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Abstract 

Filarial nematodes infect over 140 million people worldwide causing widespread 

morbidity in endemic populations. There is currently no available prophylactic vaccine 

and drug therapies are not effective against all stages of the parasites. The genomes of 

two filarial nematodes Brugia malayi and Onchocerca volvulus are being extensively 

studied to identify novel drug and vaccine candidates. B. malayi and 0. volvulus have 

three genomes, the mitochondrial and nuclear genomes which are shared by all animals 

as well as a third genome contained within a bacterial endosymbiont. The mitochondrial 

genomes have been fully sequenced and characterized and the genomes of the bacterial 

endosymbionts are currently being fully sequenced. Full shotgun sequencing of the 

nuclear genome of B. malayi is due to begin within the next year. The filarial genome 

project laboratories have produced sets of staged cDNA and large insert genomic 

libraries (in bacterial artificial chromosomes, BACs) for B. malayi and 0. volvulus. 

Large EST datasets have been generated from both species and a physical map of the 

nuclear genome of B. malayi is currently being assembled. Genomic contigs are being 

generated through a combination of the end sequencing of BAC clones and 

hybridization of BAC clone ends and B. malayi genes to the genome libraries. The work 

presented in this thesis builds upon the resources generated by the filarial genome 

project and focuses the analysis of the gene content of the filarial genomes, the dynamics 

of gene and genome evolution between nematodes and the conservation of gene order 

(synteny) and structures between distantly related nematodes. 

Automated methods for generating and annotating clusters representative of 

individual genes from the EST sequences were optimized and implemented. Subsequent 

analyses of the clustered EST datasets have given insights into the biology of filarial 

nematodes as well as providing new sets of target molecules for drug or vaccine based 

intervention strategies. Comparative analysis between the cluster datasets of B. malayi 

and 0. volvulus and the proteins predicted from the distantly related model nematode 

Caenorhabditis elegans have identified parasite and nematode specific gene families. 



Interestingly, when compared to the public databases the majority of the clusters 

generated from both filarial EST datasets are completely novel. 

Two genes that have been discovered in the filarial EST datasets are homologues 

of the mammalian macropahge migration inhibitory factor (MIF). In vertebrates MIFs 

play a variety of roles in modulating the activities of immune cells. The filarial MIFs are 

believed to have potential immunomodulatory, functions. The evolutionary relationship 

of the filarial MIFs and MIFs from other metazoans, plants and protozoa were analyzed 

by comparison of the protein sequences and several phylogenetic techniques. The results 

indicate that MIFs are an ancient gene family that have been duplicated early in the 

animal lineage. However, while the filarial MIF is may be evolutionarily distant from 

the vertebrate MIF is they are predicted to share similar enzymatic activities and 

substrate preferences that are distinct from other MIF1 genes. These features are not 

conserved in the putative MIF orthologues isolated from other protostomes lending some 

support to the possibility that their conservation is due to their interaction with common 

receptors in the mammalian immune system. 

In collaboration with the Pathogen Sequencing Unit at the Sanger Institute 

several sections of the B. malayi genome have been sequenced and these have 

demonstrated that there is conservation of long-range and microsynteny between the 

genomes of B. malayi and C. elegans. This data is the first demonstration of conserved 

synteny between two distantly related protostomes and has shown that in nematode 

genomes intrachromosomal rearrangements are much more common than 

interchromosomal translocations. 

By rationally selecting and screening sets of conserved genes several 

transcriptional operons from B. malayi were isolated. The B. malayi operons prove that 

these unusual genomic features are wide spread in the nematodes. By examining the 5' 

end of the downstream genes in the operons it has been determined that the usage of 

alternate spliced leaders in the resolution of operonic messenger RNAs is not a universal 

feature in nematodes 
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Chapter 1 

Introduction 



1.0 Parasitic Diseases and World Health 

Parasitic nematodes are acknowledged as being one of the most important groups 

of human pathogens with over two billion people in developing nations infected with the 

three most prevalent gastrointestinal nematodes Ascaris lumbricoides, Trichuris 

trichiura and hookworm species (Necator americanus and Ancylostoma doudenale) 

(Chan, 1997). While these infections are not generally fatal, morbidity associated with 

high worm burdens has been shown to cause significant socio-economic problems 

particularly during childhood (Chan, 1997). Table 1.0.1 shows the number of people 

currently thought to be infected with seven of the most prevalent human parasitic 

nematodes (Chan, 1997; Molyneux, 1995; Ottesen and Ramachandran, 1995; Richards 

et. al., 2001; Witt and Ottesen, 2001). 

Disease Causative Organism(s) Estimated number 
infections _in_millions 

Human Hookworm Necator americanus and 
Ancylostomadoudenale  

1277 

Human Roundworm Ascaris lumbricoides 1273 
Human Whipworm Trichuris trichiura 902 
Human Filariasis Wucheria bancrofli, Brugia sp. 

and Onchocerca volvulus  
140 

Table 1.0.1 Four of the major human nematode pathogens. The diseases common name, the 
species of nematode(s) and the estimated number of people infected worldwide is given. (Chan, 
1997) 

Most of these cases occur in developing countries. While the mortality associated 

with many bacterial and viral diseases is decreasing in these areas the incidence of and 

level of morbity caused by these nematode infections are increasing as the population 

grows and shift toward urban environments (Chan, 1997). In addition to directly 

affecting human health, nematodes that parasitise agriculturally important species can 

cause failures in crops and livestock that result in economic loss in many areas 

worldwide. 

1.1 Filariasis as a World Health Issue 

Es 



Tissue dwelling filarial nematodes are estimated to infect at least 140 million 

people worldwide. Unlike gastrointestinal parasites filarial nematodes can result in long 

term clinical morbidity and have been cited as a serious impediment to development in 

many areas of Africa, Asia, the Western Pacific and certain regions in the Americas 

(Molyneux, 1995; Ottesen and Ramachandran, 1995). Table 1.1.1 lists the characteristics 

of the two most prevalent filarial diseases. 
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Lymphatic filariasis Cutaneous filariasis 
Species Wuchereria bancrofti Onchocerca volvulus 

Brugia malayi 
Brugia timori  

Transmitting 
Vectors 

mosquitoes belonging to the 
genera Culux, Anopheles and 
Aedes  

blackflies belonging to the genus 
Simulium 

Mammalian With the exception of Brugia Onchocerca volvulus can only 
Host(s) malayi which can infect jirds, 

monkeys and cats the other 
lymphatic filaria exclusively 
infect humans and some primates.  

infect humans and chimpanzees. 

Estimated 
Number of 
People Infected 
World Wide  

120 million (Ottesen and 
Ramachandran, 1995) 

17.5 million (Molyneux, 1995) 

Global Wuchereria bancrofti is the most >95% of the 17.5 million people 
Distribution widely distributed of the filarial infected with onchocerciasis live 

parasites occurring in the tropical in Africa in a zone that extends 
zone of Africa, India, Asia and the 15°N and 15°S in the west 
Indo-Pacific. Small foci exist in widening towards the east to reach 
South America and the Caribbean. the southern latitude of Malawi. 
Brugia malayi is distributed Nigeria is a hyperendemic area 
through Asia and the Indo-Pacific which accounts for over one third 
while Brugia timori is confined to of the infected individuals. Small 
several small islands of Indonesia foci exist in Guatemala, Mexico, 

Venezuela, Colombia and other 
parts of Central and South 
America as well as in Yemen and 
Saudi Arabia in the Middle East. 

Pathologies Mild to severe, chronic infection Severe, infection can lead to 
can lead to permanent blindness and skin conditions. 
disfigurement. These include nodules/granulomas containing 
lymphangitis, funiculitis and adult worms, skin atrophy and 
hydrocoele, chyluria, tropical hypo-hyperpigmentation, sowda 
pulmonary eosinophilia, (skin darkens and becomes 
lymphoedema to full elephantiasis covered scaly papules), punctuate 

keratitis, sclerosing keratitis 
which leads to permanent 
blindness. 

Diagnosis Geimsa stained blood samples, Giemsa stained skin snips, ELISA 
ELISA based assays for parasite 
antigens and PCR based assays. 

based assays for parasite antigens 
and PCR based assays. 

Prevention and DEC (diethylcarbamazine) and Vector control efforts and yearly 
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Control Ivermectin (Mectizan®) can be doses of Ivermectin (Mectizan®) 
given periodically (i.e. once per to reduce microfilarial burdens 
year) to reduce microfilarial and block development of 
burdens and block development of incoming infective U. However, 
incoming infective U. However, there are no widely available and 
there are no widely available and safe macrofilaricides. 
safe macrofilaricides. Vector 
control in urban areas has also 
helped reduce infection rates  

Table 1.1.1 Summary of the characteristics of the two most prevalent filarial diseases. The, 
species, transmitting vector, mammalian hosts, estimated number of people infected worldwide, 
global distribution of the infections, pathologies, diagnosis, prevention and control measures 
being taken by wold health agencies are listed. All information listed in the tables is taken from 
Mason et. al 1978 unless otherwise noted (Manson-Bahr and Bell, 1987). 
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Several global agencies and trusts including the World Health Organization 

(WHO), World Bank and the Edna McConnell Clark Foundation have sponsored both 

parasite and vector control programs which have met with success in some regions 

(Molyneux, 1995; Ottesen, 2000; Ottesen and Ramachandran, 1995; Richards et. al., 

2001). However, these agencies recognize that there is a need for an effective 

prophylactic vaccine and broader spectrum filaricides. 

After 30 years of active research a great deal of immunological and 

epidemiological data has been gathered about these parasites but little progress made 

towards the development of a vaccine or a drug that is effective against all filarial 

species or life stages. This is mainly due to the fact that none of the filarial nematodes 

mentioned above, with the exception of Brugia malayi, are amenable to experimentation 

because viable laboratory-based, non-human lifecycles cannot be maintained. This 

severely limits the amount of biological materials available to researchers and therefore 

makes the discovery of suitable drug or vaccine targets difficult. 

1.2. The Biology of Filarial Nematodes 

All tissue dwelling filarial nematodes spend the majority of their lifecycle 

in their vertebrate host. However, they must undergo some portion of their development 

outside of this host in a transmitting vector (an arthropod). Human filarial parasites are 

classified by the habitat in which the adults reside within the human host. The adults of 

lymphatic filaria like B. malayi and B. timori and W. bancrofli reside in the lymphatic 

vessels while the adults of cutaneous filaria (e.g. 0. volvulus) reside in cutaneous tissues. 

All human filaria like other nematodes moult four times during their life cycle. The 

worms have distinctive morphologies between each of these moults and like other 

nematodes these life periods are designated Li- L5 (or adults). 

1.2.1 Filarial Life Cycle: 

All filarial nematodes share a common life cycle. Infection of the human host is 

initiated by the bite of an infected arthropod. Stage 3 (L3) infective larvae are deposited 

onto the skin while the insect is feeding. The larvae crawl into the bite wound and 

burrow through the cutaneous tissues. Lymphatic filaria migrate to the lymphatic vessels 
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while 0. volvulus continues to travel through the cutaneous tissues. During this 

migration the L3 moult to stage 4 (L4) larvae then to adults. Adult lymphatic filaria 

reside permanently in the lymphatic vessels while adult 0. volvulus reside in nodules 

that form beneath the dermis. After a few months of maturation the adults mate and the 

females begin producing hundreds of thousands of stage 1(Li) larvae called microfilaria 

ovoviviparously. The microfilaria of lymphatic filaria circulate through the body in the 

blood waiting to infect another arthropod through the ingestion of a blood meal, while 

the microfilaria of 0. volvulus migrate through the skin and are ingested by feeding 

blackfly. One major difference between the microfilaria of the lymphatic filaria and 0. 

volvulus is that the lymphatic filaria are enclosed by an acellular sheath which is a 

remnant of the vitelline membrane formed during embryogenesis. After ingestion by an 

appropriate vector the microfilaria penetrate the stomach walls of the insect (lymphatic 

filaria shed their sheath at this time) and migrate to the thorax muscles where they moult 

to stage 2 larvae (L2). After about a week the L2 moult into L3 and migrate to the 

arthropod's mouthparts where they wait until it takes its next meal. Figure 1.2.1.1 

summarizes the lifecycle of filarial nematodes. 
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microfilaria circulate 
in bloodstream or 
migrate through skin/  

embryogensis 

Li 

mammalian host day 4-5 2 

Adults in lymphatics 
>100 days 

or skin nodules 
L5/Adult arthropod L2 

host >10 day 

day 2333 day 8 2 
L4 L3 ,OOOO

j 

Figure 1.2.1.1 Lifecycle of lymphatic and cutaneous 
filarial nematodes. The diagram shows a canonical 
representation of the filarial lifecycle. 1 and 2: Days 
when molts occur taken from studies of the the 
lifecycle of B. pahangi (1: Schacher et. al. 1962a 
and 2: Schacher et. al. 1962a). 

.1 
day 8-9p1 



1.2.2 The evolutionary relationship off/aria and other parasitic nematodes 

Nematodes represent an extremely diverse group of animals with species 

found in almost all environments tested. These species have a variety of trophic habits 

and recent phylogenetic analysis of the nematode phylum indicates that parasitism has 

evolved independently in all of the major nematode groups (Blaxter et. al., 1998). Figure 

1.2.2.1 adapted from Blaxter et. al. 1998 shows the results of the phylogenetic analysis 

which places the filaria and other spirurids in a group composed exclusively of animal 

parasitic species (nematode dade III) including the ascarids (roundworms) and oxyurids 

(pinworms). 

The filaria are distantly related to other important human parasitic nematodes 

such as T. trichiura or hookworm species. Filaria are also distantly related to the 

nematode species that have been used as model organisms such as Caenorhabdits 

elegans, Caenorhabditis briggsae and Pristionchus pacijicus. These model nematodes 

have been proposed as surrogate test bed for parasitic nematodes. However, the large 

evolutionary distance between these nematodes and many of the parasitic species as well 

as the differences in their lifestyles means that some processes will not be conserved. 

Therefore they may not represent appropriate models for all species even when general 

biological processes not related to parasitic lifestyles are being examined. 
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Onchocercidae: 
Onchocerca ochengi 
Onchocerca volvulus 0 
Onchocerca gibsoni 
Onchocerca gutturosa V 
Diro fl/aria repens 
' 

Diro fl/aria immitis 
Litomosoides sigmodontis 
Wuchereria bancrofti ® I 

Ir- Brugia ma/ayi 
Brugia pahangi 
Acanthocheionema viteae 
Outgroup 

It-] 

people 

ruminants 

cats 

dogs 

rodents 

JJ Strongylida --.9A Hookworms 
100 

93 Rhabditida Caenorhabditis slogans 
Caenorhabditis briggsao 

Diptogasterida Pristionchuspac/ficus 

- Strongyloididae 
69 Va Steinernematidae 

Panagrolaimidae • 

68 

Cephalobidae 
100 I\fb Aphelenchida 

Tylenchida 
Oxyurida o'. 

100 pirurida Wuchereria bancrofti, Brugia ma/ay/, 
- Onchocerca vol vu/us 

scaridida Am.% Ascaris /umbric/odies 

Rhigonematida 

Chromadorida 

__- noplida 

r(plonchida 

Dorylaimida 

Mermithida 

Trichocephalida .. Trichuris trichuria 

Mononchida 

Outgroups 

Trophic Ecology 

Oacterivore 

?.L AIgivor-omnivorepredator 

Fungivore 

Phytoparasite 

Entomopathogen 

Invertebrate parasite 

. Vertebrate parasite 

Figurel.2.2.1 The evolutionary relationship of the filaria and other parasitic nematodes A: Adapted 
from Blaxter et. al. 1998 the phylogenetic relationship of important parasitic nematode species based 
on analyses of the SSU rRNA sequences. The major nematode clades are shown along with the tropic 
habits of members of the major subgroups. B: The phylogenetic relationship of selected filaria 
belonging to the Onchocercidae based on analyses of the 5S rRNA, COXI, and mitochondrial SSU 
sequences (Me et. al. 1994 and Casiraghi et. al. 2000). The mammals infected by the filaria is also 

shown. CF: cutaneous filaria, LF: lymphatic filaria.. 

17 



Within the filaria, morphological and phylogenetic studies indicate that the 

human lymphatic and cutaneous species form evolutionarily distinct groups (Anderson 

and Bain, 1976; Casiraghi et. al., 2001; Xie et. al., 1994). These studies have also 

confirmed that several species used as models for filarial infection are closely related to 

the human parasites (B. pahangi and 0. ochengi). However, several of the species that 

infect rodents are not consistently placed either within the lymphatic/cutaneous groups 

or at the base of the phylogenetic trees. While the time of divergence between the two 

groups has not been estimated they are not believed to be closely related. 

1.2.3 The genomes and genome projects offilarial nematodes 

In December 1994 less than 60 genes had been cloned from filarial nematodes 

(Blaxter et. al., 1996). Most of these sequences were genes identified as potential or 

diagnostic or vaccine targets by immuno-screening of filarial cDNA libraries. However, 

none of these proteins have proved to be effective vaccinogens. In addition all of the 

currently used anti-filarial compounds have been discovered through random screens. 

Some are highly toxic to humans and none are effective against all stages of the 

parasite's development. To identify new vaccine candidates and drug targets as well as 

stimulate research on basic filarial biology the WHO TDR gave funds to initiate the 

filarial genome project (FGP). The FGP was organized as a collaborative effort between 

group of seven laboratories coordinated by Professor Steve Williams (Smith College, 

USA). The main goal of the project was to utilize genomics techniques to identify new 

targets and provide resources and reagents to the research community. 

Like other animals filarial nematodes have nuclear and mitochondrial genomes. 

In addition to these genomes most filarial nematodes harbor a third genome belonging to 

an endosymbiotic bacteria closely related to arthropod pathogens Wolbachia. The WHO, 

Edna Mc Connell Clarke Foundation, UK Medical Research Council (MRC) and New 

England Biolabs (NEB) have funded FGP laboratories to launch a filarial gene discovery 

program and begin the assembly of physical map of the nuclear and endosymbiont 

genome of B. malayi. The physical maps and genomic libraries would in turn be utilized 

by the research community to study genes of interest, population genetics and serve as a 

scaffold for genome assembly if the whole genome of B. malayi is sequenced. 
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The previously characterized features of the filarial genomes as well as the goals 

and methodology utilized by the filarial genome projects are summarized below. 

1.2.3.1 Nuclear genome 

Nematode nuclear genomes are relatively compact when compared to the 

genomes of vertebrates or other non-vertebrates. To date, the only the genome of the 

free-living rhabditid Caenorhabditis elegans has been fully sequenced and thus is the 

only available nematode comparator to the filarial genomes. The C. elegans genome is 

100 MB in size (Sulston and Horvitz, 1977) and is split into five autosomes and one sex 

chromosome (consortium, 1998; Herman et. al., 1976). Approximately 20,000 genes 

have been predicted from the genome sequence (consortium, 1998; Reboul et. al., 2001). 

An interesting feature of the C. elegans genome is the organization of approximately 

13% of its genes in transcriptional operons. Unlike bacterial operons, most genes in the 

nematode operons do not appear to be functionally linked so it is unclear how or why 

they have become linked. In filaria the calculated genome size appears to be relatively 

similar to C. elegans with estimates ranging from 100 —150 MB (Donelson et. al., 1988; 

McReynolds et. al., 1986). While there is currently no data on the number of genes 

contained within the filarial genomes, they are believed to be similar to the number 

found in C. elegans(Blaxter et. al., 2002). 

Karyotypes vary between filarial species with B. malayi having four and 0. 

volvulus three autosomes (Hirai et. al., 1985; Hirai et. al., 1987; Post et. al., 1989; 

Sakaguchi et. al., 1983), Unlike C. elegans, both filaria appear to have dimorphic sex 

chromosomes with an XX/XY system of sex determination. The Y chromosome of B. 

malayi is currently under investigation (Underwood and Bianco, 1999). 

The filarial genomes have a much higher AT content then C. elegans —71% vs 

64% (consortium, 1998; Fadiel et. al., 2001; Rothstein et. al., 1988). Unlike the genomes 

of D. melanogaster or H sapiens, a relatively small portion of the C. elegans genome is 

composed of tandem or inverted repeat sequences ('-j  17%). This is in contrast to the 

filaria which have species or genus specific tandem repeat families which make up large 

portions of their genomes. In Brugia sp. the monomorphic 322 bp Hhal repeat makes up 

—10% of the genome and is organized in at least ten tandem arrays (McReynolds et. al., 
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1986). In 0. volvulus the 0-150 repeat 150 bp is predicted to make up 1% of the 

genome and is also arranged in four to eight clusters (Meredith et. al., 1991; Perler and 

Karam, 1986; Shah et. al., 1987). There has been some speculation that these sequences 

may represent sub-telomeric repeats although this has yet to be demonstrated. While 

only a few genomic sequences of filarial genes are available they indicate that on 

average filarial genes are interrupted with introns more frequently than C. elegans genes. 

These introns on average also tend to be longer, averaging 100-300 bp in length 

(Unnasch and Williams, 2000; Zang et. al., 1999). 

1.2.3.2 Mitochondrial genome 

The mitochondrial genomes of 0. volvulus and B. malayi have been fully 

sequenced ((Keddie et. al., 1998) and Daub et. al., unpublished). These genomes share 

many common characteristics with other the fully sequenced nematode mitochondrial 

genomes from Necator americanus, Ancylostoma duodenale, C. elegans, Ascaris suum 

and Trichinella spiralis (Hu et. al., 2002; Lavrov and Brown, 2001; Okimoto et. al., 

1992). When compared to other animal mitochondrial genomes they are relatively 

compact (13-16 kb). Unlike the vertebrate mitochondrial genomes the order of the 

mitochondrial genes appears to be relatively malleable. Interestingly, phylogenies based 

on the order of mitochondrial genes conflict with the phylogenies based on other 

sequences such as the SSU rRNA with A. suum (nematode dade III) sharing almost 

exactly the same gene order as the distantly related nematodes N. americanus, A. 

duodenale and C. elegans (nematode dade V). With the exception of T. spiralis, none of 

the nematode mitochondrial genomes encode a putative ATPase subunit 8 gene. Like the 

nuclear genome, the filarial mitochondrial genomes show an extreme AT bias (73%) and 

this is reflected in the codon bias and amino acid composition of the mitochondrial 

proteins (Keddie et. al., 1998). As additional nematode and animal mitochondrial 

genomes become available it will become clear whether the high rate of gene 

rearrangements is a feature unique to the nematodes. 

1.2.3.3 Wolbachia endosymbiont genome 
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The bacterial endosymbionts of filarial nematodes were initially identified in the 

mid-1970s during ultra structural studies of various filarial nematodes (Bandi et. al., 

2001). These bacteria have been found in all filaria surveyed except A. vitae and 

Onchocerca flexuosa (Bandi et. al., 2001). Several recent studies have implicated the 

release of bacterial toxins after nematode death as a major stimulus for the immune 

responses that leads to pathologies during filarial infections (Brattig et. al., 2001; Taylor 

et. al., 2000). Treatment of filaria with antibiotics that kill the bacteria induce sterility 

and emybrological defects (Bandi et. al., 1999; Brouqui et. al., 2001; Cross et. al., 2001; 

Hermans et. al., 2001; Hoerauf et. al., 2000a; Hoerauf et. al., 2000b; Langworthy et. al., 

2000; Smith and Rajan, 2000; Townson et. al., 2000). However the mechanisms which 

mediate the effects of the antibiotics are still unknown. 

Analysis of genes cloned from the bacteria has shown that they are related to a 

group of arthropod reproductive parasites called Wolbachia. Phylogenetic comparisons 

of genes cloned from the nematodes and Wolbachia show that the evolution of the 

bacteria mirrors the evolution of their hosts indicating a long-term association between 

the two organisms (Casiraghi et. al., 2001). A physical map of the B. malayi Wolbachia 

genome has been assembled and is predicted to be between 1-1.2 MB in size (Sun et. al., 

2001). The genomes of the B. malayi and 0. volvulus Wolbachia are currently being 

fully sequenced. Preliminary results indicate that their genes and genomes are very 

similar to those of other Wolbachia however there appears to be little conservation of 

gene order between the nematode and arthropod Wolbachia (Ware et. al., 2002). 

Because Wolbachia appear to be required for long term survival and 

reproduction of the nematode, as well as play a role in nematode induced immuno-

pathology, they have become attractive drug targets. The Wolbachia genome sequences 

will provide an important resource for target discovery and dissecting the interactions 

the Wolbachia has with its nematode and vertebrate hosts. 

1.2.3.4 Filarial gene discovery effort 

To facilitate the discovery of new filarial genes cDNA libraries from several 

lifestages and species have been constructed in the FGP labs (Blaxter et. al., 1996; 

Lizotte-Waniewski et. al., 2000). Datasets of randomly picked clones (expressed 
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sequence tags, ESTs) have been generated by the collaborating laboratories in the filarial 

genome network. These sequences have been deposited in GenBanks EST database 

dbEST and individual clones are available by request from the filarial genome resource 

centers (Blaxter laboratory Edinburgh, UK and Williams laboratory Northampton, 

USA). Figures 1.2.3.4.1, 1.2.3.4.2 and tables 1.2.3.4.3 and 1.2.4.1.4 summarize the 

characteristics of the various filarial genome project cDNA libraries constructed in B. 



Brugia malayi cDNA libraries Conventional Microfilaria 
SAW94LS-BmMF 
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Conventional Adult Female 
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SAW99MLW-BmL4 - \\ 
Spliced leader primed larval L4 
JHU93SL-BmL4 

Conventional molting L3 day 
SAW97M LW-BmL3d9 

Figures 1.2.3.4.1 cDNA libraries constructed from different lifecycle Conventional molting L3 day 6 
stages of B. malayi. The diagram shows a canonical representation SAW97MLW-BmL3d6 
of the B. malayi lifecycle and the time points from which cDNA 
libraries were constructed. 
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Figure 1.2.3.4.2 cDNA libraries constructed from different lifecycle Conventional molting L3 day 6 
stages of 0. volvulus. The diagram shows a canonical representation SAW96MLW0vmL3 
of the 0. volvulus lifecycle and the time points from which cDNA 
libraries were constructed. 



Table 1.2.3.4.3 B. malayi eDNA libraries 
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sequence. 
BmYA SAW99MLW-BmYA eDNA was prepared from mixed sex young 

adult worms isolated from the peritoneal 
cavity ofjirds. 

BmYAD25 SAW99MLW- eDNA was prepared from mixed sex young 
BmYD25 adult worms isolated from the neritoneal 



1. 2.3.5 Genome mapping and sequencing effort 

As well as the gene discovery effort as a prelude to whole genome sequencing, 

the FGP has generated a set of large insert genomic libraries hosted in BAC vectors 

(bacterial artificial chromosomes) (Foster et. al., 2001; Guiliano et. al., 1999). The 

inserts that have been cloned into the BAC vector have been generated by partially 

digesting genomic DNA with Hindill or Saullia and have an average size of 60-80 kb 

(J.Pope-Chapel, J. Foster, J. Daub and C. Whitton pers. corn. 2002, (Foster et. al., 2001; 

Guiliano et. al., 1999)). Individual clones have been picked and gridded on high density 

filter arrays. These BACs and filters are being used to assemble a medium resolution 

physical map. This map is being constructed with three complementary sets of data; 

BAC end sequences (genome survey sequences (GSSs) generated by J. Daub and C. 

Whitton, Blaxter laboratory in collaboration with the Pathogen Sequencing Unit (PSU), 

Sanger Institute), hybridization of BAC end sequences probes to high density filter 

arrays (generated by J. Daub, Blaxter laboratory) and hybridization of B. malayl genes 

identified in the gene discovery effort (various FGP labs). All three datasets are 

currently being combined to assemble large clone contigs that will serve as a scaffold in 

the assembly of the whole genome sequence. Recently, funds have been awarded to The 

Institute for Genome Research (TIUR) to shotgun sequence the B. malayi genome to a 

3.5 fold depth of coverage. 

1.2.3.6 Other nematode gene discovery efforts 

The success of the FGP in rapidly and cost effectively generating large sequence 

datasets and reagents for the research community has stimulated several additional 

parasitic nematode gene discovery efforts funded by the National Institutes of Health 

(NIH) and the Wellcome trust (McCarter et. al., 2000; Parkinson et. al., 2001). These 

projects are generating EST datasets from a variety of parasitic nematodes that are 

important in human or agricultural pathogens These include species that infect both 

plants and animals. Table 1.2.3.6.1 shows the number of nematode ESTs that have been 

deposited in GenBank. 
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Species Common name Nematode Clade Number of ESTs 
Caenorhabditis elegans free living V 191,268 

Brugia malayi human lymphatic filarial nematode III 22,439 
Onchocerca volvulus human cutaneous filarial nematode III 14,922 

Strongyloides stercoralis human gut parasite P1 11,392 
Ascaris suum pig roundworm III 14,380 

Ancylostoma caninum dog hookworm V 7,328 
PristionchuspacfIcus free living V 6,932 
Meloidogyne incognita southern root-knot nematode IV 6,767 

Strongyloides ratti rat gut parasite IV 6,562 
Globodera rostochiensis cyst nematode IV 5,934 
Meloidogynejavanica root-knot nematode IV 5,600 

Parastrongyloides trichosuri possum gut parasite IV 5,323 
Haemonchus contortus barber's pole worm of sheep V 4,843 

Heterodera glycines soybean cyst nematode IV 4,327 
Trichinella spiralis trichina muscle nematode I 4,247 

Meloidogyne arenaria root-knot nematode IV 3,334 
Caenorhabditis briggsae free living V 2,424 

Trichuris muris threadworm of mice I 2,125 
Globodera pallida Cyst nematode IV 1,832 

Necator americanus human hookworm V 961 
Nippostrongylus brasiliensis rat gut parasite V 734 

Toxocara canis dog gut parasite III 519 
Zeldiapunctata free living IV 391 

Litomosoides sigmodontis murine filarial nematode III 198 
Wuchereria bancrofti human lymphatic filarial nematode III 131 
Onchocerca ochengi bovine cutaneous filarial nematode III 60 

Table 1.2.3.6.1: Nematode ESTs deposited in GenBank. The species, common name, the nematode dade the species have been placed in and 
number of nematode ESTs deposited in GenBank as of 12/01/2002 are listed 
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1.2.5 The questions addressed in this thesis 

To date the FGP has deposited over 30,000 ESTs and almost 17,000 GSS 

sequences into GenBank. This represents a tremendous resource to the filarial 

community. However, examining large number of sequences presents several 

logistical problems and thus a number of custom built informatics tools are required 

to properly analyze the dataset. 

The work presented in this thesis builds upon the resources generated by the 

filarial genome project and focuses the analysis of the gene content of the filarial 

genomes, the dynamics of gene and genome evolution between nematodes and the 

conservation of linkage groups, gene order (synteny) and structures between 

distantly related nematodes. 

These questions are addressed through the four bodies of work. First, custom 

informatics tools were designed to analyze the filarial EST datasets and the 

comparison of filarial genes to sequences in the public databases. An important 

nematode gene family, the macrophage migration inhibitor factors (mif), was 

selected and their evolution studied using molecular phylogenetic techniques. A 

large segment of B. malayi genomic DNA surrounding the Bm-mf] locus was 

sequenced and compared to the genome of C. elegans. Finally the evolution of 

nematode operons and poly-cistron resolution was examined through the 

identification of operon sets which are conserved between B. malayi and other 

distantly related species. 
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Chapter 2 

Materials and methods 

1.111  



2.0 Basic Media and Solution Recipes 

For LB, SOC, 2x YT, lx TE 5x TBE recipes see appendix I. 

2.1 BAC Midi preparations 

BAC DNA for end sequencing and restriction digests was prepared using the 

Qiagen Midi Prep Kit (Qiagen) with the following. A BAC colony was inoculated 

into 200 mL of LB or 2X YT with chioramphenicol (12.5 j.tg/mL)  grown overnight 

with shaking at 37°C. The bacteria were spun down and the pellet resuspended in 4 

mL of P1 buffer. The solution was allowed to sit for 5 mm. 4 mL of P2 buffer was 

then added, the solution inverted 4-6 times and incubated at room temperature for 5 

mm. 4 mL of chilled P3 was then added, the solution invert 4-6 times and incubated 

on ice for 15 minutes. The solution was centrifuged in a sterile 50 mL plastic tubes at 

13,000 rpm for 30 mm. The Qiagen midi column was equilibrated and the 

supernatant allowed to flow through the column by gravity. The column was washed 

with 20 mL of QC buffer. The DNA was eluted into 30 mL corex tubes by adding 5 

mL of QF buffer pre-warmed to 65° C. BAC DNA was precipitated by adding 3.5 

mL of room temperature isopropanol, mixing and centrifuged at 13,000 rpm for 30 

minutes at 4°C, The supernatant was carefully removed and the pellet cleaned with 

70% ethanol and centrifuged at 13,000 rpm for 15 minutes at 4 °C. The pellet was 

resuspended in 200-300 tL of 0.1X TE. 

2.2 Chemical transformation of E. coil 

E. coli was made chemically competent using the standard protocol of 

Maniatis et. al. (Maniatis et. al., 1982). An overnight culture of cells was diluted 

1:1000 into 100 mL of LB and grown until it reached an OD 600  of 0.7-0.9. The cells 

were spun down and resuspended in cold 100 MM  MgCl2  and shaken at 4°C for 1 

hour. The cells were then pelleted at 4°C and resuspended in cold 50mM MgC12/ 

50mM CaCl2. The cells were then shaken at 4°C for at least 1 hour. 

Up to 5 pL of ligation reaction or plasmid DNA was added to 100 jtL of 

chemically competent cells. The cells were then incubated on ice for at least 10 

minutes and then heat shocked at 42°C for 30 seconds. The shocked cells were 

allowed to recover on ice for two minutes and then SOC or LB recovery media was 
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added and the cells incubated at 37°C for at least 30 minutes. The cells were then 

plated on LB agarose and incubated overnight at 37°C. 

2.3 C. elegans and P. pacjficus growth and laboratory maintenance 

C. elegans and P. pacflcus were maintained on MYOB agarose plates seeded 

with E. coli 0P50. Plates were kept at 15°C and worms were passaged to fresh plates 

by picking individual worms to a fresh plate or by taking a piece of the agarose from 

the old plate and using it to seed a new plate. New plates were seeded every two 

weeks. C. elegans strains and P. pacflcus  were kept in different sealed containers to 

prevent any cross contamination between species. 

MYOB agarose was prepared from a 5.9 g/L dry stock powder (55g Tris-

HCl, 24 g Tris-OH, 310 g Bacto-Peptone, 800 mg cholesterol, 200 g NaCl) and 2 1 g 

IL granulated agar. 

E. coli 0P50 used to seed the MYOB plates were grown in LB media, 

pelleted and resuspended in M9 media (3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 mL 

1M MgSO4  per 1L M9 solution) to a 50X stock solution. -250 jL of the stock was 

used to seed the MYOB plates which were then incubated at 37°C overnight to allow 

bacterial growth. 

2.4 Colony boil preparation 

Colony boils for PCR were prepared by scraping a colony into 20 tL of 

sterile ultra pure water and boiling at 95°C for 10 minutes. The boils were then 

cooled on ice and 1-2 pL of the boil added to a PCR reaction. The boils could be 

stored at —20°C indefinitely. 

2.5 DEPC treatment 

Ultra pure MilliQ water and other plasticware were treated with 

diethylpyrocarbonate (DEPC) to remove any RNAse activity according to Maniatis 

et. al (Maniatis et. al., 1982). Briefly, plasticware was immersed in a 0.1% solution 

of DEPC and incubated overnight at room temperature. The DEPC solution was then 

removed and the plastics autoclaved and dried. 

2.6 DNAse treatment of RNA 
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RNA was resuspended in DNAse buffer (50 mM Tris-HCl pH 7.5, 25 mM 

MgCl2) with 40 U RNAse block (Stratagene), 50 ng BSA (DNAse free, Amersham) 

and IOU of DNAse (RNAse free, Amersham). The reaction was incubated at 37°C 

for 30 minutes and then the DNAse was heat killed at 65°C for 10 mm. 

2.7 DNA cleanup with Microcon-100 

To remove primers and unincorporated dNTPs from PCR products the 

reaction was cleaned using Microcon-100 (Millipore) according to manufacturer's 

protocols. Briefly the PCR reaction was loaded into the column and brought up to 

500 tL with ultra pure MilliQ water. The column was spun at 1,500 rpm for 12 

minutes. The filtered liquid beneath the column was discarded and process repeated 

twice. After three centrifugations the column was reversed into a fresh collection 

tube and spun for 30 second at 1,500 rpm to retrieve the purified DNA. 

2.8 DNA purification from isolated agarose gel fragments 

The DNA was run on 1% agarose gel in the presence of ethidium bromide. 

The DNA was visualized with UV light and cut from the gel with a clean razor 

blade. The DNA was extracted from the gel fragment using a Ultra-DA extraction 

column (Millipore). The agarose was loaded into the column and centrifuged at 

7,000 rpm for 10 minutes. The centrifugation was repeated until all the agarose was 

passed through the top of the column. The filtrate with the extracted DNA was then 

collected and stored at —20°C. 

2.9 DNA sequencing 

Standard automated cycle sequencing was performed using an ABI 373 or 

377 automated sequencer (Applied Biosystems Inc.) using either the PRISM 

(Applied Biosystems) or Dyenamic ET (Amersham Pharmacia Biotech) cycle 

sequencing kits according to manufacturer's protocols. Briefly 4 CL of sequencing 

mix was added to 1 LL of sequencing primer (1.6 pM! jtL) and 5 L of template. The 

reaction was cycle sequenced in a PCR machine using the following conditions: 25 

cycles (96°C for 30 sec, 50°C for 20sec, 60°C for 4 mm). After the completion of the 

cycle sequencing the reaction was purified either by ethanol precipitation or column 

purification. 
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For BAC end sequencing the standard reaction conditions were modified 

according to the protocol published by the Sanger Institute 

(http://www.sanger.ac.uk/Teams/Team5l/PACBACPrep.shtml). Briefly, 12 jtL of 

sequencing mix was added to 1 L of sequencing primer (30 pM4tL), 40 LL of 

template (1-2 .ig of BAC DNA) and 5 jL of sterile ultra pure water. The reaction 

was cycle sequenced in a PCR machine using the following conditions: 40 cycles 

(96°C for 30 sec, 50°C for 20sec, 60°C for 3 mm). After the completion of the cycle 

sequencing the reaction was purified either by ethanol precipitation or column 

purification. 

For ethanol precipitation the standard sequencing reactions were mixed with 

1 tL of 3M sodium acetate (pH 4.6) and 50tL of 100% cold ethanol (-20°C). The 

mixture was frozen at —80°C for at least 1 hour and then centrifuged at 13,000 rpm 

for 15 minutes. The supernatant was removed, the pellet washed with 500 tL of cold 

70% ethanol and recentrifuged at 13,000 rpm for another 15 minutes. The 

supernatant was removed and the pellets air dried. 

Column purifications were preformed with the Performa DTR Gel filtration 

cartidge (Edge Biosystems). Preprepared hydrated gels were centrifuged at 2,000 

rpm for 2 minutes. The sequencing reactions were then loaded onto the column and 

the column placed in a fresh collection tube. The column was again centrifuged at 

2,000 rpm for 2 minutes. The filtrates were air dried either on a heated block or in 

rotary evaporator. 

Dried reaction pellets were submitted to the ICAPB core sequencing facility. 

2.10 Hybridization and detection of biotin labeled probes to nylon filters 

Each membrane was placed in a hybridization bag or a 22x22 polystyrene 

tray (Corning) and thoroughly wet with 6X SSC (20X SSC = 3 M NaCl, 0.3 M 

NaCitrate, pH 7.0), followed by prehybridization with 6X SSC, 5X Denhardt's 

reagent (50X =10 g ficoll-400, 50 g polyvinylpyrrolidone, 0.5g bovine serum 

albumin in 500 ml water), 0.5% SDS and 100 tg/m1 denatured salmon sperm DNA 

(0.1 ml of solution per cm2  membrane) for 1 hour at 55°C. 500 ng - 1 tg of the 

biotinylated probe was denatured in boiling water for 5 minutes, chilled on ice for 5 

minutes, centrifuged briefly and then added to the prehybridization solution. 
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Hybridization of the probe was allowed to proceed overnight at 55°C, with gentle 

rocking (Maxi14, Hybaid). 

After hybridization, the membrane was removed from the bag or tray, washed 

twice in 2X SSC, 0.1% SDS at room temperature for 5 minutes each and then 

washed twice in 0.1X SSC, 0.1% SDS at 60°C for 15 minutes each. The washed 

membrane was placed in a new hybridization bag or tray for subsequent 

chemiluminescent detection. The bags were sealed on three sides and on the fourth 

side a small spout was made to add and remove the detection reagents. 

Detection was carried out as described in the Phototope-StarTM Detection 

manual (NEB Inc). The spouts of the bags were sealed using a dialysis clip between 

solution removals and additions. Streptavidin, biotinylated alkaline phosphatase and 

CDP* reagents were sequentially added and removed from the bags or trays, with 

wash steps in between each addition to remove excess reagent. At each step, the bag 

or detection tray was rocked for 5 minutes at room temperature with moderate 

agitation on a shaking rocker. After draining the final detection reagent, the 

membrane was sealed in the bag and exposed to Hyperfilm MP (Amersham 

Pharmacia Biotech) X-ray film for 1-2 minutes, before the film was developed in an 

automated developing processor (CompactX2, X-Ograph). 

Following detection with one probe or probe set, the membranes were 

stripped and washed to remove the probe. The membranes were rinsed in Milli-Q 

water, incubated in 0.4 N NaOH, 0.1% SDS at 70°C for 30 minutes and then rinsed 

in 0.2 M Tris-HCI, 0.1X SSC for 30 minutes at 25°C. Membranes were then stored 

in sealed hybridization bags at -20°C. As many as ten stripping and rehybridizations 

have been performed without loss of hybridization specificity or efficacy. 

2.11 In vivo Excision of Phage Clones 

EST clones obtained as lambda phage (lambda Uni-Zap, Stratagene) were 

excised according to manufacturer's protocols summarized below. XL-1 Blue MRF' 

cells were grown overnight in NYZDT media, spun down (3,000 rpm 5 mm) and 

resuspended in 10 MM MgSO4  to an OD 600  of 1.0. 200 L of cells were added to 

250 L of phage stock and 1 L of ExAssist helper phage (> lx 106  pfu ImL, 

Stratagene) and incubated at 37°C for 15 minutes. 2 mL of LB was then added and 

the mixture incubated overnight at 37°C in a shaking incubator. pBluescript 
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phagemid were isolated by heat inactivating the overnight culture at 70°C for 15 mm 

and centrifuging 4000g for 15 mm. 100 tL of supernatant was then added to 200 jL 

of SOLR cells (Stratagene, grown overnight and diluted in 10 mM MgSO4  to an 

0D600  of 1.0). After incubating the mixture for 15 minutes at 37°C the cells were 

diluted 1:100 and 1:1000 and 10 pL plated on LB-ampicillin. Single colonies were 

picked and insert size of the plasmid tested by PCR. Plasmid DNA was prepared 

from positive clones with the QlAprep Spin Miniprep Kit (Qiagen). 

2.12 Isolation of genomic DNA 

Nematodes were percussively disrupted or homogenized with micro-

homogenizers (Biomedix) in worm lysis buffer 2 (110 mM NaCl, 110 mM TrisCl ph 

8.5, 55 mM EDTA, 1.1%SDS, 1.1% 2MB, 100 tg /ml proteinase K, 100 tg /mL 

RNAse). The resulting slurry was incubated at 65°C until the nematode fragments 

had been completely digested. The genomic DNA was then extracted twice with 

phenol, once with phenol:choloform and once with chloroform. The aqueous phase 

was then precipitated with 100% isopropanol (Sigma), pelleted and washed once 

with 70% ethanol (Sigma). The gDNA pellet was resuspended in water and stored at 

-20°C until use. 

2.13 Messenger RNA Isolation 

mRNA was purified from isolated total RNA using the Microfastrack mRNA 

isolation kit 2.0 (Invitrogen) according to manufacturer's protocols. Briefly total 

RNA pellets were resuspended in 10 tL elution buffer, 1 mL of lysis buffer and 

heated to 65°C for 5 mm. 63 tL of 5 M NaCl was added, the solution mixed and 

added to prepared oligo dT cellulose resin. The resin was washed several times with 

binding buffer and low salt buffer to remove unbound material and non-

polyadenylated RNAs. The bound mRNA was eluted with 200 tL elution buffer and 

the mRNA precipitated 10 RL (2 mg/mL glycogen carrier), 30 gL of 2 M sodium 

acetate and 600 gL of cold ethanol. The solution was frozen and then centrifuged 

13,000 rpm for 15 min and the pellet air dried. 

2.14 PCR Protocols (Standard and Long Range) 
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PCR was performed with either AGS-Gold Taq (Hybaid) or Qiagen Taq 

(Qiagen,Inc) using the standard PCR reaction conditions (0.2 mM dNTPs, 1.5 mM 

MgCl, 0.5 pM primer) and cycling conditions (94°C 3 min i cycle, 94°C 15 sec. 

55°C 20 sec 72°C 3 min 35 cycles, 72°C 10 min 1 cycle). 

To amplify products of> 4 kb from complex templates long range PCR was 

preformed with the Long-Range PCR Kit (Stratagene) using the following conditions 

suggested by the manufacture using the provided lOX high salt buffer (0.2 mM 

dNTPs, 600 mM KC1, 2 mM MgCl2, 0.5 pM primer) and cycling conditions (94°C 3 

min 1 cycle, 94°C 15 sec. 55°C 20 sec 72°C 5 min 35 cycles, 72°C 10 min 1 cycle). 

