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ABSTRACT 

In recent years great advances have taken place in the 

use of masonry in building construction. Where as the 

number of storeys has increased substantially, the 

thickness of the wall has decreased. 

An important factor in the development of masonry 

structures was the introduction of the concrete block in 

the early 1900's. This added a new dimension to the 

construction and design of masonry structures. Greater 

flexibility was provided by the use of hollow, filled and 

solid blocks utilising different colours, shapes and 

texture for interior and exterior masonry elements. The use 

of hollow blocks provided the advantage of using reinforced 

concrete filled masonry elements without the need for 
formwork. 

Reinforced blockwork masonry consists of four 

component materials, namely the concrete block, mortar, 

concrete inf ill and reinforcement. These four materials 

give masonry non-homogeneous properties compared to those 

of concrete. Differences in the mechanical properties of 

the four materials, the wide variety of block units 

available of different shapes and geometry, and the 

direction in which the masonry element is loaded all have 

an affect on the strength and behaviour of the masonry 
structure. 

This present investigation consists of experimental 

and theoretical studies of the effects of masonry non-

homogeneity and of using different concrete inf ill and 

mortar types on the compressive strength and behaviour of 

blockwork masonry prisms compressed axially in two 

directions, normal and parallel to the bed face. Methods 

are suggested to determine the ultimate compressive 



strength of blockwork masonry f 'm• Finally the study 

investigates the effect of using different percentages of 

lateral and vertical reinforcement on the ultimate strength 

and behaviour of reinforced concrete blockwork masonry 

columns. A new method of predicting the ultimate strength 

of reinforced concrete blockwork masonry columns subjected 

to axial compression is proposed. 
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NOTATION 

The notation presented herein are only for those used in 
this investigation. The notation for any other previous 
work reported in this thesis are given in the text. 

AC 	Cross-sectional area of concrete infill, mm  

A 	Gross cross-sectional area of specimen, mm  

Net cross-sectional area of specimen, mm  

As 	Area of vertical reinforcement, mm  

Ebs 	Secant modulus of elasticity of concrete block, for 
three unfilled half-blocks specimen, as derived 
experimentally in chapter 3 (see Table 3.7), N/mm2  

ECS 	Secant modulus of elasticity of concrete, for three 
steel moulded cubes specimen, as derived 
experimentally in chapter 3 (see Table 3.7), N/mm2  

Ejs 	Secant modulus of elasticity of mortar joint, as 
derived experimentally in chapter 3 (see Table 3.7), 
N/mm2  

Em 	Short term static modulus of elasticity of masonry, 
N/mm2  

Emrs 	Secant modulus of elasticity of mortar, for three 
steel moulded cubes specimen, as derived 
experimentally in chapter 3 (see Table 3.7), N/mm2  

fb 	Cube compressive strength of block material, N/mm2  

bb 	Tensile bond strength between block and concrete, 
N/mm2  

f f 	Compressive strength of filled full-block compressed 
normal to bed face, N/mm2  

bf 	Compressive strength of filled full-block compressed 
parallel to bed face, N/mm2  

bt 	Tensile strength of filled concrete block, N/mm2  

Shear bond strength between block and concrete, 
N/mm2  

fc 	Cube compressive strength of concrete, N/mm2  

fct 	Tensile strength of concrete, N/mm2  



fCV 	Shear strength of concrete, N/mm2  

hf Compressive strength of filled half-block, 
compressed normal to the bed face, N/mm2  

Characteristic compressive strength of masonry, 
N/mm2  

mr 	Cube compressive strength of mortar, N/mm2  

fl 	Ultimate compressive strength of blockwork masonry, 
N/mm2  

fs 	Stress in the reinforcement, N/mm2  

Yield strength of reinforcement, N/mm2  

h 	Height of specimen, mm 

hb 	Height of block, mm 

h 	Height of mortar joint, mm 

1 	Length of specimen, mm 

PU 	Ultimate load of blockwork masonry column, KN 

r 	Correlation coefficient 

t 	Thickness of specimen, mm 

a 	Ejs/Emrs 

r 	The contribution of concrete inf ill to the modulus 
of elasticity of blockwork masonry 

Ab 	Poisson's ratio of block 

AC 	Poisson's ratio of concrete 

Diameter of reinforcement, mm 

AS/A9  percent 

hb 

hb + h 



CFIAPTER 1 

INTRODUCTION 

Masonry has been used as a load bearing material for 

centuries. Many of the ancient masonry structures are still 

standing today. The craftsmanship and ingenuity of the 

ancient Egyptians, for example, as demonstrated in the 

pyramids, were truly wonders in themselves. At about the 

same time that the Egyptians were constructing their 

monuments in stone, fired bricks were being used in 

mesopotamia with a bonding agent of asphalt. By the sixth 

century B.C., brick construction in Babylon was well-

developed. The Tower of Babel had walls eighty feet high 

and wide enough at the top to accommodate chariot races. 

Through the Minoan, Mycenaean, Greek and Roman 

periods, further developments in masonry are observed. The 

Romans, in particular, elaborated on the use of the arch 

and produced such impressive structures as the Coliseum and 

the Aqueducts. Their use of mortar and concrete was 

unsurpassed until the nineteenth century. 

Concrete has a long history. It has been used since 

ancient times and was known to the Ancient Egyptians and 

even earlier civilizations. The first all-concrete house 

was built in 1835 in Kent. The first concrete blocks were 

made in the United Kingdom in about 1850 by JOSEPH GIBBS 1 . 

The blocks were hollow with moulded faces which imitated 

the dressed stone of that period. It was not until about 

1910, coinciding with the significant growth in the 

production of cement, that the concrete -block industry 

became properly established. Major growth took place 

between 1918 and 1939 with the establishment of many small 

block manufacturers throughout the United Kingdom. Many 

concrete block houses were built entirely of concrete and 



were the first in this country to be built in metric units. 

After the Second World War, the demand for concrete 

blocks began to increase and both solid and hollow blocks 

became widely accepted for all purposes. This, in turn, 

brought about the introduction of autoclaved aerated blocks 

which, at that time, were probably appreciated more for 

their operational advantages on site than for their thermal 

insulation properties. Concurrent with developments in the 

United Kingdom, many were also taking place in the United 

States of America, and it is here that the evolution of 

high quality facing concrete masonry, and machines 

associated with its production, can be discovered. The 

seismic problems, associated with certain areas of the 

country, having also fostered the development of reinforced 
masonry. 

In recent years great advances have taken place in the 

use of masonry in building construction, where the number 

of storeys has increased substantially while the thickness 

of the wall has similarly decreased 1 '2'3'4'5'6'7'8'9 . 

The use of concrete blocks added a new dimension to 

the construction and design of masonry structures with the 

flexibility provided by the use of hollow, filled and solid 

blocks with different colour, shapes and texture for the 

interior and exterior masonry elements","). Hollow blocks 

provided the advantage of using reinforced concrete filled 

masonry elements without the need for a frame. The presence 

of reinforcement increased the axial and eccentric load 

bearing strength of the masonry elements and also allowed 

the use of smaller cross-sections as an alternative to the 

thicker unreinforced elements 11 '12 . This method of 
constructing blockwork masonry has been designed largely 

through the adaptation of early theories for the design of 
reinforced concrete. 
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Reinforced blockwork masonry consists of four 

component materials, namely the concrete block, mortar, 

concrete inf ill and reinforcement. These four materials 

give masonry non-homogeneous properties compared to those 

for concrete. The differences in the mechanical properties 

of the four materials, the wide variety of block units 

available, of different shapes and geometry, and the 

direction in which the masonry element is loaded will all 

effect the strength and behaviour of the masonry structure. 

Since masonry is used primarily in wall construction, 

a considerable amount of research has been directed toward 

the behaviour of blockwork masonry walls 13'14"5'16'17 . However, 
the "Masonry Bibliography 1900_1977,,(18) reveals that little 

published work exists on blockwork masonry columns. Most 
current codes 19 '20 , handbooks 3  and books 2'4'6'7  advocate the 

use of a working stress design which is based on elastic 

theory and no guide is given to ultimate strength design 

principles. To the knowledge of the author, the British 

Code of Practice!  BS 5628: Parts 1, 2 and 3(21) and the 

Australian Masonry Code SAA 3700(22), are the only standards 

which adopted the use of limit state philosophy. The use of 

this philosophy enables the degree of risk,  to be varied by 
the choice of different partial safety factors. 

Reinforced concrete blockwork masonry columns can be 

used as a structural elements in buildings where concrete 

masonry is used. Blockwork columns can be constructed from 

special, large blocks, similar to the pilaster block, U-

block and standard hollow block shown in Figs 1.1 (1, ii, 

iii) respectively as separate structural elements, or may 

be incorporated into a blockwork masonry wall as shown in 
Figs 1.1 (iv, v). 

On the design of masonry columns subjected to axial 

loading, the British Standard, BS 5628: Part 2: 1985, 
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states that reinforced masonry walls or columns, subjected 

to axial loading or vertical loading having a resultant 

eccentricity not exceeding 0.05 times the thickness of the 

member in the direction of the eccentricity, may be 

designed without taking the reinforcement into account. It 

is well established in the ultimate design theories for 

reinforced concrete columns, however, that the 

reinforcement contributes to the ultimate strength of the 

column. There is a clear need therefore for further study 

of the behaviour and method of design of blockwork masonry 

columns. 

Recently FOSTER 23  showed that, where blockwork columns 

could be integrated into the design of blockwork buildings 

incorporating walls that were adequate to sustain wind 

loading when propped by floors, (probably, but not 

necessarily, of in-situ concrete) the problem of 

differential vertical movements of dissimilar materials was 

greatly reduced or eliminated. 

The study presented herein provides additional 

information to confirm, extend, or adapt existing theory 

and procedures. The main objectives and scope of this study 
are: 

To review our current understanding of the behaviour 

of blockwork masonry prisms compressed axially in two 

directions normal and parallel to the unit bed face 

with review of the methods used in determining the 

ultimate compressive strength of blockwork masonry f 
'm• 

To review our current understanding of the behaviour 

of brickwork and blockwork reinforced masonry columns 

and the method used to determine their ultimate 
strength. 
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To determine the mechanical properties of the ,  

materials used in blockwork masonry construction and 

suggests the mathematical expressions to determine 

their values. 

To study experimentally and theoretically the 

differences in the compressive strength and behaviour 

of blockwork masonry prisms compressed axially normal 

and parallel to the unit bed face with the suggestion 

of the best expressions to determine f t m  

To examine the effect of using different mortar types 

and 	concrete inf ill strengths on the compressive 

strength and behaviour of blockwork masonry prisms 

compressed axially normal and parallel to the unit bed 

face. 

To study experimentally and theoretically the effect 

of the following factors: prism height-to-thickness 

ratio (h/t), aspect ratio (prism length-to-thickness) 

(l/t), mortar thickness, shrinkage in 28 days and bond 

between block and concrete inf ill affecting the 

compressive strength and behaviour of blockwork 

masonry prisms, compressed axially normal to the unit 
bed face. 

To determine the effect of the changing the percentage 

of lateral ties and vertical bars on the strength and 

behaviour of axially loaded reinforced blockwork 

masonry columns. 

To develop a new method of predicting the ultimate 

strength of reinforced blockwork masonry columns 

subjected to axial load. 
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The structure layout of the thesis can be summarised 

as follows: 

CHAPTER 1: 	Introduction, scope and aim of the present 

investigation. 

CHAPTER 2: 	Literature review of previous investigations 

of the compressive strength of masonry, 

brickwork masonry columns and blockwork 

masonry columns. 

CHAPTER 3: An experimental determination of the 

mechanical properties of the materials used 

in blockwork masonry construction. 

CHAPTER 4: An experimental and theoretical 

investigations of the compressive strength 

and behaviour of blockwork masonry prisms 

compressed parallel to the unit bed face. 

CHAPTER 5: An experimental and theoretical 

investigations of the compressive strength 

and behaviour of blockwork masonry prisms 

compressed normal to the unit bed face. 

CHAPTER 6: A study of the factors, other than the 

mortar types and concrete strengths, 

affecting the compressive strength and 

behaviour of blockwork masonry prisms. 

CHAPTER 7: 	An experimental investigation of reinforced 

blockwork masonry columns with proposals for 

design rules. 

CHAPTER 8: A general summary and conclusion with 

recommendations for further research. 
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The units used in this project are SI units of Newton 

(N) and millimetre (mm). The results of several research 

papers which had been presented in Imperial units were 

converted to SI units. 
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Fig. 1.1 - Various methods of constructing 
blockwork masonry columns. 



CHAPTER 2 

LifERATURE REVIEW 

2.1 INTRODUCTION 

This chapter provides a review of previous work on 

blockwork masonry prisms compressed normal and parallel to 

the unit bed face, as a standard test for determining the 

ultimate compressive strength of blockwork masonry, f. 

The review also includes studies of the ultimate strength 

and behaviour of brickwork and blockwork masonry columns. 

2.2 ULTIMATE COMPRESSIVE STRENGTH OF, BLOCKWORK MASONRY, 
f,  

M 

The ultimate compressive strength of blockwork masonry 

'm' is according to North American Codes and Standards(  920 , 
found from tables relating unit strength and mortar types 

to masonry strength or, alternatively, by testing stack-
bonded masonry pr isms(  .24'2 , with a prism height-to-thickness 
ratio (h/t) between 2.0 and 5.0, made of the same materials 

used in actual construction, and compressed normal to the 

bed face. The British Code of Practice BS 5628: Part 2: 
1985 (21) gives a procedure for determining the strength of 

brick masonry by testing prisms built with different brick 

orientations, and in some cases with concrete inf ill, but 

does not provide for corresponding tests on concrete filled 

hollow blockwork. For this case it is suggested that the 

filled block may, under certain conditions, be treated as 

a solid block and the masonry strength derived from the 

tables and graphs relate to mortar type. 

Without doubt many studies have been carried out to 

determine the ultimate compressive strength of blockwork 



masonry, f'. The present review will deal only with 

investigations carried out recently and with special 

reference to the differences in f 'm found by testing 
blockwork masonry prisms normal and parallel to the unit 
bed face. 

ROBERTS in 1973(26), reported results for the indicated 

compressive strength of concrete blocks obtained from 

different test procedures. Six forms of specimen were 

considered in the investigation, using two types of prism, 

each two blocks high with 10 mm mortar joint between, one 

mortar capped and the other board capped. Other specimens 

tested consisted of a single block, but varied as follows: 

Mortar-capped blocks tested wet. 

Mortar-capped blocks tested dry. 

Board-capped blocks tested wet. 

Board-capped blocks tested dry. 

In addition to these small specimens, wall panels were 

tested to relate the results of test on the small specimens 

to the performance of concrete blockwork walls. The wall 

panels, each 12 or 13 courses high by 4.5 blocks wide, were 

subjected to axial loading under flat-end conditions. 

The aim of the investigation was, first to compare 

various methods of capping, and second to examine the 

relationship between the strength of a concrete block wall 

and the strength of the control specimen. 

The blocks used in the investigation were of different 

types (solid, cellular and hollow). The blocks were 

supplied by seven manufacturers with different types of 
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aggregate (aerated, lightweight and dense). The mortar mix 

used to construct the wall panels and the two blocks prisms 

was 1:0.25:3 (cement:lime:sand) by volume. Mortar used for 

capping consisted of equal parts by weight of rapid-

hardening Portland cement and fine sand. A nominal 10 mm 

thick mortar joint was used for both the prisms and the 

walls, with the exception of some specimens in which joint 

thicknesses of 3 and 25 mm were used to assess the effect 

of joint thickness upon prism strength. Five different 

fibre-boards were used in capping, consisting of three 

types of soft-board, a medium hardboard and a hardboard. 

The results showed that board-capped specimens 

produced a lower indicated strength than mortar-capped 

specimens. The use of fibre-board with wet and dry blocks 

gave results which were as consistent as the 10 mm mortar 

capped specimens. The type of capping board employed had a 

small effect upon the mean indicated block strength. All 

types gave similarly consistent results, except that the 

use of 10 mm hardboard did yield somewhat larger 

coefficients of variation. It further appears that the 

relationship between the results of tests on mortar-capped 

and board-capped blocks depends upon the type of blocks 

used (i.e. whether solid, cellular or hollow). The effect 

of changing the thickness of the mortar cap from 10 mm to 
3 or 6 mm was small. 

The author observed a typical mode of failure for all 

blocks and prisms tested, regardless of the capping. This 

was by vertical splitting of the specimen, although some of 

the solid blocks exhibited a combination of crushing and 
splitting. 

A comparison between the results showed that a good 

linear relationship was obtained for mortar-capped blocks 

tested wet and dry. A similar relationship was obtained for 
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board-capped blocks tested wet and dry. In general, it may 

be assumed that an indicated increase in strength of some 

15% will result from testing the blocks in a dry condition. 

Another good linear relationship was obtained between the 

indicated strengths for mortar- and board-capped single 

blocks, both tested wet. Fig. 2.1 shows that a good linear 

relationship was obtained between the results yielded by 

tests on the two forms of prism specimen. 

Considering the relationship between wall and specimen 

strengths, the results for 100 and 150 mm thick blocks gave 

a reasonably good linear relationships between the wall and 

specimen strengths for all specimens (Fig. 2.2). The 

relationship with wall strength seems to be dependent upon 

block thickness for the three mortar-capped specimens, and 

upon whether the block is solid or hollow for the three 
board-capped specimens. 

The results for 200 mm thick blocks were considered 

separately from the other sizes because block shape has a 

very significant effect. A better correlation with wall 

strength for 200 mm thick blocks is provided by the board- 
capped prism. 

The author also explained that the ratio of wall 

strength to control strength for 200 mm thick hollow blocks 

is lower than for 100 and 150 mm thick blocks since, when 

laid in running bond, the cross-webs of the blocks do not 

align vertically and, therefore, do not effectively carry 
load. 

With regard to mortar strength, the results of tests 

on sets of 50 prisms, each set jointed with a different 

grade of mortar, suggest that changing the mortar grade has 

little effect on the indicated strength. Walls tested with 

the strongest and weakest mortar grades also confirm these 
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results. 

With regard to the effect of joint thickness upon 

prism strength, the results showed that changing the 

thickness of the mortar within the range 3 to 25 mm has 

apparently little effect upon the prism indicated strength. 

The author concluded that the use of prisms as a 

limited form of design test offers no significant advantage 

over the use of a single block control specimen, since 

mortar strength has little effect upon the load-bearing 

performance of blockwork walls. For both control and 

compliance tests, there seems no reason why board capping 

should not be used instead of mortar capping. 

BOULT 27  in 1979, presented the results of an 

experimental investigation carried out by the New Zealand 

Concrete Masonry Association and the New Zealand Portland 

Cement Association on the compressive properties of filled 

concrete masonry prisms. Masonry units used in this work 
had the following differences: 

Materials: 	Units made of normal weight concrete and of 
lightweight concrete. 

Geometry: 	Blocks with different external dimensions 
and different internal configuration. 

Sets of stack-bonded masonry prisms with height-to--

thickness ratios (h/t) of 2.0 to 5.0 were constructed from 

each masonry unit type and tested normal to the bed face 

after grout filling. Storey height columns, with h/t = 

12.0, were also tested to study the effect of height on the 

compressive strength. The mortar used was a nominal 1:4 

(cement: sand) by weight. The grout used was a highly fluid 

inf ill material with nominal 1:3:2 mix (cement: sand: 10 mm 
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stone) by weight. 

Concerning the effect of block geometry on the prism 

compressive strength, the results showed that the web 

thickness has little influence on the variation of prism 

strength to height. To explain the reduction in filled 

prism strength as the height increases beyond a value of 
h/t = 3.01  BOULT related the reduction to the effect of 
core shape (i.e. the tapering of the block shells) and to 

the texture of the interior face of the block cores. The 

core shape was responsible for significant changes in the 

prism net cross-sectional area. In addition to that, the 

mortar intrusion to the inner face of the prism, left after 

levelling and bedding down the blocks caused a further 

reduction in the prism net cross-sectional area. These 

excessive cross-sectional changes restrict the shrinkage 

settlement which occurs over the full height of the grouted 

column and results in plastic cracking as shrinkage 

proceeds. The severity of the plastic cracking increases 
with prism height. 

In combining block and grout for filled masonry the 

author suggested that the individual material 

characteristics should be considered to obtain optimum 

results. It appears that if the modulus and limiting strain 

of both block and grout are similar the resulting prism has 

ultimate properties in excess of the individual elements. 

The results showed also that platen restraint has little 

effect on prism strength above a value of h/t = 2.0. Also 

there was no significant difference in strength between a 

full storey height column and prisms with h/t between 3.6 
to 5.0. 

Unfortunately, BOULT did not present a formula for 

determining the strength of ungrouted and grouted prism 
strengths. 
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DRYSDALE and HANID 28  in 1979, reported the results of 
an experimental investigation on concrete block masonry 

-prisms compressed axially in a direction normal to the bed 

face. Autoclaved concrete blocks were used to keep the 

properties as constant as possible. Three types of mortar 

mix, viz. 1:0.5:4, 1:0.5:3.38 and 1:1.25:6.75 (cement: 

lime: sand) and five different grout mixes were used to 

give a wide range of strength and deformational properties. 

The cylinder compressive strength of the grout mixes were 
7.58, 13.72, 17.581, 20.75 and 41.09 N/mm2. 3-block height 
prisms were constructed with a nominal 9.5 mm mortar joint 
thickness. 

The mode of failure observed by the authors for almost 

all the prisms tested was by tensile splitting which 

initiated in the shells of the central block. Bond pattern 

was proved to have no effect on either the mode of failure 

or the capacity. The results of the half-block prisms were 

essentially identical to the results for the full-block 

prisms. Hence the authors decided that all remaining tests 

would be carried out using half-block prisms. 

The results showed that the compressive strength of 

ungrouted blockwork masonry prisms was not very sensitive 

to the type of mortar used. A decrease in mortar strength 

of 69% resulted in a corresponding decrease in prism 
strength of less than 10%. 

Although the grout occupied approximately 40% of the 

gross area its contribution to the prism strength was very 

small. Large increases in grout strength resulted in only 

relatively small increases in prism capacity. The authors 

gave an equation relating the compressive strength of a 

grouted concrete block masonry prism to an ungrouted prism 

and the grout strength was expressed as follows: 
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= fl (1 - K(1-fl)) (a
cs /f' MU  )f' MU + ( 1-fl)a 

Where 

f'Mg  Average compressive strength of grouted concrete 
block masonry based on gross area, N/mm2  

f'MU  Average compressive strength of ungrouted concrete 
block masonry based on net area, N/mm2  

K 	A coefficient which reflects the interaction between 
the block shell and the grouted core under axial 
compression 

fl 	Net to gross area ratio of the block 

acg 	Grout compressive strength as calculated from block 
moulded prisms tested under axial compression, N/mm2  

The above equation was based on the results of half-

block prisms and the authors believed that the equation 

conforms that, in the extreme, the strength of a 100% solid 
will be f IMU and of a 0% solid will be 

With regard to the effect of mortar joint thickness, 

the authors tested prisms with joint thicknesses of 0, 9.5 

and 19 mm for both ungrouted and grouted prisms. For zero 

joint thickness, a layer of cement paste was placed between 

the blocks which were then pressed together under a low 

load. The results showed that increasing the mortar joint 

thickness from 9.5 to 19 mm resulted in the prism 

compressive strength decreasing by 16% for ungrouted 

masonry whereas for grouted masonry the decrease was only 
3%. 

The results for prisms built with different block 

geometry (percentage solid (fl) and shell thickness-to-block 

width ratio (t/w)) showed that, for ungrouted prisms, the 

percentage solid and shape did not appear to have much 

effect within the range tested. However, for grouted prisms 

with increased percentage solid, the compressive strength 

16 



increased toward the compressive strength of the ungrouted 

prisms. The ratio of the strength of a grouted prism to a 

similar ungrouted prism increased from about 0.70 to 0.91 

as the percentage solid increased from about 0.61 to 0.73. 

It was also observed that the shell thickness-to-block 

width ratio (t/w) is not a significant parameter for the 
range tested. 

On the effect of joint reinforcement, the results 

showed that No. 9 gauge wire joint reinforcement placed at 

the centre of the shells had no significant effect on prism 

strength nor was there evidence of any detrimental effect 

due to stress concentrations caused by the presence of such 

reinforcement. As an extreme of joint reinforcement, 2.8 mm 

thick confining plates were cut to fit the half-block 

cross-section and were inserted at the mid height of 13 mm 

thick mortar joints. The results showed an increase in 

strength of 8% and 18% for the ungrouted and grouted 

respectively. Also the mode of failure changed from 

splitting to shear failure, indicating the effect of 

confinement on reducing the lateral expansion which 

resulted in an increased compressive strength. 

The authors also presented an explanation for the 

failure mechanism for ungrouted and grouted prisms. In the 

case of ungrouted prisms, the lateral expansion of the 

weaker mortar joint had a lower tension effect on the 

concrete blocks as compared to brickwork masonry. The 

reasons given by the authors for the reduction in the 

mortar effect in blockwork masonry were the greater 

compatibility between the materials and the fact that the 

ratio of unit height to mortar thickness is much greater 

for blocks than for bricks. In grouted prisms, the grout 

approaches its capacity first, the grout undergoes large 

lateral expansion due to an increased Poisson's ratio near 

ultimate strength. These large lateral expansions in turn 
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create tension in the shells of the block. As a result of 

this behaviour the block fails in tension at relatively low 

compressive stresses. The average compressive strength is 

therefore considerably less than the strength of either the 
ungrouted prism or the grout. 

The authors concluded that the 2-course high prism 

does not properly represent the strength of a full scale 

blockwork masonry wall and that a 3-course high half-block 

prism was more representative. The compressive strength of 

grouted masonry was considerably lower than would be 

predicted using a superposition approach. Basing values for 
masonry compressive strength, f 'm'  on block strength and 
mortar type does not seem to be appropriate for grouted 
concrete block masonry. 

Unfortunately, the work of the authors was based on 

half-block prisms where the effect of the aspect ratio 

(l/t) (prism length-to-thickness) was not considered. This 

ratio would definitely have some influence on the mode of 

failure. Also, the presence of the block mid-webs would 

result in increasing the area of the weak mortar joint and 

consequently influence the compressive strength and 

behaviour of the ungrouted and grouted prisms. 

Based on the above experimental work HANID and 
DRYSDALE 29  in 1979, suggested failure criteria for grouted 
concrete masonry under axial compression. The criteria 

accounted for the interaction of the block, mortar and 

grout under multiaxial states of stress. The authors 

believed that the formulation could be developed in a 

generalized form and therefore able to account for any 

strength or geometric characteristics, such as the ratio 

of net to gross area of the block, tapering of the grout 

cores, joint thickness and even ungrouted masonry. In 

developing the failure criteria, the strength approach was 
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adopted due to its advantage in dealing with the strength 

values of the constituent materials which are readily and 

accurately measurable quantities. Alternatively, the strain 

approach would have require the determination of stress vs 

strain relationships of the component materials which are 

difficult to measure accurately near ultimate load 

especially considering that the component materials are 

under a state of multiaxia]. stress. 

In developing the failure criteria the following 

assumptions were introduced: 

Perfect bond was assumed at the interfaces between the 
block, mortar and grout. 

Vertical stresses were assumed to be distributed 

between the shell (block and mortar joint) and the 

grouted cores in proportion to their axial stiffness. 

3. 	The lateral stresses created in the block shells due 

to the lateral deformation of the grout and mortar was 

assumed to be uniformly distributed. 

MOHR's theory of failure can be applied to the failure 

of concrete blocks under a bi-axial compression-
tension state of stress. 

Grout was assumed to have the same strength 

characteristics as normal concrete under triaxjal 
compression. 

Two failure cases were considered for grouted masonry 

under axial compression depending on whether the shell 

(block and mortar joint) or the grouted core reaches its 
unconfined compressive strength first. 
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Case I: 	When the grout has a lower strain level than the 

block shell at maximum stress, its unconfined compressive 

strength will be reached first. At this stage large lateral 

expansion occurs in the grout due to inelastic deformations 

and microcracking. The shell will tend, to confine the grout 

and the resulting tensile stresses in the shell, when added 

to the tensile stresses due to confinement of the mortar, 

will cause a premature splitting failure of the block shell 

under a compression-tension state of stress. 

In order to derive an expression for the average 

compressive strength of blockwork masonry assemblage the 

authors considered the following assumptions and factors: 

The compatibility of deformation in the vertical 
direction. 

MOHR's theory for the failure criterion of block under 

bi-axial stresses. 

The mortar and grout under a triaxial compression 
state of stress. 

The consideration of block tapering by using a 

magnifying factor to the grout stress representing the 

ratio of the maximum to minimum areas of the grout 
core. 

The consideration of discrepancy caused by either some 

non-uniformity of the block geometry or due to the 

fact that the vertical stresses were distributed 

between the shell and the grouted core according to 

stiffness obtained from uniaxial stress condition 

corresponding to strain of 0.002. 

Based on all the above conditions the authors 

20 



suggested the following equation for the average 

compressive strength of the masonry assemblage: 

[4.1 a tb + 1.14 a acm+ 13 a] 	
0Cb 

[4.1 ab + ( 1.14 a + C B/n) 	b] n . K 
	... (2.2) 

Where 

C 

Ebs  

	

E 	Secant modulus of elasticity of the grout at 0.002 
strain, N/mm2  

f' 	Average compressive strength of grouted masonry, 
N/mm2  

	

K 	Stress adjustment coefficient 

	

n 	Modular ratio, Ebs/Eg 

	

tb 	Height of the block, mm 

	

tm 	Thickness of the mortar joint, mm 

	

a 	Mortar thickness-to--block height ratio, tm/tb 

B 	= (1 - fl) 2 /(l- (1 - n) 1/2) 

fl 	Minimum net area-to-gross area ratio of the block 

=l/(l+ (n-i) fl) 

acb 	Uniaxial compressive strength of the block, N/mm2  

	

0cg 	Unconfined compressive strength of the grout, N/mm2  

	

°cm 	Unconfined compressive strength of the mortar, N/mm2  

	

atb 	Tensile strength of the block, N/mm2  

This equation was only valid when the vertical stress 

acting on the grout at failure was higher than its 
Unconfined compressive strength. 

Ratio of maximum to minimum cross-sectional area of 
the grouted core 

Secant modulus of elasticity of the shell at 0.002 
strain, N/mm2  
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Case II: The block shell reaches its maximum compressive 

stress at a lower strain than the grout. The grout in this 

case was assumed not to be confined and the capacity is 

controlled by either failure of the block under a 

compression-tension state of stress or the capacity of the 

grouted core under axial compression after failure of the 

shell. The block shell will act to confine the mortar only. 

In order to derive an equation for the average 

compressive strength of blockwork masonry assemblage for 

Case II, the authors considered the following assumptions 
and factors: 

MOHR's theory for the failure criterion of block under 
bi-axial stresses. 

The mortar under a triaxjal compression state of 
stress. 

Same as assumption 5 for Case I. 

Based on all the above conditions the following 
equation was proposed for the average compressive strength 
of grouted masonry: 

[3.6 O• tb + a o] 	aCb 

[3.6 ab+aab] flØK 
	 ... (2.3) 

For large cores or for very strong grout, it was 

suggested that the grout could sustain higher loads than 

those corresponding to failure of the block shell. In this 

case the authors suggested an expression for the average 

compressive strength (based on the gross area of the 
assemblage) as follows: 
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f' 19  = 	
- UI acg 

Where 

nm 	Maximum net area-to-gross area ratio of the block 

For Case II, the governing compressive strength, E''mg 

will be the larger value from either Eqn. 2.3 or 2.4. 

Examination of the proposed expressions indicates that 

the most significant parameter is the block strength. Also, 

the compressive strength of grouted masonry increases with 

increasing net-to-gross area ratio, increasing the 

stiffness of the block or decreasing the stiffness of the 

grout and decreasing the thickness of the mortar. 

STURGEON et al 30  in 1980, reported work carried out 
at the University of Alberta on blockwork masonry columns 
and prisms. Four block high prisms were built using 400 x 
400 x 200 mm single core pilaster units. Some of the prisms 

were ungrouted and some were grouted with one of five 

different mixes of varying cylinder compressive strength 
(38.6, 35.2, 29.0, 17.7 and 10.3 N/mm2) and slump (100 - 150 
mm). Two of the mixes represented strengths in excess of 

block unit strength, and the other mixes provided strengths 

below block unit strength. Some of the prisms were 

subsequently stripped to permit testing of the cores alone. 

The actual dimension of all prisms were 397 x 397 x 803 mm 
and their h/t ratio equal to 2.0. 

Failure of all the ungrouted prisms was sudden, 

complete and explosive. Grouted prism failures were 

characterized by two typical modes. Type A failure was 

described by the authors as a simultaneous splitting of the 

block shell and crushing of the prism core. Failure was 

gradual and shell cracking was noted in advance of the 

prism ultimate load. Vertical splitting of the prisms 
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tended to originate at block face centres in the upper or 

lower course. Type B failure was characterized by gradual 

splitting, with subsequent separation from the prism core, 

and spitting of the block shell before core crushing. Shell 

cracking was normally observed before, shell spitting. All 

prism cores, irrespective of failure mode, showed a typical 

conical shear failure similar to that observed in standard 

concrete test cylinders. 

Based on these results, the authors proposed an 

equation relating the ultimate load of a grouted masonry 

prism to grout strength and ungrouted prism strength as 
follows: 

Pun= [0.75 VCAC + 0.62 f' , 	A]/10oo 

Where 

AC 	Core area of block unit, mm  

Ash 	Masonry shell area, mm  

Standard concrete cylinder compressive strength, 
N/mm2  

'mpn Ungrouted prism net area compressive strength, N/mm2  

PUM 	Ultimate load of grouted masonry prism, KN 

The authors emphasized that the above empirical 

equation had been obtained using one block size and only 
one block strength. 

The authors also recommended that since the designer 

cannot guarantee that sufficient bond will exist between 

the shell and the core to ensure shell contribution at 

ultimate load, a more conservative approach be adopted 

until the relationship is better understood, and that the 

second term in Eqn. 2.5, which is of secondary importance 
for,  pilaster units with the dimensions tested in this 
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investigation, be neglected in ultimate strength 
calculations. 

The authors concluded that the superposition concept 

of grout strength and block strength was not valid and it 

may be more appropriate to match the deformational 

characteristics of the grout to those of the block rather 
than matching the strengths. 

High slump concretes cast in columns and prisms built 

with pilaster units having large core areas produced 

extensive shrinkage cracking in the upper region of the 

core. Tests showed that they do not have a detrimental 

effect on the structural performance of masonry subjected 
to concentric compression. 

Unfortunately, all the blockwor]c masonry prisms were 

of a single core pilaster unit which limits the use of the 

above formula to this type of block. It was also noted that 

the mode of failure for all the prisms built with the 

pilaster units were characterized by premature splitting 

of the block shell at low loads. 

MAURENBRECHER 31  in 1980 0, presented work carried out 
by the National Research Council of Canada to study the 

effect of the following: prism height-to-thickness ratio 
(h/t); capping material; face-shell and full mortar 

bedding; workmanship; stack versus running bond and age (7-

vs 28-day strength); on the compressive strength of 

blockwork and brickwork masonry prisms. 

In this review work carried out on brickwork prisms 

has not been discussed. Two types of hollow concrete 

blocks, 140 and 190 mm thick, 2-core, autoclaved, with 79% 

and 84% solid, were used in the investigation. The mortar 

used had a compressive strength of 6.6 N/mm2. Blockwork 
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prisms with face-shell bedding were capped with fiber-board 

strips placed on the face-shell area. 

The results showed that the ultimate strength of the 

prisms increases as the h/t ratio decreases. The correction 

factors given for the h/t ratio by the Canadian Standard 

were shown to give overestimate of the strength. The prisms 

tested with fiber-board capping gave slightly lower results 

(0.99 and 0.92) compared to the plaster capped prisms. The 

results showed that the ratios of failure stress, based on 

mortar bedded area, were 0.99 and 1.10 (face-shell bedding 

to full bedding). 

The author concluded that care must be taken that 

prism construction is representative of practice on the 

building site, including the use of face-shell bedding 

instead of full bedding with hollow concrete blocks (unless', 

stresses are based on mortar bedded area) and furrowing of 

the mortar joints in masonry using solid units. 

CHEEMA and KLINGER 32  in 1986, used experimental 
results from tests on concrete blockwork prisms and 

constituent materials, to calibrate linearly elastic finite 

element models for hollow and grouted concrete masonry 

prisms. The prisms were constructed from one type of 

nominal 400 x 200 x200 nun, 2-core, hollow concrete block 
of 25.86 N/mm2  compressive strength. Three types of mortar 
were used with compressive strengths of 12.07, 12.41 and 
14.89 N/mm2  respectively. Some of the prisms were left 

ungrouted and some were grouted with grout strengths of 
24.55 or 30.00 N/mm2. All the grouted prisms were face-shell 
bedded. Some of the ungrouted prisms were face-shell bedded 

and some were fully bedded. The prisms were capped with 
gypsum plaster. 

The observed modes of failure for hollow prisms with 
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9.5 mm joints were either by disintegration of the face 

shells or splitting of the webs parallel to the direction 

of load. Crouted prisms, on the other hand, failed by 

vertical splitting through the block shell, starting at the 

bed joint. Neither grout nor mortar suffered much damage. 

Axial capacity depended on the splitting resistance of the 

shell and the crushing resistance of the grout. 

The results showed that hollow prisms (based on net 

area) with 12.7 mm mortar joints were about 72% as strong 

as those with 9.5 mm joints. Hollow prisms (based on net 

area) were stronger than grouted prisms (based on gross 

area), and blocks alone were stronger than hollow prisms. 

The results for the stress vs strain curves showed 

that the modulus of elasticity of hollow prisms (based on 

net area) were higher than the grouted ones (based on gross 

area), with hollow prisms reaching maximum stress at 

strains near 0.0011 compared to about 0.002 for grouted 

prisms. The hollow blocks behaved linearly, failing 

suddenly by splitting of the shell near the mortar joint. 

Grouted prisms were very non-linear and failed more 
gradually. 

In the analytical model for concrete masonry prisms, 

both hollow and grouted prisms were modelled as being 

linear elastic. Material non-linearity was accounted for 

by using secant moduli for all materials. The strengths of 

the constituent materials was computed considering the 
effects of multiaxial stresses. 

The idealised elastic material characteristics for 

block, mortar and grout were derived as follows: 

Block: 	Secant modulus Ebs  and splitting tensile strength 
tb of the block were computed using the expression as shown 
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in the following equations: 

Ebs 	= Eb = 0.028 (yb15) fb 
1/2 	••• (2.6) 

and 

tb = 0.42 ( b)112 	 . . . (2.7) 

Where 

Eb 	Initial tangent modulus of concrete block, N/mm2  

Ebs 	Secant modulus of concrete block at prism failure, 
N/mm2  

fb 	Compressive strength of the concrete block, N/mm2  

th 	Tensile strength of the concrete block, N/mm2  

Wb 	Unit weight of the concrete block, Kg/m3  

The assumed Poisson's ratio used in the analysis for 

hollow prism was 0.28 corresponding to an axial strain at 

failure of 0.0015. 

Mortar: An idealised stress vs strain curve for 

unconfined mortar is based on an initial tangent modulus 
of Em= 1000 f. The strain at maximum stress was taken as 
0.002. The confined mortar behaviour can be described by 

an idealised stress vs strain curve lying between the 

initial tangent and estimated lower bound curve. A secant 
modulus Ems= 500 fm, at a mortar strain of 0.002, was assumed 
to be a reasonable value for the confined mortar (Fig. 

2.3). A Poisson's ratio of 0.28 for confined mortar was 
adopted. 

E,,, = 500 fm ...(2.8) 
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Where 

Ems Secant modulus of the mortar at prism failure, N/mm2  
fm  Uniaxial compressive strength of the mortar, N/mm2  

Grout: The selected secant modulus of grout 
E9 

corresponded to an axial strain of 0.002, the observed 

failure strain of a grouted prism. The formula suggested 

for the secant modulus of elasticity was as follows: 

Eg = 0.021 (W915) (f9 ) 112 	 . . . (2.9) 

Where 

Egs 	Secant modulus of the grout at prism failure, N/mm2  

w 	Unit weight of the grout, Kg/ M3 

fg 	Compressive strength of the grout, N/mm2  

The Poisson's ratio of grout was taken as 0.37, 

corresponding to an axial strain of about 0.002. For 

analysing hollow prisms, all grout properties were set to 
zero. 

The following observations were made from the 

analytical results for hollow prisms with a wide range of 
material characteristics: 

Near the mortar interface, transverse tensile stresses 

act in the shell in both directions. Stresses 

perpendicular to the shell are three to four times 

larger than those parallel to the shell. 

Transverse tensile stresses are highest in the middle 

of the outside web, halfway between the two face 

shells, and decrease rapidly to zero within 25.4 mm 
from the mortar-block interface. 
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3. 	In the bed joint, compressive stresses act in both 

transverse directions. 

From these observations the authors predicted three 

modes of failure for hollow prisms: (1) block splitting, 

where the maximum principal transverse tensile stress in 

the block reaches the tensile strength of the block; (2) 

block crushing, where the maximum axial compressive stress 

in the block reaches the compressive strength of the block; 

and (3) mortar crushing, where the maximum axial 

compressive stress in the mortar reaches the confined 
crushing strength of the mortar. 

Block splitting: 	This failure occurs when the principal 

transverse tensile stress in the block reaches the tensile 
strength of the block. 

tb = (1/f) fhbl 	 ...(2.lo) 
Or 

hb1 = f f L 	 . . . 

Where 

hb1 	Compressive strength of a hollow prism as governed by 
tensile failure of the block, N/mm2  

tb 	Tensile strength of the concrete block, N/mm2  

f 	An influence coefficient equal to the ratio of hollow 
prism strength as governed by splitting of the block 
to the tensile strength of the block, Fig. 2.4 

Block crushing: 	Blocks also fail when the nominal 
compressive stress in the block, f 

hb2' reaches the block's 
uniaxial compressive strength, f b•  The applied compressive 
stress at block failure, hb' is therefore given by 

fhb 	f f tb' but not more than f 	...(2.12) 
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Where 

fhb 	Compressive strength of a hollow prism as governed by 
block failure, N/mm2  

hb2 	Compressive strength of a hollow prism as governed by 
crushing failure of the block, N/mm2  

f b 	Compressive strength of the concrete block, N/mm2  

Mortar crushing: 	Since the mortar joint in unfilled 
prism is as thick transversely as the block shells, the 

nominal compressive stress in the block and the mortar 

joint are equal, and at joint crushing is equal to the 

compressive strength of the confined mortar. 

i.e. 	f hm = r f. ...(2.13) 

Where 

hm 	Compressive strength of a hollow prism as governed by 
mortar failure, N/mm2  

fm 	Uniaxial compressive strength of the mortar, N/mm2  

F 	Ratio of confined to unconfined crushing strength of 
the mortar in a hollow prism, Fig. 2.4 

Based on the above three predictions for the various 
modes of failure, the authors summarised the capacity 

prediction procedure for the failure of hollow prisms as 
follows: 

Find the modular ratio of mortar to block, using 

either the known secant moduli of the mortar and block 

(corresponding to maximum stresses) or values 

estimated using Eqns 2.6 and 2.8. 

Find the compressive strength of a hollow prism, f hb' 

as governed by principal tensile stress in the block, 

using Eqn. 2.12 and Fig. 2.4. If unknown, the tensile 
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strength of the block may be estimated using Eqn. 2.7. 

Find the strength, fh,, as governed by mortar crushing, 
using Eqn. 2.13 and Fig. 2.4. 

The strength of hollow prisms, f h' is the smaller of 
fhb and 

The following observations were made from the 

analytical results for grouted prisms with a wide range of 

material characteristics: 

The vertical compressive stresses in the block and 

grout varies from the applied compression by less than 

15% away from the level of the bed joint, but by as 

much as 70% at the joint. 

Transverse tensile stresses on the block are about 

equal in both directions at the mortar-block interface 

due to lateral expansion of the grout and the mortar. 

Transverse stresses perpendicular to the shell 

decrease to zero within about 25.4 mm from the mortar-

block interface. Transverse stresses parallel to the 

shell are also highest near the interface, decreasing 

gradually to uniform non-zero values away from the 
interface. 

Approximately equal transverse compressive stresses 

act on the mortar joint in both directions and are 

largest near the mortar-block interface. 

Transverse compressive stresses on the grout are 

largest at the level of the bed joint. 

From these observations the authors predicted 
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five modes of failure for grouted prisms: (1) block 
splitting, where the maximum principal transverse tensile 
stress in the block reaches the tensile strength of the 
block; (2) block crushing, where the maximum axial 
compressive stress in the block reaches the compressive 
strength of the block; and (3) mortar crushing, where the 
maximum axial compressive stress in the mortar reaches the 

confined crushing strength of the mortar. (4) mortar 

splitting, where the maximum principal tensile stress in 

the mortar reaches the tensile strength of the mortar; and 

(5) grout crushing, where the maximum axial compressive 

stress in the grout reaches the confined crushing strength 
of the grout. 

Block splitting: 	The prism fails by block splitting when 
the maximum principal tensile stress in the block reaches 
tb' the tensile strength of the block. 

= 	 ... (2.14) 

Where 

fpbl 	Compressive strength of a grouted prism as governed 
by tensile failure of the block, N/mm2  

tb 	Tensile strength of the block, N/mm2  

01b1 	Maximum principal tensile stress in the block due to 
unit applied axial compressive in a grouted prism, 
Fig. 2.5 

Block crushing: 	Compressive failure occurs when 

= b [k + m (i. - k)] 	...(2.15) 

...(2.16) 

M = 	E9/E bs 	 ...(2.17) 
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Where 

Abk 	Net cross-sectional area of concrete block, mm2  

A9 	Area of grout, mm  

Ebs 	Secant modulus of the concrete block at prism 
failure, N/mm2  

Egs 	Secant modulus of the grout at prism failure, N/mm2  

fb 	Compressive strength of the concrete block, N/mm2  

b2 	Compressive strength of a grouted prism as governed 
by block crushing, N/mm2  

Mortar crushing: The prism fails when the mortar 

strength reaches the compressive strength of the confined 
mortar. 

pni = & fm ...(2..18) 

Where 

tpm1 	Compressive strength of a grouted prism as governed 
by mortar crushing, N/mm2  

fm 	Uniaxial compressive strength of the mortar, N/mm2  
S 	The ratio of the strength of a grouted prism, as 

governed by crushing of the mortar, to the uniaxial 
crushing strength of the mortar, Fig. 2.6 

Mortar splitting: The prism strength is governed by the 
mortar splitting, f, where 

= tm/"imj 	 ...(2.19) 

Where 

f 	Compressive strength of a grouted prism, as governed 
by mortar splitting, N/mm2  

tm 	Tensile strength of the mortar, N/mm2  

almi 	Maximum principal stress in the mortar for unit 
applied axial compressive stress on the grouted 
prism, Fig. 2.7 
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Grout crushing: 	At prism failure, the axial compressive 

stress on the grout equals the compressive strength of 
confined grout. 

f 9  = I f 	 ...(2.20) 

Where 

f9 	Compressive strength of the grout, N/mm2  

fpg 	Compressive strength of a grouted prism, as governed 
by grout failure, N/nun2  

Ratio of the confined to unconfined crushing strength 
of the grout, Fig. 2,8 

Based on the above five predictions for the various 

modes of failure, the authors summarised the capacity 

prediction procedure for the failure of grouted prisms as 
follows: 

Find the modular ratios, EmS/EbS  and EYS/EbS, using either 
known secant moduli for the block and mortar 

corresponding to maximum stress, or values estimated 

using Eqns 2.6 and 2.8. The secant modulus of the 

grout may be estimated using Eqn. 2.9. 

Use Eqn. 2.14 and Fig. 2.5 to find b1' the strength 

of a grouted prism, as governed by block splitting. If 

unknown, the tensile strength of the block may be 
estimated by Eqn. 2.7. 

Use Eqn. 2.15 to find f b2' the strength of a grouted 

prism, as governed by block crushing. 

Use Eqn. 2.18 and Fig. 2.6 to find f 1, the strength 
of . a grouted prism, as governed by mortar crushing. 

Use Eqn. 2.19 and Fig. 2.7 to find f, the strength 
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of a grouted prism, as governed by mortar splitting. 

If unknown, the tensile strength of the mortar may be 
estimated by: 

tm = 0.58 	 ...(2.21) 

Use Eqn. 2.20 and Fig. 2.8 to find fpgi  the strength 
of a grouted prism, as governed by grout crushing. 

The strength of the grouted prism, f, is the smallest 

of the five prism strengths computed in Steps 2 

through 6 above. For normal materials, block splitting 

usually governs. 

HANID and CHUKWUNENYE 33  in 1986, studied the behaviour 
of concrete masonry prisms axially loaded normal to the bed 

face using three-dimensional finite element elastic 

analysis. The characteristics investigated were the effects 

of mortar bedding, mortar deformational properties, block 
size, prism height-to-thickness ratio (h/t), number of 

mortar joints and stiffness of the bearing plates. The 

analysis was developed using ANSYS, a general purpose 

finite element program. A three-dimensional plate element 

with surface loading capability was used to model the 

bearing plates. Due to the restrictions on ANSYS, it was 

impossible to use the compressive strength of the 

constituent materials directly. Instead, the elastic moduli 

(calculated at a stress level of 6.9 N/mm2) of the different 
materials were used. A block-mortar modular ratio of 2.8 

was determined for normal strength blocks and type S 

mortar. A Poisson's ratio of 0.2 was used for concrete 
blocks and 0.18 for mortar. 

Two types of mortar bedding were analysed: face-shell 

bedding (the blocks were laid with the bed joint separated 

into two parallel strips) and full area bedding (all shells 
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were bedded including the cross-webs). The results of the 

analysis for the face-shell bedding prism showed that large 

lateral stresses were created in the block webs, resulting 

from the beam action caused by the gap existing between the 

webs. The results indicate that web cracking in face-shell 

bedded prisms will occur at a relatively low load level 

compared to that for full-bedded prisms. Face-shell bedded 

prisms also showed a non-uniform axial stress distribution 

at the prism end shells along the height of the prism. The 

distribution for fully-bedded prisms was fairly uniform, 

indicating a significant difference in behaviour between 
the two types of prisms. 

The effect of the mortar properties on the behaviour 

of hollow block masonry prisms was investigated by changing 

the block-to-mortar modular ratio, Eb/Effi. The results of the 

analysis showed that an increase in the block-to-mortar 

modular ratio increases the lateral tensile stresses in the 

blocks due to an increase in the degree of deformational 

incompatibility between the stronger blocks and the weaker 
mortar. 

The results also showed that for prisms built with 

block sizes thicker than 200 mm there is no appreciable 

difference in either the shape or the magnitude of the 

stresses. This indicates that block size has no effect on 

the behaviour of axially loaded prisms. 

The effect of the prism height-to-thickness ratio, 

(hit), on the behaviour of concrete masonry prisms was also 

investigated. The results of the analysis indicated two 

different modes of behaviour for prisms with h/t = 3.0 and 

h/t = 2.0. The middle portion of the prism is in 

compression for prisms with h/t = 3.0 and in tension for 

prisms with h/t = 2.0. Based on this result, the authors 

recommended the testing of 3-course high prisms to 
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determine the prism compressive strength 
('m)• 

However, the authors believed that such a 

recommendation could not be easily implemented due to 

height limitations imposed by commercially available 

testing machines. To solve this problem, the authors 

proposed the testing of a 3-course prism with half blocks 

at the top and bottom. The results, for this type of prism, 

showed a definite similarity to those for the full 3-course 
high prism. 

The results for prisms using different bearing plate 

thicknesses showed that the ASTM E 447 recommendation (i.e. 

using a bearing plate thickness equal at least one half of 

the distance from the edge of the bearing block to the most 

remote corner of the prism's cross-section) was too 

flexible and produced large lateral tensile stresses in the 

top block which could cause premature failure. The authors 

recommended using twice the bearing plate thickness 

specified by the ASTM E 447 Standard. 

To the author's knowledge, the only study to date on 

specimens tested axially in a direction parallel to the 

unit bed face is that carried by the author himself in 
1981 	and presented in two papers in 1987 and 1988. In 

the author presented results from a two-dimensional 
finite element analysis for unfilled, partially and 

completely filled single-block specimens and two-block 

prisms axially loaded parallel to the unit bed face. This 

study simulated the compression zone of a reinforced 

masonry beam or part of a wall in a seismic zone where 

excessive horizontal forces can be expected. 

The material properties (compressive strength, stress 

vs strain relationship, modulus of elasticity and Poisson's 

ratio) were obtained by testing the individual materials. 
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The block used in the analysis was a hollow block, with two 

legs to permit face-shell bedding and with nominal 

dimensions of 400 x 200 x 200 mm. 

The results from an analysis of unfilled single-block 

specimens showed a non-uniformity in the elastic vertical 

stress distributions, with very high localized stresses at 

the outer and inner faces of the block legs and hollow 

cores respectively. On the other hand, the analysis, 
assuming PIN/FIX and PIN/PIN end conditions, of unfilled 

two-block prisms showed a very sharp increase in the 

elastic vertical compressive stresses at the outer face of 

the mortar joints with stresses in tension at the inner 

face. This non-uniformity was due to the shape of the block 

and the way it was loaded, with a tendency for the shell to 

deflect laterally (Fig. 2.9). The analysis also showed high 
tensile stresses (3.5 - 8.3 N/mm 2) and high shear stresses 
(1.2 - 4.3 N/mm2) for the PIN/FIX and PIN/PIN two-block 
prisms respectively near the block legs and web 

connections, compared to the ultimate tensile and shear 

stresses given by ACI 318M-83. 

From the results of this analysis the author was able 

to relate the mode of failure for the PIN/FIX and PIN/PIN 
unfilled two-block prisms to the unit compressive strength 
and the type of mortar. 

The results for the partially filled single-block 

specimens and two-block prisms showed a more uniform 

elastic vertical stress distribution than the unfilled 

ones. The largest localized elastic vertical stresses occur 

at the inner face of the block legs for all the single-

block specimens and at the inner face of the block legs and 

the mortar joints for all the two-block prisms. The 

uniformity of the vertical stresses was attributed to the 

presence of the concrete infill. 
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A definite similarity in the distribution of the 

elastic tensile and shear stresses was also observed 

between the partially filled single-block specimens and 

two-block prisms. These stresses tended to concentrate near 

the block legs. These high stresses were mainly due to the 

beam action caused by the presence of unfilled voids 

between the block legs. Appreciable differences were 

observed between the elastic tension stresses for the 
PIN/FIX and the ideal PIN/PIN single-block specimens with 
the ideal PIN/PIN specimens showing a very sharp increase 
in these stresses at the top and bottom block webs. This 

increase in tensile stress was also observed at the centre 

of the webs for both the PIN/FIX and PIN/PIN end 
conditions, for partially filled two-block prisms. As a 

result, the author suggested that the only way to determine 

the ultimate compressive strength, i'm' for a partially 
filled prism is by testing a two-block prism. 

Based on the results of this analysis the author was 

also able to predict the mode of failure for the PIN/FIX, 
partially filled prism. This mode of failure is quite 

complicated and depends on the compressive and tensile 

strength of the block and mortar type. For mortars of low 

strength, the failure first occurred by localized crushing 

of the inner face of the mortar joint followed by shearing 

near the block legs and lateral deflection of the block 

shells. For mortars with higher compressive strengths, the 

predicted mode of failure was due either to the block 

reaching its compressive strength or the block splitting 

at the centre of the webs, whichever occurred first. 

The results for an analysis of the completely filled 

single-block specimen and the two-block prism showed almost 

uniformly distributed elastic vertical stresses. The 

elastic tensile and shear stresses were lower than those 

for all the other types of models analysed. Also these 
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stresses usually tended to concentrate near the block legs. 

Thus the author concluded that the completely filled 

specimen was the best case. 

The predicted mode of failure. for the completely 

filled single and two-block specimens was by crushing in 

the block legs followed by lateral deflection of the block 

shells. Based on the results of an analysis of completely 

filled specimens the author concluded that testing 

completely filled single-block specimens is sufficient to 
determine f t m• Also, there is no relation between the block 
strength and the mortar type for this case. 

Finally, the author concluded that for the type of 

block described in the analysis: 

For the design of an unfilled masonry wall in 

accidental zones, where horizontal axial forces are 

expected, the ultimate compressive strength of 
blockwork masonry, i'm' is determined from the unit 

block strength, loaded in a direction parallel to the 

bed face, and the mortar type. 

For the analysis and design of reinforced concrete 

masonry beams or partially filled masonry walls in 

seismic zones, partially filled two-block prisms 

should be tested to determine 

For beams, or walls in seismic zones, blocks that 

permit full-bedded vertical mortar joints to be made 

are preferable. To determine f I M  for this type of 
construction, testing completely filled single-block 
specimens is sufficient. 

The author"" in 1988, presented experimental results 

in support of the above analytical investigation. Using the 
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same type of block and the three different fill conditions 

(unfilled, partially filled and completely filled), the 

author tested single-block specimens and two-block prisms 

in a direction parallel to the unit bed face. 

The observed modes of failure and the load vs strain 

curves for all the specimens tested tended to confirm the 

modes of failure and stress distribution predicted using a 

two-dimensional finite element analysis. 

The results showed that the strength of almost all the 

two-block prisms, with specimen height-to-thickness ratio, 

h/t = 4.0, was higher than that for single-blocks with h/t 

= 2.0. This is contrary to the well established reduction 

in strength with height factor for masonry prisms laid in 

stack-bond and loaded in a direction normal to the bed 
face. 

The results also showed that the compressive strength 

of unfilled blocks tested parallel to the bed face was 29% 

lower than for units tested normal to the bed face. High, 

localized vertical and shear stresses tend to occur at the 

outer face of the block legs and near the connection points 

of the legs to the top and bottom webs respectively, 

leading to this reduction in strength. Partially filled 

single-block specimens showed a 34% reduction in 

compressive strength compared to unfilled single-blocks. 

The reason for this reduction was differences in the 

deformational characteristics of the concrete inf ill and 
block. 

The results shOwed that the compressive, strength of 

the partially filled two-block prisms is dependent on the 

type of mortar. Prisms with low mortar strength (17.80 
N/mm2), failed at a compressive strength which was 2% higher 

than the strength of the mortar, but 41% lower than the 
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strength of the block material, and 10% lower than the 

strength of the partially filled single-block specimens. 

The reduction in strength compared to the single-block 

specimen was due to the lower compressive strength of the 
mortar. 

On the other hand, prisms with mortars of higher 

strength (average 23.6 N/mm2), failed at a compressive 
strength which was 29% lower than the block material, and 

8% lower than the compressive strength of mortar. This 

failure strength was 8% higher than the strength of the 

partially filled single-block specimens. 

The load vs strain relationships showed that an 

extensive stress redistribution occurs at the higher stress 

levels, due to the non-linear behaviour of the mortar. Also 

a clear difference in the vertical strain levels between 

the inner face and the outer face of the mortar joints, and 

a high tensile strains at the centre of the webs near the 

unfilled void between the blocks was also evident. There 

was also an indication of increasing stiffness beyond the 

elastic region. This was due to lateral deflection of the 

block shell after crushing of the inner face of the mortar 

joints. All the partially filled prisms tested showed very 

high strain readings. The highest strain recorded was 
0.015. 

The results showed that the compressive strength of 

the mortar has an important effect on the strength of the 

partially filled two-block prisms. But for mortars of 

higher strength than the one used in the study, it can be 

expected that the splitting strength of the block will 

dominate the type of failure, and that the compressive 

strength of the prism, will stabilize at a constant value. 

On the other hand, the results showed that using two 
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concrete inf ills with a 45% difference in compressive 

strength has little effect on the compressive strength of 
the prism. 

The results showed that the compressive strength of 

the completely filled prisms is 4% higher than that of the 

completely filled single-block specimens, but 29% less than 

the compressive strength of the block material. The results 

also showed that the ideal case was the completely filled 
prism. 

Finally, the author concluded that for the design of 

unfilled masonry walls in seismic zones, where high 

horizontal forces are expected, the ultimate compressive 

strength of blockwork masonry f t  must be determined by 
either: 

(i) Using tables or graphs relating the compressive 

strength of unfilled single-block compressed parallel 

to the unit bed face and the type of mortar. 

Or 

Masonry prisms laid in running bond, tested parallel 

to the unit bed face, and made from the same materials 

as those used in the actual construction. 

For the design of partially filled blockwork beams and 

walls in seismic zones, the ultimate compressive strength 
of blockwork, i'm' must be determined by either: 

(i) Where the mortar used has a lower compressive strength 

than the partially filled single-block units tested 
parallel to the bed face, then f 

'm is determined using 
tables or graphs relating the compressive strength of 

the partially filled single-block compressed parallel 
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to the unit bed face and the mortar type. 

Or 

Where the mortar used is of higher strength, then 

is determined by testing partially filled two-block 

prisms laid in running bond, and loaded parallel to 
the unit bed face. 

Completely filled blockwork masonry beams and walls 

are the ideal form of construction. To determine f 'm for 
this case, testing completely filled single-block specimens 
is sufficient. 

The National Concrete Masonry Association of America 
(NCMA) 37  in 1988, presented a report on a research 

investigation of the properties of masonry grout in 
concrete masonry. 

The objectives of this research programme can be 
summarized as follows: 

To establish the, relationship between grout strengths 

determined by the standard method of sampling and 

testing grout (ASTM C 1019) and the strength of grout 

in grouted concrete masonry. 

To develop recommendations for grout strength 

requirements as an alternative to proportion 
requirements. 

To study the effect of the cement to aggregate ratio 

on grout properties. 

To study the effect different concrete masonry units 

have on the properties of grout in grouted concrete 
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masonry. 

To study the relationship between both the modulus of 

elasticity of concrete masonry, Erni and the modulus of 
elasticity of grout, E. vs the grout cement to 
aggregate ratio. 

To study the relationship between the strength of 

grout and the modulus of elasticity of grout, Eg* 

To study the relationship between the strength of 

concrete masonry units and modulus of elasticity of 

concrete masonry, Em 

The research includes compressive strength tests on 

concrete masonry prisms, moulded grout specimens, grout 

specimens cut from grouted units and tests of component 

materials such as units, mortar and ingredients of mortar 
and grout. 

Two types of concrete block units, with nominal 

dimensions of 400 x 200 x 200 mm, were used in the 

programme (normal and high strength concrete block units). 

Two types of mortar were used in accordance with the 

requirements of ASTM C 270-86b Standard, proportioned by 

volume (N = 1:1.25:6.75 and S = 1:0.50:4.50 cement: lime: 

sand proportions). Six types of grout were used, divided 

into fine mixes (1:3, 1:4 and 1:5 cement: sand proportions) 

and coarse mixes (1:2.4:1.6, 1:3:2 and 1:4.8:3.2 cement: 

sand: aggregate proportions). The prism was constructed 

with two full concrete blocks laid in stack-bond. The 

authors believed that 2-block prism is the most commonly 

used configuration for quality control and could be 

expected to produce consistent and predictable results for 

the purposes of comparison. Prisms made with normal 

strength units were laid up with Type N mortar; prisms made 



with high strength units were laid up with type S mortar. 

For the ungrouted prism specimens, both the face-shell 

mortar bedding and the full mortar bedding were used. For 

filled prisms, the fine and coarse grouts were mixed to a 

254 nun slump. Concrete blocks units were used to form grout 

mould in accordance with ASTM C 1019. The units forming the 

grout mould were lined with absorbent paper which prevented 

bond of the grout to the concrete blocks. Cut grout 

specimens were also prepared by filling one core of a block 

unit with grout and after curing, prisms measuring 194 x 89 
X 89 mm high were sawn cut from the grouted core. 

The results for the grout specimens showed that the 

compressive strength of block moulded specimens averaged 

9.7% higher than that for the cut specimens. The reason for 

this difference in strength was attributed to the greater 

volume of masonry unit surrounding the moulded specimen 

than surrounding the cut specimen. This greater volume of 

masonry unit could have absorbed more water prior to the 

grout setting than in the case of block moulded specimens. 

Based on the grout results, the authors concluded that the 

standard ASTM C 1019 method for testing grout reflects 

strengths representative of the strength of grout in 

grouted concrete masonry. On the effect of the aggregate to 

cement ratio (A/C) on the grout compressive strength, for 

fine and coarse aggregates, the results showed that the 

relation between strength and A/C ratio was different for 

fine and coarse aggregate grout and that the gout 

compressive strength reduces as the A/C ratio increases. 

The filled prism results showed that increasing the 

grout strength resulted in increasing the prism strength. 

The results show also that the increase in prism strength 

has a greater effect for grout strengths up to the strength 

of the units. Increasing the grout strength beyond that 

point has less effect on the masonry prism strength. 
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The results for the stress vs strain relationship for 

the grout appears linear over most of the loading range of 

the specimens tested. Elastic modulus was determined at 

data points between 5% and 33% of the grout strength. The 

modulus of elasticity of the grout vs compressive strength 

of the grout relationship was expressed as follows: 

E = 500 x Grout strength, N/mm2 	....(2.22) 

Unfortunately, the authors based their work on 2-

course high prisms and this does not truly reflect the 

actual strength of the prisms due to the effect of machine 

platen confinement. 

Work was carried out on masonry prisms compressed 

normal to the unit bed face by AFSHARI and KALDJIAN 38  in 
19891, to predict the behaviour and ultimate strength of 

concrete block masonry prisms, using the physical and 

geometric properties of mortar and block elements. Failure 

envelopes were established for the mortar using MOHR's 

theory of failure and for the block using the results of a 

numerical analysis of solid masonry prisms. A finite 

element analysis of. solid, hollow and grouted masonry 

prisms was curried out using linear three-dimensional 8-
node solid elements. A linear analysis was assumed to be 

adequate for brittle cementitious material such as concrete 

blocks, grout and mortar. A finite element model consisting 

of one-eighth of the concrete masonry prism under axial 

compressive stress was used to determine the general state 
of the internal stresses. 

The results showed that the mortar was under a 

triaxjal compressive stress while the block was under 

lateral bi-axial tension near the interface between the 

mortar and the block. Since the mortar used in the analysis 

was weaker than the block material, the stress vs strain 

EH 



relation for the mortar falls below the one for the masonry 

unit. Therefore, for the same axial stress, the resulting 

longitudinal (axial) and lateral strains will be larger for 

the mortar than the block. However, since both materials 

were bonded together, the lateral stresses cause confining 

stresses in the mortar joint and tensile stresses in the 
masonry unit. 

In determining the cause of failure of a masonry prism 

the authors assumed the failure envelope for hollow units 

of A,/A. = 0.5 to be close to the line. Although admitting 

that this assumption could not be verified experimentally, 

they gave the following explanation for their assumption: 

"Assume a solid unit is made of a hollow shell. and grouted 

with the same material as the shell. The extra material in 

the block will expand laterally when axial stress is 

applied on the unit. The expansion of the extra material 

will result in additional lateral stresses pushing the 

shell portion outward, and thus will cause a solid unit to 

fail at a lower level of axial stress than an equivalent 

hollow unit". This assumption was supported by the results 

of the analysis which showed that for the same applied 
axial stress, fa, and lateral tensile stress, f bt' the solid 
unit had a larger lateral deflection and internal stress 

than the corresponding 50% hollow unit. An attempt was made 

to determine the level of axial compressive stress and 

lateral tensile stress at which the internal stresses and 

deformations of a solid unit are roughly equal to the 

equivalent hollow unit. Several finite element models with 
varying values of fa  and f bt were run. The final result has 
been plotted in Fig. 2.10. In this figure, the line drawn 

through Point 2 and parallel to the heavy line drawn 

through Point 1 is proposed as the failure envelope for a 

solid block unit (A,/A. = 1.0). At the extreme ends of this 

failure envelope, the dashed lines represent the actual 

shape of the solid unit failure envelope. However, since 
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the combination of lateral and axial loading in a prism is 

seldom close to the extreme limits, the authors believed 

that it was safe to assume this to be a straight line. To 

accommodate the failure envelopes for values of A,/A. 

between 1.0 and 0.5, the authors suggested the following 

empirical expression for the lateral tensile stress fbt on 
the masonry unit for 0.5 < A/A9  < 1.0 was (Fig. 2.11): 

f i  bt = CD - a'bt ) 	bt 	... (2.23) 

and 

D = 2/3 (2 - An/A9 ) 	 ...(2.24) 

Where 

A9 	Gross cross-sectional area of the masonry unit, mm2  
An 	Net cross-sectional area of the masonry unit, mm2  
fa 	Axial compressive stress applied to a prism, N/nun2  

'bL 	Ultimate uniaxial flat-wise compressive strength of 
a masonry unit, N/mm2  

fbt 	Lateral tensile stress applied to a masonry unit, 
N/mm2  

lateral tensile Ultimate uni-axial or bi-axial bt 
strength of a masonry unit, N/mm2 

 

An attempt was also made to draw the loading curve for 

a mortar and masonry unit to represent the variation of the 

lateral tensile stress, fbtf and the confining stress 

as the applied axial stress, fal on the prism increases. By 

considering the equilibrium of forces on a typical cross-

section through the unit and mortar joints on top and 

bottom, regardless of the shape of the cross-section, the 
authors derived an expression for the average value of 

f bt and f c as follows: 
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bt = (ti/h,) fe ...(2.25) 

Where 

fc 	Confining stress in the mortar joint, N/mm2  

hu 	Height of masonry unit, mm 

t 	Thickness of the mortar joint, mm 

To complete the analytical process, the authors 

required an expression describing the variation of the 
confining stress, 	in the mortar as a function of the 

axial stress, f., on the prism. They suggested one method 

of calculating this variation from experimentally measured 

strains in the mortar and the masonry unit. Using the fore-

mentioned fa  versus fc relationship, and Eqn. 2.25, it was 
possible to produce an expression for fa  in terms of fbt 
alone. This expression was designated as the loading curve 
for the masonry unit. 

