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Abstract

Objects and parts are crucial elements for achieving automatic image understanding.

The goal of the object detection task is to recognize and localize all the objects in an

image. Similarly, semantic part detection attempts to recognize and localize the object

parts. This thesis proposes four contributions. The first two make object detection

more efficient by using active search strategies guided by image context. The last two

involve parts. One of them explores the emergence of parts in neural networks trained

for object detection, whereas the other improves on part detection by adding object

context.

First, we present an active search strategy for efficient object class detection. Mod-

ern object detectors evaluate a large set of windows using a window classifier. Instead,

our search sequentially chooses what window to evaluate next based on all the informa-

tion gathered before. This results in a significant reduction on the number of necessary

window evaluations to detect the objects in the image. We guide our search strategy

using image context and the score of the classifier.

In our second contribution, we extend this active search to jointly detect pairs of

object classes that appear close in the image, exploiting the valuable information that

one class can provide about the location of the other. This leads to an even further

reduction on the number of necessary evaluations for the smaller, more challenging

classes.

In the third contribution of this thesis, we study whether semantic parts emerge

in Convolutional Neural Networks trained for different visual recognition tasks, espe-

cially object detection. We perform two quantitative analyses that provide a deeper

understanding of their internal representation by investigating the responses of the net-

work filters. Moreover, we explore several connections between discriminative power

and semantics, which provides further insights on the role of semantic parts in the

network.

Finally, the last contribution is a part detection approach that exploits object con-

text. We complement part appearance with the object appearance, its class, and the ex-

pected relative location of the parts inside it. We significantly outperform approaches

that use part appearance alone in this challenging task.
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Chapter 1

Introduction

We live in a highly visual world. As humans, we heavily rely on visual input for

a multitude of our everyday tasks. This dependence has been on the rise in the last

few years, as images are more ubiquitous every day. The availability of cheap digital

cameras, especially those in smartphones, have greatly contributed to the monumental

increase in available imagery. Social media platforms (e.g. Facebook, Instagram) and

messaging applications with image support (e.g. Whatsapp, SnapChat) have paved the

way for the image as a central means of communication. Humans are inherently good

at understanding images and extracting vast amounts of information from them. With

just a brief glance at an image depicting a fairly complex scene, we can obtain a great

deal of information. For example, we can easily recognize where the scene is, what

actions are taking place, and what are the main actors and objects. We can also have a

notion of the scene’s 3D layout and the arrangement of its components. We can even

make predictions regarding future events in the scene. Nonetheless, the development

of computer algorithms that automatically achieve such detailed level of understanding

is a very challenging research task.

Computer vision is a science field that aims at automatically analyzing and under-

standing visual inputs. Commonly, the visual input is a still image, although other

types of inputs may be used, such as videos (Marin-Jimenez et al., 2014; Karpathy

et al., 2014) or depth images (Shotton et al., 2011; Ye and Yang, 2014). Given an input

image, different computer vision tasks act at multiple levels of detail. The coarsest

tasks label the image as a whole. Some examples are scene recognition (Xiao et al.,

2010; Juneja et al., 2013) and image classification (Krizhevsky et al., 2012; Simonyan

and Zisserman, 2015), which choose from a finite set of classes to categorize the whole

scene or the most prominent object in the image, respectively. Similarly, action recog-
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2 Chapter 1. Introduction

nition (Desai and Ramanan, 2012; Gkioxari et al., 2015) determines the main activity

occurring in the image, whereas image captioning (Vinyals et al., 2015; Karpathy and

Fei-Fei, 2015) describes the image using natural language. Some tasks belong to a

finer level and label specific areas of the image. For example, object detection (Felzen-

szwalb et al., 2010b; Girshick, 2015) recognizes the objects present in the image and

localizes where they appear. With even further detail, part detection (Chen et al., 2014;

Wang et al., 2015b) recognizes and localizes the semantic parts that compose the ob-

jects, and pose estimation (Liu et al., 2014; Pishchulin et al., 2016) predicts the inner

spatial arrangement of the objects.

This thesis addresses two computer vision tasks: object and part detection. We

define these tasks and list some applications in sec. 1.1. Sec. 1.2 describes the main

contributions of this thesis. Finally, sec. 1.3 presents how the thesis is organized.

1.1 Object and part detection

Objects are arguably one of the most relevant image components. For this reason,

object detection can be considered among the central tasks of computer vision. Object

detection has a two-fold goal. First, it attempts to recognize all the objects present in

an image by categorizing them into a fixed, finite set of object classes. Second, it tries

to localize each object instance by identifying the region of the image where the object

appears. In this thesis, localization is performed by placing an axis-aligned rectangular

region, called bounding-box, around each object instance (fig. 1.1).

Object detection in real-world images is a highly challenging task. An object class

may span a wide range of possibly disparate object appearances. For example, the

object class ‘car’ ranges from small compact cars to large pickup trucks, whose ap-

pearances are notably distinct. This is called intra-class variation, and it results in

object detection approaches having to learn an ample variety of object appearances,

with the intention of maximizing the number of detected object instances. Similarly,

objects are depicted in a multitude of poses and viewpoints, thus greatly affecting their

appearance. Moreover, external conditions such as illumination or low image resolu-

tion add further difficulty to the task, by limiting information usable for recognition.

Finally, objects may appear truncated or partially occluded, especially in cluttered im-

ages.

In part detection, each class is an object part, a piece of a bigger object composed

of multiple parts. Therefore, the aim is recognizing and localizing each part of the
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Figure 1.1: Examples of outputs for the (a) object detection and (b) part detection tasks.

Note the greater difficulty of part detection due to the smaller instance size and the unclear

separation between some classes. Each detection has an associated score, not shown here for

simplicity.

object to obtain a finer characterization of the object. Some works (Fergus et al., 2003;

Arbeláez et al., 2012; Song et al., 2014; Endres et al., 2013; Tsai et al., 2015; Zhang

et al., 2014b; Juneja et al., 2013; Simon and Rodner, 2015) understand as object part

any image patch that is discriminative for an object class. In this thesis, we follow

another line of work (Wah et al., 2011a; Sun and Savarese, 2011; Ukita, 2012; Azizpour

and Laptev, 2012; Liu et al., 2012; Zhang et al., 2013; Chen et al., 2014; Vedaldi et al.,

2014; Liu et al., 2014; Zhang et al., 2014b; Chen et al., 2014; Gkioxari et al., 2015;

Wang et al., 2015b; Wang and Yuille, 2015; Yang et al., 2016) and refer to parts as

semantic parts, i.e. object regions that are interpretable and nameable by humans,

such as ‘arm’ or ‘head’1.

The part detection task is generally more challenging than its object counterpart

for several reasons. First, parts are smaller than whole objects. This fact decreases

their resolution in images and increases the difficulty of localization. Moreover, the

boundary between two different parts is often not very clear. For example, the legs of

a dog are smoothly attached to its torso without an obvious separation (fig. 1.1). On

the other hand, parts exhibit lower intra-class variation, which offsets to some extent

1Unless otherwise stated, ‘part detection’ refers to semantic part detection throughout this thesis.
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the extra difficulty. As in the object detection case, in this thesis we localize parts up

to a bounding-box.

Object and part detection are narrowly related and both tasks may benefit from

exploiting the interplay between them. In one direction, parts contain valuable infor-

mation regarding the objects to which they belong. The presence of some parts might

give excellent clues about the object class, e.g. detecting a beak indicates that there

must be a bird. Furthermore, the appearance of individual parts might also be very dis-

criminative for the recognition of the object. For instance, we can distinguish different

types of vehicles by the appearance of their wheels. This direction of the interplay

between objects and parts is already successfully exploited by part-based object detec-

tion models in the literature (Felzenszwalb et al., 2010b; Azizpour and Laptev, 2012;

Chen et al., 2014; Tsai et al., 2015). In the other direction, objects provide an excellent

contextual support for the parts they contain: if we detect a person, we can expect to

find parts such as the head, arms, or legs at specific relative locations. We exploit this

direction in chapter 5, where we perform part detection using the object as context.

Applications. Object detection has abundant real-world applications. From assisting

visually impaired people by describing scenes in movies or helping them navigate the

world (Hub et al., 2004; Chen and Yuille, 2005), to the use of robot agents in criti-

cal situations such as natural disasters or nuclear accidents (Collet et al., 2009; Lee

et al., 2017). Another relevant example is self-driving cars (Geiger et al., 2012; Wu

et al., 2017), for which accurately detecting pedestrians, street signs, or other cars, is

a crucial feature when maximizing the safety of such systems. Moreover, part detec-

tion delivers a more comprehensive image understanding, enabling reasoning about

object-part interactions in semantic terms. Parts are necessary to obtain rich object

characterizations and image descriptions at a fine level, e.g. “a person is grabbing a

dog by its tail” or “the car has its headlights turned on”. Furthermore, only by cor-

rectly decomposing objects into parts will robot agents be able to fully interact with

the world, such as grabbing a briefcase by its handle, or opening the door of a car.

Given the multiple benefits of semantic parts, part-based models have gained atten-

tion for tasks such as fine-grained recognition (Zhang et al., 2014a; Lin et al., 2015;

Zhang et al., 2016; Parkhi et al., 2012), object class detection and segmentation (Chen

et al., 2014; Wang et al., 2015b), articulated pose estimation (Liu et al., 2014; Sun and

Savarese, 2011; Ukita, 2012; Yang et al., 2016), and attribute prediction (Zhang et al.,

2013; Vedaldi et al., 2014; Gkioxari et al., 2015).
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1.2 Contributions

This thesis has four main contributions, two about objects and two about parts. The

first two tackle the object detection task. They develop visual search strategies guided

by image context to efficiently detect objects in images, for one or multiple classes,

respectively. The third contribution is an analysis regarding the emergence of seman-

tic parts in neural networks trained for object detection. Finally, the last contribution

improves on part detection by incorporating object context. More concretely, the con-

tributions of this thesis are:

• An active search strategy for efficient object class detection (chapter 3). Mod-

ern object detectors evaluate a large set of windows using a window classifier.

Our active search sequentially chooses what window to evaluate next based on

all the information gathered before. We guide our search strategy with two dif-

ferent cues, the classifier score and the image context, exploiting the statistical

relation between the appearance of a window and its location relative to the ob-

ject, as observed in the training set. This results in a significant reduction of the

number necessary window evaluations to detect the objects in the image. This

contribution was published at CVPR 2015 (Gonzalez-Garcia et al., 2015).

• A multi-class joint active search (chapter 3). We extend our active search to

jointly detect pairs of object classes that appear close in the image. We first find

both classes as a unit, since this is generally an easier task than independently

finding the individual classes. Then, we branch off into individual searches for

each class, exploiting the information that one class can provide about the lo-

cation of the other. This leads to an even further reduction of the number of

necessary evaluations for the challenging classes.

• We study whether semantic parts emerge in Convolutional Neural Networks

trained for object detection, among other visual recognition tasks (chapter 4).

We perform two quantitative analyses that shed some light on this by investigat-

ing the responses of the network filters. The first uses annotated ground-truth

bounding-boxes of parts, whereas the second draws its conclusions by directly

asking human annotators. Moreover, we explore several connections between

discriminative power and semantics. We find out which are the most discrimi-

native filters and semantic parts for object recognition. This enables to gain an

even deeper understanding of the role of semantic parts in the network. This
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contribution has been accepted for publication (subject to minor revision) at

IJCV (Gonzalez-Garcia et al., 2017a).

• A part detection approach that takes object context into account (chapter 5).

We leverage object information, such as the object appearance and its class, to

enhance the part representation used for part recognition. We also model the

expected relative location of parts inside the objects based on their appearance.

Our model effectively combines all the available cues, significantly outperform-

ing approaches that use part appearance alone in the challenging task of part

detection. This contribution will be submitted to CVPR 2018 and is available as

preprint (Gonzalez-Garcia et al., 2017b).

1.3 Organization

This thesis is organized as follows. This introductory chapter briefly presents object

and part detection, the two computer vision tasks approached in this thesis. Chapter 2

provides a background exposition of both tasks, and presents the background of the use

of context for recognition, which is a common element in several contributions of the

thesis. Chapter 3 covers the first two contributions, whereas chapters 4 and 5 detail

the third and fourth contributions, respectively. Each chapter includes related work

relative to that specific contribution, a detailed description of the employed methods,

a series of conducted experiments, a discussion of the obtained results, and an outlook

on possible future directions. Finally, chapter 6 presents the general conclusions of

this thesis and additional future work. The acronyms used throughout the thesis are

reported in full length in appendix A. Appendix B lists all object and part classes used

in chapters 4 and 5.



Chapter 2

Background

This chapter explores the background of the two computer vision tasks addressed in

this thesis, namely object and part detection. We present a brief history of both tasks

along with their most relevant recent techniques. Additionally, we give an overview

of several approaches that incorporate context for the object detection task, as this is a

cornerstone of this thesis.

2.1 Object detection

Object detection is arguably one of the main tasks of modern computer vision and, as

such, has been extensively researched. Therefore, an overwhelmingly large number of

methods approach object detection, and the summary provided here is far from being

exhaustive. We present an overview of the most relevant landmark works that have

kept the field moving forward, with special focus on those that are explicitly used in

this thesis. First, we describe how object detection is evaluated.

Evaluation. Object detection approaches take a test image as input and output object

detections, composed of bounding-boxes around the objects of each class and their

associated scores (fig. 1.1). To evaluate the method’s performance in this task, we

need to determine whether each object has been successfully localized and recognized.

Everingham et al. (2006) introduced a widely used measure to evaluate localization,

Intersection-over-Union (IoU), defined as

IoU =
area(Bd \Bgt)

area(Bd [Bgt)
, (2.1)

where Bd is a detection bounding-box and Bgt is a ground-truth bounding-box. A

7
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detection for a particular class is usually considered correct if its IoU with any ground-

truth bounding-box of the class is greater than 0.5.

Datasets are commonly divided into a training set and a test set. Sometimes, a

validation set is also provided for learning the model’s hyperparameters. Methods are

trained on the training set and evaluated on the test set, by running object detectors for

all classes on every test image. We can compute the method’s precision as the fraction

of correct detections among all detections, where a detection is considered correct as

aforementioned. The method’s recall is computed as the fraction of all instances in the

test set that have been correctly detected. The standard evaluation protocol ranks all

detections by score and computes a Precision-Recall curve. This curve expresses how

precise the method is at different levels of recall. The Average Precision (AP) measure

is then used to summarize the shape of the curve. It averages the precision values at

all recall points of the curve. In practice, Everingham et al. (2006) defines 11 equally

spaced recall thresholds, interpolates the precision at each of them, and then computes

the average of the resulting precision values. When considering multiple classes, the

measure of performance becomes mean Average Precision (mAP), which is the mean

of the individual AP values for each class.

Despite the ubiquitousness of this standard evaluation methodology, it might be

inadequate in providing a complete disclosure of the method’s performance. For ex-

ample, the selection of the training, validation, and test data sets is arbitrary and might

induce significant biases. Since these sets are inmutable in the standard protocol, au-

thors often overfit their methods to the chosen test set, thus reducing the method’s gen-

eralization ability. An alternative evaluation methodology based on a cross-validation

technique would lead to a more reliable performance assesment.

2.1.1 Early approaches

Early work in the area focused on the simpler problem of recognizing specific objects

(e.g. my car) as opposed to object classes (e.g. any car). The first specific object

recognition methods (Lowe, 1987; Huttenlocher and Ullman, 1987; Rothwell et al.,

1992) tried to geometrically match the shape of a model object to edge segments dis-

covered in the test image. Such geometric methods are bound to fail when the object’s

shape is heavily altered, for example when objects appear in varying poses or under

different illumination conditions. To overcome this limitation, appearance-based meth-

ods (Murase and Nayar, 1995; Lowe, 1999; Schmid and Mohr, 1996; Rothganger et al.,
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2003; Mahamud and Hebert, 2003; Tuytelaars and Van Gool, 2004; Moreels et al.,

2004; Ferrari et al., 2004) started modeling the local appearance of object patches in-

stead of the object’s overall shape. This results in an increased robustness to pose and

illumination changes.

The core steps of most appearance-based methods are finding a set of interest points

in the test image, describing the appearance of local patches around them, and match-

ing them with similarly extracted features from training images. A widely used inter-

est point detector is the Harris-Laplacian operator of Mikolajczyk and Schmid (2004),

which is invariant to affine transformations such as rotation, scale, or translation. The

appearance of local patches is commonly described with local invariant descriptors

such as Scale-Invariant Feature Transform (SIFT) (Lowe, 1999). The SIFT descriptor

is a summary of the gradient information around a local neighborhood of each interest

point. It places a 4⇥ 4 rectangular grid centered at the point and computes a spatial

histogram of the gradient directions, which are quantized into 8 bins and weighted by

gradient magnitude. Finally, the descriptor is then contrast normalized to make it more

robust to illumination changes. For the last step of the appearance-based methods, fea-

tures are matched between training and test images by using some distance function

between descriptors.

2.1.2 Sliding-window

The next generation of object detectors tackled the more general problem of recogniz-

ing object classes rather than specific objects. Instead of relying on interest points,

many successful object class detectors (Viola and Jones, 2001; Schneiderman and

Kanade, 2004; Dalal and Triggs, 2005; Felzenszwalb et al., 2010b) adopted the sliding-

window paradigm. Sliding-window first partitions the image into a large, regular grid

of windows at multiple locations and scales. Then, it applies a window classifier to ev-

ery window in the grid to determine whether they contain an object of the target class

or not. Finally, the local maxima among all the windows become the output detections.

Viola and Jones (2001) employed this paradigm to develop a powerful and efficient

face detector. Their success can be largely attributed to the use of simple and fast to

compute features called Haar-like wavelets, and to its efficient cascaded detector based

on Adaboost (Freund and Schapire, 1997). This detector consists in a cascade of weak

classifiers, each of which performs decisions based on features previously selected as

discriminative. The cascade is arranged such that those windows that are unlikely to
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contain faces are quickly disregarded. Therefore, only the most promising windows

are processed by strong classifiers. Since the strong classifiers are also the slowest,

this detector is extremely efficient.

Another successful sliding-window detector is the person detector of Dalal and

Triggs (2005). They introduced Histogram of Gradients (HOG), a feature descriptor

closely related to SIFT (Lowe, 1999). In fact, its three basic steps are the same: gradi-

ent computation, weighted vote with quantization into cells for different locations and

orientations, and contrast normalization. The main difference resides in the contrast

normalization step, which in the HOG descriptor is performed on overlapping spa-

tial cells. As window classifier, Dalal and Triggs (2005) use a Support Vector Machine

(SVM) on HOG features. The detector’s last step is Non-Maxima Suppression (NMS),

which fuses multiple detections of the same object. An important aspect of this detec-

tor is the incorporation of hard-negative mining. This bootstrapping technique first

runs the full detection pipeline on training images and collects hard-negatives, i.e.

misclassified negative windows. Then, it retrains the window classifiers using these

hard-negatives as examples, which substantially reduces the false-positive rate.

The HOG detector of Dalal and Triggs (2005) assumes that people are always

upright and fully visible. Despite its unprecedented performance, this assumption

severely limits the detector’s applicability, as people appear in a wide range of ar-

ticulated poses in real-world images. Moreover, occlusions are commonplace, espe-

cially in cluttered scenes. The Deformable Part Model (DPM) of Felzenszwalb et al.

(2010b) extends the HOG detector to overcome this limitation and to detect more ob-

ject classes. DPM takes inspiration from the old pictorial structure approach of Fischler

and Elschlager (1973), which models objects as a collection of parts and the relative

locations between them. The idea of modeling objects as constellations of rigid parts

had already attracted some attention in the field (Weber et al., 2000; Fergus et al.,

2005; Felzenszwalb and Huttenlocher, 2005), but none of these approaches were close

to DPM’s outstanding performance.

DPM consists of a set of HOG templates that act as filters at two different levels

(fig. 2.1a). The root filter models the appearance of the whole object. The part filters

model the appearance of each of the parts, and work at twice the resolution of the root

filter. DPM follows a star structure centered at the root node (Felzenszwalb and Hut-

tenlocher, 2005), and each part is expected to lie at a particular relative location with

respect to the center. In practice, parts do not always appear exactly at the expected

locations, but also in their close surroundings. DPM models this by assigning deforma-
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tion costs to each of the parts through a quadratic function on the part displacements.

Therefore, parts further away from their expected locations are more severely penal-

ized. Moreover, objects may appear under different part arrangements. For example,

the legs of person are located below the root if the person is upright, but on the sides

if the person is lying down. For this reason, the DPM detector is actually a mixture

model with several components, each accounting for a different aspect variation of the

object (e.g. viewpoints).

At test time, DPM is applied in a sliding-window manner, where each component

outputs a score for every window. The score for each component is computed as a

weighted sum of the root filter score, the score of each part filter, and their deformation

costs. The final score is the maximum score over all components. Since parts annota-

tions are not given, the window classifier is a latent SVM (Yu and Joachims, 2009) for

which the part locations are latent variables.

2.1.3 Bag-of-Words and object proposals

Alternatively, Bag-of-Words (BoW) models (Csurka et al., 2004; Sivic et al., 2005;

Harzallah et al., 2009; Prest et al., 2012; Uijlings et al., 2013) disregard all spatial

relations within the object. Inspired by the text analysis literature, these models rep-

resent objects as an orderless collection of features. More specifically, BoW models

extract and cluster visual features (e.g. SIFT (Lowe, 1999)) from a set of training

images. Each cluster, or visual word, represents one of the recurring visual patterns

that compose the images, analogously to how words compose texts. The set of all

visual words form the visual codebook, i.e. the word dictionary in the text analogy.

An image region can now be represented by a histogram of visual words (fig. 2.1b).

Some approaches also add first and second order statistics to enhance the representa-

tion (e.g. Fisher vectors (Perronnin and Dance, 2007; Perronnin et al., 2010; Cinbis

et al., 2013) and VLAD (Jégou et al., 2010)). Originally, BoW models were introduced

for whole-image classification (Csurka et al., 2004; Lazebnik et al., 2006), and worked

by inputting the BoW representation into an image classifier, e.g. SVM, that predicted

the presence of the object in the image. Afterwards, such BoW models were used

as window classifiers for object detection (Harzallah et al., 2009; Prest et al., 2012;

Uijlings et al., 2013).

Fig. 2.1c shows different ways in which the features used in the representation can

be extracted from the image region. Common approaches use interest points (Csurka
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Figure 2.1: (a) HOG templates and deformation models used in DPM (Felzenszwalb et al.,

2010b) for class person. (b) Example of BoW object representations, adapted from Fei-Fei et al.

(2005). (c) Different sampling strategies used in BoW models, adapted from van de Sande and

Gevers (2010)

et al., 2004; Sivic et al., 2005) or a regular, possibly dense grid (Vogel and Schiele,

2002; Fei-Fei and Perona, 2005; Uijlings et al., 2013). Some weak spatial information

may also be added by using a spatial pyramid (Lazebnik et al., 2006). This method

divides the image region in different subregions and independently pools visual words

from each of them. The final representation is the concatenation of the histograms

for each region, thus multiplying the dimensionality of the BoW representation by the

number of subregions.

An example of a successful BoW approach is the UvA detector of Uijlings et al.

(2013), winner of the PASCAL VOC2012 detection challenge (Everingham et al.,

2012). They describe each window using a densely sampled 3x3 spatial pyramid BoW

representation. The codebook is created using a Random Forest on RGB-SIFT (Van

De Sande et al., 2010) descriptors previously reduced with Principal Component Anal-

ysis (PCA), and it has 4096 words. Overall, their window descriptor has 36864 dimen-

sions. To classify each window, they use a SVM with a histogram intersection kernel

on these features. Given the high dimensionality of the features and the complexity of

the kernel, this window classifier is too expensive to be applied in a sliding-window

fashion.

For this reason, recent and highly accurate detectors like UvA evaluate their win-

dow classifiers only on smaller window sets produced by object proposals genera-

tors (Alexe et al., 2010; Manen et al., 2013; Van de Sande et al., 2011; Dollar and Zit-

nick, 2014). Object proposals are sets of class-independent candidate windows likely

to cover all the objects in the image. These sets are generally rather small, in the order

of a few thousand windows, as opposed to the hundreds of thousands in the sliding-
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window paradigm. The seminal work of Alexe et al. (2010), Objectness, was the first

to introduce such object proposals for object detection, but many followed shortly af-

ter. Among the most notorious we find Selective Search (Van de Sande et al., 2011),

Randomized Prim’s (Manen et al., 2013), CPMC (Carreira and Sminchisescu, 2012),

BING (Cheng et al., 2014), and Edge Boxes (Zitnick and Dollár, 2014). Hosang et al.

(2016) presents a thorough analysis that explores the properties and performance of

an extensive list of object proposal methods. In general, object proposals enabled the

use of computationally expensive classifiers. They have been later applied to other

classifiers beyond BoW, resulting especially useful for Convolutional Neural Network

classifiers (Girshick et al., 2014; Girshick, 2015).

2.1.4 Convolutional Neural Networks

In the last few years, the state-of-the-art in object detection has been clearly domi-

nated by approaches based on Convolutional Neural Networks (CNNs). Back in 1998,

LeCun et al. (1998) showed how a CNN was an excellent model to perform handwrit-

ten digit recognition. However, several limitations prevented scaling up this model

for object recognition in high-resolution, real-world images. First, CNNs are very

slow to train, even for small input resolutions. Therefore, increasing the model’s input

resolution rendered CNN architectures effectively untrainable. Second, the enormous

amount of model parameters requires abundant amounts of data for effective training.

Finally, models with such number of parameters tend to overfit to the training data.

Image classification. The real CNN breakthrough in mainstream computer vision oc-

curred in 2012, when Krizhevsky et al. (2012) overcame these limitations through an

efficient GPU implementation, the use of great amounts of training data (Russakovsky

et al., 2015), and a new regularization technique called dropout. Their model became

the winner of the ImageNet ILSVRC2012 image classification challenge (Russakovsky

et al., 2015) by a large margin. Thereafter, object detection approaches have heavily

relied on CNNs to achieve ever more impressive results (Sermanet et al., 2014; Gir-

shick et al., 2014; He et al., 2014; Girshick, 2015; Ren et al., 2015; He et al., 2016).

Besides object detection, deep neural networks have achieved indisputable hegemony

in numerous computer vision tasks such as image classification (Simonyan and Zisser-

man, 2015; Szegedy et al., 2015), fine-grained recognition (Zhang et al., 2014a; Lin

et al., 2015; Zhang et al., 2016), semantic segmentation (Hariharan et al., 2014; Long

et al., 2015; Caesar et al., 2015), human pose estimation (Pishchulin et al., 2016; Pfis-
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ter et al., 2015), image captioning (Vinyals et al., 2015; Karpathy and Fei-Fei, 2015),

and object tracking (Hong et al., 2015; Wang et al., 2015a).

CNNs are feed-forward artificial neural networks designed to have images as in-

puts. As with standard neural networks, the input is processed through a series of

hidden layers composed of neurons with learnable weights and biases, generally fol-

lowed by a non-linear activation function. The distinctive characteristic of a CNN is

the convolutional nature of its filters, which are slided convolutionally over the input.

Therefore, convolutional layers act only on a local region at a time, as opposed to fully

connected layers, which act on the whole input at once. The network may also contain

other types of layers. For example, pooling layers are used to downsample the input,

providing some translation invariance and decreasing the number of parameters, which

in turn reduces overfitting. The input of every layer is the output of the previous one,

except for the first layer, which takes the image as input. The output of the model is

the output of the last network layer. For example, in an image classification CNN, the

last layer outputs the class scores of the input image. A loss function is defined on the

output layer and optimized using Stochastic Gradient Descent (SGD) with backpropa-

gation (LeCun et al., 1998). Backpropagation updates the weights of each layer using

a single backward pass that computes derivatives in a memory-efficient fashion.

The original model of Krizhevsky et al. (2012), commonly known as AlexNet,

contains five convolutional layers followed by three fully connected layers. As non-

linearity it uses Rectified Linear Units (ReLU), defined for input x as max(0,x). The

non-saturating properties of the ReLU result in faster training compared to other acti-

vation functions, such as the hyperbolic tangent. The first two convolutional layers are

also followed by local response normalization layers. Max-pooling layers follow the

normalization layers as well as the last convolutional layer. This type of pooling layer

summarizes each local input patch by its maximum value. More details regarding this

architecture can be found in Krizhevsky et al. (2012).

Several other architectures are in use nowadays. As depth seems to play a decisive

role in the network’s performance, newer architectures tend to be deeper. An example

of this is VGG-16, the successful 16-layer model of Simonyan and Zisserman (2015).

VGG-16’s smaller convolutional filters allow for a greater network depth, which results

in significant performance gains. The current state-of-the-art network is the Residual

Net of He et al. (2016), whose depth ranges from 100 layers to the staggering amount

of 1000 layers. Residual Nets enable these extremely deep architectures by explicitly

forcing its layers to learn a residual mapping, implemented by shortcut connections
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Figure 2.2: CNN-based approaches for object detection. R-CNN (Girshick et al., 2014) pro-

cesses all windows independently through all the layers in the network and uses a SVM to

classify each window. Fast R-CNN (Girshick, 2015) processes the whole image once through

all convolutional layers and classifies each window by pooling from the corresponding region

of the convolutional map.

that skip one or more layers. They rely on the fact that learning a residual mapping

and then recasting it into the desired mapping is considerably easier to optimize than

directly learning the desired mapping.

