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ABSTRACT 

 
Malaria affects the lives of 500 million people around the world each year.  

The disease is caused by protozoan parasites of the genus Plasmodium, whose ability 

to evade the immune system and quickly evolve resistance to drugs poses a major 

challenge for disease control.  The results of several Plasmodium genome sequencing 

projects have revealed how little is known about the function of their genes (over 

half of the approximately 5400 genes in Plasmodium falciparum, the most deadly 

human parasite, are annotated as �hypothetical�).  Recently, several large-scale 

studies have attempted to shed light on the processes in which genes are involved; 

for example, the use of DNA microarrays to profile the parasite�s gene expression. 

With the emergence of varied types of functional genomic data comes a need 

for effective tools that allow biologists (and bioinformaticians) to explore these data.  

The goal of exploration/browsing-style analyses will typically be to derive clues 

towards the function of thus far uncharacterised gene products, and to formulate 

experimentally testable hypotheses.  Graphic interfaces to individual data sets are 

obviously beneficial in this endeavour.  However, effective visual data exploration 

requires also that interfaces to different functional genomic data are integrated and 

that the user can carry forward a selected group of genes (not merely one at a time) 

across a variety of data sets. Non-expert users especially benefit from workbench-

like tools offering access to the data in this way. Still, only very few of the 

contemporary publicly available software have implemented such functionality. 

This work introduces a novel software tool for the integrated visualisation of 

functional genomic data relating to P. falciparum: the Malaria Genome Exploration 

Tool (MaGnET). 
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MaGnET consists of a light-weight Java program for effective visualisation 

linked to a MySQL database for data storage.  In order to maximise accessibility, the 

program is publicly available over the World Wide Web 

(http://www.malariagenomeexplorer.org/).  MaGnET incorporates a Genome Viewer 

for visualising the location of genomic features, a Protein-Protein Interaction Viewer 

for visualising networks of experimentally determined interactions and an Expression 

Data Viewer for displaying mRNA and protein expression data.  Complex database 

queries can easily be constructed in the Data Analysis Viewer.  An advantage over 

most other tools is that all sections are fully integrated, allowing users to carry 

selected groups of genes across different datasets.  Furthermore, MaGnET provides 

useful advanced visualisation features, including mapping of expression data onto 

genomic location or protein-protein interaction network.  The inclusion of available 

third-party Java software has expanded the visualisation capability of MaGnET; for 

example, the Jmol viewer has been incorporated for viewing 3-D protein structures. 

An effort has been made to only include data in MaGnET that is at least of 

reasonable quality.  The MaGnET database collates experimental data from various 

public Plasmodium resources (e.g. PlasmoDB) and from published functional 

genomic studies, such as DNA microarrays.  In addition, through careful filtering and 

labelling we have been able to include some predicted annotation that has not been 

experimentally confirmed, such as Gene Ontology and InterPro functional 

assignments and modelled protein structures. 

 The application of MaGnET to malaria biology is demonstrated through a 

series of small studies.  Initial examples show how MaGnET can be used to 

effectively demonstrate results from previously published analyses.   This is followed 
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up by using MaGnET to make a set of predictions about the possible functions of 

selected uncharacterised genes and suggesting follow-up experiments. 



 vi

ACKNOWLEDGEMENTS 
 

Funding:  Thanks to the Medical Research Council for funding this PhD project. 

Thanks to the University of Edinburgh James Rennie Bequest Fund for funding me 

to attend the BioMalPar Conference in Heidelberg, 2005.  Thanks to Dietlind Gerloff 

for sponsoring a visit to the University of California, Santa Cruz, 2007. 

 

PhD supervision:  Many thanks to Dietlind for her continued encouragement, 

support, guidance and enthusiasm throughout this project.  Special thanks for her 

continued involvement after she moved to California.  Thanks to Simon Tomlinson 

for �taking over� from Dietlind as my Edinburgh-based supervisor, and his 

constructive advice and encouragement.  Thanks to my thesis committee for their 

helpful comments. 

 

Colleagues and technical support:  Thanks to everyone in Swann 3 and Darwin 2 

for making it a pleasant and fun place to work.  Thanks to Thomas Juettemann for 

computing support and to Paul Taylor for infrastructure support.  Thanks to UCSC 

School of Engineering for hosting the software and database.  

 

Family and friends:  Last, but certainly not least, thanks to my family and friends for 

always believing in me.  I would like to especially thank my parents, Jack and Gill, 

for their love, support, patience, advice and encouragement.  Many thanks to my 

grandparents, Tim and Margaret, whose encouragement while I was writing this 

thesis was much appreciated!  Thanks to my sister, Harri, my �in-laws� Vilma, 

Divya, Jitesh and Rohan, and to all my friends, especially Jen, Thea, Laura, Marie, 

Karen and Becky, for all the laughs, love and support.  Finally, a million thanks to 

my husband, Dinesh, for everything, and for being an inspiration! 

 

Also, thanks to the many people who have provided useful comments that influenced 

the design of the software described in this thesis.  All scientific acknowledgements 

follow each chapter. 

 



 vii

CONTENTS 
 
LIST OF FIGURES        xiii 
 
LIST OF TABLES        xix 
 
ABBREVIATIONS        xxi 
 
1. INTRODUCTION       1 
 
1.1 A brief history of malaria and its current status   1 
1.2 The malaria parasite       4 

1.2.1 Plasmodium cell biology     6 
1.2.1.1 The apicoplast     8 
1.2.1.2 The mitochondrion     9 

 1.2.2 The P. falciparum nuclear genome    10 
1.3 Plasmodia genome sequencing projects    11 
1.4 Genome annotation       13 
 1.4.1  Comparative genomics     13 
 1.4.2  Annotation tools and programs    15 
 1.4.3  Functional classification of gene products   18 

1.4.3.1 Ontologies      18 
 1.4.3.2  Databases of protein signatures   20 
 1.4.3.3 Novel methods of functional annotation  20 
1.5 Functional genomics       21 
 1.5.1  Gene expression analysis using DNA microarrays  23 

1.5.1.1  Affymetrix arrays     23 
1.5.1.2  Spotted glass slide arrays    24 

 1.5.2  Protein expression analysis using mass spectrometry 25 
 1.5.3  Protein-protein interaction discovery using yeast  

two-hybrid screening      25 
 1.5.4  High-throughput protein structure characterisation  26 

1.5.4.1  Experimental structure determination using  
 x-ray crystallography    26 
1.5.4.2  Structure prediction using homology modelling 27 

1.6 Visualisation and integration of functional genomics data  28 
 1.6.1  Browsing and analysis tools for Plasmodium functional 

genomic data       29 
 1.6.2  Related tools for organisation and analysis of generic or  

other organism-specific functional genomic data  32 
1.7 Motivation        40 



 viii

1.8  Aims and objectives of thesis      41 
 
2. SYSTEM DESIGN       42 
 
2.1 Definitions        42 
2.2 Software aims        43 
2.3  The MaGnET system       44 
2.4  Objectives for data inclusion      45 
2.5  Objectives for database design     46 
2.6  Objectives for visualisation program design    47 
 2.6.1  Technical requirements     47 
 2.6.2  User interface       47 
2.7  Overall objectives for MaGnET     49 
 2.7.1 Usability       45 

2.7.2  Outcome of MaGnET usage     50 
2.8  Specific limitations of related tools that MaGnET aims to address 51 
 
3. DATA AND DATA PROCESSING    53 
 
3.1 Database development      53 
 3.1.1  The MySQL database management system   54 
 3.1.2  The MaGnET database     54 
3.2  Data sets        56 
3.3  Data extraction and database population     59 
 3.3.1  Extracting chromosome data     59 

3.3.2  Extracting gene data       60 
 3.3.3  Extracting Gene Ontology (GO) annotation   62 
 3.3.4  Extracting ortholog and paralog group data   64 
 3.3.5  Extracting interaction data     65 
 3.3.6  Extracting protein predicted sequence feature and domain  

information       66 
 3.3.7 Retrieving experimentally-solved protein structures  67 
 3.3.8  Retrieving comparatively-modelled protein structures 70 
 3.3.9  Extracting expression data     76 
 
4. VISUALISATION PROGRAM     79 
 
4.1  Implementation       79 
 4.1.1  The Java programming language    80 

4.2.1.1  Java program and database communication 81 



 ix

 4.1.2  Third-party software      81 
4.1.2.1  Protein structure visualisation with Jmol  82 
4.1.2.2  Time-series expression profile visualisation  
 using the JFreeChart library   83 

4.2  Java program        84 
4.3  User interface        88 
 4.3.1  The MaGnET front page and MAGNETMainFrame class 88 

4.3.1.1  Attributes and methods of the  
 MAGNETMainFrame class   89 

 4.3.2  The Data Analysis Viewer and Analysis class  90 
4.3.2.1  Attributes and methods of the Analysis class 93 

 4.3.3  Genome Viewer and Genome class    93 
4.3.3.1  Attributes and methods of the Genome class 98 

 4.3.4  Chromosome Viewer and Chromosome class  99 
4.3.4.1  Attributes and methods of the Chromosome 
 class       102 
4.3.4.2  Visualising gene families    103 

 4.3.5  Protein-Protein Interaction Viewer and PPIGraph class 105 
4.3.5.1  Attributes and methods of the PPIGraph class 109 

 4.3.6  Expression Data Viewer and Transcriptome class  111 
4.3.6.1  Time-series graphs     111 
4.3.6.2  Mining expression data    116 
4.3.6.3  Attributes and methods of the Transcriptome  
 class       117 

 4.3.7  Gene fact sheets and the Gene class     118 
4.3.7.1  Protein structure visualisation   119 
4.3.7.2  Attributes and methods of the Gene class  121 

4.4  Availability        122 
 4.4.1  Online availability      122 
 4.4.2  Downloadable version with database    123 
 4.4.3  Documentation      123 
 4.4.4  Security considerations     124 
4.5  Discussion        125 
 4.5.1  Comparison of MaGnET to similar tools   127 

4.5.1.1  Comparison of MaGnET to related Plasmodium- 
 focussed tools, including detailed comparison to  
 the Plasmodium Genome Resource, PlasmoDB 129 

 4.5.2  Future improvement to and expansion of MaGnET  135 
 
5. DEMONSTRATION OF MAGNET EXPLORATION  140 



 x

 
5.1  Gene expression profiling of the Intraerythrocytic Developmental  
 Cycle (Llinas et al. 2006)      141 
 5.1.1  Variability in gene expression    141 

5.1.1.1  Using MaGnET to identify genes that are  
 differentially expressed during the ring stage and  
 are enriched for GO terms linked to interaction  
 with host      149 

5.1.2  Putative deleted, polymorphic and silenced regions  152 
 5.1.3  Immune evasion: var, stevor and rifin genes   157 
5.2  A region of P. falciparum chromosome nine is associated with  

cytoadherence (Spielmann et al. 2006)    164 
 5.2.1  A cluster of ring stage-specific genes    166 
 5.2.2  REX proteins are encoded by two-exon genes and are  

unique         168 
 5.2.3  REX1, REX2 and REX3 are exported proteins  171 
5.3  A novel protein kinase family in Apicomplexa (Schneider and  

Mercereau-Puijalon 2005)      172 
 5.3.1 Genomic organisation of FIKK kinase paralogs in  

P. falciparum        173 
5.3.1.1  Exon arrangement     175 
5.3.1.2  All FIKK family members have a conserved C- 
 terminal domain and unique N-terminal region 177 
5.3.1.3  Subtelomeric FIKK kinase genes are associated  
 with members of other multi-gene families 180 

5.3.2  Orthologs of FIKK kinases in other Plasmodium species 185 
 5.3.3  Differential expression of FIKK kinases   186 
5.4  Discussion        191 

5.4.1  The results of expression profiling of the IDC were  
successfully demonstrated using the MaGnET Expression  
Data Viewer       193 

5.4.2  MaGnET was used to explore a cluster of ring-stage  
exported proteins       196 

5.4.3  Many features of FIKK kinases were successfully  
demonstrated using MaGnET     197 

5.4.4 Limitations of MaGnET for functional genomic data  
Analysis       200 

 
6.  HYPOTHESIS GENERATION THROUGH  

EXPLORATION USING MAGNET    201 



 xi

 
6.1 P. falciparum cyclin-dependent kinases and their cyclin partners 201 
 6.1.1  Cyclin-dependent kinases and related proteins in P.  

falciparum       203 
 6.1.2  P. falciparum cyclins      203 
 6.1.3  CDK-cyclin combinations     204 
 6.1.4  Retrieval of further CDKs, cyclins and associated proteins 205 
 6.1.5  Using expression data to predict likely in vivo  

CDK/cyclin complexes     206 
6.1.5.1  The components of the RNA polymerase II  
 CTD phosphorylation complex, Pfmrk, Pfcyc-1  
 and PfMAT1, have highly similar expression  
 profiles      210 
6.1.5.2  PfPK5 has a similar expression profile to  
 Pfcyc-4 and Pfcyc-2 but not Pfcyc-1 and  
 Pfcyc-3      212 
6.1.5.3  A group of three CDKs and three cyclins are  
 co-expressed in schizonts    215 
6.1.5.4  A second group of three CDKs and three cyclins  
 are co-expressed during the ring and trophozoite  
 stages      217 
6.1.5.5  Other observations     219 

6.2  Protein-protein interaction data representing functionally-related  
protein clusters       221 
6.2.1  Predicting function of hypothetical proteins in a cluster of  

interacting proteins with characterised function  222 
6.2.1.1  Identification of a novel putative intracellular  
 protein hypothesised to regulate a number of  
 processes including protein metabolism and  
 gene expression     223 
6.2.1.2  Identification of a novel putative nuclear  
 protein hypothesised to regulate protein  
 metabolism and chromatin modification  228 
6.2.1.3  Identification of a putative novel DNA-binding  
 protein      233 

 
6.3  Exploring characteristics of species-specific gene families with  

high numbers of pseudogenes      235 
6.4  Identifying cases of misannotation     241 
 6.4.1  Example: a misannotated potassium channel   242 



 xii

6.5  Discussion        244 
 6.5.1  MaGnET was used to demonstrate how visualisation of  

functional genomic data can lead to the prediction of  
protein complexes      246 

 6.5.2  Exploration of functional genomic data using MaGnET  
led to new hypotheses about gene function   248 

 6.5.3  MaGnET was successfully used to explore the properties  
of P. falciparum-specific gene families   250 

 6.5.4  MaGnET usage simplifies the process of weeding out  
false annotation      252 
 

7. CONCLUSION       254 
 
7.1  Advantages of using MaGnET     255 
7.2  Limitations of the software      257 
7.3  Future outlook        259 
 
REFERENCES        261 
 
APPENDICES        269 



 xiii

LIST OF FIGURES 
 

Chapter 1 
 
1.1 Life cycle of the parasite Plasmodium falciparum    5 

 
Chapter 2  
 
2.1 The MaGnET connectivity map      45 

 
Chapter 3 
 
3.1 Entity relationship (ER) diagram depicting relationships between tables in the  

MaGnET database       55 

3.2 Flowchart showing the process of chromosome data extraction   60 

3.3 Flowchart showing the process of gene data extraction   62 

3.4 Flowchart showing the process of Gene Ontology annotation extraction  64 

3.5 Flowchart showing the process of gene ortholog and paralog group extraction 64 

3.6 Flowchart showing the process of protein-protein interaction data extraction 65 

3.7 Flowchart showing the process of data extraction for predicted protein  

sequence features and domains      67 

3.8 Flowchart showing the process by which solved protein structures were  

extracted from the PDB       68 

3.9 Flowchart showing the process of matching solved protein structures with their  

corresponding gene identifiers and insertion of data about the structure into the 

MaGnET database       70 

3.10 Flowchart showing the process of retrieving comparative structure models,  

filtering out low quality models and removing a large number of redundant  

models to create a high quality, non-redundant set of representative models 75 

3.11 Flowchart showing the process for reading an expression dataset into the  

database         76 

 
Chapter 4 
 
4.1 MaGnET visualisation program Unified Modelling Language (UML) class  

diagram         86 

4.2 Screenshot of the MaGnET Data Analysis Viewer    92 

4.3 Screenshot of the MaGnET Genome Viewer     94 

4.4 Screenshot of the Genome Viewer displaying mRNA expression data for genes  

in two selected groups       95 

4.5 Screenshot of the Genome Viewer displaying an mRNA expression dataset  



 xiv

mapped onto genomic location of the genes     96 

4.6 Screenshot of the Genome Viewer displaying the direction of changes in  

mRNA expression from the previously sampled time-point   97 

4.7 Screenshot of the Chromosome Viewer     100 

4.8 Screenshot of the Chromosome Viewer displaying an mRNA expression  

dataset         101 

4.9 Screenshots of the Genome (a) and Chromosome (b) viewers displaying the  

ortholog/paralog group for gene PFA0625w     104 

4.10 Screenshot of the primary and secondary interaction network of the R45  

antigen (PFD1175w)       106 

4.11 Screenshot of a protein interaction network where the majority of protein labels  

have been minimised but one region displays expanded protein labels  107 

4.12 Screenshot of the R45 antigen�s protein interaction network, with protein labels  

coloured according to their mRNA expression level at the early ring stage of  

the parasite�s life cycle       108 

4.13 Screenshot of the time-series profile graph for the P. falciparum 3D7 gene  

PF14_0495 during the IDC (data have been log2 transformed)   112 

4.14 Screenshot of the time-series profile graph for four genes expressed during the  

IDC         113 

4.15 Screenshot of a set of mRNA abundance profiles (top row) versus the decay  

half life of the mRNA (bottom row) for the gene PF10_0325 at four stages of  

the IDC         114 

4.16 Screenshot of the Expression Data Viewer�s Query Builder page  117 

4.17 Screenshots of two pages from the fact sheet belonging to gene MAL7P1.164 119 

4.18 Screenshot of the modelled structure of the protein product of MAL7P1.164  

displayed in the Jmol molecular viewing program (Jmol; http://www.jmol.org/) 120 

 
Chapter 5 
 
5.1 Time-series expression profiles for ATP-binding cassette transporter-encoding  

gene MAL13P1.344 in the 3D7, Dd2 and HB3 strains    142 

5.2 Time-series expression profiles for PfEMP1-encoding genes PF08_0103 (top  

panel) and PFB0010w (bottom panel) in the 3D7 and HB3 strains (no data are  

available for Dd2)       144 

5.3 Time-series expression profiles for the S-antigen-encoding gene PF10_0343 in  

the 3D7 and HB3 strains (no data are available for Dd2)   145 

5.4 Time-series expression profiles for the RESA-2-encoding gene PF11_0512 in  

the 3D7, Dd2 and HB3 strains      146 

 



 xv

5.5 Time-series expression profiles for CLAG 3.1-encoding gene PFC0110w in  

the 3D7 and HB3 strains (no data are available for Dd2)   147 

5.6 Time-series expression profiles for KAHRP-encoding gene PFB0100c in the  

3D7, Dd2 and HB3 strains       148 

5.7 Time-series expression profile for the PfEMP3-encoding gene PFB0095c in  

the 3D7 strain (no signal was detectable in Dd2 and HB3 strain parasites) 149 

5.8 A 20 kb region of chromosome 4 containing the genes encoding PfRH5  

(PFD1145c), PfRH4 (PFD1150c), EBA-165 (PFD1155w) and SURFIN4.2  

(PFD1160w)        153 

5.9 Expression profiles of the genes encoding PfRH5 (PFD1145c), PfRH4  

(PFD1150c), EBA-165 (PFD1155w) and SURFIN4.2 (PFD1160w) during the  

3D7 IDC        154 

5.10 A 20 kb region of chromosome 4 containing the genes encoding PfRH5  

(PFD1145c), PfRH4 (PFD1150c), EBA-165 (PFD1155w) and SURFIN4.2  

(PFD1160w)        155 

5.11 The first 100 kb of chromosome 2 displaying expression data from hour 11 of  

the 3D7 IDC (Llinas et al. 2006)      157 

5.12 The first 100 kb of chromosome 2 displaying expression data from hour 11 of  

the Dd2 IDC (Llinas et al. 2006)      155 

5.13 Screenshot of the genomic location of var, rifin and stevor genes in the 3D7  

strain         158 

5.14 Screenshot of the Genome Viewer showing the location of the 28 var genes  

(indicated by orange bars beside chromosomes) that are differentially  

expressed (undergo greater than 3 fold change in expression) during the 3D7  

IDC (Llinas et al. 2006)       160 

5.15 Screenshot of the Genome Viewer comparing the location of 28 var genes  

considered to be differentially expressed (expression varied more than 3 fold)  

in the 3D7 IDC as recorded by Llinas et al. (2006) (orange bars) and the 23  

var genes with highest expression (absolute expression level higher than 100)  

as recorded by Le Roch et al. (2003) (blue bars)    161 

5.16 Time-series expression profiles of seven differentially expressed stevor genes  

(expression change greater than 3 fold) in the 3D7 IDC (Llinas et al. 2006) 162 

5.17 Expression profiles of differentially expressed rifins (expression change  

greater than 3 fold) during the 3D7 IDC (Llinas et al. 2006)   163 

5.18 Screenshot of a ~55 kb region of the right arm of chromosome 9 linked to  

cytoadherence and gametocytogenesis     165 

5.19 Time-series expression profiles of 13 genes in the chromosome 9  

cytoadherence locus from 3D7 parasites grown in a temperature synchronised  

culture (Le Roch et al. 2003)      166 



 xvi

5.20 Time-series expression profiles of 13 genes in the chromosome 9  

cytoadherence locus from 3D7 parasites grown in a sorbitol-treated  

synchronised culture (Le Roch et al. 2003)     167 

5.21 Screenshot of a region of chromosome 9 showing the location of introns  

(pink) in the four REX genes (blue)      169 

5.22 Screenshot of the SignalP predicted signal anchor for REX3 (PFI1755c) 170 

5.23 Screenshots of the ortholog group for REX3 (PFI1755c): (a) the  

ortholog/paralog table display in the Chromosome Viewer and (b) the  

ortholog/paralog group page on the gene fact sheet    171 

5.24 Time-series protein expression data for the products of genes encoded by the  

region on chromosome 9 linked to cytoadherence (Florens et al. 2002; Le  

Roch et al. 2004)        172 

5.25 The genomic location of 20 FIKK kinase paralogs in P. falciparum (orange  

bars)         174 

5.26 Part of the Chromosome Viewer displaying a region of chromosome 4  

containing the FIKK kinase paralogs PFD1165w and PFD1175w (R45)  

(in orange)        175 

5.27 Atypical intron/exon arrangements in P. falciparum FIKK kinase genes: (a)  

The pseudogene MAL7P1.175 (in orange) has an atypical gene structure where  

exon 1 is either missing or fused to the start of exon 2; (b) the gene  

MAL8P1.203 has a short exon 1 and 2 and a long exon 3, so the short  

C-terminal exon is either missing or fused to exon 2    176 

5.28 Part of the Chromosome Viewer displaying a region of chromosome 14  

containing the FIKK kinase family member that was mispredicted as two  

separate genes (PF14_0733 and PF14_0734) (in orange)   176 

5.29 A comparative model of the structure of the kinase domain of the protein  

encoded by gene PFI0100c      177 

5.30 Part of the gene fact sheet for R45 (PFD1175w): (a) the InterPro predicted  

sequence features, showing hits to several kinase-like domains and motifs and  

a large region of low complexity sequence in the middle of the protein that  

corresponds to a 90-hexapeptide repeat region (b)    179 

5.31 Results of searches within the Data Analysis Viewer for the predicted  

transmembrane domains (top panel) and signal/anchor sequences (bottom  

panel) for the 20 FIKK kinase paralogs     180 

5.32 Many of the subtelomeric FIKK kinase paralogs (orange bars) are located  

close to genes in a large multi-gene family coding for DNA J domain- 

containing proteins (including the RESA proteins) (blue bars)   181 

5.33 Several of the subtelomeric FIKK kinase paralogs (orange bars) are located  

next to EBA family genes (blue bars)     182 



 xvii

5.34 Several of the subtelomeric FIKK kinase paralogs (orange bars) are located  

next to fatty acid CoA synthase genes (blue bars)    183 

5.35 Many of the subtelomeric FIKK kinase paralogs (orange bars) are located close  

to members of several gene families coding for hypothetical membrane  

proteins (blue bars)       184 

5.36 An example of tandem arrangement of subtelomeric multi-gene families 185 

5.37 A single orthologous FIKK kinase gene is observed in most other Plasmodium  

species, including P. berghei, P. knowlesi and P. vivax, but not so far in  

P. chabaudi, probably due to low sequence coverage    186 

5.38 Time-series mRNA expression profile graphs for the highest expressed FIKK  

kinase paralogs, incorporating sporozoites, blood stages and gametocytes (inset)  

(3D7 strain data from Le Roch et al. 2003 and Young et al. 2005)  188 

5.39 Time-series mRNA expression profile graphs for middle-range expressed  

FIKK kinase paralogs, incorporating sporozoites, blood stages and gametocytes  

(3D7 strain data from Le Roch et al. 2003)     189 

5.40 Time-series mRNA expression profile graphs for the lowest expressed FIKK  

kinase paralogs, incorporating sporozoites, blood stages and gametocytes (3D7  

strain data from Le Roch et al. 2003)     190 

5.41 Time-series protein expression profiles for FIKK kinase paralogs  191 

 
Chapter 6           
 
6.1 Time-series graph of expression of the genes Pfmrk (PF10_0141), Pfcyc-1  

(PF14_0605) and PfMAT1 (PFE0610c) during the Dd2 IDC (data from Llinas  

et al. 2006)        211 

6.2 Time-series graph of expression of the Pfmrk/Pfcyc-1/PfMat1 complex  

(encoded by genes PF10_0141, PF14_0605 and PFE0610c) and PfPK5  

(MAL13P1.279) during the HB3 IDC (data from Bozdech et al. 2003)  212 

6.3 Time-series expression profiles of PfPK5 (MAL13P1.279), Pfcyc-2 (PFL1330c)  

and Pfcyc-4 (PF13_0022) during the 3D7 IDC (data from Llinas et al. 2006) 213 

6.4 Time-series expression profiles for PfPK5 (MAL13P1.279), Pfcyc-1  

(PF14_0605) and Pfcyc-3 (PFE0920c) during the 3D7 IDC (data from Llinas  

et al. 2006)        214 

6.5 Time-series expression profiles of PfPK5 (MAL13P1.279) and Pfcyc1-4  

(PF14_0605, PFL1330c, PFE0920c and PF13_0022) in 3D7 gametocytes (data  

from Young et al. 2005)       215 

6.6 Time-series expression profiles of three putative cyclins [Pfcyc-2 (PFL1330c),  

PFF0270c and MAL13P1.131] and three CDKs [Pfcrk4 (PFC0755c), Pfcrk5  

(PFF0750w) and MAL13P1.196] during the HB3 IDC (data from Bozdech  



 xviii

et al. 2003)        217 

6.7 Time-series expression profiles of three CDKs [Pfcrk-3 (PFD0740w), Pfmrk  

(PF10_0141) and PfPK6 (MAL13P1.185)] and three putative cyclins [Pfcyc-1  

(PF14_0605), PF10_0139 and MAL8P1.152] during the HB3 IDC (data from  

Bozdech  et al. 2003)       218 

6.8 Screenshot of the Protein-Protein Interaction Viewer displaying primary and  

secondary interaction data for all known and predicted CDKs (orange) and  

cyclins (blue)        221 

6.9 Primary interactions of the PFI1715w protein with transcription levels at the  

early schizont stage overlaid (interaction data from LaCount et al. 2005;  

transcription data from Le Roch et al. 2003)     227 

6.10 Time-series expression profile of the MAL8P1.153 gene (data from Le Roch  

et al. 2003)        231 

6.11 Protein-protein interactions of the protein encoded by gene MAL13P1.153 232 

6.12 Expression profiles of the genes encoding CHD1 (PF10_0232) and a  

hypothetical protein (PFL2335w) (data from Le Roch et al. 2003)  234 

6.13 Graph showing the expression profiles of all predicted var genes (including  

pseudogenes) encoded by the P. falciparum 3D7 genome that had expression  

data recorded in a study by Le Roch et al. 2003 (top panel)   237 

6.14 Graph showing overall expression level of P. falciparum 3D7 gene families  

plotted against number of pseudogenes in the family    239 

6.15 Left panel: the GO annotation assigned to Pfk1.  Right panel: the InterPro  

predicted protein domain and sequence features for Pfk1   243 

 



 xix

LIST OF TABLES 
 
Chapter 1 

 
1.1 Summary of P. falciparum 3D7 nuclear genomic characteristics   10 

1.2 Status of Plasmodia genome sequencing projects as of 12/07/2007  12 

1.3 A list of sources of annotation available for Plasmodium genes   16 

1.4 A list of public databases containing experimental data on Plasmodium genes  

and proteins        22 

1.5 A list of online Plasmodium genome databases and resources   30 

1.6 Examples of software for managing the storage and searching of integrated  

biological data        34 

1.7 Examples of software that use interactive graphical displays for annotation or  

analysis of genomic or functional genomic data    34 

1.8 Examples of software tools that facilitate exploration by providing visualisation  

of integrated functional genomics data     37 

 
Chapter 3 
 
3.1 Datasets used to populate the MaGnET database, with details of sources, file  

formats and any pre-processing carried out on the data prior to downloading 57 

3.2 Data extracted and derived from chromosome sequence files   59 

3.3 Data extracted and derived from gene/protein sequence (FASTA) and  

annotation (EMBL) files       61 

3.4 Data extracted and derived from the GO annotation and term description files 63 

3.5 Data extracted from the ortholog/paralog cluster file    65 

3.6 Data extracted from the yeast two-hybrid protein-protein interaction study file 66 

3.7 Data extracted about predicted protein sequence features and domains  67 

3.8 Data extracted and derived from PDB structure files    69 

3.9 Cut-off criteria for comparative model selection    72 

3.10 Data extracted from comparative model structure files   74 

   
Chapter 4 
 
4.1 Global attributes of the MAGNETMainFrame class that are accessible to all  

data viewers        90 

4.2 Overview comparison of MaGnET data content to PlasmoDB   132 

4.3 Overview comparison of MaGnET interface functionality to PlasmoDB  134 

 
 
 



 xx

Chapter 5 
 
5.1 A list of enriched GO terms in genes with varying expression between HB3  

and 3D7 ring stage parasites (hours 1-15 of the IDC)    151 

5.2 Life cycle stages where the P. falciparum 3D7 FIKK kinase genes were  

differentially expressed in microarray experiments (marked by an �X�)  187 

5.3 Summary of novel hypotheses about gene function that emerged from  

exploration of P. falciparum functional genomic data using MaGnET as  

described in Chapter 5       192 

 
Chapter 6 
 
6.1 CDKs and CRKs of P. falciparum      203 

6.2 List of proteins with predicted cyclin-like domains from InterPro annotation 205 

6.3 Comparison of CDK and cyclin expression profiles in the IDC [data for  

P. falciparum strains 3D7 and Dd2 from Llinas et al. 2006 and HB3 from  

Bozdech et al. 2003]       208 

6.4 A representative selection of the enriched GO categories for the group of  

proteins involved in primary interactions with the protein encoded by  

PFI1715w        228 

6.5 Summary of novel hypotheses about gene function that emerged from  

exploration of P. falciparum functional genomic data using MaGnET as  

described in Chapter 6       244 

 
 



 xxi

ABBREVIATIONS 
 
A + T   Adenine and Thymine 
API   Application Programming Interface 
ATP   Adenosine triphosphate 
AWT   Abstract Window Toolkit 
bp   base pairs 
BLAST   Basic Local Alignment Search Tool 
CAK   CDK-activating kinase 
CATH   Class (C), Architecture (A), Topology (T) and Homologous  

superfamily (H) 
CDK   cyclin-dependent kinases 
CDT   Clustered Data Table 
CHD   chromodomain-helicase-DNA-binding protein 
CRK   CDK-related kinases 
CTD   carboxyl-terminal domain 
CLAG   cytoadherence linked asexual protein 
E   Expectation value 
EBA   erythrocyte binding antigen 
EMBL   European Molecular Biology Laboratory 
EMP   erythrocyte membrane protein 
EST   Expressed Sequence Tag 
G + C   Guanine and Cytosine 
GO   Gene Ontology 
GPL   Gnu General Public Licence 
GUI   Graphical User Interface 
HSP   heat shock protein 
HTML   HyperText Markup Language 
IDC   Intraerythrocytic Developmental Cycle 
IE   Infected Erythrocyte 
IEA   Inferred from Electronic Annotation 
ISS   Inferred from Sequence or Structural Similarity 
JDBC   Java Database Connectivity 
JDK   Java Development Kit 
JRE   Java Runtime Environment 
JVM   Java Virtual Machine 
KAHRP   knob associated histidine rich protein 
kb   kilobases 
KEGG   Kyoto Encyclopaedia of Genes and Genomics 
KO   knock-out 
LGPL   GNU Lesser General Public License 
MaGnET  Malaria Genome Exploration Tool 
mb   megabases 
MudPIT   multidimensional protein identification technology 
NCBI   National Center for Biotechnology Information 



 xxii

OBO   Open Biomedical Ontologies 
ORF   open reading frame 
OPI   Ontology-based Pattern Idenentification 
PDB   Protein Data Bank 
PGDB   Pathway/Genome Database 
pir   Plasmodium interspersed repeats 
PVM   parasitophorous vacuolar membrane 
RAM   Random Access Memory 
RDBMS   relational database management systems 
RESA   ring-infected erythrocyte surface antigen 
REX   ring exported 
RH   reticulocyte binding protein homolog 
RIFIN   repetitive interspersed family 
SAGE   Serial Analysis of Gene Expression 
SCOP   Structural Classification of Proteins 
SGPP   Structural Genomics of Pathogenic Protozoa 
Skp   S-phase kinase-associated protein 
SNP   single nucleotide polymorphism 
STEVOR  subtelomeric variable open reading frame family 
SQL   Structured Query Language 
SURFIN   surface-associated interspersed protein 
TIGR   The Institute for Genome Research 
TSExplorer  Time-series Explorer 
UML   Unified Modelling Language 
WHO   World Health Organisation 
WT   wild type 
WTSI   Wellcome Trust Sanger Institute 
Y2H   yeast two-hybrid 
YETI   Yeast Exploration Tool Integrator



 1

1. INTRODUCTION 

Overview 

The post-genomic era has brought new opportunities for studying gene 

functions of the malaria-causing parasite, Plasmodium falciparum.  Recent advances 

in functional genomic research that make use of the parasite�s genome sequence have 

generated a wealth of data about various aspects of gene function and expression.  

The challenge now is to provide computational tools that assist the malaria research 

community to mine the data and forge hypotheses that direct experimental research. 

In this PhD thesis I present a novel computational tool that meets this need by 

facilitating researchers to explore functional genomic data about P. falciparum.  I 

will describe examples of applying the tool to generate experimentally testable 

hypotheses of interest to malaria biologists. 

 

1.1 A brief history of malaria and its current status 

Malaria is a global disease with ancient roots.  The history of mankind�s 

affliction with malaria is long and well documented and this disease is probably 

responsible for more deaths and suffering than any other (Malaria Site; 

http://www.malariasite.com).  

During the 19th and early 20th Centuries the geographical extent of malaria 

was so great that over half of the world�s population were at risk.  Improvements in 

health and living conditions and the first world-wide control efforts put in place by 

the World Health Organisation (WHO) in the 1950s saw the eradication of malaria in 

temperate and seasonal regions and reduced its prevalence in several tropical areas  
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Centers for Disease Control and Prevention - Malaria; http://www.cdc.gov/malaria/; 

Malaria Site; http://www.malariasite.com).  However, in Africa the eradication 

program was largely unsuccessful and despite an initial decline in malaria-related 

deaths, by the late 1980s this trend had reversed (Carter and Mendis 2002).  A 

number of social, economical, environmental and political circumstances contributed 

to the failure of the strategy in Africa; the greatest cause was probably the emergence 

and rapid spread of drug resistance among parasites to the widely used anti-malarial, 

chloroquine.  Finally, amid renewed outbreaks in other parts of the world, the 

eradication hope was abandoned and downgraded to that of control (Carter and 

Mendis 2002). 

Today, the WHO estimates that around 40% of the world�s population is at 

risk from contracting malaria.  Each year, over 500 million people become ill with 

malaria and of these, 1-3 million die.  The majority of cases (90%) occur in sub-

Saharan Africa and most fatalities in this region are young children and pregnant 

women.  Tropical and sub-tropical regions of the world are also affected, including 

South and Central America, South East Asia and the Middle East (Malaria Site; 

http://www.malariasite.com; World Health Organisation Malaria Fact Sheet; 

http://www.who.int/mediacentre/factsheets/fs094/en/index.html).  

 In recent years there has been a renewed effort to combat malaria with new 

strategies and emerging technologies.  The driving forces have been partnerships, 

such as the �Roll Back Malaria Partnership� (http://www.rollbackmalaria.org/), 

bringing together governments, health care facilities and charities with academic and 

commercial scientific research organisations.  Focussing on integration of resources 

within the local health care network and encouraging community responsibility are 
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essential to maintain control over malaria.   These campaigns have centred on the 

most important tools for malaria control � drugs to treat the disease and methods of 

reducing human contact with the mosquito vector (Carter and Mendis 2002). For 

example, spraying of houses and the use of insecticide-impregnated bed nets to 

reduce transmission of the parasite has been shown to be effective in reducing cases 

of malaria and child mortality (Greenwood et al. 2005). 

In 2002, the Malaria Genome Sequencing Consortium published the first 

genome sequences of the parasite (Carlton et al. 2002; Gardner et al. 2002) alongside 

that of its vector, the Anopheles mosquito (Holt et al. 2002).  With the human 

genome sequence already published (Lander et al. 2001; Venter et al. 2001), it was 

hoped that knowledge of these genome sequences would lead to a greater 

understanding of the parasite and interaction with its host and vector, and ultimately 

to the discovery of new drug and vaccine targets (Wirth 2002).  

Indeed, biomedical research to develop novel drugs both to treat malaria and 

to be used as anti-malarials has since been moving swiftly.  The preferred method of 

malaria treatment is with one of several combinations of drugs on the market, the 

exact combination that is effective depends on the geographical area and the type of 

malaria.  However, many of these are too expensive for the African market, which 

remains in need of cheap, readily-available and sustainable drugs.  Good 

management systems for the delivery of treatments are necessary to prevent over- or 

under-prescription to ensure that drugs achieve their potential and that resistance 

does not spread (Greenwood et al. 2005). 

Malaria vaccine research has also seen positive results.  A number of antigens 

have been identified as eliciting protective immunity or being critical to the function 
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of the parasite.  Several vaccines targeting various stages of the parasite�s life cycle 

are under clinical trials.  However, the problem of antigenic polymorphism means 

that any one vaccine is likely to have only limited efficacy (Greenwood et al. 2005). 

 

1.2 The malaria parasite 

Malaria is an infection of the blood caused by parasites of the genus 

Plasmodium.  There are over 100 species of Plasmodia, infecting many different 

animals including birds, mammals and reptiles (Centers for Disease Control and 

Prevention - Malaria; http://www.cdc.gov/malaria/).  Plasmodia have a complex life 

cycle involving an obligate host organism, in which several asexual stages of 

replication occur (Figure 1.1a).   A mosquito vector is required to transmit the 

parasite and is where the sexual stages of the life cycle occur (Figure 1.1b).   

Four species usually infect humans, of which Plasmodium falciparum and 

Plasmodium vivax are the most common, with Plasmodium malariae being far less 

predominant than it once was, and Plasmodium ovale having the most limited 

distribution.  P. falciparum malaria is the most virulent form and is often associated 

with severe disease and fatality.  The disease is characterised by periodic fevers, 

referred to as �benign tertian� (P. vivax and P. ovale) � fever every other day, 

�subtertian, malignant� (P. falciparum), or �quartan� (P. malariae) � fever every 

fourth day (Carter and Mendis 2002).  The fevers coincide with the release of 

merozoites from the red blood cell (Figure 1.1).  All symptoms of malaria are 

associated with the blood-stages.  P. falciparum-infected erythrocytes can adhere to 

the blood vessel endothelium (�sequestration�) [reviewed in (Rogerson 2003)], and 

may recruit other infected and non-infected red blood cells (�rosetting�) [reviewed in 
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(Rowe 2005)], which is thought to contribute to the severe complication of cerebral 

malaria.  P. vivax and P. ovale can cause chronic malaria, as parasites can remain 

latent in the liver for many years (Centers for Disease Control and Prevention - 

Malaria; http://www.cdc.gov/malaria/; Malaria Site; http://www.malariasite.com). 

 

 

Figure 1.1.  Taken from Wirth 2002.  Life cycle of the parasite Plasmodium falciparum.  A, the 

mosquito injects sporozoites into the blood with its saliva, which quickly invade the liver, where they 

mature to become merozoites.  The merozoites are released into the blood, where they enter 

erythrocytes and undergo several intra-erythrocytic stages of development, before the host cell bursts 

to release more merozoites.  During this process some parasite cells may become committed to 

forming male and female gametocytes, the precursors of gametes, which can then be taken up by a 

feeding mosquito.  B, inside the mosquito�s stomach the gametocytes mature to gametes, which 

combine to form a zygote.  The zygote develops into an ookinete, which crosses the wall of the gut 

and becomes an oocyst, filled with sporozoites.  When the oocyst bursts, the sporozoites migrate to 

the salivary glands and the cycle continues. 
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1.2.1 Plasmodium cell biology 

Plasmodia are single-celled eukaryotic organisms of the phylum 

Apicomplexa, which includes related disease-causing organisms Toxoplasma and 

Cryptosporidium.  Apicomplexa are characterised by a group of organelles known as 

the �apical complex� due to their localisation towards one end of the cell.  The apical 

organelles are thought to be involved in the process of host cell invasion.  They 

consist of micronemes, rhoptries and dense granules (heterologous secretory 

vesicles) (Galinski et al. 2005). 

Merozoite invasion of erythrocytes involves four steps:  

1. Merozoites bind to the erythrocyte surface by specific interactions occurring 

between proteins on the parasite�s surface and receptors on the erythrocyte. 

2. Following binding, the merozoite reorients itself so that the apical end is next to 

the erythrocyte membrane. 

3. The contents of the micronemes are discharged and contribute to formation of a 

tight junction between the parasite and the host cell.  Several microneme proteins 

that are involved in interactions with receptors on the erythrocyte surface have 

been identified. In fact, there is some redundancy in these interactions as the 

parasite can switch between several distinct pathways, which fall into two types: 

sialic acid-dependent and sialic acid-independent pathways. 

4. The parasite actively invades the host cell by first disrupting the erythrocyte 

cytoskeleton and redistributing its membrane proteins to leave the junction area 

free.  A parasitophorous vacuolar membrane (PVM) forms around the junction, 

which grows as the parasite enters the erythrocyte.  Around this time the rhoptry 

contents are released and their proteins are associated with development of the 
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PVM.  The PVM is actually believed not to be important for the process of host 

cell invasion, but is required for the parasite�s intracellular development.  The 

junction takes on a ring shape and the parasite moves through it as it enters the 

parasitophorous vacuole.  The force for invasion is generated by unique myosin 

motors, probably associated with the cytoplasmic region of the parasite ligand 

proteins, which move along actin filaments and drag the ligand/receptor 

complexes toward the parasite posterior (Galinski et al. 2005).   

The mechanism for other invasive stages of the parasite�s life cycle 

(sporozoites which invade host hepatocytes and ookinetes which invade the mosquito 

midgut epithelial cells) is slightly different.  They often lack rhoptries and do not 

form a PVM.  Sporozoites utilise a gliding motility during invasion, whereby the 

parasite transmembrane protein thrombospondin-related adhesive protein forms a 

connection between the substratum and the intracellular myosin motors and is pulled 

towards the parasite�s posterior and deposited on the substratum, forming a trail 

(Sinden and Gilles 2002). 