The general failure criteria for a masonry prism 

proposed by the authors is shown in Fig. 2.12. The loading 

curve for the mortar must be calculated from experimentally 

measured stress vs strain curves for the mortar with 

different compressive strengths. The loading curve for the 

block may be obtained using the latter together with Eqn. 

2.25. The failure envelope for the masonry unit was derived 

on the basis of the net to gross cross-sectional area of 

the masonry unit expressed by Eqns 2.23 and 2.24. The point 

at which the loading curve of the masonry unit and its 

corresponding failure envelope intersect gives the value of 

the ultimate compressive strength, i'm' of the prism. The 
values of fbt and fc, corresponding to the value of f8 = 
represent the average tensile stress in the masonry unit 

and the confining stress in the mortar joint, respectively. 
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2.3 MASONRY COLUMNS 

2.3.1 	Brickwork Masonry Columns 

Tests on unreinforced brickwork masonry columns was 

reported as early as 1882. In 1886, it was considered that 

column strength was inversely proportional to height to 

thickness ratio. The first research on the effect of 

lateral reinforcement in brickwork piers was conducted at 
the University of Corne1l 39  in 1900. This study showed that 
the placing of wire netting or mesh in every joint, 

increased considerably the compressive strength of the 
piers. 

In 1923 the first tests on reinforced brickwork 

masonry columns were reported. BREBNER 40  tested square and 
circular cross-section, 6-course high brickwork prisms with 

a small percentages of vertical reinforcement and large 

amounts of horizontal reinforcement. BREBNER's results 

indicate that, for square cross-section prisms, the use of 

5 mm diameter circular stirrups in each joint, which 

represent 5% of the prism's cross-section area, increased 

the prism's strength by 62%. Due to the high percentage of 

horizontal reinforcement, the influence of the 0.2% and 

0.8% vertical reinforcement on the axial capacity of the 

square prism was not clear. The results showed that the 

strength of the prism with both horizontal and vertical 

reinforcement, is on average 16% lower than the those with 

horizontal reinforcement only and 36% higher than those 

with no reinforcement. The reason for the reduction in 

strength was not clearly explained, but it would seem that 

the vertical reinforcement was unable to reach its yield 

strength due to the failure of the links anchorage of the 

horizontal reinforcement. In the circular prisms, the 

presence of the horizontal reinforcement increased the 

prism compressive strength by an average of 36%. The 
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introduction of vertical reinforcement in the circular 

prisms increased the axial capacity by 19% compared to 

those with horizontal reinforcement and 62% to those with 
no reinforcement. 

LYSE 39  in 1933, carried out tests on reinforced 

brickwork columns of similar format, each 3 in high with a 

slenderness ratio of 9.6. The results showed that the 

strength of reinforced brickwork masonry columns with 

vertical reinforcement can be predicted by combining the 

ultimate strength of the masonry with the yield strength 

of the vertical steel. The brickwork ultimate strength is 
therefore: 

S = [A (K f I 
b 
 + P f')]/1o00 	...(2.26) 

where 

A 	Cross-sectional area of column, mm2  
ft 

b 	Ultimate compressive strength of brick, N/mm2  

Yield point of vertical reinforcement, N/mm2  

k 	Ratio of masonry strength to brick strength 

S 	Column strength, KN 

Ratio of area of longitudinal steel to cross-
sectional area of column 

LYSE recommended that k be determined experimentally 

by testing small brickwork prisms constructed from the same 

material as the columns and cured under the same 
conditions. 

WITHEY 41  in 1934, tested thirty-two brickwork columns 

under concentric load. The columns were 318 mm square and 
1.8 in high with a slenderness ratio of 5.8. WITHEY found 

that the strength of brickwork columns increased as the 
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strength of the masonry and the percentage of vertical 

reinforcement increased. WITHEY indicated that 10 mm 

horizontal reinforcement in each course increased the 

strength of the columns and prevented complete collapse. 

WITHEY suggested the following equation to calculate the 

maximum capacity of brickwork columns: 

P/A = b (1 	+ 0 fS + K O f 	...(2.27) 

where 

A 	Column cross-sectional area, mm  

fb 	Unit stress for plain brick column, N/mm2  

fS 	Yield point of longitudinal steel, N/mm2  

Yield point of lateral hoop reinforcement, N/mm2  

P 	Maximum load, Newton 

K 	Constant assumed to depend on the ratio of gross area 
to core area, and possibly on brick type 

Longitudinal steel ratio in terms of gross area 

Lateral steel ratio in term of gross area 

LYSE indicated that 6 mm horizontal reinforcement in 

every fourth joint was sufficient to ensure that the 

vertical reinforcement reached its yield strength. Also 

increasing the diameter of the horizontal reinforcement 

produces no appreciable increase in the column's capacity. 

The overall conclusion that can be drawn from the results 

of both studies is that placing horizontal reinforcement 

at every third and fourth course was economical and 

interfered little with the building of brickwork columns; 

placing horizontal reinforcement at closer spacing makes 

the bricklaying more difficult. Whereas, placing the 

horizontal reinforcement at every third or fourth course, 

unable the bricklayer to adjust any differences in the 

mortar joint thickness in the other unreinforced courses. 
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DAVEY and THOMAS"" in 1950, tested a number of 

concentric and eccentric plain brick piers and reinforced 

brickwork columns. The variables considered in the plain 

piers were brick type, mortar type, cross-sectional area 

and pier height; the latter ranging from 0.27 to 3.2 m in 

order to study slenderness effects. With eccentricities 

ranging from t/12 to t/3, the results of the plain piers 

showed that the effects of slenderness are not independent 

of the eccentricity of loading. Concentric and eccentric 

reinforced brickwork columns were also tested each 2.74 m 

high and variable cross-sectional area. The largest 

slenderness ratio used was 6.0. The eccentricity of loading 

in these tests was high, never less than one quarter of the 

column depth and the percentage of vertical reinforcement 

used was low (0.11% to 0.25%). 

However, the ultimate resisting moments were high 

compared to similar unreinforced columns. Failure of these 

columns occurred either due to spalling of the compression 

face or due to the yielding of vertical reinforcement. 

The authors did not propose a failure theory or design 

method for either the plain or reinforced brickwork 
columns. 

Another ultimate strength design method for reinforced 

brickwork columns was proposed by ANDERSON and HOFFMAN 43  
in 1967, based on the American Concrete Institute (ACI 318-

63) method for reinforced concrete columns. The authors 

concluded that the ACI ultimate design method for concrete 

columns could be used to design brickwork masonry columns 

provided that more reliable data could be obtained 

concerning the shape of the stress vs strain for brickwork 

masonry, the ultimate strain of the masonry and the effect 

of different percentages of vertical reinforcement on the 
behaviour of brickwork masonry. 
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BRETTLE 44  in 1970, proposed a computer aided ultimate 
strength design procedure for reinforced brickwork columns 

subjected to concentric and bi-axial bending. The program 

was used to analyse the brick columns tested by DAVEY and 

THOMAS. The results indicated that the. experimental failure 

loads for plain columns were, on average, 30% higher than 

those computed using the theory, but 3% lower for 

reinforced ones. BRETTLE observed also that, provided the 

placing of lateral reinforcement did not substantially 

reduce the rate of brickwork laying, the lateral 

reinforcing of columns was the most important method of 

increasing their ultimate strength. 

ARMSTRONG and HENDRY"" in 1973, tested full-scale and 

model stack-bonded prisms, 6-course high, reinforced with 

a wide variety of lateral steel in each mortar joint. The 

authors reported an increase in strength of 30% to 40% in 

reinforced full-scale brickwork prisms compared to plain 

ones. They also pointed out that the effect of the surface 

area and number of wires had a more important influence on 

the compressive strength of the prisms than the cross-

sectional area of the steel. The explanation given by the 

authors was that the .most important parameter is the total 

force that can be transferred to the steel through its bond 
with the mortar. 

OHLER and GOPFERT 46  in 1982, tested a number of 
reinforced prisms, of both sand lime and concrete masonry, 

constructed with two types of mortar. The prisms were 1.75 

m in height and had a slenderness ratio of 7.3. Horizontal 

reinforcement was placed in every bed joint and consisted 

of either 6 mm diameter, rectangular stirrups, 6 mm 

diameter hooped stirrups or 3 mm diameter mesh. The results 

showed that mesh reinforcement in sand lime brickwork had 

the greatest effect on the strength enhancement of the 

prisms, and was some 24% higher than when unreinforced. The 
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reinforcement was found to be less effective in increasing 

the strength of prisms made of concrete blocks. One of the 

advantages of reinforcing the mortar joint was the change 

in the mode of failure of the prisms to be more ductile and 

for the tendency of the failure to beinore localized. 

ELTRAIFY 47  in 19831  presented an experimental study 
of columns constructed with half scale brickwork subjected 

to an axial load and bi-axial bending moments and a 

theoretical study which discusses the mathematical 

formulation leading to a computer program which enables a 

comparison to be made between a more exact theory with 

approximate methods developed originally for reinforced 

concrete. The theoretical study also includes the case of 

uniaxial bending. 

To limit the number of factors affecting the capacity 

and behaviour of brickwork columns the author decided to 

use one type of brick, mortar and grout. The bricks used 

were half-scale bricks of 110.2 x 53.4 x 32.2 mm average 
dimensions with 43.2 N/mm2  average compressive strength. The 
mortar mix 1:0.25:3 (cement: lime: sand) was used 

throughout the experimental investigation. The grout mix 

1:0.1:3:2 (cement: lime: sand: gravel) was used with high 

W/C ratio to allow the grout to be poured down the small 

core of the column. The average cube compressive strength 

of the grout was 17.6 N/mm2. Two type of reinforcement with 
different characteristic strengths of 250 and 460 N/mm2  was 
used. 

The columns tested were of 283 x 168 mm cross-

sectional area with slenderness ratio ranging from 18.0 to 

20.0. The steel rig used to test the specimens is shown in 

Fig. 2.13. The axial force was applied to the columns by 

hydraulic jack fixed to the steel frame at the top end. 

Whereas the flexural force was applied using two hydraulic 
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tension jacks. The axial force was applied in small 

increments up to a certain level of thrust and was then 

kept constant. The flexural force was then applied in 

increments until failure occurred. 

The experimental results showed that the mid height 

moments were larger than the end moments. The reason for 

this finding, as denoted by the author, was the lateral 

deformation of the specimens after the bending moments were 

applied. Ratios of the mid height moments to the end 

moments of up to 2.6 were observed for the bending about 

the weak axis and up to 1.2 for bending about the major 
axis. 

The theoretical part of the investigation was 

commenced to determine the strength of slender columns 

subjected to both axial compression and bi-axial bending. 

In this theoretical study two types of non-linearitjes were 
considered: 

Material non-linearity; caused by the non-linear 
behaviour of the materials used. 

Geometrical non-linearity; caused by the lateral 

deformation of the slender column. 

These two types of non-linearitjes were used to 

determine the ultimate strength, strain and curvature 

distribution in a cross-section subjected to axial 

compressive force and bi-axial bending moments. 

The theoretical procedure described by the author was 

very tedious, if not impossible, to be performed by hand 

calculations. So the author presented a computer program 

to carry out the iterative processes needed to solve the 
problem. 
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Using the computer program the author presented the M 

- M interaction diagrams for a typical rectangular section 

(Fig. 2.14). For these interaction diagrams the author 

assumed that the grout and brickwork have identical stress 

vs strain characteristics. The factors of safety used in 

the derivation were, 2.5 and 1.15 for the brickwork and 
steel respectively. 

On the effect of dividing half the column length into 

number of sections ranging between 4, 6 and 8. The 

theoretical results showed that varying the number of 

sections from 4, 6 and 8, has little effect on the ultimate 

moments. So the author decided to use four sections for 

deriving the bi-axial charts. 

On the effect of slenderness the theoretical results 

showed that the ratio of the mid height moments to the end 

moments was greater about the minor axis, which coincided 

favorably with the experimental results, therefore the 

author suggested that the ultimate failure is expected to 
occur about this axis. 

A parametric survey was carried out to study the 

effect of using different stress vs strain relationship on 

assessing the strength of sections subjected to bi-axial 

bending. Three types of stress vs strain relationships were 

used in the survey (i) linear, (ii) parabolic without a 

falling branch and (iii) parabolic with a falling branch. 

The ultimate compressive strain was assumed to take three 
values of 0.0021, 0.003 and 0.004, giving the total of nine 
different stress vs strain curves used in the survey. 

The results obtained showed that the ultimate axial 

force increased from type (1) to (ii) by an amount ranging 

from 12% to 20% as the eccentricity increased from 0.05t 

to 0.2t. Also between type (ii) and (iii), there was an 
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increase of 4% to 10% as the eccentricity increases. The 

main reason for the difference in the axial force was the 

increase in the area under the stress-block as the stress 

vs strain relationship changed from type (1) to (iii). The 

difference decreases with an increase in the ratio of 

reinforcement. This was caused by the increase in the 

neutral axis depth as the stress vs strain relationship 

changed from type (i) to (iii), which resulted in changing 

the lever arm for the three curves. So the bending moments 

were increased whilst the curvatures were decreased from 
type (i) to (iii). 

As the ultimate strain increased from 0.002 to 0.004, 

the axial load increase from 1% to 8%. This percentage was 

increased with increase in eccentricity and amount of 

reinforcement. The main reason for the increase in axial 

load as the ultimate strain increase from 0.002 to 0.004 

was the ratio of vertical, reinforcement. 

Based on the results the author suggested a modified 

CP110 approach which allows the derivation of bi-axial 

charts for different axial forces. Knowing the values of 
N, Mx  and M, the area of the reinforcement needed can 
easily be found by selecting the appropriate design chart 
and is given by the intersection of MX  and M without going 
into any trial areas as adopted by CPllO. 

The author presented a comparison between the 

different methods used to determine the ultimate strength 

and deflection of brickwork columns subjected to axial 

compression and bi-axial moments. The results of the 

comparison showed that the 0.002 value for the ultimate 

strain predicts the ultimate moments very closely giving 
an average observed moments-to-theoretical moments of 1.03. 
The same results was found when the 0.002 value used to 
predict the deflection. 
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The overall conclusion made from the comparison 

analysis was that the modified CP110 approach can be used 

as alternative to the iterative approach and will give 

results which are conservative. With the modified approach 

either the parabolic or the rectangular stress-block could 

be used but the results showed that the maximum stress of 

the rectangle should be 0•3k' 

More recently EDGELL and TEMPLETON 48  in 1985, reported 
on the results of storey-height axially loaded brickwork 

masonry columns, 327 mm square, (i.e one and a half 

bricks); with the central hole, half a brick square, left 

unfilled. Rectangular stirrups, 6 mm diameter, were chosen, 

with the ends lapped 100 mm. Other types of reinforcement 

were considered as the programme developed, e.g expanded 

metal or circular stirrups. Two types of brick, of low and 

high strength were used with a 1:0.25:3 mortar. In the 

initial analysis, to determine the strength enhancement 

available with different distributions of reinforcement, a 

standard stirrup, 300 mm square, fabricated from 6 nun 

diameter steel, was incorporated in every 1st, 2nd or 4th 

course of both low and high strength brickwork columns. Two 

additional columns with welded rectangular stirrups every 

fourth course were also constructed. The results showed 

that useful strength enhancements of 31.2% and 20% for the 

low and high strength bricks respectively, compared to 

unreinforced columns were obtained when rectangular stirrup 

reinforcement was incorporated in every fourth course. 

Placing the stirrups in every fourth course was also 

considered to be more economical and interfered little with 

the building sequence. Noticeable differences were obtained 

in the modes of failure of columns reinforced with 

rectangular stirrups compared to those of unreinforced 

columns. Tjnreinforced columns failed by splitting at the 

perpendicular joints over the full height of the column to 

form four distinct "walls", the column completely 
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disintegrating at ultimate load. Reinforced columns, on the 

other hand, failed by the spalling of the brickwork outside 

the stirrups. In general a degree of structural integrity 

remained at failure. The results of tests using different 

types of bed joint reinforcement showed that a strength 

enhancement of almost 35% was achieved with columns 

containing hopped stirrup reinforcement. Those columns 

containing expanded metal (31.2%) and 50 mm square mesh 

(18.7%) reinforcement also had much higher strengths 

compared to the unreinforced column. 

The authors observed a marked difference in the mode 

of failure of the columns containing mesh and expanded 

metal from those of unreinforced columns and those columns 

containing stirrup reinforcement. Numerous vertical cracks 

appeared across the width of the columns containing 

expanded metal and 25 mm mesh reinforcement. The column 

containing hooped stirrup reinforcement failed by spalling 

of the brickwork outside the stirrups leaving a clearly 
defined circular "core"  of brickwork. 

2.3.2 	Blockwork Masonry Columns 

SHANK and FOSTER"')  in 1931, tested unreinforced 

concrete blockwork pilasters subjected to eccentric loads. 

The variables studied included concrete block type, cross-

section area and pilaster height. The results showed that 

the pilaster strength was half the unit strength. 

Furthermore, the pilaster strength was inversely 

proportional to block absorption and directly proportional 
to the modulus of elasticity. 

FEEG et a1 50  in 1979, at the University of Alberta, 
tested thirty-seven reinforced blockwork masonry columns 

under concentric load. The research programme was to 

62 



determine the effects of reinforcement detailing on the 

strength and behaviour of the columns. Short columns were 

tested to eliminate the effect of slenderness ratio. All 

columns were of 400 mm nominal cross-section and 1.44 m 

high. Thirty-four columns were constructed using 400 x 200 

x 200 mm lightweight plain corner blocks with average 

strength on the unit net area of 17.03 N/mm2. The column 
cross-section was composed of two blocks laid in running 

bond. Another three columns were built using 400 x 400 x 

200 mm single core lightweight autoclaved pilaster concrete 

block units, with an average unit net area strength of 
16.89 N/mm2. Face-shell bedding was used and a mortar joint 

thickness of 10 mm was maintained throughout. A mortar mix 

having volume proportions of 1:0.5:4 (cement: lime: sand) 

was used with an average compressive strength of 12.82 
N/mm2  when cured under wet burlap, and 4.48 N/mm2  when cured 
under laboratory conditions. Columns were filled with grout 

having volume mix proportions of 1:3:2 (cement: sand: 

aggregate), and an average cylinder compressive strength of 
18.48 N/mm2. The range of percentage of vertical 
reinforcement used in the study was 0.7% to 1.3%. 

Percentages larger than 1.3% were not feasible for this 

cross-section due to placement difficulties. All vertical 

reinforcement was placed coincident with a core centroid. 

The block unit thickness restricted the placement of 

horizontal reinforcement to a spacing of 200 mm. On the 

other hand, the mortar joint thickness restricted the size 

of tie reinforcement to be placed in the mortar joint. Tie 

diameters used in this investigation were 3.77, 4.76 and 
6.35 mm. 

The variables investigated were as follows: 

1. 	Tie diameter and tie location within the mortar joint: 

Either in contact with the vertical reinforcement or 

in the mortar joint between the block outer shells. 
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The percentage of vertical reinforcement: 

Reinforcement areas varied between 0.7% to 1.3% of the 

column cross-sectional area. 

Vertical reinforcement distribution: Columns with 

identical percentages of vertical reinforcement, but 

with different bar sizes were compared. 

Yield strength of vertical reinforcement: 275 and 415 
N/mm2 . 

The test results showed that the behaviour of all the 

columns was essentially elastic for loads up to 

approximately 75% of the ultimate load. Strain measurement 

in the vertical reinforcement exhibited load vs strain 

relationships similar to the load vs deformation 

relationships of columns. Three modes of failure were 
observed: 

Overall vertical splitting of the column. 

Simultaneous crushing of the masonry and the buckling 

of the vertical reinforcement within the tie spacing. 

As (2) but buckling was not confined to within the tie 
spacing. 

The average modulus of elasticity was found to be 

approximately 800 times the masonry prism strength. The 

vertical deformation of the column doubled with the 

addition of grout and was increased further in the presence 

of tie reinforcement. The vertical deformation of the 

column increased with the addition of vertical 

reinforcement but showed no definite trends for variations 

in the percentage of vertical reinforcement. Increasing the 

tie diameter increased the strength of the column compared 
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to columns with no ties. This was also accompanied by a 

decrease in the amount of vertical cracking at failure. No 

significant difference in strength was observed between 

columns having ties in contact with the vertical 

reinforcement and those which did not,.although tie strains 

were larger for ties located in the mortar joint. The 

results also showed that the vertical reinforcement 

contributed its full yield strength to the strength of the 

column, and that column strength decreased as bar diameter 
increased. 

It was further observed that the grout penetrated and 

fully filled the horizontal space between courses as a 

result of face-shell bedding, but was unable to fill the 

vertical space between masonry units. These planes of 

inherent weakness contributed to the vertical splitting of 

the columns when loaded. Failure to remove mortar dropping 

from the interior base of a column resulted in decreasing 

the column strength. Rust was noted on ungalvanized ties 

after failures of columns where they had been placed in the 

mortar joint. Small amounts of shrinkage cracking occurred 

in wall unit blocks, while in the columns made of pilaster 

units, larger amounts of shrinkage cracks were noted. 

Unfortunately, FEEG in his study did not present any 

equations to predict ultimate load or deformation for the 
blockwork masonry columns. 

SALIM 51  in 19801  tested under axial load blockwork 
masonry prism with helical confinement reinforcement at the 

core. The test specimens were constructed from concrete 

block units, 200 mm square and 200 mm high, with a net 
average strength of 36.0 N/mm2. The average compressive 
strength for the mortar and the grout used were 23.7 N/mm2  
and 21.1 N/mm2  respectively. The units were horizontally 
laid and the masonry prisms were built to have flush mortar 
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joints of nominal thickness, 9.5 mm. After construction, 

helical reinforcement, consisting of mild steel wire of 5.2 

mm diameter with a core diameter of 108 mm centre to 

centre, was placed inside the prism and the core was 
grouted. 

The observed mode of failure for the ungrouted prisms 

was tensile splitting which was initiated in the centre 

concrete block. The mode of failure for the grouted prisms 

(splitting of the units and compressive failure of the 

core) was similar to that of the ungrouted, but not as 

explosive. Cracking started at 70% to 75% of the ultimate 

capacity. Cracking of the prism reinforced with confinement 

wire started from the top or the bottom blocks at about 45% 

to 55% of ultimate load. The sudden failure was replaced by 

a more ductile failure. An increase in the compressive 

strength of the prism of between 30% and 38% was achieved 

by introduction of helical confinement reinforcement 

compared to unreinforced prisms. 

The author concluded that the failure mechanism of 

blockwork masonry prisms was dependent on the elastic and 

inelastic properties of the jointing, grouting materials 
and the unit masonry. 

More work was carried out on blockwork masonry columns 

at the University of Alberta by STURGEON et al"')  in 1980. 
Nine block high, short columns were constructed using 400 

x 400 x 200 mm single core pilaster units and tested to 

failure. Some of the columns were tested under concentric 

load and some with eccentricity varying from 0 to 1/3 times 

the lateral dimension of the column. Full mortar bedding 

was used and a joint thickness of 10 mm was maintained. 

Nominal column dimensions were thus 1.8 m by 400 mm square. 

Variables considered in the materials or method of 
construction were: 
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Percent and grade of vertical reinforcement. 

Grout compressive strength and slump. 

Lateral tie details. 

Three percentages of longitudinal steel, 0.76, 1.3 and 

2.6 based on gross cross-sectional area of the column, were 

used. Where longitudinal steel was required, ties were 

wired directly to the steel, and all reinforcement was then 

placed in the column as a unit. Several columns were 

constructed without vertical reinforcement, but with grout 

and lateral ties. In these cases, the horizontal 

reinforcement was placed within the mortar joint of the 

cross-section. All lateral ties were fabricated from 6 mm 

diameter plain steel. Five types of lateral tie were used 

in the programme depending on the diameter of the 

longitudinal reinforcement. Two longitudinal reinforcement 
steel grades, 400 N/mm2  and 600 N/mm2  yield, were employed. 
five low slump (100 - 150 mm) concrete mixes with 28 day 

moist cured cylinder compressive strengths of 38.6, 35.21  
29.0, 17.7 and 10.3 N/mm2  were selected for this study. 

Failure of the ungrouted columns was sudden, complete 

and explosive. Vertical cracking was initiated at the block 

face centres at the top of the specimen and propagated down 

several courses just prior to failure. Grouted columns 

containing no lateral reinforcement showed a similar mode 

of failure to ungrouted columns. In this mode, vertical 

splitting of the shell originated at block face centres in 

the upper courses well in advance of column collapse. 

Subsequent loading elongated and widened these cracks until 

overall splitting of the shell and crushing of the concrete 

core occurred. Grouted columns containing lateral 

reinforcement in the mortar joints displayed a slightly 

different behaviour. Vertical cracking prior to failure 
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originated in the upper courses at the column corners 

rather than at block centres. In addition, the lateral ties 

tended to confine the block shell and prevent explosive 

spalling of the shell at failure. In general, for all the 

grouted, unreinforced columns tested, the shell-core 

interface bonding in the failure zone was completely 

broken, and the masonry shell could be easily removed in 

order to view the concrete core. Reinforced columns 

constructed with lateral ties having 90 deg. hooks and 65 

mm extensions was peculiar only to those columns with 0.76% 

vertical reinforcement. Failure of these columns was 

characterized by simultaneous splitting of the shell, 

crushing of the core, and buckling of the vertical 

reinforcement between tie spacing. The ties provided 

adequate support for the vertical reinforcement and 

prevented buckling from occurring over more than one 
course. 

In contrast, these ties did not adequately restrain 

buckling for higher percentages of vertical reinforcement. 

In these columns the tie hooks were pulled to form an angle 

of about 120 deg. and in extreme cases a number of tie 

hooks pulled out completely allowing bars to buckle over as 

many as five courses. This resulted in rather explosive 

failures for these columns regardless of concrete core 

strengths. Columns Constructed with lateral ties using 135 

deg. hooks and 100 mm extensions showed that these ties did 

not pull out even for the higher percentage of longitudinal 

reinforcement, and restricted buckling to the lateral tie 

spacing. Because of this confinement, failure was not as 

sudden and distress to the core and shell was not as 

extensive in the failure zones. In the case of all 

reinforced columns, cracking originated at the column 

corners in the upper courses in advance of column failure 

and extended down vertically as loading continued. As a 

result of these observations, the authors suggested the 
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following tie details for masonry columns: 

For concrete block masonry columns constructed with 

400 x 400 x 200 mm pilaster units, the use of 6 mm 

diameter plain steel for fabrication of lateral ties 

should be avoided when possible. These ties do not 

adequately contain core expansion. It is recommended 

that at least 10 mm diameter deformed lateral ties 

should be used for 32 mm diameter or smaller 

longitudinal bars as stated by the ACI 318-77 for 
reinforced concrete. 

If it is necessary to use 6 mm diameter plain bars, it 

is recommended that 135 deg. bends plus a minimum of 

100 mm extensions be employed. Alternatively, if 90 

deg. bends plus 65 mm extensions are used, the 

overlapping extensions should be tack welded to 
prevent pulling. 

A vertical spacing of 200 mm, is not sufficient to 

prevent buckling of the vertical reinforcement before 

yield is attained and it is recommended that this 

spacing be decreased for masonry columns constructed 

with units which permit a reduced spacing. 

It is suggested that the lateral tie hooks should be 

positioned at different corner bar, on a rotational 

basis during construction. 

The test results for the concentrically loaded columns 

showed that the increase in ultimate strength of the column 

is directly proportional to increase in the concrete 

strength. This was formulated by the authors by the 
following expression: 

Ptic = (0.85 f' c  Ac 	 MM
+ 0.70 f' 	A sh )/1000 	...(2.28) 
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Where 

AC 	Core area of block unit, mm2  

Ash 	Masonry shell area, Tam  

Standard concrete cylinder compressive strength, 
N/mm2  

f'mpn  Plain prism net area compressive strength, N/mm2  

PUC 	Column ultimate load, KM 

The introduction of lateral reinforcement resulted in 

an increase in the ultimate strength of the column by 8% to 

28%. This additional strength increment was not considered 

in the above formula. Vertical reinforcement on the other 

hand, resulted in a reduction in the load contribution of 

the block masonry shell. However, the load contribution of 

the vertical steel exceeds this decrease, and the net 

effect is to increase the ultimate load of the column. The 

yield strain in the longitudinal reinforcement was reached 

in only one column and the ultimate strain appears to be a 

constant which is independent of the concrete control 

cylinder strength and the percentage of vertical 

reinforcement, with a mean value of about 0.00142. The 

Contribution of vertical reinforcement to the ultimate 
strength of masonry columns was expressed as: 

Ps  = E5  A5/700 	 ...(2.29) 

Where 

As 	Cross-sectional area of longitudinal reinforcing steel, mm2  

E5 	Elastic modulus of steel reinforcement KN/mm2  
PS 	Load carried by vertical reinforcement, KM 

The empirical formula suggested by the authors to 

predict the ultimate strength of a concentrically loaded 
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short reinforced concrete block masonry column fabricated 

with materials and dimensions similar to those used in his 

study is as follows: 

Ptic = [0.85 f'(A - A)]/100o+ Es  As/ 700...(2.3o) 

Eqn. 2.30 was considered by the authors to provide a 

conservative strength estimate for laterally reinforced 

columns fabricated with stiff well developed lateral ties 

and for columns reinforced with both lateral ties and Grade 
40 longitudinal steel bars. 

Alternatively, the authors suggested that the ultimate 

strength of the column may be conservatively predicted by 

the addition of the steel term in Eqn. 2.30 to the failure 

load of experimental prisms constructed with the same 

materials used in the column. This method was thought to 

give a more accurate value than that given by Eqn. 2.30. 

Eccentrically loaded columns showed two different 

modes of failure. The first mode was peculiar to columns 

with load eccentricities of t/12 and t/6, regardless of 

concrete strength, grade or percentage of vertical 

reinforcement. This mode was characterized by the explosive 

removal of the column block shell on the compression face, 

with subsequent crushing of the concrete core and buckling 

of the vertical compression longitudinal steel. The second 

mode of failure was encountered with columns loaded with a 

eccentricity of t/3. These columns failed by local crushing 

either in the bottom or the top course. The reason given by 

the authors for this type of failure was that the loading 

plates for the larger eccentricities did not provide an 

adequate transfer of the load to the tension face of the 
column. 

The ultimate strength design procedure suggested by 
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the authors for eccentrically loaded masonry columns was 

similar to the one suggested by the ACI 318-77 for 

eccentrically reinforced concrete columns. However, it is 

necessary to neglect any contribution of the block shell 

and the masonry column was analysed as though it were a 

reinforced concrete column with strength and dimensions 
equal to those of the masonry core. 

Although high slump concretes produced extensive 

shrinkage cracking in the upper region of the core, tests 

showed that they do not have a detrimental effect on the 

structural performance of masonry subjected to concentric 

compression. Failures occur in the upper regions of both 

concentrically and eccentrically loaded masonry columns 

since bleeding and segregation during pouring and vibration 

produce a weaker concrete in the upper core. 

AL-SARPAF, FAIYADH and KHALAF 52  in 1986, tested short 
blockwQrk columns under axial load to failure. The columns 

were divided into two series, one-block and two-block 
cross-sections. The percentage of vertical reinforcement 

varied from 0.6% to 4.26%. Two different lateral 

reinforcements, 6 mm diameter plain and 10 mm diameter 

deformed bars were used. All columns were 1.27 in high, 

Constructed of 400 x 200 x 200 mm low strength (9.90 N/nun2 ) 
2-core concrete hollow blocks. An average mortar strength 
of 13.65 N/mm2  and concrete infill strength of 17.25 N/mm2  
respectively was used to construct and fill the columns. 

The results showed that at 40% to 50% of the ultimate 

failure load, cracks started at different locations in the 

columns. As the applied load was increased, the cracks 

continued to propagate in both the mortar and the blocks. 

Failure was attained by crushing and outward deformation 

of the masonry shell accompanied by outward buckling of the 

vertical reinforcement between the lateral ties. The core 
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of the column however remained in position with high 

internal disruption. The results also showed an approximate 
reduction in the 	

Tested)/ P(Calculated) ratio of 40% as between 
columns constructed with 6 mm diameter plain and 10 mm 

diameter deformed tie bars respectively. it was also shown 

that columns with three bars in a bundle give much lower 

(Tested)/(CaLcu[ated) ratios than the two bar-bundled columns. 

The authors concluded that a design method similar to the 

American Standard (ACI 318M-83) for reinforced concrete can 

be used to predict the capacity of an axially loaded 

reinforced blockwork masonry column by substituting f' 

(ultimate compressive strength of blockwork masonry) in 
place of 0.85 f 1 c (ultimate compressive strength of 

concrete) in the design formula. The value of f 
'm was 

derived from the American Code for Masonry Structures (ACI 

531R-79) using both methods A (relating the masonry 

strength to the unit strength and type of mortar) and B 

(relating masonry strength to prism strength). Using either 

value in the design formula leads to the evaluation of the 

anticipated failure load with a high margin of safety, on 

average, 16% to 19% respectively higher than that predicted 
theoretically. 

The minimum size of lateral steel ties used for 

reinforced masonry columns should not be less than 10 mm 

in diameter which is exactly the same value recommended by 

.the ACI Standard for reinforced concrete. It was also 

proposed that the range of minimum to maximum percentage 

of vertical reinforcement as recommended by the ACI for 

ordinary reinforced concrete be used for reinforced 

blockwork masonry columns. However, due to difficulties in 

the compaction process for the 2-core concrete block, it is 

practical to lower the 4% maximum steel ratio for concrete 
to 3% for blockwork masonry. 
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2.4 SUMMING UP OF PREVIOUSLY PUBLISHED WORK 

As in some situations the blockwork masonry is 

subjected to horizontal forces in its own plane e.g. the 

compression zone in a reinforced blockwork masonry beam, or 

masonry wall accidentally or during an earthquake. it seems 

that some codes and standards have no clear indications to 

the difference in strength of the unit or the prism when 

compressed in a direction parallel, instead of normal, to 
the unit bed face. 

The present study provides a comprehensive 

experimental and theoretical investigations to the 

difference in compressive strength and behaviour between 

blockwork masonry elements subjected to axial forces normal 

and parallel to the unit bed face and suggest methods to 

determine the ultimate compressive strength of blockwork 
masonry, f 'm in these different directions. 

In the previously published work on blockwork masonry 

prisms some researchers suggest the testing of 3-course 

high half-block prisms instead of full-block prisms to 
determine 

In the present study the reasons for the difference in 

the compressive strength and behaviour between full and 

half-block prisms were discussed and the effects of the 

aspect ratio (l/t) and the difference in the mortar bedded 

area between the full and half-block prisms were 

investigated experimentally and theoretically. 

In the previously published work it seems that there 

is some doubt about the reasons for the reduction in the 

compressive strength of blockwork masonry prisms with 

height. Some researchers related the reduction to the 

effect of core shape (i.e. the tapering of the block 
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shells) and to the texture of the interior face of the 
block cores. These excessive cross-sectional changes 
restrict the shrinkage settlement which occurs over the 

full height of the grouted column and results in plastic 

cracking as shrinkage proceeds. The severity of the plastic 

cracking increases with prism height. 

In the present study different tests were set up to 

investigate the nature of the shrinkage cracks in blockwork 

masonry prisms using mixes of different slumps. Also 

investigated is the effect of the cohesion bond between 

block and concrete inf ill on the compressive strength of 
blockwork masonry prisms. 

Most of the previous theoretical works carried out on 

blockwork masonry advocate the use of linear analysis. The 

present investigation pointed out the importance of using 

the material non-linear properties in the analysis of 
blockwork masonry assemblage. 

In the present study an attempt was made to determine 

a new formula for shot term static modulus of elasticity of 

unfilled and filled blockwork masonry assemblage. 

Due to the limited number of work carried out on 

axially loaded blockwork masonry columns using the 2-core 

hollow blocks. The present study investigate the effects of 

the presence of lateral ties and vertical bars on the 

compressive strength and behaviour of blockwork masonry 

columns and suggest new methods of estimating their 
ultimate strength. 
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CHAPTER 3 

MECHANICAL PROPERTIES OF MATERIALS 
USED IN BLOCKWORK CONSTRUCTION 

3.1 INTRODUCTION 

This chapter is concerned with the determination of 

the mechanical properties of all the materials used in the 

construction and theoretical analysis of the blockwork 

masonry prisms and columns investigated in this study. The 

materials involved were concrete blocks, concrete inf ill, 

mortar and reinforcement. One type of concrete block, three 

mixes of concrete inf ill, three types of mortar and 

different diameters of plain and deformed bars were used. 

The chapter also deals with the difference in the 

compressive strength of unfilled and filled blockwork 

masonry specimens compressed normal and parallel to the 
unit bed face. 

Reinforced blockwork masonry consists of four 

component materials, namely the concrete block, concrete 

infill, mortar and reinforcement. These four materials 

added to differences in the block shape in the three 

orthogonal directions gives the masonry non-homogeneous 
properties compared to those of concrete. 

Previous tests (34,36) 
showed a reduction of at least 29% 

in unit block compressive strength compressed parallel to 

the bed face as compared to that compressed normal to the 

bed face. Some codes and standards 19'20'22  use tables or 
graphs, relating the ultimate compressive strength of 
blockwork masonry f tm' to the unit blok strength and the 
type of mortar. 

This raises the question of the direction in which the 



unit block should be tested in order to determine f 
'm• The 

direction in which the specimens should be tested is 

Particularly important in areas or zones where the masonry 

element is under large horizontal forces applied in a 

direction parallel to the unit bed face. Examples of such 

situations are the compression zone in a reinforced masonry 
beam 34'53'54  or part of a masonry wall subjected to 

horizontal forces in its own plane accidentally or during 
an earthquake. 

In all of the above codes and standards( 19,20,22) there 
is no clear answer or indication as to the differences in 

strength if the block is tested in a direction parallel to 

the unit bed face instead of normal. 

The British Code of Practice, BS 5628: Part 2: l985(2 ,  
however, recognizes that there maybe a difference in 

strength as between masonry built with the units Compressed 

normal to the bed face and that in which units are 

Compressed parallel to the bed face. Provision for various 

types of units is given in paragraph 19.1.1.4 of the code. 
BS 5628 determines the values of f 

k for blockwork masonry 
from tables (Table 3.1) and graphs, relating the 

compressive strength of the unit to the mortar type. 

In deciding the strength of concrete to be used in 

filling hollow blockwork masonry, British Standard BS 5628: 
Part 2: 1985 (21) 

states that when masonry is built with 
hollow concrete blocks and the vertical cavities are filled 

completely with in situ concrete, the value of f
k  should be 

obtained as if the blocks were solid provided that the 

characteristic concrete cube strength of the inf ill is not 

less than the compressive strength of the unit blocks, 

assessed on their net area. The American and Canadian 
Codes 	

both give the same specific condition about grout 
strength as the British Standard, in that the grout must be 
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at least as strong as the block. 

Previous studies (27,28,29,30,31,32,33,34,35,36,38,71) on blockwork 
masonry have shown that the deformational characteristics 

of the concrete inf ill rather than its strength had a major 

effect on reducing the compressive strength of filled 

blockwork masonry prism, compressed either parallel or 

normal to the bed face, as compared to unfilled prisms. 

In the present chapter, the stress vs strain curves, 

moduli of elasticity and Poisson's ratios for the block, 

concrete inf ill, mortar and reinforcement were determined. 

The difference in compressive strength of unfilled and 

filled, half and full-block specimens compressed normal and 

parallel to the bed face was studied. The effect of using 

different concrete inf ill mixes on the compressive strength 

and splitting strength of unfilled and filled blockwork 

specimens were investigated. The cohesive bond and shear 

strength between the concrete inf ill and the block material 
was also studied. 

3.2  EXPERIMENTAL PROGRAMME 

This section is divided into two parts. The first part 

deals with the experimental procedure for preparing and 

testing all the individual materials used in the 

construction and theoretical analysis of the blockwork 

masonry elements investigated in this study. The second 

part presents the experimental programme followed in 

preparing and testing the unfilled and filled unit concrete 
block specimens. 



3.2.1 	Material Mechanical Properties 

3.2.1.1 	Concrete block 

Fig. 3.1 shows cross-sections of the typical concrete 

block which has been used throughout the investigation; 

Table 3.2 summarizes the dimensions of the blocks. 

The mechanical properties for hollow blocks were 

determined by testing three blockwork masonry prisms (Fig. 

3.2). Each consisted of three half-block units separated 

by a 1 - 2 mm dental plaster joint inserted between the 

half-blocks and also between the machine platens and 

prisms. This thickness was achieved by mixing the dental 

plaster with water in a plastic bag to the desired 

workability. The bags were then placed between the half-

blocks and also between the specimen and the machine heads. 

A spirit level was used to adjust the specimen. Where the 

testing machine had a spherical head, this was prevented 

from rotating by using four pieces of wood at the corners 

of the head. The soft dental plaster was then pressed by 

the machine to accomplish the desired thickness 55 . 

Two axis (vertical and horizontal) electrical strain 

gauges were mounted at mid prism height and on two opposite 

sides. A computer strain logger was used to record the 

strain continuously throughout testing and until prism 
failure. 

Unit half-blocks were tested in compression to 

determine their mechanical properties. Solid full-blocks 

cast at the same time as the hollow blocks were also 

compressed parallel, to the bed face to compare their 

mechanical properties with the hollow units. Solid blocks, 

sawn to the dimensions of a 190 x 190 x 190 mm cube, were 

tested in compression. The average compressive strength was 
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then adjusted for specimen size (56)  to determine the block 
material cube strength fb - 

3.2.1.2 	Concrete infill 

Three concrete inf ill strengths were used: low 

strengths (1:7:2) and (1:5:2), medium strength (1:3:2) and 

high strength (1:1:2) (cement: sand: aggregate 

proportions). Rapid hardening cement was used for the 

inf ill for the specimens compressed parallel to bed face 

and ordinary Portland cement for all other specimens. Both 

types conformed to BS 12: 	 The concrete inf ill was 
batched by volume and mixed to a high slump of 150 mm. 

The sieve analyses were performed in accordance with 
BS 812: Part 1: 1975 (58) 

for the concrete sand and for the 

10 mm single size crushed aggregate. The results for the 

sieve analyses are given in Tables 3.3 and 3.4 

respectively, and conform to the requirements of BS 882: 
1983 

From each concrete batch, three 100 x 100 x 100 mm 

cubes, and three 200 x 100 mm cylinders were cast with 

every four to six prisms or columns in accordance with BS 
1881: Part 108: 1983 (60) 

and BS 1881: Part 110: 1983 (61) 

respectively. Concrete units were used to form mould for 

the 184 x 122 x 122 mm block moulded concrete prisms (Fig. 

3.3), in accordance with ASTM C 1019 Standard', but 

without using the lining absorbent papers on the face of 

unit. The mould were stripped 5 - 6 hours after casting 

which was sufficient time for any water absorption and also 

to prevent the development of bond between the concrete 

inf ill and the blocks. The ratio of volume to surface area 

of the block moulded prisms was similar to that for the 

hollow block cores so that the effect of water suction by 
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the blocks on the concrete inf ill compressive strength 

could be assessed. All the control specimens were cured 

under similar conditions to their companion prisms and 
columns. 

To determine the mechanical properties for the three 

different concrete inf ill strengths, specimens consisting 

of three 100 x 100 x 100 mm steel moulded cubes, separated 

and capped with a thin layer, 1 - 2 mm, of dental plaster 

joints, were prepared by the same method as that used to 

determine the mechanical properties of the hollow blocks, 
and tested in compression (Fig. 3.4). 

Vertical and horizontal strains were recorded 

continuously, using a data logger, on two opposite sides. 

Single steel moulded cubes, cylinders and block moulded 

concrete prisms were also tested in compression and 

splitting to compare results and to determine material 
Strengths. 

3.2.1.3 	Mortar 

Three types of mortar were used for the prisms : low 

strength (1:1:6), medium strength (1:0.5:4.5) and high 
strength (1:0.25:3).  (cement: lime: sand Proportions) and 
only high strength (1:0.25:3) mortar was used for columns. 

Rapid hardening cement was used to construct specimens 

compressed parallel to the bed face and ordinary Portland 

cement for all other specimens. The mortar was batched by 

volume and mixed to a suitable workability for block 
laying. 

The sieve analysis was performed in accordance with BS 

812: Part 1: 1975. The sieve analysis results for the 

mortar sand are given in Table 3.5, and conform to the 
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requirements of BS 1200: 1976(63) .  

Three 100 x 100 x 100 mm cubes and three 200 x 100 mm 

cylinders from each type of mortar were cast with every 
four to six prisms or columns in accordance with BS 1881: 

Part 108: 1983 and BS 1881: Part 110: 1983 respectively. 

All the cubes and cylinders were cured under the same 

conditions as their companion prisms or columns. 

To determine the mechanical properties of the three 

different types of mortar, as for the concrete inf ill, 

specimens consisting of three 100 x 100 x 100 mm steel 

moulded cubes separated and capped with a thin layer, 1 -2 

mm, of dental plaster were tested in compression. These 

were, prepared by the same method used for determining the 

mechanical properties of hollow blocks. Single steel 

moulded cubes and cylinders were also tested in compression 

and splitting to compare results and to determine material 
strengths. 

Two-block prisms were constructed with a 10 mm mortar 

joint between the blocks to determine and compare the 

confined vertical stress vs strain curve of a 10 mm joint 

with values obtained by testing three steel moulded cube 

specimens or by testing mortar cylinders. After 

construction, the prisms were cured under polythene 

sheeting for fourteen days. The polythene was then removed 

and the specimens left for a further fourteen days to cure 

under ambient conditions in the laboratory before testing. 

Electrical strain gauges of 10 mm length were mounted 

on the mortar joint at two opposite sides of the prism to 

record the strain for the confined .10 mm mortar joint. 



3.2.1.4 	Reinforcement bars 

The reinforcement used throughout was 6 mm diameter 

hot rolled plain low yield steel bar and 8, 10, 12, 20 and 

25 nrni diameter hot rolled deformed high yield steel bars 
conforming to BS 4449: 1978(64).  

A total of three samples for each type of 

reinforcement were tested in uniaxial tension, in 

accordance with BS 18: 197l(6, to determine the vertical 

stress vs strain curves of the steel. The strain was 

measured using an electrical resistance strain gauges fixed 

to the bar. Values of the yield strength, yield strain, 

ultimate tensile strength and elastic modulus are given in 
Table 3.6. 

3.2.2 	Concrete Block Specimens 

Unfilled and filled half and full-block specimens were 

tested to failure under axial load applied either, normal 

or parallel to the bed face. The specimens were filled with 

one or other of the three concrete inf ill strengths. Rapid 

hardening cement was used for filling the specimens 

compressed parallel to bed face and ordinary Portland 

cement for other specimens. The concrete irif ill was batched 

by volume and mixed to a high slump of 150 mm then placed 

in the block in two layers. Each layer was hand compacted, 

using the same steel rod commonly used for compacting and 
making concrete cubes. 

The filled block specimens and all the associated 

cubes and cylinders were cured under polythene sheeting for 

seven days in the case of rapid hardening cement and 

fourteen days in the case of the ordinary Portland cement. 

The polythene was then removed and all the specimens left 
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for a further seven or fourteen days, depending on the type 

of cement used, to cure under ambient conditions in the 
laboratory before testing. 

Prior to testing, all the specimens were capped with 

a thin layer, 1 - 2 mm, of dental plaster, prepared by the 

same method used for determining the mechanical properties 

of the hollow blocks. After the plaster had hardened, some 

of the specimens were tested to failure without taking any 

strain measurements. Others were tested to failure and the 

strain recorded on two opposite sides of the specimen and 

at different selected locations. The loading rates were in 

accordance with BS 6073: Part 1: 1981(66) .  

To study the effect of the concrete inf ill strength on 

the block splitting strength, a steel rig (Fig. 3.5) was 

used, consisting of two semi-circular pieces, and similar 

to the one used in determining the tensile strength of 
concrete by cube splitting 67 . The same device was also used 
to determine the cohesion bond strength between the block 

and concrete by splitting a two-material specimen (Fig. 

3.6) at the interface area. Some of the two- material 

specimens were tested in compression with a fixed machine 

head to study the difference in the stress vs strain curves 

between the block and concrete materials under the same 
vertical strain. 

The shear strength between the block and the concrete 

was also determined by shearing a two-material specimen at 
the interface area (Fig. 3.7). 

The loading patterns in all the compression tests in 

sections 3.2.1 and 3.2.2 were in accordance with BS 1881: 
Part 121: 1983 (68) 

to enable the determination of the static 
modulus of elasticity for all the specimens tested. Using 

the above load pattern, strain measurements were recorded 



at two stress levels, viz. 0.5 N/mm2  and one third of the 
estimated ultimate strength of the specimen. The 

measurements were then repeated two to three times in a 

process of loading and unloading. In all the stress vs 

strain plots reported in this investigation results from 

the process of loading and unloading were omitted for 

clarity and only the first cycle of strain measurements is 
shown. 

3.3 DISCUSSION OF EXPERIMENTAL RESULTS 

In this section the results of the experimental 

programme for the material mechanical properties and the 
concrete block specimens are discussed. 

3.3.1 	Material Mechanical Properties 

Table 3.7 lists the mechanical properties for all the 

materials used in this investigation. Poisson's ratios were 

found at initial stress and also at strains where maximum 
compressive stress occurs. 

The vertical stress vs strain curves for unfilled 

three half-block prisms with 1 - 2 mm dental plaster 

joints, unit half-blocks and for a solid full-block tested 

parallel to the bed face, are shown in Fig. 3.8. Two other 

curves were also plotted, one representing the expression 

proposed by BS 8110: Part 2(69) for rigorous analysis which 

is defined by the following equation: 

f = 0.8 f 	((K n - n2)/(1 + (K - 2)n)] 	...(3.1) 

Where 

n = e/c 	= 6/0.0022 	 ...(3.2) 



K 	= 	(1.4 Ei E0  ) ' fCu = 3 E0/f Cu 	... (3.3) 

Where 

f 	Stress in the block/concrete, N/nun2  

fcu 	Characteristic compressive cube strength of the 
block/concrete, N/mm2  

e 	Strain in the block/concrete 

6c,1 	Strain in the block/concrete at maximum stress 

E0 	Modulus of elasticity of the block/concrete, N/mm2  

The other stress vs strain curve, representing a 
formula suggested by SAENZ 70 , is as follows: 

a = E c/(1 + (E/e0)2) 	 ...(3.4) 

Where 

E = 2 

Where 

E 	Initial tangent modulus, N/mm2  

U 	Stress, N/mm2  

Strain 

60 	Strain at maximum stress 

Umax 	Maximum stress, N/mm2  

The curve for the unfilled prism showed that the 

hollow sections were more stiff than the solid ones 

although the material was the same. Two reasons were given 
by AFSHARI and KALDJIAN 38  for the reduction in stiffness 
of the solid block. The first reason given assumes that a 

"solid" unit, consists of a hollow shell grouted with the 

same material as 'the shell, the extra material in the block 
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expands laterally when axial stress is applied. The 

expansion of the extra material results in additional 

lateral stresses pushing the shell portion outward thus 

causing a filled unit to fail at a lower level of axial 

stress than the equivalent hollow unit. The second reason 

was that for a given axial stress, a solid unit carries a 

higher axial load than a hollow one. 

The expansion of the extra materials will not only 

effect the level of axial stress, as suggested by the above 

authors, but also affect the mode of failure and 

consequently cause a reduction in block stiffness. The 

lateral expansion of the extra material can clearly be seen 

in Fig. 3.9, which relates the lateral to the vertical 

strain for hollow and solid blocks. 

Figs 3.10, 3.11 and 3.12 show the vertical stress vs 

strain curves for the different types of specimen tested, 

i.e. the three concrete mixes used in the present 

investigation namely: low strength (1:5:2), medium strength 

(1:3:2) and high strength (1:1:2) respectively. 

Fig. 3.13 shows the lateral strain vs vertical strain 

for all the concrete mixes. 

Two conclusions can be drawn from Figs 3.10 to 3.13 

and Table 3.7. First, there was no major difference in 

strength between the block moulded concrete prisms, 

prepared in accordance with ASTM C 1019 Standard 62 , and the 
rest of the specimens tested (concrete cylinders and three 

concrete cube specimens) as a result of water suction by 

the block shells. The second conclusion relates to the 

possibility of using a new specimen where the vertical and 

horizontal strains can be measured simultaneously to be 

used in determining the modulus of elasticity and the 

Poisson's ratio of the material. This new specimen 
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consisted of three steel moulded cubes separated and capped 

with 1 - 2 mm dental plaster joint. 

Figs 3.14 and 3.15 show the vertical stress vs strain 

curves and the lateral strain vs vertical strain for the 

three different types of mortar mixes used in this study 

namely: low strength (1:1:6), medium strength (1:0.5:4.5) 

and high strength (1:0.25:3) respectively. The curves were 

determined by testing the proposed three steel moulded 

mortar cubes specimen. Fig. 3.16 on the other hand shows a 

typical vertical stress vs strain curve for high strength 

(1:0.25:3) mortar. This curve however was for the confined 

10 mm mortar joint determined by testing a two-block prism 
with mortar joint between. 

Two other curves, representing confined high strength 

(1:0.25:3) mortar, were also plotted on the same graph for 

comparison. The first was from previous work by the 
author 71'72 . The second was a theoretical prediction for a 

confined vertical stress vs strain curve for mortar, based 

on the stress vs strain curves determined by testing mortar 
cylinders (32)• 

The confined vertical stress vs strain curve for a 10 

mm mortar joint showed a high plasticity and no sign of 

failure, but a steady increase in strength, reaching values 

higher than the three-cube specimens and the mortar 
cylinders. 

3.3.2 	Concrete Block Specimens 

Table 3.8 summarizes the results for all the full and 

half-block specimens Compressed normal and parallel to the 

bed face. Table 3.9 gives the results for the block 

splitting and bond strengths. On the other hand, Table 3.10 
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gives the results of the two-material specimens shear 

strength. Also given in the above tables are the associated 
material properties. 

The mode of failure for the unfilled single-block 

specimens compressed normal to the bed face was by crushing 

and shearing at mid height of the middle web, followed by 

lateral deformation of the side block shells. Some 

longitudinal cracks were observed at the end shells at 

early stages of the loading process (Fig. 3.17 (i)). 

The mode of failure of the unfilled single-block 

specimens compressed parallel to the bed face was 

completely different from the ones compressed normal to the 

bed face. First failure of the block occurred due to local 

crushing at the outer face of the block shells near the 

machine platens, followed by shearing at the corners 

between the side and end block shells then by splitting and 

complete disintegration of the specimen (Fig. 3.18 (1)). 

There was no indication of any major cracks during the 
loading process until failure. 

Filled single-block specimens compressed normal to the 

bed face exhibit an almost similar mode of failure for all 

different concrete inf ill mixes. The specimens first suffer 

crushing of the block shells near the testing machine 

platen followed by lateral deformation of the block side 

shells. Some signs of longitudinal cracking at the centre 

of the block end shells were also observed (Fig. 3.17 

(ii)). The concrete inf ill suffered slight damage 

approaching failure. Some of the specimens with a high 

strength concrete mix (1:1:2) Withstood reloading of up to 

80% of the ultimate recorded failure load. 

The filled single-block specimens compressed parallel 

to the bed face, on the other hand, showed three different 
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modes of failure. The first mode was typical of a low 

strength concrete inf ill (4.34 N/mni2). The specimen failed 
first by crushing of the concrete inf ill, followed by 

lateral deformation of the block shells to the outside and 

then by complete disintegration. Specimens with high 

strength concrete inf ill (39.44 N/mm2) showed no signs of 
any major cracks in the concrete inf ill during testing and 

after failure. The mode of failure was by crushing and 

shearing of the block shells near the loading machine steel 

platen, followed by lateral deformation of the block shells 

(Fig. 3.18 (ii)). The third mode of failure was 

intermediate to the two modes explained previously, which 

is typical for specimens with concrete inf ill approximately 

equal in strength to that of the unfilled single-block 
specimen. 

Comparing the stress vs strain curves for unfilled 

(Fig. 3.19 (i)) and filled (Fig. 3.19 (ii)) full-block 

specimens, compressed normal to the bed face, shows a rapid 

increase in the horizontal tensile strain in the filled 

specimen compared to the unfilled ones at stresses above 

about half the ultimate specimen strength. This is due 

mainly to the high Poisson's ratio of the concrete inf ill. 

The tensile strain plots for the filled specimens also show 

some signs of increasing stiffness near failure. This 

resulted from the high confinement of the specimen by the 

testing machine platen which prevented premature failure of 

the concrete block and consequently resulted in an increase 
in stiffness near failure. 

The stress vs strain curves for all the unfilled (Fig. 

3.20 (1)) and filled (Fig. 3.20 (ii)) full-block specimens 

compressed parallel to the bed face, on the other hand, 

showed that there is a reduction in the block stiffness for 

the filled blocks compared to the unfilled ones. This is 

clearly shown by the descending gradient of the stress vs 
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strain curves measured on the 'block side shells. This 

decline is primarily produced by the presence of the 

concrete inf ill which applies some tensile stress resulting 

from the high Poisson's ratio of the low and medium 

strength concrete inf ills. These high tensile stresses led 

to the failure of the block before the unfilled unit block 

compressive strength' was attained and before the apparent 
material strength of the block fb  was reached. This 
phenomenon was also observed in earlier tests (27,28,33,36,71) on 
concrete block masonry prisms. 

Fig. 3.21 shows the relation between the block 

specimen strength and the concrete inf ill strength 

(unfilled blocks compressive strength based on gross area 

were considered as blocks with 'zero concrete inf ill 

strength). A statistical computer program (MINITAB) 	was 
used to derive the best fitting relationships which 

represented by the following formulae: 

Filled block compressed normal to the bed face: 

f f  = -0.0063 	C)2  + 0.65 f + 11.4 
r = Correlation coefficient = 0.98 

Filled half-block compressed normal to the bed face: 

hf = 0.43 f + 14.5 
r = 0.96 

for f = 0.0 to 45.31 

Filled block compressed parallel to the bed face: 

fbpf = -0.0174 Cf)2  + 0.92 fc + 8.0 
r = 0.93 

Fig. 3.21 also shows the respective reduction and 

increase in strength of the filled specimens compressed 
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normal and parallel to the bed face compared to the 

apparent block material strength, 	The figure also shows 
that the strength of the specimen compressed normal to the 

bed face increased as the concrete inf ill strength was 

increased by using a 1:1:2 mix. This increase results from 

the similarity in the deformational characteristics between 

the concrete and the block. Some of the filled specimens 

with high strength concrete withstood a reloading of 80% of 

the specimen failure load. This suggests that despite 

failure of the block shells, the concrete inf ill was still 

intact and able to withstand reloading. 

This behaviour of the concrete inf ill was clearly 

shown by the stress vs strain curves (Fig. 3.22) for two-

material specimens compressed normal to the bed face using 

a fixed machine head, where for the same level of vertical 

strain, the block material showed a higher strength than 

the concrete material. Fig. 3.22 also shows that at high 

level of vertical stress the lateral strain in the concrete 

inf ill is higher than that for the block material. 

This leads to the conclusion that matching the 

deformational characteristics of the concrete inf ill with 

those of the block may be more effective than increasing 
the concrete infi 11 strength(2728.29.36.71) .  

On the other hand, using a 1:1:2 mix reduced the 

strength of specimens compressed parallel to the bed face. 

Therefore using a 1:1:2 mix has the same effect in reducing 

the specimen strength when compressed parallel to the bed 

face as a 1:7:2 mix. This suggests that stiff concrete 

inf ill works as a cleavage forcing the blocks to split 

before attaining their unfilled single-block compressive 
strength. 

Half-block specimens compressed normal to the bed face 
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showed a steady linear increase in strength as the concrete 

strength increased. The compressive strength of full-block 

specimens must be modified by a reduction factor of 0.85 

compared to that for half-block specimens. This reduction 

may be caused by differences in the aspect ratios (block 
length-to-thickness) between the full-block (l/t = 2.05) 

and the half-block (l/t = 1.0) specimens. 

On the other hand, filled single-block specimens 

compressed parallel to the bed face failed at strengths 

modified by a reduction factor of 0.80, for concrete inf ill 

strengths ranging from 0 to 21.23 N/mni2  (specimens with zero 
concrete inf ill strength are the unfilled blocks) compared 

to specimens tested normal to the bed face. The decrease 

was caused by differences in the direction in which the 

single-block specimens were tested. 

The 	presence of the concrete inf ill had the same 

reduction effect on the block splitting strength compared 

to the unfilled ones (Fig. 3.23), as in the case of the 

block compressive strength.. This relation is best 
represented as follows: 

fbt = 0.64 + 0.20 (f) 112  

r = 0.97 

Fig. 3.24 gives the best fitting curve relating the 

full-block tensile splitting strength to the filled block 

compressive strength. This can be represented as follows: 

fbt = 0.30 (ff)2 	 ... (3.9) 
r = 0.97 

This relation gives values for the block tensile 

strength which are some 44.4% lower than the allowable 

tensile strength values for concrete predicted using the 
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formula suggested by the American Concrete Code 74 . This 
formula relates the concrete splitting strength to the cube 
compressive strength as follows: 

fct = 0.54 (f)112 	 ... (3.10) 

Half-block specimens show a 10% increase in splitting 

strength compared to the full-block specimens. This 

increase may be due to the size effect. 

Half-block specimens can be used to determine the 

block tensile splitting strength provided the half-block 

compressive strength is corrected for the aspect ratio 

before being inserted in the above formula. 

Fig. 3.25 gives the relation for the cohesion bond 

strength between the block and the concrete as a function 

of the concrete cube compressive strength for the full-

block two-materials specimen. The following equation is the 

best representation of the relation: 

fbb = 0.24 (C)112 
r = 0.94 

The cohesion bond strength between the block and the 

concrete given by Eqn. 3.11 was 55.6% lower than the value 

of splitting strength for concrete derived by Eqn. 3.10. 

Two-material half-block specimens gave an almost similar 

relation for the cohesion bond strength as the two material 
full-block specimens. 

The shear bond between the block and the concrete 

(Fig. 3.26.) was related to concrete cube compressive 
strength as follow: 
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= 0.17 (f)0-67 	 . . . (3.12) 
r = 0.98 

While the relation for concrete was as follow: 

fCV = 0.18 Cf) 112 	 ...(3.13) 

3.4 CONCLUSIONS 

The strength of filled half and full-block specimens 

compressed normal to the bed face increased as the 

concrete inf ill strength increased. 	Specimens 
compressed parallel to the bed face and filled with 

high strength concrete have almost the same strength 

as those filled with low strength concrete. 

The reason for the reduction in strength of specimens 

filled with low strength concrete, as compared to 

unfilled ones, is the high lateral expansion of the 

concrete inf ill at high stresses due to differences in 

Poisson's ratios between the block and the concrete. 

Best results can be achieved by providing a concrete 

infill with the same deformational characteristics as 
the blocks. 

Due to the need for high capacity machines to 

determine the compressive strength of full-blocks, 

half-block specimens can be tested instead. The 

compressive strength is then multiplied by 0.85 as an 

aspect ratio reduction factor. 

The splitting strength of filled blocks is less than 

that of unfilled ones. This is due to the same effect 

which caused the reduction in block compressive 

strength. For ease of handling, half-block specimens 
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can be used for the splitting test, provided that the 

strength is multiplied by 0.90 as a size reduction 
factor. 

5. 	The cohesion bond strength between the block and the 

concrete given by Eqn. 3.11 was 55.6% lower than the 

value of splitting strength for concrete derived by 

Eqn. 3.10. This is true for this investigation because 

the cohesion bond strength depends on the block 

surface texture. 

Suction of water by the block had a negligible effect 

on the concrete inf ill strength. 

A new specimen is suggested, for standardization 

purposes, to determine the concrete and mortar modulus 

of elasticity and Poisson's ratios from the same test. 

The specimen consists 'of three steel moulded cubes 

separated by 1 - 2 mm thick layers of dental plaster. 

Vertical stress vs strain curves for the confined 10 

mm mortar joint should be used for analysis or design 

in blockwork masonry, rather than those for the mortar 

cylinder or the suggested three steel moulded cubes 
specimen. 
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Table 3.1 

Typical table used to determine characteristic 
compressive strength, f k' of masonry 

ES 5628: Part 2: 1985. 

Table 3. Characteristic compressive strength, 1k , of masonry 

Constructed with bricks or otter units having a ratio of height to least horizontal dimension of 0.6 

Mortar Characteristic compressive strength of masonry, (k  IN/mm) 
designation 

Compressive strength of unit (N/mm') 

7 10 16 20 27.5 35 50 70 100 

0) t34 4.4 6.0 7.4 9.2 11.4 15.0 19.2 24.0 

(ii) 3.2 4.2 5.3 6.4 7.9 9.4 12.2 15.1 18.2 

Constructed with solid concrete blocks having a ratio of height to least horizontal dimension of 1.0 

Compressive strengths of unit (N/mm2 ) 

7 10 15 20 35 60 70 or greater 

(I) 4.4 5.7 7.7 9.5 14.7 19.3 24.7 

(ii) 4.1 5.4 6.8 8.2 12.1 15.7 19.4 

Constructed with solid concrete blocks having a ratio of height to least horizontal dimension of 
between 2.0 and 4.0 

Compressive strength of unit (N/mm') 

7 10 15 20 35 50 70 or greater 

(I) 6.8 8.8 12.0 14.8 22.8 30.0 38.4 

00 6.4 8.4 10.6 12.8 18.8 24.4 30.2 

ID) Constructed with structural units other than solid concrete blocks having a ratio of height to least 
horizontal dimension of between 2.0 and 4.0 

Compressive strength of unit IN/mm') 

7 10 15 20 35 50 l0orgreater 

0) 5.7 6.1 6.8 7.5 11.4 15.0 19.2 

(ii) 5.5 5.7 6.1 6.5 9.4 12.2 15.1 



Thickness 
IN 

Length 	 - I 

TOP VIEW 

d 	 ci F 	 - 

Height 

Section (1) 

Section (2) 

Section (3) 

Section (4) 

SECTION 

Fig. 3.1 - Cross-sections of a typical 
concrete block. 

Table 3.2 

Dimensions of a typical concrete block 
used in the investigation. 

Length * 

CE) Height Thickness mw. An 
FuLL/HaLf h t a b FuLL/Half c d FuLL/HaLf 

Section (mm) (inn) (inn) (m) (mn) (nm) (mm) (nm) (mm 2) 

(1) 390/190 189 190 33 30 55/22.5 124 137.5 41700/19900 
(2) 390/190 189 190 35 33 59/24.5 120 132.5 44000/21050 
(3) 390/190 189 190 36 34 61/25.5 118 130.5 45002/21551 
(4) 390/190 189 190 47 46 81/35.5 96 108.5 54828/264M 

Volume of block cavities by calculation 	 = 0.005522 m3. 
Volume of block cavities by sand method 	 = 0.005506 m3. (BS 6073: Part 2: 1981). 
Block percentage solid 	 = 60 X 
Block material constant mass (oven dry) density 	= 2127 kg/.3. 
* 	HaLf-block Length = 390/2 - 5 	 = 190 M. (Taking into consideration the 

thickness Lost in cutting the block to half by the electrical saw, usually equal to 10 inn). 
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Fig. 3.2 - Unfilled half-block prism with 
1 - 2 nun dental plaster joints. 
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Table 3.3 

Sieve analysis of concrete sand. 