Object detection. One of the first CNN-based object detectors, Overfeat (Sermanet

et al., 2014), proposed an approach that combined a CNN classifier with the sliding-

window paradigm. However, it was Girshick et al. (2014) who implemented the first

state-of-the-art CNN object detector with Region-CNN (R-CNN). The unprecedented

performance of R-CNN can be mostly attributed to the two following factors.

First, the description of image windows using the powerful image classification

CNN model of Krizhevsky et al. (2012), which is much more effective than HOG

features or the BoW representation. For each proposal, the model extracts fixed-length

features from intermediate network layers and uses them to train a linear SVM. These

features provide an excellent visual representation (Donahue et al., 2014) that facilitate

the learning of classification decisions. The use of these features was enabled by the

adoption of object proposals (Selective Search (Van de Sande et al., 2011)), as such

CNN model is prohibitively expensive for a sliding-window approach. R-CNN also

includes a per-class bounding-box regression mechanism that refines its detections to

enclose the object instances more accurately.

Second, the development of an effective two-stage network training. In a first stage

called pre-training, the network is trained for the image classification task. Pre-training
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enables the network to learn a discriminative visual representation by leveraging the

vast amounts of annotated data for such task (Russakovsky et al., 2015). The second

stage consists in fine-tuning the network weights for the object detection task. This

normally requires adapting the last layer to accommodate for the difference in the

number of classes. Fine-tuning tailors the general visual representation learned during

the pre-training stage for the actual task at hand. Moreover, this process prevents

overfitting the CNN to the relatively small object detection dataset by leveraging the

great amounts of data used during pre-training.

Many object detection works (He et al., 2014; Hariharan et al., 2014; Girshick,

2015; Lenc and Vedaldi, 2015a; Ren et al., 2015; Zhang et al., 2016; Huang et al.,

2016; Papadopoulos et al., 2016; Shrivastava and Gupta, 2016; Li et al., 2016; Lin

et al., 2017) have either successfully used R-CNN in their models or built on it as

a starting point. Among the most successful extensions of R-CNN we find Fast R-

CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015).

Fast R-CNN builds on an idea initially proposed by He et al. (2014) that consists

in processing all convolutional layers only once for the whole image, and then extract-

ing window-specific features from the corresponding region of the convolutional map

(fig. 2.2). This approach considerably increases the model’s efficiency, as most of the

computation is shared among all windows. Fast R-CNN combined this with the in-

tegration of a multi-task loss function within the network, allowing to simultaneously

train for classifiying object proposals and the bounding-box regressor.

Faster R-CNN extends Fast R-CNN by introducing a Region Proposal Network

(RPN) that supercedes the manually engineered object proposal generators. Instead of

relying on externally generated object proposals, the RPN directly proposes candidate

windows within the network. This approach reduces the total detection time, as object

proposal generators are Fast R-CNN’s computational bottleneck. Moreover, it enables

to train the proposal generator too, which leads to better performance.

The latest leading object detection approaches go a step further and directly predict

object locations instead of using object proposals. For example, SSD (Liu et al., 2016)

generates adjustments for a set of default boxes in the image. The current state-of-the-

art approach for real-time object detection, YOLO (Redmon et al., 2016; Redmon and

Farhadi, 2017), divides the image into a regular grid of cells and predicts bounding-

boxes and scores for each of these cells. This line of work results in an intellectual

evolution step for object detection and regards the window classifier approach obsolete.

In this thesis, we use R-CNN in chapters 3 and 4, and in chapter 5 we build a new
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detection model based on Fast R-CNN.

2.2 Part detection

The word part can be associated with two different computer vision concepts. First, a

part can be understood as any image patch that is discriminative for an object class (Fer-

gus et al., 2003; Arbeláez et al., 2012; Song et al., 2014; Endres et al., 2013; Tsai et al.,

2015; Zhang et al., 2014b; Juneja et al., 2013; Simon and Rodner, 2015). For example,

the parts used in the DPM object detector (Felzenszwalb et al., 2010b) are of this type.

Alternatively, we can refer to parts as semantic parts, i.e. object regions that are in-

terpretable and nameable by humans, such as ‘head’, ‘wheel’, or ‘handle’ (Wah et al.,

2011a; Sun and Savarese, 2011; Ukita, 2012; Azizpour and Laptev, 2012; Liu et al.,

2012; Zhang et al., 2013; Chen et al., 2014; Vedaldi et al., 2014; Liu et al., 2014; Zhang

et al., 2014b; Chen et al., 2014; Gkioxari et al., 2015; Wang et al., 2015b; Wang and

Yuille, 2015; Yang et al., 2016). In this thesis, we address the detection of the latter

type, and we evaluate part detection analogously to object detection.

Semantic part detection is an interesting and challenging task, yet only seldom

explored in the detection literature. In fact, parts are generally used as support for

other computer vision tasks, given their multiple benefits. First, they present lower

intra-class variation than whole objects, as parts tend to be rather similar to each other.

Second, visual representations based on parts are more robust to pose variation. Third,

part configurations convey relevant information regarding the aspect of the objects. For

example, we can infer the object viewpoint based on the part locations. Finally, parts

capture subtle appearance variations at a finer granularity than objects.

For these reasons, part-based models have gained a great deal of attention and have

been successfully applied to a multitude of tasks. An excellent example of a task that

heavily uses part-based models is fine-grained recognition. The goal of fine-grained

recognition is to discriminate between sub-categories of a class, such as car models or

bird species. Sub-categories are very similar to each other, as they contain the same

parts under similar configurations. Therefore, discrimination is only possible by fo-

cusing on subtle differences in the appearance of specific parts, e.g. the shape of a

bird’s beak. Fine-grained recognition methods exploit this by explicitly incorporating

semantic parts in their models, enabling visual representations with higher discrimi-

native potential (Parkhi et al., 2012; Zhang et al., 2014a; Lin et al., 2015; Shih et al.,

2015; Xiao et al., 2015; Zhang et al., 2016; Akata et al., 2016).



18 Chapter 2. Background

Figure 2.3: Three different precision levels for part localization: (a) keypoints (Huang et al.,

2016), (b) bounding-boxes, and (c) segmentation (Cheng et al., 2014).

Semantic parts have been used also for object class detection (Felzenszwalb et al.,

2010b; Azizpour and Laptev, 2012; Chen et al., 2014; Tsai et al., 2015) and segmen-

tation (Arbeláez et al., 2012; Wang and Yuille, 2015; Wang et al., 2015b), in which

part are especially helpful when the whole appearance of the object is not very in-

formative due to occlusions or low resolution. In human pose estimation (Liu et al.,

2014; Sun and Savarese, 2011; Ukita, 2012; Yang et al., 2016), parts are crucial to

determine the object’s spatial configuration. In the attribute prediction task (Gkioxari

et al., 2015; Vedaldi et al., 2014; Zhang et al., 2013), parts might contain particular

information in relation to the object’s attributes. Parts may also be used in whole scene

classification (Juneja et al., 2013). Finally, parts are necessary to obtain rich object

characterizations and deliver a more comprehensive image understanding, enabling

reasoning about object-part interactions in semantic terms.

Methods in the literature localize part instances mainly using three different preci-

sion levels (fig. 2.3). The simplest localization level places a keypoint to indicate the

part center (Wah et al., 2011a; Gavves et al., 2013; Liu et al., 2014; Simon and Rodner,

2015; Huang et al., 2016; Shih et al., 2015; Akata et al., 2016). The next level delim-

its the whole extent of the part up to a bounding-box (Sun and Savarese, 2011; Ukita,

2012; Zhang et al., 2014a; Gkioxari et al., 2015; Chen et al., 2014; Vedaldi et al., 2014;

Lin et al., 2015; Xiao et al., 2015), as in standard object detection (Felzenszwalb et al.,

2010b; Girshick et al., 2014; Girshick, 2015). Lastly, the most precise level determines

the accurate area of the the part through a pixel-wise segmentation mask (Wang et al.,

2015b; Hariharan et al., 2015; Liang et al., 2016a; Xia et al., 2016; Wang and Yuille,

2015; Yang et al., 2015). In chapters 4 and 5 of this thesis, we focus on the intermediate

precision level and localize semantic parts up to a bounding-box.

Despite the relevance of semantic parts, not many works tackle part detection as
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a task in itself. In fact, it is common to simply repurpose an object detection model

to detect parts instead of objects. For example, several works use HOG templates to

detect semantic parts (Sun and Savarese, 2011; Azizpour and Laptev, 2012; Ukita,

2012; Vedaldi et al., 2014; Cheng et al., 2014). Zhang et al. (2014a) use R-CNN,

the object detection approach of Girshick et al. (2014), but trained for part classes

instead of object classes. Moreover, a few works use even simpler approaches, relying

on the assumption that convolutional filters can act as part detectors without explicitly

training the model to detect parts (Gkioxari et al., 2015; Xiao et al., 2015). In chapter 4

we investigate whether this assumption holds true. Moreover, we propose in chapter 5

a dedicated part detection approach that modifies a CNN architecture to leverage object

information.

2.3 Context for recognition

Context is a very rich source of information for visual recognition. It is especially

valuable when the sole appearance of the object is not very informative due to occlu-

sions, small size, low resolution, etc. For this reason, the incorporation of context in

object recognition has been extensively researched and is still a popular topic nowa-

days. Many works (Torralba, 2003; Murphy et al., 2003; Russel et al., 2007; Modolo

et al., 2015; Harzallah et al., 2009; Song et al., 2011; Hoiem et al., 2008; Vu et al.,

2015; Rabinovich et al., 2007; Galleguillos et al., 2008; Desai et al., 2009; Choi et al.,

2010; Felzenszwalb et al., 2010b; Heitz and Koller, 2008; Dalal and Triggs, 2005; Li

et al., 2011; van de Sande and Gevers, 2010; Crandall and Huttenlocher, 2007; Mot-

taghi et al., 2014) have attempted to leverage the numerous sources of context in an

image. Divvala et al. (2009) presents an extensive analysis of different context sources

as well as their impact on object recognition. This section explores the three context

types most commonly used as support for the object detection task.

Generally, context approaches in the literature use image context to assist object

detection. In chapter 3, we use this type context to guide an active search strategy

for object detection. Furthermore, chapter 5 introduces another type of context, object

context, which we use to help part detection.
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2.3.1 Global image appearance

The global appearance of the image indicates which classes might be present and even

where they might be located. In fact, psychological studies show how humans quickly

scan the totality of a scene before focusing on specific individual objects (Navon, 1977;

Biederman, 1987). Motivated by this, several works model context as the relation

between global image features and the objects inside it (Torralba, 2003; Murphy et al.,

2003; Russel et al., 2007; Modolo et al., 2015; Harzallah et al., 2009; Song et al., 2011;

Hoiem et al., 2008; Vu et al., 2015).

A commonly used global image descriptor is Gist (Oliva and Torralba, 2001). Gist

is a holistic representation based on low level features extracted from the whole im-

age. Intuitively, the Gist descriptor encodes structural scene properties by summarizing

gradient information from different parts of the image. Torralba (2003) employed this

descriptor for inferring which object classes might be present and their approximate

locations and scales.

In this same spirit, Murphy et al. (2003) extended the work of Torralba (2003)

by combining spatial constraints derived from Gist with the outputs of local object

detectors trained with boosting. Additionally, they explore the effectiveness of Gist for

the image classification task, i.e. predicting the presence of objects anywhere in the

image. The good results obtained on this task confirm the validity of Gist as a reliable

source of information regarding the presence of the objects. Russel et al. (2007) use

the Gist descriptor to align the current test scene to example scenes in a large training

set of labeled images. Once similar scenes are found, they transfer the annotated object

knowledge in the example scenes to the current scene.

Some other works followed a similar idea but using different descriptors or more

advanced ways of mapping from global image appearance to the properties of the ob-

jects inside it. Harzallah et al. (2009) complement an object detector with an image

classification approach, which integrates information about the image as a whole, by

combining probabilities in a post-processing step. Similarly, Song et al. (2011) intro-

duce contextual information from the output of an image classification method into

a context-adaptive object detector, called Context-SVM. Modolo et al. (2015) use a

Random Forest framework to predict likely locations for the objects in the images and

remove false positive detections. Hoiem et al. (2008) first estimate the scene’s 3D

geometry from its global appearance and then use this estimate to predict the expected

scale and location of the objects in it. Finally, the head detection work of Vu et al.
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Figure 2.4: Two types of context widely used for recognition. (Left) Global image appearance

may indicate the presence and location of objects. (Right) Some methods exploit the relation-

ships between objects that tend to appear together.

(2015) trains a CNN model that predicts the locations and scales of heads directly

from the input image.

2.3.2 Other objects

Most objects interact with other objects in the image in a variety of ways. Objects

may have a semantic relationship, often appearing together in the same image. For

example, tennis balls tend to appear in tennis courts, next to tennis players and rack-

ets (fig. 2.4). Therefore, the presence of particular objects in the image may indicate

the presence of related objects. Continuing with the previous example, we can ex-

pect to find tennis rackets after detecting tennis players. Furthermore, objects can be

physically related, presenting stable spatial configurations across different images. For

example, keyboards tend to be next to monitors because they are functionally con-

nected. Consequently, many works exploit these phenomena by explicitly modeling

the relationships between objects.

Rabinovich et al. (2007) incorporate semantic object context by reasoning about

co-occurrence of object classes. This is done by optimizing label agreement through a

Conditional Random Field (CRF) that integrates information from all image regions.

Their method can be applied on top of any object detector that classifies disjoint image

regions, as it rescores the classifiers in a post-processing step. Galleguillos et al. (2008)

extend Rabinovich et al. (2007) by also reasoning about the spatial relationships be-

tween objects, modeled as pairwise terms in the CRF. Galleguillos et al. (2008) learn

these relationships exclusively from annotated data, whereas Rabinovich et al. (2007)

also mine them using an image search engine as external knowledge source.
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Desai et al. (2009) cast multi-class object detection into a structured prediction

framework. Their approach predicts a structured labeling of the whole image simul-

taneously. It gathers statistics regarding the spatial relationships between objects in

real images and uses them to suppress or favor spatial arrangements at test time. Al-

ternatively, Choi et al. (2010) propose a tree graphical model to encode spatial and

co-occurrence dependencies between different object classes. By also incorporating

global image features (Gist), their model predicts contextually coherent object loca-

tions and remove out-of-context false-positive detections. Finally, Felzenszwalb et al.

(2010b)’s DPM detector rescores detections by adding image context into a quadratic

SVM. They model image context as a vector with as many dimensions as object

classes. Each coordinate represents the presence of a class by using the normalized

score of the highest detection of that class.

Stuff classes, which are amorphous regions that are usually considered background

such as road or sky, may also provide valuable context for recognition. For exam-

ple, Heitz and Koller (2008) exploit the context of this type of classes by incorporat-

ing them in a probabilistic object detection model that considers the relative spatial

location of objects with respect to stuff. They learn stuff classes from data in an unsu-

pervised way, by clustering visually similar image background regions that provide a

solid context for object classes.

2.3.3 Object surroundings

Image regions that are not semantically meaningful may also provide valuable contex-

tual information for object detection. Concretely, the immediate surroundings of a par-

ticular object class may be significantly informative, as they stay rather stable across

different instances. For example, cows generally appear surrounded by green color

from the fields, whereas airplanes appear surrounded by blue from the sky. Moreover,

when observing only a very tight window around an object instance, the object bound-

ary becomes less explicit. Boundaries are informative recognition cues and window

classifiers may benefit from including them.

Several detectors expand each window input into their window classifiers to in-

clude the region immediately surrounding the object. Dalal and Triggs (2005) includes

a margin of 16 pixels around every window and shows how adding this context gives

a significant boost to the object detection performance. Motivated by a human study

showing how we perform better at recognizing objects when given image regions that
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are bigger than just the objects, Li et al. (2011) propose learning adaptive contextual

regions around the objects. These regions are class-specific and provide a valuable

contextual cue that help object detection. The Selective Search proposal generator

of van de Sande and Gevers (2010) generates approximate locations by using rough

segmentations, instead of generating precise locations that tightly delineate the ob-

jects. Therefore, Selective Search proposals include some object surroundings as local

context, and thus all the works that use them (Uijlings et al., 2013; Girshick et al., 2014;

Zhang et al., 2014a; Girshick, 2015; Gkioxari et al., 2015) indirectly benefit from this

type of context.

Crandall and Huttenlocher (2007) add context from some scene regions by expand-

ing a part-based model to a hierarchical two-layer model. The finer level represents the

object as usual. The coarser level represents the scene, and its parts are automatically

learned image patches around the object. Similarly, Mottaghi et al. (2014) also extend

a deformable part model to include local context around the object. Concretely, it adds

contextual ‘parts’ at the top, bottom, right, and left of the object’s root filter. Their

model, which also includes global image context, increases object detection perfor-

mance, especially on objects with extreme sizes (e.g. tiny or very large).

2.4 Discussion

Context in object detection has been predominantly applied with the goal of improving

detection performance. Another promising use of context more rarely exploited is as

guidance for visual search strategies in images. Visual searches could benefit from

information provided by image context to focus their attention on promising areas

while ignoring areas unlikely to contain objects. In this spirit, we use image context to

guide the search strategy of chapter 3.

CNNs are being constantly used for object detection, among other tasks. However,

they are very unintuitive and the details of their internal representations are largely

unknown. For this reason, more research is needed to provide a better understanding

of their inner workings. Chapter 4 attemps to clarify an often assumed property of

CNNs regarding the emergence of semantic parts in their learned representations.

Semantic parts are relevant visual components used for multitude of computer vi-

sion tasks, but the detection of parts as a task on its own has received little attention.

We tackle this interesting and challenging task in chapter 5, where we exploit object

context to provide more accurate part detections.





Chapter 3

Active search strategies for efficient

object class detection

3.1 Introduction

Most object detectors first partition the input image into a set of windows and then

evaluate them independently using a window classifier. The window classifier scores

each window to determine whether it contains an object of a particular class or not.

Finally, the detector outputs the windows with the locally highest scores. Classical ap-

proaches partition the image using sliding-window (Dalal and Triggs, 2005; Harzallah

et al., 2009; Felzenszwalb et al., 2010b; Malisiewicz et al., 2011), whereas more recent

object detectors (Uijlings et al., 2013; Wang et al., 2013; Girshick et al., 2014; He et al.,

2014; Zhang et al., 2014a; Szegedy et al., 2015; Ouyang et al., 2015; Girshick, 2015)

use object proposals (Van de Sande et al., 2011; Alexe et al., 2010). In both cases, the

window classifier evaluates all windows in the set, effectively assuming that they are

independent.

In this work, we propose an active search strategy that sequentially chooses the

next window to evaluate based on previously observed windows, rather than going

through the whole window set in an arbitrary order. Our search method extracts in-

formation given by the observed windows and integrates it into the search, effectively

guiding future observations to windows likely to contain the object. Thereby, our

method explores the window space in an intelligent fashion, where future observations

depend on all the information gathered so far. This results in a more natural and elegant

way of searching, avoiding wasteful computation in uninteresting areas. As a conse-

quence, our method is able to find the objects while evaluating much fewer windows,

25
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Figure 3.1: Intuition behind the proposed active search strategies.

typically only a few hundred (sec. 3.6.3).

Fig. 3.1 (left) shows the intuition of our method on detecting beds. We use two

guiding forces: context and window classifier score. Context exploits the statistical

relation between the appearance of a window and its location relative to the objects,

as observed in the training set. For example, the method can learn that beds tend

to be on the floor, below ceilings. Observing a window in the ceiling (w0) in a test

image suggests that there might be a bed below, whereas a window on the floor (w1)

suggests making a horizontal move instead. This contextual information may point

to any area of the image. On the other hand, the classifier score of a window gives

information about the score of other nearby windows, due to the smoothness of the

classifier function. It guides the search to areas where we observed windows with

high scores, while pushing away from those with low scores. For example, a window

partially containing a bed (w2) will attract the search to its surroundings. Our active

search effectively combines these two forces to explore the image in an efficient way.

In a multi-class setting, we can further reduce the number of evaluated windows

by active search. Many objects in the real world co-occur and often appear close in

the image. For example, beds tend to appear next to night tables (fig. 3.1). Because

of this, the detection of a particular class may assist in the detection of other classes,

providing helpful cues about their location and scale. For this reason, we also propose

an active search strategy that searches for two object classes jointly.

Fig. 3.1 (right) gives an overview of our joint search strategy, on the pair of classes

bed and night table. We first search for both classes together as a single unit, inspired

by the visual phrase (Sadeghi and Farhadi, 2011) work. In our case, a visual phrase

is a pair of classes that co-occur frequently and present a consistent relative position

and scale across images. After finding the visual phrase, the search branches off into

two individual searches, one for each object. These individual searches can exploit
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the information provided by the visual phrase, which is an advantage over single-class

active search. The visual phrase is a very informative cue about the location and scale

of the objects inside it, thus providing an excellent initialization for the individual

searches. Moreover, the context guiding force is typically more effective within a

visual phrase, as this has a much more specific appearance and object layouts than the

entire image. This results in searches able to detect the individual objects in very few

iterations.

Experiments on the challenging SUN2012 dataset (Xiao et al., 2010) and PAS-

CAL VOC10 (Everingham et al., 2010) demonstrate that our single-class active search

explores the image in an intelligent way, effectively detecting objects in only a few

hundred iterations. As window classifiers we use the popular R-CNN (Girshick et al.,

2014) and the UvA Bag-of-Words model of Uijlings et al. (2013). For R-CNN on

SUN2012, our method matches the detection accuracy of evaluating all proposals in-

dependently, while evaluating 9⇥ fewer proposals. For the UvA window classifier, our

search strategy only needs 35 proposals per image to match the performance of eval-

uating all of them (a reduction of 85⇥). By letting the search run for longer, we even

improve accuracy while evaluating 30⇥ fewer proposals, as it avoids evaluating some

cluttered image areas that lead to false-positives. Depending on the used classifier, our

active search strategy results in an actual runtime speedup (sec. 3.6.5). Additionally,

we demonstrate our joint active search on SUN2012 and Microsoft COCO (Lin et al.,

2014). It is especially effective for challenging classes containing small objects, such

as desk lamp and tennis racket, where it needs to evaluate even fewer windows than

our single-class active search.

A preliminary version of this work appeared at CVPR 2015 (Gonzalez-Garcia

et al., 2015), covering only the single-class case. In this chapter, we also introduce

joint active search over pairs of classes and present a more extensive experimental

evaluation.

The rest of the chapter is organized as follows. Section 3.2 describes related work

to our approach. We detail our method for single-class active search in section 3.3, and

for joint active search in section 3.4. Section 3.5 presents all the implementation details

for both approaches. In sections 3.6 and 3.7, we describe the performed experiments

and discuss their results for single-class and joint active search, respectively. Finally,

we conclude the chapter and propose future work in section 3.8.



28 Chapter 3. Active search strategies for efficient object class detection

3.2 Related work

Modern object detectors. Chapter 2 introduced the notion of object proposals and

how modern object detectors (Cinbis et al., 2013; Uijlings et al., 2013; Wang et al.,

2013; Girshick et al., 2014; He et al., 2014; Zhang et al., 2014a; Szegedy et al., 2015;

Ouyang et al., 2015; Girshick, 2015) have reduced the number of window evaluations

by using them, compared to the classical sliding-window paradigm (Dalal and Triggs,

2005; Harzallah et al., 2009; Felzenszwalb et al., 2010b; Malisiewicz et al., 2011).

The work presented in this chapter brings even further reductions, as we only evaluate

a subset of the object proposals (typically just a few hundred).

After the publication of our active search method (Gonzalez-Garcia et al., 2015),

most recent object detectors have incorporated efficiency improvements that render

this work less relevant computationally. Fast R-CNN (Girshick, 2015) processes the

network’s convolutional layers only once for the whole image, and thus most of the

computation is shared among all windows. Therefore, the total cost of evaluating a

big number of windows is similar to the cost of evaluating few windows. The leading

object detection approaches propose even more efficient architectures, either by inte-

grating the object proposal step into the CNN as in Faster R-CNN (Ren et al., 2015),

or by directly predicting the object locations without the need of object proposals, like

SSD (Liu et al., 2016) or YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017).

Besides the decrease in runtime, another benefit of such models is the ability to be

trained end-to-end for detection. In the case of Faster R-CNN, this makes the gener-

ated windows very effective for the detection task and thus they need to evaluate much

fewer windows compared to approaches that use externally generated object proposals,

normally in the range of only a few hundred. SSD and YOLO achieve even smaller

runtimes by avoiding the proposal generation step altogether. Huang et al. (2017)

present an extensive survey of the state-of-the-art object detectors and their trade-offs

between efficiency and detection performance.

Although our active search does not bring a computational benefit when applied to

very recent detectors, it is still an interesting research area on its own. In the future,

it is possible that the next most accurate window classifier is also computationally

very expensive. If such classifier cannot easily recycle computation across windows,

our active search would then still be applicable, as it is independent of the window

classifier.
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Improving sliding-window. Some works reduce the number of window classifier

evaluations. Rowley et al. (1996) and Viola and Jones (2001) consider coarser window

grids that minimize the drop in performance. Lampert et al. (2008) use a branch-

and-bound scheme to efficiently find the maximum of the classifier over all windows.

However, it is limited to classifiers for which tight bounds on the highest score in a

subset of windows can be derived. Lehmann et al. (2011) and Sun and Batra (2015)

extend Lampert et al. (2008) to some more classifiers and to detect multiple object

instances in the same image, respectively. Several works perform coarse-to-fine de-

tection for symbol recognition (Amit and Geman, 1999), face detection (Fleuret and

Geman, 2001), and cat detection (Fleuret and Geman, 2008). They apply a first ‘vi-

sual search’ step that reduces the number of windows to be evaluated by the window

classifier.

An alternative approach is to reduce the cost of evaluating the classifier on a win-

dow. For example, both Harzallah et al. (2009) and Vedaldi et al. (2009) first run a

linear classifier over all windows and then evaluate a complex non-linear kernel only

on a few highly scored windows. Schneiderman (2004) shares feature evaluations

across different windows, which effectively reduces the window evaluation time. Sev-

eral techniques are specific to certain types of window classifiers and achieve a speedup

by exploiting their internal structure (e.g. DPM (Felzenszwalb et al., 2010a; Pedersoli

et al., 2011; Zhu et al., 2014), CNN-based (He et al., 2014; Girshick, 2015), additive

scoring functions (Wu and Zhu, 2013), cascaded boosting on Haar features (Viola and

Jones, 2001; Saberian and Vasconcelos, 2014)). Our work instead can be used with

any window classifier as it treats it as a black-box.

Sequential search. The ‘active testing’ framework was first proposed by Geman and

Jedynak (1996) for the task of road tracking. It is a sequential search strategy that gets

updated as it gathers information about the image. Starting with an initial set of loca-

tion hypotheses for the road, the search sequentially applies tests to these hypotheses

and changes their probabilities based on the test results. Every step of the search re-

duces the uncertainty, until it reaches a chosen threshold that makes the search finish.

Sznitman and Jedynak (2010) extend this framework for face detection by adding a hi-

erarchical model and pruning heuristics. More recently, active testing has been applied

to point-could registration (Pinheiro et al., 2013) and graph matching (Serradell et al.,

2015).

A few works develop techniques that make sequential fixations inspired by hu-
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man perception for tracking in video (Bazzani et al., 2011), image classification (De-

nil et al., 2012; Larochelle and Hinton, 2010; Mnih et al., 2014) and face detec-

tion (Butko and Movellan, 2009; Tang et al., 2014). However, they only use the

score of a (foveated) window classifier, not exploiting the valuable information given

by context. Moreover, they experiment on simple datasets, far less challenging than

SUN2012 (Xiao et al., 2010) (MNIST digits, faces).

Another line of visual search works relies on visual saliency of objects in images.

Itti et al. (1998) presented a visual attention model that selects the attended locations

based on image saliency maps. Walther and Koch (2006) extended this model by in-

cluding an estimation of the object extent at each attented location. Sun and Fisher

(2003) developed an attention framework that effectively integrates space-based atten-

tion with object-based attention. Sun et al. (2008) extended this framework by adding

biologically inspired eye-movement information. Similar approaches have been fol-

lowed for grasping in humanoid robots (Orabona et al., 2005) and face detection (Lee

et al., 2005).

Since the publication of our paper on single-class active search (Gonzalez-Garcia

et al., 2015), some works have applied reinforcement learning techniques to this task

(Caicedo and Lazebnik, 2015; Mathe et al., 2016; Jie et al., 2016). Caicedo and Lazeb-

nik (2015) localize objects using a Markov Decision Process that starts from the whole

image and iteratively modifies the current window to better enclose the object (e.g.

make it smaller). Mathe et al. (2016) balance exploration and exploitation by accu-

mulating evidence from different image regions. Although these two approaches do

reduce the number of windows observed, they damage the performance of the detector

applied (e.g. R-CNN (Girshick et al., 2014)). In contrast, our method achieves the

same performance as evaluating all possible windows. Finally, Jie et al. (2016) se-

quentially propose windows to be observed by exploiting the internal architecture of a

CNN, similarly to the Region Proposal Network in Fast R-CNN (Ren et al., 2015). Ad-

ditionally, Caicedo and Lazebnik (2015); Jie et al. (2016) do not use context to guide

the search.

