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profit of mankind, in the rain which Allah sends down from the skies 

and the life which He gives therewith to an earth that is dead, in the 

beasts of all kinds that he scatters through the earth, in the change of 

the winds and the clouds which they trail like their slaves between the 

sky and the earth, here indeed are signs for a people that are wise". 

(Al-Ba qarah: 164) 
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ABSTRACT 

The genus Curcurna L. comprises more than 80 species distributed from India, Burma, 
Thailand, Southeast Asia, to Queensland and the Pacific Islands. One of its two 

subgenera, subgenus Curcuma (Baker) K. Schum., contains many morphologically 
highly similar polyploid taxa, which have been treated at specific level by previous 
authors, contributing to taxonomic confusion in the genus. I have studied this problem 
using a sample of the genus which includes all the Javanese Curcuina (16 species) as 

well as 5 species from India, 7 species from Thailand and one from Australian/New 

Guinea. The closely related genera Smithairis W.J. Kress & K. Larsen and Siahlianihus 

0. Kuntze have also been sampled. Roscoea Sm. and Caulleya (Royle ex Benth.) 

Hook.f. were used as outgroups. 
A phylogenetic study of Curcuina was carried out using 35 gross morphological 

characters and molecular data from the nuclear ribosomal DNA (ITS; internal 
transcribed spacer region) and plastid DNA of the ItnL-F region. The tree that resulted 
from the morphological approach was not well resolved, especially in subgenus 

Curcuma. The molecular data gave a more resolved tree. Both trees are almost 

congruent except that C. aurantiaca Zijp and C. qf ausiralasica Hook.f., which were 

placed between C. econiala Craib and the C. ihorelii Gagnep. dade in the molecular 

analyses, were shifted to nodes between C. roscoeana Wall. and C. peliolala Roxb. in 
the tree constructed from morphological data. Molecular phylogenetic analysis shows 

that Curcuina is not monophyletic. Smiiha/ri.s and Stahlianthus are nested within 

Curcuma and need to be transferred to Curcuma to make it monophyletic. Subgenera 

Hitcheniopsis ( Baker) K. Schum. and Curcurna are phylogenetically distinct. Subgenus 

Curcunia is monophyletic with good support in the ITS data (BS=95; D1+4). Current 

attempted sectional level classification within subgenus Curcuma should be abandoned, 
as it is mainly based on inflorescence position, which is homoplasious. Analysis of ITS 

polymorphisms in subgenus Curcuina reveals indel (one to four bp) polymorphisms 
within an individual, suggesting possible hybrid origin for some species in subgenus 

Curcuma. 
Anatomical study of epidermal characters, leaf transverse section and SEM of seeds 

revealed patterns of similarity among species. Principal Component Analysis of 
epidermal and stomatal cell measurements did not reveal obvious clusters. 

Floral diversity in Curcuma was examined using Principal Component Analysis. 
Three floral types, ie. complex, small, and simple flowers, suggest three putative 
pollination syndromes. Mapping morphological characters (especially those characters 
used in the existing classification) onto the molecular tree gave some insight to the 

evolutionary history of Curcurna. Mapping the floral types show that the simple flower 

in subgenus Curcuma was probably derived from the more complex flower 

characteristic of subgenus Hitcheniop.sis. 
Isozyme electrophoresis reveals isozyme polymorphism in populations of C. 

colorata Valeton, C. heyneana Valeton & Zijp, C. longa L., and C. zanihorrhiza Roxb. 

The pattern of polymorphism is interpreted as possibly indicating a multiple origin of the 

'species'. Chromosome count results from Curcuina subgenus Curcuina were mostly 

triploid 2n63; while counts for subgenus Hitcheniopsis was different (eg. C. tho re/li; 

2n=c.38). Revision of Javanese Curcuma is presented with a proposed new 

classification, key, and descriptions. 
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CHAPTER 1: INTRODUCTION 

1.1 ORDER ZINGIBERA LES, FAMILY ZINGIBERA CEA E AND 
TRIBE HEDYCHIEAE 

1.1.1 Order Zingiberales 
The natural order Zingiberales, which is phenetically distinctive in many 

correlated characters (Tomlinson 1962; Cronquist 1981; Dahlgren el al. 1985; Kress 

1990), combined with the order Bromeliales, forms the subclass Zingiberidae Cronquist 

in the class Liliopsida Cronquist or Monocotyledons (Cronquist 1978, 1981). In the 

past, the order used to be called Scitamineae or Arillatae (Engler 1892). Recent study 

(Kress etal. 200 1) using combined morphological and molecular data shows the 

monophyly of the order Zingiberales which is placed on terminal in the cladogam among 

the monocots (Figure 1.1). 

The history of the classification of the order Zingiberales (see Table 1.1) was 

compiled and discussed by Tomlinson (1962) and then by Kress (1990). They 

highlighted five different systems and Kress proposed another system of classification. 

The first system was that of Bentham & Hooker (1883) which recognized Scitamineae 

(later called Zingiberales) as a family consisting of four tribes, namely, Museae 

Bentham & Hooker, Zingibereae Bentham & Hooker, Maranteae Bentham & Hooker, 

and Canneae Bentham & Hooker. Then, in 1889, Petersen in Engler & Prantl, who gave 

the rank Reihe to the Scitamineae, recognized the four tribes of Bentham & Hooker at 

family rank. He divided the Musaceae A.L.Jussieu into two tribes, namely, Museae 

Petersen and Heliconieae Petersen. The refinement and division was continued by 

raising the Museae from tribal to subfamily rank, Musoideae K. Schum., and by raising 

Streliizia W. Aiton from the tribe Museae to the subfamily Strelitzioideae K. Schum. 

New ranks were given to the tribe Heliconieae K. Schum, and the subfamilies 

Zingiberoideae K. Schum and Costoideae K. Schum. Subfamily Lowioideae K. Schum 

was later included in the system (Schumann in Engler 1900, 1902, 1904; Winkler in 

Engler & Prantl 1930; Loesener in Engler & Prantl 1930). Hutchinson (1934, 1959) 

raised the Strelitzioideae to family level and separated it from the Musaceae resulting in 
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Figure 1.1 Cladogram showing relationships of Zingiberales to monocots 
(Modified from Kress et al. 2001) 
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Table 1.1 Systems of classification of Zingiberales 
(modified from Tomlinson 1962, and Kress 1990) 

Bentham & Hooker 1883 

Petersen 

(Engler & Prantl 1889) 

Schumann 

(Engler 1900, 1902, 1904, 1912), 

Winkler (Engler & Prantl 1930), 

Loesener (Engler & Prantl 1930) 

Family Scitamineae Reihe Scitamineae Order Scitamineae K. Schum. 

Bentham & Hooker Petersen 

Tribe 1. Museae Bentham Family 1. Musaceae Family 1. Musaceae A.L.Jussieu 

& Hooker A.L.Jussieu 

Musa L., Ravenala Tribe 1. Museae Petersen Subfamily 1. Musoideae K. Schum. 

Adanson, Strelitzia W. 

Aiton 

Heliconia L. Musa L., Musa L. 

Strelitzia W. Aiton, Subfamily 2. Strelitzioideae K. 

Ravenala Adanson Schum. 
Tribe 1. Strelitzieae K. Schum. 

Strelitzia W. Aiton, Ravenala 
Adanson 

Tribe 2. Heliconieae Tribe 2. Heliconieae K. Schum. 

Petersen 
Heliconia L. Heliconia L. 

Subfamily 2. Lowioideae K. Schum. 

Orchidantha N. E. Brown Lowia Scortechini, Orchidantha N. 

not placed E. Brown 

Tribe 2. Zingibereae Family 2. Zingiberaceae Family 2. Zingiberaceae Lindley 

Bentham & Hooker Lindley 

including Costus L., Subfamily 1. Zingiberoideae K. 

Tapeinochilus Miq. Schum. 

Subfamily 2. Costoideae K. Schum. 

Tribe 3. Canneae Bentham Family 3. Cannaceae A.L. Family 3. Cannaceae A.L. Jussieu 

& Hooker Jussieu 

Tribe 4. Maranteae Family 4. Marantaceae Family 4. Marantaceae Petersen 

Bentham & Hooker Petersen 
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Table 1.1 (continued) Systems of classification of Zingiberales 
(modified from Tomlinson 1962, and Kress 1990) 

Hutchinson (1934) Nakai (1941), Tomlinson (1962), 

Takhtajan (1980), Cronquist (1981), 

Dahlgreen et at. (1985), 

Takhtajan (1997)  

Kress 1990 

Order Scitamineae Order Zingiberales Nakai Order Zingiberales Nakai 

(later Zingiberales) 

Family 1. Musaceae A.L. Family I. Musaceae A.L.Jussieu Suborder 1. Musineae Kress 

Jussieu Musa L., Ensete Horan. Family 1. Musaceae A.L.Jussieu 

Family 2. Strelitziaceae Family 2. Strelitziaceae Hutchinson Suborder 2. Strelitziineae Kress 

Hutchinson 

Strelitzia W. Aiton, Strelitzia W. Aiton, Ravenala Adanson, Family 2. Strelitziaceae 

Ravenala Adanson, Hutchinson 

Phenakospermurn Endlicher, Phenakospermum Endlicher 

Heliconia L. Family 3. Heliconiaceae Nakai Suborder 3. Heliconiineae Kress 

Heliconia L. Family 3. Heliconiaceae Nakai 

Family 3. Lowiaceae Ridley Family 4. Lowiaceae Ridley Suborder 4. Lowineae Kress 

Lowia Scortechini, Family 4. Lowiaceae Ridley 

Orchidantha N. E. Brown 
Family 4. Zingiberaceae Family 5. Zingiberaceae Lindley Suborder 5. Zingiberineae Kress 

Lindley Superfamily I. Zingiberariae 

Kress 

Tribe I. Zingibereae Meisner Family 5. Zingiberaceae 

Lindley 

Tribe 2. l-ledychieae Horan. 

Tribe 3. Globbeae Meisner 

Tribe 4. Costeae Meisner Family 6. Costaceae Nakai Family 6. Costaceae Nakai 

Family 5. Cannaceae A.L. Family 7. Cannaceae A.L. Jussieu Superfamily 2. Cannariae Kress 

Jussieu 
Family 7. Cannaceae A.L. 

Jussieu 

Family 6. Marantaceae Family 8. Marantaceae Petersen Family 8. Marantaceae Petersen 

Petersen  
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six families in the order. Nakai (1941) raised the rank of the Costeae Meisner and 

separated it from the Zingiberaceae Lindley. This was followed by Tomlinson (1962, 

1969), who accepted Nakai's system after investigating the distribution of anatomical 

characters in the order. Takhtajan (1980) also followed Nakai. Nakai also separated the 

Heliconieae from the Musaceae and raised it to family level resulting in the 

establishment of eight families in the order, which is commonly followed by modern 

taxonomists and phylogeneticists (Kress 1990). 

1. 1.2 Taxonomy, habitat and distribution of Zingiberaceae 

The name Zingiber is derived from the Greek zingiberis which comes from the 

Sanskrit name of the spice singabera. The family comprises about 49 genera and 1,300 

species (Heywood 1993). The main genera are Alpinia Roxb., with approximately 227 

species (Smith 1990), followed by Zingiber Boehm. (80-90 species), Curcuma L. (70 

species), Kaempferia L. (55 species), and Hedychium J. G. Konig with about 50 species 

(Heywood 1993). In earlier classifications, the family Costaceae was included in 

Zingiberaceae. However, with a number of distinctive characters such as lack of 

aromatic oils, branched aerial stems, and spiral monostichous phyllotaxy, Costaceae are 

now generally classified in a separate family. 

Most Zingiberaceae like shady places and are normally found on the forest floor 

under a rather open canopy. They are often found on river banks. Some genera such as 

Curcuma prefer a monsoon climate with markedly dry and rainy seasons. Some other 

cultivated members of the family are deciduous, resting as rhizomes during the dry 

season. In Malaya, with no dry season, some of these grow indefinitely, but others (e.g. 

Kaempferia rotunda Blanco) are deciduous in spite of the climate. Native Malayan 

species are all evergreen (Holttum 1951). 

The family is distributed throughout the tropics (Figure 1.2) from Africa to 

South America with its greatest concentration in tropical Asia (1-lolttum 195 1) and 

relatively few representatives in America (Tomlinson 1969). Roscoea Sm., Cautleya 

(Royle ex Benth.) l-Iook.f., and Hedychium are anomalous in their distribution by 
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reaching temperate regions of the mountains of China, Burma, North India and the 

Himalaya (Cowley 1982, Ngamriabsakul et al. 2000). 

Figure 1.2 Map of distribution of Zingiberaceae and Curcuma 
A. Distribution of Zingiberaceae B. Distribution of Curcuma 
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1.1.3 The Uses of Zingiberaceae 

The family is economically a very important group being rich in volatile oils. It 

would be inappropriate here to mention all the uses of Zingiberaceae. Several papers 

that deal with uses are Burkill 1935, Quisumbing 1951, Ochse 1931, Heyne 1950, Perry 

1980, Holttum 1951, Humphries in Heywood 1993, Chopra et al. 1956, Burch et al. 

1987. Gingers are used as spices (condiments, herbs), sources of starch, flavourings for 

food, vegetables, dyes, perfumes, medicines, and tropical and greenhouse ornamentals 

(e.g. Hedychium, Cost us L.). The rhizome is the most commonly used part followed by 

the seeds and the flower buds. 

The rhizomes of Zingiber officinale Roscoe are ground up to produce ginger, and 

those of Curcurna longa L. provide the spice and yellow dye called turmeric, which is a 

common ingredient of curry powder. Cardamom is obtained from the whole or ground 

dried fruit or seeds of various spp. of Amomum Roxb. and Elettaria Maton, especially E. 

cardarnomum (L.) Maton. East Indian arrowroot starch is made from the rhizomes of 

several species of Curcuma (Cronquist 1981), for example from Curcuma angustfolia 

Roxb. Abir is a perfumed powder obtained from the rhizome of Hedychium spicalum 

Sm. Zedoary is a spice, tonic, and perfume made from the rhizomes of C. zedoaria 

(Christm.) Roscoe. Galangal from the rhizomes of Alpinia officinale of Hainan and A. 

galanga (L.) Sw. of the Moluccas is used as medicine and flavouring. The spice 

Meleguetta pepper is produced from Aframomum meleguela (Humphrey in Heywood 

1993). In Indonesia, rhizomes from several species are used as spices such as kencur 

from Kaempferia galanga L., temu kunci from Boesenbergia rotunda (L.) Mansf., and 

some also are used as salad such as C. mangga Valeton & Zijp and C. longa. In Java, 

several species of Zingiberaceae are used as a component of traditional medicines called 

jamu (see Erdelen et al. 1999). 

1.1.4 Tribe Hedychieae 

The classification of the Zingiberaceae into tribes has undergone several changes 

in its division and concept. Petersen's tribe Zingibereae (Petersen in Engler & Prantl 

1889, Schumann in Engler & Prantl 1904, Loesener in Engler & Prantl 1930) consisted 

7 
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of, e.g. Zingiber, Alpinia, and Amomum, on the basis of the character of the lateral 

staminodes which are very small or absent. However, if we consider Zingiber as having 

petaloid lateral staminodes deeply adnate to the labellum, we will exclude it from the 

tribe. 

1-lolttum (1950) revised this by excluding the genus from Petersen's tribe 

Zingibereae, shifting it to the tribe Hedychieae on the basis of the lateral staminodes that 

are free from the labellum or deeply adnate to the labellum in Zingiber. His tribe 

Hedychieae was not legitimate according to the International Code for Botanical 

Nomenclature as it contains Zingiber which is the type name for the family, the order, 

etc. (Burtt & Olatunji 1972). 

After intensive study, Olatunji (1970), and Burtt & Olatunji (1972) proposed a 

new tribe Zingibereae which includes Zingiber alone (see Table 1.2), leaving 

Hedychieae otherwise unchanged. They separated Zingibereae and Hedychieae on the 

basis of the following characters: lateral staminodes adnate to the labellum in 

Zingibereae vs. free in Hedychieae; style extended beyond anther-thecae, the upper part 

wrapped round by the elongate anther-crest in Zingibereae vs. style not extended beyond 

anther-thecae and stigma protruding at top of these, anther crest if present flat in 

Hedychieae; petiole swollen and pulvinus-like in Zingibereae vs. not swollen nor 

pulvinus-like in Hedychieae; vascular bundle with collenchymatous sheath in 

Zingibereae vs. sclerenchymatous in Hedychieae. 

Smith (198 1) constructed a key to the tribes with the characters of the 

Hedychieae as follows: plane of distichy of the leaves parallel to the rhizome 

(Zingibereae, Hedychieae); lateral staminodes free from the lip (Globbeae, Hedychieae); 

ovary trilocular with axile placentation or with unilocular placentation with basal or free 

columnar placentation (Hedychieae). The character of plane of distichy in relation to the 

axis of the rhizome was first described by Weisse in 1931, 1933 (cited in Burtt & 

Olantunji 1972). 

However, the delimitation is still not wholly clear (Newman 1988) as some 

species in one tribe possess characters that fit the criteria of another tribe. An example is 

given here from Newman (1988). Gagnepainia K. Schum., which is the member of 
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Table 1.2 Characteristics and tribes of Zingiberaceae 
(After Schumann 1904, Holttum 1950, Burt & Smith 1972, Larsen 1998) 

Character Alpinieae 
A. Rich. 

Hedychieae 
Horan. 

Globbeae 
Meisn. 

Zi ngibereae 
Meisn 

Plane of distichy Perpendicular to Parallel to rhizome Parallel to rhizome Parallel to rhizome 

of leaves rhizome 

Lateral staminodes Small or absent, Petaloid, free from Petaloid, free from Petaloid, adnate to 

never petaloid labellum labellum and labellum 

sometimes connate 
to filament 

Labellum Not connate to Not connate to Connate to Not connate to 

filament filament filament in slender filament 

tube 

Stamen Medium length Short length Long with arching Anther crest 

filament elongated and 

wrapped aroud 

style 

Ovary 3-locular 3-locular 1-locular 3-locular 

(sometimes (sometimes 

incompletely so) incompletely so) 

Placentation axial or free axial, basal, or free parietal axial 

central columnar 

Style not extended not extended not extended extended beyond 

beyond anther- beyond anther- beyond anther- anther-thecae 

thecae thecae thecae 

Stigma expanded expanded not expanded not expanded 

E.g. Alpinia, Aniomum Hedychium, Globba, Manlisia Zingiber 

Curcuma, 
Cautleya 
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Globbeae, has a short and not long exserted filament. On the other hand, Hedychiuin, 

which is a member of Hedychieae, has a long exserted filament. The question was also 

faced when Smith (cited in Newman 1988) discovered a new genus of which most of the 

characters fit the description of tribe Hedychieae but lacking lateral staminodes. This 

genus, Stadiochilus R. M. Smith, was subsequently placed in Alpineae and the 

possibility was noted that species with no lateral staminodes may be derived from those 

with petaloid ones (Smith cited in Newman 1988). The illustration of the petaloid lateral 

staminodes can be seen in Figure 1.3. 

1.2 THE GENUS CURCUMA L. 

The genus Curcuma comprises more than 80 species. The exact number has not 

been reported yet since the genus is still being worked on by people from various places. 

It has been reported that there are more than 40 species in Thailand (Sirirugsa, 

unpublished data), 31 species in India (Velayudhan etal. 1996) of which 12 are endemic 

(Jain & Prakash 1995), and more than 20 species in Malesia. 

1.2.1 What does the word Curcuma mean? 

The word Curcuma has been adopted from a presumed Arabic name. The word 

curcum or kurkum, which is the original term, does not denote turmeric but saffron. The 

word kurkum in Arabic means yellow, however turmeric in Arabic is Uruku's sufr or 

Uruku's sabaghin or Carcumaa Avicenna. Kurkum is Persian according to Richardson, 

Arabic in the dictionary of Golius and Meninski, Hebrew in Parkhurst lexicon, but 

Syriac according to the author of Mekhzenu' I Adviyeh (Roxburgh 1812). It is probably 

derived from the same source as the Sanscrit Cuncuma (not Curcuma), with the Greek 

Crocos and Crocon and with the Latin Crocus and Crocum all denoting saffron. 

Rumphius had already remarked on the affinity of these names (Roxburgh 1812). He 

derives the name Curcum from a Chaldaic word, to wash or anoint (Graham 1839). 

Can the word tell the place of origin of Curcu,na? It is hard to judge if the word 

kurkum, which is more from West or South Asia, would relate to the place of origin of 
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Figure 1.3 Flower structure of the tribes in Zingiberaceae 
(After Smith 1981). 
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Curcuma. In other places, for example Thailand to Malaysia and Indonesia, there is a 

uniformity of people in calling turmeric as "yellow" in their own words. This is almost 

similar to the case of people saying kurkum. However, there is a sign that kurkum 

which may refer to turmeric has been long developed and cultivated in the region of 

West and South Asia rather than in South East Asia. The history of turmeric will be 

covered in more detail in Chapter Eight. 

1.2.2 Morphological characteristics 

The genus is differentiated by (Figure 1.4) the conspicuous bracts which are 

connate to each other in the lower part to the backs of those above, forming pouches. 

The top bracts of the inflorescence are usually sterile and differently coloured, called the 

coma (Smith 1981). 

The characteristics below are taken from several related publications and my 

own observations. The underground parts consist of the main rhizome, called mother 

rhizome or primary rhizome or primary tuber. Some species produce sessile tubers that 

spring out from the primary rhizome. The inflorescence comes from the primary 

rhizome or from an old sessile tuber. The position is central when it is terminal on the 

leafy shoot, whereas lateral when it is separated from the leafy shoot. The colour and 

smell of the rhizome are diagnostically important in distinguishing some "species". 

The leaf is composed of a sheath, which wraps around the other sheaths forming 

a false s/em, a petiole, which can be very short, and blade which is entire, elliptic to 

lanceolate. A purple streak on the leaves can stretch along the midrib, sometimes only 

in the basal part of the lamina. The midrib is green or brownish. The base is acute 

decurrent or almost rounded, while the apex is normally acuminate. The surface is 

glabrous, pubescent, or with a few hairs along the nerves towards the apex or hairy on 

the midrib. 

The inflorescence consists ofapeduncle that is usually hairy, and the compound 

cincinnus (Figure 1.5), which is cylindrical or strobilaceous, consisting of numerous 

concave pouched bracts. The pouched bracts subtend a cincinnus of 2-7flowers. Each 

flower is embraced laterally by a bracteole, which is hyaline and boat-shaped. The 

12 
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A 

or 

/ / 
C 	:4 

Figure 1.4 Illustration of Curcuma subgenus Curcuma (A & B) and 
subgenus Hitcheniopsis (C & D). 

A. C. ferruginea Roxb., B. C. longa, C. C. oligantha Tnmen, D. C. roscoeana 
Wall. (A & C taken from Roscoe 1828; B & D photographed by D. White) 
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main axis 

bracteole 

lower 

Figure 1.5 Diagram of compound cincinnus flower 
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flower which is bisexual consists of the ovary which is inferior, hairy or not, unilocular 

with basal placentation or trilocular with axile placentation. From the top of the ovary, 

two slim cylindrical epigynous glands stand out. A few species lack these glands. The 

glands are supposed to produce nectar. 

The flower is composed of sepals, petals, labellum, lateral staminodes, pistil and 

stamen. The sepals are tubular and three-toothed (one rather deeply toothed and two 

shallowly toothed). The petals are tubular or infundibular (long stalked-cupped shaped) 

at the base and three-lobed at the apex. The dorsal petals are normally slightly bigger 

than the lateral ones. The lateral staminodes consist of two petaloid structures adnate to 

and flanking the stamen, fused at the base with the petals. These clasping staminodes 

nearly hide the stamen and pistil. In some species, the lateral staminodes are free and 

not clasping. The labellum which is petaloid obovate or almost circular or elongated, 

slightly bibbed, and conspicuous is adnate at the base on the side with lateral 

staminodes. It is formed by the inner whorl of the androecium. It has a thickened 

longitudinal bar in the centre and in some species, the sides of the bar towards the base 

are slightly erect. The side lobes are erect so as to form a wide channel whereas the 

apical lobe is recurved or protruded. In some species, the side lobes are very short and 

the lobe is more elongated so the channel is not wide. 

The filament is short and broad, constricted at the top and connected to the base 

of the anther or the back of the connective making it versatile. The anther has two 

thecae which are parallel with the connective at the back. They embrace the style that is 

filiform and support it. The dehiscence is towards the front, while the back- and 

sidewalls are very thick and fleshy. These fleshy walls end in short or long awlshaped 

spurs in most species. 

The pollen is ovoid, smooth, three sulcate under SEM, rather large and adhering 

by means of a glutinous substance, not soluble in water. The fruit is ellipsoid, thin-

walled, and dehiscent. It releases the seeds in the mucilage of the bract-pouch. The seed 

is ellipsoid with a lacerate aril of few segments, which are free to the base. 
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1.2.3 Habitat and distribution 

Curcuma is most often found in undergrowth at the tropical and subtropical 

margins of primary forest, open grasslands, secondary forest and plantations in plains, or 

in coconut and arecanut groves (Mangaly & Sabu 1993). They are found in many soil 

types in several rainfall regions, from wet to seasonally dry. 

The genus is distributed (Figure 1.2) from India, southeast through Malesia to 

Queensland and the Pacific Islands (Smith 198 1).  In India, the main centres of 

distribution are southwest and northeast India. Many species are cultivated and 

naturalized (Mangaly & Sabu 1993). 

1.2.4 Importance of Curcuma to humans 

The uses of Curcuma can be found in the literature for the uses of the 

Zingiberaceae in general as discussed previously. Some other references discuss the 

uses of Curcuma such as Fluckiger & l-Ianbury 1879, Bentley & Trimen 1880, Dey 

1896, Lassak & McCarthy 1997. 

The rhizomes are the most widely used part of the plant. There are various kinds 

of colours, smells and tastes. These features are hard to explain in words. The rhizomes 

of many species of Curcuma are used as spices, dyes, tonic, medicines, and as a source 

of starch. Turmeric from the rhizome of C. longa is well known not only for colouring 

foods but also for giving a taste and eliminating bad smells. In Java, rhizomes from 

almost all species are used in medicine. Burkill (1935), Ochse 193 I, and Heyne 1950 

discuss this in detail. 

The young leaves of some species are used as flavouring. Again, the most 

widely known is C. longa. They are used in curry (in Malaysia and Indonesia), and for 

wrapping fish before it is cooked. Young inflorescences are also used for cooking. For 

example, the young inflorescence of C. angusifolia, and C. zedoaria are used to make 

soup or as flavouring for food. 
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1.3 CLASSIFICATION OF CURCUMA 

The history of the classification of Curcuma begins as early as Roxburgh in 

1812. It was continued by Horaninow in 1862, Baker in 1894, Schumann in 1904, 

Valeton in 1918, and recently by Velayudhan etal. in 1996. The classifications are 

summarized and tabulated in Table 1.3. 

Roxburgh (1812) divided the genus into two sections, one with lateral spikes 

which appear before or with the leaves, and the other with central spikes. He recorded 

C. rubescens having a lateral inflorescence, but he also said "and sometimes from the 

centre of the leaves ". It is therefore concluded that C. rubescens has both inflorescence 

positions, lateral in May and then central in September (Roxburgh 1812). 

Horaninow (1862) had the same idea as Roxburgh in dividing the genus into 

sections Exantha (for species that produce a lateral inflorescence) and Mesantha (for 

those species that produce a central inflorescence). However, he also added a new 

section Amphiantha for species that produce both positions of inflorescence, such as C. 

rubescens and C. decipiens. 

Baker (1894) excluded section Amphianiha but accepted the two sections 

Exaniha and Mesantha. He added a new section Hitcheniopsis (see Table 1.4). He 

included C. parv?flora Wall., C. strobilfera Wall., C. grandiflora Wall., C. petiolata 

Roxb., and C. roscoeana Wall. in section Hiicheniopsis. Sections Exaniha and 

Mesantha (see Table 1.4) were maintained. 

Schumann (1904) raised the sections to subgeneric level resulting in subgenera 

Eucurcuma and Hit cheniopsis. In Hitcheniopsis, he added that the bracts are adnate to 

each other almost for their whole length and that the anther is spurless. His original 

description is tabulated in Table 1.4. He put together sections Exantha and Mesaniha 

under subgenus Eucurcuma (see Table 1.4) 

Valeton (1918) criticized Baker's section Hitcheniopsis, saying 

"this last section was based principally in Curcuma Roscoeana, Wall (1830 t. 9), which 
according to Bentham in Genera Plantarum (1880, 643), ought to be transferred to 
Hit chenia, as has been done by Petersen 1868 116.16". 
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Table 1.3 Classification of Curcuma. 

Roxburgh 
1812 

Horaninow 
1862 

Baker 
1894 

Schumann 
1904 

Valeton 

1918 

Velayudhan el 

at 1996 

Section Section Section Subgenus Subgenus Subgenus 

with lateral Exantha Exantha Eucurcuma Eucurcumci Eucurcuma 

spike (Curcuma) (Curcuma) (Curcuma) 
Section 
Tuberosa 

Section Exantha Section Subsection I 

Section Section Section Section Exantha Subsection 2 

with Mesaniha Mesantha Mesantha Section 

central Mesantha Section 

spike Nontuberosa 
Subsection I 
Subsection 2 

Subsection 3 

Section 
Stolonifera 

Section Subgenus Subgenus Subgenus 

Hitcheniopsis Hitcheniopsis Paracurcurna Paracurcuma 

Section 

Amphianta 

KV 
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He also criticized Schuman's subgenus Hitcheniopsis mentioning 

"He takes however in this subgenus among others C. petiolata Roxb., notwithstanding 
this species has calcarate anthers as may be seen in the 4figures quoted by himself and, 
according to Hooker (Bot. Mag. 5431), the bracts are adnate to the middle, not to the 

top". 

Valeton stated that the proportion of the adnate part of the bracts to the free part is very 

vague and useless in practice. He excluded subgenus Hitcheniopsis and coined a new 

subgenus Paracurcuma which contained C. auranhiaca, C. petiolata, C. cordfolia, C. 

,neraukensis, and C. latjfolia. His descriptions of subgenera Paracurcuma and 

Eucurcuma are tabulated in Table 1.4. 

Though Valeton criticized Schumann's use of length of adnation of the bracts, 

one of his descriptions still mentions this feature. He says that, in subgenus 

Paracurcuma, the bracts are adnate at least partly beyond the middle. This character is 

not constant throughout the subgenus. C. alismati,folia has bracts that connect to each 

other almost at the base, therefore this should match subgenus Eucurcuma according to 

Valeton's concept. This is probably because he excluded C. alismabfolia from the 

genus Curcuma. To bear in mind, his description is only based on several Curcuma 

especially in Malesian region (C. aurantiaca, C. pehiolata, C. cordfolia, C. ineraukensis, 

and C. lat?folia). 

Velayudhan el al. (1996) proposed a new classification of Curcuma. Their 

classification at subgeneric level is basically the same as the previous classification 

which divided the genus into two subgenera, Curcuma and Paracurcuma. However, the 

sectional level classification of subgenus Curcuma is very different. Previous authors 

divided subgenus Curcuma into sections Exantha and Mesaniha mainly based on the 

position of inflorescence. Velayudhan et al. proposed a sectional classification of 

subgenus Curcuma on the basis of rhizome structures and the place on the tuber from 

which the flower spikes arise (from tip or side). They proposed three sections and five 

subsections. The first section is section Tuberosa for species in which the main root 

stock or secondary root stock gives rise to sessile fingers. The second is section 

Nonbuberosa for species lacking the sessile tubers but producing stipitate tubers in large 
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Table 1.4 Original description of sections or subgenera in Curcuma. 

Section/Subgenus Curcu,na 	I 
Baker (1894) - Section Hitcheniopsis 
"spike autumnal, from the centre of the tuft 

of leaves; bracts very obtuse, adnate at the 

sides and spreading at the tip". 

Schumann (1904) - Subgenus Hitcheniopsis 
"spica autumnalis e medio foliorum, bracteae 
tota longitudine lateral iter adnatae apice 
liberae et divaricantes et recurvatae, antherae 

basi ecalcaratae". 

Valeton (1918) - Subgenus Paracurcuma 
"bracts often very numerous, connected at 
least partly beyond the middle. Spike 
cylindrical, with comparatively short bracts 

of the coma. Bracteoles small, staminodia 
straight, larger than the dorsal petal which is 
somewhat cucullate, obtuse or with a short 
concave top, not clasping the staminodes, 

except in C. cord jfolia Wall. Anthers 

attached near the base, not or very shortly 
calcarate, spur no longer than a quarter of the 

anther, grooved on the face, as a continuation 

of the loculi; appendix of the connective 

forming a short cup which encloses the 
stigma entirely or its base. Stem short; 
leaves spreading, short-or long stalked, the 
base mostly rounded. Ligule large, forming 

an ovate auricle on both sides of the base of 
the petiole. Rhizome short or wanting, bulbs 

or tubers in groups". 

Baker (1894) - Section Mesantha 
"spike autumnal, from the centre of the tuft 

of leaves; bracts very obtuse, adnate at the 
sides and spreading at the tip". 

Baker (1894) - Section Exantha 
"flower-spike vernal or aestival, distinct from 
the leaves, and usually developed before they 
appear; peduncle sheathed by scariose bracts-
leaves". 

Schumann (1904) - Subgenus Eucurcuma 
"bracteae basi tantum axi et contiguis 
adnatae, apice haud anguste recurvatae 
antherae calcaratae". 

Valeton (1918) - Subgenus Eucurcuma 
"bracts mostly not adnate over the middle; 
only in C. colorata Val. this is the case with 
the lowest floral bracts. Bracts of the coma 
mostly extant far beyond the floral bracts. 
Staminodia longitudinally grooved, folded 
under the cucullate and pointed dorsal lobe. 
Anthers calcarate; spur attached with a fleshy 
base to the back of the cells. Connective 
rounded or narrowed towards the top, not 
lengthened to a cup, sometimes slightly 
produced between the loculi; anther attached 
to the filament at the back about the middle; 
outer wall of thecae prolonged at the lower 
end to a small tubercle, the cell not 
continuous along the lower side, or in some 

species of the Exantha, only as a narrow 
furrow, not containing pollen. Full-grown 
leaves acuminate at the base. Ligule without 
elongated auricles. Rhizomes lengthened, 

consisting of merithalia and forming lateral 
branches. Fourteen species in Java and two 

in Sumatera" 
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numbers. And the last is section Stolonfera for species which have stoloniferous tubers 

arising from the rhizomes. 

Section Tuberosa is subdivided into two subsections. The first is a subsection in 

which flower spikes arise from the tips of sessile tubers of the preceding year's growth 

during the off season (e.g. C. aeruginosa, C. zedoaria). The second is a subsection in 

which flower spikes arise from the tip of the primary mother stock (primary mother 

rhizome) or secondary stock (secondary mother rhizome) during the main growing 

season, e.g. C. longa (Velayudhan et al. 1996). Sessile tubers, however, can grow to 

form a mother rhizome which will produce another clone. 

Section Nontuberosa, is divided into three subsections on the basis of the 

position of the flower spike on the root stocks. In the first subsection the spikes arise 

from the side of the root stocks; while, in the second subsection the spikes arise from the 

tip of the root stocks. Third is a subsection in which the flower spikes arise both from 

the tip and from the sides of the mother rhizomes in different seasons. 

Section Tuberosa subsection I and section Nontuberosa subsection I (e.g. C. 

zedoaria and C. neilgherrensis respectively) correspond with section Exaniha, while 

section Tuberosa subsection 2 and section Nontuberosa subsection 2 (e.g. C. longa and 

C. pseudomontana respectively) correspond with section Mesaniha (Velayudhan et al. 

1996). 

1.4 WAS THE CLASSIFICATION NATURAL? 

Valeton excluded some of Schumann's species that are included in his subgenus 

Hiicheniopsis. They are C. roscoeana, C. parvflora, C. alismaifolia, C. sparganfolia, 

C. gracillima, C. sylvestris, C. lanceolata, and C. kunstlerii. Together, according to him, 

they "do not constitute a natural group". He added that they have in common with 

Curcurna their strobiliform inflorescence, but the structures of coma bracts, petals, 

lateral staminodes, labellum, and anther, are very different from those of Curcuma. 

The reason why he tends to exclude those species from Curcuma is as follows. 

C. roscoeana was thought to be not Curcuma according to Valeton because it has: 
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"no coma, all bracts rigid, red, erect with a much recurved top (free, according to 
Wallich, except at the broad base, adnate with the edges, according to Baker) ;dorsal 
lobe not cucullate; staminodes not lobed, not connate with the filament (?); labellum 
simple, not lobe, not concave, with two elevated lines in the centre, including a median 
groove: anther terminal, articulate to the filament with a broad base, thecae distant 
much shorter than the large connective which ends in a membranaceous, ciliate crest 

Valeton agreed with Bentham in reducing it to Hitchenia. 

C. parvifiora has "petals converge behind the stamen and slam inodes, 
staminodesfreefromfilament and seem to be placed in exterior cycle; labellum patent, 
recurved, not lobed not concave, without erect side parts and central bar, without a 
median groove; anther terminal subarticulate and nutant with a broad base, very shori 
thecae (opening by pores?), a very large fleshy connective prolonged into a 
considerable crest. The violet lip radiating while lines shows more relation to 

Gastrochilus ". 

In C. alismalifolia the .. .... narrow parallel theca of the rather long crested 

anther are attenuate at their base into a kind of spurs, and the connection with filament 

is at the backside near the base, probably it is nutant".. 

In C. sparganfolia the "bracts of the spike are quite free one from another; 

anther with shortly pointed thecae is evidently terminal, siaminodes are free from 

filament labellum entire 

In C'.gracillima the "the bracts are all alike, erect with extant subacute tips; 

anther terminal or versatile? ". 

He added that no stylodes were seen in the four species above (C. parviflora, C. 

alismatifolia, C. sparganij'olia, C.gracillima). My observation of those species, except 

C. sparganfolia, agrees with Valeton that there are no epigynous glands on the top of 

the ovary. 

C. spivesiris has a "slender creeping rhizome; anther terminal with a recurved 

violet crest, and emarginate lip with a yellow central spot and violet streaks on the 

lobes ". 

Valeton thought this was probably Gastrochilus (now Boesenbergia). He added 

that C. lanceolata and C. kunstlerii are supposed to be Gastrochilus. 

Valeton predicted that the species which he excluded from Curcuma, would form 

a group distinct from his other Curcuma. He said "Provisionally I think they must 

remain together forming a rather dubious group, Hitcheniopsis, which might be put as 
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an Appendix to Gastrochilus. None of them occur in the Archipel ". 

Investigation should be carried out to prove whether all Curcuma species form a 

natural group or some must be transferred to other genera as Valeton proposed. At the 

moment, I will include all species of Curcuma that Valeton excluded for convenience 

and treat them as in Schumann's classification (subgenus Hitcheniopsis instead of 

Paracurcuma). The results of this study should be able to answer this question and 

solve the problem. 

If we finally decide to include species that Valeton excluded, we must redefine 

either Valeton's subgenus Paracurcuma or Schumann's subgenus Hilcheniopsis. This is 

in order to accommodate all the species and to reflect their natural relationships. Both 

concepts at subgeneric level still overlap. Velayudhan el al.'s concept at subgeneric 

level should be examined, but the material for my study is limited so that I would not be 

able to investigate their subgeneric classification. 

Subgenus Eucurcuma should simply be called Curcuma if we follow the current 

International Code of Botanical Nomenclature. The subgenus is divided into two 

sections, namely Exantha (with lateral inflorescence) and Mesantha (with central 

inflorescence). However, some species produce both positions of inflorescence, making 

it difficult to assign them to either of the sections. Roxburgh was the first to note both 

inflorescence positions in C. decipiens. Later on, Santapau reported C. pseudomonlana 

as having both inflorescence positions (Santapau 1945, Santapau 1945, Mangaly & Sabu 

1987). Several other species, namely C. amada, C. decipiens, C. inodora, C. 

neilgherrensis, and C. oligantha were reported by Mangaly & Sabu (1993) as having 

both positions. 

Therefore, the sectional level classification causes even more conflict. All 

concepts from Roxburgh to Velayudhan et al. are vague. When the soil or environment 

is very favourable for the species to grow, they can produce lateral inflorescences 

followed by central ones. The sections therefore seem unnatural. Even if we establish a 

section for species that produce inflorescences in both positions, as was put forward by 

Horaninow (1862), it would just make life uneasy. The position of the inflorescence can 

also be affected by developmental genes. 
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It is not just difficult to devise a natural classification of Curcuma. It is even 

difficult to identify them to species. Roxburgh (1812) said: 

"The plants of this genus, are the most easily distinguished of all the Scitaminean 
tribe.......But unfortunately, this uncommonly great similarity extends to almost every 
other part, which renders it so difficult  to distinguish the species; that without the aid of 
colour, I should despair of making their specific characters discriminative. From daily 
habit Ifind no difficulty in recognizing them, yet it is by no means easy to find words 
that will convey that knowledge to others ". 

Baker (1894) also thought that the genus was difficult of determination. He put forward 

a hypothesis that most species of section Exantha were probably just varieties. 

Curcuma is a taxonomically difficult genus, a nightmare to plant hunters, 

herbarium technician, and taxonomist (Mangaly & Sabu 1993). This is because they are 

not easy to identify either from fresh materials or herbarium specimens. It is probable 

that natural crossing to produce natural hybrids has occurred -probably in several of 

Valeton's species (Holttum 1951). It is no wonder that Backer & Bakhuizen van den 

Brink (1968) arrived at the conclusion that there were only two collective species within 

subgenus Curcuma. However, their two collective species are based on the position of 

inflorescence which is, again, not a good character as discussed previously. Their first 

collective species is C. zedoaria sensu lab, which consists of infraspecific taxa C. 

zedoaria sensu stricto (s.s.), C. heyneana, C. phaeocaulis, C. xanlhorrhiza, C. 

aeruginosa, C. mangga, and C. sylvatica. The second collective species is C. viridiflora 

s.l. (older name is probably C. montana) consisting of C. viridiflora s.s., C. longa, C. 

purpurascens, C. coloraba, C. euchroma, C. brog, C. soloensis, and C. ochrorhiza. The 

segregation at infraspecific level into "species" was on the basis of several characters but 

all were colours, such as colour of rhizome, colour of leaves along the midrib, colour of 

leaf sheath, colour of coma bracts, and colour of flower (Backer & Bakhuizen van den 

Brink 1968). Therefore, the key is not very easy to use, for example the key to species 

of C. brog and C. soloensis is as follows: rhizome citron-yellow in C. brog, versus 

rhizome orange-yellow in C. soloensis (Backer & Bakhuizen van den Brink 1968). 

Valeton is right in emphasising the importance of assigning colour using a colour chart. 

He made use of the "Code des couleurs" by Klincsiek et Valette (1908) and 
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"Chromotaxia" of Saccardo. 

Why are some species so similar to each other, disregarding colour? If we look 

at some other species such as most of the Thai species of subgenus Hitcheniopsis, they 

are fertile and we can easily distinguish them even if we fail to see the colour. We can 

distinguish them by the shapes of their various organs such as bract and flower shape. 

However, if we look at all the sterile species of subgenus Curcuma, we shall very likely 

arrive at the same conclusion as Backer & Bakhuizen van den Brink. Herbarium 

specimens are therefore useless unless the colour is recorded precisely or the smell of 

the rhizome is well described. 

1.5 THE USE OF SUBGENERA AND SECTIONS 

There are two types of rank in taxonomic hierarchy. First, the principal ranks. 

The principal ranks of taxa, according to the International Code of Botanical 

Nomenclature, in descending sequence are kingdom, division or phylum, class, order, 

family, genus, and species. Every individual plant is treated as belonging to an 

indefinite number of taxa of consecutively subordinate rank, among which the rank of 

species is basic. Second, the secondary ranks. These are ranks that may be used or not. 

The secondary ranks are generally used to subdivide large groups. Thus, a large family 

may be divided into tribes, a large genus into sections, large sections in series, etc. If 

that is not enough, one can always create additional ranks immediately below any or all 

of the principal or secondary ranks by adding the prefix "sub-" to the rank concerned. 

For example, subfamily is a rank immediately below a family but above a tribe. 

Subgenera is a rank immediately below a genus. Similarly, one can insert ranks above 

any of the recognized ranks, e.g., a superorder or superdivision. The advantages of these 

secondary ranks are, for instance, to ease of reference and identification, to call attention 

to variation or correlation with geography. 
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1.6 AIMS OF THE PROJECT 

The project is first set up to revise the Malesian species. As herbarium materials 

are difficult to study, and as the living materials are not all to hand, it will be very 

difficult to achieve the goal. Fieldwork was carried out in Java to get living material and 

add them to a living collection. Good living collections in the glasshouses of the Royal 

Botanic Garden Edinburgh, allowed me to observe flowering of several species between 

1996 and 2000. 

Other species from places outside Malesia were also studied in order to obtain 

general results as to the subgeneric and sectional boundaries in the genus. As some 

triploid sterile species from subgenus Curcuma are difficult to work out using 

morphological investigation, a molecular study was also carried out as part of the 

project. It is hoped that, by phylogenetic analysis using a different source of data, I 

would be able to draw conclusions as to whether the present classifications are natural or 

not. At the end we need to search for and define boundaries at subgeneric level that 

reflects natural relationships. 

1.7 THESIS STRUCTURE 

1.7.1 Introduction 

Chapter One gives an introduction to the thesis, the background of Curcuma, its 

position in the plant kingdom in general and in family Zingiberaceae and tribe 

Hedychieae, its taxonomical history, its structure, and its problem. The aim of the 

project is also noted. 

1. 7.2 Molecular investigations using DNA sequences 

Chapter Two is a phylogenetic study using DNA sequences data from two 

different organelle of cell. First is DNA sequences from nuclear DNA, i.e. the Internal 

Transcribed Spacer. The second is DNA sequences from plastid DNA of region irnL-F. 
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1.7.3 Morphological approach 

Chapter Three dealt with phylogenetic study using gross morphological 

(vegetative underground and above ground parts, and inflorescence and flower 

characters) and some anatomical characters (epidermal structures and leaf transverse 

section for some species represented the two subgenera, and SEM of seed coat in four 

species represented the two subgenera). SEM of pollen was tried but was not successful. 

The pollen were sticky one to another. I have limited time to go through the process of 

avoiding these sticky pollen for SEM study. 

1. 7.4 Morphometric investigations of flowers 

Chapter Four is about the attempt to classify the floral diversity in Curcuma 

based on an investigation on the morphometric of flower. Floral types could hint 

putative pollinator guilds. Mapping the floral character onto molecular tree was also 

carried out. 

1. 7.5 Chromosomes analysis 

Chapter Five is about the attempt to understand the meiotical divisions in triploid 

species. The work tried also to confirm the chromosome numbers of some species of 

Curcuma. 

1. 7.6 Finding genetic variations using isozyme technique 

Chapter Six concerns about the discovery of genetic variations among 

populations of some species of Curcuma using isozymes as the marker. 

1. 7.7 Polymorphisms of ITS 

Chapter Seven is about the attempt to sort out the polymorphic sequences of ITS 

in some species of Curcuma. 
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1.7.8 Revision of Javanese Cu rcuma 

Chapter Eight is a preliminary study for the preparation of the Revison of the 

genus for Flora Malesiana. 

1.7.9 General discussion, conclusions and suggestion for further 
study 

Chapter Nine is a discussion of the whole aspects carried out in the study, 

conclusion and suggestion for future study. 
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CHAPTER 2: PHYLOGENETIC STUDY USING 
MOLECULAR DATA FROM NUCLEAR TRANSCRIBED 
SPACER (RIBOSOMAL DNA) AND TRNL-F PLASTID 

DNA SEQUENCES 

2.1 INTRODUCTION 

2.1.1 Internal Transcribed Spacer (ITS) region of ribosomal DNA 

Ribosomal DNA (rDNA) is a multigene family, occuring as one or several 

clusters in the haploid chromosome set. Cytologically, we recognize these clusters as 

the nucleolar organizer (NOR) in the chromosomes (Long & Dawid 1980). rDNA 

occurs in many copies, ranging from 200 copies in Linum usilassimum to 22,000 copies 

per haploid genome in Viciafaba (Long & Dawid 1980, Rogers & Bendich 1987). This 

copy number varies not only between distantly related species, but also among members 

of the same genus and a population of a single species (Rogers & Bendich 1987). 

The many copies of rDNA exist in large arrays of tandem repeats (Figure 2.1). 

The repeats consist of a gene region (pre-rRNA gene) and a spacer that separates one 

gene from the next. The 5', 16-18S, 5.8S, 25S, 3' are transcribed as a single large 

precursor which is processed subsequently to the mature 16-18S, 5.8S, and 25-28S RNA 

molecules (Jorgensen & Cluster 1988). In some cases the repeating unit also codes for 

5S rRNA, but in general pre-rRNA and 5S RNA genes in eukaryotes are not linked. The 

transcription unit of pre-rRNA has a size of 8 kb in most eukaryotes. The configuration 

of ribosomal genes is usually repeated in tandem in a head-to-tail configuration. (Long 

& Dawid 1980). 

Transcription units alternate with spacers called nontrancribed spacers (NTS). 

NTS is later called Intergenis Spacer (IGS). This spacer is called NTS or IGS because 

regions which are transcribed into nonconserved parts of the pre-rRNA are called 

transcribed spacers. These transcribed spacers are subdivided into external (ETS) and 

internal (ITS) regions. 

The family of rRNA coding region sequences contained within the arrays is 

generally highly conserved, whereas the spacer regions often exhibit extensive 
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intraspecific variablity in both sequence and length (Polaris el al. 1986). 1GS can vary 

extensively in length among species, at the population level, or even within a single 

individual (Schaal & Learn 1988 in Baldwin 1992). In contrast to the IGS, ITS is 

evolutionarily conservative in length. As a result of the short length, too few restriction 

sites generally occur within the ITS. 

The rDNA repeat units of an individual plant are highly homogenous. This 

homogeneity is presumably the result of concerted evolution of rDNA repeat units as 

explained by Arnheim el al. (1980). 

Several mechanisms have been thought to be the factor induced concerted 

evolution such as saltatory replication hypothesis (Britten & Kohne 1968, Buongiorno-

Nardelli el al. 1972 in Li 1997), unequal crossing-over (Edelman & Gaily 1970,   Smith 

1974, 1976 in Li 1997), replication slippage (Dover 1986), gene conversion (Edelman & 

Gaily 1970, Birky & Skavaril 1976 in Li 1997), and duplicative transposition (Dover 

1982 in Li 1997) or all called as molecular drive. The generality of concerted evolution 

in multigene families have been confirmed using restriction enzyme analysis and DNA 

sequencing (reviewed in Ohta 1980, Dover 1982, Arnheim 1983). Gene conversion and 

unequal crossing over are probably the ultimate mechanisms for the occurrence of 

concerted evolution (Li 1997). The genes evolve together through gene conversion, 

unequal crossing over, and probably repeat amplification (Baldwin ci al. 1995). 

