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ABSTRACT 

Pinus taeda L., loblolly pine, is an important exotic plantation species in 
Zimbabwe, and other southern African countries. A major constraint to the efficient 
breeding of this species in these countries is the lack of genetic parameter estimates to 
assist informed decisions on the most appropriate breeding strategy and, more generally, 
to monitor genetic progress. This thesis addresses this deficiency using data from, 
primarily, the Zimbabwean breeding populations of P. taeda. The study focuses on 
univariate and bivariate estimation of genetic parameters, prediction of optimum 
selection age, and evaluation of the magnitude and importance of genotype x 
environment interaction (GE). 

Genetic parameters for height and stem straightness were estimated using 
innovative methods used by animal breeders (individual models), and have recently been 
used by tree breeders. The data originated from four genetic tests representing 140 full- 
sib families, assessed at four ages: 1.5,9.5,13.5 and 22.5 years. Results suggest height 
is under moderate to high genetic control, which peaked at 9.5 years, while straightness 
is under weak genetic control at very young ages, which increases to moderate levels 
with age. Dominance variance was less than additive variance for both traits, except for 
straightness at very young ages. Analysing data pooled across sites resulted in biased 
estimates of heritability at each site for both traits. Age-age genetic correlations for 
height were high; those for straightness were moderate, apart from correlations 
involving straightness at very young ages, which were negative. Generally, the genetic 
correlations between height and straightness were low and positive, which suggests that 
selecting on height alone will improve straightness. 

Annual genetic gain and optimum selection age for height were predicted using 
the estimated genetic parameters for P. taeda. Results suggest that choice of model for 
predicting trends in age-age genetic correlations is critical for accurate estimation of gain 
and of optimum selection age. Models based on phenotypic correlations underestimated 
the annual genetic gain, and needlessly delayed selection. Annual genetic gain was 
maximised by selection at 10 years; if the species could be induced to flower at 3 years, 
the annual gain could be maximised by selection at 3 years and increased by 100%, 
indicating the promise of artificially inducing flowering with P. taeda in Zimbabwe. 

The implications of GE for breeding strategy was evaluated using genetic 
correlations, parental rank changes and efficiencies of selection. Results show that GE 
for both traits was brought about primarily by a change in rankings of genotypes among 
the locations. Since GE in height was unpredictable, it would be difficult to use GE to 
advantage in the multiple population breeding strategy for P. taeda in Zimbabwe. 
Evaluating the effect of early selection on one site for predicting mature age 
perfortnance at another, as suggested in this study, appears to be an efficient approach 
for GE evaluation in forest trees, since early selection within sites is a common practice 
in tree breeding programmes. A Bayesian approach, Gibbs sampling, was used to 
estimate efficiencies of selection across sites and their variances, and the probability that 
the efficiency of selection lies between certain values. This is the first use of Gibbs 

sampling for making decisions about optimal selection environment, and results show 
that it is an efficient approach. Using this approach progeny tests for P. taeda in 
Zimbabwe should be located at site C. Since one should expect GE within a region, it 
is necessary to consider dispersing at least three progeny tests within the site C region, 
in order to get results appropriate to commercial progress. 
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Chapter I 

INTRODUCTION 

1.1 General 

The contribution of conifers to world wood production is considerable. In 

addition to extensive natural stands, especially in the northern hemisphere, 44% of the 

estimated total of 8.3 million ha of industrial plantations are conifers (1980 figures; FAO 

1992). The high growth rates achieved by conifers in exotic environments have resulted 
in large areas being established for wood production. In Zimbabwe, for example, conifer 

species comprise 80% of the total plantation area. Pinus taeda Linnaeus is one of the 

major commercial conifer species in the USA, where it occurs naturally, comprising 

more than 50% of the standing volume of pine (Baker and Langdon 1990). It is also 
important as an exotic in Zimbabwe and South Africa, comprising 15% of the plantation 

area in the former. The success of P. taeda as an exotic is due to its fast growth rate and 

wide adaptability, although it is limited on some sites by problems such as susceptibility 

to drought and damage from pests such as Pinues pine, Cinara cronartii and baboons. 

With the increasing demand for wood products globally (Sharma et al. 1992). ) 
maximising wood production on available land resources is of major importance. The 

high growth rate of P. taeda, the variation evident in natural and exotic stands, and the 

need to increase production per unit area led to the establishment of breeding 

programmes in the USA, Zimbabwe and South Africa. The major constraint to the 

efficient breeding of this species in Zimbabwe and South Africa is the lack of genetic 

parameter information to guide decisions on the most appropriate breeding strategy and, 

more generally, to monitor genetic progress. This thesis addresses this deficiency using 

data from, primarily, the Zimbabwean breeding populations of P. taeda. 
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1.2 Taxonomy of P. taeda 

The taxonomy of P. taeda can be summarized as: 
Family: Pinaceae 

Genus: Pinus 

Sub-section: Australes 

Botanic name: Pinus taeda Linnaeus 

Most used common name: Loblolly pine 

Synonyms: Pinus lutea, Pinus heterophyll 

The species is placed in sub-section Australes with P. palustris, P. echinata, P. 

glabra, P. rigida, P. serotina, P. pungens, P. elliottii, P. caribaea, P. occidentalis and 
P. cubensis (Vidakovic 1991). Eight of these species occur in southern parts of the USA 

and three in Central America. The sub-section is characterised by species with mostly 
2-3 needle fascicles and spring shoots with mostly two or more branch whorls. Cones 

are symmetrical and open when ripe (Vidakovic 199 1). 

The species hybridizes naturally with P. palustris to produce a hybrid known as 

P. sondereggeri H. H. Chapman (Dorman 1976, Fowells 1965, Mirov 1967), and with 

P. serotina, P. echinata, P. rigida and P. elliottii (Dorman 1976). 

1.3 Natural distribution of P. taeda 

P. taeda has a wide natural distribution throughout the south and south eastern 

United States of America. It extends through fourteen states from Delaware to Texas, 

but does not grow naturally in the lower gulf coastal plain in Florida and in the 

Mississippi river flood plain (Figure 1.1). Isolated populations are found in North 

Carolina, Arkansas, Louisiana and Texas. This range corresponds to between 28N to 

3 9' 2 I'N longitude and 75'W to 970 3 O'W latitude (Critchfield and Little 1966, Fowel Is 

1965). Its altitudinal distribution ranges from near sea level to 250 m, and rarely to 

600m (Vidakovic 1991). 
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The climate over most of its range is humid warm temperate, with long hot 

summers and mild winters. Winter temperatures vary within the range 4-16T, the 

average summer temperature is 27'C, and average annual rainfall varies from 1020 mm 
in the west to 1520 mrn in the east with an average daily rainfall in the dry season of 13 

mm (Fowells 1965). Distribution of the species is limited by low temperature in the 

north and low rainfall in the west ( Fowells 1965, Wahlenberg 1960). 

P. taeda naturally grows in a variety of soils but is found mostly in poorly 

drained swamps. It is an aggressive species which can take over sites previous occupied 

by other species (Dalimore and Jackson 1954). Upon widespread agricultural failures 

of colonial settlements of the 19th century, P. taeda found ecological release into 

abandoned cotton fields and most of the present natural stands are on such fields (Owino 

1977a, Wahelberg 1960). 

taeda is associated with P. palustris, P. echinata, P. virginiana, Quercus 

falcata, Q. alba, Q. stellata, Q. mariland, Sassaftas albidum and Diospyros virginiana 

on well drained soils, and with P. serotina, P. glabra, Nyssa sylvatica, Acer rubrum, Q. 

nigra, Q. phellos and Q. falcata varpagodifolia on poorly drained soils. In the southern 

part of the range, it is commonly found with P. efflottii and Q. laurifolia (Baker and 

Langdon 1990). 

1.4 Introduction of P. taeda into Zimbabwe 

Pinus taeda was introduced into South Africa from the USA about 1900 

(Poynton 1979), and into Zimbabwe from South Africa in 1929 (Barrett and Mullin 

1968). It was first planted at Stapleford, Zimbabwe, in 1930. Planting of P. taeda 

continued on a small scale until the 1950s, with seed originating from South Africa. The 

species was acknowledged for its fast growth but its poor stem form and brittle timber 

precluded extensive planting (Mullin et al. 1978). It was not until 1960 that the first seed 

for afforestation was imported from central Louisiana, USA (Mullin et al. 1978). 

The first provenance trials to test various seed sources were established in 1963 

and 1964 in the Eastern Highlands at altitudes of 950-1250 metres (Barrett and Mullin 

1968). These trials comprised eight provenances, from Virginia (3), Arkansas (1), 
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Florida (1), Georgia (1), Louisiana (1) and Texas (1). The most comprehensive 

provenance trials were established in 1965 and 1966 with twenty-two provenances, from 

Georgia (4), Mississippi (4), Alabama (3), North Carolina (3), Florida (2), Louisiana (2), 

Arkansas (1), South Carolina (1), Tennessee (1) and Virginia (1). Significant differences 

in growth rate among provenances became apparent, with Florida and Louisiana 

provenances superior. It became evident from the early trials that the best provenances 

of P. taeda planted on ideal sites out-performed the commonly grown commercial 

species, P. patula. This realisation, and the initiation of the tree improvement 

programme, resulted in greater interest in the species by the forest industry. 

In Zimbabwe, P. taeda is used mainly for structural timber, so breeding for wood 

quality is important in addition to breeding for growth. Due to a shortage of poplar 

timber, P. taeda is also being used for matchwood. Both growth and quality are 

important breeding goals for matchwood. 

1.5 Genetic improvement of P. taeda outside Zimbabwe 

P. taeda is a major commercial species in the USA and South Africa and has 

been planted commercially on a small scale or on experimental basis in Angola, Malawi, 

Mozambique, Swaziland, Zambia (Poynton 1979), China and Brazil (Haines 1994). 

Large-scale genetic improvement of P. taeda in the USA started in the 1950's 

(Williams et aL in press). Genetic progress has been achieved in all the main economic 

traits; extensive genetic studies have been undertaken, and genetic parameter estimates 

for economic traits are summarised in Chapter 2. However, the extrapolation of genetic 

parameters from populations in USA to those in Zimbabwe is inappropriate as they 

apply only to the defined population and test environment (Falconer 1989). This study 

will provide genetic parameters appropriate to the populations in Zimbabwe. 

The tree breeding programme in South Africa was started in 1959 (Poynton 

1979): more than 100 plus trees have been selected; progeny tests have been established 

but results have not been reported; seed orchards have been established, which meet 

local seed demand. 
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1.6 Genetic improvement of A taeda in Zimbabwe 

The improvement programme of P. taeda in Zimbabwe began in 1958 vhen the 

first (plus) trees were selected from local stands (Barrett and Mullin 1968) and cloned 
into seed orchards. The first seed orchard was established at John Meikle research 

station (1200m asl) and started producing seed for local planting in 1968 (Mullin et al. 
1978). The first progeny tests were established in 1966. Seed of 31 half-sib families was 

obtained from USA for breeding purposes in 1966. The programme was aimed primarily 

at improving stem form, which was very poor. Slow progress in breeding P. taeda was 

due to its poor form in all existing stands, making selection of plus trees difficult. The 

most comprehensive series of progeny tests in Zimbabwe was established in 1972 on 

four sites, to test the genetic worth of second generation selections and to provide 

material for the next generation of breeding. Of the 231 plus trees selected by 1996,198 

were represented in the breeding programme. In 1996 there were 8 seed orchards of P. 

taeda in Zimbabwe. 

Analysis and interpretation of data from the second generation trials are still 

outstanding. Also outstanding is the analysis of data from another major series of 

progeny tests which were established on five sites in 1976, in Zimbabwe (2), USA (2), 

and the Republic of South Africa (1). The objective of the later trials was to broaden site 

coverage for estimating genotype x environment interactions (GE). 

Up to 1981, a classical breeding strategy was used in Zimbabwe. Under this 

strategy, progeny tests were conducted to estimate genetic and environmental 

parameters, including combining ability for thinning clonal seed orchards, and to 

provide material for the next generation of selection. It was realised that the programme 

was becoming too cumbersome and complex to handle, due the large number of species 

in the breeding programme (9) and the large number of plus trees involved which were 

more than 1000 (Bames 1989). It was believed that a breeding programme which 

addressed the above problems, and also allowed the utilization of GE and minimised the 

risk of inbreeding, would be more efficient. 

In 1981 ,a multiple population breeding strategy (MPBS) (Namkoong Ct al. 

1980) was adopted (Bames 198 1). Under this strategy, a number of populations are kept 
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separate in order to create genetic differences between the populations through drift and 

sampling effects. Also, by imposing different selection criteria on the sub-populations, 
divergence is increased or maintained (Burdon and Namkoong 1983). Variation could 
be restored at any time by crossing the different populations. Central to implementation 

of the strategy is the breeding seed orchard (BSO), which combines seed production, 

progeny testing and forward selection (Barnes 1986). In Zimbabwean BSOs, trees are 

planted at close spacing (1.0 x 1.0m) in order to increase the selection intensity. and 
thinned progressively by 50% from two years of age, until at six years of age only one 
tree remains per plot. From this stage, the trial is managed as a seed orchard. Generally, 

the multiple population strategy simplifies long term pedigree control, as control can 
be at the sub-population level instead of the individual tree level, and facilitates the use 

of GE. The first P. taeda BSO was established in 1986 and in 1996 there are II BSOs 

of the species. 
The Zimbabwean breeding programme was reviewed in 1994 (Arnold and White 

1994). The review highlighted some problems associated with the MPBS, which 

included the high costs of maintaining a large number of sub-populations; because each 

sub-population was planted at only one site, it was impossible to assess which families 

performed the best on different sites and because the populations did not have any 

families in common,, it was difficult to rank families across sub-populations to find the 

very best families to use for commercial seed production. The review recommended 

modifying the MPBS to a composite breeding seedling orchard (CBSO) strategy. In the 

CBSO, the breeding population for each species is not sub-divided into sub-populations. 

The entire population is managed as one large population and is replicated. The CBSO 

may reduce costs because the total area under the tests could be reduced and additional 

genetic gain may be realised because the best families will be allowed to interbreed in 

each generation. The very best selections may be crossed to increase genetic gain and 

cloned into a seed orchard to increase gains in plantations. 
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1.7 Objectives of the study 

The work reported here draws from progeny tests established under the classical 
breeding strategy. It is focussed on developing infon-nation which would be of benefit 

under any breeding strategy. 
Improvement of timber yield and timber quality are important breeding 

objectives for P. taeda in Zimbabwe. Therefore, a knowledge of genetic parameters of 

growth and quality traits are essential to estimate accurate breeding values, to combine 

different traits in selection, to appraise the rate and magnitude of improvement by 

selection, and to determine the optimum age for selection. Generally, genetic parameters 

are important for determining the consequences of a breeding strategy, and hence 

facilitating decisions about the most effective breeding strategy (Allard 1960). Traits 

which are of most relevance to these objectives for the case of P. taeda in Zimbabwe are 

height, diameter, volume, stem straightness and wood density. This study will focus on 

height and stem straightness. 

The specific objectives of this thesis are to: 

a) estimate the following genetic parameters for height and straightness: 

1. Additive genetic variance; 

2. Non-additive genetic variance; 

3. Heritability; 

4. Age-age genetic and phenotypic correlations; 

5. Trait-trait genetic and phenotypic correlations; 

b) estimate genetic gain and optimum selection age for height; 

c) determine the magnitude of genotype x environment interactions; 

d) based on these results, assess the implications for breeding P. taeda in Zimbabwe. 

The genetic parameters will be estimated using innovative methods used by animal 

breeders. These methods include those currently not used, and those recently used, by 

tree breeders. The application of these methods will be developed to address specific 

issues pertaining to, but not limited to, tree breeding. 
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Chapter 2 

LITERATURE REVIEW: 

GENETIC PARAMETERS OF P. TAEDA 

2.1 Additive and non-additive genetic variance 

Genetic variance can be partitioned into additive and non-additive components. 

The presence of the additive genetic variance contributes to general combining ability 

of selected parents (Falconer 1989). Non-additive genetic variance can be partitioned 
into dominance and epistasis variance according to whether the interactions between 

genes are at the same locus (dominance) or at different loci (epistasis). The presence of 

non-additive genetic variance contributes to specific combining ability of selected 

parents (Falconer 1989). Performance of offspring of parents with a trait with high non- 

additive genetic variance is more difficult to predict and depends on the specific matings 

conducted. 

Response of a single trait to selection upon an index depends on the selection 

intensity and on the additive genetic contribution to phenotypic variance in the trait. 

When the selection criteria involves measurements on more than one trait, which is 

often the case, the change in any one trait will also depend on the strength of the 

additive genetic and phenotypic covariances as well as the variances of the traits under 

selection. 

There have been few reports of the relative magnitude of additive and non- 

additive genetic variance for P. taeda, or of their changes over time. Additive variance 

for height or volume appears to increase with age (Balocchi et al. 1993, Foster 1986, 

Franklin 1979, Lambeth et al. 1983), with that for height peaking at 20 years (Franklin 

1979). Non-additive effects appear strongest at early ages: Balocchi et al. (1993) 

reported dominance variance for height to be 4.4 times greater than additive variance at 
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age 6 years; the non-additive variance continued to exceed the additive variance up to 
age 12, after which the latter predominated. This result is consistent with Foster and 
Bridgwater's (1986) finding that the non-additive variance component was at its greatest 
at 5 years (VdNa=2.5 for height, VdNa=1.6 for diameter, VdNa=7.8 for volume). 
These results are consistent with reports for other Pinus species (Burdon et al. 1992a., 
Cotterill et al. 1987, Dean 1990). 

2.2 Heritability 

Heritability is an expression of the relative contribution of genetic variation to 
the total phenotype variation. The parameter narrow sense heritability is used in tree 
breeding programmes relying on recurrent selection and sexual recombination in seed 
orchards where additive gene effects are most important; the parameter broad sense 
heritability, which includes all genetic variation, is appropriate for vegetatively 

propagated material (van Buijtenen 1992). 

Heritability estimates for growth, stem straightness and wood properties of P. 

taeda have been estimated mainly from experiments in the USA, using correlations 
between half-sibs. Tables 2.1-2.5 summarise previous estimates of individual tree and 
family heritabilities. Height was more frequently measured than diameter or volume, 

which may be attributed to the fact that height is easy to measure, is correlated with 

volume, and is less affected by thinning. Heritability estimates in the forestry literature 

were sometimes expressed on a family mean basis; these estimates need to be converted 

to an individual tree basis following the formula by Falconer (1989) for comparison 

purposes. 

The individual tree heritability estimates reported for height ranged from 0.10 

to 0.69 and those on a family basis ranged from 0.58 to 0.79 (Table 2.1). The range of 

individual tree heritability estimates reported for height was higher than that reported 

for forest tree species (0.1 -0.40) by Cornelius (1994). Although estimates reported by 

Li et al. (199 1) and Williams and Megraw (1994) were from the same test, they varied, 

which the latter authors attributed to using less families in their analyses. The results at 

ages I and 2 show that heritability estimates derived from better management practices 
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or high site qualities (ie. fast growth rates) are low. Results at these ages also indicate 

that heritability estimates from short-term tests where planting is at very close spacing 
(eg. 0.6 x 0.6m), are higher than those from conventional tests. Short-term tests 

accelerate stand development and hence lead to different changes in variances with age 

compared to conventional tests (Franklin 1989). Therefore, age may not be a good guide 

when comparing estimates from conventional and short-term tests. Also, height is 

unlikely to be a better guide, since the magnitude of the heritability estimates is likely 

to be affected by the phase of development (Franklin 1979). Heritability estimates for 

height were, in general, higher than those for diameter, and consistent with findings of 
Cornelius (1994) for forest tree species. The individual tree heritability estimates 

reported for diameter were low, ranging from 0 to 0.10, while those on family mean 
basis ranged from 0 to 0.60 (Table 2.2). The heritability estimates reported for volume 

on an individual tree basis were moderate, ranging from 0.15 to 0.35, and those on a 

family mean basis were high, ranging from 0.58 to 0.75, with 75% of these being greater 

than 0.70 (Table 2.3). 

Stem straightness is an important trait which influences the quality of poles, 

sawlog grade and wood recovery (Barnes and Gibson 1986). There is a lack of 

heritability estimates reported for straightness, probably reflecting the fact that this trait 

is relatively difficult and costly to measure. The most used methods are based on a 

relative scale where the score is relative to the trees in a single test site rather than 

relative to all trees in the genetic tests (e. g. Williams and Lambeth 1989), and on an 

absolute scale (e. g. Barrett and Mullin 1968). Heritability estimates originating from the 

relative scale are, generally, higher than those from the absolute scale (Cotterill et al. 

1987, Raymond and Cotterill 1990). Heritability estimates for straightness of P. taeda 

reported in the literature were all from tests assessed with a relative scale. Individual tree 

heritability estimates ranged from 0.13 to 0.55, while those on a family basis ranged 

from 0.71 to 0.80 (Table 2.4). In forest trees, the heritability estimates of growth traits 

are generally lower than those for stem straightness (Cornelius 1994). This is not 

apparent from literature on P. taeda, at least in part because of the small number of 

estimates for stem straightness. 



Table 2.1. A summary of narrow sense heritability estimates (h 2) reported for height in P. taeda. 

Age (yr) No. of families Height (m) h'(s. e. ) Source 

Individual tree heritability estimates 
1 183 0.05(0.04) Balocchi et al. (1993) 
1 11 0.63 0.09 Foster (1986) 
1 25 0.37 0.12(0.17) *Li et al. (199 1) 
1 25 0.32 0.32(0.12) it 
1 25 0.35 0.10(0.07) it 
2 183 - 0.05(0.04) Balocchi et al. (1993) 
2 11 1.65 0.15 Foster (1986) 
2 25 1.46 0.38(0.14) *Li etal. (1991) 
2 25 0.83 0.55(0.18) it 
2 25 1.15 0.35(0.13) it 
2 16 1.46 0.42 *Williams and Megraw (1994) 
2 16 0.83 0.69 it 
3 183 - 0.04(0.05) Balocchi et al. (1993) 
3 16 3.03 0.33 *Williams and Megraw (1994) 
3 16 1.91 0.65 it 
3 25 3.03 0.39(0.13) *Li et al. (199 1) 
3 25 1.91 0.59(0.19) 11 
3 25 2.46 0.31 (0.13) tf 
7 11 9.56 0.09 Foster (1986) 
8 183 - 0.07(0.06) Balocchi et al. (1993) 
10 11 13.31 0.28 Foster (1986) 
12 16 12.80 0.25 *Williams and Megraw (1994) 
13 183 - 0.19(0.09) Balocchi et al. (1993) 
15 11 18.19 0.41 Foster ( 19 8 6) 
16 183 - 0.25(0.10) Balocchi et al. (1993) 
25 183 - 0.18(0.07) ff 

Family mean heritability estimates 
I II - 0.58 Foster (1986) 
15 11 - 0.79 it 

*The heritability estimates by Li et al. (1992) and Williams and Megraw (1994) were from four different 
treatments at a single location. This was a short-term test planted at close spacing. 

2 Table 2.2. A summary of narrow sense individual tree heritability estimates (hl ) and family mean 
heritability estimates (hF 2) reported for diameter in P. taeda (Foster 1986), for a population of II families. 

Age (years) h12 (s. e. ) hF'(s. e. ) 

3 0.10 0.54 
4 0.09 0.60 
5 0.05 0.41 
6 0.04 0.39 
7 0.02 0.23 
8 0.00 0.00 
10 0.03 0.21 
15 0.04 0.28 
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Table 2.3. A summary of narrow sense heritability estimates (hI) reported for volume in P. taeda. 

Age (years) No. of families h'(s. e. ) Source 

Individual tree heritability estimates 
II- 0.30 *Bridgewater and Stonecypher 
12 - 0.29 (1979) 
13 - 0.35 it 
14 - 0.17 it 
12 - 0.23 of 
13 - 0.17 to 
14 - 0.15 it 

Family mean heritability estimates 
3 11 0.58 Foster 1986) 
4 it 0.70 it 
5 if 0.73 
6 it 0.73 
7 it 0.69 
8 of 0.71 
10 0.75 
15 0.75 

*The estimates were from two sites; number of families was not stated 

Table 2.4. A summary of narrow sense heritability estimates (h 2) reported for straightness in P. taeda. 

h' (s. e. ) age (years) 

Individual tree heritability estimates 
0.13 8 
0.24 8 
0.55 11 
0.40 12 
0.29 13 
0.24 14 
0.35 11 
0.27 12 
0.26 13 
0.25 14 

Family mean heritability estimates 
0.80 8 
0.71 8 

Families Source 

53 Williams and Lambeth (1989) 
59 11 

- *Bridgwater and Stonecypher 
(1979) 

53 Williams and Lambeth (1989) 
59 to 

*The estimates were from two sites; number of families was not stated. 

The most widely measured trait related to wood properties is wood density or 

specific gravity. because it is well correlated with major strength properties of sawn 

timber and with pulp and paper properties (van Buijtenen 1969). Heritability estimates 
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for wood density in P. taeda were high (Table 2.5), ranging from 0.42 to 1.00 on an 
individual tree basis, and from 0.44 to 0.80 on a family basis. These estimates are within 
the range reported for forest trees (0.3-1.0) (Cornelius 1994), and were higher than those 
for growth traits. Loo et al. 's (1984) results were consistently high compared to results 
from other sources. Other than their results, a heritability estimate for wood density of 

around 0.5 on an individual tree basis might be considered typical for P. taeda. Loo et 

al. 's (1984) individual tree heritability estimate at 22 years of age was reported as greater 

than 1, and this result was reported as I (Table 2.5) since the additive genetic variance 

cannot be greater than the phenotypic variance. However, care should be taken in 

interpreting the constrained estimates. 

Table 2.5. A summary of narrow sense heritability estimates (h 2) reported for wood density in P. taeda. 

(s. e. ) age (years) Families Source 

Individual tree heritability estimates 
0.77(0.30) 2 15 Loo et al. (1984) 
0.55 2 16 'Wil I iams and Megraw (1994) 
0.51 2 16 if 
0.79 3 16 it 
0.53 3 16 it 
0.82(0.35) 4 15 Loo et al. ( 19 84) 

0.85(0.25) 6 15 it 
0.89(0.35) 8 15 
0.87(0.35) 10 15 
0.42 13 16 'Williams and Megraw (1994) 
1.00* (0.37) 22 15 Loo et al. ( 1984) 
0.44(0.14) 12 18 Jettetal. (1991) 

Family mean heritability estimates 
0.80(0.12) 2 15 Loo et al. (1984) 
0.74(0.14) 4 15 it 
0.76 (0.17) 6 15 if 
0.76(0.17) 8 15 it 
0.76(0.17) 10 15 it 
0.44(0.16) 20 15 Talbert et al. (1983) 
0.45(015) 20 15 it 
0.80(0.14) 22 15 Loo et al. (1984) 

*estimate > 1. 
'Results from short-tenn tests 
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2.3 Trait-trait genetic correlations 

The genetic correlation between two traits reflects the number of genes that 

influence both traits, and also the distribution of relative strength of effects of the genes 
(Falconer 1989). A high positive genetic correlation between two traits means that if 

selection made on one trait, it will lead to change in the other. Also, a highly heritable 

trait that is strongly correlated with a poorly heritable but economically important trait 

can be used as a criterion for indirect selection to maximise gain. For this reason, the 

estimation of trait-trait genetic correlations can be of considerable importance in 

breeding programmes. 
The literature on P. taeda reveals that growth traits (height, diameter and 

volume) are positively correlated, with the genetic correlations ranging from 0.25 to 0.70 

(Foster 1986); growth and wood density can either be negatively correlated, with the 

genetic correlations ranging from -0.39 to -0.46 (Loo et al. 1984), or positively 

correlated (0.26 and 0.50) (Williams and Megraw 1994). Both positive and negative 

genetic correlations between growth traits and wood density are common in forest tree 

species (Zobel and Talbert 1984). The genetic correlations between growth traits and 

wood density depend on the stage of development: as trees get older, the negative 

correlations diminish (Zobel et al. 1969). Both negative genetic correlations between 

density and diameter or volume (Burdon and Low 1992, Dean 1990, Magnussen and 

Keith 1990, Vargas-Hernandez and Adams 1991), and positive genetic correlations 

between density and height, have been reported in other conifers (Burdon and Low 

1992, Dean 1990, Magnussen and Keith 1990). 
1 

2.4 Age-age correlations 

The rotation age for many forest species is long. Breeders cannot afford to wait 

until maturity (e. g. 25 years for a number of tropical pines) to select the best 

trees/families. Therefore, the juvenile-mature (age-age) correlation for quantitative traits 

plays an important role as an indicator of opportunities for early selection (Burdon 1989, 

Lambeth 1980). Early selection results in higher rate of genetic improvement due to 
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shortening of the breeding cycle (Burdon 1989, Eldridge et al. 1993, Lambeth 1980). 

However, the breeding cycle can only be shortened, in most cases, at the expense of 

gain per generation, since performance at young ages is not precisely related to that at 

maturity (Lambeth 1980). 

Tables 2.6-2.9 summarize age-age correlations reported for growth traits and 

wood density of P. taeda. Genetic correlations reported for height at young ages (less 

than 4 years) tended to be lower (range, 0.07-0.33) than those between later ages (range, 

0.61 - 1.00) (Table 2.6). The result is consistent with those reported for other pine species 

(Lambeth 1980), suggesting that traits at very young ages may not be good indicators 

of later performance. This may be attributed to the different environments at different 

ages, perhaps to differential expressions of the trait over time, and possibly to matemal 

effects which later diminish. It might be expected that competition in the short-term tests 

might inflate the genetic correlations, since changes in family ranks, which otherwise 

might have been present, may be suppressed. However, this was not evident from 

literature on P. taeda. In some cases (e. g. McKeand 1988), family mean correlations 

were used as approximations of genetic correlations. These genetic correlations are 

likely to be biased since error covariance and error variances are unlikely to be zero. 

There were no estimates of age-age correlations reported for diameter at young ages, but 

the same trend as that for height could be expected. The age-age correlations reported 

for diameter ranged from 0.82 to 0.99 (Table 2.7). Genetic correlations reported for 

volume were all high, ranging from 0.76 to 0.98, and correlations for young ages were 

also not available for this trait (Table 2.8). The age-age correlations reported for wood 

density were high for all ages (range, 0.76-1.00) (Table 2.9), suggesting that selection 

for wood density could be made as early as 2 years after planting. Generally, the 

correlations for wood density were higher than those for height and diameter. 

Opportunity also exists for selections to be carried out at the nursery or green 

house stage, further reducing the generation interval. For example, Robinson et al. 

( 19 84) found the genetic correlations between nursery height of P. taeda and 5 -year 

measurements of each of height, diameter and volume were 0.63 in all cases. 
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Table 2.6. A summary of age-age genetic correlations (rd reported for height in P. taeda. 