Context. Many works use context as an additional cue on top of object detectors,

complementing the information provided by the window classifier, but without altering

the search process (sec. 2.3).

The most related work to ours is Alexe et al. (2012), which proposes a search

strategy driven by context. Here we go beyond in several ways: (1) We use context
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much more efficiently (Random Forest vs nearest-neighbors). We add only a very small

overhead, resulting in an actual wall-clock speedup for some classifiers (sec. 3.6.5). (2)

While Alexe et al. (2012) use only context, we guide the search also by the classifier

score, and learn an optimal combination of the two forces (sec. 3.3.1). (3) Alexe et al.

(2012) is only single-class, whereas we perform multi-class detection with joint search

strategies and introduce two new types of context for this task. (4) While Alexe et al.

(2012) perform experiments only on PASCAL VOC10, we also use SUN2012 (Xiao

et al., 2010) and MS-COCO (Lin et al., 2014), which have more cluttered images with

smaller objects.

Visual Phrases. Sadeghi and Farhadi (2011) introduce visual phrases as composites

such as “person riding a bicycle”. They train visual phrase detectors from manually

annotated visual phrases in PASCAL (Everingham et al., 2010), and show that they

outperform individual class detectors, even when combined with spatial reasoning.

Some works (Desai and Ramanan, 2012; Kong et al., 2014) extend visual phrases or

combine them with other methods for articulated pose estimation (Desai and Ramanan,

2012), action classification (Desai and Ramanan, 2012) and human interaction recog-

nition (Kong et al., 2014). Finally, Li et al. (2012) and Lan et al. (2013) automatically

detect semantically meaningful visual composites, used later for object detection. To

our knowledge, ours is the first work to use visual phrases to guide visual search.

3.3 Single-class active search

3.3.1 Search model

Let I be a test image represented by a set of object proposals (Van de Sande et al.,

2011), I = {oi}N
i=1. The goal of our method is to efficiently detect objects in I, by

evaluating the window classifier on only a subset of the proposals. Our method is

a class-specific sequential procedure that evaluates one window at a time and then

decides where to look next. At every iteration t, it selects the next window ot+1 ac-

cording to all the observations {ok}t
k=1 performed so far. Throughout this paper, oi

indexes through the input set of proposals I, whereas ot is the proposal actively chosen

by our strategy in the t-th iteration. We assign a belief value bt(oi,{ok}t
k=1;Q) to each

object proposal oi and update it after every iteration. This belief indicates how likely

it is that oi contains the object, given all previously observed windows {ok}t
k=1. Here

Q = {l,sS ,sC} are hyperparameters and t indexes the iteration.
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Figure 3.2: Search model. The next observed window ot is the maximum of the current belief

map bt�1. The method extracts appearance and location features for ot , and uses them to

compute its context C and window classifier S outputs. Then, it combines these outputs with

the current belief map bt�1 into the next iteration’s belief map bt . The final belief map bF

combines all the performed observations. The output detections are the observed windows

with highest scores.

The method starts with the belief map b0(oi) = 0 8oi, representing complete un-

certainty. At iteration t, the method selects the object proposal with the highest belief

ot = argmax
oi2I\{ok}t�1

k=1

bt�1(oi,{ok}t�1
k=1;Q). (3.1)

We avoid repetition by imposing ot 6= ok, 8k < t. The starting window o1 is the average

of all the ground-truth bounding-boxes in the training set.

At each iteration t, the method obtains information from the new observation ot

and it updates the belief values of all windows as follows

bt(oi,{ok}t
k=1;Q) = bt�1(oi,{ok}t�1

k=1;Q)

+l ·S(oi,ot ;sS )+(1�l) ·C (oi,ot ;sC ).
(3.2)

The observation ot , i.e. the window evaluated by the strategy at iteration t, provides

two kind of information: the context C and the classifier score S (explained below).

These are linearly combined with a mixing parameter l 2 [0,1]. Fig. 3.2 illustrates our

pipeline, and we summarize it in algorithm 1.

Context force C . It points to areas of the image likely to contain the object, relative to

the observation ot . It uses the statistical relation between the appearance and location

of training windows and their position relative to the objects. The context force may

point to any area of the image, even those distant from ot . For the car detection example
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Input : Test image I, object proposals {oi}N
i=1, window classifier f,

parameters Q

Output: Set of object detections D

// Set starting window

o1 average ground-truth;

for t 2 to F do
// Select next window

ot  argmaxoi2I\{ok}t�1
k=1

bt�1(oi,{ok}t�1
k=1;Q) ;

// Evaluate window classifier

f(ot);

for oi 2 I\{ok}t
k=1 do

// Evaluate score and context forces

S(oi,ot ;sS ), C (oi,ot ;sC ) ;

// Update belief value

bt(oi) = bt�1(oi)+l ·S +(1�l) ·C ;

end
end
// Remove duplicate detections with NMS

D NMS({(ok,f(ok))}F
k=1);

Algorithm 1: Active search strategy.
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depicted in fig. 3.2, if ot contains a patch of building, C will point to windows far below

it, as cars are below buildings (fig. 3.6). If ot contains a patch of road, C will propose

instead windows next to ot , as cars tend to be on roads (fig. 3.6).

The heart of the force C is a context extractor G. Given the appearance and location

of ot , G returns a set of windows G(ot) = {w j}J
j=1, which are not necessarily object

proposals. These windows cover locations likely to contain objects of the class, as

learned from a set of training windows and their relative position to the objects in their

own images. We explain how the context extractor works in sec. 3.3.2.

We can now define C as

C (oi,ot ;sC ) =
Â

w j2G(ot)

K(w j,oi;sC ). (3.3)

It gives high values to object proposals close to windows in G(ot), as we expect these

windows to be near objects. The influence of the windows in G(ot) is weighted by a

smoothing kernel

K(w,o;s) = e�(1�IoU(w,o))2/(2s

2). (3.4)

This choice of kernel assumes smoothness in the presence of an object for nearby win-

dows. Indeed, adjacent windows to a window containing an object will also contain

part of the object. The further apart the windows are, the lower the probability of

containing the object is. We use the inverse overlap 1 - intersection-over-union (Ever-

ingham et al., 2010) (IoU) as distance between two windows.

Classifier score force S . Force S attracts the search to the area surrounding the ob-

servation ot if it has high classifier score, while pushing away from it if it has low

score:

S(oi,ot ;sS ) = K(oi,ot ;sS ) · (f(ot)�0.5), (3.5)

where f(ot) 2 [0,1] is the window classifier score of ot (sec. 3.5.1 details our choice

of window classifier). We translate f(ot) into the [�0.5,0.5] range and weight it using

the smoothing kernel (3.4). Therefore, S operates in the surroundings of ot , spreading

the classifier score to windows near ot . When S is positive, it attracts the search to the

region surrounding ot . For example, if ot contains part of a car, it will probably have a

high classifier score (fig. 3.3). Then S will guide the search to stay in this area, as some

nearby window is likely to contain the whole car. On the other hand, when S values are

negative, it has a repulsive effect. It pushes the search away from uninteresting regions

with low classifier score, such as background (sky, buildings, etc).
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10.500.51

Figure 3.3: Classifier score force S . The input image and observation ot are displayed on the

left side of the arrow. The right side shows the belief map produced by S . Colors correspond

to belief values.

3.3.2 Context extractor

Given an input observation o in the test image, the context extractor G returns a set of

windows G(o) = {w j}J
j=1 covering locations likely to contain objects.

The context extractor is trained from the same data as the window classifier, i.e.

images with annotated object bounding-boxes. Hence our approach requires the same

annotation as standard object detectors (Cinbis et al., 2013; Dalal and Triggs, 2005;

Felzenszwalb et al., 2010b; Girshick, 2015; Uijlings et al., 2013). The training set

consists of pairs {(rn,Dvn)}N
n=1; rn is a proposal from a training image, and Dvn is a

4D displacement vector, which transforms rn into the closest object bounding-box in

its training image (fig. 3.4a-b). Here index n runs over all object proposals in all the

training images. For 500 images and 3200 proposals per image, N = 500 · 3200 =

106000000.

Given the observation o, the context extractor regresses a displacement vector Dv

pointing to the object. For robustness, the context extractor actually outputs a set of

displacement vectors {Dv j}J
j=1, to allow for some uncertainty regarding the object’s

location (fig. 3.4c). Then it applies {Dv j}J
j=1 to o, obtaining a set of displaced win-

dows on the test image: G(o) = {o+Dv j}J
j=1. The windows in G(o) indicate expected

locations for the object in the test image. Note that they may be any window, not nec-

essarily object proposals. We refer to this context extractor as Any to Class (A2C), as

it points from any image window towards the target object class.

Random Forests. We use Random Forests (RF) (Breiman, 2001) as our context ex-

tractor. A RF is an ensemble of J binary decision trees. In our case, each tree inputs

the window o and outputs a displacement vector Dv j. The final output of the RF are all

displacement vectors {Dv j}J
j=1 produced by each tree.

RF have been successfully applied in several learning problems such as classi-
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Figure 3.4: Context extractor. (a,b) The displacement vectors Dv1 and Dv2 of training samples

r1 and r2 point to their respective ground-truth objects. (c) By applying Dv1 and Dv2 to test

observation o, we obtain displaced windows w1 and w2, covering likely locations for the object

with respect to o.

fication, regression or density estimation (Criminisi et al., 2011). RF in computer

vision (Gall and Lempitsky, 2009; Montillo and Ling, 2009; Criminisi et al., 2011;

Fanelli et al., 2011; Girshick et al., 2011) typically use axis-aligned separators (thresh-

olding on one feature dimension) as tests in the internal nodes. However, we found that

tests on distances to training samples perform better in our case (sec. 3.6.4), as they

are more informative. Hence, we build our RF based on distance tests. This is related

to Proximity Forests (O’Hara and Draper, 2013), although O’Hara and Draper (2013)

use RF for clustering, not geometric regression. Also, note the difference with Hough

Forests (Gall and Lempitsky, 2009), which use RF within the object class model: the

leaves form an implicit codebook optimized for Hough-style object detection. Instead

we use RF to model context in order to guide the search.

When the test window o goes down a tree, it traverses it from the root to a leaf

guided by tests in the internal nodes. At each node p the decision whether o goes left

or right is taken by comparing the distance dp(o,rp) between o and a pivot training

point rp to the threshold tp. The test window o proceeds to a left child if dp(o,rp)� tp

or to the right child otherwise (fig. 3.5). This process is repeated until a leaf is reached.

Each leaf stores a displacement vector, which the tree returns. The triplet (rp,tp,dp)

at each internal node is chosen during training (the process can choose between two

different distance functions, sec. 3.5.3). More concretely, rp is a window represented

either by location or appearance features, tp is a real numerical threshold, and dp is a

distance function between the location or the appearance of two windows.

Random Forest training. We train one RF with J = 10 trees for each class. To

keep the trees diverse, we train each one on windows coming from a random sub-
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Figure 3.5: Internal node at test time. The test compares distance dp(o,rp) between test

window o and training sample rp with the threshold tp.

sample of 40 training images. As shown in Criminisi et al. (2011), this procedure

improves generalization. We construct each tree by recursively splitting the training

set at each node. We want to learn tests in the internal nodes such that leaves contain

samples with a compact set of displacement vectors. This way a tree learns to group

windows using features that are predictive of their relative location to the object. To

create an internal node p, we need to select a triplet (rp,tp,dp), which defines our

test function. Following the extremely randomized forest framework (Moosman et al.,

2006) we generate a random set of possible triplets. We then pick the triplet that

achieves maximum information gain:

IG = H(S)� |SL|
|S| ·H(SL)� |SR|

|S| ·H(SR), (3.6)

where S is the set of training samples at the node and L,R denote the left and right chil-

dren with samples SL and SR, respectively. H is the approximated Shannon entropy of

the 4D displacement vectors in S: we first compute a separate histogram per dimension,

and then sum their individual entropies (Hall and Morton, 1993). Concretely, we use

MATLAB’s histogram function, which uses automatic binning with uniform width,

on each of the four dimensions of the displacement vectors independently. Then, we

compute the aproximated entropy as

H(S) =
1
N Â

i
ni log

� ni

Nh
�
, (3.7)

where h is the bin width, N the total number of bins, and ni the number of samples in the

i-th bin, all returned by the histogram function. All samples trained to use each tree

belong to only one object class. Finally, we keep in each leaf the mediod displacement
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Test Training

Figure 3.6: RF examples. (Test) Example image and observation o for classes car (top) and

chair (bottom). Windows displaced by the displacement vectors regressed by the RF are in

green, whereas ground-truth objects are in red. (Training) Training samples (yellow) in leaves

reached by o when input into our RF and associated ground-truth objects (red).

vector of the training samples that fell into it. In practice, each tree has an average

depth of 18, and thus contains around 260,000 terminal nodes. Since there are 10 trees

per RF, we would need to store more than 2M displacement vectors. However, many

of the displacement vectors are identical across different nodes, which substantially

reduces the storage footprint.

Fig. 3.6 shows example test windows passed through the RF, along with example

training windows in leaves they reach. Note how these training windows are similar in

appearance to the test window, and produce displaced windows covering areas likely

to contain objects of that class in the test image. This demonstrates that RF is capable

of learning the relation between the appearance of a window and its position relative

to the object.

Efficiency. A key benefit of RF over a simple nearest-neighbor regressor (Alexe et al.,

2012) is computational efficiency. Since the observation o is only compared to at

most as many pivot points as the depth of the tree, the runtime of RF grows only

logarithmically with the size of the training set. In contrast, the runtime of nearest-

neighbor grows linearly, since it compares o to all training samples. This makes a

substantial difference to runtime in practice (sec. 3.6.5).
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Figure 3.7: Joint active search. We first search for the visual phrase n in the image. After we

find it, we branch off into two individual searches, one for the auxiliary class and one for the

dominant, initialized by our VP2C context map, C VP2C. At iteration t, we evaluate score force

S using the maximum window ot of the previous iteration’s belief map, bt�1. We also compute

the IVP2C context force, C IVP2C, and combine it with S to update the belief map bt for the next

iteration.

3.4 Joint active search

The multi-class version of our active search performs a joint search over a pair of

classes. The initial part of the search is shared by both objects (fig. 3.1). Afterwards,

it branches off into individual searches for each object. We group the two objects into

a visual phrase and we anchor our joint search around this concept. In this section,

we assume we have the grouping and we explain our joint active search for one visual

phrase. In section 3.7.1 we explain how we perform the grouping.

Visual phrases. In our case, each visual phrase is composed of two types of classes:

dominant and auxiliary. The auxiliary is typically the smaller of the two (e.g. night

table in ‘bed - night table’) and it is found near the dominant class. Each instance of

a dominant class may be associated with one or more instances of the auxiliary class,

depending on the specific visual phrase. For example, a ‘night table’ can only take one

‘desk lamp’, whereas a ‘bed’ can take several ‘night table’ instances (fig. 3.13). We

manually set the number of auxiliary instances that can be associated to a dominant

class depending on the visual phrase (sec. 3.7.1).
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3.4.1 Search model

Figure 3.7 presents our joint active search pipeline. During the first part of the search,

we obtain a visual phrase detection n using single-class active search. This generally

requires a small number of iterations, since visual phrases are easier to find than indi-

vidual object classes. Then, we branch off into parallel individual searches, one for the

auxiliary and one for the dominant.

The detected visual phrase provides valuable information about the objects inside

it. First, it bounds their possible locations to the image region covered by the visual

phrase itself. Additionally, it provides an estimation of where to expect the contained

objects within it, and how big they are. For example, the bed in the ‘bed - night table’

example occupies the majority of the visual phrase, and is located near its center. Night

tables instead are smaller and often stand near the side ends of the visual phrase.

Moreover, we can obtain even more specific information by taking into account the

appearance of the detected visual phrase in the current image. A visual phrase class

can exhibit different object layouts in different images. For example, night tables tend

to be on the sides of beds, but depending on the viewpoint of the image, some night

tables may appear towards the center of the visual phrase (fig. 3.13a). We can exploit

this by relying on the different object layouts seen in the training set.

Based on the above observations, we present here a new type of context called

Visual Phrase to Class (VP2C). This context regresses from the whole visual phrase

to the objects inside. We use it to initialize the individual searches after finding the

visual phrase. For simplicity, here we explain the process for just one of the two object

classes (the other one is analogous). Let n be a visual phrase detection and G(n) a

set of windows generated applying displacement vectors to n. We create a belief map

C VP2C for the class by using displaced windows G(n) as in (3.3), but using parameters

specific to the VP2C type of context, sC VP2C. We initialize the search for the object

class within the visual phrase detection by using the belief map C VP2C, weighted by a

class-specific hyperparameter a. This parameter represents how reliable C VP2C is for

that class. The initial belief map for the individual search is then

b0(oi,n;Q) = a ·C VP2C(oi,n;sC VP2C). (3.8)

After branching, the individual search explores mostly the area inside the visual

phrase detection. We can exploit this further by tailoring the search to the context

of the visual phrase. For example, observing a drawer inside a ‘bed - night table’

detection brings more information about the location of the bed and the night table
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than observing a drawer elsewhere in the image. In the visual phrase case, the drawer

most likely belongs to a night table, whereas in the general case it may be part of

another piece of furniture, such as a wardrobe.

We use this extra knowledge in a new type of context: Inside Visual Phrase to

Class (IVP2C). This is finer, more precise than the general context of sec. 3.3.2. Given

a window inside a visual phrase, the IVP2C context extractor regresses to the position

of the individual objects inside it. The use of this context also results in a more local

exploration, focusing on the area of the visual phrase, instead of jumping to any area

of the image as the A2C context would do.

The remaining part of the individual search resembles single-class active search

but using IVP2C context instead of A2C context. At every iteration t we evaluate the

unvisited window with highest belief value using (3.1) and update the belief map as

follows

bt(oi,{ok}t
k=0;Q) = bt�1(oi,{ok}t�1

k=0;Q)

+(a�1) · [l ·S(oi,ot ;sS )

+(1�l) ·C IVP2C(oi,ot ;sC IVP2C)],

(3.9)

where o0 = n and C IVP2C follows (3.3), but using the IVP2C context extractor. The set

of hyperparameters is now Q = {l,sS ,sC ,a,sC VP2C ,sC IVP2C}.

Generally, the dominant class takes most of the visual phrase area. In practice, we

noticed that many windows visited during the visual phrase search can be recycled for

the dominant class. Therefore, we simply re-score these windows for the dominant

class and avoid visiting them again during its individual search. In many cases, this

suffices to find a good detection of the dominant class, although some challenging cases

may require a few additional individual search iterations (sec. 3.5.4). Algorithm 2

describes our joint active search strategy.

Multiple visual phrases. Some images may contain multiple instances of the same vi-

sual phrase (fig. 3.13b). We deal with this by postponing the branching so the first part

of the search finds most instances. We run t

VP iterations of the visual phrase search,

which results in t

VP evaluated windows. We then take all those scoring higher than a

threshold f

VP (sec. 3.5.4) as visual phrase detections. This adds two hyperparameters

to Q. After that, the individual search iterations cycle over the different visual phrase

detections, keeping independent belief maps for each. Hence, the search explores the

most likely windows within each visual phrase early on, while going into more detail

in later iterations. Overall, this strategy leads to a lower total number of window evalu-
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Input : Test image I, object proposals {oi}N
i=1, window classifier f,

parameters Q

Output: Set of object detections for the auxiliary Da and dominant Dd

classes

// Run active search to find visual phrase

u active search(vp) ;

for c 2 {a,d} do
// Initialize belief map with VP2C context

b0
c  C VP2C(u) ;

// Run active search with ICVP2C context

Dc active search(c, C IVP2C);
end

Algorithm 2: Joint active search strategy.

ations, compared to running the search for individual objects to completion within one

visual phrase detection and then moving on to the next one.

Fallbacks. There are two threatening situations for our joint active search. First, we

might not detect any visual phrase in the image. In this case, we automatically fall back

to running two separate single-class searches (but reusing the windows visited for the

failed visual phrase search during the dominant class search). Second, there might be

additional object instances located outside of the visual phrase. After the branching,

our individual searches quickly find the objects inside the visual phrase detections.

Therefore, we perform a small number of iterations t

IVP2C using our C IVP2C, and then

we fall back to single-class context to keep exploring the rest of the image. We add

t

IVP2C to the final set of hyperparameters Q.

3.4.2 Context extractors

The context extractor models used for the joint active search are identical to the single-

class version (sec. 3.3.2), but they are trained from different samples.

VP2C. We train two VP2C context extractors per visual phrase, one for each of the

composing object classes. Similarly to the general A2C context (sec. 3.3.2), we train

each VP2C extractor using a set of pairs {(rn,Dvn)}N
n=1. However, rn is now a ground-

truth bounding-box of the corresponding visual phrase, and Dvn is a displacement vec-
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bed - night table

bed night table

night table - desk lamp

night table desk lamp

Figure 3.8: VP2C context. (Top) Displaced windows G

VP2C(n) given visual phrase detection

n, for dominant (green) and auxiliary (blue) classes. (Bottom) Belief maps C VP2C generated by

G

V P2C(n). For visualization purposes, we overlay the visual phrase detection n on the heatmaps

(red box).

tor pointing to one of the instances of the individual objects of the class inside rn. In

this case, the total number of samples N is a small value, proportional to the number

of visual phrase ground-truths that contain the corresponding class. Figure 3.8 (top)

shows some examples of displaced windows by VP2C context.

IVP2C. Similarly, we train two IVP2C context extractors per visual phrase. In this

case, we need to restrict the windows rn in our training pairs (rn,Dvn) to be inside

visual phrases. For each visual phrase ground-truth bounding-box in a training image,

we take all the object proposals inside it. We normalize the location features of these

proposals with respect to the visual phrase (sec. 3.5.3). Displacement vectors Dvn

point to the closest bounding-box of the composing object classes inside the visual

phrase. Fig. 3.9 depicts some training samples, including the visual phrase ground-

truth g and displacement vectors for both the dominant (DvD) and the auxiliary (DvA)

object classes.
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Figure 3.9: A few samples used to train G

IVP2C context extractor, for (a) chair-table and (b)

bed-night table. The bounding-box in red is the visual phrase g, whereas the dominant and

auxiliary classes correspond to the green and blue boxes, respectively.

3.5 Implementation details

3.5.1 Window classifiers

We use R-CNN (Girshick et al., 2014) as main window classifier. It is based on

the CNN model of Krizhevsky et al. (2012), which achieved winning results on the

ILSVRC-2012 image classification competition (Russakovsky et al., 2015). The CNN

is then fine-tuned into a window classifier on ground-truth bounding-boxes. Finally, a

linear SVM is trained on normalized 4096-D features, obtained from the 7th layer of

the CNN. We use the R-CNN implementation provided by (Girshick et al., 2014). For

the single-class active search experiments we use the AlexNet architecture, as this net-

work was state-of-the-art at the time of publishing our CVPR paper (Gonzalez-Garcia

et al., 2015). For the joint active search we use the VGG16 (Simonyan and Zisserman,

2015) instead, as this superior architecture was available when we developed our joint

active search.

In order to demonstrate that our method is general as it supports any window clas-

sifier, we test our single-class active search also on UvA (Uijlings et al., 2013). This

Bag-of-Words technique was among the best detectors before CNNs. A window is

described by a 3x3 spatial pyramid of bag-of-words. The codebook has 4096 words

and is created using Random Forest on PCA-reduced dense RGB-SIFT (Van De Sande

et al., 2010) descriptors. Overall, the window descriptor has 36864 dimensions. The

window classifier is an SVM with a histogram intersection kernel on these features.

We use the implementation provided to us kindly by the authors (Uijlings et al., 2013).

For both R-CNN and UvA, we fit a sigmoid to the outputs of the SVM to make the
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classifier score f lie in [0,1].

3.5.2 Object proposals

We use the fast mode of Selective Search (Van de Sande et al., 2011). We keep at most

5000 proposals per image, resulting in 3200 on average. These form the set of windows

oi available to our method (both to the context extractor and window classifier). Note

how both the R-CNN and UvA detectors as originally proposed (Girshick et al., 2014;

Uijlings et al., 2013) also evaluate their window classifiers on these proposals.

3.5.3 Features and distances for context extractors

We represent a window by two feature types: location and appearance. For the single-

class case, we normalize window location features [x/W,y/H,w/W,h/H] by image

width W and height H. Here x,y,w,h are the top-left coordinates, width and height

of the window. Both VP2C and IVP2C use location features normalized to the visual

phrase. Let x
n

and y
n

be the center of visual phrase n, and w
n

, h
n

its width and height.

Then, the location features for a window are [(x� x
n

)/w
n

,(y� y
n

)/h
n

,w/w
n

,h/h
n

].

The distance function for both location features is the inverse overlap 1� IoU.

The appearance features used by all context extractors match those in the window

classifier. We embed the 4096-dimensional R-CNN appearance features in a Hamming

space with 512 bits using Gong and Lazebnik (2011). This reduces the memory foot-

print by 256⇥ (from 131072 to just 512 bits per window). It also speeds up distance

computations, as the Hamming distance between these binary strings is 170⇥ faster

than L2-distance in the original space. We do the same for the Bag-of-Words features

of UvA. The window classifiers work on the original features (sec. 3.5.1).

3.5.4 Hyperparameter training

Single-class active search. For each object class, we find optimal hyperparameters

sS , sC , and l by maximizing object detection performance. We use k-fold cross-

validation on the training set, where k = 10. We equally split the training set in k folds

and train the network and the context extractor on k� 1 folds. We use the last fold

as validation set, performing grid search in ranges sS ,sC 2 [0.01,1] and l 2 [0,1].

Performance is quantified by the area under the Average Precision (AP) curve, which

reports AP as a function of the number of proposals evaluated by the search (fig. 3.10).
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Interestingly, the learned s values correspond to intuition. For sS we obtain small

values, as the classifier score informs only about the immediate neighborhood of the

observed window. Values for sC are larger, as the context force informs about a broader

region of the image. Furthermore, C produces arbitrary windows, hence the distance

to proposals is generally larger.

Joint active search. We also use cross-validation and grid search to train the hyperpa-

rameter sC VP2C. Unlike the other types of context, VP2C is not applied iteratively. In-

stead, it is used only once as initialization for the belief map of the individual searches

after branching. For this reason, we optimize sC VP2C using C VP2C once as the only

force. On the other hand, we set sC IVP2C = sC given their similar nature.

Our focus is the auxiliary classes, as they are more challenging than the dominant

classes. However, our method should still perform at least as well as single-class active

search for the dominant classes. Since our joint search reuses the windows evaluated

during the visual phrase search for the dominant class (sec. 3.4.1), we set t

VP to be

around the number of iterations that a single-class active search for the dominant class

needs to match the performance of evaluating all windows.

We train hyperparameters f

VP and a by 2D grid search, maximizing the perfor-

mance of object detection for the auxiliary class, considering only instances inside

visual phrases. Finally, we perform a similar grid search to train t

IVP2C, but in this

case considering all instances of the auxiliary class.

3.6 Experiments for single-class active search

3.6.1 Datasets

We evaluate our single-class active search on two datasets: SUN2012 (Xiao et al.,

2010) and PASCAL VOC10 (Everingham et al., 2010).

SUN2012. We use all available images for the 5 most frequent object classes in the

highly challenging SUN2012 dataset (Xiao et al., 2010): Chair, Person, Car, Door and

Table. This amounts to 2920 training images and 6794 test images, using the official

train/test split provided with the dataset (Xiao et al., 2012). Each image is annotated

with bounding-boxes for these 5 classes. This dataset contains large cluttered scenes

with small objects, as it was originally made for scene recognition (Xiao et al., 2010).

This makes it very challenging for object detection, and also well suited to show the
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benefits of using context in the search strategy.

PASCAL VOC10. We use all 20 classes of PASCAL VOC10 (Everingham et al.,

2010). While also challenging, on average this dataset has larger and more centered

objects than SUN2012. We use the official splits, train on the train set (4998 images)

and test on the val set (5105 images).

3.6.2 Protocol

We train the window classifier (including fine-tuning for R-CNN), the Random Forest

regressor and the hyperparameters Q on the training set. We measure performance on

the test set by Average Precision (AP), following the PASCAL protocol (Everingham

et al., 2010), i.e. a detection is correct if it overlaps a ground-truth object > 0.5. Pre-

vious to the AP computation, we use Non-Maxima Suppression (Felzenszwalb et al.,

2010b) to remove duplicate detections.

3.6.3 Results

R-CNN on SUN2012. Fig. 3.10 presents results for our full system (‘Combination’)

and when using each force S or C alone. The figure shows the evolution of AP as a

function of the number of proposals evaluated. As a baseline, we compare to evaluating

proposals in a random sequence (‘Proposals Subsampling’). This represents a naive

way of reducing the number of evaluations. The rightmost point on the curves represent

the performance of evaluating all proposals, i.e. the original R-CNN method. Note,

however, how we only show up to 3000 window evaluations in fig. 3.10. The actual

end of the curves is the maximum number of proposals considered (5000 windows),

where all curves achieve the same performance.

Our full method clearly outperforms Proposals Subsampling, by selecting a better

sequence of proposals to evaluate. On average over all classes, by evaluating about 350

proposals we match the performance of evaluating all proposals (fig. 3.10f). Therefore,

our search strategy stops after evaluating the first 350 proposals. This corresponds to

9⇥ fewer window classifier evaluations. Some instances might be missed due to the

lower number of window evaluations. Should this be the case, such detections do not

negatively affect the performance, as it is mantained. In general, 350 evaluations seem

to suffice even when the image contains multiple instances (fig. 3.12).