2.1.2 Functions of the ITS 

Study in Saccharomyces cerevisiae ribosomal DNA shows that small deletions in 

the 5'-terminal portion of ITS2 completely block maturation of 26S rRNA at the level of 

the 29SB precursor (5.8S rRNA-ITS2-26S rRNA). However, various deletions in the 

3'-terminal part, though severely reducing the efficiency of processing, still allow some 

mature 26S rRNA to be formed. The deletions of ITS2 do not affect the production of 

mature 17S rRNA (van der Sande et al 1992). Van der Sande ci al. 1992 also concluded 

that the precise (secondary and/or primary) structure at the lower end of helix V, but 

excluding the loop, is of crucial importance for efficient removal of lTS2. 

30 



CHAPTER 2: PHYLOGENETIC STUDY USING MOLECULAR DATA... 

The study suggests that ITS is under evolutionary constraint as a result of an 

important role in processing mature rRNAs from primary trancripts. Secondary, 

"crucifex or tRNA-like-core" structures assumed by both ITS units in the primary rRNA 

transcripts may be critical to rRNA maturation by bringing the ends of the 18S, 5.8S, 

and 26S rRNA regions into close proximity for processing (Venkateswarlu & Nazar 

1991). 

2.1.3 Advantages and disadvantages of using the ITS 

Nuclear ribosomal DNA has proven to be a powerful phylogenetic tool because 

it is ubiquitous in all organisms and occurs as repeated units in high copy number. One 

of the advantages of rDNA as a phylogenetic tool is that the repeat unit consists of 

several regions that have different rates of sequence change. Therefore, different 

regions of the molecule can be used to examine lineages with different levels of 

divergence. The 18S and 26S coding regions have been used to address phylogenetic 

questions at the family level or higher taxonomic levels in plants (Zimmer et al. 1989, 

Hamby & Zimmer 1991). On the other hand, ITS sequences appear to be useful for 

assessing relationships at lower taxonomic levels such as among genera or species 

because the sequences of spacer regions evolve more rapidly than the coding regions in 

general (Suh et al. 1993). 

The tandem repeat structure and extremely high copy numbers of nrDNA make it 

especially easy to detect or clone in the laboratory. The two spacers of the region, ITS I 

and ITS2, which is flanking with conserved regions (18S, 5.8S and 26S), can be readily 

amplified by Polymerase Chain Reaction (PCR) and sequenced using universal primers, 

even from DNA of herbarium specimens. High alignability and minimal length 

variation among ITS 1, 5.8S and ITS2 sequences make it easy to determine the 

positional homology of nucleotide sites. 

Schaal & Learn (1988) discussed the prospect of using ribosomal DNA in the 

study of microevolutionary processes. Although ITS are present as numerous copies, 

but since molecular drive is put on to trigger a concerted evolution, the copies will be 

homogenized and therefore will be possible to use in phylogenetic study. 
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Problems in nrDNA genes includes polymorphisms within the arrays. 

Homogenization of nrDNA is not instantaneous and individual plants may contain a 

mixture of older and more-derived alleles. Recombination can also result in individual 

alleles with multiple lineages (Buckler 1996). Buckler (1996) modelled these 

polymorphisms at the infraspecific level with polymorphisms parsimony that accounts 

for a high probability of polymorphism persistence. 

2.2 TRNL-F OF CHLOROPLAST DNA 

Chloroplast DNA or cpDNA (Figure 2.2) has been used as an important source 

of characters for phylogeny reconstruction in plants (Palmer et al. 1988). However, 

maternal-inherited property of this genes accounts for significant error from 

hybridization and introgession events or lineage sorting (Doyle 1992). However, 

comparison ofcpDNA and nuclear DNA in phylogenetic studies helps solving such 

problems (Smith & Systma 1990, Rieseberg etal. 1988, Baldwin 1992). Moreover, it 

also helps verifying species relationships and better understanding of the origin of 

polyploid species (Soltis & Soltis 1991). It can also be used to confirm the phylogenetic 

tree built on the basis of other genes especially from other compartment of the cells, 

such as nuclear ribosomal DNA. The irnL-F genes can be seen in Figure 2.3. It has 

been successfully used for phylogenetic reconstruction (Gielly et al. 1996, Sang el al. 

1997). The region of trnL (UAA) 5' exon to irnF (GAA) in divided into two 

subregions, ie. trnL intron and trnL-F spacer (Taberlet el al. 1991). 

2.3 MOLECULAR APPROACH USED IN THIS STUDY 

Analyses of ITS sequences have provided phylogenetic resolutions of infra- and 

intergeneric relationships. Many groups of plant have been sequenced for their ITS, to 

name a few, in Fabaceae (Wojciechowski et al. 1993), grass species (Hsiao et al. 1993), 

Onagraceae (Baum & Sytsma 1994), Aral iaceae (Wen & Zimmer 1996), Asteraceae 

(Baldwin 1992; Baldwin 1993; Kim &Jansen. 1994; Susanna etal. 1995, Eldenäsetal. 

1998), Winteraceae (Suh etal. 1993), Saxifragaceae (Soltis etal. 1996), Zea (Buckler & 
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Holtsford 1996), Rubiaceae (Persson 2000), and Gesneriaceae (Möller & Cronk 1997a; 

Möller & Cronk 1997b; Denduangbori pant & Cronk 2000). In Zingiberaceae, it has 

been used to study the classification of Curcuina (Ardiyani 1997), and the phylogeny of 

Alpinia (Rangsiruji 2000), Kaeinpferia Group (Searle & 1-ledderson 2000), Roscoea 

(Ngamriabsakul el al. 2000), and Hedychiuin (Wood ci al. 2000). 

Molecular approach has been widely used in phylogenetic study. The product of 

this study is a gene tree which hypothesises relationships among genes or genomes. The 

tree resulted from this approach may not be congruent with the true species phylogeny. 

This may be due to biological phenomena such as introgression, lineage sorting, and 

gene duplication. In such situations, all of the nucleotides or restriction sites of a gene 

or genome may be necessarily correlated as a single species tree character. The 

robustness of phylogenetic hypothesis is then meaningless. However, as with other 

characters, a gene tree can be combined with other characters such as non molecular 

characters to be tested best by parsimony analysis (Doyle 1992). 

Morphological approaches to Curcuina taxonomy continue to be significant and 

probably vital. However, this cannot help to solve the problems in subgenus Curcuma. 

Therefore, a molecular systematic study will be attempted. A preliminary study of the 

genus has already been carried out (Ardiyani 1997). Attempts to sequence more species 

in Curcuina using the ITS have been made in this study. 
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Figure 2.1 Repeat units of the nuclear ribosomal DNA and the organization of 
the ITS region. Arrows denote orientation and approximate position of primer 
sites. Primer names in quotation marks are modofied from White etal. 1990. 

Primer "ITS2K" was designed by Rangsiruji (1999) 

Figure 2.2 Chloroplast DNA 
LSC: large single copy region; IR: inverted region; 

SSC: small single copy region 
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Figure 2.3 The chloroplast DNA region between the tmT (UGU) and the tmF 
(GAA) genes. (i): intergenic spacer between tmT (UGU) and tmL (UAA) 5' 

exon; (ii): tmL (UAA) intron; (iii): another intergenic spacer between tmL (UAA) 
3' exon and tmF (GAA). The arrows with small letters indicate positions and 

directions of universal primers a to f (After Taberlet etal. 1991). 
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2.4 MATERIALS 

The materials used are summarized in Table 2.1. 

2.4.1 Ingroup and outgroup taxa 

A phylogenetic study of the Zingiberaceae using ITS l-5.8s-ITS2 sequences by 

Wood el al. (2000), and a similar study using combined ITS and maiK sequence data by 

Kress el at. (2000) show that the nearest taxa to Curcuma are Stahlianthus and Hitchenia 

(not available for this study). Stahlianthus involucralus (Baker) Loes. and Smi/hatris 

supraneanae W.J. Kress & K. Larsen (another related species) were therefore included 

in the analysis. Two species of Roscoea (R. auriculala and R. schneideriana) and two 

species of Cauileya (Ca. spicala and Ca. gracilis) were used as the outgroup to assess 

the monophyly of Curcuma in respect of Stahlianthus and Smilhatris. Either their ITS 

or irnL-F sequences meet the necessity for alignment. Likewise, they are distantly 

enough related to enable unequivocal rooting of the tree. The sequence data of Roscoea, 

and Cauileya were obtained from Ngamriabsakul el al. (2000), while those of 

Siahlianlhus and Smithairis were obtained from Ngamriabsakul el al. (unpublished 

data). 

Ten species representing subgenus Hitcheniopsis, namely C. ecomata, C. 

aurantiaca, C. australasica., C. harmandii, C. thorelii, C. alismat?folia, C. gracillima, 

C. parviflora, C. roscoeana, C. petiolala, and 15 species representing subgenus 

Curcuma, namely C. phaeocaulis, C. aeruginosa, C. zedoaria, C. zanihorrhiza, C. 

a,narissima, C. heyneana, C. elala, C. aromalica, C. soloensis, C. cobra/a, C. longa, C. 

amada, C. mangga, C. ochrorhiza, and C. purpurascens were studied in the 

investigation. It is presumed that these 25 species of Curcuma represent about 25% of 

species in the genus which includes almost 100 species. 

Apart from the widely cultivated C. bonga, C. zanihorrhiza, C. zedoaria, and C. 

aeruginosa, the rest are representative of Curcuma from Java and Thailand. It is likely 
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that most, if not all, of Javanese Curcuma are not wild species, but are cultivated or 

escaped from cultivation and naturalized. 

Verification of the species of Curcuma was accomplished by referring to the 

literature on Curcuma (Roscoe 1807; Roxburgh 1812, 1832; Blume 1827; Horaninow 

1862; Baker 1894; Schumann 1904; Gagnepain 1908; Valeton 1918; Holttum 1950, 

1951; Backer & Bakhuizen van den Brink 1968). 

Apart from C. cf ausiralasica, C. petiolala, C. elala, and C. aromatica, which 

are herbarium specimens stored in Royal Botanic Garden Edinburgh (RBGE) herbarium 

(E), all other species are cultivated in the RBGE research glass house. I brought some 

Javanese species from a field expedition to Java, Indonesia. Some other Thai species 

were brought by M.F. Newman & C. Ngamriabsakul from Thailand. 

The DNA of C. australasica, C. petiolata, C. elata, and C. aromalica were 

extracted from herbarium materials, while the DNA of the rest of the species was 

extracted from silica gel dried leaves. Voucher specimens for species which are kept in 

the glass house were made, and when the plants were flowering, inflorescences and 

flowers were collected and preserved in Copenhagen mixture (water 5.5 units; methanol 

3.5 units; glycerol 0.5 units). They are deposited at E. The colours of the rhizomes and 

inflorescences were matched to the Royal Horticultural Society colour chart and were 

noted. Some photographs or slides were taken by myself besides those which were 

taken professionally by Debbie J. White. Slides were stored in RBGE library slide 

collection by D.J. White. 
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Table 2.1 50 accessions representing 31 taxa of used in 
the molecular study (ITS and trnL-F). 

Species 
	 Source 

	
Origin 
	

Voucher 

00 

Ca. gracilis (Sm.) Dandy* 

Ca .spicala (Sm.) B aker* 

R. auriculata K.Sc h um .* 

R. schneideriana (Loes.) Cowley* 

St. involucratus (Baker) Loes. 
Sm. supraneanae W. J. Kress & K. Larsen * 

C. parvflora Wall. 
C. thorelii I Gagnep. 
C. thorelii 2 

C. roscoeana Wall. 
C. alismat?folia / Gagnep. 
C. aIismatfolia 2 

C. gracillima Gagnep. 
C. ecoinata Craib 
C. har,nandii Gagnep. 
C. petiolata Roxb. 
C. cf. australasica Hook.f. 
C. mangga Valeton & Zijp 
C. ochrorhiza I Valeton 
C. ochrorrhiza 2 

C. aurantiaca / Zijp 

C. aurantiaca 2 

C. longa I L. 
C. longa 2 

C. longa 3 

C. longa 4 

C. longa 5 

C. longa 6 

RBGE 19820532 	not known 
	

C. Ngamriabsakul 11(E) 

E00061739(E) 
	

E00061739 (E) 
RBGE 19699652 	not known 

	
C. Ngamriabsakul 14 (E) 

RBGK 19903345 	Yunnan 
RBGE 19981701 Thailand C. Ngamriabsakul 34 (E) 

Y. Paisooks anti vatana (BK) Thailand Y. Paisooksantivatana 00081101 (BK) 
RBGE 19851661 Sukhothai, Thailand M. Ardiyani 31(E) 

RBGE 19973659 Thailand M. Ardiyani 82(E) 

M945 Thailand M.F. Newman 945 (E) 
RBGE 19973658 Thailand M. Ardiyani 83 (E) 
RBGE 19973657 Thailand M. Ardiyani 84(E) 
M944 Thailand M.F. Newman 944 (E) 

CNG60 Phetchabun, Thailand C. Ngamriabsakul 60 (E) 
CNG38 Chiang Mai, Thailand C. Ngamriabsakul 38 (E) 
CNG46 Chachoengsao, Thailand C. Ngamriabsakul 46 (E) 
K.M. Nagata 3688 (E) K.M. Nagata 3688 (E) 
K.M. Nagata 2312 (E) K.M. Nagata 2312 (E) 
RBGE 19780191 Java, Indonesia M. Ardiyani 75 (E) 
54MA Central Java, Indonesia M. Ardiyani 54 (E) 
57MA Central Java, Indonesia M. Ardiyani 57 (E) 
35MA West Java, Indonesia M. Ardiyani 35 (BO) 
67MA East Java, Indonesia M. Ardiyani 67 (E) 
RBGE 19931919 not known M. Ardiyani 33(E) 
RBGE 19782126 not known (cultivated) M. Ardiyani 85 (E) 
RBGE 19711837 not known (cultivated) M. Ardiyani 86(E) 
60MA Central Java, Indonesia (cultivated) M. Ardiyani 60 (E) 
W81 p246 cultivated W81p246 
RBGE 19721701 not known (cultivated) M. Ardiyani 87(E) 
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Table 2.1 (continued) 50 accessions representing 31 taxa of used in 
the molecular study (ITS and trnL-F). 

Species 	 Source 	 Origin 	 Voucher 

C. çf longa 37MA West Java, Indonesia (cultivated) M. Ardiyani 37 (E) 

C. elaw Roxb. J. Lau & Cong 2213 (E) J. Lau & Cong 2213 (E) 

C. amada Roxb. RBGE 19810001 Kerala, India M. Ardiyani 27(E) 

C. cf. amada RBGE 19710261 not known M. Ardiyani 88 (E) 

C. zanthorrhi:a I Roxb. RBGE 19740965 not known M. Ardiyani 80 (E) 

C. zanthorrhi:a 2 RBGE 19771295 West Java, Indonesia M. Ardiyani 89 (E) 

C. zan:horrhiza 3 46MA Central Java, Indonesia M. Ardiyani 46 (E) 

C.zanthorrhiza 4 RBGE 19780194 Indonesia M. Ardiyani 90(E) 

C. zanthorrhiza 5 RBGE 19780187 Java, Indonesia M. Ardiyani 91(E) 

C. :edoaria / (Christm.) Roscoe RBGE 19771296 East Java, Indonesia M. Ardiyani 92(E) 

C. zedoaria 2 W78p242 India M. Ardiyani 93 (E) 

C. zedoaria3 RBGE 19730871 Sri Lanka M. Ardiyani 28(E) 

C. cf zedoaria 38MA West Java, Indonesia M. Ardiyani 38 (E) 

C. heyneana Valeton & Zijp RBGE 19780189 Java, Indonesia M. Ardiyani 30 (E) 

C. cf. heyneana 42MA Central Java, Indonesia M. Ardiyani 42 (E) 

C. aeruginosa Roxb. RBGE 19780186 Indonesia M. Ardiyani 26(E) 

C. phaeocaulis Valeton RBGE 19771293 Java, Indonesia M. Ardiyani 73(E) 

C. aro,natica Salisb. R.C. Joshi sm. (E) India R.C. Joshi sm. (E) 

C. soboensis Valeton 47MA Central Java, Indonesia M. Ardiyani 47 (BO) 

C. amarissima Roscoe RBGE 19871252 Thailand M. Ardiyani 74(E) 

C. purpurascens Blume RBGE 19780193 Java, Indonesia M. Ardiyani 32 (E) 

C. coborala Valeton RBGE 19771290 West Java, Indonesia M. Ardiyani 34 (E) 

Notes: 
• indicates that material is obtained from Ngamriabsakul et al. (2000 and unpublished); (E) is Edinburgh herbarium. In source of samples: 

MA is Marlina Ardiyani; M: Mark Newman; CNG: Chatchai Ngamriabsakul; RBGE: Royal Botanic Garden Edinburgh; RBGK: Royal 
Botanic Gardens Kew; W: Waimea Arboretum and Botanical Garden, Hawaii, USA. 
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2.5 METHOD AND ANALYSIS 

Methods are summarized in Figure 2.4. 

[DNA extracti on  I 

-~l Agarose gel electrophoresis 

[Gene amplificationfPCR] 

j:1 Agarose gel electrophoresis 

r Purification of PCR Products] 

Z~ 
 Agarose gel electrophoresis 

Cycle sequencing and purification 
] 

D. 

rAutomated DNA sequencing 
] 

JIIIL 
[PhYloenetic analy sis  I 

Figure 2.4 Flowchart of the methods used in the molecular study. 

Chemicals used are compiled in Appendix 1. 

2.5.1 Total genomic DNA extraction 

The method for total genomic DNA extraction (see Figure 2.5) is modified from 

Doyle & Doyle (1987). The 2x "hot" CTAB method was used throughout. Preheated 

CTAB was used instead of cold CTAB. This "hot" CTAB method is preferred (M. 
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Hollingsworth, pers. corn.) as it works better and faster. The method is also good for 

isolating DNA from herbarium specimens. 

The 2x CTAB contains CTAB, sodium chlorides, EDTA, beta-mercaptoethanol, 

and PVPP. The function of this extraction buffer, the 2x CTAB, is mostly to protect the 

DNA from degradation by native enzymes and secondary plant metabolites. CTAB is a 

cationic detergent that helps to lyse the cell membranes and will form complexes with 

nucleic acids. Sodium chlorides help the formation of nucleic acid-CTAB complexes. 

EDTA chelates divalent ions, especially Ca 2  and Mg2 , and prevents the activity of 

metal-dependent nucleases. Beta-mercaptoethanol is a reducing agent that protects the 

DNA against quinones, disulphides, peroxidases, and polyphenol oxidases. Finally, 

PVPP which has a similar function to PVP-40T (polyvinyl pyrrolidone), will form 

complexes with secondary plant products, in particular complex polyphenols, tannins, 

and quinones. 

The first process is to disrupt the cell material. One circle cut out by punching 

fresh healthy leaves or silica gel dried material was obtained using 1.5 ml Eppendorf 

tube lid per sample. A pinch of sand was added, then all the tubes containing material 

for DNA extraction were placed on a rack. In another 1 .5 ml Eppendorf tube (one tube 

was needed for each DNA sample), 500 l.tl 2xCTAB was preheated with 0.2% 

mercaptoethanol (1 tI) at 65°C in a water bath. Using forceps, the tube that contains 

leaf sample was submerged in liquid nitrogen (the lid of the tube must be opened or 

pierced if the lid was closed). Using a small plastic pestle, the tissue (sample) inside the 

tube was ground to a fine dry powder. The sample should be maintained cold by 

submerging it back in liquid nitrogen. The cooling and grinding step was repeated two 

to three times. 

The powder obtained was dissolved in 400 j.tl preheated 2xCTAB, and then just a 

pinch of PVPP was added. The tube containing the mixture was placed in a vortex for a 

few seconds, then incubated for an hour at 65 °C in a water bath to allow the cell to lyse 

for DNA liberation. After that, the tubes were taken out of the water bath and were 

allowed to cool for 10 minutes. Then, the samples were centrifuged at 13,000 rpm 
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Cell disruption 	1 
mechanically by grinding, and 
chemically with 2xC TA B J 

1 	

—01 	
1 

Removals of protein, polysaccharide, et 

L with 'wet' chloroform-isoamyl alcoholJ 

"-W 
f pitation of nucleic acids 

with cold isopropanol 
~Removals  

L with  wash buffer 

Figure 2.5 Flowchart to show simplified method of extracting nucleic acids. 

for 10 minutes at room temperature. Gently, the aqueous (upper) phase was removed 

without removing any of the particulate matter, and was placed in a clean 1 .5 ml 

Eppendorf tube. 

400 1.11 of "wet" chloroform: i so-amyl alcohol (24:1) were added and mixed well 

by inversion. The chloroform is referred to as "wet" by which addition will change the 

mixtures to be slightly more hydrophilic (attracted to water). This will be able to 

precipitate proteins and polysaccharides more effectively, and therefore will extract 

nucleic acids better. The samples were placed on a shaker for 20 minutes for more 

effectiveness instead of only inverting them by hands for a few times (M. Hollingsworth, 

pers. corn.). Next, the samples were centrifuged at 13,000 rpm for 10 minutes at room 

temperature. The supernatant was removed gently being careful not to pick up any of 

the bottom layer, and was placed in a clean, 1.5 ml Eppendorf tube. The above steps 

were repeated once again to re-extract the supernatant. 

42 



CHAPTER 2: PHYLOGENETIC STUDY USING MOLECULAR DATA... 

To precipitate the nucleic acids, 2/3 volume (300 .tl) freezer cold isopropanol 

(also known as propan-2-ol) were added and mixed well by gentle inversion. The 

mixing by inversion was continued until the oily appearance of the mixture had gone. 

The samples were then left at -20 °C overnight. After that, they were centrifuged at 

13,000 rpm for 10 minutes at room temperature. At this stage, the concentration of salt 

in the extraction buffer is reduced. Therefore the CTAB-nucleic acid complex is 

precipitated. 

In the final stage, the supernatant was poured off (being careful not to pour out 

the pellet), the tube was inverted and the pellet was dried in a vacuum drier for 10 

minutes. It is important not to over-dry the pellet as it will stick hard to the tube and will 

be difficult to dissolve it. To obtain the nucleic acid solution, the pellet was resuspended 

in 50 jal of TE buffer by flicking the tube with a finger. The genomic nucleic acids can 

be stored in the freezer until required. 

Prior to the final stage, the pellet formed can be washed by wash buffer before it 

is agitated to release the pellet from the bottom of the tube. This is to dissolve the 

CTAB-nucleic acid complex and to remove the CTAB. However, throughout my study 

wash buffer was not used as the DNA obtained was already clean. 

Freezing is suitable for long-term storage. However, constant freezing and 

thawing will induce shearing of the DNA. The final nucleic acid sample contains a 

mixture of RNA, nuclear DNA, chioroplast DNA, and mitochondrial DNA. 

2.5.2 Agarose gel electrophoresis to check DNA quality and quantity 

The next step is to check the quality and quantity of the DNA obtained by 

running each sample on a 1% agarose gel (0.5 g agarose dissolved in 50 ml I xTBE 

buffer) electrophoresis stained with Ethidium bromide. 

The agarose in TBE buffer was heated in a microwave until all the particles had 

dissolved. It is best to wait until the bubbles get bigger (M. Hollingsworth, pers. corn.) 
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to avoid having small bubbles in the set gel. When it was cooled, I I.11 Ethidium 

bromide was added. Then, it was poured to a gel mould fitted with a gel comb. When 

the gel was set, the comb was removed so wells were formed. 

Five .tl of extracted total genomic DNA were mixed with 3 .tl loading solution 

and then loaded in a well. Five il DNA size marker (DNA 1-lyperladder) was loaded in 

one side well of the samples to compare with the total genomic DNA. They were run in 

an electrophoretic field at 60-80V for 1-1 .5 hours. 

The negatively charged DNA will move to the positive electrode at a certain 

speed which depends upon the size of the molecules. Observation of the bands of 

ethidium bromide corporated-DNA was done under UV light. The results were 

documented with a digital camera and printed out. 

2.5.3 Gene amplification 

Gene amplification to produce identical DNA copies was obtained via the 

Polymerase Chain Reaction (PCR) technique. Three basic stages were involved, i.e. 

denaturation, annealing, and synthesis or primer extension (Figure 2.6). The 

denaturation phase (high temperature) splits the double-stranded DNA into single-

stranded DNA. The annealing phase involves lowering the temperature. In this phase, 

the oligonucleotide primers will bind to the single-stranded DNA. The third stage, 

synthesis stage, involves the binding of polymerase enzyme (Taq= Thermus aqualicus 

polymerase) to deoxyribonucleotide triphosphates (dNTP5) and catalyze a reaction by 

attaching the nucleotides to the single-stranded DNA. 

The ITS region was amplified using primers "ITS 5P" (5'-GGA AGG AGA AGT 

CGT AAC AAG G-3') and "ITS 8P" (5'-CAC GCT TCT CCA GAG TAC A-3') (Möller 

& Cronk 1997) which yielded double-stranded DNA of approximately 800 bp (Figure 

2.1). The irnL (UAA) 5' exon- irnF (GAA) region (Figure 2.3) was amplified using 

universal primers "c" (5'-GGA AAT CGG TAG ACG CTA CG3') and "f' (5'-ATT 

TGA ACT GGT GAG ACG AG-3') (Taberlet et al. 1991). PCR amplification was 
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performed in the thermal cycle (GeneAmp PCR System 9600, Perkin Elmer, USA or 

DNA Engine Peltier Thermal Cycler 200, Gradient Cycler, GRI). 

The PCR reaction mixtures of total volume 50 tl in 0.2 ml PCR contained 34.5 

p.1 sterile distilled water, 5.0 p.1 of 2 mM deoxyribonucleoside triphosphate (dNTP) mix 

(Sigma Chemicals, Poole, Dorset, UK), 5.0 p.1 of lOx Bioline taqTM reaction buffer (160 

mM (NH4)2SO4, 670 mM Tris HCI pH 8.8 at 25'C, 0.1% Tween-20), 2.5 p.1 of 50 mM 

MgCl2, two pairs of 10 mM primers ("ITS5P" and "ITS8P" for ITS region; and "c" and 

"IT for trnL-F region) each 1 .5 p.1 (Oswel DNA Service, Southampton, UK), 0.25 p.1 of 

5U/p.l DynazymeTM II thermostable DNA polymerase (Finnzymes Oy, Espoo, Finland), 

and 2 p.1 DNA template from aliquots of total genomic DNA. Sterile distilled water was 

used instead of DNA template for the negative control. PCR cycle parameters for ITS 

amplification were as follows: initial denaturation for 3 min at 94 °C; denaturation of 

template DNA for 1 min at 94°C; primer annealing for I min at 55 °C; primer extension 

for 1.5 min at 72 °C. After 30 cycles, a final extension step of 5 min at 72 °C was added. 

This extension was meant to allow completion of unfinished strands. PCR cycle 

parameters for trnL-F region were as follow: initial denaturation for 4 min at 94 °C; 

denaturation of template DNA for 0.45 min at 94 °C; primer annealing for 0.45 min at 

54°C; primer extension for 2 min at 72 °C. A final extension step of 10 min at 72 °C was 

added after 35 cycles. Gel electrophoresis (method described previously) at 60-80 V for 

1-I .5 hours using 1.5 .tl of PCR products was carried out to check successful 

amplification and quantity of PCR products. DNA size marker 123 bp ladder or I KB 

ladder was sometimes used for comparison of amplified DNA obtained. 
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Isolate DNA 

Denature and anneal primers 

Primer extension 

Denature and anneal primers 

Primer extension 

r cycle I 

IIIIPII 
Denature and anneal primers 

Primer extension 

Repeat cycles 

Figure 2.6 General protocol of the polymerase chain reaction for amplifying 
DNA (after Oste 1988 in Avise 1994) 
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2.5.4 Purification of PCR products 

Purification means to purify the DNA obtained from any unwanted artefacts 

from PCR such as primers, unincorporated nucleotides, polymerases, and salts. The 

PCR products of ITS region and region between trnL (UAA) 5' exon and trnF (GAA) 

were purified using the QIAquickTM PCR Purification Kit with a unique silica gel 

membrane technology. The protocol from the manufacturer was as follow (see Figure 

2.7). 

One volume (50 p.1) of PCR products was added to five volumes (250 p.1) of 

buffer PB. A QIAquickTM spin column was placed in a provided 2 ml collection tube. 

The samples were then applied to the QlAquickTM column and were centrifuged at 

-13,000 rpm for 30-60 sec to bind the DNA. The flow-through was discarded, and the 

column was placed back into the same tube. 0.75 ml Buffer PE was added to the column 

in order to wash the DNA. This was centrifuged at the same speed as before. The flow-

through was discarded, and the column was again placed back in the same tube. An 

additional 1 min centrifugation was applied to the column. The next step was to place 

the column in a clean 1.5 ml microfuge tube. Finally, 30 p.1 elution buffer were added to 

the centre of the QlAquickTM column and it was allowed stand for I min to elute the 

DNA. This was centrifuged to allow the DNA to drop down. To check the purified 

PCR products, gel electrophoresis as previously described was carried out again. 

2.5.5 Cycle sequencing and purification of sequencing reactions 

Cycle sequencing was performed prior to automated sequencing. The 20 p.1 

sequencing PCR mixture contained: 13 p.1 of sterile distilled water, 4 p.1 of Thermo 

Sequenase II reagent Premix, 1 p.1 of 5 m of one primer type, 2 p.1 of DNA template 

(from purified PCR products). The samples were placed in a thermal cycler and run for 

25 cycles with the following PCR conditions: denaturation step for 10 sec at 94 °C; 

primer annealing for 5 sec at 50 °C; and primer extension for 4 min at 60 °C. 
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Figure 2.7 The QiAquick spin purification procedure (modified from QiAquick 
Spin Handbook) 

In PCR cycle sequencing of the ITS region, two external primers identical to 

those used in normal PCR, i.e. forward external primer "ITS5P" and reverse external 

primer "ITS8P", were applied. In addition, two more internal primers for shorter 

sequences, i.e. a reverse internal primer "ITS2K" (Rangsiruji 1999) which starts from 

the far end of 5.8S, and a forward internal primer "31?" (Möller & Cronk 1997) which 

starts from the beginning of 5.8S, were also employed. "ITS2K" was 5'-GGC ACA 

ACT TGC GTT CAA AG-3', and "ITS31?" was 5'-GCA TCG ATG AAG AAC GTA 
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GC-3'. For cycle sequencing of the region between IrnL (UAA) 5' exon and trnF 

(GAA), two external primers identical to those in normal PCR were employed, i.e. 

forward external primer "c" and reverse external primer "f'. Two more internal primers 

were also used to obtain shorter sequences, namely internal reverse primer "d" (Taberlet 

el al. 199 1) and internal forward primer "e" (Taberlet el al. 1991). Primer "d" was 5'-

GGG GAT AGA GGG ACT TGA AC-3', while primer "e" was 5'-GGT TCA AGT CCC 

TCT ATC CC-3'. The primers used are summarized in Table 2.2. 

Table 2.2 Primers used in PCR and cycle sequencing. 

Primer Location Direction Sequence 

"ITS5P" 18S forward 5'-GGA AGG AGA AGT CGT AAC AAG G-3' 

"ITS8P" 25S reverse 5'-CAC GCT TCT CCA GAC TAC A-3' 

"ITS2K" 5.8S reverse 5'-GGC ACA ACT TGC GTT CAA AG-3' 

"ITS3P" 5.8S forward 5'-GCA TCG ATG AAG AAC GTA GC-3' 

trnL (UAA) 5' exon forward 5'-CGA AAT CGG TAG ACG CTA CG-3' 

trnF (GAA) reverse 5'-ATT TGA ACT GGT GAC ACG AG-3' 

P"d" trnL (UAA) 3' exon reverse 5'- GGG GAT AGA GGG ACT TGA AC-3' 

trnL (UAA) 3' exon forward 5'-GGT TCA AGT CCC TCT ATC CC-3' 

The results of cycle sequencing were purified according to the following 

procedure. The 20 .tl of PCR cycle sequencing products were transferred to a fresh 0.5 

ml tube containing 2 pd of sodium acetate/EDTA buffer. 55 .tl of 100% cold (-20°C) 

ethanol was added to each reaction. They were mixed briefly with a vortex mixer and 

were placed on ice for 15-20 min to precipitate the DNA. Then, they were centrifuged 

in a microcentrifuge for 15 min at -13,000 rpm. The supernatant formed was removed 

as much as possible. 250 tl of cold 70% ethanol were added to wash the pellet which 
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was then centrifuged at the same speed for 5 mm. The supernatant formed was again 

removed as much as possible. Finally, the pellet that remained at the bottom of the tube 

was vacuum-dried in a vacuum centrifuge for 2-5 mm. 

2.5.6 Automated DNA sequencing 

Gel preparation and loading for automated DNA sequencing was performed by 

M. Hollingsworth on an ABI Model 377 Prism Automatic DNA Sequencer (Perkin-

Elmer, Applied Biosystems Division, Foster City, CA, USA), in the molecular 

laboratory of the Royal Botanic Garden Edinburgh, according to the manual supplied. 

2.5.7 Sequence analyses 

The sequence boundaries of each region of ITS (ITS I and ITS2) were compared 

with the results of Rangsiruji etal. (2000) and Ngamriabsakul etal. (2000). Each region 

was confirmed from forward and reverse sequences, for instance to verify the ITS  

region, the sequence obtained from the "ITSSP" primer was compared with that obtained 

from the "ITS2K" primer. The same thing was applied to the irnL (UAA) 5' exon and 

trnF (GAA) comparing with the results of Rangsiruji et a! (2000). These were done 

using FacturaTM version 2.0 (a program in Sequence NavigatorTM package). Another 

program A utoAssem blerTM version 2.1 (Applied Biosystems) is able to assemble the 

complementary strands automatically from the four forward and reverse sequences 

obtained prior to editing. A consensus sequence was then built for the whole region 

using this AutoAssembler (Figure 2.8). 

Sequence alignment was carried out using the CLUSTAL option in the multiple 

alignment program Sequence NavigatorTM version 1.0.1 software package (Perkin 

Elmer, Applied Biosystems Division, Foster City, CA, USA). These alignments were 

subsequently refined by eye. The G+C content and the number and size of 

insertion/deletion events (indels) were examined and determined manually. Sequence 

divergence was obtained from unambiguous aligned region using PAUP* version 4.Ob4a 

(Swofford 2000) in the DISTANCE MATRIX option. Other sequence characteristics 

such as number of constant sites, variable sites, informative sites and autapormophic 
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Figure 2.8 AutoAssembler assemble the complementary strands 
automatically from the whole four forward and reverse sequences. 

sites were calculated in PAUP*  4.Ob4a as well. The numbers of transitions and 

transversions were determined using MacClade version 3.08a (Maddison & Maddison 

1999). 

2.5.8 Phylogenetic analysis 

Phylogenetic analysis to produce phylogenetic trees was earned out using 

PAIJP* version 4.Ob4a and run on an iMac DV 400 MHz computer. The method for 

heuristic search followed M011er & Cronk (1997). The large amount of data hamper the 
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analysis using exhaustive search, which guarantees to find the shortest tree or trees, due 

to the excessive computational time. Branch-and-bound search was applied when the 

data was not too large (i.e. data of only non-polymorphic ITS sequences). This method 

guarantees to find the shortest tree or trees. When the data set is large (i.e. data of 

polymorphic and non-polymorphic ITS sequences), heuristic search was employed, 

which does not guarantee optimality of the trees obtained but is relatively fast and 

efficient. 

Cladistic terminology in bold font is explained in Table 2.3. 

For branch-and-bound search, MulTrees and FURTHEST addition sequence 

options were selected. For heuristic search, the following strategies were applied: 

SIMPLE addition sequence with TBR (Tree Bisection-Reconnection) swapping, and 

RANDOM addition sequence of 500 replicates with no swapping. The resulting trees 

were subjected to TBR swapping. The application of random addition sequence has 

been suggested as a means to detect any multiple islands of most parsimonious trees 

(Maddison 1991). The options COLLAPSE, MulTrees, STEEPEST DESCENT, and 

ACCTRAN optimization were in effect. 

The robustness of the phylogenetic trees was calculated using Bootstrap values 

(Felsenstein 1985) and Decay indices or Bremer support (Bremer 1988, Donoghue et 

al. 1992). Bootstrap analyses were performed in PAUP* 4.Ob4a with HEURISTIC 

option and SIMPLE addition sequence using 1000 replicates with MAXTREE set to 

1000. Decay indices or Bremer support were performed using the program Autodecay 

version 4.02 (Eriksson 1998) and PAUP* 4.Ob4a. The Bremer support trees were 

viewed using the program TreeViewPPC (Page 2000). 

All characters are unordered and equally weighted except for a separate analysis 

with characters weighted by transition/transversion ratio (MacClade). Gaps were treated 

as missing data and multistate were interpreted as uncertain. A separate analysis was 

conducted with coded gaps over insertion and deletion. Ambiguous regions from the 

alignment, which cause alternative alignment interpretations, were excluded from the 

analysis (Wojciechowski el al. 1993, Downie & Katz-Downie 1996, Möller & Cronk 
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1997). Analyses of ITS and trnL-F sequences were conducted separately as well as an 

analysis of the combined data sets. 

Descriptive statistics in the parsimony analysis were given by the Consistency 

IndexCt (Kluge & farris 1969), Retention IndexRI (Farris 1989), and Resealed 

Consistency IndexRC (Swofford 1993). A measure of the phylogenetic signal in the 

data matrix based on skewness of a tree length distribution, called the g statistic 

(Huelsenbeck 1991, Hillis & 1-luelsenbeck 1992), was made in PAUP*  with 10000 

random trees search options. A successive weighting approach (Farris 1969) by re-

weighting on a rescaled index was applied to reduce the effects of homoplasious 

characters. This was done in PAUP* using heuristic search with TBR swapping and re-

weighted characters on Cl value. 
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Table 2.3 Cladistic terms and their definition or function, 
used in phylogenetic analysis. 

Terminology 	 Definition or function 

MulTrees 	 When selected will save all minimal trees found during branch 

swapping; when not selected will save only one of the best trees 

found. This option is synonymous with MulPars option in earlier 

versions of PAUP. 

TBR swapping 	 Tree Bisection-Reconnection swapping is a method of branch- 

swapping that clips off subcladograms from the main cladogram and 
re-roots them before attaching them in a new position elsewhere on 

the remnant main cladogram. 

COLLAPSE 	 When selected will collapse any zero-length branches into polytomies 

for all trees and then keep only those trees that are unique after the 

collapsing is accomplished. 

STEEPEST DESCENT 	 When selected will not abandon a round of swapping until all input 

trees from the previous round have been examined by the swapping 

algorithm. 

ACCTRAN 	 ACCelerates the TRANsformation will affect to favor reversals over 

palellism when the choice is equally parsimonious. 

Bootstrap 	 A statistical method applied to place confidence intervals on 
phylogenies. It involves resampling points from one's own data, 

replacement 

Decay indices or Bremer support The number of extra steps required before a dade is lost from the 

strict consensus tree of near-minimum length cladograms. 

consistency index=ci 	 A measure of the amount of homoplasy (extra steps) in a character 

relative to a given cladogram. 

cim/s, where m is minimum amount of change or steps that a 

character can show on any tree; and s is minimum number of steps the 

same character can exhibit on the cladogram in question. 

retention index=ri 	 A measure of the amount of implied synapomorphy in the data matrix 

that is retained as synapomorphy on the tree. 

r=(g-s)/(g-m), where g is the greatest number of steps a character can 

exhibit on any cladogram; m is the minimum number of steps a 

character can exhibit on any cladogram; s is the number of steps the 

same character can exhibit on the cladogram in question. 

rescaled consistency index=rc 	The product of the consistency index and the retention index of a 

character. 

91 	 Tree length distribution skewness. 
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2.6 RESULTS 

2.6.1 Total genomic DNA extraction 

The "[lot" CTAB method xN ith liquid nitrogen grinding method was very good 

for extracting DNA in almost all the samples studied (samples either from silica gel 

dried leaf material or from herbarium material). Contamination of the RNA was also 

very 	Figure 2.9 shows the result of genomic DNA extraction from silica gel dried 

leaves. 
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Figure 2.9 Gel electrophoresis from total genomic DNA extraction. 
Lane 1: C. thorelii, lane 2: C. zedoaria. lane 3: C. roscoeana, lane 4: C. alismatifolia. 

lane 5: C. longa, and lane 6: DNA size marker (Hyperladder). 

After comparing the total genomic DNA band with that of DNA size and 

quantity marker (DNA 1-lyperladder). total genomic DNA concentration obtained was 

more than 10.000 bp with approximately 15-100 ng/band or 4-20 ng/p.l varied from one 

sample to another. 
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DNA extractions from very brown leaf herbarium material of around 17 years 

old were not successful. No band came out on the gel electrophoresis. The reason for 

this is probably that the DNA is degraded or there are too many inhibitors. Degradation 

of DNA is probably due to the way of preserving the material, for example the use of 

alcohol in preparation of herbarium specimens. 

On another experiment using the same method, but applied to herbarium material 

with a greenish brown colour of also 17 years old, successful results were gained. 

Though the intensity of the bands was not very strong, subsequent PCR resulted in a 

good DNA amplification. Unfortunately, a picture of this result (DNA extraction from 

herbarium material) was not available, but PCR result from herbarium samples will be 

shown later (Figure 2.12). 

2.6.2 Gene amplification and purification of PCR products 

Amplification of ITS region using primers "ITS5P" and "ITS8P" resulted in 

successful amplicons of one single band for both PCR from silica gel dried leaf material 

and herbarium material. The amplicons of ITS regions are approximately 850 bp 

(Figure 2.10). 

Amplifications of trnL (UAA) 5' exon and trnF (GAA) region using primers "c" 

and 'T' in some species, for instance C. soloensis, C. zanthorrhiza, C. phaeocaulis, and 

C. ochrorrhiza, resulted in successful amplicons of one single band of approximately 

984 bp (Figure 2.10). However in most of other species, for example C. roscoeana and 

C. longa, instead of one single band of-984bp, another band reflecting smaller sized-

amplicons of approximately 400 bp appeared (Figure 2.11). 

After more observation, the same species from different accession numbers 

resulted in different amplicon lengths. For example, C. longa accession 19931919 

resulted in one single band, while C. longa accession 60MA resulted in double bands. 

However, amplification of the same species from the same accession number (but at 

different-timed DNA extractions and PCR) even resulted in different amplicon lenghts 

too. The explanation for this is probably related to the chance of the primers to bind to 
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Figure 2.10 Gel electrophoresis result from PCR of ITS and 
region between trnL (UAA) 5' exon and trnF (GAA). 

Lane 1: C. amada, lane 2: C. heyneana, lane 3: C. zanthorrhiza, lane 4: C. soloensis, 
lane 5: C. zanthorrhiza, lane 6: C. phaeocaulis, and lane 7: DNA size marker (123bp 
ladder). Lanes 1-3 are from PCR (of ITS region) subjected to primers "5P" and '8P". 

Lanes 4-6 are from PCR (of trnL-F region) subjected to primers "c' and 'f". 

region -.984 bp amplicon or -.400 bp amplicon. The amplicon of -.984 bp are more 

stable and are expected to be the right region. It is reasonable to use this amplicon as the 

template for the next step. the sequencing step. 

To obtain one single band for those species or accessions with double bands. 

PCR was carried out in two separate reactions. first with primers "c" and "d", and second 

with primers "e" and "1'. The combination of primers "c" and "d" resulted in region of 

írnL (UAA) 5' exon to irnL ((.JAA) 3 exon. The combination of primers "e" and "1" 

resulted in region of irnL (UAA) 3' exon and irnF (GAA). These methods of 
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Figure 2.11 Gel electrophoresis result from PCR of 
region between trnL (UAA) 5' exon and trnF (GAA). 

Lane 1: C. ochrorhiza, lane 2: C. roscoeana, lanes 3-5: C. longa, lane 6: DNA size 
marker (123bp ladder). Lane 1 are from PCR subjected to primers "c' and '1 which 
produce one single band of -984bp. Lanes 2-3 are from PCR subjected the same 

primers ('c" and '1'), but produce additional band (a) of -400bp. Lane 4 is from PCR 
subjected to primers 'c" and "d" resulted in one single band of -650bp. Lane 5 is from 

PCR subjected to primers "e" and "1" resulted in one single band of -400bp. 
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Figure 2.12 Gel electrophoresis result from PCR of ITS region. 
Lane 1: DNA size marker (123bp ladder), lane2: C. thorelii, lane 3: C.cf.australasica, 
lane 4: C. elata, lane 5: C. petiolata, lanes 6-7: C. roscoeana, lane 8: C. heyneana. 

Lanes 1-4 and 8 are from PCR subjected to primers "5P" and '8P'. Lane 6 is from PCR 
subjected to primers "5P" and '2K' or individual ITS1 (-350bp). Lane 7 is from PCR 

subjected to primers "3P" and "8P" or individual ITS2 (-600bp). Lanes 3-4 were 
obtained from herbarium material (h). 

separating PCR in two different reactions using different sets of primers were successful 

in giving a single band of -650 bp and 400 bp respectively. 

Internal primers of ITS, i.e. primers "2K" and "3P" were also tried in PCR before 

further sequencing PCR was carried out. A set of primers "5P" and "2K" in PCR 

resulted in one band of approximately 350 bp. while another set of primers "3P" and 

"8P" resulted in one band of approximately 600 bp (Figure 2.12). 

Purification of PCR products using QlAquickTM PCR Purification Kit gave a clean result 

throughout the work. 

2.6.3 Cycle sequencing and automated DNA sequencing 

Automated DNA sequencing resulted in non pok morphic and polymorphic 

sequence (Figure 2.13) below. Polymorphic sequences are referred to in Chapter 7 

p.180. 
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Figure 2.13 The electropherogram an automated DNA sequencing of ITS2 region of C. aurantiaca 
showing clean non-polymorphic sequence. 

Base 182-190 is not shown. The height of each of the four coloured lines indicates the relative intensity of fluorescence that 
corresponds to each of the four labeled dideoxynudeotides. Therefore, the peaks may be read directly as DNA sequences (bases 

indicated above the electropherogram). 
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2.6.4 Sequence analysis 

The ITS regions from the two accessions of C. thorelii, C. a1isma6folia, and C. 

auranhiaca are identical, so only one is shown and used for the analysis. The alignment 

of ITS (Appendix 2) resulted in in a sequence 471 bp long, composed of 214 bp of ITS  

and 257 bp of ITS2. The mean lengths of ITS  and ITS2 of Curcuma were 193.5 and 

235.5 respectively. These are slightly longer than those in Alpinia (Rangsiruji c/ al. 

2000) and Roscoea (Ngamriabsakul et al. 2000) which were 187.7 and 228.0; and 

188.93 and 224.53, respectively. The sequence characteristics are summarized in Table 

2.4. The alignment of irnL-F (Appendix 3) resulted in a sequence 911 bp long. The 

sequence characteristics are summarized in Table 2.5. 

The alignment of all taxa required insertion of 35 gaps of size Ito 4 bases, 19 

gaps in ITS! and 16 in ITS2. Eighteen of these are plesiomorphies. Two gaps of one bp 

size are synapomorphies uniting C. cf australasica and C. aurantiaca, while one gap 

synapomorphy of two bp size unite the Thai species (C. thorelii, C. ali,cmat?fo!ia, C. 

gracillima, C. parvflora, and C. harmandii). Two clades in subgenus Curcuma are 

affected by a one bp sized gap synapomorphy at 472 bp grouping C. soloensis, C. 

aromatica, C. elata, C. longa, C. phaeocau!is, while another one bp sized gap 

synapomorphy at 486 bp groups the remaining species in the subgenus. 

The alignment of all taxa required insertion of 12 gaps of size Ito 15 bases into 

the trnL-F sequence. Four of these are plesiomorphies, while five are autapomorphies 

for Ca. spicata (two gaps of six and one bp size), R. humeana (one gap of five bp), C. 

gracillima (one gap of one bp), and C. harmandii (one gap of 15 bp). One gap of one bp 

(921 bp) is a synapomorphy of Sm. supraneae and C. roscoeana. 

Pairwise comparison between the ingroups showed sequence divergence of 0-

10.55%, 0-17.33%, and 0-1 .02 for ITS I, 1T52, and trnL-F respectively. The ITS I was 

less variable compared to 0-16.1% in Alpinia (Rangsiruji etal. 2000) and 0-13.86% in 

Roscoea (Ngamriabsakul etal. 2000), but the ITS2 was more variable than 0-14.6% in 

Alpinia and 0-7.58% in Roscoea. The G+C content of the ITS of the species studied had 
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almost the same average as that of the Alpinia and Roscoea studies, i.e. 51.94-56.65%, 

53.3-57.5%, and 5 1 .55-57.35% respectively. irnL-F contains less G+C, 32.71-33.33%. 

2.6.5 Phylogenetic analysis 

Phylogenetic analysis of aligned ITS sequences with equally weighted characters 

including uninformative characters resulted in 613 equally most parsimonious trees 

(C10.7 143, RI0.8238, RC0.5884) with a length of 280 steps (Figure 2.14). The 

exclusion of uninformative characters reduced the tree length to 213 steps. Analysis 

with coded gaps added to the data matrix with inclusion of uninformative characters 

resulted in 48 most parsimonious trees (C10.6801, RI0.8 147, RC0.5541) with a 

length of 322 steps, longer than that of excluding coded gaps (Figure 2.15). Re-

weighting characters to the transition/ transversion ratio resulted in the same trees with 

much longer steps both for coded data indels or data exluding coded indels. However, 

re-weighting characters to Cl, RI or RC index resulted in similar but shorter and slightly 

more resolved trees in the C. parvflora, C. alismal?folia, C. gracillima group, and the C. 

soloensis, C. longa, C. phaeocaulis, C. aromalica, C. elala group. 

Phylogenetic analysis of aligned trnL-F sequences with equally weighted 

characters including uninformative characters resulted in one most parsimonious tree 

(C11.000, R11.000, RCI.000) with a length of 29 steps (Figure 2.16). The exclusion 

of uninformative characters reduced the tree length to 5 steps. Analysis with coded gaps 

added to the data matrix with inclusion of uninformative characters resulted in 55 most 

parsimonious trees (C10.753 1, R10.7692, RC0.5793) with a length of 53 steps, 

longer than that excluding coded gaps (Figure 2.17). Re-weighting characters to Cl, RI 

or RC index resulting in shorter length of similar topology. 

The trees resulting from ITS data are more resolved than those resulting from 

irnL-F data. Yet, this trnL-F can be used as a support for ITS data. For example, the 

consensus tree from coded gap of irnL-F data is almost congruent with that of ITS. The 

subgenus Curcuma dade is separate from the Hit cheniopsis dade. 

The combined data sets resulted in trees similar to those of ITS data alone 

(Figure 2.18-2.19). Subgenus Curcuma forms a dade which is monophyletic supported 
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by BS=82 and 13I4. Two subclades (supported by BS71, 82 and Dl= 1, 2 respectively) 

are detected within this dade. No morphological character corresponding to each 

subc lade has been found. Subgenus Hitcheniopsis is paraphyletic, with Sm. supraneae 

nested with C. ecomala or at least separated from the C. ecomata dade but nested within 

the Curcuma dade. Several clades from subgenus Hiicheniopsis are well supported 

such as C. peuiolata (BS89, 131=3), C. roscoeana (BS89, D13), the C. thorelii, C. 

gracillima, C. alismaifolia, C. harmandii group (BS= 100, Dl= 14), and the C. cf. 

ausiralasica, C. auranhiaca group (BS= 100, Dl= 10). Further study with added taxa is 

needed to get a meaningful evolutionary history of these clades. 
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Table 2.4 Sequence characteristics of ITS1 and ITS2 regions of 28 taxa of 
Zingiberaceae. 