Younger Older Height (m) rg Source 
age (yrs) age (years) younger age older age 

2 15 1.7 18.2 0.25 Foster ( 1986) 
2 12 1.5 12.8 0.09 'Williams and Megraw (1994) 
2 12 0.8 12.8 0.22 it 
3 12 3.0 12.8 0.07 if 
3 12 1.9 12.8 0.33 it 
3 25 - - 0.17 Franklin (1979) 
4 15 4.5 18.2 0.66 Foster ( 1986) 
4 12 - - 0.74 McKeand (1988) 
4 16 0.61 if 
5 25 - - 0.34 Franklin (1979) 
5 20 4.7 17.6 1.00* Lambeth et al. (1983) 
5 20 4.2 17.6 1.06 11 
5 20 4.0 16.4 0.89 
5 20 4.7 17.7 0.68 
5 20 4.3 17.6 0.79 
6 15 7.7 18.2 0.71 Foster (1986) 
7 25 - - 0.40 Franklin (1979) 
8 12 6.8 0.89 McKeand (1988) 
8 16 6.8 - 0.83 if 
8 15 11.2 18.2 0.85 Foster ( 19 8 6) 

10 15 13.3 18.2 0.96 11 
10 25 - - 0.47 Franklin (1979) 
10 20 - 17.6 0.98 Lambeth et al. (1983) 
10 20 - 17.6 0.84 11 
10 20 - 16.4 1.00* it 
10 20 - 17.7 0.99 if 
10 20 - 17.6 0.99 it 
12 16 - - 0.92 McKeand (1988) 

15 20 - 17.6 1.00* Lambeth et al. (1983) 

15 20 - 17.6 0.94 
15 20 - 16.4 0.97 
15 20 - 17.7 0.94 

15 20 - 17.6 0.96 

15 25 - - 0.88 Franklin (1979) 

20 25 - 0.87 11 

*estimates >I- 
'Results from short-term tests. 
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Table 2.7. A summary of age-age genetic correlations (rd reported for diameter in P. taeda. 

Juvenile 
age (years) 

Mature 
age (years) 

rg Source 

4.2 9.3 0.87 Hagedom (1994) 
4.2 12.5 0.82 
4.2 15 0.78 
9.3 12.5 0.96 
9.3 15 0.96 
12.5 15 0.99 

Table 2.8. A summary of age-age genetic correlations (rd reported for volume in P. taeda. 

Juvenile 
age (years) 

Mature 
age (years) 

r. Source 

4.2 9.3 0.94 Hagedom (1994) 
4.2 12.5 0.83 it 
4.2 15 0.76 if 
9.3 12.5 0.94 it 
9.3 15 0.94 it 
10 25 0.79 Franklin (1979) 
12.5 15 0.98 11 
15 25 0.93 of 
20 25 0.96 it 

Table 2.9. A summary of age-age genetic correlations (rg) reported for wood density in P. taeda. 

Juvenile Mature r. Source 
age (years) age (years) 

2 25 0.96 Loo et al. (1984) 
2 12 0.90 Williams and Megraw (1994) 
2 12 0.83 if 
3 12 0.83 it 
3 12 0.76 it 
4 25 0.97 Loo et al. ( 19 84) 
6 25 1.00 if 
7 20 0.94 Talbert et al. (1983) 
7 20 0.82 it 
8 25 1.00 Loo et al. (1984) 
10 25 1.00 it 
10 20 0.77 Talbert et al. ( 19 8 3) 
10 20 0.68 it 
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2.5 Genotype x environment interaction 

When genotype x environment interaction (GE) exists, genotypes do not respond 
in a similar manner in all environments. GE may come about in two ways. The relative 

performance of genotypes may vary across environments but the rank order of genotypes 
is unchanged, or both the relative performance and rank order of genotypes may vary 
(Falconer 1989). A significant GE effect where the rank order changes across 

environments will influence the breeding strategy since no single genotype may be 

superior in all environments. In such circumstances, the breeder may select for different 

environments. However, selecting for different environments may limit the number of 

available genotypes per site and may lead to increased rates of inbreeding. On the other 
hand, this strategy offers highest gains in the short/medium term (Matheson 1978). 

Selection for different environments can be justified only when the GE is so large that 

potential gains would be reduced to a degree regarded as practically serious if alternative 

breeding populations structure were adopted. A number of methods have been suggested 

to evaluate the practical importance of GE by predicting the effect of interactions on 

genetic gain (Matheson and Raymond 1984b, Pederick 1990). 

A single trait measured in two environments can be considered as analogous to 

two traits in a single envirom-nent. Hence the genetic correlation across environments 

for a trait measured in two environments provides a measure of the magnitude of GE. 

The additive genetic correlation between two environments is given by (Falconer 1989) 

rA = 

Cov 
A(X'Y) (2.1) 

ýA, ýAy 

where rA= additive genetic correlation, CovA (xy) = additive genetic covariance of the 

trait in environment x, and environment y, CJA. = additive genetic standard deviation of 

the trait in environment x andCjAy= additive genetic standard deviation of the trait in 

environment y. A genetic correlation of I indicates that the underlying genetic structure 

of the trait is similar across environments. Low genetic correlations indicate the presence 
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of GE, suggesting that phenotypes may be encoded by largely different suite of genes 
in alternative environments. 

Considering the fact that forest sites where P. taeda is planted are heterogenous 
due altitude, rainfall and soils, it is surprising to find only a few studies of genotype x 
environment interaction in P. taeda. Owino (I 977b) found no genotype x environment 
interaction for height in P. taeda families in the USA, but that all genotypes responded 
well to higher site quality. Owino and Zobel (1977) also found no genotype x 
environment interaction associated with heterosis across diverse sites. However, 

considerable GE was reported by Douglas et al. (1993) in volume and by Jett et al. 
(1990) in wood density across diverse field sites. Of the above, only Jett et al. (1990) 

carried out further analysis to determine if the interaction was of practical significance 
to justify subdivision of the breeding population; they found that it was not. These 

results are consistent with those reported for P. radiata (Carson 1991, Johnson 1992) 

and for the P. elliottii population in Zimbabwe (Pswarayi et al. in press), but differ from 

those for the P. elliottii populations in the USA where GE was found to be of practical 

significance (Hodge and White 1992). 

2.6 Summary and conclusion 

As the genetic parameters were estimated using relatively few families in all 

cases, except those of Balocchi et al. (1993), estimates of heritability and of genetic 

correlations are imprecise. Estimates of genetic correlations require large sample size 

and a minimum of 400 families (2 offspring per family) are recommended for estimating 

the genetic correlation of 0.40 with a standard error of 0.30 for two traits with a 

heritability of 0.20 (Klein et al. 1973). In order to increase precision of genetic 

parameter estimates and increase genetic gain, greater emphasis is being placed in the 

USA on the control of environmental variation through better experimental designs and 

layout in forest genetic tests (Weir and Goddard 1986). 

Although the genetic parameter estimates of P. taeda from the literature are 

confounded with such factors as management, competition, and design and layout of the 

field tests, some trends emerged. For example, heritability estimates for wood density 
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were highest (0.5), followed by those for height, volume and straightness (0.3); those 
for diameter were the lowest (0.05). Also, correlations between growth traits (height, 
diameter and volume) were moderate to high and positive, indicating that these traits 
may be under the influence of similar genes and a genetic change in one trait is expected 
to accompany a change in the other. A high and positive genetic correlation between 

growth traits is desirable, because a selection based on an easily measured trait such as 
height will automatically improve a trait such as volume which is difficult to assess. 
This will result in rapid genetic progress at less cost. Genetic correlations between ages 
older than four years and mature ages in P. taeda were generally high (greater than 0.7) 
for the growth traits, suggesting that early selection after four years of age can be 

efficient in this species. Wood density at two years was well correlated with that at 
mature ages (genetic correlations greater than 0.8), indicating that selection at 2 years 
is feasible in this trait. 

Generally, there was reasonable consistency in the estimates of genetic 

parameters, probably due to the fact that many of these results originate from the south- 

eastern USA. These estimates may differ from those obtained from other breeding 

populations elsewhere, from which independent estimates are necessary to make 
breeding decisions. 

The literature review highlighted the following major information gaps: 

I. There appears to be few heritability estimates for straightness assessed on an 

absolute scale; 

2. There appears to be no estimates of age-age genetic correlations for stem 

straightness; 

3. There is a lack of correlation estimates between stem straightness and other 

traits; 

4. There is a lack of genetic parameter estimates for all traits of P. taeda grown 

in tropical regions; 

5. The corresponding standard errors were not reported for most of the estimates 

of genetic correlations in the literature, making it difficult to judge their 

reliability. Also, some of the genetic correlations were equated to family mean 

correlations, which are likely to underestimate genetic correlations. Therefore, 
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reliable estimates of genetic correlations between growth traits, and between 

growth traits and wood density, are required. 

22 



Chapter 3 

UNIVARIATE PARAMETER ESTIMATES FOR 

HEIGHT AND STEM STRAIGHTNESS 

3.1 Introduction 

Variance and heritability estimates in tree improvement programmes are 
important for estimating gain from selection and for devising the best breeding strategy. 
Heritability estimates for height reported in Pinus taeda in the USA are high (Balocchi 

et al. 1993,, Franklin 1979, Lambeth et al. 1983). Heritability estimates for height for 

populations in Zimbabwe, and generally in southern Africa, are lacking, and estimates 

for stem straightness are lacking in both the USA and southern Africa. This lack of 

genetic parameter estimates for these economically important traits has potentially 

adverse consequences for realizing genetic progress in P. taeda breeding programmes. 

Traditionally, genetic parameters in forest tree breeding programmes have been 

estimated using analysis of variance (ANOVA), least square methods such as Harvey's 

programs (Harvey 1987) on SAS (SAS Institute, Inc. 1988), and restricted maximum 

likelihood (REML) (Patterson and Thompson 1971) written in GENSTAT (Genstat 5 

Committee 1987). An important advantage of programs than simple ANOVA is that 

they can efficiently analyse unbalanced data, a typical problem in tree breeding. 

Unfortunately, genetic models fitted by these programs allow only sib covariances; they 

do not allow use of covariances of other relatives, a particularly important aspect as 

breeding programs advance to second and subsequent generations. Also, where 

information is available from both the male and female parents, such as in controlled 

cross mating designs, a problem is encountered as to how best pool the two resultant 

heritability estimates, especially when the two estimates are not of equal reliability and 

are correlated. The model which appropriately incorporates information on genetic 

relationships between trees is the individual tree model, which can be fitted in REML 
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using derivative-free algorithms (DFREML, Meyer 1989). The individual model 
includes a random effect for the additive genetic merit or breeding value of each tree, 

both for trees with records and those that are represented as parents, and incorporates all 

known relationship information in the analysis. The additive genetic variance is then 

estimated as the variance of trees' additive genetic merit instead of estimating it from the 

variance between parents. The individual model has become the method of choice in 

animal breeding because of its desirable properties, and has recently been applied to tree 

breeding (Eucalyptus - Borralho et al. 1995). 

The aim of the study reported in this Chapter was to undertake univariate 

analyses, using individual tree model DFREML, for height and stem straightness. This 

is the first application of an individual tree model to estimate variance components for 

Pinus taeda. 

3.2 Materials and Methods 

3.2.1 Genetic Material 

The mating design included a diallel between 6 parents, excluding selfs, and a 

factorial of 7-8 males on 15 females. The design is represented diagrammatically in 

Table 3.1. The actual number of families planted was 140,12 1,100 and 100 at sites A, 

B, C, and D, respectively. The 23 parents represented were selected phenotypically from 

unimproved plantations in Zimbabwe and South Africa. Little is known of their origin 

or degree of relatedness, but it is assumed they are unrelated. The seed from which the 

plantations in Zimbabwe were established originated from South Africa. 

3.2.2 Field sites 

The genetic tests were established in 1972 at four sites in Zimbabwe, at Tarka 

(A), Stapleford (B), Martin (C) and Nyangui (D). Details of the sites are given in Table 

3.2. 
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Table 3.1. Factorial and diallel crosses (surrounded by a bold line) included in the four 

genetic tests. A, B, C and D refer to crosses present in tests A, B, C and D. respectively. 

and - represents crosses absent in a particular test. 

Female Male 

8 10 13 95 162 164 171 196 

10 ---- ABCD AB- D AB- D AB -D AB-- 

13 
1 ---- ---- AB-- AB-- AB- D AB 

95 ---- ABCD ABCD 
- 

ABCD AB D AB-- 

162 ---- ABCD ABCD AB-- AB-- AB-- 

164 ---- ABCD ABCD ABCD ABCD AB-- 

171 ---- ABCD ABCD ABCD ABCD ABCD ---- 

59 ABCD ABCD ABCD ABCD - BCD ABCD ---- ---- 

60 ABCD ABCD ABCD AB- - - BCD ABCD ABCD ---- 

68 ABCD ABCD ABCD ABCD AB-- ABCD ABCD ---- 

69 ABCD ABCD ABCD AB- - ABCD ABCD ABCD ---- 

70 ABCD ABCD ABCD A- BCD ABCD ABCD ---- 

96 ABCD ABCD ABCD ABCD ABCD ABCD ABCD ---- 

99 ABCD ABCD ABCD AB- - A --- AB -- A --- ---- 

102 A --- AB- - 1 
ABC- A --- A --- ABCD ABCD A --- 

160 ABCD ABCD ABC - ---- ---- A --- ---- ---- 

161 ABCD ABCD ABCD ABCD AB- - ABCD ABCD ---- 

163 ABCD ABCD ABC - ABCD AB- - ABCD ABCD ---- 

165 ABCD ABCD ABCD A --- ABCD ABCD A --- ---- 

167 ABCD ABCD ABCD ABCD ABC- ABCD ABCD ---- 

168 ABCD ABCD ABCD ABCD ABCD ABCD ABCD ---- 

170 
JABCDJ 

ABCD 
JAB JABCD JABCD ABCD 

J 
---- 

1 
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Table 3.2. Synopsis of progeny tests established in 1972 in Zimbabwe. 

Site (code) 

Region 
Latitude 
Longitude 
Altitude (m) 
Rainfall (mm) 
Soils 

Tarka(A) 

Chimanimani 
19'59'S 
32'56'E 

1005 
2156 

Dolerite/alluvial 

-derived; reddish 
brown clays; well 
drained 

Stapleford(B) 

Penalonga 
18'44'S 
32'49'E 

1745 
1836 

Dolerite- derived; 
brown red clays; 
well drained 

Martin(C) 

Chimanimani 
19'59'S 
32'56'E 

1250 
1016 

Dolerite/siltstones 

-derived; reddish 
brown clays; well 
drained 

Nyangui(D) 

3.2.3 Field design 

Nyanga 
17'5 8'S 
2'4 TE 
1882 
2364 

Dolerite-derived-, 
red-reddish brown 
clays-, well drained 

Trees were planted at 2.4 x 2.4 m spacing and each plot comprised ten trees. The 

tests comprised three replicates and ten to twelve blocks per replicate, in a triple lattice 

design. 

3.2.4 Silviculture 

The first systematic thinning, removing 50% of the trees, was carried out in 

1981 at age 9.5 years, and the remaining trees were pruned to one-third total tree height. 

A second pruning was carried out in 1983 to one-third height. In 1986, at age 13.5 years, 

a second systematic 50% thinning was carried out in all the tests, leaving two trees per 

plot. 

3.2.5 Assessments 

All four trials were assessed for height at 1.5 (HTI. 5), 9.5 (HT9.5), 13.5 

(HT13.5), and 22.5 (HT22.5) years of age, using height rods at age 1.5, and optical 

instruments (hypsometers) at 13.5 and 22.5 years. At 9.5 years, height was assessed on 

thinned trees using measuring tapes. 

Stem straightness was assessed at 1.5 (STI. 5), 9.5 (ST9.5). 13.5 (ST13.5) and 

22.5 (ST22.5) years of age, using the score in Table 3.3 (Barrett and Mullin 1968). 
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Table 3.3. Stem straightness visual score used for assessing the tests. 

Score Description 

No deviation which would appreciably reduce utilisation value 

6 Basically as 7 but with one minor defect slightly affecting utilisation or slightly inferior to 
7 but no specific defect 

5 Basically as 7 but with one major defect appreciably reducing utilisation value or as in 6 
but with a minor defect 

4 As 6 but with either a major defect or severe minor defects 

3 As 6 but with at least two major defects or a series of minor defects 

2 Inferior to 3 and with specific defects such that utilisation would be confined to short 
lengths 

I As 2 but with major and minor defects restricting utilisation to fuel and industrial wood 

3.2.6 Summary of data 

A summary of the data used in the analyses is shown in Table 3.4. Fewer trees 

and fewer families than usual were measured at age 9.5 years in test B because trees in 

only the first nine blocks of the first replicate were measured. The total number of 

families common to all the four tests was 85. 

Table 3.4. Summary of data analysed for tests A, B, C and D. 

Age Test No. of No. of No. of No. of 
males females families trees 

1.5 A 8 21 140 4162 
B 7 21 121 3557 
c 7 20 100 2878 
D 7 21 100 2907 

9.5 A 8 21 140 1862 
B 7 21 94 460 
c 7 20 100 1381 
D 7 21 100 1419 

13.5 A 8 21 140 2101 
B 7 21 121 1042 
c 7 20 100 1260 
D 7 21 100 1392 

22.5 A 8 21 140 427 
B 7 21 121 708 
c 7 20 100 257 
D 7 21 100 589 
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3.2.7 Statistical and genetic analyses 

Descriptive statistics were derived using Minitab (Minitab Release 7-21 Sun-4 

version, 1989). The aim of the descriptive analysis was to ascertain that the data had a 

normal distribution, and to obtain the mean and the scale of the data for each trait. It was 

necessary to test assumption of normality because parametric methods used to analyse 

the data are based on this assumption. 

The sib covariance model available in GENSTAT REML and individual tree 

model available in DFREML were used to estimate the variance components and 

heritabilities. The first method was employed primarily to highlight some of the major 

problems of a program commonly used in forestry, and to obtain initial estimates for the 

DFREML runs. 

The analysis based on sib covariance was performed on individual tests and the 

following model was used: 

-": ýt +Ri +Bij +F+ FMkl + ý-: ijklm 
Yijklm 

"k+ 
MI (3.1) 

where: 
Yijklm is the observation on the mth tree in the ith replicate and j th block, 

and of the kth female and Ith male parents, 

ýt is the overall test mean, 

Ri is the fixed effect of the ith replicate, 

Bij is the random effect of the jth block in the ith replicate, 

Fk is the random effect of the kth female parent, 

M, is the random effect of the Ith male parent, 

FMkI is the random effect of the k1th family 

(female x male parent interaction), and 

Eijklm is the within plot error (residual), assumed to be normally 

distributed with mean 0 and variance a" - 
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The narrow sense heritability was calculated on an individual tree basis using the 
paternal variance component as: 

2m= 4C; 2M/(; 2p (3.2) 

and using the maternal variance component as: 
2 

F= 
4(32 

F/(32P (3.3) 

where the phenotypic variance is estimated as: 
a 2p 

= Cj2 B+ 02 F+ (y2M + 02 FM 
+ Cy2 E (3.4) 

The component (32 FM is an estimate of the covariance of full sibs, less the covariance 

of both maternal and paternal half-sibs, and estimates 1/4 of the dominance genetic 

variance. 

Standard errors of the heritability estimates were calculated using the 

vfunction option in GENSTAT. The two heritability estimates obtained from the 

analyses were pooled, weighting each estimate by the inverse of its standard error: 

h2 =wh 
2+(1 

-w)h 
2 

Pool Fm (3.5) 

where: 

2 
sem 

W 
se 

2 
+se 

2 (3.6) Fm 

and seF is the standard error of the female estimate and sem standard error of the male 

estimate. The standard error of the pooled estimate was calculated as: 

22 
semseF 

se 
se +se mF 

(3.7) 

29 



This method outlined above will bias the pooled heritability estimate downwards by 

giving more weight to the smaller heritability with a relatively smaller variance. since 
the standard error of a heritability estimate depends on the heritability. The estimates of 
the pooled heritability were corrected for this bias through an iterative procedure in 

which estimates of the pooled heritability were used to reestimate the standard error of 
the heritability for the female and the male parents, and the procedure was repeated until 
the pooled heritability estimates converged. 

The following models were used in the analysis of individual site data using 

an individual tree model: 

Model 1: Yijkl - ýi +Rj +Bij + FMij*k+ A, + Cijkl (3.8) 

Model 2: Yijklm-ý ýt +Rj +Bij +FMijk +Pt,,, + A, +Cijklm (3.9) 

where: Yijkl is the observation on the Ith tree in the ith replicate and jth block 

and in the kth family, 

It is the overall test mean, 

Ri is the fixed effect of the ith replicate, 

Bij is the random effect of the jth block in the ith replicate, 
FMijk is the random effect of the kth family 

(female x male parent interaction), 

A, is the additive genetic effect of the Ith tree, and 

'F-ijkl is the within plot error (residual), assumed to be normally 

distributed with mean 0 and variance (3'. 

The difference between the two models is that model 2 fitted plot (Ptn ) as an additional 

random effect in order to measure common environment effect. 

The following models were used in the analysis of pooled data across sites 

using individual tree model DFREML: 

Model 1: Yijklm +Si +Rj +Bjk, FMjkI + Am + 'F-ijklm (3.10) 

Model 2: YijkImn +Si +Iýj +Bjk+ FMjkI + Ptm+ An+ 6ijklmn (1-11) 
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The difference between the two models is as described above, where (Pt" ) estimates 
common environment effect, and site (Si) was fitted as an additional fixed effect. 

The general model in matrix notation was: 
Xb + Za+ Wc +e (3.12) 

where: y= the vector of observationsý 
b the vector of fixed effects, 
X the incidence matrix for fixed effects,, 
a the vector of additive genetic effects for trees, 

c the vector of additional random effects, 
W, Z = the incidence matrices for random effects, and 
e= the vector of random residual errors. 

The (co)variance structure for the analysis can be described as: 
V(a) ý 02 AA 

V(C) = 02,1 

V(e) = (J"I 

where: CF 2 Ais the additive genetic variance, 
CF 2c the variance of the additional random effect (block, family or plot), 

Cy 
2e the error variance, 

A is the numerator relationship matrix between the trees, and 

I the identity matrix. 

Vectors c and e were assumed to be uncorrelated with all other effects. The initial values 

for the DFREML runs were taken from the GENSTAT REML analyses. Different 

starting values from the initial ones were used to confirm that a global rather than a local 

maximum had been reached. 

Comparisons between the individual tree models were made by likelihood 

ratio tests (Meyer 1993), which consist of subtracting the maximum log likelihood for 

the model with fewer parameters from the value corresponding to the model with more 

parameters, and then multiplying the difference by 2. The test statistic is distributed 

asymptotically as a Chi-Square random variable with degrees of freedom equal to the 

difference in the number of parameters estimated for the two models. The test is 
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appropriate where parameters in one model are a subset of parameters in the other. 
The appropriateness of pooling data across sites was deten-nined using the 

joint likelihood of the four independent analyses. Joint likelihood of the four analyses 
is simply the sum of the individual log likelihoods, asymptotically distributed as Chi- 

Square with degrees of freedom equal to the sum of the parameters (i. e. df = 12 for 

model I and df = 16 for model 2). The difference between the joint likelihood and the 

analyses of pooled data is compared with Chi-Square distribution with degrees of 
freedom equal to the differences in the number of parameters between them. 

The additive genetic coefficient of variation(CVA)was calculated as: 

CVA = 100( (3A40 (3.13) 

where: 
(YA is the additive genetic standard deviation, and 

ýL is the phenotypic mean for the trait. 

The importance of the dominance variance was evaluated in two ways: 

(i) dominance as a proportion of additive variance: 
DA = (j2 DICý2 A, and (3.14) 

(ii) dominance as a proportion of phenotypic variance: 
Dp =a2 D/Cj2p. (3.15) 

DAwas used to assess the relative size of dominance to additive variance, and hence its 

contribution to the genetic variance. However, a high DAmay be inconsequential to a 

trait if the dominance variance is small compared with the phenotypic variance. 

Therefore, Dp was also calculated. 

The standard errors of the heritability estimates were calculated using 

DFREML. At convergence, DFREML attempts to estimate the standard errors of 

heritability estimates by fitting a quadratic function to the likelihood surface using points 

evaluated during the search for the likelihood. As pointed out by Meyer (1993), little is 

known about the likelihood surface and the quadratic surface may not provide a good 

fit. Therefore, in order to get accurate confidence intervals for the heritability estimates 

from the pooled data, likelihood profiles were plotted by fixing the heritability to 
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different values, and the likelihood maximised with respect to all the other parameters. 
The 95% confidence interval was obtained by dropping 1.92 (0-5 X 21,0.05) from the 

maximum log likelihood (Wetherill 1981). 

3.3 Results 

3.3.1 Descriptive statistics 

The descriptive phenotypic statistics derived from using Minitab are shown 
in Tables 3.5 and 3.6. The overall site mean height at 1.5 years of age ranged from 0.71 - 
1.13 m, with the Stapleford (B) having the best performance and Nyangui (D) the worst 
(Table 3.5). This trend changed over time, and at 22.5 years Nyangui site had the best 

performance and Tarka (A) the worst, with a range of 22.46-25.05 m. The trees with the 

best form at 22.5 years were found at Stapleford (B). The sites with the worst height 

growth had the worst straightness scores at all ages. 

Table 3.5. The minimum, maximum, mean, standard deviation and coefficient of 
variation of height (m) at four sites (A-D) at 1.5,9.5,13.5 and 22.5 years. 

Trait Site Min Max Mean SD CV% 

HTI. 5 A 0.1 1.9 0.997 0.255 25.6 
B 0.1 2.2 1.13 0.291 25.8 
c 0.2 2.2 1.01 0.296 29.3 
D 0.1 1.6 0.704 0.227 32.2 

HT9.5 A 7.5 19.5 14.7 1.60 10.9 
B 2.4 15.2 12.1 1.68 13.9 
c 6.2 19.2 14.8 1.73 11.7 
D 3.9 16.0 13.2 1.50 11.4 

HT 13.5 A 6.2 29.6 19.4 2.68 13.8 
B 3.4 22.4 17.2 2.37 13.8 
c 6.3 24.7 19.9 2.01 10.1 
D 3.1 23.0 19.1 2.01 10.5 

HT22.5 A 8.6 26.8 22.5 1.92 8.53 
B 5.7 29.2 24.2 2.00 8.26 
c 14.7 28.4 24.5 1.42 5.80 
D 19.2 30.6 25.1 1.49 5.94 
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Table 3.6. The minimum, maximum, mean, standard deviation and coefficient of 
variation of stem straightness (score 1-7) at four sites (A-D) at 1.5,9.5ý 13.5 and22.5 
years. 

Trait Site Min Max Mean SD CV% 

STI. 5 A 2 6 4.00 0.600 15.0 
B 2 6 3.85 0.484 12.6 
c 2 6 3.95 0.540 13.7 
D 1 6 3.59 0.755 21.0 

ST9.5 A 3 6 4.51 0.682 15.1 
B 1 5 3.64 0.866 23.8 
c 2 6 4.42 0.640 14.5 
D 2 6 4.49 0.740 16.5 

ST13.5 A 2 6 3.91 0.678 17.3 
B 1 6 3.54 0.746 21.1 
c 2 7 4.68 1.04 22.2 
D 1 7 4.17 0.800 19.2 

ST22.5 A 3 6 4.27 0.645 15.1 
B 5 7 6.62 0.513 7.75 
c 3 7 4.75 0.693 14.6 
D 4 7 5.89 0.764 13.0 

Both traits showed substantial variation (Tables 3.5 and Table 3.6). The 

standard deviations for height did not differ appreciably among the sites (ranges: 0.23- 

0.30 at 1.5 years, and 1.63-1.97 at 22.5 years). This indicates that data can be pooled 

over sites without seriously violating homogeneity assumptions. The coefficient of 

variation for height was high at 1.5 years (27%), decreasing progressively with age: at 

9.5 (12%), 13.5 (12%) and 22.5 years (8%). The correlation between mean height and 

variation (standard deviation) was high (0.84), indicating that variation within a site was 

well predicted by mean height. This relationship was not evident for straightness 

(correlation= 0.25). 
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3.3.2 Analysis based on sib covariances 

Variance components 

The magnitude of the variance component estimates for height and 

straightness are shown in Tables 3.7 and 3.8, respectively. The major source of variation 

in both traits was the residual variance which accounted for more than 60% of the 

variation, while the two smallest were the block and the family variance. In general, the 

male variance was larger than the female variance for height, and the converse was true 

for straightness. The standard errors of the female and male variance estimates were 

large, with those of the former being larger for similar magnitudes of variance. For 

height, both the residual and the phenotypic variances peaked at 13.5 years. A few 

negative variance estimates were obtained for straightness, probably reflecting some of 

the problems associated with estimating variance components from a limited set of 

parents. 

Additive and dominance variances 

Tables 3.9 and 3.10 give the estimates of the additive and dominance 

variances,, and ratios of the dominance to the additive for both female and male: DA, and 

DAM, respectively, and dominance to the phenotypic variances (D ). Trends of the 

additive variances followed the trends of the respective variance components. 

Dominance variance for height as a proportion of the additive variance was less than 1, 

except at 1.5 years at site A, at 13.5 years at site D, and at 9.5 years at sites B and D. 

This indicates that additive variance was more important than the dominance variance 

for height. In contrast, dominance was more important than additive variance for 

straightness, particularly at age 1.5 where dominance was as much as 14 times greater 

than the additive variance. However, at this age Dp was less than 0.10, indicating that 

environmental effects were the major determinant of straightness at this age. The 

parameter Dp for height ranged from 0.0 1 to 0.3 6, and there was no relationship between 

its magnitude and age. 
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Table 3.7. Estimates of variance components (xlO') and their standard errors (in 

brackets) for height at four sites and four ages, based on sib covariance analysis. 

Age Site am 
2 CýF 2 (JB 2 CFFM 2 (JE 2 ap') 

(years) 

1.5 A 0.423 0.268 0.250 0.492 5.07 6.51 
(0.265) (0.118) (0.71) (0.092) (0.115) 

B 0.973 0.480 0.664 0.297 6.06 8.47 
(0.577) (0.183) (0.188) (0.078) (0.147) 

c 0.746 0.761 0.242 0.558 6.47 8.77 
(0.468) (0.306) (0.91) (0.132) (0.174) 

D 0.140 0.180 0.198 0.098 4.55 5.16 
(0.098) (0.078) (0.069) (0.045) (0.122) 

9.5 A 42.2 38.6 7.70 5.60 163 257 
(24.4) (13.1) (2.80) (2.50) (5.60) 

B 28.2 24.5 8.70 25.5 196 283 
(19.6) (13.3) (8.40) (12.3) (14.5) 

c 30.2 42.2 5.20 5.40 216 299 
(18.4) (15.3) (2.90) (3.70) (8.60) 

D 10.2 26.8 9.90 11.4 168 226 
(7.00) (10.4) (3.90) (4.00) (6.60) 

13.5 A 48.8 35.5 17.4 18.7 598 719 
(29.2) (14.3) (7.30) (8.30) (19.4) 

B 69.6 29.6 58.1 17.0 387 561 
(41.4) (13.3) (18.7) (9.80) (18.3) 

c 36.1 50.8 15.6 2.40 298 402 
(22.2) (18.6) (6.70) (4.60) (12.4) 

D 25.4 25.6 5.60 30.9 319 407 
(16.9) (12.7) (4.00) (9.00) (12.7) 

22.5 A 44.9 29.4 18.9 13.3 261 367 
(28.7) (14.5) (10.8) (15.6) (22.9) 

B 24.0 21.4 56.4 23.3 273 398 
(16.5) (11.2) (18.5) (11.2) (16.3) 

c 24.0 13.4 20.5 0.700 142 201 
(16.4) (8.70) (10.7) (11.7) (16.9) 

28.5 23.7 18.8 3.60 148 222 
(17.9) (9.90) (7.40) (5.30) (9.70) 
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Table 3.8. Estimates of variance components (xlO') and their standard errors (in 
brackets) for stem straightness at four sites and four ages, based on sib covariance 
analysis. 

