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Abstract 

Leishmania sp. are protozoan parasites that cause a wide spectrum of diseases in 
man and other mammals. Resolution of Leishmania infections depends strictly on 
the activation of a type 1 T helper response, which must be initiated by activated 
antigen presenting cells displaying parasite antigens in the context of major 
histocompatibility (MHC) class II molecules. Macrophages (M(D) and Dendritic 
cells (DC) are specialised antigen presenting cells capable of stimulating T cells. 
Primary T cell responses however, can only be initiated by DC. 

MCI) are the principal host cells for Leishmania parasites and are ultimately 
responsible for parasite clearance, via the production of nitric oxide. However, MCI) 
do not become activated upon infection and do not efficiently present Leishmania-
derived antigens to T cells, raising the question of how the response is initiated. As 
Leishmania also infect DC, it has been assumed that Leishmania-infected DC 
stimulate the primary anti-Leishmania T cell response. The specific interaction 
between Leishmania parasites and DC has not, however, been investigated in detail. 
This work examines the Leishmania:DC interaction through the use of defined in 
vitro systems and therefore evaluates the hypothesis that infection of DC by 
Leishmania parasites is sufficient to activate the primary anti-Leishmania T cell 
response. In particular, it addresses two aims: first to develop an experimental model 
to investigate the fate of Leishmania antigens in infected cells; second to examine 
the Leishmania:DC interaction in a defined in vitro model. 

In initial experiments, lines of transgenic parasites were generated in which the 
MHC IT-dependent T cell epitope Moth Cytochrome C (MCC) was expressed within 
a number of different fusion proteins, to provide a model in which the fate of 
parasite-derived antigens could be followed in infected DC. MHC II-MCC complex 
formation in DC and MI) infected with these transgenic parasites was investigated 
using the complex-specific monoclonal antibody, D4, and a complex-specific T cell 
line. Although the fusion proteins were clearly demonstrated to be secreted at high 
levels, no cell surface staining could be detected with D4 and neither infected DC 
nor infected MI) could stimulate T cell proliferation. Leishmania-infected DC were 
however, shown to efficiently process and present exogenous antigen to T cells in 
vitro. 

Alternative strategies were therefore developed to probe the DC:Leishmania 
interaction in more detail. Investigation into the effect of uptake of EGFP-expressing 
L. mexicana parasites by different DC cultures in vitro demonstrated that, in the 
absence of exogenous factors, uptake of L. mexicana amastigotes did not cause 
activation of DC. Uptake of L. mexicana promastigotes resulted in activation of a 
small proportion of DC indicating that promastigotes do encode an activation signal, 
but that this is not sufficient to activate the entire DC population. However, neither 
L. major promastigotes nor L. mexicana promastigote mutants lacking surface 
lipophosphoglycan (LPG) activated DC in vitro. Therefore these data suggest that L. 
mexicana promastigotes encode an activation signal, but that this is not sufficient to 
stimulate all DC. As the promastigotes which did not activate DC either lacked, or 
expressed a modified version of, LPG, we propose that LPG is a L. mexicana 
pathogen-associated molecular pattern (PAMP). 



The work presented in this thesis demonstrates that infected DC are capable of 
initiating the anti-Leishmania response in vivo, as they efficiently present antigen to 
T cells. However, infection per se is not sufficient to activate all DC. These data 
therefore suggest that during the initiation of an anti-Leishmania T cell response DC 
are likely to be activated by factors produced in response to injection of parasites by 
the insect vector, such as pro-inflammatory cytokines. 
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Chapter 1: Introduction 

Vertebrates possess a highly evolved immune system that is rapidly activated upon 

encounter with invading organisms (see Abbas 1997; Parham 2000). The immune 

response is divided into two arms: the immediate, non-specific, innate response and the 

acquired, antigen-specific, adaptive response. The acquired immune response is 

characterised by the generation of immunological memory, which ensures a more rapid, 

amplified immune response on the second and subsequent encounters with a particular 

pathogen. Both innate and adaptive responses must be tightly controlled to maximise 

responses against harmful pathogens, while minimising immune responses to self- or 

harmless non-self proteins. Dendritic cells (DC) have recently been identified as the 

antigen presenting cells (APC) that initiate adaptive immune responses, thus providing a 

bridge between the innate and adaptive arms of the immune response, and may also play 

a more instructive role in shaping the outcome of the adaptive response depending on 

the nature of the invading organism. 

The immunobiology of Leishmania sp. has been extensively studied over the last 20 

years, in particular due to the key role that T helper effector subsets play in the 

resolution of infection. Until recently, however less was known about the interaction of 

Leishmania with DC, and the role these cells play in initiating the anti-parasite immune 

response. This chapter reviews the literature on Leishmania infection, the role of DC in 

priming naïve T cells and the interaction between Leishmania and the immune system: 

section 1.1 describes Leishmania infection in mammals; section 1.2 introduces DC and 

discusses their role in initiating immune responses to pathogens; section 1.3 summarises 

the molecular mechanisms involved in presentation of Leishmania-derived antigens to T 

cells; section 1.4 describes T cell responses to Leishmania infection, and the role of 

infected macrophages (M(D) and DC; finally, section 1.5 outlines the aims of this project 

and the experimental approach taken. 
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1.1 The Immunobiology of Leishmania 

1.1.1 The Leishmania Life Cycle 

Leishmania sp. are protozoan parasites. They have a digenetic life cycle, comprising a 

flagellated promastigote that resides in the sandfly vector and an aflagellated amastigote 

that multiplies in its mammalian host (for an outline of Leishmania biology see (Roberts 

1996). A schematic representation of the Leishmania life cycle is depicted in Figure 1.1. 

All Leishmania species are transmitted by phlebotomine sandflies; promastigotes reside 

in the gut of the sandfly in the form of dividing procyclic promastigotes which are 

adapted for attachment to the gut epithelium and resistance to digestive enzymes. 