The final components of the apical complex, dense granules, are released 

after merozoite entry is complete and are involved in modification of the erythrocyte 

(Galinski et al. 2005).  Several parasite proteins are transported to the host cell 

membrane and the membrane becomes more permeable to small molecules, needed 

by the parasite as it grows.  Electron-dense protrusions, or �knobs�, appear on the 

infected erythrocyte (IE) surface.  Knobs are thought to be involved in sequestration 

of the erythrocyte in capillaries.  Several proteins are known to be associated with 

knobs, one of the most important being P. falciparum erythrocyte membrane protein 

1 (PfEMP1) (Sinden and Gilles 2002).  PfEMP1 is encoded by the var gene family, a 
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large polymorphic family implicated in antigenic variation (Baruch et al. 1995; 

Smith et al. 1995; Su et al. 1995).  The specific member that is expressed changes 

between generations and appears to affect the cytoadherent phenotype (Peters et al. 

2002; Horrocks et al. 2005).  PfEMP1 is also thought to contribute to rosetting, a trait 

of some parasite isolates where the IE binds to multiple uninfected erythrocytes 

(Rowe 2005). 

Some surface proteins, such as PfEMP1, are trafficked to the host cell 

membrane via a unique parasite organelle called the Maurer�s cleft, which the 

parasite sets up in the erythrocyte cytoplasm [reviewed in (Lanzer et al. 2006)].  

Maurer�s clefts are large, semi-continuous, polymorphic membrane networks 

stretching from the PVM to the inner face of the erythrocyte plasma membrane.  

They appear to have multiple functions, including a possible role in signalling and 

metabolic pathways (Vincensini et al. 2005).  Two mechanisms by which proteins 

may be transported via Maurer�s clefts to the erythrocyte surface have been 

proposed.  One model proposes lateral diffusion of membrane-associated proteins 

through the network, whilst the other suggests that protein-carrying vesicles bud off 

from the PVM targeted to Maurer�s clefts, from where they move on towards the 

erythrocyte plasma membrane (Lanzer et al. 2006). 

1.2.1.1 The apicoplast 

 Apicomplexa possess an intracellular plastid organelle, which probably arose 

from an ancestral secondary endosymbiotic event.  Secondary endosymbiosis entails 

a plastid-containing eukaryote being engulfed by another eukaryote, over time 

shedding the redundant features of the primary eukaryotic host, such as nucleus and 

cytoplasm, and transferring its proteins to the secondary host nucleus, to leave the 
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plastid, often surrounded by additional membranes (Ralph 2005; Waller and 

McFadden 2005). 

 The Plasmodium apicoplast is maintained by its own circular 35-kilobase 

(kb) DNA chromosome encoding 64 genes, including some open reading frames 

(ORFs) of unknown function.  The function of the apicoplast is largely unknown, 

although there is now strong evidence for a type II fatty acid biosynthesis pathway, 

an isoprenoid biosynthesis pathway, and at least part of a heme biosynthesis 

pathway, occurring here.  No doubt, many hundreds of nuclear-encoded proteins are 

targeted to the apicoplast.  Following identification of the sequence features required 

for targeting, 10% of the nuclear genes were predicted to be targeted to the 

apicoplast, although the real number is likely to be higher.  Moreover, it has become 

clear that the apicoplast is essential for parasite survival and numerous anti-malarials 

have been found to target stages of apicoplast expression (Ralph 2005; Waller and 

McFadden 2005). 

1.2.1.2 The mitochondrion 

 The Plasmodium mitochondrion is unusual amongst these organelles.  It has 

one of the smallest genomes yet sequenced: 6 kb encoding just three proteins and 

several rRNAs.  One important mitochondrial function, the tricarboxylic acid cycle, 

appears to be absent in asexual development stages.  However, drugs that disrupt the 

mitochondrial electron transport chain kill the parasite, so this appears to be an 

essential process, and ATP generated by oxidative phosphorylation may become 

important during the later sexual stages.  Clues about its possible role in other 

biochemical pathways have emerged since the nuclear genome sequence allowed 

proteins targeted to the mitochondria to be predicted.   Plasmodia mitochondria are 
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found in close contact with the apicoplast during asexual stages.  This arrangement 

has allowed the parasite to evolve a unique pathway for heme biosynthesis, where 

some stages occur in the apicoplast and others in the mitochondrion (Vaidya 2005; 

van Dooren et al. 2006). 

1.2.2 The P. falciparum nuclear genome 

 The P. falciparum nuclear genome consists of 14 chromosomes totalling 

about 22.8-megabases (mb).  The genome and average gene length is almost twice 

that of yeast, with over 15% of genes longer than 4 kb (Gardner et al. 2002).  Table 

1.1 summarises the distinguishing genomic characteristics of P. falciparum strain 

3D7. 

 

Characteristics P. falciparum 3D7 

Overall (G + C) content (%) 19.4* 
No. of genes 5,540ª 
Mean gene length§ (bp)  2,283* 
Percentage coding (%) 52.6* 
Genes with introns (%) 53.1ª 
No. of exons 13,315ª 
Mean no. of exons per gene 2.4ª 
(G + C) content of exons (%) 23.7* 
(G + C) content of introns (%) 13.5* 
(G + C) content of intergenic regions (%) 13.6* 
Mean length of intergenic regions (bp) 1,694* 

*Data from original genome publication 
ªData from current genome release 
§Excluding introns 

Table 1.1.  Summary of P. falciparum 3D7 nuclear genomic characteristics.  When the genome 

sequence was published in 2002 it was still undergoing final stages of finishing and gap closure.  As 

gaps have been closed and gene models have been re-examined based on new evidence the gene 

content has changed slightly.  At the time of writing, the current version of the genome is 2.1.4, 

released in July 2007 (Wellcome Trust Sanger Institute Plasmodium falciparum Genome Projects; 

http://www.sanger.ac.uk/Projects/P_falciparum/). 
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 Despite the chromosomes varying considerably in length (and even between 

isolates), the structure of the subtelomeric regions is remarkably conserved within 

the genome, indicating that the genetic information undergoes extensive 

recombination over large regions.  It is in the subtelomeric regions that many of the 

genes involved in antigenic variation and interaction with the host reside.  The 

preliminary analysis of the predicted gene functions revealed a relative paucity of 

certain functional categories, notably that of �cell cycle�, �cell organisation and 

biogenesis� and �transcription factor�, whereas others, such as �physiological 

processes� and �cell adhesion�, were over-represented.  The difference in gene 

content between this and other sequenced eukaryotes is probably due to a number of 

reasons, not least its unique parasitic lifestyle, the great evolutionary distances 

between them and the high (A + T) content of the genome (Gardner et al. 2002). 

   

 1.3 Plasmodia genome sequencing projects 

Since the genomes of P. falciparum strain 3D7 (Gardner et al. 2002) and 

Plasmodium yoelii yoelii (a rodent parasite) (Carlton et al. 2002) were published, 

several other species have had their genomes sequenced, covering parasites of an 

array of different organisms, including rodents, primates and birds.  There has been a 

lot of interest in sequencing genomes from other Plasmodia because greater 

understanding of parasite biology and history will come from comparing similar 

genomes.  Many of the selected species have been long used with their respective 

host organisms as models for studying the disease and testing vaccines and drug 

responses.  Additionally, several other strains of P. falciparum are at various stages 

of sequencing, the knowledge of which will enable the identification of polymorphic 
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regions that are under selective pressure and might be implicated in, for example, 

drug resistance.  Table 1.2 lists the recent genome sequencing projects and their 

current status. 

 

Species/strain Host Coverage Status Sequencing 
centre 

Published 

P. falciparum 
3D7 

Human >10X Finished WTSI, TIGR, 
Stanford 

(Gardner et al. 
2002) 

P. falciparum 
Ghanaian 
Clinical Isolate 

Human 8X Finishing and 
analysis 

WTSI No 

P. falciparum 
Dd2 

Human >9X Finishing and 
analysis 

Broad No 

P. falciparum 
HB3 

Human >10X Finishing and 
analysis 

Broad No 

P. falciparum 
IT 

Human 1X Sequencing WTSI No 

P. falciparum 
IGH-CR14, 
JDP8, RAJ116, 
87_239 

Human Not 
known 

Initiated Broad No 

P. vivax 
Salvador 1  

Human 10X Finished TIGR No 

P. y. yoelii 
17XNL 

Rodent 5X Finished TIGR (Carlton et al. 
2002) 

P. berghei 
ANKA 

Rodent 8X Finished WTSI (Hall et al. 
2005) 

P. chabaudi AS Rodent 8X Finished WTSI (Hall et al. 
2005) 

P. knowlesi H  Primate 8X Finishing and 
analysis 

WTSI No 

P. reichenowi 
Oscar 

Primate 3X Sequencing WTSI No 

P. reichenowi 
CDC1 

Primate Not 
known 

Initiated Broad No 

P. gallinaceum 
8a 

Avian 3X Finished WTSI No 

WTSI = Wellcome Trust Sanger Institute, Hinxton, UK  
TIGR = The Institute for Genomic Research � now part of J. Craig Venter Institute, Rockville, MD, 
USA 
Stanford = Stanford Genome Technology Center, Palo Alto, CA, USA 
Broad = The Broad Institute of Harvard and MIT, Cambridge, MA, USA   

Table 1.2.  Status of Plasmodia genome sequencing projects as of 12/07/2007.  Data in this table were 

compiled from (Wellcome Trust Sanger Institute Protozoan Genomes; 

http://www.sanger.ac.uk/Projects/Protozoa/; J. Craig Venter Institute Parasite Projects; 
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http://www.tigr.org/parasiteProjects.shtml#; The Broad Institute Microbial Sequencing Centre - 

Plasmodium Falciparum Sequencing Project; http://www.broad.mit.edu/seq/msc/; Coppel et al. 2004). 

 

1.4 Genome annotation 

Following assembly of the sequenced genome, the next step is to annotate the 

genomic features.  This is usually done automatically by trained gene prediction 

programs and their output may be checked manually.  The task is made easier when 

there are annotated genomes of related organisms available.  Hence, the annotation 

of Plasmodia genomes has improved in speed and accuracy by incorporating 

information about gene models from the earlier sequenced genomes.  Comparing 

gene models can help to confirm gene exon boundaries which are often difficult to 

predict computationally (Berry et al. 2004).  Unsurprisingly, the initial annotation of 

the P. falciparum and P. y. yoelii genomes was much more difficult as there were no 

closely related genomes available at the time. 

The sequencing consortium is committed to a long-term re-annotation of the 

P. falciparum 3D7 genome using the latest automated prediction tools and databases 

and incorporating new experimental evidence; the results of which are being 

manually checked.  It is hoped that this genome will be a reference on which to base 

the annotation of newly sequenced genomes (Berry et al. 2004).   

1.4.1 Comparative genomics 

There is a surprising amount of conservation between the genomes listed in 

Table 1.2 (Thompson et al. 2001; Kooij et al. 2005).  The central regions of the 

chromosomes contain several syntenic blocks, which have been re-organised through 
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recombination events.  Most of the species-specific genes are contained in the 

variable subtelomeric regions, at synteny breakpoints and at intrasyntenic indels 

(Kooij et al. 2005). 

An important part of genome annotation is identifying the genes that are 

orthologous between species and the genes that have arisen by gene duplication 

events within a species (paralogs) (Thompson et al. 2001).  Interestingly, the major 

differences in gene content among Plasmodium species are between genes that 

interact with the host immune system.  Several antigenic gene families have been 

identified in Plasmodia, including a large super-family of antigens (Plasmodium 

interspersed repeats � pir) with representatives of varying copy number in each 

species (Janssen et al. 2004).  Gene families that have arisen by gene duplication 

have been shown to be evolving more rapidly than non-duplicated genes.  Therefore, 

paralogous gene family expansion appears to be significant in the diversification of 

Plasmodia, whereas the function of orthologs is more conserved (Castillo-Davis et 

al. 2004).  Furthermore, identifying orthologs of human parasite genes allows the 

molecular mechanisms of parasite biology and drug resistance to be investigated in 

animal models.   

Comparative genomics will flag up functional features not only of genes but 

also intergenic regions.  Conserved intergenic regions may be important for gene 

regulation (Carlton et al. 2005); on the other hand, the absence of particular 

regulatory motifs from one species may indicate significant differences in gene 

expression that could contribute to host specificity and speciation (Hall and Carlton 

2005). 
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On an intra-species level, there appears to be a high frequency of local 

variation between isolates, such as differences in gene copy number, indels and 

single nucleotide polymorphisms (SNPs).  Polymorphisms frequently occur in genes 

linked to host interaction, drug resistance or strain-specific phenotypes (Kidgell et al. 

2006; Llinas et al. 2006). 

Therefore, comparing the similarities and differences between Plasmodia 

genomes can indicate which protein-coding genes or non-coding regions are under 

selective pressure and might be important for drug resistance, pathogenesis, immune 

evasion or host specificity, among others. 

1.4.2 Annotation tools and programs 
 
 The first step in genome annotation is to search for homologs in gene 

databases, usually using an implementation of the BLAST (Altschul et al. 1990) 

algorithm.  Identifying homologs can provide an indication of the gene�s likely 

function, although much care needs to be taken when inferring function from 

sequence similarity alone because the genes� functions may have diverged.  Many 

programs have been written to predict various structural and functional features 

about a protein using its primary amino acid sequence.  Often these programs use a 

database of known examples of the feature to look for matches to the query 

sequence.  The strength of the match will be measured against some criteria decided 

by the authors of the program; usually only the matches that are deemed significant 

are reported.   

The genome sequencing centres use several such programs to facilitate their 

annotation effort.  In addition, many of the publicly available databases have applied 

their own specific annotation pipelines to the P. falciparum genome.  Table 1.3 
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describes a number of electronic annotation tools that have been used to assign 

putative functions to P. falciparum genes and for which results are available to view 

online. 

 

Tool Web 
address 

Description Publication 

Gene 
Ontology 

http://www.
geneontolo
gy.org/ 

A controlled vocabulary to describe gene 
and gene product attributes in any 
organism.  Three aspects: biological 
process, molecular function and cellular 
component. Provides evidence codes to 
tag the origin of a term�s assignment to a 
gene. 

(Ashburner 
et al. 2000) 

PhyloFacts http://phylo
genomics.b
erkeley.edu
/phylofacts/ 

An online encyclopaedia and database 
containing pre-calculated structural, 
functional and phylogenomic analyses of 
protein families and domains.  Each 
family is represented by a multiple 
sequence alignment and hidden Markov 
model in order to classify user-inputted 
sequences. 

(Krishnamurt
hy et al. 
2006) 

InterPro http://www.
ebi.ac.uk/in
terpro/ 

A database of protein families, domains 
and functional sites, integrating major 
structural and functional databases, such 
as Pfam, PROSITE, SMART and 
Superfamily. 

(Mulder et al. 
2007) 

Pfam http://www.
sanger.ac.u
k/Software/
Pfam/ 

Pfam is a collection of multiple sequence 
alignments and hidden Markov models of 
protein domains and families. 

(Finn et al. 
2006) 

SignalP http://www.
cbs.dtu.dk/
services/Si
gnalP/ 

Predicts the presence and location of 
signal peptides and their cleavage sites in 
proteins. Uses neural networks and 
hidden Markov models. 

(Bendtsen et 
al. 2004) 

OrthoMCL  http://ortho
mcl.cbil.upe
nn.edu/ 

A genome-scale algorithm for identifying 
and groups of gene sequences that are 
shared across two or more species 
(orthologs) and groups that represent 
species-specific gene families (paralogs).  
Includes a database containing pre-
computed results for sequenced 
genomes. 

(Li et al. 
2003) 

ModBase http://modb
ase.compbi
o.ucsf.edu/ 

Database of theoretical 3-D protein 
structure models calculated by 
comparative modelling.  The modelling 
pipeline uses the PSI-BLAST and 
MODELLER programs. 

(Pieper et al. 
2006) 
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Comparative 
models of 
Plasmodium 
falciparum 
(3D7) proteins 

http://bioinf
o.icgeb.res.
in/codes/m
odel.html 

Database of theoretical 3-D protein 
structure models calculated by 
comparative modelling.  The method 
used BLASTP and MODELLER. 

(Gowthaman 
et al. 2005) 

http://plasm
ocyc.stanfo
rd.edu/ 
 

PlasmoCyc 

A version 
also at 
http://apicy
c.apidb.org/ 

A genome/pathway database for P. 
falciparum 3D7.  Graphical display of 
pathways and individual enzymatic 
reactions.  Provides a whole-cell overview 
of metabolic pathways and allows 
comparison to other organisms.  Part of 
the Pathway Tools/BioCyc framework.  
No longer appears to be supported. 

(Yeh et al. 
2004) 

Kyoto 
Encyclopaedia 
of Genes and 
Genomics 
(KEGG)  

http://www.
genome.ad.
jp/dbget-
bin/www_bf
ind?p.falcip
arum 

Database of biological systems and their 
components, including pathways, 
enzymes, reactions, gene catalogues, 
gene orthology, and ligands. 

(Kanehisa et 
al. 2006) 

Ontology-
based Pattern 
Identification 
(OPI) 
Database 

http://cheml
ims.com:80
80/OPI20/
MServlet.C
hemInfo 

Portal to search the Winzeler lab�s 
database of the OPI algorithm applied to 
P. falciparum mRNA expression data.  
OPI identifies expression patterns that 
best represent existing knowledge of 
gene function and uses the principal of 
guilt by association to systematically 
annotate genes with GO terms. 

(Zhou et al. 
2005) 

PlasmoMAP http://www.
cbil.upenn.
edu/plasmo
MAP/ 

Network of predicted functional 
interactions between P. falciparum 
proteins; constructed by integrating 
computational and functional genomics 
data within a Bayesian framework. 

(Date and 
Stoeckert 
2006) 

Table 1.3. A list of sources of annotation available for Plasmodium genes.  These tools predict 

functional annotation using automated electronic methods, usually based on homology to other 

annotated sequences. 

 

Computational analysis of P. falciparum sequences has additionally lead to 

the predicted reconstruction of metabolic pathways (Yeh et al. 2004; Kanehisa et al. 

2006), functional interaction networks (Date and Stoeckert 2006), prediction of 

protein structures by homology modelling (Gowthaman et al. 2005; Pieper et al. 

2006), and a novel theory about the likely mechanism of gene expression control 

within the parasite (Coulson et al. 2004; van Noort and Huynen 2006; Gunasekera et 
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al. 2007).  The advantages of large-scale homology modelling for protein structure 

prediction are discussed further in Section 1.5.4.2. 

Automated electronic annotation of genes based on sequence homology is a 

rapid way to achieve an initial indication of their possible biological roles and 

provide an overview of the genome repertoire.  The ultimate aim will be to 

experimentally confirm all predicted annotations, which, clearly, would take an 

inordinate amount of time and resources.  The next Section will discuss the use of 

high-throughput functional genomics technologies to help in this endeavour.  

1.4.3 Functional classification of gene products 

1.4.3.1 Ontologies 

Several systems now exist to describe the function of genes using a controlled 

vocabulary of terms.  The most well known and widely used is the Gene Ontology 

(GO) (Ashburner et al. 2000).  The GO project aims to address the need for 

consistent descriptions of genes across databases and species.  The GO project has 

three hierarchically structured vocabularies (ontologies) to describe genes in terms of 

their cellular component (C), biological process (P) and molecular function (F).  

Each GO term has a unique identifying number, a short name and a description; 

many terms are also associated with synonyms.   

A large number of tools have been developed for browsing and annotating 

genes with GO terms, as well as for mapping GO terms to other types of data, such 

as clusters of genes derived from microarray analysis of gene expression (for a list of 

tools see http://www.geneontology.org/).  When a term is assigned to a gene, the 

annotation is required to be given one of a number of GO evidence codes.  Evidence 
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codes indicate how the annotation was made and provide useful information, such as 

a PubMed article identifier or a database identifier for annotations made using 

information from other genes, particularly in cases where function is inferred by 

sequence similarity. 

The downside of ontologies is that they aim to be generically applicable to all 

organisms, so the scope and potential of GO for describing unusual and complex 

organisms such as Plasmodium is somewhat limited.  Much of the initial annotation 

of a genome�s gene sequences is inferred automatically using sequence databases to 

assign putative functions to the genes based on sequence similarity alone.  There are 

a number of problems associated with this method, not least that these programs 

often rely on local sequence similarity to assign functional annotation, which may be 

unreliable because the genes� functions may have diverged.  As a consequence, many 

of the genes in the P. falciparum genome that have been assigned GO terms, have the 

evidence code IEA (Inferred from Electronic Annotation), where no curator has 

checked the annotation, and a smaller number have the evidence code ISS (Inferred 

from Sequence or Structural Similarity), where a curator has checked the annotation.  

Furthermore, due to the large number of genes that are unique to the Plasmodium 

genus, annotation of the genome with GO terms was limited to those with a 

recognisable homolog in the sequence databases [as of 05/07/2008 58% of P. 

falciparum genes have a GO term assigned to them (Wellcome Trust Sanger Institute 

Plasmodium falciparum Genome Projects; 

http://www.sanger.ac.uk/Projects/P_falciparum/; Malaria Genome Exploration Tool; 

http://www.malariagenomeexplorer.org)]. 
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1.4.3.2 Databases of protein signatures 

Many databases of conserved protein families, domains and functional sites 

exist to facilitate the annotation of novel protein sequences.  Such information is 

important because patterns of conserved functional sites and domains can provide an 

indication of a protein�s probable function.  The InterPro resource integrates ten 

major protein signature databases (Mulder et al. 2007).  The member databases use a 

variety of methods to annotate protein sequences.  Therefore, by combining multiple 

methods InterPro increases overall sequence annotation coverage compared to that 

provided by any single method.  InterPro has been employed by genome annotation 

projects as a tool for automated annotation of protein features (Mulder et al. 2007).  

Indeed, InterPro has been employed by PlasmoDB and GeneDB to annotate genes 

from Plasmodium species [as of 05/07/2008 95% of  P. falciparum genes have at 

least one InterPro predicted feature (Wellcome Trust Sanger Institute Plasmodium 

falciparum Genome Projects; http://www.sanger.ac.uk/Projects/P_falciparum/; 

Malaria Genome Exploration Tool; http://www.malariagenomeexplorer.org)]. 

1.4.3.3 Novel methods of functional annotation 

 Recently, attempts have been made to address the short comings of traditional 

gene sequence annotation methods.  One approach that combines the results from a 

number of different techniques with a conservative attitude to inferring function 

based on global homology using domain patterns of protein families is PhyloFacts 

(Krishnamurthy et al. 2006).  PhyloFacts is a structural phylogenomic encyclopaedia 

containing �books� of protein families and domains, which integrates a variety of 

experimental and bioinformatic data and methods within an evolutionary context.  

PhyloFacts was born from the observations that prediction of protein function is 
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more accurate when using the consensus from a range of different bioinformatic 

approaches and the power of integrating information from a number of sources.  A 

clear distinction is made between assignments to books representing global 

homology of sequences (functional annotation can be transferred with high 

confidence) and those representing single domains or conserved regions (possible 

function can only be predicted for part of the sequence).   

 The PhyloFacts project is still undergoing major development and expansion, 

but it is set to become an important resource for automated genome annotation.  This 

will be enhanced by their forthcoming development of a natural language processing 

method to create summaries of the key points about each book and the genes 

assigned to it. 

 

1.5 Functional genomics 

 The publication of the genome sequence of the malaria parasite with its 

revelation that two thirds of the genes were marked as �hypothetical� (predicted 

genes with no known homologs or with homologs of unknown function), sparked 

interest in using modern technologies to discover their functions (Doolittle 2002).  A 

number of genome-scale studies involving Plasmodium genes and gene products 

have been published in recent years, including laboratory experiments to measure the 

levels of gene and protein expression at various stages of the life cycle (Florens et al. 

2002; Lasonder et al. 2002; Bozdech et al. 2003; Le Roch et al. 2003; Le Roch et al. 

2004; Hall et al. 2005; Llinas et al. 2006), discover protein-protein interactions 

(LaCount et al. 2005), examine sequence variability of coding and non-coding 
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regions of the genome (Carret et al. 2005; Kidgell et al. 2006) and characterise 

protein structures (Mehlin et al. 2006). 

 In many cases the results of these studies are made available online through 

publicly accessible databases.  The aim of such databases will be to hopefully permit 

annotations to be updated in future, should new information become available.  Table 

1.4 summarises the public databases that store experimental data about Plasmodium 

genes and/or proteins. 

 

Tool Web address Description Publication 

Protein Data 
Bank 

http://www.rcsb.
org/pdb/ 

Database and information portal of 
experimentally-solved biological 
macromolecular structures. 

(Berman et 
al. 2000) 

Structural 
Genomics of 
Pathogenic 
Protozoa 

http://www.sgpp.
org/ 

Website of the structural genomics 
initiative for characterisation and 
structure determination of parasite 
proteins on a genome-wide scale. 
Lists the status of target proteins. 

(Mehlin 
2005; Mehlin 
et al. 2006) 

Malaria 
Metabolic 
Pathways 
Database 

http://sites.huji.a
c.il/malaria/ 

Manually curated database of all 
known pathways in the parasite 
(metabolic and other processes). 

(Ginsburg 
2006) 

Malaria IDC 
Transcriptome 
Database 

http://malaria.uc
sf.edu/comparis
on/index.php 

Portal to search the DeRisi lab�s P. 
falciparum intraerythrocytic 
developmental cycle (IDC) 
transcriptome database containing 
mRNA expression levels as recorded 
in the microarray experiments 
described in these papers. 

(Bozdech et 
al. 2003; 
Llinas et al. 
2006) 

Malaria Full-
Length cDNA 
database 

http://fullmal.ims
.u-tokyo.ac.jp/ 

Online database containing cDNAs 
from P. falciparum, P. vivax, P. yoelii 
and P. berghei. The aligned 
sequences can be viewed in a 
genome browser. 

(Watanabe et 
al. 2004) 

Table 1.4. A list of public databases containing experimental data on Plasmodium genes and proteins. 

 

 In other cases the results of the study have only been made available as a 

supplementary data file alongside the journal publication.  The annotation will 

remain static and it will be very difficult to track and release updates in future.    
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The following Sections will provide an overview of the most influential high-

throughput functional genomic studies published to date. 

1.5.1 Gene expression analysis using DNA microarrays 

1.5.1.1 Affymetrix arrays 

The Winzeler laboratory (The Scripps Research Institute, La Jolla, CA, USA; 

http://www.scripps.edu/cb/winzeler/) have used a custom high-density 

oligonucleotide array produced by Affymetrix (Santa Clara, CA, USA; 

http://www.affymetrix.com/) to perform whole-genome expression profiling of P. 

falciparum over multiple life cycle stages.  The array contains 367,226 probes 

placed, on average, every 150 bases along both strands of the genome and 

corresponding to both coding and non-coding regions (including at least 5159 genes).  

Probes are 25 nucleotides long and genes are each represented by up to 20 probes 

(the set of probes corresponding to a gene is known as the probe set).  The expression 

level of a gene is estimated by normalising signal intensities across the probe set. 

The study by Le Roch et al. (2003) measured the expression profile of P. 

falcparum strain 3D7 over the sporozoite, six intraerythrocytic stages (early and late 

ring, trophozoite and schizont), merozoite and gametocyte stages of the life cycle.  

The authors used two different techniques to synchronise the cultures of blood stage 

parasites and eliminate the effects of chemical or temperature stress from their 

analysis (5% D-sorbitol treatment and temperature cycling incubation).  The results 

showed that there was little difference in expression between the two methods.  The 

authors found that 4557 genes were expressed in at least one stage of the life cycle, 
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while 602 genes were not expressed in any stage examined, so these genes might be 

expressed in the mosquito gut or liver stages (Le Roch et al. 2003). 

A later study by Young et al. (2005) measured the expression profile of P. 

falciparum 3D7 gametocyte development on days 1-3, 6, 8 and 12 to capture stages 

I-V of their development and on days 1-4 for a set of high purity stage I-II 

gametocytes.  They also recorded the expression of P. falciparum NF54 gametocytes 

over 13 days of development.  They found that on average 3410 genes were 

expressed at each time-point of the experiment (Young et al. 2005). 

1.5.1.2 Spotted glass slide arrays 

 The DeRisi laboratory (University of California, San Francisco, CA, USA; 

http://derisilab.ucsf.edu/) has developed an in-house spotted glass slide microarray 

containing 7,462 long 70mer oligonucleotides representing 4,488 genes.  Of these 

genes, over 1000 are represented by more than one oligonucleotide.  They used a 

standard two-colour competitive hybridisation mechanism to measure abundances of 

mRNAs in the cell.  During the experiment a pool of cDNAs is assembled from all 

the timepoints and labelled with Cy3 dye to be used as a reference, while the cDNA 

from an individual timepoint is labelled with Cy5 dye.  For this type of array the 

analysis does not include normalisation of signal intensities from multiple probes 

belonging to one gene.  This is because there can be differences in the intensities of 

probes mapping to a single gene, which can arise for a number of reasons, such as 

splice variation or inaccurate exon prediction. 

The DeRisi laboratory used their array to investigate the expression profile of 

genes in the intraerythrocytic developmental cycle (IDC) of HB3, Dd2 and 3D7 

strains of P. falciparum.  Gene expression was measured hourly for 48, 50 and 53 
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hours, respectively.  The results showed 6415 expression profiles for HB3, 5294 for 

Dd2 and 6287 for 3D7 (Bozdech et al. 2003; Llinas et al. 2006). 

1.5.2 Protein expression analysis using mass spectrometry 

Characterisation of the protein content of the parasite�s individual life stages 

is of vital importance to understanding its biology and its interactions with the host 

and vector.  Two studies that were published alongside the parasite�s genome 

sequence characterised the proteome of several stages including sporozoites, asexual 

stages, gametocytes and gametes.  Florens et al. (2002) were able to identify 2,415 

proteins over four life stages using multidimensional protein identification 

technology (MudPIT), which links protein separation by 2D liquid chromatography 

to tandem mass spectrometry (Florens et al. 2002).  Lasonder et al. (2002) used an 

alternative technique involving protein separation by gel electrophoresis, followed by 

reverse phase liquid chromatography coupled to quadrupole time-of-flight mass 

spectrometry, to identify 1,239 proteins in three life cycle stages (Lasonder et al. 

2002).  More recently, Le Roch et al. (2004) combined the Florens et al. (2002) data 

with MudPIT analysis of three further life stages in a study that compared the 

proteome data with that of a previous study of mRNA expression levels (Le Roch et 

al. 2003) to examine the role of post-transcriptional controls on the regulation of 

protein expression (Le Roch et al. 2004). 

1.5.3 Protein-protein interaction discovery using yeast two-hybrid 

screening 

 To date, one high-throughput yeast two-hybrid (Y2H) screen of pair-wise 

protein-protein interactions has been performed for Plasmodium (LaCount et al. 
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2005).  The procedure involves screening a library of �bait� protein fragments 

individually against a library of �prey� protein fragments.  The authors were able to 

identify 2,846 unique interactions between 1,295 different P. falciparum proteins.  

Despite attempting to filter out some of the most likely false positive interactions (by 

removing protein fragments that interacted with many partners), it is likely that a 

number of non-biologically meaningful interactions are still represented in the 

dataset (LaCount et al. 2005; Koegl and Uetz 2007).  For instance, two protein 

molecules that demonstrate the ability to interact physically, may never meet each 

other under normal physiological circumstances, due to being expressed at different 

times or in different cellular compartments.  Doubtless, other biologically occurring 

interactions will have been missed within the dataset, because the proteins were not 

expressed in their native environment.  Particularly, secreted, transmembrane and 

post-translationally modified proteins are unlikely to be picked up by large-scale 

Y2H experiments (Koegl and Uetz 2007).  Other experiments need to be done to 

produce a �core� set of repeatable interactions. 

1.5.4 High-throughput protein structure characterisation 

1.5.4.1 Experimental structure determination using x-ray 

crystallography 

 Large-scale studies to clone, express, purify and characterise proteins 

encoded by the parasite�s genome are expected to yield dividends for drug and 

vaccine target discovery.  Plasmodium genes are notoriously difficult to express in 

heterologous expression systems, due to a number of unique features, including the 

abundance of introns, the AT-rich genome, a different codon bias, proteins 
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containing long repetitive regions, large disordered loops and an unusual pattern of 

glycosylation (Mehlin et al. 2006).  

The Structural Genomics of Pathogenic Protozoa (SGPP) initiative aims to 

characterise proteins from major pathogens on a genome-wide scale.  Results from 

an initial selection of 1000 targets resulted in 307 proteins being expressed (although 

most were insoluble) and just 63 of these with large enough yields to enable further 

characterisation (Mehlin et al. 2006).  So far, several protein structures have been 

solved from various Plasmodium species, including some in complex with ligands 

(Structural Genomics of Pathogenic Protozoa; http://www.sgpp.org/).  In November 

2007, the total number of experimental structures in the Protein Data Bank (PDB) 

(Berman et al. 2000) of P. falciparum proteins stood at 137, representing 71 distinct 

proteins (Malaria Genome Exploration Tool; 

http://www.malariagenomeexplorer.org). 

The structural genomics effort has greatly contributed to understanding the 

properties that affect a protein�s expression in heterologous systems, the knowledge 

of which will be important for all future functional genomics studies (Mehlin et al. 

2006). 

1.5.4.2 Structure prediction using homology modelling 

 Comparative (homology) modelling of tertiary protein structures can be a 

useful tool for understanding protein function (since structure is directly linked to 

function) and for development of drugs � for example by using docking programs to 

screen ligands in silico.  For an organism such as Plasmodium, whose proteins are 

extremely difficult to express for the reasons given above (Section 1.5.4.1), 

comparative modelling can increase the number of protein structures available to the 
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research community.  Although models can be greatly improved when taking into 

account multiple template structures, large-scale modelling efforts are usually based 

on single template-target alignments, due to the limitations of automated modelling 

of thousands of proteins (Marti-Renom et al. 2000). 

 The Database of Comparative Protein Structure Models (ModBase) (Pieper et 

al. 2006) stores millions of models generated from high-throughput automated 

modelling of whole-genome sets of predicted proteins, including 48% of P. 

falciparum and 44% of P. vivax sequences (Database of Comparative Protein 

Structure Models; http://modbase.compbio.ucsf.edu/).  In a 2005 study Gowthaman 

et al. screened the set of P. falciparum 3D7 predicted proteins against the PDB and 

created models for 476 proteins.  They used a cut-off of 40% sequence identity to 

available template sequence, manually checked the alignment for errors and 

performed energy minimisation on the model (Gowthaman et al. 2005).  The set of 

models they created are likely to be of high quality, although the overall coverage is 

relatively low.  In contrast, ModBase does not specify any cut-off for sequence 

identity in order to ensure high coverage and prefers to leave decisions about model 

quality up to the user [they provide a score for the model using a method that 

considers various residue-level statistical potentials to assess the fold (Melo et al. 

2002)]. 

 

1.6 Visualisation and integration of functional genomics data 

The results of the annotation effort are made available to the research 

community in the form of online, publicly available, genome databases.  Typically, 

these databases aim to collate many different types of data in one place and facilitate 
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users to browse all the characteristics about a gene of interest.  To make the process 

of information retrieval as appealing as possible for biologists, databases often try to 

incorporate the use of visual tools to display the data. 

In the next section purpose-built tools currently available to malaria 

biologists for browsing and/or analysis of various functional genomic data are 

discussed.  This is followed by an examination of other related tools for functional 

genomic data organisation and analysis that were not specifically designed for use 

with Plasmodium data. Some of these do provide access to Plasmodium datasets, and 

others are generic tools for use with any organism; however, given the unique 

properties and problems encountered when dealing with Plasmodium data, they are 

unlikely to work as effective solutions for malaria researchers. 

1.6.1 Browsing and analysis tools for Plasmodium functional 

genomic data 

Table 1.5 describes several databases and resources dedicated to facilitating 

users with searching for and displaying information about Plasmodium genes. 

The main limitation of currently available Plasmodium genome databases is 

that they focus on a single gene-at-a-time view of the data.  While being useful 

resources for biologists wishing to find out information about a particular gene of 

interest, they do not allow users to effectively explore relationships between genes 

and to mine functional genomic datasets on a larger-scale.  The ability to do this is 

essential to the discovery of hitherto unknown gene associations with biological 

processes and for driving the direction of experimental research. 
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Database Web address Description Publication 

PlasmoDB http://www.pla
smodb.org/ 

Genome database for all sequenced 
Plasmodium species.  Includes all kinds of 
genomic and proteomic data, which is fully 
searchable.  Each gene entry has a page 
listing information, including homologs, 
functional annotation, literature, sequence 
features, recorded expression level, 
sequences and SNPs, as well as link outs 
to other databases.  Query results can be 
saved in history and downloaded.  
Provides a standard genome browser, 
where pair-wise syntenic regions of certain 
genomes can be viewed.  Aims to be the 
primary resource for malaria researchers 
around the world. 

(Bahl et al. 
2003) 

http://www.gen
edb.org/ 

Wellcome Trust Sanger Institute (WTSI) 
Pathogen Genome Database.  Holds 
basic genomic, proteomic and functional 
data as well as annotation provided 
computationally and manually about the 
genes of organisms that have been 
sequenced at the WTSI.  As above, each 
gene entry has a page listing its 
information. Users can perform simple 
searches of the database, and download 
the results. 

GeneDB 

ftp://ftp.sanger.
ac.uk/pub/path
ogens 

The WTSI ftp site where the GeneDB data 
can be downloaded in flat file format. 

(Hertz-
Fowler et al. 
2004) 

TIGR 
Parasites 
Databases 

http://www.tigr.
org/tdb/parasit
es/ 

Gene sequence and annotation database 
for the genomes sequenced by The 
Institute of Genomic Research (TIGR): P. 
falciparum, P. y. yoelii, and P. vivax.  
Includes GO annotation, metabolic 
pathways and EST expression data. 

N/A 

MalariaBase http://malariab
ase.org/ 

A tool for generating potential new 
annotations for malaria genes, 
concentrating mainly on P. falciparum, P. 
y. yoelii and the mosquito Anopheles 
gambiae.  Uses the OntoBlast tool 
(Zehetner 2003) to assign GO terms from 
BLAST results.  Provides an online 
database with search facility and ability to 
store query results and annotate genes.  
Genes can be analysed for protein family 
and functional annotation, with link outs to 
other databases. 

N/A 

NCBI 
Malaria 
Genetics & 
Genomics 

http://www.ncb
i.nlm.nih.gov/p
rojects/Malaria
/ 

Resources for Plasmodium, including 
organism-specific BLAST databases, 
genome and linkage maps, genetic 
studies, literature, protein structures, 
SNPs, proteomics data and sequences. 

N/A 
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Broad 
Institute P. 
falciparum 
database 

http://www.bro
ad.mit.edu/ann
otation/genom
e/plasmodium
_falciparum_s
pp/MultiHome.
html 

Genome sequences, gene predictions and 
automated annotation generated for P. 
falciparum genomes sequenced by the 
Broad Institute (and P. falciparum 3D7 
data from PlasmoDB).  Provides genome 
browsers, BLAST tools and downloadable 
data files. 

N/A 

WHO/TDR 
Malaria 
Database 

http://www.we
hi.edu.au/Mal
DB-
www/who.html 

Resources for malaria research, including 
sequence databases, genomic information 
such as codon usage and restriction sites, 
information about malaria antigens, ESTs, 
chromosome maps, literature and links to 
other sites. Also includes an early genome 
database (MalDB) for graphical display of 
chromosomes, gene lists and searching of 
genomic data (full database downloadable 
only). 

N/A 

UCSC 
Plasmodium 
Genome 
Browser 

http://areslab.u
csc.edu/cgi-
bin/hgGateway 

A genome browser for viewing conserved 
regions of several Plasmodium genomes, 
against the predicted P. falciparum genes 
from PlasmoDB.  Also shows the locations 
of ESTs, microarray and mass spec 
probes used in published mRNA and 
protein expression studies.  Data is 
available for download and direct access 
to the MySQL database is possible. 

(Chakrabarti 
et al. 2007) 

MalPort http://malport.b
i.up.ac.za:707
0/ 

A portal for bioinformatics databases and 
tools related to malaria parasites.  The 
SAMP database (Joubert and Joubert 
2008) contains computationally-derived 
predictions for proteins from P. falciparum, 
P. vivax and P. y. yoelii, such as motifs, 
secondary and tertiary structure.  Also 
provides lists of candidates for structural 
characterisation.  Advanced query 
interface provided.  MADIBA (Law et al. 
2008) provides tools for functional analysis 
of clusters of genes from microarray 
studies, including KEGG pathway 
mapping, GO term analysis, promoter 
analysis and chromosomal location.  
Results can be downloaded as PDF or 
text files. 

(Bastien et 
al. 2004; 
Joubert and 
Joubert 
2008; Law et 
al. 2008) 

Table 1.5.  A list of online Plasmodium genome databases and resources.  They are defined here as 

being dedicated whole-genome scale information resources that provide searchable interfaces and/or 

tools to analyse the genes and gene products and collate information about them. 

 

A further limitation of the resources listed in Table 1.5 is the primitiveness of 

their graphical displays.  For example, PlasmoDB visualisation runs to a basic 
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genome browser that is able to display genes in the context of a small region of the 

chromosome (in theory, up to 4 mb; in practice up to 1 mb) and a set of small 

expression profile graphs. 

Indeed, a recent development in the field of Plasmodium bioinformatics, the 

MalPort web server (MalPort; http://malport.bi.up.ac.za:7070/), represents a stride in 

the direction to addressing these short-comings.  By providing tools (MADIBA) for 

the analysis of gene clusters from microarray experiments (Law et al. 2008), MalPort 

emphasises the need to provide biologists with new tools allowing them to explore 

trends across gene groups.  Moreover, MalPort introduces the use of basic 

visualisation tools in analysis, such as providing KEGG pathway maps and 

displaying genomic location of clustered genes. 

1.6.2 Related tools for organisation and analysis of generic or 

other organism-specific functional genomic data 

 In the wider-field of functional genomic data representation and analysis 

many tools, both generic and organism-specific, have been developed to facilitate 

biologists and bioinformaticians to explore the data. 

Tools for mining functional genomic data can be divided into three broad 

categories: data management, annotation/analysis, and exploration/discovery.  Table 

1.6 lists examples of tools that offer integrated solutions for data management.  Table 

1.7 lists examples of tools that are designed to facilitate data annotation and/or 

analysis.  Finally, Table 1.8 lists examples of tools that help users to explore data 

using graphical displays.  

Visualisation tools for functional genomics data are proven to help biologists 

and bioinformaticians better understand the data and make sense of complex patterns 
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and relationships.  A large number of tools offering advanced visualisation 

capabilities for various types of functional genomics data are now available.  Many 

of them focus on the display of a single dataset, principally for the purpose of 

helping experimentalists explore and annotate the data they have generated, such as 

from microarray experiments.  Increasingly, tools are emerging that allow users to 

visualise multiple data-types concurrently and to overlay results from two or more 

experiments.   

The development of such tools is driven primarily by the vision of companies 

seeking to provide the answer to a laboratory�s ever-evolving data management and 

analysis requirements.  Hence, the products are typically designed for use with the 

vast quantity of data generated by medically-relevant human and mouse research.  

The pressing need to develop a centralised system for the organisation and mining of 

varied information about Plasmodium genes has become strikingly apparent 

(Birkholtz et al. 2006). 

Here I present a new development designed to fill this gap in the market by 

way of an innovative software tool providing graphical interfaces to various P. 

falciparum functional genomic data. 
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1.7 Motivation 

The value of data produced in large-scale functional genomic studies can only 

be harnessed by the research community if there are effective tools to explore and 

mine them.  Graphical display greatly enhances the information that can be gleaned 

by biologists.  Integration of different data-types affords users the advantage of being 

able to examine multiple lines of evidence about a gene�s function. 

