimental hue organization results. We do this by analyzing
the naive model to determine what prevents a realistic hue organization arising,
finding it is indeed sources of variability and bias that the naive model has no
mechanisms to overcome—unlike the actual visual system. We show by con-
structing a model without these variabilities and biases—the idealized model —
that it is possible for a computational model to develop a realistic organization
for orientation and color, including a realistic hue representation. In creating this
model, we demonstrate important problems that the brain appears to be over-
coming in constructing PCS, but that previous models are not, such as the input
being a highly non-uniform sampling of PCS, and variable ratios of cone pho-
toreceptor types. We speculate that well-accepted biological mechanisms such
as neural adaptation are what allows the brain to be surprisingly insensitive to
these problems. These mechanisms have typically been omitted from models,
but this chapter demonstrates that, at least for color, they are critical and cannot
be omitted.

• Chapter 6 discusses implications of the above findings, including suggesting new
experimental work, and proposing experiments to perform on the previous chap-
ter’s models, as well as the next steps for extending the modeling work.

• Chapter 7 summarizes the thesis, and evaluates its contribution.





Chapter 2

Background

2.1 Introduction

This chapter begins by giving an overview of the steps required for color vision to
happen, starting from light leaving a source, through measuring its representation in
the brain, and finally to behavioral measurements of human perceptual color space.
Along this pathway we identify key stages to describe in more detail in subsequent
sections:

• Our experience of color: describing color, and our perceptual color space.

• Input to the color vision system: wavelength space.

• The biology transforming wavelength space to perceptual color space: the early
visual system in between. These aspects are less well established than the two
above.

While reviewing the early visual system, we find that primary visual cortex (V1),
alongside its well-known role in orientation (OR) coding, appears to be the first area of
the brain representing color (CR) in a way related to perceptual color space (PCS). Fol-
lowing this, we focus in detail on experimental results about the representation of OR
and CR in macaque V1. Finally, we review existing models of OR and CR organization
in V1 to see how much of the organization of V1 has been explained computationally.

17
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2.1.1 Contributions of this chapter

• A review of the early visual system for color vision, emphasizing the develop-
ment of a stable PCS despite large underlying physiological and environmental
variabilities.

• Comparison of different experimental investigations of CR and OR representa-
tion at the V1 map level, demonstrating that results are broadly consistent in
showing CR cells organized into isolated patches within a spatially contiguous
map of OR (figure 2.20), and an organization of hue within CR patches that
follows PCS (figure 2.23).

• Review of previous computational models of OR and CR development in V1,
showing they can explain the organization of OR maps and CR patches, but
cannot account for data showing an organization for hue according to PCS.

2.2 Overview of color vision

Here we give an overview of the steps that take place to enable color vision, following
figure 2.1. The story is necessarily simplified; we focus on steps relating to the key
experimental and behavioral data that we will present later. We begin with a light
source, such as the sun. Light can take several different paths to the eye, but two
typical, simple paths occurring when we are outside in daylight are:

1. From the source, light is transmitted through air and then the eye’s media (in-
cluding cornea, lens, vitreous humor, aqueous humor, blood vessels, macular
filter, and even nerve cells) before reaching the light-sensing cells (photorecep-
tors).

2. Light, which has come from a source, is reflected by an object’s surface and is
then transmitted, as above, through air and the eye’s media before reaching the
photoreceptors.

We are ignoring many other interactions of light and matter, including interference (e.g.
brown-pigmented peacock feathers appearing blue or green), diffraction (e.g. the many
colors that can be seen in “the play of color” from opal), atmospheric scattering (e.g. a
midday blue sky vs. a “golden hour” red sky), dispersion (e.g. a rainbow), transmission
through solid objects (e.g. through leaves in a forest, or tinted glass), and more (see
Nassau 2003 for an overview).
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Figure 2.1: Color vision pathway. Cartoon overview of the steps described
in the text. Illumination from a source is reflected by an object, and the
scattered light is observed by an individual. The individual could be judg-
ing whether the object is the same color as one viewed just previously in a
2AFC test, for instance, allowing us to learn about perceptual color space.
Meanwhile, the process occurring in the early visual system is that light is ab-
sorbed with some probability by one of three cone types. The different cone
types, L, M, and S, have different but broad and highly overlapping spectral
sensitivities. The signals from the cones pass to the retinal ganglion cells,
which project (via the optic nerve) to the LGN. From there, the signal passes
to V1. Activity in the brain may be recorded with various techniques, some
invasive and others not. Here we show optical imaging of animal V1, which
is the method used to gather most of the results about OR and CR organiza-
tion that form the basis of this thesis. Note that the picture here is simplified
in many ways, including that spatial information is not shown (e.g. the scat-
tered light will vary dramatically by location except in deliberate laboratory
conditions). Adapted from Wandell (1995) and Miikkulainen et al. (2005).



20 Chapter 2. Background

For daylight color vision—photopic vision, the focus of this thesis—the photoreceptors
are the three classes of cone on human (or macaque) retina. The three cone types have
different but broad and highly overlapping spectral sensitivities. Once light has finally
reached photoreceptors, it may be absorbed by a photoreceptor, causing isomerization
of a photopigment and the start of a chain of processing. This chain of processing leads
out of the retina via the retinal ganglion cells, which project (via the optic nerve) to the
LGN, near the center of the brain. In the simple, feed-forward view of color process-
ing we discuss here, the LGN does not significantly change the color representation
from that of the retinal ganglion cells. The LGN then projects mainly to V1 (at the
back of the brain, on the cortical surface), a thin (2mm thick vs. >90000mm2 area),
folded, layered sheet of neurons and connections. Input arrives in layer 4 (L4), after
which, “output” to higher visual areas proceeds through higher layers (with lower layer
numbers), and “feedback” to lower visual areas proceeds through deeper layers.

As shown in figure 2.1, our pathway splits at V1: the imaging results we will study in
a later section view supragranular layers (L1–3), 0–400µm below the surface. After
V1, the visual pathway continues in the brain through more areas, and somewhere
our conscious perception of color arises—but this is not something we know how to
measure directly. However, we do have experiments that use behavioral outputs to
give information about our perception, e.g. 2AFC experiments judging whether or not
two colors are different, which can help to construct a perceptual color space through
measuring just-noticeable differences (jnds).

Having seen a simplified overview of our color vision pathway, we now describe in
more detail the end of the pathway most familiar to us: PCS. Afterward, we will go
on to describe the start (incoming light, wavelength space), before focusing on the less
well-established biological pathway in between (the early visual system).

2.3 Describing color

There are many ways to describe color. For instance, the color of a monochromatic
light against a black background can be described by its wavelength. However, in
the previous chapter we saw that not all our color sensations can be recreated with a
single wavelength. Additionally, even the color of a monochromatic light can depend
on luminance (Purdy, 1931), as well as on the observer’s state of adaptation (to be
discussed in section 2.4.3). The color of light could instead be described by the L, M,
and S cone excitations it causes—a receptor space (figure 2.2). However, we will see in
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Figure 2.2: Color spaces 1: cone excitations. Monochromatic light of variable
wavelength plotted as cone excitations, i.e. light described by the excitations
it causes in the three cone types. The shape traced out by such a light, the
“spectrum locus”, is determined by the overlapping cone spectral sensitivi-
ties (figure 2.1, and shown in more detail in a later section). For instance,
short-wavelength (e.g. 445nm) light strongly stimulates S cones, but has lit-
tle impact on L and M cones, while on the other hand, the M cone cannot be
stimulated in isolation. However, this representation has a number of short-
comings. How should we scale the axes? Some humans have far more L
than M cones, while for others it is the other way round. Also, as described
later in the text, the same stimulus can cause different LMS responses (de-
pending on context), and the same LMS excitations can appear different
colors. Note that a range of colors we perceive, the “extraspectral hues”,
cannot be stimulated by a single monochromatic light. Image reprinted from
MacEvoy (2009).
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Figure 2.3: Color spaces 2: cone opponency. The color space shown is DKL
(Derrington et al., 1984); note that the colors shown in this printed represen-
tation are only an approximate guide. Coordinates in this space represent
the responses of the three assumed retinal ganglion cell classes; the axes
are often referred to as the “cardinal axes”.

section 2.5.1.2 that different perceived colors can cause the same receptor excitations,
and, conversely, different receptor excitations can appear the same color, so responses
in such receptor spaces do not adequately describe our perception of color. A third
possibility for describing color is to use a cone-opponent space (figure 2.3), reflecting
the typically assumed cone opponency in the RGC and LGN (e.g. using L vs. M and S
vs. (L+M) axes, which will be described more fully in section 2.5.2). These two axes
capture only a limited aspect of our perceptual experience, though.

Before the cone spectral sensitivities were known, it was found that the perceived
color of any light viewed in isolation could be matched by a variable mixture of three
monochromatic, “primary” lights (i.e. with different, independent wavelengths; fig-
ure 2.4). The CIE 1931 XYZ color space (CIEXYZ) color space is based on results
of observers adjusting mixtures of three primaries until they match test stimuli. The
CIEXYZ color space thus allows us to tell whether two mixtures of light will look
the same (in the same viewing conditions), but does not tell us how they will actually
appear. Figure 2.5 shows the (x,y) diagram, which is constructed from CIEXYZ by
normalizing out luminance information.

All the color spaces described so far are important because they are in widespread use,
and are unavoidable in the color and physiological literature. However, we can find
a better description of our perceptual experience of color in spaces such as the Mun-
sell color system (technically a color order system), CIE 1976 L* a* b* color space
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Figure 2.4: Color spaces 3: CIE 1931 colorimetric system. Before the human
cone photoreceptor sensitivities could be measured, it was at least known
that there were three different receptor systems involved in human color per-
ception (trichromatic theory), and that the color of any particular light could
be matched for a color-normal human observer by mixing three indepen-
dent light sources in various proportions (a consequence of Grassmann’s
laws; Krantz, 1975). By independent, here we mean that no combination
of any two can match the third. Left-hand graph: indicates the amounts of
three particular monochromatic lights (“primaries”) that are required to match
the wavelength of a test light. Note that negative values of a particular pri-
mary indicate it must be added to the test light in order for the observer
to make a match, and is a consequence of the primaries not being able to
produce a saturated enough color. Based on the average of results from
a number of color-normal observers, the r̄(λ), ḡ(λ), and b̄(λ) functions al-
low the specification of color in terms of three numbers (tristimulus values),
for any incoming spectral power distribution P(λ) (e.g. the first value would
be R ∝

R
r̄(λ)P(λ)dλ). Any lights that produce the same tristimulus val-

ues will appear identical for an observer (under the same viewing/observer
adaptation conditions). Right-hand graph: the standard CIE color system is
not based on real primaries, but on imaginary primaries that would be able
to match all possible colors; i.e. primaries that are more saturated than it
is possible to create with monochromatic primaries (ultimately because, for
instance, it is not possible to stimulate M cones without stimulating L or S
cones). The standard x̄(λ), ȳ(λ), and z̄(λ) functions, a linear transform of
the r̄(λ), ḡ(λ), and b̄(λ) functions, therefore have no negative components.
The resulting XYZ tristimulus values are the current standard in color science
for communicating device-independent color information. Graphs reprinted
from Wyszecki and Stiles (1982). Note that a detailed re-derivation of the
XYZ system from the original RGB matching data is available in Fairman
et al. (1997).
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Figure 2.5: Color spaces 4: CIE 1931 (x,y) chromaticity diagram. The (x,y)
diagram is important and ubiquitous in color literature. Viewed in isolation,
the color of a monochromatic light, or mixtures of spatially homogeneous
monochromatic lights, can be specified by three tristimulus values (not the
L, M, S values; see figure 2.4), and normalizing away the luminance infor-
mation (X +Y + Z) allows two coordinates (x and y) to be used to specify
chromaticity. The diagram helps to show which mixtures will look the same,
although not how they will actually look (and hence the colors shown in the
diagram can be misleading and are there only as an introductory guide). As
examples of reading the diagram, various types of daylight are marked by the
black line. However, the (x,y) diagram is far from uniform; equal distances
in different parts of the diagram have very different perceptual differences
(compare the area appearing green to that appearing yellow). Further, for
specifying color appearance, the chromaticity coordinates are problematic
because the observer’s adaptation to the illuminant is not taken into account,
and hence the color percept from a chromaticity coordinate can vary. We will
avoid using chromaticity diagrams to describe color appearance, except to
discuss historical data presented on such diagrams. Image “Planckian Locus” by

PAR (via Wikimedia Commons) is in the public domain.
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(a) Munsell (b) CIELChab (c) HSV

Figure 2.6: Color spaces 5: perceptual. These spaces describe three
perceptual aspects of color: hue (red, yellow, green, etc.), colorful-
ness/chroma/saturation (not all the same quantity, but approximately how in-
tense/different from gray the color is), and brightness/lightness (again, these
are not all the same quantity, but approximately perceived total amount of
light). Hue is circular, in that if people judge how similar different mixtures of
monochromatic lights are to each other, the result will be a circle. Lightness
and chroma are not circular. As discussed in the text, perceptual color space
is in fact more complex than shown here; additional variables are required
to fully describe color. Also note that because of limitations of color printing
and display devices, the colors shown may not actually be perceptually uni-
form, and as in earlier figures are intended only as a guide. (a) Image “The

Munsell color system” by J. Rus (via Wikimedia Commons) is licensed under CC BY-SA 3.0.

(b) Reprinted from MacEvoy (2005). (c) Crop from image “Hsl-hsv models” by J. Rus (via

Wikimedia Commons) is licensed under CC BY-SA 3.0.

http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0
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(CIELAB) and CIE 1976 L* u* v* color space (CIELUV) (uniform color spaces), or
even HSV (from computer graphics), which all have the concepts of three separate
perceptual attributes of color: hue, colorfulness (or chroma), and lightness (or bright-
ness)—see figure 2.6. Some of these perceptual color spaces have been constructed to
be perceptually uniform; that is, equal distances in the color space should correspond
to equal perceptual differences. Such a space could possibly be built from human ex-
periments, e.g. using jnds (Takamura and Kobayashi, 2001) or judgments of similarity
(Shepard (1962), as cited in Brainard (2003)—but see Wuerger et al. (1995) for prob-
lems with the multidimensional scaling method employed). In practice, though, spaces
in use now are usually derived from previously defined spaces. For instance, CIELAB
(figure 2.6(b)) is a nonlinear distortion of an opponent space based on CIEXYZ, and
includes a simple model of adaptation to viewing conditions. The transformations were
developed so that color differences slightly larger than jnds would be the same in all
parts of the hue circle. This means e.g. a change in hue angle of e.g. 5◦ in the “red”
part of the hue circle ought to have the same perceptual impact as a 5◦ change in the
“green” part of the hue circle. Additionally, a change to one dimension (e.g. lightness)
should not affect other dimensions (e.g. hue). While in CIELAB these are certainly
closer to being true than in e.g. HSV, true uniformity was not completely achieved.
Large differences in color, for instance, are distorted (Fairchild, 2005). In fact, there
are several “uniform color spaces”, because no space so far has achieved these aims,
and it is clear that we do not yet fully understand the geometry of color space (Zaidi
et al., 2013).

Apart from not being truly uniform even in the restricted viewing situations to which
they are intended to apply, spaces such as CIELAB are too simple to be true color
appearance models. For example, CIELAB and similar spaces do not deal with re-
lated colors (figure 2.7), or with the effects on color of shape and size. Extensions of
CIELAB exist, such as sCIELAB (Zhang and Wandell, 1997), which includes spa-
tial filtering in LMS (i.e. considers a pixel surrounded by other pixels). There is
also CIECAM (Fairchild, 2005), which models color appearance to predict lightness,
brightness, chroma, hue, saturation, and colorfulness. However, in this thesis we will
go no further than using and modeling the representation of three-dimensional spaces
such as CIELAB and CIELUV, or their two-dimensional (hue-only) representations
without luminance (figure 2.8).

Even relatively simple perceptual color spaces like CIELAB cannot currently be linked
back in any obvious way to underlying physiology (whereas the earlier physiological
spaces cannot easily be related to color perception). This is one of the reasons for ex-
citement at apparently finding an organization according to perceptual hue in V1 (in-
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Figure 2.7: Related colors. To appear brown instead of orange (or vice
versa), a surface (or light) must be appropriately surrounded (either in space,
as shown, or in time). Both disks are physically the same, but one appears
orange and the other brown. There is no wavelength of light that is “brown” in
isolation, rather than “orange”. Image “Optical illusion” by JunCTionS (via Wikimedia

Commons) is in the public domain.

troduced in the previous chapter, and discussed further in a later section). Compared
to higher cortical areas, V1 is relatively easily accessible, and relatively well under-
stood (see e.g. Olshausen and Field, 2005, or Carandini et al., 2005). This gives the
possibility of linking our currently abstract ideas of PCS with concrete neural anatomy.

As first stated in chapter 1, one of the fundamental questions we aim to contribute to-
wards answering is how incoming light is transformed into a perceptual color space.
We have seen that PCS is quite different from wavelength space (WS), and that it is
not obvious how to transform between them, which is already an interesting question.
However, there is another puzzle relating to the development of PCS in the brain, also
introduced in chapter 1: PCS is broadly similar between individuals, despite early vi-
sual system physiology and visual experience varying between individuals. PCS is also
reasonably constant for one individual over time, despite physiology and visual expe-
riences that change over time. This constancy exists despite the fact that early visual
system physiology and visual experience both have a critical impact on the develop-
ment of PCS. In the following sections, we will review input to the visual system, and
the biology of the early visual system; throughout, we will report results that show the
impact of visual input and physiology on the development of color vision and PCS. In
some cases, the impact is large, while in others it is small—the mixture is surprising.

2.4 Input to color visual system

In our overview of the color vision pathway, we saw that incoming light is somehow
transformed to PCS in the brain, and in the previous section we looked at PCS in
more detail. In this section, we look at the input in more detail. The perceptible input
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Figure 2.8: Color spaces 5: uniform chromaticity diagram. Earlier, in 2.5, we
saw a two-dimensional constant-luminance slice through XYZ: the (x,y) dia-
gram. Some data in later chapters will be presented on a similar diagrams,
but based on improved (more perceptually uniform) color spaces (e.g. LAB
and LUV; figure 2.6). Shown here is the UCS diagram: luminance has been
normalized out from LUV, and a two-dimensional chromaticity diagram pro-
duced (like figure 2.5, but intended to be more percetually uniform). Note that
because of limitations of color printing and display devices, the colors shown
may not actually be perceptually uniform, and are again intended only as a
guide. Image “CIE 1976 UCS” by Adoniscik (via Wikimedia Commons) is in the public

domain.
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is a tiny fraction of a wide range of available electromagnetic radiation, specifically
that between about 400 and 700nm (the wavelength range to which the photoreceptors
are sensitive, after filtering by the eye’s media). At any point of the eye, a spectral
power distribution (SPD), varying over time, is arriving. This incoming signal, WS,
is quite different from our perception of color. For instance, a color-normal individual
viewing monochromatic lights in isolation would likely judge 400 and 700nm light to
be more similar to each other than either is to 550nm light. We listed a number of
other differences between WS and PCS in chapter 1. Despite this difference between
WS and PCS, later in this section we will argue that incoming light plays a key role in
the development of color vision. At the same time, however, the visual system seems
surprisingly unaffected by certain sources of variation in the incoming light. This
motivates a desire to understand the properties of the incoming light, characterized as
long-term statistics, in order to be able to model how PCS could arise in a model whose
development is driven by visual input.

To characterize the statistics of incoming light, there are a number of aspects we could
consider. For instance, what distribution of energies does light have relative to the LMS
cone sensitivities—are some cone types stimulated more, on average, than others?
What about the combined spatial and spectral information in the incoming signal—
how does the spectral content vary over space? Or, we can consider the colors we
perceive: do we experience some hue percepts more than others in natural scenes? To
understand the development of the color visual system, it is important to understand
various properties of the input. Additionally, to model this development, we will need
a concrete way to simulate the visual experience of an individual. Therefore, the next
chapter goes into detail on this topic, before we later go on to modeling in subsequent
chapters. Here, we return to the impact of visual input on the development of the color
visual system.

2.4.1 Environment can greatly affect development of color vision

Incoming light plays a crucial role in shaping the visual system. For instance, depri-
vation of input to one eye of a kitten during a critical period of development leads to
the kitten later being blind to input from that eye (Wiesel and Hubel, 1963). Another
example is that restricting the orientations experienced during a kitten’s development
strongly affects its ability to perceive other orientations after the restriction is removed
(Blakemore and Cooper, 1970). Similarly, deprivation of motion leads to no direc-
tion selectivity (Cynader and Chernenko, 1976; Li et al., 2006). In all these cases, the
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eye and LGN still appear normal—it appears to be the visual cortex that is affected.
Similarly, human visual development appears to be affected by visual input, too. For
instance, a human may develop a stereoanomaly or stereoblindness if during develop-
ment normal binocular vision is not possible (e.g. because of strabismus or amblyopia;
Fawcett et al., 2005). Note that while there may be “critical periods” during which
development is particularly sensitive, it appears that many aspects of vision can be
similarly affected in adults, although perhaps more slowly or to a lesser degree (to
be discussed in section 2.4.3). Additionally, many of the effects seen during “critical
periods” involve changing visual circuitry already established at birth, not necessarily
preventing its initial development (reviewed in Huberman et al., 2008).

Visual input has a major effect on the development of color vision too, although this has
been difficult to show (Brenner and Cornelissen, 2005; Wagner and Kröger, 2005), at
least partly because color vision has been less well understood (for instance, the differ-
ence between wavelength discrimination vs. color vision as discussed in the introduc-
tion). However, there are examples of key aspects of the physiology underlying color
vision being modified by visual experience. For instance, McCourt and Jacobs (1983)
showed that the wiring of squirrel retinal ganglion cells is modified postnatally, and
varies depending on rearing condition (red light, white light, or darkness). When blue
acara fish are reared with only short-wavelength light for input, their short-wavelength-
sensitive cone population decreases, and long- and medium-wavelength-sensitive cone
outer segments lengthen (Kröger et al., 1999; Wagner and Kröger, 2000). The re-
sponses of horizontal cells (which connect photoreceptors) also change (Kröger et al.,
2001). These changes were accompanied by behaviorally detectable changes in color
vision.

What about the effect of visual experience on the development of primate color vision?
Human infants over two months are able to perform a variety of laboratory tasks de-
pendent on wavelength discrimination, whereas infants under two months are not able
to perform these tasks, despite having functional photoreceptors (Hamer et al., 1982;
Teller, 1998). For instance, blind-to-the-stimulus observers can successfully identify
which half of a color screen seven-week-old infants are preferentially looking at in re-
sponse to a color test pattern presented randomly on either half of the screen (test and
background matched for each infant’s luminous efficiency by requiring success across
multiple radiances), but are unable to do so with three-week-old infants (Clavadetscher
et al., 1988). While such results suggest visual input has the opportunity to shape hu-
man PCS, stronger evidence of visual experience’s impact on the development of color
vision comes from animal experiments. For instance, it has been possible to show
that color vision development can be modified significantly by experience in macaque
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monkeys. Sugita (2004) raised macaque monkeys from one month until one year old
in a room with special lighting. For 12 hours a day, the room was illuminated with
monochromatic light whose wavelength changed once per minute, randomly switching
between one of 465, 517, 592, and 641nm. After one year, the monkeys were moved to
a room lit by daylight. These selectively reared macaques—alongside normally reared
macaques, and humans—were then tested on their ability to make brightness similar-
ity judgments, color similarity judgments, and their color constancy was evaluated.
Color similarity judgments for the normally reared macaques (and for the humans)
showed the typical result that colors were grouped into reddish, greenish, and blueish
categories (humans and normally reared monkeys rarely judged red, green, or blue to
be similar). The selectively reared macaques, however, made very different similarity
judgments, often judging red, green, and blue as similar. This suggests that the selec-
tively reared monkeys either did not develop the PCS that humans and normally reared
macaques appear to have, or such organization was overwritten by the rearing scheme.

Neither the selectively nor normally reared monkeys had trouble performing a bright-
ness similarity matching task on achromatic stimuli, but while the normally reared
monkeys could immediately transfer successfully to the same task on chromatic stim-
uli, the selectively reared monkeys required 30 days of intensive training (while living
under daylight) to perform at the same level.

Finally, the selectively reared monkeys had no color constancy. Both groups of mon-
keys (and human observers) could identify a red target rather than a yellow target
against a Mondrian background (multiple sizes and colors of rectangles) under a white
light, but when the light was changed such that the yellow target would appear red in
isolation under the light, the selectively reared monkeys could no longer identify the
red target (they selected the yellow target) while the normally reared monkeys (and
human observers) could. Even after nine months of training at this task, the selectively
reared monkeys did not improve.

2.4.2 Environment has a surprisingly small impact on development

of perceptual color space

Having seen that the development of the color visual system depends critically on
the environment, we now come to the surprising finding that variabilities and biases
in the environment paradoxically seem to have only a relatively small impact on the
development of PCS.
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Given the evidence outlined above that color vision is affected by visual experience,
one might expect that our perceptual color space would reflect our experience with col-
ored stimuli in the environment. However, in the next chapter, we will review previous
work indicating that natural scenes contain a very limited range of PCS, and repre-
sent a highly non-uniform sampling of PCS. We also analyze the distribution of colors
present in databases of calibrated color images of natural scenes, confirming this find-
ing. (When we talk about the colors of scenes, we mean the percepts generated in a
human in response to those scenes, using a model of adult color perception based on
calibrated image data.) Somehow, despite the large difference between PCS and visual
experience, and visual experience having a major impact on the development of color
vision, the brain still develops PCS.

Even more surprisingly given these variabilities, humans from different locations and
cultures seem to share a broadly similar perceptual color space (Berlin and Kay, 1969),
and the perceptual color spaces we described earlier work well practically. However,
the details of color space do appear to vary between individuals. A standard way in
which individual color space has been investigated is by testing “unique hues” for an
observer; that is, hues which appear “pure”. Thus, for example, “unique yellow” is
the hue which appears “neither reddish nor greenish” (Hurvich and Jameson, 1957).
This method has been supported more recently by non-verbal methods (Logvinenko,
2012), but the majority of data involves unique hues as defined above (and typically
with lights rather than surfaces). For some unique hues, the wavelengths chosen by
different observers are found to vary more than for others. For instance, unique yellow
can differ by 20nm while unique green by 80nm (Webster et al., 2002), although
the ranges found by different studies vary considerably (Kuehni, 2004, 2014). When
the unique hues of groups of individuals from different environments were tested, the
unique hues were found to differ significantly between groups, though the differences
between groups were smaller than the differences within one group (Webster et al.,
2002). However, it is not clear how the environmental statistics differed, or how much
cultural factors contributed.

Therefore, despite the environment having a large effect on the development of color
vision in some circumstances as we saw earlier, PCS does appear to develop reasonably
consistently, but with variability. We will see later when we review the biology of the
early visual system, that PCS additionally develops reasonably consistently despite
large physiological variabilities. Before that, in the next section, we will see that one
explanation for the relative consistency the visual system is able to achieve is likely to
be adaptation.
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2.4.3 Chromatic adaptation

Adaptation is an important feature of the early visual system, and of the brain in gen-
eral, in which sensitivity is adjusted to match the available output range (e.g. a limited
range of neural firing) to the input domain (Wark et al., 2007). As an example, the 104

difference in intensity levels between highlights and shadows that can occur in a visual
scene exceeds the range the neurons can signal by a factor of 102 (Dunn et al., 2007;
Rieke and Rudd, 2009). Multiple processes underlie this particular example of adapta-
tion, and in general, adaptation may involve changes within neurons themselves, or in
connections between them, or in the growth of new neural circuitry (Webster, 2011).
We will discuss the neural mechanisms potentially underlying chromatic adaptation in
later sections; here we will focus on briefly describing findings about chromatic adap-
tation phenomena relevant to the development of PCS. We will separate adaptation into
“short” (seconds, minutes, or hours) and “long” (hours, days, or weeks) timescales, al-
though it is not always clear what constitutes “long” and what “short”, and the actual
situation is likely to be more nuanced. Also, for now we will focus on adaptation to
incoming light, rather than on adaptation of one part of the early visual system to the
variable physiology of another (which we will cover later). And as earlier, we are
mainly interested in phenomena at daylight levels of vision.

In the previous chapter, figure 1.3 showed some examples of short-term chromatic
adaptation. The first example illustrated “discounting the illuminant”, i.e. some form
of adaptation to the average color in a scene. This is often explained by von Kries
normalization (Fairchild, 2005): independent multiplicative scaling in each of the three
cone classes based on the mean excitation of each type for a scene, or on the mean of
excitation of one type over a smaller area (Chichilnisky and Wandell, 1995; Shevell,
2003), or over recent visual history (Lee et al., 2012). This process of normalizing
allows a better representation of contrast, and is an example of defining a cone contrast
space. Similarly to how the visual system adapts to luminance contrast as well as to
mean luminance, the color visual system also adapts to chromatic contrast, but we will
not consider this further in this thesis.

Von Kries normalization is not able to account for all short-term chromatic adapta-
tion effects. Many models of short-term chromatic adaptation additionally include a
second stage of processing after von Kries normalization, based on adaptation at post-
receptoral, color-opponent processing stage (Jameson et al., 1979). Again, though, we
will not consider this further in this thesis because these models are difficult to relate
to underlying biology. However, it seems highly likely that adaptation at the RGC and
V1 levels is required in some form to account for many observed short-term chromatic
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adaptation phenomena (Belmore and Shevell, 2011). The cortex is indicated particu-
larly in chromatic adaptation phenomena involving more spatially complex patterns.

As well as adapting in the short term, the adult color visual system is also highly
adaptable to input over much longer periods. For instance, wearing red goggles for a
week leaves color judgments significantly shifted from their original location. These
shifts remain afterward for a similarly extended period, gradually returning to their
original location (Neitz et al., 2002; Belmore and Shevell, 2008; Eisner and Enoch,
1982). Neitz et al. (2002) included measurements indicating that cone sensitivities did
not change and hence were not the source of the effect. Additionally, adapting only
one eye resulted in the same effect in the other eye, but at a reduced magnitude. This
implies adaptation of cells receiving input from both eyes, implicating the cortex.

Finally, adaptation is not restricted to color in isolation of other features. For instance,
the McCollough effect (McCollough Howard and Webster, 2011) is an aftereffect that
combines orientation and color. This is interesting, because the first cells that show
orientation tuning in humans and macaques are in V1. Additionally, the McCollough
effect is far longer lasting for a given induction period than are purely color aftereffects
(e.g. a ten-minute induction can last for 24 hours).

We now return to our color vision pathway. We started with our perceptual experience
of color (PCS) and then skipped backwards to discuss light coming into the eye (WS).
We saw that WS is not like PCS; the transformation must occur somewhere in the
brain, and in fact possibly early on in the visual system given results from V1, as we
will see in the next section.

2.5 Early visual system

In this section, we will introduce the early visual system, focusing on what is known
about how it could contribute to the development of PCS. Hence, while color vision is
not the only purpose of the mechanisms we will be looking at, we will approach our
review from the point of view of color vision.

A goal of this thesis is to understand how the wiring necessary for color vision can
develop; to do that, we need to know where PCS is first represented in the brain. By
“where is PCS first represented in the brain?” we mean, where is color represented in
a way that could be used directly by subsequent neural architecture to identify color?
We are looking in particular for some kind of reliable spatial/place coding of color.
Place or identity codes are not the only coding option, but they are the assumption of a



2.5. Early visual system 35

large body of neuroscience (e.g. see Arbib 2002), and therefore what we will focus on
here and in our subsequent modeling work.

In this overview of the necessary background biology, we are focusing on the human
and macaque early visual systems, which are generally similar (Preuss, 2004), and
specifically similar for color vision (Jacobs, 2008). Much of our current understanding
of vision comes from macaque studies. As Dacey (2000) reviews, macaques and hu-
mans have the same photoreceptor classes, with the same basic spectral sensitivities,
and—so far—indistinguishable cell types and circuitry at least as far as V1. Macaques
and humans also have similar visual abilities—behavior on color tasks is similar (e.g.
De Valois et al., 1974; Stoughton et al., 2012). Here, we are discussing only day-
light (photopic) color vision at light levels where color vision operates normally (i.e.,
we ignore photoreceptor bleaching, and the input of rods or other non-light-sensitive
cells).

Very many experimental studies have investigated the representation of color in the
early visual system, using a variety of techniques, from physiology through to psy-
chophysics. Existing recent reviews include Solomon and Lennie (2007), Gegenfurt-
ner and Kiper (2003), Conway (2009), and Shapley and Hawken (2011). Hence, we
will not give comprehensive detail, but we will describe the three key stages of the
early visual system from the point of view of the development of PCS.

In overview, color vision begins with light being absorbed by photoreceptors of the
retina. The signals from these cones are then combined in a number of post-receptoral
channels (RGC and LGN), allowing wavelength discrimination for the first time (a
cone cannot distinguish radiance and wavelength). There does not appear to be any
organization by color at the RGC or LGN stages. Following that, we have V1, where—
unlike earlier stages—large-scale in vivo imaging is possible due to its location on the
surface of the brain, and we start to see an organization by PCS. Figure 2.9 gives an
overview of the structures involved, containing detail for each of the three stages that
we will go on to describe in the following sections.

Before proceeding, it is important to note that the color vision pathway surely does not
end at V1, nor is it likely to involve only a feed-forward pathway or a representation
only in one particular location. In particular, V2 and V4 are typically implicated in
color vision (see e.g. Conway, 2009 or any of the other reviews mentioned above).
However, we choose to focus on the pathway up to and including V1 because V1 ap-
pears to be the earliest area of the brain in which any form of perceptually relevant
organization for color appears, and we would like to determine (through modeling, in
subsequent chapters) the minimum mechanism required to achieve such an organiza-
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tion. We will return to this issue briefly in section 6.4.9.

2.5.1 Photoreceptors

As described earlier, human and macaque retina normally contains photoreceptors sen-
sitive to three different bands of wavelength, termed the long (L), medium (M), and
short (S) cones. Each receptor type is excited by a wide range of wavelengths, and the
excitation also depends on radiance, as shown in figure 2.10. The cone sensitivities
overlap; in particular, the L and M cones are highly correlated. In fact, L and M cones
are morphologically similar, and their photopigments are genetically very similar, sug-
gesting relatively recent evolutionary divergence (e.g. see review in Neitz and Neitz,
2011, or Jacobs, 2012). S cones are more distinct, physically and genetically.

Despite the typical picture of cone sensitivities (figure 2.10), it is important to note
that different “color-normal” individuals have varied spectral sensitivities because of
varying photopigments, varying density of photopigment in the cones, and differing
pre-receptoral filtering e.g. from pigment in the lens and media of the eye (Stockman
and Sharpe, 1999), such as the macular pigment. Macular pigment density also varies
with eccentricity, and therefore the sensitivities for one individual vary with eccen-
tricity. Macular pigment density can also vary between the two eyes. Additionally,
sensitivity can change over time for one individual. For instance, the lens yellows with
age, reducing short-wavelength sensitivity.

In both macaque and human, L and M cones appear to be arranged randomly or semi-
randomly on the retina (Roorda and Williams, 1999; Roorda et al., 2001; Hofer et al.,
2005a), and the ratio of L:M cones varies across the retina; M cones may even be absent
after 8◦ (Kuchenbecker et al., 2008). The ratio of L:M cones also varies greatly be-
tween individuals (Roorda and Williams, 1999; Hofer et al., 2005a). S cones, however,
are arranged more regularly, and comprise only 5–6 % of cones at 1◦ of eccentricity—
the peak of their density, either side of which S cone density declines. S cones are
nearly absent in the fovea, and are entirely absent in the foveola (leading to small-field
tritanopia; Williams et al., 1981). Unlike for L and M cones, the distribution of S cone
density is relatively consistent between individuals (Curcio et al., 1991; Hofer et al.,
2005a). Figure 2.11 shows the layout of photoreceptors from several humans.

As mentioned in section 2.4.2, PCS is relatively constant between individuals, and for
one individual across the visual field and over time. At this point—even only a short
distance into the visual pathway—having reviewed several sources of physiological
variety between individuals and within one individual, we should pause to review that



2.5. Early visual system 37

Light

Light

Figure 2.9: Structures in the early visual system from the point of view of
color vision. Left (approximately a horizontal plane through the brain): the
retina is located at the back of eye, the LGN is located near the middle of
the brain, and V1 is at the back, on the surface. The retina is a multi-layered
sheet about 250µm thick. Light may be absorbed by one of three types of
cone photoreceptor; ganglion cells ultimately compare the output of different
cone types against each another, and the signal leaves the retina via the
optic nerve. Different classes of ganglion cell project to different layers in
the LGN. For color vision, we focus on P cells, which project to parvocellular
LGN. Parvocellular LGN projects to V1 layer 4. Image reprinted with minor
modification from Solomon and Lennie (2007).
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Figure 2.10: LMS cone fundamentals. These Smith-Pokorny (Smith and
Pokorny, 1975; Pokorny and Smith, 2013) LMS fundamentals show relative
sensitivity at the cornea for human LMS cones (with each curve normalized
to have peak 1.0). The functions are derived from human color-matching
experiments; they are a linear transform of the CIEXYZ cmf. Measured sen-
sitivities of the cone photopigments match these curves, when corrected for
pre-receptor filtering (e.g. from the eye’s media). Note that the cones may
also loosely be referred to as “red”, “green”, and “blue”, but this does not im-
ply that e.g. “red” (L) cones are responsible for our perception of red. These
spectra have provoked many questions. For instance, why the large over-
laps (perhaps for spatial acuity; Lewis and Zhaoping, 2006)? Why have
three types of cone, rather than more, or fewer (perhaps for finding fruit;
Regan et al., 2001)? However, our focus is on ways in which this classic
picture of cone sensitivities is potentially misleading. First, how should the
curves be scaled? There are many more L and M cones than S cones. Fur-
thermore, the cone responses adapt over both short and long timescales
(see text): the cone responses are not given by static functions of the input.
Also, the sensitivity curves vary between color-normal individuals because
there are multiple variants (and densities) of each photopigment type (par-
ticularly L and M), and because pre-receptoral filtering varies (particularly at
shorter wavelengths). Additionally, pre-receptoral filtering (and hence sen-
sitivity) varies over time for an individual (e.g. an older lens may absorb far
more short-wavelength light than a younger lens). Despite all this variabil-
ity, we have a perceptual color space that is reasonably consistent between
individuals, and for one individual over time.
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Figure 2.11: Layout of cones. False color images (all to the same scale) of
human L (“red”), M (“green”), and S (“blue”) cones at 1◦ eccentricity. The
ratio of L:M cones varies from 0.37:1 (HS) to 16.5:1 (BS), yet all subjects
had normal color vision. L and M cones appear to be arranged somewhat
randomly, while S cones are more regularly arranged. Data from macaque
has shown similar properties (Roorda et al., 2001). It is still currently un-
clear whether there is a general bias towards humans having more L than
M cones, with the ratio being more equal in macaque. It is also not clear if
the arrangement of L and M cones is truly random in both species. Images
reprinted from Hofer et al. (2005a).
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claim. First, for different individuals:

• Different individuals have a wide variety of spectral sensitivities (for several rea-
sons, described earlier), but differences between their sensitivities do not predict
what stimuli observers call white or a particular hue (Webster et al., 2000; Neitz
et al., 2002).

