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Abstract 

Construct truncation can be defined as the failure to capture variation along the entire 

continuum of a construct reliably. It can occur due to suboptimal person selection or due to 

suboptimal item selection.  In this thesis, I used a series of simulation studies coupled with 

real data examples to characterise the consequences of construct truncation on the inferences 

made in empirical research. The analyses suggested that construct truncation has the potential 

to result in significant distortions of substantive conclusions.  Based on these analyses I 

developed recommendations for anticipating the circumstances under which construct 

truncation is likely to be problematic, identifying it when it occurs, and mitigating its adverse 

effects on  substantive conclusions drawn from affected data. 
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Chapter 1: Introduction 

Empirical research in the social sciences typically involves drawing a sample of participants 

from some target population, measuring constructs of interest in that sample, and conducting 

statistical tests on the resulting data. For inferences to the target population to be valid, it is 

assumed that the sample is representative of the target population in all relevant respects, 

including that the constructs of interest as they exist in that target population have been 

successfully represented by the questionnaires, tests, or measures administered. In the current 

thesis, I discuss a specific and common way in which this assumption is violated and the 

consequences that this has for theoretical inferences made under these circumstances: I 

discuss the problem of construct truncation due to inadequate item or person sampling. 

Defining construct truncation 

 For the purposes of this thesis I define construct truncation as under-representation of 

the more extreme levels of a construct. Construct truncation can occur due to inadequate 

person or item sampling, sometimes these are referred to as ‘type 1’ and ‘type 2’ sampling 

respectively (Revelle & Zinbarg, 2009).  In the case of truncation due to person sampling, 

individuals with the highest and/or lowest levels of the construct of interest are under-

represented in the sample. In the case of truncation due to item sampling, a questionnaire 

does not include items capable of providing reliable measures of the highest and/or lowest 

levels of the construct of interest.  

 How common is construct truncation due to person sampling? 

 Construct truncation due to inadequate person sampling is prevalent in fields that rely 

on human participants such as psychology, epidemiology, and sociology. It occurs in spite of 

the best intentions of researchers because human participants are agents who cannot be 
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passively and randomly sampled, but, rather, take active parts in self-selecting into and out of 

research studies. This self-selection becomes problematic when related to the same constructs 

that are of interest in a study. It is has been observed, for example, that it is those individuals 

of the poorest health (Volken, 2013), lowest cognitive ability (Nishiwaki, Clark, Morton, & 

Leon, 2005), least conscientious and most neurotic personalities (Lönnqvist et al., 2007), or 

lowest and highest incomes (Bobko, Roth, & Bobko, 2001) who are most likely to decline to 

participate in research studies involving these respective constructs. In these instances, 

construct truncation can occur to varying degrees, depending on the extent to which 

individuals with the highest and/or lowest levels of that construct are under-represented in the 

sample. Evidence for the commonality of construct truncation comes from comparisons of 

research samples against population norms (Etter & Perneger, 1997), of respondents against 

non-respondents where information on the latter is available (e.g. Hill, Roberts, Ewings, & 

Gunnell, 1997), and of first assessments of participants who return to complete a follow-up 

study against those who drop out (Dollinger & Leong, 1993; Mein et al., 2012). To illustrate 

how widespread construct truncation due to person sampling is, possible examples across 

diverse research domains are outlined in Table 1.1. These are just a few examples, with 

others easily found in the literature. Unfortunately, it is difficult to characterise the overall 

scale of the problem because most selection is subtle and driven by forces not explicitly 

measured (Hunter, Schmidt, & Le, 2006). Furthermore, the population distribution of a 

construct is seldom known, making it difficult to ascertain whether and to what extent 

truncation has occurred in a given instance (Vink et al., 2004). 
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Table 1.1: Some examples of construct truncation due to person sampling 

Construct Nature of construct truncation Possible implications 

Family 

environment 

Stoolmiller (1998) claimed that, due to selection procedures 

by adoption agencies, only the highest-quality family 

environments are represented in adoption studies.  

The effects of family environments on various outcomes 

may be under-estimated in adoption studies because only 

the higher-quality family environments are represented 

Disease risk Miller (1994) noted that many studies of the association 

between type A behaviour and heart disease used only 

participants showing high levels of type A behaviour. 

The relation between type A behaviour and heart disease 

may be under-estimated. 

Intellectual 

disability and 

adaptive 

functioning 

Murray, McKenzie, and Murray (2014) noted that studies 

attempting to estimate the association between adaptive 

functioning and intellectual ability have tended to use 

individuals with clinical diagnoses of intellectual disability. 

The correlation between adaptive skills and intellectual 

ability may be under-estimated due to restricted range of 

intellectual ability because this diagnosis is made only 

when a client has an IQ<70. 

Job selection 

tests 

Schmidt, Shaffer & Oh (2008), LeBreton, Burgess, Kaiser, & 

Atchley (2003) and Sackett, Laczo, and Arvey (2002)   

discussed how job performance data on successful applicants 

is sometimes used to estimate the predictive validity of the 

selection tests and inter-rater reliability of job performance. 

The predictive validity of selection tests and the inter-rater 

reliability of job performance are likely to be under-

estimated when based on successful candidates alone. 

Anti-social 

behaviour 

Taylor (2004) found that twin families who showed higher 

levels of parental and child antisocial behaviour were less 

likely to respond to a mail survey. 

Estimates of additive genetic variance and unshared 

environmental variance were inflated while estimates of 

shared environmental variance were attenuated.  

Cognitive ageing Deary, Gow, Pattie, & Starr (2012) demonstrated that two 

cohorts used to study cognitive ageing had higher means but 

smaller variances in IQ than the population from which they 

were sampled. Baseline cognitive ability also proved to be an 

important predictor of drop-out. 

The effects of cognitive ability on later life outcomes and 

of various predictors on cognitive decline may be under-

estimated. 

Alcohol 

consumption 

Heath, Madden & Marten (1998) found that participants in an 

alcohol challenge study had higher average alcohol 

consumption levels than the population from which they were 

drawn. 

Individuals who would feel very intoxicated following an 

alcohol challenge were under-represented meaning that the 

genetic effects on subjective intoxication were likely 

slightly underestimated. 
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Construct truncation can also occur due to inadequate item sampling. A key goal of 

item selection is to include items that represent the full breadth of both content areas and 

levels of a trait (e.g. Diamantopoulos & Winkhofler, 2001; Murray, Eisner & Ribeaud, 2015). 

Both are important elements in the representativeness of items and in turn ecological validity; 

however, it is inadequate sampling with respect to the latter which creates construct 

truncation and on which the current thesis will, therefore, focus. Construct truncation due to 

inadequate item sampling is particularly prevalent in two kinds of study.  The first is in 

studies concerned with constructs originating in psychopathological paradigms which have 

come to be studied in non-clinical populations. The second is when ‘normal’ measures are 

administered to extreme-scoring populations.   

A range of traits related to the psychopathological constructs of autism spectrum 

disorder, psychosis, depression, and personality disorders are now routinely measured in non-

clinical samples on the assumption that there is meaningful variation in these traits below 

their established clinical thresholds (e.g. Baron-Cohen, Wheelright, Skinner, Martin, & 

Clubley, 2001; Crawford & Henry, 2005; Jones & Paulhus, 2014; Verdoux & van Os, 2002). 

However, the scales measuring these constructs may not include items that can reliably 

capture this sub-clinical variation if they were developed and evaluated in the context of a 

psychopathological paradigm, and thus selected to show good discrimination near a clinical 

cut-off point and above (Reise & Waller, 2009). Items that showed good discrimination at 

moderate to low levels of that trait were, as a consequence, less likely to be selected.   It is 

also common for scales to fail to include items that reliably capture variation at the clinical 

levels of a trait (Facon, Magis, & Belmont, 2011). For example, the gold standard intellectual 

ability assessment used to diagnose intellectual disability in children (the Wechsler 

Intelligence Scales for children, Fourth Edition; WISC-IV; Wechsler, 2003) shows marked 

floor effects (Whitaker & Gordon, 2012). There is evidence that at least one subtest is 
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frequently omitted because the child is unable even to understand the test instructions 

(Murray, McKenzie, & Murray, 2015).  

Another area in which consideration of possible construct truncation is becoming 

increasingly pertinent is in the drive to produce briefer measures of constructs for contexts in 

which administration time is limited. For example, briefer versions of larger instruments are 

often of interest (e.g. Allison, Auyeung & Baron-Cohen, 2012; Donders, Elzinga, Kuipers, 

Helder & Crawford, 2013) for screening or reducing burden in clinical contexts. Similarly, 

brief measures of individual difference traits are appealing in large cohort or epidemiological 

studies (e.g. Rammstedt & John, 2007; see Weiss & Costa, 2014 for a criticism of this trend). 

However, abbreviating inventories will tend to entail a degree of construct truncation, 

especially if it further compounds selection on the basis of high item inter-correlations.  

Evidence for construct truncation due to item selection comes from studies using an 

item response theory approach to examine the range of trait values for which a scale provides 

a reliable measure (Embretson & Reise, 2000). Item and test information is estimated for a 

range of trait values and portions of the continuum in which it - and by extension- reliability 

is low can be identified. Evidence also comes from score distributions where a 

disproportionately high number of scores are found to be at one or other end of the scale. 

Possible examples of construct truncation due to item sampling are provided in Table 1.2.
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Table 1.2: Examples of construct truncation due to item selection 

Construct Nature of construct truncation Possible implications 

Personality Gomez, Cooper, and Gomez (2005) found precision of measurement for 

the Behavioral Inhibition System/Behavioral Activation Systsm 

(BIS/BAS) scales (Carver & White, 1994) to be good only for moderately 

low to moderately high trait levels. 

The scales cannot reliably capture high and 

low levels of the BIS/BAS traits. 

Intellectual 

ability 

Whitaker & Gordon (2012) demonstrated, using score distributions in low 

functioning individuals, that the Wechsler Intelligence Scale for Children 

Fourth Edition (WISC-IV) had marked floor effects. 

Estimates of severity of intellectual impairment 

are poor for those with low IQ (also see 

Murray & McKenzie, 2014). 

Physical 

functioning  

Hays, Liu, Spritzer, & Cella (2007) showed that a physical functioning 

scale developed as part of a patient-reported outcome measurement and 

information system (PROMIS) project showed adequate reliability only at 

low levels of functioning. 

Ability to detect the effects of interventions to 

improve physical functioning may be 

diminished by ceiling effects. 

Memory  Uttl (2005) identified ceiling effects in a range of widely used memory 

tests when administered to normal healthy adults by examining test norms 

and in examining score distributions in a new sample. 

Uttl (2005) listed the main issues as non-

normal test scores, artificially lowered mean 

and attenuated standard deviations and 

validity. 

Religiosity Genia (2001) found evidence for ceiling effects in the Spiritual Well-

being Scale (SWBS; Paloutzian & Ellison, 1982), especially in Christian 

respondents.   

It is not possible to discriminate reliably 

between individuals scoring high on religious 

traits using the SWBS. 

Criminal and 

deviant 

behaviour 

Osgood, McMorris, and Potenza (2001) used an IRT approach to evaluate 

a self-report scale of offending behaviour from the Monitoring the Future 

study. The trait was  measured reliably for moderate to serious offenders 

but not for the least delinquent third of the population  

The scale cannot differentiate among 

individuals with low levels of criminal or 

deviant behaviour. 

Emotional and 

behaviour 

problems 

Van den Oord, Pickles, and Waldman (2003) used an IRT approach to 

show that a range of emotional and behaviour problem measures in the 

National Longitudinal Study of Adolescent were not measured well at the 

healthy end of the continuum  

While the underlying liability for a 

psychopathological trait may be normally 

distributed, poor item sampling can lead to it 

appearing non-normal. 
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There is relatively less evidence bearing on the commonality of construct truncation 

due to item sampling. One reason is that until recently, most scales were developed and 

evaluated within a classical test theory approach which lends itself less well to identifying 

construct truncation. Classical test theory approaches typically assume that the reliability of a 

test is constant across the continuum of the measured trait and is, therefore, not equipped to 

identify reduced reliability at the extremes. Modern test theory, in dispensing with this 

assumption from the beginning, provides a more natural framework for evaluating possible 

construct truncation. Techniques from modern test theory are showing increasing uptake; 

therefore, more evidence on the matter is likely to emerge in the coming years. However, in 

tests developed using classical test theory it is still possible to apply IRT to the resulting item 

set and to examine score distributions for evidence of floor and ceiling effects. 

 What are the consequences of construct truncation for research? 

The consequences of construct truncation can be considered in terms of how the 

sample distribution of a variable becomes distorted, relative to the corresponding population 

distribution.  To illustrate, consider the distribution in Figure 1.1. On the left hand side is the 

population distribution for some phenotype (mean=0, SD=1). On the right hand side is the 

corresponding distribution in a sample in which truncation has occurred, specifically, trait 

levels below -1SD are not sampled.   
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Figure 1.1: Population and truncated sample distributions for a phenotype 

 

Samples in which construct truncation has occurred will tend to mis-represent the 

mean of the target population. For example, in the phenotype represented in Figure 1.1, the 

mean in the truncated sample is not 0 but 0.29.  Given that estimating the mean of a construct 

is rarely an interesting research goal in its own right, a more pressing problem is the mis-

representation of mean differences between two groups when one group is subject to a greater 

degree of construct truncation than the other. Hunt and Madhyastha (2008) argued that many 

observed sex differences in intellectual ability were biased in this way. They noted that 

women are more likely than men to take the United States-based Scholastic Assessment Test 

for university admission. Given that taking the SAT is correlated with intellectual ability, 

they reasoned that the intellectual ability threshold for taking the SAT may tend to be lower 

for women. This would result in a higher proportion of less intelligent females taking the test, 

with the result that spurious group differences between males and females are introduced into 

many samples. Subsequent intellectual ability-related studies have noted how differential 

attrition across two groups being compared in longitudinal studies can also result in biasing 

of group comparisons (Dykiert, Gale, & Deary, 2009; Madhyastha, Hunt, Deary, Gale, & 

Dykiert, 2009).  
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Other examples come from possible diagnostic biases in psychiatry and clinical 

psychology whereby one group with a disorder is less likely to receive an appropriate 

diagnosis than another given the same level of impairment. When - as frequently occurs - a 

clinical diagnosis is in the inclusion criteria for an empirical study and those groups are then 

compared, this diagnostic bias can translate into inaccurate inferences with inappropriate 

theoretical implications (Krieser & White, 2014). For example, it has been argued that 

because of the preponderance of males with autism spectrum disorder (ASD) and the general 

perception that it is a ‘male disorder’, females must show more severe autistic symptoms or 

additional behavioural or psychological anomalies than males with equal levels of 

impairment to receive a clinical diagnosis (Murray et al., submitted). As a result, it is not 

clear whether the apparently greater severity of ASD symptoms in females compared with 

males with clinical diagnosis (Dworzynski, Ronald, Bolton, & Happé, 2012; Carter et al., 

2007; Hartley & Sikora, 2009) is genuine or an artefact of a higher selection threshold - and 

greater construct truncation - at the point of diagnosis 

This is just one specific example of the more general difficulty of testing the ‘gender 

paradox’ theory in clinical samples. The theory holds that whenever there are sex differences 

in symptom prevalence, the less-often affected sex will be the more severely affected sex. 

However, if the more-often affected sex is more likely to be selected into clinical samples 

given the same level of severity because of identification, referral and diagnosis biases, these 

samples will provide biased estimates of sex differences in symptomology (e.g. Biederman et 

al., 2014). 

A related issue is ‘Berkson’s bias’: the idea that estimates of psychiatric co-morbidity 

are inflated within clinical samples because different disorders may independently influence 

treatment-seeking (e.g. Maric, Myin-Germeys, Delespual, de Graaf, Vollenbergh & Van Os, 

2004). Berkson’s bias confounds attempts to estimate psychiatric co-morbidity from clinical 
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samples because those with the highest levels of general psychopathology (often meaning 

multi-morbidity) are over-represented.  

Construct truncation also results in a reduction in the variance of the sample 

distribution of a construct relative to the corresponding population distribution, an effect 

often referred to as ‘range restriction’ (e.g. Alexander, Carson, Alliger, & Barret, 1984). For 

example, where the population variance for the phenotype shown in Figure 1.1 is 1 (left 

panel), the variance in the truncated sample is .63. The importance of this is less in the 

variance reduction per se than the knock-on effect it has on the covariances and correlations 

of that construct with others, both of which will be attenuated (Sackett & Yang, 2000; 

Ghiselli et al., 1981).   

To illustrate, assume that the phenotype in Figure 1.1 is correlated with a second 

variable at r=.70 and that there is no additional truncation on this second phenotype. The 

scatterplot for these variables in the population is shown in the left panel of Figure 1.2 and in 

the truncated sample in the right panel of Figure 1.2. The correlation is attenuated in the 

truncated sample to r=.53 Examples of correlations possibly affected by range restriction 

abound in the psychological literature. Some of the best-studied examples are from 

organisational psychology in which selection tests are validated against job performance in 

successful applicants (e.g. Yang, Sackett & Nho, 2004). The correlations between selection 

test scores and job performance are attenuated in these samples because they exclude the 

individuals with lower scores. Furthermore, because variances, covariances and correlations 

represent the basic building blocks for more complex statistical tests, construct truncation 

biases these in much the same way.  For example, in behaviour genetic models, range 

restriction may contribute to overestimation of heritability because MZ correlations will tend 

to be attenuated to a lesser degree than DZ correlations due to selective non-participation 

(Taylor, 2004); in factor analysis, it will tend to reduce factor loadings and inter-correlations 
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(Muthen, 1990); and in moderated multiple regression it will decrease the power to detect 

interactions (Aguinis, 1995). 

Figure 1.2: Scatterplot for variables in population and truncated sample 

 

 

More comprehensive discussions of the impact of range restriction on various 

statistics are available from several sources, including discussions of reliability (Fife, 

Mendoza, & Terry, 2012; Sackett et al., 2002), effect size measures (Bobko et al., 2001), 

regression (Cohen, Cohen, West, & Aitken, 2013), moderated multiple regression (Aguinis, 

1995; Aguinis & Stone-Romero, 1997) factor models (Muthén, 1989, 1990), behaviour 

genetic models (Martin & Wilson, 1982; Neale, Eaves, Kendler, & Hewitt, 1989; Taylor, 

2004; Dominicus, Palmgren, & Pedersen, 2006), and meta-analysis (Hunter et al., 2006).  

 Finally, construct truncation can result in sample distributional shapes that depart 

from that of the underlying population distribution. Constructs that are normally distributed 
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in the population will often be skewed in a sample subject to construct truncation. Although 

change in shape can result in a slight bias in the correlation between that construct and others 

(e.g. Bishara & Hittner, 2012), the bigger problem is that it can lead to masked or spurious 

interactions when the construct is used as an outcome in, for example, moderated multiple 

regression models,  gene-environment interaction models,  or factorial ANOVA or other 

models employed to test higher-order effects (Embretson, 1996; Kang & Waller, 2005; 

Molenaar & Dolan, 2014; Schwabe & van den Berg, 2014; Stone & Holllenbeck, 1989).  For 

example, Wang Zhange, McArdle, & Salthouse, (2008) illustrated that when a test exhibits 

ceiling effects but groups differ in proportions of participants scoring at ceiling, spurious 

group by time interactions can be observed.  They compared memory test scores from older 

and younger adults measured repeatedly over time. As the latter had more participants 

scoring at ceiling at baseline, they exhibited the smallest change; however, because their 

initial were scores likely under-estimated due to ceiling effects,  the interaction between age 

and time was likely to be at least partly spurious. 

 However, the fact that a construct is truncated does not, by definition, mean that there 

is serious bias in statistical analyses involving it. As discussed in later chapters, the degree 

and manner to which this occurs depend on the statistical test of interest, the population to 

which one wishes to generalise and, of course, the extent of construct truncation.   

 What can we do about construct truncation? 

 Given the bias in statistical results that can arise due to construct truncation, it is 

important to consider what can be done to identify, characterise and mitigate such bias. 

Identifying problematic construct truncation requires some knowledge of the population 

distribution of the construct. Occasionally this is possible because a measure has been 

normed using population data.  However, as Marcus & Schütz (2005) caution, even norming 
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data can be subject to degrees of truncation, especially when it relies on volunteer samples. 

Other times, a reasonable assumption can be made about the population distribution. In the 

cases where the population distribution is known, or can be assumed, it may be possible to 

diagnose and even correct for bias due to construct truncation.  For example, information and 

assumptions about the population distribution of a trait or its relation to selection into or out 

of the sample can be used to create selection models, derive sampling weights, apply range 

restriction formulae, or employ models such as tobit regression models to attempt to correct 

for the construct truncation. These corrections are, however, fallible, require strong 

assumptions, difficult to apply retrospectively to already-published results and become 

impractical for more complex selection scenarios and statistical models. 

 For example, a variety of different range restriction corrections tailored to different 

scenarios are available to estimate the correlation between variables in the population given 

its value in a selected sample (see Hunter et al., 2006; Sackett & Yang, 2000; Schmidt, Oh & 

Le, 2006) . Reversing the corrections also allows an estimate of the opposite, which may be 

useful, for example, in studying the effects of range restriction in methodological studies. To 

obtain accurate results using a range restriction correction is, however, very difficult. It is, 

first of all necessary to have knowledge of the kind of selection that has occurred. A 

distinction can be made, for example, between ‘direct’ and ‘indirect’ selection, with the 

former referring to selection based on the observed scores of one of the variables to be 

analysed and the latter referring to selection on some third variable that is correlated with 

these scores.  Applying a direct range restriction correction to indirectly selected variables 

will generally lead to under-correction (Alexander et al., 1984; Linn, 1983). The selection 

mechanism underpinning a given case of range restriction is not something that can be 

inferred from the sample data alone (e.g. see Hanges, Rentsch, Yusko & Alexander, 1991) 
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and in the absence of information about the true selection mechanism, there has been a 

tendency in empirical studies to assume simple direct selection (Sackett et al., 2007).  

 Second, it is often difficult to obtain good estimates of the values required to apply 

range restriction corrections. For example, the correction formula for the simple case of direct 

range restriction (known as Thorndike case II) is: 

𝑟𝑋𝑌 =
𝑟′

𝑋𝑌(
𝑆𝐷𝑋

𝑆𝐷′𝑋
)

√1 − 𝑟′
𝑋𝑌

2 +  𝑟′
𝑋𝑌

2(
𝑆𝐷𝑋

2

𝑆𝐷′
𝑋

2 )

 

(1.1) 

where 𝑟𝑋𝑌 is an estimate of the population correlation, 𝑟′
𝑋𝑌 the correlation in the selected 

sample, is the ratio 
𝑆𝐷𝑋

𝑆𝐷′𝑋
 and 

𝑆𝐷𝑋
2

𝑆𝐷′𝑋
2 are standard deviation and variance ratios respectively for 

X in the population to sample and thus requires estimates of the population variance of the 

variable to be known. As noted above, however, the population variance of many variables is 

unknown and even when normative data is available this may itself have been subject to a 

degree of selection and, therefore, not provide an accurate estimate of population variance 

(Marcus & Schuz, 2005). 

 Finally, this and other range restriction correction formulae assume that the 

regression of Y on X (or of each variable on all others in multivariate extensions) is linear 

and homoscedastic across its entire range. This assumption is not testable for the parts of the 

distribution that are unmeasured. In fact, given the frequency with which hypotheses 

regarding non-linear effects of the kinds of individual difference traits that tend to influence 

selection into research studies are advanced, it is likely that at least mild violations of this 

assumption occur from time to time. Miller (1994), for example, noted that treatment effects 

in high risk studies in behavioural medicine (which are subject to range restriction on the 
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outcome of interest) are likely to be non-linear because treatment will be most effective for 

the most severely affected.  

 Therefore, there remains an important role for simulation studies modelling the 

mechanisms and consequences of construct truncation to characterise its effects and develop 

and test new ways to counteract it. Finally, outside of a few specific research areas 

(particularly personnel selection), construct truncation has received little attention and it 

seems that there is a general lack of awareness of its effects. Therefore, it is important to 

continually assess, both conceptually and statistically, whether, and in what way, the 

empirical evidence in a given research domain is affected by construct truncation. It is based 

on these observations that the aims of the current thesis were developed: to contribute to the 

characterisation and mitigation of the adverse effects of construct truncation on psychological 

research.  

