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ABSTRACT

High content image-based screening assays utilise cell based models to extract and quantify mor-
phological phenotypes induced by small molecules. The rich datasets produced can be used to
identify lead compounds in drug discovery efforts, infer compound mechanism of action, or aid
biological understanding with the use of tool compounds. Here I present my work developing and
applying high-content image based screens of small molecules across a panel of eight genetically
and morphologically distinct breast cancer cell lines.

I implemented machine learning models to predict compound mechanism of action from mor-
phological data and assessed how well these models transfer to unseen cell lines, comparing the
use of numeric morphological features extracted using computer vision techniques against more
modern convolutional neural networks acting on raw image data.

The application of cell line panels have been widely used in pharmacogenomics in order to com-
pare the sensitivity between genetically distinct cell lines to drug treatments and identify molecular
biomarkers that predict response. I applied dimensional reduction techniques and distance metrics
to develop a measure of differential morphological response between cell lines to small molecule
treatment, which controls for the inherent morphological differences between untreated cell lines.

These methods were then applied to a screen of 13,000 lead-like small molecules across the eight
cell lines to identify compounds which produced distinct phenotypic responses between cell lines.
Putative hits from a subset of approved compounds were then validated in a three-dimensional
tumour spheroid assay to determine the functional effect of these compounds in more complex
models, as well as proteomics to determine the responsible pathways.

Using data generated from the compound screen, I carried out work towards integrating knowl-
edge of chemical structures with morphological data to infer mechanistic information of the unan-
notated compounds, and assess structure activity relationships from cell-based imaging data.





LAY SUMMARY

Drugs act by altering the behaviour of cells, usually by disrupting the internal cellular machinery
necessary for normal function, or in the case of diseases, by trying to reverse dysfunctional cellular
processes responsible for disease initiation and progression back towards a normal state. Subtle
changes in cellular functions can be detected visually through microscopy and fluorescent labels
which bind to sub-cellular components such as DNA. Using automated image analysis methods
it is possible to analyse these microscope images of cells and create a detailed description of each
individual cell, represented as a series of measurements describing various attributes such as the
cell’s size, location and concentration of various biomolecules, this can be thought of as the cell’s
“fingerprint”. Using these cellular fingerprints it is possible to test drugs in an effort to find those
that convert a disease-like fingerprint into a healthy looking one, or to compare the fingerprints
produced by unknown drugs to ones produced by molecules whose function is already known.

My work focuses on how to generate and exploit compound fingerprints across a number of
different cells which represent different types of breast cancer. A significant challenge in studying
distinct cancer cell types is that each cell has its own unique fingerprint regardless of drug treatment,
which makes comparisons between cells more difficult. In addition, I investigate how more ad-
vanced computational tools alongside this varied dataset can aid predicting how novel compounds
work.
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1 INTRODUCTION

1.1 Eroom’s Law: The increasing cost of drug discovery

Throughout the last 70 years the economic costs of developing novel drugs has increased dramati-
cally, approaching £1 billion and requiring approximately 10 years from initial concept until reg-
ulatory approval. A study by Scannel et al.1 noted that costs approximately double every 9 years,
dubbing this observation “Eroom’s law” in a homage to Moore’s law. i The reasons behind these
ever increasing costs are still under debate, although it is clear the issue is multi-faceted. One ex-
planation may be that the low-hanging fruits of drug discovery have already been taken, the most
effective traditional remedies and natural bioactive molecules identified, and their active ingredients
commercialised. As such, whilst many single gene disorders and eminently druggable oncogene-
driven homogeneous tumours have been cured, the more complex diseases and pharmacological
targets remain. This pessimism has fed the ever present idea that drug discovery is undergoing a
productivity crisis,2 and that investments made in early stage research do not translate into action-
able pharmacology to develop effective therapies, and has led to a renewed interest in alternative
drug discovery paradigms.

1.2 The drug discovery process

1.2.1 Target-based screening

Over the past 30 years the majority of drug discovery programmes have seized upon technologi-
cal advances in robotics and automation to screen ever expansive compound libraries against pre-
defined protein targets. It would be difficult to argue that this target-based high-throughput screen-
ing (HTS) approach has not been fruitful, yielding many successful therapeutics across a range of
disease areas, largely attributed to an increased understanding of the genomic basis of many diseases.
However, despite numerous clinical and commercial success stories, HTS is not a panacea, with
a high attrition rate of lead compounds once they enter clinical trials.3 A large majority of these
clinical trial failures are not due to toxicity, but rather a lack of efficacy which can often be traced
back to limited validation of the hypothesised target in the face of complex disease aetiology.4

iThe well-known observation that the number of transistors in microprocessors approximately doubles every 2 years.



2 Introduction

1.2.2 Phenotypic screening

Phenotypic screening differs from target-based screening in that it does not rely on prior knowledge
of a specific target, but instead interrogates a biologically relevant assay to identify compounds
which alter the phenotype in a biologically desirable way. This target-agnostic approach can prove
useful in diseases with poorly understood mechanisms or those with no obvious druggable protein
targets. Phenotypic screening is not a new approach in small molecule drug discovery, it was the
primary method for many decades before the genomics revolution made target hypothesis more
tractable.5

Many concerns related to phenotypic screening are centred on the lack of mechanistic informa-
tion for a given lead compound. Whilst the lack of a known target presents challenges and may
cause concerns within a commercial drug discovery programme, regulatory bodies such as the Food
and Drug Administration (FDA) and European Medicines Agency (EMA) do not require a known
target for drug approval, only that the drug is safe and efficacious. Metformin is a first-line ther-
apy for type 2 diabetes and is on the World Health Organisation’s list of essential medicines, it
decreases liver glucose production and has an insulin sensitising effect on many tissues. Despite
approval since 1957 and widespread clinical use, the molecular mechanism of metformin remained
unknown for 43 years.6 Although knowledge of the molecular target is not necessary to get a drug
into the clinic, target deconvolution is still an important part of most phenotypic drug discovery
programmes, without knowing the protein or proteins a compound is binding to, lead optimisation
via structure activity relationship (SAR) studies becomes extremely difficult. In addition, knowl-
edge of the molecular target of a lead compound generated by a phenotypic screen can be used as
a basis for instigating a conventional high-throughput hypothesis-driven screen on a novel target,
this is why many view phenotypic screening as a complimentary method to target based screening
rather than a competing approach or proposed replacement.7

1.3 High content imaging

High content imaging is a technique utilising high-throughput microscopes and automated image
analysis, commonly used in phenotypic screening as a method for gathering multivariate datasets
from images of biological specimens and has proven useful in a wide variety of phenotypic assays,
ranging from 2D mammalian cells,8,9 in vivo studies in zebrafish10 and even plants and crops.11

High content screens – screening studies carried out with high content imaging – are particularly
useful in phenotypic drug discovery for several reasons. High content imaging provides spatial res-
olution enabling the use of more complex assays including co-culture and 3D models, which might
better represent the biological complexity of disease relative to 2D reductionist models. However,
these complex assays often have phenotypes which are more difficult to quantify, which a single uni-
variate readout may fail to accurately recapitulate, therefore the multivariate datasets produced by
high content screening enables a more in-depth view into the endpoints which should be measured
in a complex assay. A second benefit is the multivariate data generated by high content screening
offers a more unbiased method for detecting hits in a phenotypic assay, as predicting which variable
to measure beforehand may lead to missed biologically interesting phenotypes. With the advent
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of more complex datasets generated from high-content imaging, the process of image-analysis and
computational methods for data processing has given rise to the term “high-content analysis”.

1.3.1 Image analysis

Image analysis is the process in which raw image data from a high-content screen is transformed into
measurements which can be used to describe the observed morphology of the biological specimen
exposed to a perturbagen. Here I will focus on cell-based assays for small-molecule screening,
though the same methods apply for most other assays (spheroids/organoids etc) and perturbagens
(siRNA, CRISPR etc).

The standard approach to extracting numerical features from cell morphologies is through seg-
menting cells and sub-cellular structures into “objects”, and then computing image-based measure-
ments on those objects. Typically each cell within an image is identified by first segmenting nuclei
from the background. A number of well-established image thresholding algorithms can be used for
segmenting nuclei from background, most automatically calculate an intensity threshold to binarise
an image based on histograms of pixel intensities.12,13 The segmented nuclei can then be used as
seeds to detect cell boundaries, either through edge detection in a channel containing a cytoplasmic
marker, or more crudely by expanding a number of pixels from the nuclei centre to approximate cell
size. There are also less commonly used methods which utilise machine learning based on trained
parameters to segment cells,14 or forgo segmentation entirely to measure morphological features
from the raw images.15,16

After cells and sub-subcelluar objects have been segmented morphological characteristics are mea-
sured for each object, these measurements can cover a wide variety of morphologies depending on
the aims of the assay, although can be grouped into 4 main classes:

Shape. Calculated on the properties of the object masks, e.g. area, perimeter, eccentricity. Shape
features are commonly used as they are interpretable, robust, and quick to calculate.

Intensity. These features are based on the pixel intensity values within the object boundaries. They
can be calculated for multiple channels and include measurements such as average intensity, inte-
grated intensity, and radial distribution of intensity values. Great care has to be taken when using
intensity values as they are susceptible to batch effects and microscope artefacts such as vignetting.17

Texture. Measures of patterns of intensities within objects, typically derived from grey level co-
occurrence matrices.18 This can be used to quantify morphologies such as small speckles or stripes
within an image. Texture measurements are often computationally expensive and difficult to inter-
pret although can be useful for measuring subtle morphological changes.

Spatial context. These are typically relationships between objects, such as the number of neigh-
bouring cells or nuclei, percentage of a cell boundary in contact with neighbouring cells. This class
can also include the simple measure of cell or nuclei count within a field of view.
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Figure 1.1: Single cell data aggregation to a median profile. Two matrices representing
single cell morphology data for a treatment, with columns displaying multiple mea-
sured morphological features for each cell represented as a row. (Figure re-used from
Caicedo et al. Nat Methods, 2017)

1.3.2 Data analysis

Measuring morphological features produces an m×n dataset per object class, where m is the num-
ber of objects and n is the number of morphological features measure for that object. Commonly
single object level data is aggregated to population level, where the population can be a field of view,
microtitre-well, or treatment level (see figure 1.1); with the most popular aggregation method being
a simple median average.19 Once the object-level data has been aggregated to a common popula-
tion level such as per well data, the features from each object class can be combined into a dataset
represented by a single p× q matrix, where p is the number of wells (or other level of aggregation),
and q is the total number of combined features from all object classes. It is then useful to view each
row of this matrix as a feature vector, or morphological profile which summarises the morphology
induced by a treatment.

There are a number of fairly standard data pre-processing steps involved in high content anal-
ysis, consisting of: quality-control checks and outlier removal, batch correction, normalisation,
standardising feature values, and dimensional reduction or feature selection.19

Quality control. Errors are usually introduced at the imaging or segmentation phase of high-
content assays, either through poor image quality caused by out-of-focus wells or debris, or poorly
chosen segmentation parameters causing artefacts with otherwise acceptable images and subsequent
outlier morphological features. As assays often generate thousands if not millions of images, it is
not practical to manually check each image and segmentation mask for quality, therefore a number
of automated methods have been developed to flag potential image artefacts and extreme feature
values.

Image artefacts can be detected through measures of image intensity, as out-of-focus images tend
to have shallow intensity gradients across the image and lose high-frequency intensity changes,20

whereas images containing debris such as dust and fibres contain a large percentage of saturated
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pixels. Segmentation errors usually create extreme values for most feature measurements which can
be highlighted using typical outlier detection methods such as Hampel filtering21 and local outlier
factor.22

Batch correction. Batch effects are accumulations of multiple sources of technical variation such
as equipment, liquid-handling error, reagents and environmental conditions which can influence
measurements and mislead researchers, and are particularly prevalent in high-throughput exper-
iments. They are normally identified visually through boxplots of features, with plates or weeks
on the x-axis, or through comparing correlations, within plates, between plates of the same batch
and across batches. If batch effects are apparent they can be corrected, the simplest method is to
standardise each batch separately, other methods include 2-way ANOVA23 or canonical correlation
analysis.24

Standardisation. When many morphological features are measured from an image, they are un-
likely to share the same scale/units or have similar variance – e.g. cell-area measured in pixels which
may range from zero to several thousand and cell-eccentricity which is constrained between zero
and one. It is therefore useful to standardise all feature values to be mean centred and have com-
parable variance. This aids in many downstream data analysis methods which assume standardised
feature values.

Dimensional reduction and feature selection. As with any high-dimensional data a large num-
ber of features can cause issues with analysis and interpretation, this is commonly known as the
“curse of dimensionality”.25 Another issue is that many of the measured features may not con-
tribute information, either as they have little or no variation between samples, or are redundant
due to high correlation with existing features. Dimensional reduction and feature selection meth-
ods are both commonly used in other biological fields such as genomics and proteomics, and are
now routinely used in high-content imaging analysis. A widely used technique is principal com-
ponent analysis (PCA), which is an unsupervised approach to maximise variation through a linear
combination of orthogonal features. PCA can be used to reduce the number of features by selecting
a subset of principal components which explain a specified proportion of variance in the data. Loss
of interpretability can be an issue when using PCA, and is why some researchers favour feature
selection methods which aim to retain original feature labels whilst still reducing dimensionality
by removing uninformative features. Many of the feature selection methods are supervised, which
may not fit in with unbiased analyses, although Peng et al. developed an unsupervised minimum-
redundancy-maximum-relevancy (mRMR) feature selection method which has found use in high-
content analyses.26

Following data pre-processing, downstream analysis is typically focused on one of two tasks:
identifying hit compounds in a screen, or comparing the similarity of morphology profiles created
by treatments – both of which use distance as a metric, either comparing hits against a negative
control, or treatments against one another respectively.
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1.3.3 Image based screening

Phenotypic and image-based screens can be used in traditional drug discovery roles whereby a com-
pound library is screened in a biologically relevant cell-based assay in order to identify compounds
which produce a favourable phenotype and hits or lead compounds identified from a high through-
put biochemical assay are evaluated in a more complex image-based cell assay to determine their
quality. These assays typically rely on either a positive control compound which is known to elicit
the phenotype of interest in order to optimise and validate that the assay has appropriate signal-
to-noise attributes for testing multiple compounds. Or alternatively, a carefully designed assay in
which a disease model utilising abnormal patient-derived or genetically engineered cells is used to
identify compounds which revert the disease associated phenotype towards a healthy or wild-type
phenotype. An example of this is demonstrated by Gibson et al.,27 whereby they modelled cerebral
cavernous malformation (CCM) using siRNA knockdown of the CCM2 gene in human primary
cells, and screened small molecules to identify candidates which rescued the siRNA induced pheno-
type using fluorescent markers of the nucleus, actin filaments, and VE-cadherin cell-cell junctions.
Candidate compounds were then validated in an in vivo mouse model, which lead to the ongoing
pre-clinical development of 4-Hydroxy-TEMPO as a novel therapeutic for CCM. This is an ele-
gant demonstration that combining good disease models with target agnostic phenotypic screens
can effectively yield promising therapeutic candidates without complex bioinformatics techniques.

1.3.4 Image based profiling

In contrast to screening studies which are mainly interested in looking for a defined phenotype,
profiling is used to create phenotypic “fingerprints” of perturbagens analogous to transcriptional
profiles, which can be used for clustering, inference and prediction. One of the main uses of phe-
notypic profiling is to compare the similarity of morphological profiles allowing clustering and
machine learning methods to build rules in order to classify new or blinded treatments according
to similar annotated neighbouring treatments.

One of the landmark papers of high-content profiling was published in 2004 when Perlman et
al.28 first demonstrated that morphological profiles between drugs could be clustered according to
compound mechanism-of-action using a custom similarity metric and hierarchical clustering. Most
studies utilising morphological profiling use unsupervised hierarchical clustering in order to group
treatments into bins which produce similar cellular phenotypes,29,30 although other clustering al-
gorithms such as graph-based Markov clustering algorithm (MCL),31,32 and spanning trees33 are
sometimes used.

1.4 Phenotypic screening in cancer drug discovery

Cancer drug discovery programmes of past decades seized upon uncontrolled proliferation as a
clinically relevant phenotype to use in screening studies, giving rise to a number of anti-proliferative
and cytotoxic compounds, which are still used in the clinic but often renowned for their severe
side-effects. Many modern day oncology drug discovery programmes still retain anti-proliferation
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as a key predictor for pre-clinical success, although increased understanding of cancer’s molecular
underpinnings has driven many oncology programmes towards a more target-directed approach.
The prototypical success story of target-driven drug discovery in oncology is imatinib, a tyrosine
kinase inhibitor targeting the BCR-ABL fusion protein in chronic myeloid leukemia. However,
despite imatinib’s exceptional success, unfortunately in most cases targeting a single driver in a
complex signalling network results in compensatory signalling, activation of redundant pathways
and unpredicted feedback mechanisms, all of which diminish efficacy in vivo.

In a review of 48 small molecule drugs approved for use in oncology between 1999 and 2013,
31/48 were discovered through target based screens, whereas 17/48 were based on leads from
target-agnostic phenotypic screens,7 of those compounds discovered through target directed screen-
ing programmes the vast majority (75%) were kinase inhibitors. However, phenotypically derived
compounds did not live up to the hypothesis that target-agnostic screening should be more likely
to identify compounds with novel MoAs,34 with only 5/17 being first in class molecules. An ex-
planation for this sparsity of novel mechanisms is that phenotypic assays which use cytotoxicity
readouts are likely to find low-hanging fruit such as targeting microtubule stabilisation and DNA
replication dynamics.7 One option to combat this narrow attention on a select few targets – caused
by either hypothesis-driven or simplistic phenotypic screens – is to utilise the more detailed mecha-
nistic information offered by high-content imaging to explore novel biological mechanism and thus
broader areas of therapeutic target space rather than relying on cellular death as catch-all phenotypic
readout.

In addition to high-content imaging screens with cells grown in 2D monolayers, more complex
phenotypic models such as 3D tumour spheroids are being increasingly adopted in pre-clinical
oncology. 3D tumour spheroids are multi-cellular aggregates thought to better recapitulate envi-
ronment and biology of real tumours compared to cells grown in 2D monolayers on tissue culture
plastic. There is mounting evidence that spheroids offer a more predictive model of in vivo com-
pound efficacy than their 2D counterparts,35,36,37 this is thought to be caused by the hypoxic envi-
ronment in the centre of the spheroid, increased cell-cell contact and greater presence of extracellular
matrix components which better represents conditions found in vivo. Three-dimensional spheroid
models lend themselves well to phenotypic and image-based screening projects, with compound
efficacy determined through use of fluorescent markers of cell-viability,37 cell-cycle dynamics,38 or
by analysis of spheroid morphology which can also incorporate 3D volumetric measurements.39

1.4.1 Cancer cell line panels

Panels of multiple cancer cell lines such as the NCI-60, Cancer Cell Line Encyclopedia (CCLE)40

and Genomics of Drug Sensitivity in Cancer (GDSC)41 have been widely used to facilitate high-
throughput screening and increase certainty in hit selection / disease-specificity,42,43 and as a re-
search tool to study pharmacogenomics.44,45,46 The use of cancer cell line panels can also benefit
phenotypic screens by mirroring the heterogeneity found in patient populations, as well as hetero-
geneous cell populations found in tumours.47 Throughout this body of work I have used a panel
of eight breast cancer cell lines (table 1.1 and figure 1.2 A), these cell lines were chosen based on a
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Mutational status
Cell line Molecular subclass PTEN PI3K

MCF7 ER WT E545K
T47D ER WT H1047R
MDA-MB-231 TN WT WT
MDA-MB-157 TN WT WT
HCC1569 HER2 WT WT
SKBR3 HER2 WT WT
HCC1954 HER2 ⋆ H1047R
KPL4 HER2 ⋆ H1047R

Table 1.1: Panel of breast cancer cell lines chosen for study. PI3K:Phosphoinsitide-
3-kinase, PTEN:Phosphatase and tensin homolog, ER:Estrogen receptor, TN:triple-
negative, HER2:human epidermal growth factor, WT:wild-type, ⋆:lack of consensus
regarding the mutational status.

Figure 1.2: Composite image of cell-lines treated with 0.1% DMSO showing dis-
tinct morphology between untreated cell-lines. Channels used: Red - MitoTracker
DeepRed; Green - Concanavalin A; Blue - Hoechst33342. Scale bars: 100 µm.

number of criteria:

1. Relatively fast growth to allow compound screening to be performed in weekly batches.

2. Adherent to tissue culture plastic to enable 2D imaging.

3. Form a monolayer when grown in 2D – overlapping cells cause difficulties for most image
segmentation methods.

4. Amenable for morphometric imaging – larger and/or flatter cells allow for better discrimi-
nation of sub-cellular features.

5. Distinct morphologies to evaluate the robustness of morphological profiling methods.

6. A collection which represents a range of molecular sub-classes of breast cancer.
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1.4.2 Breast cancer

The cell lines used in this work are all immortalised human cancer cell lines originating from breast
cancer patients. Breast cancer cell lines were chosen as the disease has been the focus of many years
of research resulting in many well characterised cell lines with freely available genomic, proteomic
and imaging datasets. Breast cancer is sub-divided into several sub-classes defined by the molecular
components which drive disease progression. The three main drivers of breast cancer are oestrogen
receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2).
Aberrant signalling in one or more of these pathways is responsible for approximately 80-85% cases
of breast cancer. The remaining 15-20% of cases are classified as triple negative (TN). Molecular
sub-classes are used clinically to stratify patients based on immunohistochemically stained tumour
sections examined by pathologists to inform therapeutic and surgical options. In addition to these
simple subtypes, there are alternative and more complex methods of stratifying patients based on
histopathological phenotype, response to endocrine and (neo)adjuvant therapy, and copy number
alterations.48

1.5 Hypothesis, general aims and thesis structure

As has already been discussed, image-based screens can generate large multivariate datasets which
differ considerably from those usually found in high-throughput screening environments, the work
in this thesis aims to address the hypothesis that informatics tools can be better utilised in the context
of high-content screening in cancer drug discovery. This work aims to generate new high-content
screening datasets across a panel of breast cancer cell-lines with which to compare, investigate and
develop new data-analysis tools to better leverage the data present – as well as how best to combine
this high-content imaging data with existing biological and chemical databases to better lead and
inform early-stage drug discovery programmes.

The following chapters focus on selected topics from my PhD, some of the work has been previ-
ously published (see appendix).

• Chapter 2 contains general methods which are used throughout and apply to multiple chap-
ters.

• Chapter 3 is an analysis of machine learning methods to classify compound MoA from high
content imaging data, with a focus on how well classifiers transfer across to new data from
morphologically distinct cell lines.

• Chapter 4 describes the development and application of a novel analytical method to detect
and quantify differential phenotypic responses between morphologically distinct cell lines
when treated with small molecules.

• Chapter 5 describes a high content screen of 1280 approved small molecules in order to iden-
tify compounds which produced distinct phenotypic responses between cell lines, functional
assays to validate hits and proteomics to investigate potential pathways responsible.
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• Chapter 6 describes work towards developing methods which combine cheminformatics of
compound chemical structure with high content morphological data in order to infer MoA
of unannotated compounds, as well as assess the correlation of chemical similarity and phe-
notypic similarity.

• Chapter 7 presents concluding remarks about my work and future directions for the field.



2 GENERAL METHODS

These methods are used throughout the work in this thesis and are listed here to reduce repetition.
Each subsequent chapter will have a separate methods section which refers to methods unique to
that particular chapter, or how they differ from the general methods described here.

2.1 Cell culture

The cell-lines were all grown in DMEM (#21969-035 gibco) and supplemented with 10% foetal
bovine serum and 2 mM L-glutamine, incubated at 37◦C, humidified and 5% CO2.

2.1.1 Culturing cells in 96-well plates for imaging

Cells were seeded at roughly 3,000 cells per well (see table 2.1 for cell-line specific values) into the
inner 60 wells of a 96-well optical bottomed imaging plate (#655090 Greiner) in 100 µL of cell
culture media. The outer 36 wells were filled with 100 µL PBS. Plates were incubated for 24 hours
in a tissue culture incubator before the addition of compounds.

2.1.2 Culturing cells in 384-well plates for imaging

Cells were seeded at roughly 1,500 cells per well (table 2.1) into each well of a 384-well optimical
bottomed imaging plate (#781091 Greiner) in 50 µL of cell culture media. Plates were incubated
for 24 hours in a tissue culture incubator before the addition of compounds.

Type of plate

Cell line 96 well 384 well

HCC1569 3000 1500
HCC1954 3000 1500
KPL4 2000 750
MCF7 3000 1500
MDA-231 2000 750
MDA-157 3500 2000
SKBR3 3500 2000
T47D 3000 1500

Table 2.1: Cell seeding densities for 96 and 384 well plates.
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2.2 Generation of GFP labelled cell lines

Stable GFP expressing cell lines were created from the eight breast cancer cell lines in order to aid
with spheroid image segmentation. Cells were seeded at approximately 35,000 cells per well of a
6-well plate in 3 mL of DMEM and incubated for 24 hours (37◦C) to achieve 20% confluence.
After 24 hours of incubation, 35 µL of IncuCyte NucLight Green Lentivirus (#4624 Essen) was
added to each well at an MOI of 1 with 1.5 µL of polybrene (1:2000). Plates were then incubated
for an additional 24 hours followed by a media change, and another 24 hour incubation. Media
was then changed for selection media consisting of 1 µg/mL puromycin and complete DMEM,
followed by another 24 hour incubation. Following selection of puromycin resistant cells, cells
were trypsinised and placed in a T75 tissue culture flask for further growth. GFP labelled cells and
parental cell-lines were compared to ensure growth characteristics remained the same. This was
achieved by measuring confluence in 6 well plates seeded with 10,000 cells per well and confluence
measured with the Incucyte ZOOM. Following successful transduction, GFP labelled cells were
maintained in 0.5 µg/mL puromycin complete DMEM.

2.3 Compound handling

2.3.1 24 compound validation set

Compounds (table 2.2) were diluted in DMSO at a stock concentration of 10 mM. Compounds
plates were made in v-bottomed 96-well plates (#3363 Corning), at 1000-fold concentration in
100% DMSO by serial dilutions ranging from 10 mM to 0.3 µM in semi-log concentrations.
Compounds were added to assay plates containing cells after 24 hours of incubation by first mak-
ing a 1:50 dilution in media to create an intermediate plate, followed by a 1:20 dilution from
intermediate plate to the assay plate, with an overall dilution of 1:1000 from the stock compound
plate to the assay plate.

Microtubule disruptor The microtubule disrupting compounds (paclitaxel, epothilone B, col-
chine, nocodazole, monastrol, ARQ621) all act by disrupting tubulin. Paclitaxel and epothilone
B both stabilise microtubules by binding to the α and β tubulin subunits to prevent depolymeri-
sation, this over-stabilisation disrupts normal cellular functions such migration and mitosis which
rely on the dynamic nature of the cytoskeleton. Colchicine and Nocodazole act on the same sub-
units of tubulin but instead cause destabilisation of the tubulin structure. Monastrol and ARQ621
are classed as microtubule disruptors but do not act on tubulin directly, instead they bind to the
motor protein Eg5 kinesin which traverses microtubules and plays an important role in mitosis. The
microtubule disruptors typically have effects on cell-cycle and large structural changes to cell-shape.

Aurora B inhibitor Barasertib and ZM447439 bind to and inhibit Aurora B kinase, a protein
involved in the spindle checkpoint during mitosis. While both aurora B inhibitors and micro-
tubule disruptors can interfere with mitosis, disrupting the spindle checkpoint can result in abormal
cell-division and missegregation of chromosones during anaphase, whereas microtubule disruptors
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Compound MoA class Supplier Catalog no.

Paclitaxel Microtubule disrupting Sigma T7402
Epothilone B Microtubule disrupting Selleckchem S1364
Colchicine Microtubule disrupting Sigma C9754
Nocodazole Microtubule disrupting Sigma M1404
Monastrol Microtubule disrupting Sigma M1404
ARQ621 Microtubule disrupting Selleckchem S7355
Barasertib Aurora B inhibitor Selleckchem S1147
ZM447439 Aurora B inhibitor Selleckchem S1103
Cytochalasin D Actin disrupting Sigma C8273
Cytochalasin B Actin disrupting Sigma C6762
Jaskplakinolide Actin disrupting Tocris 2792
Latrunculin B Actin disrupting Sigma L5288
MG132 Protein degradation Selleckchem S2619
Lactacystin Protein degradation Tocris 2267
ALLN Protein degradation Sigma A6165
ALLM Protein degradation Sigma A6060
Emetine Protein synthesis Sigma E2375
Cycloheximide Protein synthesis Sigma 1810
Dasatinib Kinase inhibitor Selleckchem S1021
Saracatinib Kinase inhibitor Selleckchem S1006
Lovastatin Statin Sigma PHR1285
Simvastatin Statin Sigma PHR1438
Camptothecin DNA damaging agent Selleckchem S1288
SN38 DNA damaging agent Selleckchem S4908

Table 2.2: Annotated compounds and their associated mechanism-of-action label used
in the classification tasks.

typically cause arrest of the cell-cycle.

Actin disrupting Cytochalasin D and B are actin both drugs which inhibit actin polymerisation
by binding to the F-actin to stop further addition of actin monomers, whereas latrunculin B binds
actin monomers to prevent polymerisation. Jaskplakinolide differs in that it stabilises actin for-
mation, although the exact mechanism is not clear. Actin disruptors have much in common with
microtubule disruptors as they both exert their effects on the cytoskeleton, although actin disruptors
can have direct effects on apoptosis and golgi organisation.

Protein degradation MG132 and lactacystin are both proteosome inhibitors. MG132 blocks
the proteolytic activity of the 26S proteosome complex and also inhbits NFκB activity. Lactacystin
inhibits the 20S proteosome, and also NFκB although to a lesser extent than MG132. ALLN and
ALLM are calpain/cysteine protease inhibitors which play important roles in calcium singnalling,
cell profileration and apoptosis.

Protein synthesis Emetine and cycloheximide both inhibit protein synthesis. Emetine binds to
the 40S ribosomal subunit, whereas cycloheximide binds to the 60S subunit. Inhibition of protein
synthesis has a wide range of effects on cellular function

Kinase inhibitor Dasatinib and saracatinib are kinase inhibitors with actions on Src kinase and
Bcr-Able tyrosine kinase, although achieving specificity in kinase inhibitors is difficult due to con-
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served ATP-binding domains, so both drugs are reported to hit a number of other kinases.

Statin Lovastatin and simvastatin are statins, they inhibit 3-hydroxy-4-methylglutaryl-coenzyme
A reductase (HMG-CoA reductase), a pathway responsible for the production of endogenous
cholesterol. Lovastatin and simvastatin have also been shown to inactivate RhoA which in turn
can lead to apoptosis and cell-cycle arrest.

DNA damaging agent Camptothecin and SN38 are DNA damaging agents which act by binding
and inhibiting topoisomerase I, which prevents DNA unwinding, causing double strand breaks and
ultimately cell-death.

2.3.2 Prestwick and BioAscent libraries

The Prestwick approved library and 12K BioAscent libraries were screened in the same run. Com-
pound preparation was performed using the Biomek FX for automated liquid handling i. Source
plates were diluted 1:10 in DMSO from 10 mM to 1 mM. From the 1 mM compound plates 1.5
µL was transferred to an intermediate plate containing 74.5 µL of cell culture media for a 1:50
dilution. From the intermediate plate 2.5 µL was transferred to the assay plate containing cells
seeded in a 50 µL volume for a second dilution of 1:20 after factoring in estimated evaporation. A
single intermediate plate was used for 8 assay plates corresponding to the 8 cell-lines. Assay plates
were barcoded with cell-line and a sequential number corresponding to the compound source plate.
5 compound plates were screened with 8 cell-lines corresponding to 40 384-well plates each week.

2.4 Cell painting staining protocol

In order to capture a broad view of morphological changes within a cell using fluorescent mi-
croscopy, a choice has to be made which cellular structures to label. This choice is limited by the
availablity of the fluorescent filter sets fitted to the microscope, reagent costs, and the scalability
of the protocol when used in a large screen. Fortunately, this problem was already addressed by
another group who published a protocol – named “cell painting” – for labelling 7 cellular struc-
tures, using 6 non-antibody stains imaged in the same 5 fluorescent channels available with our
miscoscopy setup.29,49

The cell-painting protocol was initially optimised by Gustafsdottir et al. for use in the U2OS
oesteosarcoma cell line, and briefly tested in a few other commonly used cell-lines. However, when
tested on the panel of 8 breast cancer cell lines, the staining protocol was observed to induce mor-
phological changes on certain cell lines, in the absence of compounds. It was found that changing
the media, and adding the MitoTracker DeepRed stain to live MDA-MB-231 cells produced a
rounded morphology, which was not observed in the other cell lines. As any morpholgical changes
introduced by the staining protocol would mask those caused by small-molecules, the protocol was
adapted by removing the media change step, and moving the addition of wheat germ agglutinin and
MitoTracker DeepRed until after fixation. As the cells were now fixed immediately in their existing

iA thankyou to Ash Makda (Edinburgh) for helping set up the liquid handling protocol
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Figure 2.1: Example images of MCF7 cells showing a typical morpholgy for each MoA
class at 1 µM. Microtubule: paclitaxel, actin: cyctochalasin D, protein degradation:
MG132, protein synthesis: emetine, kinase inhibitor: dasatinib, statin: lovastatin,
DNA damaging: SN38. For untreated cells see figure 1.2. Channels used: Red - Mi-
toTracker DeepRed; Green - Concanavalin A; Blue - Hoechst33342. Scale bar: 100
µm.



16 General Methods

Stain Labeled Structure Wavelength
(ex/em [nm]) Concentration Catalog no.;

Supplier

Hoechst 33342 Nuclei 387/447 ±20 2 µg/mL #H1399;
Mol. Probes

Concanavalin A 488 Endoplasmic
reticulum 462/520 ±20 11 µ/mL #C11252;

Invitrogen

SYTO14 Nucleoli 531/593 ±20 3 µM #S7576;
Invitrogen

Phalloidin 594 F-actin 562/624 ±20 0.85 U/mL #A12381;
Invitrogen

Wheat germ
agglutinin 594

Golgi and
plasma membrane 562/624 ±20 8 µg/mL #W11262;

Invitrogen
MitoTracker
DeepRed Mitochondria 628/692 ±20 0.6 µM #M22426;

Invitrogen

Table 2.3: Reagents used in the cell painting protocol and the excitation/emission wave-
lengths of the filters used in imaging. ex: excitation, em: emission

media this prevented any alterations to the morphology and improved the wheat germ agglutinin
staining, although as the MitoTracker stain relies on membrane potential of the mitochondria, the
selectivity of the MitoTracker stain was reduced when used on fixed cells, though it still produced
selective enough labelling to capture large changes in mitochondrial morphology.

To stain cells in a 96 or 384 well plates, the cells are first fixed by adding an equal volume
of 8% paraformaldehyde (#28908 Thermo Scientific) to the existing media resulting in a final
paraformaldehyde concentration of 4%, and left to incubate for 30 minutes at room temperature.
The plates are then washed with PBS (100 µL for a 96 well plate, 50 µL for a 384 well plate) and
permeabilised with 0.1% Triton-X100 solution (50 µL 96-well, 30 µL 384-well) for 20 minutes at
room temperature. A solution of cell painting reagents was made up in 1% bovine serum albumin
(BSA) solution (see table 2.3). Cell painting solution was added to plates (30 µL 96-well, 20 µL
384-well) and left to incubate for 30 minutes at room temperature in a dark place. Plates were then
washed with PBS (100 µL 96-well, 50 µL 384) three times, before the final aspiration plates were
sealed with a transparent plate seal (#PCR-SP Corning).

2.5 Imaging

2.5.1 ImageXpress

Imaging was carried out on an ImageXpress micro XL (MolecularDevices, USA) a multi-wavelength
wide-field fluorescent microscope equiped with a robotic plate loader (Scara4, PAA, UK).

2.5.2 Cell painting image capture

Images were captured in 5 fluorescent channels at 20x magnification, exposure times were kept
constant between plates and batches as to not influence intensity values.

2.6 Image analysis
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2.6.1 CellProfiler for 2D image analysis

Images were analysed using CellProfiler v2.1.1 to extract morphological features. CellProfiler50

was chosen primarily due to the high configurability and the permissive license enabling large-scale
distributed processing on compute clusters in order to reduce the image analysis time. The im-
ages captured on the ImageXpress were analysed using CellProfiler, quantifying approximately 400
morphological features. The datasets produced by the CellProfiler analysis contained morphological
measurements on an individual cell level, although this takes considerable memory requirements,
and therefore single cell-level data was aggregated to image median profiles. Briefly, cell nuclei were
segmented in the Hoechst stained image based on intensity, clumped nuclei were separated based
on shape. Nuclei objects were used as seeds to detect and segment cell-bodies in the cytoplasmic
stains of the additional channels. Subcellular structures such as nucleoli and Golgi apparatus were
segmented and assigned to parent objects (cells). Using these masks marking the boundary of cel-
lular objects, morphological features are measured for multiple image channels returning per object
measurements.

2.7 Data analysis

2.7.1 Preprocessing

Out of focus and low-quality images were detected through saturation and focus measurements and
removed from the dataset. Image averages of single object (cell) measurements were aggregated by
taking the median of each measured feature per image. Feature selection was performed by calcu-
lating pair-wise correlations of features and removing one of a pair of features that have correlation
greater than 0.9, and removing features with very low (< 1e−5) or zero variance. Features were
standardised on a plate-by-plate basis by dividing each feature by the median DMSO response for
that feature and scaled by a z-score (z) to a zero mean and unit variance by

z =
x− µ

σ
(2.1)

where µ is the mean and σ is the standard deviation. This is required as the measurements from
CellProfiler use different scales. For example cell area is measured in pixels and typically ranges from
a few hundred to several thousand, whereas cell eccentricity is constrained between 0 and 1. Large
differences in feature scales causes issues with downstream pre-processing steps such as principal
component analysis.

Principal component analysis Principal component analysis was calculated on the standardised
CellProfiler features either using ‘prcomp‘ in R or ‘sklearn.decomposition.PCA’ in python. Princi-
pal components were limited to the minimum number of principal components which accounted
for 80% of the variance in the data. This was calculated by obtaining the variance explained by
each principal component from the PCA output as a vector v, then calculating the cumulative
proportion of variance explained by successive principal components as the cumulative sum of v
divided element-wise by the sum of v to yield a new vector w of the same length. Then by finding
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the minimum index of w at which the value of wi ≥ p (where p is the portion of variance to be
explained) returns the number n, where principal components [1, . . . , n] where used as a features.



3 CELL MORPHOLOGY CAN BE USED TO PREDICT

COMPOUND MECHANISM-OF-ACTION

3.1 Introduction

Cellular morphology is influenced by multiple intrinsic and extrinsic factors acting on a cell, and
striking changes in morphology are observed when cells are exposed to biologically active small
molecules. This compound-induced alteration in morphology is a manifestation of various per-
turbed cellular processes, and we can hypothesise that compounds with similar MoA which act
upon the same signalling pathways will produce comparable phenotypes, and that cell morphology
can, in turn, be used to predict compound MoA.

In 2010 Caie et al. generated, as part of a larger study, an image dataset which consisted of
MCF7 breast cancer cells treated with 113 small molecules grouped into 12 mechanistic classes
imaged in three fluorescent channels.47 This dataset has become widely used as a benchmark in the
field for MoA classification tasks, with multiple publications using the images to compare machine
learning and data pre-processing approaches.51,52,53,54 Whilst this is important work, it has led to
the situation whereby the vast majority of studies in this field have based their work on a single
dataset generated with one cell-line.

One of the issues associated with phenotypic screening when used in a drug discovery setting is
target deconvolution. Once a compound has been identified which results in a desirable pheno-
type in a disease-relevant assay it is common to want to know which molecular pathways the hit
compound is acting upon. While target deconvolution is a complex and difficult task, image-based
morphological profiling represents one option similar to transcriptional profiling that can match an
unknown compound to the nearest similar annotated compound in a dataset to inform compound
MoA, while at the same time being far cheaper than the transcriptional methods such as LINCS
L1000.55

3.1.1 Machine learning methods to classify compound MoA

Predicting compound MoA from phenotypic data is a classification task. This type of machine
learning problem is well researched, and there are several models appropriate for our labelled data.
As the raw data is in the form of images, it can be approached as an image classification task, a
problem in the field receiving lots of attention due to recent theoretical and technological break-
throughs. Whereas a more classical approach would be to extract morphological information from
the images, generating a multivariate dataset from the images, and training a classifier on these
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Figure 3.1: (A) An example of a simple mock decision tree to classify compound mech-
anism of action based on morphological features. (B) Depiction of decision space as
divided by the decision tree model. Shaded areas show how new input data will be
classified based on the decision rules (dotted lines).

morphological features.
To develop and validate a machine learning model the dataset has to be split into training, vali-

dation and test sets. This is because overfitting is a common problem in machine learning, whereby
the model is trained and accurately predicts labels on one dataset, but performs poorly when ap-
plied to new data on which is was not trained. Most classification models will overfit to some
degree, typically performing better on the training dataset than any other subsequent examples,
but the challenge is to limit this overfitting, and also to ensure that the data used to report accuracy
measures has not been used in any way to train or validate the model.

3.1.2 Ensemble of decision trees trained on extracted morphological features

A decision tree is a very simple method that can be used for both regression and classification. The
method works by repeatedly dividing the decision space using binary rules on the feature values
until a terminal node containing a classification label is reached (figure 3.1). Simple decision trees
like those shown in figure 3.1 perform relatively poorly on all but the simplest of classification
problems. However, by aggregating many decision trees and their predictions we can create more
accurate and robust models in a practice known as ensemble learning.56 Bagging57 and Boosting58

are two popular methods for constructing ensembles of decision trees. As combining the output of
several decision trees is useful only if there is a disagreement among them, these two methods both
attempt to solve the same problem of generating a set of correct decision tress, that still disagree
with one another as much as possible on incorrect predictions.

Decision tree methods work best with multivariate tabular data, with well defined features de-
scribing each observation, this is in contrast to image data which consists of 2D arrays of pixel
intensities. Therefore, in order to train such a model, cellular morphology needs to be quantified
by measuring cellular features. This is a common task with multiple software packages available,
which follow two main steps:
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1. Segment objects from the background. Objects may be sub-cellular structures or whole-cell
masks.

2. Measure various attributes from the object, this is typically based on size, shape and intensity.

3.1.3 Convolutional neural networks trained on pixel data

Artificial neural networks (ANNs) are becoming increasingly common in a wide range of machine
learning tasks. Although many of the theories underpinning ANNs are decades old,59 they have
only recently achieved widespread practical use due to improved methods for training60 and the
availability of more computing power allowing the use of more complex models. ANNs are (very)
loosely inspired by the structure of biological brains, with interconnected neurons passing signals
through layers onto subsequent neurons forming a chain with the output of one neuron becom-
ing the input for the next neuron. In between neurons, the signals can be altered by multiplying
the value by a weight (W ), it is through adjusting these individual weights that ANNs optimise
their performance for a particular task, similar to how long-term potentiation is used to strengthen
synaptic connections in biological brains. When a signal reaches a neuron, it is combined via a
weighted sum with all the other inputs from other connected neurons and passed through an acti-
vation function. This activation function – similar to an action potential in neurons – determines
the output of the neuron for the given aggregated input, which is then passed as new inputs onto
subsequent neurons and so on, however, in contrast to an all-or-nothing output of an action po-
tential there are several types of activation functions used in ANNs, most of which have a graded
output (figure 3.2B).