Age Site am 
2 (JF 2 (JB 2 (JFM 2 (JE 2 cip 2 

(years) 

1.5 A -0.030 0.260 1.74 0.390 33.7 36.0 
(0.050) (0.160) (0.510) (0.220) (0.760) 

B 0.040 0.180 0.100 0.570 22.6 23.4 
(0.070) (0.140) (0.090) (0.200) (0.550) 

c 0.090 0.800 1.05 0.250 26.9 29.1 
(0.110) (0.350) (0.380) (0.210) (0.730) 

D 0.130 0.370 1.30 0.560 54.6 57.0 
(0.240) (0.330) (0.530) (0.410) (0.015) 

9.5 A 2.27 2.93 1.50 1.18 38.6 46.5 
(1.43) (1.14) (0.590) (0.580) (1.33) 

B 4.60 2.86 3.31 2.33 61.9 75.0 
(3.45) (2.25) (0.260) (2.82) (4.58) 

c 0.840 2.01 0.860 0.510 36.7 41.0 
(0.640) (0.89) (0.480) (0.550) (1.46) 

D 0.870 3.94 0.590 3.20 46.1 54.7 
(0.790) (1.76) (0.490) (1.09) (1.81) 

13.5 A 1.22 1.84 0.610 0.070 42.2 45.9 
(0.690) (0.730) (0.320) (0.401) (1.36) 

B 3.14 1.74 3.62 3.49 43.7 55.7 
(2.12) (1.09) (1.36) (1.32) (2.06) 

c 5.50 6.36 -0.520 -1.47 98.1 108 
(3.47) (2.52) (0.460) (1.05) (4.08) 

D 1.11 4.88 0.610 1.35 56.0 64.0 
(0.910) (1.98) (0.550) (0.930) (2.22) 

22.5 A 0.790 2.27 1.86 3.90 32.8 41.6 
(0.970) (1.49) (1.26) (2.23) (2.89) 

B 1.89 2.16 0.710 1.43 20.2 26.4 
(1.27) (0.980) (0.470) (0.760) (1.20) 

c 4.71 12.38 0.41 4.95 25.6 48.1 
(3.40) (5.12) (1.10) (2.75) (2.75) 

D 2.95 5.05 3.08 2.24 45.1 58.4 
(2.17) (2.39) (1.56) (1.78) (2.95) 
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Table 3.9. Estimates of additive and dominance variances (xlO'), and the ratio of 
dominance to additive female and male variances, and dominance to phenotypic 

variance for height at four sites and four ages, based on sib covariance analysis. 

Age Site 
(years) 

(3AM 2 (YAF 2 ClD 2 DAM DAF Dp 

_ 
1.5 A 1.69 1.07 1.97 1.16 1.84 0.30 

B 3.89 1.92 1.19 0.31 0.62 0.14 

c 2.98 3.04 2.23 0.75 0.73 0.25 

D 0.560 0.720 0.392 0.70 0.54 0.08 

9.5 A 169 154 22.4 0.13 0.15 0.09 

B 113 98.0 102 0.90 1.04 0.36 

c 121 169 21.6 0.18 0.13 0.07 

D 40.8 107 45.6 1.12 0.43 0.20 

13.5 A 195 142 74.8 0.38 0.53 0.10 

B 278 118 68.0 0.24 0.57 0.12 

c 144 203 9.60 0.07 0.05 0.02 

D 102 102 124 1.22 1.21 0.30 

22.5 A 180 118 53.2 0.30 0.45 0.14 

B 96.0 85.6 93.2 0.97 1.09 0.23 

c 96.0 53.6 2.80 0.03 0.05 0.01 

D 114 94.8 14.4 0.13 0.15 0.06 
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Table 3.10. Estimates of additive and dominance variances (X 102) , and the ratio of 

dominance to additive female and male variances, and dominance to phenotypic 

variance for stem straightness at four sites and four ages, based on sib covariance 

analysis. 

Age Site 
(years) 

GAM 2 (JAF 2 (3D 2 DAM DAF Dp 

1.5 A -0.120 1.04 1.56 -13.00 1.50 0.04 

B 0.160 0.720 2.28 14.25 3.17 0.10 

c 0.360 3.20 1.00 2.78 0.31 0.03 

D 0.520 1.48 2.24 4.31 1.51 0.04 

9.5 A 9.08 11.72 4.72 0.52 0.40 0.10 

B 18.40 11.44 9.32 0.51 0.81 0.12 

c 3.36 8.04 2.04 0.61 0.25 0.05 

D 3.48 15.76 12.8 3.68 0.81 0.15 

13.5 A 4.88 7.36 0.280 0.06 0.04 0.01 

B 12.56 6.96 13.96 1.11 2.01 0.25 

c 22.00 25.44 -5.88 -0.27 -0.23 -0.05 

D 4.44 19.52 5.40 1.22 0.28 0.08 

22.5 A 3.16 9.08 15.60 4.94 1.59 0.37 

B 7.56 8.64 5.72 0.76 0.66 0.22 

c 18.84 49.52 19.80 1.05 0.40 0.41 

D 11.80 20.20 8.96 0.76 0.44 0.15 
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Heritability estimates 

Results from sib covariance analyses are presented in Tables 3.11 and 3.12. 

Heritability estimates for height were moderate to high, ranging from 0.11 to 0.66 for 

those estimated from male parents and 0.14 to 0.60 for those estimated from female 

parents. Where the estimates were similar, those from female parents had a lower 

standard error, as they were estimated with more degrees of freedom. As expected, the 

pooled estimates for height had lower standard errors than the individual estimates. The 

pooled heritability estimates for height peaked at 9.5 years in all tests except D. 

Apart from an usually high heritability estimate for straightness at 22.5 

years at site C, heritability estimates for stem straightness were much lower than those 

for height, with those estimated from male parents ranging from 0 to 0.39, and those 

estimated from female parents from 0.03 to 0.35. Estimates for this trait from female 

parents were consistently higher than those from male parents. Estimates at 1.5 years of 

age were low, reflecting the difficulty of straightness assessment at this early age. 
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Table 3.11. Heritability estimates for height at four sites and four ages, based on sib 

covariance analysis. 

Age Site h2m (se) h2F (se) h2 pool (se) 

(years) 

1.5 A 0.26(0.15) 0.17(0.07) 0.19(0.07) 

B 0.46(0.24) 0.23(0.08) 0.28(0.09) 

c 0.34(0.20) 0.35(0.13) 0.34(0.11) 

D 0.11 (0.07) 0.14(0.06) 0.13(0.05) 

9.5 A 0.66(0.32) 0.60(0.18) 0.62(0.16) 

B 0.40(0.25) 0.35(0.18) 0.37(0.14) 

c 0.40(0.22) 0.56(0.18) 0.52(0.14) 

D 0.18(0.12) 0.47(0.16) 0.38(0.12) 

13.5 A 0.27(0.15) 0.20(0.08) 0.22(0.07) 

B 0.48(0.26) 0.21 (0.09) 0.29(0.10) 

c 0.36(0.20) 0.51 (0.17) 0.46(0.13) 

D 0.25(0.16) 0.25(0.12) 0.25(0.09) 

22.5 A 0.49(0.28) 0.32(0.15) 0.38(0.13) 

B 0.24(0.16) 0.22(0.11) 0.22(0.09) 

c 0.48(0.29) 0.27(0.17) 0.35(0.15) 

D 0.45(0.28) 0.43(0.16) 0.45 (0.14) 

h2, = individual tree heritability calculated using the female variance component. 

h2m= individual tree heritability calculated using the male variance component. 

h'p,, j = pooled estimate of heritability. 
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Table 3.12. Heritability estimates for stem straightness at four sites and four ages, based 

on sib covariance analysis. 

Age Site h2m (se) h2F (se) h2 pool (se) 

(years) 

1.5 A 0(0.01) 0.03(0.02) 0.01(0.01) 

B 0-01(0-01) 0.03(0.02) 0.02(0.01) 

c 0-01(0-01) 0.10(0.05) 0.08(0.03) 

D 0-01(0.01) 0.03(0.02) 0.02(0.01) 

9.5 A 0.20(0.12) 0.25(0.09) 0.24(0.07) 

B 0.25(0.17) 0.15(0.12) 0.19(0.10) 

c 0.08(0.06) 0.20(0.08) 0.16(0.06) 

D 0.06(0.06) 0.29(0.12) 0.20(0.08) 

13.5 A 0.11(0.06) 0.16(0.06) 0.14(0.05) 

B 0.23(0.14) 0.13(0.08) 0.16(0.07) 

c 0.20(0.12) 0.24(0.09) 0.23(0.07) 

D 0.07(0.06) 0.31(0.12) 0.23(0.08) 

22.5 A 0.08(0.09) 0.22(0.14) 0.15(0.09) 

B 0.29(0.18) 0.33(0.14) 0.31 (0.11) 

c 0.39(0.26) 1.03(0.34) 0.79(0.24) 

D 0.20(0.14) 0.35(0.15) 0.29 (0.11) 
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3.3.3 Analysis using the individual tree model 

Model withoutfitting a common environment effect 
The magnitude of variances estimated using the individual tree model. 

without fitting a common environment effect (Model 1), are shown in Tables-3). 13 -3.16. 
The corresponding trends over time in pooled analysis are shown in Figures 3.1 and 3.2. 

For height, there was a large increase in all variances from age 1.5 to 9.5 

years, with the additive variance peaking at 9.5 years, and the phenotypic, environment 

and dominance variances peaking at 13.5 years. The phenotypic variance in straightness 

followed the same trend as did that for height (Figure 3.1), but the additive variance 

continued to increase with age (Figure 3.2). For height, dominance variance was less 

than the corresponding additive variance, except at age 1.5 years in test A and age 13.5 

years in D. When the data were pooled over sites, additive variance was greater than the 

dominance variance at all ages. 

For straightness, dominance variance was much higher than additive 

variance at 1.5 years in three of the tests. When the data were pooled over sites, 

dominance variance was five times more than the additive variance at 1.5 years and 

equal to the additive variance at 9.5 years, after which the additive component 

predominated. 

The additive genetic coefficient of variation(CVA) for height decreased 

with age, while that for straightness peaked at 13.5 years and appeared to remain 

constant thereafter (Figure 3.3). The results show that there is no relationship between 

heritability andCVAin either trait. 

The magnitude and trends of dominance and additive variances were 

similar to those of the analyses based on sib covariance, but the residual variances were 

always less. 
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Table 3.13. Model I estimates of variance components (x 10'), and importance of 
dominance variance for height at four sites and four ages, based on analysis using the 
individual tree model. 

Age Site 

(years) 

(JA 2 (JD 2 (YE 2 DA Dp 

1.5 A 1.50 1.75 4.37 1.17 0.27 

B 2.70 1.17 4.72 0.43 0.14 

c 3.10 2.28 4.91 0.74 0.26 

D 0.730 0.450 4.16 0.62 0.09 

9.5 A 198 21.0 62.1 0.11 0.08 

B 114 96.6 137 0.84 0.34 

c 193 22.2 120 0.11 0.07 

D 94.3 50.6 120 0.54 0.21 

13.5 A 171 80.3 511 0.45 0.11 

B 172 63.0 301 0.37 0.12 

c 209 13.9 194 0.07 0.03 

D 93.7 130 273 1.39 0.32 

22.5 A 149 44.4 191 0.30 0.12 

B 106 82.8 221 0.78 0.21 

c 78.6 4.07 102 0.05 0.02 

D 85.9 34.2 104 0.40 0.16 
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Table 3.14. Model I estimates of variance components (X 102) 

, and importance of 
dominance variance for stem straightness at four sites and four ages, based on analysis 
using the individual tree model. 

Age 

(years) 

Site (3A 2 CFD 2 CFE 2 DA Dp 

1.5 A 0.64 1.89 33.27 2.95 0.05 

B 0.27 2.66 22.41 9.85 0.11 

c 2.24 1.22 25.83 0.54 0.04 

D 1.16 2.47 54.05 2.13 0.04 

9.5 A 11.83 4.71 32.72 0.40 0.10 

B 16.26 8.48 53.90 0.52 0.11 

c 6.54 2.26 33.45 0.35 0.05 

D 9.99 16.83 41.19 1.68 0.30 

13.5 A 7.53 0 38.44 0 0 

B 9.73 14.51 38.80 1.49 0.26 

c 25.85 2.36 83.06 0.09 0.02 

D 15.28 7.38 48.36 0.48 0.11 

22.5 A 6.78 18.93 28.64 2.79 0.45 

B 8.74 5.30 15.85 0.61 0.20 

c 45.57 17.63 2.95 0.39 0.33 

D 18.97 7.89 35.71 0.42 0.13 

Modelfitting a common environment effect 

Tables 3.17-3.20 show the variances estimated fitting a common 

environment effect (Model 2). The dominance variances were lower than those 

estimated from fitting Model 1, indicating that some of the common environment effects 

were confounded with the dominance variance. The additive and phenotypic variances 

estimated by the two models were similar, as expected. This resulted in lower ratios of 

dominance and additive variance from Model 2. When the data were pooled over sites. 
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dominance variance for height was less than 40% of the additive variance at all ages. 
In the case of straightness, dominance variance was lower than the additive variance at 

all ages except 1.5 years, when it was two and a half times greater. 

Table 3.15. Model I estimates of variance components (x 10'), importance of dominance 

variance, and additive genetic coefficient of variation(CVA)for height using data pooled 

across sites at each of the four ages, based on analysis using the individual tree model. 

Age (JA 2 (JD 2 (JE 2 DA Dp CVA 

1.5 1.73 0.540 4.98 0.31 0.07 14.0 

9.5 139 29.0 121 0.21 0.10 8.62 

13.5 130 55.1 380 0.42 0.10 6.04 

22.5 73.5 37.5 195 0.51 0.12 2.98 

Table 3.16. Model I estimates of variance components (x 10'), importance of dominance 

variance, and additive genetic coefficient of variation(CVA)for stem straightness using 

data pooled across sites at each of the four ages, based on analysis using the individual 

tree model. 

Age (JA 2 CJD 2 (3E 2 DA Dp CVA 

1.5 0.345 1.29 34 3.74 0.04 1.53 

9.5 5.43 5.80 41.8 1.07 0.12 5.46 

13.5 5.98 1.89 58.2 0.32 0.03 5.99 

22.5 9.52 3.63 30.4 0.38 0.09 5.74 
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Figure 3.1. Phenotypic and residual variances for height and straightness over time. 
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Figure 3.2. Additive and dominance variances for height and straightness over time. 
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Figure 3.3. Additive genetic coefficient of variation for height and straightness over time. 
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Table 3.17. Model 2 estimates of variance components (X 102) 
, and importance of 

dominance variance for height at four sites and four ages, based on analysis using the 

individual tree model. 

Age Site 

(years) 

CFA 2 CýD 2 (JE 2 DA Dp 

1.5 A 1.48 1.32 4.13 0.89 0.20 

B 2.68 0.751 4.54 0.28 0.09 

c 3.10 1.67 4.64 0.54 0.19 

D 0.729 0.290 4.10 0.40 0.06 

9.5 A 200 16.6 59.7 0.08 0.06 

B 116 49.1 138 0.42 0.17 

c 190 20.1 119 0.11 0.06 

D 93.7 51.1 121 0.55 0.22 

13.5 A 173 87.7 508 0.51 0.12 

B 173 60.6 296 0.35 0.11 

c 205 14.0 195 0.07 0.03 

D 93.2 122 268 1.31 0.30 

22.5 A 153 5.07 191 0.03 0.01 

B 105 65.19 209 0.62 0.16 

c 77.0 0.601 95.2 0.01 0.002 

D 86.7 16.4 90.6 0.19 0.08 
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Table 3.18. Model 2 estimates of variance components (xIO'), and importance of 
dominance variance for stem straightness at four sites and four ages, based on analysIs 

using the individual tree model. 

Age 

(years) 

Site (3A 2 (3D 2 (JE 2 DA Dp 

1.5 A 0.540 0.790 32.6 1.46 0.02 

B 0.260 2.04 22.1 7.85 0.09 

c 2.22 0.550 25.5 0.25 0.02 

D 1.17 1.50 53.6 1.28 0.03 

9.5 A 11.6 1.76 30.9 0.15 0.04 

B 16.2 0 54.0 0 0 

c 6.49 0.720 32.5 0.11 0.02 

D 9.80 15.9 40.5 1.62 0.29 

13.5 A 7.51 0 38.5 0 0 

B 9.78 11.2 36.6 1.15 0.20 

c 30.3 0.080 78.6 0 0 

D 15.3 7.09 48.5 0.46 0.11 

22.5 A 6.77 18.8 28.6 2.78 0.45 

B 8.67 4.46 15.08 0.51 0.17 

c 50.0 20.2 1.12 0.40 0.34 

D 18.9 5.72 34.1 0.30 0.10 
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Table 3.19. Model 2 estimates of variance components (X 102), importance of dominance 

variance, and additive genetic coefficient of variation (CVA) for height using data 

pooled across sites at each of the four ages, based on analysis using the individual tree 

model. 

Age 

_(years) 

GA 2 CYD 2 ON 2 (JE 2 DA Dp CVA 

1.5 1.74 0.239 0.621 4.47 0.14 0.03 14.0 
9.5 140 23.3 12.0 112 0.17 0.08 8.66 

13.5 128 45.4 20.3 364 0.35 0.08 6.00 

22.5 71.5 28.6 30.6 168 0.40 0.09 2.94 

Table 3.20. Model 2 estimates of variance components (X 102), importance of dominance 

variance, and additive genetic coefficient of variation(CVA)for stem straightness using 

data pooled across sites at each of the four ages, based on analysis using the individual 

tree model. 

Age (3A 2 (3D 2 Opt 2 (3E 2 DA Dp CVA 

(years) 
_ 

1.5 0.341 0.860 1.07 33.13 2.53 0.02 1.51 

9.5 5.31 4.03 4.02 38.56 0.76 0.08 5.40 

13.5 5.94 0.95 2.90 55.76 0.16 0.01 5.97 

22.5 9.43 2.97 4.37 26.46 0.31 0.07 5.71 

The heritability estimates for height and straightness using the individual 

tree model are given in Tables 3.21 and 3.22, respectively. The individual site estimates 

were, in general, higher than the individual site estimates from sib covariance analyses. 

This might indicate less bias from the use of all available information by the individual 

tree model. The estimates for height ranged from 0.14 to 0.73. Those for straightness 

generally ranged from 0.01 to 0.33, except for an unusually high estimate of 0.85 
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obtained at site C at 22.5 years of age (Table 3.22). For each trait, estimates across the 
four sites at each assessment age are unlikely to be significantly different from each 

other, since their differences are less than two standard deviations, other than in the case 

of straightness at 22.5 years. 

Table 3.21. Estimates of narrow sense heritability for height at four sites, ratio of plot 

to phenotypic variances (c') and log likelihood ratio test for differences between the two 

individual tree models. 

Age (yrs) Site Model I Model 2 LRT 

h' (se) h' (se) c2 (se) 

1.5 A 0.23(0.08) 0.23(0.08) 0.06(0.01) 44.3 ** 

B 0.32(0.09) 0.32(0.09) 0.03(0.01) 16.5 ** 

c 0.35(0.10) 0.35(0.12) 0.05(0.01) 26.6* * 

D 0.14(0.05) 0.14(0.05) 0.02(0.01) 5.2* 

9.5 A 0.73 (0.14) 0.73(0.27) 0.02(0.01) 1.5ns 

B 0.40(0.14) 0.41 (0.14) 0.04(0.05) Ons 

c 0.59(0.14) 0.59(0.12) 0.00(0.02) Ons 

D 0.40(0.12) 0.39(0.13) 0.00(0.02) Ons 

13.5 A 0.24(0.08) 0.24(0.08) 0.00(0.02) O. Ins 

B 0.32(0.10) 0.32(0.11) 0.01 (0.03) 0.7ns 

c 0.49(0.12) 0.49(0.13) 0.00(0.02) Ons 

D 0.23(0.08) 0.23(0.11) 0.01 (0.04) 0.7ns 

22.5 A 0.40(0.14) 0.42(0.16) 0.01(0.01) 0.5ns 

B 0.26(0.10) 0.26(0.11) 0.04(0.05) I. Ons 

c 0.39(0.15) 0.39(0.19) 0.04(0.09) 2.6ns 

D 0.40(0.12) 0.40(0.13) 0.09(0.05) -'). 
4ns 
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Table 3.22. Estimates of narrow sense heritability for stem straightness at four sites. 
ratio of plot to phenotypic variances (c'), and log likelihood ratio test for differences 
between the two individual tree models. 

Age (yrs) Site Model I Model 2 LRT 

h' (se) h' (se) c' (se) 

1.5 A 0.02(0.01) 0.02(0.02) 0.03(0.01) 11.8** 

B 0.01 (0-01) 0.01 (0.02) 0.02(0.04) 6.3 * 

c 0.08(0.03) 0.08(0.03) 0.02(0.01) 2.7ns 

D 0.02(0.02) 0.02(0.02) 0.01(0.01) 1.3ns 

9.5 A 0.25(0.07) 0.25(0.08) 0.06(0.02) 10.4** 

B 0.22(0.10) 0.22(0.17) 0.03(0.08) Ons 

c 0.16(0.07) 0.16(0.14) 0.03(0.02) 2.2ns 

D 0.18(0.08) 0.18(0.08) 0.02(0.02) 0.7ns 

13.5 A 0.16(0.05) 0.16(0.05) 0.00(0.02) Ons 

B 0.17(0.07) 0.18(0.07) 0.06(0.03) 3.3 ns 

c 0.24(0.13) 0.27(0.15) 0.03(0.02) 7.0** 

D 0.23(0.08) 0.23(0.12) 0.00(0.03) 0.1 ns 

22.5 A 0.16(0.10) 0.16(0.13) 0.00(0.20) Ons 

B 0.33(0.11) 0.33(0.12) 0.04(0.05) 0.7ns 

c 0.85(0.20) 0.83(0.19) 0.06(l. 19) 1.8ns 

D 0.32(0.11) 0.32(0.11) 0.04(0.05) 0.5ns 

Trends over time in heritability estimates are shown in Figure 3.4. The 

heritability estimates for height peaked at 9.5 years. At 13.5 years, it decreased to the 

same level as that at 1.5 years and remained constant thereafter. The peak coincides 

with a peak in additive genetic variance and the low in dominance variance. The 
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heritability estimates for straightness increased sharply between 1.5 and 9.5 years and 
again between 13.5 and 22.5 years, but were comparable at 9.5 and 13.5 years. 

Correlations between heritability estimates and standard deviation or mean 
were less than 0.5 for both traits, indicating that heritability could not be predicted well 
from the corresponding variance and mean. 

Log likelihood ratio tests 
The log likelihood ratios (Tables 3.21 and 3.22) suggest that differences 

between the two models at each site were significant only at age 1.5 years for height. 

Pooling data over sites at each age resulted in highly significant differences between the 

models (Tables 3.23 and 3.24), indicating that Model 2, which included the common 

envirom-nent effect, better fitted the data. 

Table 3.23. Estimates of narrow sense heritability for height, ratio of plot to phenotypic 

variances (c'), and log likelihood ratio test for differences between the two individual 

tree models, using pooled data over sites at each age. 

Age (yrs) Model I Model 2 LRT 

h' (se) h' (se) c' (se) 

1.5 0.24(0.07) 0.24(0.11) 0.09(0.02) 358.5** 

9.5 0.50(0.15) 0.50(0.12) 0.04(0.01) 26.4** 

13.5 0.24(0.06) 0.24(0.06) 0.04(0.01) 16.0** 

22.5 0.24(0.08) 0.23(0.07) 0.10(0.03) 11.3** 
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Table 3.24. Estimates of narrow sense heritability for stem straightness, ratio of plot to 

phenotypic variances (C2) , and log likelihood ratio test for differences between the two 

individual tree models, using pooled data over sites at each age. 

Age (yrs) Model I Model 2 LRT 

(se) h' (se) c' (se) 

1.5 0.01 (0.01) 0.01 (0.01) 0.01(0.01) 40.8** 

9.5 0.11(0.04) 0.11 (0.04) 

13.5 0.09(0.01) 0.09(0.03) 

22.5 0.21 (0.07) 0.22(0.08) 

0.08(0.01) 54.2** 

0.04(0.01) 17.7** 

0.10(0.04) 10.2** 

All the log likelihood ratio tests for the difference between the joint 

likelihood and analyses of pooled data across sites were significant (Table 3.25). This 

implies that fitting a model to the pooled data is not appropriate, as a consequence of 

heterogeneity of variances between the sites. The most appropriate fits, therefore, are 

those for individual sites. 

Table 3.25. Difference between the joint likelihood of the four individual site analyses 

(sum) and maximum likelihood values for the analyses of data pooled across the sites, 

and the log likelihood ratio test for the adequacy of pooling data across sites. 

Age Height Straightness 

Model I Model 2 Model I Model 2 

1.5 250.1** 117.1 ** 382.6** 373.2** 

9.5 59.5** 47.0** 101.0** 80.6** 

13.5 163.2** 155.9** 256.2** 245.4** 

22.5 52.9** 50.5** 90.9** 87.3** 
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Likelihood profiles 
Table 3.26 gives the confidence intervals from the DFREML 

approximation and that from the likelihood profile. The results show that the likelihood 

profile was not symmetrical, as assumed by the DFREML approximation. Therefore, 

biases are introduced by the DFREML approximation. 

Table 3.26. Confidence intervals for heritability estimates obtained from using the 

standard error from the DFREML (i. e. the second derivative of the likelihood) and those 

from likelihood profiles. 

Confidence interval 

Heritability Second derivative Likelihood profile 

0.24 0.10-0.38 0.14-0.34 

0.50 0.20-0.80 0.31-0.81 

0.24 0.12-0.36 0.14-0.43 

0.24 0.08-0.40 0.13-0.46 

Maternal andpaternal effects 

Maternal and paternal effects were fitted as additional random effects; 

these were found to be very small (c' <Ix 10-' for both traits), and were therefore not 

included in the model. 

3.4 Discussion 

The advantage of using the individual tree model in DFREML is that it 

gives one estimate of heritability by combining all sources of genetic information 

appropriately. In contrast, models available in GENSTAT REML only allow fitting of 

sib covariance and, therefore, give two estimates, and combining them appropriately 

when they are correlated and include the same genotypes is complex. A further problem 

is that pooling heritability estimates using the sampling variances, as in this study, biases 

the pooled estimate towards the smaller estimate since the sampling variance of 

heritability depends on the heritability itself. the bigger the heritability, the bigger the 
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sampling variance of the heritability. The estimates from individual tree model Nvere 
consistently higher than the pooled estimates from sib covariance analvses, indicating 
less bias with the individual tree model. A potential problem of using maximisation 
methods like DFREML is convergence to points other than the global maximum. In this 
study, different starting values were used to ensure a global maximum. 

Despite the fact that this was the first reported use of the individual tree 

model in P. taeda, the heritability estimates for height were within the range reported 
previously for this species (Table 2.2) and consistent with those reported for other pine 
species (Barnes 1992a and b, Cotterill et al. 1987, Pswarayi et al. 1996). However, this 
is to be expected from results in early generations, and in the absence of information to 

correct for the effects of selection of parents. Here, heritability and additive variance for 

height increased with age from 1.5 years to 9.5 years, and then decreased with age. 
Although the trend differed from those observed by Franklin (1979) and Foster (1986) 

in P. taeda, it agreed well with that reported by Balocchi et al. (1993) in P. taeda, who 
found heritability peaking at 14 years of age in a slower growing progeny test. Whilst 

this study and that of Balocchi et al. (1993) differ in the age of maximum heritability, 

the estimates were maximum at the same mean height, suggesting a possible link 

between mean height and heritability estimate. This is consistent with findings of 

Borralho et al. (I 992a), but contrasts with results reported by Borralho et al. (I 992b) and 

Woolaston et al. (1990) who found no relationship between trends in heritability 

estimates for height and growth rate in Eucalyptus globulus and P. caribaea, 

respectively. The change in heritability in long rotation crops such as tree is not 

surprising since genes involved in growth may change with age (Namkoong et al. 1988), 

and these changes may be related to different growth phases (Franklin 1979). In animals, 

this change in heritability with age was also attributed to the fact that the trait may 

change genetically with age (Visscher et al. 199 1), probably related to different growth 

phases as reported for trees. These growth phases might be due to changing influences 

of matemal effects in animals and to a lesser extend in trees and to nursery or 

competition effects in trees. Changes in heritability with age here may also be attributed 

to thinning and other management practices. For example, height at 9.5 years was 

assessed on felled trees, and hence more accurately assessed than that at 13.5 and 22.5 
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years which was assessed on standing trees. 

Heritability estimates for straightness in this study increased with age. a 
trend also reported by Shelbourne and Stonecypher (197 1) in P. taeda, although their 
estimates were much higher. The estimates reported in this study are consistent with 
those reported by Barnes (I 992a and b), Pswarayi et al. (1996), Cornelius (1994) and 
Cotterill et al. (1987) but lower than those reported by Woolaston et al. (1990) in other 
conifer species. In general, the estimates of heritability of stem straightness were lower 
than those of height. Parameter estimates for stem straightness have not been reported 
as frequently as growth traits, and estimates in the literature are variable: some 
heritability estimates for straightness have been higher than those for height in P. taeda 
(eg. Matziris and Zobel 1973), whereas others found them to be lower (Barnes 1992a 

and b, Cotterill et al. 1987, Pswarayi et al. 1996, Raymond and Cotterill 1990) or 
equivalent (Burdon et al. 1992a, Cornelius 1994) in other conifers. Therefore, results 
from this study and those from many other studies do not support the contention (e. g. 
Zobel and Talbert 1984) that heritability estimates of growth traits are lower than those 
for stem straightness. Estimates depend on how straightness was measured (Cotterill et 

al. 1987, Raymond and Cotterill 1990). Estimates originating from use of an absolute 

scale, as in this study, are lower than those originating from a site specific scale. The 

low estimates reported in this study are consistent with those reported by Bames (I 992a 

and b) and Pswarayi et al. (1996) using the same absolute scale on P. patula and P. 

elliottii, respectively. Major problems related to the use of the relative scale are that if 

a trait is poorly expressed at a site this method will indicate large genetic differences, 

when if fact they are absent, as reported by Williams and Lambeth (1989), and results 

are not comparable across sites adversely affecting deployment decisions. Estimates 

also depend on the number of categories with scales with few categories such as 3-point 

scale having lower heritability estimates than those with moderate categories such as 6- 

point scale (Raymond and Cotterill 1990). The low heritability estimates with a 3-point 

scale was attributed to the limited range of the scale which failed to detect genetic 

differences. Raymond and Cotterill (1990) also found that assessor error was increased 

with a scale with many categories (9-point scale) resulting in low heritability estimates. 