Z By weight passing through sieve 

Test 	 Test 	 BS 882 Limit 
sieve 	 result 	 (Table 5) 

10.00 mm 100 100 
5.00 mm 100 89 - 100 
2.36 mm 88 60 - 100 
1.18 mm 75 30 - 100 
600 pm 64 15 - 100 
300 pm 34 5 - 70 
150 pm 5 0-15 

Table 3.4 

Sieve analysis of 10 mm single 
size crushed aggregate. 

X By weight passing through sieve 

Test 	 Test 	 BS 882 Limit 
sieve 	 result 	 (Table 4) 

14.00 mm ioo 	 100 
10.00 mm 98 	 85 - 100 
5.00mm 17 	 0-25 
2.36 mm 1 	 0- 	5 
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Grout Specimen 
(122xl22xl84mrn) 

'''JLJLJ I LJLUL 

(122xl22xSmrn) 

Fig. 3.3 - Illustration of block moulded 
concrete infill specimen fabrication. 

Fig. 3.4 - Three steel moulded concrete cubes 
separated and capped with 1 - 2 mm 

dental plaster joints. 
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Table 3.5 

Sieve analysis of mortar sand. 

Z By weight passing through sieve 

BS 1200 Limit 
Test 	 Test 	 type S sand 
sieve 	 result 	 (Table 1) 

6.30 mm ioo 100 
5.00 mm ioo 98 - 100 
2.36 mm 97 90 - 100 
1.18 mm 93 70 - 100 
600 pm 82 40 - 100 
300 pm 40 5 - 70 
150 pm 8 0-15 
75 pm 4 0- 5 

Table 3.6 

Properties of reinforcement 

Designation 

NominaL 

diameter 

(mm) 

Area 

(nm2) 

Yield 

strength 

(N/on2) 

Yield 

strain 

CX) 

Ultimate 

strength 

(N/nm2) 

Young's 

modulus 

(kN/nin2) 

Not rotted plain 6 28.27 441.51 0.21 516.66 200 
Low yield steel 

bars 

Hot rotted deformed 8 50.27 527.86 0.26 619.38 200 
high yield steel 10 78.54 519.06 0.26 635.77 190 
bar 12 113.10 486.31 0.28 615.99 175 

20 314.16 536.88 0.28 649.35 178 
25 490.87 490.28 0.26 592.14 189 
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:. 

Fig. 3.5 - Steel rig for concrete 
block splitting test. 
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Fig. 3.6 - Two-materials splitting 
bond specimen. 
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Fig. 3.7 - Two-materials shear 
bond specimen. 
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35.0 

30.0 

25.0 

20.0 

15.0 

10.0 

NAM 

MR 

5.0 

( 81= THREE UNFILLED HALF-BLOCKS PRISM 
82= THREE UNFILLED HALF-BLOCKS PRISM (OS 6110) (69) 
B3= THREE UNFILLED HALF-BLOCKS PRISM (sAENz) (70) 
84= SOLID BLOCK COMPRESSED PARALLEL TO BED FACE 
B5= SOLID BLOCK COMPRESSED PARALLEL TO BED FACE (OS 8110) 
B6= HALF-BLOCK 

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 
STRAIN x 10 

Fig. 3.8 - Vertical stress vs strain 
curves for block material. 

25.0 BI=THREE UNFILLED HALF—BLOCKS PRISM 
B2= SOLID BLOCK COMPRESSED 

PARALLEL TO BED FACE 
20.0 B3= HALF—BLOCK 

15.0 

Cl) 

10.0 

5.0 

0.0 1h 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 

VERTICAL STRAIN x 10 

Fig. 3.9 - Lateral strain vs vertical strain 
curves for block material. 
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20.0 c= THREE CONCRETE CUBES PRISM 
co C2= CONCRETE CYLINDER 

150 
C3= BLOCK, MOULDED CONCRETE PRISM 

N  C4= BS 8110 (69) 
C5= SAENZ (70) 

10.0 

Cl 

5.0 

	

0.0 Y 	 I 	I 	I 	 I 

	

0.0 	5.0 	10.0 	15.0 	20.0 . 25.0 	30.0 	35.0 	40.0 
STRAIN >< 10 

Fig. 3.10 - Vertical stress vs strain curves 
for low strength (1:5:2) concrete. 

30.0 
N 

E 25.0 

J) 20.0 

15.0 

10.0 

5.0 

C2 
C3 

Cl 

CS 

C4 

C1= THREE CONCRETE CUBES PRISM 
16 	 C2 CONCRETE CYLINDER 
V 	

C3= BLOCK MOULDED CONCRETE PRISM 
C4= BS 8110 (69) 
C5= SAENZ (70) 

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 
STRAIN X 10' 

Fig. 3.11 - Vertical stress vs strain curves for 
medium strength (1:3:2) concrete. 
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CI) 

25.0 
CI) 

20.0 

15.0 

10.0 

5.0 

0.0 
0.. 

Fig. 3.12 - Vertical stress vs strain curves for 
high strength (1:1:2) concrete. 

w.0 1u.0 .u.0 	o 30.0 35.0 40.0 45.0 50.0 55.0 60.0 
STRAIN )< 10 
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30.0 

b 25.0 

x 
. 20.0 

15.0 

04 10.0 

5.0 

Cj= LOW STRENGTH (1:5:2) CONCRETE 
C2= MEDIUM STRENGTH (1:3:2) CONCRETE 
C3= HIGH STRENGTH (1:1:2) CONCRETE 

Cl 
C2 

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 
VERTICAL STRAIN x 10 

Fig. 3.13 - Lateral strain vs vertical strain 
curves for concrete. 
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30.0 Ml = LOW STRENGTH (1:1:6) MORTAR 
CV M2 = MEDIUM STRENGTH (1:0.5:4.5) MORTAR 

25.0 
M3 = HIGH STRENGTH (1:0.25:3) MORTAR 

M3 

Cl) 20.0 
Cl) 

15.0 
Cl) 

M2 

10.0 

M1 

5.0 

cJ.0 e'- 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 

STRAIN x 10 

Pig. 3.14 - Vertical stress vs strain curves 
for mortar, based on suggested three 

steel moulded cubes specimen. 

25.0 M1= LOW STRENGTH (1:1:6) MORTAR 
M2= MEDIUM STRENGTH (1:0.5:4.5) MORTAR 

20.0 M3= HIGH STRENGTH (1:0.25:3) MORTAR 
x 

Mi 15.0 

M2 
Cl) 

10.0 

5.0 

0.0 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 

VERTICAL STRAIN x 10 

Fig. 3.15 - Lateral strain vs vertical strain curves 
for mortar, based on suggested three 

steel moulded cubes specimen. 
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Table 3.8 

Compressive strength of single-block specimens. 

Specimen 

Number 

of tests 

Average compressive 

strength (N/nm2) 

Area used 

Net 	Gross 

S.D. 
(N/M2) 

Mix 

proportions 

by volume 

Inf ill 

compressive 

strength 
(N/m2) 

Full-block coaVressed normal to bed face * 

Unfitted 10 20.04 	11.28 2.10/1.19 - - 
Fitted 3 - 	19.84 0.70 1:5:2 11.85 Fitted 
Fitted 

3 
3 

- 	17.57 0.51 1:5:2 12.21 

Filled 3 
- 	20.04 1.01 1:5:2 15.71 

Fitted 3 
23.86 0.72 1:3:2 26.07 

Fitted 3 
- 	24.63 1.50 1:3:2 29.34 - 	28.12 2.31 1:1:2 44.66 

Half-block coressed normal to bed-face + 

Unfitted 7 25.66 	14.15 2.67/1.47 - - 
Filled 3 - 	22.44 1.66 1:5:2 12.21 Fitted 
Fitted 

3 
7 

- 	22.46 2.61 1:5:2 15.71 

Fitted 5 
- 	24.63 3.23 1:3:2 24.72 - 	34.14 1.49 1:1:2 45.31 

Full-block conpressed parallel to bed face 4 

Unfitted 10 22.20 	8.18. 2.24/0.83 - 
Fitted 
Fitted 

3 
4 

- 	11.79 1.87 1:7:2 2.44 

Filled 6 
- 	10.52 1.27 1:7:2 6.24 

Fitted 4 
- 	20.28 2.91 1:3:2 21.23 - 	16.88 0.95 1:1:2 39 44 

Cube compressive strength of block material f = 24.29 N/niu2. b * 	Net area = Area at section (1) = 41700 n.m2. (See Table 3.2). 
Gross area = 390 x 190 = 74100 nui2. 

I 	Net area = Area at section (1) = 19900 uimn2. (See Table 3.2). 
Gross area = 190 x 190 

4 

	

Met area 
= 36100 mm2. 

= 2(189x35) = 13230ma2. (Dimensions at section (2)).(See 

Table 3.2). 
Gross area = 190 x 189 = 35910 n.m2. 
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Table 3.9 

Splitting and bond strength of concrete blocks. 

Average splitting * 	 Infill 

	

strength (N/uiii2) 	 Nix 	comp./split. 
Nuther 	Area used 	 S.D. 	proportions 	strength 

Specimen 	of tests 	Net 	Gross 	(N/nm 2) 	by volume 	(N/nmi2) 

FulL-bLock specimen 4 

Unfitted 10 	2.16 0.69 0.24/0.08 - - 
Filled 
Fitted 

6 	 - 
5 

1.18 0.06 1:5:2 12.03/1.02 
Fitted 

- 
5 

1.77 0.15 1:3:2 26.39/2.11 - 2.07 0.08 1:1:2 44.66/3.15 

Half-block specimen I 

Unfitted 5 	2.23 0.66 0.27/0.08 

Fitted 
Fitted 

6 	 _ 
8 

1.21 0.12 1:5:2 12.21/1.02 
Fitted 

- 
6 

1.68 0.14 1:3:2 26.39/2.11 
2.01 0.08 1:1:2 45.31/3.21 - 

Solid block 

FuLL-block 4 6 	 - 1.51 0.33 

Half-block 4 6 1.55 0.30 - - 

TWO-material specimen 

Full-block 4 
Fult-btock 

5 	 - 
5 

0.67 0.20 11.00/1.00 
Full-bLock 

- 
10 	 - 

1.19 
1.68 

0.12 
0.06 

. 26.39/2.11 
34.72/2.72 

Half-block I 
HaLf-block 

8 	 - 
8 

0.66 0.16 -11.00/1.00 
Half-block 

- 
5 

1.10 0.29 - 27.39/2.27 - 1.64 0.05 - 34.72/2.72 

Cube compressive strength of block material fb = 2429 N/nmi2. * 	Formats used fbt = 2F/Tlh. 
4 	UnfiLled= Lxh=(33+33+59) 189 =23625 nn  2. (Dimensions at section (2)) (See Table 32). Filled 	= I x h = 390 x 189 = 73710 
I 	UnfiL led =lxh(245+33) 189 =10867.3 nm2. (Dimensions at section (2)).(SeeTable32). Filled 	= I x h = 190 x 189 = 35910 mm2.  
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Table 3. 10 

Shear strength of two-material specimens. 

Inf it  
Average shear * Mix 	 compressive 

Number 	strength 	 S.D. proportions 	 strength 
Specimen 	of tests 	(N/.m2) 	(N/nmi,2) by volume 	 (N/nm2) 

1 6 0.87 0.15 1:5:2 12.03 2 6 1.06 0.19 1:3:2 26.39 3 10 2.15 0.87 1:1:2 44.66 

Cube compressive strength of block material
b 	= 24.29 N/nui2. * 	Area used 	= 190 x 165 	 = 31350 mn2. (See Fig. 3.7). 
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Unfilled. 

Filled. 

Fig. 3.17 - Typical mode of failure for single-
block specimens compressed normal to bed 

face. (i) Unfilled, (ii) Filled. 
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(i) Unfilled. 

(ii) Filled. 

Fig. 3.18 - Typical mode of failure for single- 
block specimens compressed parallel to bed 

face. (1) Unfilled, (ii) Filled. 

-
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(ii) Filled. 

Fig. 3.19 - Vertical stress vs strain curves for single-
block specimen compressed normal to bed 

face. (i) Unfilled, (ii) Filled. 
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Fig. 3.20 - Vertical stress vs strain curves for single-
block specimen compressed parallel to bed 

face. (i) Unfilled, (ii) Filled. 
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Fig. 3.21 - Effect of concrete infill 
strength on single-block specimens 

compressive strength. 

E 
35.0 

30.0 

25.0 

20.0 

15.0 

10.0 

5.0 

133 



30.0 
ULTIMATE SPECIMEN  STRENGTH 

4 b 	
55.0 f 	 -0-o' 
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1 	3 Qj 

1 	
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0 CONCRETE BLOCK MATERIAL 
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Fig. 3.22 - Typical vertical stress vs strain 
curves for two-materials specimen. 
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UNFILLED FULL-BLOCK SPLITTING 

STRENGTH (BASED ON NET AREA)0 - 	r 

0.0 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 
CONCRETE COMPRESSIVE STRENCTH (N/rnyn2) 

Fig. 3.23 - Effect of concrete inf ill strength 
on unit block splitting strength. 
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BLOCK COMPRESSIVE STRENGTH (N/mm2) 

Fig. 3.24 - Block splitting strength vs 
block compressive strength. 
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Fig. 3.25 - Effect of concrete strength 
on cohesion bond strength 

with-block material. 

137 



E 5.0 TWO-MATERIALS SPECIMEN 

o CONCRETE MATERIAL (ACI 318) 

4.0 

3.0 

2.0 
CIO 

1.0 

0.0 I 	 I 	 I 	 I 	 I 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 
CONCRETE COMPRESSIVE STRENGTH (N/mm-') 

Fig. 3.26 - Effect of concrete strength 
on shear bond strength with 

block material. 
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CHAFFER 4 

CONCRETE BLOCK MASONRY PRISMS 
COMPRESSED PARALLEL TO 

THE UNIT BED FACE 

4.1 INTRODUCTION 

This chapter is divided into two major sections. The 

first deals with the experimental investigation which is 

concerned with the determination of the compressive 

strength and a study of the behaviour of two-block prisms, 

compressed in a direction parallel to the unit bed face. 

The second presents the theoretical investigation of the 

two-block prisms using a two-dimensional linear and three-

dimensional non-linear finite element analyses (FEA). 

The specimens were built using three different mortar 

types and infilled with three different concrete mixes 

respectively. The specimens simulate the compression zone 

in a reinforced blockwork masonry beam (Fig. 4.1), or part 

of a masonry wall subjected to horizontal forces in its own 

plane accidentally or during an earthquake. 

As mentioned in chapter 3 and in order to determining 

the ultimate compressive strength of a blockwork masonry 
prism, i'm' some codes and standards 19'20'22  use either tables 
or graphs, relating the blockwork compressive strength to 

the unit block strength and the type of mortar. This method 

was originally derived from prism testing for codes and 

standards purposes. Alternatively tests on stack-bonded 
masonry prisms (24,25) 

(Fig. 4.2), with a height-to-thickness  
ratio (h/t) between 2.0 and 5.0, made of the same 

constituent materials as those used during construction, 

were subjected to axial compressive load applied in a 
direction normal to the unit bed face. 



There are no clear indications in any of the 

references quoted as to the difference in strength of the 

prism when compressed in a direction parallel (Fig. 4.3), 

instead of normal, to the unit bed face. 

As referred to in chapter 3 the British Code of 
Practice, BS 5628: Part 2: 1985(21), recognizes that there 
maybe a difference in strength as between masonry built 

with the units compressed normal to the bed face and that 

in which units are compressed parallel to the bed face. 

BS 	5628 determines the values of f 
k for blockwork 

masonry from tables and graphs, relating the compressive 

strength of filled concrete block masonry to the solid unit 

block strength and the type of mortar, provided that the 

compressive strength of the inf ill is not less than that of 
the 	blocks assessed on their net area. If the inf ill 

strength is less than that of the block material, the 

strength of the filled blockwork is to be taken as that of 

the inf ill, as if the block were solid. 

Previous studies (35,36,71) 
on blockwork masonry prisms, 

compressed parallel to the unit bed face, indicated that 

since blockwork masonry prisms have three component 

materials, namely concrete block, mortar and concrete 

inf ill, these three. materials give the blockwork masonry 

non-homogeneous properties compared with concrete. 

Several studies (27,28,29,30,31,32,33,34,35,36,38,71 
) on blockwork 

masonry have shown that the deformational characteristics 

of the concrete inf ill rather than its strength had a major 

effect on reducing the compressive strength of filled 

blockwork masonry prism, compressed either parallel or 

normal to the bed face, as compared to unfilled prisms. 

Mortar plasticity had also been shown (71,72,75,76,77,78,79) to 
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cause a reduction in the compressive strength of both 

filled and unfilled prisms by applying additional tensile 

stresses to the blocks resulting from differences in the 

mechanical properties of the stiff coarse aggregate blocks 

and soft fine aggregate mortar. 

A study of the effects of this non-homogeneity on the 

prism strength and behaviour, taking into consideration the 

wide range of concrete blocks, mortar types and concrete 

inf ill strengths, using classical principles of mechanics 

is very difficult, if not impossible. Therefore, standard 

finite element software, LUSAS 80 , which is a general 
purpose package was used to explain and understand the 

behaviour of the block, concrete inf ill and mortar as they 

interact with each other as an entity. 

The objective of the present investigation is to 
produce a method of obtaining i'm' for use in the strength 
design theory of masonry structural elements, in situations 

where high in-plane horizontal forces are expected. The 

effects of using different types of mortar and concrete 
infill mixes on f 1 m  and on the prisms' behaviour and mode 
of failure were also studied. 

4.2 EXPERIMENTAL PROGRAMME 

Thirty-six prisms were constructed vertically by 

placing one block on top of the other with a 10 mm mortar 

joint in between. This method of construction differs from 

the conventional method of construction where the blocks 

are laid horizontally with a vertical mortar joint in 

between. The reason for adopting this method of 

construction was to ensure that the mortar joint between 

the two blocks would be completely filled with no air 
voids. 
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The main objective however of the present 

investigation is to study the effects of using different 

types of mortar and concrete inf ill on determining i'm' and 
not to examine the effects of the method of construction on 
site and in the laboratory. 

The prisms were constructed using three different 

mortar types: low strength (1:1:6), medium strength 

(1:0.5:4.5) and high strength (1:0.25:3) (cement: lime: 

sand) proportions. The prisms are designated in Fig. 4.4 

(1), Table A.l (Appendix A) and in the text as 2BP-}fJ (2-
Block Prisms with Mortar Joint). 

Some of the two-block prisms were constructed without 

a mortar joint. Instead, a thin layer, 1 - 2 mm, of dental 

plaster was placed between the two blocks prior to test. 

The prisms are designated in Fig. 4.4 (ii), Table A..l 

(Appendix A) and in the text as 2BP-DPJ (2-Block Prisms 

with Dental Plaster Joint). The 1 - 2 mm thickness was 

achieved by compressing the soft dental plaster in the same 
way as used in chapter 3(55) 

Three different concrete inf ill mixes: low strength 

(1:5:2), medium strength (1:3:2) and high strength (1:1:2) 

(cement: sand: aggregate) proportions, were used for 

filling some of the prisms. Rapid hardening cement was used 

in all types of mortar and mixes of concrete. 

The prisms were first built, then left under polythene 

sheeting for three days to allow the mortar joints to gain 

in strength. After three days the prisms were filled with 

concrete, batched by volume, mixed to a high slump of 150 

mm then cast in two layers. Each layer was hand compacted, 

using the same steel rod commonly used for compacting and 

making concrete cubes. After compaction the top of the 

concrete inf ill was trowelled level. 
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After casting the prisms were left to cure under 

polythene sheeting for seven days. The polythene was then 

removed and the specimens left for a further seven days to 

cure under ambient conditions in the laboratory prior to 

testing. Steel moulded cubes and cylinders, cast and cured 

with the specimens, were tested in compression to determine 

the strength of the mortar and concrete inf ill mixes. 

Demec points and electrical strain gauges were placed 

on the specimens at selected locations 24 hours before 

testing. Prior to testing, all the specimens were capped 

with a thin layer, 1 - 2 mm, of dental plaster"" prepared 

by the same method explained in chapter 3. 

The loading rates were in accordance with BS 6073: 
Part 1: 1981 (66) 

and the loading pattern was in accordance 
with BS 1881: Part 121: 1983 (68)  to enable the determination 

of the static modulus of elasticity for all the specimens 

tested. By using this loading pattern, the strain 

measurements were recorded at two stress levels, viz. 0.5 
N/mm2  and one third of the ultimate specimen strength. The 

measurements were then repeated two to three times in a 

process of loading and unloading. In all the stress vs 

strain curves reported in this investigation, values from 

the results of loading and unloading were omitted for 

clarity, only values from the first cycle of strain 
measurements are shown. 

4.3 THEORETICAL PROGRAMME 

The theoretical programme is divided into five major 

sections. The first section gives a summary of some of the 

features of the FEA program used. The second section deals 

with the reasons for choosing the two-dimensional elastic 

linear FEA to study the effect of using the steel bearing 
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plate in applying the external stress. The third section 

gives the advantages of using the three-dimensional plastic 

non-linear FEA in the analysis for unfilled andfilled 2BP-

143 prisms. The fourth section presents the mechanical 

properties for the materials used in. the FEA. The fifth 

section demonstrates the finite element meshes used in the 

two and three-dimensional analyses and the assumption used 

in reducing the size of these meshes. 

4.3.1 	General 

The mathematical analysis of concrete masonry prisms 

with different materials, many degrees of freedom and 

complex geometry by the method of classical principles of 

mechanics is very difficult, if not impossible. Therefore 

approximate numerical methods are used to solve this 

problem. A standard finite element software, LUSAS 80 , which 
is a general purpose package was selected for this 

investigation. This package permits the use of two and 

three-dimensional linear and non-linear material properties 

and was used to determine deformations, direct, shear and 

principal stresses at. different locations in the prisms. 

The linear two-dimensional analysis was used only to 

study the importance of using a steel bearing plate in 

applying the load on the prism. This analysis is not 

sufficient to perform an accurate analysis on unfilled and 

filled prisms because of the materials' non-linearity, 
mainly the mortar material(36.71,75,76,77s78,79) and the triaxial 

state of stress anticipated in masonry prisms(29s32.3338).  

Therefore a non-linear three-dimensional analysis was 
conducted for unfilled and filled 2BP-14J prisms, to get a 

better impression of the prism deformations and stresses 

and to study the effect of using different types of mortar 

and concrete inf ill on the prism behaviour and strength. 
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The FEA program LUSAS has a special facility of 

separating each prism material individually. This facility 

has the advantage of studying the distribution of stress 

in each material separately; also of explaining the complex 

behaviour of the block, concrete and mortar as they 

interact with each other as an entity in blockwork masonry 
prisms. 

4.3.2 	Two-Dimensional Elastic Linear FEA 

A two-dimensional elastic linear FEA was utilized to 

study the effect of using a steel bearing plate in applying 

vertical stress on the prisms. Two linear analyses were 

conducted using the unfilled 2BP-NJ prism with a high 

strength (1:0.25:3) mortar joint. The only difference 

between the two analyses is the presence of a steel bearing 

plate. In these analyses a specific level of vertical 

stress was applied on the prism, which is similar to the 

value derived experimentally for the unfilled 2BP-HJ prisms 

with a high strength (1:0.25:3) mortar joint (Table 4.1). 

In the first analysis the external level of vertical stress 

was applied directly to the top of the prism. In the second 

analysis the external level of vertical stress was applied 

by using an 88 mm thick steel bearing plate. 

The two-dimensional linear analysis was chosen to 

study the effect of using the steel bearing plate, because 

it is easier, faster and does not need a large computer 

memory space as is the case with a non-linear analysis. 

Also, the results obtained give sufficient information on 

the effect of using a steel bearing plate to apply the 
vertical stress. 
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4.3.3 	Three-Dimensional Plastic Non-Linear FEA 

Two non-linear thee-dimensional analyses were 

employed. In the first analysis a specific level of 

vertical stress was applied on the prisms, which is similar 

to the value derived experimentally (Table 4.1). This 

specific analysis was conducted for an unfilled prism, 

constructed with a high strength (1:0.25:3) mortar, and for 

a filled prism, constructed using the same type of mortar 

but filled with medium strength (1:3:2) concrete. The 

second analysis was a parametric study in which the level 

of the vertical stress applied to the unfilled 2BP-MJ 

prisms is the average experimental value of the compressive 

strength for an unfilled prisms constructed with low 

strength (1:1:6) mortar. In the case of the filled 2BP-14J 

prisms, the level of the vertical stress applied is the 

average experimental value of the compressive strength for 

prisms built with medium strength (1:0.25:3) mortar and 

filled with low strength (1:5:2) concrete (Table 4.1). 

The parametric study was carried out by' fixing the 

level of vertical stress applied to the analysed prisms and 

changing the materials for the three types of mortar 

(1:1:6, 1:0.5:4.5 and 1:0.25:3) and three mixes of concrete 

(1:5:2, 1:3:2 and 1:1:2) as used in the experimental 
investigation. 

The reasons for the specific analysis are to compare 

the experimental and theoretical results for unfilled and 

filled 2BP-MJ prisms and to get a more accurate impression 

of the prism's deformed shape, stress distribution, crack 

formation and mode of failure. The reasons for the 

parametric study analysis are to examine the effects of 

using different types of mortar and concrete inf ills on the 

behaviour and strength of the unfilled and filled prisms. 
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4.3.4 	Material Mechanical Properties Used in the PEA 

The material mechanical properties (compressive 

strength, modulus of elasticity and Poisson's ratio) used 

in the analyses were obtained from the experimental part 

of this investigation (see Table 3.7). 

The material's initial tangent modulus of elasticity 

and Poisson's ratio were used in the elastic linear 

analysis. Where the plastic non-linear analysis provided 
by LUSAS 80  required the input of the entire vertical stress 
vs strain curve for the materials, the relationship was 

approximated by a series of straight lines. 

The vertical stress vs strain curves used for the 

block material (see Fig. 3.8) and three different concrete 

mixes (see Figs 3.10, 3.11 and 3.12) were found using the 

stress vs strain curves for rigorous analysis of non-

critical concrete sections given in BS 8110: Part 2: 
1985(6!). The curves were derived by substituting the 

magnitudes of the material strengths and the moduli of 

elasticity given in Table 3.7 into Eqns 3.1 to 3.3 (see 
chapter 3). 

The confined vertical stress vs strain curves for the 

10 mm joint using three different types of mortar were 

obtained by testing unfilled two-block prisms, constructed 

with a 10 mm mortar joint, in a direction normal to the bed 

face. The vertical stress vs strain curve for the mortar 

joint (see Fig. 3.16) takes into account the effects of 

mortar thickness compared to block; also the confinement 

exerted on the joint by the stiff concrete blocks. 

The vertical stress vs strain curves for all the above 

materials were idealised in a series of straight lines as 

required by the FEA. Figs 4.5, 4.6 and 4.7 show typical 
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idealised vertical stress vs strain curves for the block, 

(1:3:2) concrete and (1:0.25:3) mortar materials 
respectively. 

The values of Poisson's ratio for all the materials 

used in the non-linear FEA were derived experimentally by 

plotting the lateral strain vs vertical strain (see Figs 
3.9 1,  3.13 and 3.15) and taking the values of Poisson's 

ratio at a strain corresponding to the material's maximum 

compressive strength (see Table 3.7). 

CHEEMA and KLINGNER 32 , in determining the material. 
properties to be used in a linearly elastic finite element 

analysis, suggested using an idealised vertical stress vs 

strain curve for confined mortar based on the unconfined 

vertical stress vs strain curve for a mortar cylinder (see 

Fig. 3.16). They also found values for the Poisson's ratio 

through experimentation similar to those given in Table 3.7 

and used in the non-linear FEA presented herein. 

In the case of the steel bearing plate, linear 

material properties was assumed. This is acceptable for the 

steel since, for the levels of vertical stress applied, it 
would remain elastic. 

4.3.5 	Finite Element Model 

4.3.5.1 	Two-dimensional model 

The two-dimensional finite element model was developed 
by •using plane strain membrane elements, one with four 

nodes (QPN4) and the other with three nodes (TPN3). The FEA 

model was developed by considering only 1/2 of the prism 
(Fig. 4.8) in the analysis. 
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In generating the mesh (Fig. 4.9), certain assumptions 

were made to simplify and reduce the size of the mesh: 

Full advantage was taken of symmetry. 

The tapering of face shells and webs was ignored; 

instead the average shell thickness was used (see 

Table 3.2, block section (2)). 

The interfaces between the blocks and the mortar were 

assumed to be rigid because frictional forces created 

by compression prevent slipping 33'3538'71) . 

The prisms were restrained at the bottom in two 

directions and the axial load was applied by means of 

uniform pressure with and without using the 88 mm thick 

steel bearing plate. The top surface of the prism or the 

bearing plate was restrained in the horizontal direction 

and free in the vertical direction, which is the direction 

of loading. The plane of symmetry was restrained in a 

direction normal to the plane and free in the other 
direction. 

4.3.5.2 	Three-dimensional model 

The three-dimensional finite element computer model 

was developed by using solid elements, one with eight nodes 

(HX8) and the other with six nodes (PN6). The FEA model was 

developed by considering 1/4 of the prism (Fig. 4.10) in 
the analysis. 

In generating the mesh (Fig. 4.11) certain assumptions 

were made to simplify and reduce the size of the mesh. The 

first three assumptions are similar to the ones made in the 

two-dimensional analysis. The other assumptions are: 
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perfect bond was assumed between the blocks and 

concrete inf ill (no concrete inf ill shrinkage). 

In the case of unfilled prisms the material properties 

for the concrete infill was assumed to be linearly 

elastic with very low modulus of elasticity (0.000001) 

and Poisson's ratio (0.000001). 

The prisms were restrained at the bottom in three 

directions and the axial load was applied by means of 

uniform pressure using an 88 mm thick steel bearing plate. 

The top surface of the plate was restrained in the two 

horizontal directions and free in the vertical direction, 

which is the direction of loading. All the planes of 

symmetry were restrained in a direction normal to the plane 
and free in the other two directions. 

4.4 DISCUSSION OF EXPERIMENTAL RESULTS 

Discussion of the experimental results is considered 

in two sections. The first deals with the observed modes of 

failure for the unfilled and filled prisms. The second 

deals with the experimental results. 

4.4.1 	Modes of Failure 

The observed mode of failure for all the unfilled 2BP-
MJ prisms was first by local crushing at the outer faces 

of the mortar joint, followed by shearing and splitting of 

the block shells sideways. There was some sign of cracking 

at the outer face of the mortar joint prior to failure 
(Fig. 4.12). 

The unfilled 2BP-DPJ prisms first failed by crushing 
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of the block side shells, followed by complete 

disintegration of the prism (Fig. 4.13). Both types of 

unfilled prism showed an abrupt mode of failure. 

The common feature in the mode of failure of all the 
filled 2BP-I4J prisms, was first the occurrence of crushing 

at the mortar joint followed by shearing and sideways 

splitting of the block shells. 

The prisms with high strength (1:1:2) concrete, showed 

no signs of any major cracks in the concrete either during 

testing or after failure. On the other hand, the prisms 

with low strength (1:5:2) concrete, showed a crushing type 

of cracking in the concrete at failure. The prisms with 

medium strength (1:3:2) concrete 'showed some signs of 

crushing of the concrete, but not as severe as those filled 

with low strength concrete (Fig. 4.14). 

Filled 2BP-DPJ prisms showed the same three dissimilar 

modes of failure, with regard to the strength of the 

concrete inf ill mix used, observed for the single-block 

specimens. The only difference was that the initiation of 

first crushing and shearing in the block was near the 

dental plaster joint and not near the machine platens (Fig. 
4.15) 

4.4.2 	Experimental Results 

Table 4.1 lists the results for all the unfilled and 

filled two-block prisms tested. Also listed are all the 

associated material properties. 

The stress vs strain curves, for the unfilled 2BP-HJ 

prisms (Fig. 4.16), show the mortar joint yielding at high 
stress compared with the block 3671'72 . The stiffness of the 
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block material was also seen to be much higher than that of 

the mortar, as would be expected. The curves also denoted 

some confinement at the mortar joint (curves 2,4) and 

showed some evidence of increasing stiffness at the outer 

face of the mortar joint prior to failure (curve 3). This 

was basically caused by splitting of the block shells to 
the outside prior to failure 35'36'7 . The stress vs strain 
curves show that the mortar joint absorbs most of the 

energy applied to the prisms; this was illustrated by the 

area under the vertical stress vs strain curve for the 

mortar. The high ductility of the mortar resulted primarily 

from the insignificant ratio of the mortar thickness to the 
other two dimensions .26s28,33,71)  and the confinement stress 
afforded by the blocks(', 28,29,32,33,34,35,36,38) 

Unfilled 2BP-DPJ prisms failed by crushing of the 

block shells which was clearly shown by the high strain 

readings at the block shells (Fig. 4.17). On the other 

hand, the unfilled 2BP-HJ prisms failed by crushing at the 

mortar joint. This explained why the average strength value 

of the unfilled 2BP-DPJ specimens, was slightly higher than 

that of the unfilled 2BP-MJ ones. 

The effect of the cube compressive strength of mortar 

on the unfilled prism strength is clearly shown in Fig. 

4.18. The figure shows that the presence of the mortar 

joint in unfilled prisms caused a small reduction in the 

prism compressive strength compared to unfilled prisms with 

dental plaster joint. The figure also shows that increasing 

the mortar cube strength by at least 166.9% produces an 

increase of only 6.2% on the compressive strength of 
unfilled prisms(2628.33.36.71). This was mainly due to the 

insignificant ratio of the mortar joint thickness to the 

block height (1/39), and also due to confinement of the 
mortar by the stiff blocks. 
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A statistical computer program (MINITAB) 	was used 
to derive the following best fit equation relating the 

compressive strength of an unfilled prism with mortar joint 
to the strength of the mortar as follows: 

f'g,= 21.9 + 0.11 f,,,. 

r = 0.96 

Table 4.1 shows that most of the unfilled prisms with 

a mortar joint failed at a compressive strength higher than 

the mortar cube strength. This suggests that the mortar 

strength in a joint is apparently higher than the mortar 

cube strength. This is due to the relatively small mortar 

thickness compared to the unit height, and the confinement 

of the mortar by the stiff concrete blocks. 

The stress vs strain curves for the filled 2BP-MJ 
prisms (Fig. 4.19) show a reduction in the block stiffness 

compared to the corresponding one for unfilled prisms. This 

reduction was also observed in the single-block specimens 

and was ascribed to the presence of the concrete inf ill, 
and its high Poisson's ratio 35 '36'7 , which caused premature 
failure of the specimen prior to reaching the unfilled 

block compressive strength or the block material strength. 

The curves also showed the phenomenon of mortar 

yielding at the outer face of the mortar joint (curve 3), 

and almost zero strain at the centre of the mortar joint 

(curve 1). This confirmed the observed mode of failure 

where the first indication of prism failure was crushing 

at the outer face of the mortar joint. The curves indicate 

an increase in stiffness before failure, caused by the 

tendency of the block shells to split to the outside prior 

to failure. This was even more critical for prisms filled 

with a high strength (1:1:2) concrete mix. This suggested 

that the stiff concrete inf ill works as a cleavage forcing 
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the blocks to split before attaining their unfilled block 

compressive strength. 

The stress vs strain curves for the filled 2BP-DPJ 

prisms, (Fig. 4.20), show a reduction in the block 

stiffness compared to the corresponding unfilled prisms. 

This reduction was caused by the high Poisson's ratio of 

the concrete, as explained previously for the filled 2BP-
MJ prisms. 

Fig. 4.21 summarizes the relation between the prism 

strength and the cube compressive strength of the concrete 

for prisms with equal mortar strength, also for prisms with 

dental plaster joints. 

A noticeable dissimilarity was the reduction by a 

factor of 0.75 in the curve for prisms with a mortar joint 

compared to those with a dental plaster joint. This fall 

was primarily caused by the presence of the mortar joint, 

which caused a reduction in the prism strength by 

introducing tensile stresses which were in addition to 

those already in existence as a result of the presence of 

concrete inf ill. These extra tensile stresses result from 

the difference in Poisson's ratio between the concrete 

block and the mortar and was responsible for the 

confinement stresses in the mortar as observed earlier in 

the stress vs strain curves. 

HILSDORF 76  reported a Poisson's ratio for mortar of 

about 0.20 near zero axial strain and 0.50 or more near 

crushing. MAHER and DAVID 75  reported values of 0.20 at 
0.001 axial strain, about 0.30 at 0.002, and greater than 

1.0 near crushing. Such large apparent values of Poisson's 

ratio were probably due to the presence of longitudinal 

cracks in the material rather than a true material 
property. 
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The effect of changing the mortar strength on the 

compressive strength of the filled prism with concrete 

inf ill of almost equal strength is clearly shown in Fig. 

4.22. It can be seen that increasing the mortar strength 

by at least 166.9% produces an increase of only 23.9% and 

3.8% on the compressive strength (26,28,33,36,71) of prisms with 
low and high strength concretes respectively. The reasons 

for the insignificant effect on the prism strength of 

increasing the mortar strength are the same as the ones for 

unfilled 2BP-MJ prism. 

This leads to the conclusion that f 1m  was not actually 
related to a change in mortar strength but to the presence 

of the mortar joint by itself as a plane of weakness. 

can thus be determined by first testing a filled single-

block specimen in a direction parallel to unit bed face 

then, multiplying the compressive strength so found by a 

factor of (0.75). This represents the reduction in prism 

strength resulting from the presence of the mortar joint 

as a plane of weakness. Thus the compressive strength of 

filled 2BP-MJ prisms is govern by: 

0.75 

Fig. 4.23 shows the effect of the h/t (prism height-

to-thickness) ratio on the strength of unfilled and filled 

single-block specimen and 2BP-DPJ prisms with the same 

concrete inf ill strengths, all tested parallel to the bed 

face. It can be seen that the strength of almost all two-

block prisms, with h/t = 4.0, was either equal or greater 

than the corresponding single-block specimens with h/t = 
2.0 (36,71). This is contrary to the well known reduction in 

strength with height for masonry prisms laid in stack-bond 

and compressed normal to the bed face. No clear explanation 
was found to this behaviour. 
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4.5 DISCUSSION OF THEORETICAL RESULTS 

The discussion is divided into four major sections. 

The first section is a general discussion of the common 

features of the results of the specific analysis and 

parametric study analysis. The second section deals with 

the results of the two-dimensional linear FEA and the 

effect of using the steel bearing plate. The third and 

fourth sections present the results of the non-linear 

three-dimensional FEA for unfilled and filled 2BP-MJ prisms 
respectively. 

4.5.1 	General 

The contour plots for the linear two-dimensional FEA 

presented in this investigation are for 1/2 prism model. 

While the colour contour plots for the non-linear three-

dimensional FEA of deformation and stress are for 1/4 prism 

model. By symmetry the other 1/2 or 3/4 of the prism should 

have similar distribution of deformation and stress as the 
one for the 1/2 or,  1/4 prism model respectively. In the 

three-dimensional colour contour plots the lines of contact 

between the different colours represents the value of the 

contour and each individual colour represents a range of 

values. These are explained by boxes of the fill colour, 

the associated contour value being annotated at the colour 
interface. 

In general, it was found that an understanding of the 

contour plots of the prisms deformation in the Y-, X- and 

Z-directions is important in obtaining a clear picture of 

how the stresses are distributed throughout the prisms. 

The contour plots of the direct horizontal stresses in 

the X- and Z-directions show confinement stresses located 
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near the steel platens of the machine. These stresses have 

a limited effect on the rest of the prism and mainly result 

from differences in material properties of the blocks and 

the stiff steel platens. These in turn produced confinement 

stresses on the blocks 26'5581'82'83'84 . This suggests that the 

unfilled and filled two-block masonry prisms can be used as 

standard test specimens to determine i'm' in situations 
where high in-plane horizontal forces are expected. 

4.5.2 	Elastic Linear PEA for Unfilled 2BP-NJ Prism 

The specific level of vertical stress applied to the 

unfilled 2BP-MJ prism in the two linear FEA was 8.86 N/mm2 . 
This value was derived experimentally as the average 

strength of three unfilled 2BP-HJ prisms constructed with 

high strength (1:0.25:3) mortar (Table 4.1). 

Applying the vertical stress directly to the top of 
the 2BP-HJ prism was found to give unrealistic results. 

This was clearly shown by the magnified deformed shape 

(Fig. 4.24 (i)). The figure shows a simply supported beam 
action 333  created at the top side of prism, with an 

excessively high vertical deformation and unacceptably high 

elastic tensile and shear stresses (35.03 N/mm2  and 21.17 
N/mm2  respectively) (Figs 4.25 (i) and (ii)), compared to 

the allowable ultimate tensile and shear stresses given by 
the ACI 318M-83(74) which are: 

fct = 0.58 	 ... (4.3) 
f 

CV 
= 0.18 	b)112 	 ...(4.4) 

On the other hand, applying the vertical stress using 

an 88 mm thick steel bearing plate gave a more realistic 

result, with no indication of high deformation (Fig. 4.24 

(ii)) or high tensile and shear stresses (5.92 N/mm2  and 
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14.42 N/mm2  respectively) (Figs 4.26 (i) and (ii)) 

All other prisms analysed were loaded with a steel 

bearing plate and non-linear material properties were used 
throughout. 

4.5.3 	Plastic Non-Linear PEA for Unfilled 2BP-14J Prism 

4.5.3.1 Analysis of prism with specific level of vertical 
stress 

The specific level of stress applied to the unfilled 

2BP-MJ prism in this non-linear analysis was 8.86 N/mm2 . 
This value is similar to the value 'derived experimentally 

for prisms built with high strength (1:0.25:3) mortar 
(Table 4.1). 

Prism Deformation 

The contour plot of the prism deformation in the Y-

direction (Fig. 4.27) shows that the prism top surface 

shortens with a maximum cumulative vertical deformation of 

0.817 mm with respect to the fixed prism bottom surface. 

The contour plot of the prism horizontal deformation in the 

X-direction (Fig. 4.28) shows that there is a greater 

tendency for the block side shells near the mortar joint to 

deform outward, with a maximum deformation of 0.050 mm, 

than near the machine platens. Also shown is the tendency 

of the mortar joint to deform inward with a maximum 

deformation of 0.020 mm. The way in which the prism 

deformed in the X-direction suggests that using a weaker 

mortar joint results in a higher outward deformation in the 

X-direction and consequently higher compressive and tensile 

stresses to the inside and outside faces of the block side 
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shells respectively. On the other hand, the contour plot of 

the prism deformation in the Z-direction (Fig. 4.29) shows 

a greater tendency for the prism side shells to deform 

outward between the prism webs, with a maximum deformation 

of 0.036 mm, near the mortar joint. The way in which the 

prism deformed horizontally is affected by the high 
plasticity of the mortar joint. 

Comparing the maximum vertical deformation obtained 

from the non-linear analysis with that obtained from the 

linear analysis with steel bearing plate, it was found that 

the former is 59.7% higher than the latter. This large 

difference reflects the importance of using non-linear 

material properties in the analysis of blockwork masonry 
assemblages. 

Stresses in the Block Material 

The contour plots of the direct stresses in the block 

material in the Y-, X- and Z-directions are shown in Figs 

4.30, 4.31, and 4.32 respectively. The contour plots of the 

major and two minor principal stresses are given in Figs 

B.l, B.2 and B.3 (Appendix B) respectively. 

The contour plot of the direct vertical stress in the 

Y-direction shows that the maximum compressive vertical 
stress, 30.90 N/mm2 , is located at the inner faces of the 
block side shells as would be expected from the way the 
prism deformed in the X-direction. The figure also shows 
some tensile vertical stresses, with a maximum value of 
2.17 N/mm2, at the inner faces of the block end shells near 
the mortar joint. These tensile vertical stresses are the 

result of the plasticity of the mortar joint, where by the 

block end shells near the mortar joint lift up as the 
mortar under the prism side shells squeezes. 
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The contour plot of the direct horizontal stress in 

the X-direction shows that the maximum tensile stress, 7.80 

N/n 2  un , is located at the inner faces of the block end shells 

near to the mortar joint. The reason for this is similar to 

the reason for the tensile vertical stresses., The contour 

plot of the direct horizontal stress in the Z-direction 

shows that the maximum tensile stress, 4.28 N/mm2, covers 
most of the prism webs and a small area on the prism side 

shells. The tensile stresses in the Z-direction at the 

block end shells near to the mortar joint, result from 

differences in the mechanical properties between the fine 

sand mortar joint and the coarse aggregate concrete blocks. 

No tensile stresses were observed near the mortar joint in 

the X-direction. 

The contour plots of the principal stresses (Appendix 

B) show a higher tensile stress, 4.27 N/mm2  (MST1), on the 
prism mid-webs and some of the prism side shells (Fig. B.2) 

and 8.91 N/mm2  (MST2), on the inner faces of the block end 
shells near the mortar joint (Fig. B.3). 

The distribution of the horizontal and principal 

stresses suggests that the prism has a greater tendency to 

split vertically along the prism side shells rather than 

the mid-webs. 

Fig. 4.33 shows the contour plot, of the maximum shear 

stress in the block material. The figure shows high shear 

stresses at the prism side shells with a maximum value of 
12.54 N/mm2. This value is quite high compared to that 
suggested by the ACI code for concrete given by Eqn. 4.4. 

The distribution of the maximum shear stress suggests that 

the prism side shells tend to shear from the prism webs. 

Although the stress results are quite high as compared 

to the allowable stresses, the results are sufficient to 
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give a clear idea of the way the stresses are distributed 

in unfilled 2BP-MJ prisms, subjected to axial load in a 

direction parallel to the unit bed face. 

Despite the 59.7% increase in the vertical deformation 

of the prism from the non-linear analysis, compared to the 

linear analysis, the increase of 11.2% in the maximum 

tensile stress in the X-direction and the decrease of 13.5% 

in shear stress is small compared to the high increase in 

deformation. This result emphasizes again the importance of 

material non-linearity in the analysis of blockwork masonry 
assemblages. 

Stresses in the Mortar Material 

The contour plots of the direct stresses in the mortar 

joint in the Y-, X- and Z-directions are shown in Figs 

4.34, 4.35, and 4.36 respectively. The contour plots of the 

major and two minor principal stresses are given in Figs 

B.4, B.5 and B.6 (Appendix B) respectively. 

The contour plot of the direct vertical stress in the 

Y-direction shows that the highest vertical stress is 

located at the outer faces of the mortar joint, with a 
maximum value of 24.02 N/mm2. This value tends to decrease 
towards the centre of the mortar joint where it changes to 
a tensile stress of 2.19 N/mm2. The vertical stresses at the 
mortar joint are distributed as expected, since the 

vertical stresses transfer to the mortar joint through the 

prism side shells. The high vertical stresses at the outer 

faces of the mortar joint are consistent with the observed 

mode of failure for all the unfilled 2BP-HJ prisms, in the 

experimental investigation, where by the first sign of 

local crushing occurred at the outer faces of the mortar 
joint. 
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A clear similarity was observed in the distribution of 

the direct horizontal stresses in the X- and Z-directions. 

Both horizontal stresses show that the mortar joint is 

subjected to confinement stresses in the X- and Z- 
directions with maximum values of 7.54 N/mm2  in the X-
direction and 7.13 N/mm 2  in the Z-direction. These maximum 
stresses are located at the outer faces of the mortar joint 

and tend to reduce towards the centre of the mortar joint. 

There the stresses become tensile, with maximum values of 
0.074 N/mm2  in the X-direction and 0.63 N/mm2  in the Z-
direction. The confinement stresses are caused by 

differences in the deformational characteristics of the 

soft mortar joint and the stiff concrete blocks. The 

tensile stresses result from a tendency for the mortar to 

deform inward due to uplift of the block end shells near 
the mortar joint. 

Fig. 4.37 shows the contour plot of the maximum shear 

stress at the mortar joint. The figure shows that the 
maximum value, 8.75 N/mm2 , is located at the outer faces of 
the mortar joint. This value of shear stress tends to 

decrease towards the centre of the mortar joint. The 

location of the highest shear stresses at the mortar joint 

is in good agreement with the location of these stresses 

in the block material. This means that the outer faces of 

the mortar joint work as part of the prism side shells. 

Also, both sheared to the outside at failure. 

All the contour plots of stresses at the mortar joint 

discussed so far, show a non-uniformity in their 

distribution, with high stresses at the outer faces of the 

mortar joint and almost zero stress at the inner face. This 

non-uniformity is attributed to the shape of the block and 
the way in which it is loaded"','". 
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4.5.3.2 	Parametric study analysis 

The level of vertical stress applied to the unfilled 
2BP-14J prisms for the parametric study was 8.34 N/mm 2  which 
is the average experimental value of compressive strength 

for prisms built with low strength (1:1:6) mortar. 

In order to examine the effect of changing the mortar 

type on the prism deformations and stresses, the parametric 

study was conducted by fixing the applied level of vertical 

stress and changing the types of mortar joint for the 

unfilled 2BP-MJ prisms to low (1:1:6), medium (1:0.5:4.5) 

and high (1:0.25:3) strength. 

The effect of changing the type of mortar on the prism 

deformation is clearly shown by the contour plots for the 

horizontal deformation in the X-direction (Figs 4.38, 4.39 

and 4.40) and in the Z-direction (Figs 4.41, 4.42 and 4.43) 

for prisms built with low, medium and high strength mortar 

joints respectively. The figures show that the horizontal 

deformations, in prisms built with a low strength mortar 

joint, are mainly located at the joint as inward and 

outward squeezing of the joint. On the other hand, prisms 

built with medium or high strength mortar joints show that 

the horizontal deformations exist over most of the prism 
side shells and webs.. 

Tables 4.2 and 4.3 give the results of the maximum 

values of deformations and stresses respectively for the 

unfilled 2BP-MJ prisms, as derived from the parametric 

study analysis. Table 4.2 provides the results of the 

maximum values of the deformations in the Y-, X- and Z-

directions; the level of vertical stress applied during the 

parametric study analysis; the average experimental 

compressive strength of the prisms and the cube compressive 

strength of the different types of mortar. Table 4.3, on 
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the other hand, gives the maximum values of direct, shear 

and principal stresses in each individual material. 

To assess the effect of changing the cube compressive 
strength of mortar on the maximum values of deformation and 

stress in the prisms, the results of the parametric study 

were plotted in an X-Y plotter. The X-axis represent the 

cube compressive strength of the mortar and the Y-axis 

represent the prism maximum values of deformation or 

stress. 

The effect of increasing the cube compressive strength 

of mortar on the prism deformation in the Y-, X- and Z-

directions is shown in Fig. 4.44. The figure shows that the 

prism vertical deformation decreases by 5.4% as a result of 
changing the mortar strength from 7.27 to 19.40 N/mm2. The 
reason for the small effect on deformation as the mortar,  

strength increases is the insignificant thickness of the 
mortar joint compared to the block (1/39)(1.26). 

For the same range of mortar strength, the prism 

deformations in the X- and Z-directions show that the 

prism's outward horizontal deformation decreases by 20.59% 

in the X-direction and by 71.1% in the Z-direction, as the 

mortar strength increases. On the other hand, the prism's 

inward horizontal deformation decreases by 58.8% in the X-

direction and is almost constant, (0.005 mm), in the Z-

direction. Table 4.2 shows that, for a prism built with low 

strength mortar joint, the outward horizontal deformation 

in the Z-direction is higher by 92.8% than that in the X-

direction. For prism built with a high strength mortar 

joint, the outward horizontal deformation in the X-

direction is 28.2% greater than that in the Z-direction. 

For a prism built with a medium strength mortar, little 

difference exist. The outward deformation in a prism built 

with low strength mortar is mainly located at the mortar 
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joint. In prisms built with medium or high strength 

mortars, most of the outward deformation is in the prism 
side shells. 

Although the values of stress differ, the stress 

distributions for all the prisms analysed in this 

parametric study are similar to the contour plots of 

stresses for prisms analysed using the specific analysis. 

Information on how these stresses are distributed is given 

in the relevant contour plots of stresses from the specific 
analysis. 

Figs 4.45 0, 4.46 and 4.47 show the effect of changing 
the cube compressive strength of the mortar on the maximum 
values of direct stress in the Y-, X- and Z-directions 
respectively. Fig. 4.45 shows that the vertical stress in 

the Y-direction, in the block material and mortar joint, 

increases by 0.6% and decreases by 7% respectively as a 

result of changing the mortar strength from 7.27 to 19.04 
N/mm2. A prism analysed with medium strength (1:0.5:4.5) 
mortar joint shows similar percentages of increase and 

decrease in the vertical stresses as for a prism built with 

high strength (1:0.25:3) mortar joint. These small 

percentage changes in stresses support the Conclusion, 

derived previously, that the mortar joint has no 

significant effect on the prism strength. This is due to 

the small ratio of mortar thickness to block (1/39)(1, 26,28,33) 

also to the high confinement of the mortar joint by the 
stiff blocks. 

Fig. 4.46 shows that the confinement stress in the X-

direction, at the mortar joint, decreases by 64.8% as a 

result of changing the mortar strength from 7.27 to 19.04 
N/mm2. For the same range of mortar strengths, the tensile 

stress at the block material decreases by 35.7%. As shown 

in Fig. 4.31, the maximum tensile stress at the block 
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material in the X-direction is not caused by mortar 

confinement but the result of uplifting of the blocks end 

shells near the mortar joint. 

Similarly, the confinement stress, in the Z-direction, 

(Fig. 4.47), at the mortar joint decreases by 66.6% and the 

tensile stress in the block material decreases by 15.9%, as 

the mortar strength increases. As shown in Fig. 4.32, some 

of the high tensile stresses at the block material, in the 

Z-direction, are caused by mortar confinement. 

The decrease in the horizontal stresses as the mortar 

compressive strength increases is expected since increasing 

the mortar compressive strength decreases the plasticity of 

the mortar joint. 

The results also show that the horizontal tensile 

stresses in the X-direction, at the block material, are 

higher by 136.3%, 93.3% and 80.8% than in the Z-direction, 

for prisms built with low, medium and high strength mortar 

joint respectively. Similarly, the results of the maximum 

values of minor principal stresses show an increases of 

149.1%, 106.5% and 107.4% between the tensile stresses 

caused by uplifting of the blocks end shells and mortar 
confinement. 

The results of the horizontal stresses suggest that 

changing the mortar compressive strength has little 

influence on the compressive strength of unfilled 2BP-HJ 

prisms. They also suggest that the prism has more tendency 

to split along the prism side shells rather than the prism 

webs. 

Fig. 4.48 shows the effect of changing the cube 

compressive strength of the mortar on the maximum values 

of shear stress. The figure shows that the shear stress at 
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the block material and the mortar joint decreases by 1.5% 

and increases by 99.3% respectively, as a result of 

changing the mortar strength from 7.27 to 19.04 N/mm2. The 
high increases in shear stresses at the mortar joint 

suggest that the mortar attempts to behave in a similar 

manner to the block material. The shear stress results show 

again that changing the mortar compressive strength has 

little effect on the unfilled prism strength. 

To sum up the effect of changing the cube compressive 

strength of mortar from 7.27 to 19.04 N/mm2  on the 
compressive strength of unfilled prisms. It seems that the 

effect is not so great, since increasing the mortar 

strength has little effect on the major principal stresses 

and has only resulted in decreasing' the tensile stresses. 

Due to the complex nature of the deformations and 

stress distributions in unfilled prisms the general 

conclusion derived from the results of the specific and the 

parametric study analyses is that the failure of unfilled 

2BP-HJ prisms is dominated by localized crushing, splitting 

and shear failures. It is expected that the unfilled prisms 

will fail due to a combination of compression, tension and 
shear in an abrupt mode of failure. 

The predicted mode of failure for the unfilled prism 

with low strength (1:1:6) mortar joint is as follows: 

First, by localized crushing at the outer faces of mortar 

joint followed by the combination of block crushing and 

shearing near the joint. As the mortar strength increases, 

the possibility of localized crushing increases, either at 

the mortar joint or at the block shells, followed by 

complete disintegration of the prism. 

From the stress values and distributions, the strength 

of unfilled 2BP-MJ prisms will depend on the block unit 
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compressive strength and the mortar type. 

4.5.4 	Plastic Non-Linear PEA for Filled 2BP-MJ Prism 

4.5.4.1 Analysis of prism with specific level of vertical 
stress 

The specific level of vertical stress applied to the 

filled 2BP-MJ prisms in this analysis was 15.26 N/mm2, which 
is the average experimental compressive strength of the 

prisms built with high strength (1:0.25:3) mortar and 

filled with medium strength (1:3:2) concrete (Table 4.1). 

Prism Deformation 

The contour plot of deformation in the Y-direction 

(Fig. 4.49) shows that the prism shortens vertically, with 

a maximum deformation of 0.747 ram at the prism top surface 

with respect to the prism fixed bottom surface. The contour 

plot of the prism horizontal deformation in the X-

direction, (Fig. 4.50), shows a clear tendency for the 

prism side shells to deform outward, with a maximum 

deformation of 0.029 mm between the prism webs. The figure 

shows similar horizontal deformations of the block side 

shells in the vicinity of the mortar joint and the machine 

platens, which is not the case for the unfilled prism. The 

contour plot of the prism horizontal deformation in the Z-

direction (Fig. 4.51) shows that the prism side shells and 

concrete inf ill tend to deform outward in a manner similar 

to the deformation in the X-direction, with a maximum value 

of 0.030 mm. This is similar to the value in the X-
direction. 



The value for the maximum outward horizontal 

deformation of the filled 2BP-MJ prisms, in the X- and Z-

directions are 41.6% and 17.2% less respectively than that 

for the unfilled 2BP-MJ prisms. This suggests that the 

filled prisms are stiffer than the unfilled ones due to the 

presence of the concrete inf ill. 

Stresses in the Block Material 

The contour plots of the direct stresses in the block 

material in the Y-, X- and Z-directions are shown in Figs 

4.52, 4.53, and 4.54 respectively. The contour plots of the 

major and two minor principal stresses are given in Figs 

B.7, B.8 and B.9 (Appendix B) respectively. 

The contour plot of the direct vertical stress in the 

Y-direction shows that a maximum vertical stress value of 

26.51 N/mm2  is located at the prism bottom corner, near to 

the machine platen. The rest of the block shells are under 

a uniform stress ranging from 15.28 to 19.09 N/mm2 , with 
the exception of the inner faces of the blocks shells, 
where the compressive stress reaches a value of 22.91 
N/mm2. The high compressive stress at the inner faces of 

the block shells, is due to the way the prism deformed in 
the X-direction. 

The distribution of vertical stress suggests that the 

prism side shells take a higher vertical stress than the 

prism mid-webs. This means that the concrete inf ill is not 

stiff enough as compared to block shells to transfer the 

vertical stresses to the prism mid-webs. 

The contour plots of the direct horizontal stresses in 

the X- and Z-directions show that the prism end shells are 
under confinement stresses near the steel platens, with a 
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maximum value of 10.37 N/mm2  in the X- and Z-directions. 
The maximum tensile stress value of 2.49 N/mm2, in the X-
direction, is located at the prism mid-webs and the outer 

faces of the prism shells, between the prism webs. The 

tensile stresses at the prism mid-webs result from the 

confinement of the concrete inf ill by the blocks. The 

tensile stresses at the prism side shells result from the 

outward deformation of the concrete. Both tensile stresses 

are caused by the high value of Poisson's ratio of the 

concrete. The direct stress in the Z-direction shows that 
the maximum tensile stress of 2.66 N/mm2  is located at the 
prism mid-webs and side shells. The reason for these 

tensile stresses is similar to that which caused tensile 
stresses in the X-direction. Some of the horizontal tensile 

stresses in the X- and Z-directions, at the block end 

shells near the mortar joint, result from mortar 
confinement by the stiff blocks. 

In considering the equilibrium of horizontal stresses 

in any cross-section, at the mortar joint, for filled 2BP-
14J prisms, the assumption that the horizontal tensile 
stresses are uniformly distributed (29,32,33,38) 

is justified. 

The contour plots of the minor principal stresses 

(Appendix B) show higher tensile stresses of 2.48 N/mm2  
(MST1), on the prism mid-webs (Fig. B.8) and 2.66 N/mm2  
(MST2), on the prism side shells (Fig. B.9). These values 

of tensile stresses are coincidentally similar to the 
tensile stresses in the X- and Z-directions. Both values 
of maximum tensile stress are higher than the experimental 

value of ultimate tensile strength for block material (2.16 
N/mm2) (see Table 3.9). This suggests that the filled prism 

has a similar tendency to split along the prism mid-webs 
and side shells. 

Fig. 4.55 shows the contour plot of the maximum shear 
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stresses in the block material. The figure shows high shear 

stresses at the prism side shells, with a maximum value of 

9.68 N/mm2. This value is quite high compared to the value 
suggested by the ACI code for concrete as given by Eqn. 

4.4. The distribution of the shear stresses suggests that 

the prism side shells tend to shear from the prism webs. 

Stresses in the Concrete Material 

The contour plots of the direct stresses in the 

concrete material in the Y-, X- and Z-directions are shown 

in Figs 4.56, 4.57, and 4.58 respectively. The contour 

plots of the two minor and one major principal stresses are 

given in Figs B.lO, B.11 and B.12 (Appendix B) 

respectively. 

The contour plot of the direct vertical stress in the 

Y-direction shows that most of the higher values of 

vertical stress are located at the contact areas between 

the block webs and concrete infill. The vertical stresses 

are almost uniformly distributed, ranging from 11.58 to 

14.94 N/mm2 . 

The contour plots of the direct horizontal stresses in 

the X- and Z-directions, are affected by the high localized 

vertical stresses at the contact areas between the block 

webs and concrete inf ill. Both horizontal stresses show 

high confinement stresses at the contact areas, with almost 

similar maximum values in the X-direction (3.23 N/mm2) and 
the Z-direction (3.27 N/mm2). These confinement stresses 

tend to reduce away from the contact areas, changing to 

tensile stresses with a maximum value of 0.93 N/mm2  in the 
X-direction, and 0.57 N/mm2  in the Z-direction. 

The explanation for the way the horizontal stresses 
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are distributed is as follows: 

Since the concrete mt ill under compression tries to 
deform outward, due to its high Poisson's ratio, the blocks 
try to restrict this movement. This restriction sets up 
confinement stresses in the concrete and tensile stresses 
in the blocks 

The contour plots of the minor principal stresses 

(Figs B.11 and B.12) show similar values of maximum 

stresses and of stress distribution to the horizontal 

stresses in the X- and Z-directions. 

The contour plot of maximum shear stress (Fig. 4.59) 

shows that the highest value of shear stress, 6.81 N/mm2 , 

is located at the centre core of the concrete inf ill. This 

stress tends to reduce towards the outer faces of the 

concrete infill. The distribution of maximum shear stresses 

suggests that the concrete tries to shear to the outside 

leaving an undisturbed central core in the middle. 

Stresses in the Mortar Material 

The contour plots of the direct stresses in the mortar 

joint in the Y-, X- and Z-directions are shown in Figs 

4.60, 4.61, and 4.62 respectively. The contour plots of the 

major and two minor principal stresses are given in Figs 

B.13, B.14 and B.15 (Appendix B) respectively. 

The contour plot of the direct vertical stress in the 

Y-direction shows that the maximum value, 18.68 N/mm2 , is 
located at the outer faces of the mortar joint. This value 

tends to decrease towards the centre of the mortar joint, 

reaching a value of 13.21 N/mm2. The difference in the 
values of vertical stress between the outer faces and the 
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centre of the mortar joint suggests that the concrete 

inf ill is not sufficiently stiff to transfer the applied 

vertical stress to the mortar joint, when compared to the 
stiffness of the block material. 

The distribution of vertical stresses in the mortar 

joint shows more uniformity in the filled 2BP-MJ prisms 
than in the unfilled prism. It is also noted that the value 

of the maximum vertical stress in filled prisms is 22.2% 

lower than in the unfilled prisms. The reason for these 

differences is the presence of the concrete which affects 

the distribution of the vertical stresses by carrying some 

of the applied vertical stress from the block shells and 
mortar joint. 

The contour plots of the direct horizontal stresses in 
the X- and Z-directions show higher confinement stresses 

at the outer faces of the mortar joint in areas of high 

vertical stresses. The maximum confinement stress value of 
4.75 N/mm2  is obtained in the Z-direction. This value is 
33.3% lower than the value obtained in the unfilled prism. 

A greater uniformity in the distribution of the horizontal 

stresses is observed in the filled prisms compared to the 

Unfilled ones. These confinement stresses again result from 

differences in deformational characteristics between the 

soft mortar joint and the stiff concrete blocks. 

Based on the way the horizontal stresses at the mortar 

joint are distributed and also their maximum values, it 

seems that the mortar joint has little effect on the 

compressive strength of filled prisms(' 26,28,33,35,36,71). 

Fig. 4.63 shows the contour plot of the maximum shear 

stress in the mortar joint. The figure shows that the 
maximum shear stress, 7.18 N/mm2 , is located at the outer 
faces of the mortar joint in areas of higher vertical 
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stress. This stress tends to reduce towards the centre of 
the mortar joint. 

4.5.4.2 	Parametric study analysis 

The level of vertical stress applied to the filled 

2BP-MJ prisms for the parametric study was 11.26 N/mm2 , 
which is the average experimental compressive strength of 

prisms built with high strength (1:0.25:3) mortar and 

filled with low strength (1:5:2) concrete. This level of 

vertical stress was kept constant on the prism, while the 

concrete material was changed to low (1:5:2), medium 

(1:3:2) and high (1:1:2) strength to study the effect of 

changing the concrete strength on the maximum values of 

deformation and stress in the prism. 

The effect of increasing the cube compressive strength 

of concrete on the prism deformations is shown by the 

contour plots for the horizontal deformations in the X-

direction (Figs 4.64, 4.65 and 4.66) and in the Z-direction 

(Figs 4.67, 4.68 and 4.69), for prism filled with low 

(1:5:2), medium (1:3:2) and high (1:1:2) strength concrete 
respectively. 

The figures show that the horizontal deformations in 

the X- and Z-directions for prisms filled with low or 

medium strength concrete is an outward deformation limited 

to areas between the prism webs. For prisms filled with 

high strength concrete, it is an outward deformation all 

over the prism height and between the machine platens. This 

type of deformation is usually featured in solid prisms 

made of one type of concrete material. 

Tables 4.4 and 4.5 give resultsof the maximum values 

of deformations and stresses respectively for the filled 
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2BP-MJ prisms, as derived from the parametric study 

analysis. Table 4.4 provides the results of the maximum 

values of deformations in the 1-, X- and Z-directions; the 
level of vertical stress applied during the parametric 

study; the average experimental compressive strength of the 

prisms and the cube compressive strength of the different 

concrete inf ill mixes. Table 4.5, on the other hand, gives 

the maximum values of direct, shear and principal stresses 
in each individual material. 

The effect of increasing the cube compressive strength 

of concrete on the prism deformations is shown in Fig. 

4.70. The figure shows that the prism vertical deformation 

decreases by 53.2%, as a result of changing the concrete 
strength from 4.97 to 39.44 N/mm2; Similarly, the prism 
outward horizontal deformation decreases by 70%, in both 

the X- and Z-directions, as the concrete strength 

increases. The only prism which shows a small inward 

deformation of 0.006 mm at the mortar joint is the filled 

prism with low strength concrete. 

The decreases in the vertical and horizontal 

deformations as the concrete strength increases, are due 

to the increase in prism stiffness as a result of using a 
stronger concrete. 

Although the values of stress differ, the stress 

distributions for all the prisms analysed in this 

parametric study are similar to the contour plots of 

stresses for prisms analysed using the specific analysis. 

Information on how these stresses are distributed is given 

in the relevant contour plots of stresses from the specific 
analysis. 

Figs 4.71, 4.72 and 4.73 show the effect of changing 

the cube compressive strength of the concrete on the 
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maximum values of direct stress in the Y-, X- and Z-

directions respectively. Fig. 4.71 shows that the vertical 

stress in the block material and mortar joint decreases by 

49.5% and 45.5% respectively as a result of changing the 

concrete strength from 4.97 to 39.44. N/mm2. On the other 
hand, the vertical stresses in the concrete inf ill increase 

by 45.5% as the concrete strength increases. 