I begin in Chapter 2 with a focus on construct truncation due to person selection. I 

outline the potential issues of relying on clinically ascertained samples when conducting 

research on psychopathological phenotypes. I use a specific example from an empirical 

research domain concerned with understanding the etiology of autism spectrum disorders 

(ASD). I use this example to address how relying on clinical samples for empirical research 

into particular disorders may provide distorted pictures of the inter-relations of the symptoms 

of those disorders, as well as their relations with putative causes and consequences. I argue 

that when a clinical trait is merely the extreme end of a continuum, clinical samples can be 

subject to strong and distorting selection. I argue that the low inter-correlations among the 

symptoms of ASD cited as evidence that they have distinct etiologies may be under-stated 

because this evidence has been based on clinical samples which are by definition selected on 

these symptoms. I support these arguments with evidence from a statistical simulation and a 

real data example.  
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In Chapter 3 I argue that construct truncation due to person selection can work in 

subtle, hard-to-detect ways, drawing on an example from individual differences research.  I 

discuss the ‘intelligence compensation hypothesis’. This is the idea that conscientiousness 

levels become calibrated to intellectual ability levels because less intelligent individuals need 

to work harder to achieve in life, while more intelligent people can rely on their superior 

abilities. I argue that much of the evidence for the ‘intelligence compensation hypothesis’ 

could reflect artifacts of using samples selected with respect to achievement. Specifically, I 

argue that many of the negative associations between conscientiousness and cognitive ability 

that have been observed in these samples have likely been spurious because of the actions of 

a ‘composite selection’ mechanism. Composite selection in this context refers to self-

selection of participants higher in achievement into the populations subsequently used as 

samples in research studies. Here, a ‘composite’ of conscientiousness and cognitive ability 

determines achievement (which influences later selection into a research study). Because 

selection occurs on a composite of conscientiousness or cognitive ability rather than either 

alone, high levels of cognitive ability can compensate for low levels of conscientiousness, 

and vice versa with regards to entry to the research sample. Samples of individuals selected 

on achievement can, thus, show a negative correlation between these two variables, even if 

the two constructs are completely independent at the population level. I evaluate this 

hypothesis using a real data example. In the example, I artificially introduce selection on 

achievement in the sample to investigate how this affects the apparent association between 

conscientiousness and ability. Results suggest that the true association between cognitive 

ability and conscientiousness may be zero or positive in reality but that construct truncation 

on achievement can give the appearance of a negative association.  

In Chapter 4, I focus on construct truncation due to item selection. I discuss an 

important consequence of selecting items that fail to measure the full range of a construct 
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reliably: that of potentially distorted estimates of GxE interaction in behaviour genetic 

models. I outline the implications of using the raw scores from scales which have poor 

discrimination at one end of their continua. I discuss two potential solutions: a non-linear 

transformation of raw scores and an item response theory score from an appropriate 

measurement model. I then use statistical simulation and examples in real data to explore the 

extent to which these proposed solutions mitigate the adverse effects of using a scale with 

poor discrimination in one part of the latent continuum. Results suggest that transformed raw 

scores and IRT scores perform reasonably well in reducing the bias that would otherwise be 

introduced into tests of GxE when using scales that fail to measure one end of a trait 

distribution reliably; however, neither method eliminated bias. Of the two methods, I 

recommend using IRT scores because they showed slightly less bias and type 1 and type 2 

error rates were slightly better than those using a non-linear transformation. I also discuss 

other advantages of using IRT scores over transformed raw scores. 

Finally, in the Chapter 5, the Discussion, I show how the issues raised in the 3 

previous chapters are all aspects of the broader issue of construct truncation. I discuss the 

collective implications of the thesis studies for the mechanisms of, consequences of, and 

possible solutions to construct truncation. Specifically, I argue that the results of the studies 

in the preceding chapters suggest that distortions in commonly used analyses due to construct 

truncation in varying forms and degrees of severity are likely to occur in a broad range of 

empirical research studies. I discuss the circumstances under which it tends to occur and the 

kinds of misleading substantive conclusions that can result. I argue that it is important to 

consider the possibility that data are affected in this way and to take steps to characterise and 

mitigate the consequences. I also highlight the limitations of the research contained within the 

current thesis and offer some suggestions for future research. I end by summarising the most 
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promising solutions suggested by the research contained within the thesis but also highlight 

the challenges of implementing them in practice. 
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Chapter 2: Construct truncation due to the use of clinically ascertained samples in 

autism spectrum disorder research 

 In research into clinical phenotypes, it is common to recruit samples comprised solely 

of individuals who have received a formal diagnosis of that disorder. It is similarly common 

to analyse clinically diagnosed and control cases separately. However, the assumption that 

clinical phenotypes are on continua that span clinical and ‘normal’ levels is gaining 

increasing acceptance (e.g. Caspi et al., 2014). In this view, individuals who receive a clinical 

diagnosis do not differ qualitatively from those without; they merely represent an extreme on 

the same continuum. This implies that to obtain unbiased estimates of population parameters 

concerning that phenotype, clinical cases and controls should be analysed together, 

irrespective of diagnostic status.  Reliance on clinically-diagnosed samples would restrict the 

phenotypic ranges studied and, in turn, attenuating correlations involving these phenotypes. 

In this chapter, I discuss how this kind of range restriction may have affected our 

understanding of the inter-relatedness of the classical triad of autism spectrum disorders 

(ASD).  

 The use of clinical and control samples in autism spectrum disorders 

 There is increasing consideration and acceptance of the hypothesis that ASD traits 

exist on continua that span clinical and non-clinical levels (e.g. Frazier et al., 2010; 

Lundström et al., 2012; Murray, Booth, McKenzie, Kuenssberg, & O’Donnell, 2014). In this 

view, individuals who receive a clinical diagnosis of ASD are simply the extreme end of this 

continuum, rather than manifesting some qualitatively distinct condition (Austin, 2005). This 

being true, any correlation-based analysis that focuses exclusively on either clinically 

diagnosed or control individuals is liable to yield phenotypic associations that are attenuated 

due to range restriction. However, to analyse clinically diagnosed and control individuals as a 
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single sample is rare. Most studies focus on one group, or - where both are recruited - 

conduct separate analyses by group (e.g. Baron-Cohen & Wheelright, 2004; Wheelright et al., 

2006; Stewart, Allison, Baron-Cohen, & Watson, 2015). In the section that follows, I discuss 

possible implications that this has had for the hypothesis that ASD is a ‘fractionable 

disorder’.  

The fractionable triad hypothesis 

 There is considerable interest in establishing how strongly related different areas of 

deficits in ASD are. The question has formed the basis of numerous empirical and review 

studies, including a recent special issue of the journal Autism (2014, vol 18, issue 1). While it 

has long been acknowledged that ASD is an extremely heterogeneous disorder (Rutter, 2014), 

over time these observations have evolved into the hypothesis that ASD is fractionable 

disorder; that is, it comprises multiple, somewhat independent, symptom domains (see Happé 

& Ronald, 2008 for a review).  

When expressed in terms of the classical triad of ASD the hypothesis is referred to as 

the ‘fractionable triad’ hypothesis. The hypothesis holds that the three classical symptoms of 

ASD: deficits in reciprocal social interaction, communication, and restrictive and repetitive 

stereotyped behaviour, are not all manifestations of the same underlying disorder; rather they 

represent separate domains of impairment whose confluence is ASD. From this basic idea, 

discussions have expanded to consider the fractionation of ASD symptomology more 

broadly; in terms of the two diagnostic domains of the DSM 5 (Mandy et al., 2014); cognitive 

symptoms (Brunsdon & Happé 2014); and genetic and environmental etiology (Dworzynski 

et al., 2009; Mazefsky et al., 2008; Robinson et al., 2012). 

 The fractionation hypothesis has received so much attention because it is viewed as 

having important theoretical and practical implications.  First, it underscores the importance 



21 
 

of using assessments that capture all symptom domains because if these domains are 

relatively independent, global assessments may omit key features of an individual’s symptom 

profile (Happé & Ronald, 2008). Second, it implies no requirement for ASD symptoms to be 

specific to ASD because, under the fractionation hypothesis, ASD is the co-occurrence and 

not the root cause of specific ASD symptoms. Third, distinct etiologies of ASD symptoms 

suggest that searches for specific causes should focus efforts on specific symptoms. A fourth 

possibility is that treatments will have symptom-specific rather than global effects and, by the 

same token, should be targeted at specific symptoms to maximise chances of alleviation.  

Historically, key pieces of evidence contributing to development of the fractionation 

hypothesis and now cited in its support are correlations between different symptom domains 

in individuals with a clinical diagnosis of ASD that are only low to moderate (Brunsdon & 

Happé, 2014; Dworzynski et al., 2009; Happé & Ronald, 2008 ; Kolevzon et al., 2004; 

Mandy et al., 2014). However, symptom correlations in clinically diagnosed individuals may 

represent significant underestimates of the corresponding population values because of range-

restricting selection arising from the diagnostic process. In the section that follows, I use what 

is known about the diagnostic process and subsequent use of clinically diagnosed samples in 

research to build a statistical model of range restriction in fractionation hypothesis research. I 

use this model to gauge the impact of this practice, and provide a range of estimates for the 

‘true’ associations between symptoms.  

 Individuals who meet the diagnostic criteria for ASD are a select group comprising 

approximately only 1% of the population (Baird et al., 2006; Baron-Cohen et al., 2009). They 

are not a random sample, but a select sub-section of the population representing the extremes 

of ASD traits. It has long been known that when samples are selected with respect to some 

trait, the variance of that trait is attenuated (e.g. Pearson, 1903). This is range restriction, and 

it tends to reduce correlation with other variables as well. The simplest form of range 
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restriction is ‘explicit’ or ‘direct’ selection on some variable X, when the correlation between 

X and some other variable Y is of interest. That is, the variable X on which the sample is 

selected is identical with the variable X which is utilised in analyses in the selected sample, 

and there is a strictly observed cut-off score for inclusion. This situation most commonly 

arises when X is some aptitude test used to select candidates for a job and Y is an index of 

job performance in the successful candidates in order to validate the aptitude test X (e.g. 

Berry et al., 2011). The extent to which the variance of X and its correlation with Y is 

reduced depends on the strength of selection, which can be quantified using the ratio  
𝑆𝐷′

𝑆𝐷
  

= 𝑢𝑋, where 𝑆𝐷′ is the standard deviation of X in the selected sample and 𝑆𝐷 is the standard 

deviation of X in the population. Lower values of 𝑢𝑋 represent stronger selection on the 

variable X. Given 𝑢𝑋,  the Pearson correlation between X and Y in the selected group will be: 

𝑟′𝑋𝑌 =  
𝑢𝑋𝑟𝑋𝑌

√𝑢𝑋
2𝑟2

𝑋𝑌+1−𝑟2
𝑋𝑌

   ,              

(2.1) 

 

where 𝑟𝑋𝑌 is the correlation between X and Y in the unrestricted population. From Eq. 2.1, it 

can be seen that whenever 𝑢𝑋   is less than 1, the Pearson correlation between X and Y will be 

downwardly biased in the selected sample.  

Diagnosing ASD is also a selection process that reduces variance in the traits of 

interest and, in turn, is likely to attenuate symptoms correlations relative to the population. 

The selection process is more complex than the job selection example and cannot be 

represented using the simple model in Eq. 2.1.  First, ASD diagnosis does not involve direct 

selection on measured scores on the X variable(s). That is, a clinician cannot simply ‘read 

off’ an individual’s levels of, say, social, communication and restrictive, repetitive 
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impairments or behaviours and assign those with a score above certain cut-off points a 

diagnosis of ASD. Instead, the process involves a combination of formal assessment and 

clinical judgement (Allison et al., 2012). As a consequence, scores on measures of ASD 

symptoms obtained in subsequent research will not be identical to the criteria by which a 

clinician has assigned a diagnosis. The process of diagnosing ASD and then selecting 

participants for a research study, therefore, represents an example of ‘indirect selection’, 

defined as occurring when the selection variables are not identical with the variables that 

form the basis of subsequent empirical analyses (Hunter et al., 2006). In the terminology of 

range restriction, therefore, the triad or other features of ASD of interest in an empirical study 

represent ‘incidental variables’ which are selected by virtue of being correlated with the 

unmeasured variables on which selection (diagnosis) takes place (i.e. the selection variables).  

Another way in which the case of ASD diagnosis is more complicated than the simple 

job selection example is that ASD diagnosis requires the presence of symptoms in multiple 

domains to be present. This makes ASD diagnosis a case of simultaneous multivariate – 

rather than univariate - selection (Sackett & Yang, 2000). DSM IV diagnosis required deficits 

in three of the areas of the classical triad and was, therefore, a case of trivariate selection. The 

new DSM 5 criteria requires deficits in social communication – which combines the social 

and communication dimensions of the classical triad - coupled with the presence of restricted, 

repetitive behaviours, entailing a shift to bivariate selection. A multivariate selection formula 

was developed by Aitken (1934) and subsequently extended by Lawley (1944) to deal with 

situations such as this in which samples are selected on multiple variables. The formula 

provides a correction to estimate population associations in range-restricted samples. Based 

on the formula, an estimate of the population variance-covariance matrix V of the selection 

and incidental variables in the population can be obtained using: 
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(2.2) 

 

where 𝑽𝒑,𝒑 is the variance-covariance matrix of the p selection variables in the population, 

𝑽′
𝒑,𝒑 is the variance-covariance matrix of the p selection variables in the selected sample, 

𝑽′𝒏−𝒑,𝒑 and 𝑽′𝒑,𝒏−𝒑 are the covariance matrices for the p selection variables and n-p 

incidental variables in the selected sample and 𝑽′𝒏−𝒑,𝒏−𝒑 is the covariance matrix of the n-p 

incidental variables in the selected sample. However, it is apparent from Eq.  2.2 that in order 

to apply this correction, it is necessary to have information on the selection variables. This is 

simply not available in the case of ASD diagnosis because, as mentioned above, the selection 

variables are a composite of formal assessment and clinical judgement and the latter is not 

directly quantifiable. In fact, this information is rarely available for any multivariate selection 

problem (Hunter et al., 2006). This creates a challenge with respect to estimating the degree 

to which symptoms of ASD cluster together because any sample restricted to individuals with 

ASD will be liable to under-estimate their association, but owing to a lack of information on 

the selection variables, it will be difficult to assess the extent of the bias.  

While the possibility that range restriction may undermine the validity of results from 

clinical ASD samples has been noted (Happé & Ronald, 2008), there has not as yet been any 

systematic study or attempt to quantify the consequences of this kind of selection. ASD is 

fundamentally a clinical disorder and inferences regarding ASD should, therefore, come at 

least in part from samples of individuals who are actually diagnosed with the disorder: it 

would be undesirable to disregard all studies restricted to individuals with diagnosed ASD 
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from consideration because they are affected by range restriction. It was, therefore, the aim of 

the present study to attempt to characterise and quantify the effects of simultaneous selection 

within research studies focussed on individuals with a clinical diagnosis of ASD. I first 

present the results of a brief simulation exploring the potential effect of simultaneous 

selection on estimates of the inter-correlation among symptoms of ASD. I then provide a real 

data example comparing the correlation among ASD symptoms in individuals with diagnoses 

of ASD to a combined sample which includes both individuals with and without diagnoses of 

ASD.  

Method 

Simulation study  

 To receive a diagnosis of ASD, an individual has traditionally had to show deficits in 

all three domains of the classical triad, which I will here abbreviate to ‘Soc’, ‘Comm’ and 

‘RSB’; therefore, the majority of samples of individuals with clinical diagnoses of ASD are 

selected on these three traits. This makes it reasonable to hypothesise that it is this selection 

that produces that relatively low correlations among them that has inspired the ‘fractionable 

triad’ hypothesis. I, therefore, explored the effects of simultaneous selection using a range of 

possible population correlation magnitudes among simulated Soc, Comm and RSB variables.  

All analyses were conducted in R statistical software (R Core Team, 2013).  

Population model 

I began with a model in which RSB, Comm and SS had a trivariate normal 

distribution with means of zero and variances of 1 in the population. This corresponds to the 

idea that the traits are normally distributed in the population, with ASD representing the 

extremes of these traits (e.g. Austin, 2005; Lundström et al., 2012).  I simulated 10,000,000 



26 
 

cases to represent this population. Across different simulation conditions I varied the 

population correlations between RSB, Comm and SS. The population correlations utilised are 

provided in Table 2.1. Reflecting the evidence that Comm and SS are more strongly inter-

related than either is with RSB, I simulated non-uniform population correlations among the 

triad (e.g. Dworzynski et al., 2009).  

Selection model 

I simulated simultaneous selection from the populations described above in a manner 

designed to mimic the diagnostic process. I did this by selecting cases from the uppermost 

part of the univariate distributions of the three variables. I did not select on RSB, Soc and, 

Comm scores directly but generated a ‘selection variable’ for each. These selection variables 

were correlated at r≈0.75 with the corresponding symptoms to represent indirect selection 

and an appropriate level of fallibility of the diagnostic process.  I then selected cases based on 

being above the 95th percentiles on these selection variables. The 95th percentile has been 

used to define abnormality in studies of ASD traits utilising general population participants 

(e.g. Robinson et al., 2012).  

Quantifying bias 

I evaluated the effect of simultaneous selection on the sample symptom inter-

correlations and quantified the degree to which these sample estimates under-estimate the 

corresponding population value using percentage bias, computed as:  

 (𝑟′ − 𝑟)/𝑟 × 100% 

where 𝑟 is the simulated population correlation and  𝑟′  is the correlation in the selected 

sample. Percentage bias is commonly used to evaluate the extent to which a parameter is 

estimated accurately in simulation studies, including those concerned with the effects of 
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range restriction (e.g. Le & Schmidt, 2006). I also provide the determinant of the covariance 

matrix for the three variables before and after simultaneous selection. This provides a 

measure of generalised variance. The percentage bias in this statistic is computed in an 

analogous way to the bias in the individual correlation coefficients.  

Real data example 

 To complement the simulation study, I provide a real data example in which I 

compared the correlations between ASD symptoms in clinically diagnosed individuals to the 

corresponding correlations in a combined sample of individuals with a diagnosis of ASD and 

controls. 

Measures 

 I used the Autism Spectrum Quotient (AQ: Baron-Cohen et al., 2001). The AQ is a 

50-item questionnaire (50% reverse-keyed) assessing 5 domains: Social Skill, Attention 

Switching, Attention to Detail, Communication and Imagination. Item content is based on the 

classical triad of ASD as well as other cognitive traits associated with ASD. Items are scored 

on a dichotomous response scale resulting in a possible range of scores for each domain from 

1-10. 

Previous studies have suggested that the AQ has favourable psychometric properties 

including good test-retest reliability, acceptable internal consistency, higher scores in 

clinically diagnosed than control samples, normally distributed scores in the population and 

correlations with other features of ASD (e.g. Allison et al., 2012; Baron-Cohen et al., 2001; 

Takagishi et al., 2010). The advantage of the AQ in the context of the current study is that is 

based on a dimensional approach to ASD which conceptualises ASD traits as continuous in 

the population and, therefore, measurable even in individuals who do not meet diagnostic 
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criteria for ASD. Moreover, it was specifically designed to measure ASD traits across a broad 

range from normal to clinical levels. Indeed, evidence suggests that the AQ successfully 

captures variation in ASD traits in both clinically diagnosed and non-ASD individuals 

(Baron-Cohen et al., 2001; Hoekstra et al., 2011; Wheelright et al., 2010).  

Participants 

 Controls 

 Control participants came from 2 sources.  Ninety eight participants (27 males, 70 

females and 1 ‘other’ gender) came from an ongoing study of emotion recognition and ASD 

traits which included the AQ as a measure. The 98 were selected from a broader pool of 

participants that also included individuals who self-reported a diagnosis of intellectual 

disability, ASD or another psychiatric disorder.  The mean age of this sub-sample was 31.0 

(SD = 12.5).  The majority reported their occupation as ‘student’.  An additional 132 

participants (27 males, 105 females) came from an ongoing study of sex differences in ASD 

traits. The mean age of this sub-sample was 27.7 (SD = 12.7). Sixty eight of these 

participants reported their occupation as ‘student’. Both of the studies above had received 

ethical approval from the relevant ethics body. Participants were in both cases recruited 

online and from the University community. Online recruitment was via social networking 

sites such as facebook and twitter as well as dedicated study participation sites.  

 Cases 

 Participants with ASD came from a previous study of the AQ in clinically diagnosed 

individuals. The sample has been utilised and described in previous publications (Booth et al., 

2013; Kuenssberg et al., 2014; Murray et al., 2014) and is described comprehensively in 

Kuenssberg et al. (2014). The full sample includes 148 participants (107 males and 41 
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females) with a diagnosis of Asperger Syndrome or high functioning autism. High 

functioning autism was defined as meeting the criteria for autism but having normal 

intellectual functioning. Asperger syndrome was defined as meeting the criteria for high 

functioning autism but with no history of language delay. The mean age of the sample was 

33.3 (SD = 10.7). In the current study, I used the subset of participants with complete data on 

the five domains measured by the AQ (N = 132-135).  As the data were fully anonymised 

prior to receipt it is not possible to identify the specific demographic composition of this sub-

sample.  

Statistical Procedure 

 I first computed Pearson correlations between the 5 AQ domain scores in the ASD 

group and in a sample that combined both the ASD and control participants. I quantified the 

difference in Pearson correlation between the whole sample and ASD sub-sample, in a 

similar way as in the simulation study by computing the percentage difference between whole 

and ASD sub-sample: 

(𝑟𝐴𝑆𝐷 − 𝑟)/𝑟 × 100%, 

where 𝑟𝐴𝑆𝐷 is the correlation in the ASD sub-sample and 𝑟 is the correlation in the whole 

sample. I also computed an estimate of internal consistency for each of the AQ domains in 

the whole sample and the case sub-sample using Cronbach’s alpha. 

 Finally, I applied the most commonly used method of range restriction correction to 

the correlations in the case sample: the Thorndike case II formula from Eq. 1.1. I used this to 

obtain r*, an estimate of the range restriction corrected correlations assuming that the 

combined sample was the population. Although this is technically not the correct formula 

because it is designed for a situation in which direct selection has taken place, in practice it is 
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often used because of insufficient information about the selection process to permit the 

application of Eq. 2.2. The difference between results obtained using Eq 1.1 and the empirical 

estimates of the correlations are evaluated using the percentage difference between the range-

restriction corrected correlation and the whole sample correlation. For SD’ I used the 

empirical estimate of SD in the case sample; for SD I used the empirical estimate of SD in the 

combined sample; and for r’ I used the empirical estimate of r in the case sample. The 

purpose of this analysis was to evaluate the extent to which the most commonly used method 

of range restriction correction would give similar results to using the relevant population to 

which the formula aims to correct to.  

Results 

Simulation study 

Results from simulating simultaneous selection on Soc, Comm and RSB are provided 

in Table 2.1. These show how a selection mechanism representing the ASD diagnosis can 

lead to substantial under-estimates of symptom inter-correlations in samples of clinically 

diagnosed individuals. For example, if the simulation selection mechanism proposed has 

successfully represented a situation close to reality, then an observed correlation between 

RSB and Soc of r = .26 could correspond to a population correlation of r = .60. Other 

possible magnitudes of population and corresponding sample correlations can also be read off 

from Table 2.1.  

The results also highlight how the biggest percentage under-estimates of the 

correlation among symptoms occur when the relevant population correlation is itself smaller. 

For example, the percentage bias for a population correlation of .95 was only -13% whereas 

the percentage bias for a population correlation of .40 was approximately -65%. Therefore, to 

the extent that simultaneous selection attenuates symptom inter-correlations in ASD samples, 
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it is likely to do so to a greater extent for those domains that have smaller population 

correlations.  

 To provide more in-depth example, Figure 2.1 shows the bivariate density of RSB 

and Soc in the condition from the first row of Table 2.1. The contour plot in the left panel 

shows the population distribution and the right panel shows the distribution after 

simultaneous selection. It can be seen that the location of the distribution shifts towards the 

clinical end, the variance is reduced and the elliptical shape of the population distribution is 

lost in line with the decreasing correlation between the variables.  

