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Abstract 
 

Breast cancer is a common disease in women and has major impacts on health and 

quality of life. About 70% of breast cancers over express ERα, and are classified as 

ER positive breast cancer. Oestrogen receptor alpha (ERα) belongs to the nuclear 

receptor superfamily and is responsible for many effects of oestrogen on normal and 

cancerous breast tissue. Endocrine therapies that block the function of ERα or the 

synthesis of oestrogen have been a mainstay of ERα positive breast cancer treatment. 

However, their efficacy is limited by intrinsic and acquired drug resistance overtime, 

and endocrine resistance remains one of the biggest challenges in breast cancer 

treatment.  

 

In order to investigate the underlying mechanisms of acquired drug resistance, and to 

develop new strategies for breast cancer therapy, I generated a novel long-term 

oestrogen deprived cell line (DH) in serum-free condition. As DH cells are cultured 

in a defined media with known concentrations of growth factors, it provides an ideal 

system to identify and dissect changes in signalling pathways in response to 

hormones and inhibitors in vitro. At the same time, DH cells are representative of ER 

positive breast cancers treated with drugs that reduce the level of oestrogen. It 

enables the identification of survival pathways that could be activated during 

oestrogen deprivation. 

 

By using this cell model, I find that oestrogen stimulation enables cells to up-regulate 

the EGFR level and simultaneously reduces ERα expression at both mRNA and 

protein levels. Once up-regulated, EGFR expression is maintained despite oestrogen 

withdrawal indicating a stable transcriptional re-programming at the EGFR 

promoter. By using the whole genome expression microarrays, I identified a list of 

genes that also show stable changes in gene expression in response to oestrogen, 

suggesting that the oestrogen promotes transcriptional re-programming at multiple 

pathways in cells. 
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In terms of signalling pathways, oestrogen activates the growth promoting MAPK 

pathway in an EGFR dependent manner and a 5-day oestrogen pulse substantially 

increases the resistance of cells to tamoxifen, while cells remain sensitive to the 

EGFR inhibitor, demonstrating a functional switch between ERα and EGFR survival 

pathways. Furthermore, microarray analysis of ERα and EGFR downstream target 

genes shows that there is a general activation of MAPK gene signature after 5 days 

of oestrogen stimulation in DH cells.  

 

In this thesis, I also investigate the molecular mechanism of oestrogen induced 

EGFR up-regulation in ER positive breast cancer cells. c-Myb is an oestrogen 

responsive transcription factor whose expression is regulated by ERα in breast 

cancer cells. I demonstrate that oestrogen treatment leads to ERα dependent c-Myb 

up-regulation in DH cells. I also find that c-Myb transiently locates upstream of the 

EGFR promoter to enhance its expression. As the up-regulation of EGFR in ER 

positive breast cancer could lead to survival pathway switching and endocrine 

therapy resistance, c-Myb could be a good drug target to prevent the likelihood these 

switches and subsequent relapse on endocrine therapies. 

 

The expression of EGFR remains high after the removal of oestrogen suggesting 

there may be epigenetic changes, which maintain the transcriptional re-programming 

stimulated by c-Myb. Bisulphite sequencing however demonstrates EGFR promoter 

DNA methylation pattern is not affected by oestrogen. Meanwhile, ChIP microarrays 

with four different histone modifications show no significant changes around the 

promoter area of EGFR in response to oestrogen. These observations suggest that 

alternative epigenetic modifications or epigenetic alternations at other genes may 

subsequently lead to the stable expression of EGFR in response to oestrogen. 
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1.1#Breast#cancer##
 
Breast cancer is by far the most common malignancy in women and constitutes 

nearly a quarter of all cancer diagnosed worldwide according to the world cancer 

report 2008 (www.iarc.fr/en/publications/pdfs-online/wcr/2008/wcr_2008.pdf). As 

breast cancer is often a classic hormone-dependent tumour, endocrine therapies are 

widely used as effective treatments for hormone sensitive early breast cancers or as 

an adjuvant therapy to prevent relapse for patients who have had their primary 

tumours surgically removed. Despite well-documented benefits, it is known that not 

all patients who are hormone receptors positive respond to endocrine therapies due to 

intrinsic resistances. Additionally, patients who do respond initially often have 

cancer recurrent while on therapy due to acquired resistances. The occurrence of 

endocrine resistances is still one of the major challenges in breast cancer therapy.  

 

1.1.1#Histopathological#Classification#of#breast#cancer#
 
Breast cancer classification divides breast cancers into several categories aiming to 

help the clinical diagnosis and select the appropriate treatment with increased 

efficacy and low toxicity for each cancer patient. Classification of breast cancer is 

usually based on the histological appearance of tissue in the tumour. Breast cancer 

begins in normal breast tissue, which is made up of glands for milk production, 

called lobules, and ducts that connect the lobules to the nipple (Donegan and Spratt, 

2002). These lobular and ductal units extend far into the adjacent fatty, connective, 

and lymphatic tissues to make up the mammary gland. As the ducts branch deeper 

into the breast parenchyma, they form smaller ductal units called the terminal duct-

lobular units that are lined by an inner luminal epithelial cell layer and a outer 

mesenchymal myoepithelial (basal) cell layer (Wellings et al., 1975). Interestingly, 

the percentage of cells that stain positively with Ki67 antibody reveals that 

proliferating cells are predominantly found in the epithelial layer and less frequently 

in the myoepithelial cell layer (Russo et al., 2000). Cancers originating from the 

ducts are knows as ductal carcinomas, while those arising from lobules are known as 

lobular carcinomas. Breast cancers can also be classified as either in situ (non-

invasive) or invasive cancer where cancer started in the lobules or ducts of the breast 
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invades into the surrounding tissue. The majority of in situ breast cancers are ductal 

carcinoma in situ (DCIS). DCIS is an early stage breast cancer that can be treated 

successfully with lumpectomy followed by radiation therapy or tamoxifen as 

adjuvant therapy (Virnig et al., 2010). However, if left untreated, there is a high 

chance of DCIS to become invasive breast cancer. Among the diagnosed breast 

cancers, approximately 80% of the cases are invasive ductal carcinomas making it 

the most common type of breast cancer followed by invasive lobular carcinomas. 

The seriousness of invasive breast cancer is strongly influenced by the stage of the 

diseases, which describes the tumour size (T), whether or not the tumour has spread 

to the lymph nodes (N), and the presence or absence of distance metastases (M) 

(Edge SR, 2010). Once the TNM is determined for a certain tumour, a stage of 0, I, 

II, III, or IV is assigned, with stage 0 being in situ disease, stage I to III being cancer 

within the breast or regional lymph nodes, and stage IV being a metastatic cancer. 

(www.cancerstaging.org/staging/posters/breast8.5x11.pdf) 

 

1.1.2#Molecular#profiling#of#breast#cancer#
 
Breast cancer patients with the same diagnostic profile can have strikingly different 

clinical outcomes. This difference is possibly due to the limitation of classifying 

breast cancer based on histopathological characteristics, which can group 

molecularly distinct breast cancers into the same clinical disease. Perou et al. and 

Sorlie et al. were the first to use DNA microarray analysis to show that breast 

cancers can also be subdivided based on gene expression profile (Perou et al., 2000). 

They used unsupervised hierarchical clustering analysis to group genes on the basis 

of similarity in gene expression pattern. A subset of 496 genes termed the “intrinsic” 

gene set was selected to show the variation in expression between different tumours 

rather than between paired samples (n=22) before and after chemotherapy from the 

same tumour. Using this approach, breast carcinomas can be subdivided into 4 

groups according to different molecular features. The largest difference in overall 

gene expression profile is observed between ER positive and ER negative tumours. 

Tumours in the ER positive group are characterised by the relatively high expression 

of genes associated with breast luminal cells, therefore it is classified as luminal-like. 
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ER negative tumours can be further divided into basal-like and HER2-

overexpressing tumours. The forth group is the normal-like tumours. Follow-up 

studies that using the intrinsic gene set in conjunction with a gene subset that 

correlated with patient survival further divided the ER positive / luminal-like breast 

cancer into at least two subgroups, each with a distinctive expression profile. A 

difference in disease outcome was observed for tumours classified as luminal A 

versus luminal B. Luminal A tumours generally have a higher ER protein level and 

better disease outcome comparing with the luminal B tumours (Sorlie et al., 2001). 

Subsequently, DNA microarray analysis has been used to identify gene signatures for 

poor prognosis, which provides a novel strategy to select patients who would benefit 

from adjuvant therapy (van 't Veer et al., 2002). Later, the composition of the 

intrinsic gene set and breast cancer molecular classification was refined in a study 

with larger number of tumour samples (n=268) from three independent data sets. The 

refined intrinsic gene subset contains 534 genes, which confirms the five molecular 

subtypes of breast cancer (luminal A, luminal B, basal-like, HER2-overexpressing 

and normal-like). This study also included tumours from 18 carriers of BRCA1 and 2 

carriers of BRCA2 mutations. The results indicate that tumours with mutations in the 

BRCA1 gene predisposes for the basal-like subtype, which are ER negative and 

associated with poor prognosis (Sorlie et al., 2003). 
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1.2 Oestrogen signalling mediated by oestrogen receptors 
 

1.2.1#ERα#and#ERβ#
 
As discussed in the previous section, the biggest difference in the overall gene 

expression pattern across various breast cancer subtypes was the level of ER. At the 

same time, ER is expressed in more than 70% of the primary breast cancers making 

it one of the most important therapeutic targets for breast cancer (Stierer et al., 1993). 

ER belongs to the nuclear receptors super family which have the ability to bind 

directly to the DNA and regulate gene expression upon oestrogen stimulation 

(Mangelsdorf et al., 1995). ERα and ERβ are the two main isoforms of human ER, 

encoded by two separate genes termed ESR1 and ESR2, respectively (Enmark et al., 

1997). Although ERα and ERβ are the products of independent genes, they share 

homology at the DNA and ligand binding domains (96% and 58%, respectively) 

(Mosselman et al., 1996). Both receptor subtypes bind oestrogen with a similar 

affinity and activate the expression oestrogen responsive reporter system in an 

oestrogen dependent manner (Kuiper et al., 1997). However, they display distinct 

tissue distributions and have different functions among cells (Gustafsson, 1999, 

Younes and Honma, 2011). In terms of human breast, both receptors were shown to 

be expressed in the normal and cancerous human mammary gland by 

immunohistochemistry. The staining of ERα was restricted to the cell nucleus of 

luminal epithelial cells lining ducts and lobules, while ERβ staining was detected in 

the nucleus of a variety of cells including myoepithelial, surrounding stromal as well 

as luminal epithelial cells (Figure 1.1) (Speirs et al., 2002). For breast cancer, 

majority of the studies have been focused on the functions of ERα, which is vital for 

normal mammary development, breast tumorigenesis and progression. In 

comparison, little is known about the function of ERβ in breast cancer (Murphy and 

Leygue, 2012). It has been suggested as tumour suppressor in ovarian cancer 

(Lazennec, 2006). Furthermore, studies done with human breast cancer cell lines 

showed that ERβ was able to block cell proliferation and tumour formation by 

causing cell cycle arrest (Paruthiyil et al., 2004). Therefore, activation of ERβ 

expression has been suggested as an alternative therapeutic approach to treat breast 

cancer (Williams et al., 2008). Interestingly, there are also published data suggesting 
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ERβ expression correlates with pro-proliferation activity as well as anti-proliferative 

activity in normal mammary cells (Cheng et al., 2004, Helguero et al., 2005). At the 

transcriptional level, ERβ acts like a modulator of ERα mediated gene transcription 

through unknown mechanisms (Lindberg et al., 2003).  

 

 
Figure 1.1 Immunochemistry staining of ERα and ERβ in normal mammary 
gland.  

A) ERα is localised to the luminal epithelial cells lining the breast ducts (arrows). B) 
Serial section of A) stained with ERβ. ERβ staining is observed in myoepithelial 
cells (M) and stromal fibroblasts (F) as well as luminal epithelial cells (D) (arrows). 
(Picture taken from Speirs et al., 2002) 
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1.2.2#ERα#structure#
 

 
 

Figure 1.2 Structure of oestrogen receptor. 

The ERα is composed of a N-terminal domain, a DNA binding domain, a hinge 
region, a ligand-binding domain, and a variable domain. The transactivation function 
(AF-1) region contains the N-terminal domain and the DNA binding domain, which 
can by phosphorylated at multiple sites through various pathways. The AF-2 region 
of ligand-binding domain directly interacts with co-activators, SRC1, GRIP1 or 
AIB1 in the presence of oestrogen (purple), while it binds to the co-repressors 
NCOR1 and SMRT in the presence of tamoxifen (blue). 
 
Like other nuclear receptors, ERα and ERβ are comprised of several conserved 

functional domains including a N-terminal domain (NTD), a DNA binding domain 

(DBD), a hinge region, a ligand-binding domain and a variable domain (Figure 1.2) 

(Beato et al., 1995). The NTD of ERα harbours a ligand independent activation 

function (AF-1), which was originally identified by its ability to stimulate 

transcription in an ERα deletion mutant containing only the NTD and DBD (Lees et 

al., 1989). The ligand independent activity of AF-1 is mediated by phosphorylation 

(Lannigan, 2003), which will be discussed in details in section 1.2.2. The NTD varies 

between ERα and ERβ. For example, ERα can directly bind to the TATA box-

binding protein (TBP) while ERβ cannot (Warnmark et al., 2001). The difference in 

TBP binding between the receptors may imply ERα and ERβ have different sets of 

target genes.  

 

Adjacent to the N-terminal transactivation domain is a conserved DBD of ER, which 

is composed of two non-equivalent cysteine rich zinc fingers that are responsible for 

DNA binding (Green et al., 1988). The DBD of both ERα and ERβ bind to the 

oestrogen response element (ERE) composed of a palindromic DNA sequence 

(GGTCAnnnTGACC) (Klinge, 2001). The ERE can reside either proximally to the 
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target gene promoter area or enhancer region that is distant from the transcription 

initiation site (Tsai and O'Malley, 1994).  

 

The hinge domain serves as flexible region connecting the DBD with LBD. It 

contains nuclear localisation signal, which gets exposed during the ligand induced 

conformational change of the receptor (Kumar et al., 2011). The LBD contains 

another transactivation function (AF-2) region that is ligand dependent. The hinge 

region of ERα promotes the synergy between AF-1 and AF-2 in response to 

oestrogen (Zwart et al., 2010).  

 

Despite low sequence homology in LBDs among the nuclear receptor superfamily, 

the 3 dimensional structures of the LBD monomers are similar (Bain et al., 2007). 

Upon ligand binding, the receptors undergo conformational change and forms dimers 

that are recruited to target gene sites. The LBD of ER consists of 12 α helices that 

dock the ligand-binding pocket for both agonist like oestrogen and antagonist like 

tamoxifen (Brzozowski et al., 1997). After oestrogen is bound to the receptor, helices 

3 and 11 are held together by a network of hydrogen bonds to keep the ligand in the 

binding pocket, while helix 12 is positioned to interact with co-activators to form an 

active transcription complex (Celik et al., 2007). However, when tamoxifen is bound 

to the receptor, helix 12 is placed in a position that blocks the co-activators 

recognition region (Shiau et al., 1998). The region within LBD that is responsible for 

co-activators binding is AF-2. It was identified by its ability to stimulate 

transcription only in the presence of ligand (Webster et al., 1988, Lees et al., 1989). 

Upon oestrogen binding, helices 3, 5 and 12 form a surface to interact with co-

activators like the p160 protein family through the LxxLL motif (Heery et al., 1997, 

Plevin et al., 2005). The p160 protein family is the most characterised of ER co-

activators that consists of 3 member proteins, which are SRC1 (also known as p160-

1, N-CoA1), GRIP1 (also known as SRC-2, TIF2, N-CoA1) and AIB1 (also known 

as SRC-3, P/CIP, ACTR, RAC3, TRAM1) (Nilsson et al., 2001). They are recruited 

by ER onto oestrogen responsive genes in a cyclic manner to activate transcription 

(Shang et al., 2000). In contrast, the partial antagonist recruits co-repressors like 

NCOR1 and SMRT.  
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The ER co-activators, p160 protein family, contain two intrinsic transcriptional 

activation domains (AD1 and AD2) (Xu and Li, 2003). The AD1 region is 

responsible for the interaction with other co-activators like CBP and p300 that 

facilitate histone acetyltransferase (HAT) activity (Li et al., 2000), while AD2 is 

responsible for interaction with histone methyltransferase like CARM1 and PRMT1 

(Strahl et al., 2001, Koh et al., 2001). Although the C-terminal domains of SRC-1 

and AIB-1 also have HAT activity, it is much weaker than those in CBP and P300 

(Chen et al., 1997, Spencer et al., 1997). These chromatin-remodelling enzymes are 

recruited to oestrogen responsive genes in a complex with the p160 protein family 

co-activators and ER to activate the transcription in a ligand dependent manner. 

Members of the p160 protein family have also been implicated in breast cancer. It 

has been shown that tumours with increased expression of SRC-1 together with high 

expression of the epidermal growth factor receptor, HER2, have a greater probability 

of recurrence on tamoxifen treatment (Fleming et al., 2004, Redmond et al., 2009). 

AIB-1 is involved in normal breast development and breast cancer tumourgenesis. It 

is amplified in around 10% and overexpressed in 64% of primary breast cancers 

(Anzick et al., 1997). Together, these observations indicate that altered ER co-

activators may contribute to development of breast cancer.  

 

Next to the LBD is the variable domain, which contains 42 amino acids. It was found 

to modulate transcription and also impact the receptor dimerisation in the presence of 

oestrogen (Koide et al., 2007, Yang et al., 2008).  

 

1.2.3#ERα#activation#
 
ERα can function through three different pathways in response to oestrogen, which 

are the genomic pathway, non-genomic pathway and ligand independent pathway 

(Figure 1.3). 
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Figure 1.3 Different pathways of ERα activation.  

The genomic pathway is illustrated with red arrows. Oestrogen diffuses through the 
membrane to bind to ERα in the nucleus. Oestrogen causes conformational changes 
throughout the receptor leads to receptor dimerisation, followed by binding onto the 
oestrogen responsive genes. The ligand independent pathway is demonstrated with 
blue arrows. In the absence of ligand, ERα is phosphorylated at Ser 118 and Ser 167 
by MAPK pathway and PI3K pathway, respectively. The phosphorylation is able to 
facilitate conformational changes and causes un-liganded ERα to dimerise and 
transactivate oestrogen responsive genes. In addition to the genomic and ligand 
independent pathway, there are a series of non-genomic pathways of ERα facilitated 
by the newly identified membrane associated ER, GPR30, and cytosolic or 
membrane associated classic ERα (green arrows). Oestrogen causes rapidly 
activation of several signalling transduction pathways like the MAPK pathway. 
Activated receptors are recycled by proteasome degradation. 
 

1.2.3.1%The%genomic%pathway%%
 
ERα proteins are found primarily in the nucleus, where they form complex with heat 

shock proteins like hsp90 to inhibit their action (Picard, 2006). In the genomic 

membrane associated ER

GPR30
EGFR

E

ER

E
P
P

P
P

Degradation

Oestrogen responsive 
genes

Nucleus

Membrane

E

E

E

ERER
E

E

E

E

Genomic pathway
E

TFs

MAPK downstream 
genes

MAPK
pathway

Ligand Independent
 pathway

PI3K
pathway

ERER

P

ER

E

Non-Genomic pathway

118 167

Proliferation



 26 

pathway, the oestrogen diffuses through the membrane and binds to the nuclear ERα, 

which causes conformational changes lead to displacement of the heat shock protein 

and dimerisation of the receptors. This is followed by co-activators recruitment and 

chromatin binding at the promoter or enhancer regions of the oestrogen responsive 

genes (Figure 1.3 red arrows) (Carroll and Brown, 2006). The conformation changes 

also reveal several phosphorylation sites at the AF-1 region of ERα. ERα is 

predominantly phosphorylated on the serine (Ser) residues, where Ser 118 is the 

major phosphorylation site in response to oestrogen (Joel et al., 1995). It is 

phosphorylated by TFIIH and cyclin dependent kinase (CDK) 7 (Chen et al., 2000). 

Ser 104 and Ser 106 are phosphorylated to a lesser extent by CDK2 (Rogatsky et al., 

1999). Although multiple phosphorylation sites have been reported in ERα, the exact 

role of phosphorylation at individual or multiple sites is still underexplored. However, 

it has been shown that a combination of phosphorylation sites within ERα rather than 

any individual site may be important for the transcriptional activity of the receptor 

(Le Goff et al., 1994). Meanwhile, a wide range of effects have been demonstrated in 

the cell culture system such as transcription regulation, receptor dimerisation, 

interactions with ligand or DNA and co-activators recruitment (Murphy et al., 2011). 

 

1.2.3.2%The%ligand%independent%pathway%
 
In the ligand independent pathway, ERα is activated through post-translational 

modifications such as phosphorylation by cell signalling transduction pathways 

including MAPK pathway and PI3K pathway (Figure 1.3 green arrows) (Lannigan, 

2003). The receptor can also be phosphorylated at Ser 236 by protein kinase A 

(PKA), which is important for receptor dimerisation (Chen et al., 1999b). However, 

its role in the ligand independent pathway of the receptor is unknown. Upon 

activated by phosphorylation, the un-liganded ERα is able to dimerise and 

transactivate oestrogen responsive genes (Bunone et al., 1996, Maggi, 2011).  

 

1.2.3.2.1!EFG!receptor!family!and!MAPK!pathway!
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 The action of ERα can be coupled to epidermal growth factor (EGF) signalling, 

where the activation of epidermal growth factor receptor (EGFR) leads to ERα 

phosphorylation at Ser 118 via the MAPK pathway in the absence of oestrogen. 

(Bunone et al., 1996, Kato et al., 1995). In the presence of ligand, the ERα 

phosphorylation of Ser 118 is not dependent on the p42/44 MAPK pathway as shown 

in MCF-7 cells (Joel et al., 1998). Interestingly, oestrogen can also lead to rapid 

activation of MAPK (within minutes) (Improta-Brears et al., 1999), and MAPK 

pathway inhibitors are able to prevent oestrogen induced mitogenesis in MCF-7 cells 

(Lobenhofer et al., 2000). All these suggest a bidirectional crosstalk between the 

ERα and MAPK pathway mediated signalling, which will be discussed further in 

section 1.2.3.3.  

 

In general, MAPK pathway is activated through growth factors receptors like EGFR. 

EGFR is a receptor tyrosine kinase (RTK) belonging to the transmembrane EGF 

family, which contains 3 other members that are HER2, HER3 and HER4. The 

receptors are made up of an extracellular ligand-binding region, a transmembrane 

spanning region and a cytosolic tyrosine kinase domain (Wells, 1999). A variety of 

ligands have been shown to activate EGF receptors. For instance, EGF and TGF-α 

are specific to EGFR whilst heregulin binds to HER3 and HER4. However, the 

ligand for HER2 is undefined. Both EGFR and HER4 are autonomous receptors, 

which undergo dimerisation followed by producing intracellular signals in the 

presence of the ligand. In the meantime, these receptors can interact with other EGF 

receptors and regulate their downstream effectors. For example, EGFR monomer 

will pair with HER2 and HER3 but not HER4 upon stimulation, but HER4 is able to 

pair with HER2. In contrast to HER2, HER3 can be recognised by extracellular 

ligands but has an impaired cytosolic kinase domain. Therefore, it serves as a 

docking partner for EGFR and HER2. 

 

In the absence of growth ligands, the extracellular ligand-binding region of EGFR is 

locked in an inactive conformation by a β-hairpin loop, called the dimerisation loop, 

which prevents the formation of a high affinity ligand-binding site composed of 

domain I and III (Figure 1.4) (Bublil and Yarden, 2007). Upon binding of the ligand, 
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the receptor monomer is stabilised in an active conformation to expose the 

dimerisation loop and mediate receptor dimerisation. Binding of the ligand also 

induces conformational changes at the cytosolic kinase domain. The EGFR has a bi-

lobular kinase structure consisting of a N-terminal lobe (N-lobe) and a C-terminal 

lobe (C-lobe). In the inactive conformation, the two leucine (L) residues from the 

activation loop are packed against the helix α-C from the N-lobe. After dimerisation, 

the kinase domain from two receptors are brought close to each other, where the C-

lobe of one kinase attaches to the N-lobe of the other. The conformational change 

allows re-orientation of the activation loop and relief of the auto-inhibited kinases 

activity. The kinase activity causes phosphorylation of multiple tyrosine (Y) residues 

at the EGFR C-terminus including Y992, Y1045, Y1068, Y1148 and Y1173 

(Jorissen et al., 2003).  

 

 
 

Figure 1.4 The structure of inactive and active EGF receptors. 

A schematic representation of the EGF receptor structure is shown. Before binding 
of ligand, domain II and IV from the extracellular domain of the receptor are locked 
together by the dimerisation loop. In the intracellular kinase domain, L837 and L834 
from the activation loop are packed against the helix α-C to inhibit the kinase activity 
of the receptor. Upon binding of ligand (yellow), major conformational changes 
happen throughout the receptor. The dimerisation loop is exposed to mediate 
receptor dimerisation in the extracellular domain. The close proximity of two kinase 
domains allows the C-lobe from one kinase domain to interact with the N-lobe from 
another, which actives the kinase domain by relief of auto-inhibition. The activated 
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kinase phosphorylates tyrosine residues (purple) on the C-terminal tail of its 
dimerisation partner. The figure was modified from figure 2 of reference, Bublil and 
Yarden, 2007. 
In the growth promoting MAPK pathway, the phosphorylated residues at the C-

terminal of EGFR trigger recruitment of adaptor proteins such as SHC, Grb2 and 

SOS to activate the small GTPase Ras (Pearson et al., 2001). Raf kinase is then 

activated by active Ras to initiate the signalling cascade. The three components of 

the pathway (Raf-1, MEK1/2 and ERK1/2) are held together by the scaffolding 

protein kinase suppressor of Ras1 (KSR1) at the cell surface (Roy et al., 2002). At 

the end of the cascade, the phosphorylated ERK1/2 leaves the plasma membrane and 

enters into the nucleus, where it phosphorylates and activates a number of genes that 

lead to cell survival and proliferation.  

 

Altered EGFR expression has been reported in a variety of cancers including breast 

cancer (Jorissen et al., 2003). A number of mechanisms of EGFR up-regulation have 

been proposed in the literature such as gene amplification, overexpression of 

receptor/ligand protein (Bhargava et al., 2005). However, no EGFR mutations have 

been identified in the breast cancer so far. EGFR expression is significantly 

associated with loss of sensitivity towards endocrine therapy and overall survival in 

breast cancer (Nicholson et al., 1994, Rimawi et al., 2010). In breast cancer, the 

increased expression of EGFR is generally seen in ER negative, progesterone 

receptor (PR) negative and HER2 negative (triple negative) breast cancers (Rakha et 

al., 2008). These findings are consistent with gene expression profiling studies, 

which identify basal-like ER negative breast cancer apart from HER2 overexpressing 

breast cancer (Perou et al., 2000). In addition, EGFR is a positive marker for the 

basal-like breast carcinomas (Rakha et al., 2007). Another subtype of breast cancers 

that have high expression of EGFR is the metaplastic breast cancer, which is a rare 

but severe form of invasive ductal breast cancer (Reis-Filho et al., 2005). However, 

studies have suggested that this form of cancer is also a subtype of basal-like breast 

tumours (Reis-Filho et al., 2006). Aberrant EGFR and HER2 receptor signalling has 

been shown to hyperactive the MAPK pathway (Kurokawa and Arteaga, 2003). 

Furthermore, activation of MAPK pathway has been shown to associate with 
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oestrogen unresponsiveness and endocrine therapy resistance using cell model 

system (McClelland et al., 2001). 

1.2.3.2.2!PI3K/Akt!pathway!
 
Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is often 

implicated in human breast cancer (Perez-Tenorio and Stal, 2002). Similar to the 

MAPK pathway, the PI3K/Akt signalling pathway is also a downstream target of 

RTK like EGFR and is well known to regulate cell proliferation and survival (Franke 

et al., 2003). RTK mediated activation of PI3K leads to the conversion of 

phosphatidylinositol-4, 5-biphosphate (PIP2) to phosphatidylinositol-3, 4, 5-

triphosphate (PIP3). PIP3 then recruits Akt to the plasma membrane, where it 

becomes phosphorylated by phosphoinositide-dependent kinase 1 (PDK1) at 

threonine (Thr) 308 and by PDK2 at Ser 473 (Cantley, 2002). In the ligand 

independent pathway of ERα, the receptor can be activated through the PI3K/Akt 

signalling pathway by phosphorylation at Ser 167 (Sun et al., 2001). Moreover, Akt 

overexpression can lead to up-regulation of oestrogen responsive genes, and protect 

cells from tamoxifen-induced apoptosis (Campbell et al., 2001). Recently, it has been 

shown that ER positive breast cancer cells that grew in low oestrogen environment 

have an enhanced sensitivity towards a combination of PI3K/Akt pathway inhibitors 

such as rapamycin and LY294002 (Ray et al., 2011). Collectively, these data suggest 

targeting PI3K/Akt pathway can be an alternative strategy in treating endocrine 

resistant breast cancers. 

 

1.2.3.3%The%non6genomic%pathway%
 
Oestrogen also has rapid stimulatory effects on a variety of signal transduction 

proteins (Figure 1.3 green arrows). This non-genomic pathway of ERα is mediated 

by a small fraction of ERα that is localised near or at the plasma membrane as well 

as a newly identified transmembrane G protein-coupled receptor (GPCR) GPR30 

(Prossnitz et al., 2008). The classical steroid receptor, ERα, is predominantly 

localised in the nucleus, where it functions as a transcription factor that regulates 

gene expression. In the non-genomic pathway, it acts as a component of a signalling 

transduction cascade. As ERα does not have intrinsic kinase activity, it is likely to 
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function like an adaptor protein to mediate the rapid oestrogen induced signalling 

responses, like stimulation of growth factor receptors and activation of MAPK and 

PI3K/Akt signalling cascades (Revankar et al., 2005, Song et al., 2002, Haynes et al., 

2003). ERα localisation to the membrane can be mediated by several mechanisms. 

Palmitoylation is a post-translational modification of ERα, which involves the 

attachment of a long palmitic acid to the receptor. This long fatty acid chain 

increases protein hydrophobicity and thereby allows ERαs to anchor into the plasma 

membrane, where they are found to associate with caveolin-1 (Marino and Ascenzi, 

2008). The membrane localisation of ERα can also be mediated by interaction with a 

membrane adaptor protein, Shc (Song et al., 2004). Shc also gets activated in 

response to oestrogen stimulation, leading to Shc-Grb2-Sos complex formation and 

activation of the MAPK pathway (Song et al., 2002). In the meantime, oestrogen 

induces complex formation of ERα with non-RTK, Src, and the PI3K subunit p85 to 

activate two important pathways that are the Src/Ras/MAPK pathway and PI3K/Akt 

signalling (Simoncini et al., 2000, Moriarty et al., 2006).  

 

GPR30 is a classic GPCR that is found to be involved in the oestrogen induced 

MAPK pathway activation in breast cancer cells that lack ERα (Filardo et al., 2000). 

Therefore, it is identified as a membrane associated oestrogen receptor. Interestingly, 

ERα antagonists like tamoxifen and ICI 182,780 can also induce the GPR30 

dependent activation of MAPK pathway. The mechanism of the oestrogen induced 

activation of MAPK pathway is through the transactivation of EGFR receptor by 

GPR30 (Daub et al., 1996).  

 

Although the genomic, ligand independent and non-genomic pathways are present as 

separate activation pathways of ERα, these signalling pathways are not mutually 

exclusive but rather complementary, with many interactions between them. For 

example, the bidirectional signalling between the ERα and EGFR, where the 

activated EGFR signalling cascade causes the ligand independent activation of ERα, 

and membrane associated ERα is able to transactivate the EGFR through the non-

genomic pathway. This enables a broader range of genes to be regulated by ER in 

response to oestrogen, and making breast cancer a difficult disease to treat.  
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1.3#Transcriptional#and#epigenetic#regulation#of#oestrogen#signalling#in#
breast#cancer#cells#
 

1.3.1#Role#of#transcription#in#gene#regulation##
 
Many biological processes are regulated, spatially and temporally, at the level of 

transcription. Physiological signals or stimulus outside cells are transduced to the 

nucleus through a wave of complex molecular interactions, which can either cause 

activation or attenuation of gene expression by altering the interactions of 

transcriptional factors with their target genes. The appearance and behaviour of 

cancer cells is a consequence of failure of normal regulation of genes involved in cell 

growth and differentiation.  

 

Transcription occurs in the context of chromatin, where a part of the DNA carrying 

the genetic code is copied into corresponding messenger RNA (mRNA) (Alberts et 

al., 2002). Chromatin is a highly organized structure, which is generally inhibitory to 

transcription. Therefore, a number of steps are required to activate transcription from 

a nucleosomal template. One of the first steps is the recruitment of chromatin 

remodelling proteins and co-activators by specific transcription factors to target 

genes. Collectively, they set an appropriated chromatin environment for transcription 

initiation and also facilitate the recruitment of pre-initiation complex (PIC) 

(Orphanides and Reinberg, 2002).  

 

In eukaryotic cells, genes are transcribed by three different DNA-dependent RNA 

polymerase enzymes (Blackwell and Walker, 2006). Only RNA polymerase II 

(RNAP II) is responsible for transcribing protein-coding genes (mRNA) and several 

micro RNAs. As RNAP II on its own is not able to initiate transcription in a selective 

and effective manner, other factors are required to convert it from a transcriptionally 

inert form to a highly processive elongating form (Kornberg, 2007). These factors 

are called the general transcription factors (GTRs), which include TFII (transcription 

factor for RNA polymerase II) A, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. Among 

GTRs, TFIID is a key player that is involved in the promoter recognition (Nikolov 

and Burley, 1997). TFIID is multi-subunit complex composed of the TATA binding 
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protein (TBP) and at least 13 TBP associated factors (TAFs). Upon stimulation, TBP 

binds to DNA together with TAFs to form the TFIID complex. The complex is 

stabilized by the binding of TFIIA and TFIIB. TFIIF then recruits Pol II to the 

complex, which follows by the association of TFIIE and TFIIF. Together, they form 

the PIC to pre-initiate the transcription. After pre-initiation, it needs to pass a stage 

called promoter clearance before engaging into productive elongation. During this 

stage, the PIC is partially disassembled to allow the recycling of GTRs (Zawel et al., 

1995). Once the promoter is cleared, the next round of transcription can be 

reinitiated. Several histone modifications are deposited on nucleosomes during this 

stage to mark active transcription, such as H3K4 trimethylation and H2B 

monoubiquitylation (Weake and Workman, 2010). 

 

Following transcription initiation, the carboxy terminal domain (CTD) of RNAP II is 

phosphorylated on Ser5 by TFIIH (Sims et al., 2004). The resulting RNAP II 

complex is found to be paused at most promoters by negative elongation factors 

(Saunders et al., 2006). Other cofactors are required to stimulate further CTD 

phosphorylation and transcription elongation. For active genes, CTD is further 

phosphorylated at Ser2 by positive transcription-elongation factor-b (p-TEFb) to 

produce a stable elongation complex (Ni et al., 2004). Chromatin modification also 

plays an important role during elongation. For instance, a productive elongation is 

usually associated with methylation on H3K36 (Krogan et al., 2003). Termination is 

the final stage of transcription cycle, during which the mRNA is cleaved, 

polyadenylated and transported out of nucleus (Proudfoot et al., 2002). 

 

1.3.2#Epigenetic#maintenance#of#gene#expression#
 

Transcriptional regulation is responsible for the rapid activation of gene expression 

in response to stimuli. Epigenetic modifications not only help transcription regulators 

to facilitate the changes in gene expression after stimulation but also stably maintain 

the expression pattern after initiation of transcriptional re-programming. For 

example, the maintenance of Hox genes expression pattern after embryo 

development. Hox genes are expressed with precise boundaries along the anterior-
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posterior axis of the drosophila embryo (Francis, 2009). Unlike many patterning 

genes expressed transiently, Hox genes expression is maintained through to adult 

stages by chromatin remodelling proteins called polycomb group proteins (PcGs) 

(Cao et al., 2002).  

 

1.3.2.1%Histone%Modification%
 

In eukaryotic cells, the hereditary information is stored in the form of DNA that is 

packed in various levels of condensation in the nucleus. DNA is first wound around a 

core histone octamer, two each of H2A, H2B, H3 and H4 (Kornberg, 1977). This 

core structure sealed with linker histone is then held together by linker DNA to form 

a protein DNA complex called a nucleosome. The nucleosome core particles are 

predominantly globular except their un-structured N-terminal “tails.” These histone 

tails are subjected to several different types of covalent post-translational 

modifications (Kouzarides, 2007). Although the histone tail modifications have little 

direct effect on individual nucleosomes, they dynamically shift the chromatin fibre to 

a more open or closed state by affecting the contact between different histones in 

adjacent nucleosomes or by recruiting other binding partners to the chromatin 

(Goldberg et al., 2007).  

 

1.3.2.1.1!Histone!acetylation!
 
Among all the histone modifications, acetylation has the most potential to create an 

open chromatin conformation since it neutralises the negative charges of the lysine 

molecules. Acetylation on histone is often found to be enriched at promoter regions 

of active genes, and the enrichment significantly correlates with transcription activity 

(Pokholok et al., 2005). A genome wide study of histone modifications in five human 

cell lines showed that H3Ac modifications are tightly associated with TSS in actively 

transcribed genes, while H4Ac modifications have more widespread distributions 

(Koch et al., 2007). Acetylation at H3K9 (H3K9Ac) and H3K14 (H3K914Ac) has 

also been shown to be important for TFIID recruitment and transcription initiation of 

the human interferon-β gene (Agalioti et al., 2002). H3K9 is an interesting position 
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that embraces two histone modifications. H3K9Ac is a marker for gene activation, 

while lysine 9 is often methylated in heterochromatin. Histone acetylation is 

catalysed by histone acetyltransferases (HAT) enzyme families, which can be 

divided into three major groups, GNAT, MYST, and CBP/p300 (Sterner and Berger, 

2000). HATs do not directly interact with DNA but rather with DNA binding 

activators, and function as transcriptional co-activators to facilitate the activation of 

GTFs and initiation of RNAP II (Wade et al., 1997). 

 

In contrast, histone de-acetylation induces compaction of the chromatin fibre and 

leads to repression of expression. Therefore, they generally function as 

transcriptional repressors (Kuo and Allis, 1998). Histone acetylation is removed by 

histone deacetylases (HDACs). HDAC activity can be pharmacologically modified 

using HDAC inhibitors such as Trichostatin A (TSA) (Yoshida et al., 1995). Studies 

using these agents show that changes in acetylation patterns can activate specific 

genes that are responsible for cell cycle alterations and induction of apoptosis, which 

makes HDAC inhibitors attractive candidates for cancer therapy (Taddei et al., 

2005). 

1.3.2.1.1!Histone!methylation!
 
Histone methylation is catalysed by histone methyltransferases (HMT), which 

happens at various sites on histones. It can be broadly divided into lysine and 

arginine methylation (Zhang and Reinberg, 2001). Protein arginine 

methyltransferases (PRMTs) catalyse the transfer of methyl groups from S-adenosyl-

L-methionine (SAM) to the guanidino nitrogens of arginine residues. Lysine 

methylation is catalysed by SET domain containing HMTs. Unlike acetylation, 

histone methylation can either be activator or repressor for transcription depending 

on the chromodomain-containing proteins recruited by these methylation marks 

(Kouzarides, 2002). For example, methylated H3K4 recruits chromodomain helicase 

DNA-binding protein 1 (CHD1) to the site of modification, which is an activator for 

transcription (Pray-Grant et al., 2005). While, H3K9me3 recruits binding of HP1 and 

is associated with gene silencing (Smallwood et al., 2007). 

Modifications of mono-, di- and tri-methylated H3K4 are all linked to gene 
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activation. All three of these modifications peak at TSS of active transcribed genes. 

While, H3K4 dimethylation (H3K4me2) will also be carried into the coding region 

(Barski et al., 2007). Furthermore, the distribution of these H3K4 methylation 

markers progressively gets more localised to the vicinity of TSSs as the modification 

moves from mono- to di- and tri-methylation in highly expressed genes. Meanwhile, 

high levels of H3K4me1 combined with low H3K4me3 was suggested as a signature 

for active enhancers (Heintzman et al., 2007). 

H3K27 trimethylation is an interesting repressive histone modification that is 

mediated by PcGs (Lee et al., 2006). The PcGs in mammalian consist of two main 

multimeric protein complexes called polycomb repressor complex 1 (PRC1) and 

polycomb repressor complex 2 (PRC2) (Simon and Kingston, 2009).  EZH2 of 

PRC2 contains the HMT activity, which catalyses the methylation on H3K27. 

Interestingly, EZH2 can also be recruited by H3K27 trimethylation, indicating a 

potential role of this histone modification in epigenetic cellular memory (Hansen et 

al., 2008). Meanwhile, a specific modification pattern called bivalent domains is 

found to associated with development genes in embryonic stem cells (Bernstein et 

al., 2006). They consist of both repressive H3K27me3 marks and active H3K4me3 

marks. It was proposed that the exist of bivalent domains poised differentiation genes 

in a silenced state while keeping them ready for activation (Vastenhouw et al., 2010). 

Therefore, mis-regulation of PcG proteins can also trigger genomic instability and re-

programming of gene expression, and ultimately leads to diseases like cancer. 

 

1.3.2.1%DNA%methylation%
 

DNA methylation is a covalent modification of DNA that provides a direct 

mechanism to regulate gene expression (Bird, 2002). In mammalian cells, nearly all 

DNA methylation occurs on cytosine at position C5 of CpG dinucleotides. DNA 

methylation is carried out by enzymes called DNA methyltransferases (DNMTs) 

(Robertson et al., 1999). Three enzymatically active DNMTs have been identified in 

mammalian cells: DNMT1, DNMT3a, and DNMT3b. DNMT1 is the most abundant 

in somatic cells, which helps to maintain the methylation patterns. While, DNMT3a 
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and DNMT3b are de novo DNMTs that establish the primary methylation patterns on 

the genome following embryonic fertilization (Okano et al., 1999). Another key 

player in the DNA methylation is the methyl-CpG binding proteins, which are 

involved in recognising of methylation markers (Bird and Wolffe, 1999, Hendrich 

and Bird, 1998). Methyl-CpG binding proteins such as MBD2 and MeCP1 function 

as transcriptional repressors by interacting with co-repressor complexes containing 

HDACs (Ng et al., 1999, Feng and Zhang, 2001). 

 

Regions of the genome that have high concentration of CpGs are defined as CpG 

islands (CGIs) (Saxonov et al., 2006). CGIs are generally unmethylated, and are on 

average between 200-1000 bp in length around the gene promoter area, but may also 

extend into gene coding regions. Approximately 50% of annotated genes’ TSSs are 

associated with a CGI, making this the most common type of promoter and a key 

feature in promoter recognition (Deaton and Bird, 2011). DNA methylation of these 

islands controls gene activity either at a local level through effects on a single gene’s 

promoter and enhancer or at global level through mechanisms that influence many 

genes within an entire chromosome (Jaenisch and Bird, 2003). Hypermethylation of 

CGIs are usually associated with transcriptional repression such as silencing of 

developmentally regulated and imprinted genes, while actively transcribed genes 

tend to have a hypomethylated promoter (Reik, 2007). Therefore, DNA methylation 

provides a stable epigenetic effect on transcription regulation, which allows the 

transcriptional machinery to focus on genes that are essential for the maintenance of 

the normal physiological functions of the cell.  

 

DNA methylation is used by the cell to guard gene expression and chromosomal 

stability. In diseases like cancer, alterations in global and regional methylation 

patterns happen during early development of the pathogenesis such as the promoter 

hypermethylation at tumour suppressor genes (Egger et al., 2004). In breast cancers, 

genes inactivated by methylation largely fall into several categories including cell 

cycle regulation, steroid receptor signalling, cancer cell viability, cell adhesion and 

invasion process (Yang et al., 2001b). For instance, the cyclin dependent kinase 

inhibitor, p16INK4a, is a tumour suppressor gene that regulates the transition from G1 
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to S phase. Hypermethylation is frequently detected at the 5’ promoter and the first 

exon site in both breast cancer cell lines and primary breast cancers (Herman et al., 

1995, Woodcock et al., 1999). The classic example for promoter methylation of a 

steroid receptor is ERα (Lapidus et al., 1996). ERα level is an important marker for 

endocrine therapy. Most ER-positive breast cancer lines as well as normal breast 

tissue are unmethylated at ERα CGIs. In contrast, most ER-negative cancer cell lines 

have reduced ERα expression caused by promoter methylation, and are resistant to 

endocrine therapy (Lapidus et al., 1998). Furthermore, the expression level of 

DNMTs, especially DNMT3b, is elevated in ER-negative cancer cell lines and is 

significant correlated with ERα negativity in breast cancer patients (Girault et al., 

2003). Treating both DNMT and HDAC inhibitors to ER-negative breast cancer cell 

lines can trigger re-expression of ERα mRNA and protein, suggesting an epigenetic 

regulation of ERα transcription in ER-negative breast cancer (Yang et al., 2001a). 

However, it is still not very clear whether DNA methylation is the driving force of 

gene silencing or a secondary effect recruited by the initial trigger.  

 

1.3.3#Oestrogen#dependent#ERα#mediated#transcription##
 

As discussed above, chromatin is generally packed in state that is inhibitory to 

transcription. Therefore, a variety of transcriptional co-factors are recruited by 

liganded ERα to de-condense the chromatin at the TSS in the oestrogen mediated 

transcriptional activation. They work together to set an appropriate chromatin 

environment for the transcription initiation. These co-factors includes co-activators 

complexes that harbours HAT and HMT activity, chromatin remodelling complexes 

such as the ATP-dependent nucleosome remodelling complex, the TRAP/DRIP/ARC 

complexes that facilitate the recruitment of RNAP II (Figure 1.5) (Rosenfeld and 

Glass, 2001). 
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Figure 1.5 Oestrogen induced ERα dependent transcription is mediated by 
multiple co-factor complexes.  

 
Co-factor complexes include ATP-dependent chromatin remodelling complex, HAT 
and HMT associated p160 protein family co-activator complex, and the 
TRAP/DRIP/ARC complex. Pioneer factors like FOXA1 contributes to ERα 
chromatin binding.  
 

During the transcriptional activation of oestrogen responsive genes, the liganded 

ERα together with a number of co-factors dynamically bind to the chromatin in 

cycles of approximately 45 minutes (Metivier et al., 2003). At the begin of the 

oestrogen cycle, the binding of ERα can be directed by pioneer factors like FOXA1 

(Laganiere et al., 2005). Upon binding of oestrogen, liganded ERα undergoes 

dimerisation and binds to the promoter of oestrogen responsive genes, like pS2. 

Subsequently, the binding of the receptor attracts multiple combinations of co-factor 

complexes to the promoter to initiate the transcription. For example, there is a 

network of 46 transcription factors in 6 different co-factor complexes presents on the 
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pS2 promoter during the oestrogen induced transcriptional activation (Metivier et al., 

2003). Liganded ERα is required in all complexes but other co-factors are not always 

part of the complex. The HAT and HMT associated p160 protein family co-activator 

complex is one of the co-factors complexes recruited to the promoter area. Members 

of the p160 protein family act like adaptor proteins to recruit HAT like 

CBP/p300/pCAF and HMTs like CRAM1/PRMT1. CBP and p300 contain intrinsic 

HAT activity for lysine residues on primary histones as well as on histone2A and 2B 

subunits (Schiltz et al., 1999). Another ERα associated HAT is the p300/CBP-

associated factor pCAF, which is acetylated by itself and by p300 (Santos-Rosa et 

al., 2003). The acetylation of histone results in the modification of chromatin and 

increases the access of the DNA to other components of transcription apparatus. 

Overexpression of p160 protein family as well as HATs has been reported in the 

literature. For example, AIB-1 overexpression is detected in both ER positive and ER 

negative breast cancer (Bautista et al., 1998, Bouras et al., 2001). Moreover, AIB-1 

and HER overexpression are associated with tamoxifen resistance and poor survival 

rate in patients (Osborne et al., 2003). This can be due to the enhanced cyclin D1 

expression promoted by AIB-1 binding (Planas-Silva et al., 2001). In the meantime, 

both p300 and CBP have found to be preferentially co-overexpressed in breast 

carcinomas with high tumour grade and in invasive ductal carcinomas (Hudelist et 

al., 2003). HMTs like co-activator-associated arginine methyltransferase 1 (CRAM1) 

and protein arginine methyltransferase 1 (PRMT1) have been identified to interact 

with ER co-activators and enhance its activity (Chen et al., 1999a, Wang et al., 

2001). CARM1 preferentially methylated histone 3 and PRMT1 preferentially 

methylated histone 4, either in a bulk histone preparation or individual purified form. 

Further experiments show that PRMT1 methylates arginine 3 on histone 4 in vivo, 

and methylation at H4R3 facilitates subsequent acetylation of H4 tails by p300 

(Strahl et al., 2001). Together, these histone modifications happen early on the pS2 

promoter to assist the oestrogen-induced transcriptional activation (Wagner et al., 

2006). 

 

Another co-factor complex recruited by ERα is the ATP-dependent chromatin 

remodelling complex. Multiple proteins are involved in the complex including BRG1 
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and BRM (Kadam and Emerson, 2003). BRG1/BRM complex is essential for ERα 

activity, which interacts with the AF-2 domain of the ERα and facilitates chromatin 

remodelling in an ATP dependent manner (Ichinose et al., 1997, DiRenzo et al., 

2000). BAF57 is another subunit of the ATP-dependent chromatin remodelling 

complex, which binds to the hinge region of ERα (Garcia-Pedrero et al., 2006).  

 

The TRAP/DRIP/ARC complex is a multimeric mediator complex that supports ERα 

activity in a ligand dependent manner (Rosenfeld and Glass, 2001). The complex is 

recruited to the nuclear receptor via TRAP220 or DRIP/ARC subunit (Ito et al., 

1999, Rachez et al., 1999). Other factors within the protein complex function to 

interact GTFs and co-activate target gene transcription (Fondell et al., 1999, Naar et 

al., 1999). 
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1.4#Current#therapies#in#Breast#cancer#and#acquired#endocrine#resistance#
 

Before the discovery of intracellular oestrogen receptors demonstrating that breast 

cancers are hormone-dependent for growth, surgery was the only effective means of 

treating the disease. Nowadays, apart from the primary surgical treatment, patients 

with ER positive breast cancers are often treated with drugs that block the activity of 

ERα as adjuvant endocrine therapies to prevent recurrence of the cancer. Anti-ERα 

drugs can be broadly divided into two classes: drugs that block the activity of the 

receptor and drugs that block ligand synthesis (Figure 1.6). As ER negative breast 

cancer can be sub-divided to basal-like and HER2 overexpression according to the 

molecular profile, different treatments are used for patients belong to each ER 

negative subtype. 

 

 
 

Figure 1.6 Different therapies for ER positive and negative breast cancer.  

Two classes of drugs are used to block the activity of ERα mediated oestrogen 
signalling in ER positive breast cancer patients. ERα antagonist like tamoxifen is 
used to inhibit the function of the receptor, and aromatase inhibitors like letrozole is 
used block the synthesis of oestrogen. Different treatment strategies are employed for 
patients with ER negative diseases with distinctive molecular subtypes. Patient with 
HER2 overexpression are generally treated with HER2 inhibitors, like trastuzuma. 
Growth factor receptors inhibitors like EGFR inhibitor (Cetuximab) have been 
proposed as a potential treatment for the triple negative basal-like breast.  
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1.4.1#ERα#Antagonists#
 

Tamoxifen is one of the most widely used endocrine treatments for breast cancer 

patients. Clinical studies from patients with five years tamoxifen treatment show that 

tamoxifen reduces the risk of recurrence by 47% and reduces the risk of death by 

26% (Group, 1998). It is a chemically diverse compound that lacks the steroid 

structure of oestrogen but has a tertiary structure that allows it to bind to ERα 

(Figure 1.7). Tamoxifen competes with oestrogen for binding at the AF-2 region of 

the receptor. As tamoxifen only inhibits the transcriptional activity of ERα through 

the AF-2, it may enable transcription through AF-1. After binding of the tamoxifen, 

ERα is locked in a position that not only represses the binding of co-activators 

complex but also promotes the binding of co-repressors complex (detailed in section 

1.2.2). Thus, it serves as an antagonist of the ER in breast tissue. However, in other 

tissue like bone and endometrium, it can function as an agonist through binding of 

unknown co-activators (Riggs and Hartmann, 2003). Therefore, tamoxifen is often 

referred as a selective oestrogen receptor modulator (SERM). The agonist effect on 

the endometrium puts treated patients in high risk of developing endometrial cancer. 

In fact, tamoxifen treatment is associated with a 2.53 fold increase in endometrial 

carcinoma in elderly women (Fisher et al., 1998). The aromatase inhibitors are an 

alternative to tamoxifen for treating ER positive breast cancer patients and, unlike 

tamoxifen, are not associated with an increased risk of endometrial cancer and other 

side effects of tamoxifen like thromboembolic disease and vaginal bleeding (Goss 

and Strasser, 2001). However, aromatase inhibitors elevate the rate of bone lost in 

postmenopausal women (Heshmati et al., 2002).  
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Figure 1.7 Chemical structures of 17 β-oestradiol and tamoxifen.  

Picture taken from reference, Riggs and Hartmann, 2003. 
 

Unlike tamoxifen, ICI 182,780 and ICI 164,384 are considered as pure ERα 

antagonists devoid of any agonist activities (Howell et al., 2000), as they prevent the 

transcriptional activation of the receptor from both AF1 and AF2 (Ali and Coombes, 

2002). Structurally, both drugs are analogues of oestradiol, but ICI 182,780 is far 

more potent than ICI 164,384 (Wakeling and Bowler, 1992). Like tamoxifen, ICI 

182,780 also promotes the binding of co-repressor to the receptor (Webb et al., 

2003). Meanwhile, the pure ERα antagonist has been shown to block receptor 

dimerisation preventing DNA binding of the receptor (Fawell et al., 1990). It can 

also disrupt the ER shuttling between nucleus and cytosol (Dauvois et al., 1993). 

Using mouse ER, Dauvois et al showed that ICI 182,780 will cause the receptors to 

accumulate in the cytosol, while the partial antagonist of ERα, tamoxifen, retains the 

receptors in the nucleus. Moreover, ICI 164,384 can increase the ER turnover 

(Dauvois et al., 1992). These pure ERα antagonists are recommended for treatment 

of metastatic ER positive breast cancer, particular for patients who have relapsed on 

tamoxifen treatment (Howell et al., 1996). The effectiveness of pure ERα antagonists 

on tamoxifen resistant patients suggests a lack of cross-resistance between drugs. 

Furthermore, since these pure ERα antagonists do not have any agonist effect it has 

not been associated with an increase in endometrial cancer (Addo et al., 2002). 
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Collectively, these results suggest that pure ERα antagonists can be good second line 

treatment for patients with advanced breast cancers.  

