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Abstract

Wireless sensor networks has been one of the major research topics in recent years because

of its great potential for a wide range of applications. In some application scenarios, sensor

nodes intend to report the sensing data to a far-field destination, which cannot be realized by

traditional transmission techniques. Due to the energy limitations and the hardware constraints

of sensor nodes, distributed transmit beamforming is considered as an attractive candidate for

long-range communications in such scenarios as it can reduce energy requirement of each sen-

sor node and extend the communication range. However, unlike conventional beamforming,

which is performed by a centralized antenna array, distributed beamforming is performed by

a virtual antenna array composed of randomly located sensornodes, each of which has an

independent oscillator. Sensor nodes have to coordinate with each other and adjust their trans-

mitting signals to collaboratively act as a distributed beamformer. The most crucial problem of

realizing distributed beamforming is to achieve carrier phase alignment at the destination. This

thesis will investigate distributed beamforming from boththeoretical and practical aspects.

First, the bit error ratio performance of distributed beamforming with phase errors is analyzed,

which is a key metric to measure the system performance in practice. We derive two distinct

expressions to approximate the error probability over Rayleigh fading channels corresponding

to small numbers of nodes and large numbers of nodes respectively. The accuracy of both

expressions is demonstrated by simulation results. The impact of phase errors on the system

performance is examined for various numbers of nodes and different levels of transmit power.

Second, a novel iterative algorithm is proposed to achieve carrier phase alignment at the des-

tination in static channels, which only requires one-bit feedback from the destination. This

algorithm is obtained by combining two novel schemes, both of which can greatly improve the

convergence speed of phase alignment. The advantages in theconvergence speed are obtained

by exploiting the feedback information more efficiently compared to existing solutions.

Third, the proposed phase alignment algorithm is modified totrack time-varying channels. The

modified algorithm has the ability to detect channel amplitude and phase changes that arise over

time due to motion of the sensors or the destination. The algorithm can adjust key parameters

adaptively according to the changes, which makes it more robust in practical implementation.
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Chapter 1
Introduction

This thesis addresses issues of distributed transmit beamforming in the context of wireless

sensor networks. We consider the application scenario thatthe destination is located far away

from the sensor network. Due to energy limitations and hardware constraints of sensor nodes,

traditional transmission techniques for sensor networks,such as direct transmission and multi-

hop transmission, cannot establish reliable communication links between the sensor network

and the destination in such a scenario. Instead, an innovative transmission technique, distributed

beamforming, has been put forward to realize long-range communications for wireless sensor

networks. The crucial problem of realizing distributed beamforming is to achieve carrier phase

alignment at the destination and the consequent feature of distributed beamforming, which

is different from conventional beamforming, is the unavoidable phase errors. The thesis will

analyze the effect of phase errors on the distributed beamforming performance in theory, and

present novel schemes to achieve phase alignment and minimize phase errors for distributed

beamforming in practice.

1.1 Introduction and motivations

Wireless sensor networks has been one of the key research challenges in recent years because of

its great potential for a wide range of applications. A typical wireless sensor network is shown

in Figure 1.1. Due to size and cost constraints, sensor nodesare usually supplied by power-

limited batteries, equipped with a single antenna, and randomly scattered in the sensing area.

These characteristics of the wireless sensor network make distributed transmit beamforming a

good candidate for long-range communications. The traditional transmission techniques used

for within-network communications, both direct transmission and multi-hop transmission, have

limited communication ranges and are inapplicable to long-range communications because of

the constraints of power supply and the effect of path loss inwireless transmission. Instead,

distributed beamforming can reduce the energy requirementof each sensor node by having the

transmission power focused in the desired direction and sharing the energy cost among sensor

1



Introduction

nodes. It is well known that transmit beamforming can provide a high signal-to-noise ratio

(SNR) gain in proportion to the number of antenna elements. Therefore, the communication

range of a sensor network can be significantly increased by simply adding more sensor nodes to

constitute a distributed beamformer. Distributed beamforming is a form of cooperative coherent

transmission. It is "cooperative" because sensor nodes, each of which equipped with a single

antenna, act cooperatively as a virtual antenna array to transmit a common message signal to

the far field destination. It is "coherent" because sensor nodes adjust their carrier frequency

and phase settings to ensure that signals transmitted from each node will add coherently at the

destination, which is similar to a centralized phased array.

Power-limited 
batteries

Single antenna

Figure 1.1: A typical wireless sensor network

While transmit beamforming has been studied for decades, tothe best of the author’s knowl-

edge, the concept of distributed transmit beamforming was first published in [2] in 2004. In [2],

the authors discussed the practical challenges of realizing distributed beamforming, compared

it with centralized beamforming, and briefly analyzed the mean and variance of beamforming

gains. The work in [2] was later expanded and further studiedin [3] and [4], which set a funda-

mental understanding of distributed beamforming in the research community. Also in 2004, the

far-field beam pattern of a random antenna array using collaborative beamforming was studied
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in [5]. Although using different words, the phrase "collaborative beamforming" and the phrase

"distributed beamforming" in the literature refer to the same transmission technique. In [5], the

authors show that randomly located sensor nodes, acting as adistributed transmit beamformer,

can form a beam pattern with a narrow main lobe in the desired direction. More interesting

work based on [2], [3], [4], [5] came out in the literature andthe research progress on this

topic was comprehensively addressed in [6]. In [6], the authors also reviewed the key issues of

distributed beamforming and challenges we face in future work.

The performance of centralized beamforming largely depends on the knowledge of channel

state information (CSI) at transmitter side. Unlike a centralized beamformer, each sensor node

contributing to the distributed beamformer has an independent oscillator to generate carrier

waves. Even with correct phase settings calculated at each sensor node, phase errors among

signals arriving at the destination cannot be eliminated due to oscillator internal noise. More-

over, while centralized beamforming is usually operated with a uniform antenna array, dis-

tributed beamforming is performed by randomly located sensor nodes with unknown phase

offsets among them. The geometry of sensor nodes estimated by employing existing position

estimation techniques is not accurate enough for implementing distributed beamforming. Even

with accurate position information, computing the correctphase settings for each sensor node

has a high complexity. Therefore, in addition to obtaining CSI at transmitters, the most crucial

problem of distributed transmit beamforming is to synchronize sensor nodes in a distributed

manner to achieve carrier phase alignment at the destination. Based on this point, publications

in the literature about distributed beamforming can be generally classified into two categories.

One is to analyze the effects of phase errors on the beamforming performance, the other is to

design practical schemes to achieve phase alignment.

1.2 Objectives and contributions of the thesis

1.2.1 Objectives

Generally, the aim of the thesis is to study the performance of distributed beamforming and to

design practical schemes which can improve its performance. Specifically, our study has the

following objectives:

• Analyze the achievable bit error ratio (BER) performance ofdistributed beamforming in

3
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terms of the number of nodes, transmit power and phase errors.

• Design novel schemes to achieve carrier phase alignment at the destination and improve

the performance of the schemes.

1.2.2 Contributions

The contributions of the thesis are summarized as follows.

• The performance of distributed transmit beamforming in terms of the beam pattern and

received power has been analyzed in the literature. From a more practical point of view,

we analyze the BER performance of distributed beamforming with phase errors and de-

rive two distinct formulae to approximate the error probability corresponding to a small

number of nodes and a large number of nodes respectively. Theeffects of the number

of sensor nodes, transmit power, and phase errors on the BER performance are carefully

examined. Simulation results show a good match with the analytical results. With a given

number of nodes and a specified transmit power constraint, one can use the BER expres-

sions to bound the permissable phase errors, which gives a quantitative understanding of

the impact of phase errors on the beamforming performance.

• Besides theoretical analysis on the beamforming performance, we also contribute to the

practical realizations of distributed beamforming in achieving phase alignment and min-

imizing phase errors at the destination. A simple iterativealgorithm using one-bit feed-

back from the destination in each iteration was proposed to achieve carrier phase align-

ment in static channels. The one-bit feedback algorithm hasmany advantages compared

to other approaches which make it an attractive candidate inthe literature. For example,

it is simple in implementation, scalable to a large number ofnodes and it does not need

knowledge of the CSI. We propose two novel schemes to improvethe convergence per-

formance of the feedback algorithm using two different mechanisms. Both schemes keep

all the advantages of the original algorithm, and require noextra hardware or informa-

tion exchange. Then we show that the two schemes can be combined to yield a hybrid

algorithm, which can largely enhance the convergence speedof phase alignment by over

40% compared to the original algorithm in static channels.

• There is not much work in the literature focusing on the realization of distributed beam-

forming in time-varying channels. We further modify the hybrid algorithm to track time-
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varying channels. The modified hybrid algorithm has the ability to detect variations in

the speed of channel phase changes and adjust phase settingsaccordingly. It can achieve

a reasonable beamforming gain in time-varying channels without the knowledge of CSI.

This ability makes the one-bit feedback algorithm much morerobust to channel varia-

tions in practical implementations.

1.3 Structure of the thesis

The rest of the thesis is organized as follows. Chapter 2 gives a background review and mo-

tivation of the thesis. This includes an introduction to thespecial features of wireless sensor

networks, a comparison between conventional beamforming and distributed beamforming, key

challenges brought to the research community, and major progresses made in the literature.

Chapter 3 studies the BER performance of distributed beamforming with phase errors and

presents two methods of deriving approximate expressions which can accurately predict the

error probability. Chapter 4 reviews the iterative one-bitfeedback algorithm in the literature,

which can achieve carrier phase alignment at the destination, and presents a novel scheme to

improve its convergence speed of phase alignment. Chapter 5further improves the algorithm by

employing a variable step size scheme and extends the algorithm to track time-varying channels.

Chapter 6 draws conclusions for the thesis and discusses possible future work on distributed

beamforming.
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Chapter 2
Background

In this chapter, we will give a background review for distributed beamforming techniques,

including application scenarios, key challenges it bringsto the researchers and some major

progress made in the literature. The concept of distributedbeamforming was initially brought

out in the context of wireless sensor networks for long rangecommunications. We first review

some key features of wireless sensor networks and discuss their impacts on the research in dis-

tributed beamforming. Then we describe the principles and fundamental problems of realizing

distributed beamforming in practice and compare it with thewell known conventional beam-

forming. Last, we present some key results done in the research community on the performance

evaluation of distributed beamforming, including its beampattern performance and the analysis

of the received power.

2.1 Basic background

Our work on distributed transmit beamforming was based on the idea of applying beamforming

techniques into the environment of wireless sensor networks for long distance communications.

In this section, we will review the basic background and present a brief survey of the two areas:

wireless sensor networks and conventional beamforming.

2.1.1 Wireless sensor networks

Advances in microelectronics, sensing, wireless communications, and networking has enabled

the deployment of a large number of low-cost, low power, multifunctional sensor nodes in a

sensing area, which can collect information, coordinate with each other and form a network via

wireless communications. Each sensor node is equipped witha sensing unit, a small processor,

a short-range wireless transceiver, and power-limited batteries. Such a network composed of

sensor nodes is called a wireless sensor network. Wireless sensor networks were listed as one

of the ten emerging technologies that will change the world by MIT’s Technology Review in
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2003 [7]. It motivated many interesting research problems and has been a key research topic in

recent years.

Wireless sensor networks are expected to have a great potential in a wide range of applica-

tions [8]. Wireless sensor networks are usually deployed ina sensing area to collect informa-

tion on demand, either for on-line data collection, e.g. periodic sampling of a parameter of

interest, or for alarm triggering, e.g. abnormal parametervariation in the monitored environ-

ment. With diversified sensing functionalities, such as light, motion, temperature, humidity,

pressure and oxygen, wireless sensor networks can be applied into environmental monitoring,

medical treatment, industrial automation, weather sensing, battlefield surveillance, infrastruc-

ture maintenance, etc. For example, a smart infrastructureproject led by the civil engineering

department in Cambridge University used inclinometer sensors to monitor the health of Lon-

don Underground tunnels [9], [10]. These sensors can detectdeteriorations in the structure

and avoid the need for routine maintenance conducted in the past, which was time-consuming

and costly. Recently, the project researchers are substituting a large number of camera sen-

sors for inclinometer sensors to obtain more precise measurements, which brings challenges

for wireless communications as image transmission requires a higher data transmission rate.

Other challenges in wireless communications for sensor networks also arise in resource alloca-

tion and management, cross-layer design, Medium Access Control (MAC) protocols, location

estimation, cooperative transmission, synchronization,etc.

Below we address some key features of wireless sensor networks which are highly related to

our project. More details can be found in some textbooks, such as [11], [12].

1. Power constraints: In wireless sensor networks, sensor nodes are usually powered by

batteries. In most application scenarios, sensor nodes aredeployed in a harsh environ-

ment where human access is not available, and replacing batteries is considered impos-

sible. Therefore, in order for the lifetime of the sensor nodes to be as long as possible,

one of the most important design criteria is energy efficiency. All operations including

sensing, computing, storage, communication are considered expensive, among which

communication is typically most energy consuming. The wireless communication range

of a sensor node is usually very limited due to the power constraints. The network may

experience sensor node failures when the node batteries rundown. Limited energy also

makes node mobility impossible unless the sensor nodes are installed on vehicles.
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2. Randomly scattered: In most application scenarios, sensor nodes are randomly scat-

tered in the sensing area. The precise location of each node is unknown and the distance

between any two nodes is unknown. This sets a tough problem for applying beamforming

techniques as signal processing in conventional beamforming is based on precise knowl-

edge of the geometry of antenna array. However, the density of sensor nodes within an

area may be approximately controlled during deployment.

3. Ad hoc operation: Sensor nodes have to form a network in an ad hoc manner which can

provide stable performance even when facing a dynamic network. This is because sensor

nodes are often randomly located with no global identification set before implementation,

and due to unexpected node failures, the topology of the network changes frequently.

Transmission techniques have to operate in an adaptive manner to cope with unexpected

changes.

4. Single antenna:The size of the sensor node may vary from the order of millimeters to

the order of meters. But in most applications, their sizes are expected to be a few square

centimeters. Due to size limitations and hardware constraints, each sensor node is usually

equipped with a single antenna.

5. High quantity: Along with their cheap cost and uncertainty in lifetime, sensor nodes are

usually densely deployed in the sensing area. Therefore, scalability to large number of

nodes is a key metric considered in the design of communication techniques. In order to

reduce interference and traffic load, sensing data are usually processed and compressed

locally before transmitting through the network.

6. Low-cost configurations: The hardware usually has low energy, limited memory and

computational capacities. All protocols and algorithms for communications have to op-

erate under these constraints. In addition, due to internalnoise in individual oscillators,

the carrier signal of each node undergoes uncompensated phase drift, which will have a

negative impact on beamforming performance.

Although wireless sensor networks have many features in common, from the perspective of

wireless communications, the area of wireless sensor networks is very application specific.

This is because the quality of wireless links and the selection of transmission techniques largely

depends on the wave propagation environment. There are different technical issues needing to

be resolved for different application scenarios. For example, the signal transmission techniques

8



Background

used in body sensing to monitor patients’ health could be quite different from those adopted

in a wireless sensor network designed for forest fire detection. In this thesis, we consider the

scenario that the sensor nodes are intended to send information collaboratively to a far field

destination, which cannot be reached by a single node due to energy constraints. One of the

examples in real world applications is that astronauts intend to collect some information about

a planet surface but the spaceship cannot land on the planet due to some technical limitations.

Instead, the task can be completed by dropping a large numberof sensor nodes to the planet

surface. The sensor nodes collect information on demand andreport it to the spaceship in the

air which may be far away from the sensor network. In such a scenario, transmit beamforming

is a very promising form of transmission as it can provide high SNR gains.

In a wireless sensor network, when sensors collect some datawhich should be reported to a

destination, the most common technique used to transmit thedata is multihop transmission [13].

Since the path loss is in proportional to the square of transmission distance [14], multihop

transmission may consume less energy compared to direct transmission between the source

node and the destination node. Also, multihop transmissionshares the energy cost among the

sensor nodes involved in the multihop chain, which can prevent sensor node failure due to

energy shortage. A typical wireless sensor network using multihop transmission is illustrated

in Figure 2.1.

Source
DestinationGateway 

node

Figure 2.1: Illustration of a wireless sensor network using multihop transmission.

The gateway node is a specialized node which usually has moreenergy, memory, computational

capacities and other resources compared to other sensor nodes. It is typically located closest

to the destination where users analyze the sensing data or ithas a wired connection with the
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destination. However, in some application scenarios, it isimpossible to deploy these gateway

nodes in the sensing area and the destination is located far away from the sensor network.

Then multihop transmission cannot successfully report thedata to the destination and other

transmission techniques, such as transmit beamforming, are required.

From the perspective of the operating structure, wireless sensor networks can be classified into

two types: centralized and decentralized [15] as shown in Figure 2.2. In the centralized struc-

ture, the whole network is divided into several clusters. Ineach cluster, there is an advanced

sensor node, called the head node, which coordinates the operations in the cluster and usually

has more functions compared to other sensor nodes in the cluster, which are called slave nodes.

For example, the head node may be equipped with more batteries and computational capabili-

ties. Within a cluster, slave nodes transmit data to the headnode. The head node then performs

data aggregation and exchanges data with other cluster headnodes. When applying beamform-

ing techniques to sensor networks, this type of structure enables the head node to coordinate

the synchronization of other nodes in phase and frequency. The corresponding beamforming

schemes operate in an open-loop fashion, using minimal coordination with the destination [3].

In the decentralized structure, all sensor nodes are equal,and communication may be estab-

lished between any two nodes as long as their radio range can reach each other, which results in

a more complex beamforming network formation. Within network control and synchronization

are difficult to perform in such circumstances. Sensor nodeshave to adjust their carrier phase

settings with the aid of periodic feedback from the destination. The corresponding beamform-

ing schemes usually operate in a closed-loop fashion [4].

(a) centralized structure (b) decentralized structure

Figure 2.2: Structures of wireless sensor networks
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2.1.2 Conventional beamforming

Beamforming techniques use antenna or sensor arrays for directional signal transmission or

reception. In the case of a receiving beamformer, the sensorarray collects spatial samples of

propagating wave fields and processes them with specific weighting vectors to form a linear

combination of the outputs. The receiving beamformer can enhance signals from a desired di-

rection and attenuate signals from other directions. In thecase of a transmitting beamformer,

the antenna array controls the phase and amplitude of the signal transmitted on each antenna

in order to create a beam pattern of constructive and destructive interference on the wavefront

in space [16], [17]. The advantages of beamforming techniques are well-known. First, it can

provide high SNR gain by adding signals coherently. Transmit beamforming techniques can

dramatically reduce the energy consumption to achieve a certain SNR at the destination. For

example, we consider a beamformer with isotropic antennas transmitting under ideal channel

conditions. If a single antenna transmitting with powerPT achieves an SNR ofρ1, then a

beamformer withN array elements transmitting with the same total powerPT , i.e. each ele-

ment transmits with powerPT

N , can achieveN times of SNRρN = Nρ1. Second, beamforming

can provide high directivity gain. In the case of a transmitting beamformer, directivity gain rep-

resents the radiation intensity in the desired direction divided by the average radiation intensity

over the sphere. In the case of a receiving beamformer, directivity gain represents power arriv-

ing from desired direction divided by the noise power at the array over a sphere [18]. Beam-

forming can work as a spatial filter, which can separate desired signals from interference within

the same frequency band but from different spatial locations. It enables space-division mul-

tiple access (SDMA) by creating parallel spatial transmission pipes, which may significantly

increase communication rates and reduce power consumptions. Beamforming can also be used

to suppress interferences from particular directions by performing null-steering operations.

Research in the area of beamforming techniques in the literature is based on the condition

that the antenna array is regularly placed, normally with equal distance among the antennas.

A typical conventional beamformer is the delay-and-sum beamformer with a uniform linear

array (ULA), as illustrated in Figure 2.3. There areN antennas located in a line with uniform

spacing equal tod. If the channels are ideal, the signals coming from the far-field source in

the directionθ will reach every antenna at different time instants. For thebeamformer shown

in Figure 2.3, the source signal will reach antenna number 1 first, and then antenna number 2

with a relative delay, and reach the following antennas withan increasing relative delay. The

11



Background

quantity of relative delay between two antennas located next to each other can be calculated

from the equationτ = d cos θ
c , wherec represents the speed of light. For narrowband signals,

these propagation delays turn into phase differences amongsignals received on each antenna,

which can be compensated by phase shifters. If the beamformer introduces a delay ofτ to the

received signal from antenna numberN − 1, a delay of2τ to the signal from antenna number

N − 2, a delay of(N − i)τ to the signal from antenna numberi, and so on, then signals from

all antennas can be added coherently in phase and the output of the beamformer provides an

SNR gain ofN as stated above.

Phase shifters

1 2 3 4 5 6 7 NN-2 N-1N-3… …

…

…

… …

� � � � � � � ��� ��� ��� �
Signal source

Delay-and-sum 
beamformer

Fixed distance d
Array line1 2 3 4 5 6 7 N… …

…

…

… …

� � � � � � � ��� ��� ��� �
Output

Figure 2.3: Delay-and-sum beamformer with uniform linear array

At time t, the signal received at the antenna array can be expressed asanN × 1 vector:

r(t) = a(θ) · s(t) + n(t) (2.1)

wheres(t) is the source signal, theN × 1 vectorn(t) is the additive noise at all antenna ele-

ments, theN × 1 vectora(θ) =
[
1 exp

(
− j 2πd

λ cos θ
)

· · · exp
(
− j 2π(N−1)d

λ cos θ
)]T

is
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called the steering vector of the array in the directionθ, andλ is the wavelength of the source

signal. The superscriptT denotes the matrix transpose. The signals received at different an-

tenna elements are the same except the phase differences dueto different propagating distances

among antenna elements. The beamformer processes the signals received at each antenna el-

ement with a weighting coefficient to combine them coherently and the source signal can be

estimated based on the output of the beamformer:

ŝ(t) = w
H · r(t) = s(t) · wH

a(θ) + w
H
n(t) (2.2)

where theN × 1 vectorw is the weighting vector and the superscriptH denotes the Hermitian

transpose. For a uniformly weighted ULA, the signals received at each antenna are phase

shifted and scaled with equal weights1N before summing. The weighting vector is chosen as

w = 1
N a(θ0), whereθ0 is the desired direction.

The beam pattern is a key element in determining the array performance and shows the direc-

tivity gain of a beamformer. The beam pattern is defined as:

BP (θ) =
∣∣wH

a(θ)
∣∣2 . (2.3)

For a uniformly weighted ULA, if the desired direction is90◦, thenw = 1
N 1, where1 is the

N × 1 unity vector. The corresponding beam pattern becomes:

BP (θ) =

∣∣∣∣∣
1

N

N−1∑

n=0

e−j 2πnd
λ

cos θ

∣∣∣∣∣

2

(2.4)

=

∣∣∣∣∣
1

N
· 1 − e−j 2πNd

λ
cos θ

1 − e−j 2πd
λ

cos θ

∣∣∣∣∣

2

=

∣∣∣∣∣
1

N

sin(N
2 · 2π

λ cos θ · d)
sin(1

2 · 2π
λ cos θ · d)

∣∣∣∣∣

2

Figure 2.4 shows the beam patterns of the ULA with the same number of antennasN = 10

but different antenna spacingsd = λ
2 , 2λ and the desired direction is set asθ0 = 90◦. As we

can see, the fixed distanced among antennas has a big effect on the beam pattern. In Figure
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2.4 (a), when the fixed distanced = λ
2 , there is only one main beam in the desired direction

90◦. In such a case, the sensor array can distinguish signals from half of the space, that is,

0◦ ∼ 180◦, which is called the visible region in textbooks [18]. In Figure 2.4 (b), with the same

number of antennas,d = 2λ results in a much narrower main beam in the desired direction90◦

and several grating lobes in other directions, which bringsa problem of estimating the angle of

arrival of incoming signals. Since the delay-and-sum beamformer only adjusts the phases of the

received signals, the shape of the beam pattern remains unchanged when the desired direction

changes. If each antenna scales its signals with different weights, the corresponding shape of

beam pattern also changes.

Various superresolution techniques have been proposed forthe angle of arrival estimation in the

literature, and the most well studied one is the multiple signal classification (MUSIC) algorithm

[19]. The MUSIC algorithm can be used to locate several closely spaced signals and produce

sharp peaks in the vicinity of the angle of arrivals. Its resolution capability depends on the

received SNR and the number of snapshots. The performance ofthe MUSIC algorithm degrades

rapidly when the SNR or the number of snapshots fall below a certain threshold. The weakness

of the MUSIC algorithm is that it cannot provide a good performance when the source signals

are highly correlated.
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(b) Number of sensorsN = 10, fixed distanced = 2λ

Figure 2.4: Beam pattern of uniform linear array with different antennaspacingsd = λ
2 , 2λ

In conventional beamforming, antenna elements are regularly placed with known distances be-

tween them. If the direction of the source signals is available, it is easy to calculate the propaga-

tion delays of signals arriving at different antennas. The relative delays between antennas can

be compensated by appropriate phase shifts to ensure signals are added up coherently. It is also
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easy to adjust these phase shifters in an adaptive way when the desired direction is changing.

2.2 Distributed transmit beamforming

In this section, we introduce the concept of distributed transmit beamforming in the context of

wireless sensor networks and the challenges it brings to theresearchers.

2.2.1 Concept of distributed beamforming

As we discussed in Section 2.1.1, in some application scenarios, the user or destination may be

sufficiently far away from the sensing area that signal transmission between the sensor network

and the destination cannot be accomplished by a single node due to the high power cost of

wireless transmission over a long distance and the low battery power constraints of sensor

nodes. The traditional way of using a multihop chain to transmit the sensing data is no longer

applicable in such scenarios. However, sharing knowledge of sensing data within the local

network among sensors may be relatively low in cost and can beeasily realized by broadcasting.

Then sensor nodes may transmit the data in a collaborative way, i.e. several sensor nodes

transmit a common message signal simultaneously and adjusttheir phase settings to ensure that

the signals transmitted from different nodes will combine constructively at the destination. In

principle, this method of transmission reduces power consumption by having the sensor nodes

form a virtual antenna array to perform transmit beamforming. Since sensor nodes are operating

in a distributed manner to complete the task, this techniqueis called distributed beamforming

or collaborative beamforming in the literature.

Figure 2.5 shows an illustration of the application scenarios of distributed beamforming. Dis-

tributed beamforming can be used to establish communications between a sensor network and

a distant user, either a base station or a vehicle. It can alsobe used to establish communications

between two clusters of sensors which are located far away from each other. As discussed in

Section 2.1.2, under ideal channel conditions, the SNR gainof beamforming grows linearly

with the number of transmitters. Therefore, the low-power limitation on each sensor node can

be compensated by having more nodes involved in the distributed beamformer. Distributed

beamforming not only reduces the overall energy cost which can prolong the lifetime of the

whole network, it also shares the power consumption among sensor nodes, which can prevent

single node failure. It also has the potential to reduce interference to other users by having the
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Figure 2.5: Illustration of the application scenarios of distributed beamforming

transmission power focused in one direction. Depending on the objectives, the SNR gain can

be transferred into increments in the communication rate orrange [6].

2.2.2 Challenges in practical realizations

Although distributed beamforming techniques could bring many attractive advantages in wire-

less sensor networks, especially improved energy efficiency, a number of challenges arise in

its practical applications at the same time. The fundamental problem of realizing distributed

beamforming is that there is no central control connected toall elements forming the beam-

former and all operations of the beamforming process have tobe organized and implemented

in a distributed manner.

The principle behind the transmit beamforming technique isthat the signals transmitted from

each antenna should be frequency synchronized and phase adjusted so that the signals will add

coherently at the destination. While conventional beamforming is implemented by a central-

controlled device equipped with a regularly placed antennaarray, distributed beamforming is

performed by a virtual antenna array composed of randomly located sensor nodes, each of

which is equipped with a single antenna. As discussed in Section 2.1.2, the steering vector of
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a conventional beamformer can be easily computed with the knowledge of the fixed spacing

between antennas and the desired direction in space. In contrast, the steering vector or the

correct phase settings at transmitters are hard to compute for distributed beamforming because

sensor nodes have unknown distances between them. Several steps require to be followed to

tackle the practical problems of realizing distributed beamforming:

First, the sensing data must be shared or disseminated within the sensor network in an energy-

and-time efficient way [20]. If the sensing data gathered from sensor nodes are strongly cor-

related, a data fusion process is required to cut the load in data communications [21]. Before

beamforming to the far-field destination, all sensor nodes should share amongst each other the

same message signal. The overhead of this information sharing process grows with the number

of sensor nodes and partly depends on the topology of the network. There exists a tradeoff

between the cost of within-network dissemination and the beamforming array gain. Therefore,

the number of sensor nodes forming a beamformer should be carefully chosen to optimize the

energy efficiency. If we consider one node broadcasting the sensing data to other nodes, the

information sharing process can also be viewed as the first phase of a relaying process where

other nodes are considered as relays. Such a relay network experiences both a total transmit

power constraint and an individual relay power constraint.The performance of distributed

beamforming in relay networks with perfect or partial channel state information and different

relaying strategies has been studied in [22], [23], [24]. Inthis thesis, our work focuses on the

issue of phase alignment at the destination and we assume perfect information sharing among

sensor nodes in the following chapters to conduct BER analysis and algorithm design. To ob-

tain a more comprehensive understanding of the beamformingperformance, one may include

the impact of the errors in the information sharing process.

Second, the carrier frequency and phase offset generated from each sensor node must be syn-

chronized and adjusted to secure phase alignment at the receiver. Frequency synchronization

can be achieved by employing a master-slave scheme presented in [3], where the slave nodes

lock their frequencies to a reference signal periodically broadcasted by the master node. But

phase adjustment on each sensor node needs much more effort to be resolved. As discussed in

Section 2.1.2, in conventional beamforming, antennas are usually regularly placed with known

distances among them and all antennas are connected by wiresto a central control unit. The

propagation delays among antennas can be easily calculatedbased on the known geometry of

the antenna array and the desired direction for beamforming. If CSI is available, phase align-
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ment can be easily achieved by compensating the delays usingphase shifters. However, in

distributed beamforming, sensor nodes are randomly scattered and the distances among them

are unknown. Certain location estimation schemes have beendesigned for wireless sensor net-

works in the literature [25], [26]. However, the accuracy ofthese schemes remains in the order

of meters which is not accurate enough to satisfy the requirement of beamforming. One may

also consider using the Global Positioning System (GPS). However, the estimation obtained

by using GPS is not accurate enough either and it is necessaryto have a line of sight from

the sensor node to the satellite which makes the GPS inapplicable in some application scenar-

ios. According to the IEEE 802.15.4 standard for low-rate wireless personal area networks,

the operating frequency of sensor networks is around 900MHzor 2.4GHz, which correspond

to a wavelength of 0.34 meters or 0.125 meters. For example, acarrier signal of 2 GHz has a

wavelength of 15 centimetres, which means an error of 7.5 centimetres in location estimation

can turn the constructive interference into destructive interference. Moreover, each sensor node

has an individual oscillator to generate carrier waves which undergoes uncompensated phase

drifts due to oscillator internal noise. Therefore, phase errors among signals arriving at the des-

tination cannot be avoided in distributed beamforming and phase alignment is the key obstacle

to realizing distributed beamforming in practice. While research on conventional beamforming

usually focuses on optimum weight design, especially for power allocation among antennas,

research on distributed beamforming requires more emphasis on phase adjustment. This is be-

cause the beamforming performance is sensitive to phase errors, which has a much stronger

impact compared to power allocations.

Third, all sensor nodes must transmit the message signal at "the same time" which raises an

issue of timing synchronization. Errors in timing synchronization contribute to the unknown

phase offsets at transmitters and also cause inter symbol interference. Timing synchronization

techniques for wireless sensor networks are summarized in [27], [28].

2.3 Performance evaluations in the literature

Given the many advantages of using distributed beamformingtechniques, we require to inves-

tigate the factors which control the beamforming performance. The first factor is the number

of nodes. As discussed in Section 2.1.2, the SNR gain of beamforming grows linearly with the

number of nodes. Increasing the number of nodes can dramatically reduce the energy cost of

each sensor node for long-range communications, and reduceinterference to other co-channel
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users. The second factor is the node density. The exact geometry of the network is hard to

measure, but the approximate density of nodes in the sensingarea can be roughly controlled

during deployment in practice. The node density can be measured as the number of nodes per

unit area, or the average distance between adjacent nodes. Third, we must consider the impact

of phase errors on performance. Phase errors among signals arriving at the receiver may be

caused by errors in node position estimation, channel estimation, timing synchronization or

carrier synchronization.

2.3.1 Analysis of beampattern

The beam pattern intuitively shows the performance of a beamformer, including its directivity

gain and SNR gain. In Section 2.1.2, we reviewed the beam pattern of a ULA conventional

beamformer which can form a narrow main lobe in the desired direction. The question is for

the case of ideal channels, correct phase settings and perfect timing synchronization among

sensor nodes, whether a distributed beamformer, viewed as arandom antenna array, can form

a useful beam pattern with a narrow main beam in the desired direction, and what are the

impacts of the number of nodes and the node density on the beampattern. The beam pattern

of distributed beamforming has been well studied in the literature. Below we discuss some

fundamental features of the beam pattern of distributed beamforming, more details can be found

in [29], [30], [31], [32], [33].

destination

y

z

x

	θ

	φ 
�� � α

��� ��
α�

Figure 2.6: Coordinate positions of the system
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We consider a system model that all sensor nodes are located randomly, following a uniform

distribution within a disk of radiusR in the plane. We assume all sensor nodes transmit with unit

power under ideal channel conditions and the path losses of all sensor nodes to the destination

are identical. The coordinate positions of sensor nodes aredefined in Figure 2.6. We denote

(rk, αk) as the position of sensor nodek whererk is the distance from thekth node to the

disk center, andαk is the angle to the common reference direction in polar coordinates. We

denote angleθs ∈ [0, π] as the elevation direction,φs ∈ [−π, π] as the azimuth direction in

spherical coordinates, and(A,φd, θd) is the location of the destination. The array factor can be

mathematically expressed as:

F (φs, θs | r,α) =
1

N

N∑

k=1

ej
2π
λ

[Dk(φs,θs)−Dk(φd,θd)] (2.5)

wherer = [r1, r2, · · · , rN ] ∈ [0, R]N andα = [α1, α2, · · · , αN ] ∈ [−π, π]N represents the

given realization of all the sensor nodes locations. The scalarN is the number of sensor nodes

andλ is the wavelength of carrier signals. The scalarDk(φ
s, θs) denotes the distance between

thekth node and the reference location, andDk(φd, θd) denotes the distance between thekth

node and the destination. We assume that the destination is located far away from the sensor

nodes, i.e.A≫ rk, and therefore:

Dk(φd, θd) ≈ A− rk sin θd cos(φd − αk). (2.6)

The array factor can be approximated as:

F (φs, θs | r,α) ≈ 1

N

N∑

k=1

ej
2π
λ

rk[sin θd cos(φd−αk)−sin θs cos(φs−αk)] (2.7)

, F̃ (φs, θs | r,α)

For simplicity, we assume the destination node locates on the same plane of the disk where

sensor nodes are located and we only study the beam pattern inthis plane, i.e. the elevation

angleθs = θd = π
2 . Equation (2.7) can be simplified as:
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F̃ (φs | r,α) =
1

N

N∑

k=1

e
j 4π

λ
rk sin

“

φd−φs

2

”

sin
“

αk−
φd+φs

2

”

(2.8)

and the far-field beam pattern is defined as:

BP (φs | r,α) ,
∣∣∣F̃ (φs | r,α)

∣∣∣
2

(2.9)

The average beam pattern taken over all realizations of(r,α) is given by:

BPav(φ
s) , Er,α {BP (φs | r,α)}. (2.10)

The directivity gain is defined as:

DG(r,α) =

∫ π
−π BP (φd | r,α)dφs

∫ π
−π BP (φs | r,α)dφs

. (2.11)
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Figure 2.7: Average beam pattern of distributed beamforming withN = 256 sensor nodes

Figure 2.7 shows the average beam pattern of distributed beamforming taken over 3000 real-

izations of random arrays with the same number of nodesN = 256 and the same disk radius
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R = 2λ. It shows that the average beam pattern has a narrow main lobein the desired direction

without grating lobes. In [29], it is proved that the side lobes on average approach1N as the

beam angle moves away from the desired direction.

