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Abstract 

Lung cancer is the leading cause of cancer related death worldwide; despite recent 

treatment developments survival rates remain poor and are closely related to the 

patient’s clinical stage. Even among patients with early-stage lung cancer, which is 

amenable to surgical resection, prognosis is highly variable; some go on to live 

disease-free for many years whereas others quickly recur. Although post-operative 

chemotherapy is available it has associated morbidities and it is unclear which patients 

would benefit; therefore, there is a need for more effective stratification of patients. 

The adenocarcinoma sub-type of lung cancer is known to be morphologically 

heterogeneous however the majority of observed growth patterns, assessed by light 

microscopy, can be characterised into one of five formations: lepidic, papillary, acinar, 

solid and micropapillary. The morphology of each tumour has been proposed as a 

marker of prognosis and several studies have published a link between the most 

prevalent growth pattern and prognosis; suggesting those with predominantly solid or 

micropapillary tumours to have the least favourable outcomes. Indeed, it is now 

recommended that the proportion of each growth pattern and the predominant growth 

pattern should be reported for all resected lung adenocarcinomas; although no 

differential treatments have been recommended based on this assessment.  

The aim of this study was to determine whether combining the analysis of 

clinicopathological; morphological; and candidate protein, molecular genetic and 

transcriptomic characteristics in a single cohort of 208 early-stage, resected, 

adenocarcinomas with clinical follow-up could be used to identify a subset of patients 

at high risk of recurrence. Comprehensive morphological analysis was carried out 

including the presence, proportion and number of individual growth patterns; the 

predominant growth pattern as well as features previously associated with tumour 

grade (the presence of large numbers of mitotic figures, apoptotic bodies, 

inflammatory cells, prominent nucleoli, pleomorphic tumour cells, dyscohesive 

tumour cells and large amounts of necrosis and scar tissue within the tumour). In 

addition, gene expression was assessed using a panel of 31 cell-cycle related genes, 

EGFR and KRAS mutation status was determined, and EGFR and TTF1 protein 

expression investigated. 
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In this study the predominant growth pattern defined by histopathology showed no 

ability to identify a group of patients with a poorer prognosis either in univariable or 

multivariable analysis. Univariable analysis identified nodal status [hazard ratio of N1 

compared to N0 was 2.16 (95% CI 1.48 to 3.16, p< 0.0005)], clinical stage [hazard 

ratios of stage IIa and IIb compared to stage Ia were 3.15 (95% CI 1.73 to 5.73, p< 

0.0005) and 2.22 (95% CI 1.10 to 4.48, p= 0.025) respectively], the presence of a 

significant amount of the papillary growth pattern [the hazard ratio of those with less 

than 8.5% papillary pattern was 0.657 (95% CI 0.44 to 0.98, p= 0.035)], and overall 

tumour grade score (including an assessment of necrosis, mitosis, apoptosis, nucleoli, 

scar tissue and inflammatory cells) [hazard ratio 1.71 (95% CI 1.14 to 2.56, p= 0.008)] 

as significantly associated with prognosis. Multivariable analysis using Cox’s 

proportional hazards model identified clinical stage (p< 0.0005), the presence of a 

significant amount of the papillary growth pattern (p= 0.048) and the presence of large 

numbers of mitotic figures (p=0.029) and apoptotic bodies (p= 0.015) as independently 

associated with disease specific survival; although after correction for type I errors 

only clinical stage remained significantly associated with prognosis with patients with 

stage Ia disease having a significantly better outcomes [hazard ratio 0.418 (95% CI 

0.20 to 0.86)]. Classification and regression tree analysis (CART) was used to further 

explore the data and to develop decision trees for the prognostication of early-stage 

lung adenocarcinoma patients. Receiver operating characteristic analysis based on 5-

year survival showed a minimal improvement in the area under the curve between a 

model utilizing currently available clinicopathologic characteristics only [nodal status 

and lesion size, (area under the curve 0.704, 95% CI 0.631 to 0.777)] and one including 

growth pattern characteristics [area under the curve 0.725, 95% CI 0.654 to 0.796]. 

The greatest improvement in prognostic accuracy was observed when gene expression 

analysis was included in the analysis [area under the curve 0.749, 95% CI 0.673 to 

0.825]; however even this showed very little impact compared to routinely used 

clinicopathologic variables.  

This analysis suggests that the recommended characterisation of lung adenocarcinoma 

histology is not a robust predictor of patient outcomes; even a broader model which 

also included indicators of tumour grade and molecular characteristics was unable to 

identify a model sufficiently robust to implement into clinical practice and thereby 
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potentially alter patient treatment. Currently routinely collected clinical 

characteristics; including nodal status, size and clinical stage; continue to provide the 

most robust method of prognostication and detailed and time-consuming 

morphological analysis offers no significant benefit to the patient.  
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Lay summary 

Lung cancer is the leading cause of cancer related death worldwide; despite recent 

treatment developments survival rates remain poor with patients diagnosed with 

advanced disease having the least favourable outcomes. Even among patients with 

early-stage disease, which may be removed by surgery, the prognosis is highly 

variable; some go on to live disease-free for many years whereas others quickly recur. 

Although post-operative chemotherapy is available its known side-effects mean there 

is a need to more effectively select patients who are likely to benefit. One major sub-

type of lung cancer (adenocarcinoma) is known have a wide range of growth patterns 

when assessed by pathologists. Recent studies have suggested that the observed growth 

patterns can be used to indicate which patients may have the poorest prognoses. 

Indeed, it is now recommended that the proportion of each growth pattern and the 

predominant growth pattern should be reported for all resected lung adenocarcinomas; 

although no different treatment options have been recommended based on this 

assessment.  

The aim of this study was to determine whether combining the analysis of routinely 

collected clinical and laboratory data (such as tumour size, spread and disease stage) 

with more detailed analysis of tumour morphology and other candidate biomarkers in 

a single cohort of 208 early-stage, resected, adenocarcinomas with clinical follow-up 

could be used to identify a subset of patients at high risk of recurrence.  

In this study the predominant growth pattern showed no ability to identify a group of 

patients with a poorer prognosis. After taking all factors into account only the patient’s 

disease stage, a currently used clinical measure, was found to be significantly 

associated with prognosis; those with very early stage disease (stage Ia) had a 

significantly better prognosis.  

This study suggests that the recommended characterisation of growth patterns within 

this group of lung cancers is not a robust predictor of patient outcomes; even an 

analysis including all available biomarkers was unable to identify a method of 

selecting patients sufficiently robust to implement into clinical practice and thereby 

potentially alter a patient’s treatment. Currently routinely collected clinical 
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characteristics continue to provide the most robust method of prognostication and 

these additional, time-consuming analyses offer no significant benefit to patients.  
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Chapter 1 Introduction 

Lung cancer is the most commonly diagnosed cancer in the world and has the highest 

mortality rate; although the incidence in females is lower than that in males.1 

Improvements in cancer patient survival observed in recent years, for example in colon 

and breast cancer, have not been mirrored in lung cancer; the most recent estimates of 

5-year survival rates in the UK are approximately 9.5 to 11.4% in males and 12% to 

15.5% in females.2, 3 This is due, at least in part, to the frequently advanced stage of 

disease at diagnosis at which point surgery would be unlikely to be curative.4 The 

TNM classification of tumours; based on lesion size and location and involved 

structures, the location of involved lymph nodes and the presence and location of 

metastases; has been routinely used for many years for prognostication and clinical 

decision-making in lung cancer patients.5, 6 Patients with clinical stage Ia disease, 

indicating those with non-metastatic lesions less than 3cm in diameter with no 

involved lymph nodes, have been shown to have the most favourable prognoses with 

an estimated 5-year survival of 50%, however this reduces markedly for patients with 

more advanced disease (43%, 36%, 25%, 19%, 7% and 2% for clinical stages Ib, IIa, 

IIb, IIIa, IIIb, and IV respectively).7 Surgical resection of lung cancer is relatively rare, 

only being carried out in approximately 10% of cases, and dependent on the patient’s 

performance status; the location of the lesion and the patient’s clinical stage at 

diagnosis.6, 8 In the UK, patients with stage I and II disease would, assuming no other 

contraindications, be offered surgical resection resulting in a 5-year survival rate of 

approximately 58% and 28% for stage I and II respectively.6, 9 Those with stage II 

disease would also be eligible for treatment with post-operative platinum-based 

systemic anticancer therapy.6 However, even within this group of early stage patients, 

a proportion quickly develop recurrent disease. If additional markers to identify 

patients with a poor prognosis were developed more aggressive treatment in this group, 

for example chemotherapy, may help improve survival rates. For patients where 

surgery with curative intent is not possible treatment options include radiotherapy, 

cisplatin with pemetrexed (for those with non-squamous histology), 

cisplatin/carboplatin with docetaxel, gemcitabine, paclitaxel or vinorelbine (squamous 
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histology) and targeted therapy for patients predicted likely to respond by molecular 

analysis.6  

1.1 Morphology 
Tumours thought to be derived from epithelial cells form the majority of lung 

malignancies which are grouped based on their histopathological and clinical 

characteristics into non-small cell lung carcinomas (NSCLC) including 

adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and a number of less 

common tumours (for example adenosquamous carcinoma, pleomorphic carcinoma, 

spindle cell carcinoma, giant cell carcinoma and carcinosarcoma) and small cell lung 

carcinoma.10 NSCLC accounts for approximately 80% of lung cancer cases.11 The two 

most common types of NSCLC, adenocarcinoma and squamous cell carcinoma, are 

both associated with smoking tobacco and other environmental factors including 

exposure to asbestos, indoor pollution, a pre-existing chronic lung disease and a family 

history of lung cancer.10 Until recently lung cancer was far more common in males 

than females, which may reflect differing smoking habits.10 Initially squamous cell 

carcinoma was the most commonly diagnosed type of lung cancer; however, in recent 

years the number of squamous cell carcinomas (which commonly occurs in centralised 

locations) has been overtaken by peripherally occurring adenocarcinomas.10, 11 This 

shift may have been caused by developments in the design of cigarettes including the 

widespread introduction of filters and the composition of the tobacco used, leading 

smokers to inhale more deeply into the peripheral regions of the lung.10 

Adenocarcinomas typically express mucin or pneumocyte markers, including thyroid 

transcription factor 1 (TTF1, now known as NK2 homeobox 1) and napsin A, which 

are frequently used to aid histopathological diagnosis by special stains and 

immunohistochemistry (IHC).10 Approximately 75% of adenocarcinomas show 

positive expression of TTF1 by IHC.10 Patients with lung adenocarcinoma frequently 

present at a late stage (greater than 40% of cases are diagnosed with stage IV 

disease);12 which may be a result of their often peripheral location which can be 

asymptomatic in earlier stages.10 Adenocarcinomas invade the pleura and chest wall 

in approximately 15% of cases and up to 20% of patients present with distant 

metastases; most commonly in the brain, bone, liver and adrenal glands.13 Survival of 
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late stage lung adenocarcinoma (stage IIIB/IV) is approximately 12 months on 

average.12 

It has long been recognised that adenocarcinomas are morphologically heterogeneous 

showing a wide range of growth patterns, not only between lesions from different 

individuals but also within tumours. Few lesions are composed of only one tumour 

architecture; the majority, 80% to 95%, are composed of more than one morphological 

pattern transforming from one pattern to the next in a continuum rather than with a 

defined border;10, 14 which until recently had been classified in a single group as ‘mixed 

subtype’.11, 15 The most commonly observed morphologies in adenocarcinomas have 

been classified into 5 growth patterns; lepidic, papillary, acinar, solid and 

micropapillary; although less common variants have been noted including invasive 

mucinous adenocarcinoma, colloid adenocarcinoma, fetal adenocarcinoma and enteric 

adenocarcinoma.10, 16 The lepidic growth pattern consists of relatively bland neoplastic 

cells, typically columnar or cuboidal with an appearance similar to club cells or type 

II pneumocytes, which grow along the surface of alveolar walls without invading into 

the stroma.11, 16 The acinar growth pattern shows tumour cells (often mucin-producing) 

surrounding a central lumen forming round or oval acini or tubules.11, 16 The papillary 

growth pattern consists of papillae with secondary and tertiary structures and a 

fibrovascular core surrounded by cuboidal to columnar tumour cells and may again 

produce mucin.11, 16 The more recently identified micropapillary pattern is frequently 

composed of small and cuboidal tumour cells with little cytological atypia, growing in 

papillae without a fibrovascular core; free-floating in air spaces or as tufts attached to 

alveolar walls.16 The solid growth pattern is composed of sheets of mucin producing 

polygonal tumour cells with no lepidic, acinar, papillary and micropapillary 

structures.11, 16 

As yet no method of tumour grading in lung cancer has been established;10 but in recent 

years, there has been a great deal of interest in additional markers of prognosis in lung 

cancer patients in order to identify those who may benefit from additional treatment 

and potentially improve the overall outcomes for patients. The morphological 

heterogenetiy of lung adenocarcinomas offers a rapid and, requiring only diagnostic 

stained tissue sections, inexpensive method for additional stratification. Many groups 
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have studied the disease characteristics and outcomes of patients with lug 

adenocarcinoma based on the observed morphological growth patterns and several 

have shown the presence of the micropapillary growth pattern to be associated with an 

increased likelihood of involved lymph nodes,17-24 lymphatic invasion,17, 19-21, 23, 24 

venous invasion,17, 19-24 pleural invasion,18-20, 24 higher stage disease17, 20-22, 24 and 

poorer prognosis.17-21, 23-25 Although, an association with patient outcomes was not 

confirmed in all studies.22, 26 In addition, the threshold applied to determine the 

presence of the micropapillary pattern was in some studies any micropapillary 

growth,17, 19, 21, 24 in others greater than or equal to 5% of the total area18, 20, 22, 23, 26 and 

in others greater than or equal to 10%.25 Cross-cutting of other growth patterns could 

be mistaken for small areas of the micropapillary pattern and, depending on the cut-

off used, could lead to false positives. Although frequently not the most prevalent 

pattern in a tumour, the micropapillary growth pattern has been found to be present in 

30 to 50% of lung adenocarcinomas.18, 19, 27 There is some evidence to suggest 

increasing proportions of the micropapillary pattern are associated with poorer 

outcomes for patients;17, 19 although this has not been supported by all groups.20 

Importantly, the majority of studies which reported a clinical utility in the 

identification of the micropapillary pattern failed to use multivariable analysis and 

therefore possible confounding effects of multiple potentially significant variables 

cannot be assessed.18-21, 24, 25 Of the few that did, most did not adjust the type I error 

level which would have rendered the effect of the presence of the micropapillary 

pattern not significant.22, 23 Although correction for type I errors is not considered 

strictly necessary in exploratory studies, this fact does highlight weaknesses in the 

quality of data and potential flaws in the conclusions drawn from these studies. Some 

reports have also proposed the presence of the solid growth pattern as an indicator of 

poor prognosis;26, 28-30 although not all studies made adjustments of the type I error 

level to account for multiplicity in statistical analyses.28-30 The presence of the lepidic 

pattern has been shown to be associated with favourable prognoses, particularly when 

present at a large proportion of the total tumour area;28, 31, 32 although, again, 

adjustments to the type I error level have not always been performed.28, 31  
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In 2011, after a review of lung adenocarcinoma classification, Travis et al. proposed 

that histopathologists apply a more detailed analysis of resected lung adenocarcinomas 

whereby the proportion of each growth pattern should be estimated in 5% increments 

and a predominant growth pattern assigned; although this was at the time classified as 

a weak recommendation with low quality evidence.16 The association between 

predominant growth pattern and patient outcomes was supported by the research of 

several groups;15, 33-46 and significant correlations were noted between predominant 

pattern and nodal status,33 lesion size,33 pleural invasion38 and clinical stage.33 

Although in some studies these growth patterns were grouped together in order to show 

a significant relationship.39, 44, 46, 47 The majority of studies suggested that tumours with 

predominantly lepidic growth showed a good prognosis;15, 29, 33, 34, 38-40, 48 whereas 

predominantly micropapillary15, 33, 35, 36, 38-40, 43 and solid tumours29, 35, 36, 38-40, 43, 49 were 

associated with poor patient outcomes. In addition, it has been reported that the solid 

and micropapillary growth patterns were present in metastases even when a different 

predominant pattern was observed in the primary tumour which may indicate an 

increased tendency for cells in these patterns to metastasize.50 However; even in 

studies with large cohorts, where the association between predominant growth pattern 

and outcomes would be expected to be strongest, there were discrepancies between the 

significance of the acinar, solid, papillary and micropapillary patterns. Yoshizawa et 

al. found patients with predominantly papillary and acinar tumours to have an 

intermediate prognosis with solid and micropapillary showing poor prognosis;15, 39 

Warth et al. showed predominantly papillary tumours to indicate a poor disease 

specific survival similar to solid and micropapillary tumours;33 whereas Tsuta et al. , 

with a cohort of 904 patients, were only able to identify a prognostic difference in 

patients in predominantly lepidic tumours with all other patterns grouping closely 

together.34 In addition, some groups failed to find any significant associations between 

predominant growth pattern and patient outcomes.26, 51-54 These discrepancies may be 

a result of the reliance on resected tumours for complete morphological assessment, 

meaning that studies have primarily been carried out in patients with early stage 

disease with, therefore, a low number of events for survival analysis. In addition, as 

with other variables, several studies did not adjust the type I error level, the most 

commonly used of which, Bonferroni’s procedure, would render their correlations not 
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significant.15, 29, 33, 36, 38, 40, 43, 46, 48 The clinical utility of this classification is unclear as 

no differential treatments based on this stratification are currently available; although 

there is some indication that patients with predominantly solid or micropapillary 

tumours may benefit from adjuvant chemotherapy or radiotherapy whereas other 

tumours would not.33, 52, 55 As yet this system of classification based on predominant 

pattern has not been in place long enough to judge the prognostic capacity of 

predominant growth pattern in a real-world situation, incorporating the morphological 

assessment of multiple histopathologists across many different centres. In 2015, this 

system of classification based on morphology was further refined to provide guidance 

on micropapillary structures present within acinar or lepidic structures and 

highlighting the poor prognosis of the cribiform pattern, which was previously 

classified as acinar.14 Most recently it has been proposed that the papillary subtype 

may be further stratified into 3 distinct morphologies based on their association with 

overall survival (OS) and disease-free survival (DFS); however with ever increasing 

stratifications comes increased complexity and a reduced number of patients in each 

group, making this unlikely to be of benefit for clinical prognostication without 

considerably more research in large patient cohorts.56 One study has shown that using 

a model incorporating both predominant and secondary growth patterns can further 

refine the stratification of patients;57 if supported, this could indicate that predominant 

patterns are an important factor but consideration of additional factors may be 

necessary to more accurately predict the pathway of a patient’s disease.  

In its most recent edition, the WHO Classification of Tumours of the Lung, Pleura, 

Thymus and Heart suggested future grading systems may be more complex, involving 

tumour architecture and nuclear features.10 In other malignancies tumour grade, 

including cytological features, has been shown to aid prognostication; for example in 

breast cancer the commonly applied Nottingham Prognostic Index includes an 

assessment of nuclear atypia and the frequency of mitotic figures.58 In NSCLC a high 

number of mitotic figures have been associated with a poor prognosis59 and greater 

likelihood of distant metastasis,60 however these conclusions were based on data from 

relatively small cohorts and in one case included a high proportion of squamous cell 

carcinoma.60 High numbers of mitotic figures and apoptotic bodies have frequently 
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been identified in the same tumours60 and although one group has suggested the 

presence of large numbers of apoptotic bodies was associated with poorer overall 

survival;61 the analysis could only be carried out on a small number of patients and 

several alternative studies have found no significant association.60, 62, 63 Several groups 

have shown the presence of extensive necrosis within a lung tumour to be associated 

with a poor prognosis,15, 64, 65 although others have found no association.63, 66 

Univariable analysis has also proposed nuclear pleomorphism63, 67 and the presence of 

scar tissue67 as predictors of survival; however multivariable analysis, where 

performed, was unable to demonstrate and independent association.67 A 

comprehensive analysis of all available histological parameters in a single cohort may 

help elucidate these associations.  

There has been a great deal of interest in the effect of the body’s immune response to 

malignancy and many studies have suggested that the presence of tumour infiltrating 

lymphocytes (TIL) can be used to predict prognosis in patients with NSCLC.68-74 

However, the available literature shows a complex relationship; the presence of large 

numbers of CD3,68, 69 CD870-73 and CD469, 70, 72 expressing T-cells associated with a 

tumour may indicate a favourable prognosis; however, not all groups support these 

conclusions,73, 75, 76 one study showed conflicting results indicating that high numbers 

of CD8 T-cells was associated with a poor prognosis.74 There is evidence to suggest 

that the relationship between TIL and patient outcomes may be strongest in squamous 

cell carcinoma rather than adenocarcinoma.72, 75, 77 In addition, the location of TIL, 

whether in the stroma surrounding the tumour or in the tumour nests themselves, may 

indicate differing outcomes.69-71 Two meta-analyses carried out in lung cancer have 

shown large numbers of CD3,78, 79 CD878, 79 and CD479 T-cells were associated with a 

favourable prognosis whereas large numbers of FOXP3 T-cells were associated with 

poorer outcomes.78, 79 

1.2 Molecular pathology 

In recent years; the belief that carcinogenesis is driven primarily by the accumulation 

of somatic mutations in key genes leading to features of cancer cells (including 

unlimited cell proliferation independent of normal stimulation and unchecked by 
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regulatory mechanisms, and the ability to metastasize and induce angiogenesis)80, 81 

has been widely accepted by many cancer researchers. It is certainly true that 

malignant cells contain many mutations not found in corresponding normal cells and 

common chromosome rearrangements and mutations have been identified across many 

different cancer types,82 frequently affecting genes involved in tumour suppression, 

cell cycle control, DNA repair, and cell adhesion.81 Frequent mechanisms of 

carcinogenesis include inactivation of tumour suppressor pathways (including 

mutation of tumour protein p53 encoded by the TP53 gene), loss of expression of the 

retinoblastoma protein, silencing of cyclin dependent kinase inhibitor 2A (CDNK2A), 

loss of heterozygosity and overexpression of cyclin D1 or the gain of proliferation-

inducing driver mutations; including those in the B-Raf proto-oncogene 

serine/threonine kinase (BRAF), mitogen-activated protein kinase kinase 1 (MAP2K1), 

fibroblast growth factor receptor 4 (FGFR4), phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit alpha (PIK3CA), erb-b2 receptor tyrosine kinase 2 (ERBB2 or 

HER2), epidermal growth factor receptor (EGFR), KRAS proto-oncogene GTPase 

(KRAS) and anaplastic lymphoma kinase (ALK) genes.11, 83 Between cancer types the 

range of genomic alterations differs; in lung adenocarcinoma the most commonly 

mutated genes include TP53, KRAS, STK11, EGFR, BRAF, ERBB2, ALK, ROS1, ret 

proto-oncogene (RET), neurotrophic receptor tyrosine kinase 1 (NTRK1) and 

neuregulin 1 (NRG1).10, 84, 85 The most frequently occurring mutations, those in TP53 

and KRAS are thought to be associated with smoking due to the large proportion of G 

to T transversion mutations.10 In the majority of lung adenocarcinomas driver 

mutations are thought to be mutually exclusive although some may be concomitantly 

mutated in a small number of cases.51, 85 Copy number changes are also common in 

lung adenocarcinoma most frequently gain of chromosome 5p in 18% of cases (leading 

to amplification of the telomerase reverse transcriptase (TERT) gene and gain of 

chromosome 3q which encodes the telomerase RNA component (TERC) gene (both 

of which are thought to be important in immortality of cancer cells). Other common 

copy number alterations include 14q13.3 encoding the NKX2–1 gene encoding TTF1; 

amplification of MYC, EGFR, MET, KRAS, ERBB2, MDM2, and deletion of LRP1B, 

PTPRD, and CDKN2A.86 These alterations most commonly affect proliferation 
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(RTK/RAS/RAF, mTOR, JAK-STAT), DNA repair and cell-cycle regulation 

pathways.86 

The complexity of biological pathways is such that many different molecular 

mechanisms may lead to clinically identical disease; contributing, at least in part, to a 

variable response to treatment.87  This complexity has lead researchers to hypothesise 

that no single treatment will be effective in all patients with a particular cancer type 

and that, for the most effective disease management, therapy must be targeted to the 

specific characteristics of each patient’s tumour.88 This has led to the development of 

targeted therapies for the treatment of lung adenocarcinoma which selectively inhibit 

the EGFR and ALK proteins, and it is hoped that further therapies targeting more 

driver mutations will become available in the coming years.  

EGFR 

The EGFR gene encodes a 170kDalton transmembrane receptor tyrosine kinase which 

is expressed on the plasma membrane of many cells;89 IHC using antibodies with 

affinity to the EGFR protein shows particularly high levels of expression in the basal 

regions of stratified and squamous epithelium.90 EGFR is one of a family of tyrosine 

kinase receptors which also includes ERBB2, erb-b2 receptor tyrosine kinase 3 

(ERBB3) and erb-b2 receptor tyrosine kinase 4 (ERBB4).91 The activation of the 

EGFR tyrosine kinase is thought to be mediated by the binding of ligands (including 

epidermal growth factor (EGF), transforming growth factor α (TGFα), amphiregulin 

(AR), heparin binding EGF-like-growth factor (HB-EGF), betacellulin (BTC) 

epiregulin (EREG), and epigen (EPGN))92 to the extracellular domain of EGFR 

creating allosteric changes resulting in homo or heterodimerisation of EGFR with 

other members of the EGFR family of proteins.91 This dimerisation causes 

autophosphorylation of amino acids (including Tyr 1173, 1148, 1086, 1068, and 992) 

leading to conformational changes to the intracellular tyrosine kinase domain which 

increases affinity to adenosine triphosphate (ATP) and allows the binding of substrates 

including SHC adaptor protein 1 (SHC1), growth factor receptor bound protein 2 

(GRB2) and SOS Ras/Rac guanine nucleotide exchange factor 1 (SOS1).89, 91 

Activated EGFR catalyses the hydrolysis of bound ATP and the transfer of phosphates 

to substrate proteins triggering several downstream signalling transduction cascades 
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leading to cell proliferation; 91 uncontrolled activation is thought to result in unchecked 

proliferation, avoidance of apoptosis and ultimately cancer.93 Ligand-bound EGFR is 

eventually deactivated by incorporation into lysosomes and degradation.89, 90  

Two EGFR tyrosine kinase inhibitors (TKI); erlotinib (Tarceva®, Roche) and gefitinib 

(Iressa®, Astra Zeneca UK Ltd), which represented the first generation of their class; 

have shown good responses in a subset of patients including younger patients, non-

smokers, women, patients of East Asian origin and those with adenocarcinoma 

histological sub-type.94-98 Gefitinib is a low molecular weight, synthetic 

anilinoquinazoline which has been shown to reversibly inhibit EGFR by competing 

with ATP at its binding site and, therefore, prevent autophosphorylation.99 Erlotinib 

hydrochloride is a quinazoline derivative reversible inhibitor of EGFR; both 

treatments are thought to have similar binding100 and efficacies.101 

Some early reports suggested that EGFR protein expression, determined by IHC with 

antibodies with affinity to the extracellular region of the protein, was a predictor of 

benefit from EGFR TKIs;102 however many studies failed to find a significant 

predictive role for EGFR IHC.103-105 The interpretation of IHC is known to be subject 

to inter-observer variation and in addition analysis of EGFR IHC in matched biopsies 

and resected samples has shown intratumour heterogeneity and/or variation in tissue 

fixation; both of which make the validation of a significant predictive relationship 

more difficult.106, 107 However, even after efforts to standardise IHC protocols and 

scoring systems108 the current consensus is that EGFR protein expression levels, 

measured by IHC, are unable to adequately predict response to first generation EGFR 

TKIs. A more recent publication has reported the development of a new antibody with 

affinity to the intracellular region of EGFR which showed a stronger association with 

progression-free survival (PFS) and OS in patients treated with gefitinib,90 although 

this study was carried out in a relatively small cohort and the predictive capacity of 

this intracellular region would require further validation in additional cohorts. 

