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Abstract

This thesis presents a comprehensive study o f incidence calculus, a probabilistic 

logic for reasoning under uncertainty which extends two-value propositional logic 

to a multiple-value logic. There are three main contributions in this thesis.

First o f all, the original incidence calculus is extended considerably in three 

aspects: (a) the original incidence calculus is generalized; (b) an efficient algorithm 

for incidence assignment based on generalized incidence calculus is developed; (c) 

a combination rule is proposed for the combination o f both independent and some 

dependent pieces o f evidence. Extended incidence calculus has the advantages of 

representing information flexibly and combining multiple sources of evidence.

Secondly, a comprehensive comparison between extended incidence calculus 

and the Dempster-Shafer (DS) theory of evidence is provided. It is proved that 

extended incidence calculus is equivalent to DS theory in representing evidence 

and combining independent evidence but superior to DS theory in combining de­

pendent evidence.

Thirdly, the relations between extended incidence calculus and the assumption- 

based truth maintenance systems are discussed. It is proved that extended inci­

dence calculus is equivalent to the ATMS in calculating labels for nodes. Extended 

incidence calculus can also be used as a basis for constructing probabilistic ATMSs.

The study in this thesis reveals that extended incidence calculus can be re­

garded as a bridge between numerical and symbolic reasoning mechanisms.



I D E C L A R E  T H A T  TH IS THESIS H AS B EE N  C O M P O SE D  B Y  

M Y SE L F  A N D  T H A T  T H E  W O R K  D ESC R IB ED  IN IT IS M Y  O W N .

(Weiru Liu)
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Mathematical Notation

P: a set of propositions. 

q or qji an atomic proposition.

A t: the basic element set formed from P.

C (P ): the language set formed from P.

W : a set of possible worlds.

p: a probability distribution on a set.

i: an incidence function.

ii: a basic incidence assignment.

p„: lower-bound of a probability distribution.

p*: upper-bound of a probability distribution.

p: a probability distribution.

X  or S, a set or space.

X'- a cr-algebra of a set X .

0 : a frame of discernment. 

bel: a belief function on a frame. 

pis: a plausibility function on a frame. 

m: a mass function on a frame.

A d s ', a set containing all the focal elements of a belief function. 

T: a multivalued mapping function.

G: an incidence assignment.

<g>: set product. X\ ® X 2  =  {<  x u, x 2j >  \xu € X x, x 2j 6 X 2}

0  \= 4 >: formula 0  —» <f> is valid (a tautology)

0  =  0 : when 0  [= 0  and 0 (= 0 .

IX



Chapter 1

Introduction

Incidence calculus is a probabilistic logic developed by Bundy [Bundy, 1985]. This 

thesis is concerned with the further development of incidence calculus with an 

emphasis on both of its symbolic and numerical reasoning features. This thesis 

has the following main contributions.

• Extending the original incidence calculus

• Comparing the extended incidence calculus with the Dempster-Shafer theory 

of evidence (DS theory)

• Comparing the extended incidence calculus with assumption-based truth 

maintenance systems (the ATMS)

Since DS theory is a numerical reasoning mechanism and the ATMS is a sym­

bolic reasoning mechanism, and incidence calculus can be compared with both of 

these theories, this suggests that incidence calculus must possess features o f both. 

Therefore in this chapter, I will first discuss the main features o f these forms of 

symbolic and numerical reasoning and explore the connections between them via 

incidence calculus. This discussion gives the insight that incidence calculus can be 

used as a bridge between symbolic and numerical reasoning. This insight has mo­

tivated my work in this thesis. As a consequence, I have developed the extended 

incidence calculus which captures the advantages of DS theory and the ATMS. I
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will then give a brief review of classical propositional logic and three closely related 

theories, namely, the Dempster-Shafer theory of evidence (DS theory) [Shafer76], 

the ATMS [de Kleer, 1986] and probabilistic logic [Nilsson, 1986]. Related work 

will also be discussed. Finally I will give an overview of the thesis.

1.1 Knowledge Representing and Reasoning Pat­

terns

Representing and reasoning with knowledge and evidence in intelligent systems 

has been one of the major research topics in artificial intelligence (AI). Many 

mechanisms for representing and reasoning with knowledge and evidence have 

been developed so far. These mechanisms can, in general, be divided into the 

following two categories.

Symbolic reasoning: those mechanisms which represent and reason with precise 

(or certain) information belong to this category, such as propositional logic, 

first order logic, default logic, the ATMS and so on. In this type o f reasoning 

system, information (including knowledge and evidence) and solutions are 

all represented in the form of symbols.

The normal province of symbolic reasoning is the derivation from initial 

precise information to a precise conclusion. Although such a conclusion is 

understood to be tentative (it may have to be retracted after new infor­

mation has been added). The updated conclusion is still represented in 

symbolic form. No numerical values are used to assess the truth value o f any 

statement.

For example, in the classical propositional logic, it is perfectly correct to 

say that if statements qt and q2  are true, and the conjunction of Çi and q2  

logically implies ç3, then q-j is true.

<7i A q2  —,> qs
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In an ATMS, if the collected information says that fact A  supports hypothesis 

q! and fact B  supports hypothesis q2, and we know that q\Aq2  - »  <73, then it is 

possible to infer that A/\B supports hypothesis q3  if there is no contradictions 

between them.

Although these approaches are powerful in many aspects, such as logical 

soundness, they still suffer from some problems. One problem is that it 

is difficult to represent vague information. For instance, it is not possible 

to represent the sentences such as ‘ <71 is possibly true’ or lqi is true with 

probability 0.7’ .

Numerical reasoning: those mechanisms which represent and reason with vague 

or uncertain information such as ‘probabilities’ or ‘possibilities’ belong to 

this category. Numerous different approaches for managing uncertain infor­

mation have been proposed, such as, the certainty factor model in MYCIN 

[Shortliffe, 1976], Bayes’ rule based reasoning model in PROSPECTO R 

[Duda etal, 1976], the Dempster-Shafer theory o f evidence [Shafer76], Fuzzy 

logic [Zadeh, 1975], probabilistic logic [Nilsson, 1986], belief networks [Pearl, 1988] 

and so on [Kruse et al, 1992].

The common feature of these uncertainty mechanisms is to model or de­

scribe vague or incomplete information explicitly and use it to make further 

judgements. In this category of reasoning, information is mainly character­

ized by numerical uncertain values1. A reasoning procedure involves both 

propagating and calculating uncertain values on hypotheses.

*1 include the symbolic approaches designed for representing uncertainties such as 

Cohen’s endorsements [Cohen, 1985] in this category. In such systems, although numbers 

are not used to represent uncertain information, some linguistic uncertain words, such as 

‘possible’ , ‘probably’ , ‘certain’ , are still used to describe vague information. This kind 

of approach is called symbolic-oriented uncertainty approach which is fundamentally 

different from the symbolic approach defined in the first category.
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For example, if instead of saying that the hypotheses qi and q2  are supported 

by A  and B, the collected information tells us that hypotheses q\ and q2  are 

true with probabilities 0.6 and 0.7 respectively and their chances o f being 

true are independent, then the probability o f qi and q2  are both true is 0.42. 

Without having any other information, q3  is then true with probability 0.42.

Both symbolic and numerical approaches in the two categories have advan­

tages and limitations. An intensive survey and discussion is provided by Dubois 

and Prade in [Dubois and Prade, 1994] between classical logic and the Bayesian 

networks. It is concluded that ‘ the deficiencies o f classical logic and of Bayesian 

networks with respect to the plausible reasoning endeavour are not the same. 

The overriding ambition for knowledge representation and reasoning in the do­

main of plausible inference, is to identify a logic which combines the advantages of 

Bayesian networks with those o f classical logic.’ If we take the Bayesian network 

and classical logic as the representatives of numerical reasoning and symbolic rea­

soning techniques, this analysis also reveals the limitations o f these two categories 

o f reasoning patterns.

It is also addressed that ‘ numerical and symbolic (means logic) approaches 

to uncertainty should not be considered as completing models. It is far more 

interesting and fruitful to display their underlying coherence.’ This could help to 

explain our motivation of the thesis work.

Besides, in any numerical reasoning mechanism, after a few steps of propa­

gation and fusion, the meaning of numerical degrees is very difficult to interpret 

[Strat, 1987]. While in a symbolic reasoning mechanism, such as the ATMS, the 

degrees of being true of some statements can always be interpreted using other 

statements, like assumptions in the ATMS.

Incidence calculus, in some sense, unifies these two reasoning mechanisms. 

The comprehensive exploration into incidence calculus may provide some useful 

and valuable ideas to the researchers on both sides and reveal the underlying 

connections between the two reasoning mechanisms.
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The real world problems which require both strong logical expression and nu­

merical measurements may need such an combination.

Since the symbolic and numerical approaches are, to some extent, complemen­

tary not exclusive, attempts have been made to link them together in order to 

solve complex problems. [Rich, 1983] proposed a likehood-based interpretation of 

default rules using certainty-factors calculus. [Ginsberg, 1984], [Baldwin, 1987], 

[McLeith, 1988] used DS theory to describe Default theory. [d’Ambrosio, 1988], 

[Laskey and Lehner, 1989] attempted to encode DS theory into an ATMS.

The aim underlying their work is to construct a model which can effectively 

integrate numerical and symbolic reasoning into one structure. After having ex­

amined incidence calculus [Bundy, 1985], [Bundy, 1992], I discovered that it seems 

already to be an integration of tliese two forms. Therefore, in the next section I 

will concentrate on the structural analysis of incidence calculus.

1.2 Incidence Calculus: Two Level Structures

In this section, I will first introduce prepositional logic and the basics o f incidence 

calculus, and then explore its relations with the two reasoning types discussed 

above.

1.2.1 From propositional logic to probabilistic logic

Classical propositional logic is introduced in almost every artificial intelligence 

text book. Here I only briefly review its very basic features.

Propositional logic symbols

The symbols o f prepositional logic are the propositional symbols:

<7,<7i ,<72, -
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Truth symbols:

true , fa ls e

and connectives:

A, V, <-»■

Propositional symbols, denote propositions, or statements that may be either 

true or false, such as “ it is raining” or “ the car is white” .

Sentences (or formulae) in the propositional logic are formed from these atomic 

symbols based on the following rules.

• Every atomic proposition and truth symbol is a sentence.

• The negation (->) of a sentence is a sentence, such as ->q from q.

• The conjunction (A) of two sentences is a sentence, such as qy A q2-

• The disjunction (V) of two sentences is a sentence, such as qy V q2.

• The implication (—>) of a sentence for another is a sentence, such as qy  —>■ q2.

• The equivalence of two sentences is a sentence, such as qy <->■ 92-

Given two formulae f  and ijj, notation t/j f= f> is used when ?/>—>• (j> is valid (a 

tautology) and if — (f> means that sentence f> f> is valid, that is f= f  and 

<t> x/>.

A sentence (or formula) may be either true or false given some state of the 

world. The truth value assignment to sentences is called an interpretation, an 

assertion about their truth in some possible world. Formally, an interpretation of 

a sentence is a mapping from the propositional symbols into the set {T , F }  which 

are different from the symbols true and fa lse .

The truth assignments of compound propositions can be calculated solely from 

their parts. For example, the truth value o f qy A q2  is T  if both qy and q2 are T

6



and the truth value of q\ A q2  is F  if either qi or q2  or both of them are F. This 

feature is called truth functional.

The classical propositional logic, like any other symbolic reasoning mechanism, 

lacks the ability to deal with uncertain information. Some work has been done on 

the generalization of propositional logic to probabilistic logic, that is, to extend a 

two-value logic to a multi-value logic by assigning uncertain values to sentences. 

In general, there are two ways to generalize the classical propositional logic to a 

probabilistic logic: direct encoding and indirect encoding.

Direct encoding : assigning probabilities to sentences directly, such as

prob(q\ —> q2) =  0.7. Nilsson’s probabilistic logic [Nilsson, 1986] uses this 

approach.

The disadvantage of this approach is that it is difficult to propagate proba­

bilities based on a initial probability assignment. For instance, if we know 

that prob(qi) =  0.7 and prob(qi —>■ q2) =  0.5, it is not possible to calculate 

the probability o f q2, we can only know that the probability o f q2  lies be­

tween prob(qi) -\-prob(q| —> q2) — 1 and prob[q\ —»■ q2). For more complicated 

cases, it is even difficult to tell the lower or upper bounds of probabilities on 

sentences.

Indirect encoding : assigning probabilities to sentences via a set o f possible 

worlds, such as prob(q\ —> q2) =  prob(W\) =  0.7.

The advantage o f this approach is that it is easy to propagate probabilities 

(or their bounds). Bundy’s incidence calculus uses this method.

For example, if we are fold that a set o f possible worlds Wi support qi, and 

another set o f possible worlds W 2  support q\ —> q2, then it is possible to say 

that the lower bound o f the support set for q2  is W\ D W 2. ft is then easy 

to calculate the probability o f W\ fl W2. Calculating probabilities through a 

set o f possible worlds is the main component of indirect encoding and is the 

key idea in incidence calculus.
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In the following, I use formula to name either an atomic proposition or a 

compound sentence.

1.2.2 What is incidence calculus

Incidence calculus is a probabilistic logic developed from propositional logic by 

associating probabilities with formulae indirectly. In incidence calculus, for a 

formula, denoted as </>, instead of saying <f> is true or false, we say the probability 

o f (f> being true is x where x is any number between [0,1]. If for every sentence in 

incidence calculus, its probability is either 0 or 1, then the theory reduces to the 

traditional propositional logic case.

To understand what we mean by saying the probability o f a formula, a set 

o f possible worlds, on which probability distributions are known, are employed 

to provide the explanation. Assume we talk about the truth value o f a sentence 

in a particular domain, denoted as W , which contains events (called samples in 

probability theory) related to the sentence. Any event in W  will either support 

the sentence (make it true) or be against the sentence (make it false). If we put all 

the events supporting the sentence together, called W i, then we get a subset o f W. 

This set is called the incidence set. of this sentence. The probability o f a sentence 

is defined as the probability of this subset. These events are called possible worlds 

in incidence calculus.

1.2.3 Incidence calculus theories

A piece of information is represented using an incidence calculus theory in inci­

dence calculus.

An incidence calculus theory is defined formally as the quintuple

<  VV,/i, P ,A ,i  >

where VV is a set of possible worlds or events, p is a discrete probability distribution 

on W , P  is a finite set of propositions, A  is a set of axioms (formulae) from the
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language set o f P  and i is a mapping function between W  and A. For a formula 

4> G A , is a subset o f W  containing those possible worlds which support the 

statement (or hypothesis) cj).

Since incidence calculus is a probabilistic logic achieved by assigning proba­

bilities to formulae indirectly, the best way to describe and understand incidence 

calculus is to break its structure into two parts (the symbolic and numerical) and 

characterise each part.

1.2.4 Symbolic level

If we choose three elements W , A , and i from an incidence calculus theory to 

form a structure <  W ,A ,i  > , then this structure is purely symbolic as shown in 

Figure 1.1.

For instance, if we know that the incidence sets o f qi —> q2  and q2  —> qz 

are W\ and W 2, meaning W\ and W 2  support statements qi —> q2  and q2 —> (ft, 

respectively, then logically, W\ Pi W 2  should support (<?i —>■ q2) A  (q2 —> <73), and 

further qi —»■ q3. In this way, the incidence set of q\ —> <73 is changed from unknown 

to at least Wi D W2. This is the crucial point in propagating supporting sets and 

obtaining incidences in incidence calculus.

Figure 1. 1. Symbolic support relation in IC

1.2.5 Numerical level

Don’t forget that apart from the three elements we used in the symbolic level, 

there is another element in an incidence calculus theory, namely ¡1 . Considering 

a structure <  W,/u,A  > , what more can we know about statements in A  from
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it? If it is known that VV{ supports statement qi —> q2  and the probability weight 

of subset Wi is n(W\) — Yiwewy[i(w), then it is a natural consequence that the 

probability o f the statment, being true is Similarly, the probability that

<72 —> 93 is true is fi(W 2).

Moreover, as the relation ((r/i —» q2) A (q2  —> q3)) —> (qi —> q3) holds logically, 

it is believed that Wi fl W 2 should support qi —>• q3. Under the condition that we 

only have this logical relation to infer q\ —> q3, it is, once again, reasonable to say 

that the probability o f qi —> q3  being true is at least n(W\ D W2).

Obviously, this time, we have used probabilities (or numerical uncertain values) 

to assess the truth value of a formula instead o f using possible worlds to qualify it. 

This approach should be regarded as a numerical reasoning mechanism as shown 

in Figure 1.2.

Figure 1.2. Numerical support relation in IC

1.2.6 Incidence calculus is a bridge

Where should we put incidence calculus, symbolic category or numerical slot? It 

seems that it fits both of them, but none of them covers it. Putting incidence 

calculus in a single category will make it lose the features of another. To make 

things even more clear, we’d better examine Figure 1.3.
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n
Figure 1.3. Numerical Reasoning via Symbolic Reasoning

A set o f possible worlds (events) is located at the middle level in this structure. 

It acts as a bridge between formulae and probabilities. Through these events, 

numerical uncertainty values are assigned to hypotheses. Figure 1.2 shows that 

if we make the bridge invisible, then the theory looks like a numerical theory 

completely. This bridge, as we will see later, is very important in making the links 

between two different reasoning patterns.

It is not surprising, therefore, that we say that incidence calculus is different 

from the existing theories and it is expected that incidence calculus has the features 

o f both numerical and symbolic reasoning systems. The following section serves 

this purpose.

1.3 Related Theories

Considering the fact that there are many different reasoning mechanisms both 

in numerical and symbolic reasoning patterns, it is not possible to examine the 

relations between incidence calculus and other mechanisms one by one. It is better 

to select a representative from each category respectively and to examine their 

relations with incidence calculus.

Bayesian networks are currently the most popular and most widely imple­

mented model o f reasoning under uncertainty. They are particularly successful
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from a computational point o f view. In the theory o f Bayesian nets, as presented 

by Pearl [Pearl, 1988], Bayesian networks certainly look like a very powerful tool 

for the efficient encoding of any complex multivariate probability distribution. 

However, as pointed out by Dubois and Prade in [Dubois and Prade, 1994] that 

there are a number of objections to the Bayesian approach: the results o f the 

approach rely heavily on the independence assumptions encoded in the topology 

of the graph; the network building method never produces inconsistencies. The 

expert is asked exactly the amount of data required for ensuring the unicity o f the 

underlying distribution.

One of the main advantages o f extended incidence calculus is the ability to 

combine dependent information. This is a weakness of Bayesian nets. In addition, 

Bayesian approach does not have a correct representation of partial ignorance 

while extended incidence calculus does. So it is unlikely to show an equivalence 

between extended incidence calculus and Bayesian nets. Therefore, we didn’t take 

Bayesian inference method as an example of numerical approaches to compare 

with extended incidence calculus. We intended to choose a theory which bears 

some resemblance to extended incidence calculus. The Dempster-Shafer theory of 

evidence satisfies this condition.

Constrained by this guideline, I have chosen the Dempster-Shafer theory of 

evidence (DS theory) and the ATMS as delegates to represent numerical and sym­

bolic reasoning patterns respectively. The main reason for me to choose DS theory 

is that this theory is well known as a generalized probability theory and its rela­

tions with other numerical uncertainty methods have been intensively studied (for 

example, [Kruse et al, 1992], [Pearl, 1988]). The main reason for me to choose the 

ATMS in another category is that the ATMS is regarded as the foundation for  im­

plementing various kinds o f default reasoning [de Kleer, 1986]. Default reasoning 

is a typical example among a few nonmonotonic reasoning mechanisms. Therefore, 

the analysis on the relations between incidence calculus and purely numerical or 

symbolic reasoning theories is focused on its comparisons with DS theory and the 

ATMS. This analysis reflects the general relations between incidence calculus and 

numerical and symbolic reasoning theories.
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1.3.1 The Dempster-Shafer theory of evidence

DS theory was mainly developed by Shafer [Shafer76] based on Dempster’s early 

work [Dempster, 1967]. DS theory is also well known as ‘belief function theory’ 

or ‘evidential reasoning theory’ . This theory has attracted a lot o f attention since 

the early eighties [Lowrance, et al 1981], [Yager, Fadrizzi, Kacprzyk, 1994].

The advantages o f DS theory, often addressed in the uncertainty community, 

are its abilities in representing ignorance and in combining different bodies of 

evidence using Dempster’s combination rule.

In this theory, there are several basic concepts as follows.

Frame of discernment : a frame of discernment (or simply a frame) is a set 

which contains mutually exclusive and exhaustive explanations of a problem. 

That is, if this frame consists of all the possible answers to a question, then 

one and only one answer is correct at any one time.

Mass function : a mass function m gives a mapping between a frame of discern­

ment and [0,1]. If S is a frame, then a mass function m on S satisfies the 

conditions S Aç s m (A ) =  I and m (0) =  0.

Belief function : a function bel defined by

bel(B ) =  ZAçB m (À ) 

is a belief function on S when m is a mass function on S.

D em pster’s combination rule : Dempster’s combination rule combines two 

mass functions on the same frame to produce the third one. Given that mi 

and m 2 are two mass functions, if they are allowed to be combined by the 

rule, then the result is m =  rnx © m 2

_  T,AnB =cm i(A )m 2(B )
1 -  <74-nB/=0m1(v4/)m 2(.e /)

where © means Dempster’s combination rule is used and A, B, A', B' are

subsets o f S which is a frame.
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A piece o f evidence produces a belief function on a frame which, in many 

papers, is proved to be the same as an inner measure (or a lower bound) o f a 

probability distribution [Fagin and Halpern, 1989b].

In incidence calculus, if we only look at the set P  and its numerical measure 

derived from the possible worlds, then this numerical measure is exactly the same 

as a belief function if we let tlie two theories concern the same domain and the 

same information [Correa da Silva and Bundy, 1990b] and [Liu and Bundy, 1994].

Therefore, incidence calculus is able to simulate the reasoning procedure in DS 

theory and these two theories are equivalent in this aspect.

1.3.2 The ATMS

Among various symbolic approaches, I choose an ATMS as a basis for examining 

the symbolic feature o f incidence calculus as far as this thesis is concerned. The 

detailed examination of the relations between incidence calculus and the ATMS is 

carried out in chapters 6 and 7. Discussions about the relations between incidence 

calculus and other mechanisms are open for the future.

Assumption based truth maintenance systems (ATM S) [de Kleer, 1986] were 

stimulated by Doyle’s work on truth maintenance systems (TM S) [Doyle, 1979]. 

In such a system, dependent relations on statements are explicitly recorded and 

maintained. The main difference between an assumption based truth maintenance 

system and a truth maintenance system is that in the former only a specific set of 

statements (called assumptions) are qualified to support other statements while in 

the latter there is no such a distinction. Two tables below are used to show this 

intuitively.
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Line Statement Dependencies Justification

1. <7i -*  <h { 1} Premise

2. <72 -> <73 { 2} Premise

3. 9i {3 } Hypothesis

4. <72 {1 ,3 } MP 1, 3

5. 93 {1 ,2 ,3 } MP 2, 4

6. <7i <73 { 1, 2} Discharge 3, 5

Table 1.1. A TMS Example

Premises and hypotheses depend on themselves. The other lines depend on the 

set of premises and hypotheses derived from their justifications, which represent 

reasons for beliefs. Here MP means the application of Modus Ponens on premises 

and hypotheses.

This example can be rewritten in an ATMS as follows.

Node Statement Label Justification

iVi <7i -> <72 { { A } } { ( ¿ »
n 2 <72 ->  <73 { { B } } {(< ?)}
n 3 <7i { } { }

n 4 <72 { { ¿ } } W i , N 3) }

n 5 <73 { { A B } } { ( n „ n 2 , n 3)}

n 6 <7i -> <73 { { A B } } { ( N i , N 2) }

Table 1.2. An ATMS Example Converted from Table 1.1

In this table, nodes are used to replace the lines. All the capital letters are 

assumptions which are assumed to be true without requiring any extra information 

when there are no conflicts. q\ is still a hypothesis (or called a premise) which is 

observed to be true. There is no longer a column labelled as dependencies in this 

table. Instead a new column called label is used to recode the dependencies between 

statements and assumptions. The purpose of having justifications is to provide 

routes to derive label sets for nodes. In a TMS, the dependency set of a statement
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records those statements on which this statement depends. Those statements can 

be any statements in this system (except itself usually). In an ATMS, the label 

set o f a statement records those statements on which this statement depends. 

Those statements can only be assumptions. So the main difference between TMS 

dependencies and ATMS dependencies is that in a TMS any statement can appear 

in a dependency set while in an ATMS only assumptions can appear in a label 

set. For example, in Table 1.1, if we want to see whether q3 holds, we will have to 

see whether lines 1, 2, and 3 hold, and if lines 1, 2, and 3 are dependent on other 

statements, we will have to continue this procedure until we reach those statement 

which are premises or hypotheses before we decide the truth of statement <73. But 

in Table 1.2 if we want to know whether node N$ holds, we only need to check 

whether A  and B  hold.

Therefore, dependent relations among statements in a TMS are restricted to 

the dependent relations between statements and assumptions. This is regarded as 

the advantage of the ATMS over the original TMS. The main target in such an 

ATMS is to manipulate label sets for statements through justifications.

For statement q3  or q\ —> q3, the label set { {A ,  £ } }  means that when both 

A  and B  hold and when there is no conflict to this fact, then q3  or q\ —> q3  is 

derivable (or believed). So we have A A B  supports q3  or qi —»• q3.

In Table 1.2, the fourth line < 7V3, e/i, { } ,  { }  >  means that q\ is abserved to be 

true or N3  holds universally.

Syntactically, if we put A and B in set theory, the conjunction between A  and 

B  should be replaced by intersection fl, and A  and B  should be explained as the 

subsets of a certain set. In this sense, the meaning of A  and B  has been extended 

from individual assumptions to sets. I will consider both the ATMS and incidence 

calculus from this perspective and we shall find that these two theories share the 

same idea in their fundamental reasoning principles as shown in Table 1.3.
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Formula Incidences Implication relation

91 -*  <72 Wi

<72 <73 W 2

9i w
92 Wi (91 ► 92) A <71

<73 w { n  w 2 9i A (<71 —> 92) A (q2  —> 93)

<7i <73 Wi n  w 2 (91 ~* 92) A (<72 —>■ 93)

Table 1.3. Inference Procedure in Incidence Calculus.

Here I need to point, out that the incidence set o f q2  should be Wi D W  which 

is equal to W i. The same principle applies to the incidence set o f <73. Comparing 

Table 1.2 with Table 1.3, it is possible to draw the following mappings between 

them. The column ‘ Label’ in Table 1.2 is equivalent to the column ‘ Incidences’ in 

Table 1.3 if we imagine that A and D are the subsets and W 2- The ‘Justifi­

cation’ column in Table 1.2 is equivalent to the ‘ Implication relation’ column in 

Table 1.3 if we use node names to replace node numbers. It is necessary to point 

out that the incidence set of qi is the whole set o f possible worlds because that qi 

holds universally and any event in W  should support its occurrence.

Therefore, it is not diibcull to see that the core parts in these two reasoning 

mechanisms are identical, i.e., using logical implication relations to propagate 

the support environment. To be more explicit, justifications in an ATMS are 

functionally equivalent to the implication relations in incidence calculus.

1.3.3 Probabilistic logic

Probabilistic logic was introduced by Nilsson in 1986 [Nilsson, 1986]. The main 

contribution of the paper is to generalize the standard logic to the probabilistic 

case. That is, the truth value of a sentence is a probability value rather than 

just two values (truth or false). At the beginning of the paper, Nilsson provides 

an explanation of what it means to say the probability o f a sentence. Given 

a sentence, say </>, if we start with a set o f samples (as required in probability
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theory), this sentence can be either true or false on one sample. These samples 

are called possible worlds. So there are two sets o f possible worlds, <j) is true in 

one o f them and is false in another. In general, if there are more sentences, we 

have more sets of possible worlds. If there are L sentences, then we might need as 

many as 2L sets o f possible worlds. Typically, far fewer sets of possible worlds are 

required.

Therefore, Nilsson concludes that ‘ the probability o f a sentence is the sum of 

the probabilities o f the sets o f possible worlds in which that sentence is true’ . This 

statement is identical to the idea of calculating probabilities of sentences through 

possible worlds in incidence calculus.

In probabilistic logic, although Nilsson uses sets o f possible worlds to explain 

the source from which probabilities of sentences are obtained, probabilities are 

associated with sentences directly. A set of sentences, denoted as II, each of 

which is associated with a probability, is called a base. From this base set, a 

new set o f sentences is deducible with proper probabilities. The impact o f the 

added information is considered as conditional probability updating in this theory. 

Therefore the main problem in probabilistic logic is to propagate probabilities to 

other sentences based on the base. In this propagation procedure, sets o f possible 

worlds are dismissed.

As a consequence, it is not difficult to see the difference between probabilis­

tic logic and incidence calculus. Both theories extend the traditional logic to 

probabilistic cases, but incidence calculus keeps sets o f possible worlds (at an in­

termediate level) to achieve this purpose while probabilistic logic omits the use 

of possible worlds in the procedure of inferring more probabilities on sentences. 

The difference in their theoretical structures will have significant impact on their 

usages in practice.

In [Fagin and Halpern, 1989a], [Fagin and Halpern, 1989b], it is proved that 

probabilistic logic is covered by DS theory. This is explained as that given any base 

set with probabilities on sentences in the base (usually called Nilsson’s probability 

structure), in DS theory there are a proper frame and a belief function on this 

frame which represent the same information.
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As we have proved in [Liu and Bundy, 1994] generalized incidence calculus and 

DS theory have the same ability to represent evidence, i.e., whatever DS theory 

can represent, generalized incidence calculus can represent it as well. It is natural 

to conclude that for any Nilsson’s probability structure, there is an equivalent 

generalized incidence calculus theory to represent the same set of information.

1.4 Contributions of the Thesis

1.4.1 Extending the original incidence calculus

As we have seen, incidence calculus can be regarded as a bridge between symbolic 

reasoning and numerical reasoning mechanisms. This is determined by the theo­

retical structure o f the theory. However, the original incidence calculus has three 

weaknesses which block its applications. These three shortcomings are: limited 

ability in representing evidence, limited ability in combining evidence and limited 

ability in assigning incidences given probabilities. These abilities, in many appli­

cation domains, play very important roles in dealing with uncertain information.

In order to carry forward the structural advantage of incidence calculus and 

to make the theory be an even more powerful integration of the two reasoning 

patterns, we first have to extend the original incidence calculus. Therefore, the first 

part of my work in this thesis is concerned with extending the original incidence 

calculus to obtain an advanced mechanism which maintains the advantage of the 

theory but overcomes the three weaknesses.

The first limitation of the original incidence calculus is overcome by generaliz­

ing the conditions on incidence functions. I give fewer constraints on this crucial 

function. Generalized incidence calculus theories have the ability to model uncer­

tain information flexibly, such as representing ignorance. The second limitation of 

the original incidence calculus is overcome by proposing a new combination rule to 

combine generalized incidence calculus theories. The new combination mechanism 

combines multiple pieces of evidence in their symbolic form first and then calcu­
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lates numerical values. In this way, the new combination rule can combine both 

dependent and independent pieces of evidence. The third limitation is overcome 

by designing an efficient algorithm for incidence assignments from probability as­

signments.

Therefore, extended incidence calculus not only possesses the two advantages 

that DS theory has but also is superior to DS theory in combining dependent 

evidence.

Extended incidence calculus is a nonmonotonic reasoning mechanism. It shares 

this fundamental similarity with the ATMS. The advantage o f extended incidence 

calculus over the original ATMS is that the former is able to calculate degrees 

o f belief apart from performing inference at the symbolic level. This advantage 

can be used as a basis for constructing a probabilistic ATMS and for providing 

some theoretical explanations to the results in [Laskey and Lehner, 1989] (see next 

section and chapter 7), which is concerned with transforming DS belief functions 

into a probabilistic ATMS.

Therefore, we conclude that extended incidence calculus is a powerful reasoning 

mechanism unifying both symbolic and numerical reasonings. My work in this 

thesis has not only developed such a mechanism but also proved the important 

relations between extended incidence calculus and other theories.

1.4.2 The main contributions of the thesis

There are three main contributions in the thesis. First o f all, I have extended the 

original incidence calculus in the following aspects: (i). generalized the definitions 

of incidence calculus theory; (ii). developed an efficient incidence assignment algo­

rithm; (iii). proposed a combination rule to combine multiple pieces o f evidence. 

So the original incidence calculus has been extended from three dimensions and the 

new, advanced mechanism is called extended incidence calculus. Chapter 3 con­

tains the material for the extensions. Secondly, I investigated the relations between 

the extended incidence calculus and the Dempster-Shafer theory o f evidence, their 

similarities and differences. Chapter 4 and 5 contribute to this investigation. Fi­
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nally, I studied the relations between extended incidence calculus and the ATMS. 

I compared these two reasoning mechanisms at both the symbolic level and the 

numerical level. I proved that these two mechanisms are functionally equivalent. 

Chapter 6 and 7 have the details o f this study.

1.5 Related Work

1.5.1 Bacchus’s work

Bacchus in [Bacchus, 1988] arid [Bacchus, 1990] extended the propositional logic 

and first order logic to probabilistic logic. His main aim, as he said himself, was to 

try to show that probabilities have an important role to play in the design of in­

telligent systems in general. Bacchus extended propositional logic to propositional 

probabilities, discussed statistical probabilities and combined these two types of 

probabilities into one form. lie also addressed the application o f statistical knowl­

edge to default inference. I am, however, more interested in the first part of his 

work, i.e. propositional probabilities, which is closely related to my work.

The basic idea of extending propositional logic to propositional probabilities 

in [Bacchus, 1990] is the same as that in Nilsson’s work, that is, changing the two- 

value assignments o f propositions (or assertions) to be real values in [0,1]. This 

change can be done in two means, assigning probabilities to propositions directly 

or assigning probabilities to propositions via a set o f possible worlds which have 

some formal links with the propositions.

Obviously, he preferred the second approach to the first one and criticized 

that the first approach suffers from the shortcoming o f providing a unified lan­

guage for assertions and probabilities over those assertions. By means o f possi­

ble worlds, Bacchus defined the following structure for propositional probabilities 

(p41, [Bacchus, 1990]).
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“Propositional probability structures: we define the following 

structure which we use to interpret the formulae o f our language for 

propositional probabilities.

M = <  O,S ,0 , f i  >

where:

a) O  is a set o f individuals representing objects of the domain that 

one wishes to describe in the logic. O  corresponds to the domain of 

discourse in the ordinary usage of first-order logic.

b) S is a set of possible worlds.

c) i? is a function that associates an interpretation of the language with 

each world.

d) /i is a discrete probability function on S. That is, p is a function that 

maps the elements of S to the real interval [0,1] such that Es£5^t(s) =

1. ”

The interpretation of the formula is explained as follows.

“In sum, the truth value assigned to a formula will depend on three 

items: the semantic structure or model M  (which determines the prob­

ability distribution //, the interpretation function r9, and the domain of 

objects (9); the current world s; and the variable assignment function 

v. We now give the inductive specification of the truth assignment, 

writing (M ,s ,v )  f= a  if the formula a  is assigned a truth value true 

by the triple and writing for the individual denoted by the term

t in the triple.

For every formula a,  the term created by the probability operator 

prob(a) is given the interpretation

(prob(a)YM,v  ̂ =  p {s ' € S : (M , s ' , v ) |= a }
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So the probability of a formula is interpreted as the probability o f the set of 

possible worlds which satisfy that formula.

The propositional probability structure given here is very similar to the inci­

dence calculus theory structure except in an incidence calculus theory, a set of 

formulae (axioms) is particularly specified in A.  Both structures have used the 

probability o f a set of possible worlds to interpret the probability o f a formula.

However, although the two structures are similar in their appearance, there is 

a significant difference in their probability propagation procedures. In incidence 

calculus, possible worlds remain to be the main material in the propagation of 

probabilities, that is, the probability of a formula is calculated through its inci­

dence set i(4>)] while in Bacchus’s structure, this seems not to be the case. In other 

words, in [Bacchus, 1990] possible worlds are used to represent information, their 

functions in further evidence propagation are not clear. For instance, in (p.45, 

[Bacchus, 1990]), an example is given as

prob(3x.has — cancer — t ype (John,x )) >  0.5 

to represent the sentence ‘John probably has some type of cancer’ .

A set o f possible worlds is associated with formulae in such a structure rather 

than separating them from formulae. This is the key difference between Bacchus 

structure [Bacchus, 1990] and incidence calculus.

The advantage of Bacchus structure is that a framework for representing first 

order logic has been defined. This part of work in incidence calculus remains to 

be done.

1.5.2 Laskey and Lehner’s work

Embedding a proper numerical reasoning mechanism into an ATMS has been dis­

cussed by many researchers. Among them, Laskey and Lehner’s work 

[Laskey and Lehner, 1989] is widely recognized. Their work is about translating 

a list o f belief functions (which are given on a set of formulae) to a proper ATMS 

structure and then using this ATMS structure to carry out the inference. The
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main tasks in the translation procedure are to create assumptions and to calculate 

probabilities on formulae.

For example, if there are two mass functions mi and m 2 where 

mi(<7i —> q2) — 0.6 rrii(S) — 0.4

m 2 (q2  ~» q.i) =  0.8 rn2 (S) =  0.2

where S is the frame containing all formulae related to this question.

Then two assumptions A, B  are created to separate mass values from formu­

lae. The assumption A is used to support formula qi —> q2  and the assump­

tion B  is used to support formula q2 —>• </3. Furthermore, two probability sets 

{A , - ‘A ’}  and { B , ->B}  are created to associate probabilities with assumptions 

(and their negations). In this example, prob(A) =  0.6,p ro b ^ A )  =  0.4 and 

prob(B) =  0.8, prob(-iB) =  0.2.