Parameter 	 ITSI 	ITS2 	ITS1 and 

ITS2 

Length range (total) (bp) 184-203 224-246 409-447 

Length mean (total) (bp) 193.5 235 428 

Length range (ingroup) (bp) 184-203 225-246 409-447 

Length mean (ingroup) (bp) 193.5 235.5 428 

Length range (outgroup) (bp) 188-190 224-225 412-415 

Length mean (outgroup)(bp) 189 224.5 413.5 

Aligned length (bp) 214 257 471 

G+C content range (%) 48.44-55.28 52.19-60.69 51.07-57.60 

G+C content mean (%) 51.94 56.65 54.42 

Sequence divergence (ingroup) (%) 0-10.55 0-17.33 0-13.13 

Sequence divergence (total) (%) 3.78-14.48 12.05-23.72 5.64-18.07 

Number of indels (ingroup) 15 14 29 

Number of indels (total) 19 16 35 

Size of indels (ingroup)(bp) 1-4 1-4 1-4 

Size of indel (total) (bp) 1-4 1-4 1-4 

Number of sites 214 257 471 

Number of variable sites (%) 69(32.24) 104(40.47) 173(36.73) 

Number of constant sites (%) 145(67.76) 153(59.53) 298(63.27) 

Number of informative sites (%) 41(19.16) 67(26.07) 108(22.93) 

Number of autapomorphic sites (%) 28(13.08) 37(14.40) 65(13.90) 

Transitions (minimum) 19 79 113 

Transversions (minimum) 13 33 51 

Trans itions/transversions (ts/tv) ratio 1.46 2.39 2.22 

Skewness of tree length distribution -0.63 -0.86 -0.80 

(g1 value for 10,000 random trees) 
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Table 2.5 Sequence characteristics of chioroplast regions between trnL (UAA) 

5' exon and trnF (GAA) of 25 taxa of Zingiberaceae. 

Parameter 

Length range (total) (bp) 
Length mean (total) (bp) 
Length range (ingroup) (bp) 
Length mean (ingroup) (bp) 
Length range (outgroup) (bp) 
Length mean (outgroup) (bp) 
Aligned length (bp) 
G+C content range (%) 
G+C content mean (%) 
Sequence divergence (i ngroup) (%) 
Sequence divergence (total) (%) 
Number of indels (ingroup) 
Number of indels (total) 
Size of indels (ingroup) (bp) 
Size of indel (total) (bp) 
Number of sites 
Number of variable sites (%) 
Number of constant sites (%) 
Number of informative sites (%) 
Number of autapomorphic sites (%) 

Transitions (minimum) 
Transversions (minimum) 
Trans itions/tranSVerSi ons (ts/tv) ratio 
Skewness of tree length distribution 

(g i  value for 10,000 random trees) 

The spacer between trnL (UAA) 5' exon and 

trnF (GAA) 

881-908 
899.20 
886-903 
899.59 
881-908 

894.50 
911 
32.71-33.33 
33.10 
0-1.02 
0.1-1.78 

10 
12 
1-15 
1-IS 
911 
61(6. 70) 
850(93.3) 
14(1.54) 
47(5.16) 
2 
2 

-3.26 
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Figure 2.14 Strict consensus tree obtained from 613 equally most parsimonious trees 
of length 280 steps resulting from equally weighted parsimony analysis of the combined 

ITS1 and ITS2 data with gaps treated as missing data (Cl=0.7 143; Rl=0.8238; 
RC=0.5884). 
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Figure 2.15 Strict consensus tree obtained from 48 equally most parsimonious trees of 
length 322 steps resulting from equally weighted parsimony analysis of the combined 

ITS1 and ITS2 data with indels treated as coded present absent (C 1=0.6801; 
Rk0.8147; RC0.5541). 
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weighted parsimony analysis of the chloroplast DNA between trnL (UAA) 3 exon and 
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Figure 2.19 Strict consensus tree obtained from 8 equally most parsimonious trees of 
length 307 steps resulting from equally weighted parsimony analysis of the combined 
ITS and chloroplast DNA between trnL (UAA) 3' exon and trnF (GAA) data with indels 

treated as coded present absent (Cl=0.6775; Rl=0.7265; RC=0.4922). 
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2.7 DISCUSSION 

2.7.1 PHYLOGENETIC RELATIONSHIPS WITHIN CURCUMA AND 

BETWEEN CURCUMA AND ITS OUTGROUP 

2.7.1.1 Basal dade - StahhanthuS involucratus, Smithatris 
supraneanae, and C. ecomata 

Three taxa, namely Siahlianlhus involucralus, Sm!! ha/ris supraneanae, and C. 

ecomata, are nested at the base next to the outgroups. All these species come from 

Thailand. The well-supported dade, which includes Smiiha!ris and all Curcuma 

species, shows that Curcuma is not a monophyletic group. Smithairis and Curcuma 

share a common character of the multiple bracts or pouches. However, the bracts are 

free, not connate in Smithatris, while they are adnate at the sides in Curcuma. 

Siahlianthus is closely related to Smithairis and Curcuma. This genus, however, has a 

single involucre bract which is considered to be derived from two bracts joined together 

(Wood el al 2000). 

Analysis of the ITS region shows that C. ecomata is nested at the base in relation 

to other species from subgenus Hiicheniopsis. It is nested far from the subgenus 

Curcuma dade. Gagnepain (1908), however, placed C. ecomala in subgenus Curcutna, 

probably because it has a spurred anther. Analysis of the irnL-F region also shows that 

C. eco,na!a is nested out of the subgenus Curcuma dade in the analysis with coded gaps. 

Gagnepain's grouping, therefore, is not supported by either molecular analysis of the 

ITS or the irnL-F regions. C. ecomala shares many other morphological characters with 

subgenus Hitcheniopsis despite the difference of the anther spurs. They share common 

characters, such as the hardly developed rhizome, the free (not clasping) lateral 

staminodes, and the crested anther. These are synapomorphic characters. This would 

made Hitcheniopsis paraphyletic. In the molecular tree (p.71), the node of Smithairis 

and Curcuma is not resolved. A wider outgroup sampling would have enabled a more 

accurate base to the limits of Curcurna. 
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2.7.1.2 The C. aurantiaca dade 

Analysis of the ITS region showed strong support for the C. auranhiaca and C. 

cf ausiralasica dade. The dade is characterized by the hardly developed rhizome, the 

leaves which are rounded at the base, the lateral staminodes which are not clasping, and 

the ligules which are auriculate. C. auranhiaca and C. cf ausiralasica are also the only 

Malesian species studied which set seeds. One character which does not unite them is 

the spur on anther. C. auranhiaca has no spur, while C. cf ausiralasica has a spur on its 

anther. 

The existence of the C. auranhiaca and C. cf ausiralasica dade indicates that 

Valeton's (1918) subgenus Paracurcuma may be a natural group. However, C. 

peiiolala, which was placed in subgenus Paracurcurna by Valeton, is not nested within 

the C. auranhiaca and C. cf ausiralasica dade. Schumann (1904) placed C. 

ausiralasica within subgenus Curcuma on the basis of the rhizomes which were big with 

many sessile tuber. More samples of C. ausiralasica are needed for confirmation of the 

rhizome character. 

C. auranhiaca is distributed from Continental Asia to the Malesian archipelago, 

while C. ausiralasica occurs in New Guinea and northern Australia. The dade, which is 

strongly supported by the ITS data, suggests a close relationship between the two 

species. C. ausiralasica may have escaped from the continental region of Asia to New 

Guinea and northern Australia. The inclusion of other species of New Guinea, such as 

C. meraukensis and C. laiiflora, would give more insight into the relationships among 

the New Guinea species. 

2.7.1.3 The C. parviflora dade 

This dade, strongly supported by molecular analysis of the ITS region, contains 

five species namely C. parvflora, C. ihorelii, C. alismahifolia, C. gracillima, and C. 

harmandii. The dade reflects some degree of correlation between Curcu,na phylogeny 

and biogeography. All the samples come from Thailand though the species are 
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distributed more widely from Indo-China to Thailand (continental Asia). One species, 

C. parvUlora, reaches the Malay Peninsula. 

C. parv?flora was placed in section Hitcheniopsis by Baker (1894) in which was 

raised to subgenus Hitcheniopsis by Schumann (1904). Schumann also included C. 

gracillima and C. alismatifolia in subgenus Hitcheniopsis. However, Valeton (1918) 

excluded those species from the genus Curcu,na altogether. The reasons he excluded 

the species, as already mentioned in Chapter One, are that the structures of coma bracts, 

petals, lateral staminodes, labellum, and anther, are very different from those of 

Curcuma. The exclusion of these species from the genus would make Curcuma a 

polyphyletic group. The C. parv?flora dade therefore should be maintained in the genus 

Curcurna in order to keep it monophyletic. 

The species in the C. parvy7ora dade share common characters, such as 

rhizomes which are hardly developed and are not ginger scented though this is 

subjective; the ligules are auriculate; the labellum which is purple or white and 

elongated; the petals which are whitish (greenish in C. harmandii); the lateral 

staminodes which are whitish, free (not clasping), and are without groove; the spurless 

but crested anther; and the stylar growth which is absent. 

2.7.1.4 The subgenus Curcuma dade 
This dade, strongly supported by molecular analysis of the ITS and the trnL-F 

regions, reveals the natural grouping of Baker's (1 894) sections Exanlha/Mesantha, 

Schumann's (1904) and Valeton's(l9l8) subgenus Curcuma. It is characterized by the 

well-developed rhizomes, the narrow leaves at the base, the spurred anther, the folded 

lateral staminodes, and the ligules which are not auriculate. 

All of the taxa within this dade were treated at specific level by previous 

authors. They show polymorphic ITS sequences. All of them are triploid and sterile. 

Seeds have not been reported except in C. tnangga from Java which were reported by 

Valeton (1918). However, most of the herbarium specimens of C. mangga have no 

record on the presence of seeds. The morphological characteristics of the taxa in this 

dade are very highly similar so that people cannot distinguish one from another only by 

74 



CHAPTER 2: PHYLOGENETIC STUDY USING MOLECULAR DATA... 

looking at the herbarium specimens. Therefore, they should not be assigned at specific 

level. They should be treated at a lower rank in the classification. 

Two subclades, well supported by molecular analysis of the ITS, are found 

within the subgenus Curcuma dade. The first subclade contains C. soloensis, C. 

aromalica, C. elala, C. longa and C. phaeocaulis. The second dade contains C. 

aeruginosa, C. zedoaria, C. mangga, C. ochrorhiza, C. amada, C. a,narissima, and C. 

heyneana. These subclades, however, do not exist in the irnL-F trees due to unresolved 

branches in many 'species'. At present there are no morphological data which support 

the grouping into the two subclades. The reason for this may relate to the polymorphism 

of the ITS. The polymorphic ITS sequences might have been the result of hybridization 

of different sequences from different 'species'. Further study to clone the polymorphic 

ITS would probably be able to verify this. However, no further study was made because 

of time shortage. 

The tree from molecular analysis of irnL-F does not fully support the subclades 

within the subgenus Curcuma dade from molecular analysis of the ITS. C. ochrorhiza. 

C. zedoaria, and C. elata which are in one subclade of the tree resulting from molecular 

analysis of the irnL-F are nested in different subclades of the tree built from molecular 

analysis of the ITS. C. phaeocaulis and C. amada which are in one subclade with weak 

support from the irnL-F, are also nested at different subclades of the tree resulting from 

the ITS sequence data. Lack of conference probably results from different source of 

DNA (nuclear versus chloroplast DNA). Analysis with more DNA regions may help to 

verify this. The tree resulting from combined ITS and irnL-F data resembles that 

resulting from the ITS. Use of polymorphisms of ITS is discussed in Chapter 7. 

The existing sectional level classification of Curcuma is not supported either by 

molecular analysis of the ITS or the trnL-F regions. Section Exaniha, those 'species' 

with a lateral inflorescence, come out mixed up with section Mesantha, those 'species' 

with a central inflorescence. The sectional level classification, therefore, should be 

abandoned as it is only based on the position of inflorescence character which is 

homoplasious. 
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2.7.1.5 C. roscoeana and C. petiolata 

C. roscoeana is nested between the C. peliolala and the C. parvflora clades, a 

placement which is well supported by molecular analysis of the ITS. C. peliolata is 

nested between C. roscoeana and the subgenus Curcuma dade, which is also well 

supported by molecular analysis of the ITS. The C. roscoeana dade supports the 

placement of the species in Baker's (1894) section Hitcheniopsis and Schumann's 

(1904) subgenus Hitcheniopsis. Valeton (191 8) excluded C. roscoeana from the genus 

Curcuma because several characters, according to him, did not fit the delimitation of the 

genus. Those characters are mentioned in Chapter One (p.22). The C. petiolata dade 

supports the placement of the species in Baker's (1894) section Hiicheniopsis, 

Schumann's (1904) and Valeton's (1918) subgenus Hiicheniopsis. C. petiolata has 

intermediate characters between the two subgenera (Hitcheniopsis and Curcuma), such 

as the spur on the anther which is very short (no spur or very short spur in subgenus 

Hitcheniopsis vs. spurred anther in subgenus Curcuma), and the rhizomes which are 

short (hardly developed rhizomes in subgenus Hitcheniopsis vs. well developed rhizome 

in subgenus Curcurna). This is supported by the position of C. peliolata in the tree 

which is nested at the border of subgenus Hitcheniopsis next to subgenus Curcuma. 

C. roscoeana is distributed in Burma and Thailand, while C. petiolala is 

distributed in Burma, Thailand, the Malay Peninsula, and Java. In Java, there are only 

two species from subgenus Hitcheniopsis, namely C. peliolala and C. auranhiaca. C. 

petiolala may have been introduced to Java with C. auranhiaca from the continental 

Asia. The teak forest, which is their habitat in Java, is also introduced. 

2.7.2 MOLECULAR EVOLUTION OF THE ITS AND THE TRNL-F 
REGIONS 

In Curcuma, the length of the ITS 1 (184-203 bp) is shorter than that of the ITS2 

(225-246 bp). The same phenomenon occurs in two other genera of the Zingiberaceae, 

Alpinia (ITS 1: 187-188 bp, ITS2: 226-235 bp; Rangsiruji etal. 2000) and Roscoea 

(ITS 1: 188-190 bp, ITS2: 224-225 bp Ngamriabsakul et al. 2000). The length variation 
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is due to the occurrence of several indel events. In Saintpaulia and Streptocarpus 

(Gesneriaceae), the length of the ITS  is slightly longer than that of the ITS2 (ITS I: 

235-249 bp, ITS2: 196-245 bp; Möller & Cronk 1997). This contradicts the findings 

from the three genera in the Zingiberaceae mentioned above. However, unlike 

Saintpaulia and Streptocarpus Aeschynanthus, another genus in the Gesneriaceae, has a 

shorter ITS  than ITS2 (ITS 1:217-229 bp, mean 225.0, ITS2: 206-246 bp, mean 239.5; 

Denduangboripaflt & Cronk 2000). 

The GC contents of the ITS  and the ITS2 are more or less uniform 

(approximately 50-60%) in Curcuma, Alpinia, Roscoea, and in the Gesneriaceae 

(Sainipaulia, Streptocarpus, and Aeschynanthus). This may reflect some degree of 

coevolution between the two spacers. The sequence divergence between the two spacers 

is almost uniform too (ITS 1: 0-10.55%, ITS2: 0.17.33% in Curcuma, ITS 1: 0-16.1%, 

ITS2: 0-14.6% in Alpinia; ITS 1: 0-13.86, ITS2: 0-.7.58% in Roscoea; ITS 1: 0.45-

15.26%, ITS2: 0.41-15.57 in Aeschynanthus). This indicates the same rate of evolution 

between the two spacers. 

The length of the chloroplast spacer between the trnL (UAA) 5' exon and trnF 

(GAA) (mean 899.59 bp) is almost twice the length of the ITS region (mean 428 bp). 

The length variation is also due to the occurrence of several indel events. The GC 

contents of the trnL-F region are more or less uniform (approximately 30%) in 

Curcurna, Alpinia, and Roscoea. These are much lower than those of the ITS region 

(approximately 50-60%). The sequence divergence of the trnL-F region in Curcuma (0-

1.02%) is much lower than that of the ITS region (ITS 1: 0-10.55%, ITS2: 0-17.33%). 

The same phenomena occur in Alpinia and Roscoea. The much lower percentage of the 

sequence divergence in the trnL-F region indicates the much slower rate of evolution of 

the spacer. The tree constructed from the trnL-F sequence data is much less resolved 

than that constructed from the ITS sequence data. Thus, the chloroplast spacer of trnL-F 

provides very limited phylogenetic information for the present study of Curcurna. 

Nevertheless, this chloroplast spacer contributes a useful confirmation of the results 

based on the ITS region. 
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3.1 INTRODUCTION 

Morphology has been used as the basis for the classification of Curcuma since 

Roxburgh (1812) and the later authors, Horaninow (1862), Baker (1894), Schumann 

(1904), Valeton (191 8). Inflorescence position, a character that is used for separating 

sections by Roxburgh (1812), 1-loraninow (1862), Baker (1894), Schumann (1904), and 

Valeton (1918), has proved to be unreliable or unstable and has been criticised by some 

authors (see Chapter One). Some other characters that are used at the sectional level by 

Baker (1 894) or at the subgeneric level by Schumann (1904) and Valeton (1918) are still 

in question. This study aims to test whether the existing classification of Curcunia, at 

the subgeneric level, reflects its evolutionary history. 

Morphological study has been carried out along side a molecular study. Trees 

were built from morphological data and were compared with those from molecular 

sequence data. Morphological characters were also mapped onto molecular 

phylogenetic trees to elucidate the possible evolutionary history of Curcuma. The 

present classification of Curcuma will therefore be tested to determine whether it is 

natural. The limited sampling (only around 30% of Curcuma species were examined) 

makes the result of this study merely a stepping stone for a future broader study. 

3. 1.1 Characters used in the existing infrageneric classification of 
Curcuma 

3.1.1.1 Rhizomes 

Valeton (191 8) used rhizome characters for separating subgenus Paracurcuma, 

which has a short or absent rhizome, from subgenus Curcuma. Subgenus Curcuma has 

a long rhizome which forms lateral branches. 
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3.1.1.2 Leaves 

One of several types of character that Valeton (1918) used for separating subgenus 

Paracurcurna from subgenus Curcuma was leaf characters, i.e. base of leaves mostly 

rounded, stem short, and leaves spreading. However, other species within subgenus 

Hitcheniopsis (subgenus Paracurcuma sensu Valeton), such as C. alis,natfolia, have an 

acuminate base and narrow lanceolate leaves. This species, however, was excluded 

from the genus Curcuma by Valeton (1918). 

3.1.1.3 Ligules 

The ligule forms an ovate auricle, on both sides of the base of the petiole, in 

subgenus Paracurcuma while it is without elongated auricle in subgenus Curcuma 

(Valeton 1918). This character is easily observed from fresh material. Where 

observation is not possible, data were extracted from the literature. 

3.1.1.4 Fertile bracts 

Baker (1894) was the first to note bract characters in separating his sectional level 

groups (Exaniha, Mesantha and Hitcheniopsis). Section Hilcheniopsis has very obtuse 

bracts, which are adnate at the sides and spreading at the tip. The bracts of the rest of 

the sections are not recurved at the tip. 

Schumann (1904) also noted bract characters in his subgeneric level groups 

(Eucurcuma and Hi/cheniopsis). His subgenus Eucurcuma has bract, which is adnate 

only near the base while the greater part is free. Hitcheniopsis has bract, which is adnate 

for a large portion of their length, the free tips are recurved. 

Valeton (191 8) criticized Schumann's note on these bracts. He said that the adnation 

of bracts in Schumann's classification is not reliable. The bracts of C. petiolata 

(subgenus Hitcheniopsis) are in fact adnate to the middle and not to the top. 

Nevertheless, Valeton did mention the adnation of bracts for his subgenera Eucurcurna 

and Hitcheniopsis. He described subgenus Eucurcuma having bracts which are 
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connected at least beyond the middle, and Hitcheniopsis having bracts which are mostly 

not adnate over the middle. 

3.1.1.5 Coma bracts 

Valeton (191 8) recognized subgenus Eucurcuma as having coma bracts that are 

mostly extended far beyond the floral bracts. Subgenus Paracurcuma has coma bracts 

that are relatively short, described as without coma bracts by most authors. 

3.1.1.6 Staminode 

Two characters of the staminode are useful at the subgeneric level. Subgenus 

Eucurcuma has longitudinally grooves and folded or clasped staminodes under the 

cucullate pointed dorsal lobe, while subgenus Paracurcuma has straight staminodes and 

the dorsal petal does not clasp the staminodes (Valeton 1918). 

3.1.1.7 Anther 

Schumann (1904) and Valeton (191 8) used anther characters in their classifications. 

Schumann found spurless anthers in subgenus flitcheniopsis, and calcarate anther in 

subgenus Eucurcuma. However, Schumann included C. petiolata, which in fact has a 

very short spur on its anther, in his subgenus Hitcheniopsis. This received criticism 

from Valeton. 

Valeton made meticulous observations of anther characters to be used in his 

subgeneric classification. Those are mentioned here: spur attached near the base 

(Paracurcuma) versus spur attached at the back about the middle (Eucurcuma); spur not 

or very shortly calcarate (Paracurcuma) versus spur calcarate (Eucurcuma); anther 

grooved on the face as a continuation of the loculi (Paracurcuma) versus anther not 

grooved on the face (Eucurcuma); appendix of the connective forming a short cup which 

encloses the stigma entirely or its base (Paracurcuma) versus connective rounded or 

narrowed towards the top, not lengthened to a cup, sometimes slightly produced between 
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the loculi (Eucurcuma). This over-reliance on one character (anther character) is 

dangerous to be used in classification. 

3.1.2 Are there any other characters defining infrageneric 

classification in Curcuma?: a search for them 

3.1.2.1 Leaf anatomy 

Epidermal characters using transverse sections and epidermal peels were used to 

recognize species in Zingiber (Husin & Widjaja 1987). However, the degree of the 

difference is quite subtle. In Aframomum, different sets of leaf anatomical characters 

determine different groups of species (David Harris, pers. comm.). Therefore, work on 

leaf anatomy was carried out in this study. 

3.1.2.2 Stigma 

The stigma is unique to sectional or subgeneric level in Alpinia (Rangsiruji 1999). It 

was Smith (1990) who first examined the stigmas in Alpinia and found different types of 

stigmas at different levels of classification. Valeton did not observe stigma type in 

Curcuma (1918). 

3.1.2.3 Flower 

In Streptocarpus several types of flower shape and size are found. This is connected 

to different types of pollinators (Harrison et al. 1999). Different shapes and sizes of 

flower in Curcurna are also observed. The morphological, anatomical and physiological 

characters of flowers do not vary randomly. However, certain characteristics tend to 

occur together. This is known as pollination syndromes. Red flowers are often 

odourless, long-tubular, and pendant. This is the syndrome of bird pollination. 

Determining the pollination syndrome of a particular flower can be a useful method of 

analysing floral diversity (van der PijI 1971). 
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3.1.2.4 Seeds 

Liao and Wu (1996) studied seed anatomy in Alpinia. So far, one type of seeds has 

been found in Curcuma. However, nobody has looked at the ultrastructure of the 

surface of seeds using SEM technique. This could be different among species. The 

SEM of seed has been used to study the taxonomy of Cyanaslroideae (Brummit el al. 

1999). 

3.2 MATERIALS 

3.2.1 Origin of plant materials, outgroup and ingroup taxa 

Origin of plant material can be seen in Chapter Two. The rest are from 

herbarium specimens which are loans from Bogor-BO, Leiden-L, and Kew-K. Living 

collections (some are from rhizomes collected from field work in Java, Indonesia) are 

maintained at the RBGE glass house. All but 9 accessions are vouchered at RBGE. 

They will be mounted there eventually. 

3.3 METHOD AND ANALYSIS 

3.3.1 CODED MORPHOLOGICAL CHARACTERS AND 

PHYLOGENETIC ANA YSIS 

3.3.1.1 Gross morphological characters (external morphology and 
light microscopy) 

Morphological data was taken from herbarium specimens (including spirit 

material) as well as living collections. Measurements and also characters on shape, 

colour, odour, etc were recorded. Photographs were also taken. 

3.3.1.2 Phylogenetic analysis 

Detail of phylogenetic analysis can be seen in Chapter Two. Morphological data 

contain binary to multistate character. The multistate character is treated as unordered 

character (the order has not been determined). In an unordered character, transformation 
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between any two states costs the same number of steps. Molecular data contain 

multistate character of four bases. They are treated as unordered character. 

3.3.2 NON CODED MORPHOLOGICAL CHARACTERS 

3.3.2.1 Epidermis and stomata (light microscopy) 

A very simple preparation was made from the middle part of the leaf between 

midrib and edge and between apex and base. The method used partly followed Olatunji 

(1980). The leaf portion was boiled in 2% sodium hydroxide solution for 5-10 minutes 

in order to induce detachment of the epidermis from the other cells/tissue. Using a 

scalpel, the unwanted tissue was scraped off. The epidermis tissue was then mounted on 

a slide in distilled water for temporary preparation. Observation was carried out by light 

microscope Axiophot Zeiss. Images were captured using Optimas 6.2. Measurements 

were taken by using rules produced by taking an image of graticules in Optimas. 

Epidermal observations on the upper and lower surfaces of the leaves (epidermal cells: 

shape and size; stomata: shape, size, type including subsidiary cells, stomatal index; 

modified epidermis like hairs). 

3.3.2.2 Leaf transverse section using Freezing Microtome (light 
microscopy) 

A portion of fresh leaf (as for epidermis and stomata study) was directly put in a 

freezing microtome. If herbarium material was used, it was boiled in detergent solution 

until it was almost back to its normal shape. Then it was put in the microtome. A tissue 

of 20 pm thick was sliced on each cut. After that, it was put in a slide dropped with 

stain. It was then covered by a cover glass. For permanent preparation, a solution was 

dropped before covering the tissue with cover glass. 

3.3.2.3 Scanning electron microscopy of seeds 

Seeds from herbarium specimens were mounted, sputter-coated and then plotted 

in the scanning electron microscope (SEM) for examination and photography. Three 
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samples (C. auranhiaca, C. peliolata and C. australasica) represent subgenus 

Hitcheniopsis. One sample, C. aromalica, represents subgenus Curcuma (Figure 3.24). 

Pollen obtained from spirit collections were critical point dried prior to the steps 

mentioned. 

Pollen observation was finally excluded from the work. Preliminary work 

(critical point drying was carried out by Frieda Christie) indicated that the pollen was 

sticky. Further pre treatment was needed to get rid of this problem. Due to limited time, 

I decided to omit this part and concentrate on other work. 

3.3.2.3.1 Mounting the specimens 

The surface of seeds from only four species of Curcuma was tested for their ultra 

structure. The seeds were selected, then the good ones were mounted onto SEM 

aluminium stubs, with carbon discs or dyes (silver in methyl isobutyl ketone). The discs 

or the dye will not only hold up the seeds but also will lessen the background effect. 

3.3.2.3.2 Sputter-coating 

The mounted specimens were transferred into the sputter coater chamber. Argon 

was then glowed through for 10 sec. The chamber was purged to 9.3-13.3 N/rn 2  (0.07-

0.1 Torr) after the purge light came on for I mm. The specimens were coated at a preset 

deposition rate (25 mA) and for a preset time (2.5 mm). The coating generates a 

conductive surface, which prevents the build-up of negative charge that would interfere 

in causing image distortion. 

3.3.2.3.3 Scanning electron microscopy (Zeiss 962 SEM) 

The system was ventilated with nitrogen, and then evacuated for several times 

before the high voltage and filament buttons were switched on. Mounted specimens 

were placed in the SEM chamber. High voltage (5 kV) with working distance (12 mm) 

was adjusted to get the optimum resolution of the image. The magnification, focus, and 

contrast/brightness were adjusted in the scanning mode. The images were stored in 
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Study of the literature reveals that the small species in the study that are diploid 

belong to subgenus Hitcheniopsis. Most medium sized to large species that are triploid 

belong to subgenus Curcuma. Chromosome numbers of Curcuma species are listed in 

Table 5.2 (Chapter Five). Before it is concluded that subgenus Hitcheniopsis contains 

diploid and small habit species, and subgenus Curcuma contains mostly triploid large 

species, other Curcuma species especially Indian ones, should be examined. There is a 

possibility that subgenus Curcuma contains diploid and small habit species. 

Does triploidy account for the large habit feature? Polyploidy can contribute to 

gigantism. The doubling of chromosomes or the doubling of genes within chromosomes 

may cause the increase in the cell size which in turn makes the whole plants to be 

gigantic. Environmental factors can contribute significant change to plant size. 

However, under the same environment the triploid Curcuma are bigger than the diploid 

one. The genetic factor may cause the large habit on triploid Curcuma. 
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Figure 3.1 The habit of Curcuma. 

Small habit of C. parv'iflora (subgenus Hitcheniopsis) 
Large habit of C. amada (subgenus Curcuma). B is 

photographed by D. White. 
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Character states: 

0) 30to50cm 

1) lto3m 

3.4.1.1.2 Rhizome structure 

Subgenus Hitcheniopsis comprises species with rather small primary rhizome 

and almost wholly reduced secondary rhizomes. On the other hand, subgenus Curcuma 

consists of species with well-developed secondary rhizomes. The structure is shown in 

Figure 3.2. 

The primary rhizomes tend to terminate in a vegetative shoot or flowering shoot. 

Whenever the flowering shoot springs out from the side of the rhizome, the plant will 

produce a lateral inflorescence. The other way, whenever the flowering shoot comes out 

from the tip, the plant will produce a central inflorescence. 

The roots, that are long fihiform, spring out from the primary tuber. During the 

flowering period (Valeton 1918) or by the end of the rainy season (Santapau 1945), 

tubers called root-tubers form at the end of the roots. The shape may be ovate, 

pearshaped, spindle-shaped or ellipsoidal. Sometimes, from the end of this root-tuber 

springs fibrous roots again (Valeton 1918). The internal colour of this tuber varies from 

pearl-grey to yellow or orangish in colour. Figure 3.2 describes the root-tubers in some 

species. In the case of Boesenbergia rotunda the pendulous clavate tubers are actually 

the roots (Valeton 1918). 

Santapau (1952) observed four types of rhizomes in Curcuma, (i) a small 

rhizome (primary rhizome) without any tubers (secondary rhizomes); (ii) primary 

rhizomes posseses sessile tubers which are generally globose or ellipsoid; (iii) primary 
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Figure 3.2 Rhizome structure in Curcuma. 

A. Undeveloped rhizome in C. aurantiaca (subgenus Hitcheniopsis); B. Well 
developed rhizome in C. soloensis (subgenus Curcuma) 
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rhizomes posseses sessile palmate (pinnate is more proper according to Valeton) tubers; 

(iv) Tubers are at the end of long fibrous roots. 

Compared to the rhizome architecture of other genera, such as Alpinia, 

Aframomum, and Hornsiediia, Curcuma possesses a relatively simple design of 

rhizomes. As a view, rhizomes of Alpinia zerumbel show architecture of nearly 

hexagonal form as a primary functional requirement for exploitation of the substrate 

(Bell 1979). 

Why is the rhizome well developed and why it is not? 

The fact that most sterile triploid species have well-developed rhizomes, and on 

the other hand, fertile diploid species possess reduced rhizomes, probably indicates that 

the sterility relates to the development of the rhizomes. The other theory is vice versa 

where the merely vegetative reproduction has induced the ability of well-developed 

rhizome propagation and induced the lost of generative reproduction. The rhizomes 

serve not only as food reservoir, but also function as reproduction of the plants. Species 

with reduced or undeveloped rhizomes is already successful to reproduce generatively. 

Character slates: 

0) Hardly developed 

1) Well-develeloped 

3.4.1.1.3 Colour of internal rhizome 

The colour of the rhizome of Curcuma varies from whitish to orange or bluish 

white. Figure 3.3 shows the section and the colour of the rhizomes in some 

representative Curcuma. Table 3.1 shows the colour of the rhizomes quoted from 

Valeton (1918) and from self-observation using the RHS (Royal Horticultural Society) 

colour chart as "Code des coulers" by Klincksick and Valette (1908 cited in Valeton 

1918), which were used by Valeton, are not available. Colour and smell characters are 

subjective. Presence or absence of pigment character, such as the yellow pigment of 

curcumin, will be a better basis for codification of the characters into states. 

Character slates: 

0) orange 
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yellow 

white 

bluish 

Figure 3.3 Colour of rhizome section in Curcuma subgenus Curcuma. 

A. C. purpurascens, B. C. soloensis, C. C. euchroma, D. C. longa, 
E. C. ochrorhiza, F. C. man gga, G. C. heyneana, H. C. cf. longa, 

I. C. zedoana, J. C. zanthorrhiza, K. C. aeruginosa, L. C. phaeocaulis 
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Table 3.1 Colour of the internal rhizome of Curcuma. 

Species Colour of the internal rhizome from 
Valeton 

Colour of the internal rhizome using 
RHS colour chart 

C. ,eUola1a Pale suiphureous - 

C. longa Orange yellow to orange 151-126 Deep orange 21 A or 22A 
C. aeruginosa Greenish blue 386 or pale greenish blue 

396 
light blue 396  

Yellow 20C (centre), white/cream 
(peripheral) with blue tinged 

C. brag Pale sulphureous 206-216 Orange 25A 
C. colorala Deep orange 156 Orange 25B 
C. euchro,na Orange 156 Orange 25A or 25B 
C. heyneana Pale sulphureous 226-236 Yellow 7A 
C. inangga Pale sulphureous 236-241 Light yellow 25B (centre), 20B 

(peripheral) 
C. ochrorh,za White with sulphur tinge Light yellow I B 
C. phaeocaulis Pale greenish blue 386 Yellow 20C (centre), white/cream 

(peripheral) with blue tinged 
C. purpurascens Orange yellow to pure yellow 156-161 Yellow 17C 
C. soloensis Orange 176-156 Orange 25A 
C. viridiflora Orange 176 - 

C. :anihorrhiza Orange yellow to orange 151-126 Orange 21 A or 22A 
C. :edoaria Pale sulphureous 241-246; old rhizome 

pale ambercoloured 153D  
Light yellow 20C 
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3.4.1.1.4 Smell of rhizome 

The smell also varies from pungent, turmeric-smell to young mango smell. 

Colour and smell are important characters for designing at "species" (Valeton 1918, 

Holttum 1950). There is  degradation of the colour too, which makes it difficult to 

assign a specific colour to each "species". 

The colour or smell may be due to the chemical constituents of the rhizomes. An 

example is the yellow colour of turmeric, which is affected by curcumin, one of the 

chemical compounds in the rhizome. 

Character stales: 

0) not fragrant or not pungent 

pungent 

mango-smell 

3.4.1.1.5 Leaf shape (Figure 3.4) 

Most Curcuma species have elliptic to lanceolate leaves in one individual. An 

anomaly is, for instance, in C. alismatfolia that has linear leaves. 

Character slates: 

0) elliptic to elliptic oblong 

1) linear 

3.4.1.1.6 Shape of ligule (Figure 3.5) 

A limited number of species was observed from living collections. It is hard to 

see from herbarium material. The ligule is formed as an elongation of the internal 

sheath at the junction of the leaf blade. Data of this character for subgenus 

Hitcheniopsis, except C. parv?flora,  are adopted from Valeton (191 8) where I could not 

see it. 

Character states: 

0) not auriculate 

1) auriculate 
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Figure 3.4 Variation of leaf shape in an individual of C. aeruginosa 

The very left, which is the oldest leaf, is elliptic while the very right, 
which is the youngest leaf, is lanceolate. 
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3.4.1.1.7 Colour of midrib (Figure 3.6) 

Valeton (1918) also notes the colour of the midrib. 

Character slates: 

0) green 

1) brownish 

3.4.1.1.8 Colour of sheath (Figure 3.7) 

The colour of the sheath is a diagnostic character in some species, such as C. 

phaeocaulis, and C. elata. 

Character slates: 

0) green 

1) brownish 

3.4.1.1.9 Purple flush on leaves (Figure 3.8) 

The leaves are green ranging from dark to pale green. There is a brownish 

reddish flush along both sides of the midrib. In some species, this flush will fade in the 

old leaves. Ridley (1947) observed that the environment effect this coloration. Poor 

environment affects the absence of production of the flush. However, in greenhouse 

conditions, these differences were maintained. 

The leaves, whether they are plain green without purple flush or not, in some 

case may help in assigning "species". Species without having any purple flush include 

for example C. longa, and C. heyneana. 

Character stales: 

0) present 

1) absent 
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Figure 3.5 Ligule shape in Curcuma 

(A. not auriculate, B. auriculate. After Valeton 1918) 

'W I  

Figure 3.6 Colour of midrib in Curcuma 

(A. Green midrib in C. longa, B. Purple midrib in C. colorata). 

931 



CHAPTER 3: PH YLOGENE TIC STUDY USING MORPHOLOGICAL DATA 

11 
'B 

oil 

Figure 3.7 Colour of sheath in Curcuma 

(A. Green leaf sheath in C. colorata; B. Brown leaf sheath in C. phaeocaulis) 

A 	 B 
I 

Figure 3.8 Variation of colour flushes on leaves of Curcuma. 

(A. Purple flush 2/3 length of the midrib towards the base in C. aeruginosa, 
B. purple flush along the midrib in C. zanthorrtiiza. Photographed by D. White) 
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Figure 3.9 Position of inflorescence in Curcuma. 

(A. Central inflorescence in C. aurantiaca, B. Lateral inflorescence 
in C. zedoaria. B is photographed by D. White) 
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3.4.1.1.10 Position of inflorescence 

Curcuma has two types of inflorescence, which are lateral or central (Figure 
3.9). Lateral inflorescence comes out before or with leaves. Species of this type 

produce the inflorescence just after the rainy season starts. Central inflorescence comes 

out after the plants produced many leaves. Species and inflorescence position are 

tabulated in Table 3.2 below. As the character of the position of inflorescence is used to 

distinguish the existing sectional level classification, I took this in my character records 

to proof that this character is homoplasy. 

Despite this, the position of inflorescence is not stable in one species. Roxburgh 

(I 812) was the first to note both inflorescence positions in C. decipiens. This is why 

Horaninow (1862) coined a section Amphiantha. However, this makes a difficult genus 

even more difficult. It takes the whole season to observe both positions (Burtt 1982). 

Moreover, in the case of C. amada, they produce both positions at unspecific times. 

Santapau (1945, 1952) confirmed both inflorescence positions in C. 

pseudomontana after he spent three years working in the field. C. pseudomontana has 

lateral spikes at the beginning of the rainy season, and central spikes at the end of the 

season. He also did careful dissection and found a diminutive inflorescence from the 

centre of the leaf tufts. Later on, Mangaly & Sabu (1987) reported their studies for over 

8 years in South India and observed some species produce only lateral (C. zedoaria) and 
some only terminal (C. longa, C. ecalcarala) and some others produce both positions. C. 

amada, C. decipiens, C. inodora, C. neilgherrensis. and C. oligantha are reported by 

Mangaly & Sabu (1993) as having both positions. C. amada that was described as 

having central inflorescence was reported to produce only lateral ones in certain regions 

(Mangaly & Sabu 1987). My observation in the research glasshouse in the Royal 

Botanic Garden Edinburgh is that C. arnada produce lateral inflorescences. Santapau 

(1945) was of the opinion that the classification based on inflorescence positions. 

It is critical to consider that Valeton described a new species C. 'nangga for the 
sole reason that it is different from C. atnada in the position of its inflorescence. He 

wrote, This species is not Curcuna amada, Roxb. as I took it to be formerly (Heyne 

l.c.) before I had seen the lateral scape.". C. mangga therefore could be reduced to C. 
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Table 3.2 Frequent inflorescence position in Curcuma spp. 

Species in 
subgenus 

Hitcheniopsis 

Infi. 
position 

Species in 
subgenus 

 Curcuma 

Infi. 
position 

Species in 
subgenus 

 Curcuma 

Infi. 
position 

C. alismai(folia central C. aeruginosa lateral C. colorala central 
C. auranhiaca central C. amarissima lateral C. euchroma central 
C. australasiaca central C. aromatica lateral C. longa central 
C. ecomala lateral C. c/ala lateral C. mangga central 
C. gracillima central C. heyneana lateral C. purpurascens central 
C. harmandjj central C. leucorrhiza lateral C. soloensis central 
C. parvflora central C. ochrorhiza lateral C. virjd?flora central 
C. petiolata central C. phaeocaulis lateral C. arnada lateral 

or 
central 

C. roscoeana central C. zanthorrhiza lateral C. decipiens both 
C. thorelii central C. zedoaria lateral C. inodora both 

C. neilgherrensis both 
C. oligantha both 
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amada as C. amada has been found to produce lateral inflorescence too. 

Character states: 

0) central 

1) lateral 

3.4.1.1.11 Shape of bracts (Figure 3.10) 

The bracts that enclose the flower conform generally to two types. They also 

vary in shape or colour. Most Curcuma species have elliptic to broad lanceolate bracts 

with blunt apices to the fertile bracts. However, C. harmandil has very elongated 

narrow fertile bracts with sharp apices. Therefore, the character is an autoapomorphy in 

C. har,nandjj and should have been omitted. 

Character states: 

0) almost linear 

1) elliptic or lanceolate 

3.4.1.1.12 Length of coma compared to fertile bracts 
In most Curcuma, the coma bracts are differently coloured and longer than the 

fertile bracts. However, in some other species, the coma can be the same colour as the 

fertile bracts and shorter or as long as the fertile bracts (Figure 3.10). This condition 

referred to as having no coma, but I take it as two states, i.e. coma is shorter or as long 

as fertile bracts; longer than fertile bracts. 

Character stales: 

0) shorter or as long as fertile bracts 

1) longer than fertile bracts 

3.4.1.1.13 Colour of coma and fertile bracts 

The upper bracts called the coma can be sterile and are usually differently 

coloured (Figure 3.10). These coma bracts are normally narrower and longer than the 
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Figure 3.10 Variation of bract shape and colour in Curcuma. 

(A. C. harmandii, B. C. alismatifolia, C. C. roscoeana 
D. C. australasica, E. C. longa, F. C. longa. A & B are taken from S. 

Wannakrairoj; C-F are photographed by D. White) 
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fertile bracts. In C. roscoeana the coma bracts are not differently coloured from the 

fertile bracts. The coma and fertile bracts are orange. 

Santapau (1945) reported that the colours of the coma bracts are very variable 

even within a single species that he was observing in Khandala, India. The coma bract 

colour of C. pseudomontana can be (i) uniform pink with various degradation; (ii) pure 

white; (iii) white with pink tips, (iv) white with pink tips and a broad stripe or pink 

stripes running down along the centre of the bracts; (v) white with several green stripes 

running longitudinally downwards and parallel to each other; and (vi) pink with very 

deep purple that is almost black (Santapau 1945). Various authors also reported at least 

two variations in the colour of the coma bracts of C. longa, white or pink. The colour of 

the coma bracts or the whole bracts, therefore, I think is not a reliable character defining 

species. 

Nakayama el al. (2000) demonstrated that malvidin 3-rutinoside is responsible 

for the pigment of the coma bracts in C. alismatfolia. It was the only anthocyanin 

identified from pink bracts of Curcuma alismatfolia cultivars. The concentration of 

malvidin 3-rutinoside increased as the intensity of the pink colour in the bracts 

increased. Does the environment affect the production of malvidin 3-rutinoside? If yes, 

it could help to explain the reason why the colour of the coma bracts varies in C. 

pseudomontana and C. longa. 

The shape of the bracts is more stable within a species than the colour. 

Environment will have less effect on this than on colour. The extreme shape is between 

that of C. harmandii and other subgenus Curcuma species such as C. zedoaria, C. 

zanihorrhiza, C.longa. The shape of the bracts within subgenus Curcuma is more 

uniform than that of subgenus Hitcheniopsis. Valeton was of the opinion to exclude 

some species of Curcuma which should be placed in subgenus Hitcheniopsis. One of his 

reasons is on the basis of the different structures of the bracts (Valeton 1918). 

Character slates: 

0) uniform 

1) different 
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Figure 3.11 Variation of flower shape in Curcuma 

The three flower types in Curcuma: simple (D), 
complex (A & C), and small (B) 

Ifl! 



CHAPTER 3: PHYLOGENETIC STUDY USING MORPHOLOGICAL DATA 

3.4.1.1.14 Flower structure 

The flower comprises three types, viz, simple, complex, and small (Chapter 

Four). Most species of Curcuma subgenus Curcuma have simple type flowers. Some 

species from subgenus Hitcheniopsis have complex or small type flowers. Figure 3.11 

shows the three types of flower. The variation of floral shape and structure may relate to 

different pollinators. In Chapter Four I will discuss this in detail. 

Character stales: 

0) simple 

complex 

small 

Flower types, however, cannot be considered as individual characters. Those character 

states are not comparable states. There might be too many different homologies. 

Therefore, this character is very dubious and should be omitted from the analyses. 

3.4.1.1.15 Hair on ovary 

Character stales. 

0) hairy 

1) glabrous 

3.4.1.1.16 Shape of petals 

Petals are mostly elliptic or broad lanceolate (Figure 3.12). 

Character slates: 

0) lanceolate 

1) elliptic 

3.4.1.1.17 Colour of petals 

The corolla tube (Figure 3.13) is usually hidden by the pouched bracts. The 

corolla lobes emerge from the bracts with their colour ranging from pink or red (C. 

zanthorrhiza, C. aeruginosa) to yellow or whitish. 
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Figure 3.12 Variation of petal shape in Curcuma 
A. Elliptic petals in C. man gga, B. Lanceolate petals in C. stenochila. 

B is taken from S. Wannakrairoj. 

OP 

Figure 3.13 Petal colours in Curcuma 

(A. C. stenochila with red petals, B. C. longa with light yellow petals 
C. C. mangga with pink petal. A is taken from S. Wannakrairoj. 

B & C are photographed by D. White). 

1112.  
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Character slates: 

0) reddish or purplish 
	

3) greenish 

1) whitish 
	 4) yellowish or orangish 

3.4.1.1.18 Hair on dorsal petal 

The abaxial dorsal petal is mostly glabrous or hairy at tip. 

Character slates: 

0) glabrous 

hairy at tip 

hairy throughout 

3.4.1.1.19 Cucullate on dorsal petal 

The dorsal petal is mostly cucullate. 

Character slates. 

0) not cucullate 

1) cucullate 

3.4.1.1.20 Shape of labellum 

The labellum varies from elongate (e.g. C. alismaljfolia, C. gracillima) to 

obovate (e.g. C. zedoaria, C. longa) or rounded shape (e.g. C. roscoeana). Figure 3.14 

shows the variation of this shape. 

Character stales: 

0) larger than wide 

1) wider than long 

3.4.1.1.21 Colour of labellum 
The labellum varies from yellow with a darker yellow thickened band in the middle 

to whitish or purplish. 
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hair 

/ 

Figure 3.14 Labellum shape, and hair on the middle band of the labeflurn 
in Curcuma 

(A. C. ecomata, B. C. gracillima, C. paiviflora, C. C. harmandii 
D. C. thorelii, E. C. roscoeana, F. Curcuma subgenus Curcuma) 
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Character stales: 

0) purple or white and purple 

1) yellow or orange 

3.4.1.1.22 Hair on labellum blade 

The labellum is mostly glabrous, but hair is found in some species outside the band 

boundary. 

Character stales. 

0) present 

1) absent 

3.4.1.1.23 Hair on the middle band of the labellum 

On the middle band of the labellum, hair is present (Figure 3.14) in some species. 

Character stales: 

0) present 

1) absent 

3.4.1.1.24 Shape of lateral staminodes 

The lateral staminodes also vary from linear to elliptic or oblong (Figure 3.15). 

They cover the stigma and stamen or are free (e.g. in C. harrnandii). 

Character slates: 

0) linear 

1) obovate to oblanceolate 

3.4.1.1.25 Arrangement of lateral staminodes 

Lateral staminodes can be free, and can be folded or clasped under the dorsal 

petal (Figure 3.15) in some species. 

me 
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Figure 3.15 Shape and orientation of lateral staminodes in Curcuma. 

(A. C. ecomata, B. C. gracillima, C. parviflora, C. C. harmandil, D. C. thorelii, E. 
C. roscoeana, F. Curcuma subgenus Curcuma, G. C. harmandiI with free lateral 

staminodes; H. C. alismatifolia with free lateral staminodes; I. C. longa with 
clasped lateral staminodes. Arrow with LS indicates lateral staminode. G & H 

are taken from S. Wannakrairoj; I is photographed by D. White) 
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Character stales: 

0) free 

1) clasping 

3.4.1.1.26 Colour of lateral staminodes 

0) reddish or purplish 

whitish 

greenish 

yellowish or orangish 

3.4.1.1.27 Groove on lateral staminodes 

Lateral staminodes posseses a groove that makes it uneven. They can be smooth 

and flat (Figure 3.15). 

Character stales: 

0) absent 

1) present 

3.4.1.1.28 Patch of granules at apex of lateral staminodes 

A patch of granules can be found under high magnification (light microscope) 

from spirit material. These may be cells containing colour pigments. 

Character states.' 

0) absent 

1) present 

3.4.1.1.29 Length of anther (Figure 3.16 & 3.17) 

Character stales: 

0) 4-7mmormore 

1) 0-4mm 
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Figure 3.16 Anther of curcuma. 

(A. C. ecomata, B. C. alismatifolia, C. C. thorelii, D. C. grad/Jima, 
E. C. roscoeana, F. C. longa, and G. C. aurantiaca. Number 1 indicates front 

view, 2 indicates lateral view. F is from subgenus Curcuma. The rest 
are from subgenus Hitcheniopsis. S is spur, Cr is crest) 
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Figure 3.17 Anther of Curcuma from the back. 

(A. C. gracillima; B. C. roscoeana; C. C. longa; D. C. aurantiaca. C is from 
subgenus Curcuma, and the rest are from subgenus Hitcheniopsis. Arrow with I 

indicates insertion of filament on the anther). 
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3.4.1.1.30 Spur on anther (Figure 3.16) 

Character states: 

0) absent 

1) present 

3.4.1.1.31 Creston anther (Figure 3.16) 

Character states. 

0) present 

1) absent 

3.4.1.1.32 Anther dehiscence (Figure 3.16) 

Character states: 

0) along locules up to the base 

I) only along locules 

3.4.1.1.33 Stigma type (Figure 3.18) 

Stigma emerges just above the anther. Its stylus is supported by the locules of 

the anther. 

Character slates: 

.i 
J, inflated  

1) funnel-shaped 

3.4.1.1.34 Stylar growth 

Stylodes grow on the septa of ovary in some species. They, two stylodes, secrete 

nectar. 

Character states. 

0) absent 

1) present 
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Figure 3.18 Stigma type in Curcuma. 

Inflated type (A. C. ecomata; E. C. longa; F. C. aurantiaca) and 
funnel shape (B. C. alismatifolia; C. C. thorelii; D. C. roscoeana). 

E is in subgenus Curcuma, and the rest are in subgenus Hitcheniopsis. 