This suggests that as the concrete strength increases, 

the applied vertical stress starts shifting from the block 

material to the concrete. The figure also shows that when 

the cube compressive strength of concrete is approximately 

equal to 39.44 N/mm2  (this strength is 62.4% higher than 
the cube compressive strength of the block material), the 

vertical stresses in all the prism materials are almost 

uniform ranging from 10.10 to 14.90 N/mm2. This suggests 
that the deformational characteristics of both materials 
are almost the same. 

Fig. 4.72 shows that the confinement stress in the X-

direction in the mortar joint decreases by 44% and in the 

concrete, by 47.5%, as result of changing the concrete 

strength from 4.97 to 39.44 N/mm2. On the other hand, the 
tensile stresses in the block material decrease by 83% as 

the concrete strength increases. The decrease in the 

confinement stress, in the mortar joint, was due to the 

shifting of the high vertical stresses from the prism 

shells to the concrete inf ill as the compressive strength 

of the concrete increases. Decrease in the confinement and 

tensile stresses in the concrete inf ill and block material 

respectively as the concrete strength increases are the 

result of the reduction in the concrete inf ill Poisson's 
ratio. 

Similarly, the maximum values of confinement stress in 

the Z-direction (Fig. 4.73), decreases by 42.1% in the 
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mortar joint and by 44.2% in the concrete inf ill, whilst 

the tensile stress in the block material decreases by 

78.3%, as the concrete strength increases. The reasons for 

all these reductions are similar to those discussed for the 
stresses in the X-direction. 

The results of the horizontal stresses in all the 

materials show small differences between the stresses in 
the 	X- and Z-direct ions. Similarly, no difference is 

observed between the minor principal stresses. 

Fig. 4.74 shows the effect of changing the cube 

compressive strength of concrete on the maximum values of 

shear stress. The figure shows that the shear stress in the 

block material and the mortar joint, decreases by 43.4% and 

47.4% respectively as a result of changing the concrete 

strength from 4.97 to 39.44 N/mm2. On the other hand, the 
shear stress in the concrete infill, increases by 87.6% as 

the compressive strength of the concrete increases. 

To sum up the effect of changing the cube compressive 

strength of concrete from 4.97 to 39.44 N/mm2  on prism 
strength. it seems that the prism strength increases as the 

concrete inf ill strength increases. This is a result of 

shifting the applied vertical stress from the block 

material to the concrete inf ill, and consequently a greater 

contribution from the concrete inf ill to the strength of 

the prism. An optimum prism strength will be achieved when 

the deformational characteristics of all materials are the 
same. 

Due to the complex nature of the deformations and the 

stress distributions in the filled 2BP-HJ prisms. The 

general conclusion derived from the results of the specific 

and the parametric study analyses, is that the failure of 
filled 2BP-MJ prisms is dominated by localized crushing, 
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splitting and shear failures. it is concluded that the 

filled prisms fail due to a combination of compression, 

tension and shear modes of failure. 

The predicted mode of failure for the filled 2BP-HJ 

prisms with low or medium strength concrete is dominated 
by 	block shell-concrete inf ill separation and lateral 

deformation with some block shells, mortar and concrete 

inf ill crushing near the mortar joint. Prisms filled with 

high strength concrete fail by crushing of the block shells 

and concrete inf ill simultaneously. But as shown in the 

experimental investigation, high strength concrete inf ill 

works as a cleavage by forcing the blocks to split before 

attaining their unfilled block compressive strength. 

Based on the stress values and distributions, it would 
appear that the strength of filled 2BP-HJ prisms, does not 
depend on the block unit compressive strength and the 
mortar type. In order to determine i'm' filled 2BP-MJ prisms 
must be tested. 

In general, a clear similarity exists between the 

predicted modes of failure and the values of stress for the 
unfilled and filled 2BP-143 prisms obtained from both the 
FEA and the experimental investigation. The FEA, however, 

provides a clear picture of the deformations and stress 

distributions for unfilled and filled prisms in the Y-, X_ 
and Z-directions. The FEA also answers several questions 

regarding how the different materials interact with each 

other in axially loaded prisms. These matters are difficult 

to observe experimentally. 
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4.6 CONCLUSIONS 

The ultimate compressive strength for unfilled 

blockwork masonry, f',, in areas where high in-plane 

horizontal forces are expected, should be determined 

by one of the following two methods: 

(1) On the basis of the compressive strength of a 

unit block compressed parallel to the bed face 

and the type of mortar, or by using Eqn. 4.1 for 

the type of blocks used in this investigation. 

Tests on two-block masonry prisms made from the 

same materials as those to be used in the actual 

construction and compressed parallel to the unit 

bed face. 

The ultimate compressive strength for filled blockwork 
masonry, f 'm'  in areas where high in-plane horizontal 
forces are expected, should be determined by one of 

the following methods: 

(i) Testing a single-block specimen filled with the 

same concrete as that used in actual 

construction, in a direction parallel to the unit 

bed face, then multiplying the specimen's 

compressive strength by a reduction factor of 

0.75 (Eqn. 4.2), which represents the reduction 

caused by the presence of the mortar joint. 

Testing two-block masonry prisms built from the 

same materials as those to be used in the actual 

construction and compressed parallel to the unit 

bed face. 

3. 	The presence of the mortar joint in unfilled prisms 
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caused a small reduction in the prism compressive 

strength compared to unfilled prisms with dental 

plaster joint. Increasing the mortar strength by at 

least 166.9% produces an increase of only 6.2% on the 

compressive strength of unfilled prisms. This was 

mainly due to the insignificant ratio of the mortar 

joint thickness to the block height (1/39), and also 

due to confinement of the mortar by the stiff blocks. 

Most of the unfilled prisms with a mortar joint failed 

at a compressive strength higher than the mortar cube 

strength. This suggests that the mortar strength in a 

joint is apparently higher than the mortar cube 

strength. This is due to the relatively small mortar 

thickness compared to the unit height, and the 

confinement of the mortar by the stiff concrete 

blocks. 

The presence of concrete inf ill significantly reduced 

the compressive strength of all the two-block prisms 

with mortar or with dental plaster joint as compared 

to unfilled prisms. The best compressive strength 

result was achieved when the deformational 

characteristics of the concrete inf ill matched those 

of the concrete block. 

A 	stiff concrete inf ill works as a cleavage 

forcing the blocks to split before attaining their 

unfilled block compressive strength. The extent of 

reduction in strength of all prisms filled with stiff 

concrete inf ill is similar to the ones filled with 

soft concrete inf ill. 

The presence of the mortar joint in the filled prisms 

caused a reduction by a factor of 0.75 in the prism 

strength as compared to the ones with dental plaster 
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joint. This reduction resulted from the high Poisson's 

ratio of the mortar near ultimate load, compared to 

that of the concrete blocks. This was responsible for 

introducing confinement stresses in the mortar and 

producing splitting stresses in the blocks. 

Increasing the mortar strength by at least 166.9% 

produces an increase of only 23.9% and 3.8% on the 

compressive strength of prisms with low and high 

strength concretes respectively. This was due to the 

insignificant ratio of mortar joint thickness to 

height of the block (1/39) and mortar confinement by 
the stiff blocks. 

The strength of two-block prisms, with a value of h/t 

= 4.0, are surprisingly, higher than the corresponding 

single-block specimens with a value of h/t = 2.0. 

In the finite element analysis of any masonry element 

subjected to compressive stress, steel bearing plates 

should be used to apply the stress to the element. 

Otherwise excessive high deformation and unacceptable 

high tensile and shear stresses will, results at the 

location of the applied stress. 

The finite element analysis shows that the effect of 

the machine platens is limited to areas near these 

platens. Thus, using unfilled and filled two-block 

prisms as a standard specimen to determine f 
1m in areas 

where high in-plane forces are expected is acceptable. 

Despite the 59.7% increase in the vertical deformation 

of the unfilled prism from the non-linear analysis, 

compared to the linear analysis, the increase of 11.2% 

in the maximum tensile stress in the X-direction and 

the decrease of 13.5% in shear stress is small 
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compared to the high increase in deformation. This 

reflects the importance of the materials' non-

linearity in the analysis of blockwork masonry 

assemblage. 

The results of the finite element analysis show that 

changing the mortar compressive strength has little 

influence on the compressive strength of an unfilled 

prism. Also, the prism has a greater tendency to split 

along the prism side shells than through the prism 

mid-webs. 

In considering the equilibrium of horizontal stresses 

in any cross-section, at the mortar joint, for filled 

2BP-MJ prisms, the assumption that the horizontal 

tensile stresses are uniformly distributed is 

justified. 

As a result of the specific analysis of filled 2BP-MJ 

prism, an explanation of how the concrete blocks and 

inf ill interact with each other in filled prisms is 

presented on page 172. 

The distribution of vertical and horizontal stresses 
in the mortar joints of filled 2BP-MJ prisms are more 
uniform than for unfilled ones. 

The parametric study analysis for filled 2BP-MJ prisms 

shows that as the concrete inf ill strength increases, 

the applied vertical stress starts shifting from the 

block material to the concrete inf ill. The study also 

shows that when the cube compressive strength of 

concrete inf ill is 62.4% higher than the cube 

compressive strength of concrete block the stresses in 

all the prism materials are almost uniform. This 

suggests that the deformational characteristics of 
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both materials are almost the same. 

The parametric study analysis for filled 2BP-MJ prisms 
shows a large reduction (83% and 78.3% in the X- and 

Z-directions respectively) in the tensile stresses in 

the block material as a result of changing the 

concrete inf ill strength from 4.97 to 39.44 N/mm2 . 

The predicted modes of failure and stresses for 

unfilled and filled 2BP-MJ prisms provided by the FEA 

are similar to the ones observed and determined from 

the experimental investigation. The FEA, however, 

provides a clear picture of the deformations and 

stress distributions for unfilled and filled prisms in 
the Y-, X- and Z-directions. The FEA also provides 
information on how the different materials interact 

with each other and how the prisms behave under axial 

compression. This information is difficult if not 

impossible to obtain experimentally. 
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Pig. 4.1 - Typical compression zone in 
reinforced blockwork masonry beam. 
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Fig. 4.2 - Typical stack-bonded 
prism compressed in  

normal to unit bed 

blockwork masonry 
direction 
face. 
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(Block) 

Mortar Joint 

Fig. 4.3 - Typical two-block masonry 
prism compressed in a direction 

parallel to unit bed face. 
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Fig 4.4 - Types of two-block masonry prism 
tested. (i) 2BP-HJ prism, 

(ii) 2BP-DPJ prism. 
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Fig. 4.5 - Idealised stress vs strain curve 
for block material used in FEA. 
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Fig. 4.6 - Idealised stress vs strain curve for 
medium strength (1:3:2) concrete 

used in the FEA. 
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Fig. 4.7 - Idealised stress vs strain curve for 
confined 10 mm high strength (1:0.25:3) 

mortar used in the PEA. 
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Fig. 4.8 - 1/2 prism model used 
in linear PEA. 
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MESH 
USED 

Fig. 4.9 - Two-dimensional mesh used 
in linear PEA. 
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Plane of 
Symmetry 

Plane of 
Symmetry 

Model  

Fig. 4.10 - 1/4 prism model used 
in non-linear FEA. 
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2-3 

Z'~ 

THREE DIMENSIONAL FEA MESH 
USED TO MODEL UNFILLED AND 
FILLED TWO-BLOCK PRISMS. 

Fig. 4.11 - Three-dimensional mesh used 
in non-linear PEA. 
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Fig. 4.12 - Unfilled 2BP-MJ prism after failure, 
mortar strength 19.40 N/nun2. 
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Fig. 4.13 - Unfilled 2BP-DPJ prism after failure. 
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Fig. 4.14 - Filled 2BP-MJ prism after failure, 
mortar strength 19.40 N/nun2  concrete 

strength 22.31 N/mm 
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Pig. 4.15 - Filled 2BP-DPJ prism after failure, 
concrete strength 39.44 N/mm2. 
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Table 4.1 

Compressive strength of two-block prisms 
and component materials. 

Average compressive * Material cube compressive I 
strength (H/iris2) strength (N/iris2) 

Prism Area used S.D. Mortar Infilt 
type Net Gross (N/sin2) 

Prism with a mortar joint (2BP-MJ) • 

Unfilled 22.64 8.34 0.80/0.30 7.27 - 
Unfitted 23.26 8.57 1.01/0.37 10.64 - 
Unfilled 24.04 8.86 1.98/0.73 19.40 - 
Fitted - 9.09 0.35 7.27 4.97 
Filled - 11.05 1.97 7.27 39.44 
Fitted - 11.26 0.34 19.40 4.97 
Fitted - 15.26 0.39 19.40 22.31 
Fitted - 11.47 2.12 19.40 39.44 

Prism with dental pLaster joint (2BP-DpJ) • 
Unfitted 24.09 8.86 2.44/0.90 - 
Filled - 13.09 0.53 - 4.97 
Filled - 21.26 1.71 - 22.31 
Filled - 14.89 0.84 	-- . 39.44 

* 	
Average and S.D. are calculated for three prisms. 

I Cube compressive strength of block material f
b  = 24.29 N/imi2. 

Net area 	= 2089 x 35) 	= 13230 sin2. (Dimensions at section (2)). (See Table 3.2). 
Gross area 	= 190 x 189 	= 35910 sin2  
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Fig. 4.17 - Stress vs strain curves for 
unfilled 2BP-DPJ prism. 
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Fig. 4.18 - Effect of mortar strength on 
unfilled 2BP-14J prism strength. 
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4tj ULTIMATE PRISM STRENGTH 
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STRAINX IO 

Fig. 4.20 - Stress vs strain curves for filled 
2BP-DPJ prism, concrete strength 22.31 N/mm2. 
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25.0 UNFILLED 2BP-MJ AND 2BP-DPJ PRISMS 
0 •  

20.0 

150 0 

5.0 FILLED 2BP-MJ PRISMS 
FILLED 2BP-DPJ PRISMS 

mr = 19.40 N/mm2  
1I 	 I 

0.0 	5.0 	10.0 	15.0 	20.0 	25.0 	30.0 	35.0 	40.0 	45.0 
CONCRETE COMP. STRENGTH (N/mm') 

Fig. 4.21 - Effect of concrete infill strength on filled 
2BP-MJ prisms strength, with almost similar 

mortar strength, and on 2BP-DPJ 
prisms strength. 
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Fig. 4.22 - Effect of mortar strength on filled 
2BP-MJ prisms strength, with almost 

similar concrete strength. 
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Fig. 4.23 - Effect of h/t ratio on 
specimens strength. 
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DEFORMED 
MESH X250 

DEFORMED 
MESH X250 

(i) Without steel 	 (ii) With steel 
bearing plate. 	 bearing plate. 

Fig. 4.24 - Prism deformed shape using 
two-dimensional linear FEA. (i) Without 

steel bearing plate, (ii) With 
steel bearing plate. 
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MAXIMUM 
SHEAR 
STRESS 
(MIrrn2) 

DIRECT 
STRESS IN 
X-DIRECTION 
(N/mm2) 

CONTOUR VALUE 
A 2.647 
B 5.294 
C 7.940 
D 	10.59 
E 	13.23 
F 	15.88 
0 	18.53 
H 	21.17 

CONTOUR VALUE 
A 	0.0 
8 	5.004 
C 	10.01 
D 	15.01 
E 20.02 
F 25.02 
o 30.02 
H 35.03 

Ci) Horizontal stress 
in X-direction. 

(ii) Shear stress. 

Fig. 4.25 - Stress results of two-dimensional 
linear PEA, without steel bearing plate. 
(i) Horizontal stress in X-direction, 

(ii) Shear stress. 
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DIRECT 
STRESS IN 
X-DI RECTI ON 
(N / mm 2) 

MAXIMUM 
SHEAR 
STRESS 
(N/rnrn2) 

CONTOUR VALUE 

A -4.438 
0 -2.959 
C 	-1.479 
O 	0.0 
E 	1.479 
F 	2.959 

4.430 
H 	5.910 

CONTOUR VALUE 
A 	1.802 
0 3.604 
C 	5.407 
0 7.209 
E 	9.011 
F 	10.81 

12.62 
H 	14.42 

(i) Horizontal stress 	 (ii) Shear stress. 
in X-direction. 

Fig. 4.26 - Stress results of two-dimensional 
linear FEA, with steel bearing plate. 
(i) Horizontal stress in X-direction, 

(ii) Shear stress. 
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IlYSTRO, 	9.2-3 DATE: 	(8— 7-90 

UNFILLED PRISM 
C. 	:I 1.000 MORTAR((:3.25:3) 

0.?S30 
1,003 

.10(1 0.8166 DEFORMATION IN 
420 ?—DIRECTION 	(m)NI1ER 

CASE 	ID S 
ALL MATERIALS 

I FPF 	cISP/P0TE 
2 CONTOUR VALUE 

NurTER OF CONTOURS S 
INTERVAL 0.0042 . 	-8.612S 
lAX NODAL VALUE 0.14?9E-33 —8.4084 

MIN NODAL VALUE —0.8166 —8.2842 
0.0 
0.2042 

TITLE: 	UNFILLEQ TWO—BLOCK PRISM 

Fig. 4.27 - Deformation of unfilled 2BP-HJ prism 
in Y-direction, specific non-linear FEA. 
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YID 

SCALE 	1' 	3.962 UNFILLED PRISM
EYE 0-0000D • 	-1.002 MORTAR 	(10.25:3) 
EYE Y-00000 • 	0.7520 - EYE 	Z-00000 	-1.000 
MAX. 	DEFLECTION 	0.2166 DEFORMATION IN 

AT NODE NUMBER • 	420 
U-DIRECTION 	(im 
ALL MATERIALS 

LOAD CASE ID 	S 
TYPE DISP/POTE 
COMPONENT • 	1 	

I 

CONTOUR VALUE 
NUMBER OF CONTOURS • 
INTERVAL 	• 	0.17466-21 
MAX NODAL VALUE 	• 	2.19886-01 746E-8I 
MIN NODAL 	VALUE 	• 	-0.4991E-01 41P1 	0,0 

0.17461-21 
6.34921-el 

Pig. 4.28 - Deformation of unfilled 2BP-MJ prism 
in X-direction, specific non-linear PEA. 

SCALE Il 	3.962 
EYE 3-COORD 	1.030 
EYE Y-0000D 	II. 7620 
EYE Z-COURD 	1.000 
MAX. DEFLECTION 	0.8166 
AT NODE NUMBER 	428 
LOAD CASE 16 	6 
TYPE OISP'POTE 
COMPONENT = 	3 
NUMBER OF CONTOURS - 	5 
INTERVAL 	 0. 907:16 -DX 
MAX NODAL VALUE 
11118 NODAL VALUE 	-0.43616-I43 

UNFILLED FRESH  
MORTAR (1:8.25:3) 

DEFORMATION IN 
Z-DIRECI[ON (mu) 
ALL MATERIALS 

CONTOUR VALUE 

- 5073E-82 
0.18166-81 
8.27226-Oh 
6.36296-01 

I! 

Fig. 4.29 - Deformation of unfilled 2BP-MJ prism 
in Z-direction, specific non-linear PEA. 
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SCAI.E 1/ 	L962 . UNFILLED P111511 
EYE X-COORD 	1.0011 MORTAR 	(10.253) 

EYE Y-CUDRO • 	0.7500 
EYE Z-COORO 	1.000 
LEAD CASE io 	s . DIRECT STRESS IN 
TYPE 	STRE.'FLUX Y-DIRECT ION (N/moD) 

BLOCK MATERIAL ONLY 
COMPONENT - 	2 
NUMBER OF CONTOURS 	S 
INTERVAL 	 2.260 
MAX NODAL VALUE 	2,171 

CONTOUR VALUE 

MIN NODAL VALUE • 	-0.90 . 
-16.51 
-0.260 
9.0 
2.260 

Fig. 4.30 - Direct stress in Y-direction, block material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 

SCALE 1/ 	3.962 
EYE X-COORO • 	1.000 
EYE Y-COQRD 	0.7500 
EYE Z-COORO • 	1.000 
LOAD CASE ID 	S 
TYPE STRE/FLUX 
COMPONENT • 	1 
NUMBER OF CONTOURS • 	S 
INTERVAL 	• 5.167 
MAX NODAL VALUE • 	7,201 
MIN NODAL VALUE • -12.06 

UNFILLED PRISM 
I1ORTAR (10.2S:3) 

DIRECT STRESS IN 
I-DIRECTION (N/mm?) 
BLOCK MATERIAL ONLY 

CONTOUR VALUE 

-10.33 
-5.167 
-0.222CC-IS 
5.167 
10.23 

L 

Fig. 4.31 - Direct stress in X-direction, block material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 
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SCALE 1/ 	3.962 	 UNFILLED P121511 
(10.2S:32 EYE X-COORD • 	1.000 	 MORTAR 

EVE 2-COORD • 8.7500 
(YE Z-COORD • 	I 	

DIRECT STRESS IN LOAD CASE 	• 	 Z-DIRECTION IN'mm2J 
TYPE sIRE'rLux 	 BLOCK MATERIAL ONLY 
COMPONENT • 	3 
NUMBER OF CONTOURS • 	S I  INTERVAL 	• 	4.24 	 CONTOUR VALUE 
MAX NODAL VALUE • 	

-12.86 MIN NODAL VALUE • -12.06 

-8.56? 
IJ -1.084 

0.0 
4.284 

Fig. 4.32 - Direct stress in Z-direction, block material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 

SCALE I 	3.962 
EYE X-COORD 	1.000 
EYE Y-COORD - 8.7500 
EYE 2-COORD - 	1.080 
LOAD CASE ID 	S 
TYPE STIlE/FLUX 
COMPONENT - 10 
NUMBER OF CONTOURS 	U 
INTERVAL 	 3,124 
MAX NODAL VALUE 	12.91 
MIN NODAL VALUE - 0.4914E-01 

UNFILLED PRISM 
MORTAR (I0.253) 

MAXIMUM SHEAR 
STRESS (Nimm2) 
BLOCK MATERIAL ONLY 

CONTOUR VALUE 

3.124 
6.24? 
9.371 
12.19 
1 562 

II 

Fig. 4.33 - Maximum shear stress, block material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 

214 



SCALE I' 	1.888 
EYE X-COOIYO 	1.0110 
EYE Y-COO2O - 0,7500 
ETC Z-00000 • 	1.000 
LOAD CASE ID • 	S 
TYPE SIRE/FLUX 
COMPONENT • 	2 
NUMBER OF CONTOURS 	S 
INTERVAL 	 6.554 
MAX NODAL VALUE • 	2.113 
MIN NODAL VALUE 	-24.02 

UNFILLEDPRISM 
IIORTAR 11:0,25:3) 

DIRECT STRESS IN 
Y-XIRECTIOTI (N/tnm2) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

-19,56 
-13.11 
-6.554 
-8.5661 C-IS 
6.554 

Fig. 4.34 - Direct stress in Y-direction, mortar material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 

SCALE I' 	1.600 
EVE 8-CODRO • 	1.800 
EYE T-00000 • 0.7500 
EYE Z-CODRD 	1.008 
LOAD CASE ID • 	S 
TYPE SIRE/FLUX 
COMPONENT • 	1 
NUMBER OF CONTOURS - 
INTERVAL 	- 	1.903 
MAX NODAL VALUE - 8.?414E-01 00  
MIN NODAL VALUE • -7.536 

UNFILLED PRISM 
MORTAR (1.25:3) 

DIRECT STRESS ON 
I-DIRECTION (VJ'm,,X) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

I

-5.783 
-3.805 
-1.903 
8.8 
1.903 

Fig. 4.35 - Direct stress in X-direction, mortar material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 
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SCALE I' 	1.000 1 
	

UNFILLED PRISM (YE 3-cOORD
EYE Y-COORD 	0.7500 

 .088 	 MORTAR (1:8.253) 

EYE Z-COORD 	1.800 
LOAD CASE ID 	

DIRECT STRESS IN TYPE SIRE/FLUX 	 3 -DIRECTION (N/.m2) 
COMPONENT • 	3 	 MORTAR MATERIAL ONLY 
NUMBER OF CONTOURS 	5 	" 
INTERVAL 	 1.939 	

CONTOUR VALUE MAX NODAL VALUE • 8.6328 
1138 NODAL VALUE • -7.I2S 	

-5.818 

j

- 
-3.878
1.939 

.939 

Fig. 4.36 - Direct stress in Z-direction, mortar material 
of unfilled 2BP-MJ prism, specific 

non-linear FEA. 

SCALE I' •I.08 
EYE X-COORO • 	1.800 
EYE Y—COORD

: 
 0,7500  

EYE Z—COURO 	1.000 
LOAD CASE 10 	S 
TYPE 57RE/FLUX 
COMPONENT • 	10 
NUMBER OF CONTOURS • 	5 
INTERVAL 	• 2.882 
MAX NODAL VALUE - 	8.763 
MIN NODAL VALUE - 8.4270 

UNFILLED PRISM 
MORTAR C1:0.25:3) 

MAXIMUM SHEAR 
STRESS (N/rnm2) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

2.082 
1.163 
6.245 
8.326 
18.41 

Fig. 4.37 - Maximum shear stress, mortar material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 
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SCALE 	I.' 	3.962 UNFILLED 	P1)1611 
ETC X-CODRD - 	-, .002 MORTAR 	I 	:1:6) 
EYE T-COORD = 	8.7590 
ETC 	Z-COORD • 	-1.020 
MAX. 	DEFLECTION 	9933 DEFORMATION IN 
AT NODE NUMBER -420 X-DIRECTION(mm) 

LOAD CASE ED - 	S 
ALL MATE RIALS 

TYPE OESP,PDTE 
COMPONENT 	I CONTOUR VALUE 
NUMBER OF CONTOURS - 	5 
INTERVAL 	- 	0.29?41-9I -O.5912E-0I 
MAX NODAL VALUE 	9.52531-RI -0.29741-01 
MEN NODAL 	VALUE 	-0.6813E-8 1 	 I 0.0 

A.29?4E-0I 
0.6918E-OI - - 

Pig. 4.38 - Deformation of unfilled 2BP-MJ prism in 
X-direction, parametric study non-linear 

PEA, 1:1:6 mortar. 

SCALE 1/ 	3.882 
EYE 0-COORD • -I .000 
EYE T-CUORD • 8.7590 
EYE 2-0000D • -1.000 
MAX. DEFLECTION 	2.8896 
AT NODE NUMBER • 420 
LOAD CASE ED • 	S 
TYPE DISP/POTE 
COMPONENT • 	I 
NUMBER OF CONTOURS • 	S 
INTERVAL 	 0.21301-81 
MAX NODAL VALUE • 2.2838E-01 
1118 NODAL VALUE • -0,5683E-8I 

UNFILLED PRISM 
MORTAR (I0.5:4.5) 

DEFORMATION IN 
U-DIRECTION (mm) 
ALL MATERIALS 

CONTOUR VALUE 

-2. 1260E-RI 
-0.2138E-8I 
0.0 
0.21301-01 
0 • 4260E-BI 

Fig. 4.39 - Deformation of unfilled 2BP-HJ prism in 
X-direction, parametric study non-linear 

PEA, 1:0.5:4.5 mortar. 
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SCALE 	1/ 	3.962 UNFILLED PRISM 
EYE XCOORD 	-1.000 MORTAR 	(I0.25:3) 
EYE 	Y-COORD 	- 	0.7500 
EYE Z-00000 --1,000 
MAX. 	DEFLECTION • 	0.2770 DEFORMATION IN 

AT NODE NUMBER 	400 
A-DIRECTION 	(mm) 
ALL MATERIALS 

LOAD CASE RD • 	S 	 _________ 

I 

TYPE OISP/POTE 
COMPONENT CONTOUR VALUE 
NUMBER OF CONTOURS 	• 	S 
INTERVAL 	- 	A.1887E-01 -0,3773E-01 
MAX NODAL VALUE • 	0.OI3SE-0t 	_________ 
MIX NODAL 	VALUE 	-8.5407E-0I 

-0:.1:97E-0  1 

0. I8E?E-01 
8.3773E-01 

Fig. 4.40 - Deformation of unfilled 2BP-14J prism in 
X-direction, parametric study non-linear 

PEA, 1:0.25:3 mortar. 

SCALE 	I/ 	3.962 UNFILLED PRISM 
EYE X-CODRD - 	1.000 MORTAR 	(I 	I 	6)  
EYE 'f-COORD • 	0.7500 
ETC Z-00000 • 	1.000 
MAX. 	DEFLECTION • 	0.9323 DEFORMATION IN , 	

Z-DIRECTION 	(mm) 
AT NODE NUMBER 	400 ALL MATERIALS 
LOAD CASE ID 	S 
TYPE UISP/POTE 
COMPONENT - 	3 CONTOUR VALUE 
NUMBER OF CONTOURS 	S 
INTERVAL 	 0.3396E-eI 
MAX NODAL VALUE - 	0.1351 0.3396E-01 
PITA NODAL VALUE - -0.4490E-D3 ll 	0.6792E-01 

0.1819 
0.1358 

Fig. 4.41. - Deformation of unfilled 2BP-HJ prism in 
2-direction, parametric study non-linear 

PEA, 1:1:6 mortar 
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SCALE 1/ 	3.962 
ETC X-CQORD 	1.200 
EYE Y-COORD 
EYE Z-COURD - 	1.000 
MAX. DEFLECTION • 0.8896 
AT NODE NUMBER 	420 
LOAD CASE ID 	5 
TYPE DIIPPOTE 
COMPONENT • 	3 
NUMBER OF CONTOURS • 	S 
INTERVAL 	• 3.14841-01 
MAX NODAL VALUE • 0.58891-e1 
lilA NODAL VALUE • -0.46871-83 

UNFILLED PRISM 
MORTAR CI:R,S4.5) 

DEFORMATION IN 
Z-DIRECTEON (mm) 
ALL MATERIALS 

CONTOUR VALUE 

8,0 
8.1 4841-21 
0,29671-61 
0.'1451E-0I 
2,5935E-al 

Fig. 4.42 — Deformation of unfilled 2BP-MJ prism in 
2-direction, parametric study non-linear 

PEA, 1:0.5:4.5 mortar. 

SCALE 1/ 	3.962 
ETC X-COflRD -I.Bee- 
ETC Y-COORD • 0.7589 
ETC Z-COORO - 	1.600 
MAX-DEFLECTION - 0.8770 
AT NODE NUMBER • 429 
LOAD CASE ID 	S 
TYPE DISP/POTE 
COMPONENT - 	3 
811116CR OF CONTOURS • 	S 
INTERVAL 	 9.9961E-82 
MAX NODAL VALUE • 8.39391-0I 
11TH NODAL VALUE - -0.4641E--83 

UNFILLED PRISM 
MORTAR (I:A.Tc3) 

DEFORMATION IN 
Z-DIRECUON (mm) 
ALL MATERIALS 

CONTOUR VALUE 

j e.a  

0. - 9964E-02 
0.1993E-81 
9.2989E-2l 
0.39851-0* 

Ii 

Fig. 4.43 — Deformation of unfilled 2BP-MJ prism in 
2-direction, parametric study non-linear 

PEA, 1:0.25:3 mortar. 
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Table 4.2 

Deformation results of the parametric study 
non-linear PEA for unfilled 

2BP-MJ prism. 

Deformation results * Applied Prism Mortar 
Prism (mm) stress strength strength 
type YD XD ZD (N/umi2) (WInui2) (N/ma2) 

Unfitted 0.002 0.051 0.135 8.34 8.34 7.27 
(1:1:6) -0.930 -0.068 -0.005 

Unfitted 0.002 0.028 0.059 8.34 8.57 10.64 
(1:0.5:4.5) -0.890 -0.057 -0.005 

Unfilled 0.002 0.021 0.039 8.34 8.86 19.40 
(1:0.25:3) -0.880 -0.054 -0.005 

* 	
Figures quoted in the table are the upper and Lower maximum values of deformation. 
YD, XI) and Zn 	= 	Deformation in the Y- X- and Z-directions. 
+ve values 	 In the +ve direction of the axes. 
-ye values 	= 	In the -ye direction of the axes. 
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Table 4.3 

Stress results of the Parametric study non-linear 
PEA for unfilled 2BP-HJ prism. 

Stress results * 
Prism 	 (N/M2) 
type 	 YST 	XST 	ZST 	SST 	MJST 	MST1 	11512 

Block material 

Unfitted 3.61 12.90 5.46 13.30 2.81 5.46 13.60 (1:1:6) -32.50 -16.50 -13.80 0.05 -34.40 -13.90 -12.00 

Unfitted 2.69 9.47 4.90 13.10 2.28 4.89 10.10 (1:0.5:4.5) -32.70 -13.80 -13.90 0.05 -34.50 -13.90 -12.10 

Unfitted 2.30 8.30 4.59 13.10 1.99 4.58 9.50 (1:0.25:3) -32.70 -14.00 -14.00 0.05 -34.60 -14.00 -12.10 

Mortar material 

Unfitted 2.88 1.08 1.67 4.51 1.07 1.63 2.93 (1:1:6) -27.00 -23.30 -23.20 0.32 -29.60 -23.40 -20.60 

Unfitted 2.67 0.67 1.14 6.34 0.67 1.14 2.70 (1:0.5:4.5) -25.30 -15.40 -15.10 0.40 -26.50 -15.50 -14.50 

Unfitted 2.32 0.09 0.68 8.99 0.08 0.68 2.34 (1:0.25:3) r25.10 8.20 .7.75 0.45 -25.30 -8.31 7.53 

* 	
Figures quoted in the table are the upper and Lower values of stress. 
YST, XST and ZST 	= 	Direct stress in the Y-, X- and Z-directions. 
SST 	 = 	HaxiuLIn shear stress. 
lUST, MST1 and HST2 	= 	Major, minor 1 and 2 principal stresses. 
+ve values 	 = 	Tension. 
-Ye values 	 = 	Conpression. 
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0.4 1  XD- DEFORMATION IN X-DIRECTION 

.J YD- DEFORMATION IN Y-DIRECTION 
ZD- DEFORMATION IN Z-DIRECTION 

0.3 1 
(APPUED) = 8.34 (N/mm') 

I  

0.2 

0.1 	

ZD 

0.0 I 	 I 	 I I 

 XD 

0.3 

 

0 - 

-0.6 

-0,7 

-0.8 

YD 

-1.0 I I 	 I 	I 	I 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 
MORTAR COMP. STRENGTH 

(N/mrn2) 

Fig. 4.44 - Effect of mortar strength on unfilled 
2BP-MJ prism deformation, parametric 

study non-linear PEA. 
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0.0 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 36.0 

MORTAR COUP. STRENGTH (N/mm') 

Fig. 4.45 - Effect of mortar strength on unfilled 
2BP-MJ prism direct stress in Y-direction, 

.parametric study non-linear PEA. 
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14.0 

13.0 

12.0 

11.0 

10.0 

8.0 

7.0 

6.0 
5.0 

4.0 

3.0 B- BLOCK 
2.0 M- MORTAR 
1.0 '(AlnhlS) = 8.34 (N/mm') 

.0 M ......... bu 
0 MORTAR COUP. STRENGTH 1.0  

-2.0 
-so 
-4.0 
-5.0 

VI 	-7.0 
-80 M 

-9.0  

-10.0 

-11.0 

-12.0 
-13.0 
-14.0 

-16.0 

-17.0 
-18.0 

-20.0 

-21.0 
-22.0 

-23.0 

-24.0 

Fig. 4.46 - Effect of mortar strength on unfilled 
2BP-HJ prism direct stress in X-direction, 

parametric study non-linear PEA. 
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0.0 

-1.0 

_., -2.0 

-3.0 
14 

-4.0 

-5.0 

-8.0 
-7.0 

-8.0 

-9.0 

60 10.0 12.0 20.0 25. 
MOE?AR COMP. S 

(N/inm) 

M 

35.0 
!GTH 

14.0 

13.0 

12.0 

11.0 

10.0 

9.0 

8.0 

7.0 

6.0 

5.0 

4.0 

30 

2.0 

1.0 

B- BLOCK 
MORTAR 

8.34 (N/mm') 

-10.01 

-11.0 

-12.0 

-13.0 

-18.0 

-19.0 

-20.0 

-21.0 

-22.0 

-23.0 

-24.0 

Fig. 4.47 - Effect of mortar strength on unfilled 
2BP-HJ prism direct stress in Z-direction, 

parametric study non-linear PEA. 
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tQ 20.0 B- BLOCK 
44 	 M- MORTAR 

= 8.24 (N/mm') 

	

15.0 	 B 
OD D 

10.0 

	

0.0 	 I 	 I 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 
MORTAR COMP. STRENGTH (N/mm") 

Fig. 4.48 - Effect of mortar strength on unfilled 
2B2-MJ prism maximum shear stress, 
parametric study non-linear PEA. 
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SCALE If 	3 96 FILLED PRISM 
EYE X-COORD • 	1.080 MORTAR  

EYE Y.-COORD • 	8.7500 
CONCRETE 	(1:3:) 

EYE 2-COORD 	1.080 
MAX. DEFLECTION 	0.7465 DEFORMATION IN 
Al NODE NUMBER - 	428 YDIRECTION (mm) 
LOAD CASE ID - 	5 ALL MATERIALS 
TYPE DISP/POTE 
COMPONENT 	2 
NUMBER OF CONTOURS 	S CONTOUR VALUE 
INTERVAL 	- 	01E66 
MAX NODAL VALUE • 	8.80880*88 -8.7465 
11TH NODAL VALUE 	• -0.7465 Immm,I 	B.5598 

-8.3732 
I 	-8.1866 

-8.69390-17 

Fig. 4.49 - Deformation of filled 2BP-MJ prism 
in Y-direction, specific non-linear FEA. 
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SCALE 1/ 	3.962 FILLED PRISM 
EYE X-COORD • 	1.000 	 CONCRETE (1:3 :2)  MORTAR (I8.2S3) 

EYE 2-d ORY 	.000 
EYE T-0000D • 0.7500 

	
I-DIRECTION (N/mm2) 

LOAD CASE ID • 	5 DIRECT STRESS IN 
TYPE STRE.'FLUX 
COMPONENT • 	2 	 BLOCK MATERIAL ONLY 
NUMBER OF CONTOURS • 	S 
INTERVAL 	 3.819 
MAX NODAL VALUE • -11.23 	 CONTOUR VALUE 
1119 NODAL VALUE • -26.51 

	

:19.89 
22.91  

-I5.28 
11.46 

:7.638 
 

Fig. 4.52 - Direct stress in Y-direction, block material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 

ZL 

SCALE 1/ 	3.962 	 FILLED PRISM 
CONCRETE (1:]2) EYE X—COORO • 	1.800 	 MORTAR (10.2531 

EYE Y—CODRD 	0.7000 
EYE 2-COORD • 	1.080 
LOAD CASE 10 - 	S 

DIRECT STRESS TN TYPE SIRE/FLUX 	
X-DIRECIION (N/,nm2) COMPONENT • 	1 	 BLOCK MATERIAL ONLY 

NUMBER OF CONTOURS • 	S 
INTERVAL 	.. 	3.214 
MAX NODAL VALUE 	2.420 	 CONTOUR VALUE 
MEN NODAL VALUE • -10.37 	

- -9643 
-6.426 
3.214 

:333j:(5 
3.214 

Pig. 4.53 - Direct stress in X-direction, block material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 
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MYSTRO. 9.2-3 	
BATE 792— 6-90 

SCALE I, 	3.962 	 FILLED PRISM 
CONCRETE (( 3 2) EYE X—COORO • 	1.200 	
MORTAR (10.2S3) EYE T—COORD • 0.7500 

EYE Z—COORD 	1.000 
LOAD CASE ID 	S 
TYPE SIRE/FLUX DIRECT STRESS IN  
COMPONENT 	3 	 2—DIRECTION (N/nm2)  
NUMBER OF CONTOURS 	S 	

BLOCK MATERIAL ONLY 
 

INTERVAL 	• 3.299 
MAX NODAL VALUE • 	2.662 	 CONTOUR VALUE 

9 776 
6.517 

MIN NODAL VALUE • —12.37 

3.299 
2.0 
3.259 

1TLE 	FILLRD T0-0LOCK RAISH 

Fig. 4.54 - Direct stress in Z-direction, block material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 

DRiE 22- 6-90 

SCALE 1, 	3.962 	
FILLED PRISM EYE X-COQRD • 	1.000. 	 CONCRETE (1;3:2) 

EYE Y-COORD 	9.7900 	 110 0 (1:0.25:3)  
EYE Z-COUp.O - 	1.020 
LOAD CASE 70 	6  
TYPE SIRE/FLUX 	 MAXIMUM SHEAR 

STRESS (N'mm2) COMPONENT 	10 	 BLOCK MATERIAL ONLY 
NUIIBER OF CONTOURS • 	S 
INTERVAL 	• 1.238 
MAX NODAL VALUE = 9.675 	 CONTOUR VALUE 
MIN NODAL VALUE 	4.721  

4.954 
6.192 
7.431 
9.669 
9.908 

Fig. 4.55 - Maximum shear stress, block material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 
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YSTRO 9.2-3 	 DATE 22- 5-90 

SCALE I' 	3.590 	 FELLED PRISM 
ETC X-COQRD • 	1.900 	 CONCRETE (1:3:2) 
EYE Y-CODRD 	11,7500 	 1 EYE Z-CDORD • 	1.200 	 - 
LOAD CASE ED •5 	

DIRECT STRESS ON TYPE SIRE/FLUX 	 Y-DIRECTION (N/.m?) 
COMPONENT • 	2 	 _-,,,. 	CONCRETE MATERIAL ONLY 
NUMBER Or CONTOURS 	S 
INTERVAL 	• 0.8379 
MAX NODAL VALUE • -11.58 	 CONTOUR VALUE 
Mill NODAL VALUE • -14.94 

- -4.21

h

1 

1115: 	FILLED TIiORLOCK PRISM 

Fig. 4.56 - Direct stress in Y-direction, concrete material 
of filled 2BP-MJ prism, specific 

non-linear FEA. 

IYSTRO: 9.2-3 	 DATE: 22- 5-90 

SCALE 1/ 	 FILLED PRISM 3.598 	
CONCRETE (1:3:a) EYE X-COOPD • 	1.900 	 MORTAR  

EYE 1-COORD - 11.7500 
EYE Z-CO ORD - 	1.0019 
LOAD CASE ID - 	S 

DIRECT STRESS IN TYPE STREIFLUX 	 2-DIRECTION (Nfmzn2) 

NUMBER Or CONTOURS - 	S 
INTERVAL 	- 	1.039 

COMPONENT 	1 	 CONCRETE MATERIAL ONLY 

FlAX NODAL VALUE - 9.9272 	 CONTOUR VALUE 
MIN NODAL VALUE - - L229 

 
, I2 

-1.1139 
0.11 
1.039 

1115: 	FILLED T-O-9LDCK PRISM 

Fig. 4.57 - Direct stress in X-direction, concrete material 
of filled 2BP-MJ prism, specific 

non-linear FEA. 
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BETAS: 9.2-3 DATE 22- 6-92 

CONCRETE (1 :3:2) EYE X-COURD 	1.000
MORTAR 11:0.25 3) EYE Y-COURO - 8.7589 

SCALE I' 	3.59)1 	 FILLED PRISM  

EYE 2-COORD- 	1.000 
LOAD CASE ID 	S 

DIRECT STRESS IN JIBE STREi'FLIJX 
COMPONENT 

	

	 2-DIRECTION (NfmmU) 3 
NUMBER OF CONTOURS - 	S 
INTERVAL 	 0.9600 
MAX NODAL VALUE 	0.5703 	

CONCRETE MATERIAL ONLY 

'YIN NODAL VALUE - -3.269 	
CONTOUR VALUE 

-2.880 

11.92
1- 271 
09

)1  

-Q
.  
. 2776E-I 6 00 	 0 9600 

lYLE 	FILLED TI-GIQCK P219Th 

Fig. 4.58 - Direct stress in Z-direction, concrete material 
of filled 2BP-MJ prism, specific 

non-linear FEA. 

hlYSTRO: 9.2-3 	 DATE: 22- 110 

ZL 

SCALE 1/ 	3.598 	 FILLED PRISM 
EYE 3-COORS 	1.00)1 	 CONCRETE 

bRIAR1 )1 .25:3) 
:3:7) 

( EYE Y-CODIYD - 8.7500 
EYE 2-COORS 	1.0)1)1 
LOAD CASE CD 	5 	

PIAXIMUII SHEAR TYPE SIRE/FLUX 	 STRESS (N/mm2) COMPONENT • 	ID CONCRETE MATERIAL ONLY 
NUMBER OE CONTOURS 	5 
INTERVAL 	• 0.2605 
MAX NODAL VALUE • 	6.809 CONTOUR VALUE 
lION NODAL VALUE • 	5.767 

.99) 
252 

d 	6.5)2 
8,773 
7.033 

TITLE: 	FILLED TWO -CLOCK PRIED 

Fig. 4.59 - Maximum shear stress, concrete material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 
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SCALE 	I' 	1.000 
EYE S-COOED 	1.002 
EYE 'f-COOED - 	2.?S02 
EYE i-COOED 	1.022 ."- 
LOAD CASE ID 	S 
TYPE 	SIRE/FLUX 
COMPONENT • 	2 
NUMBER OF CONTOURS 	S ' 
INTERVAL 	 1.362 
MAX NODAL VALUE - 	-13.21 
1112 NODAL VALUE 	• 	-12.62 

FILLED PRISM 
MORTAR (10.253) 
CONCRETE (132) 

DIRECT STRESS IN 
T-DIRECTION (N/.m2) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

-17.72 
-16.42 
-15.05 
-13.68 
-I 2.31 

Pig. 4.60 - Direct stress in Y-direction, mortar material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 

SCALE I' 	1.002 
EYE X-CODRD S 	1.000 
EYE Y-COUP.D - 	2.7500 
EYE i-COOED 	1.000 
LOAD CASE ID  
TYPE 	STRE/FLUX 
COMPONENT-i 
NUMBER OF CONTOURS - 	5 w 
INTERVAL 	• 	0.2687 
MAX NODAL VALUE 	-3.615 
111W NODAL VALUE • 	-4.689 

FILLED PRISM 
MORTAR (10.253) 
CONCRETE (1:32I 

DIRECT STRESS IN 
X-DIRECTION (14/mm2) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

-4.562 
-4.308 
-4.831 
-3.762 
-3.453 

Fig. 4.61 - Direct stress in X-direction, mortar material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 
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SCALE 	t/ 	1.990 
EYE X-COORD 	1.000 
EYE 'V-CQORD 	9.7500 
EYE Z-CODRD 	1.000 
LOAD CASE10 	5 .. 
TYPE 	SIRE/FLUX 
COMPONENT 	3 
NUMBER OF CONTOURS 	5 
INTERVAL 	- 	9.3786 
MAX NODAL VALUE - 	-3.268 
MIN NODAL VALUE 	-4.758 

FILLED PRISM 
MORTAR (I:0.253) 
CONCRETE (1:32) 

DIRECT SIRENS IN 
Z-DIRECTION (N/,rn2) 
MORTAR MATERIAL ONLY 
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Fig. 4.62 - Direct stress in Z-direction, mortar material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 
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Fig. 4.63 - Maximum shear stress, mortar material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 
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Fig. 4.64 - Deformation of filled 2BP-MJ prism in 
X-direction, parametric study non-linear 

PEA, 1:5:2 concrete. 
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Fig. 4.65 - Deformation of filled 2B2-14J prism in 
X-direction, parametric study non-linear 

PEA, 1:3:2 concrete. 
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SCALE Il 	3.962 
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Fig. 4.66 - Deformation of filled 2BP-MJ prism in 
X-direction, parametric study non-linear 

PEA, 1:1:2 concrete. 
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Fig. 4.67 - Deformation of filled 2BP-14J prism in 
Z-direction, parametric study non-linear 

PEA, 1:5:2 concrete. 
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SCALE 1/ 	3.962 
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Fig. 4.68 - Deformation of filled 2BP-MT prism in 
Z-direction, parametric study non-linear 

PEA, 1:3:2 concrete. 
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Fig. 4.69 - Deformation of filled 2BP-HJ prism in 
2-direction, parametric study non-linear 

PEA, 1:1:2 concrete. 
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Table 4.4 

Deformation results of the parametric study 
non-linear PEA for filled 

2BP-HJ prism. 

Deformation results * Applied Prism Infilt 
Prism 	 (ma) stress strength strength 
type 	 YD 	 XD 	 ZD - 	(N/nia2) (N/nm2) (N/nm2) 

Fitted 0.000 0.006 0.042 	11.26 	11.26 	4.97 
(1:5:2) -0.770 -0.044 0.000 

Fitted 0.000 0.000 0.016 	11.26 	15.26 	22.31 
(1:3:2) -0.470 -0.016 0.000 

Fitted 0.000 0.000 0.013 	11.26 	11.47 	39.44 
(1:1:2) -0.360 -0.013 0.000 

* 	
Figures quoted in the table are the upper and Lower maximum values of deformation. 
YD XD and 21) 	= 	Deformation in the Y-, X- and Z-directions. 
+ve values 	 In the +ve direction of the axes. 
-ye values 	= 	In the -ye direction of the axes. 
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Table 4.5 

Stress results of. the Parametric study non-linear 
PEA for filled 2BP-MJ prism. 

Stress results * 
Prism (N/ma2) 
type YST XST 	ZST SST lUST I4ST1 MSTZ 

Block material 

Fitted -3.96 5.94 	4.66 11.00 -4.03 4.66 6.30 
(1:5:2) -29.50 -12.10 	-12.10 2.15 -31.20 -12.10 -10.30 

Fitted -8.06 1.60 	1.69 7.48 -8.11 1.60 1.69 
(1:3:2) -18.90 -5.67 	-5.67 3.37 -19.80 -5.67 -4.82 

Fitted -10.10 1.01 	1.01 6.23 -10.10 0.97 1.02 
(1:1:2) -14.90 -3.71 	-3.71 4.05 -15.50 -3.71 -3.06 

Concrete material 

Fitted -4.78 0.94 	0.70 3.06 -4.78 0.66 1.06 
(1:5:2) -8.18 -3.39 	-3.21 2.18 -8.35 -3.39 -3.03 

Fitted -8.22 0.67 	0.28 4.93 -8.22 0.27 0.70 
(1:3:2) -10.30 -2.09 	-2.15 3.93 -10.30 -2.15 -2.09 

Fitted -10.60 0.27 	0.12 5.74 -10.60 0.11 0.27 
(1:1:2) -11.90 -1.78 	-1.79 4.91 -11.90 -1.78 -1.75 

Mortar material 

Fitted -5.09 -1.64 	-1.13 8.02 -5.09 -1.64 -1.13 
(1:5:2) -21.30 -5.97 	-5.70 1.94 -21.40 -6.08 -5.61 

Fitted -9.48 -2.81 	-2.42 5.25 -9.48 -2.81 -2.42 
(1:3:2) -14.10 -3.95 	-3.96 3.42 -14.20 -3.96 -387 

Fitted -10.60 -2.49 	-2.46 4.22 -10.60 -2.50 -2.45 
(1:1:2) -11.60 -3.34 	-330 4.03 -11.60 -3.34 -3.30 

* 	Figures quoted in the table are the upper and tower values of stress. 
YST, XST and ZST = Direct stress in the Y-, X- and Z-directions. 
SST = Maximum shear stress. 
MIST, MST1 and MST2 	= Major, minor I and 2 principal stresses. 
+ve values = Tension. 
-ye values Compression. 
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Pig. 4.70 - Effect of concrete inf ill strength on filled 
2BP-MJ prism deformation, parametric 

study non-linear PEA. 
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Fig. 4.71 - Effect of concrete inf ill strength on filled 
2BP-HJ prism direct stress in Y-direction, 

parametric study non-linear PEA. 
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Fig. 4.72 - Effect of concrete infill strength on filled 
2BP-MT prism direct stress in X-direction, 

parametric study non-linear PEA. 
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Fig. 4.73 - Effect of concrete infill strength on filled 
2BP-MJ prism direct stress in Z-direction, 

parametric study non-linear PEA. 
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2BP-MJ prism maximum shear stress, 
parametric study non-linear PEA. 

244 



CHAPTER 5 

CONCRETE BLOCK MASONRY PRISMS 
COMPRESSED NORMAL TO 

THE UNIT BED FACE 

5.1 INTRODUCTION 

This chapter presents the results of an experimental 

and theoretical investigations carried out to study the 

effects of using different concrete inf ill mixes and mortar 

joint types on the compressive strength and behaviour of 

unfilled and filled, full and half, 3-course high blockwork 

masonry prisms compressed normal to the unit bed face. 

Methods are recommended to determine values of the ultimate 

compressive strength of blockwork masonry, i'm' to be used 
in the strength design theory for masonry structures. 

As mentioned in chapter 4, stack-bonded blockwork 

masonry prism testing is one of the commonly used methods 

adopted by several governing codes and standards 24'25  to 
determine the ultimate compressive strength of blockwork 

masonry prisms, f 1 m. 

Previous work by DRYSDALE and HANID 28'29  on concrete 
block masonry prisms showed that using values for the 

masonry compressive strength, i'm' based on block strength 
and mortar type, was not appropriate for grouted concrete 

block masonry. This is due to the mortar joint having a 

negligible effect on the compressive strength. They 

suggested that matching the deformational characteristics 

of the grout and the block may be more efficient in 

increasing the masonry strength than increasing the grout 
strength. 



They also concluded that testing 3-course high half-

block prisms represents more accurately the strength of 

concrete block masonry because it exhibits a failure mode 

similar to that for walls. It was therefore concluded that 

the half-block prism be used as a standard specimen to 
determine f 'm  due to ease of handling. The failure 
mechanisms for the 3-course high half-block - concrete 
masonry prism were described and corresponding failure 

criteria were developed. 

However, using the results of tests on half-block 

prisms is not acceptable due to differences in the aspect 

ratio, (l/t) (prism length-to-thickness), and differences 

in the mortar bedded area, caused by the presence of the 

mid-web, between the full and half-block prisms. This will 

be demonstrated later in this chapter, and also 

investigated in more details in chapter 6. 

The objective of the present investigation is to 
produce a method of obtaining i'm' for use in the strength 
design theory of masonry structural elements in situations 

where in-plane horizontal forces are not expected to occur. 

The effects of using different types of mortar and concrete 

inf ill mixes on f 1 m  and on the prisms' behaviour and mode 
of failure were also studied experimentally and 

theoretically using. a three-dimensional finite element 
analysis (FEA). 

5.2 EXPERIMENTAL PROGRAMME 

A total of fifty-seven full-block prisms and thirty-

nine half-block prisms were tested axially normal to the 

bed face. The prisms were constructed by an experienced 

mason to ensure that the 10 mm horizontal mortar joints 

between the concrete blocks were completely filled. The 
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prisms were built using three different mortar types: low 

strength (1:1:6), medium strength (1:0.5:4.5) and high 

strength (1:0.25:3) (cement: lime: sand) proportions. The 

prisms are designated in Fig. 5.1 (i), in Table A.l 

(Appendix A) and in the text as 3FBP-MJ (3-course high 
Full-Block Prisms with Mortar Joints). 

Some of the prisms were constructed without a mortar 

joints. Instead, a thin layer, 1 - 2 mm, of dental plaster 

was placed between the blocks. The prisms are designated in 

Fig. 5.1 (ii), in Table A.1 (Appendix A) and in the text as 
3FBP-DPJ (3-course high Full-Block Prisms with Dental 

Plaster Joints). The 1 - 2 mm thickness was achieved using 

the method described for capping 55  in chapters 3 and 4. 
Other prisms were constructed using a 10 mm thick 

polystyrene sheet to simulate a zero strength mortar joint. 

These prisms are designated in Fig. 5.1 (iii), in Table A. 1,  
(Appendix A) and in the text as 3FBP-PJ (3-course high 

Full-Block Prisms with Polystyrene Joints). 

Some prisms were left unfilled. Others were cast with 

three different types of concrete inf ill,: low strength 

(1:5:2), medium strength (1:3:2), and high strength (1:1:2) 

(cement: sand: aggregate) proportions. 

Similarly, three different types of unfilled and 

filled 3-course high half-block prisms (3HBP-MJ, 3HBP-DPJ 
and 3HBP-PJ) were constructed to compare their compressive 

strength and behaviour with full-block prisms. 

After construction the prisms were left for four days 

under polythene sheeting to allow the mortar joints to gain 

in strength. The prisms were then filled with concrete 

which was batched by volume, mixed to a high slump of 150 

mm then cast in two layers. Each layer was compacted using 

a 25 mm poker vibrator until full compaction was attained. 
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The 	surface of the concrete inf ill was then trowelled 

level. 

After casting, the prisms were left to cure under 

polythene sheeting for fourteen days.. The polythene was 

then removed and the specimens left for a further fourteen 

days to cure under ambient conditions in the laboratory 

prior to testing. Steel moulded cubes and cylinders were 

cast and cured along with the specimens. These were tested 

in compression to determine the strength of the mortar and 

concrete inf ill mixes. 

Demec points and electrical strain gauges were placed 

on the specimens at selected locations 24 hours prior to 

testing. The specimens were then capped with a thin layer, 

1 - 2 mm, of dental plaster 55  prepared by the method 
explained in chapters 3 and 4. 

The loading rates and patterns used for testing are 

similar to those adopted in chapters 3 and 4 to.determine 

the static modulus of elasticity for all the specimens 

tested. In all the stress vs strain curves reported in this 

investigation, values obtained from the results of loading 

and unloading were omitted for clarity, only values from 

the first cycle of strain measurements are shown. 

5.3 THEORETICAL PROGRAMME 

The theoretical programme is divided into three major 

sections. The first section presents the features of the 

specific and parametric study analyses using a non-linear 

three-dimensional FEA conducted for the unfilled and filled 
3FBP-MJ prisms. The second section gives the mechanical 

properties of the materials used in the FEA. The third 

section demonstrates the finite element mesh used in the 
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three-dimensional analysis and the assumptions used in 

reducing the size of the mesh. 

5.3.1 	Three-Dimensional Plastic Non-Linear PEA 

Specific and parametric study non-linear three-

dimensional finite element analyses, were conducted using 

the general purpose package LUSAS 80  for unfilled and filled 
3FBP-MJ prisms. In the specific analysis, the levels of 

vertical stress applied to the unfilled and filled 3FBP-MJ 
prisms are the average compressive strengths derived 

experimentally (Table 5.1). The specific analysis was 

conducted for unfilled 3FBP-MJ prisms constructed with high 
strength (1:0.25:3) mortar and for filled 3FBP-MJ prisms 
constructed using the same type of mortar but filled with 

medium strength (1:3:2) concrete. 

In the parametric study, the level of vertical stress 
applied to the unfilled 3FBP-MJ prisms is the average 

experimental value of the compressive strength for an 

unfilled prism constructed with low strength (1:1:6) mortar 

joints. In the case of filled 3FBP-MJ prisms, the applied 
level of vertical stress is the average experimental 

compressive strength for prisms built with medium strength 

(1:0.25:3) mortar and filled with low strength (1:5:2) 
concrete (Table 5.1). 

As for the parametric studies conducted for the two-

block prisms presented in chapter 4, the parametric studies 

presented herein were carried out by fixing the level of 

vertical stress on the analysed prism and changing the 

materials for the three types of mortar and three mixes of 

concrete inf ill as used in the experimental investigation. 
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5.3.2 	Material Mechanical Properties Used in the FEA 

The mechanical properties and vertical stress vs 

strain curves for the materials used in the non-linear FEA 

for unfilled and filled 3FBP-MJ prisms are similar to those 

used in the FEA for 2BP-MJ prisms given in chapter 4. 

	

5.3.3 	Finite Element Model 

The three-dimensional finite element computer model 

was developed using the solid elements used in chapter 4. 

The FEA model was developed by considering 1/4 of the prism 

(Fig. 5.2) in the analysis. In generating the mesh, (Fig. 

5.3), the assumptions adopted herein are similar to those 

used in chapter 4 for generating the unfilled and filled 

2BP-MJ three-dimensional models. 

5.4 DISCUSSION OF EXPERIMENTAL RESULTS 

The discussion of the experimental results is divided 

into three sections.. The first and second sections deal 

with the observed modes of failure for full and half 3-

course high prisms. The third section deals with the 
experimental results. 

	

5.4.1 	Modes of Failure for Full-Block Prisms 

The mode of failure for all the unfilled 3FBP-MJ 

prisms was not affected by the type of mortar used. The 

common mode of failure was longitudinal splitting along the 

block end and side shells with crushing and shearing of the 

block mid-web (Fig. 5.4). Checking the mortar joints at 

different locations after failure indicated that the mortar 
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had been reduced to a powder at certain stage of the 
loading process. 

The mode of failure, for the unfilled 3FBP-DPJ prisms, 

showed a crushing type of failure at the mid height of the 

block middle web followed by shearing and splitting of the 
block shells (Fig. 5.5). 

Similar to the unfilled 3FBP-MJ prisms, the mode of 

failure for the filled 3FBP-MJ prisms was not affected by 

the type of mortar used. However, the concrete inf ill has 

a major influence on the mode of failure of the prism. 

Two modes of failure were observed for the filled 
3FBP-MJ prisms. Mode I was typical for a low to medium 

strength concrete inf ill. The failure was dominated by 

block shell-concrete inf ill separation and lateral 

deformation, with some signs of block shell, mortar and 

concrete inf ill crushing near a mortar joint. In some of 

the prisms, crushing of the concrete inf ill occurred after 

failure at the horizontal level of the mortar joints (Fig. 

5.6 (1)). Some prisms showed little damage to the concrete 

after failure (Fig. 5.6 (ii)). This mode of failure 

indicates that the block shells store most of the energy 

applied to the prism then release it to the concrete at 

failure. Mode II was typical of a high strength concrete 

inf ill. The prism failed by crushing of the block shell and 

the concrete near one of the mortar joints simultaneously. 

Less sign of block shell-concrete inf ill separation was 

observed after failure (Fig. 5.7). As for unfilled prisms 

with mortar joints, checking the mortar joints at different 

locations after failure indicated that the mortar had been 

reduced to a powder at a certain stage of the loading 
process. 

The mode of failure for all the filled 3FBP-DPJ prisms 
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was by longitudinal splitting along the block end shells 

and 	block shell-concrete inf ill separation, but showed 

clear signs of concrete crushing after failure near one of 

the dental plaster joints (Fig. 5.8). 

On the other hand, all the filled 3FBP-PT prisms 

showed major longitudinal splitting along the block ends, 

side shells and block shell-concrete inf ill separation at 

early stage of the loading process caused by horizontal 

expansion of the concrete (Fig. 5.9). 

5.4.2 	Modes of Failure for Half-Block Prisms 

As for the unfilled 3FBP-HJ prisms, the mode of 

failure for half-block prisms was not affected by the type 

of mortar used. All unfilled 3HBP-MJ prisms displayed a 

longitudinal block shell splitting type of failure, with 

some sign of crushing near one of the mortar joints (Fig. 

5.10) 

The unfilled 3HBP-DPJ prisms failed due to crushing of 

the block shells near one of the dental plaster joints 

(Fig. 5.11). 

As for unfilled. 3HBP-MJ prisms, the mode of failure of 

the filled 3HBP-MJ prisms did not vary as a result of using 

different types of mortar. However, differences were 

observed as a result of using different concrete strengths. 

Two major modes of failure were observed for the 

filled 3HBP-MJ prisms. Mode I was typical of prisms filled 

with low to medium strength concrete inf ill. The failure 

was dominated by longitudinal splitting and block shell-

concrete inf ill separation. There were clear signs of 

crushing of the concrete inf ill, mortar and block shells 
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near to the mortar joints. Removal of the block shells 

after failure showed a pyramid crushing type of concrete 

failure at the horizontal level of one of the mortar joints 

(Fig. 5.12). Mode II was typical of prisms filled with high 

strength concrete inf ill. The prisms failed as one solid 

unit with the block and concrete inf ill crushed 

simultaneously near to one of the mortar joints. Less 

evidence of block shell-concrete separation was observed 

after failure (Fig. 5.13). For both modes of failure, 

checking the mortar at different locations after failure 

indicated that the mortar had been reduced to a powder at 

certain stage of the loading process. 

The mode of failure for all the filled 3HBP-DPJ prisms 
was by longitudinal splitting and block shell-concrete 

inf ill separation. Removal of the block shells after 

failure, showed a pyramid crushing type of failure of the 

concrete at the horizontal level of one of the dental 

plaster joints (Fig. 5.14). Prisms filled with high 

strength concrete showed better cohesion between block 

shell and concrete after failure than prisms filled with 

low to medium strength concrete. 

On the other hand, all the filled 3HBP-PJ prisms 
showed major longitudinal splitting of the block shells 

together with block shell-concrete inf ill separation during 

early stages of the loading process. This occurred mostly 

at mid height and resulted from horizontal expansion of the 

concrete followed by a pyramid type of crushing of the 

concrete at the horizontal level of one of the polystyrene 

joints (Fig. 5.15). 

5.4.3 	Experimental Results 

Tables 5.1 and 5.2 summarize the experimental results 
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for the full and half, 3-course high prisms respectively. 

The associated material properties are also given. 

Typical stress vs strain curves for the unfilled 3FBP-

IAJ prisms (Fig. 5.16) show almost identical vertical stress 

vs strain curves for the mortar as for the block. The 

curves also show a tensile horizontal strain at the end and 

side shells of the middle block. 

Similarly, typical stress vs strain curves for the 

unfilled 3HBP-MJ prisms (Fig. 5.17) show similar vertical 

stress vs strain curves for the mortar and the block. The 

curves also show a tensile horizontal strain in the mortar 
and the block. 

The effect of the mortar compressive strength on the 

strength of unfilled, full and half-block prisms with 

mortar joints is shown in Fig. 5.18. The presence of a 

mortar joint of strength 9.19 N/mm2  in unfilled, full-block 
prism and 15.39 N/mm2  in unfilled half-block prism produces 
a reduction in prisms strength of 10.2% and 5.9% 

respectively compared to the strength of the unfilled prism 

with dental plaster joints (3FBP-DPJ). This was caused by 

tensile stresses exerted on the stiff blocks by the soft 

mortar joints as a result of the high Poisson's ratio of 
the mortar matéria1,72,75,76,77,78,79) The results showed also 

that increasing the mortar strength for the unfilled full 

and half-block prisms by 188.8% and 72.5% resulted in 

increasing the prisms strength by 20.1% and 23.7% 

respectively. Fig. 5.18 also shows that the curve for the 

full-block prisms was a concave upwards parabola, whereas 

the curve for the half-block prisms was a concave downwards 

parabola. The difference in the shape of the strength 

curves resulted from the difference in the values of aspect 

ratio, as between the full-block prism, (l/t = 2.05), and 

half-block prism, (l/t = 1.0), (the effect of the aspect 
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ratio (l/t) will be discussed in more detail in chapter 6). 

Another reason was the difference in the mortar bedded 

area, caused by the presence of the mid-web, between the 

full and half-block prisms, and its effect on the prism 

strength and mode of failure. For the above reasons, the 

unfilled full-block prisms failed at a reduction factor of 

0.80 compared to the unfilled half-block prisms. 

Testing unfilled half-block prisms instead of full-

block prisms, for the sake of ease of handling 28'29 , to 
determine the ultimate compressive strength for unfilled 
blockwork masonry, fe m' does not seem to be good 
practice 8 . Higher strengths are obtained by testing half-

block prisms instead of full-block ones, thus producing an 

overestimate of the actual value Of 

The stress vs strain curves for the filled 3FBP-MJ' 

prisms, (Fig. 5.19), show a reduction in the prism 

stiffness compared to unfilled ones. This reduction is 

mainly due to the presence of the concrete inf ill which 

applies some tensile stress resulting from the high value 
of Poisson's ratio for the concrete(2728s29,30,31,32,33,38) These 

high tensile stresses. produce failure of the prism prior to 

attaining the apparent material strength of the block, 

Mortar joints, on the other hand, gave more plasticity than 

in the case of unfilled prisms. 

The stress vs strain curves for the filled 3HBP-HJ 

prisms, (Fig. 5.20), show a similar behaviour pattern to 

the filled 3FBP-MJ prisms except for the presence of high 

tensile splitting strain at the block shell near to 
ultimate stress. 

Fig. 5.21 shows the effect of concrete compressive 

strength on the strength of filled, full and half 3-course 

high prisms with similar mortar strengths. Filling the full 
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and half-block prisms with concrete has a large influence 

on their compressive strength 272829'32'33'35'36'71>. Both types 

of prism show a significant decrease in strength (based on 

gross area) compared to that of unfilled prisms (based on 
net area). 