Sensor locations

x−coordinate

y−
co

or
di

na
te

−200 −100 0 100 200
−30

−25

−20

−15

−10

−5

0
Beam pattern

Angle(degree)

P
ow

er
 (

dB
)

(a)

Sensor locations

x−coordinate

y−
co

or
di

na
te

−200 −100 0 100 200
−60

−50

−40

−30

−20

−10

0
Beam pattern

Angle (degree)

P
ow

er
 (

dB
)

(b)

Sensor locations

x−coordinate

y−
co

or
di

na
te

−200 −100 0 100 200
−50

−40

−30

−20

−10

0
Beam pattern

Angle (degree)

P
ow

er
 (

dB
)

(c)

Sensor locations

x−coordinate

y−
co

or
di

na
te

−200 −100 0 100 200
−30

−25

−20

−15

−10

−5

0
Beam pattern

Angle (degree)

P
ow

er
 (

dB
)

(d)

Figure 2.8: Four instances of the beam pattern of distributed beamforming with different sensor
node locations. The simulation parameters are otherwise the same with: number
of nodesN = 16, disk radiusR = λ.

Although the average beam pattern of distributed beamforming provides encouraging results

with a narrow main lobe in the desired direction and small side lobes in other directions, the

beam pattern with one given realization of sensor array largely depends on the positions of

sensor nodes. Four instances of the beam pattern with the same number of nodesN = 16

and the same disk radiusR = λ but different sensor node positions are shown in Figure 2.8.It

shows that all the four instances can form a main lobe pointing at the desired direction but some

of them simultaneously generate large side lobes in other directions, which may be considered
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unacceptable in some application scenarios.

Sensor node positions have a big effect on the beam pattern, but it is hard to control them in

practice as sensor nodes are usually randomly scattered in the sensing area. Instead, below we

investigate the effects of the number of nodes and the node density on the beam pattern perfor-

mance as these parameters are much easier to be controlled inpractice. In order to view the

effect of the number of nodes on the beam pattern, we fix the disk of radius asR = 2λ, add

sensor nodes one by one into the disk, and view the trend of thebeam pattern when increasing

the number of nodes. The positions of sensor nodes are randomly chosen, following a uniform

distribution. Figure 2.9 shows the positions of sensor nodes and the corresponding beam pat-

terns in normalized power whenN = 2, 4, 8, and32. It shows that the fluctuation range of

side lobes decreases when the number of nodes increases. Therefore, large side lobes can be

reduced and avoided by adding more nodes into the sensing area.
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Figure 2.9: Change of the beam pattern when adding sensor nodes into a fixed disk.
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In order to view the effect of node density on the beam pattern, we keep the geometry of sensor

array or the node relative positions unchanged while increasing the disk radius and view the

change of the corresponding beam patterns in normalized power. This is the same as decreasing

the node density. Figure 2.10 shows the geometry of the sensor array composed of16 sensor

nodes and the beam patterns with disk radiusR = 0.1λ, R = 0.2λ, R = λ, R = 3λ,R = 5λ.
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Figure 2.10: Change of the beam pattern when increasing the disk radius while keeping node
relative positions unchanged.

It shows that when the disk radius increases, the number of side lobes increases and the width

of the main lobe decreases. Therefore, the directivity gainof distributed beamforming can
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be improved by spreading the sensor nodes in a larger area. Itis proved in [29], [30] that the

directivity gain can asymptotically approachN if the sensor nodes are located sparsely enough.

2.3.2 Analysis of received power

Besides the beam pattern performance, the effect of the number of nodes and phase errors

on the received power at the destination using distributed beamforming was initially studied

in [3]. Below we review some key results in [3]. We consider the model ofN sensor nodes

performing distributed beamforming to a far-field destination. The individual carrier signals

transmitted from each node arrive coherently at the destination with phase errorsφi, which

are independently and uniformly distributed in the range(−φ0, φ0). The channel coefficients,

denoted ashi(t) ∼ CN(0, 1), are independent circularly symmetric complex normal random

variables with zero mean and unit variance. We assume that the overall power transmitted by

all the sensor nodes is fixed to 1, i.e. each node transmits with power 1
N . Sensor nodes apply

maximum ratio transmission (MRT) to achieve the maximum received power at the destination,

i.e. each sensor node pre-amplifies the signal with power equal to the channel gain. The

received signal at the destination can be expressed as:

r(t) =
1√
N

N∑

i=1

|hi(t)|2ejφi(t) ·m(t) + n(t), (2.12)

wherem(t) represents the common message signal andn(t) is the additive noise. We define

the received power as:

PR =
1

N

∣∣∣∣∣

N∑

i=1

|hi(t)|2ejφi(t)

∣∣∣∣∣

2

(2.13)

Figure 2.11 shows the average received power normalized to its maximum value,E(PR)
N , with

different number of nodes and phase error ranges. It shows that even with a large phase error

rangeφ0 = 72◦, a large beamforming gain is still available.

Figure 2.12 shows the histograms ofPR to view the variance of the received power. There are

no measurement units for the received power because we assume unit total transmit power by

all nodes and unit channel gain from each node to the destination. The value on the x-axis in
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each subfigure can be viewed as normalized to the total transmit power and the channel gains. It

shows that when the number of nodes increases, the received power becomes more concentrated

around its mean value.
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Figure 2.11:E[PR]/N with different number of nodes and phase error ranges

It is proved in [3] that the mean ofPR grows linearly withN while its standard deviation is

proportional to
√
N . According to the central limit theorem (CLT), whenN is large enough,

PR =
1

N

∣∣∣∣∣

N∑

i=1

∣∣hi(t)
∣∣2 cosφi(t) + j

N∑

i=1

∣∣hi(t)
∣∣2 sinφi(t)

∣∣∣∣∣

2

(2.14)

≈ X2
r +X2

i

whereXr ∼ N(mr, σ
2
r ),Xi ∼ N(0, σ2

i ), andmr, σ2
r , σ2

i are given by:

mr =
√
NE

[
cosφi(t)

]
(2.15)
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Figure 2.12: Histograms of received powerPR with the same phase error rangeφi(t) ∼
(−18◦, 18◦) but different number of nodesN = 10, 20, 30, 40.
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σ2
r = Var

[∣∣hi(t)
∣∣2 cosφi(t)

]
(2.16)

= 2E
[
cos2 φi(t)

]
−
(
E
[
cosφi(t)

])2

σ2
i = Var

[∣∣hi(t)
∣∣2 sinφi(t)

]
(2.17)

= 2E
[
sin2 φi(t)

]

The mean and variance ofPR can be computed as:

E[PR] = m2
r (2.18)

Var[PR] = 4m2
rσ

2
r + 2σ2

r + 2σ2
i (2.19)

Following equations (2.15)-(2.19), one can conclude that both the mean and variance ofPR

grow linearly withN .

2.4 Summary

In this Chapter, we provided some background of distributedtransmit beamforming in the con-

text of wireless sensor networks. The features of sensor networks make distributed beamform-

ing a promising form of transmission for long-range communications as it can provide high

SNR gain and reduce the energy requirement for each sensor node. Distributed beamforming

is performed by a virtual antenna array composed of randomlylocated sensor nodes, each of

which is equipped with a single antenna and an independent oscillator. By comparing it with

conventional beamforming and reviewing the principles of beamforming techniques, we dis-

cussed the challenges of realizing distributed beamforming in practice, among which the most

critical one is to achieve carrier phase alignment at the destination. We reviewed some key

results and progresses on the performance analysis existedin the literature. The study of the
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beam pattern shows that sensor nodes, acting as a distributed beamformer, may form a beam

pattern with a narrow main lobe in the desired direction by carefully controlling some deter-

minate factors. The study of the received power shows that acceptable beamforming gains

can be obtained in distributed beamforming, even with moderately large phase errors. These

results give us a fundamental understanding of the technique. In the next three chapters, we

will contribute to both the theoretical and practical aspects: performance analysis and practical

realization of distributed beamforming.
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Chapter 3
BER Performance of Distributed
Beamforming with Phase Errors

A key distinguishing feature of distributed beamforming, different from conventional beam-

forming, is the unavoidable phase errors. This is mainly because distributed beamforming is

performed by a virtual antenna array composed of randomly located sensor nodes, each of

which has an independent carrier oscillator, while conventional beamforming is implemented

on a device with a centralized antenna array. In distributedbeamforming, synchronization and

coordination among transmitters are achieved wirelessly while in conventional beamforming,

regularly placed antennas are connected and controlled by wires. Previous researchers have

studied the effects of phase errors on the distributed beamforming performance from various

aspects, showing that moderately large phase errors may be acceptable in achieving beamform-

ing gains. To accurately predict the beamforming performance, the bit error ratio expression

of distributed beamforming with phase errors is both theoretically and practically important

but not available. In this Chapter, we investigate the bit error ratio performance for distributed

beamforming and derive two distinct formulae to approximate the error probability performance

over Rayleigh fading channels corresponding to small numbers of nodes and large numbers of

nodes respectively. The effects of phase errors on the bit error ratio performance are examined

for various numbers of nodes and different levels of total transmit power.

3.1 Introduction

As we mentioned in Chapter 2, unlike conventional beamforming, phase errors among the sig-

nals arriving at the receiver cannot be avoided in distributed beamforming. This may arise from

the noise in individual carrier oscillators, sensor node position errors, channel estimation errors

or timing synchronization errors. In [2], [29], [34], phaseerrors in distributed beamforming

have been modeled to follow a uniform distribution, while in[3], the dominant component

of the phase error has been modeled as a Gaussian variable. In[35], the authors show that
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the phase errors follow a "exp-cosine" distribution in their proposed feedback algorithm for

distributed beamforming. To measure the beamforming performance, the BER expression of

distributed beamforming with phase errors is both theoretically and practically important.

The effects of phase errors on the beamforming performance have been investigated in several

ways in the literature. It is shown in [36] that the received SNR only depends on the phase errors

among the signals arriving at the receiver rather than the absolute phase values. When the phase

errors change from0◦ to 180◦, constructive interference at the receiver changes into destructive

interference. In [3] and [37], the authors discussed a simple model of two transmitters, as

illustrated in Figure 3.1, to show that moderately large phase errors at the receiver can still be

used to achieve acceptable beamforming gains. As shown in Figure 3.2, signals from two equal

power transmitters arriving at the receiver with a phase error δ result in a superposition signal

with amplitude|1 + ejδ| = 2cos(δ/2). Specifically, with a large phase errorδ = 60◦, the

superposition signal at the receiver still has a gain of 1.732 in the amplitude. In [3], the authors

also studied the phase error effect on the average beamforming gain with more transmitters

and the variance of the received SNR with phase errors. In [38], the authors quantitatively

studied the phase error effect on the average far-field beam pattern for random arrays. In [39],

the authors studied the phase error effect on a cross-layer scheme for distributed beamforming,

which can reduce the time required for information sharing among transmitters. From a more

practical point of view, we investigate the BER performanceof distributed beamforming with

phase errors and in the presence of additive white Gaussian noise (AWGN).

Sensor node 1

Sensor node 2

Receiver

Phase error δ

Figure 3.1: A distributed beamforming system with two transmiters.

The BER performance of beamforming has been well studied in the literature for various trans-

mission techniques and over different channel models. Particularly, in a multiple-input single-
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Figure 3.2: Example of two equal power transmitters with a phase errorδ.

output (MISO) system, diversity techniques such as MRT [40]and equal gain transmission

(EGT) [41] are usually employed in transmit beamforming to obtain both diversity gain and ar-

ray gain. Diversity gain represents that the signals can be transmitted through more than a single

link between the transmitter and the receiver. The probability that a MISO communication sys-

tem suffers from deep fading is much smaller than a single-input single-output system. Array

gain represents the power gain obtained by using multiple antennas at the transmitter or the re-

ceiver. These techniques are analogous to the maximal ratiocombining (MRC) and equal gain

combining (EGC) used in a single-input multiple-output (SIMO) system [42]. With a constraint

on the total transmit power, applying MRT at the transmitterside can maximize the received

SNR at the receiver by weighting the signals transmitted from each channel in proportion to

the channel gain. The BER performance of MRC in a SIMO system over different channel

models, Rayleigh, Rician, and Nakagami fading, has been widely studied [43], [44], [45], [46].

However, applying MRT in a MISO system requires accurate CSIat the transmitter side, which

may be obtained by using feedback and reciprocity schemes. The BER performance of MRT

has been analyzed in [47], [48]. Unlike the classical transmit beamforming, distributed beam-

forming is performed in a distributed manner by a virtue antenna array composed of individual
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sensor nodes, each of which is equipped with a single antenna. Although MRT provides the

optimal performance in terms of power allocation, applyingMRT to distributed beamforming

requires abundant information exchange among the transmitters and the receiver due to the

characteristics of distributed beamforming and is, therefore, difficult to achieve in practical

implementations. More practically, sensor nodes may perform distributed beamforming with

EGT by having all nodes transmit with equal power and adjust their phase settings to com-

pensate for channel phase responses. EGT and EGC offers comparable performance and have

a much simpler complexity and more modest requirements in practice compared to the MRT

and MRC. The BER performance of EGC over different channel models has been analyzed

in [49], [50], [51].

In this chapter, we investigate distributed beamforming with phase errors and focus on EGT.

We derive the expression for BER as a function of the number ofsensor nodes, phase errors

and total transmit power for both small number of nodes and large number of nodes. The

derivation for small number of nodes, denoted as Method 1, isbased on expectation adjust-

ment and variance compensation, and the BER expression for small number of nodes takes the

form of a single dimensional integral solved by Hermite integration method. The derivation

for large number of nodes, denoted as Method 2, is based on theCLT and moment matching

approach, and the BER expression for large number of nodes ismuch simpler and computation-

ally efficient compared to the one for small number of nodes. The accuracy of both methods

is well examined by simulations where analytical results have a good prediction on the BER

performance for various numbers of nodes and different levels of total transmit power. These

analytical results can be extended to different modulationschemes and different phase error

distributions. Practical issues, such as algorithm designfor frequency and phase synchroniza-

tion to reduce phase errors and assure phase alignment at thereceiver, will be addressed in the

following Chapter 4 and Chapter 5.

3.2 System model

We consider a wireless sensor network composed ofN sensor nodes collaboratively beamform-

ing a narrowband message signalm(t) to a distant receiver. This is performed in a distributed

manner by each sensor node modulatingm(t) at the same carrier frequency, which are gener-

ated by independent local oscillators. Each sensor node pre-compensates the phase response

of its channel to the receiver by adjusting its initial phasesettings [3] in order to ensure phase
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alignment at the receiver, as illustrated in Figure 3.3.
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Figure 3.3: System model for distributed beamforming.

We assume that each sensor node and the receiver are equippedwith one single ideal isotropic

antenna. All sensor nodes are synchronized so that they can transmit at the same carrier

frequency. This is a reasonable assumption which has been widely adopted in the litera-

ture [29], [35], [4]. Since the sensor nodes are located quite close to each other compared

to their distance to the destination, frequency synchronization among the sensor nodes can be

achieved by either employing a master-slave architecture [2], [3] or using a reference signal

from the destination [37], [52]. Ideally signals transmitted from each sensor node will be added

coherently at the receiver but phase errors cannot be avoided as discussed above. Considering

a large number of sensor nodes, full CSI may be hard to obtain in practice. A study on the

distributed beamforming performance with quantized CSI available at transmitters has been

presented in [53], [54]. Techniques have been designed to pre-compensate the channel phase

response to achieve phase alignment in [37], [4]. Thus, lackof full CSI and power limitation

on the sensor nodes make MRT techniques unrealistic. Instead, more practically, we assume

each sensor node transmits with equal power and applies channel phase compensation at the

transmitter side. In order to reveal the fact that beamforming gain grows with the number of

nodesN , we assume the overall power transmitted by all the nodes is fixed asP , where each

node actually transmits with a power ofP
N . This then permits us to model the BER improve-
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ment with distributed beamforming gain. The complex baseband model of the received signal

is given by:

r(t) =

N∑

i=1

|hi(t)|ejφi(t)

√
P

N
m(t) + n(t), (3.1)

wherehi(t) is the channel gain for sensor nodei, φi(t) is the cumulative phase error of the

carrier signal at the receiver for sensor nodei, n(t) ∼ CN(0, σ2
n) is AWGN. For simplic-

ity, we assume all phase errorsφi(t) are independently and uniformly distributed, bounded by

(−φ0, φ0), across time and across nodes, which is a common assumption adopted in previ-

ously reported investigations [2], [29], [34], [3]. Our BERanalysis can be easily applied to

other situations with a different phase error distributionto that discussed above in Section 3.1.

We assume the signals experience slow fading channels, and the channel coefficients are inde-

pendent circularly symmetric complex Gaussian distributed, denoted ashi(t) ∼ CN(0, 2σ2
c ),

which corresponds to non-line of sight channels.

Before the mathematical analysis and BER derivation, we want to point out that one of the

major differences between the model in this chapter and other models for BER analysis in

literature is the phase errors. The phase errors in distributed beamforming are bounded and

uniformly distributed within(−φ0, φ0) rather than[0, 2π), whereφ0 is usually expected to be

less than60◦ in practice in order to achieve a reasonable beamforming gain [3]. As a result, the

independent probability density function (pdf) of the magnitude gain or the power gain cannot

be extracted easily from the joint pdf associated to the realand imaginary parts of the received

signal, which is a key obstacle when deriving the BER as the BER performance mainly depends

on the received SNR. This will be further discussed and justified by mathematical analysis in

the following Section 3.4. The effects of phase errors on thereceived signal have been reported

in [3] as a reduction in SNR gain and a fluctuation in the phase of the received signal. As

illustrated in Figure 3.4, the received signal can be viewedas a sum of random vectors, whose

magnitudes are Rayleigh distributed and the phases exhibita bounded uniform distribution. We

assume a coherent receiver which has the ability to retrievethe overall phase of the received

signal. Thus, the effects of phase errors must be analyzed todetermine their effect on reducing

the SNR gain.

In the following derivation, we focus on the scenario of Rayleigh fading channels when de-

scribing our analysis methods. The BER in the scenario of static channels can be regarded as
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Figure 3.4: The received signal is a sum of random vectors whose magnitudes are Rayleigh
distributed and phase angles are bounded and uniformly distributed.

a special case and can be easily derived in the same way by using our methods. After matched

filter detection and analog-to-digital conversion, the decision variable for binary phase shift

keying (BPSK) modulation can be expressed as:

rD = ±
√
P

N

∣∣∣∣∣

N∑

i=1

∣∣hi

∣∣ejφi

∣∣∣∣∣+ n̂

= s+ n̂, (3.2)

and the corresponding decision rule is:

m(t) =





1 rD > 0

0 rD < 0
, (3.3)

wheren̂ represents the noise,n(t), projected onto the received signal vector. We focus on

BPSK signalling as an example because of its simplicity. Ouranalysis methods can be easily

extended to other modulation schemes as discussed at the endof Section 3.4.
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3.3 BER for small number of nodes - Method 1

The BER for BPSK modulation over a fixed channel in the presence of AWGN is given in

Chapter 5 in [55] as:

Pe(γ) = Q(
√

2γ), (3.4)

whereγ is the received signal-to-noise ratio per bit andQ(.) is theQ-function defined as

Q(x) = 1√
2π

∫∞
x e−t2/2dt (x ≥ 0). When the channel gain is random, the average BER

for BPSK over all values ofγ is given in Chapter 14 in [55] as:

Pe =

∫ ∞

0
Pe(γ)p(γ)dγ, (3.5)

where:

γ =

P
N

∣∣∣
∑N

i=1

∣∣hi

∣∣ejφi

∣∣∣
2

σ2
n

, (3.6)

in our system model described above. The functionp(γ) denotes the pdf ofγ. Due to the

effects of phase errors, the distribution ofγ is unknown and the pdf expression ofγ is difficult

to evaluate.

However, the probability of error for EGC at a multiple antenna receiver withL independent

receive branches over Rayleigh channels has been studied in[49], [50]. The decision variable

for coherent BPSK in [49], [50] is expressed as:

rd = ±(x1 + x2 + · · · + xL) +

L∑

i=1

ni, (3.7)

wherexi is the amplitude of the received signal at the output ofith branch with a Rayleigh

distribution. The scalarni is the complex baseband Gaussian noise at the output ofith branch.

Although [49], [50] are studying equal gain diversity receivers and their system models are

different from ours, as shown above, the decision variable in (3.7) is identical to (3.2) when

L = N if we neglect the phase errors in our model and modify the noise component. The
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noise in (3.7) comprisesL-branch superimposed noise while in (3.2) there is only one AWGN

component. By studying [49], [50] and modifying the coefficients of the noise, we can thus

derive the BER expression for distributed beamformingwithout phase errors over Rayleigh

channels as:

Pe ≈
1

2
− 1

π

M∑

m=1

ωmG(zm,Ω, σ
2
n, N), (3.8)

where:

G(z,Ω, σ2
n, N) = Im





[

1F1(−
1

2
;
1

2
;

Ωz2

σ2
n +NΩ

) + jz

√
πΩ

σ2
n +NΩ

]N


 z−1, (3.9)

and:

Ω = E



(√

P

N

∣∣hi

∣∣
)2

 =

2σ2
cP

N
(3.10)

is the average energy of a Rayleigh distributed variable in (3.2) and in the case of no phase

errors,φi = 0 in that equation. The functionE[x] denotes the expectation ofx and2M is the

order of Hermite polynomials. The expression of the above confluent hypergeometric function,

1F1(a; b;x), is given by [56]:

1F1(a; b;x) =

∞∑

n=0

(a)nx
n

(b)nn!
, (3.11)

where(a)n = Γ(a+n)
Γ(a) and(b)n = Γ(b+n)

Γ(b) .

Equation (3.8) refers to Hermite integration explained on page 890 in [1], and the values forωm

andzm are given on page 924 in [1]. The validity of using the Hermitemethod of integration to

compute the error probability for EGC has been fully justified in [50]. Equation (3.8) becomes

more accurate whenM tends to infinity. However, it is shown in [50] thatM = 10 is sufficient

to ensure acceptable accuracy. For calculation convenience, the values ofωm and zm with

M = 10 are given in Table 3.1.

If there are phase errors, i.e.φ0 6= 0, the power of the signal part,s, in (3.2) is reduced by phase

errors, and the expectation of the received SNR becomes smaller than the case without phase
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m 1 2 3

ωm 0.4622436696006 0.2866755053628 0.1090172060200

zm 0.2453407083009 0.7374737285454 1.2340762153953

m 4 5 6

ωm 0.02481052088746 3.243773342238 × 10−3 2.283386360163 × 10−4

zm 1.7385377121166 2.2549740020893 2.7888060584281

m 7 8 9

ωm 7.802556478532 × 10−6 1.086069370769 × 10−7 4.399340992273 × 10−10

zm 3.3478545673832 3.9447640401156 4.6036824495507

m 10

ωm 2.229393645534 × 10−13

zm 5.3874808900112

Table 3.1: Values ofωm andzm withM = 10 in Hermite integration [1]

errors. In order to incorporate the effects of phase errors,we define a factorη. We multiply

every single Rayleigh variable,
√

P
N |hi|, with η to make the expectation of the received SNR

equal:

E

[
P

N

∣∣∣
N∑

i=1

∣∣hi

∣∣ejφi

∣∣∣
2
]

= E

[
P

N

( N∑

i=1

η
∣∣hi

∣∣
)2
]
. (3.12)

Rearranging this equation, we have:

η2 = E

[ ∣∣∣∣∣

N∑

i=1

∣∣hi

∣∣ejφi

∣∣∣∣∣

2 ]/
E

[( N∑

i=1

∣∣hi

∣∣
)2 ]

. (3.13)

The expression ofη2 in terms of the number of nodesN and the phase error rangeφ0 is derived

in Appendix A.1. The average power of an adjusted Rayleigh variable, η
√

P
N

∣∣hi

∣∣, becomes

Ω′ = E

[(
η
√

P
N

∣∣hi

∣∣
)2
]

= η2Ω. We useΩ′ to substitute forΩ in (3.9). The purpose of this

is to use the distribution of a sum ofN Rayleigh variables to approximate the distribution of

the signal,s, in (3.2) while keeping the expectation of the received SNR per bit E[γ] to be the

same.

The expectation ofγ has been adjusted by introducing the factorη. There is still a difference
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between the actual variance of the received signal and the variance after the expectation adjust-

ment. Thus, we further define a variable,σ2
d, to compensate for the residual variance between

the two:

σ2
d =

P

N

(
Var

[∣∣∣
N∑

i=1

∣∣hi

∣∣ejφi

∣∣∣
]
− Var

[
η
( N∑

i=1

∣∣hi

∣∣
)])

, (3.14)

where Var[x] denotes the variance ofx. The expression ofσ2
d in terms of the number of nodes

N and the phase error rangeφ0 is derived in Appendix A.1. We treat this residual variance as a

contribution to the receiver noise, and compute the total noise power as:

σ̃2
n = σ2

n + σ2
d. (3.15)

By substitutingΩ′ for Ω, σ̃2
n for σ2

n into (3.9), the final BER expression for EGT in distributed

beamforming with phase errors over Rayleigh channels is given by (3.8), while the function for

computation becomesG(z,Ω′, σ̃2
n, N). We use equation (3.8) andG(z,Ω′, σ̃2

n, N) to compute

the BER in the simulations of Section 3.5, and this is denotedas method 1. Method 1 is valid

for any number of nodes, but it is proposed here to use method 1only for small number of

nodes due to its high computational complexity for largeN . This will be justified and further

explained in Section 3.5.

3.4 BER for large number of nodes - Method 2

In (3.6) we see that the distribution ofγ mainly depends on the distribution of
∣∣∣
∑N

i=1

∣∣hi

∣∣ejφi

∣∣∣
2
.

Therefore, for simplicity, we define the concept of an equivalent channel,H, as:

H =
N∑

i=1

∣∣hi

∣∣ejφi , (3.16)

and the system model in (3.1) becomes:

r(t) =

√
P

N
H(t)m(t) + n(t). (3.17)

40



BER Performance of Distributed Beamforming with Phase Errors

Based on the CLT, with a large number of nodesN , and the independent identically distributed

(i.i.d.) random variables,hi, which are independent from the i.i.d. random variablesφi, the key

element which determines the error probability can be expressed as:

∣∣H
∣∣2 =

∣∣∣∣∣

N∑

i=1

∣∣hi

∣∣ejφi

∣∣∣∣∣

2

=

∣∣∣∣∣

N∑

i=1

∣∣hi

∣∣ cosφi + j
N∑

i=1

∣∣hi

∣∣ sinφi

∣∣∣∣∣

2

= |a+ jb|2 = a2 + b2, (3.18)

wherea andb are defined as:

a =
N∑

i=1

∣∣hi

∣∣ cosφi ∼ N(µa, σ
2
a), b =

N∑

i=1

∣∣hi

∣∣ sinφi ∼ N(µb, σ
2
b ). (3.19)

A similar analysis of the beamforming gain using the CLT has been presented in [3]. Since

the channel coefficientshi ∼ CN(0, 2σ2
c ), and the phase errorsφi ∼ uniform(−φ0, φ0), the

expectations and variances ofa andb can be obtained as follows:

µa = N · E
[∣∣hi

∣∣ cosφi

]
= N · E

[∣∣hi

∣∣
]
· E
[
cosφi

]

= N · (2σ2
c )

1
2 Γ(

3

2
) · sinφ0

φ0
=

√
2πNσc sinφ0

2φ0
, (3.20)

µb = 0, (3.21)

σ2
a = N

(
E

[(∣∣hi

∣∣ cosφi

)2
]
−
(

E
[∣∣hi

∣∣ cosφi

])2
)

= N

(
E
[∣∣hi

∣∣2
]
· E
[
cos2 φi

]
−
(

E
[∣∣hi

∣∣ cosφi

])2
)

= N

(
2σ2

cΓ(2) · (1
2

+
sin 2φ0

4φ0
) − (

√
2πσc sinφ0

2φ0
)2

)

= Nσ2
c

(
1 +

sin 2φ0

2φ0
− π

2
(
sinφ0

φ0
)2
)
, (3.22)
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σ2
b = N

(
E

[(∣∣hi

∣∣ sinφi

)2
]
−
(

E
[∣∣hi

∣∣ sinφi

])2
)

= N

(
E
[∣∣hi

∣∣2
]
· E
[
sin2 φi

]
−
(

E
[∣∣hi

∣∣ sinφi

])2
)

= N

(
2σ2

cΓ(2) · (1
2
− sin 2φ0

4φ0
) − 0

)

= Nσ2
c

(
1 − sin 2φ0

2φ0

)
. (3.23)

From (3.22) and (3.23) we see, for the equivalent channel,H, with most values ofφ0 (i.e. φ0 6=
45◦), the variance of the real partσ2

a and the imaginary partσ2
b are not equal, which means the

expression of the pdf of
∣∣H
∣∣2 is difficult to compute. However, if we make the approximation

that the variance of the real part and the variance of the imaginary part ofH are equal, the

magnitude gain of the equivalent channel,
∣∣H
∣∣, follows a Rician distribution, and the channel

gain,
∣∣H
∣∣2, has a non-central chi-square distribution with2 degrees of freedom. Therefore, we

propose three ways, namely Rician Approx 1, Rician Approx 2 and Rician Approx 3, to use a

Rician distribution to approximate the distribution of|H|.

Rician Approx 1: we generate a Rician distribution whose second and forth moments equal

to E
[∣∣H

∣∣2
]

andE
[∣∣H

∣∣4
]
. The square of the Rician distribution is a non-central chi-square

distribution where the noncentrality parameter,λ2, and the variance,σ2, satisfy [55]:

E
[∣∣H

∣∣2
]

= 2σ2 + λ2, (3.24)

and:

Var
[∣∣H

∣∣2
]

= 4σ4 + 4σ2λ2. (3.25)

Rearranging equations (3.24) and (3.25), we can derive the expressions forλ2 andσ2 as:

λ2 =
√

2A 2 − B, (3.26)
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σ2 =
A −

√
2A 2 − B

2
, (3.27)

whereA = E
[∣∣H

∣∣2
]

is the second moment of|H|, B = E
[∣∣H

∣∣4
]

is the fourth moment of

|H|. The expressions forA , B in terms ofN andφ0 are derived in Appendix A.2 by applying

the CLT. The relationship ofλ2 andσ2 to the Ricean shape parameterK, which represents the

ratio between the power in the direct path and the power in other paths in Ricean fading, is

K = λ2

2σ2 .

A similar technique using a central chi-square distribution to approximate the distribution of

a sum of independent chi-square distributed random variables through first and second order

moment matching was introduced in G. E. P. Box’s work [57], which is frequently an accurate

approximation. Rician Approx 1, an approach of moment matching to a non-central chi-square

distribution (the distribution of|H|2), is inspired by [57] and [58] although there are technical

differences in how the moment matching is implemented.

Rician Approx 2: since botha, b in (3.18) are Gaussian random variables, we use the results

derived in equations (3.20), (3.21), (3.22), and (3.23) to generate a Rician distribution. The

parameters of the corresponding non-central chi-square distribution are computed as:

λ2 = µ2
a + µ2

b , (3.28)

σ2 = max(σ2
a, σ

2
b ). (3.29)

Rician Approx 3: The parameters of the non-central chi-square distribution are also obtained

directly from (3.20), (3.21), (3.22), (3.23) and are computed as:

λ2 = µ2
a + µ2

b , (3.30)

σ2 =
σ2

a + σ2
b

2
. (3.31)

The BER for BPSK signalling in a Rician fading channel has been studied in [59], permitting
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the closed-form expression for the BER of our model to be easily obtained as:

Pe = Q1(u,w) − 1

2

(
1 +

√
d

1 + d

)
exp

(
−u

2 + w2

2

)
I0(uw), (3.32)

where:

d =
2σ2P

σ2
nN

, u =

√
λ2

2σ2
· 1 + 2d− 2

√
d(1 + d)

2(1 + d)
, w =

√
λ2

2σ2
· 1 + 2d+ 2

√
d(1 + d)

2(1 + d)
,

(3.33)

andI0(x) is the zeroth-order-modified Bessel function of the first kind, defined as [55]:

I0(x) =
∞∑

κ=0

(x/2)2κ

κ!Γ(κ + 1)
, x ≥ 0. (3.34)

The functionQ1(x, y) is the MarcumQ-function, defined as [55]:

Q1(x, y) =

∫ ∞

y
z · exp

(
−z

2 + x2

2

)
I0(xz)dz. (3.35)

An approximation ofI0(x) is given by [60] in Chapter 6:

I0(x) ≈
1√
2πx

exp(x), x≫ 0, (3.36)

and after manipulation, (3.32) can be simplified to:

Pe ≈ Q1(u,w) − 1

2
√

2πuw

(
1 +

√
d

1 + d

)
exp

(
−(u− w)2

2

)
, uw ≫ 0. (3.37)

To the best of the authors’ knowledge, (3.37) is a new result which simplifies the BER expres-

sion.

By substituting the expressions ofλ2 andσ2, either (3.26), (3.27) from Rician Approx 1, or

(3.28), (3.29) from Rician Approx 2, or (3.30), (3.31) from Rician Approx 3, into (3.33) and
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(3.37), we can obtain the final BER expression for EGT in distributed beamforming with phase

errors for large number of nodes. The accuracy of the three methods, Rician Approx 1, Rician

Approx 2 and Rician Approx 3, on predicting the BER performance are compared in Figure

3.5 in the following Section 3.5. It shows that the method Rician Approx 1 outperforms the

other two regardless of the number of nodes and the phase error range. Therefore, we adopt

Rician Approx 1 to generate a Rician distribution to approximate the distribution of|H|, use it

to predict the BER performance for a large number of nodes, and we define this as method 2 in

the following simulations.