3.4.1.1.35 Ring of hair on corolla tube 

The bunch of hair on the throat of the corolla tube makes a ring in some species, 

but it is spread randomly in other species. 

Character states: 

0) absent 

I) present 
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Table 3.3 Character coding for morphological data of Curcuma spp. 

SPECIES 11 21 3 4 51 61 7 8 9 101 II 121 131 141 15 161 171 181 19 20 21 22 23 24 25 26127 28 29 30 31 32 33 34 35 

Ca. spicata 00 2 0 I I 0 0 I 0 0 I 0 1 I 0 0 0 0 0 0 I I 1 1 0 0 0 0 I I I I I 0 

Ca.graci/is 0 0 2 0 I I 0 0 I 0 0 I 0 I 1 0 0 0 0 0 0 I I I I 0 0 0 0 I I I I I 0 

R.auriculaia 0 0 2 0 1 I 0 0 I 0 0 1 0 1 1 0 0 0 I I 0 1 1 1 I 0 I 0 0 1 I I 0 I 0 

C.ecomata 0 0 2 0 0 1 0 0 I 1 1 0 0 1 0 0 3 I 0 0 1 0 I I 0 3 0 0 0 I 0 1 I 1 0 

C.parvt1ora 0 0 2 0 0 I 0 0 1 0 1 1 I 2 1 I I 0 0 0 0 1 0 I 0 I 0 0 I 0 0 I 1 0 0 

C.gracillirna 0 0 2 0 0 1 0 0 I 0 1 0 1 2 I I I 0 0 0 0 1 0 1 0 I 0 0 1 0 0 1 I 0 0 

C.a/ismatfo1ia 0 0 2 0 I I 1 0 1 0 I I I I 1 I 1 0 0 0 0 I 1 I 0 I 0 0 1 0 0 I 1 0 0 

C.thorelii 0 0 2 0 0 1 0 0 I 0 1 1 1 2 1 1 I 0 0 0 0 I 0 1 00/1 0 0 I 0 0 1 I 0 0 

C.harmandii 0 0 2 0 0 I 0 0 1 0 0 0 0 I I I 2 0 0 0 0 I 0 0 0 2 0 0 1 0 0 I 1 0 0 

C.auranilaca 0 0 2 0 0 1 0 0 I 0 1 1 1 0 0 1 3 2 0 1 I I 1 1 0 3 0 0 1 0 0 0 0 I I 

C.cfaustra/asica 0 0 0 0 0 I 0 0 1 0 1 1 1 0 0 I 3 1 I I I I I I 0 3 0 I I I I I I I I 

C.roscoeana 0 0 2 0 0 I 0 0 1 0 I 0 0 1 1 1 3 2 0 I I I I I 0 3 0 0 1 0 0 I I I 0 

C.peliolata 0 I 2 I 0 1 0 0 I 0 1 0 1 0 0 1 3 I I I I I 1 1 0 3 0 I I I I I 0 I I 

C./onga I I 0 I 0 0 0 0 1 0 I 1 I 0 0 I 3 1 I I I I I I 1 3 I I I 1 I 1 0 I I 

C.aromatica I I 0 1 0 0 0 0 I I I I I 0 0 1 3 I I 1 I I I I I 3 I I I I I I 0 I I 

Ce/ala I I 3 1 0 0 0 1 0 I I 1 1 0 0 I 3 1 I I I I I I I 3 I I I I I I 0 1 I 

C.Ieucorrhiza I I 2 I 0 0 0 0 1 I I I I 0 0 I 3 1 1 I I I I I I 3 I I I I I I 0 I I 

C.a,narissitna I I 3 I 0 0 0 I I I I I I 0 0 1 3 I I I I I I I I 3 I I I I I I 0 1 I 

C.amada I I 2 2 0 0 0 0 10/I 1 1 I 0 0 1 3 I I I I I I 1 1 3 I I I 1 I I 0 I I 

C.viridflora 1 1 0 1 0 0 0 0 I 0 I I I 0 0 1 3 I I I I I I I 1 3 I I I I I I 0 I I 

C.soloensis I I 0 I 0 0 0 0 I 0 1 1 1 0 0 I 3 1 I I I I I I 1 3 I I I I I I 0 I I 

C.euchrorna I I 0 I 0 0 I 0 1 0 1 1 1 0 0 I 3 1 I I I 1 1 I I 3 I I I I I 1 0 I I 

C.brog I 1 0 I 0 0 0 0 1 0 I I 1 0 0 I 3 1 I I I I I I 1 3 0 I I I I I 0 I I 

C.ochrorhi:a I I 2 1 0 0 0 0 1 0 I I I 0 0 I 3 1 I I I I I I I 3 1 I I I I 1 0 I I 

C.co/orata I I I 1 0 0 I 0 1 0 1 

1 

I 0 0 1 3 I I I I I I I I 3 I I I I I 1 0 I I 

C.purpurascens I I I 1 
1 	

0 00 0 00 1 I 1 00 1 3 I I I I I I I 1 3 I I I I 110 1 i 
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0 
0 
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Table 3.3 (continued) Character coding for morphological data of Curcuma spp. 

SPECIES 1 2 3 4 5 61 7 8 9 10 11 12 13 14 1  15 16 171 181 19 20 2112212314 25126 27 28 29 30 31 32 33 34 35 
C.:anthorrhiza I I 0 I 0 0 1 0 0 1 I I I 0 0 I 0 I I I I I I I I 3 I I I I I 1 0 I I 
C.aeruginosci I I 3 I 0 0 0 0 0 I I I I 0 0 I 0 I I I I I I I I 3 I I I I I I 0 I I 
C.:edoaria 111/210000011110013111111113111111011 
C.heyneana 1 1 I I 0 0 0 0 1 1 I I 1 0 0 1 3 I I I I I I I I 3 1 I I I I I 0 1 1 
C.inangga I I I 2 0 0 0 0 1 I I I I 0 0 I 3 I I I I I I I I 3 1 I I I I I 0 1 1 
C.phaeocaulis I I 3 I 0 0 0 I 0 I I I 1 0 0 I 0 I I I I I I I I 3 I I I I I I 0 1 1 

Notes: 1-35 in bold: Character (see next page) 
0-3 	: Character states (see next page) 
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11) Shape of bracts 
0: almost linear 
1: elliptic or lanceolate 

12) Length of coma compared to fertile 
bracts 

0: shorter or as long as fertile bracts 
1: longer than fertile bracts 

13) Colour of coma and fertile bracts 
0: uniform 
1: different 

14) Flower structure 
0: simple 

complex 
small 

15) Hair on ovary 
0: hairy 
1: glabrous 

16) Shape of petals 
0: lanceolate 
1: elliptic 

17) Colour of petals 
0: reddish or purplish 
I: whitish 

greenish 
yellowish or orangish 

18) Hair on dorsal petal 
0: glabrous 

hairy attip 
hairy throughout 

19) Cucullate on dorsal petal 
0: not cucullate 
1: cucullate 

20) Shape of labellum 
0: larger than wide 
I: wider than long 

1) Habit 
0: small 
I: tall 

2) Rhizomes structure 
0: hardly developed 
1: well-developed 

3) Colour of internal rhizome 

0: orange 
I: yellow 

white 
bluish 

4) Smell of rhizome 
0: not fragrant or not pungent 

pungent 
mango-smell 

5) Leaf shape 
0: elliptic to elliptic oblong 
I: linear 

6) Shape of ligule 
0: not auricu late 
1: auriculate 

7) Colour of midrib 
0: green 
I: brownish 

8) Colour of sheath 
0: green 
I: brownish 

9) Purple flush on leaves 

0: present 
I: absent 

10) Position of inflorescence 
0: central 
I: lateral 
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21) Colour of labellum 
0: purple or white and purple 
1: yellow or orange 

22) Hair on labellum blade 
0: present 
I: absent 

23) Hair on labellum band 
0: present 
1: absent 

24) Shape of lateral staminodes 
0: linear 
I: obovate to oblanceolate 

25) Arrangement of lateral staminodes 

0: free 
I: clasping 

26) Colour of lateral staminodes 
0: reddish or purplish 
I: whitish 

greenish 
yellowish or orangish 

27) Groove on lateral staminodes 
0: absent 
I: present 

28) Patch of granules at apex of lateral 

stam i nodes 
0: absent 
I: present 

29) Length of anther 
0: 4-7 mm or more 
1: 0-4 mm 

30) Spur on anther 
0: absent 
I: present 

Creston anther 
0: present 
I: absent 

Anther dehiscence 
0: along locules up to the base 
I: only along locules 

Stigma type 
0: inflated head 
I: not inflated head 

Stylar growth 
0: absent 
I: present 

Ring of hair on corolla tube 
0: absent 
I: present 
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3.4.1.2 Phylogenetic analysis 

Phylogenetic analysis of 35 morphological characters with equally weighted 

characters including uninformative characters resulted in 16383 equally most 

parsimonious trees (Cl0.579, R10.862, RC0.499) with a length of 76 steps (Figure 

3.19). Excuding of uninformative characters reduced the tree length to 73 steps. Re-

weighting characters to Cl, RI or RC index resulted in shorter but similar trees. These 

were slightly more resolved in the C. parv?flora, C. alismat[o1ia, and C. gracillima 

group, and the C. soloensis, C. longa, C. phaeocaulis, C. aromatica, and C. elata group. 

The trees resulting from molecular data are more resolved than those resulting 

from morphological data, especially in subgenus Curcuina. Despite these trees can be 

compared and used as support for the molecular data or vice versa. Both trees are 

almost congruent except that C. auranliaca and C. cf australasica, which were placed 

between C. ecomata and the C. thorelii dade in the molecular analyses, were shifted to 

nodes between C. roscoeana and C. petiolata in the tree constructed from morphological 

data (Figure 9.1). 
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Figure 3.19 Strict consensus tree obtained from 1000 equally most parsimonious trees 
of length 75 steps resulted from equally weighted parsimony analysis of morphological 

(Cl=0.5789; Rl=0.8621; RC0.4991). 
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3.4.2 NON CODED MORPHOLOGICAL CHARACTERS 

3.4.2.1 Epidermis and stomata (Figure 3.20-3.22) 

Adaxial epidermis are transversely elongated (the longest cell is perpendicular to 

the vein) and hexagonal shape (Figure 3.20). The epidermal cells are about 39-125 tm 

long and 18-68 jim wide. The arrangement is in regular straight rows parallel to the 

direction of the veins. Stomata consist of guard cells 30-60 gm long and 43-95 pm 

wide, lateral subsidiary cells, and two or three terminal subsidiary cells. The longest 

side of guard cell runs in parallel with the veins. Lateral subsidiary cells flanks the 

guard cells, while terminal subsidiary cells flank both guard cells and lateral subsidiary 

cells. Stomatal density is the percentage of the number of stomata to the number of 

epidermal cells per cm 
2.  Stomatal density is about 1.13-2.43% in adaxial epidermis. 

The terminal subsidiary cells run in parallel with the longest part of the epidermal cells. 

Epidermal cells under the vein is smaller than those that are not under the vein (Figure 

3.20). 

Abaxial epidermis are mixed longitudinally elongated (the longest cell is 

perpendicular to the vein), transversely elongated and isodiametric (Figure 3.21). The 

epidermal cells are 17-96 gm long and 18-102 pm wide. They are randomly arranged 

and are not like the adaxial epidermall cells which are in almost regular straight rows. 

Stomata consist of guard cells (32-56 pm long and 35-72 pm wide), lateral subsidiary 

cells, and two or three terminal subsidiary cells. The arrangement of this stomatal 

complex is similar with those in adaxial. Stomata! density is 8.15-13.98% in abaxia! 

epidermis. Epidermal cells under the vein is also smaller than the others which are not 

under the vein (Figure 3.21). 

There are some differences in the epidermal characters of C. amada and C. 

mangga (Figure 3.22). The abaxial epidermal cells of C. amada are mostly transversely 

elongated with some isodiametric while in C. mangga they are mostly longitudinally 

elongated with some isodiametric. The arrangement is in regular straight rows in C. 

nangga whereas as other Curcuma this is not so in C. amada. The abaxial epidermis 

are hairy or pubescent in C. amada while they are glabrous in C. mangga. However, the 
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character of presence of hair is sometimes inconsistent in this case. Some C. amada can 

have glabrous abaxial surface of leaves (Sirirugsa 1996). To confirm the different shape 

of the epidermal cells between those of C. amada and C. mangga, more samples are 

needed. 

C. amarissima is quite unique in having more than two terminal subsidiary cells 

(Figure 3.20-3.21). However, two terminal subsidiary cells are also found in one slide 

preparation. Again, more samples are needed to confirm this. 

The stomatal density is slightly lower in those from subgenus Hilcheniopsis (sampled 

species are C. alismaijfolia, C. parvy'lora). Environment could affect this, but before 

any conclusion is drawn, more samples should be examined. Epidermal characters are 

not included in the phylogenetic analysis as morphometric analysis did not support any 

groupings. 

3.4.2.2 Leaf: transverse section (Figure 3.23) 

A few samples were taken for leaf transverse section investigation. From six 

species, there are two types of transverse sections disregarding sectional level or even 

subgeneric level. The first type has hypodermis on both sides (adaxial and abaxial), and 

sclerenchyme fibres that never interrupt the lower hypodermis. The second type has 

hypodermis on abaxial, but no hypodermis or one layer on adaxial. The sclerenchyme 

fibres in this type sometimes interrupt the lower hypodermis. The first type comprises 

C. zedoaria, C. heyneana, and C. purpurascens, while the second comprises C. longa, C. 

zanihorrhiza and C. roscoeana. The epidermis of C. roscoeana looks larger than the 

others. Sections have been attempted in other species, but the results were not good. 

Figure 3.23 shows the transverse sections of some Curcunia spp. mentioned above. Leaf 

transverse sections are not included in the phylogenetic analysis. 
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Figure 3.20 Adaxial epidermis in some representative Curcuma spp. 

1 = Guard cells; 2= Lateral subsidiary cells; 3= Terminal subsidiary cells; 4= 
Epidermis; 5= Hair; 6= Epidermis under the veins. 
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Figure 3.21 Abaxial epidermis in some representative Curcuma spp. 

1= Guard cells: 2= Lateral subsidiary cells; 3= Terminal subsidiary cells; 
4= Epidermis; 5= Hair; 6= Epidermis under the veins. 
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Figure 3.22 Abaxial epidermis of C. mangga and C. amada. 
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Figure 3.23 Leaf transverse section. 

1= Epidermis; 2= Hypodermis ____ = 50 .im. 
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3.4.2.3 Seeds (Figure 3.24) 

Only four samples were examined for the SEM of the seeds, they are C. 

auranhiaca, C. pehiolata, C. aromatica, and C. australasica. Their surfaces show 

similarity between each other. Under 500x magnification, the surface of C. australasica 

seems to be different from the others at first examination. Bars were seen between the 

ridges. However, under higher magnification (2000x), these bars are not very clear, and 

they turn to look like the rest of the species. The seeds of C. pebiolata, which were taken 

from herbarium specimens, did not seem to dry up gradually during preservation. Hence 

their surfaces are artifactual and looked rather different from the rest of the species. 
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Figure 3.24 SEM of seed surface. 
A. Under 500x magnification. B. Under 2000x magnification. 

C. aurantiaca, 2. C. petiolata, 3. C. cf. australasica, 4. C. aromatica 
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3.4.3 MORPHOMETRIC OF EPIDERMIS 

The size of epidermal cells (of adaxial or abaxial) of Curcuma subgenus 

Hi/cheniopsis is slightly larger than those of Curcuma from subgenus. Measurements of 

epidermal and stomatal cells can be seen in Appendix 4. To investigate whether this is 

significant, morphometric of epidermal cells and stomatal size was carried out (Table 

3.4). The result shows that no groupings are found in the PCA though one cluster, 

which consists of Hitcheniopsis species, seems quite separate from the rest. C. 

mscoeana and C. /horelii, however, form a cluster with species from subgenus Curcurna 

though rather at peripheral (Figure 3.25). 

The first three components (axes) explained 66.94% of the total variance (Table 

3.4). The first component, which explains 32.113% of total variance shows strong 

negative correlation with width and height of adaxial and abaxial stomata, and strong 

positive correlation with width of adaxial and abaxial epidermis (Figure 3.25). This 

means that species with larger eigenvectors has narrower and shorter stomata and wider 

epidermis. The second component explains 17.807% of total variance, and is strongly 

positively correlated with width of abaxial epidermis and strongly negatively correlated 

with length of abaxial epidermis (Figure 3.25). This means that species with larger 

eigenvectors has wider and shorter abaxial epidermis. The third component explains 

17.020% of total variance, and is strongly positively correlated with width of adaxial 

epidermis and negatively correlated with width of abaxial epidermis and width of 

adaxial and abaxial stomata (Figure 3.25). This means that species with larger 

eigenvectors has wider adaxial epidermis, narrower abaxial epidermis, and narrower 

stomata. Subgenus Hilcheniopsis generally has wider epidermis and smaller stomata. 

The epidermal characters, therefore, are quite uniform within Curcuma spp. This 

is probably related to the function of the epidermis, such as the stomatal for gas 

exchange during respiration or photosynthesis, which is the same for all Curcuma. 
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Table 3.4 Variance extracted, first 8 axes 
(of morphometric of epidermal characters) 

% of 	Cum. % 	Broken-stick 
AXIS Eigenvalue 	Variance 	Var. 	Eigenvalue 

1 	2.569 32.113 32.113 2.718 
2 	1.425 17.807 49.920 1.718 
3 	1.362 17.020 66.940 1.218 
4 	0.995 12.436 79.377 0.885 
5 	0.554 6.921 86.298 0.635 
6 	0.485 6.059 92.356 0.435 
7 	0.388 4.847 97.203 0.268 
8 	0.224 2.797 100.00 0.125 
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3.4.4 MAPPING MORPHOLOGICAL CHARACTERS OF SOME 
SPECIES ONTO MOLECULAR TREE (Fig. 3.26-3.28) 

3.4.4.1 Habit 

The mapping of habit characters onto the molecular tree required only one 

evolutionary step (Figure 3.26). Tall habit, which is possessed by subgenus Curcuma, 

seems to have evolved from small habit, subgenus Hi/cheniopsis, during the course of 

evolution. The evolution of the habit is probably interfered by the evolution of 

chromosome numbers. All of tall species have a polyploid chromosome number. 

3.4.4.2 Rhizome structure 

The mapping of the rhizome structure onto the molecular tree required one 

evolutionary step (Figure 3.26). Rhizome structure largely showed congruence with 

combined ITS and irnL-F data. Except C. cf ausiralasica and C. petiolala, all other 

species in subgenus Hitcheniopsis possess hardly developed rhizome. Well-developed 

rhizome is also probably related to polyploidy, that leads to development of rhizomes. 

3.4.4.3 Colour of internal rhizome 

The mapping of colour of internal rhizome onto molecular tree required eight 

evolutionary steps (Figure 3.26). Colour of internal rhizome has evolved several times 

independently on the tree. The ancestor has whitish rhizome, which evolve to coloured 

rhizomes. Except C. cf australasica, all species from subgenus Hitcheniopsis have 

whitish rhizome. The colour of rhizomes has some value in systematics. This is an 

important character to recognize C. longa Group. 

3.4.4.4 Leaf shape 

The mapping of leaf shape onto molecular tree required two steps. Elliptic to elliptic 

oblong leaf shape dominates the genus. Very lanceolate or rather linear leaf shape is 

only possessed by C. alismatfolia which resembles the outgroup. Therefore, it is an 

autapomorphy (not illustrated). 
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Figure 3.26 Mapping the habit (A), rhizome structure (B), colour of 
internal rhizome (C), and shape of ligule (D) onto molecular tree. 
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3.4.4.5 Shape of ligule 

The mapping of the shape of ligule onto molecular tree required only one step 

(Figure 3.26). This character is nicely fit the subgeneric division. Subgenus 

Hitcheniopsis possess auriculate ligule, while subgenus Curcuma does not show this 

shape. Auriculate ligule has been lost during the course of evolution. Straight ligule 

replaced the auriculate one, which perhaps suit the habit of subgenus Curcuma. 

3.4.4.6 Colour of midrib 

The mapping of colour of midrib onto molecular tree required only one step. It is of 

little value, as green midrib dominates the whole taxa, except the only brownish midrib 

in C. alismatjfolia. Brownish midrib is also possessed by C. zanthorrhiza. 

3.4.4.7 Colour of sheaths 

The mapping of colour of sheath onto molecular tree required three steps. The 

mapping is almost the same as that of the colour of the midrib. Green sheath dominates 

the whole taxa including the outgroup taxa. C. elala and C. phaeocaulis possess 

brownish sheath. In some way, this character will easily distinguish for example C. 

phaeocaulis from C. aeruginosa. 

3.4.4.8 Purple flush on leaves 

The mapping of purple flush on leaves onto molecular tree required three 

evolutionary steps. All the purple flush arises in some species from subgenus Curcurna. 

3.4.4.9 Position of inflorescence 

The mapping of position of inflorescence onto molecular tree required four 

evolutionary steps (Figure 3.27). Position of inflorescence evolved several times 

independently during the course of evolution. This result proves that character of 

inflorescence position is homoplastic. Therefore, classification on the basis of this 

character can be misleading. 
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3.4.4.10 Shape of bracts 

The mapping of the shape of the bracts onto molecular tree required two 

evolutionary steps. The majority of shape of bract in the genus is elliptic to lanceolate. 

Only C. harmandii has a linear bract. The rest has elliptic or lanceolate bract. The 

common ancestor probably has linear bract. 

3.4.4.11 Length of coma bracts compared to length of fertile bracts 

The mapping of the length of coma bracts compared to the length of fertile bracts 

onto molecular tree required four evolutionary steps. All species from subgenus 

Curcuma have coma bracts that are longer than the fertile bracts. Subgenus 

Hitcheniopsis consists of species which has coma bracts that are longer than the fertile 

bracts, and also some species which has coma bracts that are shorter than or the same 

length as the fertile bracts. The short coma bracts appeared to have evolved several 

times independently. 

3.4.4.12 Colour of coma and fertile bracts 

The mapping of the colour of coma and fertile bracts onto molecular tree required 

three evolutionary steps. Stable uniform colour of coma bracts is only possessed by 

three species, C. ecomata, C. harmandii, and C. roscoeana. C. longa has two types of 

colour, ie. uniform colour and different colour between, coma and fertile bracts. Except 

C. longa, all other species from subgenus Curcuma have different colour between coma 

and fertile bracts. 

3.4.4.13 Flower structure 

The mapping of flower structure onto molecular tree required three evolutionary 

steps. All species from subgenus Curcuma have open big complex type of flower 

(simple type). Subgenus Hitcheniopsis possesses several type of flower, varied from 

simple, complex to small type. The common ancestor appeared to have complex type. 

Then it was switched to simple type in C. ausiralasica. It was switched to small type in 

136 



CHAPTER 3: PHYLOGENETIC STUDY USING MORPHOLOGICAL DATA 

C. thorelii, C. parvflora, and C. gracillima. During the course of evolution, it appeared 

that the complex type lost, and a simple type is attained in species from subgenus 

Curcuma. This phenomenon is most likely related to the pollination system of the taxa 

(see Chapter Four). 

3.4.4.14 Shape of petals 

The mapping of the shape of petals onto molecular tree required one evolutionary 

step. Shape of petals is elliptic in the majority of species. The exception is C. ecomala, 

which has lanceolate petal. 

3.4.4.15 Colour of petals 

The mapping of colour of petals onto molecular tree required five evolutionary steps. 

The majority of the species have yellowish or oranges petal. If we re-map flower 

structure onto colour of petals, we can see that except C. ecomala and C. roscoeana, all 

complex and small flower have whitish or greenish petal. Simple type, in general, has 

yellowish or reddish petal. 

3.4.4.16 Cucullate on dorsal petal 

The mapping of cucullate on dorsal petal onto molecular tree required three 

evolutionary steps. Cucullate on dorsal petal is prevalent in subgenus Curcuma, except 

the two species, C. cf australasica and C. peliolata. The common ancestor appeared to 

have dorsal petal without cucullate. 

3.4.4.17 Shape of labellum 

The mapping of shape of labellum onto molecular tree required three evolutionary 

steps. The complex and small group, except C. roscoeana, have elongate labellum. On 

the other hand, the complex types have roundish labellum. The common ancestor 

appeared to have elongate labellum, which re-appear in complex and small type dade 

(C. thorelii, C. gracillima, C. alisnatfolia, and C. harmandii). 
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3.4.4.18 Colour of labellum 

The mapping of colour of labellum onto molecular tree required two evolutionary 

steps. It is almost congruence with the mapping of the shape of labellum. The 

exception is C. ecomata. Species with elongate labellum have purple or white and 

purple colour, while the simple types have yellow or orange labellum. In the majority of 

species with simple type, their colours of labellum are yellow or orange. The majority 

of complex or small species have purple or white with purple labellum. 

3.4.4.19 Hair on labellum blade 

The mapping of hair on labellum blade onto molecular tree required one 

evolutionary step. The majority of species have no hair on the labellum blade. C. 

ecornala is the only species which has hair on the labellum blade. 

3.4.4.20 Hair on the middle band of the labellum 

The mapping of hair on labellum blade onto molecular tree required one 

evolutionary step. Hair on labellum band (Figure 3.27) is only possessed by four 

species in the study, C. thorelii, C. parwflora, C. gracillima (the small type), and C. 

harmandii. Those four species have no hair on the labellum blade. 

3.4.4.21 Shape of lateral staminodes 

The mapping of this character onto molecular tree required one evolutionary step. 

The majority of species in the study have obovate to oblanceolate lateral staminodes. 

Linear odd lateral staminode is only possessed by C. harmandii. 

3.4.4.22 Arrangement of lateral staminodes 

The mapping of arrangement of lateral staminodes onto molecular tree required two 

evolutionary steps (Figure 3.27). The complex and small dade (C. thorelii, C. 

gracillirna, C. alismatfolia, and C. har,nandii) has free lateral staminodes, not like the 

rest of the species, which have clasping lateral staminodes. The flower of species on the 
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dade have little opening, while those of simple type, which have clasping lateral 

staminodes, have wide opening. 

3.4.4.23 Colour of lateral staminodes 

The mapping of the colour of lateral staminodes onto molecular tree required 

three evolutionary steps. The complex and small dade has whitish lateral staminodes 

(C. thorelii, C. gracillima, C. alismai?folia) and greenish colour (C. harmandii). The 

rest of the taxa except the outgroup have yellowish or orangish colour, which means the 

same as the rest of flower parts, such as petals and labellum. 

3.4.4.24 Groove on lateral staminodes 

The mapping of groove on lateral staminodes onto molecular tree required only two 

evolutionary steps (Figure 3.27). This character is congruence with the division of the 

genus at subgeneric level. The outgroups have lateral staminodes without groove except 

in R. auriculata. The groove that I observed is perhaps not homolog in R. auriculala. 

The common ancestor appeared to have evolved from lateral staminodes without groove. 

Subgenus Curcuma dade seemed to attain groove on the lateral staminodes during the 

course of evolution. 

3.4.4.25 Patch of granules at apex of lateral staminodes 

The mapping of patch of granules at the apex of lateral staminodes onto molecular 

tree required two evolutionary steps. Granule patch, which supposedly indicates 

pigment cells, appeared to be in majority of the species in subgenus Curcuma. 

Subgenus Hiciheniopsis lacks these pigment cells, except in two species (C. cf 

ausiralasica and C. petiolata). If we re-map flower type onto this character, it appeared 

that complex species have these pigment cells, except in C. aurantiaca. The cells are 

probably required as signals by the pollinator. Further more data are required to answer 

this phenomenon. 
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3.4.4.26 Length of anther 

The anther is short in all taxa except one species, C. ecomata. The mapping of 

this character onto molecular tree required one evolutionary step. The common ancestor 

appeared to have evolved from long anther. During the course of evolution, the long 

anther was replaced by short anther that fits the structure of flower. 

3.4.4.27 Spur on anther 

Spur on anther is not completely congruence with the division at subgeneric level 

(Figure 3.28). The mapping of this character onto molecular tree required three 

evolutionary steps. The anomaly is C. ecomala, C. cf ausiralasica and C. petiolala that 

have spur on the anther. 

3.4.4.28 Creston anther 

The mapping of crest on anther onto molecular tree required three evolutionary steps 

(Figure 3.28). All subgenus Curcuma have no crest on the anther, while all species 

from subgenus Hitcheniopsis except C. petiolala and C. cf australasica have crest on 

the anther. The outgroup has crest on the anther. The reappearance of the anther crest is 

odd and interesting. Perhaps the common ancestor has a crest on the anther, and then 

this was lost during the course of evolution. 

3.4.4.29 Anther dehiscence 

The mapping of anther dehiscence onto molecular tree required one evolutionary 

step. Anther dehiscence that stretches out along locules up to the base is only possessed 

by C. auranhiaca. 
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Figure 3.27 Mapping position of inflorescence (A), hair on the midddle 
band of the labellum (B), arrangment of lateral staminodes (C) onto 

molecular tree, and groove on lateral staminodes (D). 
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Figure 3.28 Mapping spur on anther (A) and crest on anther (B) onto 
molecular tree. 

3.4.4.30 Stigma type 

The mapping of stigma type onto molecular tree required three evolutionary steps. 

All species from subgenus Hitcheniopsis, except C. aurantiaca and C. petiolata, have 

non-inflated stigma On the other hand, subgenus Curcuma has inflated stigma. The 

common ancestor appeared to have evolved from funnel-shaped stigma. During the 

course of evolution, inflated stigma was gained in subgenus Curcuma. 

3.4.4.31 Stylar growth 

The mapping of stylar growth onto molecular tree required only one evolutionary 

step. Stylar has been lost in the complex and small flower dade (C. thorelli, C. 

gracillima, C. alismatfolia, and C. harmandii). 
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3.4.4.32 Ring of hair on corolla tube 

The mapping of ring of hair on corolla tube onto molecular tree required two steps. 

Ring of hair on corolla tube is congruence with the simple flower type. The subgenus 

Curcuma dade with C. peliolala and a dade of C. cf australasica and C. auranhiaca 

possess the ring. The ring present in a constriction part along the throat of the flower. 

3.5 DISCUSSION 

3.5.1 PHYLOGENETIC RELATIONSHIPS WITHIN CURCUMA 

3.5.1.1 C. ecomata 

C. ecomala, are nested at the basal next to the outgroups. This is supported by 

the result of the analysis from molecular data. Five characters namely lateral 

inflorescence, coma bracts as long as fertile bracts, hairy dorsal petal at the tip, hairy 

lebellum blade, are autapomorphies of the species. The anther which is long is very 

similar to that of the outgroups. As explained in Chapter Two (p.72), Gagnepain (1908) 

placed C. ecomala in subgenus Curcuma. All species in subgenus Hitcheniopsis have 

no spur and have central position of inflorescence. The spurred anther and the lateral 

position of inflorescence are the characters that possibly encouraged him to place the 

species in the subgenus Curcuma. Yet the result from morphological data does not 

support his grouping either. 

3.5.1.2 C. aurantiaca and C. cf. australasica 

Analysis of the morphological data shows that C. auranhiaca and C. cf 

ausiralasica do not form a dade. This result is in contrast with that of the ITS data 

which showed strong support for the C. auranhiaca and C. cf australasica dade. The 

different colour of coma and fertile bracts and the presence of hairy ring inside the 

corolla tube are synapomorphies of C. auranhiaca, C. cf australasica, C. pehiolata, and 

species in subgenus Curcu,na. Anther dehiscence which is along the locules up to the 

base is the autapomorphy of C. aurani'iaca. 
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Analysis of the morphological data shows that C. cf ausiralasica is more closely 

related to subgenus Curcuma. Several synapomorphies unite the species with C. 

peiiolala and subgenus Curcuma. These characters are the simple flower type, the 

presence of hair on the ovary, the presence of hair on the dorsal petal, the presence of 

cucullate on the dorsal petal, the presence of granules patch (at apex) on the lateral 

staminodes, the spurred anther. The stigma which is inflated is the autapomorphy of C. 

cf. australasica. 

C. auranhiaca and C. cf australasica are placed in subgenus Hitcheniopsis by 

Valeton (1918). This is supported by the result of the analysis of morphological data. 

The two species are nested between the other species of subgenus Hitcheniopsis, C. 

roscoeana and C. petiolata. As it has been explained in Chapter Two (p.73), Schumann 

(1904) placed C. ausiralasica within subgenus Curcuma on the basis of the rhizomes 

character. Both types of rhizome characters possibly occur. More samples of C. 

ausiralasica are needed to verify this. 

The close relationship between C. cf ausiralasica and the species in subgenus 

Curcuma hypothesize that the subgenus Curcuma, which are triploid sterile, possibly 

were derived from C. cf australasica, which is diploid fertile, as one of the parentage. 

However, analysis of the ITS region shows that C. cf ausiralasica is more closely 

related to subgenus Hitcheniopsis. More molecular data is needed to verify the 

relationship between C. cf ausiralasica and the subgenus Curcuma. 

3.5.1.3 The C. parviflora dade 

The dade, which contains five species namely C. parvflora, C. ihorelii, C. 

alismat?folia, C. gracillima, and C. harmandii, is not well supported by the analysis of 

morphological data. However, it is strongly supported by molecular analysis of the ITS 

region. Six characters unite the dade, i.e. the complex and small types of flower, 

whitish petals (greenish in C. harmandii), purple or white with purple labellum, presence 

of hair on the labellum band (except in C. alismatifolia), whitish lateral staminodes 

(greenish in C. harmandii), and the absence of the stylar growth. As it has been 

explained in Chapter Two (p.74), Valeton (191 8) excluded these species from the genus 
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Curcuma. The exclusion of the species from the genus will make Curcuma a 

paraphyletic group, as the C. parw/lora dade is nested between C. ecomala and C. 

roscoeana. Therefore, I suggest that the species in the C. parvy'lora dade are not 

transferred to any other genera. More sampling of Curcuma will possibly be able to 

verify this. 

3.5.1.4 The subgenus Curcuma dade 

The subgenus Curcuma dade is not only strongly supported by the molecular 

analysis but also is supported by the analysis of morphological data. However, the two 

subclades which exist from the analysis of molecular data are not found in the tree 

resulted from the morphological analysis. One subclade which contains C. elata, C. 

amarissima, C. zanthorrhiza, C. aeruginosa, and C. phaeocaulis is found from the 

morphological analysis. 

The dade share common characters of the large habit, the non-auriculate ligule, 

the clasped and the grooved lateral staminodes. As it has been explained in Chapter 

Two (p.75), the species in this subgenus are not good species. The result of 

morphological analysis, therefore, also reveals the natural grouping of Baker's (1894) 

sections Exaniha/Mesantha, and Schumann's (1904) and Valeton's (1918) subgenus 

Curcuma. 

The characters that unite the subclade C. elata are the bluish colour of the 

internal rhizome (except in C. zanthorrhiza), the brownish leaf sheath (except in C. 

aeruginosa and C. zanlhorrhiza), the presence of the purple flush on leaves (except in C. 

elata), and the yellowish petals (except in C. zanihorrhiza, C. aeruginosa, and C. 

phaeocaulis). 

The sectional level in the all existing classification of Curcuma is not supported 

by morphological analysis. Exantha and Mesaniha (sections of Baker) are scattered in 

the tree. Sectional level should be abandoned. This is supported by molecular analysis 

also. 
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3.5.1.5 C. roscoeana and C. petiolata 

The result of the analysis from the morphological data shows that the close 

relationship of both species found in the analysis of the molecular data is separated by 

the insertion of C. auranhiaca and C. cf. australasica. However, C. roscoeana is more 

closely related to the subgenus Hitcheniopsis and C. pehiolala is more closely related to 

the subgenus Curcuma. Therefore, the result of both the analyses differ. 

The position of C. roscoeana in the tree resulted from morphological data 

supports the placement of the species in Baker's (1894) section Hitcheniopsis and 

Schumann's (1904) subgenus Hitcheniopsis. The morphological result, supported by 

molecular data, showed that the exclusion of the species by Valeton (1918) is not 

supported. The position of C. petiolata in the tree resulted from morphological data 

supports the placement of the species in Baker's (1894) section Hitcheniopsis, 

Schumann's (1904) and Valeton's (1918) subgenus Hitcheniopsis. As mentioned in 

Chapter Two (p.76), the species has intermediate characters between the two subgenera. 
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CHAPTER 4: EVOLUTION OF FLORAL DIVERSITY 
IN CURCUMA 

4.1 INTRODUCTION 

Floral morphology is one of the most important aspects of plant-pollinator 

interactions. It affects pollinator accessibility to nectar, efficiency of pollen deposition 

on the pollinator body, and efficiency of pollen acquisition by the stigma from the pollen 

vectors (Sakai etal. 1999). Variation in the site of pollen placement on the pollinator 

body can promote coexistence of plant species sharing common pollinators (Armbruster 

etal. 1994 in Sakai etal. 1999). Pollination syndromes is discussed earlier in the thesis 

(p. 81). 

Sakai et al. 1999 show that among 29 species studied, which represent I I genera 

of Zingiberaceae in rain forest in Borneo, eight were pollinated by spiderhunters 

(Nectariinidae), Ii by medium-sized Anegilla bees (Anthophoridae), and ten by small 

halictid bees. One single genus could have more than one pollinator, for example in 

Ainonium, three pollination guilds (Spiderhunter, Amegilla, and small halictid bees) 

pollinated the genus. 

Alpinia glabra RidI., Globba brachyanthera K. Schum., Amomui'n ca!yptratuin 

Nagam. & S. Sakai, A. gyrolophos R.M. Sm., A. oliganihuin K. Schum., Elettariopsis 

sp., Plagiostachys sp., P. crocydocalyx (K. Schum.) B.L. Burtt & R.M. Sm., Zingiber 

longipeduncu!aium RidI. were pollinated by Amegilla bees (Sakai et al. 1999). Prana 

(1977) observed Anegi!!a probably A. buruensis and A. elegans, visiting the flowers of 

Curcuina quite frequently and regularly. Amegilla are solitary bees that make nests 

underground. They were observed all year-round at the study site of Sakai etal. 1999. 

Amegilla-pollinated flowers had wider lips than other ginger species, which function as 

a platform for the pollinators (Sakai c/ al. 1999). 

Most of Boesenbergia, such as B. grandfolia (Valeton) Merr., B. gracilipes (K. 

Schum.) R.M. Sm., B. aff. variegata R.M. Sm., E!eiiaria sp., E. longituba (RidI.) Holt., 

Ainomuin coriaceum R.M. Sm., A. durum Nagam. & S. Sakai, A. polycarpu,n (K. 
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Schum.) R.M. Sm., A. somniculosum S. Sakai & Nagam, Eleitariopsis sp., E. aff. kerbyi 

R.M. Sm. were pollinated by small halictid bees (Sakai el al. 1999). The small whitish 

or greenish flowers in Curcuma, such as C. parvflora, C. ihorellii, C. gracillima, C. 

harmandii, maybe pollinated by small halictid bees as well. The construction of the 

flowers of those Curcuina spp., such as the length of the labellum, the width of the 

labellum, the length of the anther, the length of the filament, the width of the filament 

and the width of the stigma, almost overlaps with that of the flowers pollinated by small 

halictid bees in Sakai's study. 

Etlingera, Hornstediia, Amomum roseisquamosum Nagam & S. Sakai, 

Plagiosiachys strobilfera (Baker) RidI. were pollinated by spiderhunters. The 

pollination guilds found in gingers in Sarawak are comparable to those of neotropical 

Zingiberales, namely hummingbird-, and euglossine-bee-pollinated guilds (Sakai ci at. 

1999). 

Multivariate analysis has been applied in several taxonomical and pollination 

studies in plants and animals (Ortiz etal. 1999, Sakai etal. 1999). In pollination studies, 

floral morphology has usually been described qualitatively. Morphological similarity of 

the flowers in the same or different pollination guilds has rarely been quantified (Sakai 

el al. 1999). The correlation between flower morphology and pollination systems has 

been quantitatively studied (Sakai ci al. 1999). An attempt to classify flower types that 

are likely to be related to pollination syndrome has also been made (Harrison ci al. 

1999). 

There are relatively few studies on the pollination ecology of Curcuina. 

Amegilla was observed to be the pollinator of Javanese Curcuina (Prana 1977). The 

flowers in Curcuma spp. seem to have some different patterns. To check that those 

flowers have certain types, a multivariate Principal Component Analysis study was 

carried out. 
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4.2 MATERIALS 

Information on the taxa used is tabulated in Table 4.1. 

4.3 METHODS 

4.3.1 Morphometric procedure 

Morphometric analysis in the form of an ordination has been carried out in an 

attempt to classify Curcuma flowers on the basis of their quantitative variation. Twenty-

eight measurements (Table 4.2) from single flowers of 22 species of Curcuina were 

taken (Appendix 5). Specimens were from fieldwork in Java (M. Ardiyani), a field 

expedition to Thailand (M. Newman & C. Ngamriabsakul), and species cultivated at the 

Royal Botanic Garden Edinburgh, UK. The drawing can be seen in Figure 4.1. 

Measurement was carried out under the light microscope, then converted to mm by 

calibration. Data were finally analysed with PC-Ord Program Version 3.18 (McCune & 

Mefford 1995) with principal component analysis option. Due to limited accessions, 

only five flowers of different C. longa were measured to check intraspecific variability. 

4.3.2 Phylo genetic analysis and mapping 

Mapping of floral characters onto a molecular phylogeny can help elucidate the 

evolutionary origins of floral variation within Curcurna. Floral characters were mapped 

onto a molecular tree based on internal transcribed spacer (ITS) sequence data (Ardiyani 

e/ at., unpubl. res. see Chapter Two). Some species included in the morphometric 

analysis were omitted from the phylogeny because of unavailability of sequence data. 

Analysis of character-state transitions was performed in MacClade Version 3.08a 

(Maddison & Maddison 1999). Where flower material was unavailable in those 

accessions used in phylogenetic construction, different accessions were used for the 

morphometric analysis, namely C. aromalica, C. cf australasica, C. petiolala, and C. 

purpurascens (see Table 4.1). 
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Table 4.1 Curcuma taxa used in this study 

Authority 	 Abbreviation 	Accession number/Source 	 Distribution 

C. purpurascens 	Blume 

C. roscoeana 	Wall. 

AER 
ALl 
AMAD 
AMAR 
ARO 

AUR 
AUS 

COL 
ECO 
EUC 
GRA 
HAR 
HEY 
LON I 
LON2 
LON3 
LON4 
LON5 
MAN 
PAR 
PET 

l s uI I  

ROS 

RBGE 19780186 
M944 (E) 
RBGE 19810001 
RBGE 19871252 
G&H 1066 (E) 
DNA: R.C. Joshi 4/1982 (E) 
35MA (BO) 
Woods 115(E) 
DNA: K.M. Nagata 2312 (E) 
RBGE 19771290 
CNG38(E) 
49MA (E, BO) 
CNG6O(E) 
CNG46(E) 
RBGE 19780189 
RBGE 19931919 
RBGE 19721701 
RBGE 19720174 
RBGE 19782126 
RBGE 19711837 
RBGE 19780191 
RBGE 19851661 
RBGE 19771293 
DNA: K.M.Nagata 3871 (E) 
RBGE 19780193 
DNA: K.M. Nagata 3886 (E) 
RBGE 19973658 

Burma, cultivated 
China, Thailand 
India, Thailand 
India, Thailand 
India, Thailand 

Thailand, Java, cultivated 
Australia, New Guinea 

Java 
Thailand 
Java 
China, Thailand 
China, Thailand 
Java 
cultivated throughout the tropics 
cultivated throughout the tropics 
cultivated throughout the tropics 
cultivated throughout the tropics 
cultivated throughout the tropics 
Java 
Burma, Thailand, Malay Peninsula 
Burma, Thailand, Malay 
Peninsula, Java 
Java 

Burma, Thailand 

Species 

C. aeruginosa 
C. alismai(folia 
C. anada 
C. amarissima 
C. aromatica 

C. auranhiaca 
C. cf australasica 

C. colorata 
C. ecomata 
C. euchroma 
C. gracillima 
C. harmandii 

0 
	

C. heyneana 
C. longa (I) 
C. longa (2) 
C. longa (3) 
C. longa (4) 
C. longa (5) 
C. mangga 
C. parvjJlora 
C. petiolata 

Roxb. 
Gagnep. 
Roxb. 
Roscoe 
Salisb. 

Zij p 
Hook.f. 

Valeton 
Craib 
Valeton 
Gagnep. 
Gagnep. 
Valeton & Zijp 
L. 
L. 
L. 
L. 
L. 
Valeton & Zijp 
Wall. 
Roxb. 



Table 4.1 (continued) Curcuma taxa used in this study 

Species 	Authority 	 Abbreviation 	Accession number/Source 	 Distribution 

C. soloensis 	 Valeton 	 SOL 	47MA (BO) 	 India, Java 
C. ihorelii 	 Gagnep. 	 THU 	M945 (E) 	 Indochina, Thailand 
C. zanlhorrhiza 	Roxb. 	 ZAN 	RBGE 19740965 	 China, Thailand, Ambon 

- 	Note: E is Edinburgh herbarium; BO is Herbarium Bogoriense; MA= Marlina Ardiyani; M= Mark Newman; CNG: 
Chatchai Ngamriabsakul; RBGE: Royal Botanic Garden Edinburgh. 
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Table 4.2 Characters scored for morphometric analysis. 

Character 
Number 

Measurement (mm) 

1 Height of ovary 

2 Length of calyx 

3 Length of corolla tube 

4 Circumference of corolla tube at the base 

5 Circumference of corolla tube at the opening 

6 Length of dorsal corolla lobe 

7 Width of dorsal corolla lobe at the widest point 

8 Length of lateral corolla lobe at the shortest point from the base 

9 Length of lateral corolla lobe at the longest point from the base 

10 Width of lateral corolla lobe at the widest point 

11 Length of lateral staminode at the shortest point from the base when flattened 

12 Length of lateral staminode at the longest point from the base when flattened 

13 Width of lateral staminode at the base 

14 Width of lateral staminode at the widest point 

15 Length of labellum when flattened 

16 Width of labellum at the base 

17 Width of labellum at the widest point 

18 Length of the whole flower when flattened 

19 Length of anther (only thecae) 

20 Width of anther 

21 Thickness of anther at the narrowest point 

22 Thickness of anther at the widest point 

23 Length of anther crest 

24 Height of filament from the insertion of lateral staminode to corolla tube 

25 Width of filament at the base 

26 Width of filament at the narrowest point 

27 Length of stigma 

28 Width of stigma 
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Figure 4.1 Measurement of flowers for morphometric analysis. 
(1 to 28, except 18, indicates characters scored in Table 4.2) 
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4.4 RESULTS AND DISCUSSION 

4.4.1 AXES: CHARACTERS DETERMINED THE GROUPINGS 

The eigenvalues for the first and the second axes are 17.440 and 3.592 

respectively. The broken-stick eigenvalues for the first and the second axes are 3.927 

and 2.927. Therefore, both the broken-stick eigenvalues are less than the eigenvalues. 

If the broken-stick eigenvalue is less than the actual eigenvalue for an axis, then the axis 

contains more information than expected by chance and should be considered for 

interpretation (McCune & Mefford 1995). The third axis contains a broken-stick 

eigenvalue which is higher than the eigenvalue. 

The first two components (axes) explained 75.11% of the total variance. The 

first component, which explains 62.28% of total variance (Table 4.3), shows strong 

negative correlation with the overall size of the flower (Figure 4.2). This means that 

flowers with larger eigenvectors have smaller overall size of flower. The largest flower 

is that of C. zanihorrhiza, while the smallest flower is that of C. gracillima. Flower of 

three species (C. gracillima, C. parvflora, and C. thorelii) make up a group of species 

with small flowers. The rest of the species of Curcuma have larger flowers. 

The second component explains 12.83% of total variance (Table 4.3), and is 

positively correlated with length of the anther crest, length of the lateral staminodes at 

the shortest point, length of the calyx, and length of the anther, and is negatively 

correlated with width of stigma (Figure 4.2). This means that flowers with larger 

eigenvectors have longer anther crests, longer lateral staminodes, longer calyces, longer 

anthers, and narrower stigmas. The larger eigenvector for the second axis makes the 

grouping of five species, C. roscoeana, C. alismalifolia, C. econa1a, C. har,nandii, and 

C. auranliaca. The type of flowers of those species is called complex. The flowers of 

species which have smaller eigenvectors of the first and the second axes make a group 

called simple flowers. The simple flower, therefore, has larger size, shorter anther crest, 

shorter lateral staminode, shorter calyx, shorter anther, and wider stigma. 
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Width of stigma 

Length of stigma 
Width of filament at the narrowest point 

Width of filament at the base 

Height of filament from the insertion of lateral.. 
Length of anther crest 

Thickness of anther at the widest point 

Thickness of anther at the narrowest point 
Width of anther 

Length of anther (only thecae) 
Length of the whole flower when flattened 

Width of labellum at the widest point 
Width of labellum at the base 

Length of labellum when flattened 
Width of lateral staminode at the widest point 

Width of lateral staminode at the base 

Length of lateral staminode at the longest.. 
Length of lateral staminode at the shortest.. 

Width of lateral corolla lobe at the widest point 

Length of lateral corolla lobe at the longest.. 
Length of lateral corolla lobe at the shortest.. 

Width of dorsal corolla lobe at the widest point 
Length of dorsal corolla lobe 

Circumference of corolla tube at the opening 
Circumference of corolla tube at the base 

Length of corolla tube 
Length of calyx 
Height of ovary 

Figure 4.2 Eigenvectors of the first and the second axes for the 28 floral characteristics 
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4.4.2 FLOWER GROUPINGS 

All three axes quite clearly define three groups of flower. As explained 

previously (p. 146), the three groups are the simple, the complex and the small (Figure 

4.3). The simple flower contains all the species from subgenus Curcurna studied, and 

two species from subgenus Hitcheniopsis, C. cf ausiralasica and C. peliolata (Figure 

4.4-4.6). The species from the subgenus Curcuina are C. !nangga, C. euchroma, C. 

ainada, C. longa, C. amarissima, C. zanthorrhiza, C. purpurascens, C. aeruginosa, C. 

heyneana, C. cobra/a, C. soloensis, and C. aromalica. C. ausiralasica and C. peliolata 

have flowers which are similar to those of subgenus Curcuma. Records shows that 

Amegilla bees pollinate the flowers of Curcwna subgenus Curcuma (Prana 1977). The 

simple flower has a very short anther crest, short and clasping lateral staminodes, shorter 

anther (but quite long spur), and wider stigma. The Arnegilla bees push the spur of the 

anther when they go into the simple flower. This will rotate the anther so that it touches 

the back of the bee. 

The small flower contains three species namely C. ihorelii, C. parvflora, and C. 

gracillima (Figure 4.4-4.6). They belong to subgenus Hi/cheniopsis. They may be 

pollinated by small halictid bees. The grouping of this flower type is in accordance with 

the colour of the flowers which is whitish. This is in contrast with that of the simple 

type which has a bright yellow flower. 

The complex type contains C. roscoeana, C. alismalifolia, C. ecomala, C. 

har,nandii, and C. auranhiaca (Figure 4.4-4.6). They belong to subgenus Hitcheniopsis. 

The complex flower has a long anther crest, long lateral staminodes, long anther 

(without spur), and narrower stigma. Further research to study the pollination of the 

genus is needed to observe the pollinator of these species. 

