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in dispensing with commensurability, perhaps we are merely enabling
philosophical analysis to catch up with existing (and correct) human
wisdom. All this time, we’ve all been comparing apples with oranges
already.
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Some more curious inferences

Some more curious inferences

Jeffrey Ketland

1. Boolos’s curious inference

In his 1987, George Boolos presented the following inference, I:

(1) "n f(n, 1) = s1
(2) "x f(1, sx) = ssf(1, x)
(3) "n"x f(sn, sx) = f(n, f(sn, x))
(4) D(1)
(5) "x(D(x) Æ D(sx))
Therefore,
(6) D(f(ssss1, ssss1))
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Here, ‘1’ is a constant, ‘s’ is a 1-place function symbol, ‘f’ is a 2-place
function symbol and ‘D’ is a 1-place predicate symbol. Interpreted over
the positive integers, the function f is a rapidly growing Ackermann-like
function,  defined  by  a  double  recursion.1  The  conclusion  of  I  is  that
f(5, 5) is in the extension of ‘D’. Boolos notes that the integer f(4, 4) is
astronomically huge, an exponential stack of 64,536 2’s, larger than any
integer that might naturally appear in science.

Boolos points out that there is a reasonably short derivation of the
conclusion (6) from premisses (1)–(5) in a standard deductive system for
second-order logic. In particular, the short derivation uses the comprehen-
sion scheme, ‘There is an X such that, for any n, X(n) iff j(n)’. In more
detail, the derivation proceeds by a construction involving the closure of
whatever ‘1’ denotes under the function denoted by ‘s’ (intuitively, these
are the positive integers, 1, 2, 3, etc.), and proves that this set is also closed
under the function denoted by ‘f’. The notion of closure is not available
in first-order logic and must be understood as either set-theoretical or
second-order.2 The second-order proof, with no abbreviations, fills less
than one page.3

Boolos also points out that although there exists (‘platonistically’, as it
were) a first-order derivation G of (6) from (1)–(5), the length of G is
astronomically huge. The size of G depends upon the size of the numeral
‘ss ... s1’, denoting the number f(5, 5). This numeral is huge. It follows
that G must be astronomically large: Boolos estimates that the number of
symbols in any derivation of (6) from (1)–(5) in a Mates-style deductive
system will be at least f(4, 4).

Boolos comments that,

[T]he fact that we so readily recognize the validity of I would seem
to provide as strong a proof as could be asked for that no standard
first-order logical system can be taken to be a satisfactory idealization
of the psychological mechanisms or processes, whatever they might
be, whereby we recognize (first-order!) logical consequences. (Boolos
1987: 380)

The conclusion Boolos draws is thus, in part, psychological. The con-
clusion that we wish to draw in a moment is epistemological.

In general, a weak system can have very long proofs for certain formu-
lae, but these formulae become more rapidly provable in a stronger
system, which usually has stronger existence assumptions (such as exist-
ence axioms for higher-types). We say that the stronger system exhibits

1 For  more  on  the  Ackermann  function,  see  Cutland  1980:  46–47.
2 On the notion of closure, and related second-order concepts, see Shapiro 1991: ch. 5.
3 See Boolos 1987, Appendix, for details.
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‘speed-up’ over the weaker system. The speed-up phenomenon was first
noted by Kurt Gödel (1936).4 Gödel noted that, where Zn is nth order
arithmetic, then for any recursive function, g, there is an infinite class of
formulae j such that if k is the length of the shortest proof of j in Zn
and l is the length of its shortest proof in Zn+1, then k > g(l). He added,

Thus, passing to the logic of the next higher order has the effect, not
only of making provable certain propositions that were not provable
before, but also of making it possible to shorten, by an extraordinary
amount, infinitely many of the proofs already available. (Gödel 1936:
397)