• Different individuals have highly variable ratios of L and M cones, apparently
randomly (or semi-randomly) arranged on the retina. Despite this, observers
agree on the wavelength of “unique yellow” (appearing neither reddish nor green-
ish) to within a few nanometers (Brainard et al., 2000; Neitz et al., 2002; Miya-
hara et al., 1998).

• Diabetics with low S-cone sensitivity make judgments of unique hues within the
normal ranges (Schefrin et al., 1991).

• There are examples of individuals with quite abnormal physiology, yet who are
able to make reasonably normal color judgments. For instance, an individual
with little cone function, abnormal macular pigment, and no L cone pigment
was able to make unique blue and green hue settings within the range of color-
normal observers, and unique yellow and red only slightly outside the normal
range (Crognale et al., 2001).

Second, for an individual:

• Spectral sensitivity varies across the center of gaze (primarily because of vari-
ations in macular pigment density), but the color appearance of large uniform
fields remains constant (O’Neil and Webster, 2014), and colors (including white)
shown at various eccentricities are judged to be far more similar than the dif-
ferent sensitivities would predict (Webster et al., 2010; Beer et al., 2005). This
compensation is not perfect, however, and may vary between hues (see e.g. Parry
et al. 2006; Bompas et al. 2013; O’Neil and Webster 2014).

• As stated above, the appearance of color remains constant across a wide range of
visual field, despite changes in effective cone sensitivity. Similarly, the arrange-
ment and ratio of cones varies across the visual field, yet this also does not seem
to have much effect. For instance, the center of the fovea (the foveola) contains
only L and M cones (i.e. no S cones), and it is possible to demonstrate inability
to detect short-wavelength light over this region (Williams et al., 1981)—yet we
do not perceive this except under specific, unusual, situations (Magnussen et al.,
2001).
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• After cataract surgery, suddenly far more short-wavelength light reaches the
retina than over many preceding years, and color judgments are strongly changed.
For instance, the stimulus judged as achromatic after cataract removal is shifted
towards yellow relative to its location before surgery. However, over a period
of months, the point shifts back towards its original location (Delahunt et al.,
2004).

• Aging causes large changes in sensitivity (e.g. an increasingly yellow lens), but
this has a lower than predicted impact on color vision (Werner et al., 2004). The
stimulus judged as achromatic does not significantly differ between individuals
of a wide range of ages (Werner and Schefrin, 1993). Additionally, there is
also no significant difference in some unique hues, although as with change in
sensitivities with eccentricity, this may vary by hue (Schefrin and Werner, 1990;
Wuerger, 2013).

How can a relatively stable and consistent PCS be built on such unstable/inconsistent
equipment? Alongside the important signal (about objects in the world), each level
of the visual system also encounters irrelevant variabilities (ones not important to sur-
vival) from the stage before, starting with relatively unimportant variabilities in the
incoming light—as discussed in section 2.4.3. Chromatic adaptation must therefore be
dealing with physiological variability to a large degree, too. The actual mechanisms
and locations underlying chromatic adaptation are not certain, but it seems clear that
some adaptation takes place at each of the three key stages of our early visual system
pathway, starting with the photoreceptors.

2.5.1.1 Gain control and adaptation

Earlier we described the sensitivities of the cone classes. Cone excitation is linear; that
is, if radiance is doubled, the (incoming) excitation of a cone is also doubled. However,
an important property of the cones is that their (outgoing) responses (activities) are
non-linear. While the exact mechanism is not yet clear, photoreceptor response rates
do appear to adapt on short timescales to accommodate the incoming range; that is, the
output of a cone depends on its gain as well as its spectral sensitivity (see figure 2.12).
Furthermore, the effective output from the cones may be modified by horizontal cell
connections, allowing a further spatial element to the normalization of photoreceptor
responses. In any case, short-term gain changes could provide the mechanism for a
von Kries-like chromatic adaptation.

Secondly, cones adapt over longer timescales. Again, there is no clear mechanism, but
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(a)

(b)

Figure 2.12: Cone photoreceptor response. (a)As shown earlier in fig-
ure 2.10, the wavelength of incident light affects a cone’s response (here
photocurrent of a macaque cone is being measured). However, (b) shows
that short-term adaptation also has a significant effect on cone responses
(here from rhesus monkey). The nonlinear cone response can be modeled
by an equation of the form V

Vm
= In

In+σn (Naka and Rushton, 1966), where σ

describes the adaptation, including the cone’s dark adapted state, its level
of “neural adaptation” (mechanism unclear), and its level of photopigment
bleaching. Image in (a) reprinted from Baylor et al. (1987); image in (b)
reprinted from Valeton and van Norren (1983).
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possibilities include changes in outer segment length (found in fish) and horizontal cell
connectivity changes, effectively modifying the output of cones (Wagner and Kröger,
2005). It is also not clear what the long-term adaptation state of cones would be, but
one suggestion is that cones are adapted to long-term “white”, i.e. meaning all cones
would respond equally to the average daylight spectrum (Walraven and Werner, 1991).

Note that the short- and long- term adaptation of the cones means the diagram of cone
sensitivities in figure 2.10 is misleading, because it presents a static picture at one state
of adaptation, when the reality is highly dynamic.

2.5.1.2 Color representation

Finally, we consider color representation in the photoreceptors. The first thing to note
here is that the output of a single photoreceptor cannot be used to distinguish wave-
length from intensity. That is, any given response level for a photoreceptor could
represent a certain intensity and monochromatic wavelength, or e.g. a less effective
wavelength at a higher intensity (figure 2.10). Only by comparing photoreceptors of
different types can color vision begin. Other evidence against photoreceptors provid-
ing an obvious representation of perceived color includes that changing photoreceptor
absorption ratios does not necessarily change perceived hue: broadening the spectrum
of light that is already giving a certain hue percept does not change the percept (Mi-
zokami et al., 2006). Additionally, making it clear that a particular cone type is not
responsible for a particular hue percept, Hofer et al. (2005b) demonstrated that stimu-
lation of one cone class can elicit multiple different hue percepts, including that seeing
“blue” colors does not require S cones.

In this section about the photoreceptors, we have emphasized variabilities in physi-
ology, adaptation of responses, and PCS not being represented. As noted above, the
isolated signal from a single cone cannot even be used to distinguish between wave-
length and intensity. However, a comparison of the signals from different cone classes
at nearby locations on the retina—cone opponency—does allow such a distinction.
Such a comparison is performed at the next stage of our pathway, the RGC.

2.5.2 RGC and LGN

Figure 2.9 shows that after the photoreceptors, there are three more classes of cell
(horizontal, bipolar, amacrine) before the ganglion cells, which project via the optic
nerve to the LGN (near the center of the brain). We will not explicitly describe the
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Figure 2.13: Spatial and cone opponency in the RGC and LGN . Top left: By
comparing the output of an L photoreceptor (“L center”) with that of M pho-
toreceptors (“M surround”), wavelength and intensity changes at that location
can be distinguished. This cell is excited by “long-wavelength” (L) light in the
center, and inhibited by “medium-wavelength” (M) light in the surround, so it
is referred to as L+/M- (“L ON center, M OFF surround”). Seven other gen-
erally acknowledged chromatic ganglion cell classes are additionally shown.
The S/LM pathway may have a different spatial structure, perhaps being co-
extensive rather than having a center/surround arrangement, but recent stud-
ies have found evidence of both (Field et al., 2007; Crook et al., 2009). In fact,
despite the classical picture, exactly what classes of retinal ganglion cell exist
(cone-opponent and otherwise) is still unclear (Neitz and Neitz, 2008), and it
seems possible there is a wider variety than the classes shown above. Such
variety may result from “random wiring” of a random cone mosaic (Lennie
et al., 1991). For the parafoveal pathway (on which subsequently reviewed
modeling focuses), ganglion cells generally have a center comprising one
cone, but a surround comprising approximately 5 cones.
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horizontal, bipolar, and amacrine cells, instead assuming their combined effects are
summed up in the behavior of the ganglion cells (since only the ganglion cells project
to the brain). There are two major classes of ganglion cell that project to the LGN,
the P cells and the M cells. We will provide more detail in a subsequent section, but
the P cells are of most interest for color vision (e.g. Lee et al. 1990), and are the most
numerous ganglion cell type. They project to parvocellular cells in the LGN, which
have similar properties.

The P ganglion cells represent the next stage in the creation of color by the brain:
they compare signals from different cone classes at nearby locations on the retina.
Macaque RGC seems to contain three main classes of cone-opponent P ganglion cells,
generally spatially and/or cone opponent: luminance (i.e. L+M), L vs. M, and S vs.
(L+M) (Dacey, 2000; figure 2.13). However, the number of classes, and exactly what
each class is, is not clear (Neitz and Neitz, 2008). It seems likely that the cone con-
nections, particularly to L and M cones forming the surrounds, are not as specific as in
the textbook presentation (see e.g. Field et al. 2010), and therefore perhaps there are
varying degrees of cone opponency. We will revisit this possible “random wiring” in
chapter 6, but for now we focus on the classic picture shown in figure 2.13.

There are various possible explanations for why we have cone opponency. Cone-
opponent cells directly give information about spectral content, unlike the cones (e.g.
increased L cone response could merely be from an increase in irradiance, whereas
increased L-M response must be from an increase in L cone wavelengths vs. M cone
wavelengths). Also, L and M retinal ganglion cells may be spectrally sharpened vs.
cone responses (Foster, 2010), an important component of color constancy (Finlayson
et al., 1994; Vazquez-Corral and Bertalmı́o, 2014). Cone opponency also reduces in-
formation redundancy (Buchsbaum and Gottschalk, 1983; Atick et al., 1992; Dan et al.,
1996): L and M cone responses are highly correlated, whereas L-M and M-L responses
are less so (Zaidi, 1997), and at least some of the reduction comes from opponent pro-
cessing (Pitkow and Meister, 2012). There are various reasons this could be important,
including the limited capacity of the optic nerve and limited dynamic range of spiking
neurons. Some studies have found that in natural scenes, chromatic information varies
independently along these two cone-opponent axes (e.g. Ruderman et al. 1998) for cer-
tain types of scene (e.g. foliage-dominated scenes). Opponent processing in general is
reviewed in Westheimer (2007).
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2.5.2.1 Gain control and adaptation

As with the photoreceptors, determining the extent of gain control and adaptation in
retinal ganglion P (midget) cells has proven difficult. Additionally, since retinal gan-
glion cells inherit the properties of photoreceptor responses, it can be difficult to deter-
mine whether observed behavior originates at the photoreceptor or ganglion cell level.
And again, as for the photoreceptors, ganglion cell responses may adapt because of
intrinsic changes to the cells themselves, and/or because of the effects of connections
(e.g. involving amacrine and horizontal cells). While adaptation in P cells appears to
be less than in M cells, P cells do show short-term adaptation (Kaplan and Benardete,
2001; Lee et al., 2008; Dunn et al., 2007; Yeh et al., 1996), and if photoreceptors com-
pute contrast, then adaptation in the ganglion cells can give contrast adaptation (since
they receive input from the photoreceptors). However, it is not at all clear whether
this might translate into any form of chromatic contrast gain control. It is also un-
clear whether P ganglion cells adapt over long timescales, but they do at least inherit
the adaptation of the photoreceptors, and have been shown to adapt over timescales of
10–100s (McLelland et al., 2009).

2.5.2.2 Color representation

Although the retinal ganglion cells and LGN contain a number of cone-opponent chan-
nels, the reported receptive fields do not correspond to the large number of the hues
we experience (Neitz and Neitz, 2008). As reviewed above, RGC and LGN responses
are generally considered to fall into just the categories L vs. M and S vs. (L+M) (as
well as a luminance response, L+M), so shown in figure 2.14. Ganglion cells there-
fore perform wavelength discrimination, but it is not clear that they provide coding of
perceptual color. There is also no evidence of spatial organization for color; neither
retinal ganglion cells nor LGN cells appear to be organized by perceptual color.

While not yet certain, recent work (to be described in the following sections) indicates
that V1 is the earliest area of the brain from which signals can be detected corre-
sponding to perceptual hues, and hence it is the focus of this thesis. Unlike the retinal
ganglion cells and LGN, V1 is accessible to large-scale imaging in living animals,
and results from imaging studies indicate that V1 shows some organization of color
responses by PCS, as will be described in the next section.
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Figure 2.14: Optimal colors for driving LGN neurons. Most LGN cells, like
retinal ganglion cells, cluster into a few categories. Note: these colors are
defined on physiological (DKL) axes. Image reprinted from Gegenfurtner
(2003); data from Derrington et al. (1984).

2.5.3 Primary visual cortex

Input from parvocellular LGN arrives in layers 4Cβ and 4A of macaque V1. V1 is well
known to have interesting spatial organizations of various features that would support
their coding. For instance, neurons in cat V1 were discovered to have tuning for OR
(Hubel and Wiesel, 1959), and subsequently with optical imaging (OI) and related
techniques it has been possible to see that there is a retinotopic organization into a
spatially contiguous map of OR preference. Such a map has been found in macaque
V1 (Blasdel, 1992b), along with maps of other features such as ocular dominance
(Blasdel, 1992a). These maps are just two ways of analyzing the same sheet of neurons,
and many such maps allow the whole range of multiple features to be represented
together. Typically, the maps appear to be optimized for coverage (Swindale et al.,
2000; Swindale, 2004), and are typically also continuous (Blasdel, 1992b; Yu et al.,
2005).

However, equivalent results for CR have been more controversial. The earliest stud-
ies using electrophysiology found OR and CR were largely segregated in V1: CR
responses appeared to be confined to small, spatially isolated regions—in particular,
corresponding to the mitochondria-rich cytochrome oxidase (CO) blobs (Hubel and
Wiesel, 1968; Livingstone and Hubel, 1984)—leading to the view that OR and CR are
processed separately in V1 (Livingstone and Hubel, 1988; Gegenfurtner, 2001). More
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recent electrophysiological studies have continued to find such separation (e.g. Con-
way and Livingstone, 2006), but at the same time other electrophysiological studies
have found OR and CR preferences in macaque V1 to be overlapping, with a large
number of cell types with varying achromatic and/or chromatic tunings (Lennie et al.,
1990; Johnson et al., 2001; Friedman et al., 2003; Johnson et al., 2008; Wachtler et al.,
2003). While electrophysiology can determine the properties of single cells (and in-
deed gave the first indication that neurons are preferentially sensitive to a small set
of features, and that preferences varied across space), it is difficult to sample a large
enough number of cells and to reconstruct their positions accurately across a large
enough area of the cortex (Olshausen and Field, 2005). On the other hand, larger-scale
techniques such as functional magnetic resonance imaging (fMRI) suffer from the op-
posite problem: the resolution is too coarse, and this could be a problem for hue in
particular because of the apparently smaller scale of hue organization in macaque V1
(with perhaps the most important processing being confined to patches, as we will see).

Following on from electrophysiological studies, imaging studies using color and lumi-
nance stimuli in V1 have been able to determine the responses of a large enough popu-
lation of cells to allow conclusions to be drawn about map-level responses, while also
having a high enough resolution (which, for in vivo two-photon calcium microscopy
(2P), is at the level of single cells). Imaging studies so far have shown that while
orientation-selective cells form contiguous maps in V1, CR cells appear to cluster into
patches. Furthermore, the organization of cells within patches appears to be related to
perceptual color. As was introduced in figure 1.9 in the previous chapter, an optical
imaging study in macaque (Xiao et al., 2007) shows the peak responses to different
hues progressing following the same pattern in V1 as in perceptual color space. Sub-
sequent preliminary 2P studies support this finding. We will review this work in detail
in the following sections.

2.6 Representation of CR and OR in V1

Having introduced V1 as an important target for understanding the coding of OR and
CR, and the debate surrounding the extent of CR/OR separation and the representation
of PCS, in this section we will review results from experimental studies about the
representation of OR and CR in macaque V1 in more detail.

We are focusing on experimental results about joint OR and CR organization, and on
the organization of hue, in macaque V1. Therefore, here we do not cover results from
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Chatterjee
(2010)

Lu and Roe
(2008)

Xiao et al.
(2007)

Landisman
and Ts’o
(2002)

Blasdel
(1992b)

Species (macaque) Macaca
fascicularis

Macaca
fascicularis

Macaca
fascicularis
& mulatta

Macaca
nemestrina

Eccentricity parafoveal parafoveal
(1.5◦−5◦)

parafoveal
(2◦−4◦)

foveal,
perifoveal,
& 5◦−10◦

?

Imaging 2P iOI iOI iOI iOI
Features
imaged

OR, CR OR, CR CR OR, CR,
OD

OR

Table 2.1: Key features of macaque V1 OR/CR studies. We are considering
only macaque studies, although the precise species varies between studies.
Studies also do not image exactly the same region of V1, and they do not all
present the same stimuli or image the same features. Other undocumented
but potentially important factors may differ, too. For instance, what was the
rearing environment of the animals used in each study? Were all the animals
checked for normal luminance and color vision? Are the results an unbiased
survey, or are only specifically selected results presented (potentially reduc-
ing the variety of results from each study)?

other other species, other areas of the macaque visual system, or studies that do not
investigate OR or CR representation. Also, we focus on imaging studies because, as
mentioned earlier, they are large enough scale to be behaviorally relevant while also
having enough resolution. The studies we will be using to build a picture of V1 OR
and CR organization are summarized in table 2.1. All investigate macaque V1, but they
differ on the exact species, V1 imaging location, stimuli used, and other attributes. We
will discuss similarities and differences as we go along.

2.6.1 Spatial organization of OR: OR maps

In macaque V1, as with other species such as cat and ferret, it is widely accepted that
there are spatially contiguous maps of OR preference. Figure 2.15 shows a typical OR
preference map, indicating many of the features usually found (such as iso-orientation
zones and pinwheels). These maps have a ring-shaped Fourier transform indicating
the frequency with which orientations repeat (on average, in all directions). The fine
structure of OR maps is supported by 2P results e.g. in cat, showing the detailed cell-
level makeup of the map (Ohki et al., 2006).

Given the prevalence of OR maps (and indeed other topographical maps) in mammals,



50 Chapter 2. Background

we might ask what (if anything) maps are useful for in general (Horton and Adams,
2005). For instance, perhaps maps minimize wiring length by allowing connected neu-
rons to be as close together as possible (Chklovskii and Koulakov, 2004)? However,
the present review, and our modeling work in later chapters, does not require the pat-
terns to serve any functional purpose: we are asking what organization is found (if
any), and how such organization might arise. We can see that OR maps measured in
macaque have certain features (e.g. their spatial organization, smoothness, and so on),
and a model of macaque V1 therefore ought to match these—but it is the reliable as-
sociation between location in the map and OR that is key. This type of coding—place
or identity coding—is not the only coding option, but it is an assumption of a large
body of neuroscience (Arbib, 2002). Indeed, some mammals do not have OR maps
with the same kind of spatial organization as in macaque, but the reliable association
between cortical position and orientation tuning is still important. Mice, for instance,
have an OR representation that does not appear to be spatially organized, but cells are
still reliably tuned to particular orientations (Ohki and Reid, 2007). For a review of the
purpose of topological maps, arguing that we cannot conclude the spatial patterns have
a computational role vs. being an epiphenomenon of cortical evolution, see Wilson and
Bednar (2015).

2.6.2 Spatial organization of CR 1: CR patches

In macaque monkey, several OI studies indicate that color-selective cells in V1 occur
in isolated patches, rather than forming a spatially contiguous map as is the case for
orientation-selective cells. In an iOI study of macaque parafoveal V1, Landisman and
Ts’o (2002) subtracted the responses to high-contrast luminance (black/white; BW)
gratings from the responses to red/green (RG) isoluminant gratings (all stimuli equi-
luminant on average), finding a patchy distribution of CR cells and a contiguous OR
map (figure 2.16). The OR map agrees with previous studies of OR representation in
V1 (e.g. Blasdel 1992b).

Again using iOI of macaque V1, Lu and Roe (2008) found patchy responses to color
stimuli (and a contiguous OR map), in agreement with Landisman and Ts’o (2002).
Again, the response to BW gratings was subtracted from the response to isoluminant
RG gratings, and the resulting differential images show patches where the response to
RG gratings is higher than to BW gratings (figure 2.17A). In addition to showing the
organization of CR cells into patches, Lu and Roe (2008) also show that the OR selec-
tivity of the CR patches is lower than that of randomly chosen locations (figure 2.17D).
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Figure 2.15: Macaque orientation preference map (Blasdel, 1992b). By
presenting drifting gratings of multiple orientations, neurons’ preferred ori-
entation can be measured using OI. Each pixel in the map is colored ac-
cording to orientation preference, and represents the average of about
1000 neurons. Nearby neurons generally have similar preferences, result-
ing in iso-orientation zones. Other features typically found are pinwheels
(points around which all orientations are represented continuously; circles),
fractures (sudden changes in preference; square), linear zones (smoothly
changing preferences; rectangle), and saddle points (partial bisection of one
iso-orientation zone with another). 7.5mm×5.5mm region of parafoveal V1.
Image reprinted from Blasdel (1992b).
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Figure 2.16: CR patches and OR maps (Landisman and Ts’o, 2002). While
OR appears to be represented in spatially contiguous preference maps, CR
appears to be represented in patches. 5.3mm×2.3mm region of macaque
parafoveal V1 from iOI. Images reprinted from Landisman and Ts’o (2002).
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Figure 2.17: CR patches and OR maps (Lu and Roe, 2008). Color responses
occur in patches, and those CR patches occur in regions of low OR selec-
tivity. A: Response to LUM (achromatic) gratings subtracted from response
to red/green isoluminant gratings, showing responses that are higher to CR
than to LUM occurring in patches. Red circles are drawn at a threshold of
the most active 10% of pixels. B: Orientation preference map with CR circles
from A overlaid in black. C: Orientation selectivity map, again with CR circles
overlaid. D: Orientation selectivity in different regions, indicating that color
patches have lower selectivity than other areas (*). Scale bar for A–C 1mm.
Images reprinted from Lu and Roe (2008).
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Figure 2.18: CR patches (Xiao et al., 2007). V1 responses to uniform stim-
uli of different colors (A–D: red, yellow, green, blue). Patches correspond
to those identified by RG-BW gratings (not shown). Scale bar 500µm. Re-
gions in white rectangles will be expanded in the following section. Images
reprinted from Xiao et al. (2007).

Xiao et al. (2007) identified CR patches in the same way as earlier studies: for 0
and 90◦ degree orientations, responses to achromatic (BW) gratings were subtracted
from responses to chromatic gratings (isoluminant RG gratings). However, this study
differs from the previous two by (a) not also measuring an OR preference map and (b)
additionally presenting spatially uniform, photometrically isoluminant color stimuli.
The responses to both RG-BW gratings and spatially uniform stimuli were patchy, and
although there is no detailed analysis, the patches from both methods appear to align.
For each single hue presented, significantly activated regions (vs. gray) were identified.
The patchy responses to each hue combined to give patches approximately 200µm at
half height, typically separated by more than 400µm (figure 2.18).

Preliminary results from in vivo 2P of macaque parafoveal V1—described in Chatter-
jee et al. (2008), Ohki et al. (2008), Chatterjee (2010), and Conway et al. (2010)—are
consistent with the results from optical imaging. Spatially uniform color flashes cause
patchy responses, whereas responses to colored gratings (e.g. red/gray—not isolumi-
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nant) do not cluster in patches (figure 2.19). The spatial scale of patches matches the
OI results. Additionally, the neurons in CR patches are less selective for orientation
than neurons outside the patches, and neurons in CR patches were rarely achromatic.
However, none of the 2P findings have been published fully yet.

In summary, then, experimental data is broadly consistent and shows CR organized
into patches alongside a spatially contiguous OR preference map. There are differ-
ences in CR patch sizes and spacing, but the studies have some methodological dif-
ferences which could account for this (table 2.1). The results are scaled together and
summarized in figure 2.20.
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(a)

(b)

Figure 2.19: CR patches (Chatterjee, 2010). Preliminary 2P study. (a) Posi-
tions of cells. (b) Combined responses to spatially uniform isoluminant color
flashes of various L, M, and S cone contrasts (preceded and followed by
gray), showing color responses in patches. Regions between the patches,
which here do not respond to spatially uniform color flashes, did respond to
colored gratings (e.g. red/gray). The organization of color responses into
patches is consistent with earlier results from iOI. Scale bars are 100µm.
Figures from Chatterjee (2010); (b) converted to grayscale.



2.6. Representation of CR and OR in V1 57

Figure 2.20 (following page): Comparison of experimental data: CR patches in OR maps. The first
three columns are studies specifically investigating the representation of CR, while the final column
shows a typical OR map. Each 1.5-inch square is 3mm×3mm of macaque V1. NA indicates no data
available from that study for a particular condition. First row: differential image produced by subtracting
response to black/white (BW) gratings from response to red/green (RG) isoluminant gratings. Scale is
white (lowest response to CR) to black (highest response to CR). Red outlines are drawn at a threshold
(we drew outlines on Xiao et al., 2007 and Landisman and Ts’o, 2002) and are used in subsequent
rows to denote the CR patches. Second row: OR selectivity map. Note that OR selectivity is not
patchy, and that CR regions tend to occur in areas of low OR selectivity. Third row: OR preference
map. Fourth row: combined OR preference and selectivity map. Results are generally consistent: CR
is organized into patches, although details are not consistent (e.g. different inter–CR-blob spacings
relative to the OR map, different CR patch shapes).
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2.6.3 Spatial organization of CR 2: Hue maps

We have seen that in contrast to OR, CR appears to be represented primarily in spatially
isolated patches. These patches tend to occur in regions of low OR selectivity. While
the experimental studies broadly agree about joint OR and CR organization, the orga-
nization of perceptual attributes of CR such as hue and saturation is less clear. Here we
focus on the organization of hue. The number of studies addressing the organization
of hue in V1 by OI or 2P techniques is small. However, we believe it is worth focusing
on these techniques because the results from techniques such as single-cell electro-
physiology can be very confusing (it is difficult to sample enough cells and reliably
reconstruct their positions), while the results from fMRI are at too low a resolution.

As for OR, we are looking for a representation of hue that allows coding by position.
For instance, a place code for hue—as we will see suggested by Xiao et al. (2007)
below—would allow neurons above V1 to reliably distinguish hue as represented in
V1. Such a place code is not the only coding option, and indeed the spatial organization
is not critical for coding, but if we find that cells are organized in this particular way in
macaque V1, this is relevant for modeling. We will see below that experimental data
tentatively indicates that each CR patch responds to a wide range of (or all) hues, and
within a patch there is spatial organization according to perceptual hue.

The first indication that an organization for hue is present in CR patches comes from
Xiao et al. (2007). We introduced this study in the previous section, mentioning that
in addition to imaging CR patches with RG-BW gratings, spatially uniform stimuli of
different hues were also used. Presenting spatially uniform stimuli of different hues in
conjunction with imaging the patches at higher resolution would allow a type of “hue
map” to be measured; that is, within the patches, the peak response to each hue varies
in spatial position, and additionally, distances between peaks correspond to distances
between hues in perceptual space. Since we are particularly interested in the spatial
organization of hue, we will describe the method used in more detail.

Each color stimulus was presented after gray, and hues were selected from CIELUV
so that hue differences would be perceptually uniform. As described in the previous
section, for each single hue presented, significantly activated regions vs. gray were
identified, giving patches approximately 200µm at half height, typically separated by
more than 400µm (figure 2.21), and corresponding to the patches identified previously
using RG-BW gratings. Within each region, the peak response to each hue was noted,
along with a contour at 75 % of the peak. Responses to different hues overlap, but the
peaks are spatially separated, and the distances between peaks correlate with distances
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in PCS (figure 2.21(b)).

The analysis is only of the peak responses (and response contours) to different hues;
there is no actual preference map like those shown for OR. Still, the correlation of the
spatial arrangement of peak responses and perceptual color differences is exciting. The
authors do note that responses to “end-spectral hues” (red and blue) were stronger than
those to mid-spectral ones (green and yellow), so e.g. the spatial location with the peak
response to yellow actually responded more strongly to red than to yellow. We can
therefore speculate that a preference map constructed from this data might look end-
spectral colored only. However, while the stimuli were photometrically isoluminant,
they were not necessarily all identical in every way except for hue (e.g. the saturation
of stimuli may have varied), which could obscure an actual organization by hue pref-
erence. The “color properties” of the stimuli to use for map measurement is a difficult
question (for instance, Landisman and Ts’o 2002 were unable to obtain differential
OI responses at all to their BY-BW gratings), and we will return to it in subsequent
chapters.

The preliminary results from in vivo 2P of macaque parafoveal V1 introduced in the
previous section are consistent with the results from optical imaging. The spatially
uniform color flashes that highlighted color patches also showed responses whose po-
sitions depended on color (figure 2.22). This is important, because a criticism of OI is
that its resolution may not be high enough compared to electrophysiology, and there-
fore results about hue responses within CR patches may not be trustworthy. The pre-
liminary 2P studies have used stimuli with varied L/M/S cone contrasts, rather than
stimuli defined by perceptual hue, so the CR patches were found to be organized ac-
cording to L/M/S contrast. While not the same as being organized by perceptual hue,
this is not inconsistent with being organized by perceptual hue.

In summary, Xiao et al. (2007) report that each patch responds to a range of hues,
and the responses within a patch are organized by perceptual hue. This is backed up
by preliminary 2P results; the two are comparable in spatial scale and color organiza-
tion (figure 2.23). However, we should bear in mind that these results are not certain.
For instance, earlier we saw results about the patchy organization of CR from Landis-
man and Ts’o (2002). While the OI in that study did not reveal whether individual
patches had preferences for single hues or multiple hues, corresponding electrophys-
iology guided by locations of CR patches from OI indicated that red/green opponent
responses occurred in different patches from blue/yellow opponent responses (Landis-
man and Ts’o, 2002), which differs from the conclusions of the Xiao et al. (2007) and
Chatterjee (2010); Chatterjee et al. (2008) studies. This discrepancy has not yet been
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(a)

(b)

Figure 2.21: Organization of hues within CR patches (Xiao et al., 2007).
Within color-selective regions, peak responses to different hues are spatially
separated, and are arranged according to perceptual hue space (i.e. percep-
tually similar colors are closer together than perceptually dissimilar colors).
(a) Left: Magnified view of top-right white rectangle from 2.18 i.e. one patch,
showing V1 responses to uniform stimuli of different colors (A–D: red, yellow,
green, blue). Peak is marked with a white square. Scale bar 100µm. Right:
summary of peak response regions (contours at 75% of peak response for
each color) for this patch. (b) Distance between peaks on the cortex corre-
lates with distance between the hues in PCS. Measured across all patches,
the correlation between hue angle and cortical distance between peaks in-
dicates that the result illustrated in (a) holds across patches. Images from
Xiao et al. (2007).
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(a)

(b)

Figure 2.22: Organization within CR patches (Chatterjee, 2010). Preliminary
2P imaging study. (a) Combined responses to spatially uniform isoluminant
color flashes of various L, M, and S cone contrasts (preceded and followed
by gray), showing color responses in patches. (b) Responses to individual
stimuli making up the combined response shown in white rectangle of (a).
While the patterns were defined by L, M, and S contrasts rather than by
perceptual color, the results are still consistent with patches being organized
by perceptual hue. The organization of color responses into patches is also
consistent with earlier results from intrinsic optical imaging. Scale bars are
100µm. Figures reproduced from Chatterjee (2010).
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adequately explained, and could represent either genuine differences between animals,
sampling issues, or other differences in the methods.

2.6.4 Summary

We can summarize the key experimental results about macaque parafoveal V1 with the
following four findings:

ER1-ORmap Spatially contiguous OR preference maps with reasonably uniform se-
lectivity. Widely accepted.

ER2-patches Spatially isolated patches of CR cells (revealing their higher response
to chromatic gratings than to achromatic gratings). Reasonably well accepted (a
more moderate form of earlier claims that CR and OR are separate in V1).

ER3-range Each CR patch responds to all, or at least a wide range of, perceptual
hues. This is a less certain result, derived only from the most recent OI and 2P
studies.

ER4-PCS Within CR patches, an organization according to perceptual hue: distance
between the peak response to each hue is correlated with perceptual distance.
This means that the peak responses to red and violet are closer to each other
than either is to green, i.e. implies joining up of opposite ends of wavelength
spectrum. Again, as above, this is a less certain result, with support from only a
single lab at present.

Having reviewed experimental data relating to the organization of OR and CR in
macaque V1, we will now go on to review previous modeling to try to understand this
organization. We will be comparing modeling results to these experimental findings.

2.7 Models of CR and OR in V1

In the previous section we saw how OR and CR are represented in adult macaque V1.
However, a number of reasons motivate us to consider theoretical approaches to un-
derstanding this. Firstly, the existing experimental studies do not address how wiring
for this organization of OR and CR could develop—we see only the adult state. We
saw earlier that the wiring for color vision develops based on visual experience (sec-
tion 2.4), so this is an important question. There are experimental results showing the
progression of development of orientation, motion direction, and ocular dominance
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(a)

(b)

Figure 2.23: Comparison of experimental data: CR patch size, spacing, and
hue organization. A range of hues is represented in each color patch, and
hues are organized according to a perceptual color space. Each 2.5-inch
outer square is 3mm×3mm of macaque V1. (a) iOI responses to spatially
uniform hues (contours drawn at 75% of peak), from Xiao et al. (2007). The
two gray regions correspond to the small rectangles from figure 2.18. (b) 2P
responses to stimuli of varying LMS cone contrasts, from Chatterjee (2010).
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maps over time, before and after eye opening in some cases (Huberman et al., 2008),
but the processes underlying such development are only starting to be uncovered. Sec-
ondly, we saw that results relating to the organization of CR and OR are uncertain
(particularly the representation of hue). Given these, theoretical approaches can be
useful to provide insight and potentially guide experimental investigations. Our aim is
to use computational modeling to generate hypotheses about how color vision devel-
ops.

Previous theoretical approaches to investigating aspects of color vision have included:

• Abstract models based on information processing of physical data (e.g. natural
spectra) or simulated cone responses, using techniques such as PCA and ICA
(e.g. Buchsbaum and Gottschalk, 1983; Doi et al., 2003; Wachtler et al., 2001).

• Models of adult color processing (e.g. De Valois and De Valois, 1993; Mancuso
et al., 2010).

• Models of single neurons or small networks of neurons, often to investigate spe-
cific phenomena such as aspects of color constancy (e.g. Courtney et al., 1995;
Stanikunas et al., 2004).

• Large-scale neural network models (discussed in detail below).

For our purposes, we dismiss the more abstract models (e.g. independent components
analysis (ICA) studies) because while they provide insight into the purpose of V1’s
processing, they do not provide a mechanism showing what neurons might actually be
doing. Single-neuron or small-network models cannot model the kind of measurable,
large-scale features such as maps that we are interested in, so we dismiss these for our
purposes too. Models of adult color processing cannot explain how the circuitry nec-
essary for color vision actually arises, and furthermore, such models with fixed wiring
rule out a large number of visual phenomena that require adaptation, such as color af-
tereffects. The last category, large-scale neural network models, includes models that
have focused on trying to understand how organization for color might arise in the vi-
sual cortex based on constraints from physiology and incoming data. We will focus on
this category of model.

As we review previous work in this area, the question we will keep in mind is, if we use
a biologically plausible, mechanistic model, can we model the emergence of the V1
organization for CR and OR described earlier? Adequately constraining such a model
in the absence of, for example, total knowledge of the connectivity, or a complete
picture of the developmental processes, poses a challenge. Adding adult behavioral
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constraints, in addition to those coming from anatomy and physiology, is therefore
desirable. To support this, the model must be able to process realistic input (i.e. natural
images)—meaning that it must be able to process features of images other than color
alone. Therefore, we restrict our review of previous models to those from this category
that work with realistic input, can process OR as well as CR, have a mechanism which
could plausibly be implemented in V1, and are of a large enough scale for feature
maps. We will now review several such models, with the aim of determining how
much they currently explain, and what is the state of the art. Table 2.2 summarizes
these models.

2.7.1 CR modeling background

Saarinen and Kohonen (1985) provided the earliest self-organizing model of color,
and so was the first step on the path that the models below subsequently followed.
Inputs were random artificially generated wavelength spectra (unimodal, bimodal, and
polymodal). Three cone types were used, with approximate but not real human cone
sensitivities. The model also had RGC, luminance, and chromatic opponent pathways.
The model of cortex was small, 15×15 units, and the SOM neighborhood covered the
whole cortex. Additionally, there was only input pixel to the cortex, hence it was not
retinotopically organized, and there was no possibility of investigating OR. However,
this model is interesting because it did show some ordering by dominant wavelength
(and also purity) in a self-organized model of cortex for the first time.

Barrow et al. (1996) modeled the development of OR and CR cells in a self-organizing
model of V1. Patches of uncalibrated RGB images were presented to a model of the
early visual system consisting of red and green photoreceptors (from RGB images—
not LMS), center-surround red/green cone opponent and LUM RGC processing, and
a model of V1 with adaptable afferent connections, plus fixed, isotropic long-range
inhibitory and short-range excitatory lateral connections. The model developed units
with OR-selective receptive fields (RFs) that vary smoothly across the cortex, along
with patches of unoriented color RFs (each patch containing either red or green RFs).