The position of C. pehiolala, C. purpurascens, C. aromahica, and C. aus/ralasica 

are quite isolated (Figure 4.4). Their factor loadings on axis I (2.4, 3.3, 4.5 and 5.2 

respectively) are between the simple and the small type. The shape is the same as those 

of simple type, but the size is slightly different. 
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Figure 4.3 Floral types of Curcuma 
A. Simple type; B. Complex type; C. Small type 
(First row, lifesize. Second row, twice lifesize.) 

Table 4.3 Variance extracted, first 10 axes. 

AXIS Eigenvalue 	% of 	Cum.% 	Broken-stick 

	

Variance 	of Var. 	Eigenvalue 

1 17.440 62.284 62.284 3.927 
2 3.592 12.830 75.114 2.927 
3 1.885 6.732 81.846 2.427 
4 1.267 4.526 86.373 2.094 
5 .829 2.961 89.333 1.844 
6 .692 2.473 91.806 1.644 
7 .503 1.798 93.604 1.477 
8 .388 1.387 94.991 1.334 
9 .327 1.169 96.161 1.209 

10 .247 .882 97.043 1.098 

Note: Cum.= cumulative; Var.=variance 
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Axis I score 

Figure 4.4 Principal component plot of Curcuma. The floral types shown in Figure 
43 are distinguished: the top group are complex type (A), followed by large type 
( ) and the small type (•). Size and shape extremes are illustrated by the outline 
drawings. Axes 1 and 2 accounted for 62.28% (Eigenvalue 17.44) and 12.83% 
(Eigenvalue 3.60), respectively, of the variation. 
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Axis I score 

Figure 4.5 Principal component plot of Curcuma. The floral types shown in Figure 
4.3 are distinguished: the top group are complex type (A), followed by large type 
(•) and the small type (•). Size and shape extremes are illustrated by the outline 
drawings. Axes 1 and 3 accounted for 62.28% (Eigenvalue 17.44) and 6.73% 
(Eigenvalue 1.89), respectively, of the variation. 
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Figure 4.6 Principal component plot of Curcuma. The floral types shown in Figure 
4.3 are distinguished: complex type (A), followed by large type (•) and the small 
type (•). Size and shape extremes are illustrated by the outline drawings. Axes 2 
and 3 accounted for 12.83% (Eigenvalue 3.60) and and 6.73% (Eigenvalue 1.89), 
respectively, of the variation. 

0 
U 

Cd) 



CHAPTER 4: EVOLUTION OF FLORAL DIVERSITY IN CURCUMA 

4.4.3 MAPPING FLOWER STRUCTURE ONTO THE MOLECULAR 
TREE 

The mapping of flower structure onto the molecular tree based on the ITS sequence 

data required three evolutionary steps (Figure 4.7). All species from the subgenus 

Curcuma have a simple type of flower. Subgenus Hitcheniopsis has all types of flower, 

the simple, the complex, and the small type. The common ancestor appeared to have the 

complex type. During the course of evolution, this type seems to have derived to the 

simple type. The dade that contains C. auranhiaca and C. cf australasica consists of 

two different types of flower (complex type in C. auranhiaca and simple type in C. cf 

ausiralasica). However, C. aurantiaca is placed quite closely to the simple type cluster 

in the ordination. The dade that contains C. parvy'lora, C. thorelii, C, gracillima, C. 

har,nandii, and C. alismaifolia also consists of two different types of flower, the 

complex type (C. harmandii and C. alismahifolia) and the small type (C. thorelii, C. 

parviflora, and C. gracilliina). The small type has possibly been derived from the 

complex one. The dade that contains subgenus Curcurna with C. petiolaba have a 

simple flower type. This type of flower has evolved twice independently. Flower type 

is probably too complex to map it on to molecular tree. A character should be treated 

usefully in the unitary character way of mapping it on to a molecular tree. 
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:'a. grad/is 
va.  spiccita 
criciktta 

cor1ctta 
! cfaustralasiaca 
crantiaca 

T'panifiora 
Cthore1!i 
:i a/is natifolia 
C. gyacillnna 
C harmandii 
C roscoecrna 

C.petioIata 
C soIoen.sis 
Clonga 
CpaQocaL1is 
C arornatica 
Celata 
C aerigmosa 
C zedoaria 
C arnada 
C cn2arissna 
C. heynecma 
C rnwigga 
C ochrorhiza 

Figure 4.7 The mapping of flower type onto molecular tree. 
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CHAPTER 5: CHROMOSOME STUDY 

5.1 INTRODUCTION 

Before the study on meiosis by Ramachandran (196 1) was carried out, it was 

hypothesized that the base numbers of Curcuma were 7 and 8. This was because the 

first chromosome count in Curcuma (Sugiura 193 1) was 2n=64, and then Sato (1938) 

reported 2n=32. It was assumed that Sugiura's plant was octoploid and Satos's was 

tetraploid suggesting a base number of 8. In 1948, Raghavan & Venkatasuban reported 

2n=42 in C. aromalica, so their species was hexaploid if the base number was 7. 

Therefore, basic numbers of 7 and 8 were suggested for the genus. However, 

Ramachandran (1961) observed regular formation of bivalents in metaphase I. This 

apparent diploid (2n=42) implied that the base number is 21, and not 7 or 8. 

Chromosome numbers of some Thai species (2n=32 in C. alismaifolia, 2n= 24 

in C. gracillirna, 2n20 in C. harmandii, and 2n=34 and 36 in C. thorelii), assuming 

they are diploid, suggest a base number that has deviated significantly. Further study is 

required to understand more about chromosome number variation in Curcuma. 

Existing studies of chromosome numbers in Curcuma suggest that the genus 

contains diploid, triploid, and tetraploid cytotypes (Table 5.2). Cytological study of 

most Javanese Curcuma species carried out by Prana (1977) reported widespread 

triploidy in Javanese Curcuma. Only three species were reported to be diploid, i.e. C. 

rnangga, C. auranhiaca, and C. pehiolaha. Severe sterility in Javanese species might 

indicate polyploidy. However, before any conclusions are drawn, further study is 

needed to check this hypothesis. 

Chromosome number is one of the most widely used cytological characters in 

taxonomy. This is due to the fact that in vascular plants, there is great diversity of 

chromosome numbers. Chromosome number also frequently correlates with taxonomic 

groupings. It often demonstrates general stability and constancy within populations, 

species, and genera. This study aims to check the chromosome numbers in some species 

of Curcuina from mitotic and meiotic preparations. 
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5.2 MATERIALS 

Materials used in this study are from living collections in the Research Glass 

House, The Royal Botanic Garden Edinburgh. A list of plants with their accession 

number and source of origin is given in Table 5.1 below. 

Table 5.1 List of materials used in the study. 

Taxon 
	 Accession number 	Source of origin 

C. aeruginosa 19981844 Java, Indonesia 

C. alismalifolia 19973657 Thailand 

C. colorala 19780188 Java, Indonesia 

C. heyneana 19780189 Java, Indonesia 

C. longa 19931919 not known 

C. ,nangga 19780191 Java, Indonesia 

C. parviflora 19851661 Sukhothai, Thailand 

C. phaeocaulis 19771293 Java, Indonesia 

C. roscoeana 19973658 Thailand 

C. ihorelii 19973859 Thailand 

C. zanthorrhiza 19740965 not known 

C. zanthorrhiza 19780187 Java, Indonesia 

C. zedoaria 19771296 East Java, Indonesia 

5.3 METHOD 
The method used in this study follows Jong (1997). A flowchart of the method is 

shown in Figure 5.1 below. 
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Collection of roots 

Pre-treatment and fixation 

I Cold hydrolysis and staining I 

Softening with enzymes 

Squashing 

Making permanent preparations 

I Image analysis and capture 

Figure 5.1 Flowchart of chromosome study. 

5.3.1 Collection of roots 

To induce formation of new roots, young plants were repotted. The plants were 

then watered regularly in the morning and late afternoon and were maintained in the 

glass house at a minimum temperature of 20°C and a maximum of 30 °C. The soil was 

monitored to see that it was moist enough and not too wet to suit the growth of new 

roots. After one to two weeks new fresh roots were observed. 

At about mid-day, healthy growing fleshy white active roots with translucent 

caps were selected. They were rinsed with tap water at room temperature to clean off 

any compost particles. Ten to 15 of these roots were cut with a sharp scalpel, then were 

removed into a petri dish filled with distilled water. Several rinses were needed to clean 

them again. A fine paintbrush helped to remove compost particles that adhered to the 

roots. After that, the roots were placed on Whatman paper to blot off excess water. As 

soon as possible they were immersed simultaneously into pre-treatment (or fixative) in a 

sealed bottle for the required time. The bottle was given a good shake. 
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5.3.2 Pre-treatment and fixation 

A pre-treatment chemical is used to increase the proportion of metaphases in the 

root tip meristem by inhibiting the formation of the spindle (Dyer 1979). Two pre-

treatment agents were tried in this study, i.e. alpha-Bromonaphthalene (aBr) and Hydro-

oxyquinolene (OQ). The roots were kept in the pre-treatment in the fridge at about 10 to 

13 °C from to six and a half hours for OQ. aBr was only tried for two hours. To allow 

respiration by the roots, the bottle was shaken during this pre-treatment step to increase 

oxygen in the solution. This occasional agitation also to ensured uniform penetration of 

fixing fluid. 

After pre-treatment, the roots were washed in two to three changes of distilled 

water. Excess water was blotted off, then they were placed in fixative (Farmer's 

solution) which was made from three parts of absolute alcohol (96%) and one part of 

glacial acetic acid. The fixing fluid should be freshly prepared just before use. Material 

fixed in an alcoholic fixative (3:1) may be stored in it or in 70% alcohol and kept in a 

refrigerator at about 5 °C for up to 4 weeks or in deep-freeze at -20 °C for prolonged 

storage. 

5.3.3 Cold hydrolisis and staining 

The roots were removed from the fixative and washed in two to three changes of 

distilled water. After that, they were hydrolized in 5N HCI for 15 to 35 minutes at room 

temperature (approximately 20 0C). They were washed again in distilled water to 

remove the acid. Then, excess water was blotted off. 

Feulgen staining was tried for three hours. It is a specific test for 

deoxyribonucleic acid (DNA). The chemical reaction involves hydrolysis of the DNA 

by hydrochloric or nitric acid and the development of a colour reaction in combination 

with colourless basic fuchsin. It gives a deep magenta colour while the other cell 

components remain unstained (Jong 1996). Next, the roots were transferred to tap 

water. The ions in the tap water help to fix and intensify the stain. Staining with 

haematoxylin for up to 45 minutes was also tried. 
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5.3.4 Softening with enzymes and squashing 

A mixture of 4% cellulase and 4% pectinase can help soften the tissue. Cellulase 

will help to break the cell wall while pectinase helps to break the pectin that occurs 

between cells. The roots were exposed to these enzymes for 15 to 30 minutes. A 

softened root was placed onto a clean slide. The root tip, which is the most densely 

stained part, was cut off from the distal part and from the cap. These unnecessary parts 

were removed from the slide. A few drops of 45% acetic acid were put on the root tip. 

Using a blunt needle, the root tip was macerated to form fine particles. A clean 

coverslip was put on top of this macerated tissue. Squashing was done by placing the 

thumb gently on the coverslip and pressing firmly. 

5.3.5 Quick-freeze method for making squash preparations 
permanent 

This technique is fast and satisfactory for making squash preparations permanent 

with the aid of dry-ice or liquid nitrogen. First, a block of metal was frozen in liquid 

nitrogen with a pair of tongs. This was then removed and placed in a polystyrene 

holder. The squash preparation was placed on top of this frozen metal block with the 

coverslip directly over the block for freezing. After about 30 seconds, the slide was 

removed. The coverslip was then levered off. 

As soon as possible, the coverslip was placed in a coplin jar, and the slide in 

another coplin jar, each containing 95% or 100% ethanol. They were left for two 

minutes. Both the slide and the coverslip were transferred to a second jar of alcohol and 

left for two to five minutes. Next, the slide was lifted from the alcohol and was drained 

on a piece of filter paper. One drop of euparal was placed near the top of material. The 

coverslip was lifted and gently pushed so that the euparal was drawn towards the 

material. Finally, the coverslip was lowered to cover all the material. The slide was left 

to dry for a few days in a 40°C oven or on a slide warming plate. 
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5.3.6 Image analysis and capture 

Observation of chromosomes was carried out by Axiophot Zeiss light 

microscope. Images were captured using Optimas 6.2. 

5.4 RESULTS AND DISCUSSION 

The chromosomes observed were very small and very numerous, so in counting 

was not easy. However, it was still possible to count the chromosomes in reasonably 

good preparations. The chromosome numbers observed can be seen in Table 5.1. The 

size of the chromosomes was not carefully measured, but the range is approximately 0.5- 

1.5 Jim. Ramachandran's(196l) measurement was 0.6-1.7 Jtm. The shape of the 

chromosomes could not be observed due to difficulties in examining them. To date, 

there is no publication of the karyotype of the chromosomes of Curcuma. Previous 

workers encountered chromosomal chimaeras (see Table 5.2). 

Except in C. thorelii (2n=38), the chromosome numbers from the successful 

preparations were all 2n=63. The chromosome count of C. mangga was 2n=63. This 

result was different from that of Prana (1977) which is 2n=42. The determination of the 

material (C. mangga), maintained in the glasshouse of the Royal Botanic Garden, 

Edinburgh, was not doubtful. Moreover, the plant was collected and identified 

previously by Prana himself. Therefore, C. rnangga has diploid and triploid forms. 

Tetraploidy was only reported in C. aromatica with 2n=86 (Ramachandran 1961). In 

Java, triploidy is widespread in the genus except the diploid C. auranhiaca, C. peliolata, 

and C. mangga (Prana 1977). C. aurantiaca (2n=42) was found to set seeds (Valeton 

1918, Prana 1977). 1 observed this in the field. Many herbarium specimens of C. 

auranhiaca have record on the seeds, however this is not the case with C. petiolala. This 

is probably due to the limited member of specimens observed. C. ,nangga (2n=42,63) 

was 
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Table 5.2 Results of chromosome counts in this study. 

Taxon Accession 
number 

Chromosome counts 
(2n) 

C. heyneana 19780189 63 
C. phaeocaulis 1977 1293 not successful 

C. parvflora 19851661 not successful 

C. mangga 19780191 63* 

C. zanthorrhiza 19740965 63 
C. roscoeana 19973658 not successful 

C. longa 19931919 not successful 

C. zedoaria 19771296 63 
C. ihorelii 19973859 38? 
C. alis,naiifolia 19973657 not successful 

C. aeruginosa 19981 844 63 
C. zanihorrhiza 197801 87 not successful 

C. cobra/a 197801 88 not successful 

Note: number in bold with * the counting is different from Prana's 
result (1977) where the chromosome number of C. mangga was 42 (2n= 42). 
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Table 5.3 Chromosome counts from this study and from literature. 

Taxon 	 Chromosome counts 	Literature 
(2n) 

Prana(1977), Ardiyani (unpubi.) 

Chakravorti 1948, Sharma & Bhattacaryya 
1959, Ramachandran 1961 
Chakravorti 1948, Sharma & Bhattacaryya 
1959 
Raghavan & Venkatasuban 1943, 
Chakravorti 1952 
Ramachandran 1961 

Prana (1977) 
Prana (1977) 
Ramachandran 1961 

C. aeruginosa 	-- 63 
C. alismali [0/ia 32 
C. arnada 42 

C. angusifo/ia 42 

C. aroniatica 42 

63,86 

C. auranhiaca 42 
C. colorala 62,63 
C. decipiens 42 
C. graci/lirna 24 
C. ha,-mandii 20 
C. heyneana 63 
C. longa 32 

62 
62,93 
63 
62,63,64 
64 

C. niangga 42 
63 

C. nei/gherrensis 42 
C. parviflora 

C. pehiolala 42 
64 

C. phaeocau/is 62,63,64 
C. purpurascens 63 
C. roscocana 42 
C. soloensis 63 

C. thorelii 34,36 
38? 

C. zanihorrhi:a 63,64,70 
63 

C. zedoaria 63,64,66 
63 
63,64 
64 

Note: number in bold indicate diploidy 

Prana(1977), Ardiyani (unpubi.) 
Sato 1948 
Ragghavan & Venkatasuban 1943 
Sharma & Bhattacaryya 1943 
Ramachandran 1961, Prana (1977) 
Chakravorti 1948 
Sugiura 1931 

Prana (1977) 
Ardiyani (unpubi.) 
Chakravorti 1948 

Prana (1977) 
Venkatasuban 1946 

Prana (1977) 
Prana (1977) 

Prana (1977) 

Ardiyani (unpubl.) 

Prana (1977) 
Ardiyani (unpubt.) 

Prana (1977) 
Ramachandran 1961, Ardiyani (unpubl.) 
Chakravorti 1948 
Venkatasuban 1946 
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reported to set seeds by Valeton ( 191 8), but neither Prana nor I observed seeds in the 

field or on herbarium specimens. 

Based on the study on pollen stainability and germination tests, Prana (1977) 

found the diploid C. auranhiaca was fertile. C. rnangga and C. pehiolata were also 

fertile, but the fertility was very low. He hypothesized that sterility in these species is 

due to genetic rather than chromosomal causes. Further study is needed to verify this. 

Triploidy can occur from diploid parents. When failure of reduction in meiosis 

occurs, reduced and unreduced gametes (eggs or pollen) may unite. Triploidy can also 

occur through hybridization between a diploid and a tetraploid. Tetraploidy in 

Curcuma, however, was only recorded in C. arornahica. Nothing is known of the origin 

of triploid Curcuma, whether they are formed through auto-or allopolyploidy. One 

specimens collected from Java showed polymorphism in its ITS sequence (see Chapter 

Seven) with one sequence resembling that of C. auranhiaca while the other was not 

similar to it (data not displayed). Thus, allopolyploidy could have happened in the 

species involving C. aurantiaca as one of the parents. This is in accordance with Prana's 

prediction that Javanese triploid species could be hybrid forms in which C. auranhiaca 

and C. inangga might have been involved. Further study focusing on those species 

might be able to give insight into evolutionary history in Curcurna. 
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CHAPTER 6: ISOZYME VARIATION IN SOME 
CURCUMA SPECIES 

6.1 INTRODUCTION 

6. 1.1 Isozyme electrophoresis 

Isozymes are defined as multiple molecular forms of an enzyme encoded for by 

the same or by different loci. Allozymes are multiple molecular forms of an enzyme 

encoded for at the same locus. Therefore, allozymes are allelic forms of isozymes 

(Hollingsworth 1998). Diagrammatic representation of isozyme loci and allozymes is 

shown in Figure 6.1. 

Isozyme electrophoresis involves running a crude tissue homogenate on a gel 

that has an electric current applied to it. The homogenate is first absorbed onto small 

pieces of filter paper (wicks) before loading it onto the gel. When an electric current is 

applied, thousands of different proteins present in the crude tissue homogenate will 

migrate across the gel at different speeds based on their net charge. The migration rates 

are also affected by the gel type. After the gel run is completed, it is then stained. 

Staining, by soaking the gel in the substrate for the enzyme of choice, allows 

visualization of a single type of enzyme among those present in the homogenate. The 

bands resulting from the staining (known as a zymogram) indicate the position that the 

enzyme has migrated to. 

Enzymes are types of protein. Proteins are built from amino acids which connect 

together to form polypeptide chains. The order of the amino acids in these polypeptide 

chains is genetically controlled. This is known as the primary structure of the enzyme. 

The polypeptide chains can consist of a single chain (known as monomer), two chains 

(dimer), three chains (trimer), four chains (tetramer), etc. Disregarding the tissue or the 

organism of the enzymes, the numbers of poplypeptide chains that make up enzymes 

tend to be conserved. For instance, malate dehydrogenase (MDH) is a dimer, 

phosphoglucomutase (PGM) is a monomer. Knowledge of the number of polypeptide 
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Different isozyme loci 

Allozymes 

Figure 6.1 Diagrammatic representation of isozyme loci and allozymes. 

The diagram represents an organism with four chromosomes, two paternally 
inherited and the other two maternally inherited. There are two isozyme loci, 

and at each locus there is the potential for two allozymes (alleles), one inherited 
maternally and one paternally (Hollingsworth 1998). 
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chains that makes up an enzyme is required to interpret the type of pattern produced on a 

gel. 

The amino acids that build up enzymes have characteristic side arms that can be 

positively or negatively charged, or can be uncharged or neutral. Hence, the overall net 

charge of a protein will depend on the composition of amino acids that form the 

polypeptide chain. Mutations in DNA sequence in genes coding for the production of 

particular proteins can lead to substitutions in the amino acids that make up a 

polypeptide chain. Although the molecules are still functional, the overall net charge 

can be different. Amino acid substitutions may not only cause differences in the charge, 

but may also alter the shape or the size of a protein. Thus, DNA sequence variation may 

result in the forms of a protein that differ in net charge, size or shape. These differences 

can be detected using the technique of electrophoresis. 

The discovery of starch gel electrophoresis of isozymes led to studies of animals 

(Harris & Hopkinson 1976), fungi (Micales 1986), plants (Soltis & Soltis 1989) and 

bacteria (Selander el al. 1986). It started when Smithies (1955) described gel 

electrophoresis and Hunter & Markert (1957) reported histochemical staining of enzyme 

gels. Harris (1966) and Lewontin & Hubby (1966) thereafter demonstrated the simple 

co-dominant Mendelian inheritance of allelic forms of isozymes, and the extent of 

polymorphisms in natural populations. 

6.1.2 Advantages and disadvantages of the technique 

The isozyme technique is a cheap, technically straightforward, and fast method 

to analyse large numbers of individuals to gain allelic data. According to Klaas (1998) 

when several taxa, accessions and individuals are to be compared, isozymes are very 

useful, as the assumption of homology is more accurate than with some DNA markers. 

Ample studies have demonstrated the simple Mendelian inheritance of a considerable 

number of isozymes (Hollingsworth 1998). 

Epistatic interactions where one gene effects the expression of another, and 

pleiotropic interactions where one gene controls several apparently unrelated characters, 

may not be selectively neutral. Comparatively few studies have reported problems of 
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the nature suggested above (Wendel & Weeden 1989). Koehn & Hilbish (1987) and 

Watt (1983) reported the fact of selection that can occur for specific isoforms. Ryan el 

al. 1991 also reported that non-genetic variation in banding patterns could occur. This 

puts doubt in the use of isozymes as population genetic and biosystematic markers. 

However, careful experimental design may reduce or eliminate the potential pitfalls of 

the isozyme technique. It also suggested that, when absolute measures of variation are 

required, the isozyme technique may lead to under-estimates of the level of genetic 

diversity. Electrophoretically detectable variation will be an underestimate of total 

variation. However, the problem can be eliminated if comparative measures of variation 

are required (Hollingsworth 1998). 

6.1.3 Application of isozyme 

Isozymes have been used in investigations into interspecific hybridization 

(Crawford 1989, Hollingsworth etal. 1995, Raybould etal. 1991, Hollingsworth et 

al. 1999); intergeneric hybridization (Soltis & Soltis 1986); identification of cultivars and 

lines; species delimitation and conservation (Chamberlain 1998); assessment of genetic 

variability in species and populations (Eanes & Koehn 1978, Ellstrand & Roose 1987); 

assessment of gene flow; evolutionary origin of polyploid species (Soltis & Rieseberg 

1986; Ness ci al. 1989, Ranker & Haufler 1989, Wolf et al. 1990, Soltis et al. 1991, 

Ashton & Abbot 1992, Raybould etal. 1991a, Raybould etal. 1991b, Roose & Gottlieb 

1976); phylogeny (Patton & Avise 1983); variation in wild and cultivated species 

(Lange & Schifino-Wittmann 2000); and taxonomic delimitation and characterization of 

the germplasm (Chamberlain 1998; Lange & Schifino-Wittmann 2000). 

Isozyme studies have been carried out in Curcuma to check the variation in some 

species of Curcuma (Ibrahim 1996) and to identify some early flowering Curcurna 

(Apavatj rut ci al. 1999). The widespread polyploids Curcuma could use isozyme 

technique to investigate allo- or autoployploid origin. The formation of alloploids via 

interspecific hybridization and subsequent chromosome doubling is a very important 

mode of speciation in higher plants (Lewis 1980; Stace 1987). To understand the 
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evolutionary success of polyploid species, study of the formation and establishment of 

newly formed polyploids under natural conditions is required (Raybould et al. 1991). 

6.2 MATERIALS AND METHOD 

The material used in this study can be seen in Table 6.1. Some of the materials 

used in this study consisted of clonal lines collected in the field and subsequently 

maintained in pot culture in the glasshouse of the Royal Botanic Garden, Edinburgh. 

Table 6. 1 Curcuma taxa (all are triploid) used in this study. 

Species Source Locality sampled 

C. aeruginosa Roxb. (AEI) RBGE 19780186 Indonesia 

C. aeruginosa ('AE2) RBGE 19771288 Java, Indonesia 

C. aeruginosa (AE3) RBGE 19981844 Java, Indonesia 

C. aeruginosa (4E4) RBGE 19981841 Java, Indonesia 

C. colorata Valeton (CO!) RBGE 19780188 Java, Indonesia 

C. colorala (CO2) RBGE 19771290 Java, Indonesia 

C. colorala (CO3) RBGE 19771294 Java, Indonesia 

C. heyneana Valeton & Zijp (HE!) RBGE 19780189 Java, Indonesia 

C. heyneana (HE2) RBGE 19981842 Java, Indonesia 

C. heyneana (HE3) RBGE 19940453 Java, Indonesia 

C. longa L. (LO!) RBGE 19931919 not known (cultivated) 

C. longa (L02) RBGE 19782126 not known (cultivated) 

C. longa ('L03) RBGE 19720174 Java, Indonesia 

C. longa (L04) RBGE 19711837 not known (cultivated) 

C. longa (L05) RBGE 19730708 Java, Indonesia 

C. longa (L06) RBGE 19721701 not known (cultivated) 

C. longa (L07) RBGE 19720175 Java, Indonesia 

C. longa (L08) RBGE 19990607 West Java, Indonesia (cultivated) 

C. inangga Valeton & Zijp (MA!) RBGE 19780191 Java, Indonesia 

C. inangga (MA2) RBGE 19710260 not known 

C. rnangga (MA3) RBGE 19710261 not known 

C. zanthorrhi:a Roxb. (ZA!) RBGE 19740965 not known 

C. zanlhorrhi:a (ZA2) RBGE 19780194 Indonesia 

C. :anihorrhiza (ZA3) RBGE 19771295 West Java, Indonesia 

C. :anthorrhi:a (ZA4) RBGE 19780187 Java, Indonesia 

C. zedoaria (Christm.) Roscoe (ZE!) RBGE 19771296 East Java, Indonesia 

C. zedoaria (ZE2) RBGE 19730871 Sri Lanka 

C. zedoaria (ZE3) RBGE 19990612 West Java, Indonesia 
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A flowchart of the general protocol of protein-electrophoresis can be seen in 

Figure 6.2. 

Dissect tissues 

Homogenize and collect supernatant 

Electrophorese 

Stain gel slice 

Zymogram interpretation 

Figure 6.2 General protocol for protein-electrophoretic surveys 
(modified from Avise 1994) 

6.2.1 Gel preparation 

A 12% gel was\prepared by weighting out 42 g of starch and dissolving it into 

350 ml gel buffer (for 20-30 samples) in a Buchner flask. The solution was agitated for 

30 seconds to make the starch go into suspension. The flask was then put in a 

microwave and was heated on high power. After a few minutes, the solution was 

swirled again, and then heated again. After the solution had boiled, it was removed. 

From this stage onwards, it was essential to work as quickly as possible as the starch 

cooled and set. 
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A vacuum hose was attached to the flask side arm, and a rubber bung was placed 

on top of the flask. The flask was degassed until the small bubbles had disappeared and 

large bubbles were spread evenly throughout the solution. The vacuum pump was 

switched off and the rubber bung was slid slowly off the top of the flask. Then the 

vacuum hose was detached. 

Prior to preparing the starch gel, a gel former was placed on a level surface on 

top of a paper towel. The gel was then poured into the gel former in a horizontal zigzag 

pattern. The gel was allowed to cool for 30 minutes. After it had set, a cling film was 

wrapped over the gel before keeping it in a fridge to allow cooling to 4°C. 

6.2.2 Sample preparation 

A washing up bowl was prepared by filling it with ice (up to 2/3 volume). A 

glass beaker was filled with water and was placed in the ice bucket. A ceramic grinding 

plate was put on ice. When the plate was cold (any condensation must be wiped away), 

a five mm square portion (or a punched tube) of fresh and healthy leaf tissue was placed 

in one of the wells. Two drops of extraction buffer were added. After that the tissue 

was homogenized using a flared glass rod. As soon as the tissue was homogenized, a 

filter paper wick was placed in the homogenate and was left to absorb the extract. The 

above steps were repeated for the number of the samples required. A drop of food dye 

was placed in an empty well and then a filter paper wick was added. 

The extraction or grinding buffer was made up from LiB03 gel buffer (50m1), 

KCI (37mg), M902 .6H20 (10mg), 19mg of EDTA tetrasodium salt, PVPP (25mg), 

Triton x 10 (0.5m1) and 2-mercaptoethanol (1.25m1). 

6.2.3 Electrode tank preparation 

The electrode tank and sponges were washed thoroughly and dried. A sponge 

was placed in each electrode tank. The blue plug was connected to the negative 

(cathode), and the orange plug to the positive (anode). The tank was filled with 

electrode buffer to within about one cm of the top. 
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6.2.4 Gel cutting and loading 

ftc gel was removed from the refrigerator. A spatula was run around the 

margins of the gel to trim any,  excess from the edge of the gel former. The surface of 

the gel was then covered with cling film to prevent any creases or air bubbles. On the 

side of the gel former. an  eight-cm running zone was marked out allowing at least five-

cm from either end of the former. The wicks are usually placed close to the cathodal 

edge of the gel. The cling film was peeled back to the beginning of the running zone. 

Using a ruler and the hat end of a spatula. the gel was cut through the base along the 

start of the running zone. One side of the gel was pulled back gently to make a gap open 

up (Figure 6.3). 

Figure 6.3 Cutting and loading the gel (Murphy etal. 1996). 
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Using a line forceps, a filter paper wick was picked up. Any excess sample 

extract was dabbed off onto a paper towel. After that it was placed in the gap at the start 

of the running zone. This step was repeated for the remaining samples and also for the 

food dye marker. At least three-mm was allowed between wicks. After all the wicks 

were in place. a wide gauge drinking straw was inserted between the short side of the gel 

and the gel former end wall. The straw keeps the two parts of the gel in close contact 

maximising conductivity. 

ia i• * 

All 
.- 

Figure 6.4 Horizontal starch gel apparatus during electrophoresis 
(Murphy et al. 1996). 

The compressing force of the straw can squeeze out excess extract along the line 

of wells. This was dabbed using a paper towel. The cling film was pulled back over the 

wicks leaving about four cm of gel to exposed. A similar area at the opposite end was 

also exposed. The gel and the gel former were placed on the electrode rig. The sponges 

of each tank were placed overlapping with the exposed gel surface. The sponges must 

be flat and evenly placed on the gel surface. Any excess cling film was placed at either 

end of the gel on top of the sponge-gel overlap. Two A4 plastic bags were put on top of 

the gel. After that, an ice pack was placed on top of the bags (Figure 6.4). 

The whole rig was then placed in the fridge, connected to a power pack and run 

for approximately four hours. For L1B03 buffers it was run at a constant voltage of 

183 



CHAPTER 6: ISOZYME VARIATION IN SOME CURCUMA SPECIES 

240V which should give a current of approximately 70mA. This will decrease to 

approximately 25mA after four hours. For MC8 buffers, it was run at a constant current 

of 40mA, which should give a voltage of approximately 150V. After ten minutes 

running, the dye should be checked to ensure that it was migrating in the correct 

direction. 

6.2.5 Stain preparation 

PGI or GPI (glucose 6 phosphase isomerase), 6PGD (6 phosphogluconate 

dehydrogenase), PGM (phosphoglucomutase), G-6-PDH (glucose 6 phosphase 

isomerase), IDH (isocitrate dehydrogenase), MDH (malate dehydrogenase), GOT or 

AAT (aspartic aminotransferase), and SKDH (shikimate dehydrogenase) enzymes were 

tried in the experiment. The recipe for each enzyme is written below. The chemicals 

according to instructions in the recipe were weighed out or measured. Most of the 

reagents used in the staining recipes are very hazardous. Therefore, treat with 

appropriate care should be taken, for example handling the reagents in a fume hood, 

wearing gloves. 

PGI in LiB03 was made up from Tris 0.1 M pH 8.0 (50ml), fructose-6-phosphate 

(40mg); NADP (7mg), MTT (12mg), PMS (3ng) in 0.5m1 of 10% M902;  glucose-6-

phosphate dehydrogenase (35.tl). PGI in MC8was also tested. 

PGD in MG8 was composed from Tris 0.1 M pH 8.0 (50m1), 6-phosphogluconic 

acid (50mg); NADP (10mg), MTT (15mg), PMS (3mg) in 0.5ml of 10% MgCl2-, MgCl2 

(50mg). 

PGM in LiB03 was made up from Tris 0.1M pH 7.5 (50ml), glucose- I- 

phosphate (100mg); NADP (10mg), MTT (15mg), PMS (3mg) in 0.5ml of 10% M902. 

ATP (20mg), and glucose-6-phosphate dehydrogenase (I Sj.xl). 

G-6-PDH in MC8 was made up from Tris 0.1 M pH 7.5 (50ml), glucose-6- 

phosphate sodium salt (50mg), NADP (10mg), MTT (15mg), PMS (3mg) in 0.5ml of 

10% MgCl2. 
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1DM in MC8 was made up from Tris 0.IM pH 8.0 (50ml), isocitric acid (100mg); 

NADP (10mg), MTT (15mg), PMS (3mg) in 0.5ml of 10% M9 02: M902 (100m9). 

MDH in MC8 was made up from Tris 0.1M pH 8.5 (50ml), 750mg of malic acid; 

(Na salt); NAD (10mg), MTT (10mg), PMS (3mg) in ImI dH20. 

GOT in LiB03 was composed of GOT substrate (SOml), fast blue BB salt 

(200mg), and pyridoxal-5-phosphate (I mg). Fast blue and pyridoxal were to be weighed 

dry and to be added to buffer later. GOT substrate was composed of Tris 0.IM pH 8.5 

(50m1), a-ketoglutaric acid (18mg), aspartic acid (65mg), PVP 40T (250mg), 25mg of 

EDTA (Na2 salt), and disodiumhydrogen phosphate (7 10mg). 

SKDH in LiB03 was composed of Tris 0.1 M pH 8.0 (SOmI), shikimic acid 

(60mg); NADP (10mg), MTT (15mg), PMS (3mg) in 0.5m1 of 10% MgCl2. 

Tris buffers were made up from 0.IM ofTris HCI, 12.1 lgofTris Base per litre 

H20. Ph was adjusted with HCI to required value. 

The morpholine citrate (MC8) electrode buffer (IL) was made up from citric acid 

(8.4g), 900m1 of dH20, 17m1 of N-(3-aminopropyl)-morpholine at pH 8.0. To make 

350m1 gel buffer of morpholine citrate (MC8, I4ml of the electrode buffer was diluted in 

336ml of distilled water. 

The lithium borate (LiB03) electrode buffer (IL) was made up from boric acid 

(1 1.9g) and lithium hydroxide (I.2g). The solution was adjusted to pH approximately 

8.3. The gel buffer (IL) was composed of Tris base (5.45g), citric acid (1.28g) and 

electrode buffer (1 OOml). 

6.2.6 Gel slicing and staining 

The power pack was turned off, and left until the voltage dropped to zero. The 

gel and the gel former were removed from the electrode rig. Using a spatula the gel at 

the end of the running zone (around 8 cm from the wicks) was cut. The portion of gel in 

front of the running zone was discarded. A notch in the top right hand corner of the gel 
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was cut to facilitate orientation. The running zone area of the gel vas carefully lifted up 

supporting it underneath and keeping it as flat as possible. After that. the running zone 

portion was placed on a paper towel and the upper and lower surface was dabbed gently. 

Any wicks that were still attached to the gel were removed. The gel was lifted up. and 

the top surface was placed up on the gel slicer. From underneath, between the gel and 

the slicer, presence of air bubbles must be checked and removed by tapping the gel 

down gently. After that, a glass plate was carefully placed on top of the gel. Next, the 

fishing line was held tight across the furthest end of the gel slicer from the worker. The 

line was pulled back along the gel (Figure 6.5). 

P PT low- 

Figure 6.5 Slicing the gel for staining (Murphy etal. 1996). 

The slicer, the glass plate, and the gel were inverted. Using a spatula. the thin 

slice was lifted up, then was placed in the relevant staining tray. The recently exposed 

surface of the remainder of the gel was dabbed with a paper towel. After that, it was 

placed on the gel slicer. The previous steps were repeated for the remaining slices to get 

some more gel slices. 
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Reagents were added to gels in staining trays. The trays were covered with lids, 

and they were put in an incubator in the dark at 38 °C until the bands developed. After 

the bands had developed, the gel was removed to a glass plate. Finally, it was 

photographed using a SLR camera. 

6.3 RESULT AND DISCUSSION 

Detectable isozymes can occur from three different genetic and biochemical 

phenomena: 1. multiple allelism at a single locus; 2. multiple loci coding for a single 

enzyme; 3. post-translational processing and the formation of secondary isozymes. All 

of these situations must be carefully considered when trying to interpret electrophoretic 

data (Micales etal. 1986). Interpretation of the banding patterns was also based on 

knowledge of sub-unit structure and subcellular compartmentalization (Weeden & 

Wendel 1989). 

From eight enzyme systems that were tested, only three enzyme systems (ie. 

PGI, PGM, and MDH) were resolved. The rest, ie. 6PGD, G-6-PDH, IDH, GOT or 

AAT, and SKDH were unresolved. 

PGI is a functional dimeric enzyme, occuring in the cytosol and/or plastids and 

related to the reversible reaction of fructose-6-phosphate and glucose-6-phosphate 

isomerization (Weeden & Wendel 1990). 

PGI was the best resolved and the most stable of all enzyme systems. However, 

the one- to three-banded phenotype produced by PGI, did not prove to be readily 

interpretable in terms of number of loci (Figure 6.6). Except for the band in C. 

parvy'lora, the rest of the bands show quite clear homo- and heterozygote patterns. 

Considering the size of the bands, they could have been the result from more than one 

locus with two alleles (A and A'). Type A could represents homozygote AAAA, while 

type B could be heterozygote AAAA' with proportion 9:6:1. Type C could be 

heterozygote AAA'A' with proportion 1:2:1. Type D could be heterozygote AA'A'A' 

with proportion 1:6:9. 

PGI of C. aeruginosa, C. amada, C. amarissima, C. mangga, C. phaeocaulis, C. 

zedoaria, C. parviflora, and C. roscoeana did not show any polymorphisms. Further 
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study using more samples is needed to verify this. On the other hand, PGI of the rest of 

the species (i.e. C. cobra/a, C. heyneana, C. longa, C. zanthorrhiza) showed variable 

patterns. 

PGI of Hey I showed band types A and B. PGI of Lon 1 also produced band type 

A, while that of Lon2, Lon3, Lon5, Lon 6, and Lon7 produced three bands (band type 

Q. PGI of Zan l, Zan2, Zan3, and Zan4 produced three-banded phenotype of type B 

while Zan2 produced slightly different band phenotype (type D). The middle and the 

lowest bands in Zan2 are wider than the top band, while on the rest of C. zanihorrhiza 

species the top and the middle bands are bigger than the lowest one. PGI of Co13 

produced a three-banded phenotype (type F) with possible proportions of 1:2: I. PGI of 

Col 1 and Co12 produced a three-banded phenotype (type B). 

The patterns in PGM were also consistent with one locus with no variation, 

except for Zan3 in which a two-banded phenotype was found. Therefore, C. 

zanihorrhiza showed homo- and heterozygosity. 

MDH is a dimeric enzyme in most plants and is involved in the oxidation of 

malate to oxalacetate (Weeden & Wendel 1990). The patterns in MDH showed quite 

clearly two putative loci. The fastest bands or MDH I were faint and not consistently 

scorable, so they were omitted from the analysis. The slower bands or MDH2 produced 

a one- to three-banded phenotype. This, however, also proved not to be readily 

interpretable in terms of number of loci. Variation within taxa was only found in C. 

heyneana that produced one very wide single band, and a three-banded phenotype for 

the rest of the samples. 
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Figure 6.6 Isozyme phenotypes for PGI, PGM, and MDH. Letters of the alphabet designate 
individual phenotypes for each isozyme. Aer= Curcuma aeruginosa, Amd C. amada, Amr= C. amarissima, Col= 
C. colorata, Hey= C. heyneana, Lon= C. longa, Man= C. mangga, Par= C. paiviflora, Pha= C. phaeocaulis, Ros= 

C. roscoeana, Zan= C. zanthorrhiza, Zed= C. zedoaria. 
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6.3.1 Variation among taxa 

Bands specific taxa are encountered in C. parvflora, and C. roscoeana, which 

are diploid species, namely in the PGI and MDH systems (Figure 6.6). However, only a 

single sample for each species was available. More samples are needed to check the 

genetic variation of these two diploid species. The rest of the band phenotype did not 

hint for any specific species. 

6.3.2 Variation within taxa 

Some taxa show variation in the phenotype bands, ie. C. heyneana, C. longa, C. 

colorala, C. zanihorrhiza in PGI; C. zanihorrhiza in PGM; and C. heyneana in MDH. 

Four multi-enzyme phenotypes were detected in C. heyneana based on variation 

in PGI and MDH. Populations ranged from being monomorphic to dimorphic. Two 

multi-enzyme phenotypes were found in C. longa or C. colorala based on variation in 

PGI. Populations were found to be mono- and dimorphic. Four multi-enzyme 

phenotypes were found in C. zanihorrhiza based on variation in PGI and PGM. 

Populations also ranged from being monomorphic to dimorphic. All the species are 

widely cultivated, and it is often difficult to know their origin. 

Most Curcuma species studied, except C. parviflora and C. roscoeana, are 

widely cultivated, polyploid (triploid), and rarely set fruit. These polyploid plants, 

which propagate via vegetative reproduction, are highly morphologically similar, hardly 

distinguishable from herbarium specimens. The isozyme data observed here invite a 

question of how variation within species could happen. 

The rhizome of Curcuma is widely used as spice or medicine. Intensive 

propagation by means of rhizome cuttings may have caused generative reproduction to 

switch off. The fact that some Curcuma show genetic variation (C. longa, C. heyneana, 

C. colorala, C. zanihorrhiza) is supported by polyploidy and sterile phenomenon, invite 

a hypothesis of hybridization long before the species establish themselves. 

Populations of C. colorata, C. heyneana, C. longa, and C. zanthorrhiza show 

isozyme polymorphism. Though populations of the remaining species show no 
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polymorphism, other enzyme systems may produce polymorphic bands. Further 

investigation should be carried out to verify this. 
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CHAPTER 7: POLYMORPHISM IN ITS 

7.1 INTRODUCTION 

Problems with the use of nrDNA genes for molecular systematics include 

polymorphisms within the arrays. Homogenization of nrDNA is notinstantaneous and 

individual plants may contain a mixture of older and more-derived alleles. 

Recombination can also result in individual allelles with multiple lineages (Buckler 

1996). 

Intraindividual polymorphism in ITS of most Javanese Curcuma is dealt with 

here. The same phenomenon has been discovered in Winteraceae (Suh et al. 1993), 

conifers (Karvonen & Savolainen 1993), peonies (Sang et al. 1995), Zea (Buckler & 

Holtsford 1996), Amelanchier ( Campbell et al. 1997), Cucurbita (Jobst et al. 1998), 

Gilia (Morrell & Rieseberg 1998), Castilleja (Mathews & Lavin 1998), Allium (Mes et 

al. 1999), Larix and Pseudotsuga (Gernandt & Liston 1999), and Aeschynanthus 

(Den duangboripant & Cronk 2000). Polymorphisms in 18s rDNA and irnK of Japanese 

Curcuma is also present (Cao Hui personal communication). 

7.2 MATERIALS AND METHOD 

In Chapter Two, consensus sequences were given for polymorphic sequences. 

Here I am attempting to disentangle the two overlapping sequences by trying to find the 

base insertions and deletions (indel). The method involves tracking the bases starting 

from where the indel begins (Figure 7.1). Other techniques, such as DNA cloning, 

would, of course, be more powerful, but this has not been possible in the time available. 
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Figure 7.1 Electropherogram 
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LI A. Part of an ITS sequence which shows polymorphism. The two sequences are the same. The first line 
shows addition of TC after editing. The second line shows deletion of TIC after editing. 

B. Part of an ITS sequence which is similar with that at picture A. However, it was aligned so that the "TC on 
the second line will be adjacent to the additive TC on the first line. h=helpful; c=confirmed; r --rejected. 



CHAPTER 7: POLYMORPHISM IN ITS 

7.3 RESULTS AND DISCUSSION 

The result shows many indels in a single ITS sequence of Javanese Curcuma, 

except in three species namely C. auranliaca, C. petiolala, and C. ochrorhiza. Table 

7.1 and Table 7.2 shows the indel polymorphisms in Javanese Curcuma. 

Indels in ITS  are far more difficult to track down. This may indicate severe 

indels in the sequences. Only the very start and the very end of the sequence can be 

tracked for their indels. The very end indel (indel position II) sites are quite interesting 

as all traceable species from subgenus Hiicheniopsis have no insertion of TTCT except 

C. auranhiaca. Four traceable species from subgenus Curcuma, C. aromatica, C. cf. 

longa, C. colorata, and C. elala, show indel polymorphism of TTCT. This hints at 

hybridization of species having TTCT insertion and species having TTCT deletion. 

More samples are needed to verify this. 

Indels in ITS2 are easier to track down. Eleven indel positions were recorded 

with the size of one to four bp. Insertion of TGC (indel position I) and TTTA (indel 

position XI) only occurs in C. aurantiaca. Four species, C. longa 5, C. cf longa, C. 

purpurascens and C. colorata, shows indel polymorphisms of those TGC and TTTA. 

Hence, those species could be derived by hybridization of C. auranhiaca and other 

species. A more powerful technique is indispensable to check this. 

Insertion of AGCG (indel position II) occurs in C. auranhiaca and C. aromatica. 

Two other traceable sequences of C. elata and C. çf amada show indel polymorphism of 

the bases. Indel polymorphism of TC (indel position III) occurs in C. longa and C. 

soloensis. Insertion of this TC is not found in all traceable species studied. Fourteen 

accessions show indel polymorphism of GT in indel position IV. Only C. ochrorhiza 

has the insertion the bases. Further study is needed to check if the insertion of the GT of 

C. ochrorhiza contributes to the indel polymorphism of GT in those fourteen accessions. 

Insertion of T (indel position V) not only occurs in Javanese Curcuma, but also in Thai 

Curcuma and the outgroups. Deletion of this T only occurs in C. ecomala and Sm. 

Supraneanae. Two accessions, C. zedoaria 1 and C. cf zedoaria, shows indel 

polymorphism of the bases. Indel polymorphism of G (indel position VII) only occurs 

in C. amada and C. amarissima. No species with deletion of the base is recorded yet. 
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Table 7.1 Indel polymorphism in ITS1 region 

INDELS I 11 

Position (bp) 1 52 192-195 

Ca. gracilis - 

Ca. spicata - 

R. auriculata - 

R. schneideriana - 

Stahlianthus sp. - 

Smithatris sp. - 

C. parvjflora - 

C. thorelii - 

C. roscoeana - 

C. alismaijfolia - 

C. gracillima - 

C. ecomata - 

C. harmandii - 

C. cfaustralasica - 

C. petiolata - 

C. ochrorrhiza C 

C. aeruginosa (-)(C) 

C. amarissima (-)(C) 

C. aurantiaca - TTCT 

C. heyneana C 

C.longal - 

C. longa2 - 

C. amada  

C. soloensis  

C. aromatica - ( ---- )(TTCT) 

C. longa cf ? ( ---- )(TTCT) 

C. cobra/a ( ---- )(TTCT) 

C. elata  ( ---- )(TTCT) 

195 



Table 7.2 Indel polymorphism in ITS2 region. 

INDELS I II III IV V VI VII VIII IX X XI 

Position (bp) 3-5 42-45 70-71 157- 158 170 173 174 189- 192 208-211 240-241 249-252 

Ca. gracilis --- ---- -- 
-- I - G ---- ---- -- 

Ca. spicata --- ---- -- 
-- T - G ---- ---- -- 

R. auriculala --- ---- -- 
-- T - G ---- ---- -  - 

R.schneideriana --- ---- -- 
-- T - G ---- ---- -- 

St. involucratus --- ---- -- 
-- T - G ---- ---- -- 

Sm.supraneanae. --- ---- -- -- 
- C G ---- ---- -- 

C. parv?flora --- ---- -- 
-- T - G ---- ---- -- 

C. ihorelii --- ---- -- 
-- T - G ---- ---- -- 

C. roscoeana --- ---- -- 
-- T - G ---- ---- -- 

C. alismalifolia --- ---- -- 
-- T - G ---- ---- -- 

C. gracillima --- ---- -- 
-- T - G ---- ---- -- 

C. ecomala --- ---- -- -- - C G ---- ---- -- 

C. harmandii --- ---- -- -- T - G ---- ---- -- 

C. qfaustralasica --- ---- -- -- T - G ---- ---- -- 

C. petiolala --- ---- -- -- T - G G-AA ---- -- 

C. ochrorrhiza --- ---- -- GT T - G ---- ---- -- 

C. aeruginosa --- ---- -- (--)(GT) T - G ---- ---- -- 

C. phaeocaulis --- ---- -- (--)(GT) T - G ---- ---- -- 

C. amarissima --- ---- -- (--)(GT) T (-)(C) (-)(G) ---- ---- -- 

C. aurantiaca TGC AGCG -- -- T C G TCAA -G-T -- TITA 

C. heyneana --- ---- -- -- T - G ---- ( ---- )(TGAT) -- 

C. longa I --- ---- (--)(TC) -- 1 - G ( ---- )(TAAA) ( ---- )(TGAT) -- 

C. longa 2 --- ---- (--)(TC) -- T - G ( ---- )(TCAA) ( ---- )(TGAT) -- 

0 

-o 

0 
0 

cl 
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Table 7.2 (continued) Indel polymorphism in ITS2 region. 