Another possible reason for the low estimates of heritability might lie in that the scale 
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used had a mid value which assessors might use very frequently for what appears to be 

average trees, reducing the heritability. There was very little evidence of additive or 
dominance variance for straightness at 1.5 years, indicating that environment effects 
were the major determinant of straightness at this age. This can be attributed to large 

measurement error because straightness is difficult to score at a young age. Also, trees 
at this young age are likely to be more affected by environmental variation, resulting in 
lower heritability estimates than at older ages. The high heritability estimates for 

straightness at 22.5 years, and the low estimates at 1.5 years, appear to indicate that stem 
straightness might be easier to measure on large trees than on small ones, an observation 
also made by Dean (1990). 

The phenotypic variance was expected to increase with age, mainly due to 

scale effects. Therefore, the decrease in the phenotypic variance between 13.5 years and 
22.5 years was unexpected. Although the thinning was systematic, the number of trees 

remaining per plot at 22.5 years was only 1-2 compared to 10 at 1.5 years and 5 at 9.5 

and 13.5 years. This reduction in the number of trees reduced the within plot variance 

substantially, and would explain the marked reduction in the phenotypic variance 
between 13.5 and 22.5 years. This results confirms Matheson and Raymond's (I 984a) 

observation that the phenotypic variance may be affected by thinning. Trees recovering 

from growth restriction such as those in the intermediate and suppressed classes might 

exhibit more rapid (compensatory) growth than trees in the dominant and codominant 

classes upon thinning, thereby reducing the phenotypic variance. As canopy closes, trees 

in the inten-nediate and suppressed classes might be expected to grow slower than those 

in the dominant and codominant classes due to competition for light and nutrients- 

thereby increasing the phenotypic variance. Therefore, thinning effects could partly 

explain the trend of phenotypic variance with age. 

The variance components and heritability estimates presented from data 

pooled over sites showed evidence of heterogeneity of variances over sites. Heritability 

estimates were slightly more accurately estimated from pooled data because they were 

estimated from a larger sample, as evidenced by the smaller standard errors associated 

with them. However, pooling data may give biased estimates in the presence of 

heterogeneity of variances. The log likelihood ratio tests (Table 3.25) indicate that 
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pooling data from the different sites is likely to give heritability estimates which are 
substantially biased as a result of heterogeneity of variances and/or genotype x 
environment interactions. The lower heritability estimates from pooled data imply that 

predicted gain would be less than that from the individual site estimates. Therefore, 

estimates from the pooled data will only be used subsequently in BLUP evaluation after 
correcting for heterogeneity of variances if there are no genotype x environment 
interactions due to rank changes using appropriate methods such as that described by 

Visscher et al. (1991). However, if GE is present, and it is due to rank changes, 

combining the data as in the pooled analyses will remain inappropriate. Presence of 

genotype x environment interactions due to rank changes will be investigated in a 

subsequent chapter. 
The ratio of dominance to additive variance for height was less than one 

at all ages in the pooled analysis, indicating that dominance variance was of lesser 

importance. These ratios differed from those of Balocchi et al. (1993) and Foster and 

Bridgwater (1986), who reported dominance variance to be considerably higher than 

additive variance at young ages (less than 6 years) in P. taeda. The ratios were 

consistent with those reported for P. elliottii grown in Zimbabwe (Pswarayi et al. 1996). 

For straightness, dominance variance was much greater than additive variance at 1.5 

years; thereafter the relationship was reversed. The pattern of the ratios in straightness 

differed from those reported by Pswarayi et al. (1996), who found dominance to be less 

than additive variance at 5 and 15 years of age but more than the additive variance at 8 

years of age. 

Common environmental effects for height and straightness were 

substantially less than the heritability estimates for both traits, indicating a low intra- 

class correlation between trees within a plot. Excluding the plot term from the model 

resulted in inflated estimates of dominance variance, but the heritability estimates and 

their standard errors were not sensitive to inclusion of plots in the model. Therefore, the 

true level of dominance variance was obtained when plot was included as an additional 

uncorrelated random effect. This is because family groups were planted within single 

plots at each site. 
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Chapter 4 

BIVARIATE PARAMETER ESTIMATES FOR 

HEIGHT AND STRAIGHTNESS 

4.1 Introduction 

A knowledge of genetic parameters of growth and wood quality traits are 

necessary to estimate accurate breeding values, to combine different traits in selection. ) 
to predict genetic response to selection and to predict the optimum selection age. To 

achieve these objectives, genetic and phenotypic correlations are of major importance. 

For example, juvenile-mature genetic correlations are essential for estimation of genetic 

gain from early selection and trait-trait correlations are important for construction of 

multi-trait selection indices. Early selection is an indirect selection where performance 

at a young age is used as an indicator of mature age performance (Burdon 1989). Early 

selection may result in shortening of the generation interval, increase in gain per unit of 

time, may lead to easier incorporation of changes in market demands and to savings in 

testing. On the other hand, multi-trait selection involving height and straightness, for 

example, may improve the recovery of the wood (i. e. the economic value) if the traits 

are positively correlated. However, if the traits are negatively correlated a restricted 

multi-trait selection index may be appropriate. 

Most studies in P. taeda have indicated high positive age-age genetic 

correlations for height (Foster 1986, Franklin 1979, Lambeth et al. 1983). Further, 

Lambeth (1980) developed a generalized model which showed that phenotypic 

correlations between heights at different ages were predictable based on the natural 

logarithm of the ratio of the ages. This model and similar logarithm type of models have 

been widely used by tree breeders to make decisions on the optimum selection age (e. g. 

Lambeth 1980, King and Burdon 1991, Magnussen 1988, McKeand 1988, 

Riemenschneider 1988, Me and Ying 1996). Lambeth (1980) suggested that age-age 
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phenotypic correlations were fair estimates of their genetic counterparts. Recent work 
has cast doubt upon the critical assumption made by Lambeth concerning the similarity 

of genetic and phenotypic correlations, and there is increasing evidence , N-hich indicates 

that genetic correlations are higher than phenotypic correlations (Lambeth et al. 19U. 

Newman and Williams 1991, Riemenschneider 1988, Pswarayi et al. 1996), implying 

that the Lambeth model underestimates genetic correlations. This underestimation of 

genetic correlations will result in underestimates of gain, and may consequently affect 

predictions of the optimum selection age. 

In contrast, there is absence of reports of age-age correlations for straightness in 

P. taeda. Studies in other pine species indicated that there were strong positive age-age 

genetic correlations in straightness (Pswarayi et al. 1996). Age-age correlations for 

straightness are important because ftu-ther improvement in quality of end product might 

be obtained by including straightness in an index. Inclusion of straightness in an index 

will depend on its heritability and its genetic correlation with height. Unfortunately, the 

estimates of genetic correlations between height and straightness are few in P. taeda. 

Those reported for other pine species in Zimbabwe were generally positive and lower 

than 0.5 (Barnes 1992a and b, Pswarayi et al. 1996), and those reported for other tropical 

pine species were also low (Woolaston et al. 1990). 

The objective of this Chapter is to estimate age-age correlations of height and 

straightness and the trait-trait correlation between them. Height was chosen as a 

selection criteria because it is a good predictor of volume even at young ages (Foster 

1986, Lambeth et al. 1983). The estimated age-age correlations for height will be 

modelled over time using regression models. Further, genetic correlations will be 

estimated using covariance functions (Kirkpatrick et al. 1990). 

4.2 Materials and Methods 

Statistical analyses 

Data were analysed using bivariate individual tree model DFREML (Meý-er 

1989). Two programs were available for bivariate analyses. The first program performed 
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analyses when the same model of analysis was applied to both traits: same fixed and 

random effects, while the other program allowed models differing in both the fixed and 

random effects to be fitted to the two traits. The first program was used for estimating 

correlations between height and straightness since both traits were measured on the same 

trees and the same models were applied to both traits. The other program was used to 

estimate age-age correlations because there were different levels of random tree effects 

at different ages due to thinning. The assessments at different ages within a trait were 

treated as different traits. Analysis were performed within each site. and on data pooled 

over sites in order to improve the precision of the estimates. For the bivariate analyses 

involving 9.5 years and older ages, the two traits were assessed on separate, but 

genetically related trees since assessments at 9.5 years were carried out on trees that 

were thinned. Therefore, genetic covariances exist between the traits but there are no 

environmental covariances. 

The following bivariate tree model was used: 

YI -10- bl -10- al - wl 0 ei- -el- 
(4.1) 

: 
y2ý 0 X2- 

-b2.0 

Z 
2. -a 2« 

0W 
2« -c 2« -e 2« 

where: yj 9 Y2 = the vector of observations for traits I and 2, respectively, 

b2 = the vector of fixed effects for traits I and 2, respectively, 

a, , a2 = the vector of random tree (additive genetic) effects for traits I and 2, 

respectively, 
CI I C2 ý the vector of additional uncorrelated random effects for traits I and 2, 

respectively, 
XI 

9 
X2= the incidence matrix for fixed effects for traits 1 and 2 respectively, 

W19 W2= the incidence matrix for additional random effects for traits I and 2, 

respectively, 
ZI 

9 
Z2= the incidence matrix for additive direct effects for traits I and 2. 

respectively, 

el 9 e2 ::::::::: the vector of residual effects for traits I and 2, respectively. 
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The variance-covariance structure of the random effects of the bivariate tree model was 
as follows: 

V 

al 
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c2 

el 

e2 
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where: (: Y'alý (J 2 
a2= the direct additive genetic variances for traits I and 2, respectively, 

*2 
clý 

G2 
c2= the additional random effect variances for traits I and 2, respectively, 

*2 
eli, 

CJ 2 
e2= the residual variances for traits I and 2,, respectively, 

COVaI2= the direct genetic covariance between traits I and 2, 
COVcI2= the additional random effect covariance between traits I and 2, and 
Cove 1 2= residual covariance. 
For the individual site analyses, the fixed effect was the replicate, and for the 

pooled analyses, the fixed effects were replicate and site. For all analyses, the additional 

uncorrelated random effect was the family. While for univariate analyses, blocks were 
fitted as additional random effect, it was not possible to do so in the bivariate analyses 
because the programme restrictions allowed fitting only one extra random effect. This 

problem was overcome by pre-adjusting the data for the block effects before each 
bivariate analysis. The first starting values of variances and covariances were estimated 
from the univariate analyses. Different starting values from these initial ones were used 

to ensure that a global rather than a local maximum had been reached. 

The phenotypic correlations are the sum of the genetic and environmental 

components, the correlations being weighted by the heritability, and the proportion of 

variance due to environment and non-additive genetic effects, respectively: 

rI, = 
hlh2rA+ 

ele2r, (4.3) 

where rl, = phenotypic correlation, tý, = additive genetic correlation, re= environment 

64 



correlations, hl, h, = the square root of heritability, el, e-, = square root of the proportion 
of phenotypic variance due to environmental effects plus non-additive effects, for traits 
I and 2 (Falconer 1989). The sampling errors of the genetic correlations were derived 
using the method of Robertson (195 9): 

se(r A) = 

(I 
A 

V2-- 

ýs-e(h, 2)s e (h2) 
2 

h1h 2 
(4.4) 

where: 

se(rA), se(h'j), se(h'2) are standard errors of the genetic correlation and 
heritability estimates for traits I and 2, respectively, 
hl, h2 are square root of the heritability estimates for traits I and 2, 

respectively. 

Robertson's formula gives an approximate estimate of the standard error of the genetic 
correlation. Therefore, in order to get accurate confidence intervals for the genetic 

correlation estimates from the pooled data, likelihood profiles were plotted by fixing the 

genetic correlation to different values, and the likelihood maximised with respect to all 
the other parameters. The 95% confidence interval was obtained by dropping 1.92 

(0.5 X21,0.05)from the maximum log likelihood (Wetherill 198 1). Estimation of standard 

errors of genetic correlations in this way is computationally demanding, and therefore 

only a few likelihood profiles were plotted to verify the estimates from Robertson's 

formula. 

A predictive model was fitted by regressing phenotypic correlations for height 

on the natural logarithm of the ratio of the younger age to the older age (LAR). Six 

models for predicting genetic correlations were tested. The relationship between genetic 

correlations, and the natural logarithm of the ratio of the younger age to the older age 

(LAR), was developed by Lambeth (1980); rp was equated to rg, and rp predicted by: 

Model 1: rp = 1.02 + 0.30810ge (younger age/older age) (4.5) 

The equality of rp and rg was removed: 

Model 2: r. = PO +pI (LAR), (4.6) 
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where P,,, P, were derived from estimates of rg at 1.5,9.5,13.5 and 22.5 years. 
In order to improve Model 2, Model 3 was derived by including additional genetic 

correlations involving pooled data from two progeny tests established in ZimbabxN, e in 

1976, and assessed at 7.5 and 12.5 years of age (Gwaze 1995): 

Model 3: rg = Po +pI (LAR), (4.7) 

where PO, P, were derived from estimates of rg at 1.5,7.5,9.5,12.5,13.5 and 22.5 years. 
Model 4 was derived as for Model 2, but log of height ratio used as a predictor: 
Model 4: rg : --": 

PO +PI 10ge (Height ratio) (4.8) 

Model 5 was derived as for Model 2, but age difference was used as a predictor: 

Model 5: rg = PO + P, (Age difference) (4.9) 

Additive covariance functions for height, using orthogonal polynomials with 

symmetric coefficients (Kirkpatrick et al. 1990) reported in Chapter 5, were also used 

to predict trends of genetic correlations. The additive covariance matrix which was used 

to estimate the covariance functions was estimated from the bivariate DFREML runs. 

The covariance between records taken at ages tj andt2 is (Model 6): 

k-I k-1 

T(t c (ýj(Oý' 
Model 6: Ilt2): -E 

E 
ijýi(td 

i=O j=0 

(4.10) 

where T is the covariance function, k is the order of fit, C symmetric coefficient matrix 

associated with the covariance function, and (ý orthogonal polynomials. 

Then, 

cov A 
(t 

Pt2) 
r =- 

9 ývar 
A(td var A 

(t2) 
(4.11) 

For bivariate analyses, more than one heritability estimate is obtained for each 

trait at each age. A simple average of the estimates for each trait was obtained. 
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4.3 Results 

Age-age correlations at individual sites 

Tables 4.1 and 4.2 show the age-age genetic and phenotypic correlations, 

respectively, for height. Genetic correlations between early height growth (1.5 years) 

and mature age (22.5 years) were lowest; the lowest values were at sites A and B,, where 
they were 0.10 and 0.3 1, respectively. Genetic correlations at other sites and between 

other ages were of moderate to high magnitude (>O. 6), with the majority being greater 

than 0.8. Phenotypic correlations were consistently lower than the genetic correlations. 
Estimation of phenotypic covariance assumes that the two traits are measured on the 

same individual. Because height at 9.5 years was assessed on trees that were thinned, 

and hence heights at 9.5 years and older ages were assessed on different individuals, the 

phenotypic correlations could not be estimated. No site had consistently high or low 

correlations. 

Table 4.1. Estimated age-age genetic correlations for height at four sites and four ages, 

based on analysis by bivariate individual tree model DFREML. 

Traits Site A Site B Site C Site D 

HTI. 5, HT9.5 0.88 0.73 0.96 0.81 

HTI. 5, HT13.5 0.80 0.61 0.87 1.00 

HTI. 5, HT22.5 0.10 0.31 0.75 0.60 

HT9.5, HT 13.5 0.81 1.00 0.97 0.94 

HT9.5,, HT22.5 0.77 0.99 0.82 0.61 

HT I 3.5, )HT22.5 
0.96 0.77 0.96 0.96 
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Table 4.2. Estimated age-age phenotypic correlations for height at four sites and four 

ages, based on analysis by bivariate individual tree model DFREML. 

Traits Site A Site B Site C Site D 

HTI. 5, HT9.5 0.47 0.46 0.45 0.37 

HT 1.5, HT 13.5 0.21 0.37 0.42 0.23 

HTI. 5, HT22.5 0.08 0.14 0.26 0.18 

HT9.5 HT 13.5 ---- 
HT9.5, HT22.5 

HT I 3.5, HT22.5 0.58 0.53 0.78 0.84 

Tables 4.3 and 4.4 show the age-age genetic and phenotypic correlations, 

respectively, for straightness. The genetic correlations between straightness at 1.5 and 

the older ages ranged from -0.89 to 0.21. Those between straightness at 9.5 years and 

22.5 years were greater than 0.7 at all sites. Those between straightness at 13.5 and 22.5 

years were greater than 0.8 at all sites, except at site C, which was 0.28. The phenotypic 

correlations for straightness were generally lower than corresponding genetic 

correlations. Like the genetic correlations, the phenotypic correlations between 1.5 years 

and other ages were very low (less than 0.11), but all were positive. Phenotypic 

correlations between other ages were variable, ranging from -0.01 to 0.67. 

Table 4.3. Estimated age-age genetic correlations for straightness at four sites and four 

ages, based on analysis by bivariate individual tree model DFREML. 

Traits Site A Site B Site C Site D 

STI. 5, ST9.5 0.04 -0.09 0.21 -0.07 

STI. 5, ST13.5 -0.89 0.08 0.14 0.20 

STI. 5, ST22.5 -0.55 -0.11 0.11 0.04 

ST9.5, ST13.5 -0.01 0.10 1.00 0.79 

ST9.5, ST22.5 0.71 0.73 0.77 0.95 

ST13.5, ST22.5 0.94 0.84 0.28 1.00 
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Table 4.4. Estimated age-age phenotypic correlations for straightness at four sites and 
four ages, based on analysis by bivariate individual tree model DFREML. 

_ 
Traits Site A Site B Site C Site D 

STI. 5, ST9.5 0.03 0.06 0.08 0.09 

STI. 5, ST13.5 0.04 0.01 0.11 0.10 

STI. 5, ST22.5 -0.01 0.01 0.05 0.06 

ST9.5, ST13.5 ---- 
ST9.5, ST22.5 

ST13.5, ST22.5 0.38 0.42 0.15 0.67 

Correlations between height and straightness 

Genetic and phenotypic correlations between height and straightness are shown 
in Tables 4.5 and 4.6, respectively. Genetic correlations ranged from -0.64 to 0.64. They 

were lowest between height and straightness at 1.5 years of age, at all sites, and highest 

between height and straightness at age 22.5 years at sites A and B. Phenotypic 

correlations between height and straightness were all positive, indicating a favourable 

relationship between straightness and height, and of low magnitude (range, 0.04 to 0.42). 

Table 4.5. Estimated trait-trait genetic correlations for height and straightness at four 

sites and four ages, based on analysis by bivariate individual tree model DFREML. 

_Traits 
Site A Site B Site C Site D 

HTI. 5, STI. 5 -0.64 0.04 -0.42 0.13 

HT9.5, ST9.5 0.51 -0.04 0.28 0.38 

HT13.5, ST13.5 0.13 0.47 0.12 0.19 

HT22.5, ST22.5 0.64 0.63 0.30 0.12 
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Table 4.6. Estimated trait-trait phenotypic correlations for height and straightness at 
four sites and four ages, based on analysis by bivariate individual tree model DFREML. 

Traits Site A Site B Site C Site D 

HT1.5, STI. 5 0.21 0.20 0.13 0.20 

HT9.5, ST9.5 0.28 0.42 0.24 0.34 

HT13.5, ST13.5 0.21 0.23 0.35 0.39 

HT22.5, ST22.5 0.37 0.24 0.19 0.04 

Correlations using pooled data over sites 

Results of analyses of pooled data over sites are shown in Tables 4.7 and 4.8. 

Age-age genetic correlations for height were high, ranging from 0.76 to 0.97. As the age 

interval increased, the genetic correlations for height decreased. The precision of the 

genetic correlations increased with increasing values of the correlation itself as 

expected. The phenotypic correlations were lower than the genetic correlations (range, 

0.21 to 0.80). In general, the phenotypic correlations were lower than 0.50 except that 

between 13.5 and 22.5 years which was 0.80. In general, age-age genetic correlations 

for straightness were lower than those for height (range, -0.05 to 0.94) with those 

involving 1.5 years being lowest (range, -0.05 to 0.21). Phenotypic correlations for 

straightness were low to moderate (range, 0.02 to 0.55), and lower than genetic 

correlations. 

Genetic correlations between height and straightness were low to moderate 

(range, -0.28 to 0.66) with those involving straightness at 1.5 years being mainly 

negative. The highest correlation at one age was between height and straightness at 22.5 

years (0.52); and the highest correlation between ages was between height at 22.5 years 

and straightness at 13.5 years (0.66). The other genetic correlations were below 0.45. 

Phenotypic correlations between height and straightness were also low (range, -0.19 to 

0.48), and were not significantly different from the genetic correlations. 
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Table 4.7. Estimated genetic (below the diagonal) and phenotypic correlations (above 

the diagonal), and heritability estimates (on the diagonal) for height and straightness 

using data pooled across sites at the four sites, based on analysis by bivariate individual 

tree model DFREML. Standard errors of the genetic correlations are in parenthesis. 

HTI. 5 HT9.5 HT13.5 HT22.5 STI. 5 ST9.5 ST13.5 ST22-5 

HTI. 5 0.22 0.48 0.31 0.21 0.27 0.06 0.12 0.06 

HT9.5 0.93 0.50 0.09 0.12 0.48 -0.19 
(0.03) 

HT 13.5 0.85 0.96 0.22 0.80 0.09 0.35 0.33 0.19 

(0.07) (0.01) 

HT22.5 0.76 0.85 0.97 0.26 0.05 -0.04 0.16 0.21 

(0.10) (0.05) (0.01) 

STI. 5 -0.08 -0.28 -0.17 0.04 0.01 0.06 0.06 0.02 

(0.48) (0.32) (0.34) (0.36) 

ST9.5 0.14 0.13 0.17 0.36 0.20 0.12 - - 
(0.28) (0.21) (0.21) (0.19) (0.41) 

ST13.5 0.38 0.45 0.25 0.66 0.11 0.94 0.09 0.55 

(0.24) (0.16) (0.19) (0.12) (0.40) (0.03) 

ST22.5 0.14 0.22 0.28 0.52 -0.05 0.66 0.92 0.20 

(0.28) (0.20) (0.20) (0.16) (0.43) (0.15) (0.04) 

The environmental correlations ranged from low negative to low positive (Table 

4.8). As for phenotypic correlations, environmental covariance assumes that the two 

traits are measured on the same individuals. Therefore, environmental correlations 

between 9.5 years and subsequent years could not be estimated since height was 

assessed on different individuals in different years. 
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Table 4.8. Estimated environmental correlations for height and straightness using data 

pooled across sites at the four sites, based on analysis by bivariate individual tree model 
DFREML. 

HT9.5 HT13.5 HT22.5 STI. 5 ST9.5 ST13.5 ST22.5 

HTI. 5 0.25 0.16 0.04 0.31 0.05 0.08 0.03 

HT9.5 --0.16 0.14 0.57 -0.44 
HT 13.5 0.74 0.11 0.38 0.35 0.15 

HT22.5 0.05 -0.15 0.05 0.09 

STI. 5 0.06 0.07 0.03 

ST9.5 - - 
ST13.5 0.49 

Loglikelihood profiles 

Two loglikelihood profiles were plotted for genetic correlations and, in all cases, 

the standard errors of the genetic correlations estimated using Robertson's formula were 

very similar to those estimated using the 2nd derivative of the loglikelihood. For 

example, the difference between the standard error of the genetic correlation between 

straightness at 13.5 years and height at 22.5 years was only 0.02, with that estimated 

using the Robertson's formula being lower. The loglikelihood profile was not 

symmetrical, although its departure from symmetry was not great. This resulted in the 

confidence interval from the loglikelihood profile being slightly different from that 

estimated using Robertson's formula. 

Modelling age-age correlationfor height using Lambeth type model 

Details of the results of fitting age-age genetic and phenotypic models are 

presented in Table 4.9. The following regression model was obtained for genetic 

correlations (fitting Model 2) (Figure 4.1): 
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rA -= 0.98 + 0.065 (LAR) (R' = 0.61). (4.12) 

The intercept was less than unity and this might be attributed to random measurement 

errors. Since the genetic correlations between heights assessed at the same age can be 

expected, on statistical grounds, to be unity, the regression model was forced to have a 

constant equal to unity and the new model was: 
1.00 + 0.076 (LAR). (4.13) 

For Model 2, constraining the genetic correlations between height assessed at the same 

age to be I resulted in a fit which was not significantly different from the unconstrained 

one (i. e. po = 1, P>0.05). The estimated regression slope was significantly lower than 

that of Lambeth's (P < 0.05). As a result, predictions of the genetic correlations from the 

Lambeth model declined more rapidly than those from the genetic correlation model as 

the age differential increased (Figure 4.1). Table 4.10 shows the observed genetic 

correlations together with the predictions from the genetic correlation model and that of 

Lambeth. The good fit with the new model would be expected as it is obtained from the 

data presented, but the large divergence between the observed and predictions from the 

Lambeth model is clear, particularly for genetic correlations involving 1.5-year height 

assessment. 

The following model between phenotypic correlations and the log of age ratio 

was highly significant: 

rp = 0.94 + 0.274 (LAR) (R 2=0.99) 
11 (4.14) 

and not significantly different from that of Lambeth (Figure 4.1). Unlike Lambeth's 

(1980) findings, genetic and phenotypic correlations between height at age 1.5 and at 

subsequent ages followed the same linear relation with LAR as did other age 

combinations. 
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Table 4.9. Results of fitting genetic and phenotypic correlation models for height. 

Type of Model Regression coefficient Residual df R' 

Intercept±sd Slope:: Esd mean sq. 

Logarithmic (age ratio)-rp 

Model 2 

Model 2 (constrained) 

0.94±0.030 

0.98±0.044 

1 

0.91±0.026 

0.274±0.015 

0.065±0.026 

0.076±0.013 

0.042±0.021 

0.0006 

0.0032 

0.0028 

0.0044 

2 0.99 

4 0.61 

Model 3 

Logarithmic (height ratio) 
Model 4 

Linear (age difference) 

Model 5 

Model 5 (constrained) 

5 

13 0.24 

0.95±0.045 0.037±0.022 0.0047 4 0.43 

1.03±0.031 -0.013±0.003 0.0011 4 0.87 

1 -0.011±0.001 0.0011 5 

Table 4.10. Predicted age-age genetic correlations for height at four ages by the 

Lambeth's model (Model 1) and age-age genetic correlation model (Model 2), and 

differences with observed estimates (%). 

Traits Observed Model I Model 2 

rA Predicted Diff. Predicted Diff. 

HTI. 5, HT9.5 0.93 0.45 52 0.86 7 

HTI. 5, HT13.5 0.85 0.34 60 0.83 2 

HTI. 5, HT22.5 0.76 0.19 75 0.79 -4 

HT9.5, HT 13.5 0.96 0.91 5 0.97 -1 

HT9.5, HT22.5 0.85 0.75 12 0.93 -9 

HT I 3.5, HT22.5 0.97 0.86 11 0.96 1 
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Figure 4.1. Relationship between age-age correlations for height and natural logarithm of the 
ratio of the younger to the older age (LAR). The Lambeth model is shown. 
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Figure 4.2. Relationship between age-age genetic correlations for height and the age differences. 
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Effect offitting Model 3 

The 1976 genetic tests were assessed for height at 7.5 and 12.5 years, and the 
genetic correlations involving these assessments are presented in Table 4.11. When data 
involving the 1976 assessments were included in fitting a Lambeth type model, the 
following model was obtained (Model 3): 

rA :-0.91 + 0.042 (LAR) (R 2=0.24) 

The slope of this model was not significantly different from zero and this was attributed, 

partly, to a lower than expected genetic correlation (0.72) between 12.5 and 22.5 years, 

which resulted in this point having a large standardized residual. Although removing this 

point caused the regression to be significant, there was no biological rationale for this 

point to be excluded from the analysis. Since the variance increased with decreasing 

genetic correlation, the genetic correlations were weighted by the inverse of their 

corresponding variances. Although the weighted regression was significant, the plot of 

the residuals revealed that our model had changed. Therefore, weighting and removing 

the outlier were not viable options. The model resulting from forcing the regression to 

have a unity intercept differed significantly from the unconstrained model. The fact that 

the fit of the age-age genetic correlation model for height was poor when the genetic 

correlations involving the 1976 assessments were included indicates possible genotype 

by environment interaction between the 1972 and 1976 data. The presence of genotype 

by environment interaction is also indicated by lower genetic correlations between sites 

than within sites (Table 4.11). 

Modelling age-age genetic correlation using Models 4-6 

Since the genetic correlation prediction model using the Lambeth type model 

was not a good fit, other types of models were fitted to the data. Firstly, a model using 

age differences as the predictor of genetic correlation was fitted. This model was fitted 

because the genetic correlations tend to decrease as age difference increases. Secondly, 

a prediction model was fitted using the natural logarithm of the ratio of height at the 

younger age to height at the older age. This prediction model is believed to fit better than 
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the ratio of the ages (Williams' pers. communication). Thirdly, genetic correlations Nvere 

predicted from (co)variance functions estimated in Chapter 5. 

Table 4.11. Predicted age-age correlations for height at six ages by Lambeth's model 
(Model 1) and the covariance functions (Model 6), and the differences with observed 

estimates (%). 

Ages Observed 

rA 

Model 

Predicted 

I 

Diff. 

Model 6 

Predicted Diff. 

1.5ý 7.5 0.91 0.52 43 1.02 -12 

1.5,9.5 0.93 0.45 52 0.95 -2 

1.5,12.5 0.79 0.37 53 0.84 -6 

1.5ý 13.5 0.85 0.34 60 0.80 6 

1.5ý 22.5 0.76 0.19 75 0.78 -3 

7.5,9.5 0.96 0.95 1 1.00 -4 

7.5 ý 12.5 0.90 0.86 4 1.00 -11 

7.5,13.5 0.90 0.84 7 0.94 -4 

7.5,22.5 0.85 0.68 20 0.90 -6 

9.5,12.5 0.90 0.94 -4 1.00 -11 

9.51 13.5 0.96 0.91 5 1.00 -4 

9.5,22.5 0.85 0.75 12 0.97 -14 

12.5,13.5 0.86 1.00 -16 1.00 -16 

12.5922.5 0.72 0.84 -17 0.98 -36 

13.5,22.5 0.97 0.86 11 0.99 -2 

The model with log of height ratio as the predictor of genetic correlation (Model 4) was 

a poorer fit than that based on the log of age ratio predictor, as shown by the higher 

residual mean square and lower R' (Table 4.9). The best predictor of genetic correlation 

was the age difference with the lowest residual mean square, and highest R' (Table 4.9 

'C. G. Williams, Texas A&M University, Texas, USA. 
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and Figure 4.2). For Model 5, constraining the genetic correlations between height 

assessed at the same age to be I resulted in a fit which was not significantly different 
from the unconstrained model (i. e. po = 1, P>0.05). The genetic correlations calculated 

using the covariance function were more consistent with the observed than those 
estimated by the Lambeth model (Table 4.11). 