The Barrow et al. (1996) model successfully showed how the statistics of natural im-
ages could affect the RFs for CR and OR. Hebbian learning of afferent connections
gives weight patterns related to the principal components of the images: oriented OR
RFs and unoriented CR RFs. Lateral excitatory connections cause smooth variation in
the RFs, while inhibitory lateral connections prevent all weights from representing the
dominant input component. However, the model used RGB input images rather than
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Feature S85 B96 B05 R05 DP07 R12 E14
1 Image input 7 X X 7 X X X
2 Natural scenes 7 X ? 7 X X 7

3 Num. images - 2 ? - 21 ? 112
4 Retinotopic 7 X X X X X X
5 Orientation 7 X X 7 X X 7

6 Num. cone types 3 2 2 3 3 3 3
7 LMS cones 7 7 7 7 X 7 7

8 Spatial opp. RGC 7 X X X X 7 7

9 Long-range lat. conns. 7 X X 7 X 7 X
10 Adaptable lat. conns. 7 7 X 7 X 7 7

Table 2.2: Large-scale models of the development of CR in visual cortex.
A number of features are relevant for modeling CR and OR development
in macaque V1. (1) If the input contains spatial as well as color (spectral)
information (i.e., is in the form of images), then OR as well as CR can be
modeled. (2) We consider natural scenes to be realistic input; this is dis-
cussed further chapter 3, along with (3) how the number of images affects
whether the sample is representative of reality. (4) Retinotopic models have
some mapping of spatial location on the photoreceptor array to the cortex,
as is found in animals. (5) Some models consider only the development of a
representation of color, and not of orientation. (6) All models include at least
two cone types, but (7) most do not use realistic LMS cone sensitivities. All
the models include some form of cone opponency, but (8) some do not in-
clude spatial opponency, a key feature of the RGC for at least luminance
processing. (9) Finally, many color (and other visual) phenomena are not
restricted to the “classical” receptive field of cortical neurons, and therefore
whether the cortical model includes long-range lateral connections (which
form the bulk of input to cortical neurons in actual cortex Gilbert et al., 2009),
and (10) whether or not those connections can learn, is potentially impor-
tant. Key: S85 Saarinen and Kohonen (1985); B96 Barrow et al. (1996);
B05 Bednar et al. (2005); R05 Rao et al. (2005); D07 De Paula (2007); R12
Rao and Xiao (2012); E14 Eguchi et al. (2014).
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realistic LMS cone responses. Additionally, the model had only two channels (red
and green). CR patches in the model preferred either red or green input (and the bal-
ance depended on the images chosen for input), whereas CR patches in macaque V1
respond to many hues. Furthermore, the model’s lateral connections were fixed, and
hence could not reflect correlations in the input images. Whether e.g. similar colors are
preferentially connected during development, or whether there are adaptable patterns
in the connection between OR- and CR-selective cells may be important for a number
of visual phenomena (e.g. the McCollough Effect; chapter 6).

Bednar et al. (2005) modeled the development of OR and CR maps in the Laterally
Interconnected Synergetically Self-Organizing Map model (LISSOM; Miikkulainen
et al., 2005). Like the Barrow et al. (1996) model, the Bednar et al. (2005) model
was trained using natural images, had two input channels (R and G of RGB), and had
cone- and spatial- opponent processing in the RGC. Again, similar to the Barrow et al.
(1996) model, this model developed red and green CR patches of unoriented cells
in a generally OR-selective, spatially contiguous map. Additionally, unlike the Bar-
row et al. (1996) model, the Bednar et al. (2005) model showed how the development
of lateral connections could lead to preferential lateral connections between neurons
of similar CR preference as well as similar OR preference. Understanding such lat-
eral connections is likely to be important for understanding V1 (Olshausen and Field,
2005), and many color phenomena depend on context, suggesting the “extra-classical”
receptive field is important. However, as with the Barrow et al. (1996) model, having
only two input channels that did not match human/macaque cone sensitivities limited
the model’s ability to explain results from macaque V1.

Rao et al. (2005) modeled how CR preference (but not OR preference) could develop
in a self-organizing model of visual cortex. This model did not use natural input—
spatially uniform patterns of random input activation were used. As with the previous
two models, the Rao et al. (2005) model model had spatial- and color-opponent RGC
channels (a luminance channel, and red/green and blue/red+green channels). After
training, an RGB preference map (i.e. not using realistic LMS receptor sensitivities)
showed preferences to six discrete RGB values, with similar colors near to each other.
However, unlike the Barrow et al. (1996) and Bednar et al. (2005) models, the Rao
et al. (2005) model did not develop an OR map, which makes it difficult to compare
the spatial organization results to those from macaque. The Rao et al. (2005) model
also did not simulate realistic lateral connections, nor did it use a plausible incremental
mechanism for learning.

De Paula (2007) extended the Bednar et al. (2005) model to include a trichromatic path-
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way with realistic LMS photoreceptors and corresponding RGC pathways. The model
used natural images as training input (a selection from the McGill Calibrated Image
Database; Olmos and Kingdom, 2004 (MCID)). Like the Barrow et al. (1996), Rao
et al. (2005), and Bednar et al. (2005) models, the De Paula (2007) model used cone-
opponent center/surround RGC/LGN processing. However, unlike previous models,
realistic LMS sensitivities were used. Additionally, this model used two eyes. We will
be comparing the results of this model to experimental data in detail in the next section,
but briefly, the model developed an OR preference map with patches of CR-selective
cells.

Rao and Xiao (2012) also modeled OR and CR maps in a self-organizing model of
V1. Training consisted of a pre-natal period during which RGB colored gratings are
presented, followed by a visual experience training period during which RGB images
of natural scenes are presented. Hence, unlike the De Paula (2007) model, the Rao and
Xiao (2012) model used RGB images as input rather than realistic LMS cones. The
model contained two cone-opponent channels (red/green and blue/red+green), and a
luminance channel. However, unlike the Barrow et al. (1996), Bednar et al. (2005), and
De Paula (2007) models, the RGC channels were not spatially opponent. Additionally,
the blue/red+green channel was manually connected to four specific cortical regions
(“blobs”), while the red/green channel was connected to the remaining (“interblob”)
regions. Again, this differs from the Barrow et al. (1996) and De Paula (2007) models,
which instead showed how unoriented, color-selective regions could arise through self-
organization of afferent connections.

Eguchi et al. (2014) provided the first model of CR to include spiking. Images of
indoor scenes were used to train the model. Realistic LMS receptors were not used,
but correlations were added to simulate L and M cone correlations. The simulated
RGC and LGN included cone opponency, but not spatial opponency. The trained
model responded to a range of hues, and some clustering of hue responses developed.
However, any hue organization present is difficult to evaluate because it was not in the
context of an orientation map as in macaques, and it is not clear that any organization
of hues according to PCS developed.

Table 2.2 lists the key features of all the models introduced above. Two of those
models—the De Paula (2007) and Rao and Xiao (2012) models—have three input
channels, can be trained on natural images, and include OR as well as CR. This makes
them potential candidates for being able to study macaque V1 organization of CR and
OR. Therefore, we will now go on to review the results of these two models in more de-
tail, comparing both closely to experimental data. We will be referring to figures 2.24
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and 2.25, which place model results alongside the experimental results shown earlier.

2.7.2 Comparing models to experimental data

The De Paula (2007) model develops an OR map that is generally selective, and com-
parable to the macaque results we reviewed earlier. Rows 2–4 of figure 2.24 allow
the model results to be compared with experiment. The model also develops a patchy
representation of CR. The contour plot in row 2 of figure 2.25 shows that responses to
full-field hues are patchy. There is no hue CR selectivity map from experimental stud-
ies, but the model’s CR selectivity map in row 4 of figure 2.25 shows that the contours
in row 2 correspond to regions of high CR selectivity. Additionally, regions of high
CR selectivity correspond to regions of low OR selectivity. The neurons in CR patches
have unoriented connection fields (CFs). Row 2 shows another important result, which
is that a single patch can represent more than one hue: we can see that several patches
respond to a (limited) range of hues around their preference. Row 5, the hue preference
map, shows more clearly that there are neurons with preferences for hues from red to
green, and for violet. While there is a limited set of preferences, neurons do respond
to hues other than their preferred hue.

The De Paula (2007) model successfully shows that an OR map and CR patches (exper-
imental results ER1-ORmap and ER2-patches) can develop from images of natural
scenes using a plausible model of the early visual system. Additionally, it shows that
individual patches can respond to more than one hue. The model also predicts that cells
preferring similar hues as well as orientations are found to be preferentially connected
by lateral connections during development. Notably, the De Paula (2007) model also
includes ocular dominance (OD), although we will not consider that here as we will
focus on the organization of hue. For the phenomena we are investigating, there should
not be a systematic interaction between hue and OD (i.e. PCS is broadly consistent be-
tween eyes), although eventually it will be important to include OD (just as it will be
important to include e.g. motion, and other features—see chapter 6).

However, the model does not account for experimental data relating to the organiza-
tion of hues within patches. The model’s color patches each respond to a restricted
set of hues (e.g. red to green, or blue). This does not match data showing all or at
least a large range of hues can be represented together in a single patch—experimental
result ER3-range. Furthermore, experimental data indicates that the distance between
peak responses is correlated with the perceptual distance between the colors. The De
Paula (2007) model’s hue contour plot, on the other hand, shows that responses within
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blobs are not spatially organized (e.g. if the contour for response to red is concentric
with that of the response to yellow, those hues cannot be distinguished via a place
code). Therefore, the model also does not match experimental result ER4-PCS.

Beyond the results just mentioned appearing not to agree with experimental data, we
also find that it is difficult to compare the model and experimental data because sev-
eral of the model’s analyses did not match a particular experimental procedure. For
instance, experiments identify CR patches by comparing the responses to BW and RG
gratings, while the model reports CR selectivity. For the organization of hue, the spa-
tial organization of hues inside the patches is not comparable to experimental results
easily because there is no measure of peak responses, or of distances between peaks.

Like the De Paula (2007) model, the Rao and Xiao (2012) model develops an OR
preference map which is generally selective (figure 2.24, column 1, rows 2–4). The OR
selectivity is higher in the interblob regions than in the wired blob regions. Figure 2.24
row 5 shows that the model also develops a hue preference map, and that CR selectivity
is higher in the blob regions. The hue map contains a range of hues, but it is not clear
that all hues are represented, or what their spatial relationship is.

A number of features of the Rao and Xiao (2012) model make it unsuitable for our
purposes. We want to explain how cortical wiring might arise, which a model with pre-
specified wiring of CR patches will not allow us to do. Additionally, the model uses
RGB rather LMS photoreceptors, which means important input channel correlations
will not be present. The opponent pathway is not spatially opponent; each retina pixel
(R,G,B) is transformed to (R +G, R -G, R +G -B) as input to the cortex. Again, this
means missing out on spatial correlations.

As with the De Paula (2007) model, the Rao and Xiao (2012) model is missing some
analyses to compare with experimental data. The peak responses to various hues are
not analyzed, as they are in experimental studies. Also, the spatial relationship between
the hues is not measured.

In summary, the model of Rao and Xiao (2012) matches experimental result ER1-
ORmap, but for our purposes of explaining experimental findings it does not match ER2-
patches. And while it appears that each blob represents a range of hues, it is not clear
how many or exactly what hues are represented, or that there is a meaningful spatial
relationship between the hues. Hence, experimental results ER2-patches, ER3-range,
and ER4-peaks are not matched.
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Figure 2.24 (following page): Comparing models to experiment 1: OR vs CR organization. Two
previous modeling studies (De Paula, 2007; Rao and Xiao, 2012) have addressed the development of
OR and CR, showing OR and CR preference maps while having three input channels and having been
trained on natural images, but they have not been compared alongside experimental data as is shown
here. The experimental data (right four columns) is reprinted from figure 2.20; each 1.5-inch square
is 3mm×3mm of cortex. Model data (left two columns) is reprinted from the publications indicated in
column headings but scaled by approximately matching the OR periodicity. Both models develop an
OR selectivity map with regions of low OR selectivity, broadly consistent with experimental data. OR
preference maps represent all orientations, and share some features in common with experimental
maps.
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Result De Paula (2007) Rao and Xiao (2012)
ER1-ORmap X X
ER2-patches X 7

ER3-range 7 7

ER4-PCS 7 7

Table 2.3: Summary of results from existing trichromatic models of OR and
CR map development. The De Paula (2007) model can currently explain
how OR preference maps develop, along with patches of highly CR-selective
cells. However, each patch does not represent all or many hues, and hues
are not organized in a way that corresponds to PCS (as they appear to be
in macaque experimental data). The Rao and Xiao (2012) model can ex-
plain the development of OR preference maps, but its CR patches are pre-
specified, and OR and CR develop in separate layers of the model.

2.7.3 Summary of modeling status

We have seen that there are a number of models of the development of CR and OR, and
studies using these have been successful in explaining several phenomena. However,
we have seen that not all the models have the features we need to be able to study
OR and CR organization in macaque V1, and none has been closely compared to the
experimental data we care about. We narrowed down the selection of models to two,
based on their features, and then considered whether they could explain the results we
care about. Table 2.3 summarizes our conclusion that the best starting point for our

Figure 2.25 (following page): Comparing models to experiment 2: hue organization.
Both models from figure 2.24 (De Paula, 2007; Rao and Xiao, 2012) show some orga-
nization for hue, but do not appear to match experimental data, which shows each CR
patch representing a wide range of hues. Row 1: peak responses to different full-field
hues not reported for models. Row 2: the De Paula (2007) model’s response contours
to different hues are typically concentric, not offset to allow a spatial code for hue. Row
3: distance between hue peaks (experimental plot introduced in figure 2.21) is not mea-
sured for these models, but is unlikely to match the data given hue organization shown
in other plots below. Rows 4 and 5: CR selectivity is not available experimentally, ex-
cept for small samples of cells from electrophysiology. The De Paula (2007) model
shows patches of high selectivity. Each patch has one, or a limited range of, prefer-
ences. Some preference transitions follow PCS, but preferences for all hues are not
present. The Rao and Xiao (2012) model has four hard-wired CR patches (i.e. patches
do not arise through activity-driven development). Not all hue preferences appear to
be present, but it is not clear how to interpret the hue preference scale. Modeling data
reprinted from studies indicated in column headings, scaled by the same factors as for
figure 2.24. Experimental data is reprinted from Xiao et al. (2007) (second row contains
two images scaled and overlaid).
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work is the De Paula (2007) model.

Despite the successes of the models reviewed above, including the De Paula (2007)
model, several problems and unanswered questions remain in modeling the develop-
ment of CR and OR organization in macaque V1. These fall into three categories:

• PCS representation problems: ways in which the models do not match our cur-
rent knowledge of how CR is represented in macaque V1.

• Not directly comparable measurements: ways in which the current analyses do
not allow comparison with experimental data.

• Modeling problems: ways in which the models do not behave in a reasonable
way.

Each group contains a number of problems, which we now list, starting with differ-
ences between PCS representation in the models vs. in macaque:

P1-range The De Paula (2007) model is the only one to develop CR patches alongside
an OR map while also meeting other key feature requirements such as being
trichromatic, and using natural image input. However, even in the De Paula
(2007) model, each CR patch only responds to a limited range of hues around
its preference (e.g. red and yellow, or blue and violet). This contrasts with ER3-
range, which shows patches responding to many/all hues. None of the other
models that develop CR patches shows a hue range within the patches matching
experimental data.

P2-PCS None of the models appears to have hue spatially organized according to PCS
(ER4-PCS). For instance, the De Paula (2007) model’s contour plot (figure 2.25)
shows largely concentric responses to different hues. There are some apparently-
smooth-in-PCS transitions in the CR preference map (figure 2.25), but it is not
clear that they cover PCS or that across V1 the distances between colors correlate
with PCS. We saw that Eguchi et al. (2014) had some organization for hue, but
it is not clear whether it follows PCS, and in any case this organization is not in
the context of an OR map (ER1-ORmap), or discrete patches (ER2-patches).

P3-pref If the coding of hue is to be useful for PCS, we might expect a hue preference
map that shows preferences for all hues, similar to maps for OR preference.
Of course, the preferences do not have to be uniform, but may be biased e.g.
in a similar way to OR preference maps containing more vertical and horizontal
preferences than oblique preferences (Chapman and Bonhoeffer, 1998). The hue
preference map from Rao and Xiao (2012) appears to be missing a range of hues,
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though it is not clear how to interpret the hue map’s scale. The De Paula (2007)
model also has preferences for only some hues, suggesting both models develop
a biased representation of hue. Interestingly, however, De Paula (2007) found
that a preference map containing neurons with preferences for all hues could
develop under specific circumstances. A model trained on 21 images with a
modified distribution of hues (distribution unknown), developed a hue preference
map containing preferences for all hues, although individual CR patches still
preferred a limited range of hues (figure 2.26). The altered hue distribution,
although unknown, is unlikely to reflect biological reality because it was created
from a small set of images by randomly rotating each image’s hue once. Also,
no corresponding OR map was shown.

While it appears that previous modeling work does not match important results about
organization for PCS in V1, there are difficulties comparing the models with exper-
imental data because the analyses do not correspond. For instance, we have been
making statements about the models’ representation of hue based on hue preference
maps, but there are currently no experimental hue preference maps. These problems
are grouped together as not directly comparable measurements:

P4-peaks No analysis of location of peak response to each hue (and distances between
peaks). Missing from all previous models.

P5-RGBWgratings No analysis using RG vs. BW gratings to identify color regions,
as in experimental work. Missing from all previous models.

P6-HSV All analyses were done in HSV space rather than using a perceptually uni-
form color space, or at least matching specific color stimuli used in particular
studies. HSV (a) does not properly separate perceptual attributes of color, (b) is
not perceptually uniform, and (c) is a device-dependent space (usually it is not
specified in relation to a standard, absolute RGB space such as sRGB).

Finally, there are also a number of problems from a modeling point of view, modeling

problems:

P7-LMSscaling The De Paula (2007) model requires ad hoc scaling of the LMS chan-
nels. These are set manually to achieve a CR preference map in which each cone
type is represented, and the settings apply only to the specific (small) set of im-
ages that was used. The same problem exists in Bednar et al. (2005), and likely
also exists in Barrow et al. (1996) because the authors briefly mention an unbal-
anced number of red and green patches, and used only two images. We do not
know if this problem exists in Eguchi et al. (2014) or Rao and Xiao (2012), but
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(a)

rotate hue

(b)

Figure 2.26: Effect of input hue distribution on input-driven models. De Paula
(2007) shows preferences for all hues can develop by manipulating the in-
put hue distribution. (a) The LISSOM model can develop preferences to all
HSV hues: a hue preference and selectivity map is shown with a histogram
of preferences beneath (reprinted from De Paula 2007). CR patches still do
not each respond to all or many hues, but do at least respond to a greater
range. No corresponding OR map was shown. As illustrated in (b), for this
simulation the hue distribution of a set of 21 images was altered by rotating
the hue of each image once. That is, each RGB input image (example from
MCID on the left) was converted to HSV, and H, which varies circularly be-
tween 0 and 1, had a single uniform random number between 0 and 1 added
to it, and then the image was converted back to RGB (on the right). It is
not clear what hue distribution this resulted in, although it is unlikely to have
been either uniform in hue space, or representative of an individual’s visual
experience. We will explore the effect of input hue distribution later in this
thesis.
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our work in the next chapter indicates it is highly likely to be a general problem.

P8-V1StableDev While the developmental path of CR maps is not known, organi-
zation of other feature preferences is known to develop in a stable way in ani-
mals (e.g. orientation: Chapman et al., 1996, motion direction: Li et al., 2008).
Therefore, it seems reasonable to assume the same for CR. However, the LIS-
SOM model of V1 used by De Paula (2007) does not develop in a stable way
(Stevens et al., 2013b). The correct activation level of V1 in LISSOM is main-
tained by periodic manual parameter adjustments, and the OR and CR map states
can change suddenly at these adjustment points. This makes it difficult to inves-
tigate the development of hue representation, because the hue representation can
change for spurious reasons. We do not know if this problem applies to other
models, but e.g. the Rao and Xiao (2012) model uses a SOM model with shrink-
ing lateral radius and no homeostasis, and so seems likely to suffer the same
problem (though perhaps more gradually, rather than at discrete times).

Solving these modeling problems is important for three reasons. The first is that they
make investigating a model difficult (e.g. one cannot easily vary input images, because
several other parameters must be set manually via an iterative, ad hoc procedure to
match). The second reason is that eventually we want to combine the model of CR
and OR with a general-purpose model of the cortex incorporating other dimensions
(Bednar, 2012), and it is infeasible to manually set a variety of parameters for each
dimension in concert. The third reason is that reducing the number of parameters (e.g.
by implementing neural homeostasis to avoid having to manually control activation
levels) reduces the modeler’s degrees of freedom, while making the models simpler
and more realistic.

In this thesis, we will go onto address these problems, starting from the De Paula
(2007) model. Given the overall realistic architecture, and the results that are beginning
to match the biological data, extending this model seems like the best approach. In
chapter 4, we will fully describe and then extend the De Paula (2007) model to begin
addressing the modeling problems, which involves simulating adaptive homeostasis in
the input layers and V1. We will also add analyses matching experimental procedures.
However, before this, we must investigate what input to use to simulate the visual
experience of an individual, which will be the topic of the next chapter.
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2.8 Conclusion

In this chapter we have seen a color vision pathway that starts from light, which is cap-
tured and transformed by the early visual system into our experience of color, PCS. We
also saw that the development of color vision depends critically on both the specific vi-
sual input and physiology—and yet despite large varieties in both, individuals develop
a reasonably consistent PCS. Organization for PCS appears to arise in the brain as early
as V1; experimental studies of macaque V1 find CR cells in patches alongside a spa-
tially contiguous organization of OR. The representation of hue within those patches
appears to be organized by PCS, but these results are still debated. Meanwhile, com-
putational modeling of the development of V1 indicates how CR patches can develop
alongside OR maps, but not how hue maps could form within CR patches. Along the
way, we have found a number of puzzles to address. Characterizing the color statistics
of visual experience is investigated in the following chapter, and then extending and
analyzing the most successful computational model so far in order to understand where
hue maps come from begins in chapter 4.



Chapter 3

Colors in natural image databases

3.1 Introduction

Chapter 2 reviewed experimental evidence indicating that color representation in macaque
primary visual cortex is organized according to perceptual color space, and that vi-
sual input is critical for the development of color vision. The goal of this thesis is to
model how such a perceptual organization for color could arise in primary visual cor-
tex, alongside orientation selectivity, through development driven by visual input. To
do this, we need to find practical options for simulating visual input to the model. We
also need to understand this input in terms of its color statistics, in order to understand
how the model will be affected. These are the two main goals of this chapter.

We will begin by reviewing previous investigations of the color statistics of the envi-
ronment. Since we are focusing on experiments on macaque, this environment could be
the evolutionary niche of macaque, or the specific environment of individual macaques
used in the imaging experiments introduced in the previous chapter. Unfortunately,
imaging studies using macaque do not specify the rearing environment of the individu-
als, and the authors themselves may not be able to find out (Y. Xiao, personal commu-
nication). Animals could presumably be wild caught, raised in a large animal facility,
or raised in a scientific laboratory. In terms of visual history, and hence distribution of
hue percepts experienced, those environments are likely to be very different from each
other, with perhaps the only commonality being seeing other macaques. Previous work
characterizing the statistics of images in relation to human vision has generally focused
on locations where the visual system is thought to have evolved (Webster and Mollon,
1997), and for lack of any more-specific data we too will assume natural scenes are a
reasonable model of the individuals’ visual history for our modeling work.

81
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After reviewing previous analyses of natural scenes, we will then investigate what
practical options are available for input to the model. As discussed in the previous
chapter, input to the visual system is light: a spectral power distribution, varying over
time, filtered through the eye’s media, absorbed with some probability by one of three
cone photoreceptor types. Since we want to model the development of color (CR)
and orientation (OR) organization in the brain, the most complete input to a model
would be this filtered spectral power distribution (SPD) falling on each photoreceptor,
recorded over an individual’s lifetime. However, recording such data is impractical for
many reasons, so we must find an approximation. In this chapter, we will therefore
review alternative methods for obtaining realistic input. We will see that images of
natural scenes captured using a calibrated RGB camera, and transformed to simulate
LMS cone excitations (proportional to absorptions), are currently the most practical
input, giving the best balance of accuracy of simulation of LMS excitations while
capturing a large enough sample of the environment.

Having selected an option for input, we will also characterize a number of databases
of such input in terms of the statistics of cone excitations and hue percepts they gen-
erate (the latter is what we mean by “the colors present”). Understanding the input
data in these two ways is critical to understand the development of models of the kind
reviewed in the previous chapter. Those models have cortical learning algorithms that
are affected by the statistics of cone responses (such as correlation between different
cone types). Additionally, since we are evaluating a model’s ability to develop a rep-
resentation of perceptual color space (PCS), we need to know the frequencies of hue
percepts generated by these natural image databases. An image database could over-
all generate hue percepts that are a reasonably uniform sampling of perceptual color
space, or could generate hue percepts that overall do not sample perceptual color space
uniformly.

In agreement with previous work, we find that the databases have cone excitations
that are highly correlated between types, with some cone types absorbing more energy
over the entire database, and excitations skewed towards low values. Additionally, we
find the databases generate hue percepts that are a highly non-uniform sampling of
PCS. We believe this reflects the genuinely “color biased” visual experience of indi-
viduals (a bias that will vary depending on environment, and that will vary over time).
The bias has important implications for a model that attempts to learn a PCS based
on the incoming statistics. In the previous chapter, we saw that the visual environ-
ment can critically affect color vision, yet PCS is broadly consistent across individuals
from environments with quite different color statistics. Any developmental model will
therefore have to do an important job: be able to organize a reasonably consistent PCS
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from variously biased input datasets.

3.1.1 Contributions of this chapter

• Section 3.2 summarizes previous investigations of the statistics of LMS cone
excitations in response to natural scenes, and the distributions of hue percepts
resulting from those scenes. Cone excitations are highly skewed towards rela-
tively low values, and are highly correlated. The distribution of hue percepts
generated is biased towards blue/yellow, and restricted (i.e. some colors almost
never appear). Apart from being a comprehensive review of previous studies of
perceptual colors in natural scenes, we also find there is not yet an analysis in
the form required to understand the impact of the hue distribution on a model of
the development of CR organization.

• Section 3.3 reviews available databases of natural visual input, including cali-
brated trichromatic images and hyperspectral images of natural scenes. We con-
clude that calibrated trichromatic images of natural scenes are currently the most
practical input to use for a model of the development of OR and CR organiza-
tion, giving the best balance of accuracy of LMS simulation and wide sampling
of scenes.

• Section 3.5: Characterization of the McGill (Olmos and Kingdom, 2004) and
Barcelona (Párraga et al., 2010) trichromatic calibrated color natural image databases
in terms of cone excitations and perceptual hue distributions. As found in pre-
vious studies of natural scenes, cone excitations are skewed towards low values,
and are highly correlated. We also find total excitations are unequal between
the cone types over the entire datasets. Furthermore, the distribution of hue per-
cepts generated is a highly non-uniform sampling of PCS, being biased towards
blue/yellow, and covering a restricted fraction of PCS. We show this using CIE
L* C* hab color space (CIELChab), measuring the distribution in a form that will
help predict its impact on an input-driven developmental model.

• Finally, we also create a database of color-manipulated images that does uni-
formly sample PCS, but which retains cone correlations, which may be useful as
training data for developmental models. We additionally show that using RGB
images as input could separate the effect of cone correlations from the effect of
perceptual hue distribution.
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3.2 Background 1: Color statistics of natural scenes

As reviewed in the previous chapter, LMS cone excitations are the information that
the visual system starts with. The next stage in the visual pathway’s processing of
color appears to involve cone opponency. After cone opponency, it becomes less clear
how the visual system is organized for color, with a variety of different possibilities at
various stages of processing. By the time percepts of color reach conscious awareness,
we can define perceptual color spaces that approximately describe our experience of
color. In this section, we will review previous investigations of color representation at
these three levels (cone responses, cone-opponent responses, and in perceptual color
spaces); characterization of any intermediate stages there may be is so far lacking.

Before we proceed to review previous studies of color statistics in the spaces above,
we note that an alternative, complementary approach has been to find spaces based
on physical data rather than on physiology or perception. For instance, natural re-
flectance spectra have been characterized in various ways (e.g. using principal compo-
nents analysis (PCA) or independent components analysis (ICA)) to determine, from
an information-processing perspective, optimal ways in which they may be repre-
sented. Such analyses can be compared e.g. to known physiological representations,
such as having three cone types with highly overlapping spectra, or cone-opponent
processing, or the types of cells found in primary visual cortex (V1), and thereby help
to explain the purpose of particular processing steps. However, we are not reviewing
such work here, instead focusing solely on the physiological and perceptual represen-
tation of color. We want to learn about the representation of color in ways that will
directly relate to our subsequent modeling work, in order to understand the model.

3.2.1 Recording natural scenes

To determine the color statistics of natural scenes, it is first necessary to record them
in some way. There are a number of possible methods:

• Observations of natural scenes can be made by humans. For instance, colors in a
scene can be compared by eye to samples of known characteristics (e.g. known
reflectance spectrum, or known chromaticity). Such observations are very time
consuming, and difficult to do with spatial precision.

• Radiances of natural scenes (and natural illuminants, e.g. different phases of
daylight) can be recorded with a spectroradiometer. While allowing accurate re-
construction of spectral power distributions (and hence of LMS cone excitations,
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via the known cone fundamentals), the result is a coarse sampling of the scene
(i.e. very low spatial resolution).

• Reflectances of the contents of natural scenes can be determined using a spec-
trophotometer. As mentioned in the previous chapters, the human visual system
is more concerned with reflectances than with radiances (i.e. we “discount the
illuminant” to some extent), so having recordings of reflectances as well as radi-
ances is useful for understanding vision. As with the above technique, though,
the result is a very coarse sampling of the scene.

• A hyperspectral camera can be used to capture the radiance of a natural scene in
multiple small-wavelength intervals. Hyperspectral imaging is time consuming—
for each scene, many images must be acquired while making sure there is no
movement (or compensating for it)—so there are currently not many hyperspec-
tral images of outdoor natural scenes. However, the advantage of hyperspectral
images is the combination of spatial data with accurate SPDs, which allows ac-
curate conversion into any color space, including LMS cone excitations or CIE
1931 XYZ color space (CIEXYZ). Including objects of known reflectances in
the scene allows the illuminant to be inferred, and hence the scene’s reflectances
can be recovered.

• A trichromatic device such as an RGB camera or imaging colorimeter may be
used. The difference from a hyperspectral camera is that instead of multiple
narrow wavelength ranges being sampled, only three broad ranges are sampled.
An imaging colorimeter captures radiances using functions that match CIEXYZ
(and hence its output can be linearly transformed to LMS cone fundamentals).
If the spectral sensitivities of a camera are known (and the camera’s non-linear
responses can be converted to linear ones), these can be approximately mapped
to LMS cone sensitivities (e.g. using a linear tranform minimizing the error be-
tween the transformed and LMS sensitivities, or by recording camera responses
for multiple known spectra and creating a mapping). RGB cameras have the ad-
vantage of being readily available, and of acquiring high-resolution images very
quickly.

3.2.2 Cone statistics

In the previous chapter, we saw that daylight color vision begins with absorption of
photons by L, M, and S cones. Cone excitation is proportional to absorption; after this,
the cone may have a nonlinear response. Our model of color vision in the following
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Correlation
Data set Analysis in L/M L/S M/S
White noise Doi (2003) 0.916 0.0726 0.132
DDB Doi (2003) 0.994 0.828 0.862
CCHID Ruderman et al. (1998) 0.990 0.565 0.650
BHID Doi (2003) 0.990 0.853 0.912
MCID Foliage De Paula (2007) 0.987 0.906 0.931
MCID Fruit De Paula (2007) 0.978 0.877 0.910
MCID LandWater De Paula (2007) 0.992 0.901 0.937
MCID Winter De Paula (2007) 0.999 0.995 0.996

Table 3.1: Cone excitations are highly correlated. Each row shows correla-
tions between pairs of cone types for different data sets (abbreviations ex-
panded in a subsequent section). The first row shows correlations for white
noise (equal energy at every wavelength), illustrating the instrinsic cone sen-
sitivity correlations. L and M cone sensitivities are highly overlapping, hence
their excitations are highly correlated. Subsequent rows are for excitations in
response to natural scenes (the image databases themselves are discussed
in a subsequent section; see table 3.2 for details). Natural images further
increase the correlations. L/M correlation is always highest, but there are
strong correlations between all channels. Scenes that do not appear color-
ful (e.g. winter scenes dominated by snow—last row) have particularly high
correlations.

chapter will begin with cone excitations. Previous work simulating cone excitations
for natural scenes has found excitations are highly correlated (table 3.1). Given the
highly overlapping cone spectral sensitivities (figure 2.10 in the previous chapter), this
correlation is not surprising. However, we can see that natural images further increase
the correlations, particularly for L and S cones, and for M and S cones: generally,
natural spectra contain energy across wide parts or all of the visible spectrum.

In addition to highly correlated cone excitations, previous studies have shown the dis-
tribution of excitations is highly skewed towards low values (Ruderman et al. 1998;
Garrigan et al. 2010; figure 3.1). We will discuss in later chapters how subsequent
coding may alter this distribution, but it is a feature of the input that any computational
model will have to deal with.

In the previous chapter, we learned that cone excitations are difficult to relate to percep-
tual color space. However, understanding their statistics is important for understanding
how they will affect a learning algorithm such as Hebbian learning. Now we go on to
review previous analyses of natural scenes in spaces closer to our perception: cone-
opponent space, and models of perceptual color space.
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Figure 3.1: Skewed distributions of cone excitations in response to natural
scenes. Analysis of cone excitations for the central 128× 128 pixels of 12
natural scenes, imaged with a hyperspectral camera system, indicates that
cone excitations, apart from being highly correlated between cone types, are
also skewed towards low values. The mean of each cone type’s excitation
is normalized to 1.0, so the mean for each plot is (1,1). Uncorrelated dis-
tributions would have a high variance around the diagonal, and unskewed
distributions would be distributed evenly about the mean, along the diago-
nal (contrary to the observed data). Images reprinted from Ruderman et al.
(1998).
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3.2.3 Color distributions

We saw in the previous chapter that the visual environment is critical for the develop-
ment of color vision. For instance, monkeys raised in an abnormal color environment
make abnormal judgments of color similarity. In the previous section, we reviewed the
statistics of cone excitations for natural scenes. In this section, we will review previ-
ous work about the properties of natural images in spaces closer to our perception—in
particular about the distribution of hue percepts elicited by natural scenes. However,
first we explain what we mean by the hue percepts elicited by natural scenes, and their
distribution.

There are various models of adult perceptual color space, which can be used to take
e.g. cone excitations or CIEXYZ values and predict hue percepts (chapter 2). Color
appearance models are an active area of research, with the most complex for calculat-
ing the color at a particular location taking into account features including the back-
ground, the surround, stimulation history of the observer, and other features that affect
perceived color (Fairchild, 2005). However, studies estimating colors in natural scenes
in bulk have used simpler spaces, such three-dimensional cone excitation space (with
L, M, and S axes—as reviewed in the previous section), or a cone-opponent space
computed from these. Alternatively, studies have illustrated gamuts on chromaticity
diagrams (chapter 2), e.g. the (x,y) diagram. Finally, some studies have used uniform
color spaces such as CIE 1976 L* u* v* color space (CIELUV) or CIE 1976 L* a*
b* color space (CIELAB). Spaces like CIELAB and CIELUV, designed to be per-
ceptually uniform and to allow predictions of whether differences between spatially
uniform stimuli are distinguishable under specific conditions, give the best approxima-
tion of human hue percepts among the aforementioned simple spaces. While not as
accurate as the more advanced color models, CIELAB and CIELUV are simpler, and
faster to compute (each pixel is calculated independently).

Previous work investigating the colors present in natural scenes has found natural
scenes tend to be dominated by only a few colors. To do this, studies have consid-
ered both scene reflectances and illuminants. The visual system receives radiances as
input (as sampled by the cones), but it is generally accepted that the visual system
rapidly adapts to the illuminant, so we are therefore we are interested in both.

Hendley and Hecht (1949) visually compared the colors in natural scenes to Munsell
chips of known chromaticity. Scenes were from around New York state, in the summer
and autumn, and most were of terrains viewed at a distance (from 0.6m to 32km). One
color-normal viewer made 1000 observations of 235 objects. Figure 3.2(a) shows that
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(a) (b)

Figure 3.2: Colors in natural scenes: Hendley and Hecht (1949) and Burton
and Moorhead (1987). (a) Gamut of visually observed natural scenes (fo-
liage and earth) shown on the UCS diagram. Also included is the gamut of a
television color standard (NTSC), to emphasize the restricted extent of nat-
ural colors commonly found within this gamut. Data originally from Hendley
and Hecht (1949), but replotted by Burton and Moorhead (1987) (from which
image is reprinted).
(b) 19 images recorded with a film camera system calibrated to CIEXYZ,
plotted as a frequency histogram on the UCS diagram as in (a), but a nar-
rower range. Light gray: 100% of gamut, gray: 75% of gamut; black: 25%
of the gamut. The images were of wooded and grassland scenes, from a
distance of approximately 1−5km. Again, only a restricted range of all pos-
sibly perceptible chromaticities is occupied by the scenes. Image reprinted
from Burton and Moorhead (1987).
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the gamut of observed colors covers only a small part of the chromaticity diagram (low
chroma—particularly at greater distances—and a restricted range of hues). The authors
summarize the colors as: yellow-green (vegetation), yellow—orange/red (earths and
dried vegetation), and blue (water, sky, distant objects). In autumn, vegetation colors
cover an increased range (yellow-green through orange and further into red).

Nickerson et al. (1945) analyzed at close range foliage and earths specially selected by
soil scientists to represent the range of soil colors possible. Their results agree with
those for earths found by Hendley and Hecht (1949), but additionally include samples
with higher chroma, and more red hues are present.