 

Despite the success of these ERα antagonists in treating ER positive breast cancer, 

acquired endocrine resistance is always an area of concern. A trial conducted in 1996 

demonstrates that women who continued to receive tamoxifen after five years of 

treatment had worse outcomes than women in whom it was discontinued at five 

years (Fisher et al., 2001, Fisher et al., 1996). The development of resistance towards 

tamoxifen can be due to it agonist activity through the AF-1 region of ERα, which 

may become exaggerated over time. Resistance to pure ERα antagonist, ICI 182,780, 

has also been reported in cell line model (Brunner et al., 1997). Resistant cell line 

shows an increased dependence on EGFR mediated MAPK pathway for growth 

(McClelland et al., 2001). In general, resistance to endocrine therapy could result 

from genetic and epigenetic changes within the primary tumour that activate other 

pathways of ERα such as the ligand independent pathway. 

1.4.2#Aromatase#Inhibitors#
 

The use of aromatase inhibitor is limited in premenopausal women, as it leads to 

incomplete oestrogen suppression and ovarian stimulation (Pritts, 2010). In post-

menopausal women, local oestrogen synthesis relies on aromatase. Drugs that reduce 

peripheral oestrogen synthesis by inhibiting aromatase are frequently used in post-

menopausal women with ER positive breast cancer (Goss et al., 2003). Aromatase 

inhibitors reduce the level of oestrogen by inhibiting or inactivating aromatase, 

which is a key enzyme in oestrogen biosynthesis. Aromatase is a member of the 

cytochrome p450 superfamily that catalyses the conversion from androgen to 

oestrogen. Aromatase inhibitors are generally classified as Type 1 (steroidal) or Type 

2 (non-steroidal) inhibitors. Type 1 aromatase inhibitors are also known as 

inactivators as they bind irreversibly to the enzyme. In contrast, type 2 inhibitors 

bind reversibly to the enzyme (Smith and Dowsett, 2003). Letrozole and anastrozole 

are both type 2, third-generation aromatase inhibitors that were developed in the 

early 1990s with enhanced specificity and potency (Bhatnagar, 2007). Multiple 

clinical trials have evaluated the effectiveness of both drugs as a second line 
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treatment after tamoxifen and as a first line adjuvant treatment for breast cancer 

patients (Goss et al., 2003, Coates et al., 2007, Forbes et al., 2008, Mouridsen et al., 

2009, Litton et al., 2012). Overall, all studies have shown aromatase inhibitors with 

excellent activity in enhancing disease-free survival and preventing of recurrence, 

especially when compared to tamoxifen. In cases of using them as neoadjuvant 

treatment (before surgery to reduce the tumour size), letrozole achieved a 

significantly higher tumour response rate than tamoxifen (Eiermann et al., 2001). 

Furthermore, studies done with MCF-7 breast cancer xenograft model reveal that 

oestrogen deprivation is more efficient in induction of apoptosis and inhibition of 

proliferation than tamoxifen (Johnston and Dowsett, 2003). 

 

Despite the advantages of aromatase inhibitors, acquired endocrine resistance will 

also happen with the treatment. Several mechanisms have been proposed for the 

development of the resistance such as oestrogen hypersensitivity and activation of 

growth factor receptors. An enhanced sensitivity to oestrogen (oestrogen 

hypersensitivity) has been used to describe the aromatase inhibitor sensitivity in 

premenopausal women who relapse after oestrogen withdrawal after ovarian ablation 

(Santen et al., 1990). Long-term oestrogen deprived (LTED) cells is a model system 

derived from MCF-7 in a low oestrogen environment (Masamura et al., 1995). In 

using this cell model, the authors found that breast cancer cells can adapt to low 

oestrogen environment by up-regulating ERα expression to maximise its activity 

(Santen et al., 2004). As ERα remains functional after the treatment of aromatase 

inhibitor, ligand independent and non-genomic pathway may play important role in 

resistance to aromatase inhibitors. Evidence to support this is provided by activated 

MAPK pathway together with HER2 and insulin like growth factor receptor (IGFR) 

signalling in LTED cells (Jeng et al., 2000, Stephen et al., 2001). 

1.4.3#Treatments#for#ER#negative#breast#cancers#
 

1.4.3.1%HER2%overexpression%
 
HER2 overexpression is usually caused by gene amplification (Pauletti et al., 1996). 

It is associated with lack of response to endocrine treatments and reduced survival in 

breast cancer patients (Borg et al., 1994, Sjogren et al., 1998). HER2 is a RTK that 
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can be inhibited by monoclonal antibodies targeted to the extracellular domain and 

kinase inhibitors target the intracellular domain. HER2 overexpression tumours are 

mainly treated with monoclonal antibodies like trastuzumab and pertuzumab. 

Trastuzumab (herceptin) is a humanised anti-HER2 monoclonal antibody that was 

approved by FDA to treat HER2 overexpressing breast cancer (Hudis, 2007). It 

exhibits its anti-tumour activity by antibody dependent cell-mediated cytotoxicity, 

dis-regulation of receptor turnover or inhibition of receptor signalling due to 

impaired dimerisation (Valabrega et al., 2007). Pertuzumab is another HER2 

targeting monoclonal antibody in Phase II clinical trail (Gianni et al., 2010). As it 

binds to different positions on the receptor, it is used among women refractory to 

trastuzumab treatment (Baselga et al., 2010). 

 

1.4.3.2%Basal6like%
 

Basal-like breast cancers often have a triple-negative (ER-, PR-, HER2-) phenotype. 

As a result, they cannot be managed effectively with existing endocrine treatments 

and HER inhibitors, and are usually associated with a poor outcome (Banerjee et al., 

2006). Efforts on looking for basal-like gene signature and biomarkers for 

immunohistochemistry (IHC) have revealed several potential targets for treating 

basal-like breast cancer. EGFR is expressed in more than 60% of basal-like breast 

cancer, and is therefore used together with cytokeratin (CK) 5/6 as biomarkers for 

identifying this breast cancer type (Nielsen et al., 2004). In the meantime, the 

activation of EGFR signalling and its downstream targets have been mentioned 

repetitively as causes of acquired endocrine resistance in ER positive breast cancer, 

therefore EGFR inhibitors could be effective for both treating basal-like breast 

cancers and preventing the occurrence of endocrine resistance.  

 

Gefitinib, tarceva and tyrphostin (AG1478) are all quinazoline based small molecule 

tyrosine kinase inhibitors that reversibly inhibit the kinase activity of EGFR by 

competing with the binding of ATP (Dowell et al., 2005, Ellis et al., 2006). In 

contrast, CI-1033 is a pan inhibitor of EGF receptors, which is able to irreversibly 

inhibit the kinase activity of intracellular domain (Hynes and Lane, 2005). All EGFR 
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inhibitors have been shown to influence a variety of cellular processes that lead to 

cell cycle arrest, reduced proliferation and elevated apoptosis, etc. (Ciardiello and 

Tortora, 2008). EGFR inhibitors alone achieve little effects in cancer therapy, 

however, when used in combination with HER2 inhibitors produces more 

pronounced growth inhibitory effect (Friess et al., 2005, Normanno et al., 2002). 

Cetuximab is a human-mouse chimeric monoclonal antibody of EGFR. A phase II 

trial is undergoing to assess the effectiveness of cetuximab together with paclitaxel in 

treating basal-like breast cancer 

(http://clinicaltrials.gov/ct2/show/study/NCT00353717).  
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1.5#Aim#of#the#thesis#
 
ER positive breast cancers account for the majority of breast cancer incidence 

worldwide. Drugs like tamoxifen and aromatase inhibitors are effective treatments to 

manage the disease initially. However, the subsequently development of acquired 

endocrine resistance remains one of the biggest challenge in breast cancer therapy. 

Studies focussing on acquisition of tamoxifen resistance and resistance to oestrogen 

deprivation have all indicated an important role of growth factor mediated survival 

pathways such as the activation of EGFR and its downstream signalling pathways in 

resistant cancer cells. Therefore, the aim of this study is to investigate the molecular 

mechanism that links the oestrogen mediated ERα signalling and growth factor 

signalling pathways in endocrine resistant cells.  

 

Most in vitro ER positive breast cancer models employed to date have been 

developed in the presence of serum growth factors. Furthermore, the so-called 

oestrogen deprived cell line models to mimic the effects of aromatase inhibitors are 

generally cells grown in a low oestrogen environment (phenol red-free and charcoal-

stripped serum conditions) rather than a true oestrogen-free environment. Therefore, 

it is important to generate and characterise a new oestrogen deprived cell line model 

grown in the presence of defined growth factors. Using this new cell model, I want to 

investigate i) the importance of different signalling pathways for breast cancer cells 

survival, ii) factors that control the cross-talks between different pathways, and iii) 

epigenetic mechanisms that maintain the transition between different pathways. 

 

 



 51 

Chapter 2 Material and Methods 
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2.1#Materials#
 
Materials are listed by technique. All chemicals are purchased from Sigma-Aldrich 

unless otherwise stated. All laboratory plastics are from TPP (Techno Plastic 

Products AG) unless otherwise stated. Primers are all ordered from Invitrogen Life 

Technologies. 

 

2.2#Tissue#culture#
 

2.2.1#Cell#lines#
 
T47D and ZR75 cells were kindly donated by Dr. Arkadiusz Welman (Edinburgh 

Cancer Research Centre, Edinburgh). The parental MCF-7 and HEK293T cells were 

obtained from the European Tissue Culture Collection. DH and DHe cells were 

derived from MCF-7 cells by gradually replacing the normal growth medium with a 

defined serum free medium. Details of the derivation are described in Chapter 3, 

section 3.1. 

 

 
 

Table2.1 HMM medium for DH/DHe cells 

 Concentration  Concentration 

DMEM/F12 1x Hydrocortisone 0.5µg/ml 

HEPES 10mM Transferrin 5µg/ml 

Penicillin/Streptomycin 10µg/ml Isoproterenol 0.1mM 

EGF 5ng/ml Ethanolamine 1mM 

Insulin 10µg/ml O-Phosphoethanolamine 1mM 

Oestrogen 1nM B27 supplement 1x 

!
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2.2.2#Tissue#culture#and#reagents#
 
T47D, ZR75 and HEK293T cells were cultured in DMEM (Dulbecco’s modified 

eagle medium, Gibco, Invitrogen). This was supplemented with 10% heat-inactivated 

foetal calf serum (FCS, Harlan Sera-Lab) and 1% penicillin and streptomycin 

(Gibco, Invitrogen). Stable DH cells were cultured in human mammosphere 

medium+ (HMM+), adapted from (Duss et al., 2007). HMM+ medium composition 

is detailed in Table 2.1. One of the components, B27, is a serum-free medium 

supplement containing antioxidants, vitamins, growth factors and hormones 

including progesterone. Detailed composition of this supplement can be found in 

Table 2.2 (Brewer et al., 1993). DH and DHe cells poorly adhered to the tissue 

culture plastics when cultured in 100% serum free medium, therefore plates and 

flasks were coated with collagen (3~4 mg/ml rat tail collagen, BD Bioscience) before 

use, see below. All cell lines were maintained in a humidified atmosphere at 37oC 

and 5% CO2. 

 

2.2.3#Collagen#coating#of#tissue#culture#dishes#
 
Collagen purchased from BD Bioscience was diluted 1/1000 in 0.02 M acetic acid. 

Tissue culture dishes were coated with 1-10 ml of diluted collagen solution 

depending on size. Dishes were incubated at 37oC for an hour or 4oC overnight 

followed by two washes with pre-warmed PBS.  

 

Table 2.2 Composition of B27 Medium Supplement 

Chemicals  
 Proteins 

Biotin Glutathione (reduced) Retinyl acetate Albumin, bovine 

L-Carnitine Linoleic acid Selenium Catalase 

Corticosterone Linolenic acid T3 (triodo-l-thyronine) Insulin 

Ethanolamine Progesterone DL-!-tocopherol (vitamin E) Superoxide dismutase 

D(+)-glactose Putrescine DL-!-tocopherol acetate Transferrin 

!
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2.2.4#Cell#harvesting#and#counting#
 
Cells were washed in phosphate buffered saline (PBS, pH 7.3) to ensure all media 

was removed. Cells were detached by adding an appropriate volume of 1 x Trypsin-

EDTA (Invitrogen) and incubating at 37oC for 3~5 minutes. Trypsin was inactivated 

by adding growth media and the cell suspension was centrifuged at 200 g for 4 

minutes. The cell pellet was then resuspended in growth media. HyQTase (HyClone, 

Thermo Scientific) rather than trypsin was used for DH and DHe cells as they are 

less well adhered. However, HyQTase cannot be inactivated by serum so an extra 

PBS wash was required after pelleting down the cells. Cell pellets were resuspended 

in an appropriate volume of growth media and counted using a haemocytometer. 

Cells were then diluted to achieve the desired cell number for each experiment. 

 

2.2.5#Cryopreservation#and#liquid#nitrogen#cell#recovery#
 
Cells to be stored in liquid nitrogen were harvested as described above and a T75-

flask of cells were typically resuspended in 3 ml of freezing mix (10% DMSO 

(dimethyl sulphoxide) in foetal calf serum). 1ml of cell suspension was transferred to 

a cryovial (Nuncleon, Fisher Scientific) and frozen immediately at -80oC before 

being transferred to liquid nitrogen after ~24 hours.  

 

Cells removed from liquid nitrogen were rapidly defrosted in a 37oC waterbath for a 

minute then resuspended in prewarmed growth media. Cells were pelleted by 

centrifugation at 200 g for 4 minutes, resuspended in culture media and plated as 

required. 

 

2.2.6#Transfection#and#selection#of#stable#cell#lines#
 
Cells were transfected either by Lipofectamine 2000 (Invitrogen, Life technologies) 

or electroporation using Amaxa Necleofector (Lonza). For Lipofectamine, cells were 

freshly plated in a 6-well plate 24 hours before the transfection. 5 µl of 

Lipofectamine and 1~2 µg of plasmid DNA or shRNA construct were diluted 

separately in 100 ml of Opti-MEM for 5 minutes at room temperature (Gibco, 
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Invitrogen). The two solutions were mixed together for another 10 minutes at room 

temperature. The mixture was then added dropwise to the cells and incubated for 24 

hours. Cells were then either lysed to extract protein and RNA samples or transferred 

into a 100 mm dish with selective media. Cells were closely monitored during the 

selection process. For electroporation at least 1 million cells were required for each 

reaction. Cell pellet together with 1~2 µg of plasmid DNA was resuspended in 100 

µl of Nucleofector solution. An appropriate Nucleofector program was selected for 

each cell line. After transfection, cells were transferred into pre-warmed media. 

Selective media was added 24 hours after transfection.  

 

2.2.7#RNAi#
 
RNAi experiments were carried out on cells at low confluence as this gives a greater 

knockdown effect (10~30% confluence). ON-TARGETplus SMARTpool siRNAs 

purchased from Thermo Scientific were used for all siRNA experiments (Table 2.3) 

and siRNAs were transfected into cells with Oligofectamine (Invitrogen, Life 

technologies). Oligofectamine and 100 nM siRNA were diluted in Opti-MEM in two 

separate tubes and incubated at room temperature for 5 minutes, the contents of both 

tubes were then combined and mixed together by gentle tapping followed by 

incubation for a further 15 minutes in a 37oC waterbath. Cells to be transfected were 

washed with PBS and replaced with Opti-MEM. The siRNA transfection mix was 

added dropwise to cells and incubated for 4 hours after which time normal growth 

media with desired serum concentration was added back to the cells. In order to 

achieve a better knockdown, cells were usually transfected with freshly prepared 

siRNA again 48 hours later prior to protein and RNA extraction or further 

experiments.  
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2.3#Cell#assays#
 

2.3.1#Growth#assays#

#

2.3.1.1#SRB#assay#
 
Sulphorhodamine B (SRB) assay was used to test the proliferation and 

chemosensitivity of cells. 1000 DH cells or 800 MCF-7 cells were seeded in a 96-

well tissue culture plate. Cells were left overnight in the incubator to allow 

attachment to the plate, at which point day 0 plates were fixed. For growth assays, 

the media was then supplemented with specific drugs (Table 2.4) and incubated for a 

specific number of days depending on the experiment, prior to cells being fixed by 

adding 50 µl ice-cold 50% TCA to the 200 µl culture media to give a final TCA 

concentration of 12.5%. The plates were left at 4 oC for an hour before washing 10 

times with water. The plates were then left to dry. Cells were stained with 50 µl SRB 

dye (0.4% w/v SRB in 1% v/v acetic acid (Fisher Scientific)) for 1 hour at room 

temperature before being washed 4 times with 1% v/v acetic acid and dried at 37oC 

overnight. SRB stain was solubilised in 150 µl 10 mM Tris pH 10.5 for 1 hour at 

room temperature with shaking. The optical density (OD) was measured at 540 nm 

on a plate reader (Biohit). Cell number at each time-point was calculated as an 

average of six wells. Statistically significant differential growth was assessed by 

unpaired two-tailed Student’s T-test using a p-value of significance < 0.05.  

 

Table 2.3 Target sequence for siRNA 
Gene Target sequence 
Human c-Myb  CCGAAACGUUGGUCUGUUA 
 CAGUCAAGCUCGUAAAUAC 
 CCAAUUAUCUCCCGAAUCG 
 UCCAUACCCUGUAGCGUUA 
Human ESR1 GCCAGCAGGUGCCCUACUA 
 GAUGAAAGGUGGGAUACGA 
 GAAUGUGCCUGGCUAGAGA 
 GAUCAAACGCUCUAAGAAG 

!
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2.3.1.2#Colony#formation#assay#
 
Methylene blue colony formation assay was used to assess the colony forming ability 

of cultures grown under control and test conditions. 10,000 cells were plated in a 6-

well plate and allowed to attach for 24 hours before drug addition. Fresh media 

containing drugs was replaced every 48 hours. After 10 days colonies were stained in 

2% methylene blue dissolved in 50% ethanol for 10 minutes at room temperature and 

rinsed with water and air dried. Plates were pictured using a Canon 350D with a 

20mm fixed lens. 

 

2.3.2#Apoptosis#assay#
 
PE Annexin V Apoptosis Detection Kit I (BD Bioscience) was used to assay 

apoptotic cells according to manufacturer's instructions. Briefly, a million cells were 

resuspended in 1 ml 1 x binding buffer. 100 µl of the cell suspension was transferred 

into a fresh tube with 5 µl of PE Annexin V and 7-AAD, respectively. The solution 

was incubated in the dark for 15 minutes at room temperature. 400 µl of 1 x binding 

buffer was added to each sample before analyzing with flow cytometry. PE Annexin 

V positive staining is used to look at cells that are actively undergoing apoptosis. It 

relies on the property of cells to lose membrane integrity in the early stages of 

apoptosis, while the nuclear acid dye 7-AAD staining allows the identification of 

cells that are in late stage apoptosis or already dead. Therefore, cells that are in early 

Table 2.4 Drugs used in Cell Assays 

Drug Function Concentration 

Tamoxifen ER! antagonist 1 µM 

ICI 182,780 ER! antagonist 0.1 µM 

AG1478 Blocks EGFR phosphorylation 10µM 

UO126 MEK1 and MEK2 inhibitor 10µM 

LY294002 P13 Kinase inhibitor 10 µM 

TSA  HDAC Inhibitor 100nM 

!
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apoptosis are PE Annexin V positive and 7-AAD negative and cells that are in late 

apoptosis are positive for both. 

 

2.4#Protein#Analysis#
 

2.4.1#Protein#extraction#
 
In experiments where cell numbers were equal, cells were washed in PBS before 

being lysed with 1 x SDS loading buffer (50 mM Tris pH 6.8, 1% β-

mercaptoethanol, 2% SDS, 0.1% bromophenol blue and 10% glycerol (Fisher 

Scientific)). Cells were then scraped from tissue culture dishes into eppendorf tubes 

using cell scrapers. Lysates were sonicated briefly on ice (5 seconds at 5Aµ 

(Soniprep 150, MSE) and denatured at 100oC for 3 minutes and the debris cleared by 

centrifugation at 16,000 g for 5 minutes.  

 

In experiments where cell numbers varied e.g. timecourse experiments, cells were 

lysed with RIPA buffer on ice for 10 minutes (25 mM Tris pH 8.0, 150 mM NaCl, 

1% NP40, 1% NaDoc, 0.1% SDS, 250 µM PMSF). Protein concentration was 

measured by Precision Red Advanced Protein Assay kit (Cytoskeleton, Inc). An 

appropriate amount of 5 x SDS loading buffer and water was added to RIPA buffer 

lysed samples to achieve desired protein concentrations. Lysates were sonicated on 

ice (5 seconds at 5Aµ) and denatured at 100oC for 3 minutes followed by 

centrifugation at 16,000 g for 5 minutes.  

 

2.4.2#Acrylamide#gel#electrophoresis#
 
Protein lysates were run on 10% Bis-Tris acrylamide gels (1 x Bis-Tris pH 6.7, 10% 

acrylamide (19:1, Severn Biotech Ltd.), 0.1% APS, TEMED) in MOPS running 

buffer (50 mM MOPS, 50 mM Tris (Melford), 1 mM EDTA and 0.1% SDS) at 150V 

for 1~2 hours depending on the size of the target protein. Protein integrity was 

analysed by Coomassie blue staining the gel (10% acetic acid, 45% methanol (VWR) 

and 0.3 mM Coomassie brilliant blue) at room temperature for 1 hour before being 

destained (10% acetic acid and 45% methanol) at room temperature overnight. 
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2.4.3#Western#blotting#
 
For subsequent antibody probing, protein gels were transferred onto PVDF 

(polyvinylidene fluoride) membrane (Millipore) using either wet transfer for large 

proteins (100V 2hrs in cold room) or semi-dry transfer for smaller histone proteins 

(100mA per gel for an hour at room temperature). The PVDF membrane was wet in 

the methanol first before washing either with wet (25 mM Tris, 192 mM glycine, 

10% methanol, pH8.3) or semi-dry (48 mM Tris, 39 mM glycine, 1.3 mM SDS, 20% 

methanol, pH9.2) transfer buffer. 

 

After the transfer, the membrane was blocked in 4% Marvel/TBST (137 mM NaCl, 

2.7 mM KCl, 25 mM Tris, 0.1% Tween® 20 (Riedel-de Haën), pH7.4) for 1 hour at 

room temperature. Primary antibody was added at a suitable dilution (Table 2.5) in 

either 4% Marvel/TBST or 5% BSA (bovine serum albumin)/TBST depending on 

the working conditions of the primary antibody. The membrane was incubated with 

primary antibody at 4oC overnight. The primary antibody was washed off by 3 x 5 

minute washes in TBST and then incubated with anti-rabbit (Sigma, A0545) or anti-

mouse (Thermo Scientific, 31444) secondary antibody conjugated to HRP 

(horseradish peroxidase) at a 1:5,000 dilution in 4% Marvel /TBST for 1 hour at 

room temperature. Membranes were then washed 3 x 5 minute washes in TBST 

before being incubated with SuperSignal® West Pico Chemiluminescent Substrate 

(ECL) (Thermo Scientific) for 3 minutes. Membranes were exposed to X-Ray film 

(Fuji) and developed. 

 

To re-probe a membrane with a different primary antibody the first antibody signal 

was removed by firstly rinsing the membrane under water to wash away the ECL, 

followed by 1 x 15 minute wash in TBST. The membrane was then incubated in 100 

mM glycine pH 2.5 at room temperature for 30 minutes. Membranes were then 

washed twice for 15 minutes each in TBST before being blocked in 4% Marvel 

/TBST for 1 hour at room temperature and then incubated with the new primary 

antibody. 
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2.4.4#Immunofluorescence#(IF)#
 
Cells seeded on glass slides were fixed by 4% paraformaldehyde (PFA) in PBS for 

10 minutes at room temperature before being permeabilised by 0.2% Triton X-100 in 

PBS for 12 minutes. Slides were rinsed 3 times with PBS and blocked for 15 minutes 

at room temperature with PBS/5% horse serum. Primary antibodies diluted in 

PBS/5% horse serum were incubated overnight in a humidified chamber followed by 

secondary antibody incubation (anti-mouse or anti-rabbit FITC (1:150) or Texas Red 

(1:100)) for 1hour at room temperature. Slides were mounted in Vectashield and 

Dapi (0.5 µg/ml).  

 

2.5#RNA#Analysis#
 

2.5.1#RNA#extraction#
 
Two different methods of RNA extraction were used depending on the size of tissue 

culture flask/plate used. For small (<T75) flasks/plates, RNA was purified using the 

Absolutely RNA Miniprep Kit (Stratagene #400800) following the manufacturer’s 

protocol. In brief, cells were lysed with 350 µl of lysis buffer containing 2.5 µl of 

fresh β-Mercaptoethanol. The mixture was then sonicated very briefly (5 seconds at 

!
Table 2.5 Primary Antibodies for western blot. 
Antibody Dilution factor Supplier 
Total ERα 1:10,000 Santa Cruz (F10) # sc-8002 
Phospho-ER Ser 167 
Phospho-ER Ser 118 

1:100 
1:100 

Cell Signalling Tech. #2514 
Cell Signalling Tech. #2515 

EGFR 1:1000 Dako #M7298 
Phospho-EGFR 1:500 Abcam #ab5644 
ERK1/2 (p44/p42) 1:1000 Cell Signalling Tech. #9102 
Phospho-ERK1/2 
(pp44/42) 

1:1000 Cell Signalling Tech. #9101 

c-Myb 1:1000 Millipore # 05-175 
Total HER2 1:500 Cell Signalling Tech. #2242 
Akt 1:1,000 Cell Signalling Tech. #9272 
Phosphor-Akt Ser473 1:1,000 Dako #3628 
GAPDH 1:1,000 Cell Signalling Tech. #2118 
Pan H4 1:10,000 Millipore #05-858 
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5Aµ) to ensure the viscosity of the sample was low. The RNA and DNA mixture was 

isolated by centrifuging through a prefilter spin cup, and then the RNA purified 

through an RNA binding spin cup. On-column digest with DNase I (Roche, 

#04716728001) was performed on each sample for 15 minutes at 37oC. RNA 

samples were washed and then eluted in 30 µl of elution buffer. For larger tissue 

culture flasks (T75 and T125) total RNA was extracted using Tri-reagent 

(Invitrogen). After homogenisation using a 25-gauge needle, the RNA was cleaned 

by standard phenol-chloroform procedure (section 2.6.2) and treated with DNase I. 

RNA was then ethanol precipitated and the pellet was washed with 80% ethanol and 

then resuspended in RNAse-free water. RNA was quantified using a Nanodrop 

spectrophotometer. A small aliquot of RNA was also run on a 2% formaldehyde gel 

(20 mM MOPS, 5 mM NaOAc, 1 mM EDTA, 1.2% agarose, 2% formaldehyde) in 

RNA running buffer (20 mM MOPS, 5 mM NaOAc, 1 mM EDTA, pH7.0) to check 

the integrity of the RNA.  

 

2.5.1#Quantitative#RTVPCR#
 
QIAGEN one step RT-PCR was used to perform quantitative PCR from RNA 

samples. 100 ng of RNA was added to 7.5 µl of SYBR Green Master Mix, 0.375 µl 

primer mix (20 µM each primer), 0.15 µl RT-enzyme, and RNase-free water in a 

total reaction volume of 15 µl. All samples were run in triplicate. The quantitative 

PCR was run on a Rotor-Gene RG-3000 (Corbett Research) at 95oC for 15 minutes, 

then 50 cycles of 94oC for 15 seconds, 55~60oC for 30 seconds (using specific 

annealing temperatures for different primer sets) and 72oC for 30 seconds; followed 

by extension at 72oC for 5 minutes. A standard curve was generated for each primer 

set using serial dilutions of cDNA. Relative expression values were normalized to β-

actin. Primers were designed using Primer3 and are listed in Table 2.6. 
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2.5.2#Human#whole#genome#expression#array#
 
RNA was extracted as described in section 2.5.1. RNA integrity (RIN) was assessed 

on an Agilent 2100 Bioanalyzer by Angie Fawkes at the Wellcome Trust Clinical 

Research Facility (WTCRF, Edinburgh). Only RNA with a RIN number >9 was 

reverse transcribed and biotin-labelled using the Illumina® TotalPrep RNA 

Amplification kit (Ambion) according to the manufacturer’s instructions. Briefly, 

500 ng of total RNA was reverse transcribed at 42oC to synthesize the first strand of 

cDNA followed by second strand synthesis at 16oC. The cDNA was then purified 

and in vitro transcribed to biotin labelled cRNA. The cRNA was purified and 

assessed again on an Agilent 2100 Bioanalyzer before array hybridisation. Array 

hybridisation was performed on the Human HT-12 Gene Expression Bead Chip 

(Illumina®) by Angie Fawkes at WTCRF, Edinburgh. Raw expression results were 

analyzed by Andy H. Sims (Breakthrough Research Unit, Edinburgh Cancer 

Research Center). Normalized data were transferred to an excel spreadsheet for 

further analysis. 