4.4 Discussion 

All age-age genetic correlations estimated for height using pooled data were high 

indicating that early selection in P. taeda in Zimbabwe will be effective. Age-age 

genetic correlations estimated for height are in close agreement with estimates reported 
by Lambeth et aL (1983) and McKeand (1988) for P. taeda, and Barnes (1992a and b) 

and Pswarayi et aL (1996) for other pine species in Zimbabwe. Foster (1986), Franklin 

(1979) and Williams and Megraw (1994) reported weak genetic correlations (less than 

0.4) between height at ages younger than three years and ages older than 12 years from 

P. taeda genetic tests in the USA. The results of the present study show an opportunity 
for selecting at a very young age (1.5 years). However, it may not be possible to take 

advantage of early selection because the species only starts flowering at age 10 years in 
Zimbabwe (BameS2, personal communication). The difference between age-age genetic 

correlations from this study and those from USA genetic tests may be a consequence of 

management and methodological differences. 

In some reports, family mean correlations were used as approximations of 

genetic correlations (e. g. McKeand 1988). Family mean correlations are likely to 

underestimate genetic correlations because the components of family mean correlation 

are (Narnkoong et aL 1979): 

cov Fl, F2 
+ cov 

el, e2 
r 171,172 

G2+02G2+ (j 
2 ý 

FI ei 

ý 

F2 e2 

R. D. Barnes, Oxford Forestry Institute, Oxford, UK. 

(4.16) 
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where62F =family mean variance andC'e= error variance of family means, COVFI, F2 = 
covariance of family means andCOVel, e2= error covariance. While the error covariance 

can be zero, the error variance is rarely zero. Also, the error variance may contain 
dominance effects in the case of full sib-families, thereby increasing the bias in the 

genetic correlation estimate. For example, Lambeth et al. (1983) found that the family 

mean correlations were less than the genetic correlations by as much as 35%. In other 

studies, genetic tests were not thinned at random (i. e the best trees were retained, e. CT 
Lambeth et al. 1983), while the Zimbabwe tests received a systematic thinning. This non 

random type of thinning could also lead to biased estimates of genetic parameters as 
discussed in Chapter 3, Section 4. It has also been suggested that growth rates might 

affect the genetic correlations, with lower genetic correlations between any two ages in 
fast growing material (Magnussen 1988), perhaps as a consequence of slower 

physiological changes in slower growing trees leading to the expression of more similar 

genes at any two ages than for faster growing trees. The growth rates of trees in the 

Zimbabwe tests were higher than those in the USA tests. Under this hypothesis, genetic 

correlations from the Zimbabwe tests may be expected to be lower, but the opposite was 

true. Hence, differences in growth rates are unlikely to explain the differences in the 

genetic correlations reported here and those reported for P. taeda grown in USA. 

Age-age genetic correlations for height were higher than corresponding 

phenotypic correlations, which is consistent with the literature survey of genetic and 

phenotypic correlations in P. taeda by Newman and Williams (199 1) and in other pine 

species (Barnes 1992a and b; Pswarayi et al. 1996; Riemenschneider 1988). The 

observation that age-age genetic correlations are generally higher than corresponding 

phenotypic correlations has also been reported in growth traits in animals (Bishop 1992, 

Fimland 1973, Koch et al. 1982). Since similar genes are likely to influence a trait at 

different ages, age-age genetic correlations can be expected to be high. However, age- 

age phenotypic correlations can be expected to be low due to measurement errors and 

other environmental factors. The Lambeth model underpredicted genetic correlations. 

This was attributed to the fact that the Lambeth model used phenotypic correlations 

which tend to be lower than the genetic correlations. Results of this study support the 

assertion that the Lambeth model underestimates genetic correlations, and it is a good 

79 



predictive model for the phenotypic correlations. Although use of phenotypic 
correlations might be more desirable than genetic correlation in tree breeding as the 
former are estimated with much higher precision, the phenotypic correlations in this 
study were significantly lower than their genetic correlation counterparts. Despite having 

a limited number of parents here, the results show that the precision of age-age genetic 
correlations for height was high because the genetic correlations themselves were high. 
The Lambeth model was based on data from Douglas fir, Ponderosa pine and Loblolloy 

pine genetic tests which were not thinned and therefore suffered mortality from 

competition. The impact of better silviculture on genetic or phenotypic correlations is 

unknown. Franklin (1979) found that genetic correlations for height measured at two 
different ages were generally high if both measurements occurred either before or after 
the onset of competition, whereas the genetic correlations were low or even negative if 

the onset of the competition occurred between the two measurements. On the other hand, 

Lambeth (1983) refutes this hypothesis. The results from this study indicate that 

competition may not have an effect on phenotypic correlations since our model was not 

significantly different from that of Lambeth. The study reported by Riemenschneider 

(1988) for a genetic test of Pinus banksiana measured up to 7 years, and therefore 

unaffected by competition effects, supports the hypothesis that phenotypic correlations 

are not affected by competition. He found that the phenotypic correlation model did not 
differ significantly from the Lambeth model, although the genetic correlation model did. 

The economic consequences of using the Lambeth model based on phenotypic 

correlations may be very high in forest trees which have long generation intervals, and 

so more efficient methods should be used for predicting genetic correlations. 

Our findings disagree with those of Burdon et al. (1992b) who found that the 

logarithmic relation of Lambeth's model represents a valid framework for describing 

age-age genetic correlations for height. This study indicates that the logarithmic 

relationship is not necessarily the best model. The best fit for the genetic correlations in 

this study was provided by the model involving age difference. The regression models 

assumes consistent and predictable changes of age-age correlations with time, an 

assumption that has not been verified, and may not be valid in some cases. Therefore, 

covariance functions (Kirkpatrick et al. 1990) might be more efficient, as they do not 
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make any prior assumptions about the model, and hence are more flexible. We found the 
genetic correlations predicted by the covariance functions to be more consistent Nvith our 
data. Fitting covariance functions requires good data sets, which may not be available-, 
computational procedures are more involved than those of simple linear regression, 
making simple linear regressions more attractive for many situations in forestry. Genetic 

correlations predicted by the different methods presented here may have Nvide 
implications for the expected gain and optimum age for selection, and this will be 

examined in a subsequent study in this thesis. 
Age-age genetic correlations in straightness between 1.5 years and older ages 

were very low and this could partly be explained by the fact that this trait is difficult to 

measure at a young age. The low correlation indicates that there were large rank changes 
in parents between 1.5 years and subsequent ages. Genetic correlations between 

straightness at older ages were moderate to high, indicating that early selection at ages 
9.5 years or older in this trait will result in improvement in straightness at rotation age. 
Results of this study are consistent with those reported by Pswarayi ei al. (1996). The 

results of this study show that it might not be possible to consider straightness scores at 
different ages as repeated records, rather should be considered as different traits. The 

repeatability model assumes that the traits are genetically similar, and that variances 

across ages are equal and heritabilities are equal, which does not appear to be the case 
here. 

Genetic correlations between height and straightness were generally low and 

positive, except those involving straightness at 1.5 years which were generally negative, 
indicating that there were few similar genes influencing the two traits at the older ages. 

Selection on height alone at any age should result in improvement in straightness at 

harvest age, but selection on straightness alone at 1.5 years would adversely alter 

straightness at harvest age. There appear to be no genetic correlations between height 

and straightness reported in P. taeda in the literature. Those reported here were lower 

than those reported by Woolaston et al. (1990) in P. caribaea in Australia, and by 

Cotterrill et al. (1987) and Pswarayi et al. (1996), and higher than those reported by 

Barnes et al. (1992a and b), for other pine species in Southern Africa. In this study 

genetic and phenotypic correlations between height and stem straightness were not 
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significantly different. The result is consistent with studies in animals. For example, 
Cheverud (1988) compared 41 published estimates of pairs of trait-trait genetic and 

phenotypic correlations from mouse populations, and Koots and Gibson (1996) 

compared 10 15 pairs from beef cattle populations, and both found that the differences 

between trait-trait genetic and phenotypic correlations were mostly due to sampling 

errors. 
Heritability estimates for height and straightness, with the assessments at the four 

different ages treated as different traits as in the univariate analysis, may be biased due 

to selection. Although the bivariate analysis removes some of the bias due to selection, 

it is not as efficient as multivariate analysis which includes all the ages. Estimates of 

heritability of bivariate analysis that include the 1.5-year assessments most likely have 

the smallest selection bias because thinning was carried out after this age. The 

heritability estimates at ages older than 1.5 years based on bivariate analyses showed a 

small absolute difference (<0.02) from those based on the univariate analyses, which 

may indicate that bias due to selection might be small. 
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Chapter 5 

PREDICTION OF COVARIANCE FUNCTIONS 

FOR HEIGHT 

5.1 Introduction 

Predictions of time trends in genetic parameters are valuable for estimation of 

annual genetic gain and for choosing the optimum age for selection. Many forestry 

genetic tests are characterised by few, and irregular assessment intervals, which make 

such predictions difficult. The most common method for predicting time trends of 

genetic parameters is fitting of a growth curve to each tree. For example, Buford and 

Burkhart (1987) used a linear regression method to describe the Pinus taeda height 

growth curve, but the most commonly used function is the exponential growth curve 

developed by Richards (1959) (Richards function, e. g. Ballochi et al. 1993, Knowe and 

Foster 1989, Namkoong et al. 1972). The Richards function permits each tree to have 

its own unique growth function of the form: 

HT = A(I -e -bx )c 

where: 
HT = height of the tree, 

(5 . 1) 

A= the ultimate limiting value for the tree height (asymptote), 

e= the base of natural logarithms, 

b&c= shape parameters that determine the shape of the curve along the time 

axis, 

x= age in years. 

The function requires that measurement data for individual trees is available at all the 

assessment ages. Therefore, only data for trees available at the final assessment age can 
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be used. Given that thinning is carried out at various stages of growth, the number of 
trees at final assessment age can be substantially less than that originally planted, 

resulting in a large part of the data not being used. Heights estimated at each age using 
the growth function are then used to estimate the variance components at those ages and 

covariance components across ages. The advantages of such methods are that they 

correct for errors, estimate missing data, and provide smooth growth curves (eg. 

Balocchi et al. 1994, Knowe and Foster 1989). One of the major disadvantage of the 

methodology is that it makes prior assumptions about the form of the curves, and the 

data may poorly fit the growth curve. Moreover, it does not consider the underlying 

continuous covariance structure of the data. 

The commonly used models by tree breeders for predicting the time trends of 

genetic correlations for growth traits are linear models with the natural logarithm of the 

ratio of the younger age and mature age (LAR) as the predictor (e. g. King and Burdon 

1991 , Lambeth 1980, McKeand 1988); heritability is assumed constant when predicting 

genetic gain (e. g. Lambeth 1980). These models may not be the best; hence, alternative 

models such as non-linear models may fit the data better. Variation in heritability which 

has been reported in many studies (Ballochi et al. 1993, Pswarayi et al. 1996, Franklin 

1979) suggests that models which make it possible to predict genetic correlations as well 

as age-related trends of heritability will ensure more accurate predictions of gain and 

optimum selection age. Therefore, modelling of the 'coefficient of genetic prediction' 

(hZAhy, standardised genetic covariance or coheritability) as proposed by Baradat (1976) 

or modelling of the heritability itself as suggested by Wei and Borralho (1996) may 

make possible more accurate predictions of gain and optimum selection age. 

An alternative analytical approach is to fit non-linear models rather than linear 

ones. New methods for predicting time trends in (co)variances, developed by 

Kirkpatrick et aL (1990), fit continuous functions of time to covariance matrices using 

weighted least squares. The derived covariance function gives the covariance between 

assessments at any two ages as a higher order polynomial of the ages. The covariance 

function can be regarded as an infinite dimensional equivalent of a covariance matrix. 

The covariance functions can provide more accurate estimates of covariances than 

possible from a few assessment ages because covariances at any two ages can be 
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improved by using information about the covariances at other ages. The other attractions 

of these methods are that they are a direct approach to estimating covariances, are easy 
to use, and do not make any prior assumptions about the form of the curves. The 

covariance functions account for spacing of ages. Furthermore, by using orthogonal 

polynomials the additive covariance function can be decomposed into its eigenfunctions 

and eigenvalues which allow analysis of additive genetic variation. For a given matrix, 
A, a vector, U (eigenvector), and scalar, ;ý (eigenvalue), AU = W; similarly, a 

covariance function can be written in terms of its eigenftinctions and eigenvalues as: T§ý 

= /Ii ýki, where T is the covariance function, 
.4 iis the eigenvalue associated with 

eigenfunction §ýi. Therefore, the eigenfunctions are analogous to eigenvectors associated 

with matrices. The eigenvalues and eigenfunctions are useful for analysing directions 

in which mean growth curves are likely to change under selection. The eigenvalue is 

proportional to the amount of genetic variation in the population corresponding to the 

particular eigenfunction, with large eigenvalues indicating changes for which there is 

large genetic variation. 

The objective of this Chapter is to predict time trends in (co)variances for height 

growth using covariance functions. This approach has recently been used in animal 

breeding (Kirkpatrick et al. 1994, Meyer and Hill 1997), and this study demonstrates 

this methodology using forestry data. 

5.2 Materials and Methods 

An estimate of the additive genetic covariance matrix of the tree height at ages 

1.5,7.5,9.5,12.5,13.5 and 22.5 years was derived using individual tree model 

DFREML. 

Estimation of covariance functions was made using orthogonal polynomials with 

symmetric and asymmetric coefficients by fitting continuous ftinctions of time to 

covariance matrices using least squares. A covariance function is the infinite- 

dimensional equivalent to covariance matrix for a given number of traits. It gives the 

covariance between any two traits assessed at given ages as a function of the ages and 

some coefficients. Using symmetric coefficients approach, the covariance between 
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heights assessed at ages t, andt2 i S: 

k-I k-I 

T(tl't2) =E E (ýAi(tdýj(t2)1 
i=o j=o 

(5.2) 

where T is the covariance function (phenotypic, additive or coheritability), k is the order 
of fit (k :! ý number of ages), (ý the coefficient matrix associated with the covariance 
function, and (ý the orthogonal polynomials. The genetic correlations between the height 

assessed at ages t, andt2were estimated as: 

r g 

cov A 
(t 

Pt2) 

ýv-arA( tI -va- rA (t2) 
(5.3) 

and heritability at any age tj as: 

2 var A(td 

varp(t, ) 
(5.4) 

The difference between the asymmetric coefficients approach described by 

Kirkpatrick et aL (1994) and that based on symmetric coefficients lie in the coefficient 

matrix. With the symmetric coefficients approach, the matrix of the coefficients used for 

estimating the covariance function is symmetric (i. e. (ýjj = (ýjj); with the asymmetric 

coefficients approach, it is not (i. e. Cij # Cjj). The latter method may lead to smoother 

and better-behaved estimates because it eliminates the product of two (k-1)" order 

polynomials (Kirkpatrick et al. 1994). 

Full and reduced order models were used to estimate the appropriate covariance 

functions. A full order model, in which the order of orthogonal polynomial models 

equals the number of ages, estimates the coefficient matrix in such a way that the 

corresponding covariance function exactly reproduces the estimated (co)variances at the 

ages that were assessed. These estimates, however, include the sampling errors and 

therefore are not smooth. Smoothing, using information from adjacent points to average 
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out the errors, was achieved by fitting reduced order models, in which the order of 

polynomial models is less than the number of ages. When a reduced model is used, the 

program requires the error covariance matrix, and this was estimated after providing the 

program with the phenotypic covariance matrix and assuming that a standard balanced 

half-sib breeding design with 7 male and 21 female parents, and 20053 residual degrees 

of freedom was used. The Lambeth model (rP = 1.02 + 0.308 log, (younger age/older 

age)), together with the observed phenotypic variances, were used to estimate the 

phenotypic covariance matrix. The Lambeth model was used since not all age-age 

phenotypic correlations were available and those that were available, showed excellent 

agreement with it (Chapter 4, Figure 4.2). 

The phenotypic covariance function was estimated using a phenotypic matrix 

estimated as above. For a reduced fit, the additive covariance matrix was supplied in 

order to estimate the error covariance matrix. 

In addition, a continuous function was fitted to the so called 'coefficient of 

genetic prediction' (i. e. coheritability or standardised additive covariance) matrix. The 

'coefficient of genetic prediction' (CGP) is estimated as follows (Baradat 1976): 

CGP 
Cov, (xy) 

(5.6) 
GG 

xy 

or alternatively as, coheritability: 

CGP =rA hxhy (5.7) 

where: 
COVA (X, Y) = additive genetic covariance between traits x and y, 

phenotypic standard deviation for traits x and y, respectively, 

genetic correlation between the traits, 

h. 
-(I 

h, square root of the heritability for traits x and y, respectively. 

The coheritability (coefficient of genetic prediction) function allowed the modelling of 

heritability with time, since the coheritability of assessments observed at the same age 
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is the heritability of the trait. When a reduced model was used, the error covariance 
matrix was estimated by providing the program with the appropriate phenotý-pic 
covariance matrix and assuming that a standard balanced half-sib breeding design with 
7 male and 21 female parents, and 20053 residual degrees of freedom. The appropriate 
phenotypic covariance matrix was a standardised phenotypic matrix comprising I on the 
diagonal and the phenotypic correlations off diagonal. The phenotypic correlations NN ere 
estimated using the Lambeth model. 

The goodness-of-fit of reduced models was tested using the X2 test procedure 
described by Kirkpatrick et al. (1990). 

5.3 Results 

Additive covariance function 

Estimates of additive variances and covariances for height from DFREML and 

additive covariance function with symmetric coefficients (k = 4) are summarized in 

Table 5.1. The variances and covariances estimated with the covariance function were 

consistent with the DFREML ones, except those involving 12.5 years. 

A plot of the original additive covariance matrix showed fluctuations which may 

be attributed to sampling errors. Full estimates (k=6 order polynomial) of the additive 

covariance function, using symmetric and asymmetric coefficients also showed 

fluctuations, and data interpolated between the points of the matrix were over-inflated. 

The symmetric estimates ranged from 0 to 60 M2 , and those using asymmetric 

coefficients 0 to 10 M2, while the original data ranged from 0 to 1.4 d. Estimates using 

reduced order models (k=4 order polynomial), using both symmetric and asymmetric 

coefficients, were much smoother. Figure 5.1 shows a 3-dimensional plot of the reduced 

model to the order of 4 with symmetric coefficients. The goodness-of-fit tests gave X2 

(II df) = 109.9 for the symmetric fit, and X2 (II do = 121.7 for the asymmetric fit. 

This indicated that the discrepancies between the smoothed covariance functions using 

both approaches and the original data were significant, and that use of the symmetric 

coefficients provided a better model. Therefore, the reduced order model (k = 4) with 
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the symmetric coefficients (Figure 5.1) was selected. This model gave discrepancies of 

additive variances of less than 12%, except for 12.5 year variance which it was 50% 

(Table 5.1). Covariance discrepancies with this model were largest for those involving 

12.5 -year assessments (11 -63 %), with the rest being less than 10%. 

Table 5.1. Estimates of additive variances and covariances for height (M) for ages 1.5. 

7.5,9.5,12.5,13.5 and 22.5 years, based on DFREML (DF) and additive covariance 

function (ACF) with symmetric coefficients (k = 4). 

cy 2AI COVA 

DF ACF 

0.017 0.019 

1.002 1.127 

1.404 1.362 

0.930 1.423 

1.285 1.381 

0.715 

DF (below the diagonal), ACF (above the diagonal) 

0.127 

0.147 

0.108 

0.106 

0.708 1 0.071 

0.150 0.154 

1.238 

1.257 

0.846 1.253 

1.132 1.401 

0.793 1.000 

0.138 0.130 0.091 

1.264 1.244 0.854 

1.392 1.371 0.95 

1.402 0.989 

0.969 0.980 

0.607 0.938 

The first eigenvalue explained 99% of the total genetic variation (ý., = 20.52; sum 

of all eigenvalues = 20.72). Its eigenfunction was positive at all ages and flat (Figure 

5.2a), showing that there was large genetic variation for increased mean height growth 

at all ages. The results indicate that improvement of height at one age will tend to 

improve height at all ages: genetic correlations for height between different ages are 

high. The other two eigenfunctions are shown in Figure 5.2b and 5.2c, and the 

eigenvalues associated with them were all positive and small P'2 =0.25 and ý3 = 0-00- 
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Figure 5.1. A 3-dimensional plot of the additive covariance function. 
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Figure 5.2. Estimates of the Ist eigenfunction (a), 2nd eigenfunction (b) and 3rd 

eigenfunction (c). Their eigenvalues (M2) were 20.52,0.25 and 0.01, respectively. 
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The eigenvalue associated with the fourth eigenfunction was negative (ý, = -0.06), 
indicating that the additive genetic covariance matrix, hence the additive covariance 
function, was not positive semi-definite. Although Hayes and Hill (1981) suggested 
'bending' the data matrix when the matrix is not positive semi-definite, our negative 
eigenvalue was very small and unlikely to differ significantly from zero, so bending of 
the data matrix was not undertaken. The small amount of genetic variation associated 

with all other eigenvalues, apart from the first, implies that selection to alter the shape 

of the growth curve (i. e. tradeoffs between early and late height growth) will make very 
little or no progress. 

Table 4.11 in Chapter 4 shows that the genetic correlations estimated using the 

additive covariance function with symmetric coefficients (k = 4) were consistent with 

the original estimates, except for heights assessed at 12.5 and 22.5 years. 

Phenotypic covariance function 

Full estimates using both symmetric and asymmetric coefficients over-inflated 

values between the assessment ages. For example, the range of the data was 0.02 to 5.46 

m2, while that predicted using the symmetric coefficients was 0 to 400 M2 , and 0 to 60 

m2 using the asymmetric coefficients. All possible reduced models gave negative 

variances and covariances which were highly inconsistent with the data. Therefore, it 

was not possible to estimate a phenotypic covariance function. 

Coheritabilityfunction 

Full and all possible reduced models over-inflated values between assessment 

ages and produced very large discrepancies between 13.5 and 22.5 years. Because the 

method failed to fit a smooth function consistent with the data, functions were estimated 

using a reduced data set: data assessed at 1.5,7.5,9.5,12.5 and 13.5 years. Omitting 

data involving 22.5 years was justified on the grounds that we concentrated on a period 

when we had more information. 

Reducing the data set made it possible to fit a model, and the most appropriate 
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one was derived using symmetric coefficients (k=4; Figure 5.3). Estimates of heritability 

and coheritability for height from DFREML and the coheritability function are 
summarized in Table 5.2. The heritabilities and coheritabilities estimated with the 

coheritability function were consistent with the DFREML ones. The coheritability 
model gave discrepancies of heritability of less than 10%, except for 12.5-year 
heritability which it was 20% (Table 5.2). Coheritability discrepancies with this model 

were all less than 10%. However, the goodness-of-fit test gave X2 (5 df) = 55.0 for the 
fit, indicating that the discrepancies between the smoothed coheritability function and 
the original data were significant. 

Table 5.2. Estimates of heritability and coheritabilities for height for ages 1.5,7.5,9.5, 

12.5 and 13.5 years, based on DFREML (DF) and coheritability function (CHF) with 

symmetric coefficients (k = 

h2 Coheritabilities 

DF CHF DF (below the diagonal), CHF (above the diagonal) 

0.22 0.22 

0.43 0.41 

0.50 0.50 

0.45 

0.22 

0.280 

0.280 

0.308 0.445 

0.36 0.249 0.396 

0.22 0.187 0.277 

0.309 0.250 0.187 

0.441 0.357 0.280 

0.418 0.319 

0.427 0.277 

0.318 0.271 
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Symmetric (Reduced fit: k=4) 
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Figure 5.3. A 3-dimensional plot of the coheritability function. 
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5.4 Discussion 

The symmetric coefficients method provided the most appropriate model to the 

additive covariance matrix using 4 polynomials (i. e. ages to the power 0 to 3). AdditiVe 

variance and covariance estimates from this model were consistent with the original 

estimates, except those involving 12.5 years. Although the fourth eigenvalue was 

negative, indicating that the function was not positive semi-definite, the eigenvalue ý'vas 

very small. The function differed significantly from the original data, but the 

discrepancies were small. The first eigenvalue explained 99% of the total genetic 

variation and eigenfunction was positive at all ages and flat, implying that selection for 

total height growth will be rapid. In contrast, the small amount of genetic variation 

associated with all the other eigenvalues implies that selection to alter the shape of the 

growth curve will make very slow progress. These results support the findings in 

Chapter 4 which showed high positive genetic correlations for height among all ages. 

Although the methods were able to fit a function to the additive matrix, they 

failed to fit an appropriate function based on the phenotypic matrix. This may be 

attributed to large fluctuations in the phenotypic covariance matrix, requiring more 

complex functions to be fitted to the data. The phenotypic covariance matrix show that 

variance increased with age up to age of thinning, decreased thereafter and then 

increased again until age of thinning, and as pointed out in Chapter 3 this may be due 

to compensatory growth. Our failure to get a good fit to our data might also highlight 

the limitations of a small data set. With more points (ages), one increases the choice of 

the polynomials that can be fitted and increases the chance of getting a good fit to the 

data. 

Since the response to selection of a correlated trait using the coefficient of 

genetic prediction (CGP) is given by Gain, = ý, -PCGPY*q,, a CGP (coheritability) 

function eliminates the need to estimate both the additive and phenotypic covariance 

functions, if the objective is to estimate gain and optimum selection age. In our study, 

it was possible to estimate a coheritability function after omitting the data for 22.5 years. 

This limited use of the function for estimating gain at 22.5 years from early selection, 

but was useful for predicting trends of heritability up to 13.5 years. Although the annual 
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response to indirect selection is given by: 

r, yo h, ah -oor *L -' yyX9 (5.8) 

h, and q, are constant across ages. Therefore, optimum selection age could be predicted 

using r,, y * 
h, -PL,, -', assuming the selection intensity is constant across ages. 

The precision of the covariance function estimates could be improved by 

estimating the covariance function directly from the original observations rather than 
from the matrix (Kirkpatrick et aL 1994). Such an algorithm has being developed so that 

the covariance functions can be estimated using REML (e. g. Meyer and Hill 1997). The 

advantages of using REML for estimating the covariance functions are that the error 

covariance will be estimated at the same time as the other covariances, estimates of the 

covariance functions will be guaranteed to be positive semi-definite, and the likelihood 

ratio test can be used to determine the minimum order of the model (Meyer and Hill 

1997). 

Short series of measurements,, which are common in forestry, tend to favour 

linear models or simple covariance functions for predicting trends of age-age genetic 

correlations for growth traits. These short series may actually fail to reflect actual trends. 

As tree breeding programmes progress to advanced generations more information will 

be collected, and the simple linear models may not be appropriate. The results reported 

here demonstrate that alternative models, using covariance functions, can be used for 

estimating time trends in (co)variances by directly fitting continuous covariance 

functions to the matrices. The particular distribution over time of data that are available 

in forestry genetic tests may not always allow the fitting of growth curves; where they 

do, the data may poorly fit the growth curves, requiring that alternative methods be 

identified. The methods demonstrated in this chapter might be more efficient at 

predicting trends in genetic parameters, and at predicting genetic gain and optimum 

selection age. The strength of the symmetric and asymmetric coefficient methods 

compared to the more conventional methods, such as the Richards curve, is that they do 

not make any assumptions about the form of curves. Furthermore, the eigenvalues and 

eigenfunction associated with the additive covariance function can be used to make 

inferences about patterns of genetic variation, and provide information on the directions 

in which mean growth curves are likely to change under selection. Therefore. the 
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eigenvalues and eigenfunctions provide a convenient and succinct summary of a large 

body of data which otherwise is not possible with other non-linear models, such as 

splines. There are, however, some limitations to using the covariance functions in 

forestry. The computations are more demanding than those of simple linear models, and 

the polynomial models are not well behaved outside the range of the data. The inabilitN, 

to make good predictions outside the range of the data implies severe limitations to the 

estimation of gain and optimum selection age, since data in forestry are rarely available 

up to mature age. 
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Chapter 6 

GENETIC GAIN ESTIMATES IN HEIGHT 

AND STRAIGHTNESS, AND INFERENCES 

FOR OPTIMUM SELECTION AGE 

6.1 Introduction 

Forest trees have long generation intervals; early indirect selection is preferred 

as it results in shorter generation intervals, and may lead to increased gain per unit of 

time, reduced testing costs, and greater adaptability to market changes (Magnussen 

1988). Also, early selection offers the means for quicker incorporation of gains into 

production, as parents to be used for seed production can be selected early, and seed 

orchards can be culled early. 

Optimum selection age is usually defined as the age at which genetic gain per 

year of breeding cycle is maximized, and is critical to the efficiency of any tree breeding 

program. Thus, identification of the optimum age for early indirect selection has been 

of major interest to tree breeders (e. g. Ballochi et al. 1993, King and Burdon 1991, 

McKeand 1988, Riemenschneider 1988, Me and Ying 1996). Unfortunately, traits are 

rarely measured at all ages up to harvest. Therefore, optimum selection age can only be 

estimated using models which make it possible to predict genetic correlations between 

ages other than those at which assessments were made. This has resulted in the 

development of predictive models for genetic correlations. Lambeth (1980) used 

phenotypic correlations as an approximation to genetic correlations, and showed that 

correlations between heights at different ages were predictable based on the natural 

logarithm of the ratio of the younger and the mature age (LAR). He suggested that age- 

age genetic correlations were approximately equal to their corresponding phenotypic 

correlations, and therefore phenotypic correlations could be used in place of 
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corresponding genetic correlations. The logarithm-based models have been widely used 
by tree breeders to make decisions on optimum selection age (e. g. King and Burdon 
1991, McKeand 1988, Riemenschneider 1988, Me and Ying 1996). 

Due to poor juvenile-mature correlations reported from some early studies of P. 

taeda, it was concluded that selection could be made reliably only after half-rotation age 
(e. g. Wakeley 1971). However, recent studies, which have used either a biological (gain 

per unit of time) or economic (present value of gain per unit of time) criterion, indicate 

that the optimum selection age for height in P. taeda could be as young as 4 years 
(Newman and Williams 199 1), or between 6 and 8 years ( Ballochi et al. 1993, Lambeth 

19809 Li et al. 1996, McKeand 1988). 

Studies on the prediction of genetic gain and optimum selection age have 

focussed on growth traits, and there appear to be none on straightness. Results from this 

study (Chapter 4) indicate that age-age genetic correlations for straightness are moderate 

to high, and Chapter 3 indicate that heritability is low, and its phenotypic variation 

moderate (coefficient of variation 14%). This indicates that selection on straightness will 

make good progress, and opportunity for early selection may exist. The results also 

indicate that selection for straightness could be less efficient relative to height; as 

straightness has lower heritability estimates, and lower age-age genetic correlations. 

Therefore, genetic gain per year in straightness is expected to be lower and optimum 

selection age to be higher than those for height. 

There appear to be no estimates of genetic gain and optimum selection age for 

height in P. taeda grown in the tropics, an issue of concern as fast-growing tree crops 

exhibit different genetic correlations from slower growing ones at similar ages 

(Magnussen 1988). Given the fact that growth rates of P. taeda in the tropics can be 

substantially higher than those achieved in temperate regions, potential genetic gain and 

the optimum selection age may differ between these regions. 