INDELS I II III IV V VI VII VIII IX X Xl 

Position ft) 3-5 42-45 70-71 157- 158 170 173 174 189- 192 208-211 240-241 249-252 

C. amada --- ---- 
-- (--)(GT) T (-)(C) (-)(G) ---- ---- -- 

C. zedoaria / --- ---- 
-- (--)(GT) (-)(T) (-)(C) G ( ---- )(TCAA) ---- -- 

C. zedoaria 2 --- ---- 
-- (--)(GT) T - G ( ---- )(TCAA) ---- -- 

C. zedoaria 3 --- ---- 
-- (--)(GT) I - G ( ---- )(TCAA) ---- -- 

C. zedoaria cf --- ---- 
-- (--)(GT) (-)(T) (-)(C) G ( ---- )(TCAA) ---- -- 

C. zanihorrhiza 1 --- ---- 
-- (--)(GT) T - G ---- ( ---- )(TGAT) -- 

C. zanthorrhiza 2 --- ---- -- (--)(GT) T - G ---- ( ---- )(TGAT) -- 

C. soloensis --- 
---- (--)(TC) (--)(GT) T - G ( ---- )(TAAA) ( ---- )(TGAT) -- 

C. aromalica --- AGCG -- -- I - G ( ---- )(GCAA) ---- (--)(CG) 

C. longa 3 --- ---- (--)(TC) -- ? ? ---- -- 

C. longa 4 --- ---- (--)(TC) ? ? ? 

C. longa 5* ( --- )(TGC) ? ( ---- )(TTTA) 

C. longa cf. * ( --- )(TGC) ? ? ? ? (?)(TTTA) 

C. purpurascens* ( --- )(TGC) -- ? ? ( ---- )(TTTA) 

C. co lorala * ( --- )(TGC) ? ? ? ( ---- )(TTTA) 

C. data --- (----)(AGCG) -- -- ? ? ? ? 

C. amada cf. --- (----)(AGCG) -- (--)(GT) ? ? ? ? ---- -- 

C. zanthorrhiza 3 --- ---- -- (--)(GT) ? ? (----)(TGAT) -- 

C. zanthorrhiza 4 --- ---- -- (--)(GT) ? ? ? -- 

Notes: *: 	 one copy of ITS2 sequences of these species is suspected to contain sequence that is identical to that or 
C. aura ntiaca. 

deletion 
AJCIGIT: 	insertion 
(-)(NC/G/T): 	indel polymorphic 
?: 	 sequences are unreadable 
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Indel positions VIII is complex as different type of base insertion are encountered. 

Eight Javanese species show this indel polymorphism. C. auranhiaca and C. petiolala 

might have contributed the insertion of the bases. 

Analysis of each single sequence (by tracking down the indel polymorphisms in 

this Chapter) shows similar result from the analysis of the consensus sequence in 

Chapter Two. The tree resulted from both analysis is congruent. Further study focusing 

on the indel polymorphisms of Javanese Curcuna would give more insight into the 

evolutionary history of the genus. Therefore, cloning the DNA to get an isolated single 

sequence is indispensable. Parsimony analyses were carried out. Different type of 

analysis resulted in slightly different phylogenetic signal (Table 7.3). However, the tree 

topology resulted are congruent (Figure 7.2-7.4). 

Unlike other genera in Zingiberaceae such as in Alpinia (Rangsiruji ci al. 2000), 

Roscoea and Cauhleya (Ngamriabsakul ci al. 2000), ITS sequence in Curcuina are found 

to be polymorphic. The ITS in Curcuma shows two different modes of evolution. First, 

highly homogenized copies were resulted from concerted evolution. Molecular drive 

seems to work well in some species, ie. C.parviflora, C.thorclii, C.roscocana, 

C. alismalifolia, C.gracillirna, C. ecomala, C. harrnandii. C.peiiolaia. C. auranhiaca and 

C.ausiralasica. Except C. ausiralasica, which only occur in Northern Australia and 

New Guinea, the rest of those species occur in the Asian continent. C. peliolata and C. 

auranliaca distribute both in the continent and the Malesian archipelago. Those 

homogenized-ITS species are fertile (the seeds are set). They have diploid 

chromosomes. Secondly, molecular drive has been failure in the process of concerted 

evolution. Length polymorphisms with indel events were found in most of Javanese and 

also Ind ian  polyp bid species (C. ochrorhiza, C. aeruginosa, C.phaeocaulis. 

C.amarissirna, C.heyneana, C.longa, C.a,nada, C.zedoaria. C.zanihorrhiza, C..soloensis, 

C.aro,naiica and C. data). This polymorphism could have been the result of incomplete 

homogenization or hybridization process. Further study is needed to check this. 

198 



strict 

CHAPTER 7: POLYMORPHISM IN ITS 

Smithafrfr sp. 
StahliuztJn,s sp. 
Ca.gracilfr 
Caspka1a 
Rauricuiata 
Rvhswidenana 
C.ecimata 
C.cfasstra1asiaca 
C.awirutthwa 
C.parviJloiva 

C.thorelli 
C.gnciliinw 
C.ro&icoeana 
C.petiolla 
C. ochron*iw 
C.aenighwsu a 
C.aeniginosa b 
C.phaeocasdLc a 
C.an%LthsinMs a 
C.amtzrssth,w b 
C.heyneami a 
C.heyneamt b 
C.longalb 
C.anw&sa 
C.anwdab 
C.zedoarial a 
C.zedoarwl b 
C. zedoaria2 a 
C.zedoaria2b 
C. zedoaria3 a 
C.zedoaria3b 
C.zedoarwcf. a 
C.ZeJOanU cj b 
C.xwthorrhiza1a 
C.xantlwrrhizalb 
C.xantholThiw2a 
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C.phae 
C o

ocaulfr b 
.Iszgala 

C.soloe,uis b 
C.longa2a 
C.Ionga2b 
C.aromiUfra a 
C.aronwtica b 

Figure 7.2 Strict consensus tree obtained from 1000 equally most parsimonious trees 
of length 167 steps resulting from equally weighted parsimony analysis of ITS2 data 

of non- and polymorphic Curcuma and the outgroups, with all sites analysed 
(Cl0.677; RI=0.830; RC0.562). 



CHAPTER 7. POLYMORPHISM IN ITS 

Strict 

Srnithatm .sp 
Slahlianih,ts .sp. 

Ca.gnwilis 

Ca..cpicuta 

R.auriculgg&, 

R.schn€ideria,w 

C. ecoiskaigs 

C. ef aistra1asiaca 
C.aw,,gjaca 

C.parviftora 

C.ulisnwtifoligs 

C. harnwuulii 

C. thoreili 

C.gnwiUirnrs 
C.rosvoeana 

C.petiolata 

C. ochronhirjs 

C.aenigino.ss 

C.anwsis3inkI 

C.hepwana  

C.Iongal 
C. auwda 

C. zed oarial 

C. zedoaria2 
C. zedoa,1a3 

C. zedoana cf. 
C.xanthonhizgl 

C.xanthorehjrj,2 

C.soloensis 

C.phaeocwdic 

C.losaga2 

C. aronwilca 

Figure 7.3 Strict consensus tree obtained from 112 equally most parsimonious trees of 
length 147 steps resulting from equally weighted parsimony analysis of ITS2 data of 

non- and polymorphic Curcuma and the outgroups, with indel polymorphic sites 
excluded (Cl=0.701; R10.835; RC=0.585). 
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Figure 7.4 Strict consensus tree obtained from 1000 equally most parsimonious trees 
of length 163 steps resulting from equally weighted parsimony analysis of ITS2 data 
of non- and polymorphic Curcuma and the outgroups, with indel polymorphic sites 

coded as present or /and absent (Cl=0.693; R1=0.828; RC=0.574). 
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Table 7.3 Descriptive statistics reflecting the amount of phylogenetic signal 
under different conditions of parsimony analysis for data on Appendix 6. 

Descriptive 
Statictics 

analysis I analysis 2 analysis 3 analysis 4 

Tree length 167 147 163 171 

No. of trees 1000 112 112 112 

CI 0.677 0.701 0.693 0.702 

CI excl. uninf. 0.620 0.639 0.630 0.630 

HI 0.323 0.299 0.307 0.298 

HI excl. uninf. 0.380 0.361 0.370 0.370 

RI 0.830 0.835 0.828 0.826 

RC 0.562 0.585 0.574 0.580 

Notes: No. is number; Cl: Consistency Index; I-Il: Homoplasy Index; RI: Retention 
Index; RC: Rescaled Consistency index; excl. is excluding; uninf. is uninformative. 
In analysis 1, all sites were analyzed. In analysis 2, copy sequences from polymorphic 
species were combined with indel polymorphic sites excluded. In analysis 3, similar to 
analysis 2 but with indel polymorphic sites coded gaps as present or absent. In analysis 
4, similar to analysis 3 but alignment gaps were coded as present or absent. 
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Table 8.1 Taxonomic treatment of Javanese Curcuma. 

Valeton (1918) Proposed new classification 

Subgenus Curcuma (Baker) K. Schum. Subgenus Curcuma (Baker) K. Schum. 

Section Mesanlha Horan. C. longa L. 

C. longa L. 
C. purpurascens Blume C. longa L. var. aeruginosa (Roxb.) Ardiyani 

C. viridjflora Roxb. C. longa L. var. phaeocaulis (Valeton) Ardiyani 

C. colorala Valeton C. longa L. var. zedoaria (Christm.) Ardiyani 

C. euchroma Valeton C. longa L. var. mangga (Valeton & Zijp) Ardiyani 

C. soloensis Valeton C. longa L. var. ochrorhiza (Valeton) Ardiyani 

C. brog Valeton C. longa L. var. viridflora (Roxb.) Ardiyani 

C. ochrorhiza Valeton C. longa L. var. heyneana (Valeton & Zijp) Ardiyani 

C. longa L. var. brog (Valeton) Ardiyani 

Section Exaniha Horan. C. longa L. var. soloensis (Valeton) Ardiyani 

C. zedoaria (Christm.) Roscoe C. longa L. var. zanihorrhiza (Roxb.) Ardlyani 

C. zanthorrhiza Roxb. C. longa L. var. purpurascens (Blume) Ardiyani 

C. phaeocaulis Valeton C. longa L. var. euchroma (Valeton) Ardiyani 

C. aeruginosa Roxb. C. longa L. var. colorata (Valeton) Ardiyani 

C. mangga Valeton & Zijp 

C. heyneana Valeton & Zijp 

Subgenus Paracurcuma (Baker) K. Subgenus Hitcheniopsis (Baker) K. Schum. 

Schum. C. petiolala Roxb. 

C. petiolala Roxb. C. auranhiaca Zijp 

C. auranhiaca Zijp 
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beginning, Burtt proposed to conserve Curcuma Roxburgh with C. angustifolia Roxb. as 

the type. However, later, after investigating the nomenclature he found out that 

Manjella-Kua of Rheede could be chosen as a lectotype of C. longa. However, to 

choose this as a lectotype for the genus would end up with the name Curcuma L. quoad 

lecto. excl. descr. since the description of Linnaeus does not describe C. longa. Burtt in 

1981 proposed again Curcuma Roxburgh with C. longa as a type. But this is rejected by 

the Committee and Curcuma Linnaeus is at the end conserved for the generic name of 

the commercial turmeric. The history is summarized and tabulated in Table 8.3. 

Table 8.2 The original description of Linnaeus Species Plantarum 1753 

rotunda I. CURCIJMA foliis lanceolato-ovatis; nervis lateralibus rarissirnis. 
Curcuma fouls ovatis utrinque acuminatis: nervis lateralibus paucissimis. Roy. /ugdb. 12. Fl. 

zey/. 7 
Manja-kua. Rheed. mal. II. p.  19. t. 10. 

Habitat in India. 

longa 2. CURCUMA fouls lanceolatis; nervis lateralibus numerosissimis. 
Curcuma fouls lanceolatis utrinque acuminatis: nervis lateralibus numerosissimis. Roy. Iudg. 12. 

F!. zeyl. 7. Mat. med. 5. 
Curcuma radice longa. Herm. Iudg. 208.1. 209. 

Habitat in India. 

8.2 MATERIALS AND METHOD 
Materials are herbarium as well as living specimens. Herbarium specimens 

(Appendix 8) are from Royal Botanic Garden Herbarium Edinburgh (E), and loans from 

Herbarium Bogoriense (BO), Leiden Herbarium (L), and Kew Botanic Gardens 

Herbarium (K). 

Data on species name, authority, collector, collection number, date of collection, 

collection site, latitude, longitude, etc are stored in Pandora Data Base in the Royal 

Botanic Garden Edinburgh. Descriptions were written by hand instead of with the Delta 

program. Generating description by Delta was once tried (Ardiyani 1997). 
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Table 8.3 Summary of the history of typification of Curcuma 

Year Summary of history of typification of Curcuma 

1 737 Linnaeus in Musa Cliffortiana included only Curcuma rotunda in genus Curcuma. 

1753 Linnaeus in Genera Plantarum added C. longa without modifying the description of the  

genus, _so_  the _description _was _only _based on C. rotunda. 

Curcuma rotunda was transferred to other genus Boesenbergia, therefore C. longa is the 

only species which can be chosen as lectotype of Curcuma so long as the identity is clear 

1821 Steudel chose C. longa as a lectotype of the genus. 

1918 Valeton in his study of Zingiberaceae of Java and Malaya rejected C. longa as nomen 

dubium on the basis of that the original description and illustration of Hermann referred 

to C. aromatica Salisb. He proposed C. domeslica Valeton as the correct name for C. 

longa L. This was followed by, for example Trimen (1931), Holttum (1950), Backer& 

Bakhuizen f. 1968). 

1923 Britton & Wilson chose C. longa as a lectotype of the genus. 

1929 Hitchcock & Green chose C. longa as a lectotype of the genus. 

1935 Merrill chose Hermann's C. longa as a lectotype of the genus. 

1959 Mansfeld pointed out ifthe typification of C. longa proposed by Merrill is accepted, C. 

longa_can_be_  taken 	 the name Curcuma. _as_lectotype_of 

1972 Burtt & Smith proposed to conserve Curcuma Roxburgh (1810) non Linnaeus (1753) 

with C. angustifolia Roxb. as its type species. Their reason was that there was no 

support of the choice from Britton & Wilson (1923) and Hitchcock & Green (1929). 

However, if the identity of C. longa L. as valid species can be established, it does not 

preclude the re-adoption of C. longa. 

1974 The Committee rejected Burtt & Smith's proposal to conserve Curcuma Roxb. They 

agreed with Mansfeld (1959) so regarded C. longa as a lectotype. 

1977 Burtt reinvestigated C. longa and found out Manjella Kua of Rheede can be chosen as 

lectotype of Curcurna. 

1981 Burtt revised the proposal and proposed again to conserve Curcuma Roxb. on the basis 

of that Roxburgh gives a description of C. longa while there is no description in 

Linnaeus (1753) which can cause the genus only be cited Curcuma L. quoad lecto. excl. 

descr. 

1984 The Committee agrees with Burtt in saying that the lectotypification of C. longa is in 

conflict with the protologue. However, committee voted 10-I (one abstention) that the 

conserved name should date from 1753 and be attributed to Linnaeus. Curcuma 

Linnaeus is conserved with a new type C. longa Linnaeus. 
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8.3 RESULTS 

8.3.1 Generic re-description 

Curcuma L. 

Curcuina , C. von Linnaeus, father, Sp.pl. I (175' )) 2 - Syntype: Curcuina longa L. 

(BM) 

Erndlia 
Hi/cheniopsis, H.N. Ridley, Fl.Malay Penins. 4 (1924) 252 

Plant of about 30-155 cm height. Rhizome white, bright yellow, yellow orange, deep 

orange internally, pungent or young mango-like fragrant, 3.0-11.0 by 1.5-2.5 cm. Leaf-

sheath green, glabrescent or pubescent, edge sometimes hairy, c. 5.0 to more than 40.0 

cm long. Leafless sheath green or reddish brown, broad linear, round, mucronate at apex, 

glabrescent to pubescent, sometimes hairy on its edge, the outer one smaller than the 

inner one, c. 4.0-35.0 cm long. Petiole green, c. 0-22.0 cm long, glabrous or glabrescent. 

Liguie c. 1.0-3.0 mm by 1.2 to 3.0 cm, ciliate, auriculate or not. Blade green with or 

without purplish brown flush on distal half of the leaves on upper or on both surface, 

lanceolate to broadly lanceolate, acuminate at apex, rounded, slightly acuminate, acute to 

obtuse decurrent at base, glabrous or glabrous and hairy on edge at tip on upper surface, 

glabrous or glabrous and hairy on edge at apex on one side on lower surface, c. 1 6.5-85.0 

by 5.0-23.0 cm. Midrib green, dark red brown on upper surface, green on lower surface. 

Inflorescence central or lateral. Scape green, c. 6.5-50.0 cm long, slightly glabrescent or 

pubescent or puberulous, covered with 3-6 leafless sheaths. Spike c. 10.0-20.0 by 4.0-9.0 

cm. Leafless sheath on scape c. 4.0-24.0 cm long, glabrescent or pubescent to densely 

pubescent. Spike c. 9.0-19.0 by 3.5-9.0 cm. Fertile bract green tipped with purplish, c. 

8-20, oblong, orbicular, obovate, broad ovate, broad elliptic to rounded, rather acute or 

obtuse to slightly rounded, glabrescent or pubescent to densely pubescent on outer 

surface, pubescent on inner surface, c. 3.5-6.5 by 1 .6-5.2 cm. Coma bract purple at tips, 

dark green getting dull white towards base, c. 4-9, lanceolate to broad lanceolate to broad 

elliptic, acute to slightly obtuse or obtuse to rounded, slightly mucronate or mucronate or 
not so, pubescent to densely pubescent on outer surface, c. 3.5-8.4 by 0.9-4.5 cm. 

Bracleole boat-shaped, c. 1.6-3.5 by 0.9-2.6 cm, sparsely shortly hairy with dense hair at 

apex, white pelucid or white with pink top. Calyx c. 1.0-1.4  cm long and c. 1.35 cm 

wide, three-toothed, with one the deepest among others, hairy especially at tips, apex of 

tooth truncate slightly cleft, white pelucid and pinkish at tips. Corolla tube c. 1.6-3.2 cm 

long, white, pale yellow, pink, yellowish white at the base, pinkish at apex. Corolla 

lobes pink, pale pink, reddish or brownish. Dorsal corolla-lobe elliptic-rounded, ovate, 

hooded with cucullate apex, c. 1.0-2.0 by 0.6-1.4 cm. Lateral corolla-lobes broad 

oblong, elliptic, apex rounded, c. 1.0-1.5  by 0.7-I .1 cm. Labellu,n almost orbicular with 

blunt or pointed apex, shallowly cleft at apex, c. 1.4-2.0 by 1.2-1.8 cm, and c. 1.0-1.2 cm 

wide at base, citrine, yellow, light orange, orange, median darker with purple spot in the 

centre. Lateral siamninodes unequal elliptic or oblong with slightly rounded apex, broad 
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obovate, c. 1.0- 1 .6 cm long and c. 6.0-9.0 mm wide at base, c. 8.0-18 mm at the widest 

part, light yellow, light orange, orange. An/her slim, c. 3.5-4.0 mm long, c. 2.0-2.5 mm 

thick, thecae c. 1.5-2.0 mm wide, protruded on posterior side, spur almost as long as 

theca, c. 2.0-4.0 mm long, curved. Filament c. 3.5-8.0 by 4 mm. Style thin and slender. 

Stigma bilabiate with saccate of two-lobes on dorsal side. Sty/odes 5.0-7.0 mm long. 

Ecology: teak forests, dry grassy lands, cultivated, waste ground and abandoned 

cultivation. 
Altitude range: 0 - 2500 m 

8.3.2 Key to subgenera (partly after Valeton, 1918) 

Rhizome developed; leaves narrowed at the base; spurs are almost as long or half as 
long as the anther; lateral staminodes folded; ligule not auriculate.......................... 

.................................................... subgenus Curcuma 
Rhizome hardly developed; leaves rounded at the base; no spurs or very short spurs on 

anther; lateral staminodes not folded; ligule auriculate ......... subgenus Hitcizeniopsis 

8.3.3 Key to varieties in Javanese Curcuma longa 

The key leads involve poor characters such as colours and smells. They are best applied 

to living material. 

Rhizomes bitter, white with blue tinge; leaves with purple flush ..........................2 

Rhizomes light yellow, yellow, dark yellow or orange; leaves green or with purple 

fl ush................................................................................................ 3  

Leaf sheath green................................................................... aeruginosa 
Leaf sheath purplish............................................................... phaeocaulis 

Rhizome light yellow, mango smell or not .................................................... 4 

Rhizome yellow, dark yellow or orange.......................................................6 

Rhizome bitter, not mango smell; leaves with intense purple streak along the midrib.. 
.................................................. . zedoaria  

Rhizome slightly bitter, mango smell; leaves green..........................................5 

Rhizome with clear mango smell, very slightly bitter; inflorescence lateral............. 
.......................................... mangga  

Rhizome very slightly manggo smell, bitter; inflorescence central........................ 
................................................. ochrorlziza  
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Leaves green without purple streak.............................................................7 
Leaves with purple streak or with purple midrib............................................11 

Inflorescence all green or sometimes coma bracts pinkish; inflorescence central......... 
. .. 8 

Coma bracts pink or purplish, flower bracts greenish; inflorescence lateral or central..9 

Inflorescence all green or coma bracts pinkish; rhizome dark orange, turmeric smell... 
longa 

Inflorescence all greens; rhizome orange .......................................... viridiflora 

Rhizome yellow, unique smell; inflorescence lateral............................ hevneana 
Rhizome citrine or orange yellow; inflorescence central...................................10 

Rhizome citrine; flowers light yellow.................................................. brog 
Rhizome orange-yellow............................................................. soloensis 

Ii. Leaves with purplish midrib; inflorescence central.......................................12 
Leaves with purple streak not along the midrib; inflorescence lateral..................... 

....................................zanthorrhiza 

Rhizome dark orange or yellow-orange; coma bracts pinkish, flower bracts greenish 
..................... . . . 13 

Rhizome dark yellow; bracts all green....................................... purpurascens 

Rhizome yellow-orange............................................................ euchroma 
Rhizome dark orange ................................................................. 	cobra/a 

Curcuma longa L. Sp. Pl. 1. p.3. 1753 

Finding a type citation or citing a type for Curcunia longa was beyond the scope of the 

thesis. 

Ainomuin curcuina Jacq. 
Curcu,na domeslica Valeton , T. Valeton, Bull.Jard.Bot. Buitenzorg 27 (191 8) 31 

Rhizome deep orange (21A or 22A) externally and internally, the young tips white. Blade 

green. Inflorescence central. Flower bract green. Coma bract white or white with 

purple towards. Flower pale yellow. Corolla tube white. Corolla lobes white. Lateral 

corolla-lobes ovate, rounded at apex. Labelluimi creamy white with yellow median band. 
La/eral siamninodes creamy white. 
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Vernacular. Kunyit 

Altitude range: 
250- 1281 m 

Curcuma longa L. var. aeruginosa (Roxb.) Ardiyani, W. Roxburgh, Asiat.Res. 

11 (1810) 335 

Rhizome cylindric, bluish inside, bitter. Blade green with purplish brown flush on distal 

half of the leaves on upper surface (on both surface, Holttum), midrib green. 

Inflorescence lateral. Flower bract green tipped with purplish. Coma bract purple at 

tips, dark green getting dull white towards base. Calyx transparent and pinkish at tips. 

Corolla tube yellowish white (dark pink red, Valeton; deep-crimson pink, Holttum). 

Corolla lobes reddish or brownish (pale red, Baker). Lateral slaminodes light yellow. 

Vernacular. Koneng hideung, Kunyir hideung (Sunda), Temu ireng (Jawa), Temo 

ereng (Madura). 

Note. aeruginosa is meant for the aeruginous colour of the rhizomes. The specimen 

cited in the protologue comes from Pegu. Roxburgh reduces Rumph's "temu itam" 

(which is C. aeruginosa Roxb.) to a Bengalese species called C. caesia Roxb. 

Curcuma longa L. var. phaeocaulis (Valeton) Ardiyani , T. Valeton, 

Bull.Jard.Bot. Buitenzorg27 (1918)69 

Rhizome yellow (20C) in the centre, orangish (25D) and bluish in the middle, and white 

or cream at peripheral; bitter. Leafless-sheath reddish brown. Leat,sheath reddish brown 

with green at apex. Petiole green. Blade green with purple streak along the midrib; 

midrib green. Inflorescence lateral. Flower bract elliptic, acute, green tipped with 

purplish. Coma bract red purple at top and white at the lower half. Corolla lobes red. 

Labellum deep yellow. 

Vernacular. Temu itam; Temu santen (Sumedang, West Java). 

Note. The description on inflorescence is taken from Valeton 1918. In daily use, the 

rhizomes of this species is mixed up with those of C. aeruginosa. 

Altitude range: 
177-301 m 
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Curcuma longa L. var. zedoaria (Christm.) Ardiyani Monandr. Pt. Scitam. 1828: 
41 

Roscoea lu/ca (Blanco) Hassk. 
Roscoea nigrociliata Hassk. 
Curcuina zedoaria (Bergius) Roscoe 
Los/us lutetis Blanco 
Amonum zedoaria Christm. ,G.F. Christmann, G.W.F. Panzer, Vollst.Pflanzensyst. 5 
(1779) 12 

Rhizome cylindric, light yellow internally (20C). Leafless-shea/h green with brown flush, 
mucronate at apex. Leaf-sheath green. Petiole green. Blade green with reddish brown 
flush along the midrib on both surface, midrib purplish green on upper surface, green on 
lower surface. Inflorescence lateral. Scape green. Flower bract elliptic (broad obovate, 
Horaninow), green tipped with purplish. Coma bract dark pink at tip getting dull white 
towards the base. Calyx yellowish white with pinkish at tip. Corolla tube yellowish 
white. Corolla lobes white. Labelluni yellow, median darker with purple spot in the 
centre. Lateral staminodes light yellow. 

Vernacular. Temu kuning. 

Altitude range: 
50 - 626 m 

Curcuma longa L. var. mangga (Valeton & Zijp) Ardiyani in Bull. Jard. Bot. 
Buitenz. XXVI. 1918: 50 

Rhizome young mango-like fragrant, light yellow inside (3C when young; 20B on 
peripheral and 25B in thecentre when old) (citrine, Valeton). Leqfless-sheath green. 

Leaf-sheath green (sometimes slightly purple, Holttum). Petiole green. Blade green, 
midrib green. Inflorescence lateral. Scape green. Flower bract oblong to elliptic, obtuse 
to rather acute, green tipped with purplish. Coma bract dark pink at tips getting dull 
white towards base. Calyx pelucid. Corolla tube yellowish white at the base, pinkish at 

apex. Corolla lobes pinkish white (flower pure white, Valeton, Holttum). Lateral 

siaminodes light yellow. 

Vernacular. Ternu mangga; Tema, Tema poh (Madura, East Java and Yogyakarta); 
Temu bajangan (local name in Bojonegoro), Temu lalab (Jakarta). 

Note. mnangga means mango. The rhizome has young mango-like odour. 
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Altitude range: 
250 - 259 m 

Curcuma longa L. var. ochrorhiza (Valeton) Ardiyani , T. Valeton, 

Bull.Jard.Bot. Buitenzorg 27 (1918) 45 

Rhizome lightyellow (I B) when old and yellowish white (3C) when young. Blade green. 

Inflorescence central. Flower bract broad oblong ovate, obtuse, light green. Coma bract 
obovate, obtuse to slightly acute, white with rose apex. Corolla tube pale yellow. Corolla 

lobes pale rose. 

Vernacular. Temu lawak which is for C. zanihorrhiza (Valeton 1918). 

Note. Specimen cited in the protologue i.e. Heyne 705 from Randublatung. ochrorhiza 

is named from the externally and internally white, in the centre greenish-lemon tinged 

rhizome (Valeton 1918). 

Altitude range: 
259 - 260 m 

Curcuma longa L. var. viridiflora (Roxb.) Ardiyani, W. Roxburgh, Asiat.Res. 

11(1810)341 

Rhizome nearly pure yellow mixed with brown tinged (deep yellow, Roxburgh) 

internally. Root tuber ovate, very light ash-coloured with gold yellow endodermis. 

Blade green, ,nidrib very faintly purplish on upper surface (Holttum). Inflorescence 

central. Flower bract narrowly ovate, obtuse, light green. Coma bract snow white with 

partly light brown dots, sometimes with sporadic light brown dots at apex. Corolla lobes 

faintly pink, the rest of the flower light cream. 

Vernacular. Temu lati, Lati putih, Temu kebo, Temu prit (Jawa). 

Note. A native of Sumatra, and other eastern islands. Roxburgh described the species 
from a specimen from Bencoolen (Bengkulu) which was sent by Dr. Charles Campbell 
(Roxburgh 1820). Specimen cited in the protologue is a specimen of Dr. Charles 

Campbell from Bencoolen (Bengkulu). viridiflora probably means green flower or 

inflorescence. The description above is from Valeton (1918). 

Altitude range: 
138 -600m 
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Curcuma longa L. var. heyneana (Valeton & Zijp) Ardiyani in Bull. Jard. Bot. 

Buitenz. XXVI. 1918: 54; 

Rhizome yellow (7A) inside (pure bright yellow, Valeton; whitish sometimes yellowish 
in the centre, Backer & Bakhuizen). Leqf-sheath green. Petiole green. Blade green, 

midrib green. Inflorescence lateral. Scape green. Flower bract green tipped with 

purplish. Coma bract dark pink at tip getting dull white towards base. Calyx transparent 

and pinkish at tip. Corolla tube yellowish white at the base and pinkish at apex. 

Corolla lobes pinkish white. 

Vernacular. Temu giring (Central Java), Jaha (West Java), Temu giring, Tema licin, 
Tema koneng (East Java), Tema lateng (local name in Mt. Yang). 

Altitude range: 

177 -900 rn 

Curcuma longa L. var. brog (Valeton) Ardiyani , T. Valeton, Bull.Jard.Bot. 

Buitenzorg 27 (1918)48 p.24 

Rhizome pure lemon yelow internally, yellowish white externally. Root tuber very pale 

yellowish internally. Inflorescence central. Scape pubescent. Flo%I'er bract pale yellow 

green on lower bracts, pale green with violet stripes on upper bracts, pubescent. Coma 
bract almost white at the base, red violet upperhalf towards the apex, pubescent. Corolla 

lobes very light pink. 

Note. Specimen cited in the protologue i.e. specimens from Randublatung. The 
description above is based on the herbarium specimen from Randublatung with Valeton's 
handwriting. The data on underground parts is adopted from Valeton's protologue. 

Curcuma longa L. var. soloensis (Valeton) Ardiyani , T. Valeton, Bull.Jard.Bot. 

Buitenzorg 27 (1918)46 

Rhizome orange internally (25A), bitter and minty fragrance. Root tuber ellipsoidal, light 

grey with yellow or lemon yellow endodermis. Blade green. Jnflorescence central. 
Flower bract very light pure green on lower bracts, with spotted violet at apex on upper 
bracts (Valeton). Coma bract white with pink towards the apex, dark violet at apex. 

Corolla lobes very light. 

Vernacular. Gelenye, Belenye. 
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Note. Specimen cited in the protologue, i.e. Heyne 50 from Solo. soloensis from the 

word Solo, a town in Central Java. 

Altitude range: 
50-610 m 

Curcuma longa L. var. zanthorrhiza (Roxb.) Ardiyani, Fl.ind. I (1820) 25 

Rhizome orange inside (21A or 22A). Root tuber orange (10E) when young, orange 

(I 7A or B) when old. Lea/less-shea/h green with brown flush. Leaf-sheath green. 

Petiole green. Blade green with narrow purplish brown flush along the midrib on both 

surface, purple flush remain on down the middle in old leaves, midrib purplish green on 

upper surface. green on lower surface. In/lorescence lateral. Scape green. Flower bract 

broadly ovate, rather acute or pointed, green tipped with purplish. Coma bract dark pink 

at tip getting dull white towards base. Calyx transparent or colourless (toothiets light red, 

Valeton). Corolla tube yellowish white. Corolla lobes pinkish white. Lateral 

.s'taminodes light yellow with pinkish spot at the back or whitish according to Holttum. 

Vernacular. Temu lawak (Central/East Java), Koneng gede (Sunda), Temu labak 

(Madura). 

Note. The species that was described by Roxburgh came from Amboyna (Ambon) which 
was brought to the Botanic Garden at Calcutta in 1798. However, this plant flowered for 

the first time in April and May 18 10 (Roxburgh 1820). 

Altitude range: 
177 -400m 

Curcuma longa L. var. purpurascens (Blume) Ardiyani , C.L. von Blume, 

Enum.pl.Javae (1827)46 

Rhizome yellow (I 7C). Root tuber elliptical, orange yellow in the inner cortex, grey 

pleroma. Blade green, midrib dark red brown on upper surface. Inflorescence central. 

Flower bract light green. Coma bract white at the base, light green to nearly white 

towards the apex, light brown spotted at apex. Bracteole pellucid white. Corolla lobes 

snow white, the rest of the flower very pale cream yellow. Lateral stamninodes elliptic, 

falcate, obtuse. 

Vernacular. Tis, Pinggang, Tinggang, Gelenye or Belenye (Valeton 1918), Kunyir 

santen, Koneng santen (Sunda) (Koorders 1911). 
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Note. Specimen cited in the protologue is from province of Bantam (Banten), West Java. 

The word puipurascens is probably for the purple flush on the leaves. The description of 

flower is based on the herbarium specimen. 

Altitude range: 
260 - 850 m 

Curcuma longa L. var. euchroma (Valeton) Ardiyani , T. Valeton, Bull.Jard.Bot. 

Buitenzorg 27 (1918)42 p. 26  

Rhizome bright orange (25A or B) internally, the young one bright orange yellow 

internally. Root tuber orange yellow. Blade green, midrib reddish on upper surface, 

almost disappear on mature plant. Ii?florescence central. Flower bract broad ovate, 

green with red purple tip. Bracteole pelucid and pink at apex. Coma bract light green at 

base red purple at apex. Flower diluted ochraceous. Corolla lobes pink (56A). Corolla 

tube yellow. Lateral staminodes light orange. Labelluin light orange with darker 

(orange) median band. Filament orangish. Anther and spur white. 

Vernacular. Kunir batok, Temu prit, Temu lati. 

Note. Specimen cited in the protologue, ie. Heyne 449 from Mojokerto; Heyne 52 from 

Kediri; Heyne s.n. from Soemenep (Sumenep) Madura. euchroma means well-coloured. 

Altitude range: 
50 - 308 m 

Curcuma longa L. var. colorala (Valeton) Ardiyani, T. Valeton, Bull.Jard.Bot. 

Buitenzorg 27 (191 8) 40 p.5, p.25 

Rhizome deep orange (25B) internally, smell pleasant, taste mild or carrot-like 

(Holttum). Root tuber orange in the centre, grey on edge. Blade green, midrib dark red 

brown on both surfaces. Inflorescence central. Flower bract green on lower bracts, green 

with violet stripes and pink at top on upper bracts, pubescent. Coma bract white or light 

green, dark purple at apex, pubescent. Corolla lobes pale pink (Valeton). 

Vernacular. There is no well-established native name. Tis or Tinggang, Temu ketek. 

Note. Specimen cited in the protologue, ie. Heyne 35; Backer 11348 from Mount Willis; 

K.1645 from Randublatung. cobra/a is probably meant for the colour of the coma 

which is dark purple, and the flower which is orange (Valeton 1918). The tallest flowers 

of any Curcuina of Java. It has some resemblance to C. peiiolata(Valeton 1918). 
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Altitude range: 
177 -600 m 

8.3.4 Key to species of subgenus Hitcheniopsis 

No spur on the anther ..................................................... C. auranhiaca Zijp 
Spur on the anther is short .................................................. C. peliolata Roxb. 

Curcuma auranhiaca Zijp, C. van Zijp, Recueil Trav.Bot.Néerl. 12 (1915) 345 - 

Rhizome hardly developed, orange (21 A or 22A) internally. Blade green. Inflorescence 

central. Flower bract green. Coma bract pink (55B or Q. Flower pale yellow. Corolla 

tube orange (28B). Corolla lobes orange (28B). Lateral corolla-lobes ovate, rounded at 

apex. Lahellum orange (28B). Lateral staminodes orange (28B). Anther whitish with no 

spur. 

Altitude range: 
50 - 550 m 

Curcuma petiolata Roxb. , Fl.ind. 1 (1820) 36 

Rhizome hardly developed, very pale sulphurous internally. Blade green. Inflorescence 

central. Flower bract green, dark purple-brown at tip. Coma bract dark purple-brown. 

Flower very light orange. Corolla tube white. Corolla lobes white with a yellow or pink 

top. Lateral corolla-lobes rotundate-ovate-oblong. Labellum light orange with yellow 

median band. Lateral siaminodes light orange. Anther with short spur. (Valeton 1918) 

Vernacular. Temu putri (Jakarta) 

Note. petiolata means long petiole. In Java, the species is cultivated in Batavia and 
Buitenzorg and seems to be rare (Valeton 1918). The species is native from Pegu and 
Martaban. It was first discovered by Mr. F. Carey which then sent to the Calcutta 

Botanic Gardens. Then, it was described by Roxburgh (Hooker f. 1870). The species is 

closely related to the turmeric (C. longa) and C. australasica Hook. f. The two latter 

species, however, have narrow leaf at the base, longer spikes, and not too deep pouches 

of its bracts (Hooker f. 1870). 

Altitude: 100  
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CHAPTER 9: GENERAL DISCUSSION 
AND CONCLUSIONS 

9.1 PHYLOGENETIC STUDY BASED ON COMBINED 
MORPHOLOGICAL AND MOLECULAR DATA 

The tree resulting from the combined molecular and morphological data can be 

seen in Figure 9.1. It is less resolved than those resulting from the molecular or the 

morphological data. The subgenus Curcuma dade is nested terminal in the tree. This is 

supported by the analysis of the molecular or the morphological data. Therefore, the 

present classification of the genus into the subgenus Curcuma is confirmed. Two 

subclades within the subgenus Curcuma dade are similar with those in the molecular 

tree. However, this does not reflect the two sections in the subgenus. The sectional 

level classification is not supported, and should be abandoned. As mentioned in Chapter 

Two, there are no morphological data which support the grouping into the two 

subclades. C. petiolata is nested next to subgenus Curcuma dade. This is supported by 

the analysis of the molecular or the morphological data. Hence, the species is closely 

related to the subgenus Curcuma having an intermediate character between the two 

subgenera in Curcurna. The C. auranhiaca and C. cf australasica dade, the C. 

parvflora dade, C. roscoeana, and C. ecomata are nested in a polytomy. Nevertheless, 

the data show the close relationship among species of the subgenus Hitcheniopsis. 

Therefore, subgenera Curcuma and Hiicheniopsis are phylogenetically distinct. The C. 

parviflora dade is well resolved. C. harmandii, which has a complex floral type, is 

nested at the base of the dade. C. thorelii and C. gracillima, which have a small floral 

type, are nested at the terminal end of the dade. It appears that the floral type has 

evolved from the complex to the small type. 
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9.2 EVALUATION OF THE CHARACTERS USED IN THE 
EXISTING CLASSIFICATION OF CURCUMA 

9.2.1 The rhizomes 
The well-developed rhizome character is uniformly distributed within subgenus 

Curcuma. In contrast, the hardly developed rhizome is prevalent in subgenus 

Hi/cheniopsis. One species from this subgenus, C. peliolala, has an intermediate 

character having very short rhizomes. Almost none of the subgenus Curcuma species 

with well-developed rhizomes set seeds. This sterility may result from constant 

vegetative reproduction using the rhizomes which have been intensively used as 

traditional medicines. During the course of evolution, the rhizomes of Curcuina may 

have evolved from none or very short to well developed rhizomes. The process had 

been possibly affected by human influence or through domestication. 

9.2.2 The leaves 

The leaves of the species in subgenus Hitcheniopsis are rounded at the base 

according to Valeton (1918) in the delimitation of the subgeneric level. C. alismaifolia 

from the subgenus Hitcheniopsis, however, has narrow leaves acuminate at the base. 

This character, therefore, is not consistent with the division of the two subgenera. The 

ligules are auriculate for all species from subgenus Hiicheniopsis. They are not 

auriculate in subgenus Curcuma. So far, this ligule character is consistent with the 

division of the subgenera. 

9.2.3 The bracts 
The bracts are mostly not adnate above the middle in subgenus Curcuma 

according to Valeton (1918). They are connected at least partly beyond the middle in 

subgenus Hiicheniopsis(ValetOn 1918). This character of the adnation of the bracts is 

not consistent. In subgenus Hitcheniopsis. C. har,nandii has bracts that are adnate for 

much less than half their length. Hence, the character of the adnation of the bracts is not 

a good for separating the two subgenera. The coma bracts in subgenus Hiicheniopsis are 

221 



CHAPTER 9: GENERAL DISCUSSION AND CONCLUSIONS 

shorter than the fertile bracts (Valeton). C. a1ismatfolia has shorter fertile bracts than 

coma bracts. This character of the length of the coma bracts is therefore inconsistent 

with the division of the subgenera. 

9.2.4 The lateral staminodes 

The lateral staminodes are longitudinally grooved and folded or clasped under 

the dorsal corolla lobe in subgenus Curcuma (Valeton 1918). These characters are 

congruent with the division of the subgenera. Free (not folded) and non-grooved lateral 

staminodes occur in all species from subgenus Hiicheniopsis. 

9.2.5 The anthers 

All species from subgenus Curcuma have spurs on the anther. Three species 

from subgenus Hitcheniopsis studied, C. ecomala, C. cf australasica, and C. petiolala, 

have spurred anthers. The rest of the species from subgenus Hitcheniopsis studied have 

spurless anthers. Therefore, the character of the spurred anther is not specific to 

subgenus Curcuma alone. 

Spurs are assumed to help in the process of pollination. When a pollinator tries 

to enter the flower, it has to push the spurs. This in turn will rotate the anther, since the 

anther is versatile, and will position it so that it touches the back of the pollinator. The 

pollen then will be trapped on the pollinator's back and will be carried to other flowers. 

The connectives of the anther cells lengthen at the apex to form a crest which 

encloses the stigma entirely or only its base. This anther crest occurs in all species from 

the subgenus Hitcheniopsis being a constant character for the subgenus. 

9.3 EVALUATION OF THE CLASSIFICATION OF CURCUMA 
FROM PHYLOGENETIC INSIGHT 

9.3.1 The existing classification of Curcuma 

The exclusion of several species from the genus Curcuma by Valeton (1918) 

does not result in a natural grouping. Therefore, the delimitation of Valeton's subgenus 
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Paracurcuma does not accommodate the rest of the species from the subgenus 

Hitcheniopsis. Some characters used in the delimitation of the subgenera are 

inaccurate. They are the shape of the base of the leaves, the adnation of the bracts, the 

length of the coma bracts in comparison with that of the fertile bracts, and the spurs on 

the anther (p.221-222). Some other characters are good for the delimitation of the 

subgenera, i.e. the shape of the ligules, the groove on the lateral staminodes, the clasping 

lateral staminodes, and the crest on the anther. 

The characters used in the delimitation of Baker's (1894) sectional level and 

Schumann's (1908) subgeneric level classifications are also inaccurate. The position of 

the inflorescence has been proved homoplasious. The shape of the apex of the bracts in 

subgenus Hitcheniopsis is not always obtuse. It is acuminate in C. harmandii. The 

adnation of the bracts, as explained earlier, is not a good character for separating the two 

subgenera. Although the delimitation of the subgeneric taxa is not really appropriate, 

the groupings of the species into the subgenera are accurate. 

The sections of Schumann (1908), Baker (1894), and Valeton (1918), which are 

based on the position of the inflorescence, have to be rejected as discussed previously 

(p.75; p.145). 

The classification of Curcuma by Velayudhan etal. (1996) is mainly based on 

the rhizome characters. Due to limited samples, the classification can not be completely 

checked. In the field, C. !onga (which is in the section Tuberosa subsection two) was 

found to produce flower spikes from the tip of the sessile tuber, and from the tip of the 

primary mother rhizome in another clone. Therefore, the division into subsections in 

section Tuberosa does not seem natural. Further study is needed to verify this. 
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9.3.2 Proposed new classification of Curcuma 

Subgenus Curcuma (Baker) K. Schum. 

Diagnostic description (partly after Valeton 1918) 

Rhizomes well developed, forming lateral branches. Ligules not forming an auricle on 

both sides of the base of the petiole. Lateral staminodes longitudinally grooved, folded 

under the dorsal lobe. The connective of the anther cells not lengthened towards the top, 

not forming a crest. 

C. longa L., C. longa var. aeruginosa, C. longa var. zedoaria, C. longa var. amada, C. 

longa var. heyneana, C. longa var. ochrorhiza, C. ion go var. soloensis, C. longa var. 

arornatica, C. longa var. elata, C. longa var. amarissima, C. longa var. zanthorrhiza, C. 

longa var. brog, C. longa var. euchroma, C. longa var. cobra/a, C. longa var. mangga, 

C. longa var. ochrorhiza, C. longa var. purpurascens, C. longa var. viridflora, and C. 

longa var. phaeocauiis. 

Subgenus Hitcheniopsis (Baker) K. Schum. 

Diagnostic description (partly after Valefon 1918) 

Rhizomes lacking or short, not forming lateral branches. Ligules forming an auricle on 

both sides of the base of the petiole. Lateral staminodes not longitudinally grooved, not 

folded under the dorsal lobe. The connective of the anther cells lengthen towards the top 

forming a crest. 

C. ecotnata, C. australasiaca, C. auranhiaca, C. ihoreiii, C. gracillima, C. aiismaifoiia, 

C. harrnandii, C. roscoeana, and C. petiolata. 

Further study that includes more samples of Curcuma sp. is needed to check if the 

diagnostic characters are able to accommodate them. 
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APPENDICES 

APPENDIX 1. The chemicals used in the molecular approach. 

U 2xCTAB extraction buffer (2% CTAB: cetyltrimethylammonium bromide): 1.4 M 

NaCI, 20 mM EDTA (EthylenediaminetetraaCetic acid) disodium salt, 100 mM Tris-

HCI p1-I 8, 1% PVPP (polyvinyl pyrrolidone) with added 1% beta-mercaptoethanol 

prior to use. 

U TE (10mM Tris-HCI and 1 mM EDTA). 

U IOxTBE buffer stock (89mM Tris-HCI, 89 mM boric acid, 2mM EDTA pH 8.0). 

U agarose (Promega, Madison, WI, USA). 

• Loading solution (Promega, USA: 0.25 M disodium-EDTA, 50% glycerol, 0.1% 

SDS, 0.0 1% bromophenol blue, 0.0 1% xylene cyanol). 

• DNA size marker Hyperladder (Promega, USA). 

• DynazymeTM reaction buffer (Ix: 10 mM Tris-HCI, pH 8.8 at 25 ° C, 1.5 MM.  M902, 

50 mM KCI, 0.1% Triton X-100) - Finnzymes Oy, Espoo, Finland. 

• dNTP mix (Sigma Chemicals, Poole, Dorset, UK). 

• primers (Oswel DNA Service, Southampton, UK). 

• DynazymeTM II thermostable DNA polymerase (Finnzymes Oy, Espoo, Finland). 