Burton and Moorhead (1987) photographed 19 long-range views of natural terrains
(from at least 0.5km away), and converted three-channel calibrated scans of film to
CIEXYZ. Results were similar to those of Hendley and Hecht (1949), as shown in
figure 3.2(b): hue variation is restricted and mainly along a bluish-yellowish axis, and
chroma decreases with distance.

Webster and Mollon (1997) examined terrains and vegetation in arid mountain and
desert scenes, and in temperate rainforest. Viewing distances ranged from meters to
kilometers, and generally included sky, foliage, and earth. 19 images from a hyper-
spectral camera system, and 87 scene measurements with a spectroradiometer, were
analyzed. Figure 3.3 shows a similar distribution of color was found to previous stud-
ies: restricted, and strongly biased along a bluish to yellowish-greenish axis.

Linhares et al. (2008) analyzed 50 natural and rural scenes captured with a hyper-
spectral camera and determined the distribution of discernable colors. Images were
analyzed in CIELAB, and the CIEDE2000 color-difference formula was used to de-
termine which colors would be distinguishable to a human observer. Most colors ap-
peared only rarely, with the fraction of discernable colors as a function of occurrence
being a negative power distribution (Nascimento et al., 2008). Consistent with pre-
vious work, the authors conclude that most natural chromaticities are distributed in a
small gamut, and that many discernable colors do not appear in nature. However, the
authors point out that their images may be missing saturated colors found in e.g. jungle
scenes. Also, subsequent work has pointed out difficulties in determining the number
of discernable colors in a scene: doing so depends on more than only just-noticeable
differences (jnds) in a simple space like CIELAB (see e.g. Marı́n-Franch and Foster
2010; Masaoka et al. 2013). Despite this, the general conclusion of a restricted distri-
bution of chromaticities, and natural scenes not (or extremely rarely) containing certain
colors, still agrees with previous work.
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(a) (b)

(c) (d)

Figure 3.3: Color in natural scenes: Webster and Mollon (1997). First row: (a) gamut of
chromaticities (density contours represent increments of 50) and (b) average chromatic-
ity for ≈ 100 scenes, on the (x,y) diagram. As with previous work, the chromaticities in
(a) occupy a restricted area of the diagram, and are biased along a bluish/yellowish axis,
consistent with sky, foliage, and earth. Average chromaticities in (b) are plotted for differ-
ent locations with unfilled markers, distinguished by symbol shape, and the chromatici-
ties of illuminants are plotted with filled markers (of the corresponding type). In general,
average chromaticity follows the same bias as in previous work (bluish/yellowish), but
in lush rainforest (downwards triangles) it is biased towards green. The average chro-
maticities of illuminants has a smaller range than for the scenes, and follows the daylight
locus (chromaticities of phases of daylight), although again, in lush forest it is biased to
green. Second row: (c) gamut of chromaticities and (d) average value for each scene
on cone-opponent axes (scaled to roughly equate visual sensitivity to each axis). The
distribution of responses on cone-opponent axes is again restricted and biased. Images
reprinted from Webster and Mollon (1997).
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Yendrikhovskij (2001a,b) used a digital camera to image 630 natural scenes, converting
to CIEXYZ and then CIELUV assuming PAL CRT TV viewing conditions, primaries,
and gamma function (i.e. the camera was not calibrated). A sample of pixels plotted
on CIELUV axes shows that pixels are not spread out uniformly in CIELUV: there
is restricted coverage of the space, and most pixels are clustered around the origin
(figure 3.4). However, the images were uncalibrated, which means the accuracy of the
estimates of the colors is likely to be low. Also, we do not know any details about the
scenes.

The results described so far indicate that most natural scenes generally contain only a
few colors, and that the bulk of the color lies in a small range compared to PCS. How-
ever, we want to know in detail the distribution of colors in a large number of natural
images, in a form relevant to our modeling work. By performing a similar analysis to
Yendrikhovskij (2001a), but including a histogram of pixel counts, the study of Bel-
paeme and Bleys (2009) comes closer to our requirements (figure 3.5). Unfortunately,
this study did not use calibrated images, so the accuracy of color estimation is unclear.
Also, the histogram analyis in CIELAB views the distribution of pixels on the a* and
b* axes separately, but we would like to see the distribution on these axes together
to learn about perceptual color. However, we can see that for natural scenes, the his-
tograms of CIELAB a* and b* are both strongly peaked at 0, so the colors are generally
of low saturation and occupy a small part of PCS.

In summary, we have seen that natural scenes appear to have a distribution of colors
covering a limited range of our perceptual space, and the distribution is not uniform.
There are lots of yellows, greens, and blues (from earth, vegetation, and sky). Some
colors appear very rarely, if at all. Also, we have seen that the colors depend on the
scene type (i.e. the reflectances present) and also the illuminant (for scene radiances).
The illuminant typically gives a bias along a bluish-yellowish axis (although it can be
more complex, e.g. because of indirect light reflected from or filtered through objects
such as leaves). Different scene types have different reflectance spectra biases: arid
desert appears yellow because of its biased reflectance spectrum, while lush foliage
appears green because of a different bias in its reflectance spectrum. However, these
scenes too, overall, typically cause color to vary along a bluish-yellowish axis (even
without the sky; Webster and Mollon 1997).

So far, although we have seen there is clearly a bias in the distribution of colors in
natural scenes (in LMS cone space, in cone-opponent space, and in perceptual space),
how strong is the bias over an individual’s lifetime, and what effect might such a bias
have on developmental models of the type introduced in the previous chapter? To
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Figure 3.4: Color in natural scenes: Yendrikhovskij (2001a). Left: an un-
known sample from 630 uncalibrated natural images of unknown size plot-
ted in CIELUV. In agreement with previous work, we see that chromaticities
are concentrated in a relatively small region, although there is a larger range
of chromaticities than previously reported. However, the scene types and
conversion accuracy in this study are not clear. Right: For comparison, 100
random RGB values were converted to CIELUV (PAL TV parameters were
used in conversion), emphasizing that the gamut of the natural scenes was
restricted compared to the colors a TV can produce. Images reprinted from
Yendrikhovskij (2001a).

answer these questions, we need to find a large collection of recordings of natural
scenes, containing both spatial and color (spectral) information. For such a collection,
we need to determine the cone statistics as well as the distribution of hue percepts
elicited, in order to understand what the effect might be on a developmental model
that is learning from this input. Already, we suspect that the model will not receive a
uniform sampling of perceptual color space, or uniform cone statistics. However, we
need to quantify these non-uniformities.

3.3 Background 2: Databases of natural images

As discussed earlier, input to the eye is an SPD at each photoreceptor, but capturing
and using this as input to a model to simulate an individual’s visual experience is
impractical. We need both spatial and spectral information (so therefore cannot use
radiances captured by e.g. a spectroradiometer), and we need a high enough number
of samples of natural scenes to be representative of visual experience. One option
is hyperspectral imaging, which relatively finely samples the SPD at each pixel. A
second option is to use an imaging device that has at least three sensitivities, the output
from which can subsequently be converted to human cone excitations. An example
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Figure 3.5: Color in natural scenes: Belpaeme and Bleys (2009). Distribu-
tion of CIELAB a* and b* values. Top row: 25,000 randomly sampled pixels
from 300 uncalibrated digital camera images of indoor and outdoor urban
scenes (buildings, people, urban activities). Second row: 25,000 randomly
sampled pixels from 300 uncalibrated natural images gathered from the Web
(animals, flowers, and landscapes). Third row: 25,000 random RGB triples.
Both the urban and natural scenes have many unsaturated pixels, and the
range of CIELAB values is restricted. This agrees with previous studies.
The urban images have a narrower distribution of colors than the natural
scenes, but we do not know the image contents, and the conversion accu-
racy in this study is not clear because the images were uncalibrated. For
comparison, the third row shows that random RGB images converted using
TV parameters have a much wider distribution of colors. Images reprinted
from Belpaeme and Bleys (2009).
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of such a device is a calibrated RGB camera: one for which the spectral sensitivities
and any response nonlinearities are known. There are databases of both hyperspectral
and calibrated trichromatic databases, which we will review below (summarized in
table 3.2). Unfortunately, while many more images are available on the Web, the
response properties of the cameras used to collect the images are very rarely known,
so it is not possible to estimate cone excitations accurately enough.

Since we will be using the images as input to models in subsequent chapters, it is im-
portant that the images are freely available without restriction on re-use or re-distribution
(other than attribution). Otherwise, the modeling results will not be open and repro-
ducible.

3.3.1 Hyperspectral databases

Hyperspectral imaging was outlined in section 3.2.1. While there are several hyper-
spectral databases of indoor images, there are not many databases of outdoor scenes
because of the difficulty in controlling for movement (and illuminant changes) between
images at each wavelength. The two databases that fit our criteria are detailed in the
last two rows of table 3.2, and are described below:

• Bristol Hyperspectral Images Database (BHID; Párraga et al., 1998): 29 hyper-
spectral images of foliage and plants (plus some sky). From Bristol, UK, in the
autumn/winter, around midday. Available as reflectances plus scene illuminant.

• Foster Hyperspectral Image Database (FHID; Foster et al., 2006): 9 hyperspec-
tral images of rural scenes: rocks, trees, leaves, grass, and earth. From Minho,
Portugal, in the summer, around midday (clear sky, direct sunlight). Available
as reflectances plus scene illuminant.

• Cronin and Chiao Hyperspectral Image Database (CCHID; Burton and Moor-
head, 1987): 12 low-resolution hyperspectral images of natural scenes, including
a target of known reflectance.

3.3.2 Calibrated trichromatic databases

Calibrated trichromatic imaging was introduced in section 3.2.1. There are several
databases of calibrated trichromatic natural images, differing in trichromatic device
used to capture (imaging colorimeter vs. RGB camera), and method of conversion to
device-independent and LMS color spaces:
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Database
Num. images,
image size Supplied

formats
Relevant categories

MCID 648
768×576

RGB,
SP-LMS

Animals; Flowers; Foliage; Fruit;
LandWater

BCID 250
756×1134

CIEXYZ,
SP-LMS,
SS-LMS

Natural Objects 1, 2, 3, 4

UTCID 1204
4284×2844

RGB,
CIEXYZ

Sets 1-9

UPCID ≈ 5000
1519×1007

SP-LMS

DDB 52
1000×1280

nonlinear
SP-LMS

All

ICID 25
1000×1280

CIEXYZ Plants, flowers

FHID
9
≈ 640×820–
1340×1020

33 × 10nm
bands

2002 scenes 1-4; 2004 scenes 1-5

BHID 29
256×256

31 × 10nm
bands

All

CCHID 12
128×128

43 × 10nm
bands

All

Table 3.2: Databases of calibrated color natural images. These databases
all contain spatial and spectral information in a form that allows human cone
excitations to be estimated. Hyperspectral images (last three rows) con-
sisting of multiple bands allow most accurate and flexible reconstruction,
but unfortunately are not available for a wide range of scenes. The other
databases were all captured using calibrated trichromatic devices, typically
RGB cameras. Depending on several factors, the accuracy of conversion to
cone excitations is variable for such databases, but is accurate enough for
our purposes. All databases are of scenes selected by researchers, deemed
to fit into a particular category, rather than being collected by e.g. recording
the experience of an individual animal. Database acronyms are given in the
text.
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• Barcelona Calibrated Image Database (BCID; Párraga et al., 2010): 250 images
of natural objects (foliage, fruit, flowers, sky) from around Barcelona, Spain, in
the summer daytime. Sample thumbnail images are shown in figure 3.6. Conver-
sion to LMS (or CIEXYZ) was by minimizing the error in a polynomial mapping
of camera responses to LMS (or CIEXYZ) values calculated from a selection of
known reflectances. Conversion accuracy was verified by comparison of pre-
dicted chromaticities to ones measured by spectroradiometer. A grey sphere of
known reflectance and chromaticity is present in almost every scene, allowing
the illuminant to be inferred.

• McGill Calibrated Image Database (MCID; Olmos and Kingdom, 2004): 648
images of various natural scenes and objects (animals, flowers, foliage, fruit,
and land/water), including different times of day. Sample images are shown in
figure 3.7. Conversion to LMS was using a linear (3× 3 matrix) transforma-
tion of camera spectral sensitivities into LMS cone spectral sensitivities, with
certain constraints from psychophysics (L(580nm)≈M(580nm) for maximum
sensitivity of the L-M cone-opponent process to be at 580nm, and S(506nm)≈
L(506nm)+M(506nm) for maximum sensitivity of the S− (L+M)

2 cone-opponent
process to be at 580nm). The conversion is likely to be less accurate than for
the BCID, because it is based only on a linear conversion of the camera spectral
sensitivities to monochromatic light. Additionally, there is no validation of the
accuracy for known samples, and no object of known reflectance/chromaticity in
the images.

• UPenn Calibrated Image Database (UPCID; Tkačik et al., 2011): Around 5000
images from tropical savanna (Botswana). Conversion to LMS was similar to the
McGill Calibrated Image Database; Olmos and Kingdom, 2004 (MCID), using a
linear transformation of camera spectral sensitivities into SS-LMS cone spectral
sensitivities, with the linear transform found by least squares (error minimiza-
tion between SS-LMS sensitivities and the reconstructed-from-camera-RGB SS-
LMS sensitivities). Additionally, LMS isomerization (excitation) rates were es-
timated (i.e. using standard properties of the eye). Accuracy of the conversion
was checked for 24 patches of a Macbeth color checker (known chromaticities).

• UTexas Calibrated Image Database (UTCID; Geisler and Perry, 2011): 1204 im-
ages of natural scenes (earth, trees, sky, foliage, grass, etc.) from around Austin,
Texas, in the summer daytime. Camera performance data are available with the
database so data can be converted to both LMS and XYZ.

• IPL Calibrated Image Database; Laparra et al., 2012 (ICID): 25 close-up, indoor
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images of plants and flowers illuminated by CIE D65 (northern European day-
light) and separately by CIE A (tungsten bulb light). Images were taken with
a calibrated image colorimeter (where three sensor types are calibrated to give
XYZ values).

• Doi DB (DDB; Doi, 2003): 52 images of flowers, fruit, foliage, sky, and earth.
Converted to LMS from RGB by linear transform, minimizing errors for cone
responses to 170 natural scene reflectances. Provided only as nonlinear cone re-
sponses, the LMS cone excitations having been converted to nonlinear responses
via a squashing function.

If more hyperspectral images were available, they would be the preferred source for
our modeling work. Hyperspectral images allow high accuracy, but also high flexibil-
ity (e.g. it would be simple to simulate the photoreceptor absorptions of other species).
However, very few hyperspectral images are available. Another consideration is that
in the future we wish to model more features than only OR and CR, for instance
adding motion (see chapter 6). In the foreseeable future, calibrated trichromatic video
seems far more likely than hyperspectral video. Among the trichromatic databases, the
Barcelona Calibrated Image Database; Párraga et al., 2010 (BCID) database provides
the best balance of number of scenes with calibration and conversion accuracy. The
BCID images are generally of “uninteresting” scenes, however, and so for comparison
we will also analyze the MCID, which has more images, and many images of “inter-
esting”, colorful objects—of the remaining calibrated color databases, it appears to be
the most different from BCID by visual inspection.

While previous analyses have considered cone statistics for collections of images, and
have considered colors present in a variety of individual images, there is no previous
suitable bulk analysis of the colors present in large collections of images in the form
required to understand how the distribution will affect the kind of models introduced
in the previous chapter. And specifically, there has been no such analysis for the cali-
brated color image sets we could use for modeling, such as MCID and BCID.

3.4 Methods

For the MCID and BCID, we wish to find basic cone excitation statistics: total exci-
tation produced in each cone type, the correlation between cone types, and how the
excitations are distributed. Additionally, we want to know about the hue percepts gen-
erated by these natural images, using a simple (and relatively naive) model of adult
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Figure 3.6: Sample images from BCID. Random sample of 180 out of 250.
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Figure 3.7: Sample images from MCID. Random sample of 180 out of 648.
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color appearance. We want to know these things because our model will be learning
from these image collections, and it will be affected by each of these aspects of the
images. Therefore, we first require estimates of human/macaque cone excitations, and
we require the images in the device-independent color space CIEXYZ, from which
CIELAB may be computed. Once we have data in those two spaces, we can then
measure the required statistics and distributions.

3.4.1 Cone excitations

We will use the Smith-Pokorny LMS 2◦ cone fundamentals (SP-LMS) as our cone
space. The BCID is supplied in this format, and the MCID is supplied with Mat-
lab code to convert the RGB images into this format. The conversions from camera
images to cone excitations were outlined earlier (and are described in detail with the
databases), and include an assumption about how to normalize the excitations (e.g.
equal response in each cone for equal-energy white light) that is fixed across the whole
database. We will discuss in chapter 4 how such fixed normalization is unlikely to
be biologically realistic, and additionally does not take account of e.g. highly variable
cone ratios.

With the (L, M, S) cone excitations available at each pixel of each image, we compute
the following for 50 randomly selected images:

• Mean and standard deviation of the L, M, and S values over all pixels.

• Correlation coefficient of (L,M) values across all the pixels; repeat for (L,S), and
(M,S) also.

• Histogram of L values; repeat also for M and S values.

• Two-dimensional histogram of (L, M) pairs; repeat for (L, S), and (M, S) also.

• Cone-opponent values L−M and S− L+M
2 , and a two-dimensional histogram for

these also.

All computations were performed using standard functions mean(), std(), corrcoef(),
histogram(), and histogram2d() from NumPy version 1.4 (Numerical Python; Dubois
et al. 1996; Oliphant 2007).

http://www.numpy.org/
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3.4.2 Perceptual color space

We use CIELChab, the polar form of CIELAB, as the perceptual color space. CIELAB
is a non-linear transformation of (device-independent) CIEXYZ, and involves the cre-
ation of opponency (of CIEXYZ values, not of LMS), then a cube root (standard for-
mulae in Wyszecki and Stiles, 1982). Additionally, in section 3.5.4 we will also use
HSV color space (HSV; Smith, 1978), which is a non-linear transformation of RGB
(Smith, 1978). We use sRGB, a standardized linear transformation of CIEXYZ (Stokes
et al., 1996). Therefore, the main requirement is to obtain the images in CIEXYZ. The
BCID is supplied in CIEXYZ format (conversion outlined in the background section,
and described in detail with the database). For the MCID, we obtained tabulated cam-
era spectral sensitivities (Fred Kingdom, personal communication) and transformed to
CIEXYZ using the same method used to convert the database to LMS (described ear-
lier in section 3.3.2), but using CIEXYZ color-matching functions (cmf) rather than
LMS cone fundamentals.

Along with CIEXYZ values, to convert to CIELChab we need the whitepoint, which we
take to be CIE D65, i.e. assuming the illuminant spectrum is that of northern European
daylight. However, in a later section of the results, we will check the accuracy of this
assumption by estimating the illuminant for a subset of the BCID images, since they
include a grey ball of known chromaticity. To extract the whitepoint in each image, we
located the region of the grey sphere reflecting the most light.

Once in CIELChab, across all pixels of all images in the database, we record a his-
togram of hab weighted by Cab. hab varies circularly from 0 to 1, so we will present the
histogram on polar axes.

3.4.3 Hue jitter

In a later results section, we will be performing an operation we refer to as “jittering the
hue distribution” of an image database. To jitter the hue distribution of a set of images,
we rotate every image’s hue eight times by varying amounts to create eight rotated-hue
versions of the original image. Rotating an image’s hue simultaneously changes every
hue present in an image by the same amount. The amount of rotation for each image is
drawn from a uniform random distribution, the upper bound of which depends on the
amount of jitter J specified for jittering the database: h′ab = hab + U(0,J). For J = 0,
the images will always be unchanged. For J = 1, the hue of an image can be rotated
to any other value (since hab varies circularly between 0 and 1). Across a collection of
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images starting with a narrow hab distribution, this procedure allows the distribution to
be broadened. Sample hue-jittered images are shown later in figures 3.16, 3.17, and
3.18.

Where this procedure is performed, it is done for a subset of the BCID images, Natu-
ral01 (71 images). hab is computed for each pixel using a whitepoint estimated from
the grey sphere (as described above). The amount of jitter is determined by NumPy’s
random.uniform(0,J).

3.5 Results

In the following chapter, we will be modeling the early visual system, and in particular
the development of CR and OR selectivity in V1. We have chosen practical sources
of input for the model, and in this section we will analyze the cone statistics, cone-
opponent statistics, and color percepts generated by these input sources. This will
allow us to understand what the input’s effects on the model may be. Previous sections
have reviewed existing work showing that color representation at all these levels is
biased; in this section we expect to confirm and quantify this for the MCID and BCID.

Previous work (section 3.2) has shown that a single scene tends to have only a few
colors, with different images having quite different distributions of color depending
on the contents (e.g. if sky is present, or if fruit is present). To illustrate this, and
introduce our analysis format, figures 3.8 and 3.9 shows sample images along with
the corresponding distributions of cone and cone-opponent activations, and perceptual
color histograms. Cone excitations are correlated for each image, particularly L/M,
and on cone-opponent axes are distributed in a limited space. An important point to
note here is that we are not saying these are the biological cone responses we would
expect to measure in an animal observing this scene (if it were possible to measure such
responses in a live system). The photoreceptors surely adapt, both instantaneously (e.g.
von Kries gain control) and based on previous visual history. However, the only model
reviewed in the previous chapter to actually use realistic LMS cone sensitivities (De
Paula, 2007) did so “naively”. That is, it used LMS cone responses converted from
camera images, without any form of either per-image or long-term adaptation. The
second stage, cone opponency, also naively used these cone responses without any
adaptation. We too will begin modeling from this point, so we need to understand the
statistics from this point of view.

In terms of perceptual color, we see that each of the images only contains a few colors.
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Database L : M : S Std L, M, S Corr L/M, L/S, M/S
BCID 1.0 : 0.82 : 0.36 0.13, 0.11, 0.077 0.99, 0.77, 0.82
MCID 0.98 : 1.0 : 0.78 0.20, 0.21, 0.20 0.99, 0.91, 0.94

Table 3.3: Basic LMS cone statistics for natural image databases. First
column: Overall cone excitations are not equal between classes. The
databases make different assumptions in normalizing cone excitations, al-
though typically it is at least assumed that a white (flat-spectrum) input
should cause equal excitation in each cone class. Within a database, the
normalization used is the same across images (i.e. no adaptation over time).
Third column: Inter-channel correlations are all high, but L/M correlation is
always the highest. (From a random sample of 50 images.)

The previous work we reviewed in section 3.2.3 found most natural scenes contain
only a few colors, so this is not surprising. In the next two sections, we will consider
these properties for entire databases, rather than individual images.

3.5.1 Cone statistics in natural image databases

First we examine simulated LMS cone excitations for the natural image databases.
The first column of table 3.3 shows that most databases have highest activity in the L
channel, and all have lowest activity in the S channel. The overall activities depend
both on the normalization method used for each cone class, and on the distribution of
energy over wavelength in the images. Typically, cone responses are normalized to be
equal for a flat (equal energy) spectrum, and the normalization is fixed for the database.
The MCID additionally includes criteria from psychophysics about the maximum sen-
sitivity of the cone-opponent mechanisms. Note that in human and macaque retina,
the ratio of L:M cones varies greatly between individuals, and the S cones constitute
only around 5 % of the total (around parafoveal retina). Hence the total excitation ra-
tios are in some way misleading, but an important point is that without any adaptive
normalization, the output from one cone class would dominate.

The third column of table 3.3 shows that all the channels are highly correlated, with the
L and M channel correlation always being very high (around 0.99). These correlations
are similar to those found in previous studies (described in section 3.2). We saw in
section 3.2 that much of the L/M correlation is from the overlapping cone sensitivities,
but the image content itself does increase correlation (particularly between M and S
and L and S). Figure 3.10 shows these cone correlations graphically. Figure 3.11 shows
the cone excitations are skewed towards low values, indicating the need for some form
of gain control or adaptation.
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L:M:S corr L/M, L/S, M/S
1.0 : 0.83 : 0.47 0.98, 0.50, 0.65

(a) Sample image, cone excitation ratios, and correlations
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(b) M vs. L, S vs. L, and S vs. M activation histograms
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(c) S-LM vs. L-M activation histogram (d) CIELChab histogram

Figure 3.8: Cone statistics and color distributions for sample image 1. (a)
Image (uncalibrated RGB) and table of total L:M:S excitations and correla-
tions over the image. The cone sensitivites are normalized assuming equal
excitations to white (flat spectrum) light, and we also assume that each of
the three cone types exists at each pixel. The L and M cones are highly cor-
related. (b) 2D histograms of pairs of cone excitations. We can again see the
cone correlations, and also that most of the cone excitations occupy a small
fraction of the possible area. (c) Similarly, the cone-opponent activations are
biased and occupy a small area. (d) Polar histogram of CIELChab hues. The
polar axis is perceived hue H (from 0 back to 1), while the radial axis is a
count of the number of pixels of a given hue, weighted by C. We can see the
image is dominated by yellow and blue.



106 Chapter 3. Colors in natural image databases

L:M:S corr L/M, L/S, M/S
1.0, 0.74, 0.27 0.97 : 0.89 : 0.91

(a) Sample image, cone excitations ratios, and correlations
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(b) M vs. L, S vs. L, and S vs. M activation histograms
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(c) S-LM vs. L-M activation histogram (d) CIELChab histogram

Figure 3.9: Cone statistics and color distributions for sample image 2. The
plot types were introduced in figure 3.8. As with the previous sample image
(figure 3.8), only a few colors (red and yellow) are present in any significant
quantity, and the cone excitations are highly correlated.
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(b) MCID

Figure 3.10: LMS cone excitations. The format of these 2D histograms was
introduced in figure 3.8. The cone excitations are highly correlated. As dis-
cussed in the text, these cone excitations do not include any variable nor-
malization or adaptation. (From the same random sample of 50 images as
in table 3.3.)

Figure 3.12 shows the cone-opponent activations. These reflect the biases present in the
cone activations: the cone-opponent activations occupy a small area, and have a bias
along the negative diagonal (approximately: yellow/blue) as we saw in previous work
(Webster and Mollon, 1997; figure 3.3). Even though Webster and Mollon (1997) scale
their cone responses (von Kries), and the cone-opponent axes, they still find this pattern
of bias, indicating that this bias is something a model of the visual system would need
to deal with even with some form of receptoral adaptation present. It is also interesting
to note that plotting samples from uniform color space (including CIELAB) results in
a bias along the same direction, though less extreme, and less restricted (McDermott
and Webster, 2012).

3.5.2 Perceptual colors in natural image databases

In section 3.2.3, we saw that natural scenes seem to contain a limited range of hues,
compared to PCS, and the hues are biased along a yellow/blue axis. Here we inves-
tigate the distribution of perceptual hues for all natural images in the Barcelona and
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(c) S cone excitations

Figure 3.11: LMS cone excitations are skewed. Histograms of L, M, and S
cone excitations, showing more clearly the skew towards low values from
figure 3.10. An unskewed distribution might be normally distributed. (From
the same random sample of 50 BCID images as table 3.3.)
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Figure 3.12: Distribution of cone-opponent activities. Both databases show a
bias along the negative diagonal -(S-LM)/(L-M), and a restricted distribution.
This agrees with previous work (figure 3.3, although note unlike that figure,
here we have not scaled the axes). Our model of the development of V1
will include an algorithm that learns based on the output of cone-opponent
retinal ganglion cells. These results indicate that this output will be highly
biased; we would expect this bias to be reflected in the model’s V1. (From
the same random samples of 50 images as table 3.3.)

McGill databases. To do this, we compute CIELChab at every pixel, and create a his-
togram of the hab counts (weighted by Cab). In subsequent chapters, we will investigate
whether a Hebbian-learning–type model is able to learn PCS from this natural image
input; the histogram representation should help predict the outcome.

Figure 3.13 shows that the databases contain a strong yellow/green bias, with blue also
present. This fits with previous work, and reflects the dominance of foliage, earth, and
sky in the scenes. Some colors, around hab 0.9, are almost entirely absent from the
databases. From visual inspection, the MCID appears to be a database of interesting,
eye-catching objects, whereas the BCID appears generally less visually interesting.
This is reflected in the wider distribution of colors in the MCID. However, even partic-
ularly colorful subsets of MCID images, such as the MCID fruit and flowers categories,
are still strongly biased to yellow/green (figure 3.13(c)).

Having characterized two databases of images that we could use as input for our mod-
eling work, we now consider four additional questions. The first concerns the accuracy
of color estimation: is our assumption of D65 illuminant reasonable? The second is
whether one of the more common, simpler-to-compute color spaces in use (e.g. HSV)
would be good enough to use in analyses of the model in subsequent chapters. The
third and fourth questions are about the colors and statistics of the natural scenes: we
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(a) BCID (b) MCID: all natural images

(c) MCID: fruit & flowers only

Figure 3.13: Distribution of colors in natural image databases. CIELChab
hue histograms over various sets of natural images. The histogram struc-
ture is described in figure 3.8, but shows counts of pixels binned by hab and
weighted by Cab. (a) and (b): For large numbers of natural scenes, the bulk
of hues are around yellow/green. (c) Even using a very colorful subset of the
MCID with many red objects still shows strong bias to yellow/green.

attempt to separate the cone correlations from the distribution of perceptual colors in
the images.

3.5.3 Using recorded illuminant

Light reaching the eye from a surface is a combination of the illuminant and the sur-
face’s reflectance. As discussed in the introduction, the goal of the color vision system
is presumably closer to getting information about reflectance than information about
the illuminant, because we usually want to know about objects, not light sources. The
CIELAB color model includes an approximate normalization for the illuminant (the



3.5. Results 111

(a) Natural01 subset of BCID, assuming D65 (b) Natural01 subset of BCID, using per-image
whitepoint

Figure 3.14: Perceptual colors with more accurate whitepoint. (a) A subset
of the BCID, analyzed as in figure 3.13 (assuming a fixed D65 whitepoint).
(b) The same subset of images as (a), except estimating the illuminant from
the lightest region of the grey sphere. This does result in a broadening of the
distribution, but for these natural scenes the effect is small. In a database
with images taken in many different locations and situations (e.g. under a
canopy of green leaves vs. in open space), at different times of day, in differ-
ent weather conditions, using an accurate per-image whitepoint could make
more difference.

“whitepoint”), intended to approximate the early visual system’s short-term adapta-
tion. When we analyzed perceptual colors in the image databases in the previous sec-
tion, we assumed the illuminant was D65 (i.e. northern European daylight). This seems
like a reasonable assumption, because many of the images were indeed collected under
those conditions. However, the BCID includes a grey sphere (of known reflectance and
chromaticity), which can be used to estimate the illuminant. Therefore, we can see the
effect of assuming a fixed illuminant rather than using the illuminant from the image
itself. Figure 3.14, using a subset of the BCID images, shows that using the per-image
estimated illuminant does result in a slightly broader distribution of colors—but the
bias is still strongly present.

3.5.4 Simpler, non-uniform perceptual color space: HSV

HSV (like the closely related HSL space) is a non-linear transformation of RGB, and
is device dependent in the same way as the underlying RGB space from which it is
calculated. HSV has hue, saturation, and value, but these are not independent percep-
tual dimensions (e.g. changing hue affects also the lightness/brightness we perceive),
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(a) HSV (b) CIELChab

Figure 3.15: Analyzing databases in HSV rather than CIELChab color space.
Analyzing the BCID in HSV leads to the same qualitative conclusion as the
CIELChab analysis, i.e. the bias is of similar magnitude, and also in a yellow
direction. HSV would therefore be an acceptable space to use in our later
modeling work with large sets of natural scenes.

and additionally are not perceptually uniform (e.g. a given change in HSV hue in one
part of the color circle changes the perceived color far more than in another parts).
On the other hand, HSV is an extremely commonly used space in computer graphics,
captures the basics of perceptual color space (e.g. red and blue are as close as red and
green, and are joined by magenta) and has even been used in investigations of percep-
tual color representation in animals (Li et al., 2014). Therefore, it is interesting to see
the HSV equivalent of the CIELChab results. We observed that for some individual
images, the differences can be significant, but figure 3.15 shows that the results are
quite similar over a large number of images, demonstrating that HSV is a reasonable
overall approximation for these natural scene images.

3.5.5 Natural scenes with modified hue distributions

If we were able to collect a set of natural images that perfectly reflected perceptual
color space, rather than the colors in real natural scenes, what would it be like? Such
a set of images may be useful because it could allow us to separate the distribution of
perceptual colors from the correlated LMS cone sensitivities, which could be useful
for understanding our later computational modeling.

Starting from a subset of the BCID, Natural01, we “jittered” the hues present in the set
of images by varying amounts in order to create collections of images with different
hue distributions. The method was described in section 3.4.3, and we created three dif-
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Hue jitter L : M : S Std L, M, S Corr L/M, L/S, M/S
0.0 1.0 : 0.83 : 0.38 0.17, 0.14, 0.10 0.99, 0.87, 0.91
0.2 1.0 : 0.84 : 0.40 0.14, 0.11, 0.089 0.99, 0.80, 0.85
0.6 1.0 : 0.87 : 0.55 0.14, 0.11, 0.091 0.97, 0.85, 0.87
1.0 1.0 : 0.90 : 0.70 0.14, 0.12, 0.11 0.97, 0.77, 0.83

Table 3.4: Basic LMS statistics for hue-jittered BCID Natural01 images. Jit-
tering the hue does have some effect on the LMS correlations, though they
remain high. From a sample of 50 images.

ferent collections: jitter 0.2, jitter 0.6, and jitter 1.0. Samples of these three collections
are shown in figures 3.16, 3.17, and 3.18.

Figure 3.19 and table 3.4 show the results of this manipulation. The collections still
have high LMS correlations, but they are lower than for the original database. The dis-
tribution of perceptual hues of course becomes more uniform, although because the im-
ages are so biased in perceptual hue space, it takes many more than eight whole-image
hue rotations before the distribution can become fully smooth (investigated further in
chapter 4).

3.5.6 Symmetric sensitivities

We saw in the previous section that even when the distribution of perceptual hues is
made uniform, there are still high correlations in the input signal. This is because
LMS sensitivities overlap to a high degree, particularly for L and M cones. In contrast,
sRGB sensitivities overlap much less, and the overlap is more symmetric. Using the
full Barcelona and McGill databases (as in section 3.5.2), but converted to sRGB rather
than LMS, results in lower and more equal correlations for the same distribution of
perceptual hues. The correlations are shown in table 3.5. This confirms that models
introduced in the previous chapter that did not use LMS sensitivities would have been
learning an unrealistic input distribution. However, it also suggests that we could use
sRGB images as input to separate the effect of cone correlation from the effect of
perceptual hue distribution.

3.6 Discussion

In this chapter, we have seen that the colors in natural scenes appear to be a highly
non-uniform sampling of PCS. Yellows, greens, and blues (from earth, vegetation,
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Figure 3.16: BCID with hue jitter 0.2. 180 out of 560 images (containing
some duplicates differing only by hue).
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Figure 3.17: BCID with hue jitter 0.6. 180 out of 560 images (containing
some duplicates differing only by hue).
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Figure 3.18: BCID with hue jitter 1.0. 180 out of 560 images (containing
some duplicates differing only by hue).
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Database R : G : B Std R, G, B Corr R/G, R/B, G/B
BCID 1.0 : 0.90 : 0.53 0.12, 0.10, 0.11 0.88, 0.62, 0.82
(LMS) 1.0 : 0.82 : 0.36 0.13, 0.11, 0.077 0.99, 0.77, 0.82
MCID 0.79 : 1.0 : 0.62 0.16, 0.21, 0.18 0.78, 0.60, 0.86
(LMS) 0.98 : 1.0 : 0.78 0.20, 0.21, 0.20 0.99, 0.91, 0.94

Table 3.5: Basic RGB statistics for natural image databases. The same im-
ages converted to sRGB rather than LMS channels have lower between-
channel correlations. RGB images are therefore not suitable as realistic
training input for models, but could be used to separate the effect of LMS
correlations from the effect of a non-uniform sampling of perceptual color
space. (Note: linear RGB is used here, with no gamma applied.)

sky) are common, while other colors rarely appear at all. We characterized this bias
in two databases of images of natural scenes that we could use as input for training a
developmental model of OR and CR preferences. As well as the non-uniform sampling
of PCS, we have seen that the cone excitations that would experienced by a model using
these databases are highly biased. First, total excitation of cone types in databases
varies. Second, cone excitations are highly correlated, and not just because of cone
sensitivity overlap. Third, cone excitations are highly skewed towards low values.
Any model developing a perceptual color space using natural images as input would
therefore need to overcome the biased distribution of perceptual colors, uneven channel
activations, skewed channels, and correlated channels if it is to develop a representation
of PCS. How that could happen is the subject of subsequent chapters.

Apart from learning about the issues to be faced by a model using these databases as
input, a number of other questions follow from our results so far. We consider these
below.

Figure 3.19 (following page): Color distributions of hue-jittered BCID images. Top panel:
jitter 0.2; middle panel: jitter 0.6; bottom panel: jitter 1.0. As the jitter is increased, the
distribution of perceptual hues broadens (bottom right in each panel). The distributions
of cone excitations, and cone-opponent activations, also change. However, the cor-
relations remain high (see also table 3.4), suggesting that bias in the hue distribution
will not be the only problem faced by our subsequent modeling of V1. Even if the hue
bias were not present, input to a model would likely still present difficulties for learning
mechanisms such as Hebbian learning, particularly the highly correlated L and M sig-
nals. We will return to this issue in the following chapters. (Hue histograms over the
entire 560 images; cone statistics from a sample of 50 images.)
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3.6.1 Do existing databases accurately reflect visual experience?

For modeling the development of PCS, it is important to have a representative sam-
pling of visual experience. As discussed in the introduction, we decided that natural
scenes probably best reflect the visual experience of macaques used in the imaging
experiments, and of many humans (from whom perceptual color space is constructed).
Although the color statistics of man-made scenes are probably different from natural
scenes, and certainly have effects on details of PCS (e.g. the direction of minimum
sensitivity predicted in CIELAB is closer to orange-cyan, rather than yellow-blue as
would be predicted from natural scenes; McDermott and Webster, 2012), we believe
the colors present in man-made scenes likely reflect human PCS. However, the imaged
macaque monkeys could have been reared in extremely colorful or extremely drab
environments, and we do not know which.

