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Abstract 

The glyoxylate cycle operates in oilseeds during postgerminative development when it 

is involved in the conversion of fatty acids released from lipid reserves, to sucrose, to 

support growth until the seedling becomes photosynthetically competent. Isocitrate 

lyase (ICL) and malate synthase (MS) are key enzymes of this cycle, serving to by-pass 

the carbon dioxide liberating steps of the Krebs' cycle. In cucumber, synthesis of these 

two enzymes is co-ordinately regulated during seedling development. Using the 

glyoxylate cycle as a model system, it is anticipated that an insight can be gained into 

the factors responsible for metabolic and developmental regulation of plant gene 

expression. 

A partial cDNA clone encoding ICL was sequenced and used as a probe in Southern 

analysis to reveal that the icl gene is single copy in cucumber. Transcript levels of both 

ICL and MS in seedlings up to eight days post-imbibition were analysed by Northern 

hybridisation and confirm co-ordinate expression of the two genes. A cucumber 

genomic library was constructed and a clone containing the icl gene was isolated. The 

nucleotide sequence was determined and the structure of the gene analysed. The start of 

transcription was mapped by primer extension. The 6.5 kb fragment carrying the id 

gene was used to generate transgenic Nicotiana plumbaginifolia. Analysis of these 

transformants revealed that the transgene was faithfully transcribed following seed 

germination. 

Sequence comparisons of the promoter regions of the icl and ins genes revealed areas 

of homology potentially important in the co-ordinate transcriptional regulation of these 
genes. Gene fusion studies using the 3-glucuronidase (GUS) reporter gene were 

carried out in both stable transformation and transient expression systems. Promoter 

fragments of lengths 2.9 kb and 0.5 kb were linked to the GUS gene and transferred 

into N. plumbagimfolia. Fluorometric and histochemical analysis of the transformants 

indicated that, in vivo, both promoter fragments faithfully directed the temporal 

regulation of icl gene expression during postgerminative growth. However, sequences 

important for metabolic control of expression were not present in the shorter promoter 

fragment. This was confirmed by the findings of the transient expression system, in 

which several promoter-GUS fusions were introduced into cucumber protoplasts by 

electroporation. With icl promoter fragments of more than 1 kb, the levels of GUS 

were markedly reduced in the presence of sucrose; this was not the case for those 

shorter than 1 kb. These results illustrate that there are both developmental and 

metabolic controls acting on the icl gene of cucumber. Functional analysis of the id 

promoter suggests that separate elements are responsible for these different levels of 

control. 
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Abbreviations 

(v/v) volume:volume ratio 

(w/v) weight:volume ratio 

°C degrees Celsius 

A absorbance 

ADP adenosine 5-diphosphate 

ATP adenosine 5'-triphophate 

bp base pair 

BSA bovine serum albumin 

CaMV Cauliflower mosaic virus 

CAT chioramphenicol acetyl transferase 

cDNA complementary deoxyribonucleic acid 

Ci Curie 

CoA coenzyme A 

DNA deoxyribonucleic acid 

DPA days post anthesis 

ds double stranded 

EDTA ethenediaminetetraacetic acid (disodium salt) 

g gramme 

g relative centrifugal force 

GO glycolate oxidase 

GUS f3-glucuronidase 

h hour 

HPR hydroxypyruvate reductase 

ICL isocitrate lyase 

IMH Isocitrate lyase - Malate synthase - Homology 

kbp kilobase pair 

kDa kilodalton 

1 litre 

lb in-2  pounds per square inch. 

M molar 

M metre 

min minute 

Mr relative molecular mass 

mRNA messenger RNA 

MS malate synthase 
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MU methyl umbelliferone 

MUG methyl umbeffiferyl glucuronide 

NAD nicotinamide adenine nucleotide (oxidised form) 

NADH nicotinamide adenine nucleotide (reduced form) 

NPTII neomycin phosphotransferase, type H 

OR origin of replication 

ORF open reading frame 

polyA polyadenylation 

PTS peroxisomal targeting signal 

RNA ribonucleic acid 

rpm revolutions per minute 

s second 

sdd H20 sterile double distilled water 

SDS sodium dodecyl sulphate 

SGAT serine:glyoxylate amino transferase 

Ti tumour inducing 

Tris tris-(hydroxyrnethyl)-methylamine 

U units 

UTR untranslated region 

v volume 

w weight 
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CHAPTER 1 

INTRODUCTION 



1.1 Introduction 

Plant gene expression through development and in response to environmental changes 

is by necessity a highly regulated process. Elucidating the factors which regulate 

expression of plant genes is therefore fundamental to understanding the control of plant 

development. To this end, specific genes can be isolated, their regulatory regions 

identified and those important at specific developmental stages, or in response to 

environmental changes, defined. 

The glyoxylate cycle is an ideal system for such studies on gene regulation. Glyoxylate 

cycle enzyme activities are localised in a defined cellular compartment, the peroxisome, 

and the cycle functions both at specific developmental stages and in response to 

changes in the metabolic environment. In plants, two enzymes are unique to this cycle, 

malate synthase (MS) and isocitrate lyase (ICL), providing excellent candidates for 

studying the regulation of plant gene expression. 

In this introduction, the biogenesis and function of various classes of the peroxisome 

within plant cells will be discussed, followed by the regulation of the synthesis of ICL 

and MS. Finally, the various levels at which gene expression may be controlled will be 

described. 

1.2 Peroxisomes 

1.2.1 Structure of peroxisomes 

Peroxisomes are present in all eukaryotic cells. In plant cells they range in size from 
0.1 .tm in diameter in undifferentiated parenchyma cells to 1.8 tm in diameter in green 

leaves, soybean nodules and Nitella filaments (Huang et al., 1983). Peroxisomes are 

bounded by a single membrane and have simple ultrastructure, lacking internal 

membranes and an organellar genome. All peroxisomes contain characteristic enzymes 

such as those involved in fatty acid 13-oxidation, hydrogen peroxide producing oxidases 

and catalase (Huang et al., 1983). Different classes of peroxisomes in plants can be 

defined dependent on their complement of enzymes and hence biochemical function, for 

example, the glyoxysomes and gerontosomes, leaf peroxisomes and those involved in 

ureide metabolism in the root nodules of leguminous plants (see section 1.2.5). 
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1.2.2 Biogenesis of peroxisomes 

Although peroxisomes were once thought to form by vesiculation of the endoplasmic 

reticulum (ER), it is now generally agreed that peroxisome biogenesis takes place 

through the fission of existing organelles and growth takes place by post-translational 

uptake of proteins synthesised on free polyribosomes (Lazarow & Fujiki, 1985; Borst, 

1989; Subramani, 1993). 

Proliferation of the peroxisome number may precede peroxisome growth as is seen in 

the yeast Candida boidinii when moved to a methanol, glucose-free, medium (Veenhuis 

& Goodman, 1990). In contrast, when the yeast Hansenula polymorpha is shifted from 

glucose to methanol containing medium, growth of peroxisomes occurs until they are 

80 times their original volume before dividing into smaller organelles (Veenhuis et al., 

1979). The existence of these two pathways is not surprising as each step may take 

place independently of the other. The pas8 mutants of the yeast Pichia pastoris are 

deficient in peroxisomal protein import (see section 1.2.4), but the peroxisomes are 

able to proliferate and segregate to daughter cells (McCollum et al., 1993). 

The origin of the first peroxisome is still a matter of speculation. Peroxisomes do not 

form de novo, Saccharomyces cerevisiae cells grown on glucose are found to have at 

least one small peroxisome which grows and proliferates when the organism is moved 

to a glucose-free medium (Aitchison et al., 1992). The likelihood is that it was an 

endosymbiont, similar to mitochondria and chioroplasts. Although peroxisomes only 

have a single membrane and no DNA, it is not inconceivable that, as with mitochondria 

that have lost 90 % of their DNA to the nucleus, another endosymbiont could lose 

100 %. Some endocytic parasites exist that have only one membrane (de Duve, 1983), 

suggesting that this too is feasible. Analysis of the [s-oxidation system of peroxisomes 

indicates it is more similar to prokaryotic ones than the mitochondrial system, having 

multifunctional complexes which are not present in mitochondria (Kunau et al., 1988). 

Similarly, peroxisomal thiolases from many species appear to have evolved from a 

common ancestor, so lending weight to the endosymbiont theory (Igual et al., 1992). 

1.2.3 Transition between classes of peroxisomes 

During the lifetime of some plant cells, for example, those in the cotyledons of 

cucurbits, functional transitions take place. Post-germinative cucumber cotyledons are 

involved in lipid mobilisation until greening when they become a photosynthetic organ 

until they senesce (Becker et al., 1978; Huang et al., 1983). The enzyme complement 

of the peroxisomes of the cells changes radically through these transitions. The 
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question of whether the change is accompanied by the destruction of one population 

and the synthesis of a new one, or is the result of the conversion of existing organelles 

to a new function has been investigated by many workers (for review see Beevers, 

1979). The evidence now points clearly to transition from one function to another. 

Peroxisomes of postgerminative cotyledon cells at the stage of transition from 

heterotrophy to autotrophy have been shown to contain enzymes typical of both 

glyoxysomes and leaf peroxisomes by immunogold double labelling of ultra-thin 

sections (Nishimura et al., 1986; Sautter, 1986; Titus & Becker, 1985). In addition, 

malate synthase (MS), a marker enzyme of glyoxysomes, can efficiently be imported 

into both pumpkin leaf peroxisomes and glyoxysomes, but is specifically degraded 

upon import into peroxisomes isolated from the transition stage (Mori & Nishimura, 

1989). No degradation of MS was seen when imported into leaf peroxisomes from a 

later stage, showing that the degradation machinery is only present during greening. 

1.2.4 Targeting of proteins to peroxisomes 

Peroxisornal proteins, similar to nuclear-encoded mitochondrial and chloroplast 

proteins, are synthesised on free poly-ribosornes and imported post- translationally into 

the organelle (Lazarow & Fujiki, 1985). However, in contrast to mitochondrial and 

chloroplast import, in the majority of cases, the import of proteins into peroxisomes 

does not involve proteolytic processing (Scandalios, 1990), including ICL (Maeshima 

et al., 1988), implying that the targeting signal resides within the mature polypeptide 

(Lazarow & Fujiki, 1985). 

1.2.4.1 The carboxy terminal signal 

Peroxisomal targeting signals do not appear to be as well defined as those for other 

organelles, with more than one signal functioning to direct proteins to peroxisomes. 

The first signal identified was that residing at the carboxy terminus of the peroxisomal 

protein, firefly luciferase (Gould et al., 1987), now called a class I peroxisomal 

targeting signal (PTS). An analysis of the regions necessary for correct import of four 

other peroxisomal proteins revealed that they all contained the carboxy terminal 

tripeptide Ser-Lys/His-Leu (Gould et al., 1988). The terminal tripeptide of firefly 

luciferase, Ser-Lys-Leu, when fused to the cytosolic protein, chloramphenicol acetyl 

transferase (CAT), was shown to be sufficient to direct this protein to the peroxisomes 

(Gould et at., 1989). In addition, only a limited number of conservative changes can be 

made in this tripeptide without it ceasing to act as a targeting signal (Gould etal., 1989, 



Miura et al., 1992). The requirement for a carboxy terminal PTS appears to be an 

amino acid with a small R group at the first position, a basic one at the second and a 

large non-polar residue at the third (De Hoop & Ab, 1992). By heterologous 

expression of firefly luciferase in both yeast and plant cells, and of a yeast peroxisomal 

protein in mammalian cells, it was demonstrated that this terminal tripeptide was 

conserved as a peroxisomal targeting motif between yeast, plants, insects and mammals 

(Gould et al., 1990). Furthermore, the use of an antibody recognising the Ser-Lys-Leu 

motif demonstrated the presence of proteins containing this motif in the peroxisomes of 

fungi, plants and animals (Keller et al., 1991). The first demonstration that a plant 

peroxisomal protein is indeed directed by a carboxy terminal tripeptide was by Volokita 

(1991). Linking the last six amino acids of glycolate oxidase, a leaf peroxisomal 
protein, to the f3-glucuronidase (GUS) reporter protein, caused GUS activity to be 

detected in the peroxisomes of transgenic tobacco. 

In humans, a lethal condition known as Zellweger syndrome results from the inability 

of certain peroxisomal proteins to be imported, those containing a class I F1'S (Walton 

et al., 1992) . The pas8 mutant of the yeast, Pichia pastoris, exhibits this same import 

deficiency. PAS8 is a peroxisomal membrane protein which, in vitro, is capable of 

binding the F1'S 1 targeting signal specifically, raising the possibility that PAS8 is a 

PTS1 receptor (McCollum et al., 1993). 

1.2.4.2 The amino terminal signal 

Not all peroxisomal proteins contain a class I PTS. Some are synthesised with an 

amino terminal presequence which is cleaved upon import. This is also the case for 

mitochondrial and chloroplast proteins where cleavage of the presequence necessary for 

the targeting of the proteins to those organelles occurs upon import (for review, see 

Verner & Schatz, 1988). Rat 3-ketoacyl-00A thiolase, a peroxisomal protein, has been 

shown to be synthesised with a presequence which is cleaved on import to generate the 

mature protein. The cleaved presequence has additionally been shown to direct targeting 

and import of a non-peroxisomal protein, bacterial CAT, to the peroxisomes (Swinkels 

et al., 1991). A plant peroxisomal thiolase is also made as a precursor, though the 

importance of the cleaved amino terminus as a targeting signal has not been 

demonstrated (Preisig-Muller & Kind!, 1993). Watermelon glyoxysomal malate 

dehydrogenase (gMDH) is also seen to be synthesised in a precursor form which is 

cleaved to the mature form upon import (Giet! & Hock, 1984; Giet!, 1990). Like plant 

thiolase however, to date the importance of this sequence in targeting has not actually 

been demonstrated, merely the fact that it is cleaved upon import. When expressed in 
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the yeast H. polyinorpha, watermelon gMDH is targeted and imported to the 

peroxisomes. However, the apparent molecular mass is equal to that of the precursor 

form, indicating that in this yeast, processing of the transit peptide does not take place, 

though the enzyme still displays activity (van der Klei et al., 1993). 

1.2.4.3 Internal targeting signals 

Some peroxisomal proteins appear to have different mechanisms of targeting, both 

between organisms and in some cases, in the same one. Acyl CoA oxidase is such a 

protein. In rat liver, the PTS resides at the carboxy terminus (Miyazawa et al., 1989) 

and is of the class I type. In the yeast Candida tropicalis the carboxy terminus is not 

Ser-Lys-Leu and does not appear to be important for targeting. Instead there are two 

areas able to direct targeting independently. The amino terminal residues 1-118 and an 

internal region from residues 309-427 both contain information that specifically targeted 

fragments to peroxisomes. When either of these fragments was individually fused to 

the cytosolic enzyme dihydrofolate reductase (DHFR), this was then also directed to 

peroxisomes (Small et al., 1988). 

1.2.5 Biochemistry of peroxisomes 

Peroxisomes within higher plant cells can be classified according to their physiological 

role. At present, at least three classes are defined, including the leaf peroxisomes found 

in photosynthetic tissues, those involved in ureide metabolism in the uninfected root 

nodule cells of legumes, and glyoxysomes found in the fat storing cells of oilseeds. 

1.2.5.1 Leaf-type peroxisomes 

In photosynthetic tissues, the enzyme ribulose 1,5-bisphosphate carboxylase 

oxygenase (RuBisCO) catalyses both the carboxylation and oxygenation of ribulose 

1,5-bisphosphate (RuBP). Carboxylation of one molecule of RuBP leads to the 

formation of two molecules of glycerate 3-phosphate and the continuation of the Calvin 

cycle of photosynthesis. However, in high oxygen Concentrations, oxygenation of 

RuBP to form glycerate 3-phosphate and glycolate 2-phosphate occurs. Glycolate 2-

phosphate cannot be utilised in the Calvin cycle and therefore, if not further 

metabolised, would represent a loss of assimilated carbon. This process of oxygen 

incorporation is known as photorespiration and may reduce the rate of carbon dioxide 

fixation by 10 to 50 % in some plant species (Huang et al., 1983). However, some of 
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the carbon may be recycled via the glycolate pathway. The leaf-type peroxisomes house 

many of the enzymes of this pathway, glycolate oxidase (GO), hydroxypyruvate 

reductase (HPR), serine:glyoxylate aminotransferase (SGAT) and glutamate:glyoxylate 

aminotransferase. Glycolate is transported from the chioroplasts to the peroxisomes 

where it is first oxidised to glyoxylate by GO and subsequently transaminated by 

SGAT or glutamate:glyoxylate aminotransferase to form glycine. Glycine is transported 

to the mitochondria where the net conversion of two glycine molecules to one serine 

molecule and one molecule of carbon dioxide takes place. Serine is returned to the 

peroxisomes where SGAT catalyses the transamination to hydroxypyruvate which is 

reduced by HPR to form glycerate. This can then be transported to the chloroplast and 

used in the generation of sugars. This pathway recovers three of the four carbons from 

two molecules of glycolate 2-phosphate, the fourth being lost as carbon dioxide (figure 

1.1; Huang etal., 1983; Ogren, 1984; Tolbert etal., 1981). The peroxisomal enzymes 

involved in the photorespiratory pathway increase from undetectable levels in the 

heterotrophic cotyledons of epigeous species to become the major components of the 

peroxisomes as the cotyledons green and gain photosynthetic capacity. Accumulation of 

these enzymes is regulated primarily at the transcriptional level and is light dependent 

(Hondred et al., 1987; Greenler et al., 1989). 

1.2.5.2 Peroxisomes in root nodules 

In certain legumes, such as soybean and cowpea, a symbiosis with nitrogen fixing 

bacteria of the Rhizobium species occurs in the roots, leading to the formation of root 

nodules. Nodules are composed of two cell types, infected and uninfected, in equal 

proportions. Infected cells contain large numbers of bacteroids which are responsible 

for fixing nitrogen. Uninfected cells lie adjacent to the infected ones and contain many 

peroxisomes in which the fixed nitrogen is combined with carbon to form the ureides, 

allantoin and allantoic acid, the major transported nitrogen containing compounds, 

having a higher nitrogen to carbon ratio than asparagine or glutamine (Huang et al., 

1983). The proliferation of the peroxisomes in the uninfected nodule cells is associated 

with the synthesis of uricase, a hydrogen peroxide producing enzyme involved in 

purine catabolism (Nguyen et al., 1985). In addition, two other enzymes of this 

pathway, xanthine dehydrogenase and allantoinase activities are present in nodule 

extracts (Rawsthorne et al., 1980), but are cytosolic or microsornal respectively rather 

than peroxisomal (Hanks etal., 1981). 
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1.2.5.3 Glyoxysomes 

Glyoxysomes are the class of peroxisomes typically found in the cotyledons and/or 

endosperm of oilseeds and the scutellum of cereals during postgerminative growth. In 

addition, they are present in these species during embryogenesis. They are involved in 

the conversion of fatty acids stored as triacyiglycerols to carbohydrate. The 

triacyiglycerols are mobiised from the lipid bodies by lipases and are transported to the 

glyoxysomes. Within the glyoxysomes, fatty acids are broken down to produce acetyl-
CoenzymeA (acetyl-CoA) by the enzymes of p-oxidation. This pathway was first 

described in glyoxysomes from germinating castor bean endosperm (Cooper & 

Beevers, 1969a,b). It consists of four steps: (i) activation of the fatty acid to its acyl-

CoA derivative by the action of fatty acyl-CoA synthase takes place on the outer face of 

the glyoxysomes; (ii) following transport across the glyoxysomal membrane, oxidation 

by the fatty acyl-CoA oxidase generates the enoyl-CoA derivative and hydrogen 

peroxide, which is then degraded by catalase within the organelle; (iii) conversion of 

the enoyl-CoA derivative to the 3-keto ester is catalysed by a multifunctional enzyme 

which shows enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-

hydroxyacyl-CoA epimerase activities (Behrends etal., 1988) and (iv) finally thiolase 

catalyses the removal of acetyl-CoA from the 3-keto ester by reaction with CoA. The 

result of these reactions is the formation of a fatty acyl-CoA molecule which is two 

carbons shorter than the original molecule (Van den Bosch et al., 1992; Kindl, 1993). 
In animal cells, (i-oxidation occurs predominantly in the mitochondria where it contains 

no multifunctional complex, instead this reaction is catalysed by separate enzymes. 
Some investigators report n-oxidation activity in the mitochondria of non-fatty plant 

tissues (Thomas & Wood, 1986; Masterton et al., 1990: Dieuaide et al., 1993), in 

contrast to previous reports that all activity was associated with the peroxisomes 

(Gerhardt, 1983). 

Acetyl-CoA enters the glyoxylate cycle which serves to condense two molecules of 

acetyl-CoA to one molecule of succinate, which is then transported to the 

mitochondrion. The glyoxylate cycle was first described in higher plants in the 

endosperm of castor bean seedlings (Kornberg & Beevers, 1957). The cycle is 

catalysed by five enzymes, isocitrate lyase (ICL) and malate synthase (MS), both of 

which are unique to the cycle, and malate dehydrogenase, citrate synthase and 

aconitase, which are also part of the TCA cycle. All five enzymes were thought to be 

present in the glyoxysomes of fatty tissues. However, two recent reports indicate that 

aconitase is absent from glyoxysomes (Courtois-Verniquet & Douce, 1993; De Bells et 

al., 1994). 



The mechanism for the reoxidation of the NADH produced by 13-oxidation remains 

controversial. The presence of an electron transport chain within the glyoxysomal 

membrane which would allow the reoxidation of NADH has been reported (Fang et al., 

1987). However, current support lies with the proposal of Mettler & Beevers (1980) 

that shuttling of reducing equivalents between the glyoxysome and mitochondrion 

could lead to in situ oxidation of NADH. Consequently, the cycle depicted in figure 1.2 

is based on this proposal. 

1.3 Synthesis of ICL and MS during plant development 

The enzymes ICL and MS are unique to the glyoxylate cycle and hence have been 

studied extensively as marker enzymes for this cycle during plant development. The 

enzyme activities have been detected in higher plants during embryogenesis and 

germination of many species (Allen etal., 1988; Comai et al., 1989; Turley & Trelease, 

1990; Weir et al., 1980; Zhang etal., 1993), senescence (Graham et al., 1992; Pistelli 

et al., 1991; De Bellis et al., 1991) and pollen formation (Zhang et al., 1994). In 

addition, they have also been detected in many microorganisms (Kornberg, 1966; 

Fernandez et al., 1992; Thurston, 1977) and in some vertebrate tissues (Davis et al., 

1990; Davis & Goodman, 1992). 

In cucumber, MS is composed of eight identical subunits (Koller & Kindl, 1977) and 

the single gene has been cloned and sequenced (Graham et al., 1989). ICL is a 

tetramer, with two subunits of 63 and 61.5 kDa isolated from cucumber (Weir et al., 

1980; Reizman et al., 1980). The regulation of both of these enzymes is thought to be 

primarily at the level of transcription (Comai et al., 1989; Allen et al., 1988) and the 

levels of enzyme activity reflect changes in levels of mRNA (Smith & Leaver, 1986). 

Approximately 1 kb of the 5' region of the cucumber malate synthase gene has been 

shown to direct expression of a reporter gene in transgenic plants in the same temporal 

and spatial pattern as the gene is regulated in cucumber (Graham et al., 1990). 

However, regulation may also occur post-transcriptionally as the ratio of MS protein to 

mRNA is 14-fold higher than that for ICL, a difference which does not seem to be 

accounted for by differences in the translational efficiencies (Ettinger & Harada, 1990). 

There have been reports that phosphorylation is important in the regulation of ICL 

activity in Escherichia coli and Saccharomyces cerevisiae. In E. coli, the enzyme is 

active in the phosphorylated form, but in S. cerevisiae, it is the dephosphorylated form 

which is active, the enzyme being phosphorylated and therefore inactivated on the 

addition of glucose to the medium (Hoyt & Reeves, 1988; Robertson & Reeves, 1989; 

Lopez-Boado et al., 1988). A recent report indicates that ICL of castor bean and 
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cucumber is phosphorylated by a glyoxysomal protein kinase. However, the effect of 

phosphorylation on plant ICL activity has not yet been determined (Finnessy et al., 

1994). 

1.3.1 Synthesis of ICL and MS during embryogenesis and seed 

maturation 

Glyoxysomal enzyme activities can be detected in developing cotton seeds as early as 

17 days post anthesis (DPA; Turley & Trelease, 1990). At this stage, ICL and MS 

activities occur in a coordinate manner. However, the pattern of expression becomes 

noncoordinate at later stages, MS exhibiting a significant increase 45 DPA whereas ICL 

activity does not show a major increase until 12 h post imbibition (Choinski & 

Trelease, 1978; Miernyk & Trelease, 1981). Other glyoxylate cycle and n-oxidation 

enzymes all show coordinate development from 22 DPA (Bortman et al., 1981; 

Choinski & Trelease, 1978; Miernyk & Trelease, 1981). Increases in mRNA levels 

precede corresponding increases in protein and enzyme activity by approximately 24 h 

for MS and ICL, indicating that regulation is primarily at the transcriptional level 

(Turley & Trelease, 1990). ICL and MS mRNA5 in Brassica napus were shown to be 

coordinately synthesised in developing seeds from 37 DPA (Comai et a! 1989). ICL 

mRNA was first detected in developing sunflower seeds 19 days after flowering, and 

levels remained constant through dessication, but western blotting with an antibody to 

cotton ICL failed to detect protein (Allen et al., 1988). Thus, species specific patterns 

of expression of MS and ICL appear to exist during embryogenesis. 

1.3.2 Synthesis of ICL and MS during postgerminative growth 

The existence of the glyoxylate cycle in higher plants was first demonstrated in castor 

bean endosperm during postgerminative growth (Kornberg & Beevers, 1957). 

Subsequently, much research to investigate the regulation of the synthesis of ICL and 

MS during this period has been carried out, both in this species (Martin et al., 1984; 

Rodriguez et al., 1987) and in the cotyledons of other epigeous oilseeds such as 

cucumber (Becker et al., 1978; Reizman et al., 1980; Weir et al., 1980), sunflower 

(Allen et al., 1988), oilseed rape (Comai et al., 1989) and cotton (Turley & Trelease, 

1990). 

During and post germination in cucumber cotyledons, ICL and MS activities increase 

from undetectable levels in dry seeds, peaking 3 to 4 days after seed imbibition and 

thereafter declining (Becker et al., 1978). Monospecific antibodies have been used to 
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detect these two proteins amongst the products of in vitro translation programmed with 

cotyledonary RNA from cucumber (Lamb et al., 1978; Reizman et al., 1980). 

Immunoprecipitation of ICL and MS from in vitro translation products of cotyledonary 

RNA isolated during the first seven days of postgerrninative growth, indicated that the 

mRNA levels for each of these enzymes rise and fall in a similar pattern to enzyme 

activities, preceding them by about one day (Weir et al., 1980). Northern and western 

blot analysis of MS transcripts and protein, and assays of enzymes activity 

demonstrated that the regulation of MS synthesis during postgerminative growth is 

brought about primarily through changes in the levels of transcripts rather than through 

control of translation (Smith & Leaver, 1986). The rate of decline in MS transcripts, 

protein and activity was shown to be significantly greater when the seedlings were 

incubated in the light than in the dark (Smith & Leaver, 1986). Analysis of a 

transcriptional fusion construct of approximately 1 kb of the ins 5' region with the E. 

coli 3-glucuronidase (GUS) gene expressed in transgenic Nicotiana and Petunia 

seedlings exhibited the same pattern of expression to that of the ins gene in cucumber, 

indicating that transcription is the principal controlling step in the synthesis of MS 

(Graham et al., 1990). 

Similar results have been obtained in other species. In sunflower, the rate of 

accumulation of ICL mRNA, as well as that of decline, was greater in light grown 

seedlings than in those incubated in the dark during the first 5 days growth after 

imbibition. ICL protein was first detectable 24 h after the peak in ICL mRNA levels 

(Allen et al., 1988), so confirming the observations made in cucumber. Levels of ICL 

and MS mRNA in B. napus (Comai et al., 1989) and mRNA, protein and activity 

levels in cotton (Turley & Trelease, 1990) also confirm these observations. However, 

the possibility that post-translational processes may also be important in the regulation 

of these enzymes should not be forgotten. 

1.3.3 Synthesis of ICL and MS during senescence 

The presence of the glyoxylate cycle has been suggested in senescent tissue. ICL and 

MS activities were virtually undetectable in mature barley leaves, but were detected in 

leaves which had been excised and incubated in the dark (Gut & Matile, 1988). These 

enzyme activities were coupled with a decline in monogalactosyl diacylglycerol, a 

thylakoid lipid, suggesting that the glyoxylate cycle may be involved in the degradation 

of structural lipids. Subsequently, activities of these enzymes have been detected in a 

range of naturally and induced senescing organs of both mono- and dicotyledonous 

plants, including petals (De Bellis et al., 1991) and leaves (Pistelli et al., 1991). 
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Cucumber MS mRNA has been detected in naturally senescing cotyledons, leaves and 

petals and in detached, dark incubated cotyledons, leaves and roots (Graham et at., 

1992; McLaughlin & Smith, 1994). Confirming these observations, ICL and MS 

activities have also been detected in detached, dark incubated leaves of barley, rice and 

leaf beet and cotyledons of pumpkin, in which the activities were localised to the 

peroxisomes (De Bellis et at., 1990; De Bellis & Nishimura, 1991). Thus, a second 

transition of peroxisomal function takes place in epigeous species, from leaf 

peroxisome to glyoxysome-like function, which like the first transition, has been 

demonstrated by double labelling experiments (Nishimura et al., 1993). Transfer of 

whole plants from light to dark incubation also leads to an induction of MS and ICL in 

the photosynthetic organs (Birkhan & Kindi, 1990; Graham et al., 1992; Pistelli et at., 

1991). A correlation between the physiological changes associated with senescence and 

an increase in ICL activity, used as a marker of the glyoxylate cycle, has now been 

demonstrated (Vicentini & Matile, 1993). These results have led to the proposal that the 

synthesis of glyoxylate cycle enzymes is controlled by the levels of various metabolites, 

being repressed by high levels of sucrose and induced following the fall of sucrose 

levels experienced in induced or naturally senescent tissue (Graham et at., 1992). This 

proposal has now been substantiated by studies with dark incubated cultured cells and 

protoplasts (Graham et al., 1994; McLaughlin & Smith, 1994). 

1.4 Metabolic Regulation of gene expression 

1.4.1 Carbon catabolite repression 

It has been known for some years that, in microorganisms, the levels of glucose, or 

other rapidly mobilisable carbon source, repress the expression of genes encoding 

enzymes involved in the metabolism of other carbon sources, such as the SUC, MAL 

and GAL genes, 3-oxidation and glyoxylate cycle genes. This phenomenon is known 

as carbon catabolite repression, and allows the organism to switch rapidly from 

metabolism of one carbon source to another, as the metabolic environment changes. 

Much work has been done to elucidate the mechanism of carbon catabolite repression in 

yeast. Although many genes which are important have been identified through the use 

of genetics, the pathway from the initial signal to the final target gene is as yet unclear. 

The degree of repression varies between genes, at approximately 800-fold for invertase 

(SUC2), 80-fold for MS, 50-fold for ICL to less than 10-fold for aconitase and 

isocitrate dehydrogenase. The repression of the genes is thought to take place at the 
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level of transcription or mRNA stability, as the change in enzyme levels is paralleled by 

a decrease in mRNA (Gancedo, 1992). 

Repression is initiated in response to a signal generated when glucose or related sugars 

are present in the medium. Regulatory proteins which respond to the signal may either 

act directly on transcription of the regulated gene, or may act on additional regulatory 

genes or gene products, initiating a regulatory cascade. Repression may be effected 

either by activation of a repressing protein or by inhibition of an activating protein (see 

section 1.5.5). 

In yeast, catabolite repression may be exerted by glucose, mannose and fructose, and in 

addition by galactose and maltose. Some genes are repressed by all these sugars, others 

only by glucose. In order to transmit the 'signal', metabolism through a kinase is 

necessary, to phosphorylate the sugar (Witt et at., 1966), indicating a possible role for 

glucose-6-phosphate in the signal transduction pathway. 

Many mutants have been isolated which are unable to respond to carbon source 

changes, for example, in the genes CA Ti ,3 and MSNJ. CAT1 has protein kinase 

activity essential for its function and is affected positively by CAT3, but in an unknown 

manner. MSN1 acts as a transcription activator, but does not itself exhibit DNA binding 

activity. A second set of mutants unresponsive to repression have been isolated, 

including those in the genes HXK2 and MIG]. HXK2 is thought to encode the 

hexokinase isoenzyrne PIT (Ma et at., 1989a,b), again implicating hexose-6-phosphates 

in the control of repression. MIG] encodes a DNA binding protein with two Cys2His2  

zinc finger motifs, and has been shown to bind to the promoters of several genes 

repressed by glucose. Two sequences in the SUC2 promoter have been identified 

which are able to bind MIG1, which also binds in the GALJ/GALJO intergenic region 

(Nehlin et al., 1991). In addition, similar recognition sequences have been discovered 

in the MAL6 promoter. Although some elements have been elucidated, the function of 

many of the other factors involved is not yet known. The mechanism of regulation 

varies for different genes, so adding further complexity to the system. 