In the field of malaria research very little is known about the roles of the 

parasite�s genes and their protein products.  Resources for research have been 

relatively limited due to malaria drugs and vaccines being non-profitable for 

pharmaceutical companies.  The malaria research community would benefit greatly 

from a publicly-available software tool for visualisation of integrated functional 

genomics data.  When research for this PhD thesis began in late 2004 the genome 

sequence of the malaria parasite had been available for two years and the first large-

scale functional genomics studies had just been published.  During the course of the 

research, several new studies have been performed, which provide data about many 

of the parasite�s genes that were previously uncharacterised.  The task now is 

presenting the data to biologists in a way that allows them to extract meaningful 

information about their proteins of interest and to view the results in the context of 

all the other data.   

The importance of a central resource for integrating and mining the malaria 

molecular, functional and pharmacological data was emphasised in a recent paper by 

Birkholtz et al. (2006), in which the authors called for the use of modern 

computational resources to organise the data from functional genomic experiments in 
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a useful, versatile way to enhance the identification and characterisation of novel 

targets (Birkholtz et al. 2006). 

 

1.8 Aims and objectives of thesis 

 In this thesis I introduce the Malaria Genome Exploration Tool (MaGnET), a 

novel software tool for integrated visualisation of functional genomic data pertaining 

to P. falciparum and related organisms.  Chapter 2 describes the design philosophy 

and the specific aims and objectives of the software.  Chapter 3 lists the publicly-

available datasets that are stored in the MaGnET database, any processing applied to 

the data and the structure of the database.  Chapter 4 presents the implementation and 

important features of the MaGnET visualisation program, accompanied by helpful 

screenshots.  Additionally, it discusses MaGnET�s advantages over other tools in the 

field and suggests directions for useful future expansion.  Chapter 5 demonstrate how 

MaGnET can reproduce the results of several recent studies into P. falciparum gene 

function.  Chapter 6 reports on analyses performed using MaGnET that has lead to 

the development of novel hypotheses about gene function, which are testable in the 

lab.  The final Chapter draws conclusions about the work presented in this thesis and 

puts it in context with other work in the field. 
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2. SYSTEM DESIGN 

Overview 

 Chapter 1 described the current status of Plasmodium functional genomic 

research and the motivation for developing a new tool to enable biologists to explore 

the data.  In this chapter, specific design proposals and targets for the tool will be 

described.  The chapter starts with definitions of key concepts and layout of the 

overall software aims.  A detailed diagram and description of the system design 

follow.  Identifiable aims for data inclusion, user interface design and software usage 

will be outlined.  Finally, the specific shortcomings of other resources that the tool 

aims to address will be discussed. 

 

2.1 Definitions 

 The following section introduces definitions for three concepts central to this 

thesis. 

�Visualisation� 

 Scientific visualisation is the use of computer graphics to present any kind of 

scientific data and is particularly helpful when viewing large quantities of data.  

Visualisation aids reasoning, perception and hypothesis formation.  Graphical 

displays can be anything from simple two-variable graphs to virtual representations 

of biological entities.  

�Integration� 
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In a bioinformatic sense, integration refers to bringing different biological 

data together within a computational resource.  Data may be displayed side-by-side 

or one type of data mapped onto another, in order to facilitate their comparison.  

Integrating disparate data offers challenges for visualisation, and it is important to 

ensure that the data is displayed in a biologically meaningful manner. 

�Exploration� 

In scientific research, exploration means investigating the unknown to gain an 

initial understanding.  Exploration often refers to a careful, systematic search leading 

to new a discovery.  

 

2.2 Software aims 

The overall aims for the new software tool are outlined here.  The principal 

aim is to provide malaria biologists with tools for visualisation of various important 

Plasmodium functional genomic datasets.  These data include recent genomic, 

proteomic and transcriptomic datasets, as well as certain selected predictions about 

protein function, described in Chapter 1.  The viewers for different kinds of data 

need to be integrated and permit users to carry selections between them.  To facilitate 

user interaction with the software they must be able to easily select genes of interest 

and to modify their selection.  The program will allow users to take a novel approach 

to hypothesis generation by encouraging them to explore available data through 

visualisation.  Ultimately, it should aid users in discovering hitherto unrecognised 

relationships between genes and to make informed predictions about gene function.  
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To achieve this, the software tool needs to incorporate a database in which to store 

the required datasets and a program for rendering the graphical display of data. 

 

2.3 The MaGnET system 

Figure 2.1 presents the MaGnET system connectivity map.  It is based around 

a MySQL database (MySQL AB, Uppsala, Sweden; http://www.mysql.com/) to hold 

the data and a Java program (Sun Microsystems, Santa Clara, CA, USA; 

http://www.java.com/) for visualisation.  Section 3.1 includes a detailed description 

of the database design and Sections 4.2 and 4.3 describe the design of the Java 

program and user interface.  The data are read into the database by several programs, 

each written for the specific purpose of reading and processing a particular dataset.  

Section 3.2 lists the datasets and their sources, and Section 3.3 describes the process 

by which each dataset is processed to extract the relevant information and prepare it 

for entry into the database.   

The visualisation program is based around four integrated data viewers.  The 

Genome Viewer is for visualising chromosome and gene organisation at the whole 

genome level, at the level of an individual chromosome and at the level of individual 

gene intron/exon organisation.  The Protein-Protein Interaction Viewer presents a 

novel method for viewing Plasmodium protein interaction networks.  The Expression 

Data Viewer is for visualisation of time-series expression data (mRNA or protein 

levels recorded over various stages of the life cycle).  The Data Analysis Viewer 

allows querying of the database and displays results and various data about the genes 

in the form of a table.  All the sections are linked and groups of genes selected in one 

viewer can be easily transported to the other viewers. 
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Figure 2.1.  The MaGnET connectivity map.  Data is read in and stored in a MySQL database and 

visualised with a Java program.  The MainFrame class stores globally-needed information and 

controls the rest of the program.  There are four viewers for visualising genomic features, protein-

protein interactions, protein and mRNA expression data and the results of database queries.  Gene fact 

sheets provide a summary of all the data available about a particular gene and link to the Jmol 

structure viewer for visualising 3D protein structures.  The program and database can be used online 

through a web browser as a Java applet, or as a downloadable application with Java Web Start 

technology.  Alternatively, users may request their own copy of the program and database that can be 

installed and used locally. 

 

2.4 Objectives for data inclusion 

 The data included within MaGnET should all come from publicly-available 

sources, in order that MaGnET itself will be completely free for use.  The data 
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should either come from well-received published studies or from widely-used 

annotation tools, and be endorsed by the major Plasmodium data resources, such as 

PlasmoDB (Bahl et al. 2003) and GeneDB (Hertz-Fowler et al. 2004).  This should 

ensure that the experimental and predicted data included within MaGnET is of a 

high-standard.  The careful inclusion of selected predicted annotations can provide 

additional helpful clues towards possible function for genes annotated as 

�hypothetical proteins� [approximately two-thirds of the predicted proteome 

following genome sequencing (Gardner et al. 2002)]. 

 Datasets for incorporation in MaGnET should be carefully selected so that 

they are of relevance for research into gene function.  Genome resources often 

provide every bit of possible information about a gene, which is useful for reference 

purposes, but some of it is not necessary for formulating new hypotheses about 

probable functions.  Moreover, a specific aim of MaGnET is to minimise the feeling 

of �data overload� often felt by biologists when using these kinds of resources.  The 

inclusion of only selected datasets should achieve this. 

 The data also needs to be a format that can easily be read into the database 

without too much necessary processing.  Downloadable text files in standard formats 

are best.  This will help to ensure that future releases of data files remain compatible 

and update programs can easily be deployed to update the database. 

 

2.5 Objectives for database design 

 The software used for the MaGnET database needs to be robust, reliable and 

able to perform fast searches and data retrieval.  It also needs to be able to cope with 

a variety of data-types.  The database design must organise the data intuitively, 
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without repetition, and needs to be flexible and extendable to allow future expansion.  

The software program for data visualisation needs to be able to communicate 

effectively with the database. 

 The database needs to be in a format that can be freely distributed, so that in 

future users could download and install a local copy of the database, into which they 

could add their own datasets. 

 

2.6 Objectives for visualisation program design 

2.6.1 Technical requirements 

 The programming language chosen for developing the MaGnET visualisation 

program needs to be supported by all other necessary technologies, including the 

database system, internet applications, such as web browsers, and all major operating 

systems.  It should be well-documented, actively developed and widely used, in order 

to ensure there is a strong base for support.  The latter is essential for reliable, 

efficient program development because programming language user and developer 

community websites provide helpful coding examples and advice on trouble-

shooting for common problems. 

2.6.2 User interface 

 The visualisation program user interface will provide graphical displays for a 

range of important functional genomic datasets.  The interface will include several 

dedicated �data viewers� to encourage users to explore individual datasets.  
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Moreover, all data viewers will be fully integrated in order that users can move easily 

between viewers and can carry gene selections forward between viewers. 

 MaGnET aims to provide users with novel features not currently 

implemented in available Plasmodium data resources.  For example, while browsing, 

users will be encouraged to select groups of genes based on common properties.  

Relationships between genes and shared properties of the group can then be explored 

in different contexts by enabling users to maintain their selections across datasets.  

Furthermore, the user will be able to change their selection at any point, adding and 

removing genes as they choose, unlike in other tools that allow selection of pre-

calculated gene sets. 

 Furthermore, MaGnET will advance on currently available graphical 

interfaces by integrating different types of functional genomic data in a single 

display.  This will bring an extra dimension functional genomic data visualisation 

that will allow users to easily explore relationships between data-types. For instance, 

visualisation of gene expression data mapped onto the genomic location could lead to 

discovery of co-regulated genes in close proximity. 

 The visualisation program must implement a search facility to enable the 

extraction of textual annotation data from the MaGnET database.  This data should 

be fully searchable via keyword, protein name or gene identifier.  Users of functional 

genomic data resources will always want to search for their particular proteins of 

interest by name or identifier; initially to test the software out using proteins with 

which they are familiar and, later, to access data about other proteins they have 

become interested in. 
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 While exploring, users need to be able to quickly access summaries of 

relevant functional and structural annotation about individual proteins.  MaGnET 

aims to facilitate this by providing a summary page about each gene that can be 

accessed at any time. 

 

2.7 Overall objectives for MaGnET 

2.7.1 Usability 

The resulting software tool needs to be entirely platform-independent, so that 

the software can easily work on any computer.  It needs to work �out of the box� so 

that users do not have to go through a complicated set-up procedure to use the tool.  

It needs to be freely accessible to researchers in academic and government 

institutions, which is where the majority of fundamental research into malaria 

happens.  To ensure it reaches the people most in need of free software tools for 

malaria research (developing countries in particular), it needs to be accessible on the 

internet world-wide and should not require special resources to work. 

The user-interface needs to be simple enough for first-time users to quickly 

learn how to interact with the main features of the tool, and they need to know where 

to look to find instructions for using less obvious features.  Hence, a detailed set of 

help pages and simple-to-follow tutorials will be important for users to get the 

maximum advantage out of the program.  However, help pages are not usually the 

first port of call for first-time users, so the program does need to be laid out 

intuitively.  Also, the target audience are mainly laboratory-based biologists, rather 

than experienced bioinformaticians, so to use the tool�s features cannot require any 
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prior knowledge of bioinformatic techniques.  Having said that, bioinformaticians 

may find some aspects of MaGnET useful, such as advanced functionality for 

expression data exploration, that are not available in other Plasmodium tools online.  

Furthermore, the tool needs to make it clear to users what kind of data they 

are viewing and where it came from, so they can make an informed judgement on 

how much emphasis they wish to place on the various sources of information.  There 

should be links to the original data and to other helpful sources of information in 

relevant online resources. 

2.7.2 Outcome of MaGnET usage 

 The ultimate aim of exploratory analyses using MaGnET is the generation of 

novel hypotheses about gene function, which can then be tested in the laboratory.  In 

order to formulate sound hypotheses users should be encouraged to investigate all 

lines of evidence available by browsing different aspects of gene and protein 

function using MaGnET�s data viewers.  It is anticipated that MaGnET will fill a 

niche for a tool to kick-start new investigations into gene function by providing the 

opportunity to explore data that is otherwise quite inaccessible to malaria 

researchers.  MaGnET will hopefully become the starting point for expanding into 

other detailed analyses, which potentially could be either laboratory-based or involve 

further computational investigation.     
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2.8 Specific limitations of related tools that MaGnET aims to 

address 

 This section will expand upon the points introduced in Section 1.6 to set out 

how MaGnET aims to address specific short-comings of existing resources for 

functional genomic data organisation and display. 

The single gene focus of current databases prevents the user from easily 

comparing annotation of multiple genes.  This is important for a number of reasons, 

but it is particularly advantageous for assigning potential annotation to previously 

uncharacterised genes.  The concept of �guilt by association� has been well 

established in the field of genome annotation, where it holds that an uncharacterised 

gene that shares features in common with a group of genes of known function is 

likely to be associated with the same biological process or functional goal (Ettwiller 

and Paten 2004).  

Conventional tools rarely encourage users to browse datasets because they 

often force the user to start with the end in mind.  Many of the commonly used 

databases provide a search facility that requires the user to know what they are 

looking for, but do not provide a helpful interface to assist users with exploring the 

data to make discoveries that could lead to testable hypotheses.  This kind of 

approach could be especially useful in the quest for new drug and vaccine targets. 

Existing databases tend to present all the data that is available about a 

particular gene, including predicted information that is generated by the many 

automated tools for genome annotation (which often infer function based on 

sequence similarity as discussed in Chapter 1).  The problem is that predicted 

information is not always clearly distinguishable to biologists.  Another disadvantage 
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faced by biologists is that when using such genome-scale databases they sometimes 

experience a sense of �data overload� that makes it difficult to extract the relevant 

data of interest to them.  MaGnET aims to deal with the first of these issues by 

employing quality control criteria for the data included and to clearly mark any 

predicted annotation as such.  To address the latter concern MaGnET will include 

only the most relevant data for the purposes of gathering clues to potential gene 

function.  Therefore, MaGnET is not aimed at being a replacement for existing 

resources, but rather to complement them by providing a means for users to explore 

the major functional genomic datasets and generate hypotheses that they will be able 

to test using other bioinformatic or biochemical techniques.  

Very few of the publicly available tools have implemented extensive 

visualisation facilities for Plasmodium functional genomic data.  Where satisfactory 

visualisation does exist, it is usually limited to one type of data; for example, the 

Malaria Metabolic Pathways Database provides helpful diagrams of parasite 

pathways (Ginsburg 2006).  Several generic tools that provide visualisation are 

commercially available and/or require a prohibitively complicated installation 

procedure.  Therefore, the work described in this thesis aims to bridge an evident gap 

for a tool providing integrated visualisation of Plasmodium functional genomic 

datasets that is both lightweight and publicly accessible. 
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3. DATA AND DATA PROCESSING 

Overview 

MaGnET integrates a variety of publicly available functional genomic 

datasets for P. falciparum.  The sequencing consortium typically provides 

downloadable files containing the results of their genome sequencing, automated and 

manual annotation projects available via the Wellcome Trust Sanger Institute P. 

falciparum Genome Project web pages 

(http://www.sanger.ac.uk/Projects/P_falciparum/) or the Plasmodium Genome 

Resource (PlasmoDB; http://www.plasmodb.org/plasmo/).  Other datasets are 

provided as publication supplementary material; the data may be provided in a range 

of raw and processed formats (such as averages of multiple replicates or normalised 

against control data). 

 In this chapter, the design and structure of the MaGnET database and the 

datasets used to populate it are described, along with details of any processing that 

was performed prior to storing the data.  

 

3.1 Database development 

All data used by the MaGnET visualisation program needed to be stored in a 

dedicated database so that it was readily and quickly accessible.  A relational 

database model was chosen as the most appropriate due to its highly structured 

nature of storing data within tables.  The system of storing records as rows (tuples) 

and data fields as columns makes it possible to easily compare records and to 

combine useful data from different tables.  The Structured Query Language (SQL) 
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for relational databases is a powerful, widely-used language that has been 

incorporated by all the major relational database management systems (RDBMS). 

The chosen database management system needed to be portable, expandable, 

robust, secure, free to use, supported by many platforms and easy to install, with 

good software and technical support behind it.  It also needed to be simple and fast to 

store data in and read data from, with the facility to design and manage automated 

queries. 

3.1.1 The MySQL database management system 

MySQL (MySQL AB, Uppsala, Sweden; http://www.mysql.com/) was the 

RDBMS of choice since it is one of the most widely used databases around the 

world.  MySQL is fast, reliable, practical and free to use under the Gnu General 

Public Licence (GPL), as well as meeting all the other aforementioned criteria.  

MySQL offers extensive application development support, by providing drivers and 

connectors for major programming languages, such as Java. 

The MaGnET database was originally developed using MySQL version 3.23 

on an alpha server running Linux hosted by the School of Biology, University of 

Edinburgh.  The development version of the database was later migrated to MySQL 

version 5.0 on a machine running Windows XP Service Pack 2.  The publicly 

accessible version of the database is currently stored on a server at the University of 

California, Santa Cruz running MySQL 5.0. 

3.1.2 The MaGnET database 

 The MySQL database has been designed to hold the data with as little 

redundancy as possible.  The tables are easily expandable, so that in the future it will 
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be possible to add annotation for another genome to the existing database without 

having to change the database structure.  Rows must have a unique, identifying 

�primary key�; in many cases unique gene identifiers assigned to genes by the 

sequencing consortium are used as primary keys.   

The MaGnET database holds about 60 megabytes (MB) of data, contained in 

more than 165,000 rows across 19 tables.  When the genomic data for further 

genomes are added the database size will increase significantly; however, whether 

the size will remain correlated with the number of genomes depends on how the 

technology for large-scale functional genomic studies, such as expression, interaction 

and structural analysis, can keep up with the pace of high-throughput genome 

sequencing. 

 

 

Figure 3.1.  Entity relationship (ER) diagram depicting relationships between tables in the MaGnET 

database.  Table columns are described in Appendix A.  ER diagram created using MySQL 

Workbench version 5.0.23 OSS Community Edition (MySQL AB, Uppsala, Sweden; 

http://www.mysql.com/). 
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Figure 3.1 is an entity relationship (ER) diagram of the MaGnET database, 

which shows how the tables are connected.  Most of the tables reference a central 

�GENES� table, which contains information about individual genes.  These include 

annotation tables, such as �DOMAINS� and �GO_DATA� containing data on 

InterPro predictions and GO assignments, respectively, as well as tables holding 

individual mRNA and protein expression datasets.  Here, the publication first author 

and year are referenced in the table name, for example the Lasonder et al. 2002 

protein expression dataset is stored in table 

�PROTEIN_EXP_STUDY_LASONDER_2002�.  Full descriptions of the database 

tables are provided in Appendix A.  An SQL file (database �dump� file) containing 

all the data tables is provided on the accompanying CD.  Section 3.2 describes the 

datasets included in the database and Section 3.3 describes how and what data are 

extracted from input files and any processing required prior to adding them to the 

database. 

 

3.2 Data sets 

Table 3.1 summarises the original datasets and sources of the data stored in 

the MaGnET database.  The data come from a variety of different sources, including 

public databases, genome sequencing and annotation project web pages and journal 

publication supplementary materials.  Appendix B describes in more detail the files 

that were downloaded, their sources, version numbers and release dates. 
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3.3 Data extraction and database population  

 The following sections describe how and what data are extracted from the 

input files described in Section 3.2.  Java programs (and some Perl programs) were 

written to read in the data and use it to populate the database.  These programs can be 

used to easily update the database whenever a new version of a data file is released.  

Moreover, during the course of this project there have been several modifications to 

P. falciparum gene models and annotation and the availability of this set of programs 

ensured the database remained regularly updated.  The update programs are listed in 

Appendix C and the source code and binaries are included on the accompanying CD. 

3.3.1 Extracting chromosome data 

Files containing chromosome sequences were downloaded, and processed as 

described in Figure 3.2.  The data extracted from the files and further information 

derived from these are listed in Table 3.2. 

 

Extracted data Derived information 

chromosome number/identifier chromosome length 

species and strain  

Table 3.2.  Data extracted and derived from chromosome sequence files.  Chromosome nucleotide 

sequences were not saved due to space limitations in the database. 
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Figure 3.2.  Flowchart showing the process of chromosome data extraction. 

 

3.3.2 Extracting gene data  

The files containing gene and protein sequences and annotation were 

downloaded and processed as described in Figure 3.3.  The data extracted from the 

files and derived from these are listed in Table 3.3.  

The gene sequence files were read first to retrieve the gene identifiers, 

chromosome numbers and nucleotide sequences, which were used to create gene 

entries in the database.  The other genomic data and annotation was then retrieved 

from the EMBL format files (for chromosomes 1-14) and matched to existing entries 

in the database.  The apicoplast and mitochondrial chromosome annotations were 

available as GenBank format files (very similar to EMBL files); however, there was 

only limited information available about their genes.  Lastly, the protein sequences 

were extracted and added to the corresponding gene�s database record.   

    Java    program 

Parent folder; named in the format 
�species_strain� e.g. falciparum_3D7 

Files containing chromosome sequences in 
FASTA format, one file per chromosome; 

named as 
�chromosome.versionnumber.fasta� 

Extract chromosome data; insert into 
CHROMOSOMES table in database 
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The gene identifiers extracted here were used to identify the corresponding 

gene in all other datasets.  Any alternative identifiers by which this gene might be 

known were read from the EMBL annotation file and stored in the �alias� field of the 

gene�s record in the database. 

 

Extracted data Derived information 

standard unique gene identifier (gene id) unique MaGnET identifier (magnet id) 

species and strain length of gene 

nucleotide sequence length of each exon 

chromosome  

strand (�w� for Watson, or forward, strand, �c� 
for Crick, or reverse, strand) 

 

location on chromosome: start and end 
positions 

 

number and location of exons   

alias (previous/obsolete gene identifiers)  

type (e.g. protein coding, tRNA, 
pseudogene) 

 

protein sequence  

product name  

keyword  

detailed annotation provided by the 
Wellcome Trust Sanger Institute 

 

signal peptide location and prediction score  

signal anchor location and prediction score  

cleavage site location and prediction score  

standard unique gene identifier (gene id)  

Table 3.3.  Data extracted and derived from gene/protein sequence (FASTA) and annotation (EMBL) 

files.   
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Figure 3.3.  Flowchart showing the process of gene data extraction. 

 

3.3.3 Extracting Gene Ontology (GO) annotation 

The files containing gene product GO annotations were downloaded and 

processed as described in Figure 3.4.  The data extracted from the files are listed in 

Table 3.4. 

A file containing all GO terms and their full descriptions was downloaded (in 

OBO format) from the GO website (http://www.geneontology.org), the term names 

and descriptions were extracted and added to the GENE_ONTOLOGIES table in the 

      Java    program 

Extract protein sequences; 
insert into GENES table in 

database 

Extract gene id and 
nucleotide sequence; 

insert into GENES table in 
database 

Extract gene data including 
chromosomal location, 
product and annotation; 
insert into GENES and 

EXONS tables in 
database; insert signal 

peptide data into 
GENE_FEATURES table.

Files containing gene 
annotations in EMBL or 

GenBank format, one file 
per chromosome; named 

as 
�chromosome.versionnum

ber.embl� or 
�chromosome.versionnum

ber.genbank� 

Files containing FASTA 
formatted gene sequences 

� one file per 
chromosome, named as 

�chromosome.versionnum
ber.genes.fasta�; or a file 

containing all genes, 
named as 

�all.versionnumber.genes.f
asta� 

Parent folder; named in the format 
�species_strain� e.g. falciparum_3D7 

Files containing protein 
sequences; named as 

�anyname.versionnumber.
proteins.fasta� 
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database.  The P. falciparum GO annotation file (in GeneDB output format) was 

processed to retrieve the GO identifiers that have been assigned to each gene, if any, 

and the associated information.  Then the GO identifiers were matched to the correct 

term names in the GENE_ONTOLOGIES table and the P. falciparum annotations 

were added to the GO_DATA table.   

 

Extracted data Derived information 

standard gene identifier a unique annotation identifier 

 

ontology aspect (biological process, 
molecular function or cellular component 

 

GO term identifier  

GO term name  

alternative GO term identifier  

description of GO term  

evidence tag (a code indicating how the 
annotation was made, e.g. ISS � Inferred 
from Sequence or Structural Similarity) 

 

evidence with/from (another sequence or 
annotation which contributed to this 
annotation, e.g. a similar sequence or 
interacting protein) 

 

reference (the database name and 
accession number, e.g. the publication�s 
PUBMED id) 

 

date  

Table 3.4.  Data extracted and derived from the GO annotation and term description files.   
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Figure 3.4.  Flowchart showing the process of Gene Ontology annotation extraction. 

 

3.3.4 Extracting ortholog and paralog group data 

The file containing ortholog and paralog group associations was downloaded 

and processed as described in Figure 3.5.  The data extracted from the file are listed 

in Table 3.5.  This pre-computed cluster file was generated by the genome curators at 

the WTSI using the program OrthoMCL (Li et al. 2003) and includes five of the 

currently available and finished Plasmodium genome sequences. 

 

 

 

 

 

 

Figure 3.5.  Flowchart showing the process of gene ortholog and paralog group extraction. 

 

      Java   program 

Gene Ontology  
description file 

Extract GO term descriptions; 
insert into 

GENE_ONTOLOLOGIES table 
in database 

Gene Ontology  
annotation file 

      Java   program 

Extract GO annotation; insert 
into GO_DATA table in 

database 
 

Cluster file 

Extract ortholog/paralog 
groups; insert into 

ORTHOLOGUES table in 
database 

      Java    program 
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Extracted data 

unique group (cluster) identifier 

the number of group members belonging to each of P. knowlesi, P. berghei, P. 
chabaudi, P. vivax and P. falciparum 3D7 

the gene identifiers of the group members 

Table 3.5.  Data extracted from the ortholog/paralog cluster file. 

 

3.3.5 Extracting interaction data 

The file containing interactions from a large-scale yeast two-hybrid study of 

protein-protein interactions was downloaded and processed as described in Figure 

3.6.  The data extracted from the file and derived from these are listed in Table 3.6.  

The interaction file was read by the Java program and data about the interactions 

extracted as described above.  The program populated the INTERACTIONS table 

with this data and then used it to calculate the number of unique proteins that each 

protein in the dataset interacted with. 

 

 

 

 

 

 

 

 

Figure 3.6.  Flowchart showing the process of protein-protein interaction data extraction. 

 

Interaction file 

      Java program 

Extract interaction data 

Insert into INTERACTIONS 
table in database 

 

Calculate number of other 
proteins each protein 

interactions with 
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Extracted data Derived information 

standard gene identifiers of the bait and prey 
proteins in the interaction 

the number of unique interactions in which 
the bait protein participates 

the number of independent yeast two-hybrid 
searches in which the interaction was 
observed 

the number of unique interactions in which 
the prey protein participates 

the total number of times the interaction was 
observed 

 

the number of prey proteins that interact with 
the bait protein 

 

the number of bait proteins that interact with 
the prey protein 

 

the type of interaction (e.g. �self� where two 
molecules of the same protein interact, or 
�reciprocal� where the proteins are observed 
to interact in either position) 

 

the name of the study  

Table 3.6.  Data extracted from the yeast two-hybrid protein-protein interaction study file. 

 

3.3.6 Extracting protein predicted sequence feature and domain 

information 

The protein predicted sequence feature and domain annotations were 

downloaded and processed as described in Figure 3.7.  The data that are extracted 

from the file are listed in Table 3.7.  The information was read and extracted from 

the files by a Java program, measured against a cut-off E value (if applicable � not all 

types of predictions have an associated E value, such as transmembrane and low 

complexity regions) and inserted into the DOMAINS table in the database.  
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Extracted data 

standard gene identifier 

type of domain (e.g. transmembrane, coiled coil, Pfam) 

specific domain identifier (e.g. Pfam domain identifier) 

description of the domain 

start and end positions 

expectation (E) value for the domain prediction less than or equal to 1E-6 (if applicable) 

date that the annotation was made 

InterPro identifier for this domain (if applicable) 

any additional details  

Table 3.7.  Data extracted about predicted protein sequence features and domains. 

 

 

 

 

 

Figure 3.7.  Flowchart showing the process of data extraction for predicted protein sequence features 

and domains.  Most annotations were contained in the InterPro file.  A recent update to the InterPro 

file no longer includes transmembrane region predictions.  Transmembrane region predictions were 

retrieved from WTSI genome annotation file (EMBL format). 

 

3.3.7 Retrieving experimentally-solved protein structures 

 The structures were downloaded as PDB-format coordinate files (one file per 

solved structure, which can contain multiple protein chains) as described in Figure 

3.8.  The coordinate files are not currently stored in the MaGnET database due to 

buffer size and storage space restrictions, so they are stored on the MaGnET server 

(or in the local file system for local versions of MaGnET) in folders arranged by 

InterPro file 

Extract domains with E value <= 1E-6 (if applicable); insert into 
DOMAINS table in database 

Java program 

Optional: all gene/protein 
annotations in EMBL file 
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Plasmodium species, under a parent folder named �pdb_structures�.  Certain 

information about the protein chains that have solved structures was extracted and 

stored in the database.  The data extracted from the files and information derived 

from these are listed in Table 3.8. 

 

 

 

 

 

 

 

 

 

Figure 3.8.  Flowchart showing the process by which solved protein structures were extracted from 

the PDB.  A PDB-format coordinate file for each structure and a FASTA file containing all the 

sequences were downloaded. 

 

The coordinate files were named with their PDB code (e.g. 1N81.pdb).  

Therefore, in order to utilise the structure files a list containing the PDB code and 

chain identifier for a particular gene product was required.  The database table 

provided a useful means of storing this information for quick access.  Since the gene 

identifier is rarely included in the coordinate file the structures had to be matched to 

their corresponding gene identifiers using the process described in Figure 3.9.  This 

PDB website 
(http://www.rcsb.org/pdb/) 

All structures belonging to one 
Plasmodium species 

Browse by organism 

Remove highly similar 
structures with >95% 

sequence identity 

PDB coordinate files FASTA sequence file 
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process made use of two programs provided by the National Center for 

Biotechnology Information (NCBI).  The �FORMATDB� and �BLASTP� programs 

are available as part of the BLAST downloadable software package from 

ftp://ftp.ncbi.nih.gov/blast/.  The program FORMATDB creates a local database of 

sequences against which a search can be run using an appropriate BLAST program, 

in this case searching for similarity between the solved structure sequences and a 

database of all protein sequences using BLASTP.   

The Java program that processed the BLAST result file assumed that the top hit 

was the protein whose structure was solved.  The information listed in Table 3.8 was 

then extracted from the FASTA sequence and BLAST result files. 

 

Extracted data Derived information 

PDB code (a unique four letter code 
identifying the structure in the PDB) 

standard gene identifier 

chain (the protein chain identifier) a unique structure identifier 

amino acid sequence of the solved region  

starting residue number of the solved region  

ending residue number of the solved region  

Table 3.8.  Data extracted and derived from PDB structure files. 
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Figure 3.9.  Flowchart showing the process of matching solved protein structures with their 

corresponding gene identifiers and insertion of data about the structure into the MaGnET database. 

 

3.3.8 Retrieving comparatively-modelled protein structures 

 The modelled structures were downloaded as PDB format coordinate files as 

described in Figure 3.10.  The files were indexed using their standard gene 

identifiers.  The program Wget (Gnu Wget; http://www.gnu.org/software/wget/) 

automatically downloads the files when provided with a list of URLs (for example, 

http://salilab.org/modbase/retrieve/modbase/?databaseID=PF14_0433). 

      Java    program 

Match protein chains to gene 
identifiers; extract solved 

structure data; 
Insert into 

PDB_STRUCTURES table in 
database 

Create database of all 
protein sequences 

BLAST structure sequences 
against database of protein 

sequences  

           NCBI   FORMATDB 

FASTA file containing all 
protein sequences 

     NCBI   BLASTP  FASTA format file 
containing amino acid 
sequences of solved 

structures 

BLAST output file  
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Multiple models may be available for an individual gene product and all the 

models are included within the same file.  There are a number of reasons why 

multiple models could be generated for a protein, including the availability of 

template structures of varying sizes and representing different structural domains.  

Another reason why multiple models are often created is due to the availability of 

templates with differing sequence identities to the query sequence (the modelling 

process does not filter out templates with a low sequence identity).  This leads to a 

large amount of redundancy in the database, with multiple models representing 

roughly the same region of protein sequence.  It also leads to some low quality 

models creeping in due to the low sequence identity of target-to-template pairing 

accepted for modelling.  On occasions where a small section of protein sequence has 

similarity to a small region of a solved structure, a very short model is created.  

These short models might comprise only a small secondary structural unit such as an 

alpha helix, which imparts no information about the overall structure of the protein. 

Despite the deficiencies of the ModBase database of modelled structures, it 

does contain a large number of useful models of high quality, which makes it an 

important resource for biologists.  However, due to the large number of redundant, 

low quality and potentially misleading models, accessing the interesting models 

becomes awkward and off-putting.  In addition, many bench biologists are unlikely 

to know how to distinguish the useful, high quality models from the noise. 

In order to collect only the useful models by removing the low quality models 

and redundancy from the set, the methodology described in Figure 3.10 was 

developed.  A set of criteria was established which models had to match or exceed in 

order to be retained in the set of high quality models (Table 3.9).   
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Criteria for model selection 

sequence identity of match to template structure >= 20% 

expectation (E) value of match <= 1 x 10-6 

sequence length of model >= 45 residues 

ModBase model score >= 0.7 

Table 3.9.  Cut-off criteria for comparative model selection.  Models must meet or exceed these 

criteria to be considered good quality. 

  

The E value is the probability of getting a match between two sequences 

based on chance.  The lower the number the greater the probability that the two 

sequences are truly homologous.  The value 1 x 10-6 is the generally accepted 

minimum cut-off for BLAST searches.  The ModBase model score is calculated from 

statistical potentials to predict how good the model is expected to be (Melo et al. 

2002).  According to the authors, a model is predicted to be reliable if it has a score 

greater than 0.7.  In this case, the probability of the model having the correct fold is 

above 95%, for which at least 30% of the C alpha atoms must superpose within 3.5Å.  

The sequence identity between template and target sequence to produce the correct 

fold needs to be a minimum of 20% (D Gerloff, personal communication).  The 

minimum sequence length of 45 residues was decided by the size of the smallest 

known structural domain, an EF hand. 

Following filtering out of low quality models, the program BLASTCLUST 

(NCBI; ftp://ftp.ncbi.nih.gov/blast/) was utilised to gather the structures into groups 

of high similarity based on having an identical sequence over 90% of their length.  

As described in the previous section the program FORMATDB was first used to 

build a database of all modelled sequences.  The model sequences were not available 

to download, so they needed to be calculated from residue information in the 



 73

coordinate files.  Two rounds of clustering were performed, the first looked for 

sequences that were identical across greater than 90% of both their lengths and 

retained the sequence (and hence structure) with greatest sequence identity to 

template.  The second looked for sequences which were sub-parts of longer 

sequences, by looking for sequences that were identical across greater than 90% of 

one of their lengths.  The shorter sequences were discarded, unless they happened to 

have sequence identity to template over 5% greater than that of the longer sequence, 

in which case both sequences were retained.  The shorter model is likely to be better 

due to a significantly higher sequence identity, but the longer model is informative 

over more of the protein sequence. 

As for the experimentally-solved structures, information about the models 

was stored in a table in the MaGnET database.  The data extracted and stored are 

listed in Table 3.10. 

The model coordinate files are stored on the MaGnET server (or local file 

system for local version), within folders divided according to the species, and inside 

a parent folder called �models�. 
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Extracted data 

a unique model identifier 

amino acid sequence of the model 

gene identifier of the modelled protein 

sequence identity of modelled sequence to template structure 

model score 

E value of the match between modelled sequence and template  

template structure�s PDB code 

chain identifier of template protein in PDB file 

length of the modelled protein 

starting residue number of the modelled part of the protein sequence 

ending residue number of the modelled part of the protein sequence 

starting residue of the template sequence that was used for modelling 

ending residue of the template sequence that was used for modelling 

date the model was created 

the name of the modelling run in which the model was created 

any notes about the model 

Table 3.10.  Data extracted from comparative model structure files.   
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           NCBI   FORMATDB 

      Java   program 

      Java    program 

      Perl   program 

FASTA sequences file for models  

Model coordinate files (one file per gene) 

Remove low quality models 

Cookies file with user 
name and password 

  Remove genes with no models  

High quality models matching criteria 

wget program 

File listing URLs to the 
genes� models  

Extract model data;  
insert into 

STRUCTURE_MODELS 
table in database 

Create database of model sequences 

                      NCBI   BLASTCLUST 

File containing clusters of highly similar 
sequences  

Cluster file in readable format 

       Perl   program 

      Java    program 

Remove redundant models from database 
table and create new sequence file 
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Figure 3.10.  Flowchart showing the process of retrieving comparative structure models, filtering out 

low quality models and removing a large number of redundant models to create a high quality, non-

redundant set of representative models. 

 

3.3.9 Extracting expression data 

   

 

 

 

 

 

 

 

Figure 3.11.  Flowchart showing the process for reading an expression dataset into the database.  All 

expression datasets were obtained from published studies as supplementary tables.   

 

The expression datasets are available in the form of downloadable text files as 

supplementary material to their respective publications.  Figure 3.11 shows the 

      Java   program 

High quality, non-redundant set of models

Model coordinate files (one file per model)

Expression data file 

Extract expression data; insert into 
TYPE_EXP_STUDY_AUTHOR_(STRAIN)_DATE 

table in database 

      Java    program 

Publication supplementary table 

Extract relevant columns (e.g. oligonucleotide 
identifier, gene identifier, expression values) 
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process by which the expression data was extracted and inserted into the MaGnET 

database. 

There are two types of expression data: absolute values and ratios.  As 

described in Chapter 1, the ratio data comes from microarrays that measure the 

relative intensities of spots on an experimental chip with a reference chip.  These 

arrays are used in the study by Llinas et al. (2006) and use long oligo-nucleotides 

(70mer), generally one per gene, however, 990 out of 4,488 genes are represented by 

more than one oligo-nucleotide (Bozdech et al. 2003; Llinas et al. 2006).  In this 

case, the expression data for multiple oligo-nucleotides cannot be averaged because 

it could distort the gene�s true expression profile if one of the oligo-nucleotides was 

defective.  For this type of dataset, the expression values were indexed by both the 

unique oligo-nucleotide identifier and the gene identifier to which it belongs. 

 Absolute value mRNA expression data, such as that produced in the study by 

Le Roch et al. (2003), is close to an approximation of the actual copy number of 

mRNA strands.  Le Roch et al. used short (25mer) oligo-nucleotides spaced 

approximately every 150 base pairs on both strands of the genome and representing 

5159 genes in total.  They averaged the expression level of all the oligo-nucleotides 

for each gene.  This should be less deleterious for this type of data because there 

were several (and for longer genes, many) short oligo-nucleotides per gene, so if one 

was defective it would be unlikely to distort the expression profile of the gene. 

 The absolute value protein expression data included in MaGnET was 

generated by mass spectrometry.  The values represent approximate copy numbers of 

proteins detected.  Two separate proteomic datasets were included; one comprises 

2904 proteins present in at least one of seven life cycle stages (Florens et al. 2002; Le 
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Roch et al. 2004), the other comprises 1289 proteins in mixed asexual blood stages, 

gametocytes and gametes (Lasonder et al. 2002). 
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4. VISUALISATION PROGRAM 

Overview 

As described in Chapter 2, the software tool presented in this thesis aims to 

provide malaria biologists with innovative visualisation of various functional 

genomic data.  Chapter 2 also introduced the main features of the tool (Figure 2.1).  

The tool requires a database for local data storage (described in Section 3.1) and a 

program for visualisation (described in this chapter). 

The MaGnET visualisation program is the user interface to the datasets in the 

MaGnET database.  The datasets include a variety of publicly available experimental 

genomic, transcriptomic and proteomic data with some predicted annotation 

(described in Section 3.2).  The visualisation program encodes a set of linked viewers 

providing useful techniques for visualising the information.  These combine to create 

a novel graphics-based interface that encourages users to explore genes of interest 

and follow-up on hunches by carrying their selections across datasets. 

 This chapter will describe in detail implementation of the visualisation 

program and will highlight important features of the user interface with the help of 

selected screenshots.  This chapter also provides details on software availability.  

Lastly, the MaGnET system will be discussed and compared in relation to other tools 

in the field and the potential for future development will be examined. 

  

4.1 Implementation 

 MaGnET was developed on a Toshiba Satellite Pro U200 laptop computer 

with a 1.83GHz Intel processor, 1 GB of RAM and running Microsoft Windows XP 
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Professional Service Pack 2 with JRE version 1.6.  The MaGnET visualisation 

program has been written in the Java programming language, a widely-used, multi-

platform language described in more detail below.  One advantage of using Java was 

the ease of integrating third-party libraries and tools to extend the functionality of 

MaGnET, which, as described below, provided useful enhancements for protein 

structure and expression data visualisation. 

4.1.1 The Java programming language 

The MaGnET visualisation program is the graphical user interface to the 

database and, therefore, the programming language selected needed to have excellent 

graphics development capability.  This language also needed to be cross-platform, 

powerful, easy to obtain and install, extensively documented, relatively simple to 

learn, supported by and supportive of major technologies, including the chosen 

RDBMS, free to use, safe and reliable. 

Sun Microsystems� Java programming language (Sun Microsystems, Santa 

Clara, CA, USA; http://www.java.com/) was chosen because it meets the above 

criteria and more as one of the most important and fastest growing technologies of 

the current age.  Java allows programmers to develop applications on one platform 

and run them on others, create programs to run within web browsers and to program 

highly customisable applications.  Java is also a more secure language than other 

object-oriented languages, such as C++, although it is somewhat lacking in speed and 

efficiency. 

An extensive set of libraries and resources are available to facilitate the 

creation of complex and powerful applications, with accompanying tutorials to lessen 
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the learning curve.  The Java API (Application Programming Interface) includes the 

Abstract Window Toolkit (AWT) and the Swing toolkit for creating sophisticated 

graphical user interfaces (GUIs).  AWT provides so called heavyweight components, 

such as window layout managers, which use the underlying operating system�s 

native code to perform their functionality.  Swing is built on top of AWT and offers 

lightweight components for GUI development, such as improved text boxes and 

buttons, which are purely written in Java and are truly platform independent, as well 

as high-level components, such as tabbed panes.  The MaGnET Java program makes 

use of both AWT and Swing to implement the user interface. 

Java is free of charge and simple to install for all users, and they can quickly 

check if they have it installed on their computer by visiting the Java website.  Once 

the JRE has been installed, it will automatically check for and download updates to 

ensure that the user has the most recent version. 

4.1.1.1 Java program and database communication 

MaGnET makes use of the Java Database Connectivity (JDBC) API provided 

by Sun Microsystems as part of the Java distribution enabling database-independent 

connectivity.  MySQL provides JDBC support through a driver downloadable from 

http://dev.mysql.com/downloads/connector/j/5.1.html. 

4.1.2 Third-party software 

 Third-party software and libraries were incorporated in MaGnET to provide 

visualisation functionality for experimental and predicted protein structures and gene 

and protein expression profiles, respectively.  The Jmol project (Jmol; 

http://www.jmol.org/) is developing a powerful, open-source Java tool for 3D 
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visualisation of molecular structures.  By packaging Jmol classes within MaGnET, it 

allows Jmol to be used as an �add-on� to the main program.  Users can open the Jmol 

program to view protein structures at the click of a button, a functionality currently 

not offered by any other Plasmodium resource in the field.   

The JFreeChart library (JFreeChart; http://www.jfree.org/jfreechart/) is a free 

Java library for drawing custom graphs for inclusion within a Java application.  The 

JFreeChart library was utilised to produce gene and protein expression profile graphs 

as line charts.  Graphs have been customised to allow the display of different data 

types; for example, modified graphs are able to display data with multi-probe mRNA 

expression profiles as opposed to mRNA expression data representing probe sets.   