 

2.6#DNA#Cloning##
 

2.6.1#DNA#gel#electrophoresis#
 

Table 2.6 Primer sequences used in QRT-PCR 
Gene Forward primer Reverse primer 
ER! CCACCAACCAGTGCACCATT GTCTTTCCGTATCCCACCTTTC 
pS2 TTGTGGTTTTCCTGGTGTCA CCGAGCTCTGGGACTAATCA 
EGFR TGCACTCAGAGAGCTCAGGA CAGCGCTACCTTGT 
HER2 CTGAATGGGTCGCTTTTGTT CTCGTTGGAAGAGGAACAGC 
HER3 CTCCTTTGTGCACAGTTCCA GCTTTTGGCATTCACCTATG 
HER4 CACCCAGACTACCTGCAGGA GGAAATTGGAGCAGGTGTGT 
IGFR GTTGGGAAGGGGATCATTTT ATGAAAACCATTGGCTGTG 
b-Myb GCCACTTCCCTAACCGCAC CCCTTGACAAGGTCTGGATTCA 
c-Myb GCCAATTATCTCCCGAATCGA ACCAACGTTTCGGACCGTA 
"-actin CTACGTCGCCCTGGACTTCGAGC GATGGAGCCGCCGATCCACACGG 
Cyclophilin A GGCAAATGCTGGACCCAACACAAA CTAGGCATGGGAGGGAACAAGGAA 
!
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DNA was run on agarose gels in 1 x TBE (89 mM Tris, 89 mM boric acid, 2 mM 

EDTA) at 90V for 1 hour. Genomic DNA was run on a 0.7% agarose gel and PCR 

products on 1 ~ 2.5% agarose gels depending on the product size. 

DNA was visualised on gels by staining with ethidium bromide in 1 x TBE with 

gentle shaking at room temperature. Bands were visualised on an UV 

transilluminator (GelDoc-IT, BioImaging Systems). 

 

2.6.2#PhenolVchloroform#extraction#
 

An equal volume of the buffered phenol chloroform (Invitrogen) was added to the 

DNA or RNA sample. After mixing the sample by vortexing, it was spun at 16,000 g 

for 3 minutes. The supernatant was transferred into a clean tube and mixed with an 

equal volume of chloroform. The mixture was vortexed and spun again at 16,000 g 

for 3minutes. The supernatant was transferred into a clean tube. 1/10 volume of 3M 

NaAc pH 5.2, 2 volume 100% ethanol and 1 µl glycogen were added to the 

supernatant to precipitate the DNA or RNA samples at -80oC for 30 minutes. The 

sample was then spun down at 16,000 g for 10 minutes. The pellet was washed twice 

in 70 % ethanol (DNA sample) or 80% ethanol (RNA sample) before resuspending 

in TE buffer. 

 

2.6.3#DNA#gel#extraction#
 
After electrophoresis through an agarose gel the band of interest was visualized and 

excised using a clean scalpel on a UV light-box. DNA was purified by gel extraction 

using the MinElute Gel Extraction Kit (Qiagen) according to the manufacturer’s 

instructions. In brief, the gel was dissolved in buffer QG at 50 oC for 10 minutes. 

After the gel slice has dissolved completely, the mixture was applied to a MinElute 

column. The extracted DNA was washed and eluted 10 µl of elution buffer.   

 

2.6.4#Plasmid#DNA#dephosphorylation#
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1µg of DNA was dephosphorylated with 10U calf intestinal phosphatase (New 

England Biolabs) at 37oC for 1 hour. DNA was then purified by gel extraction. 

 

2.6.5#DNA#ligation#
 
DNA ligation was usually performed in a 10 µl reaction mix with 1 µl T4 DNA 

ligase (New England Biolabs) and 1 µl of 10x T4 DNA ligase buffer provide with the 

enzyme. The remaining volume was vector and insert DNA mixture at a 1:3 molar 

ratio. Sticky-end ligations were incubated at room temperature for 1 hour and blunt-

end ligations at 16oC overnight. 

 

2.6.6#Transformation#into#competent#cells#
 
Plasmids were transformed into competent E. coli cells (New England Biolabs) by 

heat shocking at 42oC for 30 seconds and then left on ice for 2 minutes. Cultures 

were grown in 250 µl SOC medium (New England Biolabs) at 37oC with shaking for 

1 hour, before being plated on LB (Luria broth)-agar with ampicillin (100 µg/ml) 

overnight at 37oC.  

 

2.6.7#Plasmid#DNA#extraction#
 
Colonies were picked from agar plates using a sterile p200 pipette tip into 3 ml LB 

with ampicillin (100 µg/ml) and grown with shaking at 37oC overnight. Plasmid 

DNA was extracted using the PureLink Quick Plasmid Miniprep Kit (Invitrogen) or 

QIAfilter Plasmid Midi kit (QIAGEN) according to the manufacturer’s instructions.  

 

To provide a high, pure yield of DNA, expression vectors were maxi-prepped by 

cesium chloride (CsCl) gradient ultracentrifugation and ethanol precipitation. 

Briefly, a colony was picked and grown up in 1ml LB with ampicillin (100 µg/ml) by 

shaking at 37oC for ~6 hours. This inoculation was then added to 400 ml LB with 

ampicillin in a 2 L conical flask and grown in a shaker at 37oC overnight. Each 400 

ml culture was split into two 200 ml bottles and cells pelleted at 5,000 rpm at 4oC for 

10 minutes using a Sorvall® RC6 centrifuge (Thermo). The pellet was resuspended in 
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40 ml of buffer P1 (50 mM Tris pH8.0, 10 mM EDTA and 100 µg/ml RNase A 

(Invitrogen)), to which an equal amount of buffer P2 (200 mM NaOH and 1% SDS) 

was added and incubated at room temperature for 10 minutes. Next 40 ml of buffer 

P3 (3 M CH3CO2K pH5.5) was then added and incubated on ice for 15 minutes. 

After centrifuging at 10,000 rpm at 4oC for 30 minutes, the supernatant was clarified 

by decanting through damp muslin. DNA was precipitated by adding two-thirds 

volume of isopropanol and incubating at room temperature for 1 hour. After 

centrifugation at 10,000 rpm at 4oC for 10 minutes, the pellet was washed in 70% 

ethanol before being resuspended in 2.5 ml of TE. To perform CsCl extraction, 2.5 g 

CsCl was dissolved in the DNA by incubating in a water bath at 37oC. 370 µl 

ethidium bromide was then added and the sample was centrifuged at maximum speed 

for 10 mins on a spin out rotor to remove any precipitate. The solution was 

transferred into an ultracentrifuge tube (Quick-seal® polyallomer bell-top centrifuge 

tube, Beckman), sealed and centrifuged at 80,000 rpm at room temperature for 24 

hours in an OptimaTM MAX-XP ultracentrifuge (Beckman Coulter®). The 

ultracentrifuge tube was pierced near the top to allow the pressure to escape before 

the dense red band containing the DNA was removed using a 25-gauge needle 

attached to a 1 ml syringe. Ethidium bromide was removed by progressive washing 

with water-saturated butanol until the aqueous layer was clear. DNA was then 

precipitated using phenol-chloroform extraction and then resuspended in TE. 

 

2.6.8#Blue/white#screening#and#sequencing#
 
E.coli cells transformed with the pGEM-T® Easy vector (Promega, Figure 2.1) were 

plated on LB-agar with ampicillin (100µg/ml), IPTG (isopropyl-β-D-thiogalactoside, 

0.5 mM) and X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside, 80µg/ml) 

overnight at 37oC. Colonies containing PCR products appear white. At least 10 white 

colonies were picked from each plate using a sterile p200 pipette tip into 3 ml LB 

with ampicillin and incubated at 37oC overnight with shaking. Plasmid DNA was 

purified from the bacteria using the PureLink Quick Plasmid Miniprep Kit 

(Invitrogen) according to the manufacturer’s instructions. The DNA was then sent 
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for sequencing, using the T7 and/or Sp6 primer, by technical services at the MRC 

Human Genetics Unit (Edinburgh).  

 
 

Figure 2.1 pGEM®-T Easy Vector (Promega) showing multiple cloning sites. 

 

2.6.9#Cloning#of#human#myb#empty#vector#
 
The human myb cDNA was purchased from OriGene Technologies, Inc. The myb 

cDNA was inserted between the EcoRI and SalI restriction sites within the multiple 

cloning site of vector pCMV6-XL5. However, the SalI site was destroyed during the 

cloning. In order to create an empty vector control, the plasmid was digested with 

NotI to release a 3.2kb cDNA insert from the 4.5kb vector backbone as shown in 

Figure 2.2. The vector backbone was gel purified and re-ligated using T4 DNA 

ligase. The plasmid DNA was transformed into competent E. coli cells and purified 

using the QIAfilter Plasmid Midi kit (QIAGEN). 
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Figure 2.2 Cloning of human c-myb empty vector.  

The map of the empty vector pCMV6-XL5 was shown (A). NotI digest of human 
myb cDNA was run on a 1% agarose gel with 1kb ladder and uncut cDNA (B). 
 

 

2.7#DNA#Analysis#
 

2.7.1#Genomic#DNA#extraction#
 
Cells were harvested and pelleted as described in section 2.2.4. The pellet was 

resuspended in PBS. An equal amount of 2 x genomic lysis buffer (300 mM NaCl, 

20 mM EDTA pH 8.0, 1% SDS) was added to the cell suspension. After 

homogenisation using a 25-gauge needle, the mixture was incubated with 300µg 

proteinase K (Roche) at 37oC overnight. DNA was then phenol-chloroform 

extracted, RNAse-treated with RNase A/T1 (Ambion) at 37oC for 1 hour and then 

phenol-chloroform extracted again. DNA was then precipitated using ethanol and a 

one-tenth volume of 3 M sodium acetate, washed with 70% ethanol and then 

resuspended in 1 x TE (10 mM Tris pH8.0 and 1 mM EDTA). The genomic DNA 

was quantified using the Nanodrop spectrophotometer. The integrity of the genomic 

DNA was examined by electrophoresis on a 0.7% TBE gel. The gel was stained in 
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TBE buffer containing ethidium bromide at room temperature overnight. Bands were 

visualised on an UV transilluminator (GelDoc-IT, BioImaging Systems). 

 

2.7.2#Bisulphite#sequencing#at#EGFR#promoter##
 
Using the EZ DNA Methylation Gold Kit (Zymo Research) according to the 

manufacturer’s instructions, 500 ng of genomic DNA was chemically deaminated by 

sodium bisulphite. This converts unmethylated cytosines to uracils whilst methylated 

cytosines remain unaltered. In brief, 20 µl (500 ng) of genomic DNA was mixed with 

130 µl CT Conversion Reagent. The reaction mixture was incubated at the following 

temperature steps: 98 oC for 10 minutes, 64 oC for 2.5 hours, then hold at 4 oC. After 

the incubation, the DNA was desulphonated, washed and recovered in 10 µl of 

elution buffer. 

 

Primers for bisulphite sequencing were designed using MethPrimer available at 

http://www.urogene.org/methprimer/index1.html. Gene promoters were amplified 

from bisulphite-treated DNA using the primers and conditions listed in Table 2.7. As 

shown in Figure 2.3, the EGFR promoter has a large region of CpG islands. Primers 

were designed at two regions to cover both the transcription start site and the 

translation start site of the promoter. PCR was carried out in a 20µl volume 

containing around 200ng DNA, 1 x PCR buffer with MgCl2, 2mM dNTPs, 1µM 

primers and 1 unit Taq DNA Polymerase (Roche) for 94oC for 5 minutes, then 40 

cycles of 94oC for 30 seconds, appropriate annealing temperature for 30 seconds and 

72oC for 45 seconds; followed by 72oC for 5 minutes. Due to the size of the second 

amplicon (800 bp), nested PCR was used to get a clear product on the gel. This 

required taking 5µl of the PCR product obtained using bisulphite sequencing primer 

set 2 and re-amplifing it using primer set 3 to get a smaller product (643 bp). PCR 

products were analysed on a 2% agarose gel and the DNA was gel purified (section 

2.6.2) and cloned into the pGEM-T® Easy Vector (section 2.6.7) and then 

transformed into competent E. coli cells (section 2.6.5). Colonies were selected 

through blue/white screening. Plasmid DNA was extracted from white colonies 

containing the PCR product and sequenced using the T7 and/or Sp6 primer by 
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technical services at the MRC Human Genetics Unit (Edinburgh). Sequencing results 

were analysed using BiQ Analyzer (Bock et al., 2005). 

 

 

 
 

 

Figure 2.3 Primers designed for EGFR promoter bisulphite sequencing.  

Figures were produced by UCSC browser. Relative position of the PCR product with 
bisulphite sequencing primer set 1 on EGFR promoter was shown in A, and PCR 
product with bisulphite sequencing primer set 2 was shown in B.  
 

#
  

!

PCR product with 
primer set 1

!

PCR product with 
primer set 2

A

B

Set Forward primer Reverse primer Size Mt
1 GGTGTTTGATAAGATTTGAAGGATT CAACACTACCCCTCTAAACC 356bp 55oC

2 TTGGATATAGGTTGGGTTTGTAAGT ACTAATCTCAAAAAAACAAAAAAAA 800bp 50oC

3 GGG TTT AGA GGG GTA GTG TT CCTTACCTTTCTTTTCCTCCAAAAC 643bp 50oC

Table 2.7 Primer sequences for Bisulfite Sequencing at EGFR promoter
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2.8#Chromatin#Analysis#
 

2.8.1#CrossVlinked#ChIP#
 
Chromatin immunoprecipitation (ChIP) is a technique for studying interactions of 

specific proteins with defined genomic regions. Here, it was used to determine 

whether a transcription factor interacts with a candidate target gene. Cells were 

grown to ~70% confluency in 10 cm dishes. Cells were cross-linked with 1% 

formaldehyde for 10 minutes at 37oC and unreacted formaldehyde was quenched by 

gentle agitation at room temperature for 10 minutes with 0.125 M glycine. Cells 

were then washed twice with ice-cold PBS, collected into PBS containing protease 

inhibitors (Roche), and centrifuged for 4 minutes at 1000 g at 4°C. The pellets were 

resuspended in 200µl lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris–HCl (pH 

8.1), and 1× protease inhibitor cocktail), and duplicate plates were combined to give 

a total volume of 400µl. The chromatin was sheared by sonication on ice (12 x 20 

seconds for MCF-7 cells; 16 x 20 seconds for DH cells) at 2Aµ (Soniprep 150, MSE) 

with 1-minute intervals to avoid overheating. Following centrifugation for 15 

minutes at 8000 g and 4°C, supernatants were divided into 4 x 100 µl aliquots and 

only 100µl of each crossed-linked chromatin sample was used in an IP experiment. 

 

To verify the DNA fragment size after sonication, 5 µl of 4M NaCl was added to one 

of the 100µl chromatin aliquots and incubated at 65oC for 4 hours. The DNA was 

purified by phenol-chloroform extraction and ethanol precipitated. Following a 70% 

ethanol wash the DNA was resuspended in 50 µl of TE. Fragments were visualized 

by electrophoresis on a 1.5% TBE gel. 

 

To proceed with the immunoprecipitation, 800 µl of dilution buffer (16.7 mM Tris 

pH 8.1, 1.2 mM EDTA, 167 mM NaCl, 1.1% Triton and 0.01% SDS) was added to 

the 100 µl chromatin sample, after which 30 µl was removed as the input. Protein-A 

agarose/magnetic beads (Millipore/NEB) were prepared by washing three times with 

1ml dilution buffer. The chromatin mixture was firstly pre-cleared by incubation 

with 50 µl protein A beads, 1µg mouse/ rabbit IgG (Santa Cruz Biotechnology) and 

2 µg salmon sperm DNA (Invitrogen) for at least 3 hours at 4oC rotating at 15 rpm. 
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After centrifugation at 1000 g at 4oC for a minute, the supernatant was removed to a 

new tube containing freshly washed beads, 5 µl of primary antibody and 2 µg of 

salmon sperm DNA. This was then incubated overnight at 4oC with rotation of 15 

rpm.  

 

To recover the bound DNA, the supernatant containing unbound, non-specific DNA 

was removed and the beads were washed by rotation at 20 rpm for 5 minutes at 4oC 

with 1 ml each of TSE I (20 mM Tris pH 8.1, 2 mM EDTA, 150 mM NaCl, 1% 

Triton and 0.1% SDS), TSE II (20 mM Tris pH 8.1, 2 mM EDTA, 500 mM NaCl, 

1% Triton and 0.1% SDS), Buffer III (10 mM Tris pH 8.1, 250 mM LiCl, 1 mM 

EDTA, 1% NP40 and 1% deoxycholate) and finally with TE twice. Bound chromatin 

was eluted in 250 µl elution buffer (100 mM NaHCO3 and 1% SDS) by rotating at 

15 rpm for 30 minutes at room temperature. This elution step was repeated with 

another 200 µl of elution buffer by rotating at 15 rpm for 15 minutes at room 

temperature. Samples and inputs were incubated with 0.2M NaCl for 6 hours at 65oC 

to reverse cross-linking. The DNA was then treated with proteinase K for 1 hour at 

45oC, followed by QIAGEN PCR purification following the manufacturer’s 

instructions. All samples were eluted in 30 µl of TE and 2 µl of the ChIP or input 

sample was used in a 15 µl QRT-PCR reaction containing: 7.5 µl FastStart Universal 

SYBR Green Master Mix (Roche), 0.9 µl primer (forward + reverse at 10 µM each) 

and 4.6 µl nuclease-free water. All samples were run in triplicate. The PCR was run 

on a Rotor-Gene RG-3000 (Corbett Research) at 95oC for 15 minutes, then 50 cycles 

of 94oC for 15 seconds, 60oC for 30 seconds and 72oC for 30 seconds; followed by 

72oC for 5 minutes. Data was normalised to the input DNA and the fold-enrichment 

of antibody-bound DNA versus IgG control was calculated.  
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#

 
 

2.8.2#Native#ChIP#
 
Histones wrap around DNA to form nucleosomes, therefore, they are naturally 

linked. Native ChIP was used to analysis histone proteins and their modified forms at 

target regions, as it offers major advantages in terms of antibody specificity. Several 

histone histone modifications (H3K4me2, H3K9Ac, H3K27me3, H3K9me3) were 

examined in DH cells at different time points (Figure 2.5), as these histone 

modifications can occur with different kinetics during oestrogen treatment. A T75-

flask of cells were harvested as described previously (section 2.2.4), and the pellet 

was resuspended in 4 ml of NB-A (85 mM KCl, 10 mM Tris pH7.6, 0.5 mM 

spermidine, 0.2 mM EDTA, 250 µM PMSF, 5.5% Sucrose). Equal volume of NB-B 

buffer (NB-A supplemented with 0.1% NP40) was added to the mixture to lyse the 

cells. The mixture was then incubated on ice for 3 minutes. Cell nuclei were 

collected by centrifugation, washed once with 10 ml of NB-R2 (85 mM KCl, 10 mM 

Tris pH7.6, 0.5 mM CaCl2, 0.5 mM MgCl2, 250 µM PMSF, 5.5% Sucrose) and 

resuspended in 0.5 ml of NB-R2. The concentration of the nuclei was measured in 

sonication buffer (5M Urea, 2M NaCl). The nuclei were diluted to 10 A260 units/ml 

in NB-R2 buffer. In a 1 ml aliquot of the nuclei, 3 µl of RNaseA/T1 and 80 unit/ml 

micrococcal nuclease were added to the mixture for 10 minutes at room temperature. 

A small aliquot of the digest was purified using QAIGEN PCR purification kit 

following the manufacturer’s protocol. Purified DNA was run on a 1% TBE gel to 

test the digest. The rest of the nuclei were spun down at 8000 g for 30 seconds to the 

first supernatant (SN1). The pellet was resuspended in 0.5 ml of TEEP5N (10mM 

PCR target Forward primer Reverse primer
EGFR promoter set 1 GCACGGCGACCTCCTCAG GGCACCGACGGGGAAACT

EGFR promoter set 2 GGTCCAGAGGGGCAGTGCT CCCCGCGGGACCTAGTCT

EGFR promoter set 3 TGGCACAGATTTGGCTCGAC GGTGCCCTGAGGAGTTAATT

Myb binding at EGFR CTGTACAGCTGGTGGCAGTT TGATGGGTTGATTCCCTTGT

pS2 promoter GACGGAATGGGCTTCATGAGC CTGAGACAATAATCTCCACTG

ER! binding at Myb AAAGAGCGTGGGTGGAGAC GCAGTCGGGTTTCTCTTCC

Table 2.8 Primer sequences used in ChIP



 73 

Tris pH7.5, 0.5mM EDTA, 0.5mM EGTA, 250µM PMSF, 0.05%NP40, 5mM NaCl) 

to release the chromatin overnight on ice.  

 

The next day, the sample was spun at 16,000 g for 5 minutes to take the second 

supernatant (SN2). Again, the concentration of SN1 and SN2 was measured, and a 

small aliquot of each fraction was purified by QAIGEN PCR purification kit, and run 

on a 1% TBE gel to check the quality of the released chromatin. For each ChIP, 2.5 

µg of SN1 and 2.5 µg of SN2 was diluted in 1ml of TEEP50N (10 mM Tris pH7.5, 

0.5 mM EDTA, 0.5 mM EGTA, 250 µM PMSF, 0.5%NP40, 50 mM NaCl), and 

incubated with magnetic beads pre-bound with 5 µg of antibodies or IgG control at 

4oC overnight. 150 µl of the chromatin suspension was taken as input before addition 

of antibodies. Chromatin-bound magnetic beads were wash with ice-cold TEEP 140 

(10 mM Tris pH7.5, 0.5 mM EDTA, 0.5 mM EGTA, 250µM PMSF, 0.5%NP40, 140 

mM NaCl, 0.5% deoxycholate), TEEP 200 (10 mM Tris pH7.5, 0.5 mM EDTA, 0.5 

mM EGTA, 250 µM PMSF, 0.5%NP40, 200 mM NaCl, 0.5% deoxycholate) and TE 

before eluting in 450 µl elution buffer (100 mM NaHCO3 and 1% SDS) for 30 

minutes at room temperature with rotation. The released chromatin fragments were 

treated with proteinase K at 45oC overnight. The DNA was purified using a 

QAIGEN PCR purification kit according to manufacturers’ instructions. The 

efficiency of the enrichment was tested by QRT-PCR as described previously with 

crosslinked ChIP (Figure 2.4). Samples were then amplified and hybridized onto a 

custom 4 x 72K Nimblegen arrays (Roche).  
 

 
 

Table 2.9 Primary Antibodies for Cross-linked ChIP and Native ChIP. 

Antibody Supplier 
Anti - Total ER! Santa Cruz (F10) # sc-8002 
Anti - c-Myb Millipore # 05-175 
Anti - Pan acetyl H4 Millipore # 05-858 
Anti - H3K4 di-Methylation Millipore # 07-030 
Anti - H3K9 Acetylation Abcam #Ab10812 
Anti - H3K27 tri-Methylation Millipore # 07-449 
Anti - H3K9 tri-Methylation Millipore # 07-442 

!
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Figure 2.4 Native ChIP with different histone modification antibodies in DH 
cells.  

The enrichment of H3K4me2 (A), H3K27me3 (B), H3K9Ac (C) and H3K9me3 (D) 

relative to IgG control at EGFR promoter (primers shown in Table 2.8) in DH cells 

were measured to test the efficiency of the native ChIP.  

 

2.8.3#ChIPVonVchip#
 

2.8.3.1%Design%of%the%custom%array%for%ChIP6on6chip%%
 
The 4 x 72K Nimblegen arrays were designed according to the results of expression 

array data obtained from DH cells at different time points as shown in Figure 2.5. 

Genes were grouped into several categories according to their change in expression 

in response to oestrogen over time. These categories were, Group 1: genes whose 

expression goes up/down on day 2 (early response genes), Group 2: genes whose 

expression goes up/down on day5 (later response genes), Group 3: genes whose 

expression stays up/down after oestrogen removal, Group 4: genes which had the 

most variable expression, and Group 5: genes whose expression remained 
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unchanged. Theses groups were then sorted by p value to find out the most 

significant changes. Data were also analysed using a pfp (probability of false 

prediction) test with a threshold value of 0.01 to look for genes that have a stepwise 

increased or decrease during the oestrogen treatment. At the same time, the stepwise 

increased or decrease was maintained after the removal of the oestrogen. A certain 

amount of genes were chosen from each group to create a list of 757 genes to put on 

the array. The genomic coordinates of these 757 genes were taken from the 

commercially available human 2.1M Deluxe Promoter array (Roche, 

#06532985001).  
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Figure 2.5 Time course experiments of oestrogen treatment in DH cells.  

DH cells were treated with oestrogen for 5 days. Two biological samples were 
collected at day0 (DH control), day1 (DHE1), day2 (DHE2) and day5 (DHE5) for 
ChIP array to capture the kinetics of histone modifications during oestrogen 
treatment in DH cells. After 5 days of oestrogen treatment, oestrogen was washed 
away from the media. Two biological samples were collected again 5 days after the 
removal of the oestrogen (DHE5R5). Three biological samples were collected for 
expression array at four different time points, which were DH control, DHE2, DHE5, 
and DHE5R5. 
 

2.8.3.2%Amplification,%labelling%and%hybridisation%of%ChIP%material%onto%custom%
array%
 
The amplification, labelling and hybridisation of ChIP materials onto the custom 

arrays were done along with the help of Dr. Catherine Naughton. 10 µl of native 

sample was used as input material for each amplification reaction using the 

GenomePlex® whole genome amplification (WGA) kit (Sigma-Aldrich) according to 

manufacturers’ instructions. In brief, 2 µl 1x library preparation buffer and 1 µl of 

library stabilisation buffer was added to the input material for 2 minutes at 95 oC 

before cooling on ice immediately. 1 µl of library preparation enzyme was then 

added to the reaction mix to incubate 16oC for 20 minutes, 24oC for 20 minutes, 

37oC for 20 minutes and 75oC for 5 minutes. The mixture was chilled at 4oC at the 

end of the library preparation. The sample was then amplified twice in a reaction mix 

of 7.5 µl of 10x amplification master mix, 5 µl of WGA DNA polymerase and 47.5 

µl of nuclease-free water at 95oC for 3 minutes, then 14 cycles of 94oC for 15 
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seconds followed by 65oC for 5 minutes. The amplified materials were purified using 

the QIAGEN PCR purification kit and stored at -20 oC. 

 

Labelling of amplified samples was performed using the CGH Labeling Kit for Oligo 

Arrays (ENZO) according to manufacturers’ instructions. In brief, 500 ng of DNA 

together with 20 µl the Primers/Reaction buffer in a total volume of 39 µl was 

denatured at 98 oC for 10 minutes and placed on ice for 5 minutes to allow the 

annealing of random primers. 10 µl of the appropriate cyanine dye-labeled nucleotide 

mix together with 1 µl Klenow Exo-DNA polymerase was then added to the mixture 

to allow primers extension at 37 oC for 4 hours. The reaction was terminated with 

adding 5 µl of Stop buffer. The samples were then cleaned with QIAGEN PCR 

purification kit and stored at -20 oC. 