Approximately 9 to 11% of NSCLC from western populations have shown increased 

EGFR gene copy numbers, in the majority of cases this is caused by disomy, trisomy 

and polysomy rather than gene amplification.109 Many studies found increased EGFR 
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gene copy number to be a predictor of response to EGFR TKIs and has been associated 

with OS,102, 105, 110-112 PFS,104, 105, 113 and time to progression (TTP).111, 114 The role of 

EGFR gene copy number as a predictive marker of benefit from EGFR TKIs was 

supported in a meta-analysis of 22 studies;115 however other studies have found no 

predictive value.116, 117 

In 2004 somatic mutations in the EGFR gene were reported in tumours responsive to 

gefitinib which were not found in non-sensitive tumours;118-121 the sensitivity of clones 

bearing mutations was confirmed in cell culture experiments.118-120, 122, 123 EGFR 

mutations were located in exons 18 to 21, the area coding for the active cleft of the 

tyrosine kinase domain, and were thought to destabilise the inactive conformation of 

the protein and favour the activated state leading to ligand-independent activation of 

the EGFR pathway.100 The most frequent EGFR mutations were small deletions in 

exon 19 (61.9%) followed by mutations in exon 21 (33.1%) and exon 18 (4.2%).124-126 

The p.(E746_A750del) deletion in exon 19 has been shown to be the most common 

single mutation representing 35.6% of all EGFR mutations.124 The frequency of EGFR 

mutations has been shown to increase from pre-invasive lesions to invasive 

adenocarcinoma, indicating that EGFR mutations may not be the primary cause for 

cell proliferation but may be a marker of invasiveness.127 EGFR mutations were more 

common in tumours with adenocarcinoma histology,124, 128-130 in non-smoking 

patients124, 128-130 and in patients of East Asian ethnicity; 85 matching the 

clinicopathological characteristics of patients who respond to EGFR TKIs. The genetic 

profile of lung adenocarcinomas has also been shown to vary considerably in different 

ethnic groups, the incidence of EGFR mutations in lung adenocarcinomas in East 

Asian populations is high compared to Caucasian populations (approximately 48% vs 

19%).85 Even within Caucasian populations there may be differences in EGFR 

mutation frequency with a meta-analysis demonstrating higher mutation frequency in 

North American (21.6%) than European populations (13.0%) (supplementary data 

Dearden et al. 2013).85  The reason for these differences is unclear but may be related 

to differing exposure to known carcinogens, for example smoking or environmental 

factors, or unknown genetic factors. Although previous studies have suggested EGFR 

mutations were associated with female gender,124, 128 not all studies support this and 
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smoking habits may be a confounding factor.129, 131-133 Lung adenocarcinomas which 

harbour mutations in the EGFR gene express the TTF1 protein in the majority of cases. 
124, 134-136  

Many studies have supported the value of EGFR mutations for predicting benefit from 

EGFR TKIs;104, 110, 111 with only a small number of studies finding no predictive 

value.102, 112, 116 Although, final analysis of OS in large scale phase III trials, including 

the IPASS and SATURN trials, failed to show an association with EGFR mutations 

after treatment with gefitinib;104, 137-140 a finding which has been further supported in 

meta-analyses.141 The large scale treatment cross-over in these trials may explain these 

disappointing results. Patients with wild-type EGFR tumours have been shown to 

perform better on standard chemotherapy regimens than on TKIs leading to the 

recommendation for routine analysis of EGFR mutation status before prescription of 

EGFR TKI.140, 142, 143  

The more recently developed treatment afatinib (Giotrif, Boehringer-Ingelheim 

Pharma GmbH, Ingelheim, Germany) is a second generation small-molecule 

irreversible inhibitor of the ErbB-family of proteins which blocks signalling from 

homodimers and heterodimers involving EGFR, HER2 (ErbB2), ErbB3, and ErbB4.144 

Treatment with afatinib has demonstrated a longer progression free survival than 

chemotherapy or placebo in patients with EGFR mutations145, 146 and has shown 

improved PFS compared with gefitinib.147 

Some EGFR mutations, including exon 20 insertions and the p.T790M single 

nucleotide variant, have been associated with resistance to TKIs.148-150  The incidence 

of de novo p.T790M mutations in a primary lesion is low and frequently leads to rapid 

progression when treated with first generation EGFR TKIs.151 Even within known 

sensitising mutations, different EGFR variants may not confer the same level of 

sensitivity to EGFR TKIs. It has been reported that lesions with deletions in exon 19 

demonstrate better outcomes than those with exon 21 mutations;152-155 although the 

same finding was not evident in all studies.139, 156, 157 Tumours bearing p.L861Q and 

p.S768I have been reported to be less sensitive to erlotinib and gefitinib compared to 
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tumours with deletions in exon 19 or p.L858R.152, 153, 158 Even the specific exon 19 

deletion has been reported to associate with differing PFS.159  

The association between the presence of EGFR mutations and treatment benefit is far 

from perfect; 17 to 38% of lung adenocarcinoma patients with EGFR mutations in 

their tumours do not respond to first line EGFR TKIs. Reasons for this may include 

presence of a resistance mutation, or activation of non-EGFR dependent pathways 

indicating that carcinogenesis in these patients may not be reliant on the EGFR 

pathway alone.160 Some patients with EGFR mutated tumours have additional 

mutations in the PI3K/Akt/mTOR pathway which have been associated with primary 

resistance to EGFR TKI; including TP53, FGFR, AKT serine/threonine kinase 1 

(AKT1), PIK3CA, serine/threonine kinase 11 (STK11) and PTEN.161 Alterations to E-

cadherin, Beta-catenin and PTEN and mitogen inducible gene 6 protein expression 

have also been suggested to be mechanisms of primary resistance to EGFR TKIs in 

EGFR mutated patients.162, 163 Inherited polymorphisms may also have an influence on 

a patients response to treatment with EGFR TKIs.164, 165 

A small proportion of NSCLC patients without EGFR mutations (1 to 7%) do respond 

to EGFR TKIs,166 the reasons for this are unknown but may involve: amplification of 

the EGFR gene, mutations in the EGFR promoter region, expression of associated 

proteins such as the EGFR ligand amphiregulin or other unknown mechanisms.167 

Meaning that somatic EGFR mutation status alone may be insufficient to accurately 

predict response to treatment.  

Although targeted therapies have shown notable responses in NSCLC, acquired 

resistance is almost inevitable. The mechanisms of resistance are only partially 

understood, differ from patient to patient, and may involve: further mutations in the 

target gene (development of an additional EGFR p.T790M mutation occurs in 

approximately half of patients with acquired resistance to EGFR TKI),168, 169 

upregulation or activation of alternative pathways (for example MET proto-oncogene 

receptor tyrosine kinase (MET), HER2 or PI3K-AKT),163, 168, 169 transformation to a 

small-cell histology168 and selecting for pre-existing cells which are inherently 

resistant to the drug.170, 171 It has been hypothesised that a minor component of 
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neoplastic cells containing the  p.T790M mutation is frequently present in tumours 

prior to EGFR TKI therapy and that their presence has been shown to be associated 

with poorer PFS and OS when treated with EGFR TKI.172  

A third generation of EGFR TKI, osimertinib (Tagrisso™, AstraZeneca, UK), which 

has demonstrated activity against tumours with the EGFR p.T790M resistance 

mutation (whether in the primary lesion or acquired as a result of treatment) has 

recently been released to the market.173 However, this has raised the issue of obtaining 

representative tumour tissue samples from recurrent late stage NSCLC patients in 

order to detect the p.T790M mutation. As many of these patients are too unwell to 

tolerate a re-biopsy the prescription of this novel treatment may rely upon the detection 

of EGFR mutations in circulating cell-free tumour DNA released into the bloodstream, 

although this method has a lower analytical sensitivity than tissue based analysis.174 

Some studies have suggested a link between histological tumour growth patterns and 

the frequency of EGFR mutations. It has been reported that lepidic,175 acinar47, 49, 175, 

176 and papillary47, 175, 176 predominant tumours had an increased incidence of EGFR 

mutations. However, these conclusions were based on relatively small cohorts and, 

since EGFR mutations can also be found in solid and micropapillary predominant 

tumours, the use of tumour morphology as a predictor of EGFR mutations has limited 

clinical benefit. 

ALK 

Crizotinib (Xalkori, Pfizer) is a small molecule inhibitor of ALK, MET and ROS 

proto-oncogene 1 receptor tyrosine kinase (ROS1) which has shown response in 

NSCLC patients with ALK rearrangements (65% response rate), ROS1 rearrangements 

(72%), MET amplification (60%) or  MET exon 14 skipping mutations (75%); 

although the number of treated patients with MET aberrations was very small.177-182 

Clinically relevant rearrangements of the ALK gene, most commonly with echinoderm 

microtubule associated protein like 4 (EML4), create a fusion protein causing the 

aberrant expression of the ALK protein; these rearrangements have been detected in 

1-5% of lung adenocarcinoma patients.177, 183, 184 ALK rearrangements are thought to 

be largely mutually exclusive to EGFR and KRAS mutations,183 however they have 
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been reported to co-occur in small numbers of cases.185, 186 Rearrangements in the 

ROS1 gene, with any of several translocation partners, cause the production and 

expression of the ROS1 fusion protein; these rearrangements have been detected in 

1.7% of lung adenocarcinomas.184 MET amplifications and MET exon 14 skipping 

mutations have been identified in 2.2% and 4.3% of lung adenocarcinomas 

respectively.184 Unfortunately although patients who respond to treatment have shown 

remarkable reduction in tumour size, acquired resistance to crizotinib can develop 

quickly and has been attributed to further mutations in the ALK gene, ALK gene 

amplification and activation of alternative pathways.187 

Ceritnib (Zykadia; Novartis) is a second generation small molecule inhibitor of ALK, 

ROS1, insulin-like growth factor 1 receptor (IGF-R1) and insulin receptor (INSR) but 

not MET; this treatment has shown activity against some tumours with acquired 

resistance to crizotinib allowing a second line of treatment for patients with ALK 

rearranged NSCLC.187 Several other next generation ALK inhibitors are currently in 

development.187  

KRAS 

KRAS is a guanosine nucleoside diphosphate (GDP) and triphosphate (GTP) binding 

protein which acts as a signal transducing molecule in many pathways including the 

EGFR-ERK proliferation pathway.188 In normal cells KRAS is activated by the 

binding of GTP which renders it able to bind and activate downstream targets 

(including BRAF) by phosphorylation.188 KRAS cleaves bound GTP by hydrolysis to 

produce GDP and is once more rendered inactive.188 However, mutations in hotspot 

regions (including codons 12, 13, 61, 117 and 146) of KRAS mean it is unable to 

hydrolyse GTP leaving the protein in a constitutively activated state.188 Activating 

mutations in KRAS codons 12, 13 or 61 are common in pulmonary adenocarcinomas 

and have been correlated with exposure to cigarette smoke;39, 129, 189, 190 most 

commonly resulting in transversion (G>T) mutations.132, 191, 192 Unlike somatic 

alterations in the EGFR gene, KRAS mutations have been shown to be more common 

in western than East Asian populations; being present in approximately 26.1 to 35% 

of Caucasian cohorts.85, 190 KRAS and EGFR mutations are considered mutually 

exclusive; 193, 194 they have been reported to co-occur, albeit rarely85 and in these cases 
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it is not known if these two mutations are present in the same tumour cells or in 

different populations of cells within a single lesion. KRAS mutations have been shown 

to be a poor prognostic factor in NSCLC in meta-analyses 195, 196 and in single cohort 

studies;104 although not all studies have confirmed this.197 Solid predominant tumours 

have been reported to have less favourable responses to EGFR TKI;198 which 

corresponds to an increased incidence of KRAS mutations, rather than EGFR 

mutations, in these tumours.151 

Intratumour heterogeneity 

All cell populations harbour some level of heterogeneity; therefore, it is reasonable to 

assume that tumour populations are no different. In her well cited 1984 review, 

Heppner describes tumours as multiple clones with different genotypes, and pointed 

to evidence of heterogeneity in treatment response, protein expression and metastatic 

potential;199 these clones are likely to interact with each other, influencing the 

behaviour of the tumour as a whole.200 Even cell lines, often considered a homogenous 

population, can be shown to contain sub-populations of cells which respond differently 

to perturbations.201 Minor sub-populations may significantly affect the behaviour of a 

tumour and average measurements (for example gene expression or mutation status) 

taken across whole tissue sections are likely to miss small differences within the 

population and are unlikely to be truly representative of the whole tumour.202 

Medical research has a bias towards genetic aberrations as the cause of cancer; 

however, this ignores non-heritable mechanisms as a potential source of variability. 

Variation in protein expression levels; caused by miRNA sequence, miRNA 

expression levels, promoter methylation or histone variants; could account for the 

survival of sub-populations of cells after treatment.203-205 Differences in growth 

patterns are likely to be the result of distinct molecular characteristics and may respond 

differently to perturbations.202  

IHC has been used to demonstrate intratumour heretogeneity of protein expression; 

including EGFR,107  MMP9,107 Ki-67,206 P53206 and BCL2206; although if a 

positive/negative scoring procedure is applied this heterogeneity may have little effect 

on the result.207 IHC is known to be affected by poor tissue fixation, which may explain 
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some apparent heterogeneity in large tissue specimens; however the same cannot be 

said for small biopsies whose rapid fixation time make this an unlikely explanation.208 

Somatic mutations have also been found to show intratumour heterogeneity with 

spatial variability in EGFR mutation status detected by laser capture 

microdissection.209-213 In addition, the p.T790M mutation has been shown to exist as a 

minor clone in tumours with other EGFR mutations.170, 214 Next generation sequencing 

has shown sub-populations of sequencing reads with a different deletion to that found 

in the majority of reads; the long term effect of these tumour sub-populations and their 

response to treatment with EGFR TKIs is as yet unknown.215 However, intratumour 

heterogeneity of EGFR mutations is not supported by all researchers who believe that, 

as an early event in lung cancer,216 EGFR mutations are likely to be present in all 

tumour cells in a lesion and discordances are more likely to be a result of false 

negatives.134, 217-219  

Antibodies with affinity to EGFR protein bearing the common p.L858R or 

p.E746_A750del mutations have been developed for use in IHC.220 The overall 

sensitivity of these IHCs is considered to be low; 66% to 86% for deletions in exon 19 

and 76% to 83% for p.L858R although specificity was high (98% and 96% 

respectively).221, 222 For deletions the low sensitivity could be explained by the 

presence of non-p.E746_A750del deletion mutations; however the reason for low 

sensitivity of p.L858R IHC is less clear. These IHC assays have been reported to 

demonstrate intratumoural heterogeneity in mutation status in 46% of known positive 

samples;223 however as no control IHC was used varying protein expression levels, 

rather than mutation status, cannot be ruled out.  

To treat intratumour heterogeneity as “experimental noise” rather than an indicator of 

the complex mechanisms underlying carcinogenesis is likely to result in over 

simplification and potentially less effective treatment.201 Further research to explore 

discordance in EGFR mutation status was recommended by the 2010 European EGFR 

mutation consensus workshop.143 
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Biomarkers of prognosis 

Determining prognosis in lung cancer patients may help to stratify patients into 

treatment regimens with the most aggressive therapy targeted at those with the poorest 

predicted outcomes. The goal of prognostication has been pursued for many years and 

an enormous number of journal articles have been published claiming prognostic 

utility of methods using molecular and immunohistochemical techniques. In 2016 

alone, papers have been published suggesting expression levels of miRNAs,224 long 

non-coding RNAs,225 mRNAs,226-228 and proteins229-231 were effective markers of 

prognostication; either as single target tests 226, 231 or as panels.224, 227, 228 However few 

have been followed up with validation studies in large clinical cohorts. Gene 

expression signatures have been particularly pursued, one major advantage being their 

objectivity. However, gene expression can differ greatly between subjects and has 

shown variation depending on tissue treatment post sample collection232 and 

intratumour heterogeneity.233 In addition; many prognostic gene expression signatures 

were developed for analysis of fresh frozen tissues, rather than routinely collected 

FFPE tissue, making their implementation into clinical practice unlikely. 

The commercially available Oncotype DX assay (Genomic Health®, USA) examines 

a 21-gene expression signature based on analysis of RNA isolated from routinely 

collected FFPE breast cancer tissue. This assay results in a recurrence risk score for 

breast cancer patients and can be used to identify patients who would be likely to 

benefit from adjuvant chemotherapy.234 In NSCLC, Veristrat® (Biodesix®, USA) is a 

commercially available assay using matrix-assisted laser desorption ionization 

(MALDI) mass spectrometry analysis of serum or plasma, which has shown value in 

prognostication.235 However, analysis using this blood-based assay is not possible in 

retrospective studies of patients with only archived FFPE material available.  

In 2011 the expression levels of a panel of genes, which fluctuated during the normal 

cell-cycle and therefore indicate tumour cell proliferation, was proposed as a useful 

prognostic marker in prostate cancer.236 This panel of 31 cell cycle-related genes 

included: abnormal spindle microtubule assembly (ASPM), anti-silencing function 1B 

histone chaperone (ASF1B), baculoviral IAP repeat containing 5 (BIRC5), BUB1 

mitotic checkpoint serine/threonine kinase B (BUB1B), cell division cycle associated 
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3 (CDCA3), cell division cycle associated 8 (CDCA8), cyclin dependent kinase 1 

(CDC2), cell division cycle 20 (CDC20), cyclin dependent kinase inhibitor 3 

(CDKN3), centromere protein F (CENPF), centromere protein M (CENPM), 

centrosomal protein 55 (CEP55), DLG associated protein 5 (DLGAP5), forkhead box 

M1 (FOXM1), kinesin family member 11 (KIF11), kinesin family member 20A 

(KIF20A), minichromosome maintenance 10 replication initiation factor (MCM10), 

nucleolar and spindle associated protein 1 (NUSAP1), PCNA clamp associated factor 

(PCLAF also known as KIAA0101), PDZ binding kinase (PBK), polo like kinase 1 

(PLK1), protein regulator of cytokinesis 1 (PRC1), pituitary tumor-transforming 1 

(PTTG1), RAD51 recombinase (RAD51), ATRX, chromatin remodeler (ATRX also 

known as RAD54L), ribonucleotide reductase regulatory subunit M2 (RRM2), spindle 

and kinetochore associated complex subunit 1 (SKA1 also known as C18orf24), origin 

recognition complex subunit 6 (ORC6L), thymidine kinase 1 (TK1), tumour necrosis 

factor superfamily member 13b (TNFSF13B also known as DTL) and topoisomerase 

(DNA) II alpha (TOP2A).236 The average expression levels of these genes, normalised 

against 15 housekeeping genes, was used to generate a cell-cycle progression (CCP) 

score.236 A high CCP score showed a strong association with a high risk of prostate 

cancer recurrence.236 Analysis of the same 31-gene panel in several published 

microarray datasets also showed reproducible prognostic utility in bladder; although 

in lung carcinoma only 5 of the 8 cohorts studied showed a significant correlation 

between CCP and survival.237 Interestingly, the same study showed no association 

between CCP score and prognosis in either lung or head and neck squamous cell 

carcinoma, although these cohorts were relatively small.23 In 2013; quantitative RT-

PCR analysis was used to determine the CCP score in early stage (stage I and II) lung 

adenocarcinomas using RNA derived from FFPE tissue and was able to identify 

patients in two cohorts with a poor prognosis measured by cancer specific survival.238 

Indeed CCP score was considered to be a stronger indicator of prognosis than clinical 

stage.238 More recently in a large cohort of stage I lung adenocarcinomas the CCP 

score and a molecular prognostic score, which incorporated CCP and clinical stage, 

were both associated with 5-year lung cancer specific mortality.239 This panel has the 

advantage of being robust enough to produce results even on RNA isolated from FFPE 

tissue. 
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There have been several attempts to produce models predicting prognosis in lung 

cancer patients which incorporated variables from more than one scientific discipline. 

Analysis of NSCLC at a population level has shown that a model including clinical 

stage, tumour grade, patient age, ethnicity and gender was able to improve on clinical 

stage alone for prognostication.12 However; these very large population based studies 

do not, as yet, include more specific details such as growth pattern, cytological features 

and molecular variables and therefore the effect of these features cannot be examined 

in the model. One study of adenocarcinoma patients included clinical parameters as 

well as morphological classification; EGFR, KRAS and TP53 mutation status and 

TTF1 protein expression.240 However; their morphological classification did not align 

with the, now recommended, International Association for the Study of Lung Cancer, 

American Thoracic Society, and European Respiratory Society (IASLC/ATS/ERS) 

multidisciplinary lung adenocarcinoma classification.240 It has also been shown that a 

model including age, gender, staging, and tumour grade and clinical measurements 

(cardiac comorbidities, lung function and maximum standardised uptake value from 

positron emission tomography imaging) gave improved prediction of prognosis in 

NSCLC.241 No laboratory-based measurements were included in this study which may 

have further improved the model. A further model based on a cohort of predominantly 

adenocarcinoma patients found tumour location, stage, histologic grade (including 

IASLC/ATS/ERS subtype classification), differentiation and lymphovascular invasion 

were independently associated with recurrence-free survival. However, the analysis 

was based on a relatively small number of events and included no correction for type 

1 errors which would have been likely to alter the conclusions made.45 A relatively 

small study (n=102) examined clinical factors and markers of cell proliferation, cell 

cycle control, apoptosis and angiogenesis and found gender, pathological stage, VEGF 

and nuclear cyclin D1 expression to be independent markers of post-operative 

recurrence.242 Although, this analysis was dependent on only 25 recurrences, included 

bith adenocarcinoma and squamous cell carcinoma and no further morphological 

variables were included.242 One group reported that; as well as T and N stage; lepidic 

and predominant subtypes, mitotic rate and overall grade (incorporating nuclear size 

and mitotic rate) were independently associated with prognosis of adenocarcinoma 

patients; although they made no attempt to produce a model for clinical use.243 
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Recursive partitioning analysis including multiple staging, clinical, molecular (IHC) 

and functional variables produced a decision tree which included: the presence of 

ipsilobar nodules, tumour size and invasion, comorbidities, age, performance status, 

smoking history, previous tumour, haemoglobin levels, and IHC markers (phospho-

ACC, Ki67, p63, E-cadherin, phosphor-mTOR, p27 and NF-kB). 244 The resulting 

decision tree was complex but the most significant variables were the presence of 

ipsilobar nodules, followed by tumour size and performance status or direct invasion 

into the diaphragm.244 Although this model showed an increased ability to predict 

prognosis the cohort used was biased towards squamous cell carcinoma (only 23% 

adenocarcinoma); in addition, the authors themselves suggest there is room for 

improvement and the addition of morphological subtypes and molecular markers may 

further refine this model.244 

1.3 Project objectives 
The hypothesis of this study is that the analysis of multi-factor data; including 

histology but also candidate molecular genetic, transcriptomic and proteomic 

biomarkers; can be used to improve prognostication in early stage resected non-small 

cell lung carcinoma patients. This study has been designed to address: the clinical 

significance adenocarcinoma sub-type classification in a Scottish early stage lung 

adenocarcinoma cohort; the relevance of the proportion of growth patterns detected in 

each tumour specimen; the clinical significance of the presence of the micropapillary 

growth pattern as an indicator of poor prognosis and intratumour heterogeneity in 

EGFR mutation status as a possible mechanism of EGFR TKI resistance. 

Clinical audits provide invaluable information to explore factors which may add to our 

understanding of disease in a real-world situation, rather than the heavily selected 

cohorts used in many clinical trials. The majority of clinical audits studying EGFR, 

KRAS and ALK mutation frequency in NSCLC patients have been carried out in East 

Asian Populations and support the comparatively high incidence of EGFR mutations 

in these cohorts.151, 245 Although studies in Caucasian populations have been carried 

out,132, 246 little is known of incidence and clinicopathological associations in a Scottish 

population. One published abstract of a clinical audit has shown an EGFR mutation 

incidence of 7% in a North of England cohort (including 95% ex- or current-smokers); 
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this same audit reported an increased frequency in female patients but little information 

is available on the statistical analyses carried out.246  

NHS Lothian has carried out molecular pathology testing for lung cancer patients since 

the recommendation of erlotinib for second-line treatment of locally advanced or 

metastatic NSCLC in Scotland in 2011, which was later expanded for use in a first line 

setting.247 Initially only EGFR mutation analysis was considered clinically relevant 

however after the recommendation of crizotinib for the second line treatment of ALK 

rearranged advanced NSCLC248 KRAS mutation analysis and ALK rearrangement 

analysis were added to the test repertoire. In a clinical setting; where the only available 

samples may be sub-optimal, containing only a small area of invasive disease or a high 

proportion of non-neoplastic cells, the detection of a KRAS mutation can give 

increased confidence in the validity of the sampling strategy. By carrying out a clinical 

audit of molecular pathology testing in our centre the incidence of clinically relevant 

mutations, associations with clinicopathological factors and the potential benefit to 

patients of molecular pathology testing can be explored. 

As described above, there have been many reports claiming a clinical prognostic utility 

of the detailed morphological analysis to identify the growth patterns present and the 

predominant pattern in each tumour. However, many of these publications can be 

criticised on the basis of the statistical analyses carried out and that they do not include 

molecular variables. When analysing the data from a single variable the assumption of 

statistical significance if the p value is less than 0.05 has been widely accepted 

indicating a 5% probability of the finding occurring by chance (false positive or a type 

I error). However, when analysing multiple variables, for example 10, in the same 

sample increases the probability of finding at least one false positive to 50%. It is 

recommended that analysis of multiple variables should correct for type I errors.249 

One such method, Bonferroni’s procedure, simply requires that variables in 

multivariable analysis should only be considered significant if the p value is less than 

or equal to 0.05 divided by the number of variables. However, many consider 

Bonferroni’s correction to be overly conservative and increases the risk of type II error 

(false negative) especially where large numbers of variables have been considered, 

other less stringent statistical techniques have been developed, although for 
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implementation in a clinical setting a more conservative approach is appropriate.250, 251 

In addition in exploratory studies, where the number of variables is often large, it is 

not considered necessary to correct for type I error; although clinical trials carried out 

prior to the implementation of any intervention should include this correction.250, 251  

Decision tree analysis may provide a solution to the analysis of many variables in a 

single dataset and can be of use in identifying potentially informative biomarkers in 

exploratory research. This method divides individuals in the cohort into groups at 

multiple decision points, or nodes, based on the status of that variable.252 In the first 

node the whole dataset is divided into two branches using the variable with the greatest 

influence at predicting the outcome.252 The data in each branch is then divided using 

the next most influential variable for that subgroup. Variables with more than one 

category may be grouped and potentially re-used in a later node.252 Decision trees may 

be highly complex and by examining the usefulness of a variable within each specific 

subset of patients the need for adjusting the type I error rate is negated.252 Multiple 

methods are now available for decision tree analysis including classification and 

regression tree (CART) analysis which has the advantage of being able to use 

continuous or categorical variables as input and outcome measures.253 CART has been 

shown to have good performance at model production compared to logistic 

regression254 and other machine learning methods.255 In lung cancer decision tree 

analysis has been applied to aid accurate diagnosis to subtype,256, 257 risk of 

metastasis258 and clinical outcome.259 In addition, as CART can be used on continuous 

variables, this technique can be used to determine threshold levels for binary analysis. 
244, 260 However, decision tree analysis may be prone to overfitting, especially when 

the number of samples in each group is small 252, 253 and strong correlation between 

variables may make decisions tree analysis unsuitable.253 

In addition to evaluation of morphological growth patterns as recommended by Travis 

et al. a more detailed examination of cytological features, observed by light 

microscopy of H&E stained sections, in the same cohort allows for a more 

comprehensive investigation including features of tumour grade. Objective analysis 

using molecular pathology techniques in the same cohort of patient samples allows for 

a direct comparison of morphology with tumour molecular genetics, transcriptomics 
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and protein characteristics and also allows for the construction of a comprehensive 

multi-discipline model to optimise the prognostication of early stage NSCLC patients.  

In addition, this study aimed to investigate the reported claims of intratumour 

heterogeneity in EGFR mutation status which may provide an alternative mechanism 

of primary resistance to EGFR TKIs. The development of EGFR mutation specific 

IHC assays allows for within-cell analysis of the presence of EGFR mutations in a 

cost-effective manner; and the inclusion of antibodies to control for EGFR expression 

levels and fixation artefact enables more thorough investigation of this hypothesis.



Prognosis of resected, early-stage, lung adenocarcinoma patients 
 

Methods 25 

Chapter 2 Methods 

2.1 Review of relevant literature 

A systematic review was not possible due to the lack of suitably robust controlled 

studies. The following literature searches were carried out using Web of Science 

(https://apps.webofknowledge.com) as the primary literature search tool. English 

language proceedings, papers or abstracts containing the topics “lung cancer” AND 

(morphology, histology, acinar, lepidic, papillary, solid, micropapillary, necrosis, 

mitosis, apoptosis, lymphocytes, pleomorphism, nucleoli, scar or dyscohesion) AND 

(prognosis or overall survival); results were filtered for with the terms (lung) OR 

(pulmonary) in the title (last updated 25/04/2017); only studies with at least 100 

patients were considered relevant. English language proceedings, papers or abstracts 

containing the topics (EGFR tyrosine kinase inhibitor) AND (lung cancer) AND 

(protein OR FISH OR mutation) AND (survival OR response) (last updated 

25/04/2017); only studies with at least 100 patients examining patient benefit from 

erlotinib, gefitinib or afatinib or osimertinib were considered relevant. English 

language proceedings, papers or abstracts containing the topics (EGFR) AND 

(mutation) AND (subtype) (last updated 25/04/2017) only studies with over 100 

subjects were considered relevant. English language articles containing the topics; 

(NSCLC) AND (KRAS) AND (TKI) (last updated 08/03/2016); (KRAS) AND 

(smoking) AND (NSCLC) (last updated 10/03/2016); (TTF1) AND (EGFR mutations) 

AND (lung cancer) (last updated 10/03/2016); (TTF1) AND (EGFR mutations) (last 

updated 10/03/2016); (TTF1) AND (EGFR) (last updated 10/03/2016), (molecular 

pathology) AND (clinical) AND (lung cancer) (last updated 17/02/2016). English 

language proceedings, papers or abstracts containing the topics (lung cancer) AND 

(gene expression) AND (prognosis) AND (lung OR pulmonary) (last updated 

19/12/2016) only studies with at least 100 patients were considered relevant. English 

language proceedings, papers or abstracts containing the topics (decision trees) AND 

(cancer) (last updated 05/12/16). No study has attempted to apply the methodology 

used in this research. 
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2.2 Clinical audit 

Permission to carry out this clinical audit was granted by the NHS Lothian Information 

Governance team. Lung cancer cases requested for molecular pathology analysis 

between January 2011 and March 2014 were retrieved from the NHS Lothian 

molecular pathology clinical testing database including the following information: 

patient’s surname, first name, date of birth, CHI number and sample identification 

number. Patient and sample identifiers were used to search NHS Lothian’s laboratory 

LIMS system (iLaboratory) and the patients’ electronic records (TRAKcare) to 

identify the following where available: smoking history, pack-years, smoke-free years, 

age at diagnosis, pathology diagnosis, tumour differentiation, clinical stage (including 

TNM), TTF1 IHC result, P63 IHC result, treatment given, age at death, EGFR 

mutation status, KRAS mutation status, ALK IHC results and ALK FISH results 

(undertaken in collaboration with Ms. Yuen Chun Kheng, University of Edinburgh as 

part of an undergraduate special study). Pack years was defined as the average number 

of cigarettes smoked per day, divided by 20 then multiplied by the number of years 

smoked. Histological/cytological diagnoses, derived from the diagnostic pathology 

report were classified into three groups as follows (in collaboration with Ms.Yuen 

Chun Kheng and Dr Anca Oniscu):  

 [adenocarcinoma] or [non-small cell carcinoma favouring adenocarcinoma].  

 NSCLC or carcinoma favouring a lung primary (including metastatic 

carcinoma, poorly differentiated pleomorphic carcinoma, non-small cell 

carcinoma showing neuroendocrine differentiation, non-small cell lung cancer 

showing mucoepidermoid differentiation, large cell undifferentiated 

carcinoma, metastatic poorly differentiated carcinoma, pleomorphic 

carcinoma).  

 other diagnoses (including squamous cell carcinoma, mixed adenocarcinoma 

and large cell neuroendocrine carcinoma, non-small cell adenosquamous 

carcinoma, undifferentiated high grade probable sarcoma, large cell 

neuroendocrine, large cell undifferentiated tumour, basaloid version favouring 

sarcomatoid carcinoma, poorly differentiated NSCLC favouring squamous cell 

carcinoma, neuroendocrine carcinoma, metastatic large cell carcinoma either 
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poorly differentiated adenocarcinoma or large cell undifferentiated carcinoma, 

metastatic poorly differentiated carcinoma with neuroendocrine 

differentiation, mixed poorly differentiated squamous and large cell 

neuroendocrine carcinoma, low grade carcinoma, PNET and large cell 

neuroendocrine tumour).  