Metacyclic promastigotes then differentiate through two to three different stages as they 

migrate along the sandfly gut to the proboscis (Saraiva et al. 1995 and references 

therein), culminating in the infective metacyclic form which will be transmitted when 

the sandfly takes a blood meal. Metacyclic promastigotes are coated with a thick 

glycocalyx which protects them from immune-mediated lysis upon injection into the 

host. Once in the mammalian host promastigotes are taken up by phagocytic monocytes, 

principally Mb, which have been recruited to the site of infection. L. mexicana 

promastigotes are initially contained in small individual phagosomes. These dilate to 

form large communal parasitophorous vacuoles (PV) (Courret et al. 2001), probably due 

to fusion of the phagosome with host endosomal compartments, and to vacuole: vacuole 

fusion (Antoine et al. 1998). Not all Leishmania species induce the formation of large 

communal PV, however; L. major and L. donovani parasites remain within individual 

vacuoles that do not fuse with other compartments in infected cells (Antoine et al. 

1998). Once taken up by M(1, metacyclic promastigotes transform into aflagellated 

amastigotes. This obligate intracellular form is well adapted to survival in the acidic 

phagolysosome. Amastigotes reside and multiply in the PV until they are released, 

probably upon rupture of the cell. They will subsequently be taken up by monocytes 

attracted to the site of infection, or by a sandfly as it feeds upon an infected host, thus 

perpetuating the cycle. 



Figure 1.1: Schematic Representation of the Leishmania Life Cycle 
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Leishmania parasites are transmitted by sandf lies when they feed on a mammalian host. Leishmania promastigotes are 
injected into the epidermis of the skin where they are taken up by phagocytic monocytes, principally M4. Within the 
monocyte promastigotes transform into amastigotes, the obligate intracellular form of the parasite. Amastigotes are 
contained within a phagolysosome known as the parasitophorous vacuole (PV). Parasites are released when the cell 
ruptures and are taken up by other monocytes at the site of infection, or by a sandfly feeding on an infected host, thus 
perpetuating the cycle. 
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A natural model of cutaneous Leishmania infection has recently been established which 

mimics transmission of the parasites by the sandfly (Belkaid et al. 1998; Belkaid et al. 

2000). In this murine model, infection is imitated by injection of low numbers (one 

hundred) of L. major metacyclic promatigotes into the dermis of the ear. This reflects 

the low numbers of parasites transmitted by sandflies and the observation that exposed 

dermal areas in humans are most vulnerable to infection (Gaafar et al. 1999). Using this 

model, the course of Leishmania infection was divided into three phases (Belkaid et al. 

2000): initially the parasites reside silently within cells of the dermis, in the absence of 

an anti-parasite immune response. This phase lasts four to five weeks, and is 

asymptomatic. After week five the second phase is initiated, characterised by a wave of 

cells invading the dermis. This cellular infiltrate comprises neutrophils, M1 and 

eosinophils. At this point lesions develop, and there is a dramatic reduction (95%) in 

parasite numbers. Naïve and memory T cells now migrate into the site of the infection, 

and, in humans, were shown to make up fifty percent of the infiltrate (ElHassan et al. 

1995). The final phase of the infection is characterised by the persistance of one hundred 

to ten thousand parasites at the site of the lesion. At this point the majority of infiltrating 

cells in the ear are M. Virulent parasites were shown, in a different model of infection, 

to persist indefinitely in the host and disease can recur if the host becomes immuno-

compromised (Aebischer et al. 1993). 

In human cutaneous Leishmania infection, parasites have been identified in DC and Mb 

at the site of the lesion (ElHassan et al. 1995; Gaafar et al. 1995). Parasites in various 

stages of degradation were observed within activated M1 by microscopy (Gaafar et al. 

1995). The most efficient mechanism for destroying parasites, however, is thought to be 

via necrosis of infected M(1, which results in the development of the ulcerative lesions 

that are characteristic of the disease (Gaafar etal. 1995). 

1.1.2 Leishmaniasis - The Disease 

Leishmania sp. cause a wide range of diseases in humans, known collectively as 

Leishmaniases. World Health Organisation statistics estimate that up to 12 million 
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people are affected in 88 countries, mainly in the developing world. 1.5 to 2 million new 

cases are reported per year and there is growing concern as increases are seen in both the 

number of cases and the spread to previously non-endemic countries. The emergence of 

Leishmaniasis as a co-infection with HIV has lead to worry about the appearance of the 

disease in Southern Europe and the Southern states of America. 

The severity of Leishmaniasis depends on the tissue tropism of the species involved; L. 

major and L. mexicana are restricted to the skin and cause mainly self-healing cutaneous 

lesions, while L. braziliensis causes a disfiguring mucocutaneous disease that can lead to 

destruction of nasopharyngeal tissue. L. donovani infects macrophages in the liver, 

spleen and bone marrow, resulting in visceral infections which are fatal if left untreated 

(Herwaldt 1999). 

1.1.3 Therapeutic Agents 

Treatment is available for Leishmaniasis, however the drugs are expensive and have 

toxic side-effects. Pentavalent antimony compounds are effective. However, they are 

difficult to administer as they require long regimes of therapy, in addition, their mode of 

action remains unclear. More recent approaches using interferon gamma (IFNy) and 

topical application of paromomycin have only modest cure rates (Herwaldt 1999), and 

the isolation of parasites resistant to pentavalent antimonials from patients who are 

unresponsive to therapy suggests that the effectiveness of anti -Leishmania chemotherapy 

may be limited (Grogl et al. 1992; Ouellette 1993). In Leishmaniasis-endemic areas 

"Leishmanisation" is practised: in this custom, individuals deliberately infect themselves 

with parasites from an open lesion on another infected person, choosing an infection site 

where scarring will not be visible. They then develop an infected lesion which is 

generally resolved and subsequently develop solid immunity against further infection. A 

vaccine against Leishmaniasis should therefore be attainable and is highly desirable 

(Handman 1997). 
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1.2 Dendritic Cells and their Response to Infection 

1.2.1 Introduction 

DC were first identified as a novel population of spleen cells characterised by their 

adherence to glass upon culture (Steinman and Cohn 1973), and were subsequently 

shown to be potent stimulators of B and T cells responses in vitro and in vivo. Inaba and 

colleagues (Inaba et al. 1983) initially demonstrated that DC could activate B cell 

responses to sheep erythrocytes in vitro and that purified DC were extremely efficient at 

stimulating this response: purified DC numbers as low as 0.1-3% of the culture could 

stimulate antibody production by B cells to the same extent as unfractionated 

splenocytes. Purified DC were approximately one hundred times more potent than 

unseparated splenocytes in stimulating Host versus Graft reactions in vivo (Knight et al. 