The neurons in an ANN are typically arranged in several layers: an input layer; one or more
hidden layers; and a final output layer (figure 3.3). With each layer, the network transforms the
data into a new representation, through training the network these representations make the data
easier to classify. In the final layer, the data is ultimately represented in a way which makes a
single output neuron activate more strongly than the other neurons in that layer, and so the data
is ultimately transformed into a single value – the index of the active neuron which corresponds
to a particular class. A new ANN is initialised with random weights, to train a neural network
these weights are adjusted by feeding in labelled data and adjusting weights in order to minimise
classification errors through a process known as backpropagation.60

The convolution aspect of convolutional neural networks plays an important role when working
with image data. Two-dimensional convolutions are widely used in image processing – blurring,
sharpening and edge detection are all common operations which use this operation. They work by
mapping a kernel – a smaller matrix of values – across a larger matrix, thereby using information
from a small region of pixels in their transformation of each individual pixel. This lends itself well
to ANNs, as a pixel value in isolation is less informative than a pixel value in the context of the
neighbouring values. Depending on the size and the values within the kernel, the transformations
highlight different features within an image. Two dimensional convolutions are used in convolu-
tional neural networks (CNNs) by starting with many randomly initialised kernels, and updating
the kernel values through training in order to best highlight features which prove useful for accu-



22 Cell morphology can be used to predict compound mechanism-of-action

input×W1
R

-4 -2 0 2 4

0

1

2

3

4

x

f(x)

f(x) = max(0, x)

A

C

output
R

W2

input R
B

output

n=3∑
i=1

Wi × inputi
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rately predicting classes. Using a single convolutional layer highlights simple features in an image
such as edges and speckles, by combining several convolutional layers more complex features are
highlighted through combinations of these simple features. These convolved images are then flat-
tened into a one-dimensional vector which is used as an input in a fully connected ANN such as
that depicted in figure 3.3.

3.1.4 Chapter aims

The aims of this chapter are to assess how well machine learning models which predict compound
MoA transfer across morphologically distinct cell lines. This is of interest as the ability to predict
the MoA of unannotated compounds on a new cell-line with a pre-trained model without the
requirement of re-screening an annotated compound library would save time and money. The
compound library used in this work consists of 24 annotated compounds with well defined MoAs.

3.2 Results

3.2.1 CNN predictions are improved using sub-images of just a few cells

The images generated by the ImageXpress microscope are 2160×2160 pixel tiff files, with a bit-
depth of 16, whilst these image properties are common in microscopy, they are extreme for current
CNN implementations. Most image classification tasks involving CNN’s use 8-bit images in the
region of 300 by 300 pixels, relatively small images are used as the convolutional layers of deep
CNN’s generate many thousands of matrices, and using smaller input images drastically reduces
the computing resources and time required to train such classifiers.

This presents the issue of how to reduce the 2160×2160 images into smaller images suitable as
inputs for CNNs, one option is to downscale the entire image using bi-linear or bi-cubic interpo-
lation, while a second option is to chop the original image up into smaller sub-images (figure 3.4).
Downsizing the original image by simple scaling has a few potential problems which make it un-
suitable for this particular task: many of the finer-grained cell morphologies such as mitochondria
and endoplasmic reticulum distribution will be lost due to the reduction in image resolution; in
addition, it has been reported that whole well images are susceptible to over-fitting as the classifier
learned biologically irrelevant features such as the locations of cells within an image, which although
should be random might have some spurious association with particular class labels. When chop-
ping images into sub-images the most simple and commonly used method is to chop each image
into an evenly spaced grid, whilst this is unbiased and easy to implement, it has the downside of
potentially returning many images that do not contain any cells. A more nuanced approach is to
first detect the x,y co-ordinates of each cell in the image, and creating a 300×300 bounding-box
around the centre of each cell. This method returns an image per cell, negating the issue of empty
images; it does however require detecting cell locations and handling cells located next to the image
border.

To compare the performance of using either downsized whole images or cropped sub-images,
a pair of ResNet18 models were trained using either one of the datasets. It was evident during
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Figure 3.4: Two options for adapting large microscope images to work with the smaller
input size of typical CNNs. (A) Full-sized images are downsized to the desired di-
mensions via bi-linear or bi-cubic interpolation. (B) Images are chopped into smaller
sub-images, cell detection can be carried out beforehand to ensure images contain at
least one cell.

training that using sub-images resulted in a higher final validation accuracy (0.847) compared to
whole-images (0.778), as well as converging much faster than the whole-image-trained model (fig-
ure 3.5). Although downscaled whole images performed surprisingly well given their low resolution
of cellular features.

It should be noted that the validation accuracy reported from the sub-image trained model is for
classifying individual sub-images. One way to better use these individual sub-image classifications
is to predict the parent image class based on a consensus of the predicted classes of the child sub-
images. Using this consensus prediction, the sub-image validation classification accuracy increased
from 0.847 to 0.912. Looking at confusion matrices calculated for both sub-image and whole
images revealed that neither approach had difficulties at predicting a particular MoA class (figure
3.6).

Following these results the rest of the work involving CNNs used sub-images during training and
prediction. Whilst sub-images improved model training and classification accuracy, it also intro-
duces more complexity as images have to be pre-processed to identify cells and crop to a bounding
box, it also introduces another parameter in terms of image size which has to be considered and
optimised. While here I chose 300×300 pixel images corresponding to 97.5 µm2, this was chosen
pragmatically to fully capture a single cell and a portion of any adjacent cells. This value could be
optimised by running several models with differently sized cropped images, although this value is
largely dependent on cell line characteristics, magnification and image binning.
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Figure 3.5: Comparison of training ResNet18 model on chopped sub-images vs down-
sized images from the MDA-MB-231 cell line. Chopped images were 300×300 crops
centred on nuclei. Whole images were 2160×2160 images downsized to 300×300
pixels.
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Figure 3.7: Comparison of CNN architectures. A comparison of AlexNet and
ResNet18 architectures with and without dropout training and predicting on 5 chan-
nel 300×300 pixel images of all eight cell lines. Loss was calculated using cross entropy
on 8 mechanistic classes of compounds.

3.2.2 More complex CNN architectures outperform simpler AlexNet

As CNNs can be constructed with a wide variety of architectures, and the field is still rapidly
developing, I remained close to well established CNN architectures that are widely used in the field
rather than developing my own. However, as most images are digitally represented in three colour
channels (red, green, blue (RGB)), the vast majority of CNN models are constructed in a way that
input is restricted to three colour channels, therefore it is necessary to adapt these architectures
to work with the differently shaped inputs and additional parameters generated by the 5 channel
images generated with the ImageXpress.

The two different CNN architectures were tested based on the hypothesis that a deeper, more
complex architecture (ResNet1861) will be capable of learning more subtle features, although more
complex models with greater numbers of internal parameters are more prone to overfitting when
training data is limited. On the other hand, a more simple model such as AlexNet62 which contains
fewer convolutional layers will be less able to perform complex transformations of the data, and
therefore theoretically limit the subtle features which can be extracted and learned from an image.
While this might theoretically reduce accuracy, in the absence of large amount of training data it
may reduce overfitting due to the fewer number of parameters and perform better on new test data.

In an effort to reduce over-fitting, both models were evaluated with and without dropout in their
dense layers during training. Dropout is a form of regularisation and works by randomly ignoring a
fixed proportion of neurons during the training phase, with the theory that this prevents the model
becoming too dependent on the output of a particular neuron and leads to more robust features
used for classification.
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Four models in total were trained on sub-images of all eight cell-lines pooled into a single dataset.
The models were ResNet18, ResNet18 with dropout, AlexNet and AlexNet with dropout. During
training the two ResNet18 models outperformed the AlexNets in both training and validation
accuracy (figure 3.7). AlexNet with dropout layers did outperform the other three approaches when
it came to validation loss, as loss did not increase even after many epochs this model demonstrated
it is less liable to overfit data. However, the ResNet18 models showed a substantial increase in
classification accuracy, and if training is limited to fewer than 10 epochs they do not show worse
overfitting compared to the AlexNet models. Additional dropout layers does not seem to reduce
ResNet18’s liability to overfit beyond 10 epochs, this is not too surprising as the principal behind
ResNet18’s residual architecture is to limit overfitting, and adding additional dropout to the final
fully-connected layers is a crude approach.

3.2.3 Standardising image intensity does not improve CNN model convergence

When training CNN models it is common practice to standardise image intensities. This pre-
processing step consists of subtracting the mean of the image (or image batch) from each pixel and
dividing the result by the standard deviation. The theory is this reduces training time and helps
CNN models converge faster by ensuring the weights calculated during training are all on a simi-
lar scale which in turn restrains the gradients used in backpropagation. This pre-processing makes
sense in the classical and traditional academic use of CNNs which are often trained on images or
photographs from many different sources with inconsistent lighting and colours. However, the
images used in this high-content screening dataset are all from a single microscope with a carefully
controlled light source, in addition the intensities of the different channels carry a biological infor-
mation relating to the abundance of different proteins or cellular structures. Therefore I wanted
to assess if standardising image intensities per image channel improved model convergence and
classification accuracy compared to un-normalised intensity values i.

Two models based on the ResNet18 architecture were trained on chopped 300×300 pixel images
of a pooled dataset of all eight cell lines, one of the models was fed images standardised per channel,
the other raw image intensities. After 48 hours of training (54 and 64 epochs for un-normalised and
normalised models respectively ii) both models demonstrated identical training curves for training
accuracy and loss, while validation accuracy and loss curves showed no striking difference in the
performance between the two methods, although the normalisation pre-processing step appears
to cause sudden drops in model performance indicated by decreased accuracy and increased loss
(figure 3.8).

There is the possibility that training a model on disparate imaging datasets – from either different
microscopes with different illumination settings, or different concentrations of reagents – then
image standardisation may play a more important role. However, as intensity standardisation did
not improve model performance in this case I chose to continue CNN work using un-standardised

iAlthough un-normalised, intensity values were converted from 16 bit unsigned integers (65536 grayscale values) to 8
bit unsigned integers (256 grayscale values). This reduces training time and storage size at the expense of intensity
accuracy.

iiThe number of epochs per 48 hours does not indicate how fast a model converges, but rather the affect of availability
of compute resources used for image loading.
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Figure 3.8: Effect of image intensity normalisation on CNN training. ResNet18 mod-
els training and predicting on eight pooled cell-lines with and without standardising
image intensities per image per channel.

images, as there is an argument that standardisation may remove biologically relevant information
for no benefit.

3.2.4 Decision trees did not benefit from feature transformation via principal
component analysis.

Many machine learning methods benefit from feature selection or feature transformation. Here
I tested if transforming the normalised CellProfiler features into principal components improved
prediction accuracy with gradient boosting trees when training and testing on the MDA-MB-231
cell-line. I found that standardisation followed by principal component analysis and using all the
principal components resulted in a decreased F1 score of 0.80 compared to CellProfiler features
which produced an F1 score of 0.83. When the number of features were limited to the mini-
mum number of principal components which explained 90% of the variance in the data, the F1

score increased to match that of the original CellProfiler features. This meant that 16 principal
components produced an equal classification accuracy as using 309 CellProfiler features, while this
decreases computational time, it comes at the loss of interpretable morphological feature names,
I therefore decided to continue the remaining analyses using the normalised CellProfiler features
rather than principal components.
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3.2.5 CNN and ensemble based tree classifiers show equivalent performance at
predicting MoA on a single cell-line

Recently a number of studies demonstrated that CNN-based classifiers outperformed other existing
methods when classifying high-content imaging data for predicting compound MoA.

When both ensemble based tree classifiers and CNNs are trained and tested on a single cell-line
with separate training and test datasets they show equivalent performance (figure 3.9) at predicting
compound MoA. The MDA-MB-157 cell-line demonstrated particularly poor performance when
used with a CNN classifier (55.62%) compared to the average of 88.75% for all the CNN classifiers.

3.2.6 Additional data from more cell lines does not necessarily improve model
performance

An adage in machine learning is that more relevant data during training is nearly always beneficial.
With this in mind I investigated how training with additional data from morphologically distinct
cell lines impacts model performance. I used 30% of the MDA-MB-231 cell line as a test set,
and trained multiple tree-based and CNN models with the rest of the MDA-MB-231 and various
combinations of increasing numbers of the other cell-lines (figure 3.10). I found that training with
the additional data from different cell-lines negatively impacted the performance of CNN models,
although interestingly model performance did not further decrease when even more additional
cell-lines were used, as one additional cell-line produces similar classification accuracy as with using
all 7 cell-lines. The tree-based models generally benefited from training with the additional data,
although certain combinations of additional cell-lines did decrease prediction accuracy below that
of just training and predicting on the MDA-MB-231 cell-lines. It was not clear which combinations
of cell-lines caused this decrease in model performance, and no single cell-line was responsible for
the regression in model performance. Owing to the considerable time taken to train the CNN
models and the large number of possible combinations of additional cell-lines that could be used,
I limited the CNN training to 2,3 and 7 additional cell-lines.

3.2.7 On the transferrability of classifiers applied to unseen cell lines

An important consideration of machine learning models is how well they generalise and transfer
to new datasets. To investigate this I trained both tree-based and CNN models on 7 cell-lines and
then tested on an unseen 8th cell-line, this was repeated so that all 8 cell-lines were tested as the
unseen data. I found that both the tree-based and CNN models suffered a decrease in performance
when applied to an unseen cell-line (figure 3.11). The tree-based models averaged 55% accuracy on
the unseen cell-lines (figure 3.11 A), compared to 81% accuracy when trained and predicted on the
same cell-line (figure 3.9 A). The CNN models suffered an even greater decrease in accuracy when
transferred to morphologically distinct cell-lines with an average accuracy of 43% (figure 3.11 B)
compared to 78% when trained and predicted on the same cell-line (figure 3.9 B).
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Figure 3.9: Comparison of ensemble based tree classifier and CNN at predicting com-
pound MoA when trained and tested on an individual cell-line. (A) Gradient Boosting
tree classifier. (B) ResNet18 CNN classifier. Accuracy measured as the F1 score ex-
pressed as a percentage.
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Figure 3.10: The effect of using additional cell-lines during model model training.
Models accuracy when tested on a with-held proportion of MDA-MB-231 data. Box-
plots show accuracy when trained on different combinations of additional cell-lines
and tested on the MDA-MB-231 cell-line. The x-axis indicates the number of addi-
tional cell-lines other than MDA-MB-231 used during training, with 0 indicating the
baseline model of training and testing on the MDA-MB-231 line.

3.3 Discussion

The main aim of this chapter was to assess to what extent machine learning models which predict
compound MoA from high-content imaging data generalise to new morphologically distinct cell-
lines. This generalisation would require the recognition of morphological features induced by small-
molecules independent of the basal cell-line morphology.

Initial benchmarking studies with the two chosen models (gradient boosting decision trees and
CNN) demonstrated roughly equivalent predictive performance when the models were trained
with one cell-line and tasked to predict the MoA on witheld data from the same cell-line. This is
in contrast to recent publications which have highlighted the ability of CNN-based methods to
outperform other more classical approaches.54,53 One explanation for why this was not observed
here is that I used fairly standard CNN architectures and pre-processing techniques, as my main
interest was not absolute predictive performance but rather how well the models generalise. The
results demonstrated by Ando et al. used novel pre-processing techniques on a carefully curated
dataset, and Pawlowski et al. relied on fine-tuning CNN models which were pre-trained on the
large ImageNet datasets – this was considered as an option, although there is no clear method to
use the pre-trained models on my dataset as their weights are specific to the 3 channel architecture.
Another option to increase overall predictive performance of the CNN models would be to use a
deeper network with more parameters, especially as I already observed that the relatively complex
ResNet18 architecture outperformed AlexNet. I decided to limit the complexity of the CNN mod-
els at ResNet18, as training the more complex models take considerably more time and computing
resources than I had available.
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Figure 3.11: Confusion matrices of classifiers applied to unseen cell-lines. Models were
trained on 7 out of the eight cell-lines and tested on the with-held cell-line (named
above confusion matrix). (A) Models trained with gradient boosting tree classifier. (B)
Models trained with ResNet18 CNN. Accuracy is F1 score expressed as a percentage.
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The ability, or lack thereof, to generalise classifiers across multiple morphologically distinct cell-
lines poses an interesting challenge in the field, a classifier trained on an extensive annotated com-
pound library which demonstrated the ability to predict compound MoA from high content imag-
ing data, either extracted morphological features or from raw images, would be a valuable resource.
It is therefore of interest to see if such classifiers can be applied to new datasets of different cell-
lines without the need to re-screen and re-train for each cell-line. I found that neither model types
generalised particularly well, and suffered from significant decreases in prediction accuracy when
applied to any of the unseen cell-lines. The tree-based models trained on extracted morphological
features did however generalise slightly better than the CNN model. A likely explanation for this
difference is due to the normalisation steps used to pre-process the CellProfiler data for the tree-
based model, which divide the feature measurements by the negative control values per micro-titre
plate and as each plate contained data from only a single cell-line, this essentially represented the
compound effects as changes from the negative control. This normalisation step removes much
of the cell-line specific morphology and may account for the increased accuracy of the tree-based
models. I do not know of any current methods to apply a similar normalisation procedure to the
image inputs of the CNN model in order to remove the cell-line specific morphologies from the
images. One possible method to increase the generalisability of CNN models would be to use a
greater degree of image augmentation during training. Image augmentation is the fairly common
technique of modifying input images during training through distortions of shape and/or colour
in order to reduce overfitting,63,64 if image augmentation disrupts basal cell-line morphology while
largely preserving compound induced changes it may have the potential to produce more trans-
ferable classifiers. While difficult to normalise the images directly, it is possible to use CNNs as
feature extractors to produce numeric data from images by truncating the CNN before the final
classification and using the weights as a feature vector. It should be possible to normalise these
weights against the weights of the negative control, as if using CellProfiler features, and use these as
inputs to another classifier such as the gradient boosed trees. This combined approach of using the
CNN to extract features from an image into numerical output which can be normalised and used
with other machine learning tools has already been demonstrated in other domains.65

Another method to efficiently adapt a CNN model to a new cell-line would be to use the idea
of transfer learning, in which a small set of labelled data from the cell-line is used to fine-tune the
later layers in the network. This relies on the idea that the early convolutional layers trained on the
original dataset learn to identify features such as speckles and shapes which are applicable across
multiple cell-lines, and that freezing these layers during fine-tuning that that only the later layers
involved in classification are adjusted with a small learning rate.53,66 While this has shown promise
in adapting existing neural networks to new datasets, it still requires the use of labelled training data
from the new application, and so while it may require fewer training examples when given a new
cell-line, it still requires re-screening with an annotated compound library.

Overall I have found that current implementations of machine learning models used to classify
compound MoA from high-content screening data do not generalise well to new cell-lines. I found
that using extracted morphological features from software such as CellProfiler provides a flexible
dataset which is easy to manipulate and pre-process when used as input for classification models.
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Using raw images on the other hand is not as familiar for most investigators, and CNN models are
much more difficult to interpret and understand how modifications to the input data will affect
model outcome. Much of the machine learning field is currently focused CNNs and other neural
network based methods, and they do offer some useful advantages in the high-content field such as
not requiring segmentation or algorithms to measure hand-picked features. Further work investi-
gating how to improve the generalisability of CNN-based classifiers is of great importance to many
fields, and I predict that although it is currently a significant limitation, with the rapid development
and commercial interests of this field it is likely many new methods will be developed which will
aid MoA prediction.

3.4 Methods

3.5 Dataset

The imaging dataset used in this work is from the 24 compound validation set and is described
in the general methods chapter (chapter 2). For each compound, data were used from the three
highest concentrations (0.1µM, 0.3µM, 1.0µM). This was chosen as at lower concentrations many
compounds failed to produce morphological changes that were distinguishable from the DMSO
negative control.

3.5.1 Accuracy

Validation accuracy during training was measured using the Jaccard similarity score of the ith sam-
ples with true label set yi and predicted label set ŷi:

J(yi, ŷi) =
|yi ∩ ŷi|
|yi ∪ ŷi|

(3.1)

The F1 score was used post training to determine classification accuracy. The F1 score is the
harmonic mean of both the precision and recall. So given true positives (tp), false positives (fp) and
false negatives (fn):

precision =
tp

tp + fp
(3.2)

recall =
tp

tp + fn
(3.3)

the F1 score can be calculated as:

F1 = 2× precision × recall
precision + recall

. (3.4)



3.5 Dataset 35

3.5.2 Ensemble of decision trees

Models were created using scikit-learn (version 0.19) GradientBoostingClassifier in python 3.6.2,
with default parameters except for ‘n_estimators’ which was increased from 100 to 600.

3.5.3 Convolutional neural networks

All code related to neural networks was written in pytorch (version 0.3, python 3.5) and ANN
models were trained on nvidia K80 GPUs. The popular ResNet18 architecture was adapted to
work with 5 channel numpy arrays rather than RGB colour images. Images stored with 300 by
300 pixel dimensions were downsized to 244 by 244 pixels using scikit-images “resize” function
to match the input size required by ResNet and AlexNet. This was carried out by altering the first
convolutional layer to accept 5 channels, and in turn increase the size of the input for the first linear
layer from 512 to 2048 to account for the increased vector size after flattening the output from the
convolutional layers. AlexNet was adapted in a similar way by increasing the number of channels
in the first convolutional layer and a corresponding increase in the first linear layer after flattening.
When testing the effect of dropout on ResNet18 and AlexNet, dropout layers were added between
each of the linear layers, the proportion of dropout was 0.2, apart from the penultimate layer which
had a dropout proportion of 0.5.

Data parallelism

As training CNNs is computationally expensive and time consuming, data parallelism was used
to share batches of images across multiple GPUs trained in parallel. This technique replicates the
CNN model on each device, which processes a portion of the input data, the updated weights for all
devices are then averaged and model replicates are updated synchronously after each batch (figure
3.12). This speeds up model training approximately linearly with the number of GPUs and allows
use of larger batch sizes.

Training parameters

When testing image intensity standardisation, image intensities were standardised on an individual
image and channel basis by taking each image in the form of an array [width × height × channel]
and subtracting the mean of each channel from each pixel value in that channel, and dividing the
pixel value by the standard deviation of the original channel.

Batch sizes during training were kept at 32 images per GPU. In the case of using GPU arrays
then this was multiplied by the number of GPUs. Learning rate was set to 1e−3 decreasing 10-fold
every 10 epochs (figure 3.13). Learning rate decay was used to aid gradient descent and model
convergence (see figure 3.13). The optimiser used was ADAM67 using the categorical cross entropy
loss function for multi-class training.

Image preparation

The number of images per cell-line, test-train phase and MoA after image chopping are shown in
table 3.1.
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Figure 3.12: Increased training speed by data parallelism. Models are replicated across
an array of GPUs, the input batch is split evenly among the devices, with each device
processing a portion in parallel. During backpropagation the updated weights for all
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Figure 3.13: Learning rate and decay for training CNN models, initialised at 1e−3 and
reduced 10-fold every 10 epochs.
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Number of images

actin aurora DNA damaging kinase microtubule protein deg protein synth statin

HCC1569 test 1691 776 617 704 2804 2287 595 1100
train 3780 2020 1491 1773 6656 4791 1752 2901

HCC1954 test 2612 1502 665 923 3234 3436 1200 1963
train 6298 4760 1478 2940 6370 8312 2774 4015

KPL4 test 10588 5491 1279 3542 6474 16453 4711 4716
train 22620 9914 3592 10770 12053 35911 9780 12951

MCF7 test 4591 2157 1075 2217 6128 6166 1694 3109
train 10588 4804 2255 5858 12193 15093 4113 6818

MDA-157 test 627 435 222 274 913 1127 413 458
train 1498 843 511 842 1333 2343 950 1010

MDA-231 test 4335 1688 1364 2094 5520 6253 1712 1993
train 8628 5249 3148 4392 14369 13253 4589 6525

SKBR3 test 2543 1626 571 1722 2618 3681 1406 1884
train 6183 3578 1635 4065 4468 8114 3209 4458

T47D test 1402 1393 884 830 4526 2952 1070 1227
train 4969 3235 2190 2009 8516 6616 2855 3273

Table 3.1: Number of images per cell-line after image chopping and test-train split.

Encoding

Images were originally stored as 16 bit tif files which were stored as 8-bit unsigned integers after
chopping. While training, a custom data-loader transformed the 8-bit integers into floating point
arrays to be used as input in pytorch. If images were intensity normalised then they were centered
on zero by subtracting the mean and dividing by the standard deviation of each channel.

Image chopping

To chop the images for the CNN models I detected nuclei locations in the Hoechst stained image
using a simple difference of Gaussian blob detection algorithm (skimage.feature.blob_dog, thresh-
old of 0.1) to detect the centre points of bright objects in the form of x,y co-ordinates. These x,y
co-ordinates where then used to calculate a 300 by 300 pixel bounding box to which the parent
image was cropped in all 5 fluorescent channels. 300 pixels was decided on by assessing a number
of different bounding box sizes and choosing the one that robustly captured enough of the image
to contain the complete cell as well as a portion of neighbouring cells. For each cell-location, it
was determined if the bounding box would be contained within the confines of the parent image,
if the cell was located near the edge of the image and the bounding box would extend beyond the
image border, then the x,y co-ordinates were adjusted so that the bounding box would be contained
within the image borders.

Once the bounding box co-ordinates had been calculated for all cells within an image, the image
was chopped into n sub-images, where n is the number of detected cells, and these sub-images were
saved as individual 5 channel numpy arrays recording the parent image in the filename, which were
used directly as input in pytorch. The image chopping code was released as a python package iii.

iiiwww.github.com/swarchal/NN_cell





4 MEASURING DISTINCT PHENOTYPIC RESPONSE

Note: this chapter is based on previously published work: ”Development of theTheta Comparative Cell Scoring Method to Quantify Diverse
Phenotypic Responses Between Distinct Cell Types”, S Warchal, J Dawson, N.O Carragher. ASSAY and Drug Development Technologies, pages
395-406, 7:14, 2016. and ”High-Dimensional Profiling: The Theta Comparative Cell Scoring Method”, Phenotypic Screening. Methods in
Molecular Biology 1787, 171-181.

4.1 Introduction

4.1.1 Comparing response to small molecules across a panel of cell lines

Comparative analysis of cell line panels treated with compounds are routinely used in pharmacoge-
nomic studies and drug sensitivity profiling. These studies often use large numbers of cell lines and
simple measures of compound response such as growth inhibition or cell death, allowing researchers
to interrogate sensitivity of various small molecule therapies in a number of genomic backgrounds
representing different diseases, disease-subtypes or patient populations.

Using high-content imaging methods with cell line panels enables more complex cellular readouts
than cell death, creating a more detailed characterisation of compound effect. However, in order to
apply multiparametric high-content data to pharmacogenomic studies, there needs to be a robust –
and ideally univariate – measure of compound response to correlate drug sensitivity with genomic
or proteomic datasets.

4.1.2 Quantifying compound response in high content screens

A simple but effective method to quantify the magnitude of compound response from multipara-
metric data is to calculate the distance from the negative control to the compound induced phe-
notype in feature space. This idea was first demonstrated by Tanaka et al. using PCA to reduce
the dimensionality of a high content screening dataset to 3 principal components, and taking the
distance from the centroid of the negative control replicates to the compound co-ordinates.68 The
distance from the negative control in PCA space is an effective metric for detecting phenotypically
active compounds. In addition, distance measurements can be repeated for multiple concentrations
of a compound to produce a concentration – phenotypic-distance response curve (see figure 4.1)
and EC50 values. However, one issue in calculating the distance-from-negative-control metric of
compound activity is that it disregards much of the information relating to the position in feature
space, as depicted in figure 4.1, two compounds may have similar distances yet those distances
may be produced by very different morphological changes. In order to discern between two such
compounds there needs to be a measure of directionality.
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Figure 4.1: Diagram illustrating measuring magnitude of compound response by dis-
tance from the negative control centroid in principal component space. (A) Phenotypic
distance to three different compounds. Compound A and C show phenotypic activity
as they are distanced from the negative control cluster, whereas compound B shows
little activity. Note that compound A and compound C have similar distances from
the negative control centroid, yet have very different values in principal component
space. (B) A titration series for each of the three compounds, showing how increasing
concentrations of compounds A and C show increasing distance from the negative con-
trol, whereas weakly active compound B does not increase in distance. PC1: principal
component 1. PC2: principal component 2.

4.2 Results

4.2.1 Compound titrations produce a phenotypic ‘direction’

Visualising high-content imaging data from compound screens in principal component space pro-
duces a representation of the overall structure of the dataset.

Using a dataset of morphological features produced by 24 compounds representing 9 mechanistic
classes, plotting the first 2 principal components of this data reveals that compounds with the same
MoA tend to cluster with one another (figure 4.2).

Plotting multiple concentrations of a compound in 2D PCA space allows us to visualise how an
active compound becomes further away from the negative control with increasing concentrations.
Figure 4.3 shows two compounds highlighted from the same data as in figure 4.2, we can see as
compound concentration increases morphologies become increasingly distant from the untreated
negative control cluster positioned centrally in the axes, with the two compounds producing op-
posite directions. Mirroring the differences in direction, the morphologies produced by barasertib
and cycloheximide are also very different from one another, with barasertib – an Aurora B kinase
– inhibitor producing large irregular nuclei, and cycloheximide creating small bright nuclei. This
direction in PCA space can be thought of as a phenotypic direction, which can be measured and
quantified independent from potency as measured by distance from the negative control cluster
centroid.

4.2.2 Difference in phenotypic direction can be used to quantify distinct phenotypes

Using phenotypic direction in addition to distance from the negative control it is now possible to
distinguish between equally phenotypically potent compounds with distinct morphological effects.
By calculating an angle (θ) between phenotypic directions with cosine dissimilarity, a univariate
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Figure 4.2: MoA clustering of compounds based on PCA of their morphological fea-
tures. Principal components calculated from morphological features of 24 compounds
grouped into 8 mechanistic classes. (A) Principal components calculated from an image
average of individual cell measurements. (B) Each point represents a well average from
individual cell measurements as each well contains 9 image sites. STS: staurosporine.
DMSO: dimethyl sulphoxide
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Figure 4.3: Principal components of Cellprofiler features calculated from a 24 com-
pound high content screen in MDA-MB-231 cells. Barasertib (left) and cycloheximide
(right) titrations are highlighted to show two active compounds with distinct pheno-
types heading in different directions in phenotypic space with increasing concentration.
Images shown next to points are from the Hoechst stain labelling nuclei morphology
produced by 1 µM of each compound.
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Figure 4.4: Visualisation of ∆θ to quantify the difference in phenotypic direction be-
tween two compounds. Histograms in polar co-ordinates show the θ values of treat-
ments against a fixed reference vector, with ∆θ calculated as the difference between the
average θ (black lines) of each compound.

value can be used to quantify phenotypic distance between either different compounds, or cell-
lines treated with the same compound to detect distinct phenotypic response. By calculating θ

against a fixed reference vector, the difference in θ (∆θ) between two treatments can be quantified
and visualised in polar co-ordinates as histograms or rose plots (figure 4.4). Compounds with the
same phenotypic direction will have a small ∆θ and compounds with dissimilar phenotypes having
a large ∆θ, when expressed in degrees the values are constrained between 0◦ and 180◦.

Although the data in figures 4.3 & 4.2 show the negative control points clustered near the median
(0, 0) in principal component co-ordinates this is not guaranteed and should not be relied upon,
so it is necessary to translate the principal components co-ordinates so that the negative control
centroid is position over the median. In addition, inactive compounds will be positioned in close
proximity to the negative control points and the calculated θ values will be misleading, therefore
removing inactive compounds based on distance from the negative control is an important pre-
processing step.

4.2.3 SN38 elicits a distinct phenotypic response between cell lines

Instead of calculating ∆θ between compounds it is also possible to calculate ∆θ between cell lines
for a given compound. To identify and quantify differential phenotypic responses between cell-
lines, ∆θ was calculated between pairs of 8 breast cancer cell lines treated with 24 small molecules
at three concentrations (0.1 µM, 0.3 µM, 1 µM). 21 out of the 24 compounds were found to be
sufficiently active across the 8 cell lines to proceed, and the difference in phenotypic direction was
calculated for all pairs of cell lines for each compound. Figure 4.6 shows a heatmap of the calculated
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Figure 4.5: Visualisation of ∆θ to quantify the difference in phenotypic response be-
tween cell lines when treated with barasertib. (A) Circular histogram of θ values of
barasertib calculated for eight cell lines. (B) Phenotypic direction of cell lines treated
with barasertib stratified by cell line. (C) Representation of ∆θ for the difference be-
tween HCC1569 and MDA-MB-231 cell lines. Note that in this case ∆θ is relatively
small.
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∆θ values. Some compounds such as the Aurora B inhibitors (ZM447439 and barasertib) showed
very little difference in phenotypic response between the breast cancer cell lines, whereas compounds
such as the topoisomerase I inhibitor SN38 demonstrated a single cell-line (KPL4) having a distinct
response compared to the 7 others. Particularly striking is the difference between the MCF7 and
KPL4 cell lines with a ∆θ of 179◦, indicated near opposite phenotypic responses between the pair
of cell lines to the topoisomerase I inhibitor (figure 4.6).

4.3 Discussion

A number of methods exist to classify drug MoA and profile drug response in the context of high-
content imaging studies, most of these have only been applied to a single cell type. The method de-
scribed in this chapter, named as theta comparative cell scoring (TCCS), was developed to provide
a pragmatic way to perform comparative high-content imaging studies across genetically and mor-
phologically distinct cell lines. TCCS should be viewed as an extension to the common distance-in-
PCA approach taking directionality into consideration in addition to distance from controls. The
benefits of TCCS over previous methods are as follows: (1) the use of distance from the negative
control to remove inactive compounds as one of the first steps prevents spurious differences that
would be present in measures such as correlation or simple cosine similarity; (2) The comparison
of each data point to a common reference vector enables visualisation of a phenotypic direction.

When comparing compound response between cell lines the most critical step, regardless of sub-
sequent methods, is to account for the inherent morphological differences between untreated cell
lines. Without this normalisation step morphologically distinct cell lines are not directly compara-
ble as their large scale morphological differences will mask any difference in morphological response
to a compound.

The TCCS method removes compounds which are deemed to be inactive if they are not suffi-
ciently distant from the negative control (see figure 4.7). While this increases the robustness of the
calculation by removing spurious differences in direction, it also introduces a new problem when
compounds show large differences in potency between cell lines. This would result in the removal
of such compounds from the analysis despite producing a genuine, and potentially biologically
interesting, differential response between cell lines. This can be rectified by identifying these com-
pounds when computing compound distances from the negative control in principal component
space – any compounds that show large differences in this distance between cell lines can be flagged
for further analysis before removal.

When using high-content imaging data with a lot of morphological feature measurements, using
the first two principal components as depicted in this chapter may only account for a small pro-
portion of variation in the data. This may lead to potentially missing interesting differences which
are only evident in later principal components. Fortunately, as part of the TCCS algorithm the
cosine similarity equation uses the dot product of the two vectors reducing any two equal length
vectors to a single number, enabling the use of 3 or more principal components. Therefore the
proportion of variance to keep in the data can be specified beforehand, and the dimensionality of
the data reduced in a way to suit the statistical properties of different datasets.
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Figure 4.6: Heatmap of ∆θ values between pairs of cell lines for 21 compounds which
demonstrated phenotypic activity in all eight cell-lines. (A) ∆θ calculated between
pairs of cell lines treated with 21 compounds at (0.1 µM, 0.3 µM, 1 µM). Images show
differential response between KPL4 and MCF7 cell lines treated with 1 µM SN38.
MCF7 cells are observed to decrease in cell area with bright staining for the endoplas-
mic reticulum, whereas KPL4 cells produce a ‘fried egg’ morphology with large spread
cells and weak endoplasmic reticulum staining. Channels used are as follows: Red -
MitoTracker DeepRed (mitochondria); Green - Concanavalin A (endoplasmic reticu-
lum); Blue - Hoechst33342 (nuclei). Scale bar: 100 µm. (B) Histogram of θ values
calculated for MCF7 and KPL4 cells treated with 1 µM SN38. ∆θ = 179◦
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An interesting prospect of ‘phenotypic direction’ is relating directions back to combinations of
morphological features to provide more interpretability to the results. This is possible with PCA
by using the feature loadings describe the contributions of original features used to construct each
principal component. However, as PCA uses arbitrary positive and negative weights for these fea-
ture loadings, other dimensional reductions techniques might be better suited for generating more
interpretable results. One example is non-negative matrix factorisation which would return only
positive weights for the morphological features, making the contribution of morphological features
to the phenotypic direction more interpretable.

Multiple concentrations are not often used in high throughput cell based screening assays despite
providing useful information to detect off-target effects as well as reducing false negatives by screen-
ing at incorrect concentrations. A potential improvement of the TCCS method is to incorporate
data from compound titrations as in figure 4.3 and fitting a linear model to the data points provid-
ing information relating to goodness of fit. This could potentially be used to identify compounds
with off-target effects at higher concentrations if they do not fit a linear model well which indicates
the data points going off at a tangent at higher concentrations towards phenotypic space indicative
of cell death (e.g figure 4.1 B compound A).

In conclusion, the TCCS method presents an alternative to (dis)similarity measures such as cor-
relation and cosine distance with important prior steps to account for peculiarities in high-content
screening data, enabling high-content screening studies for quantifying distinct phenotypic re-
sponse between morphologically diverse cell types.
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4.4 Methods

4.4.1 Data pre-processing

Tabular data from Cellprofiler measuring 309 morphological features for each cell was aggregated
to an image median. To remove batch effects and to remove inherent cell-line specific morphologies
data was normalised by dividing each morphological feature by the median negative control value
for that feature per plate. Each feature was then standardised to a mean of zero and unit variance
on the pooled data.

4.4.2 Principal component analysis

Principal components were calculated using the prcomp function in R v3.2, with no centering or
scaling as this was performed manually beforehand.

4.4.3 Selecting the number of principal components

The number of principal components to used in the analysis can be determined by specifying be-
forehand the proportion of variance in the data that should be kept, and then finding the minimum
number of principal components that account for that proportion of variance in the dataset.

E.g in R:

1 threshold = 0.8
2 pca_output = prcomp(data, center = FALSE, scale = FALSE)
3 pc_variance = pca_output$stdev^2
4 cumulative_prop_variance = cumsum(pc_variance) / sum(pc_variance)
5 n_components = min(which(cumulative_prop_variance >= threshold))

where data is numeric dataframe of morphological features.

4.4.4 Centering the data on the negative control

In order to centre the principal component data so that the mediod of the negative control was
positioned on the origin, the median value for each feature column for the negative control data
was calculated. Then finding how much this differs from the origin for each feature, all principal
component values were adjusted by this difference.

1. Calculate the median value m for each principal component for the negative control data
(medioids).

2. Subtract each medioid from 0 in order to find the difference from the origin to δmi, where
i is the ith principal component.

3. Add δmi to each value in the ith principal component.

For example in R, given a dataframe data containing a metadata column "compound_name" of
compound names, with "DMSO" as a negative control, and feature_cols as a list of non-metadata
column names:
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1 mediods = apply(data[data[, "compound_name"] == "DMSO"], 2, median)
2 delta_m = 0 - mediods # δm

3 for (i in seq_along(feature_cols)) {
4 feature = feature_cols[i]
5 # feature_columni := feature_columni + δmi

6 data[, feature] = data[, feature] + delta_m[i]
7 }

4.4.5 Identifying inactive compounds

Inactive compounds were identified by determining a minimum cut-off distance to the negative
control centroid in principal component space. This was calculated by first finding the l1 norm
from each compound at all concentrations to the negative control centroid. The standard deviation
of all these distances was calculated and any compound which was within 2 standard deviations of
the negative control centroid at 1 µM was deemed inactive, if a compound was found to be inactive
in any one of the eight cell lines it was removed from the analysis.

4.4.6 Calculating θ and ∆θ

θ was calculated by taking cosine dissimilarity between two vectors (u and v) in principal compo-
nent space and converting into degrees.

θ = cos−1

(
u · v
||u||v||

)
· 180

π
(4.1)

When v is a common fixed reference vector, ∆θ = |θi − θj | where θi and θj are theta values
for 2 vectors. As opposite phenotypic directions are at 180◦, ∆θ values greater than 180◦ should
be thought as converging towards similar phenotypes. Therefore ∆θ values were constrained to a
maximum value of 180◦ by subtracting any value greater than 180◦ from 360, or written as:

θ =

360− θ if θ > 180

θ otherwise
(4.2)



5 SCREENING APPROVED DRUGS ACROSS 8 BREAST

CANCER CELL LINES

5.1 Introduction

5.1.1 Increasing the complexity of cellular models in drug discovery

Immortalised human cell-lines are a widely used model to study cell biology and human disease.
Recently there has been an increasing focus on the relevance of cells grown in vitro on tissue culture
plastic in 2D monolayers and how these extremely artificial conditions compromise the predictive
power of cellular models by their influence on cellular signalling pathways and response to external
stimuli. This has triggered a number of studies suggesting further development and application
of complex cellular models with the aim of better recapitulating the environment found in vivo69.
There is a wide range of 3D cellular models which have been developed for a number of different
assays and physiological systems, although here the focus will be limited to tumour spheroids, which
are 3D aggregates of one or more tumour-related cell-types which can range in size from 100 µm
to a few mm. The assumption of tumour spheroids is that densely packed aggregate of cells with a
gradient of nutrients, pH and metabolic waste from the outer edge of the spheroid to the hypoxic
core characterised by dormant cells and poor drug penetration better resembles in vivo solid tumour
micro-environment.70,71 There are a number of methods to produce tumour spheroids, the choice
is largely a compromise of complexity versus scalability and reproducibility. The simplest method
is through the use of low attachment U-bottomed plates and centrifugation of a cell-suspension to
pellet cells together (figure 5.1 A), this leads to the formation of single uniformly sized spheroids
in each well. A similar method is the hanging drop, which uses suspended drops of cell-suspension
to create and environment for the cells to aggregate together in a single spheroid72 (figure 5.1 B).
The hanging drop method has the advantage that while custom plates have been developed it does
not necessarily require specialised consumables, although without the use of custom plates it is
more labour intensive and there is an upper bound of the size of spheroids which can be created
due to too large a droplet overcoming surface tension. A third method for generation of tumour
spheroids is through the use of micro-patterned multi-well plates which provide a structure thought
to aid cell-motility and aggregation. These have the advantage of ease-of-use as they do not require
any additional steps, although the main drawback is the inconsistency of spheroid size, number,
location, as well as requiring the use of expensive plates.

Despite the rapid adoption of 3D cellular models there is a lack of definitive evidence for their
benefit over the more simple 2D models, in turn there are a number of additional issues which have
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Figure 5.1: Methods for creating tumour spheroids. (A) Centrifugation in ultra-low
attachment U-bottomed plates. (B) Hanging drop method. (C) Spheroid aggregation
in micro-patterned plates.

to be addressed when using 3D tumour spheroids in an image-based assay. Cells located within
the centre of the spheroid are often difficult to image and in turn segment due to limited penetra-
tion depth of light sources and poor labelling of fluorescent reagents. A number of commercially
available high-throughput confocal microscopes are available which go some way to countering
this issue, although to obtain adequate optical quality for single-cell segmentation usually requires
chemical clearing methods. Assuming sufficient clarity of fluorescently labelled cells throughout
the depth of a spheroid there is a choice of using the 3D data for segmentation and analysis, or
to project the 3D structure onto a 2D plane using maximum projection or another similar algo-
rithm and process the image using standard 2D segmentation and image analysis tools. While
3D data does offer a greater number of measurements through volumetric analysis and therefore a
greater amount of morphological information, many researchers still opt for 2D image analysis of
tumour spheroids owing to familiarity, the reduced computational resources required for storage
and analysis, and the greater availability of established software tools.

5.1.2 Proteomics to interrogate hits from high-content screening

Interrogating hits found from target-agnostic phenotypic screens is often viewed as an important
step to gain mechanistic information as well as generating hypotheses for new targets and dis-
ease aetiology. Methods such as thermostability shift assays, microarrays, RNAseq, whole-genome
CRISPR knockouts and quantitative mass spec all have various strengths and weaknesses which
make them appropriate for certain experimental questions. However, these methods are limited by
either their focus on a single protein or by their limited throughput – mainly due to high costs –
allowing analysis of only a small number of samples.

RPPA (Reverse Phase Protein microArray) is a miniaturised high-throughput antibody-based
method for measuring abundance of total protein or translationally modified epitopes across a
large number of samples. Protein lysates are spotted onto a solid substrate in multiple arrays which
are then individually probed in parallel with mono-specific antibodies conjugated to a fluorophore,
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protein abundance is then measured by comparing fluorescent signal against a dilution series of a
known standard.73 One of the main benefits of RPPA over other methods is the ability to process a
large number of samples in parallel, which can be used to profile a number of treatment conditions,
time-points, or concentrations. In contrast, the main limitation of RPPA is the reliance on high
quality specific antibodies, which confines the detectable proteins and epitopes to those with well-
validated and commercially available antibodies. RPPA has a number of advantages over other
proteomic techniques such as high-sensitivity, high sample capacity and low sample consumption
which makes it a well suited tool to investigate hits resulting from a target-agnostic high-content
screen.