Many genes in other organisms have also been shown to be controlled by catabolite 

repression. In Drosophila larvae, the a-amylase gene is regulated by the levels of 

glucose that are fed to the larva. Levels of mRNA detected show an approximately 100-

fold reduction in larvae fed on 10 % glucose compared to those fed on a diet lacking 

glucose (Benkel & Hickey, 1987). Chimeric gene studies, using a promoter fragment 

of the a-amylase gene fused to the alcohol dehydrogenase transcribed region, showed 

that regulation by glucose is at the level of transcription (Grunder et at., 1993). 

In plants, several genes have been reported to be repressed by the presence of glucose 

or sucrose. In maize, seven genes encoding enzymes involved in photosynthesis are 
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repressed (Sheen 1990), potentially by metabolic factors related to high carbohydrate 

content (Krapp et al., 1993). No consensus sequence has been demonstrated to be 

responsible for the control of transcription. Instead, distinct upstream activating 

elements mediate repression, rather than basal promoters or negative elements (Sheen, 

1990). 

1.4.2 Induction of plant genes by sucrose 

In addition to those plant genes repressed by sucrose, many are induced by elevated 

levels of this metabolite. Transcription from the patatin promoter linked to GUS in 

transgenic potato plants was induced in leaves and stems when cultured on medium 

containing 0.3 to 0.4 M sucrose. Leaves and stems do not normally express patatin, 

which is specific to tubers and stolons attached to developing tubers (Wenzler et al., 

1989). Sporamin is a tuberous root storage protein of the sweet potato, usually 

undetectable in other organs. When the stem is grown on sucrose containing medium, it 

is found to accumulate sporamin (Hattori et al., 1990), and a region of the promoter 

responding to sucrose induction has been identified. This sequence has also been found 

in the promoter of the chalc one synthase gene from petunia which is also induced in the 

presence of 0.3 M sucrose (Tsukaya etal., 1991). The level of potato sucrose synthase 

mRNA increases in the leaves and petioles when the sucrose concentration is increased 

(Salanoubat & Belliard, 1989). The two sucrose synthase genes of maize, Shi and 

Susi, are differentially regulated by sucrose, Susi induced and Shi repressed when 

excised root tips were incubated in the presence of sucrose (Koch et al., 1992). 

1.4.3 Metabolic regulation of the icl and ms genes 

In various organisms, both MS and ICL are regulated by the levels of metabolites. In 

E. coli, the genes encoding these enzymes are located on the ace operon, and are 

required for growth of the organism on acetate or fatty acids as the sole carbon source 

(Maloy & Nunn, 1982). Expression of this operon is controlled at the level of 

transcription by the products of the iciR and fadR genes, the latter also being involved 

in the regulation of the fatty acid degradation regulon. The repressor, IclR, recognises a 

35 bp palindromic sequence which overlaps the -35 recognition site of RNA 

polymerase. This interaction is impaired by phosphoenolpyruvate, but is insensitive to 

acetate, acetyl CoA and pyruvate, suggesting that acetate does not act directly (Cortay et 

al., 1991). Both of these proteins are necessary for full repression of the ace operon, 

independently only exerting a slight degree of repression (Maloy & Nunn, 1982). It is 



not known whether the fadR gene product exerts its repressive effect by DNA binding 

to cis-acting sequences, or by interacting with IciR (Nunn, 1987). 

In Aspergillus nidulans, mutants exist, mapped to the icl and ms genes, which are 

unable to utilise acetate as the sole carbon source (Armitt et al., 1976). ICL expression 

is induced by acetate (Armitt et al., 1976) and is also subject to carbon catabolite 

repression (Kelly & Hynes, 1977). The facB gene, the product of which is necessary 

for acetate dependent induction of ICL and MS, is a trans-acting regulatory protein 

(Armitt et al., 1976). A second gene product, CREA, is also a DNA binding protein, 

mutations in which lead to derepression of ICL and other enzymes regulated by carbon 

catabolite repression (Bowyer et al., 1994). A 208 bp fragment of the icl promoter has 

been identified which carries sites recognised by both CREA and the facB gene product 

(De Lucas et al., 1994). As discussed above, the icl and ms genes of S. cerevisiae have 

been shown to be subject to carbon catabolite repression, with regulation thought to be 

primarily at the level of transcription (Scholer & Schüller, 1993). The glyoxylate cycle 

enzymes are essential for growth on C2  or C3 substances, the genes being controlled by 

positively acting derepression genes such as CAT] and 3. A 10 bp carbon source-

responsive element (CSRE) has been identified in the yeast icl promoter which is both 

necessary and sufficient for carbon source-dependent control of the gene (Scholer & 

SchUller, 1994). Sequence motifs similar to this CSRE were also found in the upstream 

regions of other genes involved in gluconeogenesis, including that of the ins gene, but 

this has not yet been shown to have biological significance. The position of the CSRE 

within the upstream region was shown to be important. When moved 140 bp upstream 

of its natural position, less than 2 % of the derepressed wild type activity was obtained 

(Scholer & SchUller, 1994). 

In Euglena, both ethanol and acetate induce the transcription of the ms gene. This 

induction is greater when the cells are incubated in darkness than in the light and MS 

mRNA was absent from phototrophic cultures (Woodcock & Merret, 1980; Harrum & 

Schwartzbach, 1981). Similarly in Chlorel!a fusca, ICL synthesis is subject to 

catabolite repression, synthesis being repressed if the cells were provided with glucose 

or allowed to photosynthesize, even in the presence of acetate, which stimulates 

synthesis of ICL when the cells are incubated in darkness (McCullough & John, 1972). 

Regulation of the synthesis appears to be primarily at the transcriptional level in both 

thee organisms. 

The regulation of icl and ms expression by metabolites has been demonstrated in 

suspension cultures of anise. When the cells are grown in medium lacking any source 

of carbon, ICL and MS activities are detectable. The derepression of these enzymes is 
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increased when acetate is added to the medium, but when sucrose is added, the 

activities are no longer detectable (Kudielka & Theimer, 1983a,b). 

More recently, the effect of metabolites on synthesis of ICL and MS has been studied in 

cucumber protoplasts and suspension cultures. ICL and MS proteins are detectable in 

protoplasts after incubation for 48 hours in the dark in the absence of sucrose. When 

incubated in the presence of 25 mM sucrose, proteins are not detectable (McLaughlin & 

Smith, 1994). Starvation of cucumber cell cultures led to induction of transcription of 

icl and ms, correlated with a drop in intracellular sucrose, glucose and fructose. 

Addition to the medium of glucose, fructose and raffinose, one of the major 

translocated sugars in cucurbits, resulted in repression of icl and ms transcription. 

Glucose analogues able to be phosphorylated all resulted in specific repression, but 3-

methyl glucose, although taken up by the cells, was unable to effect repression. 3-

methyl glucose is not phosphorylatable, leading to the proposal that the signal important 

for regulation of the icl and ins genes originates from the flux of hexose sugars into 

glycolysis (Graham et al., 1994). 

1.5 Control of gene expression 

1.5.1 Regulation of transcription in prokaryotes 

The understanding of regulation of transcription in prokaryotic systems has been 

achieved by extensive analysis of systems such as bacteriophage 7 (Ptashne, 1992). 

Prokaryotic genes are transcribed by RNA polymerase (pol), which can be regulated by 

various control proteins. Transcription initiation involves binding of RNA poi to the 

promoter, followed by isomerisation from the closed to the open form of the complex, 

resulting in the unwinding of the DNA helix near the transcription start site. Formation 

of the first few phosphodiester bonds of the RNA transcript leads to release of the 

polymerase from the promoter (promoter escape). The levels of transcription from any 

promoter are controlled by DNA binding proteins, serving to enhance or repress the 

basal levels of transcription attained in the absence of any additional factors. Activation 

of transcription is usually achieved by a trans-activating factor assisting binding of the 

polymerase to the promoter, as seen with X repressor (Ptashne, 1992). Transcriptional 

repressors have been demonstrated to act at each stage of transcriptional initiation. In 

addition to assisting the polymerase in the transcription of its own gene, the ? repressor 

also inhibits transcription of cro by blocking binding of the polymerase to the promoter 

(Hawley et al., 1985). The arc repressor of bacteriophage P22 blocks the transition 

from the closed to the open form of the polymerase (Vershon et al., 1987). In E. co/i, 



the formation of the first phosphodiester bonds is blocked by the Gal repressor (Choy 

& Adhya, 1992) and promoter escape by the Lac repressor at the lacUV5 promoter (Lee 

& Goldfarb, 1991). 

1.5.2 Transcriptional regulation in eukaryotes 

Eukaryotic genes generally consist of the coding sequence flanked by a 5' and 3' non-

coding region. The coding sequence, unlike those of prokaryotes, is usually interrupted 

by introns, though some genes, for example, the maize zein genes, do not contain 

intervening sequences (Heidecker & Messing, 1986). In the majority of cases, it is the 

5' region which contains the sequences necessary for the control of transcription. This 

region is composed of a number of elements. The promoter carries the TATA box 

approximately 30 bp upstream of the start of transcription (Joshi, 1987a) and additional 

orientation specific sequences capable of binding protein factors. Enhancers and 

silencers (upstream regulatory elements, UREs) occur upstream of the promoter and 

may exist in either orientation. The UREs serve to regulate the level of transcription 

from a certain promoter. The 5' region may contain several UREs, which may act 

independently or in a synergistic manner, differentially regulating expression in 

different tissues and at different developmental stages. The 3' region is transcribed but 

not translated and contains sequences which direct processing and polyadenylation of 

the 3' end of the messenger RNA. These sequences are not highly conserved between 

plants and animals. In vertebrates, the sequence AAUAAA is essential for correct 

processing, but often is not recognised in plant systems (Joshi, 1987b; Hunt et al., 

1987). 

DNA exists within the nucleus as a highly organised structure, packaged first around a 

histone octamer and then wound into a condensed 30 nm fibre. The degree of 

packaging affects the availability of a gene for transcription; if highly packaged, the 

necessary transcription factors will be unable to gain access to the sequences to which 

they must bind in order to effect activation of transcription. Specific chromosomal 

regions are normally assembled into specific structural domains. Therefore genes can 

exist in at least two transcriptional states. Those present in active, or 'euchromatic' 

regions are accessible to both activational and repressjonal regulation afforded by the 

particular set of DNA sequence elements and proteins that comprise that individual 

gene's regulatory machinery. However, those genes in inactive or 'heterochromatic' 

domains are not accessible to the regulation normally mediated by their 5' regions 

(Rivier & Pillus, 1994). 

II,J 



1.5.3 Assembly of the preinitiation complex 

Initiation of transcription in eukaryotes is more complex than in prokaryotes, requiring 

a large number of general transcription factors in addition to RNA polymerase. In 

eukaryotes, there are three RNA polymerases, RNA polymerase I, II and III. Here only 

transcription by RNA polymerase H (pol II) will be discussed, which is responsible for 

transcription of the protein encoding genes. The preinitiation complex is composed of 

p0111 together with several additional polypeptide chains which comprise the general 

transcription factors (TFs) hA, B, D, E, F, H and J (for review, Drapkin et al., 1993). 

Formation of the preiniation complex starts with the binding of TFHD to the TATA box 

of the promoter. TFIID is the only factor of the preinitiation complex which has been 

shown to have DNA binding activity. It is itself composed of several polypeptide 

chains, the TATA binding protein (TBP) which contacts DNA in the minor groove (see 

section 1.5.4.1) and TBP associated factors (TAF5). The carboxy terminal DNA 

binding domain of TBP is highly conserved throughout all species, but the remainder 

of the protein shows extensive sequence divergence. Some plants contain two genes for 

TBP implying either a specificity of function at certain poi II promoters or the 

possibility of one TBP serving poi I and/or poi III transcription exclusively (Gasch et 

al., 1990; Maass & Feix, 1992). TAFs are thought to contribute to the specificity of 

activation and may serve as the actual target for transcriptional activators. TFIIA binds 

to the TBP so stabilising the protein/DNA complex, followed by TFIIB to form the 

DAB complex. Pol ha is assisted to the DAB complex by TFIIF, after which binding 

of TFIIE, H and J occurs, so forming the assembled preinitiation complex. Pol II exists 

in two forms, unphosphorylated (ha) and phosphorylated (ho), only binding to the 

DAB complex in the unphosphorylated form. TFIIH shows both DNA helicase 

(Schaeffer et al., 1993) and protein kinase (Lu et al., 1992) activities. Negative 

supercoiling of the promoter region has been shown to stimulate transcription (for 

review, Stanway, 1993) and phosphorylation of poi ha at the seven residue repeats 

present at the carboxy terminus is necessary for promoter escape; the phosphorylated 

form, poi lb does not associate with TBP. The kinase activity of TFHH is stimulated 

by TFIIE and by DNA containing a TATA box and transcription start site. TFIIF and J 

are required for elongation in addition to initiation. This preiniation complex can give 

rise to a basal level of transcription even in the absence of additional activating factors. 

Not all promoters require the full set of factors for transcription initiation. When 

negatively supercoiled, the immunoglobulin heavy chain (IgH) gene promoter can be 

transcribed in the presence of only TBP, TFIIB and pol II (Parvin & Sharp, 1993). If 

the DNA was relaxed or linearised, this same promoter requires that all the GTFs are 



present. However, the exact requirement for GTFs is specific to the promoter: the 

adenovirus major late promoter required all the factors, irrespective of the state of the 

DNA. It should be noted that for all these experiments purified TBP was used rather 

than TFIID (TBP plus its associated TAFs). In vivo, it is possible that the presence of 

TAFs could expand the requirement for the other GTFs. 

1.5.4 Activation of the preinitiation complex 

The mechanism of activation of transcription is not understood in detail. Sequence-

specific transcriptional activators bind to DNA at the promoter or at enhancers, DNA 

sequences often present distant to the promoter on which they act, either upstream, 

downstream or even within the coding sequence (Dietrich et al., 1992; Douglas et al., 

1991). As described in section 1.5.1, activation of transcription in prokaryotes does not 

reqilire the action of proteins bound distant to the promoter, those bound at the operator 

sites are sufficient to regulate transcription. Although the mechanism is unclear, trans-

activators presumably act either by stimulating the rate of assembly of the preinitiation 

complex or by increasing its stability once formed. 

Activators often bind to enhancers as multimeric complexes, providing a greater 

flexibility of regulation than single factors alone could do. Synergism between factors 

is often found and has been demonstrated for the cauliflower mosaic virus 35S 

promoter (Benfey & Chua, 1990). They are usually modular proteins, consisting of a 

DNA binding domain, an activating domain, and those involved in other protein-protein 

contacts, for example, oligomerisation. The trans-activating factor of the GAL genes in 

yeast, GAL4, gives an excellent example of such a modular protein. GAL4 binds as a 

dimer to the promoters of the genes involved in galactose utilisation and is necessary 

for transcription of these genes which are only expressed in the presence of galactose 

and absence of a preferentially utilised carbon source such as glucose. The domains of 

GAL4 have been mapped to show that two regions at the amino-terminus are needed 

for .DNA binding, one involved in DNA recognition and the other necessary for 

dimerisation. There are two transcriptional activation domains, either of which can 

activate transcription when joined with a DNA binding domain. Activation of 

transcription by GAL4 is inhibited in the absence of galactose by the binding of a 

second protein, GAL80; residues residing within one of the activation domains are 

necessary for this inhibition to take place. Activation may require an 'adaptor' protein in 

addition to the protein containing a DNA binding domain, the 'adaptor' interacting with 

the factors in the promoter complex, rather than the DNA bound protein making direct 

contact itself (Martin, 1991). 
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1.5.4.1 DNA binding motifs 

Trans-activating factors recognise DNA through small discrete domains, which usually 

fit into one of several classes. The first structure of a DNA binding domain to be 

elucidated was the helix-turn-helix (HTH) motif, found in the bacteriophage X 

repressor and subsequently in many eukaryotic transcription factors which play 

important roles in development, such as the homeobox genes of Drosophila encoding 

Engrailed and Antennapedia. The homeodomain of these proteins consists of a highly 
conserved sixty amino acid domain folded into three cx-helices, the second and third of 

which form the HTH motif. Helix 3 is responsible for recognition and sits in the major 

groove where it makes extensive base specific connections. In addition, an amino-

terminal arm lies in the minor groove making further contacts (Wright, 1994). 

A variant of the homeodomain is the POU (Lit-1, Oct-1 and -2, jj.nc-86) domain, a 

bipartite DNA binding domain consisting of the POU-specific (POU) domain joined 

by a linker of variable length to a homeodomain (POUH). Both domains are required 

for high affinity and sequence specific binding but are independently stable. POUH  

shows high levels of sequence similarity to the classical homeodomain and is assumed 

therefore to generate a similar three dimensional structure. POUs consists of four 

helices which are packed to enclose a highly conserved hydrophobic core. It bears a 

structural resemblance to the HTH of X and 434 repressors, helix 3 being involved in 

recognition, but with the turn' extended. In classical homeodomains, the 'turn' 

consists of four amino acid residues; in POUs domains, the turn has an additional six 

amino acids, extending helix 2 by one helical turn (Wright, 1994). 

Proteins which exhibit both zinc binding and nucleic acid binding motifs are known 

collectively as the zinc finger proteins. This class shows considerable diversity, 

differing in metal coordination strategy, secondary structure and modularity, all of 

which lead to distinctly different folds (Schmiedeskamp & Klevit, 1994). The first zinc 

finger protein to be described was Xenopus TFIIIA (Miller et al., 1985), a factor 

required for initiation of transcription of the 5S ribosomal RNA genes by RNA p01 III. 

The zinc ion is contacted by side chains from two cysteine and two histidine residues, 

this family is described as the Cys2His2 fingers. Each finger consists of two irregular 

f'-sheets and an cx-helix that pack together around the zinc ion. Three amino acid 

residues just before and within the a-helix make base-specific contacts to the DNA. 

However, the specific contacts made by TFIIIA remain obscure. This protein contains 

nine fingers, not all of which have been shown to be essential for base-specific 

binding. In addition to the fingers, the linker sequence between them also plays a role 
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in determining the DNA binding affinity (Berg, 1993). Some retroviral proteins, for 

example, the HIV-1 nucleocapsid protein, also contain zinc fingers with a Cys2HisCys 

motif. Highly conserved hydrophobic and aromatic amino acid residues in the amino 

terminal of the protein form a cleft which contacts the single stranded nucleic acid 

(RNA; South & Summers, 1993). The GAL4 protein of yeast is another zinc finger 

family member. It binds two zinc ions in a Zn2Cys6 binuclear cluster. GAL4 binds to 

its recognition sequence as a dimer, two residues of the amino-terminal (X-helix 

contacting the outermost three base pairs of the 17 base pair consensus half site (Berg, 

1993). Other zinc finger proteins include GATA- 1, the erythroid transcription factor 

(ZnCy84) and the steroid and related hormone receptors, which have two domains, 

each binding one zinc ion via four cysteine residues (Schmiedeskamp & Kievit, 1994). 

Many other DNA binding proteins belong to the bZIP (basic region leucine zipper) or 

bHLH (basic region helix-loop-helix) classes. The DNA binding domain of these 

classes is a basic region, consisting of two extended -helices, rich in basic amino 

acids. The domain is unstructured in solution but forms -he1ices when bound to 

DNA, residues along the 'inner surface of the helix contacting the edges of the base 

pairs in the major groove. In addition, neighbouring residues contact the 

phosphodiester backbone of the binding site. The lack of tertiary structure may give 

these proteins greater adaptability and flexibility than other DNA recognising helices 

and may contribute to the diverse specificities of the bZIP and bHLH family members 

(Ellenberger, 1994). The carboxy terminal domain contains the leucine zipper or HLH 

sequences which are responsible for dimerisation. Many DNA binding proteins bind as 

dimers or higher order oligomers, which can contribute to the specificity of control as 

homodimers or various heterodimers may be formed able to regulate many genes in a 

tissue-specific or developmental specific manner. In prokaryotes, some proteins interact 

through n-ribbon recognition elements, for example, the Arc repressor (Harrison, 

1991), but none has been identified in eukaryotes to date. 

Of the DNA binding proteins for which cocrystal structures have been obtained, most 

contact the DNA in the major groove. However, TBP, the DNA binding polypeptide of 

the TFIID complex is seen to contact principally the minor groove of its site. The 

crystal structure of TBP was first determined from Arabidopsis thaliana, and revealed a 

new highly symmetrical DNA-binding fold resembling a saddle. The DNA binding 

surface is a curved five-stranded antiparallel f3-sheet. When TBP is bound to the DNA 

via its concave surface, the convex surface of the non-conserved amino-terminal is 

present for interactions with TAFs and other regulatory proteins (Nikolov et al., 1992). 

Binding of this protein to the DNA causes bending and leads to partial unwinding of the 
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helix and widening of the minor groove (Kim J. et al., 1993; Kim Y. et al., 1993; 

Burley, 1994). 

A group of DNA binding proteins, those containing a high mobility group (HMG) 

domain, also interact with the minor groove. The HMG domain is shared by abundant 

non-histone components of chromatin and by specific regulators of transcription. This 

domain is comprised of three cx-helices with aromatic residues that are clustered at the 

junctions thought to mediate the L shaped arrangement of helices IT and III. These two 

helices have clusters of basic amino acids on their outer surfaces which are thought to 

mediate DNA binding. In addition, the amino-terminal arm also contains basic residues 

which are implicated in DNA binding. How contacts are made with the minor groove is 

not known, as in B form DNA this groove is too narrow to accommodate an cc-helix 

(Groschedl et al., 1994). 

The majority of plant transcription regulators analysed so far belong to one of the 

classes described above, mainly the bZIP class. The conservation of so many domains 

between the plant and animal kingdoms suggests that DNA binding motifs may have 

originated before the divergence of these two kingdoms. However, some new classes 

have been discovered which seem predominantly to contain plant transcription factors. 

The proteins involved in the control of floral organogenesis often contain a motif 

described as the MADS (.jCM1, AG, DEF, SRF) box, a domain consisting of fifty 

five highly conserved amino acids (Schwarz-Sommer et al., 1990). These proteins are 

found to bind as heterodimers, such as DEF A and GLO in Antirrhinum, where 

heterodimerisation is essential for binding (Trobner et al., 1992). The MADS-box is 

not found exclusively in plants, but is also present in the serum response factor (SRF) 

in humans, in CArG binding factors and in some yeast factors (e.g. MCM1; for 

references, see Schwarz-Sommer et al., 1992). 

Other motifs discovered in plants are the tn-helix and double tn-helix found in GT-1 

and GT-2, two proteins that regulate the expression of light responsive genes in 

tobacco (Brunelle & Chua, 1993). This domain consists of three putative a-helices, 

bridged by a short turn, but showing no homology to the HLH or HTH motifs. 

However, it is possible that structurally they may serve the same function. 

1.5.4.2 Activation domains 

Once the complexes have assembled at an enhancer, the activation domain of the trans-

activating factor(s) must interact, directly or indirectly, with components of the 

preinitiation complex. Less is known of the requirements of an activation domain than 

DNA binding domains. The same high level of sequence conservation is not shown, 
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but they can be subdivided into three groups: the proline rich, the glutamine rich and the 

acidic. Acidic activating regions are universal and have been shown to function in all 

eukaryotic cells tested (Ptashne, 1988). The structural relationships and mechanisms of 

specificity are unclear, not all domains of one class contacting the same target (Gill et 

al., 1994). The predominant amino acids of a domain are not necessarily those 

important for activation, bulky hydrophobic residues which probably drive protein 

folding, generating specificity (Gill et al., 1994). Through NMR studies, some 

activation domains have been shown to lack secondary structure. Therefore, it seems 

probable that they may undergo a conformational change on contacting a target giving 

an induced fit. This avoids the problem of unbound activators interacting with the 

preinitiation complex, and can achieve greater flexibility and specificity (Tjian & 

Maniatis, 1994). 

The strength of activating regions may vary; multiple weak activators may mimic the 

effect of a single stronger activating region, although individually they are often unable 

to exert an influence over great distances. Combining many weaker activators allows a 

greater degree of flexibility in regulation. Many activators show cooperativity, they 

have a greater activation effect together than the sum of each independently, though 

often no direct interactions occur. 

1.5.4.3 Topology of transcriptional activation 

In prokaryotic systems, in order to differentially regulate genes, different promoters are 

employed, as exemplified by transcription of the gene encoding ? repressor from either 

PR or from PRM.  However, in eukaryotes, each gene has one promoter region close to 

the start of transcription to which the preinitiation complex binds. Differential regulation 

is achieved by the interaction of the preinitiation complex with specific factors binding 

at sites other than the region neighbouring the transcriptional start; the intervening DNA 

can form loops, so allowing the two or more protein complexes to interact. In order for 

activators to contact their target by looping when the two are only separated by a short 

distance (up to 70 bp), the interaction is assisted if the two sites are separated by an 

integral number of helical turns. If the two exist on opposite faces, contact could only 

be made by DNA twisting, an energetically costly process (Ptashne, 1992). 

Enhancers contain distinct sets of binding sites, variations in the arrangement providing 

the potential to create unique protein complexes resulting in specificity. Many in vitro 

experiments led to the belief that the arrangement of elements within an enhancer was 

unimportant for regulation. However, the activity of many natural enhancers depends 

on the three dimensional structure produced and requires architectural components in 

25 



the formation of stereospecific complexes. Such a complex is found at the mouse T cell 

receptor a gene enhancer. A T cell specific factor, lymphoid enhancer binding factor 1 

(LEF-1) binds to the minor groove and induces a sharp bend, enabling the factors 

bound to sites on either side to contact each other. LEF-1 alone cannot activate 

transcription, the additional two factors are essential, as is the arrangement of their 

binding sites within the enhancer (Tjian & Maniatis, 1994). 

One question is how trans-factors recognise which promoter complex to target, and not 

also work on more distal genes. It is possible that eukaryotic chromosomes are 

arranged so that the lengths of DNA separating the genes and the regulatory sites ensure 

that regulators work only on 'nearby' genes. Barriers may exist, such as sites of 

attachment of the chromosome to cellular structures, dividing the chromosome into 

domains within which, but not between which, loops between activators (or 

repressors) and targets may form (Ptashne, 1992). 

1.5.5 Repression 

In addition to DNA binding proteins exerting an activating influence on the initiator 

complex, there are many examples where the level of transcription is down regulated. 

In principal, repression of transcription could be exerted at any stage of preinitiation 

complex assembly and release. There are therefore several mechanisms by which 

transcriptional inactivation may be achieved, by interfering with trans-activators or by 

interfering with the assembly of general transcription factors. 

Interference with the trans-activators can take place in many different ways. In order to 

act as a DNA binding protein, the activator must first be transported to the nucleus. One 

class of repressors acts by preventing nuclear localisation. An example of this family is 
I1d3, which blocks nuclear import of Rel family members such as NF1cI3. Each of these 

family members has a three hundred amino acid region at the amino-terminus called the 

Rel homology, which contains the sequences important for nuclear localisation, DNA 
binding and oligomerisation. NFK 3 binds as a heterodimer of two Rel proteins, p50 

and p65. 1L43 associates with the region of the Rel domain important for nuclear import, 

so masking this sequence and retaining the activators in the cytoplasm (Nolan et al., 
1991). I.j3 proteins are regulated by phosphorylation; different phosphorylation 

cascades presumably therefore control which IK3 molecules are active at any particular 

time and hence which Rel family members are available for trans-activation (Link et al., 

1992). 

Many trans-activators bind to DNA as homo- or heterodimers. Inhibition of 

dimerisation by competing for association with one of the subunits, so preventing 
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formation of a functional activator, is another level at which repressors may act. In 

Drosophila, bHLH proteins which dimerise before binding, are important in the 

development of the peripheral nervous system. The cells giving rise to this system are 

epithelial and also act as the precursors for epidermal cells. The decision to become 

sensilla cells or epidermal cells is dependent upon the expression of various bHLH 

proteins. The genes responsible for sensilla organ formation are daughterless (da) and 
three in the achaete-scute complex (AS-C), all of which encode bHLH proteins which 

heterodimerise to activate transcription. In the epidermal precursors, two genes are 

expressed, extrainachrochaerae (emc) and hairy (h), which suppress sensory organ 

development. emc contains an HLH motif for dimerisation, but lacks the basic region 

which is essential for DNA binding (see section 1.5.4.1), so leading to the proposal 

that the emc gene product can dimerise with those of da and AS-C, so preventing them 

from binding and activating transcription (Van Doren etal., 1991). 

Repressors may also act by directly competing for a binding site, seen in the formation 

of the seven stripes expressing the even-skipped (eve) gene in Drosophila embryos. 

Eve encodes a homeodomain protein which is first expressed in Drosophila embryos at 

the nuclear cleavage cycle 12. At this time it is uniformly distributed, but by cycle 14 a 

gradient has been created and eve is no longer detectable at the poles. Within thirty 

minutes, expression of eve is restricted to seven transverse stripes, each five to six 

nuclei wide. The stripe 2 regulatory element within the eve promoter contains sites for 

both activators, hunchback (hb) and bicoid (bcd), and repressors, Kruppel (Kr) and 

giant (gt). Bcd and Kr are unable to co-occupy their closely linked binding sites, so 

when the negatively acting proteins are expressed, eve expression is repressed (Small et 

al., 1991; 1992). 

Masking of the activation region of the bound trans-activating factor can lead to 

repression. As discussed in section 1.5.4, GAL80 inhibits activation of the GAL genes 

by binding to the activation domain of GAL4 (Ma & Ptashne, 1987). Binding at a 

neighbouring site may also lead to repression, not by exclusion of the activating factor 

from its site but by masking of the activating domain. The c-/nyc gene is activated by a 

widely expressed transcription factor, myc-CF1. A second transcriptional regulator, 

myc-PRF binds to a site in the c-myc promoter, repressing transcription even in the 

presence of myc-CF1. It has been demonstrated that myc-PRF and myc-CF1 can 

simultaneously occupy the same promoter, indeed that they interact (Kakkis et al., 

1989). Therefore it seems plausible that myc-PRF represses c-inyc by binding next to, 

and so masking the activating influence of myc-CF1. 

The activating signal is not always transmitted directly by the DNA bound factor, but 

by an intermediary protein. Overexpression of a repressor that also recognises the 
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intermediary would lead to down regulation of the gene, a phenomenon described as 

'squelching'. This may be the mechanism involved in steroid receptor-mediated 

repression of induction by other steroid receptors. Overproduction of receptors for 

progesterone, glucocorticoids or oestrogen interferes with induction of the others, but 

without heterodimer formation, or any interaction between them, so implying the 

presence of an intermediary molecule (Meyer et al., 1989). 

The methods of repression described above only repress a gene via a single activator. 

Most eukaryotic genes are controlled by many different factors, therefore if 

transcription of the gene needs to be shut off completely, it would be more efficient for 

a repressor to directly affect the general transcription machinery. The SV40 T-antigen 

binds to three sites in the promoter DNA, so blocking access to it by the general 

transcription machinery, probably RNA pol II and possibly TFIID (Hanson et al., 

1981). Histories can probably prevent binding of TFIID to the TATA box, therefore 

some repressor proteins may act by directing formation of a positioned nucleosome 

over the TATA box (Roth et al., 1990). The Drosophila eve homeodomain protein 

represses transcription of genes containing homeodomain binding sites in their 

promoter by blocking one of the early steps in the formation of the preinitiation 

complex, TFIID or B being likely targets (Johnson & Krasnow, 1992). No factors 

have yet been identified which interfere with the late stages of preinitiation complex 

assembly in eukaryotes. 

1.5.6 Silencing and genomic imprinting 

Higher order chromatin structures are inaccessible to RNA polymerases and initiation 

factors. Local alterations of the chromatin structure are known to be involved in the 

repression of several genes. Silencing is a block to gene expression of regions of a 

chromosome and shares several characteristics with heterochromatin. It is a mechanism 

of transcriptional inhibition that is not dependent on the arrangement of positive and 

negative regulatory elements. The yeast mating type loci provides an example of 

silencing, the mating type switch genes being silenced at the mating type loci, HMRa 
and HMLa. The actual mechanism of silencing is not known in detail, but various 

factors involved have been elucidated. The HMR and HML loci are flanked by two 

elements, E and I, which are necessary for silencing of the DNA which lies between 

them. These elements are termed silencers (Brand et al., 1985), and are in many ways 

analogous to enhancers, their action being independent of orientation and, within limits, 

of position. Two transcription factors are known to bind to the HMR-E silencer, Rapip 

and Abflp, both of which are necessary for repression. In addition, there is a sequence 
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homologous to the autonomous replicating sequences (ARS) present in the E silencers, 

implicating DNA replication in the silencing of these cassettes (Brand et al., 1987). 

Establishment of the repressed state at HMR and HML requires passage through the 

synthesis phase of the cell cycle, suggesting that DNA replication may lead to the 

formation of the repressive chromatin structure that in turn inactivates transcription 

(Miller & Nasmyth, 1984; Rivier & Pillus, 1994). In addition, the products of four 

genes SIR  to 4 (silent information regulator) are all required to maintain the cassettes 

in the repressed state. Sir3p and Sir4p associate with Rapip, so providing a DNA 

binding complex competent for repression. Histone H4 is also implicated in silencing, 

strains containing mutations in histone H4 can result in loss of repression (Herskowitz 

et al., 1992). 