The strength of the half-block prisms increased 

uniformly with increase in strength of the concrete. At a 

concrete strength of approximately 45 N/mm (this strength 

is 85.3% higher than the cube compressive strength of the 

block material) the strength of a filled half-block prism 

approached the strength of an unfilled half-block prism. 

The filled full-block prisms, on the other hand, 

showed virtually no change in strength for a wide range of 

concrete strengths (0 - 30 N/mm2) (prisms with zero concrete 
strength are the unfilled prisms). At a concrete strength 

of approximately 35 N/mm2  (this strength is 44.1% higher 
than the cube compressive strength of the block material) 

the strength of a filled, full-block prism was 

approximately equal to the strength of a similar unfilled 

prism. The gain in strength is due to a similarity in the 

deformational characteristics, also the value of Poisson's 

ratio of the concrete (pc =  0.22 at an axial strain of 
0.002) compared to that of the block (b = 0.20 at an axial 
strain of 0.0015). For the range of concrete strengths 

used, the contribution of the concrete to the strength of 

the filled prism was sma1l 28'29'35'36'71'8 . 

Fig. 5.22 shows the effect of the compressive strength 

of mortar on the strength of filled 3PBP-HJ prisms with 

similar concrete inf ill strength. The presence of a mortar 

joints, of strength 13.52 N/mm2  in a filled, full-block 
prism with high strength (1:1:2) concrete inf ill produces 

an increase in prism strength of 88.9%, compared to prisms 

with polystyrene joints. On the other hand, changing the 
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mortar strength from 13.52 to 26.80 N/mm2  (an increase of 
98.2%) produces an increase of only 7.6% in the prism 

'26'28'33'36'7  strength(' . 

The same result was obtained for prisms filled with 

low strength (1:5:2) concrete (average, 10.09 N/mm2). The 
presence of a mortar joints, of strength 15.39 N/mm2 , 
produced an increase in prism strength of 262.1% compared 

to prisms with polystyrene joints. On the other hand, 

changing the mortar strength from 15.39 to 26.44 N/mm2  (an 
average increase of 71.8%) produced an increase in prism 
strength of 0.7%. 

The overall conclusion based on these results, was 

that the presence of mortar joints, even though of low 

strength (1:1:6), contributed greatly to the strength of 

the filled prisms. Increasing the mortar strength above 

this value increased the prism strength by a negligible 
amount. 

The first explanation for this phenomenon is that the 

presence of the mortar in the joints, even though of low 

strength, transfers the vertical stresses to the adjacent 

stiff blocks. The second explanation is the influence of 

the horizontal confinement stresses exerted on the mortar 

joint by the stiff concrete blocks which increases the 

apparent mortar strength" 	 These These 
confinement stresses increase proportionally as the mortar 

strength decreases, due to the high Poisson's ratio of the 
mortar (71.7275,76,77,78,79) 	The 	third 	explanation 	is 	the 
relatively small thickness of the mortar joint to block 
height 26'28'33'36'71 . For all the above reasons, the 

contribution of the presence of the mortar joints to the 

prism strength will be a function of the block and mortar 
strengths. 
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By considering the equilibrium of the deformation and 

stresses at the mortar joint in a filled blockwork masonry 

prism (Fig. 5.23 (i)), the inward lateral deformation of 

the mortar will be offset by the concrete inf ill which will 

have lateral outward deformation. This effect forces the 

mortar to deform outward (Fig. 5.23 (ia)) (as also shown by 

the bold arrows in Fig. 5.23 (ib)). This restriction on the 

mortar joint movement will increase their confinement and 

consequently their strength. Fig. 5.23 (ia) shows that the 

concrete blocks in a filled prism are not subjected to 

splitting tensile stresses caused by the mortar, in the X-

direction (the block is actually under tensile splitting 

stresses in a Y-direction). But the tensile stresses in the 

outward direction add to the tensile stresses exerted on 

the block by the concrete inf ill. On the other hand, the 

block in unfilled prism (Fig. 5.23 (ii 	b)) is under 

tensile splitting stresses in the X- and Y-directions, 

exerted by the mortar joints. 

This explains why the strength of the mortar joints 

does not play an important role in the strength of a filled 

blockwork masonry prism. Finally, due to the small ratio of 

mortar thickness to block height (1/18.9), the influence 

of mortar joints on the strength of a filled prism is 
insignificant(' 26,28,33,36,71) 

The aspect ratio, (l/t), and difference in mortar 

bedded area were again the main reasons for the decrease in 

strength of the filled full-block prisms, by an average 

factor of 0.80 compared to the filled half-block prisms. 

Also, testing filled half-block prisms to obtain the 

strength of a filled full-block prism, is not recommended. 

Fig. 5.24 shows the relationship between the strength 

of filled, full and half, 3-course high prisms with dental 

plaster joints and the concrete inf ill strength. The figure 
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shows that the presence of concrete had the same effect of 

reducing the prism strength compared to that of the 

unfilled prism. Filled 3FBP-DPJ prisms show a steady 

increase in strength with concrete strength. This 

relationship differs from that for filled, 3FBP-MJ prisms. 
On average, the gain in strength of the 3FBP-DPJ prisms was 

24% compared to that for filled 3FBP-MJ prisms (this 

percentage is calculated without including prisms with low 

strength concrete as these results exhibit large deviations 

compared to the other two). The reason for the difference 

in strength is the presence of the mortar joints as planes 

of high plasticity. This reduces the contribution of the 

block units to the strength of the prism. Instead, the 

mortar behaves as a plane of weakness due to its high 

Poisson's ratio. 

The strength of 3FBP-DPJ prisms was on average 21.6% 
higher than the companion 3HBP-DPJ prisms due to the 

greater contribution of the block units to the strength of 

the prisms. 

To study the effect of the presence of the mortar 

joints in filled full and half-block prisms farther, a 

comparison between Figs 5.21 and 5.24 shows that the half-

block prism compressive strength increased by 28.8% due to 

the presence of high strength mortar joints (26.54 N/mm2). 
On the other hand, the presence of the mortar joints in 

filled, full-block prisms caused irregular reductions 

depending on the concrete inf ill strength. 

Fig. 5.25 relates the strength of filled, full and 

half-block prisms with polystyrene joints to concrete 

strength. Two relations are shown in Fig. 5.25. The first 

relation was based on a concrete inf ill net area (AC = 19272 
mm 2  for full-block prisms and AC = 9636 mm  for half-block 

prisms). The second relation was based on a prism gross 
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area (Ag  = 74100 mm  for full-block prisms and A. = 36100 
mm 2 for half-block prisms). 

Based on the prism gross area, Fig. 5.25 shows that 

the absence of the mortar joint caused an average reduction 

of 54.4% and 64.2% in the strength of full and half-block 

prisms respectively (the result for the full-block prisms 

with low strength concrete inf ill was not considered due to 

large deviations between this result and the other two). 

This reduction was expected since there was no medium to 

transfer the stresses through the blocks. It can also be 

seen that for the wide range of concrete inf ill strengths 

(8.57 - 35.22 N/mm2) the increase in full and half-block 

prisms strengths of 179.1% and 123.3% respectively is less 

than the 297% and 173.7% increase in the strength of the 

concrete inf ill. 

Based on the net area of the concrete inf ill for half-

block prisms, Fig. 5.25 shows that the strength of concrete 

inf ill increased by 44.6%, 28.2% and 18.1% corresponding to 

concrete cube strengths of 12.87, 20.15 and 35.22 N/mm2  
respectively. This resulted from the confinement of the 

concrete by the block units. The same trend was also 

observed in full-block prisms. The difference in the 

percentage increases in concrete strength suggests that the 

concrete block provides more confinement to the soft 

concrete infill than to the stiff concrete inf ill. Also, 

soft concrete deforms more laterally than stiff concrete, 

due its high Poisson's ratio. 

The formula for the broken line passing through the 

results of both full and half-block prisms with polystyrene 

joints (Fig. 5.25), based on the prism gross area, is as 
follows: 

ft 
M = 1.3 + 0.25 



The gradient of this line is 0.25, which represents 

the contribution of the concrete inf ill to the strength of 
the 3FBP-PJ prism; also the contribution of the concrete to 

the strength of any filled prism of differing mortar joint 
strength. 

The constant value of 1.3 N/mm2, which is the 
intersection of the broken line with the Y-axis, indicates 

that the unfilled blockwork masonry prism had some strength 

even when the mortar joint strength was almost zero. This 

constant is a function of the block material strength and 

can be determined for different block types and strengths 

by testing prisms with very soft joint material such as the 

ones used in this investigation (10 mm thick polystyrene). 

Using this constant value and the results for 

unfilled, full and half-block prisms together with the 

block strength and their corresponding mortar strengths, 

the contribution of the presence of the mortar joint to the 

prism strength can be determined. Since as shown earlier 

the presence of the mortar joints in the prism, even though 

of low strength, works as a media to transfer the applied 

vertical stress to the adjacent stiff concrete blocks. Also 

it was shown that changing the mortar strength had little 

effect on the prisms' compressive strength. Therefore, the 

contribution of the presence of the mortar joints to the 

prism strength will be a function of the block and mortar 

strengths. This contribution was found to be equal to 0.30 
fb  + 0.10 fmr  for full-block prism and 0.30 fb + 0.20 fmr for 
half-block prism. 

Thus, to determine the compressive strength of a 

unfilled or filled blockwork masonry prism, i'm' based on 

prism gross area, the following formulae were suggested: 
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Full 3-course high prism (3FBP-MJ) 

= 0.30 f b  + 0.10 fmr + 0.25 f c + 1.3 

Half 3-course high prism (3HBP-MJ) 

fV = 0.30 f + 0.20 fW  + 0.25 fc + 1.3 

The above formulae have been derived for one type of 

concrete block. A better understanding of the complex 

behaviour of blockwork masonry prisms will be achieved if 

more prism tests are carried out using different block 

types and strengths to justify the above formulae. 

Meanwhile, the small constant value of 1.3 N/mm2, which is 

a function of the block material strength, can be ignored 

in the above formulae until further tests are completed. 

Therefore, to determine the ultimate compressive 

strength of a blockwork masonry prism, i'm' based on prism 

gross area, the above formulae reduced to the following: 

Full 3-course high prism (3FBP-MJ) 

= 0.30 f + 0.10 fmr + 0.25 fc ...(5.4) 

Half 3-course high prism (3HBP-NJ) 

fo 
DI = 0.30 f + 0.20 fmr + 0.25 

A comparison between the predicted, using Eqns 5.4 and 

5.5, and the experimental values of i'm' based on prism 

gross area, is given in Table 5.3. Fig. 5.26 shows the 

above two formulae plotted against the results of filled 

full and half-block prisms with almost similar mortar 
strength. 
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The interesting feature of the above formulae is the 

indication of the extent of the contribution of the 

concrete material 28'29'36'7185  to the strength of filled 
prisms. 

5.5 DISCUSSION OF THEORETICAL RESULTS 

The discussion is divided into three major sections. 

The first section is a general discussion of common 

features in the results of the specific and parametric 

study analyses. The second section discusses the results of 

the specific and parametric study analyses conducted for 
the unfilled 3FBP-HJ prisms. The third section addresses 

the results of the specific and parametric study analyses 
carried out for filled 3FBP-MJ prisms. 

5.5.1 	General 

In general, it was found that an understanding of the 

prism's deformation in the Y-, X- and Z-directions is 

important in obtaining a clear picture of how the stresses 

are distributed throughout the prisms. 

The contour plots of the direct horizontal stresses in 

the X- and Z-directions show confinement stresses located 

near the steel platens of the machine. These stresses have 

a limited effect on the rest of the prism and mainly result 

from differences in the material properties of the blocks 

and the stiff steel platens. These in turn produced 

confinement stresses on the blocks 5581 '82'83'84 . This suggests 
that the unfilled and filled 3-course high blockwork 

masonry prisms can be used as standard test specimens to 
determine f 'm  in situations where in-plane horizontal forces 
are not expected. 
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5.5.2 	Plastic Non-Linear PEA for Unfilled 3FBP-HJ Prism 

5.5.2.1 Analysis of prism with specific level of vertical 
stress 

The specific level of stress applied to the unfilled 
3FBP-MJ prisms in this non-linear analysis was 12.01 N/mm2 , 
which is the average experimental value' of compressive 

strength for unfilled prisms built with high strength 

(1:0.25:3) mortar (Table 5.1) 

Prism Deformation 

The contour plot of the prism'deformation in the Y-

direction (Fig. 5.27) shows that the prism top surface 

shortens with a maximum cumulative vertical deformation of 

0.71 mm with respect to the prism bottom surface. The 

contour plot of the prism horizontal, deformation in the X-

direction (Fig. 5.28) shows a greater tendency for the 

prism end shells to deform outward, with a maximum 

deformation of 0.077 mm at the prism mid height. On the 

other hand, the contour plot of the prism horizontal 

deformation in the Z-direction (Fig. 5.29) shows an 

extraordinary mode of deformation compared to the 

deformation in 'the X-direction. The figure shows that the 

maximum outward deformation of 0.045 mm of the prism side 

shells is located mainly near the mortar joints. This type 

of deformation results from the high plasticity of the 

mortar joints and the prism aspect ratio (l/t = 2.05) 

(prism length-to-thickness). 

Due to the incompatibility of deformations caused by 

differences in the values of a horizontal deformation of 

0.032 mm between the X- and Z-directions, the prism end 

shells will be separated from the rest of the prism and 
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longitudinal cracks will be developed at the line of 

contact between the end and side prism shells. 

Stresses in the Block Material 

The contour plots of the direct stresses in the Y-, X-

and Z-directions in the block material are shown in Figs 

5.30, 5.31, and 5.32 respectively. The contour plots of the 

major and two minor principal stresses are given in Figs 

C.1, C.2 and C.3 (Appendix C) respectively. 

The contour plot of the direct vertical stress in the 

Y-direction shows that the block at prism mid height is 

under a constant compressive stress, ranging from 19.65 to 

22.11 N/mm2. The maximum vertical stress of 27.73 N/mm2  is 
located at bottom corner of the prism near the steel 

platen. 

The contour plots of the direct horizontal stresses in 

the X- and Z-directions show that the maximum tensile 

stress of 2.50 N/mm2  in the X-direction and 2.13 N/mm2  in 
the Z-direction are located at the vicinity of the mortar 

joints. These stresses tend to reduce to zero at a distance 

of 1/3 the block height from the mortar joints. The tensile 

stresses in both horizontal directions converted to 

confinement stresses near the top and bottom steel platens. 

In considering the equilibrium of the horizontal 

stresses at any cross-section of the middle block of the 

unfilled 3FBP-XJ prism, the assumption that the tensile 

stresses is uniformly distributed 3233'38  is not justifiable. 

The middle 1/3 of the block height is under zero stress and 

the stress distribution can be assumed to be triangular 

with maximum stress at the mortar joints and zero at a 

distance of 1/3 block height from the mortar joints. 
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The tensile horizontal stresses are the result of 

differences in the material mechanical properties between 

the fine sand mortar joints and the coarse aggregate 
concrete blocks. 

The contour plots of the minor principal stresses 

(Appendix C) show higher tensile stresses of 1.60 N/mm2  
(MST1), on the prism side shells (Fig. C.2) and 2.87 N/mm2  
(MST2), on the prism end shells (Fig. C.3). The maximum 

value of tensile stress on the prism end shells is higher 

than the experimental ultimate tensile strength for hollow 

unit block (2.16 N/mm2) (see Table 3.9). This suggests that 
the unfilled prism has more tendency to split along the end 

shells than through the side shells 1 '26 . 

Fig. 5.33 shows the contour plot of the maximum shear 

stress in the block material. The figure shows that the 

maximum shear stress of 10.96 N/mm2  is located in the block 
mid-web, at the bottom side of the prism. This value is 

quite high compared to that suggested by the ACI code for 

concrete given by Eqn. 4.4. The distribution of the maximum 

shear stress suggests that the initiation of shear failure 

is likely to occur at the bottom side of the prism, with 

shearing of the prism side shells to the outside and 

vertical splitting of the prism end shells. 

Due to the high tensile principal stresses on the 

prism end shells and the manner of distribution of the 

shear stresses, the unfilled prism has more tendency to 

split along the end shells than through the side shells. 

This tendency for splitting along the prism end shells was 

observed in the modes of failure of the unfilled 3FBP-HJ 

prisms during the experimental part of this investigation 

and was attributed to the prism aspect ratio (1/t = 2.05). 
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Stresses in the Mortar Material 

The contour plots of the direct stresses in the 1-, X-

and Z-directions in the mortar joints are shown in Figs 

5.34, 5.35, and 5.36 respectively. Thecontour plots of the 

major and two minor principal stresses are given in Figs 

C.4, C.5 and C.6 (Appendix C) respectively. 

The contour plot of the direct vertical stress in the 

Y-direction shows that the higher vertical stress is 

located at the inner faces of the mortar joints, with a 

maximum value of 22.40 N/mm2. This value tends to decrease 
towards the outer corners of the mortar joints. The 

distribution of vertical stresses at the mortar joints 

suggests that the applied vertical stress is higher at the 

inner faces of the prism hollow cores than at the outer 

faces. This results from the way the prism deformed in the 

horizontal direction. 

A clear similarity was observed between the contour 

plots of the direct horizontal stresses in the X- and Z-

directions. Both horizontal stresses show that the mortar 

joints are under confinement stresses in the X- and Z-

directions with maximum values of 6.84 N/mm2  in the X-
direction and 6.63 N/mm2  in the Z-direction. These maximum 
stresses are located at the inner faces of the mortar 

joints and tend to reduce towards the outer corners of the 
mortar joints. 

Fig. 5.37 shows the contour plot of the maximum shear 

stress at the mortar joints. The figure shows an almost 

uniform distribution of shear stresses at the mortar 
joints. 
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5.5.2.2 	Parametric study analysis 

The level of vertical stress applied to the unfilled 

3FBP-MJ prisms for the parametric study was 10.00 N/mm2 , 
which is the average experimental value of compressive 

strength for prisms built with low strength (1:1:6) mortar. 

To examine the effect of changing the mortar type on 

the prism deformations and stresses, a parametric study was 

carried out by fixing the applied level of vertical stress 

and changing the types of mortar joints, for the unfilled 

3FBP-MJ prisms, to low (1:1:6), medium (1:0.5:4.5) and high 

(1:0.25:3) strength. 

The effect of changing the mortar strength on prism 

deformation is clearly shown by the contour plots for the 

horizontal deformation in the X-direction (Figs 5.38, 5.39 

and 5.40) and in the Z-direction (Figs 5.41, 5.42 and 5.43) 

for prisms built with low, medium and high strength mortar 

joints respectively. The figures show that the horizontal 

deformations in prisms built with low strength mortar 

joints are mainly located at the joints as a local inward 

and outward squeezing of the joints. On the other hand, 

prisms built with medium to high strength mortar joints 

show that the deformation exists over most of the prism 

side and end shells. 

Tables 5.4 and 5.5 give the maximum values of 

deformations and stresses respectively for the unfilled 
3FBP-MJ prisms, as derived from the parametric study 

analysis. Table 5.4 gives the maximum values of deformation 

in the 1-, X- and Z-directions; the level of vertical 

stress applied during the parametric study analysis; the 

average experimental compressive strength of the prisms and 

the cube compressive strength of the different types of 

mortar. Table 5.5, on the other hand, gives the maximum 
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values of direct, shear and principal stresses in each 

individual material. 

As in the analysis of the unfilled 2BP-14J prism, and 

to assess the effect of changing the mortar strength on the 

maximum values of deformations and stresses in the prisms, 

the results of the parametric study are plotted in an X-Y 

plot. 

The effect of increasing the cube compressive strength 

of the mortar on the prism maximum values of deformation is 

shown in Fig. 5.44. This figure shows that the prism 

maximum value of vertical deformation increases by 23.3% as 

a result of changing the mortar strength from 9.19 to 26.54 

N/mm2. The explanation of this phenomenon is that in prisms 

with low strength mortar joints, most of the vertical 

deformation is in the soft mortar joints, whereas in prisms 

with high strength mortar joints both the joints and the 

blocks contribute more equally to the vertical deformation. 

So the overall cumulative vertical deformation of prisms 

with high strength mortar joints is more than prisms with 

low strength mortar joints. 

The results also show that the maximum value of 

vertical deformation of prism built with medium strength 

(1:0.5:4.5) mortar is almost similar to that for prism 

built with high strength mortar. 

On the contrary, for the same range of mortar 

strengths, the prism outward horizontal deformation 

decreases by 32.5% in the X-direction and by 55.2% in the 

Z-direction, as the mortar strength increases. Table 5.4 

also reveals that prisms with low and medium strength 

mortar joints tend to deform respectively inward and 

outward in the -ye and +ve X- and Z-directions at the 

mortar joints, whereas prisms with high strength mortar 
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joints tend to deform outward only. This will have an 

effect on the prism strength. 

Although the values of stress differ, the stress 

distributions for all the prisms analysed in this 

parametric study are similar to the contour plots of 

stresses for prisms analysed using the specific analysis. 

Information on how these stresses are distributed is given 

in the relevant contour plots of stresses from the specific 

analysis. 

Figs 5.45, 5.46 and 5.47 show the effect of changing 

the cube compressive strength of the mortar on the maximum 

values of the direct stresses in the Y-, X- and Z-

directions respectively. Fig. 5.45 shows that the maximum 

values of vertical stress at the block material and mortar 

joints increases by 33.5% and 6.3% respectively, as a 

result of changing the mortar strength from 9.19 to 26.54 

N/mm2. Prisms built with medium strength (1:0.5:4.5) mortar 

joints show a similar increase in the vertical stresses to 

prisms built with high strength (1:0.25:3) mortar joints. 

This supports the conclusion, derived previously, that the 

presence of mortar joints, even though of low strength, is 

enough to develop the block strength. Further increase in 

the mortar joint strength has no great influence on the 
unfilled 3FBP-NJ prism strength. This was mainly due to the 

insignificant ratio of the mortar joint thickness to the 

block height (1/18.9), and also due to confinement of the 

mortar by the stiff b1ocks 1 '26'28'33'36'7 . 

Fig. 5.46 shows that the maximum values of confinement 

stress in the X-direction in the mortar joints decreases by 

63.8% as a result of changing the mortar strength from 9.19 
to 26.54 N/mm2. For the same range of mortar strength, the 
maximum values of tensile stress in the block material 

decreases by 29.4%. 
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Similarly, the maximum values of confinement stress in 

the Z-direction in the mortar joints (Fig. 5.47), decreases 

by 64.5% and the maximum values of tensile stress in the 

block material decreases by 32.4% as the mortar strength 

increases. 

The decrease in the maximum values of horizontal 

stresses as the mortar compressive strength increases is 

expected since increasing the mortar compressive strength 

decreases the outward deformation of the mortar joints, as 

a result of the increase in the mortar Poisson's ratio. 

The results also show small differences between the 

maximum values of direct horizontal tensile stresses in the 

X- and Z-directions for all types of prism analysed. But 

the results of the maximum values of the minor principal 

stresses show that the tensile stresses on the prism • end 

shells (MST2) are 53.3%, 17.6% and 75.9% higher than those 

on the prism side shells (MST1). 

The differences in the tensile stresses between the 

prism end and side shells are the result of the prism 

aspect ratio (l/t =. 2.05), whereby the prism has more 

tendency to split on the end shells than the side shells. 

This result supports the observed mode of failure for 

unfilled prisms during the experimental part of this 

investigation. 

Fig. 5.48 shows the relationship between the maximum 

values of shear stress in the block and the mortar 

materials as affected by a change in the mortar strength. 

The figure shows that the shear stresses in the block 

material and the mortar joints increase by 18.7% and 69.9% 

respectively as a result of changing the mortar strength 

from 9.19 to 26.54 N/mm2. This can be explained by a rise 
in the vertical stresses in both materials as the mortar 
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compressive strength increases. 

To sum up the effect of increasing the mortar 

compressive strength from 9.19 to 26.54 N/mm2  on the 
strength of unfilled prisms. It seems that the effect is 

not so great, since increasing the mortar strength resulted 

in decreasing the tensile stresses and increasing the 

compressive stresses. So prisms built with low strength 

(1:1:6) mortar show higher tensile stresses rather than 

compressive stresses, while prisms built with high strength 

(1:0.25:3) mortar show the opposite. 

Due to the complex nature of the deformations and 

stress distributions in unfilled prisms, the general 

conclusion derived from the results of the specific 

analysis and the parametric study analysis is that the 

failure of unfilled 3FBP-MJ prisms is dominated by 

incompatible deformation, localized crushing, splitting and 

shear failures. It is expected that the unfilled prisms 

will fail due to a combination of compression, tension and 

shear stresses in an abrupt mode of failure. 

The predicted mode of failure for an unfilled prism 

with low strength (1:1:6) mortar joints is first, by 

localized crushing at one of the mortar joints, followed by 

the combination of block crushing, splitting and shearing. 

As the mortar strength increases, the possibility of 

localized crushing increases at either the mortar joints or 

at the blocks, followed by complete disintegration of the 

prism in an abrupt mode of failure. 

For all types of unfilled prisms discussed in this 

study, there is a high possibility of an abrupt and 

unstable mode of failure occurring when the prism 

approaches its ultimate load. The prism tends to split 

vertically along the prism shells and at the line of 
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intersection of the end and side prism shells, due to the 

high tensile stresses in the block material near the mortar 

joints, and due to deformation incompatibility. From the 

stress values and distribution of stress, the strength of 
unfilled 3FBP-Xi prisms will depend, on the block unit 

compressive strength and the mortar type. 

5.5.3 	Plastic Non-Linear PEA for Filled 3PBP-XJ Prism 

5.5.3.1 Analysis of prism with specific level of vertical 
stress 

The specific level of vertical stress applied to the 
filled 3FBP-HJ prism in this non-linear analysis was 14.53 
N/mm2, which is the average experimental value of 

compressive strength for prisms built with high strength 

(1:0.25:3) mortar and filled with medium strength (1:3:2) 

concrete (Table 5.1). 

Prism Deformation 

The contour plot of the prism deformation in the Y-

direction (Fig. 5.49) shows that the prism top surface 

shortens vertically with a maximum deformation of 0.50 mm 

with reference to the prism bottom surface. The contour 

plot of prism horizontal deformation in the X-direction 

(Fig. 5.50), shows that the prism end shells tend to deform 

outward with a maximum deformation of 0.048 mm at the prism 

mid height. The contour plot of the prism horizontal 

deformation in the Z-direction (Fig. 5.51), shows that the 

prism side shells tend to deform outward in a similar 

manner to the end shells in the X-direction, but the 

maximum value at mid height is almost half (0.025 mm) the 

value in the X-direction. The reason for the difference in 
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the horizontal deformation is attributed to the prism 

aspect ratio (l/t = 2.05). 

Due to the incompatibility of deformation, caused by 

a difference in the values of horizontal deformation 

between the X- and Z-directions of 0.023 ram, the end shells 

will be separated from the rest of the prism and 

longitudinal cracks will be developed at the line of 

contact between the end and side prism shells. 

The figure also shows that the deformation of the 

filled prism in the Z-direction is completely different 

from the deformation of an unfilled prism with the same 

mortar type. The reason for this is the presence of the 

concrete inf ill and its high Poisson's ratio, which caused 

the 	inf ill to push the prism side shells outward at 

failure. 

The values of deformation for the filled 3FBP-MJ prism 

in the Y-, X- and Z-directions are 29.6%, 37.7% and 44.4% 

less than those for the unfilled 3FBP-MJ prism. This 

suggests that filled prisms are stiffer than unfilled 3FBP-
MJ prisms due to the presence of the concrete inf ill. 

Stresses in the Block Material 

The contour plots of the direct stresses in the Y-, X-

and Z-directions in the block material is shown in Figs 

5.52, 5.53, and 5.54 respectively. The contour plots of the 

major and two minor principal stresses are given in Figs 

C.7, C.8 and C.9 (Appendix C) respectively. 

The contour plot of the direct vertical stress in the 

Y-direction shows that a maximum vertical stress of 22.18 
N/mm2  is located at the bottom corner of the prism, near to 
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the machine platen. The rest of the block shells are under 

a uniform stress ranging from 14.60 to 16.43 N/mm2 . 

The contour plots of the direct horizontal stresses in 

the X- and Z-directions show that the prism shells are 

subjected to confinement stresses near the steel platens 

with a maximum value of 7.62 N/mm2  in the Z-direction. The 
rest of the prism shells are under uniform tensile stresses 

with a maximum value of 1.51 N/mm2  in the X-direction and 
1.46 N/mm2  in the Z-direction. No large localized tensile 

stresses were observed near to the mortar joints, as was 

the case with the unfilled prisms. This supports the 

conclusion, derived previously, that in filled 3FBP-NJ 

prisms, the concrete inf ill offsets the inward lateral 

deformation of the mortar joints and forces them to deform 

outward. The tensile stresses thus developed were directed 

outward onto the block shells and had no influence on their 

strength (see Fig. 5.23). 

The main explanation for the existence of horizontal 

tensile stresses in the prism shells is the tendency for 

the concrete infill to deform outward as a result of its 

high Poisson's ratio. This observation was also reached 

during the experimental part of the investigation. 

In considering the equilibrium of the horizontal 

stresses at any cross-section in the middle block of the 

filled 3PBP-MJ prisms, the assumption that the horizontal 

tensile stresses are uniformly distributed 3233'38  over the 
full height of the middle block is justified. 

The contour plots of the minor principal stresses 

(Appendix C) show higher tensile stresses of 1.23 N/mm2  
(MST1), on the prism side shells (Fig. C.8) and 1.68 N/mm2  
(MST2), on the prism end shells (Fig. C.9). These values of 

maximum tensile stress are less than the ultimate tensile 
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strength of a unit block filled with (1:3:2) concrete (1.77 

N/mm2) (see Table 3.9). This suggests that the filled prism 
has less tendency to split due to high tensile stresses. 

Fig. 5.55 shows the contour plot.of the maximum shear 

stress in the block material. As for the unfilled 3FBP-MJ 

prism, the maximum value of shear stress is quite high 

compared to the value suggested by the ACI code for 

concrete, as given by Eqn. 4.4. The figure shows that the 

distribution of shear stresses is irregular with most of 

the prism side shells subjected to high shear stresses. 

This irregularity is caused by the presence of the concrete 

which influences the behaviour of the prism at failure. 

This is supported even more by the location of the maximum 

value of shear stress (9.34 N/mm2) at the prism mid height. 
The distribution of the maximum shear stress suggests that 

the initiation of shear failure will occur at the prism mid 

height, with shearing of the prism side shells to the 

outside and vertical splitting of the prism end shells. 

This will also be accompanied by shearing on the faces of 

the prism side shells. 

Due to the higher tensile principal stresses acting on 

the prism end shells and also to the way the shear stresses 

are distributed, the filled prism has a greater tendency to 

split along the end shells than along the side shells'26 . 

This tendency to split along the prism end shells was 

observed in the modes of failure for filled 3FBP-MJ prisms 

during the experimental part of the investigation and was 

attributed to the prism aspect ratio (l/t = 2.05). 

Stresses in the Concrete Material 

The contour plots of the direct stresses in the Y-, X-

and Z-directions in the concrete inf ill are shown in Figs 
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5.56, 5.57, and 5.58 respectively. The contour plots of the 

major and two minor principal stresses are given in Figs 

C.10, C.11 and C.12 (Appendix C) respectively. 

The contour plot of the direct vertical stress in the 

Y-direction shows that most of the higher values of the 

vertical stress are located in small areas at the levels of 

the mortar joints, with a maximum value of 31.55 N/mm2 . This 
maximum value suggests that the concrete in these areas has 

already failed in compression. The rest of the concrete 

column is under a small level of vertical stress, ranging 
from 9.45 to 11.05 N/nun2 . The explanation for the high 
vertical stresses at the levels of the mortar joints is the 

high plasticity of the mortar. 

The contour plots of the direct horizontal stresses in 

the X- and Z-directions is affected by the high localized 

vertical stresses at the levels of the mortar joints. Both 

horizontal stresses showed high confinement stresses at the 

levels of the mortar joints with almost similar maximum 

values in the X-direction (11.96 N/mm2) and in the Z-
directions (11.50 N/nun2). These stresses tend to decrease 
away from the levels of the mortar joints, changing to 
tensile stresses, with a maximum value of 0.96 N/mm2  in the 
X-direction, at mid height levels of the three blocks. 

The confinement stresses are exerted on the concrete 

by the blocks in two ways. First, due to the tendency of 

concrete to deform outward as a result of its high 

Poisson's ratio. Second, as a result of failure of the 

concrete at the levels of the mortar joints, due to the 

high vertical and shear stresses at these locations. 

The contour plot of the maximum shear stress, Fig. 

5.59, shows that the highest value of shear stress, 10.09 
N/mm2 , is located at the levels of the mortar joints. This 
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stress tends to reduce away from the these locations. 

The distribution of vertical, horizontal, shear and 
principal stresses in the concrete inf ill suggests a new 
hypothesis for the failure of filled prisms. The hypothesis 
is presented as follows: 

Since all prism materials are under the same level of 
applied vertical stress, the vertical shortening of the 
stiff blocks and the concrete is less than the soft mortar 

joints. This means that most of the vertical shortening is 
in the mortar joints and consequently the concrete, at the 
levels of the mortar joints, tries to match this 
shortening. Internally high, localized vertical and shear 
stresses will develop at the concrete in these areas and 
failure of the concrete by compression and shear will be 
imminent. This will force the concrete to deform outward, 

confined by the block shells near the mortar joints. This 
means that the initiation of block shell-concrete inf ill 
separation and deformation will occur first at the levels 
of the mortar joints. Added to the high Poisson's ratio of 
the concrete this will cause the failure of filled prisms 
even before developing the apparent compressive strength of 
block material, b 

Stresses in the Mortar Material 

The contour plots of the direct stresses in the Y—, X-
and Z-directions in the mortar joints are shown in Figs 
5.60, 5.61, and 5.62 respectively. The contour plots of the 
major and two minor principal stresses are given in Figs 
C.13, C.14 and C.15 (Appendix C) respectively. 

The contour plot of the direct vertical stress in the 
Y-direction shows that the maximum value of 16.94 N/mm2  is 
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located at the outer faces of the mortar joints. This value 

tends to decrease towards the inner faces of the mortar 

joints, reaching a value of 6.85 N/mni2 . 

The distribution of vertical stresses in the mortar 
joints, in the filled 3FBP-MJ prism is completely different 
from that in the unfilled 3FBP-MJ prism. In the filled 

prism, the vertical stresses are higher in the outer faces 

of the mortar joints than in the inner faces, whereas in 

the unfilled prisms the opposite is true. This is also the 

case with the value of maximum vertical stress, which in 

the filled, is 24.4% lower than for the unfilled prism. 

These differences can be explained by the presence of the 

stiff concrete, which affects the distribution of the 

vertical stresses by carrying some of the applied vertical 

stress from the block shells and the mortar joints. 

The contour plots of the direct horizontal stresses in 

the X- and Z-directions show higher confinement stresses at 

the outer faces of the mortar joints in areas of high 

vertical stress. A maximum confinement stress value of 4.52 
N/mm2  is reported in the Z-direction. Greater uniformity in 
the distribution of the confinement stresses is observed in 

the unfilled prisms compared to the filled prisms. 

Fig. 5.63 shows the contour plot of the maximum shear 

stress at the mortar joints. The figure shows that the 

maximum shear stress of 6.43 N/mm2  is located at the outer 
face of the mortar joints in areas of higher vertical 
stress. 

5.5.3.2 	Parametric study analysis 

The level of vertical stress applied to the filled 
3FBP-MJ prism in the parametric study was 13.85 N/mm2, which 

279 



is the average experimental value of compressive strength 

for prisms built with high strength (1:0.25:3) mortar and 

filled with low strength (1:5:2) concrete. This level of 

vertical stress was kept constant on the prism, while the 

concrete inf ill varied from low (1:5:2) to medium (1:3:2) 

and high (1:1:2) strength to study the effect of changing 

the concrete strength on the maximum values of deformation 

and stress in the prism. 

The effect of increasing the concrete strength on the 

prism deformations is shown by the contour plots for the 

horizontal deformations in the X-direction (Figs 5.64, 

5.65, 5.66) and in the Z-direction (Figs 5.67, 5.68, 5.69), 

for prism filled with low (1:5:2), medium (1:3:2) and high 

(1:1:2) strength concrete respectively. The figures show no 

great difference in the distribution of the horizontal 

deformations for the different type of concrete mixes used 

in the analysis. All the prisms deformed as if the prisms 

were made of one type of material. 

Tables 5.6 and 5.7 give the results of the maximum 

values of deformations and stresses respectively for the 

filled 3FBP-MJ prisms, as derived from the parametric study 

analysis. Table 5.6 provides the maximum values of 

deformation in the Y-, X- and Z-directions; the level of 

vertical stress applied during the parametric study 

analysis; the average experimental compressive strength of 

the prisms and the cube compressive strength of the 

different concrete inf ill mixes. Table 5.7, on the other 

hand, gives the maximum values of direct, shear and 

principal stresses in each individual material. 

The effect of increasing the cube compressive strength 

of the concrete on the prism maximum values of deformation 

is shown in Fig. 5.70. The figure shows that the vertical 

deformation of the prism decreases by 40.4% as a result of 
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changing the concrete strength from 9.98 to 34.02 N/mm2 . 
Similarly, the prism outward horizontal deformation 

decreased by 63.5% and 63.2% in the X- and Z-directions 

respectively, as the concrete strength increased. Decreases 

in the maximum values of vertical and horizontal 

deformations as the concrete strength increases can be 

explained by the increase in prism stiffness caused by 

using a stronger concrete. 

Although the values of stress differ, the stress 

distributions for all the prisms analysed in this 

parametric study are similar to the contour plots of 

stresses for prisms analysed using the specific analysis. 

Information on how these stresses are distributed is given 

in the relevant contour plots of stresses from the specific 

analysis. 

Figs 5.71, 5.72 and 5.73 show the effect of changing 

the concrete strength on the maximum values of direct 

stress in the Y-, X- and Z-directions. Fig. 5.71 shows that 

the vertical stress in the block material and mortar joints 

decrease by 30.3% and 28.4% respectively as a result of 

changing the concrete strength from 9.98 to 34.02 N/mm2. On 
the other hand, the maximum values of vertical stress in 
the 	concrete inf ill increase by 137.1% as the concrete 
strength increases. 

This suggests that as the concrete strength increases, 

the applied vertical stress starts shifting from the block 

shells to the concrete. The figure also shows that when the 

cube compressive strength of the concrete is approximately 
25 N/mm2, the vertical stresses in the block shells and the 
concrete infill are the same. 

Fig. 5.72 shows that the maximum values of confinement 

stress in the X-direction decreases by 19.6% in the mortar 
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joints and increases by 39.4% in the concrete inf ill as a 

result of changing the concrete strength from 9.98 to 34.02 

N/mm2. This was due to the decrease in the applied vertical 

stress in the block shells and mortar joints and the 

increase in these stresses in the concrete. 

As shown previously, the block shells are responsible 

for 	the confinement stresses on the concrete inf ill. 

Although the confinement stresses on the concrete in the X-

direction increases by 39.4% as a result of increasing the 

concrete compressive strength, the tensile stresses in the 

block shells decrease by 24%. This supports the conclusion 

derived previously that the high Poisson's ratio of the 

concrete is responsible for failure of the filled prisms. 

Similarly, the maximum values of the confinement 

stress in the Z-direction in the mortar joints (Fig. 5.73), 

decrease by 19.6% and the tensile stress in the block 

shells decreases by 26.3% as the concrete strength 

increases. On the other hand, the maximum values of 

confinement stresses in the concrete,  inf ill increase by 
34.9% as the concrete strength increased. 

The results for the maximum values of tensile stresses 

in the block shells for prism filled with low strength 

concrete (1:5:2), revealed also that the tensile stress in 

the Z-direction are some 21.2% higher than in the X-

direction. This means that the tensile stresses on the 

prism end shells are higher than on the side shells. This 

difference is even greater (72.4%) comparing the maximum 

values of the minor principal stresses on the prism end 

(MST2) and side (MST1) shells. 

Similarly, the maximum values of minor principal 

tensile stresses on the prism end. shells (NST2), for prisms 

filled with medium (1:3:2) and high strength (1:1:2) 
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concrete, are higher by 57.5% and 77.4% respectively than 

on the prism side shells (MST1). 

The differences in the maximum values of tensile 

stresses between the prism end and side shells is the 

result of the prism aspect ratio (l/t = 2.05), whereby the 

prism has a greater tendency to split on the prism end 

shells than through the side shells","). This result 
supports the observed mode of failure for filled prisms 

during the experimental part of this investigation.. 

Fig. 5.74 shows the effect of changing the cube 

compressive strength of the concrete on the maximum values 

of the shear stress. The figure shows an increase of 250.1% 

in .the values of maximum shear stress in the concrete 

inf ill as a result of changing the concrete strength from 

9.98 to 34.02 N/mm2. For the same range of concrete 
strength, the maximum shear stresses in the block shells 

and mortar joints decrease by 25.5% and 30.7% respectively. 

To sum up the effect of changing the cube compressive 

strength of concrete from 9.98 to 34.02 N/mm2  on prisms 
strength. It seems that the prisms strength increases as 

the concrete inf ill increases. This was due to the shifting 

of the applied vertical stress from the block material to 

the concrete infill, which means a greater contribution of 
the 	concrete inf ill to the strength of the prism. An 

optimum prism strength will be achieved when the 

deformational characteristics of all materials are the 
same. 

Due to the complex nature of the deformations and the 

stress distributions in the filled 3FBP-MJ prisms, the 

general conclusion derived from the results of the specific 

analysis and the parametric study analysis is that failure 

of filled 3FBP-MJ prisms is dominated by incompatible 
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deformation, localized crushing, splitting and shear 

failures. It is anticipated that the filled prisms will 

fail due to a combination of compression, tension and shear 

modes of failure. 

The predicted mode of failure for the filled 3FBP-HJ 

prisms with low to medium strength concrete inf ill is 

dominated by block shell-concrete inf ill separation and 

lateral deformation with some block shells, mortar and 

concrete inf ill crushing near the mortar joints. The first 

initiation of block shell outward deformation is near the 

levels of the mortar joints. Prisms filled with high 

strength concrete fail by simultaneous crushing of the 

block shells and concrete inf ill near one of the mortar 

joints. 

From the stress values and distribution, the strength 

of filled 3FBP-MJ prisms do not depend directly on the 

block unit compressive strength and the mortar 
type 126'28'33'36'7 . To determine 	filled 3FBP-HJ prisms 
should be tested. 

In general, a clear similarity was noticed between the 

predicted modes of failure and the values of stress for the 

unfilled and filled 3FBP-MJ prisms from the FEA as compared 

to the observed modes of failure and the values of stress 

determined from the experimental investigation. Using the 

FEA, however, provided a clear picture to the deformations 

and stress distributions for unfilled and filled prisms in 

the Y-, X- and Z-directions. The FEA also provides answers 

to questions on how different materials interact with each 

other in axially loaded blockwork masonry prisms which are 

difficult if not impossible to observe experimentally. 
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5.6 CONCLUSIONS 

The ultimate compressive strength for unfilled 

blockwork masonry, i'm' in situations where in-plane 

horizontal forces are not expected to occur, can be 

determined by one of the following two methods: 

(i) On the basis of the compressive strength of a 

unit block compressed normal to the bed face and 

the type of mortar, or by using Eqn. 5.4 for the 

type of blocks used in this investigation. 

Tests on 3-course high full-block stack-bonded 

masonry prisms made from the same materials as 

those to be used in the actual construction and 

compressed normal to the unit bed face. 

The ultimate compressive strength for filled blockwork 

masonry, i'm' in situations where in-plane horizontal 
forces are not expected to occur, can be determined by 

testing 3-course high full-block stack-bonded masonry 

prisms, built from the same materials as those used in 

the actual construction and compressed normal to the 

unit bed face, or by using Eqn. 5.4 for the type of 

blocks used in this investigation. 

Testing unfilled and filled half-block prisms to 

determine i'm' over estimates the actual compressive 
strength of the blockwork masonry assemblage by 25%. 

This is due to the difference in values of aspect 

ratio, as between the full-block prism, (l/t = 2.05), 

and half-block prism, (l/t = 1.0), and also due to the 

difference in the mortar bedded area caused by the 

presence of the mid-web in full-block prism. 

4. 	The presence of a low strength (1:1:6) mortar in the 
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joints of unfilled full-block prisms compressed normal 

to the unit bed face caused a reduction of 10.2% in 

the prism strength compared to unfilled prisms with a 

dental plaster joint. Changing the mortar strength by 

188.8% increases the prism strength by 20.1%. 

The presence of concrete inf ill significantly reduced 

the compressive strength of 3-course high prisms with 

mortar joints or with dental plaster joints. With only 

one exception, the best compressive strength results 

were achieved when the deformational characteristics 

of the concrete inf ill matched those of the concrete 

block. This was achieved by using concrete inf ill with 

a cube compressive strength of 45% to 50% higher than 

that of the concrete block. 

In filled prisms compressed normal to the unit bed 

face, the presence of the mortar joints, even though 

of low strength, are essential to develop the block 

strength. Their presence, however, caused a further 

reduction in the prism strength in addition to that 

caused by the presence of the concrete infill. This 

reduction resulted from the high plasticity and 

Poisson's ratio of the mortar, compared to that of the 

concrete blocks. This was responsible for introducing 

confinement stresses in the mortar and splitting 
stresses -in the blocks. 

In filled 3-course high full-block prisms of similar 

concrete strength, the presence of a low strength 

(1:1:6) mortar joint, contributed greatly to the 

strength of the filled prisms. Increasing the mortar 

strength by 98.2% above this value increased the prism 

strength by a negligible amount. 

Empirical formulae (Eqns 5.4 and 5.5 ) were suggested 

K MM 



to determine i'm' for unfilled and filled, full and 

half-block prisms taking into account the block, 

mortar and concrete inf ill strength. The formulae 

showed that the strength of the concrete inf ill is not 

fully reflected in the strength of prisms compressed 

normal to the bed face. 

The results of the horizontal deformations from the 

specific and parametric study FEA, for unfilled and 

filled 3FBP-MJ prisms shows incompatibility in the 

horizontal deformation in the X- and Z-directions. Due 

to this incompatibility, the prism end shells will be 

separated from the rest of the prism and longitudinal 

cracks will be developed at the line of contact 

between the end and side prism shells. 

The distribution of vertical, horizontal, shear and 

principal stresses resulting from the specific and 

parametric study non-linear FEA for unfilled and 

filled 3FBP-MJ prisms showed that the effect of the 

steel platens was limited to areas near the platens 

only. Thus, using the 3-course high prism as a 

standard specimen to determine f 'mis  acceptable. 

The specific non-linear FEA for unfilled prisms showed 

that, although the vertical and major principal 

stresses increase as the mortar strength increases, 

the confinement stresses on the mortar joints decrease 

considerably. This consequently resulted in decreasing 

the tensile stresses in the block shells near the 

mortar joints. This explains why changing the mortar 

joints strength has no great influence on the unfilled 

prism strength. 

In considering the equilibrium of horizontal stresses 

at the middle block of the unfilled 3-course high 
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prisms, constructed with high strength (1:0.25:3) 

mortar, it is better to assume a triangular stress 

distribution with maximum at the mortar joints and 

zero at 1/3 of the block height. In the case of the 

filled prisms, assume the horizontal stresses to be 

uniformly distributed at the middle block, 

irrespective of what type of mortar or concrete is 

used in their construction. 

13. A new hypothesis is presented on page 278 for the 

failure of filled 3-course high prisms as a result of 

the specific non-linear FEA. 
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Fig. 5.1 - Types of 3-course high blockwork 
masonry prism tested. (i) 3FBP-MJ 

Prism, (ii) 3FBP-DPJ prism, 
(iii) 3FBP-PJ prism. 
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Fig. 5.2 - 1/4 prism model used 
in non-linear PEA. 
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THREE DIMENSIONAL FEA MESH 
USED TO MODEL UNFILLED AND 
FILLED 3-COURSE HIGH FULL 
AND HALF-BLOCK PRISMS. 

MESH 

Fig. 5.3 - Three-dimensional mesh used 
in non-linear FEA. 
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Fig. 5.4 - Unfilled 3FBP-HJ prism after failure, 
mortar strength 26.54 N/mm2 . 
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Fig. 5.5 - Unfilled 3FBP-DPJ prism after failure. 
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Fig. 5.7 - Filled 3FBP-MJ prism Mode II failure, 
mortar strength 26.80 N/nun2  concrete 

strength 34.02 N/mm 
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Fig. 5.8 - Filled 3FBP-DPJ prism after failure, 
concrete strength 19.00 N/mm2. 
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Pig. 5.9 - Filled 3FBP-PJ prism after failure, 
concrete strength 34.02 N/nun2. 
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Fig. 5.10 - Unfilled 3HBP-MJ prism after failure, 
mortar streng th 26.54 N/nun2. 
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Fig. 5.11 - Unfilled 3HBP-DPJ prism after failure. 
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3 FHfp 2 

Fig. 512 - Filled 3HBP-MJ prism Mode I failure, 
mortar strength 26.54 N/mm2  concrete 

strength 28.75 N/mm 
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Fig. 5.13 - Filled 3HBP-HJ prism Mode II failure, 
mortar strength 26.54 N/mm2  concrete 

strength 45.31 N/mm 
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Fig. 5.14 - Filled 3HBP-DPJ prism after failure, 
concrete strength 14.85 N/mm2. 
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Fig. 5.15 - Filled 3HBP-PJ prism after failure, 
concrete strength 12.87 N/mm2. 
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Table 5.1 

Compressive strength of 3-course high full-block 
prisms and component materials. 

Average compressive * Material cube compressive I 
strength (N/rn2) strength (N/rn2) 

Prima Area used S.D. Mortar InfiLL 
type Net Gross (N/rn2) 

Prism with mortar joints (3FBP-NJ) • 
Unfilled 17.78 io;oo 1.07/0.60 9.19 - 
Unfilled 17.39 9.63 0.85/0.43. 15.39 - 
Unfilled 21.35 12.01 0.41/0.23 26.54 - 
Filled - 15.76 2.03 9.19 19.40 
Filled - 17.93 0.59 13.52 32.03 
Filled 13.76 1.27 15.39 8.57 
Filled 11.36 0.15 15.39 15.71 
Filled - 13.42 1.05 20.15 23.52 
Fitted - 13.85 1.31 26.44 9.98 
Fitted - 14.53 0.23 26.54 28.75 
Fitted - 19.29 1.55 	- 26.80 34.02 

Prism with dental plaster joints (3FBP-DPJ) • 

Unfilled 19.80 11.15 2.89/1.63 	 - - 
Filled - 14.24 1.06 	 - 9.27 
Filled - 17.34 1.44 19.00 
Filled - 24.82 1.76 34.02 

Prism with polystyrene joints (3FBP-PJ) 4 

Filled 13.09 3.40 0.62/0.16 	 - 8.57 
Filled 16.14 4.20 0.50/0.13 11.73 
Filled 24.47 6.37 4.44/1.16 	 - 24.60 
Filled 36.50 9.49 3.22/0.84 	 - 34.02 

* 	Average and S.D. are calculated for three prisms. 
I 	Cube compressive strength of block material f = 24.29 N/rn2. b 

Net area 	= Area at section (1) 41700 ma2. (See Table 3.2). 
Gross area 	= 390 x 190 	= 74100 ma2. 

4 	Net area 	= 74100 - Area at section (4) = 19272 ma2. (See Table 3.2). 
Gross area 	= 390 x 190 	= 74100 rim2. 
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Table 5.2 

Compressive strength of 3-course high half-block 
prisms and component materials. 

Average compressive * Material cube compressive I 
strength (N/nm2) strength (N/rn2) 

Prism Area used S.D. Mortar Infilt 
type Net Gross (N/imi2) 

Prism with mortar joints (3HBP-t4J) • 

Unfitted 20.60 11.36 2.68/1.47 15.39 - 
Unfitted 24.18 13.33 0.66/0.36 20.15 
Unfitted 25.49 14.06 0.38/0.21 26.54 - 
Fitted - 15.64 1.13 26.54 8.27 
Filled 20.46 1.08 26.54 28.75 
Filled - -- 	26.44 0.78 26.54 45.31 

Prism with dental plaster joints (3HBP-DPJ) • 

Unfilled 21.89 12.07 2.02/1.11 	 - - 
Filled - 13.77 0.56 12.87 
Fitted - 14.47 0.84 14.85 
Fitted - 20.13 1.05 	 - 35.22 

Prism with polystyrene joints (3HBP-PJ) 4 

Filled 18.61 4.97 1.37/0.37 	 - 12.87 
Filled 25.84 6.90 1.71/0.46 	 - 20.15 
Filled 41.58 11.10 0.73/0.19 35.22 

* 	Average and S.D. are calculated for three prisms. 

I 	Cube compressive strength of block material fb = 24.29 N/sin2. 
Net area 	= Area at section (1) = 19900 mm. (See Table 3.2). 
Gross area 	= 190 x 190 = 36100 

4 	Net area 	= 36100 - Area at section (4) = 9636 mm2
.(See Table 3.2). 

Gross area 	= 190 x 190 = 36100 
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Fig. 5.16 - Stress vs strain curves for unfilled 
3FBP-MJ prism, mortar strength 26.54 N/mm2. 

306 



I ULTIMATE PRISM STRENGTH 
25.0 

13 

2 
20. 

ci 15. 

k 100 1 
+2  

5.0 ° BLOCK  

o MORTAR 

1'mr = 26.54 N/mm2  
I 	 I 

-5.0 	0.0 
I 	I 	I 	I 	 I 	I 	I 

5.0 	10.0 	15.0 	20.0 	25.0 
I 	I 

30.0 	35.0 
STRAIN x 10 

Fig. 	5.17 - Stress vs strain curves for unfilled 
3HBP-143 prism, mortar strength 26.54 N/mm2. 
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Fig. 5.18 — Effect of mortar strength on unfilled 
3FBP-MJ and 3HBP-MJ prisms strength. 
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Fig. 5.19 - Stress vs strain curves for filled 
3FBP-MJ prism, mortar strength 20.15 N/nun2, 

concrete strength 23.52 N/nun2 . 
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Fig. 5.20 - Stress vs strain curves for filled 
3HBP-HJ prism, mortar strength 26.54 N/mm2, 

concrete strength 28.75 N/nun2 . 
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Fig. 5.21 - Effect of concrete inf ill strength on 
filled 3FBP-HJ and 3HBP-14J prisms strength, 

with similar mortar strength. 

311 



25.0 

20.0 

15.0 

10.0 

5.0 
QI  

5.0 10.0 15.0 20.0 25.0 30.0 35.0 
MORTAR COMP. STRENGTH 

(N/mm') 

Fig. 5.22 - Effect of mortar strength on 
filled 3FBP-MJ prisms strength, with 

similar concrete strength. 
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Fig. 5.24 - Effect of concrete inf ill strength 
on filled 3PBP-DPJ and 3HBP-DPJ 

-prisms strength. 
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Fig. 5.25 - Effect of concrete inf ill strength 
on filled 3FBP-PJ and 3HBP-PJ 

prisms strength. 
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Table 5.3 

Comparison between experimental and theoretical 
values of f', for unfilled and filled 

3FBP-MJ and 3HBP-14J prisms. 

Average Average 
experimental theoretical 

Prism fl(N/flEe2) fS(N/sin2) * m m Ratio 
type Gross area Gross area fe (Exp.)/ 	(Theo.) m 	 m 

FuLL-bLock prism with mortar joints (3FBP-MJ) 

Unfitted 10.00 8.21 1.22 Unfitted 9.63 8.83 1.09 Unfitted 12.01 9.94 1.21 

Fitted 15.76 13.06 1.21 Fitted 17.93 16.65 1.08 Fitted 13.76 10.97 1.25 Fitted 11.36 12.76 0.89 Fitted 13.42 15.18 0.89 
Fitted 13.85 12.43 1.11 Fitted 14.53 17.13 0.85 Fitted 19.29 18.48 1.04 

Average 1.08 

Half-block prism with mortar joints (3HBP-MJ) 

Unfitted 11.36 10.37 1.10 Unfitted 13.33 11.32 1.18 Unfitted 14.06 12.60 1.12 

Fitted 15.64 14.66 1.07 Filled 20.46 19.78 1.03 Fitted 26.44 23.92 1.11 

Average 	= 1.10 

* 	Ratio of ft 	(Experimental)! f (Theoretical). m 
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Fig. 5.26 - Comparison between experimental and theoretical 
values of i'm' for unfilled and filled 3FBP-HJ and 

3HBP-MJ prisms, with similar mortar strength. 
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SCALE1/ 	3.201 
EYE I-CAnTO - 	1.000 
EYE T-COORD 	0.7500 
EYE 2-COORO • 	1.909 
MAX. DEFLECTION - 0.7090 
AT NODE NUMBER 	260 
LOAD CASE 10 	5 
TYPE DISP/POTE 
COMPONENT - 	2 
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INTERVAL 	 9.177:1 
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YDIRECTION (n,rn) 
ALL MATERIALS 

CONTOUR VALUE 
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Fig. 5.27 - Deformation of unfilled 3FBP-MJ prism 
in Y-direction, specific non-linear FEA. 
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SCALE 1/ 	3.201 
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Fig. 5.28 - Deformation of unfilled 3FBP-MJ prism 
in X-direction, specific non-linear PEA. 
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Fig. 5.29 - Deformation of unfilled 3FBP-MJ prism 
in Z-direction, specific non-linear PEA. 
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IYSTRO 	9.2-3 DATE- 	14- 6-99 

SCALE 	1/ 	3.20) 
EYE X _C OORD 	i000 
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EYE T-0000D - 	0.7500 
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LOAD CASE ID - 	5 DIRECT STRESS IN 
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73 
-24.57 

  

i

-22.11 
-(9.6$ 
-17.20 

]TLE 	UNFILLED 3-COURSE HIGH PRISM 

Fig. 5.30 - Direct stress in Y-direction, block material 
of unfilled 3FBP-MJ prism, specific 

non-linear PEA. 

TSTRO,9.R-3 	
DATE: 14- 6-90 
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COMPONENT 	 - 	 510CC MATERIAL ONLY 
NUMBER OF CONTOURS • 	S 
INTERVAL 	- 3.234 
MAX NODAL VALUE 	2.503 	 CONTOUR VALUE 
lillY NODAL VALUE = -10.03 

- 	. 	 -(0.00 
-6.669 
3334 
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Fig. 5.31 - Direct stress in X-direction, block material 
of unfilled 3FBP-MJ prism, specific 

non-linear PEA. 
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TSTRO.9.2-3 
DATE: 14- 6-99 

SCALE 	1' 	3.201 . UNFILLED PRISM 
EVE x-caoso 	1.090 MORTAR 	(1.0.25:3) 
EYE Y-COURD 	0.7500 
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LUAS CASE ID - 	5 DIRECT STRESS IN TYPE 	STRE/FLUX 2-DIRECTION (H/.2) 
COMPONENT 	3 BLOCK MATERIAL ONLY 
NUMBER 01 	CONTOURS 	5 
II(TERYAL. 	 3.210 
MAX NODAL VALUE • 	2.125 - CONTOUR VALUE 
MIN NODAL VALUE - 	-$0.83 

3 • -9.7(9 
-5.479 
-3.240 
9.8 
3.241) 

. 	— 
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Fig. 5.32 - Direct stress in Z-direction, block material 
of unfilled 3FBP-MJ prism, specific 

non-linear FEA. 
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Fig. 5.33 - Maximum shear stress, block material 
of unfilled 3FBP-MT prism, specific 

non-linear FEA. 

321 



SCALE 1/ 	1.462 
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TYPE SIRE/FLUX 
COMPONENT • 	2 
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INTERVRL. 	• 	1.060 
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YDIRECTION (N/mm2) 
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-22.09 
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06 

Fig. 5.34 - Direct stress in Y-direction, mortar material 
of unfilled 3FBP-MJ prism, specific 

non-linear FEA. 
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Fig. 5.35 - Direct stress in X-direction, mortar material 
of unfilled 3FBP-HJ prism, specific 

non-linear PEA. 
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SCALE 	 UNFILLED PRISM 
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Fig. 5.36 - Direct stress in Z-direction, mortar material 
of unfilled 3FBP-MJ prism, specific 

non-linear PEA. 
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Pig. 5.37 - Maximum shear stress, mortar material 
of unfilled 3FBP-MJ prism, specific 

non-linear PEA. 
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SCALE 1/ 	3.281 
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EYE 7-CODRO 	-1.000 
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Fig. 5.38 - Deformation of unfilled 3FBP-MJ prism in 
X-direction, parametric study non-linear 

FEA, 1:1:6 mortar. 
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Fig. 5.39 - Deformation of unfilled 3FBP-HJ prism in 
X-direction, parametric study non-linear 

PEA, 1:0.5:4.5 mortar. 
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Fig. 5.40 - Deformation of unfilled 3FBP-MJ prism in 
X-direction, parametric study non-linear 

PEA, 1:0.25:3 mortar. 
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Fig. 5.41 - Deformation of unfilled 3FBP-XJ prism in 
Z-direction, parametric study non-linear 

PEA, 1:1:6 mortar. 
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E e,e  

398E"OI 

8.4193E-01 
0,5591E-RI 

Fig. 5.42 - Deformation of unfilled 3FBP-MJ prism in 
Z-direction, parametric study non-linear 

FEA, 1:0.5:4.5 mortar. 

SCALE 1' 	3.201 
EYE X-CUORD - 	1.000 
EYE Y-COORD 	0.7500 
EYE Z-CDORD • 	1.000 
MAX. DEFLECTION - 0.5303 
AT NODE NUMBER • 260 
LOAD CASE ID 	S 
TYPE DISP'POTE 
COMPONENT • 	3 
NUMBER OF CONTOURS - 	S 
INTERVAL 	= 0.7595E-82 
MAX NODAL VALUE • 0.3038E-01 
111(1 NODAL VALUE - O.BUYIOE+BEi 

UNFILLED PRISM 
MORTAR (18.253) 

DEFORMATION IN 
Z-DIRECT ION (mm) 
ALL MATERIALS 

CONTOUR VALUE 

B. 75 95[ -02 
0.1519E-Bt 
G. ?279E_81 
9. 30 35 C-B 

Fig. 5.43 - Deformation of unfilled 3FBP-MJ prism in 
Z-direction, parametric study non-linear 

PEA, 1:0.25:3 mortar. 
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Table 5.4 

Deformation results of the parametric study 
non-linear PEA for unfilled 

3FBP-MJ prism. 

Deformation results * AppLied Prism Mortar 
Prism (oin) stress strength strength 
type YD 	 XD 	 21) (N/mm) (N/ma2) (U/ma2) 

Unfitted 0.000 	0.039 	0.067 10.00 10.00 9.19 
(1:1:6) -0.430 	-0.077 	-0.050 

Unfitted 0.000 0.000 0.050 	10.00 	9.63 	 15.39 
(1:0.5:4.5) -0.540 -0.073 -0.006 

Unfitted 0.000 0.000 0.030 	10.00 	12.01 	26.54 
(1:0.25:3) -0.530 -0.052 0.000 	 - 

* 	
Figures quoted in the table are the upper and Lower maximum values of deformation. 
YD, XD and 21) 	= 	Deformation in the Y-, X- and 2-directions. 
+ve values 	 In the +ve direction of the axes. 
-ye values 	= 	In the -ye direction of the axes. 
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Table 5.5 

Stress results of the parametric study non-linear 
PEA for unfilled 3FBP-14J prism. 

Stress results * 
Prism 	 (N/nm2) 
type 	 YST 	XST 	ZST 	- -- SST 	MJST 	MST1 	KST2 

Block material 

Unfitted -11.90 2.31 2.04 7.59 -11.90 1.52 2.33 
(1:1:6) -16.40 -3.96 -3.96 4.96 -16.80 -3.96 -3.58 

Unfitted -15.40 2.11 2.18 9.35 -15.40 1.88 2.21 
(1:0.5:4.5) -22.10 -7.42 -7.42 6.72 -22.90 -7.42 -6.63 

Unfilled -15.40 1.63 1.38 9.01 -15.40 1.08 1.90 
(1:0.25:3) -21.90 -7.30 -7.30 6.73 -22.60 -7.32 -6.53 

Mortar material 

Unfitted -7.62 -2.48 -3.35 4.28 -7.62 -4.52 -2.46 
(1:1:6) -17.40 -13.50 -13.50 1.90 -19.40 -13.50 -11.50 

Unfilled -13.50 -4.14 -4.90 5.64 -13.50 -6.19 -4.12 
(1:0.5:4.5) -19.90 -11.50 -11.40 3.91 -21.10 -11.40 -10.30 

Unfitted -15.10 -2.55 -2.81 7.27 -15.10 -3.49 -2.53 
(1:0.25:3) -18.50 -4.89 -4.79 5.78 -18.80 -4.80 -4.68 

* 	Figures quoted in the table are the upper and Lower values of stress. 

YST, XST and ZST 	= 	Direct stress in the Y-, X- and Z-directions. 
SST 	 = 	Maximum shear stress. 
MJST, MST1 and MST2 	= 	Major, minor 1 and 2 principal stresses. 
+ve values 	 = 	Tension. 

-ye values 	 = 	Compression. 
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0.4 - XD- DEFORMATION IN X-DIRECTION 
YD- DEFORMATION IN Y-DIRECTION 

0.3 I ZD- DEFORMATION IN Z-DIRECTION 

(APPLIED) = 10.00 (N/mm') 

0.2 

> < ZD 

XD 

YD 

-0.7 

-0.8 I 	I 	 I 	 I I 	 I 	II 	I I 	I 	I 	 I 	1 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 
MORTAR COMP. STRENGTH 

(N/mm') 

Fig. 5.44 	Effect of mortar strength on unfilled 
3FBP-14J prism Deformation, parametric 

study non-linear PEA. 
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30.0 
0 

44 
 L) 

25.0 

20.0 

 

15.0 

10.0 

50 	 B- BLOCK 
M- MORTAR 

0.0 
f(APPLIED) = 10.00 (N/mm') 

I 	 I 	 I 	 4 	 I 	 I 	 I 	 I 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 
MORTAR COMP. STRENGTH 

(N/mm') 

Fig. 5.45 - Effect of mortar strength on unfilled 
3FBP-MJ prism direct stress in Y-direction, 

parametric study non-linear PEA. 
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5.0 1 B- BLOCK 
M- MORTAR 

4.0 	= 10.00 (N/mm') 

3.0 

2.0 

1.0 

0.0 
0 

-2.0 

-3.0 

-' -4.0 
(I) 
qU) 

S-'  -5.0 
t) 
E- 	-6.0 

-7.0 

-8.0 

-9.0 

-10.0 

-11.0 

-12.0 

-13.0 

-14.0 

5.0 10.0 15.0 20.0 25.0 30,0 35.0 
MORTAR COMP. STRENGTH 

(N/mm') 

M 

Fig. 5.46 - Effect of mortar strength on unfilled 
3FBP-MJ prism direct stress in X-direction, 

parametric study non-linear FEA. 
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5.0 B- BLOCK 
M- MORTAR 

4.0 	f (APPUtD) = 10.00 (N/mm) 

3.0 

2.0 

1.0 

0.0 
0 

-1.0 
144 

-2.0 

-3.0 

-4.0 
½ 1-. 