U QIAquickTM PCR Purification Kit (Qiagen Ltd, Dorking, Surrey, UK). 
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APPENDIX 2. Sequence data matrix (displayed from 5' to 3') of aligned ITS1 and ITS2 regions of 28 taxa of 
Zingiberaceae. Numbers in bold italic (1 to 35) indicate the number and position of alignment gaps. Uncertain nucleotide 

states are coded based on PAUP conventions (Swofford 1993) as follows: K=G/T, M=A/C, R=A/G, S=C/G, W=AIT, Y=C/T, 

N=AII7GIC. Square brackets at the end of sequences show the real spacer length of ITS1 plus lTS2 regions. 
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Ca. graciliS 	 TTGTTGAGPGAGCTTA ----- GAATGATGGATGGTTGTGAATGTGTTGTGCCCCTTTCCTTTCCCCA ------- TGTTGG ---- TGG 

Ca. spicata 	 TTGTTGAGAGAGCATA ----- GAATGATGGATGGTTGTGAATGTGTATGTGCCCCTTTCCTTTCCCCA ------- TGTTGGTGG 

R. aurjcuia ta 	
TTGTTGAGAGAGCATA ----- GAATGACGGATGGTTGTGAATGTGTGTGTGCCCCTTTCCTTCCCC.r ------- TCTCGG ---- TGG 

R. schneideriana 	TTGTTGAGAGAGCATA ----- GAATGATGGATGGTTGTGAATGTGTGTGTGCCCCTTTCCTT_CCCCA ------- TATCGGTGG 

St. involucrattis 	TTGTTGAGAGAGTATA ----- GAATGATGGATGATTGTGAATGTGTGAGCGTGCTCCTTTCCTTGCCC ------- TGTTGG ---- TGG 

Sin. supraneanae 	TTGTTGAGAGAGCATA ----- 
	CGTTGG ---- TGG 

C.parviflora 	
TGTTGG ---- TGG 

C. thorel ii 	 TTGTTGAGAGAGCATA 	
TGTTGG ---- TGG 

C. roscoeana 	 TTGTTGAGAGAGCATA ----- GAATGATGGATGATTGTGAATGTGTGCGTGACCCTTTCGTTAGCCCA ------- TGTTGGAACP.TGG 

C. alismatifolia 	
TGTTGG ---- TGG 

C. gracillima 	
--- ------- TGTTGG ---- TGG 

C. ecomata 	 TTGTTGAGAGPGCATA ----- GAATGATGGATGATTGTGAATGTGTGCGCGACCCTTTCGTTAGCCCA ------- CGTTGG ---- TGG 

C. harmaridi i 	 TTGTTGAGAGAGCATA _TAGAATGATGGATGAATGTGAATGTGTGCGTG0CTTTCTTT 	------- TGTTGG ---- TGG 

C. cf. austraiasiCa 	TTGTTGAGAGAGCATA ----- GATGATGGATGATTGTGAATGCGTGCGTGACCCTTTCGTTAGCCCA ------- TGTTGG ---- TGG 

C.petiolata 	 TTGTTGAGAGAGCATA ----- GAATGATGGATGATTGTGAATGTGTGAACGTGACCCTTTCGTCCATCGGCCCATGTTGGTGG 

C. aurantiaca 	TTGTTGAGAGAGCATAGCATAGTGATGGATGATTGTGTGTGTGJCGTGACCCTTTCGTTAGCCCATCCATGTTGGTGG 

C. aeruginOSa 
C. amada 	 TTGTTGAGAGAGCATAGCATAGARTGATGGATGATTGCKAWCGTGTGCGTGACCCTTTCGTCRGCCCAKCCCATGTTGGTGG 

C. amarissima 	TTGTTGAGAGAGCATAGCATARATGATGGATGATTGCWCGTGTGCGTGACCCTTTCGTCRGCCCATCCCRTGTTGGTGG 

C. aroma tica 
C. ela ta 	 TTGTTGAGAGAGCATCATAGAATGATGGATGATTGTGICTGTGTCTTTCGTCCGCCCGTTGGTGG 

C. heyneana 	 TTGTTGAGAGAGCATAGCATAAAATGATGGATGATTGCTCGTGTGCGTGACCCTTTCRTCGGCCCATCCCATGTTGGTGG 

C. longa 
C. man gga 	 TTGTTGAGAGAGCATAGCACAGTGGGATGAWTGCGCGTGTGCGTGACCCTTTTGTCGGCCCA -------TGTTGG----TGG  

C. ochrorhiza 	TTGTTGAGAGAGCATAGCACAGTGATGGATGATTGCGCGTGTGCGTGACCCTTTCGTCGGCCCA-------TGTTGG----TGG 

C.phaeocaulis 	
TGG  

C. soloensis 
C. zedoaria 

-o 
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Ca. spicata 
R. auricula ta 
R. schneideriafla 
St. involucratus 
Sm. supraneaflae 

GCGATT 	
-GGGGAGCACAA 

C. pa rvi flora 
C. thorelii 

GCGATT_GACCGTAGCTCGGTGCGATCCTA TTTG TAGC 
C. roscoeana 
C. alisma tifolia 
C. gracillima GCGATT-GACTA--- CGGTGCGATCGGCACTAGGCT 	TC 	AGGGGCCCTTTGTGAGC -GGGGAGCCCAA 
C. ecoma Ca 
C. harmandii 
C. cf. australasica 

GCGATT_GACCGTAGCTCAGTGCGATCCT TTT GGCC 
C. petiola Ca 

GCGATT_GACTG_AGCTCGGTG0GATGCT TTTA 
C. aurantiaCa 
C. aeruginosa 

GCGATT _ GAC CGTAGCTCGGTGCGATCGG 	CTAAGA 	TTG GCCTTGTG 	-GGGGAGCCCI½A 
C. ama da 
C. amarissima 

GCGATT _GACCGTASCTCGSTGCGATCGG 	CTAG TTG 	AGIGGCCCC -TTAGCGTGAGC- -GGGGAGCCCAA 
C. a roma Ci ca 
C. ela Ca 
C. heyneana 
C. longa 

GCGAAT _GACCGTAGCTCGGKGCGAT0GGCACT 	 -GGGGAGCCCAA 
C. man gga 
C. och rorh i za 

-GGGGZGCCCAA 

C. phaeocaulis 
GCGATT_GACCGTAGCTCGGTGCGAT T 0TTG0 CT 

C. soloensis 
C. zedoa ri a GCGATT _ GACCGTAGCTCGGTGCGATCGGCACTA 	GAA 	CTTGG 	 TTAGCGTGAGC -GGGGAGCCCAA 
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Ca. gracilis TCTTTTG0TATGTTATTG 
Ca. spicata 

TGCGT CGGAGATTTTT ---- CGAT_TT --- 
TGCGTCGGAGATTTCT ---- CGT_TT --- 	 TCTTTTTATGTTG 

R. auricula ta 
R. schneideriafla 
St. involucratus 
Sin. supraneaflae 
C.parvifiora 

TGCGTCGAAGATTCTT ---- CGGT_TAT --- TGTCTTATG0TCTTTTGTT 
C. thorelii 
C. roscoeafla 
C. alismatifolia TGCGTCGAAGATTCTT ---- CGGT_TT --- TGTCTTAT TTTTGTTGG 

C. graciliiina 
C. ecoinata 

harmandii C. 
C. cf. australasica 
C.petioia ta 
C. aurantiaca 
C. aeruginosa 
C. aniada 
C. arnarissiina 

TGCGT CGGAGATTCTTTCTTCGGTCA1_TGAGT --- TGTCG0TTTTGCTCCATTTTGTCCATG C. arornatica 
T GCGTCGGAGATTCTTTCTTCGGAATCA_TGA_T --- TGTCGCTTTTGCTCCATGCTTTGTCGGCA C. ela ta 

C. heyneana 
C. longa 
C. rnangga 
C. ochrorhiza 
C.phaeoCauliS 
C. soloensis 
C. zedoaria 



280 	290 	300 	310 	320 	330 	340 	350 	360 

t'J 

Ca. gracilis 
Ca. spicata 
R. auri cula ta 
EL schneideriafla 
St. involucratus 
Sm. supraneanae 
C.parviflOra 
C. thorelii 
C. roscoeafla 
C. alismatifolia 
C. gracillima 
C. ecomata 
C. harmandii 
C. cf. australaSica 
C.petioiata 
C. aura ntiaca 
C. aeruginOSa 
C. amada 
C. amarissima 
C. aroma tica 
C. elata 
C. heyneana 
C. longa 
C. mangga 
C. ochrorhiza 
C.phaeocauliS 
C. soloensis 
C. zedoaria 

CTCGTGTGTCCTC 
CTCGTGTGTCCTC - 
CTCGTGTGTCCTC _GGGCACAGTCGGTTGAAGAGTGGG TAGTCCGAAGTCGTCGGGCACGACGGGTGTTGGTCGCCGTGAGCGAGC 

CTCGTGTGTCCTC 
CTCGTGTGCCCTC 
CTCGTGTGCCCTC - 
CCCGTGTGCCCTC _GGGCATAGTCGGTCGPAGAGTGG TACTCGGCTCGTCGAGCACGATGGGCGTTGGTCGTCGCGCGAGC 

CCCGTGTGCCCTC 
CCCGTGTGCCCTC _GGGCACAGTCGGTCGAAGAGTGGG TAGTCGGTAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGC 
CCCGTGTGCCCTC _GGGCATAGTCGGTCGAAGAGTGGG TACTCGGOATCGTCGAGCACGATGGGCGTTGGTCGTCGCGCGAGC 

CCCGTGTGCCCTC 
CCCGTGTGCCCTC - 

 _GGGCACAGTCGGTCGAAGIAGTGGG TAGTCGGTATTCGTCGAGCACGATGGATGTTGGTCGTCGCGCGGGC 

CCCGTGTGCCCTC- 
 _GGGCATAGTCGGTCGAAGAGTGGG TACTCGGCTCGTCGAGCACGATGGGCGTTGGTCGTCGCGCGAGC 

CCCGTGTGCCCTC- 

CCCGTGTGCCCTC- 
CCCGTGTGCCCTC - 
CCCGTGTGCCCTC- 

 _GGGCACAGTCGGTCGAAGAGTGGG TAGTCGGTPJ\TCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGC 

CCCGTGTGCCCTC- 
CCCGTGTGCCCTC -  _GGGCACAGTCGGTCGAAGPGCGGG TAGTCGGCAATCGTCGAGCPiCGATGGACGTTGGTCGTCGCGAGCGAGC 

CCCGTGTGCCCTC- 
CCCGTGTGCCCTC- 

 -GGGCACAGTCGGTCGAAGAGTGGG TAGTCGGTATCGTCGAGCACGATGGACGTTGGTCGTCGCGGCGAGC 

CCCGTGTGCCCTCTCGGGCACAGTCGGTCGAAGAGCGGG - TAGTCGGTAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGAAC  

CCCGTGTGCCCTC - 
CCCGTGTGCCCTC- 
CCCGTGTGCCCTC - 

 -GGGCACAGTCGGTCGAAGAGCGGG TAGTCGGTAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGC 

CCC GT GTGCCCTCTCGGGCACAGTCGGTCGGAGCGTG_TAGTCGGTTCGTCGAGCGCGATGGACGTTCGTCGTCGCG AGAGAGC  

CCCGTGTGCCCTC -  _GGGCACAGTCGGTCGAAGAGTGGG TAGTCGGTAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGC 



Ca. gracilis 
Ca. spicata 
R. auriculata 
R. schneideriana 
St. involucratuS 
Sin. supraneaflae 
C.parvifiOra 
C. thoreiii 
C. roscoeafla 
C. alisrnatifolia 
C. gracillima 
C. ecomata 
C. harmandii 
C. cE. australasica 
C.petioiata 
C. aurantiaCa 
C. aeruginosa 
C. ainacla 
C. amarissiina 
C. aroinatica 
C. ela ta 
C. heyneana 
C. .2 on ga 
C. inangga 
C. ochrorhiza 
C.phaeocaulis 
C. soloensis 
C. zedoaria 

tQ 

0 
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.2 	 .22 	. 	 .2 	. 	 .2 	33. 

	

.5 	 .67 	. 	 .8 	. 	 .9 	01. 

AGAACGTCGT__CCCCGTCGT --- TTTGGGT_GTTA ---- G TGTGTT ------- TGTGATGTCGTGTGA1AGTGCC 

AGACGTCGT__CCCCGTCGT --- TTTGGGT_GT0cT 	---- 	 CTGTGTT ------- TGTGPtTGTCGTGTGAAAGTGCC 

AGAACGTCGT__CCCCGTCGT --- TTTAGTT__TTA ---- 	 GTGTT ------- TGTGATGCGGTGTGAAAGCCCC 

AGAACGTCGT--CCCCGTCGC --- TTTAGGATT - GTCCTCAA  

TGAACGTTGT__CCCCGTCGT --- GCTT T GAcTGTGTT ------ TTGCGGAGTCGGGTGPJA.AGTGCC 

TGAACGTCGT__CCTCGTCGT --- TT0GGTT 	---- 	 TGTGTT ------ TTGCGGAGTCGGACGPAAGTGCC 

TGACGTCGT__CCTCGTCAT --- TTTGGGATGTC0TC ---- G TATGTT ------- TGTGATGTCGTGTGAAAGCGAT 

TGACGTCGT__CCTCGTCAT --- TTTGGGATGTc0T0 ---- 	 TATGTT ------- TGCAGAGTCGGACGAAAGCGCT 

TGPACGTCGT--CCTCGTCGT --TTTGGGATGAGTCCTCAA - 	
GATTGCGGAGTCGCGTGAAAGCGCC  

TGCGTCGT__CCTCGTCAT --- TTTGGGATGT0CT 	---- G TGTT ------- TGCAGAGTCGGPTGAAAGCGCT 

TGAACGTCGT_CCTCGTCAT --- TTTGGGATTT 	---- GACTiTGTT ------- TGCAGAGTCGGACGAAAGCGCT 

TGAACGTCGT__CCTCGTCGT_TTCGGGATGTTA ---- 	 TGTGTT ------- TGCGGAGTCGGTTGPAAGTGCC 

TGAACGTCGT__CCTCGTCATTTTGGGAT0T0cTC ---- 	 TATGTT ------- TGCAGAGTCGGATGM.AGCGCT 

TGAGCATCGT -  -CCTTGTCGC ---  TTTGGAACGAATCCTCAA ---- GAGACCcATGTGAT ---- GATTGTGGAGTCGTTGTT 

TGAPCGTCGT -  -CCTCGTCGT- --  TTTGGGATGAGTCCTCAAGA GAGACCCTGTCTGAT" _-GATTGCGGAGTCGCGTGAAAGCGCC 

TGAACGTCGT -  -CCTCGTCGT- --TTTGGGATGAGTCCTCN --GAGACCCTGTGTGAT - - -GATTGCGGAGTCGCGTGWGCGCC 
TGACGTCGTGTCCTCGTCGTTTTCGGGATGAGTCCTCCA ---- GAGACCCTGTGTGAT --GATTGCGGAGTCGCGTGAAAGCGCC 

TGAACGTCGTGTCCTCGTCGT --- TTTGGGATGAGTCCTCCA - 	 GATTGCGGAGTCGCGTGAAAGCGCC  

TGAACGTCGT- -CCTCGTCGT- __TTTGGGATGAGCCCTCAAGAGAGACC0TGTGTT - --GATTGCGCACCCGCGCGAGAGCGCC 

TGAACGTCGT- 	 --- TTTGGGATGAGCCCTCAAKAAAGAGACCCTGTGTGATTGATGATTGCGGACCCGCGCGAACGCGCC - 

TGAACGTCGTGTCCTCGTCGT --- TTTGGGATGAGTT ---- GAGACCCTGTGTGAT__GATTGCGGAGTCGCGTG0G 
TGAACGTCGTGTCCTCGTCGT--- TTTGGGATGAGTCCTCCAGAGACCCTGTGTGAT - --GATTGCGGAGTCGCGTGAAGCGCC 
TGAACGTCGT- _CCTCGTCGT---TTTGGGATGAGCCCTCA - GAGACCCTGTGTGATWGATGATTGCRGACCCGCGCGAAAGCCCC  

TGAACGTCGTGTCCTCGTCGT -TTTCGGGATGAGTCCTCMA" --GAGACCCTGTGTGAT- - --GATTGCGGiGTCGCGTGAAAGCGCC 

13 

rn 

0 

C,) 



NJ 

460 	470 

3 	. 	 333 
2 	. 	 345 

Ca.gracilis GTG__TCCATCA"AATTGT [415] 

Ca. spicata GTG__TCCATCA - 	AATTGT [415] 

R. auriculata GTG__TCCATCATTGT [412) 

R. schneideriafla GTG_-TCCATCAITTGT [415] 

St.invoiucratuS GTG__TCCATCA --- AATTGT [417] 

Sm. supraneaflae GTG__TCNTCATTTGT (415) 

C.parvifiora GTG_-TCAATCATCATTTGC [419) 

C. thoreiii GTG--TCAATCA-TCATTTGC [420] 

C. roscoeana GTG--TCAATCATTTGC [421) 

C.alismatifOlia GTG--TCAT.TCATCATTCGC [419) 

C. gracillima GTG_-TCPATCA-TCATTTG0 [419] 

C. ecomata GTG_-TCAATCA ---- TTTGT [409] 

C. harmandii GTG--TCATCATCATTTGC [419) 

C.cf.austraiaSiCa GTG--TCAATCATTTGC [417) 

C.petioiata GCG--TCAATCATTTGC [424] 

C.aurantiaCa GTG--CCAATCATTTATTTGC [447] 

C.aeruginoSa GCG--TCAATCA - 	"TTTGC [4251 

C.arnacia GCG--TCPATCA -- 	TTTGC [431] 

C. amarissima GCG--TCAATCATTTGC [4301 

C.aromatica GCGCGTCTCATTTGC [437] 

C.eiata GCGCGTCAATCATTTGC [437] 

C. heyneana GCG--TCAATCATTTGC [430] 

C. longa GCG--TCAPtTCA -- 	TTTGC [4371 

C.mangga GCG--TCAATCA -- 	TTTGC [425] 

C.ochrorhiza GCG--TCAATCATTTGC [4251 

C.phaeocaulis GCG- - TCAATCA ---- TTTGC [431] 

C.soioensis GCG--TCAATCA - 	TTTGC [429) 

C. zedoaria GCG--TCAATCATTTGC [428] 

cn 



APPENDIX 3. Sequence data matrix (displayed from 5' to 3') of aligned ITS1 and ITS2 regions of 28 taxa of 
Zingiberaceae. Numbers in bold italic (1 to 35) indicate the number and position of alignment gaps. Uncertain nucleotide 

states are coded based on PAUP conventions (Swofford 1993) as follows: K=G/T, M=A/C, R=A/G, S=C/G, W=A/T, Y=CIT, 

N=AJT/GIC. 
Square brackets at the end of sequences show the real spacer length of ITS1 plus ITS2 regions. 

10 	20 	30 	40 	50 	60 	70 	80 	90 

1. 

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCA
ATCCTGAGCCAAATCCTTAGTTTGATAAAACTAAGGTTTATCAAA  

TATCAP'A 
TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTT --------------- 

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAA
TCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

T GGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAA
TCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

T GGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAA T CCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGG
GCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTGAAAATGGGCAA
TCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTT --------------- TATCAP.A 
---------------------------  TATCAAA 

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAA
TCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA 

 

T GGTAAcTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATC
CTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATC
CTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAAT
CCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAA
TCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATC
CTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAA
TCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCC
TGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATC
CTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCC
TGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAA
TCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATC
CTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAAATTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATC
CTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATC
CTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCC
TGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA  

TGGTAACTTCCAAATTCAGAGAAACCCTGGAATTTAAAATGGGCAATCCTGAGCCAAATCCTTAGTTTGATAAACCTTAGTTTTATCAAA 

Ca. spicata 
R. humeafla 
Sm. supraflea nee 
C. thorelii 
C.rosCoeafla 
C.alismatifolia 
C. gracillima 
C. ecoma ta 
C. harmandii 
C. cf. australeSiCe 
C.petiolata 
C. ochrorhiza 
C. aerugiflOSa 
C.phaeoCauliS 
C. aurantiaCa 
C. heyneafla 
C. longa 
C. amade 
C. zedoaria 
C. zanthorrhiZa 
C. soloensis 
C. aroma tica 
C.purpuraSCefls 
C. elate 
C. colorata 



100 	110 	120 	130 	140 	150 	160 	170 	180 

2. 	345. 
 

CTAGAATAAAAAAAAAAGGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCGTTGGTAGTTGGAATC 
Ca . spi ca ta 
R. humeana 
Sm. supraneaflae 
C. th orel ii 
C. roscoeafla 

CTAGAATAAAAAAAAAAGGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCGTCGGTAGTTGGAATC 
C. alisma tifolia 
C. gra ciii ima 
C. ecoma ta 
C. harmandii 
C. cf. australasica 

CTAGAATAAAAAAAAAAGGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCGTCGGTAGTTGGAATC 
CTAGAATAAAAAAAAAAGGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCGTCGGTAGTTGGAATC 

C.petioia ta 
C. ochrorhiza 
C. aeruginoSa 
C. 	uiis phaeoca CTAGAATAAAAAAAAAAGGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCGTCGGTAGTTGGAATC 
C. aurantiaca 
C. heyneana 

CTAGPA-AAPAAAA C. 1 onga 
C. amada 
C. 	ri a zedoa 

CTAGAA-PAAPPJ--- GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCGTCGGTAGTTGGAATC  

C. zan thorrhi za 
C. soioensis 
C. a roma tics 
C. purpurascenS 

CTAGAA-AAAAPAA--- GGATAGGTGCAGAGACTCAATGGAAGCTGTTCTAACGAATGAAGTTGACTACGTTTCGTCGGTAGTTGGAATC  
C. el a ta 

CTAGAA-AAAAMAA C. co 1 ora ta 



190 	200 	210 	220 	230 	240 	250 	260 	270 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
Ca. spi ca ta CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
R. h urneana CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
Sin. supraneanae CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT 
C. thorel ii CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
C. roscoeana 
C. alisina tifolia 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
C. graciiiiina 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
C. ecoma ta 
C. ha 	i rmancii 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  

C. cf. australasiCa 
CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT 

CGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
C.petiola ta CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATA

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
C. och rorhi za 
C. aerugiflOsa 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  

C.phaeoCaUiiS 
CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT 
CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  

C. a u rant .1 a ca CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT 
C. heyneana 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
C. I onga 
C. 	da ama 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  

C. zedoa na 
CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
C. zan thorrhiza 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
C. soloensiS 
C. 	t I ca a roma 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  
C. purpurascenS 
C. ela ta 

CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  

C. colorata 
CGTCTATCAAAATTACAGAAAAGATGTTCCTATATACCTAATACATACGTATACATACTGACATATCAAATCAAACGATTAATCATGACT  

-o 

0 
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CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAG AGTTATTGTGAATCCAATCCAATGGAAGTCGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATTAAAAATTCAGAATTAG
AGTTATTGTGAATCCAGTCCAATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATT AGAGTTATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGT
TATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAG
TTATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGT
TATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTT
ATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTCTAATATGAAAAATTCAGAATTAGAGT
TATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTMAGAATTAGAG
TTATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGT
TATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTA TTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTT
ATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTT
ATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAG
AGTTATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTA
TTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTAT T G TGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTA TTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTT ATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAALATTCAGAATTAGAGTTATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTAT T GTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTA TTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTATTG TGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTAT T GTGAATCCAGTCCGATGGAAGTTGAAAGAAGA  

CGAATCCATTATATTATATGGATAATTATAATATGAAAAATTCAGAATTAGAGTTATTGTGAATCCAGTCCGATGGAAGTTGAAAGAAGA 

Ca. spicata 
R. hurneana 
Sm. supraneaflae 
C. thorelii 
C. roscoeafla 
C. alismatifolia 
C. graciiliina 
C. ecoma ta 
C. harmandii 

t'J 
	C. cf. australasica 

C.petiolata 
C. ochrorhiZa 
C. aeruginOSa 
C.phaeocauliS 
C. aurantiaCa 
C. heyneana 
C. longa 
C. amada 
C. zedoaria 
C. zanthorrhiza 
C. soloensiS 
C. aroma tics 
C. purpuraSCenS 
C. elata 
C. colorata 
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ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTG AAA AACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATT ----- 
ATTGAATATTCAATTCAATTACTAATCTTCATTCCAGAGTTTGATAGATCTTTTGCTGAT  

ATTGAATATTCAATTCAATTACTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTACTAAATCATTCATTCCAGAGTTTGATAGATC TTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTACTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAAC TGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAAC TGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAAC TGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAAC TGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

ATTGAATATTCAATTCAATTATTAAATCATTCATTCCAGAGTTTGATAGATCTTTTGAAAAACTGATTAATCGGACGAGAATAAAGAGAG  

Ca. spicata 
R. humeana 
Sm. supraneaflae 
C. thoreiii 
C. roscoeafla 
C. alismatifo-Lia 
C. gracillima 
C. ecomata 
C. harmandii 
C. cf. australasiCa 
C.petioia ta 
C. ochrorhiza 
C. aeruginosa 
C.phaeocauliS 
C. aurantiaCa 
C. heyneana 
C. longa 
C. amada 
C. zedoaria 
C. zanthorrhiZa 
C. soloensis 
C. aroma tica 
C.purpuraSCeflS 
C.elata 
C. cobra ta 



Ca. spicata 
R. humeana 
Sm. supraneaflae 
C. thorelii 
C. roscoeana 
C. alismatifolia 
C. gracillima 
C. ecomata 
C. harmandii 
C. cf.austraiaSiCa 
C.petioiata 
C. ochrorhiza 
C. aeruginoSa 
C. ph a eo ca u ii s 
C. au rant: iaCa 
C. heyneana 
C. longa 
C. amada 
C. zedoaria 
C. zanthorrhiza 
C. soloensis 
C. aroma tica 
C.purpuraSCeflS 
C. ela ta 
C. colorata 

-1 

460 	470 	480 	490 	500 	510 	520 	530 	540 

.7 

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAA T CCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG TCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAA T C CGTCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAA AATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG
TCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAA ATCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG TCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG TCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTtATAGTAAGAGGAAAaTCCG T CgACtTtAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG TCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG T CGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG TCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG T CGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG TCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCG ACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG T CGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCG T CGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAA TCCGTCGACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCG ACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCG ACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCGAC TTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCG ACTTTAGAAATCGTGAGGGTTCAAGTCC  

AGTCCCATTCTACATGTCAATACCGACAACAATGAAATTTATAGTAAGAGGAAAATCCGTCG AC TTTAGAAATCGTGAGGGTTCAAGTCC  

Ii 



550 	560 	570 	580 	590 	600 	610 	620 	630 

111 	. 

012. 

Ca. spica ta 
R. hwneana CTCTTCCCCAATAAAAA_GGTAATTTTACTTTTATTTAT ------ CCTCCTTTTTCTTTT_CATCCGCGATTCAGTTC 

CTCTATCCCCATAAAA_GGTITTTTACTTTTATTTAT ------ CCTCCTTTTTTTTCATCAGCGATTCAGTT0 Sin. supraneanae 
CTCTATCCCChATAAAAGGTTTTTACTTTTATTTAT ------ CCTCCTTTTTTTTTCATCAGCGATTCAGTTCAC C. thorelii 
CTCTATCCCCAAAAAAGGTTTTTTTTTATTTAT ------ CCTCCTTTTTTTTCATCAGCGTTCAGTTC C. roscoeana 

C. a1isinatifoLia CTCTATCCCCAATAAAAGGTAATTTTACTTC0TTATTTAT ------ CCTCCTTTTTTTTTTCATCAGCGATTCAGTTCAC 

C. gracillima CTCTATCCCCAATAAAGGTTTTTACTTTATATTTAT ------ CCTCCTTTTTTTTTTTCATCAGCGATTCAGTTCAC 
CTCTATCCCCAATAAA-A_GGTAATTTTACTTTWTATTTAT ------ CCTCCTTTTTTTTTT_CATCAGCGATTCGTTCC C. ecornata 

C. harrnandii CTCTATCCCCAATJAAAA_GGTIATTTT1CTTTTATTTAT ------ CCTCCTTTTTTTTTT_CATCAGCGTTCAGTTcC 
tQ 

C. cf. australasiCa CTCTATCCCCAATAAAAGGTTTTTTTCCTATATTTAT ------ CCTCCTTTTTTTTTT-CATCAGCGATTCAGTTCAC 
00 	

C.petioiata CCTCTTCCCAATAAAA_GGTAATTTTACTTTTATTTAT ------ CCTCCTTTTTTTTTT_CATCAGCGPTTCAGTTCWC 

C. ochrorhiza CTCTATCCCCAATAAGGTTTTTACTTTTATTTAT ------ CCTCCTTTTTTTTTT-CATCAGCGATTCAGTTCC 

C. aeruginosa CTCTATCCCCAATAAAAAAGGTAATTTTACTTCCTAAATATTTAT ------ CCTCCTTTTTTTTTT_CATCAGCGTTCAGTTCAC 

C.phaeocauiis CTCTATCCCCPATAAAAAGGTTTTTACTTCCTATATTTAT ------ CCTCCTTTTTTTTTCPTCAGCGATTCAGTTCA0 

C. aurantiaca CTCTATCCCCAATAAAAGGTAATTTTACTTCCTTATTTAT ------ CCTCCTTTTTTTTTT_CATCAGCGTTCAGTT0C 
CTCTTCCCCAATAGGTAATTTTACTTC0TATATTTAT ------ CCTCCTTTTTTTTTT-CATCAGCGATTCAGTTCAC C. heyneana 
CTCTATCCCCAATAAAAAGGTAATTTTACTTTTATTTAT ------ CCTCCTTTTTTTTTTCATCAGCGATTCAGTTCC C. longa 
CTCThTCCCCAATA/AA_GGTAATTTTACTTCCTATATTTAT ------ CCTCCTTTTTTTTT--CATCGCGATTCAGTT0AC C. arnada 
CTCTATCCCCATAAAAAGGTAATTTTACTTTTATTTAT ------- CCTCCTTTTTTTTTTCATCAGCGATTCAGTTCC C. zedoaria 

C. zanthorrhiza CTCTATCCCCAATAAAAA_GGTTTTTACTTTTATTTAT ------ CCTCCTTTTTTTTTT-CATCGCGTTCAGTTCAC 

C. soloensis CTCTATCCCCATAAAAAGGTAATTTTACTT0CTATATTTAT ------ CCTCCTTTTTTTTTTCATCAGCGATTCAGTTCC 

C. aroma tica CTCTATCCCCAATAAAAA_GGTAATTTTACTTCCTTATTTAT ------ CCTCCTTTTTTTTTT-CATCAGCGATTCPGTTCAC 
CTCTATCCCCAATAAAGGTAATTTTACTTCCTATATTTAT ------ CCTCCTTTTTTTTTTCATCAGCGATTCAGTTCC C. purpurascens 
CTCTATCCCCAATAAAGGTAATTTTACTTCCTTATTTAT ------ CCTCCTTTTTTTTTT-CATCAGCGATTCAGTTCAC C. ela ta 
CTCTATCCCCAATAAAAGGTAATTTTACTTCCTTATTTAT ------ CCTCCTTTTTTTTTT-CATCAGCGATTCAGTTCC C. colorata 

tj 



Ca. spicata 
EL humeana 
Sm. supraneaflae 
C. thoreiii 
C. roscoeafla 
C. alismatifolia 
C. gracillima 
C. ecomata 
C. harmandii 
C. cf. australasica 
C.petioiata 
C. ochrorhiza 
C. aeruginosa 
C. pha eoca ul i s 
C. aurantiaca 
C. heyneana 
C. longa 
C. amada 
C. zedoaria 
C. zanthorrhiza 
C. soloensis 
C. aroma tica 
C.purpurascenS 
C. elata 
C. colorata 

t'J 
L..) 

640 	650 	660 	670 	680 	690 	700 	710 	720 

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGAT C TTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCCTGGA T C TTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGG AT CTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGA T C TTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGA T C TTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTAT C CCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACCAcTGTATCCGCTTCCTTGGATCTTATCCCTTTCGATAGAT 
AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACAAATGTATCCGAACTAAAATCCTTGGATCTTATCCCAATTTCGATAGAT  

AATTCACTATCTTTCTCATTCACTCCACTCTTTCACAACACTGTATCCGCTAAAATCCTTGGATCTTATCCCTTTCGATAGAT 
AATTCACTATCTTTCTCATTCACTCCACTCTTTCACCAcTGTATCCGCTATCCTTGGATCTTATCCCTTTCGATAGAT 
AATTCACTATCTTTCTCATTCACTCCACTCTTTCACCACATGTATCCGCTTCCTTGGATCTTATCCCTTTCGATAGAT 



730 	740 	750 	760 	770 	780 	790 	800 	810 

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAG TCCATATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGAATCATTCAC AGTCCATATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGAATCATCCACAG TCCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGAATCATTCAC AGTCCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAG T CCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCCATTATTGAATCATTCACAG TCCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACATAACATATATGGGCAATAATCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACG CTTACG  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAG T CCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCCATTATTGAATCATTCACAGTCCG TATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAATACATATATGGGCATTCTCTATTATTGTCATTCACTCCGTATCATTATCCTTACGC TTACTAGT  

ACAATACCTCTACAATAACATATATGGGCATTCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACGC TTACTAG  

ACAATACCTCTACAAATAACATATATGGGCATTCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTT ACGCTTACG  

ACAAT ACCTCTACAAATWCATATATGGGCAAATAATCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACGCTTAC TAG T  

ACAATACCTCTACAATAAACATATATGGGCAATAATCTCTATTATTGATCATTCACAGTCCGTATCATTATCCTTACGC TTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGATCATTCACAGTCCGTATCATTATCCTTACGCTTACTAG T  

ACAATACCTCTACAATAAACATATATGGGCAAATTCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAATAATCTCTATTATTGAATCATTCACAGTCCGTATCATTATCCTTACGCTTACTAG T  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACGCTTACTAG T  

ACAATACCTCTACAATAAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCGTATCATTATCCTTACGCTTACTAG T  

ACAATACCTCTACAATAAACATATATGGGCATATCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAAACATATATGGGCAAATAATCTCTATTATTGAATCATTCACAGTCCG TATCATTATCCTTACGCTTACTAGT  

ACAATACCTCTACAAATAACATATATGGGCAAATTCTCTATTATTGTCATTCACAGTCCGTATCATTATCCTTACGCTTAC TAGT  

Ca. spicata 
R. humeana 
Sm. supraneaflae 
C. thoreiii 
C. roscOeafla 
C.alismatifoiia 
C. gracillima 
C. ecomata 
C. harmandii 
C. cf. australasica 
C.petiolata 

N) 
	

C. ochrorhiza 
C. aeruginosa 
C.phaeocaulis 
C. aurantiaCa 
C. heyneana 
C. longa 
C. amada 
C. zedoaria 
C. zanthorrhiza 
C. soloensis 
C. aroma tica 
C. purpurascens 
C. ela ta 
C. colorata 

rn 



820 	830 	840 	850 	860 	870 	880 	890 	900 

Ca. spicata 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACGACACCGGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

R. humeana 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

Sm. supraneaflae 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. thorelii 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. roscoeafla 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. alisma tifolia 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. graciiliina 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. ecoma ta 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCAGGATAGCTCA  

C. harmandii 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. cf. australasiCa 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA 

C. petioia ta 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA 

C. ochrorhiza 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. aeruginoSa 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA 

C. phaeocauiis 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA 

C. aurantiaca 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. heyneana 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. longa 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. amada 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. zedoaria 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. zanthorrhiza 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. soloensiS 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA 

C. aroma tica 	 TAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACACACTACACCAGGATGATGCATGGGTGGTCGGGATAGCC 

C. purpurascenS 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. elata 	
TAAATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACAAACACTACACCAGGATGATGCATGGGAAATGGTCGGGATAGCTCA  

C. coiorata 	 TA ATTTTTTACTACTTTTTAGTCCCTTTAATTGACATAGACACCACTACACCAGGATGATGCATGGGTGGTCGGGATAGC C 



Ca.spiCata GTTGGTAGAGC [908] 

R.hwneana GTTGGTAGAGC [8811 

Sin.supraneaflae GTTGGTAGPGC [900] 

C.thorelii GTTGGTAGAGC [901] 

C.roscQeafla GTTGGTAGAGC [9001 

C.alisrnatifOlia GTTGGTAGAGC [903] 

C.gracilliina GTTGGTAGAGC [9031 

C.ecornata GTTGGTAGAGC [887] 

C.harmandii GTTGGTAGAGC [886] 

C. cf.avstralasiC& GTTGGTAGAGC [903] 

C.petiolata GTTGGTAGPGC [9031 

C.ochrorhiza GTTGGTAGAGC [899] 

C.aerugiflOSa GTTGGTAGAGC [902] 

C.phaeocauliS GTTGGThGAGC [9001 

C.aurantiaCa GTTGGTAGAGC [903] 

C.heyrieana GTTGGTAGAGC [901] 

C.longa GTTGGTAGAGC  

C.amada GTTGGTAGAGC [9001 

C.zedoaria GTTGGTAGAGC [8991 

C.zanthorrhiza GTTGGTAGAGC [9011 

C.soloensis GTTGGTAGAGC [9001 

C.aromatiCa GTTGGTAGAGC  

C.purpurasCefls GTTGGTAGAGC [900] 

C.elata GTTGGTAGAGC [8991 

C.colorata GTTGGTAGAGC [900] 
-o 
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APPENDICES 

APPENDIX 4. Measurements (.tm) of epidermal and stomata cells. 

Preparation LEI WE1 LE2 WE2 HSI HS2 WSI WS2 

zedl 101.00 35.00 38.00 37.00 49.00 42.00 63.00 43.00 

zed2 72.00 30.00 65.00 47.00 45.00 47.00 43.00 47.00 

zed3 57.00 35.00 58.00 40.00 47.00 48.00 50.00 48.00 

zed4 70.00 39.00 65.00 29.00 48.00 45.00 55.00 45.00 

zed5 82.00 23.00 51.00 33.00 49.00 49.00 63.00 49.00 

zed6 75.00 36.00 65.00 33.00 45.00 50.00 43.00 50.00 

zed7 90.00 37.00 42.00 61.00 47.00 47.00 50.00 47.00 

zed8 88.00 24.00 43.00 51.00 48.00 45.00 55.00 45.00 

zed9 72.00 41.00 76.00 18.00 49.00 49.00 63.00 49.00 

zed 10 60.00 44.00 62.00 25.00 45.00 44.00 43.00 44.00 

phal 87.00 28.00 48.00 41.00 39.00 46.00 53.00 54.00 

pha2 92.00 19.00 55.00 44.00 39.00 41.00 46.00 59.00 

pha3 85.00 37.00 46.00 52.00 42.00 40.00 59.00 52.00 

pha4 100.00 18.00 54.00 48.00 43.00 43.00 49.00 49.00 

pha5 72.00 32.00 35.00 33.00 41.00 43.00 52.00 46.00 

pha6 65.00 20.00 56.00 50.00 45.00 41.00 63.00 55.00 

pha7 72.00 38.00 47.00 40.00 44.00 45.00 62.00 53.00 

pha8 100.00 28.00 41.00 39.00 38.00 44.00 63.00 54.00 

pha9 66.00 38.00 52.00 45.00 40.00 38.00 64.00 50.00 

pha19 75.00 25.00 58.00 38.00 46.00 41.00 63.00 53.00 

ZanI 84.00 27.00 35.00 38.00 53.00 48.00 73.00 47.00 

Zan2 85.00 43.00 40.00 46.00 49.00 49.00 68.00 51.00 

Zan3 109.00 26.00 56.00 28.00 50.00 52.00 60.00 49.00 

Zan4 104.00 22.00 55.00 35.00 58.00 48.00 67.00 54.00 

Zan5 69.00 22.00 49.00 19.00 49.00 48.00 58.00 52.00 

Zan6 94.00 29.00 53.00 32.00 53.00 52.00 73.00 61.00 

Zan7 61.00 39.00 39.00 29.00 49.00 49.00 68.00 53.00 

Zan8 69.00 28.00 25.00 60.00 50.00 44.00 60.00 47.00 

Zan9 99.00 33.00 45.00 32.00 58.00 40.00 67.00 52.00 

ZanlO 77.00 42.00 61.00 24.00 49.00 51.00 58.00 57.00 

aerl 75.00 24.00 75.00 28.00 44.00 45.00 66.00 53.00 

aer2 65.00 29.00 60.00 26.00 41.00 45.00 60.00 62.00 

aer3 77.00 22.00 43.00 42.00 38.00 41.00 53.00 65.00 

aer4 81.00 28.00 52.00 55.00 44.00 48.00 62.00 56.00 

aer5 63.00 22.00 39.00 27.00 42.00 38.00 60.00 63.00 

aer6 39.00 26.00 66.00 29.00 44.00 44.00 58.00 60.00 

aer7 46.00 20.00 48.00 31.00 45.00 45.00 52.00 65.00 

aer8 66.00 18.00 55.00 27.00 45.00 51.00 57.00 62.00 

aer9 79.00 27.00 31.00 24.00 41.00 40.00 54.00 61.00 

aerlO 70.00 33.00 60.00 33.00 43.00 45.00 60.00 58.00 

hey  105.00 31.00 58.00 38.00 44.00 41.00 77.00 55.00 

hey2 103.00 37.00 57.00 43.00 45.00 45.00 65.00 49.00 

hey3 99.00 25.00 38.00 33.00 42.00 42.00 62.00 53.00 

hey4 88.00 41.00 72.00 34.00 43.00 43.00 57.00 58.00 
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APPENDICES 

APPENDIX 4(continued) Measurements (.tm) of epidermal and 
stomata cells. 

Preparation LU WEI LE2 WE2 HSI HS2 WSI WS2 

hey5 107.00 25.00 61.00 26.00 49.00 40.00 60.00 57.00 

hey6 71.00 25.00 51.00 35.00 42.00 41.00 54.00 48.00 

hey7 85.00 35.00 49.00 39.00 44.00 44.00 64.00 53.00 

hey8 105.00 21.00 62.00 30.00 42.00 43.00 55.00 52.00 

hey9 80.00 44.00 65.00 37.00 49.00 42.00 47.00 55.00 

hey 10 78.00 35.00 54.00 21.00 48.00 41.00 60.00 46.00 

man  85.00 21.00 22.00 78.00 41.00 48.00 58.00 45.00 

man2 75.00 24.00 17.00 102.00 39.00 38.00 51.00 39.00 

man3 78.00 20.00 18.00 80.00 43.00 35.00 48.00 40.00 

man4 69.00 22.00 21.00 60.00 39.00 37.00 51.00 45.00 

manS 62.00 25.00 26.00 54.00 37.00 48.00 58.00 45.00 

man6 48.00 25.00 18.00 56.00 45.00 45.00 55.00 38.00 

man7 67.00 20.00 25.00 75.00 40.00 43.00 51.00 39.00 

man8 61.00 27.00 19.00 68.00 46.00 39.00 55.00 35.00 

man9 66.00 28.00 18.00 73.00 36.00 38.00 46.00 40.00 

manlO 65.00 20.00 21.00 64.00 44.00 44.00 62.00 41.00 

Ion] 91.00 45.00 68.00 49.00 35.00 40.00 69.00 47.00 

ion2 98.00 38.00 37.00 31.00 49.00 43.00 68.00 50.00 

ion3 95.00 47.00 57.00 49.00 41.00 38.00 65.00 48.00 

lon4 88.00 45.00 61.00 36.00 42.00 42.00 63.00 52.00 

ionS 70.00 29.00 68.00 45.00 48.00 41.00 55.00 57.00 

ion6 45.00 35.00 71.00 40.00 48.00 37.00 68.00 48.00 

ion7 103.00 43.00 48.00 58.00 47.00 41.00 55.00 45.00 

ion8 78.00 53.00 35.00 70.00 41.00 37.00 55.00 49.00 

ion9 99.00 48.00 45.00 57.00 48.00 36.00 64.00 47.00 

lonlO 89.00 32.00 39.00 26.00 35.00 41.00 63.00 47.00 

purl 101.00 35.00 76.00 33.00 45.00 35.00 48.00 64.00 

pur2 66.00 19.00 69.00 47.00 40.00 42.00 49.00 57.00 

pur3 104.00 31.00 40.00 39.00 41.00 39.00 65.00 58.00 

pur4 71.00 43.00 96.00 24.00 45.00 38.00 73.00 53.00 

pur5 112.00 41.00 71.00 45.00 44.00 45.00 46.00 62.00 

pur6 82.00 33.00 50.00 57.00 43.00 43.00 75.00 54.00 

pur7 89.00 30.00 71.00 40.00 38.00 42.00 67.00 70.00 

pur8 125.00 34.00 42.00 36.00 39.00 39.00 68.00 55.00 

pur9 98.00 33.00 72.00 44.00 38.00 45.00 64.00 63.00 

purlO 103.00 29.00 45.00 49.00 39.00 43.00 74.00 47.00 

coil 96.00 33.00 59.00 44.00 40.00 42.00 66.00 61.00 

co12 88.00 36.00 45.00 32.00 41.00 42.00 62.00 54.00 

co13 100.00 24.00 62.00 41.00 42.00 42.00 58.00 68.00 

co14 103.00 21.00 75.00 46.00 41.00 46.00 65.00 71.00 

co15 98.00 31.00 78.00 25.00 48.00 45.00 60.00 57.00 

co16 65.00 50.00 87.00 35.00 45.00 45.00 55.00 65.00 

co17 88.00 40.00 48.00 27.00 41.00 43.00 51.00 59.00 
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APPENDICES 

APPENDIX 4 (continued) Measurements (.tm) of epidermal and 
stomata cells. 

Preparation LEI WEI LE2 WE2 HSI HS2 WSI WS2 

---co- l8 61.00 31.00 86.00 27.00 42.00 44.00 63.00 53.00 

c019 68.00 24.00 75.00 43.00 39.00 44.00 49.00 69.00 

col 10 90.00 31.00 75.00 50.00 47.00 41.00 63.00 66.00 

Zanal 101.00 23.00 67.00 30.00 46.00 49.00 88.00 58.00 

Zana2 63.00 25.00 67.00 30.00 46.00 45.00 94.00 60.00 

Zana3 95.00 19.00 60.00 36.00 50.00 43.00 85.00 55.00 

Zana4 80.00 24.00 61.00 38.00 43.00 47.00 82.00 57.00 

Zana5 86.00 33.00 64.00 33.00 42.00 44.00 93.00 51.00 

Zana6 94.00 27.00 38.00 47.00 45.00 48.00 95.00 40.00 

Zana7 80.00 39.00 66.00 38.00 45.00 46.00 82.00 57.00 

Zana8 95.00 28.00 48.00 25.00 50.00 48.00 71.00 61.00 

Zana9 85.00 23.00 70.00 40.00 49.00 43.00 91.00 63.00 

ZanalO 81.00 22.00 42.00 37.00 48.00 49.00 89.00 55.00 

thol 85.00 35.00 31.00 90.00 54.00 51.00 73.00 60.00 

tho2 77.00 63.00 40.00 40.00 55.00 52.00 70.00 62.00 

tho3 83.00 40.00 63.00 66.00 60.00 53.00 67.00 55.00 

tho4 71.00 68.00 55.00 73.00 59.00 55.00 88.00 56.00 

tho5 93.00 53.00 62.00 53.00 53.00 54.00 81.00 65.00 

tho6 97.00 55.00 46.00 51.00 51.00 51.00 71.00 58.00 

tho7 69.00 35.00 48.00 50.00 50.00 54.00 73.00 57.00 

tho8 85.00 51.00 54.00 52.00 52.00 56.00 75.00 56.00 

tho9 88.00 49.00 53.00 51.00 51.00 51.00 74.00 55.00 

tholO 84.00 55.00 32.00 53.00 53.00 55.00 78.00 61.00 

rosl 66.00 30.00 33.00 31.00 30.00 42.00 65.00 46.00 

ros2 93.00 36.00 57.00 57.00 31.00 43.00 80.00 40.00 

ros3 85.00 47.00 44.00 77.00 37.00 37.00 84.00 43.00 

ros4 85.00 28.00 43.00 59.00 43.00 41.00 73.00 49.00 

rosS 95.00 33.00 60.00 34.00 41.00 45.00 60.00 56.00 

ros6 83.00 38.00 57.00 45.00 40.00 40.00 55.00 37.00 

ros7 65.00 25.00 25.00 62.00 37.00 43.00 62.00 57.00 

ros8 76.00 45.00 45.00 67.00 35.00 37.00 61.00 42.00 

ros9 89.00 33.00 56.00 59.00 36.00 44.00 74.00 40.00 

roslO 74.00 36.00 58.00 32.00 49.00 42.00 68.00 58.00 

alil 85.00 44.50 62.50 75.00 40.00 45.00 35.00 27.50 

62 84.00 48.00 55.00 45.00 40.00 41.50 37.50 30.00 

a1i3 90.00 49.00 70.00 57.50 45.00 41.50 35.00 29.00 

a114 99.00 50.00 85.00 42.50 45.00 45.00 29.00 30.00 

aliS 100.00 55.00 65.00 80.00 45.00 40.00 30.00 27.50 

a1i6 90.00 42.50 45.00 85.00 45.00 40.00 30.00 29.00 

a1i7 52.50 62.50 55.00 45.00 42.50 40.00 30.00 25.00 

ali8 77.50 57.50 70.00 72.50 45.00 41.50 30.00 32.50 

aIi9 77.50 52.50 35.00 90.00 42.50 42.50 30.00 30.00 

alilO 70.00 48.00 60.00 60.00 40.00 42.50 35.00 29.00 
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APPENDIX 4 (continued) Measurements (tm) of epidermal and 
stomata cells. 

Preparation  LEI WEI LE2 WE2 HSI HS2 WSI WS2 

pan 1 90.00 42.50 77.50 57.50 37.50 42.50 26.00 25.00 

par2 90.00 47.50 80.00 50.00 37.50 37.50 25.00 28.00 

par3 70.00 40.00 50.00 70.00 37.50 40.00 25.00 25.00 

par4 87.50 40.00 70.00 35.00 40.00 37.50 24.50 27.00 

par5 90.00 45.00 70.00 60.00 40.00 40.00 26.50 25.00 

par6 90.00 35.00 60.00 60.00 42.50 40.00 26.00 26.00 

par7 85.00 47.50 70.00 65.00 44.00 37.50 26.50 25.00 

par8 75.00 55.00 42.50 40.00 40.00 40.00 27.00 25.00 

pan9 87.50 50.00 60.00 60.00 40.00 36.00 27.00 24.00 

parlO 80.00 42.50 58.00 75.00 38.00 40.00 25.00 27.00 

aurl 110.00 30.00 67.50 45.00 40.00 42.50 30.00 30.00 

aur2 110.00 35.00 57.50 60.00 45.00 45.00 31.00 27.50 

aur3 120.00 50.00 70.00 35.00 45.00 44.00 31.00 28.00 

aur4 75.00 30.00 60.00 45.00 47.50 40.00 32.50 30.00 

aur5 105.00 30.00 50.00 35.00 40.00 40.00 30.00 30.00 

aur6 75.00 37.50 75.00 30.00 35.00 40.00 30.00 27.00 

aur7 75.00 55.00 73.00 57.50 35.00 41.00 27.50 26.00 

aur8 90.00 38.00 80.00 40.00 32.50 35.00 28.00 27.50 

aur9 90.00 45.00 75.00 45.00 40.00 40.00 31.00 30.00 

aunlO 65.00 30.00 58.00 38.00 37.50 42.50 30.00 29.50 

amarl 104.00 28.00 27.00 66.00 52.00 45.00 85.00 68.00 

amar2 82.00 33.00 37.00 45.00 54.00 41.00 79.00 67.00 

aman3 105.00 18.00 32.00 65.00 52.00 36.00 88.00 68.00 

amar4 64.00 33.00 43.00 41.00 54.00 47.00 70.00 60.00 

amar5 112.00 34.00 45.00 45.00 53.00 43.00 68.00 63.00 

amar6 67.00 31.00 28.00 32.00 52.00 42.00 78.00 68.00 

amar7 101.00 30.00 60.00 24.00 48.00 43.00 85.00 72.00 

amar8 95.00 27.00 61.00 42.00 53.00 38.00 80.00 58.00 

amar9 111.00 35.00 52.00 26.00 50.00 38.00 77.00 65.00 

amarlO 87.00 32.00 58.00 23.00 53.00 44.00 77.00 63.00 

amadl 95.00 23.00 52.00 27.00 42.00 39.00 78.00 64.00 

amad2 94.00 33.00 65.00 33.00 38.00 41.00 79.00 58.00 

amad3 95.00 19.00 56.00 29.00 40.00 38.00 73.00 65.00 
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APPENDIX 4 (continued) Measurements (tm) of epidermal and 
stomata cells. 

[Preparation LEI WEI LE2 WE2 HSI HS2 WSI WS2 

amad4 93.00 31.00 63.00 32.00 41.00 45.00 75.00 59.00 

amad5 91.00 31.00 58.00 20.00 42.00 32.00 73.00 62.00 

amad6 113.00 31.00 64.00 32.00 44.00 43.00 76.00 58.00 

amad7 118.00 29.00 45.00 35.00 41.00 45.00 68.00 62.00 

amad8 95.00 18.00 65.00 26.00 40.00 40.00 65.00 59.00 

amad9 92.00 20.00 64.00 29.00 39.00 45.00 71.00 58.00 

amadlO 81.00 37.00 54.00 41.00 45.00 44.00 70.00 63.00 

Notes: 
LE1= Length of adaxial epidermis; WE1= Width of adaxial epidermis; LE2= Length of 
abaxial epidermis; WE2= Width of abaxial epidermis; HS1= Height of stomatal on 
adaxial; WSI= Width of stomatal on adaxial; HS2= Height of stomatal on abaxial; 
WS2= Width of stomatal on abaxial. 
zed: C. zedoaria; pha: C. phaeocaulis; Zan: C. zanthorrhiza 1; aer: C. aeruginosa; hey: 

C. heyneana; man: C. mangga; Ion: C. longa; pur: C. purpurascens; col: C. colorata; 

Zana: C. zanthorrhiza 2; tho: C. thorelii; ros: C. roscoeana; au: C. alismatifolia; par: C. 

parviflora; aur: C. aurantiaca; amar: C. amarissima; amad: C. amada. 
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APPENDIX 5 Measurements of flower in the morphometric analysis. 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 
SPECIES 

3.000 	12.375 	24.313 	7.261 	25.750 	13.750 	12.250 	11.838 	12.125 	9.500 	10.125 
C.aeruginosa 
C.alismatifolia 2.625 9.875 19.500 6.673 18.375 14.875 9.375 16.250 17.375 5.875 13.750 

C.amada 3.500 9.750 26.250 6.280 21.063 14.500 10.250 10.875 12.000 7.875 10.500 

C.amarissima 4.000 11.625 27.625 9.813 28.500 15.250 11.375 13.625 14.375 11.063 10.750 

C.aromatica 2.250 6.313 16.750 4.514 13.688 5.875 7.875 8.438 9.375 4.688 7.875 

C.aurantiaca 2.625 12.500 22.000 6.084 20.188 14.750 8.000 17.188 19.375 8.125 11.375 

C.cfaustralasica 2.000 6.125 14.375 4.710 12.125 10.375 7.500 8.438 9.375 5.813 6.813 

C.colorata 2.625 9.875 32.875 8.243 28.625 12.875 13.000 12.625 14.250 10.625 11.000 

C.ecomata 2.125 13.000 21.500 4.318 12.000 12.500 7.875 18.750 18.750 4.625 8.125 

C.euchroma 3.000 10.438 34.500 7.261 24.750 12.000 11.375 12.250 14.500 9.375 11.500 

C.gracillima 1.250 5.125 15.500 2.944 7.313 4.500 3.188 3.750 3.875 2.438 5.563 

C.harmandii 1.875 11.250 23.250 3.925 8.750 8.875 5.250 8.750 9.625 4.625 12.625 

C.heyneana 2.875 17.125 32.750 9.028 28.250 12.500 11.250 12.000 12.500 10.125 9.000 

C.longa 1 2.625 10.750 34.500 6.084 22.500 10.375 10.125 9.125 10.625 6.625 8.500 

C.longa2 3.063 12.250 26.000 8.635 24.625 12.875 10.000 11.375 13.750 8.500 9.875 

C.longa 3 2.750 10.375 31.250 6.673 30.313 11.875 12.750 11.688 12.750 10.500 8.125 

C.longa 4 3.750 11.188 30.500 7.261 29.625 12.750 12.188 12.250 12.750 9.750 8.500 

C.longa5 3.000 10.625 26.938 7.850 29.375 13.125 11.938 11.125 11.500 9.063 9.125 

C.mangga 2.750 11.125 27.000 7.850 27.313 15.000 11.000 13.500 13.813 9.750 13.375 

C.parvflora 1.813 6.125 11.688 4.121 7.750 5.313 3.875 4.863 5.125 3.438 5.625 

C.petiolata 2.250 11.188 23.875 5.888 20.125 9.125 8.375 9.000 9.125 2.750 8.625 

C.purpurascens 2.500 8.500 18.125 5.495 16.125 9.125 8.250 9.875 10.000 6.250 6.750 

C.roscoeana 2.625 22.000 36.500 5.495 12.313 12.250 6.625 11.625 11.875 7.188 13.250 

C.soloensis 3.125 8.250 16.875 7.065 24.250 10.250 10.125 12.500 14.688 6.438 10.500 

C.thorelii 1.875 5.938 15.000 1.963 5.563 6.688 4.563 6.188 6.875 3.750 10.000 

C.zanthorrhiza 5.000 8.250 39.625 10.205 36.375 15.000 16.438 15.000 16.000 12.500 10.375 
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APPENDIX 5 (continued) Measurements of flower in the morphometric analysis. 