The PCR reaction was then electrophoresed on a 0.7-1.5% agarose gel in 

0.5X TBE with ethidium bromide and the DNA visualized with a UV 

transilluminator. 

2.15 Plasmid Mini Preps 

Plasmid DNA was prepared with the QlAprep Spin Miniprep Kit (Qiagen, 

Inc) according to manufacturer's instructions. A single colony or a frozen bacterial 

culture were inoculated into 10 mL of LB broth containing the appropriate antibiotic 

and grown overnight with shaking at 37C. The cells were pelleted by centrifugation 

3,000 rpm for 10 mm. After preparation plasmid DNA was stored at —20°C. 

2.16 Primer Extension 

The primer extension was performed according the protocol described by 

Leonard and Patient (Leonard and Patient, 1996). Briefly the primer was kinased 

with 32P-yATP and T4 polynucleotide kinase for 30 min at 37°C. The labeled primer 

was purified with a TE Midi SELECT-D G-25 column (Eppendorf-5'Prime, Inc), 

phenol:choroform extracted and ethanol precipitated. The probe was resuspended in 

DEPC treated water and 5 fM was added to 10 jg of total RNA in hybridization 

buffer (400 mM NaCl, 10 mM PIPES pH6.4), denatured at 70°C and then incubated 

for 3 hours at 55°C. The template and primer were added to the extension buffer 

(50mM Tris-HC1, pH 8.3, 40 mM DTT, 6 mM MgCl2, 25 pg/mL actinomycin D 

(Sigma), 0.5 mM dNTPs, 40 U RNAse block (Stratagene)) along with 20 U of 

AMV-RT (Sigma) and incubated at 42°C for 1 hour. The extension reaction was 

electrophoresed on a polyacrylamide gel with an M13 sequencing ladder. The gel 
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was dried and visualized with X-ray film (Hyperfilm MP, Amersham Pharmacia 

Biotech). 

2.17 RNA preparation 

Total RNA was prepared from all nematodes using RNAstat-60/RNAzol/ 

TRISOLV (Biogenesis or GibcoBRL) according to manufacturers protocols. 

Nematodes were frozen at —80°C in a minimum volume of PBS or DEPC treated 

water. Four volumes of RNAzol/TRISOLV was added for every volume of tissue 

and the sample disrupted with either a eppendorf homogeniser (Biomedix) or using a 

custom built metal percussive disrupter cooled to —80°C. The RNA was extracted 

from the disrupted samples by adding 100 iL of chloroform (HPLC grade, Sigma) to 

every 0.5 mL of homogenate. The mixture was shaken vigorously, allowed to sit at 

room temperature for 3 minutes and then centrifuged at 13,000 rpm ( at 4°C) for 10 

minutes. The aqueous layer was transferred to a fresh eppendorf and the RNA 

precipitated with 250 tL of isopropanol (MB grade, Sigma). The RNA was pelleted 

by centrifuging at 13,000 rpm (4°C) for 10 minutes. The pellet was washed with 1.5 

ml, 75% ethanol and centrifuged for 5 min at 13,000 rpm (4°C). The ethanol was 

carefully removed and the pellet air dried. The pellet was then stored at -80°C or 

resuspended in DEPC treated ultra pure MilliQ water and immediately used. 

2.18 Reverse Transcriptase PCR 

First strand cDNA was synthesized with the Ultra HF RT PCR Kit 

(Stratagene) according to manufacturer's protocols. Briefly, 1-6.4 RL of RNA 

template was added to 1 L of lOX stratascript RT buffer, 0.6 L 100 ng/mL of 

reverse oligo primer (either a specific primer or oligo dT) and 1 gL of 40 mM dNTP 

mix. The reaction was brought up to a final volume of 9 L with RNAse free sterile 

ultrapure water. The reaction was heated to 65°C for 5 min and then cooled to room 

temperature. 0.5 tL of Stratascript RT (IOU) and 0.5 tL (IOU) of RNAse block 

(Stratagene) were then added and the reaction incubated at 42°C for 30 mm. 

PCR was then performed using 1-2 gL of the first strand cDNA and two 

specific primers using the conditions described above. 

2.19 RACE cDNA synthesis and amplification of RACE fragments 



5'-RACE cDNA was synthesized using the GeneRacer Kit(Invitrogen) 

according to manufacturer's protocols . Briefly 200 ng of nematode polyA+ mRNA 

was treated with IOU of calf intestinal phosphatase for 1 hr at 50°C. The reaction 

was extracted with phenol : chloroform and the dephosphorylated RNA precipitated. 

The mRNA was then decapped with tobacco acid pyrophosphatase for 30 min at 

37°C. The reaction was extracted with phenol : chloroform and the decapped mRNA 

precipitated. The GeneRacer RNA oligo was then ligated to the 5' end of the 

decapped mRNA using T4 RNA ligase. The reaction was incubated at 37°C for 1 

hour. The ligation reaction was extracted with phenol chloroform and the mRNA 

precipitated. 

First strand cDNA was synthesized with SuperScript II RT (Stratagene) and 

oligo dT primer or a tagged oligo dT primer. PCR was then performed with specific 

reverse primers GeneRacer 5' (5'- CGACTGGAGCACGAGGACACTGA -3') 

primer using 5 tL of RACE cDNA as template. PCR was performed with AGS-Gold 

Taq (Hybaid) using the standard PCR conditions described above. 

2.20 Random Prime Labeling of DNA with Biotin 

Purified PCR product was randomly labeled with the NEBlot Phototope Kit 

(NEB Inc) according to manufacturer's protocols. 500 ng - 1 jig of DNA in 34 gL of 

water was denatured for 5 min at 95°C. 10 jtL of 5X labeling mix (containing 

biotinylated random octamers), 5 gL of dNTP mix (containing biotin-dATP) and 1 

}.IL of Klenow fragment (3'->5' ex0) were then added to the DNA. The reaction was 

incubated at 37°C overnight. The reaction was stopped by adding 5 RL of 0.2 M 

EDTA pH8.0 and precipitated with 5 pL of 4 M LiC1 and 150 jtL cold ethanol. The 

labeled DNA was pelleted at 13,000 xg for 30 min and then washed with 70% 

ethanol. The pellet was resuspended in 20 pL of 1X TB and stored at —20°C until 

use. 

2.21 Restriction Digests 

300 ng - 1 gg of DNA was digested with the restriction enzyme according to 

manufacturer's protocols. 8 tL DNA was added to 1 L of 1 Oreaction buffer (and 

0.5 .tL BSA if needed). 1 pL of enzyme was then added and the reaction incubated at 
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37°C for 3 to 10 hrs until the DNA is fully digested. The reaction was then 

electrophoresed on a 0.7-1% agarose gel with ethidium bromide and the DNA 

visualized with a UV transilluminator. 

2.22 SAP/EXO Treatment of PCR products 

To remove excess primers and dNTPs from PCR reactions before sequencing 

the products were treated with shrimp alkaline phophatase 1 (SAP) and exonuclease I 

(EXO). To 15L of PCR product 1tL SAP (1U/ml, Amersham) and 1.5 gL of 

diluted EXO (0.1 U /tL) was added. The EXO was diluted in dilution buffer 

provided with the SAP before use. The reaction was incubated on a PCR block using 

the following conditions 37°C for 30 min and then 80°C for 15 mm. The 'cleaned' 

PCR product was then added directly to the sequencing reaction. 

2.23 Southern Blot 

Southern Blotting was performed according to Maniatis et. al. (Maniatis et. 

al., 1982). Briefly the digested DNA was electrophoresed on 0.7-1% agarose gel. 

After electrophoresis the gel was incubated in depurinating solution (0.25 M HC1) 

for 15 mm, washed with water, incubated with denaturing solution (0.5 M NaOH, 

1.5 M NaCl) for 20 mm, washed with water, washed in neutralizing solution (1 M 

Tris HCL pH7.5, 1.5 M NaCl) for 20 min and blotted overnight onto a nylon 

membrane using capillary action in the presence of lox SSC overnight. The blotted 

DNA was crosslinked to the membrane using a UV transilluminator. Hybridization 

and detection with biotin labeled probes was carried out as described above. 

2.24 Subcloning PCR products (TOPO-T or pGEM-T) 

PCR products amplified with Taq or other polymerases that tailed the DNA 

with A overhangs were subcloned using the TOPO-T (Invitrogen) or pGEM-T 

(Promega) cloning kits according to manufacturer's instructions. 

1 pL TOPO-T vector was mixed with 1 gL cloning buffer and 4 L of PCR 

product (either purified or straight from the PCR reaction). The mixture was 

incubated at room temperature for 15 minutes. 3 tL of the reaction was then 

transformed into chemically competent TOP 10 cells. The transformed cells were 

plated on LB-ampicillin-kanamycin and single colonies picked and tested for inserts 
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the reaction was then transformed into chemically competent XL-1 blue cells. The 
- -. I I I • 1 1 1) 

1 

by PCR. Plasmid DNA was prepared from positive clones using the QlAprep Spin 

Miniprep Kit (Qiagen). 

1 pL pGEM-T vector was mixed with 1 pL lox ligase buffer and 8 tL of 

PCR product (always purified). The mixture was incubated at 4°C overnight. 5 L of 
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Chapter 3 

Design and implementation of an EST clustering algorithm and 

analysis of the B. malayi EST dataset 



3.0 Introduction 

One of the major goals of the filarial genome project was the development of 

bioinformatics tools for the analysis and presentation of the filarial genome project 

EST datasets. These tools include a process for 'clustering' the ESTs into a non-

redundant set of gene fragments. Not only would the clustering of the filarial ESTs 

allow the assessment of the productivity of the gene identification effort but they 

would provide a smaller more comprehensive dataset of gene fragments that could be 

used in subsequent analyses or resource development. Initially the publicly available 

EST clustering algorithms were examined and their suitability for the project 

assessed. The currently available EST clustering algorithms are described below. 

Unfortunately the algorithms available at the time did not meet the specifications 

outlined by the genome project community so the development of novel algorithm 

was under taken. The development, subsequent refinement of this algorithm and an 

analysis of the B. malayl and 0. volvulus EST datasets is described. 

3.1.0 Publicly available EST clustering methods 

Over the past five years various EST clustering algorithms or processes have 

been described. None of these algorithms present perfect solutions for all EST 

clustering projects and features such as portability, computational requirements and 

scalability must be considered when deciding if an algorithm will provide an 

appropriate solution. The features of several publicly available or published 

clustering algorithms are outlined below. Table 3.1.0.1 summarizes the relevant 

features of the described algorithms. 
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Name of Tool Description of Algorithm Are previous Public Portability Reference 
cluster numbers Availability 

retained 
between builds 

THC_BUILD TIGR EST clustering algorithm uses Yes (a post No No (Liang et. al., 
MEGABLAST to construct index process event) 2000; 
tables of sequence overlap. These are Quackenbush et. 
used to construct an initial set clusters. al., 2000) 
CAP3 is then used to refine the initial 
clusters. EST contigs and consensus 
sequences generated with CAP3 

UNIGene Uses MEGABLAST to determine Yes/No No No (Boguski and 
initial relationship between ESTs. Schuler, 1995) 

INCA Uses BLAST searches to build No Yes Yes (Graul and 
database of overlap relationships with Sadee, 1997) 
other sequences. Not designed for EST 
clustering 

SEAL Set of tools which can be used to No Yes Yes (Walker and 
construct large sets of automated Koonin, 1997) 
BLASTs and parsing of results. Not 
designed for EST clustering 

STACK —PACK Uses d2 cluster a word based Yes/No Yes Yes (Miller et. al., 
clustering algorithm which uses 6mer 1999) 
overlaps used to construct super 
clusters. Phrap used to build sequence 
assemblies. CRAW and 
CONTIG PROC used to derive and 
assess consensus sequence 

JESAM Uses word based clustering algorithm No Yes No (Parsons and 



with 12 mer overlaps used to build Rodriguez- 
database of super clusters. Smith- Tome, 2000) 
Waterman style sequence comparison 
of super cluster members to verify 

ICAtools Fasta like search to measure sequence No Yes Yes (Parsons, 1995) 
redundancy in ESTs can extract set of 
non-redundant sequences from dataset 

Table 3.1.0.1. Summary of the relevant features of the seven described EST clustering algorithms. A short description of the process, if cluster 
numbers are retain between database rebuilds, public availability, portability between systems and references are listed. 
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3. 1.1 BLAST and FASTA based algorithms 

THC BUILD, the TIGR EST clustering process that is used to build the TIGR 

gene indicies (GIs) uses MEGABLAST (Zhang et. al., 2000) to identify overlapping 

sequences. These overlaps are stored in a local relational database and those sequences 

which have >95% identity over 40 nts and have <20 nts non-overlapping sequence are 

grouped in a cluster. CAP3 (Huang and Madan, 1999) is used to refine the clusters and 

each assembled contig is assigned its own GI number. These assemblies are then used to 

generate a consensus sequences. The assigned GI numbers are kept between rebuilds of 

the database and merger or split events of clusters are logged within the GI database. 

THC BUILD is not publicly available and because its functions are intrinsically linked 

to TIGR's local database it is not portable to other systems. 

The NCBIs UNIGene (Boguski and Schuler, 1995) algorithm uses 

MEGABLAST comparisons of the EST sequences to find sequences that overlap above 

a preset threshold. Full length cDNAs and 3' EST sequences are used as anchor 

sequences for the assembly of 5' EST sequences which are associated with the 3' 

anchor sequences by their clone identities. 5' EST sequences that do not overlap in 

sequence with the 3' sequences are still placed in the same assembly group. UNIGene 

cluster numbers are kept from previous database builds. However, events that merge 

clusters are not tracked, so it is not possible find newly formed clusters using the old 

UNIGene numbers. The UNIGene process is not publicly available. 

Iterative neighborhood cluster analysis (INCA, (Graul and Sadee, 1997)) is a 

Java based program which performs iterative blast searches beginning with a given 

starting sequence and proceeding through any other sequence achieving a predefined 

minimum alignment score. The results of the searches are compiled and a cluster of 

sequences is defined in which all the constituents are related to at least one other cluster 

member (within the defined cutoff score). INCA is freely available and easily portable 

to any system that can run Java and local of versions of BLAST. The length of time 

taken to assemble the clusters depends on the size of the database being searched by 

BLAST. While INCA can be used to derive EST clusters it was not initially designed to 

perform this task and does not have any functions that deal with problems specific to 

ESTs such as poor sequence data and chimeric clones. 

SEALS (System for Easy Analysis of Lots Sequences, (Walker and Koonin, 

1997)) is a set of perl based scripts which allow the easy manipulation and analysis of 

large numbers of sequences. The SEAL component SPLAT is a tool for constructing 
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iterative searches with BLAST and can be use to build clusters of related sequences. 

However, like INCA it was not initially designed to perform this task and does not have 

any functions that deal with problems specific to ESTs. 

3.1.2 Word based algorithms 

STACK—PACK (Miller et. al., 1999) is a suite of tools that will take a set of 

given sequences and derive a set of super clusters using the d2—cluster algorithm (Burke 

et. al., 1999). d2—cluster is a word based 'greedy' clustering algorithm which counts 

word matches (usually 6 mers). Sequences in super clusters are then assembled using 

Phrap (Phil Green et. al. unpublished). Consensus sequences are generated with the tool 

CONTIGPROC. The Phrap assembles are examined with CRAW which sorts related 

sequences within the multiple sequence alignment and will generate subclusters if there 

is heterogeny within the clustered sequences. In the most recent release of 

STACK—PACK (June 2001) supercluster IDs are kept between rebuilds of the database. 

Word based algorithms are inherently faster than alignment based algorithms and the 

entirety of the 3 million human ESTs in dbEST were clustered in 36 hrs on a 126 CPU 

SGI Origin 2000 (Miller et. al., 1999). STACK—PACK is not available on all Unix 

platforms which presents portability problems to some systems. 

Like STACKPACK, JESAM is a word based clustering algorithm. JESAM 

uses a BLAST style dynamic programming algorithm and gap penalty scheme which 

identifies and stores 12mer alignments (Parsons and Rodriguez-Tome, 2000). The 

algorithm then uses a database of these 12 mer alignments to construct superclusters. 

Once the superclusters are defined a secondary assembly program like CONTIGPROC 

and CRAW, CAP3, or Phrap must be used to derive multiple sequence alignments and 

consensus sequences. JESAM is freely available and when used in a parallel processing 

environment can quickly derive superclusters for large numbers of sequences (>120,000 

ESTs clustered with 11 CPUs in 5 hrs (Parsons and Rodriguez-Tome, 2000)). However, 

to run JESAM requires the installation of Java, CORBA, C++ and IDL software and its 

performance outside of a parallel processing environment has not been published. 

3.1.3 Other clustering algorithms 

ICAass (Parsons, 1995) a component of the ICAtools package, uses a FASTA 

like search with an asymmetric scoring scheme that measures redundancy within 

sequence datasets. Several specialized cluster browsing tools also included with 
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ICAtools allow the searching or extraction of a non-redundant set of sequences from a 

starting database. ICAtools is freely available for several Unix platforms and has been 

ported to MacOS. Unfortunately, ICAtools memory usage scales linearly while the 

computational time scales quadratically with the database size. Therefore, large datasets 

(>100,000 ESTs) can take almost a week to analyze on a single machine. The ICAtools 

package has been superceded by JESAM. 

3.2.0 Development of CLOBB 

When the filarial genome project began the sequencing and analysis of the B. 

malayi and 0. volvulus ESTs none of the publicly available clustering algorithms had 

all the desired specifications needed to produce a robust and updateable clustered 

dataset. Some like THC_BUILD required computational resources that were 

unavailable to the genome project. Others like ICAtools did not have the capacity to 

keep previously assigned cluster numbers consistent between database rebuilds. The 

following specifications were outlined as being required for the clustering algorithm 

used to analyze the filarial EST datasets. 

- The process must keep previously assigned cluster numbers between database 

rebuilds. 

- The process must have the capacity to deal with library based artifacts particularly 

chimeric ESTs which are abundant in cDNA libraries constructed with PCR based 

methodologies. 

- The process and its output must be portable to a variety of systems to be fully 

utilized by the filarial genome community. 

To achieve this goal a new EST clustering schema was designed called CLOBB 

(CLustering On the Basis of Blast Similarity). The BLASTN algorithm was chosen as 

the tool for generating alignments of EST sequences because of its public availability 

and its readily parsable output. CLOBBvO.1 was written by D. B. Guiliano (Blaxter 

Lab, ICAPB). The CLOBBv0. 1 code was subsequently revised by J. Parkinson (Blaxter 

Lab, ICAPB) to the presently used version CLOBBv1.0. Two versions of CLOBB were 

written in perl and both are described below. All of the analyses with both CLOBBv0. 1 

and CLOBBv1 .0 were performed on either a SGI 02 workstation running IRIX 6.2 or 

Pentium 800 workstation running Redhat Linux 7.1. 

3.2.1 CLOBBvO. 1 



Before sequences were clustered with CLOBBvO. 1, fragments of ribosomal SSU 

and LSU RNA and E. coli sequences were filtered from the dataset. All ESTs were 

compared to known SSU and LSU rDNA sequences from B. malayi and the whole E. 

coli genome sequence using the BLASTN algorithm (Altschul et. al., 1997). Any 

sequences showing matches with p-values of < e 50  were separated, considered 

contaminants and removed from further analysis. 

CLOBBvO. 1 is an iterative process. A query EST is compared to a database of 

previously clustered sequences with the BLASTN algorithm. If the query sequence is 

the first sequence to be clustered it is compared to an empty database. The results of the 

BLASTN search is parsed and any matches with p-values of e 50  are logged. If the 

sequence does not have any logged matches to sequences to the database the query 

sequence is given a new cluster number (BMC##### for B. malayl sequences or 

OVC##### for 0. volvulus sequences). If there are logged matches to sequences in the 

database they are analyzed. If all matches are from the same previously designated 

cluster the sequence is assigned to that cluster. If the sequence matches two or more 

previously designated clusters then the sequence is removed from the analysis and an 

error logged to allow manual curation of the sequence. After the sequence is assigned a 

cluster number it is then added to the cluster database. The database is reformatted and 

next sequence searched against the database. Figure 2.1.1 shows a summary of the 

CLOBBvO. 1 algorithm schema. 



A Collect ESTs 
from dbEST. 

Filter ESTs 

B for ribosomal 
and E.coli 

contamination. 

4, 

C Compare EST to 
Cluster DB with 

BLASTN. 

Does the EST hit any 

Yes 
//" previously clustered ESTs? 

No 

Search hit ESTs and 
check cluster numbers. 

Yes Does the ENO 

, 
hit >1 defined 

cluster? 

Log error and exclude EST from 
further analysis. Relationship 

of the EST and hit clusters 
to be resolved by mannual curation. 

Figure 3.1.lThe CLOBBvO.l clustering schema. The pre-clustering processes of collecting the ESTs 
from dbEST (A) and filtering the ESTs for rDNAJ E. coil contamination (B) are also shown. The 
CLOBBvO.1 process starts at section (C) Yes switches are colored red and no switches are colored blue. 
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2.2.2 CLOBBv1.O 

After the initial use of CLOBBv0. 1 to cluster the B. malayi and 0. volvulus EST 

datasets it was decided that while the results of the analysis were sufficiently accurate 

for a preliminary analysis, there were several intrinsic problems with the algorithm. 

First the match criteria (p-value <e  50) was flawed. The maximum p-value for a 

match is dependent on the length of the probe sequence and the size of the database 

being search. Short sequences (<150 bp) cannot generate sufficiently high p-values to 

meet the match criteria and therefore will never be added to an existing cluster. Hence 

the number of singleton clusters is artificially inflated with short ESTs. Conversely very 

long sequences that have sufficient (but not perfect) identity would generate p-values 

that would pass the match criteria. This becomes problematic when gene families are 

examined as closely related gene sequences could potentially be placed in the same 

cluster. 

Second CLOBBv0. 1 could identify potential problem sequences and isolate 

them from the rest of the analysis. However, the algorithm did not attempt to resolve the 

relationships of the problem sequence with the clusters it was matching. This task was 

performed manually and large datasets sometimes required considerable amounts of 

curation. 

To address these problems Dr. John Parkinson (Blaxter laboratory Edinburgh 

University) revised several portions of the CLOBBvO.1 algorithm and produced 

CLOBBv1.0. All ESTs clustered with CLOBBv1 .0 were filtered for rDNA and E. coli 

contaminants as described above. Like CLOBBv0.1, CLOBBv1.0 is an iterative 

process. All of the sequences to be analyzed are placed in a single directory in fasta 

format. When CLOBB is run a list is made of the files in this starting directory. If the 

process has been used previously to build clusters with the sequences in the directory 

the old master file is read to determine the number of the last identified cluster. The first 

EST is then compared to the current cluster database using BLASTN. The BLAST 

output is searched for high-scoring segment pairs (HSPs). For all HSPs with an identity 

of ? 95% and length >30 nt, the hit sequence is logged as a type I' match. Those 

sequences with no type I matches are assigned a new cluster number. The list of type I 

matches is then checked to find any problems associated with the matches. The 

beginning and end positions of the match between the query sequence and the matching 

sequence are logged. If the overlap of the two sequences does not extend more than 30 

bases outside the HSP then the match is designated a 'type II' match. If the positions 
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overlap beyond the HSP match by >30 nt indicating the HSP does not extend over the 

entire length of the two sequences, the query sequence is checked for the presence of 

low quality sequence. The quality of the sequence is assessed by the number of Ns in 

the region of sequence overlap. If the non-HSP overlap includes more than 10% of the 

query sequence length and the sequence is deemed to be of high quality then the match 

is designated a 'type III' match. If the non-HSP overlap includes more than 10% of the 

query sequence length and the sequence is deemed to be of low quality then the match 

is designated a 'type II' match. The list of type II and type III matches is then analyzed. 

If the matches are to sequences within a single cluster and all the matches are type II 

matches then EST is assigned the cluster number of the hit sequences. If the matches are 

to sequences within a single cluster and there are both type II and type III matches the 

sequence is assigned a new cluster number. This prevents chimeric ESTs or alternately 

spliced transcripts from being added to established clusters. These types of matches are 

catalogued for post-process analysis and manual curation. If two or more type II 

matches to sequences from different clusters are found then the overlap of the two HSPs 

is reanalyzed. If they are not overlapping then the query sequence links the clusters and 

they are merged into a single cluster with the lowest indexed cluster number. If the 

matches are to overlapping sections of the query sequence then the query sequence is 

assigned the cluster number of the type II match with the highest blast score. Figure 

3.2.1 shows a summary of the CLOBB1.0 algorithm schema. Like CLOBBvO.lonce a 

query sequence has been assigned a cluster number it is added to cluster database which 

is then reformatted before the next search. 
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Figure 3.2.1The CLOBBv1.0 clustering schema. The description of the schema starts at section C in 
the CLOBBvO,1. Yes switches are colored red and no switches are colored blue. Based on figure from 
Parkinson et. al. 2002 submitted. 
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3.3 Comparison of Clusters generated with CLOBBvO.1 and CLOBBv1.O 

To further assess the differences between EST clusters generated with 

CLOBBvO.1 and CLOBBv1,O the B. malayi and 0. volvulus EST datasets were 

clustered with both algorithms. The number of clusters generated and the number of 

ESTs within each cluster were compared. Figure 3.3.1 shows a comparison of the 

results of the clustering 
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Figure 3.3.1 Comparison of the CLOBBvO. 1 and CLOBBvl.O clustering of the B. malayi and 0. volvulus EST datasets. The x-axis shows the number 
of EST sequences in the cluster while the y-axis shows the number of clusters found with those numbers of ESTs. The number of clusters in each group 
is also shown in the table below the x-axis. 



The comparison of the results shows that there were fewer single EST clusters 

(singletons) in the dataset generated by CLOBBv1.0. In the B. malayi dataset twelve 

percent of the singleton clusters generated in the CLOBBvO. 1 analysis were integrated 

into larger clusters in the CLOBBvl .0 analysis while in the 0. volvulus dataset nine 

percent of the singleton clusters were integrated into larger clusters. There are also 

fewer clusters with more than thirty ESTs in the B. malayi dataset generated by 

CLOBBv1.0. Twenty four percent of these large clusters were split into smaller clusters. 

3.4 Renaming CLOBBv1.O clusters 

Analyses of clusters generated with CLOBBvO. 1 algorithm have already been 

published (Blaxter et. al., 1999; Lizotte-Waniewski et. al., 2000; Maizels et. al., 2001; 

Williams, 1999; Williams et. al., 2000). Keeping the cluster names consistent between 

database rebuilds is extremely important to the filarial research community so the 

cluster numbers from the CLOBBvO. 1 dataset needed to be assigned to the 'orthologous' 

cluster built by CLOBBv1.0. To perform this task a perl script called 

Cluster—name—mover was written. Figure 3.4.1 summarizes the schema of the 

cluster—name—Mover process. 

Cluster—name—mover took the clusters generated by CLOBBvO. 1 and searched 

the constituent ESTs against the CLOBBv1 .0 cluster database. The names of the 

clusters assigned to the ESTs in the CLOBBv1.0 database were collected. Then the 

CLOBBv1 .0 cluster number(s) were researched against the CLOBBv1 .0 to collect any 

additional ESTs belonging to the cluster(s). These ESTs were then researched against 

the CLOBBvO.1 database and any additional cluster numbers collected. If after this first 

round of searching the list of ESTs collected by Cluster—name—mover were equivalent 

between the CLOBBvO. 1 and CLOBBv1.0 datasets then the script would generate an 

output of the relationships of the gathered cluster(s). If the number of clusters collected 

from each dataset was equal to one then the clusters were logged as being equivalent 

(i.e. they had the same constituents in both analyses) and the CLOBBvO. 1 cluster 

number assigned to the CLOBBv 1.0 cluster. If the number of clusters collected from the 

CLOBBvO. 1 dataset was greater than one and only one cluster was found in the 

CLOBBv1.0 dataset a merge event was logged. The lowest CLOBBvO.1 cluster number 

was assigned to the CLOBBv1.0 cluster and the remaining CLOBBvO. 1 clusters logged 

as being subsumed into the first CLOBBvO. 1 cluster. If the number of clusters collected 

from the CLOBBv1 .0 dataset was greater than one but only one cluster was found in the 
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CLOBBvO.1 dataset then the a split event was logged. The CLOBBvO.1 cluster number 

was assigned to the CLOBBv1.O cluster with lowest ID number and the other 

CLOBBv1.O clusters given new numbers to prevent overlap with any numbers already 

allocated by the process. If the list of ESTs collected from the datasets was not 

equivalent after the first round of searching, or the relationship between the cluster(s) 

collected from both datasets did not meet any of the conditions listed above an error was 

logged and the cluster(s) put on a list called complex—relationships. This list was then 

searched if the list of ESTs collected were equivalent and the total number of ESTs in 

the collected clusters were also equal to each other, the process would output a report 

summarizing the relationships shared by the clusters. The output was analyzed manually 
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After all the relationships between the clusters in the CLOBBv0.1 and 

CLOBBvl.0 datasets were determined the clusters in the CLOBBv1.0 dataset were 

renamed with the appropriate CLOBBv0.1 cluster number. Table 3.4.2 summarizes the 

results of this renaming process. 

B. malayi 0. volvulus 
number of equivalent clusters 6382 2968 

number of split clusters 579 187 
number of merged clusters 555 233 

number of newly allocated cluster 
numbers  

306 118 

Table 3.4.2 Results summary of the CL013130.1 and CL013130.0 renaming process for the B. 

malayi and 0. volvulus datasets. The number of equivalent, split and merged clusters is listed. 
The number of new cluster numbers allocated to avoid overlap of cluster numbers between the 
two datasets is also listed.  

3.5 Post CLOBB processing of EST sequences and clusters 

After the ESTs have been clustered several post-clustering processes are 

performed. First a set of consensus sequence(s) are predicted for each cluster by 

aligning the EST sequences within each cluster. These consensus sequences are usually 

more accurate than individual ESTs as base calls and insertion/deletion events can be 

assessed with all of the aligned sequences. Overall, these consensus sequences are 

longer than the individual ESTs and overlaps between ESTs beginning in different 

sections of the gene often allow the prediction of a consensus sequence that represents 

almost the entire length of the cDNA. These consensus sequences can then be used in a 

variety of analyses including extensive database comparisons and the prediction of 

potential protein sequences. The resulting data can then be parsed into searchable 

databases that allows the community to access the results of the cluster analysis as well 

as post clustering analyses 

3.5.1 Deriving EST consensus sequences 

To derive the consensus sequences for those EST clusters with >1 EST two 

publicly available assembly algorithms have been tested: Phrap and CAP3 (Phil Green 

et. al. unpublished) (Huang and Madan, 1999). After beta testing both algorithms CAP3 

was chosen to perform the contig assembly of the EST cluster because its more 

stringent assembly parameters gave more reliable consensus sequences with fewer 

insertion or deletion events. Other groups have also chosen CAP3 to derive consensus 

sequences from assemblies for this reason (Liang et. al., 2000). Because of this 
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stringency there are instances when CAP3 was unable to produce a single assembly 

from the ESTs in the cluster. Multiple assemblies are given the cluster number along 

with a contig number so that each of the contigs can be examined separately 

(BMC#####_contigl for example). If CAP3 was not able to derive a contig from the 

EST cluster then Phrap was used to create an assembly. 

3.5.2 Comparison of EST cluster consensus sequences to other publicly available 

sequences and derivation of potential protein sequences from B. malayi consensus 

sequences 

The B. malayi and 0. volvulus cluster consensus sequences were compared to a 

set of custom-built dtahases derived from GenBnk Thhle lists the databases 

nces. BLAST 



Database Blast 
algorithm used 
to search the 

database 

Description in 
Venn diagrams 

Number of 
sequences 

in 

Number of 
nt or aa in 
database 

 database  

Database contents 

xrest blastx Other Phyla 659,241 195,291,993 All non-nematode protein sequences in genbank 

xnon blastx Other Nematodes 1,428 354,439 All non-C. elegans nemtode protein sequences in genbank 

xce blastx C. elegans 25,645 11,589,474 All predicted C. elegans protein sequences in wormpep2l 

xdm blastx D. melanogaster 14,348 7,182,582 All predicted D. melanogaster protein sequences 

xhs blastx Hsapiens 37,526 15,217,171 All predicted H. sapiens protein sequences 

txcladel tblastx Clade I 5,085 2,408,302 All Clade I DNA sequences in genbank (mostly ESTs) 

txcladelV tblastx Clade IV 29,037 12,878,231 All Clade IV DNA sequences in genbank (mostly ESTs) 

txcladeV tblastx Clade V 19,776 97,281,089 All Clade V DNA sequences in genbank (many ESTs) 
including the C. elegans genome sequence. 

txascarid tblastx Ascarid 1625 931,177 All ascarid DNA sequences in genbank (mostly ESTs). 

txov tblastx 0. volvulus 15,502 6,558,555 All 0. volvulus DNA sequences in genbank (mostly ESTs). 

txbm tblastx 1 B. malayi 26,606 12,507,647 All B. malayi DNA sequences in genbank (mostly ESTs). 

Table 3.5.2.1 Summary of the BLAST searches performed with the B. malayi and 0. volvulus consensus sequences. The table shows the names of the 
custom databases built for searching with the filarial EST consensus sequences, the blast algorithm used to search the database, the number of sequences in 
the database, the number of nucleotides or amino acids residues in the database, the description given to the dataset in the Venn diagrams presented in the 
results and the contents of each database. These databases were constructed on 8/10/01.  
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The protein sequences predicted from the B. malayi cluster consensus sequences 

were kindly provided by Dr. John Parkinson (Blaxter Lab, ICAPB Edinburgh University). 

The Decoder algorithm (Fukunishi and Hayashizaki, 2002) was used to predict potential 

protein sequences from the cluster consensus sequences. Decoder was written by the 

RIKEN group to make protein predictions from the human and mouse EST datasets. It can 

utilize chromatograph quality data to help reduce premature truncation of protein 

translations due to poor quality sequence. Because Decoder only begins protein sequences 

at a methionine (Met) residue a post process was written that looked upstream of the 

potential start Met for possible extensions to the Decoder predicted protein (Parkinson et. 

al. 2001 per. corn). 

3.5.3 Parsing of EST clusters into searchable databases 

Custom databases have been constructed in FileMakerPro (v5.0, FileMaker Inc.) to 

house the EST cluster data and allow the research community access to the clusters and 

dataset analyses both locally and through the world wide web (Parkinson et. al., 2001). For 

the analyses described below the EST clusters, consensus sequences and results of the 

consensus sequence blasts were imported in to a custom built FileMakerPro database. For 

each EST cluster the length of the longest consensus sequence and predicted protein 

sequence were calculated and imported into the FileMakerPro database. This dataset was 

then searched using the query capacity built into FileMakerPro. 

3.6 Cluster analysis of B. malayi EST datasets and evaluation of gene discovery effort 

In total 20,626 B. malayi ESTs sequences were analyzed. These sequences 

originated from fourteen separate cDNA libraries (see figure 1.2.3.4. and table 1.2.3.4.3). 

After filtering for rDNA and E. colt sequences 18,740 sequences were grouped into 8,403 

clusters. Table 2.6.0.1 shows the results of the cluster analysis for each cDNA library and 

the total dataset. The redundancies of the datasets were calculated by dividing the number 

of ESTs in the dataset by the number of clusters generated by CLOBBv1.0. 
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Library Total 
Number of 

ESTs 

Number of 
rDNA seq. 

Percent 
dataset 

Number of 
E.coli seq. 

Percent 
dataset 

Number of 
Clustered 

ESTs 

Number of Intra-library 
Clusters Redund. 

Total 
Redund. 

Number of 
Library 
Specific 
Clusters 

Percent of 
Library 
Specific 
Clusters 

Curators Comments 

Bmlvlf 1898 289 15 4 <1 1605 1130 1.4 1.7 672 59.5 Very rDNA 
contaminated 

BmIVIfZ 1402 30 2 0 <1 1372 1019 1.3 1.4 675 66.2 

BmL2 609 0 <1 1 <1 608 241 2.5 2.5 81 33.6 Many chimeras 

BmL3 1930 82 4 5 <1 1843 1204 1.5 1.6 700 58.1 

BmL3SL 298 0 <1 0 <1 298 188 1.6 1.6 71 37.8 

BmL3SA 213 4 2 8 4 201 131 1.5 1.6 37 28.2 Some chimeras, Some E. 
co/i and rDNA 
contamination 

BmL3SB 334 34 10 2 1 298 162 1.8 2.1 39 24.1 Some chimeras and very 
rDNA contaminated 

BmL3SZ 805 5 1 8 1 792 462 1.7 1.7 243 52.6 

BmL3D6 1491 152 10 9 1 1330 786 1.7 1.9 596 75.8 Very rDNA and E.co1i 
contaminated 

BmL3D9 240 30 13 14 6 196 147 1.3 1.6 39 26.5 Very rDNA and E. co/i 
contaminated 

BmL4 664 190 29 5 1 469 277 1.7 2.4 95 34.3 Very rDNA and E. co/i 
contaminated 

BmL4SL 1061 0 <1 1 <1 1060 463 2.3 2.3 268 57.9 Some chimeras 

BmYD25 1072 195 18 22 2 855 477 1.8 2.2 226 47.4 VeryrDNA 
contaminated and some 
E. co/i contamination 

BmYD29 311 18 5 0 <1 186 146 1.3 2.1 54 37.0 Very rDNA 
contaminated 

BmAM 4660 362 8 6 <1 4292 2642 1.6 1.8 1799 68.1 Some rDNA 
contaminated 

BITIAF 3638 291 8 12 <1 3335 2021 1.7 1.8 1201 59.4 Some rDNA 
contaminated 

Total 20626 1682 8 97 <1 18740 8403 2.5 
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Table 3.6.0.1 Results summary of the CLOBBv1 .0 clustering of the B. malayi EST dataset. The number of ESTs sequenced from each library is 
shown as well as the number of rDNA and E.coli sequences removed from the datasets before clustering. The number of clusters containing 
sequences from each library is listed with the level intralibrary sequence redundancy (calculations performed without the filtered rDNA and E.coli 
sequences). The redundancy of the library as calculated by comparison with the complete EST dataset is also shown. The number of clusters 
containing sequences exclusively from the library and percentage these clusters represent of the library dataset is shown. Curators comments on the 
general characteristics of the library rDNA /E.coli contamination and the incidence of chimeric ESTs is also shown The numbers in red highlight 
calculations that indicate that the library no longer represents a productive sequencing substrate, either because of high rates of rDNA/ E. coil 
contamination or high levels of redundancy within the dataset. 
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Besides deriving a non-redundant gene set that can be the subject of other 

analyses the cluster analysis helps the filarial gene discovery program monitor the 

productivity of the EST sequencing effort. One of the major problems with extensive 

EST sequencing from many of the B. malayi cDNA libraries is the high level of 

rDNA clones. In six of the cDNA libraries (BmMf, BmL3SB, BmL3D6, BmL3D9, 

BmL4 and BmYD25) more than ten percent of the sequenced ESTs have been 

tagged as rDNA. In total, eight percent of the B. malayi EST dataset has been tagged 

as rDNA. For the BmMf and BmL3cDNA library the subtractive hybridization 

(BmMfZ and BmL3Z) of rDNA clones and other abundant transcripts increased the 

rate of new gene discovery. The majority of the cDNA libraries have less than one 

percent of the clones being tagged as E. co/i contamination. However, the BmL3D9 

cDNA library has six percent of the sequenced clones tagged as being derived from 

E. coli. 

The calculated redundancy of a dataset gives an estimate of the productivity 

of the gene discovery effort. The overall redundancy of the B. malayi EST sequences 

(2.5) indicates that each cluster contains an average of 2.5 ESTs. Usually sequencing 

from a library will end after a redundancy of 2 to 2.5 is reached. However, clustering 

of the B. malayi ESTs has shown that 70% of the sequences have been placed in 

single EST clusters (see table 3.6.0.1). In addition, when the individual library 

datasets are examined almost half still have redundancies of less than two. This 

indicates that a small number of highly represented sequences are responsible for 

high redundancy seen in the total dataset. Remarkably, the redundancy of the BmAM 

and BmAF cDNA libraries has remained low despite the fact that more than 3000 

ESTs have been sequenced from each library. 

By examining how many clusters are unique to a library it is possible to get 

an estimate of how many transcripts in the library might be unique to that stage. 

Abundant transcripts that have only been observed in a particular library may 

represent differentially expressed genes. Four of the B. malayi libraries (BmMf,  

BmL3D6, BmAM, BmAF) show higher incidence of unique sequences relative to 

the other libraries. The majority of these sequences are not clustered with any other 

EST. It is possible these libraries contain a more diverse set of transcripts because 

stage specific biology required a larger number of different genes to be expressed at 

these time points. 
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Overall, the libraries generated with PCR based methodologies (BmL2SL, 

BmL3SA, BmL3SB and BmL4SL) show much higher rates of redundancy than the 

libraries generated by conventional methodologies. This is not unexpected as smaller 

abundant transcripts are going to amplify more efficiently than larger rarer 

transcripts. A second problem with the PCR based libraries is that they contain a 

higher incidence of chimeric clones than the conventional libraries. The clustering of 

ESTs from these libraries is more problematic because the chimeras can cause the 

inappropriate merging of gene clusters that do not actually overlap. The stringent 

HSP overlap rules built into the CLOBBvl .0 algorithm are used to help prevent these 

mergers. How successful CLOBBvl.0 has been in identifing these chimeric 

sequences is still under assessment. 

3.6.1 Characteristics of B. malayi EST clusters 

The B. malayi clusters have an average of 2.2 ESTs per cluster (excluding the 

contribution of the rDNA and E. coli contaminants to the dataset redundancy). Figure 

3.6.1.1 shows the distribution of the number of ESTs per cluster. The majority of the 

EST clusters contain only one EST. The average length of the B. malayi ESTs is 383 

bp in length and the average length of a consensus sequence is 547 bp. The length of 

the average consensus sequence is significantly longer than the average EST length 

(p < 0.0001 Man-Whitney test, performed in Minitab, Minitab Inc). Figure 3.6.1. 1A 

shows the distribution of the lengths of the B. malayi consensus sequences. The 

majority of the consensus sequences are between 200 and 600 bp in length (67%). 

The longest predicted consensus sequence is 1,970 bp in length. The average length 

of the longest protein sequence predicted from each cluster is 88 aa. Figure 2.6.1.1B 

shows the distribution of the lengths of the protein sequences predicted from the B. 

malayi consensus sequences. The majority of the protein sequences are between 0 

and 100 aa in length (62%). The longest predicted protein sequence is 510 aa in 

length. 
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Figure 3.6.1.1 Characteristics of the consensus sequences and predicted protein sequences derived 
from the B. malayi EST clusters. The graphs show the relative distribution of the lengths of the longest 
consensus sequence assembled from each cluster (A) or the longest protein sequences predicted from 
the consensus sequences (B). The x-axis shows the lengths of the sequences while the y-axis shows 
the number of clusters found with those lengths. The number of clusters belonging to each group is 
also shown in the table below the x-axis. 
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The results of the BLAST comparisons of the B. malayi consensus sequences 

to the public databases are summarized in figures 3.6.1.2 and 3.6.1.3. The results of 

both the whole dataset and several subdivisions of the whole dataset are shown in 

Venn diagrams. Remarkably, 64% of the EST clusters do not have significant 

similarities to any sequences in the public databases (see figure 3.6.1.2A). Analysis 

of the proteins predicted from the whole genome sequences of other animals (H 

sapiens (Lander et. al., 2001; Venter et. al., 2001), D. melanogaster (Adams et. al., 

2000) and C. elegans (consortium, 1998)) indicate that between 25-40% do not show 

significant similarities to other sequences in the public databases. Other nematode 

EST sequencing projects show levels of novel sequences which are consistent with 

the rates observed in other animal datasets (between 28 and 48% novel sequences 

Parkinson and Blaxter 2002 pers. corn.). This high rate of novel sequences in the B. 

malayi ESTs could be due to several factors that may represent inherent problems 

with this dataset. Several of these potential problems can be tested for in the dataset. 

These include the length of the consensus searched against the database, the fidelity 

of the consensus sequence, or the amount of protein coding potential contained 

within the consensus sequence. 

The length of the consensus sequence is an important factor determining 

whether BLAST finds a significant match in the database. The calculation of the 

BLAST p-value is based on the length and composition of the sequence alignment. 

Short consensus sequences may never achieve high enough scores to be counted as 

significant. This possibility can be tested by removing those clusters with short 

consensus sequences (< 300bp) from the analysis. 

The majority of the B. malayi consensus sequences are generated from single 

EST clusters. The stringent overlap parameters used by CLOBBv1.0 when 

generating the clusters ensures that low quality sequences will not be clustered with 

high quality sequences. If there is a high proportion low quality single EST clusters 

this may artificially inflate the number of novel sequences. By examining clusters 

with more than one EST these low quality sequences should be excluded from the 

analysis. However, one caveat to this analysis is that well characterized genes 

involved in general organism homeostatic functions tend to be abundant transcripts 

in the EST dataset. Therefore the results of this analysis may be skewed because the 

sampling of abundant transcripts may enrich for these genes. 