When it is assumed that the two mass functions are specified by two distinct 

pieces of evidence and the label set o f qi —» q3  is { {A ,  B } } ,  the probability of 

Qi <?3 is calculated as prob(A A B) =  0.6 x 0.8 =  0.48.

In general, when the label set of a formula is label (a) ,  it is not so easy 

to calculate the probability of a  because of the overlapping of different parts 

in the label set. An algorithm has been proposed to deal with this case in 

[Laskey and Lehner, 1989].

The problem with their work is that some of the main results were given 

without proofs. The discussion about the relations between the extended incidence 

calculus and the ATMS will supply the necessary proofs [Liu and Bundy, 1993] and 

[Liu, Bundy and Robertson, 1993b].
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1.6 Thesis Structure

This thesis is concerned with extending incidence calculus as a symbolic and nu­

merical approach for uncertainty reasoning and its comparison with related theo­

ries. The thesis consists of eight chapters. The abstract of each chapter is given 

below.

Chapter 1 reviews the up-to-date techniques for numerical and symbolic uncer­

tainty reasoning, explores the position of incidence calculus [Bundy, 1985] in these 

two major reasoning categories. This brief review provides a general background 

for exploring the potential applications of incidence calculus and the significance 

of its development. Because incidence calculus can make inference at both the 

symbolic and numerical levels, it can be regarded as a bridge between numerical 

and symbolic reasoning mechanisms.

Chapter 2 introduces Bundy’s incidence calculus in great detail. This includes 

original definitions of incidence calculus, the Legal Assignment Finder for calcu­

lating lower and upper bounds of incidence and incidence assignment approaches.

Chapter 3 concentrates on how to generalize the original incidence calculus de­

veloped by Bundy [Bundy, 1992] to a more general case. This is done by dropping 

some of the conditions on incidence function i in the original incidence calculus. 

The generalized incidence calculus has the ability to represent ignorance. A fast 

algorithm for incidence assignment is designed and implemented based on gener­

alized incidence calculus. A combination mechanism is proposed in generalized 

incidence calculus which can combine both dependent and independent pieces of 

evidence. Generalized incidence calculus with its alternative combination rule 

forms an advanced reasoning mechanism called extended incidence calculus.

Chapter 4 continues the discussion in [Halpern and Fagin, 1992] and 

[Voorbraak, 1991]. This chapter contains my contributions to the clarification 

of the problems with Dempster’s combination rule in the Dempster-Shafer theory
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of evidence [Shafer76]. I considered not only Dempster’s combination rule but also 

the original idea suggested by Dempster in his fundamental paper [Dempster, 1967].

Chapter 5 gives a comprehensive comparison between incidence calculus and 

DS theory. The result reveals that (i) both theories have the same ability to 

represent evidence; (ii) they have the same ability to combine DS-independent 

evidence and achieve the same result; (iii) incidence calculus is superior to DS 

theory in combining dependent evidence [Liu and Bundy, 1994],

Chapter 6 reviews the ATMS [de Kleer, 1986] and extends the original ATMS 

into a probabilistic oriented structure. This chapter is necessary for the discussion 

in the next chapter.

Chapter 7 focuses on the relations between incidence calculus and the ATMS. 

Because of its symbolic feature, incidence calculus is proved to be equivalent to the 

ATMS [Liu, Bundy and Robertson, 1993a], [Liu and Bundy, 1993], [Pearl, 1988]. 

In addition, incidence calculus provides a basis for constructing probabilistic based 

ATMSs and supplying justifications for the ATMS automatically.

Chapter 8 concludes the main issues in the thesis and my main contributions.

I will also discuss the further work in the chapter.

This thesis can either be read in the order of chapters 1, 2, 3, 4, 5, 8, if one is 

interested in incidence calculus and DS theory; or in the order of chapters 1, 2, 3, 

6, 7, 8, if one is interested in incidence calculus and the ATMS.
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Chapter 2

Incidence calculus

We have had a rough idea about what incidence calculus looks like. In this chapter, 

we introduce the original incidence calculus developed by Bundy [Bundy, 1985] in 

detail. We will discuss its main features, its Legal Assignment Finder for deriving 

lower and upper bounds of incidences and the incidence assignments methods. 

Some limitations o f the original incidence calculus will also be explored.

2.1 Incidence Calculus Theories

Incidence calculus was introduced in [Bundy, 1985]. It aims to overcome the prob­

lems which arose from applying purely numerical uncertainty reasoning techniques. 

In this new probabilistic reasoning model, probabilities are associated with sets of 

possible worlds and these sets are associated with formulae. These sets are called 

incidences o f formulae. The reasoning procedure consists o f calculating incidence 

sets (or their lower and upper bounds) of formulae and obtaining probabilities (or 

their lower and upper bounds) of the formulae. A simple introduction is given in 

[Bundy, 1992].

D efin ition  2 .1 : Propositional Language 

• P  is a finite set o f atomic propositions.
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• C(P)  is the proposition.al language formed from  P . 

true, fa ls e  £ P (P ),

if q e  P , then q 6 £ ( P ) ,  <md

if € C(P)  then -><j> 6 £ { P ) ,  <t> A if € £ ( P ) ,  <!> V if €  £(P)> and </>—>• >̂ £ 

£ (/> ).

T/iai is, £ (P )  is closed under the operations negation (->), disjunction (\/), 

conjunction (A) and implication (—>).

Definition 2.2: Basic element set

Assume that P  is a finite set o f propositions P  — {g i, q^,..., qn} ,  an item 8 , 

defined as 8  =  q[ A ... A q'n where q'- is either qj or ->qj, is called a basic element. 

The collection o f all the basic elements, denoted as A t is called the basic element

set from P . Any formula if in the language set C{P)  can be represented as

if =  8X V ... V 8k

where 8j £ A t.

Definition 2.3: Incidence Calculus Theories 

An incidence calculus theory is a quintuple

<  W ,/i, P , A , i  >

where

• W  is a finite set o f possible worlds.

• For all w £ W , p(u>) is the probability o f w and ¿¿(W) =  1, where p( I )  =  

Ew(zip(w).

• P  is a finite set o f propositions. A t is the basic element set o f P . C(P)  is 

the language set o f P .

28



• A  is a distinguished set. o f  formulae in C{P)  called the axioms o f the theory.

• i is a function from the axioms in A  to 2 W, the set o f subsets o f  Yd. i ( f )  is 

to be thought o f as the set o f  possible worlds in W  in which f  is true, i.e. 

i f f )  =  {w  G W| w \= f } .  i ( f )  is called the incidence o f f .

i is extended to a function from C(A)  to 2VV by the following defining equations 

o f incidence.

iftrue) =  W  

i( false )  =  { }

=  w  \ i { f )  

i ( f  a  =  i{<j>) n i f f )  

i { f  v  if) =  i ( f )  u i f f )  

i ( f  —> f )  =  w  \ i(cf>) u i f f )

Such an incidence calculus theory is truth functional, i.e., the incidence set of 

a formula (if it exists) can be calculated purely from its parts.

It seems that there are rio restrictions on i when it is initially defined on A. 

However, as i can be extended to be a function on C(A)  on which i should be 

truth functional, we can also assume that the incidence sets o f formulae in A  

should satisfy these conditions as well. Given an incidence calculus theory, we 

should first check whether i satisfies these conditions on A  before calculating the

lower or upper bounds on a formula. For instance, if we know that

f = f f \ V  f i )  =  { fa  V f 4)

and i ( f j ) , j  =  1 , 4  are known, then i f f i j ^ i f f f )  must be the same as i { f 3 ) U i ( f 4), 

otherwise this incidence assignment is not consistent.

For a formula in C{P)  \ C{A) ,  the lower and upper bounds of its incidence set 

are defined as:
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**(<£) =  U  {*(V0 I * (^  ->■</>) =  w } (2.1)

**(^) =  n {*(V0 I *’(^ ^  V’) =  W } (2.2)
t/-€£(A)

The corresponding lower and upper bounds of probabilities o f this formula are 

p*(4>) =  p(i*((f))) and p*(0) =  For a formula, if i*(<j)) =  ¿*(0) =  z(</>), then

p(<̂ >) is defined as p*(4>). We say p(^) is the probability o f formula cf>.

It is easy to see that for a formula in £ (A ), i*(<t>) =  i*(<f>) =  and p(<f>) =  

P M )  =  P*(0)-

For formulae (f> and tj> in C(A) ,  the conditional probability o f <j> given xf> is 

defined as

* 1 «  = ^  <2-3>

2.2 The Legal Assignment Finder

When an incidence calculus theory is specified, it guarantees that the known evi­

dence gives a probability distribution on C(A)  and gives lower and upper bounds 

of probabilities on other formulae. However, it is still the case that a piece of evi­

dence may only specify the lower bounds and upper bounds of incidences on some 

formulae without giving the incidence function explicitly. Assume that the lower 

and upper bounds o f incidences on a formula </> in a subset S o f C(A)  are inf((j)) 

and sup{4>) respectively. Then (in / ,  sup) can be extended to be two mappings from 

C(A)  to 2W by assigning inf(rj^) — { }  and sup(xj)) — W  for G C(A)  \ S. The 

lower and upper bounds of incidences on a formula given in this way are not tight 

enough. The approach for finding tighter bounds is called the Legal Assignment 

Finder in [Bundy, 1985], [Bundy, 1986]. Here we briefly introduce this approach. 

More details can be found in [Bundy, 1985], [Bundy, 1986], [McLean, 1992].
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Definition 2.4: Assignments

An assignment G consists o f a pair o f mappings (in fo , supo) from a subset 

S o f  C(P)  to 2W. in fo  is called the lower incidence bound and supo the upper 

incidence bound o f  formula cj) in S .

in fo  and supo can be extended as mappings from C( P)  to 2W by assigning 

in fo(ip) =  { }  and supo(f>) =  W  when (f S.

Definition 2.5: Canonical Form

A formula f> in C(P)  is in canonical form  if it has the form  A jL ii-1 A/Li rj) 

where r l- =  q or r l- =  -></ fo r  q € P.

For each formula <f>, it is always possible to transform it into canonical form. 

We first transform f> into conjunctive normal form and then use de Morgan’s law 

to turn each conjunct V£Li rj ml°  n A b i _'rj an(l then cancel all double negations. 

Note that a formula can either be rewritten as disjunctions of some basic elements 

in A t or be rewritten in canonical form. In the rest of this chapter, we use the 

canonical form of a formula more than we use the other form, especially in the 

inference rules below. However from the next chapter, we will mainly describe a 

formula using disjunctions of the basic elements.

Definition 2.6: The inference Hides in the Legal Assignment Finder

A rule o f inference is a mapping from assignments to assignments. I f  G\ is 

the assignment before a ride fires and G 2  is the assignment after the rule works, 

then this rule changes the assignments from G 1 status to G 2  status.

There are following basic inference rules in this procedure.
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Noti : s u p c M ) =  (W  \ m /Gl(->0 )) D supGl{<t>)

Not2 : in fc 2 {4>) =  (W  \ stipes (-'<!>)) U in f  Gy (0)

Not3 : supg2 {^4>) =  ( W  \ in f  Gy (0 )) n supGy ( - ’V»)

Not4 : in fc 2 (-><£) =  ( W  \ SupGy {4»)) U i n f  Gy ( “ 'VO

Andi : supG2 ( 4 >) =  (supGy (0  A 0 )  U ( W  \ in f  Gy (0 )) )  n supGy (VO

And2 : in fa M ) =  in f  Gy (0  A VO u in f  Gy (0)

And3 : supG2 (ip) =  (supoy (0  A 0 ) U ( W  \ in f  Gy (0 ))) n supGl (0 )

And4 : in fo 2W =  infoy (0  A 0 )  U i n f  Gy (0 )

Ands : supG2 (<t> A 0 ) =  Sll.pGy (0) PI SUpGl (0 ) fl SUpGy (0  A 0 )

Andg : in fa a{(f> A VO =  (* « /g , (0) n infcy (0 ))  U in fGy (0  A 0 )

Some more inference rules for disjunction and implication are introduced in 

[McLean, 1992].

O n * « /c a(0 ) =  {infGy (0  V 0 )  n (W  \ snpGl (0 )) )  U in fGy (0)

Or2 snpGs(0 ) =  -S?/,pGl (0  V 0 )  fl SlipGl (0)

Or3 i n f c 2{ f  0 =  {infGy (0  V 0 )  n (W  \ supGl (0 ))) U i n f  Gy (0 )

Or4 supc2(0 ) =  .supGl (0  V 0 ) n snpGl (0 )

Or5 in fc 2 {(f>y 0 ) =  in f  Gy (0) U infcy  (0 )  U m /Gl (0  V 0 )

Or6 SUpG2 (0  V 0 ) =  {supGy (0) U SUpGy (0 ))  n SUpGy {f> V 0 )

Imp! SUpG2 { f ) =  (W  \ in f  Gy (0  -> 0 )  U SUpGl (0 ))  PI SupGy (0)

Imp2 i n fo M ) =  ( W  \ supG, (0  -> 0 ) )  U in f  Gy (0)

Imp3 snpG2(0 ) =  SUpGy (0  -> 0 )  n SUpGy (0 )

Imp4 * « /c a(0 ) =  {infGy (0  -> 0 )  n m /Gl(0 )) U in f  Gy (0 )

Imp5 SUPg2 (0  —>■ 0 ) =  ((W  \ in f  Gy (0 )) U SUpGy (0 ))  n SUpGy {<j> 0 )

Imp6 infG 2 (0  -> VO =  (W  \ SUpGy (0 )) U in f  Gy (0 ) U in f  Gy (0  ->  0 )

It is proved in [Bundy, 1986] that the exhaustive application of these rules 

will terminate. It is also proved in [Correa da Silva and Bundy, 1990a] and in 

[Bundy, 1986] that the final assignment gives the same lower and upper incidence 

bounds on formulae as equations (2.1) and (2.2) do.

32



2.3 Examples of Inference

We will show in this section how to use the inference rules introduced above 

to derive lower and upper incidence bounds on formulae. In the first example, 

incidence function i on a subset o f C(P)  is specified, so the lower and upper 

bounds of the incidence of a formula can be obtained by either using the equations 

in Section 2.1 or using the Legal Assignment Finder. In the second example, we 

are only given the lower and upper bounds of incidence on formulae in a subset 

S o f C(P) ,  so only the Legal Assignment Finder method is adequate for inferring 

incidence bounds.

Example 2.1

Suppose that the set o f axioms for a given incidence calculus theory is A  — 

{ 4 >,(f> —> ip}, the set o f possible worlds is VV =  {a , 6}  and i(cp) =  {a } ,  i(<p —>• ip) — 

{a , 6} . As ip is not in C{A),  we can only infer the lower and upper bounds of its 

incidence set.

There are two approaches to obtain the lower and upper bounds o f incidence 

set o f ip. The first approach is to use equations (2.1) and (2.2) to get them while 

the second approach is to use the Legal Assignment Finder to do so.

Approach 1 : Using the equations for  lower and upper bounds

As (<p A {<p ~* V’ )) P̂ holds, applying equations (2.1) we have 

i*(ip) =  i(<p A {<p ip)) =  i(<p) n i(<p - »  ip) =  {a }

Similarly, as i(xp —> (<p -4  ip)) =  W , applying (2.2) on formula ip, we have

i*(ip) =  t(0 -> ip) =  {a , b}
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Approach 2: Using the Legal Assignment Finder

The basic idea o f using the Legal Assignment Finder is to obtain tighter bounds 

from those currently known on some formulae. This requires the initial assignment 

of bounds on some relevant formulae from the given incidence assignment and 

then using the inference rules. For a formula <p, if i(<p) is known then the initial 

assignment G i is given as i n j Gl(<p) =  supGl(cp) =  i(4>). Otherwise, we define 

in fGl(<j>) =  { }  and supGl(<f>) =  W .

Firing each inference rule normally leads from one assignment to another. This 

procedure terminates when the tightest bounds are found, that is, applying rules 

produce no new bounds, or when inconsistency is encountered, that is, a lower 

bound is larger than a upper bound.

For this example, from the incidence function ¿, we initialize the first as­

signment as ( inf i ,  supi)  where infi(cp) =  supi(cp) — i(<p), infi(~i(<f> A -IV’)) — 

supi(-i(cf) A ~,xp)) =  i{ (̂<j> A O f course, this initialized bounds are not the

tightest bounds yet. Only after applying the inference rules exhaustively, can the 

bounds be the tightest. Here A ~'ip) =  <P ~* Apart from the bounds on 

these two formulae, we also need to have the bounds on relevant formulae, such 

as, the bounds on x/), (j) A ifi and so on, in order to apply the rules. Following

this basic inference principle, in order to infer the lower and upper bounds on ip, 

we initialize the first two mapping functions infi,sup\  on some relevant formulae 

as shown in Table 2.1.

Formula infy supi

</> W w
xj.> 0 {a, b}

—>ip { } {a , b}

(p A -'ip { } {a , b}

->(</> A ~'tp) {a , b} {a , b}

Table 2.1. Initial Assignment of bounds on relevant formulae
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Here we have ignored those formulae which have no effect on this inference 

procedure and all the formulae used in Table 2.1 are rewritten in the Canonical 

Form. After applying inference rules Noiy, And3 and Not2, Table 2.2 is obtained 

which contains the tightest bounds for formula xp. That is, it is not necessary to 

apply any rules any more.

sup2(<p A ->%p) =  (W  \ infi(->(<p A fl supx(<j) A ->ip) by rule Not 1

=  ({«>&} \ { a, b} )  H {a ,b}

=  { }

sup3 (~'Xp) — {sup2{(p A ->ip) U (W  \ in f 2 (<p))) fl sup2(->0) by rule And3 

=  ( { } U ( { « , 6} \ { a } ) ) n { a , 6}

=  W
i n f 4 (xp) =  ( W  \ supni^xp)) U in fz{xp) by rule Not2

=  ( { « , 6} \  { 6} ) U { }

=  { « }

The inference result can be summarized as shown in Table 2.2. The result 

obtained here is the same as that obtained with the first approach.

Formula in f 4 sup 4

<P

—Ilf)

(p A ~<xp 

->{<p A -ixp)

w

{a }  (Not2)

0

{ }

{a , b}

M

{ a ,b}  

{ 6} (And3) 

{ }  (Notx) 

{a , b}

Table 2.2. Final assignment of upper and lower bounds after applying inference

rules.

Example 2.2

Assume that the initial i n f  and sup are given for each formula in a subset 

S =  {¿1 V S2, V i 3, ¿ 1, i 3} of C(P)  as

35



i n f  ( 8 1 V 8 2) =  { 101, 104} 

i n f  (Si V S3) -  { w u w2}  

inf(5i) = {} 
inf (S3) = {} 
sup(8 i V S2) — W  

V <£3) =  W

5l/p (il) =  {?01,?02, 103} 

sup(S3) =  {to3,io5}

where W  - {uq, u>2, wn}.

This example differs from Example 2.1 in that i n f  and sup are defined from

S to 2W without giving any incidence function. In this case the lower and upper

bound equations, (2.1) and (2.2), cannot be used directly.

Assume that we want to know the incidence bounds o f formulae 

S' =  {^ 1, <̂2? £3, V S2 , 8 i V 8 3, 8 2  V ¿3}  

we can extend the i n f  and sup to an initial assignment as shown in Table 2.3.

Formula i n f  1 supi

{ } {t0i,u ;2,u;3}

¿2 { } W

¿3 0 {w 3 l w5}

¿1 V 8 2 {Wi,W4} w

8 \V 8 3 {w i,io 2} w

8 2  V 8 3 { } w

Table 2.3. Initial assignment of lower and upper incidence bounds.

In this initial lower and upper bound assignment, we have added { }  and W  

as lower and upper incidence bounds to some formulae in order to carry out the 

inference. A later lower and upper assignment must be a refinement of these.
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Starting from the initial assignment, we applying the following Or inference 

rules after which no further inferences are possible. Table 2.4 is then obtained.

in f 2 {Si) =  (in fi  (¿i V ¿3) O (W  \ su p i(i3)) U in fi(S i) by rule Orx 

=  ( { w ! , i o 2 }  D  ( W  \ { t o 3 , i o 5 } ) )  U { }

= {u>i,io2}

in f 3 ( 6 2 ) =  ( in f 2 ( 6 1 V ¿2) n W  \ sup2(^i)) U in f 2 (S2) by rule Or3

= ({ioi,to4} n (w  \ {toi,io2,to3})) u w  

=

in f4(Si V S2) =  infi(Si)  U in f 3 ( 8 2 ) U in f 3 ( 8 i V S2) by rule Or5

=  {rot,ro2} U {ro4}  U {ro !,io4}

= {wi,io2,io4}
sup5(Si V 8 3 ) — (sup^(8 \) U sup4 (8 3)) fl sup4 ( 8 i V <S3) by rule Or6

= ({iOi,to2,w 3} U {io3,ro5}) 0 W
=  { ^ 1,^ 2, 103, 105}

in f 6 ( 8 2  V 8 3 ) =  in f 5 (8 2) U in f 5 ( 8 3) U in f 5 ( 8 2  V ¿3) by rule Or5

=  { t o 4 }  U { }  U { }

=  i™«}

Formula infs sup6

Si {io ,,ro2} (O r!) {to1? 102, 103}

s2 {io4} (0 r3) W

3̂ { } {ro3,ro5}

1̂ v  8 2 {roi,u;2,to4}  (Or5) W

8 1  V ¿3 {lOi, ro2} { i 0!,to2,io3,to5}  (Or6)

8 2  V 8 3 {ro4} (Or5) W

Table 2.4. Final assignment of lower and upper incidence bounds after applying

Or inference rules.
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2.4 Constraint Sets

Assume that the set o f axioms to which lower and upper bounds are assigned at

the beginning is A  and the set o f theorems whose incidences (or bounds) we are

interested in calculating is S. Then usually we need to extend the assignment of 

initial lower and upper bounds to a certain set in order to use the Legal Assignment 

Finder. This set is called the constraint set and is defined as follows.

D efin ition  2 .7 '.Constraint Set

Let A  be the set o f axioms o f a theory and A ' be the set o f formulae whose 

bounds o f incidences we are interested in calculating.

Let s f ( S )  be the set o f  subformulae o f the formulae S, i.e.

if f> € S then </> G s f ( S ) ;  

if ~'4> G 5 f ( S )  then <j> G s f ( S ) ;  

if<f Arp G s f ( S )  then f>,f) € s f ( S ) ;

if f>\/ f> G s f ( S )  then </>, f) G 5f ( S ) ;

if f> —> f) G s f ( S )  then f>, f) G s f ( S) .

The constraint set is s f ( C ( A U  A'))  where s f { C { A  U A') )  is the subset o f 

s f ( C ( A U  A'))  that are in canonical form.

So given the initial assignment in f  and sup, we only need to extend them as 

mappings from s f ( C ( A  U ^4')) to 2W to get the bounds of any formula in A'.

For Example 2.1, the constraint set is {</>, if, ~'t/),(f> A ->ip, ->(0A given that

A ’ =  {VO-
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2.5 Termination Decision of the Inference Pro­

cedure

It was proved in [Bundy, 1986] that the application of the above inference rules to 

an initial set o f incidence assignments will eventually terminate. This procedure 

may or may not produce a consistent incidence assignment. Suppose that G  is the 

assignment after some rules are fired and infc(<p) and supa{(p) are the lower and 

upper bounds assigned to <p.

1. If there exists a formula ip where info(if>) % supa (VO then the initial 

incidence assignment is not consistent. Terminate the inference procedure.

2. If for all formulae ip in C(A),  info(ip)  =  supa(ip),  then the incidence 

assignment is consistent. Terminate the procedure.

3. For all other cases, a consistent incidence assignment may or may not exist.

For a case in situation 3, Bundy in [Bundy, 1985] and [Bundy, 1986] designed, 

proved and implemented a procedure called case splitting to continue the searching 

for a consistent assignment. It is said in [Bundy, 1985] that “Case splitting is 

necessary when the inference process runs out of rules to fire without specializing 

the assignment to a total or contradictory one. It is done by picking a point (means 

a possible world) and considering the two cases ( 1) that is is not and (2) that it is 

in the incidence of a sentence.”

A more detailed discussion of case splitting, inconsistency checking and features 

of the inference procedure can be found in [Bundy, 1985] and [Bundy, 1986].
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2.6 Assigning Incidences to Formulae

In incidence calculus, we use incidence calculus theories to represent pieces o f ev­

idence. In each o f these theories, an incidence function is defined which is used 

to link probabilities on formulae. However, it may be the case that probabilities 

are directly associated with a set o f axioms without specifying the incidence func­

tions. In this case we need to recover the incidence assignment on axioms from 

the probability assignment. This procedure is called Assigning incidences to fo r ­

mulae. In [Bundy, 1992], it is assumed that a set o f possible worlds is fixed, for 

instance 100 possible worlds, and the probability on each of them is equally dis­

tributed, e.g., 1/100 for every w. Under this assumption, the Monte Carlo method 

[Corlett and Todd, 1985] is used to divide these possible worlds into groups to 

suit the given probability distribution on the set o f axioms. This method has fur­

ther been developed in [McLean, 1992]. Alternatively, a depth first approach on 

an incidence assignment tree has also been developed in [McLean, 1992] to solve 

the same problem under the same assumptions. Using these approaches, mul­

tiple consistent incidence assignments may be found given an initial probability 

distribution. Here we only briefly introduce these two approaches developed by 

[McLean, 1992]. A detailed discussion and comparison of the two approaches can 

be found in [McLean, 1992].

D e p th  F irst In cid en ce  A ssign m en t A lg o r ith m . A depth first search is 

performed on the incidence assignment tree until either a consistent assignment is 

found or all leaves have been checked without a suitable assignment being discov­

ered.

For example, if the numerical assignment on axioms x and y are y (x )  — 0.8 

and p(y)  =  0.2, and if we assume that this unknown set o f possible worlds W  

contains 10 elements, then there are 10!/(8!2!)=45 possible choices for i (x)  with 

p( i (x ) )  — p(x) .  Similarly there are 45 possible choices for i(y)  with /i(?(y)) =  

p(y).  Thus there are in total 2025 incidence functions compatible with the given 

uncertainty.
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M onte Carlo Incidence Assignment M ethod. McLean further devel­

oped the approach introduced in [Bundy, 1992] and [Corlett and Todd, 1985] and 

proposed a Monte Carlo Incidence Assignment Method. This approach also per­

forms on an incidence assignment tree as in the above method. This algorithm, 

as McLean discussed, sullers from the same problems shown below as the Depth 

First Method does.

Example 2.3

Suppose that the initial numerical assignment is

/¿(a A b A c) =  0.2 

fi(a. A c) =  0.4 

[i(b A c) =  0.2 

fi(a) =  0.8 

¡i(b) =  0.6 

p(c) =  0.5

with a fixed set of possible worlds W  =  {0 ,1 ,2 , 3 ,4 ,5 ,6, 7, 8, 9}.

Using the Depth First Method on axioms {a  A b A c, a A c, b A c, a, b, c}  (in this 

order), it takes 10.700 (milliseconds) to find the first consistent assignment at case

6. However if the axioms are in the order {a , b, c, a A c, b A c, a A b A c }, then it tries 

52 cases before a consistent assignment is found and the time is 70.600.

Using the Monte Carlo assignment method on this example has also been tested 

by McLean, but he didn’t give the precise runtime using Prolog.

Example 2.4

A more complicated example used by McLean is as follows
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//(a  A b A c) =  0.18 

p.{a A b) =  0.52 

/j,(a A c) =  0.35 

p(b  A c) =  0.22 

p(a)  =  0.760 

/ /(6) =  0.640 

//(c) =  0.480

with the assumption that W  has 100 elements.

Using the Depth First Method, it takes 374.520 to find the first consistent 

assignment and it takes 355.060 using the Monte Carlo Incidence Assignment 

Method. So the experimental results show that the algorithms are rather slow.

The execution o f the examples suggested the following limitations of both of 

the methods.

(1). It is possible to have two leaves of the assignment tree each of which is 

compatible with the given uncertainties but for which the intervals

(p(loiver-boundl((t))), p(upper-boundl(4 >)))

and

(p(lowcr-bound 2 ((f))), p(upper-bound 2 ((f))))

are disjoint.

(2). Using a depth first incidence assignment method to search for all possible 

assignments which are compatible with some given uncertainties may be very 

inefficient, since time may be wasted on discovering a large number of assignments 

which are permutations of a few basic ones.

(3). A search for a single consistent leaf may terminate with an unrepresenta­

tive sample which will then lead to poor estimates o f uncertainties.

It was also pointed out by McLean that the efficiency of both algorithms are 

affected by the order in which the axioms are considered when assigning incidences.
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2.7 Summary of Incidence Calculus

Incidence calculus is a logic for probabilistic reasoning intended to overcome the 

weaknesses in purely numerical uncertainty approaches. Its distinctive feature over 

other numerical methods is the indirect encoding o f probabilities via incidence sets. 

This feature allows incidence calculus to be truth functional, that is the incidence 

of a compound formula can be calculated directly from the incidences o f its parts. 

This is the basis for applying the inference rules in the Legal Assignment Finder.

The property i{~<4>) =  W  \ i(4>) of i requires that the elements in W  must 

be distributed into either i(</>) or If both and are specified

respectively, then i((f>) U should be the whole set W .

The property ¿(<£1 V cf>2) — i(cf> 1) U ¿(<fo) says that if i(4> 1), i(4>2) and i((j> 1 V (f>2 ) 

are all known, the possible worlds in i(<f) 1 V (f>2 ) can be split into two groups (not 

necessarily disjoint) i(cj) 1) and i(4>2). i(<j> 1 V 4>2) carries no more information than 

the union of and i(</>2).

If a real situation fails to meet either o f the above two properties, incidence 

calculus theories cannot be used to describe it.

For any formula (¡> in £ (.4 ), we have i(4>) =  which results in

p(0 ) =  ;>,(</>) =  p*((f>). Therefore when the set o f axioms is specified, the known 

evidence gives a probability distribution on C(A)  and gives lower and upper bounds 

o f probabilities on other formulae. When the effect of a piece of evidence fails to 

provide a probability distribution on this core part (e.g. C(A)  is empty), incidence 

calculus cannot represent it as it is impossible to construct a proper incidence 

calculus theory.

Example 2.5

For instance, consider the function i1 defined as:

i' (rainy)  =  {m on ,tu es}
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i'(windy) =  {wed}

i'{rainy  V windy) =  { m on fiues }  U {wed}  U { thur}

This function i' is not an incidence function as i'{rainy  V windy) ^  i'{<fi){Ji'{xl}). 

We only know that on thur, it will be rainy or windy, but we don’t definitely know 

it will be rainy or be windy. So we cannot put thur in either i'{rainy) or i'{windy). 

There is no corresponding incidence calculus theory to represent this piece of in­

formation. Our intention in the next chapter is to generalize the original incidence 

calculus described above to apply to a wider range of cases by weakening the con­

ditions on incidence functions. Generalized incidence calculus keeps the feature of 

indirect encoding of uncertainties while losing the truth functional feature.

In the original incidence calculus, it is not clear how to cope with multiple 

sources of information. The basic inference mechanism in the theory is to ulti­

mately infer the incidence bounds for a formula. It lacks the ability to combine 

the impact of several sources of information.
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Chapter 3

Extended Incidence Calculus

At the end o f the last chapter, we briefly discussed the problems with the original 

incidence calculus. It was pointed out that the original incidence calculus has 

limited abilities in representing and combining evidence. It was also pointed out 

that the methods for incidence assignments are not efficient. In order to overcome 

these weaknesses in the original incidence calculus, we extended it in the following 

three aspects.

• Generalization of incidence calculus theories: to weaken the definition of in­

cidence calculus theories, in particular, the conditions on incidence functions, 

in order to model a wider range of cases, such as Example 2.5.

• New algorithm for incidence assignments: to provide a new incidence assign­

ment algorithm based on generalized incidence calculus theories.

• New combination rule: to propose a new combination rule for combining 

multiple pieces of evidence which are in the form of generalized incidence 

calculus theories.

After we have made these three improvements on the original incidence calcu­

lus, we obtain an advanced reasoning mechanism which is called Extended inci­

dence calculus. The crucial point in achieving the Extended Incidence Calculus is 

the new definition of incidence functions. In this chapter, I will discuss the three 

extensions in detail.

45



3.1 Generalized Incidence Calculus

3.1.1 Generalized incidence calculus theories

In order for incidence calculus to have the ability to represent a situation which 

an original incidence calculus theory is not suitable to represent, we generalize the 

original incidence calculus by dropping some of the conditions on it.

A mapping function i' : A  —> 2W maps each formula 0  in A  to a subset of 

W . W  is interpreted as a set consisting o f possible answers to a question Q. For 

w £ W , w is a answer to Q. We still call W  a set of possible worlds in this 

thesis, w £ means that if w is the answer to the question Q , then formula 

<j> is true. We also require that i'(fa lse )  =  { }  and i'(true ) =  W . For a possible 

world w £ W , if w it doesn’t necessarily mean that w £ So if both

i\(j)) and i'(-'cj)) are known, F(e/>) U may be just a subset o f W . This can be

explained as that the current information says w supports neither (f> nor In 

other words, it is not known whether w supports (j) or This phenomenon is 

usually called ignorance. A mechanism which can model this phenomenon is said 

having the ability to represent ignorance.

Moreover, if ), i'(ip) and F(<̂ >Vt/>) are all specified, it is possible that U 

C i'((f>\/ip) is valid. For instance, suppose that there are ten delegates elected 

to attend a meeting. The meeting will be held some day next week for which all 

the delegates are asked to give their preferences. The meeting will be held on the 

day which is preferred by most of the delegates. Suppose that delegates 1 to 4, 

denoted as ai, ..., 0 4 , prefer w on , delegate 5, a$, prefers mon or tues, the rest 

prefer tues. Then a mapping function i' could be defined as

=  {a i ,a 2 ,a 3 ,a 4}

*'(<12) =  {«6 , 0 7 , «8, 09) « 10}

and

*'(<7i V <72) =  { a i , . . . a n , }
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where qi stands for ‘The meeting is held on Monday’ , q2 for ‘The meeting is on 

Tuesday’ . Obviously, we have i'(qi) U ¿*(<72) C i'(qi V 92) because a5  cannot be put 

into either i'(qi) or ¿'(<72)-

A mapping function i' which has the ability to represent the above two phe­

nomena is called a generalized incidence function.

For any two formulae <p, ip in A , if i'((p), i\ip) and i'(<p A VO are known, then 

it can be proved that i'(cp A ip) =  i'(<p) D i'(ip).

In fact, we have

w € i'(<p) O i'(ip) <=>

w € i\<P) and w £ ?0V0

(p is true when w is the answer and ip is true when w is the answer <==$■ 

both (p and ip are true when w is the answer 

w 6 i'((p A ip)

If we use A(«4) to denote the language set which contains A  and all the possible 

conjunctions o f its elements, then a generalized incidence function can be extended 

to any formula in this set by defining i'(Acpj) =  C\ji'((pj), if Aj(pj is not given

initially. Therefore, the domain of i\ the set of axioms A , can always be extended

to a set which is closed under the operator A.

Thus, whenever we have a set of axioms A  on which a generalized incidence 

function i1 is defined, this set o f axioms can always be extended to another set 

which is closed under the operator A. In the following, we always assume that the 

set o f axioms A  has already been extended and is closed under A.

In particular, if i'(Aj(pj) =  { } ,  it doesn’t matter whether this formula is in 

A(yl) as this formula has no ellcct on further inferences. However if Ajcpj =  J_, then 

i'(Aj(pj) =  Hji'(<pj) must be empty; otherwise the information for constructing the 

function i' is contradictory.

In the following, we use i to stand for a generalized incidence function, and from 

now on we will refer to it simply as an incidence function. Where any confusion
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could arise we will make clear the distinction between original and generalized 

incidence functions.

D efin ition  3.1 : Generalized Incidence Calculus Theories

A quintuple <  W ,p ,P , A ,i  >  is called a generalized incidence calculus theory if 

the incidence function i satisfies the following three conditions

¡ ( fa ls e ) =  { }  i(true) =  W

i(fii A fi2) =  i ( f i )  n ¿(<£2) fo r  fii,<j)2 ^ A  

where W , p, P  and A  are the same as defined in definition 2.3.

In Example 2.5 given in Chapter 2, the function i' is a generalized incidence 

function. It is also easy to define a generalized incidence calculus theory as:

<  W, p, P ,A ,i  >

where W  =  {m o n ,tu e s ,..., su n }. A  =  {rainy, windy .ra in y  V windy} ,  i(rainy) =  

{m o n ,tu es }, i(w indy) =  {wed.}, and i(ra in yV  windy) =  {m on ,tu es ,w ed ,th u r}. 

As i(rainy  A windy) =  { } ,  it is not necessary to put rainy A windy in A  as an 

axiom.

Definition 3.2 Representing Total Ignorance

Given a generalized incidence calculus theory <  W , p, P , A , i > , if A  =  {true, fa ls e } ,  

then we say that this generalized incidence calculus theory represents total igno­

rance.

Proposition 1  I f  (f> is a formula in a set o f axioms A  and both i(fi) and i(~'<fi) 

are known, then

i(<j>) n i(-ufi) =  { }  

i ( 4 >) u i(~'4>) c  w
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P ro p o s it io n  2 I f p and p  are two formulae in a set o f  axioms A  and i(p ), i (p )  

and i (p V  ip) are known, then

i(p ) U i(p )  Ç i[p  V ip)

For a formula <p G £ (P )\ A ,  we can only define both the upper and lower bounds 

of its incidences using the functions i* and z, respectively. For all p G £ (P )  these 

are defined as follows:

*•($ =  U  (3-1)
ipeA,ip\=<t>

i*(P) =  W \ i * ^ P )  (3.2)

For any <p G *4, we have z»(</>) =  ¿(0).