 

Labelled samples were hybridised into the 4 x 72K Nimblegen arrays using the 

Nimblegen Hybridisation System (Roche) according to manufacturers’ instructions. 

In brief, labelled DNA samples were dried in a DNA vacuum concentrator on low 

heat and resuspended in 3.3 µl of nuclease-free water. The resuspended sample was 

mixed with 8.7 µl of hybridisation solution master mix. The reaction mix was 

incubated at 95 oC for 5 minutes and then placed at 42 oC for at least 5 minutes. The 

mixture was then loaded into the array and hybridised at 42 oC for 16 ~ 20 hours. 

After the hybridisation, arrays were washed with the Nimblegen wash buffers 

provided with the kit and spin dry immediately. Arrays were then scanned at 2 µm 

resolution using the Nimblegen MS 200 microarray scanner. Raw data obtained from 

the ChIP arrays were analysed by Dr Nick Gilbert and Sam corless. Data at different 

time points with different histone modifications were then converted to bed files and 

analysed by the UCSC genome browser.   
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Chapter 3 Generation and Characterizations of an 

oestrogen and serum deprived ER positive breast 

cancer cell line to study mechanisms of endocrine 

resistance  
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3.1#Introduction##

 
ERα is a transcription factor that can be activated through multiple pathways 

(detailed in section 1.2.3). In the absence of ligand, the nuclear receptor is locked in 

an inhibitory complex with heat shock proteins (Pratt and Toft, 1997). Upon binding 

of the oestrogen, liganded ERα undergo conformational changes to cause receptor 

dimerisation and recruitment of co-activators. The resulting complex binds to their 

target genes and stimulate the proliferation of cancer cells (Tsai and O'Malley, 1994). 

Furthermore, ERα can be activated through phosphorylation in a ligand-independent 

manner via a variety of intracellular signalling events including MAPK and 

PI3K/Akt pathways (Bunone et al., 1996, Kato et al., 1995). The activated ERα 

complex binds to its downstream target genes and activate transcription. The ligand 

dependent and independent pathways are the genomic actions of ERα in response to 

stimulus. Meanwhile, ERα can work as part of the signalling cascades to activate 

other transcription factors. This is called the non-genomic function of ERα. As 

oestrogen receptor α (ERα) is overexpressed in majority of breast cancers, interfering 

with oestrogen receptor signalling has been the main mainstay for breast cancer 

therapy.  

 

The activity of the ERα can be blocked through oestrogen deprivation or by 

antagonists of the receptor (section 1.4). Tamoxifen is an ERα antagonist that was 

used widely as a first-line treatment for breast cancer patients with good initial 

responses (section 1.4.1). While, the pure ERα antagonist, ICI, is more often used as 

a second-line therapy due to its cost and disadvantages in route of administration. As 

ICI can only be administered as injections, tamoxifen is taken orally. Furthermore, 

ICI has shown to be effective after cells become resistant to tamoxifen. However, 

cells were insensitive to tamoxifen after they developed resistant to ICI (Osborne et 

al., 1995). Oestrogen deprivation is achieved clinically using aromatase inhibitors in 

postmenopausal women. Clinical data with aromatase inhibitors have shown their 

advantages when comparing with tamoxifen in managing breast cancer progression 

(section 1.4.2). However, as with other endocrine strategies, the subsequently 

development of endocrine resistance remains one of the biggest challenges in breast 
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cancer therapy. The diverse functions of ERα and pathways it was involved in plays 

a main part in the development of endocrine resistance. Indeed, it has been shown 

with xenograft and cell models that aberrant activation of growth factors signalling 

and their downstream pathways are associated with resistance after tamoxifen 

treatment and oestrogen deprivation (Jelovac et al., 2005, Massarweh et al., 2008).  

Therefore, it is important to study the crosstalk between different survival pathways 

and underlying molecular mechanisms that trigger them in order to understand the 

development of resistance towards anti-ERα endocrine therapy.  

 

Human breast cancer cell lines play vital roles in the discovery of mechanisms that 

lie behind the development of the endocrine resistance. Several ER-positive breast 

cancer cell lines have been developed to study the acquisition of resistance. MCF-7 

cells are commonly used in ER-positive breast cancer research, which represents the 

early stages of the disease and is a model for oestrogen dependent and anti-ERα 

sensitive breast cancer. Oestrogen independent and endocrine therapy resistant cells 

were then derived from MCF-7 cells to provide an adequate model mimicking the 

clinical effects of primary hormonal therapy in cancer patients (discussed in section 

3.7). For instance, LCC1 is an oestrogen independent but responsive cell line that 

was derived from MCF-7 cells using ovariectomized mice. LCC1 cells are sensitive 

to ERα antagonist, tamoxifen and ICI, but do not require oestrogen to grow. Long-

term estradiol-deprived (LTED) is another breast cancer cell line model that derived 

from MCF-7 cells. They were made by culturing cells in media treated specifically to 

remove substantial amounts of oestrogen (Figure 3.1). After a period of proliferative 

quiescence lasting 1~3 months, LTED cells are the returning population of 

proliferative cells. LTLT-Ca is a cell line model for aromatase inhibitors derived 

from cells that survived from long-term letrozole treatment in a xenograft tumour 

model (Jelovac et al., 2005). In this model, MCF-7 cells that stably transfected with 

human aromatase gene (MCF-7Ca) were inoculated into ovariectomized mice. Thus, 

tumours were served as autocrine sources of oestrogen. Mice were then treated with 

letrozole over a period up to 56 weeks before cells were collected for analysis. 

 

Most of these oestrogen independent breast cancer cell models developed to data 
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have derived from cells in serum or stripped serum containing media, which prevents 

us to have a clear view of crosstalk between different signalling pathways. In order 

to have a better understanding of the different actions of ERα and growth factor 

mediated signalling; and their contributions towards endocrine resistances, it will be 

beneficial to generate a novel breast cancer cell line with defined growth factors and 

known level of oestrogen. So we can investigate the role of different signalling 

pathways and their response to change in hormone concentrations in a controlled 

environment. 

 

 
Figure 3.1 Derivation of different oestrogen independent and endocrine 
therapies resistant breast cancer cell lines from MCF-7 cells. 
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3.2#Generation#of#a#longVterm#serum#free#and#oestrogen#deprived#breast#
cancer#cell#line#
 
MCF-7 cells are well characterized ERα positive breast cancer cell lines which was 

isolated from a pleural effusion in a postmenopausal patient with metastatic breast 

cancer in 1973 (Soule et al., 1973). They were routinely cultured in phenol red 

containing complete DMEM with 10% FCS. To generate a serum free and oestrogen 

deprived ER positive cell line, the complete DMEM of MCF-7 was gradually 

replaced with a defined serum free medium HMM over a two-month period (Figure 

3.2A).  The HMM medium was first developed as a serum free medium for culturing 

hippocampal neurons (Brewer et al., 1993), which has also been adopted for 

culturing human mammary epithelia cells (HMECs) (Duss et al., 2007). This defined 

serum free media contains a known concentration of oestrogen and EGF (see detailed 

HMM media recipe in section 2.1). When cells were cultured in a 100% HMM 

medium, they developed adhesion defects and could no longer attach to the uncoated 

tissue culture plate. This could due to the inactivation of extracellular matrix 

production in serum free condition, as cells attached well on collagen or fibronectin 

coated plates. At this point, oestrogen was withdrawn from a proportion of cells to 

produce the serum free and oestrogen deprived Die Hard (DH) cells. DH cells were 

continuously maintained in this environment for over a month to allow the expansion 

of cell population. SRB assay was used to investigate the growth rate of DH cells and 

shown no growth cessation when comparing with parental MCF-7 cells (Figure 3.3). 

One surprising result is that cells kept under the serum free environment in the 

presence of oestrogen all died out over the selection period. However, when 

oestrogen was added back to the adapted DH cells no obvious cell death was 

observed. Furthermore, the presence of oestrogen in the media was able to promote 

the proliferation DH cells (Figure 3.5A). DHe cells were DH cells that were cultured 

in 1nM of oestrogen over a long period (over one month). They can be used as a 

control when assaying the effects of oestrogen deprivation in DH cells. In turns of 

morphology, parental MCF-7 cells look flatter than the serum free DH cells (Figure 

3.2B). When oestrogen was initially added to the media, long and thin protrusions 

were observed around the cell membrane (Figure 3.4B). However, the protrusions 

diminished after pro-longed oestrogen treatment.  
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Figure 3.2 Generation of DH cells.  

(A) DH were derived from ER positive breast cancer cell line, MCF-7, by 
progressively removing serum and oestrogen from the culture environment over two 
months. DHe cell were subsequently made by addition of 1nM of oestrogen back to 
the culture medium. (B) 10x image for MCF-7 cells and DH cells that were cultured 
on collagen-coated plates.  
 

 
 

Figure 3.3 Growth characterisation of DH cells and MCF-7 cells.  

SRB assay was used to monitor the proliferation of DH and MCF-7 cells. 1000 cells 
were plated on collagen coated well over nine days. MCF-7 cells were cultured in 
complete DMEM media, and DH cells were cultured in oestrogen and serum free 
HMM media during the assay. By this assay no significant difference was found in 
proliferation between the DH and MCF-7 cells. Data plotted represent means of six 
repeats. Error bars=SD, n=6.  
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Figure 3.4 Cellular morphology of DH cells in the presence of oestrogen.  

(A) 10x image of control DH cells. (B) DH cells stimulated with 1nM of oestrogen 
for 24h. Arrows indicated cell protrusions after oestrogen stimulation.  

A B



 85 

3.3#DH#cells#proliferation#is#responsive#to#ERα#agonist#and#antagonist##
 
In order to characterise whether DH cells are oestrogen sensitive or ERα dependent 

for growth, cells were treated with different ERα agonist and antagonists (Figure 

3.5). Although DH cells grew well in the absence of oestrogen, they remain 

responsive to ERα agonist and antagonist in growth assays. Oestrogen stimulation 

gave a 35% increase in the value of absorbance in DH cells (Figure 3.5A). DH cells 

were then treated with two ERα antagonists, tamoxifen and ICI (ICI 182,780) 

(Figure 3.5B).  ICI is a “pure” inhibitor of the receptor, as it can block the ERα 

transactivation coming from both AF1 and AF2 domains (Wakeling et al., 1991). 

Furthermore, it also induced degradation of the receptor (Dauvois et al., 1992). ICI 

demonstrated a similar result in restraining the proliferation of MCF-7 and DH cells 

suggesting both cell types were ERα dependent for growth. Interestingly, when 

compared with parental MCF-7 cells, SRB assay shown that DH cells are more 

sensitive to the partial antagonist tamoxifen. This was further confirmed by using a 

colony formation assay (Figure 3.6). 0.2~0.4µM of tamoxifen was sufficient to 

significantly inhibit the growth of DH cells. Whilst, 1~2µM was required for MCF-7 

cells demonstrating that DH cells were highly sensitive to tamoxifen induced cell 

death. As tamoxifen competes with oestrogen for binding at the ERα AF-2 region, it 

inhibits the transcriptional activity of AF-2 (section 1.4.1). As DH cells were highly 

sensitive to tamoxifen, it implied that ERα were being transactivated through AF-2 

region in DH cells. In addition, apoptosis assay was used to compare the 

effectiveness of tamoxifen and ICI in triggering apoptosis in DH cells (Figure 3.7). 

Tamoxifen was more efficient in triggering apoptosis in DH cells. After 48 hours of 

tamoxifen treatment, almost half of the cell population were in early apoptosis.  
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Figure 3.5 Growth characterisation of DH cells with ERα agonist and 
antagonist.  

SRB assay was used to investigate the proliferation of DH in response to ERα 
agonist and antagonist. MCF-7 cells were cultured in complete DMEM media, and 
DH cells were cultured in oestrogen and serum free HMM media during the assay. 
DH cells were treated with 1nM oestrogen (A), while 5nM oestrogen was used for 
MCF-7 cells (B). 1µM tamoxifen and 0.1µM ICI was used in both cell lines (C & D). 
The absorbance was measured at Day 1, 3 & 6. Data plotted represent means of six 
repeats. Error bars=SD, n=6.  
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Figure 3.6 Colony formation assays of MCF-7 and DH cells with tamoxifen.  

Cells were allowed to attach for 24 hours before addition of different concentration 
of tamoxifen. MCF-7 cells were cultured in complete DMEM media, and DH cells 
were cultured in oestrogen and serum free HMM media during the assay. Plates were 
fixed and stained using methylene blue solution on day 10. 1~5µM of tamoxifen was 
chosen to put on MCF-7, where 4µM of tamoxifen was required to stop the 
formation of any colonies. When the same concentration range of tamoxifen was 
applied to DH cells, no colonies were formed in any concentration. Therefore, lower 
concentration of tamoxifen was used (0.2~1µM). 0.6µM of tamoxifen is sufficient to 
stop the formation of colonies for DH cells on day 10.  
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#
 
Figure 3.7 Apoptosis assay of DH cells with agonist and antagonist of ERα.  

DH cells were treated with oestrogen, tamoxifen and ICI for 48 hours before 
preparing for apoptosis assay as described in section 2.3.3. Cells were sorted 
according to the PE Annexin V and the 7-AAD staining. Non-apoptotic cells will 
present in a population with low PE Annexin V and 7-AAD staining. Early apoptotic 
cells will show positive for PE Annexin V staining and negative for 7-AAD staining. 
Late apoptotic (dead) cells will be positive for both Annexin V and 7-AAD staining. 
The figure above shows the percentages of early apoptotic cells after each treatment. 
Control and oestrogen treated DH cells were mainly non-apoptotic cells. Both 
tamoxifen and ICI significantly triggered apoptosis in DH cells. 
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3.4#The#effects#of#oestrogen#on#transcription#in#DH#cells#

 
To investigate whether DH cells response to oestrogen at the transcription level, the 

classic oestrogen response gene, pS2, was used to test the transcriptional activity of 

ERα in DH cells. In MCF-7 cells, oestrogen induces massive expression of pS2, but 

only weakly by tamoxifen (Berry et al., 1989). It was therefore used as a marker for 

measuring the level of oestrogen mediated transcription in cells. DHe cells were used 

as control to assay the oestrogen responses for long-term oestrogen deprived DH 

cells rather than the parental MCF-7 cells. As MCF-7 cells were cultured in serum-

supplemented media, oestrogen was already existed in the growth environment. 

Therefore, it is difficult to interpret the result using MCF-7 cells. DHe cell were 

derived from DH cells, which had 1nM oestrogen putting back to the media for over 

a month. Unlike DH cells, DHe cells were oestrogen dependent for growth (Figure 

3.8). Removal of oestrogen from DHe cells gave a more than 50% reduction in cell 

density according to the SRB assay.  

 

To assay the transcription response, DH and DHe cells were treated with oestrogen, 

tamoxifen and ICI. The expression level of pS2 gene was measured by qRT-PCR. 

The results indicated that DH cells were highly sensitive to oestrogen at 

transcriptional level, though they have been passaged in an oestrogen free 

environment (Figure 3.9). A significant induction of pS2 gene expression (>6 fold 

vs. basal DH cells, >3 fold vs. DHe cells) was observed in DH cells after 48hs 

oestrogen treatment. DHe cells shown only a less than two fold reduction of pS2 

expression when oestrogen was removed from the media for 48hs. Therefore, long 

term oestrogen deprived DH cells were highly sensitive to the oestrogen mediated 

transcription. Tamoxifen is a partial agonist for the receptor. It demonstrated a weak 

induction of the pS2 gene expression in DH cells. A reduction of pS2 gene 

expression with ICI treatment was observed in both cells. To sum up, the results 

suggested that DH cells were ERα agonist and antagonist responsive at the 

transcription level despite the oestrogen-free growth environment.  

  



 90 

 
 

Figure 3.8 Growth characterisation of DHe cells with oestrogen.  

SRB assay was used to investigate the proliferation of DHe cells. DHe cells were 
cultured in HMM media containing 1nM oestrogen. Oestrogen was removed from 
the growth environment for 6 days, to assay whether DHe cells are oestrogen 
dependent for growth. 2000 cells were plated in each 96 well. The absorbance was 
measured at Day 1, 3 & 6. Data plotted represent means of six repeats. Error 
bars=SD, n=6. 
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Figure 3.9 Expression of the pS2 gene in DH and DHe cells.  

Cells were treated with 1nM oestrogen, 1µM tamoxifen or 0.1µM ICI for 48hs before 
collecting for RNA extraction. Representative experiment is shown of at least two 
experiments carried out. Each column presents mean of triplicate qRT-PCR analysis 
for each sample relative to β-actin expression. Error bars=SD, n=3. Statistical 
significance noted for different treatments vs matched control (Unpaired student’s t-
test *P<0.05; **P<0.01).  
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3.5#Cell#signalling#pathways#in#DH#cells##
 
It has been shown in the previous two sections that DH cells are ERα but not 

oestrogen dependent for growth. Furthermore, they are oestrogen responsive at the 

transcriptional level. I then went on to study the signalling pathways in DH cells. As 

DH cells were routinely cultured in the absence of oestrogen, I hypothesis the 

presence of ligand independent ERα pathways in DH cells. Therefore, multiple cell 

signalling pathways together with the phosphorylation status of ERα were examined 

in DH cells. 

  

In the classic genomic pathway of ERα, the receptor undergoes conformational 

changes to reveal phosphorylation sites upon binding of the ligand (section 1.2.3.1). 

In the ligand independent pathway, ERα can also be activated through 

phosphorylation at multiple sites including Ser 118 and Ser 167 by a variety of 

intracellular signalling pathways. For example, the action of ERα can be coupled to 

growth factor receptors signalling, where the activation of extracellular receptors like 

EGFR leads to ERα phosphorylation at serine 118 and 167 via the MAPK and 

Akt/PKB pathway respectively (section 1.2.3.2). Therefore, the level of ERα 

phosphorylation can be an important indicator for different ERα mediated signalling 

pathway in cells.  

 

The phosphorylation level of ERα and the activities of MAPK and PI3K/Akt 

pathways in MCF-7, DHe, and DH cells were analysed using western blotting 

(Figure 3.10). Among the three different cell lines, MCF-7 cells that cultured in the 

serum containing media had the highest phosphorylated level of ERα at both Ser 118 

and Ser 167 position (Figure 3.10A). DHe that grew in the oestrogen containing 

serum free media had a reduced level of phosphorylated ERα as well as the total 

level of ERα. Comparing with MCF-7 and DHe cells, the oestrogen and serum 

deprived DH cells overexpressed ERα. However, DH cells showed the lowest level 

of phosphorylated ERα at serine 118. Nevertheless, the presence of phosphorylation 

at Ser 118 in DH cells evidence the involvement of ligand independent 

phosphorylation of the ERα. Therefore, the activity of MAPK pathway was 

examined in DH cells.  
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Phosphorylated ERK (p-ERK) was used to study the activity of MAPK pathway in 

MCF-7, DHe and DH cells (Figure 3.10B). DH cells had an increase in the level of 

p-ERK versus MCF-7 cells. However, DHe cells that had oestrogen added back to 

the growth media showed a much bigger increase the p-ERK level as well as EGFR 

protein level, suggesting that the activity of MAPK pathway was likely be triggered 

by oestrogen signalling in DH cells. PI3K/Akt signalling pathway was also tested in 

this three cell lines. Serine 473 phosphorylation of Akt was used as a marker to exam 

the activity of the pathway. Both DH and DHe cells have shown an increased 

phosphorylated level of Akt. However, the phosphorylation of ERα at Ser 167 was 

completely absent in DH cells indicating the activation of PI3K/Akt signalling 

pathway did not contribute to the ERα ligand independent pathway.  

 

 
 

Figure 3.10 Western Blot analysis of ERα, MAPK and Akt pathways in MCF-7, 
DHe and DH cells.  

MCF-7 cells were cultured in complete DMEM media, DH cells were cultured in 
oestrogen and serum free HMM media, and DHe cells were cultured in HMM media 
with 1nM of oestrogen before lysing. Whole cell lysates were prepared from MCF-7, 
DHe, and DH cells. Total and phosphorylated ERα levels were measured (A). The 
activation of MAPK and Akt pathways were examined using specific phosphorylated 
antibodies. GAPDH and panH4 were used as loading controls.  
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3.6#DH#cells#bypass#oestrogen#deprivation#through#high#ERα#occupancy#at#
oestrogen#response#gene#
 

Here, the mechanism of how the ER positive DH cells can survival in the absence of 

oestrogen was investigated. Firstly, I questioned whether DH cells were survived on 

autocrine production of oestrogen. Colony formation assay with aromatase inhibitor, 

letrozole, was performed on both MCF-7 cells and DH cells. If DH cells were 

survived on autocine oestrogen production, letrozole treatment should significantly 

impair the proliferation of DH cells and result less colonies. 10µM of letrozole 

significantly inhibited the formation of colonies in MCF-7 cells. While, 30µM of 

letrozole only slightly affect the number of colonies formed by DH cells (Figure 

3.11). Therefore, DH cells were unlikely to survive on the autocrine production of 

oestrogen. 
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Figure 3.11 Colony formation assays of MCF-7 and DH cells with letrozole.  

Cells were allowed to attach for 24 hours before addition of different concentration 
of letrozole. MCF-7 cells were cultured in complete DMEM media, and DH cells 
were cultured in oestrogen and serum free HMM media during the assay. Plates were 
fixed and stained using methylene blue solution on day 10. 1~100µM of letrozole 
was chosen to put on MCF-7 cells, where 15µM of letrozole was required to stop the 
formation of any colonies. Therefore, 1~30µM of letrozole was chosen to put on DH 
cells. Even with the highest concentration of letrozole (30µM), DH cells formed 
significant amount of colonies on day 10. 
 

When comparing the expression level of ERα among MCF-7, DHe and DH cells, DH 

cells showed an up-regulation of the total ERα protein level (Figure 3.10). As ERα is 

a nuclear receptor that is found mainly in the nucleus, ERα immunofluorescence was 

performed in DH cells. Indeed, the result showed that ERα was presented mainly in 

the nucleus in DH cells (Figure 3.12). In response to external stimulations, liganded 

ERα assembles to the oestrogen response elements (ERE) of target genes, and 

induces transcriptional activation (section 1.3.3). Therefore, un-liganded ERα should 

have low occupancy at its target genes without stimulation. Due to the increased 

amount of ERα found in the nucleus, I hypothesised that un-liganded ERαs might 
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pre-occupy oestrogen response genes in DH cells to compensate the absence of 

ligand. 

 

Using pS2 as an example of oestrogen responsive gene, the basal ERα occupancy 

was analysed by ChIP at pS2 promoter and distal regions (Figure 3.13). Indeed, DH 

cells had a high ERα promoter occupancy at pS2 gene in the absence of oestrogen. 

The basal ERα promoter occupancy of control DH cells was about 9 fold greater than 

control DHe cells (15.71 vs. 1.76). In the meantime, addition of oestrogen gave a 

further 4 fold increase in ERα binding to pS2 promoter. Similarly, oestrogen 

withdrawal from DHe cell for 48 hours also caused a 4-fold decrease in ERα pS2 

promoter binding. This suggested that the magnitude of ligand induced receptor 

binding remained the same, though DH cells had a higher basal ERα binding at 

oestrogen response genes. Collectively, the results suggested that DH cells bypassed 

oestrogen deprivation through overexpression of ERα. The increased receptor 

proteins bound to the oestrogen responsive genes in the absence of ligand to maintain 

their expression and therefore maintain the ERα mediated pathways in DH cells. 
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Figure 3.12 Immunofluorescence of DH cells.  

DAPI staining was used to mark the nuclear region of the cell (A). Total ERα 
staining was shown in (B). A merge image of DAPI (blue) and ERα (red) was shown 
in (C).   
 

 
 

Figure 3.13 ChIP analysis of ERα at pS2 promoter in DHe and DH cells.  

Oestrogen induced ERα recruitment to the pS2 promoter (-353 to -30) and distal 
region (-3000 to -2700) were examined in DH and control DHe cells. 1nM oestrogen 
was added to DH cell, while oestrogen was completely removed from DHe cells for 
48hs. Results were quantified by QPCR using specific primers that cover the 
promoter and distal sites of pS2 gene.  Data were presented as means ± SD of input-
corrected values from triplet samples. Statistical significance noted for different 
treatments vs matched control (Unpaired student’s t-test **P<0.01; ***P<0.001). 
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3.7#Discussion#
 
DH was a novel oestrogen and serum deprived breast cancer cell line derived from 

MCF-7 cells. The survival pathways and intracellular signalling pathways of DH 

cells were characterised in this chapter. After culturing in oestrogen-free 

environment over a long period (>3 months), DH cells no longer required oestrogen 

for growth but remained sensitive to ERα inhibitors (Figure 3.5). This suggested that 

ERα was vital for the proliferation of DH cells even in the absence of ligand 

stimulation. Therefore, the activation of ERα ligand independent pathway was tested 

in DH cells by investigating the basal phosphorylation status of ERα (Figure 3.10). 

Serine 118 and 167 were the two main ERα phosphorylation sites that played 

important role in the ERα ligand independent pathway, as they could be 

phosphorylated by MAPK and PI3K respectively in the absence of oestrogen 

(Bunone et al., 1996, Kato et al., 1995). Phosphorylated ERα could then cause 

receptor dimerisation and activation of its downstream targets in the absence of 

ligand. DH cells showed little phosphorylation at Ser 118 and virtually no 

phosphorylation at Ser 167 of ERα (Figure 3.10A). Although the level of ERα 

phosphorylation at Ser 118 was really low, it was likely to be mediated by the 

activation of MAPK pathway in the serum-free and oestrogen deprived DH cells 

(summarised in Figure 3.14). On the other hand, despite the high phosphorylation 

level of Akt in DH cells when comparing with parental MCF-7 cells, activation of 

PI3K pathway did not trigger ERα phosphorylation at Ser 167 (Figure 3.10B) 
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Figure 3.14 ERα mediated survival pathways in DH cells.  

ERα ligand independent pathway and ERα overexpression were present in DH cells 
to help cells bypassed oestrogen deprivation. In the ligand independent pathway, 
ERα is phosphorylated by MAPK pathway. The phosphorylated ERα is able to drive 
the transcription of oestrogen responsive genes. At the same time, DH cells 
overexpress ERαs to accumulate at the promoter of oestrogen responsive genes. 
However, the mechanism triggers conformational changes and receptor dimersation 
is unknown.   
 
Apart from the activation of ERα ligand independent pathway, DH cells also 

overexpressed ERα to compensate the loss of ligand stimulation. Using the oestrogen 

responsive pS2 gene as a reporter, I found that DH cells had high basal promoter 

occupancy in the absence of oestrogen, which allowed DH cells to bypass oestrogen 

deprivation (Figure 3.13). In ER positive breast cancer cells, the expression of ERα 

is tightly regulated through a balance of protein synthesis and degradation. 

Constitutive oestrogen stimulation will cause a rapid reduction of ERα protein level 

through the ubiquitin-proteasomal degradation pathway (Saceda et al., 1988, Read et 

al., 1989). On the other hand, protein kinase like glycogen synthase kinase-3 (GSK-3) 

has been reported to protect ERα from degradation and mediate ERα 
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phosphorylation at Ser 118 in the presence of oestrogen (Grisouard et al., 2007). 

Therefore, culturing ER positive breast cancer cells in an oestrogen-free media like 

the HMM media were likely to abolish the homeostasis of ERα regulation and 

promote changes that allow cells to adapt to the new growth environment. 

 

Since the isolation and characterization of the MCF-7 cell line in 1973, ER-positive 

breast cancer cells lines have become standard models to mimic the effects of 

endocrine therapies on breast cancer patients. Throughout the time, several oestrogen 

independent and endocrine therapy resistant cells have been developed from MCF-7 

cells to study the effects of therapies against ERα (detailed in Section 3.1). Like DH, 

LCC1 and LTED were other oestrogen independent cell lines derived from MCF-7 

cells (Figure 3.1). Up-regulation of the total ERα level was observed in LCC1 cells. 