Method 2 can be extended to analyze BER with MRT for distributed beamforming in a similar

way. Although perfect CSI at transmitters is difficult to obtain and MRT is not feasible for

distributed beamforming in practice, schemes may be designed to allocate more power to trans-

mitters with better quality links through limited information exchange. For example, in [22]

the authors proposed a power allocation scheme for distributed beamforming using a common

power-scaling factor periodically broadcasted from the destination to the sensor nodes. In the

study of such schemes for power allocation among sensor nodes, the BER with MRT may be

considered as a lower bound on the BER performance to evaluate the fixed power transmission

techniques. The system model described in Section 3.2 with MRT is given by:

r(t) =
N∑

i=1

|hi(t)|2ejφi(t)

√
P

N
m(t) + n(t), (3.38)

and the corresponding equivalent channelHM , which determines the received SNR, can be

expressed as:

HM =

N∑

i=1

∣∣hi

∣∣2ejφi . (3.39)

Following the derivations for the case of EGT presented in Appendix A.2, we can easily derive

the second and the fourth moment ofHM for MRT. Whenhi ∼ CN(0, 1), the second moment

of HM is expressed as:

C = 2N +N(N − 1)

(
sinφ0

φ0

)2

, (3.40)
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and the fourth moment ofHM is expressed as:

D = 8N(N + 2) + 8N(N + 1)(N − 1)

(
sinφ0

φ0

)2

+ 4N(N − 1)

(
sin 2φ0

2φ0

)2

+4N(N − 1)(N − 2)
sin 2φ0

2φ0

(
sinφ0

φ0

)2

+N(N − 1)(N − 2)(N − 3)

(
sinφ0

φ0

)4

.(3.41)

SubstitutingC for A , D for B into (3.26), (3.27), then taking (3.26), (3.27) into (3.33)and

(3.37), we can obtain the BER expression for BPSK signallingwith MRT in distributed beam-

forming with phase errors.

The BER expressions derived above may be extended to other modulation schemes by studying

[61] and [62]. For example, the average BER ofM -ary pulse-amplitude-modulated (PAM)

signals over a fixed channel in the presence of AWGN can be expressed in the form of (see eq.

9 in [62] and eq. 54 in [63]):

PePAM(γ) =

M∑

m=1

amerfc(
√
bmγ) (3.42)

wheream andbm are coefficients depending on the constellation distance ofeach bit of each

symbol. The average BER ofM -ary PAM in our model over all values ofγ in (3.5) becomes:

PePAM =

∫ ∞

0

M∑

m=1

amerfc(
√
bmγ)p(γ)dγ (3.43)

By switching the sum function and the integration, and applying (3.8) or (3.37), one can ob-

tain the final expression of the BER forM -ary PAM with distributed beamforming with phase

errors. These results can easily be extended to quadrature-amplitude-modulated (QAM) con-

stellations as well.

3.5 Simulation results

In this section, we present some simulation results in accordance with our previous assumptions

for distributed beamforming with phase errors over Rayleigh fading channels, and compare
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them with the analytical results given by mathematical expressions derived in Section 3.3 and

Section 3.4.
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Figure 3.5: Cumulative distribution function of|H| withN = 5, 10, 20, 100 distributed sensor
nodes, phase errors constrained within the rangeφ0 = 18◦, 72◦.

In Section 3.4, we proposed three ways to use a Rician distribution to approximate the distri-

bution of |H|. Figure 3.5 shows a comparison of the cumulative distribution function (CDF)

of |H| obtained from the three ways and via simulation. It is shown that the method Rician

Approx 1 always performs better than Rician Approx 2 and Rician Approx 3 regardless of the

number of nodesN and the phase error rangeφ0. The CDF obtained from Rician Approx 1 can

give a close match to the CDF obtained from simulation, especially for largeN . Therefore, we

adopt Rician Approx 1 as a solution to predict BER for a large number of nodes in the following

simulations, and denote it as method 2. It is also shown in Figure 3.5 that all three methods

become more accurate whenN increases. This is because, with a largeN , the mean of|H|2
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is proportional toN2 while its standard deviation is proportional toN [3]. WhenN increases,

the magnitude gain|H| becomes more concentrated around its mean value, as illustrated in the

figures, and the variance approximation plays a less important role.

In the following, we examine the BER performance of EGT in distributed beamforming with

phase errors for various numbers of nodes. We set the channelcoefficients ashi(t) ∼ CN(0, 1)

and the AWGN noise asn(t) ∼ CN(0, 1). Given these assumptions, the value of the total trans-

mit powerP in the figures can be viewed as normalized to the noise power atthe receiver, or it

can be viewed as the ratio of the transmit power over the noisepower at the receiver. Therefore,

there are no measurement units forP in the following figures, i.e.P is dimensionless. If the

noise power is measured in watt, then the measurement unit ofthe transmit powerP is watt as

well. For example,P = 1 implies that the total transmit power equals the noise powerat the

receiver. Given equation (3.6), with a perfect phase alignment at the receiver,P = 1 implies

E[γ] ≈ 6dB whenN = 5, E[γ] ≈ 12dB whenN = 20. The simulation results for every

point in the following figures are averaged over106 runs. As the received SNR cannot illustrate

the advantages of beamforming gain and the effects of the number of nodes and phase errors,

our simulation results and analytical results are plotted as BER vs fixed total transmit powerP ,

which is one of the major concerns in practical design in wireless sensor networks. We have

derived two expressions to predict the BER results for smallnumber of nodes and large number

of nodes separately. For simplicity, we denote equation (3.8) in Section 3.3 as method 1, while

equation (3.37) in Section 3.4 is denoted as method 2.

Figure 3.6 shows the comparison of the simulation results with the analytical results based on

method 1 for very small but different number of nodesN = 3, 5 and increasing phase error

rangesφ0 = 18◦, 36◦, 54◦ and72◦. As can be seen, our analysis shows a good match with

the simulation results for all values ofφ0 up to 72◦ with bothN = 3 andN = 5. Because

method 2 is based on the CLT it thus has a large deviation from the simulation results for a

smallN , we only present the results based on method 1 in Figure 3.6. (The accuracy of method

1 and method 2 when increasingN from small numbers to large numbers are compared later in

Figure 3.10.) From Figure 3.6 we see that increasing the number of nodesN can dramatically

reduce the transmit power requirement for the same BER performance, or from another point

of view, it can significantly improve the BER performance with the same total transmit power.

This is consistent with the conclusions presented in [6]. What is more, with a given number of

nodes, increasing the phase error rangeφ0 will degrade the BER performance. It also shows
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that with a fixed increment inφ0, the phase errors have a more significant effect on the BER

performance at higher values ofφ0. Taking the curves forN = 5 for example, subject to the

same BER at10−2, the performance loss when increasing fromφ0 = 54◦ to φ0 = 72◦ is larger

than the degradation when moving fromφ0 = 18◦ to φ0 = 36◦. These observations agree with

the discussion in Chapter 2 about the effects of the number ofnodes and phase errors.
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Figure 3.6: Comparison of analytical results based on method 1 with simulation results of BER
versus total transmit power withN = 3, 5 distributed sensor nodes, phase errors
constrained within the rangeφ0 = 18◦, 36◦, 54◦, 72◦ relative to total transmit
powerP = 1.

Figure 3.7 shows the comparison of the simulation results with the analytical results based on

method 1 and method 2 for the same number of nodesN = 20, for the phase error ranges

φ0 = 18◦, 36◦, 54◦ and72◦. It shows that both method 1 and method 2 have a good prediction

on the BER results withN = 20 distributed sensor nodes. There exists a slight difference

between the analytical results based on the two methods. Method 1 appears to be a little more
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closer than method 2 to the simulation results forφ0 = 36◦, 54◦ while method 2 appears to be

a little more closer than method 1 forφ0 = 18◦, 72◦.
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Figure 3.7: Comparison of analytical results based on method 1 and method 2 with sim-
ulation results of BER versus total transmit power withN = 20, and φ0 =
18◦, 36◦, 54◦, 72◦.

Figure 3.8 shows the comparison of the simulation results with the analytical results based on

method 2 for large numbers of nodesN = 40, 100 for the same phase error rangesφ0 =

18◦, 36◦, 54◦ and72◦. As we see, for bothN = 40 andN = 100 the simulation results and

the analytical results show excellent agreement with each other. Method 1 still provides a good

prediction for largeN . However, with largeN , method 1 has a high computational complexity,

thus we only present the results based on method 2 in Figure 3.8. From Figure 3.8, we can

draw the same conclusions about the effects of the number of nodes and the phase errors as

from Figure 3.6 stated above. Comparing the two figures and considering the practical design,

we have the conclusion that adding more nodes whenN is small, or minimizing the phase
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errors whenφ0 is large, can significantly improve the BER performance.
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Figure 3.8: Comparison of analytical results based on method 2 with simulation results of BER
versus total transmit power withN = 40, 100, andφ0 = 18◦, 36◦, 54◦, 72◦.

Figure 3.9 shows the BER over the9◦ to 90◦ phase error range,φ0, at a fixed total transmit

power to analyze the accuracy of methods 1 and 2 whenφ0 grows larger. We realize that

some plots in Figure 3.9 & 3.10 show unacceptably high BER butthey are provided as further

verification of the good match of our analysis and simulations. It can be seen in Figure 3.9 (a)

that at a higher transmit power, there is a small gap between the two curves of method 1 and

method 2 at largeφ0, where method 1 has a more accurate prediction for the caseN = 10,

even up toφ0 = 80◦. This is because method 2 is based on the CLT and is not so accurate

for smallN . Also, it can be seen that at a lower transmit power in Figure 3.9 (b), the two

curves of method 1 and method 2 overlap each other and both of them match the simulation

results accurately for all values ofφ0 up to90◦. However90◦ may be considered too large and

unacceptable a phase error range in most application scenarios for distributed beamforming as
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Figure 3.9: Comparison of analytical results based on method 1 and method 2 with simulation
results of BER versus phase error range9◦ to 90◦ with N = 10, 20, 40, and (a)
total transmit powerP = 0.3, (b) total transmit powerP = 0.01.

in the plot the BER has a particularly high value.

Figure 3.10 shows the BER versus the number of nodesN to analyze the accuracy of method

1 and method 2 when increasingN . In order to keep the received SNR roughly constant when

increasingN , the total transmit power in Figure 3.10 is set to be inversely proportional toN , i.e.

normalized byN , which is different to the simulations in previous figures. It can be seen that

there is a gap between the two curves of method 1 and method 2 for smallN , where method 1

provides a much more accurate prediction. Method 2 achievesprogressively more accuracy as

N increases. This is because method 2 is based on the CLT and thus is not appropriate for small

N . However, the solution given by method 1 takes the form of a single dimensional integral

solved in our simulations by the Hermite integration method. The solution given by method

2 is much simpler and more computationally efficient compared to method 1. Therefore, it is

preferable to use method 1 only for a small number of nodes (e.g. N 6 10) and use method 2

for a large number of nodes (e.g.N > 20).

3.6 Summary

In this Chapter, we have derived BER expressions for BPSK signalling in distributed beam-

forming with phase errors. The simulation results show excellent agreement with analytical
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results. We analyzed the model from different approaches toapproximate the distribution of

the equivalent channel gain. It is suggested to use method 1,presented in Section 3.3, to predict

BER for a small number of nodes (e.g.N 6 10) and use method 2, presented in Section 3.4, for

a large number of nodes (e.g.N > 20). We propose using method 2 here predominantly due

to its reduced computational load for largeN . The system performance has been analyzed for

different numbers of nodes and different phase error ranges. With a given number of nodes and

a defined transmit power constraint, one can use our BER expressions to bound the permissable

phase errors. Alternatively, knowing the number of nodes and phase error range, one can calcu-

late the energy requirement for each node. Our methods can beextended to analyze BER with

MRT for distributed beamforming in a similar way. The analysis can also be applied to other

phase error distributions in the literature discussed in Section 3.1, such as Gaussian and "exp-

cosine". One can obtain the BER with other phase error distributions by simply substituting the

corresponding pdfs into (A.7) and (A.8) to compute the second and the fourth moment of
∣∣H
∣∣.

The theoretical analysis presented in this Chapter gives anaccurate understanding of the im-

pact of phase errors on the beamforming performance. In the next Chapter, we will probe into

practical realizations of achieving phase alignment and minimizing phase errors at the receiver

for distributed beamforming.
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Chapter 4
A Reverse-Perturbation Scheme for

Phase Alignment

A fundamental problem of realizing distributed beamforming in practice is to achieve phase

alignment at the intended receiver. Signals transmitted from sensor nodes should be frequency

synchronized and phase adjusted so that they can add coherently at the receiver and the accuracy

of this coherence is critical to the beamformer performance. A simple iterative algorithm using

one-bit feedback from the receiver in each iteration has been proposed in the literature which

can achieve nearly perfect phase alignment after many iterations. In this Chapter, we propose

an improved version of the one-bit feedback algorithm whichhas a faster convergence speed of

phase synchronization and requires no extra hardware or information exchange. The advantage

in the convergence speed is obtained by exploiting the one-bit feedback information in each

iteration more efficiently.

4.1 Introduction

Distributed transmit beamforming can provide high SNR gains, extend the communication

range, or reduce the energy requirement for each transmitter in signal transmission. How-

ever, these potential benefits rely on accurate phase alignment of the signals arriving at the

receiver and phase alignment is critical to the beamformer performance. In Chapter 3, we

have quantitatively studied the impact of phase errors on the BER performance of distributed

beamforming. With a given number of sensor nodes and a constraint on the transmit power,

phase errors among signals arriving at the receiver have to be minimized and contained within

a certain range in order to maintain a BER performance. In Chapter 2, we have reviewed the

challenges in practical realizations of distributed transmit beamforming. The most crucial part

of realizing distributed transmit beamforming is carrier frequency and phase synchronization

among all the transmitters to ensure that the signals can be added coherently at the receiver [6].

The frequency synchronization problem can be solved by employing a master-slave scheme
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presented in [3], where the slave nodes lock their frequencies to a reference carrier signal peri-

odically broadcasted by the master node. Alternatively, the frequency synchronization can be

achieved by the destination node periodically broadcasting a reference signal to all transmit-

ters. In addition to the frequency synchronization, how to achieve phase alignment or minimize

phase errors in a distributed manner?

Several schemes have been proposed in the literature to achieve phase alignment or phase co-

herence at the receiver for distributed transmit beamforming. In [3], the authors proposed an

open-loop scheme to achieve phase alignment where phase synchronization is first coordinated

within the sensor network by employing a master-slave architecture, then achieved at the desti-

nation by pre-compensating the phase responses of node-destination channels based on channel

reciprocity. The major problem of this scheme is that it requires accurate CSI at transmitters,

and the beamforming performance is limited by several sources of estimation errors in the

synchronization process. In [64], [65], [66], the authors proposed another scheme called the

round-trip scheme to achieve phase alignment based on channel reciprocity. The basic idea is

that the phase shift accumulated in a clockwise round-trip transmission is equal to a counter-

clockwise round-trip transmission through a multi-hop chain of nodes. In [67], the authors first

present a simple iterative algorithm (which we term the original algorithm) to adjust phase set-

tings at transmitters, which can achieve nearly perfect phase alignment at the receiver in static

channels after a large number of iterations. The algorithm is then comprehensively studied

and mathematically analyzed in [4]. In the algorithm, the phase training process is performed

by every transmitter making a random perturbation on its phase offset in each iteration. If

the perturbation results in a positive feedback indicatinga bigger beamforming gain, it will

be adopted. Otherwise, it will be discarded. Such a trainingprocess can be reformulated as

a random search algorithm [68], [69], [70] or associated to an ordinary differential equation

(ODE) [71], [72], [73]. It can start with an arbitrary distribution of phase settings at transmit-

ters and adjust transmitters’ phase settings in a distributed manner to achieve phase alignment

at the receiver. The key advantages of this algorithm is thatit does not need channel state infor-

mation and only relies on one-bit feedback in each iteration. Its simplicity in implementation

and scalability to large number of transmitters make it a promising way to realize distributed

transmit beamforming in practical applications. The shortcoming of the original algorithm is

that the algorithm only converges upon positive feedback indicating successful perturbations

and it takes a large number of iterations to achieve convergence. As discussed in Chapter 2, en-

ergy efficiency is one of the major concerns in wireless sensor networks and radio transmission

56



A Reverse-Perturbation Scheme for Phase Alignment

is one of the most energy-expensive operations [74]. Therefore, it is desirable to improve the

convergence speed of the original algorithm while maintaining its key advantages.

The original algorithm has received wide attention in the literature and similar algorithms based

on it using one-bit feedback were proposed for distributed beamforming. In [75], the original

algorithm was further developed to account for carrier frequency errors, in addition to phase

errors, among transmitters. In [35], the validity of the original algorithm was first verified by

laboratory experiments, where expected performance results were obtained. The authors in [35]

also made efforts in extending the algorithm to track time-varying channels. We will further

discuss the problem of tracking time-varying channels in Chapter 5. The original algorithm

is generalized to a multiuser context in [76]. Similar algorithms to achieve optimal power

allocation in wireless relay networks were proposed in [77], [78]. In [79], the authors studied

the convergence performance of a case where sensor nodes arerestricted to sending binary

phases rather than arbitrary, continuous valued phases. In[80], the authors studied a case

where more channel phase information is fed back from the destination to the sensor nodes.

A common feature of the original algorithm and these extended algorithms is that they only

exploit positive feedback information and discard negative feedback information.

Recently, more related work on the one-bit feedback algorithm is presented in [81], [82], [83],

[84], [85], [86]. In [81], the authors proposed a partitioned one-bit feedback algorithm where

sensor nodes are divided into subsets for the phase synchronization process. Each subset per-

forms the phase training process independently and simultaneously until it achieves a certain

beamforming gain. Then the destination estimates and feedsback a beamforming weight for

each subset to achieve phase synchronization across subsets. The partitioned algorithm has an

advantage in the convergence time compared to the original algorithm at the cost of sending

more feedback from the destination in each iteration. However, it does not save more energy

compared to the original algorithm. In [82], the authors proposed a 3-bit feedback algorithm,

where one bit is used as in the original algorithm and two bitsare used to estimate the relative

motion between transmitters and the receiver. However, this algorithm is not robust to random

phase drifts and its convergence performance needs furtherinvestigation. In [83], [84], the

authors presented more variations to the original algorithm by studying the impact of some in-

fluence factors, such as the network size, choice of nodes, and optimum perturbations. In [85],

the authors studied the performance of the one-bit feedbackalgorithm with feedback bit errors.

In [86], the authors presented a bio-inspired algorithm which can adaptively adjust perturbation
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sizes and has a faster convergence speed under static channel conditions.

The idea of the one-bit feedback algorithm is similar to somenature-inspired random search

algorithms in the area of swarm intelligence, such as the firefly algorithm [87], particle swarm

optimization [88], ant colony algorithm [89], etc. Unlike the one-bit feedback algorithms, in

the nature-inspired algorithms, each unit in a swarm takes into account the results obtained by

other swarm units to compute possible solutions to an optimization problem. However, learning

from adjacent nodes in wireless sensor networks is considered costly as it may require abun-

dant information exchange among sensor nodes. All operations of the beamforming process

have to be organized and implemented in a distributed manner. Therefore, the nature-inspired

algorithms cannot be applied directly to perform distributed beamforming.

In this Chapter, we present a novel algorithm (namely the improved algorithm) based on the

one-bit feedback algorithm described in [4] (namely the original algorithm) to achieve carrier

phase alignment at the receiver in distributed transmit beamforming. The improved algorithm

still requires only one-bit feedback from the receiver. It keeps all the benefits of the original

algorithm, such as its simplicity and scalability, and requires no extra hardware. The improved

algorithm is shown to have an advantage in the convergence speed. It requires fewer iterations,

thus consumes less energy, to achieve a certain beamforminggain than the original algorithm

by making use of the random perturbation obtained in each time slot more efficiently.

4.2 System model

We consider a distributed transmit beamforming system similar to the one described in Chapter

3. The system is composed ofN transmitters collaboratively beamforming a narrowband mes-

sage signal to a distant receiver. This is performed in a distributed manner by each transmitter

modulating the message signal at the same carrier frequencyand adjusting its phase setting

iteratively to achieve phase alignment at the receiver. Thesystem model including phase com-

ponents contributing to the phase of the received signal at the receiver is illustrated in Figure

4.1.

In order to compare the improved algorithm with the originalalgorithm easily and fairly, the

assumptions made in this Chapter are all the same with the assumptions in [4]. We repeat

some key assumptions below. For more details, please see thelist of assumptions in [4]. The

channel from each transmitter to the receiver,hi, is assumed to be static during the phase
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Figure 4.1: System model for distributed transmit beamforming using one-bit feedback algo-
rithms.

synchronization process. For simplicity, we set|hi| = 1. All transmitters are frequency-

synchronized so that they only need to adjust their phase settings to achieve phase alignment

at the receiver. The local carrier of each transmitteri has an unknown phase offsetγi relative

to the receiver’s phase reference. As both algorithms considered here put emphasis on the

phase synchronization process and the effect of phase difference on the beamforming gain, we

assume unit transmit power for every transmitter. The phasetraining process in both algorithms

are performed in a time-slotted fashion, and the phase of thereceived signal at the receiver from

transmitteri in time slotn can be expressed as:

Φi[n] = γi + ψi + ϕi[n] (4.1)

whereγi is an unknown phase offset at transmitteri, ψi is the channel phase response from

transmitteri to the receiver. Bothγi andψi are assumed to be static during the convergence

process, uniformly distributed within[0, 2π) over i and unknown to both the transmitters and

the receiver. The scalarϕi[n] is the adaptive component adjusted by transmitteri in each time

slot based on the one-bit feedback information from the receiver. We setϕi[0] = 0 for both

algorithms. The phase of the received signal,Φi[n], is related to the phase error among signals

arriving at the receiver,φi, defined in Chapter 3. The ideal phase alignment of distributed

beamforming is that there are no phase differences among thesignals arriving at the receiver,
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i.e.:

γi + ψi + ϕi[n] ≡ γk + ψk + ϕk[n] (mod 2π), (4.2)

i 6= k ∀i, k = 1, 2, ..., N.

The objective of the algorithm design is to let each transmitter adjust its valueϕi[n] based on

the one-bit feedback information in each time slot to achieve nearly perfect phase alignment at

the receiver as fast as possible.

The received signal strength (RSS), which determines the beamforming gain, in time slotn is

defined as:

R[n] =

∣∣∣∣∣

N∑

i=1

ejΦi[n]

∣∣∣∣∣ (4.3)

The noise power at the receiver is assumed to be fairly small compared to the signal power

at the receiver, and the RSS in each time slot,R[n], can be measured accurately by averaging

the received signal over a certain time interval. Both algorithms use the RSS as a metric to

measure the beamforming performance during the convergence process. In Chapter 3, we have

analyzed the BER performance for distributed beamforming with phase errors over Rayleigh

fading channels. Given equation (3.5) and (3.6), we see the BER performance mainly depends

on the distribution of the RSS defined in (4.3). In the phase training process, it is more easier to

measure the RSS rather than the BER at the receiver in practical implementations. Therefore,

for simplicity, we use the RSS as a metric to measure the beamforming performance in the

algorithm design described in this Chapter.

4.3 Original one-bit feedback algorithm

The original one-bit feedback algorithm to achieve phase alignment at the receiver for dis-

tributed beamforming introduced in [4] repeats the following steps.

1. At time slotn, each transmitter records its best known phase used for beamforming,
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θi[n], in memory and adds a random perturbation,δi[n] = ±δ0 (with equal probability

for "+" and "-"), to it. (We setθi[1] = 0).

2. All transmitters use their new adaptive components,ϕi[n] = θi[n] + δi[n], to perform

transmit beamforming.

3. The receiver measures the RSS,R[n] =
∣∣∣
∑N

i=1 e
jΦi[n]

∣∣∣, and compares it with the best

RSS in memory. The receiver updates the best RSS in memory andfeeds back (error free)

one-bit of information to all transmitters conveying whether the RSS has been improved

or not.

4. If the RSS has been improved, all transmitters adopt theirperturbed phases and update

their best known phases to beθi[n + 1] = ϕi[n] = θi[n] + δi[n] for the next time slot

(n+1). Otherwise, all transmitters discard the perturbed phases and keep the best known

phases as before,θi[n+ 1] = θi[n], for the next time slot (n+ 1).

The adaptive componentϕi[n] used for beamforming in time slotn in the original algorithm is

composed of two parts:

ϕi[n] = θi[n] + δi[n] (4.4)

whereθi[n] represents the best known phase of transmitteri in time slotn. The scalarδi[n] is

the random component applied to the best known phase in time slot n.

The original algorithm in [4] can be mathematically expressed as:

At the transmitter side:

θi[n+ 1] =





θi[n] + δi[n] R[n] > Rbest[n]

θi[n] otherwise
(4.5)

At the receiver side:

Rbest[n+ 1] = max(Rbest[n], R[n]) (4.6)
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whereRbest[n] is the best RSS in memory, or in other words, the maximal RSS inthe pastn−1

time slots. By inserting (4.4) into (4.1), the overall phaseof the received signal at the receiver

in time slot (n+ 1) can be expressed as:

Φi[n+ 1] = γi + ψi + ϕi[n+ 1]

= γi + ψi + θi[n+ 1] + δi[n+ 1] (4.7)

Given (4.5), whenR[n] > Rbest[n], (4.7) becomes:

Φi[n+ 1] = γi + ψi + θi[n] + δi[n] + δi[n+ 1] (4.8)

Otherwise, whenR[n] ≤ Rbest[n], (4.7) becomes:

Φi[n+ 1] = γi + ψi + θi[n] + δi[n+ 1] (4.9)

The original algorithm can achieve phase alignment after many iterations. Figure 4.2 shows

simulation results for one instance of the original algorithm with N = 100, δ0 = π
50 . It

shows that the RSS is increasing gradually with increased time slots and a high beamforming

gain close to the optimum value can be obtained after many iterations. For more details of

the original algorithm including its advantages over otheralternative approaches for distributed

beamforming, see [4].

4.4 Reverse perturbation algorithm

The original algorithm can be viewed as a random search process in which each transmitter

is trying to adjust its phase correctly based on the feedbackinformation. Since the original

algorithm only changes phase for positive feedback and discards other "failed" perturbations, it

only makes use of the feedback information which indicates performance improvement. How-

ever, failure can also be used to obtain future success. Making use of the information contained

within the failed perturbations which led to performance degradation is expected to be helpful
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Figure 4.2: Simulation results for one instance of the original algorithm on the received signal
strength versus the number of time slots.

in improving the convergence speed of phase alignment. Hereby, we propose a new algorithm

based on the original algorithm summarized as follows.

1. At time slotn, each transmitter applies a random perturbation,δi[n] = ±δ0, to its best

known carrier phase,θi[n], for beamforming. Meanwhile, each transmitter also adds a

modifying factor,ǫi[n], to its best known carrier phase for beamforming. The function of

ǫi[n] is to add an opposite value ofδi[n− 1] into the new adaptive component ifδi[n− 1]

has led to performance degradation in the previous time slot. Otherwise, the value of

ǫi[n] is set to be0.

2. All transmitters use their new adaptive components,ϕi[n] = θi[n] + ǫi[n] + δi[n], to

perform transmit beamforming.
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3. The receiver measures the RSS,R[n] =
∣∣∣
∑N

i=1 e
jΦi[n]

∣∣∣, and compares it with the best

RSS in memory. The receiver updates the best RSS in memory andfeeds back (error free)

one-bit of information to all transmitters conveying whether the RSS has been improved

or not.

4. If the RSS has been improved, all transmitters adopt theirperturbed phases and update

their best known phases to beθi[n + 1] = ϕi[n] = θi[n] + ǫi[n] + δi[n] for the next

time slot (n + 1). The modifying factor for the next time slot is set to beǫi[n + 1] = 0.

Otherwise, all transmitters discard the perturbed phases and keep the best known phases

as before,θi[n+ 1] = θi[n], for the next time slot (n + 1). The modifying factor for the

next time slot is set to beǫi[n+ 1] = −δi[n].

The algorithm then repeats these four steps.

The adaptive componentϕi[n] used for beamforming in time slotn in the improved algorithm

is composed of three parts:

ϕi[n] = θi[n] + ǫi[n] + δi[n] (4.10)

whereθi[n] represents the best known phase,ǫi[n] is the modifying factor andδi[n] is the

random component.

The improved algorithm can be mathematically expressed as:

At the transmitter side:

θi[n+ 1] =





θi[n] + ǫi[n] + δi[n] R[n] > Rbest[n]

θi[n] otherwise
(4.11)

ǫi[n+ 1] =





0 R[n] > Rbest[n]

−δi[n] otherwise
(4.12)

At the receiver side:

Rbest[n+ 1] = max(Rbest[n], R[n]) (4.13)
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By substituting (4.10) into (4.1), the overall phase of the received signal at the receiver in time

slot (n+ 1) can be expressed as:

Φi[n+ 1] = γi + ψi + ϕi[n+ 1]

= γi + ψi + θi[n+ 1] + ǫi[n+ 1] + δi[n+ 1] (4.14)

Given (4.11) and (4.12), whenR[n] > Rbest[n], (4.14) becomes:

Φi[n+ 1] = γi + ψi + θi[n] + ǫi[n] + δi[n] + 0 + δi[n+ 1] (4.15)

Otherwise, whenR[n] ≤ Rbest[n], (4.14) becomes:

Φi[n+ 1] = γi + ψi + θi[n] − δi[n] + δi[n+ 1] (4.16)

When the perturbation sizeδ0 is quite small compared to the phase differences at the receiver,

a perturbation on the carrier phases would lead to either a reduction or an increment in phase

differences at the receiver, thus yielding beamforming performance improvement or degrada-

tion. The basic idea behind the improved algorithm is that for a single transmitter in each time

slot, if a positive perturbation on its carrier phase leads to performance degradation, usually,

a negative perturbation on the same carrier phase will lead to performance improvement, and

vice versa. Figure 4.3 shows an example of two transmitters.

By comparing (4.15) with (4.8) we see that in both algorithms, when an adaptive component

ϕi[n] leads to a bigger beamforming gain, it will be retained and beset as the best known phase

for the next time slot, soθi[n+1] = ϕi[n]. In the next time slot (n+1), a random perturbation,

δi[n+1], will be applied to this best known phase,θi[n+1], and there is no further modification

apart from the random perturbation onθi[n + 1] for beamforming. By comparing (4.16) with

(4.9) we see that in both algorithms, when an adaptive component ϕi[n] leads to a smaller

beamforming gain, it will be discarded and the best known phase is kept unchanged for the

next time slot, soθi[n + 1] = θi[n]. In the next time slot (n + 1), the original algorithm will

perform a random perturbation again based on the sameθi[n] while the improved algorithm

65



A Reverse-Perturbation Scheme for Phase Alignment

0δ+

0δ−

0δ−

0δ+

Figure 4.3: Phase perturbation results in the case of two transmitters.If (b) a random pertur-
bation leads to performance degradation, (c) an opposite perturbation will lead
to performance improvement. Vectora is the received signal from one transmitter,
vectorb is the received signal from the other transmitter.

will perform a random perturbation based onθi[n] − δi[n], where−δi[n] is introduced by the

modifying factor,ǫi[n]. Consequently, both successful and failed perturbations in the improved

algorithm contribute to the convergence speed.

One may ask why in the case of a failed perturbation in time slot n, should the algorithm not

directly update the best known phase to beθi[n+ 1] = θi[n]− δi[n] for time slot (n+ 1) rather

than introducing the modifying factor,ǫi[n+1]? In that case the random perturbation would be

based onθi[n] − δi[n] in time slot (n+ 1). Such an idea can be mathematically expressed as:

θi[n+ 1] =





θi[n] + δi[n] R[n] > Rbest[n]

θi[n] − δi[n] otherwise
(4.17)

The reason for not doing so is because (θi[n] − δi[n]) does not always result in a better perfor-

mance thanθi[n]. If not, the update equationθi[n + 1] = θi[n] − δi[n] may drift off the best

phase for beamforming corresponding to the best RSS in memory. Figure 4.4 shows simulation

results for one instance of using (4.17) to update the best known phase. In contrast, the im-

proved algorithm only updates the best known phase when positive feedback happens and also

makes use of the negative feedback information in a single time slot to enhance the probability

of generating better phase changes.
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Figure 4.4: Simulation results for one instance of using (4.17) to update the best known phase.
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Figure 4.5 shows an example of the evolution of the adaptive component for transmitteri in

several time slots using the improved algorithm, starting from time slotn till time slot (n+ 5).

From Figure 4.5 we see, in the case of negative feedback, an opposite value of the perturbation

in time slotn will be added into the next adaptive component in time slot (n + 1), which

enhances the probability of generating better phase changes. In the case of successive negative

feedback steps, the values of the adaptive componentϕi are always located around the best

known phaseθi. This is because the value ofθi is updated only in the case of positive feedback

in order to preventθi from drifting off its best value.

P

N [ ] [ 2] [ 3]� � �n n nϕ δ δ− + + +

( [ 3] [ ])  n nθ ϕ+ =

n+3 N [ ] [ 3] [ 4]! ! !n n nϕ δ δ− + + +
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])[]1[( nn )) ϕθ =+

]1[][ ++ nn ** δϕ
n
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Figure 4.5: Evolution of the adaptive componentϕi for beamforming using the improved al-
gorithm, starting from time slotn till time slot (n + 5). "P" represents positive
feedback while "N" represents negative feedback.θi is the best known phase and
δi is the random perturbation.

4.5 Analysis of the improved algorithm

We present some mathematical analysis of the improved algorithm and provide a close up-

per bound on its convergence speed. We begin our analysis by studying the original one-bit

feedback algorithm. The original algorithm described above can be reformulated as:

θi[n+ 1] = θi[n] + δi[n]1G (4.18)
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where the indicator function1G equals 1 when the conditionG is satisfied and equals 0 oth-

erwise. The conditionG = { ∑N
i=1 cos(Φ̂i[n] + δi[n]) >

∑N
i=1 cos(Φ̂i[n]) } and Φ̂i[n] =

γi +ψi + θi[n]. The conditionG exists because with a largeN , the RSS mainly depends on the

cosines of the carrier phases and the contribution of sines can be discarded. In [71], the authors

proved that the trajectories of (4.18) collapse to the solution of a certain ODE. For the read-

ers’ convenience, we first repeat some of the key results in deriving the ODE for the original

algorithm. For details, please see [71]. We then derive an ODE that mimics the behavior of the

improved algorithm in a similar way.