Not all transcribed RNAs are translated. Most of these untranslated RNAs are 

not polyadenylated and therefore should not be present in the filarial genome project 

eDNA libraries. However, because of the high AT content of the filarial genomes 

some of these untranslated RNAs may have internal homopolymeric tracks of 

adenines. During the construction of the eDNA libraries these tracks anneal to the dT 

oligos used to purify the mRNA away from the total RNA and prime first strand 

synthesis. In addition, the 5' and 3' untranslated regions (UTRs) of all eukaryotie 

mRNAs are also non-coding. Nematode 5' UTRs are generally short (consortium, 

1998). However, to ensure that UTRs and the contaminating untranslated RNAs are 

not responsible for the high levels of novel sequences in the B. malayi EST dataset 

the coding potential of each consensus was tested by examining the longest protein 

predicted by Decoder (Fukunishi and Hayashizaki, 2002). If the consensus sequence 

had a predicted protein over 50 aa then the sequence was considered to have a high 

coding potential. 

The results of the BLAST searches of the whole consensus sequences dataset 

against all proteins in GenBank are shown in figure 3.6.1.2A. The results of the 

BLAST searches of the subdivisions of the consensus sequences dataset are shown in 

figures 3.6.1.213-D. The significance of the differences in the percent of novel 

sequences in each subdivision and the whole dataset was evaluated using Chi2  

analysis (performed in Minitab, Minitab Inc.). In all three subdivisions the percent of 

the dataset that was novel was significantly lower than the whole dataset. (Chi2  

analysis with p-values < 0.001). The B. malayi clusters with >1 EST showed the 

lowest level of novels (43%). 
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Figures 3.6.1.2 and 3.6.1.3 Results of the BLAST searches of the B. malayi consensus 

sequences against the public databases. Each Venn diagram shows a three-way 

comparison of the results of the BLAST searches against three databases. The number of 

consensus sequences having significant matches to a single database are shown in the 

center of each circle. The number of consensus sequences showing a significant match (p-

value :5 e) to more than one database are listed at the interfaces of each circle. The 

number of consensus sequences with no significant matches to any of the listed databases 

is shown to the left of the Venn diagram. Figure 3.6.1.2A shows the results of the BLASTX 

searches against the xrest, xnem, xce databases. The summary of the whole dataset is 

shown in figure 3.6.1.2A The results of three subdivsions of the whole dataset those 

clusters with consensus sequences with lengths >300 bp Figure 3.6.1.2B, those clusters with 

>1 EST Figure 3.6.1.2C and those clusters with predicted protein sequences of >50 aa 

Figure 3.6.1.2D are also shown. Figure 3.6.1.3A shows the results of the BLASTX searches 

of the consensus sequences against the protein sequences predicted from the H. sapiens, 

D. melanogaster and C. elegans whole genome sequence. Figure 3.6.1.3.13 shows the 

results of the TBLASTX searches of the consensus sequences against the EST sequences 

of nematodes from Clades I, IV and V. Figures 3.6.1.3C and 3.6.1.3D show the results of the 

TBLASTX of the consensus sequences against the EST sequences of Ascarid, 0. volvulus 

and Clade I, IV and V nematodes. Purple circles indicate that the dataset is based on 

proteins predicted from whole genome sequence. Dashed ciricles indicate that the sequence 

dataset is substantially smaller than the other comparators. 
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Figure 3.6.1.3A shows the results of the BLASTX searches of the B. malayi 

against the protein sequences predicted from the genomes of H. sapiens, D. 

melanogaster and C. elegans. Only 33% had significant similarities to proteins in 

those datasets. The majority of the sequences with significant similarities (17%) had 

matches to proteins in all three datasets. Nine percent of the consensus sequences had 

matches to C. elegans but not to H. sapiens and D. melanogaster. These sequences 

represent a potential group of nematode- specific genes. Two percent of the 

sequences had significant similarities to sequences in the C. elegans and D. 

melanogaster datasets but not the H sapiens dataset. A similar number of sequences 

have similarities to C. elegans and H sapiens but not D. melanogaster. Interestingly, 

a similar small proportion of the dataset (2%) has similarities to D. melanogaster 

and/or H. sapiens but no similarity to C. elegans proteins. These may represent a 

group of genes that have been lost from C. elegans are still present in other animal 

genomes. 

Figures 3.6.1.313-1) show the results of the TBLASTX comparisons of the B. 

malayi consensus sequences against the EST datasets from other nematodes. Figure 

3.6.1.313 shows the results of searches against ESTs from the major nematode clades 

with species that have EST sequences deposited in genbank (clades I, IV, V). Like 

the searches against the protein sequences, the majority of the sequences (68%) do 

not have significant similarity to any of the dade I, IV and V nematode EST 

sequences. The majority of the similarities are found to ESTs from dade IV and V 

nematodes, which is not surprising because they represent the most heavily sampled 

groups. Figures 3.6.1.3C and D show the results of the TBLASTX searches against 

the dade III ascarid, 0. volvulus and the dade I, IV and V nematode EST datasets. 

Figures 3.6.1.3C shows the results of the total dataset while figure 3.6.1 .3D shows a 

subdivision of the B. malayi consensus sequences assembled from clusters with >1 

EST. Like the searches against other datasets the ESTs clusters with >1 EST are 

much more likely to have similarities to sequences in the dataset (64% vs 30%). In 

both datasets approximately 45% of the clusters had similarities to 0. volvulus ESTs. 

This indicates that unlike results of comparisons to other nematode datasets both 

abundant and rare transcripts are as likely to have similarities to EST sequences in 

the 0. volvulus dataset. 
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3.6.2 Analysis of abundant and differentially expressed transcripts of B. malayi 

One of the main goals of the gene discovery effort is to isolate the next 

generation of vaccine and drug candidates as well as provide insights into filarial 

nematode biology that would not be elucidated with directed research programs. The 

level of mRNA in a cell often correlates with the level of production of protein. Thus 

the EST datasets provide a platform which allows the researcher to identify the 

proteins the nematode produces either throughout the life cycle or in discrete 

developmental stages. 

3.6.2.1 Abundant transcripts of B. malayi 

To isolate the most abundant transcripts the B. malayi cluster dataset was 

searched and those clusters with> 40 ESTs examined. Table 3.6.2.1.1 lists the fifteen 

clusters identified in this search. Figure 3.6.2.1.2 shows the relative expression 

pattern of the twelve non-mitochondrial EST clusters. 
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Cluster Number Percent Similarities Gene References 
of ESTs of Total Names 

EST 
Dataset 
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Six of these abundant clusters have homologies to mitochondrial (mt) or 

ribosomal protein (rp) genes These highly expressed transcripts appear to be major 

components of most EST datasets examined to date. The comparison of the ESTs in 

the cox-2, cox-3 and ssu-mt clusters with the B. malayi mt-genome indicates the 

sequences originate from mt- mRNAs not mt-genomic contamination (Keddie et. al., 

1998). The remaining clusters can be divided into three categories: proteins of 

unknown function (novels), conserved metabolic enzymes and structural proteins and 

potential mediators of host-parasite interactions. 

Two abundant EST clusters BMC01618 and BMCO16O1 do not have any 

similarities to proteins in GenBank. Both clusters may not be coding as no large open 

reading frames can be identified in the consensus sequences. Both transcripts are 

hyper-abundant in the adult female EST dataset. 

Four of the hyper abundant EST clusters BMCOO 185 (rbp-1), BMC04376 

(cdd-l), BMC00030 (tin-]), BMC01688 (col) show similarities to proteins in the 

database that indicate they may serve roles as metabolic enzymes or structural 

proteins. Bm-rbp-I encodes a small RNA binding protein that has similarities to a 

sunbunit of the polyadenylation complex. The ESTs suggest that Bm-rbp-I is more 

abundantly expressed during the microfilarial stage of the parasites lifecyle. An 

ortholog of this gene has been cloned from Brugia pahangi where it was isolated L4 

stage as abundant SL-1 trans-spliced transcript (Anant et. al., 1997; Gregory et. al., 

1997). Bm-ccd-1 is predominately expressed at the L4 stage of the parasite. It shows 

similarities to cytidine deaminases, enzymes involved in RNA metabolism and 

editing. The B. pahangi ortholog of cdd-i has been shown to be enzymatically active 

however no evidence for RNA editing properties was detected (Anant et. al., 1997). 

EST abundances indicate Bm-tin-i(BMC00030, tropomyosin) is upregulated in the 

L3 stage of the parasite while BMC01688 (cuticular collagen) is upregulated during 

the young adult stages of the parasite. It is unclear why tin-1 would be upregulated at 

the L3 stage of development. Young adults are rapidly elongating and therefore must 

synthesize large amount of new cuticle components. BMC01688 may encode a 

collagen gene that is incorporated into this lengthening cuticle. 

Filarial nematodes interact with the host immune system and specifically 

down regulate host responses to filarial antigens (Allen and Loke, 2001). It is 

believed that proteins secreted by the parasite function as immunomodulators which 
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induce this down regulation and skew the host immune response in a manner which 

perpetuates parasite survival (Maizels et. al., 2001). The ESTs have identified a 

number of candidate immunornodulatory molecules. Several of these molecules are 

highly expressed these include alt-2 (BMC00213), tpx-2 (BMC0021 1) and vah-i 

(BMC00351) genes. Bm-alt-2 is a hyper-abundant transcript which is restricted to the 

L3 stage of the lifecycle. Bm-alt-2 and a second member of the alt gene family Bm-

alt-i, have been shown to secreted by filarial nematodes after they enter the 

mammalian host (Gregory et. al., 2000). Their functions remain elusive. However, a 

recently discovered alt homologue in the C. elegans genorne sequence may give 

provide some clues (Gregory et. al. pers. corn.). The alts are promising vaccine 

candidates and their efficacy is currently being tested in rodent and bovine infection 

models (Gregory et. al., 2000). Bm-tpx-2 is also abundantly expressed in the L3 stage 

of the parasite. Thioredoxin peroxidases (or peroxidoxins) are oxyradical detoxifying 

enzymes and tpx-2 is believed to play a role in protecting the nematode from host 

immune responses (Ghosh et. al., 1998). Bm-vah-i is a homologue of a family of 

proteins identified in hookworms that are released by invading L3 larvae 

(ancylostoma secreted proteins (Bin et. al., 1999; Daub et. al., 2000; Hawdon et. al., 

1996; Hawdon et. al., 1999; Moyle et. al., 1994)). The proteins have been shown to 

interact with surface receptors on immune cells and modulate their functions. While 

Bm-vah-I has been shown to be expressed at all stages of the parasite's lifecycle it 

appears to be upregulated in the L3 larvae (Murray et. al., 2001). 

Interestingly, with the exception of the ribosomal protein encoding clusters 

all of the other hyper-abundant ESTs appear to be unevenly distribution through the 

different lifecycle stages. Why would enzymes involved in detoxification processes 

or RNA metabolism such as tpx-2 or cdd-i need to be synthesized in large amount at 

specific stages of the parasites development? This may indicate they play a role in a 

specific biology unique to that stage. 

3.6.2.2 Abundant differentially expressed transcripts of B. malayi 

To further explore what the B. malayi EST datasets can tell us about 

biological processes which may be specific to particular stages of the parasites 

development. The dataset was searched for clusters which are abundantly expressed 

(?6 ESTs) but are composed of ESTs from a single stage in the parasites lifecycle. 
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With the L3 and adult datasets additional searches were performed to isolate 

transcripts that were upregulated the particular portions of the dataset (i.e. infective 

vs moulting, young adult vs. mature adult, or male vs female). Tables 3.6.2.2.1A-J 

list the clusters identified as abundant differentially expressed transcripts. The tables 
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Cluster Number Percent Percent Similarities Gene References 
of ESTs of Total Total Mf Names 

EST Dataset 
Dataset  

BMC 12282 33 0.18 1.49 microfilarial serine spn-2 (Zang et. al., 1999) 
proteinase inhibitor serpin  

BMC00312 11 0.06 0.19 Novel protein with PSCL  

BMC00546 8 0.04 0.50 similar to W.bancrofti wrr-2 (Siridewa et, al., 
repeat sequence, protein 1996; Siridewa et. 

has PSCL  al., 1994) 

BMC1 1791 6 0.03 0.06 
________________ 

cathepsin L like cysteine 
proteinase  

cpl-2 

A: Abundant differentially expressed transcripts found in the B. malayl microfilarial 

EST dataset 



Cluster Number 
of ESTs 

Percent 
of Total 

EST 
Dataset 

Percent 
moulting 

L3 
Dataset  

Similarities Gene 
Names 

References 

BMC12497 6 0.03 0.39 similar to cuticular 
collagen col-34  

col 

S 

C: Abundant differentially expressed transcripts found in the B. malayi moulting L3 

datasets 



ut 

es 

1., 

Ell 

Cluster Number 
of ESTs 

Percent 
of Total 

EST 
Dataset 

Percent 
Adult 
Male 

Dataset  

Similarities Gene 
Names 

References 

BMC01685 32 0.17 0.75 major sperm protein 2 msp-2  

BMC03373 23 0.12 0.54 Novel Ser and Arg rich 
protein 

aam-15 (Michalski and 
Weil, 1999). 

BMC11914 12 0.06 0.28 Novel  

BMC0341 1 11 0.06 0.26 Novel Ser and Arg rich 
protein  

aam-10 

BMC03274 9 0.05 0.21 Novel protein with PSCL  

BMC04232 9 0.05 0.21 Novel protein with PSCL aam-5  

BMC03272 8 0.04 0.19 Novel protein with PSCL aam-12  

BMC03552 7 0.04 0.16 Novel protein with PSCL aam-8 (Michalski and 
Weil, 1999). 

BMC06017 7 0.04 0.16 Novel  

BMC03393 6 0.03 0.14 similar to transcriptional 
repressor  

BMC03 788 6 0.03 0.14 Novel protein with PSCL  

BMC119321 6 0.03 0.14 Novel  

F: Abundant differentially expressed transcripts found in the B. malayi mature adult 

male dataset 



H: Abundant differentially expressed transcripts found in the B. malayi mature adult 

datasets 

Cluster Number Percent Percent Similarities Gene References 
of ESTs of Total Mature Names 

EST Adult 
Dataset Dataset  

BMC01618 179 0.96 2.35 Novel aaf-i  

BMC01601 67 0.36 0.88 Novel aad-]  

BMC12409 16 0.09 0.21 similar to major sperm msp 
protein  _2  

BMCO 1765 14 0.07 0.18 caireticulin-like antigen sxp-i (Chandrashekar et. 
al., 1994) 

BMCO2125 17 0.09 0.22 similar to C.elegan protein ssp-i 
F55C5.1,_msp_like  

BMCO2058 10 0.05 0.13 similar to C.elegan protein aam-7 
F49F1.1  

BMC01596 8 0.04 0.10 similar to protein-tyrosine lyp 
phosphatase  

BMCO2040 8 0.04 0.10 similar to ubiquitin ubg  

BMCO2801 7 0.04 0.09 similar to calmodulin cal  

BMC01441 6 0.03 0.08 Novel  

BMCO2543 6 0.03 0.08 similar to beta- bmd 
mannosidase  

I: Abundant differentially expressed transcripts found in the B. malayi young and 

mature adult datasets 

Cluster Number Percent Percent Similarities Gene References 
of ESTs of Total Total Names 

EST Adult 
Dataset Dataset  

BMC01892 10 0.05 0.12 similar to BCL7B bcl-7 
PROTEIN  

BMC06467 8 0.04 0.09 similar to cytochrome cyt 
P450  

BMCO2367 7 0.04 0.08 similar to nucleosome nsa-i 
assembly protein  

BMC12436 7 0.04 0.08 cuticlular glutathione gpx-i (Cookson et. al., 
peroxidase  1992) 

BMCO2423 6 0.03 0.07 Novel  

BMCO2427 6 0.03 0.07 similar to calcium binding cab 
protein  

Tables 3.6.2.2.IA-J Abundant differentially expressed transcripts discovered in the B. 
malayi EST dataset. The clusters are placed in separate tables based on which stage(s) the 
constituent ESTs are derived from. A: microfilaria, B: infective L3, C: moulting L3, D: all L3, 
E: young adult, F: adult male, G: adult female, H: mature adult (adult male and female) and 
I: young and mature adult. The cluster ID, number of ESTs in the cluster, the percent of the 
dataset the total and specific stage(s), similarities to proteins in the public databases, gene 
names if assigned and any relevant references are shown. PSCL: N-terminal secretion 
signal predicted by PSORTII (Nakal and Horton, 1999). 
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Like the abundantly expressed transcripts the abundant differentially 

expressed transcripts (ADTs) can be can be divided into three categories based on 

their similarities to sequences in the public databases, conserved metabolic enzymes 

and structural proteins, potential mediators of host-parasite interactions and proteins 

of unknown function (novels). 

Almost one half of the isolated ADT clusters have similarities to conserved 

metabolic enzymes or structural proteins. Their expression patterns and similarities 

suggest potential functions for several of these genes. 

Several of the clusters differentially expressed during periods when the 

nematode is synthesizing or elongating its cuticle have similarities to proteins known 

to be involved in cuticle biology. Four clusters (BMC12497, BMC04888, 

BMC11971 and BMC08961) are similar to C. elegans cuticular collagens. The 

majority of the ESTs from these clusters have been isolated from the moulting L3 

stages or young adult stages of the parasite's development. Biochemical studies have 

shown that cysteine proteinases are important for the moulting of filarial stage 3 

larvae (Lustigman et. al., 1996; Richer et. al., 1993). BMC04934 (cpl-1) encodes a 

cathepsin L like cysteine proteinase which is differentially expressed at the L3 stage 

of the parasite's development. Therefore it possible that BM-cpl-1 may have role in 

moulting. 

Two of the clusters differentially expressed in the adult female stage of the 

parasite are similar to components that are incorporated into the eggshell of 

developing microfilaria. One of these sheath components, Bm-shp-1 (BMCO 1695), 

has been previously characterized (Selkirk et. al., 1991). 

Two clusters (BMC01685, BMC12409) which are differentially expressed in 

the adult male stage of the parasite are similar to the major sperm protein (msp) gene 

family. MSPs are components of a motility system unique to the amoebiod sperm of 

nematodes. BMC01685 (msp-2) orthologue from 0. volvulus has been previously 

characterized while BMC12409 has not (Scott et. al., 1989). Interestingly, 

BMC12409 contains a single EST from the adult female library (see figure 

3.6.2.2.3). It is possible that this EST arose from the accidental inclusion of an adult 

male in the materials used to construct the adult female library. Alternatively mRNA 

from sperm carried in the female nematodes may have contained msp-2 transcripts. 



A number of the ADTs that have been characterized are believed to play a 

role in mediating host parasite interactions. Three of the ADTs have similarities to 

protease inhibitors (BMC12282, BMC04832, BMC00178). Two of these inhibitors 

are similar to the serpin (serine proteinase inhibitor) family. These serpins have been 

shown to be expressed at different developmental stages (Yenbutr and Scott, 1995; 

Zang et. al., 1999). Bm-spn-2 (BMC 12282) is expressed in the microfilarial stage 

while Bm-spn-J (BMC04832) is expressed in the infective L3 and shortly after the 

nematode enters the mammalian host. Both proteins are secreted by the parasites and 

are believed to interact with serum components or proteases derived from immune 

cells (Yenbutr and Scott, 1995; Zang et. al., 1999). BMC00178 (cpi-1) shows 

similarity to the cystatin (cysteine protease inhibitor family). Bm-cpi-1 and a second 

cystatin Bm-cpi-2 (BMC01649) are upregulated in the infective L3 larvae (Gregory 

et. al., 1997). Both proteins are secreted by the larvae and are believed to have 

potential roles in inhibiting host enzymes or proteases involved in the L3 moulting 

process (Gregory et. al. pers. com., Manoury et. al., 2001). Unlike, Bm-cpi-2 which 

is expressed and secreted throughout the period the nematode spends in the 

mammalian host, Bm-cpi-1 expression is restricted to the L3 stage of the parasite's 

development. 

The alts, whose expression and secretion from the L3 stage of the parasite 

were mentioned previously, make up a second group of ADTs that may function as 

potential mediators of host parasite interactions. Bm-alt-1 and 2 (BMC00123 and 

BMC00213) have been described as potential vaccine candidates (Gregory et. al., 

2000). However, additional alt -like genes can be found in the EST dataset indicating 

alts may represent a large gene family in filaria. One of these alts Bm-alt-8 is 

abundantly expressed in the infective L3 stage of parasite. Whether this expression is 

restricted to the L3 stage of development like Bm-alts-1 and 2 is still to be 

determined. 

Examination of the relative expression of those ADTs that were isolated from 

searches that encompassed more than one stage has shown that there are fold 

differences in the transcript abundance between stages. For instance BMC000213 

(alt-2), BMC00075 and BMC12127 show an almost 10 fold difference in the number 

of ESTs found in the infective L3 vs moulting L3 datasets. RT-PCR data supports 

these findings and have shown that alt-2 expression is higher in infective vs moulting 
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L3 (Gregory et. al., 2000). Similarly in the adult dataset the Bm-gpx-1 cluster 

(secreted glutathione peroxidase , BMC12436) has at least 60% of its ESTs 

originating from the adult male library (see figure 3.6.2.2.4). Published studies 

indicate that Bm-gpx- 1 is much more abundant on the surface of adult males and the 

difference in transcript abundance between the stages is consistent with this 

observation (Cookson et. al., 1992). 

Remarkably, more than one third of the clusters isolated in the search for 

ADTs have no similarities to proteins in the public databases. Almost half of the 

protein predicted from these clusters are predicted to have potential N-terminal 

secretion signals. Some stages have higher numbers of these novel and potentially 

secreted proteins (microfilarial, infective L3, adult male). The adult male dataset is 

particularly rich in these sequences with 80% of the ADTs being novel. Half these 

sequences are predicted to be secreted. A subsequent survey has shown that at least 

two of these proteins (BMC03373 and BMC03552) are specific to the male stage of 

development (Michalski and Well, 1999). 
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Chapter 4 

Analysis of the 0. volvulus EST dataset and comparison of the 



4.0 Analysis of the 0. volvulus EST dataset with CLOBBv1.0 and comparison of 

the filarial EST datasets 

This chapter builds on the work presented in chapter 3 by presenting the 

results of the clustering of the 0. volvulus EST dataset and comparing the abundant 

and abundant differentially expressed transcripts found in the two datasets. 

4.1.0 Cluster analysis of 0. volvulus EST datasets and evaluation of gene discovery 

effort 

In total 8,876 0. volvulus ESTs sequences were analyzed. These sequences 

originated from seven different cDNA libraries (see figure 1.2.3.4.2 and table 

1.2.3.4.4). After filtering for rDNA and E. coli sequences 7,909 sequences were 

grouped into 3,504 clusters. Table 4.1.0.1 shows the results of the cluster analysis for 

each cDNA library and the total dataset. 
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Library Total 
Number of 

ESTs 

Number of 
rDNA seq. 

Percent 
dataset 

Number of 
E.coli seq. 

Percent 
dataset 

Number of 
Clustered 

ESTs 

Number of Intra-library 
Clusters Redund 

Total 
Redund 

Number of 
Library 
Specific 
Clusters 

Percent of 
Library 
Specific 
Clusters 

Curators Comments 

184 26 14 4 2 154 127 1.2 1.4 64 50.4 Some E. coli 
OvMf contamination and very 

rDNA contaminated 

120 12 10 3 3 105 60 1.8 2.0 27 45.0 Some E. coli 
OvL2 contaminated 

OvL3 2747 151 5 75 3 2521 1175 2.1 2.3 836 71.1 Some E. coil 
contamination 

OvmL3 3413 279 8 24 1 3110 1598 1.9 2.1 1173 73.4 

88 7 8 4 5 77 71 1.1 1.2 44 62.0 Very E. coli 
OvAM contaminated 

OvAF 2195 344 16 36 2 1815 1117 1.6 2.0 818 73.2 Very rDNA 
contaminated 

OvAFIV 129 3 2 1 1 125 94 1.3 1.4 41 43.6 

Total 8876 822 9 147 2 7909 3504 2.5 

Table 4,1.0.1 The table summarizes the results of CLOBBv1 .0 clustering of the 0. volvulus EST dataset. The number of ESTs sequenced from each 

library is shown as well as the number of rDNA and E.coli sequences removed from the datasets before clustering. The number of clusters 
containing sequences from each library is listed with the level intra-library sequence redundancy (calculations performed without the filtered rDNA 

and E.coli sequences). The redundancy of the library as calculated by comparison with the complete EST dataset is also shown. The number of 
clusters containing sequences exclusively from the library and percentage these clusters represent of the library dataset is shown. Curators 
comments on the general characteristics of the library rDNA IE.coli contamination and the incidence of chimeric ESTs is also shown The numbers in 
red highlight calculations that indicate that the library no longer represents a productive sequencing substrate, either because of high rates of rDNA/ 

E. coli contamination or high levels of redundancy within the dataset. 
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CLOBBv1.0 grouped the 7,909 0. volvulus ESTs into 3,504 clusters. Like the 

B. malayi clusters the majority of the 0. volvulus clusters (75%) contain one EST 

sequence. Like the B. malayi dataset several of the cDNA libraries have high rate of 

rDNA contamination (OvMf, OvL2 and OvAF). Nine percent of the EST sequences 

are tagged as rDNA contamination. In general the 0. volvulus libraries have higher 

incidences of E. coli contamination than the B. malayi libraries. Two percent of the 

total dataset has been tagged as E. coli contamination. 

The overall redundancy of the eDNA EST dataset is 2.5 which is much 

higher than the B malayi dataset when the relative numbers of ESTs analyzed is 

compared (18,740 vs 7,909). All of the libraries that have been heavily sampled 

(>2,000 ESTs) have redundancies ? 2 indicating the relative level of transcript 

diversity in these libraries is not as high as the B. malayi datasets. 

4.1.1 Characteristics of 0. volvulus EST clusters 

The 0. volvulus clusters have an average of 2.2 EST per cluster (excluding 

the contribution of the rDNA and E. coli contaminants to the dataset redundancy). 

Figure 3.3.1 shows the distribution of the number of ESTs per cluster. The average 

length of anO. volvulus EST is 417 bp in length and the average length of a 

consensus sequence is 578 bp. The length of the consensus sequences are 

significantly longer than the average EST length (p < 0.0001 Man-Whitney test, 

performed in Minitab, Minitab Inc). Figure 4.1.2.1A shows the distribution of the 

lengths of the 0. volvulus consensus sequences. Like the B. malayi dataset majority 

of the consensus sequences are between 200 and 600 bp in length (64%). The longest 

predicted consensus sequence is 2,156bp in length. 



A: Distribution of the length of the 0. volvulus consensus seQuences 



The results of BLAST comparisons of the 0 volvulus consensus sequences to 

the public databases are summarized in figures 4.1.1.2 and 4.1.1.3. The results of 

both the whole dataset and several subdivisions of the whole dataset are shown in 

Venn diagrams. Remarkably, the results of the 0. volvulus searches were extremely 

similar to the results of the B. malayi searches. More than 60% of the sequences do 

not have homologues in the public databases (see figure 4.1.1.2A). Like B. malayi, if 

the dataset is subdivided and those only sequences with >300bp consensus sequences 

or clusters with >1 EST are examined the level of novels drops significantly (49% 

and 33% novels respectively see figures 4.1.1.213 and Q. The 0. volvulus dataset 

also has similar proportions of sequences which have matches to the proteins 

predicted from the three fully sequenced animal genomes (see figure 4.1.1.3A). 

Thirty-two percent of the consensus sequences were tagged as having significant 

similarities when compared to EST datasets of Clades I, IV and V nematodes (see 

figure 4.1.1.313). When compared to the B. malayi EST dataset 40% of the sequences 

were found to have significant matches (see figure 4.1.1.3C). Interestingly when 

compared to the ascarid, B. malayi and other nematode EST datasets only 49% of the 

sequences did not have significant matches which is a lower proportion than the B. 

malayi dataset. Like the B. malayi dataset if the clusters with >1 EST are examined 

there is a dramatic increases the proportion of novel sequences (49% vs 22%, see 

figure 4.1.1.31)). 
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Figures 4.1.1.2 and 4.1.1.3. Results of the BLAST searches of the 0. volvulus consensus 
sequences against the public databases. Each Venn diagram shows a three-way 
comparison of the results of the BLAST searches against three databases. The number of 
consensus sequences having significant matches to a single database are shown in the 
center of each circle. The number of consensus sequences showing a significant match (p-
value :5 e 10) to more than one database are listed at the interfaces of each circle. The 
number of consensus sequences with no significant matches to any of the listed databases 
is shown to the left of the Venn diagram. Figure 4.1.1.2A shows the results of the BLASTX 
searches against the xrest, xnem, xce databases. The summary of the whole dataset is 
shown in figure 4.1.1.2A. The results of three subdivsions of the whole dataset , those 
clusters with consensus sequences with lengths >300 bp. 4.1.1.2B and those clusters with 
>1 EST 4.1.1.20 are also shown. Figure 4.1.1.3A shows the results of the BLASTX searches 
of the consensus sequences against the protein sequences predicted from the H. sapiens, 
D. melanogaster and C. elegans whole genome sequence. Figure 4.1.1.3.13 shows the 
results of the TBLASTX searches of the consensus sequences against the EST sequences 
of nematodes from Clades I, IV and V. Figures 4.1.1.3C and 24.1.1.3D show the results of 
the TBLASTX of the consensus sequences against the EST sequences of Ascarid, B. malayi 
and Clade I, IV and V nematodes. Purple circles indicate that the dataset is based on 
proteins predicted from whole genome sequence. Dashed ciricles indicate that the sequence 
dataset is substantially smaller than the other comparators. 
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4.1.2 Analysis of abundant and differentially expressed transcripts of 0. volvulus 

To examine the similarities and differences between the abundant and 

rnnerentially expressed genes in B. malayi and 0. volvulus datasets the searches 

performed on the B. malayi clusters were also performed on the 0. volvulus clusters. 

4.1.2.1 Abundant transcripts of 0. volvulus 

To isolate the most abundant transcripts the 0. volvulus cluster dataset was 

searched and those clusters with > 40 ESTs examined. Table 4.1.2.1.1 lists the 

thirteen clusters identified in this search. Figure 4.1.2.1.2 shows the relative 

expression pattern of the ten non-mitochondrial EST clusters. 

Cluster Number Percent Similarities Gene Reference 
of ESTs of Total Name 

EST 
Dataset  

0VC00048 297 3.76 abundant larval transcript alt-112 (Joseph et. al., 
1/2 1998) 

0VC00032 168 2.12 Novel peptide with PSCL 

0VC00039 143 1.81 Ribosomal protein rpl-12  

OVC00018 99 1.25 thioredoxin peroxidase tpx-2 (Lu et. al., 1998) 
OVCOO 128 93 1.18 RNA binding protein rbp-i 

(polyadenylation complex 
subunit)  

0VC00036 85 1.07 similar to cuticular col 
collagen  

OVC00060 72 0.91 similar to small heat shock hsp-25 
protein 25  

0VC00025 99 1.25 small abundant glycine gya-i 
and  _tyrosine _rich _protein  

OVCOO 142 67 0.85 0. volvuluscystatin cpi-2 (Lustigman et. al., 
1992) 

OVC00021 64 0.81 Mitochondrial gene cox-2 (Keddie et. al., 
1998) 

OVC00121 43 0.54 Mitochondrial gene ndh-i (Keddie et. al., 
1998) 

0VC00265 42 0.53 Novel  

0VC00460 41 0.52 Mitochondrial gene atp-6 (Keddie et. al., 
1998) 

Table 4.1.2.1.1. Abundantly expressed transcripts discovered in the 0. volvulus EST 
sequencing project. The table lists the thirteen identified 0. volvulus EST clusters with >40 
ESTs. The cluster ID, number of ESTs in the cluster, the percent of the dataset the cluster 
comprises, similarities to proteins in the public databases, gene names if assigned and any 
relevant references are shown. PSCL: N-terminal secretion signal predicted by PSORTII 
(Nakai and Horton. 1999). 
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Like the B. malayi abundant transcripts, four of the 0. volvulus abundant 

transcripts encode ribosomal proteins or mitochondrial genes. The rest can be 

assigned to the three functional catagories described above. B. malayi orthologs of 

several of these abundant transcripts have already been described. These include Ov-

tpx-2, rbp-1 and cpi-2. Presumably, their functions are very similar in both 

organisms. The most abundant transcript in the 0. volvulus dataset is similar to the B. 

malayi alt genes (Joseph et. al., 1998). Phylogenetic analysis has not been able to 

assign clear orthology between this gene and any of the B. malayi alts (Gregory et. 

al. 2002 pers. corn,). However there are several ESTs abundant in the 0. volvulus 

that were not present in the list of abundant transcripts from B. malayi. These include 

hsp-25 homologue, a homologue of the Bm-gya-1 (small abundant glycine and 

tyrosine rich potein) which was found to be differentially expressed in L3 (Gregory 

et. al., 1997), a cuticular collagen and several novel proteins. One of the novel 

proteins, 0VC00032, may be secreted. Like the B. malayi dataset all of the non-rp 

and mt hyper-abundant clusters appear to have uneven expression through the 

lifecycle. Most are derived from the L3 or molting L3 datasets (see figure 2.7.2.1.2). 

This may be because these are the two most heavily sampled time points. 

4.1.2.2 Abundant differentially expressed transcripts of 0. volvulus 

The 0. volvulus dataset was searched for clusters that are abundantly 

expressed (? 6 ESTs) but are composed of ESTs from a single stage in the lifecycle. 

With the L3 dataset an additional search was preformed to isolate transcripts that 

were upregulated in infective and molting larvae. Tables 4.1 .2.2.AD list the clusters 

identified as abundant differentially expressed transcripts. The tables are organized 

by the lifecycle stage from which the clusters originate. There were no clusters 

identified from the Mf,  L2 and AM datasets that fit the criteria listed above. 

Presumably this is because such a small number of EST sequences from those 

libraries were clustered. For the L3 search the relative expression pattern of these 

clusters as inferred by the number of ESTs from each library is presented in figure 

4.1.2.2.2. 
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A: Abundant differentially expressed transcripts in the 0. volvulus infective L3 

datasets 

Cluster Number Percent Percent Similarities Gene Reference 
of ESTs of Total L3DO Name 

EST ESTs 
Dataset _Dataset  

0VC03893 18 0.23 0.71 vespid venom-allergen- vah-i (Taweet. al., 2000) 
like (activation associated 

secreted protein)  

0VC00092 17 0.21 0.67 Small Novel Gly rich 
peptide  _with _PSCL  

0VC00324 15 0.19 0.60 Novel  

0VC04021 8 0.10 0.14 Novel peptide with PSCL  

0VC00704 7 0.09 0.28 LIM domain containing urn-i (Oberlander et. al., 
protein OvL3-1 1995) 

OVCOO 129 6 0.08 0.24 Novel peptide with PSCL 

0VC00409 6 0.08 0.24 similar to calponin  

0VC00472 6 0.08 0.24 Novel peptide with PSCL 

B: Abundant differentially expressed transcripts in the 0. volvulus molting L3 

datasets 

Cluster Number Percent Percent Similarities Gene Reference 
of ESTs of Total 1,31)1-3 Name 

EST ESTs 
Dataset Dataset  

0VC03901 31 0.39 1.00 similar to cuticulin cut-]  

OVCOO 156 18 0.23 0,58 Novel peptide with PSCL  

0VC00441 11 0.14 0.35 similar to cuticulin cut-2  

O'VC00093 10 0.12 0.32 similar to cuticular col 
collagen  

OVC00130 9 0.11 0.29 Novel peptide with PSCL  

OVC00510 8 0.10 0.26 similar to osteonectin ost-1  

OVCOO 115 6 0.08 0.19 similar to Y102Al 1A.5 (Lizotte-Waniewski 
novel immunogenic et. al., 2000) 

protein  

OVCOO181 6 0.08 0.19 Novel  

0VC00322 6 0.08 0.19 similar to cystathionine 
gamma- lyase  

OVC00711 6 0.08 0.19 Novel Gln rich peptide 
with PSCL  

0VC00753 6 0.08 0.19 similar to cuticle collagen col  



Cluster Number Percent 
of ESTs of Total 

EST 
Dataset 

Percent 
total L3 
ESTs 

Dataset 

Similarities Gene 
Name 

Reference 

0VC00025 99 1.25 1.76 small abundant glycine 
and  

gya1 
_tyrosine _rich _protein  

OVC03 892 28 0.35 0.50 vespid venom-allergen- 
like (activation associated 

secreted protein)  

asp-] (Tawe et. al., 2000) 

OVC00109 25 0.32 0.44 similar to abundant larval 
transcript  

alt 

0VC00762 24 0.30 0.43 similar to cuticle collagen col  

OVCO 1409 22 0.28 0.39 similar to 0. volvulus 
abundant larval transcript 

alt 

0VC03876 19 0.24 0.34 Ov-16 antigen peb-i (Erttmann and 
Gallin, 1996) 

0VC00657 18 0.23 0.32 cathepsin L like cysteine 
proteinase  

cpl-i 

OVC03 971 14 0.18 0.25 extracellular superoxide 
dismutase 

sod-i (Henkle et. al., 
1991) 

0VC04023 14 0.18 0.25 similar to troponin tin  

0VC00238 12 0.15 0.21 similar to cuticular 
collagen  

col 

0VC00295 11 0.14 0.20 Novel 

0VC00340 11 0.14 0.20 similar to histone H3 his-3  

0VC00413 11 0.14 0.20 similar to C. elegans 
protein 07E5.13  

OVC04050 11 0.14 0.20 similar to thioredoxin thi-i  

OVC00005 10 0.12 0.18 similar to MIP family 
protein  

mip-i 

0VC00164 9 0.11 0.16 similar to glutathione 
reductase 

gtr-i 

0VC00667 9 0.11 0.16 similar to LIM domain 
protein  

urn 

0VC00634 8 0.10 0.14 similar to nematode 
myoglobin  

glb 

0VC00364 7 0.09 0.12 similar to inx-9 GTP- 
binding protein  

j1ij9 

0VC00434 7 0.09 0.12 similar to transketolase tkt  

0VC00465 7 0.09 0.12 similar to translationally 
_tumor  controlled protein  

tph-i 

0VC00758 7 0.09 0.12 similar to RAS-related 
protein  

rab-lb 

0VC00707 6 0.08 0.11 Novel peptide with PSCL 

0VC00712 6 0.08 0.11 Novel  

OVC00811 6 0.08 0.11 similar to C. elegans 
protein_T27C4.1  

0VC0095 1 6 0.08 0.11 similar to monooxygenase rnox  

0VC01239 6 0.08 0.11 Novel Pro,Tyr, Phe, Gly 
rich tide  _pep _with _PSCL  

0VC03916 6 0.08 0.11 
________________________ 

proteosome regulatory 
subunit  

rpn-8 
_S12  

0VC03990 1 6 0.08 0.11 similar to col-34 cuticular col  

)7 

C: Abundant differentially expressed transcripts in the 0. volvulus L3 datasets 



collagen I I 

D: Abundant differentially expressed transcripts in the 0. volvulus mature adult 

female dataset 

Cluster Number 
of ESTs 

Percent 
of Total 

EST 
Dataset 

Percent 
Adult 

Female 
ESTs 

Dataset  

Similarities Gene 
Name 

Reference 

0VC00265 42 0.53 2.16 Novel 

0VC00113 15 0.19 0.77 Novel 

OVC00041 14 0.18 0.72 microfilarial sheath protein Shp-1  

0VC03912 11 0.14 0.57 similar to protein Y5F2A.1 
transthyretin-like protein  

tsy-1 

0VC04013 11 0.14 0.57 similar to small heat shock 
protein 25  

hsp 

OVCO 1323 10 0.12 0.52 Novel peptide with PSCL 

0VC01335 10 0.12 0.52 Novel peptide with PSCL  

0VC01355 9 0.11 0.46 Novel  

0VCO2395 8 0.10 0.41 Novel peptide with PSCL 

OVC00150 7 0.09 0.36 Novel peptide with PSCL  

OVCO 1404 6 0.08 0.31 Novel peptide with PSCL 

0VC01561 6 0.08 0.31 1 Novel peptide with PSCL  

Tables 4.1.2.2.IA-D Abundant differentially expressed transcripts discovered in the 0. 
volvulus EST dataset. The clusters are placed in separate tables based on which stage(s) 
the constituent ESTs are derived from. A: infective L3, B: molting L3, C: all L3, 0: adult 
female. The cluster ID, number of ESTs in the cluster, the percent of the dataset the total 
and specific stage(s), similarities to proteins in the public databases, gene names if assigned 
and any relevant references are shown. PSCL: N-terminal secretion signal predicted by 
PSORTII (Nakai and Horton. 1999). 
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The ADTs isolated from the 0. volvulus and B. malayi infective and molting 

L3 dataset share many common features. Both contain members of gene families that 

are believed to be important mediators of host parasite interaction in B. malayi (vahs 

and alts) as well as homologues of genes whose functions are currently unknown 

(gyas). There are also large numbers of highly expressed novel genes. In the 

infective L3 many of the novel ADTs have potential secretion signals. The 0. 

volvulus L3 are also expressing large number of proteins predicted to be involved in 

cuticle biology. Five different collagens (0VC00093, 0VC00753, 0VC00762, 

0VC00238, 0VC03990), two cuticulins (cuts, 0VC03901, 0VC00441) and one 

osteonectin (ost-1, OVC00510) genes were present in the dataset. Interestingly, B. 

malayi homologues of the cuts and the ost-] genes have not been isolated from the 

molting L3 dataset. Assuming the relative biology of molting is similar between 

these species this indicates that while both sets of libraries were derived from 

molting worms the differences in the timing of the isolation of the nematodes has 

produced two very different datasets. One major difference between the datasets is 

that almost four times the number of ADTs that have been isolated from the 0. 

volvulus molting L3 and the infective/molting L3 datasets. Part of this difference is 

due to the fact that there are almost twice as many molting L3 ESTs in have been 

sequenced in 0. volvulus then B. malayi, In 0. volvulus many of the ADTs isolated 

from the infective/molting L3 dataset have similarities to proteins which would not 

be expected to be differentially expressed (his-3, thi-1, tph-1, rpn-8, sod-1). The high 

level of ADTs these stages is probably due to the fact that other stages from the 0. 

volvulus lifecycle have not been sampled heavily (see tables 3.6.0.1 and 4.1.0.1). 

Like the adult females from B. malayi one of the ADTs from the 0. volvulus 

dataset is similar to the microfilarial sheath protein gene family. However, one major 

difference between the microfilaria of 0. volvulus and B. malayi is that the former do 

not retain their egg shells and thus are not sheathed when they leave the adult female 

(Selkirk et. al., 1991). It is unclear whether this shp homologue will be retained and 

perhaps incorporated in the microfilarial cuticle or if it is simply shed with the 

eggshell. Interestingly, unlike the set of proteins isolated from B. malayi most of the 

ADTs found in the adult female ESTs are novel sequences many of which are 

predicted to have potential secretion signals. 
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4.2 Comparative analysis of B. malayi and 0. volvulus EST cluster datasets. 

B. malayi and 0. volvulus are believed to be relatively closely related 

nematodes. However, there are many differences between their lifecycles and 

survival strategies. The analysis of the EST has revealed that only 40-45% of the 

identified genes are common to both datasets. The EST datasets from B. malayi and 

0. volvulus individually contain a wealth of information about the expression of 

genes in the nematodes at the sampled lifecycle stages. However, by comparing the 

two datasets a new layer of information can be added. This comparative 

'transcriptomics' will identify genes that are common to both species as well as 

highlight those which are differentially expressed between the species. This strategy 

has been successfully used to identify genes involved in differences in pathogenicity 

between closely related species or strains of bacteria and is currently being applied to 

the study of closely related parasitic protozoa. 

4.2.1 Comparative analysis of the abundant transcripts 

The abundant transcripts (>40 ESTs) isolated from both datasets were 

compared. Table 2.8.1.1 lists the fourteen identified non-rp or mt clusters. Figure 

2.8.1.2 shows the relative expression pattern of the EST clusters in both species. 
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B. malayi Number Percent 0. volvulus Number Percent similarities Gene 
Cluster of ESTs Total Cluster of ESTs Total Name 

Dataset Dataset 

NO 0VC00048 297 3.76 abundant larval alt-1/2 
transcript l/_2  

BMC06846 3 0.01 0VC00032 168 2.12 Novel peptide with SECL 

BMC00211 67 0.36 OVC00018 99 1.25 thioredoxinperoxidase tpx-2 
BMC00185 174 0.93 0VC00128 93 1.18 RNA binding protein rbp-] 

(polyadenylation complex 
subunit)  

BMC12467 7 0.03 0VC00036 85 1.07 similar to cuticular col 
collagen  

BMC00498 20 0.1 OVC00060 72 0.91 similar to small heat shock hsp-25 
protein_25  

BMC00136 16 0.09 0VC00025 99 1.25 small abundant glycine gya-] 
and rich  _tyrosine_ _protein  

BMCO 1649 20 0.1 0VC00142 67 0.85 0. volvulus cystatin cpi-2 
None - - 0VC00265 42 053 Novel 

BMC04376 83 0.44 None - - cytidine deaminase cdd-J 
BMC00213 76 0.41 NO - - abundant larval transcript alt-2 

2  

BMC00351 51 0.27 0VC03893 18 0.23 vespid venom-allergen- vah-i 
like (activation associated 

secreted protein)  

BMC01688 47 0.25 0VC00363 8 0.1 similar to cuticular col 
collagen  

BMC00030 42 0.22 OVC00071 40 0.5 1 similar to tropomyosin tin-] 

Table 4.2.1.1 Comparison of the abundantly expressed transcripts discovered in the B. 
malayi and 0. volvulus EST sequencing projects. The table lists the fourteen identified non-
rp and mt clusters. For each cluster the closest homologue from the reciprocal dataset was 
identified.The cluster ID, number of ESTs in the cluster, the percent of the dataset the cluster 
comprises, similarities to proteins in the public databases, gene names if assigned and any 
relevant references are shown. The three genes which comprise equivalent proportions of 
both datasets are shown in blue text. NO: Unable to infer orthology in gene family; PSCL: N-
terminal secretion signal predicted by PSORTII (Nakai and Horton, 1999). 
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Of the fourteen abundantly expressed genes examined only three were found 

to be upregulated in both datasets (tpx-2, rbp-1 and tin-]). All of the other genes 

were found to be hyper-abundant in only one species. Homologues could not be 

identified for two of the genes in both dataset (BMC04376, cdd-1 and 0VC00265, 

novel). The expression of cdd-i in Brugia is believed to be restricted to the L4 stage 

of development (Anant et. al., 1997). There currently are no 0. volvulus ESTs 

originating from this stage so if the expression of Ov-cdd-I is similarly restricted it 

would not be present in the current dataset. When the relative expression patterns of 

the abundantly expressed transcripts are examined only those transcripts which are 

hyper-abundant in the L3 stage of the parasites development have similar expression 

patterns. 