Another example of silencing is the inactivation of one X chromosome in all the cells of 

female mammals as a dosage compensation mechanism. One X chromosome in each 

cell is compacted into highly condensed chromatin, making it inaccessible to the 

preinitiation complex factors (Migeon, 1994). DNA methylation is a global suppressor 

of gene expression, inhibiting RNA synthesis by preventing the binding of basal 

transcription factors and by altering the chromatin structure (Eden & Cedar, 1994). It 

may play a role in both X chromosome inactivation and genornic imprinting. Proteins 

which bind non sequence specifically to methylated CpGs have been identified in both 

plants (Zhang et al., 1989) and mammals (Meehan et al., 1989). These proteins may be 

involved in inhibiting the binding of transcription factors or in altering the chromatin 

structure, possibly by stabilising the 30 nm solenoid fibre. Imprinting is the process by 

which a chromosome remembers' its parental origin and behaves differently according 

to whether it is inherited from the mother or the father; it provides both a means for 

transmitting allele-specific signals from gamete to embryo, and a cis-acting mechanism 

for maintaining the imprinted transcription pattern in each cell (Eden & Cedar, 1994). 

One example of imprinting is seen in the exclusive inactivation of the paternal X 

chromosome in marsupials and murine placental tissues (Lyon, 1993). However, 

imprinting does not necessarily involve the shut down of entire chromosomes; it is 

thought that each gene is affected independently. 

1.5.7 Post-transcriptional regulation 

In addition to regulation by the control of transcription of a gene, expression can be 

controlled at several levels subsequently, post-transcriptionally, translationally or post-

translationally. 
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Post-transcriptional control of gene expression is carried out by mechanisms such as 

mRNA stability, alternative splicing, 3' end formation and RNA editing. It is implicated 

in the control of catalase isozyme expression during post-germinative growth in cotton 

seedlings. Catalase is a tetrameric enzyme, of which five isozymes (A, B, C, D & E) 

exist, composed of two subunits, SU1 and SU2. The isozymes occur in differing 

abundancies during the first five days of postgerminative growth. SU 1 and SU2 are 

both expressed, being actively transcribed throughout this period. However, the levels 

of each isozyme vary significantly, indicating that SU 1 and SU2 mRNAs must be post-

transcriptionally regulated, either by selective degradation or by modification of the 

transcripts (Ni & Trelease, 1991). Messengers may be stabilised by protein binding as 

is seen with the chloroplast psbD RNA. Increased stability of this mRNA is gained 

when the leader sequence is bound by a protein and mutations in the binding site lead to 

reduced stability (Nickelsen et al., 1994). Messengers may contain sequences in the 3' 

untranslated region (UTR) which lead to destabilisation of the mRNA. The sequence 

AUUUA when inserted as tandem repeats into the 3' UTR of reporter gene constructs 

used to transform tobacco led to an increased rate of degradation of these mRNAs 

compared to those with no insert or a spacer insert. Such sequences are found in 

several mammalian protooncogene and lymphocyte mRNAs, suggesting that this 

degradation pathway is conserved amongst eukaryotes (Sullivan & Green, 1993). 

Alternative splicing is another important level of regulation and may involve a simple 

decision whether or not to splice, alternative 5' or 3' splice sites, exon skipping or 

mutually exclusive exons (McKeown, 1992). RNA editing is a process whereby the 

nucleotide sequence of an RNA molecule is changed with respect to the nucleic acid 

molecule that encoded it. It sometimes involves the insertion or deletion of nucleotides 

as is seen in the mitochondria of kinetoplast protozoa. Alternatively, conversion of one 

nucleotide to another may take place, or replacement of one residue by another. In plant 

organelles, the result is usually a change from cytidine to uridine. The result of RNA 

editing is usually a transcript which would not otherwise have been functional, 

however mRNAs for mammalian apolipoprotein B are functional both before and after 

editing (Covello & Gray, 1993). 

Translation of eukaryotic mRNAs is initiated by ribosomes entering the mRNA at the 

capped 5'-end and advancing to the AUG codon by linear scanning (Kozak, 1989). 

ATP and many protein factors are necessary for the ribosomes to engage the mRNA 

and the small ribosomal subunit only binds stably to the mRNA after the initiator Met-

tRNA has bound. Various mechanistic examples of translational regulation in 

eukaryotic systems have been elucidated. Repression of translation may be caused by 

the binding of a protein to the mRNA, exemplified by the inhibition of ferritin 
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translation by an iron-responsive mRNA binding protein which binds to the 5' region, 

so blocking ribosome access (Brown et at., 1989). Translation can be modulated via 

phosphorylation of the eukaryotic initiation factor-2 (eIF-2), which catalyses the 

binding of Met-tRNA to the 40S ribosomal subunits. Phosphorylation of eIF-2 usually 

leads to a reduced level of translation, presumably by inhibiting this process. However, 

translation of the yeast transcription factor GCN4 is increased by phosphorylation of 

eIF-2. GCN4 regulates transcription of many genes involved in amino acid 

biosynthesis. The mRNA encoding GCN4 is present constitutively, but translation only 

occurs when the cells are starved of amino acids, and is dependent on reinitiation of 

translation. The GCN4 mRNA has four short open reading frames (ORFs) upstream of 

the initiator AUG. Usually, translation will start at the first AUG and will only initiate 

at subsequent ones given sufficient time for the 40S subunit to be reprimed with a Met-

tRNA. Under normal conditions, the first and fourth ORFs of the GCN4 messenger 

will be translated, but not the second or third, or that encoding GCN4, as repriming 

will not have taken place by the time the scanning ribosome reaches the initiator AUG 

codon. However, under starvation conditions, eIF-2 is phosphorylated, leading to an 

increase in the time taken to reprime the small subunit. Consequently, ORF4 is not 

translated, but translation of GCN4 can occur (Kozak, 1992). 

1.5.8 Post-translational regulation 

In addition to the levels of control discussed above, many enzymes are regulated co- or 

post-translationally, adding a further point at which regulation of activity may occur. 

The reactions which regulate at this level take many forms and may be reversible or 

irreversible. Modification can occur by the addition of new functional groups onto the 

protein, such as phosphates, sulphates, carbohydrates and lipids. Phosphorylation-

dephosphorylation is an important reversible modification in the regulation of many 

enzymes. The glyoxylate bypass of E. coli is thought to be principally regulated by the 

phosphorylation state of isocitrate dehydrogenase (IDH). During growth on glucose, 

IDH exists mainly in the active dephosphorylated form. However, during growth on 

acetate, IDH is partially inactivated by phosphorylation catalysed by isocitrate 

dehydrogenase kinase/phosphatase, so directing the carbon flux through ICL and the 

glyoxylate bypass (Borthwick et al., 1984). Phosphorylation of ICL is now thought to 

also play a role in partioning between the glyoxylate bypass and the Krebs' cycle (Hoyt 

& Reeves, 1988; Robertson & Reeves, 1989). Other chemical modifications are 

irreversible, such as the covalent linkage of a carbohydrate group to egg albumin 

(Graves et at., 1994). 
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Some proteins are synthesised as inactive precursors which require cleavage to be 

activated. Activation of trypsinogen to trypsin requires cleavage of a lysine-isoleucine 

bond to release a hexapeptide and the active trypsin, and many of the proteins involved 

in blood clotting are activated on cleavage of a precursor (Graves et al., 1994). Some 

proteins may only be active when present in an oligomeric form, both ICI and MS are 

active as oligomers, ICL as a tetramer and MS as an octamer. 

Protein degradation may be a very important regulatory step, allowing the re-utilisation 

of amino acids and the ability to alter the protein content in response to a changing 

environment, or developmental stage. Degradation must necessarily be specific, not all 

proteins within a cell are degraded at the same time. One important specific degradation 

pathway which occurs in the nucleus and the cytoplasm is that involving covalent 

linkage of ubiquitin to the protein to be degraded. Ubiquitin is probably the most highly 

conserved of all proteins, exhibiting only three amino acid changes between higher 

plant and mammalian forms (Hershko & Ciechanover, 1992). Once ubiquitinated, a 

protein is likely to be degraded, though some may have the ubiquitin polypeptide 

cleaved and others can exist stably in the cell as conjugates (Vierstra, 1993). 

1.6 Aims of this thesis 

The analysis of genes expressed at defined stages of development or in response to 

specific metabolites serves to further the understanding of the mechanisms controlling 

plant gene expression during development and in response to metabolic status. The ins 

and icl genes are expressed during embryogenesis, germination and senescence, and in 

response to starvation conditions. The ins gene of cucumber has been isolated and the 

regions necessary for its expression during and post germination have been analysed. 

Recent studies have shown that only 248 bp of the 5' region upstream of the start of 

transcription are necessary for expression during postgerminative growth (Sarah & 

Smith, pers. comm.) and for metabolic regulation in protoplasts (Graham et al., 

1994a). The ins and icl genes are coordinately expressed in various species, leading to 

the suggestion that the mechanisms regulating the genes encoding these enzymes may 

be shared. The aim of this project was to investigate this intriguing possibility, by 

isolating and characterisating a genornic clone encoding cucumber ICL. This would 

enable subsequent comparison of the regulatory region of the icl gene with that of the 

ins gene, leading to the experimental analysis of the elements responsible for the control 

of gene expression of this gene during plant development and in response to 

environmental changes. 



CHAPTER 2 

MATERIALS AND METHODS 
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2.1 Biological material 

2.1.1 Plant material 

Cucumber seeds (Cucuinis sativus L. cv 'Masterpiece) were obtained from W. K. 

McNair, Portobello, Edinburgh. Seeds were imbibed at 4 °C overnight in water and 

sown either in vermiculite, or on damp filter paper, and incubated in a regime of a 16 h 

day at 25 °C and an 8 h night at 22 0C and an irradiance of 120 .tmol rn-2  s 1. Seeds 

sown on filter paper were transferred to Levington Universal potting compost 3 to 4 

days post imbibition. Nicotiana pluinbaginifolia seeds were obtained from J. R. Ellis, 

Department of Botany, University of Durham. Seeds were imbibed in 1 mM gibberellic 

acid overnight at 4 °C, sown on the surface of Levington Universal potting compost 

and incubated in a regime of a 16 h day at 25 °C and an 8 h night at 22 °C and an 

irradiance of 120 tmol rn-2  s. 

2.1.2 Bacterial strains and genotypes 

Escherichia coli: 	JM1O1 	supE dii A(iac-proAB) 

F [traD36 proABtlacl qiacZAM 151 
Used as a host for recombinant manipulation. 

DH5a 	supE44 AlacUl69 (801acZAM15) hsdR 17 recAl 
endAl gyrA96thi-1 relAl 
Used as a host for recombinant manipulation. 

HB101 	supE44 hsdS20(r B In B) recAl3 ara -l4proA2 
lacY 1 gal K 2 rpsL20 xyl- 5 intl- 1 
Used in triparental mating with Agrobacterium 
tuinefaciens - carries the helper plasmid pRK2013. 

XL 1-Blue supE 44 hsdR 17 recA 1 endA 1 gyrA 46 thi relAl lac 
F [proAB lacN IacZAM15 TnlO (tet r)] 

Used to plate and propagate XZAPII bacteriophage. 

NM514 hsdR lyc 7 (lyc is an hfl allele) 
Used to plate and propagate 2ZAPll and ?,NMI 149 
(allows growth of recombinant phage only - selection 
Of imrn434cI). 
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Agrobacteriuin tuinefaciens: 
LBA4404 	Genotype not available. 

Carries a cryptic and a 'disarmed' Ti plasmid, the latter 

lacking the entire T-DNA, but with an intact vir region. 

The bacterial chromosome carries streptomycin 

resistance and the disarmed Ti plasmid carries 

rifampicin resistance (Hoekema etal., 1983) 

2.1.3 Bacterial plasmids and bacteriophage 

Vector 	Source 
	

Use 

pBS+ Stratagene General subcloning; sequencing 

pBluescript SK +1- Stratagene Subcloning; in vivo excision 

XZAPII Stratagene cDNA library vector 

R408 Stratagene in vivo excision 

XNM1 149 Murray (1983) Genornic library vector 

pBinl9 Bevan (1984) Plant transformation 

pRAJ275 Jefferson et al., (1986) Promoter-GUS fusion generation 

pRK2013 Ditta etal., (1980) Triparental mating 

2.1.4 Isocitrate lyase cDNA clone (partial) 

The pBS+ plasmid carrying a 1.4 kb cDNA fragment encoding ICL, designated 

pBSICL. cDNA was synthesised on mRNA template extracted from cucumber 

cotyledons germinated for 3 days. Gift from W. Becker, University of Wisconsin. 

2.1.5 Malate synthase cDNA clone 

The pBS+ plasmid carrying a 1.9 kb cDNA fragment encoding MS, designated 

pBSMS1.9. cDNA was synthesised on mRNA template extracted from cucumber 

cotyledons germinated for 3 days. Gift from J. Hunter and B Schwartz, University of 

Wisconsin. 

2.1.6 Cucumber cDNA library in 2ZAPII 

Constructed in this laboratory by Dae-Jae Kim (Kim & Smith, 1994). cDNA was 

synthesised on mRNA template extracted from senescing cucumber cotyledons. 
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2.2 Miscellaneous 

2.2.1 General comments 

Chemicals and reagents were purchased from BDH Chemicals Ltd., or from Sigma 

Chemical Co. Ltd., unless otherwise stated. All manipulations were carried out at room 

temperature, unless otherwise stated. Sterilisation of media, chemicals and equipment 

was performed by autoclaving (120 °C, 20 mm, 15 lb in-2), by baking (180 °C for at 

least 6 h) or using disposable filters with a pore size of 0.2 pm (Acrodisc PF or 

Acrocap, Gelman Sciences, Michigan). 

2.2.2 Bacteriological media 

Luria-Bertani medium (litre-1) 10 g bacto-tryptone (Difco laboratories), 
5 g bacto-yeast extract (Difco), 10 g NaCl, pH 7.0. 

LB agar (litre-1) 

M9 minimal agar (litre') 

2 X YT medium (litre-1) 

BBL Trypticase agar (litre-1) 

BBL top (litre-1) 

As for LB medium with the addition of 15 g bacto 
agar (Difco), 

200 ml 5 X M9 salts (64 g Na2HPO4.7H20, 
15 g KH2PO4, 2.5 g NaCl, 5.0 g NH4C1), 
20 % (w/v) glucose, 15 g bacto-agar. 

16 g bacto-tryptone, 10 g bacto-yeast extract, 
5 g NaCl, pH 7.0. 

10 g trypticase (Baltimore Biological laboratories), 
5 g NaCl, pH 7.2, 15 g bacto-agar. 

As for BBL agar, but with 6.5 g bacto-agar. 

2.2.3 Tissue culture media 

All media were based on the basic medium of Murashige and Skoog (1962; M & S 

medium, Flow Laboratories, Irvine). 

Shooting medium (litre-') 	4.7 g M & S medium, 10 g sucrose, 0.2 mg N6Fur- 
furylaminopurine (kinetin), 2 mg naphthaleneacetic 
acid (NAA), 8 g bacto-agar, pH 5.6. 

Expansion medium (litre-1) 	2.35 g M & S medium, 5 g sucrose, 8 g bacto-agar. 

Rooting medium (litre-1) 	2.35 g M & S medium, 8 g bacto-agar. 
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Protoplast culture medium (litre-1) 
- sucrose 	 2.35 g M & S medium, 31.885 g D-mannitol, 

- 	 1 mg NAA, 0.2 mg benzylaminopurine (BAP), 
0.1 mg dichiorophenoxyacetic acid (2-4 D), pH 5.6 
with 0.1 M KOH. 

+ sucrose 	 As above except: 30.063 g D-mannitol, 
3.423 g sucrose. 

2.2.4 Restriction endonucleases and DNA modification enzymes 

All restriction endonucleases and DNA modification enzymes were purchased from 

Northumbria Biologicals Ltd. (NBL), Boehringer Mannheim Biochemicals (BCL), 

Pharmacia LKB, Cambridge Biolabs (CAMBIO) and Gibco-BRL. 

2.2.5 Antibiotics 

Antibiotic Stock conc. 	 Working conc. 

Ampicilhin 	100 mgml' in distilled water (d H20) 100 tg m11  

Rifampicin 	100 mg ml-1  in DMSO 

Streptomycin 300 mg ml-1  in d H20 

Kanamycin 	100 mg ml-1  in d H20 

Carbenicfflin 250 mg m1 1  in d H20 

Tetracycline 	5 mg m1 1  in ethanol 

100 tg mi 

300 ig ml-1  

100 ig ml-' (bacteria) 

200 ig ml-' (shooting) 

200 tg ml-1  (expansion) 

100 tg ml-1  (rooting) 

500 pg ml-1  (shooting) 

250 jig m1 1  (expansion) 
100 jig ml (rooting) 

10 jig ml-' 

2.2.6 Radiochemicals 

32P]dCTP (3000 Ci mmol-1), [y-32P]dATP (>5000 Ci mmol 1) and [a-35S]dATP 

(>1000 Ci mmol-1) were purchased from Amersham International plc. 
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2.2.7 Autoradiography 

Cronex 4 X-ray film was used and exposed at -70 °C using intensifying screens 

(Lightning Plus, Cronex) for detection of [32p]-labelled nucleotides, or at room 

temperature for [35S]-labelled  nucleotides. Films were developed using an X-Omat 

developer. 

2.3 DNA isolation, manipulation and analysis 

2.3.1 Small scale plasmid/phagemid isolation (up to 3 ml culture) 

DNA was isolated using a modification of the method of Birnboin and Doly (1979). 

Bacterial cells were harvested by centrifugation at 12,000 g for 2 mm. The pellet was 
resuspended in 100 .tl solution 1 (50 mM glucose, 25 mM Tris-HC1, 10 mM 

ethylenediaminetetraacetic acid [EDTA], pH 8.0). The cells were lysed by addition of 
200 p.! solution 2 (0.2 M NaOH, 1 % [w/v} sodium dodecyl sulphate [SDS]) and 

incubated on ice for 5 mm. 150 p.1 ice-cold solution 3 (3M sodium acetate pH 5.0) were 

added, the sample mixed by inversion and incubated on ice for a further 5 mm, after 

which time the bacterial debris and genomic DNA was pelleted by centrifugation at 

12,000 g for 5 mm. Protein was removed from the supernatant containing the plasmid 

DNA by addition of an equal volume of phenol (buffered to pH 7.4 with 1 M Tris 

HC1). The sample was mixed, the two phases separated by centrifugation at 12,000 g 

and the upper, aqueous phase removed to a fresh tube. This process was repeated with 

an equal volume of chloroform:isoamyl alcohol (24:1 by volume) to remove any traces 

of phenol, and the DNA precipitated from the solution by addition of 0.1 volumes 3 M 

sodium acetate, pH 5.0,2 volumes ethanol and centrifugation at 12,000 g for 10 min at 

4 0C. The DNA pellet was washed in 70 % (v/v) ethanol, dried under vacuum and 
resuspended in 50 p.1 sterile double distilled water (sdd H20). 

2.3.2 Large scale plasmid/phagemid isolation (for more than 100 ml culture) 

100 to 200 ml of bacterial cells were harvested and DNA isolated as in section 2.3.1 

with scaled up volumes: resuspended in 10 ml solution 1, 20 ml solution 2 added, 

followed by 15 ml solution 3, incubated on ice for at least 30 min and centrifuged at 

10,000 g for 15 mm. The DNA was precipitated from the supernatant by addition of 

0.6 volumes isopropanol for 30 min at -20 °C. The DNA was pelleted by centrifugation 

at 10,500 g for 30 min and resuspended in sdd H20. The volume of the DNA sample 
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was measured, 0.95 g ml-1  CsC1 added, and the solution loaded into 11.5 ml crimp-seal 

ultracentrifuge tubes (Sorvall) containing 0.45 ml of 10 mg m1' ethidium bromide. The 

tubes were sealed and ultracentrifugation carried out at 46,000 rpm in a 70Ti rotor for 

48 h at 20 °C. 

To remove the plasmid band from the tube, the top of the tube was pierced and an 

18 gauge needle inserted into the tube immediately below the band. The band was 

withdrawn from the tube into a 2 ml syringe and transferred to a sterile Corex tube. To 

remove the ethidium bromide from the sample, an equal volume of butan-1-ol, 

saturated with NaCl, was added, the 2 phases mixed by shaking and allowed to 

separate. The upper (organic) phase was removed and the process repeated 3 to 4 times 

until the aqueous phase was free of visible ethidium bromide. 

The aqueous phase containing the plasmid DNA was diluted by addition of 2 volumes 

sdd H20 and precipitated by addition of 6 volumes ethanol. The sample was placed at 

-20 °C overnight and the DNA collected by centrifugation at 9,000 g for 30 min at 

4 0C. The DNA pellet was resuspended in sdd H20, reprecipitated with ethanol and 

repelleted. The pellet was washed in 70 % (v/v) ethanol, dried and resuspended in 

sdd H20. The concentration and purity of the DNA was estimated as described in 

section 2.3.6 and diluted to the required concentration. 

2.3.3 Genomic DNA isolation 

Isolation of genomic DNA was based on the method described by Dellaporta et al. 

(1983). Plant tissue was frozen in liquid nitrogen, ground to a fine powder using a 

pestle and mortar and transferred to a centrifuge tube. 4.5 ml extraction buffer 

(0.1 M Tris-HC1 pH 8.0, 50 mM NaCl, 10 mM -mercaptoethanol) per g of tissue 

were added and the sample incubated at 65 °C until thawed. 0.6 volumes per g of tissue 

of 10 % (w/v) SDS were added, the sample mixed and incubated at 65 °C for 20 mm. 

Debris was pelleted by centrifugation at 2,500 g for 15 min and the supernatant 

removed to a fresh tube. Protein was precipitated by the addition of 2.5 volumes 

5 M potassium acetate pH 5.5 and the sample incubated on ice for 10 mm. Protein was 

pelleted by centrifugation at 2,500 g for 15 min and the supernatant transferred to a 

fresh tube. DNA was precipitated by addition of 0.6 volumes isopropanol and 

incubation at -70 °C for at least 30 mm. It was pelleted by centrifugation at 2,500 g for 

10 min and resuspended in 4.2 ml sdd H20. Reprecipitation was achieved by addition 

of 0.1 volumes 3M sodium acetate and 0.6 volumes isopropanol and incubation at 

room temperature for 10 mm. DNA was recovered by centrifugation at 2,500 g for 

10 mm, washed in 70 % (vlv) ethanol and air dried. It was resuspended in 300 il sdd 
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H20 and incubated at 65 °C to aid resuspension. Any insoluble material was discarded. 

All samples were treated with 10 tg ml-1  RNase prior to gel electrophoresis. 

2.3.4 Bacteriophage DNA isolation 

Qiagen DNA affinity columns (Qiagen inc) were used in the isolation of phage DNA 

from plate lysates (see section 2.6.3). 30 jil buffer Li (20 mg ml-1  RNase A, 6 mg ml 

DNasel, 0.2 mg ml-1  bovine serum albumin [BSA], 10 mM EDTA, 100 mM Tris-HC1, 

300 mM NaCl, pH 7.5) were added to 10 ml of plate lysate and the sample incubated at 

37 °C for 30 mm. 2 ml ice-cold buffer L2 (30 % [w/v] polyethylene glycol [PEG 

60001, 3 M NaC1) were added, the sample mixed gently and incubated on ice for 

60 mm. The bacteriophage were pelleted by centrifugation at 10,500 &for  10 min and 

the pellet resuspended in 1 ml buffer L3 (100 mM Tris-HC1, 100 mM NaCl, 25 mM 

EDTA, pH 7.5). 1 ml buffer L4 (4 % [w/v] SDS) was added, the sample heated to 

70 °C for 10 min and cooled on ice. 1 ml buffer L5 (2.55 M potassium acetate pH 4.8) 

was added, mixed gently and the debris pelleted by centrifugation at 10,500 g for 

30 min at 4 °C. 

A Qiagen-tip20 was equilibrated with 1 ml buffer QBT (750 mM NaCl, 50 mM 

3- [N-morpholino] prop anesulfonic acid [MOPS], 15 % [v/v] ethanol, pH 7.0, 0.15 % 

[v/v] Triton X-100). The supernatant from the final centrifugation step was applied and 

the column washed through two times with I ml buffer QC (1.0 M NaCl, 50 mM 

MOPS, 15 % [v/v] ethanol, pH 7.0). The DNA was eluted from the column with 

1.5 ml buffer QF (1.25 M NaCl, 50 mM MOPS, 15 % [v/v] ethanol, pH 8.2) using 

gravity flow, and the remaining solution forced out using a 'Pipetteman' automatic 

pipette. 

The DNA was precipitated by the addition of 0.6 volumes isopropanol, and collected 

by centrifugation at 12,000 g for 5 mm. It was washed with 70 % (v/v) ethanol, air 

dried and resuspended in 30 .xi TE (10 mM Tris-HC1, 1 mM EDTA, pH 8.0). The 

concentration was determined as described in section 2.3.6. 

2.3.5 Agrobacterium DNA isolation 

Agrobacteriuin DNA isolation was performed using the method described by Draper et 

al., (1988). Bacterial cells were pelleted from 1.5 ml of culture grown for 48 h, and 

resuspended in 300 il TE pH 8.0. 100 fl 5 % (w/v) sodium lauryl sarcosinate 

(sarkosyi) were added and the sample mixed. 25 .tg proteinase K in 150 tl sdd 1120 

was added, the sample mixed and incubated at 37 °C for 1 h. 500 il of phenol were 
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added to the tube, and the viscous mass sheared by passage through a 1 ml Gilson tip 

five. times. The two phases were separated by centrifugation at 12,000 g for 5 min. The 

aqueous phase was reextracted 3 times with 500 tl phenol:chloroform:isoamyl alcohol 

(25:24:1 by volume). DNA was precipitated by addition of NaCl to a final 

concentration of 0.25 M and 3 volumes cold ethanol and storage at -20 °C for 2 h. The 

DNA was pelleted by centrifugation at 12,000 g for 10 min at 4 °C, washed in 70 % 

(v/v) ethanol, partially dried under vacuum and resuspended in 50 tl sdd H20- 

2.3.6 Estimation of DNA and RNA concentration 

Spectrophotometric readings of a known dilution of a DNA or RNA sample were taken 

at 260 nm and 280 nm. An A260  reading of 1 corresponds approximately to 50 ig m1 1  

for double stranded (ds) DNA and 40 .tg ml-1  for single stranded (ss) DNA and RNA. 

An estimate of sample purity is provided by the ratio of the absorbance value at 260 nm 

to that at 280 nm, pure DNA and RNA having values of 1.8 and 2.0 respectively. 

2.3.7 Restriction endonuclease analysis of DNA samples 

Digestions were carried out according to the manufacturers recommended conditions, 

using buffers supplied by BCL. 

2.3.8 Horizontal gel electrophoresis of DNA 

DNA samples were analysed using gels prepared from agarose (ultra-pure) at variable 

concentrations between 0.7 and 1.0 % (w/v) in TAE buffer (0.04 M Tris-Acetate, 

1 mM EDTA, pH 8.0). Samples were loaded with 0.1 volumes gel loading dye 

(0.25 % [w/v] bromophenol blue, 0.25 % w/v] xyiene cyanol FF, 15 % [w/v] Ficoll 

in water). Ethidium bromide was either included in the gel mix to a final concentration 

of 0.5 jig ml* or the gel was stained using a solution of 0.5 tg ml-' ethidium bromide 

for 30 mm, and DNA visualised using a short wavelength trans-illuminator (Hybaid). 

DNA size markers were purchased from BRL. 

2.3.9 Southern blotting 

DNA samples were fractionated using horizontal agarose gels, visualised and 

photographed. For gels containing fragments greater than 10 kb, the gel was 

depurinated by soaking in 0.25 M HC1 for 15 mm. The gel was transferred to 
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denaturation buffer (1.5 M NaCl, 0.5 M NaOH) for 20 mm, followed by 2 periods of 

15 min in neutralisation buffer (1.5 M NaCl, 0.5 M Tris-HC1 pH 7.2, 1 mM EDTA). 

DNA fragments were transferred to Hybond N filters (Amersham) in 20 X SSC 

(3 M NaCl, 0.3 M sodium citrate) by capillary action according to the method of 

Southern (1975). The transferred DNA fragments were crosslinked to the nylon 

membrane by ultra-violet irradiation of 0.4 J cm72  using a Hybaid crosslinker. 

2.3.10 DNA sequencing and computer analysis 

2.3.10.1 Sequencing double stranded plasmid DNA 

DNA was isolated by alkaline lysis as described in section 2.3.1, from 3 ml culture 
grown overnight. RNA was removed by treating the sample with 10 p.g .tl-1  RNase at 

37 °C for 1 h. The DNA was further purified by use of Geneclean glass bead solution 

('glassmilk') (Biolabs 101 Inc.) according to the manufacturers protocol, and eluted 
from the glassmillc in a total volume of 18 jil sdd H20. 

The DNA was denatured by addition of 2 tl 2 M NaOH and incubation at 37 OC for 

30 mm. Annealing of the primer to the template was achieved by addition of 1 .tl 

10 mM primer, followed by precipitation by addition of 6 .t1 3 M potassium acetate pH 

5.0 and 150 .t1 ethanol. The annealed template/primer mix was recovered by 

centrifugation at 12,000 g for 30 min at 4°C. After washing in 70 % (v/v) ethanol and 
drying under vacuum, the annealed template/primer DNA was resuspended in 12 j.tl sdd 

H20 and 2 jtl annealing mix (a buffered solution containing MgCl2  and dithiothreitol 

[DTT]). The DNA template was then sequenced (labelling and termination reactions) 

according to the TlSequencingTM  kit protocol (Pharmacia). Primers used were M13 -40 

and reverse primers, or ones specific to the ICL genomic clone or to the gene encoding 
-glucuronidase (GUS). 

The samples were heated at 80°C for 2 min and resolved on a 6 % (w/v) acrylamide, 

7 M urea, 1 X TBE (0.09 M Tris-borate, 2 mM EDTA, pH 8.0) gel. Following 

electrophoresis, the gel was fixed in 10 % (v/v) methanol, 10 % (v/v) acetic acid and 

dried under vacuum at 80 °C prior to autoradiography. 

2.3. 10.2 Computer analysis 

Analysis of nucleotide sequence data and derived amino acid sequence was carried out 

using programmes of the University of Wisconsin Genetics Computer Group 
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(UWGCG, Devereux et al., 1984) through the VAX 8000 system at Edinburgh 

University. 

2.3.11 Generation of nested deletions 

Nested deletions of DNA fragments were required both for DNA sequencing (section 

2.3. 10) and for use in promoter analysis (section 2.10). Deletions of a fragment were 

generated using the exonucleases Exo III and Si. Exo III removes 5' mononucleotides 

from recessed or blunt 3' termini, protruding 3' termini being completely resistant to 

the action of the enzyme. To create various nested deletions, the plasmid is digested 

between the target DNA and the plasmid sequences with two restriction endonucleases. 

One cleaves nearer the plasmid sequences, generating a protruding 3' terminus, so 

protecting the plasmid from deletion in this direction, and the other cleaves next to the 

target DNA generating either a blunt or a recessed 3' terminus. Digestion will therefore 

occur unidirectionally into the target DNA sequence. The protruding single strands are 

then removed by digestion with SI nuclease, and the plasmid recircularised. Digestion 

with Exo III nuclease occurs at a uniform rate so allowing the production of nested 

deletions of the required size. 
10 jig plasmid DNA were digested with two restriction endonucleases for 16 h at 

37 O.  The restriction endonucleases were extracted from the sample by addition of an 

equal volume of phenol, the sample mixed and the two phases separated by 

centrifugation at 12,000 g for 5 mm. The aqueous phase was transferred to a fresh tube 

and the extraction step repeated by addition of an equal volume of chloroform:isoamyl 

alcohol (24:1 by volume) to remove any traces of phenol. The DNA was precipitated 

from the solution by addition of 0.1 volumes 3 M sodium acetate, pH 5.0, 2 volumes 

ethanol and centrifugation at 12,000 g for 10 min at 4 OC.  The pellet was washed in 

70 % [vlv] ethanol and dried. It was resuspended in 60 jil 1 X exonuclease III buffer 

(66 mM Tris HC1 pH 8.0, 6.6 mM MgC12) and preincubated at 37 °C for 5 mm. 2.5 jil 

were removed and added to 7.5 jil Si reaction mixture (40 mM potassium acetate, 

pH 4.5, 0.3 M NaCl, 0.25 mM ZnSO4, 6 % [v/v] glycerol, 0.3 U jil 1  Si nuclease) 

and stored on ice. 150 units (U) per pmol of recessed 3' termini Exo Ill were added to 

the remaining DNA solution, the sample mixed and incubated at 37 °C. Under these 

conditions, Exo ITT nuclease removes approximately 200 nucleotides per minute from 

the recessed 3' end. 2.5 jil samples were removed at minute intervals and added to 

7.5 jil Si reaction mix and stored on ice. After all the samples had been taken, the tubes 

were incubated at 30 0C for 30 mm, after which time the reaction was stopped by the 

addition of 40 jil Si stop mixture (60 mM Tris HC1, 10 mM EDTA, pH 8.0). 10 jil 
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aliquots were analysed by electrophoresis through 1 % [w/v] agarose to check the rate 

of deletion. The samples of the desired size were extracted by addition of an equal 

volume of phenol:chloroform:isoamyl alcohol (25:24:1 by volume), the two phases 

separated by centrifugation at 12,000 g for 5 min at 4 °C and the aqueous phase 

removed to a fresh tube. DNA was precipitated by addition of 0.1 volumes 3 M sodium 

acetate, pH 5.0, 2 volumes ethanol and centrifugation at 12,000 g for 10 min at 4 °C. 
The pellet was washed in 70 % [v/v] ethanol, dried and resuspended in 15 p1 sdd H20. 