In general, we achieve our best results by combining both forces S and C . When



48 Chapter 3. Active search strategies for efficient object class detection

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

AP

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

AP

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

AP

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

AP

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

m
AP

Baseline: Proposals Subsampling
Ours: Classifier Score
Ours: Context
Ours: Combination

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N. windows

AP

Figure 3.10: Results on SUN2012 for the baseline Proposals Subsampling and our method on

SUN2012, using each force S , C alone and in combination. The x-axis shows the number of

evaluated windows. The y-axis in (a-e) shows the AP of each class, while in (f) it shows the

mean AP over all classes (mAP).
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using one force alone, C performs better, in some cases even reaching the accuracy

of our combined strategy. Nevertheless, force S achieves surprisingly good results by

itself, providing a rather simple method to speed-up object detectors while maintaining

high accuracy.

Fig. 3.12 shows our search strategy in action. After just a few iterations the belief

maps are already highlighting areas containing the objects. Uninteresting areas such

as the sky or ceiling are barely ever visited, hence we waste little computation. Our

method detects multiple object instances and viewpoints, even in challenging images

with small objects. In these examples, it finds the first instance in fewer than 50 iter-

ations, showing its efficiency in guiding the search. After finding the first instance, it

continues exploring other areas of the image looking for more instances.

UvA on SUN2012. We re-trained all the elements of our method on the Bag-of-Words

features of Uijlings et al. (2013): window classifier, RF regressor, and hyperparame-

ters. Our method matches the performance of evaluating all proposals with 35 windows

on average, a reduction of 85⇥ (fig. 3.11a). Interestingly, the curve for our method

reaches an even higher point when evaluating just 100 windows (+2% mAP). This is

due to avoiding some cluttered areas where the window classifier would produce false-

positives. This effect is less noticeable for the R-CNN window classifier, as UvA is

more prone to false-positives.

R-CNN on PASCAL VOC10. As fig. 3.11b shows, our method clearly outperforms

the Proposal Subsampling baseline again. In this case, active search has a very rapid

growth in the first 100 windows, showing how in general PASCAL VOC10 is easier

than SUN2010. This demonstrates the general applicability of our method to a variety

of image types and that it still useful for less challenging datasets.

3.6.4 Context extractor

We compare here our A2C context extractor implemented using RF with one based on

nearest-neighbor search, as in Alexe et al. (2012). We run our method only using the

context force C , but substituting RF with nearest-neighbors, on the same training set

and input features. The results show that both ways of extracting context lead to the

same performance. The AP at 500 windows, averaged over all classes, differs by only

0.006. Importantly, however, RF is 60⇥ faster (sec. 3.6.5).

We also show that the distance tests of our RF approach are crucial for its good
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Figure 3.11: (a) Results on SUN2012 using the UvA detector (Uijlings et al., 2013). (b)

Results on PASCAL VOC10 using R-CNN.

performance. For comparison, we implemented the A2C context using tests more

traditionally used in RF for computer vision, i.e. axis-aligned separators (Gall and

Lempitsky, 2009; Criminisi et al., 2011; Fanelli et al., 2011). An active search using

only C with this RF barely outperforms the Proposal Subsampling baseline, thus being

clearly inferior to our distance-based counterpart.

3.6.5 Runtime

We measure runtimes on an Intel Xeon E5-1620v2 CPU and a GeForce GTX 770 GPU

(used by the R-CNN detector, not by UvA). We do not include the object proposal

extraction time (about 4 seconds) in any reported timing, as it is performed once per

image and it is common to all the methods compared.

R-CNN. The most expensive component is computing CNN features, which takes 4.5

ms per window on the GPU. Evaluating the 3200 proposals in an average image takes

14.4 seconds. The total overhead added by our method is 2.6 ms per iteration. There-

fore, processing one image while maintaining the same AP performance (350 iterations

on SUN2012) takes 350 · (4.5+2.6) ms = 2.5 seconds, i.e. 6⇥ faster than evaluating

all proposals 1.

The small overhead added by our method is mainly due to the RF query performed

at each iteration for the context force, which amounts to 1.9 ms including the Hamming

1Extracting CNN descriptors on a GPU is more efficient in batches than one at a time, and is done in
R-CNN (Girshick et al., 2014) by batching many proposals in a single image. In our sequential search
we can form batches by processing one window each from many different images.
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Figure 3.12: Qualitative results for the single-class active search on SUN2012. (Top) Original

image. (Middle) Belief maps for some iterations. The blue window indicates the observation

at that iteration. (Bottom) The top scored detections.
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Figure 3.13: Examples of visual phrases for SUN2012, automatically grouped. The final

visual phrase (red) bounds both the dominant class (green), and the auxiliary ones (blue).

embedding of the appearance features. In comparison, a context extractor implemented

using nearest-neighbors as in Alexe et al. (2012) takes 57 ms per iteration, which would

lead to no actual total runtime gain over evaluating all proposals.

As the runtime of the window classifier grows, the speedup made by of our method

becomes more important. Extracting CNN features on the CPU takes 100 ms per win-

dow (Jia, 2013). In this regime, the overhead added by our method becomes negligible,

only 3% of running the window classifier. Evaluating all 3200 proposals in an image

would require 320 seconds, in contrast to just 36 seconds for evaluating 350 proposals

with our method, a 9⇥ speed-up.

UvA. This classifier has two types of processing. The first is done only once per image

and thus shared among all evaluated windows. It consists of feature extraction and

visual word assignment (Uijlings et al., 2013), and it takes 5 seconds on average. The

second type evaluates each window by counting visual word frequencies and scoring

them with an SVM. Evaluating all 3200 proposals in an image takes 6.7 seconds. Our

method needs to evaluate each of the 35 windows independently, which amounts to 43

ms per window. The final runtime including our 2.6 ms overhead per iteration is 35 ·
(44+2.6) ms = 1.6 seconds. Therefore, our method is about 2⇥ faster than evaluating

all proposals for this classifier, when taking into account the feature extraction and

visual word assignment processing stage. It is 4⇥ faster when detecting many object

classes, as the cost of that stage is then amortized out.
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3.7 Experiments for joint active search

3.7.1 Datasets

We perform experiments on SUN2012 (Xiao et al., 2010) and Microsoft COCO (Lin

et al., 2014). Since these datasets do not contain annotations for visual phrases, we

automatically group object instances into visual phrases, based on the overlap and

distance between instances.

First, we manually select a set of object class pairs that appear often in the dataset

and have consistent layouts across images. Then, we automatically process all im-

ages containing both classes and add the corresponding visual phrase annotations, as a

box bounding all individual objects that belong to the visual phrase. Fig. 3.13 shows

examples for SUN2012.

For fair evaluation, at test time we consider all objects in images that contain at

least one visual phrase, even if they are not part of a visual phrase themselves.

SUN2012. We pick the 5 most frequently co-occurring pairs of object classes: ‘bed -

night table’, ‘bed - pillow’, ‘night table - desk lamp’, ‘table - chair’, and ‘keyboard -

mouse’. By convention, we always express visual phrases as ‘dominant - auxiliary’.

Using the official train/test split, these 5 visual phrases add up to 725 training images

and 1697 test images.

Microsoft COCO. MS COCO is a large-scale dataset designed to contain many differ-

ent objects co-occurring in the same images. It also contains many non-iconic views of

objects, which pose a challenge for independently run single-class detectors, but could

be alleviated using context from other classes. We select 6 visual phrases among the

most frequent: ‘motorcycle - person’, ‘person - backpack’, ‘person - tennis racket’, ‘ta-

ble - chair’, ‘bowl - spoon’, and ‘screen - keyboard’. The training set for this selection

contains 12107 images, and the validation set 5863 images.

3.7.2 Protocol

We follow exactly the protocol described in section 3.6.2.

3.7.3 Context extractors

We evaluate here our VP2C and IVP2C context extractors for their specific use cases,

comparing their performance to the general A2C one. To directly measure the perfor-
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Context Method SUN2012 COCO
A2C RF - App + Loc 0.21 0.17

VP2C NN - Appearance 0.40 0.29

VP2C NN - Location 0.38 0.26

VP2C NN - App + Loc 0.39 0.27

VP2C RF - App + Loc 0.41 0.31

Table 3.1: Mean Maximum Overlap (MMO) for VP2C and A2C, using queries on visual

phrases. Both context extractors use Random Forest (RF) including appearance (App) and

location (Loc) features.

mance of context extractors we use Mean Maximum Overlap (MMO). This measure

is similar to Average Best Overlap, defined in Uijlings et al. (2013) to evaluate ob-

ject proposals. Let {g j} 2 G be the image ground-truth annotations for the class, and

{wi} 2 G(o) the displaced windows of context extractor G for observation o. MMO

takes the maximum overlap for each displaced window wi to any g j and then averages

them over G(o)

MMO =
1

|G(o)| Â

wi2G(o)
max
g j2G

IoU(g j,wi). (3.10)

VP2C. VPC2 uses only ground-truth bounding-boxes as training samples (as opposed

to A2C, which uses all object proposals in an image). This leads to a much smaller

number of samples, enabling using a simple nearest-neighbor regressor without incur-

ring to a prohibitively expensive overhead. For this reason, we evaluate here both our

RF context extractor and a nearest-neighbor version, using different combinations of

feature types (location and appearance, sec. 3.5.3).

We query A2C and various versions of VP2C using windows overlapping visual

phrase ground-truths (IoU > 0.7). Table 3.1 shows results for SUN2012 and MS

COCO. The VP2C context extractor clearly outperforms the general A2C context in

every case, almost doubling its MMO. This shows that, for the more specific use-case

VP2C is trained for, it works a lot better. Moreover, the RF version achieves a slightly

higher MMO than the nearest-neighbor alternative, confirming again the effectiveness

of our distance RF approach.

IVP2C. Table 3.2 presents results for IVP2C compared to A2C. The query windows

for this experiment come from inside visual phrase ground-truth bounding-boxes. In

this case, we only test a RF version, because nearest-neighbors is again very expensive
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Context Method SUN2012 COCO
A2C RF - App + Loc 0.11 0.09

IVP2C RF - App + Loc 0.26 0.24

Table 3.2: Mean Maximum Overlap (MMO) for IVP2C and A2C. Using queries inside visual

phrases. Both context extractors use Random Forest (RF) including appearance (App) and

location (Loc) features.

given the size of the training set. Results clearly surpass the A2C context extractor.

This shows how we can benefit from the more specific IVP2C context extractor when

the search takes place inside a visual phrase.

3.7.4 Results

We evaluate the effectiveness of our joint active search using the same protocol as

the single-class version. Therefore, we use equivalent performance curves to those in

fig. 3.10, following the method described in sec. 3.6.3. In this case, however, we use

a logarithmic scale for the horizontal axis to fully appreciate the differences between

methods in the very low number of windows regime. We compare to two baselines: (a)

‘Proposals Subsampling’, evaluating proposals in a random sequence, and (b) applying

two times our single-class active search separately.

Figure 3.14 shows the results for R-CNN with VGG-16 on SUN2012 and MS

COCO, averaged over both types of classes, dominant and auxiliary. As explained

in sec. 3.4.1, we recycle windows visited during the visual phrase search for the dom-

inant class by simply re-scoring them. This re-scoring is generally very efficient (e.g.

evaluation of a linear SVM in R-CNN (Girshick et al., 2014)), as the expensive step is

the feature extraction. Therefore, we include these iterations in the plots for the dom-

inant classes (fig. 3.14a,c).We can see how our joint active search is slightly behind

single-class active search for the dominant classes. This is to be expected as the early

iterations are specialized to the visual phrase. However, the point at which it matches

the mAP (up to 0.1%) of evaluating all windows is virtually the same.

Interestingly, our joint active search improves over the single-class version for the

difficult classes, i.e. the auxiliary ones. As the iterations of the visual phrase are

already accounted for in the plots for the dominant classes, here we count only the

iterations for the auxiliary class search after the branching. On SUN2012, our method

is consistently better than both baselines in the very low number of windows regime
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Figure 3.14: Quantitative results for SUN2012 (a-b) and MS COCO (c-d), averaged over all

dominant classes (a,c) and auxiliary classes (b,d).

(<100). For example, at only 10 window evaluations, we double the performance of

single-class active search. After the first 100 windows, our method performs closer

to single-class active search, although still above by a small amount. This results in

needing less than half the number of window evaluations necessary to match mAP,

from 840 for the single-class search, down to 390 for the joint search. In conclusion,

we match the performance of evaluating all windows with 8⇥ fewer windows, twice

as fast as single-class search.

For MS COCO, we can see an improvement over single-class active search also for

greater number of windows, until about 500. For example, at 100 window evaluations,

we reach 80% of the mAP of evaluating all windows, compared to 68% by single-

class active search. After 500 windows, results are fairly similar to single-class active

search, but matching the mAP of evaluating all windows 200 windows earlier (from

760 to 560).
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Figure 3.15 presents some qualitative examples of our joint active search, focusing

on auxiliary classes. When there are multiple visual phrase detections, we show their

maps combined. The VP2C belief map (t = 0) already suggests excellent locations to

start the search for the auxiliary class. Indeed, the first auxiliary object is generally

found after very few iterations. Then, the IVP2C context force takes over and guides

the search to other interesting areas of the visual phrase. This helps in cases where

the visual phrase detection is not perfectly accurate (fig. 3.15a, right detection) or the

windows with the highest belief in the VP2C map do not contain the auxiliary object

(fig. 3.15b). Fig. 3.15c shows an example where there is a false-positive visual phrase

detection and a missing one, due to its small size. However, the remaining visual phrase

instances are correctly detected, resulting in the correct detection of the individual

objects within. Finally, fig. 3.15d shows how an already good initialization by VP2C

can be refined even further into a very accurate detection by IVP2C.
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VP detections

Figure 3.15: Qualitative results for the joint active search on SUN2012. (Top) Visual phrase

detections. (Middle) Belief maps for the auxiliary class for some iterations. The black window

indicates the next window to be observed. (Bottom) The top scored detections for dominant

class (green) and auxiliary (blue).
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3.8 Conclusions and outlook

Most object detectors independently evaluate a classifier on all windows in a large set.

Instead, we presented an active search strategy that sequentially chooses the next win-

dow to evaluate based on all the information gathered before. Our search effectively

combines two complementing driving forces: context and window classifier score. We

also extend our method to jointly search over pairs of classes. We use visual phrases,

i.e. pairs of objects that often co-occur nearby in an image. We start the search by

finding the visual phrase, effectively sharing computation for both classes. Then, we

branch off into searching for the individual objects within the visual phrase, exploiting

the highly specific context it provides.

In experiments on several datasets, our single-class method substantially reduces

the number of window classifier evaluations. Due to the efficiency of our proposed

context extractor based on Random Forests, we add little overhead to the detection

pipeline, obtaining significant speed-ups in actual runtime for some detectors. We also

show how our joint active search is even more efficient than the single-class version

for the particularly challenging object classes.

We now address some limitations of the presented active search approach and

present possible solutions, along with additional future work.

Update for modern CNN architectures. The efficiency improvement brought by our

active search has become rather undermined by the new CNN architectures used by

recent object detectors. Approaches like Fast R-CNN (Girshick, 2015) greatly reduce

the necessary computation by sharing the processing of the convolutional layers for

all windows. A further progress is achieved with Faster R-CNN (Ren et al., 2015),

which generates object proposals inside the network and thus dramatically reduces the

total runtime and the number of windows to evaluate. Even beyond that, the CNNs of

SSD (Liu et al., 2016) and YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017)

directly predict object locations without the need of object proposals. We suggest here

two possible routes to update our active search in order to improve the efficiency of a

larger number of detectors, including the most recent.

First, we can adapt our active search for CNN architectures that share convolu-

tional layers as shown in figure 3.16. In our current version, each search step observes

a window on the input image. The proposed adaptation would instead process all

the convolutional layers only once for the whole image, and then search on the re-

sulting convolutional maps. In this case, the search would observe the convolutional
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Figure 3.16: (Top) Our current active search extracts convolutional features independently

for each window. (Bottom) The proposed adaptation shares the convolutional layers for all

windows. In this case, the search is performed directly on the convolutional maps of the whole

image, and hence the image pixels of each window are not explicitly observed.

features of the region corresponding to each window directly, as opposed to starting

from the window pixels in the input image. Additionally, the context extractor may be

implemented inside the network by using the pooled convolutional features alongside

location features, thus only adding a very small overhead. Moreover, such approach

enables end-to-end training, which would optimize the kind of windows suggested by

the context extractor to maximize object detection performance.

An alternative adaptation of our search strategy consists in directly searching on

the 4D space of all possible windows, instead of relying on externally generated object

proposals. In this approach, we would model the distribution of windows according to

the probability of containing an object of the class. The search would then sequentially

refine this distribution with the knowledge gained from each observation, both locally

around the observation and on distant areas based on contextual information. The

entire method could be implemented inside the network, which would allow learning

search strategies that are both efficient and effective.

Decision machine for learning a search strategy. Our current active search follows

a fixed structure: it observes a window, gathers its score and context information,

and decides where to look next. We could generalize our approach by giving it more

freedom in the steps it can take when searching. A possible way of implementing
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such generalization is using a decision machine that, at each time step, actively selects

an action out of a large pool of possible actions based on the information gathered

so far. We consider two types of actions: queries and moves. Queries are used to

obtain information and include evaluating the window classifier, applying the context

extractor, or proposing unexplored areas to be visited next. Moves, on the other hand,

bring the search forward, for example, by selecting the next window to be evaluated

or terminating the search. Each query would have an incurred computational cost,

which we could measure empirically. All measurements may be performed in a pre-

search calibration phase tailored to the current circumstances, such as the computer

specifications or the used window classifier.

This decision machine would be trained to learn how to choose actions that maxi-

mize object detection performance while keeping the computational cost low, possibly

within a given budget. It generalizes most of the current search paradigms used in the

literature, namely sliding-window, our active search, or even the branch-and-bound

approach of Lampert et al. (2008).

Connections with human visual search. Eye trackers are devices designed to record

the eye positions of human observers as they look at images, providing a detailed

description of the image regions observed at any point in time. Using eye-tracking

data, we could compare the paths followed by our active search with the paths people

use when searching in images. Furthermore, we could try to learn a visual search

strategy that mimics the human visual search. For example, we can exploit the data that

eye-trackers provide regarding where people fixate their gaze. With this data, we can

learn the appearance of interesting fixation areas that lead to quick object identification,

and record their relative location with respect to the object. Our search strategy could

then find these fixation regions and use them to guide the search, leveraging the type

of context effectively used by humans. Moreover, we could learn additional search

parameters from the human visual search, such as the number of steps needed to find

the objects or the optimal step length of each search move.





Chapter 4

Do semantic parts emerge in

Convolutional Neural Networks?

4.1 Introduction

Recently, Convolutional Neural Networks (CNNs) have achieved impressive results

on many visual recognition tasks, and have become the state-of-the-art model for the

object detection task (Girshick et al., 2014; He et al., 2014; Girshick, 2015; Ren et al.,

2015; Redmon et al., 2016; Liu et al., 2016). Semantic parts, which are object regions

interpretable by humans (e.g. wheel, leg) play a fundamental role in object detection

and several other visual recognition tasks. For this reason, semantic part-based models

have gained significant attention in the last few years. The key advantages of exploiting

semantic part representations is that parts have lower intra-class variability than whole

objects, they deal better with pose variation and their configuration provides useful

information about the aspect of the object.

In this chapter we look into these two worlds and address the following question:

“does a CNN learn semantic parts in its internal representation?” In order to an-

swer it, we investigate whether the network’s convolutional filters learn to respond to

semantic parts of objects. Some previous works (Zeiler and Fergus, 2014; Simonyan

et al., 2014) have suggested that semantic parts do emerge in CNNs, but only based on

looking at some filter responses on a few images. Here we go a step further and per-

form two quantitative evaluations that examine the different stimuli of the CNN filters

and try to associate them with semantic parts. First, we take advantage of the available

ground-truth part location annotations in the PASCAL-Part dataset (Chen et al., 2014)

to count how many of the annotated semantic parts emerge in a CNN. Second, we use

63
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human judgements to determine what fraction of all filters systematically fire on any

semantic part (including parts that might not be annotated in PASCAL-Part).

For the first evaluation we use part ground-truth location annotations in the PASCAL-

Part dataset (Chen et al., 2014) to answer the following question: “how many semantic

parts emerge in CNNs?”. As an analysis tool, we turn filters into part detectors based

on their responses to stimuli. If some filters systematically respond to a certain seman-

tic part, their detectors will perform well, and hence we can conclude that they do rep-

resent the semantic part. Given the difficulty of the task, while building the detectors

we assist the filters in several ways. The actual image region to which a filter responds

typically does not accurately cover the extent of a semantic part. We refine this region

by a regressor trained to map it to a part’s ground-truth bounding-box. Moreover, as

suggested by other works (Simon et al., 2014; Simon and Rodner, 2015; Xiao et al.,

2015), a single semantic part might emerge as distributed across several filters. For

this reason, we also consider filter combinations as part detectors, and automatically

select the optimal combination of filters for a semantic part using a Genetic Algorithm.

We present an extensive analysis on AlexNet (Krizhevsky et al., 2012) finetuned for

object detection (Girshick et al., 2014). Results show that 34 out of 105 semantic parts

emerge. This is a modest number, despite all favorable conditions we have engineered

into the evaluation and all assists we have given to the network. This result demys-

tifies the impressions conveyed by (Zeiler and Fergus, 2014; Simonyan et al., 2014)

and shows that the network learns to associate filters to part classes, but only for some

of them and often to a weak degree. In general, these semantic parts are those that

are large or very discriminative for the object class (e.g., torso, head, wheel). Finally,

we analyze different network layers, architectures, and supervision levels. We observe

that part emergence increases with the depth of the layer, especially when using deeper

architectures such as VGG16 (Simonyan and Zisserman, 2015). Moreover, emergence

decreases when the network is trained for tasks less related to object parts, e.g. scene

classification (Zhou et al., 2014).

Our second quantitative evaluation answers the converse question: “what fraction

of all filters respond to any semantic part?”. As PASCAL-Part is not fully annotated

(e.g. car door handle is missing), we answer it using human judgements. For each

filter, we show human annotators the 10 images with the highest activations per object

class. We highlight the regions corresponding to the activations and ask the anno-

tators whether they systematically cover the same concept (e.g. a semantic part, a

background, a texture, a color, etc.). In case of positive answer, we ask them to name
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the concept (e.g. horse hoof). In general, the majority of the filters do not seem to

systematically respond to any concept. On average per object class, 7% of the filters

correspond to semantic parts (including several filters responding to the same semantic

part). About 10% of the filters systematically respond to other stimuli such as colors,

subregions of parts or even assemblies of multiple parts. Finally, we also compare the

semantic parts emerging in this evaluation with the 34 parts annotated in PASCAL-Part

that emerged in the first evaluation. We find that nearly all the parts that emerge ac-

cording to the detection performance criterion used in the first evaluation also emerge

according to human judgements. However, more semantic parts emerge according to

human judgements, including several parts that are not annotated in PASCAL-Part.

Finally, we also investigate how discriminative network filters and semantic parts

are for recognizing objects. We explore the possibility that some filters respond to

‘parts’ as recurrent discriminative patches, rather than truly semantic parts. We find

that, for each object class in PASCAL-Part, there are on average 9 discriminative fil-

ters that are largely responsible for recognizing it. Interestingly, 40% of these are also

semantic according to human judgements, which is a much greater proportion than the

7% found when considering all filters. The overlap between which filters are discrim-

inative and which ones are semantic might be the reason why previous works (Zeiler

and Fergus, 2014; Simonyan et al., 2014) have suggested a stronger emergence of

semantic parts, based on qualitative visual inspection. We also investigate to what

degree the emergence of semantic parts in the network correlates with their discrim-

inativeness for recognition. Interestingly, these are highly correlated: semantic parts

that are discriminative emerge much more than other semantic parts. While this is gen-

erally assumed in the community, ours is the first work presenting a proper quantitative

evaluation that turns this assumption into a fact.

The work presented in this chapter has been published in IJCV (Gonzalez-Garcia

et al., 2017a).

The rest of the chapter is organized as follows. Section 4.2 discusses some related

work. Section 4.3 presents our quantitative evaluation using PASCAL-Part bounding-

boxes, while section 4.4 presents the evaluation using human judgements. The dis-

criminativeness of filters is investigated in section 4.5, while section 4.6 explores the

discriminativeness of semantic parts. Finally, section 4.7 summarizes the conclusions

of our study and proposes future work.
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4.2 Related Work

Analyzing CNNs. CNN-based representations are unintuitive and there is no clear un-

derstanding of why they perform so well or how they could be improved. In an attempt

to better understand the properties of a CNN, some recent vision works have focused

on analyzing their internal representations (Szegedy et al., 2014; Yosinski et al., 2014;

Lenc and Vedaldi, 2015b; Mahendran and Vedaldi, 2015; Zeiler and Fergus, 2014; Si-

monyan et al., 2014; Agrawal et al., 2014; Zhou et al., 2015; Eigen et al., 2013). Some

of these investigated properties of the network, like stability (Szegedy et al., 2014),

feature transferability (Yosinski et al., 2014), equivariance, invariance and equiva-

lence (Lenc and Vedaldi, 2015b), the ability to reconstruct the input (Mahendran and

Vedaldi, 2015) and how the number of layers, filters and parameters affects the network

performance (Agrawal et al., 2014; Eigen et al., 2013).

More related to this paper are (Zeiler and Fergus, 2014; Simonyan et al., 2014;

Agrawal et al., 2014; Zhou et al., 2015), which look at the convolutional filters. Zeiler

and Fergus (2014) use deconvolutional networks to visualize locally optimal visual

inputs for individual filters. Simonyan et al. (2014) use a gradient-based visualiza-

tion technique to highlight the areas of an image discriminative for an object class.

Agrawal et al. (2014) show that the feature representations are distributed across ob-

ject classes. Zhou et al. (2015) show that the layers of a network learn to recognize

visual elements at different levels of abstraction (e.g. edges, textures, objects and

scenes). Most of these works make an interesting observation: filter responses can of-

ten be linked to semantic parts (Zeiler and Fergus, 2014; Simonyan et al., 2014; Zhou

et al., 2015). These observations are however mostly based on casual visual inspection

of few images (Zeiler and Fergus, 2014; Simonyan et al., 2014). Zhou et al. (2015)

is the only work presenting some quantitative results based on human judgements, but

not focused on semantic parts. Instead, we present an extensive quantitative analy-

sis on whether filters can be associated with semantic parts and to which degree. We

transform the filters into part detectors and evaluate their performance on ground-truth

part bounding-boxes from the PASCAL-Part dataset (Chen et al., 2014). Moreover, we

present a second quantitative analysis based on human judgements where we catego-

rize filters into semantic parts. We believe this methodology goes a step further than

previous works and supports more conclusive answers to the quest for semantic parts.
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Filters as intermediate part representations for recognition. Several works use

filter responses for recognition tasks (Simon et al., 2014; Gkioxari et al., 2015; Simon

and Rodner, 2015; Xiao et al., 2015; Oquab et al., 2015). Simon et al. (2014) train

part detectors for fine-grained recognition, while Gkioxari et al. (2015) train them

for action and attribute classification. Furthermore, Simon and Rodner (2015) learn

constellations of filter activation patterns, and Xiao et al. (2015) cluster group of filters

responding to different bird parts. All these works assume that the convolutional layers

of a network are related to semantic parts. In this paper we try to shed some light on

this assumption and hopefully inspire more works on exploiting the network’s internal

structure for recognition.

4.3 PASCAL-Part emergence in CNNs

Our goal is understanding whether the convolutional filters learned by the network re-

spond to semantic parts. In order to do so, we investigate the image regions to which a

filter responds and try to associate them with a particular part.

Network architecture. Standard image classification CNNs such as (Krizhevsky et al.,

2012; Simonyan and Zisserman, 2015) process an input image through a sequence of

layers of various types, and finally output a class probability vector. Each layer i takes

the output of the previous layer xi�1 as input, and produces its output xi by apply-

ing up to four operations: convolution, nonlinearity, pooling, and normalization. The

convolution operation slides a set of learned filters of different sizes and strides over

the input. The nonlinearity of choice for many networks is the Rectified Linear Unit

(ReLU) (Krizhevsky et al., 2012), and it is applied right after the convolution.

4.3.1 Methodology

Fig. 4.1 presents an overview of our approach. Let f i
j be the j-th convolutional filter of

the i-th layer, including also the ReLU. Each pixel in a feature map xi
j = f i

j(x
i�1) is the

activation value of filter f i
j applied to a particular position in the feature maps xi�1 of

the previous layer. The resolution of the feature map depends on the layer, decreasing

as we advance through the network. Fig. 4.1 shows feature maps for layers 1, 2, and 5.

When a filter responds to a particular stimulus in its input, the corresponding region on
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...

Figure 4.1: Overview of our approach for a layer 5 filter. Each local maxima of the filter’s

feature map leads to a stimulus detection (red). We transform each detection with a regressor

trained to map it to a bounding-box tightly covering a semantic part (green).

the feature map has a high activation value. By studying the stimuli that cause a filter

to fire, we can characterize them and decide whether they correspond to a semantic

object part.