Furthermore, LCC1 cells respond to oestrogen at transcriptional level and have 

enhanced binding of ERα to pS2 promoter in the absence of oestrogen (Kuske et al., 

2006). Similarly, LTED cells also have increased expression of ERα and increased 

basal transcriptional activation of ERα target genes (Jeng et al., 1998). Therefore, up-

regulation of the total ERα protein level in response to the lost of ligand could be a 

general mechanism for cells to survive through oestrogen deprivation in ER-positive 

breast cancer cells.  

However, an increase in tamoxifen sensitivity has not been reported in either LCC1 

or LTED cells. This might due to both LCC1 and LTED cells were cultured in media 

that supplemented with stripped serum. Although the majority of the oestrogen and 

other growth factors have been removed during the stripping process, the remaining 

continue to stimulate the growth through oestrogen induced pathway and other 

unknown signalling pathways. Therefore, LCC1 and LTED cells might not that 

heavily dependent on the ERα mediated survival pathway as DH cells.  

 

Removal of oestrogen from cells was essentially like treating cells with aromatase 

inhibitors. In the LTLT-Ca cell model, the protein level of ERα increases initially 

during the treatment. However, it decreases after 56 weeks when cells became 

resistant to letrozole. The resistant LTLT-Ca cells have elevated MAPK pathway 

activity. As a consequent, growth of LTLT-Ca cells is inhibited by MAPK kinase 
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inhibitors but not ERα inhibitors. Furthermore, the EGFR inhibitor, gefitinib, can not 

only inhibit the growth of LTLT-Ca cells but also restore their sensitivity to 

tamoxifen indicating direct cross-talks between ERα and growth factor signalling 

pathways.  

 

Although these oestrogen deprived cell models were derived individually, they all 

highlighted the involvement of alterations of ERα protein level or elevation of 

intracellular signalling pathways. The defined culture condition of DH cells will 

enables us to clearly dissect different ERα pathways and interactions with other 

intracellular pathways in ER positive breast cancer cells. Thus, the relationship of 

ERα and growth factors mediated transcription regulation in DH cells was 

investigated further in the next chapter.  
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Chapter 4 

Oestrogen mediated transcriptional regulation of 

breast cancer cell signalling 
 #
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4.1#Introduction#
 
The growth factor receptors signalling crosstalks with ERα signalling at multiple 

levels through the ligand independent pathway and non-genomic pathway (detailed 

in section 1.2.3). The EGFR mediated MAPK pathway is a common player involves 

in both pathways of ERα. The difference between the two modes of ERα actions is 

that ERα signalling is activated by the EGFR mediated MAPK pathway in the ligand 

independent pathway, while, the EGFR mediated MAPK pathway is activated by the 

membrane associated ERα in the non-genomic pathway. Apart from their different 

working mechanisms, a key characteristic of the non-genomic pathway is that it 

happens rapidly in response to oestrogen in ER positive breast cancer cells. 

 

The non-genomic role of ERα was first suggested because of the observations that 

ERαs was on or near the plasma membrane in cancer cells (Simoncini and 

Genazzani, 2003, Falkenstein et al., 2000). In the non-genomic pathway, the classic 

hormone receptor ERα as well as the membrane associated oestrogen receptor 

GPR30 induces a rapid (within seconds to minutes) activation of growth factor 

receptors such as IGF-1R and EGFR signalling in response to oestrogen, which have 

common downstream pathways including MAPK and Akt (Song et al., Revankar et 

al., 2005, Filardo, 2002).  

 

For the genomic pathway, ERα mediates the effects of oestrogen through altering 

gene expression following hormone binding. Alterations in the transcriptional states 

of genes usually involve an orchestrated recruitment of basal transcription factors 

and other co-factors to generate a local change in chromatin environment (section 

1.3.1). Therefore, unlike the quick signalling responses of the non-genomic pathway, 

the genomic effects usually happen more slowly. Using pS2 gene as an example, 

ERα undergoes major structural rearrangements on association of ligand to expose 

binding surfaces that recruit transcription cofactors and a array of other proteins 

include the p68 RNA helicase, ATP-dependent chromatin remodeling complexes 

(SWI/SNF), HATs and HMTs, components of the TRAP/mediator complexes and 

basal transcriptional factors to the pS2 promoter. These different groups of protein 

form distinct combinations of protein complexes that cycle on and off the pS2 gene 
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to monitor the enzymatic activities of transcription factors and the epigenetic status 

of the promoter (Metivier et al., 2003). Therefore, it usually takes hours to see the 

induction of the pS2 gene in ERα positive breast cancer cell lines depending on the 

culture condition and concentration of oestrogen used (Naughton et al., 2007, 

Masiakowski et al., 1982). Although the genomic and the non-genomic pathway 

have diverged into separate pathways of ERα, they can indirectly affect each other. 

For instance, the non-genomic pathway may influence gene expression through the 

activation of signal transduction pathways that eventually act on target transcription 

factors (Bjornstrom and Sjoberg, 2005). As transcription factors can be regulated 

through protein kinase-mediated phosphorylation, and these transcription factors as 

well as kinases may thus be targets for the non-genomic actions of oestrogen.  

 

In the previous chapter, DHe cells that have oestrogen added back to the growth 

media demonstrates a high EGFR level and an up-regulation of MAPK pathway 

activity (Figure 3.10) as well as a reduced ERα level suggesting that oestrogen is 

able to alter the balance between ERα and growth factor signalling in DH cells. As 

DH cells were cultured in a defined serum free media, it provided a controlled 

environment to study the dynamics of how the two pathways interacted and changes 

in survival pathways in oestrogen deprived breast cancer cells.  

 

 #
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4.2#Oestrogen#induces#a#slow#but#stable#upVregulation#of#EGFR#expression#in#
DH#cells#
 
As DHe cells displayed a high protein level of the EGFR (Figure 3.9), 1nM 

oestrogen was added back to DH cells to investigate the dynamics of EGFR up-

regulation in response to oestrogen in DH cells. Cells were treated with oestrogen for 

four weeks to find out when EGFR was up-regulated. The level of EGFR went up 

robustly in the first week of oestrogen treatment with little subsequent changes 

afterwards (Figure 4.1). Therefore, a 5-day time course was used in later 

experiments. Oestrogen treatment caused a gradual increase in EGFR protein level, 

while the level of ERα went down progressively. The decrease in ERα protein level 

is triggered by oestrogen, as it has been shown in the literature that oestrogen 

promotes ERα degradation through the ubiquitin proteasome pathway (Alarid et al., 

1999). As the level of EGFR only significantly went up on day 3, the up-regulation is 

unlikely to be caused by the genomic effect of oestrogen. 

 

 
Figure 4.1 Western blot analysis of ERα and EGFR level in DH cells after 
oestrogen treatment.  

Fresh whole cell lysate was prepared each week for four weeks (A) and over a 5-day 
period (B) from DH cells cultured in 1nM oestrogen. The control DH cells were left 
untreated. The level of EGFR and ERα was detected at each time points. GAPDH 
was used as a loading control. 
 

qRT-PCR was used to look at the mRNA level of EGFR at different time points. 

Likewise, the expression level of EGFR did not go up immediately. It showed a 

“staircase” increase corresponding to the protein level of EGFR at each time point. 

Unlike the steady loss of protein level, the mRNA level of ERα went down sharply. 

As discussed previously (section 3.7), DH cells overexpress ERα to bypass 
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oestrogen deprivation and they are ERα dependent for growth. In the presence of 

oestrogen, I hypothesised that oestrogen might trigger a shift from an ERα dependent 

to an EGFR dependent survival pathway in DH cells.  

 

 
 

Figure 4.2 Expressions of ERα and EGFR gene in DH cells during 5 days 
oestrogen treatment.  

DH cells were plated with 1nM oestrogen over a 5-day period to look at the 
expression level of ERα (A) and EGFR (B). RNA was extracted at different points 
and stored at -80℃ for QRT-PCR analysis. DH control represented cells that were 
cultured in HMM serum free media without oestrogen during the 5-day time course. 
Representative experiment is shown of at least two experiments carried out. Each 
column presents mean of triplicate QPCR analysis for each sample relative to β-actin 
expression. Error bars=SD. Statistical significance noted for different oestrogen time 
points vs untreated control (Unpaired student’s t-test **P<0.01; ***P<0.001).  
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A surprising result was that the EGFR level was stably maintained when oestrogen 

was removed from the growth media after a 5-day time course. Both the mRNA and 

the protein level of EGFR remained high for at least another 5 days after oestrogen 

was withdrew from the media (Figure 4.3). Furthermore, the level of EGFR 

continuous to went up after the removal of oestrogen. A group of cells were treated 

with ICI when oestrogen was removed from DH cells on day 5. The expression data 

showed that ICI did not inhibit the stable expression of EGFR. The results indicated 

that the transcription factor, ERα, was no longer required after the initial oestrogen 

stimulation to maintain the expression of EGFR in DH cells. As the change of EGFR 

expression was stably maintained after the withdrawal of oestrogen, epigenetic 

modifications could explain the effects at the EGFR locus. For example, local 

changes of the chromatin environment caused by histone modifications or DNA 

methylation at the EGFR gene promoter have the ability of stably maintaining the 

expression of genes (section 1.3.2). 
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Figure 4.3 The mRNA and protein level of EGFR remained high after removal 
of oestrogen in DH.  

(A) Scheme for DH cells time course experiment. DH cells were pre-treated with 
1nM oestrogen for 5 days (DH~DHE5). Oestrogen was then washed away from the 
growth media for another five days (DHE5R1~DHE5R5). After removal of 
oestrogen, one group of cells were treated with 0.1µM ICI for 5 days (DHE5RE + 
ICI). RNA (B) and Protein (C) samples were extracted at different points. The 
mRNA level of EGFR was analysed by QRT-PCR. Each column presents mean of 
triplicate QPCR analysis for each sample relative to actin expression. Error bars=SD. 
The protein level was shown by western blot. Representative experiment is shown of 
at least two experiments carried out.  
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4.3#The#effects#of#oestrogen#on#other#tyrosine#kinase#receptors#in#DH#cells#

 
As EGFR is a member of the erbB family of RTK proteins, which also includes 

HER2 (gene name ERBB2), HER3 (ERBB3), and HER4 (ERBB4) (Herbst, 2004), 

the expression levels of other family proteins were analysed during 5 days of 

oestrogen treatment. Unlike EGFR, oestrogen did not cause HER2, HER3 or HER4 

mRNA levels to go up in DH cells. Rather, their expression was down-regulated in 

the presence of oestrogen (Figure 4.4). The mRNA levels of HER2, HER3 and 

HER4 went down on day 1, however, the expression then gradually recovered after 5 

days of oestrogen treatment. HER2 and HER3 expression increased beyond control 

on day 5, though the increased level did not reach significance. The mRNA level of 

HER4 was still significantly lower than control after 5 days of oestrogen treatment. 

Therefore, the transcriptional regulations of HER2, HER3 and HER4 were affected 

by oestrogen in DH cells. However, these alterations in expression were not stable 

changes like EGFR. 
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Figure 4.4 HER2, HER3 and HER4 expression levels of DH cells after the 
addition of oestrogen.  

Expression was measured by qRT-PCR. Each column presents mean of triplicate 
QPCR analysis for each sample relative to actin expression. Error bars=SD, n=3.  
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4.4#Oestrogen#causes#EGFR#upVregulation#in#other#ER#positive#breast#cancer#
cells#
 
In order to demonstrate whether the oestrogen induced EGFR up-regulation is a 

general mechanism in ER positive breast cancer cells, oestrogen was added to two 

other ER positive breast cancer cell lines for 5 days. Initially the experiment was 

undertaken in the parental MCF-7 cells that were routinely cultured in complete 

DEME media. The result indicated that a higher amount of oestrogen was required to 

up-regulate EGFR expression (Figure 4.5A). MCF-7 cells required at least 5nM of 

oestrogen to up-regulate EGFR. ZR75-1 was the other cell lines used in the 

experiment. Like MCF-7 cells, ZR75-1 cells were ER positive breast cancer cells 

that were isolated from a pleural effusion obtained from different female patients 

with ductal carcinoma (Neve et al., 2006). The level of EGFR rose gradually with the 

increased concentration of oestrogen in ZR75-1 cells (Figure 4.5B). Again, a higher 

concentration (7~ 10nM) of oestrogen was needed to see a significant increase in 

EGFR level for ZR75-1 cells.  

 

Higher concentrations of oestrogen were required to activate EGFR expression in ER 

positive breast cancer cells that grew in serum rich media. This leads us to consider 

whether DH cells have become hypersensitive to oestrogen mediated EGFR up-

regulation. Therefore, DH cells were treated with lower doses of oestrogen to 

determine the minimal concentration required to up-regulate EGFR expression 

(Figure 4.6B). Among the tested concentrations, 50pM of oestrogen was sufficient 

to cause EGFR up-regulation, which was 100 times less than the parental MCF-7 

cells.  

 

Oestrogen hypersensitive has been characterised previously using long-term 

estradiol-deprived (LETD) cells. LETD cells are hypersensitive to oestrogen in turns 

of proliferation. They require a 4-log lower concentration of oestrogen (10-14 M) to 

maximally stimulate the growth when comparing with the parental MCF-7 cells 

(Santen et al., 2004). According to their data, they suggest that the oestrogen 

hypersensitive in LETD cells does not occur at the transcription level through the 

genomic pathway of ERα. Rather, it is mediated by the rapid non-genomic pathway 
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of ERα and activation of MAPK pathway. Here, my results show that DH cells are 

hypersensitive to oestrogen induced EGFR up-regulation. As the protein level as well 

as the expression level of EGFR takes at least 5 days to increase significantly, it is 

unlikely to mediated by the non-genomic pathway of ERα. Collectively, the data 

indicate that long-term oestrogen deprivation may sensitise ER positive breast cancer 

cells to up-regulate EGFR.  

 

 

 
 

Figure 4.5 EGFR protein level in MCF-7 and ZR75-1 cells treated with different 
oestrogen concentrations for 5 days.  

MCF-7 (A) and ZR75-1 (B) cells routinely cultured in complete DMEM media were 
treated with 1 to 10 nM of oestrogen for 5 days. Whole cell lysates were obtained at 
the end of the experiment and analysed using western blots. GAPDH was used as a 
loading control. Data quantification representing the GAPDH normalised EGFR 
levels were shown along with the western blots. 
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Figure 4.6 DH cells become hypersensitive to oestrogen induced EGFR up-
regulation.  

DH cells were treated with a concentration range (0 to 600 pM) of oestrogen as 
indicated in the figure above for 5 days. EGFR and ERα protein level were measured 
by western blotting (A). 50pM oestrogen was sufficient to cause EGFR up-regulation 
in DH cells. GAPDH was used as a loading control. Data quantification representing 
the GAPDH normalised EGFR (B) and ERα (C) levels were shown along with the 
western blot. 
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4.5#GenomeVwide#expression#profiling#of#DH#cells#

Whole genome expression analysis was used to assay the global changes in gene 

expression after oestrogen stimulation in DH cells. Four time points were chosen 

aimed to capture early, late and stable changes of gene expression after oestrogen 

stimulation. They are control DH cells, DH cells with 2 days (DHE2) and 5 days 

(DHE5) oestrogen treatment, and cells that have 5 days oestrogen treatment and 

oestrogen was removed from the media for 5 days (DHE5R5). Total RNA was 

extracted and labelled from three biological replicates at these different time points 

(Section 2.5.2, Figure 2.5). Labelled RNA samples were analysed using the 

Illumina® Human HT-12 Gene Expression Bead Chip which has 48,804 probes 

representing 36,157 of annotated transcripts. Raw data were normalised by quantile 

normalisation by Andy Sims from the Breakthrough research unit using the lumi 

package designed especially to process the illumine microarray data (Du et al., 2008) 

(Figure 4.7B ). To compare biological replicates on the array, samples were 

clustered by hierarchical Ward clustering and shown in a heat map. The results 

indicated that all biological replicates were clustered together in the heat map 

(Figure 4.7C). Normalised data were transferred to a excel sheet for further analysis.  

 

Firstly, the changes in expression of EGF receptor family proteins (gene names 

EGFR, ERBB2, ERBB3), ERα (ESR1), pS2 (TFF1) as well as β-actin (ACTB) in 

response to oestrogen were examined using data from the expression array to 

validate results collected previously from using the qRT-PCR (Figure 4.8). 5 days of 

oestrogen treatment significantly reduced the expression level of ERα (fold change 

(fc) = 3.91, p = 2.04E-7), which agreed with previous qRT-PCR result (Figure 4.2). 

The expression of EGFR (fc =1.62, p = 3.95E-5) and pS2 (fc = 2.97, p = 2.63E-7) went 

up in response to oestrogen stimulation. The expression of HER2 and HER3 

decreased on day 2 but recovered after 5 days of oestrogen treatment. β-actin 

expression was used as a control, which has no significant changes during oestrogen 

treatment (fc = 1.15, p = 0.421).  
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Figure 4.7 Normalisation and clustering of samples on expression array.  

Raw data (A) were normalized by quantile normalization as shown in (B). The 
correlation between different samples on the array was analysed using the ward 
clustering. The data was presented as a heat map (C). Heat map colouring from white 
to red indicates greater similarity. 
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Figure 4.8 Expression array value of genes in response to oestrogen.  

Normalised log2 expression value of EGFR, ERBB2, ERBB3, ESR1, TFF1 and 
ACTB genes after 2 and 5 days of oestrogen treatment were shown in the figure 
above. Corresponding microarray probes are indicated in the inset. Each data point 
represents mean of three biological replicates. Error bars = SEM. 
 

Rank products analysis rather than t-test was used to identify genes that were 

differentially expressed from control after oestrogen treatment with a pfp (probability 

of false prediction) value ≤ 0.01, as rank products analysis is a more stringent way to 

analyse the expression data than t-test for a small data set of biological samples 

(Hong et al., 2006). After 2 days of oestrogen stimulation (DHE2), 428 genes were 

found significantly different from the control. Among the 428 genes, 211 of which 

were significantly up-regulated, whilst, 217 of them were down-regulated. DHE5 

had 426 genes significantly differentially expressed from control. The 426 genes 

included 225 up and 201 down-regulated genes. In addition, 380 genes including 218 

up and 162 genes were found to be differentially expressed compared to control in 

DHE5R5 cells (Figure 4.9).  

 

Oestrogen responsive genes at different time points were examined using the Gene 

Ontology (GO) term analysis to find enriched biological processes after oestrogen 

stimulation. Among the 211 up-regulated genes in DHE2, significant GO terms (q-
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cellular component movement GO term), ‘regulation of cell migration’ (14/228), as 

well as genes related to ‘protein polymerization’ (7/41) and ‘response to steroid 

hormone stimulus’ (11/176). For the 225 up-regulated genes in DHE5 cells, the 

significant GO terms contained a broad range of biological processes included 

‘regulation of developmental process’ (36/791), ‘positive regulation of angiogenesis’ 

(7/43), ‘positive regulation of cell adhesion’ (9/63), ‘negative regulation of apoptotic 

process (20/386), etc. Significant GO terms for genes up-regulated in DHE5R5 

included ‘response to chemical stimulus’ (70/1535), ‘cellular response to type I 

interferon’ (14/49), ‘signal transduction’ (68/2183), cell surface receptor signalling 

pathway (42/1146), etc. The GO term ‘response to stimulus’ was significantly 

enriched in all three time points (DHE2: 76/3561, DHE5: 89/3561, DHE5R5: 

102/3561). No significant GO terms were found in the 217 down-regulated genes in 

DHE2 and the 201 down-regulated genes in DHE5 cells.  

 

 
 

Figure 4.9 Number of genes whose expression is significantly altered (pfp ≤ 0.01 
after oestrogen at different time points. 

 

4.5.1#Genes#with#stable#changes#after#oestrogen#stimulation#
 
A 5-day oestrogen pause has been shown to induce a stable EGFR up-regulation in 

DH cells. Using data from the expression array, we were looking for other genes, 

like EGFR, that harboured stable changes during the oestrogen treatment. Genes with 

progressive and significant increases or decreases at each time points were extracted 

from the data set. A list of 50 genes including EGFR were found (Figure 4.10). 

C vs E2 = 428
C vs E5 = 426
C vs E5R5 = 380
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Among these genes, 22 of them were continuously up-regulated and 28 genes were 

continuously down-regulated. Pathway analysis was performed on these genes using 

g:Profiler (http://biit.cs.ut.ee/gprofiler/index.cgi), which revealed several pathways 

were affected by oestrogen in DH cells. This included kinase mediated cellular 

stresses response pathway (STK29), proteins regulated cell adhesion and spreading 

(FGG, FGB), membrane proteins promoted cell proliferation (EGFR, CAV1), 

adaptor protein involved in vesicle trafficking (AP2S1), transcription activator that is 

important for cell viability (STAT1), etc. The stable changes of these genes 

suggested a re-programming at the transcriptional level in response to oestrogen. The 

ability of cells to re-program its genome in order to adopt changes in extracellular 

signals and proliferation stresses is one of the most important and fundamental 

driving forces of acquired drug resistance in cancer patients. As a result, the survived 

cancer cells become insensitive to the initial treatment and begin to proliferation with 

the presence of drugs. For example, patients will no longer benefit from tamoxifen 

after 5 years of treatment (Fisher et al., 1996, Fisher et al., 2001). Therefore, it is 

important to study the molecular mechanisms that trigger the initial genomic re-

programming in cancer cells. 
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Figure 4.10 Genes with progressive changes after oestrogen treatment.  

Three biological replicates were collected at each time points including DH control 
(C), 2 days after oestrogen treatment (E2), 5 days after oestrogen treatment (E5), and 
cells that have oestrogen removed from the media for 5 days after 5 days of 
oestrogen treatment (R5). Expression data from DH cells are graphically represented 
as average log2 intensity ratios (treatment / control). Intensities of red squares (genes 
induced with treatment) and green squares (genes repressed with treatment) 
correlated with the relative expression level of control. 50 genes with significant and 
progressive increases from control to E2, E5 and R5 were listed in figure above. 
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4.5.2#Oestrogen#triggers#a#stable#upVregulation#of#MAPK#pathway#in#DH#cells#
 
EGFR is a membrane-associated tyrosine kinase receptor which has the potential to 

activate a series of downstream signalling cascades (section 1.2.3.2.1). It has been 

demonstrated in section 4.2 that oestrogen can induce a stable EGFR up-regulation in 

DH cells. Therefore, EGFR activity and its downstream signalling pathways were 

examined after oestrogen stimulation. 

 

4.5.2.1%Oestrogen%induced%activation%MAPK%pathway%in%DH%cells%
 
Previous analysis using DH and DHe cells shown that long term oestrogen treatment 

did not alter the phosphorylation level of Akt at Serine 473 (Figure 3.10). However, 

an increase level of phosphorylated ERK was observed. Hence, the activity of 

MAPK pathway in response to oestrogen was investigated in DH. The level of 

phosphorylated EGFR (pEGFR) and phosphorylated ERK (pERK) were used to 

measure the activity of EGFR signalling and downstream MAPK pathway after a 5-

day oestrogen time course. The result showed that oestrogen gave a significant 

increase in both the total and pEGFR. As a consequence, the level of pERK that is 

downstream of EGFR mediated MAPK pathway has also increased (Figure 4.11). In 

contrast, a reduction of the total and phosphorylated ERα at Serine 118 was observed 

in DHE5. Collectively, the data suggested that oestrogen caused activation of MAPK 

signalling pathway in companied with the down-regulation of ERα signalling 

pathway. 
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Figure 4.11 Signalling pathways in DH after 5 days oestrogen treatment.  

Western blot analysis was used to measure the total and phosphorylated ERα and 
EGFR together with the phosphorylated ERK protein levels in control DH cells and 
cells treated with 1nM oestrogen for 5 days (DHE5). GAPDH was used as a loading 
control.  
 

4.5.2.2%Oestrogen%induced%a%stable%up6regulation%of%MAPK%gene%signature%

 
It has been shown that DH cells harboured a high MAPK activity after 5 days of 

oestrogen stimulation. Therefore, downstream target genes of MAPK signalling 

pathway were studied to investigate whether there was a reprogramming at the 

transcriptional level after oestrogen treatment. Furthermore, expression data from 

DHE5R5 cells will be used to analyse whether the oestrogen induced transcription 

reprogramming is stable. 

 

An activation of “MAPK gene signature” in ER positive breast cancer cells was 

obtained from a study done by Creighton et al (Creighton et al., 2006). In this study, 

different MAPK initiators such as Raf-1, MEK, HER2 or EGFR were stably 

overexpressed in the ER positive MCF-7 cells to activate the signalling pathway. 

Alterations in the global expression profiles due to the activation of MAPK 

signalling pathway were characterised using microarray analysis in these four cell 

lines when comparing with control MCF-7 cells. The MAPK gene signature is made 

DH DHE5 

EGFR

pERα S118

tERα

pERK

GAPDH

pEGFR



 122 

up of 469 genes that were consistently up-regulated or down-regulated in all four of 

the MAPK activated cell lines.  

 

Among the 469 genes, 153 were commonly up-regulated and 316 were commonly 

down-regulated during the activation of MAPK pathway. Within the 153 up-

regulated MAPK genes, 64% of them showed an increase in expression after 5 days 

of oestrogen (DHE5) in DH cells. At the same time, 62% of the 316 down-regulated 

genes showed a decrease in expression in DHE5. The result indicated a clear overall 

activation of MAPK pathway and its downstream target genes after 5 days of 

oestrogen treatment in DH cells.  

 

In addition, 133 from the 469 genes were differentially expressed between control 

and DHE5R5 which we took for further analysis. A heatmap was used to analysis the 

trend of change in gene expression during and after a 5-day oestrogen treatment 

(Figure 4.12). In general, it showed a gradual change in expression profile with 

genes either went down or up progressively during the 5 days time course and stayed 

down or up in DHE5R5. Amongst the 133 genes, 86% of the genes that Creighton 

showed down-regulated (blue) in MAPK active cells were down-regulated in 

DHE5R5 cells (p<0.0001). Likewise, 66% of the genes that Creighton showed up-

regulated (yellow) in MAPK active cells were up-regulated in DHE5R5 cells 

(p<0.001). These results indicated that the oestrogen induced activation of MAPK 

pathways and its downstream target genes were stable at the transcriptional level.  

 

Nevertheless, differences in expression pattern were observed among the 133 genes. 

There were genes that were only induced transiently during the oestrogen time 

course such as ARHGEF1, an important Rho GTPase which is fundamental for many 

GPCR mediated signalling pathways in cells, as well as its downstream effectors 

such as DIAPH1 and FHOD1 that are important for actin cytoskeleton. There were 

also genes that were further up-regulated after the removal of oestrogen such as 

PLSCR1, an enzyme that is responsible for transferring phospholipids across the cell 

membrane. Furthermore, PLSCR1 has been shown to interact with EGFR in the lipid 

rafts in response to mitogens (Sun et al., 2002). Interestingly, there were a number of 
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ERα target genes like ESR1and IGFBP5, as well as oestrogen responsive genes like 

MYB, CREB1 and TFF1 in the constitutively down-regulated MAPK gene signature, 

suggesting the activation of MAPK pathway might generally be accompanied with 

the down-regulation of ERα signalling pathway in ER positive breast cancer cells.  
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Figure 4.12 Activation of MAPK gene signature after oestrogen stimulation in 
DH cells. 