4.2.2 Comparative analysis of abundant differentially expressed transcripts in the 

L3 and adult female stages 

The abundant differentially expressed transcripts (? 6 ESTs) isolated from 

both datasets were compared. Because only the L3 (combined infective and molting) 

and adult female stages have been heavily sampled in 0. volvulus these were the 

only groups compared. Tables 4.2.2.1A and B lists clusters compared in this 

analysis. Figures 4.2.2.2 and 4.2.2.3 shows the relative expression pattern of the EST 

clusters in both species. Because of the large numbers of clusters isolated from the 

L3 datasets only those clusters with > 10 ESTs were included in tables 4.2.2. 1A and 

figure 4.2.2.2. 
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A: Comparison of abundant differentially expressed L3 transcripts from B. malayi 

and 0. volvulus 

B. malayi Number Percent 0. volvulus Number Percent Similarities Gene 
Cluster of ESTs Total L3 Cluster of ESTs L3 Total Name 

Dataset Dataset  

BMC00351 51 1.03 0VC03893 18 0.32 vespid venom-allergen- vah-] 

like (activation associated 
secreted protein)  

None - - 0VC00092 17 0.30 Small Gly rich peptide 
with SECL  

None - - 0VC00324 15 0.27 Novel  

None - - 0VC03901 31 0.55 similar to cuticulin cut-i 

None - - 0VC00156 18 0.32 Novel peptide with SECL 

None - - 0VC00441 11 0.20 similar to cuticulin cut-2 

BMC01962 29 0.58 OVC00093 10 0.18 similar to cuticular col 

collagen  

BMC00136 16 0.32 0VC00025 99 1.76 small abundant glycine gya-i 

and tyrosine rich protein  

None - - OVC03 892 28 0.50 vespid venom-allergen- asp-] 

like (activation associated 
secreted protein)  

NO - - OVC00109 25 0.44 similar to abundant larval alt 
transcript  

BMCO2934 25 0.50 0VC00762 24 0.43 similar to cuticle collagen col 

NO - - OVCO 1409 22 0,39 similar abundant larval alt 

transcript  

BMC00143 5 0.10 0VC03876 19 0.34 Ov-16 antigen peb-i 

BMC04934 44 0.89 0VC00657 18 0.32 cathepsin L like cysteine cpl-1 

proteinase  

BMC00677 9 0.18 0VC03971 14 0.25 extracellular superoxide sod-] 

dismutase  

BMC00135 22 0.44 0VC04023 14 0.25 similar to troponin  

BMC00160 6 0.12 0VC00238 12 0.21 similar to cuticular 
collagen  

None - - 0VC00295 11 0.20 Novel  

BMC01609 8 0.16 0VC00340 11 0.20 similar to histone H3 his-3 

BMC03794 2 0.04 0VC00413 11 0.20 similar to protein 
R07E5.13  

BMC00153 30 0.61 0VC04050 11 0.20 similar to thioredoxin thi-i 

BMCO2613 2 0.04 OVC00005 10 0.18 similar toMlPfamily mip-i 
protein  

BMC00123 33 0.67 NO - 
- abundant larval transcript alt-i 

BMC04886 24 0.48 None - similar to aldo-keto 
reductase  

BMC04832 14 0.28 0VC00784 3 0.05 serine proteinase inhibitor spn-i 

(serpin)  

BMC11994 13 0.26 0VC00366 3 0.05 similar to malate mid-i 

dehydrogenase 

BMCOO 133 12 0.24 None - 
- Novel peptide with SECL  

BMC00213 76 1.53 NO - 
- abundant larval transcript alt-2 

2  

BMCOS 110 23 0.41 None - 
- similar to pyruvate 

dehydrogenase  
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BMC00075 10 0.20 1  0VC00332 17 0.30 similar to protein 

-7 F53A9.lO  

B: Comparison of abundant differentially expressed adult female transcripts from B. 

maiayi and 0. voivuius 

B. inalayi 
Cluster 

Number 
of ESTs 

Percent 
Adult 

Female 
Dataset 

0. volvulus 
Cluster 

Number 
of ESTs 

Percent 
Adult 

Female 
Dataset  

Similarities Gene 
Name 

None - - 0VC00265 42 2.16 Novel 
BMC01965 16 0.48 OVCOO113 15 0.77 Novel sit-i 
BMCO 1695 16 0.48 OVC00041 14 0.72 microfilarial sheath protein shp-i 
BMC03479 33 0.99 0VC03912 11 0.57 similar to protein Y5F2A.1 

transthyretin-like_protein  

tsy-i 

BMC00498 20 0.60 0VC04013 11 0.57 similar to small heat shock 
protein 25  

None - - OVCO 1323 10 0.52 Novel peptide with SECL 
None - - OVC01335 10 0.52 Novel peptide with SECL 
None - - 0VC01355 9 0.46 Novel 
None - - 0VCO2395 8 0.41 Novel peptide with SECL 
None - - OVC00150 7 0.36 Novel peptide with SECL 

BMC00408 12 0.36 0VC01404 6 0.31 Novel peptide with SECL  

BMCO2980 3 0.09 0VC01561 6 0.31 Novel peptide with SECL  

BMCO 1764 21 0.63 None - - Novel peptide with SECL 
BMCO 1967 8 0.24 None - microfilarial sheath protein  

BMC01750 7 0.21 None - - similar to protein 
Y41D4B.12  

Table 4.2.2.1A and B Comparison of the abundant differentially expressed L3 and adult 
female transcripts. The clusters are placed in separate tables based on which stage(s) the 
constituent ESTs are derived from. A13 and B: adult female. The cluster ID, number of 
ESTs in the cluster, the percent of the dataset the total and specific stage(s), similarities to 
proteins in the public databases, gene names if assigned and any relevant references are 
shown. Genes whose relative expression patterns are similar between both species are 
shown in red text. NO: Unable to infer orthology in gene family; PSCL: N-terminal secretion 
signal predicted by PSORTII (Nakai and Horton, 1999). 
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Figure 4.2.2.3 Comparison of the relative expression pattern of the abundant differentially adult female transcripts. For each of the clusters 
the number of ESTs originating from different lifecycle stages is presented. The relative proportion of the ESTs per stage is plotted as a 
percentage of the cluster total. MR microfilaria, L2: vector derived stage 2 larvae, L3: day twelve vector derived infective stage 3 larvae, 
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Analysis of the relative expression of the ADTs of both species revealed 

many surprising differences between the two datasets. Homologues in both 

organisms could not be identified for over one third of the genes in the L3 dataset 

and over half of the genes in the adult female dataset. In both datasets many of these 

species specific clusters were novel sequences (L3 50% and adult female 80%). In 

both datasets only about 30% of the genes made up similar percentages of the total 

datasets. When the relative expression patterns of the genes were compared most of 

the clusters which were consistent between species originated from the L3 dataset. 

Most of these have been mentioned previously (vah-1, gya-1, spn-1 and cp1-1). 

However a few other genes also showed similar expression patterns in the two 

species. These included troponin, collagen, malate dehydrogenase homologues and a 

homologue of the anonymous C. elegans protein F53A9.10. Despite the fact that it 

would be unexpected to find the expression of an enzyme like malate dehydrogenase 

restricted to one stage the fact that the ESTs from two species show similar 

expression profiling lends additional strength to the expression patterns observed in 

the single species. Additionally, the observation that a novel gene 

(BMCO2980/0VC01561; see figure 4.2.2.3) is upregulated in the adult female stage 

of both species implies it may serve a function linked to a biological process 

conserved between both species. 

4.3 Chapters 3 and 4 General Discussion 

No clustering process will ever provide a complete solution to the problem of 

generating non-redundant gene sets from complex and often problematic datasets 

like ESTs. Very strict algorithms will produce robust clusters. However, because the 

quality of EST sequences is extremely variable, some sequences which should be 

grouped with other sequences may remain separated. This artificially inflates the 

number of genes predicted to be contained within the dataset and increases the 

number of clusters that have to be handled in post-clustering events. Less strict 

algorithms will produce larger clusters. However, biologically relevant sequence 

features such as closely related gene families and alternatively spliced transcripts 

may be lost in the clustering process. Chimeric sequences and other library based 

artifacts may also cause problems for these algorithms. The CLOBB algorithm is 

relatively strict and examples of the inappropriate exclusion of ESTs from clusters 

119 



have been observed. We are currently assessing the extent of this problem and 

implementing an additional CLOBB function that will tag clusters of related 

sequences that may need to be merged. The output of the CLOBB process is easily 

curated so when these problems are identified they can be rectified. However, when 

compared to the other publicly available EST clustering algorithms CLOBB provides 

a portable and easily adapted solution that will cope with most sequence datasets. 

The clustering process has proved extremely useful in assessing the 

productivity of the filarial gene discovery effort. Problems with sequencing 

substrates such as high levels of rDNA!E. coil contamination or highly redundant 

libraries have been observed and measures taken rectify those difficulties. 

Subtraction protocols that eliminate these contaminates or abundant sequences from 

the datasets have proved an efficient way of boosting the rate of gene discovery. The 

current clustering analysis indicates the redundancy in the EST dataset is due to the 

presence of a small number of highly abundant transcripts. A new set of subtracted 

or normalized cDNA libraries will need to be constructed if the EST sequencing is to 

continue to be efficient. 

The general characteristics of the genes discovered in the EST 

datasets has provided some surprises. Over 70% of the ESTs sequenced have been 

placed in single EST clusters. This high level of singletons could partially be due to 

the strict overlap rules written into the CLOBBv1.0 algorithm. However, this high 

rate of singleton clusters implies that the majority of the transcripts found in the 

filarial cDNAs libraries are derived from a diverse set of genes with relatively low 

levels of expression. 

Interestingly, more than 60% of the clusters from both B. malayi and 0. 

volvuius do not have significant matches to any other sequence in the public 

databases. Examination of subdivisions of the total datasets suggests that sequence 

artifacts (small sequences, low fidelity sequence and sequences with low coding 

potential) may be partially responsible for the high rate of novels. However, the rates 

of novels in these subdivisions is still unexpectedly high (30-50%). Comparisons 

reveal that only 30% of the clusters have homologues in other animal genomes. 

Between 8-9% of these sequences appear to be nematode specific gene families 

whose functions could be tested in the model nematode C. elegans. Between 40-45% 

of the clusters had homologues in both species of filaria. Interestingly, when the 
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expression patterns of the abundant or differentially expressed clusters were 

compared between the two species the majority showed very different profiles. 

Despite the fact the both organisms are closely related and must share many common 

biological process it is probable that the differences in their parasitic lifestyles means 

that orthologous genes may play very different functions in the two organisms. Many 

of the identified ADTs are novel genes that have only been identified in a single 

species. These genes represent some of the most interesting sequences in the dataset 

because they may be species specific and fulfill some biological process unique to 

one of the filaria. 

Assuming filarial nematodes possess a similar complement of genes as the 

model nematode C. elegans the ESTs clusters indicate that the discovery effort has 

identified almost 30% of the genes present in the B. malayi genome. The ESTs have 

revealed hundreds of new genes. The similarities these genes possess to other 

sequences in the public databases along with the available expression data has 

allowed putative functions to be assigned to some of these genes. For instance the 

molting dataset contains large numbers of protein families known to be structural 

components of the C. elegans cuticle (collagens and cuticulins etc.) as well as 

enzymes or enzyme inhibitors that could be involved in the cuticle remodeling 

process (cpl-] and the cpis). Other datasets such as the adult male or female datasets 

contain large numbers of genes that are similar to anonymous genes predicted from 

the C. elegans genome sequence. Recently published C. elegans microarray data 

along with their expression profiles in the filarial datasets supports them having 

potential roles in adult reproductive functions ((Michalski and Weil, 1999), Kamal 

et. al. 2002 in press). These proteins provide a wealth of potential new targets for 

nematicides that will either interrupt reproduction or kill adult worms. The 

forthcoming availability of RNAi data for all C. elegans genes (Fraser et. al., 2000; 

Maeda et. al., 2001) provides the filarial community with an easy in silico screening 

process which can be used to create a short list of targetable candidates. 

One of the main goals of the gene discovery effort is to provide the next 

generation of vaccine targets. The ESTs have provided an excellent source of new 

targets and many studies are currently underway which include proteins that have 

been isolated from these datasets. The analyses that have been performed in these 

studies have identified large numbers of transcripts that can serve as additional 
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candidates. Isolating prophylactic vaccinogens from the L3 stage(s) is particularly 

important and a number of studies have been undertaken to isolate candidates from 

this stage. The EST datasets have revealed that in both species there are sets of 

proteins which are highly expressed and in some cases specific to this stage. While 

mRNA abundance is not always correlated with protein levels additional studies of 

several abundant transcripts have supported the pattern seen in the EST datasets 

(Gregory et. al., 2000; Lustigmari et. al., 1992). The stage specificity observed with 

some L3 ADTs is often conserved between both filaria. This contrasts with patterns 

observed in ADTs from other stages indicating these genes may share functions in 

L3 biology that are conserved between the species. Examination of additional species 

of filaria has reinforced some of these observations (Allen et. al., 2000; Frank and 

Grieve, 1991; Pogonka et. al., 1999). Many of these proteins are present in the 

secretions of both species (Frank and Grieve, 1991; Pogonka et. al., 1999). The 

potential roles these proteins play in mediating host-parasite interactions at this 

critical stage of the parasites development are still under investigation. However 

preliminary vaccination experiments with two of these proteins has yielded 

promising results (Gregory et. al., 2000; Murray et. al., 2001). However, the L3 EST 

dataset still has a wealth of potential candidates which have not yet been examined 

and both in silico and laboratory based screens are currently underway to isolate 

additional proteins secreted from this stage. 

4.4 Chapters 3 and 4 Conclusions 

The filarial EST datasets offer a tremendous resource to the research 

community. As more nematode EST datasets and genomes become available their 

value will increase as comparative analyses will allow nematode, parasite and filarial 

specific gene families to be defined. The ESTs (both the sequences and clones) will 

serve as a core reagent for the elucidation of the biology of these gene families. 

Functional genomics studies are being planned or are currently underway which are 

using the ESTs as a base resource. B. malayi microarrays are currently being 

constructed with oligos designed from the EST consensus sequences. The expression 

profiling performed with these arrays can offer much more accurate estimates of 

relative gene expression of transcripts. It will be interesting to compare the results of 

these analyses to the in silico analyses that have been presented here. The recent 
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award of money to shotgun sequence the whole B. malayi genome means that large 

contigs of genomic DNA will soon be available. Again the ESTs and clusters will be 

extremely useful in the identification of genes and the annotation of these contigs. 

The ESTs have also provided an extremely effective catalyst to the filarial research 

community and many recent publications are based on genes or gene families that 

have been identified initially by the ESTs. They also have provided an important 

resource for new filarial vaccine candidates and several genes discovered from the 

L3 ESTs are currently under evaluation. The analyses presented here only scratch the 

surface of the information available in the cluster datasets. However, the public 

availability of these resources will allow the members of the community the 

opportunity to perform custom searches that address the questions specific to their 



Chapter 5 

Phylogenetic analysis of the nematode MIF gene family 
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5.0 Discovery of MIF Gene Family 

Macrophage Migration Inhibitory Factor (MIF) was first described during the 

mid-1960s as a product of activated lymphocytes that inhibited random migration of 

cultured monocytes (David, 1966) (Bloom and Bennett, 1966). MIF was the first 

cytokine ever characterized in vitro and its activities on immune cells were the subject of 

many subsequent studies. However, because of difficulties in isolating large quantities of 

MIF, its protein and nucleic acid sequence were not determined until 25 years later 

(Weiser et. al., 1989). MIFs have remained enigmatic molecules, with unusual 

properties. Recently the influx of whole genome data and large EST sequencing projects 

have led to the discovery of MIF-like molecules in a variety of nonvertebrate metazoans, 

protozoa and plants. Most research on the MIF family has focused on vertebrate 

homologues and their functions as immune modulators or growth factors. Recently, 

MIFs from several parasitic nematode species have been discovered and proposed to 

have potential roles in immune modulation of the host. Very little is known about how 

the MIF gene family has evolved in nematodes and comparisons of the nematode MIFs 

with MIFs from other species may give any clues as to their functions. A survey was 

performed to collect all MIF sequences in the publicly available databases. The MIF 

sequences were aligned and compared. The alignment was also used to perform a 

phylogenetic analysis that has given some clues as to how this large gene family has 

evolved in nematodes and other eukaryotes. 

5. 0.1 Biochemical and Structural Properties of MIFs 

Most cytokines act by binding receptors on the surface of target cells after 

secretion by effector cells. This binding initiates a signaling cascade inside the target cell 

via secondary mediators, which evokes specific responses. MIFs are unusual cytokines 

they have no defined surface receptors and have several distinct enzymatic activities that 

are required for some of their biological function. 

All MIFs tested can tautomerize several small compounds. MIFs and a family of 

proteins related to MIF, DDTs (D-dopachrome tautomerase) can catalyses the 

conversion of the non-physiological substrate D-dopachrome to 5,6-dihydroxyindole 
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(Sugimoto et. al., 1999). Hs-MIF and Hs-DDT share common tautomerase activities but 

Hs-DDT has an additional decarboxylase activity. A naturally occurring substrate, 

phenylpyruvate, has been identified but the reaction kinetics are not believed to be 

physiologically relevant (Rosengren et. al., 1997; Stamps et. al., 2000). The kinetics and 

substrate specificities of individual MIFs differ a great deal and this may be important 

for defining genuine substrates (Pennock et. al., 1998a) (Tan et. al., 2001). Mutational 

studies of human and murine MIFs have established that tautomerase activity is 

dependent on the presence of a proline at the amino terminus of the molecule (Pro2; the 

N-terminal Met is removed from the molecule). Pro2 is believed to serve as the catalytic 

base in the reaction and other tautomerases such as E. coil 4-oxalocrotonate tautomerase 

(4-OT) and 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI) also rely on an 

N-terminal proline residue for their activity (Bendrat et. al., 1997; Lubetsky et. al., 1999; 

Taylor et. al., 1999). Other residues (Rn—MIF-1: Lys32, Ile64, Tyr95 and Asn97) which 

line the substrate binding pocket may help determine substrate preference. However, 

none of these residues are required for catalysis (Lubetsky et. al., 1999). The C-terminal 

portion of Hs-MIF is required for catalysis (Bendrat et. al., 1997). However its function 

is unclear as the tertiary structure of Hs-MIF is undisturbed in the C-terminal deletion 

mutants CA104 and CA109 (Mischke et. al., 1998). 

A second enzymatic activity, thiol-oxioreductase, is present in some mammalian 

MIFs (Kleemann et. al., 1998a; Kleemann et. al., 1998b). This activity depends on the 

CXXC motif in the fourth 13-sheet of the molecule (Hs-MIF residues 57 —60). The 

CXXC is conserved in several known thiol-oxioreductases such as thioredoxin, protein 

disulphide isomerases and glutaredoxins (Kleemann et. al., 2000b) where it functions as 

the active site. In Hs-MIF both residues are important for catalysis. However, Cys57Ser 

mutants still show reduced but significant oxioreductase activities (Kleemann et. al., 

2000b). Hs-MIFs is active on small molecules like dihydroxyethyldisulphide (HED) or 

proteins such as insulin. However, unlike other oxioreductases it has a strong preference 

for larger reduction cofactors such as glutathione (GSH) or dihydrolipoamide (DHL) 

(Kleemann et. al., 1998b). The residues A1a58 and Leu59 have been implicated in 

determining the substrate specificity of Hs-MIF-1 and Ala58Gly;Leu59Pro or 
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Ala58Gly;Leu59His could not reduce large substrates such as insulin but were still 

functional in biological assays which required oxioreductase activity (Kleemann et. al., 

1999). Neither the N or C-terminus are required for oxioreductase activity and f3—sheets 

1 and 6 deletion mutants show normal activity (Kleemann et. al., 1998b; Kleemann et. 

al., 2000b). However the removal of 13-sheet 1 dramatically reduces the oxioreductase 

activity of, Hs-MIF when using HED as a substrate indicating it may be required to 

stabilize some interaction with this small molecule (Kleemann et. al., 2000b). 

The elucidation of the crystal structure of several MIFs (Sugimoto et. al., 1996; 

Sugimoto et. al., 1999; Sun et. al., 1996; Suzuki et. al., 1996; Tan et. al., 2001) has 

provided additional clues to how these molecules might function (see figure 5.0.1.1). 

Despite the fact that some of these proteins share less than 14% sequence identity MIFs 

retain a conserved protein architecture (see figure 5.0.1.2). A MIF monomer is 

composed of two alpha helices (al and a2) and six beta sheets (01-6). The core of the 

molecule contains two 13/a/I3 motifs which combine to make a four-stranded 13-sheet and 

two antiparallel helices. 133 is flanked on one side by the central core of the molecule and 

joins the two 13Io/13 motifs. The C-terminal structure of the MIFs differs between 

species. However in all proteins 136 interacts with f35 on an adjacent subunit. Like Ec-

CHMI, MIFs and DDTs form homotrimers with a symmetric barrel-like structure (see 

figure 5.0.1.2). Ec-4-OT has a similar tertiary structure, but is made up of six 131a/13 

subunits 
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Figure 5.0.1.1 Graphical representations of human and rat MIF-1 secondary and tertiary structures. 
A: The relationship between the secondary structure elements of Hs-MIFl to the primary protein 
sequence. This cartoon was adapted from the pdb summary of Hs-MIF-1 taken from the CATH database 
(http://www.biochem.ucl.ac.uk!bsmlpdbsumllmif/main.html and Orengo et. al. 1997). B: The structure 
of the Rn-MIF- 1 monomer. a-helicies in red, 3-sheets in green, unordered in yellow. C: The structure 
of the Rn-IvllF- 1 trimer seen from the side and from above. D: A flattened schematic of the Rn-MIIF- 1 
trimer showing the points of contact between the 3-sheets of adjacent monomers (132  with  33  and 136 
with f35). The graphics B, C, and D are taken from Suzuki et. al. 1996. 
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Figure 5.0.1.2 Comparison of the tertiary structures of human MIF and DDT and E.coii CHMI and 
4-UT. A: DDT1_HOMSA, B: MLF1_HOMSA, C: CHMI_ESHCO, and D: 4-UT ESHCO. 
The cartoon shows each structure facing down the open 'barrel of the trimer (or hexamer in the case 
of 4-UT). The three fold symmetryof the molecules and the overall structural similarities despite the 
absence of high levels of sequence conservation is readily apparent. This figure has been taken from 
Sugimoto et. al. 1999. E: Pairwise similarity matrix showing the percent identity of the protein 
sequences of the three crystallized vertebrate MlFs and E. coil CHIvil. The protein sequences have 
been aligned based on their secondary and tertiary structures (see figure 5.2. 1) 
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Other growth factors such as interleukin lB (IL-113), fibroblast growth factor 

(FGF) and tumor necrosis factor (TNF) also form barrel structures with three fold 

symmetry. The barrel of vertebrate MIFs and DDTs forms an open, solvent accessible 

channel, which has been compared to a two-sided funnel. This channel is believed to be 

important for binding of substrates. However, the recently published structure of a MIF 

isolated from the parasitic nematode Trichinella spiralis shows that its channel is 

blocked in the center by the protrusion of several residues, suggesting that movement of 

substrates through its channel may not be vital for activity (Tan et. al., 2001). In human 

and rat MIF the catalytic Pro2 residue lies in a region surrounded by two hydrophobic 

pockets. The first pocket is composed of Met3, Phe50, Ile65, Tyr96 and Val 107, and the 

second of Pro34, Tyr37, Trp109 and Phel 14 (Orita et. al., 2001). In Hs-DDT these 

pockets are primarily composed of hydrophilic residues and it is believed that these 

differences can explain the affinity of MIFs for some substrates (Sugimoto et. al., 1999). 

Two polar residues (Lys22 and Ser63) which are adjacent to the pockets have been 

conserved between the human MIF and DDT but their functions have not been 

determined. One of the cysteine residues essential for thiol-oxioreductase activity 

(Cys57) lies on the opposite side of the MIF trimer relative to Pro2. The other (Cys60) 

protrudes into the center of the cavity, presumably giving it access to substrates within 

it. No substrates or inhibitors of thiol-oxioreductase activity have been co-crystalized 

with MIF so it is still unclear what residues outside of the CXXC motif are important in 

determining substrate specificity. 

Besides its enzymatic properties MIF has been shown to bind a variety of small 

molecules and proteins, including glycolipids such as gangliosides (Liu et. al., 1982), 

haematin (Pennock et. al., 1998b) and long chain fatty acids such as oleic acid (Bendrat 

et. al., 1997). Haematin and oleic acid both inhibit tautomerase activity of Hs-MIF. 

However, it has not been established if these compounds are generally effective against 

MIFs and some nematode MIFs do not appear be as sensitive to haematin as their 

vertebrate homologues (Pennock et. al., 1998a). 

Human MIF has been shown to associate with several proteins under 

physiological conditions. Hs-MIF co-purifies with sarcolectin, a serum component with 
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immunomodulatory and growth factor properties (Zeng et. al., 1993). Sarcolectin has 

capacity to bind sugars like N-acetylneuraminic acid and it is unclear if Hs-MIF is 

binding directly to sarcolectin or sugars that may have co-purified with it. 

MIF has also been shown to form covalent associations with peroxiredoxin 

(PAG) (Jung et. al., 2001). While this interaction was initially found in a yeast two-

hybrid screen both proteins could be coprecipitated in vivo. This binding is dependent on 

redox status and reducing agents such as 2-ME and DTT inhibited association. 

Association between MIF and PAG is also dependent on the active site cysteine of PAG 

(Cys173) and PAG Cys173Ser mutants do not coprecipitate. It is believed that this 

association is mediated via MIFs Cys60. The association inhibits the thiol-oxioreductase 

activities of MIF and PAG which suggests that the complex may have a regulatory 

function (Jung et. al., 2001). It is not known whether MIF associates with CXXC 

domains of proteins other than PAG. 

Two-hybrid screens have also revealed that human MIF directly interacts with 

Jabi, a component of the COP9/signalosome complex (Kleemann et. al., 2000a). In vivo 

binding of MIF to Jab 1 inhibits subsequent phosphorolaytion of c-Jun and the activation 

of AP-1 transcription complex. While it is unknown if the tautomerase activity is 

required for Jabi binding and repression, the Hs-MIF Cys60Ser mutant was unable to 

repress Jabi but still associated with it, implicating the thiol-oxioreductase activity in 

this function. One of the most interesting features of this interaction is the fact that MIF 

acts directly on Jabi after crossing the cell membrane. The mechanisms which allow its 

translocation and subsequent release in the cytosol remain undefined. 

5.0.2 The functions of MIFs in vertebrates 

MIF and DDT are ubiquitously expressed in almost all vertebrate tissue types 

tested. Their functions in most of these tissues are unknown. MIFs have been shown to 

possess potent autocrine and paracrine properties. The most extensive studies of MIF 

function are those which have centered on MIF activities in the modulation of immune 

responses and immune cells in humans or rodents. However, MIIF expression and 
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secretion has been linked to a variety of processes outside of the immune system 

including growth, differentiation, neuronal function, apoptosis, oxidative stress and 

metabolism (reviewed in (Fingerle-Rowson and Bucala, 2001; Nishihira, 2000)). IVllFs 

are potent signaling molecules that act on a wide variety of cell types. Despite the broad 

range of cells it can act upon the effects of MIF are context dependent. Slight differences 

in the environment of the target cell can elicit very different responses not all of which 

appear to be beneficial (Bozza et, al., 1999; Roger et. al., 2001). In at least one context 

IvllF appears to be linked to the pathological aspects of inflammation (Froidevaux et. al., 

2001). Depletion of MIF either by treatment with anti-IV11F antibodies, RNAi, or 

generation of MIIF knock out mice has shown that MIF potentiates the inflammatory 

response, antagonizes glucocorticoid (GC) suppression of inflammation and increases 

bacterial toxin induced lethality in mouse models (Bozza et. al., 1999; Froidevaux et. al., 

2001; Mitchell et. al., 1999). The activities of MIF do not always appear to help in the 

resolution of infections and removal of l\41F actually results in faster clearance of 

bacterial infections and reductions in inflammation induced pathology (Bozza et. al., 

1999). However, the context of IvllF's activities appears to be pathogen dependent and 

killing of some intracellular pathogens like Leishmania major appear to be stimulated by 

MIF so it is unclear when IvIIF function is required for successful pathogen control 

(Bozza et. al., 1999). 

One of the most intriguing aspects of MIFs functions is that many of its activities 

are not dependent on its enzymatic activities (Bendrat et. al., 1997; Hermanowski-

Vosatka et. al., 1999; Hudson et. al., 1999; Kleemann et. al., 2000b). Unfortunately, 

most of these observations are incomplete and no comprehensive studies have been 

undertaken that test the biological effects of systematically removing MIPs tautomerases 

and oxioreductase activities. Table 5.0.2.1 summarizes the different activities ascribed to 
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5.0.3 MIFs in other organisms 

MIF-like genes have recently been cloned from several non-vertebrate 

metazoans. These MIFs have only been functionally characterized from nematodes 

and one arthropod where they may be involved in host-parasite interactions. 

MIF from the hard-bodied tick Amblyomma americanum had tautomerase 

activity, inhibited random migration of human monocytes and was localized in the 

midgut and salivary glands (Jaworski et. al., 2001). 

Several MIFs have been characterized from free-living and parasitic 

nematodes. Nematode MIFs were first identified in the human parasite Brugia 

malayi (Blaxter et. al., 1996; Pastrana et. al., 1998). Bin-MIF-1 is present in all 

stages of developement and has been localized to the lateral chords and uterine wall 

of adult females and the developing larvae in utero. Bm-MIF-1 is secreted into the 

mammalian host by both larval and adult parasites, has tautomerase activity and is 

chemotactic for human monocytes. Bm-MIF-1 has been shown to induce expression 

of Ym- 1 (an eosinophil chemotactic factor) expression in alternately activated 

macrophages and is able to recruit eosinophils in vivo. Eosinophil recruitment is an 

important feature of nematode infection and Bm-MIF-1 provides a potential link 

between parasite products and the recruitment of these cells (Falcone et. al., 2001). 

Mutant Bm-MIF- 1 (Pro2Gly) lacking tautomerase activity was unable to perform 

either of these activities (Falcone et. al., 2001). B. malayi also expresses a second 

MIF homologue, mif-2 which has similar enzymatic activities, but its role in 

interactions with the host immune system has not been assessed. A MIF with 

tautomerase activity has been isolated from the secretions of the muscle and 

intestinal parasite Trichinella spiralis. Like Bm-MIF- 1 is active in chemotactic 

assays with human monocytes (Tan et. al., 2001). The crystal structures of Ts-MIF-1 

and Bm-MIF-2 reveal tertiary structures extremely similar to vertebrate MIFs, 

indicating that stringent sequence conservation is not required for the maintenance of 

structural and enzymatic function (Zang X.X. and Maizels R. submitted 2002 and 

(Tan et. al., 2001)). 

Four MIFs are found in the free-living nematode Caenorhabditis elegans 

(Marson et. al., 2001). RNAi of the MIF genes did not show any visible phenotypes, 

but all four are expressed across the major stages of post embryonic development. 
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Cem/L1 is upregulated in adult worms while Ce-m?f-2  and mif-3 are upregulated in 

the dauer larvae or during environmental stress. Ce-mf2 and mf3 are expressed in 

body wall and vulva muscle. Ce-m2 was also expressed in the hypodermis while 

Ce-mf3 was expressed in the pharynx and in embryos after the 8 cell stage. Ce-

MIF-3 was associated with embryonic nuclei indicating a possible role in the control 

of early development. Ce-MIF-4 is unusual because a catalytic proline has been 

replaced with a glutamine. Because of this substitution it is not predicted to have 

tautomerase activity. 

To help better understand how the nematode MIF and other MIFs sequences 

are related, a survey to isolate MIF genes available in the public databases was 

undertaken. The isolated MIF sequences were aligned and analyzed for conserved 

structural features. The alignment was used for phylogenetic analyses which have 

given some clues as to how the MIF gene families have evolved in nematodes and 

other organisms. 



5.1 Isolation of MIF gene family members from the public databases 

To isolate mf genes the non-redundant nucleotide, protein and EST databases 

(GenBank, 10/01/2002) were searched iteratively with TBLASTN, BLASTN and 

PSI-BLAST using vertebrate, nematode and plant MIFs as probe sequences 

(Altschul et. al., 1990; Altschul et. al., 1997). In the case of ESTs, where there were 

multiple sequences from one gene, assemblies were made using AssemblyLlGN 

(Oxford Molecular). Seventy-one distinct sequences from forty-two species were 

identified (see appendix II table 5.1.1). 

5.2 Multiple sequence alignment of the MIF protein and eDNA sequences 

A multiple sequence alignment was constructed using all seventy-one protein 

sequences using CLUSTAL X (Thompson et. al., 1997) and optimized by hand 

(figure 5.2.0.1). The coding sections of the cDNAs used to predict the amino acid 

sequences of the MIF genes were aligned using the protein multiple sequence 

alignment as a guide. All gaps used in the protein alignment were reflected in the 

cDNA alignment (see figure 5.2.0.2 appendix III). 
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A Residues Required For Enzymatic Activity 

o Group Specific Synapomorphies 

o Variable Residues Lining Substrate Binding Pocket 

® Conserved Residues Lining Substrate Binding Pocket 

Figure 5.2.1 The MIF protein multiple sequence alignment. The amino acid residues in the alignment were colored using the default settings in 
Seqpup v06 (D.G. Gilbert ,Biology Dept, Indiana University). Small uncharge residues A, G, P, S, T: magenta; positively charged H, K, R: light 
blue; polar neutral or negatively charged D, F, N, Q: black; hydrophobic residues I, L, M,V: green; hydrophobic aromatic residues F, W, Y. blue; 
cysteine C: red The sequences are named following table 5.1.1 - 



Comparison of the of the sequences in the alignment indicate that the MIF 

gene family is extremely polymorphic with many of the sequences showing very low 

overall sequence similarity to each other (range of 10-99%). However, examination 

of the sequence alignment has revealed that there are at least eighteen residues that 

are conserved in most of the isolated MIF sequences. Mapping of these conserved 

residues back to a canonical MIF secondary structure indicates the majority of these 

conserved residues are found in four sections of the molecule; n-sheet 1, the regions 

adjacent to g3-sheet-2, n-sheet 3, and the regions adjacent to 3-sheet 4 (see figure 

5.2.0.2). The residues critical for MIFs enzymatic activities are found near the 

conserved residues in n-sheets 1 and 3 while several residues lining the substrate 

binding pocket are found in n-sheets 2 and 4. Eleven group specific synapomorphies 

were also identified. Like the conserved residues they map to areas adjacent to 

residues important for catalysis or substrate binding. The group specific 

synapomorphies identified are summarized in table 5.2.0.3 along with substitutions 

observed in the active site residues and residues lining the substrate binding pockets. 

Interestingly, despite the diversity in sequence, examination of the position of 

gap/insertions in the MIF alignment revealed that in all but one instance they 

occurred in loop regions outside of the six 3-sheets and two a-helices. The exception 

was found in the Plasmodium sp. and P. sojae sequences where a gap, relative to the 

other MIF sequences, is predicted in the middle of a-helix two. 
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Feature # Group or species Comments on 
possible structure 

function relationships 

Active site 
residues 

2 Pro -> Gln MIF4_CAEEL Single base pair 
transversion CCA -> 
CAA likely to abolish 
tautomerase activity 

64 Cys -> Ala and other 
residues 

All plant sequences many 
nematode sequences 

Reduced oxioreductase 
activity 

67 Cys -> Gly and other 
residues 

All plant, all DDT, many 
nematode sequences 

No oxioreductase 
activity 

Group specific 
synapomorphies 

4 Aromatic vertebrate and most ecdysozoa 
 MIFis -....- 

Near the Pro2 may 
interact with substrates 

plant MIFs  

Hydrophobic DDTs, nematode MIF2 and 

39 
- 

On the surface of MIF 
facing solvent 

Positvely charged Vertebrate MIFs, DDTs and 
nematode MIF2s 

Small uncharged Most other sequences  

46 Positively charged 

hydrophobic 

Ecdysozoan MIF Is and 
vertebrate MIF Is 

.Most plant sequences  

Faces the center of the 
trimer 

82 Positively charged Vertebrate MIFs, DDTs and 

Polar or negatively 
charged  

_ 

many nematode MIF Is 

84 aromatic Vertebrate MIFs 
Positively charged DDTs and B 

Positively charged or 
aromatic 

nematode MIF2s 

_._ .................... 

hydrophobic Plant and protozoan MIFs 

102 

109 

Polar or negatively 
charged 

Animal MIFs Faces residue 55 may 
 interact 

Faces interior of the 
trimer 

plantMIFs  

Small uncharged Plant LSs - 
Aromatic Vertebrate MIFs, DDTs, 

Plasmodium sp and many 

111 

Hydrophobic or 
_pitivychared_ 

Nematode MIFs 
_ 

May interact with 
residue 109 also faces 

the interior of the 
trimer 

hydrophobic Animal sequences 

Polymorphic 
residues lining 
the substrate 
binding sites 

3 Hydrophobic or 
Aromatic residues 

Animal 

 - .... - __ 

Near Pro2 may interact 
with substrates 

Free thiol may interact 
with substrate 

Cys Plant, 
Plasmodium and Giardia 

26 Hydrophobic or 
neutral  

Animal and protozoan MIFs 

Plant MIFs  neutral 
42 Positively charged Vertebrate DDTs Nematode 

MIF2s  

Faces residue 4 

Aromatic Most other sequences 



55 hydrophobic DDTs 
No residue preference Nematode MIF2s 

Aromatic Most other sequences  
65 Ala Most Animal and plant MIFs Involved in thiol- 

oxioreductase substrate 

--.- 
specificity 

No preference Most nematode MIF2s  

66 Leu or Val Vertebrate and many Involved in thiol- 
nematode MIF is oxioreductase substrate 

_. 
specificity 

No preference 
. ._________ 

All other sequences  
105 aromatic Vertebrate, ecdysozoan , plant, 

G. intestinalis and E. tenella 
MIFs 

hydrophobic DDTs, nematode MIF2s, 
Apicomplexan and P. sojae 

MIFs  

107 Polar or negatively Vertebrate and most 
charged ecdyozo aMJ1 .... 

Positively charged DDTs, most nematode MIF2s 
and  _Plant _MIFs 

Small hydrophobic Apicomplexan and P. sojae 
MIFs  

118 Aromatic Plant MIFs 
Hydrophobic Animal MIFs  

120 Aromatic Most Animal and many plant 
MIFs 

Positively charged DDTs and some nematode 
MIF2s  

126 Aromatic Vertebrate MIF Is, ecdysozoa 
MIF  Is, mostJL1anj.M1ILs__....  

Hydrophobic Vertebrate DDTs, nematode 
MI172s, apicomplexa and 

Apicomplexan and P. sojae 
MIFs  

Table 5.2.0.2 The identified group specific synapomorphies and polymorphic residues lining 
substrate binding pocket. The residue position in the alignment, the group or species in 
which polymorphisms have been identified and any inferred or experimentally verified 
structure-function is listed.  

Very little structure-function data has been accumulated outside of the active 

site residues so it is difficult to guess what functions other conserved residues might 

have. However, examination the MIF alignment has identified twenty-three residues 

that are conserved in the majority of sequences. Three of these residues line the 

substrate binding pocket, Presumably many of them are involved in maintaining 

tertiary structure. Eleven group specific synapomorphic residues were also identified. 

Many of these are found near residues lining the substrate binding pocket. 
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With the exception of CAE MIF4, the catalytic proline has been conserved in 

all isolated sequences indicating the tautomerase activity will be a universal feature 

of MIFs. The conservation of this activity indicates it may be closely linked to the 

biological functions of MIF genes. 

Conversely, the CXXC motif (residues 64-67 in the alignment) is limited to 

the metazoan MIFs and is absent from the protozoan and plant sequences. Some of 

the protozoan sequences to have cysteine residues at positions 64 and/or 65 which 

may be an ancestral state for the residues at these positions. However, whether the 

protozoan MIFs possess an oxioreductase activity comparable to the vertebrate MIFs 

is still to be determined. Interestingly most of the plant and protozoan MIFs have a 

cysteine (Cys3) immediately after the catalytic proline. The presence of a free-thiol 

close to the proline might radically change its activity or the substrate specificity of 

the enzyme. 

In the metazoan MIFs there are a number of polymorphisms in the residues 

lining the substrate binding pockets. In the vertebrate MIFs and DDTs substitutions 

of aromatic residues for positively charged or smaller hydrophobic residues is 

believed to give the DDTs a preference for larger, less hydrophobic substrates. 

Interestingly some of these polymorphisms are shared by many of the nematode 

MIFs. 

There are at least two examples of group specific synapomorphies in which 

changes occur in residues that may interact (4 and 42, 55 and 102). Whether these 

reciprocal changes in residues represent compensatory changes or the acquisition of 

novel functions remain to be elucidated. 

5.3: Phylogenetic analysis of the protein and cDNA sequences of the MIF gene 

family 

Phylogenetic analyses were performed using the protein and cDNA 

alignments excluding four partial sequences (MIF2_MELJA, MIF1ANCCA, 

MIF2_ANCCA and LS1_TOXGO). Only characters 1-128 in the protein and 1-390 

in the cDNA alignment were used in the subsequent analysis, excluding long C-

terminal extensions found in several sequences (MIFiCIOIN, MIF2_CIOIN, 

MIF2CAEEL, MIF3 CAEEL, MIF2 STRSE, MIF2 ONCVO, MIF2BRUMA, 

144 



LS1PHYSO, LS2 GOSAR and LS2_MESCR). Phylogenetic analyses were 

performed using distance, maximum parsimony and Bayesian methods (reviewed in 

(Huelsenbeck et. al., 2001; Swofford et. al., 1996)). 

For the protein alignment distance searches using the neighbor joining (NJ) 

algorithm and distance parameters of total character difference were used to 

construct a single tree which was then tested using NJ bootstrap analysis (10,000 

replicates, see figure 5.3.1). 

An initial uncorrected NJ tree was used to build a likelihood model for the 

cDNA sequence alignment. A general time reversible model was used to estimate the 

actual base substitution rates. Base frequencies were calculated to remove base 

composition bias and the gamma distribution was calculated to determine if the rate 

of base substitutions was equal across all sites. This corrected matrix was then used 

as the evolutionary model used in the NJ analysis of the cDNA alignment. The 

'corrected' NJ tree was tested by bootstrap analysis (10,000 replicates, see figure 

5.3.2). 

For both the protein and cDNA datasets a heuristic maximum parsimony 

(MP) search was performed using stepwise addition of taxa and 10 replicates. The 

search of the protein alignment yielded two islands containing 196 trees with a 

length of 2426. The search of the cDNA alignment yielded two islands containing 

15056 trees with a length of 1856. A consensus tree was built from the trees saved 

during each search. This tree was tested by bootstrap analysis (10,000 replicates, 

using a heuristic algorithm, see figures 5.3.3 and 5.3.4). Both the distance and MP 

analyses were performed using PAUP*  4.0b8 (Sinauer Associates Inc., Sunderland, 

Mass). 

The Bayesian analysis of Markov chain Monte Carlo estimations of 

maximum likelihood trees were carried out using Mr. Bayes 2.0 (Huelsenbeck and 

Ronquist, 2001). A Dayhoff amino acid substitution model was used for the protein 

searches. The analysis was run with four chains for 1,000,000 generations and the 

best tree saved every 100 generations. A consensus tree was generated from the 

saved trees excluding those found before the likelihood values stabilize (the "burn-

in" generations, see figures 5.3.5 and 5.3.7). After initial examination of the 

consensus trees containing all of the MIF sequences several of the long branch taxa 



(LS 1PLABU, MIF 1 GIAIN, LS 1 _EMETE, LS 1 _PLAFA, LS 1 PLAYO and 

LS1PHYSO) were removed to examine whether these rapidly evolving sequences 

were contributing to the large polytomy at the base of the animal dade (see figures 

5.3.6 and 5.3.8). 