To recircularize the linear DNA, 2 jil 10 X ligase buffer (500 mM Tris HCl pH 7.6, 

100 mM MgC12, 100 mM DTF, 500 gg ml-1  BSA), 1 p10.5 mM dNTPs, 1 U Kienow 

fragment and 4 Weiss U T4 DNA ligase were added and the samples incubated at room 
temperature for 16 h. 10 p.1 were used to transform competent E. coli (section 2.5.4) 

and those colonies containing plasmid of the desired size detected by restriction 

endonuclease digestion and horizontal gel electrophoresis (sections 2.3.7 & 2.3.8). 

Deleted fragments were sequenced to map the extent of the deletion cloned into 

pRAJ275 for promoter analysis (section 2.10 and chapter 5) 

2.4 RNA isolation and analysis 

2.4.1 Isolation of total RNA from cucumber cotyledons 

Isolation of total RNA was performed using a modification of the method described by 

Parish & Kirby (1966). 1 to 2 g plant tissue was frozen in liquid nitrogen, ground to a 

fine powder using a baked pestle and mortar and immediately transferred to a cooled 

baked corex tube, to which 4 volumes extraction buffer (100 mM Tris-HCl pH 8.5, 

1 % [w/v] tri-isopropylnaphthalene [TNS], 6 % [w/v] 4-aminosalicylic acid [PAS]) 

were added. Protein was extracted from the sample by addition of an equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1 by volume), the sample mixed and the two 

phases separated by centrifugation at 2,500 g for 10 min at 4°C. The aqueous phase 

was transferred to a fresh tube and the extraction step repeated. Nucleic acids were 

precipitated by the addition of 0.1 volumes 3 M sodium acetate pH 5.0, 2 volumes 

ethanol and incubation at -20 °C for 3 h. The nucleic acids were pelleted by 

centrifugation at 10,500 g for 30 min at 4°C and resuspended in 2 to 3 ml sdd 1120. 

Total RNA was selectively precipitated by the addition of 5 M LiC1 to give a final 

concentration of 2 M and incubation at 4 °C for 12 to 16 h. Total RNA was pelleted by 

centrifugation at 10,500 g for 30 min at 4 °C, washed twice in 70 % (v/v) ethanol, 

resuspended in sdd H20 and precipitated with ethanol as above. Centrifugation was 

repeated, the RNA pellet washed twice in 70 % (v/v) ethanol to remove excess salt, 
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dried and resuspended in sdd H20. Purity and yield were determined as described in 

section 2.3.6. 

2.4.2 Isolation of total RNA from small amounts of plant tissue 

To maximise the yield of nucleic acids from small amounts of plant material, the 

following protocol was used (adapted from Castresan et al., 1988). Plant material was 

frozen in liquid nitrogen, ground to a fine powder using a baked pestle and mortar, and 

immediately transferred to a cold 15 ml Corex tube. A minimum of 4 ml guanidium 

extraction buffer (5 M guanidium thiocyanate, 25 mM sodium citrate, 0.5 % (w/v) 
sarcosyl, 2 mM EDTA, 50 mM Tris-HC1 pH 7.6, 100 mM J3-mercaptoethanol) were 

added and the sample vortexed for 10 s. For amounts of plant material greater than 1 g, 

4 ml buffer per g fresh weight were added. After centrifugation at 5,000 g for 10 min at 

0 °C, the clarified supernatant was removed to a fresh tube and protein extracted by 

addition of an equal volume of phenol: chloroform: isoamyl alcohol (25:24:1 by 

volume). The two phases were separated by centrifugation at 10,000 g for 30 min at 

0 °C, the aqueous phase removed to a fresh tube and the extraction step repeated. The 

volume of the aqueous phase was made up to 7.5 ml with sdd H20 and the nucleic 

acids precipitated by addition of 2.5 volumes ethanol and incubation at -20 °C 

overnight. Nucleic acids were pelleted by centrifugation at 15,000 g for 10 mm at 0 °C, 

washed in 70 % (v/v) ethanol and resuspended in 2.5 ml sdd H20. Total RNA was 

precipitated by addition of 5 M LiC1 to a final concentration of 2 M and incubation at 

4 °C for 12 to 16 h. Total RNA was collected by centrifugation as above and 

-precipitation by the addition of ethanol repeated. Pelleted. RNA was washed twice in 

70 % (v/v) ethanol, dried and resuspended in sdd H20. Purity and yield were-

determined as described in section 2.3.6. 

2.4.3 Isolation of total RNA from protoplasts 

Protoplasts were harvested from culture medium by centrifugation at 1000 g and the 

supernatant removed. 3 ml guanidium extraction buffer (see section 2.4.2) were added 

per 5 x 106  protoplasts and the sample vortexed for 10 s. 3 ml phenol: chloroform: iso-

amyl alcohol (25:24:1 by volume) were added, the tube vortexed and the phases 

separated by centrifugation at 10,000 g for 10 min at 0 °C. The supernatant was 

removed to a fresh tube and the extraction step repeated. Total nucleic acid was 

precipitated by addition of 2.5 volumes ethanol, incubation at 20 °C for 3 h and 

centrifugation at 10,000 g for 30 min at 0 °C. The nucleic acid pellet was washed twice 
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in 70 % (v/v) ethanol, dried and resuspended in sdd H20. This preparation was used 

for Northern blotting analysis (see section 2.4.4) without removing the DNA. 

2.4.4 Horizontal gel electrophoresis of RNA and Northern blotting 

RNA was size fractionated on horizontal denaturing agarose gels: 1.3 % (w/v) agarose 

was melted in boiling water and allowed to cool to 60 °C before addition of 10 X gel 

running buffer (GRB: 0.2 M MOPS, 50 mM sodium acetate, 10 mM EDTA, pH 7.0), 

12.3 M formaldehyde and 10 mg ml-1  ethidium bromide to give final concentrations of 

1 X, 2.2 M and 0.05 pg m1' respectively. 

RNA samples were prepared for loading by addition of an equal volume of formamide 

sample buffer (10 X GRB:formarnide:40 % [w/v] formaldehyde 1:2:1.2 by volume), 

incubation at 60 °C for 5 mm, followed by cooling on ice. 0.25 volumes loading buffer 

(0.1 M EDTA, 30 % (w/v) Ficoll type 400, 0.25 % (w/v) bromophenol blue) were 

added and the samples loaded onto the gel. Electrophoresis was carried out in 

1 X GRB. After photographing the gel, the RNA was transferred to Hybond-N filters 

(Amersham) in 20 X SSC by capillary action. The filters were subsequently treated as 

described for Southern blotting (section 2.3.9). 

2.4.5 Primer extension 

10 jig total RNA (isolated from 3 day post imbibition cucumber cotyledons using the 

method described in section 2.4.2) were mixed with 1 or 2 jil radiolabelled 

oligonucleotide (section 2.7.2) in 500 mM KC1, 50 mM Tris-HC1 pH 8.5, 0.5 mM 

EDTA, 8 mM MgC12  in a final volume of 10 jil, denatured by heating at 80 OC  for 

10 thin and annealed by incubation at room temperature for 30 mm. Extension of DNA 

molecules from the primer was achieved by addition of 10 jil 0.5 U ji1' RNAsin 

(Promega), 5 mM DTT, 0.5 mM dNTPs, 200 U reverse transcriptase ('Superscript', 

Gibco) and incubation at 40 °C for 90 mm. The nucleic acids were precipitated by 

addition of 2 jil 3 M sodium acetate, 50 p1 ethanol, incubation at -20 OC  overnight and 

centrifugation at 12,000 g for 30 min at 4 °C. The pellet was washed in 70 % (v/v) 

ethanol, dried and resuspended in 4.5 p1 sdd H20 and 3.5 p1 sequencing loading buffer 

(Pharmacia). The reaction products were heated at 80 °C for 2 min and resolved on a 

6 % (w/v) acrylamide, 7 M urea, 1 X TBE (90 mM Tris-borate, 2 mM EDTA, pH 8.0) 

gel. Sequencing reactions using the radiolabelled oligonucleotide as primer were run 

alongside the primer extension products, in order that the exact length of the primer 



extension products could be determined. Following electrophoresis, the gel was treated 

as described in section 2.3.10.1 

2.5 DNA fragment subcloning and bacterial transformation 

2.5.1 DNA fragment isolation and preparation for subcloning 

The DNA fragment ('insert') to be subcloned was excised from the plasmid, phagemid 

or bacteriophage by digestion with the appropriate restriction endonuclease(s). It was 

separated from other DNA molecules by electrophoresis through a 0.8 % (w/v) agarose 

gel (section 2.3.8). The portion of the gel containing the fragment was excised from the 

gel using a scalpel. The insert DNA was isolated from the agarose using Geneclean 

glass bead solution. The yield of DNA recovery from the gel slice was estimated by 

electrophoresis of an aliquot through 0.8 % (w/v) agarose. 

2.5.2 Vector preparation for the receipt of DNA inserts 

The vector (plasmid, phagemid or bacteriophage), into which the DNA insert was to be 

subcloned, was digested with the appropriate restriction endonuclease(s). To remove 

the enzyme after digestion, the sample was extracted by addition of, and mixing with, 

an equal volume of phenol, the phenol was then removed by extraction with 

chloroform:isoamyl alcohol (24:1 by volume), the DNA precipitated by addition of 

0.1 volumes sodium acetate, 2 volumes ethanol and centrifugation at 12,000 g for 

15 min at 4 °C. It was resuspended in sdd H20 and the concentration estimated by 

electrophoresis of an aliquot through 0.8 % (w/v) agarose. 

2.5.3 Ligation of the prepared insert and vector DNA 

For the ligation of DNA fragments and vectors with cohesive terminals, 100 to 200 ng 

vector DNA and a 3 fold molar excess of insert were mixed and sdd H20 added to a 

final volume of 17 jil. To this were added 2 jii 10 X ligation buffer (200 mM Tris-HC1 

pH 7.6, 50 mM MgCl2, 50 mM Dlii, 5 mM ATP) and 4 Weiss U T4 DNA ligase 

(1 t1). The reaction mix was incubated at 16 0C for 16 h. 
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2.5.4 Transformation of E. coli with plasmid or phagemid DNA 

0.5 ml of a culture of E. coli grown overnight was used to inoculate 50 ml LB-medium 

and was incubated at 37 °C with continuous shaking until the cells reached an A600  of 

0.6.-Cells were pelleted by centrifugation at 5,000 g for 10 min at 4 °C, resuspended in 

25 ml 100 mM CaC12  and incubated on ice for 30 mm. The cells were pelleted again as 

before and resuspended in 5 ml 100 mM CaC12. Cells were stored at 4 °C and used 

within 2 days of preparation. 

DNA (0.01tg to 0.10 fig) in 100 t1 100 mM CaC12  was added to 200 tl competent 

cells and left on ice for 30 mm. The cells were heat shocked at 42 °C for 90 s and 

added to 1 ml LB-medium. Incubation at 37 0C for 1 h allowed expression of resistance 

proteins encoded by the recombinant plasmid, and then the cells were pelleted by 

centrifugation at 12,000 g for 1 mm. The cells were resuspended in 100 p1 LB-medium 

and spread onto LB-agar plates containing the appropriate antibiotic and detection 

chemicals, to allow the isolation of colonies containing recombinant plasmid, and 

incubated overnight at 37 °C. 

2.5.5 Screening of bacterial colonies transformed with recombinant 

plasmid or phagemid DNA 

2.5.5.1 Screening by o-complementation 

The pBS+ and pBluescript phagemids used in this study carry a short segment of DNA 

that contains the regulatory sequence and the first 146 amino acids of the E. coli 

f3-galactosidase (lacZ) gene. On transformation with the parent plasmid of certain host 

strains which produce the C-terminal of the 3-galactosidase enzyme encoded on the F 

episome, the 2 fragments can interact and produce an active protein (Ullman et al., 

1967); this process is termed x-complementation. Bacteria transformed with non-

recombinant vector form blue colonies in the presence of 5-bromo-4-chloro-3-indolyl- 

-D-galactoside (X-gal) on derepression of the lacZ gene fragments by isopropy1thio-3-

D-galactoside (IPTG). Insertion of the recombinant fragment into the cloning site of the 

vector however disrupts the lacZ N-terminal fragment and colonies containing 

recombinant plasmids are white. The structure of these plasmids is then verified by 

restriction analysis of minipreparations of plasmid DNA (sections 2.3.1, 2.3.7 & 

2.3:8). 



Bacteria transformed with vectors allowing a-complementation to be performed were 

plated onto LB-agar containing 100 pg ml-1  X-gal in dimethyl formamide (DMF) and 

50 ig m14  IPTG in sdd H20- 

2.5.5.2 Screening of bacterial transformants by colony hybridisation 

If a-complementation was not possible due to the nature of the construct, a 

modification of the method of Grunstein & Hogness (1975) was used to screen for 

bacteria carrying recombinant plasmids. Transformed bacterial colonies were picked 

using sterile toothpicks and were streaked in duplicate onto Hybond-N gridded 

membranes (Amersham) placed on LB-agar plates containing appropriate antibiotic. 

They were also streaked directly onto an LB-agar plate containing the same antibiotic 

(master plate). The plates were incubated at 37 °C overnight. The master plate was 

sealed with parafilm and stored at 4°C. The filters were removed from the plates and 

placed colony side up on Whatman 3MM paper soaked in denaturation buffer (1.5 M 

NaCl, 0.5 M NaOH) for 7 mm, transferred to 3MM paper soaked in neutralisation 

buffer (1.5 M NaCl, 0.5 M Tris-HCl pH 7.2, 1 mM EDTA) for 3 min and to fresh 

neutralisation buffer for a further 3 mm. The filters were rinsed in 2 X SSC, dried in an 

oven at 80 °C for 10 min and the DNA crosslinked to the nylon membrane by ultra-

violet irradiation of 0.4 J/cm2  using a Hybaid crosslinker. Filters were then hybridised 

to a radioactive probe as described in section 2.8. Following autoradiography, colonies 

apparently containing recombinant plasmid were picked and grown from the master 

plate and the structure of the plasmid confirmed by restriction analysis of 

minipreparations of plasmid DNA (sections 2.3.1, 2.3.7 & 2.3.8). 

2.6 Construction and screening of libraries 

2.6.1 Construction of cucumber genomic library in XNM1149 

2.6.1.1 Insert preparation 

Cucumber genomic DNA was isolated as described in section 2.3.3, up to and 

including precipitation with isopropanol. It was then purified on a CsC1 gradient as 

described in section 2.3.2. The concentration of the purified DNA was estimated by 

electrophoresis of an aliquot through 0.8 % (w/v) agarose. 

55 .tg DNA was subjected to digestion with Hind III at 37 °C for 16 h. In order to 

confirm the size of the Hind Ill fragment carrying the cucumber icl gene, 5 p.g digested 
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DNA was subjected to horizontal gel electrophoresis, Southern blotting (sections 2.3.8 

& 2.3.9) and hybridisation with radiolabelled insert from the ICL cDNA clone (sections 

2.7 & 2.8). Once the necessary size had been established, the remaining 50 ig digested 

DNA was subjected to horizontal gel electrophoresis under exactly replicated 

conditions. The relevant area of the gel was excised using a scalpel, the DNA isolated 

from the agarose using Geneclean glass bead solution, eluting the DNA in a total 
volume of 80 jil sdd H20. The concentration was estimated as described in section 

2.3.6. 

2.6.1.2 Vector preparation (2N Ml 149) 

2.6.1.2a Ligation of cohesive ends 

80 .ig XNM1149 DNA were incubated for 1 h at 42 °C in 170 p1 0.1 M Tris-HC1 

pH 7.6, 10 MM  MgC12, after which time 20 jfl 10 X ligase buffer and 10 tl ligase 

(0.5 Weiss U T4 DNA ligase per jig DNA) were added and the sample incubated for 

2 h at 16 °C. The sample was extracted by addition of an equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1 by volume), and shaken gently for 1 h. 

The phases were separated by centrifugation at 2,500 g and the upper phase removed to 

a fresh tube. The extraction step was repeated with an equal volume 

chloroform:isoamyl alcohol (24:1, by volume) and the DNA precipitated by addition of 

0.1 volumes 3 M sodium acetate pH 7.0 and 2 volumes ethanol and incubation at room 

temperature for 30 mm. The precipitated DNA was spooled from the solution using a 

glass rod, washed in 70 % (v/v) ethanol and allowed to air dry. It was then 

resuspended in 170 t1 TE pH 8.0 at 4 °C for 16 h. 

2.6.1.2b Digestion of X vector 

20 jil 10 X buffer B (BCL) were added to the DNA sample prepared as in section 

2.6.1.2a and a 1 jil aliquot removed for a test packaging reaction. A 3-fold excess of 

Hind III (150 U) was added, the sample mixed and incubated at 37 °C for 2 h. The 

reaction was cooled by placing the tube on ice and 1.1 jil removed for the test 

packaging reaction to check digestion. 

The two aliquots removed were packaged, serial dilutions of the packaged 

bacteriophage made and plated on N1M62 1 cells (methods described in sections 2.6.1.4, 

2.6.2.1 & 2.6.2.2). When the digestion has been successful, a drop of 3 orders of 

magnitude was seen in the packaging efficiency between the two samples. 

50 



EDTA was added to a final concentration of 5 mM to the successfully digested DNA 

and the sample extracted and precipitated as before. It was resuspended to a 

concentration of 100 ..tg m11  in 10 mM Tris-HC1 pH 8.3. 

2.6.1.2c Treatment of digested vector with phosphatase 

0.1 volumes 10 X calf intestinal phosphatase (CIP) dephosphorylation buffer (10 mM 

ZnC12, 10 mM MgC12, 100 mM Tris HCl pH 8.3) and 0.01 U CIP for every 10 ig ? 

DNA were added to the digested DNA and incubated at 37 °C for 1 h. In order to 

remove all CIP, 10 % (w/v) SDS and 0.5 M EDTA were added to give final 

concentrations of 0.5 % (w/v) and 5 mM respectively. The sample was mixed well, 

proteinase K added to a final concentration of 100 jig ml-' and the tube incubated at 

56 °C for 30 mm, after which time it was cooled to room temperature, extracted as 

before and precipitated by addition of 0.1 volumes sodium acetate pH 7.0, 2 volumes 

ethanol and incubation at 0 0C for 15 mm. DNA was collected by centrifugation at 

12,000 g for 10 min at 4 °C, the pellet washed in 70 % (v/v) ethanol, dried and 

resuspended in TE pH 7.6 at 500 jig ml-1. 

2.6.1.3 Ligation of vector and insert DNA 

Optimum packaging efficiencies are obtained with X DNAs that are concatemeric. 

Ligations should therefore be carried out under conditions to favour concatemer 

formation rather than circular molecule formation containing just one cos site. Trial 

ligations were set up with 0.5 jig vector with 0, 6, 50 and 200 ng insert DNA, the last 

three giving molar ratios of 8:1, 1:1 and 0.25:1 respectively, 0.5 jil 10 X ligase buffer, 

2 U T4 DNA ligase and sdd H20 to 5 jil. All reactions were incubated at 16 °C for 6 h. 

Packaging reactions, serial dilutions and plating were carried out as described in 

sections 2.6.1.4, 2.6.2.1 & 2.6.2.2, and the ligation ratio giving the greatest number 

of plaque forming units per ml (p.f.u. m1 1) determined. 

Ligations were set up at the optimum molar ratio using 1 jig vector for each reaction, 

and all samples incubated at 16 °C for 5 h. 

2.6.1.4 Packaging of X DNA 

Gigapack II Gold packaging extract (Stratagene) was used to package X DNA, 

following the manufacturer's protocol. After the packaging reaction was completed, 

500 jil phage dilution (SM) buffer (0.1 M NaC1, 10 mM MgSO4.7H20, 50 mM Tris 
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HC1 pH 7.5, 0.01 % [w/v] gelatin solution) and 20 jil chloroform was added, the 

sample mixed gently and spun briefly to sediment the debris. The supernatant contains 
packaged 2 particles and was stored at 4 OC. 

2.6.2 Screening of recombinant bacteriophage clones 

2.6.2.1 Preparation of host cells and titration of X libraries 

The E. coli cells relevant to the recombinant bacteriophage vector employed (XZAPII: 

XL 1-Blue, XNM1 149: NM5 14) were grown overnight in LB-medium supplemented 

with 0.2 % (w/v) maltose and 10 MM  MgSO4. The cells were collected by 

centrifugation at 5,000 g for 10 min and resuspended in 10 MM  MgSO4  to give a final 

A600  of 1. Addition of maltose to the medium induces the maltose operon which 

includes the lamB gene encoding the X receptor on the surface of the bacterium. Plating 

cells were stored at 4 °C and used within 2 days of preparation. 

10 fold serial dilutions of the recombinant bacteriophage X stock to be titrated were 

made in SM. 100 il of bacteriophage were mixed with 100 tl plating cells and 

incubated at 37 0C for 10 mm, to allow the recombinant bacteriophage to adsorb to the 

E. coli. 3 ml molten BBL top agar (48 °C) were added, the sample mixed and poured 

onto 9 cm diameter BBL-agar plates. The top agar was allowed to set before the plates 

were inverted and incubated at 37 °C overnight. The p.f.u. ml-1  concentrations of the 

recombinant bacteriophagephage were determined from the number of plaques present 

on the E. coli lawn. 

2.6.2.2 Plating and screening recombinant bacteriophage libraries 

Using the p.f.u. ml-1  value determined by titration of the stock, known dilutions of 

bacteriophage were mixed with host E. coli cells to generate a near confluent plaque 

density on a bacterial lawn and screened in a similar manner to that described by Benton 

and Davis (1977). For the cucumber genornic library, 400 cm2  plates and for cucumber 

XZAPII cDNA library (constructed by D-J Kim), 100 cm2 plates were prepared 

respectively as detailed above (section 2.6.2.1) with proportionately larger volumes of 

components. 

After incubation at 37 OC  overnight and formation of plaques, the plates were placed at 

4 0C to harden the top agar. Hybond-N filters, with notches cut to allow future correct 

orientation, were lowered onto the plaque containing bacterial lawn and the position of 

the notches marked on the plates. After 30 s the filter was removed and the process 
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repeated with a second filter which also carried the asymmetric pattern of notches; this 

filter was removed from the surface of the plate after 1 mm. The filters were placed, 

plaque side up on 3MM filter paper soaked in denaturing solution and treated as for 

colony hybridisation as described in section 2.5.5.2. 

The filters were hybridised with a radioactively labelled DNA fragment (section 2.7 & 

2.8). The area of the bacterial lawn seen to contain a plaque hybridising to the 

radiolabelled probe on both filters was excised from the plate using a glass pipette and 

the agar plug placed in a microcentrifuge tube containing 1 ml SM buffer and 1 drop of 

chloroform. The tube was then shaken at 4 OC for 1 h and the resulting phage stock 

titrated; the whole procedure was repeated until single clonal bacteriophage, which 

hybridised with the radiolabelled probe, had been isolated. 

2.6.3 Preparation of plate lysate stocks 

For each 9 cm diameter plate, 105  p.f.u. were mixed with 100 j.tl plating cells (for 

XNM1149: NM514), allowed to adsorb for 20 min at 37 0C and plated with 3 ml top 

agarose (as Qiagen columns were to be used for the subsequent isolation of XDNA 

[section 2.3.4], top agarose was used rather than agar, as preparations from agar plates 

contain polyanionic contaminants that inhibit restriction endonucleases). The plates 

were incubated at 37 °C until the plaques were touching; 5 ml SM buffer were added to 

each plate and the plates gently shaken at 4 0C overnight. The SM buffer was collected 

from the plates and 0.1 ml chloroform was added to the pooled bacteriophage stock. 

The stock was centrifuged at 5,000 g for 10 min to pellet the bacterial debris and the 

supernatant was transferred to a fresh tube. A further drop of chloroform was added 

and the bacteriophage stock stored at 4 °C. 

2.6.4 In vivo excision of recombinant XZAPII DNA 

In ?ZAPII, the recombinant cDNA fragment is flanked by the dissected filamentous 

bacteriophage (f 1) origin of replication (OR) present within the pBluescript SK II (-) 
phagemid with the initiation and termination elements of the f  OR on either side of the 

cloned DNA. 

Host XL 1-Blue cells were grown overnight in LB-medium, harvested by centrifugation 

at 5,000 g for 10 min and resuspended in 10 MM  MgSO4  to an A600  of 1. 200 tl cells 

were mixed with 200 .t1 recombinant XZAPII (1 x 105  p.f.u. m1 1) and 1 p1 1 x 10 

p.f.u. ml-1  R408 filamentous fl "helper 'phage' (Stratagene) and incubated at 37 °C for 

15 mm. 5 ml 2 X YT medium was added and the sample incubated at 37 °C for 3 h 
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with shaking. During this period the host cells become infected by both the XZAPII 

bacteriophage and the f  R408 filamentous bacteriophage. Proteins produced by the f  
R408 helper bacteriophage recognise the f  OR initiation site in the XZAPII genome 

and nick it at these sites leading to the production of a single-stranded (ss) copy of the 

DNA downstream of these sites, which includes the cDNA insert and the pBS SK H (-) 

sequence, until the termination signal in the f  OR is reached. The ss DNA molecules 

are circularised by other f  encoded proteins leading to the re-formation of functional 

ORs and hence subsequent replication of the recombinant phagemid; the DNA is 

packaged in coat proteins and secreted from the cell. The cultures were heated at 70 °C 

for 20 min to kill the host bacteria which were pelleted by centrifugation at 5,000 g for 

5 mm. The supernatant contains pBluescript SK (-) phagemid packaged as a 
filamentous bacteriophage particle. 20 p1 phagemid was used to re-infect 200 p1 XL1- 

Blue plating cells, incubated at 37 OC  for 15 min and plated onto LB-agar plates 

containing ampicillin; on reinfection a ds DNA phagemid molecule is generated in the 

ampicillin resistant bacterial colonies formed. Single colonies were picked and streaked 

onto LB-agar plates containing ampicillin at 100 jtg ml-1  from which single colonies 

were picked and used to inoculate LB-medium from which, after growth at 37 °C 

overnight, ds phagemid DNA could be isolated (section 2.3. 1) 

2.7 Radiolabelling of DNA probes 

2.7.1 Labelling of ds DNA probes by random priming 

Double-stranded DNA was labelled by the random priming method of Feinberg & 

Vogeistein (1983). 10 to 50 ng (in 34 p1) DNA insert was heat denatured at 100 °C for 

3 min and quenched on ice. To the denatured DNA was added: 

5 X oligonucleotide labelling buffer (OLB) 10 tl 

BSA (lOmgml 1) 	 2p1 

[(X-32P]dCTP 	 3 p1 (=30 jiCi) 

DNA polymerase I - Kienow fragment 	1 j.il (= 1 U) 

and the labelling reaction allowed to proceed at room temperature overnight. 

5 X OLB: 250 mM Tris-HC1 pH 8.0, 25 mM M902,  5 mM 3-mercaptoethano1, 2 mM 

each dATP, dGTP, dTTP, 1 M HEPES (adjusted to pH 6.6 with 4 N NaOH), 

1 mg ml-1  random hexanucleotides. 

The reaction was stopped by addition of 200 p1 buffer A (50 mM Tris-HC1 pH 7.5, 

50 mM NaCl, 5 mM EDTA pH 8.0, 0.5 % [w/v] SDS) and unincorporated nucleotide 
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removed by passage through a G-50 Sephadex column. Prior to use, radiolabelled 

DNA was denatured by heating at 100 °C for 3 min and cooled on ice. 

2.7.2 Radiolabelling of oligonucleotides 

Synthetic oligonucleotides are synthesised without a phosphate group at the 5' terminal 
and therefore can be labelled by the transfer of [y 32P]dATP to the 5' terminal using the 

bacterial T4 polynucleotide kinase (PNK) in the following reaction mixture: 

Oligonucleotide 	 1 p1 (= 20 ng) 

10  PNK buffer 	 1p1 

['y 32P]dATP 	 5 p1 (=50 iCi) 

PNK 	 lpJ 

H20 	 2jil 

10 X PNK buffer: 0.5 M Tris-HC1 pH 7.6, 0.1 M MgC12, 50 mM DTT, 1 mM 

spermidine, 1 mM EDTA. 

The reaction mix was incubated at 37 OC  for 1 h and unincorporated radionucleotide 

removed by passage through a Biogel P-2 (Biorad) column. The labelled 
oligonucleotide was collected from the column in a volume of 100 p1. 

2.8 Hybridisation of radiolabelled DNA probes to membrane bound 

DNA or RNA 

After UV crosslinking, membrane-bound nucleic acids were prehybridised in 5 X 

SSPE (20 X SSPE: 3.6 M NaCl, 0.2 M sodium phosphate, 0.02 M EDTA pH 7.7), 

2 X Denhardts (100 X Denhardts solution: 2 % [w/v] BSA, 2 % [w/v] Ficoll, 2 % 

[w/v] polyvinyl-pyrollidone [PVP]),  0.1 % (w/v) SDS for at least 3 h at 65 °C in glass 

tubes in a rotisserie oven (Hybaid). 

After prehybridisation, the solution was replaced with fresh solution, the denatured 

radiolabelled probe (section 2.7. 1) added and the filters hybridised overnight at 65 °C. 

The filters were washed at 65 °C for 20 min each wash in progressively more stringent, 

i.e. lower salt, conditions. After the 2 X SSPE wash, the level of background 

radioactivity attached to the filter was assessed using a handheld monitor, and the 

necessity and lengths of subsequent washes varied accordingly. 
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Washes: 5 X SSPE, 0.1 % (w/v) SDS 

2 X SSPE, 0.1 % (w/v) SDS 

1 X SSPE, 0.1 % (w/v) SDS 

0.1 X SSPE, 0.1 % (w/v) SDS 

After washing, the filters were partially air dried, wrapped in Saran wrap and exposed 

to film in autoradiography cassettes as described in section 2.2.7. 

2.9 Production and analysis of transgenic plants 

2.9.1 Construction of vectors for plant transformation 

Insert fragments of the DNA sequence of interest were cloned into the plant 

transformation vector pBinl9 and used to transform E. co/i as described in sections 

2.5.1 to 4. Recombinant plasmids carrying the desired fragments were identified by 

restriction analysis of minipreparations of plasmid DNA (sections 2.3.1, 2.3.7 & 

2.3.8). 

2.9.2 Transfer of recombinant plasmids into Agrobacterium tuniefaciens 

by conjugation and screening of transformed bacteria 

The, conjugations that are required to transfer the plasmid of interest from E. co/i to 

Agrobacteriuin tuinefaciens are carried out by a triparental mating. This involves the 

donor E. co/i carrying the recombinant pBinl9 plasmid, the recipient A. tumefaciens 

and E. co/i HB1O1 carrying a 'helper' plasmid, pRK2013. The helper plasmid provides 

mobilisation and transfer functions in trans, which act on a specific origin of transfer 

and an activation site in the cloning vector. The method used is described in Draper et 

at. (1988). 

Single colonies of donor and helper strains of E. co/i and A. tumefaciens LBA4404 

were picked and used to inoculate 5 ml LB-medium containing 100 tg ml-1  kanamycin 

for the two E. co/i strains and 100 ig ml-1  rifampicin and 300 pg ml-1  streptomycin for 

A. tumefaciens. The E. co/i strains were incubated at 37 OC  and the A. tumefaciens 

strain at 28 °C overnight with shaking. 100 tl of each of the three cultures was pipetted 

onto an LB-agar plate, mixed by spreading with a glass rod and incubated at 28 °C 

overnight. Duplicate plates were made for each pBinl9 construct. Two streaks of cells 

were removed from each plate, resuspended in 500 tl LB-medium and plated onto LB-

agar plates containing 100 pg ml kanamycin, 100 jig ml-1  rifampicin and 300 jig ml-' 
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streptomycin. The plates were inverted and incubated at 28 °C for 4 days, during which 

time single colonies of A. tumefaciens grew. These were used to inoculate 5 ml LB-

medium containing antibiotics as detailed above and DNA isolated as described in 

section 2.3.5. Colonies were screened by restriction digestion and Southern 

hybridisation (sections 2.3.7, 2.3.8, 2.3.9 & 2.8). 

2.9.3 Nicotiana plumbaginifolia transformation and regeneration 

2.9.3.1 General conditions 

Cultivation of all genetically manipulated plants was carried out according to the code of 

practice of the local Genetic Manipulation Safety Committee. All tissue culture 

operations were carried out in a laminar flow cabinet using standard aseptic technique. 

Plant material in culture was kept in growth rooms with 24 h illumination from white 
fluorescent tubes (Thorn 3500) providing an irradiance of 30 jimol rn 2  s-1  at a constant 

temperature of 25 °C. 

2.9.3.2 Preparation of plant material 

N. plumbaginfolia seeds were germinated and grown as described in section 2.1.1. 

Fully expanded leaves were excised, washed briefly in 70 % (v/v) ethanol and sterilised 

in a 4 % (v/v) solution of sodium hypochlorite for 15 mm. The leaves were rinsed six 

times in sterile distilled water. Leaf pieces were cut, avoiding the mid rib and major 

veins, and placed in 100 ml shooting medium (section 2.2.3) without agar. 

2.9.3.3 Preparation of transformed A. tumefaciens for inoculation of 
leaf pieces 

A single colony of A. tumefaciens LBA4404 carrying the recombinant pBinl9 plasmid 
of interest was used to inoculate 5 ml LB-medium containing 25 ig m11  kanamycin; it 

was grown with shaking at 300 rpm for 24 to 48 h at 28 °C. 