Incorporated third-party software and their implementation are described 

below in more detail. 

4.1.2.1 Protein structure visualisation with Jmol 

 Many programs exist for visualising 3D protein structures; the most widely 

used free programs are probably RasMol (Bernstein 2000) and its derivative browser 

plug-in, Chime (MDL, San Ramon, CA, USA; http://www.mdl.com/) which have 

now been superseded by Protein Explorer (Martz 2002).  The major disadvantage of 

RasMol and Chime is that the user must learn a complex scripting language in order 

to use them effectively.  Since 2002 the Jmol project (Jmol; http://www.jmol.org/) 

has been actively building a viable replacement for Chime.  Jmol, written in Java, 

provides a stand-alone application and a browser applet version.  Jmol is free, open-

source software available under the GNU Lesser General Public License (LGPL).  It 

has been developed for high-performance 3D rendering with no platform, hardware 

or web browser requirements.  At the time of writing, Jmol incorporates most of 
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Chime�s features, as well as several new ones, and is a powerful and popular viewer 

for molecular structures.  While Jmol recognises many of the RasMol/Chime 

commands, which allows its behaviour to be controlled through the use of scripts, the 

application has an extensive menu functionality which allows non-expert users to 

easily interact with the displayed molecule (Jmol; http://www.jmol.org/). 

 The most recent stable release of the Jmol source code and executable files 

were downloaded from 

http://sourceforge.net/project/showfiles.php?group_id=236

29.  The compiled Jmol class files are included in the MaGnET binary package (JAR 

file) that is accessed by users operating MaGnET online.  It is necessary to remove 

the line of code in Jmol's main class that causes the Java Virtual Machine (JVM) to 

close when the Jmol program is exited (this command causes the MaGnET program 

to also close).  When users download a local version of the MaGnET software they 

will not receive the Jmol class files, instead they will be able to link to a downloaded 

version of the Jmol binary package (which allows them to maintain an up-to-date 

version of Jmol on their computer). 

4.1.2.2 Time-series expression profile visualisation using the 

JFreeChart library 

The JFreeChart library offers an extensive API for creating a wide variety of 

charts and is easy to implement and extend (JFreeChart; 

http://www.jfree.org/jfreechart/).  Chart design is flexible so the output can easily be 

customised.  The software is distributed under the GNU LGPL.  Version 1.0.5 of the 

library was downloaded from 

http://sourceforge.net/project/showfiles.php?group_id=154
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94.  JFreeChart was used to develop the expression profile graphs available within 

the MaGnET Expression Data Viewer.  The MaGnET charts were created using the 

createLineChart method of the ChartFactory class.  Expression data were added to 

charts as instances of the CategoryDataset class. 

 

4.2 Java program 

The Java source code and program binaries are included on the 

accompanying CD. 

Java is an object-oriented programming language, which is a style of 

programming that represents objects and their interactions by dividing the code into 

discrete �classes�.  Each class has a set of attributes and methods defining its 

properties and behaviour.  Figure 4.1 is a class diagram for the MaGnET Java 

program.  A class diagram depicts the organisation of the program classes and their 

relationships to each other.  The class diagram also includes some of the major 

attributes of each class that define their functionality, such as windows and gene lists.  

The program includes classes coding for the MaGnET data viewers: the 

Genome Viewer (Genome class), the Chromosome Viewer (Chromosome class), the 

Data Analysis Viewer (Analysis class), the Protein-Protein Interaction Viewer 

(PPIGraph class) and the Expression Data Viewer (Transcriptome class).  Other 

classes provide additional functionality, such as a Gene class (to represent a gene and 

display its fact sheet), an ExpressionDataset class (to hold expression data), and 

various TimeSeriesChart classes (to display expression profile graphs).  Other 

supporting classes represent objects used by the visualisation program, such as the 

ProteinStructureModel class (to represent a protein comparative structure model), 
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OrthologCluster (a group of homologous genes) and GeneVector (a list of user-

selected genes).  Classes such as DatabaseConnector, OpenJmol and BrowserLaunch 

take care of specific tasks as requested by the program, such as connecting to the 

MaGnET database, launching the Jmol viewer and loading a protein structure, and 

opening a web browser with a link-out to a gene in another resource, respectively.  

Lastly, the program includes the MAGNETMainFrame class, which contains the 

program�s main method, maintains overall control of the program and holds certain 

globally-used attributes, such as expression dataset objects and gene lists. 
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4.3 User interface 

 The MaGnET user interface includes four linked data viewers: the Genome, 

Protein-Protein Interaction, Expression Data and Data Analysis Viewers.  A 

Chromosome Viewer is accessible via the Genome Viewer allowing in depth 

exploration of gene organisation.  Pop-up gene fact sheets listing detailed 

information about a particular gene are available at any point.  The following 

sections describe the program�s functionality.  Detailed user manuals and helpful 

hints can be accessed via a �Help� menu on every page of the user interface and a 

tutorial is provided on the MaGnET website. 

4.4.1 The MaGnET front page and MAGNETMainFrame class 

 The MAGNETMainFrame class contains the program�s main method, which 

is called when the program starts.  The main method calls the DatabaseConnector 

connect method, which attempts to establish a connection to the MaGnET database.  

If the connection is successful, the MaGnET front page is displayed. 

 The front page displays links to the four Data Viewers in the centre of the 

page.  Each viewer opens in a separate window, allowing users to quickly switch 

between viewers and compare genes across different data types.  Menu options 

available to the user include the option to load a file containing a list of genes 

(PlasmoDB standard gene identifiers are required).  Users may also return to this 

page and save a list of their selected genes to a file, which is useful for continuing 

their research using other resources that accept lists of gene identifiers, or when 

returning to MaGnET.  
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Other menu options change the colours used for display of various data, such 

as for selected groups of genes (default colours for groups A and B are orange and 

blue, respectively).  The ability to change the colours used by the visualisation 

program was a frequently requested feature at demonstrations of MaGnET.  

Furthermore, users can switch between the default colour scheme and a completely 

contrasting colour scheme by selecting a single option from the menu. The 

alternative colour scheme was suggested by a test-user of MaGnET with colour 

vision impairment.  The default colour scheme uses a standard red-green scale for 

display of expression data, whereas the alternative colour scheme uses a yellow-

purple scale.  Therefore, users can select and modify the best colour scheme for their 

needs; a feature uniquely offered by MaGnET.  A helpful future improvement would 

be to enable users to save their settings and automatically detect them at program 

start-up. 

4.3.1.1 Attributes and methods of the MAGNETMainFrame class 

 The MAGNETMainFrame class contains the fields that need to be visible to 

all data viewers (known as �global� variables).  Table 4.1 describes the global 

variables of the MAGNETMainFrame class. 

 Global methods defined by the MAGNETMainFrame class include methods 

that determine the colour a gene should be displayed to represent its expression at a 

particular time-point (depending on the user�s preference for how the information is 

displayed).  Three different algorithms for calculating how expression data are 

displayed are currently implemented in MaGnET.  The default colour scheme is 

worked out by representing each individual gene�s expression level at a given time-

point by its rank within the interquartile range of the gene�s expression across the 
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time-series experiment.  Alternatively, users can choose a colour scheme based on 

fold change between two time-points. 

 Inner classes defined within the MAGNETMainFrame class are the 

ButtonAndMenuHandler class to deal with user requests to open particular viewers, a 

GroupsListener class to deal with user requests to load or save genes to a file, and a 

ColorChangeListener class, which displays a colour palette to assist users to change 

the colours of various program features.  

 

Variable 

Window height and width 
Instance of Genome Viewer 
Instance of Expression Data Viewer 
Instance of Protein-Protein Interaction Viewer 
Instance of Data Analysis Viewer 
Two instances of GeneVector to hold selected groups of genes (A and B) 
Colour variables for various data types 
Table of orthologs/paralogs for a selected gene 
Two instances of ExpressionDataset to hold a genome-wide expression dataset and 
expression data for sets of selected genes 
User selected preferences for how expression data is displayed, such as colouring by 
value or by fold change 

Table 4.1.  Global attributes of the MAGNETMainFrame class that are accessible to all data viewers. 

 

4.3.2 The Data Analysis Viewer and Analysis class 

 The Data Analysis Viewer provides tools to search the MaGnET database and 

to tabulate information about genes of interest.  Malaria biologists using MaGnET 

for the first time are likely to want to search for genes they are already familiar with 

and to explore various data about them.  Facilitating the retrieval of genes by their 

PlasmoDB gene identifier ensures a consistent approach to searches between 

MaGnET and primary genome databases, such as PlasmoDB.  Providing methods to 

search for genes by name is clearly important too.  
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MaGnET provides a �quick search� tool that retrieves genes by their 

PlasmoDB identifiers or by matching keywords to gene names.  Summaries of the 

returned genes are displayed in a table.  Selected genes can then be added to one of 

two groups (A and B) that act as placeholders for user-selected genes.  Users can 

easily add or remove individual or subsets of genes to and from their selections at 

any time while using MaGnET.  Genes selected within the Data Analysis Viewer can 

be carried forward to other MaGnET Data Viewers so that users can explore various 

aspects of gene function.  Selected genes will always be identified by a particular 

colour (defaults are orange for group A and blue for group B). 

Besides selecting genes to carry forward to other Data Viewers, users can 

choose to display a �gene fact sheet� for a particular gene.  Gene fact sheets are 

described in Section 4.3.7.  

In addition to the quick search tool an �advanced search� facility is provided 

for more detailed interrogation of the database.  The advanced search is provided to 

help users to find out curated (such as that provided by the sequencing consortium) 

and predicted (such as Gene Ontology and InterPro) functional annotations for genes 

they have become interested in during the course of exploration using MaGnET.  

There are two options for retrieving functional annotation: retrieving the annotation 

for specific genes using their gene identifiers and searching within annotation of all 

genes for matches to particular keywords. 

Further functionality provided by the Data Analysis Viewer is the display of a 

summary table for all genes in user-selected groups A and B (Figure 4.2).  The table 

includes gene names, curated annotation and GO terms.  Tabular display of data can 

help a user to notice trends in the annotation; for example the repeated occurrence of 
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a particular GO term can provide another branch of evidence that there may be a 

linked functionality between the genes that is worth exploring further.   

 

 
Figure 4.2.  Screenshot of the MaGnET Data Analysis Viewer.  The table is displaying a summary of 

information about the genes that have been added to two groups, A (orange) and B (blue).  Genes 

appearing in both groups are represented by an orange background with blue text.  The data 

summarised in the table include genomic location, product name, curated annotation and GO 

annotation.  Each GO annotation is displayed on a separate row; therefore a single gene may span 

multiple rows. 

 

It should be noted here that MaGnET does not provide quantitative analysis 

of significant GO term over-representation in a gene list (many tools exist to do this).  

However, qualitative analysis like that encouraged by MaGnET can be useful for 

finding interesting leads for further investigation relatively quickly and simply.  
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Other advantages will be the ability to pick up by eye on smaller or short-lived 

changes that are often missed by statistics-based algorithms. 

4.3.2.1 Attributes and methods of the Analysis class 

Attributes of the Analysis class include various buttons and text fields to 

capture input search options and an instance of the Java JTable class to display the 

returned genes in tabular format.  Database searching is handled by a ButtonHandler 

inner class that responds to a user pressing the �Search� button. A 

GroupsMenuHandler inner class deals with adding, removing and displaying genes 

in the selected groups. 

4.3.3 Genome Viewer and Genome class 

 The Genome Viewer facilitates the display of genomic information, such as 

location of protein encoding genes, pseudogenes and RNA encoding genes.  The 

Genome Viewer displays the 14 nuclear chromosomes as vertical bars drawn from 

left to right on the screen according to increasing chromosome number (as assigned 

by the genome sequencing consortium).  It also displays the circular apicoplast 

chromosome and the mitochondrial chromosome.  The nuclear chromosomes are 

drawn in proportion to one another, with the longest chromosome scaled to the 

screen height at the lowest zoom level.  The organellar genomes are drawn at a scale 

5 times greater than the other chromosomes because if they were drawn at the same 

scale they would be too small to be usefully rendered. 

 Upon opening the Genome Viewer automatically displays the locations of all 

genes in selected groups A and B (Figure 4.3).  A useful legend is provided 

describing the colour scheme used to display various genomic features.  Another 
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helpful attribute is a search bar for quickly locating genes using their standard gene 

identifiers.   

 

 

Figure 4.3.  Screenshot of the MaGnET Genome Viewer.  Two groups of genes selected from 

keyword searches are displayed as coloured lines (�antigen� in orange and �kinase� in blue).  Genes on 

the forward strand are drawn on the right side of the chromosome; genes on the reverse side are drawn 

on the left.  Genes in both groups are drawn as split lines with the left half coloured orange and the 

right half coloured blue. 

 

 One of the advanced features that MaGnET provides is the ability to overlay 

expression data onto genomic location.  Users can visualise an expression dataset 

chosen from a menu.  If the user has already selected genes and stored them in 

groups A or B, display of expression data can be optionally limited to just the genes 



 95

in these groups (Figure 4.4).  Alternatively, a genome-wide expression dataset can be 

displayed (Figure 4.5). 

 

 

Figure 4.4.  Screenshot of the Genome Viewer displaying mRNA expression data for genes in two 

selected groups.  The genes are coloured according to rank at hour 7 within the interquartile range of 

each gene�s expression across the time-series experiment [in this case the intraerythrocytic 

development cycle (IDC)].  Lines marking the location of genes in the selected groups are drawn to 

the sides of the chromosomes.  The display has been magnified relative to Figure 4.3 by using the 

�Zoom in� button.  A slider in the lower panel allows users to step-through the time-series. 
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Figure 4.5.  Screenshot of the Genome Viewer displaying an mRNA expression dataset mapped onto 

genomic location of the genes.  The genes are coloured according to rank at hour 7 within the 

interquartile range of each gene�s expression across the IDC.  A slider in the lower panel allows users 

to step-through the time-series. 

 

Expression data for a single experimental time-point are displayed at any one 

time and a useful feature is the provision of a slider to enable users to move through 

a time-series.  This allows users to explore expression changes over time in relation 

to genomic location.  Locally correlated patterns of expression changes can be an 

indication of co-regulation and likely shared function (Cohen et al. 2000).   

 Section 4.3.1.1 describes the options available for expression data 

representation.  Simply, option one represents expression data at the current time-

point relative to the range expression seen across the whole time-series (Figures 4.4 
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and 4.5).  Option two represents directionality and magnitude of changes in 

expression between previous and current time-points (Figure 4.6).  The latter is 

particularly useful because it simplifies the display of expression data by highlighting 

only genes that are significantly (greater than two fold) up- or down-regulated 

between time-points.  This may make trends easier to notice than by looking at the 

complicated pattern of mRNA abundances provided by the first option. 

 

 

Figure 4.6.  Screenshot of the Genome Viewer displaying the direction of changes in mRNA 

expression from the previously sampled time-point.  The genes are coloured according to their change 

in expression from gametocyte days two to three.  A significant increase in expression is coloured 

orange and a significant decrease is coloured green [a change greater than 2 fold is considered 

significant (Li et al. 2005)]. 

 



 98

 MaGnET facilitates exploration of gene families through features available 

within the Genome and Chromosome Viewers.  Gene families are selected within the 

Chromosome Viewer, although their genome-wide localisation is visualised via the 

Genome Viewer.  This would be useful, for example, to investigate expression 

patterns of gene families over various life cycle stages.  Visualisation of gene 

families is described further in Section 4.3.4.2. 

4.3.3.1 Attributes and methods of the Genome class 

 Attributes of the Genome class include the various drawing panels, buttons, 

text field and slider required by the Viewer, as well as the chromosome dimensions 

and a Vector object to store a list of paralogous genes for display of gene families.   

The Genome class gets access to information about genes in selected groups and 

expression data from globally available attributes and methods of the 

MaGnETMainFrame class.  Inner classes include a ClickOnChrHandler that listens 

for a user double clicking on a chromosome in order to launch the Chromosome 

Viewer.  A ScrollingHandler deals with repainting the viewing panel when a user 

moves the scroll bar.  An ExpressionMenuHandler responds to user requests to load 

expression datasets, to switch on or off the option for display of data for selected 

genes versus whole datasets, and to change the way that expression data are 

represented.  A SliderChangeListener recalculates and repaints displayed expression 

data when a user moves between time-points using the slider.  A ButtonHandler 

inner class has several functions, including responding to user requests to locate 

genes from the search bar and to zoom in and out on the display panel.  The 

RedrawOnFocus inner class allows the Genome Viewer to automatically detect and 
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display changes in selected genes or loaded expression dataset that were applied in 

other open viewers when focus is returned to the Genome Viewer. 

4.3.4 Chromosome Viewer and Chromosome class 

  A Chromosome Viewer is provided to allow users to zoom in on a particular 

chromosome while using the Genome Viewer (Figure 4.7).  The Chromosome 

Viewer facilitates navigation at varying levels of magnification; the achievable 

magnification range is between 100 base pairs per pixel and 10 base pairs per pixel. 

 Unlike most other genome viewers, MaGnET does not offer genome 

browsing at the individual base pair level.  The reason for this omission was so that 

MaGnET could provide a simplified view of the genome in order to avoid a 

sensation of �data overload� likely to be felt by non-bioinformatics specialist users. 

 Unlike the other MaGnET Viewers, multiple Chromosome Viewer windows 

can be open at the same time.  This facilitates the comparison of regions from two 

different chromosomes at the same time (or two regions of the same chromosome by 

repeatedly opening a particular chromosome), which would be useful for comparing 

gene order or gene expression patterns in regions that are linked by duplication and 

rearrangement, for instance. 

 As well as providing a zoom-able, scrollable view of the chromosome, an 

overview of the entire chromosome is displayed in a panel below the former.  This 

feature allows the user to keep track of where in the chromosome the �viewing 

window� is currently focused.  It also allows users to visualise patterns over larger 

regions of a chromosome, such as relationships between different multi-gene 

families. 
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Figure 4.7. Screenshot of the Chromosome Viewer.  The upper panel displays a detailed view of the 

chromosome (the forward strand is represented by the upper bar and the reverse strand is represented 

by the lower bar).  The centre panel shows an overview of the chromosome with the current position 

of the chromosome viewer represented by the grey region.  The lower panel contains a legend for the 

colour scheme.  Two groups of selected genes are displayed (�antigen� in orange and �kinase� in blue).  

A gene appearing in both groups would have its upper half coloured orange and lower half coloured 

blue.  Unselected protein-coding genes are shown in medium-grey.  Unselected pseudogenes and 

RNA genes are shown in light grey.  Introns appear as pink regions within genes.  Clicking with the 

mouse once on a gene highlights it in the �picking colour� (purple) and displays its product name in 

the top left corner of the window. 

  

Expression data can be viewed in the Chromosome Viewer as in the Genome 

Viewer (see Section 4.3.3 for more details on the options available for expression 

data visualisation).  Close-up exploration of expression patterns offers opportunities 
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for discovery of local patterns of co-expression, which may indicate co-regulation 

and linked functionality of genes.  For example, Figure 4.8 shows a region on the left 

arm of chromosome one where several adjacent genes are maximally expressed 

during hour 28 of the IDC (late trophozoite stage). 

 

 

Figure 4.8.  Screenshot of the Chromosome Viewer displaying an mRNA expression dataset.  The 

genes are coloured according to rank at hour 28 within the interquartile range of each gene�s 

expression across the IDC.  Genes that appear in group A (�antigen�) are marked by an orange band at 

the top of the gene, whereas genes appearing in group B (�kinase�) are marked by a blue band at the 

base of the gene.  A slider in the lower panel allows users to step-through the time-series. 

 



 102

4.3.4.1 Attributes and methods of the Chromosome class 

 Attributes required by the Chromosome Viewer include panels representing 

the scrolling chromosome viewing window, chromosome overview and legend, 

buttons and menus with various options including selection boxes so users can turn 

on or off the display of genomic features, such as introns and pseudogenes.  Other 

display-determining attributes include the current zoom level, chromosome length 

(number of base pairs) and coordinates of the visible region.  Several lists of genes 

are also required, which are: a list of all genes on the chromosome, a list of genes 

that are currently selected by the user (prior to being saved as a group), and a list of 

family members for the chromosome needed when a user is looking at gene families 

(see Section 4.3.4.2).  A method called GetOrthologsForChr returns a list of family 

members located on the current chromosome when the user clicks on a gene whilst 

under gene family browsing mode (see Section 4.3.4.2).   

 Inner classes include SliderChangeListener which listens for the user moving 

the slider to move between time-points whilst visualising expression data.  A 

ButtonHandler inner class deals with user requests via buttons, including zooming 

and locating genes by identifier using a search bar at the top of the Chromosome 

Viewer window.  A RedrawOnFocus inner class allows the Chromosome Viewer to 

automatically detect and display changes in selected genes or loaded expression 

dataset that were applied in other open viewers when focus is returned to the current 

window.  A ScrollingHandler handles repainting of the visible chromosome region 

when the user scrolls along the chromosome.  Similarly, GenesMenuHandler deals 

with repainting the Chromosome Viewer if genomic features are made visible or 

invisible using menu options.  The GroupMenuHandler inner class has responsibility 
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for dealing with user requests to add or remove genes from selected groups A and B.  

Users can easily add or remove multiple genes to and from groups by clicking on 

them, thereby highlighting them purple, and choosing from various menu options.  

The ClickOnDrawingPanelHandler retrieves the coordinates when a user clicks on 

the chromosome viewing panel and matches them against the list of gene coordinates 

to find out which gene the user clicked on and then handles the requested behaviour, 

such as selecting or deselecting the gene.  As in the Genome Viewer, the 

ExpressionMenuHandler deals with requests to load expression data. 

4.3.4.2 Visualising gene families 

 Further functionality provided by the Chromosome and Genome Viewers 

facilitates exploration of gene families (orthologs and paralogs).  Under gene family 

browsing mode, when a user selects any gene in the Chromosome Viewer, all 

paralogous genes will automatically be highlighted in a distinct colour within the 

genome (Figure 4.9).  A table containing number of family members present in the P. 

falciparum genome and four related genomes is displayed in the legend panel of the 

Chromosome Viewer.  This table provides the user with an indication of how wide-

spread the family is, such as whether it is unique to P. falciparum or has undergone 

expansion in this genome.  A list of family members in the five genomes and links to 

their gene pages in PlasmoDB are provided via the gene fact sheet. 

 In order to facilitate users to carry forward complete groups of paralogs to 

other viewers, in gene family browsing mode users can add a family to one of 

selected groups A and B at the click of a button, eliminating the requirement to select 

family members individually. 
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Figure 4.9.  Screenshots of the Genome (a) and Chromosome (b) Viewers displaying the 

ortholog/paralog group for gene PFA0625w.  Paralogous genes are highlighted on the genome in 

green.  A table in the lower panel lists the number of family members that are found in this and 

several other species of Plasmodium. 

a

b
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4.3.5 Protein-Protein Interaction Viewer and PPIGraph class 

 Protein-protein interactions are represented by lines (interactions) connecting 

nodes (proteins) in the Protein-Protein Interaction Viewer.  The PPIGraph class 

displays interaction networks using an algorithm adapted by Richard Orton for the 

Yeast Exploration Tool Integrator (YETI) (Orton et al. 2004; Orton 2006) from work 

by Ralf Mrowka (Mrowka 2001), which was originally based on the Graph class 

provided with the Java Development Kit (JDK) from Sun Microsystems (Sun 

Microsystems, Santa Clara, CA, USA; http://www.java.com/).  A relaxation 

algorithm is used, which constricts interacting proteins to a pre-defined distance 

(user adjustable) but maximises the distance between non-interacting proteins in the 

available two-dimensional space (Mrowka 2001).   

 When a user opens the Protein-protein Interaction Viewer, the interactions for 

any proteins stored in user selected groups A and B will automatically be fetched and 

displayed in the viewer.  Users may also easily search for interactions for particular 

proteins of interest by entering one or more standard gene identifiers in a search bar 

at the bottom of the window.  By default, all proteins that directly interact with the 

given protein are displayed (�primary interactions�).  Users can choose to extend the 

network outwards to draw in other proteins that interact with this first layer of 

interacting proteins (which will be �secondary interacting� proteins in relation to the 

original protein at the centre of the network) (Figure 4.10).  Furthermore, the size of 

network that can usefully be displayed is only limited by the computational power 

and screen size of the user�s computer.  Therefore, protein-protein interaction 

network visualisation using MaGnET is theoretically only limited by the size of the 
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currently sampled interaction space (only one yeast two-hybrid dataset is available 

and this type of data often contains a large number of false negatives). 

 

 

Figure 4.10.  Screenshot of the primary and secondary interaction network of the R45 antigen 

(PFD1175w).  R45 and its primary interacting proteins are highlighted in purple.  All secondary 

interacting proteins are in white.  An interaction is represented as a white line connecting two protein 

labels. 

 

 Advanced options for manipulating the display of interactions are provided 

by a menu system and a set of buttons.  Useful functionality includes highlighting 

clusters of interacting proteins by clicking on a particular protein (Figure 4.10); the 

cluster can then be added to either of selected groups A or B.  Another option 

reduces the complexity of the display by minimising the size of some nodes, while 
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retaining others at full size, in order to facilitate exploration of sub-regions of the 

network (Figure 4.11). 

 

 

Figure 4.11.  Screenshot of a protein interaction network where the majority of protein labels have 

been minimised but one region displays expanded protein labels.  This is useful for minimising screen 

crowding when there are many proteins in the network. 

 

 Further advanced functionality for overlay of expression data onto protein-

protein interaction network is provided (Figure 4.12).  Options available to the user 

for display of expression data are the same as described previously for the Genome 

and Chromosome Viewers.  As in other viewers, a useful legend is provided in the 

window describing the colour scheme used and housing a slider to allow movement 

through the time-series. 
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Figure 4.12.  Screenshot of the R45 antigen�s protein interaction network, with protein labels 

coloured according to their mRNA expression level at the early ring stage of the parasite�s life cycle.  

Labels of proteins appearing in pre-selected groups are coloured half according to their group 

(�antigen�, orange, or �kinase�, blue) and half according to their expression level.  Proteins that are not 

represented in the expression dataset are drawn in white. 

 

 Display of expression data mapped onto protein interaction network affords 

various opportunities.  For example, expression patterns can add weight to the 

likelihood of individual interactions being true positives (if the proteins are expressed 

during the same stage of the lifecycle), or conversely, can indicate that the interaction 

could be a false positive (if proteins are never expressed at the same time).  Also, 

exploration of co-expression patterns over networks can suggest the processes that 



 109

hypothetical proteins may be involved in or indicate novel additional functions for 

known proteins. 

 While browsing the interaction network it is important to be able to access 

known functional information about the proteins.  To facilitate this, MaGnET 

provides quick access to certain functional data at a click of the mouse.  Users can 

display the protein name and GO cellular component terms associated with a protein 

in the text field at the bottom of the window.  Also, gene fact sheets can be easily 

accessed by clicking on individual proteins. 

 Overall, the MaGnET Protein-Protein Interaction Viewer offers functionality 

not available in other Plasmodium resources.  Other tools in the field, such as 

PlasmoDB (Bahl et al. 2003), merely provide lists of interacting partners for 

individual genes.  None of them offer advanced tools for network browsing beyond 

the level of primary interactions.  This disadvantages users who do not have the 

opportunity to explore interactions on a deeper level; for example, to discover 

proteins that have multiple interactions in common, a good indicator of related 

function (Koegl and Uetz 2007). 

4.3.5.1 Attributes and methods of the PPIGraph class 

 The PPIGraph class contains an inner class, GraphPanel, which extends the 

JPanel class and implements the algorithm that displays the protein interaction graph.  

The GraphPanel class contains methods to add nodes (proteins) and edges 

(interactions), find nodes that the user has selected, implement the relaxation 

algorithm, and finally, to paint the resulting network in the display window. 

 Further inner classes represent nodes (Node class) and edges (Edge class).  

The RedrawOnFocus class is responsible for redrawing the window when focus is 
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returned (usefully re-colours proteins that have been selected or de-selected in other 

viewers and checks for changes to the display of loaded expression data).  A 

ButtonHandler class deals with all commands mediated by buttons, such as freezing 

movement of the network map or incrementing edge-length.  An ItemHandler class 

deals with requests via the menu options, usually switching on or off different modes 

of usage, such as what happens when a user clicks on a protein; for example, 

extending the network by bringing in other interaction partners or highlighting 

clusters of interacting proteins.  It also deals with requests to add or remove genes 

from selected groups A and B.  As described previously, the 

ExpressionDataMenuHandler deals with requests to load or alter the display of 

expression data and the SliderChangeListener updates expression data display when 

a user moves between time-points using the slider. 

The PPIGraph constructor defines an instance of the Java AWT 

MouseAdaptor class for responding to user clicks on the drawing panel.  The 

outcome of the action depends on defined settings, which are selectable via a set of 

menu options and buttons.  An instance of the MouseMotionAdapter class is also 

defined that responds to a user dragging nodes across the drawing panel to rearrange 

them. 

 Attributes of the PPIGraph class include the graph drawing panel 

(GraphPanel), a legend panel (JPanel), an expression data slider (JSlider), a text field 

(JTextField) and various buttons and menu options.  Other attributes include various 

options determining aspects of the display, such as length of edges and colours of 

nodes and edges, and arrays and vectors to hold lists of all edges and nodes, user-

selected nodes and nodes whose labels have been minimised or maximised. The class 
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also includes a random number generator that is involved in placing the nodes onto 

the display panel before they are sorted by the relaxation algorithm. 

 Methods defined by the PPIGraph class include a showGroups method, which 

checks for interactions for proteins in selected groups A and B upon loading of the 

Protein-Protein Interaction Viewer and when focus is regained.  The newMap 

method prepares a new interaction network given the results of a search for 

interactions. 

4.3.6 Expression Data Viewer and Transcriptome class 

The Expression Data Viewer is coded for by the Transcriptome class.  

�Transcriptome� is really a misnomer because this class can deal with any kind of 

expression data.  The class was developed before it was decided to include protein 

expression data in addition to mRNA expression data.   

The Expression Data Viewer has two functions: it provides users with an 

advanced, easy-to-use search facility for querying expression data and provides 

visualisation of time-series profiles for individual genes or small groups of genes.  

The next two sections describe its functionality in detail. 

4.3.6.1 Time-series graphs 

 The Expression Data Viewer complements the expression data visualisation 

capabilities of other MaGnET viewers by providing graphical displays of time-series 

profiles.  Time-series profile graphs are displayed by typing gene identifiers into a 

search bar on the Expression Data Viewer window.  Graphs can display data for 

individual genes (Figure 4.13), or for small groups of genes (Figure 4.14).  A helpful 

alternative to typing in lists of identifiers is the option to quickly access a graph 
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displaying profiles for all genes in selected groups A and/or B by typing the letter(s) 

into the search bar.  The size of group that can be usefully displayed depends on the 

size of the computer screen and the type of data being displayed (where the data is 

from glass-slide arrays, profiles are displayed for each oligo, whereas data from 

Affymetrix arrays and protein expression data are displayed on a per-gene basis � see 

Sections 1.5.1 and 1.5.2 and Table 3.1 for more information). 

 

 

Figure 4.13.  Screenshot of the time-series profile graph for the P. falciparum 3D7 gene PF14_0495 

during the IDC (data have been log2 transformed).  This gene is represented by two oligonucleotides 

in the array used by Llinas et al (2006).  The recorded expression of each oligonucleotide is 

represented as a differently coloured line on the graph. 
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Figure 4.14.  Screenshot of the time-series profile graph for four genes expressed during the IDC.  

Each gene is represented by a different colour and oligonucleotides are distinguished by different 

symbols. 

 

Further options for display of time-series data include displaying a gene�s 

expression profile across multiple datasets on a single graph and displaying mRNA 

decay rates alongside mRNA expression data from the same life cycle stage.  The 

former provides a simple way to compare expression between datasets; however the 

current implementation is limited and provides opportunity for improvement in 

future versions.  The latter option is useful to investigate how mRNA decay rates 

relate to observed expression; a high decay rate but increasing expression indicate 

that a gene is being actively transcribed at the current stage (Figure 4.15). 
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Figure 4.15.  Screenshot of a set of mRNA abundance profiles (top row) versus the decay half life of 

the mRNA (bottom row) for the gene PF10_0325 at four stages of the IDC.  Data is absent in the 

fourth mRNA decay profile because the recorded signal did not meet the quality control criteria 

applied by the authors of the study (Shock et al. 2007). 

  

Finally, users can elect to display time-series data transformed to log base 

two, which helps when comparing expression profiles of genes with vastly differing 

abundances.  It is also a necessary step for correct display of expression data from 

glass-slide arrays that represent ratios of mRNA expression (the datasets from Llinas 

et al. 2006).  The log2 transformation step is always performed by the Java program 

before any expression data from these datasets are displayed (including in the 

Genome and Protein-Protein Interaction Viewers). 
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 Access to quantitative data in the form of graphs is an important asset for 

expression data exploration because it allows users to check whether the trends they 

noticed in other viewers hold up under closer examination.  User-selectable display 

of multiple genes on a single graph is an important feature that most other tools in 

the field currently do not offer. 

 Time-series graphs were implemented using a graph library called JFreeChart 

(JFreeChart; http://www.jfree.org/jfreechart/) as described in Section 4.1.2.2.  A set 

of Java classes to display different types of expression data as graphs were 

developed; although specific details vary between classes, they are based around a 

common template for graph creation.  For example, the SingleGeneTimeSeriesChart 

class is the �parent� class for display of graphs for individual genes and is extended 

by �child� classes SingleGeneOneRepTimeSeriesChart (for display of data with one 

profile per gene or protein) and SingleGeneMultiOligoTimeSeriesChart (for display 

of data with one profile per oligo).  The parent class implements the methods 

createChart, which takes an instance of CategoryDataset (a JFreeChart class) as a 

parameter and returns an instance of JFreeChart (in this case a line chart), and 

display, which creates a window in which to display the graph.  The child classes 

contain createDataset methods, which retrieve the expression data for a given gene 

in a chosen dataset and use it to create an instance of CategoryDataset.  A similar 

format is followed for classes displaying times-series graphs for groups of genes 

(MultiGeneTimeSeriesChart, MultiGeneOneRepEachTimeSeriesChart and 

MultiGeneMultiOligoTimeSeriesChart), multiple datasets 

(MultiExperimentTimeSeriesChart) and mRNA decay data 

(SingleGeneMRNADecayCharts). 
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4.3.6.2 Mining expression data 

 A Query Builder window accessible from the Expression Data Viewer aids 

users with mining expression data.  Most other related tools do not offer users a 

dedicated, advanced search facility for expression data.  The Query Builder window 

is coded for by an inner class within Transcriptome called QueryMenuHandler. 

 The Query Builder window provides users five �template� queries, into which 

they can select options to build a query.  The five options are: 

1. Search for genes with expression above or below a certain cut-off value at 

one time-point; 

2. Search for genes whose expression reaches or dips below a certain cut-off 

value during a range of time-points; 

3. Search for genes whose expression significantly changes in a particular 

direction between two time-points; 

4. Search for genes that have a certain mRNA decay half-life length; 

5. Search for genes that could be being regulated, by combining options 3 

and 4. 

Following searches a data table is displayed (Figure 4.16), on which users can 

highlight genes to add to selected groups A or B.  This functionality offers users a 

unique way of quantitatively mining expression data to find groups of genes that 

follow specific patterns of expression over a time-frame of interest.  Properties of 

selected genes can then be visually investigated using the MaGnET Viewers. 

 Other options available from the data table are quick display of time-series 

graphs and gene fact sheets. 
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Figure 4.16.  Screenshot of the Expression Data Viewer�s Query Builder page.  The panels at the top 

allow complex queries to be quickly constructed.  Results are displayed in a table.  By highlighting a 

particular gene or genes in the table, users can bring up expression profile graphs at the click of a 

button. 

 

4.3.6.3 Attributes and methods of the Transcriptome class 

Attributes of the Transcriptome class include the panels, buttons and text 

field required by the Expression Data Viewer, menu options to allow selection of 

datasets for graph display, and an instance of JFrame called �queryWindow� to hold 

the Query Builder window. 

Aside from the QueryMenuHandler class, inner classes defined within the 

Transcriptome class include a TSButtonHandler, which responds to user requests to 
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display time-series graphs by examining the selected datasets and number of entered 

gene identifiers to choose the correct type of graph to display. 

4.3.7 Gene fact sheets and the Gene class  

 The Gene class represents a single gene.  As such, it contains many attributes 

to describe a particular gene, including gene identifier, genomic location, exons, 

type, product name, aliases, gene and protein sequences, curated annotation, GO 

annotation, predicted InterPro domains and sequence features, structural data,  

interactions, orthologs and paralogs. 

 In addition, the Gene class contains a method to display a gene fact sheet that 

lists all the above information about a gene (createGeneFactsheet).  The Gene class 

also contains several attributes that are required by the fact sheet, such as drawing 

panels.  The fact sheet is designed around a series of panels, each displaying different 

types of information about the gene, organised into a number of tabbed panes within 

the fact sheet window (Figure 4.17).  Furthermore, fact sheets provide useful link-

outs to gene entry pages in other online resources, including PlasmoDB 

(http://www.plasmodb.org/plasmo/), GeneDB (http://www.genedb.org/), UCSC 

Malaria Genome Browser (http://areslab.ucsc.edu/cgi-bin/hgGateway), ApiCyc 

(http://apicyc.apidb.org/), DeRisi and Winzeler lab transcriptomic databases 

(http://malaria.ucsf.edu/comparison/index.php and 

http://chemlims.com/OPI20/MServlet.ChemInfo, respectively) and TDR Targets 

Database (http://tdrtargets.org/). 
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Figure 4.17.  Screenshots of two pages from the fact sheet belonging to gene MAL7P1.164.  The fact 

sheet incorporates data on genomic location, structure, function, interactions, orthologs and paralogs.  

Fact sheets also provide access to gene and protein sequences and link-outs to online databases, such 

as PlasmoDB (Bahl et al. 2003) and the UCSC Malaria Genome Browser (Chakrabarti et al. 2007).  

The first page (a) summarises the gene�s genomic location, including a table of exons.  Available 

protein structures are drawn as magenta bars below the region of the protein (black bar) they 

represent.  GO annotations are listed in separate sections according to their ontology (function, 

process or component).  The second page (b) presents curated annotation and predicted InterPro 

domains and sequence features, which are graphically represented by coloured blocks drawn over the 

corresponding region of the protein (black bar).   

 

4.3.7.1 Protein structure visualisation 

Figure 4.17a demonstrates display of protein structure information within the 

fact sheet.  Protein structures are divided into experimentally solved and 

a b
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comparatively modelled.  Both are represented as magenta bars alongside the 

corresponding region of the protein.  By double clicking on a structure, users may 

open the 3D coordinates of the structure in the Jmol molecular viewer (Jmol; 

http://www.jmol.org/) (Figure 4.18) (see Section 4.1.2.1 for details about the 

implementation). 

 

 

Figure 4.18.  Screenshot of the modelled structure of the protein product of MAL7P1.164 displayed 

in the Jmol molecular viewing program (Jmol; http://www.jmol.org/).  When Jmol opens, a custom 

script instructs it to display the structure as a cartoon representation of the secondary structure 

elements, with only the backbone residues displayed.  Users can interact with Jmol through its menus 

and command console. 
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It was decided to include the Jmol application within the MaGnET software 

in order that users could easily visualise structures and immediately begin to interact 

with them without having to download their own molecular viewer.  The complete 

version of Jmol is included (an alternative would have been to provide a basic, 

stripped-down version) so that users can make use of its full functionality, via its 

helpful menu system or RasMol-like commands (Bernstein 2000), with which many 

people are familiar. 

This functionality provides a useful addition to MaGnET that is currently not 

implemented in most other tools in the field.  For instance, the TDR Targets 

Database links to the model entry in ModBase but does not provide an integrated 

method for visualising protein structures, nor does it attempt to curate models to 

include only good qualities ones (TDR Targets Database; http://tdrtargets.org). 

4.3.7.2 Attributes and methods of the Gene class 

 The main attributes and methods of the Gene class are described above.  

Other methods are defined that retrieve various data about a gene from the database 

and populate the corresponding attributes.  For example, the methods get3DModels 

and getPDBCodes retrieve comparative models and PDB structure information for 

the protein.  Inner classes such as ClickOnModelHandler and ClickOnPDBHandler 

respond to a user clicking on a magenta bar representing a comparative model or 

solved structure, respectively, by opening the corresponding structure in Jmol.  Other 

inner classes are defined to represent particular data types or attributes of a gene, 

such as Domain (an InterPro predicted domain or sequence feature), SignalPeptide (a 

predicted signal sequence), Interaction (a single protein-protein interaction between 

the gene�s product and another protein) and GO (a GO term annotation). 
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4.4 Availability 

4.4.1 Online availability 

 MaGnET is freely and publicly available over the World Wide Web at 

http://www.malariagenomeexplorer.org.  A Java applet version of 

MaGnET is available to use online via a web browser.  Alternatively, users may 

download the application to their computer and run it using Java Web Start 

technology (Sun Microsystems; http://java.sun.com/products/javawebstart/).  Java 

Web Start is included with the Java Runtime Environment (JRE) distribution.  The 

Java Web Start application is preferred and encouraged above the applet because it 

has the advantage of significantly increased speed of use.  Furthermore, once the 

application has been downloaded to the user�s computer, subsequently they will be 

able to run it directly from their computer without requiring returning to the 

MaGnET website.  At start-up, the application automatically checks for updates to 

the program and downloads them.   Nevertheless, the applet version offers 

advantages where the user wishes to have instant access to MaGnET within their web 

browser or may not wish to download the application (for example, when using a 

public computer). 

 MaGnET runs satisfactorily on computers with the latest JRE for their 

operating system, including Windows XP with JRE 1.6, Mac OS X with JRE 1.5 and 

Linux with JRE 1.5.  Furthermore, the MaGnET applet runs in the common web 

browsers, including Mozilla Firefox, Internet Explorer and Safari.  Therefore, 

MaGnET should work on any system running JRE 1.5 or a later version; also, 

MaGnET should continue to work satisfactorily with future releases of Java, since 

they are backwards compatible. 



 123

 The MaGnET database and website are currently hosted by the School of 

Engineering, University of California, Santa Cruz.  It is hoped that a mirror server 

will soon be available at the University of Edinburgh, which will improve the speed 

of downloading the application, loading the applet and accessing the database for 

clients based outside the United States. 

4.4.2 Downloadable version with database 

A full, licensed version of the program and database, with source code, will 

be made available upon request.  This will allow advanced users and developers to 

keep a local copy of the database, to which they could add their own data, such as 

gene annotations or expression data.  Expansion of the database would, in most 

cases, require a slight modification of the Java code.  Every effort has been made in 

the development of MaGnET to ensure that the program is robust and easily 

expandable to facilitate the addition of new datasets.  It is also hoped that features of 

MaGnET will form the basis for new visualisation tools provided by the main 

malaria genome databases.  For this purpose, access to the program source code will 

be essential.  The use of discrete Java classes reflecting the organisation of the 

visualisation program means that it will be straightforward for complete, individual 

MaGnET viewers to be exported. 

4.4.3 Documentation 

 The documentation available to MaGnET users includes a detailed set of help 

pages accessible from any point within the program.  The help pages include helpful 

tips on how to make the most of the program�s functionality as well as information 

about the datasets, including source and version details.  An introductory overview of 
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the software and data (including screenshots) is provided on the MaGnET website 

for new users.  The website also includes a useful tutorial which is recommended for 

all first-time users.   

4.4.4 Security considerations 

 In order to allow users to read and write files of gene identifiers MaGnET 

needs to have special permission to access their local file system.  The necessary 

permission can granted by way of a security certificate digitally signed by the 

program developer that is included with the applet or application JAR (program 

package).  The MaGnET applet and application JARs have been signed so that they 

can access the user file system; the first time a user accesses the program they must 

accept the security certificate.  Behaviour of the browser can vary in this situation 

according to the individual settings of the user. 