1983), and direct injection of antigen-pulsed DC into naïve recipients primed antigen-

specific I cells responses (Inaba et al. 1990). 

As DC represent less than one percent of splenocytes (Schuler 1999), protocols to enrich 

DC populations in vitro and ex vivo were crucial for the progression of the field. Culture 

of DC/Langerhans cells (LC) had been shown to be dependent on the presence of 

Granulocyte/M Colony Stimulating Factor (GM-CSF) (Witmer-Pack et al. 1987). 

Using this cytokine, Inaba and colleagues (Inaba et al. 1992) demonstrated that DC 

could be generated in vitro from cultures of mouse blood leukocytes. These blood-

derived DC expressed high levels of Major Histocompatibility (MHC) II on their 

surface, potently stimulated T cells in the Mixed Leukocyte Reaction (MLR) and 

migrated to the T cell areas of the draining lymph node (LN) upon injection into mouse 

footpads, indicating that they were bonafide DC. It was subsequently demonstrated that 

the culture of mouse bone marrow precursors with GM-CSF led to the development of 

bone marrow-derived DC (Inaba et al. 1992). These cells, termed BM-DC, also 

expressed high levels of MHC II and efficiently stimulated T cells in the MLR. DC are 

now also routinely generated from human blood-derived monocytes (Sallusto and 

Lanzavecchia 1994). In vivo elicitation and harvesting protocols arose in mice from the 
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A natural model of cutaneous Leishmania infection has recently been established which 

mimics transmission of the parasites by the sandfly (Belkaid et al. 1998; Belkaid et al. 

2000). In this murine model, infection is imitated by injection of low numbers (one 

hundred) of L. major metacyclic promatigotes into the dermis of the ear. This reflects 

the low numbers of parasites transmitted by sandflies and the observation that exposed 

dermal areas in humans are most vulnerable to infection (Gaafar et al. 1999). Using this 

model, the course of Leishmania infection was divided into three phases (Belkaid et al. 

2000): initially the parasites reside silently within cells of the dermis, in the absence of 

an anti-parasite immune response. This phase lasts four to five weeks, and is 

asymptomatic. After week five the second phase is initiated, characterised by a wave of 

cells invading the dermis. This cellular infiltrate comprises neutrophils, MCI and 

eosinophils. At this point lesions develop, and there is a dramatic reduction (95%) in 

parasite numbers. Naïve and memory T cells now migrate into the site of the infection, 

and, in humans, were shown to make up fifty percent of the infiltrate (ElHassan et al. 

1995). The final phase of the infection is characterised by the persistance of one hundred 

to ten thousand parasites at the site of the lesion. At this point the majority of infiltrating 

cells in the ear are MCI). Virulent parasites were shown, in a different model of infection, 

to persist indefinitely in the host and disease can recur if the host becomes immuno-

compromised (Aebischer et al. 1993). 

In human cutaneous Leishmania infection, parasites have been identified in DC and Mb 

at the site of the lesion (Elflassan et al. 1995; Gaafar et al. 1995). Parasites in various 

stages of degradation were observed within activated MCI by microscopy (Gaafar et al. 

1995). The most efficient mechanism for destroying parasites, however, is thought to be 

via necrosis of infected MI), which results in the development of the ulcerative lesions 

that are characteristic of the disease (Gaafar et al. 1995). 

1.1.2 Leishmaniasis - The Disease 

Leishmania sp. cause a wide range of diseases in humans, known collectively as 

Leishmaniases. World Health Organisation statistics estimate that up to 12 million 
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people are affected in 88 countries, mainly in the developing world. 1.5 to 2 million new 

cases are reported per year and there is growing concern as increases are seen in both the 

number of cases and the spread to previously non-endemic countries. The emergence of 

Leishmaniasis as a co-infection with }-IIV has lead to worry about the appearance of the 

disease in Southern Europe and the Southern states of America. 

The severity of Leishmaniasis depends on the tissue tropism of the species involved; L. 

major and L. mexicana are restricted to the skin and cause mainly self-healing cutaneous 

lesions, while L. braziliensis causes a disfiguring mucocutaneous disease that can lead to 

destruction of nasopharyngeal tissue. L. donovani infects macrophages in the liver, 

spleen and bone marrow, resulting in visceral infections which are fatal if left untreated 

(Herwaldt 1999). 

1.1.3 Therapeutic Agents 

Treatment is available for Leishmaniasis, however the drugs are expensive and have 

toxic side-effects. Pentavalent antimony compounds are effective. However, they are 

difficult to administer as they require long regimes of therapy, in addition, their mode of 

action remains unclear. More recent approaches using interferon gamma (IFNy) and 

topical application of paromomycin have only modest cure rates (Herwaldt 1999), and 

the isolation of parasites resistant to pentavalent antimonials from patients who are 

unresponsive to therapy suggests that the effectiveness of anti -Leishmania chemotherapy 

may be limited (Grogl et al. 1992; Ouellette 1993). In Leishmaniasis-endemic areas 

"Leishmanisation" is practised: in this custom, individuals deliberately infect themselves 

with parasites from an open lesion on another infected person, choosing an infection site 

where scarring will not be visible. They then develop an infected lesion which is 

generally resolved and subsequently develop solid immunity against further infection. A 

vaccine against Leishmaniasis should therefore be attainable and is highly desirable 

(Handman 1997). 