If we assume that natural scenes are the right scenes to use, the next question is have
the natural image databases sampled them appropriately? The scenes are not at all a
random, unbiased sample of visual experience in a way that e.g. data from a camera
attached to an animal would be. The MCID has lots of interesting objects, and thus
might be a good database to simulate paying attention to colorful things, while the
BCID seems less deliberate. However, in both cases, we found the distribution of
colors and statistics agrees with previous studies of the colors in natural scenes.

One could also argue that the databases are too small to be representative. However, it
seems clear from analysing subsets of databases that collecting more images will result
only an increasingly clear bias, as although more of the rare/non-existent colors may
be encountered, these will be dwarfed by the increasing quantity of e.g. yellow that
will also be encountered.

Finally, another factor not incorporated into the databases is that the scenes themselves
(i.e. the reflectances present) likely change over time, in particular with season. For
instance, Webster et al. (2007) shows there are significant differences in reflectances
and cone signals in several different regions at different times of year, for a small
number of scenes. While the MCID does have some images of autumn and winter, it
is still largely composed of summertime images, and there are no repeated images of
the same scene at different times of year.
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3.6.2 Alternative viewing conditions

Apart from whether or not the natural scenes in the databases are “the right scenes”,
another question is about the effect of varying viewing conditions. In reality, these
scenes would be experienced at different times of day and in different weather condi-
tions. All of those things may affect the illuminant and hence the statistics of the scene
radiances and therefore possibly the cone statistics and colors perceived (time of day:
Wyszecki and Stiles, 1982; Lovell et al., 2005; Granzier and Valsecchi, 2014; weather:
Lee and Hernández-Andrés, 2005). We mentioned earlier (and will discuss further be-
low) that the early visual system appears to rapidly adapt to the scene illuminant, and
hence this may not be an important factor for perceived hue, but this is still something
a real visual system would have to deal with.

One possibility for future work would be to take a database such as the BCID contain-
ing a target of known reflectance, remove the illuminant, and then re-illuminate with
simulations of the different illumination conditions (from times of day and weather
conditions). Another possibility would be to capture new calibrated images of scenes
at different times of day, and in different weather conditions (see the chapter 6).

3.6.3 Model of perceived color

We mentioned in section 3.2.3 that CIELAB is far from a complete description of
human PCS, and not the most advanced model of color appearance. In particular,
while CIELAB approximately takes account of the illuminant (via a “wrong” von Kries
transform, since it is not performed in LMS space, but in XYZ; Fairchild, 2005), it
does not take account of other important factors in color vision such as spatial context.
Therefore, it would be interesting to repeat the CIELChab analyses using a recent, more
complex, color appearance model. While not currently necessary for understanding
the behavior of models of the early visual system reviewed in the previous chapter
(e.g. because those models do not include adaptation), a more accurate description
of the distribution of color percepts elicited by natural scenes would be important to
confirm the bias found in CIELChab space, and hence for understanding the human
visual system.
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3.6.4 Normalization, adaptation, saliance

We have presented distributions of cone and cone-opponent activations, as well as per-
ceptual hues. In doing so, we have not considered any neural normalization or adapta-
tion, except in our model of perceptual hue (in which an estimate of the adapting effect
of illuminant is taken into account). The color visual system is known to adapt over
both short and long timescales, at multiple levels. The reason for naively considering
the cone and cone-opponent statistics (i.e. not including any adaptation) is that this is
what our initial model will do, since it will be based on the previous work reviewed in
chapter 2. However, to develop a proper understanding of the representation of color
at various levels of the visual system, it will be important to include normalization and
adaptation. Not doing so may account to some extent for the bias in color statistics, al-
though previous work indicates that strong biases are still present even after simulating
normalization and adaptation (Webster and Mollon, 1997).

Another consideration from the biological point of view is higher-level mechanisms,
which may cause the salience of stimuli to vary. While we may encounter far more of
some colors than others, perhaps a higher-level mechanism causes more weight to be
given to rarer stimuli (McDermott et al., 2010). This is also something we have not
considered here, because it would greatly complicate the modeling process.

3.7 Conclusion

We have analyzed two calibrated color image databases (MCID and BCID), showing
that the databases contain a distribution of colors with a strong bias towards yellowish
hues, and additionally have highly correlated cone excitations, with excitations highly
skewed towards low values. This suggests that any input-driven model of the develop-
ment of color vision using these image databases as input will have to deal with these
differences between the input and color space. Our review of previous work indicates
that these biases in the color distributions in the natural scenes is not at all specific to
these two databases, but a general result.





Chapter 4

Naive model of color map

development

4.1 Introduction

The main goal of this thesis is to understand how wiring for perceptual color space
(PCS) arises in the brain. As previous chapters have discussed, how this happens is
not obvious. In chapter 2, we saw that PCS is quite different from wavelength space
(WS). For instance, the most separated visible wavelengths in WS—around 400nm
and 700nm—appear more similar to each other (red and violet) than either does to a
middle wavelength—around 550nm—which appears green. We also saw that visual
experience is critical for the development of color vision, but at the same time our PCS
is relatively insensitive to a wide range of environmental and physiological variations.
If our visual experience were a uniform sampling of PCS, a learning system could
easily construct PCS out of WS—but visual experience is a highly non-uniform sam-
pling of PCS (chapter 3). Furthermore, as covered in the previous two chapters, the
non-uniform sampling is likely different for different locations, times of day, seasons,
and weather conditions, yet PCS remains relatively stable between individuals and for
one individual over time. Additionally, PCS is reasonably consistent between differ-
ent individuals despite quite different physiologies (e.g. large individual differences
in L:M cone ratio; chapter 2), and for one individual despite changes in physiology
and anatomy over time (e.g. the lens yellows with age). So, where does PCS come
from—how is it constructed in the brain?

We can start by identifying where in the brain PCS first appears—giving us some
bounds on the biology involved in the transformation, even if we do not yet know
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all the processes involved. We mentioned above that input to the early visual system
is certainly different from PCS; previous chapters have also reviewed how the early
visual system does not appear to be organized according to PCS at the retina or LGN
stages. However, there is evidence for organization by PCS in primary visual cortex
(V1). These experimental results come from a small number of macaques, and studies
have used various experimental methods and have made varied claims, so the results
about hue representation in V1 are not yet completely established. Additionally, the
experimental work done so far does not address how wiring for color (CR) could arise.
This situation motivates our computational modeling.

In chapter 2, we saw that computational modeling has already provided some insight
into the development of V1. We reviewed previous models that explored how wiring
for orientation (OR) and CR organization could develop, and that began to explore
how hue representation could develop. While a number of models have been used to
investigate various aspects of OR and/or CR development in V1, in some cases making
similar claims as each other (chapter 2), we found the model providing the closest start-
ing point for understanding OR and CR organization was the De Paula (2007) model.
This model has a realistic architecture comprising the principal stages of the early vi-
sual system: LMS photoreceptors, spatially and cone-opponent RGC/LGN processing,
and a self-organizing model of V1. Results from the model match a number of exper-
imental findings: the model develops a generally OR-selective map with patches of
CR-selective cells, matching experimental results ER1-ORmap and ER2-patches.

However, the De Paula (2007) model—along with all previous modeling work—does
not explain experimental results about the representation of hue in V1. We have not
seen how a single CR patch can represent many or all hues, nor have we seen hues in
a CR patch having a spatial organization mirroring that of PCS (experimental results
ER3-range and ER4-peaks). The principal goal of this thesis therefore becomes to
extend the De Paula (2007) model to develop a realistic representation of hue, and
so to generate hypotheses about how appropriate wiring might arise. In doing so, we
will come to understand the significance of certain previously neglected features of the
early visual system’s color pathway.

Before we can proceed to investigate the development of PCS in the De Paula (2007)
model, we must first address some of the other problems with previous work that we
highlighted in chapter 2. When we reviewed the state of the art in modeling the de-
velopment of PCS in V1, we found there were a number of problems that applied to
all previous modeling work. There were three groups of problems, the first being PCS

representation problems (as described in chapter 2): problems P1-range, P2-PCS, and
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P3-pref. However, the other two groups of problems are ones that prevent us from be-
ing able to model easily and compare with experimental data, so must therefore be
addressed first:

• Not directly comparable measurements: Existing models have not been com-
pared closely to experimental data about the representation of CR. Experimen-
tal work indicates that within a CR patch, peak responses to different hues are
spatially separated, but there is no equivalent modeling analysis (problem P4-
peaks). Additionally, modeling so far does not identify CR patches by com-
paring responses to red/green and black/white gratings, as experimental work
does (problem P5-RGBWgratings), which will differ from analyses based on
responses to all hues.

• Modeling problems: Previous modeling work does not address some of the im-
portant problems discussed in chapter 3. First, we saw that databases of natural
scenes are a highly non-uniform sampling of PCS, and also when converted to
photoreceptor excitations result in highly biased photoreceptor statistics. Pre-
vious models have used small selections of images and/or manually chosen L,
M, and S channel scaling factors to ensure a CR preference map that represents
all photoreceptor classes (problem P7-LMSscaling). Changing input images
therefore requires an extensive parameter search, which is somewhat circularly
guided by the modeler’s judgment of the resulting CR preference map’s appear-
ance. Second, for some models we do not see the progress of CR map develop-
ment over time, and for others we know CR map development does not proceed
smoothly. In the case of the De Paula (2007) model, because the model of V1
used (LISSOM) simulates homeostasis via sudden jumps in parameter values,
there can be unstable changes in the V1 preference map during development
(problem P8-V1StableDev).

It is important to solve these problems first because they make investigating the model
difficult; solving them is this chapter’s goal. To do this, we will introduce a new model,
which we will refer to as the naive model. We will evaluate this new model against
criteria we reviewed in chapter 2 (experimental results ER1-ORmap, ER2-patches,
ER3-range, and ER4-peaks). We will show a close match to experimental results for
joint OR and CR organization (experimental results ER1-ORmap and ER2-patches)
while solving problem groups not directly comparable measurements (P4-peaks and
P5-RGBWgratings) and modeling problems (P7-LMSscaling and P8-V1StableDev).
The naive model will therefore be the starting point for the rest of this thesis. However,
we will see that the new model still has the PCS representation problems of previous
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work. Later on, in the following chapter, we will investigate the PCS representation

problems in detail and show how a model can develop a realistic PCS, and we will
relate those conditions to problems the brain is overcoming in developing PCS from
visual input.

4.1.1 Contributions of this chapter

• By simulating homeostatic mechanisms at the photoreceptor and V1 levels, we
extend the current state of the art in modeling the development of OR and CR to
allow (a) investigation of development of PCS without requiring the modeler to
set parameters to anticipate experimental results, thus providing fewer degrees
of freedom and avoiding overfitting, (b) use of larger and more varied sets of
input data (as analyzed in chapter 3), likely to be more realistic, and (c) detailed
comparison with experimental results. The resulting model, the naive model,
therefore becomes the best available model of the development of OR and CR
selectivity in V1 because it has better results (e.g. higher quality OR map), more
detailed analysis, and fewer problems than the previous best model.

• We show that while the naive model is a good match for joint OR and CR orga-
nization, in a detailed comparison with experimental work it is a poor match for
CR organization: the model cannot support a spatial or preference-based code
for hue. We suggest that the model is sensitive to physical and environmental
variabilities that the early visual system is not sensitive to, which will be ad-
dressed by models in later chapters.

4.2 Methods

The model presented here consists of three stages (figure 4.1), and is developed from
previous modeling work (figure 4.2). The subcortical pathway (stages 1 and 2) is
generally based on the De Paula (2007) model’s subcortical pathway, but V1 (stage 3)
is from the Adaptation, Laterally connected model (AL; Stevens et al., 2013b) rather
than LISSOM as used in De Paula (2007). The reason for using AL is that it is similar
to LISSOM but simpler and more robust, giving a realistic level of stability during
development (discussed in a later section).

In overview, sheets of firing-rate–based point neurons represent the photoreceptors,
RGC/LGN, and V1. At every iteration, an input is drawn on the photoreceptors, and
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units in the RGC then compute their activities based on photoreceptor output; finally,
units in V1 compute their activities based on afferent activation from the RGC com-
bined with lateral connections within V1. Each iteration therefore represents one visual
fixation. As the simulation proceeds through 10,000 training iterations, V1 self orga-
nizes through incremental Hebbian learning of its afferent and lateral connections. One
iteration of the model is illustrated in figure 4.3

In the following sections, we will walk through the model’s three stages in more de-
tail, which necessarily includes a detailed description of the models of Stevens et al.
(2013b) and De Paula (2007). Along the way, we will introduce additions to previous
work in order to solve the modeling problems mentioned in the previous section (and
more fully described in chapter 2). The additions involve simulating adaptive home-
ostasis in the photoreceptors and V1. To conclude this section, we will demonstrate
the model in action.

Parameters are listed in appendix C, and the model and simulator used to generate
results in this chapter are freely available from www.topographica.org.

4.2.1 Stage 1: Photoreceptors

The process of simulating photoreceptors is outlined in figure 4.4; here we will de-
scribe the details. During training (simulating an individual’s lifetime of visual experi-
ence), input to the model comes from a database of calibrated color images of natural
scenes. We start with images in CIE 1931 XYZ color space (CIEXYZ; Smith and
Guild, 1931) from the Barcelona Calibrated Image Database (BCID; Párraga et al.,
2010). At each iteration, a patch of CIEXYZ image is first converted to light-linear
cone excitations (i.e. absorptions that are linearly related to the power of incident light).
Each (Xi,Yi,Zi) image pixel i is converted to (Li,Mi,Si) using a 3×3 matrix M1:Li

Mi

Si

= M1

Xi

Yi

Zi

 (4.2.1)

The matrix M1 is a linear transformation of the CIEXYZ cmf to human/macaque foveal
LMS cone fundamentals (the Smith-Pokorny LMS 2◦ cone fundamentals (SP-LMS)
fundamentals), although alternative transformations can be used. For some transfor-
mations, or if the (Li,Mi,Si) are estimated by an alternative method (see below), there
may be negative values, in which case we threshold at 0.

http://www.topographica.org
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Light

Photoreceptors

RGC/LGN

V1

1

2

3

(a) Model’s three stages.

(b) Overview of model’s architecture.

Figure 4.1: Overview of naive model. (a) Schematic showing the model’s
three main stages. Subsequent schematic figures in the same format give
more detail about each of the three stages. (b) First, the response of hu-
man/macaque LMS cones to light is simulated by processing patches of cali-
brated color images according to human cone spectral sensitivities. Second,
spatial and cone opponent processing is simulated by the RGC, which com-
prises pairs of ON and OFF sheets, using Difference-of-Gaussians receptive
fields. The LGN stage is folded into the RGC, assuming that they have the
same feed-forward response properties. Third, V1 receives afferent input
from the RGC, and also contains lateral excitatory and inhibitory connec-
tions. V1’s afferent and lateral connections are modified during training by
divisively normalized Hebbian learning. V1 simulates roughly 3mm×3mm
of cortical area.
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Light

Photoreceptors

RGC/LGN

V1

Bednar et al. (2005)

De Paula (2007)

+ adaptation

SOM (von der Malsburg, 1973)

LISSOM (Miikkulainen et al., 2005)

AL (Stevens et al., 2013b)

Figure 4.2: Model’s ancestry. The subcortical model is based on that of De
Paula (2007), which in turn is based on that of Bednar et al. (2005) (see
chapter 2); we add adaptation based on the input data. The cortical model is
AL, which comes from a family of models that elaborate the self-organizing
map algorithm of von der Malsburg (1973), and importantly also includes
adaptation.

There are two important issues regarding our (and previous work’s) estimate of cone
excitations. The first is that the LMS sensitivities we have used are corneal sensitivi-
ties, derived from human color-matching experiments. Therefore, the sensitivities do
not include the effects of pre-receptoral filtering. In humans and animals, the final pho-
topigment isomerization rate for each cone class is proportional to its corresponding
corneal sensitivity, but the constant of proportionality differs between cone classes (be-
cause e.g. macular pigment absorbs more short-wavelength light than long-wavelength
light). However, we will argue below that the normalization of cone sensitivities is
something that must vary, so any fixed constant of proportionality between the corneal
sensitivity and and photopigment isomerization can be ignored for our long-term de-
velopment model. Some image databases do include an estimate of the photopigment
isomerization rates; for the phenomenon we are modeling (the long-term development
of color selectivity), we obtained qualitatively similar results from training on a subset
of one of these (UPenn Calibrated Image Database (UPCID; Tkačik et al., 2011)).

The second issue regarding the estimation of cone excitations is the accuracy of con-
version of scene radiances, as captured by an RGB camera with sensitivities that differ
beyond a linear transform from human LMS sensitivities, to LMS cone excitations.
As noted in chapter 3, more accurate conversions of scene radiances to cone excita-
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(a) Image

(b) L receptors (c) M receptors

(d) L-M On and Off RGC/LGN (e) M-L On and Off RGC/LGN

(f) V1: initial (g) settling step 1
...

(h) step 6
...

(i) step 11
...

(j) step 16

Figure 4.3: Demonstration of one iteration in the model during training. Ac-
tivities are shown for a subset of the model from figure 4.1(b). (a) At the start
of each iteration, a random patch (at a random zoom level and orientation) of
a randomly selected calibrated color image is presented to the model (uncal-
ibrated RGB shown here). The processing that follows represents one visual
fixation. (b) and (c) L and M cone photoreceptor responses (S not shown).
(d) and (e) L-M On/Off and M-L On/Off responses (LUM and S/(L+M) not
shown). (f) Initial diffuse V1 response. (g)–(j) V1’s lateral connections settle
the activity into discrete bubbles (multiple “winning” patches). Connections to
the neurons remaining active strengthen via Hebbian learning, causing local
patches of V1 to become selective for particular input patterns. The short-
range lateral excitatory connections cause nearby neurons to have similar
responses, while the long-range lateral inhibitory connections cause more
distant neurons to learn different inputs.
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(figure 4.5)
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eqn 4.2.1
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η

eqn 4.2.2

RGC

1

Figure 4.4: Naive model’s photoreceptor processing. Cone excitations are
linearly related to photon absorption, but subsequent cone activations (re-
sponses) are not linear. The naive model includes simulated adaptive home-
ostasis.
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Calibrated RGB
camera

CIE XYZ image
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(a)

Light
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Figure 4.5: Options for supplying cone excitations. The model can work
either with images specified in CIEXYZ, or directly with human LMS cone
estimates. (a) Typically, CIEXYZ is used, because it is a standard format for
device-independent color, and most calibrated color image data is available
in it, or can be converted to it. The CIEXYZ cmf are approximately related to
LMS sensitivities by a linear transform. (b) Alternatively, if cone excitations
have already been estimated, these can be used directly. This path may
be used to allow external computation of LMS excitations, for instance if a
higher accuracy is required (see chapter 3).
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tions are possible (e.g. by capturing images with a hyperspectral camera, or by using
a more sophisticated RGB camera-to-LMS conversion). Therefore, the model allows
LMS cone excitations to be supplied directly instead (figure 4.5). For the phenomena
we are modeling, we obtained qualitatively similar results using Párraga et al. (2010)’s
more accurate LMS cone excitation estimations. We expect the same would be true
using hyperspectral images converted to cone excitations. As pointed out in chapter 2,
pre-receptoral filtering varies between individuals, and over one individual’s lifetime,
so it is not clear that highly accurate estimation of LMS excitations is meaningful for
our modeling, and requiring it would greatly reduce the range of image databases with
which the model can be tested.

4.2.1.1 Adaptive homeostasis

M1 (or any other conversion method) includes an assumption about how to normalize
the LMS cone responses (chapter 3). The De Paula (2007) model uses LMS cone
activations computed by Olmos and Kingdom (2004). The Olmos and Kingdom (2004)
conversion from RGB camera responses to LMS responses assumes equal activity of
L, M, and S cones for equal-energy (physically white) light (along with some other
constraints from psychophysics—see chapter 3). In the De Paula (2007) model, this is
followed by ad hoc manual scaling of each of the LMS channels in order to achieve a
CR preference map that represents all three channel types. That is, the three channel
scalings are parameters the modeler sets manually via an iterative procedure based on
the resulting CR and OR maps, and are applicable only to a specific set of images
(problem P7-LMSscaling).

The requirement to scale each channel differently after converting the RGB camera
images to LMS activations arises because of a combination of:

• an implicit assumption that each class of photoreceptor is always equally acti-
vated by equal-energy white light;

• an image database having differing total energies over the L, M, and S cone
wavelength sensitivity ranges.

We saw in chapter 2 that color depends strongly on both spatial and temporal context,
and that one cause of this is likely to be neural adaptation: the L, M, and S photore-
ceptors do not always respond equally to equal-energy light (or whatever other fixed
criterion could be used to determine relative photoreceptor responses); chapter 2’s fig-
ure 2.12 showed the effect of adaptation on cone responses. Therefore, we simulate
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adaptive homeostasis of the photoreceptors (to be described in detail below), both re-
ducing the number of free parameters, and making it easier to use different/larger im-
age databases. Note that this adaptation would not necessarily have to occur in the
receptors themselves, but could occur in the horizontal cells or any other part of the
pathway before the cone-opponent output from the ganglion cells.

In the following chapter we will be comparing various conditions in the retina; to do so
fairly it is crucial to have precisely balanced results. Therefore, we use a batch rather
than heuristic method to simulate homeostasis. However, we expect similar results
would be achieved with an incremental homeostatic mechanism like that used in the
model’s V1 (to be described in section 4.2.3).

The cone activations at each input location i are computed as:

ηi = σ

 gL,iLi

gM,iMi

gS,iSi

 (4.2.2)

The constant gain factors gL,i are pre-computed independently for each channel, en-
suring that over the course of a simulation, the cumulative total excitation of each
photoreceptor type at a given location i is equal:

gL,i =
max(〈Li〉,〈Mi〉,〈Si〉)

〈Li〉
gM,i =

max(〈Li〉,〈Mi〉,〈Si〉)
〈Mi〉

gS,i =
max(〈Li〉,〈Mi〉,〈Si〉)

〈Si〉
(4.2.3)

where 〈·〉 denotes an average over time.

As mentioned above, although the gain factors computed here result in precisely bal-
anced long-term channel activations, this precise balance is necessary only for fair
comparisons of various conditions in the following chapter. If instead of computing
the gain factors per receptor, we compute one gain factor per channel (i.e. to be applied
to all receptors of the same type, regardless of location), we obtain similar results. This
is because, over the course of the entire simulation, each receptor experiences a very
similar distribution of input, so for long-term developmental simulations it is not nec-
essary to consider the precise spatial extent of any normalization that may occur in the
retina. However, as discussed in chapter 6, such effects would likely be important over
short timescales.

σ is a piecewise-linear function that keeps the overall mean activity output from the
retina approximately constant at each iteration, while preventing any photoreceptor ac-
tivation being larger than 1. In the next chapter, we will be changing various conditions
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in the retina; σ is required to ensure there are no spurious effects from changes to the
overall retinal activity.

σ(x) =


0 x≤ 0
x
θ

0 < x≤ θ

1 x > θ

(4.2.4)

where θ is the same for every photoreceptor, and is computed at each iteration as:

θ =
X
mp

(4.2.5)

where X is the average across space of all incoming activation (i.e. across all gain-
adjusted initial photoreceptor activations), and mp is the target mean photoreceptor
activation. mp is a constant parameter, fixed for all simulations in this thesis, chosen so
that the photoreceptors’ mean activation is approximately equal to that of the De Paula
(2007) model. Photoreceptors saturate approximately 5% of the time.

Output from the photoreceptors is next processed by sheets of center-surround ganglion
cells, representing the RGC and LGN , which we go on to describe in the next section.

4.2.2 Stage 2: RGC/LGN

The model’s sheets of RGC/LGN cells represent all the early visual system processing
between the photoreceptors and the LGN. This involves grouping the action of hori-
zontal, bipolar, amacrine, and ganglion cells together, focusing only on the cells that
drive the LGN (see chapter 2). The retinal ganglion cells are represented by eight dif-
ferent sheets, the ON and OFF pathways of the four typically assumed classes of P
retinal ganglion cell. At each RGC spatial location, there are therefore eight retinal
ganglion cells. Each retinal ganglion cell has Difference-of-Gaussians (DoG) connec-
tion fields (CFs) with fixed weights (defined below) from various combinations of cone
cells (figure 4.7). The cone-opponent channels (e.g. S ON center, LM OFF surround)
primarily carry chromatic information, while the non-cone-opponent channel carries
only luminance (achromatic) information because it pools all the cone types together.
The naive model’s RGC and LGN initial activation stage is unchanged from the De
Paula (2007) model, with the exception that here we use a center-surround arrangement
for the S/LM pathway, whereas the De Paula (2007) model used a spatially coextensive
arrangement. The biological situation is is not clear (see chapter 2), but the behavior
being tested here is not qualitatively affected by the choice.
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RGC initial
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Figure 4.6: RGC processing. Initial cone opponent activations are passed
through a nonlinear function (typically half rectify).
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Figure 4.7: Naive model RGC pathway. Retinal ganglion cells perform cone-
and spatially opponent processing, using circular Difference-of-Gaussians
connection fields. LUM is L+M+S, although some studies argue that only L
and M cones are involved in LUM (see text). The “blue/yellow” (S vs. LM)
pathway used in the model is center surround, although some studies argue
that it may be spatially coextensive (again, see text). Neither issue matters
for the phenomena being modeled in this thesis.
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In the simulations of this chapter, there are eight RGC sheets (i.e. eight classes of RGC
cell: L/M On and Off, M/L On and Off, S/LM On and Off, and LUM On and Off).
The activation of RGC unit j in one RGC sheet is calculated as:

η j = f

(
∑
ρ

γρ ∑
i∈Fρ, j

ηρ,iwρ,i j

)
(4.2.6)

where ρ is an index over the incoming connection types (i.e. center and surround), γρ is
a constant connection strength for that type of connection (inherited from the De Paula
(2007) model; all connection strengths effectively equal), ηρ,i is the the activation of
pre-synaptic photoreceptor i in j’s CF Fρ (i.e. the set of units to which j is connected
on the input sheet), and wρ,i j is the connection weight from i to j (described below).

Unlike in the De Paula (2007) model, which uses a fixed, piecewise-linear approxi-
mation to a sigmoid function, here f is a function that ensures positive activation and
scales all activities to obtain a constant mean output per iteration (in a similar fashion
as σ; eqn 4.2.4). The latter feature is not required in this chapter, but in the next chapter
we will be manipulating aspects of the RGC/LGN and want to keep the total activation
as similar as possible to avoid any spurious effects of a change in overall activity.

f (x) =

0 x≤ 0
x
θ

0 < x
(4.2.7)

where θ is the same for every RGC unit, and is computed at each iteration as:

θ =
X ′

mr
(4.2.8)

where X ′ is the average across space of all positive incoming activation (X ′= max(X ,0)),
and mr is the target mean LGN activation. mr is a constant parameter, fixed for all sim-
ulations in this thesis, chosen so that the mean RGC activation is approximately equal
to that of the De Paula (2007) model.

Keeping the mean total RGC activation constant (scaling all units by the same value)
is not required for the model to work, but makes comparison of the different mod-
els presented in this and the following chapter simpler. Meanwhile, half rectification
(combined with V1 units having a threshold—see following section) is a reasonable
model of the parvocelluar pathway being modeled here, which appears to be largely
linear (Benardete et al., 1992; Benardete and Kaplan, 1997b,a; Solomon et al., 2010)
(unlike the magnocellular pathway, which exhibits e.g. contrast gain control).



138 Chapter 4. Naive model of color map development

As mentioned above, the fixed weights wρ,i j from photoreceptor i to RGC unit j are
defined with a DoG kernel. The CFs for ON units have a positive center and a negative
surround, while OFF units have a negative center and a positive surround. The weights
wρ,i j to an ON-center cell j at sheet coordinates (0,0) on one RGC sheet from sheet-
coordinate location (x,y) on the photoreceptor sheet are given by:

wρ,i j =
1
Zc

exp
(
−x2 + y2

2σC2

)
− 1

ZS
exp
(
−x2 + y2

2σS2

)
(4.2.9)

The center Gaussian’s width is determined by σC, and the surround’s by σS (both with
maximum radius R). The Gaussian widths (and maximum radii) are unchanged from
the De Paula (2007) model, with a center:surround ratio of 1:4. Changing the precise
ratio does not qualitatively affect the results, but the sizes may affect the degree of
spatial correlation in the outgoing signal to V1 (see section 6.4.2). Note that in biology,
a range of sizes, aspect ratios, and surround ratios has been observed (e.g. Tavazoie and
Reid, 2000). Zc and ZS are normalization constants such that the center and surround
weights each sum to 1. The center of the RGC CF unit j is mapped to the corresponding
location on the photoreceptor sheet, so the projection is retinotopic.

4.2.3 Stage 3: V1

The model of V1 is the AL model (from Stevens et al., 2013b). The AL model is sim-
pler than the LISSOM model used by De Paula (2007) because it requires far fewer
parameters to be set by the modeler. Additionally, the AL model was found to perform
better than the LISSOM model in a model of luminance (LUM)-only processing, where
it developed more selective, stable, and higher quality maps, better matching animal
results (Stevens et al., 2013b). Both models are elaborations of a self-organizing map
algorithm introduced by von der Malsburg (1973), and allow realistic input (i.e. images
rather than only abstract input), inclusion of biologically plausible properties of single
neurons, and incremental learning through a biologically plausible mechanism (Heb-
bian learning). More background on this family of models is given in Miikkulainen
et al. (2005).

Parameters are as described in Stevens et al. (2013b), where it is noted that two signif-
icant digits of precision is enough to develop qualitatively indistinguishable maps, and
it is estimated that all parameters may be changed by around 10% without affecting
the overall behavior.
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Activation of V1 unit q is calculated as:

ηq(t +δt) = f

(
∑
ρ

γρ ∑
p∈Fρ,q

ηρ,p(t)wρ,pq

)
(4.2.10)

ρ is an index over the connection types: afferent (ρ = A; L-M On/Off, M-L On/Off,
S-LM On/Off, LUM On/Off), lateral excitatory (ρ = E), and lateral inhibitory (ρ = I).
γρ is a constant strength for each connection type, chosen such that activity bubbles
form, by balancing both inhibition vs. excitation and afferent vs. lateral activation.
ηρ,p is the activation of pre-synaptic unit p in q’s CF Fρ, and wρ,pq is the connection
weight from p to q (described below). After an initial update from the RGC, afferent
activity remains constant, while V1 activity settles over 16 steps through activation of
the short-range excitatory and long-range inhibitory lateral connections. The number
of settling steps was constant, and determined in advance through observation: after
16 steps, V1 activity no longer changed. f is a threshold function that ensures positive
activation, but also implements single-neuron homeostasis by varying the threshold
(figure 4.8), as described in the next section.

4.2.3.1 Adaptive homeostasis

While the developmental path of CR maps is not known, other features (e.g. OR) are
known to develop in a stable way in animals (meaning the earliest measurable maps
are similar to the eventual adult maps; see review in Stevens et al. 2013b). Therefore,
it seems reasonable to assume the same for CR. However, the model of V1 used by De
Paula 2007 (LISSOM) does not develop in a stable way (Stevens et al., 2013b). LIS-
SOM’s V1 activation level is maintained by periodic manual parameter adjustments,
which leads to the CR map state changing suddenly at these adjustment points (and
requires manual setting of various parameters for different datasets). Therefore, we in-
stead use the AL model from Stevens et al. (2013b), which has an independent adaptive
threshold θ for each neuron, automatically adjusted to maintain a fixed target activity
(figure 4.8).

After the final response is calculated following settling (equation 4.2.10), the thresh-
old of f is updated. To set the threshold for activation, each V1 unit q calculates a
smoothed exponential average of its settled activity:

ηq(t) = (1−β)ηq(t)+βηq(t−1) (4.2.11)

where β is a parameter determining the degree of smoothing in calculating the average.
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Figure 4.8: V1 homeostasis. Each V1 neuron has an independent adaptive
threshold, automatically adjusted to maintain a target activity. Image from
Stevens et al. (2013b).

ηq is initialized to the target average V1 unit activity µ (ηq(0) = µ). The threshold
update is given by:

θq(t) = θq(t−1)+λ
(
ηq(t)−µ

)
(4.2.12)

This brings the average activity of each V1 unit closer to the specified target.

4.2.3.2 Learning

Afferent and lateral inhibitory weights to V1 neurons are initially random, scaled with
a 2D Gaussian profile, and learn during training iterations, while lateral excitatory
weights are fixed 2D Gaussians. Disabling learning of lateral excitatory connections
speeds up simulations, and for LUM-only models has been found to have no visually
distinguishable effect on map development (Stevens et al., 2013b).

For V1 unit q at sheet-coordinate location (0,0), the initial weights from pre-synaptic
unit p in connection ρ are given by:

w0
ρ,pq =

1
Zρ,q

uexp
(
−x2 + y2

2σρ
2

)
(4.2.13)

where (x,y) is the sheet-coordinate location of the pre-synaptic neuron, u = 1 for the
lateral excitatory projection (ρ = E) or is drawn from a uniform random distribution
on [0,1] for the afferent (ρ = A) and lateral inhibitory (ρ = I) connections, σρ deter-
mines the width of the Gaussian for each connection type ρ, and Zρ,q is a constant to
normalize the total of all weights wρ,pq to neuron q of type ρ to 1.0. Each connection
type’s weights have a maximum radius rρ, outside of which they are set to 0.

During training, after the settled response is calculated (equation 4.2.10), the afferent
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(ρ = A) and lateral inhibitory (ρ = I) weights are adjusted by unsupervised Hebbian
learning with divisive normalization:

wρ,pq(t) =
wρ,pq(t−1)+αρηqηp

∑u(wρ,uq(t−1)+αρηqηu)
(4.2.14)

where wρ,pq is the connection weight from pre-synaptic unit p to post-synaptic unit
q, αρ is the learning rate for the connection type (afferent αA, lateral inhibitory αI),
ηq is the settled activity of unit q, and ηp is the activity of pre-synaptic unit p. For
afferent connections, u in the denominator is over all afferent connection fields, i.e.
all afferent connections are jointly normalized. The divisive normalization used here
prevents unconstrained growth of the weights, and stands in for a biologically plausible
mechanism such as multiplicative synaptic scaling or a sliding threshold for plasticity
(Miikkulainen et al., 2005).

4.3 Results

Having extended the De Paula (2007) model by adding homeostatic adaptation at the
photoreceptor and V1 stages, we now go on to evaluate this new model (the naive
model) against the experimental data. The new model should perform at least as well
as the De Paula (2007) model, even though it now has many fewer parameters (in par-
ticular, avoiding three arbitrary scaling factors for the LMS channels, and over 40 V1
scheduled parameter changes during the simulation). Along the way, we will introduce
new analyses to allow close comparison with experimental data. However, we start by
verifying that the two homeostasis extensions have indeed solved the previously men-
tioned modeling problems.

4.3.1 Homeostasis allows robust and stable map development

In section 4.1, we reviewed how the De Paula (2007) model requires ad hoc adjustment
of relative photoreceptor channel strengths for a particular set of input images, and that
the setting is chosen manually based on the appearance of the resulting OR and CR
preference maps via an iterative procedure (a problem likely to exist for all previous
models; problem P7-LMSscaling). Apart from giving the modeler extra parameters to
tweak to match experimental results, the practical consequence of this is that we cannot
easily use different selections of images because of the required parameter search every
time.
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A second problem with existing models that we reviewed in section 4.1 is that map
development does not proceed in a stable way (problem P8-V1StableDev). In ani-
mals, we know that the selectivity of an OR preference map increases at a similar rate
to its stability, whereas the model of V1 used by De Paula (2007) develops selectiv-
ity far more rapidly than stability (Stevens et al., 2013b). Apart from not matching
experimental data, unstable map development makes it difficult to investigate the rep-
resentation of CR, because CR preference can change suddenly for spurious reasons.
Stevens et al. (2013b) introduced a new model of V1, the AL model, in which OR maps
do develop in a realistic and stable way (in a model of luminance processing alone).

In section 4.2, we therefore further developed the De Paula (2007) model to include
homeostasis at the cortical and photoreceptor levels. Figure 4.9 shows that these mech-
anisms do successfully solve problems P7-LMSscaling and P8-V1StableDev. In con-
trast to the De Paula (2007) model, the naive model:

• Develops realistic OR maps for different image sets. This eliminates the problem
of using a specific, small, hand-picked selection of images (P7-LMSscaling).
We can therefore use different, large sets of images without making manual se-
lections, more accurately reflecting visual experience.

• Shows more realistic progression in OR map development over time, matching
animal data. Importantly, the CR map also develops in a stable way. Although
there is no experimental data about the development of CR maps against which
to compare, stable CR map development makes testing which factors genuinely
affect the map’s development much easier (a requirement for the investigations
in the following chapter).

4.3.2 Comparison with experimental data

Having made some necessary improvements—adding adaptation at the photoreceptor
and V1 levels—to solve problems P7-LMSscaling and P8-V1StableDev, we now go
on to compare the naive model against experimental data. As reviewed in chapter 2,
evidence for organization by PCS in V1 comes from several sources. However here we
focus on the results of intrinsic optical imaging (iOI) studies, because optical imaging
(OI) is able to determine the responses of a large enough population of cells at a high
enough resolution to allow us to draw conclusions about map-level responses, and to
be behaviorally relevant. We will introduce some analyses as we go, to allow for close
comparison with corresponding experimental data (addressing problems P4-peaks and
P5-RGBWgratings). Note that we still expect the naive model to have the same key
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PCS representation problems as the De Paula (2007) model (P1-range, P2-PCS, and
P3-pref).

4.3.2.1 Representation of OR

To study the representation of OR, we measure orientation preference and selectiv-
ity maps. Rows 2, 3, and 4 of figure 4.10 show a comparison of the naive model’s
maps with experimental results. In the model, these plots are obtained by presenting
monochrome (BW) sine gratings of multiple orientations. As for the modeling results
reported by De Paula (2007), the OR preference and selectivity maps are consistent
with experimental data: we have a spatially contiguous representation of OR, in the
form of a map (ER1-ORmap). The model’s map shares features common to exper-
imental maps, such as pinwheels, fractures, and linear zones. The map is generally
selective, but as with experimental results there are areas of relatively lower selectiv-
ity.