 Aside from the reading and writing of files, MaGnET currently resembles a 

�closed� system.  Other websites and programs are currently not allowed to link into 

the program, because this opens up a lot of technical issues about security and 

session caching which would need to be dealt with in order to make MaGnET fully 

�online� and interactive.  To achieve this was not possible within the scope of this 

project, although it would be useful in future for other programs to be able to open 

MaGnET with particular a set of genes pre-selected, perhaps in a certain viewer.  

Nonetheless, within the scope of the permissions granted to MaGnET it is able to 

open a web browser and direct the user to a particular web address, which meant that 

link-outs to online databases could be included. 



 125

4.5 Discussion 

 The Malaria Genome Exploration Tool provides advanced visualisation for a 

range of P. falciparum functional genomic data.  It encourages users to explore the 

available annotation by providing simplified search facilities that allow them to 

rapidly locate genes of interest.  The inclusion of several linked data viewers offers 

the user a choice of entry points and allows them to follow their analysis down any 

pathway.  Users may browse protein-protein interactions by navigating the Protein-

Protein Interaction Viewer, where they can quickly pull up a network of interactions 

for a protein of interest.  Using the Genome Viewer and associated Chromosome 

Viewer allows genes to be quickly located and their genomic context to be examined 

at various levels of resolution.  The Expression Data Viewer allows the biological 

context of gene and protein activity to be explored, at the level of individual genes 

and small groups.  A comprehensive search interface allows the user to retrieve sets 

of genes following a similar pattern of expression at a particular stage of the life 

cycle.  Users may quickly search the database for genes and annotations that match 

keywords or analyse a list of annotation summaries for a selected group of genes 

using the Data Analysis Viewer.   

MaGnET offers advantages over existing Plasmodium genome databases 

(such as in Table 1.5) by allowing users to select and manipulate groups of genes and 

to carry these groups forward across viewers.  This approach makes it simple for 

users to explore the features in common for a set of genes, and to discover previously 

unknown relationships.  Meanwhile, MaGnET makes available detailed annotation 

for individual genes in the form of helpful fact sheets that can be accessed at the 
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click of a button.  The data is separated on tabbed �pages� to facilitate rapid 

navigation to the annotation of interest. 

MaGnET also features a novel method for visualising time-series gene and 

protein expression data mapped onto either genomic location or protein-protein 

interaction networks.  This facility opens up a new dimension for functional 

genomics data exploration by allowing malaria biologists for the first time to use in 

silico tools to generate hypotheses about how genes work together to achieve their 

function.  For instance, where co-expressed genes occur in the same region of a 

chromosome it suggests that they may be subject to the same transcriptional control 

mechanism and may be involved in the same cellular process.  Using this principle of 

�guilt by association�, users can come up with new hypotheses about the possible 

function of previously uncharacterised genes.  MaGnET can be used to explore all 

aspects of a protein of interest in theory before deciding on follow-up experiments to 

perform, either computationally or in the laboratory. 

Integration of different data-types can be also used to discover erroneous 

annotation.  For instance, if the expression data indicates that proteins which are 

reported to interact in yeast two-hybrid experiments are never expressed during the 

same life cycle stage, then it may be assumed that the interaction is not likely to 

occur in a biological context.  Another example might be when a gene has been 

annotated (computationally) with a particular function, but there is no experimental 

evidence and it can be closely associated with a group of genes with a different 

function, then this indicates that the original annotation is likely to be false. 

By selectively including relevant functional genomics data, MaGnET 

eliminates a lot of the �clutter� that is inherent in many of the currently available 
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resources for Plasmodium data.  This serves to minimise the sensation of �data 

overload� that is sometimes felt by biologists seeking to use bioinformatics tools and 

genome databases.  Careful filtering out of low-quality annotation means that users 

can be confident when using MaGnET that they will only be presented with useful 

and reliable annotation.  In this sense, MaGnET helps users by making some of the 

decisions they face when using other data resources for them. 

4.5.1 Comparison of MaGnET to similar tools 

When MaGnET was designed in late 2004, there were still very few tools 

around that implemented the functionality that MaGnET set out to achieve (see 

Chapter 2 � System Design).  As Tables 1.6, 1.7 and 1.8 demonstrate, the majority of 

similar tools focus on visualisation of one major type of data, such as gene 

expression data [GenePilot (TG Services; El Sobrante, CA, USA), GeneXplorer 

(Rees et al. 2004), TableView (Johnson et al. 2003)], cellular pathways 

[PathwayTools (Karp et al. 2002), PathwayExplorer (Mlecnik et al. 2005), 

SHARKview (Hyland et al. 2006)] or networks [Osprey (Breitkreutz et al. 2003), 

Bioverse (McDermott et al. 2005)].  Recently, the designers of these tools have 

recognised the importance of giving users access to annotation data that will help 

with their analysis, and have done so by including GO and other annotation, as well 

as link-outs to online databases.  Furthermore, integrated visualisation of gene 

expression data in the context of pathways and networks has become commonplace.  

PathwayTools, PathwayExplorer, Bioverse, SHARKview, Yeast Exploration Tool 

Integrator (YETI) (Orton et al. 2004) and GenMAPP (Salomonis et al. 2007) all offer 

pathway or network visualisation that uses a colour code to display the expression 

level of the components.  Additionally, PathwayTools has recently implemented 
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integrated visualisation of expression data within genomic maps, as well as providing 

a simple step-through mechanism using arrow buttons for displaying changes in 

expression over a time-course experiment. 

The precedent set by YETI (Orton et al. 2004) and MaGnET for linking 

multiple data viewers to create a multi-faceted �workbench�-style tool has been 

echoed in the development of other software.  As mentioned, PathwayTools is one of 

the first to offer visualisation tools for browsing both cellular pathways and genomic 

location.  GenMAPP is also developing a range of viewers for integrating various 

data types, including pathways, expression data and SNPs.  TM4�s MultiExperiment 

Viewer (MeV) (Saeed et al. 2006) is currently developing modules for viewing 

metabolic pathways and genome maps with expression data overlaid to augment its 

existing microarray visualisation tools. 

Despite the recent emergence of generic tools offering integrated 

visualisation of functional genomics data, few of them offer the range of data that 

MaGnET does.  One data type lacking from all the resources listed in Tables 1.6, 1.7 

and 1.8 is protein tertiary structure information.  Since protein structure ultimately 

determines function, this information adds another dimension to a protein�s 

annotation.  Even though there are few experimental structures available for 

Plasmodium proteins, comparatively modelled structures are available for 

approximately a third of the proteome.  Providing a simple way to access this 

information is a valuable contribution of MaGnET to the field. 
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4.5.1.1 Comparison of MaGnET to related Plasmodium-focussed tools, 

including detailed comparison to the Plasmodium Genome Resource, 

PlasmoDB 

MaGnET was developed to plug a perceived gap in the market for a tool to 

facilitate malaria researchers wishing to explore the growing amount of functional 

genomic data available for Plasmodium.  There are still few tools available offering 

all the capabilities provided by MaGnET.  The tools discussed in the above section 

are mainly generic tools that are not specifically set-up to support Plasmodium data 

and where they do (e.g. PathwayTools) the data is moulded into a standard 

framework that does not recognise the unique properties and special requirements of 

this data, as discussed in Chapter 1. 

The Plasmodium genome databases described in Table 1.5 � PlasmoDB (Bahl 

et al. 2003), GeneDB (Hertz-Fowler et al. 2004), NCBI Malaria Genetics and 

Genomics (http://www.ncbi.nlm.nih.gov/projects/Malaria/), WHO/TDR Malaria 

Database (http://www.wehi.edu.au/MalDB-www/who.html), Broad Institute P. 

falciparum Database 

(http://www.broad.mit.edu/annotation/genome/plasmodium_falciparum_spp/MultiH

ome.html), and TIGR Parasites Databases (http://www.tigr.org/tdb/parasites/) � are 

excellent resources for researchers wishing to find out what is already known about a 

protein they are interested in.  However, few of them are dedicated to providing tools 

for the mining of functional genomic datasets to discover new trends and compare 

features of groups of genes. 

The remaining Plasmodium resources in Table 1.5 are bioinformatic tools for 

making new annotations about Plasmodium genes.  They tend to focus on a specific 
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aspect of gene structure or function; for instance, MalariaBase 

(http://malariabase.org/) is a tool for predicting new gene functions based on BLAST 

(Altschul et al. 1990) results and analysis of sequence motifs.  The UCSC Malaria 

Genome Browser (Chakrabarti et al. 2007) was designed to facilitate annotation of 

gene structure, which it does by combining evidence of transcribed and translated 

sequences, automated exon predictions and comparative genomics.  Finally, the 

SAMP database (part of the MalPort server) (Joubert and Joubert 2008), combines 

various predictions of protein sequence features and structural data to generate lists 

of priority targets for further structural characterisation.  All of these tools will be 

very useful for their own specific purposes; however, none of them covers the range 

of data or the remit of MaGnET: providing visualisation of integrated functional 

genomic data. 

A recent development in the field, MADIBA (also part of the MalPort server) 

(Law et al. 2008), provides malaria researchers with a tool for the analysis of clusters 

of co-expressed genes.  Whilst the purpose and output of MADIBA are clearly very 

different to MaGnET, some of the themes running through the MaGnET design are 

recognisable in MADIBA.  For instance, MADIBA also encourages users to explore 

common features of a group of genes by providing tools to analyse chromosomal 

location and over-representation of GO terms in gene lists.  MADIBA provides bare-

bones visualisation of results, although this is limited to locations of the clustered 

genes in KEGG pathways (a topic not included in MaGnET), display of over-

represented GO terms in a hierarchical tree and basic visualisation of chromosomes 

with gene locations marked.  Despite some similarities, MADIBA lacks some of the 

main features of MaGnET.  For example, MADIBA does not store many of the 
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functional genomic datasets that MaGnET does, including expression data and 

protein-protein interactions.  Therefore, users cannot discover new clusters or groups 

of genes via browsing the available datasets as they can when using MaGnET; they 

must already have a pre-defined list of genes to use MADIBA.  Furthermore, 

MADIBA does not integrate different datasets like MaGnET, so different aspects of 

gene function can only be examined individually.  This would make it very difficult 

to explore relationships between different data-types; for example, it would be 

impossible to view expression patterns across genomic regions or interaction 

networks using MADIBA. 

Nevertheless, PlasmoDB (Bahl et al. 2003) remains the primary information 

resource for malaria researchers working on all aspects of Plasmodium biology.  

Table 4.2 provides an overview of the data content of MaGnET as compared to 

PlasmoDB and shows that most of the main data types are shared between the two.  

PlasmoDB is foremost a genome database, so its visualisation tools are focussed 

around the genome browser, useful features of which include customisable track 

display.  Although MaGnET provides a Genome Viewer, its purpose is for use in 

conjunction with other functional genomic data; for example, display of gene groups, 

paralogs and transcription patterns in a genomic context.  In other cases, MaGnET 

offers far more advanced visualisation, such as a Protein-Protein Interaction Viewer 

and the ability to easily compare expression profiles of multiple genes.  MaGnET 

does not feature all possible types of expression data that are included within 

PlasmoDB, such as ESTs and wild type (WT) versus ligands for merozoite invasion 

of erythrocytes knock-out (KO) studies, because the development of MaGnET 
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focussed on visualisation of time-course data.  However, MaGnET could be 

straightforwardly adjusted to incorporate other types of expression data. 

 

Data access PlasmoDB MaGnET 

Gene location Standard Genome Browser 
(GBrowse) � zoom-able, limited 
to sections of chromosome  

Genome Viewer/Chromosome 
Viewer � zoom-able, up to whole 
chromosome or whole genome 
view 

Sequences FASTA protein/DNA FASTA protein/DNA 
Gene Ontology Search terms by keyword. Listed 

on gene page. 
Search terms by keyword. Listed 
on gene page. Compare GO for 
multiple genes in Data Analysis 
Viewer. 

Results of other 
function prediction 
tools 

InterPro predicted sequence 
features. Listed on gene page. 
Search by keyword. 

InterPro predicted sequence 
features. Visualised on fact sheet. 
Search by keyword. Compare 
annotation for multiple genes in 
Data Analysis Viewer. 

Protein 
interactions 

Table of interactions on gene 
page (one yeast two-hybrid 
study). 

Table of interactions on gene fact 
sheet. Interactive maps in 
Protein-Protein Interaction Viewer 
(one yeast two-hybrid study). 

Expression data Time-series expression profile 
graphs for single genes. MRNA 
data from three time-course 
studies. WT v KO expression 
data for erythrocyte invasion 
pathway. 

Time-series expression profile 
graphs for single genes/proteins 
and for small groups. MRNA and 
protein data from five time-course 
studies. Extensively searchable 
via Expression Data Query 
Builder. 

Metabolic 
pathways 

Links to PlasmoCyc and Malaria 
Metabolic Pathway DB 

Links to PlasmoCyc 

Literature Link out to Malaria Literature DB Link out to Malaria Literature DB 
Protein Structures Link out to PDB and limited set 

of models (Gowthaman et al. 
2005). 

Locally stored PDB and modelled 
structures. Large set of high 
quality models from ModBase.  

Orthologs/paralogs List of orthologs in other 
Plasmodium genomes and in-
genome paralogs. Link out to 
OrthoMCL DB from gene page. 

List of orthologs in several 
Plasmodium genomes and in-
genome paralogs. Link outs to 
OrthoMCL DB and orthologs in 
PlasmoDB from fact sheet. 

ESTs EST libraries from several 
species/strains. 

-- 

SNPs SNPs for several P. falciparum 
strains. 

-- 

Table 4.2.  Overview comparison of MaGnET data content to PlasmoDB. 

 

Table 4.3 provides an overview of the main interface functionality of 

MaGnET compared to PlasmoDB.  In PlasmoDB�s role as main information provider 
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for the malaria research community, it seeks to provide a comprehensive set of 

search tools to facilitate data mining.  While it is obviously necessary to be able to 

search the MaGnET database and select groups of genes to transfer to other viewers, 

it is not the primary purpose of MaGnET, so relatively modest search functionality is 

implemented.   

PlasmoDB�s data display is mainly organised around single gene pages 

listing all available information about a gene.  There is limited functionality for 

comparing features of groups of genes.  However, MaGnET encourages the use of 

gene groups for discovery of patterns and features in common across subsets of 

genes.  MaGnET provides two �place-holders� for groups of unlimited size, which 

are assigned unique colours that are maintained when groups are transferred between 

different data viewers.  MaGnET�s ability to view a set of genes in the context of 

different datasets is a useful feature not currently implemented by PlasmoDB.  That 

MaGnET has the option to hold two groups at once affords an additional level of 

functionality, because the groups� features can easily be compared and common 

genes discovered.  Moreover, other tools in the field that do facilitate manipulation of 

groups of genes only implement a single group at a time approach.  For example, the 

MADIBA toolkit for microarray cluster analysis (Law et al. 2008) allows users to 

upload a select set of genes and examine various properties of the group (see Table 

1.5).  By providing users with the option to select two sets of genes at a time 

MaGnET opens up an entirely new spectrum of possibilities for cross-cluster 

comparisons.  In many cases users will be interested in the intersection between the 

two groups; for example, users could select groups of genes that are being up-

regulated during a particular life cycle stage in two different microarray experiments 
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and then examine the genes that are present in both groups using this technique.  

When formulating hypotheses based on exploratory analysis, the more lines of 

evidence that can be drawn from the stronger and more focussed the hypothesis can 

be. 

 

Features PlasmoDB MaGnET 

Purpose Database/data warehouse Workbench/visualisation tool 
Display 
organisation 

Primarily single gene focussed. 
Gene neighbourhood available 
in genome browser.  

Range of displays from whole 
genome down to small groups 
and single genes. 

Selection of 
multiple genes 

Combine search results to 
create a gene list. 

Select and modify two sets of 
genes, carried forward between 
displays. 

Compare genomes View syntenic regions between 
certain genome pairs. 

-- 

In-genome paralog 
view 

-- View genomic location of 
paralogs. Easily add paralogs to 
a group. 

User customisable Select tracks to display in 
genome browser. Upload user 
data as custom tracks. 

Select colours used for 
visualisation. Downloadable 
version could be modified to 
include user data. 

Searchable Many search options. Simple 
interface. 

Several search options, 
especially for expression data. 
Can search using ID and keyword 
lists. 

Integrated Can move between genome 
browser and gene pages. 
Customisable track display on 
genome browser can display, for 
example, ESTs. 

Fully integrated. Carry gene 
selections between displays. 
Display expression data mapped 
onto genome location or protein 
interaction map. Gene fact sheets 
available at any point. 

External links to 
other resources 

Many, including literature, 
orthologs, drug targets, UCSC 
genome browser 

Many of the same 

Other tools BLAST, downloadable files, 
subcellular localisation 
prediction 

Visualisation of protein structures 
with integrated Jmol viewer. 

Store results Save file with selected data 
about genes resulting from 
search. 

Save file with IDs of selected set 
of genes.  

Size Large-scale, comprehensive, 
consortium. 

Lightweight, portable, relevant 
data only, one group product. 

Future lookout Need to keep up with inclusion 
of new data leaves little time for 
developing advanced 
visualisation/exploration tools. 

Framework in place, many 
possible directions for future 
expansion, e.g. visualisation of 
pathways and comparative 
genomics data. 

Table 4.3.  Overview comparison of MaGnET interface functionality to PlasmoDB. 
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4.5.2 Future improvement to and expansion of MaGnET 

 There are many directions in which the development of MaGnET could be 

taken.  The most interesting and useful possibilities are summarised below. 

1. Comparative Genomics Viewer 

 Comparative genomics has much to offer for investigating Plasmodium 

biology, including host specificity, drug resistance, parasite evolution and species 

and strain specific behaviours, such as rosetting.  Therefore, it would be useful to 

extend the MaGnET Genome and Chromosome Viewers to facilitate comparative 

analyses between two or more Plasmodium genomes.  The proposed Comparative 

Genomics Viewer would allow genomes of the user�s choice to be automatically 

aligned and regions of synteny to be mapped.  The existing functionality for viewing 

the genomic location of gene families in P. falciparum could  be extended for all 

available genomes.  Comparative genomics information will also allow functional 

annotations made in one species/strain to be transferred to another; for example, 

protein interaction networks may be assumed to be largely conserved, at least 

between isolates.  At the gene/protein level, it will be useful to be able to compare 

the predicted structures and domains and to see the location of SNPs, insertions and 

deletions. 

2. Pathway Viewer 

 Providing a Pathway Viewer would be a useful way to enhance the proteome 

viewing capabilities of MaGnET currently provided by the Protein-Protein 

Interaction Viewer.  Much third-party software already exists for Pathway Viewers, 

so it may be possible to modify some open-source Java code to create a simple 
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Pathway Viewer. Alternatively, the MaGnET Protein-Protein Interaction Viewer 

itself could be modified, which would require the inclusion of non-protein 

components, such as chemical cofactors and substrates. 

 The main problem lies in obtaining Plasmodium pathway data.  The Malaria 

Metabolic Pathways Database (Ginsburg 2006) is a comprehensive set of manually-

curated metabolic and cellular pathways, but the annotation and gene associations are 

not straightforward to retrieve (there are no downloadable text files containing the 

information).  The PlasmoCyc pathway database (Yeh et al. 2004), despite providing 

downloadable annotation files, is vastly incomplete and out-of-date [the ApiCyc P. 

falciparum pathway database (http://apicyc.apidb.org/) is currently just another 

incarnation of PlasmoCyc, but now that it is part of the PlasmoDB family it is more 

likely that it may be updated in future]. 

3. Whole-genome scale visualisation of expression data 

 In order to fully explore time-series expression data to discover patterns 

involving groups of genes with changing expression under particular conditions, a 

novel tool providing whole-dataset scale visualisation is needed.  During the course 

of MaGnET�s development, time was spent investigating the possibility of modifying 

an existing tool to provide this functionality within MaGnET.  A collaboration with 

Professor Jessie Kennedy at Napier University, Edinburgh, was initiated with the aim 

of incorporating a modified version of a software tool for animated visualisation of 

microarray time-course data: Time-series Explorer (TSExplorer) (Craig et al. 2005).  

TSExplorer provides animated scatter-plot views of expression data, which allows 

the user to hone in on subtle changes involving groups of genes following the same 

pattern of expression over a short time-frame.  Unfortunately, due to a number of 
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circumstances, it was not possible to complete the integration of TSExplorer with 

MaGnET in the time-frame of this PhD work.  It is hoped that a future version of 

MaGnET will include the functionality provided by TSExplorer, which will greatly 

enhance the ability of malaria biologists to explore time-course expression data. 

4. Comparison of expression profiles across datasets 

 The existing functionality within MaGnET to compare individual gene 

expression profiles across multiple datasets (useful for reinforcing confidence in the 

measurements) is very limited.  It would be useful to provide an improved method 

for comparing at least two datasets, which would require the corresponding time-

points to be accurately mapped.  Since the currently available Plasmodium 

expression datasets are very different, it is difficult to determine exactly 

corresponding time-points.  Hopefully, as more experiments are completed, it will 

become easier to find similar datasets to compare.  

5. List of orthologues or counterpart proteins in model organisms and comparison of 

protein-protein interaction networks 

 During discussions with biologists an often requested feature was the 

mapping of P. falciparum gene names to their orthologues or functional counterpart 

proteins in model organisms, such as mouse and yeast.  Another level to this would 

be to include functional information, such as protein-protein interaction data, from 

the model organisms and allow users to compare it with the P. falciparum data.  
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6. Improved Data Analysis Viewer 

 The Data Analysis Viewer could be improved by adding more search options 

and developing a Query Builder similar to that in the Expression Data Viewer to 

easily construct advanced queries. 

 The layout of the data table that is returned when a user requests a summary 

of the genes in their selected groups can be improved.  The table could be enhanced 

by making it fully interactive, so that users can decide exactly what information is 

displayed and for which genes. 

7. Additional protein structure information 

 The information provided about protein structures could be usefully 

supplemented with structural classifications from SCOP (Structural Classification of 

Proteins) (Murzin et al. 1995) or CATH [Class (C), Architecture (A), Topology (T) 

and Homologous superfamily (H)] (Orengo et al. 1997). 

 A novel use of the protein structure data would be to map the location of 

sequence variations between isolates onto the solved or predicted structure.  This 

information can indicate areas of the protein that are important for function and 

changes in sequence and structure that might be causing an observed phenotypic 

difference. 

8. Further link-outs 

 The gene fact sheet could be enhanced by providing links to descriptions of 

GO and InterPro terms (adding a link to the relevant resource webpage describing the 

term would be the most convenient way to do this).  It would be useful to include 

link-outs to other online databases; for example, to relevant literature. 
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9. Automatic updating of database 

 The MaGnET database currently needs to be updated manually by 

downloading the relevant text files from their sources.  It would be useful to develop 

an automated workflow to check for updates, retrieve the files from the web and run 

the update scripts without requiring manual intervention.  While this would be 

possible to implement for certain datasets, such as gene annotation files, it would not 

be possible for others, such as expression datasets, which are downloaded once as 

publication supplementary data files.  The addition of a new expression dataset 

requires changes to be made to the Java code, due to the customisation necessary for 

display of different types of data.  If new expression datasets could be added to 

MaGnET without changing the Java code this would be a useful improvement, but 

would probably require major changes to the way in which expression data is read in 

and stored in the database. 
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5. DEMONSTRATION OF MAGNET EXPLORATION 

Overview 

This chapter is devoted to demonstrating that MaGnET may be used to 

illustrate the results of several recently published studies about gene function.  The 

first �mini-study� shows that MaGnET effectively displays the majority of results 

reported in the publication of a gene expression study.  The experimental dataset 

from this publication is included in the MaGnET database, so it has significantly 

influenced MaGnET design.  Two other mini-studies describe research from a 

combination of bioinformatic and experimental investigations into the functions of 

two novel genes families.  These studies also demonstrate that MaGnET analysis can 

reproduce a similar pathway to that used by the authors involving alternative 

bioinformatic tools to achieve the same result.  The latter studies did not influence 

MaGnET design in any way.  

The publications also included some experimental work that could not be 

exactly reproduced using MaGnET; however, where possible, related data available 

within MaGnET is consulted to demonstrate their findings.  In a few places 

additional discoveries were made that were not recorded in the original publication.  

Section 5.4 will evaluate MaGnET�s strengths and weaknesses when 

visualising the results described in these publications.  The advantages and 

limitations of MaGnET over other publicly-available tools to explore the data both 

used by and reported in the publications will also be discussed.  All figures included 

for illustration are MaGnET screenshots. 
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The subsequent chapter (Chapter 6) will build upon this foundation and aim 

to demonstrate that MaGnET can be used to discover previously undocumented 

trends and generate hypotheses about gene function. 

 

5.1 Gene expression profiling of the Intraerythrocytic 

Developmental Cycle (Llinas et al. 2006) 

The first in-depth, genome-scale study of P. falciparum gene expression 

during the Intraerythrocytic Development Cycle (IDC) was conducted by Llinas et 

al. (2006).  In this paper the authors compared microarray gene expression profiles 

recorded for nearly all genes in the laboratory strains 3D7 and Dd2 with results from 

an earlier microarray study of the HB3 laboratory strain (Bozdech et al. 2003).  For a 

description of the array used in these studies refer to Section 1.5.1.2.  Here, select 

results of the Llinas et al. 2006 study will be demonstrated using various features of 

MaGnET.  It should be noted though that the data stored in the MaGnET database 

does not represent absolute values of expression level, but instead relative expression 

ratios.  From such ratios it is not possible to determine the absolute level of 

expression of individual oligonucleotides.  Absolute expression values were not 

made publicly available by the authors of the studies; therefore, the assertions made 

in the Llinas et al. paper using absolute expression values cannot be reproduced here. 

5.1.1 Variability in gene expression 

 For the majority of genes timing of expression during the IDC was strongly 

correlated between strains 3D7, HB3 and Dd2 (Llinas et al. 2006).  However, the few 

exceptions occurred mainly for genes encoding surface proteins involved in antigen 
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presentation.  For example, the mRNA for gene MAL13P1.344 (a probable ATP-

binding cassette transporter) is clearly differentially expressed in HB3 compared to 

3D7 and Dd2 (Figure 5.1).   

 

 

Figure 5.1.  Time-series expression profiles for ATP-binding cassette transporter-encoding gene 

MAL13P1.344 in the 3D7, Dd2 and HB3 strains.  Expression profiles in the 3D7 and Dd2 strains are 

very similar, but HB3 expression is almost opposite.  At the top of the figure is a bar showing the 

timing of life cycle stages during the IDC for 3D7 strain parasites.  The timings of life cycle stages for 

Dd2 and HB3 strain parasites are similar to those for 3D7, but the overall length of the IDC is 

approximately three and five hours shorter, respectively.  Note that data are missing for hours 23 and 

29 of the HB3 IDC.  The information is included here for reference and also applies to all other 

mRNA expression profile graphs from the Llinas et al. 2006 dataset. 
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The P. falciparum erythrocyte membrane protein 1 (PfEMP1)-encoding 

genes PF08_0103 and PFB0010w show a large variation in expression between 

strains 3D7 and HB3 (Figure 5.2).  For both genes data are missing for Dd2; oligos 

which had missing values for greater than 40% of time-points were excluded from 

the MaGnET database (and also from the original analysis) (Llinas et al. 2006).  

Aside from technical issues, an oligo not being detected in one strain must be due to 

either transcriptional differences or significant deletions or polymorphisms.  Indeed, 

PFB0010w lies in a region known to be silenced or deleted in Dd2 parasites (see 

Section 5.1.2).   

The S-antigen (encoded by gene PF10_0343) is located in a known 

polymorphic region.  The expression of this gene is not detectable in Dd2 or HB3 

because the representative oligo lies within a highly diverse region of the sequence 

(Figure 5.3) (Llinas et al. 2006) 

  

 

 .  
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Figure 5.2.  Time-series expression profiles for PfEMP1-encoding genes PF08_0103 (top panel) and 

PFB0010w (bottom panel) in the 3D7 and HB3 strains (no data are available for Dd2).  The 

expression profiles of both genes vary considerably between the two strains. 

 

 

Figure 5.3.  Time-series expression profiles for the S-antigen-encoding gene PF10_0343 in the 3D7 

and HB3 strains (no data are available for Dd2).  High sequence polymorphism in the region 

represented by this probe caused a lack of observed expression in HB3 and Dd2. 

 

Llinas et al. report that the gene (PF11_0512) encoding ring-infected 

erythrocyte surface antigen 2 (RESA-2) demonstrates variation in expression 

between strains.  Figure 5.4 shows that although expression profiles appear similar 

between strains HB3 and Dd2, there are differences to 3D7 parasites.  The expression 

profiles of the two 3D7 oligos vary widely, which could be an indicator of sequence 
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variation, or possibly alternative splicing.  Indeed, 3D7 is missing data for a third 

oligo altogether. 

 

 

Figure 5.4.  Time-series expression profiles for the RESA-2-encoding gene PF11_0512 in the 3D7, 

Dd2 and HB3 strains.  The gene expression profile appears similar between Dd2 and HB3 but varies 

between these two strains and the 3D7 strain.  There is also much variation between different oligos 

from within the 3D7 gene. 

 

Llinas et al. also reported that gene PFC0110w encoding cytoadherence linked 

asexual protein (CLAG 3.1) had large changes in its expression profile between 

strains.  Figure 5.5 shows that the expression profile of CLAG3.1 is very similar 

between strains 3D7 and HB3; however, the gene does not appear to be expressed in 

Dd2 parasites.  Lack of expression of this protein in Dd2 may be related to other 
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changes in transcription on chromosome 2 that are linked to disruption of the 

cytoadherent phenotype (see Section 5.1.2).   

 

 

Figure 5.5.  Time-series expression profiles for CLAG 3.1-encoding gene PFC0110w in the 3D7 and 

HB3 strains (no data are available for Dd2).  There appears to be little variation in expression profile 

between the HB3 and 3D7 strains, but expression was not detectable in Dd2 parasites. 

 

Gene PFB0100c, encoding knob associated histidine rich protein (KAHRP), 

seems to be differentially expressed during the late ring/early trophozoite stages 

(hours 8-23) in 3D7 parasites (Figure 5.6).  Llinas et al. hypothesised that the 

KAHRP gene may be absent in Dd2 (since the region of chromosome 2 where it is 

located is known to be silenced or absent in this strain � see Section 5.1.2); however 

from Figure 5.6 it appears that this gene is present in Dd2 parasites, although data for 
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one oligo is missing.  The authors also stated that this gene is likely to be highly 

polymorphic in HB3 parasites, although both oligos were detected in this strain at a 

majority of time-points. 

   

 

Figure 5.6.  Time-series expression profiles for KAHRP-encoding gene PFB0100c in the 3D7, Dd2 

and HB3 strains.  The gene appears to be differentially expressed during late ring/early trophozoite 

developmental stages (hours 8-23), which correlates with its known function as a knob surface 

protein. 

 

A KAHRP neighbour, PFB0095c, which encodes erythrocyte membrane 

protein 3 (PfEMP3) and is differentially expressed in the IDC of 3D7 strain parasites, 

recorded no expression signal at all in strains Dd2 and HB3 (Figure 5.7).   Llinas et 
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al. hypothesised that this gene may also be absent in Dd2 and highly polymorphic in 

HB3, for which Figure 5.7 demonstrates there is good evidence. 

 

 

Figure 5.7.  Time-series expression profile for the PfEMP3-encoding gene PFB0095c in the 3D7 

strain (no signal was detectable in Dd2 and HB3 strain parasites). 

 

5.1.1.1 Using MaGnET to identify genes that are differentially expressed 

during the ring stage and are enriched for GO terms linked to 

interaction with host 

 Llinas et al. describe the results of their analysis of GO term enrichment for 

genes with the greatest difference in expression profile between HB3 and 3D7.  They 

found significant enrichment of extracellular and plasma-membrane associated genes 
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involved in defence and immunity, adhesion, host-pathogen interaction and antigenic 

variation. 

 The following example is presented to demonstrate that MaGnET can be used 

to screen for differentially expressed genes between strains.  In the �Query Builder� 

window of the Expression Data Viewer, genes with expression significantly 

increasing (greater than 2-fold change) between hour 1 (ring) and hour 15 

(trophozoite) of the IDC in HB3 were retrieved and added to Group A.  Genes 

significantly decreasing between the same time-points in the 3D7 strain were added 

to Group B.  The genes in both groups were displayed using the Data Analysis 

Viewer and genes that were present in both Group A and Group B (in other words 

genes with opposing directionality of expression change in HB3 and 3D7 parasites) 

were selected and saved to a file.  This file now contained a list of genes that were 

up-regulated during the ring stage of HB3 parasites but down-regulated during the 

same stage of 3D7 parasites. 

 The same process was repeated with the conditions swapped; genes with 

expression increasing during the ring stage of 3D7 but decreasing during the ring 

stage of HB3 were selected in the same manner and saved to another file.  The two 

files were then combined and enrichment of GO terms within this subset compared to 

the entire microarray was analysed using the CLENCH2.0 tool (Shah and Fedoroff 

2004).   

 The analysis showed that within the subset of genes with varying expression 

profiles during the ring stage of 3D7 and HB3 parasites the GO terms that are 

significantly over-represented include many terms to do with cell adhesion and host-

parasite interactions, such as rosetting, cytoadherence, antigenic variation, 



 151

pathogenesis, receptor binding, host cell plasma membrane and infected host cell 

surface knob (Table 5.1).  Other significantly over-represented terms included 

protein regulatory functions, such as protein kinase activity, proteasome complex and 

endopeptidase activity.  These results compare well with those seen by Llinas et al. � 

enrichment of terms linked to immune evasion and host interaction, although they 

did not list specific enriched GO terms and the p-values obtained. 

 

Term Aspect P-value 

Antigenic variation Biological process 0.008 
Cytoadherence to microvasculature, mediated 
by parasite protein 

Biological process 0 

Pathogenesis Biological process 0 
Cyclic nucleotide biosynthetic process Biological process 0.003 
Protein amino acid phosphorylation Biological process 0.022 
Rosetting Biological process 0.001 
ATP binding Molecular function 0.008 
Cell adhesion molecule binding Molecular function 0 
Receptor binding Molecular function 0.044 
Glycosaminoglycan binding Molecular function 0.001 
Threonine endopeptidase activity Molecular function 0.034 
Protein serine/threonine kinase activity Molecular function 0.03 
Receptor activity Molecular function 0.002 
Phosphorus-oxygen lyase activity Molecular function 0.005 
Integral to membrane Cellular component 0.005 
Cytoplasmic part Cellular component 0.004 
Intracellular membrane-bound organelle Cellular component 0.01 
Proteasome core complex (sensu Eukaryota) Cellular component 0.044 
Host cell plasma membrane Cellular component 0.003 
Infected host cell surface knob Cellular component 0.001 

Table 5.1.  A list of enriched GO terms in genes with varying expression between HB3 and 3D7 ring 

stage parasites (hours 1-15 of the IDC).  At a confidence level of 95%, a p-value of below 0.05 

indicates that a category is significantly enriched in this set compared to all P. falciparum proteins.  

[P-values were generated using CLENCH2.0 (Shah and Fedoroff 2004).  Full program output is 

included on the accompanying CD.] 
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5.1.2 Putative deleted, polymorphic and silenced regions 

 Transcriptional differences occurring in certain regions of the genome led 

Llinas et al. to the conclusion that these regions must either be silenced, deleted or 

highly polymorphic in some strains.  One such example is a 20 kb region on 

chromosome 4 that contains genes encoding reticulocyte binding protein homolog 4 

(PfRH4, PFD1150c), erythrocyte binding antigen-165 (EBA-165, PFD1155w) and 

SURFIN4.2 (PFD1160w).  In 3D7 parasites, PfRH4 and EBA-165 are differentially 

expressed towards the end of the IDC, along with their neighbouring gene PfRH5 

(PFD1145c) (Figures 5.8 and 5.9).  The timing of their expression fits with their 

proposed role in merozoite invasion of erythrocytes; PfRH4 is required for the sialic 

acid-independent pathway of invasion (Stubbs et al. 2005) and EBA family proteins 

are required for the sialic acid-dependent mode, although EBA-165 itself is thought 

to be a likely pseudogene, transcribed but not translated (Triglia et al. 2001).  In Dd2 

and HB3 parasites PfRH4 and EBA-165 appear to be silenced, but the PfRH5 

expression profile remains the same as in 3D7 parasites (Figure 5.10).  Therefore, 

transcriptional regulation at this site varies between strains and may be important for 

the differences in invasion tactics observed between strains.  Although the function 

of PfRH5 is not known (Cowman and Crabb 2006), it appears not to be involved in 

the same mechanism of sialic acid-dependent to -independent pathway switching.   

Llinas et al noted that SURFIN4.2 also appears to be silenced in Dd2 

parasites (Figure 5.10); however, as its 3D7 strain expression profile is not the same 

as the other genes in this region it would seem unlikely for it to be involved in 

pathway switching (Figures 5.8 and 5.9).  Furthermore, when Llinas et al. made their 

observations the SURFIN4.2-encoding gene PFD1160w was still annotated as a 
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hypothetical protein.  Despite a 2005 paper describing the characterisation of 

SURFIN4.2 (Winter et al. 2005) the annotation available from PlasmoDB had 

apparently not yet been updated.  Winter et al. noted that SURFIN4.2 was found co-

exported with PfEMP1 and RIFIN proteins to the IE membrane during the IDC, but 

also that it was positioned in an amorphous cap at the parasite apex during merozoite 

invasion.  The Llinas et al. study reported fairly uniform expression of the 

SURFIN4.2-encoding gene during the IDC (Figure 5.9), which suggests that it is not 

differentially expressed during the IDC but may be on constitutively.  It is intriguing 

that this gene should also be silenced in Dd2 parasites; perhaps it does have a role in 

pathway switching after all. 

 

 

Figure 5.8.  A 20 kb region of chromosome 4 containing the genes encoding PfRH5 (PFD1145c), 

PfRH4 (PFD1150c), EBA-165 (PFD1155w) and SURFIN4.2 (PFD1160w).  Expression data at hour 
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47 of the 3D7 IDC (Llinas et al. 2006) show that the first three genes peak during the latter stages of 

the cycle (schizogony). 

 

 

Figure 5.9.  Expression profiles of the genes encoding PfRH5 (PFD1145c), PfRH4 (PFD1150c), 

EBA-165 (PFD1155w) and SURFIN4.2 (PFD1160w) during the 3D7 IDC.  PfRH5, PfRH4 and EBA-

165 follow a very similar profile, peaking in the late schizont (hours 43-53) (corresponding to the 

time-frame for generation of merozoites by schizogony). 
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Figure 5.10. A 20 kb region of chromosome 4 containing the genes encoding PfRH5 (PFD1145c), 

PfRH4 (PFD1150c), EBA-165 (PFD1155w) and SURFIN4.2 (PFD1160w).  Expression data 

displayed are from hour 47 of the IDC in Dd2 strain parasites (Llinas et al. 2006).  PfRH5 is the only 

gene in this region expressed during the Dd2 IDC, leading to the prediction that the other genes in the 

region are being silenced.  

 

 Another region of extreme transcriptional difference between strains 

encompasses the first 100 kb of chromosome 2, which are known to be involved in 

cytoadherence (Lanzer et al. 1994).  In 3D7 parasites, expression was recorded for 

many of the genes in this region, including repetitive interspersed family (rifin) 

genes, subtelomeric variable open reading frame family (stevor) genes, var 

(encoding PfEMP1), PfEMP3, hypothetical and DNA J domain protein-encoding 

genes (Figure 5.11).  However, in Dd2 parasites expression was recorded for only 
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one (a DNA J domain protein, PFB0080c) (Figure 5.12).  This region is known to be 

highly polymorphic across P. falciparum isolates and deletions in this region are 

common.  Disruption of the knob-associated histidine-rich protein (KAHRP)-

encoding gene just upstream is associated with the knobless phenotype of various 

isolates including Dd2 (Lanzer et al. 1994).  Lanzer et al. suggest that a similar 

phenotype could be caused by either deletions or silencing of transcription occurring 

within this region of chromosome 2.  Either way, it is quite clear from Figures 5.11 

and 5.12 that large-scale variations in transcription between strains do occur in the 

subtelomeric region of chromosome 2. 

 

 

Figure 5.11.  The first 100 kb of chromosome 2 displaying expression data from hour 11 of the 3D7 

IDC (Llinas et al. 2006). 
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Figure 5.12.  The first 100 kb of chromosome 2 displaying expression data from hour 11 of the Dd2 

IDC (Llinas et al. 2006). 

 

5.1.3 Immune evasion: var, stevor and rifin genes 

 The major multigene variant surface antigen families of P. falciparum are var 

(encoding PfEMP1), rifin and stevor genes (Su et al. 1995; Cheng et al. 1998).  

Llinas et al. reported that their microarray included probes for 50 out of 59 var genes, 

28 out of 29 stevors and 141 out of 154 rifins.  Figure 5.13 shows the genomic 

location of the var, stevor and rifin genes and indicates those that have expression 

data in the 3D7 IDC.  Searching for these genes in MaGnET revealed that there are 

now 73 predicted protein-coding var genes, 163 predicted protein-coding rifins and 

35 predicted protein-coding stevors.   
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Figure 5.13.  Screenshot of the genomic location of var, rifin and stevor genes in the 3D7 strain.  

Locations of var, rifin and stevor family members are indicated by orange bars next to chromosomes 

(left side corresponds to reverse strand; right side corresponds to forward strand).  3D7 IDC 

expression data (Llinas et al. 2006) for any of the genes that meets quality control criteria (data 

recorded for at least 60% of timepoints) is displayed as a coloured line on either the left (reverse 

strand) or right (forward strand) half of the chromosome. 

 

 Llinas et al. reported that they observed 16 var genes to be expressed during 

the 3D7 IDC.  It is not clear what criteria they used to select the var genes they 

considered to be �expressed�.  There are 39 var genes in total with expression data 

recorded during the 3D7 IDC.  The 16 var genes they are referring to were probably 
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considered to be differentially expressed during the IDC.  As absolute expression 

values are not available for the Llinas et al. dataset using MaGnET, instead it was 

decided to use the expression ratios to estimate the var genes that were differentially 

expressed during the 3D7 IDC.  The criterion selected was that a gene�s expression 

ratio must have varied more than 3-fold during the IDC.  The Expression Data 

Viewer Query Builder was used to search for all genes matching these criteria.  All 

the var genes matching these criteria (28 genes) were then displayed in the Genome 

Viewer (Figure 5.14).  These 28 var genes were considered for the purposes of this 

investigation to be �differentially expressed� during the 3D7 IDC.  27 out of 28 of 

them have maximal expression during the ring and early trophozoite stages (hours 6-

22) (Figure 5.14).  Interestingly, the 28th gene, PF08_0142, peaks later in the cycle 

during the schizont stage (hours 29-50).  Additionally, the expression timing of the 

other 27 var genes is concurrent with expression of the knob protrusion proteins 

KAHRP and PfEMP3 (Figure 5.14), correlating with the knob location for PfEMP1. 

Comparison of the 28 differentially expressed var genes in the Llinas dataset 

with the 23 highest expressed var genes from an earlier study by Le Roch et al. 

(2003) revealed that less than half the genes overlap between the two sets (Figure 

5.15).  Therefore, even laboratory strains seem to undergo switching of the subset of 

var genes expressed in different generations.  (Note that the Le Roch et al. dataset 

represents absolute expression levels; therefore direct comparison is not possible.)  