4.3.1.1 Stimulus detections from activations

The value ac,r of each particular activation a, located at position (c,r) of feature map

xi
j, indicates the response of the filter to a corresponding region in its input xi�1. The

receptive field of an activation is the region on the input image on which the filter

acted, and it is determined by the network structure. By recursively back-propagating

the input region of activation a down the layers, we can reconstruct the actual receptive

field on the input image. The size of the receptive field varies depending on the layer,

from the actual size of the filter for the first convolutional layer, up to a much larger

image region on the top layer. For each feature map, we select all its local maxima

activations. Each of these activations will lead to a stimulus detection in the image

regardless of its activation value (i.e. no minimum threshold). Therefore, all peaks

of the feature map become detections, and their detection scores are their activation

values. The location of such detections is defined by the center of the receptive field of

the corresponding activation, whereas its size varies depending on the layer. Fig. 4.1

shows an example, where the two local maxima of feature map x5
j lead to the stimulus

detections depicted in red, which correspond to their receptive fields on the image.

Regressing to part bounding-boxes. The receptive field of an activation gives a rough

indication about the location of the stimulus. However, it rarely covers a part tightly

enough to associate the stimulus with a part instance (fig. 4.2). In general, the receptive
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field of high layers is significantly larger than the part ground-truth bounding-box,

especially for small classes like ear. Moreover, while the receptive field is always

square, some classes have other aspect ratios (e.g. legs). Finally, the response of a

filter to a part might not occur in its center, but at an offset instead (e.g. on the bottom

area, fig. 4.2d-e).

In order to factor out these elements, we assist each filter with a bounding-box re-

gression mechanism that refines its stimulus detection for each part class. This regres-

sor turns each stimulus detection, which are generally bigger than the corresponding

part and have a squared aspect ratio (fig. 4.1) into more accurate detections that fit the

part instances more tightly (fig. 4.2). The regressor applies a 4D transformation, i.e.

translation and scaling along width and height. We believe that if a filter fires system-

atically on many instances of a part class at the same relative location (in 4D), then we

can grant that filter a ‘part detector’ status. This implies that the filter responds to that

part, even if the actual receptive field does not tightly cover it. For the rest of the paper,

all stimulus detections include this regression step unless stated otherwise.

We train one regressor for each part class and filter. Let {Gl} be the set of all

ground-truth bounding-boxes for the part in the training set. Each instance bounding-

box Gl is defined by its center coordinates (Gl
x,Gl

y), width Gl
w, and height Gl

h. We train

the regressor on K pairs of activations and ground-truth part bounding-boxes {a

k,Gk}.

Let (cx,cy) be the center of the receptive field on the image for a particular feature map

activation a of value ac,r, and let w,h be its width and height (w = h as all receptive

fields are square). We pair each activation with an instance bounding-box Gl of the

corresponding image if (cx,cy) lies inside it. We are going to learn a 4D transformation

dx,dy,dw,dh to predict a part bounding-box G0 from a’s receptive field

G0x = x+dx(g(a)) G0w = dw(g(a))

G0y = y+dy(g(a)) G0h = dh(g(a)),

where g(a) = (cx,cy,ac�1,r�1,ac�1,r, ...,ac+1,r+1). Therefore, the regression depends

on the center of the receptive field and on the values of the 3x3 neighborhood of the

activation on the feature map. Note that it is independent of w and h as these are fixed

for a given layer. Each d⇤ is a linear combination of the elements in g(a) with a weight

vector w⇤, where ⇤ can be x,y,w, or h.

We set regression targets (tk
x , tk

y , tk
w, tk

h) = (Gk
x� ck

x,Gk
y� ck

y,Gk
w,Gk

h) and optimize
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the following weighted least squares objective

w⇤ = argmin
w0⇤

K

Â

k=1
ak

c,r(t
k
⇤ �w0⇤ · g(ak))2. (4.1)

In practice, this tries to transform the position, size and aspect-ratio of the original

receptive field of the activations into the bounding-boxes in {Gl}.

Fig. 4.2 presents some examples of our bounding-box regression for 6 different

parts. For each part, we show the feature map of a layer 5 filter and both the original

receptive field (red) and the regressed box (green) of some activations. We can see how

given a local maximum activation on the feature map, the regressor not only refines the

center of the detection, but also successfully captures its extent. Some classes are nat-

urally more challenging, like dog-tail in fig. 4.2f, due to higher size and aspect-ratio

variance or lack of satisfactory training examples.

Evaluating filters as part detectors. For each filter and part combination, we need to

evaluate the performance of the filter as a detector of that part. We take all the local

maxima of the filter’s feature map for every input image and compute their stimulus

detections, applying Non-Maxima Suppression (Felzenszwalb et al., 2010b) to remove

duplicate detections. Algorithm 3 summarizes the part detection process used. We

consider a stimulus detection as correct if it has an intersection-over-union � 0.4 with

any ground-truth bounding-box of the part, following Chen et al. (2014). All other

detections are considered false positives. A filter is a good part detector if it has high

recall but a small number of false positives, indicating that when it fires, it is because

the part is present. Therefore, we use Average Precision (AP) to evaluate the filters as

part detectors, following the PASCAL VOC (Everingham et al., 2010) protocol.

4.3.1.2 Filter combinations

Several works (Agrawal et al., 2014; Zhou et al., 2015; Xiao et al., 2015) noted that

one filter alone is often insufficient to cover the spectrum of appearance variation of

an object class. We believe that this holds also for part classes. For this reason, we

present here a technique to automatically select the optimal combination of filters for

a part class.

For a given network layer, the search space consists of binary vectors z= [z1,z2, ...,zN ],

where N is the number of filters in the layer. If zi = 1, then the i-th filter is included in

the combination. We consider the stimulus detections of a filter combination as the set
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Input : Image I, network filter f

Output: Set of part detections D

// Obtain local maxima of feature map f (I)

A maxima( f (I)) ;

for a 2 A do
// Back-propagate to find stimulus

x receptive field(a) ;

// Regress to refined stimulus

x0  d(x) ;

end
D NMS({x0});

Algorithm 3: Filters as part detectors.

Figure 4.2: Examples of stimulus detections for layer 5 filters. For each part class we show a

feature map on the left, where we highlight some local maxima in red. On the right, instead,

we show the corresponding original receptive field and the regressed box.
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union of the individual detections of each filter in it. Ideally, a good filter combination

should make a better part detector than the individual filters in it. Good combinations

should include complementary filters that jointly detect a greater number of part in-

stances, increasing recall. At the same time, the filters in the combination should not

add many false positives. Therefore, we can use the collective AP of the filter combi-

nation as objective function to be maximized:

z = argmax
z0

AP(
[

i2{ j|z0j=1}
deti), (4.2)

where deti indicates the stimulus detections of the i-th filter.

We use a Genetic Algorithm (GA) (Mitchell, 1998) to optimize this objective func-

tion. GAs are iterative search methods inspired by natural evolution. At every gen-

eration, the algorithm evaluates the ‘fitness’ of a set of search points (population).

Then, the GA performs three genetic operations to create the next generation: selec-

tion, crossover and mutation. In our case, each member of the population (chromo-

some) is a binary vector z as defined above. Our fitness function is the AP of the

filter combination. In our experiments, we use a population of 200 chromosomes and

run the GA for 100 generations. We use Stochastic Universal Sampling (Mitchell,

1998). We set the crossover and mutation probabilities to 0.7 and 0.3, respectively.

We bias the initialization towards a small number of filters by setting the probability

P(zi = 1) = 0.02,8i. This leads to an average combination of 5 filters when N = 256,

in the initial population.

We underline that our goal is to find filter combinations that act collectively as part

detectors, which is formalized in the objective (4.2). While a GA is a suitable method

to maximize (4.2), other methods could be used instead.

4.3.2 AlexNet for object detection

In this section we analyze the role of convolutional filters in AlexNet and test whether

some of them can be associated with semantic parts. In order to do so, we design our

settings to favor the emergence of this association.

4.3.2.1 Experimental settings

Dataset. We evaluate filters on the recent PASCAL-Part dataset (Chen et al., 2014),

which augments PASCAL VOC 2010 (Everingham et al., 2010) with pixel-wise se-
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Class Part
Layer 1 (96) Layer 2 (256) Layer 3 (384) Layer 4 (384) Layer 5 (256)

Best GA nFilters Best GA nFilters Best GA nFilters Best GA nFilters Best GA nFilters

aero

body 17.7 +3.4 12 23.7 +10.2 33 29.4 +9.5 62 34.0 +9.2 49 29.3 +17.0 49

stern 10 +1.5 14 13.6 +5.1 33 21.4 +2.5 45 19.2 +5.2 32 15.0 +9.4 21

wing 4.2 +1.2 12 5.6 +5.3 41 6.0 +7.0 63 6.9 +3.9 36 4.7 +9.6 38

engine 2.1 +0.9 14 2.7 +1.6 5 4.2 +1.7 37 4.5 +2.5 53 1.6 +5.4 25

bike

wheel 14.2 +0.7 19 41.4 +0.0 30 49.2 +0.0 3 60.0 +0.0 10 57.1 +6.1 16

saddle 1.0 +0.5 5 1.7 +0.5 18 1.6 +0.6 43 1.7 +0.0 4 2.1 +2.5 16

handlebar 2.8 +0.4 17 3 +2.2 21 4.0 +2.0 37 3.2 +3.1 40 4.1 +5.8 38

chainwheel 0.6 +0.1 4 0.6 +0.6 24 1.9 +0.0 46 1.7 +1.0 17 3.0 +0.6 6

bird

head 5.7 +0.0 1 8.0 +0.4 5 14.7 +5.0 16 24 +2.0 17 23.8 +6.5 23

beak 0.8 +0.0 1 0.9 +0.4 35 1.1 +2.4 57 1.4 +3.2 45 2.1 +4.5 28

torso 31.4 +0.8 8 37.5 +2.5 20 41.6 +2.7 47 44.3 +2.4 41 55.9 +5 29

wing 4.6 +1.5 11 7.0 +7.8 38 9.7 +5.2 39 9.3 +8.3 33 7.7 +8.3 36

tail 1.8 +0.2 9 2.4 +1.8 39 2.9 +3.7 39 4.6 +3.8 25 7.0 +4.3 17

bottle
cap 1.8 +0.6 13 4.4 +2.2 20 6.4 +0.9 21 11.2 +0.0 11 6.6 +4.6 15

body 73.0 +0.6 4 80.9 +0.0 9 87.6 +0.0 10 83.4 +0.0 3 81.0 +6.3 25

car

mirror 0.4 +0.1 5 0.3 +0.3 14 0.4 +0.1 16 0.4 +0.2 27 0.4 +0.3 12

door 5.3 +0.3 5 7.8 +1.4 36 11.1 +4.0 35 13.0 +4.6 55 16.5 +7.5 23

wheel 3.5 +0.0 1 9.5 +3.2 8 27.7 +3.8 6 30.0 +4.8 15 35.4 +4.0 17

headlight 0.3 +0.1 4 1.3 +0.0 13 1.0 +0.8 32 0.8 +0.9 32 0.6 +1.1 19

window 5.3 +0.0 2 9.0 +1.2 12 11.8 +5.1 28 21.2 +0.0 18 19.8 +5.4 22

cat

head 16.8 +0.0 1 21.2 +0.0 8 30.6 +6.0 8 44.5 +1.1 15 53.9 +5.2 10

eye 0.6 +0.0 4 10.4 +1.6 3 10.8 +0.0 2 3.8 +0.5 18 4.3 +1.3 4

ear 1.9 +0.6 10 4.4 +0.3 14 4.9 +5.7 12 10.7 +5.1 13 17.5 +2.8 10

torso 35.8 +0.7 6 40.2 +1.7 4 43.6 +2.4 32 46.7 +6.1 32 50.8 +4.2 25

paw 0.6 +0.1 6 0.7 +0.4 18 1.9 +1.2 21 3.2 +0.0 11 1.5 +1.9 16

tail 1.0 +0.0 1 1.3 +1.4 35 2.1 +2.8 71 2.3 +4.0 42 2.2 +3.9 24

cow

head 12.9 +0.4 12 15.8 +3.8 34 21.2 +8.5 71 22.9 +4.9 50 24.6 +17.1 34

muzzle 3.4 +0.2 14 4.9 +2.9 37 15.4 +0.0 10 15.6 +1.9 14 16.7 +9.5 22

torso 43.1 +0.0 1 56.6 +0.0 45 62.0 +9.0 42 63.6 +9.9 53 65.2 +13.6 42

tail 0.9 +0.0 9 2.9 +1.1 19 2.9 +2.2 16 7.0 +2.5 30 3.7 +0.8 6

horse

head 5.4 +0.3 3 7.6 +1.8 22 10.7 +3.1 52 15.3 +5.2 27 16.1 +11.6 22

ear 0.9 +0.3 11 1.3 +1.1 18 4.3 +1.6 9 2.7 +3.2 12 6.1 +0.5 4

muzzle 3.2 +1.6 6 2.7 +2.3 29 4.9 +3.2 48 8.2 +5.4 30 12.1 +5.4 19

torso 48.7 +0.9 9 52.7 +4.1 22 63.8 +0.0 11 63.0 +4.4 27 65.2 +7.1 29

neck 3.7 +0.9 16 4.4 +5.0 51 7.3 +7.0 50 8.7 +6.7 50 12.2 +5.8 18

leg 6.3 +0.2 10 10.7 +3.6 6 14.2 +7.5 8 23.0 +5.7 9 23.4 +9.6 14

sheep

head 7.9 +1.0 2 8.5 +2.7 20 19.4 +0.0 10 23.2 +2.4 10 23.4 +12.5 34

ear 2.3 +0.5 5 2.8 +1.9 19 3.5 +2.4 20 2.4 +4.9 30 2.4 +5.3 22

torso 43.6 +0.0 1 61.3 +1.6 29 74.1 +0.0 11 70.9 +0.0 7 82.2 +3.2 18

leg 1.4 +0.0 2 1.9 +1.1 17 3.2 +1.2 5 6.0 +2.4 11 4.6 +2.6 15

person

head 6.6 +0.0 1 8.7 +0.0 3 33.8 +0.0 5 44.9 +0.0 6 58.2 +0.0 1

hair 3.9 +0.1 4 5.1 +0.0 3 18.0 +0.0 11 28.7 +0.0 4 30.6 +0.0 1

torso 16.1 +0.0 1 21.7 +1.8 10 23.7 +6.8 10 32.8 +1.7 9 38.3 +4.4 8

arm 3.7 +0.0 1 4.7 +1.5 6 4.5 +3.5 13 5.4 +1.4 19 8.5 +4.7 7

hand 0.9 +0.0 1 1.7 +0.0 3 1.4 +0.2 7 1.5 +0.0 2 0.6 +0.5 10

foot 0.4 +0.0 1 0.7 +0.0 6 1.8 +0.0 6 1.3 +0.3 2 1.6 +1.0 6

mean (105 parts) 9.0 +0.6 6.9 12.4 +2.0 19.1 16.5 +2.6 24.0 17.8 +3.3 24.6 19.0 +5.2 18.8

absolute GA mAP 9.6 14.4 19.1 21.1 24.2

all filters mAP 5.5 96 4.5 256 5.6 384 6.5 384 9.2 256

Table 4.1: Part detection results in terms of AP on the train set of PASCAL-Part for AlexNet-

Object. Best is the AP of the best individual filter whereas GA indicates the increment over

Best obtained by selecting the combination of (nFilters) filters, hence the + sign.
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mantic part annotations. For our experiments we fit a bounding-box to each part seg-

mentation mask. We use the train subset and evaluate all parts listed in PASCAL-

Part with some minor refinements: we discard fine-grained labels (e.g. ‘car wheel

front-left’ and ‘car wheel back-left’ are both mapped to car-wheel), merge contiguous

subparts of the same larger part (e.g. ‘person upper arm’ and ‘person lower arm’ be-

come a single part person-arm), discard very tiny parts (average of widths and heights

over the whole training set  15 pixels, like ‘person eyebrow’), and discard parts with

less than  10 samples in train (like ‘bicycle headlight’, which has only one anno-

tated sample). The final dataset contains 105 parts of 16 object classes (appendix B).

AlexNet. One of the most popular networks in computer vision is the CNN model of

Krizhevsky et al. (Krizhevsky et al., 2012), winner of the ILSVRC 2012 image classi-

fication challenge (Russakovsky et al., 2015). It is commonly referred to as AlexNet.

This network has 5 convolutional layers followed by 3 fully connected layers. The

number of filters at each of the convolutional layers L is: 96 (L1), 256 (L2), 384 (L3),

384 (L4), and 256 (L5). The filter size changes across layers, from 11x11 for L1, to

5x5 to L2, and to 3x3 for L3, L4, L5.

Training. We use the publicly available AlexNet network of Girshick et al. (2014).

The network was initially pre-trained for image classification on the ILSVRC12 dataset

and subsequently finetuned for object class detection (for the 20 classes in PASCAL

VOC 2012 + background) using ground-truth annotations. Note how these bounding-

boxes provide a coordinate frame common across all object instances. This makes it

easier for the network to learn parts as it removes variability due to scale changes (the

convolutional filters have fixed size) and presents different instances of the same part

class at rather stable positions within the image. We refer to this network as AlexNet-

Object. The network is trained on the train set of PASCAL VOC 2012. Note how this

set is a superset of PASCAL VOC 2010 train, on which we analyze whether filters

correspond to semantic parts.

Finally, we assist each of its filters by providing a bounding-box regression mech-

anism that refines its stimulus detections to each part class (sec. 4.3.1.1) and we learn

the optimal combination of filters for a part class using a GA (sec. 4.3.1.2).
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Evaluating settings. We restrict the network inputs to ground-truth object bounding-

boxes. More specifically, for each part class we look at the filter responses only inside

the instances of its object class and ignore the background. For example, for cow-head

we only analyze cow ground-truth bounding-boxes. Furthermore, before inputting a

bounding-box to the network we follow the R-CNN pre-processing procedure (Gir-

shick et al., 2014), which includes adding a small amount of background context and

warping to a fixed size. An example of an input bounding-box is shown in fig. 4.1.

Finally, we intentionally evaluate on the train subset that was used to train the net-

work (for object detection, without part annotations). These settings are designed to

be favorable to the emergence of parts as we ignore image background that does not

contain parts and, more importantly, we use object instances seen by AlexNet-Object

during training.

4.3.2.2 Results

Table 4.1 shows results for a few parts of seven object classes in terms of average pre-

cision (AP). For each part class and network layer, the table reports the AP of the best

individual filter in the layer (‘Best’), the increase in performance over the best filter

thanks to selecting a combination of filters with our GA (‘GA’), and the number of

filters in that combination (‘nFilters’). Moreover, the last three rows of the table report

the mAP over all 105 part classes. This includes the absolute performance of the GA

combination in the second to last row, for easy reference, and the performance consid-

ering all filters simultaneously. Several interesting facts arise from these results.

Need for regression. In order to quantify how much the bounding-box regression

mechanism of sec. 4.3.1.1 helps, we performed part detection using the non-regressed

receptive fields. On AlexNet-Object layer 5, taking the single best filter for each part

class achieves an mAP of 6.1. This is very low compared to mAP 19.0 achieved by

assisting the filters with the regression. Moreover, results show that the receptive field

is only able to detect large parts (e.g. bird-torso, bottle-body, cow-torso, etc.). This

is not surprising, as the receptive field of layer 5 covers most of the object surface

(fig. 4.2). Instead, filters with regressed receptive fields can detect much smaller parts

(e.g. cat-ear, cow-muzzle, person-hair), as the regressor shrinks the area covered by

the receptive field and adapts its aspect ratio to the one of the part. Some filters at layer

1 benefit of the opposite effect. The reason why such filters with tiny receptive fields



76 Chapter 4. Do semantic parts emerge in Convolutional Neural Networks?

can detect large parts such as cow-torso and horse-torso, is because regression enlarges

them appropriately. Without regression, layer 1 filters have zero AP for these parts. We

conclude that the receptive field alone cannot perform part detection and regression is

necessary.

Differences between layers. Generally, the higher the network layer, the higher the

performance (table 4.1). This is consistent with previous observations (Zeiler and Fer-

gus, 2014; Zhou et al., 2015) that the first layers of the network respond to generic cor-

ners and other edge/color junctions, while higher levels capture more complex struc-

tures. Nonetheless, it seems that some of the best individual filters of the very first

layers can already perform detection to a weak degree when helped by our regression

(e.g. bike-wheel has 14.9 AP).

Differences between part classes. Performance varies greatly across part classes,

spanning a large range of values, from near 0 mAP to very high values, over 80 mAP.

Due to this large variance, combining and comparing performance values for differ-

ent parts becomes a challenging task. For this reason, we focus here on different

performance ranges with smaller variation. For example, some parts are clearly not

represented by any filter nor filter combination, as their AP is very low across all lay-

ers e.g. 7.0 for aeroplane-engine, 3.6 for bike-chainwheel, 2.6 AP for person-foot,

at layer 5 using the GA combinations). On other parts instead, the network achieves

good detection performance e.g. 64.2 for bike-wheel, 59.1 for cat-head, and 72.3 AP

for horse-torso). This proves that some of the filters can be associated with these parts.

Differences between part sizes. Another factor that seems to influence the perfor-

mance is the average size of the part. For example, the AP achieved on horse-torso

72.3 on layer 5) is much higher than on the smaller horse-ear 6.6). In order to under-

stand if this is common across all parts, we looked at how AP changes with respect

to the average size of a part (fig. 4.3). Interestingly, these two are indeed correlated

and have a Pearson product-moment correlation coefficient (PPMCC) of 0.7 (Pear-

son, 1895). This shows that smaller parts emerge less in the CNN than larger ones.

Nonetheless, small size does not always imply low detection performance: there are

some rather small parts (around 20% of the object area) which have high AP (around

60), like bicycle-wheel, motorbike-wheel and person-head. As we show in sec. 4.6,

these are parts that are very discriminative for recognizing the objects they belong to,
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Figure 4.3: Correlation between the size of a part class, averaged over all its instances,

and part detection performance (AP for the best combination of layer 5 filters found by GA,

table 4.1). The part size is normalized by the average size of the object class it belongs to.

Each point corresponds to a different part class. These are highly correlated: Pearson product-

moment correlation coefficient of 0.7.

which justifies their emergence within the network.

Filter combinations by GA. Performing part detection using a combination of filters

(GA) always performs better (or equal) than the single best filter. This is interesting,

as it shows that different filters learn different appearance variations of the same part

class. On the other hand, simultaneously using all filters brings a very low perfor-

mance. This is due to irrelevant filters producing many false positives, which reduces

AP. Moreover, combining multiple filters selected by the GA improves part detection

performance more for deeper layers. This suggests that they are more class-specific,

i.e. they dedicate more filters to learning the appearance of specific object/part classes.

This can be observed by looking not only at the improvement in performance brought

by the GA, but also at the number of filters that the GA selects. Clearly, filters in L1 are

so far from being parts that even selecting many filters does not bring much improve-

ment (+0.6 mAP only). Instead, in L4 and L5 there are more semantic filters and the

GA combination helps more (+3.3 mAP and +5.2 mAP, respectively). Interestingly,

for L5 the improvement is higher than for L4, yet fewer filters are combined. This
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Figure 4.4: Part detection examples obtained by combination of filters selected by our GA

(top) or by TopFilters (bottom). Different box colors correspond to different filters’ detections.

Note how the GA is able to better select filters that complement each other.

further shows that filters in higher layers better represent semantic parts.

TopFilters: a baseline for combining filters. The AP improvement provided by our

GA for some parts is remarkable, like for aeroplane-body (+17.0), horse-leg (+9.6) and

cow-head (+17.1). These results suggest that our GA is doing a good job in selecting

filter combinations. Here we compare against a simpler method, dubbed TopFilters.

It selects the top few best filters for a part class, based on their individual AP. We let

TopFilters select the same number of filters as the GA. Our GA consistently outper-

forms TopFilters (24.2 vs 18.8 mAP, layer 5). The problem with TopFilters seems to

be that often the top individual best filters capture the same visual aspect of a part.

Instead, our GA can select filters that complement each other and work well jointly

(indeed 57% of the filters it selects are not among those selected by TopFilters). We

can see this phenomenon in fig. 4.4. On the blue car, TopFilters detects two wheels

correctly, but fails to fit a tight bounding-box around the third wheel that appears much

smaller (fig. 4.4a). Similarly, on the other car TopFilters fails to correctly localize the

large wheel (fig. 4.4b). Instead, the GA localizes all wheels correctly in both cases.

Furthermore, the GA fits tighter bounding-boxes for more challenging parts, achiev-

ing more accurate detections (fig. 4.4c-f). Finally, note how TopFilters does not even

improve over selecting the single best filter (19.0), as more filters bring more false

positive detections.

GA convergence. We present here an experiment to study the convergence of the GA

by assessing the variance of its solutions. We take car-wheel as example part class
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Figure 4.5: Detections performed by filters 141, 133, and 236 of AlexNet-Object, layer 5. The

filters are specific to a part and they work well on several object classes containing it.

since it has reasonable accuracy. We ran the GA at layer 5 for 10 trials starting with

different random seeds. On average, each trial selects 16 filters, with a standard devi-

ation of 2.7. The AP remains very similar for all runs (mean 39.42, standard deviation

of 0.03). This indicates that, for the task at hand, our GA is stable, converging to

equivalent solutions in terms both of the number of selected filters and their collective

performance.

Filter sharing across part classes. We looked into which filters were selected by our

GA and noticed that some are shared across different part classes. We then confirmed

that those filters have high part detection performance for equivalent part classes across

different object classes (e.g. car-wheel and bicycle-wheel). Fig. 4.5 shows some ex-

amples of these filters’ detections. It is clear that some filters are representative for a

generic part and work well on all object classes containing it.

Instance coverage. Table 4.1 shows high AP results for several part classes, showing

how some filters can indeed act as part detectors. However, as AP conflates both recall

and precision, it does not reveal how many part instances the filters cover. To answer

this question, fig. 4.6 shows precision vs. recall curves for several part classes. In

order to create these curves, we sort detections by score and select subsets from the

top until reaching a particular recall point. Then, for each recall level we compute the

precision of the detections in the corresponding subset as the number of true positives
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Figure 4.6: Precision vs. recall curves for six part classes using AlexNet-Object’s layer 5

filters. For each part class we show the curve for the the top three individually best filters and

for the combination of filters selected by our GA.

divided by the number of total detections in the subset. For each part class, we take

the top three filters of layer 5, and compare them to the filter combination returned

by the GA. We can see how the combination reaches higher AP not only by having

higher precision (fewer false positives) in the low recall regime, but also by reaching

considerably higher recall levels than the individual filters. For some part classes, the

filter combination covers as many as 80% of its instances (e.g. car-door, bike-wheel,

dog-head). For the more challenging part classes, neither the individual filters nor the

combination achieve high recall levels, suggesting that the convolutional filters have

not learned to respond to these parts systematically (e.g. cat-eye, horse-ear).

How many semantic parts emerge in AlexNet-Object? So far we discussed part

detection performance for individual filters of AlexNet-Object and their combinations.

Here we want to answer the main bottomline question: for how many part classes does

a detector emerge? We answer this for two criteria: AP and instance coverage.

For AP, we consider a part to emerge if the detection performance for the best filter

combination in the best layer (L5) exceeds 30 percent AP. This is a rather generous

threshold, which represents the level above which the part can be somewhat reliably

detected. According to this criterion, 34 out of the 105 semantic part classes emerge.

This is a modest number, despite all favorable conditions we have engineered into
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the evaluation and all assists we have given to the network (including bounding-box

regression and optimal filter combinations).

According to the instance coverage criterion, instead, results are more positive. We

consider that a filter combination covers a part when it reaches a recall level above

50%, regardless of false-positives. According to this criterion, 71 out of the 105 part

classes are covered, which is greater than the number of part detectors found according

to AP. This indicates that, although for many part classes there is a filter combination

covering many of its instances, it also fires frequently on other image regions (leading

to high false positive rates).

Based on all this evidence, we conclude that the network does contain filter com-

binations that can cover some part classes well, but they do not fire exclusively on

the part, making them weak part detectors. This demystifies the observations drawn

through casual visual inspection, as in Zeiler and Fergus (2014). Moreover, the part

classes covered by such semantic filters tend to either cover a large image area, such

as torso or head, or be very discriminative for their object class, such as wheels for ve-

hicles and wings for birds. Most small or less discriminative parts are not represented

well in the network filters, such as headlight, eye or tail.

4.3.3 Other network architectures and levels of supervision

We now explore how the level of supervision provided during training and the network

architecture affect what the filters learn.

Networks and training. We consider several additional networks with different su-

pervision levels (AlexNet-Image, AlexNet-Scenes, and AlexNet-Object Scratch), and

a different architecture (VGG16-Object).