Duplicate samples, tested from the same patient, were identified using Microsoft Excel 

2016 and were removed for initial analyses between gender or smoking status and 

TNM, disease stage and diagnosis. Where a conflict occurred between 

clinicopathological parameters in duplicate samples the data from the metastasis or 

later sample was favoured. For all other analyses multiple samples from the same 

patient were included. Where possible, for cases where no clinical disease stage was 

specified, this was derived from the T, N, M according to the 7th Edition TNM staging 

system for lung cancer.5 Smoking status was categorised as non-smoker, ex-smoker or 

current smoker.  Smoking status was assumed to be ex-smoker where the number of 

smoke free years was available. Smoking status was also alternatively grouped as 

never smokers (non-smokers) or ever smokers (ex- and current smokers) and as not 

currently smoking (non- and ex-smokers) or currently smoking.  Patients were also 

grouped as having smoked less than or equal to 5 pack-years (including non-smokers) 

vs greater than 5 pack-years; and less than or equal to 15 pack-years (including non-

smokers) vs greater than 15 pack-years. Differentiation was as quoted, where 

available, from the histopathologists final diagnosis and was restricted to resection and 

wedge specimens only; cases were categorised as well differentiated, moderately 

differentiated, moderate to poorly differentiated or poorly differentiated; and 

alternatively as well to moderately differentiated or moderate to poor and poorly 

differentiated. EGFR and KRAS mutation status were categorised by the specific 

mutation and by the presence or absence (no mutation detected) of a mutation. KRAS 

mutations were also grouped as transversions versus transitions; and as G>T mutations 

versus other KRAS mutations. ALK status was defined as follows: ALK IHC negative 

and ALK FISH negative were considered negative; ALK IHC positive or equivocal 

and ALK FISH negative were considered ALK negative; ALK IHC positive and ALK 

FISH positive were ALK positive. An additional molecular variable was created 
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combining EGFR, KRAS and ALK status indicating a targeted treatment was available 

(sensitizing EGFR mutation or ALK rearrangement detected) or no targeted treatment 

was available (KRAS mutation, no EGFR mutation or resistance mutation, no ALK 

rearrangement). Samples with focal TTF1 positivity by IHC were categorised as 

positive and equivocal TTF1 or P63 IHC were removed from the analysis. The 

treatment given to a patient, where available, was categorised as no therapy, non-

targeted therapy (including surgery, chemotherapy, pemetrexed, radiotherapy), EGFR 

tyrosine kinase inhibitors (first or second line) or ALK inhibitor. The dataset was 

anonymised and coded. 

2.2.1 Cost modelling 

The anonymised data from all patients diagnosed with lung cancer in NHS Lothian, 

NHS Borders, NHS Fife and NHS Dumfries and Galloway between April 2014 and 

March 2015 was supplied by the South East Scotland Cancer Network (SCAN). 

Patients were considered eligible for molecular pathology analysis according to 4 

models as follows: 

1. For the reflex model any patients with a histological or cytological diagnosis 

of adenocarcinoma or non-squamous NSCLC would be eligible for molecular 

pathology testing. EGFR, KRAS and ALK analysis was assumed to be carried 

out simultaneously. 

2. Under the request model any patients with histopathology or cytology 

specimens diagnosed with stage III or IV disease were considered candidates 

for molecular testing. In addition, an estimate of the number of patients initially 

diagnosed with early stage cancer, whose disease would have progressed to 

stage III or IV, was calculated from the results of the clinical audit and included 

in the total number of eligible patients. EGFR, KRAS and ALK was assumed to 

be carried out simultaneously.  

3. The serial model would include the same patient cohort as tested under the 

request model; however, the molecular analysis would be carried out 

sequentially. KRAS mutation analysis would be carried out first and only 

samples with no KRAS mutation detected would have EGFR mutation analysis, 
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similarly only samples with no EGFR mutation would progress to ALK 

analysis.  

4. In the TTF1-serial model TTF1 IHC would be used as an initial screen and 

only TTF1 positive samples would be tested for KRAS mutations and if no 

mutation was detected would have EGFR analysis. All samples tested under 

the TTF1-serial model would have ALK analysis. 

EGFR, KRAS and ALK analysis was assumed to be carried out as described in section 

2.4. Reagent and consumables costs for EGFR and KRAS testing were calculated from 

orders placed between April 2014 and March 2015. The cost of staff input and 

laboratory overheads (estimated at 85%) was calculated from data supplied in the 

CMD ImPACT business case tool developed by the Royal College of Pathologists, 

Cancer Research UK and the Association of the British Pharmaceutical Industry 

(https://www.rcpath.org/cmd-impact.html). The cost of ALK IHC and ALK FISH, 

including consumables, staff and overheads were obtained from Pathology financial 

speradsheets (Department of Laboratory Medicine, NHS Lothian). A repeat rate of 

0.5% was assumed for all analyses based on Molecular Pathology quality performance 

indicators. Equipment depreciation and maintenance have not been included in the 

costings and were assumed to be constant across the different models. 

2.3 Morphological assessment 

Permission for this study was granted by the NHS Lothian BioResource Tissue 

Governance Unit. The NHS Lothian iLaboratory database was searched to identify 

cases of stage I or stage II lung adenocarcinoma which were considered resection 

complete (R0) and were resected between 1996 and 2006. A cohort of 208 archived 

lung adenocarcinoma patient samples was identified and reviewed. Cases were 

restaged according to the 7th edition of the TNM classification of malignant tumours 

by Dr William Wallace (WW) (Consultant Histopathologist, NHS Lothian).5 

Demographic and clinical data including T stage, tumour size, N stage (nodal status), 

pleural involvement, disease stage, date sample received, site of recurrence (if 

applicable), date of recurrence (if applicable), date of death and cause of death were 
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collated by the Tissue Governance Unit. Where more than one lesion was present the 

size of the tumour was considered to be the largest.  

All available tumour containing H&E stained sections from each of the 208 cases were 

examined by light microscopy. The approximate proportions of non-tumour tissue 

(including normal and scar tissue), and each morphological growth pattern were 

estimated for every section. The following descriptions, derived from Travis et al. 

were used to identify each growth pattern:261 

 Lepidic pattern- cells growing along alveolar structures, alveolar walls may be 

thickened. Cells may be mucinous or non-mucinous, and be columnar, 

cuboidal or dome shaped with pale eosinophilic or clear to foamy cytoplasm.  

 Acinar pattern- composed of cuboidal or columnar cells and forming acini or 

tubules and may be mucin producing. The cribiform pattern was also classified 

as acinar. 

 Papillary pattern- forms secondary and tertiary structures, cells may be mucin-

producing and cuboidal to columnar in shape.  

 Micropapillary pattern- appearing free floating or tufts of tumour cells which 

lack a fibrovascular core.  

 Solid pattern- sheets of cells with none of the above described structures.  

Where micropapillary growth was observed in airspaces surrounded by acinar, lepidic 

or papillary growth the proportion of each pattern was estimated. The predominant 

growth pattern was determined for each case according to 4 different methods: 

 A – Each pattern was expressed as a proportion of the whole section, including 

non-tumour tissue. The pattern with the largest total proportion, across all 

sections, was considered the predominant pattern.  

 B – Each pattern was expressed as a proportion of the tumour in the section 

(not including non-tumour tissue). The pattern with the largest total proportion, 

across all sections, was considered the predominant pattern.  
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 C – The predominant pattern was determined for each section. The pattern 

predominant in the greatest number of sections was considered the 

predominant pattern for the case.  

 D – The predominant pattern in a single representative section was considered 

the predominant pattern for the case. 

If two growth patterns were equally predominant in a case the pattern with the highest 

morphological grade, as defined by Travis et al., was considered the predominant 

pattern; whereby predominantly lepidic tumours were considered low grade, 

predominantly papillary and acinar tumours were intermediate grade, and 

predominantly solid or micropapillary tumours high grade.14 Cases were also grouped 

by predominant morphological grade.14 

A growth pattern was considered to contribute to the total number of growth patterns 

if it was present at greater than 5% by area of the tumour in any section of the case. 

The presence of the micropapillary pattern at any proportion was also noted. The 

proportion of each growth pattern in the primary lesion, excluding nodal metastases, 

was calculated. In order to assess inter-observer agreement 10 cases, comprising 52 

slides, were also assessed for the proportion of each growth pattern by a second 

observer (WW). Cohen’s kappa statistic was used to assess inter-observer agreement 

between predominant patterns. The proportion of each growth pattern in every slide 

was compared between observers using Spearman’s Rank Correlation. 

Each case was also given a qualitative description detailing notable morphological 

features with particular reference to numbers of inflammatory cells, mitotic figures, 

apoptotic bodies, prominent nucleoli, cytological pleomorphism, necrosis, scar tissue 

within the tumour and evidence of dyscohesive tumour cells. For each case the 

presence of significant numbers of these features was categorised as follows. For 

mitotic figures and apoptotic bodies descriptive terms such as not seen, rare, quite rare 

and few were classified as “few” whereas terms including fairly common, common, 

and many were classified as “many”.  Descriptions of inflammatory infiltrate aimed to 

describe tumours with large numbers of lymphocytes in tissue surrounding tumour cell 

nests and terms including high inflammatory infiltrate were classified as 
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“inflammatory infiltrate present” whereas cases with no mention of inflammatory cells 

were classified as “inflammatory infiltrate not present”. For necrosis, pleomorphism, 

scar tissue and dyscohesive tumour cells the features were classified as “present” if 

highlighted in the description and not present if no mention was made. Where different 

areas of the tumour showed varying levels of these features the highest classification 

was chosen to represent the tumour. 

2.4 Molecular pathology  

All molecular analyses, whether performed as part of routine NHS Lothian service and 

included in the audit or on samples used for research, were carried out as follows. 

2.4.1 DNA isolation 

All lung cancer specimens underwent histopathological assessment to determine the 

suitability of each assay against its validated limits of detection, evaluate the need for 

microdissection and to estimate the proportion of neoplastic cells. A minimum of 15% 

tumour cell content was considered necessary for successful mutation analysis. Three 

to 6 10µm tissue sections were cut from each tissue block using a microtome and fresh 

blade. Where macrodissection was required sections were mounted onto slides and 

using a marked haematoxylin and eosin (H&E) stained section as a guide, the area of 

interest was scraped from the slide using a fresh disposable scalpel and transferred to 

a 1.5ml microfuge tube. Otherwise rolled cut tissue sections were placed directly into 

a 1.5ml microfuge tube. The microtome was cleaned after each tissue block with 

isopropanol impregnated wipes. DNA isolation was carried out using the QIAamp 

DNA FFPE Tissue Kit (Qiagen) as follows. Buffer ATL (180µl) and 20µl of 

Proteinase K were added to the tissue, mixed and incubated overnight at 56°C in a 

water-bath. The lysate was incubated at 90°C for 1 hour before briefly centrifuging, 

after which 200μl of buffer AL and 200µl of absolute ethanol (VWRI) was added and 

mixed by pipetting. The lysate was transferred to a QIAamp MinElute® column and 

centrifuged for 1 minute at 13,000g. The column was washed with 500μl of Buffer 

AW1 and 500µl of Buffer AW2 before drying by centrifuging at 13,000 for 3 min. 

DNA was eluted in 100μl of Buffer ATE. For clinically tested samples and the 

validation and experimental cohorts EGFR and KRAS mutation analysis was carried 
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out as described below. For analysis of the 208 lung adenocarcinoma cohort only cases 

with metastatic (N1) disease were selected for mutational analysis for which nodal 

deposits were favoured over the primary lesion. 

2.4.2 EGFR mutation analysis 

EGFR mutation analysis was carried out using the therascreen® EGFR RGQ PCR kit 

(Qiagen) following manufacturer’s instructions; 5µl of isolated DNA was added to 

each of 8 PCR mastermixes. This method was designed to detect 29 common somatic 

mutations in the EGFR gene. The limit of detection for each EGFR variant varied from 

0.5% mutated alleles in a background of wild-type DNA for p.L861Q to 7.02% for 

p.T790M.  

Where necessary, Sanger sequencing of the EGFR gene was also carried out using 

PCR primers designed to amplify exons 18, 19, 20, and 21 (adapted from Do et al.) 

(Table 2.1).262  

Table 2.1: The details of PCR primers used for Sanger sequencing of the EGFR gene, 
each PCR primer included a 5` universal sequencing tag.  

Primer 
name 

 
Exon 

Function Sequence (5´ to 3´) 

EGFR18_F 18 PCR UNI-F-CATGGTGAGGGCTGAGGTGA 
EGFR18_R 18 PCR UNI-R-CCCCACCAGACCATGAGAGG 
EGFR19_F 19 PCR UNI-F-GTGCATCGCTGGTAACATCCA 
EGFR19_R 19 PCR UNI-R-GGAGATGAGCAGGGTCTAGAGCA 
EGFR20_F 20 PCR UNI-F-CGCATTCATGCGTCTTCACC 
EGFR20_R 20 PCR UNI-R-CTATCCCAGGAGCGCAGACC 
EGFR21_F 21 PCR UNI-F-TGGCATGAACATGACCCTGAA 
EGFR21_R 21 PCR UNI-R-CAGCCTGGTCCCTGGTGTC 
UNI_F - Sequencing GTAGCGCGACGGCCAGT 
UNI_R - Sequencing CAGGGCGCAGCGATGA 

 

To 1µl of DNA was added 10µl of HotStarTaq Plus 2x Mastermix (Qiagen), 10pmol 

of each forward and reverse primer, 1µl of dimethyl sulfoxide (Sigma-Aldrich) and 

nuclease free water (NFW) to 20µl. Reactions were incubated at 95°C for 5 minutes 

followed by 40 cycles of 94°C for 15 seconds, 60°C for 1 minute and 72°C for 1 

minute; followed 72°C for 10 minutes. Unincorporated primers and nucleotides were 

removed by treatment of 5µl of each PCR product with 2µl of Illustra ExoProStar (GE 

Healthcare Life Sciences) and incubated at 37°C for 15 mins followed by 80°C for 15 
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mins. To 1µl of treated PCR product was added 1µl (3.3pmol) of sequencing primer 

(UNI_F or UNI_R), 1µl of sequencing reaction buffer, 0.5µl of BigDye Terminator 

(Applied Biosystems®) and 7.5µl of NFW. Each PCR product was sequenced in the 

forward and reverse directions in separate wells using UNI_F and UNI_R primers 

respectively. The sequencing reaction was incubated at 96°C for 1 minute, followed 

by 25 cycles of 96°C for 10 seconds, 50°C for 5 seconds and 60°C for 4 minutes before 

cooling to 4°C. Products were precipitated with 2µl of 3M sodium acetate (Sigma-

Aldrch) and 28µl of absolute ethanol (VWRI), followed by centrifugation at 1650g for 

30 minutes. The supernatant was discarded and the pellet washed with 75µl of 70% 

ethanol before centrifuging at 1650g for 10 minutes. The supernatant was removed 

and the pellet dried before resuspending in 10µl of Hi-Di Formamide™ (Applied 

Biosystems®). Purified DNA was denatured at 96°C for 5 minutes before cooling to 

4°C. The products were then run on an ABI 3130XL Genetic Analyser (Applied 

Biosystems). Resulting sequences were analysed using Mutation Surveyor (Soft 

Genetics) to detect variants compared to the Genbank reference sequence for EGFR 

(NM_005228.3). 

2.4.3 KRAS mutation analysis 

KRAS mutation analysis was carried out by PCR followed by pyrosequencing using a 

method designed to detect mutations in codons 12, 13 and 61 (reference sequence 

NM_004985.4). Two PCR reactions were carried out for each specimen, one for KRAS 

codons 12 and 13, one for codon 61. To 5µl of isolated DNA was added 12.5µl 

HotStarTaq plus 2x mastermix, 2.5µl Coral Load (Qiagen, UK), 10pmol of each 

primer (table 2.2) and nuclease free water to a total of 25µl. 

Table 2.2: PCR and pyrosequencing primer sequences for the KRAS mutation analysis 
assay. 

Primer name Function Sequence (5' to 3') 

KRAS 1213F 
PCR forward 
primer 

GGCCTGCTGAAAATGACTG 

KRAS 1213R 
PCR reverse 
primer 

Biotin-GCTGTATCGTCAAGGCACTCT 

KRAS 1213 Seq 
Pyrosequencing 
primer 

TTGTGGTAGTTGGAGCT 

KRAS 61 F1 
PCR forward 
primer 

Biotin-
TGGAGAAACCTGTCTCTTGGATAT 
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KRAS 61 R1 
PCR reverse 
primer 

CTGGTCCCTCATTGCACTGTACTC 

KRAS 61 Seq 
Pyrosequencing 
primer 

CCTCATTGCACTGTACTC 

  

Cycling conditions were as follows: 95°C for 5 minutes followed by 35 cycles of 94°C 

for 30s, 58°C for 30s and 72°C for 30s; and a final incubation of 72°C for 10 minutes. 

The amplified PCR product (10µl) was sequenced using a PyroMark Q24 

pyrosequencer (Qiagen), according to manufacturer’s instructions, with the following 

dispensation orders: codons 12 and 13 5`-TACGACTCAGATCGTAG, codon 61 5`-

GCTCAGTCAGACT. The results of pyrosequencing were analysed with PyroMark 

Q24 software using the KRAS mutation analysis plug-in (Qiagen, UK). The limit of 

detection of this assay is 5% mutant alleles in a background of wild-type DNA for 

codons 12 and 13 and 6.5% for codon 61. 

2.4.4 ALK rearrangement analysis 

Samples were screened for increased ALK protein expression by IHC using a 1 in 20 

dilution of the D5F3 antibody (Cell Signalling Technology, USA) on a Bond-III 

system (Leica, UK). Tumours with positive staining for ALK were tested for the 

presence of ALK gene rearrangements using the Vysis Break-Apart probe (Abbott 

Molecular) following manufacturer’s instructions. Fifty tumour cells were scored and 

a tumour was considered positive for the rearrangement if at least 15% of the cells 

showed a rearrangement. 

2.4.5 Transcriptomics 

Gene expression analysis was performed by Myriad Genomics Inc. (Salt Lake City, 

USA) and the data returned in an excel spreadsheet. The method was as described in 

Bueno et al. 263, in brief: a single representative FFPE tumour block was selected for 

gene expression analysis. After macrodissection total RNA was extracted from 5 to 

10µm sections and DNase-treated. Following reverse transcription and 

preamplification with a multiplex of all PCR primer sets, custom Taqman Low Density 

arrays were used to amplify 15 housekeeping genes (RPL38, UBA52, RPL4, RPS29, 

SLC25A3, CLTC, RPL37, PSMA1, RPL8, PPP2CA, TXNL1, MMADHC, PSMC1, 
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RPL13A and MRFAP1) and 31 cell-cycle related genes (ASPM, CDCA8, MCM10, 

FOXM1, CDC20, CDKN3, BIRC5, DLGAP5, KIF20A, BUB1B, PRC1, TK1, CEP55, 

PBK, RAD54L, NUSAP1, RRM2, KIAA0101, ORC6L, RAD51, CENPM, SKA1, 

CENPF, KIF11, PTTG1, CDC2, DTL, PLK1, CDCA3, ASF1B and TOP2A). The 

average normalised quantity of all cell-cycle related genes was calculated and the CCP 

score returned. The mPS was calculated as 20×((0.33×CCP)+(0.52×Stage))+15 where 

clinical stage Ia= 1, Ib= 2, IIa= 3, IIb= 4. 

2.4.6 Immunohistochemistry 

Three commercially available antibodies were validated for use in IHC with archived 

lung adenocarcinoma FFPE tissue (Pathology, Dept. Laboratory Medicine, NHS 

Lothian). The first antibody, 31G7, was a mouse monoclonal designed to bind to the 

extracellular domain of all EGFR protein (CellPath Ltd., UK); referred to below as 

tEGFR. The second, D6B6, was a rabbit monoclonal antibody designed to bind to 

EGFR protein bearing a p.E746_A750del mutation but not to normal EGFR (Cell 

Signalling Technology, USA); referred to as DEL. The third (43B2) was a rabbit 

monoclonal antibody designed to bind to EGFR with a p.L858R mutation, but not to 

normal EGFR (Cell Signalling Technology, USA); referred to below as L858R. 

Validation tissue was selected from the results of the clinical audit; samples identified 

with deletions in exon 19 of EGFR were further characterised by Sanger sequencing. 

Cases were selected for validation on the basis of amount of tissue available, the 

estimated proportion of neoplastic cells and the age of the specimen (very recent 

specimens were avoided). On this basis 6 samples were selected with the 

p.E746_A750del mutation, 6 samples with p.L858R mutations and 5 cases with no 

EGFR mutation. After initial development, the protocols for the IHC assays were as 

follows. tEGFR was diluted 1 in 14, with epitope retrieval for 10 minutes in buffer E. 

DEL was diluted to 1 in 100, with retrieval 40 minutes in buffer ER2. L858R was 

diluted to 1 in 75 with 40 minutes retrieval in solution ER2. All IHC was carried out 

on 3µm tissue sections on a Bond III automated stainer (Leica). 

All EGFR mutated cases were included in IHC analysis. Five 3µm sections were cut 

from each tumour-containing tissue block, sections were stained with tEGFR, DEL, 
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L858R, the routinely performed TTF1 and H&E (Pathology, Dept. Laboratory 

Medicine, NHS Lothian). All stained slides were scanned at 20x resolution with a 

Zeiss Axio Scan Z1. No formal scoring criteria were used, each image was visually 

examined for evidence of intratumour heterogeneity and compared to corresponding 

areas stained with tEGFR and TTF1. 

2.5 Statistical analysis 
All statistical analyses were carried out in IBM SPSS Statistics Version 20. For 

correlations between categorical variables Pearson’s χ2 test, and χ2 test for trend (χ2T) 

where appropriate, were used unless otherwise stated; Fisher’s exact test was used 

when the expected number in any group was less than 5.  

Continuous variables (lesion size, pack-years, smoke-free years, age at diagnosis and 

proportion of each growth pattern) were tested for normality of distribution using the 

Shapiro-Wilk test. Associations between continuous and categorical variables were 

investigated using the non-parametric Mann-Whitney U test or Kruskal Wallis test, 

depending on the number of outcome groups. Spearman’s rank correlation was used 

to investigate relationships between continuous variables. Associations between the 

following pairs of variables were not analysed due to their known confounding effect: 

age at diagnosis and pack-years, age at diagnosis and smoke-free years, pack-years 

and smoke-free years, disease stage and type of sample, diagnosis and type of sample, 

diagnosis and stage, diagnosis and TTF1 or P63. Repeated measures ANOVA was 

used to investigate the difference in the proportion of each growth pattern between 

primary lesions and nodal metastases. Associations between individual variables and 

Disease specific survival (DSS) were explored using the Kaplan Meier method with 

significance assessed by the Log-Rank (Mantel-Cox) method. Cases of patients who 

died from non-lung cancer causes were censored. 

Multivariable analysis for categorical outcome measures was carried out using binary 

logistic regression and for continuous outcome measures using Cox’s proportional 

hazards model; Bonferroni’s correction was applied in both analyses.  



Prognosis of resected, early-stage, lung adenocarcinoma patients 
 

Methods 38 

Decision tree analysis was carried out in SPSS version 20 using Classification and 

Regression Trees (CART) with 10-fold cross validation limited to 20 and 10 cases in 

each parent and child node respectively. DSS was calculated from the date of resection 

to date of death from lung cancer related causes and was limited to a maximum of 10 

years. All patients without a date of death, who died after 10 years (whether lung 

cancer related or not), were given an OS of 10 years. A CART decision tree was 

created using currently available clinicopathological parameters only and compared to 

those which also included new morphological variables and additional molecular 

variables. CART analysis was also used to identify potential thresholds of growth 

patterns by including the proportion of each growth pattern individually as a predictor 

of DSS. The performance of prognostic models was tested by carrying out receiver 

operating characteristic analysis (ROC) and comparing the resulting area under the 

curve (c-statistic).
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Chapter 3 Current molecular pathology 
practice is of benefit in a small 
number of cases 

3.1 Background 

The clinical implementation of targeted therapies for the treatment of non-squamous 

NSCLC has led to the need for molecular pathology analysis in samples from eligible 

patients. Analysis of mutations in the EGFR and ALK genes is now routinely used to 

identify patients most likely to benefit from treatments targeting key proteins in 

aberrantly activated signalling pathways.  

The presence of mutations in the EGFR gene have been detected in approximately 

10% of NSCLC from European Caucasian populations and have been associated with 

adenocarcinoma histology (9.9% to 12.8% EGFR mutation frequency) and non-

smoking history.124, 129, 264 EGFR mutations have also been reported to be more 

common in females;124, 129, 264 however, this has not been supported in all studies and 

differing smoking habits between men and women may be a confounding factor.132 

Rearrangements in the anaplastic lymphoma kinase (ALK) gene, which predict 

response to ALK inhibitors, have been reported in 3-5% of NSCLCs and have been 

reported to be associated with adenocarcinoma histology and non-smoking history.177, 

183 Activating hotspot mutations in the KRAS gene have been detected in 

approximately 35% of non-squamous NSCLC occurring in western populations132 and 

are associated with a smoking history, most notably G to T transversions.190, 192 The 

presence of KRAS mutations has been shown to be a poor prognostic factor in 

NSCLC196, 265 and there are currently no therapies available which directly target KRAS 

mutated NSCLC. EGFR, ALK and KRAS have been reported to be mutually exclusive 

in the vast majority of cases.183 

There is currently little information published on the incidence of EGFR, ALK and 

KRAS mutations in a Scottish population with robust statistical analysis to investigate 

clinicopathologic associations. This audit has been carried out on non-squamous 

NSCLC cases referred for analysis to NHS Lothian Molecular Pathology service over 

a 38-month period, and included patients from Lothian, Dumfries and Galloway, Fife 
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and the Borders. The data collected was used to explore the relationship between 

molecular characteristics and known clinicopathologic variables and to compare the 

prevalence of EGFR, ALK and KRAS mutations in a Scottish cohort with those 

previously published. In addition, based on the results of this audit, a cost modelling 

exercise has been carried out to explore more cost-effective algorithms for delivering 

molecular pathology testing of lung cancers in a routine healthcare setting. 

3.2 Results 

From Jan 2011 to March 2014 lung cancer molecular pathology testing was requested 

on 676 patients from a total of 710 specimens. Thirty-one patients had more than one 

sample tested because: 

 an initial sample failed or was insufficient for testing for one or more molecular 

markers (14 patients). 

 2 or more samples were available and both were considered clinically relevant; 

for example, patients with synchronous tumours (16 patients). 

 EGFR and ALK analysis was performed at different times, the later test being 

performed on a more recent sample (1 patient). 

The majority of specimens tested were biopsies (62.1%), 23.4% were cell blocks 

prepared from cell suspensions (pleural fluid and endobronchial ultrasound fine needle 

aspirates), only 14.6% of samples were from surgical resections. The clinicopathologic 

characteristics of patients in the cohort are summarised in table 3.1.  
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Table 3.1: Clinicopathologic characteristics of lung cancer patients tested by NHS 
Lothian Molecular Pathology service between January 2011 and March 2014. 

 Number Percentage 
Gender 
 Female 363 53.7% 
 Male 313 46.3% 
Age at diagnosis 
 Median 67 
 Mean (95% CI) 65.8 (65.0 to 66.6) 
 Range 30 to 90 
T stage 
 T1a 41 6.1% 
 T1b 68 10.1% 
 T2a 135 20.0% 
 T2b 79 11.7% 
 T3 120 17.8% 
 T4 167 24.7% 
 TX 66 9.8% 
N stage 
 N0 173 25.6% 
 N1 57 8.4% 
 N2 193 28.6% 
 N3 220 32.5% 
 NX 33 4.9% 
M stage 
 M0 214 31.7% 
 M1a 120 17.8% 
 M1b 320 47.3% 
 MX 22 3.3% 
Clinical stage 

 

Ia or Ib 49 7.2% 
IIa or IIb 38 5.6% 
IIIa or IIIb 135 20.0% 
IV 448 66.3% 
Unknown 6 0.9% 

Diagnosis  
 NSCLC NOS 74 10.9% 

Adenocarcinoma/ NSCLC favouring 581 85.9% 
Other 20 3.0% 
Unknown 1 0.1% 

Smoking status 
 Non-smoker 80 11.8% 

Ex-smoker 261 38.6% 
Smoker 292 43.2% 
Unknown 43 6.4% 

Total 676 100% 
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3.2.1 Correlation between clinicopathologic variables 

Gender 

Smoking status was available for 93.7% of the cohort; the majority of lung cancer 

patients with known smoking status were smokers (41.1%) or ex-smokers (46.4%), 

only 12.5% were non-smokers. The proportion of smokers and ex-smokers were 

similar between the genders; however, a significantly higher proportion of non-

smokers were female (74.7%) (p< 0.0005) (table 3.2). 

 
Table 3.2: The smoking status of male and female lung cancer patients referred for 
molecular pathology testing. Non-smokers were significantly more likely to be female 
than male (p< 0.0005). Significance was calculated using the χ2 test. 

 Non-
smoker 

Ex-smoker Smoker Total Significance  

Gender p< 0.0005 
 Female 60 (75%) 126 (48.3%) 155 (53.1%) 341  
 Male 20 (25%) 135 (51.7%) 137 (46.9%) 292 
Total 80 (100%) 261 (100%) 292 (100%) 633  

Male current and former smokers had smoked significantly more pack-years than 

females (p= 0.01) (figure 3.1). The number of smoke-free years in the ex-smoking 

population was not correlated with gender. 
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Figure 3.1: Box-plot showing the number of pack-years smoked by female and male 
ex- and current smokers. Males smoked significantly more pack-years (Mann-Whitney 
U test p= 0.01). 

Metastatic status was available for 654 patients; female patients were more likely than 

males to have no distant metastases (M0) and whilst the proportion of female and male 

patients with thoracic metastases was similar, male patients were more likely to have 

extra-thoracic metastases (M1b) (p= 0.033). This association remained significant 

when patients were grouped into those with and without metastatic disease (p= 0.021) 

(table 3.3).  

Table 3.3: The association between gender and metastatic status in patients referred 
for molecular pathology testing. The percentage of female and male patients with each 
M stage are shown in brackets. Significance was calculated using the χ2 test. 

  Female Male Total Significance  
M Stage p= 0.033 
 M0 128 (36.6%) 86 (28.2%) 214 
 M1a  66 (18.9%) 54 (17.7%) 120 
 M1b 155 (44.4%) 165 (54.1%) 320 
M Stage grouped p= 0.021 
 No metastases 128 (36.7%) 86 (28.2%) 214 
 Metastases 221 (63.3%) 219 (71.8%) 440 
Total 349 (100%) 305 (100%) 654  
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Smoking history 

Smokers were diagnosed with lung cancer at an earlier age than non- or ex-smokers 

(p< 0.0005) and there was no significant difference between non- and ex-smokers 

(figure 3.2).  

 

 
Figure 3.2: Box-plot showing the age at diagnosis of lung cancer patients grouped by 
smoking status. Smokers were diagnosed with lung cancer at a significantly earlier 
age than non- or ex-smokers (Kruskall Wallis test p< 0.0005). 

There was no significant difference between the presence or absence of metastatic 

disease at diagnosis in patients grouped by their smoking status (p= 0.763); however, 

when metastatic status was classified as no metastases (M0), thoracic metastases only 

(M1a) or extra-thoracic metastases (M1b) the association with smoking status was 

statistically significant (p< 0.0005). Smokers with metastatic disease were more likely 

to have extra-thoracic metastases (table 3.4); there was, however, there was no 

significant difference between the number of pack-years smoked in different 

metastatic groups (p= 0.535).  
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Table 3.4: The relationship between smoking status and the presence of metastatic 
disease at diagnosis in lung cancer patients referred for molecular pathology testing. 
The percentage of non-smokers, ex-smokers and smokers with each M stage is shown 
in brackets. Significance was calculated using the χ2 test. 