This result is consistent with that of Llinas et al. 
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Figure 5.14.  Screenshot of the Genome Viewer showing the location of the 28 var genes (indicated 

by orange bars beside chromosomes) that are differentially expressed (undergo greater than 3 fold 

change in expression) during the 3D7 IDC (Llinas et al. 2006).  27 of the var genes peak around the 

ring/early trophozoite stage (hours 6-22) (maximal expression is indicated by red and orange bars on 

chromosomes) and the 28th (PF08_0142) peaks in the schizont stage (hours 29-50).  Maximum 

expression of the former 27 var genes is concurrent with maximum expression of the KAHRP and 

PfEMP3 knob protein encoding genes (indicated by blue bars beside chromosome 2). 
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Figure 5.15.  Screenshot of the Genome Viewer comparing the location of 28 var genes considered to 

be differentially expressed (expression varied more than 3 fold) in the 3D7 IDC as recorded by Llinas 

et al. (2006) (orange bars) and the 23 var genes with highest expression (absolute expression level 

higher than 100) as recorded by Le Roch et al. (2003) (blue bars).  Bars coloured half orange and half 

blue represent genes appearing in both sets (totalling 9 genes). 
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Figure 5.16.  Time-series expression profiles of seven differentially expressed stevor genes 

(expression change greater than 3 fold) in the 3D7 IDC (Llinas et al. 2006). 

 

Llinas et al. found little expression of stevor genes in the IDC.  Figure 5.16 

shows that of the 11 stevor genes with expression data in the 3D7 IDC, only 7 are 

estimated to be differentially expressed (using the same criterion as above � that they 

undergo a 3 fold expression change during the cycle).  Their peak expression is 

generally around the trophozoite stage (hours 14-33), which is consistent with the 

observed location of their protein products in Maurer�s clefts during the schizont 

stage (hours 29-53) (Kaviratne et al. 2002).  The expression of just a small subset of 

stevor genes during the IDC is also further evidence of their proposed differing 

functional roles in at least three life cycle stages (including gametocytes and 

sporozoites) (McRobert et al. 2004). 
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The large multigene rifin family is also relatively under-represented in the 

3D7 IDC.  Out of a total of 49 rifins with expression data recorded during the IDC, 

only 21 of these appear to be differentially expressed (as determined by the criterion 

that the expression ratio changes at least 3 fold during the IDC).  Llinas et al. 

described a small subset of rifins that peak at approximately 15-17 hours post-

invasion (early trophozoite stage), which supports their proposed role in adhesion.   

 

 

Figure 5.17.  Expression profiles of differentially expressed rifins (expression change greater than 3 

fold) during the 3D7 IDC (Llinas et al. 2006).  Several patterns of expression are visible, involving 

small subsets of genes.  One subset of genes peak at around 15-17 hours post-invasion (early 

trophozoite), other subsets peak at around 20-23 hours (mid-trophozoite) and 30-32 hours (early 

schizont) and a large peak occurs in the late schizont stage (hours 42-53). 
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Although this is where the original analysis ended, the analysis of this data 

using MaGnET was taken a little further.  As Figure 5.17 demonstrates, there are 

several subsets of rifins expressed at different points of the IDC.  Interestingly, some 

genes seem to peak towards the end of the cycle during the late schizont stage (hours 

42-53).  One such gene is PF13_0005, whose expression is down-regulated during 

the earlier stages of the IDC, and appears to be differentially expressed in mature 

schizonts.  Recently, differing expression and localisation patterns have emerged for 

two distinct subtypes of rifin, termed the A- and B-type rifins.  A-type RIFINs (the 

proteins encoded by rifin genes) appear to be transported to the surface of infected 

erythrocytes in asexual stages, whereas B-type RIFINs tend to remain inside the 

parasite (Petter et al. 2007).  RIFINs have also been discovered in the apical region 

(A-type) and cytoplasm (B-type) of merozoites.  Moreover, some family members 

have only been detected in asexual stages and not merozoites, indicating distinct 

differential expression patterns (Petter et al. 2007).  Therefore, it is not unreasonable 

to suggest that the PF13_0005 protein may be one of a group of rifins differentially 

expressed in merozoite stages. 

 

5.2 A region of P. falciparum chromosome nine is associated 

with cytoadherence (Spielmann et al. 2006) 

 An approximately 55 kb region of the right arm of chromosome nine has been 

linked to cytoadherence and gametocytogenesis of infected erythrocytes (IEs) 

[(Spielmann et al. 2006) and references therein].  Spielmann et al. used the available 

genome sequence of P. falciparum 3D7 to pinpoint the exact location of this region 
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and determine that it contains 13 genes (PFI1715w-PFI1775w) (Figure 5.18).  Since 

none of these genes is PfEMP1, the mediator of IE sequestration, loss of the 

cytoadherent phenotype caused by loss of function in this region must be due to an 

indirect effect on PfEMP1 [(Spielmann et al. 2006) and references therein].  In order 

for PfEMP1 to reach the surface of the IE, the parasite must first set up a protein 

trafficking network (via the Maurer�s cleft) (see Chapter 1), which occurs during the 

ring stage, along with other modifications of the host cell. 

 

 

Figure 5.18.  Screenshot of a ~55 kb region of the right arm of chromosome 9 linked to 

cytoadherence and gametocytogenesis.   There are 13 genes in this region (marked by orange bars at 

the top of the gene), four of which have been termed the REX (ring exported) genes due to their ring 

stage-specific expression and export to the host IE (marked by blue bars at the base of genes).  Genes 

have been coloured according to their recorded mRNA expression level at the late ring stage in an 

experiment using temperature synchronised cultures of 3D7 parasites) (Le Roch et al. 2003). 
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5.2.1 A cluster of ring stage-specific genes 

Spielmann et al. noted that according to published transcriptome data four of 

the 13 genes in the described region of chromosome 9 appear to be ring stage-

specific (Figure 5.18) (Le Roch et al. 2003).  These genes have been termed the ring 

exported proteins REX1, REX2, REX3 and REX4 (PFI1735c, PFI1740c, PFI1755c 

and PFI1760w, respectively), since REX1 was previously shown to be exported to 

the Maurer�s cleft (Hawthorne et al. 2004). 

 

 

Figure 5.19.  Time-series expression profiles of 13 genes in the chromosome 9 cytoadherence locus 

from 3D7 parasites grown in a temperature synchronised culture (Le Roch et al. 2003).  Genes 

PFI1735c, PFI1740c, PFI1755c and PFI1760w encode the REX proteins REX1, REX2, REX3 and 

REX4, respectively. 
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Figure 5.20.  Time-series expression profiles of 13 genes in the chromosome 9 cytoadherence locus 

from 3D7 parasites grown in a sorbitol-treated synchronised culture (Le Roch et al. 2003).  Genes 

PFI1735c, PFI1740c, PFI1755c and PFI1760w encode the REX proteins REX1, REX2, REX3 and 

REX4, respectively. 

 

Spielmann et al. mentioned that the transcriptome data (Le Roch et al. 2003) 

showed PFI1765c and PFI1770w were expressed in ring stages (Figure 5.18), but 

their expression was quite low and increases in gametocytes (Figures 5.19 and 5.20).  

It should also be noted that based on the above expression profile graphs the gene 

PFI1720w appears to follow a similar pattern of expression to the REX genes.  

However, its peak expression actually occurs earlier, during the merozoite stage, 

whereas peak expression of REX genes occurs during the ring stage.  This evidence 

indicates that PFI1720w should not be clustered with the REX genes.  In fact 
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PFI1720w encodes a protein known as Pfgig (P. falciparum gene implicated in 

gametocytogenesis) which is thought to play a role in committing the parasite to 

gametocytogenesis at the schizont stage of the preceding generation (Gardiner et al. 

2005). 

5.2.2 REX proteins are encoded by two-exon genes and are 

unique  

Spielmann et al. report that PlasmoDB indicates that each REX gene consists 

of two exons, a short exon 1 and longer exon 2 (Figure 5.21).  They also report that 

examination of the genes for presence of the PEXEL motif which targets proteins out 

to the host erythrocyte (Marti et al. 2004) reveals that REX3 and REX4 both contain 

a PEXEL motif while one is not recognisable in either REX1 or REX2.  A PEXEL 

motif is not always required to direct a protein out to the IE [(Spielmann et al. 2006) 

and references therein] but a hydrophobic signal sequence does seem to be necessary 

to target the protein to the parasitophorous vacuole before secretion (Wickham et al. 

2001).  MaGnET was used to examine whether any of the REX genes have a 

predicted signal sequence in the current SignalP (Bendtsen et al. 2004) annotation.  

Interestingly, all four REX genes have a signal anchor sequence predicted at the N-

terminus.  REX3 and REX4 have signal anchor probabilities of 0.809 and 0.684, 

respectively, and REX1 and REX2 have signal anchor probabilities of 0.751 and 

0.998, respectively (Figure 5.22).  Therefore, the protein products of all four REX 

genes should at the very least be targeted to the parasitophorous vacuole. 
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Figure 5.21.  Screenshot of a region of chromosome 9 showing the location of introns (pink) in the 

four REX genes (blue).  Each REX gene consists of two exons. 

 

The REX proteins show no similarity to proteins in other organisms. REX3 

and REX4 appear to have arisen by gene duplication since they are 31% identical 

and next to each other on the chromosome (Figure 5.21).  The domain shared by 

REX3 and REX4 is also found in P. vivax and P. knowlesi. The MaGnET 

ortholog/paralog group display functionality in the Chromosome Viewer 

demonstrated that REX 3 and REX4 do indeed have homologs in P. vivax and P. 

knowlesi, but not in the rodent species (Figure 5.23). 
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Figure 5.22.  Screenshot of the SignalP predicted signal anchor for REX3 (PFI1755c). 
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Figure 5.23.  Screenshots of the ortholog group for REX3 (PFI1755c): (a) the ortholog/paralog table 

display in the Chromosome Viewer and (b) the ortholog/paralog group page on the gene fact sheet. 

 

5.2.3 REX1, REX2 and REX3 are exported proteins 

 REX1 and REX2 are localised to Maurer�s clefts and REX3 is found free in 

the host IE cytoplasm (Hawthorne et al. 2004; Spielmann et al. 2006).  However, 

REX4 protein was not detected and it remains unclear whether this was because it 

was expressed at very low quantities or whether it is not translated (Spielmann et al. 

2006).  Visualisation of protein expression data with MaGnET showed that REX1, 

REX2 and REX3 proteins were all detected in ring stage parasites, whereas REX4 

was not detected at all (Figure 5.24). 

 

a b
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Figure 5.24.  Time-series protein expression data for the products of genes encoded by the region on 

chromosome 9 linked to cytoadherence (Florens et al. 2002; Le Roch et al. 2004).  Genes PFI1735c, 

PFI1740c, PFI1755c and PFI1760w encode REX1, REX2, REX3 and REX4. 

 

5.3 A novel protein kinase family in Apicomplexa (Schneider 

and Mercereau-Puijalon 2005) 

 An unusual kinase domain-containing family unique to Apicomplexa was first 

described by Ward et al. in a genome-wide study of P. falciparum kinases (Ward et 

al. 2004).  They named the family FIKK after a conserved amino acid motif in the 

kinase catalytic domain.  One member of the family, the trophozoite antigen R45 

(PFD1175w), had already been characterised and was found to be associated with the 

IE cell membrane (Bonnefoy et al. 1992).  This protein has been of significant 
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interest as a possible vaccine candidate.  Antibodies to a recombinant protein have 

been shown to elicit protection against clinical malaria and promote phagocytosis of 

parasitised erythrocytes (Gysin et al. 1993; Perraut et al. 2003).  20 paralogs of the 

FIKK family (including R45) were discovered in the P. falciparum genome (Ward et 

al. 2004; Schneider and Mercereau-Puijalon 2005).  Schneider and Mercereau-

Puijalon described the P. falciparum FIKK kinase paralogs in detail in their 2005 

paper; the results of their study will be demonstrated in the following sections 

through the application of various features of MaGnET. 

5.3.1 Genomic organisation of FIKK kinase paralogs in P. 

falciparum 

 The 20 P. falciparum paralogs are spread over 11 chromosomes, with a 

cluster of 7 tandem copies on chromosome 9 and two copies separated by one gene 

on chromosome 4 (Figure 5.25).  17 of them are located within 150 kb of their 

telomere. 
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Figure 5.25.  The genomic location of 20 FIKK kinase paralogs in P. falciparum (orange bars). 
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5.3.1.1 Exon arrangement 

 FIKK kinase paralogs have a three-exon gene structure, including a short 

exon 1, long exon 2 and a short exon 3 (Figure 5.26), except for MAL7P1.175, 

which lacks exon 1 (or it is fused to exon 2), and MAL8P1.203, which has a short 

exon 1 and 2 and long exon 3 (Figure 5.27).  One of the paralogs appears in the 

current genome annotation as two separate genes (PF14_0733+4) (Figure 5.28), but 

sequence alignment shows them to be two parts of a single family member (Ward et 

al. 2004).  The cause of the misprediction presumably came from an internal stop 

codon.  MAL7P1.175 also has an internal stop codon, causing it to be predicted as a 

pseudogene (Figure 5.27).  MAL7P1.175 and PF14_0733+4 may both be 

pseudogenes, or they may be translated by read-through of the stop codon.  

 

 

Figure 5.26.  Part of the Chromosome Viewer displaying a region of chromosome 4 containing the 

FIKK kinase paralogs PFD1165w and PFD1175w (encoding R45) (in orange).  These genes conform 

to the typical three-exon gene structure of the family, consisting of short exons 1 and 3 and a long 

exon 2. 
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Figure 5.27.  Atypical intron/exon arrangements in P. falciparum FIKK kinase genes: (a) The 

pseudogene MAL7P1.175 (in orange) has an atypical gene structure where exon 1 is either missing or 

fused to the start of exon 2; (b) the gene MAL8P1.203 has a short exon 1 and 2 and a long exon 3, so 

the short C-terminal exon is either missing or fused to exon 2. 

 

 

Figure 5.28.  Part of the Chromosome Viewer displaying a region of chromosome 14 containing the 

FIKK kinase family member that was mispredicted as two separate genes (PF14_0733 and 

PF14_0734) (in orange). 

 

a
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5.3.1.2 All FIKK family members have a conserved C-terminal domain 

and unique N-terminal region 

 The FIKK kinase family members share a conserved C-terminal kinase 

domain, which cannot be assigned to any known kinase family.  The kinase domain 

contains all amino acids necessary for its function apart from the Glycine triad in 

subdomain I, which is involved in ATP fixation (Ward et al. 2004; Schneider and 

Mercereau-Puijalon 2005).  Nevertheless, the presence of this motif does not appear 

to be essential for kinase function, which has recently been demonstrated in two of 

the P. falciparum paralogs (Nunes et al. 2007).  

 

 

Figure 5.29.  A comparative model of the structure of the kinase domain of the protein encoded by 

gene PFI0100c.  The model is displayed as a cartoon representation of its secondary structure. 
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 The functional and structural domain predictions for the FIKK kinase 

paralogs were explored using MaGnET.  12 out of 20 paralogs have a comparatively 

modelled structure for a variable-length region of their C-terminal domain.  The 

modelled structures are between approximately 140-340 amino acid residues in 

length.  Figure 5.29 shows a model of the C-terminal domain of PFI0100c, which 

displays the main structural features of a kinase domain. 19 of the 20 paralogs have 

at least one hit to an InterPro kinase-like domain (Figure 5.30).  The twentieth 

paralog is the possible pseudogene MAL7P1.175, and there is an overall lack of 

InterPro annotation for pseudogenes.  In comparison, only six of the paralogs have 

been annotated with GO terms representing kinase functionality. 

PFD1175w is distinguished by having a 90 copy hexapeptide repeat inserted 

between subdomains III and IV of its kinase domain (Figure 5.30).  PFI0125c has a 

stretch of 32 copies of a two amino acid motif in this region, while the other paralogs 

have a non-conserved stretch of up to 53 non-repetitive amino acids. 

The N-terminal region of each paralog is unique and does not contain 

similarity to any known domain.  The N-terminal region is marked by a region of 

hydrophobic residues corresponding to a likely signal/anchor or transmembrane 

sequence.  Data mining using the MaGnET Data Analysis Viewer revealed 

signal/anchor sequence or transmembrane domains in 11 out of 20 paralogs (Figure 

5.31).  Schneider and Mercereau-Puijalon stated that PlasmoDB had listed 14 

paralogs with signal or transmembrane sequence annotation at the time of their study.  

Therefore, during the course of this work, a check was made of the current 

PlasmoDB annotation and it was found that signal sequences and transmembrane 

regions were predicted for the same 11 paralogs as in MaGnET.  Ultimately, 
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Schneider and Mercereau-Puijalon manually predicted signal/anchor sequences in all 

but one paralog.  No signal sequence was predicted for PFI0100c, which was later 

demonstrated to be the only paralog thus far characterised that is not exported 

beyond the parasite (Nunes et al. 2007). 

 

 

Figure 5.30.  Part of the gene fact sheet for R45 (PFD1175w): (a) the InterPro predicted sequence 

features, showing hits to several kinase-like domains and motifs and a large region of low complexity 

sequence in the middle of the protein that corresponds to a 90-hexapeptide repeat region (b). 

 

a b
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Figure 5.31.  Results of searches within the Data Analysis Viewer for the predicted transmembrane 

domains (top panel) and signal/anchor sequences (bottom panel) for the 20 FIKK kinase paralogs. 

 

5.3.1.3 Subtelomeric FIKK kinase genes are associated with members 

of other multi-gene families 

 FIKK kinases are consistently located close to other subtelomeric multi-gene 

families.  15 out of 17 subtelomeric paralogs are found in close proximity to 

members of an ortholog group consisting of DNA J domain-containing proteins, 

which include the ring-infected erythrocyte surface antigens (RESA) (Figure 5.32).  

Several FIKK kinase paralogs are located next to members of the EBA (Figure 5.33) 

and fatty acid CoA synthase (Figure 5.34) families.  In addition, several multi-gene 

families coding for hypothetical membrane proteins are found in close proximity to 

many of the FIKK kinase paralogs (Figure 5.35). 

Furthermore, there are examples of specific higher-order arrangements of 

genes; for instance, RESA, EBA and FIKK kinase genes are often found arranged in 

tandem (Figure 5.36). 

 



 181

 

Figure 5.32.  Many of the subtelomeric FIKK kinase paralogs (orange bars) are located close to genes 

in a large multi-gene family coding for DNA J domain-containing proteins (including the RESA 

proteins) (blue bars). 
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Figure 5.33.  Several of the subtelomeric FIKK kinase paralogs (orange bars) are located next to EBA 

family genes (blue bars). 
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Figure 5.34.  Several of the subtelomeric FIKK kinase paralogs (orange bars) are located next to fatty 

acid CoA synthase genes (blue bars). 
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Figure 5.35.  Many of the subtelomeric FIKK kinase paralogs (orange bars) are located close to 

members of several gene families coding for hypothetical membrane proteins (blue bars). 
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Figure 5.36.  An example of tandem arrangement of subtelomeric multi-gene families.  In this region 

on the left arm of chromosome 1 the genes include RESA (purple), EBA (blue) and FIKK kinase 

(orange). 

 

5.3.2 Orthologs of FIKK kinases in other Plasmodium species 

 The FIKK kinase family has undergone the greatest expansion in P. 

falciparum.  In most other sequenced Plasmodium genomes only a single copy has 

been found, including P. berghei, P. vivax and P. knowlesi (but not yet in P. 

chabaudi), as is demonstrated in the MaGnET ortholog data shown in Figure 5.37.   
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Figure 5.37.  A single orthologous FIKK kinase gene is observed in most other Plasmodium species, 

including P. berghei, P. knowlesi and P. vivax, but not so far in P. chabaudi, probably due to low 

sequence coverage. 

 

5.3.3 Differential expression of FIKK kinases  

As Table 5.2 demonstrates, expression of the FIKK kinase paralogs is stage-

specific and varies considerably across the asexual development stages.  All the 

paralogs are expressed in at least one stage, at widely varying amplitudes and 

peaking at distinct time-points (Figures 5.38, 5.39 and 5.40).  Figure 5.38 presents 

expression profiles for the genes with the greatest expression, including characterised 

trophozoite antigen R45 (PFD1175w), which is abundantly transcribed during ring 

and trophozoite stages.  The genes in this group also include two of the three 

paralogs that were detected at gametocyte stages (Table 5.2).  For the majority of 

paralogs, expression is quickly switched on and off, resulting in a short peak of 

expression (Figures 5.38, 5.39 and 5.40).  Taken together, the results from 

microarray studies indicate that the FIKK kinase family does undergo differential 

expression in P. falciparum.  This observation has been recently confirmed by a 
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study that showed that FIKK kinase expression changes in response to extra-cellular 

environmental factors (Nunes et al. 2007). 

 

Gene Sporozoite Ring Trophozoite Schizont Merozoite Gametocyte 

MAL7P1.144   X   X 
PFA0130c   X  X  
PFE0045c    X X  
PFL0040c  X X X X  
MAL7P1.175   X    
PFI0095c X  X X X X 
PFI0100c    X   
PFI0110c  X   X  
PFI0120c  X   X  
PFI0125c X X  X   
PFC0060c  X   X  
PF10_0160  X X  X  
PF11_0510    X   
PF14_0733+4  X X  X  
PF10_0380   X    
PFD1175w  X X  X X 
PFD1165w  X X  X  
PFI0105c X X X    
PFI0115c   X  X  

Table 5.2.  Life cycle stages where the P. falciparum 3D7 FIKK kinase genes were differentially 

expressed in microarray experiments (marked by an �X�).  Data are included for 19 of the 20 FIKK 

kinase paralogs because data for MAL8P1.203 were not available.  The microarray expression data 

used to compile the table come from three datasets (Le Roch et al. 2003, Young et al. 2005 and Llinas 

et al. 2006) visualised through the MaGnET Expression Data Viewer.  The gene expression 

information was visually compared between the datasets to decide based on consensus the life cycle 

stages where expression peaked. 
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Figure 5.38.  Time-series mRNA expression profile graphs for the highest expressed FIKK kinase 

paralogs, incorporating sporozoites, blood stages and gametocytes (inset) (3D7 strain data from Le 

Roch et al. 2003 and Young et al. 2005).  The family member with highest mRNA abundance during 

the IDC is the R45 trophozoite antigen (PFD1175w), whereas in gametocytes the most abundantly 

transcribed member is MAL7P1.144. 
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Figure 5.39.  Time-series mRNA expression profile graphs for middle-range expressed FIKK kinase 

paralogs, incorporating sporozoites, blood stages and gametocytes (3D7 strain data from Le Roch et 

al. 2003).   
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Figure 5.40.  Time-series mRNA expression profile graphs for the lowest expressed FIKK kinase 

paralogs, incorporating sporozoites, blood stages and gametocytes (3D7 strain data from Le Roch et 

al. 2003).  

 

Protein expression data indicated the presence of several of the FIKK kinase 

paralogs at the sporozoite stage and trophozoite stages (Figure 5.41).  The R45 

protein also appears to be one of the most abundant FIKK kinase proteins in blood 

stage parasites.  Protein products of the internal stop codon-containing genes 

MAL7P1.175 and PF14_0733+4 were also detected at the sporozoite stage (Figure 

5.41), which suggests that these proteins may be translated by read-through of the 

stop-codons.  The cellular locations of some of these proteins as well as others have 

recently been revealed, with all but one being targeted to the IE (see Section 5.3.1.2) 

(Nunes et al. 2007). 
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Figure 5.41.  Time-series protein expression profiles for FIKK kinase paralogs.  Various family 

members were recorded in sporozoites, blood stages, gametocytes and gametes (3D7 strain data from 

Florens et al. 2002 and Le Roch et al. 2004).  The R45 trophozoite antigen (PFD1175w) was the most 

abundant family member in sporozoite and ring stages. 

 

5.4 Discussion 

 This chapter presented three mini-studies describing how MaGnET can be 

used to demonstrate similar results to those from independent experimental and 

bioinformatic studies into gene function.  They show that many of the observations 

that came from experimental characterisation of the time and location of protein 

expression are backed up by the expression data and other types of information (such 

as signal sequences) now made available through MaGnET.  The majority of 

findings could be adequately demonstrated through MaGnET, with the main 
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exception being cases when the study used absolute expression levels from 

microarray data, where only relative expression data is available through MaGnET 

(see Section 5.1).  Also, the cellular component annotation available within MaGnET 

is particularly incomplete due to lack of a systematic procedure to annotate the genes 

with GO terms when new reports appear characterising Plasmodium proteins, and no 

large-scale study of protein localisation has been completed.  Therefore, little of the 

protein localisation results described in the original papers used in these mini-studies 

could be reproduced using MaGnET. 

 In some cases, the MaGnET analysis was able to go beyond the statements in 

the original papers to suggest new hypotheses on gene function (summarised in 

Table 5.3).  The following sections discuss the strengths and weaknesses of MaGnET 

in context of the three studies. 

 

Genes Hypothesis 

PFB0100c (KAHRP) Expression of KAHRP mRNA can be detected in Dd2 
and HB3 strain parasites, but may not be differentially 
expressed during the IDC to the extent of 3D7 
parasites.  Moreover, this gene is not absent or 
silenced at the transcription level in Dd2 parasites (as 
was thought), but it may not be translated or form a 
functional protein. 

PFD1160w (SURFIN4.2) This gene is located next to a region known to be 
involved in merozoite invasion pathway switching that 
is silenced in the Dd2 strain.  As this gene is also 
silenced in Dd2, and the SURFIN4.2 protein is located 
in the merozoite apex region, it may also be involved 
in the process of invasion pathway switching. 

PF13_0005 (RIFIN) This rifin variant is differentially expressed in 
merozoites. 

PFI1765c and PFI1770w These genes are expressed and function in 
gametocytes. 

Table 5.3.  Summary of novel hypotheses about gene function that emerged from exploration of P. 

falciparum functional genomic data using MaGnET as described in Chapter 5. 
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5.4.1 The results of expression profiling of the IDC were 

successfully demonstrated using the MaGnET Expression Data 

Viewer 

 The microarray results of Llinas et al. brought to light several regions of the 

genome where differences in expression could be observed between P. falciparum 

strains.  MaGnET was able to show through a series of individual gene expression 

profile graphs combining results from three strains that variations can occur for a 

number of reasons.  In some cases, variations revealed differences in the timing of 

expression between strains; for example, an ATP binding cassette transporter protein 

that is expressed in different phases of the IDC in 3D7 and HB3 parasites.  Many 

variations in recorded expression occurred due to high polymorphism of the region 

represented by the oligo, which is a common feature of surface antigens such as 

PfEMP1, PfEMP3, S-antigen, RESA-2 and KAHRP.  The MaGnET Genome and 

Chromosome Viewers were also successfully used to demonstrate the exploration of 

differences in expression occurring over large regions, such as the putative deleted or 

silenced left arm of chromosome 2 in the Dd2 strain.  MaGnET quickly facilitates the 

discovery of gene functions within the region of variable expression and the 

comparison of results from multiple expression studies. 

 In addition, the Query Builder facility within the Expression Data Viewer 

aided the discovery of a group of genes with large transcriptional variations between 

strains at a particular life cycle stage.  This exercise proved useful in narrowing down 

a group of genes enriched for host-parasite interactions, such as cytoadherence and 

antigenic variation. 
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 The Chromosome Viewer allows close-up examination of small regions of 

the genome where the genes are co-regulated and differ in expression between 

strains, which could have important functional implications.  For example, MaGnET 

demonstrated variation in expression between 3D7 and HB3 parasites within a region 

of chromosome 4 containing genes linked to two different pathways for merozoite 

invasion, suggesting that different strains utilise different invasion pathways.  

 MaGnET was demonstrated to faciliate exploration of expression patterns of 

large multi-gene families of surface proteins, such as var, rifin and stevor.  MaGnET 

effectively showed that parasite populations only utilise a small subset of the var 

genes and that even the laboratory strain 3D7 switches the subset of var genes it 

expresses.  MaGnET exploration also revealed the presence of subsets of rifins that 

are differentially expressed at particular times in the life cycle.  The different data 

viewers offered by MaGnET allow the evidence to be examined from various angles; 

for example, expression data was here viewed in the context of genomic location, 

across families and subsets and between datasets. 

 One area that MaGnET was not able to provide a demonstration of Llinas et 

al.�s results was in the indication of overall correlation between the expression 

patterns of the three strains.  This could be made possible in future by the addition of 

pre-calculated correlation scores (such as Pearson correlation) for individual genes 

across strains.  This data could also be used to enable searching for genes with 

correlated expression patterns, either within or across strains, based on a statistical 

measure of their similarity.  This would be a useful feature for a future version of 

MaGnET to implement, because it is not currently offered by other tools in the field. 
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 Llinas et al. also reported results of a comparison of the most highly 

expressed transcripts from their study with the most abundant proteins identified in 

two studies (Florens et al. 2002; Lasonder et al. 2002).  The results of this 

comparison revealed that approximately 50% of the most abundant proteins were in 

the top 200 transcripts.  Unfortunately, there was no way to reproduce this analysis in 

MaGnET because the data included only represents ratios of expression levels for 

individual oligonucleotides.  Llinas et al. did not make the absolute expression levels 

available in a ready-to-use form that could easily be incorporated in the MaGnET 

database.  This information could be extracted from the raw data files provided on 

the authors� website (Malaria IDC Comparison Database; 

http://malaria.ucsf.edu/comparison/index.php), but this would have required 

significant extra work and was not possible in the time-frame of this project.  

The lack of absolute expression data for this dataset prevented some of the 

features the authors described in their paper from being demonstrated here.  For 

instance, examination of expression data for multi-gene antigenic families was not 

completely repeatable using MaGnET because the actual expression level of the 

genes was not known.  However, MaGnET was able to estimate which family 

members were being differentially expressed during the IDC by presenting a list of 

genes that underwent large changes in expression during the 48 hour cycle.  

Unfortunately, this approach did not take into account the presence of anomalies, 

such as extremely high or low recordings at single time-points.  

 Overall, MaGnET was able to provide access to all the resources used in the 

above study in one place.  In addition to their own dataset the authors consulted three 

further mRNA and protein expression datasets (Florens et al. 2002; Lasonder et al. 
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2002; Le Roch et al. 2003), all of which are available through MaGnET.  The authors 

also retrieved functional annotations, such as GO assignments, from PlasmoDB, 

which are also available from MaGnET, and, moreover, can easily be displayed in a 

helpful table format for a given list of genes. 

5.4.2 MaGnET was used to explore a cluster of ring-stage 

exported proteins  

 MaGnET was able to effectively demonstrate results from a study by 

Spielmann et al. (2006) characterising the genes in a region of chromosome 9 where 

loss of functionality is linked to loss of cytoadherence.  The MaGnET Chromosome 

Viewer was used successfully to reconstruct their analysis of existing transcription 

data to identify genes in this region that were specifically expressed at the ring stage.  

Four genes (whose products are termed the REX proteins) with putative functions in 

host-cell modification during the ring stage were selected for further characterisation.  

Visualisation of protein expression data with MaGnET showed that three out of the 

four REX proteins were detected in ring stages, which is consistent with Spielmann 

et al.�s results.  Evidence of their being exported proteins was provided by 

signal/anchor sequence probabilities viewed from within MaGnET gene fact sheets.   

 MaGnET facilitated the exploration of intron/exon arrangement for the REX 

genes, revealing that they all have a similar two-exon arrangement.  A combination 

of MaGnET functional genomic data, including domain predictions from InterPro 

and orthologous genes, agreed with the authors� conclusion that the REX proteins are 

not similar to any known proteins in other organisms, but that REX3 and REX4 are 

homologous to P. vivax and P. knowlesi genes. 
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 Additionally, using MaGnET�s methods for visualising expression data it was 

possible to distinguish between genes that had similar expression profiles to the REX 

genes but for which it was not safe to hypothesise that they could play a similar 

biological role.  MaGnET provides the means for examining further evidence to 

back-up these theories; for example, Spielmann et al.�s suggestion that PFI1765c and 

PFI1770w induction in ring stages might arise from parasites committed to 

gametocytogenesis was corroborated using additional expression data for the 

gametocyte stages (data not shown) (Young et al. 2005). 

 In addition to their own protein expression data, Spielmann et al. consulted 

various genomic and functional data from PlasmoDB and transcription data from Le 

Roch et al. (2003).  MaGnET offers the advantage that users can explore data from 

multiple mRNA and protein expression datasets in one place and quickly compare 

them.  Exploratory analysis with MaGnET is supported by the provision of helpful 

functional annotation and, in some cases, predictions. 

5.4.3 Many features of FIKK kinases were successfully 

demonstrated using MaGnET 

 The FIKK kinases are an interesting family of atypical protein kinases unique 

to Apicomplexa.  The family�s rapid expansion in P. falciparum and acquisition of 

unique properties, including signal sequences directing their export into the IE, have 

raised interesting questions about their possible role as signalling mediators between 

host and parasite (Schneider and Mercereau-Puijalon 2005; Nunes et al. 2007).  In 

this mini-study many aspects of P. falciparum FIKK kinase paralog genomic 

organisation, protein structure and expression were demonstrated using various 

MaGnET features. 
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 The MaGnET Genome Viewer could be used to rapidly display the genomic 

location of the paralogs, revealing their typical subtelomeric localisation.  The 

Chromosome Viewer intron display capability allowed the intron/exon arrangement 

to be examined, which revealed a typical arrangement of a small exon 1, long exon 2 

and short exon 3.  It also encouraged the discovery of a few anomalies, such as a case 

of probable gene misprediction where two annotated genes represent just one 

paralog. 

 Various MaGnET tools including the informative gene fact sheets and the 

Data Analysis search facility were used to discover the structural and functional 

features the proteins had in common.  Helpful available annotation included 

comparatively modelled structures for the C-terminal region of many of the proteins, 

indicating their similarity to kinase catalytic domains.  Furthermore, the inclusion of 

InterPro predicted domains and sequence features confirmed the universal presence 

of kinase-like domains and motifs, as well as the common occurrence of N-terminal 

hydrophobic sequences predicted as transmembrane or signal/anchor sequences. 

 Evidence of higher-order genomic arrangements of subtelomeric multi-gene 

families in P. falciparum was presented by the often-time association of FIKK 

kinases with members of families such as DNA J domain protein-encoding genes 

(including RESA), EBA, fatty acid CoA synthase and various hypothetical protein-

encoding gene families. 

 The MaGnET Expression Data Viewer offered the opportunity to explore the 

transcription patterns of the family as recorded in various microarray experiments.  

Individual FIKK kinase paralogs are clearly differentially expressed and function at 

specific stages of the life cycle.  Moreover, the expression profiles of many genes 
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showed sharp peaks at individual stages, indicating a directed mechanism for 

switching transcription on and off.  Protein expression data for several family 

members at multiple life cycle stages is further evidence of their varied functions 

during asexual development.  Interestingly, mRNA and protein expression data 

indicated that the most abundant member of the family is the trophozoite antigen 

R45, a known surface antigen that is unique amongst the family due to a large 

inserted repeat sequence. 

 The MaGnET ortholog/paralog data showed that there appear to be only 

single copies in other Plasmodium species.  If ortholog information becomes 

available for P. reichenowi, which is the most similar to P. falciparum and also has 

several paralogs, it would be useful to provide more detailed comparisons between 

ortholog pairs.  

 An improvement to the existing MaGnET functionality that would help in a 

similar study would be the addition of structure classification data, as discussed in 

Chapter 4 (if indeed it is possible to attain this information automatically).  Structural 

domain classification for the comparative models would provide useful hints to 

malaria researchers who are not familiar with common structural motifs, such as the 

kinase domain. 

 To complete their study Schneider and Mercereau-Puijalon consulted two 

transcription datasets (Bozdech et al. 2003; Le Roch et al. 2003), protein expression 

data (Florens et al. 2002), genome maps from PlasmoDB and the P. falciparum 3D7 

genome publication, PlasmoDB and GeneDB for orthologs and annotation.  All this 

information is available in one place in MaGnET via the integrated viewers and local 

database combining data from multiple sources. 
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5.4.4 Limitations of MaGnET for functional genomic data analysis 

 Although the majority of results from the publications described in this 

chapter could be demonstrated successfully with MaGnET, there remain some areas 

that could not be covered.  Aside from results of specialised laboratory experiments, 

such as protein localisation studies (discussed above), that MaGnET could not 

reproduce, there are limits to the extent of functional genomic data analysis that 

MaGnET is capable of.  Specific functionality that MaGnET lacks is interactive 

sequence analysis, which was used by the publications described in this chapter for 

identifying gene families and examining their homology to other sequences.   

Future development of MaGnET could provide integrated tools for sequence 

analysis.  For example, it would be useful if MaGnET linked to a sequence 

homology search tool, such as BLAST (Altschul et al. 1990).  This would be 

important for searching proteins in other organisms for similarities, but also for 

internal searching within the P. falciparum genome.  Such functionality becomes 

even more important once other Plasmodium species are added.  It would also be 

helpful to facilitate users to perform sequence alignments of selected genes or 

proteins.  This would have a number of applications, such as exploring conserved 

functional sites in protein families.  While PlasmoDB provides tools for BLAST 

searching within Plasmodium species, it does not provide opportunities for searching 

other organism data and does not provide sequence alignment tools. 



 201

6. HYPOTHESIS GENERATION THROUGH 

EXPLORATION USING MAGNET 

Overview 

 This chapter will present interesting avenues of research that have developed 

from exploration of functional genomic data using MaGnET.  Along the way clues 

were picked up about probable gene function, including many uncharacterised genes, 

which were pieced together into plausible, testable hypotheses.  Further lines of 

evidence are provided through the careful use of complementary resources, including 

statistical data and relevant literature.  The likely significance of the findings in the 

context of the field will be discussed.  At the end of the chapter all the predictions 

will be summarised and follow-up experiments to test them, suggested. 

 

6.1 P. falciparum cyclin-dependent kinases and their cyclin 

partners 

 Cyclin-dependent kinases (CDKs) are major regulators of eukaryotic cell 

cycle progression.  CDKs remain inactive until they bind to their cognate cyclin 

molecules.  The active complexes phosphorylate a number of proteins involved in 

processes required for cell division, such as DNA synthesis and chromosome 

segregation.  In the metazoan and yeast model of cell cycle control, individual 

cyclins have a narrow window of expression compared to CDK subunits, whose 

expression is not as rigorously regulated.  Each cyclin only binds a subset of CDKs, 

and vice versa.  In this way, the different enzymes will become active only at certain 
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times during the cycle, regulating transition between different phases [for a review of 

eukaryotic cell cycle regulation see (McGowan 2003)].  Several CDKs are found in 

mammalian cells; however, only a few directly regulate cell cycle processes.  Others 

are involved in regulation of transcription or neuronal functions.  Similarly, many 

cyclins also exist. 

 Malaria parasites undergo several rounds of replication during their life cycle, 

including mitosis and meiosis within the mosquito stages, pre-erythrocytic 

schizogony within hepatocytes and erythrocytic schizogony.  Little is known about 

cell cycle processes and control mechanisms in Plasmodium.  Nevertheless, it is clear 

that the cell cycle differs significantly from the metazoan/yeast model (Arnot and 

Gull 1998; Doerig 2005).  In the classical cell cycle model, four distinct phases 

occur: G1, where the cell grows and builds resources, S phase, where DNA is 

replicated once, G2, preparation for cell division, and M, where the genomes are 

segregated and the cell divides.  In erythrocytic malaria parasites (the replicative 

stage most studied), the phases are not so neatly defined.  The merozoite and ring 

stage most likely correspond to G1 phase, and S phase appears to begin about 18 

hours after invasion.  However, after DNA replication begins the cell cycle can no 

longer be described according to the traditional model due to several asynchronous 

nuclear divisions occurring within a single schizont (Arnot and Gull 1998; Doerig 

2005).  This makes cell cycle progression very difficult to study and leaves open 

many questions as to how the cell achieves asynchronous nuclear division when all 

nuclei are subject to the same cytoplasmic conditions. 

 The work described in the following section will review the current status of 

known and predicted CDK and cyclin homologues in P. falciparum 3D7 and 
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demonstrates the use of MaGnET to investigate properties of the genes.  The analysis 

reveals distinct patterns of CDK-cyclin expression during erythrocytic stages and 

leads to hypotheses regarding possible subunit pairings at various cell cycle phases. 

6.1.1 Cyclin-dependent kinases and related proteins in P. 

falciparum 

 To date, seven genes in the P. falciparum genome that code for cyclin-

dependent kinases (CDKs) and CDK-related kinases (CRKs) have been characterised 

(Table 6.1) [reviewed in (Doerig et al. 2002; Ward et al. 2004)].  Ward et al. (2004) 

used phylogenetic analysis to further predict CDK function for one uncharacterised 

gene, MAL13P1.196.    

 

Gene CDK/CRK Cyclin-dependency Reference 

MAL13P1.279 PfPK5 Cyclin-dependent (Ross-Macdonald et al. 
1994) 

MAL13P1.185 PfPK6 Cyclin-independent (Bracchi-Ricard et al. 2000) 
PF10_0141 Pfmrk Cyclin-dependent (Li et al. 1996) 
PFD0865c Pfcrk-1 No data (Doerig et al. 1995) 
PFD0740w Pfcrk-3 No data (Doerig et al. 2002) 
PFC0755c Pfcrk-4 No data (Doerig et al. 2002) 
PFF0750w Pfcrk-5 No data (Ward et al. 2004) 
MAL13P1.196 � No data (Ward et al. 2004) 

Table 6.1. CDKs and CRKs of P. falciparum.  Adapted from (Doerig et al. 2002). 

  

6.1.2 P. falciparum cyclins 

 The first P. falciparum cyclin (Pfcyc-1; PF14_0605), an apparent ortholog of 

mammalian cyclin H, was discovered by Le Roch et al. (2000) after searching an 

early release of initial genome sequence constructs.  Following completion of the 

genome sequence, Merckx et al. (2003) were able to identify and characterise three 
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further cyclins: Pfcyc-2, Pfcyc-3 and Pfcyc-4 (PFL1330c, PFE0920c and 

PF13_0022, respectively).    

6.1.3 CDK-cyclin combinations 

In mammals, the usual partner for cyclin H is CDK7, for which it is highly 

specific.  Pfcyc-1 (an ortholog of cyclin H) was shown to activate PfPK5 in vitro, 

which was surprising since PfPK5 is an ortholog of CDK1 and not CDK7 (Le Roch 

et al. 2000).  Additionally, PfPK5 was shown to be activated by human p25, a 

specific activator of human CDK5 that despite displaying no sequence homology to 

cyclins has a similar tertiary structure (Le Roch et al. 2000).   

Of the other P. falciparum cyclins, Pfcyc-3 was shown to potently activate 

PfPK5, with Pfcyc-4 marginally activating it and Pfcyc-2 showing no activity in 

vitro.  Interestingly, in the presence of Pfcyc-3, PfPK5 is not able to 

autophosphorylate, but it can with Pfcyc-1 (Merckx et al. 2003).  Further evidence of 

PfPK5�s promiscuity is provided by the ability of RINGO (a Xenopus protein that 

can activate CDKs despite no homology to known cyclins) to activate it more 

strongly than any P. falciparum cyclin (Merckx et al. 2003).  Since PfPK5 displays 

an unusual ability to be activated by multiple cyclins, including those that do not 

have sequence similarity to traditional cyclins, it leaves open the possibility of novel 

cyclin-like proteins within the P. falciparum genome that are undetectable by 

sequence searches. 

The plasmodial orthologue of CDK7 is Pfmrk.  CDK7 in mammals has dual 

functions as a transcription regulator through phosphorylation of RNA polymerase II 

and a CDK-activating kinase (CAK).  CAK activity is dependent on binding of 
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cyclin H.  When MAT1 joins the complex, it is able to regulate transcription through 

RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation.  So far no 

evidence has been found for CAK activity of Pfmrk.  Both Pfcyc-1 and cyclin H 

activate Pfmrk-mediated CTD phosphorylation.  PfMAT1 (PFE0610c) stimulates 

this activity in a cyclin-dependent manner (Chen et al. 2006b). 

6.1.4 Retrieval of further CDKs, cyclins and associated proteins 

 The predicted annotation data available within MaGnET (GO and InterPro 

predictions based on sequence similarity) was queried for additional hits to CDK and 

cyclin sequences not characterised thus far.  Searches of the MaGnET database using 

the Data Analysis search facility revealed no further predicted CDKs or CRKs.  A 

search for proteins with similarity to cyclins led to a list of four novel proteins 

possessing cyclin-like domains (Table 6.2).   