The lower bound represents the set o f possible worlds which make p  true and 

the upper bound represents the set o f possible worlds which fails to make -'p  

true. Function p*(p) — p(z*(</>)) gives the degree of our belief in p  and function 

p*(p) =  p,(i*(p)) represents the degree we fail to believe in ->p. For any formula 

p  in A , if p*{p) — p*{P)i then p(p) is defined as p*(p) and called the probability 

o f this formula. In this case, for any p  and p  in A , let p(p \ p )  be the conditional 

probability o f p  given p , we define

I + ) =  P~ ^ y l  (3-3)

When a generalized incidence calculus theory reduces to be an original in­

cidence calculus theory, it is proved in [Correa da Silva and Bundy, 1990a] and 

[Bundy, 1986] that equations (3.1) and (2.1) produce the same result, so do (3.2) 

and (2.2).

It is necessary to notice that for any p  G A , i*(p ) and i*(p) are not the same 

in most cases. So function p on A  cannot be defined. Therefore, only a function 

p*, the lower bound of a probability distribution, is defined on A . Given a formula
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(f> € £ (P ) ,  it is more natural to describe the lower bound o f its probability than 

its probability. In the following, when we mention a numerical assignment on a 

language set, we always mean a lower bound o f an unknown probability measure.

3.1.2 Basic incidence assignments

For a formula <j> in its disjunctive normal form V ... V 5i, we define a subset A  o f 

A t  as A  =  and denote formula </> as 4>a- 4>a means that the disjunction

o f the elements in A  is the disjunctive normal form of formula <\>. i{4>a) contains 

both the possible worlds which make <pA true and the possible worlds which make 

cf>B true for B  C  A. So some o f these possible worlds may only make <pA true 

without making any of (fn (for B  C  A) true.

For instance, suppose that we have two propositions <71 and q2  in P, then there 

are four basic elements in A t as =  q\ A q2, S2  =  <71 A ~>q2 , ¿3 =  -><71 A q2  and 

64 =  ~>qi A ~,q2.

If we are given that ¿(<¿>{,5,}) =  {u q }, i((t>{&us2}) =  { m ,w 2}  and =

{i« i,u ;3} ,  then w 2  makes only 4>{slt62} — Qi true without making qi A q2  true. 

Similarly IC3 makes q2  true without making <71 A q2  true.

In general, the subset o f z(</m) which contains the possible worlds only mak­

ing (f>A true without making any of 4>b true (B  C  A) is denoted as ii((f>A) and 

the notation ii is called the basic in cid en ce  assignm ent. When a set ii(4>) 

is empty, we don’t think it carries any significant message for further inference, 

so usually we only consider those formulae of which n (* ) is not empty. In or­

der to show the relation between i and ii, we first look at an example. Sup­

pose there are two propositions, P — {rainy, w indy}, and seven possible worlds, 

W  =  {sun , m on,tues, wed, thus, f r i ,  sa t}. Assume that each possible world is 

equally probable, i.e. occurs 1/7 of the time. Through a piece of evidence, we 

learn that four possible worlds fri, sat, sun, mon make rainy true, and three pos­

sible worlds mon, wed, fri make windy true. Therefore the incidence sets o f these 

two propositions are:

50



ifrainy) =  { f r i ,  sat, sun, m on} 

i(windy) =  {m on, wed, f r i }

As i {rainy A windy) =  i(rainy)  Pi i(windy), we also have i frainy A windy) =  

{ f r i ,  mon} .  So the set of axioms A  is A  — {ra iny , windy, rainy A windy}  which 

is closed under A. The corresponding incidence calculus theory is

<  W ,/z, P ,A ,i  >

and the A t  o f P  is A t — {rainy A windy, rainy A-'windy, -'rainy Awindy, - 'rainy A 

- 'windy}.  A basic incidence assignment ii could be naturally defined as:

ii [rainy  A windy) =  { fr i ,m o n }  

iiirainy) =  {sa t, sun} 

ii(windy) =  {w ed}

For any other formula f> except true, ii((f)) is empty. It is easy to see that from 

ii, the incidence function can be recovered as:

i(rainy  A windy) — iifrainy  A windy)

ifrainy) =  ii[rainy) U ii(rainy  A windy)

i{windy) =  ii(windy) U iifrainy  A windy)

D efin ition  3.3: Basic Incidence Assignment

Given a set o f  axioms A , a, mapping function ii: A  —>• 2W is called a basic incidence 

assignment if ii satisfies the following conditions:

H{4>) /  { }  <t> € A

U((f>) n ii{i>) =  { }  4> /

ii( fa lse )  =  { }

iiftrue) — VV \  (Jj 4>j £  -4
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where W  is a set o f  possible worlds.

Proposition 3 Given a set o f axioms A  with a basic incidence assignment ii, 

then function i defined by equation (3 .f) below is an incidence function on A .

i((f>) =  (J u 'O j) (3.4)

PR O O F

First of all, because ii(true) — W  \ Ujii(cf)j), we have i(true) =  ii{tru e ) U 

(Ujii(<j)j)) =  W . As i i ( fa ls e ) =  { } ,  it is straightforward to infer that i (fa ls e )  =

{}■

Next we are going to prove that i((f) A ip) =  i((f>) fl i(f>) for f  and if £ A. 

Suppose that i ( f )  fl i(ip) =  W ' /  { } ,

Vu; € W ,  w 6 i(4>) H i{ip)

3(^o, € n'(0o) ( fo  |= <f>, 0o |= VO <=>

3(/>0, re G n(V>o) ( Vto [= <t> A V’) 4 = »  

w £ i(cj) A VO

So ¿(0 ) fl ¿(VO =  i(cj) A VO-

When z(V>) H ¿(VO =  { } ,  it is still easy to prove that fl ¿(VO =  i ( f  A if). 

Therefore function i defined by (3.4) is an incidence function.

QED

Proposition 4 Given a generalized incidence calculus theory <  W , p, P, A ,i  > , 

there exists a basic incidence assignment ii on A  from which the incidence function 

i in the theory can be derived using equation (3 .f).
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P R O O F

This proof procedure is actually to construct a basic incidence assignment ii 

from the given incidence function.

From the theory <  W ,/i , P ,A ,i  > , we have

i(4> A ip) =  i((p) fl i(ip)

where (p,ip £ A .

The requirement on i leads us to the conclusion that if ip <f> is a tautology 

then i{ip) C i((p). As we assume that P  is finite, then A t, £ (P )  and A  are all finite 

(we assume that all the formulae in C {P )  are in the form of disjunctions of the 

basic elements).

A subset A 0  o f A  can be defined as A 0  =  {*pi, —, ipn}  where Ao satisfies the 

condition that

Vipj G Ao, V</> G A , i f  (p 7̂  ipj then </> [A ip.

Therefore, Ao contains the smallest (or prime implicant in lattice theory) for­

mulae in A  and Ao is not em pty1. In fact, we can get Ao using the following 

procedure. For a formula ip G A , if G A , (f> /  ip and <j> —> ip is valid, then we 

use <f> to replace ip and repeat the same procedure until we obtain a formula (pi 

and we cannot find any formula which makes (pi true, then (pi will be in A o■ For 

instance, the set Ao in Example 2.5 is Ao =  {ra iny  A windy).

For any two formulae tpi,ipj G .Ao, when tpi f  ipj we have

i(ipi) n i(ipj) =  { }

In fact if i(ipi) fl i{tpj) — { } ,  then

1We require that A  contains at least one more element except false  and true.
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W ' - ¿(0 / A 0 j) = >

30  £ A  0  =  01 A 0 j, 0  /_L

V> 1= 0/, 0  t= 0 j = *

0 / 0 / or 0  /  0 j as 0 ,- /  0 j =

0/ /  A  or 0 j /  A 0

Contradictory! So we have ¿(0 /) H ¿(0 j) =  { } .

For any formula 0 / in .4 \ Ao, there are 0/i, 0 /m £ A  where 0 /j |= 0 /. So

*(0y) C ¿(0/) and (Uj *(0Zj)) ^  *(0i)- 

Algorithm  A

From a function «, we can obtain another function ii using the following pro­

cedure:

Step 1 : for every formula 0  £ A ,  define ¿¿(0 ) =  ¿(0 ).

Step 2 : define A  as A  \ A -

Step 3: using the same method as we define A  on p51, we can choose a formula 

0 / in A ' which satisfies the requirement that for any 0j £ A ', if 0j /  0/, 

then 0j /  0 / and there must be a list of formulae 0 ;i, 0 /m £ Ao where

0 /j —> 0/ is valid.

Define n (0 /) =  ¿(0/) \ U, **(0/j)-

Delete 0/ from A ' and update Ao as Ao U {0 /}  when n (0 /) /  { } .

Step 4: If A ' is empty then redefine A  as Ao and terminate the procedure other­

wise go to step 3.

Further defining ii(true) =  W  \ U jn(0 j). If ii(tru e ) /  { }  then ii{tru e ) repre­

sents those possible worlds which make only formula true true and true is added
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into A . We also define u(_L) =  { } ,  so that function ii : A  —> 2W is defined. 

Now we need to prove that ii is a basic incidence assignment. That is, for 0/ and 

4>j £ A , we need to prove

i i( 4 >l) H H(4 >j) =  { }  when fa ^  <f>j

Suppose that n (0 /) D ii{<f>j) =  W ' ^  { } ,  we have the following inference proce­

dure.

w £ ii{<f>i) H i i( 4 >j) ==> 

w £ i{(j>i) and, w £ i((j>j) =>• 

it; £ ¿(0 /) H i(<f)j) ==> 

w £ ¿(0 ; A fa) =*►

3 0  t ^ T  A  to £  ¿ (0 )  a n d  0  =  0 ; A  <j>j = > -

ia ^  ¿(0 /) \ ¿(0 ) or w £  i(<f>j) \ ¿(0 ) a-s 0 / 7̂  0j =>•

w $  u (0 /) H n (0j)

Contradiction.

So the equation n (0 ;) Pi ii(4>j) =  { }  holds for any two distinct elements 0; and 

0j in >4.. As we also have ii(true) — W  \ Ujzz’(0 j) and i ( fa lse )  =  i i ( fa lse)  =  { } ,  

ii is a basic incidence assignment.

QED

Given a generalized incidence calculus theory with a set of axioms as A , there 

is an unique basic incidence assignment ii on set Ao matching to the incidence 

function i on A . However, different generalized incidence calculus theories may 

generate the same basic incidence assignment. That is, one basic incidence as­

signment matches to a family of generalized incidence calculus theories. All the 

generalized incidence calculus theories in the family produce the same bounds of 

incidences for any formula as the basic incidence assignment does.
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3.1.3 Implementations of basic incidence assignments

A basic incidence function ii is separated from an incidence function i. So given 

a generalized incidence calculus theory, it should be possible to obtain the corre­

sponding basic incidence assignment from i. This has been described in Algorithm 

A which was implemented using Sicstus Prolog.

For example, suppose that the incidences of axioms in a set

A  — {a , 6, a A b, c, a A c, c A d}

are

i(a) =  { 1, 2,3 ,4 }

¿(6) =  {1 ,2 ,3 } 

i(a A 6) =  {1,2, 3} 

i(c  A d) =  {5, 6, 7}

*(c) =  {4 ,5 ,6, 7} 

i(a A c ) =  {4 } 

then the corresponding basic incidence assignment is

ii(a  A c) =  {4 } 

ii(a  A b) — {1 ,2 ,3 }  

ii(c  A d) =  { 5 ,6, 7}

Using this basic incidence assignment, it is possible to obtain an incidence 

function ¿i on a set of axioms A' =  {a , a A 6, c, a A c, c A d}.

Although set A ' is slightly different from the set o f axioms A  initially specified 

(axiom b is in A  but not in ^4'), generalized incidence calculus theory
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<  W ,/i , P, A i,  ¿1 >  produces the same incidence bounds on all formulae as gener­

alized incidence calculus theory <  W ,//, P, A ,i  >  does. Axiom b in A  makes no 

more contributions than a A b does. So it is not necessary to include it into the 

set o f axioms.

This algorithm has been tested on several examples. The program gives im­

mediate response either for a large set o f possible worlds, such as with 20 possible 

worlds, or for a large set o f axioms, such as with 11 axioms. The summary of 

tested examples is listed in Table 3.1.

No. o f Axioms in A No. of axioms with ii runtime

7 5 1.309

11 7 1.509

11 9 1.999

Table 3.1 Test result o f Algorithm A

3.2 Incidence Assignments

3.2.1 Assigning incidences to formulae in generalized in­

cidence calculus

Given an incidence calculus theory, we can infer lower and upper bounds of prob­

abilities on formulae. Incidence functions are crucial in the inference procedure. 

However, sometimes numerical assignments, particularly lower bounds of probabil­

ities, are given on some formulae directly without defining any incidence calculus 

theories. We are interested in how to build incidence calculus theories in these 

cases. In this section, we show a way to recover incidence functions from lower 

bounds o f probabilities in these circumstances.

Formally our problem can be described as: given an assignment of lower bound 

of probabilities on a set of axioms A , our objective is to find an incidence function 

i, a set of possible worlds W  and the discrete probability distribution /i on W  

which produces the lower bound of probabilities on A.
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In a similar way to that we described in the above section, a special set Ao can 

be constructed from A  which satisfies the condition

V</> € Ao, VV>' G A , <// [A 4>, i f  <p 7̂  <p' (3-5)

Suppose that an incidence function i and a basic incidence assignment ii asso­

ciated with A  are known, then W\ =  ii(<pi) and w2 =  must be two disjoint

subsets o f an unknown W  because of the property ii((pi) fl ii(<pj) =  { }  when

<ji>i, 4>j G A o , <f>t ±  (f>j.

The following algorithm gives the procedure for determining the incidence func­

tion i, its basic incidence assignment ii and the set of possible worlds with its 

probability distribution.

Algorithm  B

Given A  and an assignment of lower bound of probabilities p* on A , determine 

a basic incidence assignment and an incidence function.

Step 1: Assume that Ao is a subset of A  as defined above in (3.5). If there are 

n elements in Ao, then n elements in W  can be defined from Ao and define 

H(wj) :=  p 'M i) f°r j  =  1 ,—,«,<& C Aq. Further define

ii((f>j) =  {ii’j }  and A' :=  A  \ Ao-

Step 2: Using the same method as we define A 0 on page 51, we can choose a 

formula ip from A' which satisfies the condition that Wtp' G A ;, ip1 \/= ip if 

iP' ±  ip\

In order to reach this goal, we will construct a function ii first and then form

i.

2In this step, there may be more than one alternative formula qualifies this condition, 

so runing this algorithm eacli time may have different formula being chosen, but the final 

result remains the same.
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Then define p ' (0 )  :=  p ,(^ ) -  S ^ g ^ ^ p ^ - ) .

If p*(VO >  0 then add an element wn+i to W  and define

ii(ip) =  {ien+i }  

p(w n+l) := p

A.q :=  A 0  U {0 }

A ' :=  A ' \ { 0 }

n n +  1 

If p^(ip) =  0, define ii(tp) =  { } .

If p*(V0 <  0; this assignment is not consistent, stop the procedure.

Repeat this step until A' is empty.

Step 3: Finally, if Ej(pt(d>j)) <  1, then add an element wn + 1  to W  and define

p(w n+l) =  1 -  Ej p '^ j )  

ii(true) =  {w n+i}

We also define ii(fa ls e )  =  { } .

Step 4: Eventually, the set of possible worlds is W  =  {u>i, u ^ ,..., wn+i}  and 

redefine A  as A 0- The probability distribution is p and Ejp (w j)  =  1 

where <j>j 6 A. Two functions ii and i are defined as ) =  {n>j} and

*(<£) = <t>j € A.

Proposition 5 Given a set o f axioms A  which is closed under A and an as­

signment o f  lower bound o f probabilities p* on A . Functions i and ii obtained 

after applying Algorithm B on (A ,p*) are an incidence function and a basic 

incidence assignment. The corresponding generalized incidence calculus theory 

<  W ,P ,P ,A , i  >  will produce p» on A .

P R O O F
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For any two formulae iri A , we have

ii(<f>) D n (0 ) =  { }  when <f> ^  ip

and

ii(true) =  {w n+i }  =  W  \ 

i i(fa ls e )  =  { }

So ii is a basic incidence assignment. Therefore =  U i s  an incidence 

function based on Proposition 3.

The corresponding generalized incidence calculus theory is

<  W , /i, P, A , i >

For any if) £ A , we can calculate the lower bound of its probability, denoted as 

(in order to distinguish it from p .), as follows.

P i*W  =  p(*.(V0) 

=  p ( U  

=  E fyeA jji& p iiK fa i))  +

=Pt(lp)

So this theory produces the same lower bounds o f probabilities for those for­

mulae in A  as P..

QED

If there are N  elements in A  then there are at most N  +  1 elements in W .
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This algorithm is entirely based on the result that ii((p) fl ii(ip) — { }  and is 

different from the methods used in incidence assignment introduced in the original 

incidence calculus in Section 2.6. In algorithm B, for a formula (p, we keep deleting 

those portions in p»(</>) which can be carried by a formula ip, where ip \= (p, until 

we obtain the last bit which must be carried by cp itself. This last portion will 

only be contributed by its basic incidence set. This algorithm is relatively fast on 

the sets tested so far.

3.2.2 An example of incidence assignments

In this section we use Example 2.4 to demonstrate algorithm B described above. 

The example is reconstructed from [Kyburg, 1991].

Example 3.1

Assume that we know the lower bound of a probability distribution on a set of 

axioms of formulae. We want to create a set o f possible worlds and its probability 

distribution and to define an incidence function from the set of axioms to this set. 

The created set o f possible worlds and the incidence function can, in turn, produce 

the lower bound of probability distribution on the set of axioms.

Suppose that we have P , C (P )  and a set of axioms A  =  {a , b, c, a A b, a A c,b  A 

c, a A b A c} with the lower bound of a probability distribution as

P * ( a )  — 0.760 

p*(6) =  0.640 

p*(c) =  0.480 

p»(a A b) =  0.525 

p»(a A c) =  0.350 

pt (b A c) =  0.225 

p»(a A 6 A c) =  0.165
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The set A  is closed under the operator A. Following Algorithm B, an incidence 

function is defined by the following steps.

Step 1. The set A q is {a  A b A c } which contains the smallest formula in A.

So we know that at least one possible world, wi, validating formula a A b A c and

n(wi)  =  0.165. We also have

p '(a  A b A c) =  p*(a A b A c) =  0.165

ii(a  A ò A c) =  {rwi}

A ' : = A \  A 0

n 1

Step 2. Choose a formula a A b from A'. Because only formula a A b A c has

the property that a A b A c —> a A 6, we have

//„(a A 6) :=  p*(a A 5) — p(,(a A b A c) =  0.525 — 0.165 =  0.36

Because p((a A 6) >  0, we define

ii(a A 6) =  {tr^} 

p M  =p '» (a  A 5)

Ao -=  Ao U {n A 6}

A' A ' \ {a  A b} 

n :=  n +  1

Repeat this step for all the remaining elements in A ' , we get

ii(a A c) =  {u>3} — 0.185

ii(b A c) =  {u ^ } p(w4) =  0.06

ii(a) =  {«>5} bL(ws) — 0-05

ii(b) =  {zo6} p(w6) =  0.055

¿¿(c) =  {*¿>7} Ll(w7) =  0.07
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Step 3. As Ejp 'M j) =  0.165 +  0.36 +  0.185 +  0.06 +  0.05 +  0.055 +  0.07 =  0.945, 

we define p (ii{tru e)) =  1 — Ejp(H(<t>j)) =  1 — ..., w j}) =  0.055.

Step 4. Eventually, let ii(true) =  {rug} and A  be Ao, then we obtain W  =  

{u>i,..., u>g} with probability distribution p on it. The incidence function derived 

from i{ 4 >) =  U i s  as shown below.

i(a A b A c) =  {u>i} 

i(a A b) — {rwi, w2}  

i(a A c ) =  {w i,w 3}  

i(b A c) =  {toi, 104}

¿(a) =  {w u w 2 ,w 3, w4}  

i(b) =  {w i,w 2 ,w 4 ,w 6} 

i (c) =

For any other formula if fi(ii(ip)) =  0, we explain this in two ways: there is 

no possible world making this formula true or the probability o f the subset which 

makes V’ true is 0. In any case, it doesn’t matter whether we add ii(i/>) to the whole 

set o f possible worlds or not. The incidence calculus theory which can produce 

the lower bound o f a probability distribution p* on A  is <  W,^i, P ,A ,i  >  as well 

as i*{4 >) and p* (</>).

For any formula </> £  F (P ) \ A , we can calculate both i*((f>) and p*((f>).

When we apply Algorithm /?, there may be more than one formula satisfying 

the conditions in Step 2, but the order o f choosing these formulae has no effect on 

the final result. For this example, after we choose a A b A c and come to Step 2, 

it doesn’t matter to choose a Ah  first or a A c first. The final result remains the 

same.

Theorem 1 Applying Algorithm B on (A , p.*) produces the same result regardless 

the order o f  selecting formulae in Step 2.
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P R O O F

Assume that after Step 1, the set o f Ao is A q =  { 4 > i and that at Step 

2, there are two formulae 01,^2 satisfying the condition specified in that step.

In Step 1, for every cf>j £ Ao, we have

p 'M i) - = P M j )

H(wj) :=  p 'M i)

=  { Wj }

Assume that we first choose xp\ in Step 2, then we have

p 'M i) '■= P M i) -  Z ^ eA o ^ rP tP M j)

Now we choose rp2, we obtain

P 'M i) '■= P M i ) ~  ^ ^ e A o u ^ ^ ^ p 'M j )  (because V>i is a small­

est formula now)

:=  P M i) -  ^ ^ e A o ^ j^ iP M j)  (because ^  M

which indicates that adding i/fi into set Ao has no effect on the outcome of xj)2.

In the same way we could prove that choosing tp2  first then xj)\ gives exactly 

the same result as above. That is, p on set Ao U {0 1 ,^ 2 } is the same no matter 

which formula is chosen first. Similarly, we could prove the theorem for any set of 

formulae in Step 2.

QED

The Prolog execution time for this example is 0.759 (seconds) in the axiom 

order {a  A b A c, a A c, b A c, a, 6, a A b, c }. If the order of the axioms is reversed as 

{a , b, c, b A c, a A c, a A b, a A b A c }, there is not much difference. The runtime for 

the latter case is 1.189 (seconds). The algorithm creates a set o f possible worlds 

with 8 elements.
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3.2.3 Generating multiple consistent incidence assignments

In contrast to the methods for incidence assignments in the original incidence 

calculus, the new incidence assignment algorithm in generalized incidence calculus 

doesn’t assume the size of a set of possible worlds in advance. The disadvantage 

of the methods in the original incidence calculus is that it takes too long a time 

to find a consistent incidence assignment. At the moment, the new algorithm 

in generalized incidence calculus constructs only one basic incidence assignment. 

In this section, we will examine how to generate multiple consistent incidence 

assignments from this basic assignment.

In fact, what is created in this algorithm can be regarded as a model or an 

abstract, denoted as S, for an unspecified set o f possible worlds. There are three 

different possibilities to generate multiple consistent incidence assignments from 

S. Before giving these three situations, I need to introduce the definition of prob­

ability spaces first.

Definition 3.4: Probability spaces

A probability space ( X ,x ,p )  has:

X : a sample space usually containing all the possible worlds;

X-' a a-algebra containing some subsets of X , which is defined as containing X  

and closed under complementation and countable union.

p : a probability measure p : x  —> [0,1] with the following features:

P i. p (X i)  >  0 for all X{ 6 Xi 

P2. p (X )  =  1;

P3. p (U £  1X j ) =  T,JLlp (X j) , if the X j ’s are pairwise disjoint members of x-

A subset x ' ° f  X is called a basis of x  if it contains non-empty and disjoint 

elements, and if x  consists precisely of countable unions o f members of x '■ F°r 

any finite x  there is a unique basis x ' ° f  X an<f it follows that
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In the following, we only consider finite probability spaces.

Situation 1 when we know nothing about the set o f possible worlds, we could 

either take this model S as the set or take it as the basis o f a set W  which is 

going to be defined. This W  is allowed to contain as many possible worlds 

as necessary. The elements in this set are then divided into l^l groups. The 

jth  group Wj matches to an element Sj in the basis. For the elements Wji in 

W j, we define /i'{wj{) =  ¡i(sj)/\Wj\. For a formula <f>j in A , if i(4>j) — {s ? }  

then we define i(4>3) =  Wj when extending the incidence function i from S 

to W .

For instance, in Example 3.1, it is possible to assume that the set o f possible 

worlds has 8 elements, or assume that the set contains 80 (or any other 

number) possible worlds. For simplicity, we assume that these 80 possible 

worlds are divided into 8 groups and each group has 10 possible worlds. 

Suppose that the first group, containing the first 10 elements, matches to 

the first possible world w\ in the model, then the probability for each element 

in the group is 0.165/10. Similarly, it is possible to calculate the probability 

for every other element.

Situation 2 when we know the set of possible worlds W  and the probability 

distribution / /  on the set, we take S as the basis o f W . In this case, it 

is assumed that for each Sj € S, there exists at least one subset W j  of W  

which guarantees fi(sj) =  T,Wjlfi'(wji) for Wji G W j .  Otherwise, the given 

lower bound of a probability distribution could not be generated from this 

set o f possible worlds.

As there may be more than one method to divide the set W  to form the basis 

S, it is possible to generate more than one consistent incidence assignment.

Situation 3 when we know the set of possible worlds and some relation among 

possible worlds but not the probability distribution, we take S as the basis of
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W . This basis can certainly be used to generate many consistent incidence 

assignments. This is particularly useful in constraint satisfaction problems.

For example, if it is known that the possible worlds Sj and s; are very likely to 

support same formulae, then Wj and wi should possibly be in the same group.

In this case, elements in W  are grouped mainly based on their properties.

In summary, the method of model creation for incidence assignments is more 

flexible and can be used to generate multiple consistent assignments when required.

In Chapter 2, we mentioned that in [McLean, 1992], [McLean, Bundy and Liu 1994] 

McLean develops two algorithms for incidence assignments. The idea in McLean’s 

work is that given a numerical assignment on a set o f axioms A , a set o f possible 

worlds W  is fixed and then an algorithm is used to divide elements o f W  into 

different groups and then each group is mapped onto each axiom in A. Executing 

an algorithm each time may give different grouping result. These different results 

give different but consistent incidence assignments based on an initial numerical 

assignment. However, in our incidence assignment approach, we try to find a 

‘m odel’ or a ‘basis’ first, and then we generate multiple consistent assignments 

based on this model. A model is usually easy to be constructed, so the run time 

is much faster than McLean’s algorithms (see Example 3.1). The actual methods 

about how to generate different incidence assignments are largely dependent on 

real situations as we specified above. Therefore, our algorithm is more flexible.

3.2.4 Estimating lower bounds of probabilities

A critical condition is placed on the new incidence assignment algorithm proposed 

above, that is a set of axioms must be closed under the operator A. When this 

condition doesn’t hold, we can only apply Algorithm B under the assumption that 

the lower bounds o f probabilities o f those axioms, for which that are not specified 

initially, are 0. However, if a piece of evidence shows that such assumption does 

not exist, for instance, if p*(a A b A c) =  0.2 then assuming p*(a A b) =  0 is 

unrealistic, we then have to estimate the lower pounds for those axioms before it 

is possible for us to apply the algorithm.

67



In this section, we briefly discuss how to estimate the lower bounds of proba­

bilities for those axioms which are not defined initially.

Considering Example 2.3, an initial numerical assignment on a set o f axioms 

(a, b, c, a A b A c, a A c, b A c) is

p*(a) =  0.8 

p. (6) =  0.6

p*(c) =  0.5 

p»(a A c ) =  0.4 

p*(b A c) =  0.2 

p*(a A 6 A c) =  0.2

.4. is not closed under A, as a A b is  not in A  and the lower bound of probability 

on axiom a A b is not known. Algorithm B cannot be used immediately before 

p»(a A b) is supplied. From the assignment on other axioms, we can calculate that 

p*(a A b) might be between 0.2 to 0.6.

Case 1 We assign p*(aA6) =  0.4 and then execute Algorithm B on ^4U{aA6}, the 

result is wrong as we have EWp'(w) >  1 for the constructed set o f possible 

worlds. So p»(a A b) <  0.4 is impossible.

Case 2 We assign p„(a Ab) — 0.5 and then execute Algorithm B on >4u{aA 6}, the 

result is quite good as shown below, because it gives a much lower numerical 

distribution on true. This means that there is almost no ignorance.

p(w6) =  0.1 ii(a) =  {io6}

p(w5) =  0.1 n(b) =  {u;5}

p(uq) =  0.1 n (c) =  {w q}

p(w3) — 0.3 ii(a Ab) =  {re3}

p {wi) — 0-2 ii(a A c) =  {w q}

p{w\) — 0.2 ii(a A b A c) =  {u q }
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n(wi)  = 0.1 17 i i(true)  =  { ^ 7}

Case 3 We assign p*(a A 6) =  0.6 and then execute Algorithm B on A  U {a  A b}, 

the result is not wrong but not good. Because we have

ii(a) =  {w 6 } ,n (w 6) — 0.1-15

and

ii(tru e ) - { 1C7}, p(u>7) =  0.1

This means that there is a large amount of ignorance (0.1), but p*(a) carries 

almost nothing significant.

In general, the range of the lower bound of probability on an axiom 4> can be 

roughly estimated as

mm{p*(?/>) | (j) —> V’ }  >  P*(0) >  max{p*(ip) | ijj —> cf)} (3.6)

This estimation gives looser bounds than that in the real case. For instance, if 

we use this mathematical formula to guess the bounds for formula a A b, we have

0.6 >  p*(a A b) >  0.2. However, the lower bounds of a A b should somehow be 

bigger than 0.4.

3.2.5 Implementation of incidence assignments

Converting an incidence function from a numerical assignment is one of the most 

important issues in applying incidence calculus. The algorithm of deriving inci­

dence functions from numerical assignments, through basic incidence assignments, 

shows the possibility o f constructing incidence functions and then generalized in­

cidence calculus theories in most circumstances.
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When a set o f axioms is not closed under A, most o f situations, it is necessary 

to estimate the lower bounds o f probabilities on those axioms which are not given 

initially. This topic has been briefly discussed in this section and it shows that 

the best estimation values of lower bounds on axioms can be found based on the 

feedback o f generating incidence functions.

Algorithm B has been implemented using Sicstus Prolog. This program is 

used and tested both in recovering incidence functions when a set o f axioms is 

closed under A and in evaluating an estimation when a set o f axioms is not closed 

under A. As far as for the examples we tested, the program gives out the result 

immediately, see Table 3.2.

No. o f axioms runtime(seconds)

7 0.759

12 10.678

15 12.08

Table 3.2 Test result of Algorithm B

3.3 Combining Evidence

What we have considered previously is limited to only one generalized incidence 

calculus theory. If a generalized incidence calculus carries the message provided 

by one source of evidence, then as new evidence comes in, more and more gen­

eralized incidence calculus theories will be constructed. In this circumstances, it 

is necessary to pull out the common effects o f all the evidence and represent it 

using a single generalized incidence calculus theory. This procedure is normally 

called the combination o f evidence. In this section, we discuss our approach for 

combining multiple pieces of evidence.
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3.3.1 Effects of new information

Suppose we have already had an incidence calculus theory, <  W , p, P, A \, f i > , for 

a given problem, if a new piece of information regarding this problem is known, 

then it may have one o f the following effects.

E ffect 1: This source o f information gives a new probability distribution on the 

set o f possible worlds to replace the old probability distribution, then a new 

generalized incidence calculus theory will be created to substitute the old 

one and further inference will be made upon the new generalized incidence 

calculus theory only.

This can be seen through an example in [Fagin and Halpern, 1989a]. The 

example is stated as: Suppose that we have 100 agents, each holding a lottery 

ticket, numbered 00 to 99. Suppose that agent a\ holds ticket number 17. 

Assume that the lottery is fair, so, a priori, the probability that a given 

agent will win is 1/100. We are then told that the first digit o f  the winning 

ticket is 1 , the problem is to determine the probability that agent a 1 will win.

Considering this problem in incidence calculus, we can first form a general­

ized incidence calculus theory as <  W ,/i i ,  P, A i,  ¿1 >  where W  =  { 00, ...,99 }, 

p(w ) =  1/100, P  =  { a j , ..., uioo}, A i =  P  and ifiafj =  { 10}  when a fs  num­

ber is w. Here a,- stands for the proposition a,- will win. When we are told 

that the first digit o f the winning ticket is 1  later, the probability distri­

bution on W  will be changed as P2 {w) — 1/10 when w is in {10 ,..., 19} 

and P2 (w ) — 0 otherwise. Therefore the new generalized incidence calculus 

theory is <  W ,/i2, P ,A i ,i i  > . In this case, because the old probability dis­

tribution is replaced by the new one, the new generalized incidence calculus 

theory disables the effect of the old one. It is then easy to know that the 

probability that a,\ will win is 1/ 10.

It would be interesting to notice that this new piece of evidence doesn’t 

change the supporting relations between set C (P ) and W . It only changes 

the p. on W . It results in one generalized incidence calculus theory being 

evoked only. This is entirely different from the situations below.
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Effect 2: This source of evidence specifies a new generalized incidence function 

from sets C {P ) to W  without changing the set o f possible worlds and its 

probability distribution. Then a new generalized incidence calculus theory 

is formed. Both the new and old incidence calculus theories have impacts 

on C (P ). So it is necessary to consider how to obtain their joint impact.

Considering the weather example again, we have, first of all, a generalized 

incidence calculus theory as <  VV, ¡i, P, i\ > . If a new piece of informa­

tion tells us that i2 (rainy) =  { f r i ,  sat, sun} and i2 (windy) =  {wed, f r i } ,  

then another generalized incidence calculus theory <  W , /¿, P, A 2, ¿2 >  is 

formed which gives an alternative interrelation among the elements of the 

two sets (without changing the probability distribution on set W ). We need 

to consider the joint impact of both the old and new information on the 

formula set. That is we must combine the two pieces of information. For a 

particular formula in C (P ), if we have =  W i and i 2 (<j)) =  W 2  from the 

two sources respectively, then the common impact o f the two sources will 

produce i iQ i 2 (cf>) =  W i fl W 2. More generally if i\{<j>) — W i and i2 (ip) — W 2  

then ii Q i 2 (<f>Aip) =  Wi fl W 2. This is the basic idea of giving a combination 

mechanism in incidence calculus which will be further discussed in greater 

detail in the next section. Here 0  indicates that a kind of combination 

mechanism, going to be defined later, is applied on ¿1 and i2.

Effect 3 This source of information defines a new incidence calculus theory dif­

ferent from the above two cases in the sense that the new information gives 

different sets of possible worlds and its probability distribution. Like situ­

ation 2) both the new and old generalized incidence calculus theories will 

make impacts on C (P ), so it is necessary to consider how to obtain their 

joint impact. If the old incidence calculus theory is <  W i,/ / i ,  P, A i, ii >  

and the new one is <  W 2, ^2, P, ^ 2, ¿2 > , then we form two probability 

spaces (W i,W i,/i i )  and (W 2, W 2 , y 2)- However in contrast to situation 2), 

these two probability spaces are not the same.
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In summary, apart from some very simple cases shown in situation 1), usu­

ally when the new pieces of information are obtained it is necessary to combine 

them with the existing information. The corresponding combination mechanism 

is essential to play such a role in producing the final effect o f all the information. 

Currently incidence calculus doesn’t have such a facility to cope with this problem. 

So it is important to propose a combination mechanism in incidence calculus to 

combine multiple pieces of evidence.

3.3.2 The Combination Rule in incidence calculus 

Definition 3.5 : Combination Rule

Suppose there are two generalized incidence calculus theories <  W , p ,P ,A i ,  i\ > ,

<  W , r , P , A 2  , ¿2 > , then the joint impact o f  information carried by the two theories

is represented by a quintuple: <  W  \ Wo, p ', P, A ,i  >  where

w 0 = U{*i(</>) n i2{i>) | (<P a rp =±),4>e A\,tp e A2}

A  =  { p  \ p  =  (p A ip \ (p e  Ai,xp £ A 2,p  t^J-}

K v ) =  U {*i(^)n»2(^) \ (¿R ip  \= <p ),<p  e  A ,(p e  A i,tp  €  A 2,(pAip

fo r  any w £ W  \ W 0

U'(w) — , „ ---A-----------7—r,

and let

i(fa ls e )  =  { }  iftru e ) =  W  \ Wo

Where T  means false and <p A ip means <p A ip is not contradictory.

Wo is a subset o f W  reflecting the conflict o f two pieces o f information and the 

conflict weight is S 1̂,/GvVo/i ( í̂;,)• h  the conflict weight is 1 then these two pieces 

of information are completely contradictory with each other and they cannot be 

combined using the rule.
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When A  =  { } ,  these two observations are irrelevant to each other and their 

combined result tells us nothing.

When A  7̂  { } ,  £ A , i(fa) =  { } ,  these two observations repel each other. In

other words, only one of them can be held at each time.

Theorem 2 Given two generalized incidence calculus theories <  W , P, A i,i\  > , 

and <  W , fi, P, A 2 A 2  > , Ihe combined structure <  W  \ Wo, fa , P, A ,i  >  is a gen­

eralized incidence calculus theory.

P R O O F

According to Definition 3 . 1 ,  we only need to prove that A  is closed under A .

Assume that 0 ,0  are two distinct formulae (0  ^  0 )  in A  and they are derived 

from formulae in A i and A 2  as

0  =  f a  A  0 i  

0  =  f a  A  f a

where fa , fa  £ A\ and 0 i, 0 2 £ A 2 , so 0  A  0  =  ( ( ¡> 1 A  0 2) A  (0 i A  fa ). There are 

three possibilities whether 0  A  0  will be in A.