Chapter 1: Introduction 

1.2 Dendritic Cells and their Response to Infection 

1.2.1 Introduction 

DC were first identified as a novel population of spleen cells characterised by their 

adherence to glass upon culture (Steinman and Cohn 1973), and were subsequently 

shown to be potent stimulators of B and T cells responses in vitro and in vivo. Inaba and 

colleagues (Inaba et al. 1983) initially demonstrated that DC could activate B cell 

responses to sheep erythrocytes in vitro and that purified DC were extremely efficient at 

stimulating this response: purified DC numbers as low as 0.1-3% of the culture could 

stimulate antibody production by B cells to the same extent as unfractionated 

splenocytes. Purified DC were approximately one hundred times more potent than 

unseparated splenocytes in stimulating Host versus Graft reactions in vivo (Knight et al. 

1983), and direct injection of antigen-pulsed DC into naïve recipients primed antigen-

specific T cells responses (Inaba et al. 1990). 

As DC represent less than one percent of splenocytes (Schuler 1999), protocols to enrich 

DC populations in vitro and ex vivo were crucial for the progression of the field. Culture 

of DC/Langerhans cells (LC) had been shown to be dependent on the presence of 

Granulocyte/M Colony Stimulating Factor (GM-CSF) (Witmer-Pack et al. 1987). 

Using this cytokine, Inaba and colleagues (Inaba et al. 1992) demonstrated that DC 

could be generated in vitro from cultures of mouse blood leukocytes. These blood-

derived DC expressed high levels of Major Histocompatibility (MHC) II on their 

surface, potently stimulated T cells in the Mixed Leukocyte Reaction (MLR) and 

migrated to the T cell areas of the draining lymph node (LN) upon injection into mouse 

footpads, indicating that they were bonafide DC. It was subsequently demonstrated that 

the culture of mouse bone marrow precursors with GM-CSF led to the development of 

bone marrow-derived DC (Inaba et al. 1992). These cells, termed BM-DC, also 

expressed high levels of MHC II and efficiently stimulated T cells in the MLR. DC are 

now also routinely generated from human blood-derived monocytes (Sallusto and 

Lanzavecchia 1994). In vivo elicitation and harvesting protocols arose in mice from the 
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discovery that injection of Flt-3 ligand enhanced DC numbers in the spleen. Fit 3 is a 

haematopoetic growth factor (Rosnet et al. 1991) and administration of FIG-iigand to 

mice resulted in an up-regulation of cells in the spleen that expressed markers 

characteristic of DC. These cells, when purified, could stimulate antigen-specific T cell 

responses in vitro and in vivo (Maraskovsky et al. 1996). Unlike other protocols, 

enhancement of DC numbers in vivo with 11t3-ligand does not require GM-CSF. Thus, 

all DC subsets are expanded in these mice, whereas GM-CSF-based protocols favour the 

expansion of myeloid DC (see section 1.2.2). 

1.2.2 Functional Maturation and Migration of DC - Initiation of a 

Primary Immune Response 

Activation of naïve T cells requires two signals: signal one is provided by the interaction 

between the T cell receptor (TCR) and peptides presented on the surface of APC in the 

context of MHC molecules; signal two is provided by ligation of co-stimulatory 

molecules on the surface of the APC with their receptors on T cells. Receipt of signal 1 

by a T cell in the absence of signal 2 results in anergy, or unresponsiveness (Bretscher & 

Cohn 1970). DC are the only APC which constitutively express the co-stimulatory 

molecules needed to stimulate naïve T cells in the draining LN (Inaba et al. 1990), and 

therefore have been termed "professional APC" (Matzinger 1994; Mellman et al. 1998). 

In the tissues DC exist in an immature state, in which they are extremely efficient at 

sampling the local microenvironment and at retaining peptides intracellularly in an 

antigenic form. Receipt of specific activating signals results in the maturation of DC, 

which is associated with up-regulation of surface molecules necessary for the interaction 

with naïve T cells and concomitant migration of DC to the T cell areas of the draining 

LN (see Figure 1.2). Activated DC are characterized by high levels of cell surface 

expression of MHC I and II, the co-stimulatory molecules 137-1 (CD80), 137-2 (CD86) 

and CD40, the cell adhesion molecule ICAM-1 (CD54), and the chemokine receptor 

CCR7. Maturing DC are also induced to produce the pro-inflammatory cytokines 
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interleukin (IL)-1, IL-6, IL-12, and tumour necrosis factor (TNF)a (Banchereau et a! 

2000). 

1.2.2.1 The Sentinel Role of DC and their Activation in the Periphery 

Immature DC have evolved a number of different mechanisms with which to capture 

antigens for delivery to processing and presentation pathways. The local micro-

environment is constantly sampled due to high levels of constitutive macropinocytosis, 

which concentrates macrosolutes into putative peptide loading compartments (Sallusto et 

al. 1995), and uptake of particles via receptor-mediated endocytosis (Garrett et al. 

2000). DC express the mannose receptor, which facilitates uptake of a broad range of 

sugars, including mannose and fucose. This receptor releases its ligand at low pH, for 

example in endosomes, and recycles to the cell surface, therefore enabling a limited 

number of receptors to accumulate high concentrations of antigen (Sallusto et al. 1995). 

DC also express several lectin receptors including DEC205 (Jiang et al. 1995) and DCIR 

(DC immuno-receptor) (Bates et al. 1999). DEC 205 was shown to deliver glycoprotein 

antigens to MHC II-rich compartments of DC (Jiang etal. 1995; Malinke etal. 2000). 