 

Gene Product name Domains E-value of match 

PFF0270c Cyclin dependent 
kinase binding 
protein 

Cyclin-like; Cdk5 and 
c-Abl linker protein 
cables 

4.3E-15; 0 

MAL8P1.152 Hypothetical protein Cyclin-like 2.9E-10 

PF10_0139 Hypothetical protein Cyclin-like 2E-9 

MAL13P1.131 Hypothetical protein Cyclin-like 2.1E-7 

Table 6.2. List of proteins with predicted cyclin-like domains from InterPro annotation. 

 

 It should be noted here that possession of a cyclin-like domain is not 

sufficient for indisputable cyclin function because cyclin-like domains are also found 

in other proteins.  For example, two other P. falciparum proteins that also have 

InterPro-annotated cyclin-like domains are putative transcription factors (PF14_0469 

and PFA0525w, data not shown).  Some transcription factors are known to possess 
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cyclin-like domains, but they do not regulate CDKs (Noble et al. 1997).  This leaves 

open the question about whether the proteins in Table 6.2 with cyclin-like domains 

function either as CDK-regulating cyclins or as transcription factors. 

Investigations using the MaGnET Data Analysis Viewer for other CDK-

associated proteins turned up characterised PfMAT1 and also a putative S-phase 

kinase-associated protein 1 (Skp1) (MAL13P1.337), which possibly functions as a 

CDK/cyclin-associated protein. 

6.1.5 Using expression data to predict likely in vivo CDK/cyclin 

complexes 

 The case discussed above of PfPK5�s unusual in vitro activation by several 

different cyclins illustrates how difficult it is to predict functional CDK/cyclin 

complexes from sequence information alone.  Furthermore, even if a particular cyclin 

is able to activate a CDK in vitro, the pairing may not occur in vivo due to other 

factors, such as timing of expression of the components, presence of inhibitors, 

binding of co-activators that enhance the stability of alternative CDK/cyclin 

complexes, so it may have no functional relevance.  Data about one of the aspects 

determining functional CDK/cyclin pairs, namely co-expression of the components, 

could provide a useful starting point for narrowing down the possible in vivo 

combinations.  The aim of this �mini-study� is to use available expression data to 

predict co-expressed pairs of P. falciparum CDKs and cyclins that may form 

functional complexes. 

 The recorded erythrocytic stage expression profiles of all pairwise 

combinations of known and predicted P. falciparum CDKs and cyclins were 
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compared in three time-course experiments involving 3D7, Dd2 and HB3 strain 

parasites (Bozdech et al. 2003; Llinas et al. 2006).  Close similarity in timing and 

amplitude of expression profiles were examined and assessed visually using the 

MaGnET Expression Data Viewer (Table 6.3) and assertions made about the 

probable correlation between pairs or groups of CDKs and cyclins. 

 The results show that some of the CDK-encoding genes appear to have highly 

similar expression profiles to several of the putative cyclins and vice versa.  

Moreover, a few CDK/cyclin gene pairs� expression profiles seem to be highly 

correlated to each other and not to other genes in Table 6.3.  Details are provided for 

some examples in the following section. 
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6.1.5.1 The components of the RNA polymerase II CTD phosphorylation 

complex, Pfmrk, Pfcyc-1 and PfMAT1, have highly similar expression 

profiles 

 To test whether the components of the characterised CTD phosphorylation 

complex, Pfmrk, Pfcyc-1 and PfMAT1 (Chen et al. 2006b), have similar expression 

profiles, time-series graphs were created of their expression profiles during the IDC.  

Figure 6.1 shows their expression profiles in the Dd2 strain.  Their expression peaks 

in the early-mid trophozoite stage (hours 14-25), during the period of rapidly 

increasing RNA synthesis and parasite growth (Gritzmacher and Reese 1984).  The 

synchronous expression of all three components during the time-frame for initiation 

of RNA synthesis reflects the role of the Pfmrk/Pfcyc-1/PfMat1 complex as a 

transcription regulator. 

 Comparison of the expression profiles of the Pfmrk, Pfcyc-1, PfMAT1 and 

PfPK5 demonstrates that PfPK5 has a distinctly different expression profile to the 

other three genes (Figure 6.2).  The expression profile of PfPK5 dips during the 

ring/early trophozoite stages (hours 3-18) when the Pfmrk/Pfcyc-1/PfMat1 complex 

expression rises, and peaks in the late trophozoite/early schizont stages (hours 21-

35).  The marked difference in their expression profiles supports the in vitro 

observation that PfPK5 is not a substrate for CAK activity of the Pfmrk/Pfcyc-

1/PfMat1 complex (Chen et al. 2006b).  
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Figure 6.1.  Time-series graph of expression of the genes Pfmrk (PF10_0141), Pfcyc-1 (PF14_0605) 

and PfMAT1 (PFE0610c) during the Dd2 IDC (data from Llinas et al. 2006). 
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Figure 6.2.  Time-series graph of expression of the Pfmrk/Pfcyc-1/PfMat1 complex (encoded by 

genes PF10_0141, PF14_0605 and PFE0610c) and PfPK5 (MAL13P1.279) during the HB3 IDC (data 

from Bozdech et al. 2003). 

 

6.1.5.2 PfPK5 has a similar expression profile to Pfcyc-4 and Pfcyc-2 

but not Pfcyc-1 and Pfcyc-3 

  The only other characterisation study of a P. falciparum CDK to date showed 

that PfPK5 can be activated strongly in vitro by Pfcyc-3 and less so by Pfcyc-1 and 

Pfcyc-4 (Merckx et al. 2003).  Comparison of the IDC expression profiles of PfPK5 

with all the known and predicted cyclins (Table 6.3) showed it had a highly similar 

profile to Pfcyc-4 (Figure 6.3).  Additionally, Pfcyc-2 has a reasonably similar 

profile to PfPK5, but it peaks later, during the schizont stage (hours 28-49), whereas 

PfPK5 and Pfcyc-4 peak earlier, during the late trophozoite/early schizont stages 
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(hours 21-36) (Figure 6.3).  There is no similarity between the profiles of PfPK5 and 

either Pfcyc-1 or Pfcyc-3 during this part of the life cycle (Figure 6.4).  Since the 

parasite undergoes several different rounds of cell division during its life cycle 

(Arnot and Gull 1998), it is feasible that PfPK5 forms functionally distinct 

complexes with different cyclins at different stages.   

To investigate this further the expression profile of PfPK5 was compared to 

those of cyclins 1-4 during the gametocyte stage of the life cycle (Figure 6.5).  

PfPK5 and Pfcyc-2 are both expressed during day two of development, after which 

their expression tails off.   

 

 

 

Figure 6.3. Time-series expression profiles of PfPK5 (MAL13P1.279), Pfcyc-2 (PFL1330c) and 

Pfcyc-4 (PF13_0022) during the 3D7 IDC (data from Llinas et al. 2006). 
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Figure 6.4.  Time-series expression profiles for PfPK5 (MAL13P1.279), Pfcyc-1 (PF14_0605) and 

Pfcyc-3 (PFE0920c) during the 3D7 IDC (data from Llinas et al. 2006). 

 

 From these results it is tempting to speculate that PfPK5 may form a 

functional complex with Pfcyc-4 during the trophozoite stage of the IDC.  The lack 

of in vitro activity recorded for PfPK5/Pfcyc-2 (Merckx et al. 2003) does not rule out 

the possibility of in vivo activity.  The functional complex may require the presence 

of a co-activator protein, perhaps to enhance stability, and this protein could, for 

example, be present during the gametocyte stage. 
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Figure 6.5.  Time-series expression profiles of PfPK5 (MAL13P1.279) and Pfcyc1-4 (PF14_0605, 

PFL1330c, PFE0920c and PF13_0022) in 3D7 gametocytes (data from Young et al. 2005).  Both 

PfPK5 and Pfcyc-2 are expressed during day two of gametocyte development. 

 

6.1.5.3 A group of three CDKs and three cyclins are co-expressed in 

schizonts 

 A pattern emerging from Table 6.3 is the consistent similarity between the 

expression profiles of one group of three CDKs and three cyclins.  The CDKs are 

Pfcrk-4, Pfcrk-5 and a putative, unnamed CDK/CRK (MAL13P1.196) that clusters 

phylogenetically with Pfcrk-4 (Ward et al. 2004).  The cyclins include Pfcyc-2 and 

two putative cyclin-like proteins, PFF0280c and MAL13P1.131.  Figure 6.6 shows 

the highly similar expression profiles of all six genes during the IDC.  Their 
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expression increases during the late trophozoite stage, peaking in the early schizont 

(hours 22-40).   

 From this data alone it is difficult to pick out possible pairs of interacting 

CDK/cyclins.  However, one can speculate that all six CDKs and cyclins will be 

involved in regulating the same process within schizonts.  According to a model of 

the P. falciparum erythrocytic cell cycle put forward by Leete and Rubin in 1996, the 

schizont stage starts with a series of rapid rounds of DNA synthesis and nuclear 

mitosis.  The number of nuclei produced in each schizont is variable from 8 to 26, 

which suggests that the nuclei are not progressing synchronously through the cell-

cycle.  To reconcile this with the usual synchronised behaviour of nuclei under these 

conditions where regulation of cell cycle is driven by waves of cyclin expression, a 

model was proposed whereby CDK/cyclin complexes involved in both DNA 

replication and mitosis must exist in abundance in the schizont cytoplasm and there 

exists a mechanism for maintaining cell cycle integrity within each nucleus (Leete 

and Rubin 1996).  The fact that schizont nuclei keep their membranes intact during 

nuclear division provides a means to regulate their cyclin content separately from the 

pool of cyclins in the cytoplasm.  By selective import and degradation of cyclins 

from the cytoplasm the nuclei can individually regulate their cell cycle.  Leete and 

Rubin proposed that as long as cyclins remain above a threshold level in the 

cytoplasm each nucleus will continue to initiate new rounds of mitosis. 

 The closely regulated expression of a set of three CDKs and three cyclins in 

the early schizont certainly fits with the model of a pool of CDK/cyclins within the 

cytoplasm that can be selectively imported by each nucleus, as required.  The rapid 
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switch on and off of these six genes demonstrated in Figure 6.6 would provide a 

method for regulation of availability of CDK/cyclins in the cytoplasmic pool. 

 

 

Figure 6.6.  Time-series expression profiles of three putative cyclins [Pfcyc-2 (PFL1330c), PFF0270c 

and MAL13P1.131] and three CDKs [Pfcrk4 (PFC0755c), Pfcrk5 (PFF0750w) and MAL13P1.196] 

during the HB3 IDC (data from Bozdech et al. 2003). 

 

6.1.5.4 A second group of three CDKs and three cyclins are co-

expressed during the ring and trophozoite stages 

 A second group of three CDKs and three putative cyclins were observed to 

follow similar expression profiles, with peak expression occurring during the late 

ring/early trophozoite stages (hours 4-26) (Figure 6.7).  Here, the CDKs include 

Pfcrk3, Pfmrk and PfPK6 and the potential cyclins are the hypothetical proteins 
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PF10_0139, MAL8P1.152 and the Pfmrk-activator Pfcyc-1.  Although there is a 

large body of evidence to suggest that PfPK6 does not require a cyclin to be active, 

there remains open the possibility that binding to a cyclin will further increase its 

activity (Bracchi-Ricard et al. 2000).  As above, it is difficult to determine from this 

data alone which cyclin might pair with Pfcrk-3, although MAL8P1.152 is noted to 

have a particularly similar profile to Pfcrk-3. 

  

 

Figure 6.7.  Time-series expression profiles of three CDKs [Pfcrk-3 (PFD0740w), Pfmrk 

(PF10_0141) and PfPK6 (MAL13P1.185)] and three putative cyclins [Pfcyc-1 (PF14_0605), 

PF10_0139 and MAL8P1.152] during the HB3 IDC (data from Bozdech et al. 2003). 

 

It seems probable, though, that all these proteins play a role in regulation of 

RNA synthesis and/or cell growth, since they are highly expressed during the late 
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ring/early trophozoite stage corresponding to the period of rapid synthesis and 

growth (Gritzmacher and Reese 1984).  As discussed above, Pfmrk functions as a 

transcription regulator through RNA polymerase II CTD phosphorylation and as 

such is expected to be expressed during the RNA synthesis phase. 

6.1.5.5 Other observations 

 The only CDK/CRK in Table 6.3 not mentioned so far is Pfcrk-1.  During the 

IDC Pfcrk-1 has an expression profile akin those of PfPK5 and Pfcyc-4, peaking 

around the late trophozoite/early schizont stages (hours 24-44) (data not shown).  In 

fact, Pfcrk-1 has been demonstrated to be expressed in gametocytes (Doerig et al. 

1995), so it may be only marginally expressed in the IDC (since the expression data 

used for this investigation do not represent absolute values (see Section 1.5.1.2) it is 

impossible to know the actual expression level during the IDC from this data).  

Pfcrk-1 perhaps interacts with different cyclins, either from the known and predicted 

set or another, unidentifiable by sequence similarity, cyclin, or perhaps functions 

cyclin-independently at multiple stages of the life cycle. 

 The two cyclin-like domain-containing transcription factors, TFIIIB subunit 

(PF14_0469) and TFIIB (PFA0525w), generally showed little expression profile 

similarity to the CDKs/CRKs.  There was some similarity between the expression 

profiles of the TFIIIB subunit with Pfcrk-3 and between TFIIB with Pfmrk (data not 

shown).  The later CRK is a known transcription regulator; therefore, it seems more 

likely that they function in transcription regulation rather than cell cycle control. 

The Skp family protein, MAL13P1.337, a possible CDK/cyclin-associated 

protein (Table 6.3), shows similarity in its IDC expression profile to at least two of 
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the CDKs.  The most strongly correlated of these is Pfcrk-1, so if the product of 

MAL13P1.337 does have a CDK-regulating function, this could be its substrate. 

It should also be noted that the yeast-two hybrid interaction data available for 

the set of known and predicted CDKs and cyclins were investigated via the MaGnET 

Protein-Protein Interaction Viewer, but no direct interactions were recorded (Figure 

6.8).  These negatives results are an indication of the unfortunate high occurrence of 

false negatives in this dataset.  The dataset includes almost 3,000 pairwise 

interactions, but there are likely to be many thousands more interactions that simply 

were not recorded for a variety of reasons (LaCount et al. 2005). 

Nonetheless, exploration of the interaction network surrounding the single 

CDK and two cyclin molecules that have interaction data in the LaCount et al dataset 

revealed that the CDK Pfcrk-3 (PFD0740w) and the predicted cyclin encoded by 

MAL8P1.152 are linked in the network via a shared secondary interaction partner 

(PFL1385c) (Figure 6.8).  Interestingly, these two proteins were observed to share a 

very similar expression profile during the IDC as described in Section 6.1.5.4; so this 

adds evidence to the theory that they might form an active complex during the IDC. 
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Figure 6.8.  Screenshot of the Protein-Protein Interaction Viewer displaying primary and secondary 

interaction data for all known and predicted CDKs (orange) and cyclins (blue). 

 

6.2 Protein-protein interaction data representing functionally-

related protein clusters 

 Large-scale yeast two-hybrid (Y2H) screening for protein-protein interactions 

has proven a useful technique for enhancing understanding about topology of cellular 

interaction networks in a number of organisms (Koegl and Uetz 2007).  Large-scale 

Y2H screening comes with several limitations (summarised in Section 1.5.3), but 

there are ways to increase confidence in interactions.  These include removing non-

specific interactions by filtering out �promiscuous� proteins, removing interactions 

that could not be reproduced, combining multiple networks, and comparing to 

external data (for example, interacting proteins are more likely to be co-expressed, 

have related function, and be evolutionarily conserved) (Koegl and Uetz 2007).   
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Since there is only one large-scale Y2H dataset currently publicly available 

for Plasmodium, there is no opportunity for combining results from multiple 

experiments to strengthen the interaction information.  However, the other 

techniques above can be employed to discover interactions within the dataset that are 

likely to be true results.  The next section will describe examples where this has been 

successful for the analysis of small interaction clusters, ultimately leading to 

postulations about the functions of some uncharacterised proteins in the cluster. 

6.2.1 Predicting function of hypothetical proteins in a cluster of 

interacting proteins with characterised function 

 Exploration of the P. falciparum protein-protein interaction data (LaCount et 

al. 2005) with the MaGnET Protein-Protein Interaction Viewer revealed an apparent 

abundance of data for proteins associated with cytoplasmic and nuclear substructures 

performing core metabolic functions, such as the ribosome, spliceosome, proteasome 

and nucleosome (data not shown).  This is not surprising given that intracellular, 

non-membrane spanning proteins are more likely than membrane spanning or 

secreted proteins to be identified in yeast two-hybrid and similar experiments (Koegl 

and Uetz 2007). 

 Since many of the proteins found in this interaction subset have been 

experimentally characterised or have strong similarity to known proteins in other 

organisms, hypotheses may be generated about the potential function of hypothetical 

proteins occurring within the network.  Examples of how such hypotheses can be 

generated are discussed in the following sections and evidence is provided backing 

up the hypotheses. 
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6.2.1.1 Identification of a novel putative intracellular protein 

hypothesised to regulate a number of processes including protein 

metabolism and gene expression 

 The gene PFI1715w encodes a hypothetical protein with no detectable 

similarity to known proteins.  This protein was found to directly interact with 27 

proteins in yeast two hybrid experiments (Figure 6.9) (LaCount et al. 2005).  Of 

these, 16 interactions were recorded more than once and six of these were recorded 

more than five times.  When interactions are repeatable it increases confidence that 

the interaction is real and not a false positive result. This set of repeatable 

interactions can provide useful information about the probable protein function of 

PFI1715w, since proteins that interact are more likely to have related function (Koegl 

and Uetz 2007). 

The PFI1715w protein�s repeatable interaction partners include two DNA-

binding proteins: a bromodomain protein (PFL0635c) � bromodomain-containing 

proteins are involved in regulating chromatin structure and hence gene expression 

(Marmorstein and Berger 2001) � and a protein with similarity to CCAAT-box 

DNA-binding protein subunit B (MAL13P1.21) � a transcription factor.  The former 

interaction was recorded 18 times and the latter 7 times, so there is good evidence for 

these being true interactions.  Interactions were recorded with several other DNA-

binding proteins, although in most cases these were not repeatable, so must be treated 

with caution.  The putative binding partners include three helicases [PF10_0232, 

PF11_0053 (both recorded once) and PFF1185w (recorded 3 times)].  An interaction 

was also recorded once with a second CCAAT-box DNA-binding protein subunit B 

(PF11_0477). 
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The PFI1715w product also appears to be linked to a number of metabolic 

pathways.  Its interaction data include several interactions with components of 

protein metabolic pathways; however it should be noted that most of the interactions 

were either not repeatable or repeated only once or twice.  They include: two 

ribosomal subunit proteins (PFE0350c and PFF0885w), ribosome biogenesis 

regulatory protein (PF11_0259), two splicing factors (PFI1115c and PFE0865c), a 

putative PRP4 (pre-mRNA processing factor 4) kinase (PF11_0156) and a 

proteasome subunit (PF07_0112).  Of this list, one of the interactions was repeatable 

12 times: that with the splicing factor encoded by gene PFI1115c; this interaction is 

likely to be a true positive.   

In addition, PFI1715w may be linked to purine metabolism via a possible 

interaction with a putative allantoicase protein (PF07_0120) and to lipid metabolism 

via a possible interaction with a phospholipase (PFB0870w).  Both of these 

interactions were recorded only once though so they may be false positives. 

An interaction was recorded 10 times between the PFI1715w protein and the 

protein encoded by PFI1680w � a probable FAS-associated factor (FAF).  FAF is a 

multi-functional protein: it is a member of the apoptosis-inducing signalling complex 

(Ryu et al. 2003); it is thought to play a role in regulation of the ubiquitin-

proteasome pathway (Song et al. 2005); it can also inhibit heat shock protein 70 

(HSP70) chaperone activity (Kim et al. 2005).  Therefore, it is plausible that 

PFI1715w could influence several intracellular signalling pathways. 

Another interaction partner that was recorded many times was the 14-3-3 

protein (MAL8P1.69), a mediator for signalling pathways and regulation of cell 

cycle control through protein binding (Al-Khedery et al. 1999).  There is also a small 
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amount of further evidence linking PFI1715w to cell cycle control through a possible 

interaction (recorded twice) with a component of the gamma-tubulin complex of the 

spindle pole (PF14_0414). 

Overall, it seems possible that PFI1715w may be important for cross-talk 

between factors involved in intracellular signalling pathways controlling gene 

expression and protein metabolism pathways; for example, by interacting with 

transcription factors, helicases and splicing factors. 

The MaGnET gene fact sheet for PFI1715w showed that its predicted protein 

sequence does not have any recognisable signal sequences (data not shown).  

Therefore, it is unlikely to be exported out of the parasite.  It may be located in the 

nucleus, as it appears to interact with DNA-binding proteins.  To ascertain if there 

was further evidence for its nuclear location the predicted protein sequence was 

submitted to the ScanProsite protein domain and motif detection server (de Castro et 

al. 2006).  No bipartite nuclear localisation signals were predicted, which does not 

support a nuclear location for this protein.  However, the protein could feasibly get 

into the nucleus by forming a complex with other proteins that do have nuclear 

localisation signals.  The PFI17175w protein may be located in the cytoplasm until it 

binds to protein partners that cause it to translocate to the nucleus. 

 Since protein-protein interaction data generated by yeast two-hybrid 

experiments is known to contain a relatively high number of false positives, it should 

always be treated with care.  That MaGnET provides data about the number of 

independent searches and number of times each interaction was observed on the gene 

fact sheets is very useful for assessing the quality of the evidence about an 

interaction.  Some of the interactions observed for PFI1715w may turn out to be false 
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positives; indeed, there is also weak evidence for an interaction with PfEMP1 

(PFF1580c) and reticulocyte binding-like protein 3 (PFL2520w) which look like 

outliers compared to its other interaction partners.  

One of the advantages of MaGnET is that it brings together multiple data-

types in one place, so allows the exploration of all lines of evidence during 

hypothesis generation.  Exploration of the expression data surrounding the PFI1715w 

gene reveals that it is expressed mainly during the schizont stage of the IDC (Figure 

6.9).  Expression during the schizont stage would concur with a potential role in 

regulation of processes linked to cell cycle, gene expression and protein metabolism, 

during which time the parasite is undergoing rapid rounds of mitosis and forming 

new merozoites ready for release at the end of the schizont stage. 

Figure 6.9 demonstrates that the other members of the interaction cluster 

generally follow a similar expression profile to PFI1715w in the IDC.  The majority 

are also expressed during the schizont stage.  A glaring exception is PFF1580c 

encoding PfEMP1, which is not surprising since during the IDC PfEMP1 is 

expressed during the late ring/early trophozoite stage.  Another exception is the 

ribosome biogenesis regulatory protein (PF11_0259), because peak expression of 

this protein occurs earlier in the IDC, presumably during the time-frame of ribosome 

synthesis.  The fact that expression of PFI1715w does not overlap with that of 

PFF1580c and PF11_0259 in the IDC indicates that these interactions could be false 

positives, since they are unlikely to meet under biological conditions 

(notwithstanding the possibility that they may be co-expressed and interact during 

other phases of the life-cycle). 
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Figure 6.9.  Primary interactions of the PFI1715w protein with transcription levels at the early 

schizont stage overlaid (interaction data from LaCount et al. 2005; transcription data from Le Roch et 

al. 2003). 

 

 To assess the validity of the observations made about the PFI1517w protein, 

further analysis of the functional enrichment of its interaction partners was 
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undertaken.  The CLENCH2.0 program (Shah and Fedoroff 2004) was used to 

calculate the GO categories that are significantly enriched in this set of proteins.  The 

interaction partners of PFI1715w are enriched for categories related to regulation of 

metabolic processes, RNA metabolism, chromatin remodelling, regulation of 

transcription, RNA splicing and nuclear and ribosomal localisation (Table 6.4). 

 

Term Aspect P-value 

Regulation of biological process Biological process 0.021 
Regulation of cellular metabolic process Biological process 0.010 
Organelle organisation and biogenesis Biological process 0.001 
Chromatin remodelling Biological process 0.000 
Macromolecule metabolic process Biological process 0.046 
Biopolymer metabolic process Biological process 0.021 
RNA metabolic process Biological process 0.010 
Regulation of transcription, DNA-dependent Biological process 0.003 
RNA splicing Biological process 0.016 
Nucleobase, nucleoside, nucleotide and 
nucleic acid metabolic process 

Biological process 0.033 

Nucleic acid binding Molecular function 0.046 
DNA-binding Molecular function 0.010 
Helicase activity Molecular function 0.011 
Ribonucleoprotein complex Cellular component 0.020 
Large ribosomal subunit Cellular component 0.014 
Spliceosome Cellular component 0.007 
Nucleus Cellular component 0.000 
Chromatin remodelling complex Cellular component 0.001 

Table 6.4.  A representative selection of the enriched GO categories for the group of proteins involved 

in primary interactions with the protein encoded by PFI1715w.  At a confidence level of 95%, a p-

value of below 0.05 indicates that a category is significantly enriched in this set compared to all P. 

falciparum proteins.  (Full analysis results are included on the accompanying CD.) 

 

6.2.1.2 Identification of a novel putative nuclear protein hypothesised to 

regulate protein metabolism and chromatin modification 

 The final interaction of the PFI1715w protein that was recorded several times 

was with a hypothetical protein encoded by the gene MAL8P1.153.  Like PFI1715w, 
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this protein was reported to interact with many nuclear proteins, several of which 

were repeatable (LaCount et al. 2005).  Some of the interacting proteins have 

function annotated, so the interaction data for MAL8P1.153 was explored to see 

whether any clues could be obtained about its possible function.  

  A self-interaction of the MAL8P1.153 protein was recorded 70 times in the 

yeast-two hybrid data.  Therefore, MAL8P1.153 proteins certainly form a homo-

subunit complex, which is probably required for its function. 

From the protein-protein interaction data there is a good amount of evidence 

indicating that MAL8P1.153 may function in regulating protein and nucleic acid 

metabolism.  MAL8P1.153 was linked to protein catabolism through an interaction 

with a probable ubiquitin carboxyl-terminal hydrolase family 2 protein (PFI0225w), 

which was recorded 11 times.  There was also an interaction with a putative 

ubiquitin-protein ligase (MAL8P1.23), but that was recorded only once, so it could 

be a false positive.  Additionally, an interaction between the MAL8P1.153 protein 

and a protein involved in mRNA degradation � CAF1 family ribonuclease 

(MAL8P1.104) was observed 5 times.   

There is limited evidence for a link to factors involved in protein synthesis, 

but as the interactions were not repeatable this should be treated with caution.  The 

interaction partners included a homologue of human HSPC025 (PFF0590c), 

otherwise known as eukaryotic translation initiation factor 3, subunit E interacting 

protein (EIF3EIP), and a Sec63 homolog (PF13_0102) � a member of a complex that 

mediates newly synthesised protein transport into the endoplasmic reticulum. 

 The MAL8P1.153 protein may also interact with other transmembrane 

transporters, as an interaction with a sulphate transporter (PF14_0679) was recorded 
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four times and an interaction with a potassium channel (PFL1315w) was recorded 

twice. 

 MAL8P1.153 may link to chromatin modification and DNA synthesis 

pathways through interactions with histone acetyltransferase Gcn5 (PF08_0034) � 

required for chromatin remodelling and transcription activation (Fan et al. 2004) 

(recorded 5 times), a helicase (PF10_0232) and DNA polymerase epsilon, catalytic 

subunit A (PFF1470c) (both recorded just once). 

 These observations suggest that one or more MAL8P1.153 subunits combine 

to form a functional complex, with or without other factors.  The active complex may 

be involved in regulation of protein metabolism and could be involved in cross-talk 

between these pathways and those controlling gene transcription and DNA synthesis.  

Therefore, it may require shuttling between the cytoplasm and the nucleus to carry 

out its function. 

Examination of the expression profile of MAL8P1.153 (Figure 6.10) reveals 

that the gene is transcribed at several distinct stages of the life cycle and that its 

expression is quickly switched on and off, indicating that its transcription is tightly 

controlled.  MAL8P1.153 is expressed during the stages of the life cycle when the 

parasite is undergoing phases of replication and differentiation (sporozoite, schizont 

and gametocyte), which indicates that this protein might be important during these 

processes.  If MAL8P1.153 is expressed at several stages of the life cycle, it could 

conceivably interact with proteins that are present at different times, as is suggested 

by Figure 6.11, which shows that different interacting partners are expressed at 

different stages. 
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Figure 6.10.  Time-series expression profile of the MAL8P1.153 gene (data from Le Roch et al. 

2003).  Transcription peaks during several stages of the life cycle, including the sporozoite, schizont 

and gametocyte stages. 

  

To gather further evidence about the function of MAL8P1.153, its predicted 

protein sequence was submitted to the ScanProsite protein domain and motif 

detection server (de Castro et al. 2006).  The results revealed that the MAL8P1.153 

protein has two bipartite nuclear localisation signals, indicating that it is likely to be 

localised in the nucleus.  There were no regions enriched for positively charged 

residues, indicating that the protein would be unlikely to bind DNA (negatively 

charged phosphate groups of DNA bind suitably spaced positively charged protein 

side chains).  This suggests that any role it may play in regulating DNA synthesis or 

gene expression must be asserted through interactions with other proteins.
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6.2.1.3 Identification of a putative novel DNA-binding protein 

  The gene PF10_0232 encodes a protein known as chromodomain-helicase-

DNA-binding protein 1 (CHD1) homolog, which has a variety of roles depending on 

its interaction partners, including transcription activation and repression and mRNA 

splicing [reviewed in (Hall and Georgel 2007)].  As shown in Figure 6.11, CHD1 is 

one of three protein interaction partners shared between the two hypothetical proteins 

encoded by PFI1715w and MAL8P1.153 (described above).  The other two shared 

interaction partners are hypothetical proteins encoded by PFL2335w and PFL1395c.  

As Figure 6.11 reveals the expression of CHD1 (PF10_0232) and PFL2335w appear 

closely coupled at two life cycle stages.  Inspection of their expression profiles 

reveals that they are actually highly similar across sporozoites, the IDC and 

gametocytes (Figure 6.12).  The evidence for an association between CHD1 and 

PFL2335w is further strengthened by the fact that they also have a third interaction 

partner (a hypothetical protein encoded by PF14_0499) in common between them.  A 

direct interaction between the CHD1 and PFL2335w-encoded proteins has not been 

recorded; however, proteins with similar functions are more likely to share 

interaction partners (Koegl and Uetz 2007).  Since these two proteins have a similar 

expression profile, and share several interaction partners, it can be hypothesised that 

they share a related function.  The PFL2335w protein is probably a DNA-binding 

protein functioning in transcription regulation, probably in complex with other 

proteins. 
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Figure 6.12.  Expression profiles of the genes encoding CHD1 (PF10_0232) and a hypothetical 

protein (PFL2335w) (data from Le Roch et al. 2003). 

 

To examine further evidence for this hypothesis the predicted cross-organism 

orthologs for the PFL2335w gene were accessed using a link from its MaGnET gene 

fact sheet to its entry in OrthoMCL-DB (Chen et al. 2006a).  The predicted orthologs 

for this gene include a DNA-binding domain containing protein from Oryza sativa. 

The protein sequence of PFL2335w was submitted to the ScanProsite motif 

detection server (de Castro et al. 2006).  The results showed that there are two lysine-

rich regions within the sequence, confirming that the protein has the necessary 

positively charged residues to support a potential electrostatic interaction with DNA 

(data not shown).  Other predicted sequence motifs included bipartite nuclear 

localisation signals and an EF-hand calcium-binding domain. 
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 Taken together, this evidence suggests that the protein encoded by PFL2335w 

is likely to be a novel DNA-binding protein, possibly working in concert with CHD1, 

regulating gene expression within the sporozoite and intraerythrocytic stages of the 

parasite�s life cycle. 

 

6.3 Exploring characteristics of species-specific gene 

families with high numbers of pseudogenes 

 There are two mechanisms by which pseudogenes can be generated in 

eukaryotes: gene duplication (�duplicated pseudogenes�) and subsequent disabling of 

one gene copy, and reverse transcription of mRNA randomly inserting the sequence 

into genomic DNA (�processed pseudogenes�).  Both have distinct characteristics: 

duplicated pseudogenes are usually disabled by stop codons or frame-shifts; 

processed pseudogenes tend to lack introns and may contain other artefacts of 

transcription, such as polyadenine tails (Harrison and Gerstein 2002). 

 Processed pseudogenes are more prevalent in gene families that are highly 

expressed, due to the large amount of mRNA that is available for random reverse 

transcription and insertion events (Harrison and Gerstein 2002).  Duplicated 

pseudogenes, however, tend to occur more frequently in organism-specific families 

that are linked to environmental response functions (Harrison and Gerstein 2002). 

 There remains the possibility that pseudogenes can be resurrected as new 

proteins after undergoing a period of random drift without selection.  Reservoirs of 

pseudogenes will therefore increase the potential sampling space for proteome 

evolution (Harrison and Gerstein 2002). 
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 It was decided to investigate the relationships between pseudogenes and gene 

families within P. falciparum using tools available within MaGnET. 

 A well-known multi-copy gene family that is unique to P. falciparum are the 

var genes, encoding PfEMP1, a protein expressed on the surfaces of infected 

erythrocytes (IE) and mediating cytoadhesion.  Var genes undergo antigenic 

switching, so that usually one family member is dominantly expressed per parasite 

generation (Peters et al. 2002).  The red line in Figure 6.13 represents the dominantly 

expressed full-length var gene in one particular microarray experiment. 
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Figure 6.13.  Graph showing the expression profiles of all predicted var genes (including 

pseudogenes) encoded by the P. falciparum 3D7 genome that had expression data recorded in a study 
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by Le Roch et al. 2003 (top panel).  The red line indicates the dominantly expressed var gene.  The 

graph also shows apparent constitutive, high expression of a group of five probes mapping to var 

pseudogene sequences, probably caused by cross-hybridisation to the probes by a set of similar 

transcripts.  For clarity, the bottom panel shows a close-up view of these five profiles. 

   

The surprising aspect of var gene expression revealed by Figure 6.13 is the 

apparent constitutive high expression of five other var genes, following a completely 

unrelated expression profile to that normally seen for var genes (var gene 

transcription is normally switched on in ring stage parasites).  These five highly 

expressed genes are in fact all annotated as pseudogenes, degenerate or truncated var 

genes.  Each gene is also only represented by one probe on the microarray used in 

this study (Le Roch et al. 2003).  Therefore, the constant, high signal from these 

probes is surely due to cross-hybridisation of a set of similar transcripts.  A similar 

phenomenon involving the same five probes is also observed with data from the 

gametocyte stages of 3D7 and NF54 strain parasites (data not shown) (Young et al. 

2005).  This indicates that many similar var genes (and perhaps pseudogenes) are 

being transcribed but not translated in several P. falciparum life cycle stages.  The 

biological advantage of this to the parasite is unclear, but may be linked to the large 

number of truncated var pseudogenes in the genome, which could have arisen out of 

reverse transcription and insertion of spliced sequences back into the genome.  One 

effect of this could be to ensure an expansive available reservoir of sequences from 

which to generate possible new proteins; bestowing an advantage for immune 

evasion. 

 To investigate whether there were any genome-wide patterns for gene 

families with pseudogenes being more abundantly expressed, a custom Java script 
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was developed to calculate overall family expression levels and compare them to the 

number of pseudogenes.  Expression level data for each family member was 

averaged over a time-series, family members� expression levels were totalled, and 

then the totals from two experiments (Le Roch et al. 2003; Young et al. 2005) were 

combined to give an overall representation of mRNA abundance for each family.  P. 

falciparum gene families were identified as being the paralogous genes within 

individual clusters of homologues as calculated by the OrthoMCL program (data 

stored in the MaGnET database � see Chapter 3 for more details) (Li et al. 2003).  
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Figure 6.14.  Graph showing overall expression level of P. falciparum 3D7 gene families plotted 

against number of pseudogenes in the family.  Expression level was calculated by summing average 

expression levels of family members across a time-series experiment and combining the totals from 

four time-series experiments that used the same array (Le Roch et al. 2003; Young et al. 2005). 

 

rifin 

var 

Hypothetical

stevor 

Heat shock 
70 kDa 



 240

Figure 6.14 presents a graph of the results.  The graph shows that on average, 

there are fewer than 5 pseudogenes per family in the P. falciparum genome, and just 

two families contain the majority of all pseudogenes.  The family with the second 

highest number of pseudogenes after var is rifin, another species-specific antigenic 

family, and this family is the fourth most abundantly expressed.  However, the 

family with the third greatest number of pseudogenes, stevor, a species-specific 

family related to the rifins, appears to buck the trend.  Stevor is known to be 

expressed during the life cycle stages sampled (namely those occurring in the human 

host) (McRobert et al. 2004), but little stevor expression has been detected with 

microarray studies (Le Roch et al. 2003; Llinas et al. 2006).  Therefore, this result 

may just reflect that the current arrays do not accurately represent real stevor genes 

and fail to capture their true expression level.  The family with the fourth highest 

number of pseudogenes, a family of hypothetical protein encoding genes, also 

follows the trend by having the second highest overall expression level. 

 Overall, there seems to be a relationship between large, species-specific 

families having high transcript abundance, and the number of pseudogenes per 

family.  It would be interesting to investigate further the nature and characteristics of 

the pseudogenes to determine what proportion of them arose by gene duplication or 

processing of transcripts and how rapid the turn-over of genes is in P. falciparum.  

Comparison of pseudogene complement between strains and species will be 

important for understanding their evolution. 
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6.4 Identifying cases of misannotation 

 When genomes are annotated, names are often assigned to genes on the basis 

of similarity to other proteins.  Often, the similarity may only encompass part of the 

protein; for example, a single domain within a multi-domain protein.  Therefore, it 

can be dangerous to assign a function when the proteins do not have similar global 

arrangements of domains because the new sequence may be missing vital functional 

regions.  Genome annotation often involves automated assignment of probable 

protein domains using databases of known domain and protein families, such as 

InterPro (Mulder et al. 2007).  Gene classification systems such as Gene Ontology 

(Ashburner et al. 2000) have evolved to provide a method of annotating gene 

function within a controlled vocabulary along with a means to document the source 

of annotation.  Logically, the next step would be to combine automated domain 

annotation with a description of the protein�s function using ontologies.   

For several years following release of the sequence of the P. falciparum 3D7 

genome (Gardner et al. 2002), the GO annotation remained relatively sparse due to 

the high number of hypothetical genes.  Recently, the GO annotation has been 

bolstered by introduction of automatic assignment of GO terms based on the 

presence of a particular domain predicted by InterPro.  During the course of this 

work many incidences of questionable GO annotation have come to light, which 

have arisen through the inappropriate assignment of terms when a particular domain 

has been predicted in a protein sequence.  MaGnET presents the annotation data in a 

way that makes it easy to find cases of probable misannotation.  Other online genome 

resources, such as PlasmoDB and GeneDB, that include similar data, do not always 
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clearly provide the evidence for functional assignments in a way that makes it easy 

for the user to trace the origin of GO terms.  An example is discussed below. 

6.4.1 Example: a misannotated potassium channel 

 The gene PFL1315w encodes a potassium channel (Pfk1) (Waller et al. 

2008).  Figure 6.15 shows the GO annotation and InterPro predicted protein domains 

for PFL1315w displayed in the gene fact sheet.  The InterPro annotation includes 

several hits to potassium channels from various sources, most of which are in 

agreement over the location of a characteristic sequence motif of potassium channels 

within the protein sequence.  The InterPro annotation also includes a hit to a zinc 

protease motif towards the C-terminal.  The zinc protease motif hit led to automatic 

assignment of three GO terms to the gene (�metallopeptidase activity�, �zinc ion 

binding� and �proteolysis�) (Figure 6.15).  Two of these three GO terms are 

misplaced, since some potassium channels do require zinc binding, but they do not 

function as metallopeptidases.  This highlights an error that can be caused by 

computationally assigning function to a gene based on a hit to a single, short motif 

within a large sequence.   
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Figure 6.15.  Left panel: the GO annotation assigned to Pfk1.  Right panel: the InterPro predicted 

protein domain and sequence features for Pfk1.   

 

The GO annotation includes only one other term associated with the correct 

function of the protein (�membrane�), which does not adequately describe its 

potassium channel function since it only indicates general membrane localisation.  It 

is unclear why the multiple InterPro hits to potassium channels did not lead the 

annotation software to deduce that GO terms associated with potassium channel 

function would be appropriate.  That the software would automatically assign GO 

terms based on zinc protease function from a single hit but not for potassium channel 

function where several methods were in consensus, would seem like a gross 

oversight of the method.  A more effective and accurate system should take into 

account the actual combination of domains and motifs and their prediction scores in 

order to assign function.   
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 In summary, Figure 6.15 demonstrates that MaGnET provides essential data 

about the source and confidence scores of the predicted InterPro and GO annotation 

included in the MaGnET database.  MaGnET provides the necessary information to 

users in order that they can decide how much weight to place on individual 

annotations and how reliable they are likely to be.  In this way, users will easily be 

able to notice cases of misannotation, such as that described above, but also cases of 

more ambiguous annotation that can be further investigated using other tools. 

 

6.5 Discussion 

 The mini-studies described in this chapter serve to demonstrate how 

exploration of functional genomic data using MaGnET can lead to new hypotheses 

about P. falciparum gene function.  Table 6.5 summarises all the hypotheses and 

observations that have come out of the analyses using MaGnET.  The hypotheses 

range from predictions about the putative function of hypothetical proteins to 

prediction of protein complex subunits to observations about properties of species-

specific gene families. 

 

Genes Hypothesis 

PF10_0141 (Pfmrk), PF14_0605 
(Pfcyc-1) and PFE0610c (PfMAT1) 

The RNA polymerase II CTD phosphorylation complex 
components are differentially co-expressed in the 
trophozoite stage (timing of abundant mRNA 
synthesis), so they are involved in regulating 
transcription, and hence cell growth, during this life 
cycle stage.  

MAL13P1.279 (PfPK5) and 
PF13_0022 (Pfcyc-4) 

During the erythrocytic stages, the cyclin Pfcyc-4 
partners with the CDK PfPK5.  

MAL13P1.279 (PfPK5) PfPK5 forms complexes with different cyclins at 
different stages of the life cycle, with distinct functions. 

MAL13P1.279 (PfPK5) and 
PFL1330c (Pfcyc-2) 

PfPK5 and Pfcyc-2 may form a complex in gametocyte 
stages. 
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MAL13P1.279 (PfPK5) and 
PFE0920c (Pfcyc-3) 

PfPK5 and Pfcyc-3 may form a complex at other 
stages of the life cycle, e.g. in the mosquito. 

PFC0755c (Pfcrk-4), PFF0750w 
(Pfcrk-5), MAL13P1.196, 
PFL1330c (Pfcyc-2), PFF0280c 
and MAL13P1.131 

3 CDKs and 3 cyclins are differentially co-expressed in 
schizonts and are involved in regulating processes 
linked to cell cycle. 

 Waves of tightly regulated CDK/Cyclin expression 
provide a means of controlling cell cycle progression in 
schizonts. 

PFD0740w (Pfcrk-3), PF10_0141 
(Pfmrk) and MAL13P1.185 
(PfPK6), PF10_0139, MAL8P1.152 
and PF14_0605 (Pfcyc-1) 

3 CDKs and 3 cyclins are differentially co-expressed 
during the ring/trophozoite stages and are involved in 
regulating transcription and cell growth. 

MAL13P1.185 (PfPK6) PfPK6 activity may be enhanced by binding a cyclin 
and it may bind a product of either PF10_0139, 
MAL8P1.152 or PF14_0605 (Pfcyc-1) during 
ring/trophozoite stages. 