CHMIESCCO was chosen as the outgroup and each of the MIF sequences 

in the analysis were assigned to a group a priori depending on their origin and 

similarity to reference sequences. Table 5.3.9 shows a summary of the results of the 

phylogenetic analysis. 
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Metazoans: 
Vertebrate MlFs 

Vertebrate DDTs 

Ecdysozoan MiFis 

Deuterostome MlF2s 

IF Nematode MIF2s 
Higher Plants: 

Gymnosperms: Conifers 

Angiosperms: Dicots 

Angiosperms: Monocots 

Unicellular Eukaryote and CHMI: 
Apicomplexa 

Other Unicellular Eukaryotes 
and CHMl 

Figure 5.3.0 The color codes used to differentiate sequences from different groups of organisms 
within the animal sequences the vertebrate IMF 1, nematode MIF 1, vertebrate DDTs, and other 
non-vertebrate MIFs have been given different colors. 
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Figure 5.3.1 Rooted phylogram showing the results of NJ search of the protein alignment. Clades 
supported by bootstrap values >50% are indicated by bootstrap values placed at the base of the node. 
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Figure 5.3.2 Rooted phylogram showing the results of corrected NJ search of the cDNA alignment. 
Clades supported by bootstrap values >50% are indicated by bootstrap values placed at the base of the 

node. 
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Figure 5.3.3 Rooted cladogram showing the consensus of the 196 trees found in the MP analysis of the 
MIF protein sequence alignment. Clades supported by bootstrap values >50% are indicated by 
bootstrap values placed at the base of the node. 
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Figure 5.3.4 Rooted cladogram showing the consensus of the 15056 trees found in the MP analysis 
of the MTF protein sequence alignment. Clades supported by bootstrap values >50% are indicated by 

bootstrap values placed at the base of the node. 
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Figure 5.3.5 Rooted phylogram shows a consensus tree summarizing the results of the Bayesian 
analysis of the MIIF protein alignment. The consensus tree was built from 999,625 best trees saved 
during the analysis.The posterior probability that the dade is correct is shown at the base of each 
node ifitis >0.50. 
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Figure 5.3.6 Rooted phylogram shows a consensus tree summarizing the results of the Bayesian 
analysis of the IvllF protein alignment excluding the long branch protozoan sequences. The 
consensus tree was built from 999,037 best trees saved during the analysis.The posterior probability 
that the dade is correct is shown at the base of each node if it is >0.50. 
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Figure 5.3.7 Rooted phylogram shows a consensus tree summarizing the results of the Bayesian 
analysis of the IvllF eDNA alignment. The consensus tree was built from 998,630 best trees saved 
during the analysis.The posterior probability that the dade is correct is shown at the base of each node 
ifitis >0.50. 
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Figure 5.3.8 Rooted phylogram shows a consensus tree summarizing the results of the Bayesian 
analysis of the MIF eDNA alignment excluding the long branch protozoan sequences. The 
consensus tree was built from 998,690 best trees saved during the analysis.The posterior probability 
that the dade is correct is shown at the base of each node if it is >0.50. 
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Clades NJaa NJ 

cD] 

Plant  

Plants separate from 
animals  

X X 

Monocot X X 

Gymnosperm X X 

Plasmodium and P. sojae X 

Plasmodium and Plants X 

Animal  

Vertebrate MIFs X X 

Vertebrate DDTs X X 

EcdysozoanMlfl X 

SecementeanMlFis X 

Nematode MIIF2  

C. elegans MTF2,3,4  

Vertebrate DDTs with 
nematode MIIF2  

Ecdysozoan Mif is basal 

to other animal MIfF clades  



Table 5.3.9 Summary of the results of tt 
clades. Clades are supported by high 
branch protozoan sequences. NA: not a 

157 



The overall topology of trees found in the phylogenetic analyses of the MIF 

sequences were very similar. However, nodes at the base of the animal portion of the 

trees were generally not supported by NJ and MP bootstrap analyses. The plant 

sequences were robustly placed in a single dade. Within this dade the monocot and 

gymnosperm sequences were placed in separate groups from the dicot sequences. 

The gymnosperm sequences were always placed near the base of the plant dade. 

However, in some of the analyses several of the dicot sequences with long branch 

lengths superceded them at the base of the dade. 

The placement of the protozoan sequences is more problematic with the 

Plasmodium sp. and P. sojae sequences being placed with the plant sequences in 

some analyses or rooting from the polytomy at the node separating the plant and 

animal groups and the G. intestinalis and E. tenella sequence. Interestingly, the E. 

tenella sequence was never placed within the Plasmodium sp. and P. sojae dade. 

This result is unexpected as E. tenella is also an Apicomplexan. 

In the animal section of the tree the vertebrate sequences were consistently 

placed in two clades which separated the MIF and DDT sequences. The results of the 

NJ protein and MCMC searches indicate that nematode, C. intestinalis and A. 

americanum can be divided into at least two major clades. The first dade contains 

the nematode MIF2 sequences. The second dade (ecdysozoan MIFs) is a loosely 

associated set of sequences which root from a large polytomy at the node separating 

the plant and animal sequences. This group includes the nematode and the A. 

americanum MIF is. The relationship of the sequences within this dade remains 

largely unresolved although several small clades of closely related sequences have 

been identified. The results of the MCMC searches place the vertebrate DDTs deep 

within the nematode MIF2 dade (see figures 5.3.5-8) The position of the C. 

intestinalis MIFs varies between analyses and it is unclear whether they belong to the 

ecdysozoan or MIF2/DDT groups. 

The NJ analysis of the protein sequences and the MCMC analysis of the 

cDNA sequences have grouped the nematode MIF is belonging to Secernentean 

species into a single dade. This indicates they may represent an orthologous set of 

genes. Similarly the MCMC analysis of the protein sequences placed C. elegans 

MIF2, 3 and 4 in a single dade with Ce-MIF-2 rooting at the base of the dade. This 
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indicates Ce-MIF-3 and 4 may have arisen from an ancestral gene duplication of Ce-

MIF-2. 

How these major clades should be rooted in relation to each is not entirely 

clear. In the searches that contain all the sequences the major clades branch from a 

polytomy at the base of the animal dade. However, the MCMC searches which do 

not include the protozoan sequences indicate that the ecdysozoan MIFs (or several 

members of this group) root at the base of the animal portion of the tree with 

Secernentean MIFs, vertebrate MIF Is and the MIF2/DDT clades branching off from 

these sequences. 

One of the most interesting features of the MIF phylogenetic trees is the 

observed differences in the rate of change in sequences belonging to different groups 

(as reflected in branch lengths in trees rooted with Ec-CMI-1). For instance the 

vertebrate DDT sequences have much longer branches than the vertebrate MIFs 

indicating that they are evolving much more quickly. A similar comparison of the 

plant and animal sequences show that the plant sequences have remained relatively 

static when compared to the animal sequences. These differences in relative rates 

may reflect functional constraints that are holding sequences constant in the groups 

that show high conservation or a burst of changes that reflect the acquisition of new 

functionalities in the rapidly evolving groups. 

5.6: Evolution of Intron sequences in the MIF gene family 

Intron placement and movement within genes families can provide another 

layer of information that can complement analysis of the gene sequences (see figure 

5.6.1). 
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Figure 5.6.1 Comparison of the intron positions found in MIF genes. The genomic sequence of HOMSA_DOT1 (AF058293), MUSMIJ_DOT1 (AF068 199), 
HOMSA_MIF1 (L39357), MUSMU_M1F1 (L19686)), BRUMA_MIF1 (AF002699), CAEEL_MIF1 (AL132860), AMBLY_MTF1 (AF289543), BRUv1AMIF2, 
CAEEL_MJF2 (Z78012), CAEEL_M[F3 (AC084197), CAEEL_MIF4 (AC084197), ARATH_LS1 (AL161946), ARATH_LS2 (AL132968), ARATH_LS3 (BA000025), 
PLAFA_LS1, PLAYO_LS1, and GIAIN_MIF1 are shown as they were aligned . The intron positions and phase are shown with colored triangles and numbers. * The 
C-terminal extension of CAEEL_MI[F3 which does not contain any introns has been removed. OJAIN_MIF1 does not contain any introns within its genomic sequence. 
The secondary structure of the H. sapiens MTF1 is shown at the top of the diagram. a indicates alpha-helical and f3 indicates beta-sheet structures. The sequences have 
been broken up into groupings derived from the phylogenetic analysis. 
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Genomic sequence was available for seventeen MIF genes, from nine 

different species. Each gene had between zero and four introns, with the majority of 

the genes having two introns. Comparison of the intron positions showed that several 

are shared by the MIF groups. The vertebrate DDTs, vertebrate MIFs, ecdysozoan 

MIF is and the plant MIFs all share a common first intron position with phase zero. 

The vertebrate DDTs, vertebrate MIFs and ecdysozoan MIF is share a common 

second phase zero intron position with a phase two. A unique second intron was 

found in two plant sequences in the C-terminal portion of the molecule. The 

nematode MIF2 sequences have a different set of intron positions relative to the 

other metazoan MIF genes. There is a great deal of variability in the conservation of 

these introns in different nematode sequences (figure 5.6.1). Interestingly, the fourth 

intron of CAEEL_MIF2 shares the same position as the second intron of the 

vertebrate DDTs, vertebrate MIFs and ecdysozoan MIF Is. However they do not 

share the same phase. The apicomplexan MIFs both have a single uniquely 

positioned intron at the N-terminus of the gene with a phase of one, while the 

Giardia MIF does not have any introns. 

5.7: Discussion 

Despite having been discovered almost 40 years, ago MIFs remain a very 

enigmatic set of molecules. In vertebrates the MIF gene family is an extremely 

important group of regulatory molecules which function in a variety of different 

contexts. In the mammalian immune system MIF functions as a signaling molecule 

that controls the initiation and scope of some types of immune responses. MIF and 

its interactions with glucocorticoids is particularly important in the initiation of the 

innate immune response after exposure to bacterial products (Froidevaux et. al., 

2001). The mechanisms through which MIF exerts its activities still remain largely 

unresolved. Unlike most cytokines, MIF as well as being a signaling molecule has 

two enzymatic activities (Kleemann et. al., 1998a; Kleemann et. al., 1998b; 

Sugimoto et. al., 1999). These enzymatic activities are important for some but not all 

of MIF's effects on cells. The functions of MIFs in other organisms remain almost 

completely unexplored. Several nematode MIFs have been isolated from a variety of 

parasitic species in contexts that indicate they have both endogenous and exogenous 

functions. The endogenous functions of these MIFs is currently being tested in the 
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model nematode C. elegans whose genome contains four MIF genes. A preliminary 

study indicates that nematode MIFs may have roles in embryogenesis, tissue 

differentiation and stress responses although gene knock out by RNAi has not 

revealed any phenotype (Marson et. al., 2001). The functions of MIFs secreted into 

hosts by parasitic species are also being explored. Nematode MIFs have been shown 

to have effects on mammalian immune cells in both in vivo and in vitro assays. It is 

speculated that they are involved in the manipulation of the host immune system by 

the parasite, however definitive links between these molecules and effects on host 

immune system are still to be established (Falcone et. al., 2001). 

5.7.1 The distribution of the MIF genefamily 

One of the major goals of this study was to survey of the distribution of the 

MIF gene family. While MIFs have been cloned and characterized from several 

vertebrate and nematode species a preliminary survey of the whole genome and EST 

datasets revealed that there were many MIF-like gene sequences in organisms from 

which they have not been previously identified (see Figure 4.7.1.1). Sequences have 

been identified in many of the major eukaryote groups including the Diplomonadida, 

Apicomplexa, Heterokonts, Viridiplantae and Metazoa. No MIF like sequences were 

identified from the Euglenoidea or Fungi. Both of these groups (particularly the 

fungi) have whole or partial genome sequence available from several species. Until 

more whole genome sequences become publicly available it will remain unclear if 

this gene family has been completely lost from those groups. Searching of the 

sequenced portion of the D. melanogaster and Anopheles gambiae genomes has 

failed to identify any MIF genes. This indicates that within the metazoa there may be 

some species that have lost their MIF genes. The distribution of MIFs through so 

many evolutionarily distant phyla supports the possibility that MIF-like genes are 

likely to be found in most eukaryote genomes. None of the isolated MIFs show 

significant similarity to the structurally similar bacterial genes 4-OT or CHMI and 

thus it is possible that MIFs arose after the separation of eukaryotes from the 

bacterial lineages. 
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Figure 5.7.1.1 Distribution of the identified MIT gene family members across eukaryotes. Those groups 

from which MIF-like sequences have been identified are marked in bold. A: the phylogenetic distribution 
of MIIF sequences through the eukaryotes adapted from Baldauf et. al. 2000. B: the phylogenetic 
distribution of MIT sequences through the metazoa adapted from Blaxter 1998. * indicates that 
searching of whole genome sequence from a species within this group has failed to yield any MIF gene 
family members. Arthropods: Drosophila melanogaster and Anopheles gambiae Fungi: Candida albicans, 

Saccharomyces cerevisiae and Saccharomyces pombe Microsporidian: Encephalitozoon cuniculi. 
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5.7.2 Analysis of the aligned MlFsequences 

Analysis of the aligned MIF sequences has identified several interesting 

features. First the catalytic proline required for MIFs tautomerase activity is 

conserved in almost all MIF sequences identified, while the CXXC active site which 

is necessary for thiol-oxioreductase activity seen in some vertebrate MIFs is confined 

to a limited number of metazoan sequences. This indicates that the thiol-

oxioreductase activity may be an innovation seen exclusively in metazoans. 

When residues lining the substrate binding site are examined, those which 

vary between groups have given some clue as to what types of substrates the 

different enzymes might prefer. The substrate binding sites of the vertebrate MIFs, 

ecdysozoan MIF is and plant MIFs are rich in hydrophobic and aromatic residues 

indicating a potential preference for smaller hydrophobic substrates. Conversely, in 

the vertebrate DDTs and nematode MIF2s many of aromatic residues have been 

replaced with smaller hydrophobic or positively charged residues indicating these 

enzymes could accommodate larger, more polar substrates. The protozoan sequences 

show much more variability in these residues than the plant and animal MIFs. MIFs 

from G. intestinalis and E. tenella tend to share more residues with the animal 

sequences while the Plasmodium sp. and P. sojae sequences share more residues 

with the plant sequences. However, until enzymatically active recombinant MIFs and 

a panel of suitable substrates are available it is impossible to test exactly how these 

substitutions have affected the activities of the enzyme. 

5.7.3 Phylogenetic analysis of the MlFgenefamily 

The results of these phylogenetic analyses of the MIF genes has given some 

clues as to how this family has evolved. Three different phylogenetic methods, 

distance (NJ), parsimony (MP) and Bayesian (MCMC) were used in the analysis of 

the dataset. All three techniques gave similar results that can be summarized as 

follows (Figure 5.7.2.1). The metazoan and plant sequences reproducibly partition 

into separate clades indicating that MIF genes have been duplicated independently in 

both lineages. Within the metazoan dade four groups are seen vertebrate MIFs, 

vertebrate DDTs, ecdysozoan MIF is and nematode MI172s. Depending on the 

analysis, the inferred relationship of these groups to each other is variable. However, 

there is some indication that the ecdysozoan MIF is may represent a basal lineage 
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from which the other three groups have evolved. The topology of the trees within the 

vertebrate MIF1 and DDT groups are well supported and consistent with previously 

published data on the evolution of the vertebrate species. In general there is very 

little resolution within the ecdysozoan MIF is with most of the sequences rooting 

from a polytomy which separates the plant and metazoan sequences. However, the 

results of several analyses support the Secernentean MIF1 (SC) group which 

contains sequences originating from species placed in nematode clades III and V 

(Blaxter et. al., 1998). If this group is genuine then this would indicate most likely 

orthologue for the filarial MIF is in the C. elegans genome is Ce-MIF- 1. One of the 

most interesting features of the SC group is the presence of the CXXC motif in the 

filarial and ascaris sequences (dade III) and its absence in the dade V nematodes C. 

elegans and H. contortus. Have the dade V nematodes lost the CXXC motif or have 

the dade III nematodes acquired it by convergent evolution with the vertebrate 

sequences? Only one other MIF sequence retains a CXXC motif Ci-MIF- 1. However 

the Ciona MIF 1 motif is divergent from vertebrate and nematode motifs (Cys-Ala-

Cys-Cys versus Cys-Ala-Leu/I1e-Cys). How the presence of the extra cysteine 

residue will affect the thiol-oxioreductase activity of the enzyme is unknown. 

Interestingly, the results of the MCMC analyses place the vertebrate DDTs 

deep within the nematode MIF2 group. Whether this placement is a genuine 

reflection of the evolution of the vertebrate DDTs from a protostome MIF2 ancestor 

or whether other factors such as the convergent evolution of the nematode MIF2 and 

vertebrate DDT sequences are obscuring the proper placement of these sequences 

has not been resolved. 

None of the phylogenetic techniques used could resolve the placement of the 

protozoan sequences. The P. sojae MIF was consistently placed with the 

Plasmodium sp. sequences. Contrary to expectation the E. tenella MIF was never 

placed with the other apicomplexan MIFs. It is possible that there is more than one 

MIF gene in the apicomplexan genome and that the sequences present in the analysis 

do not represent orthologues gene sets. However, ninety-nine percent of the P. 

falciparium genome sequence is currently available in the public databases which 

makes it unlikely that a second MIF will be identified in its genome. Another 

possibility is that selective pressures have pushed the sequences of the apicomplexan 

MIFs away from each other. Perhaps the Plasmodium sp and P. sojae MIFs are 
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Figure 5.7.2.1 Summary of the phylogenetic analyses of the MIF gene family. The graphic is based 
on the results presented in table 5.3.9 but is not drawn to scale. ?: indicates the questionable placement 
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5.7.3 The evolution of MIF introns and general structuralfeatures 

Several very important features are obvious from the examination of the 

placement of the MIF introns. The first is the conservation of an intron position and 

phase across the vertebrate DDTs, vertebrate MIFs, ecdysozoan MIF Is and the plant 

MIFs. Comparison of the sequences with MIF tertiary structures indicates that this 

intron lies before the start of n-sheet 2. The second is the conservation of a second 

intron position (and phase) within the vertebrate DDTs, vertebrate MIFs and 

ecdysozoan MIFis. Comparison of the sequences with MIF tertiary structures 

indicates that this intron lies before the start of 3-sheet 5. It has been speculated that 

the MIF gene arose from a fusion of two P-u,-p monomers which would have 

previously functioned as a hexamer (i.e similar to the bacterial enzyme 4-OT). The 

placement of these introns gives some support to the idea that an ancestral 13-a-

intron-13 gene may have undergone a duplication event which lead to the current 13-a-

intron-I3-13-a-intron-13 MIF gene structure. A second structural feature that supports 

the idea of an ancestral MIF with a hexameric structure is the placement of the active 

site residues. Both the Pro2 and CXXC motif are found before the 13-sheet that would 

have begun each subunit. Interestingly, a highly conserved proline residue is found 

immediately before the CXXC motif. Could this residue be the proline that would 

have served as the catalytic site in the duplicated segment of the ancestral MIF? 

While this second proline has not been linked to the tautomerase activity of MIF it 

conservation indicates it must still serve an important function. 

The evolutionary processes influencing intron movement are not well 

understood. The heterogeneity of intron positions in the nematode MIF2s has made it 

difficult to compare them to the other nematode MIFs. It is possible intron movement 

has been constrained in the vertebrates but not the nematodes. Characterization of the 

genomic sequences of MIFs from a other non-vertebrates such as C. intestinalis may 

help resolve whether these intron positions are nematode specific. 

5.8 Conclusions 

During the course of this study several important findings have been 

made. MIF genes have been identified in species from most of the major eukaryote 

groups, suggesting an ancient origin for this gene family. Phylogenetic analysis 

indicates that within the metazoa at least two gene families are conserved in both the 



vertebrate and non-vertebrate species. Three of these groups have common intron 

positions one of which is shared with the plant MIFs. The intron data along with 

some of the phylogenetic analyses suggests that the ecdysozoan MIFis may 

represent an ancestral group of the metazoan MIFs. However, several problems have 

complicated this study. The short length of the MIF gene and the low level of 

conservation of the MIF sequences made robust phylogenetic studies difficult. Also 

several major questions still remain to be answered. Do the phylogenies derived from 

the analysis of the protein sequences reflect the true relationships of the MIF genes 

or has convergent evolution of important features such as the active site residues or 

substrate binding pockets obscured the true relationships of these proteins? Why do 

there appear to be accelerated rates of evolution in some MIF groups and what can 

this tell us about how their functions are evolving? Where do the protozoan 

sequences fit into the MIF phylogeny? As MIF sequences and functional studies 

become available from additional species particularly plants, free-living protozoa and 

other non-vertebrate metazoa the some of these questions and relationship of the 

different MIF families to each other may be elucidated. 
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6.0 Introduction 

All genomes encode a set of conserved genes that are shared with other 

organisms. The arrangement of these genes on the chromosomes is determined by a 

mixture of stochastic rearrangement and functional constraint selecting for linkage and 

synteny. Rearrangement events will tend to randomize gene order over time and 

therefore conservation of gene order (synteny) probably reflects either recent shared 

ancestry or functional constraint. Analysis of these patterns of the evolution in genomes 

can identify what forces shape their size, composition and organization. Very little is 

known about how nematode genomes have evolved. Current studies extend between two 

closely related species: Caenorhabditis elegans and Caenorhabditis briggsae. The goal 

of this study was to expand this survey and analyze sections of a genome from a 

nematode distantly related to the rhabditids. Comparison of the two genomes will help 

elucidate how the genomes of these organisms are changing and the rate with which 

these changes are taking place. 

6.01 Linkage conservations and conservation of synteny between genomes 

Some gene clusters have been conserved because of functional constraint. In 

metazoa these include the histone cluster (Hentschel and Birnstiel, 1981), the Hox 

cluster (Ferrier and Holland, 2001), the immunoglobulin cluster (Litman et. al., 1993) 

and the MHC cluster (Ohta et. al., 2000). Conservation of the order of functionally 

unrelated genes has been found in the comparison of many genomes. Does this 

conservation imply hitherto uncharacterized functional constraints that are keeping 

genes clustered? The processes underlying the dynamics of genome rearrangements are 

still being defined. However, comparisons of different organisms indicate the mechanics 

and tempo of these changes may vary dramatically between groups. Figure 6.0.1.1 

summarizes what has been observed when the genomes of different groups organisms 

have been compared. 
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The comparison of bacterial genomes has shown a surprising level of 

conservation of gene order between many related species. The evolution of these 

genomes appears to be driven by three major forces; horizontal transfer of DNA from 

other species or strains via mobile genetic elements (Brown et. al., 2001; Edwards et. 

al., 2002; Koonin et. al., 2001), large inversions which are often centered around the site 

of replication termination (Eisen et. al., 2000; Suyama and Bork, 2001) and the 

reduction of the genome complement in permissive environments (Cole et. al., 2001; 

Mira et. al., 2001). Local rearrangement of genes is very unusual and generally occur in 

conjunction with the inactivation of a member of the gene pair. The organization of 

genes in operonic structures is believed to be a major force constraining the movement 

of bacterial genes, but the dynamics of operon genesis and destruction have not yet been 

elucidated. 

Similar but less extensive studies in unicellular eukaryotes indicate that different 

groups show individual modes of genome evolution. Studies of the genomes of parasitic 

protozoa belonging to the groups Apicomplexa and Kinetoplastida have demonstrated 

that, while genes and gene order of core sections of chromosomes have remained 

relatively static between closely and distantly related species, there are dramatic 

differences in the sub-telomeric sections of chromosomes (Bowman et. al., 1999; 

Carlton et. al., 1998; del Portillo et. al., 2001; El-Sayed et. al., 2000; Gardner et. al., 

1998; Janssen et. al., 2001; Myler et. al., 1999; Myler et. al., 2000; Nomura et. al., 2001; 

Ravel et. al., 1999; Tchavtchitch et. al., 2001). In both groups these regions contain 

arrays of species specific gene families involved in the biology of infection. These 

observations are surprising as early karyotype analysis of the chromosomes of some 

groups such as the trypanosomids indicated that hyper-plasticity within the 

chromosomes is common. In T. brucei one example of a polymorphic chromosome has 

been shown to result from variation in copies of repetitive elements flanking the 

conserved gene containing sections (El-Sayed et. al., 2000). Interestingly, kinetoplastids 

also organize most of their genes in operons. Could these operons be constraining gene 

rearrangement in their genomes as they are believed to in bacteria? 
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A rather different story emerges from the study of hemiascomycete yeasts. When 

the genomes of Saccharomyces cerevisiae and Candida albicans (150-300 Myr 

divergence) were compared, over 1000 breaks in gene order were identified (Fischer et. 

al., 2001; Llorente et. al., 2000). Many of these breaks were shown to be inversions 

occurring around duplicated genomic segments. However, subsequent loss of redundant 

genome sections often obscured some of the break points. These duplicated genomic 

segments were also implicated in the rare interchromsomal translocations found in the 

genomes. A similar pattern was seen when segments of the genomes of two distantly 

related (200 Myr) filamentous fungi Magnaporthe grisea and Neurospora crassa are 

compared. Microsyntenic regions were rearranged by frequent inversions of gene 

clusters (Hamer et. al., 2001). Comparison of these segments with the hemiascomycete 

yeast genomes showed no conservation of synteny and genes were randomly distributed 

between different linkage groups. So unlike the apicomplexa and kinetoplastids, the 

chromosomes of these organisms appear to be relatively plastic with frequent 

rearrangements, often facilitated by the duplication of chromosome segments. 

Among the multicellular organisms extensive studies of plant, vertebrate and 

insect genomes have demonstrated that, as in the fungi, duplication of chromosome 

segments and rearrangement of chromosomes by inversions are a common occurrence. 

During the analysis of several plant genomes, comparisons of monocots and 

dicots failed to find more than small sections of microsynteny (Liu et. al., 2001a; 

Paterson et. al., 2000). One complicating factor is the frequent polyploidization of plant 

genomes. Defining orthologous chromosomal segments is often extremely difficult, as 

uneven recombination and loss between duplicated chromosome pairs can quickly 

randomize the gene complement. However, when more closely related species were 

compared syntenic segments corresponding to orthologous linkage groups were 

identified indicating that, despite wholesale rearrangement, the gene complement of 

many chromosomes remained relatively constant (Grant et. al., 2000; Ku et. al., 2000; 

Lagercrantz, 1998). 

In the vertebrates extensive analysis of mammal and teleost genomes has 

revealed a surprising conservation of synteny between distantly related species (450 
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Myr divergence) in discrete chromosomal sections. Karyotype analysis and 

chromosomal painting of representative taxa from all the major groups of mammals and 

several outlying species such as chickens and zebrafish have shown that vertebrate 

chromosomes are mosaic structures with large orthologous segments conserved through 

the whole phylum (O'Brien et. al., 1999; Postlethwait et. al., 2000). However, these 

segments have been rearranged between species through translocation of large 

chromosomal segments and chromosome fission and fusion events. The tempo of 

chromosome rearrangement does not appear to be constant in all groups and some 

lineages such as the rodents show more extensive reshuffling than outlying taxa such as 

zebrafish. It is still being determined how static the arrangements of genes within these 

segments are. In zebrafish more then half of the 500 genes analyzed in a radiation hybrid 

survey showed conserved order when compared to the H. sapiens physical map 

(Barbazuk et. al., 2000; Postlethwait et. al., 2000; Woods et. al., 2000). This suggests 

that, within these large blocks, conserved microsynteny will be found. Sequencing of 

several sections of the pufferfish genome supports this finding but indicates that 

inversions may be the predominant mechanism moving genes within these segments 

(Brunner et. al., 1999; Davidson et. al., 2000). 

In situ analysis of the chromosomes of several insects (Drosophila sp. and Aedes 

gambiae) indicates that a similar pattern of genome evolution is occurring in the diptera 

(Fulton et. al., 2001; Ranz et. al., 2001). Large orthologous linkage groups could be 

identified which contained similar gene complements. However, when the incidence of 

rearrangements were measured and compared, the dipterans showed remarkably 

elevated incidences of paracentric rearrangements relative to the rates seen in vertebrates 

and plants (Ranz et. al., 2001). Interestingly, these analyses also demonstrate uneven 

rates of intrachromsomal inversions and interchromsomal translocations are found in 

different chromosomes and chromosome segments (Fulton et. al., 2001). For instance 

the X chromosomes of D. melanogaster. and A. gambiae showed a higher incidence of 

interchromosomal translocations than the 3R arms. Within the X chromosome the 

translocations occurred much more frequently at the tip of the chromosome than at the 

center. This indicates that even in a high background of internal recombination some 
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hotspots occur which may dispose chromosomes or segments of chromosomes to 

movement within the genome. The forces controlling the location of these hotspots have 

not yet been defined although there is some evidence implicating transposable elements 

or their preferred integration sites as possible factors influencing the likelihood of a 

paracentric inversion occurring in a particular region (Caceres et. al., 2001; Caceres et. 

al., 1999). 

6.0.2 Linkage conservations and conservation of synteny between nematode genomes 

Very little is known about how nematode genomes have evolved. The limited 

number of karyotype analyses that have been performed have shown that, like other 

multicellular eukaryotes, nematodes are diverse in the number of autosomes and sex 

chromosomes found in closely and distantly related species (Albertson et. al., 1979; 

Barabashova, 1974; Goldstein and Moens, 1976; Goldstein and Slaton, 1982; Goldstein 

and Triantaphyllou, 1979; Goldstein and Triantaphyllou, 1980; Goldstein and 

Triantaphyllou, 1981; Mutafova, 1976; Mutafova et. al., 1982; Sakaguchi et. al., 1983; 

Triantaphyllou and Moncol, 1977; Vassilev and Mutafova, 1974). Also an unusual 

process called chromatin diminution causes massive restructuring of somatic 

chromosomes in several species (Muller et. al., 1996; Triantaphyllou and Moncol, 

1977). The genomes of two closely related free-living nematode species C. elegans and 

C. briggsae have been the focus of extensive comparative genetic studies (Kuwabara 

and Shah, 1994; Thacker et. al., 1999). The forthcoming availability of the C. elegans 

and C. briggsae genome sequences will provide a wealth of comparative data including 

the first measurement of the rate and mode of genome evolution between two nematode 

species. One study has analyzed fragments (8 Mb in 40kb sections) of sequence from 

the unfinished C. briggsae genome and found extensive rearrangements relative to the 

C. elegans genome, with one break in synteny estimated in every kb (Kent and 

Zahler, 2000). Syntenic fragments had a bimodal length distribution, with higher rates of 

rearrangement (and shorter fragments) mapping to the chromosome arms, while the 

chromosome centers had lower rates. Because the incidence of rearrangements were 

estimated from partial genome sequence they may be inflated due to virtual breaks 
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resulting from clone ends. However, given that C. elegans and C. briggsae are believed 

to be closely related (25- 50 Myr divergence(Thomas and Wilson, 1991)) it is possible 

the genomes of nematodes may be evolving at an even faster the rate then seen in the 

diptera. If the rhabditid genomes are evolving at a high rate then it is unclear whether 

rapid genome evolution is unique to this group (as is seen in some mammals) or whether 

it extends through the phylum Nematoda. It would also suggest that the transferability of 

gene positional information which has been so useful in the comparative analysis of 

rhabditid genomes to more distantly related nematodes will be very limited. To address 

this question a third nematode genome outside of the rhabditid group needs to be 

surveyed. The data and resourses generated by the B. malayi genome project provides an 

ideal test bed for these questions. Molecular clock analysis of phylogenies derived from 

cytochrome c and globin genes yielded an estimated time of divergence between C. 

elegans, C. briggsae and the B. malayi of 300-500 Myr (Vanfleteren et. al., 1994). Two 

approaches were taken to examine the conservation of genomic arrangement between 

the two distantly related nematodes. The first is a detailed analysis of the genes 

contained in the genomic regions around the B. malayi macrophage migration inhibitory 

factor 1 (mf 1) (Pastrana et. al., 1998) and Bm-mzf-2 (Zang et. al. 2002 in press) loci 

which encode B. malayi homologues of a human cytokines. The second used the B. 

malayi BAC end sequences data generated by J. Daub, Edinburgh University and the 

PSU, Sanger Institute to ascertain if the observations made in the analysis of the mif 

genomic regions were consistent with what is observed in other sections of the genome. 
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6.1 Isolation and Characterization of Bm-m?f-llocus 

A probe for Bm-mif-1 was synthesized by PCR amplification of the full length 

eDNA using vector primers T3 and T7 from the B. malayi EST MB2SLJ1E04T3 as a 

template (Genbank accession AA216506). The PCR product was cleaned using a 

Microcon-100 (Millipore) column and the vector portions of the PCR product removed 

by digestion with restriction enzymes Xhol and EcoR1 (New England Biolabs). The 

digested PCR product was cleaned with a Microcon-100 and 500 ng of DNA random 

prime labeled with biotin using the Phototope random primed labeling kit (New England 

Biolabs). The Bm-mf-1 hybridized to high density nylon filter arrays containing 4,608 

bacterial artificial chromosomes (BACs) in the pBeloBACII vector with B. malayi 

genomic DNA inserts (Guiliano et. al., 1999) and detected with Streptavidinl Alkaline 

Phosphatase conjugate and CPD* (Phototope Detection Kit , NEB). Figure 6.1.1A 

shows the luminograph of the detected nylon filter. Isolated hybridization-positive BACs 

were PCR tested for the presence of the Bm-m if-i gene using the gene specific primers 

Bm-MIF-1.F1a and Bm-MIF-1.R1a with standard PCR reaction conditions using Taq 

polymerase (AGS-Gold, Hybaid) and isolated BAC colony boils as template (see figure 

6.1.113). Two BACs BMBAC101P19 and BMBAC102003 were PCR positive for Bm-

mf 1. BAC DNA was isolated by Midi preparation (Qiagen) and the ends of both clones 

sequenced with the vector primers T7 and SP6. 
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Figure 6.1.1 Hybridization of Bm-mf-1 to BAC filter A: Luminograph of the high density BAC filter hybridized 
with the Bm-m1 probe. Positive clones are highlighted and numbered in orange (1: BMBAC101P19, 2: 
BMBACI 02003). B: Hybridization positive BACs were tested for the presence of Bm-mf lby PCR with specific 
primers 1: BMBAC101P19 and 2: BMBAC102003 are shown. Li: Gibco 1kb ladder (GibcoBRL). C: The BACs 
were digested with restriction enzymes E: EcoR1 and H: Hindill and run on a 0.7% agarose gel. The gel was then 
blotted and hybridized with the Bm-mf 1 probe. BL2: biotin labeled lambda digested with Hindlll. 

179 



The size of the BAC inserts was determined by digestion of prepared BAC DNA with 

Hindlll. The analysis of the Hindlll fragment sizes indicated that the BMBAC101P19 

insert is approximately 65 kb and is larger than the BMBACO2003 insert by at least 4.5 

kb (See figure 6.1.113). The Hindlll digested BAC DNA was southern blotted and 

hybridized with the biotin labeled Bm-mif 1 probe. A 7.5 kb Hindlll fragment containing 

the Bm-mif-1 gene was identified. The luminograph shown in figure 6.1.1B indicates 

that Bm-mif-1 is located on a 7.5 kb fragment. BMBAC101P19 was submitted to the 

Sanger Centre Pathogen Sequencing Unit (PSU) for sequencing. 

6.2 Identification of BMBAC1O1L03 

To further expand the Bm-mif-]contig, the sequence from the T7 end of 

the BMBAC101P19 insert was used to design specific PCR primers 

BMBAC101P19.T7.F1 and BMBAC101P19.T7.R1. The reverse primer 

BMBAC101P19.T7.R1 and a specific vector primer containing two biotin moieties on 

the 5' end (2BiotinBACF3; NEB Organic Synthesis Unit) were used to synthesize a 

biotin labeled PCR product, using the standard reaction conditions. The PCR product 

was gel purified (UltraFree-DA, Amicon Bioseparations) and hybridized to the B. 

malayil8,000 BAC filter using the standard hybridization and detection protocol (see 

figure 6.2.1A) (Foster et. al., 2001). Five BACs were isolated (BMBAC101L03, 

BMBAC213019, BMBAC218EO6, BMBAC230D12, BMBAC2351306) and the 

presence of the T7 end of BMBAC101P19 tested by PCR (see figure 6.2.1B). BAC 

DNA was isolated by Midi preparation (Qiagen)and both ends of the clone sequenced 

with the vector primers T7 and SP6. 
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Figure 6.2.1 Hybridization of the T7 end of BMBAC1O 1P 19 to B. malayi BAC filter A: Luminograph 
of the high density BAC filter hybridized with the BMBAC101P19.T7 probe. Positive clones are 
highlighted and numbered in orange (1: BMBAC101L03, 2: BMBAC101P19, 3: BMBAC213019, 4: 
BMBAC218EO6, 5: BMBAC230D12, 5: BMBAC235BO6). B: Hybridization positive BACs were 
tested for the presence of BMBAC 101 P19.T7 fragment by PCR with specific primers. The results for 
1: BMBAC1O1P19 and 2: BM.BAC1O1L03 are shown. Li: Gibco 1kb ladder (GibcoBRL). C: 
BMBAC1O1LO3 was digested with restriction enzymes E: EcoR1 and H: Hindffl and run on a 0.7% 
agarose gel. L2: Lambda digested with Hindlll. 

181 



The amount of overlap between the clones and BMBAC1O1P19 was determined 

by comparing the two sequences with Pustell DNA Matrix in the MacVector package 

(Oxford Molecular) and summarized in table 6.2.2. 

BAC clone End bp overlap 
BMBAC101P19 

Size of clone insert 
in kb 

BMBAC1O1L03 T7 10,637 35 

BMBAC213019 SP6 39,467 50 

BMBAC218EO6 T7 24,997 40 

BMBAC230D12 T7 45,356 60 

BMBAC235BO6 SP6 58,132 70 

Table 6.2.2 Summary of the overlap of identified BACs The ends of the BAC clones identified by 
the BMBACI01P19 T7 end probe hybridization were sequenced and compared to 
BMBAC1 01 P19 and the bp overlap determined. This was compared to the estimated size of the 
insert determined by PFG analysis (data not shown) 

BMBAC 101 L03 showed the least sequence overlap and the size of its insert was 

determined by digestion of prepared BAC DNA with EcoR1 and Hindlll (see figure 

6.2.1C). The restriction digests indicated that BMBAC1O1L03 has an insert of 

approximately 27 kb. To determine the 17 kb of additional sequence, BMBAC1011,03 

was submitted to the PSU, Sanger Institute for sequencing. 

6.3 Sequencing of the Bm-mf-1 locus: preparation, subcloning and sequencing of 

BACs at the PSU 

The two BACs were sequenced at the PSU (shot sequencing and assembly 

performed by (Hall N, Clark L.N., Cotton C.H. and Barrel! B.G.) using a two-stage 

strategy involving random sequencing of sub-cloned DNA followed by directed 

sequencing to resolve problem areas. In the first stage, DNA prepared from BACs clones 

was shattered by sonification and fragments of 1.4-2 kb were cloned into pUC18. The 

DNA from randomly selected clones was sequenced with dye-terminator chemistry and 

analyzed on AB13700 automated sequencers. Each BAC was sequenced to a depth of 

seven fold sequence coverage. Contig assembly was performed using Phrap (Phil 

Greene, Washington University Genome Sequencing Center, unpublished). Manual base 

calling and finishing was carried out using Gap4 software (http://www.mrc- 
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Imb.cam.ac.uk/pubseq/manual/gap4—unix—l.html). Gaps and low quality regions of the 

sequence were resolved by techniques such as primer walking, PCR and re-sequencing 

clones under conditions giving increased read lengths. 

6.4 Sequence analysis of the BAC inserts: Prediction of protein coding genes 

The finished sequences of BMBAC 1O1P19 and BMBAC 1O1LO3 were 64,685 bp 

and 28,757 bp respectively with an overlap of 10,637bps. The contiguated sequence of 

BMBAC 1O1P19 and BMBAC 1O1LO3 (82,805 bp) was compared to all public databases 

including the GenBank nonredundant (nucleic acid and protein), EST (dbEST), C. 

elegans protein (Wormpep) databases and to the B. malayi clustered EST database (see 

chapter 3) using BLAST (Altschul et. al., 1990; Altschul et. al., 1997). GeneFinder (Phil 

Greene and LaDeana Hillier, Washington University Genome Sequencing Center, 

unpublished software) was trained with the 162 publicly available B. malayi gene 

sequences and used to predict genes on the contiguated BMBAC101P19/ 

BMBAC 101 L03 sequence. The sequence was annotated within the Artemis workbench 

(Rutherford et. al., 2000). Predicted protein sequences were compared to the Pfam 

database (Bateman et. al., 2000) and potential cellular localization examined using 

PSORTII (Nakai and Kanehisa, 1992). The sequence contig along with all of its 

annotation is available in Genbank (Accession AL606837). 

6.5 Verification of the Genes Predicted from BMBAC1O1P19 

To evaluate the accuracy of gene prediction in the 83 kb genomic fragment, 

specific primers spanning the protein coding regions of the genes contained on 

BMBAC 101 P19 were designed and PCR was performed on oligo (dT) primed B. malayi 

mixed adult first strand cDNA. Each predicted cDNA had at least two primer sets 

designed to it. A list of all primers designed and tested is listed in the appendix with the 

primers being named gene_number.primer_orientation # (i.e. 01P19.211). The primer 

sets were designed to break the cDNAs into sections (300-400 bp) which should be 

easily amplified. Once primers were tested and found to amplify cDNA fragments 

primers spanning larger sections of some the cDNAs (1000-2000 kb) were used to 
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Figure 6.5.1A-C Isolation of cDNA predicted from the B. malayi BMiBAC101L03 and BMBAC101P19 
A: An example amplification of cDNA fragments by PCR from oligo dT primed cDNA. A: genomic DNA 
positive control using BMBAC101P19 as template. B: oligo dT primed cDNA as template. 1: 01P19.5F1, 
01P19.5R1; 2: 01P19.5F1, 01P19,5R2; 3: 01P19.5F1, 01P19.5R3; 4: 01P19.5F1, 01P19.5R4; 5: 01P19.5F1, 
0lPl9.5R5; 6: 01P19.5F2, 01P19.5R1; 7: 01P19.5F2, 01P19.5R2; 8: 01P19.5F2, 01P19.5R3; B: An 
example amplification of 5' RACE fragments by PCR with SL1 and gene specific primers from oligo dT 
primed cDNA. The numbers indicate which gene specific reverse primer was used in conjunction with SL1 
in the PCR. 9: 01P19.4.Rl; 10: 01P19.6.R1; 11: 01P19.6.R2; 12: 01P19.2.R5; 13: 01P19.2.Rl;14: 
01P19.3.R3; 15: 01P19.3.R5; 16: positive control PCR for BMBAC101P19.3 using primers 01P19.3.F2 and 
01 P19.3 .R3. C: An example amplification of 3' RACE fragments by PCR with GeneRACER 3'primer and 
gene specific forward primers from tagged oligo dT primed cDNA. The numbers indicate which gene 
specific reverse primer was used in conjunction with GeneRACER 3' primer in the PCR. 17: 01P19.2114; 
18: 01P19.612; 19: 01P19.2112; 20: 01P19.312; 21: 01P19.313; 22: 01P19.514; 23: 01P19.611. The 
orange brackets indicate bands that were purified, cloned, and sequenced. 
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To recover the 3' ends of the transcripts, first strand cDNA was synthesized 

which contained the GeneRacer 3' RACE primer 5' to the oligo dT. PCRs were then 

performed with gene specific forward primers and the GeneRacer 3' RACE primer. An 

example of a typical 3'RACE PCR which amplified the 3' ends of predicted cDNAs can 

be seen in figure 6.5.1C. To retrieve the 5' ends of cDNAs the pan-nematode SL1 

sequence (Blaxter and Liu, 1996) and specific reverse primers were used to PCR from 

oligo dT primed cDNA. To retrieve the 5' ends of BMBAC1O1P19.2 which has a very 

large cDNA and BMBAC1O1P19.3 and BMBAC1O1P19.7 which are not abundantly 

expressed, the template first strand cDNA was synthesized with the gene specific reverse 

primers (01P19.2.R5, 01P19.3.R3 and 01P19.7.R7). An example of a typical 5'RACE 

PCR that amplified the 5' ends of predicted cDNAs using the SL  sequence and specific 

reverse primers can be seen in figure 6.5.1B. If the primary RACE PCR did not yield 

strong products or presented very complex mixtures of PCR products secondary PCRs 

were performed using gene specific nested primers and 2% of the primary PCR product. 

PCR products whose sizes were consistent with those of the predicted genes or were 

very abundant were selected for sequencing. The PCR products were cloned in to pCR4-

TOPO and sequenced using the vector primers M13L and M13R or gene specific 

primers. 