For a small perturbation sizeδ0, cos(Φ̂i[n]+δi[n]) ≈ cos(Φ̂i[n])−δi[n] sin(Φ̂i[n]). Therefore,

the conditionG can be simplified toG = {∑N
i=1 δi[n] sin(Φ̂i[n]) < 0}. With largeN , the

summation of(N − 1) terms excludingδj[n] sin(Φ̂j [n]) can be written as:

Zj =

N∑

i=1(i6=j)

δi[n] sin(Φ̂i[n]) (4.19)

which is a zero mean Gaussian variable according to the Lyapunov CLT, whose variance is

Var(Zj) = δ20
∑N

i=1(i6=j) sin2(Φ̂i[n]). Therefore, the probability of conditionG being satisfied

is:

Pr(G) = Pr(Zj + δj [n] sin(Φ̂j [n]) < 0) (4.20)

=
1

2
− 1

2
erf

(
δj[n] sin(Φ̂j [n]) − E(Zj)√

2
√

Var(Zj)

)

≈ 1

2
− 1√

2π
· δj [n] sin(Φ̂j [n])

δ0

√∑N
i=1(i6=j) sin2(Φ̂i[n])

.

whereerf(·) represents the Gaussian error function. The last approximation comes from the first

term of the error function’s Taylor serieserf(x) = 2√
π

∑∞
n=0

(−1)nx2n+1

n!(2n+1) . Thus, the expectation

of the random perturbation applied on phase settings for transmitterj can be computed as:
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E(δj [n]1G) ≈ E(δj [n]Pr(G)) (4.21)

= E


δj [n]

(
1

2
− 1√

2π
· δj [n] sin(Φ̂j [n])

δ0

√∑N
i=1(i6=j) sin2(Φ̂i[n])

)


= − δ0 sin(Φ̂j [n])
√

2π
√∑N

i=1(i6=j) sin2(Φ̂i[n])
.

The convergence of the best known phasesθi to their correct settings is equivalent to the con-

vergence of̂Φi to zero. The ODE corresponding to equation (4.18) which mimics the behavior

of the original algorithm can be obtained as:

dΦ̂j(t)

dt
= − δ0 sin(Φ̂j[n])

√
2π
√∑N

i=1(i6=j) sin2(Φ̂i[n])
. (4.22)

In the original algorithm, the decision on the perturbationδi[n] only depends onR[n] and the

corresponding feedback in time slotn. However, in the improved algorithm, the decision on

the perturbationδi[n] not only depends on the feedback in time slotn, but also the feedback

in time slots (n + 1) and (n − 1). A flowchart of the adaptive component for transmitterj in

the improved algorithm is shown in Figure 4.6. The conditions ConA, ConB in Figure 4.6 are

defined mathematically as follows:

ConA(δi[n]) =

{
N∑

i=1

cos(Φ̂i[n] + δi[n]) >

N∑

i=1

cos(Φ̂i[n])

}
. (4.23)

ConB(δi[n− 1], δi[n]) =

{
N∑

i=1

cos(Φ̂i[n− 1] − δi[n− 1] + δi[n]) >

N∑

i=1

cos(Φ̂i[n− 1])

}
.

(4.24)

The condition ConA is the same as conditionG in the original algorithm. Therefore, its proba-

bility is given by
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Pr(ConA(δj [n])) =
1

2
− 1√

2π
· δj [n]ηj [n]

δ0
. (4.25)

whereηj [n] =
sin(Φ̂j [n])

q

PN
i=1(i6=j) sin2(Φ̂i[n])

. The probability of condition ConB can be derived in a

similar way and is expressed as:

Pr(ConB(δj [n− 1], δj [n])) =
1

2
− 1√

2
√

2π
· (−δj [n− 1] + δj [n])ηj [n− 1]

δ0
.(4.26)

The conditionsConA, ConB are the negations ofConA, ConB, whose probabilities can be

calculated using the equations:

Pr(ConA) + Pr(ConA) = Pr(ConB) + Pr(ConB) = 1. (4.27)

From Figure 4.6 we have:

θi[n+ 1] =





θi[n] + δi[n]1G+

θi[n] − δi[n]1G−

(4.28)

where

G+ =
{
ConA(δi[n− 1]) · ConA(δi[n]) + ConA(δi[n− 1]) · ConB(δi[n− 1], δi[n])

}
,

(4.29)

G− =
{
ConA(δi[n− 1]) · ConA(δi[n]) · ConB(δi[n], δi[n+ 1]) (4.30)

+ConA(δi[n− 1]) · ConB(δi[n− 1], δi[n]) · ConB(δi[n], δi[n+ 1])
}
.

Thus,
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E(δj [n]1G+ − δj [n]1G−) = E
[
δj [n] ·

(
Pr(G+) − Pr(G−)

)]
(4.31)

For a small perturbation sizeδ0, ηj [n − 1] ≈ ηj [n] ≈ ηj [n + 1] = ηj . Substituting (4.25),

(4.26), (4.27), (4.29) and (4.30) into (4.31), we have:

E(δj [n]1G+ − δj [n]1G−) = E

[
−
(

1

2
· δj [n]2ηj√

2πδ0
+

1

2
· δj [n]2ηj√

2
√

2πδ0
(4.32)

+(
1

4
+

1

4
√

2
)· δj [n]2ηj√

2πδ0
+

1

2
√

2
· δj [n]2ηj√

2πδ0
−

δj [n]2η3
j

4
√

2π
3
2 δ0

)]

> −5
√

2 + 6

8
· δ0ηj√

2π
.

The ODE corresponding to equation (4.28) which mimics the behavior of the improved algo-

rithm can be obtained as:

dΦ̂j(t)

dt
= −5

√
2 + 6

8
· δ0 sin(Φ̂j [n])
√

2π
√∑N

i=1(i6=j) sin2(Φ̂i[n])
. (4.33)

Comparing (4.33) with (4.22), we see that the improved algorithm has a faster convergence

speed of5
√

2+6
8 ≈ 1.634 compared to the original algorithm. The accuracy of (4.33) will be

justified by simulation results in Section 4.6.

4.6 Simulation results and comparisons

In this section, we present some Monte Carlo simulation results in accordance with our previous

assumptions.

Figure 4.7 shows the comparison of the trajectories of the phasesΦ̂ obtained from simulation

with the trajectories of the ODE in (4.33) for the improved algorithm with 20 sensor nodes. The

initial values of the phaseŝΦ are set as uniformly distributed within(−π, π). It shows that the

ODE in (4.33) can give a good prediction on the behavior of thephase alignment process under
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the improved algorithm.
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Figure 4.7: Comparison of the trajectories of the phasesΦ̂ obtained from simulation (dashed
lines) with the trajectories of the ODE (solid lines) in (4.33) for the improved al-
gorithm withN = 20, δ0 = 6 × 10−4. The convergence of̂Φ to zero is equivalent
to the convergence of the phase alignment process.

Figure 4.8 shows the comparison of the RSS calculated using the ODE in (4.33) with the

simulation results of RSS versus number of time slots with different numbers of transmitters

N = 20, 50, and100. As we can see, the analytical results provide a close upper bound on the

convergence speed and yield a good match with the simulationresults for most of the conver-

gence process.

Although the analytical results presented in Section 4.5 proved that the improved algorithm

has a faster convergence speed of 1.634 compared to the original algorithm. However, the

analysis is only valid for a small perturbation size. For a more comprehensive study, below
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Figure 4.8: Comparison of the simulation results (dashed lines) with the results obtained from
the ODE (solid lines) in (4.33) for the RSS versus number of time slots withN =
20, 50, 100 andδ0 = 6 × 10−4.

we compare the improved algorithm with the original algorithm in terms of the convergence

time required to achieve a certain beamforming gain. In order to compare the two algorithms

fairly and effectively, we use the same sequences of pseudo random values ofγi andψi for both

algorithms and setϕi[1] = 0.

Figure 4.9 shows the comparison of the original algorithm and the improved algorithm using

the average RSS versus the number of time slots up to2000 withN = 100 andδ0 = π
100 ,

π
50 ,

π
25 .

The simulation results for every curve in Figure 4.9 are averaged over103 instances. It shows

that with the same value ofδ0, the improved algorithm converges faster than the originalalgo-

rithm at initial stages, which is consistent with our expectation in Section 4.4. However, it also

shows that with the same value ofδ0, the original algorithm results in a bigger RSS than the

improved algorithm after a lot of iterations when the RSS gets closer to its optimum value. This
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Figure 4.9: Comparison of the original algorithm and the improved algorithm on the average
RSS versus the number of time slots withN = 100 andδ0 = π

100 ,
π
50 ,

π
25 .

is because the original algorithm performs better when the phase differences among the signals

arriving at the receiver become on the same order asδ0. For instance, Figure 4.10 shows the

case of two transmitters from which the received signals at the receiver has a phase difference

∆Φ smaller thanδ0. When the phase difference between the two signal vectors,∆Φ, is no big-

ger than the perturbation size,δ0, there leaves no space for a reduction in the phase difference

when the iterations evolve. In this situation, the originalalgorithm keeps the phase difference

unchanged while the improved algorithm results in a bigger phase difference. Accordingly, the

original algorithm performs better when the RSS gets closerto its optimum value.

Figure 4.11 shows the probability of the improved algorithmperforming better than the original

algorithm versus the number of time slots up to2000 with N = 100 and δ0 = π
100 ,

π
50 ,

π
25 .

The probability in time slotn is calculated for105 instances, the number of instances that

the improved algorithm leads to a bigger RSS than the original algorithm in time slotn when
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Figure 4.10: Perturbation results in the case of two transmitters when∆Φ ≤ δ0 (∆Φ denotes
the phase difference at the receiver). (a) applying the original algorithm; (b)
applying the improved algorithm.
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a failed perturbation happened in time slot (n − 1). This is divided by the total number of

instances that a failed perturbation happened in time slot (n− 1). From Figure 4.11 we see that

the probability decreases when the number of time slots increases and the probability with a

biggerδ0 decreases faster than the case with a smallerδ0. These findings are consistent with

our explanation above.
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Figure 4.12: Comparison of the original algorithm and the improved algorithm on the number
of time slots required to achieve an RSS of90% of maximum with different values
of δ0.

From Figure 4.9 we see that with the sameδ0 = π
100 the improved algorithm converges faster

than the original algorithm, the original algorithm withδ0 = π
50 converges even much faster

than both algorithms withδ0 = π
100 . How can one compare the convergence speed of the

two algorithms more quantitatively? Based on the average RSS versus the number of time

slots, the number of time slots required to achieve an RSS of90 with different values ofδ0

are plotted in Figure 4.12 for both algorithms. It shows thatto achieve an RSS of 90, both

the original algorithm and the improved algorithm have an optimum δ0 corresponding to the
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minimum number of time slots. From the simulation results wesee that the minimum number

of time slots required for the original algorithm is791, while the minimum number of time

slots required for the improved algorithm is648. This implies that the improved algorithm can

converge faster than the original algorithm to achieve an RSS value of90% of maximum.

Figure 4.13 shows the minimum number of time slots required to achieve different values of

RSS for both algorithms and Figure 4.14 shows the corresponding values ofδ0 which result in

the minimum number of time slots versus the value of RSS.
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Figure 4.13: Comparison of the original algorithm and the improved algorithm for the mini-
mum number of time slots required to achieve different RSS values.

If we denoteδ0 = δ1 for the original algorithm, andδ0 = δ2 for the improved algorithm, the

number of time slotsn1 used to achieve a certain value of RSS for the original algorithm is a

function ofδ1 andR: n1 = f(δ1, R). Similarly, for the improved algorithm the number of time

slotsn2 = g(δ2, R). From Figure 4.12 and Figure 4.13 we have: for any givenR, there always

exists aδ2 satisfying:
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Figure 4.14: Value of perturbation sizeδ0 which results in the minimum number of time slots
to achieve different RSS values.

n2 = g(δ2, R) < n1 = f(δ1, R), ∀δ1 (4.34)

It shows in Figure 4.13 that the gap between the minimum number of time slots required by the

original algorithm and the improved algorithm increases with the value of RSS. For the original

algorithm, we define the convergence speed to achieve an RSS value ofR to be inversely

proportional to the minimum number of time slots required, which is expressed as:

v1(R) ∝ 1

n̂1(R)
(4.35)

where n̂1(R) = min(n1 = f(δ1, R)),∀δ1 is the minimum number of time slots required
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to achieveR by the original algorithm. The improvement in the convergence speed of the

improved algorithm compared to the original algorithm can be expressed as:

β(R) =
v2(R) − v1(R)

v1(R)
=
n̂1(R) − n̂2(R)

n̂2(R)
(4.36)

wherev2(R) is the convergence speed for the improved algorithm andn̂2(R) is the minimum

number of time slots required by the improved algorithm. Theimprovement in the convergence

speed to achieve different values of RSS as a percentage are given in Table 4.1, wherên1(R)

and n̂2(R) are obtained from the results plotted in Figure 4.13. It shows that to achieve a

certain RSS between70% and99%, the improved algorithm converges at least20% faster than

the original algorithm.

RSS 70 75 80 85 90 93

β 23.64% 23.65% 22.79% 23.81% 22.53% 22.58%

RSS 95 96 97 98 99

β 21.65% 21.84% 21.77% 21.13% 20.77%

Table 4.1: Improvement in convergence speed,β from equation (4.36), to achieve different RSS
of the improved algorithm compared to the original algorithm.

4.7 Summary

We proposed an improved algorithm for distributed transmitbeamforming based on the origi-

nal one-bit feedback algorithm presented in [4]. The improved algorithm yields a20% faster

convergence speed compared to the original algorithm in static channels. It makes use of the

negative feedback information in a single time slot to enhance the probability of generating

better phase changes. It does not require any more information exchange or hardware support

than the original algorithm. Also, it keeps all the benefits of the original algorithm, such as the

simplicity and scalability. Simulation results confirm thepotential of the improved algorithm

in improving the convergence speed and show the minimum number of time slots required to

achieve a certain beamforming gain and the corresponding value of perturbation size used. In

the next Chapter, we will further explore the negative feedback information in successive time

slots to improve the convergence speed of phase alignment and extend the improved algorithm

into time-varying channels.
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Chapter 5
A Hybrid Algorithm for Phase

Alignment in Slowly Time-varying
Channels

We continue to improve the one-bit feedback algorithm for achieving phase alignment at the

intended receiver in distributed transmit beamforming. Besides the reverse perturbation scheme

discussed in Chapter 4, intuitively, adjusting perturbation sizes during the convergence process

would also help improve the convergence speed of phase alignment. The question is how to

implement it in practice based on only one-bit feedback information. In Chapter 4, we studied

the convergence performance of the one-bit feedback algorithms in the ideal channels which

have static phase responses. However, in practice, channelphase responses change in time

due to moving scatters or obstructions in the propagation environment. Also, sensor nodes

experience phase drifts in signal generation due to oscillator internal noise. Therefore, the one-

bit feedback algorithm must be modified to be robust to randomphase drifts before its practical

implementations. In this Chapter, we will further exploit the negative feedback information to

improve the one-bit feedback algorithm and address the above issues.

5.1 Introduction

In Chapter 4, we have proposed an improved algorithm based onthe original algorithm in the

literature to achieve phase alignment at the receiver in static channels for distributed transmit

beamforming. The improved algorithm provides a superior performance in the convergence

speed compared to the original algorithm while maintainingall of its advantages, such as sim-

plicity in implementation and scalability to a large numberof nodes [4]. The benefit in the

convergence speed is obtained by making use of the negative feedback information in a single

time slot and taking a reverse-perturbation scheme to generate better phase changes at trans-

mitters. However, both the original algorithm and the improved algorithm are using a fixed

perturbation size across time slots. When the phase differences among signals arriving at the
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receiver are diminished to the same order of the perturbation size, the probability of generating

better phase changes decreases as the algorithm converges,which can be inferred from Figure

4.10 and Figure 4.11. This implies that a decreasing perturbation size may be used to improve

the convergence speed. This is similar to the idea of variable step-size least mean square (LMS)

algorithms in the literature. It shows in [90] that there exists a tradeoff between the steady state

performance and the speed of adaptation in the LMS algorithms with a fixed step size. The

issue of optimization of step size was studied in [91], [92],[93] to improve the performance

of LMS algorithms, which can provide fast convergence at early stages while obtaining small

final misadjustment errors. In a similar way to the variable step-size LMS algorithms in the

literature, the one-bit feedback algorithm can use a large step size at early stages to speed up

the convergence process. When the algorithms get close to the optimum solution, a smaller step

size can yield a better steady state performance.

In Chapter 4, we proposed an improved version of the one-bit feedback algorithm which has

a faster convergence speed under static channel conditions. Particularly, in the system model

expressed in equation (4.1), it is assumed that the phase offset at transmitters,γi, and the chan-

nel phase responses,ψi, are static during the convergence process. However, in practice the

assumption of static channel phase responses does not hold when either the receiver, surround-

ing obstructions or scatters are in relative motion to the transmitters [94]. In addition, phase

drifts in the phase settings at transmitters are introducedby oscillator internal noise or phase

noise [95] which cannot be eliminated. Therefore, the one-bit feedback algorithm for phase

synchronization must be modified to track time-varying channels or to be robust to phase drifts

before possible practical implementation is viable. It is well known that the performance of

transmit beamforming is very sensitive to the phase changesin time-varying channels [96].

In conventional beamforming, CSI is measured at the receiver and periodically conveyed to

the transmitter through a feedback link. The transmitter then computes an antenna weighting

scheme corresponding to the available CSI, which can resultin a good beamforming gain in a

slow fading environment [97]. In distributed beamforming,CSI may be measured and period-

ically fed back to transmitters in the same way. But applyingCSI at transmitters in distributed

beamforming requires a lot of information exchange and coordination among sensor nodes,

which brings unacceptably high overhead, especially with alarge number of nodes.

In this Chapter, we further exploit the negative feedback information to improve the conver-

gence performance of the original one-bit feedback algorithm for achieving phase alignment
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while retaining the advantages of the original algorithm. The system model considered in this

Chapter is the same as the one described in Section 4.2 in Chapter 4. We first propose a decreas-

ing perturbation-size scheme based on the original algorithm which still requires only one-bit

feedback in each iteration. The scheme makes use of the negative feedback information in

successive time slots to adjust perturbation sizes and has the potential to improve the conver-

gence speed with a wide range of parameter selections. Then,we show that the decreasing

perturbation-size scheme proposed in this Chapter and the reverse-perturbation scheme pro-

posed in Chapter 4 can be combined to generate a hybrid algorithm, which can provide over

40% faster convergence speed compared to the original algorithm. Further, we modify the hy-

brid algorithm to track time-varying channels without the knowledge of phase drift speed. The

modified hybrid algorithm has the ability to detect variations in the speed of channel phase

changes and adjust perturbation sizes adaptively according to the speed, which enhances the

robustness of the one-bit feedback algorithm in practical implementations.

5.2 A decreasing perturbation-size scheme

In Chapter 4, we studied the performance of the original algorithm with a fixed perturbation

size across time slots. Intuitively, the original algorithm can have a faster convergence speed

by adopting a bigger perturbation size at initial stages of the convergence process and requires

a smaller perturbation size when the resulted beamforming gain approaches its optimum value.

When the phase differences among signals arriving at the receiver are large, a bigger perturba-

tion size can accelerate the convergence speed. When the phase differences become smaller, a

bigger perturbation size will decelerate the convergence speed or even cease the convergence

process. In [4], the authors derived an analytical formula of the optimal perturbation size in

each time slot for the original algorithm. The optimal perturbation size∆0 in time slot (n+ 1)

is expressed as a function of(R[n]/Ropt), whereR[n] is the RSS in time slotn, defined in

(4.3),Ropt represents the RSS with perfect phase alignment. Followingthe derivations in [4],

the numerically computed∆0 for the original algorithm withN = 100 transmitters can be eas-

ily obtained, as plotted in Figure 5.1. In each time slot, allsensor nodes adjust their perturbation

sizes to the same optimal value shown in Figure 5.1. The analysis in [4] gives a fundamental

understanding of the original algorithm, and can be used as agood metric for comparison and

algorithm design. However, the value ofRopt is hard to obtain in practice before the phase

training process converges and feedback of the optimal value requires several bits instead of
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one. A practical version of the algorithm using a variable perturbation size is required.
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Figure 5.1: Optimal perturbation size∆0 versus the number of time slots for the original one-
bit feedback algorithm withN = 100.

5.2.1 Algorithm description

From Figure 5.1 we see that the optimal value of perturbationsize decreases as the number of

iterations increases. Based on this point, we adopt a decreasing size forδ0 in our practical de-

sign. The transmitters will adopt a smallerδ0 when the number of successive negative feedback

stepsCN meets a certain thresholdCT . The decreasing perturbation-size scheme is described

as follows.

1. At time slotn, each transmitter records its best known phase used for beamforming,

θi[n], in memory and adds a random perturbation,δi[n] = ±δ0 (with equal probability

for "+" and "-"), to it. (We setθi[1] = 0).
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2. All transmitters use their new adaptive components,ϕi[n] = θi[n] + δi[n], to perform

transmit beamforming.

3. The receiver measures the RSS,R[n] =
∣∣∣
∑N

i=1 e
jΦi[n]

∣∣∣, and compares it with the best

RSS in memory. The receiver updates the best RSS in memory andfeeds back (error free)

one-bit of information to all transmitters conveying whether the RSS has been improved

or not.

4. If the RSS has been improved, all transmitters adopt theirperturbed phases and update

their best known phases to beθi[n + 1] = ϕi[n] = θi[n] + δi[n] for the next time

slot (n + 1). Otherwise, all transmitters discard the perturbed phases and keep the best

known phases as before,θi[n+1] = θi[n], for the next time slot (n+1). Meanwhile, the

transmitters record the number of successive failed perturbations with a counting variable

CN . If it is a positive feedback indicating a successful perturbation,CN will be cleared

to zero. Otherwise, the value ofCN will be increased by 1 until it surpasses a certain

thresholdCT . WhenCN ≥ CT , CN is cleared to zero and all transmitters adopt a new

perturbation sizeδ0 = δ0 · RD (0 < RD < 1), whereRD is a fixed decreasing ratio of

perturbation size.

The algorithm then repeats these four steps.

The mathematical expressions of the decreasing perturbation-size scheme are the same as the

original algorithm expressed in (4.5), (4.6) except addingthe following:

CN =





0 R[n] > Rbest[n]

CN + 1 otherwise
(5.1)

δ0 =





δ0 CN < CT

δ0 ·RD CN ≥ CT

(5.2)

The decreasing perturbation-size scheme makes use of the negative feedback information in

successive time slots to adjust the perturbation size. It still requires only one-bit feedback per

iteration and requires no extra hardware or information exchange. It is a simple but effective

scheme which can be easily applied into practical implementations.
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5.2.2 Simulation results

We present some simulation results to study the performanceof the decreasing perturbation-

size scheme as a function of two parameters: the threshold for successive negative feedback

stepsCT , and the decreasing ratio of perturbation sizeRD. The simulation results for every

point plotted in the following figures are averaged over 800 instances.

Figure 5.2 shows the average number of time slots required toachieve an RSS of90%Ropt

with different values ofCT andRD for the decreasing perturbation-size scheme. There exists

an optimum value for the parameter selection which can result in the minimum number of time

slots. From the simulation results we see that the minimum number of time slots required to

achieve an RSS of90%Ropt is 688 time slots, which is obtained withCT = 11 andRD = 0.75.
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Figure 5.2: Simulation results for the decreasing perturbation-size scheme showing the aver-
age number of time slots required to achieve an RSS of90%Ropt with different
values ofCT andRD.

In Chapter 4, we have studied the performance of the originalalgorithm in a similar way, where
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the minimum number of time slots required to achieve an RSS of90%Ropt by the original

algorithm was 791 time slots. Figure 5.3 shows the contour plot of Figure 5.2. It shows that

the decreasing perturbation-size scheme can achieve an RSSof 90%Ropt within 790 time slots

with a wide range of parameter selections. This shows the robustness of the algorithm to small

mismatches in parameter settings.
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Figure 5.3: Contour plot of the average number of time slots required to achieve an RSS of
90%Ropt with different values ofCT andRD for the decreasing perturbation-size
scheme.

5.3 Hybrid algorithm

In Section 4.4, we proposed a reverse perturbation scheme toimprove the convergence speed

of the original algorithm by exploiting negative feedback information in a single time slot. In

Section 5.2, we proposed a decreasing perturbation-size scheme to improve the convergence

speed of the original algorithm by exploiting negative feedback information in successive time

slots. For simplicity, we denote the reverse-perturbationscheme as Scheme 1 and the decreasing

perturbation-size scheme as Scheme 2 in the following sections. Both schemes are using only
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one-bit feedback in each iteration and can be easily appliedinto practical implementations. In

this Section, we show that the two schemes can be combined to provide a significant advantage

in the convergence speed compared to the original algorithm.

5.3.1 Algorithm description

Scheme 1 and Scheme 2 speed up the convergence process based on different approaches.

Combining Scheme 1 and Scheme 2 yields a hybrid algorithm which can provide a significant

improvement in the convergence speed in the phase training process. The hybrid algorithm is

summarized in Table 5.1.

Initialization : CN = 0; δ0 = π
4 ; θi[1] = 0; ǫi[1] = 0; Rbest[1] = 0.

Iterate:
1. Setδi[n] = ±δ0 ("+" or "-" with equal probability).
2. Useϕi[n] = θi[n] + ǫi[n] + δi[n] to perform beamforming.

3. EstimateR[n] =
∣∣∣
∑N

i=1 e
jΦi[n]

∣∣∣;
UpdateRbest[n+ 1] = max(Rbest[n], R[n]).

−→ (One bit feedback.)
4. If R[n] > Rbest[n]

θi[n+ 1] = θi[n] + ǫi[n] + δi[n]; ǫi[n+ 1] = 0; CN = 0;
else

θi[n+ 1] = θi[n]; ǫi[n+ 1] = −δi[n]; CN = CN + 1;
if CN ≥ CT

δ0 = δ0 ·RD; CN = 0;
end

end

Table 5.1: Summary of the Hybrid Algorithm

5.3.2 Simulation results

We present some simulation results to study the convergenceperformance of the hybrid algo-

rithm over static channels, and compare it with the performance of the original algorithm. The

simulation results also reveal the advantages of Scheme 1 (the reverse-perturbation scheme) and

Scheme 2 (the decreasing perturbation-size scheme). To make a fair comparison, the hybrid al-

gorithm does not need any more information exchange compared than the original algorithm,

and in each iteration there is only one phase setting used forbeamforming and one-bit feedback

from the receiver which match to the original algorithm.
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Figure 5.4 shows the average number of time slots required toachieve an RSS of90%Ropt with

N = 100 transmitters for the hybrid algorithm. It shows that the hybrid algorithm can achieve

90%Ropt within 700 time slots over a wide range of parameter selections, while the minimum

number of time slots is 549 obtained withCT = 8, RD = 0.7. The number of time slots in the

3D plot has a fairly flat surface. This reveals the robustnessof the hybrid algorithm to small

mismatches in parameter settings.
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Figure 5.4: The average number of time slots required to achieve90%Ropt withN = 100 for
the hybrid algorithm, whereCT is the threshold for successive negative feedback
steps andRD is the decreasing ratio of perturbation size.

In Figure 5.5, we compare the convergence speed of four algorithms forN = 100: the hybrid

algorithm, Scheme 2, the original algorithm with optimal perturbation size and the original

algorithm with a static perturbation size. The curve of the hybrid algorithm is plotted with

CT = 8, RD = 0.7. The curve of the original algorithm with optimal perturbation size∆0 for

each time slot is plotted based on the analysis in [4], and thevalue of∆0 versus the number

of time slots was given in Figure 5.1. The parameter settingsfor the original algorithm with a

90



A Hybrid Algorithm for Phase Alignment in Slowly Time-varying Channels

static perturbation size and Scheme 2 are the optimal settings obtained from Figure 4.12 and

Figure 5.2. From Figure 5.5 we see the hybrid algorithm has the best performance among the

four, and that Scheme 2 can achieve performance close to the original algorithm with optimal

perturbation sizes. Comparing the hybrid algorithm with Scheme 2, we see that they have a sim-

ilar convergence speed in their initial stages and the hybrid algorithm has a better performance

due to the contribution of Scheme 1. In achieving an RSS of90%Ropt, there is a big gap of

791−549 = 242 time slots between the hybrid algorithm and the original algorithm with a static

perturbation size or, in other words, the hybrid algorithm has a
(

1
549 − 1

791

)/ (
1

791

)
≈ 44%

faster convergence speed compared to the practical original algorithm. This gain in the conver-

gence speed is obtained by exploiting negative feedback information in the iterations.
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Figure 5.5: Comparison of the hybrid algorithm with the original algorithm on the received
signal strength versus time slots forN = 100.
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5.4 Tracking time-varying channels

In this section, we show that the hybrid algorithm proposed above can be modified to track

time-varying channels while maintaining its fast convergence speed. What is more, the modi-

fied hybrid algorithm has the ability to detect variations inthe speed of channel phase changes

and adjust perturbation sizes adaptively according to the speed. In order to focus on the effect of

changes in channel phase responses, we still assume unit channel power gain from each trans-

mitter to the receiver, but model the channel phase responsefrom transmitteri to the receiver

asΨi[n] = ψi +λi[n], whereψi ∼ uniform[0, 2π) are static during the convergence process as

assumed in Section 4.2. The phase drift componentsλi[n] are assumed to be independent, iden-

tically distributed across transmitters and uncorrelatedin time slots with a uniform distribution

λi[n] ∼ [−Λ0,Λ0] as in [35], whereΛ0 is termed as the phase drift speed. The variations in

phase offset at transmitters due to the oscillator internalnoise can be modeled in the same way.

Most work in the literature on the one-bit feedback algorithms is focused on static channel

conditions. Few of them extended the algorithms to time-varying channels apart from [35].

In [35], the authors modified the original one-bit feedback algorithm to track time-varying

channels by lowering the criterion at the receiver every time it encounters a negative feedback

step:

Rbest[n+ 1] =





R[n] R[n] > Rbest[n]

Rbest[n] · ρ otherwise
(0 < ρ < 1) (5.3)

whereρ is the discounting factor which reflect the expected deterioration due to channel vari-

ations. The reason for lowering the criterion is because phase drifts in time-varying channels

cause reductions in the RSS, which make it hard or even impossible to achieve anR[n] greater

thanRbest[n] if the received phases at the receiver become highly coherent in a previous time

slot (n − 1). Even with right perturbations which can reduce phase differences in static chan-

nels, in time-varying channels the resultedR[n] may be less thanRbest[n] due to the effect of

phase drifts. If the receiver still compareR[n] with Rbest[n] as in the original algorithm, the

perturbations will be discarded and the phase differences become larger. The achievable RSS

with random perturbations keeps decreasing in the following time slots due to phase drifts and

becomes less thanRbest[n]. No perturbations will be retained and the received phases will lose

coherence. By lowering the criterion of achievable RSS, thealgorithm in [35] can achieve a
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reasonable beamforming gain in time-varying channels but it requires accurate knowledge of

the phase drift speedΛ0 in channel variations in order to set appropriate values forρ and the

perturbation sizeδ0. For more details of the algorithm, please see [35].
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Figure 5.6: One simulated instance of the original algorithm (δ0 = 3.2π
100 ) and the hybrid al-

gorithm (CT = 8, RD = 0.7) in time-varying channels with channel phase drift
speedλi[n] ∼ [− π

100 ,
π

100 ] for N = 100.

We meet the following difficulties in the algorithm design under time-varying channel condi-

tions. First, if the received phases at the receiverΦi[n] become highly coherent in time slotn,

the corresponding RSS value cannot be surpassed by subsequent perturbations as the RSS will

reduce again due to channel variations. Therefore, the RSS judgement ruleR[n] > Rbest[n] at

the receiver is not sufficient in time-varying channels. Figure 5.6 shows one simulated instance

of the original algorithm and the hybrid algorithm in time-varying channels. As we can see,

both algorithms are not reliable in time-varying channels and the RSS decreases after a certain

time point. Second, since the hybrid algorithm described above in Section 5.3 keeps reducing

the perturbation size, obviously, it cannot track time-varying channels when the perturbation
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size becomes smaller than the phase drift speed. Third, in static channels, successive nega-

tive feedback steps only suggest that the perturbation sizeis too big to converge. However,

in time-varying channels, this may also result from the effect of channel variations, which in

contrast may require a bigger perturbation size. Fourth, successive positive feedback steps are

not available to aid the design.

A straightforward solution to overcome these difficulties is to apply the hybrid algorithm de-

scribed in Section 5.3 to the initial stages of the convergence process. When the phase drift

speedΛ0 is fairly small compared to the perturbation sizeδ0, the effect of channel variations

on the RSS is negligible. Therefore, the initial stages of the convergence process can be viewed

as under static channel conditions. When the perturbation size falls to a certain value close to

the phase drift speedΛ0, the transmitters and the receiver then change to follow thealgorithm

described in [35]. Such a solution can improve the convergence speed and provide a reliable

beamforming gain under the time-varying channel conditions. However, the transmitters still

requires accurate knowledge of the phase drift speed in channel variations.

5.4.1 A modified hybrid algorithm

1 bit feedback 

Reverse-perturbation 
scheme

? Advanced 
judging criteria

Decreasing perturbation-
size scheme

Sensor nodes
Intended 
receiver

Figure 5.7: Diagram of blocks in the one-bit feedback algorithm design.

Figure 5.7 shows a diagram of blocks in the one-bit feedback algorithm for design purposes. In

the above sections, we have proposed a reverse-perturbation scheme and a decreasing perturbati-

on-size scheme, both of which are focusing on the transmitter side to improve the algorithm
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performance. Under the time-varying channel conditions, the simple judgement ruleR[n] >

Rbest[n] at the receiver is not sufficient and more advanced judging criteria are required to

cooperate with the random search process at transmitters.

We present a modified hybrid algorithm which can track time-varying channels without the

knowledge of the phase drift speedΛ0. It is summarized in Table 5.2 and explained as follows.

Initialization : CN = 0; δ0 = π
4 ; θi[1] = 0; ǫi[1] = 0; Rbest[1] = 0; Rmin[1] = 0.

Normal mode, iterate:
1. Setδi[n] = ±δ0 ("+" or "-" with equal probability).
2. Useϕi[n] = θi[n] + ǫi[n] + δi[n] to perform beamforming.

3. EstimateR[n] =
∣∣∣
∑N

i=1 e
jΦi[n]

∣∣∣;
UpdateRbest[n+ 1] = max(Rbest[n], R[n]);
UpdateRmin[n+ 1] = min(Rmin[n], R[n]).