2.9.3.4 Inoculation of leaf pieces and regeneration of transformed 
plants 

2 ml of A. tumefaciens culture were added to the leaf pieces in shooting medium and 

left at room temperature for 15 min with intermittent mixing. After this time, leaf pieces 
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were transferred onto shooting medium plates (0.8 % [w/v] agar) and cultured at 25 °C 

as detailed in section 2.9.3.1 for 2 days. The pieces were transferred onto shooting 

medium plates containing 500 jig ml-1  carbenicillin, 200 tg ml- ' kanamycin and 

culturing continued under the same conditions. The pieces were transferred onto fresh 

shooting medium plates every 3 weeks until shootlets began to develop, approximately 

5 to 6 weeks after inoculation. Once large enough to be excised, developed shootlets 

were transferred onto plates of expansion medium (section 2.2.3) containing 

250 jig ml-' carbenicillin and 200 jig m1' kanamycin. After 2 weeks, shootlets that 

continued to expand were transferred into pots containing rooting medium with 100 jig 

ml-' carbenicillin and 100 jig rnL' kanamycin. Shootlets which developed roots in the 

selection medium were transferred to Levington Universal potting compost and 
incubated at 25 °C in a 16 h photoperiod at an irradiance of 100 jimol rn-2  s. High 

humidity was initially maintained by covering the pots with plastic bags, which were 

gradually pierced to allow accustomisation to the growth room environment and 

eventually removed after approximately 2 weeks. Growth was continued until the 

plants produced seed. 

2.9.3.5 Production and collection of seed 

N. plumbaginifolia plants were allowed to self-fertilise and seed was collected from 

each plant and stored at room temperature. 

2.9.4 Analysis of transgenic N. plumbaginifolia plants 

2.9.4.1 Germination of transgenic N. plumbaginifolia seeds 

Seeds were surface sterilised by treatment with 10 % (v/v) sodium hypochlorite for 

10 mm, after which time the solution was removed and the seeds rinsed 6 times with 

sdd H20. Seeds were imbibed in 1 mM gibberellic acid overnight at 4 OC, rinsed the 

following day in sdd H20 and transferred to rooting medium plates without antibiotic. 

The. plates were incubated in a 16 h photoperiod at 25 OC. 

2.9.4.2 Selection of germinating seed at specific developmental stages 

Germination of N. plumbaginifolia occurs in a non-synchronous manner; therefore it 

was necessary to select seedlings at specific stages for analysis. Stages were selected as 



depicted in figure 4.5 using a binocular microscope and stored at -70 °C, so that 

complete sets of assays with all stages represented could be performed. 

2.9.4.3 Fluorometric assay of -g1ucuronidase (GUS) in germinating 

seedlings 

The assay was performed as described in Jefferson (1987). GUS is able to cleave a 

number of glucuronides and this assay takes advantage of its ability to cleave 

4-methylumbelliferyl 3-D-glucuronide (MUG), a non-fluorescent substrate, to yield 

glucuronic acid and 7-hydroxy-4-methylcoum arm (4-methylumbelliferone, MU), a 

fluorescent product that is maximally fluorescent in the presence of a basic buffer. 

40 seeds from each stage post imbibition were harvested into liquid nitrogen. Once all 

stages had been collected, the seeds were homogenised in 100 p1 GUS extraction 

buffer (50 mM sodium phosphate pH 7.0, 10 mM 3-mercaptoethanol, 0.1 % [w/v] 

Triton X-100, 1 mM EDTA). Cell debris was pelleted by centrifugation at 12,000 g for 

2 mm, and 50 i1 clarified extract was used per GUS enzyme assay. The remaining 

extract was frozen in liquid nitrogen and later used for protein concentration estimation 

(section 2.11). 

50 p.1 of extract was diluted with a further 750 pA GUS extraction buffer and 

prewarmed at 37 °C. To start the reaction, 200 il 5 mM MUG in GUS extraction 

buffer at 37 °C was added to the extract, giving a final MUG concentration of 1 mM. 

After mixing, 200 p.1 was immediately removed to a tube containing 800 p1 'stop 

buffer' (0.2 M Na2CO3) and the remaining reaction mix incubated at 37 °C. Further 

time points were taken at 5, 10, 15 and 30 min for seedling sets showing high levels of 

GUS activity or at 30, 60 and 120 min for those showing lower levels. 

The concentration of MU, the fluorescent product of the reaction, was determined 

fluorometrically using a Perkin-Elmer LS series spectrofluorimeter with settings of 

excitation at 365 nm and emission at 455 nm. Readings taken with a spectrofluorimeter 

are relative fluorescence, so for each use, the spectrofluorimeter was calibrated with 

standards of MU such that 500 units relative fluorescence was equivalent to 500 nM 

MU. Thus relative fluorescence of the samples could be read directly as nM MU. The 

rate of the reaction was calculated from the change in MU concentration with time and 

the results presented as fKat MU seedling-'. 
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2.9.4.4 Histochemical assay of -glucuronidase 

Histochemical staining was carried out using a modified version of the method 

described by Jefferson (1987). Whole seedlings which had been grown for 3 days 

(stages 3 to 4) post imbibition were incubated in 1 mg ml-1  5-bromo-4-chloro-3-indolyl 

glucuronide (X-gluc: prepared by dissolving the powder in DMF at a concentration of 

100 mg ml-1  with subsequent dilution to 1 mg ml in 50 mM sodium phosphate) at 

37 °C for between 30 min and 16 h, depending on the degree of GUS activity. Prior to 

incubation, the testa and endosperm were removed from the seedling using fine 

forceps. After staining, the seedlings were transferred to 50 mM sodium phosphate and 

stored at 4 °C 

2.9.4.5 Treatment of transformed N. plunthaginifolia seedlings with 

sucrose 

Seeds were germinated as described in section 2.9.4.1 and grown for 18 days. They 

were transferred to petri dishes containing filter paper soaked in sdd H20 or 25 mM 

sucrose and incubated either in the light (conditions as in section 2.9.4.1), or in the 

same growth room but wrapped in aluminium foil and black polythene bags. After 

5 days, 40 seedlings from each of the four treatments were harvested into liquid 

nitrogen and assayed for GUS activity as described in section 2.9.4.3. 

2.9.4.6 Northern analysis of germinating transgenic N. plumbaginifolia 

seeds 

Seeds were germinated and grown for varying periods (figure 4.3) up to 7 days post 

imbibition as described in section 2.9.4.1. They were harvested into liquid nitrogen, 

RNA isolated and analysed by Northern blotting (sections 2.4.2 & 2.4.4) 

2.10 Transient expression in cucumber protoplasts 

2.10.1 Construction of vectors for transient expression 

Insert fragments of the DNA sequence of interest were cloned into the vector pRAJ275 

into which a Nos terminator had also been inserted. The recombinant plasmids were 

used to transform E. coli (sections 2.5.1 to 4). Recombinant piasmids carrying the 

desired fragments were identified by restriction analysis of small scale preparations of 
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plasmid DNA (sections 2.3.1, 2.3.7 & 2.3.8). Large scale preparation of recombinant 

plasmid DNA were carried out as described in section 2.3.2, concentration of DNA 

determined and each plasmid diluted to a concentration of 2.5 mg ml-1. 

2.10.2 Isolation of cucumber protoplasts 

Cucumber plants were grown as described in section 2.1.1 in Levingtons Universal 

potting compost until the second true leaf was 10 x 10 cm2. Second true leaves were 

excised, washed in 70 % (v/v) ethanol for 30 s and transferred to 2 % (v/v) sodium 

hypochiorite containing 0.05 % (v/v) Tween 80, for 15 mm. The leaves were washed 

six times in sdd H20. Leaves were sliced into approximately 5 x 5 mm2  and placed 

immediately in petri dishes containing 0.35 M D-mannitol pH 5.6, 0.6 % (w/v) 

cellulase onozuka RIO (R. W. Unwin & Co. Ltd., Welwyn, Herts), 0.35 % (w/v) 
macerozyme RIO (R. W. Unwin & Co. Ltd.) and 10 pg ml-1  tetracycline. The petri 

dishes were sealed, wrapped in aluminium foil and incubated for 12 to 14 h at 25 °C. 

The solution was removed from the petri dish using a wide bore pipette, avoiding the 

leaf tissue, and passed through 2 layers of muslin into a 50 ml sterile tube. 

Approximately 1 ml 0.35 M D-mannitol was added to the petri dish, the protoplasts 

released from the leaf pieces by gentle mashing and the solution transferred as above to 

a sterile tube. A further 10 to 20 ml 0.35 M D-mannitol was added to the petri dish to 

collect further protoplasts and pooled with the previous solution. All tubes were 

centrifuged at 100 g for 5 mm. The supernatant was removed, the protoplasts gently 

resuspended in a small volume of 0.35 M D-mannitol and the volume made up to 40 to 

50 ml with 0.35 M D-mannitol. The centrifugation step was repeated, and the whole 

washing procedure repeated 4 to 5 times, until the supernatant was virtually colourless. 

After the final wash, the protoplasts were resuspended in a small volume of 0.35 M D-

mannitol, counted using a haemocytometer slide and diluted to give a concentration of 

1 x 106  protoplasts per 0.6 ml. 

2.10.3 Electroporation and culturing of cucumber protoplasts 

Cell membranes, when exposed to high-intensity electric field pulses, can be 

temporarily destabilised in specific regions of the cells. During the destabilisation 

period, transient pores in the cell membrane allow entry of exogenous macromolecules 

such as DNA present in the surrounding medium (Wong & Neumann, 1982; Fromm et 

al., 1985). 

61 



Electroporation of cucumber protoplasts was carried out using a PG20 1 ProGenetor II 

(Hoefer Scientific Instruments) combined with a PG250 safety chamber and PG220P-5 

ring electrode, designed for use with 16 mm wells of 4 well culture trays. 
0.6 ml (1 x 106)  protoplasts per well were transferred to 4 well plates on ice. 100 tg 

sterile herring sperm DNA and 25 tg recombinant plasmid DNA were added, the 

sample gently mixed and electroporated immediately. Electroporation conditions were 

optimised using a construct containing the cauliflower mosaic virus 35S promoter fused 

to the gene encoding 3-g1ucuronidase. The conditions selected were: 1 pulse of 340 V, 

giving a field strength of 567 V cnr1, 760 pF capacitance and 10 msec. pulse time. 

These conditions, using the timed discharge function, simulate a square wave pulse 

which yields better transfection efficiencies with plant protoplasts than does exponential 

decay. 

After electroporation, the protoplasts were left on ice for 10 min without movement, to 

allow the nucleic acids time to move across the plasmalemma and also to maintain the 

viability of the protoplasts. 0.5 ml protoplast culture medium (with or without sucrose, 

section 2.2.3) were slowly added, the sample mixed gently and transferred to a sterile 

15 ml screw top tube containing 5 ml culture medium. The plate well was washed with 

0.5 ml culture medium, which were pooled with the rest of the sample. All tubes were 

firmly closed and cultured horizontally for 48 h at 25 °C in the dark. 

2.10.4 Analysis of transfected protoplasts 

2.10.4.1 Fluorometric assay of f3-glucuronidase in transfected cucumber 

protoplasts 

The transfected protoplasts were pelleted at 1,000 g for 10 min and all but 50 tl of the 

culture medium removed. The protoplasts were resuspended in GUS extraction buffer 

(section 2.9.4.3) and transferred to a microcentrifuge tube containing approximately 

100 tl glass beads (Sigma: 150 - 212 microns) and vortexed for 1 mm. The debris and 

glass beads were pelleted by centrifugation at 12,000 g for 2 min and 100 p1 of the 

clarified extract transferred to a fresh Eppendorf containing a further 700 tl GUS 

extraction buffer. The rest of the assay was carried out exactly as for transformed 

N. plu,nbaginifolia seedlings (section 2.9.4.3) with time points taken at 0, 30, 60 and 

120 min after addition of the substrate. 

MIJ 



2.10.4.2 Northern analysis of transfected protoplasts 

Protoplasts were harvested, RNA isolated as described in section 2.4.3 and analysed 

by Northern blotting (section 2.4.4). 

2.11 Protein concentration estimation 

The protein concentration of plant extracts was determined by the method of Bradford 

(1976) using the Bio-Rad protein kit and a range of known BSA concentrations as 

standards (0 to 20 ig ml-1). Extracts were diluted with sdd H20 to a final volume of 

800 p1. 200 p1 concentrated protein binding solution was added, the sample mixed well 

and incubated at room temperature for at least 5 mm. The absorbance at 595 nm was 

determined using a Beckman DU-62 spectrophotometer. All protein concentration 

values were determined in duplicate. 
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CHAPTER 3 

THE ISOCITRATE LYASE GENE 

OF CUCUMBER 



3.1 Introduction and aims 

Previously a cDNA clone from C. sativus encoding part of the ICL polypeptide had 

been isolated in W. Becker's laboratory (University of Wisconsin), but it had not been 

characterised. Both cDNA and genomic clones encoding malate synthase (MS) have 

previously been isolated and fully characterised and 1089 bp of the upstream region 

shown to be sufficient to direct faithful transcription in transgenic Nicotiana 

plumbaginifolia. (Graham et al., 1989, 1990). The aim of this project was to isolate 

both full length cDNA and genomic clones encoding ICL, to fully characterise them by 

restriction endonuclease digestion and DNA sequencing, in order to enable a study of 

the structure of the gene and the deduced amino acid sequence to be undertaken. 

Comparison with the genes and polypeptides of other organisms could then be carried 

out. In addition, a comparison of the regulatory sequences of the ms gene with those 

of the icl gene would be undertaken, to provide the foundation for further studies to 

analyse the elements responsible for the control of gene expression of this gene during 

plant development. 

3.2 Determination of gene copy number 

In order to determine the copy number of the gene encoding isocitrate lyase (ICL) in 

cucumber, Southern blot analysis was carried out. Genomic DNA was isolated from 

young leaves as described in section 2.3.3 and 5 jig aliquots were digested with the 

restriction endonucleases Eco RI, Hind III and Xba I (section 2.3.7). The digested 

DNA was subjected to horizontal agarose gel electrophoresis and transferred to 

Hybond N as described in sections 2.3.8 and 2.3.9. The membrane was hybridised 

firstly with the 1.4 kb insert of the cDNA clone, pBSTCL, radiolabelled with 

[32P]dCTP (figure 3.1 a), and subsequently, following removal of the first probe, with 

the 800 bp Eco-Xba fragment from the 5' end, similarly radiolabelled (figure 3.1b). 

The simple banding pattern generated indicated that only a single gene showed 

extensive homology to the cDNA probe used. The occurrence of two bands in the 

Xba I digested lane indicates the presence of a Xba I site within the gene. This was 

confirmed by the second hybridisation, in which only a single band was observed in 

this lane. The malate synthase gene of cucumber is also present in a single copy 

(Graham et al. 1989). This is not the case in other species, for example, B. napus, 

where there are at least four classes of ms genes (Comai et al., 1992) and 

approximately six icl genes falling into two classes (Zhang et al., 1993), and Glycine 
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Figure 3.1 Southern blot analysis of cucumber genomic DNA digested 

with Eco RI (E), Hind III (H) or Xba 1(X), fractionated through 0.8 % (w/v) agarose 

and probed with (a) the 1.4 kb insert of pBSICL and (b) the 800 bp Eco - Xba 

fragment from the 5' end. Size markers (kbp) are DNA digested with Hind Ill. 
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max in which there are at least two genes encoding each of these enzymes (F. Widmer, 

pers. comm.). Study of these genes and the regulation of their expression in cucumber 

therefore avoids the complication of studying the regulation of a multigene family as is 

the case in other species. 

In previous investigations, two subunits for ICL have been detected on protein gels of 

immunoprecipitated products of an in vitro translation (Reizman et at., 1980; Weir et 

at., 1980). Production of two subunits from a single gene could be the result of post-

transcriptional processing. There have been reports of ICL being phosphorylated in E. 

coli (Hoyt & Reeves, 1988; Robertson & Reeves, 1989), S. cerevisiae (Lopez-Boado 
et at., 1988) and recently in cucumber and castor bean (Finnessy et at., 1994). 

Phosphorylation of a polypeptide would be sufficient to cause this difference in 

subunit size. The importance of phosphorylation in the regulation of ICL activity in 

higher plants is not yet clear. 

3.3 Characterisation of the cDNA clone, pBSICL 

3.3.1 Restriction endonuclease analysis 

Digestion of the cDNA clone with various restriction endonucleases revealed that it 

was bounded by Eco RI sites and contained Sac I and Xba I sites approximately 200 

and 800 bp from the 5' end respectively, agreeing with the data from Southern blotting 

(section 3.2) that the gene contained an Xba I site. The restriction map is displayed in 

figure 3.2. 

3.3.2 Nucleotide sequence analysis 

The cDNA clone was fully sequenced using the Sanger dideoxy chain termination 

procedure (Sanger et al., 1977) employing the universal -40 and reverse primers. 

Subclones were created using the internal Xba I and Sac I sites, generating four 

subclones carrying inserts of 800 and 600 bp (Xba I clones) and 200 and 1200 bp (Sac 

I clones). The strategy for sequencing is shown in figure 3.2. The cloned insert was 

shown to be 1421 nucleotides in length, encoding 473 amino acids of the ICL 

polypeptide. Comparison of the nucleotide sequence with that from the previously 

published cotton ICL cDNA sequence (Turley et at., 1990) revealed that the clone 

lacked 86 and 221 nucleotides at the 5' and 3' ends of the protein coding sequence 

respectively, corresponding to 29 and 74 amino acids (figure 3.3d). 
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Figure 3.2 Restriction endonuclease map and strategy for sequencing 
the cucumber cDNA clone, pBSICL. Restriction endonuclease map of the 

1.4 kbp insert of the cDNA clone, pBSICL. Restriction enzymes used were: E = Eco 

RI, X = Xba I, S = Sac I. Four subclones created using these sites are depicted by 

double headed arrows. The extent of the sequence information obtained from each 

clone is depicted by dotted arrows. 



Figure 3.3 
Restriction endonuclease map of a 0.5 kbp genomic fragment in ?NM1 149 

containing the icl gene. Restriction enzymes used were: H = Hind lU, X = Xba I, 

S =Sal I, N = Nco I, E = Eco RI, C Sac I. 

Broad line represents the extent of the nucleotide sequence determined. 

Diagrammatic representation of the icl gene structure. Hatched boxes represent the 

protein coding region, open boxes represent 5' and 3' untranslated regions and 

introns. The vertical lines topped by a triangle represent putative TATA boxes (see 

figure 3.5) and the predicted transcription initiation sites are represented by flags. 

Mature ICL mRNA. The AUG start and UAA termination codons delimit a 

1728 bp ORF (hatched box). The known polyadenylation site, as determined by 

sequence analysis of a cDNA clone, is indicated by 'polyA'. 

1421 bp cDNA, pBSICL, lacking 86 and 221 nucleotides of the coding region at 

the 5' and 3' ends respectively. 

1768 bp cDNA, pBSICL1.7, lacking 235 nucleotides of the coding region at the 5' 

end. This cDNA has a 3' untranslated region of 275 bp and a poly(A) tail of 25 

nucleotides. 

ICL protein with predicted size as indicated. The putative type 1 peroxisomal 

targeting signal Ser-Arg-Met is indicated at the carboxy terminal end. 
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3.4 Isolation of a partial cDNA clone encoding isocitrate lyase 

In order to gain information about the 3?  end of the gene (both coding and untranslated 
regions), further cDNA clones encoding ICL were isolated from a XZAPII library 

constructed using mRNA template extracted from senescing cucumber cotyledons by 

Dae-Jae Kim (University of Edinburgh). Eight clones were isolated, and following in 

vivo excision and subsequent restriction endonuclease digestion, were all shown to 

carry inserts of approximately 1.7 kb. 

Three clones were picked and the 5?  and 3' ends sequenced using the universal -40 and 

reverse primers. All clones started at the same position, 235 bp downstream of the start 
of the coding region and terminated 275 bp downstream of the translation termination 
codon, carrying a 25 nucleotide poly A tail (figure 3.3e). They are therefore 

presumably sibling clones and will subsequently be referred to as pBSICL1.7. 

3.5 Isolation and sequencing of the isocitrate lyase gene 

A cucumber genomic library was constructed from Hind III digested leaf DNA as 

described in section 2.6.1. It was plated and screened for clones carrying the icl gene 
using the radiolabelled 1.4 kb insert from pBSICL as a probe. Ten phage were 

purified, DNA isolated from three of them and the inserts subcloned into pBS and 

analysed by restriction endonuclease digestion. All three clones carried a Hind III 
insert of approximately 6.5 kb and generated the same restriction map, though one 

contained the insert in the opposite orientation relative to the other two. The restriction 

map is shown in figure 3.3a. 

In order to sequence the genomic clone, subclones were generated as depicted in figure 

3.4. Deletion series of the longer subclones were constructed using the Exo 111/Si 
nuclease system and the nucleotide sequence of all clones determined using the Sanger 

dideoxy chain termination procedure. The sequence is displayed in figure 3.5. 

Comparison with the sequence determined from pBSICL shows that the two differ in 

two places, leading to one amino acid substitution in each case (see figure 3.9a). The 

library from which the cDNA clone was isolated was constructed from mRNA isolated 

from a different cultivar to that used throughout the rest of this thesis. Consequently 

the differences in sequence seen could merely be due to the use of different cultivars. 

In addition to the protein coding sequence, the nucleotide sequence of 2.7 kbp of the 5' 

and 400 bp of the 3' flanking regions was determined. 
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Figure 3.4 Strategy for sequencing the icl genomic clone. Restriction 
endonuclease map of the 4988 bp of the genomic clone for which the nucleotide 
sequence was determined. Sites shown are X = Xba I, S = Sal I, E = Eco RI, 
C = Sac I. Subclones utilising these sites were created as indicated by solid double 
headed arrows. Extent of the sequence information obtained is indicated by dotted 
arrows. 
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-2659 
tctagatttacatgctatatagaaagatgttggaaaaacaacacttgaatatgttaggaagggoaagtagtaaaacaaa 
aaggatatatacaacattaoaatgatgtggatgaggtctaggaacaaataatgaagtaaataaagaagagaaaatgtag 
aooggttttgagatactcctcgoagtgctaaaaaaaagggtaacccaatctaaggggatggacaaggtcgcaattcaat 
ggccactcttgccccattttccacccgcccttgaagataacccaattttattctcacocttcccgaggactaactaca 
tcaaaccgotttttagtcctaatccatttccaattttatattttcttttcttacicittcicacctattccccatgtgaaca 
agacttgatcaataccatatttattcccattttaggcattcattatttttttaaaaaaaaactttcatcattttactta 
aataaatagataacaacaaaaqtcogttacocctgtaacaaaagctatatgacttcaccaaottaataacaaacttttc 
aotaagaacctttaoctaaaggatgctcaactatagttggcttaaacaaactatcaactttottccataagttg000a9 
gacccatttatcaatttatttagtaoacaatgaacaagattcatgcoaattaaaactacaattattattactgtgttgt 
agaogatccacggctttgaaagtaaoottgatacgacctcaatatttaaaacattttgataaaaatgtgtcatatctaa 
attgaattaaaaaaacatttaaaoatttaactaattgagtogttgttctaccatatgttagatgciatcatottotatgt 
aggaagcagttcctatattttcgttcaaccattagttaaggttctcaaaoagagcctttaatgaaaaoatattattgtt 
ttattcctgattaaagaataaatttgacaagataaatacaataataataataaaaaaagaattaggaatgcaatgaaaa 
gttgtatttgattcataatagaaagtacgtatgttggtgaagcggtggggaagtgttggttgatgtaaatcaagttgtt 
atcgggtaagttcatagggatatattataclatggagtagtcatggttgacgca9cctctcttctttcgatcccttccac 
cccctacggatcattthatttcaatttcatttccatactctatccaoattttgaacitactttgagggtctttttctaat 
acatacgccaatttttcatttcaagatagattgaatttttgaaacacaaccccaaccttatccatttcccitcctctttt 
aattaacccatcaactcctcccaaaccccaactatgtattttatatattttctcccctctttagttatgccgtaatata 
aaagagtaccctgattttcattcactttaaatatatctctatcattacgtcctttatgtacgtcattggatgat-Ltaag 
gataaaatagagaactaaatatcttttttgttgggtaaataagagatgatgagtaattactgttcitttttatatgcatc 
actaattgaatttttatgggtaattatatatgatgtttcaaatattcattgciacttgaatatcgatatcaciciaccttat 
aatgatttattttgtcaattattgactataatcaattaatatatctttgttttgttttcccctcaaagttatagtataa 
atttttaattttgataatgatcctaqattttttttaaaaaaatatttctctttaaaataagataaatgaacttgtaaqa 
attagaagaaatatggaatctacaaattattaacttaatgttatctacttatacgtaaaciaatgtttaatcgaaatgat 
aaacaagatttgaaggatagaaagagagaataaaaaaatcataggtttaggggaacgtttaagttataagaaaacaata 
atgcgaatatggtatctgotaatacgcagaaacttgthaatgqttacctttatgcattctaattacgacacatcacaca 
tcacacatccatcttaaaactgccttcaactgtgtcgacaaataattacgacacgtcggctccttacatttgaaggagg 
agattccgatgaaatcttctgcatttcctcatcagactgcctattttgacccacagaaaaactttaccgtatgttatac 
acataaattcttagcttatacagaaatoagaaatcatatttaacaaaaaaaaccgtaaaaactattaccgaagattatg 
gttattgagaagatgagagaaagacaagtatggcagcagagagagagggcitgggtttcccttacgtgccccgcagttgc 
a cctccitaa cagacaagtttccatcaaactctgaagataacaatgaaacaaattcaaattgtattttcttj W.gp cttg 
ttttcttggtttctgtagcttcttttcttatctaaatccataattaacactcttttacctatctcaciagggattctga 
tcatctctccccttQtQaatacaaccccatcaacaaacttcttgcQttQagttgattggcttcttttcgttattgtcga 
-52 
ggaatatagaactaaogaacctaaaagaagcagtataaactcagctctacccAlG GCT GCC TCC TTC TCT CIT 

MA AS F S V 
22 
CCI ICC ATG gtgaatacaaatccatttgaattttgctgttaatgcaggtactaataatactaatactaatattttt 
PS M 

98 
tagatttcttgttggtatagATA ATG GM GM GM GGA AGA TIT GM GCG GAA Gil GCA GAG Gil 

I ME E E G R F E A E V A E V 
163 	 - 
CAG GCA TGG ICC AAT TCA GAG AGG TTC AAG CIA ACA CGA CGG CCC TAC ACG GCA AM GAC 
Q A W W N S E R F K L 	R R P Y TA K D 

223 
GIG GIG TCA CTA CCI GGG AGC CIG AGA CM AGC TAC GCT TCA AAC GAT hA GCT AAG AAG 
V VS L R CS L R Q S Y A S 	D LA K K 

283 
CTG ICC CGA ACC dC AAA ACC CAC CAA GCT AAC CCC ACA GCC TCG AGG ACA TTC GGA GCT 
LW RI L K I H Q A N CIA SR T F GA 

343 
CU GAC CCI Gil CM GIG ACG ATG ATG GCT AAG CAT TTG GAC ACC AlT TAT GTC ICC GGT 
L 0 P V Q VIM MA K H L OIlY VS G 

403 
TGG CM TGT ICT TCA ACT CAC ACC ICC ACT AAC GM CCI GGC CCC GAC dC GCC CAT TAC 
W Q C S SIH T SINE PG PD LADY 

463 
CCA TAC GAC ACT GIl CCC AAC AAG GTC GAG CAT CU TIC ITC GCT CM CAG TAC CAT GAC 
P Y DIV P N K V E H L F FAQ Q Y H D 
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523 
AGG AM CAG AGG GAA GCC AGG ATG AGT ATG AGT CGA GAG GM CGA GCC AM ACT CCT TAC 
R K Q REARM S 	SR E E R A K I P Y 

583 
ATC GAC TAT CTC AM CCG AU ATC GCC GAC GGT GAC ACC GGC TTC GGC GGC ACC ACC GCT 
I D 	I K P1 IA D G 	I G F G G TI A 

643 
ACA GIG AAG CTC TGT AAG CTA TTT GIG GM CGC GGT GCC GCC GGT GU CAT AU GAG GAT 
IV K L C K I F V ERG A AG V H I E 0 

703 
CM TCC TCT GU ACG AAG AM TGC GGT CAT ATG GCG GGA AM GIG UG GTA GCG GU AGC 
Q S S VT K K C G H MA G K V L 	A VS 

763 
GM CAC ATC AAT CGG CTC GTA GCG GCT CGA UG CAG TTC GAT GIG ATG GGG GU GAG ACG 
E H I N R L 	A AR L Q F DV MG VET 

823 
AU CTC GIG GCT CGA ACG GAT GCG GU GCA GCT ACT TTG AU CM ACG AAT GU GAT AM 
I L 	ART D A V A A IL I Q TN V D K 

883 
CGA GAC CAT CM ITT AU UG GGG GCG ACG AAC CCA AAT UG AGA GGG AAG AGT UA GCT 
RD H Q F I L GAIN P N I R G KS I A 

943 
GGG GCT UA GCA GM GCC ATG GCG GCT GGA AM ACA GGA GCG GAG CU CM GCT CIA GM 
GALA E AMA AG K I GA E L Q A L E 

1003 
GAT CM TGG AU TCC ATG GCC CM UG AM ACA TU TCG GM IGI GTA ACG GAC GCA ATC 
D Q WI S 	A Q L K T F S E C V IDA I 

1063 
ATG AAT ACA AAC GCA ACA GAG MT GM AAG AGG AGG AM UA GAC GM TGG ATG AAC CAT 
MN TN A TEN E KR R K I DEW MN H 

1123 
TCC AGT TAC GAG AM IGT ATA TCG AAC GM CM GGA CGT GM ATC GCA GAG AM UA GGA 
S S YE K C IS N E 	G R E IA E K L G 

1183 
CTG MG AAT CTC UC TGG GAT TGG GAT UA CCA AGA ACT AGA GM GGG ITT TAC AGA TTC 
I K N I F W D W DIP RI R E G F Y 	F 

1243 
AM GGT TCG GTA ATG GCG GCG AU GU CGT GGT TGG GCT TTC GCA CCA CAT GCA GAC UA 
KG S V MA A IV R G WA F A PH AD L 

1303 
ATC TGG ATG GM ACT TCA AGC CCA GAT UG GU GM TGC ACA ACA TTC GCA AM GGG ATG 
1W M E T S S PD L 	E C TI F A K GM 

1363 
AM TCC ATA CAT CCA GM ACA ATG UA GCT TAT MT CIA TCC CCA ICI TTC AAC TGG GAT 
K S 	H P E TM LAY N L S PS F NW D 

1423 
GCA TCA GGA ATG AGC GAT MG CM ATG GM GAG UC ATC CCG AGG ATC GCG AGG CTG GGT 
A 5GM SD K Q ME E F I PR IA R L G 

1483 
TTC TGC TGG CAG TTC ATA ACA CTG GCG GGA TTC CAC GCG GAT GCG UG GTG GIG GAC ACA 
F C W Q FIT LAG F HAD A L 	VOl 

1543 
T1T GCA AGA GAT TAC GCG AGA AGG GGA ATG ITG GCA TAC GIG GAG AGA AU CM AGA GM 
F A RD Y AR R GM LAY V E RI Q R E 

1603 
GM AGA MC AAT GGA GIG GAT ACA UG GCA CAT CAG AM TGG TCT GGT GCT MC TAC TAC 
E R N N G V D I L A H Q K W S G A N Y Y 

1663 
GAT CGG TAT CTG AAG ACG GTT CAG GGG GGG AU TCG TCC ACT GCG GCC ATG GGA AM Ggc 
DRY L K TV Q G G IS ST A A MG K 

1723 
oagcaaattgtttatcattagatttt9atattoatgttaaa000ctgttgaagtgtgtttatcaogtgtttgaattttg 
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1802 
aaatgcag GG GTA ACG GM GAG CAG TTC MG GAG TCA TGG ACG AGG GM GGA GCA GIG AAC 

G VT E E 	F K ES W T RE GA V N 

1863 
TTG GGA GM GM GGG AAC GIG GTG GTA GCC AAG ICC AGA AlGtaatgaagagcaaaagcaacigcao 
L G E E G N V V V A K SR M 

1929 
gttctoagaataataotagtatggcgttggagatttcaatatttttattggttgtttgggacaatctgtttttatttat 
tactttgggttttcttttgtttttttcaaatttgaagtaccagcattotgaaatatcattttgttgtcttgtattgtat 
tgtgtgtcccaactcctccacttttttttttttcttttttccgctgtgttattgtcatgtatgaaatgaatgaattggo 
ogctcttcttcttQtttttacttttccgccatttacctctcgctactgttttgtttactgcaatttgaaccatcttgtt 
tctcttcaoaatttcaaaagccttctgattttctatttgttagatcattgcttccaacaccaaaaatgttcattttttt 
tctciga 2329 

Figure 3.5 Primary structure of the icl gene. The nucleotide sequence 

presented is that of the two Xba I fragments shown in figure 3.3a. Protein coding 

sequence only is in upper case letters. The derived amino acid sequence is shown in 

single letter code. Nucleotides are numbered in the 5' to 3' direction, beginning with 

the first residue of the initiator codon ATG. The putative TATA boxes and putative 

polyadenylation signals are underlined, the predicted nucleotides representing the start 

of transcription are in bold and underlined, as is the adenine nucleotide which acts as a 

site of polyadenylation for the cDNA clone, pBSICL1.7. 
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3.6 Features of the isocitrate lyase gene 

3.6.1 Features of the 5' flanking region 

Primer extension analysis was carried out using a synthetic oligonucleotide (20 mer) 

complementary to positions +11 to +30 of the genomic sequence. Several products 

were generated between 79 and 220 nucleotides in length, the strongest signal being 

given by the shortest product (figure 3.6). There are several possible reasons why 

multiple products were generated: 

the oligonucleotide used as a primer could possibly be mispriming at other sites: this 

could be determined by annealing at a higher temperature, so reducing the chances of 

mispriming. 

there may infact be numerous starts of transcription for the icl gene used at different 

developmental stages. However, this is unlikely to be the explanation in this 

experiment as the mRNA used as template was isolated from a uniform population of 

cotyledons harvested three days post imbibition. 

the formation of secondary structures within the message may have caused the 

reverse transcriptase to pause and 'fall off' before the end of the message was reached. 