6.6 Analysis of theBMBAC1O1L03IBMBAC10 1P19 contig 

6.6.1 General Characteristics of Brugia malayi genomic DNA 

The insert of BMBAC1O1L03 and BMBAC101P19 were determined to be 

28,757bp and 64,685 bp in length with 10,637bp of overlapping sequence (see figure 

6.6.1.2). The contiguated sequence of the inserts of BMBAC101LO3 and 

BMBAC101P19 is 82,805 bp with an AT content of 68%. The exonic DNA has an 

average AT content of 59.9% while the intergenic and intronic DNA have a higher AT 

content of 69 and 71.4% respectively. The average predicted gene size (ATG - stop) is 

3.2 kb (ranging from 0.5 -20kb). The average distance between genes was 3.1 kb (range 

of 300 bp to 10.5 kb), giving an average gene density of one gene per 6.9 kb. This is 

lower than C. elegans which has an average of one gene per 5 kb (The C. elegans 



Sequencing Consortium, 1998). Analysis of the C. elegans orthologues showed that they 

had a higher gene density with an average of one gene per 3.2 kb. There was an average 

of 9.3 introns per gene in the B. malayi sequences, with an average intron length of 316 

bp (range of 482767 bp). The C. elegans orthologues of these genes have an average of 

5.5 introns per gene with an average size of 142 bp (range of 46-1260bp). 
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Gene/Region # of 
exons 

length cDNA 
(bp) 

%AT 
exonic DNA 

# introns length of 
intronic DNA 

(bp) 

%AT 
intronic DNA 

Gene 
size 

length 
intergenic 
region (bp) 

%AT 
intergenic 

region 

BM1BAC101P19.71  8 1039 63.1 7 1185 76.2 2224 - - 

4995 75.5 
intergenic - - - - - 

- 

BMBAC101P19.6 5 804 61.9 4 1714 70.7 2518 - - 

intergenic - - - - 

- 308 67.2 

BMBAC101P195 19 2679 60.5 18 7141 70.4 9820 - - 

BMBAC101P19.4 2 446 59.8 1 155 70.3 601 - - 

- 3182 64.6 
intergenic - - - - - 

BMBAC101P19.2 38 5955 59.8 37 14157 68.5 20112 - - 

3868 71 .5 
intergenic - - - - - 

- 

BMBAC101P19.1 3 535 59.4 2 754 69.2 1289 - - 

- 10498 67.1 
intergenic - - - - - 

BMBAC101P19.3 10 1182 60.5 9 2842 70.6 4024 * - 

- 2872 70.4 
intergenic  - - - - - 

BMBAC101L03.5 7 918 59.8 6 2090 71.5 3008 - - 

862 67.4 
intergenic - - - - - 

- 

BMBAC101L03.4 3 630 59.4 2 862 71.1 1492 - - 

intergenic - - - - - 

- 2065 68.3 

BMBAC1O1L03.3 9 1239 59.3 8 1962 73.2 3201 - - 

- 1503 70.6 
intergenic  - - - - - 

BMBAC1O1L03.2 7 693 56.7 6 1081 72.0 1774 - - 

1039 67.9 
intergenic - - - - - 

- 

BMBAC101L03.11  8 1340 59.7 7 1746 74.1 3086 - - 

average 10.3 1508 59.9 9.3 3275 71.4 4783 3119 69 
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Table 6.6.1.1 General features of BMBAC101L03/BMBAC101PI9 contig. 
' Gene fragments (see text). The table summarizes the number of exons, 

length of the predicted cDNAs, number of introns, the length of the intronic portions of genes, the gene size, the size of intergenic regions separating 
genes and the %AT of the different sections DNA. Calculations of average number of exons per gene, length of cDNAs, number of introns, total length 
of introns and gene size did not include BMBAC101P19.7 and BMBAC1O1LO3.1 because they represented partial gene fragments. 
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Figure 6.6.1.2 Conservation of synteny between B. malayi and C. elegans of genes found around Bm-m?f 1. 
The cartoon of the sequenced contig shows genes and their exon (box) and intron (bracket) structures. 
Genes on the left are transcribed from the bottom to the top, and to the right from the top to the bottom. 
1 Segment is identical to B. malayi EST cluster BMC03 169 (Blaxter et. al. 2001). 2 ORF has high 
similarity to O.volvulus EST cluster 0VCO248 1 (Lizotte-Waniewski et. al. 2000). 3 Segment is identical to 

B. malayi EST cluster BMC00238. 4 Segment is identical to B. malayi EST clusters BMCO2055 and 
BMCO 1932, however, no ORF can be identified, so it is not believed to represent protein-coding sequence. 
5 Segment is identical to B. malayi EST cluster BMC06334. 6 Segment is identical to B. malayi EST 
cluster BMC00400.7 BMBAC101L03.1 and BMBAC101P19.7 are gene fragments, the percent 
identity calculation was based the alignable portion of the C. elegans orthologue. 8 Ce-Fl 3G3 .9 is a MIF 
homologue found on C. elegans chromosome I in close proximity to other synteny genes. However, 
phylogenetic analysis indicates that Ce-F 13 G3 .9 is not the orthologue of Bm-mf 1 (see chapter 5). 

9 The percent identity was calculated for BMBACl0lPl9.3 and BMBAC1O1LO3.4 only within the 
PWWP or dnaJ domains as these are the only alignable portions of the molecules. 
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6.6.2 Identified Genes and Evaluation of Gene Prediction 

Of the twelve B. malayi genes identified seven were confirmed by RT-PCR. A 

summary of the differences between the predicted and the experimentally confirmed 

cDNA sequences is presented in table 6.6.2.0.1. 

Gene Observed differences between predicted and experimentally 
confirmed cDNA sequences 

BMBAC1O1P19.2 - Failed to predict 142 bp exon 23. 
- Small splice site misprediction on the donor site of intron 

24. 
1 Small splice site misprediction on the acceptor site of intron 

28. 
BMBAC 101 P19.3 1.0 Predicted additional exons after exon 7 which were not 

confirmed by RT-PCR. 
• Failed to predict alternative start site in exon 6. 

BMBAC101P19.4 • small splice site misprediction on the donor site of intron 1. 
BMBAC101P19.5 • Predicted BMBAC1O1P19.5 and BMBAC1O1P19.8 to be 
BMBAC101P19.8 separate genes based on similarities to genes predicted in 

the C. elegans genome. RT-PCR confirms that these ORFs 
represent a single gene with a large intron separating the 
two _segments _in_  both _species. 

BMBAC101P19.6 • No differences. 
BMBAC 101 P19.7 • Small splice site misprediction on the acceptor site of intron 

2. 
• Small splice site misprediction on the donor site of intron 5. 
• Failed to predict additional exon 7 which is found on 

BMBAC1O1P19.7b cDNA. 

Table 6.6.2.0.1 Summary of the differences observed between the predicted and experimentally 
confirmed cDNA sequences. 

Alternatively spliced transcripts were identified for four of the cDNAs. In 

general the differences between the predicted and experimental cDNAs involved either 

slightly mispredicted splice sites or the omission of small exons. Eleven of the twelve 

predicted genes had C. elegans homologues. Salient features of some of the predicted 

genes are summarized in table 6.6.2.0.2 and are discussed below. 
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B. malayi ORF Predicted 
cDNA 

length in 
bp 

Predicted 
peptide 
length 

Numbe 
r of 

Introns 

C. elegans 
orthologue 

% Identity 
with C. 
elegans 

orthologue 

Number of 
introns in C 

elegans 
orthologue 

Number of 
shared intron 

positions with C. 
elegans 

orthologue 

Putative Identity 

BMBACO1L03.1 13401  4461  71 Ce-F14B4.3 582  33 3 N-terminal fragment of the [3 
subunit of RNA polymerase I 

BMBAC01L03.2 693 230 6 Ce-F43G9.5 68 3 1 Pre-mRNA cleavage factor 

BMBAC01L03.3 1239 412 8 - - - 
- Contains LON-ATP dependent 

serine protease domain 

BMBACO1L03.4 630 209 2 Ce-F39B2.10 574 3 1 Contains dnaJ domain 

BMBACO1L03.5 918 305 6 Ce-F43G9.3 58 6 2 mitochondrial carrier protein 

BMBACO1P19.1 535 115 2 Ce-Y56A3A.3 41 2 2 Macrophage migration 

(Bm-mjf-1) inhibitory factor homologue 

BMBAC01P19.2a/b 5955/5748 1934/1865 37/35 Ce-C26C6,1 34 14 9 Polybromo domain protein, 

(Bm-pbr-1) BAF 180 homologue 

BMBAC01P19.3 a/b 1182/919 367/283 9/7 Ce-F43G9.4 445 8 2 Contains PWWP domain 

BMBACO1P19.4 446 111 1 Ce-T28F4.5 30 1 1 Homologue of mammalian 

(Bm-dap-1) death associated protein DAP- 1 

BMBACO1P19.5a/b 2679/2602 847/821 18/17 Ce-T28F4.4 27 12 5 
(Bm-ubr-1) 

BMBACO1P19.6 804 190 4 Ce-F3 1C3.5 41 1 1 Conserved protein of unknown 
function 

BMBACO1P19.7a/b I 1039/932' 274/2981 6/71  Ce-C36B1,12 606 33 2 C-terminal fragment of a novel 
transmembrane protein 

Table 6.6.2.0.2 Genes predicted on the BMBACI0IL03/BMBAC10IPI9 contig. 
1  Gene fragments (see text). 'BMBACO1LO3.1 gene fragment 

aligned with the N-terminal 450 aa of CeF14B4.3. Number of introns in the aligned portion of the C. elegans orthologue  .4  Only the dnaJ domains of 

BMBAC011-03.4 and Ce-F39132.10 were aligned.5  Only the PWWP domains of BMBAC01PI9.3and Ce-F43G9.4 were aligned .6  The gene fragment 

of BMBAC01PI9.7 aligned with the C-terminal 380 aa of Ce-C36131.12. 
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6.6.2.1 BMBACJOJL03.3 

BMBAC1O1LO3.3 contains two protein domains, an N-terminal LON ATP 

dependent serine protease domain (PF02190) and an anonymous C-terminal protein 

domain (PFB02 1704). Proteins predicted from the H. sapiens, M musculus, D. 

melanogaster and A. thaliana genome (accession; XP 0421219, NP 067424, 

AE003 685 and AAC4225 5.1) share this domain architecture (see figure 6.6.2.1.1). 

However, C. elegans has two proteins which show similarity to the individual protein 

domains (Ce-R08B4.3 18% identity to the C-terminal protein domain, Ce-M18.6 

27%identity to the N-terminal LON domain). There are no predicted proteins in the 

C. elegans genome sequence that retain both domains. This gene was either lost or 

split into separate genes, in the C. elegans genome, but has been retained in B. 

malayi. 
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CAEEL1 

CAEEL2 

DROMA  
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ARATH 0 -C oN  

CED 
LON domain (PF02190) 

CD 1 anonymous C-terminal domain (PFB21704) 

LI ? weak similarity to LON domain 

potential secretory leader 

Figure 6.6.2.1.1 Comparison of the domain architecture of BMBAC1O 1L03 .3 and similar proteins found 
in other species. BMBAC 101 L03.3 was searched against GenBank and Pfam (Bateman et. al. 2000) and 
those proteins found with similar domain architecture analyzed. A schematic representation of the five 
identified proteins and their domains is shown. PSORTII was used to determine which proteins contain 
potential secretory leader. BRTJMA: BMBAC101L03.4, CABEL1: M18.6, CAEEL2: R08B4.3, DROMA: 
AE003685, HOMSA: XP 0421219, MUSMU: NP 067424. 
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6.6.2.2 BMBACJOJLO3.4 

Searches against public databases show that the N-terminus of the 

BMBAC1O1L03.4 has a dnaJ (N-terminal) domain (PF00684). This dnaJ domain 

shows similarity to 41 predicted C. elegans proteins. The remainder of the molecule 

does not appear to be conserved. The dnaJ domain in BMBAC1O1L03.4 shows 

highest similarity (82%) to the dnaJ domain in the C. elegans predicted protein 

F39B2. 10. Both proteins have the dnaJ domain at their N-terminus and share a 

common position of the first intron in this region (see figure 6.6.2.2.1). We therefore 

suggest that Ce-1739B2.10 is the closest homologue to BMBAC1O1LO3.4 in the C. 

elegans genome. 
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Figure 6.6.2.2.1 Alignment of the conserved dnaJ domain of BMBAC 10 1 L03.4 with five dnaJ domains from 
C. elegans proteins F39B2.10 (T21991), F54D5.8 (T22648), R74.4 (T24254), Y47H9C.5 (T26967), and T15H9.1 
(T24938). The dnaJ domains were identified using Pfam (Bateman, et. al. 2000) and aligned. The percent similarity 

each C. elegan sequence has with BMiBAC101L03 .4 is shown. Intron positions are indicated with the orange 
triangles.  
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6.6.2.3 BMBAC101P19.1 

BMBAC1011`19.1 encodes Bm-mif-1 (Pastrana et. al., 1998). Bm-MIF-1 

shows similarity to small proteins from plants, metazoa and protozoa, but only the 

mammalian MIF homologues have been studied in detail. Mammalian MIF is a 

cytokine involved in inflammation, growth and differentiation of immune cells 

(Nishihira, 2000). In C. elegans there are four MIF-like genes: Ce-m,f1(Y56A3A.3), 

Ce-mit2(C52E4.2), Ce-mif3 (F13G3.9) and Ce-mif-4 (Y7313613L.13) (The C. 

elegans Sequencing Consortium, 1998). Bm-MIF-1 is most similar to Ce-MIF-1 

(41% identity) which is located on C. elegans chromosome III. Comparison of Bm-

MIF-1 with the four C. elegans MIFs, a second B. malayi MIF like molecule (Bm-

MIF-2) and human MIF-1 (see figure 6.6.2.3.1) revealed that Bm-MIF-1 and Ce-

MIF-3 share two intronlexon boundaries with each other and the vertebrate MIFs. 

Bm-MIF-1 (and other closely related filarial MIF-1 orthologues) also contain the 

CXXC motif which is critical for the thiol-oxioreductase activities of vertebrate 

MIFs (Kleemanri et. al., 2000b). None of the C. elegans MIF homologues contain 

this motif. Other residues important for MIF function are highlighted in figure 

6.6.2.3.1. A fuller analysis of the MIF gene family is presented in chapter 3. 
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Figure 6.6.2.3.1 Bm-MIF-1 (accession AAC82502) was aligned with the human MIF-1 
(accession AAA21814), the C. elegans MIF homologues Ce-MIF-1(accession Z78012), Ce-

MIF-2 (accession Z71259), Ce-MIF-3 (accession AL132860), Ce-IvllF-4 (accession 
AC084 197), and a second B. malayi MIF homologue Bm-mf 2 (accession AAF9 1074) The 
cartoon shows the secondary structure of human MIF-1 (taken from the pdb summary of 1MIIF 
structure on the CATH web site http://www.biochem.ucl.ac.uklbsmlcath_new/index.htlfll) 
is aligned above the sequences. The active site proline and cysteine residues are marked in 
red and the conserved intron positions marked in red and green triangles. The identity of the 
protein sequences to Bm-NU-1 is shown at the end of the alignment. 



6.6.2.4 BMBACJOJP]9.2 

Two splice variants were identified for BMBAC 01P19.2. 

BMBAC1O1P19.2b is missing the 25th  and 26th  exons of BMBAC101P19.2a. 

Predicted proteins for both transcripts show high levels of similarity to large 

multidomain proteins from humans (BAF 180, accession AAG34760; (Xue et. al., 

2000)), chickens (accession JC5056; (Nicolas and Goodwin, 1996)), D. 

melanogaster (CG1 1375, accession AAF56339) and C. elegans (C26C6.1, 

T19481)(see figure 6.6.2.4.1). These proteins share six bromodomains (PGF00439), 

two BAH (Bromo Adjacent Homology, PF01426) domains, an HMG (High Mobility 

Group, PF00505 ) box and an anonymous C-terminal domain (PFB03 1551). 
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Figure 6.6.2.4.1 Comparison of the genomic organization of the pbr synteny cluster in C. elegans and B. malayi and the 

domain structure of the PBR homologues in Drosophila melanogaster, Gallus gallus, and Homo sapiens. Intron/exon 
boundaries that are conserved between both nematodes are shaded. Protein domains identified by searching Pfam are 
also indicated. 



The B. malayi, C. elegans and D. melanogaster poly-bromodomain proteins 

(pbr-1) also have two zinc fingers (see figure 6.6.2.4.1). Bromodomains interact with 

acetylated lysine in histone complexes, while HMG boxes are found in chromatin 

proteins that bind to single stranded DNA and unwind double stranded DNA. This 

indicates this protein family may be involved in chromatin remodeling complexes. 

The human homologue of these proteins, BAF18O, has been shown to localize to the 

kinetochores of mitotic chromosomes (Xue et. al., 2000). None of the vertebrate 

BAF180 homologues have the zinc fingers found in the nematode and fly proteins. 

Zn fingers are known to be involved in binding to DNA so the nematode and 

arthropod pbrs may have different or additional functions. The B. malayi and C. 

elegans PBR-1 homologues show 33% identity (50% similarity) to each other. 

6.6.2.5 BMBAC]01P19.3 

Two splice variants of BMBAC 101 P19.3 were isolated. BMBAC 101 P 19.3b 

begins in exon three of BMBAC 101 P 19.3 a and is 5' transpliced to SL 1. There is only 

one homologue of BMBAC101P19.3a in any organism, hypothetical protein 

F43 G9.4 from C. elegans (46% identity in the N-terminal 100 aa). The N-termini of 

both BMBAC101P19.3a and Ce-F43G9.4 contain PWWP domains (PF00855). 

PWWP domains have been identified in a number of proteins with nuclear location 

that play roles in cell growth and differentiation (Stec et. al., 2000; Stec et. al., 

1998). Psort profiling of BMBAC101P19.3 and Ce-F43G9.4 indicate that both 

proteins are likely to have nuclear localizations. BMBAC1O1P19.3b is missing exons 

one and two and thus does not have the PWWP domain. The predicted protein 

sequence of BMBAC101P19.3b has no similarity to any other sequences in the 

public databases. 

6.6.2.6 BMBAC]OJP]9.4 

The protein encoded by BMBAC1O1P19.4 is homologous to the C. elegans 

protein T28F4.5 (30% identity). Using these two sequences as seeds, iterative 

searches against the GenBank non-redundant peptide database using PSI-blast 

(Altschul and Koonin, 1998) indicated that they belong to a group of small peptides 

which include the human DAP-1 protein (death associated protein). DAP-1 is a 

201 



nuclear protein and is a positive regulator of IFN-y induced apoptosis in HeLa cells 

(Deiss et. al., 1995). 

6.6.2.7 BMBACJOJPJ9.5 

Two splice variants for this gene were also isolated. BMBAC1O1P19.5b is 

missing the 11th  exon of BMBAC1O1P19.5a. Only one homologue was found in any 

organism, hypothetical protein T28F4.4 from C. elegans (27% identity, 45% 

similarity). Psort profiling of BMBAC101P19.5 and Ce-T28F4.4 indicate that both 

proteins may have a nuclear localization. Because of its relative proximity to the pbr-

1 proteins BMBAC101P19.5 has been named Bm-ubr-1 (upstream of pbr-1). 

6.6.2.8 BMBACJOJPJ9. 7 

BMBAC101P19.7 is the 3' fragment of a gene and has two splice variants. 

The C-terminal extension on BMBAC101P19.7b is the result of the splicing of an 

additional exon to an internal splice acceptor site in the 6th  exon. Searches against 

PfamB revealed that both proteins have a anonymous domain (PFB005417) found in 

a variety of predicted proteins from other species. All of these proteins (including 

BMBAC101P19.7) are predicted to have multiple transmembrane segments, several 

of which span the Pfam domain. Two proteins in the predicted C. elegans genome 

contain this domain (C36B1.12 and T05E1 1.5). BMBAC101P19.7alb are most 

similar to Ce-C36B1.12 (60% identity). 

6. 6.2.9Linkage conservation and conservation of synteny between the genomes of B. 

malayi and C. elegans 

With the exception of BMBAC1O1LO3.3 we have found orthologues in the C. 

elegans genome sequence for all of the genes predicted from the 

BMBAC1O1L03/BMBAC1O1P19 contig (see figure 6.6.1.1). All of the C. elegans 

genes except for Ce-Y56A3A.3 are found on chromosome I. One of the other MIF 

like genes in the C. elegans genome Ce-F 13G3.9 (23% identity and 44% similarity) 

is found on C. elegans chromosome I in close proximity to the orthologues of B. 

malayi genes BMBAC1O1P19.2, 4 and 5. Eight of these ten C. elegans orthologues 

lie within a 2.3 Mb region in the center of chromosome I (6.7-9 Mb). The 

homologues/orthologues of the other two genes (BMBACOL03.4 and 
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BMBAC1O1P19.6) are found at the distal tip of chromosome I around 14.2 Mb. This 

suggests that the within this section the composition of the genome (i.e the gene 

content) has been conserved between the two organisms. 

Two groups of three genes in close proximity are conserved between the two 

genomes. In the first, Ce-F43G9.5 and Ce-F43G9.3 are divergently transcribed from 

a 63 lbp intergenic region. Ce-F43G9.3 is followed by Ce-F43G9.4 in the same 

transcriptional orientation with 501 bp separating the genes. In B. malayi this 

microsynteny is conserved, except that two genes BMBAC1O1L03.3 and 

BMBAC1O1LO3.4 are found in between BMBAC1O1LO3.2 and BMBAC1O1LO3.5. 

In the second cluster (see figure 6.6.2.4.1) two large genes Ce-C26C6.1 and 

Ce-T28174.4 are also divergently transcribed from a 5,274 bp intergenic region. A 

small third gene, Ce-T28F4.5 is found in the large third intron of Ce-T28174.4 on the 

same strand and transcriptional orientation as Ce-C26C6.1. In B. malayi this 

microsynteny is conserved with BMBAC1O1P19.2 and BMBAC101P19.5 

divergently transcribed and BMABACO1P19.4 sitting in the large third intron of 

BMBAC101P19.5 on the same strand and transcriptional orientation as 

BMBAC101P19.2. 

While there has been extensive rearrangement of the order of the genes 

between the two genomes, when compared to the corresponding C. elegans genes ten 

of the B. malayi genes are in the same relative transcriptional orientation as their C. 

elegans orthologues. 

6.7 Isolation and Characterization of Bm-mf21ocus 

A probe for Bm-m2 was synthesized by PCR amplification of the full 

length cDNA using vector primers T3 and T7 the B. malayi EST MBAFCZ1E9T3 as 

a template (Genbank accession AA257577). The PCR product was cleaned using a 

Microcon- 100 (Millipore) and the vector portions of the PCR product removed by 

digestion with restriction enzymes Xho 1 and EcoR1. The digested PCR product was 

cleaned with a Microcon- 100 and 500 ng of DNA random prime labeled with biotin 

using the Phototope random primed labeling kit (New England Biolabs). The Bm-

mzf-2 probe was hybridized to the high density nylon filter arrays containing 18,000 

BACs as described above. Figure 6.7.1A shows the luminograph of the detected 

nylon filter. 
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Figure 6.7.1 Hybridization of Bm-m2 to BAC filter A: Luminograph of the high density BAC filter 
hybridized with the Bm-mf 2 probe. Positive clones are highlighted and numbered in orange 
(1: BMBAC111C13, 2: BMBAC228FO6, 3: BMBAC239KO6, 4: BMBAC245019). B: Hybridization 
positive BACs were tested for the presence of Bm-m2 by PCR with gene specific primers the numbers 
correspond to the clones numbers listed above, G is a positive control amplified from prepared B. malayi 
genomic DNA. L: Gibco 1kb ladder (GibcoBRL). C: The BACs were digested with restriction enzymes 
E: EcoRl and H: Hindlll and run on a 0.7% agarose gel. The numbers correspond to the clones numbers 
listed above. 
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Four isolated hybridization-positive BACs (BMBAC1 11 Cl 3, 

BMBAC228FO6, BMBAC239KO6 and BMBAC245019) were PCR tested for the 

presence of the Bm-mf2 gene using the gene specific primers Bm-MIF-2a!b.F4 and 

Bm-MIF-2.Z1EO9.R1 with standard PCR reaction conditions and isolated BAC 

colony boils as template (see figure 6.7.1B). All four BACs were PCR positive for 

Bm-m2. BAC DNA was isolated by Midi preparation (Qiagen) and their ends of 

both clones sequenced with the vector primers. These end sequences were compared 

against each other and the public databases and specific primers designed and 

synthesized. The features of the end sequences of the four BACs are summarized in 

table 6.7.2. 

B. malayi BAC end Hits to B. malayi Hits to other Hits to proteins 
sequences filarial sequences sequences and C. 

elegans ORFs 
(chromosome) 

BMBAC111C13.SP6 none 0VC00425 none 
BMBACl1lC13.T7 none none none 
BMBAC228FO6.SP6 none none none 
BMBAC228FO6.T7 Hha 1 repeat none none 

BMBAC239KO6.SP6 Related to none acyl carrier protein 
BMC04100 Ce-F37C12.3_(III) 

BMBAC23 9K06.T7 none 0VC00425 none 
BMBAC245019,SP6 BMC12236 0VC01395 ribosomal protein 

BMC00207 S14 
BMC12237 Ce-F37C 12.9_(III) 

BMBAC245019.T7 none none Ce-130464.9 (III) 

Table 6.7.2 The B. malayi BACs spanning the Bm-mif-2 locus were compared to the public 
databases and hits to B. malayi or other filarial EST clusters as well as hits to proteins and 
C. elegans ORFs listed. The chromosome on which the C. elegans ORF is found is also 
noted.  

Because the SP6 end of 111BMBAC  11C13 and the T7 end of BMBAC239KO6 

were found to be overlapping sequences, only one set of primers was synthesized for 

these sequences (BMBAC 11 Cl 3. SP6.F 1 and BMBAC 11 Cl 3. SP6.R1). Because the 

T7 end of BMBAC28FO6 was exclusively Hhal repeat sequence (McReynolds et. 

al., 1986) no primers were designed to this sequence. However, subsequent PCR 

tests with Hha repeat primers indicated that none of the other BACs min the mif-2 

contig contain the repeat (data not shown). It is possible that BMBAC228FO6 is a 

chimeric clone with a fragment of an Hha 1 repeat array fused to the T7 end of the 

clone. To help determine the extent of the overlap of each of the clones PCR was 
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performed with the end specific primers using BAC colony boils as templates. The 

PCR and end sequence data indicates that the four BACs extensively overlap with 

the T7 ends of BMBAC 11 Cl 3 and BMBAC245 019 lying on the end of the contig 

(see figure 6.7,3B). The size of the BAC inserts were determined by digestion of 

prepared BAC DNA with Hindlll and EcoR1 (see figure 6.7.1C). The restriction 

fragments indicate that the insert of BMBAC1 1 1C13 is 45 kb, BMBAC228FO6 is 

-38 kb, BMBAC239KO6 is 43 kb and BMBAC245019 is -46kb. Because 

111  11C13 and BMBAC245019 are predicted to be at the ends of the Bm-mf-

2 contig and their inserts are extensively overlapping both BACs inserts will be shot 

gun sequenced together at the PSU, Sanger Institute. 
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Figure 6.7.3A and B Determination of the overlap of Bm-m(t.2 containing BAC inserts A: PCR of the 
BACs in the Bm-mf 2 contig with primers specific for the end sequences. The primer pairs used in the 
PCR are listed above the gel photo. The samples are loaded in the following order 1: BMBAC1 11 Cl 3; 
2: BMBAC228FO6; 3: BMBAC239KO6; 4: BMBAC245019. B: A cartoon summarizing the PCR 
results showing the extent of overlap between the different clones in the contig. The black arrows 
indicates PCR data was used to infer the overlap while the red arrow indicates hybridization data. The 
letters next to the black arrows indicate which primer pair was used (see A). 
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6.8 Preliminary analysis of the Bm-mf-2 contig 

While full sequence of the Bm-mif-2 contig is not yet available several 

interesting features have already been observed. Several of the BAC ends have 

matches to sequences in the public databases. BMBAC111C13.5P6 and 

BMBAC239KO6.T7 has similarities to an 0. volvulus EST cluster 0VC00425. 

However, neither the BAC end sequences or 0VC00425 has any similarities to any 

other sequences in Genbank. BMBAC239KO6.SP6 has similarities to an acyl-carrier 

protein (Ce-F37C12.3) from C. elegans. BMBAC245019.SP6 has similarities to C. 

elegans rps-14 (Ce-F37C 12.9) which also is found on the same cosmid. Examination 

of the C. elegans genome sequence reveals that Ce-F37C12.9 and Ce-1`37C12.3 are 

divergently transcribed from a 1,150 bp intergenic region. In between the two genes 

a third gene rpl-36 (Ce-F37C12.4) is found in the same transcriptional orientation as 

Ce-F37C12.3. The close proximity of Ce-F37C12.4 to Ce-F37C12.3 indicates that 

the two genes may be in an operon. PCR with primers to the B. malayi rpl-36 has 

confirmed that this syntenic unit is conserved between the two species (data 

presented in chapter 7). Like the Bm-m if-i locus, the orthologue of the gene that 

initially identified the BACs in this contig (Bm-mf2) is found on a different 

chromosome (C. elegans chromosome II) than the orthologues of other genes 

identified in the contig which are found on C. elegans chromosome III. 

6.9 Analysis of B. malayi BAC end sequences 

The synteny data from the Bm-mif-i and Bm-mf2 loci may not be 

representative of the whole B. malayi genome. To further expand this study the BAC 

end sequences deposited in Genbank (generated by the PSU and J. Daub ICAPB, 

Edinburgh University) were screened for clones which had matches on both ends to 

C. elegans proteins. The 5927 BAC end sequences were compared to Wormpep 43 

with BLAST (Altschul et. al., 1997). Thirty-six had significant matches (cut off e-

8)  on both the SP6 and T7 ends. The chromosomal location of the C. elegans protein 

with the best match was determined. Twenty of the thirty-six (55%) GSSs had 

matches to proteins on the same chromosome. If it is assumed that genes are 

randomly distributed between the autosomes in both nematodes than a basal level of 

intrachromosomal synteny of 20% would be expected. The rate observed is a much 

higher rate than would be expected to occur because of random segregation of both 



genes (p<0.00 1, Chi2  test performed in Minitab, Minitab Inc). Like the data collected 

from the Bm-mf 1 and Bm-mif-2 loci the genes were often separated by large 

distances (average distance 4.3 Mb) on the C. elegans chromosomes (see figure 

6.9.1 A). While there was no general pattern of distribution within the chromosomes 

it is interesting to note that none of the syntenic sequences originated from C. 

elegans chromosome V. There also did not appear to be any general pattern to the 

distribution of the interchromosomal rearrangements (see figure 6.9.1B). Unlike the 

intrachromosomal rearrangements, there were several examples of interchromosomal 

rearrangements that involved genes with similarities to proteins from C. elegans 

chromosome V. 
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Figure 6.9.1 Genes identified in BAC end sequences show conservation of synteny between the genomes of B. malayi and C. elegans In the graphics 

the relative positions of the genes identified in B. malayi BAC end sequences have been mapped on the C. elegans chromosomes. A: those segments 
which show intrachromosomal rearrangements between the species while B: those segments which show interchromosomal rearrangements between 
the species.  



6.10 Discussion 

Brugia malayi is a parasitic nematode distantly related to the free-living 

model nematode C. elegans (Blaxter et. al., 1998; Vanfleteren et. al., 1994). Analysis 

of 83 kb of genomic DNA flanking the B. malayi mJ locus has identified a 

'fractured' conservation of microsynteny and conservation of linkage between the 

two nematode genomes. Twelve protein coding genes were predicted and eleven of 

these had orthologues in the C. elegans genome. The orthologues of ten of these 

genes are found on C. elegans chromosome I and eight of these genes are found in a 

2.3 Mb segment. The other two are found at the distal tip of chromosome I. Some of 

these genes have remained tightly linked in the same or slightly modified relative 

transcriptional orientations. Preliminary analysis of the Bm-mf 2 contig yields a 

similar result with a local cluster of 3 genes being conserved between the two 

species. The C. elegans orthologue of the fourth gene identified on the contig is 

found on the same chromosome as the cluster and is separated from the cluster by 

similar distances as the long range syntenic genes in the Bm-mzf-1 contig. These 

observations are reinforced by the analysis of the random BAC end sequences which 

indicates that genes shared between the two genomes are much more likely to share 

common linkage groups. 

6. 10.1 Generalfeatures of B. malayi genomic DNA 

This 83 kb fragment of B. malayi genomic DNA represents the largest 

contiguated portion of sequenced genomic DNA from a non-rhabditid nematode 

determined to date. Like C. elegans, B. malayi is thought to have a gene complement 

of  —20,000 genes (Blaxter et. al., 2001) in a relatively compact genome (100 Mb) 

(McReynolds et. al., 1986). A large proportion (-60%) of genes identified in the B. 

malayi EST dataset (23,000 sequences) have no C. elegans homologue (Blaxter et. 

al., 2001) using a BLAST search probability cutoff of < e 8, supporting the idea that 

B. malayi has a reasonably diverse gene complement that is comparable to C. 

elegans. Notably, C. elegans orthologues could be identified for eleven of the twelve 

B. malayi genes identified in the BAC sequences. Some of these orthologous pairs 

had low pairwise identity, but were confirmed by shared intron positions. The criteria 

used to identify homologues in global searches with the ESTs would not have 

detected these pairs (probability values of e'°) and thus the 'true' proportion of B. 
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malayi unique genes is likely to be much less than 60%. In the sequenced segment, 

an average of one gene has been predicted per 6.9 kb. The B. malayi genes were 

found to have larger and more numerous introns than the C. elegans genes (2.2 times 

longer and 1.7 times more frequent). Despite the difficulties presented by AT rich 

genomes with intron rich genes the gene predictions made by GeneFinder proved 

relatively accurate. If the BMBAC1O1L03IBMBAC1O1P19 contig is representative 

of a central region of an autosome this suggests that the B. malayi genome may be 

larger than estimated. The genome size should be reassessed. 

6.10.2 Conservation of microsynteny 

Synteny between the genomes of closely related eukaryotic organisms has 

been demonstrated in many taxa. However, it is only relatively recently that 

examples of conservation of microsynteny, that do not involve genes that are known 

to be functionally related (Brunner et. al., 1999; Hamer et. al., 2001). Most of the 

genes we have shown to have retained microsynteny between C. elegans and B. 

malayi do not fall into any clear functional categories when their homology data is 

compared. However, all the genes in the second microsynteny cluster 

(BMBAC1O1P19.2, .4 and .5) are predicted to have nuclear localization and two of 

the genes in the third microsyntenic cluster are ribosomal proteins (rps-14 and rpl-

36/ acyl-carrier protein operon). 

It is also possible that the genes are not functionally linked but have 

promoters or c is-acting elements embedded within them which are required for the 

proper function of their synteny partners. This might account for conservation of the 

retention of the transcriptional orientation of the pbr-1, dap-1, ubr-1, rps-14, rpl-36/ 

acyl-carrier protein operon orthologues. Huynen et. al. have shown that coregulation 

of gene pairs in fungi increases the chances of that pair being retained in other fungal 

genomes (Huynen et. al., 2001). This does not explain why the genes in the other 

example of microsynteny (BMBAC 10 1L03 .2, BMBAC1 01 L03 .5 and 

BMBAC 101 P19.3) have retained their arrangements, as the intergenic DNA between 

BMBAC1O1LO3.2 and BMBAC1O1LO3.5 has been interrupted by two other genes. 

Many genes in C. elegans are cotranscribed in operons (Blumenthal and Steward, 

1997) and this could constrain synteny breakage. It is possible that 

BMBAC101L03.5 and BMBAC101P19.3 are in a transcriptional operon. The C. 
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elegans orthologues of BMBAC1011,03.5 and BMBAC1O1P19.3 are separated by 

501 bp which is within the intergenic distance normally seen in C. elegans operons 

(Blumenthal and Steward, 1997). However, BMBAC1011,03.5 and 

BMBAC1O1P19.3 are separated by 2.8 kb, which is outside the range of operonic 

intergenic spacing seen in C. elegans. 

The function of many C. elegans genes have been investigated by RNA-

mediated interference (RNAi) (Fraser et. al., 2000; Maeda et. al., 2001). In two of 

the clusters one gene has an RNAi phenotype, lethality (Ce-F43G9.5 the 

BMBAC101L03.2 homologue, (Maeda et. al., 2001)) or altered post-embryonic 

morphology (Ce-C26C6.1 the BMBAC1O1P19.2 homologue, (Fraser et. al., 2000)). 

The third cluster contains two ribosomal proteins, which are generally required for 

proper ribosome function. Therefore it is likely that the gene clusters are conserved 

because removing other members would be enough to interfere with the functions of 

the essential genes. 

6.10.3 Long range conservation of linkage groups: 

Many exceptions to the conservation of linkage have been identified in the 

study: the Bm-mi/1/Ce-mif-1 and Bm-mif-2/Ce-mif-2 orthologous pairs and the 

sixteen examples found in the BAC end sequence data. However, all of the other C. 

elegans orthologues of the B. malayi genes are found in the 

BMBAC1O1L03/BMBAC101P19 contig and Bm-mif-3 contig are found on C. 

elegans chromosomes I or III. Another C. elegans MIF homologue, Ce-mt 3, is 

found on chromosme I in close proximity to the genes in the pbr-J synteny cluster 

suggesting that a gene conversion event may have obscured synteny of this gene. 

The data yielded from the BAC sequence contigs and BAC end sequences 

indicate that genes in the B. malayi genome have undergone extensive rearrangement 

relative to the rhabditid genomes. While several gene clusters have been conserved 

most of the genes have been radically reorganized. This data supports the 

observations of the mutable order of genes observed in other protosomes. However, 

while it is apparent that the rate of evolution in these genomes is relatively high it is 

unclear if the mechanisms rearranging the genes are similar. The observed 

rearrangments could result from large inversions or interchromsomal translocations. 

It is also unclear why the gene complement within chromosomes would be 
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constrained. In the metazoa the only examples of extensive long range synteny 

between the genomes of distantly related species (>300 Myr divergence) have been 

identified in vertebrates (teleost fish and humans (Grant et. al., 2000; Ku et. al., 

2000)). In these organisms the movement of genes within the genomes appear to be 

constrained. Large sections of the genome are mosaicly arranged in different species. 

In mammals interchromosomal exchanges are rare events though some lineages, 

such as rodents, show elevated rates. As more protostome and basal deuterostome 

genomes are mapped and sequenced we will be able to determine how common this 

phenomenon rapid genome reshuffling is in other metazoa and if some taxa show 

slower rates of genome rearrangment then the nematodes and dipterans. One 

puzzling feature of the nematode and dipteran data is the infrequency of 

interchromosomal translocations. If there are no functional constraints linking most 

of their genes why would there be a bias in the types of rearrangements that occur? It 

is possible that rearrangments within chromosomes are more easily accomplished 

than interchromosomal translocations. Mechanistically this may be because they 

require fewer DNA breaks than interchromosomal translocations and the nuclear 

scaffold may hold local chromosomal regions in closer association. Because the data 

from the C. brggsae analysis is composed of small fragments it is difficult to use the 

C. elegans and C. briggsae comparison to establish what is occurring through the 

whole linkage groups in the rabditids. However, the imminent release of the whole 

genome sequence of C. briggsae will allow these comparisons to be completed. The 

data from the Bm-mf-1 and Bm-mif-2 contigs and the BAC end sequence data does 

not reveal any general patterns of gene rearrangement in nematodes. The C. elegans 

orthologues of the genes found on the BMABCO1L03/BMBAC101P19 contig do 

tend to be found in a local segment of chromosome I (nine of eleven genes are in 2.3 

Mb or 16% of the chromosome). This observation is supported by the preliminary 

data found in the analysis of the Bm-mif-2 contig and BAC end sequence data and 

suggests that local rearrangements in nematodes intrachromosomal 

inversions/rearrangements have occurred more frequently than long-range 

intrachromosomal, or interchromosomal rearrangements. 

6.10.4 Conclusions: 
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Because the sample size of the B. malayi genomic DNA we have surveyed is 

relatively small only tentative conclusions about the global extent of conservation of 

linkage and microsynteny between these two genomes can be drawn. However, the 

portions analyzed have conclusively demonstrated that such structures do exist even 

between these very distantly related species. The results yielded by the BAC end 

sequence dataset indicate that intrachromosomal rearrangements are more likely to 

be found than interchromosomal translocations. However despite the observed 

conservation the high rate of rearrangement of genes within chromosomes makes it 

unlikely that the positional information of genes in the rhabditid genomes will be 

useful in finding orthologous genes in the B. malayi genome. As the BAC end 

sequence dataset is expanded and large portions of the B. malayi genome are 

sequenced it may become possible to define what factors drive the rate of these 

exchanges and what maintains tight linkage between functionally unrelated genes. 
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Chapter 7 

Operons and the resolution of polycistronic transcripts in 

nematodes 
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7.0 Introduction 

Intermolecular ligation of RNA molecules, trans-splicing is a process that has 

been show to occur in all eukaryotes tested. These range from single celled protozoa 

such as trypanosomes and ciliates, to complex multicellular organisms such as 

nematodes, insects, mammals and plants (Been and Cech, 1986; Blaxter and Liu, 

1996; Conklin et. al., 1991; Dorn et. al., 2001; Eul et. al., 1995; Murphy et. al., 

1986; Perry and Agabian, 1991; Sutton and Boothroyd, 1986). The ubiquitous nature 

of this process indicates it must have essential functions in these groups. One 

common trans-splicing reaction is the addition of a mini-exon called a spliced leader 

(SL) to the 5' end of messenger RNAs. SLs have been isolated from a variety of 

protozoa and animals. Figure 7.0.1 shows a cartoon of the phylogenetic relationships 

of eukaryotic life adapted from Bauldauf et. al. ((Baldauf et. al., 2000)). A portion of 

the tree, which includes the animal section of the crown group has been magnified 

(adapted from Blaxter 1998 (Blaxter, 1998)). Those groups from which SL have 

been isolated are indicated. To date only two of the major groups have been found to 

utilize SLs: the Eugleniods and the Metazoa. Within the eugleniods all members 

surveyed have been found to add SLs to the 5' end of their mRNAs. These include 

the free living protozoa Euglena and the parasitic trypansomatids (Frantz et. al., 

2000; Perry and Agabian, 1991). Within the Metazoa, SL usage has been found in 

several groups including the cnidarians (Stover and Steele, 2001), which are thought 

to be at the base of the metazoan group, indicating that this process may have 

evolved early in metazoan evolution. In the protostomes, nematodes and 

platyhelminths have been found to utilize SLs (Blaxter and Liu, 1996; Davis et. al., 

1995; Vandenberghe et. al., 2001). Within the nematodes, one SL, SL1 has been 

found in all species tested, with only one reported base change in any species 

surveyed (Koltai et. al., 1997). Unlike the nematodes the platyhelminths show 

diversity between species in the SL mini-exon sequences (Davis, 1997). To date in 

the deuterostomes only one group, the urochordates, have been shown to utilize SLs 

(Vandenberghe et. al., 2001). Within both the protostomes and deuterostomes several 

species have been shown not to utilize SLs including Drosophilia melanogaster, 

Homo sapiens and Mus musculus. This indicates that if SL trans-splicing to mRNAs 

was a process that evolved early in metazoan evolution then it has been lost by 

several important lineages. However it has been shown that SL trans-splicing can be 
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Figure 7.O.1A Phylogentic distribution of SL usage across the eukaryotes. Those groups utilizing SLs 
are in bold. A: the phylogenetic distribution of SLs through the eukaryotes adapted from Baldauf et. 
al. 2000. 1 (see references below) 2 Frantz, et. al. 2000 and Perry, et. al. 1991). 

Figure 7.0.1B Phylogenetic distribution of SLs through the metazoa adapted from Blaxter 1998. 
1 Stover et. al. 2001, 2 Blaxter et. al. 1996, 3 Davis et. al. 1995, 4 Vandenberghe et, al. 2001. 
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Genomic analysis of SL genes have shown they exist in tandem arrays 

(Blaxter and Liu, 1996). The only known exception to this observation is the SL2 

gene family from C. elegans. In some organisms (eugleniods, nematodes and 

cnidarians) these arrays are associated with the 55 ribosomal genes (Blaxter and Liu, 

1996; Frantz et. al., 2000; Stover and Steele, 2001). While the primary sequences of 

these SLs are not conserved the overall gene structure as well as the predicted and 

experimentally verified secondary structure of the SL RNAs have several common 

features. All SL genes have two sections, the mini-exon (the portion spliced onto the 

5' end of the mRNAs) which ranges from 18-41 nts in length is found at the 5' end of 

the gene. The intron portion of the gene follows the mini-exon and ranges from 44-

128 nts in length. This portion of the RNA binds to the splicoseomal components and 

shows more sequence heterogeneity than the mini-exon. With the exception of Ciona 

intestinalis, all SL RNAs described to date have at least two stem loops which are 

believed to be important for interaction with the snRNAs which make up the splicing 

complex (Vandenberghe et. al., 2001). The SL intron sequences contain a predicted 

Sm binding site, which is essential for SL function in several systems (Maroney et. 

al., 1990; Sturm and Campbell, 1999). All SLs tested have also been shown to have 

methylated cap structures at their 5' ends, although the composition of these caps 

differs between organisms. Figure 7.0.2 shows the secondary structures of a selected 

set of SLs. In vivo and in vitro structure function studies in both trypanosomatids and 

nematodes have identified portions of the molecule which are important for the 

trans-splicing reaction. These studies have highlighted several important differences 

between the nematode and trypansome trans-splicing systems. Within the 

trypanosomatids it has been found that while the composition of the mini-exon is 

flexible its length must remain constant to maintain trans-splicing activity. In vitro 

and in vivo studies have shown that the sequence of the nematode SL mini-exon can 

be replaced or the majority of the leader deleted and functional trans-splicing still 

maintained (Lucke et. al., 1996; Maroney et. al., 1991). However, in both groups the 

Sm binding region and the second and third stem loops are important for association 

with the splicing complex as well as the trans-splicing reaction. 
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The mechanisms underlying the trans-splicing process also appear to be 

conserved between different groups of organisms. Mechanistically the trans-splicing 

process is very similar to cis-splicing which removes introns from internal segments 

of the mRNA. Like cis-splicing, in trans-splicing the donor (SL-snRNA) has a 5' 

splice site consensus (beginning in GT) and the acceptor (the target mRNA) has a 3' 

splice acceptor site (ending in AG) (Hannon et. al., 1990; Laird, 1989). Many of the 

snRNAs which are required for cis-splicing (U2, U4, U5 and U6) are also required 

for the trans-splicing reaction (Palfi et. al., 1994; Xu et. al., 2000). The SL-snRNA is 

believed to replace the U 1 -snRNA in the splicing complex. In trans-splicing the 

reaction proceeds with the creation of a branched intermediate molecule which is 

similar to the lariat intermediate found in cis-splicing reactions. 