Immature DC are actively phagocytic and express high levels of Fc receptors (FcyRI, II 

and III) that mediate uptake of immune complexes and opsonised particles. 

Internalisation of antigen via Fe receptors significantly increased the efficiency of 

antigen presentation by DC; antigen-specific T cells were a hundred times more 

sensitive to DC that had been incubated with an antigen and antibody to that antigen 

than to DC given antigen alone (Sallusto and Lanzavecchia 1994). FcR-mediated up-

take has also been shown to target antigen to the MHC II presentation pathway (Fanger 

et al. 1997; Maurer et al. 1998). 

DC are activated by a number of pathogen-derived products (see section 1.2.4) and by 

cytokines produced in the tissue as a result of inflammation or tissue damage. In 

particular TNFa, IL-i 13  and IL-6 are potent activators of immature DC (Banchereau et 

al. 2000). IL-12 production by activated DC has been reported to act in an autocrine 

loop to stimulate increased production of IL-12 (Grohmann et al. 1998) and IFNy 
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(Ohteki et al. 1999). IFNy production by DC early during the immune response could 

ensure the rapid activation of other cells involved in the innate response, such as Natural 

Killer (NK) cells and M. IL-4, which is generally associated with down-regulation of 

T helper type 1 (Thi) responses, has also been shown to induce production of the Thi 

polarising cytokine, IL-12, in both murine (Fukao et al. 2000; Hochrein et al. 2000) and 

human DC (Kalinski et al. 2000). In both of these studies IL-4 was demonstrated to 

enhance production of the bioactive IL-12 p70  heterodimer, but inhibited formation of 

antagonistic p40 homodimers (see section 1.4.1.3.2). 

Activating signals result in the down-regulation of antigen capture and processing and 

the concomitant migration of DC to the draining LN (Reis e Sousa et al. 1993; Sallusto 

and Lanzavecchia 1994). Antigens which have been captured in the periphery by DC in 

their immature form can be retained intracellularly for at least sixty hours, during which 

time the cells migrate to the T cell areas of the lymphoid organs (Inaba et al. 2000). In 

this way DC survey the tissues and provide T cells with a 'snap-shot' of the antigens 

present in the local microenvironment at the point when the DC were activated. 

1.2.2.2 Migration of DC to the Draining LN 

DC aquire antigen in the periphery but must migrate to the draining LN and spleen in 

order to interact with, and prime, naïve T cells bearing an appropriate cognate receptor. 

This spatial and temporal separation of the sentinel and antigen presenting cell functions 

of DC was demonstrated in studies of contact hypersensitivity responses, where LC were 

shown to take up large amounts of the sensitiser antigen and then migrate to the draining 

LN where they stimulated specific T cell responses (Macatonia et al. 1987). The 

molecular mechanisms that regulate the retention of immature DC in the tissues and 

their migration to the T cell areas of the LN upon activation are now understood in some 

detail, and are. mediated by the expression of chemokines and chemokine receptors. 

Chemokines are small chemoattractive proteins that play a pivotal role in controlling 

tissue specific localisation of cells of the haematopoetic system, including DC. They are 

generally classified according to the number and spacing of cysteine residues at their 
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amino-terminus (Cyster 1999). Immature DC express receptors for inflammatory 

chemokines. These receptors include the CC chemokine receptors (CCR) 1, 2, 5 and 6, 

which bind to pro-inflammatory chemokines including M inflammatory protein (MIP)-

1 a, MIP- 1 3 and RANTES (regulated on activation, normal T cell expressed and 

secreted) (Dieu et al. 1998; Sozzani et al. 1998). These receptors are down-regulated 

upon receipt of an activating stimulus, thus abrogating responses to inflammatory 

chemokines and enabling DC to exit from the inflamed tissue. Maturing DC up-regulate 

expression of CCR7. This binds to MIP-30 and SLC (secondary lymphoid tissue 

chemokine), which are produced by endothelial cells and mature DC in the LN (Dieu et 

al. 1998; Sallusto and Lanzavecchia 2000). These chemokines are therefore thought to 

attract activated DC to the T cell areas of the draining LN, where naïve T cells, which 

also express CCR7, are localised (Sallusto and Lanzavecchia 2000). In support of this 

hypothesis, neither CCR7 nor SLC deficient mice were able to generate primary T cell 

responses, due to the inefficient migration of DC and naïve T cells into the T cell areas 

of the secondary lymphoid organs (Forster et al. 1999; Gunn et al. 1999). Activation and 

migration of LC is also associated with down-regulation of E-cadherin, allowing 

movement of cells from the epidermis and dermis of the skin into the lymphatics (Tang 

et al. 1993). 

1.2.3.3 Final Maturation of DC in the Lymph Nodes 

T cell-derived signals are required by activated DC to complete their maturation in vivo. 

Shreedhar et a! (Shreedhar et al. 1999) reported that T cell-deficient mice (RAG2 or 

SCID) had significantly lower numbers of DC in the draining LN than littermate 

controls, and showed impaired contact hypersensitivity responses which could be 

rescued by transfer of T cells from wild type mice, indicating that T cells are required 

for the presence of mature DC in the LN. Several studies suggest that the interaction 

between T cells and DC is likely to be mediated by binding of CD40 on DC to its ligand 

on T cells: ligation of CD40 on DC resulted in up-regulation of surface activation 

markers and production of high levels of IL- 12p7O (Cella et al. 1996; Koch et al. 1996); 

and the effects of microbial stimuli (Schulz et al. 2000) and IL-4 (Hochrein et al. 2000) 

on IL-12p70 production by DC were augmented in the presence of CD40 ligation. This 
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idea is attractive, since ligation of CD40 causes up-regulation of 0X40 ligand on DC, 

which co-stimulates cytokine production by T cells (Chen et al. 1999). Indeed, it was 

thought that the OX40L:0X40 interaction may polarise T helper type 2 (Th2) responses 

(Flynn et al. 1998), although OX401; 1-  mice were subsequently shown to be defective in 

DC-induced production of both IL-4 and IFNy by T cells (Chen et al. 1999), and ligation 

of 0X40 on activated T cells is now thought to promote survival of all CD4 T cells 

(Rogers et al. 2001). Activated T cells also express TRANCE (TNF-related activation-

induced cytokine) that is recognised by a receptor expressed by DC (Wong et al. 1997). 