5.1.3 Screening approved drugs: repurposing old compounds

Repurposing an existing drug to treat a new disease or indication is an attractive strategy for cost-
effective drug discovery programmes. Existing drugs have already been through pre-clinical and
clinical safety studies, clinical trials and regulatory approval for their original indication and so
the path from in vitro and in vivo screening to clinical use can be expedited and development costs
greatly reduced. These advantages have resulted in a number of pharmaceutical companies investing
time and resources into looking for new opportunities to reposition their existing compounds while
still under-patent, as well as a number of new biotech companies hoping to re-patent old drugs
under a new method of use.

Using knowledge of an existing drugs mechanism on known targets to treat other diseases which
share similar molecular targets is a simple strategy for drug repurposing. One example is duloxetine,
a serotonin and adrenergic reuptake inhibitor originally developed for the treatment of depression,
which was later repositioned as an anti-incontinence therapy.74 Serotonin and noradrenaline while
well known for their effects on mood and behaviour, also produce an excitatory effect in smooth
muscle neurons which can lead to an improvement in bladder control. This was noted by Eli Lilly
who now have approval to market duloxetine as both an anti-depressant as well as the first approved
urinary incontinence medication. Another approach to drug repurposing is to take advantage of
so-called “off-target” effects. The non-specific binding to other protein targets can be leveraged for
unrelated diseases; an example of this is itraconazole, a broad spectrum anti-biotic which has been
found to act through the Hedgehog pathway as a potential anti-cancer therapy.75

5.1.4 Chapter aims

The aim of this work was to screen a library of approved small molecules across a panel of eight
breast cancer cell-lines to identify compounds which cause a distinct phenotypic response in one or
more cell-lines. Then to investigate these compounds using functional 2D and 3D tumour spheroid
assays of cell death and viability and to highlight potential pathways responsible for their selective
breast cancer cell-line response using RPPA to measure the abundance of 60 proteins representative
of canonical cell survival and cell proliferation signalling pathways.
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Figure 5.2: Principal component analysis of the Prestwick approved compound library
after normalisation and feature standardisation. Points represent individual images.
(A) Data points colour coded drug treatment, positive control (300 nM staurosporine)
or negative control (0.1 % DMSO). (B) Data points colour coded by cell-line.

Cell line Z-factor

HCC1569 0.72
HCC1954 0.77
KPL4 0.84
MCF7 0.77
MDA-MB-157 0.78
MDA-MB-231 0.74
SKBR3 0.79
T47D 0.79

Table 5.1: Multivariate Z-factor values of assay quality showing separation between the
positive and negative control per cell-line.

5.2 Results

5.2.1 High-content screen of 1280 approved compounds

The Prestwick library of 1280 approved compounds was used in a high-content image based screen
at a single 1 µM concentration across all eight breast cancer cell-lines (table 1.1). Multiple mor-
phological features were quantified from the images using Cellprofiler image analysis software and
aggregated to an image median, and normalised to the plate negative control values and standard-
ised. Plotting the first two principal components of this data revealed a clear separation between
the positive (300 mM staurosporine) and negative control (0.1 % DMSO) (figure 5.2 A) with a
multivariate Z-factor76 of 0.6 for the pooled cell-lines, and greater than 0.7 for individual cell-lines
(table 5.1) demonstrating a robust screening assay. In addition, the data from the morphologically
distinct cell-lines was mixed and not separately clustered (figure 5.2 B), indicating that the normal-
isation step successfully removed basal cell-line morphologies enabling comparison of phenotypic
response between morphologically distinct cell-lines.

For each phenotypically active compound in the Prestwick library the difference in response
between pairs of cell-lines was measured using the TCCS method (chapter 4), and compound-cell-
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Cell line # active compounds

HCC1569 283
HCC1954 182
KPL4 236
MCF7 287
MDA-MB-157 96
MDA-MB-231 352
SKBR3 218
T47D 327

Table 5.2: Number of active compounds in the Prestwick library per cell-line. Com-
pounds were defined as phenotypically active by calculating the l1 norm distance from
the negative control centroid in the principal components of the morphological fea-
tures.

Compound Usage / MoA

Amodiaquine Anti-malarial.
Cisapride 5-HT4 agonist
Dilazep Vasodilator. Adenosine reuptake inhibitor
Fluvoxamine Anti-depressant. SSRI
Ivermectin Anti-helmintic. GluCl agonist
Niclosamide Anti-helmintic
Paroxetine Anti-depressant. SSRI
Pirenperone 5-HT2A antagonist
Podophyllotoxin Microtubule destabiliser
Protriptyline Tricyclic anti-depressant. NA, SERT
Triflupromazine Antipsychotic. D1, D2 antagonist
Zalcitabine nucleoside reverse transcriptase inhibitor

Table 5.3: Table of hits selected from the Prestwick library which produced distinct
phenotypic responses between cell-lines. SERT: serotonin reuptake transporter, SSRI:
selective serotonin reuptake inhibitor, 5-HT: 5-hydroxytryptamine, D1/2 dopamine
receptor.

line-pairs were ranked in terms of decreasing ∆θ values. Compounds which demonstrated distinct
phenotypic response were triaged by replication studies to confirm activity and selecting those with
interesting MoAs for further studies as well as removing several microtubule disruptors. Twelve hits
were selected for further study (table 5.3) based on phenotypic activity as determined with the l1
norm from the negative control in principal component space, and rank by their ability to induce
distinct phenotypic responses between the cell-lines measured with the TCCS method. Selected
compounds were repeated in triplicate, and ranked by ∆θ value for each replication, and used to
calculate a rank product to rank overall distinct phenotypic effects between cell-lines (table 5.4
shows the top 15 compound-cell-line pairs).

5.2.2 Validation in 2D and 3D apoptotic assays

2D

Using GFP expressing cell-lines with DRAQ7 as a marker of cell-death I performed concentration-
response experiments with the 12 selected compounds. Viable cells expressed nuclear GFP which
was used as a simple readout of cell number, although the DRAQ7 apoptotic marker – which
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Cell line A Cell line B Compound Rank product % False positive

HCC1569 MDA231 Podophyllotoxin 7.01 3.88e−4

KPL4 MDA231 Podophyllotoxin 9.06 4.66e−4

MDA231 SKBR3 Podophyllotoxin 12.11 8.54e−4

HCC1569 HCC1954 Fluvoxamine 12.22 6.31e−4

HCC1569 SKBR3 Ivermectin 13.16 6.57e−4

HCC1569 HCC1954 Triflupromazine 13.66 6.28e−4

HCC1954 MCF7 Ivermectin 16.54 9.52e−4

HCC1954 SKBR3 Protriptyline 22.04 1.90e−3

HCC1569 MDA231 Cisapride 22.10 1.73e−3

HCC1954 SKBR3 Fluvoxamine 23.37 1.81e−3

HCC1954 T47D Triflupromazine 23.49 1.68e−3

MDA231 T47D Cisapride 25.34 1.88e−3

HCC1569 MDA157 Zalcitabine 25.96 1.88e−3

HCC1954 T47D Protriptyline 26.14 1.76e−3

Table 5.4: Table showing the 12 selected Prestwick compounds repeated in triplicate,
which were ranked by decreasing difference in phenotypic response between cell-lines
and used to calculate a rank product. Table shows the top 15 out of 266 compound-
cell-line pairs when ranked by increasing rank product. MDA231: MDA-MB-231.
MDA157: MDA-MB-157.

fluoresces when bound to DNA but does not penetrate intact cell membranes – did not provide
robust or consistent data, as DRAQ7 positive apoptotic cells fluoresced only briefly before detaching
from the bottom of the well and drifting out of the plane of focus (figure 5.3). Therefore cell
count using the GFP labelled nuclei was instead used as the readout in the concentration response
experiment.

Figure 5.3 Representative cropped images
from the incucyte. GFP-labelled (green)
T47D cells with DRAQ7 apoptotic marker
(red) and phase contrast image (grey). Whole
images from which these are cropped measure
2.15 mm2. (Left) 0.1% DMSO negative con-
trol cells. (Right) 0.3 µM staurosporine posi-
tive control.

Using 8 semi-log concentrations ranging from 0.3 nM to 1 µM and GFP cell-count normalised
to the DMSO negative control as a measure of cell-viability, concentration response curves were
plotted for the 12 compounds and 8 cell-lines at the 72 hour time point (figure 5.4). Despite
a selection criteria aiming to limit overtly cytotoxic compounds, 11 out of the 12 compounds
demonstrated some form of concentration dependent reduction in cell-count in at least one of
the cell-lines. Zalcitabine was an exception with very little reduction in cell count, although at 1
µM concentration there was some evidence of reduced cell-count in MDA-MB-157 and HCC1569
cell-lines. The HCC1569 cell-line demonstrated the greatest sensitivity to the majority of the tested
compounds, especially to protryptyline which at 1 µM effectively killed all cells whilst largely un-
affecting the 7 other breast cancer cell-lines. Podophyllotoxin proved to be especially potent, with
a relative cell-count below 50% at the lowest tested concentration of 0.3 nM in 5 of the cell-lines.
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Figure 5.4: Concentration-response curves for 12 hits from the Prestwick library. Com-
pounds were used in a 2D viability assay measuring cell count expressed as the percent-
age of the DMSO control after 72 hours.
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Figure 5.5: Example images of T47D tumour spheroids as imaged on the ImageXpress
using transmitted light (grey), FITC (green) and CY5 (red) filters to visualise spheroid
morphology. Scale bar = 300 µm

3D spheroid models

A more complex 3D tumour spheroid assay was used to determine the functional effects of the 12
selected compounds in a more physiologically relevant environment. All eight cell-lines were found
to form consistent spheroids using the aggregation through centrifugation method and spheroid
sizes with diameters around 500 µm. Mirroring the 2D assay, GFP labelled cell-lines were used
alongside DRAQ7 to measure cell viability and cell death, although in the case of spheroids the
DRAQ7 staining was more consistent as DRAQ7-positive apoptotic cells remained aggregated in
the spheroid in the focal plane (figure 5.5). Spheroid area proved to be a poor readout for cell
viability as cytotoxic treatment caused the spherical structure to collapse and disaggregate and so
when imaged in 2D from above spheroid collapse results in an increase in measured spheroid area.
When increasing doses of cytotoxic compound were tested on spheroid this resulted in a paradoxical
increase in spheroid area, even in the GFP channel as some residual GFP staining remained despite
cell-death. A measure of integrated intensity however proved a more intuitive readout of cell death
within 3D spheroids and a comparison between the GFP and DRAQ7 channels revealed that the
integrated intensity of GFP was more consistent and produced more robust concentration responses
with staurosporine.

Concentration response studies in 3D tumour spheroids with the 12 hits from the Prestwick
library at 0.3 nM to 1 µM in semi-log concentrations after 72 hours revealed a decrease in sensitivity
to the compounds compared to results obtained in the 2D assay (figure 5.6). Of the compounds
which produced a concentration dependent response in 3D, most only elicited a decrease in GFP
integrated intensity at the maximum 1 µM concentration tested. The increased sensitivity of the
HCC1569 cell-line compared to the others tested was not observed in 3D. Of the 12 compounds
tested podophyllotoxin and niclosamide produced robust sigmoidal concentration response curves,
although not in all of the cell-lines.
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Figure 5.6: Concentration-response curves for 12 hits from the Prestwick library. Com-
pounds were used in a 3D tumour spheroid viability assay measuring integrated inten-
sity of GFP-labelled nuclei after 72 hours of compound treatment normalised against
the negative control.
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5.2.3 RPPA

Three compounds (ivermectin, protryptyline and niclosamide) were selected from the initial hit list
based on their reproducibility and distinct response between cell-lines in both the morphological
and viability assays. These compounds were used in a proteomic study, in which the 8 breast cancer
cell-lines were grown in 2D or 3D culture conditions and treated with 100 nM of compound for
72 hours, after which cells were lysed and RPPA was used to measure the abundance of 60 proteins
and phosphoproteins. Of the 60 proteins and phosphoproteins analysed 13 were discounted due
to poor quality data such as low-signal to noise, poor spot morphology of samples printed on the
RPPA chip and non-homogeneous or non-specific binding of antibodies to sample and/or chip –
leaving 47 measurements per sample.

Cell-line and growth environment has a greater effect on protein expression than compound

treatment

These results show that the 3 active compounds (ivermectin, niclosamide and protryptyline) selected
for RPPA analysis produce similar pathway response within in each cell-line. However, compound
induced pathway response diverge between distinct cell-lines and between 2D and 3D cell culture
conditions. Using the readout from the 47 measured epitopes, the 64 samples displayed obvious
clustering according to cell-line in hierarchical clustering and projecting the data into 2 dimen-
sions (figure 5.7 A,B,C). Within the cell-line clusters there were distinct sub-clusters showing clear
separation in the protein expression profiles of the two environmental conditions (figure 5.7 D).
Interestingly, growth environment (2D versus 3D culture conditions) produced a more distinct
change in protein expression profile than compound treatment at 100 nM (figure 5.7 E).

Resistant cell lines treated with niclosamide or ivermectin show decreased expression of

E-cadherin

From the 2D concentration response studies it appeared that the cell-lines HCC1954 and SKBR3
both showed resistance to the anti-helmintic drugs niclosamide (figure 5.9 A) and ivermectin (fig-
ures ?? A) By aggregating the sensitive (HCC1569, KPL4, MCF7, MDA-MB-157, MDA-MB-231,
T47D) and insensitive (HCC1954 and SKBR3) RPPA data, it was possible to look at changes in
protein expression shared among the differentially responding cell-lines. Using data normalised to
the DMSO control for each cell-line, and averaging the sensitive or insensitive cell-lines together
revealed that both niclosamide and ivermectin treatment caused a distinct reduction of E-Cadherin
in resistant cell-lines. Cyclin D1 was another protein which was upregulated in the resistant cell-
lines in response to both anti-helmintic treatments, which was not mirrored in sensitive cell-lines
(figure 5.9 % 5.10 C&D).

Protryptyline shows different resistant cell-lines in 2D and 3D

In the 2D concentration response assay HCC1569 demonstrated a singular sensitivity to the tri-
cyclic antidepressant protryptyline (figure 5.11 A). However, repeating the concentration response
assay in 3D tumour spheroids ameliorated this sensitivity, and instead another cell-line – HCC1954
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Figure 5.7: Globally normalised abundance of 64 samples, consisting of 8 cell-lines, 4
treatments and 2 growth conditions, measuring abundance of 47 proteins and phos-
phoproteins with RPPA. (A) Hierarchical clustering of protein samples from cells
grown in 2D culture. (B) Hierarchical clustering of protein samples from cells grown
in 3D spheroids. (C) Embedding of protein samples colour coded by cell-line. (D)
Embedding of protein samples colour coded by environment conditions, either 2D
culture of 3D tumour spheroids. (E) Embedding of protein samples colour coded by
drug treatment.



60 Screening approved drugs across 8 breast cancer cell lines

G
S

K
3

a
lp

ha
/b

et
a 

P
 S

er
21

/S
er

9
A

kt
 P

 S
er

47
3

B
id

A
ur

or
a 

A
/B

/C
 P

 T
hr

28
8/

T
hr

23
2/

T
hr

19
8

A
M

P
K

 a
lp

ha
 P

 T
hr

17
2

E
C

ad
he

rin
be

ta
C

at
en

in
S

rc
 

G
S

K
3

b
et

a
IG

F
1

R
 b

et
a

E
G

F
R

 P
 T

yr
11

73
S

ta
t3

 P
 Y

70
5

IG
F

1
R

 b
et

a 
P

 T
yr

11
62

,T
yr

11
63

F
LT

3 
P

 T
yr

59
1 

P
 T

yr
59

1
E

rb
B

2
/H

er
2/

E
G

F
R

 P
 T

yr
12

48
/T

yr
11

73
P

LC
g

am
m

a1
 P

 T
yr

78
3

S
H

P
2 

P
 T

yr
54

2
S

rc
 (

fa
m

ily
) 

P
 T

yr
41

6
M

N
K

1 
(M

K
N

K
) 

P
 T

hr
19

7,
T

hr
20

2
4E

B
P

1 
P

 S
er

65
B

ad
 P

 S
er

11
2

H
S

P
27

 (
H

S
P

B
1)

 P
 S

er
78

S
ta

t3
B

im
 P

 S
er

69
p4

4/
42

 M
A

P
K

 (
E

R
K

1/
2)

 P
 T

hr
20

2/
T

hr
18

5,
T

yr
20

4/
T

yr
18

7
R

b 
P

 S
er

78
0

H
is

to
ne

 H
2A

.X
 P

 S
er

13
9

B
cl

2
IR

S
1

 P
 S

63
6/

63
9

C
rk

L
A

M
P

K
 a

lp
ha

p4
4/

42
 M

A
P

K
 (

E
R

K
1/

2)
P

K
C

 (
pa

n)
 P

 S
er

66
0 

(b
et

a
2)

p2
1 

C
IP

/W
A

F
1 

p 
T

hr
14

5
A

kt
LK

B
1

C
hk

1 
P

 S
er

34
5

IR
S

1
be

ta
C

at
en

in
 P

 S
er

33
,S

er
37

,T
hr

41
E

rb
B

1
/E

G
F

R
B

cl
x

T
au

 
T

au
 P

ho
sp

ho
/n

on
 P

ho
s 

se
r 

30
5

C
yc

lin
 D

1 
P

 T
hr

28
6

C
yc

lin
 D

1
F

R
A

1 
(R

20
)

A
T

M
/A

T
R

 S
ub

st
ra

te
 P

 S
er

/T
hr

3D MCF7 protryptyline
3D MCF7 ivermectin
3D MCF7 niclosamide
2D HCC1569 niclosamide
2D HCC1569 ivermectin
2D HCC1569 protryptyline
3D HCC1954 niclosamide
3D HCC1954 ivermectin
3D HCC1954 protryptyline
3D HCC1569 protryptyline
3D HCC1569 ivermectin
3D HCC1569 niclosamide
2D MDAMB157 ivermectin
2D MDAMB157 niclosamide
2D MDAMB157 protryptyline
3D MDAMB157 protryptyline
3D MDAMB157 ivermectin
3D MDAMB157 niclosamide
2D MDAMB231 ivermectin
2D MDAMB231 niclosamide
2D MDAMB231 protryptyline
3D MDAMB231 protryptyline
3D MDAMB231 ivermectin
3D MDAMB231 niclosamide
2D SKBR3 protryptyline
2D SKBR3 ivermectin
2D SKBR3 niclosamide
3D SKBR3 ivermectin
3D SKBR3 niclosamide
3D SKBR3 protryptyline
2D MCF7 niclosamide
2D MCF7 ivermectin
2D MCF7 protryptyline
2D T47D niclosamide
2D T47D ivermectin
2D T47D protryptyline
3D T47D niclosamide
3D T47D ivermectin
3D T47D protryptyline
2D HCC1954 niclosamide
2D HCC1954 ivermectin
2D HCC1954 protryptyline
3D KPL4 protryptyline
3D KPL4 ivermectin
3D KPL4 niclosamide
2D KPL4 protryptyline
2D KPL4 ivermectin
2D KPL4 niclosamide

S
am

pl
e

2

0

2

4

Figure 5.8: Heatmap of hierarchical clustering of globally normalised protein expres-
sion across cell-lines, growth environments and compound treatments.
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Figure 5.9: Insensitivity of HCC1954 and SKBR3 to niclosamide in 2D. (A) Concen-
tration response curve of normalised cell-count of 8 cell-lines treated with niclosamide
(as shown in figure 5.4). (B&C) Mean change in protein abundance of cells grown in
2D treated with 100 nM drug compared to DMSO treated cells, averaged over mul-
tiple cell-lines. Y-axis indicates log2 fold change from DMSO treated cells, error bars
indicate ± standard deviation.



62 Screening approved drugs across 8 breast cancer cell lines

Figure 5.10: Insensitivity of HCC1954 and SKBR3 to ivermectin in 2D. (A) Concen-
tration response curve of normalised cell-count of 8 cell-lines treated with ivermectin
(as shown in figure 5.4). (B&C) Mean change in protein abundance of cells grown in
2D treated with 100 nM drug compared to DMSO treated cells, averaged over mul-
tiple cell-lines. Y-axis indicates log2 fold change from DMSO treated cells, error bars
indicate ± standard deviation.
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– showed a slight response to protryptyline which was not seen in the 7 other breast cancer cell-lines
(figure 5.12 A). RPPA data indicated that in 2D the sensitive HCC1569 cell-line had decreased
levels of IGF-β and MAPK phosphorylation compared to the resistant cell-lines (figure 5.11 B
& C), while in 3D the sensitive HCC1954 cell-line had a similar decrease in IGF-β although a
contradictory 2-fold increase in phosphorylated MAPK (figure 5.12 B).

Cells cultured in tumour spheroids have increased Src and decreased Aurora kinase

phosphorylation

Cells grown in 2D on tissue culture plastic are subjected to different environmental stimuli to
those grown in 3D, with cell-to-cell adhesions, presence of extracellular matrix and differences in
oxygen and nutrient supply all effecting intracellular signalling and therefore protein expression
and response to external stimuli. Using the RPPA data from the negative control treated samples
grown in 2D and 3D revealed a number of proteins which had altered expression dependent on
the environmental conditions. In 3D conditions the phosphorylated form of Aurora A/B/C had
a two-fold decrease over cells grown in 2D, while Src kinase and AMPK alpha showed a 2 and
4-fold increase respectively in cells grown in 3D compared to 2D (figure 5.13). The decrease in
phosphorylated aurora kinase in 3D spheroids may be indicative of the cell-cycle arrest commonly
seen in cells located towards the centre of the spheroid.77 For certain proteins such as AMPK alpha
there is a large variation between the cell-lines and as there is only a single sample per condition
it is not possible to determine if this is an inherent difference in the response to environmental
conditions between the cell-lines or simply noise within the data. The elevation of Src kinase in 3D
spheroid cultures (figure 5.13) is potentially interesting in relation to the general decrease in drug
sensitivity of hit compounds observed in 3D spheroid and 2D assays (figures 5.4 & 5.6).

5.3 Discussion

A number of approved compounds were identified with a high-content screen which resulted
in distinct phenotypic responses between breast cancer cell-lines. Following validation in 2D
and 3D models of cell proliferation and survival, two anti-helmintic compounds (ivermectin and
niclosamide) and a antidepressant (protryptyline) were selected for further investigation of their
anti-cancer MoA. Proteomic analysis of cells grown in 2D and 3D tumour spheroids treated with
these compounds revealed that both anti-helmintic treatments caused a reduction in E-cadherin lev-
els in resistant cell-lines which was not observed in the sensitive cell-lines. Reduction in E-cadherin
expression levels has previously been associated with epithelial-mesenchymal transition during tu-
mour progression and the onset of more cancer stem-cell like phenotypic associated with drug
resistance.78,79 Cyclin D1 was another protein upregulated in the resistant cell-lines in response to
both anti-helmintic treatments. Several studies have implicated elevated Cyclin D1 with drug re-
sistance in part through a dual role in promoting cell proliferation and inhibition of drug-induced
apoptosis.80 Previous transcriptomic studies have also shown that Cyclin D1 over-expression in
tumours alters the expression of genes controlling cell metabolism and disrupt REDOX balance
by producing reactive oxygen species and oxidative stress signalling pathways which influence drug
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Figure 5.11: Sensitivities of cell-lines in 2D assays of cell viability, and corresponding
changes in protein levels of sensitive and resistant groups. (A) Concentration response
curve of integrated intensity of GFP expressing cell-lines treated with protryptyline in
2D cell-culture. (B-C) Mean changes in protein abundance of cells treated with 100
nM protryptyline. Y-axis indicates log2 fold-change from DMSO treated cells, error
bars indicate ± standard deviation. (B) RPPA data of the sensitive HCC1569 cell-line
grown in 2D cell culture treated with protryptyline. (C) RPPA data of the 7 resistant
cell-lines grown in 2D cell-culture treated with protryptyline.
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Figure 5.12: Sensitivities of cell-lines in 3D assays of cell viability, and corresponding
changes in protein levels of sensitive and resistant groups. (A) Concentration response
curve of integrated intensity of GFP expressing cell-lines treated with protryptyline in
3D tumour spheroids. (B-C) Mean changes in protein abundance of cells treated with
100 nM protryptyline. Y-axis indicates log2 fold-change from DMSO treated cells,
error bars indicate ± standard deviation. (B) RPPA data of the sensitive HCC1954
cell-line grown in 3D spheroids treated with protryptyline. (C) RPPA data of the 7
resistant cell-lines grown in 3D spheroids treated with protryptyline.
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Figure 5.13: Comparison of protein expression between cells grown in 3D or 2D envi-
ronments. The median difference from combined data from 8 cell-lines treated with 0.1
% DMSO. Difference is represented as the log2 fold change of 3D expression divided
by 2D expression. Proteins with increased expression in 3D shown in blue, those with
decreased expression in 3D relative to 2D shown in orange/red. Error bars indicate ±
median absolute deviation of the 8 cell-lines.
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sensitivity.81 It was also found that culturing tumour cells in complex 3D environments resulted in
a number of changes in protein levels of cell-cycle regulators, which is in agreement with existing
studies which have found reduced proliferation and cell-cycle arrest of many cells within the core
of a spheroid.77 The reduced proliferation of cells when cultured in tumour spheroids may also
explain the reduced sensitivity of cell-lines in response to all test compounds when compared to
those grown in 2D (figure 5.4 and 5.6), as many cytotoxic compounds act through cell-cycle check-
points or microtubule dynamics during cell-division. In addition, RPPA analysis further revealed
elevated levels of the non-receptor tyrosine kinase Src in 3D spheroid cultures which is associated
with cancer cell survival signalling and a common pathway of drug resistance in breast cancer and
other tumour types.82

The approved compounds identified in this work which produce distinct morphological effects
between different cell-lines may be a consequence of altered signalling pathways, differences in ex-
pression of target receptors or one of many other biologically interesting possibilities. However, a
simple explanation would be that the morphological differences observed are actually differences
in sensitivity caused by multi-drug resistance efflux pumps. Elevated expression of ATP bind-
ing cassette (ABC) drug efflux transporters are found in many types of cancer, and are suggested
to contribute towards chemo-resistance in breast cancer.83 Considering certain cell-lines such as
HCC1569 were commonly more sensitive to a number of the tested compounds (figure 5.4), it
would be worthwhile to determine if expression of multi-drug efflux pumps correlated with cell-
line sensitivity and may explain a number of the distinct responses observed.

The majority of the hits found in this phenotypic screen (table 5.3) have also been proposed as
potential candidates for repurposing. Amodiaquine originally developed as a selective anti-malarial
treatment has been reported to have anti-adipogenic properties.84 Multiple studies have proposed
repurposing the anti-helmintic drugs ivermectin and niclosamide as potential anti-cancer treat-
ments,85,86 cisapride as a treatment for Chagas disease,87 dilazep to aid HIV treatment,88 fluvox-
amine as an inhibitor of glioblastoma invasion,89 protryptyline as a treatment for osteosarcoma,90

paroxetine as a neuroprotective agent91,92 and podophyllotoxin and triflupromazine as anti-cancer
treatments.86,93 A potential issue with the Prestwick chemical library screen performed in this study
is the concentration at which the compounds are screened at. The choice of which concentration to
screen a compound library at is an open problem in the field, typically compound libraries consist
of lead-like molecules which have not been optimised for potency – which is not the case for many
of the highly potent compounds found in the approved Prestwick library. It may be a possibility
that screening at 1 µM and discarding compounds which caused considerable toxicity has removed
many potent and selective hits from the analysis, and screening at a lower concentration may have
yielded a considerably different selection of hit compounds. Similarly, performing RPPA analysis of
pathway effects across concentration-response and time-series studies for each compound may re-
veal further insights into the pathways underpinning the anti-cancer activity than has been revealed
by the single (100 nM) experiment performed in this project.

The functional assays used in this work are using cell-count (and integrated intensity of nuclei
staining in the case of 3D models) as a surrogate measurement for cytotoxicity or cell-proliferation.
This functional readout is not ideal as the compounds chosen from the high-content screen were
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selected based preferentially on morphology measurements and their limited cytotoxicity. The orig-
inally proposed functional assay was to test compound effect on the cell’s ability to migrate through
an extracellular matrix. After trialling both 2D scratch wound assays through collagen and Ma-
trigel substrates as well as 3D cell invasion assay from tumour spheroids embedded in extracellular
matrix, I found that only the MDA-MB-231 cell-line was capable of migrating through collagen
or Matrigel. So while it would have been possible to confirm hits from the high-content screen in
a single cell-line, it would not provide a comparison of functional activity between the cell-lines.

In summary the use of more complex cellular models to follow up hits resulting from a multipara-
metric high-content screen does offer an opportunity to gain an understanding of the functional
affects of altered cellular morphology, however the choice of functional assay needs to be carefully
considered to ensure it is relevant and robust. Ideally a morphological change in simple 2D assay
that is predictive of a functional response in a more complex and disease relevant 3D cell model
offers an opportunity to combine large chemical libraries with more predictive and biologically rel-
evant assays without the considerable cost burden associated with screening complex cell models at
scale.

5.4 Methods

5.4.1 Imaging and image analysis

Cells were stained following the cell painting protocol, imaged with the ImageXpress and images
were analysed with cellprofiler as previously described in the general methods (chapter 2).

5.4.2 Compound library

The compound library used was the Prestwick chemical library of 1280 off-patent small molecules,
95% of which are approved drugs (FDA, EMA or others) stored as 10 mM stocks in DMSO. For
screening the library was assayed at a 1 µM final concentration.

5.4.3 Multivariate Z-factor to determine assay quality

A multivariate Z-factor as defined by Kümmel et al.76 is a multi-variate adaptation of the original Z-
factor,94 which is a measure of assay robustness in high-throughput screening. The original measure
is univariate, defined as:

Z-factor = 1− 3(σp + σn)

|µp − µn|
(5.1)

where σp and σn are the standard deviations of the positive and negative control, and µp and µn

the means of the positive and negative control. A Z-factor of greater than 0.5 shows a very clear
separation of positive and negative control, and is interpreted as an ideal assay. The adaption of
Kümmel et al. uses linear discriminant analysis to find a combination of features to best separate
the positive and negative controls, and calculates the Z-factor on the first linear discriminant.
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5.4.4 Identifying hits

Hits were identified as those compounds which caused distinct phenotypic responses between cell-
lines, excluding compounds which demonstrated significant toxicity. This was first carried out
by screening the entire 1280 compound library across the panel of eight cell-lines at 1 µM con-
centration in 384-well optical bottomed plates (see chapter 2). Following data pre-processing,
distinct phenotypic responses between active compounds were calculated using the TCCS method
(chapter 4). An initial hit list was created by ranking compounds and cell-line pairs by decreas-
ing ∆θ. Compounds were triaged by removing those with less interesting mechanistic proper-
ties such as microtubule disruptors leaving 14 hits. From these 14 hits, 2 were not easily avail-
able due to lack of a commercial supplier (pinaverium bromide) or being a controlled substance
(3,4-dimethoxyphenethylamine). The remaining 10 compounds were re-screened in triplicate at
8 semi-log concentrations ranging from 0.3 nM to 1 µM across the eight-cell lines to confirm a
concentration-response relationship using the l1 norm from the negative control as a measure of
compound response. Of those compounds that validated with a robust concentration dependent
response ∆θ values were calculated between all pairs of cell-line for each replicate dataset, and
ranked by order of decreasing ∆θ, so that compounds-cell-line-pairs with a more distinct phe-
notypic response received a lower rank. A rank product95 was calculated from the replicates and
compound-cell-line-pairs were sorted by increasing rank product. Compounds that demonstrated
repeatability and significantly low rank-products were carried onto more complex 2D and 3D apop-
tosis assays.

Rank product

A rank product algorithm with permutation-based significance testing was implemented in python.
Given a dataset of k replicates and n ranks, an n by k matrix with each row representing ranks from
[1..n]. For [1..p] where p is the number of permutations, the ranks in each row are shuffled and the
geometric mean calculated for each column. This yields a p by n matrix of permuted rank products
which are used to count how many times the observed rank products from the replicated data is
smaller than or equal to the permuted rank products, giving a value c. The averaged expected value
E is then calculated as E = p/c which is then used to calculate the percentage of false positives as
E divided by the rank of compound-cell-line-pair ordered by increasing rank-product value.

5.4.5 2D apoptosis assay

GFP-labelled cell-lines were seeded into the inner 60 wells of a flat-bottomed tissue culture treated
96-well plate (#655180 Greiner), with approximately 10,000 cells per 90 µL of DMEM media,
with the addition of 10 µL of 10% DRAQ7 apoptotic marker (#DR710HC biostatus), for a final
DRAQ7 concentration of 3 µM. Assay plates were then incubated at 37◦C, 5% CO2 incubator for
24 hours before addition of compounds. Compounds were diluted in DMSO at 1000X concen-
tration and assay plates were treated with the use of an intermediate plate as described in chapter
2. Compound concentrations ranged from 0.3 nM to 1 µM with 0.1 % DMSO as a negative
control and 300 nM staurosporine as a positive control. After compound treatments assay plates
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were then incubated for an additional 72 hours in the presence of compounds imaging with the
incucyte ZOOM, imaging 3 sites per well in phase, red, and green channels every 3 hours. Us-
ing the Incucyte ZOOM software, cells were counted in both the red and green channels for each
site and timepoint and exported as csv files. Data was merged with compound name and con-
centration data and filtered to select just the 72 hour time point. Using the cell-count from the
GFP channel, the count for each well then was expressed as a percentage of the median DMSO
values per plate. Concentration response-curves were fitted in GraphPad Prism (version 5) using a
4-parameter non-linear curve fit with least-squares.

5.4.6 Spheroids

Creating spheroids

Spheroids were created by seeding approximately 10,000 GFP-expressing cells per well in 50 µL
of media into each well of a 96-well ultra low attachment U-bottomed plate (#7007 Corning).
A solution containing 4% growth-factor reduced Matrigel (#35623 Corning) and 2% DRAQ7
apoptotic stain (#DR710HC biostatus) was made in cold media, and 50 µL per well was added to
the existing cell suspension, for a final Matrigel concentration of 2% and 1% DRAQ7. Plates were
then centrifuged for 10 minutes at 1000X G and 4◦ with brake speed reduced to pellet down the
cells in the centre of each well. After centrifugation plates were placed in a tissue culture incubator
for 24 hours before addition of compounds. Compounds from a 1000x source plate were diluted
1:50 by transferring 3 µL from the source plate to an intermediate plate containing 150 µL of
media. From the intermediate plate 5 µL were transferred to the spheroid assay plate containing
100 µL for a final dilution of 1:1000 and a DMSO concentration of 0.1%. Following compound
addition spheroid plates were incubated for an additional 72 hours.

Imaging spheroids

Spheroids were imaged on the ImageXpress using the 4X objective lens in 3 channels (transmitted
light, GFP and CY5). Images were captured by first detecting the well-bottom in the centre of the
U-bottomed well with a laser-based autofocus and offsetting by the well thickness, then capturing
images in a z-stack at 8 focal planes spaced at 50 µm intervals for a total range of 350 µm. Z-stacks
of the GFP and CY5 fluorescent channels were collapsed into a single image per channel using
a maximum intensity projection, while the z-stack of transmitted light images were transformed
using a minimum intensity projection.

5.4.7 RPPA

Protein extraction

2D cells. Protein extraction from 2D cells was performed by first seeding approximately 50,000
cells per well of a 6-well plates in 3 mL of media followed by incubation in a tissue culture incubator
for 24 hours. Compound addition was performed by diluting compound stocks in DMSO 1:50
in media to an intermediate plate, followed by 1:20 from the intermediate plate to the assay plate
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for a 1000-fold dilution and 0.1% DMSO. Assay plates were then incubated for an additional 72
hours, after which wells were washed with 1 mL of room temperature PBS followed by addition
of 100 µL of room temperature CLB1 (Zeptosens, Bayer) lysis buffer. Cells and lysis buffer were
then scraped into 1.5 mL eppendorf tube and incubated at room temperature for 30 minutes with
frequent vortexing. After 30 minutes of incubation lysis solution was centrifuged for 10 minutes at
13,000X G at room temperature and the supernatant was transferred into new 1.5 mL eppendorf
tubes.

Spheroids. Protein extraction from spheroids was performed by first growing spheroids in 96-well
plates following the same protocol as for imaging. 20 spheroids per treatment group were extracted
with a pipette into a 1.5 mL eppendorf tube. Pipette tips were widened by cutting with scissors. The
spheroids were then centrifuged for 30 seconds at 13,000X G at room temperature to pellet at the
bottom of the tube, media was removed with a pipette and replaced with room temperature PBS.
Spheroids were pelleted again, PBS removed and replaced with 75 µL of room temperature CLB1
lysis buffer. The spheroid lysis buffer mixture was incubated at room temperature for 30 minutes
with frequent vortexing to break up cell aggregates. Following incubation the lysis solution was
centrifuged for 10 minutes at 13,000X G at room temperature, and supernatant extracted into a
new 1.5 mL eppendorf tube.

Determining protein concentration. Protein concentration was determined with a Bradford as-
say, using a standard curve of known BSA concentrations and the addition of CLB1 lysis buffer to
control for the lysis buffer concentration of the samples. A curve of known BSA concentrations was
created using 2 mg/mL BSA protein standard (#23209 Thermo Scientific) diluted in PBS, with a
1:20 concentration of lysis buffer (see table 5.5). Samples were diluted 1:20 in PBS by adding 2.5
µL of sample to 47.5 µL of PBS and mixed with a vortex. 10 µL of diluted samples and standard
were added to each well of a flat-bottomed 96-well plate, followed by 240 µL of room temperature
Coomassie Plus Protein Assay (#1856210 Thermo Scientific) and incubated at room temperature
for 10 minutes. Plates were then read with a microplate reader (BIORAD iMark) at a wavelength
of 595 nm. The protein concentrations of samples were calculated from a linear model of the BSA
standard curve. All protein samples were normalised to 1 mg/mL by dilution in CLB1 lysis buffer.

BSA final
concentration (mg/mL)

BSA 2 mg/mL
(µL) PBS (µL) Lysis Buffer (µL)

0 0 95 5
0.05 2.5 92.5 5
0.1 5 90 5
0.15 7.5 87.5 5
0.2 10 85 5
0.3 15 80 5
0.4 20 75 5
0.6 30 65 5

Table 5.5: Volumes for the BSA standard curve. Lysis buffer was CLB1, the same as
used for the sample preparation.
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Zeptosens RPPA platform

The RPPA study was performed on a Zeptosens platform by the Protein and Antibody Microarray facility
at the Edinburgh Cancer Research UK Centre.i

With the concentration-normalised protein lysates a final 4-fold concentration series of; 0.2;
0.15; 0.1 and 0.75 mg/mL in spotting buffer CSBL1 (Zeptosens-Bayer) was created. The diluted
concentration series of each sample was printed onto hydrophobic Zeptosens protein microarray
chips (ZeptoChipTM, Zeptosens-Bayer) under environmentally controlled conditions (constant
50% humidity and 14°C temperature) using a non-contact printer (Nanoplotter 2.1e, GeSiM).
A single 400 pL droplet of each lysate concentration was deposited onto the Zeptosens chip. A
reference grid of Alexa Fluor 647 conjugated BSA was spotted onto each sub-array, each sample
concentration series was spotted in between reference columns. After array printing, the arrays
were blocked with an aerosol of BSA solution using a custom designed nebuliser device (Zepto-
FOGTM, Zeptosen-Bayer) for 1.5 h to prevent non-specific antibody binding. The protein array
chips were subsequently washed in double deionised water and dried prior to performing a dual
antibody immunoassay comprising of a 16 h incubation of primary antibodies (table 5.6) followed
by 2.5 h incubation with secondary Alexa Fluor 647 conjugated antibody detection reagent (anti-
rabbit or anti-mouse 647 Fab, Invitrogen). Following secondary antibody incubation and a final
wash step in BSA solution, the immunostained arrays were imaged using the ZeptoREADER in-
strument (Zeptosens-Bayer). For each-sub-array, five separate images were acquired using differ-
ent exposure times ranging from 0.5-10 s. Microarray images representing the longest exposure
without saturation of fluorescent signal detection were automatically selected for analysis using the
ZeptoViewTM 3.1 software. A weighted linear fit through the 4-fold concentration series was used
to calculate the relative fluorescence intensity value for each sample replicate. Local normalisation
of sample signal to the reference BSA grid was used to compensate for any intra- or inter-array/chip
variation. Global normalisation was performed using Tukey’s median polish.

Hierarchical clustering of globally normalised RPPA data

Figure 5.7 Globally normalised RPPA data was subset into two separate datasets consisting of
either samples grown in 2D or 3D, and negative control samples were removed. A correlation
distance matrix was calculated between rows (samples) of the two datasets, and used to calculate a
hierarchical clustering of the data using “scipy.cluster.hierarchy.linkage” with average linkage and
euclidean distance.