The extension reaction was performed at a relatively low temperature, so potentially 

allowing the formation of secondary structure within the RNA template. In this case 

the longest product would be the genuine one. 

In addition to the longest (220 nucleotides) and the shortest (79 nucleotides), two other 

products of 113 and 116 nucleotides are seen in P1. Both the doublet at 113/116 

nucleotides (-831-86) and the longest of 220 nucleotides (-190) have a putative TATA 

box approximately 30 nucleotides upstream of the predicted transcript initiation site 

(TATAAATA and TATAACTT respectively), both fitting closely to the consensus 

for enzymes compiled by Joshi (1987a) of TATA(A/T)ATA (figure 3.7). The context 

for initiation of the two products does not exactly fit the consensus in either case, 

TGCTTAG for the doublet and GCTTC for the longer putative leader sequence 

(figure 3.7). The major product of 79 nucleotides lacks sequences resembling a TATA 

box in the expected position and the consensus around the initiation site. Most 

transcripts are found to initiate at an adenine residue, however this is not always the 

case and should not be used to discount the second sequence from being a transcription 

initiation site. In common with those from many other plant genes analysed, the leader 

sequences from both these putative starts of transcription are A+T rich, having a 

composition of 64 % A+T. The scanning mechanism proposed by Kozak (1986) is 

facilitated by a high A+T composition, as a more labile secondary structure is formed 
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TGCA P1 P2 

?fl 

Figure 3.6 Primer extension analysis to identify the start of 

transcription. A 20mer oligonucleotide, complementary to position +11 to +30 of 

the genomic sequence, end-labelled using [?-32P]dATP  was used as a primer in both 

sequence analysis and primer extension studies. The sequence of the strand 

complementary to that presented in figure 3.5 is shown next to the products of the 

primer extension reaction. The products of lengths 79, 113, 116 and 220 nucleotides 

are indicated by arrows. (A = adenine, C = cytosine, G = guanine, T = thymine, P1, 

P2 = primer extension products). 
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(a) 

icll 	-122 	C C C T T A T A A A T A C -110 

icl2 	-223 	T C T T T A T A A C T T G -211 

Enzyme consensus CW  C40  A40  CT  T (  A90  T70  A- 0  AEo  AEo  TEo  AT  G 
T50  

Total consensus 	T37  C42  A3B  C47  T%  A97  Tg()  ALA  Ts  A T63  A71  G1  

icll -89 	T G C A T T G 	A 	G 	-81 

icl2 -193 	G C T C T C T 	-187 

Enzyme consensus CT C40 Qo  A60  N30 C40 C40 

T40 T40 

Total consensus C29 T C59  AG5 T54 C43 A42  

Figure 3.7 Contexts for (a) TATA box and (b) transcription start of the 

116 nucleotide (icll) and 220 nucleotide (02) products generated by primer extension. 

Enzyme consensus derived from sequences of 10 plan genes encoding enzymes and 

total consensus derived from 79 plant genes (from Joshi, 1987a). The base with 

maximum frequency of occurrence at each position is shown in the consensus. An 

alternative base is shown when two bases have identical maximum frequency. N 

denotes the situation where three bases have identical maximum frequency of 

occurrence. The subscript figure following a base is the maximum frequency of 

occurrence. The TATA box and the nucleotide at which transcription is initiated are 

shown in bold type. The numbers at the ends of lines indicate the position of the 

sequence relative to the start of translation. 
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than in G+C rich sequences, therefore being more easily melted by ribosomal 

subunits. For subsequent discussion, the longest product of 220 nucleotides will be 

taken as the start of transcription, giving a 5' untranslated region of 190 nucleotides. 

This fits well with the estimate from Northern analysis of the size of ICL mRNA at 

2.1 kb. The sequence of the 5' flanking region was scanned for the presence of known 

binding sequences for transcription factors. Two homologies, one to a cAMP 

responsive element (CRE; -988 to -983), and one to the CArG box to which the 

MADS box family of regulators bind (-2238 to - 2229) were found, which had 

previously been noticed in the ins promoter. However, when these sequences in the 

ms promoter were mutated, there was no effect on the level or pattern of expression 

directed by this promoter (Graham et al., 1994a), therefore it seems unlikely that the 

factors which are known to bind to such sequences play a role in the regulation of ins 

and icl gene expression. 

3.6.2 Features of the coding region 

By comparison with known coding sequences from other plant ICL cDNAs, the id 

gene of cucumber was seen to consist of three exons of 30, 1603 and 95 bp and two 

introns of 87 and 89 bp (figure 3.3b). The gene isolated from oilseed rape has four 

introns, three of which are much longer than those of cucumber. The position of the 

two cucumber introns is identical to that of the first and fourth oilseed rape introns. A 

direct comparison between the genomic sequences of oilseed rape and cucumber is 

displayed as a dotplot in figure 3.8, readily showing the positions of the introns and 

the high degree of homology between the two coding sequences at the nucleotide level 

(76 %). The coding regions of three of the five known fungal gene sequences (S. 

cerevisiae, C. tropicalis and Yarrowia lipolytica) are uninterrupted, whereas those of 

A. nidulans and Neurospora crassa are both interrupted by two introns. These are in 

corresponding positions to each other, but do not line up with the positions of any of 

the plant introns. 

3.6.3 Features of the 3' flanking region 

The 3' end of pBSICL1.7 isolated from the senescing cotyledon library terminates 

with an adenine residue at +2179 to give 275 nucleotides of 3' untranslated region. 

The vertebrate polyadenylation signal 5' AAUAAA 3' is absent from the region 

immediately upstream of the cleavage site. However, this exact sequence was only 

found in 40 % of plant nuclear genes (Joshi, 1987b), many others containing similar 
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Figure 3.8 A comparison of the nucleotide genomic sequences of C. 

sativus and B. liapus. The two sequences were aligned using the Compare and 

Dotplot programmes of the UWGCG package, using a window of 18 and stringency 

of 14. The gene structure of each is shown along the axis to which it relates. Boxes 

represent exons, solid lines represent introns and dotted lines represent 5' and 3' non 

coding sequences. 
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sequences with one or two base differences. Such a sequence, AAUAA is present in 

two overlapping copies 28 and 24 nucleotides upstream of the cleavage site found in 

the clone isolated from senescing cotyledons. In vertebrate genes, in addition to this 

polyadenylation signal, other sequences are involved: AAUAAA occurs within the 

coding region and introns without causing processing around these sites (for reviews 

see Birnstiel et at., 1985; Wahie & Keller, 1992). A G+U rich sequence (consensus 

YGUGUUYY) lying approximately 30 nucleotides downstream of AAUAAA is also 

necessary for efficient processing (Wahle & Keller, 1992). In addition, the sequence 

CAYUG is implicated in processing, often being found close to the site of polyA 

addition. This last sequence is thought to base pair with a small nuclear RNA, U4, 

implicating snRNPs in the cleavage and polyA addition processes (Berget, 1984). In 

plant genes, the process of cleavage and polyadenylation is still poorly defined 

compared to animal and viral genes. The signals important in vertebrate systems do not 

appear to be conserved to any degree in plant systems (Joshi, 1987b) and indeed are 

not properly recognised in plants (Hunt et at,, 1987). The vertebrate signal AAUAAA 

is not necessarily active as part of the polyadenylation signal even when it is present 

(Sanfacon, 1994), though it has been shown by deletion to be an important element in 

the cauliflower mosaic virus promoter (Sanfacon & Hohn, 1990; Sanfaçon et at., 

1991), but tolerating a degree of mutation. In addition, the downstream UG-rich 

region present in vertebrate systems is not usually present. Multiple elements appear to 

be involved in plant systems, including some a considerable distance upstream of the 

cleavage site (Mogen et al., 1990, 1992; Sanfaçon et al., 1991; Sanfacon, 1994), but 

in the majority of cases these have not yet been clearly defined. The repeated element 

UUUGUA has been identified to be important in processing of the cauliflower mosaic 

virus polyadenylation signal when present a defined distance upstream of the 

AAUAAA motif, though other upstream sequences are also necessary for efficient 

processing (Rothnie et at., 1994). Recent studies suggest that both elements close to 

the processing site and others further upstream are necessary for efficient processing of 

plant mRNA 3-end formation (Mogen et at., 1992; Sanfacon, 1994). Many plant 

genes have been reported to have multiple polyadenylation sites (Dean et at., 1986; 

Graham et at., 1989; Schaller et at., 1991); only one was identified for the icl gene, 

though there may be others also utilised as yet unidentified. In general, one site tends 

to be used at a higher frequency than the others, but not to the same extent as in animal 

systems where a single site is predominantly used (Birnstiel et at., 1985). 



3.7 Features of the isocitrate lyase polypeptide 

The coding region of the icl gene in cucumber is 1728 nucleotides long, translation 

yielding a polypeptide of 576 amino acids with a predicted relative molecular mass of 

64,618. Comparison of the predicted amino acid sequence with those of cotton 

(Gossypiu,n hirsurum, Turley et al., 1990), oilseed rape (B. napus, Zhang et al., 

1993), castor bean (Ricinus communis, Beeching & Northcote, 1987) and E. coli 

(Matsuoka & McFadden, 1988) reveals similarities of 94.8 %, 90.8 %, 92.7 % and 

57.3 % respectively, showing this protein is conserved to a very high degree between 

higher plant species. Amino acid comparisons between the predicted amino acid 

sequences of ICL from the four higher plant species, the five fungal species and 

C. sativus, S. cerevisiae and E. coli are displayed in figures 3.9a, b and c respectively. 

Several features of interest are apparent from these comparisons. 

A hexapeptide, K-K-C-G-H-M, at positions 211 to 216 of the predicted cucumber 

amino acid sequence (boxed in figure 3.9c) is conserved throughout all species for 

which the sequence of ICL is known. This area has been identified to be important for 

the catalytic activity of the enzyme, the cysteine being the putative active site residue in 

E. coli , where it has been assigned to the glyoxylate subsite (Nimmo et al., 1989; Ko 

& McFadden, 1990). This is the only cysteine conserved between the sequences of the 

plant, fungal and bacterial enzymes. A second sequence, Y-N-L-S-P-S-F-N-W, 

conserved throughout eukaryotes and with a single substitution in E. coli, has been 

implicated as being present at the active site (boxed in figure 3.9c): in E. coli, the two 

serine residues have been shown to be important for activity of the enzyme (Ko et al., 

1992). 

The mechanism of targeting proteins to the peroxisomes appears to differ from protein 

to protein and even within the same protein between different species. Experiments 

investigating targeting mechanisms first demonstrated that the terminal tripeptide acts as 

a peroxisomal targeting signal. It was shown that the conserved tripeptide S-K-L at the 

carboxy terminus of firefly luciferase was both necessary and sufficient to direct a non-

peroxisomal protein to the peroxisome (Gould et al. 1987, 1989; Miura et al., 1992). 

None of the ICL polypeptides for which the sequence is known have this terminal 

tripeptide. However, all the higher plant enzymes, including that from cucumber, have 

either S-R-M or A-R-M at the carboxy terminus (boxed in figure 3.9a), both of which 

are conserved variants of S-K-L and have been shown to be functional as targeting 

signals in Trypanosoma brucei (Sommer et al., 1992). Using deletion constructs 

expressed in transgenic Arabidopsis, Olsen et al. (1993) have demonstrated that this 

tripeptide is indeed necessary to localise oilseed rape ICL to the glyoxysomes and in 
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Figure 3.9 Amino acid alignments of predicted polypeptide sequences of 

ICL from (a) higher plants, (b) fungi and (c) cucumber, S. cerevisiae and E. co/i. The 

top line shows the complete sequence for ICL from that organism, with differences in 

other species marked underneath. Numbers refer to the top sequence only. Dots 

indicate gaps introduced to generate an improved alignment. In (a), the conserved 

carboxyl tripeptide is boxed, and the positions of the two amino acid differences 

between the cucumber genomic and cDNA sequences marked with an asterisk. At these 

positions the cDNA residue is a S; in (c), the two conserved regions identified as being 

at the active centre of E. co/i are boxed, and asterisks indicate the residues completely 

conserved between the higher plant sequences known. CS = Cucuinis sativus (genomic 

sequence), GH = Gossipium hirsutuin (Turley et at., 1990), RC = Ricinus conmunis 

(Beeching & Northcote, 1987), BN = Brassica napus (Zhang et at., 1993), NC = 

Neurospora crassa (Gainey et al., 1992), AN = Aspergillus nidulans (Gainey et al., 

1992), SC = Saccharomyces cerevisiae (Schöler & SchUller, 1993), CT = Candida 

tropicalis (Atomi et at., 1990), YL = Yarrowia lipolytica (Barth & Scheuber, 1993) and 

EC = Escherichia co/i (Matsuoka & McFadden, 1988). 
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1 60 
CS MA.ASFSVPSM IMEEEGEFEA EVAEVQAWWN SERFKLTRRP YTAKDVVSLR GSLRQSYASN 
GH T SR 	A K 	G 
RC G R 	A N  
EN T 	S R 	A H K G 

61 120 
CS DLAXKLWRTL KTHQANGTAS RTFGALDPVQ VT1V1AKHLDT IYVSGWQCSS THTSTNEPGP 
GH EM 	T S T 
RC S T 
BN EM S 

121 180 
CS DLADYPYDTV PNKVEHLFFA QQYHDRKQRE ARNSMSREER AKTPYIDYLK PIIADGDTGF 
GH R 	V 
RC R R 	V 
BN FV 

181 240 
CS GGTTATVKLC KLFVERGAAG VHIEDQSSVT KKCGHMAGKV LVAVSEHINR LVAARLQFDV 
GH 
RC I 
EN 

241 * 	300 
CS MGVETILVAR TDAVAATLIQ TNVDKRDHQF ILGATNPNLR GKSLAGALAE ANAAGKTGAE 
GH V T NM G 	NPQ 
RC L EN S 	T V TL 	TG N 
EN TV SIS V 	S SSL G VNNPA 

301 * 360 
CS LQALEIWIS MAQLKTFSEC VTDAITNA TENEKRRKLD EWMNHSSYEK CISNEQGREI 
GH I 	NLAI M 	KSMI D 	RMN D L 	A 
RC T 	NEA P M 	KM G 	BNN T 	D L 	N 
EN I 	L S R M 	DA VELKRMLS SRVN L AR N L 	L 

361 420 
CS AEKLGLKNLF WDWDLPRTRE GFYRFKGSVM AAIVRGWAFA PHADLIWMET SSPDLVECTT 
GH R 	Q R M 	R 
RC DEN V 	R I AK 	FA 	A 
BNA VTD Q 	T V QI A 	N 	Q 

421 - 480 
CS FAKGMKSIHP ETMLAYNLSP SFNWDASGMS DKQMEEFIPR IARLGFCWQF ITLAGFI-IADA 
GH E 	M I T EH RD K 
RC E V M I TEED G 
BN E 	KT V T Q M Y 

481 540 
CS LVVDTFARDY ARRGMLAYVE RIQREERNNG VDTLAHQKWS GPNYYDRYLK TVQGGISSTA 
GH T 	F K F 
RC I 	K K 
BN K S 

541 576 
CS ANGKGVTEEQ FKESWTREGA VNLGEEGNVV V RN 
GH T 	P G I S 	L 
RC T 	P MEMSASE 
BN T 	P AGM 	GTSL 

ME 



(b) 

	

1 	 58 
NC . MAANNNVNP AVDPELEDEL FAKEVEEVKK VMSDSRWRQT KRPFTAEQIV SKRGNL. KIE 
AN ..........MSYI E QR YWD A. N 	K 	Y 	 A 
SC . . MPIPVG T KN FAALQAK LDADAA IE 	5K 	NYS RD A VR TFPP 
CT ......AYT KI INQ FAD Q A I 	EP K 	IYS ED A K 	L A 
YL MQVSHQTFC VLTQCPNRQR NN 	I 	SP KH 	VYSP D A R TI VP 

	

59 	 118 
NC YASNAQAKKL WKILEDRFAK RDASYTYGCL EPTMVTQMAK YLDTVYVSGW QSSSTASSSD 
AN P V 	G RNNK.E F 	D 	 T 
SC PSVMR F  KHFII1EGTVKFA DVQIS 	II 	C 	TN 
CT PSQSD FL KHD KSVFFA DIHA 	SI 	C 	TN 
YL Q SQ D F L QEHEKN HT F AS D VQ 	 SI 	C 	T N 

	

119 	 176 
NC EPGPDLADYP YTTCPNKVGH LFMAQLFHDR KQRQERLSVP KDQREKL. . A NIDYLRPIVA 
AN 	S 	MN V 	N W 	 E MTT 	H V T V 	I 
SC 	 MD V 	E 	K 	 LEA SKAK SQEELDENG P 	T 
CT 	S 	MD V 	E WF 	 E NNT EE ANTP . Y F 	I 
YL SS GG MD V 	E WF 	E 	NE 	L ESEPIQAPR RV 	I 

	

177 	 236 
NC DADTGHGGLT AVMKLTKLFI EKGAAGIHIE DQAPGTKKCG HNAGKVLVPI QEHINRLVAI 
AN 	 V R 	 S 
SC A 	F M R M TSTN 	RCVIV V T 
CT 	I II 	R 	 V 
YL E 	 V M R 	 I 

	

237 	 296 
NC RAQADIMGSD LLCIARTDAE AATLITTTID PRDHAFILGC TNPDLEPLAH LIvIIVUKAEAEGK 
AN 	T 	A 	S 	S 	H P I S 	IQ ND VM QA 
SC MC 	H 	1W 	S 	SS 	T Y V A 	NI F E VLND IMS A 
CT 	S F N AV 	S 	S 	H Y I A 	ESGD A AE K I 
YL S FAUN A 	S 	SS Y Y AA KAGHVDVVA R  

	

297 	 355 
NC TGAQLQA lED DWLAKADLKR FDEAVLDVIA KGKFSNAKDL AAKYQAAVKG . KQISNRFAR 
AN N E 	E 	G L ND V A N NSPLP K .AA  IE LTQS 	.. L 
SC S QE AD Q K CRD G L H I E E RSAL KQE 1K FTSK GP LTET H K 
CTYDEAR TETK G L H IEKANY KEA IK FTDK NP LSHT HK K 
YL A P V E NR CV L H FA EVN D SY KAE I EF'NKK TP LSNTPDI D 

	

356 	 415 
NC AIARQLLGQE IFFDWESPRT REGYYRLKGG CDCSINRAIS YAPYCDAIWM ESKLPDYAQA 
AN 	KEIA TD Y 	A 	 YQ TQ A 	VA 	FA L 	 K 
SC KL KEI H 	L V 	L YR TQ M RA F A LV 	NY FQ 
CTKLKETKD YNDVAA 	YQ TQ AVM GRAF AL 	A 	N 
YL YL AR KD Y N AA V 	YQ TQ AV GY 	A L 

	

416 	 474 
NC EEFAKGPR.V WPEQKLAYNL SPSFNWKTAN GRDDQETYIR RLAKLGYCWQ FITLAGLHTT 
AN 	DVHA 	 K P E 	K GA A 
SC  EVKEKFDW 	 PK SVEHFQ GD I 	 N 
CT K D VKAA V D W 	 NK PA E 	K GQ V 
YLK EVKNAVHW 	 T SPE S 	V 	 N 

	

475 	 534 
NC ALISDQFAKA YSKIGMRAYG ELVQEPEIDN GVDVVKHQKW SGATYVDELQ KNVTGGVSST 
AN 	T 	A 	 MA 	T 	N NNL I 
SC AVHNSRDFAD K AQN QRMD 	L 	E I G L LAQ 	A 
CT AVDNQ Q 	QT Q EK E 	 N I G L R S T 
YL 	KSC 	ER K 	GEl Q 	Q CE 	 E I GIL R 	IT 

	

535 	 547 
NC AAMGKGVTED QFH...... 
AN 	 KS ..... 
SC 	T 	KENGVKK 
CT 	A 	KETKAKV 
YL 	A 	KSKL... 



(c) 

1 	 58 
****** ** ********** ****** ** **** ** * ** * *** * ** * * * 

CS MkASFS.VPS MIMEEEGRFE AEVAEVQAWW NSERFKLTRR PYTAKDVVSL RGSLRQ.SYA 
SC PIPVGNTKN DFAALQAKLD DA IEK SDS WSK K N S R IAVR TFPPIE P 
EC ..............MKT TQ .QIE L RE TQP WEGIT 	S E 	K 	VNPECTL 

59 	 117 
** ***** 	** ****** ********** **** **** ** ******* ** *** ** 

CS SNDLIAKKLWR TLKTHQANGT ASRTFGALDP VQVTMMAKH. LDTIYVSGWQ CSSTHTSTNE 
sc SVM R FK V ER I-tHE V K 	 ISQ Y. 	I 	ASTS 
EC AQLG A M L HGESKK Y IN. SL TO GQALQQ AG IEAV L 	VAADANLAAS 

118 	 175 
********** ********** ********* *** * * ** *** ** ** 	*** ***** 

CS PGPDLADYPY DTVPNEHL FFAQQYHDRK QFEAR. MSMS REE. RAKTPY IDYLKPI TAD 
SC 	 M 	 K LF 	L SKAK Q LDEMGAP 	T V 
EC MY QSL A NS AV RI NNTFRRA QI WS ...... . GIEPGDPR V FL V 

176 	 235 
********** ********** ***** **** ********** ******** * ********** 

CS GDTGFGGTTA TVKLCKLFVE RGAAGVHIED QSSVTKKCGH MkGKVLVAVS EHINRLVAkR 
SCAAH L VF T M I 	TM 	T TN 	RCVIPQ V 	TI 
EC AEA 	VLN AFE M AMI A A F 	LASV 	3 	PTQ A QK 

236 	 295 
******* ** ******* * * *** * * ******** * ** * **** 	** * 

CS LQFDVMGVET ILVARTDAVA ATLIQTNVDK RDHQFILGAT NPNLRGKSLA GALAEAMAAG 
SC MCA I HSDL V 	SE 	SSTI T 	Y V 	I. . EPF EV NT) IMS 
EC AA T P L 	D D TSDCPYSE T  ..................... 

297 	 355 * ** * * * 	* * * 	* * 	* * ** 	** ** 	* * * * 
CS KTGAELQALE DQWISMAQLK TFSECVTDAI MNTNATENEK RRKLDEWMNH SSYEKCISNE 
SC AS Q AfT QK CRD G L H A I E . . ERSALSN QELIKKFTSK VGPLTET HR 
EC ............................................................ 

356 	 415 
** * 	* 	******* ********** *** * ** * ** 	** ***** * 

CS QGREIAEKLG LILFWDWDL PRTREGFYFF KGSVMAAIVR GWAFAPHADL IWMETSSPDL 
SC EAKKL KEIL GHEI F E 	V L Y R GTQCS N AR 	Y 	V SNY F 
EC .......... .......... . S 	FTHAGIEQ S 	L 	Y 	VC 	T 

416 	 475 
*** * * 	* * ** ********** **** * * 	*** ** ** 	***** * 

CS VECTTFAKGM KSIHPETMLA YNLSPSFNWD ASGMSDKQME EFIPRIARLG FCWQFITLAG 
SC QQAKE E V EKF DQW 	 . PKA VDEQH T Q LGD Yl 
EC ELLARR QAI HABY GKL 	C 	Q .KNLD TIA S QQQLSDM YKF 

476 	 531 
* ** 	* ** * * ** ****** *** *** 	*** ******** * ** ******* 

CS FHADALVVDT FARDYAR. RG MLAYVERIQR EER... NNGV DTLAHQKWSG ANYYDRYLKT 
SCLTN AHN S F 	K AQNVQRM DD 	VLK 	EIGL L 
EC I SMWF'NNFD L NA QGE RH KV Q P FAAAKD Y TFVSH QEV TG F KVTTI 

532 	 576 
**** * ** ********* **** *** * * 	 **** ** 

CS VQGGISS . TA ANGKGVTEE. QFKESWREG AVNLGEEGNV WAKSRN 
SC 	VA. 	T 	D. 	NGVKK . .......... ....... 
EC 	T V LT.. S S 

M. 



addition is sufficient to localise non-glyoxysomal proteins to that organelle. Of the five 

known fungal sequences, only that from V. lipolytica contains this conserved 

tripeptide, in this case S-K-L. Behari and Baker (1993) have studied the import of 

castor bean ICL in an in vitro system using glyoxysomes isolated from the cotyledons 

of sunflower. They have demonstrated that deletions from the carboxy terminus do not 

abolish import of this protein. Indeed, a construct encoding the 168 N-terminal amino 

acids generates a polypeptide that is still import competent in this system. 

Two sequences have been shown to be involved in targeting of ICL to the 

glyoxysomes of higher plants in different systems, the amino terminal region and the 

conserved carboxy terminal tripeptide. A third region potentially important for targeting 

is the central domain found in the protein sequences of the higher plant and the five 

fungal icl genes already sequenced, but not present in the E. coli protein, where no 

sequestration takes place. ICL from Chiorella fusca is smaller than that from higher 

plants at 47 kDa (Nicholl & John, 1986), approximately the same size as the E. coli 

protein, but the sequence is unknown. The algal protein is cytosolic (Pacy & Thurston, 

1987); it is therefore interesting to speculate that it lacks the same region as the E. coli 

protein, and that this region is important for targeting to the peroxisomes. This central 

domain is the least conserved area of the enzyme; this however does not necessarily 

exclude it from a role in targeting as such sequences are often not highly conserved. 

3.8 Isocitrate lyase and malate synthase are coordinately synthesised 

during germination 

To investigate the regulation of 1cl and ins transcription during germination, RNA was 

isolated from cucumber cotyledons germinated from 0 to 8 days post imbibition under 

both light and dark conditions (section 2.4.1). Northern blot analysis was carried out, 

using 5 tg aliquots of each sample (section 2.4.4). The 1.4 kb insert from pBSICL 

and the 1.9 kb insert from pBSMS1.9 were radiolabelled and used as probes. The 

filter was first hybridised with the 1.4 kb insert of the cDNA clone, pBSICL, 

radiolabelled with [32P]dCTP and subsequently, following removal of the first probe, 

rehybridised with the 1.9 kb insert of the cDNA clone, pBSMS1.9, similarly 

radiolabelled with [32P]dCTP. The results are displayed in figure 3.10. The ICL 

transcript is approximately 2.1 kb long, which agrees with the predicted size from the 

data gained from analysis of the genomic clone. The MS transcript is about 200 

nucleotides shorter at approximately 1.9 kb. 
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DARK 
012345678 12345678 

(a) 
ICL 

(b) 
000000- 0 MS 

Figure 3.10 Northern blot analysis of cucumber total RNA, isolated from 

cotyledons of seedlings grown under light or dark conditions, from 0 to 8 days post 

imbibition, fractionated through a 1.2 % (w/v) denaturing agarose gel and hybridised 

with (a) the ICL cDNA clone, pBSICL, showing the 2.1 kb ICL transcript and (b) the 

MS cDNA clone, pBSMS 1.9, showing the 1.9 kb MS transcript. 
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The two genes are transcribed in a coordinate manner in cucumber, confirming 

previous observations that the levels of translatable mRNAs and the enzyme activities 

of the two are coordinately regulated (Becker et al., 1978; Weir et al., 1980). 

Transcripts are easily detectable in light grown seedlings after 3 days, persisting 

through day 4 but thereafter the levels decline rapidly until day 5 when they are no 

longer detectable. In dark grown seedlings, transcript levels are detectable after 2 days, 

peaking around this time and from then on declining at a much slower rate than in 

light-grown seedlings, still being detectable after 8 days. Analysis of the levels of 

transcripts encoding ICL and MS throughout the life of a cotyledon reveals that, 

although undetectable in green cotyledons, the transcripts encoding both genes are 

once again abundant in the cotyledons during senescence in a temporally coordinated 

manner (Kim & Smith, submitted). They are also coordinately induced in dark-

incubated detached cotyledons (McLaughlin & Smith, 1994). 

3.9 Comparison of the sequences of the isocitrate lyase and malate 

synthase promoters 

In view of the fact that ICL and MS synthesis is coordinately regulated at specific 

developmental stages, it was considered possible that the two genes may share 

common cis-acting elements in their 5' flanking regions or possibly elsewhere within 

the genes. To investigate this, the sequences of the 5' flanking regions were compared 

using the Bestfit programme from the UWGCG package. A 248 bp fragment of the ins 

promoter has been shown to direct faithful transcription of the !flS gene during 

germination in transgenic N. pluinbaginifolia (Sarah & Smith, pers. comm.), therefore 

this region was used for comparison with the icl flanking region. Various elements 

were identified that showed a degree of homology between the two. One element 

showing a high degree of homology lies at -163 to -176, in the reverse orientation in 

the icl promoter and at -215 to -202 in the ms promoter relative to the start of 

transcription. This sequence was designated RT. A second copy of RT is present in the 

icl promoter, at positions -325 to -312. These are depicted in figure 3.1 la. It has also 

been detected in the promoter sequences of icl and ms genes from A. nidulans, N. 

crassa and S. cerevisiae (Graham et al., 1994a). A 191 bp Alu I fragment of the ms 

promoter, which contains the RT sequence, was used in gel retardation assays and 

shown to bind a factor, which was specifically competed by addition of non-

radioactive A/u I fragment. Gel retardation was also abolished by addition of a 

synthetic double stranded oligonucleotide, specific to the RT sequence, suggesting that 
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(a) RT (IMH1): 
icll -163 ICAICII'ICJ7caATa 	-176 
02 -325 aaAICIICI19cATJ' 	-312 
ms -215 1X2AICI'ICItgAIT 	-202 

IMH2: 
id -1158 AAcCCAaCCI 	-1148 

ms -227 A7aCCC7CCCJ' 	-217 

IMH3: 
id -1087 TITA1IAtATITICTcCCdICIT -1066 

ins -297 TITAIaAITI'JrTtCct'ICIT -276 

IMH4: 
id -216 AACAAAAAAA7C9TA2V\7\aCI' -195 
ins -368 A7\gAAAAAAAACCtTAMAcCi -347 

Figure 3.11 Conserved sequences in the 5' flanking regions of the 
cucumber icl and ms genes. Conserved bases are shown in upper case and those 

differing between the genes in lower case letters. Numbers relate to the start of 

transcription. In (a), icll is in the reverse orientation relative to the other sequences. 



this portion of the promoter may bind a factor which is important in the regulation of 

the transcription of these genes (Graham et al., 1994a). Further comparisons of the id 

and ins flanking regions revealed additional conserved sequences (figure 3.11 b-d), 

designated IMHs (ICL-MS homology). However, the significance of any sequence 

conservation needs to be tested experimentally, before a role in regulation of 

transcription can be assigned. 

3.10 Conclusion 

The icl gene of cucumber has been shown to be present in a single copy in contrast to 

B. napus which has approximately six (Zhang et at., 1993). The structure and 

sequence of the gene have been determined and the predicted amino acid sequence 

shown to be highly conserved between cucumber and those from other higher plants. 

The genes encoding ICL and MS are coordinately regulated at the transcriptional level 

in cucumber, so raising the possibility that they may share common cis-acting elements 

in their 5' regions. Comparison of these regions yields several highly conserved 

elements, which may be involved in the transcriptional regulation of these genes. To 

test the significance of these sequences, the activity from transcriptional fusions of the 

id 5' region with a reporter gene in a stable transformation and a transient assay 

system were analysed as described in the following chapters. 



CHAPTER 4 

ANALYSIS OF CIS-ACTING 

REGULATORY ELEMENTS OF 

THE ICL GENE 
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4.1 Introduction and Aims 

In the preceding chapter, the isolation and characterisation of the icl gene of cucumber 

was described. The gene was shown to be present in a single copy in cucumber, so like 

the ins gene, all the DNA elements for the control of gene expression must be found 

within this one gene. Previous studies in B. napus have indicated that expression of 

both the icl and ms genes is regulated primarily at the transcriptional level (Comai et al., 

1989) and it has been demonstrated that 3.5 kb of the 5' flanking region of the icl gene 

contains sufficient regulatory elements for the correct spatial and temporal expression of 

the gene in embryos and seedlings of B. napus (Zhang et al., 1993). Changes in the 

steady state levels of the mRNAs during germination in cucumber indicates that it is 

likely that regulation also takes place at this level in this species (Smith & Leaver, 

1986). The ms gene has indeed been shown by analysis of a reporter gene under the 

control of the ins promoter in transgenic plants to be regulated at the transcriptional 

level, by sequences present in the 5' flanking region of the gene, during and post 

germination (Graham et al., 1990). By computer comparison with the ins gene 5' 

flanking region, elements in the icl gene promoter were identified that were common to 

the two, and therefore perhaps important for the coordinate regulation of the two genes 

throughout the development of the plant. To investigate this experimentally, the aim 

was to construct promoter-reporter gene fusions and an analysis of reporter gene 

expression carried out in transgenic plants. The reporter gene used in these studies 

encodes 0-glucuronidase (GUS), an enzyme which has little endogenous activity in 

higher plant tissues and which can easily be assayed by both fluorometric and 

histochemical means (Jefferson, 1987). 