(i) if f a  A  fa  = T  or 0 i A  02 = T , then 0 A  0  = J L .  0 A  0  doesn’t need to be in

A .

(ii) if f 1 (0 i A  fa) =  { }  or ¿2(01 A  fa ) -  { } ,  then ¿(0 A  0 ) =  { } .  0  A  0  doesn’t 

need to be in A.

(iii) Otherwise, 0i A  fa  € A\ and 0 i A  0 2 € A 2 , so (fa  A  fa ) A  (0 i A  fa )  =  

(0i A  0 i ) A  (0 2 A  fa )  is in the combined set A. That is, 0  A  0  is in A .

To summarize these three situations, we have that A  is closed under A .  Next 

we prove that ¿(0 A  0 ) =  ¿(0) O ¿(0 ) when 0, 0 , 0  A  0  are all in A . Suppose that 

i(ip 1 A  <p2) 7  ̂ { } ,  for any w €  W  \  Wo, if w 6 i(<fi A  tp2), then we have
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w e  i(ipi a  <p2)

=»■ 3ipo(ipo (= ip I A 922) A (u> e  ¿¿(920))

= 4 > 3 v?o(^o (= 9>i) A (^0 h  V i )  a  (u; G ¿i'(v’o))

= >  3(/?o(i(v?o) C ¿(^1)) A (*(^0) Q *(<̂ 2)) A (w € ¿¿(v?0)) 

=>■ 3920(̂ (920) C  ¿(yjj) n ¿(^2)) A (10 €  ii(tp0))

= > w e  i(<pn) n ¿(922)

The other way around,

«> G ¿(¥>1) D ¿(<¿>2)

= i >  re €  i(tpi) A w e  ¿(<¿>2) 

= >  (3 ^o(^o h  9>i) A t" G n(<A))) A (3 c^o(^o 1=  <¿>2)  ̂ G n (^o)) 

= 4 > 3950(^0 f= <fi) A  (9?0 h  ^2) A (iw G *i(^o))

(as 9?0 and (p'0  must be equivalent)

=*► 39?o(9?o (= <fi A 922) A (w G n ^ o ) )

= >  3920(1(920) G; ¿(9?! A 922) A (to € ¿¿(920))

= 4> w e ¿(921 A 922)

So

*(<¿>1A 9̂ 2) =  n ¿(922)

As we have defined that i(tru e ) =  W  \ Wo and i (fa ls e )  =  { } ,  function i is a 

generalized incidence function. It is also easy to prove that Yiwew\w0 fj,'(w) =

So <  W  \ Wo, i-i', P, A , i >  is a generalized incidence calculus theory.

Q ED

The explanation of this combination rule is that if observation X  says that 

W i, makes statement (j) true, and observation Y  says that W 2j makes statement 

rjj true, then W u  fl W 29 should make statement (<f> A 0 )  true when we know that 

both X  and Y  hold.
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3.3.3 DS-independent information

The crucial issue in applying the rule to two generalized incidence calculus theories 

is that these two theories are based on the same set o f possible worlds, but pos­

sibly based on different sets of axioms and incidence functions. The combination 

procedure unifies two sets of axioms into one set and two incidence functions into 

one incidence function. In this way, generalized incidence calculus is expected to 

be used to combine dependent evidence directly.

In general, the relations between two generalized incidence calculus theories 

(provided by two pieces of evidence) can be divided into the following three cate­

gories.

1). The two sets of possible worlds in the two generalized incidence calculus 

theories are the same. In this case, the Combination Rule above is applied to 

combine the two generalized incidence calculus theories.

2). The two sets of possible worlds in the two generalized incidence calculus 

theories are different and they are DS-independent3. In this case, it is possible to 

transform the two generalized incidence calculus theories into new forms so that 

two new generalized incidence calculus theories are based on the same set. Then 

the Combination Rule is applied on them. This is described in Theorem 2 below.

3). The two sets of possible worlds in the two generalized incidence calculus 

theories are different but not DS-independent. At the moment, we don’t have a 

framework to deal with this in general. It has to be done individually. For a case in 

this category, if it is possible to find a common set of possible worlds in some way 

to replace the two existing sets of possible worlds, then the Combination Rule is 

applicable. However, when it is not possible to find a common set o f possible worlds 

to replace the two existing sets of possible worlds, generalized incidence calculus 

cannot cope with the case. Example 3.2 below demonstrates this situation.

3See definition 3.6 below.
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It needs to be pointed out that if two sets of possible worlds in a case are 

different but they are both derived from a well-defined set4, this case is put into 

the first category as shown in Example 5.4.

As cases in category 2 can be transformed into cases in category 1, category 2 

is regarded as an extension o f category 1.

Definition 3.6: DS-independence

Two probability spaces, (X i ,X i , Vi) and (X 2, X2 , ^ 2 ), are said to be DS-independent, 

if they satisfy the conditions

Vx(c i I Di)  =  Ti(Ci) p x (D j | Ci) =

fo r  all subsets Ci and Dj, where x [  =  {C i, •••, Cn} and x '2 =  D m} are bases

fo r  x  1 and X2  respectively. p x is the (a priori) probability measure on x  which is 

the a-algebra o f  the joint space X . Spaces X\ and X 2  are constructed from the 

joint space X . I f  the joint space is X\ ® X 2 , then px (Ci) is an abbreviation for  

P x W u D j )  | 1 <  j  <  m }).

It is easy to see that if two probability spaces are DS-independent, then 

they must be probabilistically independent. If two probability spaces are DS- 

independent, then their common probability space is their set product, that is 

(X ,X ,V )  is (^1 <B> ^ 2, A'i <8> X2 , t11 ® 1*2 )- Based on this, we have the following 

theorem.

Theorem 3 Suppose we have two generalized incidence calculus theories, <  W i ,p i ,  

P ,A i,i\  >  and <  W 2, /¿2j P,A.2 , i 2  > , where (W i, W i,/ / j )  and (W 2,W 2,^ 2) are 

DS-independent. Applying the Combination Rule to them we get

<  hVh, P3 , P, A 3 , ¿3 >

4See Example 5.4. Suppose that S is a set with probability distribution p, S1 and 

S2  are subsets of S and p\ on S\ and P2  on S2  are defined from p through statistical 

methods, then Si and S2  are said to be derived from well-defined set S.
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which is a generalized incidence calculus theory, where

w 0 =  UO'i(0) ® I (<M =-L ) A  t  e  A 2)

w 3 -  W i ®  W 2 \ Wo

A 3  =  {<-p | y  =  (f) a  xf>, <f> e  A u 4> e  A 2, <p t^-L} 

h W )  =  U {*i(^) ®  *2(0 ) I (0  A %l> |= tp), (f> A rj) / - L }  

i/ie new; probability distribution on W 3 is

W <  tw.1 wo- > )  =  ___________________________

ffTiere w u ,w u € Wj and W2 j ,w 2m € W 2

Wo is a subset o f W i ® W 2 which supports contradictory.

For any formula ip in C (P ), our belief in ip is

P*(p) =  S tB6i3(w,)^ 3(w)

P R O O F

For two generalized incidence calculus theories <  W i, /¿1, P, A i,  ¿1 >  and 

<  W 2, ¡¿2 , P, A 2, ¿2 > , when their probability spaces (W i, W i, p i) and (W 2, W 2, /i2) 

are DS-independent, then it is possible to generate incidence functions from W i 

and W 2 to P  as two new incidence functions from W i ® W 2 to P . So two new 

generalized incidence calculus theories can be constructed from them as:

<  W 3, P3 , P ,A i ,i [  >

and

<  m ,M 3 ,P ,A 2 ,i'2 >

where

Wo =  U
(f>ATp\=JL

w3 =  W t <g> W 2 \ Wo
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®  VV2) \ VVo where 4 > e  A \

h W  =  ( ^ i  ® 2(V*)) \ Wo where e  A 2

the new probability distribution on W 3 is:

 ̂ \ ^ i(w u )n 2 (w 2 j)  /0 ^
M < w u ,w 2 j > )  =  - =  7 7— 7 r (3.7)

1 — ¿-‘<wu,W2 m>eWohl\Wlt)H2 {W2 m)

Applying the Combination Rule on these two new generalized incidence calcu­

lus theories, we have the combined generalized incidence calculus theory

<  W 3, Hz, P , A 3 , ¿3 >.

QED

E<u,lt,W2m>evVoAi i (u;ii)^2(u;2m) is the weight of the conflict between two theories. 

If the conflict part is 1 then these two pieces of information completely conflict 

with each other and they cannot be combined.

For the joint product of spaces Wi and W 2, an element <  w u,w 2j >  in W i 0  

W 2 \ Wo tells us that possible worlds wu  and w 2j may support a formula at the 

same time. An element <  w2 j ,w u  >  in W 2 0  W i implies the same meaning as

<  w u,w 2j > . Therefore we treat W i 0  W 2  and W 2 0  W i as the same set. So 

the Combination Rule is both commutative and associative because the result of 

combining several incidence calculus theories is unique irrespective of the sequence 

in which they are combined.

In the following, we say that two generalized incidence calculus theories are 

DS-independent if their sets o f possible worlds (together with their probability 

distributions) are DS-independent.

Example 3.2

We now use an example adopted from ([Pearl, 1988] pp.58) to show the situ­

ation in which two generalized incidence calculus theories are based on different 

sets o f possible worlds but these two sets are not DS-independent. The example 

is as follows.
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There are three prisoners, A , B  and C, have been tried for murder, 

and their verdicts will be read tomorrow. They know only that one 

of them will be declared guilty and the other two will be set free.

The identity o f the condemned prisoner is revealed to the very reliable 

prison guard, but not to the prisoners themselves. In the middle of 

the night, Prisoner A  calls the guard over and makes the following 

request: ‘Please give this letter to one of my friends -to one who is to 

be released. You and I know that at least one of them will be freed’ .

Later Prisoner A  calls the guard again and asks who received the letter.

The guard answers, ‘ I gave the letter to Prisoner B, he will be released 

tomorrow’ . After this Prisoner A  feels that his chance to be guilty has 

been increased from 1/3 to 1/2. What did he do wrong?

Assume that IB stands for the proposition ‘Prisoner B  will be declared inno­

cent’ and G a stands for the proposition ‘Prisoner A  will be declared guilty’ . The 

task is to compute the probability of G a given all the information obtained from 

the Guard.

Solving this problems in formal probability theory, Pearl gets

w n n  P r(IB \GA)P r (G A) 1/3
P r(G * 1 Ib )    p h J b )   7 m  273 - 1/2 (3 '8)

where P r (IB \ G a ) — 1 since Ga D Ib and P v(G a ) =  P t{G b ) =  P r (G c ) — 

1/3 from the prior probability distribution.

Pearl argues that this is a wrong result and the wrong result arises from omit­

ting the full context in which the answer was obtained by Prisoner A. He further 

explains that ‘By context we mean the entire range o f answers one could possibly 

obtain, not just the answer actually obtained’ . Therefore, Pearl introduces an­

other proposition PB, stands for ‘The guard said that B  will be declared innocent’ , 

and he gives that

Pr(I'B I GA)P r(G A) 1 /2 .1 /3  
P r ( ° A I h )  -  ----------~Pr{7Ç) “  ~ L j2 ~  ~  1/3 (3>9)
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which he believes is the correct result.

Using incidence calculus to solve this problem, we let P  =  {Ga-, Gb , G c }  and 

Ga stand for the proposition ‘Prisoner A  is guilty’ . Then it is possible to form a set 

of possible worlds W i =  {w 1 ,w 2 ,w 3}  with pi (w j) — 1/3 from the prior probability 

distribution, W\ implies A  is guilty.

From this information, a generalized incidence calculus theory is formed as 

<  W i,/i i ,P ,P ,* i  >  where ii(G A) =  {w i} ,  h (G B) =  { ^ 2}  and h (G c ) =  { ^ 3}-

After the guard passed the letter to a prisoner, it is possible to form another 

set o f possible worlds W 2  — { LB,L c }  where LB means Prisoner B  received the 

letter. /j,2 (L b ) =  ¡i2 {Lc ) =  1/2.

So the second generalized incidence calculus theory is constructed as

<  PV2, /i2, P, -4.2, ¿2 >

where i2 (Ga V G c ) =  {L B}, i2 {Ga V GB) =  { L c }  and A 2  =  { Ga V G c , Ga V GB}.

These two theories are based on different sets of possible worlds and they are 

not DS-independent. If we attempt to solve this example using Theorem 1, we 

can only get the result as shown in equation (3.8).

However whether it is possible to construct different generalized incidence cal­

culus theories in order to reflect the full context of answers (the meaning of I'B not 

IB) remains open.

3.3.4 Implementation of combination rule

The combination procedure of two or more generalized incidence calculus theories 

involves multiple searches through two (or more) sets o f axioms. Therefore, the 

combination procedure, like other similar combination techniques, has a compu­

tational problem, especially when sets of axioms are large.

The combination rule we proposed in this chapter has been implemented in 

Sicstus Prolog without considering computational complexity problem.
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For example, assume that the initial incidence assignments on sets of axioms 

{a , 6, a A 6, c, d, c A d} and {a , c } are

*1(a) =  { l ,2 ,3 ,4 }  

h(b) =  {1 ,2 ,3 }

¿ i ( a  A  6) =  { 1 , 2 , 3 }

*1(c) =  {4 ,5 ,6 ,7 }

¿i(d) =  {6 ,7 ,8 ,9 }

?i(c Ad) — { 6, 7}

and

i2(a) =  {1 ,2 ,3 }

*a(c) =  {4 ,5 ,6 }  

then the result of combining these two sets is

z3(a) =  {1 ,2 ,3 }

¿3(6 A a) =  {1 ,2 ,3 }  

i3(a A c ) =  {4 }

*3 (c) =  {4 ,5 ,6 }  

i3(c Ad) =  { 6}

The corresponding generalized incidence calculus is

< W ,//, P ,A ,i 3  >

This program has been tested on several examples. When two sets of axioms 

are large (with more than 5 axioms), the run time is a bit slow, see Table 3.3.

When two generalized incidence calculus theories are DS-independent, we will 

have to redefine them to obtain two generalized incidence calculus theories which 

are based on the same set o f possible worlds before we execute the program.
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Size of A\ Size of A 2 runtime

3 2 10.728

7 2 21.457

7 3 727.377

Table 3.3 Test result o f combination rule

3.4 Summary of Extended Incidence Calculus

The generalized incidence calculus is no longer truth functional. So a Legal As­

signment Finder doesn’t exist in the generalized theory. We can use generalized 

incidence calculus to describe a wider range of information after we drop some 

conditions on the incidence function i.

A new notion, basic incidence assignment, is defined. Although this function 

is derived from a generalized incidence function, it can also be separated out from 

an original incidence function. So Algorithm B for incidence assignment can be 

used to recover an original incidence function as long as a set o f axioms A  is 

closed under A. This function tells the difference between the incidence set o f a 

compound formula and the union of incidence sets o f all its parts. The meaning 

behind this difference is that the current information cannot fully allocate the 

incidence set o f this formula to its parts.

We have also discussed an approach to giving an incidence assignment based 

on the lower bound measure of probabilities on the set of axioms.

Given a set o f axioms A  =  { fa , fa, ■ ■■, fa } ,  the main step in the algorithm is to 

select the ‘smallest’ elements each time to process. The complexity o f the selection 

procedure is n +  (n — 1) +  (n — 2) +  ... +  1. So the actual complexity o f the new 

algorithm should be | A  |2=  n2.

There are two algorithms in [McLean, 1992] for assigning incidences on axioms 

based on a probability assignment. The common feature of the two algorithms 

is that a set o f possible worlds has to be fixed first. Given a set o f axioms, both
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algorithms try to divide possible worlds into groups and assign each group to an 

axiom. Therefore, not only the number of axioms but also the interrelationship 

o f these axioms affect the division procedure. For instance, assume that there 

are only two axioms a, b in A , then the assignment procedure could be simply 

done by choosing two subsets o f the set o f possible worlds which can produce 

p(a) and p(b) respectively. However if p(a A b) is known as well in addition to 

p(a) and p(b), then we need not only two subsets o f possible worlds W\, W 2  to 

match p(a) and p(b), but also another subset W 3  which matches p(a A b) with the 

condition that W 3  — W\ D W 2. That is, the complexity o f these two algorithms 

increases along with the interrelationship o f axioms considerably. Because of this, 

the order of the axioms also affects the efficiency of the algorithms as pointed out 

in [McLean, 1992].

In summary, there are three factors associated with the complexity of each 

algorithm in [McLean, 1992]. They are the numbers of axioms, the relations among 

axioms and the order of axioms in addition to the requirement of the fixed number 

of possible worlds. The complexity for the best case o f the algorithms could be 

| A  | when all the axioms in A  have no interrelation at all. The complexity for 

the worst case is exponential and most of cases have this complexity. However, in 

our algorithm in extended incidence calculus, there is only one factor affecting the 

complexity, that is, the number of axioms. Besides, the new algorithm does not 

require a set o f possible worlds to be predefined.

Example 3.1 has also been tested by McLean using the two algorithms. Al­

though there are only 8 axioms in A , both algorithms take a long time to find 

a consistent assignment of incidences (with runtime 374.520 seconds and 355.060 

seconds respectively). Our algorithm only needs 1.189 seconds runtime to find a 

consistent assignment. This example, in some sense, shows us that the relations 

among axioms could slow the algorithms down enormously, much worse than the 

size of set o f axioms. In real world cases, axioms always have some interrelations. 

Therefore, we concluded that on average the new incidence assignment algorithm 

we designed is much faster than McLean’s methods.

This assignment algorithm can be used to restore a mass function from a belief
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function in Dempster-Sliafer theory and to restore the probability space in general. 

We will mention this later in this thesis.
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Chapter 4

The Dempster-Shafer theory of 
evidence

The Dempster-Shafer (DS) theory of evidence (sometimes called evidential reason­

ing or belief function theory) was first introduced by Dempster [Dempster, 1967] 

and later developed by Shafer [Shafer76]. The transferable belief model 

[Smets and Kennes, 1994] is developed based on this theory. DS theory has been 

popular since the early 1980 and a number of applications of the theory have been 

reported. Its relations with related theories have also been intensively discussed 

[Yager, Fadrizzi, Kacprzyk, 1994].

There are two main reasons why DS theory has attracted a lot o f attention. 

It has the ability to model information flexibly and provides a convenient and 

simple mechanism (Dempster’s combination rule) to combine two or more pieces 

of evidence which satisfy certain conditions. The former allows a user to describe 

ignorance because of lacking information and the latter allows a user to narrow 

the possible answer space as more evidence is accumulated.

Even though DS theory has been widely used, it has been found that Demp­

ster’s combination rule gives counterintuitive results in many cases. The conditions 

under which the rule should be used are crucial to the successful applications of 

the theory but they were not fully defined when Shafer gave the rule in the first 

instance [Shafer76]. Various discussions and criticisms o f the rule have appeared 

in the literature. A mathematical description of the conditions on applying Demp­
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ster’s combination rule appears in [Voorbraak, 1991], in which the rule condition 

is called DS-independence.

In this chapter I first introduce the basics of the theory and then study the 

probabilistic basis o f basic functions defined by Shafer in this theory to see how we 

can derive a mass function from a probability distribution through a multivalued 

mapping in Dempster’s paper [Dempster, 1967]. The discussion shows that DS 

theory is closely related to probability theory and provides a convenient way to 

describe the conditions of using Dempster’s combination rule. Some other aspects 

of DS theory will also be discussed briefly at the end of the chapter.

4.1 Basic Concepts in Dempster-Shafer Theory

A piece o f information is usually described as a mass function on a frame of 

discernment. We first give some definitions of the theory [Shafer76].

D e fin ition  4.1 : Frame o f  discernment

A set is called a frame o f discernment (or simply a frame) if this set contains 

mutually exclusive and exhaustive possible answers to a question. It is usually 

denoted as 0 .  It is required that at any time, one and only one element in the set 

is true.

For instance, if we assume that Emma lives in one of the cities, c ity i ,..., city6, 

then 0  =  {c ity 1 ,c ity 2 ,c ity 3 ,c ity 4 ,c ity 5 ,c ity6}  is a frame of discernment for the 

question ‘ In which city does Emma live?’ .

D efin ition  4.2 : Mass function

A function m : [0,1] —> 2e is called a mass function on frame 0  if it satisfies the 

following two conditions:

l.m (0 ) - 0 2 .T,Am(A) - 1

where 0 is an empty set and A is a subset o f  0 .
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A mass function is also called a basic probability assignment, denoted as bpa.

For instance, if we know that Emma lives in the area covering these six cities, 

but we have no knowledge about in which city she lives, then we can only give a 

mass function m (0 )  =  1. Alternatively, if we know that Emma lived in city 3  two 

years ago and she intended to move to other cities and tried to find a job  somewhere 

within these six cities, but we have no definite information about where she lives 

now. A mass function could be defined as m (city3) =  p, m (0 )  =  1 — p for the 

situation where p stands for the degree of our belief that she is still in city3.

A subset A with m (A ) >  0 is called a focal element of this mass function. If all 

focal elements o f a mass function are the singletons of 0  then this mass function 

is exactly a probability distribution on 0 . So mass functions are generalized 

probability distributions.

D efin ition  4 .3 : Belief function

A function bel : [0,1] —> 0  is called a belief function if bel satisfies:

l.bel(Q ) =  1

2.6e/(U" A,) A S,&e/(A,) — S,’>j6e/(Ai fl Aj) A  ••• A  (—1) nbel(C\{Ai)

It is easy to see that 6e/(0) =  0 for any belief function. A belief function is also 

called a support function. The difference between m (A ) and bel(A) is that m (A ) 

is our belief committed to the subset A excluding any of its subsets while bel (A ) 

is our degree of belief in both A and all its subsets.

If there is only one focal element for a belief function and this focal element 

is the whole frame 0 ,  this belief function is called a vacuous belief function. It 

represents the total ignorance (because of lack of knowledge). In the following, we 

call (0 ,h e /)  a DS structure.

In general, if m is a mass function on a frame of 0  then bel defined in (4.1) is 

a belief function on 0 .

bel(B ) =  TiAcB m (A ) (4.1)
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D efin ition  A A : Plausibility function

A function pis defined below is called a plausibility function.

pls(A ) =  1 — bel(->A)

pls(A ) represents the degree to which the evidence fails to refute A. From a 

mass function, we can get its plausibility function as [Shafer, 1990]

pls(B ) =  B& m (A ) (4.2)

Recovering a mass function from a belief function is as follows [Shafer, 1990].

m (A ) =  ^ B C A ( - l ) {Blb e l ( B )

For any finite frame, it is always possible to get the corresponding mass function 

from a belief function and the mass function is unique.

In a system using evidential reasoning, knowledge or inference results are usu­

ally represented by the interval of bel and pis. There are several special features 

of this interval [Wesley, 1983].

[bel(A),pls(A)\  =  [1,1] subset A  completely true;

[bel(A ),pls(A )] =  [0,0] subset A  completely false;

\bel(A),pls(A)] =  [0,1] subset A  completely ignorant;

[bel(A),pls(A)\ =  [bel, 1], 0 <  bel <  1 tends to support A; 

[bel(A),pls(A)\  =  [0,p/s], 0 <  pis <  1 tends to refute A;

[bel(A), pls(A )] =  [bel,pis], 0 <  bel <  pis <  1 may support or refute A.

When more than one mass function is given on the same frame of discernment, 

the combined impact of these pieces of evidence is obtained using a mathematical 

formula called Dempster’s combination rule. If m i and m 2 are two mass functions

89



on frame 0 ,  then m =  mi 0 m 2 is the mass function after combining the two mass 

functions.
_  ^A n B =cm 1(A )m 2(B )

1 -  Z AnB=<tmi(A)m 2 (B )

0  means that Dempster’s combination rule is applied on two (or more) mass 

functions. The condition o f using the rule is stated as “two or more pieces of 

evidence are based on distinct bodies of evidence” [Shafer76]. This description is 

a little confusing and causes a lot o f misapplications and counterintuitive results 

[Voorbraak, 1991]. We will have a more detailed discussion on the conditions of 

the rule in the later part of this chapter.

4.2 Probability Background of Mass Functions

Even though Shafer does not agree with the idea that belief function theory is 

generalized probability theory and regards it as a new terminology to represent 

evidence and knowledge, some people argue that the theory has strong links with 

probability theory [Fagin and Ilalpern, 1989a]. Here we explore the motivation 

underlying Shafer’s definition o f mass functions under Dempster’s assumptions. 

We argue that in Dempster’s paper [Dempster, 1967], Dempster gave the prototype 

of mass functions implicitly. Shafer’s contribution is to make it clear and use it to 

represent evidence directly.

4.2.1 Dempster’s probability prototype of mass functions 

D efin ition  4.5 : Dem pster’s probability space

A structure (X , r, p) is called a Dempster probability space where

• X  is a sample space usually containing all the possible worlds;

• t  is a class o f subsets o f X ;
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• p is a probability measure which gives p : r  —>■ [0, 1].

Definition 4.6: Multivalued, mapping

A function T is a multivalued mapping from Dempster probability space (X ,r ,p )  

to another space S if V assigns a subset Tx C S to every x £ X .

From a multivalued mapping T, the probability measure p can be propagated 

to space S in such a way that for any subset T  o f S, the lower and upper bounds 

o f probabilities o f T  are defined as

P .(T ) -  p(T .)/p {S .) (4.3)

P * (T )= p (T * )/ p (S •) (4.4)

where

T, =  {x  e  X , Tx 7̂  0, Tx C T }

T* =  { x  e  X , Fz n T ±  0 }

The equations (4.3) and (4.4) are defined only when p(S*) ^  0. The denom­

inator p(S*) is a renormalizing factor necessitated by the fact that the model 

permits, in general, outcomes in X  which do not map into a meaningful subset 

o f S. That is, there may exist a x, such that Tx =  0. Dempster argued that the 

subset {x ,T x  =  0 } should be removed from X  and the measure o f the remaining 

set S* renormalized to unity.

A multivalued mapping T from a space X  to another S says that if the possible 

answer to a question described in the first space X  is x, then the possible answer 

to a question described in the second space S is in Tx.

For the case that S =  {s i ,  s2, ..., sm}  is finite, the propagation procedure can 

be done as follows. Suppose that 5'7l72...7m denotes the subset o f S which contains 

Si if 7,- =  1 and excludes s,- if 7,• =  0 for i =  1 ,2 ,...,m . If for each 57l72...7m we 

define Ai7l72...7m as

A 7i72...7m { x  E X , Tx ‘S7i72...7m}
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then all the subsets of X  defined in (4.5) form a partition1 of X  into

A" — U7l72...7m Xiyl72...7m (4-6)

Certainly some of these subsets may be empty. The idea of forming Xyl72...7m 

is that each Ai7l72.„7m contains those elements in X  which have the same mapping 

environments in S.

In order to calculate P*(T) and P*(T ), Dempster assumed that each AT7l72...7m 

is in r, then for any T  C S, P*(T) and P *(T ) are uniquely determined by the 2m 

quantities p7l72...7m-

i)7l72-.-7m = p( A 7l72—7m ) (4.7)

Here we use an example to demonstrate the idea.

Example 4.1

Assume that S — Using p7l72...7m, all the possible lower and upper

probabilities on S are given in Table 4.1.

T P*{T) P .(T )

0 0 0

(P ioo +  P110 +  P101 +  P m ) / k Pioo A

M (poio +  P110 +  P011 +  P l l l ) / ^ Poio A

M (pool +  P101 +  P011 +  P l l l ) / ^ P 0 0 1 A

{■Sl, ^ 2 } (p ioo +  Poio +  P110 +  P101 +  P011 +  P m ) / k (pioo +  Poio +  P n o ) A

{ 5 1) 3 3 } (pioo +  P001 +  P110 +  P101 +  P011 +  P i l l ) /  ̂ (p ioo + P001 + P i o i ) / k

{5 2 ,53} (poio  + P001 + P110 + P101 + P011 + P m ) / k (poio + P001 + P o n ) / k

5 1 1

Table 4.1 Upper and lower probabilities on all subsets o f S.

JA list of subsets Ai,yY2, . . . ,X„  of X  is called a partition of X  if X{  fl Xj  =  0 and 

U , A ,  =  X .
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Here we use k to denote 1 — pooo- Given a subset T  o f S, the corresponding 

lower and upper subsets in X  are known. For instance if T =  ¿n o  =  { s i , ^ } ,  then 

T* =  .Xioo U -Xoio U -Xno and F* =  -Ahoo U -Amo U -Ahoi U X on  U X m .  In particular 

//(S'*) =  1 — Pooo-

If we define a function m on S as rn(57l72...7m) =  m7l72...7m =  P7l72- 7m /(l ~  

Poo...o), then Table 4.1 is replace by Table 4.2 below.

T P *(T )  — pis P ,(T ) =  bel m

0 0 0 0

{si} UllOO +  Uluo +  mioi +  TUlll mioo mioo
{*2} m 0io +  rnno +  m0n  +  mi 11 moio moio
{*3} m0oi +  niioi +  tuqh +  m\n mooi mooi
Ol,S2) nrioo +  n/oio +  m no +  mioi +  rn on +  m m mioo + moio + mno mno
{®1»*3} mioo + rnooi + nzno + m.101 + mon + mm mioo + mooi + mioi m-ioi
{S2,S3} m0io + m0oi + mno + ™ioi + ™on + min moio + mooi + m0n mon
s 1 1 mm

Table 4.2 Upper and lower probabilities on all subsets o f S using function m.

Some of m7l72...7m may be 0. If we compare this table with equations (4.1) and 

(4.2), it is easy to see that the function m is exactly a mass function if S' is a frame. 

P* and P* define a belief function and a plausibility function on S respectively. I 

assume that this is the model for defining mass functions in the style o f Shafer. S 

being a frame o f discernment is a special case of S being any space in Dempster’s 

paper.

The vital step in calculating probability bounds in Dempster’s prototype is 

that for any subset Xyl72...7m, this subset should be in r. If r , a collection of 

subsets o f X , does not suit this requirement, then the rest o f the calculations in 

Dempster’s paper could not be carried out.

4.2.2 Deriving mass functions from probability spaces

In Chapter 3, we have introduced probability spaces in Definition 3.3. Here we 

recall it again to refresh our mind.
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A structure >s called a probability space if (AT, is a Dempster’s

probability space and x  ^  a a ~algebra of X  (a set o f subsets o f X  containing 

X  and closed under complementation and countable union, but not necessarily 

containing all subsets of A")

A subset x '  ° f  X is called a basis o f x  if it contains non-empty and disjoint 

elements, and if x  consists precisely of countable unions of members of x '• For 

any finite x  there is a basis o f x  and it follows that

Zxiex'V iX i) =  1

If x  is finite, it must have a basis and the basis is unique.

For any subset Af,- o f X ,  if A}  is not in Xi then we can get two bounded prob­

ability measures of X,-, usually called the inner measure and the outer measure. 

For any X i C X ,  we define

H .(X i) =  «>-/•{/>(.Y ,) I X j C X i,X j  e  x )  (4.8)

^ ( X i )  =  infMXj)I 2  V i. V , € x ]  (4.9)

It is proved in [Fagin and Halpern, 1989b] that /x* is a belief function on X  

when AT is a frame.

Given a probability space (AT, x , /x), assume that there is a multivalued mapping 

function T from X  to another frame S. For a subset S' o f S, we define bel(S’ ) =  

Li({x | Ta; C 5 '} )  as our degree of belief in S'. When { x  | Tx C 5 '}  is not 

measurable, that is when {x  \ Tx C S'} is not in Xi we define

bel(S') =  /x .({x  | Tx C 5 '} )  (4.10)

bel is also a belief function on S.

In a Dempster probability structure, because those nonempty subsets A'7l72...7m 

of X  form a partition of A', the equation £ 7l72...7m/x(AL7l72...7m) — 1 holds. So these
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X-yi72—7m are members of the ‘basis’ o f r . If we use x ' t°  denote this partition, 

then we can form a a —algebra of X  using this basis. So a Dempster probability 

space can be represented by a normal probability space. Therefore belief function 

theory is closely related to probability theory and comes out of probability theory.

In the following, we use probability spaces to stand for both normal and Demp­

ster probability spaces.

4.3 Problems with Dempster’s Combination Rule

Based on Dempster’s paper [Dempster, 1967] we can simply state his idea about 

the combination procedure as follows: suppose there are two pieces of evidence 

which are given in the form of two probability spaces ( ,  X i> ) and ( ^ 2 , X2 , ^ 2 )-

Further, suppose there is another space S and some mapping relationships from 

spaces X i  and X 2  to S. The relation between one space and another says that 

the truth of some elements in the former space suggests the possibility o f truth of 

some elements in the latter space. Given the probability o f truth of some elements 

in spaces X\ and X 2 , we are interested in knowing the impact o f the evidence 

on the space S (we may think that S contains answers to our questions or the 

possible values of a variable). In order to get the impact of evidence on the space 

S, Dempster suggested that we can get the joint probability space (X , x ,p )  =  

{X\ 0  X 2,X i <E> X 2 ,Mi ® ^ 2 ) ° f  the two original spaces as well as the joint 

mapping relation from X  to S first and then propagate the effect of probability 

distribution p, to S. Dempster further suggested that it is also possible to obtain 

the impact o f several pieces o f evidence by propagating the probability distribu­

tions from original probability spaces to S first and then combining them on S. 

Therefore Dempster gave two alternative approaches to calculate the impact of 

multiple pieces o f evidence carried by different probability spaces. In order to 

refer to them easily we name these two methods as Approach 1  and Approach
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$P. The whole framework containing these two combination approaches is called 

Dem pster’s combination framework. Figures 4.1 and 4.2 show the meaning o f these 

two approaches intuitively. In Approach 1, Dempster addressed combining several 

sources first and then propagating the unified source to the target space. In Ap­

proach 2 , he addressed propagating the sources to the target space separately first 

and then combining them.

Target info level S

r; n

( X ,X ,P)

Original info level

Figure 4.1. Combining evidence first and then propagating probabilities

Target info level S

Original info level P G ,X 2,y«2) (X n,Xn,Pn)

Figure 4.2. Propagating evidence first and then combining them

These two alternative approaches of combination require the same condition 

and it was implicitly claimed by Dempster that the results obtained from these two 

methods are the same under that condition. The condition is “ the sources (if we

2See detailed descriptions of these approaches later
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treat a space and its probability distribution as a source) are assumed independent.

Opinions o f  different people based on overlapping experiences could not be 

regarded as independent sources. Different measurements by different observations 

on different equipments would often be regarded as independent ... the sources 

are statistical independent” [Dempster, 1967]. If we refer to the levels containing 

spaces Vi) and (X 2 ,X 2 , ^ 2 ) as the original information level, and space S as

the target information level, then Dempster’s condition of independence is assumed 

at the original information level. This requirement is called DS-Independent in 

[Voorbraak, 1991].

When gaving Dempster’s combination rule in his book [Shafer76], Shafer fol­

lowed Approach 2 suggested by Dempster. After propagating two probability 

distributions from X\ , X 2  to S, the information accumulated on S needs to be 

combined. On S, these two pieces of evidence are in the form of belief functions, 

so Shafer proposed a mathematical formula named Dempster’s combination rule 

to combine two (or more) belief functions. If we follow the idea that the rule pro­

posed by Shafer was abstracted out from Dempster’s combination framework i.e., 

Approach 2, then Dempster’s combination rule should obey the condition defined 

by Dempster given above. Later, in some of his papers, Shafer began to address 

the importance of independence among original sources and make the condition 

more clear. For example in [Shafer, 1986], [Shafer, 1987a], Shafer stated that the 

condition of using Dempster’s combination rule is ‘ two or more belief functions on 

the same frame but based on independent arguments or items of evidence’ and in 

[Shafer, 1982] he used random encoded messages to describe the condition in using 

Dempster’s combination rule. These explanations are much closer to the definition 

given by Dempster in his combination framework. However, as Dempster’s com­

bination rule does not require or reflect any information about the sources which 

support the corresponding belief functions and it only needs belief functions (or 

mass functions) in order to carry out the combination, it is, therefore, difficult to 

describe independent conditions precisely using only belief functions.

In contrast to the two views on belief functions in 

[Halpern and Fagin, 1992], we argue that the main cause of giving counterintu­
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itive results in most cases3 in using Dempster’s combination rule is overlooking 

(or ignorance o f) the condition of combination given in Dempster’s original pa­

per. Describing independent conditions on the target information level solely is 

inadequate. In other words, Dempster’s combination rule is too simple (compared 

to Dempster’s combination framework) to show (or carry) enough information 

and provide a precise mathematical description about the dependency relations of 

multiple evidence.

Even though two approaches in Dempster’s combination framework aim at cop­

ing with independent sources of evidence equivalently, the extension of Approach 

1 in Dempster’s combination framework can also be used to deal with dependent 

sources of evidence as discussed in [Shafer, 1986], [Shafer, 1987a], 

[Lingras and Wong, 1990]. But they didn’t provide a unique rule for general cases.

4.3.1 The condition for using Dempster’s combination 

rule

Suppose n pieces of information are known, i.e. fJ-i) for i =  1, ...,n , which

all have mapping relations (T,) with another set S, and they are independent,

Dempster [Dempster, 1967] suggested that the combined source (X ,x ,^ )  and T

are defined in Equation (4.11).

X  =  X i <g> X 2  ®  . . .® X „

X =  XI ® X2 0  ®Xn  (4.11)

fl -  Pi <g) p 2  ® ••• ® Un

r(x) = r1(x)nr2(x)n...nrn(x)

The fourth formula can also be stated and explained as

r(x) = r ; ( i )nr ;( , )n . . .nr : (x )

3These don’t include the situations such as the example 6.12 in [Voorbraak, 1991] 

and the murderer case in [Smets, 1988].
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where r '(x )  =  ^(a:,-) when x £ X x <g) ... 0  X ; _ i  <g> {x i }  ® ... ® X n.