SPECIES 12 13 14 15 16 17 18 19 20 21 22 

C.aeruginosa 13.063 5.750 7.688 15.500 10.250 16.500 40.375 4.500 3.000 2.125 2.625 

C.alismaijfolia 16.250 3.750 3.125 22.500 5.875 12.375 38.375 6.250 2.313 1.438 1.875 

C.amada 13.500 5.125 7.375 17.000 7.500 13.125 43.250 4.688 2.500 1.750 2.375 

C.amarissima 15.125 6.375 9.000 15.200 11.375 19.500 46.750 4.125 3.000 2.625 2.750 

C.aromalica 9.625 3.063 5.125 10.625 5.438 8.875 28.625 2.500 1.938 1.500 1.750 

C.auran(iaca 14.125 5.625 7.500 16.500 6.125 17.000 38.750 6.000 2.250 1.000 2.125 

C.cfausiralasica 8.063 2.625 4.250 8.750 3.875 10.000 24.438 3.063 1.875 0.875 1.375 

C.colorata 15.000 7.125 9.125 18.500 10.375 16.500 50.500 5.000 2.500 1.750 2.500 

C.ecomata 8.375 2.250 6.875 15.000 5.000 10.750 32.000 8.750 2.125 1.000 1.875 

C.euchroma 14.700 5.500 8.438 18.000 10.500 19.000 52.200 4.875 3.188 2.500 2.500 

C.gracillima 5.438 1.813 1.938 5.250 2.250 3.875 22.188 1.563 1.188 0.750 1.063 

C.harmandii 13.500 0.938 1.188 16.500 4.125 8.750 38.625 3.875 1.875 1.000 1.500 

tQ C.heyneana 9.625 6.125 7.125 16.500 11.625 15.500 45.250 4.375 2.500 2.125 2.625 

C.longa 1 10.750 5.000 5.750 13.375 8.875 12.875 47.875 4.563 2.500 1.625 2.875 

C.longa2 14.000 5.500 8.750 15.500 9.688 16.500 43.063 4.188 2.625 1.625 2.625 

C.longa3 10.750 6.500 6.875 14.500 12.625 17.500 44.750 4.250 2.875 2.125 2.750 

Clonga 4 11.250 6.375 8.125 14.500 12.625 18.000 45.500 4.438 2.500 2.125 2.875 

C.longa5 12.000 5.875 9.063 18.000 13.313 20.000 41.938 4.250 2.500 2.125 3.063 

C.mangga 13.750 5.938 9.750 16.500 10.688 16.500 43.500 4.375 2.625 2.250 2.500 

C.parviflora 7.000 1.688 2.000 7.625 2.563 4.188 20.500 1.500 1.375 0.750 1.250 

C.petiolata 10.500 4.500 6.500 10.875 8.000 12.000 36.625 3.250 1.750 1.000 1.875 

C.purpurascens 8.375 3.750 4.875 10.000 6.500 9.750 29.000 3.500 2.250 1.625 2.000 

C.roscoeana 15.125 2.125 10.875 18.000 4.500 19.500 54.250 3.938 2.125 1.125 2.875 

C.soloensis 12.750 5.188 7.125 16.500 9.750 14.000 32.750 4.625 2.875 1.875 2.625 

C.thorelii 10.625 1.188 3.563 12.000 1.875 7.500 27.500 2.188 1.188 0.563 1.063 

Czanthorrhiza 14.125 8.250 9.875 17.500 14.063 17.000 58.750 4.375 3.375 2.750 2.875 
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APPENDIX 5 (continued) Measurements of flower in the morphometric analysis. 

SPECIES 23 24 25 26 27 28 

C.aeruginosa 0.063 2.625 4.000 2.250 31.438 0.667 

Calismatifolia 1.125 3.938 5.000 2.500 29.688 0.348 

Camada 0.250 3.750 3.313 1.250 34.688 0.909 

C.amarissima 0.063 3.000 4.375 2.000 34.750 0.879 

C.aromatica 0.188 2.313 2.125 1.000 21.563 0.606 

C.aurantiaca 0.688 1.875 2.813 1.250 29.875 0.758 

C.cfaustralasica 0.375 1.125 3.000 0.938 18.563 0.606 

C.colorata 0.188 3.500 4.000 1.688 41.375 1.212 

C.ecomata 1.125 6.000 2.500 1.000 36.250 0.545 

C.euchroma 0.125 3.750 3.250 1.750 43.125 0.788 

C.gracillima 1.188 2.313 1.438 0.938 19.375 1.273 

C.harmandii 2.000 1.625 2.750 1.500 28.750 0.606 

C.heyneana 0.125 2.500 4.375 1.875 39.625 0.636 

C.longa 1 0.313 3.625 3.625 1.875 42.688 0.364 

C.longa2 0.500 3.750 3.938 1.688 33.938 0.818 

C.longa 3 0.250 2.625 4.688 2.063 38.125 1.061 

C.longa 4 0.250 3.875 4.250 1.938 38.813 0.818 

C.longa5 0.375 3.375 4.313 2.063 34.563 0.909 

C.mangga 0.250 4.375 4.750 2.125 35.750 0.667 

C.parvzflora 1.688 1.125 1.813 1.188 14.313 1.970 

C.petiolata 0.313 3.000 3.125 1.250 30.125 0.636 

C.purpurascens 0.125 2.063 2.125 1.063 23.688 0.606 

C.roscoeana 3.813 2.500 3.563 1.813 42.938 0.365 

C.soloensis 0.375 3.125 4.125 2.000 24.625 0.758 

C.thorelii 1.000 1.438 1.313 0.813 18.625 0.303 

C.zanthorrhiza 0.188 3.250 5.813 3.188 	47.250 1.061 

Note: Number 1-28 reters to tne cnaracers iisLeu 111 1dIJI 	L 



APPENDIX 6 Sequence data matrix (displayed from 5' to 3') of aligned ITS2 region of 32 accessions 
representing 27 taxa of Zingiberaceae. 

10 	20 	30 	40 	50 	60 	70 	80 	90 

Taxon 	 ITS2 
I 

Ca. gracilis 
Ca. spica ta 
R. auriculata 	AT --- CGTCGCTTTTGCTCCATGCATTGCTGGTGT0G 	

GAAATTGGCCTCGTGTGTCCTC--GGGCACAGTCGGTTGAAGA  

R. schneideriana 
St. involucra tus 
Sm. supraneanae 
C.parviflora 
C. thorelii 
C. roscoeana 
C. alisma tifolia 
C. gracillima 
C. ecoma ta 

tQ 
C. harmandii 
C. cf. 
C.petiola ta 
C. ochrorrhiza 
C. aeruginosa a 
C. aeruginosa b 
C.phaeocauliS a 
C.phaeoCa ulis b 
C. amarissima a 
C. amarissima b 
C. a uran tiaca 	ATTGCCGCCGCTTTTGCTCCATGCTTTATTAGCATTGAGC_AGCGCGTTGGCCCCGTGTGCCCTCGGGCACAGTCGGTCGGA 

C. heyneana a 
C. heyneana b 
C. iongala 
C. ion gaib 
C. ion ga2a 	AT --- YGTCGCTTTTGCTCCATGCTYYGTYGGCATTGAG0G ---- 	 RTTG0GTGTG0T0TC TCTC 

C. ionga2b 
C. amada a 
C. amada b 

C,) 

3 



NJ 
Ui 
NJ 

Taxon 

C.zedoarial a 
C.zedoarial b 
C. zedoaria2a 
C. zedoaria2b 
C. zedoaria3a 
C. zedoaria3b 
C.zedoaria cif. a 
C.zedoaria cf. b 
C. zanthorrhizala 
C. zanthorrhizalb 
C. zanthorrhiza2a 
C. zanthorrhiza2b 
C.soloensis a 
C.soloensiS b 
C.arornatiCa a 
C.aromatiCa b 

	

10 	20 	30 	40 	50 	60 	70 	80 	90 

ITS2  
1 	. 	 . 	 . 	

. 	2 	. 	 . 	 .3 

AT- 	
-- _CGGAAGTTGGCCCCGTGTG00CT _GGGCACAGTCGGTCGAAGA 

AT-CGTCGCTTTTGCTCCATGCTTYGTCGGCATTGAGCG -- _CGGAAGTTGGCCCCGTGTG000TC _GGGCACAGTCGGTCGAAGA 
AT- __CGTCGCTTTTGCTCCATGCTTCGTC GCATTGAGCG- -- _CGGAAGTTGG000CGTGTGCCCTC _GGGCACAGTCGGTCGAAGA 
AT- __CGTCGCTTTTGCTCCATGCTTCGT0 CATTAGCG- - CGGAAGTTGGCCCCGTGTGCCCTC--GGGCACAGTCGGTCGAAGA  

AT- __CGTCGCTTTTGCTCCATGCTTCGTCG ATTGAGCG - - _CGGAAGTTGGCCCCGTGTGCCCTC _GGGCACAGTCGGTCGAAGA 
AT- __CGTCGCTTTTGCTCCATGCTTCGTC CATTGAGCG- - __CGGAAGTTGGCCCCGTGTG000TC _GGGCACAGTCGGTCGAAGA 

AT- __CGTCGCTTTTRCTCCATG0TTYGTCGGTT GCG -  - - _CGGAAGTTGGCCCCGTGTRCCCTC _GGGCACAGTCGRTCGAAGA 

AT- __CGTCGCTTTTGCTCCATGCTTCGTG0ATT GCG--- -  _CGGAAGTTGGCCCCGTGTRCCCTC _GGGCACAGTCGGTCGAAGA 
AT-- YGTSGCTTTWGCTCCATGCTTYGTCGGCATTGAGCG _CGGAAGTTGGCCCCGTGTG000TC _GGGCACAGTCGGTCGAAGA 

AT-- _YGTSGCTTTWGCTCCATGCTTYGTC CATT GCG-- -  _CGGAAGTTGGCCCCGTGTGCCCTC _GGGCACAGTCGGTCGAAGA 

AT- __CGTCGCTTTTRCTCCATGCTTYGT0G ATTGAGCG- -- 
AT- __CGTCGCTTTTRCTCCATGCTTYGT RCATT GCG- -- _CGGAAGTTGGCCCCGTGTRCC0TC -GGGCACAGTCGRTCGAAGA 

AT- __CGTCGCTTTTGCTCCATGCTTYGTCG ATTGA G- - 
AT- __CGTCGCTTTTGCTCCATGCTTYGTGTT 	- - CGGAAGTTGGCCCCGTGTGCCCTC--GGGCACAGTCGGTCGAAGA 

 

GT --- TGTCGCTTTTGCTCCATGCTTTGTCG JATTGAGTG 	
GTTGGTGTGCCCTC -GGGCACAGTCGGTCGAAGA 

GT --- TGTCGCTTTTGCTCCATGCTTTGTCCATTGTGAG0G0TT00GTGTGCC _GGGCACAGTCGGTCGAAGA 



100 	110 	120 	130 	140 	150 	160 	170 	180 

4: 	 67 

Ca. gracilis 
Ca. spicata 
R. auricula ta 

GTGGG_TAGTCCGCAGTCGTCGGGC 	GAT 	TGTTGGTC 	CGTC 	AGAACGT-----CCCCGTCGC --TTT -AGGATT 
R. schneideriafla 
St. jnvolucra tus 
Sm. suprafleaflae 
C.parviflOra 
C. thorelii 
C. roscoeana 
C. 	tifolia alisma 
C. gracillirna 
C. ecoma ta 
C. harrnandii 	GTGGG_TACTCGGCAATCGTCGAG0A0GATG0GTTTT0GAG0T0GT0GTCCTCGTC 

C. cf. 
C.petiola ta 
C. ochrorrhiza 
C. aeruginosa a 
C. aeruginosa b 
C.phaeocauliS a 
C.phaeocaulis b 
C. amarissima a 
C. amarissLma b 	GTGGG_TAGTCGRTAATCGTCGAGC 0GTTTT0G0CTGTTCCTCGTCGT 

C. aurantiaca 	GTGGGGTAGCCGGTAGTCGTCGAGCACGATGGATGTTGGTCGTCACGAGCGAGAACTGAACATCGT--CCTTGTCGTCGTTTCGGAACGA  

C. heyneana a 
b C. heyneana 

C. longal a 
C. longal b 
C. longa2 a 
C. ion ga2 b 
C. amada a m 
C. amada b 

C) 

C,, 



100 	110 	120 	130 	140 	150 	160 	170 	180 

4. 	 567 
-TTT-GGGATGA 
--TTCGGGATGA 

GTGGG-TAGTCGGTAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGAACTGAACGTCGTG TCCTCGTCGT--TTT-GGGATGA  
-CCTCGTCGT- -TTT-GGGATGA 

GTGGG_TAGTCGGTAATCGTCGAGCACGATGGA0GTTT0GT0G0TGcGTcGTGTccTCGTT -TTT-GGGATGA 
GTGGG_TAGTCGGTAATCGTCGAGCACGATGGACGTTGGT0GT0G TGTT -CCTCGTCGT -  -TTT-GGGATGA 

-CCTCGTCGT--- TTCGGGATGA  

GTGGG_TAGTCGGTAATCGTCGAGCACGATGGACGTTGGT0GT0G0G0G0TG0GTcGTGTCCTCGTT -TTT-GGGATGA 
-TTT-GGGATGA 

GTGGG_TAGTCGGYAATCGTCGAGCACGATGGACGTTGGTCGTCG0 CTGTCGT -CCTCGTCGT- -TTT-GGGATGA 

GYGGG_TAGTCGGYAATCGTCGAGCACGATGGACGTTGGTCGT0 TTCGTGTTCGTT -TTT-GGGATGA 
-CCTCGTCGT--TTT-GGGATGA 

-TTT-GGGATGA 

-TTT-GGGATGA 
-CCTCGTYGT- -TTT-GGGATGA 

C.zedoarial a 
C.zedoarial b 
C. zedoaria2a 
C. zedoari.a2b 
C. zedoaria3a 
C. zedoaria3b 
C.zedoaria cf. a 
C.zedoaria cf. b 
C. zanthorrhizala 
C. zanthorrhizalb 
C. zanthorrhiza2a 
C. zanthorrhiza2b 
C.soloensis a 
C.soloensis b 
C.aromatica a 
C.aromatica b 

rn 

rn 
Cn 



tQ 

Li 
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8 	 . 	 9. 	 . 	 . 	 .0 	1 	.2 

Ca. g-racilis 	
GTCCTCAA ---- GAGACCCTGTGTGAT ------- TGTGATGTCGTGTGA AGTGCCGTG TCCATCA -AATTGT [2251 

Ca. spi ca ta 	
GTCCTCAA ---- GAGACCCTGTGTGAT ------- TGTGATGTCGTGTGAAGTGCCGTG_TCCATCA --- TTGT [225] 

R.auriculata 	TTCCTCAA ---- GAGACCCCGTGTGAT ------- 
TGTGATGCGGTGTGAAGCCCCCTG_TCCATCA_.TTGT [222] 

R. schneideriafla GTCCTCAA__-- GAGACCCCGTGTGAT ------- TGTGATGTCGTGCGAAGTGCCCTGTCCATCATTGT [2211 

St. involuCra tus GACCTCAA ---- GAGACCCTGTGTGAT ------ TTGCGGAGTCGGGTGAAGTGCCGTG_TCCATCATTGT [227] 

Sm. supraneanae 
GTCCTCAA ---- GAGACCCTGTGTGAT ------ TTGCGGAGTCGGACGPAAGTGCCGTG_TCTCA ---- TTTGT [226] 

C.parvifiora 	GTCCTCAA ---- GAGACCCTGTGTGAT ------- TGTGATGTCGTGTGAAAGTGCCGTGTCCATCATTGT [226] 

C. thorelii 	GTCCTCAA ---- GAGA000TATGTGAT ------- TGCAGAGTCGGACGAAGCGCTGTGTCTCATCATTTGC [228] 

C. rosCOeafla 	
[228] 

C. al isma tifolia GTCCTCAA ---- GAGACCCTACGTGAT ------- TGCAGAGTCGGATGAAGCGCTGTGTCTCATCATTCGC [228] 

C. graCillima 	GTCCTCAA ---- GAGACCCTATGTGAT ----- -_TGCAGAGTCGGACGAAGCGCTGTGT0T0TTTTGC [228] 

C. ecomata 	GTCCTCAA__ --  GAGACCCTGTGTGAT ------- TGCGGAGTCGGTTGAAGTGCCGTGTCTCATTTGT [225] 

C. harmanciii 	GTCCTCAA ---- GAGACCCTATGTGAT ------- TGCAGAGTCGGATGAAGCGCTGTGTCATCATCATTTGC [227] 

C. 	
[229] 

C.petiola ta 	
[231] 

C. ochrorrhiza 	GTCCTCCA ---- GAGACCCTGTGTGAT ---- TTGCGGAGTCGTGGCGCCGCGTCTCJTTTGC [230] 

C. aeruginosa a GTCCTCAA ---- GAGACCCTGTGTGAT ---- ATT 	AGTCGCGTG GCGCCGCG TCAATCA 	TTTGC [228] 

C.aeruginoSa b GTCCTCCA ---- GAGACCCTGTGTGAT 	RATWGCGSAGTCGTWAGCGCCGCGTC1TC]TTTGC [230] 

C.phaeocauiiS a GCCCTCA ---- GAGACCCTGTGTGAT ---- GATTGCGGAGTCGCGTG 	CGCCGCGTCAATCA 	TTTGC [228] 

C.phaeocauliS b GCCCTCCA ---- GAGACYCTGTGTGAT 	GATTGCGGCGC 	CGCGCGTCAATCATTTGC [230] 

C.amarisSima a GTCCTCCA ---- GAGACCCTGTGTGAT 	GATTGCGAGTCGCGTGCGCG TCAATCA 	TTTGC [2301 

C. amarissima b GTCCTCAA ---- GAGACCCTGTGTGAT 	GATTG 	TCGCT 	CGCCGCGTCAATCATTTGC [228] 

C. auran tiaca 	
[246] 

C. heyrieana a 	
[230] 

C. heyneana b 	
[234] 

C. longal a 	GCCCTCAATAAAGAGACCCTGTGTGATTGTGATTGCGGAGCCGCGCGGCGCCGCGTCTCATTTGC [238] 

C. .longal b 	
[228] 

C. longa2 a 	GCCCTCAATCAAGAGACCCTGTGTGATTGATGATTGCGGAGCCGCGCGAGCGCCGCGTCTCATTTGC [2381 

C. .longa2 b 	GYCCTCAA ---- GAGACYSTGTGTGAT 	GATTGCGG 	 CGTCAATCATTTGC [2281 

C.amada a 	
[230] 

C. amada b 	GTCCTCAA ---- GAGACCCTGTGTGAT 	GATTGC AGTC CGT 	NGCGTCATCATTT 	[228] 

I1 



NJ 
Lu 

C.zedoarial a 
C.zedoarial b 
C. zedoaria2a 
C. zedoaria2b 
C. zedoaria3a 
C. zedoaria3b 
C.zedoaria cf. a 
C.zedoaria cf. b 
C. zanthorrhizala 
C. zanthorrhizalb 
C. zanthorrhiza2a 
C. zanthorrhiza2b 
C.soloensLs a 
C.soloens3.S b 
C.aromatica a 
C. aromatica b 

	

190 	200 	210 	220 	230 	240 	250 

	

8 	 . 	9. 	. 	. 	 .0 	1 	.2 
 

GTCCTCAATCAGAGACCCTGTGTGAT ---- GATTGCNGAGGTGCGTGAIGCGGTCCGTCTCATTTGC [2321 
[230) 

GTCCTCAATCAAGAGACCCTGTGTGAT ---- GATTGCGGAGTCGCGTGWGCGCCGCGTCTCATTTGC [232] 
[2301 

GTCCTCCATCAAGAGACCCTGTGTGAT ---- GATTGCGGAGTCGCGTGAGCGCCGCGTCTCATTTGC [2321 
GTCCTCATCGAGACCCTGTGTGAT ---- GATTGCGGAGTCGCGTGAGCGCCGCGTCTCATTTGC [232] 

[230) 

GTCCTCCA ---- GAGACCCTGTGTGAT ---- GATTG0GGTCGCGTGCGG0GTCTCATTTGC [230] 
[2321 

 
[2321 
[230) 

GYCCTCAATAAAGAGACCCTGTGTRATTGATGATTGCGGAGCCGCGCGAGCGCCGCGTCTCATTTGC [238] 
[234] 

GCCCTCAAGCAAGAGACCCTGCGTGAT ---- GATTGCGGAGYCGCGCACGCCGCG__TCTCATTTGC [2361 

Notes: 
Numbers in bold italic indicate number and position of iridel polymorphisms. AJTIG/C in bold shows insertion polymorphisms within 

one individu correspond with species name in bold font. Hypens indicate alignment gaps, while hypens in bold shows deletion 
polymorphisms within one individu correspond with species name in bold font. Uncertain nucleotide states are coded based on PAUP 
conventions (Swofford 1993) as follows: K=G/T, M=A/C, R=A/G, S=C/G, W=AJT, Y=CIT, N=AJT/GIC. a and b after species name 

indicate sequence copies a and b which were obtained after inspecting and editing the electropherogram and were not the results of 
cloning. Square brackets at the end of sequences show the real spacer length of ITS2 region. 

0 

C) 

C/) 



APPENDIX 7 Sequence data matrix (displayed from 5' to 3') of aligned ITS2 region of 32 accessions 
representing 27 taxa of Zingiberaceae after polymorphic sequences combined. 

10 	20 	30 	40 	50 	60 	70 	80 	90 

Taxon ITS2  
1 	. 	 . 	

. 	 .23 	45. 	 . 	 ** 

Ca. gracilis 
Ca. spi ca ta 
R. a uricula ta AT --- CGTCGCTTTTGCTCCATGCATTGCTGGTGTCGAGCG ------ GAAATTGGCCTCGTGTGTCCTC--GGGCACAGTCGGTTGAAGA  

R. schneideriana 
St. jnvolucra tus 
Sm. supraneanae 
C.parviflora 
C. thorelii 
C. roscoeana 
C. alisma tifolia 
C. gracillima 
C. ecoma ta t 
C. harmandii 

ATAGTCGGTCGAAGA 

C. cf. a 
C.petioia ta 
C. ochrorrhiza 
C. aeruginosa 
C.phaeocaulis 
C. amarissima 
C. aurantiaca ATTGCCGCCGCTTTTGCTCCATGCTTTATTAGCATTGAGCAGCGCGTTGGCCCCGTGTGCCCTCGGGCACAGTCGGTCGGA 

C. heyneana 
C.l ongal CGTCGCTTTTGCTCCATGCTTTGTCGGCATTGAGCG GGGCAC.GTCGGTCGAAGA  

C. longa2 AT___YGTCGCTTTTGCTCCATGCTYYGTYGG0ATTG0_0GTT0CCCGTGTT GGGCACP.GTCGGTCGAAGA 

C. amada 
C. zedoarial 
C. zedoaria2 
C. zedoaria3 
C. zedoaria cf. 
C. zanthorrhizal 
C. zanthorrhiza2 
C. so1oenss 

tica C. aroma (1D 



100 	110 	120 	130 	140 	150 	160 	170 	180 

Taxori . 	 . 	 . 	 . 	 . 	 . 	 . 7 	** 	8* 	** 	** . 

Ca. gracilis 
6 	. 	 . 	 . 	 . 	 . 	

. 

Ca. spica ta 
R. auricula ta 
R. schneideriana GTGGG-TAGTCCGCAGTCGTCGGGCACGATGGGTGTTGGTCGCCGTGAGCGAGAACAGAACGT ----- CCCCGTCGC--TTTAGGATT ----- 
St. involucra tus 
Sm. supraneanae 
C.parviflora 
C. thoreiii 
C. roscoeana 
C. alisma tifolia 
C. gracillima 
C. ecoma ta 
C. harmandii 
C. cf. a 

Fj 	C.petioia ta 
00 	C. ochrorrhiza 

C. aeruginosa 
C.phaeocaulis GYGGG_TAGTYGGTAATCGTCGAGCACGATGGACGTTT0GT0G0GOTGCGT CCTCGTCGT--TTTGGGATGW 

C. amarissima GTGGG-TAGTCGRTAATCGTCGAGCACGAYGGACGTTGGTCGTCGCGAGCGAGAACTGAACGTCG CCTCGTCGT--TTGGATGA 

C. auran tiaca GTGGGGTAGCCGGTAGTCGTCGAGCACGATGGATGTTGGTCGTCACGAGCGAGCTGCATCGT__CCTTGTCGTCGTTTCGGCGA 

C. heyneana 
C. longal 
C. ion ga2 
C. amada 

CCTCGTCGT--TGGATGA 

C. zedoarial GTGGG_TAGTCGGYAATCGTCGGCACGATGGACGTTGGT0GT0G0G0GcTGCGT CCTCGTCGT--TTGGGATGA 

C. zedoaria2 GTGGG_TAGTCGGTAATCGTCGAGCACGATGGA0GTTGGTCGT0G0G CTT CCTCGTCGTTTTGGGATGA 

C. zedoaria3 GTGGG_TAGTCGGTAATCGTCGAGCACGATGGA0GTTG0T0GTcCTPT CCTCGTCGT--TTT-GGGATGA 

C. zedoaria cf. GTGGG-TAGTCGGTAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGAACTGAACGTCGT CCTCGTCGT--ITGGGATGA 

C. zanthorrhza1 GTGGG_TAGTCGGYAATCGTCGAGCACGATGGACGTTGGT0GT 	AGO 	CTGTOG CCTCGTCGT--TTT-GGGATGA 

C. zanthorrhiza2 GYGGG_TAGTCGGYAATCGTCGAGCACGATGGACGTTGGT0GT000 	GO 	CTGAACGTCG CCTCGTCGT-TTTGGGATGA 

C. soloensis GYGGG_TAGTCGGTAATCGTCGAGCACGATGGA0GTTGGT00T0G0G0CTGCGTCG CCTCGTCGTTTTGGGATGA 

C. aroma tica GCGGG-TAGTCGGCAATCGTCGAGCACGATGGACGTTGGTCGTCGCGAGCGAGAACTKAACGTCGT --CCTCGTYGT --TTT-GGGATGA  
0 

0) 



190 	200 	210 	220 	230 	240 	250 

Taxon . 	 . 	1 	. 	 . 	 . 

	

9 Q 	******* 	 ** 	* 	**** 

Ca. gracilis GTCCTCAA ---- GAGACCCTGTGTGAT ------- TGTGATGTCGTGTGAAGTGCCGTGTCCATCAMTTGT 

Ca. spica ta GTCCTCAA ---- GAGACCCTGTGTGAT ------- TGTGATGTCGTGTGAAGTGCCGTGTCCATCATTGT 

R. auricula ta TTCCTCAA ---- GAGACCCCGTGTGAT ------- TGTGATGCGGTGTGAAGCCCCCTGTCCATCATTGT 

R. schneideriana GTCCTCAA ---- GAGACCCCGTGTGAT ------- TGTGATGTCGTGCGAAGTGCCCTGTCCATCA"ATTGT 

St. involucra tus GACCTCAA ---- GAGACCCTGTGTGAT ------ TTGCGGAGTCGGGTGAAGTGCCGTGTCCATCATTGT 

Sm. supraneanae GTCCTCAA ---- GAGACCCTGTGTGAT ------ TTGCGGAGTCGGACGAAGTGCCGTGTCAATCA"TTTGT 

C.parviflora GTCCTCAA ---- GAGACCCTGTGTGAT ------- TGTGATGTCGTGTGAAGTGCCGTGTCCATCAJTTGT 

C. thorelii GTCCTCAA ---- GAGACCCTATGTGAT ------- TGCAGAGTCGGACGAAAGCGCTGTGTCAATCATCATTTGC 

C. roscoeana 
C. alismatifolia GTCCTCAA ---- GAGACCCTACGTGAT ------- TGCAGAGTCGGATGAAAGCGCTGTG"TCAATCATCATTCGC 

C. gracillima GTCCTCAA ---- GAGACCCTATGTGAT ------- TGCAGAGTCGGACGWGCGCTGTGTCAATCATCATTTGC 

C. ecoma ta GTCCTCAA ---- GAGACCCTGTGTGAT ------- TGCGGAGTCGGTTGAAGTGCCGTGTCAATCATTTGT 

C. harmandii GTCCTCAA ---- GAGACCCTATGTGAT ------- TGCAGAGTCGGATGAGCGCTGTGTCATCATCATTTGC 

C. cf. 
C.petioia ta 

rn 



190 	200 	210 	220 	230 	240 	250 
1 	 . 

9 Q ******* 	 ** 	* 	**** 

GTCCTCCA ---- GAGACCCTGTGTGAT 	SATTGCGGAGTCGCGTGAAGCGCCGCG--TCAATCA--TTTGC 

GYCCTC 	GAGACCCTGTGTGAT 	GATTGCGGAGYCGCGYGAAAGCGCCGYGTCAATCA- -- -TTTGC 

GYCCTC 	GAGACYSTGTGTGAT 	GATTGCGGAGYCGCGYGAAGCGCCGCG --TCATCA"TTTGC 
GTCCTCMA ---- GAGACCCTGTGTGAT ---- GATTGCGGAGTCNCGTGAG0TCTCA ---- TTTGC 
GTCCTCM 	GAGACCCTGTGTGAT____GATTGCNGAGKYKCGTGAAARCGSYC0G-T0T07----TTTGC 
GTCCTCM 	GAGACCCTGTGTGAT- -- -GATTGCGGAGTCGCGTGA AGCGCCGCG--TCAATCA-- - -TTTGC 
GTCCTCM 	GAGACCCTGTGTGAT ---- GATTGCGGAGTCGCGTGAGCGCCG0GTCT ---- TTT 
GTCCTCMA. 
GTCCTCCA ---- GAGACCCTGTGTGAT 	SATTGCGGAGTCGCGTGAAGCGCCGCGTCAATCATTTGC 
GTCCTCCA ---- GAGACCCTGTGTGAT 	SATTGCGGAGTCGCGTGAAAGCGCCGCG -TCAATCA- -- -TTTGC 
GYCCTCM 	GAGACCCTGTGTRIAT 	GRTTGCGGAGYCGCGYGAAGCGCCGCGTCAATCA"TTTG 0  

GCCCTC 	GAGACCCTGCGTGAT ---- GATTGCGGAGYCGCGCGAAGCGCCGCG:TCT ---- TTT 

Taxon 

C. ochrorrhiza 
C. aeruginosa 
C.phaeocaulis 
C. amarissima 
C.aurantiaca 
C. heyneana 
C.lon gal 
C. ion ga2 
C. amada 
C. zedoarial 

IQ C.zedoaria2 
0 C.zedoaria3 

C.zedoaria cf. 
C. zanthorrhizal 
C. zanthorrhz.za2 
C. soloens.is  
C. aroinatica 

Numbers in bold italic indicate the number and position of alignment gaps. 	shows indel polymorphisms (correspond with species 
name in bold font). Hypens indicate alignment gaps. Uncertain nucleotide states are coded based ort AUP conventions (Swofford 
1993) as follows: K=G/T, M=A/C, R=A/G, S=C/G, W=A/T, Y=C/T, N=AITIG/C. * in bold indicates nucleotide sites which were 
excluded from part of phylogenetic analysis. 
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APPENDIX 8 Herbarium specimens examined 

Curcuma longa L. var. aeruginosa (Roxb.) Ardiyani 
Exsiccatae: 
Jawa: Banten, s.n. (L, L). Buitenzorg, #877 (BO, L). Purwokerto, Gunung Tugel, 
#C09021 (BO). Pradjekan, Pancur-Ijen Pancur-Ijen, Koorders 920751 B (BO). 
Sumedang, Marlina Ardiyani #25 (E). Karang Anyar, Kampung Sugat, Kelurahan 
Ngunut, Jumantono, Marlina Ardlyani #63 MA (BO). Kerala: Trichur, Marlina 

Ardiyani 926 (E). Altitude range: 100 -259 m 

19771288 

Curcuma longa L. var. phaeocaulis (Valeton) Ardiyani 
Exsiccatae: 
Jawa: Tjibeber, Valeton #AcNo 166880 (BO). Wonogiri, Kethu Forest, Marlina 
Ardiyani #43 MA (E). Wonogiri, Desa Sukoharjo, Tirtomoyo, Marlina Ardiyani 
#51 MA (BO). Wonogiri, Desa Blarak Sari, Kelurahan Sukoharjo, Tirtomoyo, Marlina 
Ardiyani #52MA (BO). Sukorejo, Kalipakis, Marlina Ardiyani #73MA (E). Altitude 

range: l77-3OI m 

Curcuma longa L. var. mangga (Valeton & Zijp) Ardiyani 

Exsiccatae: 
Jawa: Gunung Pandan, Kediri, Thorenaar #305 (BO). Karang Anyar, Kampung Sugat, 
Kelurahan Ngunut, Jumantono, Marlina Ardiyani #62MA (BO). Kediri, Ottens #705 
(K, L). Buitenzorg, Botanic Garden, Heyne #85 (L). Bogor, Botanic Garden, Heyne 
#AcNo0012988 (K). Tjabak, Kaishoven #AcNo956017383 (L). Altitude range: 250- 

259 m 

Curcuma longa L. var. ochrorhiza (Valeton) Ardiyani 
Exsiccatae: 
.Jawa: Karang Anyar, Kampung Sugat, Kelurahan Ngunut, Jumantono, Marlina 
Ardiyani #54MA (E). Karang Anyar, Dusun Talpitu, Desa Ngemplak, Kecamatan 
Karang Pandan, Marlina Ardiyani #57MA (BO). Kediri, Ottens #705 (BO). 
Randoeblatoeng, Kalshoven s.n. (BO). Altitude range: 259 - 260 m Heyne 705, iii 
1917, Java: Bondowoso, Randublatung (BO). 

Curcuma longa L. 
Exsiccatae: 
Assam: Jashpur, ChotaNagpur, Wood #69 (K). ChotaNagpur, Wood #187 (K). 
Mungfoo Sealaha, Russel #20 (K). Bangladesh: Sylhet, Wallich #6605 (K). 

Chittagong Hill Tracts District, Wood #91(K). Bihar: Parasnath, Chota Nagpur, 
Haranbagh, Clarke #33667a (K). Parasnath, Chota Nagpur, Haranbugh, Clarke 

#33768 (K). 
Burma: Maymyo, Lace #5302 (K). Maymyo, Lace #5302 (F, E). Pegu, McLelland s.n. 

(K). Haryana: Saharampore, s.n. (E). Hawaiian Is: Kalaheo, Kauai, Nagata #3882 

261 
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(E). Jawa: Buitenzorg, #AcNo0083973 (BO). Buitenzorg, #AcNo0083974 (BO). 
Wonogiri, Desa Sukoharjo, Tirtomoyo, Marl ma Ardiyani #50MA (BO). Karang 
Anyar, Kampung Sugat, Kelurahan Ngunut, Jumantono, Marlina Ardiyani #60MA 
(BO). Karang Anyar, Kampung Sugat, Kelurahan Ngunut, Jumantono, Marlina 
Ardiyani #61 MA (E). Buitenzorg, Bakhuizen van den Brink, Jr. #7202 (BO). 
Buitenzorg, I-lather #AcNo908352 1305 (L). Kalimantan: Long Sungai Barang, 

Leaman #DL28 I (E). Karnataka: Kanara, s.n. (E). Natal: Pietermaritzburg, Newman 

#799 (E, E). New Caledonia: Paita, McKee #36793 (E). Papua New Guinea: 
Masawara, Upper Markham, #8319 (E, E). Zenag, Kairo, Johnson #27977 (E). 
Vailala, Croft #LAE6 1234 (E). Kaiser Witheimsiand, Hohlrung #529 (K). Tanghide, 
Daru, Western province, Near Kunini village, Simaga #729 (K). Philippines: 
Mansahay, Mindoro, Merrill #908 (K). Island of Cuyo, Escritor #21378 (K). Palawan, 
Fenix #15536 (E). Coron Island, Ramos #41172 (K). Sarawak: Rumah Juing, Nanga 
Setusor, Sungal Mujok, Jutau, Rantai Jawa #S67315 (E). Sarawak: Kampung 
Gumbang, Runi, Lai Shak Teck #S67408 (E). Sri Lanka: Colombo, s.n. (E). 

Colombo, Walker s.n. (E, E). 
Tanzania: Korongwe, Lushoto, Archbold #3269 (K). Thailand: Bangkok, Marcan 

#2217 (K). Uttar Pradesh: Kumaon, Walhich #6605D (E). Western Samoa: Upolu, 

Reinecke #587 (E). Zambia: Mt. Makutu, Chihanga, Mwinilunga, Angus #3046 (K). 

Altitude range: 250 - 1281 m 

Curcuma longa L. var. viridiflora (Roxb.) Ardiyani 
Exsiccatae: 
Bali: Bali, Nagata #3880 (E). Jaiva: Rogodjampi, #768 (L). Tjikande, Blume 
#AcNo9033221921 (L). Tjikande, Blume #AcNo9033221926 (L). Bogor, Botanic 
Garden, Heyne #40 (L). Batavia, Valeton #40 (BO). Tomo, A. Raya Bandung-
Sumedang c. 10 km from Bandung, Marhina Ardiyani #37MA (BO). Tomo, A. Raya 
Bandung-Sumedang c. 10 km from Bandung, Marhina Ardiyani #40MA (BO). 
Sumatera: Muarabungo, Rahayu #331 (K). Altitude range: 138 - 600 m 

Curcuma longa L. var. heyneana (Valeton & Zijp) Ardiyani 
Exsiccatae: 
Jawa: Buitenzorg, Botanic Garden, s.n. (BO). Wonogiri, Kethu Forest, Marlina 
Ardiyani #42MA (BO). Tawangmangu, 1-larini #100(L). Altitude range: 177 - 900m 

Curcuma longa L. var. brog (Valeton) Ardiyani 
Exsiccatae: 
Jawa: Getas, Randublatung, Kalshoven s.n. (BO). Getas, Randublatung, Kaishoven 
s.n. (L). Kalshoven s.n., 8 xii 1916, Java: Randublatung, Getas (BO, L). 

Curcuma longa L. var. soloensis (Valeton) Ardiyani 
Exsiccatae: 
Jcnt'a: Buitenzorg, Botanic Garden (Heyne 691), s.n. (L). Buitenzorg, Botanic Garden 
(Heyne 683), s.n. (L). Solo, #50 (L, K). Wonogiri, Kethu Forest, Marhina Ardiyani 
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#41 MA (BO). Wonogiri, Kethu Forest, Marlina Ardiyani #47MA (BO). Karang 
Anyar, Dusun Talpitu, Desa Ngemplak, Kecamatan Karang Pandan, Marlina Ardiyani 

#55MA (BO). Ngawi, Kampung Tambak Selo, Marlina Ardiyani #64MA (E). Ngawi, 
Kampung Tambak Selo, Marlina Ardiyani 965MA (BO). Ngawi, Kampung Tambak 
Selo, Marlina Ardiyani #66MA (E). Blora, Desa Getas, Marlina Ardiyani #70MA 
(BO). Randublatung, Kampung Banaran, Marlina Ardiyani #71 MA (E). Tempoeran, 
Beumée #4989 (BO). Purworedjo, Heyne #AcNo 166927 (BO). Wonogiri, Tukluk, 
Harini #86 (L). Papua New Guinea: Musgrave, along river, Nagata #3915 (E). 

Altitude range: 50- 610 m Specimen examined. Heyne 691, s.d., Java: Bogor (L); 
l-leyne 683, s.d., Java: Bogor (L); no collector 50, s.d., Java: Solo, Temu glenyeh (L); 

Curcuma longa L. var. zanihorrhiza (Roxb.) Ardiyani 
Exsiccatae: 
Jawa: Buitenzorg, #42 (L). Salatiga, #2421 (L). Wonogiri, Kethu Forest, Marlina 
Ardiyani #45MA (BO). Wonogiri, Kethu Forest, Marlina Ardiyani #46MA (E). 
Karang Anyar, Dusun Talpitu, Desa Ngemplak, Kecamatan Karang Pandan, Marlina 
Ardiyani #59MA (BO). Tjiemas, Backer #25561 (L). Buitenzorg, Botanic Garden 
Botanic Garden, Heyne #42 (L). Buitenzorg, Botanic Garden, Heyne #219 (L). 
Semarang, Leeuwen #365 (BO). Tjipetir, Koolhaas s.n. (L). Buitenzorg, Tjimahpar 
(Cimahpar) Tjimahpar (Cimahpar), Irsan s.n. (BO). Peninsular Malaysia: Kota 
Tinggi, Johore, 23.5 miles to Jamaluang Road, Sinclair #8074 (E, E). Kota Tinggi, 
Johore, 23.5 miles to Jemaluang Road, Sinclair #8079 (E). Kota Tinggi, Johore, 23.5 
miles to Jemaluang Road, Sinclair #40295 (E). Altitude range: 177 - 400 m 

Curcuma longa L. var. zedoaria (Christm.) Ardiyani 
Exsiccatae: 
Assam: Dalgaon, Chatterjee s.n. (E). Bangladesh: 
Chimbuk, Newman, Rahman #989 (E). Kaptai, Between Kaptai and Chittagong, 
Soejarto, Rahman 95003 (K). Hawaiian is: Oahu, Source unknown, Nagata #3640 

(E). 
.Jawa: Tomo, s.n. (K). Tomo, #623 (L). Kedunghalang, Boerlage #405 (L). Tomo, J. 
Raya Bandung-Sumedang c. 10 km from Bandung, Marlina Ardiyani #38MA (BO). 
Karang Anyar, Dusun Talpitu, Desa Ngemplak, Kecamatan Karang Pandan, Marlina 
Ardiyani #56MA (BO). Jawa Timur, Jawa Timur, Marlina Ardiyani #72MA (E). 
Leuwiliang, Pasir Honje, Bakhuizen van den Brink, Jr. #7563 (L). Lengkong, Backer 
# 17092 (L). Batavia, Kramat Sentiong, Backer #34373 (L). Garoetan, Mousset #1091 
(BO). Grobogan, Vogel #79 (L). Bidaratjina, Meester Cornelis, Edeling 
#AcNo 167036 (BO). Kerala: Trichur, s.n. (E). Anaimalai Hills, Karani, Fischer 
#33555 (K). Palai, Mangaly #10365 (E). Malabar, Lau s.n. (K). New Caledonia: 

Noumea, McKee #36123 (E). Peninsular Malaysia: Balek Palau, Ridley #7229 (K). 

Jalan Misjed, Penang, Sidek bin Kiah #254 (K). Philippines: Lucban, Tayabas 
Province, Elmer #7752 (E). lrosin, Mt. Bulusan, Sorsogon Province, Elmer #16738 
(K). Lantouan, Mindoro Is., N. face of Mt. Halcon, Stone #820 (K). Novaliches, Rizal 
Province, Paradise farm, Mendoza #37422 (K). Mt. Mariveles, Lamao river, Whitford 
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41267 (K). Sarawak: Rumah Gerasi, Nanga Ju, Sungai Mujok, near Julau, Rantai 
Jawa #S67309 (E). Sarawak: Kampung Silantek, 85th miles Simanggang Road, 2nd 
Division, Ilias bin Pale #S.42639 (E). Sarawak: Rumah Ubong, Sungai Balang, Nanga 
Gaat, Kapit, 7th Division, Lee, Awa #S.50038 (E). Sarawak: Rumah Ubong, Sungai 
Balang, Nanga Gaat, Kapit, 7th Division, Lee, Awa #S.50039 (E). Sarawak: Kampong 
Kuala Tellian, near Mukah, Kandau Jenang #S581 15 (E). Sarawak: Kampung 
Gumbang, Runi, Lai Shak Teck #S67409 (E). Singapore: Bukit Timah, #11362 (K). 

Sri Lanka: Sinharaja, Burtt 96803 (E). Bopathella Falls, Marlina Ardiyani #28 (E). 
Galla, Dubuc s.n. (E). 
Thailand: Hat Yai, Trang, Prince Songkla University, Newman #59 (E, E). 
Tripagodas, Burmese border, Bloembergen #48 (K). Mae Mawh, LAMPANG, Mae 
Mawh Lignite mine area, Maxwell #90-598 (E). Chiang Mai, summit of Doi Miang 

Awo, Maxwell #92-518 (E). Hin Dat, Put 939 (K). Muang Ngao, Lampang, Put 93998 
(K). Aw Ong Kang, Geesink, Hattink, Phengklai #6624 (K). 

Curcuma longa L. var. purpurascens (Blume) Ardiyani 
Exsiccatae: 
Bali: Bali, Nagata #3886 (E). Jawa: Lebak, s.n. (L, L, K, K, L). Buitenzorg, Botanic 
Garden (Heyne 25) Botanic Garden (Heyne 25), s.n. (L). Tomo, Tomo Oost Preanger, 
9620 (K, L). Pulau Kangean, Beguin s.n. (K). Karang Anyar, Dusun Talpitu, Desa 
Ngemplak, Kecamatan Karang Pandan, Marlina Ardlyani #58MA (BO). Buitenzorg, 
Ottens #25 (K). Buitenzorg, Ottens #25 (BO, L). Tomo, Heyne #620 (BO). 
Sitoebondo, Clason-Laarman #987 (L). Dago, Bandung, Popta #702/65 (L). Altitude 
range: 260- 850 m Specimen examined. Heyne 620, 8 iii 1916?, Java: Tomo, Koneng 

tinggang (BO) 

Curcuma longa L. var. euchroma (Valeton) Ardiyani 
Exsiccatae: 
Jawa: Soemenep, s.n. (L, BO). Tajoe, Ngarengan, Koorders #3574213 (BO). 
Wonogiri, Kampung Sulingi, Nguntoronadi, Marlina Ardiyani #48MA (BO). 
Wonogiri, Desa Tanjung Sari, Kecamatan Tirtomoyo, Marlina Ardiyani #49MA (E). 
Karang Anyar, Kampung Sugat, Kelurahan Ngunut, Jumantono, Marlina Ardiyani 
#53MA (E). Kediri, Ottens #703 (L, BO). Randoeblatoeng, Getas, Kaishoven 
#AcNo920 182672 (L). Randoeblatoeng, Kalshoven #AcNo9560 17379 (L). Heyne 87, 
1916, Madura: Sumenep, Temu lati (BO). Altitude range: 50-308 m 

Curcuma longa L. var. colorata (Valeton) Ardiyani 
Exsiccatae: 
Jawa: Buitenzorg, Botanic Garden (1-leyne 100), Valeton s.n. (BO). Banjar, Marlina 
Ardiyani #34 (E). Wonogiri, Kethu Forest, Marlina Ardiyani #44MA (BO). 
Bondowoso, Heyne #592 (BO). Getas, Randublatung, Kalshoven #1645 (BO - Type 

of Curcuma colorala Valeton). Thailand: Ban Mae Pang, 30 km north of Mae 
Sariang, Larsen, Santisuk, Warncke #2338 (E, K). Altitude range: 177 - 600 m 
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Curcuma auranhiaca Zijp 
Exsiccatae: 
Jawa: Tomo, Tomo Oost Preanger, #619 (K, L, BO). Bogor, Botanic Garden, 9862b 
(L, K). Mount Puger, Besuki, Buwalda #7298 (K, L). Randoeblatoeng, Koorders 
#4225713 (BO). Tjabak, Koorders #4252413 (BO). Tomo, ii. Raya Band ung-Sumedang 
c. 15 km from Bandung, Marlina Ardiyani #35MA (BO). Tomo, ii. Raya Bandung-
Sumedang c. 15 km from Bandung, Marlina Ardiyani #36MA (E). Ngawi, Kampung 
Tambak Selo, Marlina Ardiyani #67MA (E). Ngawi, Kampung Tambak Selo, Marlina 
Ardiyani #68MA (BO). Ngawi, Kampung Tambak Selo, Marlina Ardiyani #69MA 
(BO). Bogor, Botanic Garden Botanic Garden Botanic Garden, Alston #12624 (BO). 
Bodja, Beumée #3831 (BO). Saradan, Madiun, Wisse #156 (BO). Tjiandjur, Kiara 
Payung, Backer #23584 (L, BO). Djukongdjukong, Backer #27587 (BO). Djepara, 

Heyne #633 (BO). Singapore: Perils, Beoih Hangat, Henderson #22869 (K). 

Thailand: 
Kanchanadit, Surat, #13130 (K). Tung Song, Rabil Bunnag #165 (K). Altitude range: 

50 - 550 m 

Curcuma petiolata Roxb. 
Exsiccatae: 
Hawaiian Is: Oahu, Origin unknown (Cultivated in Lyon Arboretum)., Nagata #3688 

(E, E). Jawa: Buitenzorg, Botanic Garden, s.n. (L). Bogor, #47 (K, L). Bogor, Bogor 
Botanic Garden, #866 (K). Bodja, Beumée #3885 (BO, L). Buitenzorg, Botanic 
Garden, Heyne 447 (L, K). Thailand: Sai Yok, Marcan #2382 (K). Altitude: 100 m 

Curcuma indeterminate 
Exsiccatae: 
Jawa: Randoeblatoeng, Ottens #688 (K, L). Djukongdjukong, Backer #27587 (BO). 
Puiau Kangean, Backer #30009 (BO). Buitenzorg, Botanic Garden, Heyne 
#AcNo008261 I (BO). Gombong, Heyne #AcNo0082617 (BO). Mangkang, Leeuwen 
s.n. (L, BO); Randoeblatoeng, Koorders #4225713 (BO). 
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