A MAPK gene signature was taken from Creighton et al, 2006. The gene signature 
contained genes that were up-regulated and down-regulated during the activation of 
MAPK pathway. The bar on the left-hand side corresponded to the gene direction 
change in the Creighton paper. Blue represented genes that were down-regulated and 
yellow represented up-regulated genes. Normalised expression values of genes in the 
MAPK gene signature were extracted from the expression data of DH cells. Three 
biological replicates were collected at each time points including DH control (DH 
Ctl), 2 days after oestrogen treatment (DHE2), 5 days after oestrogen treatment 
(DHE5), and cells that have oestrogen removed from the media for 5 days after 5 
days of oestrogen treatment (DHE5R5). The heat map represented ordered changes 
in gene expression of these genes during oestrogen treatment.  
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4.6#Oestrogen#promotes#a#functional#switch#between#ERα#and#EGFR#survival#
pathways#in#DH#cells#
 
It has been shown previously that DH cells overexpress ERα and are highly sensitive 

to ERα inhibitors in turns of proliferation (Figure 3.5C, Figure 3.10A). When DH 

cells were stimulated with oestrogen for 5 days, the protein and expression level of 

EGFR went up stably in company with a lost of ERα expression (Figure 4.2). 

Therefore, proliferation assay were used to investigate whether 5 days of oestrogen 

treatment could cause any functional changes in DH cells such as an increase in drug 

sensitivity towards EGFR inhibitors.  

 

AG1478 is a tyrosine kinase inhibitor specific to EGFR intracellular kinase domain, 

which works by competing for ATP binding sites on the catalytic domain of EGFR 

(Han et al., 1996). AG1478 treatment significantly reduced the phosphorylation of 

EGFR and ERK in the serum free and oestrogen deprived DH cells (Figure 4.13). As 

the level of p-ERK was markedly reduced after the addition of EGFR inhibitor 

suggesting that MAPK pathway was mainly activated by EGFR in the un-stimulated 

DH cells. DH cells stimulated with oestrogen showed a significant increase in both 

the pEGFR and pERK level. However, the oestrogen induced EGFR and ERK 

phosphorylation was completely lost in the presence of AG1478.  
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Figure 4.13 Oestrogen induced activation of MAPK pathway can be blocked by 
EGFR inhibitor.  

Cells were treated with AG1478 with or without the presence of oestrogen as 
indicated in the figure for 48 hours before being lysed for western blot analysis (A). 
GAPDH was used as a loading control. Data quantification representing the GAPDH 
normalised p-EGFR (B) and p-ERK (C) levels were shown along with the western 
blot. 
 

The drug sensitivity towards ERα and EGFR inhibitors in un-stimulated DH cells 

and DHE5 cells that had high EGFR level was examined using a SRB assay. 

Tamoxifen was used in the assay rather than ICI, as patients are usually treated with 

tamoxifen as a second line endocrine therapy after aromatase inhibitors. DH cells 

were more sensitive to tamoxifen than to AG1478 before the oestrogen pre-treatment 

(Figure 4.14A). Tamoxifen gave an approximately 56% reduction in cell density on 

day 6 (p<0.001). In contrast, AG1478 only inhibited the proliferation of cells by 

21%. A combined treatment of tamoxifen and AG1478 almost completely blocked 

the growth of DH cells on day 6. Hence, the control DH cells relied more on the ERα 

mediated survival pathway, which was consistent with the high expression level of 

ERα in DH cells.  

 

After 5 days of oestrogen treatment, tamoxifen only gave an 11% reduction in cell 

density on day 6 (Figure 4.14B). In addition, DHE5 cells became more sensitive to 

AG1478. Nearly a 50% reduction of absorbance according to the SRB assay was 
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observed with AG1478 treatment on day 6 after oestrogen pre-treatment (P<0.01). 

The data suggested that oestrogen stimulation was able to promote a shift from ERα 

to EGFR dependent survival pathway in DH cells.  

 

 
 

Figure 4.14 SRB assay of DH cells after 5 days of oestrogen pre-treatment.  

DHE5 cells were DH cells pre-treated with 1nM oestrogen for 5 days in prior to the 
SRB assay. DH (A) and DHE5 (B) were then treated with 1 nM oestrogen or 1 µM 
tamoxifen or/and 10 µM AG1478 over a 6-day period. Cells were fixed at different 
time points as indicated in the figure. Data plotted represent means of six repeats. 
Error bars =SD, n=6. 
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4.7#Discussion#

In this chapter, I find oestrogen induced a slow but stable increase in EGFR 

expression in DH cells (Figure 4.2) as well as other ER positive breast cancer cell 

lines such as MCF-7 and ZR75-1 cells (Figure 4.5). Furthermore, DH cells that are 

normally growth in serum and oestrogen deprived media became hypersensitive to 

oestrogen induced EGFR up-regulation, and required only 50pM of oestrogen to alter 

the expression of EGFR (Figure 4.6).  

 

The MAPK pathway downstream of EGFR signalling was also activated as a result 

of oestrogen stimulation. Compared with the gradual up-regulation of EGFR 

expression, EGFR and ERK were phosphorylated after 48 hours of oestrogen 

stimulation. In the un-stimulated DH cells, MAPK pathway was mainly mediated by 

the canonical EGF stimulated EGFR signalling, as the level of ERK phosphorylation 

was completely blocked by the EGFR kinase inhibitor, AG1478 (Figure 4.13). After 

oestrogen stimulation, the activation of MAPK pathway was likely to be caused by 

the non-genomic action of ERα.  

 

Oestrogen induced rapid activation of MAPK pathway has been observed in various 

different cell models (Endoh et al., 1997, Migliaccio et al., 1996). The non-genomic 

pathway of ERα has been proposed to be responsible for the effects. Oestrogen acts 

through the membrane associated GPR30, to transactivate EGFR and MAPK 

pathway (Filardo et al., 2000). Furthermore, oestrogen can cause phosphorylation of 

the ERα membrane adaptor protein Shc. The phosphorylated Shc binds to Grb-2 and 

Sos, which results in the rapid activation of the MAPK pathway (Santen et al., 2005). 

Another paper suggests that oestrogen activates the MAPK pathway through a rapid 

increase in cytosolic calcium (Improta-Brears et al., 1999). Therefore, the quick 

activation of EGFR and MAPK pathways that I have observed could be through the 

non-genomic pathway of ERα in DH cells. As blocking of EGFR phosphorylation by 

AG1478 was sufficient in inhibiting the oestrogen induced activation of MAPK 

pathway (Figure 4.13), the non-genomic pathway of ERα must function upstream of 

the EGFR mediated phosphorylation of ERK. However, the up-regulation of EGFR 

expression was not dependent on the phosphorylation of EGFR, as AG1478 did not 
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prevent the up-regulation of EGFR expression (data not shown). The up-regulation 

of EGFR expression was likely to be the genomic function of ERα, which fed back 

to the EGFR signalling pathway and caused continuous activation of EGFR mediated 

MAPK signalling (summarised in Figure 4.15). Furthermore, global expression 

analysis revealed that oestrogen was able to trigger a stable activation of MAPK 

gene signature in DH cells (Figure 4.12). 

 

 
 

Figure 4.15 Summary of survival signalling pathways in DH and DHE5 cells.  

In un-stimulated DH cells, cells overexpressed ERα to compensate the loss of 
oestrogen stimulation. Therefore, DH cells were highly relied on the ERα pathway 
for growth. The EGFR mediated MAPK pathway did not play a major role for the 
overall survival of DH cells. After oestrogen stimulation, EGFR was first 
phosphorylated by the non-genomic action of ERα. Furthermore, the expression of 
EGFR was up-regulated by the genomic function of ERα to maintain a continuous 
activation of EGFR and its downstream MAPK pathway. Therefore, DHE5 cells 
became more sensitive to the EGFR inhibitor, AG1478. 
 
Despite the stable up-regulation of EGFR and its MAPK signalling pathway induced 

by oestrogen, the expression of other erb family members were not stably altered 

suggesting that these receptors were regulated differently in ER positive breast 

cancer cells (Figure 4.5). HER2 is a member of the erb family, which is frequently 

overexpressed in breast cancer patients. HER2-positive breast cancers account about 
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20% of patients with early stage breast cancer (Ross et al., 2009). Targeted therapies 

against HER2 have been developed in recent years, which significantly improved the 

outcome of patients (Arteaga et al., 2012). However, like many other cancer 

therapies, the acquired drug resistance remains a big challenge. It has been showed 

that inhibition of HER2 by trastuzumab can induce constitutive activation of 

PI3K/Akt signalling pathway (Nahta and Esteva, 2006).  This demonstrated an 

interesting preference of the membrane associated erb family receptors as initiators 

of downstream signalling pathways in drug resistant breast cancer cells. 

 

In terms of proliferation, DH cells became less sensitive to tamoxifen after 5 days of 

oestrogen pre-treatment but remained sensitive to the EGFR inhibitor, implying a 

functional switch from ERα to EGFR-MAPK dependent survival pathway after a 5-

day oestrogen pulse. The reduced sensitivity towards endocrine therapies, reduced 

ERα protein level, and increased growth factor receptor signalling showed an 

interesting phenotype similar to ER negative breast cancer cells. Furthermore, global 

expression analyses showed that apart from EGFR, a range of genes have also been 

stably up-regulated or down-regulated in DHE5R5 (Figure 4.10). This suggested 

that a pulse of oestrogen had the potential to cause transcriptional re-programming in 

ER positive breast cancer cells grew in low oestrogen environment. In order to 

prevent the occurrences of transcriptional re-programming during breast cancer 

therapy, it is important to understand the mechanism that triggers the initial change 

in gene expression after oestrogen stimulation. Therefore, the molecular mechanism 

of oestrogen induced EGFR up-regulation in DH cells was discussed in the next 

chapter.  
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Chapter 5 The transcriptional and epigenetic 

regulation of EGFR up-regulation 
 #
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5.1#Introduction#
 
Having made the observation that oestrogen induces EGFR expression in the long-

term oestrogen deprived DH cell, the mechanism of EGFR up-regulation was 

investigated in this chapter. EGFR is a membrane protein that belongs to the EFG 

receptors protein family of receptor tyrosine kinases (RTKs) (Jorissen et al., 2003). It 

can be activated through a range of growth factors including EGF, transforming 

growth factor-α (TGF-α), and the neuregulins (Yarden and Sliwkowski, 2001). 

Ligand binding brings EGFR molecules to close proximity forming homodimers or 

heterodimers with other family members. The resulting dimers undergo auto-

phosphorylation at specific tyrosine residues, and activate a series of downstream 

signalling pathways leading to cell proliferation, blocking apoptosis, activating 

invasion and promoting metastasis (Hynes and Lane, 2005).  

 

Aberrant EGFR activation has been identified in many types of cancer cells, which 

can be caused by gene amplification, overexpression of ligands or receptors, and 

mutations in the kinase domain (Ciardiello and Tortora, 2008). In terms of breast 

cancer, multiple studies have examined whether EGFR was overexpressed in clinical 

samples. The results show a substantial variation in the EGFR overexpression rate 

from 15% to 45% among breast cancer samples (Ferrero et al., 2001, Fox et al., 

1994, Klijn et al., 1992, Pawlowski et al., 2000, Tsutsui et al., 2002, Rimawi et al., 

2010).  Interestingly, an inverse relationship between ERα expression and EGFR 

expression was reported in several studies and high EGFR expression was associated 

with poor prognosis (Nicholson et al., 1994, Mizukami et al., 1991). However, the 

molecular detail of how EGFR expression was regulated in breast cancer cells and 

the role of ERα was unclear.  
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Figure 5.1 A schematic representation of the EGFR gene and its regulatory 
elements.  

Exons are shown as boxes connected by introns. DNase I hypersensitive sites in 
intron 1 are displayed as lines. A repressor element is found at the exon 1/intron1 
boundary. Whilst, an enhancer element is located within the first intron.  The first 
intron also contains a (CA)n dinucleotide polymorphism, which is important for the 
transcriptional regulation of EGFR.  
 

The EGFR gene has a TATA-less promoter with high GC content, and is located on 

chromosome 7p11.2 (Ishii et al., 1985). The expression of EGFR can be regulated 

through a number of transcription factors and response elements identified around 

the promoter and intron 1 area of the gene across different cell types (Figure 5.1). 

For example, Sp1 and p53 have been identified as positive transcriptional regulators 

that bind directly to the EGFR promoter (Kageyama et al., 1988a, Kageyama et al., 

1988b, Ludes-Meyers et al., 1996). In contrast, the vitamin D response element 

(VDRE) found between -536 and -478 of the promoter negatively regulates the 

transcription of EGFR in breast cancer cells. Liganded vitamin D receptors (VDRs) 

bind to the VDRE through an unknown nuclear partner to causes displacement of the 

positive regulator, Sp1, from the EGFR promoter (McGaffin and Chrysogelos, 2005).  

 

Furthermore, the expression of EGFR can also be influenced by the chromatin 

structure of its first intron. In ER positive breast cancer cells with low EGFR 

expression, DNase I hypersensitive sites are preferentially found around the exon 

1/intron 1 boundary. Whilst, in ER negative breast cancer cells, DNaes I 

hypersensitive sites detected within intron 1 are associated with high EGFR 

expression (Chrysogelos, 1993). The first intron of the EGFR gene also contains a 

(CA)n dinucleotide polymorphism comprising of 14 to 21 repeats (Chi et al., 1992). 

An inverse relationship has also been shown between the number of CA dinucleotide 

exon 1EGFR exon 2

Sp1
VDRE

-536 -478 p53

repressor enhancer
(CA)n

Intron 1

promoter



 134 

repeats in intron 1 of EGFR and the expression level of EGFR (Gebhardt et al., 

1999). Furthermore, in a study with 112 cancerous and noncancerous breast tumours, 

high EGFR expression was found to be correlated with more advanced breast cancer 

samples and short CA repeats suggesting a direct link between the EGFR 

transcriptional regulation and disease outcomes (Buerger et al., 2000). Collectively, a 

complex transcriptional regulation of EGFR expression has been reported in the 

literature. However, how oestrogen up-regulates EGFR expression in DH cells is not 

clear.  

 

In this chapter, I show that the oestrogen induced EGFR up-regulation in DH cells is 

mediated by an oestrogen responsive transcriptional activator, c-Myb. c-Myb 

belongs to the MYB gene family, which consists of MYBL1 (A-Myb), MYBL2 (B-

Myb) and MYB (c-Myb). They all encode proteins that function as transcriptional 

activators. A-Myb is mainly expressed in the central nerve system during 

embryogenesis, male germ cells of adult mice and mammary gland of pregnant mice 

(Trauth et al., 1994, Mettus et al., 1994). c-Myb is a proto-oncogene which is 

expressed in most hematopoietic tissues (Hoffman et al., 2002). In contrast, B-Myb 

is ubiquitously expressed in cells and plays important roles in cell cycle progression 

(Lam et al., 1995, Catchpole et al., 2002).  

 

The MYB family proteins consist of three major functional domains, a N-terminal 

DNA binding domain, a transactivation (TA) domain and a C-terminal regulatory 

domain (Figure 5.2). The DNA binding domain of Myb proteins contain three 

evolutionary conserved tandem repeats termed R1, R2, and R3, where R2 and R3 are 

essential for Myb DNA binding while R1 stabilise the Myb-DNA complex formation 

(Oh and Reddy, 1999). Downstream of the DNA binding domain is a TA domain 

that is required for the activation of target gene transcription. The TA domain of 

Myb is able to recruit co-activator such as CBP/p300 that has HAT activity (Dai et 

al., 1996, Ogryzko et al., 1996). The C-terminal regulatory domain of c-Myb 

contains a leucine rich motif that negatively regulates the transactivation activity of 

the protein (Kanei-Ishii et al., 1992). The transactivation activity of Myb proteins can 

also be regulated by post-translational modifications such as phosphorylation. 
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Phosphorylation at the N-terminus by casein kinase II was shown to be inhibitory to 

c-Myb DNA binding (Luscher et al., 1990). Furthermore, c-Myb can also be 

phosphorylated on Ser 528 at the C-terminus through the MAPK pathway. Mutation 

of serine to alanine enhances the transactivation ability of c-Myb as shown by a c-

Myb reporter gene construct (Aziz et al., 1995).  

 

 
 

Figure 5.2 Myb protein structure.  

The Myb protein is mainly composed of a DNA binding domain, a transactivation 
domain, and a regulatory domain. The N and C terminus of the protein are subjected 
to phosphorylation. The TA domain is able to recruit co-activators during 
transcriptional activation. c-Myb contains a leucine rich motif at the regulatory 
domain, which negatively regulates the transcriptional activity. 
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5.2#Role#of#ERα#in#oestrogen#induced#EGFR#upVregulation#
 
ERα is a transcription factor that is recruited to target genes in response to oestrogen 

stimulation (section 1.3.3). As ERα is responsible for many of the oestrogenic effects 

on normal and cancerous breast tissue, ERα siRNA was used to investigate its role in 

oestrogen induced EGFR up-regulation. As DH cells express high level of ERα, cells 

were transfected with two rounds of ERα siRNA to achieve sufficient knockdowns 

(Figure 5.3A). After the second round of siRNA treatment, oestrogen was added to 

cells, and samples were analysed over a 5-day period by western blotting (Figure 

5.3B). ERα depletion by siRNA reduced the level of oestrogen dependent EGFR up-

regulation suggesting that ERα played an important role in the regulation of EGFR 

expression.  

 

  
 
Figure 5.3 ERα knockdown abrogats oestrogen induced EGFR up-regulation.  

(A) DH cells were transfected with control and ERα siRNA. Western blot analysis 
demonstrated effective ERα reduction after the ERα siRNA. (B) Following the 
siRNA treatment, 1nM of oestrogen was added to cells for 5 days. EGFR and ERα 
levels were measured at each time points by western blots. As a control, DH cells 
were treated with non-targeting control siRNA.  
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To investigate whether ERα directly interacts with the EGFR promoter region, ChIP 

analysis was performed. The same ERα ChIP protocol used at the pS2 promoter was 

employed to examine the presence of ERα enrichment after oestrogen stimulation at 

the EGFR promoter (Figure 3.11A). The start of the EGFR promoter was 

determined by the location of CpG islands (CGIs), as CGIs are generally found 

around the gene promoter area (section 1.3.2.1). Multiple primers were designed 

around the EGFR promoter region from -751 to -451 (Figure 5.4A). ChIP analysis 

indicated that ERα did not accumulate at the EGFR promoter in response to 

oestrogen. Instead, there was a decrease in ERα binding at the promoter with the 

presence of oestrogen. However, the binding of ERα observed at the EGFR promoter 

could be non-specific binding, as it did not show a significant enrichment relative to 

IgG control. A representative ChIP result with one set of primer is shown (Figure 

5.4B).  

 

The binding status of ERα across the EGFR gene was further investigated by data 

mining a genome-wide map of ERα binding sites in MCF-7 cells (Carroll et al., 

2006). Classic ERα target gene, for example TFF1, shows vast enrichment of ERα 

around its promoter and enhancer regions (Figure 5.5A). In contrast, careful 

examination ERα binding upstream, downstream, and across the EGFR gene body 

fails to demonstrate any enrichment (Figure 5.5B). Together, the data showed that 

ERα played an important role in oestrogen induced EGFR up-regulation, though ERα 

did not directly bind to the EGFR promoter to control its expression.  
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Figure 5.4 ERα ChIP at the EGFR promoter region.  

(A) Location of primers designed for ERα ChIP at the EGFR promoter. The figure 
was produced by the blat function of UCSC genome browser 
(http://genome.ucsc.edu/). (B) ERα ChIP with the EGFR promoter primer set 3 
(Table 2.8) on untreated DH cells and cells with 3 or 5 days oestrogen treatment. 
Each column presents mean of triplicate qPCR analysis for each sample relative to 
input. Error bars=SD, n=3. Unpaired student’s t-test was used to compare ERα ChIP 
samples between DH+E at different time points vs DH control and showed no 
significant difference (ns). 
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Figure 5.5 ERα binding status across the TFF1 and EGFR gene.  

Whole genome ERα ChIP microarray data (ER_hg18FDR1 & ER_hg18FDR20) 
were obtained from (Carroll et al., 2006). The data were then analysed on UCSC 
genome browser (http://genome.ucsc.edu/). The oestrogen responsive gene TTF1 
(pS2) was used as a control, where binding of ERα at the promoter and within the 
gene was observed (purple bars) (A). In contrast, no signals have been detected 
across the EGFR gene body or areas upstream and downstream of the gene (B).  
 

5.3#Oestrogen#responsive#transcription#factors#in#ER#positive#breast#cancer#
cells##
 
As ERα played an indirect role in the oestrogen induced EGFR up-regulation, I 

suspected that there was another transcription factor downstream of ERα, which was 

able to regulate the expression of EGFR in ER positive breast cancer cells. I 

therefore looked for a transcription factor in DH cells, which could fit three 

conditions: oestrogen responsive, downstream of ERα pathway, and directly 

regulates the expression of EGFR. 

 

A list of oestrogen responsive genes was generated from expression array data 

performed previously in our lab by Ben Skerry using LCC1 cells. LCC1 is an 

oestrogen independent ER positive breast cancer cell line derived from MCF-7 cells 

(detailed in section 3.7) LCC1 cells were treated with oestrogen for 4 hours and 24 

hours. Genes that were significantly (p < 0.01) and consistently up-regulated at both 

time points was used to produce the oestrogen responsive gene list. GO term analysis 

was used to find a list of genes involved in transcriptional regulation (http://cbl-

gorilla.cs.technion.ac.il/). The oestrogen responsive gene list was combined with the 

transcription GO term list (GO:0006350) to produce a list of 25 genes (Figure 5.6).  
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Figure 5.6 Venn diagram of oestrogen responsive transcription factors.  

Oestrogen responsive gene list (grey) was combined with the transcription factor GO 
term (silver) to get a list of 25 genes (A), which was shown in figure B. 
  

Among the 25 genes, MYB was identified as a particularly interesting gene, as its 

expression significantly correlates with the presence of ERα in breast cancer (Guerin 

et al., 1990). MYB is an oestrogen responsive gene whose transcription appears to be 

predominantly regulated by elongation control. In ER positive MCF-7 cells, liganded 

ERα binds directly to a site adjacent to the attenuation region to relieve the 

elongation arrest of MYB transcription (Drabsch et al., 2007). Therefore, the 

expression of c-Myb is downstream of ERα in response to oestrogen making c-Myb 

a promising transcription factor for linking ERα dependent EGFR expression in DH 

cells. 
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5.4#MYB#is#an#ERα#regulated#oestrogen#responsive#gene#in#DH#cells##
 
To confirm that MYB was an oestrogen responsive gene in DH cells, cells were 

treated with 1nM of oestrogen for 5 days and changes in expression were measured 

by qRT-PCR (Figure 5.7A). The mRNA level of c-Myb went up 24 hours after the 

oestrogen treatment, which kept increasing for two days before falling off on day 4. 

Changes in c-Myb expression as well as A-Myb and B-Myb were also analysed by 

DH cells expression arrays at different time points (Figure 5.7B). Consisting with 

the qRT-PCR result, the data showed that A-Myb and c-Myb were up-regulated after 

2 days of oestrogen treatment. After 5 days of oestrogen stimulation, the expression 

of both transcription factors began to fall back to the basal level. In contrast, the 

expression of B-Myb did not vary significantly in response to oestrogen.  
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Figure 5.7 Expression of MYB in DH.  

(A) DH cells were plated with 1nM oestrogen for 5 days and samples were taken to 
investigate the expression level of c-Myb using qRT-PCR. Each column presents 
mean of triplicate qPCR analysis for each sample relative to cyclophilin A (gene 
name PPIA) expression. Error bars=SD. (B) Log2 expression data of MYB, MYBL1, 
MYBL2, and PPIA from the expression array (section 4.5). Corresponding 
microarray probes are indicated in the inset. Error bars=SD. 
 

In order to test whether ERα was required for c-Myb expression in DH cells, cells 
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contrast, treating cells with the partial agonist, tamoxifen, was not able to reduce the 

level of ERα in cells. Therefore, ICI was used to exam the function of ERα in 

oestrogen responsive c-Myb expression in DH cells. 1 and 10 nM of oestrogen was 

added to DH cells with or without the presence of ICI, and c-Myb protein level was 

analysed by western blotting (Figure 5.8A). Samples were collected 24 and 48 hours 

after different treatments. The protein level of c-Myb increased progressively after 

24 and 48 hours of oestrogen treatment. However, 10nM of oestrogen did not 

provide any further increase in c-Myb expression, suggesting 1 nM of oestrogen 

might be sufficient to saturate ERα in cells. As expected, the c-Myb up-regulation 

was significantly blocked by the presence of ICI when DH cell were treated with 1 

nM of oestrogen for 48 hours (highlighted by dashed line in Figure 5.8A and 

quantified in Figure 5.8 B). While, the c-Myb level in DH cells treated with 10 nM 

of oestrogen was not affected to the same extent by ICI as cells in 1 nM of oestrogen. 

This may because the excess oestrogen has the ability to competitively display ICI 

from ERα and reactivate to a transcriptionally active form (Wardell et al., 2011). 
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Figure 5.8 ERα was required for c-Myb expression in ER positive breast cancer 
cells.  

(A) DH cells were treated with 1 and 10nM of oestrogen with or without the 
presence of 100 nM of ICI. Protein samples were collected 24 and 48 hours of the 
treatment as indicated in the figure. Ctl represents un-treated control DH cells. 
Western blotting was used to analyse the protein level of c-Myb. GAPDH was used 
as a loading control. (B) Quantification of the western blot showing the c-Myb 
protein levels in control DH cells and cells with 48 hours of treatment with 1 nM 
oestrogen and/or 100 nM of ICI. (C) Western blots showing the protein level of the 
total ERα after treating DH cells with 1 nM of oestrogen or 1 of µM tamoxifen or 
100 nM of ICI for 48 hours.  
 

It has been reported in the MCF-7 cells that the transcription of c-Myb is blocked in 

a region between 1.4 kb and 2.2 kb away from the start of intron 1. This region 

contains a SL-poly(dT) motif that blocks the elongation of the RNAP II. After 

oestrogen stimulation, ERα binds directly to the attenuation site in order to relieve 

the paused c-Myb transcription (Drabsch et al., 2007).  ERα ChIP was performed in 

DH cells at different time points after oestrogen treatment (Figure 5.9). The result 

confirmed that ERα gradually accumulated at the previously reported attenuation site 

to stimulate the transcription of c-Myb. Together, this data demonstrated that MYB 

was an oestrogen responsive gene whose expression was dependent on the presence 
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of ERα in DH cells. Furthermore, ERα bound to the c-Myb transcriptional 

attenuation site in response to oestrogen to stimulate its expression in DH cells.  

 

  
 
Figure 5.9 ERα ChIP at MYB gene intron 1 site.  

ERα ChIP was performed on oestrogen treated DH cells adjacent to the MYB 
transcriptional attenuation site. IgG antibody was used as a negative control for the 
ChIP. Data were presented as mean of triplicate qPCR analysis for each sample 
relative to input. Error bars=SD, n=3. Unpaired student’s t-test was used to compare 
ERα ChIP samples between DH+E at different time points vs DH control, **P<0.01; 
***P<0.001. 
 

5.5#cVMyb#siRNA#abrogates#the#oestrogen#induced#EGFR#upVregulation#
 
To test whether oestrogen induced EGFR up-regulation was c-Myb dependent, 

siRNA was employed to reduce the c-Myb protein level before treating cells with 

oestrogen. c-Myb siRNA efficiently knocked down the basal c-Myb protein level in 

DH cells (Figure 5.10A). Oestrogen was then added to cells for 5 days after the 

siRNA treatment. The protein levels of EGFR and c-Myb were measured every day 

by western blotting (Figure 5.10B). The results showed that the level of c-Myb 

remained low over the oestrogen time course, though an increase in c-Myb protein 

level on day 2 was observed in both control and c-Myb siRNA treated cell. 

Furthermore, c-Myb depletion by siRNA abrogated the oestrogen induced EGFR up-

regulation in DH cells (Figure 5.10C). As expected, control siRNA treated cells 

showed a gradual increase in EGFR level upon oestrogen treatment. Collectively, the 
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results indicated the oestrogen induced EGFR up-regulation in DH cells was c-Myb 

dependent.  

 

 

 
 

Figure 5.10 Effects of c-Myb siRNA in oestrogen induced EGFR up-regulation 
in DH cells.  