−→ (One bit feedback.)
4. If R[n] > Rbest[n]

θi[n+ 1] = θi[n] + ǫi[n] + δi[n]; ǫi[n+ 1] = 0; CN = 0;
else

θi[n+ 1] = θi[n]; ǫi[n+ 1] = −δi[n]; CN = CN + 1;
if CN ≥ CT

−→ (Enter the testing mode in the next time slot.)
end

end
Testing mode (one time slot):
1>. Useϕi[n] = θi[n] to perform beamforming.

2>. EstimateR[n] =
∣∣∣
∑N

i=1 e
jΦi[n]

∣∣∣;
UpdateRbest[n+ 1] = Rmin[n+ 1] = R[n]; (reactivation)
ComputeSC = |Rbest[n] −R[n]|; (estimation of the channel drift speed)
ComputeSP = Rbest[n] −Rmin[n]. (estimation of the perturbation ’catch-up’ speed)

−→ (One bit feedback.)
3>. If SP > 2SC

δ0 = δ0 · RD; (decrease the perturbation size)
else

δ0 = δ0/RD; (increase the perturbation size)
end

4>. SetCN = 0; θi[n+ 1] = θi[n]; ǫi[n+ 1] = ǫi[n].
−→ (Exit the testing mode.)

Table 5.2: Summary of the Modified Hybrid Algorithm to Track Time-varying Channels

The modified hybrid algorithm operates in two modes, thenormal modeand thetesting mode.

Operations in the normal mode are similar to the operations presented in Section 5.3 except for

the following. Besides updating the best RSS in memory at thereceiver, in step 3 the receiver
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also records the minimum RSS in memory,Rmin[n + 1] = min(Rmin[n], R[n]). In step 4,

when the number of successive negative feedback stepsCN meets the thresholdCT , instead of

decreasing the perturbation sizeδ0, the transmitters and the receiver enter the testing mode for

one time slot.

We define the successive time slots taking the same perturbation size as asize period. In the

testing mode in time slotn, instead of performing phase perturbations, the transmitters use their

best known phases to perform transmit beamforming,ϕi[n] = θi[n]. The receiver measures the

corresponding RSSR[n], set it as the new best RSS,Rbest[n+ 1], and the new minimum RSS,

Rmin[n+ 1] in memory. Therefore, the variablesRbest andRmin actually record the maximum

and the minimum RSS within a size period. This prevents the algorithm from operating in

local rather than globally optimum phase solutions, which may be caused by the first of the

difficulties listed above. The receiver then computes the absolute difference ofRbest[n] and

R[n]:

SC =
∣∣Rbest[n] −R[n]

∣∣ (5.4)

and the difference ofRbest[n] andRmin[n]:

SP = Rbest[n] −Rmin[n] (5.5)

Since bothRbest[n] andR[n] are obtained with the same adaptive componentϕi[n] = θi[n], the

scalarSC can be viewed as an estimation of the channel drift speed within one size period. The

scalarSP can be viewed as an estimation of the perturbation ’catch-up’ speed within the same

size period. By comparingSC andSP , the receiver makes a judgement on the perturbation

size and feeds back one bit of information telling all transmitters to adopt a larger or smaller

perturbation size in the next size period. Results in [35] conclude that the perturbation ’catch-

up’ speed should be faster than the channel drift speed, and the perturbation size should not

be too large to avoid large fluctuations in the steady-state RSS. We adopt a coefficient of 2

in comparingSP with SC in the following simulations. The modified hybrid algorithmis

summarized in Table 5.2. By inserting only one time slot between two size periods, the modified

hybrid algorithm has the ability to track time-varying channels and adjust perturbation sizes

adaptively according to the rates of phase drift. The overhead of implementing this solution is
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very low.

5.4.2 Simulation results

We present some simulation results to study the performanceof the modified hybrid algorithm

and verify its ability to track time-varying channels. We show that the modified algorithm can

not only achieve phase alignment in time-varying channels which have a constant phase drift

speed over time, it is also robust to time-varying channels which have variable rates of phase

drift.

Figure 5.8 shows the performance of the modified hybrid algorithm withN = 100 transmitters,

CT = 8, RD = 0.7, in time-varying channels with different phase drift speeds. As we see, the

modified hybrid algorithm can achieve phase coherence and provide a good beamforming gain

in time-varying channels without the knowledge of channel state information. It also shows

that with a relative small phase drift speedΛ0 = π
180 the algorithm on average achieves an RSS
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of 80%Ropt in 400 time slots, which is close to the performance achievedin static channels

(364 time slots) shown in Figure 5.5. This confirms that the modified hybrid algorithm still

maintains a fast convergence speed in the initial stages of the convergence process under time-

varying channel conditions.

Figure 5.9 shows one simulated instance of the modified hybrid algorithm in time-varying chan-

nels when the channel phase drift speedΛ0 is changing. As we see, the modified hybrid algo-

rithm has the ability to detect variations in the speed of channel phase changes and adjust

perturbation sizesδ0 adaptively according to the speed. WhenΛ0 becomes larger, it will lock

the perturbation size to a bigger value to track the changes in channel phase responses. When

Λ0 becomes smaller, it will shift the perturbation size to a smaller value to obtain a superior

beamforming gain. This ability makes the one-bit feedback algorithm much more robust to

channel variations in practical implementations.
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Figure 5.10 shows the average performance of the modified hybrid algorithm in time-varying

channels with different error rates in the one-bit feedbackchannel. The parameter settings for

the modified hybrid algorithm areCT = 8, RD = 0.7, and the channel phase drift speed

is λi[n] ∼ uniform[− π
180 ,

π
180 ]. It shows that the performance of the algorithm is sensitiveto

feedback error rates. This is mainly because the adjustmentof perturbation sizes depends on the

number of successive negative feedback steps. In order to achieve a good beamforming gain,

it is suggested to maintain a feedback error rate under0.01 in the one-bit feedback channel in

practice.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Time Slot Number

R
S

S
 (

.%
R

op
t)

 

 

Feedback error rate 0
Feedback error rate 0.005
Feedback error rate 0.01
Feedback error rate 0.05

Figure 5.10: Average performance of the modified hybrid algorithm in time-varying channels
withN = 100, Λ0 = π

180 , and different error rates in the one-bit feedback chan-
nel.

99



A Hybrid Algorithm for Phase Alignment in Slowly Time-varying Channels

5.5 Summary

We proposed a decreasing perturbation-size scheme based onthe original algorithm in the lit-

erature to achieve carrier phase alignment for distributedtransmit beamforming. We show

that the decreasing perturbation-size scheme and the previously proposed reverse-perturbation

scheme can be combined to generate a hybrid algorithm. The hybrid algorithm can be easily

applied into practical implementations and does not require any more information exchange or

hardware changes. By exploiting negative feedback information in the iterations, the hybrid al-

gorithm can largely enhance the convergence speed of phase alignment by over 40% compared

to the original algorithm. By adding one time slot per size period, the hybrid algorithm can be

modified to track time-varying channels without the knowledge of channel state information.

The modified hybrid algorithm has the ability to adjust perturbation sizes adaptively according

to the rate of phase drift in channel variations.
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Chapter 6
Conclusions and Future Work

This thesis contributed to the performance analysis of distributed transmit beamforming with

phase errors and algorithm design to achieve carrier phase alignment at the destination, which

is critical for the practical realization of distributed beamforming. This Chapter will give key

conclusions based on the results in previous chapters. We will also discuss limitations of our

work and possible extensions for future work.

6.1 Conclusions

This thesis is concerned with distributed transmit beamforming in the context of wireless sen-

sor networks. We consider the application scenarios that the destination is located far away

from the sensor network and signal transmission from the sensor network to the destination

cannot be realized by a single node due to node power constraints. Since traditional trans-

mission techniques used for within-network communications, such as direct transmission and

multi-hop transmission, have limited communication ranges, it came up naturally to consider

transmit beamforming as a good candidate for long-range communications. However, realizing

distributed beamforming faces severe challenges. Among the challenges brought to researchers,

the most difficult one is to achieve phase alignment at the destination. Due to oscillator inter-

nal noise, errors in position estimation, channel estimation and timing synchronization, phase

errors among signals arriving at the destination can only beminimized but cannot be removed.

This is also the major difference between distributed beamforming and conventional beam-

forming. Then, we probed into the issue of phase errors from both the theoretical and practical

aspects.

6.1.1 Performance analysis

In Chapter 3 we investigated the BER performance of distributed beamforming with phase er-

rors. In particular, we derived the expressions for the BER performance of BPSK modulation
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with EGT over Rayleigh fading channels. We assumed the bounded uniform distribution of

phase errors for the analysis, which is a common assumption adopted in the literature. The

BER performance can be expressed as a function of the number of nodes, phase errors and

total transmit power. As explained in Chapter 3, the pdf of the beamforming gain cannot be

extracted easily from the joint pdf associated to the real and imaginary parts of the received

signal. Therefore, the exact BER expression is difficult to obtain. Instead, we provided two

methods to give an accurate approximation. Method 1 was based on expectation adjustment

and variance compensation of the received SNR. Method 2 was based on CLT and moment

matching of distributions. Simulation results showed excellent agreement with analytical re-

sults. Method 1 is valid for any number of nodes but has a high computational complexity for

a large number of nodes, while the solution given by method 2 is much simpler but valid for

large number of nodes only. It is suggested to use method 1 to predict BER for a small num-

ber of nodes and use method 2 for a large number of nodes. Our methods can be extended to

analyze BER with MRT in a similar way and the analysis can alsobe applied to other phase

error distributions and signal modulations. The system performance was analyzed for different

number of nodes and different phase error ranges. It shows that increasing the number of nodes

can dramatically reduce the power cost of each node subject to the same BER performance. It

also shows that adding more nodes whenN is small or minimizing phase errors whenφ0 is

large can significantly improve the BER performance. Depending on the practical constraints

and targeted performance, the system engineer can use our expressions to explore the trade-offs

among the number of nodes, phase errors and transmit power.

6.1.2 Algorithm development

The theoretical analysis gave us a good understanding of theimpact of phase errors on the

beamforming performance. However, minimizing phase errors and achieving phase alignment

at the destination is a crucial problem in practice. Besidesthe knowledge of CSI, it requires

sensor nodes to coordinate with each other and adjust their phase settings in a distributed man-

ner to ensure that signals transmitted from different nodescan add coherently at the destination.

In Chapter 4, we reviewed a simple iterative algorithm (the original algorithm) in the literature,

which can achieve nearly perfect phase alignment after manyiterations. The original algorithm

does not require CSI, relies on only one-bit feedback in eachiteration and has many other ad-

vantages, such as its simplicity in practical implementation and scalability to large number of

nodes. The shortcoming of the original algorithm is that it discards negative feedback steps
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indicating failed perturbations and only converges upon positive feedback steps indicating suc-

cessful perturbations. Therefore, it takes a large number of iterations to achieve convergence.

Based on this point, we proposed a reverse-perturbation scheme which exploits both positive

and negative feedback information to improve the convergence speed. The reverse-perturbation

scheme makes use of negative feedback in a single time slot toenhance the probability of gener-

ating better phase changes. Then in Chapter 5, we proposed another novel scheme, decreasing

the perturbation-size scheme, to further improve the convergence speed of phase alignment.

The decreasing perturbation-size scheme makes use of negative feedback information in suc-

cessive time slots to adjust the perturbation size. The two schemes use different mechanisms

to improve the convergence speed and can be combined to generate an advanced algorithm,

the so-called hybrid algorithm. It shows that in static channels, the hybrid algorithm has an

over40% faster convergence speed compared to the original algorithm. The hybrid algorithm

does not require extra hardware or information exchange compared to the original algorithm.

It still requires only one-bit feedback in each iteration and keeps all the benefits of the origi-

nal algorithm. Its advantages in the convergence speed completely result from the information

contained within negative feedback steps. Although the type of one-bit feedback algorithm

received wide attention in the literature, few papers discussed the issue of distributed beam-

forming in time-varying channels. In Chapter 5, we show thatthe hybrid algorithm can be

modified to track time-varying channels without CSI while maintaining its fast convergence

speed. By switching between two operation modes, the modified hybrid algorithm has the

ability to detect variations in the speed of channel phase changes and adjust perturbation sizes

adaptively according to the speed. Its robustness against channel variations makes it a much

more attractive candidate in practical implementations.

6.2 Limitations

The work presented in this thesis has its limitations. In Chapter 3, we adopted a Rayleigh

fading model to analyze the BER performance, which reflects the effect of multipath fading

and is a reasonable model when the destination moves around in short distances. However,

if the destination moves over a long distance, we must consider the effect of shadowing, for

which a log-normal distribution model is more appropriate.Moreover, we assumed perfect

information sharing among sensor nodes and only consideredthe effect of phase errors in our

analysis. For a more comprehensive view of the BER performance, one may include the effect
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of errors in the information sharing process.

In Chapter 4, we presented some theoretical analysis of the reverse-perturbation scheme to

predict its convergence speed, which mathematically proved that the scheme can yield a faster

convergence speed compared to the original algorithm. However, our analysis is only valid for

a small perturbation size.

6.3 Future work

In Chapter 3, we analyzed the BER performance of distributedbeamforming with phase er-

rors. The analysis was based on the assumption of a common signal transmitted from all sensor

nodes, which requires perfect information sharing ahead. However, in practice, errors exist

in the information sharing process, which may introduce differences among signals decoded

at different sensor nodes. As discussed in Section 2.2, the information sharing process may

be viewed as the first phase of a relaying process. Therefore,in order to give a more accu-

rate prediction on the BER performance, one may include the impact of errors among signals

transmitted from different nodes, and study the BER performance with different schemes for

information sharing or different relaying strategies. What is more, while increasing the number

of nodes can dramatically enhance the beamforming gain, both the overhead of information

sharing and the convergence time of the one-bit feedback algorithms grow with the number of

nodes. There may exist an optimum value for the number of nodes constituting a distributed

beamformer.

In Chapter 4, we proposed a reverse-perturbation scheme which exploits the negative feedback

information in a single time slot and has a faster convergence speed of phase alignment com-

pared to the original one-bit feedback algorithm. Althoughits advantages in the convergence

speed have been well supported by numerical results, deriving analytical results may lead to

a better understanding of the scheme and further improve itsperformance. In our proposed

scheme, the value of the modifying factor,ǫi[n], is set equal to the opposite value ofδi[n − 1]

if δi[n − 1] has led to performance degradation in the previous time slot. What would be the

performance ifǫi[n] is set equal to−0.8× δi[n− 1] or−1.5× δi[n− 1] instead of−δi[n− 1]?

There may exist an optimum quantity for the reverse operation.

In Chapter 5, we proposed a modified hybrid algorithm which can achieve reasonable beam-

forming gains in time-varying channels. It does not requireCSI and keeps all the benefits of
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the original algorithm. However, it shows that its performance is sensitive to feedback error

rates. This is because the adjustment of perturbation size partly depends on the number of

successive negative feedback steps. Therefore, the algorithm’s robustness to feedback error

rates may be improved by substituting the ratio of negative feedback steps for the number of

successive negative feedback steps. In Chapter 5, we show that making use of information con-

tained within failed perturbations can result in an over40% faster convergence speed compared

to the original algorithm in static channels. Besides the negative feedback information, the

convergence speed may be further improved by exploiting information contained within each

sensor node’s own perturbation experience. Each sensor node may adjust its perturbation size

and make phase changes based on both its own experience of perturbations and the common

feedback information.
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Appendix A
Derivations for BER Analysis in

Chapter 3

A.1 The factor η and the residual varianceσ2
d

We derive the factorη defined in (3.13) and the residual variance,σ2
d, defined in (3.14) in

Section 3.3. For simplicity, we again suppress the time variableλ in this section. The expression

of η2 in (3.13) can then be written as:

η2 =

E

[ ∣∣∣
∑N

i=1

∣∣hi

∣∣ejφi

∣∣∣
2
]

E

[(∑N
i=1

∣∣hi

∣∣
)2
] =

A

A (φ0 = 0)
=

1 + π
4 (N − 1)

(
sinφ0

φ0

)2

1 + π
4 (N − 1)

, (A.1)

where the expression ofA is derived in Appendix A.2.

We rewrite (3.14) as follows:

σ2
d =

P

N

(
Var

[∣∣∣
N∑

i=1

∣∣hi

∣∣ejφi

∣∣∣
]
− Var

[
η
( N∑

i=1

∣∣hi

∣∣
)])

=
P

N

(
E

[∣∣∣
N∑

i=1

|hi|ejφi

∣∣∣
2
]
−
(

E

[∣∣∣
N∑

i=1

|hi|ejφi

∣∣∣
])2

− η2E

[( N∑

i=1

|hi|
)2
]

+η2

(
E
[ N∑

i=1

|hi|
])2

)
. (A.2)

Substituting (3.13) into (A.2), it yields:

σ2
d =

P

N

(
η2

(
N · E

[
|hi|
])2

−
(

E
[∣∣H

∣∣
])2

)
, (A.3)
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where the expressions ofη2, E
[
|hi|
]

are given by (A.1), (A.9) separately, and the definition of

H is given by (3.16).

The second moment and the fourth moment of
∣∣H
∣∣ in terms ofN andφ0 are derived in Ap-

pendix A.2. However, the pdf of
∣∣H
∣∣ is unknown and the first moment of

∣∣H
∣∣ is hard to

compute. Instead, we use the Nakagamim-distribution [98] to give an approximate expression

for the first moment. One of the characteristics of the Nakagami m-distribution is that it has

great flexibility and can approximate many other distributions modeling fading environments.

Theβth moment of Nakagamim-distributed
∣∣H
∣∣ is given by [55]:

E
[∣∣H

∣∣β
]

=
Γ(m+ 1

2β)

Γ(m)

(
E
[
|H|2

]

m

)β

2

, (A.4)

where the parameterm is the ratio of moments:

m =

(
E
[∣∣H

∣∣2
])2

Var
[∣∣H

∣∣2
] =

A 2

B − A 2
, (A.5)

andA , B in terms ofN andφ0 are given in (A.7), (A.8). By taking (A.7), (A.8) into (A.4),

(A.5) the first moment of
∣∣H
∣∣ can be easily obtained as:

E
[∣∣H

∣∣
]

=
Γ(m+ 1

2)

Γ(m)

(
A

m

) 1
2

. (A.6)

By substituting (A.6) into (A.3), one can obtain the final expression of the residual varianceσ2
d

in terms ofN andφ0.

A.2 The second and the fourth moment of
∣∣H
∣∣

We derive the second and the fourth moment of|H| used in (3.26), (3.27) in terms ofN and

φ0 based on the assumption that bothhi andφi are independent i.i.d. variables, wherehi ∼
CN(0, 2σ2

c ) andφi ∼ (−φ0, φ0).

The second moment of
∣∣H
∣∣ in (3.26), (3.27) is expressed as:
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A = E
[∣∣H
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The fourth moment of
∣∣H
∣∣ is expressed as (A.8).

Sincehi ∼ CN(0, 2σ2
c ), the moments of|hi| in above derivations are given by [55]:

E
[
|hi|α

]
= (2σ2

c )
α
2 Γ(1 +

α

2
). (A.9)

In particular, whenhi ∼ CN(0, 1), A andB become:
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4
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, (A.10)
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[
|hi||hk||hl||hm|ej(φi+φk−φl−φm)

]
︸ ︷︷ ︸

i6=k 6=l 6=m

= N · E
[
|hi|4

]
+ 4N(N − 1) · E

[
|hi|3

]
· E
[
|hi|
](sinφ0

φ0

)2

+N(N − 1)
(
E
[
|hi|2

])2
(

sin 2φ0

2φ0

)2

+2N(N − 1)
(
E
[
|hi|2

])2
+ 2N(N − 1)(N − 2) · E

[
|hi|2

](
E
[
|hi|
])2 sin 2φ0

2φ0

(
sinφ0

φ0

)2

+4N(N − 1)(N − 2) · E
[
|hi|2

](
E
[
|hi|
])2

(
sinφ0

φ0

)2

+N(N − 1)(N − 2)(N − 3)
(
E
[
|hi|
])4

(
sinφ0

φ0

)4

. (A.8)
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Exploiting Negative Feedback Information for

One-bit Feedback Beamforming Algorithm

Shuo Song, John S. Thompson, Member, IEEE, Pei-Jung Chung, Member, IEEE,

and Peter M. Grant, Fellow, IEEE

Abstract

In this paper a hybrid one-bit feedback algorithm is proposed to achieve carrier phase alignment

at the receiver for distributed transmit beamforming. The proposed iterative algorithm employs two

schemes to speed up the convergence process, which exploit negative feedback information in a single

time slot (Scheme 1) and in successive time slots (Scheme 2) respectively, whereas previously proposed

algorithms in the literature discard this information. We show that the proposed algorithm yields a

significant improvement in the convergence speed compared to the original algorithm. Furthermore, we

modify the proposed algorithm to be capable of tracking time-varying channels which have variable

rates of phase drift. The modified hybrid algorithm has the ability to adjust perturbation sizes adaptively

without the knowledge of channel state information and is suited for practical implementations.

Index Terms

Distributed beamforming, feedback communication, adaptive algorithms.

I. INTRODUCTION

Distributed transmit beamforming is a promising form of transmission in some sensor network

application scenarios because it can provide significant benefits in energy efficiency, commu-

nication range, security, etc. It is performed by a virtual antenna array composed of randomly
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and discussing this work.
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located sensor nodes, each of which has a single antenna and an independent oscillator. Unlike

conventional beamforming, phase errors among the signals arriving at the receiver cannot be

avoided in distributed beamforming and phase synchronization is critical to the beamformer

performance [1]. In [2], the authors studied the average far-field beampattern of a random

array and showed that a desirable beampattern with a narrow mainlobe and relatively small

sidelobes can be achieved in theory for distributed beamforming. In [3], the authors analyzed

the achievable bit error ratio performance of distributed beamforming with phase errors. Besides

the theoretical performance, practical realization of distributed beamforming requires carrier

frequency synchronization among transmitters and phase alignment at the receiver [1], where the

frequency synchronization problem can be solved by employing a master-slave scheme presented

in [4]. In [5], the authors proposed an iterative algorithm (which we term the original algorithm)

to adjust phase settings at transmitters, which can achieve nearly perfect phase alignment at

the receiver under the assumption of static channels. The training process is performed by each

transmitter adding a random perturbation to its phase offset in each iteration. If the perturbation

results in a positive feedback indicating a bigger received signal strength (RSS), it will be

adopted. Otherwise, it will be discarded. The key advantages of this algorithm is that it does

not need channel state information and only relies on one-bit feedback in each iteration. The

original algorithm has received wide attention in the literature and similar algorithms also using

one-bit feedback were proposed in [6], [7], [8], [9] for distributed beamforming. A common

feature of these algorithms is that they only exploit positive feedback information and discard

negative feedback information.

The major issue considered in this paper is to improve the convergence performance of the

original algorithm by exploiting negative feedback information which indicates failed pertur-

bations while still retaining its advantages. We propose a novel algorithm (which we term the

hybrid algorithm) which has a faster convergence speed and is robust to time-varying channels

with variable rates of phase drift. To make a fair comparison, the proposed algorithm does not

need any more information exchange compared to the original algorithm, and in each iteration

there is only one phase setting used for beamforming and one-bit feedback from the receiver

which matches the original algorithm. The proposed algorithm can be seen as an extension of

the original algorithm for efficient application to time-varying channels. The rest of the paper

is organized as follows. In Section II, we introduce the system model and briefly review the
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original algorithm in the literature. In Section III, we present our proposed algorithm which

employs two schemes to improve the convergence speed. In Section IV, the performance of

the proposed algorithm and the original algorithm in static channels are evaluated by computer

simulations. In Section V, the algorithm is modified to track time-varying channels which have

variable rates of phase drift. Section VI presents conclusions to the paper.

II. ORIGINAL ONE-BIT FEEDBACK ALGORITHM

We consider a random array composed of N frequency-synchronized transmitters collabora-

tively beamforming a common signal to a distant receiver. This is performed by each transmitter

adjusting its phase offset independently and iteratively to achieve carrier phase alignment at the

receiver. The phase of the received signal at the receiver from transmitter i in time slot n is

expressed as:

Φi[n] = γi + ψi + φi[n] (1)

where γi is an unknown phase offset at transmitter i and ψi is the channel phase response from

transmitter i to the receiver. Both γi and ψi are assumed to be static during the convergence

process, uniformly distributed within [0, 2π) over i and unknown to both the transmitters and

the receiver. The scalar φi[n] is the adaptive component adjusted by transmitter i in time slot

n based on the one-bit feedback information from the receiver. We set φi[0] = 0. Since the

objective of the algorithm is to achieve phase alignment, we assume unit transmit power for

every transmitter and unit channel power gain from each transmitter to the receiver [5]. The

RSS in time slot n, tested at the receiver, is defined as:

R[n] =

∣

∣

∣

∣

∣

N
∑

i=1

ejΦi[n]

∣

∣

∣

∣

∣

(2)

The original algorithm presented in [5] repeats the following steps:

1) Each transmitter records its best known phase used for beamforming, θi[n], in memory

and adds a random perturbation, δi[n] = ±δ0, to it. (We set θi[1] = 0).

2) All transmitters use their new adaptive components, φi[n] = θi[n] + δi[n], to perform

transmit beamforming.

3) The receiver measures the new RSS R[n], and updates the best RSS in memory, Rbest[n+

1] = max
(

Rbest[n], R[n]
)

. It then feeds back one-bit of information (error free) to all

transmitters conveying whether the RSS has been improved or not.
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4) The transmitters update their best known phases as θi[n+1] =











θi[n] + δi[n], R[n]>Rbest[n]

θi[n], otherwise

The original algorithm can achieve phase alignment after many iterations, but it only changes

phase for positive feedback when R[n] > Rbest[n]. For more details of the original algorithm

and its advantages over other alternative approaches for distributed beamforming, see [5].

III. HYBRID ONE-BIT FEEDBACK ALGORITHM

We propose two schemes which do not require any more information exchange or hardware

changes compared to the original algorithm, and therefore keep all of its advantages. We show

that the two schemes can also be combined (denoted as the hybrid algorithm) to provide a

significant improvement in the convergence speed in the phase training process.

A. Scheme 1

For a single transmitter in a single time slot, if a positive perturbation leads to performance

degradation, usually, a negative perturbation on the same phase offset will lead to performance

improvement, and vice versa. Therefore, we introduce a modifying factor ǫi[n] into the adaptive

component used for beamforming in step 2):

φi[n] = θi[n] + ǫi[n] + δi[n] (3)

The function of ǫi[n] is to add an opposite value of δi[n− 1] into the new adaptive component

if δi[n− 1] has led to performance degradation in the previous time slot. In step 4), we update

the modifying factor ǫi[n] and the best known phase θi[n] as follows:

ǫi[n + 1] =











0, R[n] > Rbest[n]

−δi[n], otherwise
(4)

θi[n+ 1] =











θi[n] + ǫi[n] + δi[n], R[n] > Rbest[n]

θi[n], otherwise
(5)

The other steps are the same as in the original algorithm.

Scheme 1 makes use of the negative feedback information in a single time slot to enhance

the probability of generating better phase changes. In the case of negative feedback, an opposite

value of the perturbation in time slot n will be added into the next adaptive component in time

slot n + 1, which enhances the probability of generating better phase changes. In the case of
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successive negative feedback steps, the values of the adaptive component φi are always located

around the best known phase θi. This is because the value of θi is updated only in the case of

positive feedback in order to prevent θi from drifting off its best value.

The performance of Scheme 1 and its capability of improving the convergence speed have been

well studied and verified by simulation results in [10]. Below we present some mathematical

analysis of Scheme 1 and provide a close upper bound on its convergence speed. We begin our

analysis by studying the original one-bit feedback algorithm. The original algorithm described

above can be reformulated as:

θi[n+ 1] = θi[n] + δi[n]1G (6)

where the indicator function 1G equals 1 when the conditionG is satisfied and equals 0 otherwise.

The condition G = { ∑N
i=1 cos(Φ̂i[n] + δi[n]) >

∑N
i=1 cos(Φ̂i[n]) } and Φ̂i[n] = γi + ψi + θi[n].

The condition G exists because with a large N , the RSS mainly depends on the cosines of

the carrier phases and the contribution of sines can be discarded. This has been verified in [3]

by applying the central limit theorem (CLT). In [11], the authors proved that the trajectories

of (6) collapse to the solution of a certain limiting ordinary differential equation (ODE). For

the readers’ convenience, we first repeat some of the key results in deriving the ODE for the

original algorithm. For details, please see [11]. We then derive an ODE that mimics the behavior

of Scheme 1 in a similar way.

For a small perturbation size δ0, cos(Φ̂i[n] + δi[n]) ≈ cos(Φ̂i[n])− δi[n] sin(Φ̂i[n]). Therefore,

the condition G can be simplified to G = {∑N
i=1 δi[n] sin(Φ̂i[n]) < 0}. With large N , the

summation of (N − 1) terms excluding δj [n] sin(Φ̂j [n]) can be written as:

Zj =
N
∑

i=1(i6=j)

δi[n] sin(Φ̂i[n]) (7)

which is a zero mean Gaussian variable according to the Lyapunov CLT, whose variance is

Var(Zj) = δ2
0

∑N
i=1(i6=j) sin2(Φ̂i[n]). Therefore, the probability of condition G being satisfied is:
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Pr(G) = Pr(Zj + δj[n] sin(Φ̂j [n]) < 0) (8)

=
1

2
− 1

2
erf





δj [n] sin(Φ̂j [n])− E(Zj)√
2
√

Var(Zj)





≈ 1

2
− 1√

2π
· δj [n] sin(Φ̂j [n])

δ0
√

∑N
i=1(i6=j) sin2(Φ̂i[n])

.

where erf(·) represents the Gaussian error function. The last approximation comes from the first

term of the error function’s Taylor series erf(x) = 2√
π

∑∞
n=0

(−1)nx2n+1

n!(2n+1)
. Thus, the expectation of

the random perturbation applied on phase settings for transmitter j can be computed as:

E(δj [n]1G) ≈ E(δj [n]Pr(G)) (9)

= E



δj [n]

(

1

2
− 1√

2π
· δj [n] sin(Φ̂j [n])

δ0
√

∑N
i=1(i6=j) sin2(Φ̂i[n])

)





= − δ0 sin(Φ̂j [n])
√

2π
√

∑N
i=1(i6=j) sin2(Φ̂i[n])

.

The convergence of the best known phases θi to their correct settings is equivalent to the

convergence of Φ̂i to zero. The ODE corresponding to equation (6) which mimics the behavior

of the original algorithm can be obtained as:

dΦ̂j(t)

dt
= − δ0 sin(Φ̂j [n])

√
2π
√

∑N
i=1(i6=j) sin2(Φ̂i[n])

. (10)

In the original algorithm, the decision on the perturbation δi[n] only depends on R[n] and the

corresponding feedback in time slot n. However, in Scheme 1, the decision on the perturbation

δi[n] not only depends on the feedback in time slot n, but also the feedback in time slots (n+1)

and (n− 1). A flowchart of the adaptive component for transmitter j under Scheme 1 is shown

in Fig. 1. The conditions ConA, ConB in Fig. 1 are defined mathematically as follows:

ConA(δi[n]) =

{

N
∑

i=1

cos(Φ̂i[n] + δi[n]) >
N
∑

i=1

cos(Φ̂i[n])

}

. (11)

ConB(δi[n− 1], δi[n]) =

{

N
∑

i=1

cos(Φ̂i[n− 1]− δi[n− 1] + δi[n]) >
N
∑

i=1

cos(Φ̂i[n− 1])

}

. (12)
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The condition ConA is the same as condition G in the original algorithm. Therefore, its proba-

bility is given by

Pr(ConA(δj[n])) =
1

2
− 1√

2π
· δj[n]ηj [n]

δ0
. (13)

where ηj [n] = sin(Φ̂j [n])
√

∑N

i=1(i6=j)
sin2(Φ̂i[n])

. The probability of condition ConB can be derived in a similar

way and is expressed as:

Pr(ConB(δj [n− 1], δj[n])) =
1

2
− 1√

2
√

2π
· (−δj [n− 1] + δj[n])ηj [n− 1]

δ0
. (14)

The conditions ConA, ConB are the negations of ConA, ConB, whose probabilities can be

calculated using the equations:

Pr(ConA) + Pr(ConA) = Pr(ConB) + Pr(ConB) = 1. (15)

From Fig. 1 we have:

θi[n+ 1] =











θi[n] + δi[n]1G+

θi[n]− δi[n]1G−

(16)

where

G+ =
{

ConA(δi[n− 1]) · ConA(δi[n]) + ConA(δi[n− 1]) · ConB(δi[n− 1], δi[n])
}

, (17)

G− =
{

ConA(δi[n− 1]) · ConA(δi[n]) · ConB(δi[n], δi[n + 1]) (18)

+ConA(δi[n− 1]) · ConB(δi[n− 1], δi[n]) · ConB(δi[n], δi[n+ 1])
}

.

Thus,

E(δj [n]1G+ − δj [n]1G−) = E
[

δj[n] ·
(

Pr(G+)− Pr(G−)
)]

(19)

For a small perturbation size δ0, ηj[n − 1] ≈ ηj[n] ≈ ηj[n + 1] = ηj . Substituting (13), (14),

(15), (17) and (18) into (19), we have:
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E(δj [n]1G+ − δj[n]1G−) = E



−
(

1

2
· δj [n]2ηj√

2πδ0
+

1

2
· δj [n]2ηj√

2
√

2πδ0
+ (

1

4
+

1

4
√

2
)· δj[n]2ηj√

2πδ0
(20)

+
1

2
√

2
· δj [n]2ηj√

2πδ0
− δj [n]2η3

j

4
√

2π
3
2 δ0

)





> −5
√

2 + 6

8
· δ0ηj√

2π
.

The ODE corresponding to equation (16) which mimics the behavior of Scheme 1 can be obtained

as:

dΦ̂j(t)

dt
= −5

√
2 + 6

8
· δ0 sin(Φ̂j [n])
√

2π
√

∑N
i=1(i6=j) sin2(Φ̂i[n])

. (21)

Comparing (21) with (10), we see that Scheme 1 has a faster convergence speed of 5
√

2+6
8

≈ 1.634

compared to the original algorithm. The accuracy of (21) will be justified by simulation results

in Section IV.

B. Scheme 2

In [5], the authors derived an analytical formula for the optimal perturbation size in each time

slot for the original algorithm. The optimal perturbation size ∆0 in time slot n+ 1 is expressed

as a function of (R[n]/Ropt), where Ropt represents the RSS with perfect phase alignment. The

analysis in [5] gives a fundamental understanding of the original algorithm, and can be used

as a good metric for comparison and algorithm design. However, the value of Ropt is hard to

obtain in practice before the phase training process converges and feedback of the optimal value

requires several bits instead of one. The results presented in [5] show that the optimal value of

perturbation size decreases as the number of iterations increases. Based on this point, we adopt

a decreasing size for δ0 in our practical design. The transmitters will adopt a smaller δ0 when

the number of successive negative feedback steps CN meets a certain threshold CT . In step 4),

the counter CN and the perturbation size δ0 are updated as follows:

CN =











0 R[n] > Rbest[n]

CN + 1 otherwise
(22)
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δ0[n + 1] =











δ0[n] CN < CT

δ0[n] · RD CN ≥ CT

(23)

where RD (0 < RD < 1) is the decreasing ratio of the perturbation size. The number of

successive negative feedback steps CN is reset to zero every time the perturbation size is adjusted.