-5.0 
½ 

-6.0 
44 

-7.0 

-8.0 

-9.0 

-10.0 

-11.0 

-12.0 

-13.0 

-14.0  

5.0 10.0 15.0 20.0 25.0 30.0 35.0 
MORTAR' COMP. STRENGTH 

(N/mm') 

LID 

Fig. 5.47 - Effect of mortar strength on unfilled 
3FBP-MJ prism direct stress in Z-direction, 

parametric study non-linear PEA. 
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fI) 	20.0 	B- BLOCK 

M- MORTAR 

	

15.0 	(APPUED) = 10.00 (N/mm2) 

C/) 	10.0 
	

B 

5.0 

	

0.0 	I 	 jI 	 I 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 
MORTAR COMP. STRENGTH 

(N/mm') 

Fig. 5.48 - Effect of mortar strength on unfilled 
3FBP-MJ prism maximum shear stress, 
parametric study non-linear FEA. 
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lYSTR0 	9.2-3 DATE: 	14- 6-90 

SCALE 	1/ 	3.201 FILLED PRISM 
LIE X-COORD • 	1.000 MORTAR "0.25:3) 

• 
EYE '(-COORD 	0.7500 

CONCRETE 	(13 2) 

EYE Z-0000D - 	1.000 
MAX. 	DEFLECTION 	- 	0.5021 	 1 DEFORMATION IN 
Al NODE NUMBER - 	268 	 . V-DIRECT ION (i) - 
LOAD CASE ID = 	5 	• ALL MATERIALS 

TYPE DISP/PDIE 
COMPONENT - 	2 
NUMBER OF CONTOURS CONTOUR VALUE 

INTERVAL 	 • 	0.1255 
MAX NODAL VALUE 	0.0000EIR0 -0.502) 

11TH NODAL VALUE - 	-0.502* -0.3765 
-0.25*0 

I 

-0.1255 
-B. 1326E-I6 

ITLE, 	FILLED 3-COURSE HIGH PRISM 

Fig. 5.49 - Deformation of filled 3FBP-MJ prism 
in Y-direction, specific non-linear PEA. 

334 



SCALE (/3 181 
EYE X-COORD • -1.000 
EYE Y-COORD • 
EYE 2-00000 - -1.000 
MAX. DEFLECTION 	0.5021 
AT NODE NUMBER • 260 
LOAD CASE ID • 	5 
TYPE DESP/PQTE 
COMPONENT 
NUMBER OF CONTOURS • 	5 
INTERVAL 	• 
MAX NODAL VALUE • 0.0000E*00 
MEN NODAL VALUE • -0.483IE-01 

FILLED PRISM 
MORTAR (1:0.25.3) 
CONCRETE (132) 

DEFORMATION IN 
((-DIRECIEON (mm) 
ALL MATERIALS 

CONTOUR VALUE 

i -0.4034E-0l 
25E- 

-0.2417E-61 
-8.I200E-0I 
0.0 

Fig. 5.50 - Deformation of filled 3FBP-MJ prism 
in X-direction, specific non-linear PEA. 

SCALE 1/ 	3.201 
EYE x-Coop.cj - 	1.000 
EYE Y-COORD 	0.7500 
EYE 1-00000 - 	1.000 
MAX. DEFLECTION - 
AT NODE NWIEER = 250 
LOAD CASE ID = 	S 
TYPE DrOP/POlE 
COMPONENT 	3 
NUMBER OF COUIOURS 	S 
INTERVAL 	= 0.6160E-02 
MAX NODAL VALUE - 0.2164E-fl1 
MIN NODAL VALUE - 

FILLED PRISM 
MORTAR (1:0.25:31 
CONCRETE (13:2) 

DEFORMATION IN 
i-DIRECTION (mm) 
ALL MATERIALS 

CONTOUR VALUE 

9.6160E-62 
0.I?32E-Bl 
0.1 5401-8) 
8.2464E-81 

Fig. 5.51 - Deformation of filled 3FBP-MJ prism 
in Z-direction, specific non-linear PEA. 
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1YSTRU 9.2-3 	 DATE: TI- 6-90 

SCALE I' 	3,201 	 FILLED PRISM 
EYE X-0008D 	1.809 	 MORTAR (1;8.253) 
EYE Y-COORD • 8,7600 	 CONCRETE (1:3.2) 

EYE Z-COORD • 	1.090 
LOAD CASE ID • 	5 	 DIRECT STRESS IN 
TYPE SIRE/FLUX 	 YDIRECTION (I1/mm2) 
COMPONENT • 	2 	 BLOCK MATERIAL ONLY 
NUMBER OF CONTOURS 	8 
INTERVAL 	• 	1.825 
MAX NODAL VALUE - -14.08 	 CONTOUR VALUE 
MIN NODAL VALUE 	-22.18 

-21.911 
-20.08 
-19.25 
-16.43 
-14.68 

TITLE 	FILLED 3-COURSE HIGH I'RXGM 

Pig. 5.52 - Direct stress in Y-direction, block material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 

SCALE I' 	3.2111 
EYE 2-COngo - 	1.000 
EYE Y-COORD - 0.7500 
EYE 2-COORD - 	1.080 
LOAD CASE ID - 	S 
TYPE STRE.'FLUX 
COMPONENT - 	I 
NUMBER OF CONTOURS • 	S 
INTERVAL 	- 2.257 
MAX NODAL VALUE - 	1.5115 
MIN NODAL VALUE - -7.522 

FILLED PRISM 
MORTAR (10.25:3) 
CONCRETE (1:3:2) 

DIRECT STRESS IN 
N-DIRECTION (N/..P) 
BLOCK MATERIAL ONLY 

CONTOUR VALUE 

i -6.771
-4.534 
-2.257 
-0.11IRE-IS 
2.257 

Pig. 5.53 - Direct stress in X-direction, block material 
of filled 3PBP-MJ prism, specific 

non-linear PEA. 
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SCALE I' 	3.001 	 FILLED PRISM 
ElK x-cooiw 	1.000 	 MORTAR (10.253) 
EYE Y-COORD 	0.7S88 	 CONCRETE  (1.3.2) 
EYE 2-COORD 	1 .000 
LOAD CASE 10 	5 	 DIRECT STRESS IN 
TYPE STREIFLUX 	 2-DIRECTION (N'mm2) 
COMPONENT 	3 	 BLOCK MATERIAL ONLY 
NUMBER OF CONTOURS 	S 
INTERVAL 	- 2.245 
MAX NODAL VALUE • 	1.458 	 CONTOUR VALUE 
NUN NODAL VALUE - -7.520 

.-6.734 
-4.489 
-2.215 
-0.1110K-I5 
2.245 

]TLE 	FILLED 3-COURSE HIGH PRISM 

Fig. 5.54 - Direct stress in Z-direction, block material 
of filled 3FBP-14J prism, specific 

non-linear PEA. 

.STRO. 	9.0-3 DATE 13- 6-90 

SCALE 	I. . FILLED PRISM 
LYE 	I-ClOSE 	• 
EYE 	Y-00E0O 	0. 7 Y2 ON CC RTE(r2 1  
LYE 	2-LOOSE 	- 
LOAD 	CASE 	II 
TYPE 	IAi.'rLu.l MAXIMUM SHEAR 
COIIPOYLtY 	• 	0 

STRESS 	(N/mm2) 
BLOCK MATERIAL ONLY 

U!IOEA 	OF 	S'ObS 	• 
I'4TE4V4 	• 	3,6104 
(101 	YYLL 	Y,iLVE 	9.344 CONTOUR 	VALUE 

0.831 

6.9(2 
7 • 540 
8 • (69 
8.797 
9,426 

TITLE 	FILLED 3-COURSE HIGH PRISM 

Fig. 5.55 - maximum shear stress, block material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 
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IYSTR1I 	9.2-3 DATE: 	137 6-98 

SCALE 1/ 	3.88? FILLED PRISM 
EYE X-COORD - 	1.000 MORTAR 	(1:11.25;31 
EYE Y-CDORD - 	8.7500 CONCRETE 	(1321 

EYE 2-00000 - 	1.000 
F 

LOAD CASE ID • 
TYPE 	SIRE/FLUX DIRECT STRESS IN 

COMPONENT - 	2 
Y-DIRECTION (H/mm?) 
CONCRETE MATERIAL ONLY 

NUMBER OF CONTOURS - 	S 
INTERVAL 	- 	5.524 
MAX NODAL VALUE 	-9.454 CONTOUR VALUE 
MIN NODAL VALUE 	-31.55 

-27.62 
- 	-22.18 

-16.57 
-11.85 
-5.524 

frITLEt 	FILLED 3-COUDSE HIGH PRISM 

Pig. 5.56 - Direct stress in Y-direction, concrete material 
of filled 3FBP-MJ prism, specific 

non-linear FEA. 

:51190. 	9.2-3 
DATE: 	II- 8-90 

SCALE 1/ 	3.80? FILLED PRISM 
EYE X-CODRD • 	1.080 F MORTAR 	11:11.25:3) 
ETC T-COORD • 	8.7500 CONCRETE 	(1:3:2) 
EYE 	Z-CIIORD 	1.008 
LOAD CASE ID - 	5 
TYPE 	SIRE/FLUE .DIRECT STRESS IN 
COMPONENT 	I 

. X-DIRECTION (N/mm?) 

NUMBER OF CONTOURS 	S 
CONCRETE MATERIAL ONLY 

INTERVAL 	- 	3.230 
MAX NODAL VALUE 	0.9612 CONTOUR VALUE 
1110 NODAL VALUE 	-11.96 

- 
-9.689 

!7iW,X 
-6.468 
-3.230 
0.8 
3.230 

1tLE 	FILLED 3-COURSE NIGH PRISM 

Pig. 5.57 - Direct stress in X-direction, concrete material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 

338 



iTSTRO 	92-3 DATE 	13- 	-92 

SCALE 1/ 	3.007 FILLED PRISM 
EYE X-COORO - 	1.000 
EYE 1-CODRO 	6.7500 CONCRETE 	(1:3:2) 

EYE 7-COORD - 	1.000 
LOAD CASE ID • 	S  TYPE 	STR(FLUX DIRECT STRESS IN 

COMPONENT = 	3 
7-DIRECTION (N'mr2) 
CONCRETE MATERIAL ONLY 

NUMBER OF CONTOURS - 	S 
INTERVAL 	- 	3.101 
MAX NODAL VALUE - 	0.9027 L CONTOUR VALUE 
11114 NODAL VALUE 	-11.90 

-9.384 
-6.703 
-3.181 
0.0 
3.101 

TITLE, 	FILLED 3-COURSE HIGH P111511 

Fig. 5.58 - Direct stress in Z-direction, concrete material 
of filled 3FBP-MJ prism, specific 

non-linear FEAR 

IYSTRO9.2-] 	 DATE I)- 6-90 

SCALE I' 	3.00? 	 . 	 FILLED P01511 
(YE X-00000 	1.000 	

CONCRETE (YE Y-COORD - 0.7500 
EYE Z-00000 	1.000 
LOAD CASE ID 	S 	

SHEAR MAXIMUM  TYPE SIRE/FLUB 	 . 	
., 	STRESS (N/..21 COMPONENT • 10 

NUMBER OF CONTOURS 	S 	
CONCRETE MATERIAL ONLY 

INTERVAL 	 1.597 	 .. 	V  
MAX NODAL VALUE 	10.09 	 F .- 	 CONTOUR VALUE 11114 NODAL VALUE - 	3.705 	

4.796 

7 
I 6 39

.984 
9.521 
11.10 

TITLE, 	FILLED 3-COURSE 111511 PRISM 

Fig. 5.59 - Maximum shear stress, concrete material 
of filled 3FBP-MJ prism, specific 

non-linear FEA. 
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On 

SCALE I 	1469 	 FILLED P91911 
EYE XCCORD 	I 	 MORTAR (1:0.25:3) 
EYE T CaIRO 	07500 CONCRETE 
EYE 1  COORO 	I 000 
LOAD CASE ED 	5 

DIRECT STRESS IN TYPE SIRE/FLUX 	
Y-DIRECTION (N/mm9) COMPONENT 	9 	 MORTAR IIAIERIAL. ONLY 

1IU1I8ER OF CONTOURS 	5 
INTERVAL 	 2.523 
MAX NODAL VALUE 	-6.045 	 CONTOUR VALUE 
MIN NODAL VALUE 	-16.94 

-7.569 
-5,046 

Pig. 5.60 - Direct stress in Y-direction, mortar material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 

SCALE 1 	1.469 	 FILLED PRISM 
EYE X-COORD - 	1.000 	 MORTAR t1025:3l 

CONCRETE (13:2) 
EYE Z-CCORD 	1.000 
LOAD CASE ID  
TYPE SIRE/FLUX 	 DIRECT STRESS IN 
COMPONENT 	i 	 X-DIRECTION (N/mm?) 
NUMBER OF CONTOURS • 	S 	 MORTAR MATERIAL ONLY 
INTERVAL 	 0.9129 
MAX NODAL VALUE • -0,8489 
((IN NODAL VALUE • 	4600 	 CONTOUR VALISE 

j

3.652 
-2.739 
-1.826 
-0.9129 
-0.55511-16 

Fig. 5.61 - Direct stress in X-direction, mortar material 
of filled 3FBP-HJ prism, specific 

non-linear PEA. 

340 



(1.  
SCALE 1/ 	1.469 	 FILLED PRISM 
EYE X-COORD 	1.000 	 MORTAR (1:0.25 :31 
EYE T-COORO =0.7500 	 CONCRETE (132) 

EYE Z-COORD = 	1.000 
LOAD CASE ID - 	S 
TYPE STRE/ELUX 	 DIRECT STRESS IN 
COMPONENT 	3 	 2-DIRECTION (N/mm2) 
NUMBER OF CONTOURS 	 MORTAR MATERIAL ONLY 

INTERVAL 	• 0.8791 
(lAX NODAL VALUE - -(.002 
MIN NODAL VALUE 	-4.519 	 CONTOUR VALUE 

. 	
:7 

il 

Pig. 5.62 - Direct stress in 2-direction, mortar material 
of filled 3FBP-MJ prism, specific 

non-linear FEA. 

SCALE 1/ 	1.469 FILLED PRISM 

EYE Y-COORD 	0.7509 	 CONCRETE (1:3:2) 
EYE 7-COORD 	1.000 
LOAD CASE ID 	5  
TYPE STRE'rL 	 MAXIMUM SHEAR tjx 
CO 	 STRESS (N/mml) COMPONENT • 	(0 	

MORTAR MATERIAL ONLY NUMBER OF CONTOURS • 	S 
INTERVAL 	• 0.1667 
MAX NODAL VALUE - 	6.430 	

CONTOUR VALUE 1119 NODAL VALUE • 	2.963 

3,46? 
4.334 
5200 

6.934 

Fig. 5.63 - Maximum shear stress, mortar material 
of filled 3FBP-MJ' prism, specific 

non-linear PEA. 
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SCALE I' 	3.201 
EYE X—CODRD = —1 .008 
(YE Y—COORD - 0.7500 
EYE Z—0000D 	—1.000 
MAX. DEFLECTION 	0.6661 
AT NODE NUMBER • 260 
LOAD CASE ID • 	5 
TYPE DISP'PDTE 
COMPONENT 	1 
NUMBER OF CONtOURS 	S 
INTERVAL 	- 0.1844E-01 
MAX NODAL VALUE • 0.0000(+80 
LIIN NODAL VALUE 	—0.737?E-01 

FILLED PRISM 
MORTAR (18.25:3 
CONCRETE (1:5) 

DEFORMATION IN 
X—DIRECTION (mm 
ALL. MATERIALS 

CONTOUR VALUE 

—B.?37?E-0l i -0.5533E-0I-0.3609E—RI 
—B.$TIIE-8I 
—0.9674E-18 

Fig. 5.64 - Deformation of filled 3FBP-MJ prism in 
X-direction, parametric study non-linear 

PEA, 1:5:2 concrete. 

SCALE I' 	3.181 
EYE X—COORD 	—1.008 
EYE V—CDORD • 0.7528 
EYE Z—COOPD 	—1.000 
MAX. DEFLECTION - 0.4627 
AT NODE NUMBER 	260 
LOAD CASE ID - 	S 
TYPE DISP'POIE 
COMPONENT • 	I 
NUMBER OF CONTOURS • 	5 
INTERVAL 	• 0.1070E-01 
MAX NODAL VALUE = 0.0008E+80 
"IN NODAL VALUE • —2.1279E-81 

FILLED PRISM 
MORTAR (10.253) 
CONCRETE ($32) 

DEFORMATION IN 
X—DIRECTION (nm) 
ALL MATERIALS 

CONTOUR VALUE 

i 1.4279E-91 
. 32 10 (-0) 

—0.2140E—BI 
—0. I270(-0l 
—8. 4337(— IT 

Fig. 5.65 - Deformation of filled 3FBP-MJ prism in 
X-direction, parametric study non-linear 

FEA, 1:3:2 concrete. 
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SCALE 1/ 	3.121 EYE X-COOflO 	- 	.-1.00 FILLED PRISM 
EYE Y-COCRD 	0.7520 CONCRETE 	11:1:2)  EYE Z-COORO - 	-1.000 MAX. DEFLECTION - 	0.3362 AT NODE NUMBER IDEFORMATIONIN 

tnm) LOAD CASE ID 	S ALL MATERIALS TYPE DISP,POIE COMPONENT - 	1 NUMBER Of CONTOURS 	S CONTOUR VALUE INTERVAL 	2.6692E-02 MAX NODAL VALUE 	8-8000E+00- -8.2:79E-0: MIN NODAL VALUE - -O.2679E--R1 -B.209E-O -8.I340E-01 —0.66 98E-02 0.8 

Fig. 5.66 - Deformation of filled 3FBP-MT prism in 
X-direction, parametric study non-linear 

FEA, 1:1:2 concrete. 

SCALE I' 	3.221 EYE X-00000 • 	1.0130 EYE Y-COORD • 2.7520 EYE 2-COORD • 	1.000 MAX. DEFLECTION • 2.6661 AT NODE NUMBER • 262 LOAD CASE ID • 	5 TYPE DISP'PDTE COMPONENT • 	I NUMBER OF CONTOURS 	5 INTERVAL 	0,9553E-02 MAX NODAL VALUE • 2.3237E-oI MEN NODAL VALUE • 0.2000E+00 

FILLED PRISM 
MORTAR (1:0,253) CONCRETE (1:5:2) 
DEFORMATION IN 2-DIRECTION (mm) ALL MATERIALS 

CONTOUR VALUE 

kTH B.9593E-22 0.19191-UI B.28?BE-21 0.38371-01 

Li 

Fig. 5.67 - Deformation of filled 3FBP-MJ prism in 
2-direction, parametric study non-linear 

FEA, 1:5:2 concrete. 
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SCALE I' 	3.201 
EYE X-COORD = 	1.000 
EYE Y-COORD - 0.7500 
EYE Z--00090 	1.006 
MAX. DEFLECTION • 0.4627 
AT NODE NUMBER • 260 
LOAD CASE ID • 	S 
TYPE DISP/POTE 
COMPONENT 	3 
NUMBER OF CONTOURS • 	5 
INTERVAL 	 8.5466C-02 
MAX NODAL VALUE = 0.2186E-01 
MEN NODAL VALUE - 0.0000E490 

FILLED PRISM 
MORTAR (I0.2S3) 
CONCRETE (I3) 

DEFORMATION IN 
Z-DIRECTION (mm) 
ALL MATERIALS 

CONTOUR VALUE 

B.5166E02 
9.1993E-B) 
B.1640E-0l 
8.2196C-81 

Fig. 5.68 - Deformation of filled 3FBP-MJ prism in 
Z-direction, parametric study non-linear 

FEA, 1:3:2 concrete. 

SCALE 1' 	3.291 
EYE X-COORD - 	1.000 
EYE Y-COORD = 0.7680 
EYE Z-0000D - 	1.000 
MAX. DEFLECTION - 0.3368 
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Table 5.6 

Deformation results of the parametric study 
non-linear PEA for filled 

3FBP-MJ prism. 

Deformation results * Applied Prism Infill 
Prism (ma) stress strength strength 
type YD 	 XD 	 ZD (N/,mi2) (H/sm2) (Wilma2) 

Fitted 0.000 	0.000 	0.038 13.85 13.85 9.89 
(1:5:2) -0.570 	-0074 	0.000 

Fitted 0.000 0.000 0.022 	13.85 	14.53 	28.75 
(1:3:2) -0.460 -0.043 0.000 

Filled 0.000 0.000 0.014 	13.85 	19.29 	34.02 
(1:1:2) -0.340 -0.027 0.000 	 - 

* 	Figures quoted in the table are the upper and lower maximum values of deformation. 
YD, XI) and 20 	= 	Deformation in the Y-, X- and Z-directions. 
+ve values 	 In the +ve direction of the axes. 
-ye values 	= 	In the -ye direction of the axes. 
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Table 5.7 

Stress results of the Parametric study non-linear 
PEA for filled 3PBP-MJ prism. 

Stress results * 
Prism (N/ma2) 
type YST XST ZST SST NJST HST1 NST2 

Block material 

Fitted -15.90 1.79 2.17 10.10 -15.90 1.27 2.19 
(1:5:2) -24.10 -8.72 -8.72 7.05 -25.20 -8.71 -7.67 

Fitted -14.20 1.36 1.38 8.91 -14.20 1.06 1.67 
(1:3:2) -20.90 -6.72 -6.72 6.65 -21.60 -6.72 -5.98 

Fitted -11.50 1.36 1.60 7.52 -11.51 0.93 1.65 
(1:1:2) -16.80 -4.28 -4.28 5.25 -17.30 -4.28 -3.80 

Concrete material 

Fitted -3.19 0.42 0.51 3.97 -319 0.41 0.55 
(1:5:2) -1670 -8.97 -8.82 1.23 -16.70 -8.97 -8.81 

Fitted -8.97 0.95 0.89 9.68 -8.97 0.79 1.26 
(1:3:2) -30.30 -11.50 -11.00 3.46 -30.30 -11.60 -10.90 

Fitted -12.30 1.14 1.24 13.90 -12.30 0.97 1.40 
(1:1:2) -39.60 -12.50 -11.90 5.01 -39.70 -12.60 -11.80 

Mortar material 

Fitted -10.00 -1.66 -1.61 6.98 -10.00 -1.67 -1.60 
(1:5:2) -18.30 -4.59 -4.69 4.20 -18.40 -4.62 -4.52 

Fitted -6.41 -0.85 -1.02 6.02 -6.41 -1.02 -0.85 
(1:3:2) -16.00 -4.34 -4.28 2.75 -16.10 -4.34 -4.28 

Fitted -3.68 -0.47 -0.60 4.84 -3.68 -0.60 -0.46 
(1:1:2) -13.10 -3.69 -3.77 1.59 -13.10 -3.70 -3.68 

* 	Figures quoted in the table are the upper and lower values of stress. 
YST, XST and ZST 	= 	Direct stress in the Y-, X- and Z-directions. 
SST 	 = 	Maximum shear stress. 
MJST, MST1 and MST2 	= 	Major, minor 1 and 2 principal stresses. 
+ve values 	 = 	Tension. 
-ye values 	 = 	Compression. 
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Fig. 5.70 - Effect of concrete infill strength on filled 
3FBP-MJ prism deformation, parametric 

study non-linear FEA. 
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CHAPTER 6 

FACTORS AFFECTING COMPRESS WE 
STRENGTH OF BLOCKWORK MASONRY 

6.1 INTRODUCTION 

This chapter presents the results of an experimental 

and theoretical investigations of the factors, other than 

concrete inf ill strengths and mortar types, which affect 

the compressive strength and behaviour of unfilled, filled 

and solid blockwork masonry prisms compressed normal to the 

unit bed face. The following factors were studied: (a) 

prism height-to-thickness ratio (hit), (b) aspect ratio 

(prism length-to-thickness) (lit), (c) mortar thickness, 

(d) shrinkage in 28 days and (e) bond between block and 

concrete inf ill. 

As shown earlier, testing blockwork masonry prisms is 
a common method (24,25)  of determining the ultimate compressive 
strength of blockwork masonry, f 'm•  This method involves the 
testing of stack-bonded masonry prisms, with a prism 

height-to--thickness ratio (h/t) of between 2.0 and 5.0, 

made of the same materials as used in actual construction, 

and compressed normal to the unit bed face. 

BOULT 27  in his work on filled, full-block masonry 

prisms compressed normal to the bed face, gave an 

explanation for the reduction in prism strength with height 

as it relates to the shrinkage of the grout and the degree 

of restraint offered by the core shape which resulted in 

plastic cracking as shrinkage proceeds. Relating the 

reduction in strength with height to the plastic cracks, 

however is not well founded. It has been 
established (55,81,82,83,84) that the artificial confining effect 

at the top and bottom ends of the prism due to the machine 



platens is the main reason for the increase in the apparent 

compressive strength of concrete block prisms with h/t 

values :5 2.0. 

As mentioned in chapter 5, DRYSDALE and HAMID 28'29  in 

their work on concrete block masonry prisms proposed, for 

ease of handling, the testing of 3-course high, half-block 

prisms. This test was claimed to accurately assess the 

strength of concrete block masonry in that it exhibits a 

failure mode similar to that for walls. 

As shown in chapter 5, using the results based on 

half-block prisms in order to ease handling is not 

acceptable due to the difference in value of the aspect 

ratio (l/t) (prism length-to-thickness) of full-block (l/t 

= 2.05) and half-block (l/t = 1.0) prisms; also due to the 

difference in the mortar bedded area between the two 

prisms. The effect of these two variables on the 

compressive strength of blockwork prisms were investigated 

experimentally and theoretically in more detail in this 
chapter. 

In their work on half-block concrete masonry prisms, 

the above authors also showed that increasing the joint 

thickness from 9.5 to 19.0 mm produced a decrease in the 

compressive strength of the prism of 16% for ungrouted 

masonry, whereas for grouted masonry the decrease was 
only 3%. 

The aim of this investigation is to study the effects 

of h/t ratio, aspect ratio (l/t), mortar thickness, 

shrinkage in 28 days and bond between the block and 

concrete inf ill on the compressive strength and behaviour 

of unfilled and filled blockwork masonry prisms compressed 

normal to the bed face. Methods of determining the ultimate 

blockwork compressive strength ft are also suggested. 
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6.2 EXPERIMENTAL PROGRAMME 

A total of thirty-three full-block and twenty-one 

half-block stack-bonded prisms of varying h/t and l/t 

ratios, were constructed by an experienced mason. This 

ensured that the horizontal mortar joints between the 

concrete blocks were completely filled. High strength 

(1:0.25:3) mortar was used throughout. Some of the prisms 

were left unfilled and some were cast with medium strength 

(1:3:2) concrete. 

The prisms are designated in Table A.l (Appendix A) 

and in the text as 2FBP-MJ (2-course high Full-Block Prisms 

with Mortar Joint), 3FBP-MJ (3-course high Full-Block 

Prisms with Mortar Joints) and 6FBP-MJ (6-course high Full-

Block Prisms with Mortar Joints). Similarly, three 

different types of unfilled and filled half-block prisms 

2HBP-MJ, 3HBP-MJ and 6HBP-MJ, were constructed and tested 

to compare their compressive strength and behaviour with 

the full-block prisms. 

The methods adopted herein for the construction and 

curing of specimens are similar to those ones used in 
chapter 5. 

Two experiments were devised to investigate the extent 

of shrinkage on the plastic cracks between the block and 
the 	concrete inf ill and the effect of that on the 

compressive strength of the prism. In the first experiment, 

three prisms, each consisting of three half-blocks, were 

built using the method explained above. The first prism was 

filled with a low slump (75 mm), 1:3:2 concrete mix. The 

second prism filled from the same mix but with the W/C 

ratio adjusted to give a medium slump (175 mm). Finally, a 

mix with a high slump, 220 nun, was used to fill the third 
prism. 

354 



In the second experiment, three prisms, each 

consisting of three full-blocks in height, were built. The 
inner surfaces of the hollow blocks were coated with oil 
prior to construction. The prisms were then left under 
polythene sheeting for four days to allow the mortar joints 

to gain in strength. Thereafter, the prisms were filled 

with a medium strength (1:3:2) concrete and as before cast 

in two layers, compacting each layer with a 25 mm poker 

vibrator. After casting, the prisms were left to cure using 

the method described previously. 

The hardened half-block prisms from the first 

shrinkage experiment were cut, using an electrical diamond 

saw, into four equal sections to observe the plastic cracks 

between the block and the concrete, also to study the 

effect of using different concrete mixes with different 

slumps on the appearance of the hardened concrete. The 

full-block prisms from the second shrinkage experiment were 

capped and tested in compression until failure. 

Results for the unfilled and filled, 3-course high 

full and half-block prisms with mortar joints referred to 

in chapter 5 were used in this chapter to compare their 

compressive strength and behaviour with the specimens 
tested and analysed herein. 

Steel moulded cubes and cylinders were tested in 

compression to determine the strength of the mortar and 

concrete inf ill mixes. Demec points and electrical strain 

gauges were placed on the specimens at selected locations 
24 hours before testing. 

Prior to testing, all the specimens were capped with 

a thin layer, 1 - 2 mm, of dental plaster 5  as explained 
in chapters 3, 4 and 5. 
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Loading rates were in accordance with BS 6073: Part 

1: 1981 (66)  and the loading pattern was in accordance with BS 

1881: Part 121: 1983(68). The static modulus of elasticity 

was determined for all the specimens tested, as described 

in chapters 3,4 and 5. 

6.3 THEORETICAL PROGRAMME 

A number of non-linear, three-dimensional parametric 

FEA studies were conducted using a standard package, 

LUSAS 80 . The first analysis studied the effects of 

differences in the aspect ratio (l/t) and the mortar bedded 

area on the compressive strength and behaviour of unfilled 

and filled, full (l/t = 2.05) and half (l/t = 1.0) block 

prisms. The second analysis compared the strength and 

behaviour of the filled 3FBP-MJ prism with a solid 3SBP-MJ 

prism (3-course high Solid-Block Prism with Mortar Joints) 

(see Table A. 1, Appendix A). The third analysis studied the 

effect of changing the aspect ratio, (l/t) (prism length-

to-thickness), on the deformations and internal stresses in 

a solid 3SBP-MJ prism compressed normal to the unit bed 

face. The aspect ratios considered were l/t = 1.0, 1.5, 
2.05 0, 2.5, 3.0 and 4.0. 

To the author's knowledge, no previous work has been 

reported on the effect of aspect ratio (l/t) on the 
compressive strength of 	 - block masonry prisms. 

Most of the work reported is concerned with the effect of 

h/t ratios (block height-to-thickness). 

BS 	5628 (21)  suggests decreasing the characteristic 

compressive strength, fkl for the brickwork masonry prisms 

having a ratio of prism height to least horizontal 

dimension (h/t) of between 2.0 and 4.0 compared to prisms 

with h/t = 5.0 or more. The Australian Standard 37 00(22) 
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gives a correction factor for the characteristic 

compressive strength of the unit to take into account the 

h/t ratio. 

The levels of vertical stress applied to the unfilled 

and filled, full and half-block prisms for the first 

parametric study are the lowest average value of 

compressive strength for unfilled, (12.01 N/mm2), and 
filled, (14.53 N/mm2), full or half-block prisms. These 
levels of vertical stress were derived experimentally for 

unfilled pisms constructed with high strength-(1:0.25:3) 

mortar and for filled prisms constructed with the same type 

of mortar and filled with medium strength (1:3:2) concrete 

(see Tables 5.1 and 5.2). On the other hand, the level of 

vertical stress applied to the 3SBP-MJ prisms for the 

second and third parametric studies was similar to the 

level of vertical stress applied to the filled prisms 
(14.53 N/mm2 ) in the first analysis. 

The non-linear analysis was carried out to obtain a 

more accurate assessment of the effect of aspect ratio and 

the mortar bedded area on the stress values and 

distributions in blockwork masonry prisms. The results 

obtained from the analyses were deformations, direct, shear 
and principal stresses. 

6.3.1 	Material Mechanical Properties Used in the FEA 

One 	type of mortar (1:0.25:3), and concrete inf ill 

(1:3:2) were used in the analyses to limit the number of 

variables. The material's mechanical properties and 

vertical stress vs strain curves for the hollow blocks, 

mortar and concrete used in the non-linear FEA for the 

unfilled and filled, full and half-block prisms are similar 

to those used in the FEA for the 2BP-MJ and 3FBP-MJ prisms 
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described in chapters 4 and 5. 

The complete vertical stress vs strain curve for the 

solid concrete blocks used in the FEA were found using the 

stress vs strain curves for rigorous analysis of non-
critical concrete sections given in BS 8110: Part 2: 

1985(69). The curves were derived by substituting the 

magnitudes of the material strengths and the moduli of 

elasticity given in Table 3.7. The curve was then idealised 

in a series of straight lines, as required by the FEA (Fig. 

6.1). The value of Poisson's ratio for solid concrete 

blocks was derived experimentally by plotting the lateral 

strain vs vertical strain and taking the values of 

Poisson's ratio at a strain corresponding to the material's 

maximum compressive strength (see Table 3.7). 

6.3.2 	Finite Element Model 

The FEA mesh used in the analysis of the unfilled and 

filled 3FBP-MJ and 3HBP-MJ prisms was similar to the one 

used in chapter 5 (see Fig. 5.3). The FEA model was 

developed by considering 1/4 of the prism in the case of 

full-block prisms and 1/2 in the case of half-block prisms. 

The mesh used for the 3SBP-MJ prisms (Fig. 6.2) was 

different from the one used for the unfilled and filled, 

full and half-block prisms. The reason for this is to 

enable the prism dimension to be changed to satisfy the l/t 

ratios considered in the analysis. The three-dimensional 

finite element computer model was developed using a solid 

three-dimensional element with eight nodes (HX8) for all 

materials. The FEA model was developed by considering 1/4 

of the prism in the analysis (Fig. 6.3). 

The assumptions used to simplify and reduce the size 
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of the mesh were similar to those adopted in chapters 4 
and 5. 

All prisms were restrained at the bottom in three 

directions and the axial load was applied by means of 

uniform pressure using an 88 mm thick steel bearing plate. 

The top surface of the plate was restrained in the two 

horizontal directions and free in the vertical direction, 

which is the direction of loading. All the planes of 

symmetry were restrained in a direction normal to the plane 

and free in the other two directions. 

6.4 DISCUSSION OF EXPERIMENTAL RESULTS 

The discussion of the experimental results is divided 

into three sections. The first and second deal with the 

observed modes of failure for full and half-block prisms. 

The third deals with the experimental results. 

6.4.1 	Modes of Failure for Full-Block Prisms 

The modes of failure for all the unfilled and filled 

3FBP-MJ prisms compressed normal to the bed face were 

discussed in chapter 5. A common feature was observed in 

the modes of failure for all the unfilled and filled full-

block prisms tested in this investigation, whereby checking 

the mortar at different locations after failure gave the 

indication that the mortar had changed to a powder 

substance at some stage of the loading process. 

The unfilled and filled 2FBP-MJ prisms constructed 

with high strength (1:0.25:3) mortar and filled with medium 

strength (1:3:2) concrete showed different modes of failure 

to the unfilled and filled, 3FBP-MJ prisms. 
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The unfilled 2FBP-MJ prisms failed by clear crushing 

of the block side shells and mid-webs at the level of the 

mortar joint, followed by separation of the side shells 
from the mid-webs (Fig. 6.4). 

The mode of failure of the filled 2FBP-MJ prisms 
showed several longitudinal cracks in the prism side and 

end shells during the loading process. This was followed by 

block side shell separation and outward deformation with 

some signs of block shell, mortar and concrete crushing 

near the mortar joint (Fig. 6.5). 

As in the filled 3FBP-MJ prisms, some of the 2FBP-MJ 
prisms showed crushing of the concrete at the level of the 

mortar joint and some showed little damage to the concrete 

after failure (Mode I). The reason for differences in the 

modes of failure was explained in chapter 5. 

Unfilled and filled 6FBP-MJ prisms, constructed with 
high strength (1:0.25:3) mortar and filled with medium 

strength (1:3:2) concrete, showed similar modes of failure 
to the unfilled and filled 3FBP-MJ prisms. 

The unfilled 6FBP-MJ prisms showed a greater tendency 
to split longitudinally along the block end shells than the 
unfilled 3FBP-MJ prisms (Fig. 6.6). The prisms showed an 

abrupt mode of failure, with no signs of major cracks 

during the loading process until failure. 

Most of the filled 6FBP-HJ prisms showed crushing of 

the concrete at one of the mortar joints after failure 

(Fig. 6.7). The mode of failure was less abrupt than the 
unfilled 6FBP-14J prisms. Some signs of cracking were 

observed at the block end and side shells at 80% to 90% of 
the ultimate load. 
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6.4.2 	Modes of Failure for Half-Block Prisms 

The modes of failure for all the unfilled and filled 

3HBP-MJ prisms compressed normal to the bed face were 

discussed in chapter 5. As in full-block prisms a common 

feature was observed in the modes of failure for all the 

unfilled and filled half-block prisms tested in this 

investigation, whereby checking the mortar at different 

locations after failure gave the indication that the mortar 

had changed to a powder substance at some stage of the 

loading process. 

The unfilled and filled 2HBP-MJ prisms constructed 

with high strength (1:0.25:3) mortar and filled with medium 

strength (1:3:2) concrete showed different modes of failure 

to the unfilled and filled 3HBP-MJ prisms. 

The unfilled 2HBP-MJ prisms showed a V-shape crushing 

type of failure in the block shells at the level of the 

mortar joint (Fig. 6.8). 

The filled 2HBP-MJ prisms showed similar longitudinal 

cracks during the loading process to the filled 3HBP-MJ 

prisms, followed by a pyramid crushing type of concrete 

failure at mid height, with block shell-concrete inf ill 
separation (Fig. 6.9). 

Unfilled and filled 6HBP-HJ prisms constructed with 

high strength (1:0.25:3) mortar and filled with medium 

strength (1:3:2) concrete, showed similar modes of failure 

to the unfilled and filled 3HBP-MJ prisms. 

The unfilled 6HBP-MJ prisms (Fig. 6.10) showed an 

abrupt mode of failure, with no sign of major cracks during 

the loading process until failure. 
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The filled 6HBP-MJ prisms showed crushing of the 

concrete at one of the mortar joints after failure (Fig. 

6.11). The mode of failure was less abrupt than the 

unfilled 6HBP-MJ prisms, with some sign of cracking at the 
block end and side shells at 80% to .90% of the ultimate 
load. 

6.4.3 	Experimental Results 

Tables 6.1 and 6.2 summarize the experimental results 

for all the specimens tested in this chapter. 

The effect of the h/t ratio on the compressive 

strength of unfilled and filled, full and half-block prisms 

is shown in Fig. 6.12. The result indicates a clear 

reduction in strength as the h/t ratio increased from 2.0 

to 6.0. The strength of the unfilled full-block prisms 

reduced by 29.7% as the h/t ratio increased from 2.0 to 

6.0, whereas the strength of the unfilled half-block prisms 

reduced by 9.9%. The reduction for filled full-block prisms 

was 9.5%, compared with 33.1% for half-block prisms. The 

main reason for the reduction in strength with height was 

the reduction in the influence of the artificial 

confinement stresses at the top and bottom of the prisms 

resulting from the difference in stiffness between the 

blockwork and steel platen materials 55'81'82'8384 . 

In deciding the height of the prism to be used as a 

standard specimen to determine the compressive strength of 
blockwork masonry i'm' a comparison between the strength 
values for unfilled 3PBP-MJ prisms (21.35 N/mm2) and filled 
3FBP-143 prisms (14.53 N/mm2) with unfilled 6FBP-HJ prisms 
(17.48 N/mm2) and filled 6FBP-HJ prisms (15.23 N/mm2), 
suggested that testing 3-course high, full-block prisms as 

the standard specimen gave values which were representative 
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of the value of 

In comparing the strength of unfilled 2FBP-MJ, 3FBP-
MJ and 6FBP-14J prisms with the companion half-block prisms 

another significant result was observed. The percentage 

reductions in strength of unfilled full-block prisms for 

the three different heights was 4.1%11 16.2% and 25.2% as 

compared to half-block prisms respectively, based on 

differences in the aspect ratio (l/t) and the mortar bedded 

area. This suggested that the percentage reduction in 

strength caused by the aspect ratio (l/t) increased as the 

prism height increased. These differences were maybe due to 

the reduced influence of the artificial confinement of the 

machine platen with prism height. This was noticed in the 

mode of failure of unfilled 6FBP-HJ prisms, where the prism 

shows more tendency to split longitudinally along the block 

end shells. Filled full-block prisms, on the other hand, 

failed with a percentage reduction of 27.6%, 29% and 2.1% 

compared to filled 2HBP-MJ, 3HBP-MJ and 6HBP-14J prisms 

respectively. It seems that the degree of influence of 

artificial confinement caused by the machine platen is 

influenced by the l/t ratio and also by whether the prism 

is unfilled or filled.. This in turn influenced the mode of 

failure of the prism and its strength. 

Increasing the mortar thickness from 5 to 20 mm, had 

the effect of reducing the strength of both the unfilled 

and filled full-block prisms (Fig. 6.13). The reduction 

effect on strength was less in the case of filled full-

block prisms (11.6%) than unfilled (17.6%) ones. 

Figs 6.14 (1), (ii) and (iii) are photographs of three 

different cross-sections through the midle of the 3HBP-14J 

prisms filled with concrete mixes of 75 , 175 and 220 mm 

slumps respectively. These show that the location of the 

plastic cracks caused by shrinkage was similar for the 
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three different types of slump used and that they were 

usually located near the top surface of the specimens. This 

suggests that water evaporation from the top surface of the 

specimen was the main reason for these plastic cracks. The 

crack penetration depth (50 - 105 mm) and width (1 - 3 mm) 

increased as the slump increased. Some unfilled voids were 

observed in specimen filled with the highest slump concrete 

mix. These voids were caused by the presence of air bubbles 

and also by the evaporation of the excess water left over 

after the concrete hardened. Prisms filled with a low slump 

mix also showed some unfilled voids resulting from 

insufficient compaction. 

Table 6.1 gives the compressive strength result for 

the no-bond (coated with oil) 3FBP-HJ prisms. Although good 

adhesion bond exist between block and inf ill for prisms 

without oil (Eqn. 3.11), the result of compressive strength 

for prisms coated with oil, showed little difference 

compared with a similar prism without oil. This suggests 

that plastic cracks caused by shrinkage have no great 

effect on the ultimate compressive strength of blockwork 
masonry prisms, 	m 

6.5 DISCUSSION OF THEORETICAL RESULTS 

The discussion is divided into four major sections. 

The first and second sections discuss the results of the 

parametric study analyses conducted for the unfilled and 
filled 3FBP-HJ and 3HBP-HJ prisms. The third section 

addresses differences in the theoretical results between 
the 3FBP-14J and 3SBP-MJ prisms. The forth section considers 

the effect of the aspect ratio (l/t) on the values and 

distributions of the deformation and internal stress for 
the 3SBP-HJ prisms. 
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6.5.1 	Parametric Study Analysis for Unfilled 3FBP-MJ 
and 3HBP-MJ Prisms 

The level of vertical stress applied to the unfilled 

3FBP-MJ and 3HBP-MJ prisms in the parametric study was 
12.01 N/mm2 1' which is the average experimental value of 

compressive strength for unfilled 3FBP-14J prisms built with 

high strength (1:0.25;3) mortar. 

In order to examine the effect of varying the aspect 

ratio (l/t) and the mortar bedded area between the full and 

half-block prisms on the results of deformations and 

stresses, the parametric study was based upon fixing the 

applied level of vertical stress and changing the model 

from a full to a half-block prism (this was achieved by 

changing the computer model's horizontal restraint at the 

planes of symmetry). 

The effect of differences in the aspect ratio (l/t) 

and the mortar bedded area between the full and half-block 

prisms on the prism's deformation is clearly shown by the 

contour plots for the horizontal deformation in the X-and 

Z-directions. The horizontal deformation in the X- and Z-

directions for a 3-course high full-block prism is given 

in chapter 5 (see Figs 5.28 and 5.29 respectively) and for 

a half-block prism in Figs 6.15 and 6.16 respectively. 

The figures show a clear similarity, for horizontal 

deformation in the Z-direction, between the full and half-

block prisms, but show a clear difference in the 

distributions and values in the X-direction. The 

deformation in the X-direction for the half-block prism 

shows a great tendency to local outward squeezing of the 

mortar joints. On the other hand, in the full-block prism 

the deformation exists over most of the prism's end shells. 
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Table 6.3 gives results for the maximum values of 

deformation in the 1-, X- and Z-directions for the unfilled 

3PBP-MJ and 3HBP-MJ prisms, as derived from the parametric 

study analysis; the level of vertical stress applied during 

the parametric study analysis and the compressive strength 

of the experimental prisms. 

Table 6.3 shows that the vertical deformation of a 

half-block prism is 3.4% higher than a full-block prism. On 

the other hand, the horizontal deformation of full-block 

prisms in the X-direction is 40% higher than that of the 

half-block prism. Both prisms show similar values (0.045 

nun) for the horizontal deformation in the Z-direction. The 

table also shows that the values of horizontal deformation 

for half-block prisms are equal in the X- and Z-directions. 

This suggests that the horizontal deformation of the half-

block prism resulting from the differences in the aspect 

ratio (l/t) is more compatible in the X- and Z-directions 

than for full-block prisms. This means that, for half-block 

prisms, there is less possibility of end shell separation 

from the rest of the prism and no chance of splitting along 

the line of contact between the prism end and the side 

shells due to incompatibility of deformation in the 

horizontal directions as is the case with full-block 

prisms. The separation of the prism end shells from the 

rest of the prism will definitely have a weakening effect 

on the compressive strength of the full-block prisms. 

Table 6.4 provides the maximum values of direct, shear 

and principal stresses in each individual material, as 

derived from the parametric study analysis. The table shows 

that the maximum values of the direct vertical stress in 

the block material for full-block prisms are slightly 

higher (2.3%) than that for half-block prisms. On the other 

hand, the maximum value of direct horizontal tensile stress 

in the block material in the X-direction for the full-block 
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prism is 9.7% higher than that for the half-block prism. 

The tensile stress in the full-block prism is even higher 

(23.7%) if the maximum values of the minor principal stress 

(MST2) are considered. Although the values of maximum 

tensile stress (MST2) in full-block prism (2.87 N/mm2) and 
half-block prism (2.32 N/mm2) are higher than the 
experimental ultimate tensile strength for unit hollow 

block (2.16 N/mm2) (see Table 3.9), a full-block prism has. 
a greater possibility for splitting than a half-block 
prism. 

Table 6.4 also shows a small difference between the 

maximum values of direct horizontal tensile stress in the 

X- and Z-directions for both prisms. The results for the 

maximum values of the minor principal stress show 

differences of 79.4% and 42.3% between the maximum value of 

the minor tensile principal stresses on the prism's end 

(MST2) and side (MST1) shells for full and half-block 

prisms respectively. 

The above results explain why the average experimental 

value of compressive strength (based on net area) for the 

unfilled 3-course high half-block prism is 16.2% higher 

than that for the full-block prism. They also show how 

differences in the aspect ratio (i/t) and the mortar bedded 

area between the full and half-block prisms affect their 
compressive strength. 

6.5.2 	Parametric Study Analysis for Filled 3FBP-NJ and 
3HBP-HJ Prisms 

The level of vertical stress applied to the filled 
3FBP-NJ and 3HBP-MJ prisms for the parametric study was 
14.53 N/mm2, which is the average experimental value of 

compressive strength for filled 3FBP-MJ prisms built with 
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high strength (1:0.25:3) mortar and filled with medium 

strength (1:3:2) concrete. 

The effects of the difference in the aspect ratio 

(l/t) and the mortar bedded area between the full and half-

block prisms on the prism's deformation are clearly shown 

by the contour plots for the horizontal deformations in the 

X- and Z-directions. The horizontal deformation in the X-

and Z-directions for a full-block prism are given in 

chapter 5 (see Figs 5.50 and 5.51 respectively) and for a 

half-block prism in Figs 6.17 and 6.18 respectively. 

The figures show a clear similarity for the horizontal 

deformation in the Z-direction between the full and half-

block prisms, but show a clear difference in the 

distributions and values in the X-direction. The horizontal 

deformation of the full-block prism in the X-direction 

shows that the prism end shells tend to deform outward with 

a maximum deformation of 0.048 mm at the prism mid height. 

On the other hand, the prism end shells in the half-block 

prism tend to deform outward with a maximum value of 0.025 

mm at the prism mid height. 

Table 6.5 gives the results for the maximum values of 

deformation in the 1-, X- and Z-directions; the level of 

vertical stress applied during the parametric study 

analysis and the average experimental compressive strength 

of the filled 3FBP-MJ and 3HBP-MJ prisms. 

Table 6.5 shows that the maximum value of vertical 

deformation for the half-block prism is the same as that 

for the full-block prism. On the other hand, the maximum 

value of horizontal deformation for the full-block prism in 

the X-direction is 92% higher than that for the half-block 

prism. Both prisms show the same values of horizontal 

deformation in the Z-direction (0.025 mm). Table 6.5 also 
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shows that the values of horizontal deformation for half-

block prisms are almost equal in both directions, where in 

full-block prisms the deformation in the X-direction is 92% 

higher than that in the Z-direction. This suggests that the 

horizontal deformations of the half-block prisms are more 

compatible in both horizontal directions than those in 

full-block prisms. This results from differences in the 

aspect ratio (l/t) between the two prisms. 

As in the case of unfilled, full-block prisms, the 

incompatibility of deformations between the X- and Z-

directions for filled full-block prisms will result in the 

separation of the prism end shells from the rest of the 

prism and also in the development of longitudinal cracks at 

the line of contact between the prism end and side shells. 

Table 6.6 provides the results of the maximum values 

of direct, shear and principal stresses in each individual 

material as derived from the parametric study analysis. The 

table shows that the maximum value of the direct vertical 

stress in the block material for a full-block prism is 3.6% 

higher than that for a half-block prism. On the contrary, 

this stress in the concrete material for half-block prisms 

is 2.1% higher than that for full-block prisms. This 

suggests that the applied vertical stress is shifting from 

the block to the concrete in the case of the half-block 

prism. This phenomenon was also true for the maximum values 

of the major principal stresses. This phenomenon results 

from differences in the aspect ratio (l/t) and the mortar 

bedded area between the two types of prism. 

The table also shows that although the maximum values 

of direct horizontal tensile stresses in the block material 

for the half-block prism are higher than that for a full-

block prism, the maximum values of the minor tensile 

principal stresses are almost equal. Also, the maximum 
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values of the minor tensile principal stresses (MST2) in 

both types of prism are almost the same as the experimental 

ultimate tensile strength for a unit block filled with 

(1:3:2) concrete mix (1.77 N/mm2) (see Table 3.9). 

The results also show a small difference between the 

maximum values of the direct horizontal tensile stress in 

the X- and Z-directions for both prisms, but show 

differences of 36.6% and 38.3% between the maximum value of 

the minor tensile principal stresses on the prism's end 

(MST2) and side (MST1) shells for full and half-block 

prisms respectively. 

Based on the results of deformations and stresses, the 

only reason for the reduction of 29% in the average 

experimental value of compressive strength for the filled 

3FBP-HJ prisms, compared to the 3HBP-MJ prisms, is the 

incompatibility of deformation between the X- and Z-

directions in full-block prisms. This incompatibility is 

caused by the difference in aspect ratio (l/t) and mortar 

bedded area between the full and half-block prisms. 

6.5.3 	Comparison Between Filled 3FBP-MJ and Solid 3SBP- 
MJ Prisms 

The level of vertical stress applied to the solid 
3SBP-}IJ prism was 14.53 N/mm2, which is the average 
experimental value of compressive strength for filled 3PBP-

MJ prisms built with high strength (1:0.25:3) mortar and 

filled with medium strength (1:3:2) concrete (see Table 
5.1). 
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Prisms Deformation 

The deformation of the solid 3SBP-MJ prism in the 1-
direction (Fig. 6.19) shows that the prism top surface 

shortens vertically with a maximum deformation of 0.636 mm 

with respect to the prism bottom surface. Although the 

level of vertical stress applied to both prisms is the 

same, this deformation is 26.7% higher than that for a 

filled 3FBP-MJ prism (see Fig. 5.49). The contour plots for 

the horizontal deformations in the X- and Z-directions 

(Figs 6.20 and 6.21 respectively) for the solid 3SBP-MJ 

prism are similar to that for the filled 3FBP-MJ prism (see 

Figs 5.50 and 5.51). On the other hand, the values of the 

horizontal deformations in the X- and Z-directions for the 

solid 3SBP-MJ prism are 12.5% and 12% higher respectively 

than that for the filled 3FBP-MJ prism. 

As with the filled 3FBP-MJ prism, the solid 3SBP-MJ 

prism shows incompatibility of deformation caused by a 

difference in the values of horizontal deformation of 92.9% 

between the X- and Z-directions. The reason for this 

incompatibility in the horizontal deformation is the prism 

aspect ratio (l/t = 2-05). 

Due to the incompatibility of deformation in the solid 

3SBP-MJ prism, the prism end faces will be separated from 

the rest of the prism and longitudinal cracks will develop 

at the line of contact between the prism end and side 

faces. 

Stresses in Block Material 

The contour plots of the direct stresses in the Y-, X-

and Z-directions in the block material for the solid 3SBP-

MJ prism are shown in Figs 6.22, 6.23, and 6.24 
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respectively. The contour plots of the major and two minor 

principal stresses are given in Figs D. 1, D.2 and D.3 

(Appendix D) respectively. 

The contour plots for the direct vertical stress in 

the Y-direction for the solid 3SBP-MJ prism show that the 
maximum compressive vertical stress, 18.90 N/mm 2, is located 
at the prism bottom corner near the machine platen. The 

rest of the prism is under a uniform stress ranging from 

12.80 to 15.64 N/nun2. The maximum value of the direct 
vertical stress in the solid 3SBP-MJ prism is 14.8% lower 
than that for the filled 3FBP-MJ prism (see Fig. 5.52). 
This indicates that the solid 3SBP-MJ prism is under 

stressed and that the ultimate compressive strength of the 

solid-block prisms, made from the same materials as hollow 

blocks, is higher than that for a filled 3FBP-MJ prisms. 

The contour plots for the direct horizontal stress in 

the X-direction for the solid 3SBP-MJ* prism show similar 
distributions to that for the filled 3FBP-MJ prism (see 
Fig. 5.53). But the solid 3SBP-MJ prism shows that the 

value of the maximum horizontal tensile stress in the X-

direction decreases by 45% compared to that for a filled 
3FBP-MJ prism. On the other hand, the solid 3SBP-MJ prism 
shows different distributions for the horizontal stress in 

the Z-direction compared to that for the filled 3FBP-MJ 
prism (see Fig. 5.54). The solid 3SBP-MJ prism shows that 
most of the horizontal tensile stresses in the Z-direction 

are located in the vicinity of the mortar joints 1'26 . This 
is not exactly the case with the filled 3FBP-MJ prism, 
where the tensile stresses cover most of the prism height. 

Similarly, the value of the maximum tensile stress in the 

Z-direction for the solid 3SBP-MJ prism is 32.2% lower than 
that for the filled 3FBP-MJ prism. 

The results also show that the maximum value of 
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tensile stress in solid 3SBP-MJ prisms is 0.99 N/mm2  (MST2). 

This value is less than the experimental ultimate tensile 

strength for a unit solid block (1.71 N/mm2) (see Table 
3.9). On the other hand, the maximum value of tensile 

strength in filled 3FBP-MJ prisms is 1.68 N/mm2  (MST2), 
which is almost equal to the experimental ultimate tensile 

strength for a unit block filled with (1:3:2) concrete mix 

(1.77 N/mm2) (see Table 3.9). 

The main reason for the differences in the 

distribution and values of the horizontal and minor 

principal stresses is the presence of the concrete inf ill 

in the case of the filled 3FBP-NJ prism and its high 
Poisson's ratio. 

The maximum values of the horizontal and minor 

principal tensile stresses in the solid 3SBP-MJ prism again 
suggest that the compressive strength of a solid-block 

prism, made from the same material as the hollow blocks, is 

higher than that for a filled 3FBP-MJ prism. 

It was also observed that the maximum values of the 
tensile stress for the solid 3SBP-MJ prism in the Z-

direction is 19.3% higher than that in the X-direction. 

This difference is the result of the prism aspect ratio 

(l/t = 2.05). This difference suggests that the solid 3SBP-
MJ prism has a greater tendency to split along the prism 
end faces than the side faces(126) . 

A significant difference was observed in the 

distribution of maximum shear stress between the solid 
3SBP-MJ and filled 3FBP-MJ prisms. In the solid 3SBP-MJ 

prism (Fig. 6.25) most of the prism mid height is under 

uniform shear stress, ranging from 7.09 to 7.65 N/mm2, which 
is the maximum value of shear stress. The prism is expected 

to shear at the bottom side near the machine platen. On the 

373 



other hand, the filled 3FBP-MJ prism (see Fig. 5.55) shows 

a non-uniformity in the distribution of shear stress with 
a maximum value of 9.34 N/mm2  located at the prism mid 
height. The prism is expected to shear at mid height. 

Stresses in Mortar Material 

The contour plots of the direct stresses in the Y-, X-

and Z-directions in the mortar joints for the solid 3SBP-

MJ prism are shown in Figs 6.26, 6.27, and 6.28 

respectively. The distributions of the major and two minor 

principal stresses are given in Figs D.4, D.5 and D.,6 

(Appendix D) respectively. 

The contour plots of the direct vertical stress in the 

Y-direction show that the higher values of vertical stress 

are located at the centre core of the prism, with a maximum 

value of 15.05 N/mm2. This value tends to decrease towards 
the outer faces of the mortar joints. The way the vertical 

stresses in the mortar joints are distributed suggests that 

the applied vertical stress is higher at the centre core of 

the prism than at the outer faces. 

A clear similarity was observed in the distribution of 

the direct horizontal stress in the X- and Z-directions. 

Both horizontal stresses show that the mortar joints are 

under confinement stresses in the X- and Z-directions with 
maximum values of 3.59 N/mm2  in the X-direction and 3.48 
N/mm2  in the Z-direction. These maximum values of stress are 
located at the centre core of the prism and tend to reduce 

toward the outer faces of the mortar joints. The reason for 

these confinement stresses is the difference in the 

deformational characteristics between the soft mortar 

joints and the stiff concrete blocks. 
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Fig. 6.29 shows the contour plots of the maximum shear 

stress in the mortar joints. The figure shows an almost 

uniform distribution of shear stress at the mortar joints. 

This uniformity is attributed to the small thickness of the 

mortar joints. 

Based on the distribution and values of deformation 

and stress, the predicted mode of failure for the solid 

3SBP-MJ prisms is by separation of the prism end faces from 

the rest of the prism and the development of longitudinal 

cracks along the lines of contact between the prism end and 

side faces caused by the incompatibility of deformation. 

Longitudinal cracks will develop at the prism end shells, 

at a later stage of the loading process, initiated in the 

vicinity of the mortar joints, and then propagate through 

the solid-blocks. It is expected that the solid prisms will 

fail due to a combination of compression, tension and shear 

stresses. It is anticipated that the ultimate compressive 
strength of the solid 3SBP-MJ prism, made of the same 
material as the hollow blocks, will be higher than that for 

a filled 3FBP-MJ prisms. 

6.5.4 	Parametric Study Analysis on the Effect of the 
Aspect Ratio (l/t) on the Compressive Strength of 
Solid 3SBP-MJ Prism 

The level of vertical stress applied to the solid 
3SBP-MJ prisms with different aspect ratios was 14.53 N/mm2 , 
which is the average experimental value of compressive 

strength for the filled 3PBP-MJ prisms built with high 

strength (1:0.25:3) mortar and filled with medium strength 

(1:3:2) concrete (see Table 5.1). 

This parametric study assumed constant values for the 

block height (h = 189 mm) and thickness (t = 190 mm) and 

varied the block length (1 = 190, 285, 390, 475, 570 and 
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760 mm) in a solid 3SBP-M3 prism. This gives a range of 

prisms with different aspect ratios of l/t = 1.0, 1.5, 

2.05, 2.5, 3.0 and 4.0. 

After several runs, maximum values for the prism's 

deformation, direct, shear and principal stresses were 

determined. Table 6.7 gives the maximum values of the 

deformation in the 1-, X- and Z-directions and the level of 

vertical stress applied during the parametric study 

analysis. Table 6.8 gives the maximum values of the direct, 

shear and principal stresses in each individual material. 

Although the values of deformation and stress differ, 

the deformations and stress distributions for all the 

prisms analysed in this parametric study are similar to 

those for the solid 3SBP-MJ prism analysed in section 

6.5.3. Information about deformations or stress 

distributions is given in the relevant deformation and 

stress figures in section 6.5.3. 

To assess the effect of the aspect ratio (l/t) on the 

prism deformations and stresses, the results of the 

parametric study wereplotted on an X-Y plotter. The X-axis 

represents changes in the aspect ratio (lit). The 1-axis 

represents the maximum values of deformation and stress in 

the prisms as derived from the parametric study. 

Fig. 6.30 shows the effect of changing the aspect 

ratio on the prism's deformation in the 1-, X- and Z-

directions. The figure shows small changes in the prism's 

deformation in the 1- and Z-directions, for the ranges of 

the aspect ratio considered in the study. On the other 

hand, significant changes were observed in the prism's 

deformation in the X-direction. Changing the aspect ratio 

from l/t = 1.0 to l/t = 4.0 increases the prism's 

deformation in the X-direction by 221.4%. 
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This means that prisms with aspect ratios more than 

1.0 have greater incompatibility of deformation between the 

X- and Z-directions. This, in turn has a weakening effect 

on the prism compressive strength by causing separation of 

the prism end faces from the rest of the prism and the 

introduction of longitudinal cracks at the lines of contact 

between the prism end and side faces. 

Fig. 6.31 shows the effect of changing the aspect 

ratio on the maximum value of direct stress in the Y-

direction. The figure shows that changing the aspect ratio 

from 1.0 to 4.0 increased the direct vertical stress in the 

block material by 11.2%. No major changes in these stresses 

in the mortar joints were observed. Similarly, the maximum 

value of the major principal stress in the block material 

increased by 13.7% with an increase in aspect ratio from 

1.0 to 4.0. These increases indicate that the compressive 

strength of the prism decreases as the aspect ratio 
increases. 

Fig. 6.32 shows the effect of changing the aspect 

ratio on the maximum value of direct horizontal stress in 

the prism in the X-direction. The figure shows a 

considerable decrease in the maximum tensile stress in the 

prism in the X-direction as the aspect ratio increases. 

Changing the aspect ratio from 1.0 to 4.0 decreases the 

horizontal tensile stress in the X-direction by 50.5%. No 

significant changes were observed in the maximum values of 

the confinement stresses in the mortar joints in the X-
direction. 

Fig. 6.33 shows the effect of changing the aspect 

ratio on the maximum value of the direct horizontal stress 

in the Z--direction. The figure shows that changing the 

aspect ratio has a negligible effect on the maximum values 

of the horizontal tensile and confinement stresses in the 
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block material and the mortar joints respectively in the Z-
direction. 

Table 6.8 shows that the maximum values of the 

horizontal and minor principal tensile stresses in all the 

analysed solid prisms are less than the experimental 

ultimate tensile strength for solid unit block (1.71 N/nmi2 ) 

(see Table 3.9). 

Table 6.8 also shows that the difference between the 

horizontal tensile stresses in the block material in the X-

and Z-directions increased as the aspect ratio increased. 

The table shows that for prisms with an aspect ratio of 1.0 

there is no difference in the horizontal tensile stresses 

in the X- and Z-directions, but for prisms with an aspect 

ratio of 4.0, the tensile stresses in the Z-direction are 

100% higher than that in the X-direction. The difference in 

the tensile stresses is even greater (116.3%) for the 

maximum values of the minor principal stresses on the prism 

end faces (MST2) compared to the side faces (MST1). 

These results suggest that prisms with aspect ratios 

greater than 1.0 have a greater tendency to split along the 

prism end faces than the side faces 1 '26 . 

Fig. 6.34 shows that changing the aspect ratio has a 

negligible effect on the values of the maximum shear 
stress. 

Based on the maximum values of the major principal 

stresses in the block material the decreases in prisms 

strength with increases in the aspect ratio (lit) are 

calculated as a reduction factors to the strength of solid 
3SBP-MJ prism with aspect ratio of 1.0 (Table 6.9). 
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6.6 CONCLUSIONS 

The strength of the full and half-block prisms, 

compressed normal to the unit bed face, decreased as 

the h/t ratio increased from 2.0 to 6.0. This is true 

for both unfilled and filled prisms. The compressive 

strength of unfilled and filled, full-block prisms 

decreased by 29.7% and 9.5% respectively as the h/t 

ratio increased from 2.0 to 6.0. The results show that 
fe 

M for unfilled or filled blockwork masonry, can be 

satisfactorily represented by testing an unfilled or 

filled,3-course high, full-block prism as a standard 

specimen. 	 - 

• The effects of the aspect ratio, (l/t), and the 

presence of the mid-web, which results in the 

dissimilarity of the mortar bedded area between full-

block (l/t = 2.05) and half-block (l/t = 1.0) prisms, 

were the main reasons for the reduction in the 

compressive strength and the difference in the 

behaviour between unfilled and filled full-block 

prisms and the companion half-block prisms. Thus, 

testing unfilled-and filled half-block prisms, instead 

of full-block prisms, for the sake of ease of 

handling, to determine the ultimate compressive 
strength, f t mi  is not recommended. Since a higher 
strength is obtained by testing half-block prisms and 

the value of f 'm  will be overestimated. 

Increasing the mortar thickness from 5 to 20 mm, 

reduced the strength of both unfilled and filled full-

block prisms. This reduction was less for filled, 

full-block prisms (11.6%) than for unfilled full-block 

prisms (17.6%). 

Plastic cracking caused by shrinkage are not a serious 
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problem in concrete filled blockwork masonry. The 

cracks were usually located near the surface of the 

prism. Water evaporation from the top surface of 

specimens was the main reason for these cracks. Fresh 

concrete surfaces should therefore be covered after 

casting to reduce shrinkage caused by water 

evaporation. The crack penetration depth and width 

increased as the concrete infill slump increased. 

Prisms filled with high slump concrete inf ill mixes 

resulted in unfilled voids caused by the presence of 

air bubbles and also by the evaporation of the excess 

water left over after the concrete hardened. Using low 

slump mixes was also found to be impractical due to 

the amount of work needed in the compaction process. 

Breaking the bond completely between blocks and 

concrete inf ill in a 3-course high full-block prism, 

as if there were cracks between the two materials, was 

found to have no effect on the ultimate compressive 

strength of blockwork masonry, f',. 

The finite element analysis provided an explanation as 

to how differences in aspect ratio (l/t) and mortar 

bedded area between the full and half-block prisms 

affects the compressive strength and behaviour of 

unfilled and filled prisms. 

Unfilled and filled, full-block prisms, with an 

aspect ratio of l/t = 2.05 and fully bedded with 

mortar, suffer incompatibility of deformation between 

the X- and Z-directions. This will result in the 

separation of the prism end shells from the rest of 

the prism and the development of longitudinal cracks 

at the line of contact between the prism end and side 
shells. 



Using FEA, it is possible to create a clear image of 

how the deformations and stresses in a solid 3-course 

high prism are distributed. It is also possible to 

predict the mode of failure and ultimate compressive 

strength of the prism compared to a filled 3-course 

high prism. The results show that most of the 

horizontal tensile stresses in the Z-direction in a 

solid-block prism are located in the vicinity of the 

mortar joints. This is not exactly the case for the 

filled 3FBP-HJ prisms, where the tensile stresses 

cover most of the prism height. The predicted mode of 

failure for the solid 3SBP-MJ prisms is by separation 

of the prism end faces from the rest of the prism and 

the development of tensile splitting cracks along the 

prism end faces caused by the incompatibility of 

deformation and high horizontal tensile stresses on 

this face. The longitudinal cracks, caused by the high 

horizontal tensile stresses on the prism end faces, 

will be initiated in the vicinity of the mortar 

joints, then progress through the solid blocks. The 

ultimate compressive strength of the solid 3SBP-MJ 

prism, made of the same material as the hollow blocks, 

should be higher than that for the filled 3PBP-MJ 
prisms. 

Using FEA, it was possible to conduct a parametric 

study to investigate the effect of changing the aspect 

ratio (l/t) on the distributions and values of 

deformation and stress in a solid 3-course high prism. 

Changing the aspect ratio from 1.0 to 4.0 

resulted in increasing the prism's deformation in the 

X-direction by 221.4%. This means that prisms with 

aspect ratios more than 1.0 have a greater 

incompatibility of deformation between the X- and Z-

directions. This in turn, has a weakening effect on 
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the prism compressive strength by causing the 

separation of the prism end faces from the rest of the 

prism and the development of longitudinal cracks at 

the lines of contact between the prisms end and side 
faces. 

Increasing the aspect ratio from 1.0 to 4.0 

resulted in an increase in the maximum values of the 

direct vertical stress and the major principal stress 

in the block material by 11.2% and 13.7% respectively. 