Figure 2.1: Contour plots of RSB and Soc before and after selection

 

. 
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Figure 2.2: Marginal distributions of RSB and Soc before and after selection 

 

The marginal distributions of the same two variables are shown in Figure 2.2. These, 

in addition to showing the shift in location and reduction in variance, highlight the positive 

skewness introduced by simultaneous selection. The top row shows the distributions in the 

population and the bottom row shows the distributions after simultaneous selection. The 

skews of RSB and Soc after selection are .35 and .41 respectively. 
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Table 2.1: Extents of attenuation of symptom inter-correlations and generalised 

variance under simultaneous selection 

RSB- Soc RSB -Comm  Comm-Soc Generalised variance Prevalence 

R r' % bias r r' 

 

% bias R  r’ % bias |∑| |∑|’ % bias  

.70 .34 -51 .70 .35 -50 .95 .83 -13 .049 .006 -87 .86% 

.60 .26 -57 .60 .26 -57 .95 .83 -13 .062 .007 -88 .69% 

.50 .19 -62 .50 .20 -60 .95 .83 -13 .073 .008 -89 .54% 

.40 .13 -68 .40 .14 -65 .95 .83 -13 .082 .008 -90 .42% 

.30 .10 -67 .30 .10 -67 .95 .83 -13 .089 .010 -91 .32% 

.60 .26 -57 .60 .25 -58 .90 .70 -22 .118 .013 -89 .65% 

.50 .19 -62 .50 .19 -62 .90 .70 -22 .140 .014 -90 .51% 

.40 .13 -68 .40 .13 -68 .90 .71 -21 .158 .014 -91 .40% 

.30 .09 -70 .30 .09 -70 .90 .71 -21 .172 .014 -92 .30% 

.70 .35 -50 .70 .34 -51 .80 .49 -39 .164 .019 -88 .73% 

.60 .25 -58 .60 .24 -60 .80 .50 -38 .216 .023 -90 .57% 

.50 .18 -64 .50 .18 -64 .80 .51 -36 .260 .024 -91 .45% 

.40 .14 -65 .40 .14 -65 .80 .52 -35 .296 .025 -92 .36% 

.30 .10 -67 .30 .11 -63 .80 .51 -36 .324 .025 -92 .26% 

.60 .26 -57 .60 .26 -57 .70 .37 -47 .294 .028 -91 .51% 

.50 .19 -62 .50 .18 -64 .70 .37 -47 .360 .031 -92 .40% 

.40 .14 -65 .40 .14 -65 .70 .39 -44 .414 .031 -93 .30% 

.30 .10 -67 .30 .10 -67 .70 .39 -44 .456 .031 -93 .22% 

.50 .19 -62 .50 .19 -62 .60 .29 -52 .440 .036 -92 .35% 

.40 .14 -65 .40 .14 -65 .60 .29 -52 .512 .037 -93 .26% 

.30 .09 -70 .30 .10 -67 .60 .21 -65 .568 .038 -93 .19% 

.40 .14 -65 .40 .14 -65 .50 .21 -58 .590 .040 -93 .23% 

.30 .08 -73 .30 .09 -70 .50 .20 -60 .660 .041 -94 .17% 

Note. RSB= restricted, repetitive behaviours, Comm= communication, Soc= social skills.  
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Real data example 

 Descriptive statistics for the cases, controls and combined sample are provided in 

Table 2.2. As expected, the mean scores for all 5 domains were higher in the cases than in the 

controls. The standard deviations did not differ markedly between the cases and control 

groups but, as expected, were larger in the combined sample than in either of the case or 

control sub-samples. The ratios of the SDs of the domain scores in the ASD sample to those 

in the combined sample are in the last column of Table 2.2. The largest SD difference was 

observed in Attention Switching domain (.52). The smallest difference was for the Attention 

to Detail domain (.97) and suggested only minimal range restriction.  

 Figure 2.3 shows the score distributions in the combined sample. There is not much 

evidence for bi-modality arising from clinical and control samples. Bi-modality would 

suggest possible range enhancement. However, the Social Skills, Communication and 

Imagination subscales showed some evidence of floor effects while the Attention Switching 

subscale showed some evidence of ceiling effects.  Figure 2.4 shows the scatterplot matrix of 

the AQ subscale scores in the combined sample. Loess lines are added to highlight any non-

linearity of the associations. Such non-linearity could indicate that the assumptions of range 

restriction corrections are violated. There was some evidence of non-linearity, particularly 

involving Attention Switching; however, for the most part a linear trend provided a 

reasonable description of the data.  
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Table 2.2: Descriptive statistics for ASD, non-ASD and combined samples for the 5 AQ 

domains 

Domain Mean (SD) 

 Cases 

Mean (SD) 

Control 

Sample 

Mean (SD) 

 Combined sample 

𝑺𝑫𝑪𝒂𝒔𝒆𝒔

𝑺𝑫𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅
 

Social  

Skills 
7.95 (2.14) 3.43 (2.93) 5.14 (3.45) .62 

Attention Switching 8.47 (1.52) 4.47 (2.43) 6.01 (2.88) .52 

Attention to Detail 6.36 (2.30) 5.06 (2.32) 5.58 (2.38) .97 

Communication 7.19 (2.19) 2.94 (2.42) 4.57 (3.10) .71 

Imagination 6.16 (2.51) 2.44 (1.93) 3.82 (2.80) .90 

 

Figure 2.3: Histograms of AQ subscale scores in combined sample 

 

Cronbach’s alpha values for the five domains were: Social Skills = .88, Attention 

Switching = .81, Attention to Detail = .66, Communication = .83 and Imagination = .78 

estimated in the whole sample. Based on the ASD sample alone Cronbach’s alpha levels 

were, as expected, generally lower: Social Skills = .75, Attention Switching = .50, Attention 

to Detail = .65, Communication = .63 and Imagination = .71.  
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Figure 2.4: Scatterplot matrix of AQ subscale scores in combined sample 

Note. SS=Social Skills, AS= Attention Switching, AD= Attention to Detail, Comm= 

Communication, Imag=Imagination.
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The correlations among symptom domains measured by the AQ in both the combined 

case and control sample and the case sub-sample are provided in Table 2.3. In the combined 

sample the correlations between symptom domains ranged from r = .33 to r = .80. With the 

exception of the Attention to Detail domain which did not correlate well with other 

symptoms, all of the symptom correlations were large >.65. In the case sub-sample, all of the 

symptom inter-correlations were substantially smaller than in the combined sample. In the 

case sub-sample, symptom inter-correlations ranged from r = .21 to .55. The percentage 

differences between the combined and case sub-sample ranged from -16 to -45%. Therefore, 

the real data analysis supported the hypothesis that samples restricted to clinically diagnosed 

individuals could substantially under-estimate symptom inter-correlations.   

Range restriction corrected correlations are also provided in Table 2.3. Compared 

with the uncorrected correlations, these were generally closer to those in the combined 

sample and were in some cases identical or near-identical to those in the combined sample. 

The largest percentage differences between the corrected and combined sample estimates 

involved correlations with the Attention to Detail domain (-33% with Imagination and +28%) 

with Attention Switching. 
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Table 2.3: Correlation matrix of the 5 AQ domains in ASD versus combined sample 

 SS AS AD Comm  Imag 

Combined 

SS -     

AS .75 -    

AD .34 .40 -   

Com .80 .75 .38 -  

Imag .68 .66 .33 .69 - 

Controls 

SS - -20 -35 -13 -29 

AS .60 - -23 -25 -35 

AD .22 .31 - -32 -36 

Com .70 .56 .26 - -35 

Imag .48 .43 .21 .45 - 

Cases 

SS - -45 -29 -31 -22 

AS .41 - -25 -32 -32 

AD .24 .30 - -16 -36 

Com .55 .51 .32 - -26 

Imag .53 .45 .21 .51 - 

Range restriction corrected 

 SS AS AD Comm  Imag 

SS - -24 +9 -9 +4 

AS .57 - +28 0 +5 

AD .37 .51 - -13 -33 

Com .73 .75 .33 - -7 

Imag .71 .69 .22 .64 - 

Note: Correlations below the diagonal, % difference relative to combined sample above the 

diagonal. SS=Social Skills, AS= Attention Switching, AD= Attention to Detail, Com= 

Communication, Imag=Imagination.  

Discussion 

 In this chapter, I demonstrated that the selection process entailed in diagnosing 

individuals with ASD may lead to substantial attenuations of symptom inter-correlations in 

clinically ascertained research samples. I presented evidence that, considering individuals 

with and without ASD together, the correlations among symptom domains can be quite large, 

even when only modest in individuals with a clinical diagnosis of ASD. This has implications 

for the hypothesis that ASD comprises relatively distinct symptoms because it suggests that 

previous studies utilising clinical samples could have under-estimated the extent to which 

ASD symptoms correlate with one another.  
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I used a brief simulation study to estimate the magnitudes of observed correlations 

between ASD symptoms that could be expected, given different levels of population inter-

correlations and a selection mechanism corresponding to ASD diagnosis. I included a range 

of plausible simulation conditions in terms of the population correlations between symptoms.  

Consistent with the claim that these represent realistic conditions, all produced ASD 

prevalence estimates in the range observed in empirical studies which vary by country and 

methodology but are generally in the range of around 0.2 to 1.6% (Fombonne, 2003; Zaroff 

& Uhm, 2012).  Results showed that symptom inter-correlations are potentially substantially 

reduced in samples restricted to individuals who meet diagnostic criteria for ASD. Further 

support for this was found in a real data example in which I compared inter-correlations in an 

ASD and a combined ASD and control sample. In every case the correlation in the combined 

sample was substantially larger than in the ASD sub-sample.  

The simulation study focussed on the classical triad of ASD because it is within this 

framework that a large amount of the work on assessing the degree of fractionation of ASD 

symptoms has been conducted. Similar considerations nonetheless apply to other frameworks 

or features of ASD such as ‘the dyad’ of ASD (i.e. the social communication and restricted 

repetitive activities criteria of DSM 5) or performance on theory of mind or executive 

function tasks. The extent to which the inter-correlations among these ASD features in 

clinically diagnosed samples are downwardly biased will depend on several factors. First, it 

will depend on the population correlation between the features of interest.  Under most 

realistic conditions, the larger the population correlation, the smaller the attenuation of their 

association in a selected sample (Taylor, 2004). This is because as the population correlation 

gets smaller, both the numerator and the denominator of the ratio forming the correlation 

coefficient decrease. However, the numerator (the covariance between the two variables) 

decreases slower than the denominator (the product of their standard deviations) with 
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decreasing population correlations. Thus, the percentage bias in small population correlation 

coefficients will be bigger than that for large population correlation coefficients for a given 

degree of range restriction.  

In the case of the classical triad, this could have accentuated the difference in 

empirical inter-correlations between the Soc and Comm domains on the one hand and the 

RSB domain on the other that led to the former two symptoms being combined into a single 

domain in DSM 5 criteria while the latter remains distinct (e.g. Frazier et al., 2012). 

 Second, it will depend on how closely the symptoms of interest correspond to the 

variables on which diagnosis has been made. In range restriction terminology, this is the 

degree of association between the selection variables and the incidental variables. Stronger 

associations will result in larger biases. For example, for individuals diagnosed on the basis 

of DSM-IV, the correlations among the triad should be most strongly affected, with other 

features of ASD less directly selected affected to a lesser extent. 

 Third, it will depend on how strong the selection is. While it is the goal of clinicians 

to diagnose all individuals who genuinely meet the criteria for ASD and none who do not, 

uncertainty surrounding diagnosis is inevitable. Misdiagnosis of individuals can potentially 

mitigate the effects of selection on symptom inter-correlations by weakening the strength of 

selection on ASD symptoms in a clinically diagnosed sample. This can be thought of in terms 

of the sensitivity and specificity of the instruments used to make a clinical diagnosis and the 

diagnostic process as a whole. All else being equal, diagnostic procedures with high 

specificity (usually associated with lower sensitivity) will be associated with stronger 

selection. Similarly, if diagnostic criteria loosen, resulting in more individuals receiving 

diagnosis of ASD and corresponding increases in prevalence, then the effect of diagnosis on 

symptom inter-correlations in such samples will be reduced. It is expected that the move from 
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DSM-IV to DSM 5 diagnostic criteria may result in a slight reduction in the prevalence of 

ASD (Maenner et al., 2014); therefore, the effect of diagnosis on symptom correlations may 

increase in the future as the stricter criteria are adopted. Strength of selection is also affected 

by the fact that a minority of individuals with a diagnosis of ASD receive that diagnosis in 

spite of not meeting all diagnostic criteria. To the extent that these individuals are included in 

empirical studies of clinical samples, this can also mitigate the effects of clinical diagnosis on 

symptom inter-correlations, by weakening the strength of selection on ASD symptoms. 

Finally, though I have framed my demonstration in terms of symptom inter-

correlations because they have acquired a level of theoretical importance in the literature, the 

consequences of selection on ASD traits are also not limited to this parameter. Other statistics 

that depend on the variance or inter-correlation of variables in the sample will also be 

affected. This includes, for example, the reliability of psychometric assessments (Fife et al., 

2012), genetic and environmental variances and correlations (Dominicus et al., 2006), and 

factor model parameters (Muthén, 1990). For example, the real data example illustrated the 

attenuation of Cronbach’s alpha in clinically diagnosed individuals relative to that of a 

combined sample of clinically diagnosed and control cases.  

Collectively, these considerations suggest that investigations of ASD symptom inter-

correlations and related statistics should recruit and jointly analyse data from participants 

both with and without ASD (e.g. Constantino et al., 2004). This approach is justified if it is 

assumed that clinical ASD is merely the extreme end of a single trait or confluence of traits 

that are continuously distributed in the population. That is, autistic traits must be considered 

meaningful in the general population and not qualitatively different from the traits expressed 

by individuals with clinical diagnosis of ASD. Such a viewpoint is becoming increasingly 

accepted.  However, this approach also requires resolution of the practical issue of reliably 

and equivalently measuring ASD traits across both clinically diagnosed and community 
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populations (Murray et al., 2014). As Happé & Ronald (2008) noted, measures of ASD have 

face validity in clinically diagnosed samples but when the same measures are administered to 

individuals without a clinical diagnosis of ASD, it is not clear how the resulting data relates 

to clinical ASD. Measures of the broader autism phenotype (BAP) or autistic-like traits 

(ALTs) that aim to capture sub-clinical variation in ASD traits may be advantageous in this 

regard because they explicitly aim to capture levels of ASD traits that span normality and 

clinical ranges of the traits (see Wheelright et al., 2010).  

Where restricted samples are used, it may be worthwhile estimating range restriction 

corrected associations. While it is unlikely that they will yield accurate estimates of the ‘true’ 

association because this would rely on possibly unrealistic assumptions and accurate 

estimates of population variances of the variables involved, they can at least provide a 

sensitivity analysis. In the current study the range restriction corrected estimates in the real 

data example were, though imperfect, closer to the empirical estimates in the combined 

sample than were the empirical estimates in the case sample.  

Finally, if – as the current results suggest – the estimates of the association between 

different symptom domains are under-estimated in clinical samples, this suggests that the 

evidence for a fractionation between ASD symptoms may not be as strong as previously 

thought. Although it is generally accepted that the social and communication symptoms of 

ASD have a strong tendency to co-occur (hence their lumping together in DSM 5); there 

remains much debate about the extent to which these reflect the same syndrome as the non-

social symptoms of ASD. Perceptions of the extents of correlation between symptom 

domains can have a strong influence on psychopathology taxonomies, therefore, it is 

important to ensure that estimates of these are accurate. However, it is equally important not 

to rely too heavily on symptom inter-correlations as a basis for nosology. Ultimately, whether 

conceptualising two symptoms as belonging to the same disorder or not should be based on 
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whether doing so leads to useful ways of identifying individuals who may have a shared 

etiology or who may benefit from similar kinds of treatments. Furthermore, it is important to 

bear in mind that high symptom correlations need not mean a single unitary underlying 

syndrome: it can also reflect sets of shared causes, local interactions between symptoms, or a 

set of common end points from a range of causal pathways (i.e. equifinality). Thus, although 

it is important to obtain accurate estimates of symptom inter-correlations for the purposes of 

guiding theory and nosology, these alone cannot be relied upon to understand the causal 

processes underlying their association.  

Limitations 

 The simulation study was designed to reflect the process of diagnosis of ASD; 

however, because this selection cannot be characterised exactly, the possibility remains that 

the simulated process did not accurately reflect selection processes in the real world in some 

way. Second, the study focussed exclusively on symptom inter-correlations which have 

historically been important in the development of the fractionable triad hypothesis; however, 

these should not form the sole basis of substantive theory. For example, the fractionable 

hypothesis has also been informed by conceptual analyses, genetic etiology and neural 

substrates of the cognitive features of ASD (e.g. Happé & Ronald, 2008). Finally, the real 

data example was based on a convenience sample which was, therefore, not population-

representative.  Although the population distribution of AQ scores is not known, it is likely 

that individuals with high scores were over-represented because of the large number of 

clinical cases included in the combined sample. The clinical sample may also have been 

subject to the kind of diagnostic biases discussed in the introduction such as sex differential 

selection and Berkson’s bias. In addition, it is likely that the control samples had been subject 

to self-selection biases. For example, individuals who perceive themselves to be high in ASD 

traits or who have relatives with ASD may have a particular interest in participating in an 
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ASD study.  One possibility is that the correlations in the combined sample over-estimated 

the population correlation due to range enhancement. Range enhancement occurs when 

scores in the middle of a distribution are under-represented, leading to an over-estimation of 

an association. Therefore, it is important to note that the point of the example was not to find 

the ‘true’ association between the AQ domains, but to demonstrate that the range of trait 

levels included can have important effects on statistical results.  

Conclusions 

Samples restricted to individuals who meet the diagnostic criteria for ASD are likely 

to produce substantial under-estimates of the associations among different symptoms of ASD 

as a result of range restriction. Given that substantive theories of ASD and the development 

of diagnostic and treatment processes may depend on the strengths of inter-correlation among 

features of ASD, it is important to take into account that observed associations in clinically 

diagnosed groups may not reflect the associations among these features in the population.  
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Chapter 3: How construct truncation on achievement may have distorted our 

understanding of the relation between conscientiousness and ability 

 The use of clinically ascertained samples discussed in the previous chapter is a 

common and obvious example of how range restricting selection can distort theoretical 

conclusions. However, construct truncation can operate in far more subtle and hard-to-detect 

ways. In this chapter I discuss the possibility that construct truncation on achievement has led 

to spurious evidence for what I label as the intelligence compensation hypothesis (ICH).  

Intelligence Compensation Hypothesis 

 The relations and interactions between personality traits and intelligence have, 

historically, been of considerable interest in individual differences research (e.g. Ackerman & 

Heggested, 1997; Austin et al. 2000; Murray, Booth & Molenaar, 2015). A recently emerged 

hypothesis regarding personality-intelligence interplay is the ‘intelligence compensation 

hypothesis’ (ICH). The hypothesis holds that individuals of low cognitive ability become 

more conscientious in striving to keep their achievement levels on a par with those of their 

high cognitive ability peers. Individuals high in cognitive ability, on the other hand, can 

accomplish the same or more with less effort and so have no need to maintain particularly 

high conscientiousness. In fact, in being able to rely on their cognitive ability, some may 

allow their levels of conscientiousness to slide. Given the link between both cognitive ability 

and conscientiousness-related traits and health, academic and occupational outcomes (e.g. 

Murray & Booth, 2015; Poropat, 2009; Wrulich, Brunner, Stadler, Keller & Martin, 2014), 

the ICH could have important practical as well as theoretical implications. Confirming and 

characterising a possible antagonistic relationship between cognitive ability and 

conscientiousness could facilitate a more nuanced understanding of the interplay between risk 
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factors for maladaptive behaviours and associated implications for prevention and 

intervention.  

 The ICH grew out of the observation that, in many samples, negative associations 

between cognitive ability and conscientiousness-related personality traits have been observed 

(e.g. Furnham, Moutafi, & Chamorro-Premuzic, 2005; Furnham et al., 2007; Moutafi et al., 

2003; Moutafi, Furnham, & Paltiel, 2004; Moutafi, Furnham, & Crump, 2006; Furnham & 

Moutafi, 2012; Soubelet & Salthouse, 2011; Wood & Englert, 2009).   

In spite of the intuitive appeal of the ICH, evidence for the hypothesis is mixed. 

Counter to the hypothesis, some positive associations between cognitive ability and 

conscientiousness have been observed (e.g. Baker & Bishel, 2006; Lounsbery et al., 2005; 

Luciano et al., 2006) and other studies have yielded associations that were close to zero or 

non-significant (e.g. Bartels et al., 2012; Chamorro-Premuzic et al., 2005; Furnham et al., 

2005).  

The role of sample composition 

A feature which appears to distinguish studies supporting the ICH is sample 

composition. Specifically, the majority of these studies have been conducted in samples 

which appear to have been subject to selection with respect to occupational or academic 

achievement. The studies of Moutafi et al. (2004) and Furnham and Moutafi (2012) used 

samples of junior to middle managers attending staff development centres, whilst other 

studies have utilised samples of managerial grade job applicants attending assessment centres 

(Furnham et al., 2007; Wood & Englert, 2009). Development and assessment centres are 

costly (Eurich, Krause, Cigularow, & Thorton, 2000). This means that organisations tend to 

invite only a small percentage of the total applicant pool when the purpose of attendance is to 

provide information for making selection decisions, and in training contexts, it is usually 
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individuals from managerial and professional populations who attend (Meriac, Hoffman, 

Woehr, & Flisher, 2008; Pepermans, Vloeberghs, & Perkisas, 2003). Similarly, the study by 

Furnham et al. (2005) used a sample of undergraduate students and entry to university 

involves selection on prior academic achievement (e.g. Hägglund & Larsson, 2006).  The 

study by Soubelet & Salthouse (2011) used a sample recruited via newspaper adverts and 

referrals from other participants. Although the sample was not selected in such an obvious 

way as a professional or student sample might be, the recruitment process and exclusion 

criteria (participants with Mini-Mental State Examination scores that indicated potential 

cognitive impairment were not eligible to participate; Folstein, Folstein, & McHugh, 1975) 

resulted in a sample who had an average of almost 16 years of education and were 

approximately 2/3 to 1 standard deviation above the national norms on cognitive ability.  

Compensatory selection 

The selected compositions of these samples raises the possibility that the apparent 

negative associations between intelligence and conscientiousness-related traits were due not 

to individual calibration of conscientiousness levels to ability level as proposed by the ICH, 

but to compensatory selection into the populations from which the research samples 

investigating the question are taken (see Sackett, Lievens, Berry, & Landers, 2007). To enter 

the population of individuals employed in professional jobs or the population of individuals 

undertaking university level education, a certain level of achievement (educational or 

occupational) is necessary. Compensatory selection refers to a process whereby selection into 

these populations through meeting these achievement criteria can be done through 

combinations of ability and hard work (i.e. conscientiousness). An individual of low 

conscientiousness can still enter the population if they are of high ability and an individual of 

low ability can still enter the population if they are of high conscientiousness; however, 

individuals with a combination of low conscientiousness and low ability are excluded.   
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Operationalising this situation statistically, one could think of selection into the 

research sample being based on a composite of IQ and conscientiousness: 

𝐴𝑐ℎ = 𝑏1𝐼𝑄 + 𝑏2𝑐𝑜𝑛,  

(3.1) 

where 𝑏1 and 𝑏2 are weights determining the contributions of IQ and conscientiousness to 

achievement. From eq. 3.1 it is obvious that whenever IQ is relatively low, high composite 

values can still be observed so long as high conscientiousness compensates for it. Setting an 

appropriate ‘achievement threshold’, individuals with co-occurring low conscientiousness 

and IQ will certainly be excluded; however, those with low values on one trait but high on the 

other may exceed the threshold. A research sample based on a population selected in this way 

could yield a negative correlation between IQ and conscientiousness even if they are not 

correlated or even positively correlated in the population because it will tend to have a greater 

proportion of people with discrepant IQ-conscientiousness scores than the general population. 

 The conceptual description above can be considered in more formal terms. Sackett et 

al. (2007) outlined the situations under which truncation of a composite such as that in Eq. 