Such analyses would ideally be carried out in the homologous host plant. However, in 

the case of cucumber, transformation using A. tuinefaciens is not yet routine. 

Cucumber transformation is possible using the hairy root system of Agrobacteriuin 

rhizo genes (Trulson et al., 1986), but for this project it was decided to use the easily 

transformed Nicotiana pluinbaginifolia as the host for the transgene. Use of a 

heterologous host avoids the potential problem of trans-inactivation of homologous 

sequences which may be experienced when transgenes are introduced into the 

homologous host plant. Such trans-inactivation is thought to be due to genomic 

imprinting of the homologous sequence, possibly mediated by methylation of the 

regulatory regions (Matzke & Matzke, 1993). N. plumbaginifolia seeds contain storage 

lipid, present in the cotyledons and the endosperm, so the analysis of a gene normally 

expressed during and post germination of oilseeds should be possible. 
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N. pluinbaginifolia has already been used successfully for such experiments using a 

ins-GUS transgene (Graham et al., 1990). 

The expression of the icl gene following germination has been described in the 

preceding chapter (section 3.8). In addition to an analysis of factors important for 

controlling regulation at this stage of development, an analysis of the metabolic control 

of icl gene expression was also investigated (section 4.8). 

4.2 Construction of a plant transformation vector containing the 

isocitrate lyase gene of cucumber 

In order to determine if the 6.5 kb Hind III fragment carrying the icl gene contains all 

the information necessary to direct faithful transcription in N. pluinbaginifolia, it was 

subcloned into the binary vector pBIN19 for plant transformation (Bevan, 1984), using 

the Hind III site present in the polylinker of the plasmid (figure 4.1). Only one 

orientation of the fragment relative to the neomycin phosphotransferase gene (NPTII) 

was selected for subsequent transformation, as orientation of an entire gene fragment 

had previously been shown not to affect the level of expression when using this vector 

system (Graham et al,, 1990). The recombinant plasmids, identified by restriction 

endonuclease analysis, were transferred from E. coli to A. tuinefaciens by a triparental 

mating (section 2.9.2). DNA was isolated from transformed bacterial colonies and used 

in Southern hybridisation to ensure that no rearrangement had occurred during the 

conjugation event (figure 4.2). 

4.3 Transfer of the isocitrate lyase gene into N. plunibaginifolia 

The icl gene was transferred into N. pluinbaginifolia using the leaf disc transformation 

system as described in section 2.9.3. Leaf pieces were cut and inoculated with 

A. tuinefaciens carrying the recombinant plasmid containing the icl gene. Shootlets 

were formed and regenerated in the presence of kanamycin, eventually producing entire 

plants which were grown to maturity, allowed to self-fertilise and generate seed. 

Four independent transformants were grown to maturity and seed was collected from 

each one. In order to show that the plants were genuinely transformed, seeds were 

germinated on rooting medium with kanamycin at 400 ig m1 1. Untransformed seeds 

lack the NPTII gene which is carried on the pBIN19 plasmid, and consequently they do 

not grow normally beyond the first five days. Non-resistant plants turn white in the 

presence of kanamycin, whereas those carrying the NPTII gene can continue to grow 

normally and generate green cotyledons and leaves. Seeds from all four independent 



RB 

4— 
	NOS-Pro 	 NPTII - Coding 	[j NOS-ter 

/N 
HSXBAKE 

-S 
-S 

-S 
'-S 

S. 

- - 	 -S 
-S 

	

H 	 S 	 H 

	

I 	I 

	

ICL - Promoter 	ICL - Coding 	ICL-ter 

Figure 4.1 Constructs used for transformation. Organisation of the 

transferred DNA in pBIN19 (Bevan, 1984) and the 6.5 kb Hind III fragment carrying 

the icl gene of cucumber. The T-DNA of pBIN19 is bounded by imperfect repeats, the 

right and left borders (RB and LB respectively). The shaded region (lacZ) represents 
the cx-complementation region of the lac operon with the solid black box within it 

representing the polylinker. Unique sites only are shown. The icl gene fragment 

inserted into pBIN19 is shown divided into the promoter, coding and terminator 

regions. H = Hind III, S = Sal I, X = Xba I, B = Barn HI, A = Ava I, K = Kpn I, E = 

Eco RI, N Nco I; NOS-Pro and NOS-Ter = nopaline synthase gene promoter and 

terminator sequences respectively; NPTII-Coding = neomycin phosphotransferase-11 

coding sequence from Tn5; ICL-Promoter, ICL-Coding and ICL-Ter = the isocitrate 

lyase promoter, coding and terminator regions respectively. 

lacZ 	
LB 

—4 
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Figure 4.2 Southern hybridisation to confirm plasmid arrangement of 

pBIICL after transfer from E. coli to A. ruinefaciens by triparental mating. 

Agrobacteriuin DNA was isolated, digested with Hind HI, and size fractionated through 

0.8 % (w/v) agarose. The filter was probed with the 1.4 kb insert of pBSICL. Lanes 1 

to 4 = DNA isolated from individual clones (30 minute exposure). P = Hind III 

digested pBIICL DNA (5 minute exposure). 
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transformants showed a ratio of resistance of three to one, showing that kanamycin 

resistance is transmitted through meiosis in a Mendelian fashion. 

4.4 Analysis of transcription of the isocitrate lyase transgene in 

N. plumbaginifolia 

Seeds from two of the transformants were germinated as described in section 2.9.4.1 

and grown for three days under light conditions. They were harvested and RNA 

isolated from entire seedlings, as the cotyledons are too small to dissect at this stage. 

Northern analysis was carried out, using the radiolabelled 1.4 kb insert of pBSICL as a 

probe. RNA isolated from three day old cucumber cotyledons was used as a positive 

control, and that isolated from 3 day old untransformed N. plumbaginifolia seedlings as 

a negative. Both transformed plants contained transcripts of the correct size, though the 

degree of hybridisation was variable, transformant 2 giving a higher level of 

hybridisation, though still considerably lower than that given by RNA from three day 

old cucumber cotyledons (results not shown). No transcripts were detected in the 

untransformed N. plumbaginifolia seedlings, indicating that the cucumber probe does 

not detect the endogenous N. plumbaginifolia ICL transcripts. 

4.5 Temporal expression of the cucumber isocitrate lyase transgene in 

N. plumbaginifolia 

To analyse changes in the levels of ICL transcripts, seeds of transformant 2 were 

germinated and grown for 0, 1, 3, 5 and 7 days (see figure 4.3), RNA was isolated 

from each, and in addition from the mature leaf tissue of this plant, and used in 

Northern hybridisation, using the radiolabelled 1.4 kb insert of pBSICL as a probe. 

ICL mRNA increased in amount to day three, and then rapidly declined (figure 4.4) in a 

manner similar to that seen in cucumber and to that seen for MS both in cucumber and 

for the transgene in N. plumbaginifolia and Petunia (Graham et al., 1990). Transcripts 

of JCL were undetectable in the sample isolated from mature leaf tissue and from 

untransformed seedlings. RNA samples from 14 day old cucumber cotyledons, which 

are by then fully green, also show no detectable ICL transcripts when used in Northern 

hybridisation (McLaughlin & Smith, 1994). The enzyme activity of ICL in 

untransformed N. plumbaginifolia seedlings was analysed to determine if it followed 

the same temporal pattern of accumulation and decline as in cucumber (S. M. Smith, 

University of Edinburgh, pers. comm.). N. plumbaginifolia seeds frequently germinate 

in a non-synchronous manner, therefore several stages of development through the first 
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Figure 4.3 N. plumbaginifolia seedlings at different developmental 
stages following the onset of germination. Seeds were imbibed overnight at 

4 0C in 1 mM gibberellic acid, and germinated on rooting medium under a 16 h 

photoperiod for the number of days indicated over each developmental stage. 

Magnification is x 10 
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Figure 4.4 Northern blot analysis to investigate the temporal expression 

of the cucumber icl transgene during germination of N. pitunbaginifolia 

transformant ICL2 seedlings in the light and in mature leaf tissue. Total RNA was 

isolated from seed batches germinated for 0 day post imbibition to 7 days post 

imbibition (0, 1, 3, 5,7) and from leaves (L). 10 pg total RNA was loaded per lane. C 

= 10 pg total RNA isolated from cucumber cotyledons, 3 days post imbibition. C was 

exposed for a shorter time than the other lanes. 
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five days of growth were identified and seedlings selected according to these stages 

rather than selecting at days post imbibition. Seeds were germinated and grown for 0 to 

5 days, stages harvested as depicted in figure 4.5 and the extracts assayed for ICL 

activity. The results depicted in figure 4.6 show that indeed the temporal pattern of 

enzyme activity is very similar in these two plant species. Stage 4 is reached after three 

days of growth post imbibition; this peak is therefore consistent with the results of the 

northern analysis displayed in figure 4,4. It has previously been demonstrated that 

activity of ICL in cucumber shows this pattern of expression, peaking at 3 days post 

imbibition and subsequently declining (Weir etal., 1980). 

4.6 Expression of an isocitrate lyase-glucuronidase fusion gene in 

N. plumbaginifolia 

4.6.1 Construction of the fusion gene and transfer to N. plumbaginifolia 

In order to determine if the elements important for controlling expression of the icl gene 

are contained within the 5' flanking region, fusions of the icl promoter with the - 

glucuronidase (GUS) reporter gene in plasmid pRAJ275 (Jefferson et al., 1986), were 

employed. Only fusions with the promoter in the correct orientation were constructed as 

it had previously been shown that the ms promoter, when fused in the reverse 

orientation was unable to direct transcription of the GUS gene (Graham etal., 1990). 

pRAJ275 contains the GUS gene from E. co/i with the context around translation start 

altered to give a 'consensus' translational initiator and so generating a unique Nco I site 

(CCATGG) at the initiator ATG codon (figure 4.7). The icl gene of cucumber has an 

Nco I site at the start of translation, therefore fusion constructs made with pRAJ275 

contain promoter and 5' untranslated sequences derived solely from the cucumber id 

gene. This is therefore an ideal system to use for this study. pRAJ275 lacks a 

transcription terminator, therefore the nopaline synthase (Nos) terminator was inserted 

into the plasmid by substitution of the Sna BI-Eco RI fragment from pRAJ275 with that 

from pBI101 (Jefferson et al., 1987) which carries the Nos terminator at the 3' end of 

the GUS gene. The 2900 bp Hind III-Nco I fragment of the icl gene, containing 

approximately 2700 bp upstream of the transcriptional start, was fused to the 5' end of 

the GUS gene, to create pRAJ2900. The construction of this fusion is shown in figure 

4.7. Recombinant plasmids were identified by restriction endonuclease digestion and 

the fusion junctions were confirmed by DNA sequencing, using oligonucleotide 

primers specific to the GUS gene sequence. The promoter-GUS-terminator cassette 

was then transferred from the pUC based vector to the binary vector pBIN19, using the 
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Figure 4.5 N. plumbaginifolia seedlings at different developmental 

stages (0 to 7) following the onset of germination in the light, from 0 to 5 days post 

imbibition. Magnification is x 8 
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Figure 4.6 ICL activity during germination and post germinative growth 

in N. plumbaginifolia. Seeds from untransformed N. plumbaginifolia were 

germinated and grown in the light for up to 5 days post imbibition. Stages were 

selected and isocitrate lyase activity determined (S. M. Smith, pers. comm.) in cell-free 

extracts from 40 seedlings at each stage. 
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Figure 4.7 Organisation of the promoter-GUS fusion genes. 

The pUG based plasmid pRAJ275 (Jefferson et al., 1986), showing the consensus 

translational initiation sequence and Nco I site at the start of the coding region. 

pRAJ275 lacks a terminator, so the Sna BI-Eco RI fragment was substituted by that 

fragment from pBI101 (Jefferson et al., 1987), thus inserting the terminator from the 

nopaline synthase gene. 

The plasmid pRAJ2900: A 2900 bp Hind III-Nco I fragment of the 5' flanking 

region fused to the GUS gene in the altered pRAJ275 plasmid. 

The plasmid pRAJ572: A 572 bp Sal I-Nco I fragment of the 5' flanking region 

fused to the GUS gene in the altered pRAJ275 plasmid. 

H = Hind III, S = Sal I, N = Nco I, Sn = Sna BI, E = Eco RI, C = Sac I; 

3-g1ucuronidase - coding = the coding region of the 3-glucuronidase from E. coli; 

NOS-ter = nopaline synthase gene terminator region; ICL - Promoter (or Pro) = the 

promoter from the isocitrate lyase gene of cucumber. 

(a) is drawn at twice the scale of (b) and (c). 
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Hind III and Eco RI sites which flank the cassette, to generate pBI2900 (figure 4.7), 

and recombinant plasmids were identified by restriction endonuclease digestion. The 

recombinant plasmid was transferred from E. coli into A. tumefaciens by a triparental 

mating (section 2.9.2), DNA was isolated from transformed colonies and used in 

Southern hybridisation to ensure that no rearrangement had occurred during the 

conjugation event (figure 4.8). 

To transfer the chimeric gene into N. plumbaginifolia, leaf disc transformation was 

carried out as described in section 2.9.3. Plants were regenerated, grown to maturity, 

allowed to self fertilise and produce seed. Seed was collected from eleven independent 

transformants. Seeds from each transformant were germinated and grown on rooting 

medium containing 400 ig ml-1  kanamycin, in order to confirm that they were 

genuinely transformed. Approximately 75 % of the seedlings from all eleven 

independent transformants were resistant to kanamycin, indicating that they were all 

transformed and that kanamycin resistance had been inherited in a Mendelian fashion. 

4.6.2 Histochemical localisation of GUS activity in germinating 

seedlings 

The histochemical assay for GUS activity can be used to identify which tissues and 

even which individual cells are expressing the fusion construct. In cucumber, JCL is 

expressed principally in the cotyledons which are the main storage reserve of the seed. 

In N. plumbaginifolia, the cotyledons are also one of the major storage organs, the 

other being the endosperm. The histochemical assay was employed to determine if 

GUS under the control of the icl promoter was being expressed in N. plumbaginifolia. 

Transformed N. plumbaginifolia seeds from the eleven independent transformants 

were germinated for 3 days and seedlings representative of that age selected. The testa 

and endosperm were carefully removed and the seedlings incubated in 1 mg ml-' X-

gluc at 37 °C (section 2.9.4.4), until the development of blue staining was observed. 

Staining of the cotyledons was detected in the seedlings from eight of the eleven 

independent transformants. No other parts of the seedling gave the same intensity of 

staining, suggesting that GUS expression is restricted to the cotyledons (figure 4.9). 

Some staining of the root hairs was detected in the seedling sets where an intense 

degree of staining was observed in the cotyledons. This could have been due to the 

uptake of the blue colour from the incubation medium by the root hairs. In the three 

transformants which had no potential to stain, it is likely that integration of the 

transgene occurred in an area of the genome which is not accessible to the transcription 

factors at this stage of development, due to the state of the chromatin or the methylation 
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Figure 4.8 Southern hybridisation to confirm plasmid arrangement of 

pBI2900 and pBI572 after transfer from E. coil to A. tumefaciens by triparental 

mating. Agrobacteriuin DNA was isolated, digested with Hind III/Eco RI, and size 

fractionated through 0.8 % (w/v) agarose. The filter was probed with the 572 bp Sal I-

Nco I promoter fragment (figure 3.3). Lanes 1 to 4 = DNA isolated from individual 

clones containing pBI2900, lanes 5 to 8 = DNA isolated from individual clones 

containing pBI572 (30 minute exposure). A = Hind IllJEco RI digested pBI2900 DNA 

(5 minute exposure); B = Hind IllIEco RI digested pB1572 DNA (30 minute exposure). 

106 



2900 572 

ICL 

Figure 4.9 Histochemical staining of transgenic Nicotiana seedlings. 

Seeds were germinated and grown until they reached stage 4. The testa and endosperm 

were removed and the seedlings stained (section 2.9.4.4). 2900 seedlings were stained 

for 60 minutes, 572 and ICL for 16 hours. 
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state, or that the inserted sequence had been rearranged. Staining of the endosperm was 

not investigated in these experiments. In previous work with a ms-GUS transgene, 

Graham et al., (1990) showed that selected cells of the endosperm isolated 1 to 2 days 

post imbibition were stained (those closest to the radicle pole), and occasionally 

staining throughout the endosperm was observed, but the potential to stain was rapidly 

lost after 2 to 3 days of germination. As with the id -GUS transgene, the cotyledons of 

plants transformed with the ins-GUS transgene stained intensely at days 2 to 3 of 

germination. 

4.6.3 Temporal expression of the id -GUS transgene in 

N. plumbaginifolia 

The variation in levels of expression of the transgene during and immediately post 

germination were analysed using a fluorometric assay. Seeds from the eight 

independent plants transformed with p13I2900 which had been shown to have GUS 

activity by histochemical analysis were grown for 0 to 5 days post imbibition and forty 

representative seedlings selected for every stage depicted in figure 4.5. Seedling 

extracts were obtained (section 2.9.4.3) and assayed for GUS activity. The activity 

detected in the seedlings rose to a peak around stages 5 to 6 and thereafter declined 

sharply to stage 7 (figure 4.10), thus reflecting the pattern of endogenous ICL activity 

detected in untransformed seedlings (figure 4.6). However, the decline in GUS activity 

after stages 5 to 6 is much less than for ICL, which also peaks slightly earlier. This can 

be explained by the stability of GUS in plant cells (Jefferson et al., 1987), giving rise 

to a slower turnover than that of ICL. The pattern of expression reported here will 

subsequently be referred to as the 'germination response'. Seedlings from 

untransformed plants were also tested for GUS activity, but no significant levels were 

detected throughout the germination series (figure 4.11). 

The level of activity varied between independent transformants, the peak ranging from 

1041 to 6783 fKat seedling-1  at stages 5 to 6. The copy number for the transgene in 

each of these transformants was not determined; however, previous work on the malate 

synthase gene and other systems has indicated that the level of expression in such a 

system is not directly proportional to the number of transgenes carried (Graham et al., 

1990; Willmitzer, 1988). Plant transgenes are thought to insert randomly into the 

genome, though a preference towards actively expressed regions has been proposed, 

due to the greater accessibility of such regions. Therefore, it is thought that positional 

effects rather than number of copies of a transgene are more important in determining 

the level of expression within a particular independent transformant. The qualitative 
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Figure 4.10 Glucuronidase activity during and post germination of N. plumbaginifolia transformed with pBI2900. Forty 

seeds/seedlings per stage from eight independent transformants (see legends beside axes) were analysed for levels of GUS activity. The 

stages selected are depicted in figure 4.5. 
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Figure 4.11 Glucuronidase activity during germination of untransformed 

N. plumbaginifolia. 40 seeds per stage were analysed for levels of GUS activity. 

The stages selected are depicted in figure 4.5 
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pattern of GUS activity observed here is very similar to that found using the ms-GUS 

transgene (Graham et al., 1990), as would be anticipated in view of the coordinate 

expression of the two genes during this period of development in cucumber. 

4.7 Effect of removal of a 2.3 kb fragment of the 5' flanking region on 

the expression of the id -GUS fusion gene in N. plumbaginifolia 

4.7.1 Construction of a 572 bp id -GUS fusion and transfer to N. 

plumbaginifolia 

The fusion gene was constructed in the same manner as previously: a 572 bp Sal I - 

Nco I fragment was fused to the GUS gene plus Nos terminator in pRAJ275 to 

generate pRAJ572 (figure 4.7), which contains the 382 bp immediately upstream of the 

start of transcription. The fusion junctions were confirmed by DNA sequencing, the 

Hind III-Eco RI cassette transferred to pBIN1 9 to generate pBI572 and the recombinant 

plasmid identified by restriction endonuclease mapping. It was then transferred to A. 

tuinefaciens by a triparental mating and plasmid arrangement confirmed by Southern 

hybridisation as for pBI2900 (figure 4.8). Leaf disc transformation was carried out as 

described in section 2.9.3, plants were regenerated and seed collected from 10 

independent transformants which were shown to be genuinely transformed by their 

resistance to kanamycin as described previously (section 4.6.1). 

4.7.2 Analysis of expression of the 572 bp id -GUS fusion construct in 

germinating seedlings 

Transformed seeds were germinated and localisation and qualitative analysis of 

expression levels carried out by histochemical means as described previously (section 

4.6.2). As for seedlings transformed with p13I2900, staining of the cotyledons was 

observed in seedlings from 6 of the 10 independent transformants (figure 4.9). No 

staining was observed in the radicle of these seedlings. However, seedlings 

transformed with pBI572 showed very weak staining compared to those transformed 

with pBI2900. Incubation for 16 h was necessary before staining was detectable to the 

naked eye with seedlings containing the 572 bp id -GUS fusion whereas a 30 mm 

incubation was sufficient with those containing the 2900 bp id -GUS fusion, and the 

colour generated was much more intense in the latter. Although low, the level of 

staining observed in the 572 bp id -GUS fusion containing seedlings was above that 
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found in untransformed 3 day old seedlings or in seedlings transformed with pBIICL 

stained for 16 h, in which no colouration was detectable (figure 4.9). 

GUS levels were analysed in more detail using the fluorometric assay. As for the 

pBI2900 transformants, seeds of the six pBI572 independent transformants were 

germinated for 0 to 5 days, the stages selected as depicted in figure 4.5 and seedling 

extracts assayed (section 2.9.4.3). The results of these assays are presented in figure 

4.12. 

As predicted from the histochemical analysis, the levels of expression are very much 

lower than those found in 2900 bp id -GUS fusion containing seedlings, at only 20 to 

30 fKat seedling-' at stage 4 to 5. However, this is significantly above the level found 

in untransformed seedlings, which had its greatest value at stage 7 of 0.8 fKat 

seedling-1  (figure 4.11). The qualitative pattern of expression is also somewhat 

different from that seen with seedlings containing the 2900 bp id -GUS fusion, GUS 

activity at day 0 being the highest value for 5 of the 6 transformants analysed. 

However, 5 of the 6 (all but transformant 2.1) do show a peak around stages 4 to 5, as 

does endogenous ICL activity, which presumably corresponds to the 'germination 

response' (figure 4.13), although it occurs slightly earlier than the peak in seedlings 

transformed with pB12900. The significance, if any, of this slight difference in timing 

is unclear. Any sign of a peak around this time point is completely absent in the 

untransformed seedlings (figure 4.11). This indicates that the proximal 382 bp of the 

flanking region contains information necessary and sufficient to direct faithful 

transcription of the GUS gene during germination albeit at very low levels. The 

additional 2300 bp in pBI2900 must contain an element(s) important for the 

enhancement of the germination response to the higher levels normally detected. The 

regulation of transcription during germination may demand a number of elements 

which together serve to produce faithful expression of the gene. 

One possible explanation for the unexpectedly high levels of expression in stage 0 

seedlings is that ICL (and MS) is expressed during embryogenesis (Comai et al., 1992; 

Turley & Trelease, 1990) and the GUS activity seen at day 0 remains from the 

expression of the fusion construct during embryogenesis. GUS is a very stable 

enzyme, and so it is not unlikely that some activity would remain from a previously 

high level at an earlier stage of development. It is of note that endogenous ICL activity 

in N. plumbaginifolia determined here is also at a higher level in stage 0 seedlings than 

in those from stages 1 and 2. The Nicotiana seeds used in all these experiments were 

relatively fresh, that is they had not been allowed to lie dormant for more than three 

months, hence the likelihood of finding activity remaining from embryogenesis may be 

higher in these seeds than in those which had had greater periods of dormancy. The 
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Figure 4.12 Glucuronidase activity during and post germination of N. plumbaginifolia transformed with pBI572. Forty 
seeds/seedlings per stage from six independent transformants (see legends beside axes) were analysed for levels of GUS activity. The stages 
selected are depicted in figure 4.5. 
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Figure 4.13 Average glucuronidase activity during germination of 

N. plumbaginifolia transformed with either pBI2900 or pBI572. The GUS 

activity of eight (pBI2900) or six (pBI572) independent transformants was averaged 

for each stage. 
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immediate decline of activity post imbibition could be due to the renewed activity of 

proteases in the imbibed seed. 

4.8 Regulation of expression of the icl gene by metabolic status 

4.8.1 Metabolic control of ICL and MS in pro- and eukaryotes 

Numerous studies of the effect of various metabolites on the expression of the enzymes 

involved in the glyoxylate cycle have been made. The glyoxylate bypass genes (icl and 

ins) of microorganisms allow growth on media containing acetate and other two-carbon 

compounds, when depleted of glucose or other sugars. Expression of these genes is 

repressed by the presence of glucose or related metabolites, but induced when the 

organism is grown on medium containing two-carbon compounds as the sole carbon 

source (Kornberg, 1966; Sjogren & Romano, 1967; McCullough & John, 1972). 

Acetate non-utilising mutants of ascomycete fungi have been shown to lack the genes 

encoding either MS or ICL (Armitt etal., 1976; Ballance and Turner, 1986), showing 

that these genes are necessary for growth on this carbon source. 

Metabolic control of the icl and ins genes has also been demonstrated using suspension 

cultures of anise. Removal of sucrose from the growth medium led to the appearance of 

ICL and MS activities. This effect was enhanced by the inclusion of acetate in the 

medium, but only in the absence of sucrose (Kudielka & Theimer, 1983a). However, 

if sucrose was reintroduced to the cells, the activities of the two enzymes was lost, 

75 % of the ICL activity disappearing within 8 hours after addition of sucrose 

(Kudielka & Theimer, 1983b). It has been proposed that the metabolic status is an 

important factor in the regulation of both ins and icl gene expression during plant 

development (Graham et al., 1992). Using a cucumber cell culture, it was 

demonstrated that starvation of the cells results in an induction of icl and ins gene 

expression, which is closely correlated with a drop in the levels of intracellular sucrose, 

glucose and fructose below threshold levels. Addition of glucose, fructose and 

raffinose results in a repression of expression as do mannose and 2-deoxyglucose, 

hexoses which can be phosphorylated, but not further metabolised. 3-methyl glucose, 

which can not be phosphorylated, does not lead to repression (Graham et al., 1994b). 

It has therefore been proposed that the intracellular concentration of hexose sugars, or 

their flux into glycolysis, is the important factor regulating expression of these genes 

(Graham et al., 1994b). The pathway by which changes in metabolite levels result in 

the induction of expression of the icl and ins genes remains to be elucidated. 
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In addition to controlling the expression of the icl and ins genes by addition to or 

removal from the surrounding medium of various metabolites, these genes can also be 

induced by starvation, by placing whole plants, detached photosynthetic organs or 

protoplasts in the dark (Gut & Matile, 1988; Birkhan & Kindl, 1990; Graham et al., 

1992; McLaughlin & Smith, 1994). Dark incubation has the effect of removing the 

plants own source of sugar, so necessitating the induction of another metabolic 

pathway to supply the energy requirements. Expression of the glyoxylate cycle genes 

during natural senescence of plant organs has also been widely demonstrated in a 

variety of plant species (Pistelli et al., 1991; De Bellis et al., 1991; Graham et al., 

1992) where it is thought to be involved in the utilisation of structural lipids. 

Senescence is a period of the plants life cycle when the levels of photosynthate will fall 

below those normally found in mature plant tissue. Hence, it would appear that levels 

of sugars do indeed affect expression of the icl gene. To assess whether this regulation 

also occurs at the level of transcription, the effect of metabolic status on expression of 

the id -GUS fusion constructs in transformed N. plumbaginifolia seedlings was 

investigated. 

4.8.2 Effect of metabolic status on GUS expression in transformed 

N. plumbaginifolia seedlings 

Seeds of N. plumbaginifolia transformants p13I2900 5.1 or pBI572 5.1 were 

germinated and grown for 18 days in a 16 h photoperiod at 25 OC. After this time, 

seedlings were transferred to filter papers soaked either in sdd H20 or 25 mM sucrose 

and incubated either in the light (16 hour photoperiod) or in the dark at 25 °C (section 

2,9.4.5). Forty seedlings from each treatment were harvested after 5 days and assayed 

for GUS activity as described previously. The results are displayed in figure 4.14. For 

seedlings transformed with pBI2900, those in which starvation had been induced, by 

incubation in the absence of light and a carbon source, show levels of GUS activity 

considerably higher (approximately 4 fold) than the levels seen in those maintained in 

the light but without a source of carbon provided. The light incubated sample shows 

reduced activity compared to the day 18 sample, whereas the dark incubated sample 

shows an induction of activity. A comparison of those incubated in dark or light in the 

presence of sucrose again reveals a 4 fold higher level in the dark incubated sample. 

Comparing samples incubated in the dark, with or without sucrose, reveals a higher 

level of expression in those incubated in the absence of sucrose, as does the similar 

comparison of the two light incubated samples (both 1.5 fold higher in the absence of 

sucrose). These results indicate that removal of the photosynthetic capability of a plant 
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Figure 4.14 Glucuronidase activity of N. plumbaginifolia transformed 

with either pBI2900 or pBI572, under differing metabolic conditions. 

Seeds from transformant pBI2900 5.1 and pBI572 5.1 were germinated, grown for 18 

days, transferred to filters and incubated under different conditions for 5 days. Forty 

seedlings for each treatment were analysed for levels of GUS activity, and the results 

from five experiments averaged. D,W = dark incubated on water; D, S = dark 

incubated on 25 mM sucrose; L,W = light incubated on water; L, S = light incubated on 

25 mM sucrose. 
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(by dark incubation) and hence its source of sugar, leads to an induction of 

transcription from the icl gene promoter. This induction is partially inhibited by the 

external addition of sucrose and will be referred to as the 'starvation response'. In 

contrast, the results from pBI572 transformant 5.1 show no great difference in the 

levels of GUS activity between any of the treatments, implying that metabolic status 

has no effect on the expression when directed solely by the proximal 382 bp of the 

flanking region. This fragment presumably does not contain the necessary information 

to direct the starvation response. This implies that at least two elements must exist 

which control expression of the icl gene under different circumstances: an element 

responsible for the germination response which is present within the 382 bp closest to 

the start of transcription, and the element responsible for directing the starvation 

response, which is found within the 2700 bp of the promoter analysed here. 

4.9 Conclusion 

The results presented in this chapter show that the 6.5 kb fragment of the cucumber 

genome, isolated from a X library, contains a fully functional icl gene. In cucumber, the 

icl gene is single copy, therefore all the elements necessary for the regulation of its 

transcription throughout development and in response to any metabolic or 

environmental signals must be contained within this one gene. 

The experiments using icl promoter-GUS fusions have shown that 2700 bp of 5' 

flanking region contains all the elements necessary to direct qualitative transcription of 

the icl gene both during and post germination and also when the plant is starved, it 

contains both germination and starvation response elements. However, the level of 

expression is considerably lower in N. pluinbaginifolia than in cucumber, so it is 

possible that some quantitative elements may be lacking from this region. This need not 

be the case. The quantitative expression of transgenes in foreign hosts is often seen to 

be below the levels observed in the natural genomic environment (Wilmitzer, 1988). 

The shorter promoter-GUS fusion with just 382 bp of the 5' flanking region also 

showed a qualitative germination response. However, the levels of activity from this 

construct were severely reduced compared to the longer one indicating that further 

elements for enhancing the levels of expression are contained within the additional 

2300 bp present in pBI2900. No starvation response was seen in plants containing this 

short promoter-GUS fusion. Therefore, at least two distinct elements exist which are 

necessary for regulation of the gene during either the germination response or the 

starvation response, present within different regions of the promoter. 
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Other stages of plant development during which the icl and ms genes are known to be 

expressed are embryogenesis, senescence and pollen formation (Graham et al., 1992; 

Zhang et al., 1993; 1994). The expression from the fusion constructs has not been 

analysed during these developmental stages. From the high levels of GUS activity 

present within seeds immediately after imbibition, it would appear likely that the 

2700 bp fragment upstream of the transcriptional start in pBI2900 contains the 

information necessary to direct a response during embryogenesis. Relatively high 

levels of GUS activity at day 0 were also detected in the seedlings transformed with 

pBI572. Therefore this element also may be predicted to carry an embryogenesis 

response element, but again probably with reduced transcriptional strength than would 

be produced from the longer fragment. This remains to be investigated. 

The induction of the glyoxylate cycle genes during senescence is likely to be in 

response to a fall in the levels of photosynthate within the cells. It is possible that the 

response seen in senescent tissue could be controlled by the same trans-acting factors 

recognising the same cis-acting sequences as in the starvation response seen here. 

However, two other enzymes involved in lipid metabolism, phosphoenolpyruvate 

carboxykinase and glyoxysomal malate dehydrogenase are both induced in senescence, 

but are not induced by starvation (Kim & Smith, 1994). Therefore, at least in some 

genes, the elements controlling these two responses are unlikely to be the same. 