Figure 4.9 (following page): Homeostatic adaptation improves map development and
stability. The top panel shows how the De Paula (2007) model develops over time (from
left to right) for four different image sets (selections from the MCID), while the lower
panel shows the naive model on the same sets. At each time point, a combined OR
preference and selectivity map is shown. For the De Paula (2007) model, photoreceptor
and V1 scaling parameters were set by hand using an iterative procedure (based on ap-
pearance of the map), for a manually selected set of 25 images from the MCID (McGill
A). These same parameters were then used to train the model on a different manually
selected set of 21 images (McGill B—the same images used in De Paula (2007)—row
2), all natural McGill images (approximately 650 images, row 3), and all images from
the McGill Fruits category (approximately 50 images, row 4). The top row represents
the best performance of the De Paula (2007) model, but even so selectivity increases
rapidly initially, but the map organization continues to change—whereas animal data
indicates that OR maps increase gradually in selectivity and stability together (Stevens
et al., 2013b). However, even more problematic for modeling the development of OR
and CR maps is that self-organization fails to produce realistic maps at all in most
cases for a given set of parameters. On the other hand, the lower panel shows that
the naive model has more stable development (selectivity increases more slowly, and
stability increases together with selectivity), and forms realistic maps for all image sets
(no parameters altered between simulations). Additionally, unlike the De Paula (2007)
model, all four simulations also developed CR maps. Stability of OR map development
is investigated in more detail in Stevens et al. (2013b), though not in a model that also
includes CR (as is used here).
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4.3.2.2 Joint representation of OR and CR

Experimental work has addressed joint OR and CR organization by comparing re-
sponses to isoluminant red-green (RG) sinusoidal gratings with the responses from
black-white (BW) sinusoidal gratings of the same average luminance. The proce-
dure for measuring such RG-BW plots in the model is similar to experimental studies
(which have some differences themselves—see chapter 2).

Row 1 (RG-BW) of figure 4.10 shows that the model’s joint OR and CR organization
results match those from experimental studies. Note that in contrast to OR sel, black
this time is the highest (difference between CR and OR), while white is the lowest. Ex-
perimental data is consistent between studies: CR patches among contiguous OR maps
(ER2-patches). The model gives patchy responses, again consistent with the variety of
experimental data. There are differences in CR patch sizes and spacing, but these are
on the order of the differences between the experimental studies. Additionally, the CR
patches tend to occur in areas of lower orientation selectivity, as in experimental data.
We therefore draw the same conclusion as previous models (Bednar et al., 2005; De
Paula, 2007), i.e. that this model matches on criteria ER1-ORmap and ER2-patches,
but using measurements directly matching experimental studies (rather than only using
CR selectivity).

4.3.2.3 Representation of hue within CR patches

Xiao et al. (2007) analyzed the peak responses to a selection of hues from a percep-
tual color space and found that those peak responses tended to fall within previously
found RG-BW CR patches. Each patch responded to all or many hues (result ER3-
range), and furthermore the distances between peaks were proporional to the distances
between the hues in PCS (result ER4-PCS). Figure 4.11’s row 1 shows the model’s re-
sults compared to the experimental data. We can see that the model does not match
the experiment; while the experimental data has many spatially separated hue peaks
per patch, the model has many hues on top of each other. Rows 2 (CR contours) and 3
(CR peak distances) make this mismatch clearer. While in experimental data the peaks
in the patches follow distances in PCS, the model has only two distance groups—there
appear to be two types of patch, each representing only a limited range of hues, with
many different hues not separated. As expected, then, hue representation in the naive
model is still a poor match to experimental data (i.e. P1-range, P2-PCS, and P3-pref
are still present).
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What causes the naive model to fail to develop an organization of hue that matches
the experimental results of Xiao et al. (2007) and Chatterjee (2010)? In the following
section we hypothesize that the model lacks mechanisms to cope with variabilities to
which the early visual system adapts.
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Figure 4.10 (following page): Comparison of naive model and experimental data for CR vs OR orga-
nization. Experimental data was introduced in the same format in figure 2.20: each 1.5 inch square
corresponds to 3mm×3mm of cortical tissue; NA indicates no data available.
Row 1, RG-BW: black indicates greater response to red/green isoluminant gratings, while white in-
dicates greater response to luminance (black/white) gratings. The model, like the data, shows CR
patches. Patches are irregular and different sizes, as they are in experimental data. The model’s
patch spacing and size is consistent with experimental data.
Row 2, orientation selectivity: black (low value) indicates low selectivity (no preference for one orien-
tation over others), while white (high value) indicates high selectivity (strong preference for one partic-
ular orientation over others). The model, like the experimental data, develops a spatially contiguous
OR selectivity map. CR patches (in red, from row 1) tend to occur in areas of low OR selectivity.
Rows 3/4, orientation preference/orientation preference and selectivity: saturation represents selec-
tivity, while hue represents preference from red (horizontal) through green (vertical) back to red (hor-
izontal). The model, like experimental data, contains preferences to all orientations. The map is
organized smoothly in general, and shares features of the experimental maps.
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4.4 Discussion

We started with experimental results showing OR cells organized into a spatially con-
tiguous map (ER1-ORmap) and CR cells in patches (ER2-patches). The CR patches
represent a wide range or all hues (ER3-range), and the peak responses to various
hues are spatially separated, following distances in PCS (ER4-PCS). We also started
with the best existing model of these phenomena, the De Paula (2007) model, which
develops an OR map with CR-selective cells in patches—but which does not match
experimental data relating to hues within the CR patches. In order to reach a stage
where we can use the model to investigate the representation of hue, we began by ex-
tending the model to solve a number of modeling problems (problems P7-LMSscaling
and P8-V1StableDev) and to address not directly comparable measurements (prob-
lems P4-peaks and P5-RGBWgratings). We did this by adding adaptive homeostasis
at the photoreceptor and V1 levels, and performing a detailed comparison with ex-

Figure 4.11 (following page): Comparison of naive model and experimental data for or-
ganization of hue. In the naive model, unlike in the experimental data, hue responses
are not spatially well separated, and CR patches do not respond to all hues. Ex-
perimental data was introduced in this format in figure 2.23: each 1.5 inch square is
3mm×3mm of cortex.
First row, CR peaks: in the model, patches of high CR selectivity are filled in white.
These correspond to the RG-BW regions in figure 4.10, except they capture all color
selectivity rather than only red/green. Within each patch, the peak response to each
of the HSV hues presented is marked with the stimulus color (peaks can be on top of
each other). In the experimental data, regions are defined (but not shown on the peaks
plot) by being significantly activated to all hues, vs. gray. In the experimental data,
peak responses to different hues are spatially separated, and distances correlate with
distances in CIELUV. In the model, many peaks are on top of each other; hues are not
well separated.
Second row, CR contours: contours drawn at a constant fraction of the peak. In the
experimental data, contours are shown only for two sample patches.
Third row, CR peak distances: across all patches in the experimental data, the average
distance between peaks of different hues is correlated with distance in PCS. In the
model, there are only two clusters of peaks: one around red (H = 0) and one around
green/blue (H = ±0.5). Note: the experimental plot was introduced in more detail in
figure 2.21.
Last two rows: CR selectivity and preference maps—data from the model that is not
yet available from animals. We can see that the model has developed two types of CR
unit, one type with a preference for green (i.e. L and M cones), and the other type with
a preference for blue/purple (i.e. S cones). The contours, drawn around the highest
responses to RG-BW gratings (from figure 4.10), coincide with the green-preferring
units.
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perimental data. This left us with the naive model. The organization of OR is an
improvement over the De Paula (2007) model, and the joint OR and CR organization
organization remains realistic. The model can now work with various datasets, with no
need for images to be selected specifically, or requiring the modeler to set parameters
(i.e. there are now fewer degrees of freedom). However, the naive model still does not
allow coding of CR by place or preference: it retains previous work’s CR representa-
tion problems: problems P1-range, P2-PCS, and P3-pref. The model is therefore not
yet suitable as a model of CR representation in the cortex.

What causes the naive model to fail to represent hue as is found experimentally in
macaque V1? The model appears to be sensitive to a number of dimensions to which
the brain is relatively insensitive. As discussed in section 4.1, we know the brain
is subject to a large amount of physiological and environmental variability, yet still
develops a fairly consistent PCS—even though we know that visual experience plays
a major role in the development of color vision (chapter 2). As an example, the model
is likely to be sensitive to the highly biased hue distribution of the image databases
being used (chapter 3). Competitive Hebbian learning likely amplifies the bias, and
could result in a final CR map that fails to represent relatively rare hues. While human
PCS may vary slightly between individuals, it is broadly consistent (chapter 2) despite
natural scenes containing a biased distribution of perceptual colors (chapter 3). We
think that the naive model’s failures therefore likely point towards dimensions the brain
is relatively insensitive to. In the following chapter, we will go on to explore these
dimensions to test this hypothesis.

4.5 Conclusion

We have extended the best previous model of the development of joint OR and CR or-
ganization (De Paula, 2007), adding photoreceptor and V1 homeostasis, and V1 anal-
yses matching experimental analyses, thus creating what we call the naive model. This
model allowed us to begin investigating the representation of hue in V1. The naive
model continues to match experimental data for OR maps and joint OR and CR orga-
nization (having contiguous OR maps that are better than those of the De Paula (2007)
model, and still with CR patches), despite having fewer degrees of freedom. However,
the naive model—like previous models—does not match experimental data about the
organization of hue: while experimental data shows many or all hues are represented
per CR patch, with peak responses to different hues spatially separated and following
the order of PCS, the naive model represents a limited number of hues per patch, and
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the hues do not show good spatial organization. We believe the naive model’s failures
point towards well-known mechanisms present in the early visual system but absent
from the model that likely allow the visual system to cope with physiological and en-
vironmental variabilities and develop a reasonably consistent PCS. We will investigate
how the model can develop a realistic representation of PCS in the next chapter.



Chapter 5

Idealized model of color map

development

5.1 Introduction

In the previous chapter, we saw that the naive model—our first attempt to model the
development of perceptual color space (PCS) in primary visual cortex (V1)—develops
realistic joint orientation (OR) and color (CR) organization (experimental results ER1-
ORmap and ER2-patches), but that critically, a hue code by spatial position or pref-
erence is not possible (experimental results ER3-range and ER4-peaks). The naive
model was an improvement over the most successful existing model (with more stable
and robust development of OR and CR maps), so there is now a clear challenge: can
we further develop a model of this kind to successfully replicate the experimental hue
organization results? In this chapter, we demonstrate that it is possible, and in doing so
we will show important problems that the brain appears to be overcoming to construct
PCS, but that the naive and other previous models are not.

Previously we have reviewed that it is not obvious how an organization for hue by PCS
should arise:

• PCS differs from wavelength space (WS) in a number of ways (chapter 2);

• visual experience is a highly non-uniform sampling of PCS (chapter 3);

• different individuals have varied visual experiences and physiologies (chapter 2);

• an individual’s physiology and experiences change over time (chapter 2).

Despite this, PCS is reasonably consistent between individuals, and over time for one

153



154 Chapter 5. Idealized model of color map development

individual. On the other hand, we saw that existing models of the early visual system
are unable to account for the development of PCS. Focusing on the naive model, we
hypothesized that it is sensitive to a number of sources of variety that the early visual
system is surprisingly insensitive to. For instance, we know that rearing environment
is critical for development of color vision (chapter 2), yet the highly non-uniform sam-
pling of PCS that typical visual experience constitutes does not greatly affect the PCS
learned by the visual system. We expect that the early visual system deals with these
sources of variety via well-established biological mechanisms such as adaptation and
normalization—mechanisms that are, however, missing from models, in part because
there is a multitude of such mechanisms in the nervous system (reviewed in chapter 2),
and it has been unclear which, if any, might be relevant to color vision.

To determine which such mechanisms are missing from these models, in this chapter
we will explore what modifications to the naive model are necessary for it to match ex-
perimental data. The modifications, which we refer to as idealizations, imply problems
the visual system is overcoming in creating PCS. Each idealization is a modification
along a particular CR-biasing dimension of the model. These dimensions of the model
are dimensions that the visual system appears not to be sensitive to, but that do af-
fect the model’s CR representation (e.g. the balance of CR vs. luminance information,
or the representation of different hues). Analogous to complex cells (which are rela-
tively insensitive to position) or cells with contrast-invariant tuning, these idealizations
suggest ways in which neurons are relatively insensitive to sources of variation in the
environment, or to certain aspects of physiology, such as retinal cone ratios.

In the following chapter, we will relate the idealizations to biologically well established
mechanisms such as adaptation and homeostasis. Such mechanisms are typically omit-
ted from models of luminance processing because they add complexity, and the models
work well enough without them. Therefore, the first goal of the current chapter is to
demonstrate that at least for CR such mechanisms (which we call rescues) are critical
and cannot safely be omitted. We will do this by creating the idealized model, con-
taining all the idealizations together, and showing that it is able to develop a realistic
representation of hue. The second goal of this chapter is then to show what effect the
rescues must have on the model to achieve realistic results. We will do this by show-
ing the range of behaviors possible from the model, delineating each dimension. This
analysis will guide future implementation of rescue mechanisms. Additionally, see-
ing the range of behaviors possible from the model will help to interpret existing and
future experimental work. So far, experimental results are limited to a few individual
macaques; results may differ in ways shown by the model for different species, or for
individuals reared in different environments.
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5.1.1 Contributions of this chapter

1. This chapter begins by identifying the aspects of the naive model that affect CR
representation (section 5.2), i.e. aspects that affect the hue representation, or the
balance of OR vs. CR information. By identifying these CR-biasing dimensions
in the model, we enumerate the specific problems that an organism might be
addressing that lead to the development of PCS.

2. For a model with a certain position on each dimension, we show in section 5.4
that a realistic organization of OR (a spatially contiguous OR preference map)
can develop alongside CR patches (figure 5.6), and that the range and spatial
organization of hues represented in the patches (figure 5.7) matches experimen-
tal results from macaque monkey. This model, which we refer to as the ideal-
ized model, demonstrates for the first time that a developmental model is able to
match experimental results ER1-ORmap, ER2-patches, ER3-range, and ER4-
peaks (i.e. with peak hue location separations proportional to perceptual separa-
tions, within a patch, thereby allowing a code for color based on peak location
or preference).

3. After demonstrating how the model can match experimental results, in sec-
tion 5.5 we then analyze the model in detail, showing the range of results the
model can produce, depending on architecture and parameters. This (a) demon-
strates what a rescue for each dimension must achieve, and (b) shows that alter-
native possible organizations of CR and OR are possible, depending on physio-
logical and environmental factors, acting as detailed predictions for future exper-
imental work. Overall, this analysis will help us understand the space of possible
mechanisms and organizations in which color vision evolved.

5.2 Background

The previous chapter’s model, the naive model, matched ER1-ORmap and ER2-
patches with fewer qualifications than the previous best model of the development
of joint OR and CR organization (chapter 2). Critically, however, the naive model does
not provide a representation of CR that could be used for hue coding by preference or
spatial location. We identified the following three problems:

• P1-range: Each CR patch only responds to a limited range of hues around one
preference (e.g. red and yellow, or blue and violet), in contrast to ER3-range,
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which shows patches responding to many/all hues.

• P2-PCS: Hues are not spatially organized according to PCS. For instance, the
contour plot of figure 4.11 shows largely concentric responses to different hues.
This contrasts with ER4-PCS: within CR patches, the distances between peak
responses to different hues are correlated with the perceptual distances (also
meaning red and violet are closer than red or violet is to green i.e. joining of
opposite ends of wavelength spectrum).

• P3-pref: Neurons in the model have a restricted set of hue preferences. There
is no experimental data on this yet, but it shows clearly that the model’s hue
representation does not reflect or support PCS.

Hence, no previous modeling work has shown how a realistic range of hues can be rep-
resented within CR patches (i.e. ER3-range), or how a realistic spatial organization of
those hues could develop (i.e. ER4-PCS). Therefore, as stated in the previous section,
in this chapter we will extend the naive model to show how experimental results ER3-
range and ER4-peaks can be matched. To do this, we must first consider what causes
the naive model to fail to develop a realistic organization of hue.

What components of the model can affect CR representation, e.g. by introducing a bias
in the hue representation, or by altering the balance of OR vs. CR information? That
is, what are the CR-biasing dimensions of the model? The model V1 contains nothing
specific to CR (i.e. it does not treat CR information any differently from luminance
information, and it does not treat any hue specially), so it cannot contain a CR-biasing
dimension (although its Hebbian learning mechanism could exaggerate any existing,
incoming bias). However, the subcortical pathway and input data could introduce var-
ious CR biases, and any such CR bias will affect what V1 learns. Considering the
subcortical pathway and input data, there are only five possible sources of CR bias
in the naive model; each has a link to a source of variability that the brain may be
overcoming in developing PCS:

1. Input hue bias: We saw in chapter 3 that available image databases of natural
scenes have highly biased distributions of perceptual hues e.g. purple almost
never occurs in natural images. Previous work examining natural scenes agrees,
also indicating there is a biased distribution of colors in natural scenes (again,
covered in chapter 3). The model of V1 used in our simulations uses competitive
Hebbian learning, which will learn (and could exaggerate) a bias in the input.
Previous work has shown that when a model representing a feature (such as
spatial frequency) is given only a limited part of the range during training, the



5.2. Background 157

result is an even more limited representation of that input feature (Palmer, 2009).
In the case of hue, the heavily biased input datasets are a likely cause of the
limited representation of color in V1. Rare colors may not be represented at all
in the final map.

2. Photoreceptor correlation: The model’s L and M cones are highly correlated, as
for humans and macaques. Hebbian learning could, given such correlations, fail
to distinguish L and M responses. This would lead to restricted hue preferences,
and no spatial separation between peak responses to different hues.

De Paula (2007) showed that a Hebbian neuron is unable to distinguish highly
correlated photoreceptor channels, but this analysis did not include a model of
the RGC and LGN, so we remain uncertain of the impact of photoreceptor cor-
relation on the naive model. We expect that the cone-opponent retinal ganglion
cells should reduce correlation (chapter 2); the L-M and M-L RGC channels
should be less correlated than the L and M photoreceptor channels. However,
there are still spatial correlations revealed by the spatially center-surround na-
ture of L-M and M-L cells. The model V1 could therefore still be unable to
distinguish the L-M and M-L channels, depending on their level of correlation
in a particular dataset.

3. Relative photoreceptor channel strengths: A particular database of images may
have more energy at e.g. L cone wavelengths than at S cone wavelengths (chap-
ter 3), so there may be differing overall activities in the three photoreceptor
classes over the course of the simulation. We already know this has an effect
on CR representation; we solved P7-LMSscaling in the previous chapter by
simulating photoreceptor adaptive homeostasis to balance the overall channel
activities. The energy absorbed by the different photoreceptor classes over any
period of time (short or long) is unlikely to be equal. Even if the average spectral
power distribution (SPD) coming into the eye were flat (white light), at any par-
ticular small location on the retina an L cone would absorb more energy than an
adjacent M or S cone (the lens and macular pigment filter short-wavelength light
more than long-wavelength light, and also the L cone has the widest sensitivity
of the three cone types). We did not simulate uneven ratios or distributions of L,
M, and S cones (as found in biology—chapter 2), but uneven ratios globally or
locally would additionally affect this.

4. RGC pathway symmetry. The naive model does not have a symmetric RGC
pathway: the RGC and LGN cone-opponent pathway does not oppose all cone
types. For example, there are L-M and M-L channels, but no L-S or S-L. We
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do not know the effect of the unsymmetric pathway on hue representation in
the model—the pathway may cause certain hues to be de-emphasized, for in-
stance. In macaque, the retinal ganglion cells do generally appear to cluster into
these restricted opponencies (chapter 2), and there may be a good explanation
for the RGC’s unsymmetric pathway; e.g. from the perspective of information
processing, high L and M correlation means that having both S/M and S/L chan-
nels would be redundant (chapter 2), or from the perspective of developmental
mechanisms, random wiring with few S cones may lead primarily to L vs. M
retinal ganglion cells (also chapter 2). The implications of these asymmetries
for development and function are not yet clear, because no model has compared
symmetric vs. non-symmetric pathways.

5. Luminance vs. CR: Apart from aspects of the model likely to specifically affect
the representation of hue, we also consider an aspect of the model that could
affect overall CR organization: the weighting of the luminance and CR RGC
and LGN channels. In the model, each V1 unit receives input from both lumi-
nance and CR channels; competitive Hebbian learning will result in the feature
causing most variance to dominate (De Paula, 2007). To get patches of CR with
many hues represented in one patch, alongside a largely contiguous and gener-
ally selective OR map, the balance of luminance and CR inputs must be such that
OR dominates. If it were the other way round in this type of Hebbian-learning
model, CR would dominate and would not be constrained to patches; we would
not get all hues within a CR patch, but instead would have a large-scale orga-
nization into separate color patches. For instance, Miikkulainen et al. (2005)
showed that the balance of OR and motion direction (DR) preference maps can
be altered by adjusting input pattern speed during training. At low speeds, OR
dominates and is the largest scale feature after training, whereas at higher input
speeds, DR dominates and becomes the largest scale feature. The right bal-
ance between luminance and CR input must therefore be necessary to match the
particular macaque results, and it could be that other balances match different
species and/or individuals, depending on rearing environment and physiology.
This issue is relevant to the debate on the separation of OR and CR processing
in V1, as introduced in chapter 2.

To test whether the above aspects do affect the representation of CR in the model’s
V1, and to discover if this kind of model can develop a realistic representation of hue
in V1 at all, we will construct a model eliminating all these sources of CR bias—the
idealized model. Building such model will require several biologically implausible
manipulations, but the goal is to determine whether a model of this kind can replicate
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experimental results ER3-range and ER4-peaks at all—and while doing so to under-
stand problems the visual system is apparently overcoming in creating PCS. That is,
we are removing the effects of dimensions we think the brain may be relatively in-
sensitive to. We will see that doing this does allow the model to develop a realistic
organization for hue, matching experimental results for the first time.

Each change to create the idealized model takes the model away from the previously
established biologically realistic setting, and forms a dimension containing both the
biologically realistic (naive model) parameters and those that give the best match to
known experimental results (idealized model). In the second half of the results section,
we will examine these dimensions, showing the range of behaviors possible, and thus
illustrating what a rescue for each dimension would need to achieve. This will give
us a better understanding of both the model and the problems the visual system is
apparently overcoming.

In the following chapter, we will discuss biologically plausible rescues for each di-
mension, guided by the results in this chapter. However, first we will simply show
realistic results are possible, what is required to achieve that, and how these changes
affect the behavior of the model. The following section describes how we implement
the idealizations and dimensions.

5.3 Methods

Chapter 4 introduced a model of the early visual system, the naive model, consisting
of sheets of firing-rate–based point neurons representing photoreceptors, RGC, and
V1. The model V1 self-organizes through Hebbian learning of its afferent and lateral
connections as the simulation proceeds, and we can measure a realistic OR map with
CR patches. In this section, we will extend the naive model to allow us to perform
all of the idealizations introduced in the previous section—simulating the model being
relatively insensitive to certain sources of variation (physiological and environmental
variabilities that the visual system appears to compensate for). We will also introduce
how we can explore the model’s CR-biasing dimensions, to be used in the second part
of the results section (5.5), by controlling the position along each dimension with a
parameter. All the modifications we will add are prior to V1 (i.e. we only modify
the photoreceptors and RGC), and are shown in overview in figures 5.1 (input), 5.2
(photoreceptors), and 5.4 (RGC and LGN). Parameters are listed in appendix C, and
the model and simulator used to generate results in this chapter are freely available
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from www.topographica.org.

5.3.1 Input: hue jitter

We begin by allowing control over input to the model. In section 5.2 we pointed out
that the non-uniform sampling of PCS that natural image databases represent likely
affects hue representation in the model. To test this, we can ensure the incoming hue
distribution is uniform in PCS, covering all hues equally. For each image patch pre-
sentation, the source image—typically in CIE 1931 XYZ color space (CIEXYZ)—is
converted to HSV color space (HSV; Smith, 1978), in which H, S, and V are indepen-
dent perceptual dimensions. While HSV is not a perfect perceptual space (no space
is yet—see chapter 2), this transform allows a simple way to alter the hue distribution
with minimal effect on other aspects of the images. Chapter 3 showed the procedure
in more detail, but briefly, across the whole patch, every pixel’s H (which varies cir-
cularly from 0 back to 1) has a uniform random number between 0 and 1 added to it,
before being converted back to its original space (e.g. CIEXYZ) for use by the sim-
ulation as before. Over 10,000 image patch presentations, the incoming distribution
of hues is therefore uniform in an HSV-based approximation to PCS. In this chapter,
we use HSV color space; Smith, 1978 (HSV) computed from sRGB as the perceptual
space, because we will be using sRGB as our idealized receptor space (explained in
the following section).

The scenario described above, with an unbiased (uniform) incoming hue distribution, is
the idealized position on a dimension describing the hue bias. This dimension, which
will be explored in the second part of the results section, is controlled by dHB. The
dataset’s original hue distribution is the full bias of the dataset, dHB = 1, meaning the
hue distribution is unchanged. The full procedure is below, and is also indicated on
figure 5.1:

1. Convert to sRGB: Ri

Gi

Bi

= M2

Xi

Yi

Zi

 (5.3.1)

2. Convert to HSV: Hi

Si

Vi

= g

Ri

Gi

Bi

 (5.3.2)

where g is the standard non-linear transform of RGB to HSV (Smith, 1978),

http://www.topographica.org
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Light

XY Z

dHB

XY Z′

1

Figure 5.1: Idealized model: input processing. The idealized model starts
from an “unbiased” position, and allows CR biases to be added back in as
a dimension. The input dimension manipulation is shown in a dotted box:
altering the incoming distribution of hues (input hue bias; dHB).

from Python 2.6.4.

3. Jitter the hue:
H ′i = Hi +U(0,1−dHB) (5.3.3)

where U is a number drawn from a uniform random distribution, ranging from
0.0 to 1.0.

4. Convert back to CIEXYZ:X ′i
Y ′i
Z′i

= M2
−1g−1

H ′i
Si

Vi

 (5.3.4)

We will use the same image database as the previous chapter (BCID), but we expect
that any database of natural scenes would give similar results since this procedure
normalizes the hue distribution.

http://www.python.org/
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XY Z′

IJK

dCS

dC

IJK′′ cone
excitations

σ

eqn 4.2.4

cone activations
η

eqn 5.3.8

1

RGC

1

Figure 5.2: Idealized model photoreceptor processing. The idealized model
starts from an “unbiased” position, and allows CR biases to be added back in
as dimensions. Dimensions are shown in dotted boxes: altering the relative
excitation of the different photoreceptor classes (relative photoreceptor chan-
nel strengths; dCS), and the correlation between photoreceptor classes (pho-
toreceptor correlation; dC). IJK′′ represents this model’s three cone excita-
tions (the equivalent of the naive model’s LMS—c.f. naive model overview,
figure 4.4). After excitations and dimension manipulations, η are the pho-
toreceptor responses, passed onto the retinal ganglion cells in the next stage
(where further dimensions are applied).
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5.3.2 Photoreceptors

In section 5.2 we pointed out two aspects of the photoreceptors that could affect hue
representation in the model: unbalanced correlation of the photoreceptors (photore-

ceptor correlation), and unbalanced activities overall in the different photoreceptor
classes (relative photoreceptor channel strengths). We will modify the simulation to
allow both of these effects to be removed (for the idealized model) and then explored.
We already know the second has an effect from the previous chapter, but in this chap-
ter we will systematically explore that effect. Figure 5.2 shows all the steps, which we
now go on to describe in detail.

As seen in chapter 3, human/macaque LMS cone sensitivities are relatively broad and
overlapping, leading to highly correlated absorptions. In particular, the L and M cones
are much more correlated than L and S or M and S. There are also correlations from
the incoming data, which can also cause correlations to vary between different cone
types. To learn the effect of this on the model, we can instead use evenly spaced
cone sensitivities. We could do this by using hyperspectral images, from which we
could simulate any type of cone absorptions desired, but there is only very limited
hyperspectral data available (chapter 3). Instead, as mentioned in the previous section,
we convert the images to sRGB color space; Stokes et al., 1996 (sRGB), computed
from the Barcelona Calibrated Image Database; Párraga et al., 2010 (BCID) CIEXYZ
dataset. This transformation alters the cone sensitivities as shown in figure 5.3: the
sensitivities are more evenly spaced, with more equal overlaps. In a subsequent section,
we will add a mechanism to gradually increase correlation, allowing the effect to be
explored as a dimension.

The naive model’s LMS cone excitations (equation 4.2.1) are thus replaced by three
channels we call IJK (which, although they begin as RGB, will be modified in subse-
quent sections—hence IJK rather than RGB): Ii

Ji

Ki

= M2

Xi

Yi

Zi

 (5.3.5)

5.3.3 Photoreceptors: relative strengths

As documented in chapter 3, the total L, M, and S excitations are not equal for any
of the natural image databases we investigated, given fixed normalization factors. The
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(a) sRGB

(b) LMS

Figure 5.3: Photoreceptor sensitivities. The idealized model’s sRGB cone
sensitivities are more evenly distributed than the naive model’s, so all cone
correlations are approximately equal. All peaks are normalized to 1.0. Note
that the cone sensitivities are a linear transform of the CIE 1931 standard
observer cmf (figure 2.4), thresholded at 0, which causes a small peak in the
short-wavelength region for the long-wavelength cone. If there were enough
hyperspectral images of natural scenes, it would be possible to model any
desired sensitivities without artefacts.
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De Paula (2007) model used a small set of images and manually chosen scaling factors
on each channel in order to achieve a CR map in which all three cone types were rep-
resented. In the previous chapter, we saw that having equal overall channel activities
can instead be achieved through homeostasis. We take equal overall excitations as the
idealized position on this dimension.

In the second part of the results section, we will systematically investigate the effect
of relative photoreceptor channel strengths. To explore the effect of imbalance, we
form a dimension dCS by starting from the idealized position (all channels having
equal overall activity; dCS = 0.0) and boost the first channel relative to the other two,
making the activity ratio increasingly unbalanced compared to the idealized case. We
only increase the I channel relative to the other two for simplicity in interpreting the
results:  I′i

J′i
K′i

=

 zIi
3−z

2 Ji
3−z

2 Ki

 (5.3.6)

where z = 1
3dCS + 1, so that for dCS = 0 the channels are just IJK from the previous

section (i.e. idealized), and for dCS = 1 the I’s scaling factor is 1.6 times that of J and
K. (We will see later that this value gives more than enough difference between the
channels to demonstrate the effect of relative photoreceptor channel strengths.)

Dimension dCS lets us understand the effect of unbalanced channel activities, which
could be caused by a cone type having a wider sensitivity (assuming the average in-
coming SPD is flat), or there being more of one cone type than another. A database
with a non-flat average SPD could also cause unbalanced channel activities, but we
have included this effect already in the input hue bias dimension.

5.3.4 Photoreceptors: correlation

We introduced the idea of photoreceptor sensitivity correlation earlier, using sRGB
sensitivities instead of LMS for the idealized model. To form a dimension, which we
will investigate in the second part of the results (section 5.5), we can start from the
idealized position and subsequently increase correlation between one pair of photore-
ceptors by adding a fraction of one receptor type’s activity to the other type’s activity
at each location. The amount of additional correlation between the pair of channels is
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specified by dC (which takes values from 0 to 1). Then for each location i: I′′i
J′′i
K′′i

=

 I′i
(1−dC)J′i +dCI′i

K′i

 (5.3.7)

At dC = 1.0 the I′′ and J′′ channels are completely correlated (i.e. identical). At dC =
0.0, the idealized position, the channels are just IJK′ from the previous section.

Having calculated the possibly correlation-adjusted and possibly channel-ratio-adjusted
photoreceptor excitations, we have now finished introducing the dimensions that apply
to the photoreceptors. In the previous chapter, the excitations were transformed to pho-
toreceptor responses including a model of homeostasis. However, in this chapter we
want to investigate the effects of the dimensions, so we do not apply the homeostatic
mechanism (i.e. no gains in equation 4.2.2). The idealized model has photoreceptor re-
ceptor activations that are already effectively normalized because of the full hue jitter
(section 5.3.1), equal relative channel strengths (section 5.3.3), and equal correlations
(above). Instead, we apply only σ (eqn 4.2.4) to have an approximately constant mean
activation of the retina each iteration. This prevents any spurious effects caused only
by changes in the overall amount of activity.

ηi = σ

 I′′i
J′′i
K′′i

 (5.3.8)

5.3.5 RGC/LGN

To the RGC stage of the previous chapter’s model we add the ability to:

• change the number and type of opponent channels (to investigate RGC pathway
symmetry);

• set the LUM/CR ratio (to investigate the balance of luminance vs. CR).

The RGC processing pathway is outlined in figure 5.4.

5.3.6 RGC: pathway symmetry

As described in the previous chapter, the RGCs are modeled as Difference-of-Gaussians
(DoG) connection fields (CFs), creating spatially and cone-opponent circular CFs.
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photoreceptors

dS

RGC init. act.

f
eqn 4.2.7

RGC activation
η

eqn 4.2.6

dL

V1

2

Figure 5.4: RGC processing. The RGC pathway can either be symmetric,
opposing all cone types equally, or it can be unsymmetric, as for the naive
model—controlled by dS. For training iterations, where V1’s afferent weights
to the RGC and LGN may change, the LUM:CR weight balance is enforced
by dL. Otherwise the processing is the same as for the naive model (fig-
ure 4.6).
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Figure 5.5: RGC pathway. (a) Standard, currently accepted RGC classes
(from the naive model). (b) Idealized, symmetric RGC pathway, with all com-
binations of pairs of photoreceptor types. In both cases, the luminance signal
(right-hand column) is the sum of all cone types.

As discussed in section 5.2, the effect of this pathway on hue representation in the
model is not known, but in the naive model, not all opponencies are present. There-
fore, we create the idealized situation of having every pair of possible photoreceptor
combinations—the “symmetric” pathway, figure 5.5(b)—rather than the original LMS
“unsymmetric” pathway (figure 5.5(a)). We also have a dimension of RGC symmetry,
comprising symmetric (idealized model, dS = 0) and non-symmetric (naive model,
dS = 1).

5.3.7 RGC: luminance/color ratio

Each V1 unit receives afferent input from several chromatic channels and an achro-
matic (luminance) channel, as previously shown in figure 5.5. Experimental results
show macaque V1 CR-responsive cells are organized into patches, whereas OR maps
are spatially contiguous. In the model, the balance of CR map and OR map can be
controlled by setting the ratio of weights for the LUM vs. CR RGC pathways. Setting
parameter dL = 0.0 causes the luminance (LUM) channels to have zero weighting and
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the CR channels to have full weighting, while dL = 0.5 sets the weighting of LUM
and CR channels to be equal, and dL = 1.0 sets the weighting entirely to the LUM
channels. The idealized model has dL = 0.4 because this value was found to match
existing data from macaque (discussed in section 5.5).

The afferent connections to V1 are normalized and scaled in two separate groups,
one for the LUM connections and one for the CR connections. I.e., following equa-
tion 4.2.14 but adding a scaling factor, for afferent connections to V1 neuron q from
neuron p in LUM connections (LUM On, LUM Off) we have:

wpq(t) = dL
wpq(t−1)+αLηqηp

∑u(wuq(t−1)+αLηqηu)
(5.3.9)

where u iterates over all LUM connections to q. For CR projections (I-J On, I-J Off,
...) we have:

wpq(t) = (1−dL)
wpq(t−1)+αCηqηp

∑u(wuq(t−1)+αCηqηu)
(5.3.10)

where u iterates over all CR connections to q.

Additionally, for the results presented in this thesis, the learning rates were scaled for
LUM vs. CR. For LUM connections, αL = dLαA, while for CR connections, αC =
(1− dL)αA. The learning rate scaling is for historical rather than functional reasons,
and qualitatively similar results would be obtained if it were left fixed.

5.4 Results 1: Comparison with animal data

In the previous chapter, we compared the naive model to experimental data and found
that while the naive model matched experimental results ER1-ORmap and ER2-
patches, it did not match experimental results ER3-range and ER4-peaks. Therefore,
the first goal of this chapter is to determine whether a model of this kind can develop
a realistic representation of CR at all. To do this, we introduced the idealized model in
the previous section. We will now evaluate the idealized model against experimental
results ER1-ORmap, ER2-patches, ER3-range, and ER4-peaks. We find that the
model can indeed match those experimental results. To our knowledge, this is the first
time all these results have been matched by a developmental model. In a subsequent
section, we will explore the idealized model’s dimensions in order to understand the
effect of the CR biases, and therefore what a rescue of each dimension would need to
achieve. Doing so lays the groundwork for implementation of rescues in the future.
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Earlier in this chapter, we identified aspects of the naive model that could bias the hue
representation and control the spatial representation of CR vs. OR, and then we created
a model with an appropriate balance of CR vs. LUM and without these sources of bias
to match experimental data—the idealized model. We now analyze this new model
using the same analyses as in chapter 4.

5.4.1 Joint representation of OR and CR

The idealized model’s representation of OR is very similar to the naive model’s. Rows
two (OR sel), three (OR pref), and four (OR pref & sel) of figure 5.6 show a comparison
of the idealized model to the naive model and experimental results. We can see that
the model develops an OR preference and selectivity map consistent with the variety
of experimental data. Hence the model continues to match ER1-ORmap.

Second, the idealized model shows similar CR patches to the naive model in response
to RG-BW gratings (figure 5.6, row 1). As for the naive model, differences in CR patch
size and spacing between the model and experiment are no greater than differences be-
tween experiments. Also as for the naive model, the CR patches tend to occur in areas
of lower OR selectivity, as in experimental data. Therefore the model also continues
to match ER2-patches.

5.4.2 Representation of hue

The main question is whether the model can develop a realistic representation of hue,
i.e. one that allows hue to be coded by spatial position or preference. Figure 5.7 shows
results from the idealized model compared to experimental data and the naive model.
We can see that the idealized model does indeed develop a realistic representation of
hue, unlike the naive model. Rows 1 (CR peaks) and 2 (CR contours) show that patches
of high CR selectivity represent many or all hues (first column), rather than a limited
range (naive model; second column). Hence the idealized model matches ER3-range,
so we have solved problem P1-range.