Figure 5.8 Globally normalised RPPA data was used in the form of a matrix with rows as samples
and columns as proteins. A heatmap was created with “seaborn.clustermap” using a Euclidean
distance metric, and z-scoring the columns (antibodies). Distance between clusters for hierarchical
clustering was calculated with the average linkage method in scipy.

iA thank you to Alison Munro (University of Edinburgh) for running the 64 samples on the Zeptosens RPPA platform.
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Antibody Supplier Cat. # Type Pathway, Function

ATM/ATR Substrate P Ser/Thr CST 2851 rabbit Cell Cycle Control, DNA Repair
Aurora A/B/C P Thr288/Thr232/Thr198 CST 2914 rabbit Cell Cycle
Bad P Ser112 CST 9291 rabbit Apoptosis, Akt Signaling
CrkL P Tyr207 CST 3181 rabbit Adaptor Proteins
FLT3 P Tyr591 P Tyr591 CST 3461 rabbit Receptors, Tyrosine Kinases, Cytokine Receptor
HSP27 (HSPB1) P Ser78 CST 2405 rabbit Chaperones, MAPK Signaling, Stress pathway
MNK1 (MKNK) P Thr197,Thr202 CST 2111 rabbit MAPK Signaling, Translational Control
PKC (pan) P Ser660 (beta-2) CST 9371 rabbit Calcium, cAMP, Lipid Signaling, PKC Signaling
IGF-1R beta P Tyr1162,Tyr1163 Invitrogen 44-804G rabbit Metabolism, Receptors, Tyrosine Kinases
ErbB-1/EGFR CST 2232 rabbit Akt & MAPK Signaling, Receptors, Tyrosine Kinases
ErbB-2/Her2/EGFR P Tyr1248/Tyr1173 CST 2244 rabbit Akt & MAPK Signaling, Receptors, Tyrosine Kinases
EGFR P Tyr1173 CST 4407 rabbit Akt & MAPK Signaling, Receptors, Tyrosine Kinases
p44/42 MAPK (ERK1/2) CST 9102 rabbit MAPK Signaling
p44/42 MAPK (ERK1/2) P Thr202/Thr185... CST 4370 rabbit MAPK Signaling
Src CST 2109 rabbit ErbB Signaling, VEGF Signaling, Adhesion
Akt CST 9272 rabbit Akt Signaling, Metabolism
Akt P Ser473 CST 4060 rabbit Akt Signaling, Metabolism
Chk1 P Ser345 CST 2348 rabbit Cell Cycle Control
c-Myc CST 5605 rabbit MAPK Signaling, Transcription Factors
E-Cadherin CST 3195 rabbit Adhesion
Rb Abcam/Epitomics ab113074 rabbit Apoptosis, Cell Cycle Control
4E-BP1 P Ser65 CST 9451 rabbit Metabolism, Translational Control, mTOR signal...
beta-Catenin CST 9562 rabbit Wnt Signaling
beta-Catenin P Ser33,Ser37,Thr41 CST 9561 rabbit Wnt Signaling
Cyclin D1 CST 2926 mouseIgG2a Cell Cycle Control
LKB1 CST 3047 rabbit mTOR Signaling
GSK-3-alpha/beta P Ser21/Ser9 CST 9331 rabbit Akt Signaling, Metabolism, Wnt Signaling, Hedg...
p53 P Ser15 CST 9284 rabbit Apoptosis, Cell Cycle Control
p21 CIP/WAF1 CST 2946 mouseIgG2a Cell Cycle Control
PLC-gamma1 P Tyr783 CST 2821 rabbit Calcium, cAMP, Lipid Signaling
c-Myc P Thr58,Ser62 Epitomics 1203-1 rabbit MAPK Signaling, Transcription Factors
Rb P Ser780 CST 9307 rabbit Apoptosis, Cell Cycle Control
Src (family) P Tyr416 CST 2101 rabbit ErbB Signaling, VEGF Signaling, Adhesion
Smad2/3 P Ser465/Ser423,Ser467/Ser425 CST 8828 rabbit cell growth, apoptosis, morphogenesis, develop...
Smad1/5 P Ser463/Ser465 CST 9516 rabbit cell growth, apoptosis, morphogenesis, develop...
Cyclin D1 P Thr286 CST 3300 rabbit Cell Cycle Control
AMPK alpha CST 2532 rabbit Metabolism
AMPK alpha P Thr172 CST 2535 rabbit Metabolism
Bcl-2 Epitomics 1017-1 rabbit Apoptosis
Bid Abcam/Epitomics ab32060 rabbit Apoptosis
Bim P Ser69 CST 4585 rabbit Apoptosis
p53 CST 9282 rabbit Apoptosis, Cell Cycle Control
IRS-1 CST 2382 rabbit Metabolism, Insulin Signaling
GSK-3-beta CST 9315 rabbit Akt Signaling, Metabolism, Wnt Signaling, Hedg...
CrkL CST 3182 mouseIgG1 Adaptor Proteins
HSP27 (HSPB1) CST 2402 mouseIgG1 Chaperones, MAPK Signaling, Stress pathway
PKC-alpha Beckton Dickinson 610108 mouseIgG2b Calcium, cAMP, Lipid Signaling, PKC Signaling
IRS-1 P S636/639 CST 2388 rabbit Metabolism, Insulin Signaling
PLC-gamma1 CST 2822 rabbit Calcium, cAMP, Lipid Signaling, PKC Signaling
SHP2 P Tyr542 CST 3751 rabbit Tyrosine Phosphatases
Tau Abcam/Epitomics ab32057 rabbit Neuroscience, Alzheimer
Stat3 CST 12640 rabbit Cytokine Signaling, Jak/Stat Signaling
Tau Phospho/non Phos ser 305 Epitomics 2368-1 rabbit Neuroscience
IGF-1R beta CST 3027 rabbit Insulin Signaling, Metabolism, Receptors, Tyro...
Akt P Ser473 CST 9271 rabbit Akt Signaling, Metabolism
Stat3 P Y705 CST 9131 rabbit Cytokine Signaling, Jak/Stat Signaling
Histone H2A.X P Ser139 Millipore (Upstate) 05-636 mouseIgG1 cell cycle, DNA Damage repair
beta-Tubulin Abcam ab6046 rabbit Housekeeping, Cytoskeleton
p21 CIP/WAF1 p Thr145 Santa Cruz sc-20220-R rabbit Cell Cycle Control
FRA1 (R20) Santa Cruz sc-605 rabbit Transcription Factors

Table 5.6: Antibodies used in the RPPA study. CST: Cell Signaling Technologies.
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Two-dimensional projections of globally normalised RPPA data

To embed proteomic data into two dimensions in order visualise local structure within the data,
each column relating to measurements of a single (phospho)protein was standardised to a mean
of zero and unit variance and used as input to the Uniform Manifold Approximation and Pro-
jection (UMAP) algorithm in python.ii UMAP projects high-dimensional datasets into a lower-
dimensional sub-space (in this case two dimensions for visualisation) by attempting to model the
data as a locally connected manifold.96 The UMAP algorithm was used with the following non-
default parameters: number of neighbours set to 20 and minimum distance to 1e−5.

iihttps://github.com/lmcinnes/umap



6 CHEMINFORMATICS AND HIGH-CONTENT

IMAGING

6.1 Introduction

6.1.1 Cheminformatics

The term “cheminformatics” was first coined in 199897 although the use of computers to inter-
act with chemical data predates this by many years with early systems used to index, search and
catalogue databases of chemical compounds.98 Most of the early work in this field was concerned
with efficient means to search chemical databases for similar molecules or molecules containing
certain sub-structures. This early work developed a number of important methods to generate, rep-
resent and compare chemical structures in a time of limited computational power, as a by-product
these methods are very efficient and are still used today as the size of chemical databases has grown
alongside computational power.

It was later on that researchers attempted to correlate biological activity and physiochemical
parameters with structure activity relationships (SAR), this was partly due to the advancement of
statistical techniques which gave rise to new tools such as multiple linear regression. One of the
first quantitative SAR (QSAR) studies was carried out by Hansch and Fujita, in which they found
the lipophilicity of a molecule correlated strongly with biological activity.99 Since then the QSAR
field has advanced to include many more parameters and in now a key part in most empirical drug
discovery efforts.

Another use of cheminformatics in drug discovery is the analysis and design of compound screen-
ing libraries. In industrial high-throughput screening a full-deck compound library typically con-
tains several million small molecules, screening this entire library is a costly endeavour, even for
pharmaceutical companies, and therefore a lot of research has been carried out in how to maximise
the value and information gained from screening large compound collections. One of the ways
compound libraries can be optimised is by covering a large a range of chemical space as possible.
A compound library that contains many extremely similar molecules may be useful in certain spe-
cific circumstances, but in most cases this is viewed as a redundancy and a library which covers
the same chemical space with fewer compounds would reduce costs. Alternatively, a compound
collection of equal size which contains more diverse chemistry may lead to a more varied selection
of lead candidates.100 The concept of chemical space in compound collections can also be used to
identify potential blind-spots or bias in drug discovery libraries, which are areas of chemical space
with potential biological potential that are not covered by an existing library, in contrast to areas
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of chemical space which are well covered by a compound collection but have historically failed to
show biological activity, termed “dark chemical matter”.101

6.1.2 Structure activity relationships

A structure activity relationship is the link between a chemical’s structure and its effect in a biological
system, which underpins much of the medicinal chemistry field. The underlying premise of SAR
is that compounds with similar structures and physiochemical properties have similar biological
effects by virtue of binding to the same or similar targets. This idea is commonly applied during lead
optimisation whereby a candidate molecule is iteratively modified in order to optimise parameters
such as specificity and affinity, all the while ensuring that these modifications do not disrupt binding
to the desired target, leading to the identification and determination of functional groups which
are required for target engagement and biological activity.

Relating changes to a compound’s structure to biological activity is relatively straightforward if
compound activity can be represented as a single variable such as binding affinity or EC50, applying
quantitative SAR (QSAR) to multiparametric data such as that found with high-content imaging
is not as well defined.

6.1.3 Chemical similarity

The premise of QSAR is “similar molecules have similar biological effects” presenting the challenge of
how to measure similarity between chemical structures. Chemical structures can be represented in a
number of different formats and we typically think of the skeletal 2D graphical representation (fig-
ure 6.1 A) when considering complex organic molecules which have to be interpreted by chemists.
Computers however require a different format to efficiently store and parse chemical structure data.
SMILEs (simplified molecular input line entry system) and InChIs (international chemical identi-
fier) are two formats which encode chemical structures as short character strings representing atoms
as human readable characters (such as CH for carbon and hydrogen) with other symbols to represent
branches and stereochemistry (figure 6.1 B&C). These relatively simple formats sometimes suffer
from ambiguity, in which a single encoding could represent several molecules, or a single molecule
could be represented by multiple valid encodings. A less ambiguous but also less human-readable
file format is SDF (structure data file) or Molfile, which encode chemical structures as a table of x,
y, z co-ordinates and bonds for each atom (figure 6.1 D).

Given these encodings of chemical structure and the task to calculate similarity (or distance)
between molecules, the most direct and simple method is to calculate distance based on the string
encodings (usually SMILE format), such as hamming distance or longest-common-substring di-
vided by total length between two SMILE strings.102 However, these naive methods suffer from a
number of drawbacks, mainly stemming from the ambiguity and variability of SMILE encodings
which limit their widespread use in chemical similarity calculations. A more nuanced approach
to measuring chemical similarity is to first calculate compound fingerprints such as daylight or
extended connectivity fingerprints (ECFP)103 which are abstract representations of molecules in
the form of fixed-length binary arrays – generated from local patterns in the molecule such as the
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Figure 6.1 Different methods to
encode the chemical structure of a
molecule (aspirin). (A) A 2D skele-
tal graphical representation com-
monly used by chemists. (B)
SMILE format, a concise relatively
human readable format encoding
atoms as characters. (C) InChI for-
mat, another commonly used string
format which is less human readable
but contains more details to reduce
ambiguity. (D) SDF / Mol format.
A tabular format which lists the co-
ordinates of atoms in 3 dimensions
along with bonds and distances.

identity of neighbouring atoms (where neighbouring is extended to several bonds away). The dis-
tance between compound fingerprints can then be found using one of a variety of distance metrics.
To compare the binary compound fingerprints the most commonly used metric is Tanimoto sim-
ilarity (Ts) and distancei (Td), where Ts is defined as the ratio of common elements between two
equal length fingerprints divided by the length of either fingerprint, and Td = − log2(Ts). An-
other approach to molecular fingerprinting is to summarise the 3D shape of a molecule. Ultrafast
shape recognition (USR) was developed and used for in silico drug screening to efficiently describe
molecular shape in 12 measurements. USR however is optimised for computational efficiency at
the expense of detailed information and is agnostic to the atom types contained in the molecule.
This drawback led to an extension of USR (USRCAT - USR with CREDO atom types) which was
later developed for users to search the protein data bank and describes a molecule’s 3D shape and
constituent atoms.104 Recently a number of studies have leveraged advances in the machine learn-
ing field to generate alternative chemical fingerprints using neural networks.105,106,107,108 The idea
behind these methods is that deep neural networks are able to learn appropriate representations of
the input data in order to maximise performance in a certain task. They typically represent chemi-
cal structures as un-directional graphs of atoms, and apply convolutional techniques – which have
proven themselves in image-related tasks – to the graph structures to generate molecular fingerprints
which can be used in downstream machine learning and cheminformatics work.

6.1.4 Application of cheminformatics to high-content screening

Much of the work in cheminformatics is carried out in industrial rather than academic laboratories,
coupled with the relatively immature field of high-content imaging has resulted in a sparsity of

iWhilst not a distance in the strict mathematical sense it is commonly referred to as a distance metric.
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published research in the application of cheminformatics to high-content imaging and screening.
One of the earliest papers which combined cheminformatics with image-based screening was by

Young et al.30 who screened a library of 6,547 compounds in HeLa cells and extracted 30 morpho-
logical features regarding nuclei morphology. They used factor analysis and hierarchical clustering
to group their compound library into 7 clusters describing similar nuclear morphologies, and cre-
ated matrices of phenotypic similarity with cosine similarity of phenotypic features and compound
similarities with Tanimoto coefficients of ECFP features. They then found a correlation between
the rank ordering of phenotypic similarities and compound similarities, as well as identified in-
stances of “activity-cliffs” when two structurally similar compounds demonstrated very different
phenotypic activities which matched up to known SAR studies on the two compounds.

A second study by Wawer et al.109 incorporated high-content morphological profiling to con-
struct compound libraries based on the diversity of biological response as opposed to diversity of
chemical space. Using a library of 31,000 compounds, they performed a image-based screen and
selected a subset of compounds which produced a diverse range of bioactivities defined with cell
morphology. They then compared this subset to a second subset generated by maximising diver-
sity of chemical space, and investigated the performance of each subset of compounds in a wide
range of previously performed cell-based screens. They found that subsetting compounds based on
morphological diversity resulted in an increased performance compared to compounds chosen on
chemical diversity or compounds chosen at random.

Another study published by the same group developed a method for SAR with high-dimensional
profiling data, assessing both high-content imaging and gene expression profiling datasets. They
used pattern mining techniques originally developed in advertising and marketing to find frequently
linked sub-structures with certain biological activities.110

6.1.5 The BioAscent library

The BioAscent compound library consists of a 12,000 compound subset of a larger 125,000 chemi-
cal diversity library. The library was designed to include compounds with drug-like properties such
as adherence to Lipinksi’s rule of 5 and avoiding known pan-assay interference compounds (PAINs).
The bioascent collection has been found to contain a considerable proportion of molecules which
are likely to be kinase-interacting (27%) and GPCR-interacting (20%) according to computational
models of chemical structure performed by the vendor.

6.1.6 Aim of this chapter

This chapter is based on work using the BioAscent compound library which is supplied with de-
tailed structural information of each of the 12,000 compounds. My aim was to incorporate this
chemical information with existing public datasets and my own high-content imaging data in a
way to aid target convolution as well as investigate the link between chemical structure structure
activity relationship (SAR) applied to cellular morphology as an indicator of compound activity.
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Figure 6.2: Selection of active BioAscent compounds based on the l1 norm distance
from the DMSO negative control centroid in PCA space. Lower and upper bounds of
the selected compounds are indicated by dashed lines. In total 1244 compounds were
selected.

6.2 Results

6.2.1 The BioAscent library contains clusters of phenotypically similar compounds

In order to compare the phenotypic profiles produced by compounds in the BioAscent library, active
compounds were selected based on on the l1 norm distance from the negative control centroid
(figure 6.2). As many of the compounds were cytotoxic and produced images containing only a
few cells which do not produce robust morphological measurements, an activity window was used
to exclude cytotoxic compounds.

Hierarchical clustering of morphological profiles produced by these phenotypically active com-
pounds showed that despite the chemical diversity of the BioAscent library, the active compounds
formed distinct clusters of compounds which produced similar cellular morphologies (figure 6.3 A).
To confirm the validity of the clustering, the hierarchical labels were compared with clusters found
in an unsupervised algorithm. The morphological profiles were embedded into 2-dimensional space
using the t-SNE algorithm111 which aims to preserve local structure within the data and reveals clus-
ters of similar points in an unsupervised manner. When these points were coloured by the cluster
labels identified by hierarchical clustering they appeared to match up with the t-SNE embedding
(figure 6.3 B).

6.2.2 The BioAscent library is chemically diverse

The BioAscent library is marketed as chemically diverse, yet I still wanted see to what extent and if
there are clusters of chemically similar compounds such as those based around a common scaffold.
All 12,000 BioAscent compounds were converted into molecular fingerprints to produce a Tan-
imoto distance matrix between all pairs of compound fingerprints, this was then clustered using
agglomerative hierarchical clustering. As could be predicted, the heatmaps and dendrograms did
not reveal any large clusters of structurally similar compounds in the 12,000 compound library.
This chemical diversity continued when the compounds were filtered to only contain the pheno-
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Figure 6.3: Morphological clustering of active compounds within the BioAscent li-
brary. (A) Hierarchical clustering of the 1244 active BioAscent compounds based on
a distance matrix of principal components. Clusters formed by cutting the produced
dendrogram. (B) Unsupervised t-SNE clustering of active BioAscent compounds based
on principal components of morphological features. Points are colour coded with clus-
ter labels derived from the hierarchical clustering.

typically active molecules. The use of more novel compound fingerprinting techniques such as
USRCAT104 and autoencoded features112 did not increase the degree of clustering.

Rather than looking at large-scale clustering of many thousands of compounds with hierarchical
clustering, I tried the Butina clustering method to identify small collections of structurally similar
compounds. This method does not return similarity measures, but rather groups compounds into
bins of similar compounds.113 After removing clusters which contained fewer than 3 compounds,
this left 96 clusters, with the largest cluster containing 20 compounds and 58% of the clusters
containing only 3 compounds (figure 6.4).

6.2.3 There is little evidence that structurally similar molecules produce similar
cellular morphologies

Following the premise of SAR, structurally similar molecules are likely to share a common target,
therefore activating the same or similar signalling pathways and producing similar cellular mor-
phologies. I investigated to what extent structurally similar molecules in the BioAscent library
produce similar cellular morphologies, and also how structurally similar are compounds which
were shown to produce similar phenotypes. Using the phenotypic clusters as defined in fig.6.3, I
compared the structural similarity between compounds within these phenotypic clusters compared
to a null distribution of pairs of compounds picked at random. I found that compounds within
phenotypic clusters were very slightly more structurally similar than compounds in the null dis-
tribution (figure 6.5 A, p = 1.81 × 10−15, D = 0.011, 2-sample Kolmogorov-Smirnov test).
In addition, I approach the problem from the opposite direction and investigated the phenotypic
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Figure 6.4: (A) Histogram of number of compounds within structurally similar clus-
ters, with most clusters only containing 3 molecules. (B) An example of one of the
structurally similar clusters as found with the Butina clustering algorithm.

similarity within clusters of structurally similar molecules as found with the Butina clustering al-
gorithm, compared to the phenotypic similarity between compounds picked at random from the
pooled compound list of those contained within Butina clusters. I again found that structurally
similar molecules are more likely to produce similar cellular morphologies than compounds picked
at random (figure 6.5 B, p = 0.037, D = 0.018, 2-sample Kolmogorov-Smirnov test).

Another approach is to see how well the distance matrix of phenotypic profiles correlates with the
distance matrix of chemical structures. Using Mantel’s test of correlation between two distance ma-
trices,114 I found no significant correlation between the phenotypic and structural distance matrices
for the active 1244 compound subset (r = 0.02, p = 0.116).

6.2.4 Identifying the putative MoA of phenotypic hits with ChEMBL structure queries

Another way to utilise the chemical structure data available with the BioAscent library is through
querying publicly available databases such as ChEMBL for exact compounds matches or struc-
turally similar compounds. This returns large amounts of data from a variety of assays in which
the compound or a structural analogue was screened against a number of targets with information
relating to EC/IC50 values, binding affinities etc. I investigated if this historical dataset could be
used to suggest putative MoAs of hits from target agnostic phenotypic screening assays.

For this I used the compounds within the 10 phenotypic clusters (figure 6.3), and for each
cluster queried ChEMBL based on a structure similarity search to identify records for either the
query compound, or structural analogues. Then using these compounds identifying which human
proteins they have been screened against, and filtering these protein based on EC/IC50 values. This
returns a list of Uniprot accession codes which were used with interpro115 to test for enrichment of
protein regions compared to a background.

Eight out of the ten phenotypic clusters returned at least one significantly enriched target with
fold-enrichment ranging between 1.5 and 10. The most significantly enriched target in 6/8 of the
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Figure 6.5: (A) Tanimoto distance between compounds from within phenotypic clus-
ters (as found in fig. 6.3) and between randomly paired active compounds. (p =
1.81× 10−15, D = 0.011, 2-sample Kolmogorov-Smirnov test) (B) Phenotypic dis-
tance between compounds from within structurally similar clusters and between ran-
domly paired phenotypic profiles. (p = 0.037, D = 0.018, 2-sample Kolmogorov-
Smirnov test)

clusters was related to protein kinases, whereas the remaining two were rhodopsin-like GPCRs and
adrenergic receptors.

6.2.5 Using phenotypic screening to find “dark chemical matter”

An area of interest in drug discovery is finding new pharmacologically active compounds which
occupy new areas of chemical space.101 One way to incorporate the phenotypically active hits from
the BioAscent library is to query historical screening databases by structural similarity. To do this
I took the list of 1244 phenotypically active BioAscent compounds and performed a structural
similarity search on the ChEMBL database to look for those BioAscent compounds which have a
large Tanimoto distance from all compounds deposited in the database.

From the 1244 active BioAscent compounds 59 (4.7%) were found to have no structurally similar
analogues in the ChEMBL database (figure 6.7). To assess if these 59 compounds contained unde-
sirable physiochemical properties which would limit their inclusion in screening libraries and ex-
plain their absence from historic screening databases I used a quantitative estimate of drug-likeness
(QED),116 to compare the 59 compounds from ‘dark chemical space’ to the 1244 active BioAscent
compounds. The QED metric did not reveal any significant differences in desirable physiochemi-
cal properties between the two groups (QEDdark compounds = 0.57, QEDall active = 0.60, 2 sample
t-test t = 0.85, p = 0.39).

6.3 Discussion

Cheminformatics as a field is largely overshadowed by bioinformatics in terms of academic interests
and publications (figure 6.8), it has however arguably had a greater positive impact on the design
and identification of new small molecule therapeutics. As high-content screening becomes more
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Figure 6.6: Enriched interpro targets found within a phenotypic cluster of the BioAs-
cent library when compared to a background of all active BioAscent compounds.
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Figure 6.7: 59 phenotypically active BioAscent compounds with no close structural analogues in the
ChEMBL database.
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Figure 6.8: Popularity of the terms ‘bioinformatics’ and ‘cheminformatics’ in the pub-
lished literature as found using Google’s Ngram viewer between 1980 and 2010. y-axis
represents the cumulative percentage of literature containing the term, x-axis represents
the year.

and more prevalent in drug discovery incorporation of the fields will become more increasingly
likely. I therefore aimed to investigate methods in which cheminformatics analyses can aid high-
content and phenotypic screening, and also the other way round: how high-content screening and
morphological profiling can inform cheminformatics.

From the global analysis of the BioAscent compound library I failed to find any evidence of
clusters of structural similarity, which is not surprising when using a compound library specifi-
cally designed to maximise structural diversity. I did however find smaller regions of the BioAscent
library consisting of a handful of structurally similar compounds using the Butina clustering al-
gorithm. The choice of using the BioAscent compound library – rather than one of many other
alternatives – was made by what was available to me at the time, as large compound collections are
a precious resource in academia. In hindsight, a chemical diversity library may not have been the
ideal compound collection to use for a study relying heavily chemical similarity measures, and a
compound library which consists of clusters of structurally similar molecules may have resulted in
different conclusions regarding chemical similarity and phenotypic similarity.

My hypothesis that structurally similar compounds should produce similar morphological changes,
and therefore compounds that cause similar phenotypes should be structurally similar on average
did not yield particularly striking results. While I found compounds within phenotypic clusters had
lower Tanimoto distances than compounds paired at random, and the opposite: that compounds
within structurally similar clusters as found with the Butina algorithm were more phenotypically
similar (figure 6.5), despite statistical significance the effect size was small, in globally assessing cor-
relation between the two distance matrices showed no significant correlation. This result is largely
in agreement with that of Young et al. who found a “modest” correlation of 0.0074 between be-
tween rank-ordered pairs of compounds for phenotypic similarity and structural similarity.30 One
possible explanation for these low effect sizes could be due to largely uncorrelated data with small
regions of high correlation. I feel that a more fine-grained analysis with a carefully constructed
compound collection would be better suited for this task, and could result in stronger evidence
for the association between chemical structure and phenotype. Another consideration to explain
the largely uncorrelated data are activity-cliffs – where a small change to a molecule’s structure can
result in large differences in biological activity. There is no doubt that a small change to overall
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chemical structure can inhibit biding of a small molecule to a target receptor, al thought this brings
into question the usefulness of chemical similarity measures, and if many of these activity-cliffs
are artefacts caused by poorly measured ‘similar’ compounds, which we may see change as more
nuanced chemical similarity measures are developed.

The availability of large public datasets which can be queried with chemical identifiers such as
SMILE strings is a great resource with a number of potential applications. The ChEMBL database
contains information for 2.2 million compounds, and the results from over a million assays and
12,000 targets. In my efforts to incorporate this rich dataset with the results of the high-content
screen, I encountered issues associated with a dataset constructed from many heterogeneous sources,
such as lack of information describing the assay, and no consistent system to label the type of
assay to allow filtering of less relevant assay types. The idea was to find existing data from assays
which used the 12,000 compound BioAscent library, however none of the data sources used the
exact BioAscent compound library, but rather there were compounds within the BioAscent library
that are shared in other compound collections, and so the data returned by exactly matching the
BioAscent compounds was too sparse for further analysis. I therefore relaxed the searching criteria,
and searched instead for compounds with a Tanimoto similarity greater than 0.9 which resulted in
an adequate number of results but added an additional layer of assumptions. The enriched protein
sequences found for the compounds (or similar compounds) in each phenotypic cluster consisted
predominantly of protein kinase regions (see figure 6.6 for an example of one cluster). While this
did serve as a nice sanity check, in that 20% of the BioAscent compounds are predicted to be kinase-
interacting, it was not particularly interesting for hypothesis generation. In addition I would warn
against putting too much faith in the hypothesised protein targets: the protein targets were filtered
using single concentration regardless of the assay type. It is easy to envisage that a concentration
which is selective to a particular protein in a cell-based assay would not be stringent enough when
used as a cutoff in an in vitro protein binding assay. Another source of uncertainty is the use of
tools such as DAVID and interpro to predict enriched protein regions, these rely on heuristics and
combining another set of heterogeneous datasets which in turn have their own errors and biases.

The concept of dark chemical matter was introduced by Wasserman and colleagues from No-
vartis to describe compounds in their high-throughput screening library which have failed to show
biological activity in any screening assay, yet through gene-expression studies demonstrated the po-
tential for biological activity in future screens.101 These compounds offer interesting starting points
for drug discovery as their lack of activity in historically target-driven screens may mean they have
the potential to act through novel mechanisms of action. A target agnostic approach coupled with
unbiased detection of subtle biological activity positions high-content imaging as a useful tool to
identify dark chemical matter in compound collections. As I did not have access to historical
records of the BioAscent’s performance in a wide range of assays, I instead used the records in the
ChEMBL database. From the 1244 active BioAscent compounds, 59 where structurally distinct
from any listed in the ChEMBL records (figure 6.7). There is also the possibility that there may
be more dark chemical matter in the BioAscent library, as I did not investigate the bio-activity of
the structurally similar records in the ChEMBL database, and that many of those which returned
structural analogues may not have shown activity in previous assays. As the BioAscent library has
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been designed around drug-like molecules, and a measure of drug-likeness did not reveal any unde-
sirable physiochemical properties of these dark chemical matter the reason behind their exclusion
in previous screening assays remains unclear.

Overall, incorporating cheminformatics and high-content screening presents an interesting op-
portunity for drug discovery by combining the well-defined and annotated cheminformatics field
with the rich datasets high-content imaging can provide. In this chapter I have shown that high-
content screening data can be combined with existing datasets to aid interpretation using chemical
structure as a common linker to retrieve data for either the same compound or similar compounds,
as well as demonstrating the use of high-content screens to identify interesting areas of chemical
space for the development of novel therapeutics.

6.4 Methods

6.4.1 Chemical similarity

Compound structural information was provided in the form of .sdf files by the supplier. To create
daylight-like compound fingerprints the RDKit library was used to convert .sdf entries into an RD-
Kit’s implementation of the daylight fingerprint using the ‘rdkit.Chem.Fingerprints.FingerprintMols’
function with default parameters.

USRCAT features of the BioAscent library were generously calculated and supplied by Dr. Steven
Shave (Edinburgh).

Latent representations of chemical structure features were calculated using a molecular autoen-
coder pre-trained on the ChEMBL22 dataset ii, based on the work published by Gomez-Bombarelli
et al.112 using one-hot encoded SMILE strings of the molecules.

To compute the distance between RDKit daylight fingerprints the Tanimoto distance was used,
in the case of USRCAT and autoencoded features I used the Euclidean distance. Hierarchical
clustering was performed on the distance matrix using the complete linkage method and euclidean
distance. To define clusters from the calculated dendrogram, a threshold was defined as 70% of
the maximum linkage distance. Butina clustering was implemented using RDKit with Tanimoto
distances calculated from daylight fingerprints, with a cutoff value of 0.2.

Mantel’s test for comparing two distance matrices was implemented with scikit-bio’s implemen-
tation using Pearson’s correlation coefficient and 999 permutations for significance testing. The
distance matrices used were standardised Euclidean distance for the morphological profiles and
standardised Tanimoto distances of the daylight fingerprints for compound structure profiles.

6.4.2 BioAscent library screen

The morphological data used in this chapter is from the MCF7 cell-line stained using the cell-
painting protocol, imaged with the ImageXpress and morphological features calculated using Cell-
profiler.

iiwww.github.com/cxhernandez/molencoder
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Figure 6.9: Dendrogram thresholding to determine the number of phenotypic clus-
ters in the active BioAscent compounds. Dashed line indicates cutoff of 70% of the
maximum linkage distance, resulting in 10 clusters.

Compound activity window

Data was normalised to plate-based controls and features standardised, then transformed with PCA
to the minimum number of principal components which accounted for 80% of the variance in the
data. l1 norm distances were calculated from the DMSO negative control centroid in PCA space.
The lower bound of the activity window was defined visually using a plot of ranked l1 distances.
The upper bound was chosen based on images containing at least 10 cells and visual assessment of
images produced by higher l1 distances ensuring images did not consist entirely of dying cell (small,
rounded and bright cytoplasmic staining).

6.4.3 Phenotypic similarity

Clustering of morphological profiles was carried out by first calculating a correlation matrix between
between all pairs of active compound morphologies. Hierarchical clustering was performed on the
correlation matrix using the complete linkage method and euclidean distance. To define clusters
from the calculated dendrogram, a threshold was defined as 70% of the maximum linkage distance
which produced 10 clusters (figure 6.9)

t-SNE clustering was performed using sklearn’s ‘manifold.TSNE‘ implementation using the
Barnes-Hut approximation with the default parameters.

6.4.4 ChEMBL structure searches

To programmatically query the ChEMBL database I used the python ChEMBL webresource client.
iii In order to identify records for similar compounds I first queried structures based on SMILE
strings of the BioAscent compounds with a filter to return only compounds with a Tanimoto sim-

iiiwww.github.com/chembl/chembl_webresource_client
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ilarity of 0.9, recording the similar compounds as ChEMBL identifiers. Then in a second query
using the ChEMBL identifiers, I searched for historical screening results against human protein tar-
gets and returned a list in the form of Uniprot accession codes. As this returned a list of all protein
targets which had been screened against, I filtered this list to protein targets with an assay EC/IC50

value less than 1 µM. This was repeated for each cluster of BioAscent compounds returning a list
of Uniprot accession codes for each cluster.

6.4.5 Dark chemical matter

To search for active compounds in the BioAscent library which are structurally distinct from any
compounds in the ChEMBL database I queried the ChEMBL webresource with the 1244 active
BioAscent compounds, returning compounds within 70% similarity, which is equivalent of com-
pounds within 0.3 Tanimoto distance (this is the minimum similarity value allowed when using
ChEMBL’s API). Any BioAscent compound that failed to return any structurally similar ChEMBL
record was listed as a ‘dark SMILE’. iv QED values of drug-likeness were computed using RDKit
Chem.QED.qed function with default parameters on molecules computed from the supplied sdf
file.

6.4.6 Interpro analysis

Interpro analysis was carried out using DAVID 6.8.117 DAVID was chosen despite more up-to-date
alternatives, as DAVID allows uploading a custom background list of genes or proteins. Therefore
I created a background list of protein targets by repeating the Uniprot lookup as before but with a
list of all 12,000 BioAscent compounds, which was used as a background for each cluster analysis
with DAVID. Significantly enriched interpro targets were selected based on a Benjamini-Hochberg
corrected p-value with an α of 0.05.

ivA thanks to Michał Nowotka from the EMBL-EBI for his help making changes to the ChEMBL servers and API to
enable such time-intensive queries.
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7.1 Summary of completed work

This work describes my research into the development and application of high-content image-based
screening methods in the context of cancer drug discovery. The first results chapter builds on pub-
lished literature to further investigate how compound induced morphological changes measured
with high-content imaging can be used to describe and inform the compound mechanism-of-action
across a panel of genetically distinct breast cancer cell lines. A comparison of two machine learning
approaches revealed that, in fairly naive implementations, there is not a large difference in predictive
performance between tree-based ensemble classifiers trained on extracted morphological measure-
ments and CNN classifiers trained on pixel values. There is however a difference in how well these
two types of models can generalise to new data from new or unseen cell-lines, as the extracted mor-
phological measurements used with the tree-based classifier can be more easily normalised which
in turn affects how the addition of data during training from morphologically distinct cell-lines
impacts model performance. In chapter 4 I described the development of a measure of morpho-
logical dissimilarity. Inspired by a talk given by Simon Gordonovi, I thought to extend the idea of
measuring distance from a negative control in principal component space of morphological features
to incorporate the idea and quantification of phenotypic direction. This method was then applied
in chapter 5 with a small molecule screen of approved drugs across the eight breast cancer cell-lines
to identify compounds that produced distinct phenotypic responses between the cell-lines. These
compounds were then further investigated in 2D and 3D tumour spheroid assays of cell-viability,
and proteomics performed the levels and activation state of common cancer cell growth and survival
signalling pathways in cells treated with compounds grown in 2D and 3D environments. The final
results chapter is my effort to incorporate data from small molecule high-content screening studies
with data relating to chemical structure. The original premise behind this work was the hypothesis
that structurally similar molecules are likely to produce similar morphological changes in cells. I
found evidence of correlation between chemical similarity and phenotypic similarity, although the
effect size was extremely small. Perhaps more interesting was the use of chemical structure data
and existing chemical databases to generate hypotheses towards mechanistic understanding of hits
found with target-agnostic screens, as well as high-content screens to identify compounds from
interesting and rarely explored areas of chemical space.

During this work I spent a considerable amount of time developing software tools, either to

iA talk at an SBI2 meeting describing phenotypic directions in principal components which has since been published118
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implement new ideas or to streamline repetitive workflows which are commonplace in screening
assays. One of the biggest challenges was the time taken to analyse the millions of images gener-
ated by compound screens across a panel of cell-lines. Whilst microscope vendors typically have
software to automatically analyse and quantify images once acquired, in my case the software was
limited by licences to a single desktop and unable to analyse the 12,000 compound screen in a
reasonable amount of time. Image analysis tools such as Cellprofiler, EBImage and HCS-analyser
with permissive licences allow the analysis of thousands of images in parallel using distributed pro-
cessing across compute clusters. The most useful tool I developed was used to link the ImageXpress
images to Cellprofiler running on the University’s high-performance compute clusterii, enabling
the analysis of a 5 million image dataset in roughly 24 hours, which would have otherwise taken
months using the vendor supplied image analysis software.

7.2 Remarks, unanswered questions and new questions

High-content analysis and screening is an evolving field and has not yet reached a consensus on
established workflows or best practices, with numerous labs developing their own image analysis
software and data handling pipelines in isolation. Recently there has been some effort to coordinate
sharing methods and ideas between groups to converge on a standardised workflow. iii While this
is an important step, high-content analysis has the enviable position of being at the crossroads of
computer vision, multivariate analysis and machine learning, all of which are rapidly developing
fields in their own right. Therefore, despite efforts to reach an agreement on some form of stan-
dardised workflow, there is the conflicting temptation for researchers to adopt the latest tools and
techniques in their analyses.

With the rapid development of new machine learning tools, particularly in computer vision, I
envisage that the field will adopt these technologies where they show increased performance over
hand-crafted algorithms in areas such as segmentation,119,120 feature extraction121,122 and image
classification.123 However, the use of “classical” extracted morphological features from images such
as cell area or nuclei intensity offer a huge advantage in their simplicity, interpretability and the
ability to investigate specific biological questions or image-analysis tasks.

With the increasing ability to generate large multivariate datasets from high-content screening,
perhaps a more pertinent area of research is how best to leverage this data to improve our under-
standing of biological processes and find new and efficacious drugs for patients. The interpretation
of large multivariate datasets in biology is not unique to high-content imaging and is a task shared
in common with most -omics technologies, with the only difference is that high-content imaging
is usually cheaper than its -omics counterparts per sample – and as a result sample sizes are typically
much larger. This commonality between technologies will hopefully lead to the development of
new methods which are applicable to drug screening studies, which have historically relied upon
univariate measures and statistical assumptions that do not necessarily hold true with more complex

iihttps://github.com/carragherlab/cptools2
iiihttp://cytodata.org/

https://github.com/shntnu/cytomining-hackathon-wiki/wiki
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datasets.
In my opinion, the “profiling” of perturbations such as small molecule treatments or gene knock-

outs, while certainly possible with high-content imaging, may benefit more from the standardised
measured features such as L100h0 gene expression profiles of the connectivity map124,125 which
allow far easier comparisons and meta-analyses of disparate datasets in lieu of increased costs and
lower throughput. However, the low-cost and high-throughput of high-content screening is ideally
suited for drug discovery projects using complex disease-relevant models which require multivariate
measurements in order to accurately capture and quantify their complexity.

To conclude, I have presented work relating to a number of varied aspects of image informatics
and high-content screening, these contributions are part of a rapidly developing field with many
remaining questions and unverified assumptions. As the field of biology progresses towards generat-
ing ever larger and more complex datasets there needs to be a similar progression in the research and
development of data analysis methods to gain more understanding from the data we generate. It is
my hope that the evolution of new biological and analytical methods which enable in-depth pro-
filing of compound mechanism-of-action and target biology across more complex in vitro models
of disease will better lead early stage drug discovery programmes towards increased clinical success
rates.
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Background
During the past 5 years, the drug discovery 
field has witnessed a re-emerging interest in 
phenotypic drug discovery (PDD) strategies 
and increased research activity in pheno-
typic assay development and screening. PDD 
describes the screening and selection of hit or 
lead compounds based on quantifiable phe-
notypic endpoints from cell-based assays or 
model organisms without prior knowledge 
of the drug target. The renewed interest in 
phenotypic screening may be attributed 
to several factors including: the demand 
to identify high-value novel drug targets 
to feed contemporary target-directed drug 
discovery (TDD) capabilities and commer-
cial drug discovery pipelines; high attrition 
rates in late stage clinical development and 
an overall decrease in pharmaceutical R&D 
productivity, while not directly attributed to 
limitations of TDD, nevertheless, correlate 
with the widespread adoption of the TDD 
operating model in favor of PDD strate-

gies [1–5]; significant duplication of effort 
and focus upon a relatively small number 
of well-characterized targets across indus-
trial and academic drug discovery groups; 
urgent unmet medical need in complex 
human conditions such as heterogeneous 
solid cancers and neurodegeneration, where 
target biology is poorly understood; recent 
retrospective analysis of all drugs approved 
by the US FDA since 1999 indicating signifi-
cant success rates in development of novel, 
first-in-class, small-molecule drugs by PDD 
approaches [6–8].

While the three recent retrospective stud-
ies of drug approval rates present discrepancies 
in the number of drug approvals attributed to 
PDD and TDD strategies, primarily because 
of differences in terminology, disease area 
focus and period of analysis, all three stud-
ies demonstrate that PDD approaches are 
providing a significant contribution to clini-
cal approval rates of first-in-class drugs [6–8]. 
This recent clinical success of PDD is con-

For reprint orders, please contact reprints@future-science.com
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sidered by many as remarkable given the relatively low 
investments in PDD in comparison to TDD by trans-
lational funding bodies in academia and industry over 
the past three decades. PDD, however, does not repre-
sent a new drug discovery strategy and was indeed the 
preferred drug discovery approach prior to increased 
understanding of human disease at the genetic level and 
the emergence of molecular biology techniques, which 
advanced elegant molecular pharmacology studies and 
high-throughput screening of specific targets [2]. Tradi-
tional PDD approaches have utilized a variety of bio-
logical model systems such as in vivo physiological and 
behavioral models, ex vivo tissue-based assays and basic 
in vitro cellular assays to guide drug development. While 
many drugs successfully used in the clinic today were 
discovered using such early PDD approaches, traditional 
PDD methods were laborious and did not provide ample 
mechanistic information and thus tend to favor the dis-
covery of less selective agents including cytotoxics rather 
than novel classes of targeted therapies. Given the dura-
tion of time between early-stage drug discovery and clin-
ical approval, many of the example first-in-class medi-
cines attributed to PDD described in the three recent 
retrospective articles [6–8] are somewhat historical. They 
utilize, by modern standards, rudimentary phenotypic 
assays, and thus such retrospective analysis may indeed 
underestimate the true value of modern phenotypic 
screening strategies, with regard to identifying novel tar-
gets and translation into clinical success.

A significant driving force behind the resurgence of 
PDD may be attributed to substantial technology devel-
opments across several inter-related areas, which advance 
the PDD paradigm. Such advances include more sophis-
ticated cell-based and small model organism-based 
automated screening platforms [9–11]. Advances in the 

development of more complex and more disease-rel-
evant phenotypic assays incorporating: multicellular 
co-cultures, 3D models, patient-derived primary and 
Induced Pluripotent Stem Cell (IPSc) models, includ-
ing gene-edited and isogenic controls, which recapitu-
late key disease driver mutations, are all well-placed to 
advance the molecular and pathophysiological relevance 
of phenotypic screening assays. Improvements in cell-
based assay technologies are further complemented 
by advances in target deconvolution strategies includ-
ing affinity mass spectrometry, cellular thermal shift 
assays and cDNA expression microarray technologies 
among others (Box 1) [12–14]. Also the development of 
new methodologies, which enable profiling drug mecha-
nism-of-action (MOA) in complex biological samples at 
genomic, proteomic and phenotypic levels at scale [15–17], 
supports informed mechanistic classification and triag-
ing of phenotypic hits to assist further target deconvolu-
tion or progress preclinical development of phenotypic 
hits in the absence of target knowledge.

In this article, we attempt to address some common 
misconceptions and challenges associated with pheno-
typic screening. We highlight both historical and recent 
success stories of approved drugs and new drug can-
didates discovered by PDD. We describe some of the 
challenges and pitfalls of poorly designed phenotypic 
screening and target deconvolution strategies and how 
these may be resolved by the application of new tech-
nologies. We place specific emphasis upon the evolu-
tion of new gene transcription, pathway profiling and 
multiparametric high-content screening technologies, 
which support more advanced phenotypic screening 
and MOA studies. We provide specific examples and 
discuss the advantages and limitations of each new 
approach. Finally, we conclude by discussing how the 

Box 1. Target deconvolution methods.

Chemical proteomics
•	 Affinity chromatography and mass spectrometry [12,18–20]
•	 Quantitative proteomic and silac labeling [21]
•	 Thermostability shift assays: in vitro and in cells [13,22]
Expression cloning
•	 Phage display [23]
•	 Yeast three-hybrid assays [24,25]
•	 cDNA cell microarray [26]
Genetic-based screens
•	 Yeast deletion collections [27]
•	 Haploinsufficiency profiling [28]
•	 Resistance screens combined with Next-Generation Sequencing (NGS) profiling of resistant clones [29]
•	 Small model organism knock-out (KO) and genetic mutant collections (under development in Zebrafish, 

Caenorhabditis elegans and Drosophila)
•	 Modifier screens: si/shRNA or CRISPR-Cas9 library screens to identify modulators of small-molecule 

activity [30,31]

•	 Activity-based protein profiling [32]
This is a nonexhaustive list of target deconvolution methods and reflects some of the most common approaches selected by the authors.
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combination of new technology developments such 
as more advanced primary and induced pluripotent 
stem cell (IPSc) culture techniques, gene editing, high-
throughput gene transcription, pathway profiling and 
multiparametric high-content screening technologies 
are well-placed to advance phenotypic screening toward 
increased success across multiple disease areas.

Historical examples of drugs discovered by 
phenotypic screening
Comprehensive discussion of approved drugs originat-
ing from PDD strategies have been reviewed previ-
ously [6–8,33]. In this article, we highlight specific exam-
ples of PDD drugs currently used in the clinics, which 
challenge conservative views on the necessity for target 
deconvolution to progress candidate drugs through 
clinical development. We further describe new lead 
compounds and candidate drugs discovered by more 
modern phenotypic screening strategies, which guide 
chemical design toward specific MOA and which can 
integrate with ligand-based drug design and TDD 
strategies to develop highly potent and s elective lead 
compounds and drug candidates.

Metformin (Figure 1, structure 1) belongs to the bigu-
anide class of compounds and represents the first-line 
standard-of-care therapy for Type 2 diabetes by virtue 
of its confirmed physiological effects upon decreased 
glucose production by the liver. Approved in Europe 
in 1957, metformin has been used for decades as a safe 
and efficacious medicine to manage the morbidity and 
mortality associated with Type 2 diabetes and represents 
a core component of new drug combination therapies 
for diabetes [34,35]. It is, however, only recently that the 
MOA by which metformin regulates glucose levels has 
been revealed. In mouse hepatocytes, metformin leads to 
the accumulation of AMP and related nucleotides, which 
inhibit adenylate cyclase, reduces levels of cyclic AMP 
and PKA activity, abrogates phosphorylation of down-
stream protein targets of PKA and blocks glucagon-
dependent glucose output from hepatocytes [36]. These 
new insights into metformin MOA will most likely pave 
the way to development of novel antidiabetic drugs.

Further examples of approved drugs derived from 
compound library screening in phenotypic models 
were the molecular target of the drug is not known 
include, daptomycin (Figure 1, structure 2), a naturally 
occurring antibiotic targeting cell membrane function 
of Gram-positive bacteria to treat systemic and life-
threatening infections [37]. Pemirolast (Figure 1, struc-
ture 3) is an antiallergic drug therapy that is proposed 
to work through suppression of mast cell degranu-
lation, histamine release and eosinophil activation, 
although precise target mechanism remains to be con-
firmed [38]. Rufinamide (Figure 1, structure 4) is a tri-

azole derivative used as an anticonvulsant/antiepileptic 
medication to treat several seizure disorders including 
Lennox–Gastaut syndrome [39]. The specific molecular 
target or targets of rufinamide remain to be established.