Genetic correlations are major determinants of gain and optimum selection age, 

and the model used in predicting them will affect the predicted gain and may influence 

the optimum selection age. There is increasing evidence demonstrating that genetic 

correlations are much higher than corresponding phenotypic correlations (Barnes 1992, 

Lambeth et aL 1983, Pswarayi et al. 1996, Riemenschneider 1988), implying that the 
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Lambeth model underestimates genetic correlations, and hence underestimation of 

genetic gain and may consequently affect the optimum age of selection. The economic 

consequences of not estimating optimum ages efficiently may be high in long rotation 
forest trees, and the Lambeth model has not been tested using data from pines grown in 

tropical regions. One of the problems with estimates of genetic correlations is that 

assessments of genetic tests are carried out before maturity (harvest age), and mostI"I' at 
less than half harvest age. For example, Riemenschneider (1988) used age-age genetic 

correlations for height from tests assessed up to 7 years in P. banksiana, Matheson et 

al. (1994) used age-age genetic correlations for diameter up to 14 years of age in P. 

radiata, and McKeand (1988) used age-age genetic correlations for height for up to 16 

years in P. taeda. Therefore, the genetic correlations involving mature age traits are 

extrapolations. The assumption that a linear relationship holds outside the range of the 

data may not be true; therefore, data that involve the trait at harvest age is preferred. 

A constant heritability has been used in predicting the optimum age for selection 

in P. taeda (Gonzalez and Richards 1988, Lambeth 1980), but evidence suggests that 

heritability estimates for tree height in P. taeda increase with age, at least up to half 

mature age (Balocchi et al. 1993, Franklin 1979). Therefore, erroneously assuming 

heritability is constant will overestimate gain from early selections and may also affect 

estimates of the predicted optimum age for selection. 

One of the major factors which influences the generation interval, and hence 

optimum selection age, is the age at which the species becomes sexually mature and 

produces seed. For example, P. taeda in Zimbabwe flowers at 10 years of age (Barnes', 

personal communication). Artificially inducing flowering in P. taeda has been 

successful in the USA, with induction achieved at less than 3 years of age (Bramlett et 

al. 1995, Burris et al. 199 1). 

The objective in this Chapter is to estimate annual genetic gain in height and 

straightness, and to determine the optimum age for selection of height in P. taeda using 

tests assessed up to harvest age. Selection was based on height because height is a good 

predictor of volume at rotation age (Foster 1986, Lambeth et al. 1983), heritability for 

R. D. Barnes, Oxford Forestry Institute, Oxford, UK. 

100 



height is higher than that for diameter in P. taeda (Foster 1986), and height is more 
easily and more accurately assessed at young ages than is diameter or volume. 
Furthermore, models for predicting age trends of age-age genetic correlations for height 

exist. The effects of using different models for predicting age-age genetic correlations. 
taking into account age-related changes of heritability, and of reducing the flowering age t__ 

(hence generation interval) were also explored here. 

6.2 Materials and Methods 

Data 

The genetic tests have been described in detail in Chapter 3. 

Statistical analyses 

Gain per year from mass selection was calculated for direct selection at rotation 

age (assumed to be 22.5 years) and for indirect selection at younger ages. Gain per year 

from direct selection on trait y was given by (Falconer 1989): 

Gain ih2aL -1 
yyy py y 

(6.1) 

and gain per year for trait y from indirect selection on trait x is given by: 

Gain 
y= 

ixhxh 
yrA 

CJPYLx -1 

where: 

(6.2) 

Gainy = gain per year for trait y, 

rA = genetic correlation, 

4, hv = square root of individual tree heritability for traits x and 

y, respectively, 

selection intensity for traits x and y. respectively. 
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where selection intensity at 1-9 years was 2.665 (1: 100), at 10- 14 

years 2.421 (1: 50) and that at 15 and older 2.154 (1: 25) in all 
traits, 

U. = phenotypic standard deviation for trait y (assumed to be Py 
1.732 metre for height, and 0.650 for straightness; Chapter 3), 

L, LY = generation interval for traits x and y, respectively. 
It was assumed that it takes three years to establish genetic tests for the next 

generation once the trees are in flower. Since P. taeda flowers at age 10 in Zimbabwe, 

the generation interval for selecting at ten years or younger was flowering age +3 years 
(13 years), while that for selection at older ages was selection age +3 years. Gain and 

optimum selection age were also estimated assuming that selected trees could be 

induced to flower at 7.5 and 3 years of age. In this case, the generation interval for 

selecting at any of these flowering ages or younger was flowering age +3 years, while 

that at older ages was selection age plus 3. Initially, heritability was assumed to be 

constant with age (0.2); subsequently, changes in heritabilities estimated by Model 4 

were taken into account in calculating gain and estimating optimum selection age. 

Predictions of age to age genetic correlations for height were made using four models: 

Lambeth model in which rp is assumed to equal rg,, and rp predicted by: 

Model 1: rp = 1.02 + 0.3 08 log, (younger age/older age). (6.3) 

The equality of rp and rg was removed: 

Model 2: rg --:: PO +PI 10ge(younger age/older age) (6.4) 

where P, P, were derived from estimates of rg at 1.5,9.5,13.5 and 22.5 years. Model 

3 was derived as for Model 2 but age difference was used as predictor: 

g PO + P, (Age difference). Model 3: r= (6.5) 

Model 4 was derived using covariance functions (Kirkpatrick et al. 1990). Time trends 

of heritability estimates was modelled using covariance functions. The covariance 

between records taken at ages t, andt2 
i S: 
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k-I k-I 

Model 4: T(tIqt c 2) :' ':: 
1: 1: ^Ai(td(ýj(Y' 

i=0 j=0 
(6.6) 

where T is the covariance function, k is the order of fit, (ý is a symmetric coefficient 
matrix associated with the covariance function, and ý are orthogonal polynomials. 

Then, 

r =- 
cov A(tl't2) 

(6.7) g ývarA(tl )ývarPO 

and heritability at any age (t) is estimated as, 

2 var A 
(t) 

(6.8) tj varp(t) 

The trend of the heritability estimated by Model 4 is shown in Figure 6.1, and that of the 

age-age genetic correlations predicted by the four models is shown in Figure 6.2. 

Table 6.1. Summary of heritability estimates for straightness and height for four ages, 

and age-age genetic correlations between straightness at each of the ages and 

straightness at 22.5 years, and trait-trait genetic correlations between height at each of 

the ages and straightness at 22.5 years. 

Age Straightness Height 

h2 rA h2 rA 

1.5 0.01 -0.05 0.22 0.14 

9.5 0.11 0.66 0.50 0.22 

13.5 0.09 0.92 0.23 0.28 

22.5 0.21 1.00 0.22 0.52 
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For straightness, it was not possible to calculate the trends in age-age correlations 

and heritability, therefore genetic gain and optimum age calculations were based on the 

ages at which the tests were assessed. The parameters used for predicting gain and 

optimum selection age for straightness are shown in Table 6.1. 

6.3 Results 

6.3.1 Height 

Genetic gain and optimum selection age, assuming a constant heritability 

Figure 6.3 shows genetic gain estimates at different ages using four different 

flowering ages, with age-age genetic correlations derived using the four models, and 

assuming a constant heritability at all ages. The optimum ages are shown in Table 6.2. 

Flowering age had a large influence on the genetic gain expected and also on the 

optimum age for selection. Gain at optimum selection age increased with reduced 

flowering age by as much as 100% when flowering was reduced from 10 to 3 years. 

Optimum selection age was decreased with reduced flowering age. For each of the 

flowering ages, the optimum selection age was equal to the flowering age. 

Where flowering age was 10 and 7 years, and genetic correlations were estimated 

using the Models 2-4, the graphs show that selecting between 3 -10 years, and between 

3-7 years, respectively, could be achieved with little loss in genetic gain. However, 

selecting after the optimum age resulted in rapid decline in gain at all the flowering ages 

using Models 2-4. When estimates from Model I were used, selecting before the 

optimum age resulted in large reductions in gain at all the flowering ages. 

For each flowering age, the model used for estimating the age-age genetic 

correlations affected the magnitude of the expected gain but not the optimum selection 

age. The genetic gain for each of the flowering ages was 30-100% lower when the 

genetic correlations were estimated by Model I than by other three models. 
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Figure 6.1. Predicted trends of heritability of height over time using Model 4. 
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Figure 6.2. Predicted trends with age for genetic correlations for height with 22.5-year data using 
Models 1-4. 
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Figure 6.3. Effect of the model for predicting age-age genetic correlations on estimated genetic 
gain (x 100) and optimum selection age for height when heritability is assumed constant with age. 
Numbers 1-4 refer to Models 1-4, respectively. 

106 

0246810121416 

Age 



Annual genetic gains for height from selection at ages between 3 and 14 years 

were greater than that at harvest age (0-029), confirming the efficiency of early selection. 
The lowest genetic correlation at 3 years was 0.4 (Model 1, Figure 6.2), indicating" that 

the genetic correlation for height between young ages and rotation age does not have to 
be high for early selection to be more efficient than selecting at rotation age. 

Genetic gain and optimum selection age taking into account age-related changes in 

heritability 

Effects of including age-related changes in heritability on genetic gain and 

optimum selection age are shown in Figure 6.4 and Table 6.2. 

The predicted genetic gain was higher than that obtained using the constant 

heritability: 37% higher at flowering age of 10 years, 28% higher for flowering age of 

7 years, and 5% higher for flowering age of 3 years. This is attributed to higher true 

heritability estimates than the assumed constant value (Figure 6.1). 

When age-age genetic correlations were estimated by Models 2-4, the optimum 

selection age decreased with reduced flowering age, and was similar to the one estimated 

assuming constant heritability. However, when the age-age genetic correlations were 

estimated using Model 1, the optimum selection age was 9 years for each of the 

flowering ages. This is attributed to a combination of low age-age genetic correlations 

involving young ages estimated by Model I (Figure 6.2) and the low heritability 

estimates at young ages (Figure 6.1). The difference between optimum selection ages 

predicted by Model I and the other three models varied from 0 to 7 years (Table 6.2). 

When age-related changes in heritability were considered, it was critical to select 

at the optimum age, particularly were the genetic correlations were estimated by Models 

2-4. 
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Figure 6.4. Effect of the model for predicting age-age genetic correlations on estimated genetic 
gain (x 100) and optimum selection age for height when age-related changes in heritability with 
age are considered. Numbers 1-4 refer to Models 1-4, respectively. 
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Table 6.2. Summary of the optimum selection ages for height for four flowering ages 
using (1) constant heritability and (2) age-related heritability estimates. and four models 
for estimating age-age genetic correlations. 

Model Flowering age 

number 10 years 7 years 5 years 3 years 
Constant 975 

Heritability 2975 

3 10 75 

4975 

Variable 19753 

Heritability 29999 

3 10 753 

49753 

6.3.2 Straightness 

For straightness, genetic gain was maximized at 9.5 years for each of the 

flowering ages, when heritability was assumed either constant or variable (Table 6.3). 

The genetic gain per year when selection is made at 1.5 years was negative, reflecting 

the negative genetic correlation for straightness between this age and rotation age (Table 

6.1). Assuming a constant heritability, early selection for straightness was more 

efficient than direct selection at rotation age, except for selection at 1.5 years. In 

contrast, under variable heritability, early selection was not always more efficient than 

selecting at rotation age, due to a much higher heritability at rotation age (Table 6.1). 
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Table 6.3. Predicted genetic gain per year (x 100) in straightness for four flowering ages 

using a constant heritability (0.2), and age-related heritability estimates. 

Selection Flowering age 

age (years) 10 years 7 years 5 years 3 years 
Constant 1.5 -0.13 -0.17 -0.22 -0.29 
Heritability 9.5 1.76 1.83 1.83 1.83 

13.5 1.75 1.75 1.75 1.75 

22.5 1.23 1.23 1.23 1.23 ) 

Variable 1.5 -0.03 -0.04 -0.05 -0.07 
Heritability 9.5 1.34 1.39 1.39 1.39 

13.5 1.21 1.21 1.21 1.21 

22.5 1.30 1.30 1.30 1.30 

6.3.3 Selecting height for improving straightness 

Genetic gain expected in straightness from indirect selection on height was lower 

than indirect selection of straightness at young ages, except at 1.5 years (Tables 6.4). 

This is attributable to lower genetic correlations between height and straightness 

compared with age-age genetic correlations for straightness (Table 6.1). Selecting 

straightness at 1.5 years is predicted to make negative genetic progress, but selecting 

height at the same age for improvement in straightness at harvest age would make 

positive genetic progress. 

Under the assumption of constant heritability early selection on height resulted 

in less gain in straightness at 22.5 years compared to selecting on height at same age. 

This is attributable to a much higher genetic correlation between straightness and height 

at harvest age than between straightness at harvest age and height at younger ages. In 

contrast, when flowering age was reduced to 3 years, the optimum selection age was 1.5 

years. 
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Table 6.4. Predicted genetic gain per year (x 100) in straightness for four flowering ages 
when selection is made on height using (1) constant heritability (0.2) and (2) age-related 
heritability estimates. 

Selection Flowering age 

age (years) 10 years 7 years 5 years 3 years 
Constant 1.5 0.37 0.49 0.61 0.81 

Heritability 9.5 0.59 0.61 0.61 0.61 

13.5 0.53 0.53 0.53 0.53 

22.5 0.64 0.64 0.64 0.64 

Variable 1.5 0.40 0.52 0.65 0.87 

Heritability 9.5 0.95 0.99 0.99 0.99 

13.5 0.59 0.59 0.59 0.59 

22.5 0.69 0.69 0.69 0.69 

6.4 Discussion 

The length of the breeding interval (flowering age) had a strong effect on the 

genetic gain and optimum selection age when heritability was assumed to be constant: 

as the breeding interval was reduced, gain increased and optimum selection age 

decreased. In contrast, when heritability was varied, changing the breeding interval had 

no impact on the optimum selection age in the presence of low genetic correlations 

predicted by Lambeth's model (Model 1). Magnussen (1989) also found that the effect 

of the genetic correlations depended on the size and variation of the heritability 

estimates. Therefore, using the covariance functions (Kirkpatrick et al. 1990), 

modelling of the 'coefficient of genetic prediction' (h. jý, h_, standardised genetic 

covariance or coheritability) as proposed by Baradat (1976), or modelling of the 

heritability itself as suggested by Wei and Borralho (1996), will ensure more accurate 

predictions of gain and optimum selection age. 



The results (Figure 6-3) showed that at constant heritability, there was little 
difference in gain from selecting between 3-10 years when flowering age is 10 years. 
or between 3-7 years when flowering age is 7 years, using Models 2-4. This result 
supports Lambeth's (1980) observation that there is a range of ages at which selection 
is nearly as efficient as at the optimum selection age. However, this result -ý, vas not 
observed when age-related changes in heritability were considered, and when Models 
2-4 were used. Therefore, Lambeth's observation it is unlikely to be appropriate for 
breeding decisions of P. taeda in Zimbabwe, since heritability changes with age. 

The consequences of using the Lambeth's phenotypic model was more than four 

times less predicted gain than that by the other three models, and an overestimation of 
the optimum selection age by 6-7 years. The underprediction of potential gain at any age 

will lead to unfavourable investment appraisal of tree breeding programmes, and the 

conservative prediction of optimum selection age means that breeding programmes 

would deliver more gain, and are therefore being run inefficiently. Inaccurate predictions 

of gain and optimum selection age will also limit the ability to identify appropriate 

research priorities (e. g. the importance of identifying methods which induce early 
flowering). 

Although genetic correlations and the generation interval are major determinants 

of gain and optimum selection age, heritability and its variation with age, and variation 

of the selection intensity with age, are also important. When heritability was assumed 

constant, the Lambeth model underpredicted gain, but gave comparable predictions of 

optimum selection age to other models. The results show that if the objective is to 

estimate optimum selection age, and a constant heritability is assumed, the Lambeth 

model gives good estimates. 

The optimum selection age for straightness was 9.5 years, and was insensitive 

to changes in flowering age when age-related changes in heritability were considered in 

calculating gain. Due to lack of predictions of trends of age-age correlations and 

heritability for this trait, the actual optimum age at each of the flowering ages may differ 

from that predicted here. Gain in straightness at rotation age when selection is made on 

straightness at 1.5 years was negative, but when selection was on height at the same age, 

gain was positive. This result reflects the difficulties of assessing straightness at an earl\- 
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age. The results also indicate that genetic gain per year for straightness is comparablý- 
lower and optimum selection age higher than that for height, due to lower heritabilitV 

estimates, and lower age-age genetic correlations. 

Although the study assumes that only one selection age is used, a two-stage 

approach may be more efficient for improving both height and straightness. With the 

two-stage approach, early selection would be based on height only and later selection 

on straightness only. 

Economic factors were not considered in this study, and these are likely to 

reduce the optimum age of selection further (McKeand 1988). To determine the 

economic optimum, the present values, or better still the net present values, of the gains 

can be calculated. The net present values which include the costs of more rapid turnover 

of generations and more frequent seed orchard establishment would be preferred, but 

information for such an analysis is unlikely to be available for many tree breeding 

programmes. 

Most studies suffer from the problem of not having assessments at maturity, and 

therefore of relying on extrapolations which may be inaccurate or have large errors (e. g. 

Matheson et al. 1994, McKeand 1988, Riemenschneider 1988). The strength of this 

study is that assessments at near-harvest age were available, allowing realistic 

predictions of rotation age gains. However, the study also suffers from the problem of 

having few point estimates, a problem in many other forestry studies (e. g. 3 points, King 

and Burdon 1991; 4 points, McKeand 1988). 

The reproductive biology of P. taeda is a barrier to juvenile breeding of the 

species in Zimbabwe. Nevertheless, the study has demonstrated that, were early 

flowering to be induced, optimum selection age would be reduced from 10 to 3 years 

and annual genetic gain increased by more than 100%. Therefore, the extra cost of 

flower induction must be compared against these additional gains expected from 

lowering the breeding interval. Other options, such as the selection of sites with early 

flowering potential should also be explored in order to reduce the breeding interval. 
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Chapter 7 

GENOTYPE X ENVIRONMENT INTERACTIONS 

FOR HEIGHT AND STEM STRAIGHTNESS 

7.1 Introduction 

The presence of genotype x environment interactions complicates tree breeding 

programmes and may reduce the rate of genetic progress. Heterogeneity between forest 

sites, due to variation in soil and/or climatic conditions, may cause genotype x 

environment interactions (GE). The magnitude of the GE affects decisions on testing, 

selection and deployment. At the species level, GE is used in matching species to sites; 

at the family or individual level, it influences major elements of the breeding strategy 

such as the structure of the breeding population, and the selection of parents in the 

breeding population. 

GE may be due to heterogeneity of variances measured at each of the sites, 

where ranking of genotypes in the various environments is unaffected ('pseudo- 

interaction', Dickerson 1962). It may also be due to both heterogeneity of variances and 

rank changes (Dickerson 1962). Breeding strategy will largely be influenced by the 

latter. 

The method most used by tree breeders for determining the magnitude of GE and 

implications for gain is that of Falconer (1989), in which a trait measured on two 

environments is considered analogous to two traits in a single environment. Hence the 

genetic correlation across environments for a trait measured in two environments 

provides a measure of the magnitude of GE. The additive genetic correlation between 

two environments is given by the following equation: 

Cov 
A(X'Y) (7.1) 

AG0 
Ax Ay 
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where r A= additive genetic correlation, Covjxy) = covariance of the trait in 

environments x and y, (jA, = additive genetic standard deviation of the trait in 

environment x and aAY = additive genetic standard deviation of the trait in environment 
y. Genetic correlations which do not differ significantly from I suggest there is no GE, 

while genetic correlations significantly less than I indicate the presence of GE. This 

approach to detecting the presence of GE, first introduced in forestry by Burdon (1977), 

referred to as Type B correlations, has been widely used recently in tree breeding 
(Carson 1991, Matheson and Raymond 1984b, Johnson 1992, Johnson and Burdon 
1990, Pswarayi et al. in press). A method of determining loss of potential gain is the 

estimation of efficiency of selecting at one site for planting at another site, using the 

method of indirect selection proposed by Falconer (1989). It appears that all recent GE 

studies in forestry have followed this approach, and examined the magnitude of genetic 

correlations and efficiency of selection across different sites when the trait has been 

assessed at the same age across sites. Since early selection is normally practised in tree 

breeding, what may be more important is the effect of early selection of a trait at one site 
for predicting mature age performance of the trait at another site. 

When GE is present, and considered important, the options are to group 

envirom-nents, or to group genotypes (Raymond and Lindgren 1990), or simply to ignore 

it. The first option implies a multiple population or subline breeding strategy, where 

environments within which GE is approximately zero are grouped. This option is likely 

to be the most expensive as more than one breeding population will need to be managed 

and sites will need to be classified to determine regions of minimum GE. However, this 

strategy will result in the largest gain in the short term. The second option implies 

elimination of the most interactive families, and is likely to be less expensive than the 

first. However, some of the families most productive on average across all sites may be 

the most interactive. The third option is likely to be the least expensive but may result 

in largest losses in gain. 

Most studies carried out in forest tree species report that whilst there is often 

statistically significant GE, GE is not of practical significance (Carson 1991, Johnson 

1992, Johnson and Burdon 1990, Owino 1977b, Pswarayi et al. in press). GE was 

considered to be of no practical significance when either the genetic correlations were 
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high, and hence the potential loss of gain from selecting at one site for planting at 
another was low (e. g. Pswarayi et al. in press), or GE was due to heterogeneity of 
variances across sites (e. g. Owino 1977b). 

The environments under which P. taeda in Zimbabwe grows vary greatly in 

terms of rainfall and altitude, and applicability of genetic parameters at one site to 

another site is unknown. In Chapter 3 it was discovered that pooling data across sites 

reduced heritability to less than that obtained at each of the individual sites, indicating 

the possible presence of GE. In addition, Zimbabwe is implementing the multiple 

population breeding strategy in P. taeda, and one of the reasons for adopting this 

strategy was to take advantage of GE by selecting for specific adaptations (Barnes 

1989); however, this strategy was based primarily on the results from P. patula genetic 

tests. Genotype x environment interactions in P. taeda in Zimbabwe have not been 

quantified, and hence the appropriateness of the multiple population strategy for P. 

taeda has not been verified. In a related species planted in Zimbabwe, P. elliottii, 
Pswarayi et aL (in press) concluded that GE was not of sufficient practical significance 

to warrant sub-dividing the population. Therefore, there is a need to quantify the 

magnitude of GE to assist with making informed decisions on the breeding strategy for 

P. taeda. 

Genetic tests of P. taeda in Zimbabwe were established across a range of 

environments, covering the diverse plantation sites. The results should indicate whether 

or not breeding populations should be sub-divided; if they are to be sub-divided, which 

parents to include in each of the sub-populations; and whether the same genetic 

parameters can be used across sites. 

This Chapter quantifies GE for height and stem straightness, and its implications 

for breeding strategy of the Zimbabwean breeding population of P. taeda. 

7.2 Materials and Methods 

Data 

Genetic tests located at 4 sites in Zimbabwe were assessed for height and stem 

straightness at 1.5,9.5,13.5 and 22.5 years of age. Details of the tests and assessment 

116 



procedures are described in Chapter 3. 

The sites differed mainly in altitude and rainfall. Tarka (A) and Martin (C) 

genetic tests were located on low altitude sites (1005 and 1250 m ASL, respectively) in 

the Chimanimani area of Zimbabwe, and Stapleford (B) and Nyangui (D) were high 

altitude sites (1745 and 1882 m ASL). Three of the sites had high rainfall (1836-2364 

mm. per annum), while Martin had low rainfall (10 1 6mm). Any GE reported here may 

reflect differential responses of families to different altitudes or rainfall. Location details 

of the sites are summarized in Chapter 3, Table 3.1. 

Statistical analyses 

Genetic correlations were estimated using bivariate individual tree model 

ASREML (Gilmour 1996). ASREML was used instead of DFREML, as for analyses 

described in previous chapters, because of its faster computational speed (Gilmour et al. 

1995). 

The assessments of the same trait at different sites were treated as different traits. 

These correlations are referred to as Type "B" correlations (Burdon 1977). For all the 

analyses, the traits were assessed on separate but genetically related trees across sites. 

Therefore, genetic covariances exist between any two traits, but there were no 

envirom-nental covariances. 

The following bivariate tree model was used: 

Y, xi 0 b, 
+ 

zi 0 a, 
+ 

wi 0 cl 
+ 

e, 
(7.2) 

Y2- 
-0 

X2. 
-b 2- -0 

Z2_ 

-a 
2- 

0w 
2- -c 2- _e 

2- 

where: y, ý Y2 -: ":: the vector of observations for traits I and 2, respectively, 

b, , b2= the vector of fixed effects for traits I and 2, respectively, 

a, . a2 =the vector of random tree (additive genetic) effects for traits I and 2, 

respectively, 
CI I C2= the vector of additional uncorrelated random effects for traits I and 2, 

respectively, 
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XI 
9 

X2= the incidence matrix for fixed effects for traits I and 2. respectively. 
W19 W2= the incidence matrix for additional random effects for traits I and 2. 

respectively, 
Z1 

9 
Z2= the incidence matrix for additive direct effects for traits I and 2, 

respectively, 

el I C2 : ---the vector of residual effects for traits I and 2, respectively. 
The variance-covariance structure of the random effects of the bivariate tree model was 
as follows: 

al 

a2 

c1 

2 

e2 

A(Y 
l Acov 0 0 0 0 

a al2 

Acov A(j 
2 

0 0 0 0 
a2l a 

0 0 ICFI Icov 0 0 
cl c12 

0 0 Icov 
c2l 

ial 
c2 

0 0 

000 j(J2 0 
el 

00000 j(J2 
e2 

(7.3) 

where: (J'ali, (J 2 
, 2andCOVal2are the direct additive genetic variances and covariance for 

traits I and 2,, respectively, 
G2 

CD, 
G2 

c2andCOVc]2 are the corresponding additional random effect variances 

and covariance, and 
CF 2 

eIq 
(j 2 

e2are the corresponding residual variances for traits 1 and 2, respectively. 
The effects of the replicate and site were considered fixed, and the family (male 

x female interaction) was considered an additional uncorrelated random effect. Pre- 

adjusting the data for the block effects was used before each bivariate analysis as for 

analyses described in Chapter 4. The first starting values of variances were estimated 

from the univariate DFREML analyses. The standard errors of the genetic correlations 

were estimated directly by ASREML using the following approximate formula for 

obtaining variance of a ratio (Gilmour 1996): 
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V ar(r) =r2 
Var(v(a)) 

+ 
Var(v(b)) 

+ 
Var(v(ab)) 

4v(a )2 4v(b )2 v(ab )2 

+ 
2COv(v(a), v(b)) 

_ 
2Cov(v(a), v(ab)) 

4v(a)v(b) 2v(a)v(ab) 2v(ab)v(b-)l 
2Cov(v(ab), v(b)) I 

(7.4) 

where: 

r= v(ah) 
(7.5) 

Rank changes 

ýv--(a)v(b) 

In order to identify the parents which were most highly interactive (i. e. least 

stable), each of the 22 parents was ranked on its estimated breeding value at each site, 
and also over all sites for each trait. The absolute deviation of the ranking at each site 
from the overall ranking over all sites was calculated, and these were summed across the 
4 sites. Then the mean rank deviation was calculated by dividing the total deviations by 

4. The parents with the greatest mean rank deviations were considered most interactive. 

This method was developed by Matheson and Raymond (I 984b), but they used 

phenotypic values rather than breeding values. 

Index values 
Index values were calculated to determine the aggregate genetic merit of the 22 

parents. The estimated breeding values (BV) for each trait at four sites were combined 

together into appropriate index values. Each breeding value was weighted by the degree 

of importance. The degree of importance was determined according to 

representativeness of the genetic test sites to operational plantation areas. Since 80% of 

the plantations are found equally on sites similar to A and C, and very few plantations 

on B (15%) and D (5%), the weights for tests A, B, C, D were assigned as 

0.4: 0.15: 0.4: 0.05, and the aggregate genetic merit was determined by: 

H=0.4*BVsite 1+0.15*BVsite 2+ 0.4*BVsite 3+0.05* 
BVsite 

4 (7.6) 
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Efficiency of selection 

The efficiency of selecting at site I (trait x) for planting at site 2 (trait y). relative 
to both selecting and planting at site 2 (trait y), was estimated using the following 

equation, assuming selection intensities and generation intervals are similar (Falconer 

1989): 

E= 
ýh., 

r AhY 
-11 x 100% (7.7) 

where rA is the genetic correlation between traits x and y, 4, and h, 
v are the square root 

of the heritability of traits x and y, respectively. These efficiencies indicate the relative 
loss in genetic gain from selecting at one site for planting at another. 

Efficiency of early selection - based on the ratio of genetic gain in the mature 

trait (22.5 years) at site 2 (trait y) from indirect selection based on an early trait ( 1.5 and 
9.5 years) on site I (trait x), relative to gain genetic gain in the mature trait (22.5 years) 

at site 2 from indirect selection based on an early trait on site 2 (trait z) - may be a better 

criterion for examining GE since early selection within sites in efficient, and it is 

normally practised in conifers. For example, optimum selection age for height in P. 

taeda in the USA can be as young as 4 years (Newman and Williams 1991). In this 

study, calculations of efficiency of early selection were based on selection at 1.5 and 9.5 

years only, because selecting earlier than 10 years was found to be most efficient 

(Chapter 6). Assuming the selection intensities are equal, the ratio of the efficiencies is 

given by: 

E= 
hxrxyhy- I LxLy- I 

hzrzyhy- I LzLy- I 
100% (7.8) 

where r_,,, = the genetic correlation between traits x and y; r, 
-,, 

= the genetic correlation 

between traits z and y; 4, h. and h, are the square root of the heritability of traits x, z and 

y, respectively; L, L- and L, are the generation intervals of traits x, Z and y, respectivel N'. 

The ratio of the efficiencies of early selection within and across sites reduces to: 
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[hxrxyhz- I r_zy'] x 100% 

7.3 Results 

7.3.1 Genetic correlations 

Traits assessed at the same ages across sites 

(7.9) 

Genetic correlations between heights assessed at the same age across sites are 

shown in Table 7.1. These were high at 1.5 years, ranging from 0.77 to 0.95, and 

moderately high at 9.5 and 13.5 years (0.62-0.95). At 22.5 years, genetic correlations 

between site A and B and that between sites D and B were high, 0.90 and 0.73 

respectively. The genetic correlation between site A and D was particularly low (0.18) 

indicating considerable parent x site interactions. The other correlations were moderate 

(0.51-0.58), indicating significant parental rank changes. The precision of the genetic 

correlations increased with increasing values of the correlation itself, as expected. 

Genetic correlations between stem straightness scores assessed at the same age 

across sites are shown in Table 7.2. These were high at 1.5 years, except those involving 

site D which were highly negative. At 9.5,13.5 and 22.5 years, the genetic correlations 

were low except those between sites A and C, and sites B and D. This result is expected 

since the site conditions for sites A and C (low altitude sites) were similar, and those for 

sites B and D (high altitude sites) were also similar. 

Traits assessed at different ages across sites 

Genetic correlations for height assessed at an early age at one site and that 

corresponding to maturity (22.5 years) at the other sites are shown in Table 7.3. The 

genetic correlations involving site B at 22.5 years and the other sites at 1.5 years Nvere 

all high (0.71-0.79), indicating that there will be little loss in gain at mature age at site 

B when selections are made at the other sites at 1.5 years. However, selecting at 1.5 
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years at site B for planting at the other sites would result in moderate loss in gain 
(genetic correlations, 0.43-0.64). Genetic correlations involving site D and sites other 

than site B at 1.5,9.5 years and 22.5 years were low, indicating that site D differed from 

sites A and C. 