The other steps are the same as in the original algorithm.

Scheme 2 makes use of the negative feedback information in successive time slots to adjust the

perturbation size. It is a simple but effective scheme which can be easily applied into practical

implementations. Simulation results in Section IV will show that Scheme 2 can achieve close

performance to the method with optimal perturbation sizes derived in [5].

Both Scheme 1 and Scheme 2 speed up the convergence process by exploiting the negative

feedback information which indicates failed perturbations. Combining Scheme 1 and Scheme 2

gives us the hybrid algorithm which repeats the following steps.

1) Each transmitter adds a random perturbation δi[n] = ±δ0 to its phase setting.

2) All transmitters use φi[n] = θi[n] + ǫi[n] + δi[n] to perform transmit beamforming.

3) The receiver measures the new RSS R[n], updates Rbest[n + 1] = max
(

Rbest[n], R[n]
)

,

and feeds back one-bit of information.

4) The transmitters update their settings as

If R[n] > Rbest[n]

θi[n + 1] = θi[n] + ǫi[n] + δi[n]; ǫi[n + 1] = 0; CN = 0;
else

θi[n + 1] = θi[n]; ǫi[n + 1] = −δi[n]; CN = CN + 1;

if CN ≥ CT

δ0 = δ0 · RD; CN = 0;
end

end

IV. SIMULATION RESULTS IN STATIC CHANNELS

We present some simulation results in accordance with our previous assumptions to study

the convergence performance of the hybrid algorithm over static channels, and compare it with

the performance of the original algorithm. The simulation results also reveal the advantages of

Scheme 1 and Scheme 2.

Fig. 2 shows the comparison of the trajectories of the phases Φ̂ obtained from simulation with

the trajectories of the ODE in (21) for Scheme 1 with 20 transmitters. The initial values of the

September 20, 2011 DRAFT

119



Publications

10

phases Φ̂ are set as uniformly distributed within (−π, π). It shows that the ODE in (21) can

give a good prediction on the behavior of the phase alignment process under Scheme 1.

Fig. 3 shows the comparison of the RSS calculated using the ODE in (21) with the simulation

results of RSS versus number of time slots with different numbers of transmitters N = 20, 50,

and 100. As we can see, the analytical results provide a close upper bound on the convergence

speed and yield a good match with the simulation results for most of the convergence process.

Fig. 4 shows the number of time slots required to achieve an RSS of 90% · Ropt, averaged

over 4000 runs, with N = 100 transmitters for the hybrid algorithm. It shows that the hybrid

algorithm can achieve 90%·Ropt within 700 time slots over a wide range of parameter selections,

while the minimum number of time slots is 550 obtained with CT = 7, RD = 0.75. The number

of time slots in the 3D plot has a fairly flat surface. This reveals the robustness of the hybrid

algorithm to small mismatches in parameter settings.

Table II shows the average number of time slots required to achieve an RSS of 90% ·Ropt with

N = 20, 100 and 500 transmitters for the hybrid algorithm. We define the convergence speed to be

inversely proportional to the required number of time slots, which is expressed as v(CT , RD) ∝
1

n(CT ,RD)
. The convergence speed with a pair of CT and RD over the convergence speed with

optimal values of CT and RD can be calculated as
v(CT ,RD)

vmax
= nmin

n(CT ,RD)
and is shown in the

parenthesis in Table II, where vmax and nmin are the convergence speed and the required number

of time slots obtained with optimal values of CT and RD. Table II again reveals the robustness of

the hybrid algorithm to small mismatches in parameter settings, especially with a large number

of transmitters. For example, the optimal values of CT and RD for N = 500 are CT = 12,

RD = 0.75, which result in a time slot number n(12, 0.75) = 2738. The hybrid algorithm with

CT = 10 and RD = 0.75, which has an error of 2 in the threshold for successive negative

feedback steps, can still result in a time slot number n(10, 0.75) = 2763 and a convergence

speed of 99.1% · vmax. Table II also shows that the optimal convergence speeds for N = 20, 100

and 500 all result from RD = 0.75. We studied the performance of the hybrid algorithm with

other numbers of transmitters, and extensive simulation results show that RD = 0.75 is the

optimal setting for the decreasing ratio of the perturbation size regardless of the number of

transmitters. The optimal values of CT , the threshold for successive negative feedback steps,

versus the number of transmitters are plotted in Fig. 5. It shows that the optimal value of CT

increases with the number of transmitters, but the slope of the curve decreases as the number
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of transmitters increases.

Fig. 6 shows the average number of time slots required to achieve an RSS of 90% · Ropt

with optimal CT and RD versus the number of transmitters for the hybrid algorithm. As we can

see, the required number of time slots with optimal parameter settings grows linearly with the

number of transmitters. This is consistent with the analytical results presented in [5] and [7]

that the number of time slots required to converge to a given fraction, e.g. 90% of the perfect

alignment increases with the number of transmitters, N , but no faster than linearly with N .

In Fig. 7, we compare the convergence speed for five algorithms with N = 100. Each curve is

an average over 103 runs. The curve of the hybrid algorithm is plotted with CT = 7, RD = 0.75.

The curve of the original algorithm with optimal perturbation size ∆0 for each time slot is

plotted based on the analysis in [5]. The parameter settings for Scheme 1, Scheme 2 and the

original algorithm with a static perturbation size are the optimal settings obtained from extensive

simulations. From Fig. 7 we see the hybrid algorithm has the best performance among the five,

and Scheme 2 can achieve performance close to the original algorithm with optimal perturbation

sizes in [5]. Comparing the hybrid algorithm with Scheme 2, the hybrid algorithm has a better

performance due to the contribution of Scheme 1. In achieving an RSS of 90%·Ropt, there is a big

gap of 791−550 = 241 time slots between the hybrid algorithm and the original algorithm with a

static perturbation size or, in other words, the hybrid algorithm has a
(

1
550
− 1

791

)

/

(

1
791

)

≈ 44%

faster convergence speed compared to the original algorithm. This gain in the convergence speed

is obtained by exploiting negative feedback information in the iterations.

V. TRACKING TIME-VARYING CHANNELS

It is well known that the performance of beamforming is very sensitive to the phase changes

in time-varying channels. In this section, we show that the hybrid algorithm proposed above

can be modified to track time-varying channels while maintaining its fast convergence speed.

What is more, the modified hybrid algorithm has the ability to detect variations in the speed

of channel phase changes and adjust perturbation sizes adaptively according to the speed. This

further enhances the robustness of the one-bit feedback algorithm in practical implementations.

In order to focus on the effect of changes in channel phase responses, we still assume unit

channel power gain from each transmitter to the receiver, but model the channel phase response

from transmitter i to the receiver as Ψi[n] = ψi + λi[n], where the phases ψi ∼ uniform[0, 2π)
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are static during the convergence process as assumed in Section II. The phase drift components

λi[n] are assumed to be independent, identically distributed across transmitters and uncorrelated

in time slots with a uniform distribution λi[n] ∼ [−Λ0,Λ0] [7], where Λ0 is termed as the phase

drift speed. The variations in phase offset at transmitters due to the oscillator internal phase

noise can be modeled in the same way.

Most work in the literature on the one-bit feedback algorithms is focused on static channel

conditions. Few of them extended the algorithms to time-varying channels apart from [7]. We

meet the following difficulties in the algorithm design under time-varying channel conditions.

First, if the received phases at the receiver Φi[n] become highly coherent in time slot n, the

corresponding RSS value cannot be surpassed by subsequent perturbations as the RSS will

reduce again due to channel variations. Therefore, the RSS judgement rule R[n] > Rbest[n] at the

receiver is not sufficient in time-varying channels. Second, since the hybrid algorithm described

above in Section III keeps reducing the perturbation size, obviously, it cannot track time-varying

channels when the perturbation size becomes smaller than the phase drift speed. Third, in static

channels, successive negative feedback steps only suggest that the perturbation size is too big

to converge. However, in time-varying channels, this may also result from the effect of channel

variations, which in contrast may require a bigger perturbation size. Fourth, successive positive

feedback steps are not available to aid the design. Below we give two solutions to overcome

these difficulties and apply the proposed hybrid algorithm to time-varying channels.

A. Solution 1

When the phase drift speed Λ0 is fairly small compared to the perturbation size δ0, the effect

of channel variations on the RSS is negligible. Therefore, the initial stages of the convergence

process can be viewed as under static channel conditions. In [7], the authors modified the original

algorithm to track time-varying channels by proposing the criterion Rbest[n + 1] = Rbest[n] · ρ
(0 < ρ < 1) every time it encounters a negative feedback step. This algorithm requires knowledge

of the phase drift speed Λ0 in order to set the value of ρ and the value of perturbation size δ0.

For details of the algorithm, please see [7]. A straightforward solution (Solution 1) is to apply

our hybrid algorithm to the initial stages of the convergence process. When the perturbation size

falls to a certain value close to the phase drift speed Λ0, the transmitters and the receiver change

to the algorithm in [7].
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B. Solution 2

Solution 2 can track time-varying channels without the knowledge of the phase drift speed

Λ0. It is summarized in Table I and explained as follows. Solution 2 operates in two modes, the

normal mode and the testing mode. Operations in the normal mode are similar to the operations

presented in Section III except the following. Besides updating the best RSS in memory at

the receiver, in step 3) the receiver also records the minimum RSS in memory, Rmin[n + 1] =

min(Rmin[n], R[n]). In step 4) when the number of successive negative feedback steps CN meets

the threshold CT , instead of decreasing the perturbation size δ0, the transmitters and the receiver

enter the testing mode for one time slot.

We define the successive time slots taking the same perturbation size as a size period. In the

testing mode in time slot n, instead of performing phase perturbations, the transmitters use their

best known phases to perform transmit beamforming, φi[n] = θi[n]. The receiver measures the

corresponding RSS R[n], set it as the new best RSS, Rbest[n+ 1], and the new minimum RSS,

Rmin[n + 1] in memory. Therefore, the variables Rbest and Rmin actually record the maximum

and the minimum RSS within a size period. This prevents the algorithm from operating in local

rather than globally optimum phase solutions, which may be caused by the first of the difficulties

listed above. The receiver then computes the absolute difference of Rbest[n] and R[n]:

SC =
∣

∣

∣Rbest[n]−R[n]
∣

∣

∣ (24)

and the difference of Rbest[n] and Rmin[n]:

SP = Rbest[n]− Rmin[n] (25)

Since both Rbest[n] and R[n] are obtained with the same adaptive component φi[n] = θi[n], the

scalar SC can be viewed as an estimation of the channel drift speed, Λ0, within one size period.

The scalar SP can be viewed as an estimation of the perturbation ’catch-up’ speed within the

same size period. By comparing SC and SP , the receiver makes a judgement on the perturbation

size and feeds back one bit of information telling all transmitters to adopt a larger or smaller

perturbation size in the next size period. Results in [7] conclude that the perturbation ’catch-up’

speed should be faster than the channel drift speed, and the perturbation size should not be

too large to avoid large fluctuations in the steady-state RSS. We adopt a coefficient of a in

comparing SP with SC in the following simulations. Solution 2 is summarized in Table I. By

September 20, 2011 DRAFT

123



Publications

14

inserting only one time slot between two size periods, the modified hybrid algorithm has the

ability to track time-varying channels and adjust perturbation sizes adaptively according to the

rates of phase drift. The overhead of implementing this solution is very low as it does not require

the knowledge of the phase drift speed and add only a few more time slots compared to the

hybrid algorithm for static channels.

Fig. 8 shows the performance of Solution 2 with N = 100 transmitters, CT = 7, RD = 0.75,

a = 2 in time-varying channels with different phase drift speeds. As we see, the modified hybrid

algorithm can achieve phase coherence and provide a good beamforming gain in time-varying

channels without the knowledge of channel state information. It also shows that with a relatively

small phase drift speed Λ0 = π
180

the algorithm on average achieves an RSS of 80% ·Ropt in 400

time slots, which is close to the performance achieved in static channels (364 time slots) shown

in Fig. 7. This confirms that the modified hybrid algorithm still maintains a fast convergence

speed in the initial stages of the convergence process under time-varying channel conditions.

Fig. 9 shows one simulated instance of Solution 2 in time-varying channels when the channel

phase drift speed Λ0 is changing. As we see, Solution 2 has the ability to detect variations in

the speed of channel phase changes and adjust perturbation sizes δ0 adaptively according to the

speed. When Λ0 becomes larger, it will lock the perturbation size to a bigger value to track the

changes in channel phase responses. When Λ0 becomes smaller, it will shift the perturbation

size to a smaller value to obtain a superior beamforming gain. This ability makes the one-bit

feedback algorithm much more robust to channel variations in practical implementations.

Below we study the performance of Solution 2 with different values of the coefficient a in

Table I, which is used for comparing the perturbation ’catch-up’ speed, SP , with the channel

drift speed, SC . Fig. 10 shows both the averaged performance and one simulated instance of

Solution 2 in time-varying channels with N = 100, Λ0 = π
50
, CT = 7, RD = 0.75, but different

values of a = 1, 4 and 7. As expected, if the coefficient is too small, a = 1, the algorithm cannot

effectively track the time-varying channels. If the coefficient is too big, a = 7, the perturbation

size in the steady state is kept around a large value. Consequently, the steady-state RSS has a

bigger fluctuation and a lower average value compared to the one with a smaller coefficient,

a = 4. We examine the performance of the average steady-state RSS with different values of a.

Extensive simulation results show that the algorithm cannot track time-varying channels when

a < 1. The optimal steady-state RSS can be obtained with a = 2.6 regardless of the channel
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drift speed. After the point of 2.6, the average steady-state RSS decreases when the value of a

increases.

VI. CONCLUSIONS

We proposed a hybrid one-bit feedback algorithm based on the original algorithm in the

literature to achieve carrier phase alignment for distributed transmit beamforming. The hybrid

algorithm can be easily applied into practical implementations and does not require any more

information exchange or hardware changes. By exploiting negative feedback information in the

iterations, the proposed algorithm can enhance the convergence speed of phase alignment by over

40% compared to the original algorithm. By adding one time slot per size period, the hybrid

algorithm can be modified to track time-varying channels without the knowledge of channel state

information. The modified hybrid algorithm has the ability to adjust perturbation sizes adaptively

according to the rate of phase drift in channel variations.
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TABLE I

SUMMARY OF THE MODIFIED HYBRID ALGORITHM TO TRACK TIME-VARYING CHANNELS (SOLUTION 2)

Initialization: CN = 0; δ0 = π
4
; θi[1] = 0; ǫi[1] = 0; Rbest[1] = 0; Rmin[1] = 0.

Normal mode, iterate:

1. Set δi[n] = ±δ0 ("+" or "-" with equal probability).

2. Use φi[n] = θi[n] + ǫi[n] + δi[n] to perform beamforming.

3. Estimate R[n] =
∣

∣

∑N

i=1
ejΦi[n]

∣

∣;

Update Rbest[n + 1] = max(Rbest[n], R[n]);

Update Rmin[n + 1] = min(Rmin[n], R[n]).

−→ (One bit feedback.)

4. If R[n] > Rbest[n]

θi[n + 1] = θi[n] + ǫi[n] + δi[n]; ǫi[n + 1] = 0; CN = 0;

else

θi[n + 1] = θi[n]; ǫi[n + 1] = −δi[n]; CN = CN + 1;

if CN ≥ CT

−→ (Enter the testing mode in the next time slot.)

end

end

Testing mode (one time slot):

1>. Use φi[n] = θi[n] to perform beamforming.

2>. Estimate R[n] =
∣

∣

∑N

i=1
ejΦi[n]

∣

∣;

Update Rbest[n + 1] = Rmin[n + 1] = R[n]; (reactivation)

Compute SC = |Rbest[n]−R[n]|; (estimation of the channel drift speed)

Compute SP = Rbest[n]−Rmin[n]. (estimation of the perturbation ’catch-up’ speed)

−→ (One bit feedback.)

3>. If SP > a · SC

δ0 = δ0 ·RD ; (decrease the perturbation size)

else

δ0 = δ0/RD ; (increase the perturbation size)

end

4>. Set CN = 0; θi[n + 1] = θi[n]; ǫi[n + 1] = ǫi[n].

−→ (Exit the testing mode.)
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(a) N = 20

RD \ CT 3 4 5 6

0.85 102 (99.0%) 108 (93.5%) 117 (86.3 %) 129 (78.3%)

0.8 101 (100%) 102 (99.0%) 109 (92.7%) 118 (85.6%)

0.75 109 (92.7%) 101 (Optimal) 104 (97.1%) 111 (91.0%)

0.7 121 (83.5 %) 101 (100 %) 102 (99.0%) 106 (95.3 %)

0.65 140 (72.1 %) 106 (95.3%) 103 (98.1%) 104 (97.1%)

(b) N = 100

RD \ CT 5 6 7 8 9

0.85 570 (96.5%) 555 (99.1%) 562 (97.9 %) 581 (94.7%) 603 (91.2%)

0.8 602 (91.4%) 559 (98.4%) 551 (99.8%) 558 (98.6%) 574 (95.8%)

0.75 641 (85.8%) 573 (96.0%) 550 (Optimal) 551 (99.8%) 561 (98.0%)

0.7 695 (79.1 %) 592 (92.9 %) 560 (98.2%) 551 (99.8 %) 553 (99.5%)

0.65 760 (72.4 %) 619 (88.9%) 570 (96.5%) 552 (99.6%) 551(99.8%)

(c) N = 500

RD \ CT 10 11 12 13 14

0.85 2756 (99.3%) 2775 (98.7%) 2815 (97.3 %) 2864 (95.6%) 2930 (93.4%)

0.8 2743 (99.8%) 2746 (99.7%) 2755 (99.4%) 2787 (98.2%) 2832 (96.7%)

0.75 2763 (99.1%) 2748 (99.6%) 2738 (Optimal) 2757 (99.3%) 2785 (98.3%)

0.7 2816 (97.2 %) 2770 (98.8 %) 2740 (99.9%) 2745 (99.7 %) 2768 (98.9%)

0.65 2877 (95.2 %) 2786 (98.3%) 2755 (99.4%) 2747 (99.7%) 2755(99.4%)

TABLE II

THE AVERAGE NUMBER OF TIME SLOTS REQUIRED TO ACHIEVE 90% ·Ropt WITH N = 20, 100 AND 500 FOR THE HYBRID

ALGORITHM, WHERE CT IS THE THRESHOLD FOR SUCCESSIVE NEGATIVE FEEDBACK STEPS AND RD IS THE DECREASING

RATIO OF THE PERTURBATION SIZE. THE PERCENTAGE VALUE IN EACH PARENTHESIS REPRESENTS THE CORRESPONDING

CONVERGENCE SPEED DIVIDED BY THE OPTIMAL CONVERGENCE SPEED.
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Fig. 2. Comparison of the trajectories of the phases Φ̂ obtained from simulation (dashed lines) with the trajectories of the ODE

(solid lines) in (21) for Scheme 1 with N = 20, δ0 = 6× 10−4. The convergence of Φ̂ to zero is equivalent to the convergence

of the phase alignment process.
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Fig. 3. Comparison of the simulation results (dashed lines) with the results obtained from the ODE (solid lines) in (21) for

the RSS versus number of time slots with N = 20, 50, 100 and δ0 = 6× 10−4.

September 20, 2011 DRAFT

130



Publications

21

6

8

10

12

14 0.5

0.6

0.7

0.8

0.9

1

500

600

700

800

900

X: 7
Y: 0.75
Z: 550

550

600

650

700

750

800

850

Fig. 4. The average number of time slots required to achieve 90% · Ropt with N = 100 for the hybrid algorithm, where CT

is the threshold for successive negative feedback steps and RD is the decreasing ratio of the perturbation size.
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Fig. 5. The optimal CT , the threshold for successive negative feedback steps, versus the number of transmitters for the hybrid

algorithm.
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Fig. 6. The average number of time slots required to achieve 90% · Ropt versus the number of transmitters for the hybrid

algorithm.
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N = 100.

September 20, 2011 DRAFT

134



Publications

25

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Time Slot Number

R
S

S
 (

.%
R

o
p

t)

Average performance with Λ
0
 = π/180

Average performance with Λ
0
 = π/30

One instance with Λ
0
 = π/180

One instance with Λ
0
 = π/30

Λ
0
 = π/30

Λ
0
 = π/180

Fig. 8. Performance of the modified hybrid algorithm (Solution 2) in time-varying channels with different channel phase drift

speeds λi[n] ∼ [− π
180

, π
180

], λi[n] ∼ [− π
30

, π
30

] for N = 100.

September 20, 2011 DRAFT

135



Publications

26

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Time Slot Number

R
S

S
 (

.%
R

o
p

t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20.5 1.3

x 10
4

0

0.05

0.1

0.15

0.2

0.25

P
e

rt
u

rb
a

ti
o

n
 S

iz
e

 (
*π

)

Λ
0
 = π/50 Λ

0
 = π/30

Λ
0
 = π/100

RSS

Perturbation Size
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Fig. 10. Performance of the modified hybrid algorithm (Solution 2) in time-varying channels with N = 100 transmitters,

channel drift speed Λ0 = π
50
, and different values of the coefficient a = 1, 4, 7.
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BER Analysis for Distributed Beamforming with

Phase Errors
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and Peter M. Grant, Fellow, IEEE

Abstract—The probability of error for distributed transmit
beamforming with phase errors is not available in closed form
in the literature. This paper presents an investigation into the
bit error ratio of distributed transmit beamforming with phase
errors for equal power transmission in the context of wireless
sensor networks. We derive two distinct formulae to approximate
the error probability performance for binary phase shift keying
over Rayleigh fading channels corresponding to small numbers

of nodes (e.g. N 6 10) and large numbers of nodes (e.g. N

> 20) respectively. Simulation results show a good match with
the analytical results. The effects of the phase errors on the
beamforming performance are examined for various numbers of
nodes and different levels of total transmit power.

Index Terms—Distributed beamforming, sensor networks,
equal gain combining, bit error ratio performance.

I. INTRODUCTION

In the context of wireless sensor networks, sensor nodes

are usually randomly located in the sensing area to collect

information on demand, either for on-line data collection, e.g.

periodic sampling of a parameter of interest, or for alarm

triggering, e.g. abnormal parameter variation in the monitored

environment. Then the sensor nodes are intended to send or

report the information to a destination, which may be far

away from the sensor network in some application scenarios.

Due to hardware constraints and low-cost configurations, each

sensor node is usually equipped with one single antenna

and energy-limited batteries which cannot easily be replaced.

These conditions make coherent cooperative transmission, or

in other words, transmit beamforming a very promising form

of transmission. This is sometimes called distributed beam-

forming or collaborative beamforming in the literature. The

motivation for applying beamforming techniques in wireless

sensor networks is to reduce the energy requirement for

each sensor node in signal transmission and to extend the

communication range to a far field receiver. Recently there

have been several papers discussing the practical problems

of realizing distributed beamforming [1] and describing its

potential benefits in applications [2].

The principle behind the transmit beamforming technique

is that the signals transmitted from each antenna should be

frequency-synchronized and phase-adjusted so that the signals

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
The authors are with the Institute for Digital Communications, University

of Edinburgh, Edinburgh EH9 3JL, UK (e-mail: {S.Song, John.Thompson,
P.Chung, Peter.Grant}@ed.ac.uk).

can add coherently at the receiver. While conventional beam-

forming is implemented on a device with a centralized antenna

array, distributed beamforming is performed by a virtual an-

tenna array composed of randomly located sensor nodes, each

of which has an independent carrier oscillator. Unlike conven-

tional beamforming, phase errors among the signals arriving

at the receiver cannot be avoided in distributed beamforming.

This may arise from the noise in individual carrier oscillators

[1], node position errors [3], or timing synchronization errors

[1]. To measure the beamforming performance, the bit error

ratio (BER) expression of distributed beamforming with phase

errors is both theoretically and practically important but not

available to date.

The phase error effect on the average beamforming gain

has been initially studied in [1], while its effect on the far-

field beam pattern has been comprehensively studied in [3].

In [4], we have studied the error probability of maximal ratio

transmission (MRT) in distributed beamforming with phase

errors, where the analysis provides a good prediction on the

achievable BER only for large number of nodes. In this paper,

we investigate the error probability for the more realistic case

of equal power transmission in distributed beamforming with

phase errors. We derive expressions for the BER performance

of binary phase shift keying (BPSK) modulation as a function

of the number of nodes, phase errors and total transmit power

for both small number of nodes and large number of nodes.

II. SYSTEM MODEL

We consider a wireless sensor network composed of N

sensor nodes which collaboratively beamform a narrowband

message signal m(t) to a distant receiver. This is performed

in a distributed manner by each node modulating m(t) at the
same carrier frequency. Each sensor node pre-compensates the

phase response of its channel to the receiver by adjusting its

initial phase settings [1] in order to ensure phase alignment at

the receiver, as illustrated in Fig. 1.

Considering a large number of sensor nodes, full channel

state information (CSI) may be hard to obtain in practice.

Techniques have been designed to pre-compensate the channel

phase response to achieve phase alignment [5], [6]. The lack of

full CSI and power limitation on the sensor nodes make MRT

techniques unrealistic. Instead, more practically, we assume

each sensor node transmits with equal power and applies

channel phase compensation at the transmitter side. In order to

reveal the fact that beamforming gain grows with the number

of nodes N , we assume the overall power transmitted by all
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Fig. 1. System model for distributed beamforming

the nodes is fixed as P , where each node actually transmits

with a power of P
N
. This then permits us to model the BER

improvement with distributed beamforming gain. The complex

baseband model of the received signal is given by:

r(t) =

N∑

i=1

|hi(t)|ejφi(t)

√
P

N
m(t) + n(t), (1)

where hi(t) is the channel gain for sensor node i, φi(t)
is the cumulative phase error of the carrier signal at the

receiver for sensor node i, n(t) ∼ CN(0, σ2
n) is additive

white Gaussian noise (AWGN). For simplicity, we assume all

phase errors φi(t) are independently and uniformly distributed,
bounded by (−φ0, φ0), across time and across nodes, which

is a common assumption adopted in previously reported in-

vestigations [1], [3], [7]. The scalar φ0 is usually expected to

be less than 60◦ in practice in order to achieve a reasonable

beamforming gain [1]. We assume the signals experience slow

fading channels, and the channel coefficients are independent,

circularly symmetric, complex Gaussian distributed, denoted

as hi(t) ∼ CN(0, 2σ2
c ).

We focus on the scenario of Rayleigh fading channels where

the BER for static channels can be regarded as a special case

and can be easily derived. After matched filter detection and

analog-to-digital conversion, the decision variable for BPSK

modulation can be expressed as:

rD = ±
√

P

N

∣∣∣∣∣

N∑

i=1

∣∣hi

∣∣ejφi

∣∣∣∣∣+ n̂ = s+ n̂, (2)

and the corresponding decision rule ism(t) =

{
1 rD > 0
0 rD < 0

, where n̂ represents the noise, n(t), projected onto the

received signal vector.

III. BER FOR SMALL NUMBER OF NODES - METHOD 1

The BER for BPSK over a fixed channel in the presence

of AWGN is given by Pe(γ) =
1
2erfc(

√
γ), where γ is the

received signal-to-noise ratio (SNR) per bit, and erfc(.) is

the complementary error function. When the channel gain is

random, the average BER over all values of γ is given by [8]:

Pe =

∫ ∞

0

Pe(γ)p(γ)dγ, γ =

P
N

∣∣∣
∑N

i=1

∣∣hi

∣∣ejφi

∣∣∣
2

σ2
n

, (3)

where p(γ) denotes the probability density function (pdf) of

γ. Due to the effect of phase errors, the distribution of γ is

unknown and the pdf expression of γ is difficult to evaluate.

However, the probability of error for equal gain combiners

with L independent receive branches over Rayleigh channels

has been studied in [9]. The decision variable for coherent

BPSK in [9] is expressed as:

rd = ±(x1 + x2 + · · ·+ xL) +
L∑

i=1

ni, (4)

where xi is the amplitude of the received signal at the output

of the ith branch with a Rayleigh distribution. The scalar ni

is the complex baseband Gaussian noise at the output of the

ith branch.

Although [9] investigates equal gain diversity receivers and

their system models are different from ours, as shown above,

the decision variable in (4) is identical to (2) when L = N

if we neglect the phase errors in our model and modify

the noise component. The noise in (4) comprises L-branch

superimposed noise while in (2) there is only one AWGN

component. By studying [9] and modifying the coefficients

of the noise, we can thus derive the BER expression for

distributed beamforming without phase errors over Rayleigh

channels as:

Pe ≈
1

2
− 1

π

M∑

m=1

ωmG(zm,Ω, σ2
n, N), (5)

where:

G(z,Ω, σ2
n, N) = Im

{[
1F1(− 1

2 ;
1
2 ;

Ωz2

σ2
n+NΩ)

+jz
√

πΩ
σ2
n+NΩ

]N}
z−1,

(6)

and Ω = E

[(√
P
N

∣∣hi

∣∣
)2]

=
2σ2

cP

N
is the average energy of a

Rayleigh distributed variable in (2) and in the case of no phase

errors, φi = 0 in that equation. The function E[x] denotes the
expectation of x and 2M is the order of Hermite polynomials.

The definition of the above confluent hypergeometric function,

1F1(a; b;x), is given in [10].

Equation (5) refers to Hermite integration explained on page

890 in [11], and the values for ωm and zm are given on

page 924 in [11]. The validity of using the Hermite method

of integration to compute the error probability for equal gain

combiners has been fully justified in [9]. Equation (5) becomes

more accurate when M tends to infinity. However, it is shown

in [9] that M = 10 is sufficient to ensure acceptable accuracy.
If there are phase errors, i.e. φ0 6= 0, the power of the signal

part, s, in (2) is reduced by phase errors, and the expectation of

the received SNR becomes smaller than the case without phase

errors. In order to incorporate the effects of phase errors, we
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define a factor η. We multiply every single Rayleigh variable,√
P
N
|hi|, with η to make the expectation of the received SNR

equal: E

[
P
N

∣∣∣
∑N

i=1

∣∣hi

∣∣ejφi

∣∣∣
2
]
= E

[
P
N

(∑N
i=1 η

∣∣hi

∣∣
)2]

. Re-

arranging this equation, we have:

η2 = E

[ ∣∣∣∣∣

N∑

i=1

∣∣hi

∣∣ejφi

∣∣∣∣∣

2 ]/
E

[( N∑

i=1

∣∣hi

∣∣
)2 ]

. (7)

The expression of η2 in terms of the number of nodes N and

the phase error range φ0 is derived in Appendix A. The average

power of an adjusted Rayleigh variable, η

√
P
N

∣∣hi

∣∣, becomes

Ω′ = E

[(
η

√
P
N

∣∣hi

∣∣
)2]

= η2Ω. We use Ω′ to substitute for

Ω in (6). The purpose of this is to use the distribution of a

sum of N Rayleigh variables to approximate the distribution

of the signal, s, in (2) while keeping the expectation of the

received SNR per bit E[γ] to be the same.

The expectation of γ has been adjusted by introducing η.

There is still a difference between the actual variance of the

received signal and the variance after the expectation adjust-

ment. Thus, we further define a variable, σ2
d , to compensate

for the residual variance between the two:

σ2
d =

P

N

(
Var

[∣∣∣
N∑

i=1

∣∣hi

∣∣ejφi

∣∣∣
]
− Var

[
η
( N∑

i=1

∣∣hi

∣∣
)])

, (8)

where Var[x] denotes the variance of x. The expression of σ2
d

in terms of the number of nodes N and the phase error range

φ0 is derived in Appendix A. We treat this residual variance

as a contribution to the receiver noise, and compute the total

noise power as σ̃2
n = σ2

n + σ2
d .

By substituting Ω′ for Ω, σ̃2
n for σ2

n into (6), the final

BER expression for distributed beamforming with phase errors

over Rayleigh channels is given by (5), while the function for

computation becomes G(z,Ω′, σ̃2
n, N). We use equation (5)

and G(z,Ω′, σ̃2
n, N) to compute the BER in the simulations

of Section V, and this is denoted as method 1. Method 1 is

valid for any number of nodes, but it is proposed here to use

method 1 only for small number of nodes due to its high

computational complexity for large N . This will be justified

and further explained in Section V.

IV. BER FOR LARGE NUMBER OF NODES - METHOD 2

In (3) we see that the distribution of γ mainly depends on

the distribution of

∣∣∣
∑N

i=1

∣∣hi

∣∣ejφi

∣∣∣
2

. Therefore, for simplicity,

we define the concept of an equivalent channel, H , as:

H =

N∑

i=1

∣∣hi

∣∣ejφi . (9)

Based on the central limit theorem (CLT), with a large num-

ber of nodes N , and the independent identically distributed

(i.i.d.) random variables, hi, which are independent from the

i.i.d. random variables φi, the key element which determines

the error probability can be expressed as:

∣∣H
∣∣2 =

∣∣∣∣∣

N∑

i=1

∣∣hi

∣∣ cosφi + j

N∑

i=1

∣∣hi

∣∣ sinφi

∣∣∣∣∣

2

= |a+ jb|2 , (10)

where a =
∑N

i=1

∣∣hi

∣∣ cosφi ∼ N(µa, σ
2
a), b =∑N

i=1

∣∣hi

∣∣ sinφi ∼ N(µb, σ
2
b ). A similar analysis of the

beamforming gain using the CLT has been presented in [1].

Since hi ∼ CN(0, 2σ2
c ), and φi ∼ (−φ0, φ0), the expectations

and variances of a and b can be obtained as follows:

µa = N · E
[∣∣hi

∣∣ cosφi

]
= N · E

[∣∣hi

∣∣
]
· E
[
cosφi

]

=

√
2πNσc sinφ0

2φ0
, µb = 0, (11)

σ2
a = N

(
E

[(∣∣hi

∣∣ cosφi

)2]
−
(
E
[∣∣hi

∣∣ cosφi

])2
)

= Nσ2
c

(
1 +

sin 2φ0

2φ0
− π

2
(
sinφ0

φ0
)2
)
, (12)

σ2
b = N

(
E

[(∣∣hi

∣∣ sinφi

)2]
−
(
E
[∣∣hi

∣∣ sinφi

])2
)

= Nσ2
c

(
1− sin 2φ0

2φ0

)
. (13)

From (12) and (13) we see, for the equivalent channel, H ,

with most values of φ0 (i.e. φ0 6= 45◦), the variance of the

real part σ2
a and the imaginary part σ2

b are not equal, which

means the expression of the pdf of
∣∣H
∣∣2 is difficult to compute.