3.1 would lead to spurious negative associations between its constituents. They noted that the 

correlation between components of the composite is attenuated according to the following 

equation, in which, for this chapter, I have presented in terms of the variables ‘ach’, ‘IQ’ and 

‘con’, standing for ‘achievement’,  ‘intelligence quotient (i.e. cognitive ability)’ and 

‘conscientiousness’ respectively: 
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𝑟′𝐼𝑄,𝑐𝑜𝑛 =
𝑟𝐼𝑄,𝐶𝑜𝑛 − 𝑟𝐼𝑄,𝑎𝑐ℎ𝑟𝑐𝑜𝑛,𝑎𝑐ℎ + 𝑟𝐼𝑄,𝑎𝑐ℎ𝑟𝑐𝑜𝑛,𝑎𝑐ℎ(

𝑉′𝑎𝑐ℎ

𝑉𝑎𝑐ℎ
)

√1 − 𝑟2
𝐼𝑄,𝑎𝑐ℎ + 𝑟2

𝐼𝑄,𝑎𝑐ℎ(
𝑉′𝑎𝑐ℎ

𝑉𝑎𝑐ℎ
)√1 − 𝑟2

𝑐𝑜𝑛,𝑎𝑐ℎ + 𝑟2
𝐶𝑜𝑛,𝐴𝑐ℎ(

𝑉′𝑎𝑐ℎ

𝑉𝑐𝑐ℎ
)

 

(3.2) 

where 𝑟′
𝐼𝑄,𝐶𝑜𝑛 is the correlation between IQ and conscientiousness in the sample truncated 

with respect to achievement, 𝑟𝐼𝑄,𝑐𝑜𝑛 is the population correlation between IQ and 

conscientiousness, 𝑟𝐼𝑄,𝐴𝑐ℎ is the population correlation between IQ and achievement, 𝑟𝑐𝑜𝑛,𝐴𝑐ℎ 

is the population correlation between conscientiousness and achievement, 𝑉′𝐴𝑐ℎ is the 

variance of achievement in the truncated sample and 𝑉𝐴𝑐ℎ is its variance in the population. 

The correlations between IQ and conscientiousness depend on the regression weights in Eq. 

3.1.  Truncation on Achievement can produce a negative association between 

Conscientiousness and IQ in a sample even when they are positively correlated in the 

population if the product of the correlations of each with Achievement (the second term of 

the numerator) is greater than their inter-correlation (the first term of the numerator). In these 

situations, subtracting this second term from the first will result in a negative number. This 

negative number is then added to the third term which is the product of the correlations 

between conscientiousness and Achievement, IQ and Achievement and the selection ratio 

capturing the extent of range restriction on Achievement. If the selection is a very small 

number, reflecting strong selection, the third term of the numerator as a whole will be small 

and fail to offset the negative number yielded by subtracting the second from first term.  

Here, a negative correlation between conscientiousness and ability will arise in the sample. 

For this to happen, conscientiousness and IQ would need to be relatively strongly correlated 

with Achievement but relatively independent of one another because under these 

circumstances the value of second term of the numerator would exceed the value of the first 

term. From a theoretical perspective, this seems plausible, suggesting that the situation 
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identified by Sackett et al. (2007) could apply to the conscientiousness-IQ associations cited 

as evidence of ICH.  

ICH, compensatory selection and achievement-IQ interactions 

To summarise the distinction between ICH and compensatory selection, the processes 

implied by the ICH suggest that there is a causal impact of ability on conscientiousness: a 

calibration of conscientiousness levels to ability. Compensatory selection invokes no such 

causal effect - it merely applies to situations where reaching any threshold required for 

selection into a sample can be accomplished through many different combinations of 

conceptually different variables, even when the threshold is only indirectly stated or assessed. 

In the ICH a negative association between ability and IQ is predicted in the population. On 

the other hand, if compensatory selection is true, it is more likely to be zero or at most very 

weakly positive or negative.  

Chapter aims 

In this chapter, I tested the hypothesis that the negative IQ-conscientiousness 

association observed in many previous studies is an artefact of truncation on achievement.  

To do so I used a sample for which there was little evidence of selection on educational and 

occupational achievement and which could, therefore, be considered reasonably free of 

achievement truncation. I also assessed the extent to which a negative association between 

conscientiousness and IQ could be induced by artificially introducing truncation on 

educational or occupational achievement. The purpose of this was to simulate the processes 

that may have occurred during the selection of many of the samples used to evaluate the 

conscientiousness-IQ relation. I also tested this compensatory selection hypothesis against a 

moderated association hypothesis in order to assess whether any apparent effects of 

compensatory selection simply reflected moderation of the effect of IQ on conscientiousness 
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by achievement. I hypothesised that 1) I would not find significant negative associations 

between conscientiousness traits and IQ in the whole (untruncated) samples, 2) negative 

associations could be induced by selection on educational achievement (in an adolescent 

sample) and occupational achievement (in a parent sample). 

Method 

Participants 

I analysed data from the Minnesota Twin Family Study (MTFS) and Sibling 

Interaction and Behaviour Study (SIBS). MTFS is a community-based longitudinal study of 

same-sex twins and their parents. Participants were recruited using a population-based 

method (for a full description see Iacono, Carlson, Taylor, Elkins, & McGue, 1999). It 

consists of two cohorts, one recruited when the twins were aged 11 years, and the other when 

the twins were aged 17.  Both cohorts have been followed approximately every three years 

since this initial wave of data collection. Compared to the US Census data for Minnesota, the 

MTFS sample appears to be generally representative of families with children living at home 

(Holdcraft & Iacono, 2004). Approximately 20% of invited participants declined to 

participate; however, more than 80% of those who declined completed a brief mail or 

telephone survey. This allowed a partial comparison of individuals who agreed to participate 

with those who did not so that any important differences could be identified. Parents in 

participating families had on average an additional 0.3 years of education (for additional 

comparisons see Iacono et al, 1999), which was judged to be only a small difference unlikely 

to have any practical influence on the current study.  

 SIBS is a community-based sample of pairs of adoptive and biological siblings and 

their parents recruited through adoption agencies. The families comprising the adoptive 

sample were selected to include an adolescent between the ages of 10 and 21 who was 
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adopted before the age of 2 and a second adolescent who was not biologically related and was 

no more than five years older or younger. The parents in these families were broadly 

representative of those accepting infant placements, but compared with Minnesota parents in 

the general population they were of higher socioeconomic status. The families in the 

biological families were recruited using birth records from the same area as the adoptive 

families.  Fifty-seven percent of eligible biological families agreed to participate and 63% of 

eligible adoptive families agreed to participate; however, 90% of the mothers from the 

remaining families completed a brief telephone interview, again allowing comparison of 

those who agreed and declined to participate. These groups did not differ on either 

educational or occupational level among the adoptive families but mothers from the 

participating biological families were more likely to have a college degree than those from 

non-participating families (44% of the sample had a college degree compared with an 39% 

for the comparison population of mothers in the same geographical region).  

Overall, therefore, the combined sample was slightly selected on parental education 

and socio-economic status but otherwise generally representative of individuals in the 

geographic region from which they were sampled and of parents of adoptive children. 

Adolescent Sample. 

In the adolescent sample, I used data from the 11- and 17-year-old MTFS cohorts and 

SIBS. I combined the data from the second wave of follow up in the 11-year-old cohort 

(targeting them at age 17) with the intake data from the other cohorts. Dependent on the data 

available on particular measures, I used different subsets of the total sample. The composition 

of these samples varied slightly but as an approximate guide, with complete data on the IQ 

and both measures of conscientiousness, there were 2412 participants (1100 males) with a 

mean age of 17.7 (SD = 0.69) 
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Parent Sample.  

I combined the parent data from the MTFS and SIBS cohorts, utilising data 

contributed at intake. Again, the specific subset of data used from the sample as a whole was 

dependent on the availability of particular measures. As an approximate guide, with complete 

data on the IQ and both of the conscientiousness measures, there were 3276 participants 

(1522 males) with a mean age of 42.5 (SD = 5.5).  

Measures 

Multidimensional Personality Questionnaire (MPQ). 

 Conscientiousness facets were measured using a 198-item version of the 

multidimensional personality questionnaire (MPQ; Tellegen & Waller, 2008). The MPQ 

contains two conscientiousness-related traits: Control and Achievement. For this chapter, I 

re-label the Achievement scale ‘Achievement-striving’ to avoid confusion with the measures 

of occupational and educational achievement. High scorers on Control endorse being 

reflective; cautious, careful, plodding; rational, sensible, level-headed, liking to plan activities 

in detail. High scorers on Achievement-striving endorse being hard-working, driving 

themselves, welcoming difficult and demanding tasks; persisting when others give up;  

ambitious , putting work and accomplishments before many other things  setting high 

standards and being perfectionistic. Items were measured on a 4-point response scale from 

‘Definitely True’ to ‘Definitely False’ and each scale had 18 items. Here I utilised the 

summed scale scores for the two measures. I analysed the facets of Control and 

Achievement-striving separately because there is growing evidence that facets within the 

domain of Conscientiousness have differential criterion and outcome associations (e.g. Bogg 

& Roberts, 2013). Thus analysing associations at the level of the broader dimension of 

conscientiousness risks obscuring substantively important facet-level processes.  
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Discussing their relations to the five-factor model, Gaugham, Miller, Pryor, and 

Lynam (2009) reported the highest correlations of MPQ Control to be with the Order (r = 

.56) and Deliberation (r = .68) facets of Conscientiousness in the NEO-PI-R, whilst MPQ 

Achievement-striving correlated most highly with the Achievement Striving (r = .60) and 

Self-Discipline (r = .52) facets. 

IQ  

The IQ measure completed by participants was an abbreviated version of the 

Wechsler Adult Intelligence Scale Revised (WAIS-R; Wechsler, 1974) and included the 

Vocabulary, Information, Block Design and Picture Arrangement subtests. These subtests 

were chosen based on their high correlation (r =.90) with full scale IQ derived from all the 

subtests.  

Educational and Occupational Achievement. 

 For the adolescent sample I used grade point average (GPA) as a measure of 

educational achievement. To avoid problems of comparing grades across different school 

districts with different testing formats, procedures and standards, GPA was not computed 

from actual grades. Instead twins and their parents were asked to report, on a 5-point scale 

from 0 = failed class to 4 = much better than average, the grades typically received in 

language arts, maths, social studies and science classes. Here, GPA was the average across 

these ratings. This measure was validated against the actual school grades of a sub-sample of 

67 randomly selected participants from the age-11 cohort and found to correlate with these at 

.89. 

 For the parent sample, I used occupational level according to the Hollingshead’s 

(1957) occupational scale as a measure of occupational achievement. This is an eight-point 
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scale ranging from ‘unskilled’ to ‘major professional’. Higher ratings on the scale reflect 

higher levels of occupational achievement.   

Statistical Procedure 

Compensatory Selection 

I chose methods of evaluating the correlation between IQ and our two measures of 

conscientiousness (Control and Achievement-striving) were designed to mimic as closely as 

possible the methods that have been employed in the majority of previous studies finding 

negative associations between IQ and conscientiousness (e.g. Moutafi et al., 2004). I, 

therefore, used Pearson’s correlations between the scale scores on the personality measures 

and IQ. I dealt with missing data using pairwise deletion.  

I introduced truncation on achievement by discarding all individuals who were below 

progressively stricter thresholds of educational or occupational achievement. This was 

designed to mimic processes of selection into populations (e.g. undergraduate students, or 

assessment centre participants) in a manner that was dependent on educational or 

occupational achievement. I then evaluated the correlations between IQ and the 

conscientiousness measures in each of the progressively more selected samples.  

Evaluation of IRR formula 

The formula in Eq. 3.2 is a special case of Thorndike case III i.e. indirect selection. 

To evaluate whether the estimated correlations based on this formula tally with those in 

empirical data subject to selection, I applied the formula in Eq. 3.2 to the data at each level of 

selection. A lack of correspondence between the estimated and actual correlations would 

suggest that Eq. 3.2 has limited utility in predicting (and conversely, correcting for) the 

effects of selection in practice. 
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Moderation analysis 

It was not possible to directly compare a moderation model with a model of 

compensatory selection directly in the sense of estimating both and comparing their fits. 

However, the absence of a moderation effect would suggest that any apparent compensatory 

selection effect was not really just due to an interaction between achievement and IQ.  I, 

therefore, also evaluated whether educational or occupational achievement moderated the 

effect of IQ on conscientiousness. To do this I used moderated multiple regression models. 

One model was estimated for each of the measures of conscientiousness in each of the 

samples. In these models the predictors were IQ, achievement (occupational level for the 

parent sample and GPA for the adolescent sample) and their product. The outcome variable 

was the conscientiousness measure (Control or Achievement-striving). IQ and achievement 

were both centred prior to analysis. A statistically significant interaction term was considered 

to be evidence in favour of moderation of the relation between IQ and conscientiousness by 

achievement.  

Results 

Correlations in unselected samples 

 In the unselected adolescent sample there was no statistically significant association 

between IQ and Control (r = .04, p = .06) but a statistically significant positive association 

between IQ and Achievement-striving (r = .14, p<.01). In the unselected parent sample there 

was a small but statistically significant positive association between IQ and Control (r = .05, 

p<.01) but no statistically significant association between IQ and Achievement-striving (r = 

.03, p = .15).  

Effect of selection on conscientiousness-IQ association 
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Tables 3.1 and 3.2 show the correlations of IQ with the Control and Achievement-

striving personality scales when the full samples were subjected to selection on educational 

or occupational achievement. They show the downward trajectories of the correlations as 

samples became increasingly selected on achievement or occupational achievement. This is 

depicted graphically in Figures 3.1 and 3.2. The error bars indicate 95% confidence intervals.   

Application of Thorndike case III 

 In the adolescent participants, the whole sample correlations between IQ and GPA, 

Control and GPA, and Achievement-striving and GPA were r=.38, r=.29 and r=.32 

respectively. The whole sample and selected sample variances are provided in Table 3.3 

together with the predicted correlations based on Thorndike case III formula. The predicted 

correlations were in most cases quite close to the actual correlations. Using Thorndike case 

III, a negative association between Control and IQ but not between Achievement-striving and 

IQ would have been predicted at the highest levels of selection.  

 In the parent participants, the whole sample correlations between IQ and occupational 

achievement, Control and occupational achievement, and Achievement-striving and 

occupational achievement were r=.40, r=.10 and r=.11 respectively. The whole sample and 

selected sample variances are provided in Table 3.4 together with the predicted correlations 

based on Thorndike case III formula. The predicted and actual correlations were for the most 

part similar, diverging only for the IQ-Achievement association and only at the highest level 

of selection. At very high levels of occupational achievement, the range restriction formula 

suggested only a very small negative correlation between Achievement-striving and IQ, 

however, a much larger negative correlation was observed empirically. This suggests that the 

association between occupational level and the combination of IQ and Achievement-striving 



58 
 

that facilitates occupational success is non-linear, possibly even substantively different at the 

highest levels of occupational achievement.  

Table 3.1: Correlations between IQ and conscientiousness at different levels of 

selectivity for educational achievement in adolescent sample 

Selection 

criterion 

IQ-Control correlation 

 

IQ-Achievement-striving 

correlation 

 R N P r N p 

No selection .04 2416 .06 .14 2417 <.01 

GPA>1 .03 2285 .09 .15 2285 <.01 

GPA>1.25 .03 2270 .11 .15 2270 <.01 

GPA>1.5 .03 2240 .14 .15 2239 <.01 

GPA>1.75 .03 2196 .20 .14 2195 <.01 

GPA>2 .02 2066 .47 .13 2065 <.01 

GPA>2.25 .00 1964 .92 .13 1963 <.01 

GPA>2.5 -.02 1758 .38 .12 1758 <.01 

GPA>2.75 -.02 1538 .48 .12 1539 <.01 

GPA>3 -.04 1236 .18 .10 1237 <.01 

GPA>3.25 -.05 1014 .08 .09 1014 <.01 

GPA>3.5 -.07 662 .07 .10 663 .01 

GPA>3.75 -.06 375 .22 .08 376 .13 
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Table 3.2: Correlations between IQ and conscientiousness at different levels of 

selectivity for occupational achievement in adult sample 

Selection criterion IQ-Control correlation IQ-Achievement-striving 

correlation 

 r N P r N p 

0. No selection .05 3280 <.01 .03 3277 .15 

1. Semi-skilled and 

above 

.04 2332 .04 .01 2329 .61 

2. Skilled manual 

and above 

.03 2247 .15 .00 2090 .96 

3. Clerical, sales, 

technician etc. 

and above 

.02 1696 .50 .01 1694 .74 

4. Minor 

professional and 

above 

.01 1293 .69 -.05 1291 .10 

5. Lesser 

professional and 

above 

.01 743 .79 -.05 742 .16 

6. Major 

professional and 

above 

.03 269 .64 -.13 268 .03 
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Figure 3.1: Conscientiousness-IQ associations in adolescent sample 

 

Figure 3.2: Conscientiousness-IQ associations in parent sample 
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Table 3.3: Application of Thorndike case III to adolescent sample correlations 

Selection 

criterion 

Standard deviations IQ-Control 

correlation 

IQ-Achievement-

striving correlation 

 GPA IQ Control Ach r r' r-r’ r r' r-r’ 

No selection .72 14.53 7.60 8.49 .04 .04 .00 .14 .14 .00 

GPA>1 .67 14.50 7.52 8.40 .03 .03 .00 .15 .13 .02 

GPA>1.25 .66 14.50 7.52 8.39 .03 .02 .01 .15 .12 .03 

GPA>1.5 .63 14.47 7.50 8.36 .03 .01 .02 .15 .11 .04 

GPA>1.75 .60 14.46 7.52 8.35 .03 .01 .02 .14 .11 .03 

GPA>2 .54 14.45 7.43 8.29 .02 -.01 .03 .13 .09 .04 

GPA>2.25 .50 14.45 7.45 8.22 .00 -.02 .02 .13 .08 .05 

GPA>2.5 .43 14.49 7.45 8.23 -.02 -.03 .01 .12 .07 .05 

GPA>2.75 .36 14.45 7.42 8.18 -.02 -.05 .03 .12 .05 .07 

GPA>3 .28 14.43 7.43 8.15 -.04 -.06 .02 .10 .04 .06 

GPA>3.25 .23 14.60 7.51 8.24 -.05 -.07 .02 .09 .03 .06 

GPA>3.5 .13 14.33 7.42 8.21 -.07 -.07 .00 .10 .03 .07 

GPA>3.75 0.00 14.18 7.40 7.85 -.06 -.08 .02 .08 .02 .06 

Note. r is empirical estimate, r’ is estimate based on  Thorndike Case III formula. Occ= Occupational 

achievement, Ach= Achievement-striving. 
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Table 3.4: Application of Thorndike case III to parent sample correlations 

Selection 

criteria 

Standard deviations IQ-Control 

correlation 

IQ-Achievement-

striving correlation 

 Occ IQ Control Ach r r' r-r’ r r' r-r’ 

0. 1.64 14.21 7.19 7.80 .05 .05 .00 .03 .03 .00 

1. 1.52 14.22 7.24 7.68 .04 .04 .00 .01 .02 -.01 

2.  1.30 14.11 7.24 7.67 .03 .04 -.01 .00 .01 -.01 

3.  1.01 14.31 7.31 7.59 .02 .03 -.01 .01 .00 .00 

4.  0.77 14.16 7.42 7.46 .01 .02 -.01 -.05 .00 -.05 

5.  0.48 13.85 7.50 7.54 .01 .01 .00 -.05 -.01 -.04 

6.  0.00 12.95 7.82 7.94 .03 .01 .02 -.13 -.01 -.12 

Note. r is empirical estimate, r’ is estimate based on  Thorndike Case III formula. Occ= Occupational 

achievement, Ach= Achievement-striving. See Table 3.2 for selection criteria.  

In the adolescent sample, the initial non-significant positive association between IQ 

and Control in the full sample (r = .04, p = .06) became steadily attenuated and then negative 

with selection on GPA. At the highest level of GPA, the association was r = -.06 (p = .22). A 

similar albeit more subtle effect occurred in the correlation between IQ and Achievement-

striving, which began at r = .14 (p<.01) and decreased to r = .08 (p = .13) in the most selected 

group. 

In the parent sample, selection on occupational level had little effect on the correlation 

between IQ and Control. It reduced from .05 to .01 and then rose again to .03 at the highest 

level of selection. There was a more marked effect of selection on the correlation between IQ 

and Achievement-striving. With increasing degrees of selection, it first became steadily 

attenuated to zero with and then became negative. Although there was no significant 
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association between IQ and Achievement-striving in the full sample, at the highest level of 

selection there was a statistically significant negative association (r = -.13, p = .03).  

Moderation tests 

There was no statistically significant interaction between IQ and GPA in predicting 

either Control (b = 0.02, p = .32), or Achievement-striving (b = 0.04, p = .08) in the 

adolescent sample.  There was also no statistically significant interaction between IQ and 

occupational level in predicting either Control (b = -0.00, p = .86) or Achievement-striving (b 

= -0.00, p = .62) in the adult sample. These results suggest that achievement did not moderate 

the effect of IQ on conscientiousness.  

Discussion 

 In this chapter I tested whether compensatory selection into research samples could 

explain why negative associations have been observed between conscientiousness and 

cognitive ability. Often these associations are explained in terms of an ‘intelligence 

compensation hypothesis’ in which lower ability individuals develop higher levels of 

conscientiousness to compensate for their lower ability.  Many studies have, however, failed 

to find the expected negative associations between IQ and conscientiousness. Moreover, 

those that have tended to comprise participants above certain levels of educational or 

occupational achievement.  

I found no evidence for negative correlation in a large sample of adolescents and their 

parents. Unlike many previous studies, in this sample only relatively trivial selection on 

educational or occupational achievement was likely. Where there were significant 

associations between IQ and conscientiousness in the full sample, these were positive rather 

than negative. In fact, there was a positive correlation between IQ and Achievement-striving 
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(r =.14) of an absolute magnitude comparable to the negative correlations reported in 

previous studies cited in support of ICH (e.g. Moutafi et al., 2006).  

However, this was not the first study to report evidence contradicting ICH as others 

have found no significant association or small positive associations have been 

conscientiousness and IQ (Bartels et al., 2012; Lounsbury et al., 2005; Luciano et al., 2006). 

Notably, like the current study, many of these studies did not appear to show evidence of 

substantial sample selection on achievement.  

The general pattern of zero to small associations between IQ and conscientiousness in 

studies apparently not selected on achievement might suggest one of two causal scenarios at 

the level of the individual. Either there are only minimal causal impacts of IQ and 

conscientiousness on one another; or the impacts of IQ and conscientiousness on one another 

are heterogeneous across individuals but close to zero in the aggregate as effects in opposite 

directions cancel out. For example, while some individuals of lower ability may develop 

increased conscientiousness in compensation, others of low ability may become discouraged 

by their failure to achieve on a par with their more able peers without intensified efforts. 

These latter individuals may grow less conscientious in expending achievement-related effort 

in response to the lower pay-off they receive for this behaviour. Conversely, the higher 

rewards for behaving conscientiously in more able individuals could lead to greater 

reinforcement of this behaviour.  A person’s particular social environment (e.g. the rewards 

associated with intelligent and conscientious behaviour) in combination with their other traits 

(e.g. motivation, reward sensitivity, locus of control, expectations surrounding achievement) 

will likely also influence whether and how their level of intellectual ability and 

conscientiousness impact one another.  
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Soubelet and Salthouse (2011) have suggested that how personality traits and 

cognition relate to one another may depend on a person’s age. Our results support this idea to 

some degree: only in our adolescent sample was a positive association observed between 

Achievement-striving and IQ. A possible explanation for this is that adolescents are likely to 

be currently or recently in academic environments: social settings in which intellectual 

achievement is heavily measured and rewarded. The salience of intellectual achievement may 

foster social influences that result in enhancement of conscientiousness particularly in those 

individuals of higher cognitive ability for whom these rewards are more attainable, with 

individuals of lower cognitive ability possibly even becoming disheartened and demotivated. 

Such processes are likely to be governed by a ‘frog pond’ effect whereby it is not only the 

absolute level of intellectual ability of individuals that matters with regards to influences on 

conscientiousness, but also their levels of cognitive ability relative to immediate peers (e.g. 

see Marsh et al., 2007).  Therefore, individuals who perceive their potential for achievement 

to be more limited because of their relative and absolute cognitive ability would be less likely 

to strive towards these achievements and thus score lower on conscientiousness.  

The primary aim of this chapter was to assess the hypothesis that achievement 

truncation can account for previously observed negative associations between 

conscientiousness and ability.  Consistent with this, I found evidence that selecting on 

educational or occupational achievement biased the associations in the negative direction. In 

the adolescent sample, positive associations between IQ and the conscientiousness measures 

in the full sample were reduced to negative or effectively zero as subsamples were 

increasingly restricted to high levels of GPA. In the adult sample there was little effect of 

restricting the sample to increasingly high levels of occupational achievement on the 

correlation between IQ and Control. Restricting the sample in this way, however, induced a 

negative and statistically significant association between IQ and Achievement-striving in 
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spite of there being no significant association in the full sample. This negative association 

was of a similar magnitude to those interpreted as evidence for intelligence compensation in 

previous studies.  I also checked whether these apparent compensatory selection effects 

simply reflected unmodelled moderation of the relation between IQ and conscientiousness by 

achievement. Moderation effects were very small and non-significant, suggesting that this 

was not the case. I, therefore, interpreted results as suggesting that achievement truncation 

may have accounted for some previous observations of a negative association between 

conscientiousness-related traits and IQ. The fact that only in one out of the 4 cases examined 

were negative associations induced by selection suggests, however, that at most truncation 

contributes to, rather than completely explains the previously observed negative associations.  