Table 7.1. Estimates of genetic correlations for heights assessed at the same age across 
four sites. Standard errors of the genetic correlations are in parenthesis. 

Age Site 

BCD 

A 0.9 
(0.09) 

1.5 B 

C 

0.95* 0.88 
(0.13) (0.10) 

0.95* 0.77 
(0.08) (0.13) 

0.78 
(0.14) 

0.89 
(0.10) 

9.5 B 

C 

0.90 0.66 
(0.05) (0.15) 

0.94 0.95* 
(0.10) (0.09) 

0.73 
(0.13) 

A 0.64 
(0.17) 

0.79 0.62 
(0.11) (0.21) 

13.5 B 0.65 0.77 
(0.16) (0.14) 

c 0.72 
(0.16) 

A 0.90 0.51 0.18 
(0.15) (0.25) (0.28) 

22.5 B 0.58 0.73 
(0.25) (0.17) 

0.52 
(0.24) 

*Constrained by the program to :! ý 0.95. 
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The genetic correlations between stem straightness scores at one site at 1.5 years 

and that at 22.5 years at other site were low, other than between sites A and D (0.77) and 

sites D and B (0.69). The corresponding correlations for 9.5 years and 22.5 years were 

also low, except between sites B and D (0.8) , sites C and A (0.7 1), and sites D and B 

(0.66). 

Table 7.2. Estimates of genetic correlations for stem straightness assessed at the same 
age across four sites. Standard errors of the genetic correlations are in parenthesis. 

Age Site 

BCD 

A 0.86 
(0.46) 

1.5 B 

C 

0.95 * -0.81 
(0.23) (0.55) 

0.94 -0.95* 
(0.24) (1.00) 

-0.82 
(0.44) 

A 0.35 
(0.29) 

0.91 -0.11 
(0.08) (0.28) 

9.5 B 

c 

0.41 
(0.30) 

0.87 
(0.17) 

0.14 
(0.29) 

A -0.25 0.88 -0.24 
(0.28) (0.10) (0.26) 

13.5 B 0.05 0.95* 
(0.29) (0.05) 

c 0.04 
(0.27) 

A 0.66 0.84 0.06 
(0.30) (0.19) (0.38) 

22.5 B 0.44 0.95* 
(0.23) (0.11) 

c 0.22 
(0.29) 
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*Constrained by the program to :! ý 0.95. 

Table 7.3. Estimates of genetic correlations between height at either 1.5 or 9.5 years at 
one site and that at 22.5 years at another site. Standard errors of the genetic correlations 
are in parenthesis. 

Age Site 

22.5 years 

ABc 

A 0.71 0.60 0.59 
(0.18) (0.21) (0.21) 

1.5 years B 0.64 0.54 0.43 
(0.18) (0.22) (0.22) 

c 0.71 0.79 0.45 
(0.17) (0.15) (0.22) 

D 0.14 0.75 0.39 
(0.29) (0.18) (0.27) 

A 0.61 0.55 0.39 
(0.18) (0.21) (0.22) 

9.5 years B 

C 

D 

0.82 
(0.20) 

0.72 
(0.15) 

0.38 
(0.25) 

0.71 
(0.16) 

0.62 
(0.24) 

0.71 
(0.26) 

0.49 
(0.24) 

0.62 
(0.24) 

0.39 
(0.22) 

124 



Table 7.4. Estimates of genetic correlations between stem straightness at either 1.5 or 
9.5 years at one site and that at 22.5 years at another site. Standard errors of the genetic 
correlations are in parenthesis. 

Age Site 

A 

A 

1.5 years B 

c 

D 

-0.27 
(0.57) 

-0.24 
(0.36) 

0.22 
(0.55) 

22.5 
years 

B 

-0.12 
(0.38) 

-0.25 
(0.28) 

0.69 
(0.38) 

c 

0.20 
(0.36) 

-0.71 
(0.31) 

0.29 
(0.41) 

D 

0.77 
(0.28) 

-0.18 
(0.52) 

0.16 
(0.30) 

A 0.11 0.46 -0.13 
(0.27) (0.22) (0.28) 

9.5 years B 0.49 0.02 U. 8u 
(0.40) (0.34) (0.25) 

c 0.71 0.43 0.23 
(0.22) (0.24) (0.29) 

D 0.06 0.66 0.03 
(0.39) (0.20) (0.29) 
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7.3.2 Parental rank changes 

The parental rank changes at each site and over all sites for height and stem 

straightness are shown in Tables 7.5 and Table 7.6, respectively. The ranks were 

calculated only for height and straightness at 22.5 years since the genetic correlations 
between sites were particularly low at this age, indicating considerable GE. In some 

parents, rank changes for height and straightness were large. For example, parent 36 ýN, -as 

ranked 2 in height at site D and 19 at site C, and parent 32 was ranked 22 at site A and 

4 at site C (Table 7.5), indicating large parent x site interactions. Similarly for 

straightness, parent 14 ranked last at site C and was ranked 4 at site D, and parent 20 

was ranked I at site C and 21 at site D. As shown by the mean rank deviations, the 

parents varied in their stability of rank across sites. For height, 3 parents were highly 

interactive with rank deviations of equal or greater than 7. About half of the parents were 

fairly stable in ranking with rank deviation less than 3. For straightness, 5 parents were 

considered highly interactive with rank deviations of greater than 5. About half of the 

parents were considered fairly stable in ranking with rank deviation less than 3 (Table 

7.6). The parents with low ranking in height also had a low ranking in straightness. For 

example, parent 14 was ranked 20 in height and 18 in straightness, parent 37 was ranked 

21 in height and 22 in straightness, and parent 31 was ranked 19 in both traits. However, 

the parents with high ranking in height were not necessarily those with high ranking in 

straightness. 

Although the most interactive parents were of average or poor performance 

across all sites, a few were of superior performance across all sites. For example, parent 

29 was among the most interactive and had the 4th best overall rank across all sites for 

height; similarly for straightness, parent 36 was the most interactive and had the 33rd best 

overall rank across all sites. In contrast, parent 8 was ranked the best over all sites in 

height, and had the lowest rank deviation. 
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Table 7.5. Ranking of parents at each site for height at 22.5 years, overall rank across 
all sites, and average rank deviation from the overall rank. 

Parent Site Mean 
Deviation 

ABcD All sites 

8 1 2 1 1 1 0.25 

9 13 9 2 19 8 5.75 

10 6 8 14 12 9 3 

11 9 15 8 16 16 4 

12 4 13 7 20 12 5.5 

13 15 20 9 4 14 5.5 

14 20 18 21 18 20 1.25 

15 2 4 5 6 2 2.25 

16 7 6 17 3 5 4.25 

17 8 7 15 13 7 3.75 

20 5 10 11 17 10 3.25 

23 18 17 13 11 18 3.25 

29 16 1 16 5 4 7 

30 3 5 3 9 3 2 

31 21 21 6 15 19 5.25 

32 22 14 4 7 17 7.75 

33 17 22 20 22 22 1.75 

34 11 16 18 8 15 3.75 

36 19 3 19 2 6 8.25 

37 14 19 22 21 21 2.5 

39 12 11 12 10 13 1.75 

40 10 12 10 14 11 1.5 
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Table 7.6. Ranking of parents at each site for stem straightness at 22.5 years. overall 
rank across all sites, and average rank deviation from the overall rank. 

Parent 

A B 

Site 

c D All sites 

Mean 
Deviation 

8 5 16 9 20 14 5.5 

9 6 9 13 8 10 2.5 

10 13 3 20 10 11 5 

11 14 22 10 22 21 5 

12 9 15 11 9 12 2.5 

13 15 12 6 6 5 4.75 

14 22 18 22 4 18 5.5 

15 4 6 17 14 9 5.25 

16 1 2 2 7 2 1.5 

17 3 5 3 1 1 2 

20 2 10 1 21 8 7 

23 19 13 15 13 16 2.5 

29 12 8 5 3 6 3 

30 7 7 4 11 4 3.25 

31 20 19 7 18 19 3.5 

32 21 4 16 12 13 5.25 

33 8 11 8 5 7 2 

34 11 14 19 15 15 2.25 

36 18 1 12 2 3 6.75 

37 16 21 14 19 22 4.5 

39 10 17 21 16 17 1 

40 17 20 18 17 20 2 
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7.3.3 Index values 

Breeding values for height of parents at individual sites, and those from data 

pooled across sites, with or without weighting based on representativeness to plantation 

sites, are shown in Table 7.7. When breeding values at the individual sites were not 

weighted according to importance of sites, their correlations with the aggregate genetic 

merit were 0.70,0.90,0.59 and 0.71, for sites A-D, respectively. The breeding values 

at the individual sites were weighted by the correlation with the aggregate breeding 

values, and these weights were 0.24: 0.44: 0.17: 0.28. When the breeding values were 

weighted according to importance of the sites, the correlations with the new aggregate 
breeding values were 0.88,0.69,0.74 and 0.43, for sites A-D, respectively. 

The breeding values for stem straightness are shown in Table 7.8. The 

correlations between the aggregate breeding values and those at individual sites, when 

importance of sites was not taken into account, were 0.57,0.83,0.58 and 0.74 for sites 

A-D, respectively. Unlike height, the weights used to determine the aggregate genetic 

merit for straightness did not appear to depend on the correlations between the aggregate 

breeding values and those at individual sites. The weights were 0.4: 0.39: 0.16: 0.35 for 

sites A-D, respectively. When breeding values at each of the sites were weighted 

according to importance of the site,, the correlations between the weighted aggregate 

breeding values and those at individual sites were 0.75,0.46,0.95 and 0.24 for sites A- 

D, respectively. 

The ranking of the parents based on the weighted aggregate genetic merit reveal 

that parents with high breeding values for height generally had high breeding value for 

straightness, indicating that selection for height will also improve straightness. 
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Table 7.7. Estimates of breeding values for height at 22.5 years at four sites, and the 
aggregate breeding values over the four sites without weighting for site 
representativeness (H), and with weighting (H). Ranks of parents based on the weighted 
aggregate breeding values are shown. 

Parent 

Number A B 

Site 

c D 

H H* Rank 

by H* 

8 2.08 1.14 1.28 1.6 1.58 1.6 1 

9 -0.145 0.253 1.01 -0.707 0.257 0.349 5 

10 0.68 0.316 -0.122 -0.007 0.225 0.27 7 

11 0.338 -0.569 0.252 -0.41 -0.226 0.13 10 

12 1.2 0.02 0.282 -0.811 0.1 0.554 4 

13 -0.172 -1.04 0.099 0.686 -0.056 -0.151 14 

14 -1.15 -0.795 -0.947 -0.62 -0.945 -0.988 22 

15 1.37 0.847 0.429 0.504 0.988 0.873 3 

16 0.517 0.663 -0.293 0.881 0.622 0.233 8 

17 0.419 0.502 -0.266 -0.029 0.277 0.135 9 

20 0.747 0.155 0.04 -0.549 0.187 0.309 6 

23 -0.925 -0.696 -0.094 -0.005 -0.718 -0.512 17 

29 -0.442 1.48 -0.282 0.644 0.729 -0.035 13 

30 1.37 0.694 0.941 0.122 0.799 1.04 2 

31 -1.41 -1.04 0.427 -0.138 -0.818 -0.557 18 

32 -1.97 -0.34 0.506 0.376 -0.487 -0.619 19 

33 -0.467 -1.13 -0.735 -1.457 -1.1 -0.723 20 

34 0.08 -0.593 -0.375 0.331 -0.141 -0.19 15 

36 -0.974 0.89 -0.486 1.2 0.498 -0.39 16 

37 -0.164 -0.889 -1.651 -1.15 -1.07 -0.917 21 

39 0.001 0.07 -0.031 0.02 0.08 0 12 

40 0.18 0.06 0.07 -0.093 0.102 0.104 11 
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Table 7.8. Estimates of breeding values for stem straightness at 22.5 years at four sites, 
and the aggregate breeding values over the four sites without weighting for site 
representativeness (H), and with weighting (H). Ranks of parents based on the weighted 
aggregate breeding values are shown. 
Parent Site H H* Rank 

Number ABcD bv H* 

8 0.178 -0.076 0.19 -0.533 -0-111 0.109 8 

9 0.165 0.07 -0.055 0.202 0.1 0.06 9 

10 -0.026 0.344 -0.583 0.133 0.1 -0.185 18 

11 -0.055 -0.614 0.166 -0.652 -0.425 -0.08 14 

12 0.07 -0.053 0.08 0.168 0.08 0.06 10 

13 -0.062 0.013 0.412 0.295 0.241 0.157 7 

14 -0.288 -0.216 -0.873 0.305 -0.234 -0.482 22 

15 0.191 0.179 -0.385 -0.035 0.1 -0.052 13 

16 0.296 0.366 0.807 0.268 0.425 0.509 

17 0.239 0.207 0.806 0.679 0.547 0.483 3 

20 0.285 0.028 1.17 -0.566 0.141 0.559 1 

23 -0.209 -0.035 -0.215 -0.019 -0.194 -0.176 15 

29 -0.003 0.154 0.416 0.324 0.218 0.205 5 

30 0.13 0.167 0.789 0.08 0.28 0.397 4 

31 -0.231 -0.255 0.256 -0.349 -0.248 -0.045 12 

32 -0.283 0.271 -0.271 -0.011 -0.053 -0.182 16 

33 0.106 0.028 0.246 0.301 0.176 0.16 6 

34 0.02 -0.035 -0.525 -0.175 -0.136 -0.215 19 

36 -0.156 0.375 0.013 0.607 0.3 0.03 11 

37 -0.121 -0.377 -0.133 -0.475 -0.554 -0.182 17 

39 0.047 -0.216 -0.623 -0.256 -0.217 -0.276 20 

40 -0.147 -0.322 -0.502 -0.31 -0.305 -0.323 21 
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7.3.4 Efficiency of selection 

Traits assessed at the same age across sites 

Efficiencies of selection on height at one site for planting at a different site are 
given in Table 7.9. These ranged from 18 to 123%, and were high at 1.5 and 9.5 years 
of age and moderate at 13.5 and 22.5 years. The lowest efficiency of selection was for 

height between sites A and D at 22.5 years (18%). At 1.5 years the efficiency of 

selection at other sites for planting at D was more than 100%, indicating that it was 
better to select at these sites to plant at site D than at site D itself. This was attributed to 

a much lower heritability estimate obtained at site D than at the other sites. This low 

heritability at site D also caused the efficiencies for selecting at D for planting at the 

other sites to be low. The results at 1.5 and 9.5 years indicate that selection can be 

carried out with little loss in gain at any site, other than site D, for planting at the other 

sites. On the contrary, the results at 13.5 and 22.5 years indicate that for sites that are 

close geographically, such as A and C, losses in genetic gain from selection at the other 

sites are high - sometimes even higher - than selections at more distant sites. 

Efficiency of selecting for stem straightness at one site for planting at another 

site are shown in Table 7.10. These range from high negative (- 164%) to high positive 

(122%). At 1.5 years, selecting at site C was better than direct selection on site A and 

B. and selection on A was better than direct selection on site B. When selections were 

made on site D for planting at the other sites the efficiencies of selection were highly 

negative, and were also highly negative when selections were made at the other sites for 

planting at site D. At older ages, efficiencies of selection for straightness were high 

between site A and C, and between B and D, indicating similarity between the two 

groups of sites. 
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Table 7.9. Estimates of efficiencies (%) of indirectly selecting for height at one site 
compared with directly selecting at another site, across four sites at four ages. 

Age Site 

A B c D 

A 76 77 113 

1.5 B 106 91 116 

c 117 99 123 

D 69 51 49 

A 119 100 89 

9.5 B 67 78 96 

c 81 113 89 

D 49 94 60 

A 55 55 63 

13.5 B 74 53 90 

c 113 71 105 

D 61 65 49 

A 114 53 18 

22.5 B 71 47 59 

c 49 71 51 

D 18 91 53 
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Table 7.10. Estimates of efficiencies (%) of indirectly selecting for stem straightness at 
one site compared with directly selecting at another site, across four sites at four ages. 

Age Site 

A 

A 

1.5 B 61 

c 190 

D -81 

B 

122 

266 

-134 

c 

48 

33 

-41 

D 

-81 

-67 

-164 

A 

9.5 B 

c 

D 

33 

73 

-9 

37 

35 

79 

114 

48 

15 

-13 

96 

13 

A -24 68 -20 
13.5 B -26 4 82 

c 114 6 4 

D -29 111 4 

A 46 37 4 

22.5 B 95 27 96 

c 191 71 36 

D 8 94 14 

Traits assessed at different ages across sites 

The ratios of efficiency of early selection within and across sites for height are 

shown in Table 7.11. The results show that, if selections are made at 1.5 years of age, 

it is better to select at sites other than those where the trees are going to grow to 

maturity, other than at site C where it was better to select and plant at the same site. The 

efficiencies were particularly high when selections were made at site B or C for planting 

at A. This was attributed to much higher genetic correlations between height at age 1.5 

years at sites B and C, and that at 22.5 years at site A (0.86,0.95, respectivelý-). 
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compared to height at age 1.5 at site A and height at 22.5 at site A NN-hich -was 
suspiciously low (0.10). The results show that if selection are to be carried out at 1.5 

years of age, the best site to locate the genetic tests is site C since the gain from indirect 

selection at this site will be higher than that obtained from direct selection on the other 
sites. If selections are made at 9.5 years of age, the results suggest that indirect selection 

on site D resulted in a large loss in genetic gain compared to selecting at 9.5 years at 

each of the other three sites. Therefore, site D should be avoided for establishing genetic 
tests to make selections for planting at the other sites. However, selecting at 9.5 years 

of age on any of the other sites (A, B, Q did not reduce genetic gain much compared to 

selecting on the same site since the efficiencies of selection were all greater than 70%. 

The ratios of efficiency of early selection within and across sites for straightness 

are shown in Table 7.12. At 1.5 years of age, the best sites for selecting for straightness 

were A and C. At 9.5 years, the loss of potential gain from selecting at site A for 

planting at C was low, as was that between selecting at site B and planting at D. 

Table 7.11. Estimates of efficiencies (%) of early selection across sites for height 
compared to within site. 

Age Site 

22.5 years 

ABcD 

A 194 65 126 

1.5 years B 755 69 108 

c 876 267 119 

D 109 160 33 

A 82 75 86 

9.5 years B 80 72 103 

c 84 86 78 

D 37 62 49 
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Table 7.12. Estimates of efficiencies (%) of early selection across sites for stem 
straightness compared to within site. 

Age Site 

22.5 years 

ABcD 

A 154 91 1925 

1.5 years B 35 -228 -318 
c 87 643 800 

D -40 -887 132 

A 16 75 -16 
9.5 years B 65 3 93 

c 80 50 23 

D 82 

Efficiency of selection at each site to improve average performance across all sites 

The efficiencies of selecting for height at each site to improve the average 

performance across all four sites with and without weighting according to importance 

of sites, are shown in Table 7.13. When sites were not weighted, all sites had high 

efficiencies of selection for height; site B had the highest efficiency. Although some of 

the correlations of breeding values at each site and the aggregate ones were low, the 

individual site heritability estimates were all higher than the one estimated over all four 

sites (0.24), resulting in high efficiencies of selection. When sites were weighted, sites 

A and C had high efficiencies with site A having the highest. 

The efficiencies of selecting for stem straightness at each site to improve the 

average performance across all four sites with and without weighting according to 

importance of sites, are shown in Table 7.14. When sites were not weighted, efficiencies 

of selection for stem straightness were high for all sites, except site A which had the 

lowest heritability estimate and lowest correlation. When sites were weighted, site C had 

the highest efficiency. 
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Table 7.13. Estimates of correlations of breeding values for height at each site without (rA) and with weighting (rA*) and efficiencies of selecting for height at each site for 
improving the average without (E) and with weighting (E*). 

Site h2 rA rA E E* 

A 0.40 0.70 0.88 0.90 1.14 

B 0.26 0.90 0.69 0.98 0.72 
c 0.39 0.59 0.74 0.75 0.94 

D 0.40 0.71 0.43 0.92 0.56 

Table 7.14. Estimates of correlations of breeding values for straightness at each site 
without (rA) and with weighting (rA*) and efficiencies of selecting for straightness at 
each site for improving the average without (E) and with weighting (E*). 

Site h2 rA rA * E E* 

A 0.16 0.57 0.75 0.50 0.65 

B 0.33 0.83 0.43 1.04 0.54 

c 0.85 0.58 0.95 1.16 1.91 

D 0.32 0.74 0.24 0.91 0.30 

7.4 Discussion 

In identifying the presence of GE it is important to ascertain whether GE is due 

to heterogeneity of variances across sites or to rank changes of the genotypes. In this 

study, the additive variance and heritability estimates varied slightly across sites (see 

Chapter 3), and genetic correlations across sites for height at 22.5 years were low, 

indicating rank changes of the genotypes. Therefore, GE in this study was due primarily 

to rank changes of genotypes across sites. 

For height, GE was more pronounced as the trees aged. The genetic correlations 

and efficiencies of selection were high at 1.5 and 9.5 years, indicating that if selections 

are made at one site there will be little loss in potential genetic progress at the other site. 

However, when selections were made at later ages, both the genetic correlations and 
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efficiencies of selection were low to moderate, indicating that there were significant rank 
changes between sites. Therefore, maximum gain for a specific site would require that 
selection be conducted in tests planted at that site. The very low efficiency of selection 
estimates involving site D, indicate that this site is substantially different from the other 
sites. 

Because of the long rotation periods of forest tree species, results and 

conclusions regarding GE are usually drawn from tests evaluated at a young age. For 

example, Pswarayi et al. (in press) found across site genetic correlations in P. elliotiii 

assessed up to 15 years in Zimbabwe to be higher than 0.7, indicating little GE. 

Similarly, studies of GE in P. radiata, based on tests assessed up to 12 years, found GE 

not to be of practical importance (Johnson 1992, Matheson and Raymond 1984b, 

Johnson and Burdon 1990). These conclusions are supported by our results up to 9.5 

years, and to a lesser extent by those at 13.5 years. In contrast, results at 22.5 years 
indicate that, while GE in this population was small at young ages, it was large at mature 

ages. Therefore, early growth assessments may not be reliable for assessing GE at 

maturity. This implies a critical need to evaluate GE at mature ages in forest trees. It is 

therefore important to verify, for the other species where inferences about GE is based 

on early growth assessments, the trend in GE over time to maturity. 

The results describing the effect of early selection for height at one site for 

predicting mature performance at another site, compared to early selection for mature 

performance on the same site, shows that if selections are made at 9.5 years of age, 

selecting at site D will result in large losses in gain at maturity at the other three sites. 

This result also suggests that site D is a different site to the other sites, and should be 

avoided for establishing tests from which selections will be made for planting at all sites. 

On the other hand, selections made early at the other sites would do well at site D. 

Genetic correlations and efficiencies of selection for stem straightness at the 

same age across sites were high between sites A and C, and between sites B and D. The 

similarity between sites A and C, and sites B and D, was also evident when earlý' 

selection across sites was made at 9.5 years. Therefore, if straightness is the main 

selection criterion, sites A and C could form one breeding population and sites B and D 

another. However, the interpretation of these results is complicated by the fact that sites 
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A and C were assessed by one team, and sites B and D by another. Although the 
assessment scale used is meant to be invariant across sites, the possibility remains that 
differences of interpretation by the two assessment teams could confound these results. 

The heritability estimates reported in Chapter 3 for both traits were lower when 
they were estimated from the data pooled across sites than from individual site data, and 
the GE found in this study partly explains these results. Since pooling data across site 
lowers the heritability in the presence of GE, it may reduce the potential genetic oain 
compared to selection at individual sites. As pointed out by Pedrick (1990), even within 
a region, one should expect GE. Therefore, results of a single test (normally less than 
5 hectares) are likely to overestimate gain if the results are to used for a region (nonnally 

more than 2000 hectares), since it ignores possible GE. Given this hypothesis, the most 
appropriate heritability estimate to use for gain prediction may actually be the one from 
data pooled across sites. Furthermore, breeding values estimated from a single site are 
not as precise as those from the pooled data. In order to yield results that are appropriate 
to commercial progress, it is therefore necessary to consider dispersing progeny tests 

within the region where most of the commercial plantations are situated. 
The overriding importance of altitude and rainfall to performance at the tree 

species level, which has been used to match species to environments in Zimbabwe, may 

not be true at a population within species level. Sites A and C were low altitude sites and 

were less than 5 kilometres apart, while sites B and D were high altitude sites, and more 

than 100 kilometres from both sites A and C; nevertheless, the genetic correlations for 

height at 22.5 years between sites A and B was 0.90 while that between sites A and C 

was 0.5 1. This result complicates deployment and breeding strategy, as no 

environmental factor which influenced GE is easily apparent. 

Implicationsfor breeding P. taeda in Zimbabwe 

In Zimbabwe, height is likely to be a more important selection criterion than 

straightness. Furthermore, there is no significant planting of P. taeda at site D. which 

appears to differ substantially from sites A and C, to warrant a separate breeding 

population. Also, we could not identify any single environmental factor %\-hich 
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influenced GE, making it difficult to classify environments. Therefore. one breeding 

population is recommended. Given this recommendation, and that the overall objectiVe 
is to increase timber production in all regions where the species is grown commercially, 

rather than to increase production at a particular site, use of the correlation between 

individual site breeding values and the aggregate breeding values, and efficiency of 
selection on each site to improve the average, are more appropriate criteria in making 
decisions regarding the choice of location of progeny test. Results indicate that the 

selections to improve the average performance across all the four sites should be made 

at site A,. which had the highest correlation between the breeding values at the site and 
the weighted aggregate genetic merit, and the highest efficiency of selection. 
Furthermore, efficiencies of across-site early selection at 9.5 years for height at site A 

were greater than 75%. This strategy will not significantly affect selections for 

straightness, since selections made at 9.5 years at site A predicted fairly well mature 

performance of straightness at site C, which is an important region for P. taeda 

plantations. Since results of a single test are likely to overestimate gain across a region, 

as it ignores possible GE, the tests should be replicated within the region represented by 

site A. Nursery period in P. taeda varies with altitude, being shorter at low altitudes, and 

therefore locating the nursery and genetic tests at site A, which is the lowest in elevation, 

should result in savings both in nursery and transport costs. 

Since GE may be due to a few families, the most interactive parents could be 

excised from the breeding programme, as proposed by Matheson and Raymond (I 984b). 

However, this should be done with care since there may be a danger of removing some 

parents of superior average performance over all sites. 

The multiple population breeding strategy is being used in P. taeda in 

Zimbabwe, due in part to the possibility of utilizing GE. Our study failed to identify 

major environmental factors which may have caused GE, and GE was found to be larger 

for sites located close to each other than those far apart, limiting our ability to define and 

classify environments with minimum GE. Our results, therefore imply that efficiency 

of the multiple population breeding strategy for P. taeda in Zimbabwe, in terms of 

utilizing GE, might be low. 

However, the precision of many genetic correlations estimated here were low, 
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and hence the precision of the efficiencies of selection derived from them would be 

expected to be low. Therefore, the findings reported here should be verified with better 

data sets. 
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Chapter 8 

DECISION-MAKING IN PROGENY TEST 
LOCATION USING GIBBS SAMPLING 

8.1 Introduction 

Forest sites are heterogenous due to variations in soils, weather conditions, or 
other factors. The manner in which progeny tests are deployed affects genetic gain in 

production populations in the presence of genotype x environment interactions (GE). 
The question faced by breeders is where should one locate progeny tests so as to 

ultimately maximise gain in production populations. The conventional method of 
determining the best site to locate progeny tests is to estimate the efficiency of selecting 

at one site for planting at another site, using the method of indirect selection described 

by Falconer (1989). In order to estimate the efficiency of selection, heritability and 

genetic correlations are estimated using standard methods such as REML. A major 
limitation of this approach is that the distribution or the variance of the efficiencies of 

selection are unknown, adversely influencing the efficiency of decision-making. A 

further problem is that genetic correlations are difficult to estimate and can range from 

-I to I regardless of the true parameter if sample sizes are low. For example, REML 

analyses in Chapter 7 indicated that the genetic correlation between heights at 22.5 years 

at sites A and C was low and had a large standard error (0.51± 0.25; Table 7.1), as was 

that between heights at 9.5 years at site A and those at 22.5 years at site C (0.55 ± 0.21, 

Table 7.3). The large standard errors associated with the genetic correlation estimates 

particularly in tree breeding due to few parents, and hence possible large sampling 

variance associated with the derived selection efficiencies, make it difficult to have 

confidence in making decisions on whether or not progeny tests should be located at one 

site. 

An alternative approach which might overcome this lack of confidence is to use 
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a Bayesian approach such as Gibbs sampling. This approach, where random samples 
from joint distributions are generated, may assist in decision-making regarding location 

of progeny tests in heterogenous sites in the presence of GE. When calculating the 
efficiencies of selection, the genetic correlations and heritability estimates from REML 

are assumed to be known without error. Gibbs sampling is particularly attractive in this 
context, because the sampling distribution of the efficiency of selection can be obtained. 
The confidence of choosing a location for planting progeny tests is hard to assess and 
might be lower than anticipated, if these sampling distributions are not considered. 
Furthermore, Gibbs sampling enables one to estimate the probability that the efficiency 
of selection lies between certain values, thereby producing considerably more 
information on which to base decisions compared to the point estimates from REML. 
Furthermore, the approach makes use of prior information, and nuisance parameters are 
integrated out. 

The Gibbs sampler has recently been used for estimating variance components 
in animal breeding applications (Jensen et al. 1994, Sorensen et al. 1994, Wang et al. 
1994). In addition, Sorensen et al. (1994) used the Gibbs sampler to estimate uncertainty 
in response to selection. It appears that Gibbs sampling has not been used in tree 

breeding, but has been used in forest inventory (Green and Strawderman 1996, Green 

et al. 1994). 

The present study will investigate use of the Gibbs sampling in decision-making 

on choice of site for locating progeny tests. The results will be compared to those 

obtained by REML. 

8.2 Materials and Methods 

Data 

Data for the Gibbs sampler were heights assessed at ages 9.5 years and 22.5 

years at sites A and C. These two ages were selected because early selection at 10 years 

was predicted to be effective in P. taeda (Chapter 6). The two sites were selected 

because both sites represented the region where most of the commercial plantations of 

P. taeda are located,, and therefore making decisions regarding the location of progeny 
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tests between these two sites are critical. Furthermore, the outcome of altemati'Ve 
strategies involving progeny test location using REML estimates was not clear due to 
the large standard errors of the genetic correlations (see Chapter 7). Details of the tests 
and assessment procedures are described in Chapter 3. 

Overview of Bayes theorem 

The objective of the Bayes methods is to compute the posterior distribution of 
the parameter of interest. To start with, a prior distribution, which represents the belief 

about the parameter before any data are observed, is assumed. The posterior distribution 

then represents the updated belief after viewing the data. The posterior distribution is 

expressed as proportional to the prior distribution of the parameter times the conditional 
distribution of the data given the parameter (likelihood) (Gilks et al. 1996): 

P(Oly) - P(())P(Ylo) 

where y is the data and 0 is the parameter. 