These examples, described in Figure 1, serve to high-
light that if target deconvolution was always a pre-
requisite for drug development, valuable treatments 
for such serious human disorders would not have 
been developed and would not progress the next gen-
eration of therapies for many of the most serious and 
life-threatening conditions.

Sirolimus also known as rapamycin, (Figure 1, struc-
ture 5) is a macrolide derived from the bacterium, 
Streptomyces hygroscopicus and discovered through PDD 
to possess immunosuppressive, antifungal and anticancer 
properties [40–42]. The National Cancer Institute (NCI) 
Developmental Therapeutics Program demonstrated 
that rapamycin inhibited cell growth in panels of tumor 
cell lines [43]. Subsequent mechanistic studies indicated 
that the MOA was mediated through inhibition of a ser-
ine/threonine protein kinase critical to cell growth, pro-
liferation and survival, the subsequently named mam-
malian target of rapamycin (mTOR) [44]. Inhibition is 
mediated through forming a complex between rapamy-
cin bound FKBP12 with mTORC1 [45]. It is worth not-
ing that while rapamycin has been clinically approved, it 
violates the Lipinski rule of 5 defining optimal lead and 
drug like properties and thus may never have been devel-
oped through a conventional small molecule drug dis-
covery program. The development of rapamycin through 
PDD and subsequent understanding of mTOR signaling 
and the target of rapamycin within preclinical and clini-
cal settings provided important target validation data to 
support the development of several rapamycin analogs 
known as rapalogs and second generation ATP-compet-
itive mTOR kinase inhibitors targeting mTOR catalytic 
activity associated with both mTORC1 and mTORC2 
complexes [46,47].

Recent examples of phenotypic screening 
outcomes
We recently reported application of an iterative pro-
cess consisting of ligand-based design and phenotypic 
screening of focused chemical libraries to develop 
novel antiproliferative inhibitors. The strategy employs 
promiscuous kinase inhibitors as templates to design 
high-quality small-molecule collections to facilitate the 
concurrent search for enhanced physicochemical prop-
erties and novel pharmacological features. Using this 
method, target deconvolution of identified hits and 
leads is largely simplified (for example, focused kinome 
screening), thereby assisting subsequent lead optimi-
zation campaigns [47]. The application of this strategy 
resulted in the discovery of the first subnanomolar SRC 



Figure 1.  Compound structures of historical examples of drugs discovered by phenotypic drug discovery. 
1: Metformin; 2: Daptomycin; 3: Pemirolast; 4: Rufinamide; 5: Rapamycin/sirolimus.
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inhibitor with 1000-fold selectivity over ABL [48] and 
highly potent dual mTORC1 and mTORC2 inhibitors 
(eCF309 – Figure 2, structure 6) with high selectiv-
ity over other family kinases [47]. A further example 
of a highly selective kinase inhibitor derived from a 
phenotypic screen is the allosteric inhibitor of MEK, 
Trametinib (Figure 2, structure 7), which was initially 
identified by screening for increased mRNA expression 
of the cyclin-dependent kinase inhibitor p15 and cell 
proliferation [49].

Modern high-content phenotypic screening assays, 
which quantify specific functional endpoints, can also 
be used to identify compounds with precise target 
MOA such as the identification of novel Eg5 kinesin 
inhibitors which induce the monopolar and monaster 
phenotype [50]. Similar approaches were used to dis-
cover and confirm the MOA of second generation Eg5 
kinesin inhibitors (AZD4877), which have progressed 
into clinical development (Figure 2, structure 8) [51,52]. 
Olesoxime (Figure 2, structure 9) was originally dis-
covered by performing a screen of 40,000 small mol-

ecules in an in vitro cell-based assay to identify com-
pounds capable of preventing motor neuron cell death 
in the absence of trophic support [53].

The historical exemplars of approved drugs dis-
covered by PDD chosen (metformin, daptomycin, 
pemirolast and rufinamide, Figure 1, structures 1–4) 
highlight that clinically useful and safe medicines can 
be developed without precise knowledge of the target 
mechanism. Examples of approved drugs discovered by 
PDD also serve to highlight that compound structures, 
which lie out with conventional characteristics of drug 
likeness can be proved effective in patients (rapamy-
cin, Figure 1, structure 5). Further recent examples of 
approved drugs discovered by phenotypic screening 
demonstrate that highly selective targeted therapies can 
be discovered by phenotypic screening. These exam-
ples include drugs targeting ubiquitously expressed 
regulators of critical cellular functions such as protein 
synthesis (mTOR inhibitors, eCF309, Figure 2, struc-
ture 6), MAPK/ERK signaling (trametinib, Figure 2, 
structure 7), Eg5 kinesin and mitotic spindle assembly 
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(AZD4877, Figure 2, structure 8) and mitochondrial 
function (olesoxime, Figure 2, structure 9). Such target 
classes are unlikely to be prioritized by current drug 
target review or translational funding committees 
using conventional target selection criteria to support 
investment in novel therapeutic targets. Thus, PDD 
approaches have resulted in the development of many 
clinically valuable drugs, which would not be devel-
oped by TDD programs. The recent examples, which 
we highlight in Figures 1 and 2 represent a small num-
ber of drugs and drug candidates discovered by PDD. 
For more comprehensive listings of drugs approved by 
PDD, we direct readers to three recent review articles 
providing in depth description on the origins of drugs 
discovered by PDD [6,8,33].

While the overwhelming development of mod-
ern targeted therapies has been derived from TDD 
approaches, these recent examples highlight how 
advanced phenotypic screening can efficiently direct 
structure–activity relationships (SAR) and identify 
novel chemotypes with high potency and selectivity. 
The above examples further highlight how PDD and 
TDD approaches complement one another and how 
new opportunities for combining PDD and TDD 
strategies are supported by more advanced phenotypic 
screening, MOA profiling and target deconvolution 
technologies.

Pitfalls of poorly designed phenotypic 
screens & black box assays
The phrase ‘phenotypic screening’ is a broadly used 
term to describe the extraction of quantifiable read-
outs of biological relevance from any cell-, tissue- or 
organism-based system suitable for medium- to high-
throughput chemical or functional genomic screening 
in a target agnostic fashion. Phenotypic screens can 
range from simplistic 2D cell line viability or reporter 
assays/pathway screens to more complex multicellular, 
3D and multiparametric assays. Phenotypic screening 
is applied in both the industrial and academic research 
settings to support functional genomic studies, dis-
cover novel candidate drugs and/or useful chemical 
probes and pharmacological tools for further exploring 
biology. Thus, analysis and debate on success and chal-
lenges of phenotypic screening and target deconvolu-
tion strategies must be placed into appropriate context 
of the value and information provided by the primary 
phenotypic screen. Traditional single endpoint cell via-
bility and reporter-based cellular assays provide limited 
information of drug MOA and thus limited opportu-
nity to triage and precisely direct further development 
of phenotypic hits prior to target deconvolution. Such 
traditional phenotypic assays, which provide limited 
mechanistic data, so called ‘black box’ assays may 

amplify phenotypic screening challenges and common 
pitfalls such as, preferential selection of cytotoxic com-
pounds, pan-assay interference compounds or PAINS 
and sharp activity cliffs, which confound SAR stud-
ies. Such pitfalls can largely be avoided by develop-
ment of information-rich phenotypic screening assays 
such as multicellular co-culture assays to discriminate 
phenotypic effect between distinct cell types or mul-
tiparametric high-content phenotypic profiling assays, 
which provide more informative insights into cellular 
pharmacology. Such high-content assays can classify 
MOA based upon specific cell targeting or by pheno-
typic fingerprint similarity with compounds of known 
MOA and target binding [54]. High-content screening 
in co-culture assays incorporating target and nontarget 
cell types may help guide hit selection and chemical 
design away from toxicity toward enhanced efficacy 
and novel target space within a single primary high-
throughput phenotypic screen [55]. While many ‘black 
box’ phenotypic assays represented the state-of-the-art 
at the time of their development and have had many 
notable successes in supporting the development of 
novel drugs, including many of the examples described 
in Figures 1 and 2. In contrast to modern high-content 
phenotypic assays, ‘black box’ assays provide limited 
opportunity to design screens, which guide selection of 
hits and leads toward increased therapeutic index and 
novel phenotypic and target space.

Several review articles, editorials and commentators 
also suggest that phenotypic screening may help reduce 
high attrition rates observed during late-stage clinical 
development specifically the high failure rate observed 
during Phase II clinical trials resulting from lack of 
efficacy [4,56,57]. However, the ability of a phenotypic 
screen to reduce attrition from poor efficacy is directly 
related to the ability of the primary phenotypic screen-
ing assays and any secondary phenotypic assays used 
for hit selection to predict clinical outcomes. For many 
complex diseases it is unlikely that the primary screen 
will recapitulate the full complexity of human disease. 
Thus, phenotypic screening assays must be developed 
that ask specific clinical questions or recapitulate key 
segments of disease pathophysiology to inform subse-
quent decision-making and effectively guide the next 
stages of preclinical development and validation. This 
approach is supported by recent advances in cell-based 
assay methodology and technologies. Examples in the 
oncology area include techniques for culturing gli-
oma progenitor cells representing the cancer stem cell 
niche [58], 3D tumor and fibroblast co-culture organo-
typic assays, which recapitulate the dense fibrosis and 
poor drug penetration of poorly vascularized tumors [59] 
and 3D tumor spheroid cultures, which recapitulate 
the hypoxic and host cell stromal microenvironment 



Figure 2.  Compound structures from recent examples of phenotypic drug discovery and modern phenotypic 
screening. 6: eCF309; 7: Trametinib; 8: AZD4877; 9: Olesoxime.
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of many tumors [60]. Screening phenotypic hits across 
suites of such assays raises the bar with regard to early 
assessment of the clinical relevance of hit and lead com-
pounds, and also informs subsequent preclinical and 
clinical development strategies. Ongoing advances in 
IPSc, gene editing and microfluidic technologies sup-
port the development of more physiologically relevant 
assays across disease areas further advancing more 
robust approaches to prioritizing phenotypic hits.

Challenges in target deconvolution
An emerging simplistic view of phenotypic screening is 
that it is an effective strategy for identification of new 
therapeutic targets from physiological-based models to 
feed TDD. However, as discussed above, it is unlikely 
that a primary phenotypic screening assay by itself will 
predict clinical efficacy and it is also unlikely that initial 
chemical hits from a large chemical library phenotypic 
screen will have sufficient potency or selectivity to sup-
port rapid and robust target deconvolution. Caution 
should, therefore, be taken to ensure that poorly designed 
phenotypic screening and target deconvolution strategies 
do not create expensive new drug discovery bottlenecks 
in target deconvolution and further investment of sig-
nificant chemistry resources on poorly validated targets.

As discussed below, target deconvolution is a challeng-

ing and expensive endeavor with limited success rates, 
we therefore propose that the pathway from phenotypic 
screening to target deconvolution should not directly fol-
low one another. Rather phenotypic hits should be care-
fully triaged through increasingly more complex and 
disease relevant secondary phenotypic assays to build 
further confidence in the translational potential of the 
phenotypic hit. Further panel screening across in vitro 
toxicity assays, physiologically relevant assay formats 
and phenotypic profiling against reference compound 
libraries will help select the most novel and desirable 
compounds for target deconvolution. Further experi-
mental medicine studies, including transcriptomic and 
proteomic analysis, across genetically defined cell assays 
to prioritize biomarker and drug combination strategies 
support subsequent chemical optimization using spe-
cific pathway reporter assays, target deconvolution and 
preclinical development. This more in-depth biological 
investigation will then shift the PDD bottleneck from 
target deconvolution toward increased disease relevance, 
novelty, safety and hopefully improved efficacy and drug 
discovery productivity.

Target deconvolution
Following careful triaging and selection of high-value 
lead compounds identified by PDD, a number of dis-
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tinct and complementary target deconvolution strate-
gies can be employed (Box 1). Many early target decon-
volution studies relied heavily upon affinity-based 
chemical proteomics approaches which have demon-
strated success in identifying targets for a variety of 
novel inhibitors including hedgehog pathway, bro-
modomain and N-acetyltransferase inhibitors derived 
from phenotypic screens [18–20]. However, despite such 
examples of clear target deconvolution success stories, 
affinity-based chemical proteomics are often hampered 
by nonspecific binding of proteins [61–63]. The recent 
development of publicly available databases character-
izing nonspecific protein binding contaminants associ-
ated with affinity-based proteomics methods attempts 
to address the background noise associated with affin-
ity-based proteomics [62]. Competition assays were par-
ent compound is preincubated with cell lysates prior 
to adding the conjugated affinity capture compound 
have been developed to determine nonspecific binding 
to affinity capture reagents and can be combined with 
databases describing common background contami-
nant profiles to increase confidence in identifying spe-
cific drug-target interactions [61,62]. Such approaches, 
however, do not completely resolve the issue of nonspe-
cific binding, and affinity-based chemical proteomics 
is limited to providing lists of potential target bind-
ers rather than conclusive evidence of which target is 
responsible for the phenotypic response, thus further 
target confirmation studies are required. Several new 
and complementary target deconvolution strategies are 
rapidly emerging (Box 1), although no target identifi-
cation method provides conclusive evidence of which 
target is responsible for the complete pharmacologi-
cal profile of a compound. The application of distinct 
target deconvolution methods (Box 1) combined with 
other MOA profiling tools may provide strong cor-
roborative evidence to prioritize target hypothesis, 
which may be responsible for phenotypic response. 
However, validation of target hypothesis will only be 
confirmed through further biochemical and cell phar-
macology studies. Established and emerging target 
deconvolution strategies have been reviewed in depth 
elsewhere [64,65] and so will not be covered in further 
detail here; however, we do highlight the latest trends 
in target deconvolution strategies in Box 1.

Mechanism-of-action profiling
A critical success factor in any drug discovery project 
is the understanding of candidate drug MOA within 
complex and physiologically relevant biological set-
tings. Several new technologies enable rapid MOA 
profiling in complex cell models at genetic, proteomic 
and phenotypic levels at scale. Such higher throughput 
MOA profiling can facilitate the selection of appropri-

ate phenotypic hits to take forward the further pre-
clinical development, identify new assay endpoints 
and biomarkers to support early hit-to-lead chemical 
optimization, provide corroborative evidence for tar-
get deconvolution studies and support further pre-
clinical development and translation toward clinical 
studies with or without conclusive target identifica-
tion. Recent advances in MOA profiling technologies 
include: high-throughput gene transcription profil-
ing, pathway profiling at the post-translational level 
and high-throughput phenotypic imaging and image 
informatics [15–17,66]. The latest developments and 
application of these approaches in PDD are described 
in f urther detail in the following sections.

High-throughput gene transcription 
profiling
Gene transcription-based profiling approaches using 
whole genome expression arrays provide a comprehen-
sive overview of gene activity in biological samples. 
Common applications of gene expression arrays include 
genome-wide differential expression studies, disease 
classification and drug MOA analysis. The concept 
of using gene transcription profiling to elucidate drug 
MOA and deconvolve therapeutic targets was first 
applied by Hughes et al. who created a compendium 
of 300 yeast deletion strains and associated transcrip-
tion profiles [27]. By correlating similarity of transcrip-
tion profiles from drug-treated cells with those derived 
from each individual yeast deletion they identified the 
C-8 sterol isomerase, ERG2 as the target for the anes-
thetic Dyclonine [27]. To progress a more systematic 
comparative bioinformatics analysis of gene expression 
profiles, the Connectivity Map concept and public 
repository of transcription profiles was developed [14]. 
Connectivity Map combines a catalog of gene expres-
sion profiles from large panels of compound perturbed 
samples with computational and statistical methods to 
support similarity profiling of gene expression patterns 
to infer compound MOA [14,67]. As a proof-of-concept 
study, connectivity map gene expression profiling 
was applied to identify the MOA of the compound, 
Gedunin, identified as a hit from a screen for andro-
gen receptor inhibitors. Gene transcription profiles 
of LNCaP prostate cancer cells treated for 6 h with 
Gedunin were used to query the Connectivity Map 
database, which identified high similarity with multi-
ple HSP90 inhibitors; subsequent studies further sup-
port Gedunin as an inhibitor of HSP90 function [14]. 
The Connectivity Map approach has proven particu-
larly useful for discovering the MOA of natural prod-
ucts from traditional remedies. A recent example used 
Connectivity Map to identify the MOA of Berberine, 
an isoquinoline alkaloid used in traditional Chinese 
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herbal medicine and which has demonstrated antican-
cer properties in phenotypic assays [68]. Transcription 
profiles of HepG2 cells treated with Berberine for 4 h 
demonstrated similarity with gene expression profiles 
of the protein synthesis inhibitor cycloheximide as well 
as several mTOR and HSP90 inhibitors. Subsequent 
cellular pharmacology studies demonstrated that Ber-
berine inhibits protein synthesis, Akt activity but not 
mTOR activity and induces AMPK-mediated endo-
plasmic reticulum stress and autophagy [68]. Therefore, 
in this case, the initial application of Connectivity 
Map and gene transcription similarity profiling identi-
fied mechanistically similar compounds with known 
target activities to guide subsequent studies to further 
elucidate the MOA of Berberine.

Recent technical advances in gene expression pro-
filing include the development of higher throughput 
and low-cost gene-expression methods such as the 
L1000™ platform. L1000™ Expression Profiling is 
based upon the rapid quantification of a reduced num-
ber of landmark transcripts in 384-well plate format 
and a computational model to infer expression across 
the genome [15]. The L1000TM technology underpins 
the Library of Integrated Cellular Signatures (LINCS) 
NIH program, which funds the generation of per-
turbed gene expression profiles across multiple cell 
and perturbation types supporting drug MOA profil-
ing at scale [15,69,70]. While gene transcription profil-
ing has proven effective in elucidation of compound 
MOA, success is dependent upon the use of appropri-
ate biological assays where the relevant target pathway 
for any given compound is activated. A further depen-
dency is the cross referencing to a comprehensive and 
well-annotated reference set of compound signatures 
also generated under appropriate biological context. 
An alternative approach to inferring MOA from gene 
expression signatures is the comparison of drug sen-
sitivity/phenotypic response across large panel of cells 
with their basal gene expression profiles. A recent study 
used correlation-based analyses to associate the sensitiv-
ity of 481 compounds tested across 860 human cancer 
cell lines with the basal gene expression profile of each 
cell line [69]. The study included 115 small molecules 
of unknown mechanism with the aim of identifying 
novel targets for these compounds; correlation analysis 
was focused on single-transcript correlation outliers to 
prioritize potential target hypothesis [69]. Cancer cell 
sensitivity to the compounds BRD5468 and ML239 
correlated with high expression of the monoglyceride 
lipase MGLL and the fatty acid desaturase FADS2, 
respectively [69]. Treatment with the MGLL inhibitor, 
JZL184 or shRNA knockdown of MGLL attenuated 
the cytotoxicity of BRD5468 and FADS2 knockdown 
and cotreatment with the selective FADS2 inhibitor 

SC-26196 reduced ML239 cytotoxicity [69]. These 
studies demonstrate that correlation of drug sensitiv-
ity profiles with basal gene expression patterns across 
large cell panels can reveal specific target hypoth-
esis. An advantage of correlating transcription profiles 
across large panels of cells is the ability to distinguish 
between distinct transcript correlations with drug sen-
sitivity from coregulated transcripts thereby prioritiz-
ing the most likely targets. However, limitations of this 
approach include the prerequisite for compounds that 
display distinct sensitivity across cell panels, which also 
display differential gene expression patterns and con-
founding correlation with mechanisms of metabolism 
or indirect regulators of compound sensitivity. Indeed 
the analysis by Rees et al. demonstrated that for 57% of 
the compounds tested, no significant correlation with 
any target could be detected [69]. Despite the recent 
advances in transcription-based profiling technolo-
gies, the costs associated with such analysis limit high-
throughput application to larger compound sets and 
dose–response and temporal studies. Transcription-
based profiling may also only reveal the downstream 
effects of compound exposure rather than the direct 
therapeutic targets.

Pathway profiling across panels of primary 
cell-based assays
Profiling compound response at the post-translational 
pathway level across panels of primary cells and path-
way targets has also demonstrated success in determin-
ing drug MOA, confirming selectivity, identifying 
toxicity liabilities and guiding SAR [71]. For example 
the BioMAP® – Human Primary Cell Phenotypic 
Profiling Services provided by DiscoverRX consists 
of panels of primary human cell-based assay systems, 
a database of reference compound profiles, and com-
putational data mining and analysis tools to support 
drug MOA analysis [72]. The comparison of BioMAP 
profiles from testing of two p38MAPK inhibitors, 
PD169316 and SB203580 revealed activity features 
unique to SB203580 including inhibition of VCAM-1, 
E-selectin, IL-8 and P-selectin expression [71]. To fur-
ther explore the structural determinants of the unique 
activities of SB203580, the BioMAP profiles of sev-
eral well-studied p38MAPK inhibitors and SB203580 
analogs were generated for comparison. These studies 
reveal that many of the unique activities of SB203580 
represent secondary off-target activities independent of 
catalytic activity [71]. The BioMAP approach is appli-
cable to large numbers of compounds tested across 
dose–response and time–series studies supporting 
precise SAR studies upon pathway responses. While 
the assays and core pathways tested represent highly 
sensitive readouts for multiple biological mechanisms, 
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the biological space covered will not be appropriate for 
elucidating the MOA of all molecules.

Reverse phase protein microarray
Reverse phase protein microarray (RPPA) represents 
a highly sensitive and quantitative high-throughput 
antibody-based proteomics methodology for measuring 
abundance of multiple proteins and phospho-proteins 
across large sample sets [73]. Key applications of RPPA 
include, dynamic pathway profiling at the post-transla-
tional network level following chemical or genetic per-
turbation, screening modulators of key pathway markers 
and protein biomarker discovery in clinical and preclini-
cal studies [73–75]. Recent advances in RPPA technology 
include more sophisticated sample handling, qual-
ity control, better quality affinity reagents and optical 
detection, including planar waveguide detection systems 
providing femtomole to zeptomole sensitivity in pro-
tein analyte detection in formats suitable for medium-
throughput applications [76]. The development of ultra-
sensitive RPPA facilitates large-scale multiplex analysis 
of multiple post-translational markers across small sam-
ples from in vitro, preclinical or clinical biopsies. Thus, 
RPPA technology is particularly suited to proteomic 
analysis of miniaturized assay formats of a few thousand 
cells from an individual well of a microtiter plate and 
microfluidic devices. Similar to the BioMAP and gene-
expression approaches, multiple pathways can be moni-
tored across large sets of assay panels and RPPA profiles 
compared with reference compound can help predict 
MOA and triage common/nonnovel pathway inhibitors 
or highly promiscuous pathway inhibitors with toxic lia-
bilities. Retrospective analysis of esophageal adenocarci-
noma patients who were also under treatment with met-
formin (Figure 1, structure 1) for diabetes demonstrated 
a better response to chemoradiation therapy compared 
with patients who were not receiving metformin [77]. 
However, the MOA of metformin in esophageal can-
cer was unknown. RPPA analysis applied to esophageal 
cancer cells treated with metformin revealed inhibition 
of PI3K/mTOR signaling pathway, which correlated 
with reduced cell growth and increased apoptosis [78]. 
In a similar approach, a Danish study comparing recur-
rence rates for breast cancer between Simvastatin users 
and nonusers demonstrated a significant reduction in 
recurrence rates in the statin users [79]. RPPA analysis of 
triple-negative breast cancer cell lines following Simv-
astatin treatment demonstrated decreased phosphoryla-
tion of FOXO3a. Subsequent knockdown of FOXO3a 
attenuated the effect of Simvastatin on mammosphere 
formation and migration [80]. Corilagin has recently 
been identified as a major active component in a well-
known herbal medicine (Phyllanthus niruri L.) with 
antitumor activity although the antitumor mechanism 

has not been clearly defined. RPPA analysis of a panel of 
ovarian cancer cell lines treated with Corilagin demon-
strated inhibited activation of canonical Smad and non-
canonical ERK/AKT pathways, which correlated with 
inhibition of TGF-β secretion and TFG-β pathway 
activation [81]. Similar to correlation of drug sensitiv-
ity across cell panels with basal gene expression profiles, 
drug sensitivity across cell panels have also been corre-
lated with basal protein levels and pathway activation 
states by RPPA to identify both MOA and mechanism-
of-resistance [82,83]. Correlation of sensitivity of a panel 
of small-cell lung cancer lines treated with the PARP 
inhibitor BMN 673 with RPPA analysis indicated the 
compound sensitivity is associated with elevated base-
line expression levels of several DNA repair proteins [83]. 
This study identified a novel ‘DNA repair score’ consist-
ing of a group of 17 DNA repair proteins, which pre-
dict sensitivity to BMN 673 [83]. Small-cell lung cancer 
insensitivity or resistance to BMN 673 correlated with 
baseline activation of the PI3K/mTOR pathway iden-
tifying a potential drug combination hypothesis [83]. 
While the majority of exemplar studies describing RPPA 
applications in drug MOA analysis have been applied to 
late-stage drug candidates or approved drugs, many of 
which have come from target-directed drug discovery, 
the success of this approach indicates that it will also be 
a useful method for uncovering the MOA of hits and 
lead compounds derived from phenotypic screens. A sig-
nificant advantage of antibody-based proteomic profil-
ing approaches is that they can help identify translatable 
pharmacodynamic or predictive biomarker reagents to 
guide appropriate preclinical proof-of-concept studies 
and clinical development strategies of drug candidates 
with or without conclusive target deconvolution.

High-content image-based multiparametric 
phenotypic profiling
Advances in automated microscopic image acquisi-
tion and image analysis tools enable the extraction of 
functional phenotypic endpoints from complex assay 
formats including 3D and co-culture models. Inte-
gration of high-throughput imaging assays with new 
image informatics resources enable high-throughput 
phenotypic profiling and classification of MOA across 
multiple assays, dose–response and time–series stud-
ies. We outline below the development in high-content 
imaging and image informatics methods and the new 
opportunities they present to phenotypic screening.

Evolution of high-content imaging  
& image informatics methods applicable to 
phenotypic screening
The rapid development of automated microscope plat-
forms has enabled the ability to generate tens of thou-
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sands of images a day on a single platform supporting 
medium- and high-throughput image-based pheno-
typic screening. With image analysis software capable 
of extracting several hundred measurements per cell 
from these images, researchers can detect and quan-
tify subtle phenotypic changes that would otherwise 
be missed with the naked eye or from a single end-
point assay. These developments have stimulated a new 
field of biological profiling in cell-based assay systems 
called high-content analysis [9,84]. However, due to the 
high-dimensional nature of the high-content datasets, 
tried-and-tested methods to determine hits and guide 
SAR developed in TDD are no longer applicable. 
This means new methods for hit selection and triag-
ing are required, and with the parallel developments 
in machine learning and other quantitative fields there 
are many options open to researchers.

Image-based phenotypic measurements can be 
recorded on two levels: an average of whole-well/-cell 
population measurements or individual cell measure-
ments. Whole-well measurements are less computa-
tionally intensive and easier to obtain and can prove 
useful when individual cell segmentation is not fea-
sible. Measurements taken from individual cells can be 
much more detailed, such as individual cell areas or 
number of organelles per cell. However, individual cell 
measurements generate large datasets that can become 
unwieldy and difficult to analyze without significant 
computing power and data handling pipelines. There-
fore, many image-based phenotypic assays use well or 
population averages of data obtained from individual 
cell measurements, describing the mean or median cell 
within each image. While this reduces the amount of 
data, and allows for more simple analyses, calculating 
a population average removes any information about 
heterogeneity or possible phenotypic subpopulations. 
In instances of two equal sized subpopulations, a well 
average phenotypic measurement may be a representa-
tive of few cells within that image and thus does not 
accurately record phenotypic response across the cell 
population. A method to quantify cellular heterogene-
ity within cell populations has recently been suggested 
based on three simple statistic procedures: percentage 
of outliers; the Kolmogorov–Smirnov (KS) test of nor-
mality; and quadratic entropy. This method can then 
be used to classify a cellular population according to 
the type of heterogeneity observed [85].

The development of such cellular subpopulation 
analysis methods is important as the origins behind 
heterogeneity within clonal populations are not well-
understood and the diverse response to therapeutics can 
be a driver underlying clonal selection, a well-known 
contributor to the evasion of anticancer therapeutics 
observed in many tumors. New methods calculating 

heterogeneity and the impact of pharmacological inter-
vention upon heterogeneous cell populations are thus 
especially relevant to anticipating therapeutic response 
and monitoring evolution of the disease in response to 
treatment within complex tumor microenvironments. 
Several studies have also reported that the expression of 
specific transcription factors associated with stem cell 
pluripotency are expressed in a heterogeneous fashion 
in embryonic stem cell cultures. For example, approxi-
mately 80% of embryonic stem cells express Nanog, 
while 10–20% do not [86]. Stem cell heterogeneity and 
conversion between distinct pluripotent or differenti-
ated stem cell fates also impact upon therapeutic areas 
dependent upon endogenous stem cell differentiation 
and reprogramming such as tissue regeneration and 
repair. The evolution of image-based methods moni-
toring cell heterogeneity and classification of subpop-
ulation responses at the single-cell level support the 
development of more complex and clinically relevant 
heterogeneous and multicellular models for automated 
cell-based screening. However, the challenge remains 
in how to distill such complex multiparametric data 
to enable key decision-making. Advances in the fields 
of multivariate statistics and machine learning offer 
potential solutions.

Development of multivariate high-content 
methods to predict compound MOA
In 2004, Perlman et al. published a landmark paper 
describing the use of compound ‘fingerprints’ derived 
from phenotypic measurements. It was shown that 
compounds with known similar MOA exhibited simi-
lar phenotypic fingerprints [17] and this could be used 
to predict the MOA of unknown compounds by their 
similarity to that of known compounds. In order to 
create the compound fingerprints a modified KS test 
was developed to compare the distribution of every 
measurement against the same measurement for the 
negative control, producing a list of numbers for each 
compound [87]. These vectors were aligned to other 
compound vectors in order to maximize correlation 
to account for differences in potency across ranges of 
concentrations. The pairwise Euclidean distance was 
calculated to create a similarity matrix between all 
the tested compounds; following hierarchical cluster-
ing, compounds with similar MOA were found closely 
aligned to one another. This was the first published 
demonstration that image-based phenotypic informa-
tion proved descriptive enough to discern compounds 
from one another [17]. Further development on multi-
parametric phenotypic assays combined with different 
compound profiling methods utilizing multivariate sta-
tistics, machine learning and artificial neural networks 
have steadily evolved [88–92]. In a recent study, 2725 
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compounds were profiled in a multiparametric high-
content assay measuring phenotypic effects upon the 
nucleus, cytoplasm, endoplasmic reticulum, golgi and 
cytoskeleton of the U2OS osteosarcoma cell line [54]. 
The high-content phenotypic fingerprints subsequently 
generated were used to cluster mechanistically similar 
compounds using the Markov Clustering Algorithm 
and then each compound cluster was analyzed for 
enrichment of individual targets and gene sets to facili-
tate MOA analysis [54]. Individual target annotations 
for compounds were obtained from public and com-
mercial drug target databases such as, ChEMBL, Drug-
bank, GVK (GOSTAR), Integrity and Metabase. Gene 
set enrichments were obtained from the following data-
bases: Biosystems, Metabase, Integrity, Metabase path-
way-derived gene sets (Metabase noodles) and Gene Go 
Ontologies [54]. Two compounds, 6-[6-(diethylamino-
pyridin-3-yl]-N-[4-(4-morpholinyl)phenyl]-9H-purin-
2-amine and Silmitasertib clustered with each other 
and a collection of other compounds inducing similar 
phenotypic response. In contrast to the majority of 
compounds in this cluster, which were associated with 
gene sets enriched in PI3K/Akt/mTOR, the previously 
described Jak3 inhibitor, 6-[6-(diethylaminopyridin-
3-yl]-N-[4-(4-morpholinyl)phenyl]-9H-purin-2-amine 
and the Casein kinase II inhibitor, Silmitasertib had 
not previously been associated with direct inhibition of 
PI3K/AKT/mTOR pathway targets. Subsequent bio-
chemical analysis revealed 6-[6-(diethylaminopyridin-
3-yl]-N-[4-(4-morpholinyl)phenyl]-9H-purin-2-amine 
inhibited 3-phophoinositide-dependent protein kinase 
1 (PDPK1), a component of PI3K/AKT/mTOR sig-
naling and Silmitasertib inhibited mTOR and PI3K-α 
with IC50 of 390 nM and 461 nM, respectively [54]. 
These studies demonstrate that novel compound–tar-
get associations can be identified from image-based 
multiparametric high-content profiling. In contrast to 
transcription or post-translational pathway profiling 
methods (BioMAP and RPPA) previously discussed, 
multiparametric high-content profiling assays can 
run in high-throughput across arrayed whole genome 
screens, large chemical libraries and compound profil-
ing studies incorporating dose response and time series 
if necessary.

Integrating phenotypes & SAR to predict 
MOA
The study of SAR by the generation and screening of 
compounds with similar chemical structures, is one of 
the fundamental methods used by medicinal chemists 
to determine which structural motifs are required for 
inducing a biological effect on a particular protein, cell 
or organism. In principle, compounds with analogous 
chemical structures often bind to the same or similar 

protein targets, a principle that is used to develop deriva-
tives with improved drug metabolism and pharmacoki-
netic (DMPK) properties, and as Perlman et al. demon-
strated, compounds with similar MOA produce similar 
phenotypes. Young et al. then filled the gap in this rea-
soning by investigating if compounds with comparable 
chemical structures produce similar phenotypes [87]. 
They screened HeLa cells with a small molecule com-
pound library and performed factor analysis on 36 
features to produce a fingerprint for each compound, 
with which a pair-wise similarity matrix was created by 
the cosine distance between phenotypic fingerprints. 
In order to determine the similarity between chemical 
structures, they defined the molecular structure through 
radial atom neighbors and a structure similarity matrix 
was constructed through Tanimoto distances between 
the compounds. The two similarity matrices, one for 
phenotype and one for chemical structure, were clus-
tered by phenotypic similarity, which revealed distinct 
phenotypic clusters that matched up to distinct groups 
of structurally similar compounds [87]. Performing SAR 
studies in cell-based phenotypic assays is significantly 
challenged by the fact that effects of compound modu-
lation upon phenotypic activity are multifactorial, influ-
enced not only by target engagement, but also cellular 
permeability (cLogP/D-mediated), subcellular distribu-
tion, cell transport mechanisms, membrane interactions 
and off-target activities. These issues increase the like-
lihood of obtaining sharp activity cliffs, which hinder 
directional SAR studies contributing to more complex 
and lengthy medicinal chemistry programs. In the 
study by Young et al., it was found that small changes 
in chemical structure were associated with large pheno-
typic differences indicating that sharp chemical activ-
ity cliffs are retained in information-rich high-content 
screening data [87]. Further biological investigation into 
the distinct multiparametric profiles obtained between 
chemically similar analogs may reveal the underlying 
causes of activity cliffs. For example, multiparametric 
high-content analysis can help diagnose if loss of activ-
ity is a consequence of reduced potency on a specific 
target mechanism, impaired distribution and influence 
within specific subcellular compartments or completely 
distinct MOA indicative of new off-target activities. 
Thus, high-content analysis supports a more in-depth 
cellular pharmacology approach to guiding subsequent 
c hemical library design from initial phenotypic hits.

High-content imaging quality control/assay 
standards
To gain meaningful results from any screen, including 
phenotypic-guided SAR, assay quality control is criti-
cal. For many, the lack of reliable metrics to determine 
assay robustness, such as the z-factor in high-throughput 



Figure 3.  Integration of high-content multiparametric phenotypic profiles with proteomic and genetic datasets. 
Representative displays of multiparametric cell morphometry analysis using optimized cell staining and CellProfiler 
image-analysis protocols followed by correlation of distinct drug-induced phenotypes between cells with 
molecular data at post-translational and genetic levels. Application of these methods support understanding of 
drug mechanism of action; identification of resistance mechanisms/pathways to guide biomarker discovery; novel 
drug combination hypotheses and high-throughput pharmacogenomics incorporating more complex phenotypes 
across disease areas and across advanced multicellular or 3D models. 
RPPA: Reverse phase protein microarray.
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biochemical screens [93] is a deterrent for widespread 
adoption of multiparametric high-content methods in 
industrial drug discovery. Despite criticism of the inap-
propriate use of the z-factor in high-content studies by 
many groups, there is still not a universally accepted 
replacement. Any metric suggested has to address three 
primary concerns: ability to work with multivariate data; 
assay independence; and ease of implementation and 
interpretation. Many attempts to develop such a method 
have used the z-factor as their basis [94,95], although none 
have addressed all the issues or gained widespread adop-
tion. The same principles apply for identifying pheno-
typic endpoints to guide SAR. Feature extraction and 
selection methods can reduce the data to a single value 
analogous to an IC

50
 to guide chemical design toward 

specific areas of phenotypic space. Successful implement 
of such phenotypic-guided SAR is, however, critically 
dependent upon reproducible assay formats, appropri-
ate feature extraction and selection methods and deep 
biological insight to ensure phenotypic features guide 
chemical design toward desired outcomes. The use of 
open datasets, such as the Broad Bioimage Benchmark 
Collection [96,97] enables researchers to compare image 
analysis and informatics methods on a common collec-
tion of annotated images, allowing iterative improvement 
of methods through collaboration and the replication of 
results. Further collaborative initiatives to develop com-
mon standards for HCS and image analysis methods 

will promote further adoption and stimulate cross-col-
laboration between both academic and industrial groups 
to advance the field of high-content image-based pheno-
typic s creening and profiling.

Conclusion
To date, the majority of phenotypic screening assays that 
have been implemented in chemical or si/shRNA library 
screening campaigns and examples of compounds and 
drugs developed through PDD strategies have used 
simple biological models and assay readouts. Historical 
success of PDD combined with acceptance of a signifi-
cant contribution to recent drug approvals has stimu-
lated renewed interest in PDD strategies. In this article, 
we describe limitations of traditional PDD approaches 
and highlight solutions and new opportunities for PDD 
presented by recent advances in assay development and 
image-based screening technology. With new advances 
in precise gene editing technologies such as CRISPR-
cas9, primary patient-derived cell culture, IPSc differ-
entiation combined with multiparametric high-content 
phenotypic profiling, all advance the applications of 
phenotypic screening under more relevant and well-
defined biological contexts. We propose that further 
development and adoption of new phenotypic assay 
technologies are well-placed to advance a new era of 
next-generation phenotypic screening c ontributing to 
both PDD and TDD success rates.
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Future perspective
Despite over 10 years of research carried out with high-
content phenotypic screening, the majority of studies 
have focused their efforts on a small selection of estab-
lished cell lines, picked primarily due to amenable cell 
culture propagation and imaging properties rather than 
relevance to human disease. The reasons behind this 
are understandable, as cost and speed represent impor-
tant criteria in medium- to high-throughput screening 
projects. Thus, selection of cell lines, which can be rap-
idly bulked up and accurately and reliably segmented 
into 2D cell culture assays using readily available image 
analysis methods, are attractive. An important advan-
tage of image-based high-content screening over other 
screening platforms is the ability to extract functional 
endpoints from more complex in vitro assays, which 
extend beyond simple 2D cultures and may include 
3D multicellular tissue models and small model organ-
ism screens, which exploit more complex biology. The 
development and adoption of more complex in vitro 
assays may benefit PDD in several ways:

•	 Application of assays which more accurately repre-
sent disease pathophysiology thus contributing to 
improved translation and clinical success rates;

•	 Identify novel target space including unbiased 
identification of novel target classes, which are not 
currently being pursued by drug discovery groups;

•	 Identify targets with more relevant functional vali-
dation, increasing confidence in target hypothesis 
to justify subsequent TDD investments;

•	 Recapitulate intact autocrine, paracrine and jux-
tacrine pathway signaling networks supporting 
discovery and development of novel multitargeted 
therapies and combination approaches.

The primary goal of PDD is to identify small mol-
ecules that beneficially modify a disease-associated 
phenotype, selecting a single cell line to model the 
disease can, however, prove risky. As demonstrated 
in cystic fibrosis disease models, there is little overlap 
between compounds that show efficacy in correcting 
the CFTR trafficking defect when the mutant CFTR 
protein is expressed across multiple cell lines [98]. This 
should lead us to question how well we place our trust 
in conclusions drawn from an experiment modeled in 
a single cell line. Application of high-content screen-
ing across genetically distinct primary cells or precise 
CRISPR-cas9 gene-edited cell panels can help elucida-
tion of drug MOA by linking phenotype to genotype 
and also stimulate biomarker and drug c ombinations 
studies (Figure 3) [69,99].
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Executive summary

Background
Historical examples of drugs discovered by phenotypic screening
•	 Approved drugs with unknown target mechanism.
•	 Recent examples of modern phenotypic screening outcomes, including development of highly potent and 

selective targeted agents.
•	 Pitfalls of poorly designed phenotypic screens/black-box assays.
•	 Challenges in target deconvolution.
•	 New approaches in target deconvolution.
•	 New approaches in mechanism-of-action determination (genomic profiling, proteomics and high-content 

analysis).
Evolution of high-content imaging & image informatics methods applicable to phenotypic screening
•	 Early multiparametric high-content methods for compound classification.
•	 More advanced image analysis and image informatics, including integration of multiparametric phenotypic 

fingerprints with chemical similarity.
•	 Current limitations in high-content analysis and high-throughput image informatics.
Future perspective
•	 New disease models, incorporating 3D assays, induced pluripotent stem cell and gene editing technologies.
•	 New opportunities for application of phenotypic screening across genetically distinct/gene-edited cell panels 

linking phenotype to genotype to support high-throughput genomics and personalized healthcare strategies 
in new disease areas.
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ABSTRACT
In this article, we have developed novel data visualization tools and

a Theta comparative cell scoring (TCCS) method, which supports

high-throughput in vitro pharmacogenomic studies across diverse

cellular phenotypes measured by multiparametric high-content

analysis. The TCCS method provides a univariate descriptor of di-

vergent compound-induced phenotypic responses between distinct

cell types, which can be used for correlation with genetic, epige-

netic, and proteomic datasets to support the identification of

biomarkers and further elucidate drug mechanism-of-action.

Application of these methods to compound profiling across high-

content assays incorporating well-characterized cells representing

known molecular subtypes of disease supports the development of

personalized healthcare strategies without prior knowledge of a

drug target. We present proof-of-principle data quantifying distinct

phenotypic response between eight breast cancer cells representing

four disease subclasses. Application of the TCCS method together

with new advances in next-generation sequencing, induced plu-

ripotent stem cell technology, gene editing, and high-content

phenotypic screening are well placed to advance the identification

of predictive biomarkers and personalized medicine approaches

across a broader range of disease types and therapeutic classes.

INTRODUCTION

T
he treatment of complex disease in human popula-

tions is often confounded by the broad heterogeneity

in the mechanisms responsible for the generation and

evolution of disease-affected cells. Within an indi-

vidual patient and between genetically distinct patients, such

heterogeneity in disease mechanisms contributes to poor drug

responses and relapses observed in the clinic.1,2 Sequencing of

the human genome and advances in characterizing patient

disease at genetic and proteomic levels support the personal-

ized medicine concept of treating each individual patient with

the most appropriate therapy for their disease.3,4

Key to the personalized medicine approach is the identifi-

cation of biomarkers, which can be readily measured in patient

samples to predict drug response. Many such biomarkers, for

example, BRAF V600E (Melanoma/Colorectal Cancer); EGFR

(Nonsmall cell lung carcinoma); and HER-2 (Breast Cancer), are

associated with monitoring activation state and mutation status

of known drug targets to predict response to therapy.5–7 Thus,

the personalized medicine approach is well suited to target-

directed drug discovery strategies where target pathways are

clearly defined. However, such target-directed personalized

medicine strategies are unsuitable for many complex diseases

and drugs discovered by phenotypic drug discovery, where they

are not defined by a single target or the mechanism-of-action

and therapeutic targets remain to be fully elucidated.8,9 Thus,

more unbiased approaches to the identification of biomarkers,

including genetic or pathway signatures, which predict drug

response are required to expand the personalized medicine

concept across complex disease types and therapeutic classes.