Incubation of DC with TRANCE resulted in the production of IL-i P and IL- l2p4O but 

not Th2-associated cytokines such as IL-4, IL-5 or IL- 10 (Josien et al. 1999). TRANCE-

stimulated DC showed an enhanced capacity to stimulate T cells in the MLR and were 

also resistant to apoptosis due to up-regulation of Bcl-XL (Wong et al. 1997). This 

indicates that the interaction between TRANCE on T cells and its receptor on DC may 

promote the survival of mature DC in the LN, and direct their function. 

1.2.3 Heterogeneity of Dendritic Cells 

1.2.3.1 Murine DC Subsets 

Murine DC have been subdivided into increasingly defined subsets based on levels of 

different surface markers and their location in the body. At present, however, the extent 

to which these different subsets represent distinct DC populations with independent 

functions, or merely represent different maturation stages within a single population 

remains unclear. The overlap in markers for these subsets makes it very difficult to 

define a role of individual DC subsets in vivo and to assess the degree of redundancy 

between the functions of these different groups. 

Early studies indicated that murine DC could be sub-divided into myeloid and lymphoid 

DC, which are phenotypically defined by expression of CD 11 c and MHC II, are CD 11 b 

or CD  1b respectively, and were thought to arise from distinct precursors (reviewed by 
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Banchereau et al. 2000). Data from knock-out mice supports the existence of separate 

DC lineages: Re1W' mice lack most myeloid cells, including DC, except LC, (Burkly et 

al. 1995). Wu and colleagues (1998), however, noticed a residual population of CD8a 

DC in the spleen of these mice, suggesting that these cells have a non-myeloid lineage. 

Mice which express the mutated dominant negative Ikaros protein are blocked in the 

generation of all cells of the lymphoid lineage (Georgopoulos et al. 1994; Wang et al. 

1996). Most of the DC are missing from these mice indicating that the majority of DC in 

vivo are of the lymphoid lineage or that this mutation also effects the development of 

some myeloid cells. In mice expressing the more specific C-terminal null Ikaros 

mutation, B and NK cells are ablated but some T cell development leaks through. 

Importantly, this is accompanied by the appearance of CD8 DC in the thymus (Wu et 

al. 1997), indicating that T cell and DC development are related. 

Epidermal LC may represent a third DC lineage: they have generally been considered 

the archetypal myeloid DC, but are present in RelW' mice. Furthermore, LC have been 

shown to acquire a lymphoid (CD8(x) phenotype upon migration to the draining LN 

(Anjuere etal. 1999). 

The a-chain of the CD8 T cell co-receptor is present as a homodimer on a distinct subset 

of DC, and has provided a convenient marker for the identification of different DC 

populations. Identification of CD8a DC populations in the thymus led to the 

assumption that this was a marker for the lymphoid DC lineage since transfer of 

intrathymic CD4 10  lymphoid precursors into irradiated mice led to the development of a 

thymic DC population of which sixty percent were CD8a (Ardavin et al. 1993). 

However, definitive proof of this relationship awaits clonal analysis of thymic 

precursors. 

CD8a DC were originally believed to be less efficient than CD8c( DC at stimulating T 

cell responses in vitro (Kronin et al. 1996; Suss and Shortman 1996) and express high 

surface levels of Fas ligand which might induce apoptosis of Fas-expressing CD4 T 

cells (Suss and Shortman 1996; Inaba et al. 1997). This led to the proposal that CD8a 
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DC might mediate tolerogenic responses, and CD8cx DC initiate immunity to foreign 

antigens. However, DC derived from bone marrow precusors cultured with flt-3 ligand 

were recently shown to up-regulate CD8cx upon activation with LPS (Brasel et al. 2000) 

indicating that myeloid DC can be induced to express CD8a, and the thymus is no 

longer thought to be the only origin for CD8a DC (Brasel et al. 2000; Liu et al. 2001). 

Furthermore, a recent study has demonstrated that the transfer of bone marrow-derived 

common myeloid progenitors into irradiated mice led to the development of CD8a DC 

in both the spleen and thymus of recipient mice (Traver et al. 2000). The significance of 

CD8a as a marker of different DC lineages, and whether it plays a role in the function of 

CD8a DC, thus remains unclear. It is becoming obvious, however, that the convenient 

division of DC into 'myeloid' and 'lymphoid' lineages was too simplistic. 

Murine splenic DC have now been divided into three populations: CD86CD4, 

CD4CD8a and double negative (CD8((CD4) (Kamath et al. 2000). The CD86 cells 

are DEC205 and negative for the myeloid marker CD1 lb. Conversely, both CD8a 

populations are DEC205 and CD  lb. Experiments in which these populations were 

matured in vivo by injection of LPS have indicated that they do not represent activation 

stages of the same population of DC. BrdU labelling studies have also indicated that the 

three DC subsets represent three separate developmental streams, since the turnover of 

all populations was equivalent, and one did not lag behind another (Kamath et al. 2000). 

DC populations in the LN may be more complex that in the spleen, probably reflecting 

the presence of epidermal Langerhans cells (LC) and dermal DC populations (Anjuere et 

al. 1999; Ruedl et al. 2000; Henri et al. 2001). 