So far, two regions of the cucumber icl gene have been broadly defined as containing 

important cis-acting elements, the 2300 bp fragment containing element(s) for the 

germination response and element(s) essential for metabolic repression, and the 

proximal 382 bp containing an element necessary for the qualitative aspects of the 

germination response. In the next chapter, experiments to further define the elements 

necessary for metabolic control of gene expression will be described. 
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METABOLIC REGULATION OF 

THE ICL GENE 
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5.1 Introduction and Aims 

It has been proposed previously that expression of the ms and icl genes is regulated 

indirectly by the availability of metabolites such as sucrose, so enabling their activities 

to increase in response to starvation conditions (Graham et al., 1992). This has been 

demonstrated in cucumber cell cultures (Graham et al., 1994b) and for MS in a 

cucumber protoplast transient assay system (Graham et al., 1994a). In the preceding 

chapter, experiments using a stable transformation system were described which 

defined two broad areas of the icl promoter carrying elements responsible for the 

germination and the starvation responses (sections 4.6, 4.7 & 4.8). Using a transient 

expression system in cucumber protoplasts, the aim was to analyse further the 

element(s) necessary for control of icl gene expression in response to changes in 

metabolic status. The transient expression system has several advantages over the stable 

transformation system. Firstly it is an extremely rapid method: GUS expression from 

the introduced DNA can be measured within a few days as compared to the months 

required for stable transformation studies. Secondly, it is possible to use cucumber 

protoplasts, the analysis therefore taking place in the homologous host rather than in an 

unrelated species. The aim was to create deletions of the icl promoter, and to analyse 

the levels of GUS expression directed by each of them in protoplasts cultured either in 

the presence or in the absence of sucrose. 

5.1.1 Transfection of protoplasts by electroporation 

Electroporation is a method for introducing DNA into large numbers of protoplasts by 

means of electrically induced pores in the membrane. The general method was 

developed by Fromm et al. (1985), based on previously reported methods for electrical 

transfection of mouse cells (Wong & Neumann, 1982). Membrane permeabilisation is 

achieved when short DC pulses are applied, creating electropores. Macromolecules in 

the suspension medium are then able to enter or leave the cell, during the period in 

which the pores remain open. The extent of poration is dependent on the electrical 

parameters used and the constitution of the electroporation buffer, and the closing of the 

pores may be slowed by decreasing the temperature (Potter et al., 1984). The uptake of 

DNA by the cells is an active process, faster than can be accounted for by diffusion 

alone (Dimitrov & Sowers, 1990), and the efficiency of uptake is dependent on the 

physical form of the DNA, single stranded giving rise to higher efficiencies than double 

stranded. For electroporation of plant protoplasts, the shape of the pulse delivered can 

affect the efficiency of transfection. Square wave pulse generators have a broader range 
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of efficient working conditions than do those generating an exponential decay pulse. 

However, transformation is only about 60 % efficient under optimal conditions, 

therefore transformants generated by a square wave pulse will be contaminated with 

significant numbers of viable parental protoplasts (Saunders et al., 1989a). Minimising 

manipulation of the protoplasts directly after electroporation allows the nucleic acids 

time to move across the plasmalemma and also helps to maintain the viability of the 

protoplasts (Saunders et at., 1989b). 

5.1.2 The cucumber protoplast transient assay system 

Transient expression systems can be useful for rapid analysis of DNA sequences 

important for transcriptional regulation of gene expression. However, the method 

involves the introduction of large numbers of plasmid molecules per cell, which are not 

integrated into the genome and so may influence the results by not accurately 

representing the true situation within a cell. Therefore, the accuracy of the system must 

be confirmed by analysis of the endogenous gene, to ensure that transcription directed 

by the introduced sequences reflects the pattern of transcription of the endogenous 

gene. 

5.2 Isocitrate lyase transcript levels in protoplasts cultured on different 

carbon sources 

Before using the transient expression system to analyse the effect of metabolic status on 

expression from the icl promoter, it was important to demonstrate that regulation of the 

introduced promoter is the same as that of the endogenous gene. Therefore, cucumber 

protoplasts were isolated as described in section 2.10.2 and cultured for 48 h in the 

dark either in the presence of 0.35 M mannitol or with 0.33 M mannitol plus 20 mM 

sucrose. It has been demonstrated that in a cucumber protoplast transient expression 

system, the same degree of repression from the ins promoter is obtained with 5 mM as 

with 60 mM sucrose (Graham et at., 1994a), therefore 20 mM sucrose is a suitable 

level to use for the analysis of the icl promoter. The results are shown in figure 5.1. In 

the presence of sucrose, the level of expression of the endogenous cucumber gene falls 

to approximately 50 % of that seen when the protoplasts are cultured in mannitol alone. 

Similar results were seen when the levels of MS transcripts were analysed both in 

mesophyll protoplasts (Graham et at., 1994a) and in cucumber cell cultures (Graham et 

al., 1994b). Transcripts of both ICL and MS are detectable at low levels in mesophyll 

protoplasts incubated in the presence of sucrose, whereas the transcripts are not 
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detected in cucumber cell cultures incubated in the same concentration of sucrose. It is 

thought possible that the levels of transcripts seen in the protoplast system may be due 

to other factors such as stress affecting expression (Graham et al., 1994a). 

—+ C 

ICL 

Figure 5.1 Northern blot analysis showing the effect of sucrose on ICL 

transcript levels in cucumber protoplasts. Protoplasts were isolated overnight 

in 0.35 M mannitol, then half of the preparation was transferred to 0.33 M mannitol 

and 20 mM sucrose (+), the other half remaining in 0.35 M mannitol (-), and incubated 
at 25 0C  for 48 h. Total RNA was isolated and 10 tg loaded per lane. It was hybridised 

with the radiolabelled insert form pBSICL1.4. C = 10 jig total RNA from cucumber 

cotyledons, 3 days post imbibition. 
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5.3 Expression from the isocitrate lyase promoter in cucumber 

mesophyll protoplasts 

The 2700 bp of the icl flanking region present in pRAJ2900 has been shown to be 

sufficient to direct faithful transcription in transgenic N. pluinbaginifolia seedlings 

(chapter 4), and is therefore suitable for use in a transient expression system. In order 

to assess whether the icl promoter is affected by metabolic status in the cucumber 

protoplast system in the same manner as it was in Nicotiana seedlings treated with 

sucrose, pRAJ2900 was introduced into protoplasts by electroporation as described in 

section 2.10. To enable a comparison to be made, the cauliflower mosaic virus (CaMV) 

35S promoter, which is not specifically regulated by the carbon source, linked to GUS 

was also introduced into protoplasts. One million protoplasts were used per sample 

which was electroporated using the conditions described in section 2.10.3. After 

electroporation, the protoplasts were diluted with culture medium containing either 

0.35 M mannitol or 0.33 M mannitol plus 20 mM sucrose and incubated at 25 OC in the 

dark for 48 h. The protoplasts were pelleted, lysed and the extract assayed for GUS 

activity as described in section 2.10.4.1. The results from two experiments are 

presented in figure 5.2. 

In the experiment depicted in figure 5.2a, GUS expression from the CaMV 35S 

promoter is found to be approximately 1.5 times higher when the protoplasts were 

incubated in the presence of 20 mM sucrose, than when incubated in mannitol alone; in 

that depicted in figure 5.2b, expression is 4 times higher in the presence of sucrose. 

This trend was seen in all experiments carried out and could be due to a general 

decrease in transcription which is likely to occur when the carbohydrate supply 

becomes limiting. However, when the levels of GUS activity directed from the id 

promoter are observed, it can be seen that the trend is very different. GUS expression 

is approximately 6 times higher in the absence of sucrose than when the protoplasts 

were incubated in 20 mM sucrose. This trend was observed in numerous experiments. 

These results clearly confirm those findings with N. plumbaginifolia seedlings 

transformed with pB12900 when incubated in the presence or absence of sucrose 

(section 4.8.2); in both cases, the level of GUS expression under the control of the 

2.7 kb icl promoter is reduced in the presence of 20 mM sucrose. These changes in the 

levels of GUS expression reflect the changes seen in the levels of ICL transcripts in 

cucumber protoplasts cultured either in the presence or absence of sucrose. This 

transient expression system is suitable therefore for further analysis of the sequences 

necessary for the transcriptional regulation of the icl gene. 
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Figure 5.2 Analysis of GUS activity showing the effect of sucrose on 

transcription from the CaMV 35S (CG20) and id (2900) promoters in cucumber 

protoplasts cultured in 0.35 M mannitol (striped bars) or 0.33 M mannitol plus 20 mM 

sucrose (stippled bars). The results from two experiments are presented (a and b), with 

each treatment having been repeated four times. 
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5.4 Deletion of the isocitrate lyase promoter and the effect of these 

deletions on expression from the promoter 

5.4.1 Construction of promoter-GUS fusions 

In order to further define the region(s) of the icl promoter important for controlling 

expression of the icl gene under differing metabolic conditions, a number of deletions 

of the 2.9 kb fragment were generated and fused to GUS allowing analysis in the 

transient assay system using cucumber protoplasts. Deletions of the promoter were 

created using the Exo Ill/Si nuclease system as described in section 2.3.11 in the 

plasmid pBS containing the 2.1 kb Xba I-Sal I fragment (see figure 3.3). It was 

digested with Sac I to generate a protected 3' protruding terminus and with Barn HI to 

generate a 3' recessed terminus susceptible to Exo HI digestion. Deletions were created 

and those of the desired size sequenced to map the exact extent of the deletion. 

Fragments of lengths 1570, 1091 and 570 nucleotides were selected for analysis in the 

transient assay system. The fragments were excised from pBS using Hind III and Sal I 

and inserted into pRAJ572, constructed as described in section 4.7.1, to generate 

pRAJ2 142, pRAJ 1663 and pRAJ1 142, which contain the promoter fragments 

extending 1952, 1473 and 952 nucleotides upstream of the start of transcription. These 

constructs are depicted in figure 5.3. 

5.4.2 Expression from the deletions of the isocitrate lyase promoter in 

cucumber mesophyll protoplasts 

The effect of the deletions on the regulation of expression from the icl promoter was 

analysed in the cucumber protoplast transient assay system as described above. The 

results from two experiments are depicted in figure 5.4. Absolute levels of GUS 

activity were found to be variable between experiments, both between the same 

constructs and in the ratios of expression levels of the constructs. This is probably due 

to the nature of the transient expression system used in which multiple copies of 

plasmid were introduced into the cell, so making quantitative analysis difficult. 

However, an inspection of the ratios of GUS expression levels in protoplasts cultured 

in the absence of sucrose to those of protoplasts cultured in the presence of sucrose 

reveals that inhibition of transcription from the icl promoter occurred in those 

protoplasts into which constructs containing at least 1473 bp upstream of the start of 

transcription had been introduced (constructs pRAJ2900, 2142 and 1663), but that the 

starvation response was lost by deletion to within 952 bp of the transcriptional start 

126 



H 

(a) 

2900 bp 

 

 

 

 

N 
	

E 

-I 	 N 
	

E 

ME  / 
CL- Promo'er A 	

3-glucuronidase - coding 	vt's 
2142 bp 

-1 	 N 
	

E 

—Ftoerl 
0-glucuronidase - coding 

1663 bp 

H 	 N 	 E 

rl,CL - Promote x 	3-glucuronidase - coding 	CIS 
I ters  

1142 bp 

HS 	N 	 E 

it;iIL_.tICLProl 	3-g1ucuronidase - coding 

572 bp 

Figure 5.3 Diagram of the iel promoter deletion series generated using 

Exoiiuclease III. Numbers at the left hand end of each construct denote the number 

of nucleotides from the 5' end of the promoter to the start of translation. H = Hind III, 

N = Nco I, E = Eco RI. NOS ter = nopaline synthase terminator sequence. 
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Figure 5.4 Transient expression analysis of deletions of the icl promoter 

showing the GUS activity of the different constructs in protoplasts cultured in 0.35 M 

mannitol (striped bars) or 0.33 M mannitol plus 20 mM sucrose (stippled bars). 

Numbers below the bars represent the construct depicted in figure 5.3. The results from 

two experiments are shown, each treatment was repeated four times. 
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(table 5. 1). The 520 bp removed from pRAJ1663 to generate pRAJ1 142 are therefore 

important for the metabolic regulation of the icl promoter in protoplasts. Deletions of 

the 572 bp fragment showed very low levels of GUS activity with no starvation 

response (results not shown). 

Construct CG20 pRAJ2900 pRAJ2 142 pRAJ 1663 pRAJ1 142 pRAJ572 

exptl 2:3 6:1 9:1 3:1 1:1 1:2 

expt2 1:4 4:1 5:1 4:1 1:1 1:2 

Table 5.1: Ratio of expression levels of GUS in cucumber protoplasts electroporated 

with different icl promoter-GUS fusions cultured in the absence of sucrose to those 

electroporated with the same construct and incubated in the presence of 20 mM sucrose. 

CG20 = CaMV 35S promoter linked to GUS, other constructs as in the text. 

These results confirm and extend the findings of the stable transformation system 

reported in chapter 4. Under conditions of starvation, transgenic N. plumbaginifolia 

seedlings expressed the GUS gene when directed by 2700 bp of the icl promoter, but 

no increase in GUS expression in response to starvation was detected when directed by 

just 382 bp of the icl promoter. In this transient expression system, GUS expression 

directed by 2700 bp of the promoter is repressed when in the presence of sucrose, but 

when deprived of it, so simulating starvation conditions, expression is induced. This 

does not occur when expression is directed solely by the proximal 382 bp of the id 

promoter. 

5.5 Conclusion 

In this chapter, metabolic regulation of both the endogenous icl gene and also of 

introduced promoter-GUS fusion constructs has been demonstrated in cucumber 

protoplasts. The patterns of expression from the transcriptional fusion constructs in 

protoplasts maintained on different carbon sources show that the icl gene is subject to 

metabolic regulation of transcription. Similar results have been obtained in studies 

using the ms promoter (Graham et al., 1994a). Repression of GUS expression directed 

by 248 bp of the ms promoter was seen when the transfected protoplasts were cultured 
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in the presence of sucrose and also in the presence of phosphorylatable hexose sugars. 

A more extensive study of the metabolites able to cause repression has been carried out 

in cucumber cell cultures (Graham et al., 1994b) where it was demonstrated that all 

phosphorylatable hexose sugars tested gave rise to a repression of transcription of the 

ins and icl genes, but that hexose sugars which were not phosphorylatable had no effect 

on the levels of transcription. The hypothesis proposed by Graham et al., (1994b) that 

hexose sugars or the flux of hexose sugars into glycolysis via hexokinase are important 

for signalling nutritional status and hence induction of genes which can support the 

organism when deprived of these sources, is confirmed by the results presented here. 

There is evidence for such a metabolic control of the expression of the icl and ins genes 

in other organisms. In yeast, both these genes, and in addition those encoding alcohol 

dehydrogenase and malate dehydrogenase, are regulated by carbon catabolite 

repression. Expression of the genes is repressed by the presence of glucose in the 

medium, and also by both 2-deoxyglucose and glucosamine: both of these compounds 

are phosphorylated but are not further catabolised in yeast (Witt et al., 1966). 

Genes encoding photosynthetic enzymes have also been shown to be repressed by 

sucrose and glucose, though their repression only occurs at much higher sugar 

concentrations than is needed for the repression of the icl and ins genes (Sheen, 1990; 

Krapp et al., 1993). The metabolic repression of these photosynthetic genes overrides 

other regulatory signals, such as developmental stage specific signals. Which form of 

regulation for the icl gene is dominant, the germination response or the metabolic 

response, has so far not been determined. 

The area of greatest homology to the RT sequence discussed in chapter 3 lies within the 

proximal 382 bp of the icl promoter. This region appears not to contain information 

sufficient to direct transcription in response to starvation, though this region does direct 

the germination response albeit at extremely low levels. However, there are several 

additional regions showing considerable homology to the RT sequence of the ms 

promoter, three of which lie in the 520 bp which have been shown to be necessary for 

sucrose repression, two lying on the sense strand, the third in the reverse orientation. 

Experiments using the RT sequence from the ms promoter have shown it to bind 

specifically a protein factor which has been partially purified (Graham et al., 1994a). 

Whether this same factor would also bind the icl promoter remains to be elucidated. The 

role, if any, of this factor in the regulation of transcription of either promoter is yet to 

be determined, and its importance for developmental or metabolic regulation of 

transcription would need to be demonstrated. 

Of the other three IMH sequences shown in figure 3.11, both IMH2 and IMH3 are in 

the region shown to be necessary for metabolic regulation, but are not essential for the 
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germination response. IHM4 is present in all the constructs analysed, therefore no 

conclusions as to its function can yet be drawn without further experimentation. 

An upstream activating sequence has been defined in the 5' region of the icl gene of 

S. cerevisiae, that is necessary for the derepression of this gene when the organism is 

transferred onto medium lacking glucose or related sugars (SchOler & SchUller, 1994). 

This sequence has also been detected upstream of several other genes involved in the 

gluconeogenic pathway, such as the ins and fructose-1,6-bisphosphatase genes. 

However, the consensus sequence which was derived from these comparisons, 
5' CATYCRTCCG  3',  is not present in the 5' region of the cucumber id gene. 

The role of metabolites in the regulation of genes involved in the switch from 

carbohydrate to fatty acid metabolism is conserved between a variety of species and the 

molecular factors important for this regulation have begun to be elucidated, though 

much remains to be determined. 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

132 



6.1 Isolation and characterisation of the isocitrate lyase gene of 

cucumber 

The objective of the work presented in chapter 3 was to isolate and subsequently 

characterise the icl gene of cucumber. Southern analysis showed there to be a single 

gene encoding ICL in cucumber. Nucleotide sequence analysis of the genomic clone 

and comparison of the derived amino acid sequence with those from other higher plants 

and fungi revealed that ICL is a highly conserved protein. Analysis of the predicted 

amino acid sequence revealed the presence of a putative PTSI signal at the carboxy 

terminus, indicating that cucumber ICL may be targeted to the glyoxysomes by this 

mechanism rather than another involving sequences elsewhere within the protein. 

However, this sequence has been demonstrated to be unnecessary for the correct 

localisation of castor bean ICL to the glyoxysomes in an in vitro import system (Behari 

& Baker, 1993). Therefore further experimentation is needed before the mechanism of 

cucumber ICL import to glyoxysomes is established. By analysis of transcript levels of 

ICL and MS, the two genes were shown to be coordinately expressed during 

postgerminative growth. This raises the possibility that the regulatory regions of the 

two genes contain similar cis-acting sequences responsible for the control of gene 

expression at this stage of development. Since there is a single icl gene in cucumber, all 

the cis-acting sequences necessary for the regulation of its expression must be present 

within the one unit. Comparison of the 5 flanking region with that necessary for the 

regulation of ms gene expression revealed the presence of several highly conserved 

sequences, designated RT (IMH1) and IMH2 to 4. The significance of these sequences 

in the regulation of icl gene expression was therefore tested by use of promoter-reporter 

gene fusions. 

6.2 Developmental and metabolic regulation of isocitrate lyase and 

malate synthase 

The aim of the work presented in chapters 4 and 5 was to extend the knowledge of the 

factors involved in the regulation of the icl gene which was known to be expressed at 

several stages of development and in a number of tissues. In addition to its 

developmental regulation, the icl gene has been shown to be expressed when the cell is 

subjected to starvation conditions. The results presented here have shown that 

regulation of the icl gene is complex, with more than one control element being needed 

to regulate correctly icl gene expression. 
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Regulation of any gene showing a complex pattern of expression would be expected to 

involve multiple elements, as demonstrated by two recent reports. Regulation of the 

gene encoding the tuber protein, patatin, has been shown to need different cis-acting 

sequences and trans-acting factors for sucrose-responsiveness to those needed for 

tissue-specific expression (Grierson et al., 1994). Similarly, several promoter elements 

regulate the maize alcohol dehydrogenase gene, different combinations being required 

for tissue- and developmental-specific expression (Kyozuka et al., 1994). 

Using a stable transformation system in combination with a transient assay system, it 

has been shown that more than one element is responsible for controlling Icl gene 

expression during postgerminative growth and under sugar starvation conditions. The 

elements necessary for controlling expression under these different situations are 

physically separable. Two regions of the icl promoter have been identified that are 

important either for metabolic or for developmental regulation of the icl gene. An 

element essential for the starvation response has been localised to between -1473 and 

-952 bp from the start of transcription. Both constructs analysed in transgenic 

Nicotiana, pB12900 and pBI572 (approximately 2700 and 382 bp from the 

transcriptional start respectively), showed the germination response. Therefore, an 

element(s) necessary for the qualitative, though not the quantitative, germination 

response is present to within -382 bp of the transcriptional start. 

Similar analyses using ins promoter-GUS fusions have been carried out. Using the 

same transient assay system, a 123 bp fragment of the ins promoter, from -248 bp to 

-125 bp relative to the start of transcription, has been shown to be responsible for 

transcriptional control of the ins gene. This element is sufficient to lead to the induction 

of GUS gene expression when protoplasts electroporated with this promoter fragment 

fused to the GUS gene were cultured in the absence of metabolisable sugars (Graham et 

al., 1994a). A series of deletions of this 123 bp fragment have been constructed, linked 

to the GUS gene, and analysed in transgenic Nicotiana, both during postgerminative 

growth and under conditions of starvation. Deletions up to and including -199 bp show 

the germination response, but the starvation response is very weak after deletion to 

-233 bp and completely absent from -216 bp and subsequent deletions (Sarah & Smith, 

pers. comm.). 

Gel retardation studies with a fragment containing one of the conserved sequences, RT, 

has shown it to bind a protein; the protein interaction with the RT element is sequence 

specific as it is competed when an unlabelled RT oligonucleotide is included in the 

reaction. The RT element lies at -215 bp to -202 bp relative to the start of transcription 

in the ins promoter, and therefore has been shown not to be essential for the 

germination response of the ins gene, but is perhaps important for metabolic regulation. 
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However, this element is present in all the id -GUS constructs analysed here, so 

although it may be necessary for metabolic regulation, it is not sufficient, as deletion to 

-952 bp from the transcriptional start abolishes the starvation response. IMH2 lies in 

the regions of both promoters shown to be necessary for metabolic regulation, and may 

therefore be considered a candidate for the metabolic response element. Two of the 

other conserved sequences, IMH3 and IMH4, both lie in the region shown to be 

essential for the metabolic response of the icl gene. However, both lie outside the 

region in the ms promoter necessary for a metabolic response, both in the transient 

assay system (Graham et al., 1994a) and in transgenic Nicotiana (Sarah & Smith, pers. 

comm.). This does not necessarily exclude these sequences from a role in metabolic 

regulation. Activation of transcription frequently requires the binding of more than one 

factor to the regulatory regions, the factors often working synergistically to produce a 

greater response in combination than the sum of the individual responses. Although the 

ms promoter deletions analysed show a metabolic response, it is not so great as that 

seen when a 1033 bp fragment linked to the GUS gene is similarly analysed (Sarah & 

Smith, pers. comm.). Therefore, it is possible that elements present within the 233 bp 

fragment are sufficient alone to produce a weak metabolic response, but others present 

further upstream are also necessary for the level of response normally found within the 

plant. Likewise, when deletion of a segment of DNA abolishes a particular response, it 

does not necessarily demonstrate that all the sequences required for this response are 

present in that region, merely that an element(s), without which the response does not 

occur, resides in that region. Therefore, care must be taken when interpreting such 

results and in designing future experiments. The arrangement of regulatory elements 

and conserved sequences in the icl and ins promoters is summarised in figure 6.1. 

In order to define more precisely the regions of the icl promoter needed for the different 

levels of regulation, further deletions need to be constructed and analysed. A metabolic 

response element lies between -1473 and -952 bp from the transcriptional start. 

Deletions of this region can be linked to GUS and analysed both in the transient assay 

system and in a stable transformation system, either using Nicotiana as in this thesis, or 

using Agrobacterium rhizo genes to generate transformed hairy roots of cucumber to 

which metabolites may be fed. The proximal 382 bp of the promoter have been shown 

to contain a germination response element. Further definition of this sequence will be 

less easy as the levels of GUS activity directed by the 382 bp directly upstream of the 

transcriptional start are already extremely low. The level of GUS activity directed by 

this promoter fragment may be enhanced at the level of translation through the inclusion 

of translational enhancers such as that present within the alfalfa mosaic virus 4 RNA 

(Anderson et al., 1989). 
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Figure 6.1 Summary diagram of the arrangement of germination and starvation response elements and conserved 

sequences in the icl and ms promoters. The start of transcription is indicated by a flag. The scale of the ms promoter is 4x that of the id 

promoter. 



Investigations into the effect of glucose on the activity of ICL and MS in germinating 

seedlings has indicated the possibility that a hierarchy of control occurs in the regulation 

of the icl and ins genes. In peanut cotyledons imbibed for seven days in 0.11 M 

glucose, the activity of ICL was inhibited by 65 % and that of MS by 45 % compared 

to controls incubated in water (Longo & Longo, 1970). In excised cotyledons of 

germinating castor bean seedlings, ICL activity is inhibited by 75 % when incubated in 

the presence of 0.1 M glucose for 8 hours compared to water controls (Lado et al., 

1968). A similar study using excised cotyledons of germinating squash revealed 48 % 

inhibition of ICL activity after 24 hours and 28 % inhibition after 48 hours (Lado et al., 

1968). 

These results in combination with the findings presented in this thesis suggest that 

metabolic regulation is independent of, and dominant to, developmental regulation. In a 

similar manner, metabolic regulation has been shown to override developmental 

regulation of some photosynthetic genes (Sheen, 1990). The levels of ICL transcripts 

in postgerminative cucumber cotyledons rise to a peak around day 3 and thereafter 

decline rapidly when incubated in the light. If the cotyledons are incubated in darkness, 

this decline is not seen; instead, transcripts persist until at least day 8 (see section 3.8). 

The developmental response in this situation is for transcript levels, and hence enzyme 

activity, to rise and subsequently decline. The persistence of transcripts beyond day 4 

in dark-incubated, therefore 'starved' seedlings could be an indication of metabolic 

regulation overriding developmental regulation at this time. The germination response 

in dark incubated transgenic Nicotiana seedlings was not tested in this thesis. If the 

metabolic response does override the developmental one, it would be anticipated that 

seedlings containing the 2900 bp ic/-GUS fusion would show GUS activity persisting, 

but that those containing the 572 bp ic/-GUS fusion would exhibit the same pattern of 

GUS activity in the light and dark. Such analyses could also be carried out on plants 

into which the constructs containing the 1473 bp and 952 bp upstream of transcriptional 

start had been introduced. These constructs gave higher activity than the proximal 

382 bp fragment in the transient assay system and consequently would be easier to 

analyse. 

Additionally, the effect of germinating seedlings in the presence of a metabolisable 

sugar could be investigated with Nicotiana plants transformed with the various 

promoter-GUS fusions. The two studies detailed above (Lado et al., 1968; Longo & 

Longo, 1970) used around 100 mM glucose to produce the inhibitory effects. This is 

very high in comparison to the concentration of sucrose used in the work presented in 

this thesis, particularly since 5 mM sucrose was shown to effect maximal inhibition of 

ins gene expression in cucumber protoplasts (Graham et a/., 1994a). Such work would 
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therefore be better carried out with, for example, 20 mM glucose or sucrose as in this 

thesis. Transgenic Nicotiana containing constructs already shown to contain a 

starvation response element would be expected to show inhibition, whereas those 

containing shorter promoter fragments such as the 1142 or 572 bp fusions would be 

expected to exhibit the same pattern of GUS activity in the presence or absence of 

metabolisable sugar. 

Expression patterns of icl and ins genes appear to be conserved when the genes are 

expressed in heterologous hosts. The genes encoding MS from A. nidulans and N. 
crassa are correctly expressed when transferred from one species to another. In 

addition, they still show the same patterns of inducibility (Sandeman et al., 1991). 

Likewise, icl and ins gene expression patterns are maintained when transferred from 

cucumber (Graham etal., 1990) and Brassica (Comai etal., 1992; Zhang etal., 1994) 

into Nicotiana. This suggests that the cis-acting sequences and trans-acting factors 

responsible for the regulation of these genes are conserved at least within fungi and 

within higher plants. Therefore, comparison of the promoter sequences of icl and ins 

with those from other higher plants could yield interesting information. However, to 

date no other higher plant icl or ins promoter sequences are available. 

6.3 Further analysis of factors involved in the regulation of isocitrate 
Jyase and malate synthase 

In addition to postgerminative growth and in response to starvation, ICL and MS are 

also synthesised during pollen formation (Zhang et al., 1994), late embryogenesis 
(Comai etal., 1989; Turley & Trelease, 1990) and senescence (De Bellis etal., 1991; 
Graham et at., 1992; Pistelli et al., 1991). Analysis of regulation directed by the 

cucumber icl promoter in transgenic Nicotiana during these stages of plant development 

has not yet been undertaken. Both plants containing the 2900 bp id -GUS fusion and 

those containing the 572 bp ic/-GUS fusion almost certainly show an embryogenesis 

response as GUS activity was detectable in seeds tested at day 0 which declined before 

the major peak seen at stage 4 of postgerminative growth. This would imply that the 

proximal 382 bp of the icl promoter contains elements to direct an embryogenesis 

response albeit at very reduced levels. Further delineating the sequences necessary 

would pose the same problem as defining those necessary for the germination response 

as GUS activity directed by this fragment is so low. Again, the construction of a vector 

with a sequence to enhance the level of the response would assist such analysis (see 

section 6.2). 
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ICL has been detected in all pigmented tissues during senescence. Expression of GUS 

directed by the various length promoter fragments could also be analysed in senescent 

tissues of Nicoriana. It seems unlikely that the senescence response is a simple 

metabolic response, as the genes encoding phosphoenolpyruvate carboxykinase (Kim 

& Smith, 1994) and glyoxysomal malate dehydrogenase (Kim & Smith, pers. comm.) 

are coordinately expressed with those encoding icl and ms during senescence, but are 

not induced by starvation of tissues. Therefore, further elements for directing a 

senescence specific response would be anticipated, in addition to those controlling the 

metabolic response. 

Once sequences have been sufficiently defined, site directed mutagenesis may help to 

determine which residues are important for making specific contacts with DNA binding 

proteins. Although SDM analysis allows firm statements to be made about the relevance 

of a control element without necessitating global disruption of the promoter region, 

limitations to this approach exist. This is well exemplified in analysis of the contacts 

made by the yeast GAL4 transcriptional activator, where in a 17 bp half site, specific 

contacts are only made with the outer 3 residues (Ptashne, 1992). 

Future efforts should concentrate on characterising trans-acting factors which associate 

with the defined cis-acting sequences and the specific contacts made in the DNA-protein 

complexes. One factor shown to bind to RT has already been identified and partially 

purified, but which level of regulation this factor may be responsible for has not yet 

been determined. Nuclear extracts from the different developmental stages and from 

tissues which have been starved could each be tested using oligonucleotides specifying 

the defined cis-acting sequence. Electrophoretic mobility shift assays ('band shifts'), 

performed both with and without unlabelled oligonucleotide as specific competitor, 

would identify sequence element interactions with regulatory proteins (Garner & 

Revzin, 1981). Sequence specific DNA binding proteins may be identified from crude 

extracts by ultraviolet (uv) crosslinking. After formation of a DNA-protein complex, 

irradiation with uv light produces purine and pyrimidine free radicals. If a protein 

molecule is in close proximity to the free radical, a covalent bond is formed, so 

crosslinking the protein to the DNA. The molecular weight of the bound protein may be 

accurately determined by SDS-PAGE of the DNA-protein complex, after digestion of 

free DNA. The specificity of the reaction may be determined by the inclusion of 

competitor DNA to compete for binding sites (Chodosh et al., 1986). 

DNase I footprint analysis ('footprinting') can be used to locate the specific binding 

sites of proteins on the DNA elements. The method involves the protection by bound 

protein of the phosphodiester backbone of an end labelled DNA fragment (probe) from 

DNase I catalysed hydrolysis. After hydrolysis of bound and free probe, binding sites 
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are determined by autoradiography of the electrophoresis products (Galas & Schmitz, 

1978). One limitation of footprinting is that if binding is incomplete, or if protein 

exchange takes place during digestion, cutting of the protected site may occur. 

Methylation interference may be used to obtain more information about the specific 

residues of a sequence which are in close proximity to the protein. Dimethyl sulphate is 

used to methylate guanine and adenine residues, at an average of one site per molecule, 

in an end-labelled oligonucleotide. Methylation of the residues inhibits close binding of 

the protein to the DNA. Bound probe is then separated from free probe by bandshifts, 

the DNA cleaved with piperidine, separated by gel electrophoresis and subjected to 

autoradiography. Guanine and adenine residues that interfere with binding when 

methylated are identified by their absence in the retarded complex when compared to 

piperidine-cleaved free probe (Hendrickson & Schlief). A similar method has been 

developed using depurinated or depyrimidated DNA as a probe, thus also yielding 

information on contacts made to pyrimidines within the binding site (Brunelle & 

Schleif, 1987). The advantage of these two methods is that they detect specific residues 

rather than just a general area. However, they only demonstrate that residues are in 

close proximity to a bound protein, not that they are responsible for making direct 

contacts. 

Subsequent purification and sequence analysis will identify the binding proteins and 

allow comparison with sequences of known transcription factors. Transcription factors 

responsible for regulation can be purified biochemically on the basis of their ability to 

bind the cis-acting elements. A combination of such techniques may be employed in 

conjunction with the approaches described in this thesis to further elucidate the many 

factors involved in regulation of the expression of the icl and ins genes of cucumber. 
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