Comparative analysis of well-characterized panels of human

cell lines derived from distinct individuals has many applica-

tions in basic research, drug discovery, and personalized med-

icine. Genomic and transcriptional profiling of cancer cell line

panels, such as the National Cancer Institute 60 human tumor

cell line drug screen collection, provide a genetic context to

comparison of cell function and drug sensitivity, supporting

biomarker discovery and drug mechanism-of-action analysis.10

High-throughput in vitro pharmacogenomic studies

across larger cancer cell line panels have been established

and provide valuable resources, such as the Cancer Cell

Line Encyclopedia (CCLE) from the Broad Institute www

.broadinstitute.org/ccle/home and the Catalogue of Somatic

Mutation in Cancer Cell Lines project from the Sanger In-

stitute http://cancer.sanger.ac.uk/cell_lines, which facilitate
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pharmacogenomic analysis. Such drug sensitivity profiling

across genetically defined cell panels is now routinely im-

plemented in academia and industry to identify biomarkers

of response to support disease positioning and patient stratifi-

cation strategies, or to further understand drug mechanism-of-

action at genetic and proteomic levels.11,12

To our knowledge, all examples of in vitro high-throughput

pharmacogenomic studies carried out to date utilize either a

concentration of a drug that gives half-maximal response (EC50)

or concentration of a drug that gives half-maximal inhibition of

cell proliferation (GI50) value obtained by standard cell viability

assays as the primary phenotypic endpoint for correlating drug

sensitivity with genomic or transcriptomic datasets. While the

GI50 and EC50 measurements of cell viability provide the nec-

essary univariate value for quantifying drug sensitivity across a

panel of cell lines, this method has several limitations.

Accurate measurement of EC50 or GI50 values is dependent

upon obtaining full sigmoidal dose–response curves for each

drug or compound tested in the assay. Dose–response curves

and thus the EC50/GI50 calculations are prone to fluctuation

dependent upon assay conditions, including cell culture me-

dia, atmospheric conditions, cell line health and cell line batch

variation, and the type of viability assay reagents used. In-

deed, comparative analysis of large pharmacogenomic studies

published by the Broad and Sanger institutes have resulted in

reports of inconsistency between the genetic signatures of

drug sensitivity assigned to drugs shared between both stud-

ies.13,14 Cell viability assays and EC50/GI50 values are also not

suitable for the majority of disease models, which are not

defined by a single viability endpoint, or for quantifying drug

response in more complex and physiologically relevant cell

assays such as three-dimensional (3D) coculture models.

High-content imaging enables the quantification of multiple

phenotypic cellular endpoints with high spatial and temporal

resolution supporting drug sensitivity testing across more

complex in vitro assays including 3D and coculture models.15

Image-based phenotypic profiling combined with multi-

parametric analysis methods allows detailed characterization of

drug mechanism-of-action and classification of phenotypic

response, including identification of novel compound target

associations based upon similarity of multiparametric pheno-

typic fingerprintswith annotated reference compound sets.16–22

The application of multiparametric biological profiling of com-

pound libraries, by image-informatics and biospectra analysis

methods, supports unbiased approaches to mechanism-of-action

classification and identification of structure–activity relationships

independent of target hypothesis.23–25 While multiparametric

methods incorporating machine learning and artificial neural net-

works have steadily evolved to support phenotypic profiling across

several cell types,18,20,26 there are few studies that perform com-

parative multiparametric phenotypic analysis between distinct cell

types in drug discovery. Thus, despite over 15 years of continued

development in the high-content screening field, there are

few reports of pharmacogenomic studies performed across

the diversity of complex phenotypes that can be measured

by multiparametric high-content analysis approaches. A

number of challenges that must be overcome to apply high-

content phenotypic profiling to pharmacogenomic or phar-

macoproteomic strategies include the following: defining

relevant phenotypic endpoints, which appropriately quantify

drug sensitivity; quantifying diverse phenotypic response

across a dose response; visualizing multiple diverse pheno-

types elicited across dose response and distinct cell panels;

and reducing multiparametric high-content analysis of cell

phenotype to a robust univariate metric for correlating drug

sensitivity with genomic or proteomic datasets.

The goals of this study were to develop a robust and scalable

method for quantifying diverse multiparametric high-content

phenotypes and distinct compound-induced phenotypic re-

sponseacross apanelof cell lines.Wedescribe theoptimizationof

a high-content cell-painting assay to enable analysis of a broad

range of cell phenotypes across a panel of clinically relevant

breast cancer subtypes. We present new methods for normalizing

and displaying distinct and dose-dependent multiparametric

high-content phenotypic response across multiple cell types. We

introduce the development and application of the ‘‘Theta Com-

parative Cell Scoring’’ (TCCS) method for calculating distinct

phenotypic response between cell types. We describe the broad

utility of the TCCS method in providing a univariate metric for

quantifying distinct phenotypic response between compounds

tested in the same cell and for compounds tested across multiple

cell types. We make available the source code to enable appli-

cation of TCCS across large high-content datasets. We present

proof-of-principledata fromasmall compoundscreenperformed

on a panel of eight breast cancer cells representing four well-

characterized and clinically relevant subtypes. We demonstrate

the ability of our TCCS method to cluster cell types, which have

similar or distinct phenotypic response to individual compounds,

to guide patient stratification hypothesis and facilitate pharma-

cogenomic or proteomic studies. We discuss the potential impact

of this approach upon extending the application of in vitro

pharmacogenomic and personalized medicine strategies across a

wider range of disease areas and therapeutic classes.

MATERIALS AND METHODS
Cell Culture

Eight breast cancer cell lines were selected for their strati-

fication of four well-characterized breast cancer clinical

WARCHAL, DAWSON, AND CARRAGHER

396 ASSAY and Drug Development Technologies SEPTEMBER 2016 MARY ANN LIEBERT, INC.



subtypes (Table 1). Authenticated cell lines were acquired

from the American Type Culture Collection and carefully

monitored for morphological changes to ensure authenticity.

Cell lines were cultured in either Dulbecco’s Modified Eagle’s

Medium (HCC1954, MCF7, KPL4, MDA-MB-231, MDA-MB-

157, and SKBR3) or Roswell Park Memorial Institute-1640

(HCC1569 and T47D) supplemented with 10% fetal bovine

serum and 2 mM L-glutamine and incubated at 37�C, 5% CO2.

Two thousand five hundred cells were seeded into each of the

inner 60 wells of 96-well plates (#165305; Thermo) in 100 mL

media and incubated for 24 h before compound treatment.

Outer wells of plates were filled with 100 mL phosphate-

buffered saline (PBS).

Compound Treatment
A panel of well-annotated compounds purchased from

commercial suppliers (Table 2) were prepared as 10 mM stock

solutions in dimethyl sulfoxide (DMSO). 1,000· compound

plates were then created with semi-log dilutions in DMSO.

Each plate contained six wells of 0.1% DMSO as a negative

control and six wells of 200 nM staurosporine as a positive

control. Following compound addition, cell assay plates were

incubated at 37�C, in 5% CO2 incubator for an additional 48 h

before fixation, staining, and high-content imaging.

Imaging
We adapted the cell painting protocol from Gustafsdottir

et al.27 to optimize the cell staining across the eight selected

breast cancer cell lines. Specific modifications to the original

protocol by Gustafsdottir et al.27 were implemented to cir-

cumvent morphological changes induced upon the MDA-MB-

231 cell line, which was particularly sensitive to live cell

staining. The modifications included using all stains on

postfixed samples and adjusting concentrations of reagents to

optimize staining across the cell lines. The following adapted

cell painting protocol was therefore applied to our breast

cancer cell panel.

After a 48-h incubation in the presence of compounds, an

equal volume of 8% paraformaldehyde (PFA) was added to the

culture media of each well resulting in a final concentration of

4% PFA fixation buffer; the plates were then incubated at

room temperature for 20 min, followed by three washes in

100 mL PBS. Permeabilization was performed with the addi-

tion of 50 mL 0.1% Triton-X100 to each well and incubation at

room temperature for 20 min followed by three washes in

100 mL PBS.

The staining solution was prepared in a blocking buffer

consisting of 1% bovine serum albumin in PBS (Table 3).

Thirty microliters of staining solution was added to each well

and incubated in darkness at room temperature for 30 min

followed by three washes in 100 mL PBS, with no final aspi-

ration. Plates were then sealed (#PCR-SQ plate max) and im-

aged immediately.

Plates were imaged on a Molecular Devices ImageXpress�

Micro XLS, six fields of view were captured per well using

a 20· objective and five filters, DAPI (387/447 nm), FITC

(482/536 nm), Cy3 (531/593 nm), TxRed (562/642 nm), and

Cy5 (628/692 nm). Exposure, binning, and other image

settings were not altered between cell lines.

Image Analysis
Images were analyzed using CellProfiler v2.1.119 to extract

309 features (Supplementary Table S1; Supplementary Data are

available online at www.liebertpub.com/adt). Briefly, cell nu-

clei were segmented from the nuclei image based on intensity

and shape, and used as seeds to segment cell areas in the other

channels. Subcellular structures such as nucleoli and endo-

plasmic reticulum speckles were segmented and assigned to

parent objects. From these objects, measurements such as size,

shape, and spatial distribution were measured. The final Cell-

Profiler settings applied in this study were created by iteratively

adjusting the parameters and assessing the performance of cell

segmentation by eye across multiple drug treatments for all cell

types under evaluation, to ensure the most robust segmentation

Table 1. Panel of Breast Cancer Cell Lines

Mutation Status

Cell Line Subclass PTENa PI3Kb

MCF7 ERc WTd E545K

T47D ER WT H1047R

MDA-MB-231 TNe WT WT

MDA-MB-157 TN WT WT

HCC1569 HER2f WT WT

SKBR3 HER2 WT WT

HCC1954 HER2 ?g H1047R

KPL4 HER2 ? H1047R

aPhosphatase and tensin homolog.
bPhosphoinsitide-3-kinase.
cEstrogen receptor.
dWild type.
eTriple negative.
fHuman epidermal growth factor receptor 2.
gLack of consensus regarding the mutational status of those cell lines.

ER, estrogen receptor; HER2, human epidermal growth factor; PI3K,

phosphoinositide 3-kinase; PTEN, phosphatase and tensin homolog; TN, triple

negative; WT, wild type.
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for each distinct cell type, and drug-induced phenotype is

achieved.

Data Preprocessing
Out of focus and low-quality images were detected and

removed by filtering on saturation and focus measurements

provided in the CellProfiler output. Image averages of single

object measurements from CellProfiler were aggregated

by taking the median of each measured feature per image.

Features were normalized and

standardized on a plate-by-plate

basis by dividing each feature by

the median DMSO response for

that feature and then scaled by a

z-score to have a mean of 0 and a

standard deviation of 1. Feature

selection was performed by cal-

culating pair-wise correlations of

features and removing one of a

pair of features that have corre-

lation greater than 0.9 and re-

moving features with very low or

zero variance, using the findCor-

relation and nearZeroVar func-

tions in the caret R package.28

Quantifying Differential
Morphological Responses
by TCCS

Principal component analysis

(PCA) was performed and the data

were then centralized to the DMSO

centroid. This was carried out by

calculating the mean of principal

component (PC) 1 and 2 for the

DMSO subset of the data, and then

subtracting this from the PC values.

With each data point as a vector

in two-dimensional (2D) space

formed by the first two PCs, the

normof eachvector was calculated,

returning a Euclidean distance of

each data point from the DMSO

centroid. Then, the angles between

each vector and a reference vector

(0, 1) were calculated and denoted

as theta (y). The reference vector is

arbitrarily set as a vector along the

x-axis and enables easy compari-

son between the polar coordinate histograms of the PCA biplot in

Cartesian coordinates. For replicates, median values of PCs were

calculated before calculating vectors; this simple approach

avoids the pitfalls in calculating the mean of circular quantities—

for example the arithmetic mean of 1� and 359� is 180�, despite

the close proximity of the values in polar coordinates.

As any perturbations that do not produce morphologi-

cal changes will be indistinguishable from negative control

values, these points were found clustered within the negative

Table 2. Compounds

Compound Class Sub-Class Supplier Cat. No.

Paclitaxel Microtubule disrupting Microtubule stabilizer Sigma T7402

Epothilone B Microtubule disrupting Microtubule stabilizer Selleckchem S1364

Colchicine Microtubule disrupting Microtubule destabilizer Sigma C9754

Nocodazole Microtubule disrupting Microtubule destabilizer Sigma M1404

Monastrol Microtubule disrupting Eg5 kinesin inhibitor Sigma M8515

ARQ621 Microtubule disrupting Eg5 kinesin inhibitor Selleckchem S7355

Barasertib Microtubule disrupting Aurora B inhibitor Selleckchem S1147

ZM447439 Microtubule disrupting Aurora B inhibitor Selleckchem S1103

Cytochalasin D Actin disrupting Actin disrupter Sigma C8273

Cytochalasin B Actin disrupting Actin disrupter Sigma C6762

Jasplakinolide Actin disrupting Actin stabilizer Tocris 2792

Latrunculin B Actin disrupting Actin stabilizer Sigma L5288

MG132 Protein degradation Proteosome Selleckchem S2619

Lactacystin Protein degradation Proteosome Tocris 2267

ALLN Protein degradation Cysteine/calpain Sigma A6165

ALLM Protein degradation Cysteine/calpain Sigma A6060

Emetine Protein synthesis Protein synthesis Sigma E2375

Cycloheximide Protein synthesis Protein synthesis Sigma 1810

Dasatinib Kinase inhibitor Src-EMT Selleckchem S1021

Saracatinib Kinase inhibitor Src-EMT Selleckchem S1006

Lovastatin Statin Statin Sigma PHR1285

Simvastatin Statin Statin Sigma PHR1438

Camptothecin DNA damaging agent Topoisomerase 1 inhibitor Selleckchem S1288

SN38 DNA damaging agent Topoisomerase 1 inhibitor Selleckchem S4908

Src-EMT, Src kinase and Epithelial-Mesenchymal Transition inhibitor.
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control cloud in a scatter-plot of the first two PCs. As these

compounds are centered on the origin (0, 0), the angles cal-

culated from their vectors are uniformly distributed in all

directions and meaningless as a phenotypic direction. There-

fore, a minimum distance from the DMSO centroid was de-

termined as 1 standard deviation of the vector distances from

the origin, and compounds within this distance were defined

as inactive in our assay and not used in further calculations.

Active compounds were only included if they fell beyond this

minimum limit for all the eight cell lines.

To calculate the phenotypic difference between compounds

tested within the same cell line or a compound tested across

different cell lines using the vector analysis described above,

the absolute difference between the two theta values can be

used. However, as any difference greater than 180� and ap-

proaching 360� starts to reflect morphologies becoming more

similar, the absolute difference values have to be constrained

between 0� and 180�; this is carried out for values greater

than 180 by subtracting the value from 360, for example, 190�
will become 170�. We named the method ‘‘Theta-Comparative–

Cell-Scoring’’ to reflect the use of vectors applied to multi-

parametric high-content data to quantify distinct phenotypic

response between cell types.

Data and Code Availability
The CellProfiler pipelines, numeric data, and R code to

run the analyses and generate the figures are available at

github.com/swarchal/TCCS_paper

RESULTS
High-Content Phenotypic Comparisons Between
Morphologically Distinct Breast Cancer Cell Subtypes

We have modified the cell painting assay previously applied

to the osteosarcoma cell line U2OS cells27 to a panel of breast

cancer cell lines representing clini-

cally relevant subtypes. Eight breast

cancer cell lines representing four

pairs for each of the following

clinical subtypes: estrogen receptor

(ER)-positive, triple negative, human

epidermal growth factor receptor 2

(Her2)-postive/Phosphatase and

tensin homolog (PTEN) and phos-

phoinositide 3-kinase (PI3K) wild

type, and Her2-positive/PTEN and

PI3Kmut were selected for this

study (Table 1).

The modified cell painting as-

say was optimized to enable the CellProfiler image analysis

software to segment individual cells for each well and extract

features, which provide detailed morphological analysis of

individual breast cancer cell phenotypes. Representative im-

ages of the eight breast cancer cells stained with the modified

cell-painting protocol are displayed in three channels in

Figure 1A and respective cell segmentation masks generated

by CellProfiler analysis are shown in Figure 1B. As the breast

cancer cell lines look inherently different from one another

(Fig. 1), detecting differential phenotypic changes between

them requires normalization against the negative control

phenotype for each cell line. This was performed by dividing

each feature by the median DMSO value for that feature on a

plate-by-plate basis followed by z-scoring each feature indi-

vidually for all cell lines. Normalization in this manner

achieved two objectives: (1) removing any batch effects that

may be present across plates and (2) normalizing all pheno-

typic measurements as standardized fold changes from the

negative control values per cell line. PCA was then performed

on the normalized dataset of all cell lines using the prcomp

function in R.

Quantifying Differential Morphological Response
Between Cell Lines to the Same Compound

When the first two PCs are visualized as a 2D scatter plot,

low concentrations of compounds are typically found near or

within the DMSO cluster. However, with increasing concen-

trations, the points are often seen to proceed toward a given

trajectory, describing decreasing phenotypic similarity to the

negative control cells with increasing compound concentra-

tion. In the case of MDA-MB-231 cells treated with Cyclo-

heximide and Barasertib, the compounds result in trajectories

with opposing directions, describing opposite morphological

changes (Fig. 2). The case of Barasertib and Cycloheximide

provide a proof-of-principal example in the ability of the

Table 3. Stains and Concentrations Used in the Modified Cell-Painting Protocol

Stain Structure Labeled

Wavelength

(ex/em [nm]) Concentration Cat. No.; Supplier

Hoechst 33342 Nuclei 387/447 2mg/mL #H1399; Mol. Probes

SYTO14 Nucleoli 531/593 3 mM #S7576; Invitrogen

Phalloidin 594 F-actin 562/624 0.85 U/mL #A12381; Invitrogen

Wheat germ

agglutinin 594

Golgi and plasma

membrane

562/624 8 mg/mL #W11262; Invitrogen

Concanavalin A 488 Endoplasmic reticulum 462/520 11mg/mL #C11252; Invitrogen

MitoTracker DeepRed Mitochondria 628/692 600 nM #M22426; Invitrogen
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method described to distinguish opposing phenotypes re-

presented by enlarged and aneuploidy nuclei characteristic of

cytokinesis defects elicited by inhibitors of Aurora kinase B

(Barasertib) in contrast to the condensed nuclei characteristic

of the protein synthesis inhibitor (Cycloheximide).

These distinct phenotypic trajectories have been quantified

as theta values against a reference vector using Equation (1),

where u is the PC1, PC2 vector, and v is the reference vector of

(0, 1) (Fig. 2). A circular histogram of the theta values can then

be plotted to visualize the distribution of compound induced

phenotypes. The circular histogram theta plots provide an in-

tuitive indication of a phenotypic direction produced by a

specific pharmacological perturbation, as well as any change in

phenotypic direction across increasing concentrations that may

indicate off-target effects. Figure 3A shows a circular histogram

of the data pooled from all eight cell lines treated with an eight-

point half-log dose response of the Aurora B kinase inhibitor

Barasertib. Using the same directional histograms, data can also

be split by cell lines to directly visualize differential phenotypic

response across a panel of distinct cell lines (Fig. 3B).

The difference in theta values between cell lines can then be

calculated for a given compound to provide a univariate theta

metric of phenotypic dissimilarity between cell types (Fig. 3C).

It is possible to rank similarity and dissimilarity of each

compound-induced phenotype between cells or between other

compounds on a scale of 0–180� where 0 describes the most

similar phenotypes and 180 the most dissimilar phenotypes.

We name this method ‘‘Theta Comparative Cell Scoring’’ and

provide the formula below:

h = cos
u � v
jjujjvjj

� �
·

180

p
ð1Þ

Screening for Differential Phenotypic Response
Across the Panel of Breast Cancer Subtypes

To evaluate the TCCS method for the ability to identify

compounds that induce differential phenotypic responses

between the breast cancer cell lines, we calculated the differ-

ence between theta values for all eight breast cancer cell lines

treated with 1 mM of 24 different compounds. Compounds

Fig. 1. Cell painting assay applied to eight distinct breast cancer cell lines. (A) Composite image of cell lines treated with 0.1% DMSO.
Channels used: Red—MitoTracker DeepRed (mitochondria); Green—Concanavalin A (endoplasmic reticulum); Blue—Hoechst33342 (nu-
clei). Scale bars: 100 mm. (B) Image masks from CellProfiler showing nuclei and cell body segmentation. DMSO, dimethyl sulfoxide.

Fig. 2. Phenotypic directions in the first two PCs. Scatter plot of
the first two PCs of MDA-MB-231 cells treated with a small com-
pound library. Principal component analysis was carried out on 309
median normalized features extracted from cellular images. Bar-
asertib and Cycloheximide compounds are colored by concentra-
tion demonstrating opposite phenotypic directions in PC space
producing opposite nuclear phenotypes. Images show nuclei im-
aged with Hoechst, scale bars: 20 mm. PC, principal component.
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were selected to represent 12 pairs of well-characterized

mechanistic subclasses, 21 of these compounds elicited robust

morphological changes in all eight cell lines.

To identify and quantify differential phenotypic responses,

the difference between theta values was calculated for all pairs

of cell lines, constrained to the maximum dissimilarity value of

180� and plotted as a heat map for each of the 21 compounds

(Fig. 4). Compounds with high theta values indicate a differ-

ential response between pairs of cell lines for that particular

compound. A representative image between KPL4 and MCF7

cells treated with 1mM of the topoisomerase I inhibitor SN38 is

an example of a compound that

induces a distinct phenotypic re-

sponse between these cell types

(TCCS = 179�), relative to the neg-

ative control for each cell line

(Fig. 4). The majority of cell line

comparisons returned low TCCS

values, indicating that most of the

breast cancer cell lines selected

respond similarly to the com-

pounds in our panel (Supplemen-

tary Fig. S1).

Differential Response of Breast
Cancer Cell Lines Are Stratified
by Molecular Subclass

To demonstrate the ability of the

TCCS method to cluster high-

content phenotypic response across

breast cancer subtypes with a

view to informing disease posi-

tioning and personalized medi-

cine strategies, we used data from

an exemplar molecular targeted

therapy, the dual Src/Abl inhibi-

tor Saracatinib (AZD0530).

To utilize the data present across

multiple titrations, the mean PCs

were taken across eight concen-

trations to create the 2D vector

with which the difference between

TCCS values across all pairs of cell

lines is calculated. TCCS values are

plotted as a heat map clustered by

hierarchical clustering using Eu-

clidean distance (Fig. 5A). This

revealed that the divergent high-

content phenotypic response in-

duced by Saracatinib across the breast cancer cell panel

clustered together based on their molecular subclass. Figure 5B

shows images of three cell lines treated with either DMSO

negative control or 1mM Saracatinib. FromFigure 5A the MDA-

MB-231 cell lines are found to have responded differently to

KPL4 and SKBR3 cell lines, which in turn elicited a similar

response to one another. This can be seen predominantly

through increased cell–cell contact in the Saracatinib-treated

MDA-MB-231 cells compared to the other two cell lines, ob-

served as an increase in normalized number of adjacent cells in

MDA-MB-231 cells (Supplementary Fig. S2). Although far from

Fig. 3. Circular histograms of theta values. (A) Circular histogram of theta values of Barasertib
calculated for all eight cell lines. (B) Phenotypic direction of cell lines treated with Barasertib
stratified by cell line. (C) A diagrammatic explanation of the theta value showing the difference in
theta values between HCC1569 and MDA-MB-231 cell lines treated with Barasertib.
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representative of all compound responses and disease subtypes,

this example does indicate the potential of high-content cell-

based phenotypic screening combined with application of the

TCCS method across genetically defined cell panels to provide

patient stratification hypothesis for both well-characterized

candidate drugs or poorly characterized active compounds

identified from phenotypic screens.

DISCUSSION
The rapid evolution and convergence of new technologies,

including advances in image-based high-content phenotypic

screening, induced pluripotent

stem cell (iPSC) technologies,

and gene editing, are well placed

to advance a new era of modern

phenotypic screening in more

informative and disease rele-

vant cell-based models of dis-

ease.15,29,30 However, a limitation

of phenotypic screening is the

identification of hit molecules or

candidate drugs without knowl-

edge of the target mechanism.

The lack of information on tar-

getmechanism,while not required

for drug approval, impedes the

design of personalized healthcare

strategies to combat disease het-

erogeneity. Several target decon-

volution strategies have been

applied to compounds discovered

by phenotypic screening to elu-

cidate target mechanisms.31–33

However, no target deconvolution

method is conclusive, and such

strategies are often based upon the

assumptions that a compound will

only inhibit a single target and

monitoring the activity and inhi-

bition of the elucidated target will

guide personalized therapy.

For the majority of compounds

discovered by phenotypic screens,

and for many complex human

diseases where the one-drug-one-

target hypothesis is unrealistic,

new nontarget-centric approaches

are required to understand drug

mechanism-of-action and guide

personalized healthcare strategies. In vitro pharmacogenomic or

pharmacoproteomic profiling across well-characterized cell

panels, representing specific disease subtypes, exemplifies one

approach for informing drug mechanism-of-action and guiding

personalized healthcare strategies in the absence of target

knowledge. Breast cancer is separated into fourmajor molecular

subtypes; Luminal A (ER-positive and/or progesterone receptor

(PR)-positive and HER2-negative and Low Ki67); Luminal B

(ER-positive and/or PR-positive and HER2-positive or HER2-

negative with high Ki67); Triple negative/basal like (ER- PR-

and Her2-negative); and HER2 type (ER- PR- negative and

Fig. 4. Heat map of theta values between pairs of cell lines for separate compounds. (A) Differ-
ence in theta values calculated between pairs of cell lines treated with 21 compounds at 1mM
concentration. Images show differential response between KPL4 and MCF7 cell lines treated with
1mM SN38. MCF7 cells are observed to decrease in cell area, with bright staining for the endo-
plasmic reticulum, whereas the KPL4 cells produce a ‘‘fried egg’’ morphology with large spread
cells and weak endoplasmic reticulum staining. Channels used are as follows: Red—MitoTracker
DeepRed (mitochondria); Green—Concanavalin A (endoplasmic reticulum); Blue—Hoechst33342
(nuclei). Scale bar: 100mm. (B) Circular histogram of theta values calculated for MCF7 and KPL4
cells treated with 1 mM SN38.
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Her2-positive). Each major molecular subtype of breast cancer

can be further divided into subclasses based upon genetic mu-

tation status and protein profiles, and the diagnosis of breast

cancer subtype dictates the most appropriate personalized

treatment for patients.34–36

In this article, we have developed a multiparametric high-

content assay, data visualization tools, and a TCCS method,

which support phenotypic screening of compound libraries

across genetically distinct cells representing known molecular

subtypes of disease. We provide proof-of-principle data applied

to eight breast cancer cells representing four disease subclasses

(Table 1), demonstrating the application of the method for

quantifying distinct phenotypic response between cell types and

clustering of cell-associated clinical subtypes based on similar

or dissimilar phenotypic response to compound treatment.

As previously discussed, several multiparametric pathway

and phenotypic profiling methods have been developed to

classify drug mechanism-of-action and uncover new drug–

target associations, and structure activity relationships in a

more holistic and unbiased manner.18,20–25,27 However, the

majority of these methods have been applied to single cell types

amenable to high-content imaging or large-scale biochemical

and proteomic analysis.18,21–25,27 The TCCSmethoddescribed in

this article was developed to provide a practical method to

enable comparativemultiparametric phenotypic analysis across

a panel of genetically distinct cell types, which provides rapid

quantification and visualization of divergent compound-

induced phenotypic response between cell types. An intuitive

explanation of the TCCS method would be the cosine distance in

degrees of vectors in the first two

PCs; this is a variation on existing

methods that largely rely on corre-

lation or Euclidean distance be-

tween compound vectors.18

The benefits of the TCCS over

previous methods are as follows: (1)

use of distance from the negative

control to remove poorly active or

inactive compounds that might

produce spurious differences in cor-

relation of cosine similarity mea-

sures; (2) The comparison of each

data point to a common reference

vector enables visualizations of a

single metric, which depicts the rel-

ative change in phenotypic response

induced by a compound (Fig. 3A).

The most critical aspect of com-

paring results between panels of

distinct cell lines regardless of downstream methods is during

the data preprocessing stage, which requires careful normal-

ization against the negative control values for each cell line to

remove inherent differences in cell line morphology. Thus, the

TCCS method represents a flexible approach with broad ap-

plicability to quantifying and visualizing distinct phenotypes

induced by a panel of compounds within a single cell type and/

or the response of a single compound across multiple cell types.

The TCCS method removes compounds from the algorithm that

are not sufficiently different from the negative control. While

this increases the robustness of the calculation, it also creates

the opportunity to miss compounds that possess differential

sensitivity between cell lines. This limitation of the method

arises where certain compounds that do not induce any mor-

phological change in one cell line may still perturb cellular

morphology in another cell line, thus any such compound

would subsequently be removed from the calculation due to

insufficient distance from the negative control centroid, despite

eliciting a genuine differential response between cell lines.

However, this limitation can be simply rectified by im-

plementing an initial preanalytical stage of the algorithm by

calculating the distance from DMSO for all compounds across

all cell lines to assign either as ‘‘active’’ or ‘‘inactive’’ phenotypic

responders. Differences in the activation state of all compounds

across all cell lines are recorded and the active compounds then

progress to TCCS analysis to quantify and visualize a distinct

phenotype response across cell lines.

The TCCS method as outlined in this article utilized only the

first two PCs produced from the PCA. These two variables

Fig. 5. Heat map and hierarchical clustering of cell lines treated with Saracatinib. (A) Heatmap
of TCCS values calculated between all pairs of cell lines treated with Saracatinib with hierarchical
clustering by complete linkage of the Euclidean distance. (B) Images demonstrating two similar
phenotypic responses—KPL4 and SKBR3—and the dissimilar phenotypic response of MDA-MB-
231 cell lines to 1 mM Saracatinib treatment. Channels used: Red—MitoTracker DeepRed (mito-
chondria); Green—Concanavalin A (endoplasmic reticulum); Blue—Hoechst33342 (nuclei). Scale
bar: 100 mm. TCCS, Theta Comparative Cell Scoring.
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explain most of the variance of data in low dimensional data

represented by majority of high-throughput high-content

screens, which typically measure only small numbers of fea-

tures.37 In such high-throughput compound screens, TCCS

applied to the first two PCs would be expected to provide a

single value describing the difference in response across dif-

ferent cell lines for active compounds. The method as applied

to the first two PCs in this article becomes less informative in

higher dimensional data sets as more PCs are required to de-

scribe the data. As the calculation to define the angle between

two vectors [Eq. (1)] uses the dot product of the two vectors, the

vectors are not limited to the first two PCs, and it is entirely

reasonable that they could contain any number of PCs.

Therefore, an alternative option would be to implement the

TCCS method on a number of PCs that satisfy a user-defined

proportion of variance within the data.

Comparison of high dimensional vectors against one an-

other rather than against a reference vector allows for direct

calculation of a theta value in high dimensional space, an

example workflow using the TCCS method applied to more

than two PCs is provided in the online R scripts (github.com/

swarchal/TCCS_paper) and is represented in the description of

the TCCS workflow (Fig. 6). The TCCS method may also be

applied to the normalized assay parameters rather than PCs as

also demonstrated in the supplementary R workflow (gi-

thub.com/swarchal/TCCS_paper). However, care should be

taken to ensure that potentially uninformative parameters are

not included in such analysis to avoid introduction of un-

necessary assay noise. Thus, the most optimal application of

the TCCS method can be appropriately tailored to each study

and nature of the underlying high-content data set.

Multiple concentrations are not often used in high-

throughput cell-based screening assays, despite providing useful

information to detect off-target effects and can be thought of as

inherent replicates of individual compound data. A further ap-

proach to incorporate titration data into defining direction in PC

space would be to fit a linear model to each compound using

simple linear regression, forcing the y-intersect through 0. While

this would lose information pertaining to the distance from the

DMSO centroid at each concentration, it would provide infor-

mation regarding goodness of fit, and data may be excluded

from the TCCS analysis if they do not fit the linear model well or

used to indicate compounds with off-target effects at higher

concentrations. As the theta value is essentially a direction

in PC space, another useful addition would be to relate theta

back to the feature loadings that describe how the PCs were

constructed. This would return the phenotypic features that

best describe a certain direction in phenotypic space. However,

PCA contains negatively weighted features and so methods such

as nonnegative matrix factorization in which the feature load-

ings are all positive values, may be a potential avenue for this

improvement.

Another potential use of TCCS method is in assay quality

control (QC). For example, TCCS could be applied to the

Fig. 6. TCCS workflow. (A) Normalized numerical data. (B) PC analysis, negative control values colored in blue. (C) Centering of PC values
to the negative control centroid. (D) Calculation of distance from the origin to each data point, an activity cutoff is derived from the
standard deviation of the distance to the negative control values. (D.2) In two-dimensional space, a directional histogram can be created by
the angle of each vector against a reference vector. (E) Inactive compounds excluded based on distance from the origin. (F) Determining the
angle between compounds. (F.2) Visualization or clustering of compounds based on theta values.
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simultaneous evaluation of two positive controls known to

elicit robustly different morphologies (e.g., paclitaxel and

staurosporine) along with a negative control such as DMSO to

determine a theta value between the two positive controls. It

would be expected that the two positive controls would have

a theta value greater than a specified minimum. The variance

of theta values between two positive controls per plate could

therefore be used as a measure of biological assay variability

during assay development and screening campaigns.

Incorporating a multiparametric QC metric that utilizes high-

content analysis across two positive controls provides increased

robustness and more unbiased assessment of monitoring

variation in cell behavior and assay variability over current

methods that use a single positive control analysis of a pre-

selected parameter. Other multivariate assay QC metrics typi-

cally build on the Z0-factor using supervised machine learning

techniques such as Fisher’s linear discriminant analysis (LDA)

to best separate the positive and negative controls.38 Although

more robust than single parametric analysis, a drawback of this

method is that LDA is often prone to overfitting in high di-

mensions, which may produce overoptimistic QC values when

processed to the Z0-factor calculation.

The convergence of new technologies, including next-

generation sequencing, high-throughput proteomics, iPSC

technology, and high-content phenotypic screening, is well

placed to advance the identification of predictive biomarkers

and personalized medicine approaches across a broader range

of disease types and therapeutic classes.15,29,30,39,40

Our study provides a broadly applicable approach for

quantifying distinct phenotypic response between genetically

distinct cells using high-content analysis coupled to a TCCS

scoring method. The TCCS method that we describe provides a

univariate metric that can be applied to any high-content

assay for quantifying and visualizing a diverse phenotypic

response between cell types. The TCCS metric provides a

univariate score of distinct phenotypic response on a scale of

0–180� (where 0� = similar and where 180� = most dissimilar),

which can be used for correlation with orthogonal genetic,

epigenetic, and proteomic datasets to support the identifica-

tion of biomarkers of drug phenotype and further elucidate

drug mechanism-of-action at genetic and pathway levels.
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Image analysis is heavily used to quantify phenotypes 
of interest to biologists, especially in high-throughput  
experiments1–3. Recent advances in automated micro-
scopy and image analysis allow many treatment con-
ditions to be tested in a single day, thus enabling the 
systematic evaluation of particular morphologies of 
cells. A further revolution is currently underway: 
images are also being used as unbiased sources of quan-
titative information about cell state in an approach 
known as image-based profiling or morphological  

Data-analysis strategies for image-based 
cell profiling
Juan C Caicedo1, Sam Cooper2, Florian Heigwer3  , Scott Warchal4, Peng Qiu5,  
Csaba Molnar6, Aliaksei S Vasilevich7, Joseph D Barry8, Harmanjit Singh Bansal9,  
Oren Kraus10, Mathias Wawer11, Lassi Paavolainen12, Markus D Herrmann13,  
Mohammad Rohban1, Jane Hung1,14, Holger Hennig15  , John Concannon16, Ian Smith17, 
Paul A Clemons11, Shantanu Singh1, Paul Rees1,18, Peter Horvath6,12, Roger G Linington19   
& Anne E Carpenter1  

Image-based cell profiling is a high-throughput strategy for the quantification of 
phenotypic differences among a variety of cell populations. It paves the way to studying 
biological systems on a large scale by using chemical and genetic perturbations.  
The general workflow for this technology involves image acquisition with high-
throughput microscopy systems and subsequent image processing and analysis. Here, 
we introduce the steps required to create high-quality image-based (i.e., morphological) 
profiles from a collection of microscopy images. We recommend techniques that have 
proven useful in each stage of the data analysis process, on the basis of the experience of 
20 laboratories worldwide that are refining their image-based cell-profiling methodologies 
in pursuit of biological discovery. The recommended techniques cover alternatives that 
may suit various biological goals, experimental designs, and laboratories’ preferences. 

profiling4. Herein, the term morphology will be used 
to refer to the full spectrum of biological phenotypes 
that can be observed and distinguished in images, 
including not only metrics of shape but also intensities, 
staining patterns, and spatial relationships (described 
in ‘Feature extraction’).

In image-based cell profiling, hundreds of mor-
phological features are measured from a population 
of cells treated with either chemical or biological per-
turbagens. The effects of the treatment are quantified 
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by measuring changes in those features in treated versus untreated 
control cells5. By describing a population of cells as a rich col-
lection of measurements, termed the ‘morphological profile’, 
various treatment conditions can be compared to identify bio-
logically relevant similarities for clustering samples or identifying 
matches or anticorrelations. This profiling strategy contrasts with 
image-based screening, which also involves large-scale imaging 
experiments but has a goal of measuring only specific predefined 
phenotypes and identifying outliers.

Similarly to other profiling methods that involve hundreds of 
measurements or more from each sample6,7, the applications of 
image-based cell profiling are diverse and powerful. As reviewed 
recently8,9, these applications include identifying disease-specific 
phenotypes, gene and allele functions, and targets or mechanisms 
of action of drugs.

However, the field is currently a wild frontier, including novel 
methods that have been proposed but not yet compared, and few 
methods have been used outside the laboratories in which they 
were developed. The scientific community would greatly benefit 
from sharing methods and software code at this early stage, to 
enable more rapid convergence on the best practices for the many 
steps in a typical profiling workflow (Fig. 1).

Here, we document the options at each step in the computational 
workflow for image-based profiling. We divide the workflow into 
eight main steps (Fig. 1). For each step, we describe the process, its 
importance, and its applicability to different experimental types 
and scales. We present previously published methods relevant to 
each step, provide guidance regarding the theoretical pros and 
cons for each alternative option, and refer to any prior published 
comparisons of methods. We do not cover the upstream steps 
(sample preparation and image-acquisition recommendations)1,2 
or computational practicalities such as the necessary information-
technology infrastructure to store and process images or data. The 
workflow’s starting point is a large set of images. The assays can 
be specifically designed for profiling, such as Cell Painting10,11, 
but any image-based assays can be used, including a panel of mul-
tiple parallel image-based assays12, or time-lapse microscopy for 
analyzing dynamics13 or even whole organisms14.

This paper is the result of a ‘hackathon’, in which the authors 
met to discuss and share their expertise in morphological profil-
ing. Hands-on data-analysis challenges and the accompanying 
discussions helped to identify the best practices in the field and 
to contribute algorithms to a shared code base.

We hope to provide a valuable foundation and framework for 
future efforts and to lower the barrier to entry for research groups 
that are new to image-based profiling. The detailed workflows 
used by each individual laboratory contributing to this article  
can be found online (https://github.com/shntnu/cytomining-
hackathon-wiki/wiki/).

step 1: image analysis
Image analysis transforms digital images into measurements that 
describe the state of every single cell in an experiment. This process 
makes use of various algorithms to compute measurements (often 
called features) that can be organized in a matrix in which the rows 
are cells in the experiment, and the columns are extracted features.

Field-of-view illumination correction. Every image acquired 
by a microscope exhibits inhomogeneous illumination mainly 

because a nonuniform light source or optical path often yields 
shading around edges. This effect is often underestimated; how-
ever, intensities usually vary by 10–30%, thus corrupting accurate 
segmentation and intensity measurements15. Illumination correc-
tion is a process to recover the true image from a distorted one. 
There are three main approaches to illumination correction:

Prospective methods. These methods build correction functions from 
reference images, such as dark and bright images with no sample in 
the foreground. The approach requires careful calibration at the time 
of acquisition and relies on assumptions that are often inappropriate, 
thus yielding an incomplete correction in practice16.

Retrospective single-image methods. These methods calculate the 
correction model for each image individually17–19. However, 
the result can change from image to image and thus may alter  
the relative intensity.

Retrospective multi-image methods. These methods build the cor-
rection function by using the images acquired in the experiment. 
These methods are often based on smoothing16, surface fitting20, 
or energy-minimization models15.

Illumination correction is an important step for high-throughput  
quantitative profiling; the strategy of choice in most of our labo-
ratories is a retrospective multi-image correction function. This 
procedure produces more robust results, particularly when sepa-
rate functions are calculated for each batch of images (often with 
a different function for each plate and always with a different 
function for different imaging sessions or instruments). We rec-
ommend use of prospective and single-image methods for only 
qualitative experiments.

Segmentation. Typically, each cell in the image is identified and 
measured individually; that is, its constituent pixels are grouped 
to distinguish the cell from other cells and from the background. 
This process is called ‘segmentation’ (Fig. 2), and there are two 
main approaches:

Model based. The experimentalist chooses an appropriate algo-
rithm and manually optimizes parameters on the basis of visual 
inspection of segmentation results. A common procedure is first 
to identify nuclei, as can often be done easily, and then to use the 
results as seeds for the identification of the cell outline. A priori 
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Figure 1 | Representative workflow for image-based cell profiling. Eight 
main steps transform images into quantitative information to support 
experimental conclusions.
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knowledge (i.e., a ‘model’) is needed, such as the objects’ expected 
size and shape21. Model-based approaches typically involve histo-
gram-based methods, such as thresholding, edge detection, and 
watershed transformation22.

Machine learning. A classifier is trained to find the optimal seg-
mentation solution by providing it with ground-truth data and 
manually indicating which pixels of an image belong to different 
classes of objects23. This approach typically involves applying 
various transformations to the image to capture different pat-
terns in the local pixel neighborhood. Segmentation is ultimately 
achieved by applying the trained model to new images to classify 
pixels accordingly.

Both approaches are used in profiling experiments. The model-
based approach is most common (for example, in CellProfiler24); 
it performs well for fluorescence microscopy images of cultured 
cells22. However, it requires manual parameter adjustment for 
each new experimental setup. Machine-learning-based segmen-
tation (for example, in Ilastik23) can perform better on difficult 
segmentation tasks, such as highly variable cell types or tissues. 
It does not require as much computational expertise, but it does 
require manual labeling of training pixels for each experimental 
setup and sometimes even for each batch of images. The creation 
of ground-truth data in the process of labeling allows for quantita-
tive performance assessment.

Feature extraction. The phenotypic characteristics of each cell 
are measured in a step called feature extraction, which provides 
the raw data for profiling. The major types of features are:

Shape features. These features are computed on the bounda-
ries of nuclei, cells, or other segmented compartments. These 
include standard size and shape metrics such as perimeter, area,  
and roundness25,26.

Intensity-based features. These features are computed from the 
actual intensity values in each channel of the image on a single-cell 
basis, within each compartment (nucleus, cell, or other segmented 
compartments). These metrics include simple statistics (for exam-
ple, mean intensity, and maximum intensity).

Texture features. These features quantify the regularity of  
intensities in images, and periodic changes can be detected by 
using mathematical functions such as cosines and correlation 
matrices. These features have been extensively used for single-
cell analysis27–30.

Microenvironment and context features. These features include 
counts and spatial relationships among cells in the field of view 
(on the basis of the number of and distance to cells in a neigh-
borhood) as well as its position relative to a cell colony31–33. 
Segmented regions are not limited to nuclei, and cells and may 
also include subcellular structures that can be quantified as meas-
urements (for example, speckles within a nucleus or distances 
between the nucleus and individual cytoplasmic vesicles).

Whereas screening experiments typically measure one or two 
features of interest to quantify specific effects34, cell profiling 
involves computing as many features as possible to select robust, 
concise, and biologically meaningful features to increase the 

chances of detecting changes in the molecular states of cells. The 
most common practice is to measure hundreds or even thousands 
of features of many varieties; the details are typically described in 
the software’s documentation24,35,36.

step 2: image quality control
It is largely impossible to manually verify image quality in high-
throughput experiments, so automated methods are needed to 
objectively flag or remove images and cells that are affected by 
artifacts. These methods seek to decrease the risk of contaminat-
ing the data with incorrect values.