Nonetheless, results suggested that differing degrees of selection on achievement could 

contribute to cross-study differences in the magnitude and direction of association between 

conscientiousness and IQ. 

Unfortunately, it is not possible to ascertain from the study reports the precise 

selection processes that led participants to be in the research samples in which negative 

conscientiousness-IQ associations have been observed. For this reason, I cannot be certain 

that these processes were closely approximated by the simulated selection I used. This is a 

general problem in observational research:  it is uncommon for the selection processes 

leading to the composition of convenience samples to be explicitly considered, even less to 

be measured and modelled (see Hunt & Madhyastha, 2008 for a discussion). Unless such 

selection processes are given due consideration, researchers risk being misled as to the 

direction and magnitude of the associations between study variables.  

Finally, while I have argued in this chapter that variability in sample selectivity on 

achievement may explain some of the heterogeneity in association between conscientiousness 

and ability in the published literature, this will not be the only factor influencing the 
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magnitude of association. For example, different facets of conscientiousness appear to show 

varying associations with IQ and there may be plausible theoretical interpretations for these 

differential associations (e.g. Luciano et al., 2006). For example, the ‘Competence’ facet of 

Conscientiousness measures may be more positively related to IQ than other facets if it 

essentially acts as a self-report measure of IQ (e.g. see Chamorro-Premuzic et al., 2005).  

Similarly, I have argued here that Achievement-striving may be particularly influenced by IQ 

because motivation to achieve is likely to be influenced by self-perceptions of capacity to 

achieve. Depending on which facets are measured and whether these are combined into a 

single Conscientiousness score will, therefore, affect the observed association with IQ.  

Finally, the measures of occupational and educational achievement were imperfect. 

Both scales were coarse and self-reported. Replicating results using alternative sources of 

information regarding achievement would be valuable. For example, having teacher ratings 

or school records in the case of GPA would help to ensure that results were not overly 

influenced by any kind of reporting bias.  

  

  

 

 

 

 

 

 



68 
 

Chapter 4: A comparison of alternative phenotypic proxies in tests of gene-environment 

interactions under construct truncation 

The previous chapters have considered construct truncation due to person selection; 

however, item selection may be an equally important source of construct truncation. One area 

where construct truncation due to item selection is particularly important is when the 

construct is hypothesised as the outcome of an interaction. Here, construct truncation can 

result in significant distortions of estimates of the interactive process, even reversing its 

apparent direction.  In this chapter, I used a simulation study complemented by a real data 

example to evaluate three possible methods of dealing with this problem in the context of 

testing gene-environment interactions.  

Gene-environment interactions 

Increasingly, theoretical perspectives on phenotypic development and expression are 

recognising that genes and environments transact in dynamic and complicated ways.  Many 

posit some kind of gene-environment interaction (GxE) where GxE is defined as a 

differential response to environmental circumstances depending on genotype, or, a 

differential genetic expression depending on environment (Boomsma, & Martin, 2002; 

Eaves, Last, Marin, & Jinks, 1977).  GxE plays a central role in major theoretical models 

such as the diathesis-stress model, the differential susceptibility model, the vantage 

sensitivity model, and the bioecological model (Brofenbrenner & Ceci, 1994; Pluess & 

Belsky, 2013; Reiss, Leve, & Neiderhiser, 2013; Rende & Plomin, 1992). The diathesis-stress 

model, for example, predicts that the genetic variance in a psychopathological trait is greater 

in more adverse environments whereas the bioecological model predicts that the genetic 

potential for a positive trait, such as intellectual ability, is realised to a greater extent in a 

more stimulating, higher quality environment (Asbury, Wachs, & Plomin, 2005; Rende & 
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Plomin, 1992). GxEs are also cited as mechanisms by which social factors regulate 

behaviour, for example, in the theory that genetic influences on certain phenotypes are 

prevented from being expressed in environments where there are stronger social norms or 

explicit prohibitions relating to those phenotypes (Shanahan & Hofer, 2005).  

Construct truncation in gene-environment interactions 

To keep pace with these theoretical developments, it has been necessary to develop 

statistical methodologies capable of modelling the more complex forms of interplay implied 

by theory (e.g. Purcell, 2002). Despite the promise and widespread uptake of these 

approaches, the ability to test theoretically implied GxE interactions is hampered in practice 

by dependency of tests of interactions on the observed distributions and scales of the 

phenotype (Eaves et al., 1977, 2002; Eaves, 2006; Mather & Jinks, 1971; Purcell, 2002; 

Schwabe & van den Berg, 2014).  

The problem of dependency of GxE on the scaling of the phenotype has been known 

since the time of R.A. Fisher noted that GxE interactions could be manipulated by re-scaling 

the variables involved. In fact, he went so far as to advocate ‘transformations of scale’ to 

eliminate what he perceived to be nuisance non-additivity (Tabery, 2008). This suggestion 

was controversial because he was recommending purging the same non-additivity that was, 

and still is, viewed by many substantive researchers as a meaningful clue as to the causal 

processes underlying phenotypic development. Since then, numerous methodological studies 

have further discussed and demonstrated the dependency of appearance of presence of GxE 

on scaling (Eaves et al., 1977; Martin, 2000; Molenaar, van der Sluis, Boomsma, & Dolan, 

2012; Purcell, 2002; Tucker-Drob, Harden, & Turkheimer, 2009; van der Sluis, Dolan, Neale, 

Boomsma, & Posthuma, 2006). In the section that follows I summarise and extend the key 

arguments of these authors.  
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The key challenge is in the multiplicity of possible causal structures underlying the 

same sample phenotypic distribution. Consider the case where the observed distribution of 

the phenotype is non-normal: a common occurrence in behaviour genetic research, as well as 

psychological research in general (Beasley, Erickson, & Allison, 2009; Miccerri, 1989). The 

primary problem for testing GxE is that when an observed phenotypic distribution is non-

normal, this non-normality could reflect the presence of GxE, or it could simply be that the 

population distribution of the phenotype is normal but its measurement is poorly scaled so 

that the observed distribution does not reflect the population distribution. A statistical test of 

GxE will not be able to distinguish these possibilities.  

This difficulty is not one limited to a choice between a ‘GxE’ explanation and a 

‘scaling’ explanation. There are many biologically plausible alternative models that can 

produce similar patterns in observed data and, in turn, similar model fits when formally 

tested. For example, a non-linear main effect of one variable on another is difficult to 

distinguish statistically from GxE (Rathouz et al., 2008). However, in the current thesis, I 

focus on scaling specifically because there is considerable evidence that at a large number of 

phenotypic measures may be vulnerable to the effects of suboptimal scaling.  

 Cases in point are measures of traits which originated in psychopathological 

paradigms. These very commonly yield observed non-normal (positively skewed) 

distributions because majorities of participants score close to the low (non-pathological) ends 

of the measurement scales.  It is often argued that these observed distributions are not 

necessarily appropriate representations of the population distributions of the phenotypes but 

arise as a result of the scales being developed with focus on the upper extremes of the traits 

(van den Oord, Pickles, & Waldman, 2003;van den Oord et al., 2000).  Thus, failure to 

observe a normal distribution for a trait may be a result of failing to measure that trait with 
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items that have an appropriate range of difficulties to provide reliable coverage of the whole 

trait distribution.  

This position is supported by the observation that even when a case can be made that 

a clinical or personality trait has a continuous normal distribution in the population, measures 

of that  trait often exhibit  item difficulties that are tightly clustered in the impaired range 

(Meijer & Egberink, 2012; Thomas, 2011). These scales have high discrimination in and 

around clinical cut-off points but poor discrimination in the healthy ranges. Thus, in a 

population-representative sample that would include predominantly healthy participants, 

most participants completing such a test will endorse the lowest response options for most 

items, leading to a positively skewed score distribution and an apparent lack of individual 

differences at low levels of the phenotype. If raw scores, such as the sum of items from a 

scale affected in this way, are used to represent the phenotype, they may provide biased tests 

of GxE (Molenaar & Dolan, 2014;Schwabe & van den Berg, 2014). This is because GxE 

estimates depend on the degrees of individual differences in a phenotype at different levels of 

the moderator. The use of a scale that fails to capture such differences adequately at lower 

levels of the phenotype may falsely indicate less variation at lower levels, when in fact this 

apparent observation is a function of weaker measurement at lower levels. The direction of 

the resulting bias in GxE depends on both skewness of the score and extent of correlation 

with the moderator. Positive skewness and a positive moderator-phenotype correlation is 

liable to produce a positive interaction parameter, while negative skewness and a positive 

moderator-phenotype correlation is liable to produce a negative interaction parameter.  

Compounding this problem is the fact that most behaviour genetic modelling 

approaches require assumptions of multivariate normality1. With this in mind, researchers 

have tended to respond to observing non-normal phenotypic distributions by employing 

straightforward non-linear transformations intended to remove the non-normality. For 
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positively skewed sum scores, the log-transformation is popular (e.g Hicks, South, DiRago, 

Iacono, & McGue, 2009; Johnson et al., 2010) but the square root transformation is also 

sometimes used (e.g. Distel et al., 2011). Given that the same approach is recommended to 

remove GxE interactions that are artifacts of phenotypic scaling (e.g. see Falconer & 

MacKay, 1996 ch.17), one might conclude that this also represents a solution to the problem 

of dependency of GxE on scale. There are, however, at least two major reasons to doubt this. 

First, while there has been no systematic simulation study evaluating their effectiveness in 

mitigating bias due to sub-optimal scaling, Kang & Waller (2005) demonstrated that sum 

score transformations were only moderately successful in reducing the tendency towards 

spurious phenotypic interactions in the context of moderated multiple regression. Second, and 

more importantly: presence of GxE introduces non-normality into the phenotypic distribution 

because it is by definition a relative expansion or contraction of variance in the phenotype 

across levels of the moderator. This suggests that transforming a non-normal score to 

normality could ‘transform away’ the very interaction effect of potential interest.  

 As another possible solution, some authors have suggested explicitly separating out 

these two sources of non-normality by modelling GxE using an explicit measurement model 

(the scaling part) in combination with a biometric model (the GxE part). Essentially, the 

proposal is to model the scaling properties of items to account for differences in 

informativeness of phenotypic estimates across levels of the moderator. For example, if a 

scale has items that have difficulties that are clustered towards one end of the scale, a 

psychometric model with potential to recognize this can be integrated into a broader 

biometric model so that these parameters can be freely estimated and reflected in the 

estimates of the biometric parameters. The particular choice of measurement model will vary 

from phenotype to phenotype and be dictated by expectations about the latent trait 

distribution and the item response format.  
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For continuous indicators, Molenaar et al. (2012) demonstrated the feasibility of this 

approach in a GxE model in which GxE was operationalised as heteroscedastic E or C 

variance across levels of A. They showed that when differences in item residual variances 

across phenotypic level were incorporated into a measurement model and combined with a 

test of GxE, biasing effects of poor scaling were substantially mitigated. Similarly, Tucker-

Drob et al. (2009) suggested a procedure in which a factor model with quadratic factor 

loadings was estimated in one stage and then, in a second stage, the same measurement 

model (with parameters fixed to the values estimated from the first stage) was combined with 

Purcell’s GxE model.  Quadratic factor loadings allow for the relation between the items and 

latent phenotype to vary across levels of the phenotype: an effect that could otherwise be mis-

attributed to GxE. 

However, truly continuous indicators are rare; therefore, Molenaar and Dolan (2014) 

and Schwabe and van den Berg (2014) proposed models for (ordered) categorical data that 

could be combined with a test of GxE. Again, using these models there was evidence of 

substantial reduction of bias in tests of GxE compared to using biometric models that did not 

explicitly model the scaling properties of the items used to measure the phenotype. 

In spite of the potential utility of incorporating explicit measurement models for the 

phenotype into tests of GxE when an assumption about the underlying distribution of the 

genetic and environmental influences on the phenotype can be made, there have been very 

few studies taking this approach. One reason may be that the approach is mathematically 

complex and thus somewhat inaccessible for non-methodologists. There may also be a 

misconception that, because scores from these models will be highly correlated with sum 

scores, there would be essentially no benefit from using such models. It is not valid, however, 

to conclude that highly correlated measures will have the same properties in regression-based 

models, and particularly not in tests of interactions such as GxE. This is because correlations 
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are sensitive mainly to rank orders, which can be highly preserved even when distributional 

properties differ markedly. Distributional properties are particularly important in any 

situation involving any kind of nonlinearity such as that involved in interactions. 

Misconceptions aside, there are practical limitations to the various approaches 

discussed above, and it is not clear what the best approach might be. For example, the 

Schwabe and van den Berg (2014) approach requires assumption that IRT parameters are 

known, the Molenaar and Dolan (2014) approach is computationally intensive, and the 

approaches of Molenaar et al. (2012) and Tucker-Drob et al. (2009) require continuous 

indicators. 

 Given these potential practical limitations, another possibility is to use a two-step 

approach to estimating GxE.  In this approach, an appropriate measurement model for the 

phenotype is estimated and factor scores are obtained from this model, and then these factor 

scores are submitted to a biometric model to test GxE. The ‘two steps’ refer to the use of two 

separate models, and the approximation involved in using explicitly calculated factor scores 

to measure a variable conceptualized as latent. This is in contrast to the one-step approach 

described above in which the biometric and psychometric model are estimated together, in a 

single step. 

  Although there has been no systematic study of this approach in GxE models, 

simulation studies have shown that a two-step approach works well in reducing bias due to 

scaling in phenotypic-level interactions in  moderated multiple regression and factorial 

ANOVA (Embreston, 1996; Kang & Waller, 2005; Morse, Johanson & Griffeth, 2012). For 

example, Kang and Waller (2005) showed that the tendency for spurious interactions to result 

from poor item scaling was substantially mitigated when IRT scores from a 2-parameter 

logistic model were utilised in place of sum scores. This strategy also proved more effective 
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than a simple non-linear transformation of the score. Therefore, it is possible that a two-step 

approach could provide a compromise between the greater conceptual and computational 

simplicity of using a sum score and the effectiveness of IRT-based latent trait estimates in 

accounting for the scaling properties of items.   

Based on the preceding argument, I compared a two-step approach to the currently 

most commonly used methods for handling observed non-normal phenotypes, that is, the raw 

sum scores and the transformed sum scores. I compared these three approaches using a 

statistical simulation study complemented by a real data example. 

Modelling approach 

 I based analyses on the GxM (gene by ‘measured environment’) framework initially 

introduced by Purcell (2002) and subsequently extended and evaluated by others (Rathouz, 

van Hulle, Rodgers, Waldman, & Lahey, 2008, van Hulle, Lahey, & Rathouz, 2013; Zheng & 

Rathouz, 2013). This framework is arguably the foremost in assessing theoretical hypotheses 

which predict moderation of genetic influences on a specific phenotype by a specific 

moderator because in addition to accommodating both gene-environment interaction and 

gene-environment correlation, it can also be used to evaluate a range of other forms of 

phenotype-moderator transactions (see Zheng & Rathouz, 2013).  Uptake of the GxM 

modelling approach has been extensive; it has been employed to assess substantive 

hypotheses relating to a diversity of phenotypes including cognitive ability (Harden, 

Turkheimer, & Loehlin, 2007), physical health (Johnson & Krueger, 2005), health behaviours 

(Timberlake et al., 2006), social relationships (South, Krueger, Johnson, & Iacono, 2008), 

and psychopathological traits (South & Kruger, 2011). The popularity and influence of the 

approach is indicated by the fact that, at time of writing, the Purcell (2002) article has been 

cited almost 500 times.  



76 
 

I focussed on a form of the model that can be used to assess gene-by-measured 

environment interaction. The moderator (M) is modelled as: 

𝑀 =  𝑎𝑀𝐴𝑀 +   𝑐𝑀𝐶𝑀 + 𝑒𝑀𝐸𝑀     

 (4.1) 

 

 

and the phenotype (P) as: 

P = (aC + αCM)AM  + (cC + γCM)CM + (eC + εCM)EM 

+ (aU + αUM)AU + (cU + γUM)CU  + (eU + εUM)EU ,         

(4.2) 

where 𝐴, 𝐶  and 𝐸 refer to mutually uncorrelated multivariate normally distributed latent 

additive genetic, shared environmental and unshared environmental influences respectively, 

α, γ and ε are moderation parameters that capture the moderation of A, C and E influences by 

M, with the subscripts C and U denoting ‘common’ (to P and M) and ‘unique’ (to P). 

 The parameter of interest is αU which captures the moderation of the genetic 

influences on the phenotype that are not shared with the moderator. When this parameter is 

positive, genetic influences unique to the phenotype increase with the moderator and when it 

is negative, they decrease with the moderator.  

Simulation study 

I evaluated the effect of poor scaling on estimates of αU  using Eqs. 4.1 and 4.2 as our 

population biometric model, simulating poor scaling of the phenotype (explained below), and 
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then estimating the model in Eqs. 4.1 and 4.2 using this poorly scaled phenotype. For the 

population biometric model, I used the following parameter magnitudes: For the moderator 

and phenotypic means I set 𝜇𝑀 = 𝜇𝑃 = 0;  for the latent genetic and environmental influences 

on the moderator and phenotype I set  𝑎𝑈=√0.2 ,     𝑎𝐶 = √0.3 , 𝑎𝑀 = √0.3; 𝑐𝑈 = √0.1, 𝑐𝐶 =

√0.1,  𝑐𝑀 = √0.2;  𝑒𝑈=√0.2 , 𝑒𝐶 = √0.1 , 𝑒𝑀 = √0.5 ; and for the moderation parameters I set 

𝛼𝐶 = 𝛾𝐶 = 𝜀𝐶 = 0 and varied the magnitude of 𝛼𝑈, 𝛾𝑈 and 𝜀𝑈 across conditions. To explore 

how bias in 𝛼𝑈 was affected by direction of the skewness of the observed score distribution 

and direction of the population interaction, I varied 𝛼𝑈 = to be -.15, 0, and .15 across 

conditions. In addition, as resolvability of the  𝛼𝑈, 𝛾𝑈, and 𝜀𝑈 parameters is often imperfect, I 

explored how the bias in 𝛼𝑈 is affected by whether 𝛾𝑈 and 𝜀𝑈 represented interactions in the 

same versus the opposite direction to that of 𝛼𝑈. I did this by including a subset of conditions 

in which 𝛾𝑈 and 𝜀𝑈 were specified to have the same sign as 𝛼𝑈 and a subset of conditions in 

which they were specified to have the opposite sign to 𝛼𝑈. In both cases the absolute 

magnitudes of 𝛾𝑈 and 𝜀𝑈 were specified to be .20 and .08 respectively while 𝛼𝑈 was held 

constant at -.15.  Together, this combination of population parameters resulted in a total of 

four population models, summarised in Table 4.2. In each replication, I generated data for 

500 MZ and 500 DZ twins according to these models.  

I selected parameter magnitudes representing realistic values from previous empirical 

studies.  Because results could be expected to be broadly symmetrical for positive and 

negative skews and negative and positive interaction parameters, I did not implement a fully 

crossed simulation design, but focussed on models that were realistic and which covered key 

combinations of variables.  

Observed data generation 
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  I generated item level data for twin 1 and twin 2 separately using a graded response 

model (GRM; Samejima, 1969) as the basis for linking the latent trait values for the 

phenotype (P) to observed item responses. An identical GRM model was used for twin 1 and 

twin 2. This allowed the same model to apply to all individuals in the sample while also 

having the advantage of allowing any complications due to clustering within twin pairs to be 

circumvented. These latent trait values were determined according to the GxM population 

models described in the previous section.  I simulated these data using the catIrt package in R 

statistical software (Nydeck, 2014; R Core Team, 2014).  In the GRM, the items are 

essentially considered in dichotomous steps, each characterised by a 2-parameter logistic 

model but with discriminations constrained equal within items. Specifically, probability of a 

respondent i with level of the latent trait 𝜃𝑖 having a response xij that falls at or above a given 

category (k = 1…mj) is specified as: 

𝑃∗
𝑖𝑗𝑘 = 𝑃(𝑥𝑖𝑗 ≥ 𝑘|𝜃𝑖 , 𝑎𝑗, 𝛽𝑗𝑘) =

1

1 + exp [−𝛼𝑗(𝜃𝑖 − 𝛽𝑗𝑘)]
 

(4.3) 

where αj is the discrimination parameter of item j and βjk is the category difficulty parameter 

of category k in item j. 

I generated data for 20 items with 𝛼𝑗 and  𝛽𝑗𝑘 parameters provided in Table 4.1.
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Table 4.1: Parameter values for IRT model used in simulation 

Item 𝒂 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 

1 1.94 -0.27 0.84 2.23 2.74 

2 1.93 -0.21 1.46 2.01 2.73 

3 1.96 -0.11 1.50 2.38 2.82 

4 2.13 -0.36 1.29 2.07 2.65 

5 1.09 0.34 1.16 2.07 2.73 

6 1.13 -0.15 1.34 2.00 2.78 

7 0.87 0.34 0.99 2.34 2.64 

8 0.99 0.23 0.68 2.33 2.62 

9 1.63 0.43 0.98 2.22 2.83 

10 1.01 0.04 1.22 2.39 2.73 

11 1.75 0.10 0.93 2.27 2.63 

12 0.80 0.01 0.67 2.20 2.75 

13 0.67 0.37 1.49 2.42 2.67 

14 1.91 0.13 0.89 2.29 2.92 

15 1.06 0 1.29 2.09 2.96 

16 0.55 0.50 0.76 2.32 2.81 

17 1.88 -0.24 1.02 2.07 2.74 

18 2.44 -0.40 0.80 2.09 2.86 

19 0.90 -0.11 1.27 2.27 2.73 

20 1.15 -0.24 0.65 2.17 2.73 

Note. 𝒂 is an item discrimination parameter, 𝜷𝟏 -𝜷𝟒 are threshold parameters.  

The  𝛽𝑗𝑘 parameters were chosen to yield positively skewed item and sum score 

distributions that mimicked those commonly found in empirical research (e.g. Kang & 

Waller, 2005). To do this, I selected 𝛽𝑗𝑘 for successive  response categories so that a 
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disproportionate number of responses would fall into the first and second response categories.  

I also specified the 𝛽𝑗𝑘 parameters for a given category to show variability across the 20 

items within our simulated test which is more realistic than setting them all equal. 

Discrimination parameters, αj, were selected by randomly sampling from a uniform 

distribution with min = 0.5 and max = 2.5. 

 True score 

 As a control condition, I generated scores for the phenotype according to Eqs. 4.1 and 

4.2 without introducing any scaling issues. These scores can therefore be considered ‘true’ 

phenotypic scores. I considered these true phenotypic scores in order to provide a baseline 

against which I could compare the results. This is necessary because even in the absence of 

any scaling problems, it is likely that the GxM model will not perfectly recover all 

moderation parameters and because moderation parameters may be difficult to resolve from 

one another. For example, moderation of shared environmental influence may be to some 

extent mis-attributed to moderation of genetic influences. 

Sum score 

I created  sum scores for the phenotype summing the scores from the 20 items 

generated as described above by Eqs 4.1, 4.2, and 4.3. An example of a resulting sum score 

distribution is shown in Figure 4.1. It illustrates that the choice of GRM parameters in Table 

4.2 yielded a sum score distribution exhibiting moderate positive skewness, similar to that 

observed in many measures of psychopathological traits. Skewness also depended on the 

direction of the interaction in the population model, with positive interactions making score 

distributions more positively skewed and negative interactions making score distributions 

more negatively skewed. However, these effects were relatively minor in comparison to the 

effect of scaling on the phenotypic distribution.  
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Figure 4.1 

Histogram showing the distribution of the sum score derived from generating item level data 

according to Eq. 4.3 with parameters in Table 4.1.  

Transformed sum score 

I created transformed sum scores for the phenotypes using a log10 transformation. 

This, the natural log transformation and other similar kinds of transformations of the 

phenotype are commonly used in GxE models when the phenotype has a positively skewed 

distribution (e.g. Button et al., 2010; Hicks, Dirago, Iacono, & McGue, 2009; Hicks et al., 

2009; Johnson et al., 2010; Silvetoinen et al., 2009; Tuvblad, Grann, & Lichtenstein, 2006). 