(A) DH cells were transfected with control or c-Myb siRNA. Western blot analysis 
demonstrated effective reduction of c-Myb protein level after siRNA treatment. (B) 
Following the siRNA treatment, DH cells were plated with 1nM oestrogen for a 5-
day time course experiment. Protein levels of EGFR and c-Myb levels were 
measured at each time points using western blots. GAPDH was used as a loading 
control. (C) Quantification of western blots showing relative change in EGFR level 
in control and c-Myb knockdown cells after oestrogen stimulation. Data are shown 
as means ± SD, n=3.  
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5.6#Overexpression#of#cVMyb#causes#upVregulation#of#EGFR#in#DH#cells#
 
To determine whether c-Myb up-regulation was sufficient to promote EGFR 

expression in DH cells without the presence of oestrogen, DH cells were transiently 

transfected with human c-Myb cDNA and the empty vector control (Figure 5.11A). 

Overexpression of c-Myb resulted in an increase in the endogenous EGFR protein 

level 24 hours post transfection (Figure 5.11B). The data further supported the 

hypothesis that c-Myb was a novel regulator of EGFR gene expression in DH cells. 

However, compared with the massive increase in c-Myb protein level after the 

transient transfection, c-Myb overexpression did not cause a vast increase in EGFR 

protein level. This implied that other factors might be involved in the transcriptional 

regulation of EGFR expression in response to oestrogen. However, longer time 

points will be required for future experiments, as a 24-hour of c-Myb overexpression 

might be too short to see a significant up-regulation of EGFR.  

 

 
 

Figure 5.11 Overexpression of c-Myb in DH cells.  

(A) DH cells were transiently transfected with vector control and human c-Myb 
cDNA. Cells lysates were collected 24 hours after the transfection to measure the 
level of EGFR and c-Myb using western blot. GAPDH was used a loading control. 
(B) Relative protein levels of EGFR after c-Myb overexpression. Data are shown as 
means ± SD.  
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5.7#cVMyb#binds#upstream#of#EGFR#promoter#in#response#to#oestrogen#
 
To investigate whether c-Myb binds directly to the EGFR promoter, c-Myb ChIP 

was performed on DH cells after the addition of oestrogen. Primers designed close to 

the EGFR promoter failed to show significant enrichment for c-Myb in response to 

oestrogen (data not shown). Recently, endogenous c-Myb binding sites were mapped 

in MCF-7 cells by a genome wide ChIP-on-chip study (Quintana et al., 2011). Data 

from their study were analysed using the UCSC genome browser to detect c-Myb 

binding sites around the EGFR promoter. The result indicated that c-Myb bound to a 

region 80 kb upstream of the EGFR promoter (Figure 5.12). Primers were designed 

within this region to look for c-Myb binding. The ChIP results in DH cells and MCF-

7 cells showed that c-Myb transiently localized upstream of the EGFR promoter to 

regulate its expression on day 2, which was then lost from the binding site after 5 

days of oestrogen stimulation (Figure 5.13). Interestingly, the binding of c-Myb 

around the EGFR promoter area showed similar kinetics compared to the binding of 

ERα at MYB intron 1 site (Figure 5.9) and the change in expression level of c-Myb 

in response to oestrogen (Figure 5.7). These data therefore implied a dynamic 

recruitment of transcription factors during the oestrogen induced EGFR up-

regulation in DH cells. Firstly, ERα accumulated at the MYB transcriptional 

attenuation site to activate its expression. The expression of c-Myb peaked on day 2 

after oestrogen addition. c-Myb was then loaded onto a region upstream of EGFR 

promoter to activate its transcription. After the initial stimulation by c-Myb, the 

expression of EGFR was maintained, despite loss of the c-Myb. This implies that 

other mechanisms are employed in the maintenance of EGFR expression.  
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Figure 5.12 Binding of c-Myb around EGFR promoter area in MCF-7 cells. 

 c-Myb binding site according to the c-Myb ChIP-on-chip data was analysed 
(Quintana et al., 2011). Duplicate results were obtained from control MCF-7 cells 
(red bar) and cells stimulated with 10 nM of oestrogen for 24 hours after 48 hours of 
oestrogen deprivation (blue bar). The results showed that c-Myb bound 80 kb 
upstream of EGFR promoter after oestrogen stimulation. Black bars in the figure 
represented the position of predicated c-Myb binding site. c-Myb binding was not 
detected in control MCF-7 cells. The data were analysed on UCSC genome browser 
(http://genome.ucsc.edu/).  
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Figure 5.13 c-Myb ChIP at the EGFR upstream binding region in response to 
oestrogen. 

 c-Myb ChIP was performed on DH (A) and MCF-7 (B) cells 2 and 5 days after 
oestrogen stimulation. IgG antibody was used as a negative control for the ChIP. 
Data were presented as mean of triplicate qPCR analysis for each sample relative to 
input. Error bars=SD, n=3. Unpaired student’s t-test was used to compare c-Myb 
ChIP samples between DH+E at different time points vs DH control, **P<0.01. 
 

5.8#Epigenetic#regulations#at#EGFR#locus#
 
In order to survive, cells need to response quickly to changes in their external growth 

environment. This is partially regulated at the transcriptional level, which results in 

rapid alterations in gene expression after stimulation. However, once the stimulus is 

removed, the induced changes in gene expression should quickly return to its basal 
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state unless there are mechanisms involved to maintain the changes in gene 

expression. Epigenetic modifications such as histone modifications or DNA 

methylation around the promoter or enhancer area of target genes not only have the 

ability to facilitate transcription initiation but also stably maintain the expression 

pattern after the initial stimulation (section 1.3.2). In the previous section, c-Myb 

was shown to be a transcriptional activator which was required for the oestrogen 

induced EGFR up-regulation in DH and MCF-7 cells. c-Myb bound transiently to a 

region upstream of EGFR promoter to stimulate its expression. Interestingly, once 

up-regulated, EGFR expression was maintained despite oestrogen withdrawal and 

displacement of the transcriptional activator indicating a possible involvement of the 

epigenetic reprogramming at the EGFR locus to maintain the high expression of 

EGFR in DH cells. In this section, I discuss the possible mechanisms that could lead 

to a stable EGFR up-regulation upon oestrogen stimulation. 

 

5.8.1#Histone#modifications#at#the#EGFR#locus#after#oestrogen#stimulation##
 
Histone acetylation was the first histone modification that I investigated in DH cells 

after oestrogen treatment. ChIP analysis was used to study the change in pan histone 

H4 acetylation at the EGFR promoter during the oestrogen treatment. Oestrogen 

gave a transient increase in the level of pan acetylated H4 on day 3. However, the 

increase in H4 acetylation was not sustained on day 5 (Figure 5.14). The transient 

increase in H4 acetylation may be due to the recruitment of co-activators containing 

HAT activity by c-Myb after oestrogen stimulation. I then went on to investigate 

other alterations in histone modifications that might lead to the stable oestrogen 

induced EGFR up-regulation in DH. 
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Figure 5.14 Change of H4 acetylation at the EGFR promoter in response to 
oestrogen.  

H4 acetylation at the EGFR promoter was determined by ChIP on untreated DH cells 
and cells treated with oestrogen for 3 and 5 days. IgG antibody was used as a 
negative control for the ChIP. Data were presented as mean of triplicate qPCR 
analysis for each sample relative to input. Error bars=SD, n=3.  
 
 
Native ChIP was used to analyse different histone modifications at the EGFR locus 

during the oestrogen time course. Samples collected 1 and 2 days after the oestrogen 

treatment (DHE1 and DHE2) were used to detect early changes in the histone 

modifications induced by oestrogen. Whilst, data collected from DHE5 and DHE5R5 

samples should uncover late and stable changes in histone modifications. Four 

histone marks represent active, repressive and bivalent histone modifications were 

studied at the EGFR promoter region and the c-Myb binding region upstream of 

EGFR promoter.  

 

H3K4me2 is an active histone mark, which gives a bimodal distribution at the 

transcription start site of active promoters. Interestingly, there was a decrease rather 

than increase of H3K4me2 modification at the EGFR promoter after 5 days of 

oestrogen treatment (Figure 5.15). However, the H3K4me2 peak came back after 

oestrogen was removed from DH cells for 5 days. In the meantime, H3K4me2 gave a 

single peak at the c-Myb binding site that did not vary significantly during the 
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oestrogen treatment. H3K9Ac is another active histone mark that was studied at the 

EGFR locus. DH cells had low H3K9Ac modification at the c-Myb binding site. 

Again, a gradual decrease in H3K9Ac modification at the EGFR promoter was 

observed in DH cells with oestrogen, which did not recover when oestrogen was 

removed from the culture media. The decrease in active histone marks did not fit 

well with the increase in EGFR expression observed after oestrogen stimulation. 

Further investigations are required to determine whether there was a general decrease 

in active histone modifications at the EGFR promoter in response to oestrogen, or it 

was only specific to these two histone modifications.  

 

H3K27me3 is a bivalent histone mark, which is associated with gene repression (Lee 

et al., 2006). Furthermore, a higher H3K27me3 histone modification is detected at 

silent promoters than at active promoters (Barski et al., 2007). A transient reduction 

was detected at both the promoter and c-Myb binding site after 5 days of oestrogen 

treatment.  

 

H3K9me3 at the promoter region is associated with transcriptional repression. 

Methylation at H3K9 recruits binding of HP1 that is important for the maintenance 

of the heterochromatin state (Zhang and Reinberg, 2001). No significant changes 

was detected at the EGFR promoter region for the repressive histone mark, 

H3K9me3. Whilst, a significant reduction in H3K9me3 modification was observed at 

the c-Myb binding site after 5 days of oestrogen treatment. Like the decrease in 

H3K27me3 at the c-Myb binding site on day 5, the decrease in H3K9me3 was not 

maintained after the removal of oestrogen.  

 

To summarise, DHE5 cells showed a decrease in the examined active histone 

modifications at the promoter region of EGFR, and a reduction of bivalent and 

repressive histone mark were observed at the c-Myb binding region upstream of 

EGFR promoter. However, none of the four histone modifications examined at the 

EGFR locus were stably maintained after the removal of oestrogen.  
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Figure 5.15 Histone modification patterns of the EGFR gene.  

Native ChIP analysis with H3K4me2, H3K9Ac, H3K27me3, and H3K9me3 were 
performed at the EGFR promoter and the c-Myb binding site 80 kb upstream of the 
EGFR gene on untreated DH cells as well as cells with 1 or 2 or 5 days of oestrogen 
treatment, and cells have oestrogen removed from the culture media for another 5 
days after 5 days of oestrogen treatment. The data were shown as mean of duplicate 
ChIP results, which were analysed as custom tracks on the UCSC genome browser 
with indicated histone modification and time points (orange).   
 

5.8.2#DNA#methylation#of#the#EGFR#promoter#after#oestrogen#addition#in#DH#cells##
 
As a subtle increase in EGFR expression was observed after oestrogen stimulation, I 

investigated whether a decrease in EGFR promoter methylation could be responsible 

for the up-regulation of EGFR expression in DH cells. The EGFR promoter DNA 

methylation status in control and DH cells with 5 days of oestrogen treatment (DHE5) 

were investigated by bisulphite sequencing. Primers were designed to cover around a 

1 kb region from the beginning of the CpG islands to the end of first exon. The 

EGFR promoter was mostly methylated at the edge of the CpG islands in both 

control DH cells and DHE5 cells (Figure 5.16A). Whilst, the EGFR promoter 

became mostly unmethylated when moving towards the transcription and translation 

start site regardless the presence of oestrogen (Figure 5.16B). Therefore, overall 

there was not a change in the promoter methylation status to maintain the high 
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expression of EGFR after oestrogen stimulation in DH cells. One un-expected result 

was that two of the cytosine residues in the EGFR promoter became methylated after 

5 days of oestrogen treatment according to the bisulphite sequencing. This result is 

difficult to explain, as an increase in gene expression is usually associated with a 

decrease in promoter methylation rather than an increase.  
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Figure 5.16 DNA methylation at the EGFR promoter in DH cells.  

Bisulphite sequencing was performed at two different places around the CpG island 
of the EGFR promoter on untreated DH cells and cells with 5 days of oestrogen 
treatment. The area covered by the bisulphite sequencing was circled in red and 
showed by the UCSC genome browser track. Methylation data at the EGFR 
promoter was presented as lollipop diagram with each lollipop represented an 
individual CpG dinucleotide. Filled and open circles represented methylated sites 
and unmethylated sites respectively. 
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5.9#Discussion#
 
In this chapter, the molecular mechanism of the oestrogen induced EGFR up-

regulation in DH cells was investigated. c-Myb was identified as a novel 

transcription factor that regulated the expression of EGFR in long-term oestrogen 

deprived DH cells. In addition, ChIP analysis revealed a direct interaction between c-

Myb and the EGFR gene, where c-Myb transiently bound to a region upstream of the 

EGFR promoter in response to oestrogen (Figure 5.13). It has been shown in the 

literature that the expression of c-Myb was regulated by ERα in ER positive breast 

cancer cells (Ramsay and Gonda, 2008). This was confirmed using DH cells, as ERα 

was enriched at previously reported c-Myb transcriptional attenuation site after 

oestrogen stimulation (Figure 5.9); and the pure ERα inhibitor ICI was able to block 

the oestrogen induced expression of c-Myb in DH cells (Figure 5.9). Collectively, 

the data outline a novel mechanism of how the expression of EGFR was regulated in 

ER positive breast cancer cells (Figure 5.17).  

 

 
 
Figure 5.17 Mechanism for oestrogen induced EGFR up-regulation in DH cells.  

After oestrogen stimulation, liganded ERα stimulates the transcription of c-Myb. c-
Myb then binds transiently to a region upstream of EGFR promoter to promoter its 
expression.  
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As EGFR expression was maintained when oestrogen was no longer present in the 

growth media, epigenetic modifications at the EGFR locus were suspected to be 

responsible for the stable expression of EGFR after 5 days of oestrogen stimulation. 

Histone modifications and DNA methylation were studied at multiple oestrogen time 

points at the EGFR promoter and the c-Myb binding region upstream of the promoter. 

However, the data I collected so far failed to identify the epigenetic mechanism that 

could explain the high EGFR expression after oestrogen stimulation. Therefore, 

further experiments are required to clarify the mechanisms involved in the oestrogen 

induced stable up-regulation of EGFR in DH cells.  

 

The c-Myb binding site upstream of EGFR promoter was further analysed using the 

UCSC genome browser. Enhancer associated histone modifications were mapped 

around the c-Myb binding region using database available on the genome browser. 

The result indicated that the c-Myb binding site is located in close proximity to an 

active enhancer region upstream of EGFR (Figure 5.18), as high level of H3K4me1 

and H3K27Ac combines with low H3K4me3 is suggestive of a signature for an 

active enhancer (Heintzman et al., 2007, Creyghton et al., 2010). Enhancers are DNA 

sequences that play important roles in transcriptional regulation. They serve as 

platform for a range of transcription factors to bind. Although they can act 

independent of their location, distance or orientation with respect to the promoters of 

genes, transcription factor bound enhancers will generally loop close to the promoter 

to interact with the PIC during gene activation (Maston et al., 2006). Apart from 

being a docking site for transcription factors in response to stimuli, enhancers can 

also carry epigenetic information as distinctive histone modifications that may serve 

as marks for differentiation and future gene activation (Heintzman et al., 2009, Ong 

and Corces, 2012).   
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Figure 5.18 Bioinformatic analysis of the c-Myb binding site upstream of 
EGFR.  

Oestrogen induced c-Myb binding site around the EGFR gene according to the c-
Myb ChIP-on-chip data was described in figure 5.12. The data was further analysed 
using the UCSC genome browser to map the locations of the enhancer associated 
histone modifications (H3K4me1 and H3K27Ac and H3K4me3) in 8 different cell 
lines (http://genome.ucsc.edu/). The result indicated the c-Myb binding sat closely to 
active enhancer upstream of the EGFR gene (red oval).  
 

A pulse of oestrogen was used to trigger the c-Myb and EGFR expression in DH 

cells. However, patients resistant to aromatase inhibitors would unlikely start to 

produce oestrogen. Other mechanisms must be involved in the ER positive breast 

cancer cells to up-regulate the expression of c-Myb and its downstream target in a 

low oestrogen environment. Expression data collected from MCF-7 cells deprived of 

oestrogen between 0 and 180 days reveal that the expression levels of ERα as well as 

oestrogen responsive genes like TFF1 and MYB are able to recover after a initial 

decrease caused by the removal of oestrogen (Figure 5.19). This evidences the 

presence of oestrogen independent c-Myb up-regulation in ER positive breast cancer 

cells (Aguilar et al., 2010). Meanwhile, mechanisms have been proposed in other 

tissue compartment to regulate the expression of c-Myb. During T cell activation, the 

expression of c-Myb is induced by activation of IL-2 signalling, which is acting 

through the PI3K pathway (Lauder et al., 2001). Furthermore, c-Myb plays important 

role in hematopoietic cell differentiation. High c-Myb expression is essential for the 

proliferation of hematopoietic progenitor cells whereas the c-Myb level decreases 

when cells undergo differentiation (Mucenski et al., 1991). In hematopoietic 
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progenitor cells, the high expression level of c-Myb is maintained by the nuclear NF-

!B complexes (Suhasini and Pilz, 1999).  

 

 
 
Figure 5.19 Change in gene expression during oestrogen deprivation in MCF-7 
cells.  

Expression profiles of MYB, ESR1 and TFF1 were obtained from a study performed 
in MCF-7 cells during the acquisition of oestrogen independent growth (Aguilar et 
al., 2010). Oestrogen was taken away from MCF-7 cells for a period of 180 days. 
The expression data were collected at multiple time points during the process to look 
at the dynamics of transcriptomic changes. The raw expression values of each gene 
were plotted on a log10 scale.  
 

I have demonstrated in the previous chapter that EGFR up-regulation in the 

oestrogen deprived DH cells could lead to survival pathway switching and tamoxifen 

resistance (section 4.6). As the up-regulation of EGFR expression is c-Myb 

dependent, c-Myb could be a good drug target to prevent the acquired drug resistance 

through activation of growth factor signalling. Moreover, inhibition of MYB 

expression with shRNA or antisense oligonucleotides (Opalinska et al., 2004) reveals 

that c-Myb is necessary for the oestrogen dependent proliferation of ER positive but 

not ER negative breast cancer cell lines by blocking cell cycle progression from the 

G1/S and G2/M phases (Drabsch et al., 2007). This further supports the idea that c-

Myb inhibitors could be used as a supplementary treatment for ER positive breast 

cancers to avoid tumour relapse.  
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Chapter 6 Conclusions 
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6.1#Summary#
 
Acquired drug resistance occurring during endocrine therapy remains one of the 

biggest challenges in breast cancer treatment. Despite extensive studies, the precise 

molecular mechanisms driving the drug resistance remain unclear. The activation of 

extracellular growth factors signalling has been suggested in the literature as one of 

the underline reasons of acquired drug resistance in breast cancer cells. In this study, 

I have generated a novel oestrogen and serum free ER positive breast cancer cell line 

called DH. As DH cells were cultured in a defined serum-free medium with known 

oestrogen concentration, it enabled me to investigate the molecular mechanism that 

triggered pathways crosstalks between ERα and extracellular growth factors 

signalling in a controlled environment. However, culturing cells in a serum-free 

environment made DH cells a less favourable model for mimicking the responses in 

patients.  

 

By studying DH cells, I found that long-term oestrogen deprivation caused ERα 

overexpression in cells (Figure 3.10). Furthermore, a high basal level of un-liganded 

ERα was found around the promoter of oestrogen responsive gene in DH cells 

(Figure 3.13). As a result, DH cells were highly relied on the ERα pathway for 

growth (Figure 3.5). The same observation has also been reported using other 

oestrogen deprived models suggesting up-regulation of the steady-state ERα protein 

level could be a general mechanism for cells to survive through oestrogen 

deprivation in ER-positive breast cancer cells.  

 

Using DH cells, I demonstrated that signalling pathways in breast cancer cells were 

dynamically regulated in response to alterations in extracellular oestrogen 

concentration. A 5-day oestrogen pulse could cause a stable up-regulation of EGFR 

expression together with the down-regulation of ERα in DH cells. As a consequence, 

DH cells became less dependent on the ERα survival pathway but more dependent 

on the EGFR mediated signalling pathway. Global expression analysis of EGFR 

mediated MAPK pathway downstream target genes revealed a stable increase in 

MAPK pathway gene signature 5 days after the oestrogen stimulation (Chapter 4). 

DH cells could be considered as a model of breast cancer patients receiving 
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aromatase inhibitors to reduce the oestrogen level in their body. Interestingly, it has 

been suggested in the literature to use oestrogen as a treatment for advanced anti-

ERα resistant breast cancer (Yao et al., 2000). This was based on the studies using 

long-term oestrogen deprived and tamoxifen resistant cell line models. When cells 

were cultured under long-term oestrogen deprived conditions, they showed that cells 

lost their dependency on oestrogen for proliferation but maintained expression of 

ERα. Furthermore, oestrogen paradoxically inhibited the proliferation of cells by 

inducing apoptosis (Ariazi et al., 2011). However, I have shown that oestrogen has 

the potential to cause stable transcriptional re-programming and activation of growth 

factor receptor signalling using my long-term oestrogen deprived DH cell model. 

This questioned the feasibility of using oestrogen as a second-line treatment for 

tamoxifen or AI resistant patient as this might promote activation of growth factor 

signalling pathways in breast cancer cells. Furthermore, this study also emphasised 

the potential of using EGFR inhibitors such as cetuximab and gefinib in combination 

with anti-ERα drugs to prevent the occurrence of endocrine resistance.  

 

c-Myb was identified in this study as a novel transcriptional activator which is 

responsible for EGFR expression (Chapter 5). It bound transiently to a region 

upstream of EGFR promoter in response to oestrogen, and c-Myb siRNA showed 

that it was vital for oestrogen induced EGFR up-regulation in DH cells. 

Bioinformatics analysis demonstrated that the c-Myb binding region upstream of 

EGFR promoter might sit in close proximity to a known active enhancer region.  

 

c-Myb expression was regulated by oestrogen in ER positive breast cancer cells, as 

liganded ERα is able to relieve the elongation block at the first intron of the MYB 

gene. At the same time, c-Myb expression could also be activated without oestrogen 

stimulation, as the expression level of c-Myb recovered after an initial dip during the 

making of LTED cells (Figure 5.19). The increase in c-Myb expression could be due 

to the up-regulation of ERα after removal of oestrogen from culture media. As ER 

positive breast cancer cells were likely to up-regulate ERα during the acquisition of 

oestrogen independent growth in order to compensate the loss of oestrogen 

stimulation as showed with DH cells (Chapter 3). In this process, ERα gradually 
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accumulated at oestrogen responsive genes like MYB, which might be sufficient to 

drive its expressions in a low concentration of oestrogen. Alternatively, MYB 

expression was activated by other signalling pathways like PI3K or NF-!B as 

discussed in chapter 5. Furthermore, the expression of c-Myb can also be up-

regulated by ERα inhibitor, tamoxifen (Hodges et al., 2003). The increased c-Myb 

expression could cause up-regulation of EGFR expression and activation of growth 

factors signalling observed in endocrine resistant breast cancer cells. Transcription 

factors other than c-Myb might also be recruited to the upstream response element or 

to the EGFR promoter area during the process, as overexpression of c-Myb alone did 

not significantly up-regulate EGFR expression (Figure 5.12). So far, my data 

suggested a potential mechanism of how EGFR expression was up-regulated during 

aromatase inhibitors treatment in ER positive breast cancer cells. Therefore, c-Myb 

could be a novel drug target to prevent the up-regulation of growth factor signalling 

in cells treated with aromatase inhibitors.  

 

As a transcription factor, c-Myb is not a conventional drug target. Nevertheless, 

several potential methods have been proposed either to directly target c-Myb 

expression or to target proteins involved in its transcription machinery. The use of 

nuclease-resistant antisense oligodeoxynucleotides (ODNs) against c-Myb was a 

direct approach to alter the expression of c-Myb in a highly specific manner. Its 

implication has been investigated in cells taken from patients with chronic 

myelogenous leukaemia (CML), where they found c-Myb ODNs effectively 

inhibited the proliferation and viability of CML cells over normal cells (Gewirtz, 

1993). In ER positive breast cancer cells, the expression of c-Myb was regulated by 

transcription elongation as discussed in chapter 5. Hence, inhibitors could be 

developed to prevent the interactions between ERα with proteins in the elongation 

complex. 6-dichloro-1-beta-D-ribofurano-sylbenzimidazole (DRB) is an inhibitor of 

pTEFb (Yamaguchi et al., 1998). In order to produce a stable elongation complex, 

the RNAP II of active transcribed genes were phosphorylated by pTEFb (section 

1.3.1). Therefore, DRB can be used to block the expression of c-Myb in breast 

cancer cells. However, the use of DRB might have many potential side effects, as it 

was not specific to c-Myb. 
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As the up-regulation of EGFR expression was maintained after the removal of initial 

stimulation in DH cells, this indicated an epigenetic-based mechanism. One 

possibility was an epigenetic switch at the EGFR promoter, but my analysis did not 

reveal any suitable changes that could cause the stable up-regulation of EGFR in 

response to oestrogen (section 5.8). An alternative possibility was that the EGFR 

expression was maintained by stable changes at other genes. However, identification 

of this is beyond the scope of this study.  

 

6.2#Further#directions#
 

c-Myb was identified as a novel regulator for EGFR in DH cells. EGFR is one of the 

most important membrane receptors in cells that is vital for a range of cellular 

processes including signal transduction, proliferation, migration, adhesion and so on. 

Although c-Myb is vital for EGFR up-regulation, it might not be the only 

transcription factor required to regulate the expression of EGFR in DH cells. 

Therefore, it will be valuable to study other transcription factors that regulate the 

expression of EGFR in ER positive breast cancer cells. 

 

As c-Myb is a master transcription activator in cells, it is responsible for the 

transcriptional regulations of a range of other genes. Especially for genes that are 

important for cancer cell survival. Thus, it will be interesting to comparing the c-

Myb binding sites across the genome before and after the oestrogen treatment to see 

how it shapes the expression profile in DH cells that are cultured in oestrogen 

deprived environment. One interesting observation during the 5-day oestrogen 

stimulation is the dynamic formation of cell protrusions and activation of genes 

involved in cell motility pathway. However, wound healing migration assay as well 

as matrigel invasion assay did not show an increase in migration or invasion ability 

of DH cells in the presence of oestrogen or after oestrogen pre-treatment before the 

assay (data not shown). This can due to the nature of the DH cells, as it is derived 

from a non-invasive early stage breast cancer cells, MCF-7. Nevertheless, it 

emphasise the complex regulation of the oestrogen signalling in ER positive breast 
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cancer cells. Furthermore, c-Myb has been shown to regulate the expression of slug, 

which is a gene involved in the activation of epithelial-mesenchymal transition 

(EMT) (Tanno et al., 2010). A 2-fold increase in slug expression was observed in 

DHE5R5 cells according to the expression microarray data (data not known), which 

can be a downstream effect of c-Myb binding after oestrogen stimulation. However, 

the expression of slug as well as another important EMT initiator snail can also be 

switched on through the Ras activated MAPK pathway (Thiery, 2002). The fact that 

only slug was up-regulated in DH cells after oestrogen stimulation stressed the 

involvement of c-Myb. Therefore, c-Myb may also trigger EMT in response to 

oestrogen in ER positive breast cancer cells.  

 

To study the significance of c-Myb function in the clinical setting, it is necessary to 

examine the level of c-Myb in patients who relapse on aromatase inhibitors to see if 

there is a correlation between EGFR overexpression and c-Myb level. If so, c-Myb 

inhibitor can be used as a second line treatment to prevent the endocrine drug 

resistance due to the activation of growth factor signalling pathways.  
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