However, if we make the approximation that the variance of

the real part and the variance of the imaginary part of H

are equal, the magnitude gain of the equivalent channel,
∣∣H
∣∣,

follows a Rician distribution, and the channel gain,
∣∣H
∣∣2, has a

non-central chi-square distribution with 2 degrees of freedom,
where the noncentrality parameter, λ2, and the variance, σ2,

satisfy [8]:

E
[∣∣H

∣∣2
]
= 2σ2 + λ2, Var

[∣∣H
∣∣2
]
= 4σ4 + 4σ2λ2. (14)

From (14), we can derive the expressions for λ2 and σ2 as:

λ2 =
√
2A 2 −B, σ2 =

A −
√
2A 2 −B

2
, (15)

where A = E
[∣∣H

∣∣2
]
, B = E

[∣∣H
∣∣4
]
. The expressions for A ,

B in terms of N and φ0 are derived in Appendix B.

The BER for BPSK signalling in a Rician fading channel

has been studied in [12], permitting the closed-form expression

for the BER of our model to be easily obtained as:

Pe = Q1(u,w)−
1

2

(
1 +

√
d

1 + d

)
exp

(
−u2 + w2

2

)
I0(uw),

(16)
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where:

d =
2σ2P

σ2
nN

, u =

√
λ2

2σ2
· 1 + 2d− 2

√
d(1 + d)

2(1 + d)
,

w =

√
λ2

2σ2
· 1 + 2d+ 2

√
d(1 + d)

2(1 + d)
, (17)

and I0(x) is the zeroth-order-modified Bessel function of the
first kind, Q1(x, y) is the Marcum Q-function, both defined

in [8]. An approximation of I0(x) is given by [13] in Chapter
6 as I0(x) ≈ 1√

2πx
exp(x) (x ≫ 0) and after manipulation,

(16) can be simplified to:

Pe ≈ Q1(u,w)− 1
2
√
2πuw

(
1 +

√
d

1+d

)

exp

(
− (u−w)2

2

)
, uw ≫ 0.

(18)

To the best of the authors’ knowledge, (18) is a new result

which simplifies the BER expression.

By substituting (15) into (17) and (18), we can obtain

the final BER expression for BPSK signalling in distributed

beamforming for large number of nodes and we define this

as method 2 in the following simulations. By doing so, we

actually use Rician distribution to approximate the distribution

of
∣∣H
∣∣ while keeping the second and fourth moments of∣∣H

∣∣ unchanged. These expressions may be extended to other

modulation schemes by studying [14].

V. RESULTS AND DISCUSSIONS

In this section, we present some simulation results in

accordance with our previous assumptions for distributed

beamforming with phase errors over Rayleigh fading chan-

nels, and compare them with the analytical results given by

mathematical expressions derived in Section III and Section

IV. We set the channel coefficients as hi(t) ∼ CN(0, 1) and
the AWGN noise as n(t) ∼ CN(0, 1), so the value of the total
transmit power P in the figures can be viewed as normalized

to the noise power at the receiver. Given equation (3), with

a perfect phase alignment at the receiver, P = 1 implies

E[γ] ≈ 6 dB when N = 5, E[γ] ≈ 12 dB when N = 20. The
simulation results for every point in the following figures are

averaged over 106 runs. As the received SNR cannot illustrate

the advantages of beamforming gain and the effects of the

number of nodes and phase errors, our simulation results and

analytical results are plotted as BER vs fixed total transmit

power P , which is one of the major concerns in practical

design in wireless sensor networks. We have derived two

expressions to predict the BER results for small number of

nodes and large number of nodes separately. For simplicity, we

denote equation (5) in Section III as method 1, while equation

(18) in Section IV is denoted as method 2.

Fig. 2 shows the comparison of the simulation results with

the analytical results based on method 1 for very small but

different numbers of nodes N = 3, 5 and increasing phase

error ranges φ0 = 18◦, 36◦, 54◦ and 72◦. As can be seen, our

analysis shows a good match with the simulation results for all

values of φ0 up to 72
◦ with both N = 3 and N = 5. Because

method 2 is based on the CLT it thus has a large deviation

from the simulation results for a small N , we only present the

results based on method 1 in Fig. 2. (The accuracy of method 1

and method 2 when increasing N from small numbers to large

numbers are compared later in Fig. 4.) From Fig. 2 we see that

increasing the number of nodes N can dramatically reduce the

transmit power requirement for the same BER performance. It

also shows that with a fixed increment in φ0, the phase errors

have a more significant effect on the BER performance at

higher values of φ0. Taking the curves for N = 5 for example,
subject to the same BER at 10−2, the performance loss when

increasing from φ0 = 54◦ to 72◦ is larger than the degradation
when moving from φ0 = 18◦ to 36◦.
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Fig. 2. Comparison of analytical results based on method 1 with simulation
results of BER versus total transmit power with N = 3, 5 distributed sensor
nodes, phase errors constrained within the range φ0 = 18◦, 36◦, 54◦, 72◦

relative to total transmit power P = 1.

Fig. 3 shows the comparison of the simulation results with

the analytical results based on method 2 for large numbers

of nodes N = 40, 100 for the same phase error ranges

φ0 = 18◦, 36◦, 54◦ and 72◦. As we see, for both N = 40 and
N = 100 the simulation results and the analytical results show
excellent agreement with each other. Method 1 still provides a

good prediction for large N . However, with large N , method

1 has a high computational complexity, thus we only present

the results based on method 2 in Fig. 3. From Fig. 3, we can

draw the same conclusions about the effects of the number of

nodes and the phase errors as from Fig. 2.

Fig. 4 shows the BER versus the number of nodes N to an-

alyze the accuracy of method 1 and method 2 when increasing

N . In order to keep the received SNR approximately constant

when increasing N , the total transmit power in Fig. 4 is set

to be inversely proportional to N , which is different to the

simulations in previous figures. It can be seen here that there

is a gap between the two curves of method 1 and method 2

for small N , where method 1 provides a much more accurate

prediction. Method 2 achieves progressively more accuracy as

N increases. This is because method 2 is based on the CLT
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Fig. 3. Comparison of analytical results based on method 2 with simulation
results of BER versus total transmit power with N = 40, 100, and φ0 =

18◦, 36◦, 54◦, 72◦.

and thus is not appropriate for small N . The solution given

by method 1 takes the form of a single dimensional integral

solved in our simulations by the Hermite integration method

while method 2 is a much simpler and more computationally

efficient approach. Therefore, it is preferable to use method

1 only for a small number of nodes and use method 2 for a

large number of nodes.
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Fig. 4. Comparison of analytical results based on method 1 and method
2 with simulation results of BER versus number of nodes with φ0 =

18
◦, 36◦, 54◦, 72◦, and total transmit power P =

5

N
.

VI. CONCLUSIONS

We have derived BER expressions for BPSK with equal

power transmission for distributed beamforming with phase

errors. The simulation results show excellent agreement with

analytical results. We analyzed the model from different

approaches to approximate the distribution of the equivalent

channel gain. It is suggested to use method 1, presented in

Section III, to predict BER for a small number of nodes (e.g.

N 6 10) and use method 2, presented in Section IV, for a large
number of nodes (e.g. N > 20). We propose using method

2 here predominantly due to its reduced computational load

for large N . The system performance has been analyzed for

different numbers of nodes and different phase error ranges.

APPENDIX A

THE FACTOR η AND THE RESIDUAL VARIANCE σ2
d

We derive the factor η defined in (7) and the residual

variance, σ2
d, defined in (8) in Section III. The expression of

η2 in (7) can then be written as:

η2 =
A

A (φ0 = 0)
=
1 + π

4 (N − 1)
(

sinφ0

φ0

)2

1 + π
4 (N − 1)

, (19)

where the expression of A is derived in Appendix B.

We rewrite (8) as follows:

σ2
d =

P

N

(
E

[∣∣∣
N∑

i=1

|hi|ejφi

∣∣∣
2
]
−
(
E

[∣∣∣
N∑

i=1

|hi|ejφi

∣∣∣
])2

−η2E
[( N∑

i=1

|hi|
)2]

+η2
(
E
[ N∑

i=1

|hi|
])2
)
. (20)

Substituting (7) into (20), it yields:

σ2
d =

P

N

(
η2
(
N · E

[
|hi|
])2

−
(
E
[∣∣H

∣∣
])2

)
. (21)

The second moment and the fourth moment of
∣∣H
∣∣ in terms

of N and φ0 are derived in Appendix B. However, the pdf

of
∣∣H
∣∣ is unknown and the first moment of

∣∣H
∣∣ is hard to

compute. Instead, we use the Nakagami m-distribution [15] to

give an approximate expression for the first moment. One of

the characteristics of the Nakagamim-distribution is that it has

great flexibility and can approximate many other distributions

modeling fading environments. The βth moment of Nakagami

m-distributed
∣∣H
∣∣ is given by [8]:

E
[∣∣H

∣∣β
]
=
Γ(m+ 1

2β)

Γ(m)

(
E
[
|H |2

]

m

) β

2

. (22)

By taking (24), (25) into (22), the first moment of
∣∣H
∣∣ can be

easily obtained as:

E
[∣∣H

∣∣
]
=
Γ(m+ 1

2 )

Γ(m)

(
A

m

) 1
2

, (23)

where m = A
2

B−A 2 and A , B are given in (24), (25). By

substituting (23) into (21), one can obtain the final expression

of the residual variance σ2
d in terms of N and φ0.
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B = E
[ N∑

i=1

|hi|ejφi ·
N∑

k=1

|hk|ejφk ·
N∑

l=1

|hl|e−jφl ·
N∑

m=1

|hm|e−jφm

]

= N · E
[
|hi|4

]
︸ ︷︷ ︸

i=k=l=m

+4N(N − 1) · E
[
|hi|3|hm|ej(φi−φm)

]
︸ ︷︷ ︸

i=k=l 6=m
i=k=m 6=l
i=l=m 6=k
k=l=m 6=i

+N(N − 1) · E
[
|hi|2|hl|2ej(2φi−2φl)

]
︸ ︷︷ ︸

(i=k) 6=(l=m)

+2N(N − 1) · E
[
|hi|2|hm|2

]
︸ ︷︷ ︸

(i=l)6=(k=m)
(i=m)6=(k=l)

+2N(N − 1)(N − 2) · E
[
|hi|2|hm||hl|ej(2φi−φm−φl)

]
︸ ︷︷ ︸

(i=k)6=l 6=m

(l=m)6=i6=k

+4N(N−1)(N−2) · E
[
|hi|2|hk||hm|ej(φk−φm)

]
︸ ︷︷ ︸

(i=l)6=k 6=m

(i=m)6=k 6=l

(k=l)6=i6=m

(k=m)6=i6=l

+N(N−1)(N−2)(N−3)·E
[
|hi||hk||hl||hm|ej(φi+φk−φl−φm)

]
︸ ︷︷ ︸

i6=k 6=l 6=m

= N · E
[
|hi|4

]
+ 4N(N − 1) · E

[
|hi|3

]
· E
[
|hi|
] ( sinφ0

φ0

)2

+N(N − 1)
(
E
[
|hi|2

])2( sin 2φ0

2φ0

)2

+2N(N − 1)
(
E
[
|hi|2

])2
+ 2N(N − 1)(N − 2) · E

[
|hi|2

](
E
[
|hi|
])2 sin 2φ0

2φ0

(
sinφ0

φ0

)2

+4N(N − 1)(N − 2) · E
[
|hi|2

](
E
[
|hi|
])2( sinφ0

φ0

)2

+N(N − 1)(N − 2)(N − 3)
(
E
[
|hi|
])4( sinφ0

φ0

)4

. (25)

APPENDIX B

THE SECOND AND THE FOURTH MOMENT OF
∣∣H
∣∣

We derive the second and the fourth moment of |H | used
in (15) in terms of N and φ0 based on the assumption that

both hi and φi are independent i.i.d. variables, where hi ∼
CN(0, 2σ2

c ) and φi ∼ (−φ0, φ0).
The second moment of

∣∣H
∣∣ in (15) is expressed as:

A = E
[ N∑

i=1

|hi|ejφi ·
N∑

l=1

|hl|e−jφl

]

= N · E
[
|hi|2

]
︸ ︷︷ ︸

i=l

+N(N − 1) · E
[
|hi||hl|ej(φi−φl)

]
︸ ︷︷ ︸

i6=l

= N · E
[
|hi|2

]
+N(N − 1)

(
E
[
|hi|
])2( sinφ0

φ0

)2

.(24)

The fourth moment of
∣∣H
∣∣ in (15) is expressed as (25).

Since hi ∼ CN(0, 2σ2
c ), the moments of |hi| are given by

E
[
|hi|α

]
= (2σ2

c )
α
2 Γ(1 + α

2 ) [8]. In particular, when hi ∼
CN(0, 1), A and B become:

A = N +
π

4
N(N − 1)

(
sinφ0

φ0

)2

, (26)

B = 2N2 + πN(N − 1)(N − 1

2
)

(
sinφ0

φ0

)2

+N(N − 1)

(
sin 2φ0

2φ0

)2

+
π

2
N(N − 1)(N − 2)

sin 2φ0

2φ0

(
sinφ0

φ0

)2

+
π2

16
N(N − 1)(N − 2)(N − 3)

(
sinφ0

φ0

)4

.(27)
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Abstract—An iterative algorithm with a decreasing step

size is proposed for distributed transmit beamforming

to achieve carrier phase alignment at the receiver. The

transmitters apply random perturbations on their phase

offsets and adjust them based on one bit feedback from

the receiver in each iteration. The perturbation step size

becomes smaller when the phase angles at the receiver

get closer to coherence. The step size is decreased by a

specified ratio every time the number of successive failed

perturbations surpasses a certain threshold. The proposed

algorithm has an improvement in the convergence speed

of phase alignment compared to the original iterative

algorithm in the literature which has a fixed step size

during the convergence process.

I. INTRODUCTION

Recently there has been great interest in ap-

plying transmit beamforming techniques into wire-

less sensor networks [1], [2], [3]. Since sensor

nodes are working collaboratively in a distributed

manner to perform beamforming transmission, this

technique is called distributed beamforming [4] or

collaborative beamforming [5] in the literature. The

motivation of applying distributed beamforming is

to reduce the energy requirement for each sen-

sor node in signal transmission and extend the

communication range to a far field receiver. Un-

like conventional beamforming, realizing distributed

beamforming faces a set of new challenges in sev-

eral aspects, such as information sharing, frequency

synchronization and phase alignment at the receiver,

among which the most crucial part in practical

implementation is achieving phase alignment [3].

Shuo Song thanks China Scholarship Council/University of Edin-

burgh Joint Scholarship Program for supporting his PhD studies.

We acknowledge the support of the Scottish Funding Council for

the Joint Research Institute with the Heriot-Watt University which is

a part of the Edinburgh Research Partnership.

A simple one-bit feedback iterative algorithm, a

promising way to achieve carrier phase alignment

at the receiver, was first proposed in R. Mudumbai

et al.’s work [6]. This training process to achieve

phase alignment at the receiver is performed by

each transmitter introducing a random perturbation

on its phase offset in each time slot. If the random

perturbations introduced by all transmitters result in

a bigger beamforming gain, they will be adopted by

the transmitters; otherwise, they will be discarded.

A detailed analysis of this algorithm including its

benefits was presented in [7]. The validity of this

type of one-bit feedback algorithm was verified by

laboratory experiments presented in [8], where the

expected performance results were obtained. Later,

this algorithm was developed to account for carrier

frequency errors among transmitters in [9]. Also,

an improved algorithm which can yield a faster

convergence speed by making use of both successful

and failed perturbation results was presented in [10].

In this paper, we propose a new one-bit feedback

algorithm which has a decreasing step size in the

convergence process. The new algorithm still re-

quires only one-bit feedback in each iteration, and

results in a faster convergence speed to achieve

carrier phase alignment at the receiver compared

to the original algorithm presented in [7]. Simula-

tion results show that the new algorithm has the

potential to improve the convergence speed with a

wide range of parameter selections. The rest of the

paper is organized as follows. Section II describes

the system model. Section III briefly reviews the

original algorithm presented in [7]. In Section IV

we describe the new one-bit feedback algorithm

with a decreasing step size. Section V then presents

some simulation results confirming the superior

145



Publications

performance of the new algorithm over the original

algorithm and Section VI gives conclusions.

II. SYSTEM MODEL

We consider a wireless communication system

composed of N transmitters collaboratively beam-

forming a narrowband message signal m[n] to a

distant receiver. This is performed in a distributed

manner by each transmitter modulating m[n] at

the same carrier frequency and adjusting its phase

offset to achieve phase alignment at the receiver, as

illustrated in Fig. 1.

Transmitters

j
e

j
e

j
e

Receiver

Distance D

radius r
(    <<    )r D

Beam Pattern Shape

1[ ]nφ

[ ]i nφ

1 Bit Feedback

2

[ ]nφ [ ]m n

Fig. 1. System model for distributed transmit beamforming.

In order to compare the new algorithm with the

original algorithm easily and fairly, the assumptions

of our system model made in this paper are all the

same with the assumptions in [7]. We repeat some

key assumptions below. For more details, please see

the list of assumptions in [7]. The channel from

each transmitter to the receiver, hi, is assumed to be

static during the phase synchronization process. For

simplicity, |hi| = 1. All transmitters are frequency-

synchronized so that they only need to adjust their

phase offsets to achieve phase alignment at the

receiver. The local carrier of each transmitter i has

an unknown phase offset γi relative to the receiver’s

phase reference. All values of γi are assumed to be

uniformly distributed over [0, 2π). All transmitters

transmit with equal power P. As both algorithms

considered here put emphasis on the phase synchro-

nization process and the effect of phase difference

on the beamforming gain, we set P = 1. The

phase of the received signal at the receiver from

transmitter i in time slot n can be expressed as:

Φi[n] = γi + ψi + φi[n] (1)

where ψi is the channel phase response from trans-

mitter i to the receiver, which is assumed to be static

during the convergence process, and again all values

of ψi are assumed to be uniformly distributed over

[0, 2π). Both the values of γi and ψi are unknown

to the transmitters and the receiver. The scalar φi is

the adaptive component implemented by transmitter

i, which is set to be zero at the start for both

algorithms. The ideal phase alignment of distributed

beamforming is that there are no phase differences

among the signals arriving at the receiver, i.e.:

γi + ψi + φi[n] ≡ γk + ψk + φk[n] (mod 2π), (2)

i , k ∀i, k = 1, 2, ...,N.

The objective of the algorithm design is to let each

transmitter adjust its adaptive component, φi, based

on the one-bit feedback information in each time

slot to achieve nearly perfect phase alignment at the

receiver as fast as possible.

The complex baseband model of the received

signal at the receiver is given by:

r[n] =

N
∑

i=1

e jΦi[n]m[n] + n[n] (3)

where n[n] is additive white Gaussian noise of zero

mean and variance σ2
n. The received signal strength

(RSS), which determines the beamforming gain, in

time slot n is defined as:

R[n] =

∣

∣

∣

∣

∣

∣

∣

N
∑

i=1

e jΦi[n]

∣

∣

∣

∣

∣

∣

∣

(4)

We assume that the noise power at the receiver

is fairly small compared to the signal power at

the receiver. The RSS in each time slot, R[n], can

be measured accurately by averaging the received

signal over a certain time interval.

III. ORIGINAL ONE-BIT FEEDBACK

ALGORITHM

The original one-bit feedback algorithm for dis-

tributed beamforming introduced in [7] can be

briefly summarized as follows.

1) At time slot n, each transmitter applies a

random perturbation, δi[n], to its best known

carrier phase, θi[n], for beamforming, where
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i denotes the ith transmitter. (Without loss of

generality, we set the distribution of δi[n] as

δi[n] = ±δ0 in the simulations in Section V.)

2) All transmitters use their new adaptive com-

ponents, φi[n] = θi[n] + δi[n], to perform

transmit beamforming.

3) The receiver measures the corresponding

RSS, R[n] =
∣

∣

∣

∑N
i=1 e jΦi[n]

∣

∣

∣, and compares it

with the best RSS in memory. The receiver

updates the best RSS in memory and feeds

back (error free) one-bit of information to all

transmitters conveying whether the RSS has

been improved or not.

4) If the RSS has been improved, all transmitters

adopt their perturbed phases and update their

best known phases to be θi[n + 1] = φi[n] =

θi[n]+δi[n] for the next time slot (n+1). Oth-

erwise, all transmitters discard the perturbed

phases and keep the best known phases as

θi[n+ 1] = θi[n] for the next time slot (n+ 1).

The algorithm then repeats these four steps.

The original algorithm can be viewed as a random

search process in which each transmitter is trying

to adjust its phase correctly based on the feedback

information. The original algorithm has the ability

to achieve nearly perfect phase alignment at the

receiver after a lot of iterations. Its asymptotic

convergence properties and convergence speed are

well proved and analyzed in [7]. For more details

of the original algorithm, please see [7].

Communication remains the most energy-

consuming operation for sensor nodes compared to

others, such as sensing, data processing, etc [11].

Since in most application scenarios sensor nodes

are supplied by energy-limited batteries which can

not be easily replaced, the phase alignment process

for beamforming with a faster convergence speed

is desired in practice. The faster the algorithm

converges, the less energy it consumes. Recalling

the objective of this kind of algorithm design is

to achieve phase alignment as fast as possible,

the original algorithm leaves us some space for

improvement in the convergence speed.

IV. NEW ONE-BIT FEEDBACK ALGORITHM

WITH DECREASING STEP SIZE

Intuitively, the original algorithm could have a

bigger perturbation step size at initial stages to con-

verge faster and requires a smaller step size when

the beamforming gain gets closer to its optimum

value. Therefore, we propose a simple but effective

algorithm with a decreasing perturbation step size to

improve the convergence speed of phase alignment,

which leads to a slight modification to the original

algorithm. The new algorithm still requires only

one-bit feedback in each time slot and can be easily

implemented in practice. The new one-bit feedback

algorithm with a decreasing step size is described

as follows.

1) At time slot n, each transmitter applies a

random perturbation, δi[n] = ±δ0, to its best

known carrier phase, θi[n], for beamforming,

where i denotes the ith transmitter.

2) All transmitters use their new adaptive com-

ponents, φi[n] = θi[n] + δi[n], to perform

transmit beamforming.

3) The receiver measures the corresponding

RSS, R[n] =
∣

∣

∣

∑N
i=1 e jΦi[n]

∣

∣

∣, and compares it

with the best RSS in memory. The receiver

updates the best RSS in memory and feeds

back (error free) one-bit of information to all

transmitters conveying whether the RSS has

been improved or not.

4) If the RSS has been improved, all transmitters

adopt their perturbed phases and update their

best known phases to be θi[n + 1] = φi[n] =

θi[n]+δi[n] for the next time slot (n+1). Oth-

erwise, all transmitters discard the perturbed

phases and keep the best known phases as

before, θi[n+ 1] = θi[n], for the next time slot

(n+1). Meanwhile, the transmitters record the

number of successive failed perturbations with

a counting variable C f . If it is a positive feed-

back indicating a successful perturbation, C f

will be cleared to zero. Otherwise, the value

of C f will be increased by 1 until it surpasses

a certain threshold CT . When C f ≥ CT , C f

is cleared to zero and all transmitters adopt

a new perturbation step size δ0 = δ0 · RD

(0 < RD < 1), where RD is the decreasing

ratio of step size.

The algorithm then repeats these four steps.

The new algorithm adjusts the perturbation step

size based on only one-bit feedback in each time

slot. It makes use of the information contained
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within the experience of successive failed perturba-

tions which span several time slots. When the phase

differences at the receiver are large, a bigger step

size can accelerate the convergence speed. However,

when the phase differences at the receiver become

smaller, a bigger step size will decelerate the conver-

gence speed or even cease the convergence process,

and a smaller step size is required. Fig. 2 shows an

example of two transmitters.
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Fig. 2. Phase perturbation results in the case of two transmitters. (a)

The phase difference at the receiver is large (This corresponds to the

initial stages of the convergence process). (b) The phase difference

at the receiver is smaller compared to the perturbation step size.

V. RESULTS AND DISCUSSIONS

In this section, we present some Monte Carlo

simulation results in accordance with our previous

assumptions. We investigate the performance of the

new algorithm as a function of two parameters: the

threshold for successive failed perturbations CT , and

the decreasing ratio of the perturbation step size

RD. We then compare the new algorithm with the

original algorithm in terms of the convergence time

required to achieve a certain beamforming gain. We

set the number of nodes as N = 100, the initial

perturbation step size as δ0 =
π

4
. The simulation

results for every point in the following figures are

averaged over 800 instances.

Fig. 3 shows the average number of time slots

required to achieve an RSS of 90 with different

values of CT and RD for the new algorithm. There

exists an optimum value for the parameter selection

which can result in the minimum number of time

slots. From the simulation results we see that the

minimum number of time slots required to achieve

an RSS of 90 for the new algorithm is 688 time

slots, which is obtained with CT = 11 and RD =

0.75.
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Fig. 3. Simulation results for the new algorithm showing the average

number of time slots required to achieve an RSS of 90 with different

values of CT and RD, where CT is the threshold for successive failed

perturbations and RD is the decreasing ratio of the perturbation step

size.

In [10], we have studied the performance of

the original algorithm in a similar way. It shows

that the minimum number of time slots required

to achieve an RSS of 90 with N = 100 by the

original algorithm is 791 time slots. Fig. 4 shows

the contour plot of Fig. 3. It shows that the new

algorithm can achieve an RSS of 90 within 790 time

slots, or in other words achieve as good performance

as the original algorithm, with a wide range of

parameter selections. This shows the robustness of

this algorithm to small mismatches in parameter

settings.
The new algorithm with a decreasing step size

may be modified to suit a time-varying channel

environment. However, several concerns have to be

considered in this modification. In the case of time-

varying channels, successive failed perturbations

may imply that a smaller perturbation step size is

required as in the case of static channels. But it

may also be caused by the shift of channel phase

responses which makes the new RSSs unable to

surpass the best RSS in memory. Therefore, we have

to revise the feedback mechanism at the receiver

side. Fig. 5 shows that the whole system can be
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Fig. 4. Contour plot of the average number of time slots required

to achieve an RSS of 90 with different values of CT and RD for the

new algorithm.

divided into three blocks for design purpose.

Feedback Process

Random Search 
Process Judging and 

RSS Updating 
Process

Decreasing Step Size ?1 Bit

Fig. 5. Blocks of the feedback system for design purpose.

Since communication, either transmitting or re-

ceiving, remains the most energy-consuming op-

eration for sensor nodes, it is important to have

only one bit feedback and reduce the iterations in

the convergence process. Random search techniques

targeting at the sensor node side have been designed

to reduce iterations. Intelligent algorithms with an

advanced judging rule at the receiver side may be

designed to better cooperate with the process at

the sensor node side. For example, the receiver

can exploit more information contained within the

values of RSS obtained in successive time slots and

employ an advanced rule of updating the best RSS.

Advanced feedback mechanisms at the receiver side

are left for future work.

VI. CONCLUSIONS

We have proposed a new algorithm for dis-

tributed transmit beamforming to achieve carrier

phase alignment at the receiver. The new algorithm

has a faster convergence speed of phase alignment

compared to the original algorithm in the litera-

ture. This improvement on the convergence speed

is obtained by applying a decreasing perturbation

step size rather than having a fixed one during the

convergence process. The new algorithm employs a

scheme to adjust the perturbation step size based on

the number of successive failed perturbations. The

new algorithm still requires only one-bit feedback

in each time slot. Therefore, it keeps all the benefits

(listed in [7]) of the original algorithm and can be

easily implemented in practice.
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Abstract—In this paper an improved iterative algorithm is
proposed for distributed transmit beamforming to achieve carrier
phase alignment at the receiver. The transmitters adjust their
phase offsets based on one-bit feedback from the receiver in
each time slot. The proposed algorithm has an improvement
in the convergence speed of phase alignment compared to a
previously proposed algorithm in the literature by exploiting
one-bit feedback information more efficiently. Simulation results
show that the improved algorithm on average has a 20% faster
convergence speed. The minimum number of time slots required
to achieve specified beamforming gains and the corresponding
perturbation steps are obtained by Monte Carlo simulations.

I. INTRODUCTION

Recently there have been several papers discussing the prac-

tical problems of realizing distributed transmit beamforming

[1] and describing its potential benefits in applications [2], [3].

Distributed transmit beamforming can provide high signal-to-

noise ratio gains, extend the communication range, or reduce

the energy requirement for each transmitter in signal transmis-

sion. The most crucial part of realizing distributed transmit

beamforming is carrier frequency and phase synchronization

among all the transmitters to ensure that the signals can be

added coherently at the receiver [1]. A master-slave open-loop

scheme was proposed in [4] to tackle this problem. Another

open-loop scheme to solve this problem called the round-trip

scheme was described in [5]. In [6], [7], the authors first

present a simple one-bit feedback algorithm for distributed

beamforming which does not need channel state information

and can achieve nearly perfect carrier phase alignment at

the receiver after a large number of iterations. This training

process to achieve phase alignment at the receiver is performed

by each transmitter introducing a random perturbation on its

phase offset in each time slot. If the random perturbations

result in a bigger beamforming gain, they will be adopted by

the transmitters; otherwise, they will be discarded. Later, this

algorithm was developed to account for carrier frequency er-

rors among transmitters in [8]. The validity of this type of one-

bit feedback algorithm was verified by laboratory experiments

presented in [8] and [9], where the expected performance

results were obtained. Its simplicity in implementation and

scalability to large number of transmitters make it a promising

way to realize distributed transmit beamforming in practical

applications.

In this paper, we propose a new algorithm (namely the

improved algorithm) based on the one-bit feedback algorithm

described in [7] (namely the original algorithm) to achieve

carrier phase alignment at the receiver in distributed transmit

beamforming. The improved algorithm still requires only one-

bit feedback from the receiver. It keeps all the benefits of

the original algorithm, such as its simplicity and scalability,

and requires no extra hardware. The improved algorithm is

shown to have an advantage in the convergence speed. It

requires fewer time slots, thus consumes less energy, to achieve

a certain beamforming gain than the original algorithm by

making use of the random perturbation obtained in each time

slot more efficiently.

II. SYSTEMMODEL

We consider a wireless communication system composed

of N transmitters collaboratively beamforming a narrowband

message signal m(t) to a distant receiver. This is performed

in a distributed manner by each transmitter modulating m(t)

at the same carrier frequency and adjusting its phase offset to

achieve phase alignment at the receiver, as illustrated in Fig.

1.

D

r
r D

)(tm

1( )tφ

2 ( )tφ

( )i tφ

Fig. 1. System model for distributed transmit beamforming.
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In order to compare the improved algorithm with the

original algorithm easily and fairly, the assumptions made in

this paper are all the same with the assumptions in [7]. We

repeat some key assumptions below. For more details, please

see the list of assumptions in [7]. The channel from each

transmitter to the receiver, hi, is assumed to be static during

the phase synchronization process. For simplicity, |hi| = 1. All

transmitters are frequency-synchronized so that they only need

to adjust their phase offsets to achieve phase alignment at the

receiver. The local carrier of each transmitter i has an unknown

phase offset γi relative to the receiver’s phase reference. All

values of γi are assumed to be uniformly distributed over

[0, 2π). All transmitters transmit with equal power P. As

both algorithms considered here put emphasis on the phase

synchronization process and the effect of phase difference

on the beamforming gain, we set P = 1. The phase of the

received signal at the receiver from transmitter i at time t can

be expressed as:

Φi(t) = γi + ψi + φi(t) (1)

where ψi is the channel phase response from transmitter i to

the receiver and again all values of ψi are assumed to be

uniformly distributed over [0, 2π). Both the values of γi and ψi

are unknown to the transmitters and the receiver. The scalar

φi(t) is the adaptive component implemented by transmitter

i, which is set to be zero at the start for both algorithms.

The ideal phase alignment of distributed beamforming is that

there are no phase differences among the signals arriving at

the receiver, i.e.:

γi + ψi + φi(t) ≡ γk + ψk + φk(t) (mod 2π), (2)

i , k ∀i, k = 1, 2, ...,N.

The objective of the algorithm design is to let each transmitter

adjust its value φi(t) based on the one-bit feedback information

in each time slot to achieve nearly perfect phase alignment at

the receiver as fast as possible.

The complex baseband model of the received signal at the

receiver is given by:

r(t) =

N
∑

i=1

e jΦi(t)m(t) + n(t) (3)

where n(t) is additive white Gaussian noise of zero mean

and variance σ2
n. The received signal strength (RSS), which

determines the beamforming gain, at time t is defined as:

R(t) =

∣

∣

∣

∣

∣

∣

∣

N
∑

i=1

e jΦi(t)

∣

∣

∣

∣

∣

∣

∣

(4)

We assume that the noise power at the receiver is fairly small

compared to the signal power at the receiver. The RSS in each

time slot, R[n], can be measured accurately by averaging the

received signal, r(t), over a certain time interval.

III. ORIGINAL ONE-BIT FEEDBACK ALGORITHM

The original one-bit feedback algorithm for distributed

beamforming introduced in [7] can be briefly summarized as

follows.

1) At time slot n, each transmitter applies a random per-

turbation, δi[n], to its best known carrier phase, θi[n],

for beamforming. There are two simple distributions for

the perturbation step δi[n]: the two valued distribution

where δi[n] = ±δ0 and the uniform distribution where

δi[n] ∼ [−δ0, δ0], where i denotes the ith transmitter.

2) All transmitters use their new adaptive phases, φi[n] =

θi[n] + δi[n], to perform transmit beamforming.

3) The receiver measures the RSS, R[n] =
∣

∣

∣

∑N
i=1 e

jΦi[n]
∣

∣

∣, and

compares it with the best RSS in memory. The receiver

updates the best RSS in memory and feeds back (error

free) one-bit of information to all transmitters conveying

whether the RSS has been improved or not.

4) If the RSS has been improved, all transmitters adopt

their perturbed phases and update their best known

phases to be θi[n + 1] = φi[n] = θi[n] + δi[n] for the

next time slot (n+1). Otherwise, all transmitters discard

the perturbed phases and keep the best known phases as

before, θi[n + 1] = θi[n], for the next time slot (n + 1).

The algorithm then repeats these four steps.

The adaptive component φi[n] used for beamforming in time

slot n in the original algorithm is composed of two parts:

φi[n] = θi[n] + δi[n] (5)

where θi[n] represents the best known phase of transmitter i in

time slot n. The scalar δi[n] is the random component applied

to the best known phase in time slot n.