Transforming the sum scores gave rise to approximately normal distributions (see Figure 

4.2).  
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Figure 4.2 

Histogram showing the distribution of the transformed sum score derived from generating item 

level data according to Eq. 4.3 with parameters in Table 4.1 and then applying a log10 

transformation.  

 IRT scores 

I obtained factor scores by fitting an IRT model to the item data and using the 

resulting item parameters to estimate IRT-based individual phenotype scores, usually referred 

to as ‘factor scores’ (Chalmers, 2012). To estimate item parameters, I fit a graded response 

model to the data. As I originally generated the data according to a graded response model, I 

knew this was the appropriate measurement model, however, in real applications this choice 

should be based on considerations of the response format of items and the likely form of 

relations between item responses and the latent phenotype.  I then computed IRT-based 

estimates of the phenotypic level for each individual in the sample by combining information 

from their patterns of item scores with the estimated item parameters from fitting the graded 
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response model, specifically, using Expected a Posteriori (EAP) scoring (Embretson & Reise, 

2000).  EAP scoring is a Bayesian approach based on finding the mean of a posterior 

distribution representing the likelihood of phenotypic scores given a response pattern. The 

posterior distribution is computed by multiplying the prior distribution (likelihoods of 

phenotypic levels occurring in the population) by the likelihood of the observed response 

pattern given the phenotypic level (Embretson & Reise, 2000).  This method was selected 

among available factor score estimation approaches because it is easy to implement and 

available in most IRT software packages. In context of the models used here in which the 

trait of interest is uni-dimensional and the sample size large, I anticipated that other 

commonly used scoring methods such as maximum a posteriori (MAP) scoring or maximum 

likelihood estimates (ML) would perform similarly to EAP. Unlike using sum scores as a 

proxy for the phenotype, this method takes into account the scaling properties of the items. 

For example, in an IRT model in which items differ in discrimination, each item’s 

contribution to the sum score will depend on its discrimination. Estimating factor scores in 

this way gave phenotypic scores with an approximately normal distribution (see Figure 4.3). 
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Figure 4.3 

Histogram showing the approximate distribution of factor scores derived from generating item 

level data according to Eq. 3 with parameters in Table 4.1, fitting a graded response model, and 

then obtaining factor scores based on this model. 

Summary of simulation conditions 

 The combination of GxE interaction parameters (αU, = -.15 vs 0 vs .15), other 

interaction parameters (γU = .20 and εU = .08 vs  γU = -.20 and εU = -.08), and score type (true, 

sum, transformed, IRT) resulted in  16 simulation conditions. These are outlined in Table 4.2. 

I generated 100 datasets for each condition to give 100 replications per condition. 

Model fitting 

To the 100 simulated datasets for each simulation condition (see Table 4.2), I fit the 

GxM model described in Eqs. 1-2. I fit the models in Mx (Neale, Boker, Xie, & Maes, 2006) 

using maximum likelihood estimation, making use of the script accompanying Purcell (2002) 
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which the author has made available on his website 

(http://pngu.mgh.harvard.edu/~purcell/gxe/). All latent A,C and E variances and covariances 

were freely estimated, αC, γC, and εC were fixed to zero, and αU,  γU and εU were freely 

estimated. In other words, the model I fit to each dataset was consistent with the true model. 

The main parameter of interest was αU, which captures the moderation of the additive genetic 

variance unique to the phenotype by M. However, because this parameter may not be 

completely resolvable from γU and εU, I recorded the mean and SD estimates across the 100 

replications for all three moderation parameters across each condition. Parameter bias was the 

difference between the population magnitude and the mean estimated value across the 100 

replications within a condition. In addition, I conducted a likelihood ratio test (comparing a 

model in which αU was freely estimated to one in which it was constrained to zero) for each 

replication to evaluate the statistical significance of the αU, parameter. Based on these, I 

computed false positive and false negative rates across the 100 replications. False negative 

rate was defined as the proportion of replications in which αU, was non-significant in the 

presence of a non-zero population parameter. False positive rate was defined as the 

proportion of replications in which: a) αU was significant in the presence of a null population 

parameter or b) αU was statistically significant but its value was in the opposite direction to 

its population value (e.g. negative sample value with a positive population value).  

Simulation Study Results 

 Simulation study results are provided in Table 4.2. For the ‘true scores’, the αU 

parameters were generally recovered well. Power to detect moderation was high and greatest 

when it was in the same direction as the main effects and the γU and εU parameters.   

Sum scores conditions 

http://pngu.mgh.harvard.edu/~purcell/gxe/
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 In all conditions in which a poorly scaled sum score was used as the phenotype (‘sum 

score’ rows of Table 4.2), there was positive bias in the αU parameter, with γU and εU also 

tending to be affected in the same way. The positive biases occurred because the IRT 

parameters used to generate the data produced positively skewed sum scores. Had item 

parameters been selected to produce a negatively skewed sum scores, negative biases would 

have occurred. Positive αU bias was largest in conditions in which the true moderation 

parameter was in the opposite direction from the direction of skew (i.e. a negative or null 

population moderation parameter with a positively skewed score) and the other moderation 

parameters. Here the biasing effects of scaling and imperfect resolvability of the αU and γU  

parameters seemed to show effects which combined to give a larger overall positive bias. The 

false positive rate using sum scores was also high. This suggests that significant moderation 

detected using poorly scaled sum scores cannot not be trusted. 
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Table 4.2: Performance of sum score, transformed score and IRT score latent trait proxies under different population biometric models 

Score type Population GxM values Convergence 

failures (%) 

 

Average 

αU 

(SD) 

αU 

Bias 

αU true 

positive 

rate 

αU false 

positive 

ratea 

Average 

γU 

(SD) 

γU 

bias 

Average 

εU 

(SD) 

εU 

bias 

ac cc ec αU γU εU 

True √. 3 √. 1 √. 1 .15 .20 .08 0 0.15 (0.04) 0.00 98% 0% 0.18 (0.05) -0.01 0.08 (0.02) 0.00 

True  √. 3 √. 1 √. 1 -

.15 

.20 .08 0 -0.12 (0.05) +0.03 75% 0% 0.19 (0.04) -0.01 0.07 (0.01) -0.01 

True  √. 3 √. 1 √. 1 0 .20 .08 0 0.00 (0.03) 0.00 N/A 0% 0.19 (0.03) -0.01 0.08 (0.02) 0.00 

True  √. 3 √. 1 √. 1 -

.15 

-

.20 

-

.08 

0 -0.15 (0.05) 0.00 96% 0% 0.16 (0.08) -0.04 -0.08 

(0.02) 

0.00 

Sum  √. 3 √. 1 √. 1 .15 .20 .08 0 0.22 (0.05) +0.07 94% 0% 0.17 (0.07) -0.03 0.15 (0.02) +0.07 

Sum  √. 3 √. 1 √. 1 -

.15 

.20 .08 0 0.03 (0.08) +0.18 9% 1% 0.21 (0.05) +0.01 0.15 (0.02) +0.07 

Sum  √. 3 √. 1 √. 1 0 .20 .08 0 0.14 (0.07) +0.14 N/A 54% 0.18 (0.08) +0.02 0.15 (0.02) +0.08 

Sum  √. 3 √. 1 √. 1 -

.15 

-

.20 

-

.08 

0 -0.06 (0.05) +0.09 15% 0% 0.00 (0.10) +0.20 0.05 (0.02) +0.13 

Transformed  √. 3 √. 1 √. 1 .15 .20 .08 0 0.16 (0.03) +0.01 73% 0% 0.15 (0.04) -0.05 0.06 (0.01) -0.02 

Transformed  √. 3 √. 1 √. 1 -

.15 

.20 .08 0 -0.02 (0.05) +0.13 4% 0% 0.11 (0.05) -0.09 0.06 (0.02) -0.02 

Transformed  √. 3 √. 1 √. 1 0 .20 .08 0 0.08 (0.04) +0.08 N/A 23% 0.12 (0.04) -0.08 0.05 (0.02) -0.03 

Transformed  √. 3 √. 1 √. 1 -

.15 

-

.20 

-

.08 

1 -0.11 (0.03) +0.04 68% 0% -0.08 

(0.07) 

+0.12 -0.05 

(0.02) 

+0.03 

IRT 

 
√. 3 √. 1 √. 1 .15 .20 .08 0 0.16 (0.04) +0.01 80% 0% 0.15 (0.05) -0.05 0.05 (0.01) -0.03 

IRT  √. 3 √. 1 √. 1 -

.15 

.20 .08 0 -0.06 (0.05) +0.09 13% 0% 0.16 (0.04) -0.04 0.06 (0.02) -0.02 

IRT  √. 3 √. 1 √. 1 0 .20 .08 0 0.06 (0.05) +0.02 N/A 16% 0.14 (0.05) -0.06 0.06 (0.02) -0.02 

IRT  √. 3 √. 1 √. 1 -

.15 

-

.20 

-

.08 

0 -0.13 (0.03) +0.02 79% 0% -0.01 

(0.13) 

+0.19 -0.05 

(0.02) 

+0.03 

aFalse positive rate defined as significant effect in opposite direction to population  parameter or significant effect in any direction when population parameter is zero. 
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Transformed sum scores conditions 

 Overall, there was positive bias in αU using transformed sum scores, especially in the 

condition in which the true moderation parameter was in the opposite direction to both the 

direction of skew and the other moderation parameters. The effect of transforming the sum 

score to normality was to pull the αU parameter in the negative direction. This represented a 

reduction in bias relative to using the untransformed sum score. Effectiveness of the 

transformation for reducing bias varied across conditions:  it almost eliminated the mild bias 

in the condition in which all moderation parameters were in the same direction as the scaling 

effects but moderate to substantial positive bias remained in the other conditions and GxE 

was under-estimated. Under-estimation of GxE effects meant that power to detect GxE was 

substantially reduced, particularly in the condition in which the GxE was in the opposite 

direction to the main and other moderation effects. Here, the true positive rate dropped from 

75% for the true scores to only 4% for the transformed sum scores.   However, transforming 

the sum scores to normality had the benefit of producing a marked reduction in false positive 

rate. When the population parameter was zero the false positive rate was only 23% when 

using a transformed sum score, compared with 54% when using a raw sum score. 

IRT scores conditions 

Overall, using factor scores from an appropriate IRT model as the phenotypic proxy 

(rows labelled ‘IRT score’ in Table 4.2) gave less biased αU parameter estimates than either 

raw or transformed sum scores., however, some positive bias remained in all cases. This bias 

was most pronounced in the condition in which the αU parameter was in the opposite 

direction to the scaling problems and the other moderation parameters (+.09) but minimal 

(+.01 to +.02) in the other conditions. The power to detect GxE was lower when using an IRT 

score in the corresponding true score conditions but higher than when using a transformed 

sum score.  The false positive rate also compared favourably to that obtained using a 
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transformed sum score (16% compared with 23% in when using transformed sum scores) but 

unfortunately, remained above nominal levels (i.e. 5%).  

Real Data Example 

Participants 

 To provide a real data example, I used data from the Minnesota Twin Registry 

(MTR), a comprehensive description of which can be found in Krueger and Johnson (2004). 

The full MTR includes data from twin pairs born in Minnesota in one of three year ranges. It 

includes 4307 twin pairs born between 1936 and 1955, 901 twin pairs born between 1904 and 

1943, and 391 male twin pairs born between 1961 and 1964. Eligible participants were 

identified from birth records, located, and invited to participate via mail. Additional 

incentives and invitations to participate were offered to those who did not initially respond. 

Zygosity determination was by self-reported similarity in eye colour, hair colour, overall 

appearance, and the difficulties others had in distinguishing two members of a pair. Analysis 

of a sub-sample of 74 twin pairs who underwent zygosity determination by serological 

analysis suggested that the self-report method had an estimated accuracy of 96%.  

Different subsets of the total MTR received different sets of measures. Data used in 

the current study were from 528 monozygotic twin pairs and 411 dizygotic twin pairs 

comprising 614 males and 1264 females who had completed measures of both personality 

and leisure time interests. The mean age of the sample was 37.11 (SD = 7.8).  

Measures 

Moderator 

 As the moderator variable, I used a composite of items from the Minnesota Leisure 

Time Interest Test (MLTIT; Lykken et al., 1990). The scale asks participants to rate the 
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extent to which they would be interested in pursuing a given activity assuming no time, 

health, or financial constraints. Participants rated their interest on a 5-point scale from 1 = 

‘No interest at all’ to 5 = ‘I would certainly do this’. In total, 120 activities were rated, but I 

selected 6 items to form an ‘Intellectual Interests’ scale. Selected items refer to the following 

activities: reading current non-fiction, taking a college course, reading literary classics, 

visiting galleries/museums/exhibitions, reading books/magazines or watching TV programs 

on science, and reading history/philosophy/biography. I checked that these items formed a 

reasonable uni-dimensional scale by fitting a single factor confirmatory factor model to the 

data from twin 1 of each twin pair. I used the Weighted Least Squares Means and Variances 

(WLSMV) in estimator in Mplus 7.0 (Muthén & Muthén, 2010) to account for the categorical 

item response format. Fit statistics and parameter estimates suggested that, according to 

conventional criteria, it would be reasonable to combine the items into a single scale: the 6 

items all showed standardised loadings of .50 or greater and yielded a good-fitting single 

factor model (RMSEA = .05, CFI = .99, TLI = .99, WRMR = 0.56).. I therefore used the 

unweighted sum score of these six items as our moderator variable. Cronbach’s alpha of the 

scale was .63. 

Phenotype 

As the phenotypes I used personality scales from the 300-item Multidimensional 

Personality Questionnaire (MPQ; Tellegen & Waller, 2008). Participants were administered a 

version of the MPQ using a 2-point response scale. Items are phrased as statements to which 

participants answer ‘True’ or ‘False’ depending on whether they believe the statement 

describes their attitudes, opinions, interests or other characteristics. 

I selected two scales that yielded oppositely skewed scores. First, I used the 

negatively skewed ‘Well-being’ scale comprising 18 items. High scores on this scale are 
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presumed to be indicative of a cheerful and happy disposition, feeling good about oneself, 

being optimistic, and enjoying an interesting and exciting life. Second, I used the positively 

skewed ‘Aggression’ scale comprising 18 items.  High scores on this scale are presumed to 

be indicative of physical aggression, enjoyment of scenes of violence or upsetting or 

frightening others, victimisation of others for personal advantage, and vindictive and 

retaliatory tendencies.  

I varied how each phenotype was operationalised across conditions to mirror our 

simulation conditions. First, I used the raw sum score from each scale. Second, I used a 

transformation of the sum score that yielded an approximately normal distribution. Third, I 

used an IRT score for each scale. For this, I used a 2-parameter logistic model with a 

procedure otherwise identical to that described in the simulation study to estimate factor 

scores.  

Model fitting 

Model fitting broadly followed the procedure outlined in the simulation. However, 

because I was working with real data, I did not know the true model and, therefore, relied on 

model fit comparisons to guide model selection.  I first assessed whether it was possible to 

constrain moderation of the influences common to moderator and phenotype to zero without 

significant decrease in fit. I then attended to moderation of the influences unique to the 

phenotype. I present the parameter estimates from best-fitting model(s).  In all cases, all 

latent A, C, and E variances and covariances were freely estimated.  

Real Data Example Results 

Descriptive Statistics  



92 
 

Descriptive statistics for the moderator and phenotypes are provided in Table 4.3. For 

the phenotypes, descriptive statistics are provided for sum scores, transformed sum scores 

and IRT scores. The Well-being sum score showed negative skew which was reduced 

considerably by a normalising transformation, specifically, a squaring of scores. The IRT 

factor scores for this phenotype showed a level of non-normality similar to the transformed 

sum score but slightly more negative. The correlation between Well-being and Intellectual 

interests was around r=.18 and practically unaffected by which phenotypic proxy was used.  

The correlations between the three kinds of scores derived from the Well-being items were all 

>.97. 

 The Aggression sum score showed positive skewness. Given the magnitude of 

positive skewness, a natural log transformation was used and this produced scores with a 

near-normal distribution. The IRT factor scores for this phenotype also substantially reduced 

non-normality but these scores were more positively skewed than the transformed sum 

scores.  The correlation between Aggression and Intellectual interests was around r=-.12 and 

practically identical across the three different kinds of phenotypic proxy.   The correlations 

between the three kinds of scores derived from the Aggression items were also all >.97. 
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Table 4.3: Descriptive statistics for Well-being, Aggression and Intellectual Interests 

phenotypes 

Phenotypic proxy Mean (SD) Skew Kurtosis Correlation  

with moderator 

Intellectual Interests sum score 13.32 (3.75) 0.13 -0.27 N/A 

Well-being sum score 11.15 (2.21) -1.06 0.71 .18 

Well-being sum score transformed 0 (1) -0.36 -0.90 .19 

Well-being IRT score 0 (0.89) -0.42 -0.32 .18 

Aggression sum score 3.66 (3.21) 1.12 1.09 -.12 

Aggression sum score transformed 0 (1) 0.23 -0.79 -.12 

Aggression IRT score -0.04 (0.86) 0.46 -0.40 -.13 

 

Well-being 

Model fits for the Well-being scale GxM Models are provided in Table 4.4.  

Parameter estimates for the best fitting model are provided in Table 4.5. 
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Table 4.4: GxM model fits for Well-being phenotype 

Model (freely 

estimated 

parameters) 

-2LL Df BIC AIC saBIC DIC 

Sum score 

aC, cC, eC, αC, γC, 

εC, αU, γU, εU 

10204.50 3727 -7653.07 2750.50 -1734.73 -4228.18 

aC, cC, eC, αU, γU, 

εU 

10204.78 3730 -7663.18 2744.80 -1740.08 -4235.54 

aC, cC, eC, αU 10206.10 3732 -7669.38 2742.09 -1743.11 -4239.91 

aC, cC, eC 10222.75 3733 -7664.47 2756.75 -1736.61 -4234.08 

Transformed sum score 

aC, cC, eC, αC, γC, 

εC, αU, γU, εU 

10214.25 3727 -7648.19 2760.25 -1729.85 -4223.30 

aC, cC, eC, αU, γU, 

εU 

10214.92 3730 -7658.12 2754.92 -1735.02 -4230.48 

aC, cC, eC, αU 10215.09 3732 -7664.88 2751.09 -1738.60 -4235.40 

aC, cC, eC 10219.96 3733 -7665.87 2753.96 -1738.00 -4235.47 

IRT score 

aC, cC, eC, αC, γC, 

εC, αU, γU, εU 

9806.21 3739 -7893.28 2328.21 -1955.88 -4457.37 

aC, cC, eC, αU, γU, 

εU 

9806.89 3742 -7903.21 2322.89 -1961.05 -4464.54 

aC, cC, eC, αU 9807.08 3744 -7909.96 2319.09 -1964.62 -4469.45 

aC, cC, eC 9810.82 3745 -7911.51 2320.82 -1964.59 -4470.08 

 

 For the Well-being scale, the correlations between the three types of score were all 

>.97. The negative skew of the raw sum score was markedly reduced in both the transformed 

sum score and the IRT factor score; however, there was effectively no difference in their 

correlation with the moderator. This illustrates the important point that highly correlated 

scores or scores with effectively identical correlations with the moderator will not necessary 

be equivalent with respect to the distributional properties that GxE tests are sensitive to.  

In the GxE models for this phenotype, it was possible to constrain moderation of the 

common influences to zero without significant decrease in fit irrespective of whether a sum 

score, transformed sum score, or IRT score represented the phenotype. Therefore, this 

became the baseline model for all further model comparisons.  
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Using sum scores, model comparisons supported moderation of the genetic influences 

unique to the phenotype fairly unequivocally.  Constraining this parameter to zero produced 

significant decrease in fit irrespective of whether moderation of the unique C and E 

influences on the phenotype was freely estimated or fixed to zero. Model fit comparisons 

suggested the latter model provided the best overall representation of the data. Thus, results 

suggested that the genetic influences unique to Well-being were smaller at higher levels of 

intellectual interests. 

 Using transformed sum scores, model fit comparisons suggested some moderation of 

unique influences for which moderation of the A influences unique to the phenotype best 

accounted. However, this result was not completely unequivocal: it was possible to constrain 

moderation of the A influences unique to the phenotype  to zero without significant decrease 

in fit when  moderation of the  C and E influences were freely estimated but not when they 

were both fixed to zero.  This further illustrates the lack of resolvability of αU and γU effects 

noted in the simulation study. Here results suggested that the genetic influences unique to 

Well-being may be higher at higher levels of intellectual interests. 

When using IRT scores, results were highly similar to those for the transformed sum 

score in terms of fit differences and parameter magnitudes (αU  was 0.04 when freely 

estimated but the other moderation parameters were fixed to zero). However, the difference 

in fit between the model in which moderation of all the unique A, C and E influences on  the 

phenotype was fixed to zero and the model in which moderation of the unique A influences 

was freely estimated happened to fall just short of statistical significance. Therefore, there 

was technically no statistical evidence for GxE when using the IRT factor score, suggesting 

that the genetic influences unique to Well-being did not depend on level of intellectual 

Interests. 
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To summarise results from the Well-being scale, based on a naïve interpretation, all 

favoured different conclusions regarding the presence of GxE: GxE was in evidence using a 

sum score, was somewhat in evidence using a transformed sum score, and was not in 

evidence using an IRT score.  While the results in the latter two conditions were in actuality 

very similar, the fact that the statistical evidence lay on opposite sides of a statistical 

significance threshold  and a naïve interpretation could lead to very different substantive 

conclusions in practice. Only the sum score condition appeared to show unambiguous support 

for GxE. This is consistent with the simulation conditions in which the presence of non-

normality resulted in detection of GxE, irrespective of whether this non-normality was a 

result of moderation or poor scaling.  The moderation observed using the sum score was in 

the direction expected for a negatively skewed sum score even when there was no true 

moderation. Thus, there would be reason to question the validity of the evidence for GxE 

observed in this real data example.  

Table 4.5: Parameter estimates from best-fitting models for Well-being phenotype 

Phenotype GxM Parameter Estimates 

Phenotypic Proxy αC αU γC γU εC εU 

Sum score 0 (fixed) -.11 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 

Transformed sum score 0 (fixed) -.06 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 

IRT factor score 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 

 

Aggression 

GxM model fits for the aggression scale are provided in Table 4.6 and parameter 

estimates from the best fitting model are provided in Table 4.7.  For this phenotype, the 

correlations between the three kinds of scores were also all >.97. The raw sum score showed 
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substantial positive skew but both the transformed sum score and the IRT score had 

reasonably symmetrical distributions. Again, however, the correlations of the phenotype with 

the moderator were practically identical, irrespective of which score type was used and in 

spite of the marked differences in their distributions. 

Table 4.6: GxM model fits for Aggression phenotype 

Model (freely 

estimated 

parameters) 

-2LL df BIC AIC saBIC DIC 

Sum score 

aC, cC, eC, αC, γC, 

εC, αU, γU, εU 

10218.91 3732 -7662.97 2754.91 -1736.69 -4233.49 

aC, cC, eC, αU, γU, 

εU 

10222.38 3735 -7671.51 2752.38 -1740.46 -4239.27 

aC, cC, eC, εU 10224.28 3737 -7677.40 2750.28 -1743.18 -4243.33 

aC, cC, eC 10240.40 3738 -7672.76 2764.40 -1736.96 -4237.77 

Transformed sum score 

aC, cC, eC, αC, γC, 

εC, αU, γU, εU 

10228.85 3732 -7658.00 2764.85 -1731.72 -4228.52 

aC, cC, eC, αU, γU, 

εU 

10232.34 3735 -7666.52 2762.34 -1735.48 -4234.29 

aC, cC, eC, εU 10234.73 3737 -7672.17 2760.73 -1737.96 -4238.10 

aC, cC, eC 10238.00 3738 -7673.96 2762.00 -1738.16 -4238.97 

IRT score 

aC, cC, eC, αC, γC, 

εC, αU, γU, εU 

9676.16 3739 -7958.30 2198.16 -2020.91 -4522.39 

aC, cC, eC, αU, γU, 

εU 

9679.97 3742 -7966.67 2195.97 -2024.51 -4528.00 

aC, cC, eC, εU 9682.21 3744 -7972.39 2194.21 -2027.06 -4531.88 

aC, cC, eC 9687.08 3745 -7973.38 2197.08 -2026.46 -4531.95 

 

 In all conditions, it was possible to constrain moderation of the influences common to 

moderator and phenotype to zero without significant drop in fit. From here, the best-fitting 

model in using a sum score was one in which there was moderation of the unshared 

environmental influences on the phenotype. When this parameter was freely estimated, 

constraining moderation of neither shared environmental influences nor genetic influences on 

the phenotype resulted in statistically significant decrease in fit. Thus, using a sum score, 
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there was evidence that only the unshared environmental influences unique to Aggression 

decreased with increasing intellectual interests. The direction of this moderation was in the 

opposite direction to the direction of the skew of the sum score. Given that the phenotype and 

moderator were negatively correlated, the moderation was in the direction consistent with the 

skew of the sum score. 