We can also see in row 1 (CR peaks) that the peaks are spatially well separated. Row
3 (CR peak distances) confirms this, and shows that the distance on V1 corresponds
to the distance in PCS (including the circular nature of PCS: the peak responses to red
and violet are closer to each other than either is to green). Hence the idealized model
matches ER4-PCS, so we have also solved problem P2-PCS with previous modeling
work.
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Finally, examining the last three rows of figure 5.7—the model’s CR preference and
selectivity maps—allows us to understand better the model’s CR organization. All
hue preferences are equally represented, and hue is organized in a map that is (a) less
dominant than the OR map (hence giving the patchy CR responses) and (b) larger scale
than the OR map (the Fourier transform—not shown—has a larger ring diameter).
This addresses P3-pref: all hues are now represented equally. The V1 hue preference
histogram matches the input histogram.

Having seen these results, we can therefore conclude that it is possible for this kind of
developmental model to achieve a realistic representation of CR and code hue by place
or preference. The previously listed CR-biasing dimensions (input hue bias, photore-
ceptor correlation, relative photoreceptor channel strengths, RGC pathway symmetry,
and luminance vs. CR) therefore seem important, and likely hold the clue to under-
standing problems P1-range, P2-PCS, and P3-pref. However, to demonstrate that
each one of these is critical, and to understand what role each plays, we will now con-
sider each of the above individually, as independent dimensions. What separates the
naive model from the idealized model on each dimension, and what would it take to
rescue the naive model to achieve realistic results for that dimension? And, as men-
tioned before, another reason to investigate these changes as dimensions is that dif-
ferent species and/or individuals could lie in different positions, and the results could
be used to predict the results of specific rearing conditions, physical abnormalities, or
experimental treatments.
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Figure 5.6 (following page): Comparison of idealized model, naive model, and experimental data for
CR vs OR organization. Experimental data was introduced in same format in figure 2.20: each 1.5
inch square is 3 mm x 3 mm of V1, and NA indicates no data available. From the first column, we
can see that the idealized model forms a spatially contiguous OR map, and that the responses to
RG-BW remain patchy and tend to occur in regions of low OR selectivity, as for experimental data.
The idealized model’s OR vs. CR representation is as good as the naive model’s; these manipulations
primarily affect details of the CR representation (which is why these aspects have been ignored in
previous luminance-only models).
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ER1-ORmap ER2-patches ER3-range ER4-PCS
De Paula (2007) X X 7 7

Naive model X X 7 7

Idealized model X X X X

Table 5.1: Models vs. experimental claims. Among existing models of the
development of OR and CR (reviewed in chapter 2), only the three shown
above are able to account for the simultaneous development of OR and CR
into organizations that match data from macaque V1. The naive model ex-
tended the work of De Paula (2007) to improve the model’s development
process (including obtaining higher quality OR maps), reduce the number of
free parameters, and compare more closely to experimental data. However,
the naive model was unable to account for the organization of hue. The ide-
alized model is able to develop a realistic organization of hue in addition to
OR and OR vs. CR.

5.5 Results 2: Dimensions

In the previous section, we showed that a model with dimensions set to idealized po-
sitions (the idealized model) could develop a representation of CR matching experi-
mental data. That achieves the first goal of this chapter: showing a model of this kind
can represent hue in a way that allows coding by preference or spatial location at all.
However, we still need to show that each dimension critically affects the model’s de-

Figure 5.7 (following page): Comparison of idealized model, naive model, and exper-
imental data for hue organization. Experimental data was introduced in this format in
figure 2.23: each 1.5 inch square is 3 mm x 3 mm, and NA indicates no available data.
First three rows: regions of high CR selectivity in the idealized model contain a hue or-
ganization matching experimental data. Patches respond to a wide range of hues, and
within a patch the responses to different hues are spatially well separated. In particular,
row 3 shows that the distances between peaks on the cortex correspond to distances
in PCS (both model and experiment represent red at 0 on the x-axis; the model’s scale
should be multiplied by 180 to convert to degrees). This contrasts with the naive model,
in which patches respond to a limited range of hues, and peaks are not well separated.
Last three rows: CR selectivity and preference maps—data from the model that is not
yet available from animal experiments. The idealized model forms a CR map containing
units that prefer all the different hues. When tested with RG-BW gratings, the response
is patchy (red overlay on CR sel plot), with units preferring red through green responding
the most. The naive model, on the other hand, as was originally shown in figure 4.11,
develops patches which represent only a limited range of hues, and the peak hues are
not well separated, making its hue representation unsuitable for building PCS. The ide-
alized model is the first developmental model to demonstrate this realistic organization
for perceptual color.
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Dimension Parameter Idealized
1: Input hue bias dHB 0.0
2: Relative photoreceptor channel strengths dCS 0.0
3: Photoreceptor correlation dC 0.0
4: RGC pathway symmetry dS 0.0
5: Luminance vs. CR dL 0.6

Table 5.2: Idealized model’s dimensions. All dimensions have range 0.0 to
1.0.

velopment. Therefore, in this section, we will show the results of manipulating each
dimension independently. To do this, we will start from the idealized model, and re-
introduce one dimension at a time (e.g. photoreceptor correlation) to varying degrees
in order to determine its effect. This will additionally allow us to better understand the
dimension (i.e. the problem the brain is apparently overcoming in developing PCS),
and to inform what a rescue for each dimension would need to achieve.

In the following sections we will go through each of the dimensions, summarized in
table 5.2. First, however, we will show the inherent variability in the simulations as a
baseline against which we can compare the magnitude of the dimensions’ effects.

5.5.1 Inherent variability

To see the impact of other dimensions, first we show the inherent variability in the
simulations as a baseline. To do this, the hue jitter’s seed is randomized, resulting in
a different order of presentation of the hues (but ultimately the same uniform incom-
ing distribution). The results in figure 5.8 show that while details of the OR and CR
organizations vary, the overall statistics are similar. Development always leads to a
hue preference map representing all hues, with the CR peaks plot showing most or
all hue peaks per patch, and with cortical distance corresponding to distance in PCS.
Figure 5.8 also introduces a number of plot types that will be used repeatedly in later
figures.

An interesting observation is that there is some variety in e.g. the distribution of hue
peaks in the patches (row CR pref hist). Although in all cases the underlying hue pref-
erence maps are well organized, and are overall quite similar, the CR patches (taken at
a particular threshold of the CR selectivity) do not always have the same level of uni-
formity. This effect could be one source of differences between experimental results,
with some studies seemingly finding patches dominated by one or a few preferences
while others show many hues per patch. We will return to this issue later in the discus-
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sion and following chapter.
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Figure 5.8 (following page): Varying hue normalization’s input seed. Each column represents a differ-
ent simulation run, changing only the seed of the uniform random generator U, resulting in a different
stream of hues. The seed is shown at the top of each column.
This figure allows us to see the inherent variance: a different ordering of input hues leads to different
details in the maps, but similar overall statistics. The left-hand column is the default random seed, as
used in other simulations in this chapter. The rows, introducing chart types used in subsequent figures,
are as follows.
Top row, in hue: cumulative incoming hue distribution. The polar axis has HSV hue bins; hue counts
over all input patch presentations throughout the whole duration of the simulation are shown on the
radial axis. The radial axis limit is displayed at the bottom left; each tick is 0.2. Here, all incoming
distributions are uniform.
PR abs: bar chart of cumulative total excitation of each photoreceptor type over the whole duration of
the simulation. The y-axis limit is shown on the left. In this case, all classes are equally activated over
the course of the simulation.
lgn acts: bar chart of cumulative total activation of each RGC type over the whole duration of the
simulation, weighted by dL. Key: each digit refers to a pair of OFF center ON surround, ON center
OFF surround opponent channels: 0=K/J, 1=K/I, 2=J/K, 3=J/I, 4=LUM, 5=I/K, 6=I/J. Here the LUM
channels have a higher strength than the cone-opponent channels, to get a realistic balance between
the OR and CR maps.
OR sel: OR selectivity, as introduced earlier. The exact pattern of orientation selectivity varies with
the input seed, but the overall properties are similar. Orientation preference is not shown because it is
similarly unaffected.
CR sel: CR selectivity, as introduced earlier. Again, the exact pattern varies with input seed, but is
overall similar.
CR pref: CR preference and selectivity, as introduced earlier.
CR pref hist: The distribution of preferences is reasonably uniform. Note that maps from simulations
with a lower dL (i.e. more weighting to chromatic channels) have more uniformly distributed preferences
(shown in a later figure).
CR peaks: Location of peak response to each hue within patches, as introduced earlier.
peak dist’s: Average distance of each peak from red (0.0) within patches, introduced earlier.
CR contours: Fixed fraction of the peak response to each hue within patches, as introduced earlier.
CR responses: Radial axis shows total V1 response to a full-field, spatially uniform pattern of the hue
indicated on the polar axis. In this case, V1 responds a similar amount to every hue.
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5.5.2 Dimension 1: Input hue bias

Chapter 3 showed that the distribution of perceptual hues in currently available cal-
ibrated color natural image databases is a highly non-uniform sampling of PCS. For
the idealized model, we showed that jittering the hues in an image database to give a
uniform sampling of PCS resulted in V1 learning all hues (solving P3-pref). To un-
derstand this better, we can investigate the results of gradually increasing the amount
of bias, from the idealized, unbiased case (dHB = 0) through to the full bias/original
distribution (dHB = 1.0).

Figure 5.9 shows the effect of increasing the input hue bias. While OR organization
is unaffected, CR organizes very differently; the map becomes dominated by neurons
preferring hues around the input bias. In fact, V1 amplifies the incoming bias. CR
patches become larger, but despite this, many hues are not spatially well separated. If
some hues (i.e. ratios of IJK photoreceptor activations) are not present in the training
data, or are present only infrequently, V1 does not represent them. In our model, with-
out any form of adaptation, cone activation ratios correspond one-to-one with hues.

Additionally, increasing the hue bias in the incoming data has another effect. In this
example, the hue bias results in less energy at short wavelengths in the database, and
therefore the K and J cones are activated less than the I cones. We already know
how to solve this aspect of the problem from the previous chapter (i.e. some form
of adaptation that effectively normalizes the photoreceptor activations), and we will
consider it as part of a separate dimension (relative photoreceptor channel strengths).

Hence, this dimension contributes to all of the PCS representation problems (problems
P1-range, P2-PCS, and P3-pref). Somehow, the early visual system is able to develop
an apparently uniform representation of PCS, despite the environment being a highly
non-uniform sampling of PCS. This non-uniform sampling may be occurring over very
long timescales (i.e. a lifetime spent in yellow, arid desert), or over medium timescales
(e.g. changing season, from lush green to arid yellow), and additionally even over short
timescales (e.g. changing daylight over the day, or from weather changes, or even just
from moving between locations). That is, although we may think of this dimension
as being mainly about the reflectances present in the environment, the visual system
actually receives radiances, and these radiances will vary dramatically in different situ-
ations. In this model, the results will be a highly biased and incomplete representation
of hue (row CR pref hist and CR responses).
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Figure 5.9 (following page): Dimension 1: input hue bias. Top row: the amount of incoming hue bias
is increased from dHB = 0.0 (idealized, uniform distribution; left-hand column) to dHB = 1.0 (original,
biased distribution; right-hand column). The hue preference map (CR pref) and histogram (CR pref
hist) show that the model reflects and amplifies the incoming hue bias. The bias in the model appears
to be the consequence of two factors. The first is that photoreceptor excitations fall for J (“medium”)
and K (“short”) cones (shown in the PR abs row), as there is now relatively more energy at longer
wavelengths. This causes fewer V1 units to respond at all to short-wavelength inputs, as shown in the
last row (CR responses). However, even if the photoreceptors are normalized by long-term adaptation
(as introduced for the naive model in the previous chapter), the hue bias has an additional effect:
some ratios of photoreceptor activations occur more often than others, so the Hebbian-learning V1
represents these more strongly (i.e. with more units) than the patterns that occur less often. This is
something we will return to in the next chapter.
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5.5.3 Dimension 2: Relative photoreceptor channel strengths

Here we consider uneven activity of the different photoreceptor classes, which could
be caused by the distribution of wavelengths in natural scenes relative to cone sensitiv-
ities (as mentioned above), but also by variable ratios of cone types, and variable spec-
tral sensitivities (e.g. the lens absorbing increasingly more short-wavelength light with
age). Chapter 3 showed how the total excitations of the L, M, and S photoreceptors
are not equal for any given image database converted to L, M, and S cone excitations
using a fixed normalization factor. In chapter 4, we already addressed (“rescued”) this
problem with adaptive homeostasis at the photoreceptor level. However, to see the ef-
fect of this dimension and what the rescue achieves, here we simulate the effect of this
dimension by boosting one of the relative photoreceptor channel strengths relative to
the other two.

The position along this dimension is determined by parameter dCS; the top row of fig-
ure 5.10 shows that when dCS is increased from 0 through to 1, the I channel is boosted
relative to the other two. The preference map (OR pref & sel) and histogram (CR pref
hist) show preferences shrink until eventually the model comes to be dominated by
the I channel, i.e. red preferences. Additionally, the CR responses show that V1 now
responds to a smaller and smaller range of hues until eventually it only responds at all
to a limited range of hues around red.

We can conclude that without any activity-based normalization, if one cone type is
more active than the others, the competitive Hebbian learning V1 will become dom-
inated by that cone type. Therefore, if a database contains more energy at L cone
wavelengths than at S cone wavelengths, or if we were to simulate fewer S cones than
L cones, or for any of the reasons mentioned earlier that would cause one cone type
to be overall less active than another, then without some form of compensation, V1
will be dominated by the more active cone type. Therefore, a rescue of this dimension
needs to equalize the activities between the channels—which adaptive homeostasis at
the photoreceptor level does, for equal cone ratios. This dimension clearly also con-
tributes to problems P1-range, P2-PCS, and P3-pref, since the dominance of one
channel prevents some hues from being represented in V1 at all.
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Figure 5.10 (following page): Dimension 2: relative photoreceptor channel strengths. The I channel
is boosted relative to the other two channels, from dCS = 0.0 (no boost; idealized model) in the left-
hand column to dCS = 1.0 in the right-hand column. This dimension simulates uneven activity of the
different photoreceptor classes, caused by the distribution of wavelengths in natural scenes, variable
cone sensitivities, and relative numbers of cone types. When the I channel is boosted relative to
the other two, the CR preference map becomes dominated by hues that depend on I channel input.
Boosting the red channel relative to the other two results first in preferences shrinking around the
bias, then eventually in all neurons preferring red and responding to only a limited range of colors
around red. This dimension confirms our findings from the previous chapter with the naive model.
Also interesting to note is that the CR selectivity rises (and patch sizes increase), and OR selectivity
falls, as the I channel is boosted. The change in balance of CR and OR in V1 happens because the
relative strength of the incoming CR signal (vs. luminance) increases, since there is increasingly often
a positive difference between the I channel and the other channels. The RGC act bar charts show this
difference—an increase in activation of K ON center/I OFF surround (1), J ON center/I OFF surround
(3), I ON center/K OFF surround (5), and I ON center/J OFF surround (6) channels.
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5.5.4 Dimension 3: Photoreceptor correlations

We know that cone sensitivities overlap, and that additionally, natural spectra stimulate
cones types together, causing high correlations between the different cone types. L and
M cone sensitivities overlap more than L and S or M and S sensitivities. Correlations
are important for the model because our learning algorithm in V1 is based on Hebbian
learning, which learns correlations in the input. Hebbian learning (in various alterna-
tive forms) is a widely assumed model of learning in the cortex (a model of synaptic
plasticity; Shouval, 2007), so findings about the model are likely to be relevant for the
cortex. If two channels are highly correlated, the AL model may not distinguish them
(as for LISSOM; De Paula, 2007). However, we also know that the cone-opponent
RGC channels should reduce these correlations (chapter 2). For example, responses
of the RGC L-M and M-L pathways should be less correlated than the L and M cone
responses are. Therefore, to discover what the impact of input channel correlations is
on the model, and in the absence of suitable hyperspectral image data, our idealized
model uses sRGB sensitivities for the IJK input channels instead of LMS sensitivities,
since sRGB sensitivities are evenly distributed given the HSV-based hue manipulations
described in section 5.3.1. We then add correlation back between the I and J channels
in increasing amounts, to simulate increasing overlap. This dimension is controlled by
dC, with dC = 0.0 meaning no additional correlation (idealized case), and dC = 1.0
meaning I and J are identical (maximum additional correlation).

Figure 5.11 shows the effect of increased correlation between the I and J channels.
While there is no impact on the overall cumulative photoreceptor and RGC activa-
tions, there is a clear impact on hue representation. V1 becomes increasingly unable to
distinguish the I and J channels, leading to no distinction in preferences between hues
that depend on varying amounts of I and J input. Additionally, the preferences segre-
gate into only two types (K and I/J): two types of CR patch form, each representing
only half the hues, and with no spatial separation between those hues. On the other
hand, V1 continues to respond to all hues approximately equally overall.

The cone-opponent RGC is expected to reduce correlations (chapter 2), but because
these RGC channels include a spatial component they remain highly correlated due
to spatial (luminance) correlations. High correlation between two channels means the
competitive Hebbian, correlation-learning AL model does not distinguish the channels.
The same effect happens in the naive model because of the LMS correlations: the L
and M cone sensitivities are highly correlated. This dimension contributes to problems
P1-range, P2-PCS, and P3-pref because hues requiring I and J cone input separately
cannot be represented distinctly, even though neurons will respond well to either one.
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Figure 5.11 (following page): Dimension 3: photoreceptor correlation. Correlation dC between the I
and J channels is increased from left (dC = 0.0; idealized model) to right (dC = 1.0). Note: 0.0 does
not represent no correlation, just no additional correlation beyond the correlation of red (I) and green
(J) channels in the idealized dataset. Rows PR abs and RGC act show that cumulative photoreceptor
and LGN activations are not affected, and the OR selectivity is also unaffected. However, increasing
correlation between the I and J channels results in decreasing distinction between them, so that e.g.
preferences that begin as separate red and green hues merge into yellow/orange. CR patches segre-
gate into two distinct types. However, the cortex still responds approximately equally to all hues, albeit
with responses to two ranges of hues that are spatially coincident. A question we will leave to the next
chapter is why only two types of color patch result with high correlation between I and J, i.e. there no
longer appears to be any combination of K and either I or J.
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5.5.5 Dimension 4: RGC pathway symmetry

The naive model has an RGC pathway that does not combine (oppose) all cone classes
symmetrically. The idealized model, on the other hand, has an RGC pathway that
composes all cone classes symmetrically (figure 5.5). For this dimension, we consider
the effects of these two pathways.

Figure 5.12 shows results from these two extreme positions on the RGC pathway sym-
metry dimension: dS = 1 (idealized model, left) and dS = 0 (right). While the symmet-
ric idealized model develops a hue preference map containing all hues, the unsymmet-
ric pathway results in a much more limited range of hues. Additionally, two distinct
patch types occur: one a combination of I and K input (“red/blue”), the other a combi-
nation of J and K input (“green/blue”). Regions of the cortex preferring K alone (blue)
are less selective, and not organized into patches. The preferences are reflected in the
responses within CR patches: the symmetric pathway allows CR patches containing all
or a wide range of hues to develop, with spatially separated peaks, but the asymmetric
naive model develops CR patches that respond only to a limited range of hues (in two
distinct groups, as indicated by the the peak distances row). Furthermore, the response
plot row shows that the response to some hues (e.g. yellow) is lower than to others.

We can therefore conclude that any rescue of this dimension must at least balance the
activities for the different hues, i.e. boost yellow. The results also indicate that having
fewer discrete RGC channels makes it more difficult for intermediate hue preferences
to arise. Again, this dimension evidently contributes to problems P1-range, P2-PCS,
and P3-pref: the non-symmetric pathway causes uneven activities for different hues,
prevents representation of full PCS developing, and leads to uneven hue preferences.



5.5. Results 2: Dimensions 190

Figure 5.12 (following page): Dimension 4: RGC pathway symmetry. The non-symmetric RGC path-
way (as used in the naive model) introduces a bias in color preferences and responses. In the right-
hand column (dS = 1), we can see that the preference map contains very few yellow-preferring units,
and V1 has a lower overall response to yellow. There are only two blob types, and peaks are not well
separated. On the other hand, in the left-hand column (dS = 0; idealized model), the preference map is
unbiased, and V1 responds equally to all hues. Using a coextensive “blue/yellow” (K vs. I+J) pathway
does not qualitatively affect these conclusions.
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5.5.6 Dimension 5: LUM vs CR

We have seen that the idealized model’s V1 forms a spatially contiguous OR map and
has CR-selective units organized into isolated patches, matching results from macaque
monkey. However, this particular balance of OR and CR maps is just one position
along a dimension that ranges from completely OR dominated to completely CR dom-
inated (figure 5.13). The position along this dimension is determined by parameter dL,
a measure of the fraction of total weights from V1 to RGC dedicated to LUM or to
CR. For dL = 1.0, the chromatic pathway has zero weight, for dL = 0.5 the chromatic
and luminance pathways have equal weight, and for dL = 0.0 the luminance pathway
has zero weight (though even in this case the cone-opponent channels carry luminance
information too, since they are also spatially opponent).

Figure 5.13 shows that as dL is decreased, OR selectivity decreases, while CR selectiv-
ity increases. OR selectivity never falls completely to zero, as expected. At low values
of dL, the CR representation is no longer patchy, and so although the CR map repre-
sents all hues more uniformly than for higher values of dL, the representation does not
match existing experimental results from macaques as well as at higher values of dL.

This dimension helps to explain ER2-patches (CR in patches, rather than OR in
patches), and is also relevant to P1-range: dL needs to be low enough that CR patches
can form, but if it is too low, CR will dominate and there will not be CR patches among
a generally spatially contiguous OR map. Additionally, this dimension shows two in-
teresting features of map organization, which we will discuss in the following chapter.
Firstly, there is a balance of OR vs. CR selectivity, determined by the balance of the
afferent CR and LUM signals to V1. However, we can also consider the spatial scales
of the two maps: as soon as CR selectivity arises, it is the dominant feature in the map
organization (i.e. it has a larger spatial scale). Previously, Miikkulainen et al. (2005)
have shown, in a LISSOM model of the development of OR and DR selectivity, that
the dominant feature depends on the speed of the moving input patterns. We will con-
sider these observations futher in the next chapter, along with the correlation of CR
and luminance in the input.

The position of this dimension used for the idealized model (dL = 0.6) is chosen
by matching the experimentally observed balance in macaque: CR is organized into
patches, while OR maps are spatially contiguous. Different species could lie in differ-
ent positions along this dimension, depending on their neural architecture. Different
individuals could also lie in different positions along this dimension, e.g. because of
their rearing environment or visual history. An individual raised in a monochrome
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environment, for instance, may develop a V1 that ignores the inactive chromatic chan-
nels, and thus end up with an organization in V1 with no CR patches (dL = 0.0), as
would an individual who was born with only a single cone type.
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Figure 5.13 (following page): Dimension 5: Balance of luminance vs. CR. V1 receives input from LUM
and CR RGC channels. Adjusting the relative weighting of LUM and CR from dL = 1.0 (left-hand col-
umn; no CR channels), though dL = 0.5 (CR and LUM weights equal), to dL = 0.0 (no LUM channels;
right-hand column) shows the range of possible OR vs CR organizations in the model. OR dominates
in the left-hand column, while CR dominates in the right-hand column. Note that even at dL = 0.0 there
is still an OR map because the chromatic pathways carry some luminance signal. Different species
could appear in different positions on this dimension depending on their physiology, for instance if OR
is de-emphasized, perhaps by having non-overlapping cone sensitivities, or no RGC LUM pathway
(e.g. only very small RFs), they may appear towards the right-hand column. Different individuals could
also appear at different positions, if they have sufficiently different visual histories (e.g. raised in highly
colorful environment vs. raised in a monochrome environment). Existing experimental results from
macaque are best matched by dL = 0.6. It is interesting to note that a patchy organization of CR can
still be found by thresholded selectivity or by differential response to RG-BW gratings even when the
underlying CR selectivity is still reasonably high. This could help account for varying experimental
findings (chapter 2) of OR and CR being represented separately or together. Another interesting thing
to note, which we will discuss in the next chapter, is that the spatial scale of the CR map is always
larger than that of the OR map.
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5.6 Discussion

The previous chapter began with experimental results showing OR-selective cells or-
ganized in a spatially contiguous map alongside CR-responsive cells in patches, and
with cells in the CR patches organized according to PCS and hence able to code hue by
spatial position. However, the model in the previous chapter—the naive model—could
not explain the organization of hue according to PCS. In this chapter, we extended the
naive model—leading to the idealized model—to show what is required for a realis-
tic organization of hue to develop. For the first time, this gives a model with a hue
organization matching experimental data, while simultaneously matching the overall
organization of OR and CR.

In the process of creating the idealized model, we identified several important dimen-
sions to which the the model is highly sensitive, but that the brain is apparently rela-
tively insensitive to. Humans robustly develop a perceptual color space that appears to
be reasonably consistent both between individuals and for one individual across time,
despite very large changes in input caused by environment and physiology. The model,
however, can only do this if we artificially eliminate these variabilities. These results
are interesting because they indicate problems that the brain is overcoming in devel-
oping PCS, and so in the next chapter we will consider how the model might be made
more insensitive to the dimensions. Below, we briefly review our findings about each
of the dimensions, and afterward consider implications for experimental studies:

• Input hue bias: when the model is trained on images with a highly non-uniform
sampling of PCS, which appears to be typical of visual experience, the model
fails to develop a realistic organization of hue.

• Relative photoreceptor channel strengths: the model V1 requires the L, M, and
S channels to be similarly active over the simulation’s lifetime (or at least, long
periods during development) in order that all channels are represented in the
CR map. However, there are many factors that can prevent this happening: the
environment could for example reflect more long-wavelength light than short-
wavelength light to the eye on average; the eye could filter out more short-
wavelength light than long-wavelength light before the light reaches the pho-
toreceptors; the retina may have more long-wavelength than short-wavelength
cones. These things may vary over time and space (field of view) for one indi-
vidual, and between individuals, yet they appear to have little impact on human
perception of color (chapter 2). The relative photoreceptor channel strengths di-
mension, which incorporates all these sources, illustrates that the model requires
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the ability to adapt to uneven cone excitations. We demonstrated in the previ-
ous chapter that adaptive homeostasis in the photoreceptors could mitigate this
situation.

• Photoreceptor correlation: the model V1 requires that L, M, and S channels are
not too highly correlated, or else input channels cannot be distinguished and
hues depending on distinction of those channels disappear from the CR repre-
sentation. In reality, the L and M cones are highly correlated for typical visual
experience given their overlapping sensitivity functions, so we believe there must
be a mechanism to reduce this correlation. We expected that RGC cone oppo-
nency would do this, but it appears that the spatial element of the channels leaves
too much correlation.

• RGC pathway symmetry: the naive model’s non-symmetric RGC pathway ap-
pears to suppress some hues. A symmetric combination of cone-opponencies, as
in the idealized model, allows all hues to be represented equally in V1.

• Luminance vs. CR: the model V1’s balance of OR and CR maps is affected by
the balance of LUM and chromatic channels, and a particular balance matches
existing experimental results from macaque well. However, we expect that phys-
iological and environmental factors could affect the balance of OR and CR in
macaque V1, and may be different for other species depending on physiological
and environmental factors.

As stated earlier, we believe the above are dimensions that the visual system is rela-
tively insensitive to. Individuals grow up in different environments with different color
statistics, have different cone ratios, have lenses that yellow over time, etc., and yet
the brain is fairly insensitive to those differences—PCS seems to be fairly consistent
between people and over time. It is surprising that the color vision system is not more
sensitive to some of these, because we know that both the environment and physiol-
ogy have a major effect on color vision development (chapter 2). The variabilities
are reflected in the visual system, for instance the different statistics of different color
environments do affect PCS, or different cone sensitivities do cause different detailed
color matches between individuals (chapter 2), but the effects are much smaller than
we might naively expect.
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5.6.1 Accounting for the range of experimental results

Beyond developing a representation of hue that matches experimental data, and learn-
ing what problems the model needs to overcome to do so, another interesting con-
sideration is what the model can tell us about interpreting the existing experimental
results.

As reviewed in chapter 2, there is disagreement in the literature about several aspects
of the representation of hue in V1. We have focused on data from optical imaging
(OI), backed up by preliminary in vivo two-photon calcium microscopy (2P) studies,
because imaging allows cells to be simultaneously imaged over a wide enough area,
yet at a high enough resolution. However, some studies using other methods such as
electrophysiology have reported e.g. one “color opponency” per patch (i.e. responses
to RG-BW gratings separate from responses to BY-BW gratings), rather than multiple
hues per patch. In our model, we saw that even while varying only the input seed for
hue jittering, when we determined peak responses in the most selective patches, we
sometimes found patches representing only a limited range of PCS. Despite this, the
underlying hue representation was overall the same in all cases.

Similarly to the question of hues represented in each patch, experimental studies have
in some cases found that OR and CR are represented separately, while in other cases are
represented together (chapter 2). Our results indicate that even when the underlying CR
selectivity is quite uniform, a technique that defines patches by the differential response
to RG-BW gratings, or by thresholded selectivity, can find a patchy distribution of
CR. This indicates that experimental conclusions may differ for a common underlying
reality.

Furthermore, experimentally imaged subjects could have been raised differently, so
could be in slightly different positions along dimensions. For instance, individuals may
vary along the luminance vs. CR dimension, and this could account for some studies
finding that color-preferring cells and luminance-preferring cells are quite overlapping
(i.e. that cells represent both features), while others find the two types of cell are sep-
arate. We do not know if the different experimental findings are caused by genuine
differences between individuals, or from experimental techniques. Experimental re-
sults are limited to only a few individual macaques so far. We will discuss in chapter 6
how the model could be used to help predict results of experiments not yet done, such
as imaging individuals reared in environments with different color statistics.

So far, hue organization has only been investigated experimentally using OI and 2P for
a few individuals (with unknown visual history), leading to a limited amount of data to
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compare against. Performing more quantitative analysis beyond comparing distances
between peak responses to different hues is therefore currently of limited value. How-
ever, once results from more individuals (with more information about their visual
history) are available, it will be possible to perform more quantitative comparisons
between experimental and model results.

Finally, one more issue with experimental work that is apparent from this chapter’s
modeling work is the difficulty of controlling “color” stimuli appropriately. Stimuli
designed to test hue preference, but that possibly vary in other aspects of PCS (e.g. hav-
ing a different saturation), make it difficult to determine hue preference with certainty.
No experimental studies have “integrated out” other features of PCS (e.g. presenting
patterns with multiple saturations for each hue, along with multiple values of other
features such as orientation and direction of motion), presumably partly because of the
impractical amount of time that would require, and partly because the true dimensions
of perceptual color space are unknown. However, an important aspect of successfully
coding for hue is to have a stable representation, as has been found for orientation, so
we will return to this issue in chapter 6.

5.7 Conclusion

Experimental work indicates that CR selective cells are organized into spatially segre-
gated patches, and that within each patch a wide range of hues is represented, organized
according to PCS. In this chapter, we have demonstrated that the idealized model can
develop a realistic organization of hues within CR patches, alongside a contiguous OR
map. This is the first time all these aspects of the experimental data have been matched.
To achieve this, the model must artificially be made relatively insensitive to a number
of sources of variation, including input color statistics and layout and numbers of pho-
toreceptor types. We have shown the effect of each of these, and thus we can see what
modifications (rescues) would need to achieve for a model to develop a realistic rep-
resentation of PCS. This will guide future work to implement rescues via biologically
plausible mechanisms.





Chapter 6

Discussion and future work

In this chapter, we will review the work presented in this thesis, and consider how
successful we have been in meeting the goals set out in chapter 1. Afterward, we will
catalog the suggestions for future experimental and modeling work that have arisen
throughout the work in this thesis.

6.1 Evaluation of goals

Here we will review findings from the preceding chapters, and consider whether we
have reached the goals set out in section 1.4:

• In chapters 1 and 2, we reviewed previous work showing how the perceived color
and physical stimulus are not directly related. Although all aspects of vision can
illustrate how perception and reality differ (e.g. the perceived orientation of a
line can differ from its physical orientation, or motion can be perceived where
there is none), the difference between physical stimulus and perception is par-
ticularly clear for color. We also saw evidence that the representation of color
by the early visual system during development is both highly affected by the
environment and underlying physiology, yet at the same time the development
of perceptual color space (PCS) (as judged by experiments testing visual per-
formance) appears to be affected surprisingly little by significant variabilities in
both. Excitingly, we then saw that there appears to be an organization for percep-
tual color in macaque primary visual cortex (V1), which can be measured and
related to concrete neural anatomy and physiology. Goal 1 was to show that the
neural representation of color is a useful model for understanding how the brain
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represents and processes information in general. By outlining how the physical
stimulus and perception differ, but at the same time showing there is a real possi-
bility of imaging the neural representation of color in the brain, we set up goal 1.
But how could the necessary wiring arise? Experimental studies so far do not
address this. Turning to computational models, we found that existing models
of the development of orientation (OR) and color (CR) in cortex are not able to
explain important results about the organization of PCS, in particular how hue is
represented. Therefore, chapter 2’s investigation demonstrated the need both for
new modeling work, and to better understand visual input in terms of statistics
relevant to color. These were the subjects of the following chapters.

• Chapter 3 showed that (a) the distribution of colors in natural scenes is a highly
non-uniform sampling of PCS, with natural scenes being dominated by certain
colors such as yellow and green, and (b) the distribution of cone absorptions is
also biased in several ways that are problematic for the type of models we re-
viewed in the previous chapter. We also reviewed databases of calibrated color
images suitable for use as input to the model, and characterized two specific
databases. This left us with concrete input to use for an input-driven develop-
mental model, and helped to understand how that input would affect the model.
For us, this investigation was a necessary step on the way to next chapter, but is
worthy of future study in its own right.

• Goal 2 was to integrate biological findings about natural images and the physiol-
ogy of the early visual system into a simple computational model, to see whether
such a model could develop a realistic perceptual color space. Hence, chapter 4
began by solving a number of problems not addressed by state of the art mod-
els of the development of orientation and color processing, showing that adding
adaptive mechanisms at the photoreceptor and V1 levels allows a model to de-
velop orientation and color maps reliably. To determine whether the color and
orientation maps developed by the new model (the naive model) were realis-
tic, we made a detailed comparison with experimental work. We found that
the naive model has better results than any of the previous models, while being
true to known anatomy. However, as for previous models, we found the naive
model did not develop a realistic representation of hue, crucially being unable to
support a spatial coding of hue as is apparently found in macaque monkey V1.
Therefore, to achieve goal 2, we needed to analyze the naive model in light of
known biology from chapter 2.

• As suggested above, by analyzing the model of chapter 4, in chapter 5 we were



6.2. Proposed experimental work 203

able to create a new model that does develop a realistic hue organization, match-
ing in detail recent experimental results from macaque and achieving goal 2. We
showed that previous models are unable to adapt to variabilities or bias in visual
input and physiology, and hence are unable to develop a realistic neural repre-
sentation of perceptual color space. From these findings, we hypothesized that
adaptive mechanisms are critical to the development of color vision, allowing
the visual system to be relatively insensitive to sources of bias and variability.
Generating such a hypothesis was goal 3. Mechanisms such as homeostasis and
adaptation are well accepted biologically, but typically omitted from models of
luminance and color processing. As stated above, we think the neural represen-
tation of color is a useful model for understanding how the brain represents and
processes information in general, precisely because such adaptive mechanisms
cannot be omitted from even the most basic models of color processing if they
are to be successful. We therefore hope we have achieved goal 1.

The final goal of this thesis was that our work should suggest future experimental in-
vestigations, and lead into new modeling work, which together can be used to evaluate
our hypotheses. During this thesis, we have encountered a number of problems eval-
uating and interpreting experimental results, so we can therefore suggest experiments
that would help resolve these issues. Secondly, the concrete result of this thesis is two
novel models that form a platform suitable for further investigation of the adult color
visual system and its development. There are a number of interesting experiments that
could be performed on the models to compare with known biological phenomena. The
results of such experiments could suggest mechanisms for the biological phenomena,
or introduce new constraints on the model, guiding improvements to it. Finally, the
model has a number of concrete shortcomings and omissions; solving any of these
would extend the valid range of the model or open up new biological phenomena for
investigation.

6.2 Proposed experimental work

In order to resolve some of the questions about how PCS is represented in macaque
primary cortex, below we describe three specific themes that have emerged from our
modeling work. To briefly motivate the themes, we can give an example. Recent
interesting functional magnetic resonance imaging (fMRI) studies have found the rep-
resentation of hue in V1 is not uniform. Hue representation was found to biased along
a lime–magenta axis in human V1 (Goddard et al., 2010), but separately, hue represen-
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tation was found to be biased along an orange–cyan axis in macaque V1 (Lafer-Sousa
et al., 2012). The difference could be related to all or a combination of: different
anatomy between species; different prior visual experiences; differences in the color
properties of the stimuli used during testing; or difficulties from averaging V1 color
response at the resolution of fMRI. For our modeling work, chronic imaging in vivo, at
two-photon calcium microscopy (2P) resolution of individuals from the same species,
reared in controlled environments of various known color statistics, with test stimuli
whose physical and perceptual color properties are accurately known, would be the
best match, and therefore allow us to resolve ambiguities in the model. However, each
of these requirements presents significant technical challenges on its own, and achiev-
ing all of them is unlikely to happen in the near future. Therefore the rest of this section
focuses on specific, more tractable goals.

6.2.1 Hue preference maps

Currently, there are no published hue preference maps for macaque V1 (as measured
by optical imaging or 2P). For orientation, it has been possible for example to present
combinations of sine gratings of different orientations, and record neurons’ preferred
orientations (i.e. the orientation that causes the strongest response). For hue, only
maps of the peak location in response to each hue have been published. It would be
useful and interesting to have the underlying responses, in order to compute a hue
preference map. Our modeling suggests apparently uniform hue peak maps can be
obtained from quite non-uniform preference maps. Experimental hue preference maps
measured using optical or in vivo two-photon calcium microscopy (2P) imaging, even
if appearing to show no interesting features (such as showing only one preference, or
showing preferences that are not stable) would help constrain the model, which in turn
would allow us to improve our understanding of how the maps develop.