  Non-smoker Ex-smoker Smoker Total Significance  
M Stage p< 0.0005 
 M0 24 (30.4%) 80 (31.5%) 97 (33.9%) 201  
 M1a 21 (26.6%) 65 (25.6%) 31 (10.8%) 117 
 M1b 34 (43.0%) 109 (42.9%) 158 (55.2%) 301 
M Stage grouped p= 0.763 
 No 

metastases 
24 (30.4%) 80 (31.5%) 

97 (33.9%) 
201 

 

 Metastatic 
disease 

55 (69.6%) 174 (68.5%) 189 (66.1%) 418 

Total 79 (100%) 254 (100%) 286 (100%) 619  
 

Ex-smoking patients with a higher nodal status had significantly lower smoke-free 

years than those with lower nodal status (p= 0.023) (figure 3.3).  

 
Figure 3.3: Box plot showing the difference in smoke-free years in ex-smoking patients 
grouped by N stage. The number of patients in the N0, N1, N2 and N3 groups was 52, 
16, 63 and 54 respectively (Kruskall Wallis test p= 0.023). 

Although there was no significant association between clinical stage and smoking 

status or pack-years, the number of smoke-free years was correlated with clinical stage 

(p= 0.004) (figure 3.4); suggesting that patients who gave up smoking a long time ago 
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presented with earlier stage disease than those who stopped more recently. However, 

the number of patients with early stage disease was small with only 13 patients each 

in the stage I and stage II groups. 

 
Figure 3.4: Box plot showing the number of smoke-free years in ex-smokers grouped 
by clinical stage (Kruskall Wallis test p= 0.004). The stage Ia or Ib group included 13 
patients, the stage IIa or IIb group 13 patients, the stage IIIa or IIIb group 37 patients 
and stage IV group 138 patients.  

3.2.2 Correlations between molecular genotype and 

clinicopathological characteristics 

The results of molecular analysis of the 710 specimens are summarised in table 3.5. In 

total, 706 samples were tested for EGFR mutations, of which 50 samples failed to yield 

satisfactory results either due to failed analysis, insufficient neoplastic cell content or 

insufficient DNA yield. EGFR mutations were detected in 10.52% of successfully 

tested samples. The exon 21 p.(L858R) mutation and deletions in exon 19 comprised 

44.9% and 37.7% of detected EGFR mutations respectively.  

KRAS testing was successfully performed on 244 samples of which 36.5% of patients 

were found to have a KRAS mutation. The most common KRAS mutation was c.34G>T 

p.(G12C) (31.5% of KRAS mutations) followed by c.35G>T p.(G12V) (22.5%), 
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c.35G>A p.(G12D) (16.9%), and c.35G>C p.(G12A) (10.1%) with c.37G>T 

p.(G13C), c.183A>C p.(Q61H), c.183A>T p.(Q61H), c.38G>A p.(G13D), c.182A>T 

p.(Q61L), c.34G>A p.(G12S) and c.34_35delGGinsTT p.(G12F) each making up less 

than 5% of KRAS mutations.  

Of the 309 patients tested for the presence of ALK gene rearrangements, using a 

combination of IHC and/or FISH, only 7 patients (2.26%) were found to have a 

rearrangement. EGFR mutations, KRAS mutations and ALK gene rearrangements were 

mutually exclusive.  
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Table 3.5: Summary of the results of molecular pathology analysis on specimens from 
lung cancer patients referred for molecular pathology analysis. Significance was 
calculated using the χ2 test unless otherwise indicated. 

Mutation status Gender Total Significance 

Female Male 
EGFR p= 0.001 

 No Mutation detected 300 (85.7%) 287 (93.8%) 587 
 Mutation detected 50 (14.3%) 19 (6.2%) 69 

 Deletion in exon 19           18 8 26 
 p.(L858R)  23 8 31 

p.(L861Q)  2 0 2 
 p.(G719X)  2 1 3 
 Insertion in exon 20  2 0 2 
 p.(L747P)  0 2 2 
 p.(L858R) and p.(T790M)  2 0 2 
 p.(G719X) and p.(L861Q) 1 0 1 

Total 350 (100%) 306 (100%) 656  
KRAS p= 0.150 
 No mutation detected 74 (59.2%) 81 (68.1%) 155 
 Mutation detected 51 (40.8%) 38 (31.9%) 89 
 p.(G12C) 16 12 28 
 p.(G12V) 15 5 20 
 p.(G12D) 7 8 15 
 p.(G12A) 6 3 9 
 p.(G13C) 0 4 4 
 p.(Q61H) 2 2 4 
 p.(Q13D) 1 2 3 

p.(Q61L) 3 0 3 
 p.(G12S) 0 2 2 
 p.(G12F) 1 0 1 

Total 125 (100%) 119 (100%) 244  
ALK p= 0.509a 

 Negative 151 (98.1%) 151 (97.4%) 302 
 ALK rearrangement 3 (1.9%) 4 (2.6%) 7 

  Total 154 (100%) 155 (100%) 309  
TTF1 p= 0.037 

 Negative 52 (19.5%) 64 (27.5%) 116 
 Positive 214 (80.5%) 169 (72.5%) 383 

Total 266 (100%) 233 (100%) 499  
aFisher’s exact test 
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Gender 

EGFR mutations were detected in 14.3% of female patients but only 6.2% of male 

patients, this difference was found to be significant (p= 0.001). There was no evidence 

to suggest a significant correlation between the presence of KRAS mutations or ALK 

rearrangements and gender alone. TTF1 IHC was carried out in 499 specimens of 

which 76.8% showed positive staining; significantly more females (80.4%) than males 

(72.5%) were TTF1 positive (p= 0.037). Although it is likely that the increased 

proportion of adenocarcinomas in females, which may in turn be linked to differing 

smoking habits, would increase the frequency of TTF1 positivity in this group.  

TNM Staging 

The presence of EGFR mutations was significantly more common in patients with 

lower T stages (p= 0.036 and p= 0.015 for individual and grouped T stage respectively) 

(table 3.6). 

Table 3.6: The association between T stage and the presence of EGFR mutations. The 
proportion of each T stage group with and without EGFR mutations is shown in 
brackets. Significance was calculated using the χ2 test and χ2 test for trend as 
indicated. 

 EGFR Total Significance 

No mutation Mutation 
 T stage p= 0.036  

(χ2 test for trend 
p= 0.034) 

 T1a 32 (86.5%%) 5 (13.5%) 37 (100%) 
 T1b 51 (79.7%) 13 (20.3%) 64 (100%) 

 T2a 121 (87.7%) 17 (12.3%) 138 (100%) 
 T2b 68 (89.5%) 8 (1.3%) 76 (100%) 

 T3 115 (95.8%) 5 (4.2%) 120 (100%) 
 T4 141 (89.2%) 17 (10.8%) 158 (100%) 
T stage grouped p= 0.015 
 T1a and T1b 83 (82.2%) 18 (17.8%) 101 (100%) 
 T2a and higher 445 (90.4%) 47 (9.6%) 492 (100%) 

Total 528 65 593  
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Fisher’s exact test showed that the presence of ALK gene rearrangements was 

associated with nodal status; in this cohort, all ALK rearrangements were detected in 

patients with N3 disease. However, given that only 7 ALK positive samples were 

detected, no reliable conclusions can be drawn (table 3.7). 

Table 3.7: The incidence of ALK gene rearrangements grouped by the patient’s nodal 
status. Significance was calculated using Fisher’s exact test. 

 ALK rearrangement Total Significance 
No 

rearrangement 
Rearrangement 

Nodal status p= 0.003 
 N0 79 0 79 
 N1 31 0 31 
 N2 86 0 86 
 N3 88 7 95 
Total 284 7 291  

Smoking history 

There was a statistically significant association between smoking status and the 

presence of EGFR mutations (p< 0.005); 34.6% of non-smokers were found to have 

an EGFR mutation compared to 9.1% of ex-smokers and 5.61% of smokers (table 3.8). 

Although the difference between non-smokers and ex-smokers was significant (p< 

0.001) there was no difference between ex-smokers and smokers (p= 0.121).  
 
Table 3.8: The number (and proportion) of non-, ex- and current smokers with, and 
without mutations in EGFR, KRAS and ALK. Significance was calculated using the χ2 
test unless otherwise indicated. 

 Smoking status 

Total 

Significance 
Non-

smoker Ex-smoker Smoker 
EGFR mutations p< 0.0005 
 No mutation 51 (65.4%) 230 (90.9%) 269 (94.4%) 550 
 Mutation 27 (34.6%) 23 (9.1%) 16 (5.6%) 66 

Total 78 (100%) 253 (100%) 285 (100%) 616  
KRAS mutations p= 0.001 
 No mutation 31 (88.6%) 57 (60%) 60 (58.3%) 148 
 Mutation 4 (11.4%) 38 (40%) 43 (41.7%) 85 
Total 35 (100%) 95 (100%) 103 (100%) 233  
ALK rearrangement p< 0.0005a 
 No rearrangement 29 (82.9%) 126 (100%) 131 (99.2%) 286 

 Rearrangement 6 (17.1%) 0 (0%) 1 (0.8%) 7 
Total 35 (100%) 126 (100%) 132 (100%) 293  
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aFisher’s exact test 

 
Patients with EGFR mutations were found to have smoked fewer pack-years than the 

non-mutated group (p< 0.0005) (figure 3.5). There was also a trend towards a greater 

number of smoke-free years in ex-smoking patients with EGFR mutations, although 

this did not reach statistical significance, (p= 0.053) (figure 3.6).  

 
Figure 3.5: Box plot of pack-years smoked, in current and ex-smokers, grouped by 
EGFR mutation status; patients with EGFR mutations smoked significantly fewer 
cigarettes than those without EGFR mutations (Mann-Whitney U test p< 0.0005). No 
mutation detected n= 266, mutation detected n= 20. 
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Figure 3.6: Box plot of the number of smoke-free years in ex-smokers grouped by 
EGFR mutation status. Patients with mutations tended to have been smoke-free for 
longer than those without EGFR mutations although this did not reach statistical 
significance (Mann-Whitney U test p= 0.053). No mutation detected n= 171, mutation 
detected n= 16. 

KRAS mutations were detected in 11.43% of non-smokers, 40% of ex-smokers and 

41.75% of current smokers; this difference was statistically significant (p= 0.001) 

(table 3.8). There was no significant difference in the frequency of KRAS mutations 

between ex- and current smokers and no significant difference in pack-years or smoke-

free years between patients with or without a KRAS mutation. There was no significant 

association between individual KRAS mutations, type of KRAS mutation (transversion 

vs transition) or nucleotide change (KRAS G>T mutations vs other KRAS mutations) 

and the smoking status, pack-years or smoke-free years.  

Although the number of ALK rearranged samples in the cohort was very limited (n= 

7) Fisher’s exact test showed a significant association with smoking status (p< 0.0005); 

6 of the 7 ALK positive patients were non-smokers (table 3.8). The number of pack-

years was not available for the smoking patient with an ALK rearrangement.  
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Age at diagnosis 

There was no significant difference in age at diagnosis between patients with or 

without EGFR mutations, KRAS mutations or ALK rearrangements (p= 0.413, p= 0.854 

and p= 0.100 respectively).  

Protein expression 

A total of 461 patient samples were analysed for both TTF1 expression using IHC and 

EGFR mutations (table 3.9). Although a positive TTF1 result was not a good predictor 

of the presence of EGFR mutations (positive predictive value 13.4%), no samples with 

EGFR mutations were found to be negative for TTF1 (negative predictive value 

100%). The presence of KRAS mutations was not significantly associated with TTF1 

expression (p= 0.214). Although all ALK rearranged tumours were TTF1 positive the 

small number of rearranged samples did not allow for robust conclusions to be drawn.  

Table 3.9: The results of TTF1 IHC in patients with and without EGFR, KRAS and 
ALK mutations. Significance was calculated using the χ2 test unless otherwise 
indicated. 

 
TTF1 IHC 

Total 
Significance 

 Negative Positive 

EGFR mutations p< 0.0005 
  No mutation 109 (100%) 305 (86.6%) 414 
  Mutation 0 (0%) 47 (13.4%) 47 

Total 109 (100%) 352 (100%) 461  

KRAS mutations p= 0.214 
  No mutation 28 (71.8%) 81 (60.9%) 109 
  Mutation 11 (28.2%) 52 (33.1%) 63 

Total 39 (100%) 133 (100%) 172  

ALK rearrangements p= 0.312a 

  No rearrangement  44 165 209 
  Rearrangement  0 5 5 

Total 44 170 214  
aFisher’s exact test 

3.2.3 Multivariable analysis of factors associated with 
molecular characteristics 

Both smoking status and gender were identified in univariable analysis as significantly 

associated with the patient’s metastatic status, multinomial logistic regression was 
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carried out to investigate the independence of these variables. Non-smokers (odds ratio 

(OR) 2.995, 95% CI 1.527 to 5.874 p= 0.001) and ex-smokers (OR 3.706, 95% CI 

1.878 to 5.0405 p< 0.0005) were more likely than smokers to have M1a rather than 

M1b disease, indicating that smokers were more likely to have extra-thoracic 

metastases at the time of diagnosis. Women were more likely than men to have no 

metastases compared to extra-thoracic metastases (OR 1.607, 95% CI 1.114 to 2.320 

p=0.011). 

Although both gender, smoking status and T stage were shown to be individually 

correlated with the presence of EGFR mutations, binary logistic regression showed 

only smoking status was independently associated with EGFR status. The OR of non-

smokers having an EGFR mutation compared to current smokers was 10.35 (p= 0.012, 

CI 2.22 to 48.30) whereas the OR of ex-smokers having an EGFR mutation was not 

statistically different to that of smokers (p=0.068). In order to fully explore the 

relationship between gender and the presence of EGFR mutations, binary logistic 

regression was repeated without including T stage in the model; only smoking status 

was found to be independently associated with EGFR mutation status. 

 
In univariable analysis the presence of KRAS mutations was significantly associated 

with smoking but not gender. However, 11.5% of female non-smokers had a KRAS 

mutation, compared to 45.8% of female ex-smokers and 52.2% of female smokers (p= 

0.002); whereas in males 11.1% of non-smokers, 34.0% of ex-smokers and 33.3% of 

smokers had KRAS mutations (p= 0.457). This may suggest that female ex- or current 

smokers were more likely than their male counterparts to have a KRAS mutation, even 

though the number of pack-years is higher in males (figure 3.1).  

3.2.4 Treatment of lung cancer based on molecular pathology 
analysis 

The treatments given were available for 65 patients with EGFR mutations and 7 

patients with ALK rearrangements. Fifty-one patients with EGFR mutated tumours 

were treated with EGFR targeted therapy (erlotinib, gefitinib and/or afatinib); 1 patient 

was not treated and 13 patients were given other treatments (including surgery, 

chemotherapy, pemetrexed and radiotherapy). Of the patients who received other 
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treatments, two had mutations associated with resistance to EGFR TKIs (insertions in 

EGFR exon 20). One patient with a p.L747P mutation is known to have chosen to not 

have treatment.266 Of the remaining 10 patients 8 had tumours harbouring deletions in 

exon 19 and 2 had double mutations (1 with p.G719X + p.L861Q and 1 with p.L858R 

+ p.T790M). Of the 7 ALK positive patients 2 did not receive ALK inhibitors and were 

treated with other therapy. In total 80% of patients with a mutation predicting response 

to either EGFR TKIs or ALK inhibitors were treated with a targeted therapy (table 

3.10). 

Table 3.10: Summary of treatments given to patients with mutations predicting 
response to EGFR or ALK targeting therapies. 

 Combined molecular characteristics Total 

Predictive of 

response to 

targeted therapies 

Predictive of 

resistance to 

targeted therapies 

Treated with targeted therapy 56 (80%) 8 (1.4%) 64 

Not treated with targeted therapy 14 (20%) 550 (98.6%) 564 

Total 70 (100%) 558 (100%) 628 

 
3.2.5 Molecular pathology cost modelling 

The estimated annual costs of lung cancer molecular testing were calculated based on 

4 proposed algorithms as follows (summarised in table 3.11):  

5. The reflex model - all patients diagnosed with non-squamous NSCLC would 

be would be tested for EGFR, KRAS and ALK mutations simultaneously. 

6. The request model - all patients diagnosed with stage III or IV non-squamous 

NSCLC would be tested for EGFR, KRAS and ALK mutations simultaneously.  

7. The serial model - all patients diagnosed with stage III or IV non-squamous 

NSCLC would be tested sequentially; only samples with no KRAS mutation 

detected would have EGFR mutation analysis and only samples with no EGFR 

mutation would progress to ALK analysis.  

8. The TTF1-serial - all patients diagnosed with stage III or IV non-squamous 

NSCLC would be tested for TTF1 and ALK rearrangement, only TTF1 positive 

samples would be tested sequentially for KRAS and EGFR mutations.  
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Table 3.11: Overview of the investigated testing models. 

Model Cohort Analyses 

Reflex  
All non-squamous non-

small cell lung carcinoma  
Simultaneous EGFR, KRAS, ALK  

Request 

Metastatic or locally 
advanced non-squamous 

non-small cell lung 
carcinoma (stage III and 

IV) 

Serial  
KRAS on all, KRAS-wt tested for 
EGFR, EGFR-wt tested for ALK 

TTF1-serial 
TTF1 and ALK on all, TTF1+ tested 
for KRAS, KRAS-wt tested for EGFR 

NB: KRAS-wt= no KRAS mutation detected, EGFR-wt= no EGFR mutation detected, 
TTF1+= positive for TTF1 protein expression by IHC. 

Data supplied by SCAN showed that 400 patients in the network were diagnosed, with 

histological or cytopathological specimens, with non-squamous NSCLC in a 12-month 

period between April 2014 to March 2015 and would be eligible for testing by the 

reflex model. Of these, 370 had stage III or IV disease and would qualify for testing 

by the request model. 

From the results of the clinical audit the frequencies of EGFR and KRAS mutations, 

ALK rearrangements and TTF1 expression were used to estimate the number of 

analyses that would be carried out under each model (table 3.12). In addition, in the 

Lothian cohort 14.8% of specimens that were tested by ALK IHC also had ALK FISH 

(data not shown).  

Table 3.12: Estimated number of tests required when testing according to each model. 

Biomarker 
No. samples tested in each model 

Reflex Request Serial TTF1-serial 
TTF1 Diagnostic purposes only 370 
KRAS 400 370 370 285 
EGFR 400 370 236 182 

ALK IHC 400 370 212 370 
ALK FISH 60 55 32 55 

The estimated annual cost of lung cancer testing using the reflex model including 

reagents, staff time and overheads was £166,021 (£415.05 per sample); whereas the 
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annual cost of the request model was estimated to be £153,569, a 7.5% reduction. 

Utilizing the mutually exclusive relationship between KRAS and EGFR mutations and 

ALK rearrangements in the serial model was estimated to cost £111,662 (£301.79 per 

sample), a 32.7% reduction compared to the reflex model. If samples were screened 

for TTF1 expression prior to the serial model an additional £7,941 could be saved 

leading to a total reduction of 37.5% compared to the reflex model (table 3.13).  

Table 3.13: Estimated annual cost of molecular pathology testing models 

  Reflex Request Serial 
TTF1-
serial 

Number of cases 400 370 370 370 
TTF1 IHC  - - - £5,491 
Sample selection and DNA 
isolation £16,979 £15,706 £15,706 £14,955 
EGFR mutation analysis £93,675 £86,649 £55,039 £42,160 
KRAS mutation analysis £18,900 £17,482 £17,482 £13,391 
ALK IHC £13,558 £12,541 £7,128 £6,534 
ALK FISH £12,231 £11,314 £6,430 £11,313 
Reporting time £10,678 £9,877 £9,877 £9,877 
TOTAL £166,021 £153,569 £111,662 £103,721 

 

3.3 Discussion 
An audit has been carried out into lung cancer patients who were referred for molecular 

pathology testing to NHS Lothian over a 38-month period. It should be noted that since 

the NHS Lothian service employs a largely request based system the resulting cohort 

was biased towards patients with stage III and IV disease, reflecting those eligible for 

treatment with EGFR and ALK targeting therapies. This audit considered patient 

characteristics, smoking behaviour, histopathology (type of sample, differentiation, 

diagnosis, T, N, M, stage), immunohistochemistry and molecular characteristics 

(EGFR, KRAS and ALK mutation status).  

No statistically significant correlations were identified between histopathological and 

molecular characteristics; however, morphological variables should be analysed with 

caution as these qualitative factors are subject to inter-observer variation. In addition; 

tumour grade (estimated here according to differentiation level) cannot be reliably 
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assessed on small biopsies or cell blocks and was therefore restricted to resection 

samples, greatly reducing the number of useable data points.  

Not surprisingly there was evidence that smoking history was associated with the 

development and progression of lung cancer. Current smokers were diagnosed with 

lung cancer at an earlier age than non- and ex-smokers; interestingly age at diagnosis 

was very similar between non- and ex-smokers suggesting a benefit to giving up 

smoking- a finding also reported by Zheng et al.267 In addition, ex-smokers who ceased 

smoking a long time ago presented with lower nodal status and earlier stage disease 

than those who stopped more recently; however, the number of patients with early 

stage disease was very limited. Smokers were also more likely to have extra-thoracic 

metastases. Combined this data supports the theory that lung cancer patients with a 

significant smoking history present at an earlier age and with more advanced disease 

than non-smokers; which may reflect the poor prognosis of smoking associated 

NSCLC.265 

The proportion of EGFR, and KRAS gene mutations found in this cohort was consistent 

with previously published studies in European Caucasian populations.124, 264 However, 

the frequency of ALK gene rearrangements in this Scottish cohort is lower than 

previously published estimates;177, 183 although, informal communication with clinical 

molecular pathology colleagues has confirmed that a lower incidence (1-2%) is in line 

with other UK populations (personal communication Prof. Manuel Salto-Tellez, 

Queen's University Belfast). The presence of EGFR, KRAS and ALK gene aberrations 

were mutually exclusive. In our cohort EGFR p.L858R mutations were more common 

than exon 19 deletions; whereas previous studies, carried out in larger Caucasian 

cohorts, showed exon 19 deletions to be more common than p.L858R.124, 132 This 

variance may be a result of differing testing strategies. The therascreen® kit employed 

in our dataset uses allele specific PCR which will only detect very specific mutations 

and is, therefore, likely to miss some of the rarer deletions in exon 19. However, 

improved limits of detection for this method would be likely to detect the p.L858R 

single base pair substitution at lower allele frequencies than the Sanger sequencing or 

PCR restriction fragment length polymorphism methods used in these studies. 124, 132, 

268 Prior reports have suggested a link between patient age and the presence of EGFR 
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and ALK mutations151 which was not supported in this dataset or other analyses carried 

out in large Caucasian cohorts.124, 264, 269 Higher frequencies of  EGFR mutations have 

been reported in females and non-smokers;124, 245, 264 however, multivariate analysis to 

assess independent associations was not used. In our cohort, when smoking and gender 

(or smoking, gender and T stage) were taken into account only smoking status was 

found to be independently associated with the presence of EGFR mutations; a similar 

lack of independent association with gender has been reported by other groups.129, 131, 

269 

A large number of patients in this Scottish cohort harboured KRAS mutations in their 

tumours (36.5%) which is higher than in previously published datasets (approximately 

26%); although, this difference is likely to reflect the much higher proportion of 

current and ex-smokers in this population.132, 264 The KRAS G to T transversion 

mutations p.G12C and p.G12V were the most commonly detected (31.5% and 22.5% 

of KRAS mutations respectively) with proportions very similar to those previously 

reported in large cohorts;132, 264, 270 this high incidence of transversions are likely to be 

associated with smoking.132, 191 As has been previously reported, patients with a history 

of smoking were more likely than non-smokers to have KRAS mutations.132, 264, 270 

Although the number of pack-years was lower, female smokers had a higher incidence 

of KRAS mutations than male smokers indicating a possible increased susceptibility to 

tobacco smoke in women; an association that was also reported by Dogan et al.132 In 

contrast to age at diagnosis, the molecular profile of ex-smokers was very similar to 

smokers indicating that stopping smoking had little effect on the incidence of EGFR 

and KRAS mutations, a finding also noted by Dogan et al. 132 The differing molecular 

characteristics of tumours from patients with and without a history of smoking is likely 

to signify different oncogenic drivers and different mechanisms of pathogenesis 

between these two groups of patients.  

A fifth of patients with mutations predicting response to targeted therapy were not 

treated with either EGFR or ALK inhibitors; however, there are likely to be justifiable 

clinical reasons for this. A patient may refuse treatment or have contraindications for 

targeted treatment, such as severe hepatic or renal impairment.249 In addition; within 

NHS Scotland until recently ALK inhibitors could only be prescribed to previously 
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treated patients, given the advanced stage of the patients in this cohort it is likely that 

some may not survive to receive ALK inhibitors. The same was also true of EGFR 

inhibitors until 2012.  

In the NHS EGFR tyrosine kinase inhibitors and ALK inhibitors can only be 

prescribed to patients with locally advanced or metastatic disease. Several clinical 

laboratories favour testing all cytology and histology samples diagnosed as non-

squamous NSCLC regardless of eligibility for treatment. This reflex testing strategy 

would be likely to lead to increased costs and workload and the unnecessary waste of 

precious tissue samples. Simply switching to a request based system of only testing 

patients considered appropriate for treatment could deliver a 7.5% reduction in annual 

laboratory costs. However; in some oncology departments delaying a request for 

testing until after the multidisciplinary discussion of patient management may lead to 

unacceptable delays in the time taken to receive the molecular pathology report. This 

is likely to be of particular concern to those referring testing to external laboratories 

where the time to transfer a sample needs to be taken into account. Utilizing the well 

documented mutually exclusive relationship between EGFR and KRAS mutations and 

ALK rearrangements in a serial testing model could deliver a 32.5% reduction in lung 

cancer molecular pathology costs.271 Where clinical laboratories have adopted next 

generation sequencing (NGS) as their primary technique for somatic mutation 

detection serial testing offers no advantages. However; many laboratories, particularly 

smaller centres whose lower sample numbers make the cost-effective implementation 

of NGS difficult, still carry out single gene testing and would benefit from this 

suggested change in strategy. A serial testing model also has the potential to increase 

turn-around times for the reporting of results and should be managed carefully to avoid 

a detrimental impact on patient care. Any major change to molecular pathology testing 

strategies should only be implemented after a full discussion between the Molecular 

Pathology, Histopathology and Oncology professionals involved and particular 

attention should be paid to total turn-around times, from identifying a need for testing 

to the receipt of results, to ensure that results are available in time for the patient’s 

oncology appointment. 
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Lack of TTF1 expression by IHC was shown to be a good negative predictor for EGFR 

mutations, in this audit no EGFR mutations were found in TTF1 negative samples. 

Analysis of additional samples, including more recently requested samples not 

included in the cohort, has identified a total of 118 EGFR mutated samples with TTF1 

status; of these 117 were positive for nuclear staining and one sample showed only 

cytoplasmic staining which was therefore considered negative. Interestingly this TTF1 

negative sample was taken post chemo-radiation; a pre-treatment sample from the 

same patient, taken several years previously, was TTF1 positive.271 Whether these 

samples represent a recurrence of the same disease or two separate primary tumours, 

with differing molecular characteristics, cannot be established. The high NPV of TTF1 

IHC in this cohort is consistent with several previously published studies264, 269, 272-276 

in which the NPV ranged from 93% to 100% (table 3.14). This would mean that, under 

the TTF1-serial model, up to 7% of patients could be erroneously denied treatment 

with EGFR tyrosine kinase inhibitors; although in the majority of these publications 

the method of assessing TTF1 positivity was not defined. If fully validated for use as 

a screening tool prior to EGFR analysis any staining in the tumour cells, even when 

focal or atypical as in this case, should be considered sufficient for a specimen to 

proceed to molecular analysis. 

Table 3.14: Summary of studies reporting both TTF1 and EGFR analyses. 

Study 

Total 
no. 

sampl
es 

% TTF1 
positive 

No. EGFR 
mutated TTF1 

negative 
samples 

NPV Population 
(geographic) 

Vallee et al. 272  1038 79.0% 3 98.6% France 
Vincenten et al. 273  797 67.9% 9 96.5% Netherlands 
Krawczyk et al. 274  727 80.4% 10 93.0% Poland 
Chatziandreou et al. 264 595 70.4% 2 98.9% Greece 
Sheffield et al. 275 306 77.1% 4 94.3% Canada 
Somaiah et al. 276 
(pilot and validation) 

301 90% 2 93.3% America 
131 72.5% 1 97.2% America 

Zhang et al.277  1042 78.6% 50 62.4% China 
Shanzhi et al.278 660 98.5% 1 90% China 
Chung et al.279 496 89.3% 17 67.3% Taiwan 
Sun et al.134 190 79.5% 6 84.6% Korea 
NB: NPV= Negative predictive value 

The association between TTF1 and EGFR mutations may not be as strong in East 

Asian populations which have shown an NPV as low as 62.4%.134, 277-279 It is not 
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known if this is due to inherent differences in the biology of the disease between these 

populations or if this is a factor of chance caused by the increased proportion of EGFR 

mutated patients. Any attempts to use TTF1 as a negative predictor of the presence of 

EGFR mutations should proceed with caution and would require extensive validation. 

However, utilising this widely available and inexpensive test to target molecular 

pathology analysis appropriately has the potential to save 37.5% in laboratory costs 

compared to the reflex model. In some cases, where a diagnostic sample is unsuitable 

for molecular analysis, it may be appropriate to consider the TTF1 status before 

attempting to perform a re-biopsy procedure which is likely to be detrimental to the 

health of the patient. Although TTF1 has also been suggested to be a negative predictor 

of ALK rearrangements in lung cancer there is, as yet, too little data to confidently use 

TTF1 IHC as a screen prior to ALK analysis.280 Future lung cancer biomarkers should 

be assessed for significant correlation with TTF1 and other cost effective markers in 

order to develop efficient, affordable and accurate molecular pathology testing 

algorithms. 

The low incidence of clinically actionable mutations in a Caucasian population 

indicates that although EGFR and ALK targeted therapies can offer great benefits to a 

small number of patients there are few options for the treatment of almost 90% of 

patients with non-squamous NSCLC. Therapies to target KRAS activated NSCLC, for 

example MEK inhibitors, which could benefit a large proportion of patients are not 

currently available for the treatment of lung cancer. In lieu of the development of 

further targeted therapies stratification of patients based on prognostic factors could 

help to optimise currently available treatment strategies. This may be of particular 

benefit for early stage patients post resection to identify those who would benefit from 

adjuvant treatment.
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Chapter 4 Review of the study group dataset 

The following chapter describes the comprehensive morphological characterisation of 

a cohort of 208 resected lung adenocarcinomas including proportion of each growth 

pattern, predominant growth pattern and the presence of significant levels of necrosis, 

mitosis, apoptosis, inflammatory infiltrate, pleomorphism, prominent nucleoli and scar 

tissue.  