The meaning behind this set of mathematical equations is that from n inde­

pendent sources we can get the joint source which denotes the message carried 

by all separate sources and establish different mapping relations from the joint 

source to the target space S. Different mapping relations are further unified to 

get the joint mapping function T and using T the joint probability distribution p 

is propagated to S. The definition of T reflects that x =  (aq, x 2, ..., x n) £ X  is 

consistent with s,- 6 S if and only if S{ belongs to all r, (a:t) simultaneously.

Therefore Dempster suggested two approaches for performing the combination:

Approach 1: Combining them at the original information level by producing a joint 

space and a single probability distribution on the space. This should consider 

the different mappings from the joint space to the target information space, 

unify these mappings into one mapping and propagate the joint probability 

distribution to the target information level.

Approach 2: Propagating different pieces of evidence at the original information 

level to the target information level and then combining them.

Dempster assumed implicitly that the results obtained in the above two ways 

are the same under the condition that the n sources are statistically independent. 

As we discussed in the introduction, Shafer followed Approach 2 in getting Demp­

ster’s combination rule. But in this simplified combination rule (i.e. Dempster’s 

combination rule) the original sources are hidden. The invisibility o f  the original 

sources in the simplified combination rule makes it difficult to judge the dependent 

relations among the belief functions which in turn causes counterintuitive results 

in many cases.
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Proposition 6 Two belief functions on a frame can be combined using Dempster’s 

combination rule if the two sources, (Xi,\i, Pi) and (X2,X2 , ^2 ) from which the 
two belief functions are derived, are DS-independent.

The idea o f describing and judging dependent relations among the original 

probability spaces has also been mentioned implicitly by Shafer [Shafer, 1982], 

Shafer and Tversky [Shafer and Tversky, 1985] and Voorbraak [Voorbraak, 1991] 

but not explicitly defined at the original information level.

4.3.2 Examples

We now examine two examples. The first two examples come out from Shafer’s 

paper [Shafer, 1986]. The first example shows that when two pieces o f evidence are 

DS-independent, there are two alternative ways to combine them while the second 

one shows that when they are not independent, only the first method works.

Example 4.2:

Suppose that Shafer wants to know whether the street outside is slippery, 

instead o f observing this himself, he asks another person Fred. Fred tells him that 

‘ it is slippery’ . However Shafer knows that Fred is careless in answering questions 

sometimes. Based on his knowledge about Fred, Shafer estimates that 80% of the 

time Fred reports what he knows and he is careless at 20% of the time. So Shafer 

believes that there is only a 80% chance that the street is slippery. In fact Shafer 

forms two frames X i  and S in his mind for this problem where X\ is related to 

Fred’s truthfulness and S is related to the possible answers o f slippery outside.

X i =  {tru th fu l, careless}

S — {yes , no]

A probability measure pi on X i  is defined as

P iftru th fu l}  =  .8 pi {care less }  — .2
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He obtains the answer when this probability measure is propagated from the 

frame X\ to the frame S. The principle o f propagation is based on a multivalied 

mapping function between X\ and S. Assume that a multivalued mapping function 

Ti is defined as T\truthful =  { y e s }  and Y\careless — {y es ,  no},  Shafer obtains 

that

be li( {y es })  =  .8 beli({no})  =  0 (4-12)

which is a belief function based on the equation (4.10).

Further more, suppose Shafer has some other evidence about whether the street 

is slippery: his trusty indoor-outdoor thermometer says that the temperature is 

31 degrees Fahrenheit, and he knows that because of the traffic ice could not form 

on the streets at this temperature. However he knows that the thermometer could 

be wrong even though it has been very accurate in the past. Suppose that there 

is a 99% chance that the equipment is working properly, so he could form another 

frame X 2 with its probability distribution as

X 2  =  { working, notjworking}

P2 {w orking}  =  .99 p2 {notjworking}  =  .01

and a mapping function T2 as T2 U>orking =  {n o }  and T2 not^working =  {y es ,  no}. 

Therefore another belief function on S is calculated using (4.10) as

6e/2({? /es}) =  0 bel2 ( {n o } )  =  .99 (4.13)

Now the problem is that there are two pieces of evidence available regarding the 

same question ‘slippery or not?’ and Shafer wants to know what the joint impact 

of the evidence on S' is. In his paper, Shafer adopts two alternative approaches to 

do this.

Using Approach 1 in Dempster’s combination framework:

First o f all, since he believes that Fred’s answer is independent of the equip­

ment, i.e. the two original pieces o f  evidence are DS-independent, Shafer gets a
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joint space X  out o f X\ and X 2  as X  =  X i (3 X 2  with probability distribution p as 

p((x  1, 2:2)) =  Pi(%i) x P2 (x 2). This is shown in the first two columns in Table 4.3. 

Then the new compatibility relation between X  and S is given in the last column 

of Table 4.3 which takes into account what Fred and the thermometer have said. 

Because the joint element (truthful, working) does not match to any elements in 

S, he rules this element out and renormalizes the three others by eliminating the 

probability for (truthful, working). Finally, the posterior probability on X  is given 

in the third column in the Table 4.3. Eventually applying (4.10) to the posterior 

probability on X ,  a belief function on S is defined as

b e l({yes })  — .04 bel({no})  =  .95

X Probability of a subset o f S

Initial Posterior mapped with x

(truthful, working) .792 0.0 -

(truthful, not) .008 .04 {yes}

(careless, working) .198 .95 {n o }

(careless, not) .002 .01 {yes, no}

Table 4.3.

Here ‘not’ means ‘not_working’ .

For instance, for the element (truthful, not), its initial probability is

p((tru th fu l,n o t )) =  pi(truthful)  x p2 (notjworking) =  0.8 x 0.01 =  0.008

As element (truthful, working) matches to the empty set o f S, the probabilities 

of other elements in X  should be renormalized in order to assign zero probability 

to (truthful, working). The posterior probability of (truthful, not), therefore, 

is p'((truthful, not)) =  0.008/0.208 =  0.04. The multivalued mapping T as­

signs (truthful, not) to element yes  in S and assigns no more elements to yes, so 

bel({yes })  =  p'((truthful, not)) =  0.04.
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Using Approach 2 in Dempster’s combination framework:

In the second approach Shafer propagates the two pieces o f evidence from 

sources X\ and X 2  to space S first and then gets two belief functions defined 

as in (4.12) and (4.13) on S. Because he believes that the two sources are DS- 

independent, he uses Dempster’s combination rule directly to combine them. This 

procedure is shown in Table 4.4.

m {  yes }  .8 {  yes, no }  .2

{  no }  .99 

{yes, no }  .01

{ }  .792 {no }  .198 

{  yes }  .008 {yes, no }  .002

Table 4.4.

where the first row and the first column stand for the two mass functions 

derived from the two belief functions defined in (4.12) and (4.13) respectively. 

After the normalization, the result is the same as he obtains by using Approach 1 .

For instance, from this table, it is possible to calculate the combined mass 

function on yes  as m ({y e s } )  =  0.008/0.208 =  0.04. So that b e l( {y es } )  =  0.04.

From this example we can see that when the two sources are statistically in­

dependent, regardless o f which approach is used the results are the same. We 

should also notice that in the first approach, before the propagation procedure, 

Shafer has to calculate a posterior probability distribution in order to reflect the 

compatibility relation between the joint frame X  and the target frame S. So it is 

the posterior probability distribution rather than the initial one that is actually 

propagated.

However if the original pieces o f information are not independent, the second 

way may not work properly while the first one may still work as we can see in the 

next example.
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Example 4.3:

Continuing the first example, assume that Shafer believes that the Fred’s an­

swer relates to the thermometer as Fred accesses to the thermometer regularly to 

see whether it is working. If it is not working properly then Fred would be careless 

in answering questions. Assume that Fred has a 90% chance of being careless if 

the thermometer is not working, then Fred’s answer is somehow affected when the 

thermometer is not working.

Using Approach 1  in Dempster’s combination framework:

Because of the relationship between the two sources, it is impossible to get the 

joint space from X i  and X 2  by set product. Using Approach 1, Shafer gives the 

second column in Table 4.5 to replace the second column in Table 4.3 in order to 

take into account the dependency of Fred and the thermometer. Once again this 

initial probability distribution is renormalized in order to assign 0 probability to 

the element (truthful, working). Based on the compatibility relation between X  

and S, applying (4.10) another belief function on S is obtained.

bel'( {yes})  — .005 bel\{no } )  =  .95

X Probability of a Subset o f S

Initial Posterior mapped with x

(truthful, working) .799 0.0 -

(truthful, not) .001 .005 {yes}

(careless, working) .191 .950 {n o }

(careless, not) .009 .045 {yes, no}

Table 4.5.

This result is obviously different from the result given in Example 4.2 because 

of the relationship between the two pieces of evidence.
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Using Approach 2 in Dem pster’s combination rule:

Using Approach 2 in Dempster’s combination framework requires that the 

sources must be independent, i.e., irrelevant in any form or in any manner, in this 

case, the two sources are no longer independent, so Approach 2 in his framework 

cannot be used. That means Dempster’s combination rule cannot be applied. If 

we apply Dempster’s combination on this case, we will find that the combined 

result gives

bel({yes})  — 0.04

which is the same as obtained in the previous example and this result, under 

new assumptions, is wrong. The correct answer should be b e l( {y es } )  =  0.005. 

Therefore only Approach 1 can be used to deal with it.

The summary of this analysis is shown in Table 4.6.

Dempster’s comb 

Approach 1

nation framework 

Approach 2

Dempster’s combination rule 

beli bel2

Example 4.2 

Example 4.3

Applicable and correct 

Applicable and correct

Applicable and correct 

Inapplicable

Applicable and correct 

Applicable or inapplicable?

Table 4.6.

In fact, the two probability spaces (X i ,X i ,p \ )  and ( X i , X 2 ,P2 ) are not DS- 

independent (they are even not probabilistically independent). So Dempster’s 

combination rule cannot be used.

However if we purely consider the two belief functions beli and bel2  on S, it is 

difficult to tell whether Dempster’s combination rule is applicable or not (see Table 

4.6.). The rule is applicable in the case shown in the first example but inapplicable 

in the case shown in the second example. Shafer’s explanation of Dempster’s 

combination rule is right in [Shafer, 1986] and some of his other papers, but in 

practice Dempster’s rule does not carry (or ask for) enough information to make 

the correct judgement about the dependency of several pieces of information. This 

causes some confusion when one describes the condition of applying Dempster’s 

combination rule.
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If one uses Dempster’s combination rule under the condition that the rule 

comes out from Dempster’s combination framework, then one can normally use 

the rule correctly. If one doesn’t have Dempster’s combination framework in one’s 

mind and only has Dempster’s combination rule to use, then it is sometime very 

difficult to judge whether the rule is applicable given two belief functions.

The importance o f considering relations among the original information sources 

has been discussed above. The result tells us that it is more natural to consider the 

combination at both the original information level and the target information level 

than only at the target information level. However neither Dempster’s combination 

framework nor Dempster’s combination rule provides such combination facilities 

conveniently.

Several authors have pointed out the problems of applying Dempster’s combi­

nation rule and argued that the application o f this rule could give wrong result 

[Black,1987], [Hunter,1987], [Lingras and Wong, 1990], [Nguyen and Smets, 1991], 

[Pearl, 1988] and [Voorbraak, 1991].

4.4 Some Other Aspects of DS Theory

In this section, we will discuss some other opinions on DS theory.

4.4.1 Computational complexity problems in DS theory

Soon after DS theory was used in practice, it was pointed out that using Dempster’s 

combination rule has high computational complexity. A few algorithms have been 

developed to reduce the computational complexity in the theory.

Barnett [Barnett, 1981] first considered reducing the computational complex­

ity of Dempster’s rule o f combination. He gave an algorithm for a special case in 

which every piece of evidence can be represented as a special kind of mass func­

tion, a mass function which at most has one focal element apart from the whole 

frame and the focal element is either a singleton or the complement of a singleton.
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Mathematically a mass function m which can be considered in Barnett’s algorithm 

is defined as

m (A )  ^  0, i f f A =  {a }  or A  — 0  \ {a }

and

m (0 ) =  1 — m (A)

Barnett made the combination of I mass functions on a frame with n elements 

in a time linear in n (be. o(n)) when all the mass functions are given in the above 

form. For more details, see [Barnett, 1981].

Barnett’s algorithm is limited when a mass function is not in the form he re­

quired. Gordon and ShortlilTe [Gordon and Shortliffe, 1985] tried to reduce the 

complexity using a tree structure. They tried to reduce the computational com­

plexity o f combination when different pieces of evidence are relevant to different 

levels o f specificity in a hierarchy of diseases and they suggested an approach to 

approximating Dempster’s rule in this case. Later on this approach was strength­

ened by Shafer and Logan [Shafer and Logan, 1987] by an exact implementation 

o f Dempster’s rule in the case of hierarchical evidence shown in Figure 4.1. The 

mass functions which can be combined in such a structure are also limited to spe­

cial cases where for each mass function, its focal element can only be a node in 

such a tree or the complement of a node or the whole frame. Their algorithm can 

be carried out in time linear in | 0  |.

0

{ g j }  {a 2} {a 3} {a 4}  {a 5} {a 6}  { 07}

Figure 4.3 Hierarchical evidence space

Computational complexity in DS theory has been discussed in some special 

cases by Barnett, Shafer and Logan. Their work can be further generalized to
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a class of trees o f partitions or variables which are called Markov Trees. The 

problem of propagating belief functions in such Markov trees was discussed in 

[Shafer, Shenoy and Mellouli, 1987]. Propagating belief functions in networks of 

variables has also been studied by Kong [Kong, 1987] and Mellouli [Mellouli, 1987]. 

A different approach for reducing the complexity of Dempster’s combination rule 

has also been studied using Mobius transform of a graph in [Kennes, 1992] and 

[Kennes and Smets, 1990].

Voorbraak in [Voorbraak, 1988] argued that the computational problem in DS 

theory also arises when calculating belief functions from mass functions. He defines 

a Bayesian approximation of a belief function and shows that combining Bayesian 

approximations of belief functions is computationally less complex than combining 

belief functions. An approximation method for belief functions has also been 

studied in [Dubois and Prade 1990]. Recently Tessem [Tessem, 1993] provided an 

evaluation o f their approximations.

4.4.2 Heuristic knowledge representation in DS theory

Another limitation of DS theory is that it lacks the ability to represent heuristic 

knowledge when the theory is applied to expert systems. Several attempts have 

also been made to extend the theory to tackle this difficulty 

[Bonissone and Tong 1985], [Ginsberg, 1984], [Liu, 1986], [Yen, 1988], 

[Liu, Hughes and McTear, 1992] and [Liu, Hughes and McTear, 1994].

Consider the following piece of heuristic knowledge: if X  is then Y  is Yi 

with a degree of belief r x. If we get a piece of evidence which says that X  is Ah

with a degree o f belief a i, by invoking this rule we should be able to obtain the

corresponding degree ij\ for Y  is Yi . Certainly the value o f y i must be a function 

F  of ai and rx (i.e. y\ =  F{a\,ri)).

Generally, we suppose that a set of heuristic rules R includes:

Ri\ if Ei then IIn  with a degree of belief rn ;

/ / 12 with a degree of belief r i2;
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R2: if E 2  then II2 i with a degree o f belief r21;

II2 2 with a degree of belief r22;

Rn: if En then / / „ i with a degree of belief rnl;

IIn 2  with a degree of belief rn2\

where Ei, E2, ..., En are values (or propositions) of the variable E , and E{ is called 

an antecedent o f rule /?,. Hij in rule Ri is a subset of the values (or propositions) 

of the variable H and it is called one of the conclusions of rule R{. r{j is called a 

rule strength.

Assume we have a piece o f evidence which says that Ei is confirmed with degree 

« i, E 2  is confirmed with degree a2, En is confirmed with degree an, how can 

we solve the following problems:

1. what conditions should J2 i ai satisfy?

2. what conditions should J2 j r ij satisfy?

3. what is the function F  to determine hij (the degree o f belief on Hij) 

from those a,- and rtJ ?

4. if more than one set of rules is invoked and the same conclusion Hij 

is obtained, what will be the final degree of belief on Hij from those hij, hul

Generally, if the variable A1 is a Cartesian product of variables A, B , ..., C, that 

is, each Ei is in a form of (AiandBjancl...andCk), assuming we know the evidence 

for A, B ,..., C , then

5. what is the function F' to determine the degree of belief on the 

premise (Ai andBj and... and Ct)?
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These problems have been modelled in fuzzy theory using a fuzzy extension of 

modal logic, based on Zadeh’s concepts of necessity and possibility (Prade 1981). 

They were also solved in Mycin’s certainty factor model (Shortliffe and Buchanan 

1976). Can these problems be solved in Dempster-Shafer theory?

In [Yen, 1988], Yen used probabilistic mappings between two sets to replace 

multivalued mappings in DS theory in order to represent a heuristic rule as 

stated above. Later on in [Liu et al, 1993], [Liu, Hughes and McTear, 1992] and 

[Liu, Hughes and McTear, 1994], this approach is extended to more general cases 

by using evidential mappings to replace multivalued mappings. The advantage of 

this method and its comparison with Bayesian conditional probabilities [Pearl, 1988], 

with the approaches used in [Ginsberg, 1984] and [Hau and Kashyap, 1990] have 

been fully discussed in [Liu, Hughes and McTear, 1994].

Such extended theory is able to describe any kind o f knowledge and to make 

inference in practice.

4.4.3 Open world assumptions by Smets

DS theory is ofter criticized for combining two almost conflicting pieces o f infor­

mation (provided they are DS-Independent). We can illustrate this problem with 

the following example:

Example 4.4

Suppose we have a murder case with three suspects: Peter, Paul and Mary 

and two witnesses [Smets, 1988]. Table 4.7 presents the degree of belief o f each 

witness about who might be the murderer and the combined result o f these two 

pieces of evidence.
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combined unnormalized

suspect witnessl witness2 result result

mi m 2 m 1 2 1 7 1 1 2

Peter 0.99 0.00 0.00 0.00

Paul 0.01 0.01 1.00 0.0001

Mary 0.00 0.99 0.00 0.00

{ } 0.00 0.00 0.00 0.9999

Table 4.7 Result of combination

Zadeh [Zadeh, 1984] does not accept this solution, as it gives full certainty to 

a solution (Paul) that is hardly supported at all from the two witnesses. Looking 

at the column Unnormalized Result ra'12, this indicates that the 0.9999 portion of 

this belief has been committed to the empty set.

Smets [Smets, 1988] argued that in such a situation the meaning of the empty 

set should be reconsidered. Generally when one considers a problem, one con­

structs three sets, the Known as Possible (KP) set including those propositions 

that are known to be possible, the Unknown Proposition (UP) set including those 

propositions for which one has no idea whether they are possible or impossible, 

and the Known as Impossible (KI) set including those propositions known as im­

possible. In DS theory the Unknown Proposition (UP) set is always empty, and 

a frame of discernment is the Known as Possible (KP)  set. In the above exam­

ple, one solution to the conflicting result is to accept the Unknown Proposition 

set and believe that the real murderer must be a fourth person. Another method 

for handling the present inconsistency is that a meta-level belief should be used 

to consider the reliability of the witnesses. Smets [Smets, 1988] addressed that 

certainly discounting is one way to take into account this meta-level belief. If a 

further piece of evidence says The murderer is necessarily one o f  the group Peter, 

Paul and Mary, we have to accept the Unknown Proposition set is empty and 

m ({ } )  should be 0. Therefore m (P eter)  =  m (M ary) =  0 and m (Paul)  =  1.
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4.5 Summary of DS theory

4.5.1 Our argument in this chapter

In this chapter, we have reviewed DS theory from the perspective of probabil­

ity theory and tried to clarify the independence requirement in DS theory by 

defining the original information level and the target information level. We argue 

that any independent judgement in DS theory should be made explicitly at the 

original level. Purely considering Dempster’s combination rule without examin­

ing the original information will cause problems. However Dempster’s combina­

tion rule does not give us (or require from us) any information about what the 

original sources are. So the conclusion we get from the above analysis is that 

those counterintuitive examples given in some articles [Black,1987], [Hunter,1987], 

[Lingras and Wong, 1990], [Nguyen and Smets, 1991] and [Pearl, 1988], some of 

examples in [Voorbraak, 1991]4 (like examples 2.4 and 3.3 in his paper) are caused 

by ignoring the independent requirement defined by Dempster in his combination 

framework. In the sense of DS-Independence required by Dempster’s combination 

framework, those examples don’t satisfy this requirement, so Dempster’s combi­

nation framework is not applicable. However if we purely consider Dempster’s 

combination rule and believe that those examples satisfy the independent require­

ment needed by Dempster’s combination rule then Dempster’s combination rule is 

applicable, but the combined results are counterintuitive. From the former point 

of view, they are caused by the misapplication of the framework, from the latter

4Some of the examples in [Voorbraak, 1991] show the weakness of the definition of 

frames. The author argues that the accuracy of reasoning result depends on at which 

level the frame is constructed such as example 4.1. Some other examples explain that 

even though Dempster’s combination rule can be used in some situations, the results 

are still counterintuitive (violate with common sense) like example 6.12. This problem 

is also discussed in [Smets, 1988], [Zadeh, 1984] and [Zadeh, 1986]. Readers can refer to 

those papers if interested in more details.
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point o f view they are caused by the weakness of the combination formula. Neither 

of them is able to deal with those cases. Based on such a discussion, those belief 

functions, which can only be viewed as generalized probabilities, are precisely the 

cases which fail to satisfy the requirement of DS-Independence. So Dempster’s 

combination rule is not suitable to cope with them.

4.5.2 Summary

The basics o f DS theory can be summaried as follows.

DS theory has two advantages:

• Representing ignorance due to lack of information

• Combining multiple pieces of evidence using Dempster’s combination rule 

DS theory also has the following limitations:

• The computational complexity in using Dempster’s combination rule is very 

high

• The application areas of Dempster’s combination rule are rather limited

• There is a difficulty in representing heuristic knowledge
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Chapter 5

A comprehensive comparison between 
generalized incidence calculus and the 
Dempster-Shafer theory of evidence

In Chapter 3 we have extended the original incidence calculus. Extended incidence 

calculus has the advantages to represent ignorance and combine evidence. These 

advantages are also possessed by DS theory. In this chapter, we provide a com­

prehensive comparison between extended incidence calculus and DS theory. We 

will compare these two theories in both representing and combining evidence. We 

will prove that 1) they have the same ability in representing evidence. 2) any two 

pieces o f evidence which can be combined using Dempster’s combination rule, can 

also be combined in incidence calculus by applying Theorem 2 and they obtain the 

same results. So Dempster’s combination rule and Theorem 2 are totally equiva­

lent. 3) those dependent cases which can be combined by the new Combination 

Rule (but not Theorem 2) cannot be combined by Dempster’s combination rule 

[Liu and Bundy, 1994].

A few examples are used to demonstrate the similarities and differences between 

these two theories.
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5.1 Comparison I: Representing Evidence

In DS theory, a mass function is defined on a frame 0 . Given a set of propositions 

P, P  may not be a frame. However the basic elements set of P , A t,  is a frame. 

In [Fagin and Halpern, 1989a], any arbitrarily defined frame 0  is taken to be a 

subset o f some A t  (in fact, given a 0 , it is always possible to define A t  =  0  for 

a proper P ). In this chapter, we follow the same idea and use A t  to denote any 

frame of discernment.

Given a DS structure (A t,b e l ) and a generalized incidence calculus theory 

< W , f i ,P ,A , i  >  (where the frame At  is the basic element set of P ), we say that 

this DS structure is equivalent to the generalized incidence calculus theory if for 

any A  C  At, bel(A) =  p*((/>a)- Here <f>A is defined as

4>a — VSj where Sj £ A

That is if we use DS theory to describe the degree of belief on At, then we 

consider A t  to be a frame, but if we use incidence calculus to describe the degree 

of belief on At,  then we consider A t  to be a collection of the basic elements formed 

from P. Therefore, a subset A  o f A t  in 2At is treated as equivalent to the formula 

\/5j (where 8 j £ A) in C(At).

Theorem 4 For any DS structure [At,bel), there is an equivalent generalized 

incidence calculus theory <  W , ¡jl, At, A , i > .

P R O O F

Given a DS structure (At,bel),  suppose A DS =  {A x , . . .A n}  is the focal element 

set o f belief function bel and m is its mass function, then Em (H j) =  1.

1) create a set of possible worlds W  =  {uq, ..-wn}  and let p (w j) =  m (Aj).

2) let a subset A  of A t  be {(f)a, \ Aj £ A ds}',

3) define the basic incidence assignment ii as ii{(f>A3) =  {« f i } ;
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4) define the incidence function i from ii as =  U<f>A eA,<t>A

Then <  W , p , A t , A , i  >  is a generalized incidence calculus theory (it is easy 

to prove that i has the features o f Definition 3.1 in Chapter 3).

For any formula (f)A in C (A t)  and its related subset A  o f A t,  we have 

P*{.4>a ) =

— P{̂ J<t>Aj \=<t>Â 4‘Al\=4>AJ

=  / / (U t A ^ A ^ i M )

— ‘̂<l>Al\=4‘AP,(^ ( (t)Al))

~  -̂,<t’Al\=4>AtJ'( {Wl})

=  Syiiç j4m(^4/)

=  bel(A)

Then the belief function bel(A) is exactly the same as p*(4>a )- 

□

So pls(A) =  1 -  bel(-iA) =  1 -  p*{~«f>A) =  /¿(W  \ i*(- (̂f>A)) =  P*{A).

This theorem tells us that the belief function on frame A t  given by a DS 

structure is the same as the lower bound of the probabilities on the formulae if we 

think o f A t  as a basic element set. Therefore, any belief function can be obtained 

as a lower bound from a generalized incidence calculus theory.

Example 5.1

The example used here is originally from [Fagin and Halpern, 1989b] and sim­

plified by [Correa da Silva and Bundy, 1990b] as follows.

A person has four coats: two are blue and single-breasted, one is grey 

and double-breasted and one is grey and single-breasted. To choose
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which colour o f coat this person is going to wear, one tosses a (fair) coin.

Once the colour is chosen, to choose which specific coat to wear the 

person uses a mysterious nondeterministic procedure which we don’t 

know anything about. What is the probability o f the person wearing 

a single-breasted coat?

We solve this problem by using DS theory first and then deal with it in gener­

alized incidence calculus.

D S stru ctu re : Let P  =  {g, d} where g stands for “ the coat is grey” and d 
stands for “the coat is double-breasted” , then we have

At = {g A d, ->g A d,g A ->d, g A i d }

which is a frame. The element -<g A d in this frame is false because there is no

coat which is not grey but double-breasted. So the real frame of discernment is 

reduced to;

A t  =  {g  A d, g A ~>d, ~̂ g A -id}

According to the story that one tosses a (fair) coin to decide which colour to 

choose, we can define a mass function on the frame A t  as

m ({ - i<7 A i d } )  =  0.5 m ({<7 A -id, g A d }) =  0.5

with the focal element set A ds as

A d s  =  { { ^ 9  A -id}, {g A ->d,g A d } }

Therefore, we have a DS structure (A t,b e l ). The degree o f belief on -id is 

¿>e/(-id) =  m(~<g A -id) =  0.5 and the degree of plausibility is 1.

The degrees of belief and plausibility say that the probability o f the person 

wearing a single-breasted coat lies somewhere between 0.5 to 1 which cannot be 

measured in a single number.
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G en era lized  in cid en ce  calcu lus th eory : Based on the story we could have 

two possible worlds: w i for blue and single-breasted coats and w2  for grey coats. 

The probability o f each of the possible worlds is 0.5.

Given a set o f propositions P  and its basic element set A t  as defined in DS 

structure, we know that wx supports formula -ig A ->d and w2  makes the formula 

(g A ->d) V (g A d) true. So we define i(~<g A ~'d) =  } and ¿(g) =  {rc2}. Then

< W ,p ,  P, A ,  i >  is a generalized incidence calculus theory.

From this generalized incidence calculus theory, we have that

im(—>d) =  i(->g A —<d)

=  W \ * .(d ) =  W

so

p*(-id) =  0.5 p*(~id) =  1

which is identical to the result from DS theory.

T h e o re m  5 For any generalized incidence calculus theory <  W , p, P, A , i > , there 

is an equivalent DS structure (A t,b e l ).

P R O O F

Suppose <  W ,p , P ,A , i  >  is a generalized incidence calculus theory and ii is 

the corresponding basic incidence assignment,

1) define a subset A ds of A t  as A ds — { A  \ 4>a £ A } .

2) if H(4>a ) /  W , then A ds ■= A DsU {-At}  where i i (A t)  :=  W \ U ^  n(4>A)-

3) define m (A j) — p{ii{(f)Aj)) where Aj 6 A d s■ Then =  1.

So bel: bel(A) =  Tibca^ { B )  gives a belief function on A t  and we obtain a DS 

structure (A t, bel).

For any formula <j)y\ in C (A t)  and its related subset A  of A t,  we have
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pM a ) =

=  M U  h {4>b ) I <t>B 1= <t>A,4>B e  . 4 )

=  I <t>B h  4>A, <t>B € A )

=  E (m (B ) | B  C 4 ,  5  e  A D5)

=  bel(A)

Therefore, <  W ,^ , P, A , i  >  and (A t,b e l ) are equivalent.

□

Example 5.2

This example demonstrates the procedure of producing a DS structure based 

on a given generalized incidence calculus theory as indicated in Theorem 5. This 

weather forecasting example continues the story in Chapter 3.

Assume we know that on fri, sat, sun, mon it will rain and on mon, 

wed, fri it will be windy. The question we are interested in is on which 

days it will not rain.

Generalized incidence calculus theory: Let a set of possible worlds W  be 

{sun, mon, tues, wed, thus, f r i ,  sat}  and they have equal probability i.e. =

1/7 and let P  — {ra in y , windy}. The incidence function defined out of the above 

story is

i (rainy ) =  { f r i ,  sat, sun, mon}  

i(wind.y) — {mon, wed, f r i }

the basic incidence assignment ii is

ii(rainy  A windy) =  { f r i ,m o n }  

ii(rainy) =  {sat, sun}
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ii (windy) =  {wed}  

i i(A t)  =  {tues, thur}

and the basic element set A t  is

A t  =  {ra iny  A windy, rainy  A ~<windy, - ‘rainy A windy , - ‘rainy  A -'windy} 

Therefore the generalized incidence calculus theory is

<  W , /¿, P, .4, i >

where 4. =  {ra in y , windy, rainy  A windy}.

From this theory, we have

i^(-'rainy) =  { }  

i*(->rainy) — {tues, wed, thus}

so

p,(-<rainy) 0 p*(-<rainy) =  3 /7

That is we cannot be sure on which day it will not rain but possibly on Tuesday, 

Wednesday or Thursday.

D S stru ctu re : For frame At  as defined above, we can derive a mass function 

m on it based on Theorem 4 as

m(rainy  A windy) — 2/7

m(rainy) — 2 /7

m(windy) — 1/7

m (A t) =  2/7

So we have bel(-'rainy) =  0 and pls(rainy) =  3/7. The DS structure (A t,b e l ) 

gives the same result as incidence calculus.

A similar result has also been achieved in [Correa da Silva and Bundy, 1990b]. 

In their paper, it is proved that any original incidence calculus theory is equivalent
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to a Total Dempster-Shafer probability structure, and any Total Dempster-Shafer 

probability structure is equivalent to an original incidence calculus theory. In 

this paper, we have generalized incidence calculus theories and shown generalized 

incidence calculus theories are totally equivalent to DS structures.

5.2 Comparison II: Combining DS-Independent 

evidence

For any two DS structures (At,bel\) and (A t,bel 2 ), if we assume that the two 

belief functions are derived from two DS-independent pieces of evidence, then 

these two belief functions can be combined using Dempster’s combination rule. 

From these two DS structures, two generalized incidence calculus theories can 

also be produced, and their combination leads to the third generalized incidence 

calculus theory using Theorem 3 in Chapter 3. What we need to prove in such 

a situation is that the combined result of the two DS structures turns out to be 

equivalent to the combined generalized incidence calculus theory.

T h e o re m  6 Suppose (At,belf) and (A t ,b eh ) are two DS structures and bel\ and 

bel2  are obtained from the two DS-independent pieces o f  evidence and assume that 

the combined DS structure is (A t,b e l ). Further let <  W i, pi, A t, A i,  i\ >  and 

<  W 2, P2 , At, A 2 , ¿2 >  be the two generalized incidence calculus theories produced 

from (At, beli) arid (A t,bel2), and <  W , p , A t , A , i  >  be the combined generalized 

incidence calculus theory, then (A t,b e l ) is equivalent to <  W , p., A t, A , i  > .  That 

is, for  any subset A o f  At,

bel(A) =  p*(4>a )

Our proof is divided into two parts. In part one we need to prove that the 

conflict weight k in the combined DS structure is equal to /¿(Wo) 'n fhe combined

121



generalized incidence calculus theory. In part two we need to prove that bel(A) =  

p»(<^4) for any A  C At.

Because beli and 6e/2 are derived from two DS-independent pieces of evidence, 

(W i,/ /i )  and (W 2, /J-2 ) are DS-independent. So Theorem 2 is used to combine these 

two derived generalized incidence calculus theories.

P R O O F

Suppose the two focal element sets in these two DS structures (At,bel\) and 

(A t,bel2) are

Ads  =  {A i ,  A 2, ..., An}  T,mi(Ai) =  1 

Bds — {Bi,  B 2 , . . . ,  Bm} Em2(Bj)  =  1

The combined DS structure is (A t,b e l ) with bel defined as beli 0  bel2.

Furthermore the two sets of axioms in the corresponding two generalized inci­

dence calculus theories <  W i, /¿i, P, A i,  ii >  <  W 2, p 2, P, A 2 , i 2  >  are:

A\ =  =  {w u},H i(w u) =  m i(Ai)

A 2  =  =  {w 2 j } , p 2 (w 2 j)  =  m 2 {Bj)

P art O ne

Part one proves k =  fi(Wo) where k is the weight of the conflict between these 

two DS structures, and Wo , which is defined in Chapter 3, is the conflict set in 

the combined generalized incidence calculus theory.

Suppose m =  mi 0  m 2, for any Ai fl Bj =  { } ,  (At € Ads, Bj € B d s ) 

m i(A i)m 2 (B j)  will be part o f k. That is k =  k' +  m i(A i)m 2 (Bj).

For <f>Al from Ai € A i)  and ipB] from Bj 6 A 2), we have (pAlAipBj (=1 .

So
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/i(W o) =  P (U ^ (A ̂PBj\=L *l(0A,) ® ¿2 (0B 0)

— //(U0j4jAi/'b 1=0/1. **l(0A;)) ® (Ui/'B( hV'B, **2(0-Bj)))
I j

—  Li {\J<t>Al AxpBj N -L ^ 0 j4,At/'B / P ^ A i / ' B j  * * l ( ^ i 4 j )  ®  **2 ( 0 B j ) ) )

=  ^ ( U ^ A ^ h J .“ ! ^ ' )  ® **2(0B '))I J
=  S (^ i (* * i (^ ') ) / i2(**2(^B()) I 0a; a  f=±)

=  S (/Ji(w if')/i2(w2j')  | 0 a; a  05- (=±)

=  E(m 1(Ai)m2( ^ . ) M ; n f i '  =  {})

= A;

P art T w o

For any subset C  of At, and its corresponding formula c^c, we need to prove 

that bel(C) =  p*(<pc)-

For A/ 6 A c s  and B j  G 5 c s ,  if A/ Pi B j  C C, then m i(A t)m 2(i?j) is a part of 

bel(C).

For (ftai from A; and 05 j from B j ,  we have (pAt A  05^ (= </?c- So

P .(^ c )  =

=  P d J ^ A ^  hvc *l(0 ^ i) ®  *2(05,-))

|=V o ( /Xl(* l(0 A « ))^ 2 (* '2 (0 B i ) ) ) / ( l  -  A:) 

^ i iAiAi/'BJ i=¥,c ( P i (U</ij4, p 0 J4( ( 0 a ; ) ) p 2 ( I V B,n v -S j * * 2 ( 0 b ' . ) ) ) / ( 1  — &) 

=  A,/'BJ hvc { tWli'})P 2(Ut/<B, V̂-Bj { W;2i '} ) ) / (^  — ^)

=  ,'AV'i?'=VC',VC'h vc(P i({u;n'})P2({in2i'}))/ (l  -  A:)
* i

=  Sc'cc,A;nB'=C"(m i(A/)ni2( 5 j ) ) / ( l  — &)

=  E c 'c c m (C /)

=  6e/(C)
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Example 5.3 Combining two DS-independent pieces of evidence using both 

Dempster’s combination rule and Theorem 2 in generalized incidence calculus.

Using D em pster’s combination rule

Assume that we have two DS structures (At,beli)  and (A t ,b el2) with the fol­

lowing additional information.

A t — {a, 6, c, d}

A d s  =  { { a , b , c } ,A t }

B ds = {{c, d}, A t}  

m i({a ,6 ,  c}) = 0.7,mi(At)  = 0.3 

m 2({c, d}) = 0 .6 ,m 2(*4i) = 0.4

Here A ds  and Bds  are the focal element sets for belief functions beli and bel2  

respectively. Combining these two belief functions derived from m\ and m 2, we 

get a joint belief function as shown in Table 5.1.