AlexNet-Image (Krizhevsky et al., 2012) is trained for image classification on 1.3M

images of 1000 object classes in ILSVRC 2012 (Russakovsky et al., 2015). Note how

this network has not seen object bounding-boxes during training. For this reason, we

expect its filters to learn less about semantic parts than AlexNet-Object. On the oppo-

site end of the spectrum, AlexNet-Scene (Zhou et al., 2014) is trained for scene recog-

nition on 205 categories of the Places database (Zhou et al., 2014), which contains

2.5M scene-centric images. As with AlexNet-Image, this network has not seen object

bounding-boxes during training. But now the training images show complex scenes

composed of many objects, instead of focusing on individual objects as in ILSVRC
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Network name
Training Results - Layer

Pre-train Train L3 L4 L5
AlexNet-Object ILSVRC12 VOC12 19.1 21.1 24.2

AlexNet-Image - ILSVRC12 20.0 21.5 23.2

AlexNet-Scene - Places 17.5 17.6 18.1

AlexNet-Object Scratch - VOC12 14.5 16.2 18.2

VGG16-Object ILSVRC12 VOC12 12.9 21.5 26.1

VGG16-Image - ILSVRC12 12.4 19.6 22.1

Table 4.2: Part detection results (mAP). For VGG-16, L3, L4, and L5 correspond to L3 3,

L4 3, and L5 3, respectively.

2012. Moreover, while the network might learn to use objects as cues for scene recog-

nition (Zhou et al., 2015), the task also profits from background patches (e.g. water

and sky for beach). For these reasons, we expect object parts to emerge even less

in AlexNet-Scene. For both AlexNet-Image and AlexNet-Scene we use the publicly

available models from Jia (2013).

We introduce AlexNet-Object Scratch in order to assess the importance of pre-

training in AlexNet-Object. We directly train this network for object detection on

PASCAL VOC 2012 from scratch, i.e. randomly initializing its weights instead of pre-

training on ILSVRC 2012. The rest of the training process remains identical to the one

for AlexNet-Object (sec. 4.3.2.1).

Finally, VGG16-Object is the 16-layer network of Simonyan and Zisserman (2015),

finetuned for object detection (Girshick et al., 2014) on PASCAL VOC 2012 (like

AlexNet-Object). While its general structure is similar to AlexNet, it is deeper and the

filters are smaller (3x3 in all layers), leading to better image classification (Simonyan

and Zisserman, 2015) and object detection (Girshick, 2015) performance. Its convo-

lutional layers can be grouped in 5 blocks. The first two blocks contain 2 layers each,

with 64 and 128 filters, respectively. The next block contains 3 layers of 256 filters.

Finally, the last 2 blocks contain 3 layers of 512 filters each.

Results. Table 4.2 presents results for all networks we consider. For the AlexNet ar-

chitectures, we focus on the last three convolutional layers, as we observed in sec. 4.3.2.2

that filters in the first two layers correspond poorly to semantic parts. Analogously, for
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VGG16-Object we present the top layer of each of the last 3 blocks of the network

(L3 3, L4 3, and L5 3). We report mAP results obtained by the GA filter combination,

averaged over all part classes.

Both AlexNet-Image and AlexNet-Object present reasonable part emergence across

all their layers. This shows that the network’s inclination to learn semantic parts is

somewhat already present even when trained for whole image classification, suggest-

ing that object parts are useful for that task too. However, the part emergence on L5

for AlexNet-Object is higher. This indicates that parts become more important when

the network is trained for object detection, affecting particularly higher layers, near

the final classification layer that can use the responses of these filters to recognize the

object.

Interestingly, parts emerge much less when training the network for scene recog-

nition, as the results of AlexNet-Scene indicate (-6.1% mAP compared to AlexNet-

Object). The relative performance of the three networks AlexNet-Object, AlexNet-

Image, AlexNet-Scene suggest that the network seems to learn parts to the degree it

needs them for the task it is trained for, a remarkable behaviour indeed.

AlexNet-Object Scratch performs clearly worse than AlexNet-Object, which is

likely due to the fact that PASCAL VOC 2012 is too small for training a complex

CNN, and so pre-training on ILSVRC is necessary (Agrawal et al., 2014; Girshick

et al., 2014). Finally, parts emerge more in the deeper VGG16-Object than in AlexNet-

Object (L5). The higher part emergence could be due to the better performance of this

network or its greater depth. In order to investigate this, we also test VGG16-Image:

VGG16 architecture just pre-trained for image classification, like AlexNet-Image. This

model preserves the depth but loses the performance advantage over the fine-tuned

counterparts. The results are similar to AlexNet-Image for layers 4 and 5, suggest-

ing that the better performance is indeed responsible for the higher part emergence.

However, there is still correlation with depth as better networks tend to be deeper.

All the networks but AlexNet-Scene confirm the trend observed for AlexNet-Object:

filters in higher layers are more responsive to semantic parts. This is especially notable

for VGG16-Object. As this network has many more layers, the levels of semantic ab-

straction are more spread out. For example, L3 3 has very low emergence as there are

six more layers above it instead of two in AlexNet. Therefore, the network can post-

pone the development of semantic part filters to later layers. AlexNet-Scene displays

the same, rather low level of responsiveness to semantic parts in all layers considered.

We hypothesize this is due to semantic object parts playing a smaller role for scene
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recognition.

4.4 Semantic part emergence in CNNs according to hu-

mans

Our quantitative evaluation presented in sec. 4.3 uses the semantic part annotations

available in PASCAL-Part dataset (Chen et al., 2014) to determine how many semantic

parts emerge in the CNNs. We address now the converse question: “what fraction of

all filters respond to any semantic part?” Despite being the best existing parts dataset,

PASCAL-Part is not complete: some semantic parts are not annotated (e.g. the door

handle of a car). For this reason, we cannot answer this new question using it, as a

filter might be responding to an unannotated semantic part.

We propose here a human-based experiment that goes beyond the semantic parts

annotated in PASCAL-Part. For each object class we ask human annotators if activa-

tions of a filter systematically correspond to a semantic part of that object class, and, if

yes, to name the part (sec. 4.4.1). This data provides a mapping from filters to semantic

parts, which is only limited by the semantic parts known by the annotator. Using this

mapping, we can now answer the proposed question (sec. 4.4.2). Moreover, this map-

ping also allows us to compare the parts emerging in this human experiment with the

parts that emerged according to the PASCAL-Part annotations(sec. 4.3). This enables

to discern whether some other parts emerge besides those annotated in PASCAL-Part

(sec. 4.4.3).

4.4.1 Methodology

For each pair of object class and filter, we present an image like fig. 4.7 to an annotator.

The image shows the top 10 activations of the filter on object instances of the class (car,

in the figure). We show the image shaded and overlay the activation map by setting

the transparency value of the shading proportionally to the activation value at a pixel.

Since activation maps are smaller than the image, we interpolate the transparency value

of each image pixel based on the corresponding closest activations of the map. This

highlights the activation map and helps the annotator to quickly see high activation

regions in the context of the rest of the image. We also indicate the maximum of the

activation map with a green square to emphasize the maximum activation (which is

typically in the middle of the region).
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Figure 4.7: Example of a question shown to our annotators, filter id: 186, class: car. We show

the top 10 images with the highest activation of the filter on this object class, along with the

corresponding activation maps.

The task consists in answering the question: “Do the highlighted areas in the im-

ages systematically cover the same concept, and if so, which?”. This is the case if the

highlighted areas cover the same concept in at least seven out of the ten images. The

possible answers are the following:

1. Yes - Semantic part

2. Yes - Background

3. Yes - Other

4. No

5. Not sure



86 Chapter 4. Do semantic parts emerge in Convolutional Neural Networks?

In case of an affirmative response, the annotator needs to specify one of three types

of concepts: semantic part (e.g. wheel), background (e.g. grass) or anything else (e.g.

white color). Additionally, we ask them to name the concept by typing it in a free-

text field. The idea behind this protocol is to distinguish filters that fire on a variety

of different image structures (fig. 4.8j-k), including occasionally some semantic parts,

from genuine part detectors, which fire systematically on a particular part. Further-

more, we have expanded our experiment beyond semantic parts (i.e. background and

other) in order to achieve a more comprehensive understanding of the filter stimuli.

The last option (“Not sure”) allows the annotator to skip ambiguous cases, which we

later reject.

We ask a question for each combination of object class and network filter. We

explore L5 filters of AlexNet-Object (256) and we consider the 16 object classes used

in sec. 4.3, leading to a total of 256⇥ 16 questions. We use two expert annotators to

process half of the object classes each. To measure agreement, they also process one

of the object classes from the other annotator’s set. Their agreement on the types of

filters is high: in 79% of the questions, the two annotators clicked on the same answer

(out of the 5 possible answers above).

4.4.2 Results

This experiment enables to obtain a distribution over the types of filters for each object

class. Fig. 4.9 shows these distributions for three example object classes (bird, car, and

cat) as well as the average result for all 16 object classes. Additionally, fig. 4.8 shows

some example human answers. The majority of the filters do not seem to systematically

respond to any identifiable concept (fig. 4.8j-k). Among the filters that do respond to

concepts systematically, only an average of 7% (18 filters) correspond to semantic

parts of a particular object class (fig. 4.8a-c). Furthermore, there is signficant overlap

of semantic filters across different object classes, as only 131 of all filters are semantic

for at least one object class. This confirms what we observed in fig. 4.5.

Only 3% of the filters respond systematically to background patches, examples

include “grass”, “road”, and “sky”(fig. 4.8d-e). Finally, most of the systematic filters,

10% overall, respond to some other concepts. Among these, we most often find colors

and textures (fig. 4.8f), but also subregions of a part (fig. 4.8g), assemblies of multiple

semantic parts or their subregions (fig. 4.8h), or even regions straddling between a part

and a background patch (fig. 4.8i).
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Figure 4.8: Examples of human annotation for different filters and classes.
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Not systematic Systematic-Part Systematic-Background Systematic-Other Not sure

Figure 4.9: Filter distributions for bird, car, cat, and the average of all 16 classes.

By further inspection, we found that background filters are consistent across im-

ages of different object classes. For example, a filter that systematically fires on “grass”

patches does it for most classes commonly found outdoors. Similarly, some of the

“other” systematic filters, especially the ones responding to colors, also exhibit the

same behavior across object classes. In contrast, the situation for systematic filters

responding to semantic parts is mixed. Although in some cases a filter responds to

similar semantic parts of different object classes (like “wheel” or “leg”, as in fig. 4.5),

in some other cases this does not hold. For example, there is a filter that responds to

“wheel” (in car images), “leg” (in cow images), and “paw” (in cat images). This in-

dicates that the filter is responding to several types of stimuli simultaneously, possibly

due to a higher order stimulus of which humans are not aware.

4.4.3 Comparison to PASCAL-Part

In this section we compare the part emergence observed in sec. 4.3 with the part emer-

gence from this human experiment. Moreover, we also look at what semantic parts
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aeroplane nose dog forehead

bicycle frame, hub, spokes, tire, tube horse belly, forehead, shoulder

bird belly motorbike rim

bottle base, finish, neck, shoulder person crotch

bus hood pottedplant pot rim, soil

car fender, grill sheep belly

cat back train engine, headlight, window

cow belly tv monitor -

Table 4.3: List of semantic parts that emerge in AlexNet-Object (layer 5) according to our

human experiment, but that are not annotated in the PASCAL-Part dataset.

emerge according to our annotators, but are not present in PASCAL-Part.

Emergence of PASCAL-Part classes. In sec. 4.3 we observed that 34 out of the

105 semantic parts of PASCAL-Part emerge in AlexNet-Object according to our AP

criterion (layer 5, sec. 4.3.2.2). 24 out of these 34 parts also emerge according to

the human judgements. Of the missing 10, four are animal torsos, for which humans

prefer more localized names like “back” and “belly”, four are vehicle viewpoints rather

than actual semantic parts (e.g. bus-leftside and car-frontside). The remaining two are

aeroplane-stern and bottle-body. Hence, nearly all of the actual semantic parts that

emerged according to detection AP also emerge according to human judgements.

Overall, 59 of the semantic parts annotated in PASCAL-Part emerge according to

human judgements. This is substantially more than the 34 that emerged according

to detection AP. The reason lies on the fact that it is easier for a filter to count as a

semantic part in the human experiment, because it is tested only on the 10 images with

the highest activations per object class (fig. 4.7). The AP criterion is more demanding:

it takes into account all instances of the part in the dataset, it also counts false-positive

detections, and a detection has to be spatially quite accurate to be considered correct

(IoU� 0.4). This might be a reason why works based on looking at responses on a few

images, such as (Zeiler and Fergus, 2014), claimed that filters correspond to semantic

parts: they only observed a few strong activations in which this happens. Our analysis

goes a step further, by examining how the filters behave over the entire dataset.

Emergence of other semantic part classes. In our human experiment, annotators are

free to recognize and name any semantic part. Table 4.3 lists the 29 semantic parts
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Figure 4.10: Discriminative filters for object class car. (a) Shows how discriminative the filters

of AlexNet-Object (layer 5) are for car (higher values are more discriminative). (b) Shows the

activations of the five most discriminative filters on an example image.

that emerge in AlexNet-Object according to our annotators, but that are not annotated

in PASCAL-Part. Interestingly, 9 of them concentrate on two object classes: bicycle

(5) and bottle (4). This can be explained by two observations. First, the new parts of

the bicycle are mostly sub-parts on the wheel, which is the most discriminative part

for the detection of the object (sec. 4.5). And second, the new parts of the bottle are

all sub-part of the bottle-body part as annotated in PASCAL-Part. As bottle-body is

essentially the whole object, the network prefers to learn finer-grained, actual parts.

Furthermore, two semantic parts often emerging in animal classes are “belly” and

“back”. Their emergence shows again how the network prefers more localized parts,

rather than a larger “torso”, as in the PASCAL-Part annotations. Finally, we hypothe-

size that many of the remaining parts emerge because of their distinctive shapes. For

example, aeroplane-nose resemble a cone, and person-crotch a triangle, car-fender a

semi-circle and motorbike-rim a circle. Moreover, car-grill and train-window have a

characteristic grid pattern.

4.5 Discriminativeness of filters for object recognition

The training procedure of the CNNs we considered maximizes an objective function re-

lated to recognition performance, e.g. image classification or object detection. There-

fore, the network filters are likely to learn to respond to image patches discriminative

for the object classes in the training set. However, these discriminative filters need
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not correspond to semantic parts. In this section we investigate to which degree the

network learns such discriminative filters. We investigate whether layer 5 filters of

AlexNet-Object respond to recurrent discriminative image patches, by assessing how

discriminative each filter is for each object class. We use the following measure of the

discriminativeness of a filter f j for a particular object class. First, we record the output

score si of the network on an input image Ii. Then, we compute a second score s j
i using

the same network but ignoring filter f j. We achieve this by zeroing the filter’s feature

map x j, which means ac,r = 0, 8ac,r 2 x j. Finally, we define the discriminativeness of

filter f j as the score difference averaged over the set I of all images of the object class

d j =
1
|I| Â

Ii2I
si� s j

i . (4.3)

In practice, d j indicates how much filter f j contributes to the classification score of the

class. Fig. 4.10a shows an example of these score differences for class car. Only a few

filters have high d values, indicating they are really discriminative for the class. The

remaining filters have low values attributable to random noise. We consider f j to be a

discriminative filter if d j > 2s, where s is the standard deviation of the distribution of

d over the 256 filters in L5. For the car class, only 7 filters are discriminative under this

definition. Fig. 4.10b shows an example of the receptive field centers of activations of

the top 5 most discriminative filters, which seem to be distributed on several locations

of the car. Interestingly, on average over all classes, we find that only 9 out of 256 fil-

ters in L5 are discriminative for a particular class. The total number of discriminative

filters in the network, over all 16 object classes amounts to 105. This shows that the

discriminative filters are largely distributed across different object classes, with little

sharing, as also observed by Agrawal et al. (2014). Hence, the network obtains its

discriminative power from just a few filters specialized to each class.

In order to further study this, we now measure the collective impact of all discrim-

inative filters, taken together as a set. To do so, we generalize the discriminativeness

measure defined in eq. (4.3) to a set of filters instead of just one. This corresponds to

simultaneously setting to zero the feature maps of all the filters in the set. We compute

it on two different sets of filters: (1) all filters that are not discriminative and (2) all

filters that are discriminative. The average discriminativness for (1) is 28.8, indicating

that removing all non-discriminative filters has a significant impact on the class scores

(for reference, the original average score using all filters is 69.2). This is understand-

able given the large number of filters removed (around 247 out of 256, as there are only



92 Chapter 4. Do semantic parts emerge in Convolutional Neural Networks?

Figure 4.11: Example activations of the five most discriminative filters for object class bicyle,

cat, horse, bird, respectively.

9 discriminative filters per class on average). However, for (2), the discriminativness

is much higher: 48.6. Therefore, we can indeed conclude that a few discriminative

filters are substantially more influential than all other filters together, as the drop in

class scores is greater when these filters are removed.

Fig. 4.11 shows examples for other classes besides car, where we can observe

some other interesting patterns. For example, wheels are extremely discriminative for

class bicycle, in contrast to class car, where discriminative filters are more equally

distributed across the whole surface of the object. Since wheels are generally big for

bicycle images, some filters specialize to subregions of the wheel, such as its bottom

area. Another interesting observation is that the discriminativeness of a semantic part

might depend on the object class to which it belongs. For example, class cat accumu-

lates most of its most discriminative filters on parts of the head. Interestingly, Parkhi

et al. (2011) observed a similar phenomenon with HOG features, where the most dis-

criminative parts of cats and dogs were found to be the heads. On the other hand, class

horse tends to prefer parts of the body, such as the legs, devoting very few discrimi-

native filters to the head. Besides firing on subregions of parts, some discriminative

filters fire on assemblies of multiple parts or on a part with some neighboring region

(e.g. the red filter for class bird is associated with both wing and tail).

How many discriminative filters are also semantic? We categorize now the found

discriminative filters into the filter types defined in sec. 4.4, using the data collected in
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Not systematic Systematic-Part Systematic-Background Systematic-Other Not sure

Figure 4.12: Discriminative filter distributions for bird, car, cat, and for the average of all

16 classes. The number between parenthesis indicates the number of discriminative filters for

each case.

the human experiment. This enables us to determine what fraction of discriminative

filters are also semantic, which in turns reveals whether semantic parts are important

for recognition. Moreover, as we have defined filter types that go beyond semantic

parts, we can obtain a complete list of the filter stimuli that give the network its dis-

criminative power.

Figure 4.12 shows the distribution of discriminative filters over our filter types

for three object classes, and the average for all object classes. On average, 40% of

the discriminative filters are also semantic, which translates in about 4 out of the 9

filters that are discriminative for each object class, on average. This is a very high

fraction, considering that we found only 7% of all filters to be semantic (fig 4.9). This

clearly indicates that the network is using semantic parts as powerful discriminative

cues for recognizing object classes. Additionally, about 4% of the filters systematically

respond to background patches, and another 30% of the filters systematically respond

to some other concept (mostly subregions or assemblies of parts). Finally, 18% of the
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Figure 4.13: Examples of input images for the network. The left-most shows the original

airplane, while the others shows the same airplane, but with parts blacked out.

filters do not correspond to any concept, a massive drop compared to the 78% statistics

over all filters (fig 4.9). This distribution confirms our intuition drawn through visual

inspection (fig. 4.11): filters that discriminate for the network are often stimulated by

some semantic part, but also by other discriminative patches such as subregions of

parts.

4.6 Discriminativeness of semantic parts for object recog-

nition
In the previous section we investigated how discriminative each filter is for each object

class. In this section, instead, we investigate the discriminativeness of semantic parts.

We look at how much each part contributes to the classification score of its object

class. We measure discriminativeness as in sec. 4.5, but instead of ignoring a specific

filter, we now ignore a semantic part. We use the same formulation of eq. (4.3), but

with different meanings for j, I and s j
i . Given a semantic part j, I now indicates all

images containing j, and s j
i is the score given by the network to image Ii with part j

blacked out. We use the segmentation masks available in PASCAL-Part to set to zero

all the pixels of a part j in each input image Ii, after pre-processing by subtracting the

image mean (sec. 4.3.2.1). In this way, part j is ignored and does not contribute to

the classification score of the object, as all convolutional filters output 0 on blacked out

regions. The network can only rely on information from the rest of the image. If it is no

longer confident about the prediction of the object class, it means that the blacked out

part is discriminative for it. We note that even if the part is blacked out, its boundary

remains accessible to the network and can contribute some discriminative information.

We evaluate the 105 semantic parts of PASCAL-Part (sec. 4.3.2.1). Fig. 4.14 shows

results for some examples parts of 9 object classes. Interestingly, similar classes do
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not necessarily have similar discriminative parts. For example, the most discrimina-

tive parts for class car are door and wheel. But these are not very important for class

bus, which is largely discriminated by the part window. Moreover, torso is very dis-

criminative for some animals (e.g. horse and cow), but less so for others (e.g. cat

and dog). We offer two explanations for this phenomenon. First, the network seems

to consider discriminative parts that are clearly visible across many instances of the

object class. For example, the wheels of a car are often visible in PASCAL images,

while the wheels of a bus are often occluded in the PASCAL dataset. Similarly, many

images of pet animals (e.g. cat and dog) are biased towards close-ups (often occluding

the body), while images of other animals typically show the whole body (e.g. horse,

cow, bird). Second, the network seems to consider more discriminative parts that have

lower intra-class variation. For example, the torso is very similar across all horses,

while the torso of a dog varies considerably depending on breed and size.

We also observe a strong relation between these quantitative results in fig. 4.14 and

the visual results of fig. 4.11. The top most discriminative filters activate on the most

discriminative parts. For example, the only discriminative semantic part for bicycle is

wheel, which is exactly where all the activations of the most discriminative filters are.

Analogously, head is very discriminative for the class cat, wing is discriminative for

bird and leg is somehow discriminative for horse.

Correlation to average precision and part size. In this paragraph we look at the

correlation between the discriminativeness of a semantic part, the average size of a

part and the detection performance results of sec. 4.3.2.2 (AP in table 4.1, GA, layer 5).

Results are shown in fig. 4.15. Two interesting facts emerge. First, discriminativeness

tends to increase with the average size of a part (very high PPMCC of 0.87) and second,

discriminativeness correlates with how much parts emerge in the CNNs according to

AP detection performance (PPMCC of 0.65). These are important correlations that

support our analysis of sec. 4.3, where we observed that CNNs learn only a few of the

semantic parts in their internal representation.

Finally, note how future works that use filters as intermediate part representations

(as in Simon et al. (2014); Gkioxari et al. (2015); Simon and Rodner (2015); Xiao et al.

(2015); Oquab et al. (2015)) will now be able to exploit these findings to create better

models for recognition.
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Figure 4.14: Discriminativeness of PASCAL-Part for the classification of their objects. The

vertical axis indicates the difference d between the classification score for the original image,

and the score for the image after blacking out the part. We report averages over all images in

an object class (higher values mean more discriminative).
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Figure 4.15: Correlation between the discriminativeness of a semantic part, the average pre-

cision results of sec. 4.3.2.2 (mAP, GA, layer 5, table 4.1) and the average size of a part. The

latter is normalized by the average size of its object. Each point corresponds to a different part.

Interestingly, these measures are all correlated.
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4.7 Conclusions and outlook

We have analyzed the emergence of semantic parts in CNNs. We have investigated

whether the network’s filters learn to respond to semantic parts. In order to do so, we

have associated filter stimuli to semantic parts, using two different quantitative evalu-

ations. In the first one, we have used ground-truth part bounding-boxes to determine

how many parts emerge in the CNN for different layers, network architectures and

supervision levels. Despite promoting this emergence by providing favorable settings

and multiple assists, we found that only 34 out of 105 semantic parts in PASCAL-

Part dataset (Chen et al., 2014) emerge in AlexNet (Krizhevsky et al., 2012) fine-

tuned for object detection (Girshick et al., 2014). This result complements previous

works (Zeiler and Fergus, 2014; Simonyan et al., 2014) by providing a more accurate,

quantitative assessment and shows how the network learns to associate filters only to

some part classes. In the second one, we study how many filters systematically re-

spond to semantic parts for each object class. We found that, on average, 7% of the

filters respond to semantic parts, whereas 13% systematically respond to other con-

cepts, such as subregions of parts or background patches. This filter characterization

provides a more precise understanding of the internal representations learned by CNN

architectures. Finally, we have studied how discriminative network filters and seman-

tic parts are for the task of object recognition. The overlap between discriminative and

semantic filters adds further insights into claims made by works based on qualitative

inspection (Zeiler and Fergus, 2014; Simonyan et al., 2014).

In the following, we discuss some possible future work directions to extend or

apply the analysis presented in this chapter.

Anti-discriminativeness. We have addressed the question of which filters are dis-

criminative for the recognition of a particular object class. Using our own designed

‘discriminativeness’ measure, we found that most of the filters seem to have a negligi-

ble effect on the correct class score, and only a few can be considered discriminative.

However, analogously to how discriminative filters affect negatively the correct class

score when removed, some filters result in an increase of such score when not taken

into account. This is a strange phenomenon that requires further research to be truly

understood. We hypothesize that it could be due to filters firing on patterns that are

shared across different classes, but with a slight preference for some of them. For ex-

ample, a filter may fire on a particular ear shape that belongs to both cats and dogs,

but that is much more common on cats than on dogs. When an instance of a dog with
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Figure 4.16: Proposed part transfer scheme. Our semantic part analysis can identify a set of

filters that respond highly to a part, such as legs in this example. Those filters may be used as

weak detector to obtain rough detections of the semantic part on new object classes.

such ears is presented, said filter obtains a high response and this causes the score

of the class cat to be very high. If this filter is ignored, the network is not mislead

towards believing it is a cat, and thus the score for cat decreases while the score for

dog correctly increases. The analysis proposed here belongs to a recent and expanding

research direction that attempts to obtain a deeper understanding of the error modes

of CNNs, as well as the differences with errors committed by humans (Nguyen et al.,

2015; Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016, 2017).

On an orthogonal direction, we could leverage the gained knowledge about ‘anti-

discriminative’ filters to improve recognition accuracy. To do this, we would determine

which filters are anti-discriminative for each of the object classes, and accordingly

disable them at test time. Since those filters tend to negatively affect the class score,

an adaptive architecture that automatically ignores them would theoretically lead to

more accurate classifications. Furthermore, we could develop an even more powerful

architecture that weighs how much each filter contributes to the final score based on

its discriminativeness. The discriminateveness of each filter could be measured on a

validation set after the network finishes training.

Transferring learned parts. Our analysis concluded that some filters do respond to

particular semantic parts, mostly those that are big or discriminative. Moreover, some

of such filters respond to equivalent semantic parts across different object classes. For

example, filter 236 of layer 5 of AlexNet-Object responds to legs of cows, sheep,

and horses (fig. 4.5). This provides an excellent opportunity to learn to recognize

equivalent parts on similar object classes, given part annotations for a particular set

of object classes. As observed in our analysis, such detectors would be rather weak.

However, they would still be able to roughly localize part instances on new object
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classes. Continuing with our leg example, all filters that significantly respond to animal

legs (including filter 236) could become weak detectors for legs of zebras, giraffes,

lions, or tigers, despite the lack of part annotations for such object classes (fig. 4.16).

Furthermore, the learned part detectors could be useful for other computer vision tasks,

such as image retrieval. Our suggested part transfer scheme would enable answering

queries such as ‘retrieve all quadrupeds’ or ‘retrieve all objects with wheels’, even if

the target images contain object classes unseen at training time.

Learning effective context based on network discriminativeness. This chapter fo-

cuses on regions inside the object, as we limit the network input to a bounding-box

around the object. Inevitably, such bounding-boxes often contain background regions,

as the object does not occupy their whole area. Interestingly, the human experiment re-

vealed how a significant amount of filters also fire in these background regions. In the

light of the conclusions drawn from the analysis, this indicates that background must

be occasionally used for the discrimination of object classes. We propose here extend-

ing the scope of our analysis to delve deeper on the discriminativeness of background

regions.

This new analysis would provide characterizations of which types of background

are particularly discriminative for a specific object class. For example, we can deter-

mine how much the network relies on road-like regions for car classification. This

knowledge would enable the development of stronger object detectors that integrate

context in a tailored way for each object class. We could learn the specific shape and

extent of effective contextual regions for each class and pool it along the object appear-

ance, analogously to how we pool the appearance of the object for our part detection

approach (chapter 5). This is similar to the work of Mottaghi et al. (2014), who al-

ready implemented an object detector that integrates selected background information

around the object. However, their approached is based on DPM and is very fixed,

always selecting rectangular regions at somewhat stable locations around the object.

The approach proposed here goes a step further by suggesting the use of class-specific

free-form regions around each object instance, based on what the network relies on for

correct recognition.

What do generative neural networks learn? The analysis in this chapter focuses on

determining whether a CNN trained for object detection learns semantic parts. Such

a CNN is a discriminative model, whose task is classifying each input into a finite

set of categories. Recently, generative neural network models are gaining popularity
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given the success of the Generative Adversarial Networks (GAN) of Goodfellow et al.

(2014). A GAN contains two networks, a generator and a discriminator. The genera-

tor tries to output images that imitate samples of the underlying distribution provided

during training. The discriminator, on the other hand, tries to distinguish whether a

sample belongs to the real distribution or it has been created by the generator. A pos-

sible way of expanding our deep networks analysis consists in characterizing what the

generator filters learn when they generate new images. For instance, do filters still

respond to semantic parts? Our conclusions indicate that the learned semantic parts

were relevant for discrimination. It is then natural to ask whether semantic parts are

still needed for a generative task. Given the success of GANS in various tasks such

as style transfer (Li and Wand, 2016), image-to-image translation (Isola et al., 2017)

or image super-resolution (Ledig et al., 2017), a deeper understanding of how these

architectures work would be highly beneficial for creating more effective models, or

even extending GANs to other tasks.