1.2.3.2 Human DC subsets 

At present human DC can be divided into two subsets: myeloid (DC 1) or plasmacytoid 

(pDC2) DC (Rissoan et al. 1999). DC1 express myeloid antigens such as CD1 lb, 

CD  I  and CD 14, whereas pDC2 are CD11c, CD4 and express other markers also 

found on lymphocytes (Liu et al. 2001). Plasmacytoid DC require IL-3 rather than GM- 
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CSF for survival, expressing high levels of the IL-3 receptor a chain and low levels of 

the GM-CSF receptor a chain, and are characterised by rapid production of type 1 

interferons (IFNa, IFN3) in an innate response to viral infection (Liu et al. 2001). 

1.2.4 DC as a Link Between the Innate and Adaptive Immune 

Responses to Pathogens 

The innate immune response is an evolutionarily conserved, rapid immune response to 

pathogens that is characterised by expression of germline-encoded receptors on effector 

cells. Vertebrates have also evolved a second arm, the adaptive response, in which 

receptors on effector cells are generated by gene rearrangement during development, the 

outcome of which is the ability to generate a memory response. Induction of the innate 

response must only be initiated in the presence of foreign or damaged cells, and 

therefore, has evolved to respond to specific pathogen-derived signals via conserved 

receptors. 

1.2.4.1 The Danger Hypothesis 

The immune system has been traditionally viewed as distinguishing between self and 

non-self molecules. Central tolerance to self antigens has long been known to be 

achieved via deletion of self-reactive T cells in the thymus, and is based on recognition 

of signal 1, the interaction between the TCR and MHC-peptide complex. Peripheral 

tolerance to antigens which would not be present in the thymus was partly explained by 

the two signal hypothesis, since presentation of antigens in the absence of signal 2 

results in T cell anergy (Bretscher and Cohn 1970). T cell responses to peripheral 

antigens are also limited by the restriction of naïve T cells to the blood, lymph and 

secondary lymphoid organs. Using APC which could either provide the TCR cross-

linking signal 1 or co-stimulatory signal 2, but not both, Lui and Janeway (Liu and 

Janeway 1992) showed that expansion of CD4 T cells is more efficient when both 
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signals are present on the same cell. This supported the earlier work by Bretscher and 

Cohn (Bretscher and Cohn 1970), demonstrating that cells that had taken up antigen 

could not activate a T cell response unless they also expressed co-stimulatory molecules 

on their surface. The inducibilty of the co-stimulatory signal and the nature of the signals 

that APC responded to could therefore provide a very specific mechanism for 

controlling activation of naïve T cells, and raised the question of how the induction of 

responses was controlled. Janeway (Liu and Janeway 1992) proposed that pathogen-

derived molecules, but not harmless exogenous proteins, could provide an activating 

signal which would enable APC to distinguish between infectious and non-infectious 

non-self. This information would be relayed to the T cell via upregulation of co-

stimulatory molecules (signal 2) only in the presence of an infection. This hypothesis 

was later modified by Ibrahim and colleagues (Ibrahim et al. 1995), who argued that the 

innate immune system must also respond to local microenvironmental damage, in order 

to explain immune responses to allergens or alloantigens when no pathogen was present. 

These ideas became cemented into the "danger theory", proposed by Matzinger in 1994, 

which stated that the primary force driving development of the immune system was 

recognition of destruction and cell death (Matzinger 1994). Matzinger suggested that the 

ability of professional APC, i.e. DC, to respond to specific activation signals by up-

regulation of expression of surface co-stimulatory molecules meant that the initiation of 

a primary T cell response would occur only in the presence of "danger". Danger, in this 

view, was defined as "tissue destruction", which included active signs of stress such as 

production of heat shock proteins (hsp), or passive signs such as the release of internal 

molecules that are not normally secreted. This presented, for the first time, the idea that 

DC could sense their environment and respond to infection or tissue damage by 

activating a T cell response. The danger hypothesis reinforces the significance of the 

presence or absence of signal 2 in establishing tolerance to peripheral antigens, and 

expands on this by describing up-regulation of co-stimulatory molecules as a response 

by DC to environmental stimuli. However, until recently the precise nature of the DC 

receptors which enabled DC to sense and respond to these stimuli was unknown. 
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1.2.4.2 PAMPs and PRRs 

Janeway proposed that the innate immune system must encode receptors for conserved 

molecules which are components of pathogenic agents and are distinct from self 

molecules (Janeway 1989; Janeway 1992). These conserved molecules have been 

termed PAMP (Pathogen-Associated Molecular Patterns) and are recognised by PRR 

(Pattern Recognition Receptors) on immune cells (Medzhitov and Janeway 1997). Since 

the immune system will exert selective pressure against pathogens expressing molecules 

recognised by PRR, PAMP are likely to be molecules that are essential for the survival 

of the pathogen, e.g. virulence factors. They are also likely to be highly conserved, 

enabling limited numbers of germline-encoded PRR to recognise large groups of 

microbes. 

In keeping with this prediction, all microbial PAMP identified to date are essential for 

the pathogen's survival, and include cell wall components of Gram negative 

(lipopolysaccharide (LPS)) and Gram positive (lipoteichoic acids (LTA), peptidoglycan 

(PDG), lipopeptides) bacteria; yeasts (Mannans); bacterial CpG DNA; and double 

stranded (ds)RNA of viruses (Medzhitov and Janeway 1997). PRR thus far identified 

include molecules such as CD14 which bind PAMP in association with other accessory 

proteins such as LBP (LPS-binding protein), receptors for lectin-type molecules such as 

the mannose receptor, DEC 205, and complement receptors involved in uptake of 

opsonised antigens (Medzhitov and Janeway 1997). The recent identification of the Toll-

like receptor (TLR) family as receptors for specific PAMP has provided a molecular link 

between recognition of specific pathogen-derived signals and the activation of an 

immune response. 