Clinicopathological variables for the 208 resected lung adenocarcinomas (including T 

stage, nodal status, lesion size (mm), pleural involvement, clinical stage, resection date 

and date and cause of death) were supplied by the NHS Lothian tissue governance unit 

(table 4.1). Each of these cases was reviewed and restaged to comply with the TNM 

7th Edition.5 

Table 4.1: Summary of histopathological characteristics of the lung adenocarcinoma 
cohort. 

 Number % 
Lesion size (mm) 
 Median 32.0 
 Mean (95% CI) 36.3 (33.8 to 38.9) 
 Range 6 to 115 
T stage 

 

T1a 33 15.9% 
T1b 32 15.4% 
T2a 96 46.2% 
T2b 30 14.4% 
T3 17 8.2% 

N stage 

 
N0 138 66.3% 
N1 70 33.7% 

Pleural involvement 

 
No pleural invasion 134 64.4% 
Pleural invasion 74 35.6% 

Clinical stage 

 

Ia 46 22.1% 
Ib 61 29.3% 
IIa 69 33.2% 
IIb 32 15.4% 

Total 208 100% 
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4.1 Morphology 
Two hundred and eight resected lung adenocarcinomas stage I and II were identified 

from the NHS Lothian histopathology archives, of these one had no slides available 

for morphological assessment. In total 907 tumour-containing haematoxylin and eosin 

(H&E) stained sections underwent comprehensive morphological assessment. In some 

cases, the growth patterns observed were easily identified and closely resembled 

previously published images and conformed to descriptions proposed in the literature 

(figure 4.1).11, 261  
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Figure 4.1: Photographs of H&E stained sections with examples of tumour growth 
patterns showing classical morphology: lepidic (A and B), papillary (C), acinar (D 
and E), solid (F and G) and micropapillary (H). 

 

However, in a large number of cases the growth patterns present in each case did not 

form classical structures and were more difficult to distinguish. Micropapillary 

structures were frequently found apparently growing from the surface of papillary, 

A B 

C D 

E F 

G H 
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lepidic or acinar areas of tumour. Micropapillary tumour clusters were also found 

‘floating’ within the lumen formed at the centre of acinar structures.  In some tumours, 

areas of necrosis or poor preservation of tissue architecture made the identification of 

growth patterns more challenging. In addition, some tumours produced patterns not 

classified by Travis et al.; for example, small clusters of tumour cells within fibrotic 

tissue (figure 4.2).261 

 
Figure 4.2: Photographs of H&E stained sections. In some cases growth patterns were 
more difficult to define due to poor tissue preservation (A), the presence of mixed 
patterns (for example micropapillary structures associated with papillary or acinar 
growth) (B and D) or not conforming to classical definitions (C). 

Many cases showed more than one growth pattern, very few of which had easily 

defined boundaries between neighbouring patterns; more usually tumour growth 

showed a continuum of morphological change from one growth pattern to the next. 

This was most apparent between lepidic and papillary, lepidic and acinar, and acinar 

and papillary patterns. In these tumours identifying the exact point at which the growth 

A B 

C D 
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pattern changed was more challenging making any estimate of the proportion of each 

pattern likely to be inaccurate (figure 4.3). 

 

Figure 4.3: Photographs of H&E stained sections from 2 tumours; 1 showing a very 
marked boundary between 2 growth patterns (A), the other with a more gradual 
change of tumour growth from lepidic to acinar (B). 

A 

B 
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In some cases, a single section could show elements of all 5 growth patterns further 

increasing the difficulty in accurately estimating the contribution of each pattern 

(figure 4.4). 

 
Figure 4.4: Photographs of a single H&E stained section taken at low (A) and high 
power (B to F). Although at low power this tumour appears largely lepidic there are 
elements of acinar (B), lepidic (C), solid (D), papillary (E) and micropapillary (F) 
growth patterns. 

In some areas dissociation of clumps of tumour cells from lepidic, acinar, papillary 

and solid structures, likely to be caused by sub-optimal tissue fixation, could be 

mistaken for the micropapillary pattern (figure 4.5). 

B C 

D 

E 

F 

A 
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Figure 4.5: Photographs of a single H&E stained section containing predominantly 
solid growth however poor tissue fixation could have been the cause of micropapillary-
like structures. 

In the assessment of 207 stage I and II lung adenocarcinomas the acinar growth pattern 

was the most frequently observed, being present in 89.9% of cases; the papillary 

pattern was the least commonly seen (55.6% of cases). On average the acinar growth 

pattern, when present, was found in the highest proportions followed by the solid 

pattern; the proportions of lepidic, papillary and micropapillary patterns were very 

similar (Friedman’s 2-way analysis of variance by ranks p< 0.005) (table 4.2). 

Table 4.2: The incidence and proportion of the lepidic, papillary, acinar, solid and 
micropapillary growth patterns observed at any proportion and at ≥ 5%. 
Growth Pattern Present  

(at any 
proportion) 

Present 
(≥5% of 
tumour) 

Median 
proportion 

Mean proportion 
(95% Confidence 

Interval) 
Lepidic 125 (60.6%) 99 (47.8%) 3.0% 13.4%  

(10.6% to 16.1%) 
Papillary 115 (55.6%) 95 (45.9%) 2.0% 12.7%  

(10.2% to 15.3%) 
Acinar 186 (89.9%) 175 (84.5%) 27.0% 33.5%  

(29.8% to 37.2%) 
Solid 136 (65.7%) 116 (56.0%) 12.0% 27.6%  

(22.3% to 32.2%) 
Micropapillary 132 (63.8%) 106 (51.2%) 6.0% 12.9%  

(10.5% to 15.4%) 

 
Only growth patterns present at greater than or equal to 5% of the area of each tissue 

section were included in initial analyses in order to eliminate false positives caused by 
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cutting artefact. The majority of cases showed multiple growth patterns and only 15 

(7.2%) showed only one pattern; whereas, 43 (20.8%) cases showed 2 patterns, 60 

(28.8%) showed 3, 59 (28.5%) showed 4 and 30 (14.5%) showed all 5 growth patterns. 

In the cases where only 1 growth pattern was present the majority (86.7%) had solid 

growth. The presence of the solid pattern was negatively correlated with the presence 

of the lepidic (p< 0.0005), papillary (p< 0.0005) and acinar patterns (p< 0.0005). 

Whereas the micropapillary pattern was positively associated with the papillary (p< 

0.0005), acinar (p= 0.004) and solid patterns (p= 0.001). In addition, the lepidic pattern 

was more commonly found with the papillary pattern (p= 0.017) and the presence of 

the papillary pattern was associated with the presence of the acinar pattern (p= 0.01) 

(tables 4.3 and 4.4).  
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Table 4.3: The co-occurrence of growth patterns at greater than 5% of each tumour. 
Significance was calculated using the χ2 test. 

 <5% Lepidic ≥5% Lepidic Total Significance 
Papillary p= 0.017  

 
<5% papillary 67 (62.0%) 45 (45.5%) 112 

 
≥5% papillary 41 (38.0%) 54 (54.5%) 95 

Solid p< 0. 0005 

 
<5% solid 29 (26.9%) 62 (62.6%) 91 

 
≥5% solid 79 (73.1%) 37 (37.4%) 116 

Total 108 (100%) 99 (100%) 207  
 <5% Papillary ≥5% Papillary Total Significance 

Micropapillary p< 0.0005 

 
<5% micropapillary 57 (50.9%) 20 (21.1%) 77 

 
≥5% micropapillary 55 (49.1%) 75 (78.9%) 130 

Acinar p= 0.01 

 
<5% acinar 24 (21.4%) 8 (8.4%) 32 

 
≥5% acinar 88 (78.6%) 87 (91.6%) 175 

Solid p< 0.0005 

 <5% solid 35 (31.3%) 56 (58.9%) 91 
 

 ≥5% solid 77 (68.8%) 39 (41.1%) 116 
Total 112 (100%) 95 (100%) 207  

 <5% acinar ≥5% acinar Total Significance 
Micropapillary p= 0.004 

 
<5% Micropapillary 23 (71.9%) 78 (44.6%) 101 

 
≥5% Micropapillary 9 (28.1%) 97 (55.4%) 106 

Solid p< 0.0005 
 <5% solid 5 (15.6%) 86 (49.1%) 91 

 
 ≥5% solid 27 (84.4%) 89 (50.9%) 116 

Total 32 (100%) 175 (100%) 207  
 <5% solid ≥5% solid Total Significance 

Micropapillary p= 0.001 

 
<5% Micropapillary 33 (36.3%) 68 (58.6%) 91 

 
≥5% Micropapillary 58 (63.7%) 48 (41.4%) 116 

Total 91 (100%) 116 (100%) 207  
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Table 4.4: Summary of the statistically significant associations between the presence 
of each growth pattern at greater than or equal to 5% of each tumour. Significance 
was calculated using the χ2 test. 

 
Present at ≥5% of the tumour 

Papillary Acinar Solid Micropapillary 
P

re
se

nt
 a

t ≥
5%

 o
f 

th
e 

tu
m

ou
r 

Lepidic 
+ correlation 

p=0.017 
n. sig. 

- correlation  
p< 0.0005 

n. sig. 

Papillary 
- 

+ correlation 
p= 0.01 

- correlation  
p< 0.0005 

+ correlation 
p< 0.0005 

Acinar 
- - 

- correlation 
p< 0.0005 

+ correlation 
p= 0.004 

Solid 
- - - 

+ correlation 
p= 0.001 

NB. += positive, -= negative, n. sig.= not significant 

In order to assess the clinical significance of further easily available and cost effective 

histopathological data additional morphological features, derived from descriptive 

data collected at the time of morphological assessment, were assessed. These 

additional tumour grading variables included the presence of:  

 a large number of mitotic figures (figure 4.6). 

 a large number of apoptotic bodies (figure 4.6). 

 a high inflammatory infiltrate (figure 4.7). 

 a large amount of necrosis (figure 4.8). 

 large numbers of prominent nucleoli (figure 4.7). 

 a high degree of nuclear pleomorphism (figure 4.7). 

 scar tissue (figure 4.8). 

 dyscohesive tumour cells (figure 4.7).  



Prognosis of resected, early-stage, lung adenocarcinoma patients 
 

Study group dataset 73 

 
Figure 4.6: Photographs of H&E stained sections from two tumours with relatively 
large numbers of apoptotic bodies (arrows) and mitotic figures (arrowheads). 

A B 
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Figure 4.7: Photographs of H&E stained examples sections from tumours showing 
inconspicuous nucleoli (A), prominent nucleoli (B), pleomorphic nuclei (C and D), a 
high inflammatory infiltrate (E) and dyscohesive between tumour cells (F). 

 

A B 

C D 

E F 
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Figure 4.8: Photographs of H&E stained sections from 2 tumours, 1 showing large 
amounts of necrosis (A) and 1 with scar tissue (B) associated with small tumour nests 
(arrows). 
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Of the 207 cases available for morphological assessment, 15 had staining quality too 

poor to assess tumour grading features leaving a total of 192 cases; due to 

morphological characteristics one further case could not be assessed for the presence 

of mitotic figures. Cytological pleomorphism and prominent nucleoli were commonly 

observed (48.4% and 46.9% of cases respectively) whereas dyscohesion between 

tumour cells was relatively rare (8.3%) (table 4.5). 

Table 4.5: Summary of the results of the assessment of qualitative morphological 
characteristics. 
Morphological characteristic Not present Present Total 
Large areas on necrosis 134 58 (30.2%) 192 
High degree of inflammatory infiltrate 137 55 (28.6%) 192 
Large number of mitotic figures 85 106 (55.5%) 191 
Large number of apoptotic bodies 157 35 (18.2%) 192 
Numerous prominent nucleoli 102 90 (46.9%) 192 
Significant cytological pleomorphism 99 93 (48.4%) 192 
Presence of scar tissue 156 36 (18.8%) 192 
Areas with dyscohesive tumour cells 176 16 (8.3%) 192 

 

Statistically significant correlations identified between tumour grading variables are 

detailed in table 4.6. Tumours with large areas of necrosis were more likely to have 

many mitotic figures and apoptotic bodies and pleomorphic nuclei (p= 0.004, p= 0.009 

and p= 0.03 respectively). In addition, tumours with large numbers of mitotic figures 

were associated with the presence of large numbers of apoptotic bodies and prominent 

nucleoli (p< 0.0005 and p= 0.026 respectively) 
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Table 4.5: Summary of statistically significant associations between tumour grading 
characteristics. Significance was calculated using the χ2 test. 

 Little or no 
necrosis 

Necrosis Total Significance 

Mitosis p= 0.004 

 

Few mitotic 
figures 

69 (51.5%) 16 (28.1%) 85 

Many mitotic 
figures 

65 (48.5%) 41 (71.9%) 106 

Total 134 (100%) 57 (100%) 191  
Apoptosis p= 0.009 

 

Few apoptotic 
bodies 

116 (86.6%) 41 (70.7%) 157 

Many apoptotic 
bodies 

18 (13.4%) 17 (29.3%) 35 

Total 134 (100%) 58 (100%) 192  
Pleomorphism p= 0.03 

 
Not pleomorphic 76 (56.7%) 23 (39.7%) 99 
Pleomorphic 58 (43.3%) 35 (60.3%) 93 

Total 134 (100%) 58 (100%) 192  

 
Few mitotic 

figures 
Many mitotic 

figures 
  

Apoptosis p< 0.0005 

 

Few apoptotic 
bodies 

79 (92.9%) 77 (72.6%) 156 

Many apoptotic 
bodies 

6 (7.1%) 29 (27.4%) 35 

Total 85 (100%) 106 (100%) 191  
Nucleoli p= 0.026 

 
Not prominent 53 (62.4%) 49 (46.2%) 102 
Prominent 32 (37.6%) 57 (53.8%) 189 

Total 85 (100%) 106 (100%) 191  

4.1.1 Presence of each growth pattern 

Lepidic 

Tumours with greater than or equal to 5% lepidic pattern were associated with a lack 

of large amounts of necrosis (table 4.7), which was further confirmed by the lower 

proportions of lepidic pattern in necrotic tumours (p< 0.0005) (figure 4.9). Lepidic 

positive tumours were also unlikely to have many apoptotic bodies and mitotic figures 

(p= 0.031 and p= 0.003 respectively). The association with mitotic figures was 

supported by analysis of the average proportion of lepidic pattern in each case where 

cases with few mitotic figures had a higher proportion of the lepidic pattern (p= 0.001) 

(figure 4.9).   
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Table 4.7: Summary of the statistically significant associations between 
morphological variables and the presence of greater than or equal to 5% lepidic 
growth. Significance was calculated using the χ2 test. 

 <5% Lepidic ≥5% Lepidic Total Significance 

Necrosis p< 0.0005  

 Little or none 55 (55%) 79 (85.9%) 134 
 Large areas 45 (45%) 13 (14.1%) 58 

Total 100 (100%) 92 (100%) 192  

Mitosis p= 0.003  

 Few mitotic figures 34 (34.3%) 51 (55.4%) 85 
 Many mitotic figures 65 (65.7%) 41 (44.6%) 106 

Total 99 (100%) 92 100%) 191  

Apoptosis p= 0.031  

 Few apoptotic bodies 76 (76%) 81 (88.0%) 157 

 
Many apoptotic 
bodies 24 (24%) 11 (12.0%) 35 

Total 100 (100%) 92 (100%) 192  

 

 
Figure 4.9: Boxplots showing statistically significant associations between the 
proportion of lepidic growth and the presence of large areas of necrosis (A) (p< 
0.0005) and the presence of frequent mitotic figures (B) (Mann-Whitney U test p= 
0.001). 

Papillary 

The presence, and proportion, of the papillary pattern was associated with the lack of 

large areas of necrosis (p= 0.007 and p= 0.01 respectively) (table 4.8 and figure 4.10). 

In addition, papillary positive tumours were more likely to have prominent nucleoli 

(p= 0.050). 

A B 
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Table 4.8: Summary of the statistically significant associations between tumours with 
greater than or equal to 5% papillary growth and morphological variables. 
Significance was calculated using the χ2 test. 

 <5% Papillary ≥5% Papillary Total Significance 

Necrosis p= 0.007  

 No necrosis 64 (61.5%) 70 (79.5%) 134 
 Necrosis 40 (38.5%) 18 (20.5%) 58 

Total 104 (100%) 88 (100%) 192  

Nucleoli p= 0.050 

 Inconspicuous 62 (59.6%) 40 (45.5%) 102 
 Prominent 42 (40.4%) 48 (54.5%) 90 

Total 104 (100%) 88 (100%) 192  

 

 
Figure 4.10: Box plot showing the proportion of papillary growth pattern in tumours 
with and without large areas of necrosis (Mann-Whitney U test p= 0.01). 

Acinar 

The presence, and proportion, of the acinar pattern was associated with the lack of 

large areas of necrosis (p< 0.0005 and p= 0.004 respectively) (table 4.9 and figure 

4.11). Apoptotic bodies were less common in acinar positive tumours (p= 0.01); this 

association is further supported by the fact that tumours with few apoptotic bodies had 

a lower proportion of acinar growth pattern (p< 0.0005) (figure 4.11).  
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Table 4.9: Summary of the statistically significant associations between the presence 
or absence of acinar growth and morphological variables. Significance was calculated 
using the χ2 test. 

 <5% Acinar ≥5% Acinar Total Significance 

Necrosis p< 0.0005 

 No necrosis 13 (40.6%) 121 (75.6%) 134 
 Necrosis 19 (59.4%) 39 (24.4%) 58 

Total 32 (100%) 160 (100%) 192  

Apoptosis p= 0.01 
 Few apoptotic 

bodies 21 (65.6%) 136 (85%) 157 

 Many apoptotic 
bodies 11 (34.4%) 24 (15%) 35 

Total 32 (100%) 160 (100%) 192  

 
 

 
Figure 4.11: Boxplots showing statistically significant associations between the 
proportion of acinar growth pattern in tumours with and without large areas of 
necrosis (A) (p= 0.004) and large numbers of apoptotic bodies (B) (Mann-Whitney U 
test p< 0.0005). 

Solid 

Solid growth was the only pattern significantly associated with the presence of necrosis 

(p< 0.0005) (table 4.10 and figure 4.12). Tumours with greater than or equal to 5% 

solid growth pattern had more mitotic figures and apoptotic bodies (p= 0.001 and p= 

0.003 respectively) which was also confirmed by the increased proportion of solid 

pattern in tumours with many mitotic figures or apoptotic bodies (p< 0.0005 for both 

A B 
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variables) (figure 4.13). In addition, these tumours were less likely to have large areas 

of scar tissue (p= 0.013).  

Table 4.10: Summary of the statistically significant associations between 
morphological variables and tumours with greater than or equal to 5% solid growth. 
Significance was calculated using the χ2 test. 

 <5% Solid ≥5% Solid Total Significance 

Necrosis p< 0.0005 

 No necrosis 70 (85.4%) 64 (58.2%) 134 
 Necrosis 12 (14.6%) 46 (41.8%) 58 

Total 82 (100%) 110 (100%) 192  

Mitosis p= 0.001 

 Few mitotic figures 47 (58.0%) 38 (34.5%) 85 
 Many mitotic figures 34 (42.0%) 72 (65.5%) 106 

Total 81 (100%) 110 (100%) 191  

Apoptosis p= 0.003 

 
Few apoptotic 
bodies 75 (91.5%) 82 (74.5%) 157 

 
Many apoptotic 
bodies 7 (8.5%) 28 (25.5%) 35 

Total 82 (100%) 110 (100%) 192  

Scar tissue p= 0.013 

 Not present 60 (73.2%) 96 (87.3%) 156 
 Present 22 (26.8%) 14 (12.7%) 36 

Total 82 (100%) 110 (100%) 192  
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Figure 4.12: Box plot showing the association between the proportion of solid growth 
and the presence of large areas of necrosis (Mann-Whitey U test p> 0.0005). 

 
Figure 4.13: Box plot showing the statistically significant associations between the 
proportion of solid growth and the number of many mitotic figures (A) (p< 0.0005) 
and apoptotic bodies (B) (p< 0.0005) (Mann-Whitney U test). 

 
Micropapillary 

The presence, and proportion of the micropapillary growth pattern was significantly 

associated with the lack of large areas of necrosis (p= 0.002 and p< 0.0005 
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respectively) (table 4.11 and figure 4.14). Tumours with prominent nucleoli were more 

common in micropapillary positive tumours (p= 0.013) and were likely to have higher 

proportions of the micropapillary growth pattern (p= 0.008) (figure 4.14).  

Table 4.11: Summary of the statistically significant associations between tumours with 
greater than or equal to 5% micropapillary growth and morphological variables. 
Significance was calculated using the χ2 test. 

 <5% 
Micropapillary  

≥5% 
Micropapillary 

Total Significance 

Necrosis p= 0.002 
 Not present 55 (59.1%) 79 (79.8%) 134 
 Present 38 (40.9%) 20 (20.2%) 58 

Total 93 (100%) 99 (100%) 192  

Nucleoli p= 0.013 
 Inconspicuous 58 (62.4%) 44 (44.4%) 102 
 Prominent 35 (37.6%) 55 (55.6%) 90 

Total 93 (100%) 99 (100%) 192  

 

 
Figure 4.14: Boxplots showing statistically significant associations between the 
proportion of micropapillary growth pattern and the presence of large areas of 
necrosis (A) (p< 0.0005) and prominent nucleoli (B) (p= 0.008) (Mann-Whitney U 
test). 

4.1.2 Predominant growth pattern 

From the estimated proportions of non-tumour, lepidic, acinar, papillary, solid and 

micropapillary growth patterns (excluding lymph nodes); 4 different methods were 

used to determine the predominant growth pattern as described in section 2.3. Method 
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A (whereby the proportion of individual growth patterns were expressed as a 

proportion of the whole section, including non-tumour tissue, and the predominant 

pattern was that with the largest total proportion across all sections of the primary 

tumour) showed the greatest inter-observer agreement and high concordance with 

other methods indicating it to be the most robust. 

The number and proportion of cases with each predominant growth pattern, calculated 

by the 4 methods, are detailed in table 4.12. With 3 of the methods (A, B or C) the 

acinar growth pattern was the most common predominant pattern followed by solid, 

papillary and micropapillary; predominantly lepidic lesions were rarer. With method 

D the solid growth pattern was most frequently the predominant pattern followed by 

acinar, papillary, micropapillary then lepidic. 

Table 4.12: The number (and percentage) of cases with predominant lepidic, 
papillary, acinar, solid and micropapillary growth patterns as calculated using 4 
different methods.  

Predominant 
Pattern 

Method A Method B Method C Method D 

Lepidic 20 (9.7%) 25 (12.1%) 25 (10.1%) 18 (8.78%) 
Papillary 26 (12.6%) 27 (13.0%) 27 (12.1%) 31 (15.12%) 
Acinar 76 (37.8%) 69 (33.3%) 69 (34.8%) 64 (31.22%) 
Solid  60 (30.0%) 60 (29.0%) 60 (31.4%) 66 (32.2%) 
Micropapillary 25 (12.1%) 26 (12.6%) 26 (11.6%) 26 (12.68%) 
Total 207 (100%) 207 (100%) 207 (100%) 205 (100%) 

 

Cohen’s kappa showed that there was strong agreement between the different methods 

of calculating predominant growth pattern. However; method D, which assessed only 

a single section of the case, showed less agreement with the other methods (Table 

4.13). 

Table 4.13: Summary of the agreement between predominant pattern estimated by four 
different calculation methods calculated using Cohen’s kappa (κ). 

 Calculation B Calculation C Calculation D 
Calculation A κ 0.916 

p< 0.0005 
κ 0.896 

p< 0.0005 
κ 0.707 

p< 0.0005 
Calculation B - κ 0.891 

p< 0.0005 
κ 0.677 

p< 0.0005 
Calculation C - - κ 0.707 

p< 0.0005 
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Spearman’s Rank correlation was used to assess the inter-observer correlation between 

the proportion of each growth pattern in 52 sections from 10 cases. There was strongest 

agreement in the proportion of solid (Rho= 0.943) and lepidic (Rho= 0.906) growth 

patterns, whereas the proportion of papillary pattern showed greater variation between 

observers (Rho= 0.687) (table 4.14).  

Table 4.14: Inter-observer agreement in the proportion of each growth pattern per 
section assessed using Spearman’s Rank correlation. 

 %  
Lepidic 

% 
Papillary 

%  
Acinar 

%  
Solid 

% 
Micropapillary 

Rho statistic 0.906 0.687 0.752 0.943 0.822 
Significance p< 0.0005 p= 0.014 p < 0.0005 p< 0.0005 p< 0.0005 

 

Analysis of inter-observer agreement of predominant pattern using method A showed 

there was disagreement in the predominant pattern in 1 case, between the lepidic and 

acinar patterns. Using method B and C there was disagreement in 2 cases, one between 

acinar and micropapillary and one between acinar and lepidic. Using method D there 

was disagreement in 1 case, between lepidic and papillary. Methods A and D had the 

highest inter-observer agreement with kappa values of 0.870 (p< 0.0005) (table 4.15).  

Table 4.15: Inter-observer agreement for the predominant growth pattern in each case 
using the 4 calculation methods, assessed using Cohen’s kappa. 

 Method A Method B Method C Method D 
kappa value 0.870 0.752 0.752 0.870 
Significance p< 0.0005 p < 0.0005 p < 0.0005 p< 0.0005 

 

Due to the high inter-observer agreement and strong agreement with other methods 

method A was selected for estimating predominant growth pattern.  

Predominant pattern, calculated using method A, was analysed for associations with 

tumour grading variables (table 4.16). The presence of necrosis was significantly 

associated with predominant growth pattern (p<0.0005) and was most common in 

predominantly solid tumours (55.4%), followed by acinar (23.9%) and papillary 

(22.7%); but was rare in predominantly lepidic tumours (5.6%). The presence of large 

numbers of apoptotic bodies was also associated with predominant growth pattern 

where apoptosis was most common in solid tumours (p= 0.022). The predominant 
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pattern was also associated with the presence of scar tissue and was most common in 

predominantly lepidic tumours lepidic, there was no scar tissue noted in any 

predominantly papillary tumours (p= 0.032). 
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Table 4.16: Statistically significant correlations between predominant growth pattern (method A) and tumour grading variables. Significance 
was calculated using the χ2 test unless otherwise stated. 
 Predominant pattern Total Significance 

Lepidic Papillary Acinar Solid Micropapillary   
Necrosis       p<0.0005 
 Little or none 17 (94.4%) 17 (77.3%) 54 (76.1%) 25 (44.6%) 21 (84%) 134 
 Large areas 1 (5.6%) 5 (22.7%) 17 (23.9%) 31 (55.4%) 4 (16%) 58 
Apoptosis       p= 0.022a 
 Few 17 (94.4%) 18 (81.1%) 64 (90.1%) 39 (69.6%) 19 (76%) 157 
 Many 1 (5.6%) 4 (18.2%) 7 (9.9%) 17 (30.4%) 6 (24%) 35 
Scar tissue       p= 0.032 
 None 11 (61.1%) 22 (100%) 56 (78.9%) 47 (83.9%) 20 (80.0%) 156 
 Large areas 7 (38.9%) 0 (0%) 15 (21.1%) 9 (16.1%) 5 (20.0%) 36 
Total 18 (100%) 22 (100%) 71 (100%) 56 (100%) 25 (100%) 192 18 (100%) 

aFisher’s exact test 
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4.1.3 Predominant growth pattern in primary tumours vs 
metastases 

Repeated measures ANOVA was used to explore the difference between growth 

patterns in primary lesions and their associated nodal metastases. Only the solid 

growth pattern showed a significant increase in proportion in lymph nodes compared 

to their associated primary tumours across the whole cohort (F=4.548, p= 0.038) 

(figure 6). Acinar, papillary and micropapillary showed no significant trends (p= 

0.657, 0.777 and 0.816 respectively) (figure 4.15).  

 
Figure 4.15: Waterfall plots showing the difference between the proportions of each 
growth pattern in primary lesions and nodal metastases. Cases with positive values 
(green) have a greater proportion in the metastasis whereas those with negative values 
(red) have a greater proportion in the primary lesion.  

4.2 Nucleic acid analysis of lung adenocarcinomas 

4.2.1 Transcriptomics 

The cell-cycle progression score (CCP), calculated from the expression of 31 cell cycle 

genes, was used together with clinical stage to calculate mPS.263 Of 206 tumour 
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samples available for molecular analysis 16 failed analysis (7.8%) (summarised in 

table 4.17).  

 
Table 4.17: Summary of gene expression CCP score and mPS for the cohort of 206 
lung adenocarcinomas. 
 CCP score mPS 
Number of samples 206 206 
Failed analysis 16 16 
Mean (95% CI) 0.11 (-0.025 to 2.43) 30.49 (28.62 to 32.37) 
Median 0.20 32.25 
Range -2.8 to 2.4 -3.5 to 54.8 

The CCP score was found to be normally distributed, whereas mPS was not (Shapiro-

Wilk test p= 0.069 and 0.021 respectively); however, since both CCP and mPS shows 

skewing and the datasets contain outliers, non-parametric tests were used to investigate 

relationships between CCP, mPS and morphological and molecular characteristics. 

The CCP score was significantly higher in tumours with solid pattern present (p< 

0.0005) than in tumours without this growth; whereas tumours with the lepidic or 

papillary patterns had lower CCP scores (p< 0.0005 and p= 0.007 respectively). 

Tumours with the micropapillary pattern also had lower CCP score but the effect was 

less pronounced (p= 0.034). mPS was only found to be significantly correlated with 

the presence of the lepidic and solid patterns (p<0.0005 and p= 0.025 respectively) 

(figure 4.16).



Prognosis of resected, early-stage, lung adenocarcinoma patients 
 

Study group dataset 90 

 
Figure 4.16: Boxplots showing the relationships between CCP score (top) and mPS (bottom) and the presence of different growth patterns. 
The significance of these relationships, calculated using the Mann-Whitney U test, is shown in the top right of each graph.
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Both CCP score and mPS showed predominantly lepidic pattern tumours to have the 

lowest CCP score and, therefore mPS (p< 0.0005 and p= 0.041 respectively) (figure 

4.17). The same was also true when grouped according to predominant morphological 

grade whereby CCP score and therefore mPS increased from low, to intermediate, to 

high grade tumours (p< 0.0005 and p= 0.012 respectively) (figure 4.18). However, 

there was no significant relationship between second most predominant pattern and 

CCP score (p= 0.082); although mPS did show an association (p= 0.016) which may 

be a result of the patient’s clinical stage which was used to calculate this variable. 

 
Figure 4.17: Boxplots showing the relationship between CCP score (A) and mPS (B) 
in tumours with different predominant growth patterns. The statistical significance of 
each relationship, calculated using the Kruskall-Wallis test is shown in the top right 
of each graph. 

B A p< 0.0005 p= 0.041 
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Figure 4.18: Boxplots showing the relationship between CCP score (A) and mPS (B) 
in tumours with predominant morphological grade. The statistical significance of each 
relationship, calculated using the Kruskall-Wallis test is shown in the top right of each 
graph. 