2. Two more curious inferences

Cardinality statements like ‘The number of Fs = n’ can be re-expressed in
a first-order language, via the usual inductive definition of the numerically
definite cardinality quantifiers, $nxF(x).5 Writing variables with unary
superscripts (x, x¢, x≤, etc.), $nxF(x) has symbol complexity O(n3). This
can be reduced, however, in two ways.6 First, we can define ‘There are at
most n Fs’ by $x1 ... $xn"y(F(y) … y = x1 ⁄ ... ⁄ y = xn), and define ‘There
are at least (n + 1) Fs’ by ‘~(there are at most n Fs)’. For example, ‘There
are at least 3 Fs’ is equivalent to "x¢"x≤$x (F(x) & x π x¢ & x π x≤).
Define $nxF(x) by ‘There are at most n Fs and at least n Fs’. Then $nxF(x)
has complexity O(n2). Second, code variable subscripts in binary (e.g.
x100, x101, etc.). The binary numeral for n has length O(log2n). The symbol
complexity of $nxF(x) is then reduced to O(n log2n). To illustrate, on this
formalization, the complexity of ‘There are at least one million books in
Cambridge University library’ is roughly 107. At roughly 103 symbols per
metre, a sentence token expressing this would be around 10km long!

Consider the following inference I2,

4 This holds still when S* is a conservative extension of S. One example concerns
Peano arithmetic PA and its conservative second-order extension ACA0. Every
arithmetic statement j provable in ACA0 is already provable in PA, but the shortest
proof of an arithmetic statement j in PA may be vastly longer than the shortest
proof in ACA0. For more details on proof-theoretic speed-up results, see Buss 1994.

5 For completeness, where v is any variable, and w is a variable not appearing in F(v),
this is

6 Thanks to Samuel Buss for showing me how to do this.

$ ( ) $ ( )
$ ( ) $ ( )
$ ( ) $ ( ) $ π ( )( )( )
$ ( ) $ ( ) $ ( )

≥

≥ + ≥

≥ ≥ +

0

1

1

1

v v for v v

v v for v v

v v for v v  &  w w v &  F w

v v for v v  &  v v

F F

F F

F F

F F F
n n

n n n

~

~



some more curious inferences 21

(7) The number of people in the room is 100.
(8) The number of houses in the street is 99.
(9) Each person in the room lives in exactly one house in the street.
Hence,
(10) At least two people in the room share the same house.

The premisses and conclusion of I2 can be expressed ‘nominalistically’
by the above method. Consider the problem of showing that I2 is valid.
Using rather simple mathematics dealing with numbers, sets and func-
tions, we can prove that the inference I2 is valid in a few lines. Briefly, the
Pigeonhole Principle says that, for sets X and Y, if #X > #Y and f is a
function from X to Y, then f is non-injective. In set theory, this just follows
from the definition of the relation > for cardinalities. The Pigeonhole
Principle can also be given an arithmetic formulation, and it is then
provable in Peano arithmetic. Now, let P be the set of people, and let #P
be the number of people, i.e. 100. Let H be the set of houses and let #H
be the number of houses, i.e. 99. Let f be the function which maps each
person to the unique house they live in. f is a function from P to H. But
100 > 99, and so, #P > #H. So, by the Pigeonhole Principle, f is non-
injective. So, there are at least two people a, b such that f(a) = f(b).

This proof could be formalized within Frege Arithmetic, so long as we
allow comprehension for the predicates ‘person in the room’, ‘house in
the street’ and ‘lives in’. Similarly, we can show that any model of the
premisses of I2 makes the conclusion true.

So, the inference I2 is valid in first-order logic. But the shortest first-
order derivation of (10) from (7)–(9), in an austere nominalistic formula-
tion, would be huge, probably more than 108 symbols.7

Next, consider the following inference I3,

(11) Every UK citizen has a unique national insurance number.
(12) Different UK citizens have different national insurance numbers.
(13) Every national insurance number is the national insurance num-

ber of some UK citizen.
(14) The number of UK citizens is 60 million.
Hence,
(15) The number of national insurance numbers is 60 million.

7 There is a large literature on the complexity of proofs of the pigeonhole principle,
particularly when it is reformulated as a propositional formula, PHPn. In general,
the length of proof grows rather rapidly. My desktop computer automated theorem
prover (SPASS) took some 21 minutes just to prove the tautology PHP7. In 1987,
Samuel Buss established that there is a polynomial size proof for PHPn (with an
estimated upper bound of n20). However, it is safe to assume that, in general, such
proofs are unfeasible for practical purposes.
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Premisses (11)–(13) say that there is a bijection (one-to-one correspon-
dence) between the UK citizens and the national insurance numbers. The
validity of this inference of course rests on the truth of a version of Hume’s
Principle, which implies that if there is a bijection between sets X and Y,
then their cardinal numbers are the same. Some advocates of logicism
insist that this principle is ‘analytic’, or a ‘conceptual truth’ about cardinal
numbers. Perhaps so.