 Using transformed sum scores, after constraining moderation of the influences 

common to moderator and phenotype to zero, the best-fitting model involved no moderation 

of the influences unique the phenotype. These could all be individually constrained to zero 

without significant decrease in fit, irrespective of whether moderation parameters for the 

other unique influences were also constrained or freely estimated. Thus, there was no 

evidence that the genetic or environmental influences on Aggression depended on level of 

Intellectual Interests. 

 Using IRT scores, after constraining moderation of the influences common to the 

moderator and phenotype to zero, there was some very weak support for moderation of the 

unshared environmental influences unique to the phenotype. Specifically, fixing moderation 

of unshared environmental influences unique to the phenotype to zero resulted in significant 

decrease in fit when all other moderation parameters were fixed to zero.  Further, the 

decrease in fit on constraining this parameter to zero was not statistically significant when 

moderation of the shared environmental and genetic influences unique to the phenotype was 

freely estimated. In addition, the best-fitting model according to BIC included no moderation, 

albeit by a small margin compared with one in which the moderation of the unshared 

environmental influences unique to the phenotype was freely estimated (∆BIC = 0.99). 

Therefore, on balance the IRT factor score condition showed only very weak evidence for 

moderation intermediate between the results for the sum score (which showed evidence for 
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moderation) and the transformed sum score (which showed no evidence for moderation). 

Again, the direction of moderation suggested smaller unshared environmental influences. 

Table 4.7: Parameter estimates from best-fitting models for Aggression phenotype 

Phenotype GxM Parameter Estimates 

Phenotypic Proxy αC αU γC γU εC εU 

Sum score 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) -0.07 

Transformed sum score 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 

IRT factor score 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) -0.03 

 

Discussion 

It is well known that using poorly scaled sum scores as phenotypic proxies in GxE 

tests can seriously bias tests of GxE. For example, using sets of items where the difficulty or 

location parameters are clustered near the low end of the phenotypic continuum can lead to 

positively skewed sum scores and, in turn, positively biased tests of GxE (e.g. Molenaar & 

Dolan, 2014; Schwabe & van den Berg, 2014). In a simulation study, I assessed the extent to 

which this bias was mitigated by transforming non-normal sum scores to normality. I 

compared this to estimating phenotypic scores from an IRT model: a method that explicitly 

takes account of the scaling properties of items.  The results suggested that using IRT 

methods to provide formal models for the phenotype is worth the effort in providing more 

accurate detection and quantification of GxE effects.  

Based on these analyses, I can extend the arguments set out in the introduction in the 

following ways. First, I confirmed that biases in estimates of GxE can be introduced by poor 

phenotypic scaling that result in sum scores that do not accurately reflect the underlying 
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distributions of the phenotypes they are supposed to represent. The nature of this bias is 

predictable: sum scores that are negatively skewed relative to their underlying phenotypic 

distribution will tend to produce negatively biased moderation parameters and sum scores 

that are positively skewed relative to their underlying phenotypic distribution will tend to 

produce positively biased moderation parameters. When there is no true moderation effect, 

this will often lead to unacceptably high false positive rates.  

These effects occur because non-normality due to poor scaling is not statistically 

distinguishable from non-normality due to presence of interaction. Where there is non-

normality, the model will attribute this to interaction; however, only when the observed 

phenotypic distribution reflects its population distribution will this estimate provide accurate 

quantification of GxE.  Measuring the phenotype and capturing its population distribution as 

accurately as possible is, therefore, important in ensuring accurate assessment of GxE. When 

the raw score from an inventory fails to do this, there may be options for recovering this 

distribution via post-hoc manipulations of its measurement scale.  

 Results showed, in particular, that transforming a score or using an IRT score in place 

of a non-normal sum score can be used to reduce bias. I studied the case in which the latent 

genetic and environmental influences on the phenotype, absent the influence of the moderator 

could be assumed normally distributed in the population. This is a reasonable assumption in 

cases where there are large numbers of small, independent effects on the phenotype. Here, a 

normal distribution of the joint effects of numerous relatively fungible etiological 

contributors is predicted based on the central limit theorem. Under these conditions, using 

either a simple transformation or IRT scores reduced bias in GxE because they led to score 

distributions that better approximated the population distribution of the phenotype.   
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In a case where there is no true moderation effect, using a phenotypic proxy that 

better reflects its population distribution than a sum score reduces false positive rates 

substantially. When the direction of the moderation is consistent with the direction of skew, 

either transforming to normality or using an IRT score will give close to unbiased parameter 

estimates and result in good power to detect the effect.  However, in cases where moderation 

and skew are in opposite directions, these methods will underestimate the effects and reduce 

power to detect GxE relative to situations in which the phenotypes are not subject to scaling 

problems.   

 I also provided a real data example from the Minnesota Twin Registry using two 

phenotypes with non-normal sum scores. Analysing the Well-Being phenotype using 

(negatively skewed) sum scores yielded statistically and practically significant GxE whereas 

using IRT scores suggested no significant GxE. The transformed sum scores yielded evidence 

intermediate between these two outcomes. The direction of the GxE using sum scores was 

consistent with the direction of the skewness of the sum score.  This suggests that the 

observed effect could be due to item scaling.  Moreover, based on these results, researchers 

using sum scores rather than IRT scores could easily have been led to opposite substantive 

conclusions despite the very high correlations between the raw and IRT scores. 

The Aggression phenotype did not yield evidence of GxE irrespective of whether 

(positively skewed) sum scores, transformed sum scores, or IRT scores were used. This 

showed that non-normal trait distributions will not automatically result in the appearance of 

GxE and that altering phenotypic distributions will not necessarily affect the GxE parameter. 

However, there was evidence for dependence of another moderation parameter on scaling: 

using a sum score and an IRT score, there was evidence for negative moderation of the 

unshared environmental influences unique to the phenotype (captured by the εU parameter) 

but there was no such evidence using a transformed sum score. Taking into account the fact 
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that the phenotype and moderator were negatively correlated, the εU parameter was 

proportional to and in the direction consistent with the skew of the phenotypic proxy. That is, 

the parameter was most negative when the phenotypic proxy was strongly skewed (sum 

score), less negative when the phenotypic proxy was moderately positively skewed (IRT 

score) and effectively zero when the phenotypic proxy was only slightly positively skewed 

(transformed sum score). Thus, although I focussed on the αU parameter because it is most 

often used to operationalise theoretical hypotheses, this example highlights the fact that the 

effects of scaling on GxE models are not confined to that one parameter.  

These results reinforce the message that poorly scaled sum scores should be avoided 

in tests of GxE. However, they also imply that the commonly used strategy of transforming 

non-normal sum scores to normality will in many cases fail to address the biasing effects of 

poor scaling on GxE tests fully, particularly when the true moderation parameter is in the 

opposite direction to both scale skew and moderation of the unshared and shared 

environmental influences on the phenotype. IRT scores were also subject to this limitation 

but overall performed better than transforming the sum score to normality in terms of 

parameter bias, false positive rates and true positive rates.  

Practically speaking, sum scores are not desirable as phenotypic proxies because, in 

addition to producing high false positive rates, they can yield results that suggest moderation 

in the opposite direction to the true moderation effect. The strategies of transforming the sum 

score to normality or using an IRT score do not suffer these limitations; however, both result 

in tests that lack statistical power when the moderation is in the opposite direction to skew.  

Given this, transformed sum scores and IRT scores provide conservative tests of GxE when it 

is present. However, they also fail to control the type 1 error rate completely when GxE is not 

present; therefore, caution is still due when interpreting significant GxE tests obtained using 

these scores. 
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Demonstrating that sum scores are highly correlated with transformed sum scores or 

IRT scores for the same phenotype is thus not sufficient justification for using them in place 

of these better-performing methods. Because correlation coefficients are relatively unaffected 

by rank-preserving transformations, sum and functionally-transformed scores will show very 

high correlations, even when their distributions are markedly different. . This was illustrated 

in the real data examples where, in spite of leading to diverging conclusions about the 

presence and strength of moderation effects, the three types of score were correlated with one 

another at >.97. 

 Although using IRT scores is more time consuming and technically demanding than 

using normalising transformation, it may be worth the additional effort. In addition to 

performing better in the current study, IRT scores can be estimated reasonably easily in a 

range of freely available software packages and have several practical and theoretical 

advantages over transformed sum scores. First, they are easily estimable in the presence of 

missing item data, or when respondents did not complete an identical set of items (Embretson 

& Reise, 2000). Second, the diversity of available IRT models means that many kinds of 

response formats, scale structures, or theories about how the latent trait relates to item 

responses can be accommodated. For example, a bi-factor model could be fit when it is 

desirable to partition general and specific trait variance captured by a set of items (Cai, Yang, 

& Henson, 2011); if a scale has a categorical response format, a nominal response model 

could be fit (Bock, 1972); or if items follow an ideal point process an unfolding model can be 

fit (e.g. Chernyshenko, Stark, Drasgow, & Roberts, 2007). All of these  and other features can 

be, easily dealt with in an IRT framework, while posing significant problems or being simply 

impossible to take account of when using sum scores, both raw and transformed to normality. 

Furthermore, while an IRT model can be chosen based on theoretical considerations, 

the choice of a transformation is somewhat arbitrary and usually driven by pragmatic 
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considerations. The choice of an IRT model can be evaluated both overall and with respect to 

individual items using well-studied goodness-of-fit statistics and graphical checks. A 

beneficial side effect of this is that the process of fitting and evaluating IRT model(s) is likely 

to encourage explicit consideration of the assumptions that underpin the phenotypic proxy 

used. However, no analogous tests exist for transformations.   More importantly, from a 

conceptual perspective, if the genetic and environmental influences on the phenotype in the 

absence of the influence of the moderator are normally distributed and there is true GxE in 

the population then the phenotype should show a non-normal distribution because GxE 

involves an expansion (or contraction) of the variance in a phenotype according to the levels 

of moderator. This expansion (or contraction) of variance shows up in the marginal 

distribution of the phenotype as non-normality that is commensurate with the GxE effect.  

Using a transformation to normality is, therefore, directly at odds with theoretical 

expectations when GxE is hypothesised. For this reason, methodologies such as Box-Cox 

transformations which can optimise the normalisation of a distribution may actually perform 

worse than cruder methods such as log-transformations. The latter will almost always yield a 

worse approximation to normality but this worse approximation may retain some of the non-

normality due to the interaction when one is present. In IRT models, the need to retain any 

non-normality that is genuinely due to a GxE is also a problem to some extent; however, the 

assumption of a normal latent distribution is not a necessity; where appropriate alternative 

prior distributions can be specified in a manner that is far more flexible than attempting to 

obtain that distribution through transformation of observed scores. Where both approaches 

are limited is that the underlying liability distribution absent the influence of the moderator 

could be non-normal due to other moderators or the effects of rare but highly influential 

etiological factors that engender extreme effects. Analogous to the problem of distinguishing 

non-normality due to moderation versus poor scaling, it is not easy to disentangle non-
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normality due to the effect of a moderator of interest and non-normality due to other 

etiological factors without detailed a priori knowledge. 

Further, the favourable performance of the IRT scores in the simulation study should 

be interpreted in light of the fact that they were estimated under idealised conditions. In 

practice their use is more complicated and may be less effective. For example, a graded 

response model was fit to the data because it was known that this model had been used to 

generate the item responses. Thus, there was no risk of mis-specifying the psychometric 

model.   In reality, the appropriate model for the items will not be known in advance; it will 

have to be chosen on the basis of the item format and a hypothesis about how the latent trait 

is related to item responding and then tested for appropriateness. The lack of a priori 

knowledge about the appropriate IRT model for a given set of items increases the risk that the 

chosen model will be mis-specified in some important way. Further, parametric IRT models 

are also often poor fits to the very same kinds of data that prove problematic in GxE tests, 

such as those concerning psychopathological phenotypes. Less restrictive non-parametric IRT 

models are sometimes recommended as alternatives (Meijer & Baneke, 2004) but these 

methods do not allow estimation of factor scores for use in GxE tests. Finally, at a very 

pragmatic level, IRT models are only useful when item-level data are available, which is not 

always the case. 

Another practical consideration when using IRT scores in tests of GxE, is the 

importance of assessing the empirical reliability of factor scores from IRT models, as one 

would for sum scores (see Culpepper, 2013).  Unreliable IRT scores will not only be 

ineffective in addressing bias in GxE; they will also result in attenuated estimates of twin 

correlations and bias other model parameters (van den Berg et al., 2007).  Similarly, as the 

extent to which the accuracy of the scores as measures of the intended underlying dimension 

depends on the appropriateness of the IRT model, its specification should be carefully 
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considered and its fit assessed empirically (see Embretson & Reise, 2013), bearing in mind 

that even the best fitting models will represent only an approximation to reality. 

 In practice, it is also worthwhile to compare results obtained using IRT scores with 

those obtained using raw and transformed sum scores. Comparison can highlight how 

sensitive results are to phenotypic scaling. Under some conditions, e.g. when the phenotype 

and moderator do not have strong associations or the phenotypic distribution departs only 

slightly from its population distribution, scaling of the phenotype may make little difference 

to results. In addition, in rare cases where the phenotypic distribution is mis-specified in the 

IRT model used to estimate the scores but well approximated by the sum scores, the sum 

scores could, in principle, produce less biased results than the IRT scores. Even when the 

phenotypic distribution is correctly assumed to be normal, no non-linear transformation or 

IRT score estimation method guarantees a perfect reconstruction of the phenotypic 

distribution as it exists in the population. In fact, as argued above, the scores produced by a 

transformation to normality could be ‘too normal’ in the sense that in the presence of GxE 

non-normality of the phenotype would usually be expected.  

In sum, there are significant challenges in correctly choosing between a ‘GxE’ and a 

‘scaling’ explanation for apparent GxE effects but the importance of doing so is considerable. 

For example, if a GxE explanation is incorrectly accepted over a scaling explanation, this 

falsely supports the view that some features of a person or their environment either constrains 

or supports the expression of genetic influences on some phenotype of interest. At an 

academic level, this can lead to theories which lack parsimony and which when further 

pursued may lead to wasted research efforts. Further, spurious GxE evidence can also falsely 

bolster the impression that a candidate moderating variable is an as important causal factor or 

potentially fruitful target of intervention. Thus, continued efforts should be invested into 

establishing appropriate scales for phenotypes submitted to GxE analyses.  
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Limitations 

A limitation of the current study is that I did not directly compare the two-step IRT 

approach with a one-step approach presented here. A one-step approach has yet to be 

developed for testing of GxE within the Purcell’s (2002) framework; however, it is possible 

to anticipate some of its disadvantages and advantages. First, the approach would share the 

limitation of the two-step approach that the true phenotypic distribution would not be known 

but assumed. Assuming a normal distribution for the phenotype when the true distribution is 

non-normal could, in principle, result in biased GxE tests in a similar way to using a poorly 

scaled sum score. It would also share the necessity to select an appropriate IRT model and 

freely estimate its parameters in a finite sample. A further disadvantage would be its 

statistical and computational complexity as compared to a two-step approach. However, an 

important advantage would be that the error-free latent trait could be decomposed directly 

and this is likely to result in less biased GxE tests. 

Further, and perhaps most importantly, a one-step approach is more appropriate from 

a conceptual perspective because it provides a much more direct operationalization of GxE 

hypotheses.  In the two-step approach, a distribution for the phenotype is assumed in the first 

step; however, in tests of GxE it is important to distinguish between assumptions about the 

marginal distribution of the phenotype and the distribution of the underlying genetic and 

environmental influences absent the influence of the moderator. While the former would be 

expected to be non-normal because being subject to moderation skews the phenotypic 

distribution, the latter can usually be assumed normal. The two-step approach unfortunately 

conflates these distinct contributions because it specifies a distribution only for the latent 

phenotype. In addition, although I designed the simulation conditions to be as realistic as 

possible, I covered only a limited range of the possible conditions that could occur in the real 

world. Although the principles discussed are likely general, I conducted analyses within 
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specific GxE and IRT frameworks and used a limited range of parameter values. Similarly, 

while inclusion of a real data example is important to test conclusions from simulation studies 

in a more ecologically valid context, these too are limited by their specificity.  

Conclusions 

 Tests of GxE can be biased by inappropriate scaling of a phenotype, and reliance on 

raw scores that are significantly skewed is to be discouraged. Two potentially useful solutions 

are to transform sum scores to normality or to estimate IRT scores based on an appropriate 

model. Although these strategies will suffer low statistical power, they reduce the rate of 

spurious GxE detection and recover the correct direction of effects. Therefore, researchers 

can be more confident about the presence and direction of GxE when it is identified using one 

of these strategies than when using a raw sum score. 

Footnotes1 

Purcell’s GxM approach requires assumption of a normal distribution for the phenotype 

conditional on the moderator; however, the presence of moderation will result in a skewed 

marginal distribution for the phenotype. 

 



109 
 

 

Chapter 5: Discussion 

In this thesis, I have defined construct truncation as under-representation of the 

extremes of a variable in a research sample. In the preceding chapters I outlined ways in 

which construct truncation commonly arises and showed that its occurrence may be 

associated with serious distortions of the theoretical conclusions drawn from affected 

datasets. In this final chapter, I summarise and integrate the results of these chapters, 

highlight their limitations, and suggest future directions for research. 

In Chapter 2, I focussed on construct truncation due to person selection, highlighting 

one area for which I believe the issue to be especially pertinent. I argued that studies 

involving psychopathological phenotypes are particularly vulnerable to the effects of range-

restricting person selection due to frequent focus on clinically ascertained samples. Using an 

example from autism spectrum disorder (ASD) research, I presented a statistical model of 

range-restriction due to clinical diagnosis, assuming an underlying multivariate normal 

distribution of autistic traits in the population.  Using this model, I evaluated the extent to 

which estimates of associations between symptom domains in ASD are under-estimated in 

clinically ascertained samples. Results suggested that the downward bias in estimates could 

be substantial, especially when considering associations involving the restricted repetitive 

activities symptom of the classical triad of ASD. A real data example also demonstrated that 

associations between ASD traits were much smaller when analyses were restricted to 

clinically diagnosed individuals.  

 In Chapter 3, I considered a more subtle example of construct truncation due to 

person selection, highlighting the ease with which it can arise undetected. I considered, in 

detail, a specific example of possible construct truncation from individual differences 
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research: the ‘intelligence compensation hypothesis’ (ICH). The ICH is that cognitive ability 

and conscientiousness are negatively correlated due to a tendency for individuals to calibrate 

their effort levels to ability levels. I hypothesised that previous evidence for the ICH is 

artifactual and has resulted from construct truncation on achievement in many samples. I 

argued that the negative associations between cognitive ability and conscientiousness cited in 

support of ICH have been due to the fact that the samples in which these associations were 

observed tended to include only individuals who showed certain levels of occupational or 

educational accomplishment. Taking a sample with relatively little such non-random 

selection I found that the associations between cognitive ability and conscientiousness were 

positive. However, artificially introducing selection on achievement resulted in attenuation of 

these positive estimates and in half the cases reversals in their direction. Together, this 

evidence suggests not only that intelligence and conscientiousness are probably not generally 

negatively correlated in the full population, but often become so when samples are selected 

based on specified levels of achievement. Estimates of their association may also be 

substantively negatively biased when selection on achievement is indirect. For example, 

despite researcher’s intentions, it is common that their samples are more educated and thus 

likely also of higher average IQ and conscientiousness than the general population.  

Finally, in Chapter 4, I considered the problem construct truncation due to item 

selection. I developed a model of construct-truncating item selection to study its effects on 

gene-environment interactions, as well as compare possible solutions. These simulations 

suggested that using raw sum scores as measures of the phenotype of interest can produce 

substantial bias in estimates of gene-environment interaction; however, this bias can be 

substantially mitigated by transforming the raw sum scores to normality or by using IRT 

scores. Two real data examples showed that the choice of score: raw sum, transformed sum, 

or IRT score, can lead to quite different conclusions. In one example, using a raw sum score 



111 
 

suggested statistically significant GxE while an IRT score suggested no GxE. Together, these 

results suggested that construct-truncating item selection has the potential to and may already 

have misled researchers interested in evaluating GxE interactions. Fortunately, two simple-to-

use fixes showed promise in mitigating these effects, namely transformation of raw scores 

and use of IRT scores.  

 A common message across all chapters is that there are commonly occurring 

circumstances under which construct truncation can have important implications for the 

accuracy of substantive inferences made based on affected datasets. Our increasingly 

sophisticated theories about interplay among variables and characterisation of constructs 

whose tests require use of increasingly complex statistical methodologies are especially 

susceptible; for example, construct truncation can even reverse the direction of apparent GxE 

interaction effect whilst barely affecting the association between phenotype and moderator. 

Compounding the problem, the presence of construct truncation may not be obvious as in the 

example of the ICH in which the truncation occurred primarily on a variable that was not 

explicitly measured. In the following section I, therefore, make some recommendations for 

detecting, quantifying and mitigating the effects of construct truncation. 

It would be easy to recommend that research studies avoid problems of construct 

truncation by utilising samples and measures that reliably capture the full range of variability 

in their constructs of interest. Unfortunately, this is extremely difficult to implement in 

practice.  As noted in the introduction, construct truncation due to person selection is often 

beyond complete control of the researcher because active participation in the vast majority of 

studies is voluntary, and individuals often vary systematically in interest and motivation to 

participate  (e.g. Marcus & Schütz, 2005). The same is generally true when participation is 

passive, as, for example, when banks of anonymised data gathered for other purposes, such as 

American Scholastic Assessment Test scores, are used (e.g. Hunt & Madyastha, 2008; Lee & 
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Valliant, 2009). Likewise, construct truncation due to item selection may be difficult to avoid 

because of the need to rely on validated questionnaires which are unlikely to have been 

developed with explicit focus on their ranges of reliable measurement (Thomas, 2011). Thus, 

my recommendations aim to acknowledge these difficulties and suggest practical steps that 

can be taken to minimise problems of construct truncation.  

Recommendations concerning construct truncation due to person selection 

Minimising construct truncation begins with recruitment of participants. The goal is to 

recruit participants who are representative of a specified target population. Certain 

recruitment strategies have been associated with better sample representativeness. These 

include providing specific training for the project workers responsible for recruitment; 

investigating  and addressing reasons for non-participation; providing appropriate  incentives 

or reassurances to overcome barriers to non-participation; sending multiple reminders; and 

attempting to contact target participants via multiple means including phone, personalised 

letters, and door-knocking (where appropriate); and enriched recruitment in vulnerable 

subgroups. These strategies have been shown to increase participation rates especially 

amongst individuals ‘at risk’ of non-participation and whose presence in the sample is crucial 

to its representativeness (Eisner & Ribeaud, 2007).  However, they are also resource- and 

time- intensive, and for many studies will be unrealistic with limited resources. 

Given the practical difficulties of recruiting a representative sample, it is always 

advisable to consider the possibility that a sample has been subject to construct truncation, 

even when there has been no explicit exclusion of individuals with more extreme trait levels. 

The sampling strategy should be evaluated conceptually and an attempt made to understand 

the extent to which it was likely to have disproportionately missed individuals at high or low 

levels of the relevant constructs. For example, one of the most commonly used convenience 
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samples is that of university or college students. As noted by several authors, researcher using 

such a sample should consider the fact that they tend to exclude individuals of lower 

cognitive ability due to the standards of academic achievement that have to be reached to 

enter the population of university or college students (e.g. Chamorro-Premuzic & Furnham, 

2004; Hägglund & Larsson, 2006).  More generally, for any construct with negative social 

connotations, it is typically the individuals who are highest on that construct that are the most 

difficult to recruit and retain. It is the individuals with the most problematic behaviour that 

are least likely to participate in studies of crime (Eisner & Ribeaud, 2007), individuals with 

the highest level of psychopathology who are least likely to respond in psychiatric 

epidemiology studies (e.g. Kessler et al,. 2005; Merikangas et al., 2010), and individuals with 

the lowest levels of cognitive ability and greatest decline in it who are least likely to 

participate in studies of cognitive decline (Deary et al., 2011). There are also some variables 

that are commonly measured and associated with participation in research studies irrespective 

of the nature of the study.  These may serve as red flags for construct truncation when seen to 

diverge from their expected distributions. Demographic variables associated with being less 

likely to participate in research include low levels of education, male sex, being a member of 

an ethnic minority, poor physical and/or mental health, and low socioeconomic status 

(Bechger et al., 2002; van Goor et al., 2005; Volken, 2013).  