Gibbs sampling 

Gibbs sampling is a method of numerical integration that allows inferences to 

be made about joint or marginal distributions of the parameters of interest. The Gibbs 

sampling algorithm is an updating sampling scheme which requires random independent 

draws of variables from all of the ftill conditional distributions. The full conditional 

distribution is the distribution of a variable given all other parameters in the model. 

Gibbs sampling integrates out the other parameters leaving the distribution of the 

parameter in question, conditional on the data (i. e. marginal posterior distribution of the 

parameter). After obtaining samples from the marginal distributions, means and 

variances of the distribution can be estimated. 

The following quadrivariate tree model was used to estimate covariance 

components for height across the two sites and the two ages (hence four traits): 
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where: yj = the vector of observations for trait i, 

bi = the vector of fixed effects for trait i, 

e 2 
+ 
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ai = the vector of random tree (additive genetic) effects for trait i, 
Xi = the incidence matrix for fixed effects for trait i, 

Zi = the incidence matrix for additive direct effects for trait i, 

ej = the vector of residual effects for trait i. For i=1,2,3,4. 

The effect of the replicate was considered fixed. The assessments of height at the two 

sites and two ages were treated as different traits. At 9.5 years the trees assessed were 
those that were removed after thinning. Therefore, for all the analyses, the traits were 

assessed on separate but genetically related trees across and within sites. Therefore, 

genetic covariances exist between any two traits, but there were no environmental 

covariances. 

The conditional distribution of the complete data given the location and scale 

parameters is assumed to be quadrivariate normally distributed. 

Priors were assigned to unknown parameters (the variance components and fixed 

effects) in the model. Uniform (flat) prior distributions were assumed for fixed effects. 

As priors for the additive random genetic and residual covariance matrices two types of 

prior distributions were assumed: inverted Wishart and uniform distributions. The 

Wishart (IW) distribution is a matrix generalization of the univariate Chi-squared 

distribution (Sorensen 1997). For a proper prior (IW) distribution, the shape parameter 

(degree of freedom) should be 2 more than the order of the matrix (Van Tassell and Van 

Vleck 1995). A shape parameter 9 was used, indicating moderate belief for the prior 

distributions of the variance components. The additive genetic and residual (co)variance 

components estimated using REML were used as the starting values. The rationale for 
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this was that it was difficult to find reports of additive and residual covariances from 
literature. Sensitivity analyses were conducted to find the effect of changing the starting 
values on the expected values of the posterior distributions-the REML covariance 
estimates were multiplied by 2. To use flat priors, a value 0 was used for the shape 
parameter, indicating no prior knowledge for the distributions of the variance 
components. 

The analysis of the four traits simultaneously was done using the Multi Trait 
Gibbs Sampling for Animal Models program (MTGSAM, Van Tassell and Van Vleck 
1995). The first 5000 iterations were not stored to ensure that samples saved were from 

the proper stationary posterior distributions. Thereafter, a total of 100,000 iterations 

were made, and samples stored every I 00th iteration to make sure that the samples were 
nearly uncorrelated, giving a total of 1000 samples of additive genetic and residual 
covariance estimates stored. From these, heritability, genetic correlations and 

efficiencies of selection were calculated for each sample, and inferences about 

efficiencies of selection were made by computing directly summary statistics from the 

resulting distributions derived from the 1000 samples. The mean of the posterior 
distribution was taken as the mean of all the samples and the mode of the posterior 
distribution as the most frequent value of the parameter. The most frequent value was 
determined from the histogram. The probability that the efficiency of selection was 

greater than 0.7 and 1.0 were estimated. A probability of 0.7 was selected because 

efficiencies lower than 0.7 would justify extra costs of having separate progeny tests. 

In order to check for convergence the Gibbs sampler was run several times with 
different starting values and different intervals of saving samples to make sure that the 

same estimates were obtained each time. Similar estimates were obtained, hence 

convergence was assumed. 

To test independence of samples autocorrelations were estimated. The samples 

were moderately correlated. For example, the I st order lag-correlations ranged between 

0.45 and 0.74, when every 100th sample was saved, and this was reduced to 0.26-0.60, 

when every 200th sample was saved. The expected values of the posterior distributions 

for the efficiencies of selection were similar indicating that autocorrelations were not a 

major problem. This may be due to the long Gibbs chain used in this study. 
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To test if the covariance estimates from Gibbs sampling were significantly 
different from the REML ones, a log ratio test was performed in which the Gibbs 

sampling estimates were used as initial values in REML and fixed. The difference 
between loglikelihoods with and without fixing the covariance components were 
compared with Chi-square distribution with degrees of freedom equal to the number of 
fixed parameters (i. e. 14). 

8.3 Results 

Genetic parameters 

Using a log ratio test, covariance estimates from Gibbs sampling and those ftom 

REML were not significantly different. 

Table 8.1. Estimated heritabilities (in bold), and genetic correlations for height based 

on Gibbs sampling, and standard deviations of the marginal posterior distributions are 

in parenthesis. 

HT9.5 (site A) HT9.5 (site Q HT22.5 (site A) HT22.5 (site 

HT9.5 (site A) 1 0.81 

(0.09) 
HT9.5 (site Q 0.90 0.66 

(0.04) (0.10) 

HT22.5 (site A) 0.74 0.72 0.55 

(0.12) (0.13) (0.13) 

HT22.5 (site C) 0.52 0.80 0.47 0.56 

(0.17) (0.09) (0.21) (0.13) 

The estimated heritabilities and genetic correlations using Gibbs sampling and 

REML are shown in Tables 8.1 and 8.2, respectively. The heritability estimates from 

Gibbs sampling (0.55-0.81) were slightly larger compared to those from REML (0.39- 

0.73), but the genetic correlations were similar. There is expected positive error 

covariances between REML and Gibbs estimates, making significance testing difficult. 
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However, the differences were small, and therefore unlikely to be important. 

Selection efficiencies 

The estimated selection efficiencies are shown in Table 8.3 and the histograms 

of their marginal posterior distributions are given in Figures 8.1 and 8.2. While the 

estimates of efficiencies of early selection across site showed little variation, those for 

selection at maturity across sites did. The distributions of the selection efficiencies were 
slightly skewed. The posterior modes were similar to estimates from REML (Table 8.3). 

This is expected since the maximum likelihood estimate of a parameter is the value that 

maximises the likelihood (i. e. mode). The probability that the efficiency of earlýý 

selection at site C for planting at site A was greater than 0.70 was 0.93 (Table 8.3)), 

indicating that early selection at site C would result in little loss in gain at site A at 
harvest age, compared to early selection at site A. In fact, the probability that more gain 

would be obtained from early selection at site C compared to site A is 0.2. The high 

efficiency of selection at site C was attributed to a high genetic correlation between 

heights at 9.5 years at site A and those at site C at 22.5 years, which was as high as that 

between 9.5 and 22.5-year heights at site C (Table 8.1). 

Due to much lower across-site genetic correlations than within-site correlations, 

the probability that the efficiency of early selection at site A for planting at site C was 

greater than 0.70 was only 0.57, and the probability that early selections at site A would 

result in higher gain at site C at harvest age than early selections at site C was only 0.0 1. 

The results suggest that site C is a better progeny test site since selections made here 

will result in little loss in gain at site A, and may even result in higher gain at site A at 

harvest age than early selection at site A, whereas early selection at site A would 

severely reduce progress at site C. 

If selection were carried out at 22.5 years of age (harvest age), the probabilities 

that the efficiencies of selection at alternative sites are greater than 0.7 were all very 

low: 0.12 for selection at site A for planting at site C, and 0.17 for selection at site C for 

planting at site A, indicating that these sites were different. Therefore, if selections are 

to be made at maturity, separate progeny tests should be established for the sites since 

selections at alternative sites would result in substantial losses in gain at the sites. The 
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low efficiencies of selection are attributed to low genetic correlation between heights 
assessed at these two sites at 22.5 years. 

Table 8.2. Estimated heritabilities (in bold), and genetic correlations for height based 

on REML, and their standard errors are in parenthesis. 

I HT9.5 (site A) HT9.5 (site Q HT22.5 (site A) HT22.5 (site C) 
HT9.5 (site A) 1 0.73 

(0.14) 

HT9.5 (site Q 0.90 0.59 

(0.05) (0.14) 

HT22.5(site A) 0.77 0.72 0.40 

(0.08) (0.15) (0.14) 

HT22.5 (site Q10.55 0.82 0.51 0.39 
(0.21) (0.07) (0.25) (0.15) 

Table 8.3. REML and Gibbs sampling estimates of efficiencies of selection for height, 

standard deviations (SD) of the marginal posterior distributions, and the probabilities 

that the selection efficiencies (E) are greater than 0.7 and 1.0. 

REML Posterior Posterior SD P(E>0.7) P(E>1.0) 

estimate mode mean 
EA2c4* 0.84 0.80 0.70 0.18 0.57 0.01 
Ec2A4 0.75 0.75 0.89 0.15 0.93 0.20 

EA4C4 0.49 0.50 0.46 0.22 0.12 0.00 

_EC4A4 
0.53 0.63 0.48 0.23 0.17 0.01 

*EA2C4= efficiency of selecting at site A at 9.5 years for planting at site C compared with 
early selection at site C at 9.5 years. 

Ec2A4 = efficiency of selecting at site C at 9.5 years for planting at site A compared 
with early selection at site A at 9.5 years. 

EA4C4= efficiency of selecting at site A at 22.5 years for planting at site C compared 
to direct selection at site C. 

EC4A4= efficiency of selecting at site C at 22.5 years for planting at site A compared 
to direct selection at site A. 
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Figure 8.1. Histograms from marginal posterior samples of size 1000 for efficiency of 

early selection across sites: (a) efficiency of early selection at site A for planting at site 

C, (b) efficiency of early selection at site C for planting at site A. 
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Figure 8.2. Histograms from marginal posterior samples of size 1000 for efficiency of 

selection at maturity across sites: (a) efficiency of selection at site A for planting at site 

C, (b) efficiency of selection at site C for planting at site A. 
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Influence ofpriors 

The results showing the influence of priors are in Table 8.4. When inverted 
Wishart distributions were assumed and the starting values multiplied by 2, the estimates 

of the efficiencies of selection and the variance of the posterior distributions \ý-ere 

similar. This indicates that the starting values had little effect on the marginal posterior 
distributions of the efficiencies of selection. However, the results assuming uniforrn and 
inverted Wishart distributions as priors differed, particularly in the variances of the 

posterior distributions which were much higher when the former were assumed as priors 
(Table 8.4). 

Table 8.4. Expected values of the marginal posterior distributions of the efficiencies 

of selection using inverted Wishart (IW) and uniform distributions (UNI) as priors. 

Standard deviation of the marginal posterior distributions are in parenthesis. 

Iw lw UNI 

(starting values (starting values 

from REML) from REML x2) 
EA2c4 0.70 0.70 0.46 

(0.18) (0.23) (6.12) 

Ec2A4 0.89 0.79 0.92 

(0.15) (0.16) (2.64) 

EA4C4 0.46 0.40 0.34 

(0.22) (0.21) (0.36) 

EC4A4 0.48 0.43 0.34 

(0.23) (0.23) (0.35) 

8.4 Discussion 

Use of Gibbs sampling in decision making in progeny test location was 

demonstrated. Variance components were estimated using MTGSAM. and the estimated 

components were used to derive heritability estimates and genetic correlations. which 
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were in turn used to estimate the efficiencies of selection. The study illustrated that the 
point estimates of the efficiencies of selection were subject to substantial error. 
particularly those involving selections at maturity. Gibbs sampling provided a method 
for constructing the posterior distribution of the efficiencies of selection from which the 

variation of the estimates were obtained, and the probabilities that the estimates were 
within a specified range were also estimated. A further advantage of the Gibbs sampling 

approach was that it allowed simultaneously estimation of components of variances and 

covariances for the four traits, unlike the REML methodology used in Chapter 7. 

However, heritability and genetic correlation estimates from the bivariate REML 

analyses and those from multivariate Gibbs sampling analyses were not significantly 
different, suggesting that bias due to selection was small. 

Using this approach, site C emerged as a better site to locate progeny tests than 

site A if early selection is practised. However, if selections are made at maturity, which 

is highly unlikely, separate progeny tests should be established for the two sites. The 

decision regarding selection at maturity is consistent with that obtained using point 

estimates from REML, but Gibbs sampling allowed the efficiencies of selection to be 

interpreted with more confidence. The decision regarding early selection differed from 

that based on REML point estimates. Using REML, the efficiencies of early selection 

at both site A and site C were greater than 0.7 indicating that either of the two sites 

could be a suitable location for progeny tests; in contrast, with Gibbs sampling, it was 

clear that site C was a better site to locate progeny tests. Furthermore, if a choice had to 

be made between the two sites, site A would be selected using point estimates from 

REML, resulting in different decisions arising from the two approaches. The difference 

between the results from Gibbs sampling and REML is attributable to greater 

information derived using the former method. The study demonstrates the advantage of 

having some measure of variability associated with the estimates of efficiency of 

selection. 

Influence of priors was studied. Changing the starting values had no impact on 

the posterior distributions of the efficiencies of selection. Assuming prior distributions 

were uniform gave different results than assuming priors were inverted Wishart 

distributions. Sorensen et aL (1994) also found that variances were higher when uniform 
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priors were used. The lack of agreement might be due to improper distributions ', xhen 

uniform distributions are assumed as priors or a weak likelihood due to poor information 
in the data. The use of uniform priors for variance components was discouraged because 

the chance of obtaining an improper posterior distribution was high (Van Tassell and 
Van Vleck 1995). 

The results indicate that, even in this simple decision problem, Gibbs sampling 

can be an attractive approach to decision-making in progeny test location as more 

information to make inferences about the parameter of interest can be derived from the 

analyses than is possible from REML. The benefits might be expected to be even greater 

in more complex decision processes. The advantage of the approach is that it gives a full 

marginal posterior distribution of a parameter of interest, from which the probability that 

the parameter lies between specified values can easily be computed (Sorenson et al. 

1994). Further, marginal posterior distributions for a parameter of interest consider all 

other parameters as nuisances, and integrates them out, providing a better insight into 

the parameter of interest. However, the use of the Gibbs sampling procedure may be 

limited due to its high computational demands. 
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Chapter 9 

CONCLUDING DISCUSSION 

Tree breeders must quantify the extent and nature of genetic control of traits of 

relevance in order to formulate effective breeding strategies. For example, genetic 

parameters such as heritabilities are necessary for predicting the genetic merit of trees, 

both heritabilities and age-age genetic correlations are essential for determining the 

opportunities for early selection, and trait-trait correlations are important for 

construction of multi-trait selection indices. Similarly, estimates of the genetic 

relationship between a trait assessed at different sites are necessary for evaluating 

alternative breeding strategies. The objectives of this study were to estimate genetic and 

phenotypic relationships between height and stem straightness using an individual tree 

model,, and to determine the optimum selection age for height for a P. taeda breeding 

population in Zimbabwe. Genetic parameters were estimated for height and straightness, 

important in P. taeda breeding as they are associated with the production of timber, and 

thus of major influence on the profitability of P. taeda plantations. 

9.1 Genetic parameter estimates 

The work reported here is the first use of an individual tree model in P. taeda; 

previous studies have used exclusively sib-covariance models. Given that tree breeding 

data are expensive to collect, it is important to make best use of them. The individual 

model is the most efficient for analysis of genetic tests, particularly where full-sib 

mating designs are used or information from several generations is available, as it 

appropriately incorporates information on pedigree and genetic relationships between 

trees. For this reason, it is recommended that the individual tree model should become 

the method of choice in tree breeding, as the individual animal model has become in 

animal breeding. The results of this study indicate that height is under moderate to high 
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genetic control. The heritability and additive variance for height increased with age from 
1.5 to 9.5 years, then decreased with age. Despite the fact that this was the first reported 
use of the individual tree model in P. taeda, the heritability estimates for height were 
within the range reported previously for this species. The heritability estimates here 

peaked at the same mean height as those reported from studies of P. taeda in the USAI 

suggesting a possible link between mean height and heritability estimate. This suggests 
that heritability estimates may be better compared across sites on the basis of height 

rather than age as, at any given age, a slower growing genetic test may be at a different 

stage of growth and development than a faster growing test. P. taeda grows faster in 
Zimbabwe than in USA, indicating - that at any particular age - heritability estimates 
may differ partly because of differences in stages of growth. Changes in heritability with 
age here may also be attributed to changes in the number of trees and in management. 
The moderate to high heritability estimates for height at all sites may be attributed to 

good experimental design and good management, and hence better control of 

environmental factors. Additive genetic variance was found to be more important for 

height than dominance variance, but the latter contributed substantially to the genetic 

variance. The phenotypic coefficient of variation for height was high at young ages and 

decreased to moderate levels at near-harvest age. 

Stem straightness is one of the most important traits affecting timber recovery 

in P. taeda, but genetic parameters for this trait are generally lacking. Therefore the 

results reported here should be of interest to wherever P. taeda is grown commercially. 

Results of this study indicate that straightness is under weak genetic control at very 

young ages, increasing to moderate levels at maturity. The very low estimates at young 

ages might be attributed in part to large measurement error, because straightness is 

difficult to score when the trees are small. Also, trees at a young age are likely to be 

more affected by environmental variation, resulting in lower heritability estimates than 

at older ages. Heritability estimates originating from use of an absolute scale, as in this 

study, are lower than those originating from a site specific (relative) scale. The 

implications of these results for use of a relative scale are not clear, since results from 

it cannot be directly compared across sites and it gives biased estimates of genetic 

differences; however, it has the advantage of generating higher heritabilities than those 
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from the absolute scale. It would be advantageous to investigate the use of the relative 
scale in Zimbabwe. The low heritability estimates for straightness might be due to the 
7-point scale which has a mid value which assessors might use very frequently for ý\-Iiat 

appears to be average trees, reducing the heritability. With an even scale assessors need 
to decide whether a tree is below or above average. Use of a even scale such as a 6-point 

scale should be investigated in Zimbabwe. Additive genetic variance was found to be 

more important than dominance variance for straightness at older ages, and less 

important at very young ages. As with height, the phenotypic coefficient of variation 

was high at young ages and decreased to moderate levels at near-harvest age. 
No single site had consistently high heritability estimates, making it difficult to 

select an environment which facilitates the expression of genetic differences in either 

trait. 

The variance components and heritability estimates presented from data pooled 

over sites showed evidence of GE and heterogeneity over sites. The results from this 

study suggest that, even within a region, one should expect GE. Therefore, results of a 

single test are likely to overestimate gain if the results are to be applied across a region, 

since they ignore possible GE. Given this fact, the most appropriate estimate to use for 

gain prediction may actually be that from data pooled across sites. Furthermore, 

breeding values estimated from a single site are not as precise as those from the pooled 

data. 

The population of P. taeda in Zimbabwe has been under selection, and the 

parents used in this study were not a random sample, but deliberately selected for their 

superior phenotypic values. Therefore, the genetic variance is expected to be diminished, 

hence biasing the heritability estimates. The use of the individual tree model in this 

study should give less biased estimates than would arise from use of the sib covariance 

model commonly used by tree breeders. Use of the individual tree model is therefore 

particularly advantageous in advanced generations. 

Age-age genetic correlations estimated for height were high, and greater than 

corresponding estimates reported from some tests in the USA, particularly those 

involving young ages. This result may be a consequence of management and 

methodological differences between this and other studies, since the other tests were 
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unthinned and family correlations were used as approximations of genetic correlations. 
Family mean correlations are likely to underestimate genetic correlations because the 
components of family mean correlation include error covariances and error variances. 
Results of this study support the wide body of data which indicate that the genetic 
correlations are larger than corresponding phenotypic correlations. Age-age genetic 
correlations for straightness between 1.5 years and older ages were very low, which 
could partly be explained by the fact that this trait is difficult to measure at a young age. 
Therefore, early selection for stem straightness at 1.5 years is not recommended for this 
P. taeda population. Genetic correlations between straightness at older ages were 
moderate to high, indicating that early selection at ages 9.5 or older in this trait will 
result in improvement in straightness at rotation age. Genetic correlations between 

height and straightness were generally low and positive. Selection on height alone 

should result in improvement in straightness at harvest age. 
The precision of genetic parameter estimates in this study varied. Those for 

heritability estimates were moderate and were slightly improved by pooling data across 

sites, suggesting that the number of trees per family for individual sites were probably 

sufficient. However, the precision would have been improved by increasing the number 

of parents. The precision of genetic correlations were good when the correlations were 

high, reflecting the fact that the precision depends on the correlation itself However, 

when the correlations were moderate or low, the precision was very low due to the low 

number of parents and the magnitude of the correlations themselves. In future, progeny 

tests should include many families from many parents in order to estimate genetic 

parameters with high precision. 

The study of the loglikelihood profiles here reveals that the relationships between 

the loglikelihood and the heritability estimates or genetic correlations were not 

quadratic. However, the confidence intervals obtained by plotting the loglikelihood 

profiles and that obtained by assuming a quadratic relationship were not substantially 

different,, implying that the quadratic assumption was adequate. 
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9.2 Modelling of (co)variances over time 

Model choice for estimating age-age genetic correlations is crucial to 

conclusions one might reach regarding potential gain and optimum selection age. One 

of the commonly used models for predicting age-age genetic correlations is the 

generalised predictive model developed for conifers by Lambeth (1980). Lambeth used 

phenotypic correlations and equated these to genetic correlation. The results of this study 

support the increasing evidence which indicates that genetic correlations are higher than 

phenotypic correlations, implying that a Lambeth-type model underestimates genetic 

correlations. Although phenotypic correlations are estimated with much higher precision 

than genetic correlations, their use in place of genetic correlations is not recommended 

because they are significantly lower than corresponding genetic correlations. The 

underestimation of genetic correlations by the phenotypic models will result in 

underestimates of gain, and may consequently affect predictions of the optimum 

selection age. There is accumulation of information on age-age genetic correlations, 

particularly in USA; the results reported here highlight the need to develop a general 

prediction model for genetic correlations in conifers. The results of this study indicate 

that a logarithmic relationship is not necessarily the best model; the best fit for the 

genetic correlations in this study was the model involving age difference. The models 

derived in this study (logarithmic and age difference) appear to be the only predictive 

models based on genetic correlations fitted from young ages to harvest age, and should 

benefit tropical countries planting P. taeda as an exotic. However, it will be important 

to validate the models with large data sets available from the USA before extending 

these models to temperate regions. Preliminary results indicate that the logarithm model 

developed here differs significantly from similar models developed using datasets from 

old first generation genetic tests, but might agree more closely with models involving 

advanced generation genetic tests in the USA (Gwaze et al. 1997). This suggests that 

a general prediction model for both the tropical and temperate regions might be possible 

using data from advanced generation genetic tests in the USA. 

The few assessment ages common in forestry, as in this study, tend to favour 

simple linear models, and may miss subtle but important changes in genetic parameters. 
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Covariance functions may reflect actual trends in the data because they are more 
flexible. The difficulties of obtaining a good covariance function with our phenotypic 
data may be due to variance heteroscedasticity (i. e. expansion in variances over time of 

most size-related traits). Also, six ages are clearly inadequate for estimating covariance 
functions, but sufficient to illustrate their potential in forestry for modelling covariances 

over time, and hence enable estimation of age-age genetic correlations for a trait at anN- 
two ages and heritability estimates for the trait at any age. These results highlight the 

need to conduct further work on the use of covariance functions in tree breeding. 

9.3 Predictions of gain and optimum selection age 

Forest trees have long generation intervals, and therefore early selection is 

preferred, as it results in shorter generation intervals, and may lead to increased gain per 

unit of time,, reduced testing costs, and greater adaptability to market changes. Such 

early selection is necessarily indirect. Early indirect selection also holds promise for 

quicker incorporation of gains into production, as parents to be used for multiplication 

can be selected early, and seed orchards or propagation hedges can be culled early. 

Therefore, sound solutions to reduce generation interval are needed for cost-efficient tree 

breeding. For a sound evaluation of the effectiveness of early selection and the wise 

choice of optimum selection age, trends in heritability should be obtained, and model 

for deriving the age-age genetic correlation has to be selected with care. 

This study demonstrates the disadvantages of phenotypic correlation models, 

such as Lambeth's, for predicting gain and making decisions on optimum selection age. 

When the phenotypic model was used, gain was only a quarter of those predicted by the 

genetic correlation models, and optimum selection age was overestimated by up to seven 

years. One important consequence of inaccurate models is that tree breeding 

programmes will operate inefficiently. Other related consequences are that the benefits 

from tree breeding will be undervalued, leading to less favourable appraisal of 

investment in tree breeding programmes, and misidentification of research priorities 

(e. g. the importance of identifying methods which induce early flowering). 

The predictions of gain and optimum selection age depended on the size and 
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variation of the heritability estimates, implying that heritabilities also need to be 

modelled over time. Erroneously assuming heritability is constant will lead to biased 

estimates of annual genetic gain, and may lead to inaccurate predictions of optimum 

selection age. 

In this study, annual genetic gain was maximised by selection at 10 years, and 

could be reducing to 3 years if the species were induced to flowering at that age. If the 

species were induced to flower at 3 years, rather than at the usual age of 10 years, annual 

genetic gain would be increased by 100%. Methods of artificially inducing flowering in 
P. taeda are available, and tree breeders in Zimbabwe should investigate the economics 

of promoting early flowering. Other options such as selection of sites with early 
flowering potential should also be explored in order to reduce the breeding interval. The 

optimum selection ages found here are likely to change when overlapping generations 

are considered. 

Given that P. taeda can be induced to flower at 3 years, and that there is 

accumulation of information on age-age genetic correlations, particularly in USA, the 

results highlight the need to develop a general prediction model for age-age genetic 

correlations in long rotation plantation species. 

9.4 Genotype x environment interaction 

The evidence presented in this thesis shows that GE for both traits was brought 

about primarily by a change in rankings of breeding values of genotypes among the four 

locations. Despite this finding, some parents were found to be consistently better or 

worse than others at all sites. There was no single environmental factor identified which 

was causing the interactions in both traits. However, in straightness, interaction may 

have been partly due to different interpretations of the assessment scale by the different 

assessment teams. As pointed out by Matheson and Raymond (I 984a), GE may be due 

to other factors which are neither genetic nor environmental, but methodological. 

This study appear to be the first for P. taeda to evaluate the effect of early 

selection on one site for predicting mature age performance at another. This suggested 

approach has merit since early selection is efficient and normally practised within sites 
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in conifers. 

The classical approach to selection of sites to locate progeny tests involve 
evaluating efficiencies of selection across sites, but these efficiencies have no sampling 
variations associated with them. Alternative approaches using Bayesian methods such 
as Gibbs sampling are now available. The study demonstrated the use of Gibbs sampling 
to estimate variation of the efficiencies of selection and of the probability that each 
estimate falls within specified interval, enabling more informed decision-making. The 

results from the Gibbs sampling indicated that Martin (site C) was a better site for 
locating progeny tests than Tarka (site A) if early selection is considered. Given that 

most of the plantations are in the region covered by sites A and C and that early 

selection is more likely to be practised than selection at harvest age, site C should be 

selected as the preferred site for locating progeny tests. Results of a single test are likely 

to overestimate gain if the results are to be used for a region, since it ignores possible 
GE. In order to yield results that are appropriate to commercial progress, it will be 

necessary to consider dispersing 3-4 progeny tests within site C region. 

There was a tendency for the effect of GE to depend on the age of the trees. For 

height, GE was more pronounced as the trees aged. This is an important finding because 

early growth assessments may not be reliable for assessing GE at maturity. Most studies 

in forestry have examined GE using early growth assessments, less than half rotation 

age. Results of this study indicate that there is a critical need to evaluate GE up to 

harvest ages in forest trees. 

9.5 Further research 

P. taeda flowers at 10 years in Zimbabwe, and consequently, the generation 

interval is long. Results from this study illustrate that gain would be increased by 100% 

if the flowering age were reduced to 3 years. Therefore, effort should be put into 

reducing the flowering age through artificial flower induction or through selection of 

sites with early flowering potential. 

Since the optimum selection age was based on estimates of genetic parameters, 

there is a risk or an error associated with early selection, and a need to quantiýv the 
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uncertainty surrounding the optimum selection age. The Gibbs sampling method 
presented in this thesis could be a powerful approach to determine the risk associated 
with the estimation of the optimum selection age. 

It is important to verify, with additional genetic tests, whether or not the trends 
observed in this study are applicable to other tropical countries where P. taeda is being 

planted operationally. More information on genetic parameters of P. taeda grown in the 

tropics could be obtained from tests established in Australia, South Africa and 
Zimbabwe in 1976. Since similar tests were established in the USA, analyses of these 

tests would offer direct comparisons of genetic parameters between temperate and 

tropical regions. Genetic parameters for wood density and branch traits are lacking in 

P. taeda grown in the tropics; these could be derived using the tests used in this study 

and those from the 1976 series of tests. Pests and diseases in forest plantations result in 

economic losses. Therefore, a reduction in the frequency of pests and diseases by 

selection, if practicable, is economically important. In order to improve pests and disease 

resistance in breeding programmes, it is essential to obtain reliable estimates of genetic 

and phenotypic relationship between resistance to pests and diseases, and growth and 

wood quality traits. While information is available on genetic variation in susceptibility 

to commercially important pests and diseases, particularly fusiform rust, in P. taeda in 

the USA, no information exists on variation in susceptibility to a particularly important 

pest in Zimbabwe and South Africa, baboons. The economic implications of baboon 

damage in P. taeda plantation stands in these two countries seem to argue strongly for 

genetic studies in this area. 

Results of this study indicate that covariance functions can be derived using 

forestry data. However, the dataset used in this study was poor, with few point estimates 

and no phenotypic correlations involving some years. Therefore, the potential of this 

method needs further evaluation using better forestry data sets. 

Although a large body of information now exists on age-age genetic correlation 

and their use in predictions of optimum selection age, major limitations are the weak 

information on genetic parameters beyond half rotation age, and reliance on too few 

assessment ages. The strength of this study is that assessments at near-harvest age were 

available, allowing realistic predictions of rotation age gains. Howe'\iei-, the study also 
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suffers from the problem of having few point estimates, a problem in many other 
forestry studies. Therefore, the estimation of optimum selection age warrants further 
study, but the estimates obtained here could be used as the best available. 

9.6 Principal conclusions 

The principal conclusions from this study can be summarized as follows: 

a) Genetic control of height in P. taeda in Zimbabwe is moderate to high, while that of 
stem straightness is weak, particularly at young ages. 

b) Genetic correlations from this study indicate that early section for height to improve 

height or straightness at harvest age is efficient, but selection for straightness at 1.5 years 

would adversely alter straightness at harvest age. 

c) Although the reproductive biology of P. taeda is a barrier to juvenile breeding of the 

species in Zimbabwe, the study has demonstrated that, were early flowering to be 

induced, optimum selection age would be reduced from 10 to 3 years and annual genetic 

gain increased by more than 100%. 

d) The large genotype x environment interactions detected in this study indicate that site 

should be considered when planning progeny tests. The results showed that it was more 

efficient to make selections at site C, a site in the region where most of the commercial 

plantations are located. 

e) The results suggest that Gibbs sampling is an efficient approach to making decisions 

about the optimal selection environment in tree breeding programmes. 
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