The CCP score was significantly higher in tumours which had necrosis (p< 0.0005), 

mitosis (p< 0.0005) or apoptosis (p= 0.002) (figure 4.19). However, only the presence 

of necrosis and mitosis were significantly correlated with mPS (p< 0.0005 and p= 

0.002 respectively). Although CCP score was not significantly associated with the 

presence of prominent nucleoli, or scar tissue mPS was (p= 0.014 and p= 0.016 

respectively). 

A B p< 0.0005 p= 0.012 
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Figure 4.19: Boxplots showing the 
statistically significant relationships 
between CCP score and the presence of 
necrosis (A), mitosis (B) and apoptosis (C). 
For each variable the p-value, calculated 
using the Mann-Whitney U test, is shown in 
the top right of each graph. 

 
 
 
 
 
 
 
 

 
The Mann-Whitney U test showed that CCP score and mPS were significantly 

associated with the overall tumour grade (derived from necrosis, mitosis and 

prominent nucleoli scar tissue, apoptosis and inflammatory cells) (p= 0.008 and 

p>0.0005 respectively) (figure 4.20). 

A B 

C 

p< 0.0005 p< 0.0005 

p= 0.002 
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Figure 4.20: Boxplots showing the difference in CCP and mPS scores between 
tumours whose cytological features indicate low (overall score less than or equal to 
0) or high (overall score greater than 0) grade (Mann-Whitney U test p= 0.008 and 
p>0.0005 respectively). 

 
 
4.2.2 Molecular genetics of tumours from patients with N1 

disease 

From the cohort of 206 lung adenocarcinoma cases 70 had N1 disease, of which 3 

cases had no tissue available for further testing and one case had a neoplastic cell 

content too low to allow molecular analysis. Sixty-six cases were available for EGFR 

and KRAS hotspot mutation analysis. Sixteen cases were found to harbour EGFR 

mutations using the therascreen® EGFR RGQ PCR kit; an additional case, with an 

insertion in exon 20, was identified by Sanger sequencing. One case, which was 

identified as having both a deletion in exon 19 and a p.(G719X) mutation using the 

therascreen® assay, was later characterised by Sanger sequencing as having a 

c.2240T>C p.(L747S) mutation rather than the expected deletion in exon 19. In total 

25.8% of the N1 cohort which could be assessed had EGFR mutations in their tumours; 

p.(Leu858Arg) mutations were most common followed by p.(G719X) mutations. One 

p.(L858R) and 2 p.(G719X) mutations were reproducibly detected at a level below the 

threshold for the assay; meaning that in a clinical setting these tumours would have 

been considered to have no detectable mutation. KRAS mutation analysis of codons 



Prognosis of resected, early-stage, lung adenocarcinoma patients 
 

Study group dataset 95 

12, 13 and 61 detected 33 (50%) cases with KRAS mutations; p.(G12V) was the most 

common followed by p.(G12C) (table 4.18). 

Table 4.18: Summary of the results of EGFR and KRAS mutation detection in tumours 
from patients with N1 disease. 

Mutation status Total % 

EGFR 
 No Mutation detected 50 74.2% 
 Mutation detected 17 25.8% 

 Deletion in exon 19           3  
 p.(L858R)  5*  

 p.(L861Q)  1  
 p.(G719X)  4*  
 Insertion in exon 20  2  
 p.(G719X) and p.(L747S)  1  
 p.(G719X) and p.(S768I) 1  
KRAS 
 No mutation detected 33 50% 
 Mutation detected 33 50% 
 p.(G12C) 10  
 p.(G12V) 11  
 p.(G12D) 5  
 p.(G12A) 2  
 p.(Q61H) 4  

 p.(Q61L) 1  
Total 66 100% 

* One tumour had a p.(L858R) mutation below the assay cut off as did 2 tumours with 
p.(G719X) mutations. 

In this cohort of patients with metastatic (N1 disease) there were no significant 

associations between the presence of EGFR or KRAS mutations and morphological 

characteristics. In addition, EGFR and KRAS mutation status was not associated with 

CCP score or mPS. 

4.3 Candidate protein biomarkers 

4.3.1 Validation of immunohistochemistry 

Three commercially available antibodies were selected for use in IHC with archived 

lung adenocarcinoma FFPE tissue. The first, 31G7, was designed to bind to the 

extracellular domain of all EGFR protein; referred to below as tEGFR. The second, 
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D6B6, was designed to bind to EGFR protein bearing a p.(E746_A750del) mutation 

but not to normal EGFR; referred to as DEL. The third (43B2) was designed to bind 

to EGFR with a p.(L858R) mutation, but not to normal EGFR); referred to below as 

L858R.  

Cases for validation of the mutation specific antibodies were identified from the NHS 

Lothian lung cancer clinical audit. Validation samples were selected on the basis of 

the EGFR mutation status, amount of tissue available and the age of the specimen. 

Tumours with a deletion in exon 19 of the EGFR gene were further characterised by 

Sanger sequencing to determine the specific mutation present. Seventeen validation 

samples were identified including: 6 samples with a p.(E746_A750) mutation, 6 

samples with a p.(L858R) mutation and 5 with no EGFR mutation detected.  

As expected, the tEGFR IHC showed basally located staining in normal bronchial 

epithelium and in normal glandular structures; whereas in tumour cells staining was 

membranous and cytoplasmic. Neither of the DEL or L858R IHC showed staining in 

non-tumour cells (figure 4.21). 

 

Figure 4.21: Validation of the mutation specific IHCs. Representative areas of normal 
respiratory epithelium (A, B and C) and submucosal glands (D, E and F) stained with 
tEGFR (A and D), DEL IHC (B and E) and L858R (C and F). The tEGFR stains the 
basal regions of respiratory epithelium and glandular structures which are unstained 
with DEL and L858R. 

A B 

D 

C 

E F 
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Two samples in the validation cohort gave unexpected results by IHC (table 4.19). 

Sample V11 was shown by therascreen® to have a c.2573T>G mutation indicating a 

p.(L858R) amino acid change; however, this sample was negative by L858R IHC. On 

further investigation, there was a small amount of staining with the L858R IHC but 

this was not sufficient to be considered positive. In order to rule out a false positive 

result by therascreen® assay the presence of an EGFR c.2573T>G p.(L858R) 

mutation in this sample was confirmed by Sanger sequencing. Sample V14 was 

classified by therascreen® as “no mutation detected” but showed positive staining 

with the L858R IHC. On review the staining was found to be nuclear as well as 

cytoplasmic and membranous; the cytoplasmic staining was often granular. Sanger 

sequencing also did not detect a mutation in this sample and the high estimated 

neoplastic cell content (80% data not shown) would have made a false negative 

unlikely.  
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Table 4.19: Summary of the validation of mutation specific IHCs. DEL and L858R 
mutation specific IHC assays were compared to the expected mutation as identified by 
DNA mutation analysis using the therascreen EGFR RGQ PCR kit and/or Sanger 
sequencing. Two samples showing discordant results are highlighted in bold. 

Sample 
no. 

EGFR mutation 
status Mutation characterised by Sanger 

DEL 
IHC 

L858R 
IHC 

V1 Deletion (exon 19) c.2236_2250del p.(E746_A750del) + - 

V2 Deletion (exon 19) c.2235_2249del p.(E746_A750del) + - 

V3 Deletion (exon 19) c.2236_2250del p.(E746_A750del) + - 

V4 Deletion (exon 19) c.2236_2250del p.(E746_A750del) + - 

V5 Deletion (exon 19) c.2236_2250del p.(E746_A750del) + - 

V6 Deletion (exon 19) c.2235_2249del p.(E746_A750del) + - 

V7 p.(L858R) - - + 

V8 p.(L858R) - - + 

V9 p.(L858R) - - + 

V10 p.(L858R) - - + 

V11 p.(L858R) c.2573T>G p.(L858R) - - 

V12 p.(L858R) - - + 

V13 No mutation - - - 

V14 No mutation No mutation - + 

V15 No mutation - - - 

V16 No mutation - - - 

V17 No mutation - - - 

Within this limited validation cohort, the DEL IHC had a sensitivity of 100% and a 

specificity of 100% whereas the L858R IHC had a sensitivity and specificity of 83.3% 

and 90.9% respectively. 

4.3.2 Mutation specific IHC 

The 17 EGFR mutated N1 lung adenocarcinomas were stained with the DEL, L858R 

and tEGFR IHCs as well as the routinely-used lung marker thyroid transcription factor 

(TTF1) (table 4.20). All tumours showed positive staining with the TTF1 and tEGFR 

IHC, although in 7 of the 17 cases the quality of staining was very poor; this was 

assumed to be caused by the quality of tissue fixation or processing. The tumours 

known to harbour p.G719X, p.L861Q, p.S768I, p.L747S mutations or insertions in 

exon 20 showed no positive staining with the DEL or L858R IHCs. Of the 3 cases with 

deletions in exon 19 of EGFR, only 2 showed positive staining with DEL IHC; all 
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three were negative with L858R IHC. The DEL negative sample was characterised by 

Sanger sequencing as c.3337_2255delinsT p.(E746_S752delELREATSinsV) rather 

than the p.E746_A750del epitope the antibody was designed to detect. Four of the 5 

cases known to have p.(L858R) mutations showed positive staining with the L858R 

IHC. One case with a suspected low level p.(L858R) mutation (detected below the 

threshold for the therascreen® assay) was negative with the L858R IHC. Sanger 

sequencing was unable to confirm the presence of this, or any other, mutation. All of 

the 5 p.(L858R) cases were negative with DEL IHC (table 4.20). 

Table 4.20: Summary of the results of IHC testing on EGFR mutation positive N1 lung 
adenocarcinomas.  

Case EGFR mutation  

T
T

F1
 

tE
G

FR
 

D
E

L
 

L
85

8R
 

9 p.2156G>C p.G719A + + - - 
10 p.G719C and p.L747S + + - - 
23 Deletion in exon 19 + + + - 
27 p.L858R + + - + 
38 Low level p.L858R + + - - 
48 p.L858R + + - + 
49 p.G719X + + - - 
51 p.L858R + + - + 
53 Deletion in exon 19 + + + - 
63 p.G719X + + - - 
99 Insertion in exon 20 + + - - 
107 Low level p.G719X + + - - 
118 p.G719X and p.S768I + + - - 
192 c.2311delinsGGGG p.N771delinsGD + + - - 
196 p.L861Gln + + - - 
203 p.L858R + + - + 
208 c.3337_2255delinsT p.Glu746_Ser752delinsV + + - - 

4.3.3 Intratumour heterogeneity of EGFR  

In the 6 cases which stained positively with either the DEL or L858R IHCs the pattern 

of staining intensity across each tumour using the mutation specific assays was 

matched by the pattern produced with tEGFR IHC; indicating that any intratumour 

heterogeneity was likely to be caused by a variation in the expression levels of the 

EGFR protein rather than intratumour heterogeneity of mutation status. There was no 

evidence to suggest intratumour heterogeneity of mutation status.  
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Eight of the 17 cases showed heterogeneous staining intensity across the tumour with 

the tEGFR IHC, and where appropriate the mutation specific assays. This 

heterogeneity was not observed in the TTF1 IHC, indicating that this variation may be 

related to the quantity of EGFR protein in different areas of the tumour rather than an 

artefact of fixation (figures 4.22 to 4.27).  

 

Figure 4.22: Photograph of TTF1 (A and B), tEGFR (C and D) and L858R IHC (E 
and F) on case 48 at low (A, C and E) and high power (B, D and F); intratumour 
variation in staining intensity with the L858R and tEGFR IHCs was not matched by 
similar variation in TTF1. 
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Figure 4.23: Photograph of TTF1 (A), tEGFR (B) and L858R IHC (C) on case 48 
showing further intratumour variation in staining intensity with the L858R and tEGFR 
IHCs not matched by similar variation in TTF1. 
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Figure 4.24: Photograph of TTF1 (A and B), tEGFR (C and D) and L858R IHC (E 
and F) on case 27 at low (A, C and E) and high power (B, D and F); intratumour 
variation in staining intensity with the L858R and tEGFR IHCs was not matched by 
similar variation in TTF1. 

 



Prognosis of resected, early-stage, lung adenocarcinoma patients 
 

Study group dataset 103 

 

Figure 4.25: Photograph of TTF1 (A and B), tEGFR (C and D) and L858R IHC (E 
and F) on case 53 at low (A, C and E) and high power (B, D and F); intratumour 
variation in staining intensity with the L858R and tEGFR IHCs was not matched by 
similar variation in TTF1. 
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Figure 4.26: Photograph of TTF1 (A and B) and tEGFR (C and D) on case 99 at low 
(A and C) and high power (B and D); intratumour variation in staining intensity with 
the tEGFR IHC was not matched by similar variation in TTF1. 

 

Figure 4.27: Photograph of TTF1 (A), tEGFR (B) and L858R IHC (C) on case 203; 
intratumour variation in staining intensity with the L858R and tEGFR IHCs was not 
matched by similar variation in TTF1. 

A B C 

A B 

C D 
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In some areas the staining intensity could be markedly different and in very closely 

associated regions of the tumour (figure 4.28). 

 

Figure 4.28: Photographs of DEL (A), L858R (C, D and E) and tEGFR (B, F) IHC 
showing differences in staining intensity of closely associated areas of tumour. 

In one case the localisation of EGFR protein showed marked differences between 

different areas of the tumour, basal localisation was seen in areas of the tumour with 

A 

F E 

D C 

B 
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lepidic growth pattern but closely associated areas with a solid growth pattern showed 

membranous and cytoplasmic staining (figure 4.29).  

 
Figure 4.29: Photograph of case 9 stained with tEGFR showing heterogeneity in the 
localisation of the EGFR protein between areas with different growth patterns; lepidic 
growth shows staining in the basal regions whereas in solid growth staining is 
membranous and cytoplasmic.  
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4.4 Discussion 
Full histopathological assessment has been carried out on a total of 207 resected lung 

adenocarcinomas comprising 907 tumour containing sections. The proportion of 

lepidic, papillary, acinar, solid and micropapillary growth patterns were estimated in 

5% increments as a percentage of each lesion as advised by Travis et al.261 However; 

since the publication of these recommendations, and the assessment of our cohort, the 

classification of lung adenocarcinomas has been further refined.14 It is now suggested 

that areas showing micropapillary growth within acinar structures should be classified 

as micropapillary; in the presented dataset efforts were made to account for both the 

acinar and micropapillary patterns in these areas.14 The cribriform pattern, which has 

in this study and previously been considered a variant of the acinar pattern,40 has been 

reported to have a poor prognosis and may be categorised as an additional pattern.14, 

59, 281-283 The presence of tumour budding, described as single cells or small clusters 

within fibrotic stroma, may also represent a poor prognosis and should, potentially, be 

classified accordingly.284 In addition, recently it has been suggested that the papillary 

growth pattern should be sub-divided into 3 categories based on an association 

between specific morphological features and patient outcomes.56  

It commonly accepted that lung adenocarcinomas are frequently a heterogeneous mix 

of 2 or more growth patterns which change from one to the next in a continuum rather 

than with a defined boundary.14, 285 In this cohort of 207 lung adenocarcinomas over 

92% of tumours contained 2 or more growth patterns and 14.5% showed elements of 

all 5. The incidence of each growth pattern was initially investigated using a 5% cut 

off, below which it was considered that false positives could be created by cutting 

artefact. The acinar growth pattern was the most commonly observed and was found 

in highest proportions, followed by the solid pattern. In tumours with only 1 growth 

pattern this was, in the majority of cases, the solid pattern. The reasons for this are 

unknown but may suggest, in these cases at least, a difference in the aetiology of this 

form of tumour growth. Common co-occurrences were found between the papillary 

and acinar or lepidic, as well as between the micropapillary and the papillary, acinar 

or solid patterns. Whereas; when the solid pattern was observed the lepidic, papillary 

and acinar patterns were less likely to be present. Whether these co-occurrences, 
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particularly between papillary and lepidic or acinar, truly reflect the morphology of 

the tumours or represent the difficulty in differentiating some growth patterns is 

unknown.  

Large studies evaluating the prognostic value of predominant growth patterns have 

not, as yet, detailed their method of assessment; although a smaller study has attempted 

to define a protocol.59 It is assumed that histopathologists should make approximate, 

‘by eye’, estimates over the whole case which can include many tumour containing 

sections. In the current study an attempt was made to define and investigate different 

methods of estimating the predominant growth pattern; however, each method still 

relied upon subjective estimates of the proportions in each section. A calculation for 

predominant pattern which incorporated the relative size of the tumour tissue in each 

section proved the most reproducible between observers and had the highest level of 

agreement with other calculations. 

An obvious criticism of the above analysis of 207 lung adenocarcinomas is that the 

primary assessment, upon which the majority of analyses were based, was carried out 

by a non-histopathologist. However, an attempt was made to assess the discordance 

between the primary researcher and a consultant histopathologist specialising in 

respiratory pathology. Indeed, studies examining inter-observer agreement between 

histopathologists in the assessment of predominant growth pattern showed similar 

levels of discordance.286 Considerable difficulties have been highlighted in 

differentiating between lepidic and papillary, lepidic and acinar and papillary and 

micropapillary patterns; whereas the identification of the solid pattern was more 

reliable.286-289 Similarly, in the current study there was greatest inter-observer 

agreement in identifying predominantly solid tumours whereas the papillary 

predominant tumours had the least agreement.  

The presence of multiple growth patterns and the ill-defined boundary between them, 

as well as poor tissue preservation, is likely to make the estimation of the proportions 

of each pattern very inaccurate. Given these difficulties in estimating the proportion of 

growth pattern it is not surprising that the number of each predominant growth pattern 

in published cohorts varies considerably; although predominantly micropapillary 
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tumours were considered relatively rare in most studies (table 4.21). In addition, the 

effect of environmental, behavioural and genetic factors on the incidence of each 

predominant growth pattern is not known. 

Table 4.21: Summary of studies of predominant growth pattern in large cohorts of 
lung adenocarcinomas.  
Study No. 

cases 
Lepidic Papillary Acinar Solid Micropapillary 

Warth et al. 2012 33 500 8.4% 4.7% 42.5% 37.6% 4.7% 
Russell et al. 201140 210 5% 12% 40% 23% 7% 
Yoshizawa et al. 
201015 

483 6.0% 29.6% 48.0% 13.9% 2.5% 

Sumiyoshi et al. 
201320 

373 9.7% 48% 16.4% 20.9% 5.1% 

Tsuta et al 201334 757 18.0% 44.6% 12.9% 16.4% 8.1% 
Zhang et al. 201445 218 21.6% 13.3% 57.3% 6.4% 1.4% 
Current study 207 9.7% 12.6% 37.8% 30.0% 12.1% 

In addition to tumour growth patterns, tumour grading characteristics were included in 

this analysis; including the presence of large amounts of: necrosis, inflammatory 

infiltrate, mitotic figures, apoptotic bodies, prominent nucleoli, cytological 

pleomorphism, scar tissue and dyscohesive tumour cells. Additional investigations, for 

example immunohistochemistry for the identification of lymphocyte types or the 

presence of macrophages, would represent a considerable increase to the routine 

running costs of a clinical histopathology service and were, therefore, not carried out. 

All included variables could be assessed from H&E stained sections with minimal 

added workload or expense. However; it should be noted that these qualitative 

variables were post hoc analyses from descriptive data captured during morphological 

assessment; no formal scoring criteria were defined, although all cases were assessed 

by the same researcher; intra-observer variation has also not been investigated. 

Tumours with the lepidic pattern were associated with fewer mitotic figures, apoptotic 

bodies, necrosis and scar tissue. Papillary tumours frequently had prominent nucleoli 

and necrosis was rare. Acinar tumours commonly had few apoptotic bodies and were 

associated with the absence of large areas of necrosis. Micropapillary tumours 

regularly had prominent nucleoli and were associated with a lack of necrosis. Solid 

tumours more commonly had large areas of necrosis and were associated with many 

more mitotic figures and apoptotic bodies; however, as these tumours typically have 
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large amounts of relatively clear cytoplasm it is possible that these features are easier 

to identify in the solid tumour growth than in other patterns. 

There was some evidence to suggest that over the whole cohort the solid growth pattern 

was likely to increase in proportion in nodal metastases compared to primary tumours. 

Whether this means that the solid pattern was most likely to metastasize or that the 

altered environment of a lymph node favoured the solid growth pattern is unknown.  

 
There are significant challenges to the routine use of comprehensive morphological 

assessment in a clinical setting including the still-evolving categories, standardisation 

of scoring methods and minimisation of inter and intra-observer discordance. It is 

hoped that the following in-depth analysis of this cohort of lung adenocarcinomas will 

help inform future practices to the benefit of lung cancer patients. 

Gene expression analysis failed in 7.8% of samples which, considering its dependence 

on RNA isolated from archived FFPE samples of resection specimens, shows this 

analysis to be relatively robust. The associated CCP score was found to be linked to 

predominant morphological grade, being lowest in predominantly lepidic tumours. In 

addition, CCP score was higher when necrosis, mitosis or apoptosis was found in a 

tumour.  

Three commercially available antibodies were validated for use in IHC on lung 

adenocarcinoma tissues: one with affinity to the extracellular domain of the EGFR 

protein (tEGFR), one to EGFR which bears a deletion on exon 19 (DEL) and one to 

p.L858R mutated EGFR (L858R). As expected, the tEGFR IHC showed basally 

located staining in normal bronchial epithelium and glandular structures whereas in 

tumour cells staining was membranous and cytoplasmic.290 A meta-analysis of studies 

investigating the diagnostic utility of mutation specific IHC has previously shown the 

overall sensitivity to be low (66% and 76% respectively) although specificity was 

found to be high (98% and 96%).221 For the DEL IHC this is likely to be, at least in 

part, caused by the presence of less common deletion mutations which would be likely 

to create a very different epitope.220, 221 In this validation the DEL IHC had a sensitivity 

and specificity of 100%; although, only cases classified as having a 
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p.Glu746_Ala750del mutation were included. The L858R IHC had a sensitivity of 

83.3% and a specificity of 90.9% caused by one false negative and one false positive 

result, in both cases Sanger sequencing confirmed the original molecular analysis and 

the reasons for these non-concordant results are not known. It is possible that, in cases 

showing a false negative result by IHC, the mutated EGFR allele was not expressed or 

that a second mutation was present within the epitope. The false positive result could 

have been caused by a mutation present at a low allele frequency undetectable by 

molecular methods; although the relatively high neoplastic cell content of this sample 

makes this explanation unlikely. The unusual staining pattern observed in this sample 

may favour non-specific binding to another epitope as the most likely explanation. 

Other groups have suggested that mutation specific IHCs have diagnostic utility as a 

screen prior to nucleic acid-based mutation analysis whereby any patient whose 

sample was found to be positive by IHC would proceed to EGFR targeted therapy 

without molecular mutation analysis. However, these studies were carried out in East 

Asian laboratories where the proportion of lung cancers with EGFR mutations is much 

higher. In a Caucasian population, with an EGFR mutation rate of 10.5% (chapter 3), 

there would be minimal cost savings from this algorithm (data not shown). In addition, 

the low specificity of the L858R IHC would mean patients with false positive results 

would wrongly receive therapy with EGFR TKI even though, as EGFR wild-type 

patients, they would be more likely to benefit from chemotherapy.95 Although this 

validation showed that the mutation specific IHCs would be unsuitable for clinical use; 

they provide a powerful tool to examine the heterogeneity of EGFR mutations between 

individual cells within a tumour which is as-yet unmatched by less cost effective 

molecular techniques. 

Mutation specific IHC assays have been used to show that intratumour heterogeneity 

of EGFR mutation status, whereby a mutation is not present in all tumour cells, was 

present in a large proportion of lung adenocarcinomas and correlated with poorer 

response to EGFR TKIs.223, 291-293 In contrast one group found mutated EGFR protein 

to be homogeneously expressed across the tumours in their cohort.294 Without direct 

cell-to-cell comparison with an IHC which stains all EGFR protein, whether mutated 

or not, it is impossible to determine if observed heterogeneity is a result of a difference 
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in mutation status or in the quantity of EGFR protein in each cell. In our cohort, the 

pattern of staining intensity with mutation-specific IHCs across each tumour was 

matched by the pattern produced with tEGFR IHC indicating that any intratumour 

heterogeneity was likely to be caused by a variation in the expression levels of the 

EGFR protein rather than intratumour heterogeneity of mutation status. Although; in 

this small cohort, and with a limited set of mutation specific antibodies, it is not 

possible to rule out intratumour heterogeneity of EGFR mutation status. In addition, 

in cases with heterogeneous staining, the positive control (TTF1) was largely uniform 

across the tumours and therefore the heterogeneity of EGFR protein expression was 

assumed to be independent of tissue quality. It is possible that the routinely used TTF1 

IHC was more robust than the experimental EGFR targeting assays and would be less 

affected by poor tissue quality. However; variation in staining intensity was, in some 

cases, very pronounced and observed in very closely associated tumour cells; 

suggesting that this heterogeneity was unlikely to be an artefact of tissue fixation. The 

clinical effect of variation in expression levels is largely unknown but it is conceivable 

that the quantity of mutated EGFR protein would affect the effective dose of EGFR 

TKIs.  One case showed marked differences in the localisation of EGFR protein across 

the tumour an observation that has been reported by other groups.295, 296 The clinical 

effect of differing localisation of EGFR is unknown. 

This study has provided evidence for the presence of intratumour heterogeneity in 

staining intensity suggesting heterogeneity in EGFR protein expression levels and 

localisation within the cell in NSCLCs. This heterogeneity may have an effect on a 

patient’s response to EGFR tyrosine kinase inhibitors and may help to refine predictive 

models. Further work is required in a larger retrospective cohort of patients who have 

been treated with EGFR targeted therapies in order to explore the relationship between 

IHC staining and response to therapy and a quantitative measure of EGFR protein 

expression would aid this research. In addition; development of further mutation 

specific antibodies, particularly to the p.T790M mutation, would be a powerful tool in 

investigating mechanisms of acquired resistance.
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Chapter 5 Prognosis 

5.1 Background 
Many studies have reported that tumour growth patterns identified in lung 

adenocarcinomas can help classify patients according to their likely prognosis; with 

the lepidic pattern thought to be associated with a good prognosis and the solid and 

micropapillary patterns with poorer outcomes.15, 17, 21, 25, 33, 34, 42, 48 It has been proposed 

that, as part of the routine reporting of resected lung adenocarcinomas, 

histopathologists should estimate the proportion of lepidic, papillary, acinar and 

micropapillary growth patterns in 5% increments and determine the predominant 

growth pattern.261, 285 However, it is widely known that lung adenocarcinomas are 

highly morphologically heterogeneous and few details of the method used to make this 

judgement have been published.  

Unlike other malignancies, there is no widely accepted system of tumour grading in 

lung adenocarcinomas. However, some morphological features have been proposed as 

predictors of patient outcomes including: the presence of necrosis,15, 59, 64, 65 mitotic 

figures,59, 283 apoptotic bodies,61 large numbers of inflammatory cells,69, 71-74, 76-79 

cytological pleomorphism59, 63, 67 and scar tissue.67  

In order to investigate the prognostic significance of morphological variability in 

patients with pulmonary adenocarcinomas a cohort of 207 resected stage I and II lung 

adenocarcinomas underwent comprehensive morphological analysis as described in 

chapters 2 and 4. Variables derived from this analysis included: the presence of each 

growth pattern, the proportion of each growth pattern, the predominant growth pattern 

and morphological grade, the second-most predominant growth pattern, the number of 

growth patterns and the presence of necrosis, mitosis, apoptosis, nucleoli, 

pleomorphism, scar tissue, inflammatory cells and dyscohesive tumour cells. In 

addition, 1 section from each tumour was sent to Myriad Genetics Inc. for gene 

expression analysis of 31 cell-cycle related genes.297 The resulting CCP score was used 

together with the clinical stage to calculate a molecular prognostic score (mPS, as 

defined in chapter 2) which has been previously reported to be an indicator of 

prognosis in lung adenocarcinoma patients.239, 263, 298 Univariable and multivariable 
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analyses were carried out on all available variables using Cox’s proportional hazards 

to identify characteristics predictive of prognosis. However, this form of multivariable 

analysis is not without its limitations as assessment of interdependence is laborious in 

datasets with a large number of variables and strategies to correct for type I error make 

significant p-values difficult to achieve. Classification and Regression Tree (CART) 

analysis is not affected by these considerations and has been used in this study as an 

additional method of multivariable analysis and to design possible decision trees for 

the prognostication of lung adenocarcinoma patients. 

5.2 The prognostic value of morphological, and 
molecular characteristics 

From the cohort of 208 patients, 158 (76%) died within the timeframe studied although 

47 were not considered to be as a result of their lung cancer and were therefore 

censored in survival analysis. The disease specific survival (DSS) was calculated from 

the date of resection to the date of death where relevant and censored for non-lung 

cancer related death. The log rank test (Mantel-Cox) showed that nodal status (N 

stage), and clinical stage were significantly associated with DSS (0.0005 and 0.001 

respectively). Compared to N0 patients those with N1 disease had an HR of 2.158 

(95% CI 1.476 to 3.156, p< 0.005). Compared to clinical stage Ia patients there was a 

trend towards worse outcomes for stage Ib patients which did not reach statistical 

significance (p= 0.064). The differences between stage Ia and stage IIa and IIb patients 

were more marked with HRs of 3.150 (95% CI 1.730 to 5.733, p< 0.0005) and 2.223 

(95% CI 1.104 to 4.477, p= 0.025) respectively. T stage showed a trend towards 

association with DSS (p= 0.084). and univariable analysis with Cox’s proportional 

hazards model shows that T2a and T2b patients had significantly poorer DSS than T1a 

patients; HR for T2a was 2.157 (95% CI 1.129 to 4.123 p= 0.020) and for T2b 2.617 

(95% CI 1.253 to 5.68 p= 0.010). T3 patients did not have significantly poorer 

outcomes which may have been affected by the small number of patients in this group 

(n=16). Pleural involvement showed no association with DSS (p= 0.875) (figure 6.1).  
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Figure 6.1: Kaplan-Meier’s survival curves showing the associations between disease 
specific survival and T stage (A), N stage (B), pleural involvement (PI) (C) and clinical 
stage (D). Significance, calculated using the Mantel-Cox log-rank test, are shown to 
the right of each graph. 

Spearman’s rank correlation showed that the lesion size was inversely correlated with 

DSS; indicating, not surprisingly, that as the size of the tumour increased the length of 

survival decreased (rho -0.192, p= 0.006). 

5.2.1 Presence of individual growth patterns 

Lepidic 

CART analysis identified a threshold of 3.5% lepidic growth across the whole primary 

lesion; tumours with less than or equal to 3.5% lepidic growth were classified as 

negative for the lepidic pattern. Use of the 3.5% threshold, compared to any proportion 

of lepidic growth, was associated with improved significance in associations with 

C D 

A B 
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routine pathological characteristics (table 6.1). The presence of greater than 3.5% 

lepidic pattern was associated with smaller lesion size (p= 0.018) (figure 6.2), lower T 

stage (χ2 test for trend (χ2T) p= 0.016) and clinical stage (χ2T p= 0.001) and N0 disease 

(p= 0.045). There was also a trend toward a lower frequency of pleural involvement in 

lepidic positive tumours (p= 0.066) and the proportion of lepidic growth was 

significantly lower in tumours with pleural involvement (p= 0.034) (figure 6.2). 
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Table 6.1: Summary of the associations between the presence of the lepidic growth pattern (at any proportion or using a 3.5% threshold) 
and T stage, N stage, pleural involvement and clinical stage. Significance was estimated using χ2 (and χ2T). 