Field-of-view quality control. Images can be corrupted by arti-
facts such as blurring (for example, improper autofocusing) or 
saturated pixels (for example, debris or aggregations that are 
inappropriately bright). Typically, statistical measures of image 
intensity are used for quality control.

Metrics can be computed to detect blurring, including the 
ratio of the mean and the s.d. of each image’s pixel intensities, 
the normalized measure of the intensity variance37, and the image 
correlation across subregions of the image38. The log–log slope 
of the power spectrum of pixel intensities is another effective 
option, because the high-frequency components of an image 
are lost as it becomes more blurred39; this procedure has been  
found to be the most effective in a recent comparison for high-
throughput microscopy40. For detecting saturation artifacts, 
the percentage of saturated pixels has been found to be the best 
among all tested metrics.

We recommend computing various measures that repre-
sent a variety of artifacts that might occur in an experiment to 
increase the chance of artifact identification. Then, with data-
analysis tools, these measurements can be reviewed to iden-
tify acceptable quality-control thresholds for each measure40.  
It is also possible to use supervised machine-learning algo-
rithms to identify problematic images41,42, but these algorithms 
require example annotations and classifier training and vali-
dation, and thus may require more effort and introduce a risk  
of overfitting.

Cell-level quality control. Outlier cells may exhibit highly unu-
sual phenotypes but may also result from errors in sample prepa-
ration, imaging, image processing, or image segmentation. Errors 
include incorrectly segmented cells, partly visible cells at image 
edges, out-of-focus cells, and staining artifacts. Although errors 
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Figure 2 | Methods used for image analysis. (a) Illumination-correction 
function estimated with a retrospective multi-image method. Pixels in the 
center of the field of view are systematically brighter than pixels in the 
edges. (b) Image segmentation aims to classify pixels as either foreground 
or background, i.e. as being part of an object or not. Here, regions have 
been segmented with the model-based approach.
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are best decreased through careful techniques and protocols, there 
are several strategies for detecting outlier cells:

Model-free outlier detection. This strategy includes methods 
to define normal limits by using statistics. Data points repre-
sented with a single variable (for example, distance values or 
single features) can be analyzed with univariate statistical tools, 
including the 3- or 5-s.d. rules, Winsorizing, and the adjusted 
box-plot rule43. Robust statistics based on estimators such as the 
median and the median absolute deviation44 can also be used 
and extended to multivariate situations45. Additional multivariate  
methods include principal component analysis (PCA) and 
Mahalanobis-based outlier detection46.

Model-based outlier detection. This strategy involves training a 
model of normal samples to aid in detecting outlier cells47. For 
instance, if a linear regression among features is suitable, outliers 
can be detected as data points with a large residual that does not fol-
low the general trend48. Alternately, a supervised-machine-learning 
classifier can be trained by providing examples of outliers49–51.

After they are detected, outlier cells can be removed, or when 
the number of outliers in the sample is too high, the entire sam-
ple can be examined manually or omitted from analysis47,52. 
Importantly, cell-outlier detection should be performed at the 
whole-population level; that is, it should not be separately con-
figured per well, per replicate, or per plate. Extreme caution is 
recommended, to avoid removing data points that represent cells  
and samples with interesting phenotypes53,54. Samples can be 
composed of various subpopulations of cells, and outlier-detec-
tion methods may incorrectly assume normality or homogenous 
populations (Fig. 3). For this reason, most laboratories skip out-
lier detection at the level of individual cells, other than to check 
for segmentation problems.

step 3: preprocessing extracted features
Preparing extracted cell features for further analysis is a delicate 
step that can enhance the observation of useful patterns or can 
corrupt the information and lead to incorrect conclusions.

Missing values. Feature-extraction software may yield non-finite 
symbols (such as NaN and INF) representing incomputable val-
ues. In general, use of these symbols is preferred to assigning a 
numerical value that could be interpreted as having a phenotypic 
meaning. The presence of non-finite symbols poses challenges 
to applying statistics or machine-learning algorithms. There are 
three alternate solutions for handling missing values:

Removing cells. If a small proportion of cells have missing values, 
excluding them can be considered. However, those cells may indi-
cate a valid and relevant phenotype, a possibility that should be 
assessed carefully (described in ‘Cell-level quality control’).

Removing features. If a large proportion of cells have a missing value 
for a particular feature, they might be removed on the grounds that 
the feature is insufficiently informative. Again, this removal should 
be assessed carefully for its effect on unexpected cell phenotypes.

Applying imputation. If the proportion of cells with missing values 
for certain features is relatively small, several statistical rules may 

be applied to complete these values. The use of zeros or the mean 
value is common in general statistical analysis but should not be 
the default option for single-cell profiling. If too many values are 
artificially added to the data matrix, the downstream analysis may 
be affected or biased by false data.

Deciding how to proceed with missing values is primarily 
dependent on experimental evaluations and empirical observa-
tions. Removing cells or features is more common than applying 
imputation. However, there is no single rule that applies in all cases, 
and the best practice is to collect convincing evidence supporting  
these decisions, especially with the use of quality measures and 
replicate analysis (described in ‘Downstream analysis’).

Plate-layout-effect correction. High-throughput assays use 
multiwell plates, which are subject to edge effects and gradient 
artifacts. Concerns regarding spatial effects across each plate are 
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and even discrete distributions (h). The ranges in which features are 
represented also vary considerably. These histograms were obtained with 
feature values from a sample of 10,000 cells in the BBBC021 data set108. 
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software. The x axes show feature values (in different units), and the  
y axes show frequencies (cell counts). 
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not unique to imaging and have been widely discussed in both 
the microarray-normalization and high-throughput-screening 
literature44,55–58. They can be decreased to some degree at the 
sample-preparation step59.

We recommend checking for plate effects to determine whether 
any artifacts are present within plates or across multiple batches. 
The simplest method is a visual check, through plotting a meas-
ured variable (often cell count or cell area) as a heat map in the 
same spatial format as the plate; this procedure allows for easy 
identification of row and column effects as well as drift across 
multiple plates.

We recommend using a two-way median polish to correct 
for positional effects. This procedure involves iterative median 
smoothing of rows and columns to remove positional effects, 
then dividing each well value by the plate median absolute devia-
tion to generate a B score60. However, this procedure cannot be 
used on nonrandom plate layouts such as compound titration 
series or controls placed along an entire row or column54. Other 
approaches include 2D polynomial regression and running aver-
ages, both of which correct spatial biases by using local smooth-
ing61. Notably, image-based profiling is often sufficiently sensitive 
to distinguish among different well positions containing the same 
sample. Thus, to mitigate these positional effects, samples should 
be placed in random locations with respect to the plate layout. 
However, because such scrambling of positions is rarely practical, 
researchers must take special care to interpret results carefully and 
to consider the effects that plate-layout effects might have on the 
biological conclusions.

Batch-effect correction. Batch effects are subgroups of measure-
ments that result from undesired technical variation (for exam-
ple, changes in laboratory conditions, sample manipulation, or 
instrument calibration) rather than constituting a meaningful 
biological signal (Fig. 4). Batch effects pose a major challenge to 
high-throughput methodologies, and correction is an important 
preliminary step; if undetected, batch effects can lead to misin-
terpretation and false conclusions62.

We recommend identifying batch effects by inspecting correla-
tions among profiles (described in ‘Single-cell data aggregation’). 
Specifically, by plotting heat maps of the correlation between 
all pairs of wells within an experiment, sorted by experimental 
repeat, batch effects can be identified as patterns of high correla-
tion corresponding to technical artifacts (Fig. 4a). As a quantita-
tive check, within-plate correlations should be in the same range 
as across-plate correlations.

When correction is needed, standardization and quantile 
normalization, as discussed in ‘Feature transformation and nor-
malization’, can be applied within plates rather than to the entire 
screen63. This procedure should be performed only if samples are 
relatively randomly distributed across plates. Canonical correla-
tion analysis can also be used to transform data to maximize the 
similarity between technical replicates across experiments64,65. 
Nonetheless, care should be taken to ensure that batch effects 
have been correctly decreased without false amplification of other 
sources of noise.

Feature transformation and normalization. Morphological 
profiles include features that display varying shapes of statistical 
distributions66. It is therefore essential to transform feature values 

with simple mathematical operations, such that the values are 
approximately normally distributed and mean centered and have 
comparable s.d. Normal distributions make it easier to work with 
numeric values from a mathematical, statistical, and computa-
tional point of view. We highlight three key steps in this process:

Distribution testing. The need for transforming feature values can 
be evaluated for each feature on the basis of diagnostic meas-
ures and plots (Fig. 3). Graphical methods such as histograms, 
cumulative distribution curves, and quantile–quantile plots 
allow for visual identification of features that deviate from sym-
metric distributions. Analytical tests can also be used, including 
the Kolmogorov–Smirnov (KS) test and the Kullback–Leibler  
divergence, both of which aim to compute ratios of deviation 
from normality.

Logarithmic transformations. These transformations are often 
used to obtain approximate normal distributions for features 
that have highly skewed values or require range correction67,68. 
Transformations include the generalized logarithmic function68 
and other adaptations that use shrinkage terms to avoid problems 
with nonpositive and near-zero feature values69,70, as well as the 
Box–Cox transformation67.
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Relative normalization. This procedure consists of computing 
statistics (for example, median and median absolute deviation) 
in one population of samples, and then centering and scaling the 
rest with respect to that population. Ideally, features are normal-
ized across an entire screen in which batch effects are absent; 
however, normalization within plates is generally performed to 
correct for batch effects (described in ‘Batch-effect correction’). 
When choosing the normalizing population, we suggest the use 
of control samples (assuming that they are present in sufficient 
quantity), because the presence of dramatic phenotypes may 
confound results. This procedure is good practice regardless of 
the normalization being performed within plates or across the 
screen. Alternately, all samples on a plate can be used as the nor-
malizing population when negative controls are unavailable, too 
few, or unsuitable for some reason, and when samples on each 
plate are expected to not be enriched in dramatic phenotypes.

We recommend applying normalization across all features. 
Normalization can be applied even if features are not transformed, 
and it is preferable to remove biases while simultaneously fixing 
range issues. z-score normalization is the most commonly used 
procedure in our laboratories. Normalization also aligns the range 
of different features, thus decreasing the effects of unbalanced 
scales when computing similarities (described in ‘Measuring 
profile similarity’) or applying analysis algorithms (described in 
‘Downstream analysis’). It is advisable to compare several trans-
formation and normalization methods, because their perform-
ance can vary significantly among assays71.

step 4: dimensionality reduction
At this point in the workflow, it can be useful to ask which of 
the measured features provide the most value in answering the 
biological question being studied.

Dimensionality reduction aims to filter less informative fea-
tures and/or merge related features in the morphological pro-
files, given that morphological features calculated for profiling 
are often relatively redundant. The resulting compact representa-
tion is computationally more tractable, and it additionally avoids 
overrepresentation of similar features, that is, having a subgroup 
of features that measure similar or redundant properties of cells. 
Redundant features can diminish the signals of other more com-
plementary features that are underrepresented, thus confounding 
downstream analysis.

Feature selection. Feature selection reduces dimensionality by 
discarding individual features while leaving the remainder in 
their original format (and thus retaining their interpretability). 
Options include:

Finding correlated features. One feature is selected from a subgroup 
that is known to be correlated. For instance, some texture features 
are highly correlated; thus, not all of them are needed, because 
they may represent the same underlying biological property. The 
feature–feature correlation matrix is computed, and pairs with a 
correlation exceeding a given threshold are identified iteratively. 
At each step, the feature with the largest mean absolute correlation 
with the rest of the features is removed.

Filtering on the basis of replicate correlation. Features that provide 
the highest additional information content69,70 on the basis of 

replicate correlation are iteratively selected as follows. An initial 
set of features is selected, and each of the remaining features is 
regressed on the selected set. The resulting residual data vector 
represents the additional information not already present in the 
selected features. The correlation of this residual vector across 
replicates is used to quantify information content. As a separate 
step, features with low replicate correlation are often excluded 
from analysis because they are too noisy69,72.

Minimum redundancy–maximum relevance. A subset of features 
can have high replicate correlation without contributing substan-
tially new information. To prevent selecting redundant features, 
minimum redundancy–maximum relevance73 adds a constraint 
based on mutual information to the selection algorithm. The 
resulting selected features have high replicate correlation while 
preserving a diverse set of measurements74.

Support-vector-machine-based recursive-feature elimination. A 
support vector machine is trained to implicitly weigh useful fea-
tures in a classification task. Then, the features with the lowest 
weight are iteratively removed until the accuracy of the classifica-
tion task begins to decline75. In profiling applications, it may be 
desirable to select the features that best separate the treatments 
from the negative controls76,77; the selected features would then 
be those that maximally differentiate phenotypes.

No previous studies have compared these options. Most groups 
use the filter method based on replicate correlation69,70,72, and 
some add more powerful algorithms despite the computational 
cost. A combination of methods could be used, especially in 
tandem with the replicate-correlation strategy. There are other 
methodologies that may be useful, such as rescaling features 
in correlated groups such that their sum is one or selecting the 
features that contribute to most of the variance in the first two 
principal components.

Linear transformation. Methods of linear transformation seek 
lower-dimensional subspaces of higher-dimensional data that 
maintain information content. Linear transformation can be per-
formed on single-cell profiles and aggregated sample-level profiles. 
Unlike feature selection, transformations can combine individual 
features, thus making the resulting features more powerful and 
information rich but potentially impeding their interpretability. 

455 features 455 features

Treatments

Single-cell
data

Median
profiles

Etoposide

6,
30

3 
ce

lls

1,
24

6 
ce

lls

+2

0

–2

Floxuridine

Figure 5 | Single-cell data aggregation. The feature matrices of two 
treatments show the measurements of their cell populations in the 
experiment. These measurements have been collapsed into median 
profiles that show very distinct signatures corresponding to two selected 
compounds: etoposide and floxuridine.



nature methods  |  VOL.14  NO.9  |  SEPTEMBER 2017  |  855

review

Linear transformation across all samples in the experiment is often 
needed for downstream analysis, to avoid overrepresentation of 
related features. Options used in morphological profiling are:

PCA. This procedure maximizes variance in successive orthogo-
nal dimensions. PCA has been shown to outperform other dimen-
sionality-reduction methods, such as random-forest selection for 
discriminating small-molecule-inhibitor effects78, and independ-
ent component analysis and statistical image moments (Zernike/
Fourier) for separating cell lines and preserving cell morphology 
after reconstruction from a lower-dimensional space79.

Factor analysis and linear discriminant analysis. Factor  
analysis, which is closely related to PCA, finds nonorthogo-
nal combinations of features representing frequent patterns in  
the data80. Linear discriminant analysis finds a projection 
that maximizes the separation between positive and negative  
controls81. Both procedures have been successfully used in  
morphological profiling.

Among our laboratories, and in data science more generally, 
PCA is the most commonly used choice. Its simplicity and ability 
to retain a large amount of information in fewer dimensions prob-
ably explains its popularity. One comparative analysis using image-
based profiling data has shown that factor analysis, compared  
with some alternate transformations, can identify a compact set 
of dimensions and improve downstream analysis results77.

step 5: single-cell data aggregation
Profiles are data representations that describe the morphological 
state of an individual cell or a population of cells. Population-level 
(also called image-level or well-level) representations are obtained 
by aggregating the measurements of single cells into a single vec-
tor to summarize the typical features of the population, so that 
populations can be compared (Fig. 5).

Simple aggregations. There are three simple and commonly used 
strategies for creating aggregated population-level profiles from 
all individual cell profiles in the sample:

Mean profile. Assuming a normal distribution of features, a profile 
built from the means of each feature for all cells in the popula-
tion can provide a useful summary. This method has been used 
for compound classification77,82. The profile length is sometimes 
doubled by also computing the s.d. of each feature.

Median profile. Taking the median for each feature over all the cells 
in a sample (and optionally the median absolute deviation) can 
be more robust to non-normal distributions and can mitigate the 
effects of outliers. If outliers are artifacts or errors, this procedure 
is useful, but the median may misrepresent populations with rare 
phenotypes by considering them as undesired outliers.

KS profile. This profile compares the probability distribution of 
a feature in a sample with respect to negative controls by using 
the KS nonparametric statistical test83. The resulting profile is 
the collection of KS statistics for the features, which reveal how 
different the sample is with respect to the control.

There are other tests that may perform well but have not been 
evaluated for morphological profiling. Such tests include the 

Anderson–Darling statistic and the Mann–Whitney U test. Other 
aggregation strategies can be designed by using bootstrap estima-
tors previously used for phenotype classification84.

The median profile has been found to have better performance 
than other profiling strategies in two different studies16,77 and is 
the preferred choice in most of our laboratories. One choice that 
varies among groups is whether to construct profiles at the level 
of images, fields of view, wells, or replicates. One could, for exam-
ple, calculate a mean profile across all cells in a given replicate 
(regardless of the image or well) or instead calculate means for 
each image individually and then calculate means across images 
to create the replicate-level profile.

Subpopulation identification and aggregation. In most image-
based cell-profiling workflows, it is implicitly assumed that 
ensemble averages of single-cell measurements reflect the domi-
nant biological mechanism influenced by the treatment condi-
tion. However, subpopulations of cells are known to exhibit 
different phenotypes even within the same well85,86. Classifying 
populations of single cells on the basis of their shape87–90, cell-
cycle phase13,88,91, or signaling state92 can aid in interpretation 
and visualization of cell-profiling data93. Cellular heterogeneity 
poses practical challenges for effective measurement methods that 
account for this variability.

Making use of subpopulations usually involves three key steps:

Subpopulation identification. Cells are clustered according to their 
morphological phenotypes, by using single-cell profiles (from con-
trols or from the whole experiment). Clustering can be supervised, 
wherein reference phenotypes are selected94–96, or unsupervised, as 
in k-means clustering90,97 and Gaussian mixture model fitting92.

Classification. Single-cell data points from all treatment condi-
tions are then assigned to one of the subpopulations identified in 
the previous step. This assignment can be done by using a feature-
evaluation rule, such as proximity, similarity, or feature weight-
ing. This step is necessary because subpopulation identification 
is typically performed only on a subset of cells.

Aggregation. For each treatment condition, vectors are calculated 
and yield the number (or fraction) of cells within each subpopula-
tion. Thus, the dimensionality of these vectors is the number of 
identified subpopulations.

An unproven hypothesis in the field is that profiles based on 
identification of phenotypically coherent subpopulations of cells 
should improve the accuracy of profiling, given the prevalence 
of heterogeneity and the existence of small subpopulations that 
might be ignored in mean or median profiling. In fact, to date, 
subpopulation-based profiling has not improved separation of 
treatment conditions77,98. Nonetheless, defining subpopulations 
can assist in inferring biological meaning, by identifying over- and 
underrepresented subpopulations of cells under a given treatment 
condition99 and by improving understanding of the dynamics of 
how cells transition between different phenotypes98,100.

step 6: measuring profile similarity
A key component of downstream analysis is the definition of a met-
ric to compare treatments or experimental conditions. Similarity 
metrics reveal connections among morphological profiles.
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Similarity-metric calculation. With a suitable metric, the simi-
larities among a collection of treatment conditions can facilitate 
downstream analysis and allow for direct visualization of data 
structure, for example in distance heat maps (Fig. 6a). Image-
based cell-profiling studies use three types of metrics:

Distance measures. These measures involve calculating how far apart 
two points are in the high-dimensional feature space. Those used 
in morphological profiling include Euclidean72,83, Mahalanobis101, 
and Manhattan distances. Distance measures are very useful to 
quantify the difference in magnitude between profiles, because they 
aggregate the lengths of feature variations regardless of direction-
ality. This procedure is useful to compute estimates of phenotypic 
strength of treatments with respect to controls.

Similarity measures. These measures involve computing a statisti-
cal estimate of the likelihood of a relation between two profiles. 
Statistics used in morphological profiling include Pearson’s cor-
relation102, Spearman’s rank correlation103, Kendall’s rank correla-
tion78, and cosine similarity77. Similarity measures quantify the 
proximity between profiles, because they detect deviations from 
one sample to another regardless of the absolute magnitude. This 
procedure is useful in finding relations and groups of samples that 
share common properties.

Learned similarity measures. These measures involve training 
machine-learning models that weight features differently accord-
ing to prior knowledge about samples. The model can be a classi-
fier that systematically identifies differences between two samples 
by using cross-validation104 or by determining transformations 
of features that lead to maximal enrichment of groups of related 
samples89. These strategies can highlight patterns that are not 
discriminated by regular metrics and that usually require more 
computational power to be calculated.

The performance of distance and similarity metrics relies on 
the quality of selected features (described in ‘Feature selection’). 
High-dimensional feature profiles are often prone to the draw-
back of dimensionality, which consists of a decreasing ability of 
metrics to discern differences between vectors when the dimen-
sionality increases. Dimensionality reduction can mitigate this 
effect (described in ‘Linear transformations’). However, the choice 
of the metric can also be crucial, because good metrics better 
exploit the structure of the available features.

A comparison of metrics on one particular imaging data set has 
demonstrated that rank correlations (Spearman’s and Kendall’s) 
perform best for multiple untransformed feature vectors, whereas 
Euclidean and Manhattan distances are best for calculating  
z-prime factor values between positive and negative controls78.  
A comparison of metrics in gene expression data sets has suggested 
that Pearson’s correlation performs best when features are ratios, 
whereas Euclidean distance is best on other distributions105.

The consensus from our laboratories is that selecting an optimal 
metric is probably specific to feature-space dimensionality and dis-
tributions that result from prior steps in the pipeline. For a typical 
pipeline, Pearson’s correlation generally appears to be a good choice. 
Notably, indexes measuring clustering quality106, for example the 
Davies–Bouldin Index, silhouette statistic, and receiver operating 
characteristic–area under the curve can aid in metric choice78,98.

Concentration-effect handling. In experiments involving chemi-
cal perturbations, multiple concentrations are usually tested. 
Generally, researchers are interested in identifying phenotypic 
similarities among compounds even if those similarities occur 
at different doses. The following strategies are used to compute 
dose-independent similarity metrics:

Titration-invariant similarity score. First, the titration series of 
a compound is built by computing the similarity score between 
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each dose and negative controls. Then, the set of scores is sorted 
by increasing dose and is split into subseries by using a window 
of certain size (for instance, windows of three doses). Two com-
pounds are compared by computing the correlation between their 
subwindows, and only the maximum value is retained83.

Maximum correlation. For a set of n doses for each compound, the 
NxN correlation matrix is computed between all pairs of concen-
trations, and the maximum value is used as the dose-independent 
similarity score72.

The use of the maximum correlation is practical when a small 
number of concentrations are being tested. Depending on the 
experimental design, multiple concentrations can be treated dif-
ferently. For instance, doses that do not yield a profile distinct 
from those of negative controls can be omitted, and the remaining 
doses can be combined to yield a single profile for the compound. 
Alternatively, if all concentrations are expected to have a pheno-
type, an entire compound can be left out of the analysis when its 
doses do not cluster together consistently107. In addition, high 
doses can be removed if they are observed to be too toxic accord-
ing to certain criteria, such as a minimum cell count102,107.

step 7: assay quality assessment 
Assessing quality for morphological profiling assays can be chal-
lenging: basing the assessment on a few positive controls is not 
reassuring, but there are rarely a large number of controls avail-
able, nor are there other sources of ground truth. Every measured 
profile combines a mixture of the signal relating to the perturba-
tion together with unintended effects such as batch effects and 
biological noise. Tuning the sample-preparation technique, choos-
ing cell lines or incubation times, and choosing among alterna-
tives within the computational pipeline all benefit from use of a 
quantitative indicator of whether the assay is better or worse as a 
result of particular design choices. Options include:

Comparison to ground truth. If the expected similarities between 
pairs of biological treatments are known, they can be used to vali-
date predicted values. For instance, different concentrations of the 
same compound are expected to cluster together, and computed 
similarities should reflect that clustering. Similarly, if a subset of 
biological treatments is known to fall into particular classes, clas-
sification accuracy can be an appropriate metric77. However, it is 
challenging to obtain ground-truth annotations at a large scale. To 
our knowledge, the only publicly available image data set with a 
large number of class annotations is for human MCF7 breast can-
cer cells (in this case, various classes of compound ‘mechanisms 
of action’)108. Importantly, for proper evaluation of this data set, 
one complete compound set, including all concentrations, should 
be left out of training. A common mistake is to leave out a single 
dose of a single compound, inappropriately leaving the remaining 
doses of the same compound available to the classifier for training. 
Additional benchmarks beyond this data set are greatly needed.

Replicate reproducibility. This is typically measured as the simi-
larity among the profiles of replicate pairs of the same biological 
treatment, which should be significantly higher than the similar-
ity to profiles of other experimental conditions (controls and/or 
other biological treatments). This procedure requires at least two 
replicates of the experiment, a condition usually met for modern  

morphological profiling experiments. To assess significance, 
similarity scores are compared with a suitable null distribution.  
A null distribution is usually built with pairs of samples 
that are not expected to be highly correlated, and it mainly 
depends on the hypothesis being tested. For instance, the use 
of all pairs of biological treatments can provide a diverse null 
distribution for measuring replicate correlation, and a null  
formed by random pairs of control samples can be compared 
against controls grouped by well location to reveal position 
effects. A P value can be computed nonparametrically by evalu-
ating the probability of random pairs having greater similarity 
than a particular replicate pair.

Effect size. The difference between positive and negative con-
trols, also known as the effect size, can be used as a measure of 
quality. This measure can be computed with a wide variety of 
statistical formulations, including univariate and multivariate 
methods, and also by assuming parametric and nonparametric 
models109,110. The disadvantage of this approach is that maxi-
mizing effect size alone may cause a bias toward detecting only 
those phenotypes that distinguish the control while ignoring 
other phenotypes.

Exploratory approaches. Several methods have not been tested but 
might prove useful. Clustering can be used to ascertain the overall 
structure of relationships among samples in the experiment: a 
pipeline that produces substructures or many distinct clusters is 
likely to be preferable over one in which the distances between 
all pairs of samples are similar. The cumulative variance of the 
principal components is a metric not yet applied to morphological  
profiling experiments. Highly diverse signals from different bio-
logical treatments should require more components to explain a 
predefined fraction of variance (for example, 99%).

Currently, replicate reproducibility is the most commonly used 
method, given that ground truth is rarely available. Specifically, 
methods are often optimized to maximize the percentage of 
replicates that are reproducible relative to a null (under suitable 
cross validation). Using a null comprising pairwise correlations 
between different treatments is safer than using a null comprising 
correlations between treatments and negative controls; in the lat-
ter case, it is possible to optimize the assay to distinguish samples 
from negative controls while diminishing important differences 
among samples.

step 8: downstream analysis
Downstream analysis is the process of interpreting and validating 
patterns in the morphological profiles. The most important read-
outs are the similarities and relationships among the experimental 
conditions tested. Visualization of the relationships and the use 
of machine learning can help to uncover biologically meaning-
ful structures and connections among various treated samples. 
Most laboratories use a combination of these strategies; generally, 
unsupervised clustering is a good starting point for exploring the 
data. From there, the goals of the study strongly influence the 
combination of approaches used.

Clustering. Finding clusters is one of the most effective ways of 
extracting meaningful relationships from morphological profiles. 
Clustering algorithms can be used for identifying new associations  
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among treatments as well as validating known connections and 
ruling out batch effects. There are several ways of clustering  
a data set. Hierarchical clustering, the most widely adopted 
strategy, is used to identify groups of highly correlated experi-
mental conditions87 and to identify treatments with unexpected  
positive or negative connections99. Although it is not discussed in 
detail here, examining relationships among features rather than 
among samples can yield useful biological insights: for example, the 
amount of mitochondrial material in cells is generally proportional 
to cell size, thus revealing stereotyped control of these parameters, 
but certain chemical perturbants can disrupt this relationship111.

Hierarchical clustering is computed by using a similarity 
matrix that contains the similarity values for all pairs of sam-
ples (described in ‘Measuring profile similarity’). This similar-
ity matrix can be visualized as a heat map to reveal patterns in  
the data for several or up to hundreds of samples. The heat  
maps’ rows and columns are typically sorted by using the  
hierarchical structure discovered by the clustering algorithm. 
This hierarchical structure is known as a dendrogram, which 
links samples together according to their proximity in the  
feature space, and is usually visualized together with the heat 
map to highlight negative and positive correlations in the data 
(Fig. 6a). Bootstrapping has been used to evaluate the statistical 
significance of the results obtained with hierarchical clustering, 
as well as other probabilistic algorithms used in the analysis of 
single-cell populations32. Resampling methods can generally be 
used to estimate variance, error bars, or other statistical proper-
ties of the data and can aid in making more accurate predictions 
and interpretations.

Visualization of high-dimensional data. Visualizations are use-
ful to reveal the distribution and grouping of high-dimensional 
data points by using a 2D (and sometimes 3D) map layout that 
approximates their positions in the feature space. The relation-
ships among points are implicitly encoded in how close together 
or far apart they are in the visualization. This method can be 
used to study cell heterogeneity by using single-cell data points, 
or sample relations by using aggregated profiles. Single-cell data 
are usually downsampled for practical reasons: to decrease data 
size and identify rare cell types112,113. The following are the most 
common approaches for data visualization:

Data projections. A projection of the data matrix is displayed in 
a 2D (or 3D) scatter plot that approximates the geometry of the 
original point cloud. The most common methods include PCA 
(Fig. 6b), Isomap114, t-distributed stochastic neighbor embedding 
(tSNE)115 (Fig. 6c), and viSNE116.

Hierarchical visualizations. Plots are used to find structures in 
the data and reveal relationships between samples (Fig. 6d,e). 
The most commonly used choices are spanning-tree progres-
sion analysis of density-normalized events (SPADE)113,117 and 
minimum spanning trees118, which allow for relationships among 
hierarchical groups of single cells or samples to be identified by 
using branches that may represent phenotypes or treatments.

In many cases, data points in a visualization are colored on 
the basis of positive controls or otherwise known labels in the 
data, a common practice in analysis of single-cell flow cytometry 
data116,119,120. The color code can also illustrate other information  

in the data set, such as cell phenotypes, compound doses, val-
ues of measured features, or treatment conditions (Fig. 6e). 
Visualizations can be more effective if they are interactive, thereby 
allowing researchers to create and test hypotheses ad hoc. Software 
packages such as Shiny, GGobi, iPlots in R, Bokeh in Python, and 
D3.js in Javascript provide interactive plotting capacities, most 
of which can also be deployed in server-client environments for 
dissemination to the public.

Classification. Classification rules can be useful for transferring 
labels from annotated samples to unknown data points, for exam-
ple, classifying the mechanism of action of new compounds in a 
chemical library. As such, classification strategies require prior 
knowledge in the form of annotations for at least some of the data 
points in the collection. Given examples of data points that belong 
to different classes of interest, supervised classification algorithms 
learn a rule that computes the probability of each unknown data 
point falling into one of the classes.

It is relatively uncommon to have a large number of annotated 
samples in morphological profiling, because most experiments 
are designed to be exploratory. However, when this informa-
tion is available, a classification strategy can provide informative 
insights into the treatments. The most commonly used classifi-
cation rule in morphological profiling experiments is the near-
est-neighbors algorithm, which finds the closest data points in 
the collection of annotated samples and recommends a label for 
the new sample. For instance, this algorithm has been used for 
classifying the mechanism of action in a compound library77. 
Other supervised prediction models can also be used to learn 
relations between morphological features and biological activity 
assays, such as Bayesian matrix factorization, neural networks, 
and random forests121.

The classification performance is validated in a holdout test 
using precision, recall, and accuracy measures. It is absolutely 
critical for confidence in these metrics that the holdout test set not 
overlap with any data points in the training set. The most recom-
mended practice is to use samples treated in a different experi-
mental batch to create the holdout test set (other ground-truth 
recommendations are described in ‘Assay quality assessment’).

sharing
Both authors and the scientific community benefit from sharing 
code and data122. Numerous tools currently exist that address the 
steps outlined in this paper (Box 1); these tools can be useful both 
for beginners to experiment with and learn from and for experts 
to integrate into pipelines and build upon. Although data must be 
kept confidential for sensitive patient material, intellectual-property 
concerns are generally not the major issue with sharing; the primary 
hurdle in the process is usually the often substantial time and effort 
required of the authors. We do not consider code or data labeled 
‘available upon request’ to qualify as being openly shared, given the 
poor efficacy statistics123,124. We therefore recommend the follow-
ing options to make code and data available publicly online.

Code sharing. Options for sharing code include:

Step-by-step narrative. For software with only a graphical user 
interface, a detailed walkthrough of each step of the workflow can 
be provided; however, this option is suboptimal.
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Online code repository. The code should preferably be publicly 
hosted rather than being provided on a university website or as 
journal supplemental files. The options range from repositories 
such as Github and BitBucket to tools such as Jupyter notebooks 
and knitr documents125, which allow for reproducible reports 
containing code, documentation, and figures to be shared within 
a single document.

Packaging. Researchers can capture and share the computational 
environment used to create the results, such as providing virtual 
machines or Docker containers. Doing so ensures that all code, 
dependencies and data are available in a single container126,127, 
which is convenient for the user and also protects against changes 
in software libraries and dependencies.

Data sharing. In image-based cell profiling, publicly available data 
are valuable not only for reproducing results but also for identify-
ing completely new biological findings. Options include:

Sharing processed data only. Sharing only processed data (for 
example, extracted features) has been common, often through 
supplemental data files available via the journal or via a general-
purpose data repository such as Dryad (http://datadryad.org/).

Sharing images and data online. Few raw-image sets have been 
made available online, primarily because of the large size of 
the image data (tens of gigabytes for each 384-well plate) and 
therefore the high cost of maintaining the data on public serv-
ers. However, recent initiatives are decreasing this cost for 
authors, including the Image Data Resource (IDR; https://idr-
demo.openmicroscopy.org/)128, which accepts cellular images 
at the scale of high-throughput image profiling experiments. 
Generally, smaller sets of annotated images for testing image 
analysis methods are available in the Broad Bioimage Benchmark 
Collection (https://data.broadinstitute.org/bbbc/)108 and the 
Cell Image Library (http://www.cellimagelibrary.org/). Some 
resources, such as IDR, support using an ontology for describing 
phenotypes129. Before these public resources became available, 
some laboratories provided the data through their institutional 
servers13,32,52,89,103,130,131. Tools such as OMERO132 and open-
BIS133 have been used to create project-specific portals for easy 

online data exploration32,52,130, but bulk download of very large 
data sets can remain challenging.

We strongly encourage sharing of both data and images  
online, given how rapidly feature-extraction methods are chang-
ing, particularly via deep-learning methods (described in ‘Alternate 
workflows’).

alternate workflows
The data-processing workflow and recommendations presented in 
this paper have evolved as a result of years of efforts in different labo-
ratories. They have been robustly used in various studies and have 
proven to be successful in making biological discoveries8,9. However, 
the field is eager to adapt as the computer-vision and machine-learn-
ing communities make progress in designing new algorithms for 
processing image data. Some of our laboratories are already explor-
ing alternate workflows, such as those described below.

Segmentation-free classical-feature extraction. Instead of iden-
tifying single cells that are measured and characterized, this strat-
egy computes classical features from whole field-of-view images 
or from discrete tiles within images. Examples of these include 
PhenoRipper134,135 and WND-Charm/CP-CHARM136–138.

Deep-learning feature extraction. Deep learning techniques have 
recently and dramatically come to dominate the state-of-the-art 
performance in various computer vision tasks139. The most rele-
vant model for image analysis is currently the convolutional neural 
network (CNN), which learns to extract useful features directly 
from raw pixel data by using multiple nonlinear transformations, 
in contrast to the classical features described in ‘Feature extraction’. 
This model has been used for segmentation and classification of 
biomedical images140,141, for phenotype discovery in single-cell 
images from imaging flow cytometry142, and more recently for 
deep-learning approaches for morphological profiling: morpho-
logical profiling143,144. The following are the most relevant deep-
learning approaches for morphological profiling:

Learning features from raw pixels. This approach has been used 
for problems in which phenotypes of interest are predefined, 
and a set of categorized examples is needed to train the network. 
This approach has been successfully used for protein-localization 

box 1 soFtWaRe tools 

 A large range of software tools and libraries currently exist 
that seek to address the steps outlined in this paper. For each 
step, the alternatives are usually several software packages or 
programming languages that require either parameterization or 
coding.

Tools for image-analysis software have been previously 
reviewed150, and the variety in functionalities and platforms 
can fit a diverse range of workflows. Some of the open-source 
alternatives include CellProfiler24 and EBImage35, whereas 
Columbus and MetaXpress are commercial solutions.

After collection of features or measurements with image-
analysis software, the next steps in the workflow may require 
a combination of tools and programming languages. Statistical 

packages such as R have proven to be very useful for single-
cell data analysis, including cytominer, which is specific to 
morphological profiling. Other programming languages such as 
Python, Matlab and shell scripts can be used to process data 
with specific algorithms, including machine learning, data 
transformation, or simple data filtering and selection.

Each step may require specialized methods or may be solved 
with off-the-shelf implementations. The field is constantly 
changing, and the next breakthroughs in theory and practice 
may require new tools not yet available. In either case, the 
practice of sharing code is highly valued, to ensure rapid 
implementation of techniques, optimization of pipelines, and 
reproducibility of the results by others.
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problems145–147 and mechanism-of-action prediction144. Input 
images can be single cells146,147 or full fields of view144,145.

Transferring learned features from other domains. Using a CNN 
trained on a large data set for other tasks different from the original 
is known as transfer learning. CNNs pretrained with natural images 
have been evaluated as feature extractors for full image profiling of 
compounds; its accuracy matches the results of classical features 
without requiring segmentation or training143. The preprocessing 
steps described in ‘Field-of-view quality control’ and ‘Field-of-view 
illumination correction’ are still likely to be necessary for obtaining 
improved results. If there are few annotations available for phe-
notype-classification tasks, transfer learning can also be used to 
improve performance146.

Learning transformations of classical features. feature transfor-
mations similar to those described in ‘Linear transformations’ 
can be obtained with a technique known as the autoencoder. 
Deep autoencoders have been evaluated for high-content 
morphology data, thus suggesting that they may potentially 
have better performance for downstream analysis according  
to homogeneity of clusters148. Another study has evaluated  
deep autoencoders for profiling and has also obtained competi-
tive performance149.

Using full images results in a loss of single-cell resolution but 
offers several advantages: the avoidance of the segmentation step 
eliminates the sometimes tedious manual tuning of segmenta-
tion and feature extraction algorithms, saves computation time, 
avoids segmentation errors, and may better capture visual pat-
terns resulting from multiple cells. Using single-cell images 
explicitly captures heterogeneity and may offer improved accu-
racy with less training.

Although segmentation-free classical-feature extraction can 
be helpful for quality control, we generally consider it to be 
incapable of accomplishing most profiling tasks. Deep-learning 
techniques, although not yet proven to be more powerful than 
the standard workflow, are nonetheless very promising. We are  
actively pursuing optimized workflows based on deep learning 
and are gaining an understanding of how these techniques can 
be adapted for improving the computation and interpretation of 
useful image features.

We caution that it is possible to obtain excellent results on a 
ground-truth data set with a method that fails in realistic-use 
cases. This phenomenon may be especially true for machine-
learning-based methods with millions of internal parameters and 
again reinforces the need for new and disparate sets of ground-
truth data in the field.

Conclusions
It is an exciting time for the field of image-based cell profiling, as 
methods are rapidly evolving and applications leading to major 
biological discoveries are beginning to be published. We see the 
collection and sharing of large biologically interesting image sets, 
the organizing of benchmark ground-truth data sets, and the test-
ing of new methods to be the major areas in which effort is cur-
rently most needed.

In future work, as a community, we aim to build shared code-
bases, namely toolboxes of algorithms in R and Python. The 
beginnings of this effort can be found online (https://github.com/

CellProfiler/cytominer/), and we welcome additional contributors 
as well as participants in the cytomining hackathon, which will 
be held annually. A shared codebase will facilitate the develop-
ment and dissemination of novel methods and the comparison of 
alternative methods, particularly as additional ground-truth data 
become publicly available.
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Chapter 13

High-Dimensional Profiling: The Theta Comparative Cell
Scoring Method

Scott J. Warchal, John C. Dawson, and Neil O. Carragher

Abstract

Principal component analysis enables dimensional reduction of multivariate datasets that are typical in high-
content screening. A common analysis utilizing principal components is a distance measurement between a
perturbagen—such as small-molecule treatment or shRNA knockdown—and a negative control. This
method works well to identify active perturbagens, though it cannot discern between distinct phenotypic
responses. Here, we describe an extension of the principal component analysis approach to multivariate
high-content screening data to enable quantification of differences in direction in principal component
space. The theta comparative cell scoring method can identify and quantify differential phenotypic
responses between panels of cell lines to small-molecule treatment to support in vitro pharmacogenomics
and drug mechanism-of-action studies.

Key words Phenotypic screening, High-content analysis, Cell-based profiling

1 Introduction

Phenotypic screening allows the identification of treatments that
modify a disease model without prior knowledge of the molecular
target. This re-emerging method can generate hypotheses for the
etiology behind poorly understood diseases, in addition to the
discovery of potential therapeutics that act through novel biological
mechanisms [1].

One form of phenotypic screening is high-content image-based
screening which uses multiple measurements to create a detailed
multivariate profile of a perturbagen. This can make screens less
biased to prenominated target or therapeutic class hypothesis and
also create a phenotypic fingerprint to inform mechanism of action
[2–5].

A distinct phenotypic response between cell types which repre-
sent the broad heterogeneity of human disease and/or more
defined clinical subtypes can highlight differences in cellular signal-
ing, metabolic, and biochemical transporter mechanisms that

Bridget Wagner (ed.), Phenotypic Screening: Methods and Protocols, Methods in Molecular Biology, vol. 1787,
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explain the variation of drug efficacy between patients often
observed in the clinic. Correlation of distinct phenotypic response
and drug sensitivity across genetically distinct cell types with geno-
mic, transcriptomic, and proteomic data can help elucidate com-
pound mechanism of action and identify molecular biomarkers
which predict drug sensitivity and clinical outcomes [6, 7]. We
can also use phenotypic similarity between different perturbagens
to infer mechanistic similarities. One such example is that small
molecules which elicit similar cellular phenotypes are likely to have
similar mechanisms of action [8]. Phenotypes can also be used to
model disease biology where the underlying signaling pathways and
molecular targets associated with disease progression are lacking or
poorly understood [9].

In order to quantify complex phenotypes, high-content screen-
ing generates multivariate datasets in which multiple phenotypic
measurements are taken from a single cell or image. These datasets
are usually subjected to some form of dimensionality reduction
technique in order to make analysis more manageable. A common
dimensional reduction method is principal component analysis,
which creates new features (principal components) through
orthogonal linear combinations of the original features in order
to maximize variation. As principal components are ranked in order
of variation, a subset of the principal components can be taken as a
replacement for the original feature measurements—with the aim
of reducing the number of variables while still retaining as much
information as possible. This approach helps visualize complex
multivariate data points by plotting them in 2D or 3D principal
component space [10, 11].

A simple method used to identify active perturbagens in multi-
variate datasets is a distance measurement such as Euclidean or
Mahalanobis distance between the perturbagen and the negative
control in principal component space. This can be used to create a
threshold distance to separate the active from inactive, as well as
rank perturbations on phenotypic activity [11]. However, this dis-
tance metric cannot readily discern between different active pheno-
types. Two perturbations may produce very different phenotypes
and coordinates in principal component space, and yet have similar
distances from the negative control.

In order to discern between perturbations such as these we
need a measure of directionality. The idea behind the theta com-
parative cell scoring (TCCS) method is that different directions in
phenotypic space indicate different phenotypes. Therefore measur-
ing the angle between perturbagen-induced phenotypes can be
used as a phenotypic similarity score independent of potency. This
is very similar to the use of cosine similarity, though the TCCS
method centers measurements on the negative control and removes
inactive perturbagens that may otherwise produce inaccurate mea-
sures of directionality.
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The idea of directionality can also be used to produce intuitive
and quantitative figures such as circular histograms depicting the
direction in phenotypic space or the difference in theta values
between two perturbations or samples (Fig. 1).