Slightly more formally, the inference I3 has the form:

The As and Bs are one-to-one correlated. The number of As is n.
Hence, the number of Bs is n.

I3 can again be formalized in first-order logic, and the conclusion (15) is
a logical consequence of premisses (11)–(14). But the shortest derivation
would again be practically huge. Formally, the first-order formalization of
I3 looks like this:

(16) "x(A(x) … B(f(x)))
(17) "x1"x2(x1 π x2 … f(x1) π f(x2))
(18) "y(B(y) … $x(A(x) & y = f(x)))
(19) $nxA(x)
Hence,
(20) $nyB(y).

The point to stress is that although using mathematics we can quickly
‘see’ in the above cases that the conclusion is a logical consequence of the
premisses, we could not in any feasible manner carry out the first-order
derivation for any but the smallest values of the parameters. Thus, the
relevant mathematics appears to be indispensable in seeing that these
inferences are valid.

We have chosen the two inferences I2 and I3 above because of their
mathematical simplicity, while Boolos’s example turns on the mathematics
of rapidly growing recursive functions. Unlike Boolos’s example, the infer-
ences I2 and I3 do not require astronomically large proofs, but they are
large enough to be unfeasible in practice. As soon as one gets the gist of
the idea behind such inferences, involving finite sets of objects and func-
tions between them, it’s easy to come up with examples of first-order
representable inferences which are obvious but nonetheless unfeasible. For
example, ‘There are 20 people here, but I’ve only made 15 handouts. A
few of you will have to share’. Non-mathematicians I have asked reply
that such inferences are ‘obvious’.

As Boolos notes, there is an issue raised here concerning the psycholog-
ical representation of logical inference. But there is also an important
epistemological issue, to which we now turn.
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3. The unfeasibility problem for nominalism

Nominalism denies the existence of numbers, sets and functions. But a
widely discussed problem concerns whether nominalism can account for
the applicability of mathematics. This is the indispensability argument
against nominalism, associated with Gödel, Quine and Putnam.8 Above
we examined examples of the application of mathematics to relationships
of logical consequence. It seems to me that the ‘speed-up’ phenomenon
under discussion suggests a modified version of the indispensability argu-
ment, based now on unfeasibility considerations. Presumably the nomi-
nalist does not wish to deny the validity of the inferences I, I2, and I3
under consideration. But there is no feasible direct verification for the
above inferences, and the short mathematical derivations involve practi-
cally indispensable assumptions about numbers, sets and functions.9 So,
how might a nominalist account for our knowledge that such inferences
are valid? After all, the anecdotal evidence is that even non-mathemati-
cians find I2 and I3 ‘obvious’.

Boolos commented on the relevant ‘psychological mechanisms or pro-
cesses’, but here the point is epistemological: it seems to me that the
nominalist cannot give a nominalistically acceptable reason for thinking
that the above valid inferences are indeed valid.10
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Why CT and TD are incompatible

Why counterpart theory and three-dimensionalism 
are incompatible

Jim Stone

Suppose that God creates ex nihilo a bronze statue of a unicorn; later he
annihilates it.1 The statue and the piece of bronze occupy the same space
for their entire career. If God had recast the bronze as a mermaid, the
piece of bronze, not the statue, would have survived. As nothing can have
and lack the capacity to survive the same change, they are distinct. Yet
many philosophers find it incredible that two material things coincide
ever, not to mention for their entire career. Here we have an apparently
irrefutable argument for the apparently impossible conclusion that distinct
physical things coincide in space and time.

Counterpart Theory (CT) offers a solution (Lewis 1986: § 4.5; Sider
2001: 113). Suppose that the statue and the bronze are the same endur-
ing three-dimensional object (three-dimensional things persist by exist-
ing in their entirety at different times). The statue cannot survive being
recast as a mermaid, the bronze can. According to CT, the first claim is
true because no statue-counterpart of the statue is mermaid shaped and
the second is true because the bronze has a mermaid-shaped bronze
counterpart. Counterpart relations are similarity relations. As one thing
can have resemblance relations to different sets of things, depending on

1 This is a version of an example from Alan Gibbard (1975): we make a statue by
joining two pieces of clay; then we smash the piece, destroying the statue too.