MAL8P1.152 and PFD0740w 
(Pfcrk-3) 

The CDK Pfcrk-3 and the putative cyclin encoded by 
MAL8P1.152 may form a complex during erythrocytic 
stages. 

PFD0865c (Pfcrk-1) and 
MAL13P1.337 (Skp1) 

The putative Skp1 protein possibly binds to and 
activates Pfcrk-1.  Pfcrk-1 may not require a cyclin to 
be active, or may bind a novel cyclin-like protein. 

PFI1715w This hypothetical protein-coding gene may function in 
mediating cross-talk between several fundamental 
intracellular pathways; in particular there is evidence 
for its function in regulating gene expression and 
protein metabolism pathways during the IDC. 

PFI1715w The PFI1715w-encoded protein is located in the 
cytoplasm, and may translocate to the nucleus upon 
forming the correct protein complex. 

MAL8P1.153 The hypothetical protein encoded by MAL8P1.153 
forms a homo-meric complex. 

MAL8P1.153 This protein could be involved in protein metabolism 
pathways and may also cross-talk with transcription 
and DNA synthesis factors. 

MAL8P1.153 MAL8P1.153 is expressed in sporozoite, schizont and 
gametocyte stages and could function in processes 
associated with replication and differentiation, when it 
might interact with different subsets of proteins. 

MAL8P1.153 The product is located in the nucleus and does not 
bind DNA, so if it regulates transcription it must do so 
via interactions with other proteins. 

PFL2335w There is good evidence for this gene encoding a DNA-
binding protein that regulates transcription in 
sporozoite and IDC stage parasites.  

PFL2335w and PF10_0232 
(CHD1) 

The protein encoded by PFL2335w probably forms a 
transcription factor complex with other proteins, one of 
which is likely to be CHD1. 
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var (PfEMP1) Even though a single var gene is dominantly 

expressed there is a background level of var 
transcription, possibly including several truncated and 
pseudogene sequences. This may lead to a high rate 
of reverse transcription and reincorporation of 
sequences back into the genome, explaining the 
extraordinarily high number of pseudogenes in this 
family, and providing a mechanism for ensuring a 
reservoir of sequences from which to generate new 
antigenic proteins. 

Species-specific, multi-copy 
families. 

There is a relationship between the number of 
pseudogenes per family and the overall transcription 
level of the family.  Furthermore, pseudogenes seem 
to belong almost exclusively to species-specific 
families, such as var, rifin and stevor in P. falciparum.  
Having large numbers of pseudogenes could 
potentially be useful for resurrecting �dead� sequences 
as new proteins, thereby quickly driving evolution. 

Several Using automatic programs to assign gene function can 
be problematic, as demonstrated with GO functions 
assigned to a protein when there is a single 
occurrence of a particular motif or domain within a 
multi-domain protein.  In many cases the annotation 
will be wrong, and this may be exacerbated in 
Plasmodium because there are many novel proteins 
that are likely to contain unique combinations of 
domains with unusual functions. 

Table 6.5.  Summary of novel hypotheses about gene function that emerged from exploration of P. 

falciparum functional genomic data using MaGnET as described in Chapter 6.  

 

6.5.1 MaGnET was used to demonstrate how visualisation of 

functional genomic data can lead to the prediction of protein 

complexes 

 In Section 6.1 the MaGnET Expression Data Viewer was used to explore the 

expression patterns of a set of known and predicted CDK and cyclin genes.  The 

results showed that several distinct patterns of co-expression involving small groups 

of CDKs and cyclins are clearly visible within the expression data available through 

MaGnET.  The co-expression of a known CDK-cyclin complex (the RNA 

polymerase II CTD phosphorylation complex), including the CDK Pfmrk, the cyclin 
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Pfcyc-1 and the co-activator protein PfMAT1, was clearly demonstrated in 

trophozoites. 

 MaGnET was then used to explore the expression profiles of other CDK and 

cyclin genes in an attempt to discover likely paired combinations based on co-

expression of components.  The CDK PfPK5 was shown to co-express with the 

cyclin Pfcyc-4 during erythrocytic stages, so it seems likely that they will form a 

complex at this time (complex activity has been demonstrated in vitro).  Also, the 

timing of their maximal expression is during the onset of schizogony, so they may be 

involved in regulating the onset of this process.  Interestingly, in gametocytes, the 

expression profile of PfPK5 was more similar to that of Pfcyc-2, which has not been 

shown to activate PfPK5 in in vitro studies.  The similarity of their expression 

profiles could be simply a coincidence, or it could be that they do form a functional 

complex in gametocytes and a co-activator protein is required.  Demonstrated in vitro 

activity of PfPK5 with Pfcyc-3 was not backed up by evidence for co-expression of 

their genes during the IDC or gametocyte stages.  Therefore, it is unlikely that they 

form a functional complex during these phases of development, but they may 

regulate processes at other stages, such as in the mosquito, which was not 

investigated here.  PfPK5 may well form complexes with various cyclins, whose 

function differs between life cycle stages, and is therefore regulated by the 

expression of the cyclin genes. 

 MaGnET was also able to demonstrate that two groups, each of three CDKs 

and three cyclins, had distinctive co-expression profiles during the IDC.  One group 

was maximally expressed in ring and trophozoite stage parasites and the other in 

schizonts.  The former of these groups is likely to have a role in the regulation of the 
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rounds of rapid RNA and protein synthesis required for parasite growth and 

establishment during the early IDC.  The latter group is more likely to regulate cell 

cycle progression during schizogony.   

Sharp peaks of CDK/cyclin expression were observed during the IDC, 

leading to the hypothesis that rapid switch on and off of the required complex 

components at each phase is a mechanism for regulating the number of times a cell 

divides [which fits with the current model for Plasmodium cell cycle control: that 

replication continues as long as the pool of CDK/cyclins in the cytoplasm remains 

above a threshold level (Leete and Rubin 1996)]. 

The predictions of CDK/cyclin complexes made here narrows down the 

possible range of theoretical complexes to a sub-set of likely combinations that can 

be tested in the laboratory.  It also provides an alternative to using computational 

molecular docking experiments to predict CDK/cyclin complexes, which has the 

advantages of being simple to use for non-bioinformaticians and not requiring 

knowledge of the three-dimensional structure of the proteins.  In fact, the next step 

after the MaGnET analysis could be to run molecular docking experiments on this set 

of predicted CDK/cyclin complexes, utilising the comparatively modelled structures 

that are available within MaGnET for some of the set, in order to predict whether 

they may physically interact before going into the laboratory. 

6.5.2 Exploration of functional genomic data using MaGnET led to 

new hypotheses about gene function 

 The principle of �guilt by association� has been widely used to assign putative 

function to novel proteins based on shared similarities with groups of genes of 

known function in functional genomic datasets.  Here, MaGnET was able to 
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demonstrate how this principle can be applied through use of visualisation tools to 

pick up on similarities across a group of genes that confer a probable functional 

association onto novel genes. 

By examining a set of high quality (reproducible) protein-protein interactions 

within the Protein-Protein Interaction Viewer, it was shown how MaGnET could be 

used to predict the possible functional role and cellular location of novel proteins.  

The genes PFI1715w and MAL8P1.153 share no similarity with proteins of known 

function in other organisms.  Both have a large number of reproducible interactions 

in the dataset, so were chosen as candidates for investigating whether trends in their 

sets of interaction partners could confer functional associations to the novel proteins.  

In the case of PFI1715w, its interaction partners consisted of a large number 

of proteins involved in fundamental cellular processes, such as transcription, protein 

metabolism and cell cycle.  Therefore, PFI1715w most likely encodes an intracellular 

protein that may be involved in novel ways of regulating cellular pathways, which 

are unique to the parasite.  The protein encoded by MAL8P1.153 also appears to be 

linked to fundamental cellular processes, such as transcription, protein metabolism 

and DNA synthesis, and there is evidence that it is a nuclear protein and forms a 

homo-meric complex.  Understanding how novel proteins like PFI1715w and 

MAL8P1.153 fit into the framework of conserved �house-keeping� proteins involved 

in core processes is key to understanding how the parasite has adapted to its unique 

life style. 

The principle of guilt by association was also used to predict DNA-binding 

function in a protein that has features in common with another DNA-binding protein.  

The protein encoded by PFL2335w shares multiple interaction partners with the 
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DNA-binding protein CHD1 (PF10_0232) and, moreover, they have similar 

expression profiles during the human stages of development, with both being 

particularly highly expressed in sporozoites.  The hypothesis that PFL2335w also has 

DNA-binding function was backed up by other evidence, including the occurrence of 

positively charged regions in the protein sequence.  This evidence leads to the further 

hypothesis that PFL2335w could be a binding partner for CHD1 in sporozoites, as it 

is known to bind to several different partners with differing functions (Hall and 

Georgel 2007). 

6.5.3 MaGnET was successfully used to explore the properties of 

P. falciparum-specific gene families 

Individual Plasmodium species have evolved their own specific gene 

families, many of which have been implicated in parasite-host interactions and 

immune evasion (Janssen et al. 2004).  In P. falciparum these include var, rifin and 

stevor.  Investigations of var gene expression profiles using the MaGnET Expression 

Data Viewer led to discovery of constitutively highly expressed var-like sequences, 

revealing a background level of expression that appears quite distinct from the 

regulated expression of a single dominant var gene in ring stage parasites.  The var 

family is unusual in that it has many more predicted pseudogenes than all other 

families in the genome.  It seems plausible that the high background expression level 

of var sequences may be the reason behind the large number of pseudogenes, due to 

processing of transcripts back into the genome.  The postulated effect of this is to 

provide a reservoir of sequences that could potentially be brought back as �live� 

sequences, thereby increasing the parasite�s chances of successfully evading the 

host�s immune response.   
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Further analysis of the MaGnET data revealed that there is trend for high 

numbers of pseudogenes occurring in species-specific gene families and that these 

families tend to have more abundant overall expression levels compared to other 

families.  It would be interesting to investigate these trends further by examining the 

pseudogene sequences and locations within the genome to establish whether they 

arose by transcript processing or gene duplication.  The top-three families for number 

of pseudogenes are var, rifin and stevor, the three P. falciparum-specific families, 

and the fourth is an uncharacterised family of hypothetical proteins (which also has 

second highest overall expression level after the var family).  This family would 

seem like an important target for further investigation, since it may also have an 

important role in mediating host interactions, similar to the other three families. 

The latter part of the investigation (correlation between number of 

pseudogenes per family and overall transcript abundance of the family) did not 

involve the MaGnET visualisation program; however, it utilised a novel combination 

of data from the MaGnET database.  Therefore, this mini-study demonstrates how a 

local installation of the MaGnET software could be used by a bioinformatician.  In 

order to recreate the same result using other resources, the researcher would need to 

visit PlasmoDB (Bahl et al. 2003) or GeneDB (Hertz-Fowler et al. 2004) to retrieve 

the family member and genomic information, and download the expression datasets 

from the source publications.  They would then need to either manually extract the 

required information (very time-consuming for a whole-genome scale study), or go 

through significant data parsing steps in order to extract the necessary information 

from downloadable files.  Here, just one simple script was created to extract and 

compare the necessary information from the database. 
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6.5.4 MaGnET usage simplifies the process of weeding out false 

annotation 

 Section 6.4 showed how the policy of clearly flagging up the source and 

reliability of predicted annotation data within MaGnET makes it easy for users to 

assess the information and make informed decisions about whether to trust the 

annotation or seek further evidence.  Unfortunately, it is not possible to weed out all 

unreliable annotation automatically, so by providing users with the necessary factors 

required to make a judgement, MaGnET provides a helpful service.  Other tools 

often do not provide a clear indication of the reliability or source of their predicted 

annotation, which can be misleading to biologists.  An example discussed in Section 

6.4.1 showed that recent efforts to increase coverage of GO terms for P. falciparum 

by automatically assigning functional terms based on occurrence of a single InterPro 

predicted sequence feature can be erroneous and misleading.  Algorithms that take 

into account the global arrangement of protein domains and motifs are much more 

accurate and urgent effort is needed to develop this sort of annotation procedure for 

P. falciparum genes.   

Furthermore, Figure 6.15 demonstrates that MaGnET displays the InterPro 

annotation in a different way to other tools, such as PlasmoDB and GeneDB, by 

vertically separating predictions on the page.  This allows the user to easily compare 

sequence locations and attributes of hits from various sources and to establish a 

�consensus� opinion.  Attaining a consensus from various algorithms is very 

important when deciding how much emphasis to place on individual domain 

annotations. 



 253

One promising annotation tool that bases its functional and domain 

assignment on global homology and consensus of multiple prediction methods is 

PhyloFacts (see Section 1.4.3.3) (Krishnamurthy et al. 2006).  If the PhyloFacts 

algorithm can be applied on a large scale to Plasmodium genes, it might lead to more 

confident predicted functional annotation and, hopefully, wider coverage. 
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7. CONCLUSION 

Overview 

 This thesis presented a new development in the form of a novel software tool 

to aid malaria biologists to explore functional genomic data about the parasite and 

draw hypotheses about gene function.  The Introduction Chapter described recent 

progress in Plasmodium genome sequencing and functional genomics research and 

assessed currently available online tools for browsing and analysing the results.  The 

field was found to be lacking resources that encouraged users to explore the 

functional genomic data beyond the single gene level.  By comparison to similar 

tools available for other organisms, it was clear that a new tool providing 

visualisation of integrated functional genomic datasets would be useful for malaria 

research.  The following thesis chapters described work to develop and demonstrate 

the use of such a tool � the Malaria Genome Exploration Tool (MaGnET). 

 Chapter 2 set out specific aims for software design, including user 

requirements and short-comings of other tools that it aimed to address.  The system 

design included a database for local data storage and a program [Graphical User 

Interface (GUI)] for displaying data.  Chapter 3 described the selection of publicly-

available datasets, data processing and structure of the database.  Chapter 4 presented 

the main features of the visualisation program and provided details about its 

implementation.  This chapter also compared MaGnET to related tools, discussing 

specific advantages and limitations, and highlighting its novel features.  Directions 

for potential future expansion were briefly discussed.  The subsequent two chapters 

were dedicated to describing how MaGnET could be applied to explore functional 
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genomic information for individual and groups of genes, ultimately leading to new, 

testable hypotheses about gene function.  Chapter 5 demonstrated that MaGnET 

could show the results of previously published studies into gene function that used 

other experimental and bioinformatic techniques.  Chapter 6 presented the results of 

new analyses performed using MaGnET (and in some cases supported by other 

methods), which culminated in a list of new hypotheses about gene function that can 

be tested in the laboratory or by further bioinformatic studies. 

 In this chapter conclusions will be drawn about the work presented in this 

thesis, its strengths and weaknesses, and overall significance in its field. 

 

7.1 Advantages of using MaGnET 

MaGnET improves upon currently available graphical display facilities for 

various P. falciparum functional genomic datasets, particularly those describing 

protein-protein interactions and mRNA and protein expression.  The main resource 

used by malaria biologists to access information about Plasmodium genes is 

PlasmoDB (Bahl et al. 2003).  However, the visualisation provided by this resource 

is currently very limited, and does not extend beyond the single gene level.  One of 

the significant advantages of MaGnET is the ability to select groups of genes at any 

point while browsing the data, which can be changed at any time.  Other tools that 

have recently emerged for analysis of Plasmodium functional genomic datasets, such 

as MalPort (MalPort; http://malport.bi.up.ac.za:7070/), allow users to browse 

properties of pre-selected clusters of genes from microarray experiments, but not to 

easily alter their selection.  Importantly, MaGnET allows users to carry their 
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selections forward between data viewers, and to save the gene list in a file for future 

analysis. 

MaGnET consists of four integrated interfaces to the data: a Genome Viewer 

for display of genomic location; a Protein-Protein Interaction Viewer for display of 

protein interaction networks; an Expression Data Viewer for drawing mRNA and 

protein expression profile graphs; and a Data Analysis Viewer for querying the 

database and comparing functional annotation for gene lists.  MaGnET also provides 

helpful gene fact sheets that summarise functional annotation, structural data, 

orthologs and paralogs, and provide link-outs to gene pages in other tools. 

As well as ensuring all the sections are linked and users can carry selections 

between them, MaGnET also provides advanced features for integrating data-types.  

These include the ability to overlay different data-types, such as expression data onto 

genomic location and protein interaction networks.  The advantage to the user is the 

ability to easily compare localised trends between data-types; for example, noticing 

strain-specific changes in gene expression over chromosomal regions. 

 Furthermore, MaGnET has been shown to be useful for generating novel 

hypotheses about function of thus-far uncharacterised genes and �hypothetical 

protein encoding�genes.  Most of the hypotheses that came out of analyses using 

MaGnET are readily testable in the laboratory or using other computational 

techniques.  Unfortunately, due to time constraints, it was not possible to arrange for 

any of the hypotheses to be tested, but it would be a useful exercise for promotion of 

MaGnET to biologists, and could help to flag-up areas of improvement for MaGnET. 

 The approach to data inclusion for MaGnET also differs from other 

resources, because rather than include all types of data relevant to P. falciparum, 
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they are limited to the minimum necessary for understanding gene function, in order 

to keep MaGnET light-weight and prevent feelings of data overload by users.  The 

datasets included were carefully selected to ensure that they would be of reasonable 

quality, and filtering was applied in order to try to remove the most unreliable 

annotation.  For example, a novel pipeline was created to filter out the many low 

quality and redundant comparatively-modelled protein structures downloaded from 

ModBase (Pieper et al. 2006).  Therefore, this should provide a useful service to 

malaria biologists, because the models in MaGnET now represent a selected set of 

high quality, non-redundant models. 

 In conclusion, MaGnET provides a novel interface for exploring P. 

falciparum functional genomic data and is useful for forming hypotheses about gene 

function.  By ensuring that the software is freely available over the World Wide 

Web, and providing different access options, including browser applet and 

downloadable Java Web Start versions, MaGnET can be easily accessed by malaria 

researchers all over the world. 

 

7.2 Limitations of the software 

Due to the limited time-frame for the project, there are some types of 

functional genomic data that MaGnET did not address, such as metabolic pathways.  

Since there are plenty of tools around to visualise pathways, including the Malaria 

Metabolic Pathways Database (Ginsburg 2006), it was felt that leaving out this data 

would not detract from the overall usefulness of MaGnET.  Of course, the more 

different types of data available, the better for forming robust hypotheses.  Therefore, 
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finding a way to display or link to pathway data with MaGnET would be a useful 

expansion. 

One other limitation that was highlighted by the work in Chapters 5 and 6 

was the lack of statistical data within MaGnET, such as correlation scores for genes 

in microarray datasets.  When exploring co-expressed sets of genes, it is important to 

have some statistical measure of how similar their expression profiles are and an 

indication of its significance compared to overall trends in the data.  Without this 

data, one has to be careful when comparing gene expression profiles, because there 

are underlying genome-wide changes in gene expression between life cycle stages.  

For example, expression of a large proportion of the genome increases during the 

trophozoite stage when the parasite is growing and establishing itself in the 

erythrocyte (Gritzmacher and Reese 1984). 

The lack of statistical correlation data means that MaGnET does not provide a 

method to search for genes that have correlated expression profiles across a time-

series experiment.  There are many microarray data analysis packages for performing 

this type of analysis, but their major limitation in respect of P. falciparum data is that 

they do not take into account local trends across a few life cycle stages.  Several 

families of P. falciparum genes are known to be present at multiple life cycle stages 

with distinct functions (McRobert et al. 2004; Petter et al. 2007), so the ability to 

investigate co-expressed patterns involving sub-groups of genes over a short-time 

frame is essential.  Recent progress to develop novel visualisation software 

addressing this problem has been successful for the identification of previously 

unseen short-term trends both generally and for subsets of genes in other organisms 

(Craig et al. 2005).  If similar functionality can be incorporated in MaGnET, it would 
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provide a useful new way of exploring co-expressed genes at particular stages of the 

parasite�s development. 

MaGnET is not intended to be used as a stand-alone resource.  Analyses 

using MaGnET should be conducted alongside other bioinformatic analyses, and it is 

particularly important to double-check the predicted annotation from InterPro 

(Mulder et al. 2007) and GO (Ashburner et al. 2000) with the source databases.  

Inaccuracies may have crept in, and the database versions used by InterPro may not 

necessarily be the most recent.  MaGnET has included links to other resources, such 

as literature and pharmacological databases, in order to guide users to further sources 

of information. 

In conclusion, there are some areas that need further development in 

MaGnET in order to ensure that it establishes a broad user-base and fulfils its 

potential as an important resource for malaria research.  Nonetheless, MaGnET�s 

current limitations do not detract from its contribution to the field by filling a niche 

for a tool facilitating exploration of Plasmodium functional genomic datasets. 

 

7.3 Future outlook  

MaGnET mainly includes data about P. falciparum genes, with some 

information about orthologs in other Plasmodium species.  Several species, as well as 

other P. falciparum strains, have now had their genomes sequenced, so it would be 

very useful to expand MaGnET to allow for comparison between genes and non-

coding regions over multiple species/strains.  Comparisons do not have to be just at 

the genome level; comparison at the protein level can indicate conserved regions 
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important for function and mutations that may affect the protein, especially if they 

can also be mapped onto protein structure. 

 As already mentioned, and discussed in detail in Section 4.5.2, there are 

many possible directions in which MaGnET development could be taken in future.  

The work presented in this thesis is really just the starting point for what could 

become an important, comprehensive resource for malaria biologists wishing to 

explore Plasmodium functional genomic data.  The difficulty is making the user 

community aware of the tool and how it can help their research, and encouraging 

them to try it out.  To ensure that MaGnET continues to evolve in complement with 

other tools, it is necessary to gain the endorsement of major online Plasmodium data 

resources.  Collaboration with the UCSC Malaria Genome Browser (Chakrabarti et 

al. 2007) has already been initiated, and a mechanism for directly linking into 

MaGnET from the genome browser is under development.  Once this functionality is 

complete, it should be simple to set up links to MaGnET from other sources. 
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APPENDICES 

Appendix A 

A list of tables in the MaGnET database with a short description of each column. 

 

'CHROMOSOMES' table 

Field Description Type 

id* A unique identifier assigned to the chromosome by the MaGnET 
program Integer

species The Plasmodium species to which the chromosome belongs Text 
strain The Plasmodium species strain to which the chromosome belongs Text 
chr The name/number of the chromosome Text 
length The length of the chromosome in base pairs Integer

sequence The nucleotide sequence of the chromosome (currently empty due to 
lack of storage space) Text 

'GENES' table 

Field Description Type 

magnet_id* A unique identifier given to the gene by the 
MaGnET program Integer 

gene_id The standard gene identifier assigned by the 
sequencing centre Text 

alias Any previous identifiers this gene was 
known by Text 

type Type of gene e.g. protein coding Text 

strand The chromosome strand on which the gene 
is found (c or w) Character

chr The chromosome where the gene is found Text 

species The Plasmodium species to which the gene 
belongs Text 

strain The Plasmodium species strain to which the 
gene belongs Text 

keywords Keywords describing the name/function of 
the gene Text 

product_name The name given to the product of the gene Text 

start The starting coordinate of the gene on the 
strand Integer 

end The ending coordinate of the gene on the 
strand Integer 

length The total length in base pairs of the gene Integer 

protein_sequence The amino acid sequence of the gene's 
protein product Text 

nucleotide_sequence The gene's nucleotide sequence Text 
num_of_exons The number of exons the gene has Integer 
curation1, curation2, curation3, 
curation4 

Annotation provided by the sequencing 
consortium Text 
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'EXONS' table 

Field Description Type 
ex_id* A unique identifier given to the exon by the MaGnET program Integer 
magnet_id The magnet_id of the gene the exon belongs to Integer 
exon_number The exon number within the gene Integer 
exon_start The starting coordinate of the exon on the strand Integer 
exon_end The ending coordinate of the exon on the strand Integer 
exon_length The length of the exon in base pairs Integer 

'ORTHOLOGUES' table 

Field Description Type 
cluster_id* A unique identifier given to the cluster Text 
pknowlesi The number of cluster members in the P. knowlesi genome Integer
pberghei The number of cluster members in the P. berghei genome Integer
pchabaudi The number of cluster members in the P. chabaudi genome Integer
pvivax The number of cluster members in the P. vivax genome Integer

pf3d7 The number of cluster members in the P. falciparum 3D7 
genome Integer

pyoelii The number of cluster members in the P. yoelii genome 
(currently not available) Integer

cluster_members The standard gene identifiers of the cluster members Text 

'DOMAINS' table 

Field Description Type 
feature_id* A unique identifier given to the domain/ sequence feature Integer
gene_id The standard gene identifier assigned by the sequencing centre Text 
type The type of domain/ sequence feature or the method used to predict it Text 

domain_id A unique identifier for the category of domain/ sequence feature 
(assigned by the database that made the prediction) Text 

description A description of the domain/ sequence feature Text 
start The start position in the protein sequence Integer
end The end position in the protein sequence Integer
evalue The expectation (E) value of the prediction Text 
date The date the prediction was made Text 

interpro A unique identifier for the category of domain/ sequence feature 
assigned by InterPro Text 

note Additional information about the domain/ sequence feature Text 

'GENE_FEATURES' table 

Field Description Type 
feature_id* A unique identifier given to the feature Integer 
gene_id The standard gene identifier assigned by the sequencing centre Text 
signal_peptide The probability of this being a signal peptide sequence Text 
signal_anchor The probability of this being a signal anchor sequence Text 
cleavage_site The probability of there being a cleavage site Text 
coordinates The location in the protein sequence Text 
note Additional information about the prediction Text 
type The prediction method Text 
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'GO_DATA' table 

Field Description Type 

ont_id* A unique identifier given to the Gene Ontogology annotation by 
the MaGnET program Integer

magnet_id The magnet_id of the gene the annotation is assigned to Integer
gene_id The standard gene identifier assigned by the sequencing centre TextA 

aspect The Gene Ontology aspect (C = cellular component, P = biological 
process, F = molecular function) Text 

go_id The Gene Ontology term identifier Text 
term_name The Gene Ontology term name Text 
evidence_tag The evidence tag associated with this annotation Text 
reference The reference for this annotation Text 

evidence_with
Contains the database and identifier of contributing sequence if 
annotation was inferred by sequence similarity, or contributing GO 
identifier if annotation was inferred from another GO annotation. 

Text 

date The date on which the annotation was made Text 

'GENE_ONTOLOGIES' table 

Field Description Type 
term_id* The Gene Ontology term identifier Text 
term_name The Gene Ontology term name Text 

aspect The Gene Ontology aspect (C = cellular component, P = biological 
process, F = molecular function) Text 

alt_id An alternative (obsolete) Gene Ontology identifier for this term Text 
description A more detailed description of the term Text 

'PDB_STRUCTURES' table 

Field Description Type 

pdb_struct_id* A unique identifier assigned to the structure by the MaGnET 
program Integer

pdb_code The PDB unique four character identifier Text 

chain The chain identifier within the protein that this structure 
corresponds to Text 

magnet_id The magnet_id of the gene encoding the protein this structure 
represents Integer

gene_id The standard gene identifier of the gene encoding the protein this 
structure represents Text 

sequence The amino acid sequence of the solved structure Text 
start The starting position of the solved structure Integer
end The ending position of the solved structure  

'STRUCTURE_MODELS' table 

Field Description Type 

model_id* A unique identifier assigned to the model structure by the ModBase 
database Text 

magnet_id The magnet_id of the gene encoding the protein this structure 
represents Integer

model_seq The amino acid sequence of the model Text 

gene_id The standard gene identifier of the gene encoding the protein this 
structure represents Text 
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seq_id The sequence identity of the modelled sequence to its template 

sequence Double

model_score A numerical score assigned to the model by the ModBase 
database  Double

e_value The expectation (E) value of the match between the modelled 
sequence and its template sequence Double

template_pdb The four character PDB identifier of the template structure Text 
template_chain The chain identifier of the template structure Text 
target_length The length of the modelled sequence Integer 
target_begin The starting residue number of the model Integer 
target_end The ending residue number of the model Integer 
template_begin The starting residue of the template structure Integer 
template_end The ending residue of the template structure Integer 
date The date the model was deposited in the ModBase database Text 

run A name given to the specific program run in which the model was 
created Text 

note Any additional information about the model Text 

'INTERACTIONS' table 

Field Description Type 

int_id* A unique identifier given to the interaction by the MaGnET 
program Integer

bait_orf The standard gene identifier of the gene encoding the bait 
protein Text 

bait_magnet_id The magnet_id of the gene encoding the bait protein Integer

prey_orf The standard gene identifier of the gene encoding the 
prey protein Text 

prey_magnet_id The magnet_id of the gene encoding the prey protein Integer

independent_searches The number of independent searches in which this 
interaction was observed Integer

times_observed The total number of times this interaction was observed Integer

prey_no_of_bait The number of prey proteins that interact with this bait 
protein Integer

bait_no_of_prey The number of bait proteins that interact with this prey 
protein Integer

bait_unique_ints The total number of unique interactions in which this bait 
protein participates Integer

prey_unique_ints The total number of unique interactions in which this prey 
protein participates Integer

interaction_type The type of interaction that is occuring e.g. self, reciprocal Text 

study The name of the study in which the interaction was 
observed Text 

'PROTEIN_EXP_STUDY_LASONDER_2002' table 

Field Description Type 
gene_id* The standard gene identifier of the gene Text 
Troph_and_Schiz, Gametocytes, 
Gametes 

The gene's expression level at these 
timepoints Double
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'PROTEIN_EXP_STUDY_LEROCH_2004' table 

Field Description Type 

gene_id* The standard gene identifier of the 
gene Text 

Gamete, Gameto, Mero, Ring, Troph, 
Schiz, Sporo 

The gene's expression level at these 
timepoints Double

'MRNA_EXP_STUDY_LEROCH_2003' table 

Field Description Type 

gene_id* 
The standard 
gene identifier of 
the gene  

Text 

Early_ring_S, Late_ring_S, Early_trophozoite_S, 
Late_trophozoite_S, Early_schizont_S, Late_schizont_S, 
Merozoite_S, Early_ring_T, Late_ring_T, Early_trophozoite_T, 
Late_trophozoite_T, Early_schizont_T, Late_schizont_T, 
Merozoite_T, Gametocyte, Sporozoite 

The gene's 
expression level 
at these 
timepoints 

Double

'MRNA_EXP_STUDY_YOUNG_2005' table 

Field Description Type 

gene_id* 
The standard 
gene identifier 
of the gene 

Text 

Sporozoite, Early_ring_S, Late_ring_S, Early_trophozoite_S, 
Late_trophozoite_S, Early_schizont_S, Late_schizont_S, 
Merozoite_S, Early_ring_T, Late_ring_T, Early_trophozoite_T, 
Late_trophozoite_T, Early_schizont_T, Late_schizont_T, 
Merozoite_T,  Gametocyte_3D7_Early_Day_1, 
Gametocyte_3D7_Early_Day_2, 
Gametocyte_3D7_Early_Day_3, 
Gametocyte_3D7_Early_Day_4, Gametocyte_3D7_Day_1, 
Gametocyte_3D7_Day_2, Gametocyte_3D7_Day_3, 
Gametocyte_3D7_Day_6, Gametocyte_3D7_Day_8, 
Gametocyte_3D7_Day_12, Gametocyte_NF54_Day_1, 
Gametocyte_NF54_Day_2, Gametocyte_NF54_Day_3, 
Gametocyte_NF54_Day_4, Gametocyte_NF54_Day_5, 
GametocyteNF54_Day_6, Gametocyte_NF54_Day_7, 
Gametocyte_NF54_Day_8, Gametocyte_NF54_Day_9, 
Gametocyte_NF54_Day_10, Gametocyte_NF54_Day_11, 
Gametocyte_NF54_Day_12, Gametocyte_NF54_Day_13  

The gene's 
expression 
level at these 
timepoints 

Double

'MRNA_EXP_STUDY_LLINAS_HB3_QC_2006' table 

Field Description Type 
oligo* A unique identifier assigned to the oligonucleotide Text 
gene_id The standard gene identifier of the gene Text 
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'MRNA_EXP_STUDY_LLINAS_DD2_QC_2006' table 

Field Description Type 
oligo* A unique identifier assigned to the oligonucleotide Text 
gene_id The standard gene identifier of the gene Text 

'MRNA_EXP_STUDY_LLINAS_3D7_QC_2006' table 

Field Description Type 
oligo* A unique identifier assigned to the oligonucleotide Text 
gene_id The standard gene identifier of the gene Text 

'MRNA_DECAY_SHOCK_2007' table 

Field Description Type 
oligo* A unique identifier assigned to the oligonucleotide Text 
gene_id The standard gene identifier of the gene Text 

ring_0min The gene's expression ratio at the start of the measurements 
in the ring life cycle stage Double

ring_240min The gene�s expression ratio at the end of the measurements 
(after 240 minutes) in the ring life cycle stage Double

ring_half_life The half life of the mRNA during the ring life cycle stage Double

troph_0min The gene's expression ratio at the start of the measurements 
in the trophozoite life cycle stage Double

troph_240min The gene�s expression ratio at the end of the measurements 
(after 240 minutes) in the trophozoite life cycle stage Double

troph_half_life The half life of the gene during the trophozoite life cycle stage Double

schiz_0min The gene's expression ratio at the start of the measurements 
in the schizont life cycle stage Double

schiz_240min The gene�s expression ratio at the end of the measurements 
(after 240 minutes) in the schizont life cycle stage Double

schiz_half_life The half life of the mRNA during the schizont life cycle stage Double

late_schiz_0min The gene's expression ratio at the start of the measurements 
in the late schizont life cycle stage Double

late_schiz_240min The gene�s expression ratio at the end of the measurements 
(after 240 minutes) in the late schizont life cycle stage Double

late_schiz_half_life The half life of the mRNA during the late schizont life cycle 
stage Double

* This is the table�s primary key 
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Appendix B 

Details of the datasets that contribute data to the MaGnET database, listing the 

species and strains of Plasmodium to which they relate, the online sources they were 

obtained from � including their URLs, their dates of release and references to 

relevant publications. 

 

Dataset Organism Source URL Version/ 
release 
date 

Reference 

Chromosome 
sequences  
(nuclear chr 1-
14) 

P. falciparum 
3D7 

Wellcome 
Trust Sanger 
Institute  

ftp://ftp.sanger.ac.u
k/pub/pathogens/m
alaria2/3D7/ 

2.1.4 
09/07/2007 

(Gardner et 
al. 2002) 

Gene 
sequences  
(nuclear chr 1-
14) 

P. falciparum 
3D7 

Wellcome 
Trust Sanger 
Institute 

ftp://ftp.sanger.ac.u
k/pub/pathogens/m
alaria2/3D7/ 

2.1.4 
10/07/2007 

(Gardner et 
al. 2002) 

Protein 
sequences  
(nuclear chr 1-
14) 

P. falciparum 
3D7 

Wellcome 
Trust Sanger 
Institute 

ftp://ftp.sanger.ac.u
k/pub/pathogens/m
alaria2/3D7/ 

2.1.4 
10/07/2007 

(Gardner et 
al. 2002) 

Sequencing 
centre genome 
annotation  
(nuclear chr 1-
14) 

P. falciparum 
3D7 

Wellcome 
Trust Sanger 
Institute 

ftp://ftp.sanger.ac.u
k/pub/pathogens/m
alaria2/3D7/ 

2.1.4 
09/07/2007 

(Gardner et 
al. 2002) 

RNA genes P. falciparum 
3D7 

Ares 
laboratory at 
UCSC 

http://areslab.ucsc.
edu/ 

September 
2007 

(Chakrabarti 
et al. 2007) 

Apicoplast 
chromosome 
sequence 

Gene 
sequences 

Protein 
sequences 

PlasmoDB http://www.plasmo
db.org/common/do
wnloads/release-
5.4/PfalciparumPla
stid/ 

5.4 
24/09/2007 

Additional 
annotation 

P. falciparum 
C10 

NCBI 
nucleotide 
database 

http://www.ncbi.nl
m.nih.gov/sites/ent
rez?db=nuccore 

23/05/2005 

(Wilson et al. 
1996) 
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Mitochondrial 
chromosome 
sequence 

Gene 
sequences 

Protein 
sequences 

PlasmoDB http://www.plasmo
db.org/common/do
wnloads/release-
5.4/PfalciparumMit
o/ 

5.4 
24/09/2007 

Additional 
annotation 

P. 
falciparum 
NF54 

NCBI 
nucleotide 
database 

http://www.ncbi.nl
m.nih.gov/sites/ent
rez?db=nuccore 

24/11/2000 

(Conway et 
al. 2000)  

Gene Ontology 
annotation 

P. 
falciparum 
3D7 

Wellcome 
Trust Sanger 
Institute 

ftp://ftp.sanger.ac.u
k/pub/pathogens/m
alaria2/3D7/gene_
association_file 

03/04/2008 

Gene Ontology 
term 
descriptions 

N/A The Gene 
Ontology 

http://www.geneont
ology.org/GO.down
loads.ontology.sht
ml 

08/04/2008 

(Ashburner et 
al. 2000) 
 

Ortholog and 
paralog 
groupings 

P. 
falciparum 
3D7, P. 
vivax, P. 
berghei, 
P.chabaudi, 
P.knowlesi 

Wellcome 
Trust Sanger 
Institute 

ftp://ftp.sanger.ac.u
k/pub/pathogens/m
alaria2/3D7/ 

24/10/2006 (Li et al. 
2003) 

InterPro 
sequence 
features 

P. 
falciparum 
3D7 

Wellcome 
Trust Sanger 
Institute 

ftp://ftp.sanger.ac.u
k/pub/pathogens/in
terpro 

07/12/2007 (Mulder et al. 
2007) 

SignalP 
predicted 
signal peptides

P. 
falciparum 
3D7 

Wellcome 
Trust Sanger 
Institute 

ftp://ftp.sanger.ac.u
k/pub/pathogens/m
alaria2/3D7 

2.1.4 
09/07/2007 

(Bendtsen et 
al. 2004) 

Protein-protein 
interaction 
network from 
yeast two-
hybrid study 

P. 
falciparum 
3D7 

Journal 
publication 

Supplementary 
material 

3/11/2005 (LaCount et 
al. 2005) 

Experimentally-
solved 3D 
protein 
structures 

P. 
falciparum 
3D7 

RCSB 
Protein Data 
Bank 

http://www.rcsb.org
/pdb 

20/11/2007 (Berman et 
al. 2000) 

Comparatively-
modelled 3D 
protein 
structures 

P. 
falciparum 
3D7 

ModBase http://modbase.co
mpbio.ucsf.edu/ 

Nov 2007 (Pieper et al. 
2006)  
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MRNA 
expression 
data for intra-
erythrocytic 
developmental 
cycle 

P. 
falciparum 
3D7, Dd2 
and HB3 

DeRisi 
laboratory at 
UCSF 

http://malaria.ucsf.
edu/comparison/ 

February 
2006 

(Llinas et al. 
2006) 

MRNA 
expression 
data for sexual 
development 
stages 

P. 
falciparum 
3D7 and 
NF54 

Winzeler 
laboratory at 
Scripps 
Research 
Institute 

http://carrier.gnf.or
g/publications/Gam
etocyte/ 

September 
2005 

(Young et al. 
2005) 
 

MRNA 
expression 
data for several 
life cycle 
stages 

P. 
falciparum 
3D7 

Winzeler 
laboratory at 
Scripps 
Research 
Institute 

http://carrier.gnf.or
g/publications/Cell
Cycle/ 
 

September 
2003 

(Le Roch et 
al. 2003) 

MRNA decay 
profiles 

P. 
falciparum 
3D7 

Journal 
publication 

Supplementary 
material 

August 
2007 

(Shock et al. 
2007) 

Protein 
expression 
data for several 
life cycle 
stages 

P. 
falciparum 
3D7 

Journal 
publication 

Supplementary 
material 

November 
2004 

(Florens et al. 
2002; Le 
Roch et al. 
2004) 

Protein 
expression 
data for a few 
life cycle 
stages 

P. 
falciparum 
NF54 
 

Journal 
publication 

Supplementary 
material 

October 
2002 

(Lasonder et 
al. 2002) 
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Appendix C 

List of database update programs written to facilitate automatic data processing and 

MaGnET database population.  They can be used whenever new versions of source 

files are released (provided the file format has not changed).  Most are standalone 

Java programs, with some Perl scripts. 

 

File  Type Purpose 

AreslabGeneUpdater Java 
program 

To update RNA gene predictions 
downloaded from the UCSC Malaria 
Genome Browser. 

CreateSingleFASTAFile Java 
program 

To create a single FASTA sequence file 
from multiple individual sequence files. 
Required for PDB structure processing. 

DatabaseConnector Java 
class 

Used to establish a connection to the 
MaGnET database.  Required by all 
other Java programs. 

ExpDataGeneFilter Java 
program 

To filter out any oligonucleotides from a 
microarray dataset that do not currently 
map to gene models. (For use with 
spotted cDNA-type arrays) 

FilterOutLowLevelGenesFromExpData Java 
program 

Not currently used. Filters out all genes 
whose expression never rises above a 
particular cut-off level. (For use with 
Affymetrix-type arrays) 

MapOldIDsToNew Java 
program 

Update gene ids that have changed in a 
new release of the genome 

UpdateExpressionStudyTables Java 
program 

Add a new mRNA or protein expression 
study dataset 

UpdateMRNADecayData Java 
program 

Add a new mRNA decay study dataset 

UpdateTableChromosomes Java 
program 

Update chromosome data 

UpdateTableDomains Java 
program 

Update InterPro annotation 

UpdateTableGO_DATA Java 
program 

Update GO annotation 

UpdateTableGeneOntologies Java 
program 

Updates the GO term names and 
descriptions associated with GO 
numbers 
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UpdateTableGenesAndExons Java 

program 
Updates gene data, including genomic 
location, exon boundaries, product 
names and sequencing centre 
annotation 

UpdateTableInteractions Java 
program 

Add a new Y2H protein-protein 
interaction dataset 

UpdateTableOrthologues Java 
program 

Update OrthoMCL-generated gene 
families 

UpdateTablePDBStructures Java 
program 

Update details of experimental 3-D 
protein structures 

The following programs are all used for filtering out low quality, redundant 
comparative protein structure models: 

CreateDatabaseIDFile Java class Creates a file of URLs pointing to 
ModBase model sets for individual 
genes 

CreateGeneIDList Java class Creates a list of gene ids required by 
the above program 

FetchModels Java 
program 

Calls the above two classes 

formatclusters_winv.pl Perl script Formats the BLASTCLUST output into a 
more useful format 

Model Java class A class to represent and hold 
information about a particular model 

ModelMatch Java class A class to represent and hold 
information about a match between two 
models generated by the BLASTCLUST 
program 

pdbres2seqmodall.pl Perl script Calculates amino acid sequences from 
PDB format structures files and prints 
them out in FASTA format 

PopulateTableStructuralModelsPar
tOne 

Java 
program 

Populates a database table with model 
information 

PopulateTableStructuralModelsPar
tTwo 

Java 
program 

Creates new structure coordinate files 
for the set of filtered models 

RemoveRedundantModelsPartOne Java 
program 

Reads output from round one of 
BLASTCLUST analysis and removes 
redundant models from the database 
table 

RemoveRedundantModelsPartTwo Java 
program 

Reads output from round two of 
BLASTCLUST analysis and removes 
further redundant models from the 
database table 

runblastclust_myversion_part1.pl Perl script Runs the BLASTCLUST program 
against a database of model amino acid 
sequences for round one of redundant 
model filtering 
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runblastclust_myversion_part2.pl Perl script Runs the BLASTCLUST program 

against a database of model amino acid 
sequences for round two of redundant 
model filtering 

SequenceTable Java class Used by some of the above programs to 
hold a list of gene ids and 
corresponding model ids 

SortModels Java 
program 

Performs initial filtering of the models to 
remove models not meeting quality 
control criteria, such as minimum 
sequence identity to template structure 
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