It also resulted in an increase in the difference 

between the horizontal tensile stresses in the block 

material in X- and Z-directions. The results show 

that, for prisms with an lit = 1.0, there is no 

difference in the horizontal tensile stresses between 

the X- and Z-directions, but for prisms with an l/t = 

4.0, the tensile stresses in the Z-direction are 100% 

higher than that in the X-direction. The difference in 

the tensile stresses is even higher, at 116.3%, when 

determined by comparing the maximum values of the 

minor principal stresses on the prism end faces (MST2) 

with the side faces (MST1). 

9. 	Based on the results of the FEA, the decrease in 

prisms strength with increase in the aspect ratio 

(l/t) were calculated as a reduction factor to the 

strength of solid 3SBP-MJ prism with an aspect ratio 
of 1.0. 
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Fig. 6.1 - Idealised stress-strain curve 
for solid concrete block 
material used in PEA. 
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THREE DIMENSIONAL FEA MESH 
USED TO MODEL SOLID 3-COURSE 
HIGH PRISM. 

Fig. 6.2 - Three-dimensional mesh used 
in non-linear PEA of solid 

3SBP-HJ prism. 

384 



95mm 

E 
t-. 
co 
Ln 

1/Lf  Model _—PEane of 

Plane of Symmetry 

z x  

Symmetry 

Fig. 6.3 - 1/4 prism model used in non-linear 
- PEA of solid 3SBP-HJ prism. 
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Fig. 6.4 - Unfilled 2FBP-HJ prism after failure, 
mortar strength 21.21 N/mm2. 



Fig. 6.5 - Filled 2FBP-MJ prism after failure, 
mortar strength 21.21 N/nun2,2  concrete 

strength 17.11 N/nun 
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Fig. 6.6 - Unfilled 6FBP-MJ prism after failure, 
mortar strength 26.58 N/nun2. 



Fig. 6.7 - Filled 6FBP-MJprism after failure, 
mortar strength 26.58 N/miu2  concrete 

strength 20.81 14/mm 

kme 



Fig. 6.8 - Unfilled 2HBP-MJ prism after failure, 
mortar strength 21.21 N/nun2. 

390 



Fig. 6.9 - Filled 2HBP-MJ prism after failure, 
mortar strength 21.21 N/nun2,2  concrete 

strength 17.11 N/nun 
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Pig. 6.10 - Unfilled 6HBP-HJ prism after failure, 
mortar strength 25.95 N/mm2. 
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L 

Fig. 6.11 - Filled 6HBP-MJ prism after failure, 
mortar strength 25.95 N/mm2  concrete 

strength 19.66 N/nun 
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Table 6.1 

Compressive strength of full-block prisms 
compressed normal to bed face. 

Average compressive * MateriaL cube compressive I 
strength (N/rn2) strength (N/nm2) 

Prism Area used 	 S.D. Mortar InfiLl 
type Net 	Gross 	 (N/ann2) 

2FBP-MJ Prism • 

Unfitted 24.88 	14.00 	 1.84/1.03 21.21 - 
Fitted - 	16.82 	 1.02 21.21 17.11 

3FRP-MJ prism • 

Unfitted 21.35 	12.01 	 0.41/0.23 26.54 - 
Fitted. - 	14.53 	 0.23 26.54 28.75 

6FBP-NJ prism • 

Unfitted 17.48 	9.84 	 0.55/0.31 26.58 - 
Fitted - 	15.23 	 0.92 26.58 20.81 

Prism with 5 no mortar joints • 

Unfitted 23.27 	13.10 	 1.55/0.87 21.18 - 
Fitted - 	14.46 	 1.05 21.18 16.46 

Prism with 20 ann mortar joints • 

Unfitted 19.18 	10.80 	 2.59/1.46 21.21 - 
Filled - 	12.78 	 1.09 21.21 17.11 

Prism coated with oil • 

Fitted - 	14.09 	 0.43 25.64 19.26 

* 	Average and S.D. are calculated for three prisms. 
I 	Cube compressive strength of bLock material f b 	= 24.29 N/ann2. 

Net area 	= Area at section (1) 	 = 41700 am2. (See Table 3.2). 
Gross area 	= 390 x 190 	 = 74100 unn. 
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Table 6.2 

Compressive strength of half-block prisms 
compressed normal to bed face. 

Average compressive * 

strength (N/rn2) 

Material cube compressive I 

strength (N/.2) 
Prism 	 Area used S.D. Mortar 	lnfiLt 
type 	 Net 	Gross (N/rn2) 

mr 

2HBP-MJ Prism • 

Unfitted 	 25.95 	14.30 0.39/0.22 21.21 	 - 

Fitted 	 - 	 23.23 	 0.44 	 21.21 	17.11 

3HBP-MJ prism • 

Unfitted 	 25.49 	14.06 	 0.38/0.21 	 26.54 	 - 

Fitted 	 - 	 20.46 	 1.08 	 26.54 	28.75 

6HRP-MJ Prism • 

Unfitted 
	

23.37 	12.88 	 0.78/0.43 	 25.95 

Fit led 
	

- 	 15.55 	 0.96 	 25.95 	19.66 

* 	Average and S.D. are calculated for three prisms. 

I 	Cube compressive strength of block material f b 
	= 24.29 N/iris2. 

Net area 	= 	Area at section (1) 	 = 19900 ma2. (See Table 3.2). 
Gross area 	190 x 190 	 = 36100 sin2  
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Fig. 6.12 - Effect of h/t ratio on compressive 
strength of unfilled and filled, full and 

half-block stack-bonded prisms. 

396 



30.0 

25.0 

(-5 

20.0 

15.0 
0 

+ 	 + 

10.0 

5.0 

O UNFILLED FULL-BLOCK PRISM 
+ FILLED FULL-BLOCK PRISM 

0.0 	i 	I 	I 	 I I 	I 

0.0 5.0 10.0 15.0 20.0 25.0 
MORTAR JOINT THICKNESS (mm) 

Fig. 6.13 - Effect of mortar joint thickness on 
compressive strength of unfilled and 

filled 3FBP-HJ prisms. 
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SCALE I' 	3.193 
EYE X-COORD = -1.000 
EYE T-COORD 	0.7500 
EYE 2-COORD = -1.000 
MAX. DEFLECtION, 	0.7306 
AT NUDE NUMBER • 260 
LOAD CASE ID - 	5 
TYPE DISP'PUIE 
COMPONENT = 	I 
NUMBER OF CONTOURS • 	S 
INTERVAL 	• 0.2466E-01 
MAX NODAL VALUE 	0.4396E-DJ 
(ION NODAL VALUE 	-0.5469E-0I 

LJ2 

UNFILLED HALF-BLOCK PRISM 
MORTAR (I:0.253) 

DEFORMATION IN 
I-DIRECTION (mm) 
ALL MATERIALS 

CONTOUR VALUE 

rm 
-0.1933E-0I 
-0.0466E-Ot 
-0.067IE-18 
0.2466E-8I 
0.49331-RI 

Fig. 6.15 - Deformation of unfilled 3HBP-MJ prism 
in X-direction, parametric study 

non-linear PEA. 

SCALE 1/ 	3.193 
EYE X-CODRD • 	1,000 
EVE Y-COORD • 0.7500 
ETC Z-CODRD • 	1.000 
MAX. DEFLECTION • 0.7326 
AT NODE NUMBER • 260 
LOAD CASE 10 - 	S 
TYPE OISP,POTE 
COMPONENT • 	3 
NUMBER OF CONTOURS • 	S 
INTERVAL 	• 0.11276-01 
MAX NODAL VALUE • 0.4509E-81 
JITN NODAL VALUE • 0.0000E+00 

UNFILLED HALF-BLOCK PRISM 
MORTAR (10.25:3) 

DEFORMATION IN 
7-DIRECTION (mm) 
ALL MATERIALS 

CONTOUR VALUE 

0.0 
XTTd 0.JI?7E-0I 

0.22541-RI 
0.33821-RI 	- 
0.45091-01 

Pig. 6.16 - Deformation of unfilled 3HBP-MJ prism 
in Z-direction, parametric study 

non-linear PEA. 
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Table 6.3 

Deformation results of the parametric study 
non-linear PEA for unfilled 3FBP-MJ 

and 3HBP-MJ prisms. 

Prism 

type YD 

Deformation results 

(inn) 

XD 

* 

ZD 

Applied 

stress 

(N/nm 2) 

Prism 

strength 

(N/rn2) 

FuLL-block 0.000 0.000 0.045 12.01 12.01 
-0.709 -0.077 0.000 

Half-block 0.000 0.044 0.045 12.01 14.06 
-0.733 -0.055 0.000 

* 	Figures quoted in the table are the Lower and upper maximum values of deformation. 
YD, XD and ZD = 	Deformation in the Y-, X- and Z-directions. 
+ve values = 	In the +ve direction of the axes. 
-ye values In the -ye direction of the axes. 

400 



Table 6.4 

Stress results of the parametric study 
non-linear PEA for unfilled 3FBP-MJ 

and 3HBP-HJ prisms. 

Prism 

type YST XST 

Stress results * 

(N/nm2) 

ZST 	SST 	lUST MST1 MST2 

Block material 

FuLl-block -17.91 2.50 2.13 10.96 -17.96 1.60 2.87 
-27.73 -10.83 -10.83 7.63 -28.87 -10.84 -9.69 

Half-block -18.30 2.28 2.24 11.20 -18.30 1.63 2.32 
-27.10 -10.30 -10.30 7.88 -27.90 -10.30 -9.53 

Mortar material 

Full-bLock -18.16 -3.00 -3.53 8.25 -18.16 -4.18 -2.98 
-22.40 -6.84 -6.63 7.12 -22.76 -6.64 -6.48 

Half-block -18.60 -2.71 -3.72 8.87 -18.60 -4.41 -2.70 
-23.00 -7.23 -7.04 7.24 -23.80 -7.04 -6.45 

* 	Figures quoted in the table are the upper and Lower maximum values of stress. 
YST, XST and ZST 	= 	Direct stress in the Y-, X- and Z-directions. 
SST 	 = 	Maximum shear stress. 

MJST, MST1 and MST2 	= 	Major, minor 1 and 2 principal stresses. 
+ye values 	 = 	Tension. 

-ye values 	 = 	Compression. 
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SCALE 	1/ 	3,193 FILLED HALF—BLOCK PRISM 
EYE X—COORD 	—1.000 
EYE 	Y—COOPD 	• 	0.7500 (1:0.35CONCRETE  
ETC 	Z—CODRD 	—1.000 
MAX. 	DEFLECTION 	0.5069 DEFORMATION 	IN 
Al NODE NUMBER • 	256 U—DIRECTION 	(mm) 
LOAD CASE 	ED 	• 	S ALL MATERIALS 
TYPE DISP,POTE 
COMPONENT 	• 	I 

 NUMBER OF CONTOURS 	• 	S CONTOUR 	VALUE 
INTERVAL 	• 	0.1244C-0I 
MAX NODAL 	VALUE 	• 	0.2442E-0l 8.2489E—:It 
MEN NODAL 	VALUE 	-0.2536E-0I ----- 	—01241E— 

0. tRuE—UI 

0 • 0.24R9E-01 

TITLE, 	FILLED 3—CEURRE WISH HALF—BLOCK PRISM 

Pig. 6.17 - Deformation of filled 3HBP-MJ prism 
in X-direction, parametric study 

non-linear PEA. 

SCALE 1' 	3.193 
EYE X—00000 • 	1.O0 
EYE Y—COIJRD 	0.7500 
EYE 2—COORD • 	1.000 
MAX. DEFLECTION • 0.5069 
AT NODE NUMBER • 256 
LOAD CASE ID 	5 
TYPE DISP'POTE 
COMPONENT • 	I 
NUMBER OF CONTOURS • 	5 
INTERVAL 	• 0.6069E-02 
MAX NODAL VALUE • 0.2420E-01 
1115 NODAL VALUE • 0.0008E+00 

FILLED HALF—BLOCK PRISM 
MORTAR (1:0,25:3) 
CONCRETE (1:3:2) 

DEFORMATION IN 
Z—OIRECYION (mm) 
ALL MATERIALS 

CONTOUR VALUE 

La

.a

.6069E-02 
,tRt4E-0I 
.bRIE—RI 
R4ROE-0I 

Fig. 6.18 - Deformation of filled 3HBP-HJ prism 
in 2-direction, parametric study 

non-linear PEA. 
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Table 6.5 

Deformation results of the parametric study 
non-linear FEA for filled 3FBP-HJ 

and 3HBP-MJ prisms. 

Deformation results * 	 Applied 	Prism 
Prism 	 (em) 	 stress 	strength 
type 	 YD 	 XD 	 21) 	 (N/m2) 	(N/em2) 

Full-bLock 	 0.000 	 0.000 	0.025 	 14.53 	14.53 

	

-0.502 	-0.048 	0.000 

Half-block 	 0.000 	 0.024 	0.024 	 14.53 	20.46 

	

-0.509 	-0.025 	0.000 

* 	Figures quoted in the table are the upper and lower maximum values of deformation. 
YD, XD and ZD 	= 	Deformation in the Y-, X- and Z-directions. 
+ve values 	= 	In the +ve direction of the axes. 
-ye values 	= 	In the -ye direction of the axes. 
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Table 6.6 

Stress results of the parametric study 
non-linear PEA for filled 3FBP-MJ 

and 3HBP-MJ prisms. 

Stress results * 
Prism (N/uni2) 
type YST Xsi ZST SST MJST MST1 MST2 

Block material 

FulL-block -14.88 1.51 1.46 9.34 -14.88 1.23 1.68 
-22.18 -7.52 -7.52 6.83 -23.02 -7.52 -6.69 

HaLf-block -15.10 1.74 1.55 9.14 -15.10 1.28 1.77 
-21.40 -6.91 -6.91 7.08 -21.90 -6.91 -6.36 

Concrete material 

Full-block -9.45 0.96 	0.91 10.09 -9.46 0.80 1.44 
-31.55 -11.96 	-11.50 3.71 -31.56 -12.08 -11.37 

Half-bLock -9.55 0.93 	0.91 10.30 -9.55 0.78 1.34 
-32.20 -12.30 	-11.80 3.98 -32.20 -12.40 -11.60 

Mortar material 

Full-bLock -6.85 -0.85 	-1.00 6.43 -6.85 -1.01 -0.84 
-16.94 -4.50 	-4.52 2.96 -17.00 -4.50 -4.45 

Half-block -6.32 -0.67 	-0.85 6.46 -6.32 -0.86 -0.66 
-16.90 -4.58 	-4.54 2.77 -17.10 -4.40 -6.40 

* 	
Figures quoted in the table are the upper and Lower maxinun values of stress. 
YST, XST and ZST 	= 	Direct stress in the Y-, X- and Z-directions. 
SST 	 = 	Maximum shear stress. 
MJST1  MST1 and MST2 	= 	Majors  minor 1 and 2 principal stresses. 
+ve values 	 = 	Tension. 
-ye values 	 = 	Couçressjon. 
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SCALE 1/ 	3802 
EYE X-COORD - 	1.000 
EYE Y-COORD - 0.7500 
EYE Z-COORD - 	1.200 
MAX. DEFLECTION 	8.6358 
AT NODE NUMBER 	144 
LOAD CASE ID 	S 
TYPE DISP/PUIE 
COMPONENT - 	a 
NUMBER OF CONTOURS 	S 
INTERVAL 	 0.1589 
MAX NODAL VALUE - 
(IN NODAL VALUE 	-0.6358 

SOLID-BLOCK P03511 
MORTAR C18.0531 

DEFORMATION IN 
V-DIRECTION (mm) 
ALL MATERIALS 

CONTOUR VALUE 

-0.6351 
-8.1768 

II -8.3)79 
-0.1509 
-0.1310C-16 

Fig. 6.19 - Deformation of solid 3SBP-MJ prism 
in Y-direction, parametric study 

non-linear FEA. 
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SCALE I' 	3.20 
EYE X-COORD = -1.000 
EYE Y-COORD - 0.7500 
EYE 7-00000 = -1.000 
MAX. DEFLECTION = 0.6158 
Al NODE NUMBER - 144 
LOAD CASE ID 	S 
TYPE DISPJPOTE 
COMPONENT = 	1 
NUMBER OF CONTOURS 	S 
INTERVAL 	 0.1353E-01 
TWIN NODAL VALUE 	0.0000EtOD 
MIN NODAL VALUE. -0.5413E-Q1 

SOLID-BLOCK PRISM 
MORTAR (1:0.253) 

DEFORMATION IN 
XDIRECT ION (m,) 
ALL MATERIALS 

CONTOUR VALUE 

1.5413E-21 
.4)JGOE-8I 

-0.8706K-0I 
-0.1353K-0I 
-0.4337K-12 

L2 

Fig. 6.20 - Deformation of solid 3SBP-MJ prism 
in X-direction, parametric study 

non-linear PEA. 

SCALE 1, 	3.208 
EYE X-00000 - 	1.000 
EYE Y-COORD 	0.7500 
EYE 8-0000D - 	1.000 
MAX. DEFLECTION 	0.6358 
AT NODE NUMBER 	14 
LOAD CASE ID 	S 
TYPE OBOe/POlE 
COMPONENT - 	3 
NUMBER OF CONTOURS 	S 
INTERVAL 	• 0.7092E-EI2 
MAX NODAL VALUE 	0.8837K-01 
MIN NODAL VALUE 	0.0002E+00 

SOLID-BLOCK PRISM 
MORTAR (10.253) 

DEFORMATION IN 
Z-DIRECTION (,n,,.) 
ALL MATERIALS 

CONTOUR VALUE 

0.0 
0.7092K-B? 
0.14 IBE-Ol 
0.2127K-8 I 
0.2837K-B I 

Fig. 6.21 - Deformation of solid 3SBP-MJ prism 
in Z-direction, parametric study 

non-linear PEA. 
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MYSTR08:: 9.2-3 	 DATE 11- 9-9 

SCALE 1/3 SOLID-BLOCK PRISM 
EYE X-0000D 	1.200 	 MORTAR (1:8.293) 
EYE 1-COORD 	0.7500 
EYE 2-CODED 	1.090 
LOAD CASE ID 	 DIRECT STRESS IN S 	

Y-DIRECTION (N/mml) TYPE SIRE/FLUX 
COMPONENT 	 BLOCK MATERIAL. ONLY 

NUMBER OF CONTOURS 	S 
INTERVAL 	• 	1.122 	 CONTOUR VALUE 
MAX NODAL VALUE 	-13.21 
MIN NODAL VALUE 	-10.99 	 -10.49 

- 	-15,01 
-14,22 
-11.00 

TITLE 	ASPECT RATIO (L/I) - 0.26 

Fig. 6.22 - Direct stress in Y-direction, block material 
of solid 3SBP-MJ prism, parametric study 

non-linear PEA. 

SCALE I/ 	3.201 
EYE X-COORD 	1,008 
EYE Y-COORD • 2.7500 
EYE 7-COORD • 	1.028 
LOAD CASE ID • 	S 
TYPE SIRE/FLUX 
COMPONENT 
NUMBER OF CONTOURS - 	S 
INTERVAL 	 1,666 
MAX NODAL VALUE • 0.0339 
MIN NODAL VALUE 	-5.032 

L 
SOILD-OLOCT, PRISM 
MORTAR (1:0.253) 

DIRECT STRESS IN 
N-DIRECTION (N/mml) 
BLOCK MATERIAL ONLY 

CONTOUR VALUE 

-3,333 
-1.066 
-0.1665E-I5 
1.666 

Fig. 6.23 - Direct stress in X-direction, block material 
of solid 3SBP-MJ prism, parametric study 

non-linear PEA. 
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llYS1R0 	9.2-3 	 3A1E 	II- 9-92 

SCALE 1/ 	3.202 SOLID-BLOCK PRISM 
EYE X-COORD 	1,000 MORTAR (10.253) 
EYE Y-COORO • 	0.7500 
EYE 7-COORD 	1,000 DIRECT STRESS IN 
LOAD CASE ID 	S Z-DIRECTION 	(N/mml) 
TYPE 	SIRE/FLUX BLOCK MATERIAL ONLY 
COMPONENT 	3 
NUMBER OF CONTOURS 	S 
INTERVAL 	-1.704 CONTOUR VALUE 

MAX NODAL VALUE • 	0.9906 
TIN NODAL VALUE 	-5.825 -5.112 

-3.402 
-I .704 
0.0 

.704 

TITLE: 	012211 RATIO 	(L/I) 	2,01 

Fig. 6.24 - Direct stress in 2-direction, block material 
of solid 3SBP-MJ prism, parametric study 

non-linear PEA. 

IYSTRO 	9.2-3 DATE: 	14- 9-90 

SCALE If 	3.202 SOLID-BLOCKPRISM 
EYE X-COURD 	1.000 MORTAR 	(10.25:3) 

EYE Y-COORD - 	8.7500 
EYE 2-COORD - 	1.2100 
LOAD CASE ID 	5 FIAXIIIII(1 SHEAR 

TYPE 	STRE'FLUX 
STRESS (N.'mm2) 
BLOCK MATERIAL ONLY 

COMPONENT 	10 
NUMBER UI CONTOURS - 	5 
INTERVAL 	 - 	0.6442 CONTOUR VALUE 
MAX NODAL VALUE 	7.647 
(TIN NODAL VALUE - 	5•9 5.158 

5.803 
6.448 
7.893 
7.737 

IlLS 	ASPECT RATIO (L/I) - 2.05 

Fig. 6.25 - Maximum shear stress, block material 
of solid 3SBP-MJ prism, parametric study 

non-linear PEA. 
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SCALE I' 	1,16: 	 SOLED-BLOCK PRISM 

EYE Y -COORD - 0.7500 
EYE Z-COORD • 	I .000 	

DIRECT STRESS IN LOAD CASE 	
• 	 1-DIRECTION (N/mm) 

TYPE SIRE/FLUX 
COMPONENT 	2 	

MORTAR MATERIAL ONLY 

NUMBER OF CONTOURS • 	S 
INTERVAL 	• 2.3620 	 CONTOUR VALUE 
MAX NODAL VALUE • -13.62 
MIN NODAL VALUE 	15 	 ii SI 

-14.12 

Fig. 6.26 - Direct stress in Y-direction, mortar material 
of solid 3SBP-MJ prism, parametric study 

non-linear PEA. 

1J 

SCALE 1' 	1.162 	 SOLID-BLOCK PRISM 
EYE X-CUORO - 	1.000 	 'T 	 MORTAR (1 :0.25:3) 
EYE 1-COORD - 0.7522 
EYE Z-00060 - 	1.000 
LOAD CASE ID • 5 	 DIRECT STRESS IN 
TYPE SIRE/FLUX 	 I-DIRECTION (N/mm?) 
COMPONENT • 	1 	 MORTAR MATERIAL ONLY 

NUMBER OF CONTOURS - 	5 
INTERVAL 	 0.1013 
MAX NODAL VALUE = -3.101 	 CONTOUR VALUE 

MIN NODAL VALUE = -3.526 	
-3.519 
-3.3 

9 
 7 

-3.276 

Fig. 6.27 - Direct stress in X-direction, mortar material 
of solid 3SBP-MJ prism, parametric study 

non-linear PEA. 
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SCALE 	1462 	 SOLID-BLOCK PRISM 

EYE 2-COOIUD • 	1.000 	
DIRECT STRESS ON LOAD CASE D 	S 	 U -DIRECTION (N'mmR) 

TYPE SIRE/FLUX 	 MORTAR MATERIAL ONLY 
COMPONENT - 	3 
NUMBER OF CONTOURS • 	S 
INTERVAL 	• B. 93060-01 	 CONTOUR VALUE 
MAX NODAL VALUE • -3.111 
lIlA NODAL VALUE - -3.184 	 -3.443 

-3.350 
-3.257 

-3.071 

Fig. 6.28 - Direct stress in Z-direction, mortar material 
of solid 3SBP-MJ prism, parametric study 

non-linear FEA. 

SCALE I' 	t.46RSOLID-BLOCK PRISM 
EYE X-00000 	1.000 	 MORTAR (18.253) 
EYE Y-COORD 	8.7508 
EYE Z-CODRD 	1.000 
LOAD CASE ID 	 MAXIMUM SHEAR - 	

STRESS (N/m.2) TYPE SYRE,FLUX 
COMPONENT - 	lB 	

MORTAR MATERIAL ONLY 

NUMBER OF CONTOURS 	S 
INTERVAL 	 8.1175 	 CONTOUR VALUE 
FlAX 1100111 VALUE - 	5.030 
liEN NODAL VALUE - 	S.240 	 5.309 

. 

5.456 
5.604 

Fig. 6.29 - Maximum shear stress, mortar material 
of solid 3SBP-HJ prism, parametric study 

non-linear PEA. 
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Table 6.7 

Deformation results of the parametric study 
non-linear PEA conducted to study 

the effect of l/t ratio on 
compressive strength of 
solid 3SBP-MJ prism. 

Aspect 	 Deformation results * 	 Applied 
ratio 	 (ma) 	 stress 
(lit) 	 YD 	 XD 	 ZD 	 (N/mm') 

1.0 0.000 0.000 0.028 	 14.53 
-0.637 -0.028 0.000 

1.5 0.000 0.000 0.028 	 = 
-0.636 -0.040 0.000 

2.05 0.000 0.000 0.028 	 = 
-0.636 -0.054 0.000 

2.5 0.000 0.000 0.029 	 = 
-0.637 -0.065 0.000 

3.0 0.000 0.000 0.030 	 = 
-0.638 -0.075 0.000 

4.0 0.000 0.000 0.031 	 = 
-0L640 -0.090 0.000 

* 	
Figures quoted in the table are the upper and Lower maximum values of deformation. 
YD, XI) and ZO 	= 	Deformation in the Y-, X- and Z-directions. 
+ve values 	= 	In the +ve direction of the axes. 
-ye values 	= 	In the -ye direction of the axes. 
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Table 6.8 

Stress results of the parametric study 
non-linear PEA conducted to study 

the effect of l/t ratio on 
compressive strength of 
solid 3SBP-HJ prism. 

Aspect 	 Stress results * 
ratio 	 (N/rn2) 
(lit) 	 YST 	XST 	ZST 	SST 	MJST 	MST1 	MST2 

Block material 

1.0 -13.50 1.07 1.07 7.58 -13.60 1.03 1.10 
-17.80 -5.59 -5.59 5.21 -18.20 -5.59 -5.22 

1.5 -13.30 0.956 1.02 7.59 -13.30 0.756 1.02 
-18.40 -5.71 -5.71 5.13 -18.90 -5.71 -5.21 

2.05 -13.20 0.834 0.991 7.65 -13.20 0.647 0.991 
-18.90 -5.83 -5.83 5.07 -19.50 -5.83 -5.21 

2.5 -13.00 0.722 1.02 7.68 -13.00 0.675 1.02 
-19.30 -5.92 -5.90 5.06 -20.00 -5.91 -5.21 

3.0 -12.70 0.622 1.05 7.74 -12.70 0.624 1.05 
-19.60 -5.98 -5.97 5.02 -20.40 -5.97 -5.18 

4.0 -12.20 0.530 1.06 7.87 -12.20 0.485 1.06 
-19.80 -6.03 -6.00 5.06 -20.70 -6.01 -5.07 

Mortar material 

1.0 -14.10 -3.17 	-3.17 5.80 -14.10 -3.17 -3.17 
-15.00 -3.47 	-3.47 5.43 -15.00 -3.48 -3.47 

1.5 -13.80 -3.12 	-3.12 5.82 -13.80 -3.12 -3.11 
-.15.10 -3.51 	-3.47 5.32 -15.10 -3.51 -3.47 

2.05 -13.60 -3.10 	-3.11 5.83 -13.60 -3.12 -3.10 
-15.10 -3.59 	-3.48 5.24 -15.10 -3.59 -3.48 

2.5 -13.30 -3.05 	-3.07 5.88 -13.30 -3.07 -3.04 
-15.10 -3.68 	-3.50 5.13 -15.10 -3.68 -3.50 

3.0 -13.00 -2.98 	-2.99 5.94 -13.00 -2.99 -2.97 
-15.30 -3.78 	-3.51 4.99 -15.30 -3.78 -3.51 

4.0 -12.30 -2.85 	-2.85 6.30 -12.30 -2.86 -2.84 
-15.50 -3.98 	-3.55 4.74 -15.50 -3.98 -3.55 

* 	Figures quoted in the table are the upper and lower values of maximum stress. 
YST, XST and ZST = Direct stress in the Y-, X- and 2-directions. 
SST = Maximum shear stress. 
JUST, MST1 and MST2 	= Major, minor 1 and 2 principal stresses. 
+ve values = Tension. 
-ye values = Compression. 
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0.3 XD— DEFORMATION IN X—DIRECTION 
YD— DEFORMATION IN Y--DIRECTION 

0.2 ZD— DEFORMATION IN 2—DIRECTION 
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Fig. 6.30 - Effect of l/t ratio on solid 
3SBP-MJ prism deformation, parametric 

study non-linear PEA. 
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Pig. 6.31 - Effect of l/t ratio on solid 3SBP-MJ 
prism direct stress in Y-direction, 
parametric study non-linear PEA. 
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Fig. 6.32 - Effect of l/t ratio on solid 3SBP-MJ 
prism direct stress in X-direction, 
parametric study non-linear PEA. 
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Fig. 6.33 - Effect of l/t ratio on solid 3SBP-MJ 
prism direct stress in Z-direction, 
parametric study non-linear FEA. 
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Fig. 6.34 - Effect of l/t ratio on solid 3SBP-MJ 
prism maximum shear stress, parametric 

study non-linear PEA. 
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Table 6.9 

Reduction factors for the compressive strength of a 
solid 3SBP-MJ prism as a result of changing 

the aspect (l/t) ratio. 

Prism length-to-thickness 	Reduction 
ratio (l/t) 	 factor 

1.00 1.00 
1.50 0.96 
2.05 0.93 
2.50 0.91 
3.00 0.89 
4.00 0.88 



CHAPTER 7 

REINFORCED BLOCKWORK MASONRY COLUMNS 

7.1 INTRODUCTION 

Blockwork masonry columns can be used as separate 

elements or in association with other load bearing elements 

such as masonry walls. Incorporating blockwork columns into 

walls can increase wall stiffness and from the 

architectural point of view, blockwork rendering or the use 

of cladding materials to overcome the differences between 

the blockwork masonry facing walls and the flat ordinary 

reinforced concrete columns can be unnecessary. Hollow 

blocks offer the advantage of using reinforced concrete 

filled masonry elements without the need for formwork. The 

reinforcement increases the axial and eccentric load 

bearing strength of the masonry elements and also enables 

the design of cross-sections which are smaller than 

equivalent unreinforced elements. 

This chapter presents the results of an experimental 

investigation carried out to study the performance of 

reinforced blockwork masonry columns and suggests a method 

of design, which takes into account the properties of 

blockwork masonry construction. The results of tests on 

forty-one axially loaded blockwork columns, with varying 

lateral and vertical reinforcement, are reported. Results 

from chapter 6 for the unfilled and filled 6FBP-NJ and 
6HBP-MJ prisms (in this chapter they are referred to as 

unfilled and filled unreinforced columns) are used to 

compare their compressive strength and behaviour with 

reinforced specimens. 



7.2 EXPERIMENTAL PROGRAMME 

In total, forty-one short stack-bonded blockwork 

masonry columns were constructed and tested under axial 

load, to determine their strength and. study the mechanism 

of failure. The columns were divided into two main series, 

full-block (390 x 190 mm) and half-block (190 x 190 mm) 

cross-sections. The columns were all six-course high with 

a slenderness ratio of 6.26. Details of a typical blockwork 

masonry column and the different forms of reinforcement are 

shown in Fig. 7.1. 

One type of mortar (1:0.25:3) and one type of concrete. 

inf ill (1:3:2) were used throughout. The columns were 

constructed by an experienced mason ensuring the complete 

filling of the 10 mm horizontal mortar joints between the 

concrete blocks. The mason was also instructed to gauge the 

height of the columns in accordance with the length of the 

vertical reinforcement, which had been cut to lengths 

corresponding to the calculated column height. The cuts 

were smooth to ensure good contact with the machine platens 

during the loading process. 

The block at the base of each column was a bond beam 

type (Fig. 7.2 (1)), in which the end shells and mid-web 

had been removed to.make it possible to clean the column 

of mortar dropping after construction 30  and also to assist 
in the fixing of the vertical reinforcement to the first 

lateral tie under the column. This type of block was as 

provided by the block supplier. The rest of the column 

blocks were either full or half-blocks. The full-blocks 

were provided with 20 mm wide by 20 mm deep grooves, cut 

with a diamond saw, at the sides of the block mid-webs 

(Fig. 7.2 (ii)), to accommodate the lateral ties. These 

grooves were also necessary to ensure a positive contact 

between the lateral ties and vertical reinforcement and to 
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provide the allowable cover for the reinforcement (21).  It 
was not possible to obtain blocks with such grooves from 

the supplier, but blocks with a 20 mm or more dip in the 

mid-web (Fig. 7.2 (iii)), can easily be produced by using 

a steel mould with such dips, as is the case with various 

different shapes and types of concrete block available on 

the market. 

The placement of lateral ties at the mortar joints was 

avoided because previous studies (86) had shown that placing 

lateral ties at the mortar joints causes a high 

concentration of tensile splitting stresses around the 

ties, resulting in a reduction of the compressive strength 

of the masonry assemblage. Also, placing the lateral ties 

at the mortar joints means that concrete blocks with 

thicker shells are required to comply with the required 

"concrete cover to the reinforcement(21) . 

The lateral ties were placed in every course during 

the construction of the columns, including the top and 

bottom sides, to prevent any local failure. This gives a 

constant spacing of 189 mm. The lateral ties, for the full-

block columns, were placed in the 20 mm wide by 20 mm deep 

grooves during construction. In the case of half-block 

columns, taking advantage of block tapering, the dimensions 

of the lateral ties were made slightly smaller than the 

half-block wide core. This enabled the ties to be held in 

the hollow cores by friction first and then by mortar after 

the construction. 

Two steel brackets, 25 mm wide by 6 mm thick, were 

placed in prepared positions at the first and fifth mortar 

joints. These brackets were used later to mount two 

electrical displacement transducers (LVDTt5) on both sides 

of the column to measure changes in length with the load 

increments. High yield electrical strain gauges, 10 mm 
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long, were mounted and protected by a water proof coating 

on two lateral ties and two vertical bars to measure the 

strain in the reinforcement at the mid height of the 

column. 

After construction, the columns were left under 

polythene sheeting for four days to allow the mortar joints 

to gain in strength. After four days, the vertical 

reinforcement was placed in position by tying the vertical 

bars to the lateral ties at the column top and bottom 

sides. The columns were then filled with concrete, batched 

by volume, mixed to a high slump of 150 mm then cast in two 

layers. Each layer was compacted using a 25 mm poker 

vibrator until full compaction, after which the top of the 

concrete inf ill was trowelled level. The methods adopted 

herein for curing the columns are similar to those used in 

chapters 5 and 6. 

Steel moulded cubes and cylinders, cast and cured with 

the specimens, were tested in compression to determine the 

strength of the mortar and concrete mixes. 

Twelve of the forty-one, full and half-block columns 

built, were unreinforced columns, tested either unfilled 

or filled, under axial load to determine the short term 

static modulus of elasticity of the blockwork masonry 
(Em)• 

The rest of the columns were filled reinforced columns, 

divided into four series as follows (see Table A.1, 
Appendix A): 

CS1FB, CS1HB * - 	Columns with three different diameters 

of lateral ties (6, 8, 10 mm ), and without vertical 

reinforcement to study the effect of lateral tie 

confinement on the strength and behaviour of masonry 
colUmns. 
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CB2FB, CS2HB - 	Columns reinforced with different 

percentages of vertical reinforcement (full-block: 0.42%, 

1.7%, 3.4% and half-block: 0.56%, 1.8%, 3.5%), and without 

lateral ties, to study the effect of the absence of lateral 

ties on the strength and behaviour of masonry columns. 

CS3FB, CS3HB - 	Columns reinforced with the same 

percentage of vertical reinforcement (full-block: 1.7%, 

5.3% and half-block: 1.8%, 5.4%), and with different 

diameters of lateral ties (6, 8, 10 mm 	to choose the 

best lateral tie to be used in blockwork masonry columns. 

CS4FB, CS4HB - 	Columns with 8 mm cp lateral ties and 

different percentage of vertical reinforcement (full-block: 

0.42%, 1.7%, 3.4%, 5.3%, and half-block: 0.56%, 1.3%, 1.8%, 

3.5%, 5.4%) to study the effect of changing the percentage 

of vertical reinforcement on the strength and behaviour of 

masonry columns. 

* CS1FB - 	Column Series 1 Full-Block. 
CS1HB 	- 	Column Series 1 Half-Block. 

A summary of the major column details and variables 

for the full and half-block columns is given in Tables 7.1 

and 7.2 respectively. 

Prior to testing, all the specimens were capped with 

a thin layer, 1 - 2 mm, of dental plaster 55  prepared by 
the same method explained in chapters 3, 4, 5 and 6. The 

specimens were positioned in the testing machine before the 

dental plaster had hardened such that the centre of the 

upper platen coincided with the centre point of the 

specimen ensuring that the load would be applied axially. 

The unfilled columns were tested in a 1MN capacity 

Avery Universal compression testing machine, which had a 

423 



ball seating to allow for the possibility of the loading 

plate being slightly off level. The other filled 

unreinforced and reinforced columns were tested in a steel 

rig, in which the load was applied by two 2MN capacity 

jacks through a 150 mm thick steel bearing plate to ensure 
uniformity. 

After the specimens were positioned in the testing 

machine, all the strain measuring devices were connected 

to a data logger to record the strain continuously 

throughout testing up to failure. 

The load was applied at a rate in accordance with BS 
6073: Part 1: 1981 (66) and the loading pattern was in 

accordance with BS 1881: Part 121: 1983 (68)  to enable the 

determination of the static modulus of elasticity for all 

the specimens tested, as has been explained in chapters 3, 
4, 5 and 6. 

7.3 DISCUSSION OP EXPERIMENTAL RESULTS 

The discussion of the experimental results is divided 

into two major sections. The first and second deal with the 

observed modes of failure for the full and half-block 

columns. The second deals with the experimental results. 

7.3.1 	Modes of Failure for Full and Half-Block Columns 

7.3.1.1 	Unreinforced columns 

The mode of failure for the unfilled and filled, 

unreinforced full and half-block columns was discussed in 

chapter 6. (For comparison refer to the mode of failure of 

unfilled and filled 6FBP-MJ and 6HBP-MJ prisms). 
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7.3.1.2 	Reinforced columns 

Columns, reinforced with 6 and 8 mm 0 lateral ties 
only, (CS1FB and CS1HB) showed a different mode of failure 

to the filled unreinforced columns. The concrete cores 

remained intact even after all the block shells were 

crushed and had deformed outward (Fig. 7.3). The failure 

was more ductile with no complete collapse at ultimate 

load, as was the case with unreinforced columns. Some signs 

of block shell cracking was observed at 80% to 90% of the 

ultimate load. Full-block columns reinforced with 10 mm 

lateral ties showed premature splitting of the block side 

shells and crushing of the concrete cores (Fig. 7.4), which 

may have been caused by some stress concentration as a 

result of using ties of larger diameter. 

Columns, reinforced with different percentages of 

vertical reinforcement only, (CS2FB and CS2HB) showed an 
abrupt mode of failure at ultimate load with the buckling 

of vertical bars. This caused an explosive failure of the 

block shells, followed by complete disintegration of the 
columns (Fig. 7.5). 

Columns, reinforced with the same percentage of 

vertical reinforcement and different diameters of lateral 
ties (6, 8 and 10 mm ), (CS3FB and CS3HB) showed similar 
modes of failure for the three diameters of lateral tie 

used. The failure was dominated by localized block shell 

crushing and outward deformation at one or two courses 

(Fig. 7.6) and not throughout the column height as was the 

case with the modes of failure for all the above columns. 

This was due to the constraint of the vertical bars 

buckling between the lateral ties. The concrete cores 

remained intact even with all the block shells crushed, and 

deformed outward. The failure was more ductile with no 

complete collapse at ultimate load. The vertical bars 

425 



buckled to the outside between the lateral ties at the 

final stages of the loading process. Block shell cracking 

was observed at 80% to 90% of the ultimate load. 

All other columns, reinforced with 8 mm q lateral ties 

and different percentages of vertical reinforcement (CS4FB 
and CS4HB), showed a similar mode of failure to that of the 
CS3FB and CS3HB columns discussed above. 

7.3.2 	Experimental Results 

7.3.2.1 Short term static modulus of elasticity of 
blockwork masonry 

The changes in length over the 4-courses of the 

unfilled and filled blockwork masonry columns were measured 

using two electrical displacement transducers (LVDT's) 

mounted on steel brackets on the opposite sides of the 

columns. The readings from these transducers were recorded 

continuously until failure, using a data logger. The 

average changes in length were then divided by the gauge 

length to convert the readings to strain over the 4-courses 

of the column height. 

Figs 7.7 and 7.8 show typical vertical stress vs 

strain curves for the unfilled and filled, full and half-

block columns respectively. 

From the process of loading and unloading, the average 

short term static modulus of elasticity for three of each 

unfilled and filled, full and half-block masonry columns 

was determined (see Figs 7.7 and 7.8 and Table 7.3). 

Many previous attempts have been made to find a 

formula for the modulus of elasticity of brickwork sand 
blockwork masonry. SAHLIN 2  related the modulus of 
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elasticity of brickwork masonry to the moduli of both the 

brick and the mortar by the following theoretical equation: 

:1. 
= ______________ with E1  Eb 

(1 - S)/E + &/Eb 

Where 

Em 	Modulus of elasticity of masonry, N/mm2  

E 
	

Modulus of elasticity of the mortar joint, N/mm 2  

Eb 
	Modulus of elasticity of brick unit, N/mm2  

and 

hh 
5= 	 ... (7.2) 

LU  

Where 

hb 	Brick height, mm 

h 
	

Mortar joint thickness, mm 

In order to determine the modulus of elasticity of the 
mortar joint, (E1), SAHLIN quoted the expression suggested 
by HANSEN 87  for two-phase material (referring to concrete) 
as given by the following equation: 

E = 
(i. - g)/E + g/Eg 
	 ... (7.3) 

Where 

g 	The volume of aggregate per unit volume of mix 

Eg 	Modulus of elasticity of aggregate, N/mm2  
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E 	Modulus of elasticity of cement paste, N/mm2  

Most of the other researchers and standards related 

the modulus of elasticity of masonry to the ultimate 

compressive strength of masonry, f'. Although relating the 

modulus of elasticity to the masonry strength is irrelevant 

from a theoretical standpoint, it has some practical value. 

The British Code of Practice (BS 5628: Part 2)(2 

related the short term modulus of elasticity for clay, 

calcium silicate and concrete masonry, including reinforced 

masonry with inf ill concrete to fk  as follows: 

Em  = 900 

The American Masonry Code (ACI 531R-79) 19  related the 
modulus of elasticity of masonry to f I

m
as follows: 

Em  = 1000 f I
m 
 < 17225 N/mm2  

Unfortunately, The ACI Code does not refer to the type 

of masonry material (brickwork, solid blockwork, hollow 

blockwork or filled blockwork) which this formula 
represents. 

The Canadian Standard (CSA-CAN3--5304) 20  recommends 

the modulus of elasticity of unfilled masonry to be as 

follows: 

EM  = 1000 f I m 
 < 20685 N/mm2 	...(7.7) 

Based on experimental data, HATZINIKQLAS et al 86  
recommended a conservative value for the modulus of 

elasticity of unfilled masonry as follows: 

Em  = 750 f 'm 
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FEEG et al 50  suggested the modulus of elasticity of 
filled blockwork masonry to be as follows: 

Em  = 800 	 ...(7.6) 

Based on the results of the present study and on the 

theoretical expression suggested by SAHLIN, the modulus of 

elasticity of unfilled blockwork masonry can be determined 

as follows: 

1 
Em  = 	 . . . (7.8) 

(1. 	- 6)/cr Emrs  + 6/E bs 

Where 

a = EJS /E,.S  = 0.45 (for 10 mm mortar joint) 

In this expression the value of a is the average of 

three types of mortar (1:1:6, 1:0.25:3 and 1:0.5:4.5) and 

was found to be equal to 0.45 for a 10 mm mortar joint. For 

mortar joints of different thicknesses, the value of a can 

be found by testing specimens similar to the ones used in 

chapter 3 to determine Emrsand E3 . The value of a takes 
into consideration the thickness of the mortar joint and 

the effect of the concrete block confinement. It is 

expected that the value of a can be used in general for all 

unfilled blockwork masonry built with hollow concrete 
blocks. 

The modulus of elasticity of filled blockwork masonry 

is not easy to determine due to the presence of the 

concrete inf ill. As shown in chapter 5, the contribution 

of the concrete inf ill to the strength of filled blockwork 

prisms was only 25%, so it can be expected that the 
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concrete inf ill will contribute the same percentage to the 

modulus of elasticity. On this basis, the short term static 

modulus of elasticity of filled blockwork masonry could be 

determined as follows: 

1 
Em = ____________________ + r 

Emrs  + 5/Ebs 

Where 

r = 0.25 

The above two formulae were found to give excellent 

results when compared to the average experimental values of 

modulus of elasticity for unfilled and filled blockwork 

masonry (Table 7.3). 

7.3.2.2 	Strain measurements 

Table 7.4 gives the results of the average strain 

measurements recorded over 4-Oourses of the column height, 

the vertical bars and lateral ties during the testing of 

the unreinforced and reinforced columns. 	I 

All the average strains reported herein represent the 

values at ultimate load or at the limit of the ascending 

load vs strain curve. Although the strain has been 

monitored continuously during the loading process, it was 

found difficult to monitor the strain for the descending 

part of the load vs strain curve. This was due to the 

sudden failure of the specimens cased by the release of the 

energy stored in the machine on the specimens at failure. 

The recorded strain over 4-courses for the 

unreinforced full and half-block columns shows that the 

430 



strain for filled columns is 43.8% and 44.1% respectively 

lower than that for unfilled columns. This means that the 

shortening over 4-courses of the filled column is lower 

than for the unfilled column. This was also observed in the 

specific non-linear FEA for unfilled, and filled 3FBP-145 

prisms, where the vertical deformation of the filled prisms 

is 29.6% lower than that for the unfilled prism. This was 

attributed to an increase in stiffness resulting from the 

presence of the concrete inf ill. 

Full-block columns, reinforced with 6 and 8 mm 

lateral ties and without vertical bars, (CS1FB) show an 
increase in the recorded strains over 4-courses of 25.1%. 

and 19.1% respectively compared to filled unreinforced 

columns. This means that the laterally reinforced columns 

are more ductile than the filled unreinforced columns. On 

the other hand, columns reinforced with 10 mm 0 lateral 

ties show a decrease of 17.1%, compared to filled 

unreinforced columns. The decrease in strain may be due to 

failure of the column caused by the high concentration of 

tensile splitting stresses around the lateral ties near the 

block mid-webs. This resulted in premature splitting of the 

column side shells. These high splitting stresses are the 

result of the size of the lateral ties used. 

Half-block columns, reinforced with 6, 8 and 10 mm 

lateral ties and without vertical bars (CS1HB), show 
increases in the recorded strains over 4-courses of 40.8%, 

35.2% and 54% respectively compared to filled unreinforced 

columns. The increase in the strain of the half-block 

column reinforced with 10 mm 0 lateral ties supports the 

explanation given previously for the decrease in strain of 

the full-block column reinforced with 10 mm 0 lateral ties, 

namely premature splitting of the block side shells. 

The strain measurements on the ties for the laterally 
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reinforced full and half-block columns (CS1FB and CS1HB) 

show that the strain values are all lower than the ties' 

yield strain (see Table 3.6). A maximum strain value of 

5.09 x 10 was recorded on the 6 mm 0 ties. 

The full-block columns reinforced with 4T10 and 4T20 
mm 0 vertical bars and without lateral ties (CS2FB) show 

increases in the recorded strains over 4-courses of 26% and 

8.5% respectively compared to the filled unreinforced 

column. On the other hand, full-block columns reinforced 

with 8T20 mm 0 vertical bars showed a decrease of 12.2%. 

This suggests that as the percentage of vertical 

reinforcement increases, the possibility of the buckling 

of vertical bars increases. Similarly, the strain on the 

vertical bars decreases (12.75 x l0, 10.59 x 10 and 8.42 

X 10 respectively) as the percentage of vertical bars 
increases. 

The half-block columns (CS2HB) show similar trends to 

the full-block columns, with decreases in the recorded 

strains over 4-courses and decreases in the vertical bar 

strain as the percentage of vertical reinforcement 
increases. 

Full-block columns, reinforced with the same 

percentage of vertical reinforcement (1.7%) and with 61  8 
and 10 mm q lateral ties, (CS3FB) show increases in the 

recorded strains over 4-courses of 74.8%, 50.1% and 70.4% 

respectively, compared to filled unreinforced columns. The 

strain recorded on the vertical bars for the three 
different columns (16.65 x 	-4 

1 15.63 x 10 and 14.41 x 
io respectively) is almost half the bar's yield strain (28 

x l0) (see Table 3.6). 

Half-block columns, reinforced with the same 

percentage of vertical reinforcement (1.8%) and with 6, 8 
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and 10 mm 0 lateral ties, (CS3HB) show increases in the 

recorded strains over 4-courses of 42.2%, 52.4% and 33.9% 

respectively, compared to filled unreinforced columns. On 

the other hand, the strain recorded on the vertical bars 

(14.86 x i0, 14.87 x 10 and 12.84 x,10-4   respectively) is 
almost half the bars' yield strain (average 27 x 10) (see 

Table 3.6). 

Full-block columns, reinforced with 8 mm 0 lateral 
ties and different percentages of vertical reinforcement 

(0.42%, 1.7%, 3.4% and 5.3%) (CS 4FB), show increases in the 

recorded strains over 4-courses of 64.1%, 50.1%, 8% and 

1.1% respectively, compared to filled unreinforced columns. 

The descending order of the percentage increases suggests 

that the ductility of the columns decreases as the 

percentage of vertical reinforcement increases. For the 

same reason, the strain recorded on the vertical bars shows 

similar reductions (17.80 x 	15.63 x 10, 14.60 x 10 
and 11.15 x 	respectively) with increase in percentage 
of vertical reinforcement. 

Half-block columns, reinforced with 8 mm q lateral 

ties and different percentages of vertical reinforcement 

(0.56%, 1.8%, 3.5% and 5.4%) (CS4HB), show increases in the 

recorded strains over 4-courses of 64.1%, 52.4%, 45.9% and 

24.5% respectively, compared to filled unreinforced 

columns. The strain, recorded on the vertical bars for the 

same columns, show a similar trend of decreases (17.96 x 
14.87 x io, 17.37 x 10 and 13.74 x 10 respectively) 

as the percentage of vertical reinforcement increases. The 

reason for this is similar to that for the full-block 
columns (CS4FB). 

The major conclusions derived from the results of the 

strain measurements for the full and half-block columns are 
as follows: 
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All columns, reinforced with hot rolled deformed high 

yield 8 mm 0 lateral ties, gave more consistent strain 

results compared to columns reinforced with 6 and 10 

mm q lateral ties. 

The values of •the average strain recorded on the 

vertical bars for all the columns tested are almost 

half the yield strain of the vertical bars (see Table 

3.6). 

The values of the average strain recorded on the 

horizontal ties are small compared to the yield strain 

recorded in the tensile test of the ties (see Table 

3.6). 

7.3.2.3 	Column strength 

Table 7.5 shows the compressive strength of all the 

unreinforced and the laterally reinforced, full and half-

block columns. 

The table shows that the compressive strength of the 

filled unreinforced, full and half-block columns (based on 

gross area) decreases by 12.9% and 33.5% respectively 

compared to unfilled columns (based on net area). The 

explanation for this is similar to the one put forward for 

the reduction in the compressive strength of the 3-course 

high full and half-block prisms, namely, the presence of 

the concrete inf ill. This was discussed in more detail in 
chapter 5; 

The strength of unfilled, full-block columns on the 

other hand, shows a decrease of 25.2% compared to the half-

block columns. This was caused by differences in the aspect 

ratio (l/t) (column length-to-thickness) and the mortar 
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bedded area between the full-block columns (l/t = 2.05) and 

half-block columns (l/t = 1.0). This was explained in more 

detail in chapter 6. Small difference in compressive 

strength was observed between the filled, full and half-

block columns. 

Table 7.5 also shows that the compressive strength of 

full-block columns, reinforced with 6 and 8 mm 0 lateral 

ties and without vertical bars, (CS1FB) increases by 17.7% 

and 17.6% respectively compared to the filled unreinforced 

columns. On the other hand, columns reinforced with 10 mm 

q lateral ties fail at a compressive strength which is 8.3% 

less than that for filled, unreinforced columns. The 

increase in column strength can be attributed to the 

confinement of the concrete inf ill by the lateral ties. 

These confinement stresses cause a reduction in the harmful 

tensile stresses exerted on the block shells by the 

concrete and are not a result of an increase in the 

concrete strength. Since as shown in chapter 5, changing 

the concrete inf ill strength from 0 to 30 N/mm2  (prisms with 
zero concrete strength being the unfilled prisms) has no 
significant effect on the compressive strength of filled 3-

course high, full-block prisms. The decrease in strength of 

the column reinforced with 10 mm 0 lateral ties may be due 

to the premature failure of the column resulting from the 
high concentration of splitting stresses around the lateral 
ties, as shown earlier. 

On the other hand, the half-block columns (CS1HB) show 

a clear tendency to increase in strength, by 1.7%, 4.4% and 

20.5%, with provision of lateral ties of diameter, 6, 8 and 

10 mm 0 respectively. 

As with the case of filled, unreinforced columns, no 

great difference in strength was observed between the 

laterally reinforced full and half-block columns. The only 
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anomaly is the full-block column, reinforced with 10 mm 

lateral ties, which shows a lower strength than the 

corresponding half-block column, for the reason mentioned 

previously. 

Table 7.6 gives results for the experimental ultimate 

loads of columns reinforced with lateral ties and vertical 
bars. 

Full-block columns, reinforced with different 

percentages of vertical reinforcement (0.42%, 1.7% and 

3.4%) and without lateral ties (CS2FB), show a decrease of 

11.5% and increases of 24.3% and 10.4% respectively for the 

experimental values of ultimate load of the columns, 

compared to filled unreinforced columns. 

Half-block columns, reinforced with different 

percentages of vertical reinforcement (0.56%, 1.8% and 

3.5%) and without lateral ties (CS2HB), show increases of 

4.6%, 44.3% and 42.3% respectively for the experimental 

values of ultimate load of the columns, compared to filled 
unreinforced columns. 

Although the general trend for both columns is an 

increase in strength with the presence of vertical bars 

only, the use of such columns in masonry construction 

should be avoided due to the explosive mode of failure at 
ultimate load. 

To the author's knowledge, no work has been reported 

so far on the strength and behaviour of blockwork masonry 

columns reinforced with vertical bars only. In reinforced 

concrete, the limited work reported by PFISTER 88  showed 
that columns reinforced with vertical bars only developed 

ultimate strengths from 6% to 8% less than the calculated 

values which based on ultimate design theory. PFISTER 
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reported that those columns exhibited an explosive mode of 
failure. 

Full-block columns, reinforced with the. same 

percentage of vertical reinforcement (1.7%) and different 

diameters of lateral ties (6, 8 and 10 mm ) (CS3FB), show 
increases of 51.9%, 62.5% and 24.3% respectively in their 

experimental values of ultimate load, compared to filled 

unreinforced columns. Similarly, and for the same diameters 

of lateral tie, full-block columns reinforced with 5.3% 

vertical bars show increases of 85.6%, 75.3% and 76.8% 

respectively, compared to filled unreinforced columns. 

Half-block columns, reinforced with the same 

percentage of vertical reinforcement (1.8%) and different 

diameters of lateral ties (6, 8 and 10 mm ) (CS3HB), show 
increases of 39%, 59.3% and 44.4% respectively in the 

experimental values of ultimate load, compared to filled 

unreinforced columns. Similarly, and for the same diameters 

of lateral tie, half-block columns reinforced with 5.4% 

vertical bars show increases of 57.8%, 65.4% and 22.8% 

respectively, compared to filled unreinforced columns. 

The above results, for columns reinforced with the 

same percentage of vertical reinforcement and different 

diameters of lateral tie, suggests that 8 mm lateral ties 

give the most consistent increases in strength, compared to 

filled unreinforced columns. 

Fig. 7.9 shows the effect of changing the percentage 

of vertical reinforcement on the ultimate load of full and 

half-block columns reinforced with the same diameter of 
lateral ties (8 mm c) (CS4FB and CS4HB). In this figure, 
columns, reinforced with 8 mm c lateral ties only, were 

considered as columns with zero percent vertical 

reinforcement. The relationship between the column ultimate 
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load, (Pa),  and the percentage of vertical reinforcement can 

be best represented, for full-block columns, by the 

following formula: 

PU  = 1590 

The ultimate load for half-block columns is given by 

half the ultimate load from Eqn. 	7.10. 

The figure also shows that the experimental value of 

ultimate load of the full-block column, reinforced with a 

minimum percentage of vertical reinforcement (0.42%), 

increases by 20.8% compared to the filled unreinforced 

column. As the percentage of vertical reinforcement 

increases by 1.7%, 3.4% and 5.3%, the column ultimate load 

increases correspondingly by 62.5%, 64% and 75.3%. 

Similarly, the experimental values of ultimate load 

for the half-block column, reinforced with the minimum 

percentage of vertical reinforcement (0.56%), increases by 

16.8% compared to the filled unreinforced column. As the 

percentage of vertical reinforcement increases by 1.3%, 

1.8%, 3.5% and 5.4% the column ultimate load increases 

correspondingly by 35.1%, 59.3%, 58.7% and 65.4%. 

The experimental results for columns, reinforced with 
8 mm q  lateral ties and different percentages of vertical 

reinforcement, show a steady increase in the column 

ultimate load, 	as the percentage of vertical 

reinforcement increases. This behaviour is similar to that 

for reinforced concrete columns. 

Table 7.6 also gives the results of three methods used 

to predict the ultimate load of all the reinforced 

blockwork masonry columns tested in this investigation. The 

first and second methods of calculating the column ultimate 

load are based on the procedures suggested by BS 562 8(21) 
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and ACI 531R-79 9 . It can be seen that both standards 
underestimate the ultimate load of the reinforced blockwork 

masonry columns, even for columns reinforced with vertical 

bars only. The full-block column, reinforced with a minimum 

percentage of vertical reinforcement (0.42%) and 8 mm 

lateral ties, failed at an ultimate load which was 1.96 

times the value estimated using BS 5628 and 6.03 times the 

value estimated using ACI 531R-79. 

Similarly, the half-block column reinforced with a 

minimum percentage of vertical reinforcement (0.56%) and 8 

nun 0 lateral ties, failed at an ultimate load which was 

1.94 times the value estimated using BS 5628 and 5.40 times 

the value estimated using ACI 531R-79. 

The third method of calculating the ultimate load of 

blockwork columns is based on Ecjns 5.4 and 5.5 for the 

ultimate compressive strength of blockwork masonry, f t m  as 
derived in chapter 5 for the 3-course high full and half-

block prisms. The contribution of the vertical 

reinforcement to the strength of blockwork masonry columns 

is assumed to be based on half the yield strength, (fr), of 
the vertical bars, since, as shown above, the vertical bars 
attain only half their yield strain. 

Therefore, the ultimate load of blockwork masonry 
columns is calculated as follows: 

p = rf' (A9 - A) + f/2 (A))/1000 	 •.(7.11) L 

The contribution of the lateral ties, namely 17.6% in 

the case of full-block columns and 4.4% in the case of 

half-block columns, was ignored in the calculation. 

The reason for the failure of blockwork masonry 

columns prior to yielding of the vertical bars, may be due 
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to the outward deformation and failure of the block shells 

caused by minor buckling of the vertical bars between the 

lateral ties at ultimate load. 

Fig. 7.10 shows the relationship .between the ratio of 

experimental ultimate load and theoretical ultimate load as 

a percentage, using the proposed method of calculation (P 

(Experixnental)/P (Theoretical)) and the percentage of 

vertical reinforcement (A/A9  %) for columns reinforced with 
different percentages of vertical bars and the same lateral 

ties (8 mm ) (CS4FB and CS4HB). The figure shows that Eqn. 

7.11 gives a good estimation of the ultimate load of the 

reinforced blockwork masonry columns. 

7.4 CONCLUSIONS 

The presence of lateral ties changes the mode of 

failure of blockwork masonry columns (CS1FB and CS1HB) 

from a sudden explosive failure to a more ductile 

failure. Columns reinforced with 10 mm 0 lateral ties 

show premature splitting of the block side shells and 

crushing of the concrete cores which may be caused by 

a high concentration of tensile splitting stresses 

around the large diameter lateral ties near the block 
mid-webs. 

The mode of failure of columns, reinforced with both 

vertical and lateral ties (CS3FB, CS3HB, CS4FB and 
CS4HB), is dominated by localized block shell crushing 

and outward deformation at one or two blocks but not 

throughout the full column height. This was due to the 

restriction of buckling of the vertical bars to 

lengths between the lateral ties. The concrete cores 

remained intact despite the block shells crushing and 

deforming outward. The failure was more ductile with 
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no complete collapse at ultimate load. Block shell 

cracking was observed at 80% to 90% of the ultimate 

load. 

A semi-empirical formula (Eqns 7.8 and 7.9) has been 

suggested to determine the short term static modulus 

of elasticity of unfilled and filled blockwork 
masonry. 

All series of columns, reinforced with hot rolled 

deformed high yield 8 mm q lateral ties, gave more 

consistent results for the strain values and for the 

experimental values of ultimate load compared to 

columns reinforced with 6 and 10 mm 0 lateral ties. 

The strength of filled, full and half-block columns 

(based on gross area) decreased by 12.9% and 33.5% 

respectively compared to the unfilled columns (based 

on net area). The explanation is similar to that used 

for the reduction in the compressive strength of the 

3-course high, full and half-block prisms, namely the 

presence of the concrete inf ill. 

The strength of columns, reinforced with 6 and 8 mm 

lateral ties and without vertical bars (CS1FB), 
increased by 17.7% and 17.6% compared to the filled 

unreinforced columns. On the other hand, columns 

reinforced with 10 mm 0 lateral ties failed at loads 

which were 8.3% less than those for filled 

unreinforced columns. The increase in column strength 

results from the confinement of the concrete inf ill by 

the lateral ties. These confinement stresses cause a 

reduction in the harmful tensile stresses exerted on 

the block shells by the concrete and are not a result 

of an increase in the concrete strength. The decrease 

in the strength of columns, reinforced with 10 mm c 
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lateral ties, may be caused by premature failure of 

the column due to the high concentration of tensile 

splitting stresses around the large diameter lateral 

ties. 

On the other hand, the results of the half-block 

columns (CS1HB) show increases in strength of 1.7%, 

4.4% and 20.5%, with provision of lateral ties of 

diameter, 6, 8 and 10 nun 0 respectively. This tendency 

of increase in strength is similar to that in 

reinforced concrete columns. 

Although, the general trend for the full and half-

block columns, reinforced with different percentages 

of vertical reinforcement and without lateral ties 

(CS2PB and CS2HB), is to show an increase in the 

experimental value of ultimate load of the columns, 

compared to filled unreinforced columns. The use of 

such columns in masonry construction should be avoided 

due to the explosive nature of failure at ultimate 
load. 

All the full and half-block columns, reinforced with 

the same percentage of vertical reinforcement but 

different diameters of lateral ties (6, 8 and 10 mm 

), (CS3PB) show an increase in the experimental 

values of ultimate load of the column, compared to a 

filled unreinforced columns. The most consistent 

results for increases in column strength is obtained 

in columns reinforced with 8 mm 0 lateral ties. 

All the full and half-block columns, reinforced with 

8 mm p lateral ties and different percentages of 

vertical reinforcement (CS4FB and CS4HB), show a 

uniform increase in the values of ultimate load of the 

column as the percentage of vertical reinforcement 
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increases. This relationship is similar to that for 

reinforced concrete columns. 

The British and American Masonry Standards 

underestimate the ultimate load of reinforced 

blockwork masonry columns, even for columns reinforced 

with vertical bars only. 

A new formula (Eqn. 7.11) has been proposed to 

calculate the ultimate load of blockwork masonry 

columns based on Eqns 5.4 and 5.5 for the ultimate 

compressive strength of blockwork masonry i'm' as 

derived in chapter 5 for 3-course high full and half-

block prisms. The contribution of the vertical 

reinforcement to the ultimate load of blockwork 

masonry columns is assumed to be based on half the 

yield strength (f) of the vertical bars, since all the 

strains recorded on the vertical bars during the 

investigation were half the yield strain of the 
vertical bars. 

The explanation for failure of the blockwork masonry 

columns prior to yielding of the vertical bars may be 

due to the outward deformation and failure of the 

block shells caused by relatively small buckling of 

vertical bars between the lateral ties at ultimate 
load. 
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Fig. 7.1 - Details of a typical blockwork 
masonry column used in the 

investigation. 
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(I) Bond beam 

Block 

Standard block 
	

(iii) Standard block 
with grooves 	 with mid-web dip 

Fig. 7.2 - Types of concrete block used in column 
construction. (i) Bond beam, (ii) Standard, 

(ii) Standard with mid-web dip. 
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Table 7.1 

Summary of full-block columns 
details and variables. 

Vertical U 

Cotuin • 	reinforcement A f 	* A IA 
S 

f' 	9 WillS2 Mortar 
type 110. mu (Mm) (N/mu ) 

y 
(X) 

in 2  
(N mm ) mr (f) 

Unfilled - - - - 9.99 27.05 - 
Fitted - - - - 15.39 27.05 21.59 

CS1FB6 - - - - 14.71 28.55 18.27 
CS1,4FB8 4 - - - - 14.71 28.55 18.27 
CS1FB10 - - - - 14.71 28.55 18.27 

CS2FBO 4110 314.16 519.06 0.42 14.80 25.95 19.66 
CS2FBO 4120 1256.64 536.88 1.7 14.80 25.95 19.66 
CS2FBO 8120 2513.28 536.88 3.4 14.80 25.95 19.66 

CS3FB6 4120 1256.64 536.88 1.7 14.71 28.55 18.27 
CS3,4FB8 4120 1256.64 536.88 1.7 14.71 28.55 18.27 
CS3FB10 4120 1256.64 536.88 1.7 14.71 28.55 18.27 
CS3FB6 8125 3926.96 490.28 5.3 14.71 28.55 18.27 
CS3,4FB8 8125 3926.96 490.28 5.3 14.71 28.55 18.27 
CS3FB10 8125 3926.96 490.28 5.3 14.71 28.55 18.27 

CS4FB8 4110 314.16 519.06 0.42 14.71 28.55 18.27 
CS4FB8 8120 2513.28 536.88 3.4 14.71 28.55 18.27 

Net area = Area at section (1) = 41700 m2. (See Table 3.2). 
Gross area = 390 x 190 .2.

13 
= 74100 

No. of bars Type Cain 0). 
* 	6 ua 0 Lateral tie, f = 441.51 N/aim2. 

8 inn # lateral tie, f = 527.86 N/ian2  

10 mu 	Lateral tie, f = 519.06 N/ rita2  

9 	f' 	= 0.30 fb + 0.10 f 	+ 0.25 mr (See Eqri. 5.4). 
I 	Cube compressive strength of block material, N/=2.

4 
f b= 24.29 

CS1,4FB8 	= Column Series 1 or 4 FuLL-BLock with 8 ann 0 lateral ties. 

Material cube COIp. I 
strength (N/iau) 

446 



Table 7.2 

Summary of half-block columns 
details and variables. 

Vertical fi 

Column • 	reinforcement A f 	* A IA sg f' 	9 Mortar InfiLL 
type 	 No. mm • 	(rims ) (N/rim 	) M(N.'nmn 

m 2  
) U) 

Unfilled - 	- - - 12.48 25.95 - 
Fitted - 	- - - 17.39 25.95 19.66 

CS1HB6 - 	- - 17.15 26.91 17.92 
Cs1,4HB8 • - 	- - - 17.15 26.91 17.92 
CS1I4B1O - 	- - - 17.15 26.91 17.92 

CS2HBO 418 	201.08 527.86 0.56 17.39 25.95 19.66 
CS2HBO 41(8+12) 	653.48 507.09 1.8 17.39 25.95 19.66 
CS2HBO 4120 	1256.64 536.88 3.5 17.39 25.95 19.66 

CS3HB6 41(8+12) 	653.48 507.09 1.8 17.39 25.95 19.66 
CS3,4HB8 41(8+12) 	653.48 507.09 1.8 17.39 25.95 19.66 
CS3HB10 41(8+12) 	653.48 507.09 1.8 17.39 25.95 19.66 
CS3HB6 4125 	1963.48 490.28 5.4 17.39 25.95 19.66 
CS3,4HB8 4125 	1963.48 490.28 5.4 17.39 25.95 19.66 
CS3HB10 4125 	1963.48 490.28 5.4 17.39 25.95 19.66 

CS4HB8 418 	201.08 527.86 0.56 17.39 25.95 19.66 
CS4HB8 4112 	452.40 486.31 1.3 17.39 25.95 19.66 
CS4HB8 4120 	1256.64 536.88 3.5 17.39 25.95 19.66 

Net area = Area at section (1) = iccoo m2. (See Table 3.2). 
Gross area = 190 x 190 m2.