Post-data collection, to evaluate the presence and gauge the degree of construct 

truncation due to person selection, sample means and variances can sometimes be compared 

with normative means and variances (e.g. Costa, McCrae, Zonderman, Barbano, Lebowitz & 

Larson, 1986). Here, substantial departures of sample from normative summary statistics 

would indicate cause for concern. Availability of normative data is, however, the exception 

rather than the rule and even where available is likely to have itself been subject to some 

construct truncation due to person selection in the norming sample because of reliance on 
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volunteers (Marcus & Schütz, 2005; Vink et al., 2004). Comparison of sample to normative 

data can also sometimes be misleading because attending to reductions in the variances of 

observed variables without considering the selection mechanism underlying those reductions 

could lead to false conclusions about selection effects. One example would be to conclude 

that selection effects are minimal when phenotypic variance in a measure is the same as in a 

normative sample when in fact a decrease in the systematic variance in that measure was 

offset by an increase in error variance. This could occur, for example, if a test is administered 

to a sample for whom the reading level of the test exceeds the reading ability of many 

respondents. Similarly, comparison of sample to normative data requires the assumption that 

no construct truncation due to item selection has occurred. If it has, the normative data will 

not reliably capture the range of the construct as it occurs in the target population.  

In the absence of normative data, efforts to obtain some basic information from 

individuals who did not participate can also provide valuable information about whether 

construct truncation is likely to have been a problem and may even allow corrections for 

construct truncation to be made (Vink et al., 2004). Where this is not possible, examining the 

factors associated with responding later or with dropping out may be informative about the 

factors associated with complete non-participation. It is not, however, necessarily valid to 

consider late responders/dropouts and non-responders as though they were simply at different 

points on the same continuum of participation because of qualitative differences in reasons 

for non-response (Studer et al., 2013). Those who participate late, for example, may simply 

need additional facilitation, reminders or incentives to participate whereas complete non-

responders may object to the study or to the notion of handing information about themselves 

over. The availability and fidelity of information about the composition of the population as a 

whole or of the non-participating subsection is critical here. It is not, for example, sufficient 

to examine response rates because there is no guarantee of a straightforward relation between 
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bias due to non-response and extent of non-response (Stang, 2003). Non-response may be 

high but unrelated to the construct of interest. On the other hand it may be low except for 

specific sociocultural groups with more extreme average levels of the construct of interest 

(Eisner & Ribeaud, 2007).  

It may be possible to apply statistical corrections to the data or parameter estimates 

with the aim of obtaining an unbiased estimate of a parameter affected by construct 

truncation. For example, depending on the information available in a given study and the 

assumptions that can reasonably be made about the distribution of that construct in the target 

population, possible strategies include selection models, data weighting, range-restriction 

corrections, or censored (e.g. tobit) regression (e.g. Asparouhov, 2005;  Kamakura & Wedel, 

2001; Nie, Chu, & Korostyshevskiy, 2008; Sackett & Yang, 2000). These strategies have 

some important limitations which boil down to the fact that unless information about the 

selection mechanism and/or the target population is known (or can be reasonably inferred), 

these corrections will not yield unbiased estimates. For example, in range restriction 

corrections for Pearson correlations, there are many ways in which bias can result including: 

selecting the wrong formula for a given selection scenario, violation of the assumptions of 

linearity and homoscedasticity of the regression of the selection variable(s) on the construct 

of interest, assigning the wrong roles to variables; or submitting incorrect estimates of the 

degree of range restriction or population variances of variables (Alexander et al., 1984; Linn, 

1983; Schmidt, Oh, & Le, 2006; Sackett et al., 2007).  Thus, the best approach overall may be 

to estimate upper and lower bounds of the effect using corrected and uncorrected estimates 

together with a range of plausible assumptions about the selection mechanism and/or 

distribution of the construct in the population.  

Recommendations concerning construct truncation due to item selection 



116 
 

Minimising construct truncation due to item selection begins at the test development 

stage. Traditionally, test developers have sought to create tests with maximal internal 

consistency; however, in doing so they may have inadvertently restricted thereliable range of 

measurement. This is because in aiming to maximise internal consistency, items are generally 

selected to form a highly correlated set. Highly correlated items will tend to have very similar 

response distributions, implying that they tap similar levels of a construct. Furthermore, 

selecting items to maximise their internal consistency provides no guarantee of high test-

retest reliability and may in fact undermine the validity of a scale if it results in the omission 

of item covering important content areas (e.g. McCrae, Kurtz, Yamagata & Terracciano, 

2011). To both avoid restriction of content breadth and to ensure the measurement of an 

appropriate range of construct levels with good precision, items should aim to capture a wide 

range of construct levels, even if this sacrifices internal consistency to some degree. For 

example, developers of measures of aggression should consider including not only 

behaviours indicative of high levels of overt aggression (e.g. hitting, kicking, physical 

conflicts etc.), but also low to middling levels  (e.g. shyness, assertativeness, suppressed 

anger, angry ideations; Anholt & Mackay, 2012).  

One area where a restricted range of reliable measurement is of particular importance 

is in measuring psychopathological constructs. Here, additional factors play into the selection 

of items which tap limited ranges of trait levels. First, many items in many 

psychopathological scales have been selected based on their ability to discriminate between 

diagnosed cases and non-cases. These items will tend to be very good at measuring trait 

levels at and near a clinical diagnostic cut-off point but likely at the expense of reliably 

measuring other trait levels. Second, items tapping trait levels at and above a diagnostic cut-

off point tend to be selected because they have the greatest face validity. Conceptualising 

sub-clinical psychopathological trait levels is relatively new, and researchers may have less 
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previous research to inform the writing of items tapping these levels. This makes it difficult 

to test the very idea that psychopathologies are the extremes of common trait levels 

empirically too. 

 Perhaps the most promising approach to addressing construct truncation due to item 

selection is fitting parametric item response theory models to estimate item and test 

information across the range of trait values during test development. Parametric IRT models, 

unlike the majority of other test development and evaluation methods, acknowledge that the 

precision of measurement is not equal across the entire range of construct values. Computing 

the test information function allows evaluation of the locations along the presumed latent trait 

continuum that are relatively more and less precisely measured. Construct truncation is in 

evidence when a test cannot measure a trait at one or both extremes with adequate 

measurement precision. Estimating item difficulties can identify the regions of the continuum 

that specific items are capable of most reliably measuring. On identifying regions of low 

information that lack in items at all, or where items have poor discrimination, items may be 

written or modified to extend the range of reliable measurement of the test above and/or 

below its existing range. However, it is important to acknowledge there will be limits to the 

number of items that can be administered in a given study, such that including many items to 

achieve a favourable reliable range of measurement may come at the expense of other test 

properties. For example, there may be a need to weigh reliable range of measurement against 

the conceptual breadth of the construct that can be measured: an instantiation of the 

‘bandwidth-fidelity dilemma’ (e.g. Ones & Viswesvaran, 1996). However, researchers should 

also consider the various available methods of mitigating this trade-off such as computerised 

adaptive testing (e.g. Pilkonis, Choi, Reise, Stover, Riley & Cella, 2011) or planned 

missingness designs (e.g. Rhemtulla & Little, 2012). The former minimises the number of 

items administered by way of an algorithm that selects items that are expected to be most 
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informative about a respondent’s trait level. The latter can be used to reduce the number of 

items administered through strategic omission of some items and later correction for 

missingness. 

In Chapter 4, I also showed that, provided the IRT model is correctly specified, factor 

scores estimated from it will provide a good estimate of a true GxE effect in most cases. This 

is consistent with other previous research showing bias reductions in other moderation 

models (e.g. Kang & Waller, 2005; Morse et al., 2012). It may even be possible to use this 

technique to undo some of the effects of construct truncation due to person selection although 

this remains to be determined.  

Future Directions 

Across the previous chapters, I noted that there are statistical methods available for 

correcting data or parameters for construct truncation provided some information is known or 

can be reasonably assumed. Their limitation is, in particular, in the availability of information 

about the distribution (especially variance or shape) of a construct in the population. Thus, 

increasing our knowledge of these underlying distributions is an important area for future 

research. As one example, use of IRT models in the case of psychopathological phenotypes 

requires an assumption to be made about their underlying distribution in the population. I 

took the approach of assuming that a normal distribution characterised the distributions of 

these populations. This is consistent with much of current opinion in psychopathology 

research which assumes that psychopathological traits are merely the upper extremes of 

normal distributions, not qualitatively distinct states (Caspi et al., 2014). The rationale for this 

is based on various pieces of evidence: the highly polygenic nature of psychopathological 

traits, observed normal distributions of psychopathological traits in the general population, 

presence of sub-clinical levels of psychopathological traits in relatives of individuals with a 
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clinical diagnosis, and movement of individuals into and out of the clinical range of 

psychopathological traits over the course of their life (e.g. Baron-Cohen et al., 2001; Cichetti 

& Rogosch, 2002; Wray et al., 2014).  

Indicative of their degree of acceptance within the research community, models of 

psychopathological traits that assume underlying continua are providing a basis for the 

development of a research classification system for psychopathological disorders (Cuthbert & 

Insel, 2013).  These kinds of models are also already being built on, adapted and extended to 

answer questions about psychopathological etiology such as group differences in prevalence.  

For example, for phenotypes such as ASD, attention-deficit hyperactivity disorder (ADHD) 

and aggression in which males are disproportionately affected, multi-factorial threshold 

theory states that a continuous (usually assumed normal) etiological liability distribution 

underpins psychopathological phenotypes; however, males have a lower threshold for 

manifesting clinical levels of the trait (Hamshere et al., 2013; Lai et al., 2015; Tuvblad et al., 

2006). That is, females with same ‘etiological load’ as males would be less likely to qualify 

for clinical diagnosis because they are in some way more protected against exhibiting the 

maladaptive behaviours on which clinical diagnosis is based.  

Certainly, some conditions show a liability distribution that would be expected to be 

non-normal: Alzheimer’s disease is, for example, known to be influenced by at least one 

allele of disproportionately large effect: the APOE e4 allele (Genin et al., 2011).  Even in 

phenotypes in which a highly polygenic model is generally accepted, arguments can also be 

made for underlying non-normal liability distributions due to processes such as GxE, and 

intra- and inter-allelic interaction or the effects of powerful causal (genetic or environmental) 

factors (e.g. see van den Oord et al., 2003).  As discussed in chapter 4, the presence of GxEs 

will tend to expand the variance in a trait at one end of its distribution, equivalent to 

introducing skewness. Recent replication crises notwithstanding, the very large number of 
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published GxE studies published to date would suggest at least a perception in the field that 

GxEs must be common (Dick et al., 2015).  

 Some authors have argued that there may not be meaningful variation in 

psychopathological traits below clinical cut-off points at all; that these traits are better 

characterised as ‘quasi-traits’ (Reise & Waller, 2009). Overall, however, it would seem most 

plausible to consider the distributions of most psychopathological traits to be mixture 

distributions. In intellectual disability, for example, many idiopathic cases may simply 

represent the lower extreme of a continuous distribution; however, many others (e.g. Down 

syndrome) clearly represent the effects of a single, powerful genetic or environmental insult.  

Some studies have aimed to identify the appropriate distributions to characterise 

psychopathological traits by comparing the fit of various models assuming different 

distributions (e.g. van den Oord et al., 2003). However, the question of the appropriate 

distribution to assume for a given phenotype is unlikely to be answered solely by examining 

the fit of various distributions to the underlying latent distributions of these traits for reasons 

discussed in Chapter 4 relating to the fact that a multitude of statistically indistinguishable 

states could underlie the same observed data. Rather, continuing to make progress in 

understanding the etiology of complex traits is likely to be critical because this can directly 

inform on the reasonableness of distributional assumptions. Although it was once necessary 

(at least in practical terms) to assume multivariate normality for parameter estimation, recent 

and continuing developments in statistical methodology, especially availability of Bayesian 

estimation techniques which make complex models more tractable, mean that this is no 

longer always the case. Thus, the primary limiting factor is likely theoretical knowledge to 

inform the distributional shape to assume, rather than the statistical models to operationalise 

it.  
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Limitations 

The primary limitations of this thesis concern the extent to which the simulation 

studies captured the range of circumstances likely to be occurring in the real world. While I 

intended the simulation designs across the chapters to cover a range of plausible real world 

conditions, there are inevitable limits to the range of variables that can be manipulated in any 

given study. In addition, I considered construct truncation due to person and item separately, 

whereas in the real world they are likely to co-occur and interact. In fact, this is one way in 

which construct truncation may go undetected: if a measure with a limited range of reliable 

measurement is administered to a sample with a correspondingly limited range of trait values 

then there will be few clues in the data that construct truncation has occurred. I also did not 

discuss the important issue of how to determine what the target population should be. 

Whether or not construct truncation is relevant depends on whether the aim is to generalise to 

a target population that exhibits only a limited range of possible construct levels. However, it 

is not always easy to determine whether it is appropriate to consider this kind of restricted 

population rather than a more general population as, for example, when it is not clear if 

clinical levels of a trait really do have the same meaning and origin as sub-clinical trait levels. 

Further, even if considered appropriate, analysing a restricted population is likely to entail 

issues such as violations of normality due to dichotomising of a continuous distribution. 

Finally, I did not address in any detail the practical challenges of developing 

questionnaires that have the same meaning and measurement properties at high and low 

levels of a construct (e.g. above and below clinical cut-off points; Murray et al., 2014). This 

is particularly a problem for constructs in which questionnaire responding may be directly 

related to the trait of interest. For example, individuals who are high in neuroticism are more 

likely to use middle response options, thus resulting in systematic underestimation of their 

trait levels (Murray, Molenaar, & Booth, submitted).  
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Conclusions 

Construct truncation can have important implications for the theoretical inferences 

made in empirical research. Statistical solutions can help to mitigate its effects; however, they 

are limited by the need to make assumptions about the distribution of the construct in the 

population and/or the selection mechanism that intervened between population and sample. In 

contributing to resolving this limitation, improved understandings of the population 

distributions and underlying etiologies of specific phenotypes are likely to be critical in 

identifying, quantifying and correcting for construct truncation when it occurs.  
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Appendix: R code for GxM simulations 

 

#data generation 

 

make.irt.data<-function(filenames){ 

   

  N=1000  ##sample size 

  am=0.3^0.5   #for moderator 

  cm=0.2^0.5 

  em=0.5^0.5 

  ac=0.3^0.5   #common to moderator and phenotype 

  cc=0.1^0.5 

  ec=0.1^0.5 

  au=0.2^0.5   #unique to phenotype 

  cu=0.1^0.5    

  eu=0.2^0.5 

  alpha_c=0   #moderation of common A 

  gamma_c=0   #moderation of common C 

  epsilon_c=0  #moderation of common E 

  alpha_u=-0.15 #moderation of unique A 

  gamma_u=0.20    #moderation of unique C 

  epsilon_u=0.08  #moderation of unique E 

   

   

  ####In this section variance-covariance matrix the LVs in the GxM is  

  ####defined for the MZ twins. A,C and E refer to source of variance 

  ####c and u refer to common and unique 

  ### 1 and 2 refer to twin 1 and twin 2 

   

   

  MZ=matrix(c( 

    1,0,0,0,0,0,0,0,0,0,0,0,          #Ac1 

    0,1,0,0,0,0,0,0,0,0,0,0,          #Cc1 

    0,0,1,0,0,0,0,0,0,0,0,0,          #Ec1 

    0,0,0,1,0,0,0,0,0,0,0,0,          #Au1 

    0,0,0,0,1,0,0,0,0,0,0,0,          #Cu1 

    0,0,0,0,0,1,0,0,0,0,0,0,          #Eu1 

    1,0,0,0,0,0,1,0,0,0,0,0,          #Ac2 

    0,1,0,0,0,0,0,1,0,0,0,0,          #Cc2 

    0,0,0,0,0,0,0,0,1,0,0,0,          #Ec2 

    0,0,0,1,0,0,0,0,0,1,0,0,          #Au2 

    0,0,0,0,1,0,0,0,0,0,1,0,          #Cu2 

    0,0,0,0,0,0,0,0,0,0,0,1),12,12,byrow=T) #Eu2 

   

  MZ=MZ+t(MZ)-diag(diag(MZ)) 
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  dimnames(MZ)[[1]]<-

c("Ac1","Cc1","Ec1","Au1","Cu1","Eu1","Ac2","Cc2","Ec2","Au2","Cu2","Eu2") 

  dimnames(MZ)[[2]]<-

c("Ac1","Cc1","Ec1","Au1","Cu1","Eu1","Ac2","Cc2","Ec2","Au2","Cu2","Eu2") 

   

  ##generate latent variable scores by sampling from MVN distribution 

  MZ_ACE=mvrnorm(N,c(0,0,0,0,0,0,0,0,0,0,0,0),MZ,empirical=T) 

  dimnames(MZ_ACE)[[2]]<-

c("Ac1","Cc1","Ec1","Au1","Cu1","Eu1","Ac2","Cc2","Ec2","Au2","Cu2","Eu2") 

   

  ##model for moderator 

  ##this is from eq. 1 in the manuscript 

  MZ_ACE<-as.data.frame(MZ_ACE) 

  attach(MZ_ACE) 

  M1_MZ<-Ac1*am + Cc1*cm + Ec1*em 

  M2_MZ<-Ac2*am + Cc2*cm + Ec2*em 

   

  ##M_MZ is the matrix of moderator scores for MZ twin1 and twin2 

  M_MZ<-cbind(M1_MZ,M2_MZ) 

   

   

  ##model for phenotype 

  P1_MZ<-

ac*Ac1+cc*Cc1+ec*Ec1+(au+alpha_u*M1_MZ)*Au1+(cu+gamma_u*M1_MZ)*Cu1+(eu+

epsilon_u*M1_MZ)*Eu1 

  P2_MZ<-

ac*Ac2+cc*Cc2+ec*Ec2+(au+alpha_u*M2_MZ)*Au2+(cu+gamma_u*M2_MZ)*Cu2+(eu+

epsilon_u*M2_MZ)*Eu2 

   

   

  detach(MZ_ACE) 

  P_MZ<-cbind(P1_MZ,P2_MZ) 

  MZdata<-cbind(M_MZ,P_MZ) 

   

  ####DZs 

  DZ=matrix(c( 

    1,0,0,0,0,0,0,0,0,0,0,0,          #Ac 

    0,1,0,0,0,0,0,0,0,0,0,0,          #Cc 

    0,0,1,0,0,0,0,0,0,0,0,0,          #Ec 

    0,0,0,1,0,0,0,0,0,0,0,0,          #Au 

    0,0,0,0,1,0,0,0,0,0,0,0,          #Cu 

    0,0,0,0,0,1,0,0,0,0,0,0,          #Eu 

    .5,0,0,0,0,0,1,0,0,0,0,0,          #Ac 

    0,1,0,0,0,0,0,1,0,0,0,0,          #Cc 

    0,0,0,0,0,0,0,0,1,0,0,0,          #Ec 

    0,0,0,.5,0,0,0,0,0,1,0,0,          #Au 

    0,0,0,0,1,0,0,0,0,0,1,0,          #Cu 

    0,0,0,0,0,0,0,0,0,0,0,1),12,12,T) #Eu 

   

  DZ=DZ+t(DZ)-diag(diag(DZ)) 
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  dimnames(DZ)[[1]]<-

c("Ac1","Cc1","Ec1","Au1","Cu1","Eu1","Ac2","Cc2","Ec2","Au2","Cu2","Eu2") 

  dimnames(DZ)[[2]]<-

c("Ac1","Cc1","Ec1","Au1","Cu1","Eu1","Ac2","Cc2","Ec2","Au2","Cu2","Eu2") 

   

  ##generate latent variable scores 

  ACE_DZ=mvrnorm(N,c(0,0,0,0,0,0,0,0,0,0,0,0),DZ,empirical=T) 

  dimnames(ACE_DZ)[[2]]<-

c("Ac1","Cc1","Ec1","Au1","Cu1","Eu1","Ac2","Cc2","Ec2","Au2","Cu2","Eu2") 

   

  ##model for moderator 

  ACE_DZ<-as.data.frame(ACE_DZ) 

  attach(ACE_DZ) 

  M1_DZ <- Ac1*am + Cc1*cm + Ec1*em 

  M2_DZ <- Ac2*am + Cc2*cm + Ec2*em 

   

  M_DZ=cbind(M1_DZ,M2_DZ) 

   

  ##model for phenotype 

  P1_DZ<-

(ac+alpha_c*M1_DZ)*Ac1+(cc+gamma_c*M1_DZ)*Cc1+(ec+epsilon_c*M1_DZ)*Ec1+(a

u+alpha_u*M1_DZ)*Au1+(cu+gamma_u*M1_DZ)*Cu1+(eu+epsilon_u*M1_DZ)*Eu1 

  P2_DZ<-

(ac+alpha_c*M2_DZ)*Ac2+(cc+gamma_c*M2_DZ)*Cc2+(ec+epsilon_c*M2_DZ)*Ec2+(a

u+alpha_u*M2_DZ)*Au2+(cu+gamma_u*M2_DZ)*Cu2+(eu+epsilon_u*M2_DZ)*Eu2 

   

  detach(ACE_DZ) 

  P_DZ<-cbind (P1_DZ,P2_DZ) 

  DZdata<-cbind(M_DZ,P_DZ) 

   

   

  ###data based on P and M 

  MZDZ<-as.data.frame(rbind(MZdata,DZdata)) 

  MZDZ<-rename(MZDZ, c('M1_MZ'='M1','M2_MZ'='M2','P1_MZ'='P1','P2_MZ'='P2')) 

   

   

   

  ######generate data according to GRM 

  params<-cbind(a=c(2.44,1.15,1.93,1.96,2.13,1.09,0.67,1.13,0.87,0.99,1.01,1.63, 

                    1.75,0.80,1.91,0.55,1.06,1.88,0.90,1.94),  

                b1=c(-0.27,-0.21,-0.11,-0.36,0.34,-0.15,0.34,0.23,0.43, 

                     0.04,0.10,0.01,0.37, 0.13,0.00,0.50,-0.24,-0.40,-0.11,-0.24), 

                b2=c(0.84,1.46,1.50,1.29,1.16,1.34,0.99,0.68,0.98,1.22,0.93,0.67,1.49,0.89, 

                     1.29,0.76,1.02,0.80,1.27,0.65), 

                b3=c(2.23,2.01,2.38,2.07,2.07,2.00,2.34,2.33,2.22,2.39,2.27,2.20,2.42,2.29, 

                     2.09,2.32,2.07,2.09,2.27,2.17), 

                b4=c(2.74,2.73,2.82,2.65,2.73,2.78,2.64,2.62,2.83,2.73,2.63, 

                     2.75,2.67,2.92,2.96,2.81,2.74,2.86,2.73,2.73)) 
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  P1<-MZDZ$P1 

  P1<-as.numeric(P1) 

  P1_items<-simIrt(theta=P1, params=params, mod='grm') 

  P1_i<-P1_items$resp 

 

   

   

  P2<-MZDZ$P2 

  P2<-as.numeric(P2) 

  P2_items<-simIrt(theta=P2, params=params, mod='grm') 

  P2_i<-P2_items$resp 

   

   

  ####fit IRT model#### 

  P1_grm<-mirt(data=P1_i, model=1, itemtype='graded') 

  P1_fs<-fscores(P1_grm, method='EAP', full.scores=T, scores.only=T)#, 

response.pattern=P1_i) 

  P1_fs_z<-scale(P1_fs) 

   

   

  P2_grm<-mirt(data=P2_i, model=1, itemtype='graded') 

  P2_fs<-fscores(P2_grm, method='EAP', full.scores=T, scores.only=T)#, 

response.pattern=P1_i) 

  P2_fs_z<-scale(P2_fs) 

   

   

  MZDZ$zyg<-c(rep(1,N),rep(2,N)) 

  

   

  MZDZ_IRT<-cbind(MZDZ$zyg, scale(P1_fs_z), scale(P2_fs_z), MZDZ$M1, MZDZ$M2, 

MZDZ$M1, MZDZ$M2) 

 

  write.table(MZDZ_IRT, file=filenames, col.names=F, row.names=F, sep='  ') 

   

} 

filenames<-as.matrix(c(paste('D:/GxM polytomous 

1000/UE_1_IRT_poly_1000',c(1:100),'.dat',sep=' '))) 

apply(filenames, 1, make.irt.data) 
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