 Lepidic pattern (at any proportion) Lepidic pattern (3.5% threshold)  
Not present Present Significance ≤3.5% >3.5% Significance Total 

T stage   p= 0.271  
(χ2T p= 0.067) 

  p= 0.072  
(χ2T p= 0.016) 

 

 

T1a 12 (14.6%) 21 (16.8%) 14 (13.5%) 19 (18.4%) 33 
T1b 9 (11.0%) 23 (18.4%) 12 (11.5%) 20 (19.4%) 32 
T2a 37 (45.1%) 59 (47.2%) 47 (45.2%) 49 (47.6%) 96 
T2b 15 (18.3%) 15 (12.0%) 21 (20.2%) 9 (8.7%) 30 
T3 9 (11.0%) 7 (5.6%) 10 (9.6%) 6 (5.8%) 16 

N stage   p= 0.703  
 

  p= 0.045   

 
N0 53 (64.6%) 84 (67.2%) 62 (59.6%) 75 (72.8%) 137 
N1 29 (35.4%) 41 (32.8%) 42 (40.4%) 28 (27.2%) 70 

Pleural involvement   p= 0.070  
 

  p= 0.066   

 
Not involved 47 (57.3%) 87 (69.6%) 61 (58.7%) 73 (70.9%) 134 
Involved 35 (42.7%) 38 (30.4%) 43 (41.3%) 30 (29.1%) 73 

Clinical stage   p= 0.070  
(χ2T p= 0.029) 

  p= 0.013  
(χ2T p= 0.001) 

 
 Ia 13 (15.9%) 33 (26.4%) 16 (15.4%) 30 (29.1%) 46 

Ib 25 (30.5%) 36 (28.8%) 27 (26.0%) 34 (33.0%) 61 
IIa 26 (31.7%) 43 (34.4%) 40 (38.5%) 29 (28.2%) 69 
IIb 18 (22.0%) 13 (10.4%) 21 (20.2%) 10 (9.7%) 31 

Total 82 (100%) 125 (100%)  104 (100%) 103 (100%)  207 
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Figure 6.2: Boxplots showing statistically significant associations between the 
presence of the lepidic pattern (using a threshold of 3.5%) (p= 0.018) and lesion size 
(A) and the proportion of lepidic growth and pleural involvement (p= 0.034) (B). 
Significance was measured using the Mann-Whitney U test. 

There was, however, no association between DSS and the presence of the lepidic 

pattern at any proportion or with a threshold of 3.5% (p= 0.864 and 0.687 respectively) 

(figure 6.3). 

 
Figure 6.3: Kaplan-Meier’s survival curves showing no significant difference in DSS 
between groups with and without the lepidic pattern at any proportion (A) or using 
3.5% as a threshold (B). The statistical significance was assessed by the Mantel-Cox 
log rank test, and is shown to the right of each graph. 

A B 

A B 
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Papillary 

CART analysis identified 8.5% papillary growth as a threshold above which lung 

adenocarcinoma patients had a more favourable prognosis. Use of the 8.5% papillary 

pattern cut-off led to small improvements in the significance of associations with nodal 

status and pleural involvement, but a decrease in the association with clinical stage and 

T stage; indicating that the 8.5% threshold for papillary growth may not have clinical 

utility (table 6.2). Tumours containing any amount of the papillary growth pattern were 

more likely to be a higher T stage (χ2T p= 0.002) and larger size (p= 0.041) (table 6.2 

and figure 6.4).  
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Table 6.2: Summary of the associations between the presence of the papillary growth pattern (at any level or with 8.5% as a threshold) and 
T stage, N stage, pleural involvement and clinical stage. Significance was estimated using χ2 (and χ2T). 

 Papillary pattern (at any proportion) Papillary pattern (8.5% cut off)  
Not present Present Significance ≤8.5% >8.5% Significance Total 

T stage   p= 0.006 
(χ2T p= 0.002) 

  p= 0.228 
(χ2T p= 0.124) 

 

 

1a 24 (26.1%) 9 (7.8%) 26 (20.5%) 7 (8.8%) 33 
1b 12 (13.0%) 20 (17.4%) 17 (13.4%) 15 (18.8%) 32 
2a 40 (43.5%) 56 (48.7%) 58 (45.7%) 38 (47.5%) 96 
2b 12 (13.0%) 18 (15.7%) 17 (13.4%) 13 (16.2%) 30 
3 4 (4.3%) 12 (10.4%) 9 (7.1%) 7 (8.8%) 16 

N stage   p= 0.393   p= 0.127  

 
N0 58 (63.0%) 79 (68.7%) 79 (62.2%) 58 (72.5%) 137 
N1 34 (37.0%) 36 (31.3%) 48 (37.8%) 22 (27.5%) 70 

Pleural involvement   p= 0.672   p= 0.593  

 
Not involved 61 (66.3%) 73 (63.5%) 84 (66.1%) 50 (62.5%) 134 
Involved 31 (33.7%) 42 (36.5%) 43 (33.9%) 30 (37.5%) 73 

Clinical stage   p= 0.622 
(χ2T p= 0.341) 

  p= 0.729 
(χ2T p= 0.791) 

 
 Ia 23 (25.0%) 23 (20.0%) 29 (22.8%) 17 (21.2%) 46 

Ib 26 (28.3%) 35 (30.4%) 34 (26.8%) 27 (33.8%) 61 
IIa 32 (34.8%) 37 (32.2%) 45 (35.4%) 24 (30.0%) 69 
IIb 11 (12.0%) 20 (17.4%) 19 (15.0%) 12 (15.0%) 31 

Total 92 (100%) 115 (100%)  127 (100%) 80 (100%)  207 
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Figure 6.4: Box plots showing the relationship between the presence of the papillary 
pattern, at any proportion, and lesion size (Mann-Whitney U test p= 0.041) (A) and 
the proportion of papillary pattern and T stage (Kruskall Wallis test p= 0.030) (B). 

 
In survival analysis; the use of an 8.5% threshold, compared to any proportion, for the 

presence of the papillary pattern showed an improved association with DSS with 

longer survival in patients with >8.5% papillary pattern (p= 0.035); HR, calculated by 

univariable Cox’s proportional hazards analysis, was 0.657 (95% CI 0.443 to 0.976 p= 

0.037) (figure 6.5).  

 
Figure 6.5: Kaplan-Meier’s survival curves showing the relationship between disease 
specific survival and presence of any (A), or >8.5% (B), papillary growth pattern. The 
statistical significance of the relationship, as assessed by the Mantel-Cox log rank test, 
is shown to the right of each graph. 

A B 

A B 
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Acinar 

CART analysis was unable to identify a clinically relevant threshold which could be 

applied to the proportion of acinar growth pattern based on DSS. The presence of the 

acinar growth pattern at any proportion showed no significant associations with T 

stage, N stage, pleural involvement or clinical stage (table 6.3). 

Table 6.3: Summary of the relationships between the presence of the acinar growth 
pattern at any proportion and T stage, N stage, pleural involvement and clinical stage. 
Significance was calculated using the χ2 test (and χ2T) unless otherwise indicated.  

 Acinar pattern (at any proportion) 
Not present Present Total Significance 

T stage p= 0.926a 
(χ2T p= 1.0) 

 

1a 3 (14.3%) 30 (16.1%) 33 
1b 4 (19.0%) 28 (15.1%) 32 
2a 9 (42.9%) 87 (46.8%) 96 
2b 4 (19.0%) 26 (14.0%) 30 
3 1 (4.8%) 15 (8.1%) 16 

N stage p= 0.662 

 
N0 13 (61.9%) 124 (66.7%) 137 
N1 8 (38.1%) 62 (33.3%) 70 

Pleural involvement p= 0.246 

 
Not involved 16 (76.2%) 118 (63.4%) 134 
Involved 5 (23.8%) 68 (36.6%) 73 

Clinical stage p= 0.892a 
(χ2T p= 0.810)  Ia 4 (19.0%) 42 (22.6%) 46 

Ib 7 (33.3%) 54 (29.0%) 61 
IIa 6 (28.6%) 63 (33.9%) 69 
IIb 4 (19.0%) 27 (14.5%) 31 

Total 21 (100%) 186 (100%) 207  
aFisher’s exact test estimated using the Monte Carlo simulation. 
 
Although these characteristics showed no correlation with the presence of the acinar 

pattern, survival analysis showed that patients with any acinar growth pattern in their 

tumours tended to have poorer DSS, however this fell short of statistical significance 

(p= 0.054) (figure 6.6); which may be due to the small number of tumours without the 

acinar pattern (n=21). 
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Figure 6.6: Kaplan-Meier’s survival curves showing a trend towards an association 
between DSS and the presence of the acinar growth pattern at any proportion. 
Statistical significance, calculated using the Mantel-Cox log rank test, is shown to the 
right of the graph. 

  
Solid 

CART analysis revealed no viable threshold that could be applied to the proportion of 

the solid growth pattern in a patient’s tumour based on DSS. There were no statistically 

significant correlations between the presence of any solid growth and lesion size, T 

stage, N stage, pleural involvement or clinical stage (table 6.4). 
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Table 6.4: Summary of the relationships between the presence of the solid growth 
pattern at any proportion and T stage, N stage, pleural involvement and clinical stage. 
Significance was calculated using the χ2 test (and χ2T) unless otherwise indicated.  

 Solid pattern (at any proportion) 
Not present Present Total Significance 

T stage p= 0.695 
(χ2T p= 0.657) 

 

1a 12 (16.9%) 21 (15.4%) 33 
1b 11 (15.5%) 21 (15.4%) 32 
2a 30 (42.3%) 66 (48.5%) 96 
2b 10 (14.1%) 20 (14.7%) 30 
3 8 (11.3%) 8 (5.9%) 16 

N stage p= 0.534 

 
N0 49 (69.0%) 88 (64.7%) 137 
N1 22 (31.0%) 48 (35.3%) 70 

Pleural involvement p= 0.750 

 
Not involved 47 (66.2%) 87 (64.0%) 134 
Involved 24 (33.8%) 49 (36.0%) 73 

Clinical stage p= 0.792 
(χ2T p= 0.786)  Ia 17 (23.9%) 29 (21.3%) 46 

Ib 18 (25.4%) 43 (31.6%) 61 
IIa 24 (33.8%) 45 (33.1%) 69 
IIb 12 (16.9%) 19 (14.0%) 31 

Total 71 (100%) 136 (100%) 207  
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Kaplan Meier’s survival analysis showed no associations between the presence of the 

solid growth pattern, at any proportion, and DSS (p= 0.575) (fig. 6.7). 

 
Figure 6.7: Kaplan-Meier’s survival curves grouped on the basis of presence or 
absence of the solid growth pattern. Statistical significance, calculated using the 
Mantel-Cox log rank test, is shown to the right of the graph. 

Micropapillary pattern 

CART analysis was unable to define a threshold for the proportion of micropapillary 

pattern which could group patients according to their DSS. However, the presence of 

the micropapillary pattern (at any proportion) was significantly associated with a 

higher T stage (χ2T p= 0.042), clinical stage (χ2T p= 0.024), N1 disease (p= 0.015) and 

pleural involvement (p= 0.014) (table 6.5). The association with nodal status was 

further confirmed by the increased proportion of micropapillary pattern in patients 

with N1 disease (p= 0.004) (figure 6.8).  
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Table 6.5: Showing associations between the presence of the micropapillary pattern 
at any proportion with T stage, N stage, pleural involvement and clinical stage. The 
significance was assessed using the χ2 test (and χ2 T). 

 Micropapillary pattern (at any proportion) 
Not present Present Total Significance 

T stage p= 0.031 
(χ2T p= 0.042) 

 

1a 20 (26.0%) 13 (10%) 33 
1b 9 (11.7%) 23 (17.7%) 32 
2a 32 (41.6%) 64 (49.2%) 96 
2b 12 (15.7%) 18 (13.8%) 30 
3 4 (5.2%) 12 (9.2%) 16 

N stage p= 0.015 

 
N0 59 (76.6%) 78 (60%) 137 
N1 18 (23.4%) 52 (40%) 70 

Pleural involvement p= 0.014 

 
No pleural invasion 58 (75.3%) 76 (58.5%) 64 
Pleural invasion 19 (24.7%) 54 (41.5%) 73 

Clinical stage p= 0.161 
(χ2T p= 0.024) 

 

Ia 22 (28.6%) 24 (18.5%) 46 
Ib 25 (32.5%) 36 (27.7%) 61 
IIa 22 (28.6%) 47 (36.2%) 69 
IIb 8 (10.4%) 23 (17.7%) 31 

Total 77 (100%) 130 (100%) 207  
 

 
Figure 6.8: Box plot showing the association between nodal status and the proportion 
of micropapillary growth pattern. Statistical significance was calculated using the 
Mann-Whitney U test (p= 0.004). 
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Despite these seemingly prognostic associations, there was no significant difference 

in DSS between patients with and without the micropapillary growth pattern in their 

tumours (p= 0.240) (figure 6.9). 

 
Figure 6.9: Kaplan Meier’s survival curves for patients with or without the 
micropapillary growth pattern in their tumours (at any proportion). Statistical 
significance, calculated using the Mantel-Cox log rank test, is shown to the right of 
the graph. 

5.2.2 Predominant growth pattern 

Predominant growth pattern was significantly associated with nodal status (p= 0.021); 

whereas, there was no significant association between predominant growth pattern and 

T stage, pleural involvement or clinical stage (χ2T p= 0.159, χ2 0.208 and χ2T 0.710 

respectively) (table 6.6). 
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Table 6.6: Details of the relationships between predominant growth pattern and T stage, N stage, pleural involvement and clinical stage. 
Significance was calculated using the χ2 test (and χ2T) unless otherwise indicated. 
 Predominant pattern Total Significance 

Lepidic Papillary Acinar Solid Micropapillary 
T stage p= 0.479a 

(χ2T p= 0.159)  1a 4 (20.0%) 1 (3.8%) 15 (19.7%) 9 (15.0%) 4 (16.0%) 33 
1b 3 (15.0%) 3 (11.5%) 10 (13.2%) 8 (13.3%) 8 (32.0%) 32 
2a 9 (45.0%) 14 (53.8%) 31 (40.8%) 33 (55.0%) 9 (36.0%) 96 
2b 2 (10.0%) 4 (15.4%) 13 (17.1%) 8 (13.3%) 3 (12.0%) 30 
3 2 (10.0%) 4 (15.4%) 7 (9.2%) 2 (3.3%) 1 (4.0%) 16 

N stage p= 0.021 

 
N0 14 (70.0%) 20 (76.9%) 56 (73.7%) 37 (61.7%) 10 (40.0%) 137 
N1 6 (30.0%) 6 (23.1%) 20 (26.3%) 23 (38.3%) 15 (60.0%) 70 

Pleural involvement p= 0.208 

 
Not involved 16 (80.0%) 16 (61.5%) 46 (60.5%) 36 (60.0%) 20 (80.0%) 134 
Involved 4 (20.0%) 10 (38.5%) 30 (39.5%) 24 (40.0%) 5 (20.0%) 73 

Clinical stage p= 0.167 
(χ2T p= 0.710)  

 

Ia 5 (25.0%) 3 (11.5%) 23 (30.3%) 8 (13.3%) 7 (28.0%) 46 
Ib 6 (30.0%) 10 (38.5%) 19 (25.0%) 24 (40.0%) 2 (8.0%) 61 
IIa 6 (30.0%) 8 (30.8%) 22 (28.9%) 21 (35.0%) 12 (48.0%) 69 
IIb 3 (15.0%) 5 (19.2%) 12 (15.8%) 7 (11.7%) 4 (16.0%) 31 

Total 20 (100%) 26 (100%) 76 (100%) 60 (100%) 25 (100%) 207  
aFisher’s exact test approximated using the Monte Carlo simulation 
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Overall there was no significant difference in DSS based on predominant growth 

pattern (p= 0.285) (figure 6.10). However, univariable Cox’s proportional hazards 

analysis showed that patients with predominantly papillary tumours tended to have a 

lower DSS than those with predominantly micropapillary tumours; with an HR of 

0.457 (95% CI 0.200 to 1.045 p= 0.064). There was no evidence of a significant 

difference between patients with predominantly lepidic, acinar, solid or micropapillary 

tumours. Patients with predominantly lepidic tumours were shown to have 

unexpectedly poor prognoses; however, of the 20 tumours classified as predominantly 

lepidic, 7 lived for at least 10 years and 1 died 0 months after their resection suggesting 

this was as a result of complications post-surgery rather than recurrence of their lung 

cancer. Of the remaining 12 patients, 8 had involved lymph nodes and/or pleura which 

would indicate an increased chance of incomplete removal of the disease and therefore 

lead to a poorer prognosis post resection.  

 
Figure 6.10: Kaplan Meier’s curves for patients with different predominant growth 
patterns in their tumours. Statistical significance, calculated using the Mantel-Cox log 
rank test, is shown to the right of the graph. 

Given the relatively small size of the cohort it is possible that the number of patients 

in each group was too small to show significant trends. Therefore; each lesion was also 

classified by predominant morphological grade whereby predominantly lepidic 

tumours were considered low grade, predominantly acinar or papillary tumours were 

considered intermediate grade and solid or micropapillary predominant tumours were 
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considered high grade.14 Predominantly high grade lesions were more likely than low 

or intermediate grade to have involved lymph nodes (p= 0.020). However, there was 

no significant association between predominant morphological grade and lesion size, 

T stage, pleural involvement or clinical stage (table 6.7).  
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Table 6.7: The relationship between predominant morphological grade and T stage, N stage, pleural involvement and clinical stage. 
Significance was calculated using χ2 test (and χ2T).  
 Morphological grade Total Significance 

Low Intermediate High 
T stage p= 0.643 

(χ2T p= 0.404)   1a 4 (20.0%) 16 (15.7%) 13 (15.3%) 33 (15.9%) 
1b 3 (15.0%) 13 (12.7%) 16 (18.8%) 32 (15.5%) 
2a 9 (45.0%) 45 (44.1%) 42 (49.4%) 96 (46.4%) 
2b 2 (10.0%) 17 (16.7%) 11 (12.9%) 30 (14.5%) 
3 2 (10.0%) 11 (10.8%) 3 (3.5%) 16 (7.7%) 

N stage p= 0.020 

 
N0 14 (70.0%) 76 (74.5%) 47 (55.3%) 137 (66.2%) 
N1 6 (30.0%) 26 (25.5%) 38 (44.7%) 70 (33.8%) 

Pleural involvement p= 0.248 

 
Not involved 16 (80.0%) 62 (60.8%) 56 (65.9%) 134 (64.7%) 
Involved 4 (20.0%) 40 (39.2%) 29 (34.1%) 73 (35.3%) 

Clinical stage p= 0.787 
(χ2T p= 0.491)  

 

Ia 5 (25.0%) 26 (25.5%) 15 (17.6%) 46 (22.2%) 
Ib 6 (30.0%) 29 (28.4%) 26 (30.6%) 61 (29.5%) 
IIa 6 (30.0%) 30 (29.4%) 33 (38.8%) 69 (33.3%) 
IIb 3 (15.0%) 17 (16.7%) 11 (12.9%) 31 (15.0%) 

Total 20 (100%) 102 (100%) 85 (100%) 207  
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There was also no significant association between the predominant morphological 

grade and DSS (p= 0.714) (figure 6.11).  

 
Figure 6.11: Kaplan-Meier’s curves showing the relationship between the 
morphological grade of the predominant growth pattern and DSS; predominantly 
lepidic tumours were considered low grade, predominantly papillary or acinar 
tumours were intermediate grade and predominantly solid or micropapillary tumours 
were high grade. Statistical significance, calculated using the Mantel-Cox log rank 
test, is shown to the right of the graph. 

The second most predominant growth pattern was also calculated and assessed for its 

utility as a predictor of clinical outcomes. Patients whose tumours had acinar or 

micropapillary as the second most common pattern were more likely to have involved 

lymph nodes (p= 0.047) and higher clinical stage disease (χ2T p= 0.010) (table 6.8). 

However, survival analysis showed no significant relationship with DSS (p= 0.998) 

(figure 6.12). 
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Table 6.8: The relationship between second predominant pattern in each tumour and T stage, N stage, pleural involvement and clinical 
stage. Significance was calculated using χ2 test (and χ2T) unless otherwise indicated. 
 Second predominant pattern Total Significance 

Lepidic Papillary Acinar Solid Micropapillary   
T stage p= 0.195a 

(χ2T p= 0.104) 

 

1a 7 (19.4%) 3 (10.3%) 10 (14.1%) 8 (23.5%) 3 (11.1%) 31 (15.7%) 

1b 8 (22.2%) 5 (17.2%) 12 (16.9%) 5 (14.7%) 1 (3.7%) 31 (15.7%) 

2a 16 (44.4%) 16 (55.2%) 37 (52.1%) 13 (38.2%) 11 (40.7%) 93 (47.2%) 

2b 2 (5.6%) 2 (6.9%) 7 (9.9%) 6 (17.6%) 10 (37.0%) 27 (13.7%) 

3 3 (8.3%) 3 (10.3%) 5 (7.0%) 2 (5.9%) 2 (7.4%) 15 (7.6%) 

N stage p= 0.047 

 
N0 30 (83.3%) 22 (75.9%) 41 (57.7%) 23 (67.6%) 15 (55.6%) 131 
N1 6 (16.7%) 7 (24.1%) 30 (42.3%) 11 (32.4%) 12 (44.4%) 66 

Pleural involvement p= 0.491 

 
Not involved 

25 (69.4%) 19 (65.5%) 46 (64.8%) 22 (64.7%) 13 (48.1%) 
125 

(63.5%) 
Involved 11 (30.6%) 10 (34.5%) 25 (35.2%) 12 (35.3%) 14 (51.9%) 72 (36.5%) 

Clinical stage p= 0.033 
(χ2T p= 0.010) 

 

Ia 11 (30.6%) 7 (24.1%) 12 (16.9%) 12 (35.3%) 3 (11.1%) 45 
Ib 14 (38.9%) 11 (37.9%) 20 (28.2%) 6 (17.6%) 7 (25.9%) 58 
IIa 8 (22.2%) 7 (24.1%) 31 (43.7%) 12 (35.3%) 8 (29.6%) 66 
IIb 3 (8.3%) 4 (13.8%) 8 (11.3%) 4 (11.8%) 9 (33.3%) 28 

Total 36 (100%) 29 (100%) 71 (100%) 34 (100%) 27 (100%) 197  
aFisher’s exact test estimated using the Monte Carlo simulation. 
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Figure 6.12: Kaplan-Meier’s survival curves showing the relationship between DSS 
and the second predominant pattern. Statistical significance, calculated using the 
Mantel-Cox log rank test, is shown to the right of the graph. 

There was a trend towards poorer outcomes in patients whose tumours had 3 or more 

growth patterns, but this did not reach statistical significance (p= 0.082). The 

proportion of each growth pattern did not show any significant correlations with DSS 

using Spearman’s rank correlation (lepidic p= 0.393, acinar p= 0.459, papillary p= 

0.253, solid p= 0.672, micropapillary p= 0.253). 

5.2.3 Features relating to tumour grade 

Necrosis 

Large amounts of necrotic tissue were noted in 58 (30.2%) of the 192 cases which 

could be adequately assessed. Necrosis was more common in larger tumours (Mann-

Whitney U test p= 0.002), those with a higher T stage (χ2T p= 0.004) and those with a 

higher clinical stage (χ2T p= 0.007); although, both T stage and clinical stage are 

related to tumour size (table 6.9).  
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Table 6.9: Associations between the presence of large amounts of necrosis and T stage 
and clinical stage. Significance was assessed using χ2 test (and χ2T). 

 Necrosis 
Not present Present Total Significance 

T stage p= 0.016  
(χ2T p= 0.004) 

 

1a 29 (21.6%) 3 (5.2%) 32 
1b 20 (14.9%) 11 (8.2%) 31 
2a 66 (49.3%) 27 (46.6%) 93 
2b 10 (7.5%) 10 (17.2%) 20 
3 9 (6.7%) 7 (12.1%) 16 

Clinical stage p= 0.022 
(χ2T p= 0.007) 

 

Ia 38 (28.4%) 7 (12.1%) 45 
Ib 39 (29.1%) 19 (32.8%) 58 
IIa 41 (30.6%) 17 (29.3%) 58 
IIb 16 (11.9%) 15 (25.9%) 31 

Total 134 (100%) 58 (100%) 192  

 
Mitosis 

A high mitotic rate was more common in tumours with higher T stage (χ2T p= 0.047). 

Although the χ2 test indicated a significant difference in clinical stage between tumours 

with and without frequent mitosis (p= 0.044), χ2 test for trend indicated no consistent 

relationship with increasing clinical stage and therefore no significant association (p= 

0.099) (table 6.10).  

Table 6.10: Association between the presence of large numbers of mitotic figures and 
overall disease stage. Significance was assessed using the χ2 test (and χ2T). 
  

Few mitotic 
figures 

Many mitotic 
figures 

Total Significance 

T stage p= 0.349  
(χ2T p= 0.047)  T1a 18 (21.2%) 14 (13.2%) 32 

T1b 15 (17.6%) 16 (15.1%) 31 
T2a 41 (48.2%) 52 (49.1%) 93 
T2b 6 (7.1%) 14 (13.2%) 20 
T3 5 (5.9%) 10 (9.4%) 15 

Clinical stage p= 0.044  
(χ2T p= 0.099) 

 

Ia 26 (30.6%) 19 (17.9%) 45 
Ib 21 (24.7%) 37 (34.9%) 58 
IIa 29 (34.1%) 29 (27.4%) 58 
IIb 9 (10.6%) 21 (19.8%) 30 

Total 85 (100%) 106 (100%) 191  
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Prominent nucleoli 

The presence of large numbers of prominent nucleoli was more common in later 

clinical stage tumours (χ2 test for trend p= 0.005) (table 6.11).  

Table 6.11: Association between the presence of large numbers of prominent nucleoli, 
disease stage and the presence of the micropapillary pattern. Significance was 
assessed using χ2 test (and χ2T). 

 Nucleoli 
Inconspicuous Prominent Total Significance 

Clinical stage 
p= 0.029  

(χ2T p= 0.005) 

 

Ia 32 (31.4%) 13 (14.4%) 45  
Ib 30 (29.4%) 28 (31.1%) 58 
IIa 28 (27.5%) 30 (33.3%) 58 
IIb 12 (11.8%) 19 (31.7%) 31 

Total 102 (100%) 90 (100%) 192  

 
Presence of scar tissue 

The presence of scar tissue in the tumours was more common in tumours from patients 

with N0 disease than those with involved lymph nodes (p= 0.022) and increasing 

clinical stage was associated with reduced incidence of tumour scar tissue (χ2T p= 

0.004) (table 6.12).  

Table 6.12: Correlation of the presence of tumour scar tissue with nodal status, 
disease stage and predominant pattern. Significance was assessed using χ2 test (and 
χ2T). 

 Scar tissue 
Not present Present Total Significance 

N stage p= 0.022 

 
N0 94 (60.3%) 29 (80.6%) 123 
N1 62 (39.7%) 7 (24.1%) 69 

Disease stage p= 0.014 
(χ2T p= 0.004) 

 

Ia 33 (21.2%) 12 (33.3%) 45 
Ib 42 (26.9%) 16 (44.4%) 58 
IIa 52 (33.3%) 6 (16.7%) 58 
IIb 29 (18.6%) 2 (5.6%) 31 

Total 156 (100%) 36 100%) 192  



Prognosis of resected, early-stage, lung adenocarcinoma patients 
 

Prognosis 137 

There were no statistically significant associations between the presence of large 

numbers of apoptotic bodies, cytological pleomorphism, or inflammatory infiltrate and 

T stage, N stage, pleural involvement or clinical stage.  

Although there were no significant correlations between any tumour grading variables 

and disease specific survival, there was a trend towards poorer prognosis for tumours 

with large numbers of mitotic figures (HR 1.481, 95% CI 0.991 to 2.212 p= 0.055) 

(figures 6.13.1 and 6.13.2). In addition, the survival curves formed by Kaplan-Meier’s 

analysis suggested a possible link with longer survival in patients whose tumours had 

no necrosis, inconspicuous nucleoli and a large number of apoptotic bodies. 

 

 
Figure 6.13.1: Kaplan-Meier’s survival curves for features related to tumour grade: 
necrosis (A), mitosis (B), nucleoli (C) and the presence of scar tissue (D). The 
significance of each variable was assessed using the Mantel-Cox log rank test and 
shown to the right of each graph.  

A B 

C D 
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Figure 6.13.2: Kaplan-Meier’s survival curves for features related to tumour grade: 
apoptosis (A), pleomorphism (B), inflammatory infiltrate (C) and dyscohesive tumour 
cells (D). The significance of each variable was assessed using the Mantel-Cox log 
rank test and shown to the right of each graph. 

The combined results of categorical and Kaplan-Meier’s survival analysis suggested 

that the presence of necrosis, mitosis and prominent nucleoli may have some 

association with tumours with poor prognostic features; whereas the presence of scar 

tissue, many apoptotic bodies or a high degree of inflammation may be more 

favourable characteristics. For each tumour the presence of favourable and poor 

prognostic traits was given a score of +1 and -1 respectively and the sum of scores in 

each tumour was calculated. Those with an overall tumour grade score greater than or 

equal to 0 were found to be associated with longer DSS (p= 0.008) HR 1.712 (95% CI 

1.144 to 2.564 p= 0.009) (figure 6.14).  

A B 

C D 
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Figure 6.14: Kaplan-Meier’s survival curves showing the relationship between the 
overall tumour grade score and DSS. Significance was assessed using the Mantel-Cox 
log rank test and shown to the right of the graph. 

 
5.2.4 Molecular characteristics 

EGFR and KRAS mutation status was only carried out in N1 cases and where the tissue 

was amenable to molecular analysis (n= 67); in this subset of patients neither EGFR 

or KRAS mutation status were significantly associated with lesion size, T stage, N 

stage, pleural involvement or clinical stage (tables 6.13 and 6.14).  
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Table 6.13: Summary of the associations between EGFR mutation status and routinely 
available clinicopathological variables. Significance was estimated using the χ2 test 
(and χ2T) unless otherwise indicated. 