Chapter 5

Objects as context for part detection

5.1 Introduction

Chapter 4 presented an extensive analysis regarding the emergence of semantic parts

in the internal representation of an object detection CNN, showing how only a few

semantic parts actually emerge and only in a weak manner. Therefore, in order to ob-

tain precise localizations for all part classes, an approach specialized to part detection

is necessary. We address such task in this chapter, where we present a dedicated part

detection approach that modifies the internal structure of a CNN to exploit the unique

nature of this task.

Given the multiple benefits of semantic parts, part-based models have gained at-

tention for tasks such as fine-grained recognition (Zhang et al., 2014a; Lin et al., 2015;

Zhang et al., 2016; Parkhi et al., 2012), object class detection and segmentation (Chen

et al., 2014; Wang et al., 2015b), articulated pose estimation (Liu et al., 2014; Sun

and Savarese, 2011; Ukita, 2012; Yang et al., 2016), and attribute prediction (Gkioxari

et al., 2015; Vedaldi et al., 2014; Zhang et al., 2013). Moreover, part localizations de-

liver a more comprehensive image understanding, enabling reasoning about object-part

interactions in semantic terms. Nonetheless, many part-based models detect each part

based only on their local appearance, using simple techniques that were originally de-

signed for object detection (Parkhi et al., 2012; Chen et al., 2014; Zhang et al., 2013).

Furthermore, some other works use even simpler approaches relying on the assump-

tion that convolutional filters can act as part detectors (Gkioxari et al., 2015; Simon

and Rodner, 2015; Xiao et al., 2015).

Parts are highly dependent on the objects that contain them. Hence, objects pro-

vide valuable cues to help detecting parts, creating an advantage over detecting them

103
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Figure 5.1: Motivation for our model. Part appearance alone might not be sufficiently dis-

criminative in some cases. Our model uses object context to resolve ambiguities and help part

detection.

independently. First, the class of the object gives a firm indication of what parts should

be inside it, i.e. only those belonging to that object class. For example, a dark round

patch should be more confidently classified as a wheel if it is on a car, rather than on a

dog (fig. 5.1). Furthermore, by looking at the object appearance we can determine in

greater detail which parts might be present. For example, a profile view of a car sug-

gests the presence of a car door, and the absence of the licence plate. This information

comes mostly through the viewpoint of the object, but also from other factors, such

as the type of object (e.g. van), or whether the object is truncated (e.g. no wheels if

the lower half is missing). Second, objects also provide information about the location

and shape of the parts they contain. Semantic parts appear in very distinctive locations

within objects, especially given the object appearance. Moreover, they appear in char-

acteristic relative sizes and aspect ratios. For example, wheels tend to be near the lower

corners of car profile views, often in a square aspect ratio, and appear rather small.

In this work, we propose a dedicated part detection model that leverages all of the

above object information. We start from a popular CNN detection model (Girshick,

2015), which considers the appearance of local image regions only. We extend this

model to incorporate object information that complements part appearance by pro-

viding context in terms of object appearance, class and the relative locations of parts

within the object.

We evaluate our part detection model on all 16 object classes in the PASCAL-Part

dataset (Chen et al., 2014). We demonstrate that adding object information is greatly
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beneficial for the difficult task of part detection, leading to considerable performance

improvements. Compared to a baseline detection model that considers only the local

appearance of parts, our model achieves a +5 mAP improvement. We also compare

to methods that report part localization in terms of bounding-boxes (Chen et al., 2014;

Gkioxari et al., 2015; Zhang et al., 2014a; Lin et al., 2015; Zhang et al., 2016) on

PASCAL-Part and CUB200-2011 (Wah et al., 2011b). We outperform (Chen et al.,

2014; Gkioxari et al., 2015; Zhang et al., 2014a; Lin et al., 2015) and match the per-

formance of (Zhang et al., 2016). We achieve this by an effective combination of the

different object cues considered, demonstrating their complementarity. Moreover our

approach is general as it works for a wide range of object classes: we demonstrate it

on 16 classes, as opposed to 1-7 in (Chen et al., 2014; Parkhi et al., 2012; Wang et al.,

2015b; Gkioxari et al., 2015; Zhang et al., 2014a,b; Lin et al., 2015; Zhang et al., 2016;

Liu et al., 2014; Hariharan et al., 2015; Sun and Savarese, 2011; Liang et al., 2016a;

Ukita, 2012; Yang et al., 2016; Xia et al., 2016; Gavves et al., 2013; Goering et al.,

2014; Zhang et al., 2013; Simon and Rodner, 2015; Xiao et al., 2015) (only animals

and person). Finally, we perform fully automatic object and part detection, without

using ground-truth object locations at test time (Chen et al., 2014; Wang et al., 2015b;

Lin et al., 2015; Zhang et al., 2016).

This chapter will be submitted to CVPR 2018 and it is currently available as a

preprint (Gonzalez-Garcia et al., 2017b). The code of our method has been released

and it is available at http://github.com/agonzgarc/parts-object-context.

The chapter is organized as follows. We introduce related work in the next section.

Section 5.3 presents our method and describes all its components. Section 5.4 specifies

the implementation details. We present all results in section 5.5, including a valida-

tion of our model (sec. 5.5.1) and comparisons to other methods (sec. 5.5.2). Finally,

section 5.6 summarizes the conclusions and presents an outlook.

5.2 Related work

Part-based models. Chapter 2 introduced the importance of part-based models in var-

ious tasks such as object detection (Chen et al., 2014; Endres et al., 2013; Felzenszwalb

et al., 2010b; Tsai et al., 2015) and segmentation (Wang and Yuille, 2015), fine-grained

recognition (Liu et al., 2012; Parkhi et al., 2012; Zhang et al., 2013; Simon and Rodner,

2015; Huang et al., 2016; Zhang et al., 2016), human pose-estimation (Liu et al., 2014;

http://github.com/agonzgarc/parts-object-context
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Sun and Savarese, 2011; Ukita, 2012; Yang et al., 2016; Bulat and Tzimiropoulos,

2016), head and face detection (Yang et al., 2015; Vu et al., 2015), attribute predic-

tion (Zhang et al., 2013, 2014b; Vedaldi et al., 2014), action classification (Gkioxari

et al., 2015) and scene classification (Juneja et al., 2013). We propose here a method

to improve semantic part detection by exploiting the context provided by their objects.

By semantic part we refer to those object parts that are interpretable and nameable by

humans.

The part-based model of Azizpour and Laptev (2012) is especially related to our

work as they also simultaneously detect objects and their semantic parts. However,

the focus of Azizpour and Laptev (2012) is object detection, with part detection being

only a by-product. They train their model to maximize object detection performance,

and thus they require parts to be located only roughly near their ground-truth box. This

results in inaccurate part localization at test time, as confirmed by the low part local-

ization results reported (Azizpour and Laptev (2012), table 5). Moreover, they only

localize those semantic parts that are discriminative for the object class. Our model,

instead, is trained for precise part localization and detects all object parts. Finally, Az-

izpour and Laptev (2012) builds on DPM (Felzenszwalb et al., 2010b), whereas our

model is based on modern CNNs and offers a tighter integration of part appearance

and object context.

CNN-based semantic part-based models. In recent years, CNN-based representa-

tions are quickly replacing hand-crafted features (Dalal and Triggs, 2005; Lowe, 2004)

in many domains, including semantic part-based models (Bulat and Tzimiropoulos,

2016; Chen and Yuille, 2014; Gkioxari et al., 2015; Hariharan et al., 2015; Huang

et al., 2016; Liang et al., 2016a; Wang and Yuille, 2015; Wang et al., 2015b; Xia et al.,

2016; Zhang et al., 2014a). Our work is related to those that explicitly train CNN mod-

els to localize semantic parts using bounding-boxes (Gkioxari et al., 2015; Zhang et al.,

2014a), as opposed to keypoints (Huang et al., 2016; Simon and Rodner, 2015) or seg-

mentation masks (Hariharan et al., 2015; Liang et al., 2016a; Wang and Yuille, 2015;

Wang et al., 2015b; Xia et al., 2016; Yang et al., 2015). Many of these works (Gkioxari

et al., 2015; Simon and Rodner, 2015; Huang et al., 2016; Yang et al., 2015) detect the

parts used in their models based only on local part appearance, independently of their

objects. For example, Gkioxari et al. (2015) train independent weak part detectors that

are later combined with an object instance for action and attribute recognition. Huang

et al. (2016) first use a CNN to localize parts, and then feeds them to a two-stream
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classification network to encode both object and part cues for fine-grained recogni-

tion. Moreover, they use parts as a means for other tasks, such as object or action and

attribute recognition. Therefore, they are not interested in part detection itself.

Using context for recognition. Several of the works presented in section 2.3.1 exploit

global image context to help detecting objects inside it (Harzallah et al., 2009; Murphy

et al., 2003; Torralba, 2003; Russell et al., 2007; Song et al., 2011; Yang et al., 2014;

Modolo et al., 2015; Vu et al., 2015). In analogy, we exploit object context to help

detecting parts inside them.

Some other works use relationships between parts to improve the part localization,

mostly for human pose estimation. For example, Chen and Yuille (2014) estimate

part keypoints and their spatial relationships with a CNN. Similarly, Tompson et al.

(2014) propose a sliding-window CNN for part detection that creates heatmaps for hu-

man parts, which are later input into a spatial model using a Markov Random Field.

The work of Yang et al. (2016) goes even further, creating a new type of network

layer for message passing. It models the relationships between human parts and uses

them to provide coherent part labelings. Alternatively, the recent work of Bulat and

Tzimiropoulos (2016) refines part locations using a 2-component cascaded CNN. Fi-

nally, Yang et al. (2015) combine information from several face parts to approach the

face detection task.

Several fine-grained recognition works (Gavves et al., 2013; Goering et al., 2014;

Zhang et al., 2016) use nearest-neighbors to transfer part location annotations from

training objects to test objects. They do not perform object detection, as ground-truth

object bounding-boxes are used at both training and test time. Here, instead, at test

time we jointly detect objects and their semantic parts.

The most related works to ours are Zhang et al. (2014a) and Wang et al. (2015b),

which use object information to refine part detections as a post-processing step. Part-

based R-CNN (Zhang et al., 2014a) refines R-CNN (Girshick et al., 2014) part detec-

tions by using nearest-neighbors from training samples. Our model, instead integrates

object information also within the network, which allows us to deal with several object

classes simultaneously, as opposed to only one (Zhang et al., 2014a). Additionally,

we refine part detections with a new network module, Offset Net, which is more ac-

curate and efficient than nearest-neighbors. The method of Wang et al. (2015b) is

demonstrated only on 5 very similar classes from PASCAL-Part (Chen et al., 2014)

(all quadrupeds), and on fully visible object instances from a manually selected subset
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of the test set (10% of the full test set). Instead, we show results on 105 parts over all

16 classes of PASCAL-Part, using the entire dataset. Moreover, (Wang et al., 2015b)

uses manually defined object locations at test time, whereas we detect both objects and

their parts fully automatically at test time.

5.3 Method

We define a new detection model specialized for parts which takes into account the

context provided by the objects that contain them. This is the key advantage of our

model over traditional part detection approaches, which detect parts based on their

local appearance alone, independently of the objects (Gkioxari et al., 2015; Simon

and Rodner, 2015; Huang et al., 2016; Yang et al., 2015). We build on top of a base-

line part detection model (sec. 5.3.1) and include various cues based on object class

(sec, 5.3.2.2), object appearance (sec. 5.3.2.3), and the relative location of parts on the

object (sec. 5.3.3). Finally, we combine all these cues to achieve more accurate part

detections (sec. 5.3.4).

Model overview. Fig. 5.2 gives an overview of our model. First, we process the

input image through a series of convolutional layers. Then, the Region of Interest

(RoI) pooling layer produces feature representations from two different kind of region

proposals, one for parts (red) and one for objects (blue). Each part region gets asso-

ciated with a particular object region that contains it (sec. 5.3.2.1). Features for part

regions are passed on to the part appearance branch, which contains two Fully Con-

nected (FC) layers (sec. 5.3.1). Features for object regions are sent to both the object

class (sec. 5.3.2.2) and object appearance (sec. 5.3.2.3) branches, with three and two

FC layers, respectively.

For each part proposal, we concatenate the output of the part appearance branch

with the outputs of the two object branches for its associated object proposal. We pass

this refined part representation (purple) on to a part classification layer and a bounding-

box regression layer (sec. 5.3.4).

Simultaneously, the relative location branch (green) also produces classification

scores for each part region based on its relative location within the object (sec. 5.3.3).

We combine the above part classification scores with those produced by relative loca-

tion (big + symbol, sec. 5.3.4), obtaining the final part classification scores. The model

outputs these and regressed bounding-boxes. Algorithm 4 summarizes this procedure.
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Figure 5.2: Overview of our part detection model. The model operates on part and object

region proposals, passing them through several branches, and outputs part classification scores

and regressed bounding-boxes. This example depicts the relative location branch for only

object class car. In practice, however, it processes all object classes simultaneously. When

not explicitly shown, a small number next to the layer indicates its dimension for the PASCAL-

Part (Chen et al., 2014) case, with a total of 20 object classes and 105 parts.

Input : Image I, part proposals P, object proposals O

Output: Set of part detections D

for p 2 P do
// Select supporting object proposal with (5.1)

Ssup(p) supporting proposal(p,O);

// Part representation by concatenating net features

prt rep(p) prt app(p) || obj cls(Ssup(p)) || obj app(Ssup(p));

// Obtain initial part scores

prt scrI(p) FC layer( prt rep(p)) ;

// Obtain part relative location score

prt RL scr rel loc(p)

// Combine both for final part score

prt scrF(p) prt scrI(p)+ prt RL scr (p)
end
D NMS({(p,prt scrF(p))});

Algorithm 4: Part detection with object context.
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5.3.1 Baseline model: part appearance only

As baseline model we use the popular Fast R-CNN (Girshick, 2015), which was orig-

inally designed for object detection. It is based on a CNN that scores a set of region

proposals (Van de Sande et al., 2011) by processing them through several layers of dif-

ferent types. The first layers are convolutional and they process the whole image once.

Then, the RoI pooling layer extracts features for each region proposal, which are later

processed by several FC layers. The model ends with two sibling output layers, one

for classifying each proposal into a part class, and one for bounding-box regression,

which refines the proposal shape to match the extent of the part more precisely. The

model is trained using a multi-task loss which combines these two objectives. This

baseline corresponds to the part appearance branch in fig. 5.2.

We follow the usual approach (Girshick, 2015) of fine-tuning for the used dataset

on the current task, part detection, starting from a network pre-trained for image clas-

sification (Krizhevsky et al., 2012). The classification layer of our baseline model has

as many outputs as part classes, plus one output for a generic background class. Note

how we have a single network for all part classes in the dataset, spanning across all

object classes.

5.3.2 Adding object appearance and class

The baseline model tries to recognize parts based only on the appearance of individual

region proposals. In our first extension, we include object appearance and class infor-

mation by integrating it inside the network. We can see this as selecting an adequate

contextual spatial support for the classification of each proposal into a part class.

5.3.2.1 Supporting proposal selection

Our models use two types of region proposals (sec. 5.4). Part proposals are candidate

regions that might cover parts. Analogously, object proposals are candidates to cover

objects. The baseline model uses only part proposals. In our models, instead, each part

proposal p is accompanied by a supporting object proposal Ssup(p), which must fulfill

two requirements (fig. 5.3). First, it needs to contain the part proposal, i.e. at least 90%

of p must be inside Ssup(p). Second, it should tightly cover the object that contains the

part, if any. For example, if the part proposal is on a wheel, the supporting proposal

should be on the car that contains that wheel. To achieve this, we select the highest
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scored proposal among all object proposals containing p, where the score is the object

classification score for any object class.

Formally, let p be a part proposal and S(p) the set of object proposals that contain

p. Let f

k
ob j(Sn) be the classification score of proposal Sn 2 S(p) for object class k.

These scores are obtained by first passing all object proposals through three FC layers

as in the object detector of Girshick (2015). We select the supporting proposal Ssup(p)

for p as

Ssup(p) = argmax
Sn2S(p)

⇥
max

k2{1,...,K}
f

k
ob j(Sn)

⇤
, (5.1)

where K is the total number of object classes in the dataset. We give more details about

how we extract both types of proposals in sec. 5.4.

5.3.2.2 Object class

The class of the object provides cues about what part classes might be inside it. For

example, a part proposal on a dark round patch cannot be confidently classified as

a wheel based solely on its appearance (fig. 5.1). If the corresponding supporting

object proposal is a car, the evidence towards it being a wheel grows considerably. On

the other hand, if the supporting proposal is a dog, the patch should be confidently

classified as not a wheel.

Concretely, we process convolutional features pooled from the supporting object

proposal through three FC layers (fig. 5.2). The third layer performs object classifi-

cation and outputs scores for each object class, including a generic background class.

These scores can be seen as object semantic features, which complement part appear-

ance.

5.3.2.3 Object appearance

The appearance of the object might bring even more detailed information about what

part classes it might contain. For example, the side view of a car indicates that we can

expect to find wheels, but not a licence plate. We model object appearance by process-

ing the convolutional features of the supporting proposal through two FC connected

layers (fig. 5.2). These type of features have been shown to successfully capture the

appearance of objects (Donahue et al., 2014; Ge et al., 2015).
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horse: 0.97 person: 0.99

Figure 5.3: Examples of supporting proposal selection. For each part proposal (yellow), we

select as its supporting proposal (blue) the highest scored among the object proposals that

contain it.

5.3.3 Adding relative location

In this section, we add another type of information that could be highly beneficial: the

relative location of the part with respect to the object. Parts appear in very distinct and

characteristic relative locations and sizes within the objects. Fig. 5.4a shows examples

of prior relative location distributions for some part classes as heatmaps. These are

produced by accumulating all part ground-truth bounding-boxes from the training set,

in the normalized coordinate frame of the bounding-box of their object. Moreover, this

part location distribution can be sharper if we condition it on the object appearance,

especially its viewpoint. For example, the car-wheel distribution on profile views of

cars will only have two modes (fig. 5.4b) instead of the three shown in fig. 5.4a.

We incorporate this cue into our model by scoring each part proposal using its rel-

ative location with respect to the object. This indicates the probability that a proposal

belongs to a certain part class, based purely on its location (it does not depend on part

appearance).

Our relative location model is specific to each part class within each object class

(e.g. a model for car-wheel, another for cat-tail). Below we explain the model for

one particular object and part class. Given a proposal o of that object class, our model

suggests a set of windows L(o) = {wi}I
i=1 inside o where instances of that part class

are likely to be. Naturally, these windows will also depend on the appearance of o. For

example, given a car profile view, our model suggests square windows on the lower

corners as likely to contain wheels (fig.5.4b top). Instead, an oblique view of a car

will also suggest wheels towards the lower central region, as well as a more elongated

aspect ratio for the wheels on the side (fig. 5.4b bottom).

Let O be a set of object detections for a particular image, i.e. object proposals
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Figure 5.4: Prior distributions and examples of part relative locations. (a) Heatmaps created

using part ground-truth bounding-boxes normalized to the object bounding-box, using all car

training samples. (b) Examples of part ground-truth bounding-boxes inside object bounding-

boxes of class car, in different viewpoints. The oblique view in the second row has a wheel in

the bottom-middle of the bounding-box.

with high score after being processed through non-maxima suppression (Felzenszwalb

et al., 2010b). We produce them automatically using standard Fast R-CNN (Girshick,

2015). Let fob j(o) be the score of detection o 2 O for the considered object class. We

compute the relative location score frl(p) for part proposal p using its overlap with all

suggested windows

frl(p) = max
wi2L(o),o2O

(IoU(p,wi) ·xi ·fob j(o)), (5.2)

where we use Intersection-over-Union (IoU) to measure overlap. Here, xi is a confi-

dence weight associated to each individual window wi, and fob j(o) weights how much

all windows L(o) suggested by detection o should be trusted. Consequently, detections

with higher scores provide stronger cues through more suggested windows. Fig. 5.5

shows an example, where we show only one car detection for clarity.

Below we explain two alternative ways to generate the suggested windows wi and

their confidence xi. The first uses nearest-neighbors (sec. 5.3.3.1), whereas the second

uses a new CNN architecture we dub Offset Net (sec. 5.3.3.2).

5.3.3.1 Nearest-neighbors (NN)

Parts of similar-looking objects tend to occupy similar relative locations within them.

We exploit this phenomenon: given an object detection o in a test image, we retrieve

part ground-truth bounding-boxes of objects similar to it in the training set and warp



114 Chapter 5. Objects as context for part detection

them into the coordinate frame of o. Ideally, these suggested windows will cover part

instances on the test object.

Training database. For each object and part class combination, we create a database

of pairs {(y(on),Dvn)}N
n=1 from the training set. Here, y(on) represents the appear-

ance of object proposal on. Concretely, we use L2-normalized CNN features. Some

works (Donahue et al., 2014; Ge et al., 2015) have used FC features to represent ap-

pearance for clustering purposes, as they are more robust to pose than convolutional

features. However, we prefer using features from the last convolutional layer, as we

are interested in preserving the internal spatial structure of the object. The second ele-

ment Dvn is an offset: a 4D vector that maps object proposal on to a part ground-truth

bounding-box inside it. If on contains multiple instances of the part inside (e.g. two

wheels in a car), Dvn represents a set of vectors instead, one per part instance.

Testing. At test time, given a query object detection o, our method retrieves its L

nearest-neighbors from the training database and their set of offset vectors {Dvl}L
l=1.

Note that the total number of vectors might be greater than L, as one Dvl could comprise

several vectors. We then obtain the set of suggested windows at test time by applying

the retrieved vectors to o: L(o) = {o+Dvl}L
l=1. When |Dvl| > 1, the offset operator

+ is applied multiple times to o, resulting in |Dvl| windows. The suggested windows

L(o) cover likely locations for the part class, given the appearance of object o in the

test image (fig. 5.5). In the nearest-neighbor case, all confidence weights x in (5.2) are

set to 1.

5.3.3.2 Offset Net

Using nearest-neighbors has two main drawbacks. First, it is cumbersome since we

need to store the database of training objects and part bounding-boxes. Second, it is

slow since at test time we have to compute many distances to retrieve the nearest-

neighbors of detection o.

We propose here a more elegant and faster approach: generate suggested windows

L(o) using a special kind of CNN, which we dub Offset Net (see fig. 5.2, Relative

location branch). Offset Net directly learns to regress from the appearance of o to the

relative location of a part class within it (i.e. learns to produce the offset that needs

to be applied to o to generate L(o)). Nearest-neighbor instead mimics this effect by

copying offset vectors from similar objects in the training set. Intuitively, a CNN is a

good framework to learn this regressor, as the activation maps of the network contain
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Figure 5.5: Example of scoring part proposals based on relative location. Part class: car-

wheel. Each object detection suggests windows likely to contain car-wheel within it. We score

part proposals by computing their max IoU with any suggested window, and weighting them by

confidence and object detection score. The top scored proposals, shown here as an example,

nicely cover part instances. The suggested windows can be provided by nearest-neighbors

(sec. 5.3.3.1), as in here, or by Offset Net (sec. 5.3.3.2).

localized information about the parts of the object (Simon et al., 2014; Zeiler and

Fergus, 2014). We confirmed this observation with our extensive analysis of chapter 4.

Model. Formally, the input to Offset Net is the test image and the set of object detec-

tions O. For each detection o2O, the network outputs a set of 4D offset vectors Dv for

each part class. It can contain multiple vectors as some objects have multiple instances

of the same part in them (e.g. cars with multiple wheels).

Offset Net generates each offset vector in Dv through a regression layer. The

nearest-neighbor handled the case |Dv| > 1 automatically by storing multiple vectors

per object instance of the training set. To enable Offset Net to output multiple vectors

we build multiple parallel regression layers. We set the number of parallel layers to

the number of modes of the prior distribution for each part class (fig. 5.4). For exam-

ple, the prior car-wheel has three modes, leading to three offset regression layers in

Offset Net (fig. 5.2). On the other hand, Offset Net only has one regression layer for

person-head, as its prior distribution is unimodal.

In some cases, however, not all modes are active for a particular object instance

(e.g. profile views of cars only have two active modes out of the three, fig. 5.4b).

For this reason, each regression layer in Offset Net has a sibling layer that predicts

the presence of that mode in the input detection o, and outputs a presence score r.

This way, even if the network outputs multiple offset vectors, only those with a high
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presence score will be taken into account. This construction effectively enables Offset

Net to produce a variable number of output offset vectors, depending on the input o.

Training. We train the offset regression layers using a smooth-L1 loss, as in the

bounding-box regression of Fast R-CNN (Girshick, 2015). We train the presence score

layer using a logistic log loss: L(x,c) = log(1+ e�cx), where x is the score produced

by the network, and c is a binary label indicating whether the current mode is present

(c =+1) or not (c =�1). We generate c using annotated ground-truth bounding-boxes

(sec. 5.4). This loss implicitly normalizes score x using the sigmoid function. After

training, we add a sigmoid layer to explicitly normalize the output presence score:

r = 1/(1+ e�x) 2 [0,1].

Testing. At test time, given an input detection o, Offset Net generates M pairs {(dvi,ri)}M
i=1

of offset vectors dvi 2 Dv and presence scores ri for each part class, where M is the

number of modes in the prior distribution. We apply the offset vectors dvi to o, produc-

ing a set of suggested windows L(o) = {o+dvi}M
i=1 = {wi}M

i=1. Therefore, suggested

windows more likely to be present have a higher confidence. We then compute the

relative location score frl(p) with eq. (5.2), using the presence scores ri as confidence

weights: xi = ri.

Fig. 5.6 shows examples of windows suggested by Offset Net, along with their

presence score and a heatmap generated by scoring part proposals using eq. (5.2). We

can see how the suggested windows cover very likely areas for part instances on the

input objects, and how the presence scores are crucial to decide which windows should

be relied on.

5.3.4 Cue combination

We have presented multiple cues that can help part detection. These cues are comple-

mentary, so our model needs to effectively combine them.

We concatenate the output of the part appearance, object class and object appear-

ance branches and pass them on to a part classification layer that combines them and

produces initial part classification scores (purple in fig. 5.2). Therefore, we effectively

integrate object context into the network, resulting in the automatic learning of object-

aware part representations. We argue that this type of context integration has greater

potential than just a post-processing step (Wang et al., 2015b; Zhang et al., 2014a).

The relative location branch, however, is special as its features have a different
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Figure 5.6: Offset Net results. Examples of windows suggested by Offset Net (green) for differ-

ent part classes, given the input object detections (red). We also show the heatmap generated

by scoring all part proposals, showing how highly scored proposals occupy areas likely to con-

tain part instances. The presence scores clearly indicate which suggested windows should be

relied on (e.g. the second head of the bird and the middle wheel of the van have very low scores

and are discounted in frl).

nature and much lower dimensionality (4 vs 4096). To facilitate learning, instead of

directly concatenating them, this branch operates independently of the others and com-

putes its own part scores. Therefore, we linearly combine the initial part classification

scores with those delivered by the relative location branch (big + in fig. 5.2). For some

part classes, the relative location might not be very indicative due to high variance in

the training samples (e.g. cat-nose). In some other cases, relative location can be a

great cue (e.g. the position of cow-torso is very stable across all its instances). For

this reason, we learn a separate linear combination for each part class. We do this by

maximizing part detection performance, using k-fold cross-validation on the training

set (k = 10). We equally split the training set in k folds and train all networks on k�1

folds. We use the last fold as validation set, using grid search on the mixing weight in

the [0,1] range. We defined the measure of performance in sec. 3.6.3.

5.4 Implementation details

Proposals. Object proposals (Alexe et al., 2010; Dollar and Zitnick, 2014; Van de

Sande et al., 2011) are designed to cover whole objects, and might fail to acknowledge
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separations between parts lacking changes in texture or color, such as the wing and the

torso of a bird. To alleviate this issue, we changed the standard settings of Selective

Search (Van de Sande et al., 2011), by decreasing the minimum box size to 10. This

results in adequate proposals even for parts: reaching 71.4% recall with around 3000

proposals (IoU >0.5). For objects, we keep the standard Selective Search settings

(minimum box size 20), resulting in around 2000 proposals.

Training the part detection network. Our networks are pre-trained for image classifi-

cation on ILSVRC12 (Russakovsky et al., 2015) and fine-tuned on PASCAL-Part (Chen

et al., 2014) for part detection, or on PASCAL VOC 2010 (Everingham et al., 2010)

for object detection, using MatConvNet (Vedaldi and Lenc, 2015).

Fine-tuning for object detection follows the Fast R-CNN procedure (Girshick, 2015).

We compute scores for all 20 object classes of PASCAL VOC 2010, although in prac-

tice we use only 16 scores, corresponding the object classes with parts of PASCAL-

Part. We keep the original 20 object classes to provide a more complete object detec-

tion output, equivalent to the original Fast R-CNN. For the part detection fine-tuning

we changed the following settings. Positive samples for parts overlap any part ground-

truth > 0.6 IoU, whereas negative samples overlap < 0.3. We trained for 16 epochs,

with learning rate 10�3 for the first 12 and 10�4 for the remaining 4.

We jointly train part appearance, object appearance, and object class branches for

a multi-task part detection loss. We modify the Region of Interest (RoI) pooling layer

to pool convolutional features from both the part proposal and the selected object pro-

posal, using the object scores output by the object class branch. Backpropagation

through this layer poses a problem, as (5.1) is not differentiable. We address this by

backpropagating the gradients only through the area of the convolutional map covered

by the object proposal selected by the argmax in (5.1). The object detection layers of

the object class branch are previously initialized using the standard Fast R-CNN object

detection loss, in order to provide reliable object proposal scores when joint training

starts.