2 Materials

1. Optical-bottom imaging plates (96- or 384-well).

2. Cell culture medium.

3. Trypsin.

4. Perturbagen Library.

5. Paraformaldehyde (PFA).

6. Triton X-100.

7. Wheat-germ agglutinin 594 (WGA), diluted in dH2O.

8. SYTO14 green fluorescent nucleic acid stain.

9. Microtiter plate seals.

10. Aluminum foil.

11. Cell painting stock solution: 10 mg/mL Hoechst 33342,
1 mg/mL concanavalin A (diluted in 0.1 M NaHCO3),
200 U/mL phalloidin-594 (diluted in methanol), 1 mg/mL
WGA, 1 mM MitoTracker DeepRed.

Fig. 1 Circular histograms showing the similar phenotypic direction of HCC1569 and MDA-MB-231 (MDA231)
breast cancer cell lines treated with the aurora kinase inhibitor barasertib. (a) Theta values calculated from the
first two principal components against a reference vector for both HCC1569 and MDA-MB-231 cell lines
treated with barasertib at multiple concentrations. (b) Depiction of the θ value when calculated between a pair
of cell lines representing the difference in phenotypic response
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12. Blocking buffer: 1% Bovine serum albumin (BSA) in PBS
(w/v).

13. Cell painting working solution: 2 μg/mL Hoechst 33342,
11 μg/mL concanavalin A, 3 μM SYTO14, 2.5 U/mL
phalloidin-594, 0.25 μg/mL WGA, 600 nM MitoTracker
DeepRed.

3 Methods

3.1 Cell Seeding Preliminary studies are required to determine the optimal number
of cells to seed per well (see Note 1). This number is dependent on
the characteristics of the cell line(s) and the well area in a given
plate. Approximate values are provided in Table 1.

1. Using a sub-confluent population of cells, detach the cells by
short-term incubation with trypsin and suspend to the desired
concentration in cell culture medium.

2. Seed the cells into each well of an optical bottom microtiter
96- or 384-well plate. Make sure that the cells do not settle in
the stock of cell suspension by frequently agitating the stock of
cell suspension.

3. Incubate the plates containing cells for 24 h.

3.2 Compound

Addition

1. Make up stock compound plates in DMSO at 1000� the final
concentration.

2. Make an intermediate plate by diluting stock compound plate
1:50 in cell culture medium.

3. Remove cell plates from the incubator and transfer a volume
from the intermediate plate to the cell plate in a 1:20 dilution.

4. Return cell plates to the humidified, 37 �C, 5% CO2 incubator
for an additional 48 h.

3.3 Fluorescent

Labeling

3.3.1 Fixation

1. Make a solution of 8% paraformaldehyde (PFA) in phosphate-
buffered saline (PBS).

2. Add an equal volume of PFA to each well, and incubate at room
temperature for 30 min.

3. Wash wells three times with 50 μL of PBS.

Table 1
Approximate cell seeding densities for different plates

Plate Cells/well Volume/well (μL)

96 2000–3000 100

384 750–1500 50
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3.3.2 Permeabilization 1. Add 30 μL of 0.1% Triton-X100 solution in PBS to each well,
and incubate for 20 min at room temperature.

2. Wash wells three times with 50 μL of PBS.

3.3.3 Cell Labeling Cell labeling protocol adapted from the cell painting protocol
[12, 13].

1. Protect the staining solution from light sources by wrapping in
aluminum foil.

2. Add 30 μL of cell painting solution and incubate in a dark place
at room temperature for 30 min.

3. Wash plate three times with 50 μL of PBS. Do not aspirate the
final volume.

4. Seal the plates. If the plates are not imaged immediately, then
store them at 4 �C in the dark or wrapped in aluminum foil.

3.4 Imaging 1. Set up the microscope to image five channels at 20� magnifi-
cation. See Table 2 for suggested filter settings.

2. Image multiple sites per well; we recommend a minimum
of four.

3. Adjust the focus and exposure settings (see Note 2). These
settings should be kept constant between batches and compa-
rable experiments as intensity measurements are a function of
exposure time.

3.5 Image Analysis The following image analysis instructions use CellProfiler [14]
nomenclature, though other image analysis software packages
may be used to achieve similar results.

1. Extract metadata from either the image or the file path; record
the date, plate number, plate name, well, site, and channel for
each image.

Table 2
Cell painting reagents and suggested filters

Filter wavelength

Stain name Filter name Excitation (nm) Emission (nm)

Hoechst 33342 DAPI 377 � 40 447 � 60

Con A FITC 482 � 35 536 � 40

SYTO14 Cy3 531 � 40 594 � 40

Phalloidin & WGA TxRed 562 � 40 624 � 40

MitoTracker DeepRed Cy5 628 � 40 692 � 40
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2. Add in external metadata from a .csv file such as compound
labels or concentrations and match via plate name and well
name/position.

3. Assign each image to a channel name using the extracted
channel metadata.

4. Segment the nucleus using IdentifyPrimaryObjects.

5. Segment the cell body/cytoplasm using the nucleus object as a
seed in the phalloidin/WGA channel with the IdentifySecon-
daryObjects module.

6. Measure image quality in the DAPI channel using MeasureI-
mageQuality. Out-of-focus images and any debris can usually
be detected in the DAPI channel. Image quality can also be
measured in all the channels though the MeasureImageQuality
module although this will increase analysis time.

7. Measure object size and shape of both the nucleus and cell
body with MeasureObjectSizeShape.

8. Measure intensity of the nucleus in the DAPI channel and
intensity of the cell body in the other four channels using
MeasureObjectIntensity.

9. Measure texture in the channels for Golgi apparatus and actin
staining (WGA channel) in the cell body objects, and the DAPI
channel for the nuclei objects using MeasureTexture.

10. Measure object neighbors for both nuclei and cell bodies with
MeasureObjectNeighbors.

11. Export measurement data as .csv files or to a database, exclud-
ing any feature measurements that may not be relevant such as
object number or object x-y position.

3.6 Data Analysis 1. Check the data produced by the CellProfiler analysis for any
missing rows or columns; these need to be removed as appro-
priate (see Note 3).

2. Using the ImageQuality measurements produced by CellPro-
filer, identify any images that may be out of focus or contain
debris and after visually checking the images remove the data
relating to that image if necessary (see Note 4).

3. If the data is at the object-level, i.e., measurements per cell,
then aggregate this to a well median, so each measurement
describes the median measurement per feature per well.

4. Remove non-informative features (any measurement columns
that are not metadata) such as those with zero or very low
variance.

5. Remove redundant features, such as one of a pair of features
that are very highly correlated with each other. This can be
performed by calculating a correlation matrix of the feature
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dataset and finding groups of features that have Spearman’s
correlations greater than 0.95, and then removing all but one
of these features from the dataset.

6. Normalize the data to the negative control values on each plate.
This is performed by subtracting the median of the negative
control for each feature, per plate (see Note 5).

7. Scale the features. For each feature: subtract the feature mean
from each individual value, and then divide by the standard
deviation of the feature. This standardizes the features to have a
mean of zero and unit variance. This is done otherwise features
with large values/small units—such as object area which is
measured in pixels—will skew the subsequent statistical
methods.

8. Calculate the principal components of the feature data and
determine the number of principal components needed to
account for a proportion of the variance in the dataset, typically
80–90% (see Note 6).

9. Remove those principal components that fall outside of this
subset.

10. Calculate the negative control medoid, which is the median
value for each feature of the negative controls.

11. Adjust the principal component values so that the negative
control medoid is centered on the origin (see Note 7).

12. Calculate the l1-norm (AKA city-block or Manhattan distance)
from the negative control medoid to each data point in princi-
pal component space.

13. Calculate the l1-norm of each negative control point from the
origin and calculate a distance threshold as 2 standard devia-
tions of these negative control distances. Any compound that
has a distance less than this threshold from the medoid of the
negative control can be labeled as inactive.

14. Once the inactive compounds have been removed, perturba-
gen similarity can be determined by the angle between pertur-
bagen vectors (θ). In two dimensions—using the first two
principal components—this can be visualized on a scatter
plot. The θ value can be calculated in any number of dimen-
sions, although visualization becomes more difficult. The simi-
larity angle can be calculated by the cosine similarity converted
to degrees (see Eq. (1)). Note that 180� is the value of maxi-
mum dissimilarity, where two perturbagens having completely
different directions in phenotypic space, with values greater
than 180� becoming increasingly similar as they approach
360�. Therefore θ values are constrained between 0 and
360 by subtracting from 360 any value greater than 180, i.e.,
θ > 180 ! θ ≔ 360 � θ:
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where u and v are the vectors of principal components for
each compound.

15. If two principal components capture a large proportion of the
variance in the dataset then a visualization can be made by
calculating θ for every perturbagen against a common refer-
ence vector, and then plotting a circular histogram of the θ
values (see Note 8).

16. Identify cell line pairs treated with the same compound that
have significantly different theta values (seeNote 9), indicating
a distinct phenotypic response between cell lines to a com-
pound treatment.

17. See Notes 10 and 11 for additional troubleshooting steps.

4 Notes

1. Too few cells will provide fewer replicates and may run the risk
of having no cells contained in an image if a perturbagen
reduces the cell number. Seeding too many cells can mean
cells do not form a single monolayer which makes image analy-
sis more difficult. We advise seeding the number of cells to
result in approximately 60–70% confluence.

2. After setting the focus for the first channel (DAPI/Hoechst),
all additional channel’s focus settings are based on these mea-
surements. Therefore adjusting the focus settings for the first
channel will also affect all of the other channels, so it is advised
to set this first and check a few different wells to ensure that the
settings are robust.

3. It is recommended to remove columns containing large
amounts of missing numbers. This can often be caused by
missing metadata in certain samples, or some features that
remain constant between samples—such as Euler number—
that may be transformed to missing data entries after scaling
or aggregation. Once columns of largely missing data have
been removed, rows containing missing values can be removed.
Without first removing the missing data columns it is often
possible to erroneously remove the entire or large proportions
of the dataset when using missing rows as the first step.

4. Out-of-focus images can be detected using ImageQuality_Po-
werLogLogSlope measurements in the nuclei channel. Images
with very low values are likely to be out of focus [15]. Debris
such as dust or fibers typically show up in the nuclei channel,
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and can be detected by identifying images with a large percent-
age of saturated pixels.

5. Normalizing to the negative control is a useful step in any
plate-based screen to remove any batch effects between plates
that may influence the results. It is especially important when
comparing effects between cell lines as this converts the values
to changes from the negative control for that particular plate; as
we expected to have a single cell line per plate this also removes
any inherent phenotypic differences between the cell lines, and
allows the compound-induced changes to be comparable.

6. The number of principal components required to capture a
specified proportion of the variance in the data can be calcu-
lated in R (assuming that data is numeric feature data), to
calculate the value for 80% of the variance:

threshold <- 0.8

pca_output <- prcomp(data)

pc_variance <- pca_output$sdev^2

cumulative_proportion_variance <- cumsum(pc_variance) / sum(pc_variance)

n_components <- min(which(cumulative_proportion_variance >= threshold))

7. To center the principal component data so that the medoid of
the negative control lies on the origin, find the medoid for the
negative control values, which is the median value for each
feature column for the negative control values; find how
much this differs from the origin for each feature; shift all values
for each feature by this difference, e.g., in R:

centre_control <- function(df, feature_cols, cmpd_col, neg_control = "DMSO") {

# 1. the median value for the DMSO values for each measured feature

medioid <- apply(df[df[, cmpd_col] == neg_control, feature_cols], 2, median)

# 2. calculate the difference from the origin for each medioid position

delta <- 0 - medioid

# 3. iterate along columns and adjust to centre the DMSO data

for (i in seq_along(feature_cols)) {

feature <- feature_cols[i]

df[, feature] <- df[, feature] + d[i]

}

return(df)

}

8. Creating circular histograms: If the principal component vector
only contains information regarding two principal compo-
nents, then we can calculate a θ value for each perturbagen
against a common reference such as (0, 1). This generates a θ
value for each perturbagen which can be plotted as a histogram.
Without constraining them, the θ values are ranged between
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0 and 360. As either end of this range is equivalent to the x-axis
of this histogram can be wrapped round into a circle which can
be used to visualize the phenotypic direction induced by a
perturbagen (Fig. 1).

9. To identify distinct phenotypic responses between cell lines
treated with a perturbagen, a theta value has to be calculated
for each pair of cell lines per perturbagen. Cell lines that elicit a
similar response to a given perturbagen will produce a low θ
value, indicating that they produce similar phenotypic trajec-
tories, whereas a θ value approaching 180 indicates opposite
phenotypic directions. In our experience a histogram of all
measured θ values produces a log-normal distribution, indicat-
ing that most perturbagens produce similar phenotypic
response between cell lines.

10. Image analysis can take considerable time for large numbers of
images. We recommended using either a computing cluster or
a cloud computing service to process many images in parallel.

11. Large .csv files can also cause problems. If files exceed several
GBs we recommend users switch to a database format such as
SQLite.
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5. Kümmel A, Selzer P, Siebert D, Schmidt I,
Reinhardt J, Götte M et al (2012) Differentia-
tion and visualization of diverse cellular pheno-
typic responses in primary high-content
screening. J Biomol Screen 17:843–849

6. Garnett MJ, Edelman EJ, Heidorn SJ, Green-
man CD, Dastur A, Lau KW et al (2012) Sys-
tematic identification of genomic markers of
drug sensitivity in cancer cells. Nature
483:570–575

7. Barretina J, Caponigro G, Stransky N,
Venkatesan K, Margolin AA, Kim S et al
(2012) The cancer cell line encyclopedia
enables predictive modelling of anticancer
drug sensitivity. Nature 483:603–607

8. Perlman Z, Slack M, Feng Y, Mitchison TJ, Wu
LF, Altschuler SJ (2004) Multidimensional
drug profiling by automated microscopy. Sci-
ence 306:1194–1199

9. Vincent F, Loria P, Pregel M, Stanton R,
Kitching L, Nocka K et al (2015) Developing
predictive assays: the phenotypic screening
“rule of 3”. Sci Transl Med 7:293ps15

10. Tanaka M, Bateman R, Rauh D, Vaisberg E,
Ramachandani S, Zhang C et al (2005) An
unbiased cell morphology-based screen for

180 Scott J. Warchal et al.



new, biologically active small molecules. PLoS
Biol 3:0764–0776

11. Caie PD, Walls RE, Ingleston-Orme A, Daya S,
Houslay T, Eagle R et al (2010) High-content
phenotypic profiling of drug response signa-
tures across distinct cancer cells. Mol Canc
Ther 9:1913–1926

12. Gustafsdottir SM, Ljosa V, Sokolnicki KL, Wil-
son JA, Walpita D, Kemp MM et al (2013)
Multiplex cytological profiling assay to measure
diverse cellular states. PLoS One 8:e80999

13. Warchal SJ, Dawson JC, Carragher NO (2016)
Development of the theta comparative cell

scoring method to quantify diverse phenotypic
responses between distinct cell types. Assay
Drug Dev Technol 14:395–406

14. Carpenter AE, Jones TR, Lamprecht MR,
Clarke C, Kang IH, Friman O et al (2006)
CellProfiler: image analysis software for identi-
fying and quantifying cell phenotypes. Genome
Biol 7:R100

15. Bray M-A, Fraser AN, Hasaka TP, Carpenter
AE (2012) Workflow and metrics for image
quality control in large-scale high-content
screens. J Biomol Screen 17:266–274

Comparative Cell Scoring 181



Bibliography 163

CellProfiler features

Cells_AreaShape_Compactness Cells_AreaShape_Eccentricity Cells_AreaShape_MaxFeretDiameter
Cells_AreaShape_Orientation Cells_AreaShape_Perimeter Cells_AreaShape_Solidity
Cells_AreaShape_Zernike_1_1 Cells_AreaShape_Zernike_2_0 Cells_AreaShape_Zernike_2_2
Cells_AreaShape_Zernike_3_1 Cells_AreaShape_Zernike_4_0 Cells_AreaShape_Zernike_4_2
Cells_Correlation_Correlation_W2_W3 Cells_Correlation_Costes_W2_W3 Cells_Correlation_Costes_W3_W2
Cells_Correlation_K_W2_W3 Cells_Correlation_K_W3_W2 Cells_Correlation_Manders_W2_W3
Cells_Correlation_Manders_W3_W2 Cells_Correlation_Overlap_W2_W3 Cells_Correlation_RWC_W3_W2
Cells_Granularity_10_W4 Cells_Granularity_10_W5 Cells_Granularity_11_W4
Cells_Granularity_11_W5 Cells_Granularity_12_W4 Cells_Granularity_12_W5
Cells_Granularity_13_W4 Cells_Granularity_13_W5 Cells_Granularity_14_W4
Cells_Granularity_14_W5 Cells_Granularity_15_W4 Cells_Granularity_15_W5
Cells_Granularity_16_W4 Cells_Granularity_16_W5 Cells_Granularity_1_W4
Cells_Granularity_1_W5 Cells_Granularity_2_W4 Cells_Granularity_2_W5
Cells_Granularity_3_W4 Cells_Granularity_3_W5 Cells_Granularity_4_W4
Cells_Granularity_4_W5 Cells_Granularity_5_W4 Cells_Granularity_5_W5
Cells_Granularity_6_W4 Cells_Granularity_6_W5 Cells_Granularity_7_W5
Cells_Granularity_8_W4 Cells_Granularity_8_W5 Cells_Granularity_9_W4
Cells_Granularity_9_W5 Cells_Intensity_IntegratedIntensityEdge_W2 Cells_Intensity_IntegratedIntensityEdge_W3
Cells_Intensity_IntegratedIntensityEdge_W4 Cells_Intensity_IntegratedIntensityEdge_W5 Cells_Intensity_IntegratedIntensity_W3
Cells_Intensity_IntegratedIntensity_W5 Cells_Intensity_MADIntensity_W4 Cells_Intensity_MassDisplacement_W2
Cells_Intensity_MassDisplacement_W4 Cells_Intensity_MassDisplacement_W5 Cells_Intensity_MaxIntensity_W3
Cells_Intensity_MaxIntensity_W4 Cells_Intensity_MeanIntensityEdge_W2 Cells_Intensity_MeanIntensityEdge_W3
Cells_Intensity_MeanIntensityEdge_W4 Cells_Intensity_MeanIntensityEdge_W5 Cells_Intensity_MedianIntensity_W4
Cells_Intensity_MedianIntensity_W5 Cells_Intensity_MinIntensity_W2 Cells_Intensity_MinIntensity_W3
Cells_Intensity_MinIntensity_W4 Cells_Intensity_MinIntensity_W5 Cells_Intensity_StdIntensityEdge_W2
Cells_Intensity_StdIntensityEdge_W4 Cells_Intensity_StdIntensityEdge_W5 Cells_Intensity_StdIntensity_W3
Cells_Intensity_StdIntensity_W4 Cells_Intensity_StdIntensity_W5 Cells_Neighbors_PercentTouching_2
Cells_RadialDistribution_FracAtD_W2_2of4 Cells_RadialDistribution_FracAtD_W3_2of4 Cells_RadialDistribution_FracAtD_W3_3of4
Cells_RadialDistribution_FracAtD_W3_4of4 Cells_RadialDistribution_FracAtD_W4_2of4 Cells_RadialDistribution_FracAtD_W5_1of4
Cells_RadialDistribution_FracAtD_W5_2of4 Cells_RadialDistribution_FracAtD_W5_3of4 Cells_RadialDistribution_MeanFrac_W2_2of4
Cells_RadialDistribution_MeanFrac_W3_2of4 Cells_RadialDistribution_MeanFrac_W4_2of4 Cells_RadialDistribution_MeanFrac_W4_3of4
Cells_RadialDistribution_MeanFrac_W4_4of4 Cells_RadialDistribution_MeanFrac_W5_1of4 Cells_RadialDistribution_MeanFrac_W5_2of4
Cells_RadialDistribution_MeanFrac_W5_3of4 Cells_RadialDistribution_RadialCV_W2_1of4 Cells_RadialDistribution_RadialCV_W2_2of4
Cells_RadialDistribution_RadialCV_W2_3of4 Cells_RadialDistribution_RadialCV_W3_1of4 Cells_RadialDistribution_RadialCV_W3_2of4
Cells_RadialDistribution_RadialCV_W3_3of4 Cells_RadialDistribution_RadialCV_W3_4of4 Cells_RadialDistribution_RadialCV_W4_1of4
Cells_RadialDistribution_RadialCV_W4_2of4 Cells_RadialDistribution_RadialCV_W4_3of4 Cells_RadialDistribution_RadialCV_W4_4of4
Cells_RadialDistribution_RadialCV_W5_1of4 Cells_RadialDistribution_RadialCV_W5_2of4 Cells_RadialDistribution_RadialCV_W5_3of4
Cells_RadialDistribution_RadialCV_W5_4of4 Cells_RadialDistribution_ZernikeMagnitude_W2_2_2 Cells_RadialDistribution_ZernikeMagnitude_W2_3_1
Cells_RadialDistribution_ZernikeMagnitude_W2_4_0 Cells_RadialDistribution_ZernikeMagnitude_W2_4_2 Cells_RadialDistribution_ZernikeMagnitude_W2_5_1
Cells_RadialDistribution_ZernikeMagnitude_W3_3_1 Cells_RadialDistribution_ZernikeMagnitude_W4_1_1 Cells_RadialDistribution_ZernikeMagnitude_W4_3_1
Cells_RadialDistribution_ZernikeMagnitude_W4_4_0 Cells_RadialDistribution_ZernikeMagnitude_W5_2_2 Cells_RadialDistribution_ZernikeMagnitude_W5_3_1
Cells_RadialDistribution_ZernikeMagnitude_W5_4_0 Cells_RadialDistribution_ZernikeMagnitude_W5_4_2 Cells_RadialDistribution_ZernikeMagnitude_W5_5_1
Cells_RadialDistribution_ZernikeMagnitude_W5_6_0 Cells_Texture_AngularSecondMoment_W2_3_135 Cells_Texture_AngularSecondMoment_W3_3_135
Cells_Texture_AngularSecondMoment_W4_3_135 Cells_Texture_AngularSecondMoment_W5_3_135 Cells_Texture_Contrast_W2_3_135
Cells_Texture_Contrast_W3_3_135 Cells_Texture_Contrast_W4_3_135 Cells_Texture_Contrast_W5_3_135
Cells_Texture_Correlation_W2_3_135 Cells_Texture_Correlation_W3_3_135 Cells_Texture_Correlation_W4_3_135
Cells_Texture_Correlation_W5_3_135 Cells_Texture_DifferenceEntropy_W5_3_45 Cells_Texture_Entropy_W2_3_135
Cells_Texture_Entropy_W3_3_135 Cells_Texture_Entropy_W4_3_135 Cells_Texture_Entropy_W5_3_135
Cells_Texture_Gabor_W2_3 Cells_Texture_Gabor_W3_3 Cells_Texture_Gabor_W4_3
Cells_Texture_Gabor_W5_3 Cells_Texture_InfoMeas1_W2_3_135 Cells_Texture_InfoMeas1_W3_3_135
Cells_Texture_InfoMeas1_W4_3_135 Cells_Texture_InfoMeas1_W5_3_135 Cells_Texture_InfoMeas2_W2_3_135
Cells_Texture_InfoMeas2_W3_3_135 Cells_Texture_InfoMeas2_W4_3_135 Cells_Texture_InfoMeas2_W5_3_45
Cells_Texture_InverseDifferenceMoment_W2_3_135 Cells_Texture_InverseDifferenceMoment_W3_3_135 Cells_Texture_InverseDifferenceMoment_W4_3_135
Cells_Texture_InverseDifferenceMoment_W5_3_135 Cells_Texture_SumAverage_W2_3_135 Cells_Texture_SumAverage_W3_3_135
Cells_Texture_SumAverage_W4_3_135 Cells_Texture_SumAverage_W5_3_135 Cells_Texture_SumVariance_W2_3_135
Cells_Texture_SumVariance_W3_3_135 Cells_Texture_SumVariance_W4_3_135 Cells_Texture_SumVariance_W5_3_135
Correlation_Correlation_W2_W3 Correlation_Manders_W3_W2 Correlation_RWC_W2_W3
Correlation_RWC_W3_W2 Correlation_Slope_W2_W3 Count_Nuclei
Granularity_10_W4 Granularity_10_W5 Granularity_11_W1
Granularity_11_W4 Granularity_11_W5 Granularity_12_W1
Granularity_12_W4 Granularity_12_W5 Granularity_13_W1
Granularity_13_W4 Granularity_13_W5 Granularity_14_W1
Granularity_14_W4 Granularity_14_W5 Granularity_15_W1
Granularity_15_W4 Granularity_15_W5 Granularity_16_W1
Granularity_16_W4 Granularity_16_W5 Granularity_1_W1
Granularity_1_W5 Granularity_2_W1 Granularity_2_W4
Granularity_2_W5 Granularity_3_W1 Granularity_3_W4
Granularity_4_W1 Granularity_4_W4 Granularity_4_W5
Granularity_5_W1 Granularity_6_W1 Granularity_6_W4
Granularity_6_W5 Granularity_7_W1 Granularity_7_W5
Granularity_8_W4 Granularity_8_W5 Granularity_9_W1



164 Appendix

Granularity_9_W4 Granularity_9_W5 Nuclei_AreaShape_Compactness
Nuclei_AreaShape_Eccentricity Nuclei_AreaShape_FormFactor Nuclei_AreaShape_MajorAxisLength
Nuclei_AreaShape_Orientation Nuclei_AreaShape_Solidity Nuclei_AreaShape_Zernike_1_1
Nuclei_AreaShape_Zernike_2_0 Nuclei_AreaShape_Zernike_2_2 Nuclei_AreaShape_Zernike_3_1
Nuclei_AreaShape_Zernike_3_3 Nuclei_AreaShape_Zernike_4_0 Nuclei_AreaShape_Zernike_4_4
Nuclei_Granularity_10_W1 Nuclei_Granularity_11_W1 Nuclei_Granularity_12_W1
Nuclei_Granularity_13_W1 Nuclei_Granularity_14_W1 Nuclei_Granularity_15_W1
Nuclei_Granularity_16_W1 Nuclei_Granularity_1_W1 Nuclei_Granularity_2_W1
Nuclei_Granularity_3_W1 Nuclei_Granularity_4_W1 Nuclei_Granularity_5_W1
Nuclei_Granularity_6_W1 Nuclei_Granularity_7_W1 Nuclei_Granularity_8_W1
Nuclei_Granularity_9_W1 Nuclei_Intensity_IntegratedIntensityEdge_W1 Nuclei_Intensity_IntegratedIntensity_W1
Nuclei_Intensity_LowerQuartileIntensity_W1 Nuclei_Intensity_MassDisplacement_W1 Nuclei_Intensity_MaxIntensityEdge_W1
Nuclei_Intensity_MaxIntensity_W1 Nuclei_Intensity_MeanIntensityEdge_W1 Nuclei_Intensity_MinIntensity_W1
Nuclei_Intensity_StdIntensityEdge_W1 Nuclei_Texture_AngularSecondMoment_W1_3_135 Nuclei_Texture_Contrast_W1_3_135
Nuclei_Texture_Correlation_W1_3_135 Nuclei_Texture_Entropy_W1_3_135 Nuclei_Texture_Gabor_W1_3
Nuclei_Texture_InfoMeas1_W1_3_135 Nuclei_Texture_SumAverage_W1_3_135 Nuclei_Texture_SumEntropy_W1_3_135
Nuclei_Texture_SumVariance_W1_3_135 Cells_AreaShape_MaximumRadius Cells_AreaShape_MeanRadius
Cells_AreaShape_MedianRadius Cells_AreaShape_MinFeretDiameter Cells_AreaShape_MinorAxisLength
Cells_Intensity_IntegratedIntensity_W4 Cells_AreaShape_Area Cells_AreaShape_Zernike_0_0
Cells_AreaShape_Extent Cells_AreaShape_FormFactor Cells_AreaShape_MinFeretDiameter
Cells_AreaShape_MinorAxisLength Cells_AreaShape_MajorAxisLength Cells_Correlation_RWC_W2_W3
Cells_Granularity_7_W4 Cells_Intensity_IntegratedIntensity_W4 Cells_Intensity_IntegratedIntensity_W2
Cells_Intensity_MedianIntensity_W2 Cells_Intensity_LowerQuartileIntensity_W2 Cells_Intensity_MedianIntensity_W3
Cells_Intensity_LowerQuartileIntensity_W3 Cells_Intensity_LowerQuartileIntensity_W4 Cells_Intensity_LowerQuartileIntensity_W5
Cells_Intensity_MaxIntensity_W2 Cells_Intensity_StdIntensity_W2 Cells_Intensity_UpperQuartileIntensity_W2
Cells_RadialDistribution_ZernikeMagnitude_W2_2_0 Cells_Intensity_MADIntensity_W2 Cells_Intensity_MADIntensity_W3
Cells_Intensity_UpperQuartileIntensity_W5 Cells_RadialDistribution_ZernikeMagnitude_W5_2_0 Cells_Intensity_MADIntensity_W5
Cells_Intensity_MassDisplacement_W3 Cells_Intensity_MaxIntensityEdge_W2 Cells_Intensity_StdIntensityEdge_W3
Cells_Intensity_MaxIntensityEdge_W3 Cells_Intensity_MaxIntensityEdge_W4 Cells_Intensity_MaxIntensityEdge_W5
Cells_Intensity_MaxIntensity_W5 Cells_Intensity_UpperQuartileIntensity_W2 Cells_RadialDistribution_ZernikeMagnitude_W2_0_0
Cells_RadialDistribution_ZernikeMagnitude_W2_2_0 Cells_Intensity_MeanIntensity_W2 Cells_Intensity_UpperQuartileIntensity_W3
Cells_RadialDistribution_ZernikeMagnitude_W3_0_0 Cells_RadialDistribution_ZernikeMagnitude_W3_1_1 Cells_RadialDistribution_ZernikeMagnitude_W3_2_0
Cells_Intensity_MeanIntensity_W3 Cells_Intensity_UpperQuartileIntensity_W4 Cells_RadialDistribution_ZernikeMagnitude_W4_0_0
Cells_RadialDistribution_ZernikeMagnitude_W4_2_0 Cells_Intensity_MeanIntensity_W4 Cells_Intensity_UpperQuartileIntensity_W5
Cells_RadialDistribution_ZernikeMagnitude_W5_0_0 Cells_RadialDistribution_ZernikeMagnitude_W5_2_0 Cells_Intensity_MeanIntensity_W5
Cells_Intensity_MinIntensityEdge_W2 Cells_Intensity_MinIntensityEdge_W3 Cells_Intensity_MinIntensityEdge_W4
Cells_Intensity_MinIntensityEdge_W5 Cells_Neighbors_NumberOfNeighbors_2 Cells_RadialDistribution_FracAtD_W4_1of4
Cells_RadialDistribution_FracAtD_W2_1of4 Cells_RadialDistribution_FracAtD_W4_3of4 Cells_RadialDistribution_FracAtD_W2_3of4
Cells_RadialDistribution_FracAtD_W4_4of4 Cells_RadialDistribution_FracAtD_W5_4of4 Cells_RadialDistribution_MeanFrac_W2_4of4
Cells_RadialDistribution_FracAtD_W2_4of4 Cells_RadialDistribution_FracAtD_W3_1of4 Cells_RadialDistribution_MeanFrac_W2_1of4
Cells_RadialDistribution_MeanFrac_W2_3of4 Cells_RadialDistribution_MeanFrac_W3_1of4 Cells_RadialDistribution_MeanFrac_W3_3of4
Cells_RadialDistribution_MeanFrac_W5_4of4 Cells_RadialDistribution_MeanFrac_W3_4of4 Cells_RadialDistribution_MeanFrac_W4_1of4
Cells_RadialDistribution_RadialCV_W2_4of4 Cells_RadialDistribution_ZernikeMagnitude_W2_1_1 Cells_RadialDistribution_ZernikeMagnitude_W5_1_1
Cells_Texture_AngularSecondMoment_W2_3_45 Cells_Texture_AngularSecondMoment_W2_3_90 Cells_Texture_AngularSecondMoment_W2_3_0
Cells_Texture_AngularSecondMoment_W3_3_45 Cells_Texture_AngularSecondMoment_W3_3_90 Cells_Texture_AngularSecondMoment_W3_3_0
Cells_Texture_AngularSecondMoment_W4_3_45 Cells_Texture_AngularSecondMoment_W4_3_90 Cells_Texture_AngularSecondMoment_W4_3_0
Cells_Texture_AngularSecondMoment_W5_3_45 Cells_Texture_AngularSecondMoment_W5_3_90 Cells_Texture_AngularSecondMoment_W5_3_0
Cells_Texture_Contrast_W2_3_45 Cells_Texture_Contrast_W2_3_90 Cells_Texture_DifferenceEntropy_W2_3_0
Cells_Texture_DifferenceEntropy_W2_3_135 Cells_Texture_DifferenceEntropy_W2_3_45 Cells_Texture_DifferenceEntropy_W2_3_90
Cells_Texture_DifferenceVariance_W2_3_0 Cells_Texture_DifferenceVariance_W2_3_135 Cells_Texture_DifferenceVariance_W2_3_45
Cells_Texture_DifferenceVariance_W2_3_90 Cells_Texture_Contrast_W2_3_0 Cells_Texture_Contrast_W3_3_45
Cells_Texture_Contrast_W3_3_90 Cells_Texture_DifferenceEntropy_W3_3_0 Cells_Texture_DifferenceEntropy_W3_3_135
Cells_Texture_DifferenceEntropy_W3_3_45 Cells_Texture_DifferenceVariance_W3_3_0 Cells_Texture_DifferenceVariance_W3_3_135
Cells_Texture_DifferenceVariance_W3_3_45 Cells_Texture_DifferenceVariance_W3_3_90 Cells_Texture_Contrast_W3_3_0
Cells_Texture_Contrast_W4_3_45 Cells_Texture_Contrast_W4_3_90 Cells_Texture_DifferenceEntropy_W4_3_0
Cells_Texture_DifferenceEntropy_W4_3_135 Cells_Texture_DifferenceEntropy_W4_3_45 Cells_Texture_DifferenceEntropy_W4_3_90
Cells_Texture_DifferenceVariance_W4_3_0 Cells_Texture_DifferenceVariance_W4_3_135 Cells_Texture_DifferenceVariance_W4_3_45
Cells_Texture_DifferenceVariance_W4_3_90 Cells_Texture_Contrast_W4_3_0 Cells_Texture_Contrast_W5_3_45
Cells_Texture_Contrast_W5_3_90 Cells_Texture_DifferenceEntropy_W5_3_0 Cells_Texture_DifferenceVariance_W5_3_0
Cells_Texture_DifferenceVariance_W5_3_135 Cells_Texture_DifferenceVariance_W5_3_45 Cells_Texture_DifferenceVariance_W5_3_90
Cells_Texture_Contrast_W5_3_0 Cells_Texture_Correlation_W2_3_45 Cells_Texture_Correlation_W2_3_90



Bibliography 165

Cells_Texture_Correlation_W2_3_0 Cells_Texture_Correlation_W3_3_45 Cells_Texture_Correlation_W3_3_90
Cells_Texture_Correlation_W3_3_0 Cells_Texture_Correlation_W4_3_45 Cells_Texture_Correlation_W4_3_90
Cells_Texture_Correlation_W4_3_0 Cells_Texture_Correlation_W5_3_45 Cells_Texture_Correlation_W5_3_90
Cells_Texture_Correlation_W5_3_0 Cells_Texture_DifferenceEntropy_W3_3_90 Cells_Texture_DifferenceEntropy_W5_3_90
Cells_Texture_DifferenceEntropy_W5_3_135 Cells_Texture_Entropy_W2_3_45 Cells_Texture_Entropy_W2_3_90
Cells_Texture_SumEntropy_W2_3_0 Cells_Texture_SumEntropy_W2_3_135 Cells_Texture_SumEntropy_W2_3_45
Cells_Texture_SumEntropy_W2_3_90 Cells_Texture_Entropy_W2_3_0 Cells_Texture_Entropy_W3_3_45
Cells_Texture_Entropy_W3_3_90 Cells_Texture_SumEntropy_W3_3_0 Cells_Texture_SumEntropy_W3_3_135
Cells_Texture_SumEntropy_W3_3_45 Cells_Texture_SumEntropy_W3_3_90 Cells_Texture_Entropy_W3_3_0
Cells_Texture_Entropy_W4_3_45 Cells_Texture_Entropy_W4_3_90 Cells_Texture_SumEntropy_W4_3_0
Cells_Texture_SumEntropy_W4_3_135 Cells_Texture_SumEntropy_W4_3_45 Cells_Texture_SumEntropy_W4_3_90
Cells_Texture_Entropy_W4_3_0 Cells_Texture_Entropy_W5_3_45 Cells_Texture_Entropy_W5_3_90
Cells_Texture_SumEntropy_W5_3_0 Cells_Texture_SumEntropy_W5_3_135 Cells_Texture_SumEntropy_W5_3_45
Cells_Texture_SumEntropy_W5_3_90 Cells_Texture_Entropy_W5_3_0 Cells_Texture_InfoMeas1_W2_3_45
Cells_Texture_InfoMeas1_W2_3_90 Cells_Texture_InfoMeas1_W2_3_0 Cells_Texture_InfoMeas1_W3_3_45
Cells_Texture_InfoMeas1_W3_3_90 Cells_Texture_InfoMeas1_W3_3_0 Cells_Texture_InfoMeas1_W4_3_45
Cells_Texture_InfoMeas1_W4_3_90 Cells_Texture_InfoMeas1_W4_3_0 Cells_Texture_InfoMeas1_W5_3_45
Cells_Texture_InfoMeas1_W5_3_90 Cells_Texture_InfoMeas1_W5_3_0 Cells_Texture_InfoMeas2_W2_3_45
Cells_Texture_InfoMeas2_W2_3_90 Cells_Texture_InfoMeas2_W5_3_0 Cells_Texture_InfoMeas2_W2_3_0
Cells_Texture_InfoMeas2_W3_3_45 Cells_Texture_InfoMeas2_W3_3_90 Cells_Texture_InfoMeas2_W3_3_0
Cells_Texture_InfoMeas2_W4_3_45 Cells_Texture_InfoMeas2_W4_3_90 Cells_Texture_InfoMeas2_W4_3_0
Cells_Texture_InfoMeas2_W5_3_90 Cells_Texture_InfoMeas2_W5_3_135 Cells_Texture_InverseDifferenceMoment_W2_3_45
Cells_Texture_InverseDifferenceMoment_W2_3_90 Cells_Texture_InverseDifferenceMoment_W2_3_0 Cells_Texture_InverseDifferenceMoment_W3_3_45
Cells_Texture_InverseDifferenceMoment_W3_3_90 Cells_Texture_InverseDifferenceMoment_W3_3_0 Cells_Texture_InverseDifferenceMoment_W4_3_45
Cells_Texture_InverseDifferenceMoment_W4_3_90 Cells_Texture_InverseDifferenceMoment_W4_3_0 Cells_Texture_InverseDifferenceMoment_W5_3_45
Cells_Texture_InverseDifferenceMoment_W5_3_90 Cells_Texture_InverseDifferenceMoment_W5_3_0 Cells_Texture_SumAverage_W2_3_45
Cells_Texture_SumAverage_W2_3_90 Cells_Texture_SumAverage_W2_3_0 Cells_Texture_SumAverage_W3_3_45
Cells_Texture_SumAverage_W3_3_90 Cells_Texture_SumAverage_W3_3_0 Cells_Texture_SumAverage_W4_3_45
Cells_Texture_SumAverage_W4_3_90 Cells_Texture_SumAverage_W4_3_0 Cells_Texture_SumAverage_W5_3_45
Cells_Texture_SumAverage_W5_3_90 Cells_Texture_SumAverage_W5_3_0 Cells_Texture_SumVariance_W2_3_45
Cells_Texture_SumVariance_W2_3_90 Cells_Texture_Variance_W2_3_0 Cells_Texture_Variance_W2_3_135
Cells_Texture_Variance_W2_3_45 Cells_Texture_Variance_W2_3_90 Cells_Texture_SumVariance_W2_3_0
Cells_Texture_SumVariance_W3_3_45 Cells_Texture_SumVariance_W3_3_90 Cells_Texture_Variance_W3_3_0
Cells_Texture_Variance_W3_3_135 Cells_Texture_Variance_W3_3_45 Cells_Texture_Variance_W3_3_90
Cells_Texture_SumVariance_W3_3_0 Cells_Texture_SumVariance_W4_3_45 Cells_Texture_SumVariance_W4_3_90
Cells_Texture_Variance_W4_3_0 Cells_Texture_Variance_W4_3_135 Cells_Texture_Variance_W4_3_45
Cells_Texture_Variance_W4_3_90 Cells_Texture_SumVariance_W4_3_0 Cells_Texture_SumVariance_W5_3_45
Cells_Texture_SumVariance_W5_3_90 Cells_Texture_Variance_W5_3_0 Cells_Texture_Variance_W5_3_135
Cells_Texture_Variance_W5_3_45 Cells_Texture_Variance_W5_3_90 Cells_Texture_SumVariance_W5_3_0
Correlation_Manders_W2_W3 Count_Cells Granularity_10_W1
Granularity_1_W4 Granularity_3_W5 Granularity_5_W4
Granularity_5_W5 Granularity_7_W4 Granularity_8_W1
Nuclei_AreaShape_MaxFeretDiameter Nuclei_AreaShape_MaximumRadius Nuclei_AreaShape_MeanRadius
Nuclei_AreaShape_MedianRadius Nuclei_AreaShape_MinFeretDiameter Nuclei_AreaShape_MinorAxisLength
Nuclei_AreaShape_Perimeter Nuclei_Texture_InverseDifferenceMoment_W1_3_0 Nuclei_Texture_InverseDifferenceMoment_W1_3_135
Nuclei_Texture_InverseDifferenceMoment_W1_3_45 Nuclei_Texture_InverseDifferenceMoment_W1_3_90 Nuclei_AreaShape_Area
Nuclei_AreaShape_Extent Nuclei_AreaShape_Zernike_0_0 Nuclei_Intensity_MeanIntensity_W1
Nuclei_Intensity_StdIntensity_W1 Nuclei_Intensity_UpperQuartileIntensity_W1 Nuclei_Intensity_MADIntensity_W1
Nuclei_Intensity_MedianIntensity_W1 Nuclei_Intensity_MinIntensityEdge_W1 Nuclei_Texture_AngularSecondMoment_W1_3_45
Nuclei_Texture_AngularSecondMoment_W1_3_90 Nuclei_Texture_AngularSecondMoment_W1_3_0 Nuclei_Texture_Contrast_W1_3_45
Nuclei_Texture_Contrast_W1_3_90 Nuclei_Texture_DifferenceEntropy_W1_3_0 Nuclei_Texture_DifferenceEntropy_W1_3_135
Nuclei_Texture_DifferenceEntropy_W1_3_45 Nuclei_Texture_DifferenceEntropy_W1_3_90 Nuclei_Texture_DifferenceVariance_W1_3_0
Nuclei_Texture_DifferenceVariance_W1_3_135 Nuclei_Texture_DifferenceVariance_W1_3_45 Nuclei_Texture_DifferenceVariance_W1_3_90
Nuclei_Texture_Contrast_W1_3_0 Nuclei_Texture_Correlation_W1_3_45 Nuclei_Texture_Correlation_W1_3_90
Nuclei_Texture_InfoMeas2_W1_3_0 Nuclei_Texture_InfoMeas2_W1_3_135 Nuclei_Texture_InfoMeas2_W1_3_45
Nuclei_Texture_InfoMeas2_W1_3_90 Nuclei_Texture_Correlation_W1_3_0 Nuclei_Texture_Entropy_W1_3_45
Nuclei_Texture_Entropy_W1_3_90 Nuclei_Texture_Entropy_W1_3_0 Nuclei_Texture_InfoMeas1_W1_3_45
Nuclei_Texture_InfoMeas1_W1_3_90 Nuclei_Texture_InfoMeas1_W1_3_0 Nuclei_Texture_SumAverage_W1_3_45
Nuclei_Texture_SumAverage_W1_3_90 Nuclei_Texture_SumAverage_W1_3_0 Nuclei_Texture_SumEntropy_W1_3_45
Nuclei_Texture_SumEntropy_W1_3_90 Nuclei_Texture_SumEntropy_W1_3_0 Nuclei_Texture_SumVariance_W1_3_45
Nuclei_Texture_SumVariance_W1_3_90 Nuclei_Texture_Variance_W1_3_0 Nuclei_Texture_Variance_W1_3_135
Nuclei_Texture_Variance_W1_3_45 Nuclei_Texture_Variance_W1_3_90 Nuclei_Texture_SumVariance_W1_3_0


	cover sheet