The original algorithm in [7] can be mathematically ex-

pressed as:

At the transmitter side:

θi[n + 1] =

{

θi[n] + δi[n] R[n] > Rbest[n]

θi[n] otherwise
(6)

At the receiver side:

Rbest[n + 1] = max(Rbest[n],R[n]) (7)

where Rbest[n] is the best RSS in memory, or in other words,

the maximal RSS in the past n− 1 time slots. By inserting (5)

into (1), the overall phase of the received signal at the receiver

in time slot (n + 1) can be expressed as:

Φi[n + 1] = γi + ψi + φi[n + 1]

= γi + ψi + θi[n + 1] + δi[n + 1] (8)

Given (6), when R[n] > Rbest[n], (8) becomes:

Φi[n + 1] = γi + ψi + θi[n] + δi[n] + δi[n + 1] (9)

Otherwise, when R[n] ≤ Rbest[n], (8) becomes:

Φi[n + 1] = γi + ψi + θi[n] + δi[n + 1] (10)
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IV. IMPROVED ONE-BIT FEEDBACK ALGORITHM

The original algorithm can be viewed as a random search

process in which each transmitter is trying to adjust its

phase correctly based on the feedback information. Since the

original algorithm only adopts a phase perturbation when it

yields a performance improvement and discards other ”failed”

perturbations, it only makes use of the feedback information

which indicates performance improvement. However, failure

can also be used to obtain future success. Making use of the

information contained within the failed perturbations which

led to performance degradation is expected to be helpful in

improving the convergence speed of phase alignment. Hereby,

we propose a new algorithm based on the original algorithm

summarized as follows.

1) At time slot n, each transmitter applies a random pertur-

bation, δi[n], to its best known carrier phase, θi[n], for

beamforming. Meanwhile, each transmitter also adds an

modifying factor, ǫi[n], to its best known carrier phase

for beamforming. This modifying factor is introduced

to add a minus δi[n − 1] to the adaptive phase for

beamforming in time slot n if the random component in

time slot (n−1), δi[n−1], has led to a failed perturbation

in time slot (n − 1). Otherwise, the value of ǫi[n] is set

to be 0.

2) All transmitters use their new adaptive phases, φi[n] =

θi[n] + ǫi[n] + δi[n], to perform transmit beamforming.

3) The receiver measures the RSS, R[n] =
∣

∣

∣

∑N
i=1 e

jΦi[n]
∣

∣

∣, and

compares it with the best RSS in memory. The receiver

updates the best RSS in memory and feeds back (error

free) one-bit of information to all transmitters conveying

whether the RSS has been improved or not.

4) If the RSS has been improved, all transmitters adopt

their perturbed phases and update their best known

phases to be θi[n + 1] = φi[n] = θi[n] + ǫi[n] + δi[n]

for the next time slot (n + 1). The modifying factor for

the next time slot is set to be ǫi[n + 1] = 0. Otherwise,

all transmitters discard the perturbed phases and keep

the best known phases as before, θi[n + 1] = θi[n], for

the next time slot (n + 1). The modifying factor for the

next time slot is set to be ǫi[n + 1] = −δi[n].

The algorithm then repeats these four steps.

The adaptive component φi[n] used for beamforming in time

slot n in the improved algorithm is composed of three parts:

φi[n] = θi[n] + ǫi[n] + δi[n] (11)

where θi[n] represents the best known phase, ǫi[n] is the

modifying factor and δi[n] is the random component.

The improved algorithm can be mathematically expressed

as:

At the transmitter side:

θi[n + 1] =

{

θi[n] + ǫi[n] + δi[n] R[n] > Rbest[n]

θi[n] otherwise
(12)

ǫi[n + 1] =

{

0 R[n] > Rbest[n]

−δi[n] otherwise
(13)

At the receiver side:

Rbest[n + 1] = max(Rbest[n],R[n]) (14)

By substituting (11) into (1), the overall phase of the received

signal at the receiver in time slot (n+ 1) can be expressed as:

Φi[n + 1] = γi + ψi + φi[n + 1]

= γi + ψi + θi[n + 1] + ǫi[n + 1] + δi[n + 1](15)

Given (12) and (13), when R[n] > Rbest[n], (15) becomes:

Φi[n + 1] = γi + ψi + θi[n] + ǫi[n] + δi[n] + 0 + δi[n + 1] (16)

Otherwise, when R[n] ≤ Rbest[n], (15) becomes:

Φi[n + 1] = γi + ψi + θi[n] − δi[n] + δi[n + 1] (17)

When the perturbation step δi is quite small compared

to the phase differences at the receiver, a perturbation on

the carrier phases would lead to either a reduction or an

increment in phase differences at the receiver, thus yielding

beamforming performance improvement or degradation. The

basic idea behind the improved algorithm is that for a single

transmitter in each time slot, if a positive perturbation on

its carrier phase leads to performance degradation, usually,

a negative perturbation on the same carrier phase will lead to

performance improvement, and vice versa. Fig. 2 shows an

example of two transmitters.

0δ+

0δ−

0δ−

0δ+

Fig. 2. Phase perturbation results in the case of two transmitters. If (b)
a random perturbation leads to performance degradation, (c) an opposite
perturbation will lead to performance improvement. Vector a is the received
signal from one transmitter, vector b is the received signal from the other
transmitter.

By comparing (16) with (9) we see that in both algorithms,

when an adaptive component φi[n] leads to a bigger beam-

forming gain, it will be retained and be set as the best known

phase for the next time slot, so θi[n + 1] = φi[n]. In the next

time slot (n + 1), a random perturbation, δi[n + 1], will be

applied to this best known phase, θi[n + 1], and there is no

further modification apart from the random perturbation on

θi[n + 1] for beamforming. By comparing (17) with (10) we

see that in both algorithms, when an adaptive component φi[n]

leads to a smaller beamforming gain, it will be discarded and

the best known phase is kept unchanged for the next time slot,

so θi[n + 1] = θi[n]. In the next time slot (n + 1), the original

152



Publications

algorithm will perform a random perturbation again based on

the same θi[n] while the improved algorithm will perform a

random perturbation based on θi[n] − δi[n], where −δi[n] is

introduced by the modifying factor, ǫi[n]. Consequently, both

successful and failed perturbations in the improved algorithm

contribute to the convergence speed.

One may ask why in the case of a failed perturbation in

time slot n, why not update the best known phase to be

θi[n + 1] = θi[n] − δi[n] for time slot (n + 1) rather than

introducing the modifying factor, ǫi[n + 1]? In that case the

random perturbation would be based on θi[n] − δi[n] in time

slot (n + 1). This is because θi[n] − δi[n] does not always

result in a better performance than θi[n]. If not, the update

equation θi[n + 1] = θi[n] − δi[n] may drift off the best phase

for beamforming corresponding to the best RSS in memory.

The basic idea behind the improved algorithm is related

to the signed algorithm proposed in [10], which also aims

to make use of failed perturbations more efficiently. In [10],

the authors have mathematically proved that making use of

the failed perturbations can improve the convergence speed.

However, the work in [10] mainly focuses on the convergence

analysis of phase errors themselves rather than the resulting

beamforming gain and does not provide the details on how to

implement the algorithm. Rather than introducing a modifying

factor, in the case of a failed perturbation, the signed algorithm

directly adds the opposite perturbation to the best known

phase, which is different from our improved algorithm. What

is more, the update process of the best known phase for

beamforming in [10] is based on the comparison between

the RSS after perturbation and the RSS before perturbation

in the same time slot. This implies that in the case of a

failed perturbation, θi[n] + δi[n], performed in time slot n,

it requires the beamforming process and the measurement of

RSS to be performed twice in time slot (n+1), corresponding

to the phases θi[n] − δi[n] and θi[n] − δi[n] + δi[n + 1]. Or

this operation may be counted as two time slots rather than

one. This consumes more time and more energy. Moreover,

the signed algorithm requires two bits feedback in each time

slot. For details of the signed algorithm, please see [10]. A

detailed comparison between our improved algorithm and the

signed algorithm is ongoing work.

V. RESULTS AND DISCUSSIONS

In this section, we present some Monte Carlo simulation

results in accordance with our previous assumptions. We

compare the improved algorithm with the original algorithm

in terms of the convergence time required to achieve a certain

beamforming gain. Between the two distributions for the

perturbation step, δi, given in [7], the original algorithm with

δi[n] = ±δ0 converges faster at initial stages, while the original

algorithm with δi[n] ∼ [−δ0, δ0] results in a bigger RSS

close to its optimum value after a lot of iterations. Since

the following simulation results will reveal that the improved

algorithm has an improvement in the convergence speed, we

select the first kind of distribution, δi[n] = ±δ0, for the

perturbation steps for both the original and the improved

algorithm. In order to compare the two algorithms fairly and

effectively, we use the same sequences of pseudo random

values of γi and ψi for both algorithms and set φi[1] = 0.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

Time slots

R
S

S

N=100

π/100

π/50

π/25

original, δ
0
=π/25

improved, δ
0
=π/25

original, δ
0
=π/50

improved, δ
0
=π/50

original, δ
0
=π/100

improved, δ
0
=π/100

Fig. 3. Comparison of the original algorithm and the improved algorithm
on the average RSS versus the number of time slots with N = 100 and
δ0 =

π
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.
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∆Φ

∆Φ

∆Φ

∆Φ

Fig. 4. Perturbation results in the case of two transmitters when ∆Φ ≤ δ0
(∆Φ denotes the phase difference at the receiver). (a) applying the original
algorithm; (b) applying the improved algorithm.

Fig. 3 shows the comparison of the original algorithm

and the improved algorithm using the average RSS versus

the number of time slots up to 2000 with N = 100 and

δ0 =
π
100
, π
50
, π
25
. The simulation results for every curve in

Fig. 3 are averaged over 103 instances. It shows that with

the same value of δ0, the improved algorithm converges faster

than the original algorithm at initial stages, which is consistent

with our expectation in Section IV. However, it also shows

that with the same value of δ0, the original algorithm results

in a bigger RSS than the improved algorithm after a lot of

iterations when the RSS gets closer to its optimum value. This

is because the original algorithm performs better when the

phase differences among the signals arriving at the receiver

become on the same order as δ0. For instance, Fig. 4 shows
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the case of two transmitters from which the received signals at

the receiver has a phase difference ∆Φ smaller than δ0. When

the phase difference between the two signal vectors, ∆Φ, is no

bigger than the perturbation step, δ0, there leaves no space for a

reduction in the phase difference when the iterations evolve. In

this situation, the original algorithm keeps the phase difference

unchanged while the improved algorithm results in a bigger

phase difference. Accordingly, the original algorithm performs

better when the RSS gets closer to its optimum value.
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Fig. 5. Probability of improved algorithm leading to a bigger RSS than
original algorithm versus the number of time slots.

Fig. 5 shows the probability of the improved algorithm per-

forming better than the original algorithm versus the number

of time slots up to 2000 with N = 100 and δ0 =
π
100
, π
50
, π
25
.

The probability in time slot n is calculated for 105 instances,

the number of instances that the improved algorithm leads to

a bigger RSS than the original algorithm in time slot n when a

failed perturbation happened in time slot (n−1). This is divided

by the total number of instances that a failed perturbation

happened in time slot (n − 1). From Fig. 5 we see that the

probability decreases when the number of time slots increases

and the probability with a bigger δ0 decreases faster than the

case with a smaller δ0. These findings are consistent with our

explanation above.

From Fig. 3 we see that with the same δ0 =
π
100

the improved

algorithm converges faster than the original algorithm, the

original algorithm with δ0 =
π
50

converges even much faster

than both algorithms with δ0 =
π
100

. How can one compare the

convergence speed of the two algorithms more quantitatively?

Based on the average RSS versus the number of time slots, the

number of time slots required to achieve an RSS of 90 with

different values of δ0 are plotted in Fig. 6 for both algorithms.

It shows that to achieve an RSS of 90, both the original

algorithm and the improved algorithm have an optimum δ0
corresponding to the minimum number of time slots. From

the simulation results we see that the minimum number of

time slots required for the original algorithm is 791, while
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Fig. 6. Comparison of the original algorithm and the improved algorithm
on the number of time slots required to achieve an RSS of 90 with different
values of δ0.

the minimum number of time slots required for the improved

algorithm is 648. This implies that the improved algorithm can

converge faster than the original algorithm to achieve an RSS

value of 90.

Fig. 7 shows the minimum number of time slots required to

achieve different values of RSS for both algorithms and Fig.

8 shows the corresponding values of δ0 which result in the

minimum number of time slots versus the value of RSS. If

we denote δ0 = δ1 for the original algorithm, and δ0 = δ2 for

the improved algorithm, the number of time slots n1 used to

achieve a certain value of RSS for the original algorithm is a

function of δ1 and R: n1 = f (δ1,R). Similarly, for the improved

algorithm the number of time slots n2 = g(δ2,R). From Fig. 6

and Fig. 7 we have: for any given R, there always exists a δ2
satisfying:

n2 = g(δ2,R) < n1 = f (δ1,R), ∀δ1 ∈ [0, 2π) (18)

It shows in Fig. 7 that the gap between the minimum number

of time slots required by the original algorithm and the

improved algorithm increases with the value of RSS. For the

original algorithm, we define the convergence speed to achieve

an RSS value of R to be inversely proportional to the minimum

number of time slots required, which is expressed as:

v1(R) ∝
1

n̂1(R)
(19)

where n̂1(R) = min(n1 = f (δ1,R)),∀δ1 is the minimum number

of time slots required to achieve R by the original algorithm.

The improvement in the convergence speed of the improved

algorithm compared to the original algorithm can be expressed

as:

ρ(R) =
v2(R) − v1(R)

v1(R)
=

n̂1(R) − n̂2(R)

n̂2(R)
(20)
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where v2(R) is the convergence speed for the improved al-

gorithm and n̂2(R) is the minimum number of time slots

required by the improved algorithm. The improvement in the

convergence speed to achieve different values of RSS as a

percentage are given in Table I, where n̂1(R) and n̂2(R) are

obtained from the results plotted in Fig. 7. It shows that

to achieve a certain RSS between 70 and 99, the improved

algorithm converges at least 20% faster than the original

algorithm.

VI. CONCLUSIONS

We have proposed a new algorithm for distributed transmit

beamforming based on the original one-bit feedback algorithm

presented in [7]. The improved algorithm yields a 20% faster

TABLE I
Improvement in convergence speed to achieve different RSS of the improved

algorithm compared to the original algorithm.

R 70 75 80 85 90 93

ρ 23.64% 23.65% 22.79% 23.81% 22.53% 22.58%

R 95 96 97 98 99

ρ 21.65% 21.84% 21.77% 21.13% 20.77%

convergence speed by making use of the one-bit feedback

information more efficiently. It does not require any more

information exchange or hardware support than the original

algorithm. Also, it keeps all the benefits of the original algo-

rithm, such as the simplicity and scalability. Simulation results

confirm the potential of the improved algorithm in improving

the convergence speed and show the minimum number of time

slots required to achieve a certain beamforming gain and the

corresponding value of perturbation step used. Obtaining a

closed form expression for choosing the optimum value of

perturbation step is the subject of ongoing work.
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ABSTRACT

This paper presents an investigation into the error probabil-

ity performance for binary phase-shift keying modulation in

distributed beamforming with phase errors. The effects of the

number of nodes on the beamforming performance are exam-

ined as well as the influences of the cumulative phase errors

and the total transmit power. Simulation results show a good

match with the mathematical analysis of error probability in

both static and time-varying channels.

1. INTRODUCTION

Recently, there has been interest in applying beamforming

techniques into wireless sensor networks. The motivation

is to reduce the energy requirement for each sensor node in

signal transmission, and extend the communication range to

a far field receiver. The individual sensor nodes share the

collected information and transmit it in such a way that the

signals add coherently at the destination. Transmit beam-

forming requires accurate synchronization in frequency and

phase among sensors, and accurate channel estimation be-

tween each sensor node and the receiver. Although certain

techniques have been designed in [1], [2], [3] to minimize

the phase errors among sensor nodes, phase errors cannot

be eliminated due to hardware constraints. Minimizing to-

tal transmit power using quantized channel state information

has been studied in [4]. The beam pattern performance of

distributed beamforming has been studied in [5] and [6] with

synchronous phase errors among sensor nodes. From a more

practical view, in this paper, we investigate the probability

of error for binary phase-shift keying (BPSK) modulation in

distributed beamforming with synchronous phase errors and

noise.

Shuo Song thanks China Scholarship Council/University of Edinburgh

Joint Scholarship Program for supporting his PhD studies.

We acknowledge the support of the Scottish Funding Council for the

Joint Research Institute with the Heriot-Watt University which is a part of

the Edinburgh Research Partnership.

The rest of the paper is organized as follows. Section 2

introduces the system model. In Section 3 we give an equiva-

lent channel concept to simplify the whole beamforming pro-

cess. In Section 4 the mathematical analysis of the average bit

error ratio (BER) for BPSK in both static and time-varying

channels are presented. In Section 5 we analyze the beam-

forming gain with constant total transmit power. Section 6

then presents simulation results to compare with the theoreti-

cal analysis and Section 7 draws conclusions for the paper.

2. SYSTEM MODEL

We consider a system of N sensor nodes collaboratively beam-

forming a narrowband message signal s(t) = A ·m(t) to a dis-

tant coherent receiver, where A is the amplitude of the mes-

sage signal. This is performed in a distributed manner by each

sensor node modulating s(t) with a RF carrier signal, as illus-

trated in Fig. 1.

Receiver

A·m(t)
1
p

2
p

ip

Sensor nodes

Fig. 1. System model for distributed beamforming

We assume that each sensor node and the receiver are

equipped with one single ideal omnidirectional antenna, and

there are no mutual coupling effects among the antennas. The

receiver has the ability to retrieve the overall channel phase

from the received signal. All sensor nodes are synchronized

so that they can transmit at the same carrier frequency, and
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signals transmitted from each sensor node will be added co-

herently at the receiver. The complex baseband model of the

received signal is given by

r(t) =

N
∑

i=1

|hi(t)pi(t)|e jφi(t)s(t) + n(t) (1)

where pi(t) is the amplification factor and hi(t) is the chan-

nel gain for sensor node i, φi(t) is the cumulative phase error

of the carrier signal from the synchronization process among

sensor nodes and the estimation of the channel gain for sensor

node i, n(t) ∼ CN(0, σ2
n) is additive white Gaussian noise. We

assume all phase errors φi(t) are independently and uniformly

distributed within the range (−φ0, φ0), which is the assump-

tion adopted in previously reported investigations [1], [2].

A. Static Channel

In a static channel scenario, hi(t) is set equal to a constant.

For simplicity, we set coefficients hi(t), pi(t) to be unity. Then

the system model is expressed as:

r(t) =

N
∑

i=1

e jφi(t)s(t) + n(t) (2)

B. Time-Varying Channel

In our time-varying model, the channel coefficients are inde-

pendent circularly symmetric complex Gaussian distributed,

denoted as hi(t) ∼ CN(0, 1), which corresponds to non-line of

sight or Rayleigh fading channels. By applying maximal ratio

combining, where the pre-amplification gain of each chan-

nel is made proportional to the received signal level, we set

|pi(t)| = |hi(t)| and the system model is then expressed as:

r(t) =

N
∑

i=1

|hi(t)|2e jφi(t)s(t) + n(t) (3)

3. ANALYSIS OF THE EQUIVALENT CHANNEL

If we view the whole beamforming process as an equivalent

channel, denoted as H(t), the system model becomes:

r(t) = H(t)s(t) + n(t) (4)

where H(t) =
∑N

i=1 e jφi(t) for the static channel scenario, and

H(t) =
∑N

i=1 |hi(t)|2e jφi(t) for the Rayleigh fading channel sce-

nario. With a coherent receiver, the signal-to-noise ratio (SNR)

gain, ‖H(t)‖2, is the key element deciding the error probabil-

ity for distributed beamforming and the communication range

for power limited sensor networks.

A. Static Channel

By the central limit theorem, with a large number of sensor

nodes N, and the independent identically distributed (i.i.d.)

random variables φi(t), we have:

‖H(t)‖2 =

∥

∥

∥

∥

∥

∥

∥

N
∑

i=1

e jφi(t)

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

N
∑

i=1

cos φi(t) + j

N
∑

i=1

sin φi(t)

∥

∥

∥

∥

∥

∥

∥

2

= ‖aS + jbS ‖2

= a2
S + b2

S (5)

where aS =
∑N

i=1 cos φi(t) ∼ N(µaS
, σ2

aS
), bS =

∑N
i=1 sin φi(t) ∼

N(µbS
, σ2

bS
), using the subscript S for the static channels.

Since the variables φi(t) are independently and uniformly

distributed within the range (−φ0, φ0), the means and vari-

ances of aS and bS can be obtained as:

µaS
= N · E[cos φi(t)]

= N
sin φ0

φ0

(6)

µbS
= 0 (7)

σ2
aS

= N
(

E[cos2 φi(t)] − (E[cos φi(t)])
2

)

= N

(

1

2
+

sin 2φ0

4φ0

− (
sin φ0

φ0

)2

)

(8)

σ2
bS

= N
(

E[sin2 φi(t)] − (E[sin φi(t)])
2

)

= N

(

1

2
− sin 2φ0

4φ0

)

(9)

From (8) and (9), we see, for the equivalent channel H(t),

the variance of the real part σ2
aS

and the variance of the imag-

inary part σ2
bS

are not equal, which means that the probability

density function (PDF) of ‖H(t)‖2 is not easily obtained from

the joint PDF of H(t), p(aS , bS ).

B. Rayleigh Fading Channel

For the Rayleigh fading channels, similarly, with a large num-

ber of sensor nodes N, and the i.i.d. random variables hi(t)

which are independent from the i.i.d. random variables φi(t),

we have:
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‖H(t)‖2 =

∥

∥

∥

∥

∥

∥

∥

N
∑

i=1

|hi(t)|2e jφi(t)

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

N
∑

i=1

|hi(t)|2 cos φi(t) + j

N
∑

i=1

|hi(t)|2 sin φi(t)

∥

∥

∥

∥

∥

∥

∥

2

= ‖aR + jbR‖2

= a2
R + b2

R (10)

where aR =
∑N

i=1 |hi(t)|2 cos φi(t) ∼ N(µaR
, σ2

aR
), and bR =

∑N
i=1 |hi(t)|2 sin φi(t) ∼ N(µbR

, σ2
bR

), using the subscript R for

the Rayleigh fading channels.

Based on the previous assumptions that the channel co-

efficients hi(t) are independent circularly symmetric complex

Gaussian distributed hi(t) ∼ CN(0, 1), and φi(t) ∼ (−φ0, φ0),

we derived the means and variances of aR and bR as follows:

µaR
= N · E[|hi(t)|2 cos φi(t)]

= N · E[|hi(t)|2] · E[cos φi(t)]

= N
sin φ0

φ0

(11)

µbR
= 0 (12)

σ2
aR

= N
(

E[(|hi(t)|2 cos φi(t))
2] − (E[|hi(t)|2 cos φi(t)])

2
)

= N
(

E[|hi(t)|4] · E[cos2 φi(t)] − (E[|hi(t)|2 cos φi(t)])
2
)

= N

(

1 +
sin 2φ0

2φ0

− (
sin φ0

φ0

)2

)

(13)

σ2
bR

= N
(

E[(|hi(t)|2 sin φi(t))
2] − (E[|hi(t)|2 sin φi(t)])

2
)

= N
(

E[|hi(t)|4] · E[sin2 φi(t)] − (E[|hi(t)|2 sin φi(t)])
2
)

= N

(

1 − sin 2φ0

2φ0

)

(14)

Similarly, from (13) and (14) we see, for the Rayleigh

fading channel scenario, σ2
aR

and σ2
bR

are not equal, thus the

expression of the PDF of ‖H(t)‖2 is difficult to compute.

4. MATHEMATICAL ANALYSIS OF ERROR

PROBABILITY

The BER of BPSK over a fixed channel in the presence of

AWGN is given by [7] in Chapter 5:

Pe(γ) =
1

2
erfc(

√
γ) (15)

where γ is the received signal-to-noise ratio per bit, and erfc(.)

is the complementary error function.

When the channel gain is random, the average BER for

BPSK over all values of γ is given by [7] in Chapter 14:

Pe =

∫ ∞

0

Pe(γ)p(γ)dγ (16)

where γ = ‖H(t)‖2 A2

σ2
n

in our system model described in Sec-

tion 2.

In Section 3, we have analyzed the SNR gain ‖H(t)‖2 of

the distributed beamforming system, and the expression of the

PDF of ‖H(t)‖2 was not obtained due to the variances of the

real part and the imaginary part of the equivalent channel be-

ing unequal. Consequently, p(γ) is not available in either the

static channel scenario or the Rayleigh fading channel sce-

nario. Formula (16) cannot be solved directly to get a closed-

form expression of the integration for our model, and can only

be evaluated by numerical techniques. Instead, we provide

another method to approximate the BER results as follows.

Method 1:

For both the static channel scenario and the Rayleigh fading

channel scenario, we set the variances of the real part and the

imaginary part of H(t) to be equal and use the maximum value

between them:

σ2
S = max(σ2

aS
, σ2

bS
) (17)

for the static channels, and

σ2
R = max(σ2

aR
, σ2

bR
) (18)

for the Rayleigh fading channels.

Because the real part and the imaginary part of the equiv-

alent channel H(t) now have different means but same vari-

ances, the magnitude gain of H(t) is approximated as a Rician

distribution.

The closed-form of BER for BPSK through Rician fading

channel with a coherent receiver is given by [8]:

PE = Q1(u,w) − 1

2















1 +

√

d

1 + d















exp

(

−u2 + w2

2

)

I0(uw)

(19)

where

d = 2σ2 A2

σ2
n

(20)

u =

√

µ2
a + µ

2
b

2σ2
· 1 + 2d − 2

√
d(1 + d)

2(1 + d)
(21)
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w =

√

µ2
a + µ

2
b

2σ2
· 1 + 2d + 2

√
d(1 + d)

2(1 + d)
(22)

and I0(x) is the zeroth-order-modified Bessel function of the

first kind, defined as:

I0(x) =

∞
∑

k=0

(x/2)2k

k!Γ(k + 1)
, x ≥ 0 (23)

Q1(x, y) is the Marcum Q-function, defined as:

Q1(x, y) =

∫ ∞

y

z · exp

(

− z2 + x2

2

)

I0(xz)dz (24)

Using (19) to (24), we can get the BER for our static chan-

nel scenario by substituting (6), (7), (17) for µa, µb, σ2 in (20),

(21), (22), and get the BER for our Rayleigh fading channel

scenario by substituting (11), (12), (18) for µa, µb, σ2 in (20),

(21), (22).

An approximation of I0(x) is given by [9] in Chapter 6:

I0(x) ≈ 1
√

2πx
exp(x), x ≫ 0 (25)

and after manipulation, (19) can be simplified as:

PE = Q1(u,w) − 1

2
√

2πuw















1 +

√

d

1 + d















exp

(

− (u − w)2

2

)

(26)

Method 2:

We are currently investigating the approximation of the BER

performance by an additive white Gaussian noise formula.

This is the subject of ongoing work.

5. DISTRIBUTED BEAMFORMING GAIN WITH

CONSTANT TOTAL TRANSMIT POWER

As the received signal-to-noise ratio cannot show the advan-

tages of beamforming gain, and is uncertain due to indepen-

dent and random phase errors φi, our simulation results are

plotted as BER vs total transmit power. Before we present

our simulation results, we first analyze the beamforming gain

with constant total transmit power. We use P to represent the

total transmit power of all the sensor nodes. In the static chan-

nel scenario,

P =

N
∑

i=1

A2

= A2 · N

In the Rayleigh fading channel scenario,

P =

N
∑

i=1

(A|pi(t)|)2

= A2

N
∑

i=1

|pi(t)|2

With large N, by the law of large numbers, it becomes:

P ≈ A2 · N

Generally, with a constant P, we can represent A as:

A =

√

P

N
(27)

Putting (27) and s(t) = A · m(t) into (4), we obtain:

r(t) = H(t)

√

P

N
m(t) + n(t) (28)

and

γ =
1

N
‖H(t)‖2 P

σ2
n

(29)

Since the mean of ‖H(t)‖2 grows linearly with N2, the

mean of the received signal-to-noise ratio per bit γmean ∝ P·N,

and with a constant P, γmean is proportional to N.

6. SIMULATION RESULTS

In this section, we present some simulation results in accor-

dance with our previous assumptions, and compare them with

our mathematical analysis given in Section 4.

Fig. 2 shows the comparison of the simulation results with

the mathematical analysis based on method 1 for BPSK mod-

ulation over static channels with phase errors. The simulation

results are conducted over 105 symbols with different number

of nodes N = 10, 100, 1000, and different phase error ranges

φ0 = 18◦, 36◦, 54◦, 72◦. We set n(t) ∼ CN(0, 1). All curves in

Fig. 2 are drawn by (19) except the curves for φ0 = 18◦ with

N = 100 in part (b) and φ0 = 18◦, 36◦, 54◦ with N = 1000

in part (c). These four curves cannot be drawn out by (19)

because of the overflow caused by the function I0(x) in (23)

used in MATLAB. Instead of (19), We use (26) to draw these

four curves in Fig. 2.

By comparing the simulation results plotted in parts (a),

(b), (c) in Fig. 2 and noting the order of magnitude differ-

ence of total transmit power in (a), (b), (c), we find that, with

similar BER performance in each part, when increasing the

number of nodes N by a factor of 10, the total transmit power

is reduced by a factor of 10, which means the energy trans-

mitted by each node is reduced by a factor of 102. Thus, we

have the conclusion that increasing the number of nodes N
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Fig. 2. Comparison of mathematical analysis based on

method 1 with simulation results of BER versus total transmit

power in the static channel scenario with different numbers

of nodes N =(a)10, (b)100, and (c)1000, and different phase

error ranges φ0 = 18◦, 36◦, 54◦, 72◦.
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Fig. 3. Comparison of mathematical analysis based on

method 2 with simulation results of BER versus total transmit

power in the static channel scenario with different numbers

of nodes N =(a)10, (b)100, and (c)1000, and different phase

error ranges φ0 = 18◦, 36◦, 54◦, 72◦.
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Fig. 4. Comparison of mathematical analysis based on

method 1 with simulation results of BER versus total trans-

mit power in the Rayleigh fading channel scenario with dif-

ferent numbers of nodes N =(a)10, (b)100, and (c)1000, and

different phase error ranges φ0 = 18◦, 36◦, 54◦, 72◦.
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Fig. 5. Comparison of mathematical analysis based on

method 2 with simulation results of BER versus total trans-

mit power in the Rayleigh fading channel scenario with dif-

ferent numbers of nodes N =(a)10, (b)100, and (c)1000, and

different phase error ranges φ0 = 18◦, 36◦, 54◦, 72◦.
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Fig. 6. New Comparison of mathematical analysis based on

method 1 with simulation results of BER versus total transmit

power in the Rayleigh fading channel scenario with different

numbers of nodes N =(a)10, (b)100, and (c)1000, and differ-

ent phase error ranges φ0 = 18◦, 36◦, 54◦, 72◦.

10
−1

10
0

10
−2

10
−1

10
0

Total Transmit Power

B
it
 E

rr
o
r 

R
a
ti
o

Rayleigh fading channels, N=10

φ
0
=18

°
, method 2

φ
0
=36

°
, method 2

φ
0
=54

°
, method 2

φ
0
=72

°
, method 2

φ
0
=18

°
, simulation

φ
0
=36

°
, simulation

φ
0
=54

°
, simulation

φ
0
=72

°
, simulation

(a)

10
−2

10
−1

10
−2

10
−1

10
0

Total Transmit Power

B
it
 E

rr
o
r 

R
a
ti
o

Rayleigh fading channels, N=100

φ
0
=18

°
, method 2

φ
0
=36

°
, method 2

φ
0
=54

°
, method 2

φ
0
=72

°
, method 2

φ
0
=18

°
, simulation

φ
0
=36

°
, simulation

φ
0
=54

°
, simulation

φ
0
=72

°
, simulation

(b)

10
−3

10
−2

10
−2

10
−1

10
0

Total Transmit Power

B
it
 E

rr
o
r 

R
a
ti
o

Rayleigh fading channels, N=1000

φ
0
=18

°
, method 2

φ
0
=36

°
, method 2

φ
0
=54

°
, method 2

φ
0
=72

°
, method 2

φ
0
=18

°
, simulation

φ
0
=36

°
, simulation

φ
0
=54

°
, simulation

φ
0
=72

°
, simulation

(c)

Fig. 7. New Comparison of mathematical analysis based on

method 2 with simulation results of BER versus total transmit

power in the Rayleigh fading channel scenario with different

numbers of nodes N =(a)10, (b)100, and (c)1000, and differ-

ent phase error ranges φ0 = 18◦, 36◦, 54◦, 72◦.
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can dramatically reduce the energy requirement for each sen-

sor node subject to the same BER performance, and the num-

ber of nodes N has a much larger effect on BER performance

than the phase error range φ0.

From Fig. 2, we see, on the one hand, with a large num-

ber of nodes N = 1000, the BER analysis based on method 1

matches the simulation results accurately. On the other hand,

with a small number of nodes N = 10, the BER analysis based

on method 1 has a slight difference with the simulation re-

sults. This is due to the limitation that central limit theorem

does not apply for a small number of nodes.

Fig. 6 shows the comparison of the simulation results

with the mathematical analysis based on method 1 for BPSK

modulation over Rayleigh fading channels with phase errors.

The simulation results are also conducted over 105 symbols

with different number of nodes N = 10, 100, 1000, and dif-

ferent phase error ranges φ0 = 18◦, 36◦, 54◦, 72◦. We also set

n(t) ∼ CN(0, 1).

Similarly, from Fig. 6 we see, with large N, method 1

gives an accurate prediction of the BER, but with small N,

method 1 gives a better prediction in the Rayleigh fading chan-

nel scenario than that in the static channel scenario.

By comparing the simulation results plotted in parts (a),

(b), (c) in Fig. 6, we can also have the conclusion that in-

creasing the number of nodes N can dramatically reduce the

energy requirement for each sensor node subject to the same

BER performance, and the number of nodes N has a much

larger effect on BER performance than the phase error range

φ0.

By comparing the simulation results plotted in Fig. 2 with

those in Fig. 6, we see when increasing the number of nodes

N, the BER performance in the Rayleigh fading channel sce-

nario comes close to that in the static channel scenario, which

highlights the ability to mitigate fading through path diversity.

7. CONCLUSION

We have simulated the BER performance for BPSK modula-

tion in distributed beamforming with phase errors in the static

channel scenario and the Rayleigh fading channel scenario,

where the results show a good match with our mathematical

analysis. The whole beamforming process has been viewed as

an equivalent channel and the system performance has been

analyzed for different numbers of nodes and different phase

error ranges. As the closed-form expression of BER is not

easily obtained, we provide a method to approximate the BER

results. Generally, method 1 gives a better prediction in the

Rayleigh fading channel scenario than the static channel sce-

nario. We are currently working on other approximations of

the BER performance, such as method 2 outlined above. The

effect of the energy limitation of each sensor node on the BER

performance, and BER analysis for other modulation schemes

in distributed beamforming with phase errors are also of par-

ticular interest for future work.
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