Training Offset Net. We need object samples and part samples to train Offset Net. Our

object samples are all object ground-truth bounding-boxes and object proposals with

IoU � 0.7 in the training set. Our part samples are only part ground-truth bounding-

boxes. We split the horizontal axis in M regions, where M is the number of modes

in the part class prior relative location distribution. We assign each part ground-truth

bounding-box in the object to the closest mode. If a mode has more than one part
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bounding-box assigned, we pick one at random. All layers except the top ones are

initialized with a Fast R-CNN network trained for object detection. Similarly to the

other networks, we train it for 16 epochs, but with learning rates 10�4 and 10�5. For

clarity, in fig. 5.2 we use the same convolutional features for all branches. In practice,

Offset Net uses its own convolutional layers, as they also are fine-tuned for its task.

5.5 Results

5.5.1 Validation of our model

Dataset. We present results on PASCAL-Part (Chen et al., 2014), which has pixel-

wise part annotations for the images of PASCAL VOC 2010 (Everingham et al., 2010).

For our experiments we fit a bounding-box to each part segmentation mask. We pre-

process the set of part classes as follows. We discard additional information on seman-

tic part annotations, such as ‘front’ or ‘left’ (e.g. both “car wheel front left” and “car

wheel back right” become car-wheel). We merge continuous subdivisions of the same

semantic part (“horse lower leg” and “horse upper leg” become horse-leg). Finally, we

discard tiny parts, with average width and height over the training set 15 pixels (e.g.

“bird eye”), and rare parts that appear < 10 times (e.g. “bicycle headlight”). After this

pre-processing, we obtain a total of 105 part classes for 16 object classes (appendix B).

We train our methods on the train set and test them on the val set (the test set is

not annotated in PASCAL-Part). We note how we are the first work to present fully

automatic part detection results on the whole PASCAL-Part dataset.

Performance measure. Just before measuring performance we remove duplicate de-

tections using non-maxima suppression (Felzenszwalb et al., 2010b). We measure part

detection performance using Average Precision (AP), following the PASCAL VOC

protocol (Everingham et al., 2010). We consider a part detection to be correct if its

IoU with a ground-truth part bounding-box is > 0.5.

Baseline results. As base network in all models we use AlexNet (Krizhevsky et al.,

2012), unless stated otherwise (convolutional layers on the leftmost column of fig. 5.2).

Tab. 5.1 presents part detection results. The baseline model achieves only 22.1 mAP

without bounding-box regression (sec 5.3.1). As a reference, the same model, when

trained and evaluated for object class detection, achieves 48.5 mAP on PASCAL VOC

2010 (Everingham et al., 2010), which contains the same object classes as PASCAL-
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Model Obj. App Obj. Class Rel Loc mAP
Baseline (Girshick, 2015) 22.1

Obj. appearance 3 25.1

Obj. class 3 23.0

Obj. app + class 3 3 25.7

All-NN (no app) 3 23.5

5-NN 3 23.9

Offset Net (M = 1) 3 24.3

Offset Net 3 24.7

Obj. app + 5-NN 3 3 26.2

Obj. app + Offset Net 3 3 26.8

Full (Obj. app + class + Offset Net) 3 3 3 27.4

Baseline (Girshick, 2015) (bbox-reg) 24.5

Full (bbox-reg) 3 3 3 29.5

Table 5.1: Part detection results on PASCAL-Part with AlexNet. The baseline model uses only

part appearance. All other models include it too.

Part. This massive difference in performance demonstrates the inherent difficulty of

the part detection task.

Adding object appearance and class. By adding object appearance (sec. 5.3.2.3),

performance increases by +3 mAP, which is a significant improvement. Adding object

class (sec. 5.3.2.2) also helps, albeit less so (+0.9 mAP). This indicates that the ap-

pearance of the object contains extra knowledge relevant for part discrimination (e.g.

viewpoint), which the object class alone cannot provide. Furthermore, the combination

of both types gives a small additional boost (+0.6 mAP compared to using only object

appearance). Although in principle object appearance subsumes its class, having a

more explicit and concise characterization of the class is beneficial for part discrimi-

nation.

Adding relative location. Our relative location models (sec. 5.3.3) also bring im-

provements. To better understand the effects of our design choices, we evaluate various

ablated versions of our models. We start with All-NN, a version of our nearest-neighbor

approach (sec. 5.3.3.1) that uses all training instances, instead of only the ones most

similar to the test object. This is essentially a location prior, independent of the ob-

ject appearance (fig. 5.4a). All-NN already brings +1.4 mAP improvement, showing
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that location priors can indeed be helpful. Now we set L = 5, effectively condition-

ing on object appearance. The 5-NN model brings a larger improvement (+1.8 mAP),

demonstrating the role of object appearance in modulating the relative location cue.

We present results for two versions of our Offset Net model (sec. 5.3.3.2). In the

first one, we fix the number of modes M to just 1 for all part classes, regardless of the

complexity of the prior distribution. In this simplistic setting, Offset Net already sur-

passes the 5-NN approach, and outperforms the baseline by +2.2 mAP. This indicates

that even with only 1 suggested window, Offset Net provides a strong relative location

cue. When setting M based on the prior distribution as explained in sec. 5.3.3.2, the

improvement further rises to +2.6 mAP.

Both our relative location models capture the spirit of this work and help part dis-

crimination. Given Offset Net offers better performance, higher computational effi-

ciency and lower memory footprint than nearest-neighbors, it is our method of choice

for our final model.

Combining cues. Finally, we now combine all our cues as in sec. 5.3.4 (always using

also part appearance). First, we combine each of our relative location models with

object appearance. Both combinations are beneficial and surpass each cue alone. In

this setting, Offset Net still brings higher improvements than 5-NN.

Our best model (full) combines all cues and achieves +5.3 mAP over the baseline.

We regard this as a substantial improvement, especially considering the high difficulty

of the task, as demonstrated by the rather low baseline performance. This result shows

that all cues we propose are indeed complementary to part appearance and to each

other; when combined, all contribute to the final performance.

We also tested the baseline and our model using bounding-box regression (bbox-

reg in tab. 5.1). This is beneficial in all cases. Importantly, the improvement brought by

our full model over the baseline (+5 mAP) is similar to the one without bounding-box

regression (+5.3 mAP).

Example detections. Fig. 5.7 shows some part detection examples for both the base-

line and our full model (without bounding-box regression). In general, our model

localizes parts more accurately, fitting the part extent more tightly (fig. 5.7a,5.7g).

Moreover, it also finds some part instances missed by the baseline (fig. 5.7b-f, 5.7h-i).

Our method uses object detections automatically produced by Fast R-CNN (Girshick,

2015). When these are inaccurate, our model can sometimes produce worse part detec-

tions than the baseline (fig. 5.7j). In some other cases, however, even inaccurate object
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Model Obj. App Obj. Class Rel Loc mAP
Baseline (Girshick, 2015) (VGG16, bbox-reg) 35.8

Full (VGG16, bbox-reg) 3 3 3 40.1

Table 5.2: Part detection results on PASCAL-Part with VGG-16.

detections lead to better part detections (fig. 5.7k).

Runtime. We implement our model in MatConvNet (Vedaldi and Lenc, 2015) and

report runtimes on a Titan X GPU. Both our method and the baseline start by gener-

ating Selective Search proposals, taking 3.3 seconds per image (s/im). After this, the

baseline takes 0.96 s/im and our model 3.79 s/im. Therefore, the total runtime for the

baseline is 4.3 s/im, whereas for our model it is 7.1 s/im. Note how we also output

object detections, which the baseline does not.

Results for VGG16. We present results for the deeper VGG16 network (Simonyan and

Zisserman, 2015) in table 5.2. The relative performance of our model and the baseline

is analog to the AlexNet case, but with much higher mAP values. The baseline achieves

35.8 mAP with bounding-box regression. Our full model achieves 40.1 mAP, which is

a substantial improvement of magnitude comparable to the AlexNet case (+4.3 mAP).

5.5.2 Comparison to other methods

5.5.2.1 Part detection up to a bounding-box

We compare here our full (bbox-reg) model (tab. 5.1) to several prior works on detect-

ing parts up to a bounding-box (Chen et al., 2014; Zhang et al., 2014a; Gkioxari et al.,

2015) . We use AlexNet, which is equivalent to the networks used in (Zhang et al.,

2014a, 2016; Gkioxari et al., 2015). Tab. 5.3 summarizes all results.

Chen et al. (2014). We compare to Chen et al. (2014) following their protocol (sec. 4.3.3

of Chen et al. (2014)). They evaluate on 3 parts (head, body, and legs) of the 6 ani-

mal classes of PASCAL-Part, using Percentage of Correctly estimated Parts as mea-

sure (PCP). They also need an extra measure called Percentage of Objects with Part

estimated (POP), as they compute PCP only over object instances for which their sys-

tem outputs a detection for that part class. Additionally, they use ground-truth object

bounding-boxes at test time. More precisely, for each ground-truth box, they retain

the best overlapping object detection, and evaluate part detection only within it. As ta-



5.5. Results 123

Figure 5.7: Qualitative results. Example part detections for the baseline model (yellow) and

our model combining all cues (green). We also show part ground-truth bounding-boxes (red),

and object detections output by our method (blue).



124 Chapter 5. Objects as context for part detection

Comparison to Dataset Measure Obj GT at test Theirs Ours

Chen et al. (2014) PASCAL-Part
POP 3 44.5 51.3
PCP 3 70.5 72.6

Fine-grained CUB200-2011 PCP

66.1 (Zhang et al., 2014a) 91.9

3

74.0 (Zhang et al., 2014a)

92.785.0 (Lin et al., 2015)

94.2 (Zhang et al., 2016)

Gkioxari et al. (2015) PASCAL VOC09
AP (0.3) 38.7 53.6 (65.5)
AP (0.5) 3 17.1 21.6 (44.7)

Table 5.3: Comparison to other methods. We compare to methods that report bounding-box

part detection results, using their settings and measures.

ble 5.3 shows, we outperform Chen et al. (2014) on PCP, and our POP is substantially

better, demonstrating the higher recall reached by our method. Moreover, note how

these measures can only be used in the specific case of one part instance per object

class (e.g. all legs of the animal as one instance), whereas the standard AP detection

measure we use in sec. 5.5.1 is more general. Also, Chen et al. (2014) only report re-

sults in this easier setting, whereas we report results in a fully automatic setting without

using any ground-truth at test time (sec. 5.5.1).

Fine-grained (Zhang et al., 2014a; Lin et al., 2015; Zhang et al., 2016). These fine-

grained recognition works report part detection results on the CUB200-2011 (Wah

et al., 2011b) bird dataset for the head and body. They all evaluate using PCP and in-

cluding object ground-truth bounding-boxes at test time. Our model outperforms Zhang

et al. (2014a) and Lin et al. (2015) by a large margin and is comparable to Zhang et al.

(2016). Only Zhang et al. (2014a) report results without using object ground-truth at

test time. In this setting, our method performs almost as well as with object ground-

truth at test time, achieving a very remarkable improvement (+25.8 PCP) compared

to Zhang et al. (2014a). Furthermore, we note that CUB200-2011 is an easier dataset

than PASCAL-Part, with typically just one, large, fully visible bird instance per image.

Gkioxari et al. (2015). This action and attribute recognition work reports detection

results on three person parts (head, torso, legs) on PASCAL VOC 2009 images (tab. 1

in Gkioxari et al. (2015)). As these do not have part ground-truth bounding-boxes,

they construct them by grouping the keypoint annotations of (Bourdev et al., 2010)

(sec. 3.2.2 of Gkioxari et al. (2015)). For an exact comparison, we train and test our

full model using their keypoint-derived bounding-boxes and use their evaluation mea-

sure (AP at various IoU thresholds). We also report (in parenthesis) results using the
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standard part ground-truth bounding-boxes of PASCAL-Part during both training and

testing (as PASCAL VOC 2009 is a subset of PASCAL-Part). We outperform Gkioxari

et al. (2015) using their bounding-boxes, and obtain even better results using the stan-

dard bounding-boxes of PASCAL-Part. Moreover, we note how their part detectors

have been trained with more expensive annotations (on average 4 keypoints per part,

instead of one bounding-box).

5.5.2.2 Part segmentation

Several works (Wang et al., 2015b; Hariharan et al., 2015; Liang et al., 2016a; Xia

et al., 2016; Chen et al., 2016) perform part segmentation, i.e. they output pixel-wise

masks instead of the bounding-boxes output by detection approaches. The segmenta-

tion architectures used in these works tend to naturally include ample regions around

each classified pixel. Hence, their feature representation already encodes object con-

text to a certain degree. We investigate here how our detection model performs in

comparison to a recent part segmentation model.

We use the state-of-the-art part segmentation approach of Chen et al. (2016), termed

DeepLab. Chen et al. (2016) adapt CNN models originally trained for image classifica-

tion (Simonyan and Zisserman, 2015; He et al., 2016) for semantic segmentation. They

use atrous convolutional filters, which substitute the usual approach for segmentation

of downsampling and upsampling feature maps within the network (Long et al., 2015).

Atrous convolutions enable a finer control of the resolution in which the network ex-

tracts its features as well as a larger field of view, which in turn increases the amount

of context included. Moreover, DeepLab arranges parallel atrous filters in a pyramid

to extract features at multiple scales, facilitating the network’s response to objects of

different sizes.

We train DeepLab 1 with ResNet-101 (He et al., 2016) architecture on all 105 parts

of PASCAL-Part train set. We keep the original pixel-wise annotations given in the

dataset. We follow the training protocol of Chen et al. (2016), which uses multi-scale

input images, pre-training on Microsoft COCO (Lin et al., 2014), and extensive data

augmentation. The only missing component of their model is the CRF used for post-

processing, which in any case only gives a marginal gain for this task. As a sanity

check, we compute the segmentation performance of the DeepLab model trained by

us, and compare it to Chen et al. (2016)’s reported results on a subset of PASCAL-

1We use the TensorFlow implementation provided in http://github.com/DrSleep/
tensorflow-deeplab-resnet.

http://github.com/DrSleep/tensorflow-deeplab-resnet
http://github.com/DrSleep/tensorflow-deeplab-resnet
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Figure 5.8: Part segmentation method converted to part detection up to a bounding-box. (a)

We place a bounding-box around each connected component of the segmentation method out-

put. Each bounding box is a detection of score 1. (b) Parts spatially close to each other might

form a common connected component, leading to detections that include several part instances.

Part (e.g. head, torso, arms, and legs of person). We achieve comparable results,

proving the validity of our trained DeepLab model.

In order to compare DeepLab with our part detection model, we need to convert

DeepLab’s segmentation outputs to part detections up to a bounding-box. To do so, at

test time we run the trained DeepLab model on the val set of PASCAL-Part and place a

bounding-box around each connected component of the output segmentation, as shown

in fig. 5.8a. All detections have score 1, and hence there is no need to process them with

NMS. DeepLab for detection achieves 11.6 mAP, averaged over all 105 part classes of

PASCAL-Part. This is much lower than the result obtained by our full model, e.g. 40.1

mAP with VGG16, despite the superior performance of ResNet-101 with respect to

VGG16 (He et al., 2016).

In fairness, we note that their results could be improved by preventing detections

that cover multiple part instances, mostly caused by objects that are close to each other

(fig. 5.8b). This issue could be alleviated by, for example, adding instance reasoning.

In any case, the detection performance of DeepLab is dramatically behind our part de-

tection model. Moreover, our method requires a lower lever of supervision, as we use

bounding-boxes instead to pixel-wise masks. We conclude that, although segmenta-

tion architectures provide good segmentation results on a very restricted set of classes

(humans and quadrupeds), they do not perform well for the part detection task of gen-

eral object classes, and more research is necessary to make them reach a comparable

performance level with our method.
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Figure 5.9: (a) Classic object detection model, where classification is based only on the ap-

pearance of the object proposal. When the object is truncated or occluded, classification is

very challenging. (b) Object detection model that uses help from the object parts. The detec-

tion of several semantic parts, which may be easier to detect than the whole object, assist in

the correct categorization of challenging instances such as the one shown.

5.6 Conclusion and outlook

We presented a semantic part detection model that detects parts in the context of their

objects. Our model includes several types of object information. We incorporate object

class and appearance as indicators of what parts lie inside. We also model relative

location information conditioned on the object appearance. All these complementary

cues are effectively combined, achieving more accurate part detections. Our model

leads to a substantially better performance than detecting parts based only on their

local appearance, improving by +5 mAP on the baseline model on the PASCAL-Part

dataset.

We now discuss possible future work to extend the part detection model presented

in this chapter and apply insights learned regarding context integration for recognition.

Sequential part detection. Our part detection model computes initial part scores that

are later refined by incorporating object information. The current model only consists

of only one refinement step, but it may be extended to several sequential steps that iter-

atively output increasingly more accurate part detections. We could accomplish this by

adopting either of the two following approaches. First, we could transform our model

into a sequential network architecture, similar to the successful Convolutional Pose
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Machines (CPM) of Wei et al. (2016). A CPM refines a structured output, concretely

for articulated pose estimation, by using several convolutional networks sequentially

arranged. The input of each network is the prediction output by the previous network,

except for the first one, which takes the image as input. In our case, we would use part

detections predicted by the previous network as well as additional object contextual

information, which could also be iteratively refined. Second, we could use a Recurrent

Neural Network (RNN) to sequentially detect every part of the object. Our RNN would

output each part detection automatically taking into account previous part detections

and combining this information with object context. This architecture gives great flex-

ibility when learning model parameters such as the best ordering in which parts should

be detected, or how many refinement steps are necessary for a particular performance

level. Furthermore, training RNNs for object and part detection in real-world images

is a very challenging task and further research is required to achieve reasonable per-

formance levels. The proposed extension would explore this exciting and potentially

prosperous research avenue.

Parts to help object detection. Part-based models have shown excellent performance

in the object detection task (Felzenszwalb et al., 2010b; Azizpour and Laptev, 2012;

Endres et al., 2013; Chen et al., 2014; Tsai et al., 2015). Nonetheless, in the last few

years the state-of-the-art in object detection has been dominated by CNN approaches

that do not explicitly model object parts (Girshick et al., 2014; Girshick, 2015; He

et al., 2016; Ren et al., 2015; Redmon et al., 2016; Liu et al., 2016). Despite the

outstanding results of such models, they are bound to fail when objects appear under

particular challenging conditions, such as severe occlusions or extreme viewpoints.

We investigated in chapter 4 how CNNs trained for recognition automatically learn

discriminative visual patterns. When such patterns are not clearly visible at test time,

CNNs become gravely crippled for this task. A possible solution consists in explicitly

integrating part context into the network’s internal representation. By actively forcing

the network to learn the parts alongside the objects, we provide it with a fallback mech-

anism when object appearance as a whole is not discriminative enough. For example,

the person in figure 5.9 is severely truncated and occluded, the most discriminative

parts on which the network relies for person recognition (e.g. head, torso) are missing.

However, some parts of the person might still be easy to detect, such as the hand or

the knee. The effective network integration of information about those parts would

provide a valuable cue for recognizing the person in this image.
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The CNN model presented in this chapter offers an excellent starting point for part-

aware object detection. We could first detect parts in the image and then use them as

support for object recognition. For example, the feature representation for each object

proposal could be enhanced by including the appearance and scores of a few parts

inside it. We could automatically learn how many part classes should be integrated

in the representation, or even which part classes are the most suitable for each object

class. Our relative location model can be modified to suggest windows that contain

the input, as opposed to windows contained in it. By combining all the part cues,

this object detection model would most likely help to recognize challenging object

instances. Moreover, it might also improve the precision for easier cases, for example,

by outputting finer localizations based on the locations of the parts.

Part segmentation with object instance context. Several recent approaches (Wang

et al., 2015b; Hariharan et al., 2015; Liang et al., 2016a; Xia et al., 2016; Chen et al.,

2016) address part segmentation instead of detection, and thus their outputs are more

precise than bounding-boxes. Most of these works are based on Fully Convolutional

Networks (FCN) (Long et al., 2015) or atrous convolutions (Chen et al., 2016). There-

fore, they automatically take into account some of the object appearance in their pre-

dictions as they classify each pixel by observing a large region around it. However,

none of these approaches are aware of the object instances in the image since the gen-

eral segmentation task is defined without the notion of instance.

This extension proposes coupling a part segmentation architecture with object in-

stance reasoning. A way of modeling object instances is using object segment pro-

posals, such as those provided by SharpMask (Pinheiro et al., 2016). With such pro-

posals, we could assign instance-specific object context information to each pixel to

be classified, including the object appearance, its class, and even the relative location

of the parts inside it. The latter could be implemented analogously to our OffsetNet,

i.e. using a separate network branch. In this case, instead of suggesting windows on

expected locations as in OffsetNet, we would directly output heatmaps highlighting

expected part locations, taking as input the region belonging to the object proposal.

Current works are restricted to either person or quadruped classes for which parts can

be shared amongst them. Our approach would pave the way for more general part seg-

mentation, as it can be applied to arbitrary object classes. Moreover, instance-aware

semantic segmentation is currently an engaging research topic that gathers notable in-

terest in the community (Dai et al., 2016; Liang et al., 2016b; Li et al., 2017).





Chapter 6

Conclusions

In this thesis, we have addressed the computer vision tasks of object detection and

part detection. We have leveraged the use of different context types to advance on

both tasks. The presented work can be summarized in four main contributions. The

first contribution is an active search strategy that uses image context for efficient ob-

ject class detection (chapter 3). The second contribution extends this active search

to jointly detect pairs of object classes (chapter 3). Our third contribution presents

an analysis on the emergence of semantic parts in CNNs trained for object detection

(chapter 4). Finally, our last contribution is a part detection CNN model that integrates

object context to obtain more accurate part detections (chapter 5).

Throughout this thesis, context has proven to be a valuable source of information

that complements visual detection tasks. We have shown how adequate integration of

contextual knowledge leads to effective improvements in both detection efficiency and

performance. Each chapter of this thesis has presented a specific method focused on a

particular task. This final chapter explores the interplay between insights gained in the

different chapters of this thesis and provides additional future work.

An active search strategy guided by part context. The search strategy presented in

chapter 3 is guided by generic image context. It matches the appearance of observed

image regions to those recorded from the training set, and then reasons using their rel-

ative location with respect to the object. In the latest stages of the multi-class version,

we employ a more specific context by restricting the origin of such regions to the visual

phrase area. Nonetheless, all of the used context regions lack a semantic interpretation

as they are simply arbitrary regions extracted from a particular area of the image.

In this extension, we propose guiding the visual search for objects by using a spe-

cific type of meaningful region, i.e. semantic parts. Some object parts are fairly easy
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1

2 2

334

Figure 6.1: Two alternative strategies to guide the object search by using part context. (a)

Sequential part search that terminates with the object. (b) Active search that integrates location

cues by independently detected parts.

to detect, for example, those that are big and have a rather stable appearance across

different instances, such as car wheels. If we first detect these easily localizable parts,

we can limit the object search to the area around them, as the object that contains them

must be in their surroundings. Moreover, parts tend to appear at particular relative lo-

cations inside the object (fig. 5.4). Therefore, the detected parts provide excellent cues

regarding the location of the object or even other parts. For example, a search strat-

egy for cars could first localize car wheels. Wheel detection is a reasonably accessible

task, as wheels exhibit smaller complexity than cars, have lower intra-class variation

and are relatively big. Once we localize the wheels, the detection of the correspond-

ing car should readily follow by exploring the area immediately above the wheels at a

specific offset learned from training data.

Figure 6.1 presents two alternative approaches to implement object search strate-

gies guided by part context. We could follow a sequential search strategy to localize the

parts (fig. 6.1a), possibly by implementing the first extension suggested in section 5.6.

The search should start from the easiest part. In the depicted example, where person

is the object class, the starting role corresponds to the part head. The search would

then find part after part, possibly selecting which part to locate next based on the parts

located so far. The last ‘part’ of the search would be special, as it corresponds to the

whole object. Alternatively, we could independently find as many parts as possible

(fig. 6.1b) and use their locations to gather clues about the object location. Note how

this differs from the second extension in section 5.6, since in this case parts would be

solely used to guide the search, instead as context to enhance the representation used

for recognition. As a by-product of these search strategies, we would also obtain part

detections.
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Part-based models for fine-grained recognition using truly discriminative parts.
Fine-grained recognition models heavily rely on semantic parts since many sub-categories

can only be recognized by subtle changes in the appearance of some parts (Parkhi et al.,

2012; Zhang et al., 2014a; Lin et al., 2015; Zhang et al., 2016; Akata et al., 2016). For

example, the recent work of Zhang et al. (2016) considers fixed size boxes around an-

notated keypoints for 16 different semantic parts of birds. Although it might seem that

human experts rely on semantic parts for recognition, most likely they do not use all

semantic parts, since some might be uninformative. Moreover, it is also possible that

they are actually employing other distinctive features, such as a small subregion of a

part (e.g. tip of the bird’s beak). For this reason, forcing the network to explicitly take

into account the totality of all the semantic parts might actually be counterproductive

for recognition, as it overloads the model with irrelevant information.

Our analysis in chapter 4 showed how discriminative image regions for object

recognition do not always perfectly align with semantic parts. Among others, they

include part subregions (e.g. top half of the face) and assemblies of multiple semantic

parts (e.g. head and neck). We propose complementing this analysis by shifting the

focus to fine-grained recognition. For instance, we can identify which object regions

are truly discriminative for this task. One possibility is to systematically block each

filter as in section 4.5, study the effect on the class scores, and inspect the regions on

which the relevant filters fire. Alternatively, we could track score changes when ig-

noring arbitrary image regions, similarly to how section 4.6 ignores regions occupied

by semantic parts. Based on this, we could develop fine-grained models that explicitly

incorporate such regions in their models for better recognition, similarly to our incor-

poration of object context for part detection in chapter 5. The incorporated regions

may be adaptive, depending on several factors such as the overall object appearance or

the object class.

As an additional interesting outcome, we would be able to compare the regions

the model finds discriminative for fine-grained recognition with existing expert knowl-

edge. For example, ornithologists might easily recognize a particular bird species by

the shape of their eyes. Do our CNNs for fine-grained recognition learn this charac-

teristic to classify such birds? If not, what regions does it use for such task? Fur-

thermore, we could explicitly integrate very specific expert knowledge in our model,

for example, by encouraging the network to focus on known discriminative areas and

then determine whether this results in superior recognition performance compared to

automatically learned discriminative regions.
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Acronyms

AP - Average Precision

BoW - Bag-of-words

CNN - Convolutional Neural Network

CPM - Convolutional Pose Machine

CRF - Conditional Random Field

DPM - Deformable Part Model

GAN - Generative Adversarial Network

HOG - Histogram of Oriented Gradients

IoU - Intersection-over-Union

IVP2C - Inside Visual Phrase to Class

NMS - Non-Maxima Supression

PCA - Principal Component Analsysis

RNN - Recurrent Neural Network

SGD - Stochastic Gradient Descent

SVM - Support Vector Machine

ReLU - Rectified Linear Unit

RPN - Region Proposal Network

PPMCC - Pearson Product-Moment Correlation Coefficient

VP2C - Visual Phrase to Class
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Object and part classes
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Class Part Number of samples Class Part Number of samples
Train Test Train Test

aero

body 359 363

cow

head 188 202
stern 330 323 ear 236 157
wing 505 321 muzzle 157 169
engine 364 204 horn 103 48

bike

wheel 552 295 torso 194 214
saddle 206 216 neck 74 102
handlebar 262 289 leg 466 157
chainwheel 211 199 tail 48 66

bird

head 448 451

dog

head 694 696
beak 379 371 nose 612 597
torso 464 469 torso 678 683
neck 249 21 neck 310 308
wing 313 174 leg 1558 565
leg 476 272 paw 1055 453
foot 282 160 tail 632 635
tail 321 333

horse

head 289 301

bottle cap 443 452 ear 439 261
body 551 507 muzzle 262 255

bus

frontside 162 179 torso 306 309
leftside 99 119 neck 223 229
rightside 117 97 leg 847 260
backside 40 40 tail 163 179
roofside 19 12

motorbike
wheel 497 291

mirror 258 176 handlebar 12 18
liplate 127 138 headlight 156 127
door 109 100

person

head 3627 3805
wheel 450 204 hair 2650 2776
window 816 242 torso 3621 3819

car

frontside 425 417 neck 1854 1930
leftside 388 364 arm 5237 3481
rightside 348 338 hand 3626 2597
backside 298 319 leg 3992 2425
roofside 137 158 foot 2177 1435
liplate 298 313 pottedplant pot 380 395
door 324 234 plant 401 415
wheel 1231 642

sheep

head 307 298
headlight 535 314 ear 431 251
window 1272 693 muzzle 246 231

cat

head 558 564 horn 40 32
eye 869 471 torso 329 328
ear 1030 548 neck 209 215
nose 486 497 leg 242 78
torso 546 553 tail 97 96
neck 365 397

train

head 173 161
leg 1040 447 frontside 144 141
paw 783 389 leftside 96 77
tail 234 224 rightside 70 74

tvmonitor screen 328 310 coach 321 187

Table B.1: List of used part classes in PASCAL-Part along with the number of samples in the

training and test set.
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