 EGFR mutation status 
No 

mutation 
Mutation Total Significance 

T stage p= 0.971 
(χ2T p= 0.887)a 

 

1a 6 (12.0%) 2 (11.8%) 8 
1b 7 (14.0%) 3 (17.6%) 10 
2a 26 (52.0%) 9 (52.9%) 35 
2b 11 (22.0%) 3 (17.6%) 14 
3 0 0 0 

Pleural involvement p= 0.728 

 
No pleural invasion 33 (66.0%) 12 (70.6%) 45 
Pleural invasion 17 (34.0%) 5 (29.4%) 22 

Clinical stage p= 1.0 
(χ2T p= 0.750)a 

 

Ia 0 0 0 
Ib 0 0 0 
IIa 39 (78.0%) 14 (82.4%) 53 
IIb 11 (22.0%) 3 (17.6%) 14 

Total 50 (100%) 17 (100%) 67  
aCalculated using Fisher’s exact test with the Monte Carlo simulation 
 
Table 6.14 Summary of the associations between KRAS mutation status and routinely 
available clinicopathological variables. Significance was estimated using the χ2 test 
(and χ2T) unless otherwise indicated. 

 KRAS mutation status 
No mutation Mutation Total Significance 

T stage p= 0.951 
(χ2T p= 0.696)a 

 

1a 5 (14.7%) 3 (9.1%) 8 
1b 5 (14.7%) 5 (15.2%) 10 
2a 17 (50.0%) 18 (54.5%) 35 
2b 7 (20.6%) 7 (21.2%) 14  
3 0 0 0 

Pleural involvement p= 0.339 

 
No pleural invasion 21 (61.8%) 24 (72.7%) 45 
Pleural invasion 13 (38.2%) 9 (27.3%) 22 

Clinical stage p= 0.950 
(χ2T p= 0.950) 

 

Ia 0 0 0 
Ib 0 0 0 
IIa 27 (79.4%) 26 (78.8%) 53 
IIb 7 (20.6%) 7 (21.2%) 14 

Total 34 (100%) 33 (100%) 67  
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aCalculated using Fisher’s exact test with the Monte Carlo simulation 

Survival analysis showed no significant relationship with EGFR or KRAS mutation 

status (p= 0.798 and 0.119 respectively); however, the number of patients with known 

mutation status was limited (n= 67) and none of the patients in the cohort were treated 

with EGFR TKIs (figure 6.15). 

 
Figure 6.15: Kaplan-Meier’s survival curves showing the relationship between EGFR 
(A) and KRAS (B) mutation status and DSS. Significance was assessed using the 
Mantel-Cox log-rank test. 

Sections from a representative tumour block from each case were sent to Myriad 

Genetics Inc. for gene expression analysis of 31 cell cycle genes (see chapter 2); and 

the resulting CCP score and clinical stage used to calculate mPS. Of the 208 samples 

in the cohort, tissue blocks were unavailable for 2 samples and a further 16 samples 

failed gene expression analysis. In total 190 samples successfully produced a CCP 

score. Since mPS is a function of clinical stage, and therefore T and N stage, 

associations between these variables were not investigated. The CCP score was 

significantly associated with nodal status (Mann-Whitney U test p= 0.021) and clinical 

stage (Kruskall Wallis test p= 0.025) and there was a trend towards a relationship with 

T stage (Kruskall Wallis test p= 0.096) (table 6.15 and figure 6.16). Since pleural 

involvement was not significantly associated with CCP; the observed statistical 

significance between mPS and pleural involvement was likely to be a result of an 

association between pleural involvement and clinical stage. 

  

A B 
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Table 6.15: Details of CCP score and mPS for the cohort statistical significance was 
assessed using the non-parametric Kruskall-Wallisa or Mann-U Whitneyb tests as 
appropriate. The mean (and 95% CI for the mean) are shown for each T stage, N stage, 
pleural involvement status and clinical stage as appropriate. 

 CCP score mPS 
Number of patients 190 190 
Median 0.20 32.3 
Mean (95% CI) 0.11 (-0.03 to 0.24) 30.5 (28.6 to 32.4) 
Range -2.8 to 2.4 -3.5 to 54.8 
T stage p= 0.096a n/a 

 

1a -0.338 (-0.713 to 0.037)  
1b 0.048 (-0.235 to 0.332  
2a 0.216 (0.030 to 0.402)  
2b 0.381 (-0.015 to 0.776)  
3a -0.007 (-0.657 to 0.644)  

N stage p= 0.021b n/a 

 

N0 -0.022 (95% -0.204 to 0.160)  
N1 0.355 (0.185 to 0.524)  

Pleural involvement p= 0.133b p= 0.009b 

 

Not involved 0.006 (-0.171 to 0.182) 28.36 (25.96 to 30.76) 
Involved 0.290 (0.090 to 0.490) 34.25 (31.41 to 37.08) 

Clinical stage p= 0.025a n/a 

 

Ia -0.288 (-0.592 to 0.016)  
Ib 0.089 (-0.159 to 0.338)  
IIa 0.340 (0.124 to 0.555)  
IIb 0.207 (-0.149 to 0.563)  

 

 
Figure 6.16: Box plots showing the difference in CCP score between tumours based 
on N stage (A) (Mann-U Whitey test p= 0.021) and clinical stage (B) (Kruskall-Wallis 
test p=0.025). 
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Multivariable analysis 

Multivariable analysis of survival was carried out using Cox’s proportional hazards 

model; since clinical stage is a factor of T stage and N stage only clinical stage was 

included in the analysis. All variables with a p-value of <0.05 were removed from the 

model and the analysis repeated. The final analysis included clinical stage (p< 0.005), 

the presence of the papillary pattern (with a cut-off of 8.5%) (p= 0.048) and the 

presence of large numbers of mitotic figures (p= 0.029) and apoptotic bodies (p= 

0.015); however, after applying Bonferroni’s correction for type I errors only clinical 

stage was considered to have a significant association with DSS.  

Compared to patients with clinical stage IIb disease at resection, those with stage Ia 

had an HR of 0.418 (95% CI 0.204 to 0.855, p= 0.017), However there was no 

significant difference in stage Ib, IIa and IIb, which was previously demonstrated in 

the univariable analysis (figure 6.1). 

 

5.3 Development of prognostic models 
Decision tree analysis was carried out using classification and regression trees (CART) 

(with 10-fold cross validation with minimum parent and child node sizes of 20 and 10 

respectively) to develop models to predict prognosis in lung adenocarcinoma patients. 

The initial model (the baseline model) was generated using only currently routinely 

available parameters (lesion size, T stage, N stage, pleural involvement and clinical 

stage). The decision tree created using only routinely available pathological 

characteristics (the baseline model) had, not surprisingly, strong similarities with the 

7th TNM staging system and approximately separated clinical stage Ia from higher 

stages in the N0 branch; and stage IIa from higher stages in the N1 branch (figure 

6.17).5 The addition of EGFR and KRAS mutation status did not improve the model 

produced by CART analysis and these variables were not incorporated into the 

decision tree.  
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Figure 6.17: The baseline model. Decision tree produced using classification and 
regression tree analysis with lesion size, T stage, N stage, pleural involvement and 
clinical stage as potential predictive variables of DSS (months). 

In a second iteration of CART analysis a decision tree was constructed using routinely 

available histopathological parameters with the addition of: the presence or absence of 

each growth pattern (with thresholds of 3.5% and 8.5% for lepidic and papillary 

respectively and any proportion for acinar, solid and micropapillary growth), the 

proportion of each growth pattern, predominant growth pattern, predominant 

morphological grade, second predominant growth pattern and the total number of 

growth patterns per case. N stage and lesion size continued to contribute significantly 

to the model; however, the addition of morphological variables enabled further 

refinement (figure 6.18) (The growth pattern model). In node positive patients a large 

proportion of solid tumour growth was associated with a better prognosis. In node 

negative patients with smaller tumours (≤27.5mm); those with lepidic, papillary or 

acinar growth as the second most predominant pattern had longer DSS. Other 

variables, including predominant growth pattern, were not found to contribute 

significantly to the model. 
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Figure 6.18: The growth pattern model. Decision tree created by CART analysis using 
routinely available parameters as well as additional morphological variables 
identified after growth pattern analysis (predominant growth pattern; predominant 
morphological grade; the second predominant pattern; the presence or absence of the 
lepidic, papillary, acinar, solid or micropapillary patterns; the proportion of each 
growth pattern and the number of patterns in each case). 

CART analysis was then repeated with the addition of further morphological features 

which reflect tumour grade including the presence of: necrosis, scar tissue, cytological 

pleomorphism, dyscohesion between the tumour cells and large numbers of mitotic 

figures, apoptotic bodies, prominent nucleoli and inflammatory cells; as well as the 

overall tumour grade score (section 6.2.3) (the growth pattern plus tumour grade 

model). The resulting tree remained very similar to the Growth pattern model with 

only the presence of large numbers of apoptotic bodies incorporated which identified 

a small subset of node positive patients with an improved DSS (figure 6.19). 
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Figure 6.19: Growth pattern plus grade model. Decision tree created by CART 
analysis using routinely available parameters, morphological variables identified 
after growth pattern analysis and features related to tumour grade (necrosis, scar 
tissue, cytological pleomorphism, dyscohesion between the tumour cells and large 
numbers of mitotic figures, apoptotic bodies, prominent nucleoli and inflammatory 
cells; as well as the overall tumour grade score). 

Finally, CART analysis was carried out with all available variables including the 

proliferation score mPS which greatly altered the resulting decision tree (figure 6.20). 

Nodal status was replaced by mPS to form the first branch of the tree with a threshold 

26.39. Lesion size did not significantly contribute to the model. For tumours with 

larger mPS values the absence of large numbers of apoptotic bodies remained a poor 

prognostic group within which tumours with a large proportion of the micropapillary 

pattern (greater than 30.5%) had the poorest outcomes. Tumours with lower mPS 

values were further divided based on the second predominant pattern whereby those 

with lepidic, acinar or micropapillary pattern had improved DSS compared to those 

with solid or papillary pattern as their second most common pattern. However, this 

grouping of second predominant patterns conflicts with that produced in previous 

decision trees.  
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Figure 6.20: mPS model. Decision tree created by CART analysis using all available 
pathological, morphological and molecular characteristics including mPS. 

 
In order to compare the performance of each model for predicting poor prognosis; the 

lung cancer related 1-, 2- and 5-year survival of patients was used to calculate the area 

under the ROC curve (the probability of accurately predicting prognosis - otherwise 

known as c-statistic) with each decision tree. The c-statistic was also calculated for the 

currently used classification based on clinical stage whereby patients with stage IIa 

and IIb, those who would be eligible for adjuvant chemotherapy, were considered the 

worst prognostic group. The use of 10-year survival reduced the c-statistic for all 

models and this was, therefore, not included in the analysis (table 6.15).  

In this cohort, clinical stage IIa or IIb alone was a poor predictor of prognosis and only 

5-year survival data was able to produce a probability significantly better than chance. 

Compared to clinical stage alone the baseline model, which utilized only nodal status 

and lesion size showed an improvement in the probability of successfully identifying 

a group of patients with the poorest prognoses. The inclusion of growth pattern or 
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grading data produced very little improvement in this probability for 1- and 2-year 

survival compared to baseline. The mPS model, which included transcriptomics data 

showed the greatest improvement being the only model classified as good (c-statistic 

> 0.7) for the prediction of patients who would not survive 1- or 2-years. None of the 

models would be classified as strong predictors (c-statistic >0.8). 
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Table 6.16: The area under the ROC curve (c-statistic) of each model in predicting 1-, 2- and 5-year disease specific survival. 
 Model 

Current clinical 
model 

Baseline Growth pattern Growth pattern 
plus grade 

mPS 

Clinical stage II N1 and size 
>39.5mm 

N1, <21% solid N1, few apoptotic 
bodies, <21% solid 

mPS>26.39, few 
apoptotic bodies, 

>30.5% 
micropapillary 

Mean DSS (sd) 59.9 (43.0) 39.8 (38.4) 37.0 (30.1) 32.5 (25.1) 28.6 (36.2) 

1-year 
Area under the curve 0.611 0.647 0.650 0.663 0.747 

95% CI 0.482 to 0.741 0.543 to 0.751 0.544 to 0.755 0.555 to 0.770 0.625 to 0.868 

2-year 
Area under the curve 0.581 0.677 0.681 0.688 0.753 
95% CI 0.482 to 0.680 0.597 to 0.758 0.600 to 0.763 0.607 to 0.770 0.664 to 0.842 

5-year 
Area under the curve 0.631 0.704 0.725 0.736 0.749 
95% CI 0.552 to 0.711 0.631 to 0.777 0.654 to 0.796 0.666 to 0.806 0.673 to 0.825 
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Given that CART analysis replaced nodal status with mPS, indicating it to be a better 

predictor of survival, the c-statistic of N stage and mPS alone (N1 versus mPS>26.39) 

were also compared (table 6.16). The mPS was a better predictor of 1- and 2-year 

survival than nodal status, however these was no difference in 5-year survival. 

Table 6.17: The area under the ROC curve (c-statistic) of nodal status and mPS as 
single predictors of prognosis based on 1-, 2- and 5-year survival. 
 Nodal status mPS (threshold 26.39) 

1-year survival 
Area under the 
curve 0.577 0.642 
95% CI 0.438 to 0.715 0.512 to 0.771 

2-year survival 
Area under the 
curve 0.595 0.615 
95% CI 0.493 to 0.696 0.515 to 0.714 

5-year survival 
Area under the 
curve 0.637 0.637 
95% CI 0.557 to 0.717 0.555 to 0.720 

 

5.4 Discussion 
The lung cancer related 5-year survival rate for this cohort of resected stage I and II 

patients was 57%; 9% of patients died from their disease within 1 year of their 

resection. In order to improve these survival rates it is likely that additional treatment, 

such as adjuvant chemotherapy, may be required for a proportion of patients with more 

aggressive disease. However patient stratification tools are required to identify those 

who would be likely to benefit from further therapy. Morphological analysis has been 

suggested as a method of prognostication and represents an inexpensive, easily 

obtained, source of additional data. Several published reports have suggested that the 

presence of the solid or micropapillary growth patterns were associated with poorer 

outcomes for lung adenocarcinoma patients; 17-21, 23-26, 28-30 however, not all studies 

included multivariable analysis and therefore the effect of confounding variables is not 

known.18-21, 24, 25, 28-30 In addition, some studies failed to find any significant 

relationships.22, 26 The prognostic value of predominant growth pattern has been 

supported in many published articles with predominantly lepidic tumours associated 

with favourable patient prognoses.15, 29, 33, 34, 38-40, 48 whereas predominantly solid and 

micropapillary tumours have generally been considered to have a poor prognosis.15, 29, 

33, 35, 36, 38-40, 43, 49 Although the robustness of statistical analyses carried out in many of 
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these studies can be criticised,15, 29, 33, 36, 38, 40, 43, 46, 48 and there are discrepancies 

between studies in the main conclusions drawn.26, 29, 59 Some reports have grouped 

tumours into low, intermediate or high grade based on their morphology alone in order 

to show a significant association with prognosis.15, 42, 44, 45, 48, 53 However there is even 

inconsistency in this grouping strategy as several reports classified predominantly 

lepidic, acinar and papillary as an intermediate group with solid and micropapillary as 

high grade;15, 34, 41, 42, 48, 53 whereas others have classified lepidic as low grade, papillary 

and acinar as intermediate and solid and micropapillary as high grade.40, 239 

Detailed morphological and molecular analysis of 208 resected clinical stage I and II 

lung adenocarcinomas has been used to investigate relationships between pathological 

(size, nodal status, clinical stage), molecular genetic and transcriptomic parameters 

with survival. Not surprisingly; lesion size, N stage and clinical stage were strongly 

associated with disease specific survival. These fundamental characteristics have 

formed the basis of clinical decision making for lung cancer patients for many years 

and their relationship to prognosis is widely accepted.5 However; pleural involvement, 

which has previously been shown to correlate with poorer prognoses, showed no value 

as a prognostic marker in this cohort.67, 299-301 The presence of individual growth 

patterns showed some association with these pathological characteristics; the lepidic 

pattern was more common in smaller tumours and in patients with earlier stage disease 

and the papillary pattern in larger tumours and the micropapillary pattern in more 

advanced disease. Only the presence of the papillary pattern was shown to be 

associated with disease specific survival in univariable analysis; however, even this 

fell short of significance in multivariable analysis after correction for type I errors. 

Similarly, the predominant growth pattern, whether grouped into morphological grade 

or not, showed a limited association with pathological features, with micropapillary or 

solid tumours more likely to have involved lymph nodes; however, there was no 

association with survival. It is noted that predominantly lepidic tumours in this cohort 

had a poor prognosis compared to previously published data; 15, 29, 33, 34, 38-40, 48 most 

likely as a result of small group size (only 20 patients) and a high proportion of patients 

with additional poor prognostic factors such as involved lymph nodes and pleura.14, 34, 

301 This suggests that, although in large cohorts trends in survival may be observed, 
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simply relying on one tumour characteristic to predict individual patient outcomes is 

likely to be an over simplification. Indeed; there is evidence to suggest that the 

contribution of non-predominant, but aggressive, growth patterns also has an influence 

on survival.57 In our cohort the second predominant growth pattern in each tumour was 

associated with lymph node involvement and clinical stage, with the micropapillary 

and acinar patterns associated with N1 disease and a higher clinical stage. After 

multivariable analysis with Cox’s proportional hazards model only clinical stage was 

independently associated with survival and neither the presence of individual growth 

patterns nor the predominant growth pattern were associated with prognosis. 

Unlike other malignancies, there is no accepted single method of incorporating 

different histological features into a tumour grading in lung adenocarcinomas.10 

Several studies have suggested that the presence of necrosis in lung adenocarcinomas 

was a marker of poor prognosis,15, 64, 65, 283 however this has not been supported by all 

groups.59, 63, 66 In the reported cohort necrosis was more commonly found in larger 

tumours and those with higher clinical stage; although this may be a result of a decrease 

in blood supply to the centre of large tumours rather than a predictor of prognosis and 

no link was found with disease specific survival. Mitotic rate is well established in 

other tumour types, including breast cancer and soft tissue sarcomas, as an indicator 

tumour grade and therefore prognosis.302, 303 A large study carried out in NSCLC 

patients showed mitotic index to be associated with survival;67 however, other studies 

in lung cancer have failed to find a significant association.59, 63 In the current study 

large numbers of mitotic figures were more commonly observed in larger tumours and 

there was a tendency for poorer prognoses in univariable and multivariable analyses, 

which may indicate more aggressive growth in tumours with a high mitotic rate. The 

presence of large numbers of apoptotic bodies was associated with longer survival in 

multivariable analysis but fell short of significance after correction for type I errors. 

Prominent nucleoli and the presence of scar tissue within the tumour both showed 

some association with pathological parameters but were not linked to survival; any 

prognostic capacity of prominent nucleoli has also been refuted in a previous cohort.59 

Other tumour characteristics, including cytological pleomorphism and the presence of 

large numbers of inflammatory cells, have previously been associated with prognosis 
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but failed to show a significant relationship with survival in this cohort.63, 67, 76, 78, 79 An 

overall tumour grading score; which assumed a negative prognostic effect for the 

presence of necrosis, mitosis and prominent nucleoli and a positive effect for the 

presence of many apoptotic bodies, scar tissue or large numbers of inflammatory cells; 

was significantly associated with disease specific survival in univariable analysis but 

was not an independent predictor of prognosis. However, the assessment of each of 

these features is very subjective and in order to truly determine the prognostic 

significance of these characteristics a strict scoring criteria should be established. 

CART analysis was carried out as an alternative method of multivariable analysis and 

to explore models of prognostication based on morphological analysis. Including the 

results of growth pattern analysis and features of tumour grade in the analysis produced 

a decision tree with nodal status and lesion size as two of the most influential factors 

for grouping patients based on disease specific survival. Interestingly; factors 

commonly reported to be prognostic, such as predominant pattern and presence of the 

micropapillary pattern, were not incorporated into the decision tree. Although, second 

predominant pattern was used to further discriminate small N0 tumours and the 

presence of few apoptotic bodies, followed by the proportion of the solid growth 

pattern were included to further classify N1 tumours. This classification of tumours 

with few apoptotic bodies as a poor prognosis group is contradictory to some published 

reports which have shown the presence of large numbers of apoptotic bodies to be 

associated with worse outcomes and more aggressive disease;60, 61 although other 

groups have shown no significant association with survival.62, 63 Decision tree models 

which included only morphological and tumour grade characteristics had very little 

effect on the ability to predict a poor prognosis group of patients compared to the 

routinely available parameters; demonstrating that, in this cohort at least, this 

additional morphological data was of little benefit to the patient. 

The mPS score, calculated from clinical stage and the CCP score (cell-cycle related 

gene expression signature), has been previously shown to be an independent marker 

of prognosis in lung adenocarcinomas; however, the involvement of lymph nodes was 

not included in these analyses and its confounding status for these cohorts cannot be 

assessed.238, 239, 263, 298 The addition of the mPS score into CART analysis caused the 
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greatest change to the model and replaced nodal status as the first decision point, 

indicating it to be a more informative predictor of survival than N stage; in this dataset 

at least. This decision tree showed the greatest improvement in prediction of prognosis 

compared to routinely available parameters; however, even this did not produce a 

model with a strong ability to predict poor prognosis in stage I and II lung 

adenocarcinoma patients. Although the mPS score is an objective measure with, 

seemingly, some link to prognosis it requires relatively expensive molecular biological 

techniques and given the minimal improvement compared to N stage is unlikely to be 

cost effective in a clinical setting. In addition, the mPS model contradicts previous 

models in the grouping based on second predominant pattern which suggests solid and 

papillary as poor prognostic groups and micropapillary as a good prognostic. These 

differences may suggest over fitting in one or more of the models. 

The detailed morphological analysis of this cohort of stage I and II lung 

adenocarcinomas was unable to confirm the previously published claims of the 

prognostic value of growth patterns. Given the highly subjective nature of 

morphological analysis of lung adenocarcinomas any tool using these characteristics 

for the prognostication of patients is liable to inter, and indeed intra-observer 

heterogeneity. The majority of published reports showing an association between 

predominant pattern and survival have been carried out in a single centre with small 

numbers of histopathologists. In order to robustly test these additional morphological 

characteristics large scale multi-centre trials, involving many contributing 

histopathologists, should be carried out; but this is likely to be difficult to achieve in 

practice. Recently developed digital pathology and automated scoring algorithms have 

shown considerable promise;304 this technology offers a future potential to standardise 

scoring and provide a truly objective classification of a patient’s tumour and may lead 

to better stratification of patients who would benefit from more aggressive treatment 

strategies.
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Chapter 6 Conclusions 

This study set out to examine the hypothesis that the analysis of multi-factor data; 

including histology and candidate molecular genetic, transcriptomic and protein 

biomarkers; could be used to improve prognostication in patients with early-stage, 

resected, adenocarcinoma. The dataset generated from this cohort, in multiple 

biomarkers, broadly reflects those previously published indicating this cohort to be a 

reasonable representation of this population.  

The results of the clinical audit have shown that a Scottish cohort of NSCLC patients 

who underwent molecular pathology analysis show comparable characteristics to those 

of other Caucasian cohorts. The incidence of EGFR, KRAS mutations and ALK 

rearrangements was approximately 10.5%, 36.5% and 2% respectively and, as has 

been reported for a population dominated by ex- or current smokers, the majority of 

KRAS mutations were transversions. This audit also yielded some noteworthy results. 

Contrary to some published studies, there was no evidence to suggest that EGFR and 

ALK mutations occurred in younger patients and after taking smoking status into 

account gender was not independently associated with the presence of EGFR 

mutations. However, the incidence of KRAS mutations in females with a smoking 

history was higher than that in males, even though the females had, on average, 

smoked less (fewer pack-years); indicating a possible increased susceptibility to 

tobacco in females which would require further research to confirm. In addition, 

although ex-smokers show increased age at diagnosis compared to current-smokers 

the molecular profile of their tumours remains similar to current smokers.  

There has been a huge investment in implementing molecular pathology analysis in 

NSCLC patients in order to predict response to targeted treatments; however, this audit 

highlights the fact that these tests are only of benefit to a minority of NSCLC patients 

and the treatment of approximately 90% of a Caucasian population is reliant on clinical 

and pathological markers only to guide treatment. Taking this into account, the 

acceptance of the suggested cost saving measures; such as switching to a request based 

algorithm and, where possible, using serial testing strategies to take advantage of the 
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mutually exclusive relationship between clinically relevant mutations; should be 

seriously considered by funding bodies. 

Survival of NSCLC patients remains poor and even in early stage patients, who 

undergo resection with curative intent, a proportion of patients quickly recur and 

eventually die from their disease; whilst others are effectively cured. In order to 

improve long-term outcomes for those who do recur, it is essential to base their 

treatment following resection on the features of their disease. The Scottish Chief 

Medical Officer’s 2016 ‘Realistic Medicine’ report encouraged healthcare 

practitioners in Scotland to develop a personalised approach, reduce unnecessary 

variation and improve outcomes by innovation.305 Contributing to this national 

healthcare goal this thesis represents, to the best of our knowledge, the only prognostic 

model generated from the analysis of DNA, RNA, protein expression and morphology 

(including features of tumour grading) on a single cohort of lesions from lung 

adenocarcinoma patients. However, as with all research, criticisms can be levelled at 

this study. The cohort analysed included adenocarcinoma specimens from 208 

patients; given the number of groups for some variables, for example predominant 

growth pattern, a larger cohort may have identified more statistically significant 

associations. In addition, mutation analysis and therefore EGFR IHC was only carried 

out on a subset of the samples; however this analysis was applied, as it would be in 

clinical practice, to patients with involved lymph nodes - representing those with 

potentially metastatic disease. The use of CART analysis to create decision trees is of 

particular benefit to data with a large number of variables as it enables the analysis of 

significant contributors within specific subsets and negates the multiplicity issues seen 

with more tradition statistical techniques. The resulting models included lymph node 

involvement, tumour size, variables generated from analysis of growth patterns 

(second predominant pattern and the proportion of solid or micropapillary growth), 

cytological features (apoptosis) and gene expression signatures. However, use of 

morphological data alone gave little improvement to the identification of patients with 

a particularly poor prognosis. Only models including the molecular proliferation score 

(mPS) determined by mRNA expression signatures showed an enhanced ability to 

identify poor prognostic groups; although the improvement was relatively small and 
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the increase in costs and complexity would make it challenging to implement into 

clinical practice. CART analysis is known to be prone to overfitting and although 10-

fold cross validation was applied in order to minimise this there are some findings 

which appear biologically implausible; for example, the identification of tumours with 

a large number of apoptotic bodies as an indicator of favourable prognosis.  

The analysis of growth patterns and cytological features are subjective 

histopathological measurements and are known to be prone to inter-observer variation. 

If a quantitative estimate of morphological features were required for the accurate 

prediction of prognosis then this would be difficult to implement in a robust and 

reproducible manner, across many different countries each with their own local 

practices and training methods. Most histopathologists would recognise that 

quantitative assessment of tumour features by manual light microscopy alone would 

be inaccurate meaning that only very strong prognostic features are likely to be robust 

enough to prove their utility in current clinical practice. Automated histology offers 

hope for a system free of inter-observer variation. Raman spectroscopy has shown 

utility in the diagnosis of lung cancers and pre-malignant lesions.306 More recently, 

automated analysis of high-power scanned images of stained histopathology sections 

has been shown to identify poorly differentiated regions of colorectal cancer which 

was significantly associated with recurrence.307 One group has used automated 

histology to identify regions of a lung adenocarcinomas with the solid and 

micropapillary growth patterns, the far more accurate data which could be provided 

with this technology may help identify clinically relevant associations.308 Automated 

analysis of digital pathology images has also been used to develop an algorithm which 

could identify a group of lung adenocarcinoma patients with a poor prognosis which 

out-performed both stage and tumour grade in its prognostic capacity.304 Many 

histopathology departments are now investigating digital pathology for 

implementation in routine clinical practice. The images collected will allow for 

automated analysis on a very large scale with the aim of improving diagnosis, 

prediction and prognostication in a wide range of cancer types. In the future, it is likely 

that automated analysis of digital pathology will be a powerful tool to improve 
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outcomes in lung cancer patients and these techniques should be keenly pursued to 

remove inter-observer variation and standardise prognostic classifications.  

Although progress has been made in the treatment of adenocarcinoma, for example in 

the analysis of EGFR mutation status, it is clear that such single analyte measures are 

far from efficient at predicting a patient’s disease pathway and response to treatment. 

It seems obvious that the measurement of the mutation status of a single gene is 

unlikely to accurately predict tumour behaviour which is dictated by a complex array 

of interconnecting pathways as well as cell-to-cell and cell-to-environment 

interactions. This study has shown by IHC analysis of mutated and total EGFR protein 

in EGFR mutated tumours that there is a high degree of intratumour heterogeneity in 

protein expression, and in one case protein localisation; however, in this cohort at least, 

there was no evidence of intratumour heterogeneity of mutation status. The effect of 

this variation in EGFR protein expression is unknown and would require further 

investigation in a much larger cohort of EGFR TKI treated patients. The current 

reliance of large areas of cancer research on molecular genetics alone may need to alter 

before significant progress can be made in the treatment of NSCLC. Likewise relying 

on a single additional morphological measurement, such as predominant growth 

pattern, is unlikely to sufficiently represent the complex interactions between tumour 

and patient genetics, proteomics and environment in order to predict disease 

progression. In future, tumour analysis may involve a complex analysis of many 

different variables including the patient’s clinical features, morphological analysis, 

mutation status, and protein expression and function; but this level of multiple analyte 

assessment would be difficult to achieve in a routine healthcare setting in the near 

future. One barrier to its implementation is the current lack of systems which are able 

to analyse DNA, RNA and protein level analytes in the same sample; especially 

considering the small size of samples routinely available from the majority of lung 

cancer patients. In order to make considerable improvements in patient outcomes it is 

likely that any measurements should be made at a level as close to the functional 

activity of the tumour as possible. A comprehensive analysis of expression level and 

structure of proteins, for example, may yield more relevant results than genomic DNA 

sequences which may never be expressed. Several groups, including commercial 
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companies, are working on machine learning techniques for the analysis of large 

datasets- such as gene expression, mutations and imaging- in combination with clinical 

factors. As yet, published studies using machine learning in lung adenocarcinomas 

have been restricted to a single data source.309 However once systems including 

multisource data are developed, these unbiased algorithms offer the best hope of 

providing objective stratification of lung adenocarcinoma patients which can only 

improve outcomes in this highly heterogeneous disease. 

It is well known that the characteristics of each tumour can change over time, 

particularly in response to treatment; acquired resistance in patients treated with 

targeted therapies is frequently mediated by additional mutations or upregulation of 

alternative pathways.168, 187 Since the development of a therapy designed to be active 

in EGFR TKI-treated patients with acquired p.T790M mutations the re-analysis of the 

EGFR gene in samples taken post treatment has become more common. As more 

treatments are developed targeting specific subgroups of the population the need for 

repeat analysis is likely to increase. The recently developed ability to interrogate 

circulating cell-free tumour DNA has aided the implementation of this longitudinal 

analysis and is of particular value in lung cancer patients for whom obtaining a tissue 

sample is frequently both difficult and harmful.174 It is hoped that similar minimally 

invasive procedures will be developed to analyse a wider range of biomarkers in lung 

cancer patients over time. However, these strategies would require a further large 

investment in translational research and a huge shift in our current practices.  
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