A {a , b, c } A t

m 0.7 0.3

{c, d] W {c, d]

0.6 0.42 0.18

A t {a , 6, c} A t

0.4 0.28 0.12

Table 5.1 Combination of two DS-independent pieces of evidence

From this table, it is possible to calculate degrees o f belief on any subsets of 

At. For instance, for subset {a,fe, c }, we have 6e/({a ,6 , c })  =  0.42 +  0.28 =  0.7 

and pls({a ,b ,  c })  =  1.
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Using the incidence calculus combination rule

From the two DS structures given above, we are able to form two generalized 

incidence calculus theories from them as

<  VV2, fi2, Pi A 2, *2 >  

with the following additional information

W i =  {w n ,w u } ,n i {w n ) =  0.7, h i (w i2) =  0.3 

P  :=  At 

A i  =  {a  V b V c, A t }

¿ i ( a V i V c )  =  { ^ 11} , i i (A t)  — Wi 

w 2 =  { ^ 21, ^ 221,^ 2(^ 21) =  0.6, ^2(^ 22) =  0.4 

P := At 

A 2  — { c  V d, A t }  

i2{c y d )  — {u>2i} ,  i2 (A t)  =  W 2

As (W i,g i )  and (W 2,p 2) are DS-independent, Theorem 2 in Chapter 3 is used to 

combine these two incidence calculus theories as given in Table 5.2.

4>a a y  b y  c true

) W l m

c V d c c V d

{ ^ 21} {will} <8 ) {w 21} Wi <g> {ui2i}

0.42 0.6

true a y  b y  c true

W 2 {w ii}  0  w 2 W i  ® w 2

0.7 1

Table 5.2 Combination o f two DS-independent generalized incidence calculus

theories
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The combined generalized incidence calculus theory is <  Wf ® W 2, //, P , >1, i >  

where /r(<  w u,w 2j > )  =  I^i(wn)n2 (w 2 j).  From this theory, we are also able to 

obtain the degree of our belief in any formula. For example, p,(a  V b V c) =  

V b V c)) =  0.7 and p*(a V b V c) =  1 which are the same as we got in DS

theory.

Comparing Table 5.1 with Table 5.2 we will find that these two structures give 

the same result (numerically) on any subset (or formula). We will also find that 

whenever a numerical value (mass value) appears in Table 5.1, a corresponding 

incidence set replaces its position in Table 5.2. The combination procedure in 

generalized incidence calculus combines possible worlds instead of numbers. The 

degree o f belief in a formula is calculated based on the incidence set.

Now it has been proved that what we can combine using Dempster’s combi­

nation rule can also be combined in incidence calculus and they obtain the same 

result. Moreover in the next section we are going to show that we can handle a 

wider range of information in incidence calculus by applying the new combination 

rule.

5.3 Comparison III: Combining Dependent Ev­

idence

In this section, we first show an example which can be dealt with using the com­

bination rule in incidence calculus but cannot be dealt with using Dempster’s 

combination rule. We then explore the theoretical difference between these two 

theories and explain why DS theory fails to deal with dependent evidence while 

incidence calculus succeeds.

Example 5.4

This example is from [Voorbraak, 1991]. There are 100 labelled balls in an urn 

as given in Table 5.3.
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Label Number of Balls Subset Name in W

axy 4 Wi

ax 4 w2
ay 16 w3
a 16 w4

bxy 10 w*
bx 10 We

by 20 W 7

b 20 W 8

Table 5.3. 100 balls and their labels

Suppose X  and Y  are separate observations of drawing a ball from the urn. 

The information carried by them is:

X : the drawn ball has label x;

Y : the drawn ball has label y.

Based on these two pieces o f evidence, we are interested in knowing the degree 

o f our belief that the drawn ball also has label b.

Using Dem pster’s combination rule:

Let a set o f propositions P  be {a , b}. a stands for a proposition ‘The drawn ball 

has label a ’ and b stands for the proposition ‘The drawn ball has label b\ Then 

the basic element set A t  is the same as P  which is a frame. Two mass functions

are defined on A t  based on the information carried by the two observations X  and

Y  as:

m x(a )  =  2/7, mx{b)  =  5/7 

my (a) =  2/5, my(b) =  3/5
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where m x{a )  is the mass value on a given by observation X  which represents 

the possibility o f a ball having label a when the ball is observed having label x 

and m y (a) is the mass value on a given by observation Y  which represents the 

possibility o f a ball having label a when the ball is observed having label y.

The result o f applying Dempster’s combination rule to the above two mass 

functions is m(b) =  m x  © m y{b ) =  15/19. So bel(b) =  15/19.

While in probability theory, the probability that a ball has both label x  and y

is

p(x)p(y)  =  0.28 x 0.5 =  0.14 =  p(x  A y)

Therefore, we have p(b | x A y) =  5/7. Obviously the results obtained in DS 

theory and in probability theory are not the same and the result given in DS 

theory is wrong. See the detailed analysis of the example in [Voorbraak, 1991].

Using the incidence calculus combination rule:

Let us examine this example in incidence calculus theory. First of all, we 

suppose that the set of possible worlds W  contains 100 labelled balls.

W  — Wi U W 2 U Wg U VFj U W$ U Wq u W~t U W 3

where Wi contains 4 possible worlds each of which specifies a ball with labels xya, 

..., Wg contains 20 possible worlds each of which specifies a ball with label b. The 

probability distribution on W  is y(w )  =  1/100 for any w £ W . We further suppose 

the set o f propositions P  contains {a ,6 , x ,y }  where a means that the chosen ball 

has label a etc.

From observations X  and Y,  it is possible to construct two generalized inci­

dence calculus theories

<  W , y , P , A u ii >

<  W ,/i, F ,-42,Z2 >

where

ii(x )  - Wi U W 2  U IV5 U Wq
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and

*i(a A x) =  W l U W 2, ¿1(6 A x ) =  W 5 U W 6

¿2(y) = Wi U W 3  U W 5  u W 7

i2(a A y) =  Wi U W3, i2(b A y) =  W 5 U W 7

where Ai  =  {x , a A x, b A x }  and .42 =  {y , a A y,b  A y }.

Applying the Combination Rule proposed in incidence calculus to these two

theories, we can get the third incidence calculus theory <  W , p , P , A , i  >  with 

i  =  { i A y , a A x A y , i ) A x A y , a A i ) A x A y }

i(b A x A y) =  W 5  i (x  A y) =  Wi U VF5

i(a A x A y) =  Wi i(a A 6 A x A y) =  { }

It is easy to prove that for any <f> € A,  ¿*(0) =  ¿*(0) =  ¿(0), so a function 

p, defined as p(<f>) =  p*(<j>) =  p(i(4>)), is a probability function on A. Further 

because p{b A x A y) =  10/100 and p(x A y )  — 14/100, according to Equation (3.3) 

in Chapter 3, we have

v{b I x A v ) =  ? ( b_A x A y) =  ^ ( K b ^ x A y ) )  =  
p ( x A y )  /i(* (x A y ))

This result is consistent with what we could get in probability theory.

Now we try to explain theoretically why Dempster’s combination rule cannot be 

used in this case. In fact, the two mass functions are derived from two probability 

spaces (S i ,p i )  and (S 2 , p 2) where =  Wi U W 2  U W 5  U W6, p,\(5) =  1/28 and 

S2  =  Wi U IT3 U W 5  U Wr and p, 2 (s) =  1/50. These two probability spaces are 

defined from the unique space (W ,y )  and they share the information carried by 

the subset Wi U IT5. Therefore Dempster’s combination rule cannot be used to 

combine the two mass functions derived from the two probability spaces.

In incidence calculus, instead of combining numbers on set At,  we combine 

two pieces of evidence symbolically at the original information level, i.e., at the 

probability space level. For the above example, since the two probability spaces are
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somehow related to the unique space (W , //), we establish two generalized incidence 

functions from W  to P  rather than from Si and S2  to P  respectively. Therefore it 

is possible to cancel the overlapped information carried by the two observations. 

Because DS theory is a purely numerical uncertainty reasoning mechanism, it is 

not possible to combine evidence symbolically. So it is not possible to represent 

and cancel the joint (or overlapped) part o f the information provided by two pieces 

o f evidence.

Therefore, we conclude that even though the two theories have the same ability 

in representing evidence and combining DS-independent information, their theo­

retical structures are rather different. The essence of incidence calculus, indirect 

encoding o f  probabilities o f  formulae, makes it possible to cancel the effect of 

overlapped information and provide an alternative combination mechanism which 

combines dependent information. Although trying to combine dependent infor­

mation at the probability space level has been considered in [Shafer, 1982] and in 

[Lingras and Wong, 1990], no unique rule was provided in DS theory for general 

cases because o f the theoretical limitation of the theory.

5.4 Analysing Examples

In this section we reanalyze Example 4.2 and 4.3 used in Chapter 4. Shafer used 

these two example to show the idea that Dempster’s combination framework can 

be used to deal with these two cases while Dempster’s combination rule can only 

be used in the first case. We will show that the combination rule we proposed can 

deal with both cases.

Example 5.5

Example 4.2 is about to combine two DS-independent pieces o f evidence in DS 

theory. The main point in that example is that Frad’s report is irrelevant to the 

indication of the indoor-outdoor thermometer. So the two mass functions derived 

from these two sources can be combined using Dempster’s combination rule. In
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Example 4.2, three spaces, X \ ,X 2  and S are involved. Two o f them carry the 

evidence we collect and one is the target domain we would like to reason about. 

The corresponding probability spaces for the first two spaces are ( X i , X\, p x , )  and 

(X 2 , X 2 ,Px2)- Because these two probability spaces satisfy the DS-Independence 

requirement, the joint probability space is (X i ® X 2,Xx ® X 2  ,px^ ®PXi)- In order 

to combine these two pieces of evidence in incidence calculus, we need to describe 

them in incidence calculus terminology. From the two evidential spaces and their 

multivalued mappings to S (in this case, S is a set o f propositions), two generalized 

incidence calculus theories are formed as

<  X 1 ,pXl, S , A 1 , i 1  >

K X*2 ) PXi t S) »421 ? 2 ^

where

A i  =  {y es ,  yes  V no}

i i (y e s ) =  { t ru th fu l} ,  i\(yes V no) — {careless }

A 2  =  {no, yes  V no}

i 2 (no) =  {working}, i2{yes  V no) — {n o t}

Applying Theorem 2 in Chapter 3 to these two theories, we get the third 

generalized incidence calculus theory <  X , p, S, A , i  > ,  where

Wo =  {  <  truthful, working > }

X  =  X i  ® X 2 \ Wo

/  . . \ PX, (J l )x p x 2 (^2)________
p {<  x u x 2  > )  -  i - e <i, iI, >6Wopx1W)xp*2(4)

A  — {yes ,  no, yes V no}

i{yes) =  i(yes  A (yes  V no)) =  ii(yes)  ® i2(yes V no) \ VV0 =  { <  truthful, not > }  

i(no) =  i((yes\/no) hno)  =  ¿i(ye3V no)® t2(no)\W 0 =  { <  careless, working > }
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So we have p*(yes) =  p (i(yes ))  =  .04, p*(no) =  .95 which are the degrees of 

our belief in the two answers. This result is identical with the result obtained in 

Example 4.2. The detailed combination procedure is shown in Table 5.4.

i(yes  V no) — (i\(yes) ® i2 (yes  V no) Ui\(yes V no) ® i2(no) U ¿ 1  (yes V no) ® ¿ 2  (yes V

no)) \ Wo =  { <  tru th fu l , not > ,  <  careless , working > ,  <  careless , no£ > }

4>

i(cj>)

yes 

{ tru th fu l }

yes  V no =  true 

{careless }

no 1 no

{ working} { tru th fu l }  ® {working} {care less }  ® {w orking}

yes  V no =  true yes true

{ not} { tru th fu l }  ® {n ot} {care less }  ® {n o t }

Table 5.4 Combination of two DS independent complete DS structures

Example 5.6

Example 4.3 differs from Example 4.2 in the way that it does not assume that 

Fred’s report is irrelevant to the indication of the thermometer. Rather, these two 

sources are interrelated in some ways. Although it is similar to what we did in 

Example 5.5 that there are still three spaces X\, X 2  and S, and the joint space 

of X\ and X 2  is still X\ ® X 2, however, the joint probability measure on X  is no 

longer px  , ® p x 2 because o f some dependency relation between the two probability 

measures on X i  and X 2. So Dempster’s combination rule cannot be applied and 

we cannot use Theorem 2 on this case any more. The actual probability measure 

is replaced by a new measure, denoted as p, which is given in the second column 

of Table 4.5 to take into account of Fred’s careless ‘ if the thermometer is not 

working’ . The new probability space will be ( X ,X ,p ) .  From the compatibility 

relations between X i , X 2  and S, two incidence functions are decidable from X  to 

S as

ii(yes)  =  { <  truthful, working > ,<  truthful, not > }
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ii(y es  V no) =  { <  careless, working > , <  careless, not > }

=  {y es ,  yes  V no]

and

i2 (no) =  { <  truthful, not > ,<  careless, not > }

i 2 (y es V no) =  { <  truth fu l,  working > , <  careless, working > }

A 2  =  {no, yes  V no]

So the two corresponding incidence calculus theories are

<  X ,g ,S ,A i , i i  >

< X , g , S , A 2 , i 2  >

Combining them using the rule given above, we get the third incidence calculus 

theory <  X ' , g ' , S, A , i  >  where Wo =  { <  truth fu l,  working > } ,  X '  =  X  \ Wo, 

and g! is shown as in the third column of the Table 4.5. From this combined 

incidence calculus theory, the degrees of our belief in ‘yes’ is .005 and in ‘no’ is 

.95. It is once again the same as Shafer got in Example 4.3 in DS theory but this 

result cannot be obtained by using the Dempster’s combination rule.

If we examine Examples 4.2, 4.3, 5.5, 5.6 carefully, we will find that the conflict 

set Wo in incidence calculus is always equivalent to the set o f elements Shafer rules 

out from the joint set, and / /  is exactly the posterior probability measure given by 

Shafer. Therefore the new combination rule in incidence calculus covers the idea 

proposed by Dempster in his combination framework. The calculation o f conflict 

set Wo and the modification o f probability distribution g! are automatic. The new 

rule integrates all these procedures into one mechanism in a natural way.
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5.5 Comparison IV : Some Other Aspects Be­

tween The Two Theories

Apart from the comparisons between these two theories in the above three aspects, 

in this section, I will reveal some minor relations among these two theories in the 

following two aspects.

5.5.1 Similar but different mapping relations in the two 

theories

In both the original incidence calculus and in extended incidence calculus, we keep 

mentioning a mapping function, incidence function i. This mapping function is 

the most important component in a generalized incidence calculus theory (and 

in an original incidence calculus theory). An incidence function between a set of 

possible worlds W  and a set of formulae A  says that for each formula </> in A,  

there is a subset W<j, in W  corresponding to it. A probability distribution on W  

is discrete. That is for each w € W , p(io) is known.

In DS theory, if we know that a belief function bel on A t  is derived from a 

probability space ( S , x ^ ' ) i  then there must be a mapping function T between S 

and At.  For each s in S, Ts is a subset of At. The probability distribution / /  on 

S is not necessarily discrete.

DS theory and generalized incidence calculus are equivalent in generating 

bounds on formulae (or sets). Bundy in [Bundy, 1992] said: Both systems1 permit 

only partial definition of the probabilities of some formulae. DS theory achieves 

this by defining the incidence o f all formulae, but not defining the probabilities 

of all the possible worlds, i.e., T is a total function, but fi' is a partial function.

xMeans D S  theory and incidence calculus.
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Incidence calculus achieves a similar effect the other way round, i.e., p is total but 

i is partial.

It is possible to draw a diagram below to demonstrate the similarity and the 

difference between these two mapping functions.

Figure 5.1. T in DS and i in incidence calculus

Because the direction of mapping function i goes down in incidence calculus 

while the direction o f mapping function T goes up, it is possible to propose a new 

combination rule at the symbolic level. It seems that it is not possible to propose 

a similar combination mechanism in DS theory due to this difference.

5.5.2 Recovering mass functions

In DS theory, when a belief function bel is known, its mass functions can be 

recovered from it when the frame A t  is finite. This is particular necessary when 

Dempster’s combination rule is applied because this rule only applies on mass 

functions.

Since bel on a frame A t  is equivalent to the lower bound of a probability 

distribution calculated from the lower bound of incidences on A t,  the application of 

Algorithm B in Chapter 3 on a DS structure (At, bel) can recover its corresponding 

mass function [Liu, Bundy and Robertson, 1993a]. This is given in Algorithm C 

below.
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Algorithm  C

Given a function bel on the set C (P ) — A , determine whether bel is a belief

function on this language set 2 and obtain its mass function if it is.

Step 1: Delete all those elements in A  in which bel(*) =  0. Then as in algorithm 

B, define a subset A 0  out of A. For any <j> £ Ao, define m(<p) =  bel(<p). 

Assume that there are I elements in Aq. Define A' =  A  \ Ao.

Step 2 : Chose a formula ip from A' which satisfies the condition that \/ip' £ A',

ip' ^  ip.

For all <pj £ A q repeat bel (ip) bel (ip) — bel(<pj) when <pj [= ip.

If bel (ip) >  0, define

l : = l  +  1 

Ao ■— Ao U {V*}

A' :=  A 1 \ {iP}

m(ip) bel(ip)

If bel(ip) =  0 then ip is not a focal element o f this belief function.

If bel(cp) <  0 then this assignment is not a belief function, stop the procedure. 

Repeat this step until A! is empty.

Step 3: All the elements in Ao will be the focal elements o f this belief function 

and the function m defined in Step 2 is the corresponding mass function. It 

is easy to prove that S^m (A ) =  1.

The algorithm tries to find the focal elements of a belief function one by one. 

Once all the focal elements are fixed and the uncertain values of these elements

2In fact, this language set can be any frame of discernment.
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are defined, the corresponding mass function is known. The worst case o f com­

putational complexity of this algorithm is the same as the approach used in DS 

theory but it may be more efficient when the elements in A'  are arranged in the 

decreasing sequence of their sizes.

Example 5.7

Assume that there are four elements in A t — {a , 6, c, d} and A  =  C {P )  is 

A  =  {a , b, c, d, a V 6, a V c, a V d, b V c, b V d, c V d, a V b V c, a V c V d, a V b V d, b V 

c V d, a V V c V d } and the corresponding degrees of belief in elements o f A  are 

bel(A) =  { .5 ,0 ,0 , .3, .7, .5 ,8 ,0, .3, .3, .7 ,8 ,1, .3 ,1 }.

By using the Algorithm C, the calculating procedure for a mass function is as 

follows.

Step 1. After deleting those elements with 0 degrees o f belief, we have A  — 

{a V  6 V cV  d, i> V cV  d, aV  6V d, aV cV d, aV 6V d, cV  d, bV d, a\/ d, aV  c, aVb, d, a} 

and Ao — {a ,d } .  Define m (a) =  bel(a) =  .5, m(d) =  bel(d) =  .3, / =  2 and 

:=  .4 \ A -

Step 2. Get a V c from *4'. Because a |= a V c, we have 6e/(a V c) bel(a V 

c) — bel(a) =  .5 — .5 =  0. So a V c is not a focal element. Repeat this procedure 

until we get a V 6 and we have bel(a V b) .7 — .5 =  .2. Define

m(a V 6) =  bel(a V 6) =  .2 

.40 :=  v40 U {<2 V c }

*4' :=  4 '  \ {a  V c}

I : = l  +  l

Repeat this procedure until >1' is empty, we get A  =  { « ,  d, a V 6} and the mass 

function m  is m (a) -- .5, m(d) =  .3, m(a V c) =  .2.

If we take 6e/ as an inner measure of a probability on A  from an unknown 

probability space, this space can be recovered as (W ,x , / / )  where the basis for x  is

x ' =  { W U W 2 ,W 3},  Wi U W 2  U W 3  =  W  and fi(Wi) =  .5,n (W 2) =  =  .2.
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5.6 Summary

In this chapter, we have made a comprehensive comparison between DS theory and 

incidence calculus on their abilities in the following three aspects: 1) representing 

evidence; 2) combining DS-independent evidence; 3) dealing with dependent evi­

dence. We conclude that these two theories have the same ability in representing 

incomplete information and combining DS-independent evidence. However, inci­

dence calculus is superior to DS theory in coping with overlapped information. 

This difference results from their different theoretical structures. DS theory is 

a pure numerical approach while incidence calculus possesses both symbolic and 

numerical features. That is incidence calculus can make an inference either at the 

symbolic level by producing incidence sets or on the numerical basis by calculating 

lower or upper bounds on probabilities of formulae. The new combination rule in 

incidence calculus is proposed based on the symbolic feature of the theory.

Trying to combine dependent pieces of information using Dempster’s com­

bination rule has been mentioned in [Dubois and Prade,1986], [Kennes, 1991], 

[Lingras and Wong, 1990], [Nguyen and Smets, 1991], [Shafer, 1986], [Smets, 1990], 

[Shafer, 1987a]. Some of their work focuses on how to improve Dempster’s com­

bination rule to deal with dependent situations as in [Dubois and Prade,1986], 

[Kennes, 1991], [Smets, 1990], [Nguyen and Smets, 1991], In [Smets, 1990] and 

[Nguyen and Smets, 1991], the authors discussed the possible ways of combining 

dependent information in the transferable belief model. [Kennes, 1991] showed the 

way of solving this problem in the concept of category. [Dubois and Prade,1986] 

intended to model this problem in terms o f set-theory in fuzzy logic. The ap­

proaches in [Lingras and Wong, 1990], [Shafer, 1986], [Shafer, 1987a] are closer to 

ours in this paper. In [Shafer, 1986], [Shafer, 1987a] Shafer showed that some 

dependent evidence can be combined within DS theory by following Dempster’s 

framework, but cannot be combined by Dempster’s combination rule. We have 

seen this in Chapter 4. Similar ideas also appeared in [Lingras and Wong, 1990] in 

the compatibility view defined by the authors. In [Lingras and Wong, 1990] two
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pieces of evidence are combined at the original information level and then propa­

gated to the target frame. This combination relies on the compatibility relation 

among the two spaces which, they assume, is defined by the user and the proba­

bility distribution is defined based on whether the two spaces are probabilistically 

independent. Two original evidence spaces are assumed to be probabilistically in­

dependent if the spaces are logically independent. By logically independent, they 

mean that if every element in X  is compatible with all elements in S then X  and 

S are said to be logically independent. If two spaces are logically independent, the 

case can be dealt with using Dempster’s rule. Otherwise, the authors use either 

a Bayesian approach or dependency functions to get a joint probability on the 

unified space. However the definition of logically independent on two spaces is not 

sufficient to guarantee that the two probability distributions are independent as 

we have seen in Example 4.3 given by Shafer.

In summary, all these papers we referred to above tried to either re-explain 

Dempster’s combination rule in alternative terminologies, modify or complement 

the current Dempster combination rule from different angles. None o f them tried 

to give a new combination mechanism which keeps the spirit o f Dempster’s com­

bination idea but is distinct from Dempster’s combination rule.

In contrast to the approaches above, we have proposed a new rule and tried 

to combine several pieces of evidence at the original information level. In our new 

combination rule, original sources are required in order to carry out the combi­

nation, so it is natural and convenient to make the independent judgement using 

the sources. Dempster’s combination rule is a special case of this alternative rule 

when several sources are DS-independent. That is, when the several sources are 

DS-Independent the rule in incidence calculus can be simplified to be Dempster’s 

combination rule. The main advantage of the rule is to unify the combination pro­

cedure and propagation procedure into one using incidence functions. Also, the 

definition of incidence functions makes incidence calculus possess some features of 

symbolic reasoning patterns which differ from other pure numerical mechanisms.

In general, independent relations among multiple sources of evidence can be 

considered as special cases of dependent situations. As Pearl indicated [Pearl, 1992],
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“If we have several items of evidence, each depending on the state 

o f nature, these items of evidence should also depend on each other.

This kind of dependency is not a nuisance but a necessary bliss; no 

evidential reasoning would otherwise be possible.”

In our combination rule, we have indeed adopted the same idea and made some 

efforts towards combining dependent evidence. This result would be useful for 

further research work on either this topic or the relevant topics. It tells us that 

it is a promising way to cancel the overlapped and duplicated information from 

several pieces of evidence at the symbolic level rather than at the numerical level.
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Chapter 6

Assumption-based truth maintenance 
systems

In this chapter, I am going to review assumption-based truth maintenance systems 

(ATM S). The main purpose of this chapter is to provide a basis for the discussion in 

the next chapter. I shall not review all o f the work on the ATMS carried out so far. 

Rather I will only focus on two aspects of the ATMS: its basic reasoning mechanism 

and the possibility of associating it with numerical uncertainty mechanisms. After 

I have made these two aspects clear, we are then ready to walk through the next 

chapter which presents the third main contribution of this thesis.

6.1 The Reasoning Mechanism in The ATM S

The truth maintenance system (TMS) [Doyle, 1979] and later the ATMS 

[de Kleer, 1986] are both symbolic approaches to maintaining consistent sets of 

statements. The central issue in such a system is that for each statement, a set of 

supporting statements (called labels or environments generally in the ATMS) need 

to be produced. This set of supporting statements are obtained through a set of 

arguments attached to the given statement (called justifications). In an ATMS, a 

justification of a statement (or node) contains other statements (or nodes) from 

which the current statement can be derived. Justifications are specified by the 

system designer.

141



For instance, if we have two inference rules such as:

n  : 9i ->• 92

r 2 : 92 —> <73

then logically we can infer that r3 : —y q3. In an ATMS, if rx,r 2  and r3 are

represented by nodei, node2  and node3  respectively, then node3  is derivable from 

the conjunction of nodex and node2 and we call (rx, r 2) a justification of node3. 

A rule may have several justifications. Furthermore, if rx and r 2  are valid under 

the conditions that A and B  are true, respectively, then rule r3  is valid under the 

condition that A  A B  is true, denoted as {A , B } .  {A } ,  { B }  and {A , B }  are called 

sets o f supporting statements (or environments) of rx, r 2  and r3, respectively. If we 

associate node3  with the supporting statements such as {A , B }  and the dependent 

nodes such as (rx, r 2) then node3  is generally of the form of

r3 : 9i 93, { { A  5 } . . . } ,  { ( n ,  r 2)...}

when node3  has more than one justification. The collection of all the possible sets 

o f supporting environments is called the label o f a node. If we use T (r3) to denote 

the label of node3, then {A , B }  6 L(r3). If we assume that rx, r 2  hold without

requiring any dependent relations with other nodes, then nodex and node2  are

represented as

rx : 9i —> 92, { { -d } } ,{ ( ) }  

r 2 : 92 -+ 93, { { £ } } , { ( ) }

Therefore, we can infer a label for any node as long as its justifications are 

known. For instance, if we know that the justifications of node rn are

and Z/(rxx),..., L(rt>i) are known, then the label set of rn can be obtained as 

L(rn) =  lA jx  | x =  UjXj where Xj G L(njk) }  

and we denote this as

L(rn) =  Ujt(L(rifc) <g>... <g> L(rjk))
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The advantage of this reasoning mechanism is that the dependent and support­

ing relations among nodes are explicitly specified, in particular, the supporting 

relations among assumptions and other nodes. This is obviously useful when we 

want to retrieve the reasoning path. It is also helpful for belief revision.

The limitation o f this reasoning pattern is that we cannot infer those state­

ments which are probably true rather than absolutely true. However, if we attach 

numerical degrees of belief to the elements in the supporting set o f a node, we 

may be able to infer a statement with a degree of belief. For example, if we know 

that A  is true with probability 0.8, B  is true with probability 0.7 and both A  and 

B  are probabilistically independent, then the probability o f A  A B  being true is 

0.56 which is the product of 0.7 and 0.8. The belief in a node is considered as the 

probability o f its label. So for node3 , our belief in it is 0.56 if we assume that node3 

has only environment {A ,  B } .  Otherwise, 0.56 is our minimum degree of belief on 

node3 . Therefore, we are able to calculate the probability o f a node through the 

probabilities on assumptions in its label set. In this way, a production rule a —> b 

with rule strength m can be rewritten as [Pearl, 1988]

a, A C  —̂ b

In this expression, C  stands for how strong we believe in b is we know that 

a is true. C  has different meaning in different systems. It is thought o f the rule 

strength m  in an expert system but it is called an assumption in the ATMS.

Some of research work towards this goal has been shown in [d’Ambrosio, 1988], 

[d’Ambrosio, 1990], [de Kleer and Williams, 1987], [Dubois, etal, 1990], 

[Fulvio Monai and Cliehire, 1992], [Laskey and Lehner, 1989], [Pearl, 1988], 

[Proven, 1989] and [Liu, Bundy and Robertson, 1993b].

One common limitation in all these extensions o f the ATMS is that the proba­

bilities assigned to assumptions must be assumed probabilistically independent in 

order to calculate the degree of belief in a statement.
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6.2 Non-Redundant Justification Sets and En­

vironments

In this section, I first introduce some formal concepts used in the ATMS and then 

discuss sets o f justifications and environments in detail.

node: a node ( called a problem-solver’s datum) in an ATMS represents any da­

tum unit used in the system. This datum unit can be a proposition or any 

formula in the propositional language which the system uses. The depen­

dencies among them are inferred during the system processing procedure.

assumptions: a set o f distinguished nodes which are believed to be true without 

requiring any precondition are called assumptions.

justifications: justifications are supplied by the problem-solver. A justification 

for a node contains those nodes from which it can be derived. Usually, a 

node has several justifications representing multiple ways to infer the node.

label: a set o f assumptions is called an environment o f a node if the node holds 

in this environment. The label of a node contains all collections of such 

environments. Each environment in a label consists o f non-redundant as­

sumptions.

nogood: there is a nogood node in an ATMS system whose label consists of all 

environments in which falsity can be derived.

In an ATMS, each node is associated with a label and a set o f justifications 

and the node is normally denoted as

<  nodei, label, justifica tions >

The inference procedure in the ATMS propagates assumptions along justifica­

tions.
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Both the label and the justifications for a node can be explained using material 

implication. Given a node c with label { {A i ,  A 2, ...} {Ffi, B 2, and with 

justifications { (z i ,  z2, ...) (y i, y2, the meaning of the label o f c is that the

conjunction of assumptions in each environment makes c true, such as A\ A A 2... 

o f environment {A i ,  A 2...} makes c true. So L(c ) is a set containing conjunctions 

of assumptions. L(c ) =  { (A i  A A 2  A ...), (B x A B 2  A The label implies the

node:

(A i A A 2  A ...) V (B\ A B 2  A ...) V ... —Y c

The relations between a justification and its node states that the conjunction 

of Zi(yj) logically supports the conclusion c. If we consider z, and c as formulae in 

a propositional language, then A,-z,- is a formula in the language which implies c, 

that is, formula A,zt- —Y c is always true. In general if we let

j ( c )  =  { (z i A z2 A ...), (2/1 A y 2  A ...)...}

then every element in j ( c ) semantically implies c, so j ( c )  |= c. Therefore there is 

the similar implication relation:

(zi A z2 A ...) V (yi A y 2  A ...) V ... -> c

In general each environment is nonredundant. That is, deleting any element 

in an environment will destroy the implication relation between this environment 

and its node. For any two environments for one node, they don’t imply each other. 

That is one environment is not a proper subset of another. If one environment 

is a subset o f another, then the latter environment will be covered by the former 

one so the latter can be deleted. The same rules also apply to the justifications 

for a node. It is assumed in an ATMS that any justification is nonredundant and 

any two justifications don’t imply each other. I will illustrate this in the following 

example [Laskey and Lehner, 1989].

Example 6.1

Assume that we have five inference rules such as:

rx : e —Y d
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r 2  : d —»■ b 

r3  : b —f a 

r4 : d —>• c 

r5 : c —>• a

and there are five assumptions Z, X , V", F  and IT supporting them respectively. 

Then these five rules can be encoded into a set o f ATMS nodes as1

nodei : <  e —> d, { { Z } } ,  { ( Z ) }  >

node2  : <  d - »  b, { {A ! } } ,  { (A -) }  >

node3  : <  b -> a, { { T } } ,  { (V ) }  >

node4 : <  d —* c, { { F } } ,  { ( F ) }  >

nodes'. <  c ->• a, { { I T } } ,  { ( I T ) }  >

Similarly we encode another two inference rules in this ATMS as

node6  : <  d —»• a, {{A", V } ,  {F , IT }} ,  {(node2, node3), (node4 ,node5) }  >

node7 : <  e —> a, { { Z ,  A , V"}, {Z , F, IT }} ,  {{node j, node6) }  >

or in nodej s justification, replacing nodes by its justification set 

node -7 : <  e a, { { Z ,  A , T } ,  {Z , F, IT }} ,

{(nodei, node2, node3), {node4 ,node4, nodes)} >

We should notice that (nodei,node 2 ,node3) also implies nodes, but it is not 

in the justification set of nodes as the effect of this justification has been covered 

by the justification (node2 ,node3 ) and the justification set of a node should be 

non-redundant. The same situation applies to node7 as well.

In fact there are in total seven conjunctions of nodes make node -7 true, but only 

two of them are included in the justification set of node-7 .

*A  node with only an assumption (or assumptions) in both its label and its jus­

tifications means that this node is supported and dependent on this assumption (or 

assumptions) only.
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The justification set o f a node in an ATMS contains those nodes (the conjunc­

tion o f them) from which this node can be derived. If we require that a justification 

set o f a node is non-redundant, then deleting any justification from the justification 

set o f a node will result in losing a path which can derive the node.

6.3 Probabilistic Assumption Sets

In an ATMS, all nodes can be divided into four types: assumptions, assumed 

nodes, premises, and derived nodes. An assumption node is a node whose label 

contains a singleton environment mentioning itself, such as <  A , { { A } } ,  { (A ) }  > .

An assumed node is a node which has justifications mentioning only assumptions2. 

For instance <  a, { { A } } ,  { (A ) }  >  or <  b, { {A ,  B } } ,  { (A , B ) }  > .  All other nodes 

are either premises or derived nodes. A premise (or a fact) has an empty justifi­

cation and empty label set, i.e., it holds without any preconditions. A derived node 

usually doesn’t include assumptions in its justifications, e.g., <  c, { {A ,  5 } } ,  {(a , 6)} > . 

In general, if we keep the restriction that non-assumptions cannot become assump­

tions, or assumptions cannot become another type of node [de Kleer, 1986], then 

it is possible to keep all assumptions in one set and the other nodes in another 

set, and these two sets are distinct.

The inference result o f a node has one of three values: Believed, Disbelieved 

and Unknown. If one of the environments in the label c is believed, then c is be­

lieved. If one of the environments in the label ->c is believed, then c is disbelieved, 

otherwise c is unknown. When both c and ~>c are believed, there is a conflict and 

falsity is derived. In this case, the label sets of some nodes should be revised, 

e.g., delete nogood environments in which they appear. This kind o f inference 

in an ATMS produce only three possible values. It cannot represent a plausible

2In [de Kleer, 1986], an assumed node has only one justification mentioning one 

assumption.
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conclusion d with a degree o f belief. Attempts to attach uncertain numbers with as­

sumptions in the ATMS have appeared in [d’Ambrosio, 1988], [d’Ambrosio, 1990], 

[de Kleer and Williams, 1987], [Laskey and Lehner, 1989], [Dubois, etal, 1990] and 

[Fulvio Monai and Chehire, 1992], The belief of a node is identified as the proba­

bility o f its label Bel(c) =  P r(L (c)).

For example [Pearl, 1988], the rule Turn the key —> start the engine with 0.8 

can be represented in the ATMS as

where B  stands for an assumption ( or a set o f assumptions) which supports the 

implication relation b —>■ a and assign 0.8 as the probability o f B. a and b represent 

propositions ‘start the engine’ and ‘turn the key ’ respectively.

Assume that for node b we have <  b, { { A } } ,  { (A ) }  > , then the justification for 

node a is b A (6 —>■ a) as b A (b —> a) \= a. That is for node a we have

<  a, { {A ,  B } } ,  {(6, b —► a)}  >

a is a derived node.

Therefore Bel(a)  =  P r(L (a )) =  P r(A  A B) =  0.8, if the probability distribu­

tions are probabilistically independent and the action ‘turn the key ’ is true, i.e.,

p(A)  =  1.

In principle the ATMS has the ability to make plausible inferences with beliefs. 

For a simple case like the above, the calculation of probabilities on nodes is not 

difficult to carry out. However, in most cases labels o f nodes are very complicated 

and probability distributions on assumptions may be somehow related. In those 

circumstances, calculating probabilities o f labels of nodes is quite troublesome as 

shown in [Laskey and Lehner, 1989] and [Pearl, 1988]. We give the following two 

definitions to cope with this difficulty in general. The motivation of proposing the 

following two definitions is stimulated by the idea of managing possible worlds in 

incidence calculus. This part of the work is the extension to the original ATMS. 

It provides a theoretical basis for associating and managing probabilities in an 

ATMS. It covers the related work in [Laskey and Lehner, 1989] and [Pearl, 1988].
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D efin ition  6.1 : Probabilistic assumption set9

A set { A i , A n} , denoted as SAlt...tAn, called a probabilistic assumption set for  

assumptions A i , . . . ,A n if the probabilities on A i , . . . ,A n are given by a probability 

distribution p from a piece o f  evidence and ED e { A x,...,An} P { D ) =  1. The simplest 

probabilistic assumption set has two elements A and -'A, denoted as SAt^A. For 

any two elements in a probabilistic assumption set, it is assumed that Aj A A j  =>J_. 

For all elements in the set, we have VjA, =  true for  j  =  1 , ...,n .

For two distinct probabilistic assumption sets S a x,...,a „  and SBx,...Bmi the unified

probabilistic assumption set is defined as =  SAl An ® SBl,...,Bm =

{(A,-, Bj)  | A, G SAx,...,AnXBj G SBl,...,Bm}  where <g) means set product and p (A t-, Bj ) =  

P i (A )  x p2 (Bj). pi and p2  are the probability distributions on S,Au...,An and 

Sbx Bm i respectively.