In vivo and in vitro experiments indicate that SLs have important roles in the 

processing and translation of mRNAs. The presence of the SL close to the initiating 

methionine raises the possibility that SLs interact with the ribosome. Studies with 

extracts from Typanosoma brucei (Euglenozoa) and Ascaris suum (Nematoda) 

indicate that the presence of the SL may stimulate translation (Maroney et. al., 1995; 

Moreno et. al., 1991). Interestingly in both trypanosomes and nematodes SLs have 

been shown to play an important role in RNA processing by separating polycistronic 

transcripts (Zorio et. al., 1994). These polycistrons are similar to bacterial operons in 

that they are sets of genes in the same transcriptional orientation driven by a common 

promoter. Unlike bacterial operons, in trypanosomatid and nematode operons 

translation of proteins does not occur by binding of the ribosomes directly to the 

polycistronic mRNA. Instead the polycistronic mRNA is processed and the 

individual cistrons separated by trans-splicing of the SL to the 5' end and 

polyadenylation of the 3' end of each transcript (see figure 7.0.3). 
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Figure 7.0.3 A schematic representation of the events occurring during the processing of polycistronic 
mRNAs from transcription of the polycistron and separation of the individual cistrons by trans-splicing 
and polyadenylation. 
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Also unlike bacterial operons, which generally contain genes which function 

in common biological processes, most operons found in these eukaryotes do not 

appear to contain genes with obvious biological interactions, although some 

exceptions to this rule have been published (Combes et. al., 2000; Hough et. al., 

1999; Page, 1997; Treinin et. al., 1998). The size of operons in trypanosomatids and 

nematodes indicate they play very different roles in the organization of the genes 

they contain. In trypanosomes most protein coding genes are organized in operons 

(>10 genes) which span large portions of the chromosome. The genes in these 

operons share a single promoter and transcription initiation site indicating that they 

are probably all transcribed at the same time and rate (Myler et. al., 2001; Myler et. 

al., 2000). This suggests that mRNA stability or translation may be more important 

mechanisms of control of gene activity in these organisms. This had already been 

observed in studies of individual genes (gp63, hsp83; (Brittingham et. al., 2001; 

Zilka et. al., 2001)) In nematodes, operons are much smaller, usually containing 

between two to three genes which could indicate that in nematodes gene expression 

is an important mechanism for controlling gene function (Blumenthal and Steward, 

1997). Also the processing events that separate the cistrons occur at different times. 

In trypanosomes the trans-splicing of the SL to the 5' end of the cistron appears to 

occur before polyadenylation of the transcript (Sturm et. al., 1999). In nematodes 

both processes appear to occur simultaneously with removal of introns (cis-splicing) 

(Spiethet. al., 1993). 

7.1 Nematode operons 

In nematodes operons have only been extensively studied in the free-living 

nematode Caenorhabditis elegans. Analysis of the available C. elegans genome 

sequence indicates that approximately 13% of the genes are organized in --850 

operons. These operons contain an average of 2.6 genes (ranging from 2-7 genes) 

which are each separated by an average of 126 bp (Blumental et. al. 2001 

unpublished). These operons show some unique features, which indicate the 

processes leading to the resolution of nematode polycistronic transcripts are different 

from those found in protozoa. Nematode operons were initially discovered after the 

isolation of a second nematode SL (SL2) at the 5' end of the Ce-gpd-3 gene 

(glyceraldehyde-3 -phosphate-dehydrogenase)(Huang and Hirsh, 1989). Subsequent 
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analysis indicated that Ce-gpd-3 received SL2 exclusively and that SL2 was trans-

spliced to the 5' end of a variety of mRNAs (Spieth et. al., 1993). Cloning and 

sequencing of the genomic region around the Ce-gpd-3 gene revealed that it lay 

downstream of two other genes Ce-mai-1 (mitochondrial atpase inhibitor) and Ce-

gpd-2 in the same transcriptional orientation (Huang et. al., 1989). The intergenic 

spaces between these three genes were small, 245 bp and 309 bp respectively. 

Analysis of other SL2 containing mRNAs revealed they resided in similar gene 

clusters. RT-PCR analysis of the Ce-mai-1/gpd-2/gpd-3 operon revealed that the 

three genes were transcribed as a single polycistronic transcript (Spieth et. al., 1993). 

Experiments using transgenic C. elegans carrying gpd-2 and gpd-3 downstream of a 

heat shock promoter showed that Ce-gpd-3 expression was dependent on heat shock 

indicating that it did not possess its own promoter (Spieth et. al., 1993). The 

specificity of SL2 trans-splicing to Ce-gpd-3 in this construct was dependent on the 

location of the promoter being upstream of the first gene (Spieth et. al., 1993). When 

the Ce-gpd-2 polyadenylation site was mutated, polycistronic mRNAs accumulated 

indicating that the maturation of the downstream mRNA is dependent on the 

maturation of the upstream mRNA (Spieth et. al., 1993). Finally SL2 trans-splicing 

to genes that normally receive SL1 could be engineered by inserting these genes into 

constructs that placed them downstream of Ce-gpd-2 and the intergenic region that 

separated Ce-gpd-2 from Ce-gpd-3. This body of evidence indicated that SL2 trans-

splicing was a process that was linked to the processing of genes downstream in 

operons. Since then several other studies have shown that while SL2-like SLs are the 

primary SLs added to downstream genes in operons, a small percentage of the 

transcripts receive SL1 (Hough et. al., 1999). Low levels of SL2 addition to genes 

that are not in operons, or are the first gene in operons, has recently been reported 

(Hough et. al., 1999). The functional interchangeability of SL 1 and SL2 is also 

supported by studies with Ce-rrs-1 (e2482) mutants which lack the 5S/SL1 

ribosomal cluster. Normally a homozygous rrs-1 mutant has an embyronic lethal 

phenotype. However embryonic lethality can be partially rescued (the larva 

completes embryogensis) by transformation with plasmid constructs containing 

tandem arrays of SL1 or 5L2 genes (Evans and Blumenthal, 2000; Ferguson et. al., 

1996). Evans et. al. and Huang et. al. have established some of the mechanisms 

which make SL2 trans-splicing specific to genes down stream in operons (Evans et. 
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al., 2001; Huang et. al., 2001). In a systematic screen for regulatory sequences in the 

intergenic region of Ce-gpd-2 and gpd-3 only a U-rich region 29bp downstream of 

the Ce-gpd-2 polyadenylation site was necessary for specifying SL2 trans-splicing. 

This region was also functional when put in a heterologous context indicating that no 

other sequence elements within the Ce-gpd-3 gene are required. Huang et. al. 

suggested that this U-rich region could be a binding sequence for the cleavage 

stimulation factor (CstF) complex and that successful binding of the polyadenylation 

complex could be required for SL2 trans-splicing (Huang et. al., 2001). Evans et. al. 

have since shown that the SL2 snRNP specifically co-precipitates with CstF-64, a 

subunit of the CstF complex (Evans et. al., 2001). Mutation studies indicate that 

while stem loop II is important for snRNP complex formation and trans-splicing, 

stem loop III confers operonic trans-splicing specificity and CstF-64 binding (Evans 

et. al., 2001). SL2 stem loop III mutants are still capable of rrs-1 rescue indicating 

that they can still function as SL donors in vivo (Evans et. al., 2001). This data 

provides the first clues as to the mechanisms underlying the specificity of SL2 trans-

splicing. The coupling of the SL2 snRNP to the polyadenylation complex may allow 

it to out-compete SL 1 trans-splicing to the splice acceptors in the intergenic region 

and perhaps make the whole process of polyadenylation and trans-splicing more 

efficient. 

Analysis of the C. elegans genome has revealed that it utilizes different types 

of operons, some of which control mRNA levels by differential transcription of 

individual cistrons. The canonical operon exemplified by the Ce-mai-llgpd-2/gpd-3 

operon (type I) is the most common form. These operons generally contain two to six 

genes separated by small intergenic segments, usually ranging from 50 to 500 bp 

(Blumenthal and Steward, 1997). The first gene in the operon usually receives SL1. 

Ce-mai-1 is an exception to this rule and does not receive any SL (Spieth et. al., 

1993). The genes downstream in the operon receive a mixture of SL  and SL2 with 

SL2 usually being predominant. Again the Ce-mai-1 operon is an exception to this 

rule with Ce-gpd-2 receiving a mixture of SL1 and SL2 and Ce-gpd-3 receiving SL2 

exclusively. In another form of operon (type 2) exemplified by the Ce-cyt-1/ced-9 

operon there is no intergenic segment and the site of polyadenylation of Ce-cyt-1 is 

adjacent to the SL acceptor site of Ce-ced-9. In this operon Ce-ced-9 is trans-spliced 

to SL1 exclusively (Williams et. al., 1999). Mutational studies of the 
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polyadenylation site and SL acceptor site indicate that both processes are occurring 

simultaneously and in competition which could indicate that the generation of either 

transcript could be mutually exclusive. This form of transcriptional control has also 

been observed in polycistrons like Ce-unc-17/cha-1 which share a single 5' 

untranslated exon but are otherwise not overlapping. Ce-unc-1 7 is contained in the 

first intron of cha-] and alternative splicing of the first exon either to Ce-unc-] 7 or 

Ce-cha-1 ensures that both species will not be simultaneously generated from the 

same mRNA (Rand, 1989). In a third type of polycistron the Ce-lir-2/1ir-1/lin-26 

operon actually contains two polycistrons Ce-1ir-2/lir- JA, B, C or Ce-hr-iD, E, Film-

26. GFP transcriptional fusions indicate that while Ce-1ir-211ir-1A,B,C are 

ubiquitously expressed Ce-hr-iD, E, Fihin-26 is expressed in nonneuronal ectodermal 

tissue (Dufourcq et. al., 1999). This expression in driven by a promoter embedded in 

the large (9kb) first intron of hr-i. So sections of single polycistrons can be 

differentially expressed if secondary promoter elements and transcription initiation 

sites are embedded within the individual cistrons. Figure 7.1 .1 illustrates the different 

types of operons identified in the C. elegans genome 
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Figure 7.1.1 The different varieties of operons identified in the C. elegans genome. A: Type I operon 
Ce-mai-1/gpd-2/gpd-3 operon, B: Type II operon Ce-cyt-1/ced-9, C: Ce-unc-17lcha-1, D: Type ifi 
operon Ce-lir-2111r-1/lin-26. 
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7.2 Operons outside of C. elegans 

Outside phylum nematoda there has been no definitive proof that any other 

metazoa organize their genes in operons. Dicistronic transcripts have been described 

from Drosophila, mammals and plants. However, their constituent open reading 

frames are not separated before translation (Andrews et. al., 1996; Brogna and 

Ashburner, 1997; Garcia-Rios et. al., 1997; Girardet et. al., 1996; Szabo et. al., 1994; 

Walker et. al., 1996). Davis and Hodgson have described a potential operon from the 

parasitic trematodes Schistosoma mansoni and Fasciola hepatica (Davis and 

Hodgson, 1997). Two genes, ubiquitin binding protein (UbCRBP) and enolase were 

found to be the same transcriptional orientation with only 54 bp separating them. 

Isolation of the 5' ends of both genes showed that ubiquitin binding protein was not 

trans-spliced, while enolase receives the S. mansoni SL (Davis and Hodgson, 1997). 

Analysis of the mRNAs of both transcripts by RT-PCR and RNAse protection assay 

showed that pre-mRNA transcripts which spanned both UbCRBP, the intergenic 

region and enolase could be identified (Davis and Hodgson, 1997). However because 

of the lack of a transgenic system it could not be verified that a single common 

promoter drove the expression of the two genes and it could not be determined 

whether production of individual UbCRBP and enolase mRNA was mutually 

exclusive. 

Within the nematodes operons have been identified in two other nematode 

species, C. briggsae and Oscheius sp. CEW1 (Evans et. al., 1997; Kuwabara and 

Shah, 1994). Both of these nematodes are Rhabditidae and are closely related to C. 

elegans with an estimated 25 and 100 Myr divergence respectively (Fitch et. al., 

1995). Analysis of the unfinished C. briggsae genomic sequence has shown that 

there is conservation of synteny across large sections of the genome and structures 

such as operons appear to be highly conserved. C. briggsae also appears to utilize a 

similar repertoire of SL2-like SLs to C. elegans (Kuwabara and Shah, 1994). A 

single operon, the ribosomal protein rpl-27a1rpp-1 operon, has been described which 

is conserved between Oscheius sp.CEW1 and C. elegans (Evans et. al., 1997). 

Examination of the 5' ends of the Os-rpp-1 transcript revealed that Oscheius 

sp.CEW1 also utilized a set of SL2-like SLs, although these were different from 

those identified in C. elegans or C. briggsae (Evans et. al., 1997). Recently 

Redmond and Knox reported the isolation of an SL2-like SL from the parasitic 
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strongylid Haemonchus contortus (Redmond and Knox, 2001). However they could 

not establish that this SL was utilized in the context of operon resolution. No 

systematic survey has yet been undertaken to see how common this form of gene 

organization is and whether the utilization of SL2-like SLs are utilized across the 

phylum Nematoda. To address this issue a selected set of operonic genes from C. 

elegans were tested for conservation of synteny in the genome of Brugia malayi. 

Three genes sets were found which were conserved between these two distantly 

related nematodes and the 5!  ends of the transcripts of the second gene in the rpl-2 7a 

/ rpp-1 operon were isolated to determine if B. malayi also utilizes an SL2-like SL to 

resolve polycistronic transcripts. 

7.3 Strategy for isolating operon candidates 

Approximately 850 operons (13% of gene pairs) are predicted in the C. 

elegans genome sequence (Blumenthal et. al. 2001 unpublished). PCR screening this 

large dataset in other nematode genomes was not feasible, so several classes of genes 

and gene families were examined to select groups of operons that could be tested. 

Analysis of the ribosomal protein genes from C. elegans revealed that they occur in 

operons more frequently than expected. Of the 133 C. elegans ribosomal proteins 

examined 66 (49%) were found to be in operons. This is a statistically higher rate 

than would be expected (p < 0.001) based on the observed frequency of operons in 

the C. elegans genome (Chi2  test, performed in Minitab, Minitab Inc). Because 

ribosomal protein sequences are highly conserved and abundantly expressed 

orthologous genes were easily identified by comparison of the C. elegans protein 

sequences to the nematode datasets in dbEST (Boguski et. al., 1993) and NEMBASE 

(Parkinson et. al., 2001). Tables 7.3.1A and B lists the full complement of C. elegans 

cytoplasmic ribosomal proteins and their B. malayi orthogues. Tables 7.3.2A and B 

list a partial complement of the C. elegans mitochondrial ribosomal proteins. 

Because these proteins are not as well conserved between different taxa, the 

characterized yeast and vertebrate protein sequences were used to probe the C. 

elegans genome sequence. Identified proteins were then compared to B. malayi EST 

dataset. From the 65 ribosomal protein operons identified in C. elegans twelve had 

adjacent orthologous gene pairs which had representative sequences in the B. malayi 
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tes that were tested for 
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232 

protein H sapiens D. 
melanogaster 

C. elegans Operonic in 
 C. elegans  

B. malayi 

Li, L4 P36578 CG8 195 B0041.5 (I) No - 

L2, L8 XP 005130.1 AAF47659.1 B0250.1 (V) No BMC01536 
- AAF47659.1 B0250.7 (V) No BMC00336 

L3 XP 039345.1 AAF54609.1 F13B10.2 (II) No BMC00329 

L5 XP 028341.1 AAG22457.1 F54C9.5 (II) Yes BMC01632 

L6 XP 050941.1 CG1 1522 R151.3 (III) Yes BMC00250 

L7 XP035492.1 AAF52868.1 F53G12.10 
(I)  

Yes BMC00673 

L7a XP035105.1 AAF46169.1 Y24D9A.4 
(IV)  

No BMC00621 

L9 
_________ 

 

XP 047490.1 AAF53049.1 R13A5.8 (III) No BMCO2343 

L1O XP018268.1 AAF45349.1 K1 1H12.2 
(IV)  

No BMCOO1S1 

L10a XP017704.1 CG7283 Y71F9AL.13 
A(V)  

Yes BMC00576 

Lii P39026 AAF57560.1 F07D10.1 (X) No BMC00827 
- - T22F3.4(V) No - 

L12 XP 033467.1 CG3195 JC8.3 (IV) No BMC01716 

L13 XP 047464.1 AAF52842.1 C32E8.2 (I) Yes BMC00623 

L13a XP 027886.1 CG1475 MO1F1.2 (III) Yes BMC00137 

L14 XP 044190.1 AAF50393.1 C04F12.4 (I) No BMC00082 

L15 XP 048417.1 AAF45440.1 F1OB5.1 (II) Yes BMC00009 

L17, 
L23 

XP_028962.1 AAF46914.1 B0336.10 
 (III)  

Yes BMC00275 

L18 XP049965.1 CG8615 Y45F1OD.12 
(IV)  

Yes BMC00862 

L18a XP 038594.1 AAF57838.1 E04A4.8 (IV) No BMC00060 

L19 XP 008294.3 AAF47305.1 C09D4.5 (I) Yes BMCO2351 

L21 XP 033917.1 CG12775 C14B9.7 (III) No BMC01506 

L22 XP 030989.1 AAF45546.1 C27A2.2 (II) No BMC03219 

L23 XP 012891.1 AAF47545.1 F55D10.2(X) Yes BMC00175 

L23a XP 017356.1 AAF47545.1 F52B5.6 (I) No BMC00175 

L24 XP 015463.1 CG9282 D1007.12 (I) Yes BMC00120 

L26 XP 016869.1 CG6846 F28C6.7 (II) Yes BMC00059 

L27 XP 032124.1 CG4759 C53H9.1 (I) Yes BMC03199 

L27a XP 016869.1 AAF51006.2 Y37E3.8A (I) Yes BMC01540 

L28 XP 035923.1 CG12740 R11D1.8(V) No BMC01157 

L29 XP 011055.1 AAF46708.1 B0513.3 (IV) Yes BMC00067 

L30 XP 046141.1 CG6764 CO3D6.8 (I) No BMCO2758 

L31, 
L41 

XP_033301.1 CG1821 W09C5.6A!B 
 (I)  

No BMC01624 

L32 XP 003054.3 AAF57001.1 T24B8.1 (II) No BMC00221 

L34 XP034712.1 CG6090 C42C1.14 
(IV)  

No BMC00060 



L35 XP 044796.1 CG4111 ZK652.4 (III) No BMC00205 

L35a X52966 CG2099 F1OE7.7 (II) No BMCOO 179 

L36 XP044614.1 AAF45531.1 F37C12.4 
(III)  

Yes BMC00060 

L36a XP052671,1 CG7424 C091-110.2 
(II) 

No BMC01314 

L37 XP_017770.1 CG9091 
___________ 

 

WO1D2.1 (II) No BMC00060 

XP 017770.1 C09091 C54C6.1 (III) No BMC00060 

L37a NP 000989 CG5827 Y48136A.2 
(II)  

Yes BMC01949 

L38 P23411 CG18001 C06138.8 (V) Yes BMC00157 

L39 XP010359.3 AAF47154.1 C26F1.9 (V) No BMC00809 

L40 XP009284.3 AAF51034.1 ZK1010.1 
(III) 

ubg-2  

Yes BMC00134 

Figure 7.3.IA Table listing the large subunit ribosomal proteins identified in the genomes of 
H. sapiens, D. melanogaster, C. elegans and the EST dataset of B. malayi. A GenBank 

accession number is given for each H. sapiens and D. melanogaster gene. The cosmid ORF 

number is given for each C. elegans gene. A cluster number is given for the B. malay! gene. 
A listing of the ESTs in each cluster can be found in NEMBASE (Parkinson et. al., 2001) 

(http://nema.cap.ed.ac.uk). The chromosome on which the C. elegans protein is found is 
listed next the ORF number. It is also indicated if the C. elegans ribosomal protein gene is in 

an oreron. 
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protein H sapiens D. 
melanogaster 

C. elegans Operonic in 
 C. elegans  

B. malayi 

S2 XP 043619 AAF45638.1 B0393.1 (III) No BMC00957 

S2/S5 XM_034464 AAF52822.1 C49H3.11 
(IV)  

Yes BMC01616 

S3 XP035076.1 AAF56129.1 C23G10.3 
(III)  

Yes BMC00419 

S3a XP 037456.1 AAF59372.1 F56F3.5 (II) No BMC01505 

S4 XP044025.1 AE003539 Y43B11AR.4 
(IV)  

Yes BMC00375 

S5 XP034265 CG7014 T05E11.1 
(IV)  

Yes BMC00499 

S6 XP048310.1 AAF46288.1 Y71Al2B.1 
(I)  

No BMC00011 

S7 XP 012638.5 CG1883 ZC434.2 (I) No BMC00849 

S8 XP 046554.1 CG7808 F42C5.8 (IV) No BMC00738 

S9 XP 050590.1 AAF50249.1 F40F8.10(II) No BMC01891 

SIO XP 043285.1 CG14206 D1007.6 (1) Yes BMC00256 

Sli P04643 AAF50249.1 F40F11.l 
(IV)  

No - 

S12 XP 017626.1 AAF49851.1 F54E7.2 (III) Yes BMC00188 
S13 XP 047325.1 C04263 C16A3.8 (III) No - 

S14 XP042550.1 AAF46297.1 F37C12.9 
(III)  

No BMC00207 

S15 XP 047576.1 CG8332 F36A2.6 (I) No BMC04325 
S15a XP 027366.1 CG2033 F53A3.3 (III) No BMC00121 
S16 XP 046112.1 CG4046 TO1C3.6(V) Yes BMC00243 

S17 XP 007615.3 AAF50272.1 T08B2.10 Yes BMC00267 
S18 XP016854.1 AAF57491.1 Y57G11C.16 

(IV)  

No BMC00161 

S19 XP 008876.1 AAF48633.1 T05F1.3 (I) No BMC00176 

S20, 
S22 

XP_031816.1 AAF55809.1 Y105E8A.16 
 (I)  

Yes BMC00239 

S21 XP009693.3 AAF51191.1 F37C12.11 
(III)  

No BMC00282 

S23 XP 004020.1 CG8415 F28D1.7 (IV) No BMC00817 

S24 XP039577.1 CG3751 T07A9.11 
(IV)  

No BMC00096 

S24e XP039578.1 - T26G10.3 
(III)  

No - 

S25 XP051497.1 AAF54605.1 K02B2.5 (IV) Yes BMC00290 

S26 XP 049421.1 AAF53666.1 F39B2.6 (I) No BMC00253 
- - CO3H5.f(II) No - 

S27 P42677 CG8338 F56F3.5 (III) No BMC01505 
XP 045145.1 CG10423 F56E10.4(V) No BMC04343 

S27a XP 017513.2 AAF52941.1 F34H10.1 (X) No BMC03367 



- - K08C9.7 (I) No - 

S28 XP006026.2 CG2998 Y41D4B.5 
(IV)  

No BMC00209 

S29 XP 052669.1 CG8495 B0412.4 (III) Yes BMC00288 

S30 XP 006522.3 CG15697 C26F1.4 (V) Yes BMC00146 

P0 XP 017620.1 AAF51807.1 F25H2.10(I) Yes BMC00405 

P1 XP 035388.1 AAF51499.1 Y37E3.7(I) Yes BMC00166 

P2 M17887 R6FFP2 C37A2.7 (I) Yes BMC00278 

Figure 7.3.113 Table listing the small subunit ribosomal proteins identified in the genomes of 
H. sapiens, D. melanogaster, C. elegans and the EST dataset of B. malayi. A GenBank 
accession number is given for each H. sapiens and D. melanogaster gene. The cosmid ORF 
number is given for each C. elegans gene. A cluster number is given for the B. malayi gene. 
A listing of the ESTs in each cluster can be found in NEMBASE (Parkinson et. al., 2001) 
(http://nema.cap.ed.ac.uk). The chromosome on which the C. elegans protein is found is 
listed next the ORF number. It is also indicated if the C. elegans ribosomal protein gene is in 
anoperon.  
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Mitochondrial large subunit ribosomal proteins 

protein H. sapiens D. 
melanogaster 

C. elegans Operonic in 
 C. elegans  

B. malayi 

Li A1155727 CG7494 F33D4.5 (IV) Yes - 

L2 A1313184 CG7636 F56B3.8(IV) Yes - 

L2a AW960439 CG6547 Y48E1B.5 
(II)  

Yes - 

L3 P09001 CG8288 C26E6.6 (III) Yes BMC08589 

L3a A1074410 CG15871 Y34D9A.1 (I) No BMC00143 

L4 A1087088 AAF45007 T23B12.2 (V) Yes BMC11493 

L5 AL353983 CG17166 C47D12.6 
 

- - 

L7/12A P52815 CG5012 W09D10.3 
 

No - 

L7a Y48A6B.3 
(III)  

Yes BMC00938 

L9 A1359339 CG4923 B0205.11 (I) Yes BMCO2815 

LiO AW249086 CG11488 K01C8.6 (II) No - 

Lii A1188527 CG3351 B0303.15 
(III)  

No - 

L13 AB049640 CG10603 F13G3.7 (II) Yes BMC07811 

L14 AA642134 CAB 63504 F45E12.4(II) Yes BMC11522 

L15 AA128556 CG5219 Y92H12BR.8 
(I)  

No BMC06711 

L16 AA780023 CAA15945 T04A8.11 
(III)  

Yes - 

L17 A1141700 CG13880 Y54E1OA.7 
(I)  

Yes - 

L19 P49406 CG8039 Y119C1B.4 
(I)  

Yes - 

L20 A1368972 CG11258 Y48C3A.1 
 

No - 

L22 AA772054 CG4742 Y39A1A.6 
 

No - 

L22 A1760300 CG5242 F54C4.1 (III) No - 

L23 Z49254 CG1320 T08B2.8 (I) Yes - 

L24 A1361046 CG8849 F59A3.3 (I) Yes - 

L27 W81261 - - - - 

L30 AA772463 CG7038 W04B5.4 
(III)  

Yes BMC05770 

L31 N46796 CG12921 

_______________________ 

ZC410.7A!B 
(I) 

Yes 

_________________  

BMC06932 

L32 
_____________-- 

AA166925 CG12220 C30C11.1 
(III)  

No - 

L33 AF047440 CG3712 - 

L34 AA988598  

L36 AA454962 CG7528 WO2A1 IAA/  No BMCO2741 
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B(I) 
L36a A1075733 CG5479 C25A1.13 (I) No 
L41 XP 088427 CG12954 B0432.3 (II) Yes BMC01857 

Figure 7.3.2A Table listing the mitochondrial large subunit ribosomal proteins identified in 
the genomes of H. sapiens, D. melanogaster, C. elegans and the EST dataset of B. malay!. 
A GenBank accession number is given for each H. sapiens and D. melanogaster gene. The 
cosmid ORF number is given for each C. elegans gene. A cluster number is given for the B. 
malayi gene. A listing of the ESTs in each cluster can be found in NEMBASE (Parkinson et. 
al., 2001) (http:/Inema.cap.ed.ac.uk). The chromsome on which the C. elegans protein is 
found is (Parkinson et. al., 2001) next the ORF number. it is also indicated if the C. elegans 
ribosomal protein gene is in an operon  
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Small subunit mitochondrial ribosomal proteins 

protein H sapiens D. 
melanogaster 

C. elegans Operonic in 
 C. elegans  

B. malayi 

S2 AA421679 CG2937 T231312.3 Yes BMC06012 
S4  C48B6.2 No - 

S5 A1660862 E02A10.1 Yes BMC03177 
BMC05967 

S6 W07026 CG15016 R12E2.12 Yes - 

S7 D55616 CG5108 Y57G11C.4 No - 

511 A1554856 CG5184 W04D2.5 Yes BMC08678 
S12 Y11681 P10735 T03D8.2 Yes - 

S14 HS262D12 CG12211 TO1E8.6 Yes - 

S15 A1147651 CG4207 - - - 

S16 AA305994 CG8338 F56D1.3 Yes - 

S17 A1309197 CG4326 C05D11.10A Yes BMC08489 
518a NP 054765 CG10757 T131-15.5 No BMCO2782 
S18b A1083656 CG11744 T14134.2 Yes BMC07498 

S21 A1066648 - F29139. 10 Yes - 

S22 AA631191 CG12261 C14A4.14 Yes BMC07370 
S25 NM 022497 CG14413 Y55F3AM.1 No BMC01309 
S26 NM 030811 CG7354 C34E10.11 Yes - 

S34 NM 023936 CG13037 M88.2 No - 

S35 AF070663 CG5497 Y43F8C.8 Yes - 

DAP3 CAA58535.1 CG3633 C14A4.3 Yes - 

Figure 7.3.213 Table listing the mitochondrial small subunit ribosomal proteins identified in 
the genomes of H. sapiens, D. melanogaster, C. elegans and the EST dataset of B. malay!. 
A GenBank accession number is given for each H. sapiens and D. melanogaster gene. The 
cosmid ORF number is given for each C. elegans gene. A cluster number is given for the B. 
malay! gene. A listing of the ESTs in each cluster can be found in NEMBASE (Parkinson et. 

al., 2001) (http://nema.cap.ed.ac.uk). The chromosome on which the C. elegans protein is 
found is listed next the ORE number. It is also indicated if the C. elegans ribosomal protein 

gene is in an operon. 



239 

bp) 

tion of 
the C. 



7.4 Testing operon candidates by PCR 

EST clones representative of each of the operon gene candidates from B. 

malayi were excised in vivo using standard protocols (Stratagene) and the 5' and 3' 

ends of the isolated pBluescript phagemids sequenced with the vector primers T3 and 

T7 or M13L and M13R. Gene specific primer pairs were synthesized for each gene. 

To determine if the operon was conserved between C. elegans and B. malayi three 

PCRs were performed using these primers opero n_gene- 1.F 1/operon_gene-1.R1, 

operon_gene-2 .F 1/operon_gene-2.R1, opero n_gene -1.F 1/operon_gene-2.R 1. The 

first two PCRs verified that each of the gene-specific primer pairs yielded products 

from genomic DNA while the third PCR tested the conservation of the operon. The 

PCRs were performed with Long Range Taq (Stratagene) or AGS-gold (Hybaid) 

according to the manufacturer's instructions using 300-400 ng of B. malayi genomic 

DNA as template. Figure 7.4.1 shows the results of these PCRs. 
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Figure 7.4.1 Testing potential operons from B. malayi by PCR from genomic DNA 
1: Bm-rppo.F1/Bm-rpp0.R1, 2: Bm-tphl.F1/Bm-tphl.R1, 3: Bm-rpp0.F1/Bm-tph-1.R1 

4: Bm-fibl.F1/Bm-fibl.R1, 5: Bm-rpsl6.F1/Bm-rps-16.R1, 6: Bm-fibl.F1IBm-rpsl6Rl, 
7: Bm-rp126.F1IBm-rp126.R1, 8: Bm-sufl .F1/Bm-suf-1.R1, 9: Bm-rp126.F1/Bm-sufl.R1, 
10: Bm-rpl5.F1/Bm-rpl5.R1, 11: Bm- F54C9.6.F1/Bm- F54C9.6.R1, 12:Bm-rpl5.F1/Bm- F54C9.6.R1. 

1: Bm-rp127a.F1/ Bm-rp127a.R1, 2: Bm-rppl.F1IBm-rppl.R1, 3: Bm-rp127a.F1/ Bm-rppl.R1, 
4: Bm-rp136.F1/Bm-rp136.R1, 5: Bm-ayc-1.F1/Bm-ayc-1.R1, 6: Bm-rp136.F1/Bm-ayc-1.R1, 
7: Bm- rpsl2.F1/Bm- rpsl2.R1, 8: Bm- F54B7.1.F1/Bm- F54E7.1.R1, 9: Bm- rpsl2.F1/ 
Bm- F54E7.1.Rl, 10: Bm-rps25.F1/ Bm-rps25.R1, 11: Bm- K02B2.4.F1/Bm- K02B2.4.Ri, 
12: Bm-rps25.F1/Bm- K02B2.4.R1, 13: Bm- mrp14.F1/Bm- mrp14.R1, 14: Bm- mrps2.F1/ 
Bm- mrps2.Rl, 15: Bm- mrpl4.F1/Bm- mrps2.R1. 

1: Bm- mrp19.F1IBm- mrpl9.R1, 2: Bm- B0205.3.F1/Bm- B0205.3.R1, 3: Bm- mrp19.F1/ 
Bm- B0205.3.R1, 4: Bm- CO1F6.8.F1/ Bm- CO1F6.8.R1, 5: Bm- mrpl3l.F1/ Bm- mrpl3l.R1, 
6: Bm- CO1F6.8.F1/Bm-mrpl3l.R1, 7: Bm-mrpl4l.F1/ Bm-mrpl4l.R1, 8: Bm-B0432.4.F1/ 
Bm-B0432.4.R1, 9: Bm-mrpl4l.F1/ Bm-B0432.4.R1. 
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Three of the tested operon candidates Bm-rpp-O/Bm-tph1, Bm-rpl-27a/Bm-

rpp-] and Bm-rp1-36/Bm-ayc-1 gave positive PCR results. In addition based on data 

yielded from the mapping of the Bm-mf-2 locus an additional set of PCRs were 

performed to determine if position of Bm-rps-14 upstream of Bm-rp1-36/Bm-ayc-1 

operon was conserved (data not shown). 

To determine whether these operons are conserved across the Secernentea, 

two additional representative members of dade V and dade IV Pristionchus 

pac/Icus and Strongyloides ratti were surveyed for the operonic structures conserved 

between B. malayi and C. elegans. Specific primers designed for the genes in rpp-

O/tph-1, rpl-27a/rpp-1 and rpl-36/ayc-I operons. These primers were based on 

sequences found in their EST datasets available in GenBank. Genomic DNA was 

prepared from P. pacificus and S. ratti free living adults were collected from the 

fecal cultures of infected rats and washed in PBS (kind gift of Dr. Mark Viney, 

Bristol University). PCRs were performed as described above and figure 7.4.2 shows 

the resulting products. 
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Figure 7.4.2 PCR of the rpl-27a/rpp-1 and rpl-361ayc- 1 rpp-O/tph- 1 operons from P.pac/lcus and 
S. ratti. A: 1: Pp-rpL27aF1/Pp-rpL27aR1, 2:Pp-rpP iF 1/Pp-rpP 1R1, 3 :Pp-rpL27aF1/Pp-rpPl Ri; 

1: Sr-rpL27a.Fi/Sr-rpL27a.R1, 2: Sr-rpPi.F1/Sr-rpPl,Ri, 3: Sr-rpL27a.F1/Sr-rpPl.R1; 
1:Pp-rpS 14.F1/ Pp-rpS 14.R1, 2:Pp-rpL36.F1/Pp-rpL36.R1, 3: Pp-rpS 14.F1/Pp-rpL36.R1, 

4: Pp-rpL36.F1/Pp-aye-1.R1; D: i:Sr-rpS14.F1/Sr-rpS 14.R1, 2:Sr-rpL36.F1/Sr-rpL36.R1, 
3: Sr-rpS14.F1/Sr-rpL36.R1; E: 1: Pp-rpPO.F1IPp-rpPO.R1, 2: Pp-tphi.F1/Pp-tph-1.R1, 
3: Pp-tphl.Fi/Pp-tph-1.R1 
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7.5 Isolation and sequencing of potential operons 

The PCR products Bm-rp1-2 7a.F 1IBm-rpp-1.R1, Pp-rp1-2 7a.F 1/Pp-rpp-1.R1, 

Sr-rp1-2 7a.F 1/Sr-rpp -1 ,R1, Bm-rp1-36.F 1 IBm-F 3 7C 12.3 .R1, Sr-rps-14.F 1/Sr-rpl-

3 6 .R1, Pp-rp1-36.F1IPp-F37C12.3 .R1, Pp-rps-14.F1IPp-rp1-3 6.R1, Bm-rpp-

O.F1/Bm-tph-1.R1 and Pp-rpp-O.F1/Pp-tph-1.R1 were T- cloned into pCR4.0 

(Invitrogen) and fully sequenced with the gene specific primers and the vector 

primers M13L and M13R. Figure 7.5.1 shows a graphical representation of the 

genomic fragments amplified and tables 7.5,2A-C summarizes the features of each 

gene in the three different species surveyed. 
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Figure 7.5.1 The sequenced fragments of genomic DNA of the three operons isolated from four nematode species, with 
genes indicated by exons (box) and intron (bracket) structures. The numbers at the top show the relative position of the 

C. elegans operons on their respective chromosomes and all graphics are drawn to scale based on these numbers. A: the 

rpl-27a /rpp-1 operon, B. the rpl-36 /ayc-1 operon with the conserved rps-14 gene in the opposite strand with a 

diverging transcriptional orientation. C: the rpp-O / (ph-i operon. * indicates the cloned fragments that do not contain 

the entire coding portion of the gene. 



Species rpp-O rpp-O Intergenic tph-1 tph-1 intron 
gene/ gene 
fragment 
size in bp 

intron sizes 
in bp 

region size 
in bp 

gene/gene 
fragment 

 size in bp  

sizes in bp 

C. elegans 939 

550 

47 
46 
- 

170 

179 

547 

512 

256 

274 P. pactIcus 

? 
482 150 543 514 

75 

520 
S.ratti 

B. malayi 
101 150 

177 

tron 
bp 

itron 
1 bp 

Tables 7.5.2A-C Characteristics of the cloned genomic fragments of the rpl-27a1rpp-1, rp!-

36layc-1 and rpp-Oltph-1 operons. 
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7.6 Survey of spliced leaders utilized on operonic genes 

To test the composition of the SLs found at the 5' ends of the genes found in 

the operonic structures 5' RACE was performed on Bm-rpp-1 and Pp-rpp-J. RACE 

cDNA was synthesized using poly-A selected mRNA and the Invitrogen GeneRacer 

Kit, which utilizes a cap selection methodology to selects for full length transcripts. 

PCR was performed on 5 L first strand RACE eDNA with the 5' GeneRACER 

primer and gene-specific reverse primers (Bm-rppl.R4 and Pp-rppl.R1). Figure 7.6.1 

shows PCR of the operon genes from T RACE cDNA. 
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Figure 7.6.1 The PCR amplification of the T RACE fragments of the operon genes. A: 1: Bm-rpp-1 
and 2: Pp-rpp-1 

MKO 



The resulting PCR products were T-cloned into pCR4.0. Individual colonies 

were picked and the insert isolated by PCR with the vector primers M13L and 

M13R. The PCR products were then treated with exonuclease I and shrimp alkaline 

phosphatase (Amersham) to remove excess primer and dNTPs. 4tL of treated PCR 

product was used as template for sequencing with a gene specific reverse primer. 

Tables 7.6.2, 7.6.3A and 7.6.313 show the results of the sequencing of the isolated 5' 

RACE cDNA fragments. 

Nematode 
Species 

Operon Gene # isolated SL-1 RACE 
ends (% total dataset) 

# isolated SL-2 RACE 
ends (% total dataset) 

P. pacflcus rpl-27a/rpp-1 rpp-1 8 (5%) 163 (95%) 

B.malayi rpl-27a/rpp-] rpp-1 126(100%) 0 

Table 7.6.2 Number of RACE fragments isolated containing SL-1 or SL-2 like spliced 
leaders for each surveyed ribosomal protein operon gene. 
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X GGTTT-AAACCCAGTATCTCAAG 002 1%  

SL1-like sequences Number 
of clones 

Percent of 
dataset 

Found in 
other species 

GGTTT-AATTACCCAAGTTTGAG 007 4% all 

a GGTTTT2ATTACCCAAGTTTGAG 001 B. malayi 

Tables 7.6.3A and B The diversity of the SL sequences found on the ends of the 5' RACE cDNA fragments. The table lists the different SL1 and SL2-like 
sequences found in the race survey. Each variant of the SL1 and SL2-like sequences used in subsequent phylogenetic analyses has been given a gene 
name. The sequence, number of isolated clones, the percent of dataset (when >1 clone was found) and whether the sequence has been found in other 
nematode species is shown.  
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While a diverse set of SL2-like sequences were found to be trans-spliced to 

the 5' end of Pp-rpp-lonly SL  was found on the 5' ends of Bm-rpp-1. 

7.7 Primer extension of Bm-rpp-1 and isolation of processing intermediate 

mRNAs for Bm-rpl-27aIBm-rpp-1 

Primer extension was performed on Bm-rpp-] to verify that it contains a 

single 5' splice acceptor site and to assess whether there are polymorphisms in the 

length of the transcripts. Polymorphisms could indicate the use of alternative SLs. 

Briefly the gene specific primer Bm-rpp 1 .R4 was labeled with T4 kinase and P32-

yATP. The primer extension was performed on 10 jg of B. malayi mixed adult total 

RNA using AMV-RT. The extension reaction was electrophoresed on a 

polyacrylamide gel with an M13 sequencing ladder. The gel was then visualized 

using X-ray film. Figure 7.7. 1A shows the results of the primer extension. Only one 

product was detected at 248 bp which is consistent with the SL1-containing 

transcript found in the 5' RACE survey. 

To test if B m-rpl-27a/Bm-rpp-1 are transcribed as a single polycistronic 

transcript, RT-PCR was performed on DNAse treated B. malayi mixed adult total 

RNA using MMLV-RT (Stratagene), AGS-gold Taq (Hybaid) and the gene specific 

primers Bm-rp127a.Fl and Bm-rppl.R4 using standard protocols. To test that none of 

the resulting PCR products were due to contaminating genomic DNA, a sham control 

was performed, where no MMLV-RT was added to the RT reaction. Figure 7.7.1b 

shows the results of the RT-PCR with three major products detected. These three 

PCR products were isolated by gel extraction, cleaned and concentrated with a 

Microcon-100 and T-cloned into pCR4.0. Cloned PCR products were fully 

sequenced using the gene specific primers and the vector primers M13L and M13R. 

The sequencing verified that the three PCR products represented processing 

intermediates of the mRNA, the largest band being unprocessed, the middle having 

the Bm-rpl-27a intron removed and the smallest having both the Bm-rpl-27a and the 

Bm-rpp-1 introns removed. All three processing intermediates had the intergenic 

region still connecting the two genes (see Figure 7.7.1B). While the results of the 

RT-PCR do not offer conclusive evidence of the order of processing events they 

establish that in B. malayi cis-splicing of the introns in the polycistron can occur 
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before it is separated into individual cistrons. These results are consistent with the 

processing intermediates isolated from C. elegans operons (Spieth et. al., 1993). 

However, it has not been possible to establish whether cis-splicing always occurs 

before the separation of the cistrons. Like the processing of conventional mRNAs 

cis-splicing of the polycistron appears to occur 5' to 3' with the introns contained in 

the upstream gene being removed before those in the downstream gene. 
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1018 
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Figure 7.7.1A The primer extension product of B. malayi rpp-1 showing that 
only one band can be observed at 248 bp which is consistent with the expected 
size of an SL1 trans-spliced cDNA. L: M13 sequencing ladder, S: primer 
extension sample. 
Figure 7.7.1B Amplification of the unprocessed RNA intermediates of rpl-27a 

and rpp-1 from B. malayi. A: no processing, introns in both genes present, 
B: processing intermediate with the rpl-27a intron removed, C: processing 
intermediate with the rpl-27a and rpp-1 introns removed. ±: reaction with RT 
added, -: sham reaction with no RT added 



7.8 Diversity and genus-specific elaboration of SL2 gene families 

It is clear from the RACE survey that three SL sequences, Pp-SL20, Pp-

SL2a and Pp-SL2K were the predominant species trans-spliced to the 5' end of Pp-

rpp-1 (see Tables 7.6.2 and 7.6.3). To determine whether C. elegans also utilized 

specific SL2-like sequences preferentially, the ESTs derived from a cap selected 

cDNA library for Ce-rpl-27a, Ce-rpp-1, Ce-rpl-36, Ce-ayc-J, Ce-rpp-O and Ce-tph-] 

were retrieved from GenBank and their 5' ends examined. Figure 7.8.1 summarizes 

this data and shows that, like P. pacijlcus, in C. elegans there are two sequences, SL2 

and SL3, which comprise the majority of the SLs trans-spliced to the 5' end of these 

genes. In the C. elegans genome there are multiple copies of both of these spliced 

leader genes on chromosomes I, II and III. Whether the Pp-SL23,a,K are repeated in 

the P. pacijlcus genome is still to be determined. It is not clear whether the number 

of copies of a SL2 gene is the factor determining their abundance. It is possible they 

have promoters that drive their transcription at different rates. There also may be 

inherent structural differences between the different SL2s which makes some more 

efficiently trans-spliced (i.e. some associate with the polyadenylation complex more 

readily etc.). It has also not been established if all genes receive the same ratio of 

SL2 sequences. In Meliodogyne javanica variation has been observed in the levels 

SL 1 and SL 1 M trans-spliced to the 5' ends of different genes (Koltai et. al., 1997) so 

it is possible that there are differences in SL2 usage between downstream genes in 

different operons. 
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Observed differences in the abundance of SL sequences trans-spliced to the C. 

elegans genes found in the conserved operons 

Protein Total SL1 SL2 SL2a SL2b SL2c SL2d SL3 SL5 
ESTs  

Ce-rpl-27a 12 12 - - - - - - 

54 
(100%) 

1 44 5 1 1 1 - 1 Ce-rpp-1 

15 
(2%) 

15 
(81%) 

- 

(9%) 

- 

(2%) 

- 

(2%) 

- 

(2%) 

- - 

(2%) 

- Ce-rpl-36 

1 
(100%) 

- 1 - - - - - Ce-ayc-1 

18 18 
(100%) 

- - - - - - - Ce-rpp-O 

11 
(100%) 

- 4 - - - 2 4 1 Ce-tph-1 
(36%)  (19%) (361/o) (9%) 

Table 7.8.1 Summary of the abundances of the various SLs seen at the 5 ends of the cap 
selected C. elegans ESTs. The number of full length ESTs for gene is shown along with the 
number of ESTs having a particular spliced leader and the percentage of the dataset it 
represents.  