A potentially interesting application of the model in this respect could be to test pro-
posed experimental procedures before they are performed. This could provide valuable
insight into what information a given experiment could reveal under ideal, controlled
conditions. For instance, in the model, measuring a hue preference map with stimuli
that vary in hue but also incidentally in saturation can result in a misleading preference
map—but it is easy to realize that mistake because, unlike in an animal, everything can
be inspected. A close link between experiment and modeling in this way would also
greatly benefit the modeling work, because essential features of the experimental pro-
cedure could then be replicated. The model could also serve as a method of recording
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and communicating the procedure.

Versions of our model with no adaptation illustrate clearly that representing perceptual
hue is different from representing wavelength. Although features such as the spatial
organization of peak responses to different hues defined with stimuli that also vary in
wavelength are important (e.g. is “red” close to “magenta” as well as being close to
“orange”?), the next step is to ask whether such a map genuinely represents perceptual
color, or is closer to physical wavelength (Zeki, 1983). With no short-term, spatial
adaptation in the model, simulating a change to the ambient lighting conditions under
which a hue map is measured would result in a different hue map, illustrating the
difference between perceptual hue and wavelength preference. Hue maps in animals
could therefore be measured with stimuli that vary perceptually but not physically, or
vice versa, e.g. by presenting more complex patterns as has been done only for single
cells (Zeki, 1983), or by using temporal adaptation.

Finally, while there have been several studies of OR preference using 2P, confirming
the detailed organization of OR preference maps, only preliminary results have been
shown so far for CR. The single-cell resolution of 2P, combined with being able to
measure a large enough area, makes it an ideal match for our modeling work. If the
organization of hue in V1 is largely contained in small patches, organized internally on
a finer scale, 2P imaging will be necessary for more certainty about this organization.
Of course, the same difficulties of selecting the appropriate stimuli to use will exist as
for optical imaging or any other method.

6.2.2 Development of hue representation over time

We know how orientation maps develop over time from birth, and that maps exist pre-
natally (established by e.g. retinal waves). But we do not know anything about how
CR organization develops, or whether any form of CR map is present at all before
birth. L and M cells are genetically very similar, and even adult brains can adapt to
new cone types (Mancuso et al., 2009), leading us to assume that a prenatal, entirely
experience-independent explanation of hue preference maps is unlikely (though inter-
action between the two modes seems likely). Any data about the time course of hue
representation’s development would therefore be extremely valuable for constraining
the model.

However, our modeling work indicates that it is critical such data be combined with
knowledge of the color statistics of the rearing environment. Ideally, chronic map
measurement would be combined with control over the visual experience during de-
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velopment, though this may be difficult. But it is at least already possible to perform
chronic imaging studies over long periods in behaving animals (Arieli et al., 2002).
For example, Li et al. (2014) imaged macaque monkey V4 a month apart to confirm
stability of hue peak maps. Combining such long-term imaging with controlled color
environments would also be interesting, because we know adult color vision is highly
adaptable over long periods (weeks, e.g. Neitz et al. (2002), and years, e.g. Werner
et al. (2004); see chapter 2). Alternatively, such imaging could be combined with e.g.
adding a new photoreceptor pigment to dichromatic animals (Mancuso et al., 2009)
and imaging V1 over time, while also monitoring progress in retinal expression of the
photopigment.

6.2.3 Determine what is realistic visual experience

Ideally, we would like to collect calibrated color images from the rearing environments
of the monkeys imaged in existing studies. However, the environments are unknown
(chapter 3). If the environment was not the natural one we assumed, but was instead
one with many colorful man-made objects, this could have implications for the hue
maps being measured, as discussed above. Determining realistic visual experience is
interesting not only for interpreting experimental results about hue representation, but
also in its own right. Chapter 3 indicates we are exposed to a highly non-uniform
sampling of our perceptual color space in nature, with little experience of certain col-
ors. Is this genuinely the case? Chapter 3 indicates that taking more images in similar
locations would not change the conclusion about the types of scenes sampled in that
chapter, but collecting calibrated color image databases from different regions (e.g.
tropical jungle) or at different times of year could reveal interesting differences. Ad-
ditionally, rather than manually photographing particular objects or scenes, it could be
possible to attach calibrated RGB cameras to animals. Results from collecting such
image databases could be analyzed as in chapter 3, or possibly using more advanced
color appearance models.

Beyond characterizing visual experience in terms of light entering the eye, it may also
be necessary to consider the significance of different colors to an organism. For in-
stance, the colors of a venomous snake might be experienced less frequently than the
colors of grass, but the snake’s colors are likely to be more significant and hence could
have a greater impact on learning mechanisms. Therefore, it may additionally be nec-
essary to take salience into account when determining how the environment affects hue
representation in the cortex.
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6.3 Proposed modeling work

Constraining models like the ones we have presented in this thesis is not easy. One
source of constraints is results about adult color vision performance (i.e. from psy-
chophysical studies), which constrains how the model should perform after develop-
ment. These constraints could reveal mechanisms that need to be changed or added
to the model. Or, the model can be used to explain experimental results, or to predict
new ones. However, a large amount of such data already exists in the psychophysics
literature; unifying the data into a more general model that is subject to many other
constraints forces us to evaluate the consistency of models of individual, separate phe-
nomena.

We have contributed a computational model that can act as a platform on which many
experiments could be performed, and we list a selection of immediately accessible
ones below. The models used in this thesis are included with the Topographica sim-
ulator to allow the future work proposed below to be carried out, and also to enable
reproducibility (an important but surprisingly difficult aspect of computational neu-
roscience; Crook et al., 2013), and to allow the model to be incorporated with other
aspects of cortical processing (Bednar, 2012). One person or small team can typically
only include in a model the features necessary to support the specific phenomenon they
are studying, but this can result in a large number of specific and potentially incompat-
ible models. Making models easily accessible, and attempting to integrate them, is a
worthwhile endeavor.

While the models as included with Topographica are the best place to start for new
work, for completeness all results figures in this thesis may be regenerated automati-
cally by Makefile (including running the underlying simulations) from the freely avail-
able source (cb2014thesis.sourceforge.net). With the advent of tools such as IPython
notebook, this kind of approach is becoming both simpler and more powerful (Stevens
et al., 2013a).

6.3.1 McCollough Effect

Figure 6.1 shows the McCollough Effect, an aftereffect in which the perceived color
depends on orientation. Previous work has modeled the effect in a dichromatic (red/green)
model using LISSOM, and has shown that the change in perceived color could be ex-
plained by adaptation of lateral connections in V1 (Ciroux, 2005). The model pre-
sented in this thesis would allow the effect to be modeled for different pairs of colors

http://www.topographica.org/
http://cb2014thesis.sourceforge.net/
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(Stromeyer, 1969). Preliminary work to do this has begun (Spigler, 2014), but indi-
cates that the balance of orientation and color in the model is an important factor in
being able to reproduce the effect, therefore potentially helping to constrain the repre-
sentation of OR vs CR (see section 6.4.4 below). Future work could also consider the
effect’s dependence on wavelength instead of perceived color (Thompson and Latch-
ford, 1986), to help place constraints on photoreceptor adaptation (e.g. adding spatial
adaptation; section 6.4.7), or on the effect’s transfer between eyes (e.g. if ocular dom-
inance were included in the model; see section 6.4.8). There are also related orienta-
tion/color effects, such as the tilt aftereffect’s dependence on color, and others (see e.g.
Clifford et al., 2003).

6.3.2 Angular dependence of color aftereffects

We saw in chapter 1 that perceived color depends on previously viewed colors. Webster
and Mollon (1991) found that perceived color changes in a way that depends on the
difference in color between adapting and test stimuli (figure 6.2). Such an effect could
be tested in the model. If there is a mismatch, the human data could then be used
to constrain the model. Or, if the effect is found in the model, the mechanism of
the effect in the model could be used to hypothesize about the cause of the effect in
humans—similarly to the McCollough affect above, or to previous investigation of the
tilt aftereffect in a related model of orientation (Bednar and Miikkulainen, 2000).
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Figure 6.1: The McCollough Effect. (a) Initially observe no colors on the
achromatic (test) gratings. (b) After alternately gazing at the two chromatic
(adapting) gratings for a few minutes (avoiding afterimages by moving your
eyes around slightly), you should then observe that the horizontal grating
is greenish and the vertical is reddish. The more time spent gazing at the
chromatic gratings, the stronger the effect will be. Try adapting for five min-
utes and check back in an hour to see that the effect lasts. (c) The effect
is maximal when the adapting and test gratings are orthogonal, while at 45◦

there is no effect (when you have the effect working, rotate the paper to see
the color go away, and keep rotating to see the opposite color return!). In
a dichromatic model, previous work has found that the angular dependency
can be reproduced in the model, largely by adaptation of lateral connections
in V1 (Ciroux, 2005). (c) reprinted from Ciroux (2005); data from Ellis (1977).
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Figure 6.2: Angular dependence of color aftereffects. Viewing a colored
adapting pattern changes the perceived color of a subsequently viewed pat-
tern. The change in perceived color varies with the difference in color be-
tween the adapting and test patterns (here the color space is DKL). Such
data could be used to constrain a model’s color processing. Reprinted from
Webster and Mollon (1991).



6.3. Proposed modeling work 211

6.3.3 Representation of other aspects of PCS

So far, we have considered only the representation of hue. However, even in the simple
perceptual color space used to analyze models in this thesis (HSV), there are two other
dimensions—saturation and value. The hue representations we found are stable across
varying saturations, for instance, but we did not explicitly test for an organization for
saturation. Although no comparable data is available for macaque V1, hue represen-
tation in V4 appears to be stable across saturations, and there may be organization for
saturation (in HSL space; Li et al., 2014). Additionally, in section 6.4.7 below, we
discuss adding spatial adaptation to the model. Progress in this direction would al-
low investigation using colorimetrically well-defined spaces that take into account the
background, such as CIE L* C* hab color space (CIELChab) (which has lightness and
chroma, and a more perceptually uniform representation of hue).

6.3.4 Tuning of neurons

What is the color tuning width of neurons in the model? By tuning width, we mean
a comparison of a neuron’s responses to stimuli of varying hue angle. A highly se-
lective neuron would have a narrow tuning width, responding significantly more to a
small range of hue angles than to the rest. An unselective neuron would respond the
same for all hues. Two aspects of tuning width could be important for other future
work suggested in this chapter. First, the tuning width could determine whether or not
the angular dependence of aftereffects such as the ME (section 6.3.1) matches human
data. Second, investigating how stable the tuning width is across changes in other di-
mensions of perceptual color space will show how reliable the hue representation is
for coding hue (e.g. like contrast-invariant–tuning is important for orientation coding;
Antolik, 2010; Stevens et al., 2013b).

6.3.5 Training from calibrated databases of different environments

As more collections of calibrated natural image databases become available, it will be
possible to train the model on these and, if the environments are sufficiently differ-
ent, to demonstrate the impact of different environments on details of perceptual color
space. However, there are already images of urban scenes in both the McGill Cali-
brated Image Database (MCID; Olmos and Kingdom, 2004) and Barcelona Calibrated
Image Database (BCID; Párraga et al., 2010), and there are more hyperspectral images
of urban indoor/outdoor scenes than of natural scenes (e.g. Chakrabarti and Zickler,
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2011). Using such images to train the model could already generate interesting hy-
potheses about the impact of environmental color statistics on the representation of
PCS in V1 for modern humans, or animals raised in man-made environments vs. being
wild caught. Additionally, as discussed in chapter 3, where an image database allows
the recovery of reflectances, different illuminants could be simulated (for time of day,
or weather conditions, for instance).

6.4 Improving the models

In chapter 5, we showed a number of dimensions representing physiological and envi-
ronmental variabilities and biases to which the naive model must be made insensitive
in order to represent hue in a realistic way. We demonstrated what needs to happen
in the model in order for a realistic hue representation to develop alongside a realis-
tic organization of orientation and color selectivity, which, along with the biological
background reviewed in chapter 2, allows us to hypothesize about how it could hap-
pen in the model and hence the brain. However, our hypotheses will need to be tested
via concrete implementations, which will require quite extensive work in each case.
However, we have laid out what the problems are, and have provided a platform from
which to test and learn about their effects individually, which will be useful even if our
hypotheses about how to address the problems turn out to be wrong.

Our first hypothesis is that adaptation and homeostasis at each level of the model is
critical for the development of perceptual color space. Our second hypothesis is that an
additional mechanism to reduce input channel correlation is required. In the following
two sections, we discuss these hypotheses and how they relate to the models of chapter
4 and 5.

6.4.1 Adaptation and homeostasis

The relative photoreceptor channel strengths dimension showed the effect of an input
channel being activated more or less than others over long periods. Such an input
channel imbalance could arise because of pre-receptoral filtering by the lens, different
ratios of cone types, reflected spectra containing more energy over some wavelength
ranges than others, or, in the extreme, missing photopigments or non-functional recep-
tor types. The naive model showed that some form of photoreceptor homeostasis is
necessary. The next step is to implement homeostasis via a realistic mechanism, as has
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been done for the cortical component of the model (Stevens et al., 2013b).

Second, we think the same kind of mechanism will be required at the RGC stage.
Firstly, because of photoreceptor correlation, even though the activities may be equal,
differencing correlated vs. uncorrelated activities leads to imbalances in activity in the
RGC channels. Secondly, we saw in the RGC pathway symmetry dimension that the
unsymmetric pathway of the naive model leads to suppression of some hues; some
balancing of the separate pathways may be necessary. Thirdly, as we will discuss in
section 6.4.3 below, a more realistic subcortical architecture (“random” wiring of the
RGC) is likely to require some form of RGC adaptation/homeostasis.

Note that a number of biological results could well be explained (or partly explained)
by such mechanisms (and where the effects are not explained, will provide data to
constrain the mechanisms). As reviewed in chapter 2, these results include deliberate
experiments such as “red” goggle wearing (e.g. Neitz et al., 2002), as well as observed
phenomena such as the lens yellowing with age, or a photopigment not being present
from birth.

6.4.2 Correlation

The correlation dimension in chapter 5 demonstrates that as two of the input channels
are increasingly correlated, V1 fails to distinguish them. In the model, this correlation
can arise because of the overlapping cone sensitivities, and also from additional cor-
relations caused by natural images. We expected that the RGC and LGN processing
would reduce photoreceptor correlations, as the processing opposes input from differ-
ent cone classes (Zaidi, 1997), but we found that correlation remains high because of
strong spatial correlations in the images. Therefore, a modification of the model, or
introduction of new processing, is likely to be necessary to solve this problem; we
suggest some possibilities below.

Firstly, in biology, photoreceptor output to the retinal ganglion cells may in effect be
less correlated than the initial correlations (i.e. the overlapping LMS sensitivities and
their additional correlated stimulation by natural images). For instance, this could be
because of lateral inhibition between cones via horizontal cells, or nonlinearities in
photoreceptor responses (Baylor et al., 1987; Endeman and Kamermans, 2010) that
may reduce correlations.

Alternatively, correlation may be reduced at the RGC stage in the model by the same
kinds of mechanisms as above. Inhibition between ganglion cell outputs at some



214 Chapter 6. Discussion and future work

point before V1 is not supported by current evidence (Solomon and Lennie, 2005),
but nonlinearities in RGC processing have been shown to significantly reduce correla-
tion (Pitkow and Meister, 2012). Correlation could also be reduced at the RGC stage
if the chromatic RFs were smaller, reducing spatial correlations. An additional possi-
bility is that simulating a more realistic cone mosaic, and more realistic (less perfectly
overlapping) RGC surrounds, could reduce correlation (see section 6.4.3 below).

Potentially, the solution to this correlation problem could be constrained by results
about color vision performance of individuals who have even more similar L and M
pigment varieties than is typically found in humans (chapter 2). For some degree of
similarity, the cone responses evidently cannot be distinguished.

Another aspect of correlation to consider is related to how similar hues are represented
close together in the model cortex. In the model with no adaptation, colors (i.e. recep-
tor activation ratios) that cause similar activation patterns will typically be represented
close together (because of short-range excitatory connections). L and M cone sensi-
tivities have much higher correlation than L and S cone sensitivities, so with no other
mechanism, the L and M cones tend to be represented together, and separately from
S cones. Natural images increase correlations, particularly in L and S cones, which
we might expect to cause S and L cones to be represented together too, but in fact
we found in the naive model that S cones are generally still represented in separate
patches from L and M cones. Correlations must therefore be low enough that the cone
types can be distinguished, but also the correlations between pairs of receptor types
may need to be similar for them all to be represented nearby in V1.

Along with investigating what causes CR patches to form, and what causes the “hue
circle”, it would be interesting to study what influences whether hue peak maps within
patches defined by RG-BW gratings, or based on selectivity, are found to join up or
not. That is, whether peaks for red and blue are as close as those for e.g. red and green,
and separated by colors such as magenta. As in experimental data, peak separations
in the model are measured within restricted patches (e.g. those defined by RG-BW
gratings, or by taking the most selective regions); this can result in patches disguising
the underlying proximity of hues, and could account for some studies finding different
patches representing different hues, and other studies finding many or all hues within
a patch.
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6.4.3 More realistic subcortical model

As mentioned above, the ratio of L and M photoreceptors varies greatly between indi-
viduals, and there are relatively few S cones (chapter 2). Our model in chapter 5, the
idealized model, shows the result of imbalanced channel strengths, and it should be
straightforward to simulate e.g. a realistic S cone density (approximately 5 %) or the
frequently mentioned 2:1 ratio of L:M cones in human (though not enough data has
been collected to know how accurate these estimates are; chapter 2). The effectiveness
of photoreceptor homeostasis could then be evaluated on concrete biological variabil-
ities. One other interesting possibility might be to compare the organization of OR
and CR in one simulated individual’s V1 at different retinal eccentricities (e.g. where
there are no S cones, for foveolal V1, vs. parafoveal). Typically, input from S cones
is thought to reduce spatial acuity (because of chromatic aberration). However, such
work would just be a step on the way to simulating a more realistic cone mosaic and
retinal ganglion cell wiring, as will be discussed next.

Apart from the variable ratios of cones described above, it is also clear (chapter 2) that
the arrangement of L and M photoreceptors in human and primate retina is at least
partly random, and furthermore they are extremely similar genetically and morpholog-
ically. The model of RGC and LGN in this thesis is specifically wired for all cone
types, and every cone type exists at each retinal location; that is, cone opponency is
perfect. Perfect cone opponency seems implausible to us, but there is debate in the
literature about whether or not retinal ganglion cells are indeed wired selectively to
L and M cones, which provides a good opportunity to test the effects of random vs.
specific wiring in the model.

Initial work has been undertaken in this direction (Kneisel, 2013), and has shown that
it will be necessary to consider random wiring’s effect on cone opponencies. In central
retina, the center pathway of a midget (P) ganglion cell is likely made up of only one
cone, while the surround of 5–10, and the surround may contain a mixture of L and
M cones. This could change the balance of cone opponencies present. Chapter 5’s dS,
the RGC pathway symmetry, indicates that some form of homeostatic mechanism may
be required at the RGC and LGN level to ensure a balance of the different opponent
channels. Similarly, dL indicates that the balance of LUM vs. CR signal to the cortex is
important for realistic results. Smaller RF sizes will likely favor the chromatic signal,
while larger ones the luminance signal (we discuss this further in section 6.4.4 below).
Exploring the effects of a realistic cone mosaic and random wiring on these dimensions
will be important.
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Furthermore, a realistic cone mosaic along with random wiring of the retinal ganglion
cells may affect correlations (as mentioned in section 6.4.2 above), though it is not clear
how large the effect would be. Instead of L and M cones occupying the same space,
as in the models of this thesis, L and M cones would be spatially separate (albeit, very
close). Additionally, unlike in our model, the RGC surrounds would not be perfectly
overlapping in space. Both of these may reduce correlations between L-M and M-L
pathways.

6.4.4 Joint representation of OR and CR

Chapter 5 showed what happens when the balance of OR and CR signal in the model is
altered: CR can be organized into patches with OR forming a spatially contiguous map,
or CR can be spatially contiguous with OR occupying small regions. This dimension
prompts several interesting questions, which we will consider below.

The most obvious unanswered question from our modeling work in chapter 5 is why
the particular balance of OR and CR maps? A particular balance has been found
in macaque imaging studies, but we do not know for sure if the balance genuinely
reflects organization of cells in macaque, or if it comes from experimental procedures.
For instance, in the model, a patchy response to RG-BW gratings can be found even
when the underlying cells are selective for both CR and OR. However, in the model,
we do know that the underlying balance of OR and CR organization can be changed
by weighting the subcortical chromatic and achromatic pathways differently, and that
we have simply chosen a particular value. Balancing the channels automatically may
be possible based on a homeostatic mechanism, but this remains an open question.

Beyond the balance in strength of the two maps as described above, another aspect of
their interaction is their spatial scale. In both the naive and idealized models, CR is
the dominant map, with OR organized at a smaller scale. The situation in the animal
results is not clear, but it would be interesting to investigate the significance of the
model’s map scales. Miikkulainen et al. (2005) showed in a model of OR and motion
direction (DR) selectivity that the relative scales of the OR and DR maps could be
altered by changing the speed of the input patterns; at higher speeds, the DR map
becomes dominant. The OR and DR model of Miikkulainen et al. (2005) was trained
on oriented 2D Gaussian patterns, so the neurons were selective to both orientation
and direction. However, in the models of OR and CR in this thesis, an additional
complication arises in the interaction of OR and CR: neurons may become strongly
selective for CR only, which is another interaction we discuss next.
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The subcortical luminance pathway in the model filters out spatially uniform, isolu-
minant areas of the image, allowing V1 to learn luminance edges. The subcortical
chromatic pathway, however, can be activated by spatially uniform, chromatic parts
of images (as well as by chromatic edges). Images themselves contain a mixture of
luminance edges, chromatic edges, combined luminance and chromatic edges, isolu-
minant achromatic regions, and isoluminant chromatic regions. The statistics of these
in images (Hansen and Gegenfurtner, 2009; Cecchi et al., 2010), combined with the
subcortical architecture, will influence how CR and OR are jointly represented in V1.
Studying this aspect of the model using both natural images and artificial patterns with
controlled statistics, would be interesting for comparison with the range of results in
V1 about the separation or otherwise of CR and OR (Shapley and Hawken, 2011).

Finally, in this thesis we have measured orientation preference maps using achromatic
gratings, as is typically done in animals. However, (Johnson et al., 2010) measured
orientation maps in tree shrew (dichromatic color vision system, with “S” and “ML”
cones) using S cone isolating stimuli, finding maps similar to those measured with ML
cone isolating stimuli. This would be an interesting result to investigate in the present
model, or perhaps more easily in a dichromatic version (see section 6.4.6 below).

6.4.5 Measures of hue map organization

More objective measures of hue map quality may become useful as more data from
animals becomes available. Stevens et al. (2013b) computed measures of selectivity
and stability for OR maps in a related (achromatic) model, and compared to animal
data. It would be possible already to measure selectivity and stability of the model’s
hue preference over development, but there is not currently any animal data against
which to compare. When such data becomes available, it may help to constrain how
joint OR and CR maps should develop, as discussed earlier in section 6.2.1.

Another measure that Stevens et al. (2013b) calculate for the related OR model’s OR
preference maps is pinwheel density. In biological orientation maps across a range of
species, the pinwheel density of OR maps has been found to be close to π. Initial work
(with Jean-Luc Stevens) indicates that the pinwheel density for hue preference maps
of the idealized model presented in chapter 5 is close to 2π (so far, only tested at low
values of dL).
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6.4.6 Different photoreceptor types

We have modeled the development of perceptual color space in macaque monkey,
which, like humans, normally has three distinct cone types. Our present work shows
only results from three input channels, but the relative photoreceptor strength dimen-
sion could simulate one cone class being absent. This opens up a number of possibili-
ties, which we will discuss below.

Firstly, the resulting model could be used to understand how PCS develops in people
who are missing one cone type (which could be the L, M, or S cone), or in regions of
cortex where there is no input from S cones (e.g. foveola). Additionally, most mam-
mals are dichromats, including many primates. Modeling dichromatic species may
be simpler, and some optical and 2P imaging results are already available (Johnson
et al., 2010; Buzás et al., 2008). However, it may be more difficult to relate results
from these animals to human perceptual color space, although data from appropriately
“color blind” human observers could be used.

In fact, there is a variety of cone sensitivities among humans (chapter 2), both “color
normals” and those who are “color blind”. It would therefore be very interesting to
model the development of PCS using different variations of the standard cone sensitiv-
ities, perhaps showing some varieties make little difference, while others are important
(e.g. as L and M peaks get closer, the cortex may be less able to distinguish them,
and this may affect both the organization of CR and OR in V1). Larger collections of
hyperspectral images would help such modeling efforts, because hyperspectral images
can easily be used to accurately simulate alternative cone sensitivities.

Previously we mentioned that the addition of a new photopigment type to adult squirrel
monkeys led to the monkeys being able to distinguish colors which they previously
could not (Mancuso et al., 2009). This experiment could also be simulated, and may
provide useful constraints on adaptive mechanisms. In particular, the timescales of
activity resulting from expression of the new photopigment vs. observed behavioral
changes could be considered.

Finally, it could also be possible to begin modeling rod as well as cone vision. How
does the organization of the model cortex change with long-term dim light conditions,
or long-term bright light conditions? What effect does a combination of rod and cone
input have at intermediate light levels? Also, it has been found that in individuals
whose cones are inactive for genetic reasons, the region of cortex normally found to
represent solely cones in normal individuals instead represents rods (chapter 2). The
region of cortex involved normally represents the foveola, which contains no rods, so
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this indicates enough reorganization occurs that a different retinal location is repre-
sented (not only a different photoreceptor class). Modeling such phenomena is cur-
rently beyond the model’s architecture, which makes this suggestion more open than
others in this section.

6.4.7 Spatial Adaptation

We saw earlier (section 6.4.1) that one problem caused by the biased hue distribution
is for photoreceptor types not to be equally active over the course of a simulation; that
problem is solved by homeostasis, as above. The models reviewed in chapter 2 with no
adaptation (e.g. the De Paula (2007) model has a fixed one-to-one mapping of hues to
photoreceptor activation ratios. One hue presented many more times than another to a
model cortex that uses Hebbian learning will cause the cortex to learn that specific ratio
of weights more than others, and hence represent that particular hue more than others.
Homeostasis of the photoreceptors appears to mitigate this problem to some extent,
but not anywhere near as much as the full hue jitter we applied in the idealized model,
which causes the full range of different receptor activation ratios to be experienced
equally during development. In animals, it is clear that the cones and retinal ganglion
cells adapt over multiple timescales, including the short term (chapter 2), meaning
there is not a fixed one-to-one relationship between hue and cone activation over the
short term. Implementing some form of spatial adaptation in the model may therefore
also be important for dealing with the biased distribution of hues experienced during
development.

Additionally, a simple model of instantaneous, independent adaptation in each cone
class (justified by assuming each cone samples enough locations in a scene, due to eye
movements), would make it possible to begin investigating chroma and lightness rep-
resentation in the model, allowing to move to e.g. CIELChab which has a more uniform
representation of hue, and which was an unsolved problem from modeling work intro-
duced in chapter 2 (P6-HSV). This may also be important for matching conditions of
hue map measurement in some experiments (as discussed earlier in section 6.2.1).

6.4.8 Combine with models of other features

We have modeled the development of OR and CR together, emphasizing that it is
important to consider more than just CR in isolation. We are most confident about
the representation and development over time of OR, but combining only OR and CR
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is still a very limited selection of the many features of visual input that appear to be
mapped in V1 (chapter 2; Bednar, 2012). To allow a full investigation of some of
the suggested psychophysical effects mentioned in this chapter may require extending
the subcortical modeling. For instance, some effects transfer between eyes to varying
degrees, which can help to constrain where a particular mechanism may be used in
the visual pathway (e.g. adaptation of the photoreceptors in one eye cannot explain
how an effect could transfer to the other eye). There are also interesting interactions
between CR and motion, including apparent motion being induced by color (Favreau
et al., 1972), and vice versa. Apart from allowing new adult visual phenomena to be
studied, there may also be additional imaging data for other features, which can also
help to constrain the model. Additionally, aside from improving the model of CR
processing, adding more features also helps to build towards a model of the cortex that
can genuinely represent visual input (Gerasymova, 2008; Fisher, 2014).

6.4.9 Model higher cortical areas

The visual pathway does not end at V1, nor is it only a feed-forward pathway. Studies
of higher areas of the cortex indicate that various other areas are involved in process-
ing color (see e.g. Conway, 2009), and spatial maps of hue from imaging studies are
available in e.g. V2 (Xiao et al., 2003; Lim et al., 2009). Determining whether there
is an organization for PCS in areas other than V1 is subject to the same debates as for
V1, and furthermore it is not clear how much of the organization for hue in these areas
is inherited from previous areas (most importantly, V1). However, a full explanation
of PCS will surely involve more than only V1, and the models presented in this thesis
will allow future work to begin modeling these areas and their interactions. Even if it
eventually turns out that studies finding PCS in V1 need to be reinterpreted in light of
new data, the constraints and variabilities shown in this thesis that the brain must be
overcoming to develop PCS will remain.

6.5 Conclusion

In this chapter, we first evaluated the work in this thesis against the goals set out in the
first chapter. In meeting the goals, we have generated hypotheses about how wiring for
the representation of PCS in macaque V1 could develop. We have made suggestions
for experimental and modeling work that will help to evaluate our hypotheses, and we
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have created two models that serve as a platform from which the modeling work can
be conducted.





Chapter 7

Conclusion

This thesis began by making the case that understanding the neural representation of
color is particularly useful for understanding how the brain processes information in
general, because (a) the difference between perception and physical stimulus is very
clear and (b) it is now possible to image the neural activity underpinning perceptual
color space at sufficient resolution and spatial scale in primary visual cortex, a rela-
tively early and well understood part of the visual system.

Although experimental work has glimpsed how perceptual color space might be rep-
resented in the brain, it has not suggested how the necessary wiring might arise. We
review evidence showing that the development of color vision can be strongly affected
by both the environment and details of physiology, and yet despite large variabilities
and biases in both—between different individuals and for one individual over time—
the development of perceptual color space is remarkably consistent and stable.

To understand these findings, we constructed a model of the early visual system with
realistic physiology, and using realistic visual input, to see if the wiring could arise
through input-driven development. In chapter 4, we showed that the model (which
we call the naive model) developed more realistic orientation and color selectivity
maps than previous models. However, it did not develop a realistic organization for
hue representation. In chapter 5, by analyzing the naive model in detail to learn what
prevented it from developing a realistic organization for hue, we showed that a second
model, the idealized model, could develop a realistic organization for hue while also
maintaining the realistic organization for orientation.

The idealized model clearly shows five dimensions that all previous models of the de-
velopment of color vision do not take account of: highly non-uniform sampling of per-
ceptual color space experienced during typical natural viewing; variable signal strength
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from different cone classes (caused by multiple factors, including highly variable cone
ratios, and lens yellowing); highly correlated photoreceptor sensitivities; and how the
classical retinal ganglion cell pathway can de-emphasize some hues while also affect-
ing the overall balance of chromatic and achromatic signals. Based on our findings,
we hypothesize that even the most basic models of the development of perceptual color
space must include several additional adaptive mechanisms in order to be successful,
and that such mechanisms are what allows the visual system to be relatively insensi-
tive to many environmental and physiological variabilities and thus robustly develop
perceptual color space.

With the naive and idealized models in hand, it is now possible to investigate a wide
range of adult color visual phenomena in order to suggest potential adaptive mecha-
nisms, or to further constrain the model. Finally, we have suggested a range of future
experimental and modeling work that will help improve the model, and thus further
our understanding of how perceptual color space is represented in the brain, along
with how that organization develops. This in turn will help to understand both how the
adult brain processes information in general, and how it gets that way.
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Glossary

achromatic Devoid of hue (CIE, 1987).

brightness Attribute of visual sensation according to which an area appears to emit
more or less light (CIE, 1987).

chroma Colorfulness of an area judged as a proportion of the brightness of a similarly
illuminated area that appears white or highly transmitting (CIE, 1987).

chromatic Possessing hue (CIE, 1987).

colorfulness Attribute of visual sensation according to which the perceived color ap-
pears to be more or less chromatic(CIE, 1987).

cone fundamentals Color-matching functions for human vision (i.e. spectral sensi-
tivity at the cornea). Different from cone photopigment sensitivities, because the
fundamentals include filtering effects of the eye’s media.

gamut The region enclosed by a color space. The gamut of a color space may be
smaller (e.g. sRGB) or larger (e.g. CIELAB) than the gamut perceivable by hu-
mans. The human color gamut depends on the cone wavelength sensitivities, so
is three dimensional, but gamuts are often presented on two-dimensional chro-
maticity diagrams such as (x,y) diagram by ignoring luminance. Gamut is often
used to describe the range of colors a device can display (which depends on its
primaries), or to describe the range of colors present in images.

hue Attribute of visual sensation according to which an area appears to be similar to
one of the perceived colors: red, yellow, green, and blue, or to a combination of
two of them (CIE, 1987).

irradiance Radiant power per unit area incident onto a surface (Wm−2, or Wm−2nm−1

if spectral irradiance; Fairchild, 2005).
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lightness The brightness of an area judged relative to the brightness of a similarly
illuminated area that appears to be white or highly transmitting (CIE, 1987).

luminance Luminance accounts for the energy of the light and human spectral sensi-
tivity: Lv ∝

R
P(λ)V (λ)dλ where P(λ) is radiance and V (λ) is the human spectral

luminous efficiency function (see figure (c)). The luminance channel in human
vision (also referred to as the achromatic channel) is typically taken to be the
sum of the L and M photoreceptors.

primaries Three independent light sources, where independent means the color of
any one cannot be visually matched by a linear combination of the other two.
Primaries may be monochromatic or broadband. A color space requires a set
of primaries as part of its definition, and those primaries determine the space’s
gamut. Note that primaries need not be real (visible); e.g. for CIEXYZ to en-
compass the complete gamut of colors humans can perceive, its primaries must
be more saturated than is possible to realize, since one cone class cannot be
stimulated entirely in isolation of another.

radiance See irradiance, but instead of incidence, irrandiance measures emission (and
consequently has units Wm−2sr−1, or Wm−2sr−1nm−1; (Fairchild, 2005)).

saturation Colorfulness of an area judged in proportion to its brightness (CIE, 1987).
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Acronyms

(x,y) diagram CIE 1931 (x,y)-chromaticity diagram.

2AFC two-alternative, forced-choice.

2P in vivo two-photon calcium microscopy.

AL Adaptation, Laterally connected model; Stevens et al., 2013b.

BCID Barcelona Calibrated Image Database; Párraga et al., 2010.

CF connection field.

CIE Commission Internationale de l’Eclairage (International Commission on Illumi-
nation).

CIELAB CIE 1976 L* a* b* color space.

CIELChab CIE L* C* hab color space.

CIELUV CIE 1976 L* u* v* color space.

CIEXYZ CIE 1931 XYZ color space.

cmf color-matching functions.

CR color.

DKL Derrington-Krauskopf-Lennie color space.

DoG Difference-of-Gaussians.

DR motion direction.

fMRI functional magnetic resonance imaging.

HSV HSV color space; Smith, 1978.

227



228 Acronyms

ICA independent components analysis.

ICID IPL Calibrated Image Database; Laparra et al., 2012.

iOI intrinsic optical imaging.

jnd just-noticeable difference.

LGN lateral geniculate nucleus.

LISSOM Laterally Interconnected Synergetically Self-Organizing Map; Miikkulainen
et al., 2005.

LUM luminance.

MCID McGill Calibrated Image Database; Olmos and Kingdom, 2004.

OD ocular dominance.

OI optical imaging.

OR orientation.

PCA principal components analysis.

PCS perceptual color space.

RF receptive field.

RGB RGB color space.

RGC retinal ganglion cells.

SOM self-organizing map; von der Malsburg, 1973.

SPD spectral power distribution.

SP-LMS Smith-Pokorny LMS 2◦ cone fundamentals.

sRGB sRGB color space; Stokes et al., 1996.

SS-LMS Stockman-Sharpe LMS 2◦ cone fundamentals.

UCS diagram CIE 1976 uniform chromaticity-scale diagram.

V1 primary visual cortex.

V2 secondary visual cortex.

WS wavelength space.
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Parameters

M1 Matrix to transform CIE 1931 2◦ XYZ cmf (as modified by Judd 1951 and Vos

1978) into Smith-Pokorny 1975 cone fundamentals:

 0.2435 0.8524 −0.0516
−0.3954 1.1642 0.0837

0 0 0.6225

.

M2 Matrix to transform CIE 1931 2◦ XYZ cmf (as modified by Judd 1951 and Vos

1978) into sRGB (whitepoint D65):

 3.2410 −1.5374 −0.4986
−0.9692 1.8760 −0.0416
−0.0556 −0.2040 1.0570

.

mp Target photoreceptor mean activity: 0.44.

R Maximum circular radius of RGC connection field: 0.375.

γρ Connection strength from CF ρ. For connection between photoreceptor and RGC
units, γρ = 4.7 (or γρ = 4.7

2 where 2 cone types are combined). For V1 affer-
ent, γA = 1.7. For V1 lateral excitatory γE = 1.7, and γI = −1.4 for V1 lateral
inhibitory.

mr Target RGC mean activity: 0.1.

σC RGC DoG center Gaussian’s radius: 0.036925.

σS RGC DoG surround Gaussian’s radius: 0.1477.

σA See σρ.

σρ Width of Gaussian for V1 projection ρ. For afferent, σA = 0.27. For lateral in-
hibitory, σI = 0.075. For lateral excitatory, σE = 0.025.

σE See σρ.

σI See σρ.

αρ V1 learning rate for connection type ρ. For afferent, αA = 0.1. For lateral in-
hibitory, αI = 0.3.
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αA See αρ.

αI See αρ.

β Degree of smoothing in calculation of average V1 activity: 0.991.

λ Homeostatic learning rate: 0.01.

µ Target V1 mean activity: 0.024.

rρ Maximum circular radius of V1 projection ρ’s connection field. For afferent, rA =
0.27083. For lateral inhibitory, rI = 0.22917. For lateral excitatory, rE = 0.104.

rA See rρ.

rE See rρ.

rI See rρ.
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