Example 6.2

Assume that the five assumptions in Example 6.1 are in different probabilistic as­

sumption sets. An environment for node6 derived from justification {{node2, nodes)} 

is {{A ", V } } ,  then the joint probabilistic assumption set for this environment is 

Sx,-*x ® Sv,^v- Similarly the joint probabilistic assumption set for environment 

{ { y ,  W } }  is Sy,->Y ® S\v,^w-

Definition 6.2: Full extension o f  a label

Assume that an environment o f  a node n is {A ,  B, where A ,B , . . . ,C  are

in different probabilistic assumption sets SAlt...tAx, SBi,...,By and Sc 1 ,...,cz■ Because 

A A B A . . . A C  =  A A B A . . . A C A  {ME, | Ej G SEl,...,Et), A A B  A . . . A C  ^  n 

and A  A B A ... A  C A (MjEj \ Ej G SEl,...Et) n are ail true (where SEl,...,Et

3A similar definition is given in [Laskey and Lehner, 1989] called an auxiliary hy­

pothesis set.
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is a probabilistic assumption set which is different from Sa 1 ,...axi Sbx B and

Scl c z) ■ {A ,  B, ® Seu.. ,,Et is called a full extension o f  the environment

to Se u...e ,- I f  there are in total m probabilistic assumption sets in the ATMS, then 

{A ,  B , ..., C}<^Sei,.,.,Et is called the full extension o f  the environment

to all assumptions, or simply called the full extension o f  the environment. Sim­

ilarly if every environment in a label has been fully extended to all assumptions, 

then we call the result the full extension o f  the label, denoted as FL (n ).

To understand the idea behind this definition, we look at Example 6.1 again. 

There are 5 probabilistic assumption sets in this ATMS structure, S'z.-.z, $x,^x, 

Sv,-.v, Sy,-iY and S\v,^w- One environment o f node6 is { X , V }  which contains 

assumptions in two probabilistic assumption sets Sx.-^x and Sy,-,y - Based on 

Definition 6.2, the full extension of this environment is

{Ar, V }  ® Sz,-,z ® Sy,-*y ® *5V,-.w 

and the full extension of label L(node) is

{ X ,  V }  ® Sz,-,z ® Sy,-,y ® Sw,-^w U { Y, W }  ® Sx,^x ® Sv,-,v ® Sz,-,z

Similarly, we are able to calculate full extensions for all environments of nodes.

In particular, let L {L )  represent all inconsistent environments (i.e. nogood) 

and let FL(Jl)  represent the full extension of them. If a label o f a node is L(c) =  

{ { A i ,  A 2, . . . } , {B i ,  B2, ...}, ...}, it means that (A\ A A 2  A ...) V (Bi A B 2  A ...) V... -*  c 

is true. After we get the full extension of the label and represent it in disjunctive 

normal form ( a disjunction of conjunctions), we have that (A i A A 2  A ... A B\ A 

...C i) V ... V (A x /\A2 h ...Bn A ...Ci A ...) V ...(A i A A 2  A ... A Bn A ... A Cm) c 

is true, each conjunction in the full extension contains the elements from different 

probabilistic assumption sets and any two such conjunctions are different. Such a 

full extension is convenient for calculating uncertainties related to assumptions.
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Example 6.3

In Example 6.2, we have two different probabilistic assumption sets for two 

environments of node§. However the probability of node6 cannot be obtained 

by calculating them separately and then adding them together. Doing so may 

over count the joint part in these two sets. The solution to this is to apply 

Definition 6.2 to each of these environments and we have full extensions for these 

two environments as

Sz,^z ® {X, V}  <g> Sy,^y ® Sw,̂ w 

Sz,-<z ® Sx,-.x ® Sv,-,v ® {Y, W }

The full extension of the label of node6 is the union of these two sets.

(Sz,-.z ® { X ,  V }  ® Sy,-,y ® Sw,-iw) U (Sz,-,z ® S x ^ x  ® Sy,-,v ® {Y, W } )

or

Sz,->z ®  ({^f> V’} ® Sy,-̂ y ® Sw,^w U Sx,-.x ® Sv,-,v ® {Y, W } )

If we use pz  to represent the probability distribution on probabilistic assumption 

set Sz,-.z, then belief in this node is

Bel(node&)

=  Pz (Sz^ z )(p x { X ) p v {V )p y (Sy^ y )p w (Sw,^w )+  Px (Sx ,^x )p v {Sv^ v )p y (Y )p w {W )  

- p x ( X ) p v ( V ) p Y(Y )pw ( W ))

=  Pz(Sz^ z ) (p x (X )p v (V )  +  p y {Y )p w {W ) -  Px ( X ) p v {V )p y (Y )p w (W ))

In general if the nogood environments are not empty, those non-empty envi­

ronments should be deleted from the label of a node. The probability o f a node is 

then changed to:

Bel(node) =  P r(F L (a )  \ F T(-L))
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6.4 Summary

The main purposes of this chapter are to address the concept of non-redundant 

justification and label sets as well as propose a way of using them in the calculation 

of probabilities. The discussion in this chapter sets the scene for further discussion 

on the relations between incidence calculus in the next chapter.
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Chapter 7

On the relations between extended 
incidence calculus and the ATMS

This chapter discusses the relations between extended incidence calculus and the 

ATMS. I first prove that managing labels for statements (nodes) in an ATMS is 

equivalent to producing incidence sets o f these statements in extended incidence 

calculus. I then demonstrate that the justification set for a node is functionally 

equivalent to the implication relation set for the same node in extended incidence 

calculus. As a consequence, extended incidence calculus can provide justifications 

for an ATMS because implication relation sets are discovered by the system au­

tomatically. I also show that extended incidence calculus provides a theoretical 

basis for constructing a probabilistic ATMS by associating proper probability dis­

tributions on assumptions and the different probability distribution in extended 

incidence calculus don’t necessarily need to be independent. In this way, we can 

not only produce labels for all nodes in the system, but also calculate the proba­

bility o f any of such nodes in it. The nogood environments can also be obtained 

automatically. Therefore, incidence calculus and the ATMS are equivalent in car­

rying out inferences at both the symbolic level and the numerical level. This 

extends the result in [Laskey and Lehner, 1989].
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7.1 Incidence Calculus Review

Incidence calculus was introduced in [Bundy, 1985], [Bundy, 1992] to deal with 

problems in purely numerical probabilistic reasoning. The special feature of this 

reasoning method is the indirect association of numerical uncertainty with formu­

lae. In incidence calculus, probabilities are associated with the elements o f a set of 

possible worlds (denoted as W ) and some formulae (called axioms) are associated 

with the subsets o f the set of possible worlds. Each element in such a subset for a 

formula <f> makes the formula true and this subset is normally called the incidence 

set o f the formula, denoted as i((j>) (i(<f>) C W ). Our belief in a formula is regarded 

as the probability weight of the lower bound of its incidence set. Assume that the 

set o f possible worlds is W  and q\ —> <72,72 <73 are two axioms in an incidence

calculus theory and the incidence sets for qy —> q2  and <72 —> <73 are i(qi —» <72) =  Wy 

and i(q2  —> <73) =  W2, then the incidence set of (<71 —> <72 A <72 —> <73) is Wy fl W2. 

As formula qy —> q3  holds when formula <71 q2  A <72 H► <73 holds, the incidence set 

of qy —>• <j2 A <72 —► <73 must be a subset of the incidence set o f qy —V q3. So Wy D W 2

makes qy q3  true and Wy fl W 2  C i(qy —>■ q3 ).

7.1.1 Essential semantic implication sets in incidence cal­

culus

In this section, I give two more definitions in extended incidence calculus in order 

to carry out the analysis in the rest of the chapter.

Given a extended incidence calculus theory <  W , ¿i, P, A , i  > ,  for any two 

formulae </>, ip G A,  we have i((f>) C i(x/>) if 0 (= ip. For any other formula cf> 6 

C (P ) \ A , the lower bound of the incidence set for cf) is defined as

=  u  'WO (7-1)

The degree of our belief in a formula is defined as p„(</>) =  //(¿*(<^>)) as we have

seen in Chapter 3.
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D efin ition  7.1: Semantic implication set

For any formula (p £ T (P ), if xp \= cp then cp is said to be semantically implied by 

xp. Let SI((p) =  {if  | if (= cp, xp £ A },  set SI{<I>) is called a semantical implication 

set o f  (p.

For instance, (a -> b) A (b ->• c) f= (a -»■ c), if (a b) A (b —>■ c) is in *4, then 

it is in ¿ '/(a  —>• c).

Given a set of axioms A , the S I  sets of some formulae may be empty. For 

instance, if A  — {a  —>• 6, b —> c, a -> b A b —» c }, then for e € T (P ), S I (e ) is empty.

D efin ition  7.2: Essential semantic implication set

Furthermore, let ESI(cp) be a subset o f SI(<p) which satisfies the conditions (i) 

<p £ ESI((f)) if (f> G SI(<f>) and (ii) a formula xp 6 ESI(<j>) if fo r  any xp' ^  xp in 

SI(<p) then xp \f=. xp', then ESI(<p) is called an essential semantical implication set 

o f (p. This is denoted as ESI(<p) f= (p.

Given a SI(<p) set, ESI(cp) contains those ‘biggest’ formulae in SI(<p). This 

means that for any formula xp £ ESI(cp), xp does not imply any other formulae in 

SI(cp). For a formula <p, if SI(<p) set is empty, then ESI(cp) set must be empty. 

However, if SI(<p) is not empty, then ESI(cp) contains at least one element.

P ro p o s it io n  7 If ESI((p) and ESI'(<p) are the two essential semantic implication 

sets fo r  formula <p co ming from the same incidence calculus theory, then ESI(<p) =  

ESF(cP).

P R O O F

Suppose that ESI(<p) and ESI'(<p) are different and further suppose that a formula 

xp is in ESI(<p) but not in ESI'((p). Since xp £ ESI(cp) then for any formula 

xp' £ SI((p), we have that, xp xp'.

However, as xp $  ESI'(cp), there is at least one formula xp" (xp" £ SI(<p)) 

which makes the following equation true xp |= xp". So according to Definition 7.2,
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0  jESI(<f>). Conflict,. Therefore, E S I(4>) =  ESI'(</>) and the essential semantic

implication set is unique.

QED

It will be proved later that the essential semantic implication set o f a formula 

is exactly the same as the set o f justifications of that formula in an ATMS.

Example 7.1

Suppose we have a generalized incidence calculus theory and we know that the 

following five inference rules are in the language set.

rq : e —> d,

r 2  : d —>• b

r3 : b —>■ a

r4 : d —>• c

r5 : c —» a

Further suppose that the set of axioms A  contains these five rules and all the 

possible conjunctions of them, then the lower bounds o f incidence set of other 

formulae can be inferred. For instance, for formula e —> a, the lower bound of its 

incidence set is

i*(e -)• a) -  U  i{<j>)
4> f=(e->a)

According to Definition 7.1, all the formulae (j) in A  satisfying the condition 

that <f> (e —»• a) are in the semantic implication set. So the calculation of lower 

bounds of incidence sets can be restated as:

=  U  * ($
4>€SI(rP)

In this example, there are in total seven axioms satisfying this requirement, so 

there are seven axioms in S I(e  a).
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e —y d) A (d —y 6) A (6 —̂ et

e —>■ ci) A (ci —>• c) A (c —y a

e —>■ ci) A (ci -*  c) A (c —» a

e —>■ d) A (d —»■ c) A (c —>■ a

e d) A (d -*  c) A (c —>• a

e —̂ ci) A (ci —̂ 6) A (6 —y a

e —̂ ci) A (ci —̂ 6) A (£> —̂ a

A (ci —> 6)

A (6 —̂ o)

A (ci —̂ 6) A (6 —̂ et) 

A (d —> c)

A (c —> a)

However if we examine these seven axioms closely, we will find that only the 

first two axioms are necessary to be considered if we want to get i«(e —y a). The 

rest are unnecessary as their incidence sets are included into the incidence sets 

o f the first two axioms. Based on Definition 7.2, these two axioms are in the 

essential semantic implication set of e —y a and this set only has these two axioms. 

Therefore the following proposition is natural.

Proposition 8 I f  SI((/)) and E S I{f>) are a semantic implication set and an es­

sential semantic implication set o f <f>, then the following equation holds:

=  Û{SI(<f>)) =  i*(ESI{<t>)) 

where im(SI(<f>)) =  *(&)•

P R O O F

Assume a set of axioms in a generalized incidence calculus theory is A . For a 

formula <f>, when <f E A , we have

<t> G s 1 ( f )  A  e  ES l i t ) ,  E S I =  W

so

=  K ( s m )  =  i*(ESI(<f>))

When (¡) £  A , we have a set of formulae </>i,..., <fn <E A  (n >  0) each of which 

implies <j>. So S I ((jf) =  { < £ i , . A s s u m e  that the elements in ES I  {(f) are
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0 i, 0m, then for 0 j, there will be some formulae <j>y (at least 0 j itself) in 5 / (0 )

which make the following equation hold

0 j' i= 0 i

Let 5 /^ . be a set containing these 0j/, he. 5 /^ . =  {0 y  | </y f= 0^}, then we 

have ¿*(0j) =  i*(SIJpj ) because ¿(0p) C ¿(0j). Repeating this procedure for each 

formula in £ 5 / ( 0 ) ,  we obtain the following equation

¿ * (£ 5 /(0 ) )  -

To prove

¿* (5 /(0 ))  =  ¿* (£ 57 (0 ))

we need to prove that

¿* (5 /(0 ))  =  U ̂ ¿ * (5 /^ )

Assume that ¿ , (5 / (0 ) )  \ U^i‘* (5 /^ )  =  5  ^  { } ,  we have

5  0  { }  and w G 5  =*> 

w e  ¿ * (5 /(0 ))  \ u^Ji* (5 /1/,>) =>

(3<p)<p G 5 / (0 ) ,  ^ £ 5 / ( 0 ) ,  w g  i(ip) =>•

(3< '̂)</?' G 5 / (0 ) ,  </? [= v?/5 ^ £ 5 / ( 0 )  (otherwise G 5 /^  and </? ^  5 / ( 0 ) )  =>■

( 3 y , > "  G 5 / (0 ) ,  v?' f= ^ " ,< /  £  £ 5 / ( 0 )  =►

... (repeat this procedure until we find <pt)

(3(pt)ipt G 5 / ( 0 ) , i (= 0  £ 5 / ( 0 )  and /B<p't,(pt [= (as A  is finite) =>

cpt £  £ 5 / ( 0 )  and € £ 5 / ( 0 )

Conflict, so 5  is empty. Therefore, ¿ » (5 /(0 ))  =  ¿ , ( £ 5 / ( 0 ) )  and ¿*(0) =  ¿ ,(5 /(0 ) ) .  

EN D

Based on a extended incidence calculus theory, the efficiency of calculating an 

incidence set for a formula is very much dependent on the efficiency o f finding its 

semantic implication set as well as the essential semantic implication set.
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7.1.2 Similarities of the reasoning models in extended in­

cidence calculus and the ATMS

Abstractly, if we view the set of possible worlds in extended incidence calculus as 

the set o f assumptions in an ATMS, and view the calculation of the incidence sets of 

formulae as the calculation of labels o f nodes in the ATMS, then the two reasoning 

patterns are similar. Furthermore, as the probability weight o f an incidence set can 

be calculated, extended incidence calculus has associated numerical uncertainty 

with symbolic reasoning into one mechanism. Extended incidence calculus has no 

such indications as justifications during its inference procedure. The implication 

relations are discovered automatically.

The apparent similarity of these two reasoning patterns motivated me to ex­

plore their relations more deeply. I focus my attention on the production o f labels 

in the ATMS and calculations of incidence sets in extended incidence calculus. 

I will prove that the two reasoning mechanisms are equivalent in producing de­

pendent relations among statements. As extended incidence calculus can draw 

a conclusion with a numerical degree of belief on it, extended incidence calcu­

lus actually possesses some features of both symbolic and numerical reasoning 

approaches. Therefore, extended incidence calculus can be used both as a theo­

retical basis for the implementation of a probabilistic ATMS by providing both 

labels and degrees of belief of statements and as an automatic reasoning model to 

provide justifications for an ATMS.
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7.2 Constructing Labels and Calculating Be­

liefs in Nodes Using Extended Incidence 

Calculus

7.2.1 An example

Now I will use an example (from [Laskey and Lehner, 1989]) to show how to man­

age assumptions in the ATMS in the way we manage sets o f possible worlds in 

extended incidence calculus. I will solve this problem using ATMS techniques and 

extended incidence calculus respectively. The result shows that both inference 

mechanisms can be used to solve the same problem and the results are the same. 

It also shows the procedure for transforming an ATMS into extended incidence 

calculus.

Example 7.2

Assume that we have five inference rules from Example 6.1 and the fact e is 

observed, we want to infer our belief in other statements, such as a. This is shown 

in Figure 7.1.

b

c

Figure 7.1. semantic network of inference rules

Approach 1: Solving this problem in an A T M S.

Assume that there are the following nodes in the ATMS shown in Figure 7.1 

which are put into four categories.
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assumed nodes:

n-i '■< e d, { { Z } } ,  { (Z )} > 

n2 :<  d ->• b, { { X } } ,  { p f } }  >

n3  :<  a , { { F } } , { ( F ) }  >

n4 : < d - +  c , { { y } } , { ( y ) }  >  

n5 : < c ^ a , { { W } } , { ( W ) } >

premise node:

«8 :< e ,  { { } } , { ( ) } >

derived nodes:

n6  :<  d -+ a, { { X ,  V } , {Y , W } } ,  { (n 2, n3), (n4, n5) }  >  

n 7  :<  e —> a, { { Z ,  X , V"}, {Z , F, W } } ,  { (n 4, n6) }  >  

or replacing n6 by its own justifications

n7  :<  e -> a ,{{Z ,J Z , 1 /}, {Z , F, W } } ,  { p i ,  n2, ra3), p i ,  n4, n5}  >  

n9 :<  a, { { Z ,  X , V },  {Z ,  Y, W } } ,  { (n 7, n8) }  >

or

n9  :<  a , { { Z ,X ,  V ), { Z ,Y ,W } } ,  { (n 1 ,n 2 ,n 3, n8), (nu n 4 ,n 5, n8) }  >

assumption nodes: <  X , { P O }  >  and so on.

If we are interested in calculating beliefs of nodes, having labels o f nodes is not 

enough [Pearl, 1988], [Laskey and Lehner, 1989]. We would have to manipulate 

labels in some way in order to get the beliefs. In our approach, we need to obtain 

the full extension of a label first. In order to do so, probabilistic assumption sets 

are required and some new assumptions need to be created when necessary. For 

instance, for the premise node e, we need to associate it with a distinct assumption 

E, then node n '8  can be rewritten as n's :<  e, { { F 1} } ,  { ( £ ) }  > . There are in total
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six probabilistic assumption sets. They are SV,-.y, S w ,-> W i Sx,-iXi S y t- ,Y i  Sz,^Zi 

S e^ e-

The labels o f derived nodes are obtained based on the justifications given by 

the problem solver, premise nodes and assumed nodes. The label of proposition a 

is L(a) =  { { Z ,  X , V }{Z ,  Y, W } }  and its full extension is

F L ( a )  =  S e ,^ e  { Z }  ® ( {X , V }  ® S y ,- ,y  ® S w ,-> w  U S x , - i X  <S> S v , - , v  <8> 

{F ,W } )

If we assume that different probability distributions on different assumption 

sets give

Pv(V) =  - ? 

p w {W )  =  .8 

Px(X) =  .6

M Y )  =  - 7 5

P z(Z ) =  -8 

Pe(E) =  1

and they are probabilistically independent, then the belief in node a is 

B el(a ) =  P r (F L (a )) =  1 x .8 x (.6 x .7 +  .75 x .8 -  .6 x .7 x .75 x .8) =  0.6144

A different calculation procedure can also be found in [Laskey and Lehner, 1989].

which produces the same result.

Approach 2: Using extended incidence calculus to solve the problem.

Now let us see how this problem can be solved in extended incidence calculus. 

Suppose that we have the following six generalized incidence calculus theories

<  5V ,iV ,/h, P, {b  -> a ,T } , { i i (b  -»• a) =  {F } ,z i (T )  =  SV.-v) >

<  Sw,-.w,P2, P i i c ->• a,T } ,  { i2(c -> a) =  { W } , i 2 (T ) =  Sw ^w ) >
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<  S x ^ x ,V 3, P, {d  ->■ 6 ,T }, { i 3(d ->■ 6) =  { X } , z 3( r )  =  S x,-,x } >

<  SY,-,Y,tH: P, {d - >  C ,T } , { i4(d - >  c) =  - ¡ Y } , l 4 ( T )  =  5 y , - , y }  >

<  Sz,-*z, ^ 5 , P, { e —> d ,T },  {¿s(e —►</) =  { Z } ,  *5( r )  =  5z,-,z} >

<  -  l , P , { e } , { i 6 (e )  =  {E } , ie (T )  =  S B , ^ }  >

where Sy =  { V, —̂ },  ..., Sy =  {Z , ~,Z } ,  and Se =  {E ,~^E} are probabilistic 

assumption sets.

As we assume that sets of Sx,-,x , ■ ■■, Sz,-,z> Se,-^e are probabilistically indepen­

dent, the combination of the first five theories produces a generalized incidence 

calculus theory <  S7, /i7, P, A 7, i7 >  in which the joint set is S7  =  Sz,^z 0  Sx,-iX 0  

Sv,-,V 0  Sy,-,Y 0  ‘S’ly.-.W -

i7(d —■> b A  b —> a) =  Sz,-<z{X}{ V } Sy,-.Y*SVi- ,w 1

i7(d 4 c A c 4 a )  =  5 z , - . z { l O { ^ } ^ A > X ‘SV,-.vr

i7(d —> 6 a 6 —> a A d —^ c A c —>- a)  =  S ' z , - , z { X } { V } { y } { W ' }

¿7(e -A d A d —)■ b Ab a) — { Z } { X } - { V }  Sy,->y S\v,-iW

¿7(e  —> d A d —V c A c —> a )  =  { Z } { K } { V F } . S ,; r i-,;rSV,->v

If we let e —>• d A d —> b A b —> a =  and e —v d A d - ^ c A c —> a =  fa , then

> V (A  A  <h) =  { z H A ' K n m  w

Combining this theory with the sixth generalized incidence calculus theory we 

obtain

i(e A fa) =  Se ,-̂ e { Z } { X } { V } S y,-,y Sw,-.w  

i(e A fa) =  Se ,^e { Z } { Y } { W } S x ,^x Sv,^v

xWe use S z ,- ,z {X }{V }S y ^ y S \ v ^ w  to denote Sz,-,z  0 {A '} 0 {T }  0 Sy,-,y  0 S\y,^w- 

The sets Sy,-,y  0 Sw ^W  and Sw,-^w 0 Sy,-<Y are considered to be the same.
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i(e A fa A <f>2) =  S e M Z } { X } { V } { Y } { W }

Because e A (f>\ —>■ a, e A (f>2 —> a and e A ^  A  ^  -4 a, the following equation holds: 

z»(a) =  z(e A 0 i)  U i(e  A <̂>2) U z(e A A <̂ 2)

— ‘S,£ ,-K {^ }{A r} { l / } 1S'y')-,y5w,-.wU5'£;)-,£;‘5'A-,-x5,v ,^ v {^ }{V r}{B ^ }

and

p*(a)=  p(t*(a))

=  ^(S e ,^e { Z } { X } { V } S y,-,Y Sw^W U 5,£;i-1£;5x,^X‘S 'v ,-.v {^ }{^ }{h F })

= p(Se,-ie) X /i({Z}{^}{V/}5yi-1y1S'w,-.W u 5'x,-.A’5'v',-,v{^}{h"}{B/ })
=  ^ { S e ^ e ) X p ( { Z } )  X ^ ( { A ' } { l A } 5 y i^y5vK ,-,iy  U S x ,^ x S V , - , v { T } { I T } )

— ^(Se ^ e ) x p ({Z }) x (/¿({X }{V }£ yj-,ySV,-.jy) + /z(S'a\->*‘SV,-.v{T}{IT})

- / i ( W { v } { y } { ^ } ) )

= 1 x 0.8 x (.6 X .7 X 1 x 1 + 1 x 1 X .75 x .8 -  .6 x .7 x .75 X .8)

=  0.6144

So our belief in a is also 0.6144.

Similarly we can obtain ¿*(d —y a), z»(e —> a) as:

i*(d -4  a) =  Se ,^e Sz ,^z { X } { V } S y,^y Sw^ w  U Se , ê Sz , ^ z { y } { W } S x ,-.x*5V,-.v

i*(e -4  a) =  SeM Z } { X } { V } S y^ y Sw^ w  U SE, ^ { Z } { Y } { W } S XnXSv^v

These six generalized incidence calculus theories are in fact produced from 

assumed and premise nodes in the ATMS.

If we compare the full extensions of nodes in the ATMS and the lower bounds 

o f incidence sets on formulae, we can find that the following equations hold:

i*(d -4  a) =  FL(d. -4  a) i*(e 4 « )  =  F L (e  -4  a) ¿„(a) =  F L (a)

That is, the full extension o f a node is the same as the lower bound of inci­

dence set o f the corresponding formula, z.e., for an element (a1? a2, .., a*) in ¿*(0),
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(ai, 02, ak) is also in FL(<f). In the following I give the general procedure of 

encoding a list o f ATMS nodes into the equivalent generalized incidence calculus 

theories.

7.2.2 The algorithm of equivalent transformation from 

an ATMS to extended incidence calculus

A lg o r ith m  D : Transformation algorithm from an ATMS to extended incidence 

calculus

Given a probabilistic ATMS we follow the following steps to convert it into an 

equivalent extended incidence calculus theory.

Step 1: divide the list of nodes into four sets: a set o f assumption nodes, a 

set o f assumed nodes, a set of derived nodes and a set of premises. The set of 

assumption nodes is called lower level nodes and the last three sets together are 

called higher level nodes. Based on the higher level nodes, a set of propositions 

P  is established. A higher level node is either a proposition in P  or a formula in

C (P ).

Step 2: from the set o f assumption nodes, we can form a list of probabilistic 

assumption sets SAu...,Am, SBi,...,Bni •••, based on Definition 6.1. It is also assumed 

that these sets are probabilistically independent. If they are not independent, a 

normally extended ATMS cannot solve them.

Step 3: divide those assumed nodes into groups under the following conditions: 

node nt and nj are in group £;, when there exists an assumption A  which is in an 

environment of L(nt) and also in an environment of L(n j) or an assumption in 

L(nt) and an assumption in L(nj) are in the same probabilistic assumption set. If 

both nt and nj are in the same group, and both nj and n; are in the same group, 

then nt,n j and rq are in the same group.

Step 4: for any group k, create a corresponding structure <  W k,Pk, P ,h ,A  >• 

The set o f axioms A  consists of assumed nodes in this group and all the possible
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conjunctions of them. The set V\4 is either a probabilistic assumption set or the 

set product of several such sets if there is more than one probabilistic assumption 

set involved in the labels of these assumed nodes. For instance, if the label of node 

nk is { { . 4 } , { 5 } }  and SA)Au.^ S b ,bu... are different, then the set o f possible worlds 

Wfc should be W k =  Sa ,au... ® Sb ,bu...- The function ik is defined as ik(nt) =  L(nt) 

and ik(nt A rij) =  L{nt) ® L(rij). So ik defined on A  is closed under A. We further 

define ik( fa ls e ) =  { }  and ik(true ) =  W*,, then <  W k,Pk, P, h , A  >  is a generalized 

incidence calculus theory. In the case that the set of possible worlds is a joint space 

o f several probabilistic assumption sets, labels o f nodes need to be reconstructed. 

Following the above case if Sa ,au-  =  { A ^ A }  and Sb ,Bi,... =  { £ , - ' # } ,  the label 

o f node nt can be changed into

L(nt) =  { { / I }  ® {B ,  -■5 }, { A , - iA }  ® {-B }}

=  { { { A ,  B } ,  {A , -^B }}, { {A ,  5 } ,  {->A, £ } } }  

=  { { A ,B } , { A , - < B } , { - i A ,B } }

In general, L(nt) =  { { A }  ® SB-,SA ® { B } } .

Step 5: for each premise node, create a generalized incidence calculus theory 

and add the set of possible worlds to the list. For example, for premise e, a suitable 

generalized incidence calculus theory might be <  { V } ,p ( V )  — 1, P, { e } ,  ij(e )  =  

{ V }  > . The added probabilistic assumption set must be different from any set in 

the list.

Step 6 : combining these generalized incidence calculus theories we have the 

result that for any derived node dj, there is i*(dj) =  F L (d j) \ F L (J_). F L (d j) \ 

F L (± .) means deleting those conjunctive parts which appear in both F L (d j) and

F L (  T ).

So both the label set and the degree of belief in a node can be obtained in this 

combined generalized incidence calculus theory correctly as proved below.
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7.2.3 Formal proof

In this section I will give the formal proof about the equivalence between an ATMS 

and the transformed generalized incidence calculus theories.

T h e o re m  7 Given an ATMS, there exists a set o f  generalized incidence calculus 

theories such that the reasoning result o f the ATMS is equivalent to the result 

obtained from  the combination o f these theories. For any node di in an ATMS, 

F  L(d{)\F L (± )  is equivalent to the lower bound o f  the incidence set o f  formula di in 

the combined generalized incidence calculus theory, that is FL(di)\FL(A .) =  *„(d/). 

The nogood environments are equivalent to a subset o f  the set o f  possible worlds 

which causes conflicts, that is F L (A )  =  Wo.

P R O O F

The purpose o f this proof is that, applying Algorithm D on a given ATMS, 

we get a list o f generalized incidence calculus theories, the combined generalized 

incidence calculus theory o f these theories generates the same label set and belief 

degree o f a node as the ATMS does.

Assume that the nodes of an ATMS are divided into four sets, e.g., a set of 

assumption nodes, a set o f assumed nodes, a set o f premise nodes and a set of 

derived nodes.

S tep  A : In order to carry out the proof below, we need to reconstruct the 

justifications of derived nodes to ensure that justifications o f derived nodes contain 

only assumed nodes or premise nodes. This can be done as follows.

Given a derived node d/, choose a node from its justifications. If the node is 

an assumption C , then create an assumed node c with single environment { C }  

and single justification (C ) and then replace C  with c in any justifications where 

C  appears. If the node is a derived node, then replace the node with the justifi­

cations of this node. For example if di is such a derived node with justifications 

{ (z i ,  z 2 )(z3, z4)}  and di appears in a justification of node dj as { ( ... ,  d/,
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then di is replaced with its justifications and the new justifications o f dj are 

{(•••? %i , Z2, . . . ) ,  ( . . . ,  £3, z ,\, . . . ) , . . . } .

Repeat this procedure until all nodes in the justifications o f a derived node are 

either assumed nodes or premise nodes. As a consequence, an environment o f a 

derived node contains only assumptions because labels o f assumed and premise 

nodes contain only assumptions.

S tep  B: For any derived node d/, suppose its justifications are

{(cti, a2, ...), (&i, b2, ...) , . . . }

then the conjunction o f each justification of d/ implies d/, such as a\ A  a2  A  ... —>■ d/. 

If we denote this implication as [=, then we have cii A  a2  A  ... |= d;. If we let

j(d i) =  {a i A  a2  A  ..., 61 A  b2  A  ... ,. ..}  then j(d {) j= d/. The environments of d; will

be

(L (ai) &  L(a2) ®  ...) U  (L(&i) ® L(b2 ) ® ...) U  .. .

For example, if

L(a 1) =  { / ti, /¿2, ...}

and

L(a2) =  { l j i , l j2, •••}

then

L(ai) ® L(a2) =  Ut,k{Ut U ijk}

In general for a derived node d;, assume that d/ has a justification (n1? n2, ..., ?r;),

then

L(ni) ® L(n2) ® ... <S> L{ni) \ T(_L)

is the label set of d;.

S tep  C: After forming a language set from higher level nodes, a series of 

generalized incidence calculus theories (assume n theories in total) can be con­

structed from assumed nodes and premise nodes based on steps 4 and 5 described 

in the equivalent transformation algorithm. Any two sets o f possible worlds of such
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theories are required to be probabilistically independent and all o f them can be 

combined using Theorem 2 in Chapter 3 and the subset of possible worlds which 

leads to contradictions is Wo-

Suppose (n i ,n 2, is a justification of a derived node d{ (we have ensured

that these nodes are either assumed nodes or premise nodes) and they are arranged 

into t generalized incidence calculus theories. Combining them we will obtain the 

generalized incidence calculus theory

, P , A [ , h >  (7.2)

i[(n j A  n2 A  . . .  A  n /)=  ii(n n  A  . . .  A  nlmi) g  ... g  it(nn A  . . .  A  rijtmt) \ W[

-  (L (n n ) g ... g  L(nimi) g  ... g ) (L(ntl) g  ... g > L (nimJ )  \ W[ 

=  L(ni) (g) L (n 2) g  ... g  T (n ;) \ W[

where {n i , . . . ,n /}  =  { « n , ..., n imi, nimt and (na  A  . . .  A  nimi), . . . ,  (nn A

. . .  A  ntm() are in these t different generalized incidence calculus theories, and W[ 

is the subset of possible worlds which leads to contradictions after combing these 

t generalized incidence calculus theories.

Assume that by combining the remaining n — t generalized incidence calculus 

theories we have

(7-3)

where A '2  =  {y i, y2, ..., yn}  and the subset of possible worlds leading to contradic­

tions is W 2- To combine the theories in (7.2) and (7.3), (f) A  y i ,  (j) A  y 2 , . . . ,  0 A  y n  

will be in the set of axioms of the new combined theory.

< m , ^ 3 ,P ,A l3 , i >  (7.4)

Here (f> denotes nj A  n2 A  . . .  A  nh Because (j) A  yj \= <f> and for any ÿ  A yj \= (f> A  yj,

0  (= 0 , the following equation holds.
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**(<£) =  Uj M  a  iij) 

i[{4>) ® %2 (Vj) \ W3 

= * W )® U i* ‘i(w )\ W 5

= i'M )  ®  (W 2 \ W ') \ W ' as Uj «#a(w ) =  w 2 \ W"

= W )  <g> w 2  \  ( ( ¿ u ^ )  ®  w 2' )  U  w ' )

= (L (rn ) (8) L{n2) ®  ... <g> L(n/) \ W /) ® W 2 \ ((¿ i(0 ) ® W2')  U WQ 

= (L (n i) ®  L(n2) ® ... ® L(n,)) ®  W 2 \ ((W / ® W 2) U (* '(0 ) ®  W2')  U WQ 

= ((L (n i)  <g> L(n2) ®  ... ®  £ (« / ) )  <8> W 2) \ W0

where is the set o f possible worlds which leads to contradictions after combining 

the generalized incidence calculus theories i[ and i'2. The incidence function is i 

in the final generalized incidence calculus theory. Wo is the total set o f possible 

worlds causing conflict after combining all generalized incidence calculus theories.

Because o f the relation n\ —>■ d/ in the ATMS, we have the relation n\ A

... A ri| ->d| in extended incidence calculus. So i*(0) C i»(d/). In general, if there 

are k justifications for node d/, the environments obtained from k justifications 

are (L (a n ) ® ••• ® L(aix)) U ... U (L(a^l ® ••• ® L {aky)) \ T(-L), then there are k 
corresponding formulae <̂ 1} <f>2, ..., <f>k, where C f*(d/) for j  =  1, ...,&. So

Uj C ?*(d/).

S tep  D : In the ATMS, a nogood environment is derived if X is proved. When 

c and ->c are both derived, L (c ) ® L(~>c) is a nogood environment. For any higher 

level node a, (a , ->a) is automatically recognized as a justification o f node X and 

L (X ) =  nogood. Certainly for an assumption A, (A, ->A) is also a justification of 

node X, but adding such justifications does not affect the result in our discussion, 

so in the following we only consider justifications o f X as (a, ->a).

Choosing a justification of node X, such as (c, ->c), L (c)® L(->c) will be the envi­

ronments o f nogood. When c or ->c is a derived node, we replace c or ->c with its la­

bel. Suppose that the justifications of c are { ( z i ,z 2, ...)> (®i, x 2 , . . . ) , . . . }  and the jus­

tifications o f ~>c are { ( 2/1, 2/2, •••)> •••}> then { ( z i ,z 2, ..., 2/1, 2/2, •••)> (® i5 x 2 , 3/1, 2/2, • •■), •••}

will be the justifications of X. Therefore (L {z\) ® L(z2) ® ... ®  L(y{) ® L(y2) ®
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...) U (L (x i) 0  L (x2) 0  ... 0 L(yi) 0  L(y2) 0  •••) are nogood environments. Because 

z\ A z2 A ... A j/i A ... =_L and A x2 A ... A yx A ... =  J_, we have {L(z\) 0  £ (22) 0  

... 0  T (yi) 0  ...) U (L (x  1) 0  L (x2) 0  ... 0  L(yi) 0  ...) C W 0 based on S tep  C  above. 

Therefore FL(A.) C VF0.

The other way around, for any element w £ Wo, in the combined theory there 

exists a formula (pi A (¡> 2 A ... A cpn =J_ and w £ L(cpx) 0  ... 0  L(<pn). Deleting those 

<f>j which will not destroy the equation A,</>,- =_L, we will have ipi A ... A ipm =J_. 

Therefore there exists a node z, the conjunction of some ipi implies z and the 

conjunctions o f remaining ipj implies ->z. So z A ->z =  ipi A ... A =J_ and 

therefore L(ipx) 0  . . . 0  L(ipm) are nogood environments. It is straightforward that 

w is in the full extension of L(ip 1) 0  ... 0  L(ipm), so w is a nogood environment, 

that is F L (_L) D W0, so F L (± )  =  Wq.

S tep  E: Using the result from Step  C and S tep  D , because (Jj ) 2  i*(di), 

we have the following equations.