Phylogenetic analysis of the SL2-like SLs was suggests that the majority of 

C. elegans SLs are grouped separately from the other nematode SL2s. The nodes of 

the NJ tree which separates the C. elegans SL2s from the other nematode SL2s is not 

supported by bootstrap analysis which is not surprising considering the small size of 

the mini-exon and the overall homogeneity of the sequences in the alignment. When 

the full sequences of the SL genes are available more meaningful phylogenetic 

studies can be performed. If the NJ tree accurately reflects the evolution of the C. 

elegans SL2s it would indicate they have arisen monophyletically from a common 

ancestor and have spread through the genome. Figure 7.8.2 shows the phylogenetic 

analysis of the SL2 mini-exons. Ce-SL2c and Ce-SL2e do not group with these other 

Ce-SL2 sequences and appear to be basal to the other nematode SL2s. They share a 

3' GAG with the SL  instead of AAG which is conserved in the other SL2-like mini-

exons. However, the rest of the molecule appears to be SL2-like indicating that they 

represent a possible intermediate between SL1 and SL2 mini-exons. Searches of the 

C. elegans genome sequence with the other nematode SL2 SLs have not identified 

any of these other genes. Why C. elegans (and presumably the other caenorhabditids) 
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Figure 7.8,2 Evolution of SL sequences. A: An alignment of the SL sequences is shown. Conserved portions of 
the molecule are shaded in grey. B: The phylogenetic analysis of SL sequence alignment (neighbor joining, total 
mean difference) was performed in PAUP*v4.08b (Sinauer Associates Inc.). Bootstrap analysis was performed 
on the NJ tree (10,000 replicates) and nodes with bootstrap support >50% are shown. The SL1 and SLlct 
sequences were selected as an outgroup. Additional SL2-like sequences that have not been previously described 
were identified by searching the C. elegans genome with the previously identified genes (Pigaga V. 2000 honors 
thesis, Edinburgh University). 
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7.9 Discussion 

In metazoans the organization of genes in operons and resolution of 

polycistronic transcripts is a biological process that has so far only been 

characterized in the nematodes. While parallels can be drawn to the resolution of the 

large operons utilized by the eugleniods, when the mechanics of these processes are 

examined it is clear that SLs have evolved very different functions in the two groups 

of organisms. It is possible that SLs along with cis-and trans-splicing evolved early 

in the evolution of eukaryotes. Their absence from most eukaryotic taxa, including 

the groups considered the most primitive representatives, the Diplomonadida and 

Parabasala, lends strength to the view that SLs may have evolved independently in 

the Eugleniods and Metazoa. However, until more comprehensive surveys of the 

genomes and transcriptomes of these groups are finished the possibility remains that 

other large groups of eukaryotes will be found that utilize SLs. The question still 

remains why SLs are utilized at all. There are several possibilities: a) SLs evolved as 

convenient method of capping and thus stabilizing mRNAs, b) SLs evolved as a 

targeting signal that more efficiently directed mRNAs to the ribosomes or c) SLs 

evolved as a mechanism to help resolve polycistronic transcripts. Any of these 

explanations singly or in combination could account for their prevalence in these two 

groups. However, when mRNA processing in euglenoid and the metazoan species is 

compared the resolution of polycistronic transcripts appears to be common only in 

the two groups which trans-splice SLs to the majority of their mRNAs 

(Kinetoplastids 100% and Nematodes 70-90% of mRNA transcripts respectively). In 

metazoans such as the platyhelminths in which polycistrons have not yet been 

conclusively demonstrated, SLs do not appear be added to the majority of their 

mRNA transcripts (30% in S. mansoni). The identification of SLs in cnidaria and 

urochordates indicates that if the origin of SL trans-splicing in the metazoa is 

monophyletic, then it evolved before the radiation of the deuterostomes and 

protostomes. However, within the different metazoan groups the presence and usage 

of SLs is highly variable. In some groups like the nematodes and platyhelminths, SLs 

have been isolated from taxa across the group, but in others such as the vertebrates or 

arthropods it appears wholly absent. Functional studies in trypanosomatids indicate 

trans-splicing precedes polyadenylation of the cistrons and may be the rate limiting 

step in the maturation of mRNAs. In C. elegans both of these processes appear to be 
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coupled with the SL2 snRNP associating with the cleavage and polyadenylation 

complex. This indicates that these processes may occur simultaneously. Under 

conditions where the association of the polyadenylation complex is inhibited (i.e. 

mutation of the polyadenylation signal or removal of the polypyrimidine stretch in 

the intergenic region) resolution of the cistrons still occurs (Liu et. al., 2001b; 

Williams et. al., 1999). However, SL1 replaces SL2 as the major SL found on the 

downstream cistron (Liu et. al., 2001b). Also the first cistron is polyadenylated either 

at the mutated polyadenylation signal site or the site of separation of the two cistrons 

by SL1 trans-splicing. While there do not appear to be any functional differences 

between the mini-exons of SL  and SL2, the coupling of polyadenylation and trans-

splicing could offer a number of advantages. First both processes would occur 

simultaneously to each pre-mRNA reducing the accumulation of processing 

intermediates. Second, because those mRNAs with caps and polyadenylation are 

more stable than those which are unprocessed, downstream cistrons that were not 

given SLs or polyadenylated relatively quickly could be targeted for degradation 

7.9.1 SL Usage and Operons in the Nematodes 

The one major question this study addressed was to determine if operons 

could be found in nematode groups that were distantly related to the rhabditina. By 

rationally selecting and testing operon candidates for conservation of synteny three 

operonic structures, rpp-O/tph-1, rpl-27a/rpp-1 and rpl-361ayc-1, have been 

identified that are conserved through nematode clades III, IV and V (Blaxter et. al., 

1998). Conservation of these operonic structures is not conclusive evidence of 

polycistronic transcription of the two genes. However, the close proximity of the 

syntenic genes (see table 7.5.2A-C) makes it unlikely that promoter elements are 

present in the intergenic region. Also, processing intermediates (polycistrons with 

introns removed) of the rpl-27alrpp-1 operon were isolated by RT-PCR from B. 

malayi. While this is evidence that the genes are transcribed as a single RNA and that 

cis-splicing of the polycistron occurs it does not establish if the polycistron is 

processed into two productive mRNAs or whether their maturation is mutually 

exclusive. When the SL composition of the downstream cistron rpp-1 was surveyed 

it revealed that only SL  was found on the 5' ends of the gene cloned from B. malayi 

(Clade V). However, when the rpp-1 ortholog from a diplogasterid (Clade V) was 
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surveyed it showed that like rhabditids C. elegans and Oscheius sp. CEW1, P. 

pacijicus trans-splices SL2-like spliced leaders to the 5' end of Pp-rpp-1. Figure 

7.9.1.1 summarizes these findings within the context of the whole phylum 

Nematoda. Several layers of data are still missing from this analysis: 1) Do dade IV 

nematodes utilize SL2-like sequences? 2) Are the operons isolated in this study 

conserved in dade I and II nematodes? If the operons are conserved what is the 

composition of the SLs trans-spliced to the 5' end of the downstream genes? 

If only SL 1 is found at the 5' ends of the downstream cistrons in the S. ratti 

operons this would indicate that use of a distinct set of SL sequences in the 

resolution of operons may be an innovation of the dade V nematodes (strongylids, 

rhabditids, diplogasterids). If the operons found in the dade III, IV and V nematodes 

are conserved through dade I and II it would suggest their origin may predate the 

radiation of the phylum. 
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Figure 7.9.1.1 A cartoon showing SL usage and the evolution of the phylum Nematoda as derived 
from analysis of the 18S rRNA (adapted from Blaxter et. al. 1998). The nematode species that 
have been studied and whether they utilize SL2-like spliced leaders is indicated. 
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7.9.2 SL2 evolution in Chide V 

SL2-like spliced leaders are a large group of diverse sequences. The 5' RACE 

survey of the P. pacificus rpp-1 gene has highlighted some interesting features of this 

gene family and provided clues to how SL2s have evolved through dade V. Unlike 

SL 1, which appears to be monomorphic, each of the species examined presented 

their own set of SL2 sequences. However, the mini-exon sequence of Pp-SL2a was 

found in two of the five species examined (P. pacificus and H. contortus). The 

sequence of the mini-exon of SL2f3 from Oscheius sp.CEWldiffered from Pp/He-

SL2a in only a single thymine insertion in the poly-thymine track in the 5' portion of 

the molecule. Figure 7.9.2.1 shows the evolutionary relationship of the dade V 

nematodes which SL2s have been identified (based on phylogenetic analysis of the 

SSU rRNA (Blaxter et. al., 1998)). The usage of various SL2-like SLs is mapped 

onto the species. From this phylogeny it can be inferred that the presence of Pp/Hc-

SL2a and the closely related Os-SL213 in all the three major groups (strongylid, 

rhabditid, diplogasterid) suggests that it may represent an ancestral SL2 sequence. 

The elaboration of another set of SL2-like sequences in C. elegans and C. briggsae 

may be a feature of that genus. If the Pp/Hc-SL2a is representative of ancestral 

sequence, why it would be lost from the caenorhabditids is unclear. SL2s are 

multicopy gene families in C. elegans. Some of these genes are clustered. If SL2s are 

also multi-copy and clustered in other nematodes deletions of portions of the genome 

containing these clusters could remove specific SL2 families. As long as the other 

SL2 sequences sufficiently compensated for the losses of the genes the deletions 

might not prove detrimental. Subsequent duplications and drift of the remaining SL2 

genes could then repopulate the genome with a new family of SL2. To test this 

hypothesis additional nematodes within dade V, particularly those placed near the 

caenorhabditids would need to be surveyed. However, because the sequences of the 

SL2 genes are not well conserved outside the short mini-exon it would be difficult to 

show that an individual SL2 gene was missing from a particular genome other than 

by completely sequencing it. 
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Figure 7.9.2.1 SL2 usage and evolution in Clade V nematodes. A 
representation of the phylogeny of dade V nematodes from which 
SL2-like sequences have been identified. The phylogenic tree was 
based on the analysis of the SSU rRNA provided by M. L. Blaxter 
(Blaxter et. al. 1998). Some of the SL2 sequences identified in this 
and other studies have been mapped onto the phylogenetic tree. 



7.10 Conclusions: 

During the course of this work two important finding have been made. First, 

operonic structures are a common feature in all nematodes within the Secernentea 

(clades III, IV and V). Second, utilization of 5L2-like SLs in the resolution of these 

operons has only been found in dade V nematodes. While this survey does not cover 

the entire phylum there are still several conclusions that can be drawn. Operons are 

an ancient feature of the Nematoda and are conserved through large sections of the 

phylum. While it is unclear if the mechanisms involved in the resolution of these 

operons are the same across the phylum the lack of SL2-like SLs in the dade III 

nematode suggests that 5L2 may be a relatively recent innovation. If the SL2 

snRNPs from other dade V species interact with the polyadenylation complex this 

would be strong evidence supporting the idea that SL2-like sequences evolved as a 

mechanism to couple (and perhaps streamline) two important steps in the maturation 

process of polycistronic mRNA. 

We do not know how common operons are in nematodes outside of the 

Caenorhabditids. However, the widespread use of operons as a form of gene 

organization in dade V may have pushed the development of SL2 by making it 

necessary to couple polyadenylation and trans-splicing reactions to more efficiently 

resolve polycistrons. Unfortunately lack of large EST datasets has prevented the 

expansion of this study to the other major nematode groups clades C, I and II. While 

SL 1 is present in these nematodes it is unclear if these groups rely on SL 1 usage to 

the same extent as the Secernentea. If these operons are conserved throughout the 

phylum and the separation of the downstream cistrons is a process reliant on trans-

splicing this could indicate a very ancient origin for this form of genomic 

organization. It could also suggest some possible reasons for the widespread use of 

SLs in nematodes. One possibility is that the utilization of polycistrons as a form of 

genomic organization drove the reliance on SL usage in the nematodes. As this study 

is expanded and the use of operons and SL sequences determined in other species, it 

will become possible to map the evolution of these processes more accurately and 

extensively across the entire phylum. 
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Chapter 8 

General Conclusions 
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The rationale behind these studies was to utilize the sequence datasets and 

other resources produced by the FGP to address several questions about the mode 

and tempo of the evolution of nematode genes and genomes. This sequence data also 

served as a platform to determine the conservation of a biological process that had 

until this point only been characterized in C. elegans and its close relatives. 

The EST datasets from a human lymphatic and cutaneous filarial species 

were clustered into a non-redundant set of gene fragments using a custom built 

process designed and implemented during the course of these studies. These clusters 

were extensively analyzed to determine the extent of conservation between filarial 

genes and the datasets of other organisms. Interestingly, the filarial datasets had a 

much higher rate of novel sequences than the other nematode EST datasets or the 

proteins predicted from other animal genomes. Whether this high rate of novel 

sequences is reflective of a high rate of novel protein sequences in filaria or is an 

artifact of problems with the EST sequences (short reads, poor sequence etc.) has not 

been satisfactorily resolved. Many new nematode and parasite specific gene families 

were identified in this analysis and these will serve as a starting point for subsequent 

studies to identify novel vaccine candidates or drug targets. Analysis of abundant 

differentially expressed genes identified many novel genes and gene families that 

may play a role in biologies specific to particular lifecycle stages or serve as 

mediators of host-parasite interactions. Interestingly when the two filarial datasets 

were compared there was very little correlation in the identities of the hyper-

abundant transcripts between the two species. The exception to this observation was 

the abundant differentially expressed transcripts from the infective L3. Several of 

these genes or gene families showed similar expression profiles (alts, agys, vah-1 

and cp1-1). The presence of these genes in both species at the same developmental 

time point indicates that they may share similar biological functions. 

Within the EST datasets there were several gene families whose similarities 

to proteins in the public databases suggested they may play a role in mediating host-

parasite interactions. One of these families showed similarity to the vertebrate 

cytokine family macrophage migration inhibitory factor (MIFs). Two MIF genes 

were identified in both B. malayi and 0. volvulus. Comparisons to the public 

databases, other nematode EST datasets and partial genome sequences from a variety 

of organisms revealed that the MIFs form a diverse group of sequences that have 
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representatives in animals, plants and several protozoan groups. To better understand 

how the filarial MIFs were related to MIFs from other nematodes and vertebrates as 

well as determine how this important gene family has evolved, MIF sequences were 

compared and analyzed with several molecular phylogenetic techniques. Comparison 

of the MIF proteins sequences revealed several interesting features and indicate not 

all MIFs share the same enzymatic activities and substrate specificities. Also some 

MIF families appear to be evolving at different rates indicating that different 

selection pressures may be shaping these gene families. Phylogenetic studies and 

examination of intron positions from available genomic sequences indicate that the 

animal MIFs form two distinct families. One of these families may represent an 

ancestral group but this observation is not supported by all the phylogenetic analyses. 

Comparison of sequences isolated from mammals and teleosts indicated that there is 

one functional gene from each family contained within the vertebrate genome. 

Within the nematodes the number of MIFs appear to be more variable with the C. 

elegans genome containing four MIF sequences. In the vertebrates the two MIF 

families appear to have distinct functions: whether this is also true of the nematodes 

MIFs is yet to be determined. One of the most intriguing aspects of the parasitic 

nematode MIFs is their potential function as immuno-modulators. MIFs are known 

to be secreted from several animal parasitic nematodes. However, in this study 

several representatives have been found in the EST datasets of plant parasitic 

nematodes. Are these secreted into the parasitized plant? Do they also have 

modulatory functions? Phylogenetic studies have indicated that both animal and 

plant parasitism have independently evolved several times in nematodes. Could MIF 

have been repeatedly recruited as a mediator of host-nematode interaction? Another 

intriguing finding in this study was the discovery of MIFs in the genome sequences 

of several parasitic protozoa. If these MIFs also have immunomodulatory functions 

this would indicate that MIFs have not only been repeatedly recruited by parasitic 

metazoa but also by parasites through the whole eukaryote phylum. 

Very little is known about the forces that shape animal genomes. In 

vertebrates the composition and relative order of genes in large segments of linkage 

groups are conserved between evolutionarily distant species. Conversely, studies in 

insects have shown that while the composition of linkage groups in closely related 

species may be conserved, the order of genes on chromosomes is fluid, with genes 
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being moved freely within and between chromosomes. This implies that either 

functional constraints are stabilizing chromosomes in vertebrates or some unknown 

process is causing increased incidence of rearrangements in insect genomes. Outside 

of the insects very little is known about the dynamics of genome evolution in non-

vertebrates. To examine the mode and tempo of chromosome evolution in nematodes 

regions of genome flanking the two B. malayi MIF genes were examined. C. elegans 

orthologues of all of the other genes found in these segments of the B. malayi 

genome were found in common linkage groups. In the case of the genes surrounding 

BmmiJL] the majority of their putative C. elegans orthologues were found in a 2.5 

MB region in the center of chromosome I. The evolutionary distance between C. 

elegans and B. malayi is comparable to that separating mammals and teleost fish. 

The results indicate that like the insects the relative order of genes within nematodes 

genomes is relatively fluid and while the relative composition of linkage groups may 

be conserved their arrangement will vary greatly between species. When the full 

genome sequence of C. briggsae becomes available and larger portions of the B. 

malayi genome are sequenced it will be possible to robustly estimate the rate of these 

rearrangements in nematode species and compare them to the rates observed in other 

animals. Interestingly in both genome segments examples of conserved microsynteny 

could be found. All of these gene clusters contained a pair of genes that were 

divergently transcribed on opposite strands. Why would the configuration of these 

genes be conserved between two such evolutionarily distant species? Given the 

observation that most of the genes are rearranged randomly it is highly probable that 

the movement of these genes is functionally constrained. Perhaps promoter or 

enhancer elements contained within the intergenic regions separating the genes are 

binding them together? As more fine scale comparisons of insect genomes are 

preformed it will be come clear if this is a common occurrence in other non-

vertebrates. 

Operons and the resolution of polycistronic transcripts is an unusual process 

in metazoans that has only been shown to be a common form of gene organization in 

the nematode C. elegans and a few of its close relatives. The resolution of the 

polycistrons is dependent on trans-splicing reactions which cap the downstream 

mRNAs with a second distinct family of SL sequences (SL2s). It has recently been 

shown that this trans-splicing reaction is coupled to the polyadenylation of upstream 
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genes via specific interactions of the SL2 RNA with the polyadenylation complex. 

Until this study it was not known how universal these process are in other 

nematodes. Using a directed approach several operonic structures conserved between 

C. elegans, P. pacflcus,  S. ratti and B. malayi were identified. Interestingly, when 

the 5' ends of cDNAs of a gene found downstream in a B. malayi operon was 

examined only SL 1 was found. This raises the possibility that while operons may be 

a form of gene organization utilized by other nematodes the mechanisms by which 

polycistrons are resolved may not be conserved. It still remains to be determined if 

the trans-splicing reaction is coupled to polyadenylation in other nematodes. It is 

possible that this is an adaptation found exclusively in C. elegans and its relatives. 

How common operons are in B. malayi and other nematodes and whether they are 

also conserved outside the Secernetea remains to be determined. When this data is 

available it will be possible to more accurately assess how ancient nematode operons 

are and what forces lead to their genesis. 
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Gene Name -i 
CHMI_ESCCO 

MIF1_BOSTA - 

MIF1_DANIRE - 

MIF1_GALGA i 
DDT 1HOMSA 

MIF1 HOMSA 
MIF1_MERIJN 
DDT1_MUSMU 

- 

MIF 1_MUSMU 
- 

MIF 1_ORYLA 

MIF 1_PSEAM 

DDT1 RATNO 
MIF1_RATNO 
MIF1 SUSSC 
MIF 1_XENLA 
MIF 1_CIOiN 
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MIF2 CIOIN 
MIF1_AMBLY Am 
MIF1 ANCCA A 
MIF2_ANCCA A 
MIF1 ASCSU 
MIF 1_BRUMA 

- 

MIF2BRUMA - 

MIF1_BRUPA - 

MIF3_CAEEL C 

MIF2_CAEEL C 

MIF1_CAEEL C 

MIF4CAEEL C 

MIF1_HAECO L 

MIF2_HETGL 

MIF2_MELJA 
MIF1_ONCVO 

MIF2_ONCVO 

MIF2_STRSE St4 



BE0297 14 
BE223719 
BE223780 
BE223857 
BE224537 

MIF1TRITR Trichuris trichiura human whip worm MetazoalNematoda nr AJ237770 
MIF 1_TRISP Trichinella spiralis trichina muscle MetazoalNematoda nr AY05066 1 

parasite  

MIF2_TRISP Trichinella spiralis trichina muscle Metazoa!Nematoda EST BG354844 
parasite  

MIF1 TRIPS Trichinella trichina muscle MetazoalNematoda nr AY050662 
pseudospiralis parasite  

MIF1_WUCBA Wuchereria bancrofti lymphatic filarial Metazoa/Nematoda nr AF040629 
nematode  

LS 1_PHYSO Phytophthora sojae soybean pathogen Heterokonta! EST BES 82695 
Oomycetes  

LS 1EIMTE Eimeria tenella chicken parasite Apicomplexa EST A1755805 
A1757530 
BE027544 

LS1_PLABE Plasmodium berghei murine malaria Apicomplexa EST BF294177 
BF294229 
BF294865 
BF295329 
BF295 726 
BF295939 
BF297076 
BF297641 
BF297969 

LS 1 PLAFA Plasmodiumfalciparum human malaria Apicomplexa HGS NA' 
LS 1_PLAYO Plasmodium yoelii murine malaria Apicomplexa HGS I NA' 
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LS1TOXGO Toxoplasma gondii feline gut parasite Apicomplexa EST N81780 
W63329 

MIF1_GIAIN Giardia intestinalis gut parasite Diplomonadida HGS AC056441 

LS 1_CRYJA Cryptomeriajaponica Japanese cedar Viridiplantae/ EST AU085668 
Coniferopsida  

LS 1_P1NTA Pinus taeda loblolly pine Viridiplantae/ EST AW042584 
Coniferopsida  

LS 1_HORVU Hordeum vulgare barley Viridiplantae/ EST B1953781 
Liliopsida  

LS 1_ORYSA Oiyza sativa rice Viridiplantae/ EST B1799671 
Liliopsida  

LS 1SORBI Sorghum bicolor common sorghum Viridiplantae/ EST AW745430 
Liliopsida  

LS 1_TRIAE Triticum aestivum wheat Viridiplantae/ EST BE400433 
Liliopsida assembly BG907503 

BG907504 

LS2_TRIAE Triticum aestivum wheat Viridiplantae/ EST BE213336 
Liliopsida assembly BE43 0035 

LS 1 ZEAMA Zea mays corn Viridiplantae/Liliopsida EST AW506633 

LS1_ARATH Arabidopsis thaliana thale-cress Viridiplantae/ nr AL161946 
Eudicotyledons  

LS2_ARATH Arabidopsis thaliana thale-cress Viridiplantae/ nr AL132968 
Eudicotyledons  

LS3_ARATH Arabidopsis thaliana thale-cress Viridiplantae/ nr AB023042 
Eudicotyledons  

LS1GLYCL Glycine clandestina soybean sp. Viridiplantae/ EST BG838287 
Eudicotyledons  

LS1_GLYMA Glycine max common soybean Viridiplantae/ EST AW760171 
Eudicotyledons AW704652 

BE347192 
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LS2_GLYMA Glycine 

LS3_GLYMA Glycine 

LS1GOSAR Gossypium I 

LS2_GOSAR Gossypium) 

LS 1HELAN Helianthus 

LS 1_LOTJA Lotus jap 

LS 1_LYCES Lycopersicon 

LS1_MEDTR Medicago tr 

LS 1MESCR Mesembyai 
crystalli 

LS2_MESCR Mesembryw 
crysta114 

LS 1_ROBPS Robinia psei 

LS 1SOLTU Solanum tu 



B1432941 
B1435097 

Table 5.1.1 Summary of the characteristics of each MIF sequence isolated from GenBanks non-redundant or EST database. The gene name used in the multiple 
sequence alignment, the organism from which the sequence originates, taxonomic grouping of the species, the GenBank database the sequence was found in 
and the GenBank accession numbers of the sequence(s) are listed. nr:  non-redundantnucleotide and protein database, EST: dbEST, HGS: high throughput 
genome sequence, assembly: indicates an assembly of two or more sequence was used to derive the amino acid and cDNA sequences used in the alignments. 
NA  sequences were found by using the blast facilities hosted at http://www.plasmodb.org  to search the combined shotgun and assembled contigs of 

Plasmodium falciparum and Plasmodium yoelii. These sequences are not yet available in GenBank. MlF or DDT was used as an identifier when the sequences 
were of animal origin. Light sensitive transcript (LS) was used for those sequences of plant origin. This annotation was attached to a set of the plant ESTs derived 
from cDNA library of light stimulated A. thalianaembryos. - 
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CHMIESCCO A CTi3CiTATTTTTCCTI TATTCC1TTT9TCITCT c'j 
DDT1HOMSA&Tkr I-rTTTH-r&I T17f'a( i-r______ATTTI k'C ('ILT1rC CI-r( t,i3i,F TI----&&I ACIrACT'TIr( Ir( ( kr (I TI'T '&T CTH Tb -,l-rj-------CItTIj(I-rTIr&( I TACHrC I-1-±rr CTH- O 

DDT1RATRA ATI3CC&TTCETT&A&TTI3&AACA ------  Ai --- ------- I:cc5TI AG<TI CI rATACC4ACC :AT&A 

DDT1USMU ATI3CCATTC&TT&?TT6AAACA 
MIF1ORYLA ATI3CCTTTC&TEH?A&CTCCA&ACC 
MIF1MtJSMU TbC T&TI-TTCr&T'I-rTL-r! -------- &TkrTT C C CC i'I T  C C IrTCK,"C h&&fiFA4ijTTT___TlrTCIb'T I- Tbf'k' i-,I-,( A&I-,' I-( I- ------  Ta I- ITI-(( I-rTI-1-rT C C (I±r&( b' 

MIF1RATRA AT&CCTAT&TTCATC&T&iACAOC------AATIfTTCrXCErCCC 
MIF1HOMSA ATI3CC&AT&TTCATC&TMACACC TAcATcI:4cT':4Ac.ITIGTccc.I3GAccAErc 
MIF1MERUN ATEiCCTAT&PTCAPC&T&AACACC TACATCI3CA&TECAC&T'3GTCCC'ACCrLiC 
MIF1SUSSC AT' C&ATErTTC&T TAAACAf.0 TAr:ATcI:4&TI:4Ac':TcI:TcccE+AccA&c 
MI Fl BOSTA ATC&AT&TTCITiEHT&ACACC "CA&------TAcATcETI3cAcI:4TI31:4TcccA&AccA'3. 
MIF1GALGA ATKcTATI:TTcAcATccAcAcc ------ Af.&TcTcAI HACr C&TICCCEFACA&C ----- TACATAI3CcTI3CACATCITACCTGATCSGA 
MIF1CIOIN AT' CCCATCTATTT&TI3AAAACA ------ TAT&TCT&TRTIACT&TEHETTCC.TE+ATE+TAT 
MIF2CIOIN TI,t &ITT i-r&TA I-rTTT I- I -rACr 4TI TT I- TTkTT C&C&I'  LTC T CAACAAACCF4kAAG,,A----- AT&T&TIr' krT( TNrTITT& ITT&T 
MIF1XENLA ATI:CT&TCTTCACCATCC&TACC TACATTIthKAATTCATATTRTL(.CTIATCAAA 
MIF1DANRE AT&CCEATETTT&TA&T&AAC.ACA 
MIF1PSEAMAT&C:&AT&TTC&T&GT&AACACC 
MIF1CAEEL ATI3CCETCATCAAAErTI3CAAACA ------ AATErTC ------ CAATATTC&TCTC'3CTC.SACATIW&TTCTC 
MIF2CAEEL ATICC&ATG&TCAGA&TTEi<ErA:Er 'MCA[FJ ------  AiATT Fit-  TRTC&AIEATA&CCSCI3GTIK.TC 

MI F3 CAEEL ATCCA&TTTTCTCCATCAATLTC ------ AACI:-T''I3iI TACATII4TRTATTCACTTCCACRAI3GATCAI31r 
MIF4CAEEL ATICAITTITTCi ATTrAAAI-------- AATTCET&ATTATT&TTI:- A'CcI3E'CARTTA 
MIF1BRUMA AT&:CATATTTTAC&ATT&ATAC( TATII-rTATCsATCCAT&T&1ATI&TI3CACAAC 
MIF1BRUPA ATRCCATATTTTAC.&ATTLrATA'CA ------ AACATACCI A&ATA&CATTTC&A&T&C ------ TATE TAT: ATCCATET' AT&TC-i1I-rACAAEr 
MIF1WUCBA AT&CCATATTTTACEATTRATACC TATRTATCAATCCATErTI:4AATEH:4TGGACAAC 
MIF1ONCVU ATE:CTCCTTTTAC&ATCAATACA RTTSTT --- CTjjjSCjj3ACEjE+PT[RiAAirj3C AcTTrGA''I3<: CAAA&T------TAT,lTI3:AATTcATITErAAc.c1I4Tc-GAcAAI: 
MIF1ASCSU ATi?CN&TITCACTATCAACACI:-r ------ AATETErCC TAT&Tc:A,3TAc,3ETErACcCcErACCAGc 
MIF1TRITR ATi3CCcTATYTTYACRTTYSNAC& TACGTCI3CA&TTC.ATATAACI3GT3GACAAA 
MIF1TRISP ATcTATcTTTAcTcTTAATACA------AACATCAMI:-rcT TAT:TAI:4cT&TI3.:AcATcAAcAcA&ATcA&c 
MIF1 TRIPS ATI3CCTATTTTTACIITTTAATACA TAT&TAI::TI:4Ti3cAccTcAAcAcAI:ATcAI3<: 
MIF2TRI s ATErCCAATTTTCACAAThATTACA------AAT------A? MCTErCACCErAAAE?ATTTT---CACCEfATTEiCTAACARATCT&TTI3&CC-AATTECT&AM CErArARG -----CTA&TI3GTEr&TT&ATTTATTEi<TTC4ATCAAA 
MIF2BRUNA AT' CCGCTEAThACTCTTI3CTTCR CEiIrAT ACT TTT ACT I:-TAAT&cCAAATIj:Ac 

MIF2 ONCVU rTkK I-r< TI-rT I-CTCI-K T I------ ATIYTTCTTb I-rTI- -ATTT Ir& TkrTTT ___ TiTCCTT I H IrTTT I kJTTI TTrIi TAI-rT ------ CH-rT T T&TT, TI-RC I-r( Ir C 

MIF2HETGL AT&CCATTTATAAATCTTTI3GACC ------ TC&ACAEi(ACTAATTErTCCA&TC1313GACCAA 
IF2 MELJA ??????????????????&ATCAT------T ''''''TTAAATTCAAT------TTTTCCAA'3GTTCTA&TTAAT'3CTEI3GAAT& 

MIF2STRST AT'KC.ATAT&TTC'ITTT&TTCTCT ------ AATTTI3ccA,:AAAcATcTTTTAcA&AT,3cTTTT --- TE?TAcAcAATTTAcc&ATTTATTA&C T&ATTACAT?AAEACAAATCA------A&ATTITTATECTT&TTCAACCACATACAA 
IFlHAECO AT&CCEHTTTTCTCATTTCACAC& ----- ccj ------ TAT&TTT,,rTAc,y1'T,3Cc,:-Acc?&c 

-------------------------------------------------------- ------ ------------------------------------------------------------------------------------------------------------- ------  
IF2ANCCA ???fl??????????????????? ------ ??????n????cA':AAcAA'lTcAcAcc'3GA --- -T&TT&AA&C AEfATcTccI:AAcTc&TCI3TC&TATTCTECACAACCCEA&------ATTATI:4TTI:-iT&TCCAT&TeGTTCCCATC 
IFlANBAN AT'CCAACCCTTACAATTAACAC'3 -----A? 'MI3CCL-CTTTC&------TAT,:4TT'3rc-'GTccAcATcAAc'3cc&ATcA'3c 
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S1PLAFA PI3CCTTICT&TEA&TAAPAACk ------  
S1PLAYO PEiCCTTCT&C&ATPAATAACk ------ACTTTCTTCCCTI kC&TAAIPCAAAAT&C -----  TkTALTThTC - 

S1PLABU 
S1PHYSO AT C4,('I ( I- Tit' h1rTIrI I rC------A IrTI iPCI&bl I iTI 4&H A&IIH aTIil CI,t  aT P' tj-d-,4-t  I-TI-tHt I*,(i-i Th1I-,l I&I-rT I-,1I-t( I_-------TItIJiTI*rTI ,t a TIra TI-t1 

S1TOXGO ---- C 
S1ARATH TICC&TI3<CTC?ACCTCTCCACC p  ALT &T&TEppI3FCTT&MAI36CPlC&T&C 

,S2 ARATH ------ 
S3ARATH kTI3CCCCTTPEAATCTCTTCCT 
S1GOSAR ALTI3CCPTiCCT&CCPTTCJC 
S2GOSAR T&CCTTICcACCTPTCACC. 
S1ZEAMA TI3CC&TI3CCTICET&TCE+ACC 
S1GLYCL ------ j sppr r m pr r-c r-pr Ti-iPTC+A, --  -------  

S1CRYJA ------  
S1HORVU ------  
S1LOTJA pIC&TICTTAACCTCPCCCC ------  —Irl::l::cTcIA1th1 ::I 

S1HELAN ATS(CITI3CCPEACTCTRTCRACC 

S1TRIAE 
,S2 TRIAE 
S1LYCES ATSC lcIpI3cTpAjcApTpl::pAc 
S1GLYMA APIEiCC&PI3CCTCAACCTCAI3CC.0 
S2GLYMA ATI3CC&PI3CCTCAACCTCPCCCC 
S3GLYMA TI3CI311I3CCTCAACCTCG.ACCC. 
S1MESCR ALT I3CC&T6CCPI3AACAJTTCC&CC ------ AAC&TCAEfrCCTC&lC&&: 

,S2 MESCR &TI3C&TCCT&AAl:&TTTCC&CC .. CC.P&&EH3CT------ 

S1MEDTR TI3cl::I3pIKcpcAcCTCTl::l::ACC, 
S1PINTA API3(:lcTpcCcTT&T  ALT TV" kAC 
S1SOLTU TAT&PCP&PT&P&PT&AAEtI3ErPCT&TTC 

S1SORBI ATI3CIRPI3CCTCAAC&TErPC&ACC TCGTGAPGTTGTCCTCAi&ITPCAGTGi 

S1ROBPS ATI3ci::TTG.:CpcccTTpcthcC TATI'PCPBATTCT&G'ItIEHPCT&PAC 

Si ORYSA ATI3CPTI3CCTCAACI3P&TCC1CC------  
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CHMIESCCO C1-+C TETTT- A --- AV'  J313 I 

DDT1HOMSA 
DDT1RATRA CCTT&TTE&T&(AATCC(kE&------ 
DDT1Mt3SMUCCCT&TTIT&ACAATCCAA&&------ 
MI Fl ORYLA ------ 

CTI TT CT T&T 1 TC CT CTC Il-f---' CCIlf MIFI 
MIF1BATRZ-\ TCkTI:-ACTTTTT'3Ccll'3AC------CCCTI3CllfCCCTCTIl&Ilf C 

ALC MIFlHOMSAT  CAT IlCT TCIflT CC i3CIl+&&------ 
MIF1MERUN ------ C 

ALG MIF1SUSSCTCT:CTTCII&TCCCIE+ ------  c :11C1TTh1T 13___1 

MIF1EOSTA TCAT&CCTTC, 13G3flTCC?'3C&A& -----CCCTSIC&CI 
MIF1GALCA TITETCCTTCeI3I33IlfCT:lfl&CIlEfAT------ 
MIF1CIOIN ,T&TC&TTTI3GTICT&&IlHlAilf------C 
MIF2CIOIN ----- C 

------C 
MIF1DANRE T&tT&AT&TTCI''iC------CC&T&TI3CIlfCTCTIliCTCI3C T 
MIFiPSEAIVI ------ CCCT&TEfC ,3CTCTIliCTCCCTTCAC3C 

------  
MIF2CAEEL I3TCTTTCTI33CC&CTCTIJ&T------C 
MIF3CAEEL IAATCCTIfTATfCTC4CrC-fACCCT&Alf -----  Cf,lAlCTTT, fCC&T&TTLATC&TC'liGC' 
MIF4CAEEL 
MIF1ERUMA ------ CCCTI CCT&TET&T&TTTTMTCEf&TTI3GTTIiTETTI GTCCTA---L-fTCAmATTCLCM-L-fC 

MIF1BRUPA --------------------------------------------------------------------------------------------------------------- 
MI El WUCEA -------- CCTIT TIrTITITIrTTTT-fT CI&TTl TTkTITTk cIrT P --- STC ' TTT I-,i TTIT TTI T TI&TIH Ti&TT ,I----T Xi 

MIF1ONCVU ------ C 
MIF1ASCSU T13CCTTCi3GlCUCCRT-----  CCATCK,Cr-Cl-iThTi:~"~ACC(,TC~C4AATCCikTTI:HjTCii--TC4TACiC7Aa-iC.AC-~C --- CGf, CAA - 
MIF1TRITR ------ C 
MIF1TRISP &TT&TC&TTTIl3CIAWTCMA -----C 
MIF1TRIPS ------ ------------------------------------------------------------------------------------- 

-iAAAI:ikTTI-+&CiTCiAATTT-,TA-:'LTC&C4.~'kATTkCii3,~'~ALTTCTTCCk --- CC MIF2TRISP TITTTICICT&?&T&&T------C 
MIF2ERUMA ------ C 
MIF2ONCVU ------ C 
MIF2HETCL 
MIF2MELJA ------ C 

MIF2STRST P 
MIF1HAECO ----- 
MIF1ANCCA? 
MIF2ANCCA ------ 1--+CC~'-CTTCTKTALTTI:H~-7TATCCTC4AAl--iTCi-4ALTTCiCAC4GCCTTC~GTGCC --- TO irkiik&CAATACC-CALTCCTALACii:i4,.TCTij 
MIF1AMBAII ------ C 
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MIFi T TI --- &A&AATCCTTTTTTCTVI-r - TI- TTtf m c\I 
LS1 EMETE TCCIC --- T'H3Q.cTI3Cl:-T ------  C 
Ls1PLAFA ------  
LS1 PLAYO ----- I 
LS1 PLABU ----- I 
LS1PHYSO :CTI3TCTTCCAI3CCTCI3ACEiC ------  C 

LS1TOXGO ------  
LS1 ARATH ------ C 
LS2ARATH ----- I --- C4TTkAl--ikCikC4AA,.'--.TCkTkCc-CiAL,C,~,C~TTC-H:~TTCTALTTCTTCLCLCTCALTTTTTCTkTT,",ALT,:'CC --- kCTCG 
LS3ARATH CCTTI3TTTCCIHI-?TCC&ECAA------ CCTCT&CAT AT L_:i&kUAAT T GAT AT,-  T ATT CiD:iiKikT T hi-XiN.", c"T &TAAAC &G&AAGCTT Mie" , :~&&ALC, GAT AT CT CiAC+ALT T C TCC AAATT AALF4.3 TCT -CAT ALGAL A,'-+.", --- T('T,7,Ci 
LS1GOSAR ------  
LS2GOSAR ----- 
LS1ZEAMA ------  
LS1 GLYCL ----- c 
LS1CRYJA CATTTC&TPTCH:CTIIiC&C ------  C 
LS1HORVtJ ----- c 
LS1LOTJA ----- c 
LS1HELAN aTTT T T T T 'AiTI-±rT&&CI I----------I-( &I-r TI TTTT .&T i - TTT Tr-T---rT TG,-'" I-TTI- TT1rh& CTTIrT ('I-rT'( TIr--- 
LS1 TRIAE ----- 
LS2TRIAE ------ ------------------------------------------- --- ----------: 
LS1LYCES ----- CCCfTI 
LS1GLYMA ----- ccCi<: 

S2GLYMA ------ C ''CTTIT:TII:--TCc4 
S3GLYMA ------ C 

LS1MESCR CTI:TTTEI:ACT&&CE ------ C 
LS2MESCR C:TI:TTTICI:CTI:-&C& ------ C 

S1MEDTR :CkTTCTTTTC-GTIkCTI3AI3C-C ------  I 
S1PINTA -----  
S1SOLTU ------ C 
S1SORBI ----- C 
S1ROBPS CCTI:TTTI:GTICTII3C& ------  
S1ORYSA CTTITTTI:ICCC:-& ------ C 



315 325 335 345 355 365 375 335 35 405 415 425 435 445 455 (0 
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HMI ESCCO r TI-TI-dIyTTIT ITTTI-  -TTI r--eI-c TI- T i-J l- TI-TTTTr r I-rTI-r( Ci TTiTTThi 9 CtJ 

DT1HOMSA - 

DT1RATRA ------  
DT1MtJSNU ------ 
IF1ORYLA ------  
IF1MUSMU 13TCTC TCAAOTTTC&kCkTC4AC&C T&CCC ------  I 
IFiRATRA ALT I3(:CAc ------  
IFlIlOMSA ------ I 
IF1MERtJN ------ I 
IF1sussC 13ATCT&C &TCAALCTALCTAL ------ &TI3G:4C TI?AAc --- I3:-rC? 
IFiBOSTA ------ I 
IFiGALGA ------ I 
IFiClOIN ------ C:ACTTTCCCC TCckI3: 
IF2CIOIN TTTTT'T I-TTTC ITr Tk ------ Tld-,H TT I---IHT& &I-lrTT 

IFi XENLA kGRC T AC ALT &A&TT ALT T AT CACC T T AALT &C T------ 
IFiDANRE ------ &TI&C 
IFiPSEAN -------  
IF1CAEEL &TCCT TTTTTCITCL4K TI3CCCI3GACTT------ TT&CRTTTCTT3CkTTCCTCCTT 
IF2CAEEL ----- I 
IF3CAEEL CCTCTTCI:ATTC&TCTCI3GCBCCSCCI3AC ------  
IF4cAEEL A&TSO AithAAI:4T------T 
IF1BRUMA ------ TIH3 T 
IFi BRtJPA ------  
IF1WUCBA ------  
IF1ONCVU TBC ------ 
IFi ASCSU ------ 
IF1TRITR ------ I 
IF1TRISP ------  
IFiTRIPS ------ I 
IF2TRI SP ------ I 
IF2BRUMA ------ I 
IF2 ONCVU ------ 
IF2HETGL ------  
IF2 MELJA I? 'TTI:-OTIHEfT---------CCT&kT&C gAaTW -----T 
IF2sTRST ----- c 
IF1HAECO ------ 
IFi ANCCA ------ I 
IF2ANCCA ------ I 
IFlANBAM ------ 
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IFi GIAIN --rTI-T& eT J-''TT &r I&IIAI-, - T&T------TH--4-' TTTP --- I-d ITTT C\J 
3T------ Si EMETE ------ ATCI&T 

S1PLAFA 
S1PLAYO ----- 
S1PLABU ----- 
S1PHYSO ------  
S1TOXGO ------  
S1ARATI-I TTCTTCCTcA&TTTPTIEkCCCAAE3ATCCTTC ------ 7 
S2ARATH ------ C 
S3ARATH CTTTTkPT:ATTCT&CEPTCTCC&C&ACCPTTC ------ 7 
S1GOSAR ITTCTTCCTCATTCTTECAC:AI3C4GTTCCAA: ------7 
S2GOSAR cIa:-&TcTTccTckAATTcTTE4ccA93EiTT0C ------ 
,S1 ZEAMA ------ T 
S1GLYCL ------ T 
S1CRYJA ------  
S1HORVTJ ------ 7 
,S1 LOTJA ------ T 
S1HELAM ------  
S1TRIAE CTTCTCCTCA&TTCCkTETTCMAI3CI3CTCHEkC------T 
S2TRIAE ------ 7 
S1LYCES ------ 7 
S1GLYMA ------ T 
S2GLYMA ------ 7 
S3GLYMA ------ T 
S1MEScR TTCTTCCTcATTCTkC&&CkCCkAIHSGTTC&TTT ------  T 
S2MESCR TTCTTCCTTATTCTkACCCASCiGCCC&TCT ------ 7 
Si MEDTR ------ 7 
,S1 PINTA ------ T 
S1SOLTU ------ 7 
S1SORBI cTTcTAccTCAfTTCTkTIC.TC3CCTCEH:-C ------ 7 
S1ROBPS ------ 7 
s 1ThRYSA ------ 7 

Figure 5.4.1 The MIIF cDNA multiple sequence alignment. The bases in the alignment were colored using the default settings in Seqpup vO.6 
(D.G. Gilbert ,Biology Dept., Indiana University). A: red, T: orange, G: green, C: blue. The sequences are named following table 5. 1.1 
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