I1 
= 36100 

No. of bars Type Clan 0). 
* 	6 mm 	lateral tie, f y = 441.51 N/.2.. 

8 ian 	lateral tie, f = 527.86 H/urn 2.  

10 urn 	Lateral tie, fy = 519.06 N/urn2  

9 	f' 	= 0.30 
b + 0.20 f 	+ 0.25 (See Eqn. 5.5). 

I 	Cube compressive strength of block material, b= 24.29 N/urn2. 
CS1,4HB8 	= Column Series 1 or 4 HaLf-Block with B urn 4 lateral ties. 

Material cube coi. I 

strength (N/uru) - 
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Fig. 7.3 - Mode of failure of full-block 
masonry column reinforced with 

8 mm 0 lateral ties. 
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Fig. 74 - Mode of failure of full-block 
masonry column reinforced with 

10 mm 0 lateral ties. 
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Fig. 7.5 - Typical mode of failure of full-block 
masonry columns reinforced with 

vertical bars only. 
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Fig. 7.6 - Typical mode of failure of full-block 
masonry columns reinforced with lateral 

ties and vertical bars. 
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5.0  1 1V 	0 UNFILLED FULL-BLOCK COLUMN 
0 FILLED FULL-BLOCK COLUMN 

il's/f 	 E = 20383 N/mm' (UNFILLED) 
E = 23165 N/mm' (FILLED) 

0.0 r-' 	 I 	I 	I 	 I 	I 	I 	I 
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STRAIN >< 10 

Fig. 7.7 - Typical stress vs strain curves 
for unfilled and filled unreinforced 

full-block masonry columns. 
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 w 
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Pig. 7.8 - Typical stress vs strain curves 
for unfilled and filled unreinforced 

half-block masonry columns. 
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Table 7.3 

Comparison between experimental and 
theoretical values of 

Em  Em 
* 

Em  (Experimental) 
Cotuim Experimental Theoretical  
type (N/nm2) (N/M2) Em  (Theoretical) 

Full-block column 

Unfilled 20383 21535 0.95 

Filled 23165 24396 0.95 

Half-block column 

Unfilled 20952 21535 0.97 

Filled 23320 24396 0.96 

* Based on Eqns 7.8 and 7.9 
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Table 7.4 

Strain measurements 

Column 

type 

Vertical fi 

reinforcement 

No. m 

A IA S 	9 
(Z) 

Average 

transducers 

strain x 10 4_4 

Average 

vertical bars 

strain x 10 

Average 

horizontal ties 

strain x 10 

FuLL-bLock column 

Unfitted - - 23.31 - - 
Fitted - - 13.10 - - 
CS1FB6 - - 16.39 - 5.09 
CS1,4FB8 4 - - 15.60 - 3.25 
CS1FB10 - - 10.86 - .2.45 

CS2FBO 4110 0.42 16.50 12.75 - 
CS2FBO 4120 1.7 14.21 10.59 - 
CS2FBO 8120 3.4 11.50 8.42 - 
CS3FB6 4120 1.7 22.90 16.65 3.24 
CS3,4FB8 4120 1.7 19.66 15.63 ._3.50 
CS3FB1O 4120 1.7 22.32 14.41 .3.27 
CS3,4F88 8125 5.3 13.24 11.15 ...2.50 

CS4FB8 4110 0.42 21.50 17.80 -3.34 
CS4FB8 8120 3.4 14.15 14.60 2.96 

Half-block coLum 

Unfitted - - 21.91 - - 
Fitted - - 12.25 - - 
CS1HB6 - - 17.25 - 3.09 
CS1,4HB8 4 - - 16.56 - -2.15 
CS1HB10 - - 18.86 - .3.58 

CS2HBO 418 0.56 17.25 13.65 - 
CS2H8O 41(8+12) 1.8 15.32 11.29 - 
CS2HBO 4120 3.5 11.85 9.75 - 
CS3HB6 41(8+12) 1.8 17.42 14.86 -3.30 
CS3,4HB8 41(8+12) 1.8 18.67 14.87 3.26 
CS3HB1O 41(8+12) 1.8 16.40 12.84 -2.06 
CS3,4HB8 4125 5.4 15.25 13.74 -4.80 

CS4HB8 418 0.56 20.10 17.96 2.60 
CS4HB8 4120 3.5 17.87 17.37 - 4.00 

fl 	No. of bars Type (mm 	). 
4 	CS1,4F88 	= CoLuir Series I or 4 FuLL-BLock with 8 ian Lateral ties. 

CS1,4HB8 = Column Series 1 or 4 Half-Block with 8 em 0 lateral ties. 

vt 
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Table 7.5 

Compressive strength of unreinforced and laterally 
reinforced full and half-block columns. 

Average compressive * 

Ultimate 	 strength (N/rn2) 
Column Load 	 Area used S.D. 
type (KN) 	 Net 	Gross (N/.2) 

(Jnreinforced fulL-block column • 

Unfitted 728.92 	 17.48 	9.84 0.55/0.31 

Fitted 1128.54 	 - 	15.23 0.92 

Laterally reinforced fulL-block column • 

CS1FB6 1328.68 	 - 	17.93 - 
CS1,4FB8 4 1327.18 	 - 	17.91 
CS1FB10 1034.49 	 - 	13.96 - 

Unreinforced haLf-block column 9 

Unfitted 465.06 	 23.37 	12.88 0.78/0.43 

Fitted 561.36 	 - 	15.55 0.96 

Laterally reinforced half-block column 9 

CS1HB6 	 570.79 	 - 	15.81 
CS1,4HB8 4 	 586.03 	 - 	16.23 
CS1HB10 	 676.59 	 - 	18.74 

* 	Average and S.D. for mareinforced columns are calculated for three specimens. 

Net area 	= Area at section (1) 	= 41700 urn2  (See Table 3.2). 
Gross area 	= 390 * 190 	= 74100 sin2. 

CS1,4F88 = Column Series 1 or 4 FuLL-Block with 8 sin q Lateral ties. 

CS1,411B8 = Column Series 1 or 4 Half-Block with 8 ma 0 Lateral ties. 
9 	Net area 	= Area at section (1) 	= ioo mm   (See Table 3.2). 

Gross area 	= 190 * 190 	= 36100 iris2. 
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Table 7.6 

Ultimate load of laterally and vertically 
reinforced columns. 

Vertical U p  Pu 
* • 

p 	9 
Cotuim reinforcement A5/A9 

 
Experimental BS 5628 AC! 531R-79 Theoretical 

type No. mm • CX) (KN) (KN) (KN) (KN) 

FuLL-block column 

CS2FBO 4110 0.42 998.45 695.06 226.13 1173.56 
CS2FBO 4120 1.7 1402.30 327.83 1415.41 
CS2FBO 8120 3.4 1245.35 = 463.42 1734.15 

CS3FB6 4120 1.7 1713.91 = 327.83 1408.86 
CS3,4FB8 e 	4120 1.7 1834.20 = 327.83 1408.86 
CS3FB10 4120 1.7 1402.99 = 327.83 1408.86 
CS3FB6 8125 5.3 2094.92 = 615.95 1994.90 
CS3,4FB8 8125 5.3 1978.32 615.95 1994.90 
CS3FB10 8125 5.3 1994.67 = 615.95 1994.90 

CS4FB8 4110 0.42 1363.71 = 226.13 1166.92 
CS4FB8 8120 3.4 1850.45 = 463.42 1727.71 

Half-block column 

CS2HBO 418 0.56 587.35 	338.62 121.20 677.35 
CS2HBO 41(8+12) 1.8 809.96 	 = 170.01 782.10 
CS2HBO 4120 3.5 798.65 	 = 235.09 943.26 

CS3HB6 41(8+12) 1.8 780.06 	 = 170.01 782.10 
CS3,4HB8 4 41(8+12) 1.8 894.10 	 = 170.01 782.10 
CS3HB1O 41(8+12) 1.8 810.48 	 = 170.01 782.10 
CS3HB6 4125 5.4 885.60 	 = 311.36 1074.96 
CS3,4HB8 4125 5.4 928.67 	 = 311.36 1074.96 
CS3HB1O 4125 5.4 689.35 	 = 311.36 1074.96 

CS4HB8 418 0.56 655.63 	 = 121.20 677.35 
CS4HB8 4112 1.3 758.22 	 = 148.31 729.92 
CS4HB8 4120 3.5 891.12 	 = 235.09 943.26 

U 	No. of bars Type (nn #)- 
* 	BS 5628, PU = Uk Ag]/l000t  f k = 9.38 N/nm2. (See Table 3.1). 

AC! 531R-79, PU = ((0.225 f1m  A9  + 0.65 A s f S)1/1000 P m = 11.53 N/nm 2  (full-block column), 
f' = 12.25 N/nm2  (half-bLock column), f5  = 166 N/nm2. 

Pu = [U'm (A9-A5) + f/2 A5))/1000. 

4 	CS3,4FB8 = Column Series 3 or 4 FuLL-Block with 8 mm 0 lateral ties. 
CS3,4HB8 = CoLumn Series 3 or 4 Half-BLock with 8 mm 0 Lateral ties. 
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Fig. 7.9 - Effect of changing percentage of 
vertical reinforcement on ultimate 

load of masonry columns. 
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Fig. 7.10. -  Comparison between experimental and theoretical 
values of P, for full and half-block columns 

reinforced with 8 nun 0  lateral ties and 
different percentages of vertical bars. 
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CHAPTER 8 

GENERAL SUMMARY AND CONCLUSIONS 

8.1 GENERAL SUMMARY 

This thesis presents a comprehensive study of 

blockwork masonry prisms compressed axially in two 

directions, normal and parallel to the unit bed face. The 

effects of different factors such as types of mortar, 

concrete inf ill strengths, height-to-thickness ratio (h/t), 

aspect ratio (prism length-to-thickness) (l/t), mortar 

thickness, shrinkage in 28 days and.bond between block and 

concrete inf ill affecting the compressive strength and 

behaviour of blockwork masonry prisms were investigated 

experimentally and theoretically using the finite element 

technique. Methods for the determination of the ultimate 

compressive strength of blockwork masonry 'm were 
suggested. 

The thesis also presents an extensive study on forty-

one axially loaded blockwork masonry short columns. The 

effects of using different percentages of lateral ties and 

vertical bars on the ultimate strength and behaviour of 

reinforced blockwork masonry columns were investigated. A 

new method of predicting the ultimate load of reinforced 

blockwork masonry columns subjected to axial compression is 
proposed. 

An introduction to the advantages of using filled 

hollow concrete blocks in reinforced blockwork masonry and 

the problems resulting from the masonry non-homogeneity 

caused by the differences in the mechanical properties of 

the four component materials (concrete block, mortar, 

concrete inf ill and reinforcement) making the masonry 

assemblage have been described in chapter 1. 



Chapter 2 presents a comprehensive literature review 

of the methods used to determine the ultimate compressive 

strength of blockwork masonry f 'm  and to study the behaviour 
of blockwork masonry prisms subjected to axial load applied 

normal and parallel to the unit bed face. Also presented is 

a review of the work carried out on the strength and 

behaviour of reinforced brickwork and blockwork masonry 
columns. 

An experimental study of the properties of materials 

used in this investigation has been reported in chapter 3. 

Chapter 4 presents the results of the experimental and 

theoretical investigations carried out on a two-block 

masonry prisms compressed in a direction parallel to the 

unit bed face. On the other hand, chapter 5 has been 

devoted to the experimental and theoretical investigations 

of 3-course high stack-bonded blockwork masonry prisms 

compressed normal to the unit bed face. The theoretical 

studies in both chapters were carried out using the finite 

element technique. Based on the experimental and 

theoretical investigations, methods for the determination 

of the ultimate compressive strength of blockwork masonry 

has been suggested. A new hypotheses for the mechanism 

of failure of unfilled and filled blockwork masonry prisms 

compressed parallel and normal to the unit bed face are 

suggested. 

Factors, other than the concrete inf ill strengths and 

mortar types, affecting the compressive strength and 

behaviour of blockwork masonry are discussed in chapter 6. 

The factors studied were prism height-to-thickness ratio 

(h/t), aspect ratio (prism length-to-thickness) (l/t), 

mortar thickness, shrinkage in 28 days and bond between 
block and concrete inf ill. 
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Chapter 7 is devoted to blockwork masonry short 

columns subjected to axial load. The effect of using 

different percentages of lateral and vertical reinforcement 

on the ultimate strength and behaviour of masonry columns 

are presented. A new method of predicting the ultimate load 

of reinforced blockwork masonry columns subjected to axial 

compression is proposed. The new method takes into 

consideration the specialty of blockwork masonry 

construction. 

8.2 GENERAL CONCLUSIONS 

The following conclusions have been reached as a 

result of the experimental and theoretical investigations 

presented in this thesis: 

The ultimate compressive strength for unfilled 

blockwork masonry, f', in areas where high in-plane 

horizontal forces are expected, should be determined 

by one of the following two methods: 

(i) On the basis of the compressive strength of a 

unit block compressed parallel to the unit bed 

face and the type of mortar, or by using Eqn. 4.1 

for the type of blocks used in this 

investigation. 

Tests on two-block masonry prisms made from the 

same materials as those to be used in the actual 

construction and compressed parallel to the unit 

bed face. 

The ultimate compressive strength for filled blockwork 

masonry, f', in areas where high in-plane horizontal 

forces are expected, should be determined by one of 
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the following methods: 

(i) Testing a single-block specimen filled with the 

same concrete as that used in actual 

construction, in a direction parallel to the unit 

bed face, then multiplying the specimen's 

compressive strength by a reduction factor of 

0.75 (Eqn. 4.2), which represents the reduction 

caused by the presence of the mortar joint. 

Testing two-block masonry prisms built from the 

same materials as those to be used in the actual 

construction and compressed parallel to the unit 

bed face. 

The presence of the mortar joint in unfilled prisms, 

compressed parallel to the unit bed face, caused a 

small reduction in the prism compressive strength 

compared to unfilled prisms with dental plaster joint. 

Increasing the mortar strength by at least 166.9% 

produces an increase of only 6.2% on the compressive 

strength of unfilled prisms. This was mainly due to 

the insignificant ratio of the mortar joint thickness 

to the block height (1/39), and also due to 

confinement of the mortar by the stiff blocks. 

Most of the unfilled prisms with a mortar joint, 

compressed parallel to the unit bed face, failed at a 

compressive strength higher than the mortar cube 

strength. This suggests that the mortar strength in a 

joint is apparently higher than the mortar cube 

strength. This is due to the relatively small mortar 

thickness compared to the unit height, and the 

confinement of the mortar by the stiff concrete 
blocks. 
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The presence of concrete inf ill significantly reduced 

the compressive strength of all the two-block prisms 

with mortar or with dental plaster joint, compressed 

parallel to the unit bed face, as compared to unfilled 

prisms. The best compressive strength result was 

achieved when the deformational characteristics of the-

concrete inf ill matched those of the concrete block. 

A stiff concrete irifill works as a cleavage 

forcing the blocks to split before attaining their 

unfilled block compressive strength. The extent of 

reduction in strength of all prisms filled with stiff 

concrete inf ill is similar to the ones filled with 

soft concrete inf ill. 

The presence of the mortar joint in the filled prisms, 

compressed parallel to the unit bed face, caused a 

reduction by a factor of 0.75 in the prism strength 

as compared to the ones with dental plaster joint. 

This reduction resulted from the high Poisson's ratio 

of the mortar near ultimate load, compared to that of 

the concrete blocks. This was responsible for 

introducing confinement stresses in the mortar and 

producing splitting stresses in the blocks. 

Increasing the mortar strength by at least 166.9% 

produces an increase of only 23.9% and 3.8% on the 

compressive strength of prisms with low and high 

strength concretes respectively. This was due to the 

insignificant ratio of mortar joint thickness to 

height of the block (1/39) and mortar confinement by 

the stiff blocks. 

The strength of two-block prisms, compressed parallel 

to the unit bed face, with a value of h/t = 4.0, are 

surprisingly, higher than the corresponding single- 
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block specimens with a value of h/t = 2.0. 

In the finite element analysis of any masonry element 

subjected to compressive stress, steel bearing plates 

should be used to apply the stress to the element. 

Otherwise excessive high deformation and unacceptable 

high tensile and shear stresses will results at the 

location of the applied stress. 

The finite element analysis shows that the effect of 

the machine platens is limited to areas near these 

platens. Thus, using unfilled and filled two-block 

prisms as a standard specimen to determine f 'm  in areas 
where high in-plane forces are expected is acceptable. 

Despite the 59.7% increase in the vertical deformation 

of the unfilled prism from the non-linear analysis, 
compared to the linear analysis, the increase of 11.2% 

in the maximum tensile stress in the X-direction and 

the decrease of 13.5% in shear stress is small 

compared to the high increase in deformation. This 

reflects the importance of the materials' non-
linearity in the analysis of blockwork masonry 
assemblage. 

The ultimate compressive strength for unfilled 

blockwork masonry, i'm' in situations where in-plane 

horizontal forces are not expected to occur, can be 

determined by one of the following two methods: 

On the basis of the compressive strength of a 

unit block compressed normal to the unit bed face 

and the type of mortar, or by using Eqn. 5.4 for 

the type of blocks used in this investigation. 

Tests on 3-course high full-block stack-bonded 
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masonry prisms made from the same materials as 

those to be used in the actual construction and 

compressed normal to the unit bed face. 

The ultimate compressive strength.f or filled blockwork 

masonry, f', in situations where in-plane horizontal 

forces are not expected to occur, can be determined 

by testing 3-course high full-block stack-bonded 

masonry prisms, built from the same materials as those 

used in the actual construction and compressed normal 

to the unit bed face, or by using Eqn. 5.4 for the 

type of blocks used in this investigation. 

Testing unfilled and filled half-block prisms to 
determine i'm' in situations where in-plane horizontal 
forces are not expected to occur, over estimates the 

actual compressive strength of the blockwork masonry 

assemblage by 25%. This is due to the difference in 

values of aspect ratio, as between the full-block 

prism, (l/t = 2.05), and half-block prism, (l/t = 

1.0), and also due to the difference in the mortar 

bedded area caused by the presence of the mid-web in 
full-block prism. 

The presence of a low strength (1:1:6) mortar in the 

joints of unfilled full-block prisms compressed normal 

to the unit bed face caused a reduction of 10.2% in 

the prism strength compared to unfilled prisms with a 

dental plaster joint. Changing the mortar strength by 

188.8% increases the prism strength by 20.1%. 

The presence of concrete inf ill significantly reduced 

the compressive strength of 3-course high prisms with 

mortar joints or with dental plaster joints. With only 

one exception, the best compressive strength results 

were achieved when the deformational characteristics 
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of the concrete inf ill matched those of the concrete 

block. This was achieved by using concrete inf ill with 

a cube compressive strength of 45% to 50% higher than 

that of the concrete block. 

In filled prisms compressed normal to the unit bed 

face, the presence of the mortar joints, even though 

of low strength, are essential to develop the block 

strength. Their presence, however, caused a further 

reduction in the prism strength in addition to that 

caused by the presence of the concrete inf ill. This 

reduction resulted from the high plasticity and 

Poisson's ratio of the mortar, compared to that of the 

concrete blocks. This was responsible for introducing 

confinement stresses in the mortar and splitting 

stresses in the blocks. 	 - 

In filled 3-course high full-block prisms of similar 

concrete strength, the presence of a low strength 

(1:1:6) mortar joint, contributed greatly to the 

strength of the filled prisms. Increasing the mortar 

strength by 98.2% above this value increased the prism 

strength by a negligible amount. 

Empirical formulae (Eqns 5.4 and 5.5 ) were suggested 
to determine 'm' for unfilled and filled, full and 
half-block prisms taking into account the block, 

mortar and concrete inf ill strength. The formulae 

showed that the strength of the concrete inf ill is not 

fully reflected in the strength of prisms compressed 

normal to the unit bed face. 

The results of the horizontal deformation from the 

specific analysis and parametric study FEA, for 

unfilled and filled 3FBP-MJ prisms shows 

incompatibility in the horizontal deformation in the 
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X- and Z-directions. Due to this incompatibility, the 

prism end shells will be separated from the rest of 

the prism and longitudinal cracks will be developed at 

the line of contact between the end and side prism 
shells. 

The distribution of vertical, horizontal, shear and 

principal stresses resulting from the specific and 

parametric study non-linear FEA for unfilled and 

filled 3FBP-HJ prisms showed that the effect of the 

steel platens was limited to areas near the platens 

only. Thus, using the 3-course high prism as a 

standard specimen to determine f' is acceptable. 

In considering the equilibrium of horizontal stresses 

at the middle block of the unfilled 3-course high 

prisms, constructed with high strength (1:0.25:3) 

mortar, it is better to assume a triangular stress 

distribution with maximum at the mortar joints and 

zero at 1/3 of the block height. In the case of the 

filled prisms, assume the horizontal stresses to be 

uniformly distributed at the middle block, 

irrespective of what type of mortar or concrete is 

used in their construction. 

A new hypothesis is presented on page 278 for the 

failure of filled 3-course high prisms, compressed 

normal to the unit bed face, as a result of the 

specific non-linear FEA. 

The strength of the full and half-block prisms, 

compressed normal to the unit bed face, decreased as 

the h/t ratio increased from 2.0 to 6.0. This is true 

for both unfilled and filled prisms. The compressive 

strength of unfilled and filled, full-block prisms 

decreased by 29.7% and 9.5% respectively as the h/t 
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ratio increased from 2.0 to 6.0. The results show that 

'm for unfilled or filled blockwork masonry, in 

situations where the in-plane horizontal forces are 

not expected to occur, can be satisfactorily 

represented by testing an unfilled or filled, 3-course 

high, full-block prism as a standard specimen. 

Increasing the mortar thickness from 5 to 20 mm, 

reduced the strength of both unfilled and filled full-

block prisms. This reduction was less for filled, 

full-block prisms (11.6%) than for unfilled full-block 

prisms (17.6%). 

Plastic cracking caused by shrinkage are not a serious 

problem in concrete filled blockwork masonry. The 

cracks were usually located near the surface of the 

prism. Water evaporation from the top surface of 

specimens was the main reason for these cracks. Fresh 

concrete surfaces should therefore be covered after 

casting to reduce shrinkage caused by water 

evaporation. The crack penetration depth and width 

increased as the concrete infill slump increased. 

Prisms filled with high slump concrete inf ill mixes 

resulted in unfilled voids caused by the presence of 

air bubbles and also by the evaporation of the excess 

water left over after the concrete hardened. Using low 

slump mixes was also found to be impractical due to 

the amount of work needed in the compaction process. 

Breaking the bond completely between blocks and 

concrete inf ill in a 3-course high full-block prism, 

as if there were cracks between the two materials, was 

found to have no effect on the ultimate compressive 

strength of blockwork masonry, f'. 

27. The finite element analysis provided an explanation as 
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to how differences in aspect ratio (l/t) and mortar 

bedded area between the full and half-block prisms, 

compressed normal to the unit bed face, affects the 

compressive strength and behaviour of unfilled and 

filled prisms. 

Unfilled and filled, full-block prisms, with an 

aspect ratio of l/t = 2.05 and fully bedded with 

mortar, suffer incompatibility of deformation between 

the X- and Z-directions. This will result in the 

separation of the prism end shells from the rest of 

the prism and the development of longitudinal cracks 

at the line of contact between the prism end and side 
shells. 

28. Using FEA, it is possible to create a clear image of 

how the deformations and stresses in a solid 3-course 

high prism are distributed. It is also possible to 

predict the mode of failure and ultimate compressive 

strength of the prism compared to a filled 3-course 

high prism. The results show that most of the 

horizontal tensile stresses in the Z-direction in a 

solid-block prism are located in the vicinity of the 

mortar joints. This is not exactly the case for the 
filled 3FBP-HJ prisms, where the tensile stresses 

cover most of the prism height. The predicted mode of 

failure for the solid 3SBP-MJ prisms is by separation 

of the prism end faces from the rest of the prism and 

the development of tensile splitting cracks along the 

prism end faces caused by the incompatibility of 

deformation and high horizontal tensile stresses on 

this face. The longitudinal cracks, caused by the high 

horizontal tensile stresses on the prism end faces, 

will be initiated in the vicinity of the mortar 

joints, then progress through the solid blocks. The 

ultimate compressive strength of the solid 3SBP-HJ 
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prism, made of the same material as the hollow blocks, 

should be higher than that for the filled 3PBP-MJ 

prisms. 

29. Using FEA, it was possible to conduct a parametric 

study to investigate the effect of changing the aspect 

ratio (l/t) on the distributions and values of 

deformation and stress in a solid 3-course high prism. 

Changing the aspect ratio from 1.0 to 4.0 

resulted in increasing the prism's deformation in the 

X-direction by 221.4%. This means that prisms with 

aspect ratios more than 1.0 have a greater 

incompatibility of deformation between the X- and Z- 

directions. This in turn, has 	weakening effect on 

the prism compressive strength by causing the 

separation of the prism end faces from the rest of the 

prism and the development of longitudinal cracks at 

the lines of contact between the prisms end and side 

faces. 

Increasing the aspect ratio from 1.0 to 4.0 

resulted in an increase in the maximum values of the 

direct vertical stress and the major principal stress 

in the block material by 11.2% and 13.7% respectively. 

It also resulted in an increase in the difference 

between the horizontal tensile stresses in the block 

material in X- and Z-directions. The results show 

that, for prisms with an l/t = 1.0, there is no 

difference in the horizontal tensile stresses between 

the X- and Z-directions, but for prisms with an l/t = 

4.0, the tensile stresses in the Z--direction are 100% 

higher than that in the X-direction. The difference in 

the tensile stresses is even higher, at 116.3%, when 

determined by comparing the maximum values of the 

minor principal stresses on the prism end faces (MST2) 
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with the side faces (MST1). 

Based on the results of the FEA, the decrease in 

prisms strength with increases in the aspect ratio 

(l/t) were calculated as a redaction factor to the 

strength of solid 3SBP-MJ prism with an aspect ratio 

of 1.0. 

The presence of lateral ties changes the mode of 

failure of blockwork masonry columns (CS1FB and CS1HB) 

from a sudden explosive failure to a more ductile 

failure. Columns reinforced with 10 mm 0 lateral ties 
show premature splitting of the block side shells and 

crushing of the concrete cores which may be caused by 

a high concentration of tensile splitting stresses 

around the large diameter lateral ties near the block 

mid-webs. 

The mode of failure of columns, reinforced with both 

vertical and lateral ties (CS3FB, CS3HB, CS4FB and 

CS4HB), is dominated by localized block shell crushing 

and outward deformation at one or two blocks but not 

throughout the full column height. This was due to the 

restriction of buckling of the vertical bars to 

lengths between the lateral ties. The concrete cores 

remained intact despite the block shells crushing and 

deforming outward. The failure was more ductile with 

no complete collapse at ultimate load. Block shell 

cracking was observed at 80% to 90% of the ultimate 
load. 

A semi-empirical formula (Eqns 7.8 and 7.9) has been 

suggested to determine the short term static modulus 

of elasticity of unfilled and filled blockwork 
masonry. 
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All series of columns, reinforced with hot rolled 

deformed high yield 8 mm 0 lateral ties, gave more 

consistent results for the strain values and for the 

experimental values of ultimate load compared to 

columns reinforced with 6 and 10 mm q lateral ties. 

The strength of filled, full and half-block columns 

(based on gross area) decreased by 12.9% and 33.5% 

respectively compared to the unfilled columns (based 

on net area). The explanation is similar to that used 

for the reduction in the compressive strength of the 

3-course high, full and half-block prisms, namely the 

presence of the concrete infill. 

The strength of columns, reinforced with 6 and 8 mm 

lateral ties and without vertical bars (C$1FB), 

increased by 17.7% and 17.6% compared to the filled 

unreinforced columns. On the other hand, columns 

reinforced with 10 mm 0 lateral ties failed at loads 

which were 8.3% less than those for filled 

unreinforced columns. The increase in column strength 

results from the confinement of the concrete infill 

by the lateral ties. These confinement stresses cause 

a reduction in the harmful tensile stresses exerted 

on the block shells by the concrete and are not a 

result of an increase in the concrete strength. The 

decrease in the strength of columns, reinforced with 

10 mm 0 lateral ties, may be caused by premature 

failure of the column due to the high concentration 

of tensile splitting stresses around the large 

diameter lateral ties. 

On the other hand, the results of the half-block 

columns (CS1HB) show increases in strength of 1.7%, 

4.4% and 20.5%, with provision of lateral ties of 

diameter, 6, 8 and 10 mm 0 respectively. This tendency 
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of increase in strength is similar to that in 

reinforced concrete columns. 

Although, the general trend for the full and half-

block columns, reinforced with different percentages 

of vertical reinforcement and without lateral ties 

(CS2FB and CS2HB), is to show an increase in the 

experimental value of ultimate load of the columns, 

compared to filled unreiriforced columns. The use of 

such columns in masonry construction should be avoided 

due to the explosive nature of failure at ultimate 
load. 

All the full and half-block columns, reinforced with 

the same percentage of vertical reinforceent but 

different diameters of lateral ties (6, 8 and 10 mm 
çb), (CS3FB) show an increase in the experimental 

values of ultimate load of the column, compared to a 

filled unreinforced column. The most consistent 

results for increases in column strength is obtained 

in columns reinforced with 8 mm 0 lateral ties. 

All the full and half-block columns, reinforced with 

8 mm 0 lateral ties and different percentages of 

vertical reinforcement (CS4FB and CS4HB), show a 
uniform increase in the values of ultimate load of the 

column as the percentage of vertical reinforcement 

increases. This relationship is similar to that for 

reinforced concrete columns. 

The British and American Masonry Standards 

underestimate the ultimate load of reinforced 

blockwork masonry columns, even for columns reinforced 
with vertical bars only. 

A new formula (Eqn. 7.11) has been proposed to 
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calculate the ultimate load of blockwork masonry 

columns based on Eqns 5.4 and 5.5 for the ultimate 

compreàsive strength of blockwork masonry i'm'  as 
derived in chapter 5 for 3-course high full and half-

block prisms. The contribution of the vertical 

reinforcement to the ultimate load of blockwork 

masonry columns is assumed to be based on half the 

yield strength (fr) of the vertical bars, since all 

the strains recorded on the vertical bars during the 

investigation were half the yield strain of the 

vertical bars. 

42. The explanation for failure of the blockwork masonry 

columns prior to yielding of the vertical bars may be 

due to the outward deformation and failure of the 

block shells caused by relatively small buckling of 

vertical bars between the lateral ties at ultimate 

load. 

8.3 SUGGESTIONS FOR FURTHER RESEARCH 

In this thesis one type of hollow concrete blocks was 

used in the experimental and theoretical parts of this 

investigation. More work is needed one other types of 

concrete block with different dimensions, strengths, shells 

thickness and core taper to study the effect of all these 

variables on the compressive strength and behaviour of 

blockwork masonry prisms and columns. 

All types of blockwork masonry prisms tested in this 

thesis were fully bedded with mortar and a logical 

extension to this study would be to test prisms with face-

shell bedding as this type of block laying is also used in 

blockwork construction. Since, all prisms tested in this 

thesis were built under laboratory control work is needed 
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to study the effect on compressive strength of field 

construction. 

As mentioned earlier in this thesis one of the reasons 

for testing prisms in a direction parallel to the unit bed 

face was to simulate the compression zone in reinforced 

blockwork masonry beams. As the actual stress distribution 

in the compression zone of a reinforced masonry beam is 

parabolic, more work is needed to test prisms under 

eccentric load to determine the enhancement to compressive 

strength caused by the strain gradient and also to study 

the behaviour of blockwork masonry prisms under this type 

of loading. 

More work is needed to study the effects of the shape 

factor (l/t) ratio (block length-to-thickness) and h/t 

ratio (block height-to-thickness)) on the compressive 

strength of the unit and prism made of hollow or solid 
concrete blocks. 

As all the blockwork masonry columns tested in this 

thesis were axially loaded a logical extension to this 

study would be to test blockwork masonry columns under 

eccentric load to establish the axial load-moment 

interaction diagrams for different eccentricities and 

percentages of vertical reinforcement. 

Hollow concrete blocks provide the advantage of using 

reinforced concrete filled masonry elements without the 

need for a frame. Columns with different shapes and 

configuration can be constructed without the need for 

complicated framework (Fig. 8.1) which is difficult and 

more expensive to achieve with normal concrete. Tests are 

needed to study the strength and behaviour of such columns 

under axial and eccentric loads. 
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Blockwork masonry columns can be used in masonry 

construction as a separate structure by themselves or in 

association with other load bearing elements such as 

masonry wall. More work is needed to study the effect of 

Incorporating the columns into walls, on increasing wall 

stiffness and improving their behaviour. 
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0110HI  

Pig. 8.1 - Methods of constructing blockwork masonry 
columns with different shapes 

and configurations. 
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APPENDIX A 

Table A.l 

Designation of block specimens. 

Specimen description 

Unfilled and filled 2-Block Prism with 
Mortar Joint compressed parallel to the unit 
bed face. 

Specimen 
designation 

2BP-MJ 

2BP-DPJ 

2 FBP-MJ 

3FBP-MJ 

6PBP-MJ 

3FBP-DPJ 

3FBP-PJ 

2HBP-HJ 

3HBP-MJ 

6HBP-MJ 

3HBP-DPJ 

Unfilled and filled 2-Block Prism with 
/ 

	

	Dental Plaster Joint compressed parallel to 
the unit bed face. 

Unfilled and filled 2-course high Full-Block 
Prism with Mortar Joint compressed normal 
to the unit bed face. 

Unfilled and filled 3-course high Full-Block 
Prism with Mortar Joints compressed normal 
to the unit bed face. 

Unfilled and filled 6-course high Full-Block 
Prism with Mortar Joints compressed normal 
to the unit bed face. 

Unfilled and filled 3-course high Full-Block 
Prism with Dental Plaster Joints compressed 
normal' to the unit bed face. 

Unfilled and filled 3-course high Full-Block 
Prism with Polystyrene Joints compressed 
'normal to the unit bed face. 

Unfilled and filled 2-course high Half-Block 
Prism with Mortar Joint compressed normal 
to the unit bed face. 

Unfilled and filled 3-course high Half-Block 
Prism with Mortar Joints compressed normal 
to the unit bed face. 

Unfilled and filled 6-course high Half-Block 
Prism with Mortar Joints compressed normal 
to the unit bed face. 

Unfilled and filled 3-course high Half-Block 
Prism with Dental Plaster Joints compressed 
normal to the unit bed face. 



APPENDIX A Continued 

3HBP-PJ 	Unfilled and filled 3-course high Half-Block 
Prism with Polystyrene Joints compressed 
normal to the unit bed face. 

3SBP-MJ 	3-course high Solid-Block Prism with Mortar 
Joints compressed normal to the unit bed 
face. 

CS1FB 	 Column Series 1 Full-Block. Columns with 
three different diameters of lateral ties 
(6, 8, 10 mm çt), and without vertical 
reinforcement to study the effect of lateral 
tie confinement on the strength and 
behaviour of masonry columns. 

CS2FB 	 Column Series 2 Full-Block. Columns 
reinforced with different percentages of 
vertical reinforcement (full-block: 0.42%, 
1.7%, 3.4% and half-block: 0.56%, 1.8%, 
3.5%), and without lateral ties, to study 
the effect of the absence of lateral ties on 
the strength and behaviour of masonry 
columns. 

CS3FB 	 Column Series 3 Full-Block. Columns 
reinforced with the same percentage of 
vertical reinforcement (full-block: 1.7%, 
5.3% and half-block: 0.18%, 5.4%), and with 
different diameters of lateral ties (6, 8, 
10 mm ) to. choose the best lateral tie to 
be used in blockwork masonry columns. 

CS4FB 	 Column Series 4 Full-Block. Columns with 8 
mm 0 lateral ties and different percentage 
of vertical reinforcement (full-block: 
0.42%, 1.7%, 3.4%, 5.3%, and half-block: 
0.56%, 1.3%, 1.8%, 3.5%, 5.4%) to study the 
effect of changing the percentage of 
vertical reinforcement on the strength and 
behaviour of masonry columns. 

CS1HB 	 Column Series 1 Half-Block. Columns with 
three different diameters of lateral ties 
(6, 8, 10 mm ), and without vertical 
reinforcement to study the effect of lateral 
tie confinement on the strength and 
behaviour of masonry columns. 
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APPENDIX A Continued 

CS2HB 	 Column Series 2 Half-Block. Columns 
reinforced with different percentages of 
vertical reinforcement (full-block: 0.42%, 
1.7%, 3.4% and half-block: 0.56%, 1.8%, 
3.5%), and without lateral ties', to study 
the effect of the absence of lateral ties on 
the strength and behaviour of masonry 
columns. 

CS3HB 	 Column Series 3 Half-Block. Columns 
reinforced with the same percentage of 
vertical reinforcement (full-block: 1.7%, 
5.3% and half-block: 1.8%, 5.4%), and with 
different diameters of lateral ties (6, 8, 
10 mm ) to choose the best lateral tie to 
be used in blockwork masonry columns. 

CS4HB 	 Column Series 4 Half-Block. Columns with 8 
mm 0 lateral ties and different percentage 
of vertical reinforcement (full-block: 
0.42%, 1.7%, 3.4%, 5.3%, and half-block: 
0.56%, 1.3%, 1.8%, 3.5%, 5.4%) to study the 
effect of changing the percentage of 
vertical reinforcement on the strength and 
behaviour of masonry columns. 

CS1, 2, 3, 4FBO, 6, 8, 10: Columns Series 1, 2, 3, 4 Full-
Block with 0 (no lateral ties), 6, 8, and 10 mm q lateral 
ties. 

CS1, 2, 3, 4HBO , 6, 8, 10: Columns Series 1, 2, 3, 4 Half-
Block with 0 (no lateral ties), 6, 8 and 10 mm 4 lateral 
ties. 
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SCALE 1/ 	3.962 UNFILLED PRISM 
EYE X-CDORD 	- 	1.000 IIORTAR (1:0.25:3) 
EYE Y-COORD • 	0.7502 
EYE Z-COORO • 	1.000 4 - 
LOAD CASE ID •5 MAJOR PRINCIPAL 
TYPE 	STRE/FLUX STRESS 	IN/mm2) 

BLOCK MATERIAL ONLY 
COMPONENT 
NUMBER OF CONTOURS • 	S 
INTERVAL 	• 	8.624 CONTOURVALUE 
(lAX NODAL VALUE 	1.279 
MIN NODAL VALUE • 	-32,62 

8.624 
-0.4441E-IS 
2.624 

Fig. B.1 - Major principal stress block material 
of unfilled 2BP-MJ prism, specific 

non-linear FEA. 
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11 

SCALE If 	3.962 
E -COflIlD 	1.800 

EYE Y-00000 - 8.7500 
EYE 2-COOED 	1.000 
LOAD cn;r ID 	S 
TYPE STIL/rLtIx 
COMPONENT - 	B 
NUMBER 01 CONIOIIRS 	S 
INTERVAL 	= 4.285 
MAX NODAL VALUE 	1.271 
111W NODAL VALUE . -12.87 

Fig. B.2 - Minor principal stress 1, block material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 

SCALE 1/ 	3,952 UNFILLED PRISM 
EYE X-CODRD • 	1000 MORTAR 	(10,25;3h 

EYE Y-COORD • 	0.7502 
EYE 2-COOED • 	1,000 
LOAD CASE ID • 	S MINOR PRINCIPAL 
TYPE 	BYES/FLUX _______ STRESS 2 	(N'mml). 

COMPONENT • 	7 
BLOCE MATERIAL ONLY 

NUMBER OF CONTOURS • 	S 
INTERVAL 	• 	SOIl 
MAX NODAL VALUE 	2.913 CONTOUR VALUE 

111W NODAL VALUE 	• 	-11.13 
-10.02 
-5.011 
-0 . 222 GE-iS 
5.011 
10.02 

Fig. B.3 - Minor principal stress 2, block material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 
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SCALE 1' 	1.000 
Elf X-COORO 	1.000 
Elf 1-00000 • 0.7500 
Elf Z-CQORD 	1.000 
LOAD CASE ID = 	S 
TYPE SIRE/FLUX 
COMPONENT 	9 
NUMBER OF CONTOURS 	S 
INTERVAL 	 6.205 
MAX MODAL VALUE • 0.6790f-01 
FIlM MODAL VALUE - -24.07 

UNFILLED PRISM 
MORTAR (10.25:3) 

IIfl)OR PRINCIPAL 
STRESS (N/mm2) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

26 

I 

-12.1? 
-6.015 
-8.6661E-15 
6.815 

Fig. B.4 - Major principal stress, mortar material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 

SCALE 1/ 	1.002 
EVE 1-COORD • 	1.000 
EYE Y-COORD • 0.7520 	

V 

EYE 2-COORD • 	1.000 	 -. 
LOAD CASE ID • 	S 
TYPE SIRE/FLUX  
COMPONENT 	B 	 V V 

NUMBER OF CONTOURS • 	5 	V - 
INTERVAL 	• 0.069 
MAX NODAL VALUE • 0.6320 
MIN NODAL VALUE • -7.643 

UNFILLED PRISM 
MORTAR (1:0.05:3) 

MINOR PRINCIPAL 
STRESS 1 (N/mm2) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

;

-6.226 
-4.137 
-2.069 
-0.I110(-15 
2.269 

Fig. B.5 - Minor principal stress 1, mortar material 
of unfilled 2BP-MJ prism, specific 

non-linear PEA. 
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SCALE1/ 	1.208 
EYE 0-COORD 	1.000 
EYE 1-COORD • 0.7508 
EYE Z-COORD - 	1.000 
LOAD CASE TO• 	S 
TYPE STAR/FLUX 
COMPONENT - 	7 
NUMBER OF CONTOURS 	S 
INTERVAL 	 2,282 
MAX NODAL VALUE • 	2.806 
MIS MODAL VALUE - -6.920 

UNFILLEDPRISM 
MORTAR 

C 
  0.253) 

MINOR PRINCIPAL 
STRESS 2 1N/mm2) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

i

-5,845 
-4.563 
-2.228 
-0.11106-15 
2.292 

Fig. B.6 - Minor principal stress 2, mortar material 
of unfilled 2BP-MJ prism, specific 

non-linear FEA. 

SCALE 1/ 	3.962 FILLED PRISM 
EYE X-CODRD 	1.000 CONCRETE 	(132) 
EYE Y-COORD - 	8.7500 
EYE Z-COORO 	1.000 
LOAD CASE ID 
TYPE 	STRE/FLUX 

p MAJOR PRINCIPAL 
COMPONENT - 	9 • 
NUMBER DI CONTOURS - 	S 

BLOCK MATERIAL ONLY 

INTERVAL. 	• 	4.206 '  
MAX NODAL VALUE 	-11.29 '• CONTOUR VALUE 
MIN NODAL VALUE - 	-28.I1 

-25.23 
-21.83 
-16.82 
-12.62 
-8.412 

Fig. B.7 - Major principal stress, block material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 
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IYSIRO 92-3 	 DATE 22— 6-90 

SCALE 1/ 	3.962 	 FILLED PRISM 
EYE ICOORD - 	1.000 	 CONCRETE (1,3:2) 

MORTAR (1:9.25:3) 
EYE Y—COORD - 0.7500 
EYE 7—0013RO - 	1.200 
LOAD CASE 3D - 	S 
TYPE STREFLUX 	 MINOR PRINCIPAL 

STRESS I (N/nan.?) 
COMPONENT 	9 	 BLOCK MATERIAL ONLY 
NUMBER OF CONTOURS • 	S 
INTERVAL 	• 3.215 
MAX NODAL VALUE 	2.404 CONTOUR VALUE 
lIEN MODAL VALUE 	—10.37 

—9.644 
—6.429 
—3.?) S 
2.2 
3.015 

lYLE: 	FILLED TI—UI.00E PRIRD 

Fig. B.8 - Minor principal stress 1, block material 
of filled 2BP-MJ prism, specific 

non-linear FEA. 

SCALE 1' 	3.962 
EYE X—CODRD • 	1.909 
EYE T—CODRD • 9.7500 
EYE 2—COORD 	1.002 
LOAD CASK ID - 	S 
TYPE SIRE/FLUX 
COMPONENT 
NUMBER OF CONTOURS • 	S 
INTERVAL 	- 2.857 
MAX NODAL VALUE - 	2.662 
liEN NODAL VALUE = —0.765 

FELLED PRISM 
CONCRETE (1:32) 
MORTAR (12.053) 

MINOR PRINCIPAL 
STRESS 2 (N/..2) 
BLOCK MATERIAL ONLY 

CONTOUR VALUE 

1-8.570 
—5.71 1 
—2.957 
—0.3331E—I5 
2.057 

Fig. B.9 - Minor principal stress 2, block material 
of filled 2BP-MJ prism, specific 

non-linear FEA. 
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YSTRO 9.2-3 DATE 22- 6-90 

SCALE If 	3.595 	 FILLED PRISM 

EYE Y : 
(YE Z-CODRD - 	1.000 
LOAD CASE ID 	

- MAJOR PRINCIPAL TYPE STRE/FLUX 	 STRESS (N/mu2) 
COMPONENT 	9 	 CONCRETE MATERIAL ONLY 
NUMBER 01 CONTOURS 	5 
INTERVAL 	- 0.5303 	 - 
MAX NODAL VALUE • -11.59 	 Y 	 CONTOUR VALUE 
I-IDA NODAL VALUE 	-14.94 

-14.25 
-13.4) 

t.I 	 -12.6? 
-11.74 
-10.90 

TITLE 	FILLED UO-BLOCK PRISM 

Pig. B.lO - Major principal stress, concrete material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 

I-IYSTRO 9.2-3 	 DATE 02- 6-90 

SCALE 1/ 	3.595 	 FJLED PRISM 
EYE X-COORD - 	1.000 
EYE 1-CaIRO - 0.7550 
EYE 2-CaIRO • 	1.000 
LOAD CASE 10 
	S MINOR PRINCIPAL 

COMPONENT-B 	 CONCRETE MATERIAL ONLY 
NUFINER OF CONTOURS - 	5 
INTERVAL 	• 0.9450 
I-TAX NODAL VALUE • 0.5106 	 CONTOUR VALUE 
1119 NODAL VALUE • -3.269 

- 	 -2.835 

j EEIG 
0.9490 

!TITLE 	FILLED TWO-BLOCK P9199 

Pig. B.11 - Minor principal stress 1, concrete material 
of filled 2BP-MJ prism, specific 

non-linear FEA. 
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N.Y-I 	 DATE: 22- 6-90 

io 
SCALE I' 	3,598 	 FILLED PRES1I 
EYE X-CODRD • 	1.2211 	 CONCRETE (1321 

EYE Y-CODRD 	0,7522 	
MO TAR 	kS~ 

EYE Z-COORD 	1.820 
LOAD CASE ED • 	

- 	 MINOR PRINCIPAL TYPE SIRE/FLUX 	 STRESS 2 (N/mmYl 
COMPONENT 	7 	 CONCRETE MATERIAL ONLY 
NUMBER NV CONTOURS • 	S 
INTERVAL 	• 	1.034 
MAX NODAL VALUE 	0. 9879 	 CONTOUR VALUE 
1112 NODAL VALUE 	-3,149 

3.1:3    

: 

T111 	Fit L6O TL.-DLDCI( PRISM 	

1 .034 

Fig. B.12 - Minor principal stress 2, concrete material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 

SCALE 	I' 	1,11011 
EYE X-COORD 	• 	1.000 
EYE 	1-CuORO 	• 	11.7502 
EYE Z-CODRD • 	1,002 - 

LOAD CASE 	ID • -I 

 

- 

TYPE 	SIRE/FLUX  
COMPONENT • 	9 
NUMBER OF CONTOURS • 	S 
INTERVAL 	• 	1.328 
MAX NODAL VALUE 	• 	-13.21 
MIN NODAL VALUE 	-18.76 

FILLED PRISM 
MORTAR (1 :0 25 : 33 
CONCRETE (132) 

IIF1IOR ,,PRINCIPAL 
STRS (N/,n2) 
11001011 MATERIAL ONLY 

CONTOUR VALUE 

66 
-15.27 

-13,88 
-12.49 

Fig. B.13 - Major principal stress, mortar material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 
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SCALE 1' 	1.808 
EYE 5-COORD 	1.000 
EYE T-CDORD - 	0.7606 
EYE l-COORD - 	1.000 .' 
LOAD CASE ID 	S  
TYPE 	SIRE/FLUX 	- 
COMPONENT 	2 
NUMBER OF CONTOURS • 	S 
INTERVAL 	- 	0.2232 
MAX NODAL VALUE • 	-3.615 
MIN NODAL VALUE z 	-4.750 

FILLED PRISM 
MORTAR (1.55:3) 
CONCRETE (1:32) 

MINOR PRINCIPAL 
STRESS 1 IN/..2) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

-4.541 
E*55(I _4.aSg 

-3.974 
-3.690 
-3.406 

Fig. B.14 - Minor principal stress 1, mortar material 
of filled 2BP-MJ prism, specific 

non-linear PEA. 

SCALE 1/ 	1.900 
EYE 3-COOIYD - 	1.900 
EYE I-C011AR 	8,7680 
EYE 2-COORD • 	1.9e0  
LOAD 
i YPE STRIE/UX 
COMPONENT 	7 
NUMBER OF CONTOURS • 	S 
INTERVAL 	• 0.3366 
MAX NODAL VALUE • -3.266 
MIN NODAL VALUE • -4.612 

FILLED PRISM 
MORTAR (1:2.25:3) 
CONCRETE (13:2) 

MINOR PRINCIPAL 
STRESS 2 (N/m.0) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

-4.375 
-4,839 
-3,702 
-3.366 
-3.029 

Fig. B.15 - Minor principal stress 2, mortar material 
of filled 2BP_MJ  prism, specific 

non-linear PEA. 
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APPENDIX C 

iYS1R0 	LR-I DATE 	16- 6-90 

SCALE 	I' 	3.201 UNFILLED PRISM 
EYE 	Y-00008 	1.000 MORTAR 	(1:0.25:3) 
EYE 	Y-00000 	- 	0.7508 
EYE Z-COORD 	• 	1.000 
LOAD CASE 	ID 	• 	5 MAJOR PRINCIPAL TYPE 	OTRE.'TLUX STRESS 	(N/mml) 
COMPONENT 	9 ALOCI< MATERIAL ONLY 
NUIIVER OF CONTOURS 	• 	S 
INTERVAL 	• 	0.728 
MAX 	NODAL 	VALUE 	• 	-17.96 CONTOUR VALUE 
MEN NODAL 	VALUE 	• 	-22.87 

-27.26 
-24.55 
-21.82 
-19.89 
-16.3? 

T1TLE 	UNFILLED 	-CQUR5E HIGH PRISM 

Pig. C.i. - Major principal stress, block material 
of unfilled 3FBP-MJ prism, specific 

non-linear FEA. 
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SCALE 1/ 	3.221 
EYE X-0000D • 	1.000 
EYE Y-COORD - 0.7500 
EYE 2-COORD • 	1.000 
LOAD CASE ID • 	5 
TYPE SIRE/FLUX 
COMPONENT • 	B 
NUMBER OF CONTOURS 	S 
INTERVAL 	• 	111I 
MAX NODAL VALUE • 	1,604 
MEN NODAL VALUE 	-10,81 

UNFILLED PRISM 
MORTAR (1.2531 

MINOR PRINCIPAL 
STRESS I (N/rnm2) 
BLOCK MATERIAL ONLY 

CONTOUR VALUE 

1-9.332 

-0,3331E-15  
3,111 

Pig. C.2 - Minor principal stress 1, block material 
of unfilled 3FBP-MJ prism, specific 

non-linear PEA. 

MYSTRO 9,2-3 	 DATE IS- 6-I 

SCALE I' 	3.201 	 UNFILLED PRISM 
EYE X-CDORD - 	1.000 	 MORTAR (10.253) 
EYE Y-COOAD 	0,7500 
EYE Z-COORD - 	1.000 
LOAD CASE ID 	S 	MINOR PRINCIPAL 
TYPE SIRE/FLUX 	STRESS 2 (NImm2) 
COMPONENT • 	I 	 BLOCK IIATERIAL ONLY 
NUMBER OF CONTOURS 	S  
INTERVAL 	 3,140  
MAX NODAL VALUE • 	2.867 	 ________ 	CONTOUR VALUE 
MIN NODAL VALUE • -9.692  

-9.120 
- 	-6.280 

-3.110 
0.0 

	

- 	 3.110 

ISLE: 	UFIFILLED 3-COURSE HIGH PRISM 

Fig. C.3 - Minor principal stress 2, block material 
of unfilled 3FBP-MJ prism, specific 

non-linear PEA. 
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SCALE I 
 

	

COURD 462 
	 UNFILLED PRISM  

EYE X 
EYE 'Y-COORD • 0.7500 
EYE Z-COORD • 	I .200 
LOAD CASE CD 	5 	 MAJOR PRINCIPAL  
TYPE SIRE/FLUX 	

sioss (N/,im2) 

COMPONENT - 	9 	
MORTAR MATERIAL ONLY 

 
NUMBER OF CONTOURS 	S 
INTERVAL 	 1.152 	 CONTOUR VALUE 
MAX NODAL VALUE 	-iLls 
MIN NODAL VALUE - -22.16 

Fig. C.4 - Major 1principal stress, mortar material 
of unfilled 3FBP-MJ prism, specific 

non-linear PEA. 

SCALE
EYE 
	ORO 1.4621 

200
UNFILLED PRISM 
MORTAR 

EYE Y-COORD 	0.7522 
EYE 2-0000D • 	1.002 	

MINOR LOAD CASE ID 	 STRESSPYNCIPAL 
IR YN/mm2I TYPE STRE/FLUX 

COMPONENT • 	B 	
MORTAR MATERIAL ONLY 

NUMBER OF CONTOURS • 	S 
INTERVAL 	- 2.6136 	

CONTOUR VALUE MAX NODAL VALUE • -4.101 
MIN NODAL VALUE - 

-1 295 

Pig. C.5 - Minor principal stress 1, mortar material 
of unfilled 3FBP-MJ prism, specific 

non-linear FEA. 
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SCALE 1 	1 .46a 	 UNFILLED PRISM 
EYE X-0000D- 	1.000 	 MORTAR (1:0.25!3)  
EVE Y-COORD - 8.7500 
EVE Z-00020 - 	1.008 
LOAD CASE ID x 	5 	 MINOR PRINCIPAL 

STRESS 2 (NI.2) TYPE SIRE/FLUX 	 MORTAR MATERIAL AOL! 
COMPONENT - 	7 
NUMBER UI CONTOURS • 	S 
INTERVAL 	 0.0767 	 CONTOUR VALUE 
hAl NODAL VALUE - -2.975 
MEN NODAL VALUE 	6 	

6.137 

-2.630 

-4.394 

Fig. C.6 - Minor principal stress 2, mortar material 
of unfilled 3FBP-MJ prism, specific 

non-linear FEA. 

.WYko 9.2-3 	 DATE I]- 6-90 

SCALE 1/ 	3.201 	 FILLED PRISM 
EYE X-CODRD • 	1.000 	 MORTAR (I0.25:3) 
EYE Y-'COORD • 0.7500 	 ____________ 	CONCRETE (132) 
EYE 2-COFIRO • 	1.000 
LOAD CASE ID • 	 __________ 
TYPE STRE/FLUX 	 MAJOR PRINCIPAL 

 STRESS (N.'nm2) 
COMPONENT • 	9 	 BLOCK MATERIAL ONLY 
NUMBER OF CONTOURS • 	S  
INTERVAL 	• 2,03S  
MAX NODAL VALUE • -14,88 	 CONTOUR VALUE 
MEN NODAL VALUE - -23.02  

-22• 38 
. -20.35 

-18.31 
-16.28 
-14.24 

TITLE 	FILLED 3 -COURSE HIGH PE]UM 

Fig. C.7 - Major principal stress, block material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 
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SCALE 1/ 	3.281 
ETC X-COORD 	1.808 
EYE 1-CODRO 	8.7500 
EYE 7-00000 = 	1.800 
LOAD CASE ID 	5 
TYPE SIRE/FLUX 
COMPONENT - 	S 
140111CR or CONTOURS 	S 
INTERVAL 	 2.188 
MAX NODAL VALUE - 	1.234 
41114 1401)01 VALUE - -7.518 

FILLED P00541 
MORTAR (10.253) 
CONCRETE (132) 

MINOR PRINCIPAL 
STRESS (N/m2) 
BLOCK MATERIAL ONLY 

CONTOUR VALUE 

;

-6.564 
-4.376 
-2.488 
-2.11101-15 
2.128 

J, 

Fig. C.8 - Minor principal stress 1, block material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 

SCALE 1/ 	3.284 
EYE X-COORD - 	I290 
ETC '(-COORD - 8.7508 
EYE 2-COORD - 	4.009 
LORD CASE ID - 	5 
TYPE SIRE/FLUX 
COMPONENT = 	7 
NUMBER or CONTOURS • 	S 
INTERVAL 	- 2.993 
MAX NODAL VALUE • 	1.604 
MIN NODAL VALUE • -6.686 

FILLED P81511 
MORTAR (12.253) 
CONCRETE (132) 

MINOR PRINCIPAL 
STRESS 2 (Ni,nm2) 
BLOCK MATERIAL ONLY 

CONTOUR VALUE 

-6.272 
-4.485 
-2.893 
-B. II IRE-IS 
2.893 

Fig. C.9 - Minor principal stress 2, block material 
of filled 3FBP-MJ prism, specific 

non-linear FEA. 
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YSIRO: 	9.2-3 0916: 	13- 6-90 

SCALE Il 	3.99? FILLED P91511 
EYE X-COORD - 	1.000 MORTAR  

EYE Y-CODRD - 	0.7590 
CONCRETE 	(1:2) 

EYE Z-COORD • 	1.090 
LOAD CASE ID - 	S 
TYPE 	SIRE/FLUX MAJOR PRINCIPAL 
COMPONENT - 	9 STRESS 	N.'mmR 

NUMBER OF CONTOURS 	5 
CONCRETE MATERIAL ONLY 

INTERVAL 	• 	5.526 
MAX NODAL VALUE 	-9.455 
(-(IN NODAL VALUE = 	-31.56 :. CONTOUR VALUE 

-2?.63 

-I6.58 i-22.10 

-11.95 
-5.526 

3116: 	FILLED 3-COURSE HIGH P21611 

Pig. C.10 - Major principal stress, concrete material 
of filled 3FBP-MJ prism, specific 

non-linear FEA. 

SCALE If 	3.907 
EYE X-COORD = 	1.000 
EYE Y-00900 	0.7500 
EYE 2-COORD = 	1.900 
LOAD CASE JO - 	S 
TYPE STRE.'FLUX 
COMPONENT - 	8 
NUMBER OF CONTOURS 	5 
INTERVAL 	= 3.219 
(lAX NODAL VALUE - 9.7991 
MIN NODAL VALUE 	-12.06 

FILLED PRISM 
MORTAR (1:9.25:3) 
CONCRETE (1:3:2) 

MINOR PRINCIPAL 
STRESS 1 (N/n12) 
CONCRETE MATERIAL ONLY 

CONTOUR VALUE 

-9.656 
-6.43? 
-3.219 
-8.33311-IS 
3.219 

Fig. C.11 - Minor principal stress 1, concrete material 
of filled 3FBP-HJ prism, specific 

non-linear PEA. 
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SCALE 1/ 	3.00? 
EYE X—COORO 	1.000 
EYE Y—00000 - 0.7500 
EYE 2—COORS 	1.080 
LOAD CASE ID = 	S 
TYPE SIRE/FLUX 
COMPONENT - 	7 
NUMBER OF CONTOURS 	S 
INTERVAL 	 3.204 
MAX NODAL VALUE - 	1.443 
lilT) NODAL VALUE 	—11.37 

FILLED PRISM 
MORTAR (1:0.263) 
CONCRETE (132) 

MINOR PRINCIPAL 
STRESS 2 IN/..2) 
CONCRETE MATERIAL ONLY 

CONTOUR VALUE 

—9.612 
—6.408 
—3.284 
—B. 11 tOE—IS 
3.204 

Pig. C.12 - Minor principal stress 2, concrete material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 

SCALE 1/1.469 	 FILLED PRISM 
EYE X —COORD - 	i.000 	 MORTAR 	26t3) 

EYE Y—COORD • 8.7500 	
CONCRETE (1.3:2) 

EYE Z—COORD 	1.000 
LOAD CASE ID 	5 
TYPE SIRE/FLUX 	 MAJOR PRINCIPAL 
COMPONENT • 	9 	 STRESS (N/mrn2) 

NUMBER OF CONTOURS • 	5 
MORTAR MATERIAL ONLY 

INTERVAL 	• 2.537 
MAX NODAL VALUE • —6.847 
MIN NODAL VALUE . —17.00 CONTOUR VALUE

5 22 

Fig. C.13 - Major principal stress, mortar material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 
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SCALE 1/1,46: 	 FILLED 

CONCRE TE
EYE X 

_C 
OORD 	1.090 	 MORTAR 

 PRISM 

2 
EYE Y-COORD 	0.7500 

 
EYE Z-CODRD 	1,000 
LOAD CASE ED 	

MINOR PRINCIPAL TYPE STAT/FLUX 	
STRESS I (N/mm?) 

COMPONENT • 	B 	 MORTAR MATERIAL ONLY 
NUMBER OF CONTOURS 	S 
INTERVAL 	 • 0.8737 
MAX NODAL VALUE • -1.805 	 CONTOUR VALUE 
MIN NODAL VALUE • -S 	

-3 499 

 
-0.8737 

Fig. C.14 - .Minor principal stress 1, mortar material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 

SCALE 1/1.469 
EYE .080 	

FI~LED PRISM 
S) 

CONCRETE (1;3:2) 
ETC Y-COORD • 0,7500 
E
LOAD CASE ED 	5 

YE Z-COORD. 	

MINOR PRINCIPAL 
,TRESS B TN/mm2) TYPE SIRE/FLUX 

COMPONENT • 	 MORTAR MATERIAL ONLY 

NUMBER OF CONTOURS • 	5 
INTERVAL 	 0.0805 	

CONTOUR VALUE 
MAX NODAL VALUE 	-0.8138 
MIX NODAL VALUE 	

-1.805 

-0.032?E-16 
-8.9025 

Fig. C.15 - Minor principal stress 2, mortar material 
of filled 3FBP-MJ prism, specific 

non-linear PEA. 
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APPENDIX D 

T4 	a , 	9.2-3 	 OA1E 	IN- 

SCALE 	1/ 	:i.aoo SOLID-BLOCK 	P01911 
EYE I-CaIRO 	1.000 IIORIFIR 	(1:0.25:3) 

EYE 	Y-COORD 	3.75011 
EYE 	Z-00000 	1.000 
LORD 	CASE ID 	• 	S MAJOR PRINCIPAl 

STRESS 	(N/rnn2) 
TYPE 	SIRE/FLUX BLOCK 	MATERIAL ONLY 
COMPONENT 	S 
NUMBER OF CONTOURS 	S 
INTERVAL 	• 	1.975 CONTOUR VALUE 
MAX NODAL VALUE 	-11.22 
YIN NODAL 	VALUE 	-19.52 -10.90 

:5.75 
-14. 1 
-12.60 

-TITLE: 	ASPECT Sf110 	(L/I) • 2.00 

Fig. D.1 - Major principal stress, block material 
of solid 3SBP-MJ prism, parametric study 

non-linear FEA. 

YS100 9.2-I 	 DAY0,o- 9- 

z— 

SCALE 1/ 	1.202 	 SOLID-BLOCK PRISM 
EYE X-0000D • 	1,000 	 MORTAR (1:0.25:3) 
EYE 7-COORD 	0.7500 
EYE 2-0000D • 	1.000 	

PRINCIPAL LOAD CASE ID • 	S 	 MINOR 
STRESS 1 W-2)TYPE SIRE/FLUX 	 BLOCK MATERIAL ONLY 

COMPONENT 	11 
NUMBER OF CONTOURS - 	S 
INTERVAL 	- 	1.619 	 CONTOUR VALUE 
MAX NODAL VALUE 	0.6469 
MIN NODAL VALUE 	-5.828 	

I 

-4,55 
-3.237 

0.0 

ITLE 	ASPECT RATIO CL/TI 	2.00 

Fig. D.2 - Minor principal stress 1, block material 
of solid 3SBP-MJ prism, parametric study 

non-linear FEA. 
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TIRIP16:  M-1 - 

SCALE I' 	3.200 	 • 	SOLID-BLOCK PRISM 
EYE X-COORD • 	1.00o 	 MORTAR (1:0.25:3) 
EYE Y-COORO 	0.7500 
EYE: 2-COORD 	1 .000 	 9 

MINOR PRINCIPAL LOAD CASE ID • 	S 	
STRESS 2 (N/w,2)TYPE STRE/FLUX 

COMPONENT • 	7 	
BLOCK MATERIAL ONLY 

NUMBER OF CONTOURS 	5 
INTERVAL 	• 	1.551 	 1 	 CONTOUR VALUE 
MAX NODAL VALUE • 0.9511 
MIN NODAL VALUE 	-5.212 	 . 	 -4.650 

3.102 
-1.551 

- 1.551 

1ILE 	ASPECT ANTIS CL/I) 

Pig. D.3 - Minor principal stress 2, block material 
of soiled 3SBP-MJ prism, parametric study 

non-linear PEA. 

SCALE I! 	1.462  
EYE X-CODBD - 	1.800 
EYE Y-COORD 	0.7500 
EYE Z-0000D - 	1.000 
LOAD CASE ID 	S 
TYPE STRE:/FLUI 
COMPONENT - 	9 
NUMBER OF CONTOURS - 	S 
INTERVAL 	 0.3619 
MAX NODAL VALUE 	-13.6% 
MIN NODAL VALUE = -15.05 	...-.... 

SOLID-RLOCC FRESH 
MORTAR (1:0. 

MAJOR PRINCIPAL 
STRESS (N/m2) 
MORTAR MATERIAL ONLY 

CONTOUR VALUE 

-14.04 
-14.47 

floOd -14.11 
A 	-13.75 

-13.39 

Fig. D.4 - Major principal stress, mortar material 
of soli& 3SBP-MJ prism, parametric study 

V 	 non-linear PEA. 
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1. 

SCALE 1/ 	1.462 	 81CC PRISM 

EYE Y-COORD = 0.7500 
EYE Z-COURO 	1.080 	

MINOR PRINCIPAL LOAD CASE ID 	S 	
STRESS 1 (N/,nml) TYPE SIRE/FLUX 	 MORTAR MATERIAL ONLY 

COMPONENT 	8 
NUMBER OF CONTOURS 	S 
INTERVAL 	 0.I17S 	 CONTOUR VALUE 
MAX NODAL VALUE 	-3.116 
MIN NODAL VALUE 	-3.S86 	 -3.525 

-3.483 
-3.298 

Pig. D.5 - Minor principal stress 1, mortar material 
of solid 3SBP-MJ prism, parametric study 

non-linear FEA. 

SCALE 1/ 	1.462 	 SOLID-BLOCK PRISM 

EYE Y-COURD - 0.7500 
EYE Z-COORO 	1.000 	

MINOR PRINCIPAL LOAD CASE ID 	
STRESS 2 (N/.m2) TYPE SIRE/FLUX 

COMPONENT • 	7 
MORTAR MATERIAL ONLY 

NUMBER OF CONTOURS • 	S 
INTERVAL 	 0,9579E-01 	 CONTOUR VALUE MAX NODAL VALUE 	-3,096 
MEN NODAL VALUE - 

353 
-3.257 
-3.161 
-3.065 

Fig. D.6 - Minor principal stress 2, mortar material 
of solid 3SBP-MJ prism, parametric study 

non-linear PEA. 
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