((L (a n ) 0  ... 0  L (aix)) 0  ... 0  (L (aki 0  ... 0  L(aky))) \ W 0  C z*(d/)

FL(di) \ F L { 1 )  C u(d,)

The other way around, for any w £ ?*(d/), there exists a formula <p =  (piA...A<pn 

and w £ i{(p). There is also a formula ip £ FL(d\) such that ip =  ipi A ... A ipm, 

<p —» ip. So w £ i*(ip) =  L(ip1 )® ...® L{tPm)\W 0. Based on the definition o f F T (d ;), 

ip 1  A ... A ipm should be a justification of node d/, so L(ipi) 0  ... 0  L(ipm) \ L (.L) will 

be the environments o f d/. Therefore w is in the full extension o f FL(di) \ F L (  J_). 

That is FL(di) \ F L ( ± ) 2  **(d/), so eventually FL (d{) \ F L {± )  =  n (d ;).

Q E D

E x a m p le  7.3

Example 7.3 shows the way of dealing with conflicting information. Following 

the story in Example 7.2, suppose we are told later that /  is also observed and
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there is a rule /  —>■ ->c with degree 0.8 in the knowledge base. That is, three more 

nodes in the ATMS are used.

assumed node: <  /  -> ->c, { {C /} } ,  { ( i / ) }  >  

premise node: < / , { { } } , { ( ) } >  

assumption node: <  [/, { {£ /’} } ,  { ( t f ) }  >  

pas: Su =  {U, - t / } ,  Sp =  {F , ~>F}.

b

Figure 7.2. semantic network o f inference rules

Here pas means probabilistic assumption set and Sf , f̂  is created to support 

premise node / .

In the ATMS, we can infer that one environment of node c is { E , Z , Y }  and one 

environment o f node ->c is {F,  U}.  So the nogood environment is { E , X , Y, F, U }. 

The belief in node a needs to be recalculated in order to re-distribute the weight of 

conflict on other nodes. The new belief in node a is 0.366 as given in 

[Laskey and Lehner, 1989].

In extended incidence calculus, similar to Example 7.1, two more generalized 

incidence calculus theories are constructed from the assumed node /  —> ->c and 

the premise node / .  Combining these two theories with the final one we obtained 

in Example 7.1, we have VF0 =  { U Z Y } 2, i*(a) =  { Z X V  U Z Y W }  \ W0. Therefore 

/j. ( {U Z Y })  — 0.48 which is the weight o f conflict and p*(a) =  p ( { Z X V  U Z Y W } ) \  

{ U Z Y } )  =  0.366 which is our belief in a. Both of these results are the same as

2In order to state the problem simply, I use UZY  instead of 

{U }{Z } {Y }S x ,^x Sw^ w Sv,^v Se^ eSf^ f -
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those given in [Laskey and Lehner, 1989], but the calculation o f belief in node a 

and the weight of conflict are based on generalized incidence calculus theory.

7.2.4 Comparison with Laskey and Lehner’s work

The work carried out in this chapter has some similarity with Laskey and Lehner’s 

work in [Laskey and Lehner, 1989]. The key idea in [Laskey and Lehner, 1989] is 

to create the medium level elements between a set of beliefs and numerical as­

signments and then associate the numerical assignments with the medium level 

elements. The medium level elements are exactly the set o f possible worlds in 

extended incidence calculus and the set of assumptions in an ATMS. Both our 

and Laskey and Lehner’s work try to group assumptions into different sets and 

each set is associated with a probability distribution. Both systems calculate la­

bels and degrees of belief in nodes. Both systems have to normalize label sets 

after conflict is discovered and both of them obtain total conflict weight. I, how­

ever, have provided a formal proof of the connections between extended incidence 

calculus and the ATMS while Laskey and Lehner didn’t. Moreover, the result 

obtained in this chapter also provides a theoretical basis for some results obtained 

in [Laskey and Lehner, 1989]. In this section, we will explain this point in detail.

Comparison 1). In [Laskey and Lehner, 1989] after the label o f a node is ob­

tained, in order to calculate the belief in this node, an algorithm is given to rewrite 

a label as a list o f disjoint conjuncts o f assumptions. For instance, in Example 

7.2 the label o f node a is rewritten as L(a) =  /3\ V where — W  A Y  A Z  and 

(3 2  =  ( v  A X  A Z  A ->W) V (V  A X  A Z A W  A ->Y).

If we simplify the elements in the full extension o f a label (i.e. using Z  

to replace (Z  A ->LF) V (Z  A W) ) ,  we can get exactly those /3 lists required in 

[Laskey and Lehner, 1989].

Comparison 2). In [Laskey and Lehner, 1989] when nogood environments are 

produced, the beliefs in nodes are calculated in the following way

Pr(label fl ->nogood) Pr(label D ->nogood)
B el{no ) Pr(~>nogood) 1 — Pr{nogood)
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It is suggested that all nogood environments can be divided into two groups 

nogoodi and nogood2, where nogood2  has no overlap with environments in nogoodi 

or label. So in the actual calculation nogood is replaced by nogoodi and it is 

claimed that such replacement doesn’t affect the whole result. They didn’t provide 

a proof. I will prove below that this result is sound.

T h e o re m  8 Assume that all nogood environments can be divided into two disjoint 

groups nogoodi and nogood2. For a node di, if L(di) has no overlap with nogood2, 

then the following equation holds.

B 1(d) f >r(L(di) D nogood) Pr(L (di) C\ nogoodi)
1 — Prfnogood) 1 — Pr(nogoodi)

P R O O F

If all nogood environments can be divided into two disjoint groups, then it 

is possible to divide all the corresponding generalized incidence calculus theories 

into two groups based on Step  C in section 7.2.3. The combination of generalized 

incidence calculus theories in two groups produces two conflict sets, referred to as 

nogoodi and nogood2  respectively. The final combination o f these two generalized 

incidence calculus theories will not produce any conflict sets (if it does then the 

assumption that nogoodi and nogood2  are disjoint is wrong). Assume that the two 

generalized incidence calculus theories are zfi and i2  respectively after combining 

two groups o f generalized incidence calculus theories, for a formula </>, if the list of 

axioms making <f true are xi, x 2, ..., x n, then

i*{4>) =  U (* i(xi))
j

Assume that the list of all axioms for incidence function i2  are yx, y2, ..., ym, 

then combining i\ and i2  we have

*t(</>)=  A yf))

=  Ut{Ujii(xi) ® i 2 (Vj))

=  U /( î ' i ( a : / )  ® Uji 2 (yj))

174



=  U ¡(ii(xi) <2> ( W 2 \ F L{nogood2))) 

=  (Upi(x/)) <2> (W2 \  F L{nogood2)) 

=  <8> (VV2 \ F L(nogood2))

So p*{4>) =  //(*'(<£)) =  /¿(i*(</>)) x /i(W 2 \ FL(nogood2)) =  That is

_  Pr(L((f)) n nogoodi)
1 — P r {nogoodi)

Therefore, those nogood environments which don’t have overlap with the label 

o f a node don’t affect the belief in this node.

E N D

Comparison 3). The major step in [Laskey and Lehner, 1989] is to create an 

auxiliary set for each belief function and let the auxiliary set carry the information 

provided by the belief function. So the probability distribution on an auxiliary set 

which in turn gives the belief function on another set can be thought as the source 

for this belief function. Therefore the two auxiliary sets defined in this way should 

be DS-Independent; otherwise these two belief functions cannot be combined by 

Dempster’s Rule and the result obtained in an ATMS has no point of comparison 

with the result in DS theory.

However, in extended incidence calculus, we don’t need to make such an as­

sumption. For dependent probabilistic assumption sets, as long as we can find 

their joint probabilistic assumption set, we can still combine them using the Com­

bination Rule in Chapter 3. If there are a number of probabilistic assumption sets 

and some of them are dependent, we combine dependent probabilistic assumption 

sets first and then carry out the combination for the rest.

Example 7.4

Example 7.4 demonstrates the point I discussed in comparison 2) above. As­

sume that the ATMS network is extended as in Figure 7.3 by adding more nodes
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in it. When the facts h and j  are observed, both i and -■ i will be derived, then 

there will be a conflict. So the total nogood environments are { UZY,  H I } .  If we 

let nogoodx =  { U Z Y }  and nogood2  =  { H I } ,  then nogood2  has no overlap with 

nogoodi and L(a).  So the belief in a shouldn’t be changed even when h and j  are 

observed.

assumed nodes: <  h -> i, { { # } } ,  { ( # ) }  >

< i { { / } } ,  { ( / ) } >
premise nodes: <  h, { { } } ,  { ( ) }  >

< i ,  { { } } , { ( ) } >

assumption node: <  II, { { / / } } ,  { ( i f ) }  >

pas: S „  =  { H , - ^ H } , S I =  { I , ^ I }

Sg =  { G , ^ G } , S l =  {L ,^ L }

Figure 7.3. Extending the existing ATMS

If we wish to consider this problem in extended incidence calculus, after we have 

encoded the new assumed and premise nodes into generalized incidence calculus 

theories, the combination of these theories produces a conflict set Wq =  { H I } .  

The further combination of this theory with the generalized incidence calculus 

theory obtained in Example 7.3 gives the final result of the impact o f all evidence. 

In this final generalized incidence calculus theory, we have p” (a) =  p{(a) =  0.366 

while the whole weight of conflict is
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H( FL( UZY  U / / / ) )

=  Pu(U)pz(Z)pY(Y)  +  Ph (H)Pi ( I ) -  pu(U)pz (Z)pY( Y)pH( H) Pl(I)  

=  0.48 +  Ph ( H)Pi { I)  -  0A8P„ ( H ) PI{I)

Therefore in extended incidence calculus we don’t need to divide nogood envi­

ronments into different groups and the correct result can still be achieved.

7.3 Implementing Incidence Calculus Using an 

ATM S

In the previous section, I proved that given an ATMS system, it can be equiv­

alently translated into incidence calculus terminology and the result achieved in 

extended incidence calculus is the same as what can be obtained in the ATMS. 

Furthermore, extended incidence calculus also provides a way of coping with nu­

merical uncertainties and allows automatic calculation of beliefs in nodes (also 

including nogood environments).

In this section, I will show that a given list o f generalized incidence calculus 

theories can be encoded into an ATMS and we can carry out the corresponding 

inference at the symbolic level in the ATMS. The transformation procedure allows 

us to use extended incidence calculus as a tool to provide justifications for an

ATMS.

Remember that the major role of an ATMS is to create nodes and build links 

among nodes using justifications. The key step in transforming generalized inci­

dence calculus theories into an ATMS lies in finding ‘correct’ formulae, creating 

nodes for these formulae and using these nodes as justifications for other formu­

lae. For example, if a set of axioms A  in a generalized incidence calculus theory is 

A  =  {a  b, b ^  c, a —> i  A 6 c ), then we say a —> b and b - »  c are the ‘correct’

formulae. The third axiom in A  can be obtained through the conjunction of the 

other two axioms. In general our purpose is to find these ‘ correct’ formulae and
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create ATMS nodes for them first and then use them to form justifications for any 

other nodes.

Definition 7.4: Basic axiom set

Given a generalized incidence calculus theory <  W ,// ,P , A , i > , a subset A ' o f  

A  is called a basic axiom set if fo r  any axiom if in A  \ A !, if is the conjunction of 

some axioms in A '.

In Section 3.1.1, we have made the assumption that a set o f axioms in a gen­

eralized incidence calculus theory is closed under A. That is, for <f, if 6 A , (f A if 

is also in A  holds. So we could, at least, delete those <fAif  from A  in order to get 

A'. It is easy to see that A' is unique for a given A.

7.3.1 Examples

In order to see how to encode a list of generalized incidence calculus theories, in 

particular create nodes for the basic axioms, into an ATMS, we first examine two 

examples.

Example 7.5

Encoding a generalized incidence calculus theory into an ATMS

Assume that we have a set of propositions P  as

{storm , windy, snow y, f o g , badjweather, t r a f  ficjproblem , ...}

and C{ P)  as the language set o f P.  Further assume that we have a generalized 

incidence calculus theory <  W i, gi,  P,Ai,i\. >  where the set o f axioms contains A' 

and all the possible conjunctions of elements in A !. A ' is defined as {storm , windy A 

snowy, storm  —V badjweather, storm  —> (windy A snowy), {windy A snowy) —> 

badjweather}. We will be able to infer the lower bounds of incidence sets o f any 

formulae in C{P)  based on this theory. For instance, for formula badjweather (it 

is also a proposition), the lower bound of its incidence set is
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l*{badjweather) r̂f>̂ SI(bad-weather)̂ {4 >̂) — îp£ESI(bad-weather)1'('4 )̂

where SI(badjweather) and ESI(badjw eather) are the semantic implication set 

and essential semantic implication set o f badjweather and ESI(badjw eather) is

ESI(badjw eather) =  {storm  A (storm  —>■ badjweather),

(windy A snow y) A ({windy A snow y) —Y badjweather) }

If we assume the incidence sets o f axioms in A 1 are:

ii(storm ) =  Ax 

i\(windy A snowy) =  A 2 

ix(storm  -> badjweather) =  A 3  

ix((wind,y A snowy) —>■ badjweather) =  A 4  

i\(storm  —> (windy A snowy)) =  A 5

then the lower bound of incidence set of badjweather is

i*(badjweather) =  (A i fl y43) U (A 2 H A 4)

Encoding this generalized incidence calculus theory into an A TM S

If we want to solve this problem in an ATMS, it is natural to create the following 

nodes in the system initially with appropriate assumptions supporting them.

nx :<  storm , { { A i } } ,  { (A i ) }  >

n2 :<  windy A snowy, { { A 2} } ,  { (A 2) }  >

n3 :<  storm  —»• badjweather, { { A 3} } ,  { (A 3) }  >

n4 :<  windy A snowy -A badjweather, { { A 4} } ,  { (A 4) }  >

n5 :<  storm  —»■ windy A snowy, { { A 5} } ,  { (A 5) }  >

For node badjweather, the justification set is {(n i, n3), (n2, n4) }  and the corre­

sponding label set is { { A 4, A3} , {A 2, A4} } .  If we take { A 1;A 3}  as A j D A3 and
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take the whole label set as {Ax fl A3) U (A 2  fl A 4) (using U to replace V), then this 

set is the same as i „{badjweather).

This example shows us the spirit that it is possible to encode a generalized 

incidence calculus theory into an ATMS if we can find a proper set o f axioms (like 

the five axioms in A ') and let them be the set of nodes including premise nodes 

and assumed nodes. For a formula in C{P)  if its E S I  set is not empty, then the 

rational reconstruction of this set can be the active justification set of this formula 

in the ATMS. If the E S I  set o f a formula is empty, it only tells us that from current 

assumed and premise nodes, we cannot infer any meaningful result for this formula, 

so the current active justification set is empty. The rational reconstruction o f a 

formula in an ESI{4>) means that if this formula is 4> 1 A ... A (f>j and for each </>,• 

there is a node in the corresponding ATMS, then (n^t., ...,n^ .) is a justification of 

n^. In a large ATMS, n$ may have many justifications, but at one time based on 

the information available only some of them are used for inference while the rest 

are not. The used justifications are called active ones here. For node badjweather, 

its justification set is j{badjweather) =  {{nodex, node3), (node2 ,node 4 ) }  based on 

ESI{badjw eather) when we use node names to replace formula names such as 

node 1 for storm .

Example 7.6

Extending the ATMS by encoding more generalized incidence calculus theories

Apart from the generalized incidence calculus theory given in Example 7.5, if 

we further get another two generalized incidence calculus theories as

<  W 2, Pi «^2, *2 >

<  W 3, P1 *3 >

where

A 2  =  {badjweather —>• tr a f  ficjproblem } 

i2{badjweather —>• tr a f  ficjproblem ) =  B\
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and A 3  — { f o g ,  fog^ t- tr a f  fic .problem , fo g  A (f o g  —>• fra / ficjproblem ) }  

*3(/osO =  Ci

^ ( fo g  traffic jp rob lem ) =  C2

^ { f ° 9  A (/o^f —> tr a f  ficjproblem )) =  Ci(~)C2

then after combining these three theories, the set E S I(tra fficjproblem .) in the 
combined theory is

E S I ( t r a f  f i c j p r o b l e m )  =  {  f o g  A ( f o g  —>• t r a f  f i c - p r o b l e m ) ,

s t o r m  A ( s t o r m  —> b a d j w e a t h e r )

A ( b a d .w e a t h e r  —> t r a f  f i c j p r o b l e m ) ,

( w i n d y  A s n o w y )  A ( ( w i n d y  A  s n o w y )  —>• b a d j w e a t h e r )  

A ( b a d .w e a t h e r  —► t r a f  f i c  . p r o b l e m ) }

and the lower bound of incidence set of tr a f  ficjproblem  is 

im(tra f ficjproblem) — (Wi<g>)T2®(CinC2))U((A1nA3)<g>J31<g)>V3)U((A2nA4)<g>51(g)VV3)

Encoding more generalized incidence calculus theories into the A TM S

If we extend the ATMS created above by adding more premise and assumed nodes 

into it, based on the second and the third generalized incidence calculus theories, 

we can do this by adding the following additional nodes to the system.

ra6 :<  badjweather —> tra fficjproblem , { ( # 0 }  >

n7 :<  f o g , { { C i } } , { ( C i ) }  >

n8 :<  fo g  —>■ tr a f  ficjproblem , { { C 2 } } , { ( C 2) }  >

In such an ATMS, the justification set for node tra ffic jprob lem  is { (n 7 , n8), 

(n i ,n 3 , n6), (n2, n4 , n6) }  and the label set is { {C i ,  C2},  { A i , A 3, B f} ,  { A 2, A 4, B i } } .  

In general for an environment { X i , X 2, ..., Yj, o f a node, we regard it as

(A i n l 2 n (Tj f l .. .)®  (Z\ n ...) if X, ,  Yj and Z\ are in different sets. So the
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environment {A j,  A3, /? ,}  is actually thought as (A i D A 3) ® B x. Therefore, the 

label set of node tra ffic .p rob lem  is (C in C 2)U ((A 1n A 3)<g>JB i)U ((A 2n A a) ® B i ) 

and the full extension of the set if exactly the same as i^ itra f ficjproblem ).

windyA snowy

bad_weather   trafhc_problem

storm fog

Fig. 7.4 Semantic network o f created ATMS

Figure 7.4 shows the semantic relations among propositions after we gathered 

these three pieces of evidence and encoded them into terms o f the ATMS.

Here we should notice the following four points.

First, even though there are three axioms in A 3  we only use two o f them to 

create new nodes in an ATMS as the third one is the conjunction o f these two 

axioms. Secondly, in an ATMS the justification set and label set of a premise 

node or an assumed node only have one single assumption. Here we extend this 

to the general case that a justification or an environment for an assumed node 

or a premise node can have a set of assumptions and each of these assumptions 

supports the node. For instance, Ai can be explained as a set of assumptions and 

each o f its element A jt has the same functions as an assumption possesses in a 

normal ATMS. Thirdly, when a generalized incidence calculus theory is encoded 

into nodes of an ATMS, we select only some formulae from the set o f axioms as 

the basis and create a node for each such formula. The general principle of such 

selection is that any other axioms can be the conjunctions of selected formulae. 

The ideal situation should be that any selected axiom is either a proposition in P  

or a implication formula with only propositions at both left and right hand sides. 

For instance, storm  or (storm  - »  badjweather) in Example 7.5. However, given 

a generalized incidence calculus theory randomly, axioms selected may not always 

be that simple. Such as in Example 7.5, we have an axiom (windy A snow y) and 

we selected it as a node in order to build up an ATMS. The ideal case should be
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that we have both windy and snowy as axioms and both are selected. If we have 

enough information to specify all the incidence sets for these axioms, then Figure 

7.4 will be changed into the following:

windy

storm ----------------- ►- bad_weather-------- traffic_problem

Figure 7.5. Standard ATMS semantic network

Given limited information it is only possible to create an ATMS in Figure 7.4 

and the system in Figure 7.4 is in fact the compound system appearing in Figure 

7.5.

Fourthly, it is always assumed that a premise node is either true or false in 

an ATMS. But in an ATMS created from a list o f generalized incidence calculus 

theories, a premise node also has a degree of belief on it and it may be supported 

by a set o f assumptions.

7.3.2 Transforming a set of generalized incidence calculus 

theories into an ATMS

When we encode a generalized incidence calculus theory into the ATMS termi­

nology, we don’t create a node for every axiom, rather we just select some of the 

axioms such as the subset A! of A  in Example 7.5. Other axioms can be obtained 

by conjoining two or more of the selected axioms.

A lg o r ith m  E: Transformation procedure from generalized incidence calculus 

theories to the ATMS

Given a generalized incidence calculus theory <  W ,/i ,P , A , i >  with A ' as the 

basic axiom set, we transform it into an ATMS by the following steps.
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Step 1 : For a basic axiom (p (E A ' , if it is a proposition in P , then create a 

premise node node^ for it. Otherwise create an assumed node for it. In this case 

we treat the set of possible worlds as a set of assumptions. So the justifications and 

environments for such a created node will be { (A x ) , ..., (A n) }  and { { A , } , ..., {A n} }  

where Ai 6 i(<p)-

Step 2: For an axiom ip in A \ A ', if ip =  A (pi, then {(<?h,..., <pj) }  is a justification 

of ip. tp can have several justifications. The label of ip is { {A x } ,  . . . {A * }}  where 

A j € i(fp)- For any formula p  €E E(P) ,  its justification set is E S I ( p )  by replacing 

non-basic axioms with their justifications.

If more generalized incidence calculus theories are introduced, we need to ex­

tend the existing ATMS structure. This extension means creating more premise 

and assumed nodes and assigning justifications to more formulae.

Step 3: Assume that the basic axiom set for another generalized incidence 

calculus theory is A\, then in principle we can create premise and assumed nodes 

for each basic axiom in A\ and assign justifications and labels for other axioms. 

But for an axiom <p both in A' and A\, we only create one node by adding more 

justifications and environments for it. After finishing the creation o f premise and 

assumed nodes, we combine these two generalized theories in extended incidence 

calculus. For an axiom p  in the combined theory, if p  £  (UA.'), then assign 

{((pi, ..., (pk)} as a justification of p  if A (pi — p. Here (pi are the basic axioms in 

A! U A\. For any other formulae, we assign the essential semantic implication sets 

in the combined theory as their justification sets. The label sets can be obtained 

using justifications. In this procedure if _L is produced, that is Wq ^  { } ,  the subset 

B o will be the nogood environments and the corresponding E S I (± .) will certainly 

be the justifications of it. We need to remember to replace non-basic axioms in 

ESI((p)  with basic axioms.

Step 4: In the similar way, we can add more generalized incidence calculus 

theories into the existing ATMS structure.

In such a designed structure, we have got premise and assumed nodes each of 

which has assumptions as its justifications and label. For other nodes, i.e., derived
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nodes, we assign them with justifications which contain only premise and assumed 

nodes. Finally, for each possible world, we create an assumption node for it, so 

the constructed structure is an ATMS.

It is not difficult to see that the reasoning results obtained from these general­

ized incidence calculus theories and the created ATMS are the same.

T h e o re m  9 Given a list o f generalized incidence calculus theories, after trans­

forming them into an ATMS, the reasoning result in this constructed ATMS is the 

same as obtained in extended incidence calculus by combining these theories.

As it is easy to prove this theorem, I will only give the outline rather than 

provide the whole proof here.

The main step in proving that the result in this transformed ATMS is equivalent 

to the result in extended incidence calculus is that the labels o f derived nodes are 

the same as the lower bounds of incidence sets o f these nodes. Based on Step 3, 

for a node <f>, its justification set is the same as the semantic implication set o f this 

formula in extended incidence calculus, so as a consequence, the label set o f this 

node is the same as the lower bound of its incidence set.

The advantage of this procedure is the automatic assignment of justifications to 

nodes while in an ATMS justifications are assigned by the designer. The weakness 

is that when more generalized incidence calculus theories are introduced, we have 

to repeat the procedure of finding the essential semantic implication sets in order 

to assign justifications to nodes. This procedure is slow. I will further investigate 

this problem and try to find a fast way to do it in the future.
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7.4 Extended Incidence calculus Can Provide 

Justifications For The ATM S

In the previous sections, I have discussed the formal relations between extended 

incidence calculus and the ATMS. The major similarity of the two reasoning mech­

anisms is that the justifications in an ATMS are equivalent to the essential semantic 

implication sets in extended incidence calculus. As a result, the labels o f nodes 

are equivalent to the incidence sets o f the corresponding nodes. However, a differ­

ence between these two reasoning patterns is that the justifications are assigned 

by the designers in an ATMS while essential semantic implication sets are discov­

ered automatically in extended incidence calculus. Therefore, the whole reasoning 

procedure in extended incidence calculus is automatic while the one in an ATMS 

is semi-automatic. The procedure of discovering semantic implication sets in ex­

tended incidence calculus can be regarded as a tool to provide justifications for 

an ATMS. The application o f this procedure into an ATMS can release a system 

designer from the task of assigning justifications and this procedure can guarantee 

those justifications are non-redundant. A problem with this procedure is that it 

is slow to find all essential semantic implication sets. If it is possible to have a 

fast algorithm for this procedure, then an ATMS can be established and extended 

automatically without a designer’s involvement.

Example 7.7

Providing justifications automatically using extended incidence calculus

We examine Example 7.2 in [Laskey and Lehner, 1989] in a different way here. 

Assume that our objective in Example 7.2 is to calculate the impact on a when 

e is observed. Because there is no direct effect from e on a, a diagram shown 

as Figure 7.1 is created to build a link between e and a. In order to infer a, 

the justifications for node e —> a are essential to be given in an ATMS. Assume 

that the information carried by this diagram is denoted as Si and the information
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specifying justifications is denoted as S j, then in an ATMS we have

Si U Sj => L(e —> a) (7-5)

Here notation A =$> B  means that from information carried by A, it is possible to 

infer information carried by B  through some logical methods. L(e  —> a) stands 

for the label set of e —> a. S j may either contain the justifications for node e —>• a 

only or consists o f more justifications for the assisting nodes (such as e —*■ b). We 

say that S j is the extra information for the system inference.

Given the same initial information carried by Si, extended incidence calculus 

does inferences without requiring any more information. The inference procedure 

produces

Si => i*(e —► a) U ESI ( e  —> a)

The notation =>■ is explained as from the information on the left hand side, we 

can infer the information on the right hand side. So from the information in Si, 

we can obtain both the lower bound of the incidence set and the inference paths 

of a node. The essential semantic implication set for a node contains exactly the 

justifications for the same node. Therefore the extra information required by the 

ATMS can be supplied by extended incidence calculus as an output in general and 

we are able to change (7.5) as follows in an ATMS

Si U ESI ( e  —>■ a) =£• T(e —> a)

which takes the output from extended incidence calculus as an input in the ATMS.

So we can abstract out essential semantic implication sets for all necessary 

formulae and assign them on the corresponding nodes without considering as­

sumptions on the initial nodes. In this way, a justification in an ATMS can be 

constructed.

So we can conclude that the inference result in extended incidence calculus 

provides justifications for an ATMS automatically.
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7.5 Summary

The main contributions of this chapter are:

[1] It has been proved that extended incidence calculus and the ATMS are equiva­

lent at both the symbolic reasoning level (if we view the set o f possible worlds 

in extended incidence calculus as the set of assumptions in an ATMS) and 

numerical inference level if we associate proper probabilistic distributions on 

assumptions. They can be translated into each other’s form.

[2] It has been shown that the integration of symbolic and numerical reasoning

patterns is possible and extended incidence calculus itself is a typical example 

of this integration. Extended incidence calculus can therefore be regarded 

as an bridge between these two reasoning patterns.

[3] In [Liu and Bundy, 1994] it has been proved that generalized incidence cal­

culus is equivalent to Dempster-Shafer theory o f evidence in representing 

evidence and combining source-independent evidence. Therefore the result 

o f investigating the relationship between extended incidence calculus and 

ATMS can provide a theoretical basis for some results in 

[Laskey and Lehner, 1989] which lacks theoretical explanations, namely the 

calculation of beliefs in nodes and the weight o f conflict introduced by all 

evidence as well as its effect on individual nodes.

[4] It is assumed that justifications must be supplied by the problem solver if

one uses the ATMS techniques. We have shown that extended incidence 

calculus can be used to provide justifications for nodes automatically without 

human’s involvement. Therefore a complete automatic ATMS system is 

constructible.

[5] The calculation of probabilities in nodes is done under the assumption that all

given probability distributions are probabilistically independent. When this
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condition is not satisfied, the algorithm in [Laskey and Lehner, 1989] would 

not work.

A notable statement about the relations between the ATMS and extended 

incidence calculus has been given by Pearl [Pearl, 1988]. He said: “ In the origi­

nal presentation of incidence calculus, propositions were not assigned numerical 

degrees of belief but instead were given a list of labels called incidences, repre­

senting a set of situations in which the propositions are true. ... Thus, incidences 

are semantically equivalent to the ATMS notion of ‘environments’ , and it is in 

this symbolic form that incidence calculus was first implemented by Bundy.” In 

this chapter I have discussed the relations intensively. This discussion proves the 

equivalence between extended incidence calculus and the ATMS. The result tells 

us that extended incidence calculus itself is a unification of both symbolic and 

numerical approaches. It can therefore be regarded as a bridge between the two 

reasoning patterns. This result also gives theoretical support for research on the 

unification of the ATMS with numerical approaches. In extended incidence calcu­

lus structure, both symbolic supporting relations among statements and numerical 

calculation of degrees of belief in different statements are explicitly described. For 

a specific problem, extended incidence calculus can either be used as a support 

based symbolic reasoning system or be applied to deal with numerical uncertain­

ties. This feature cannot be provided by pure symbolic or numerical approaches 

independently.

A advantage of using extended incidence calculus to make inferences is that it 

doesn’t require the problem solver to provide justifications. The whole reasoning 

procedure is performed automatically. The inference result can be used to produce 

the ATMS related justifications. The calculation of degrees of beliefs in nodes is 

based on the probability distributions on assumption sets which can either be 

dependent or independent.
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Chapter 8

Conclusions

8.1 Introduction

An intensive extension and discussion of incidence calculus has been carried out in 

this thesis. The discussion shows that incidence calculus, in particular, extended 

incidence calculus has the potential to deal with complicated uncertainty problems. 

The combination technique in extended incidence calculus provides an attractive 

beginning towards combining dependent pieces of evidence.

Incidence calculus shares the features of both numerical and symbolic reasoning 

mechanism. It can be taken as a bridge between the two reasoning patterns. This 

suggests that incidence calculus could be used where both numerical and symbolic 

reasoning techniques are required.

8.2 Contributions of The Thesis

In this chapter, I shall draw conclusions from the following three aspects which 

are the three contributions of this thesis.

• Extended incidence calculus

• A comprehensive comparison between extended incidence calculus and DS 

theory

• A study of the relations between extended incidence calculus and the ATMS
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8.2.1 Extended incidence calculus

The first main contribution of the thesis is that the original incidence calculus is 

extended dramatically so that it possesses many attractive advantages.

The main difference between the original incidence calculus and extended in­

cidence calculus is the conditions on incidence functions. The crucial point in this 

procedure is that we don’t keep the assumption that if a possible world is not 

supporting a formula, it must support the negation of the formula. That is we 

don’t consider that ¿(~'</>) — W  \ i((f>) captures all possible situations in practice. 

Once we have U i((/>) C W , the condition i(<fi V ip) =  i(<t>) U i(ip) is not valid

any more. Such generalized incidence calculus is not a nuisance but a requirement 

o f real cases such as Example 2.5 on page 41.

More precisely, extended incidence calculus has the following main features.

• Extended incidence calculus has the ability to represent ignorance caused by 

incomplete information.

• Extended incidence calculus has the ability to combine DS-independent ev­

idence.

• Extended incidence calculus has the ability to combine dependent informa­

tion, which would create problems in DS theory.

• Extended incidence calculus provides a model-creation algorithm for inci­

dence assignment. This algorithm can also be used to judge whether an 

numerical assignment is a belief function and obtain its mass function when 

it is.

8.2.2 Relations between extended incidence calculus and 

DS theory

Considering numerical aspect o f extended incidence calculus, we made a compre­

hensive comparison between extended incidence calculus and DS theory.
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The Dempster-Shafer theory of evidence is widely appreciated mainly because 

it has two advantages over other numerical uncertainty reasoning mechanisms. 

These two advantages are representing ignorance and combining evidence. The 

original incidence calculus doesn’t have these two properties. However extended 

incidence calculus does. Therefore, it is necessary to investigate the similarities 

and differences of these two theories.

We proved in Chapter 5 that:

• Extended incidence calculus and the DS theory have the same ability to 

represent evidence.

• Extended incidence calculus and the DS theory have the same ability in 

combining DS-independent evidence.

• Extended incidence calculus can also combine some dependent pieces o f ev­

idence while Dempster’s combination rule cannot. The combination mech­

anism in extended incidence calculus subsumes the combination rule, (i.e .) 

D em pster’s combination rule, in DS theory.

Therefore, extended incidence calculus is an alternative of DS theory and it is 

expected to deal with some of the cases (dependent situations) which cannot be 

dealt with by DS theory.

8.2.3 Relations between extended incidence calculus and 

the ATMS

Since extended incidence calculus also possesses features of truth maintenance 

systems, we have investigated the relations between extended incidence calculus 

and the ATMS [de Klecr, 1986]. We proved that these two reasoning mechanisms 

also share some similarities. The conclusions we have got are:

• Extended incidence calculus and the ATMS are equivalent in calculating 

labels o f nodes.
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• Extended incidence calculus can be regarded as a basis for constructing prob­

abilistic ATMS. So that an original ATMS could also have the ability to cope 

with uncertainty problems.

• Extended incidence calculus can be regarded as a basis for providing justi­

fications for an ATMS. In this way, the reasoning procedure of an ATMS is 

expected to be completely automatic without requiring a system designer to 

supply justifications from time to time.

8.3 Issues of Implementation

There are several algorithms in the thesis. The implementation is done in Sicstus 

Prolog.

In Chapter 3, we define a new function, basic incidence assignment ii. The al­

gorithm A for obtaining a basic incidence assignment ii from an incidence function 

i has been implemented.

The algorithm B in Chapter 3 for incidence assignment has also been imple­

mented. The new algorithm is relatively faster than the methods used in the 

original incidence calculus. Using this algorithm, multiple consistent incidence 

assignments can be constructed. One of the applications of the algorithm is that 

when a lower bound of a probability distribution is assigned on every formula in 

the whole language set, the algorithm can be used to check whether the given 

lower bound is a belief function. When it is a belief function, the application of 

the algorithm will produce the corresponding mass function.

The combination rule in Chapter 3 has also been implemented for the cases 

where several generalized incidence calculus theories are based on the same set of 

possible worlds.
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8.4 Limitations of Extended Incidence Calculus

Extended incidence calculus enriches the expressive and reasoning power o f the 

original incidence calculus considerably. The advantages o f the advanced theory 

have been fully discussed in the thesis. However, like any other reasoning mech­

anism, extended incidence calculus also has some limitations itself. Briefly, there 

are following weaknesses in extended incidence calculus.

1) Algorithm B requires a strict condition to be applied, that is, a set o f axioms 

must be closed under operator A .  Although, it is possible to guess some missing 

probability values for some formulae, but the overall method still needs to be 

improved.

2). The combination rule in extended incidence calculus is exponential along 

with the sizes of sets of axioms in two generalized incidence calculus theories. 

Efficient algorithm is needed to improve the efficiency o f combination.

3). We have proved that extended incidence calculus and the ATMS are equiv­

alent in producing labels (incidences) for nodes (formulae) theoretically. What is 

missing from this part of work is that we need to design an efficient algorithm to 

obtain labels in practice.

4). The extension of incidence calculus to the first order logic is not discussed 

in the thesis.

5). Extended incidence calculus is no longer truth functional, so the inference 

mechanism in the legal assignment finder in the original incidence calculus cannot 

be applied any more.
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8.5 Future Work

Here we describe some o f the topics which need to be addressed in future in order 

to further improve extended incidence calculus.

Conditions on incidence assignment algorithm

At the moment the incidence assignment algorithm B is carried out under a 

very strict condition. That is, the set o f axioms much be closed under A. We 

have briefly discussed the technique on how to supplement the lower bounds on 

other relevant axioms if A  is not closed initially. This technique should be further 

developed in order to give more precise estimation of lower bounds o f probabilities.

Computational complexity

The combination mechanism in extended incidence calculus is quite slow, par­

ticularly when P  has a large number of propositions. Working out an efficient 

algorithm to reduce the computational complexity problem is one o f the main is­

sues to be considered in the future. One possible method to do so is linked with 

the next topic.

How large would a set of propositions be

Another problem with the current development is that we expect a set o f propo­

sitions containing all the descriptions we are interested in. That is, in either the 

original or extended incidence calculus, there is basicly only one set o f propositions 

on which we describe evidence (information). The propagation of incidences on 

the set becomes increasingly inefficient when the size of the set increases. There 

are several factors affecting the inference, but the vital factor is the size of a 

set o f axioms which is closed under A. The structure of axioms (simple atomic 

propositions or compound formulae) has effects as well.
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An empirical experiment is given below. When there are more than 100 axioms 

in A  and the structures of these axioms are complex, extended incidence calculus 

has difficulties to deal with it.

Set M l Time (seconds)

P 8 160

P 14 290

P 20 470

P 41 63844

P 63 79776

P 127 139552

An alternative method is discussed in [Liu 1995] in which a set o f propositions 

P  is split into several small, but coherent sets. Incidences are propagated within 

and among these sets. The above example has also been tested using the new 

method. It takes only about 30 (seconds) to derive the bounds of incidence of a 

formula while it takes 139552 seconds to do so in the traditional method. The 

main step in this method is to split the big set into small sets based on some 

implication relations. Each small set obtained in this way will no longer have any 

implication relations, so a set of axioms should not be very large. Therefore, as 

long as it is possible to split up a big set into several small sets, the size of a 

problem can be very large.
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