1.2.4.2.1 Toll-Like Receptors 

The human TLR family was identified by their homology to the Drosophila receptor, 

Toll (Medzhitov et al. 1997). Toll was originally identified as a protein which is 

essential for establishing the dorso-ventral axis in early Drosophila embryos (St 

Johnston and Nusslein-Volhard 1992). Toll family members are characterised by an 

extracellular domain containing a number of Leucine-rich repeats and an intracellular 
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cytoplasmic signalling domain (reviewed by Medzhitov and Janeway 2000). There is 

little conservation between the extracellular domains of different Toll homologues, 

indicating that they may bind diverse ligands. In contrast, the intracellular domains are 

highly conserved and are homologous to the murine IL-1 receptor signalling domain. 

Conservation between Toll-like proteins involved in plant and mammalian immune 

responses, and the presence of NF-KB response elements in genes transcribed upon 

infection in insects lead to the discovery of a role for Toll and other related genes in 

Drosophila innate immune responses. Flies possess a primitive immune system, and 

respond to pathogens by the rapid and transient synthesis of anti-microbial peptides 

following injury. Toll gain-of-function mutants constitutively expressed the anti-fungal 

peptide drosomycin in the absence of challenge, while homozygous Toll null mutants 

rapidly succombed to fungal infection (Lemaitre et al. 1996). These flies, however, 

remained able to control infection with the bacteria E. coli via the production of specific 

anti-bacterial peptides. 18 Wheeler was subsequently identified as the receptor necessary 

for transcription of anti-bacterial peptides (Williams et al. 1997), illustrating that the 

Drosophila innate immune responses can recognise, and respond appropriately to, 

different classes of pathogens. 

Human orthologues of Toll were first cloned in 1997 (Medzhitov et al. 1997) and were 

shown to contain conserved structures seen in the Drosophila proteins. mRNA for 

human Toll was found in monocytes, M1 and DC. Constitutively active Toll mutants 

were found to induce activation of NF-KB regulated genes such as IL-1, IL-6 and IL-8 in 

transfected Jurkat cells, and also induced up-regulation of 137-1. This lead to suggestion 

that TLR could function as non-clonal PRR in the vertebrate immune system. The 

human Toll signalling pathway has been described, based on conservation with the 

Drosophila pathway (reviewed by Medzhitov and Janeway 2000). During Toll 

signalling an adaptor protein MyD88 (Myeloid Differentiation factor 88) is recruited and 

interacts with a domain at the C-terminus of the TLR, known as the TIR (Toll/IL-i R) 

domain. MyD88 in turn binds IRAK (IL-1 Receptor Activated Kinase) via its death 

domain. IRAK is activated by an unknown mechanism, becomes autophosphorylated, 

dissociates from MyD88, and then binds to another adaptor protein, TRAF 6 (TNF 
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Receptor Associated Factor), which interacts with MAP Kinase family members. This 

signalling pathway results in dephosphorylation of IicB, release of NF-KB, and its 

translocation into the nucleus to activate genes containing NF-KB response elements. 

These include a number of genes encoding proteins involved in immune responses such 

as IL-12, and other pro-inflammatory cytokines (Abbas 1997)(Figure 1.3). 

1.2.4.2.2 TLR 2 and TLR 4 

The first documented interaction between a defined TLR and PAMP was the binding of 

the Gram negative cell wall component, LPS, to TLR2. TLR2 was shown to be 

expressed on human monocytes and M and expression increased upon activation with 

LPS (Yang et al. 1998). Transfection of TLR2 into human embryonic kidney 293 cells 

conferred responsiveness to LPS, however this was only efficient in the presence of 

LPS-binding protein (LBP) and CD14 (Kirschning et al. 1998; Yang et al. 1998). 

Positional cloning of the ips gene, which renders C3H/HeJ mice unresponsive to LPS-

induced toxic shock, however, identified the mutated gene as tlr4 (Poltorak et al. 1998); 

the gene encoding TLR4 in C3HIHeJ mice was shown to contain a mutation resulting in 

•a switch from proline to histidine in a conserved region of the TLR4 intracellular 

domain (Poltorak et al. 1998). TLR4 null mice are completely unresponsive to LPS and 

recapitulate the phenotype of the ips mice (Hoshino et al. 1999); tlr4 Mc1 were not 

induced to produce TNFa or NO 2  upon activation with LPS, and tlr4 mice showed 

neither LPS-induced proliferation of B cells, nor upregulation of surface MHC II, 

although TLR4' B cells could still be activated by IL-4. Therefore, these data indicate 

that TLR4 is the principal receptor responsible for recognition of LPS by immune cells 

in vivo. The conflict between the TLR2 and TLR4 data was resolved by Hirshfeld et a! 

(Hirschfeld et al. 2000) who showed that careful purification of LPS to remove 

contaminating endotoxins abrogated TLR2-mediated responses to LPS. Therefore, the 

original results reporting TLR2 responses to LPS are likely to be due to sensitivity of 

TLR2 to the presence of other endotoxin contaminants in LPS samples used. 
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MyD88 knock-out mice showed a similar phenotype to the TLR4 mutants, and were 

resistant to LPS-induced endotoxic shock (Kawai et al. 1999). However, unlike tlr4 or 

C3HIHeJ mice, myd88 bone marrow-derived DC are activated by LPS to up-regulate 

surface markers such as MHC II and B7-2, and show enhanced T cell stimulatory 

capacity in comparison to immature DC. Furthermore, activation of MAPK and NF-icB 

remains intact in myd88' mice, although the kinetics are slowed (Kaisho et al. 2001). 

Interestingly, CpG DNA, (which binds to TLR9), is unable to induce activation of DC 

from myd88' mice (Kaisho etal. 2001). Therefore these data demonstrate the existence 

of two pathways: a MyD88-dependent pathway is activated through TLR2, 4 and 9; and 

a MyD8 8-independent pathway which is also activated by the interaction of LPS with 

TLR4. The adaptor proteins TIRAP ((TIR) domain-containing adaptor protein) and 

Tollip may provide a platform for MyD88-independent signaling from TLR4 (Fitzgerald 

et al. 2001; Granucci et al. 2001; Homg etal. 2001). 

TLR2 has now been shown to transduce signals from a number of different classes of 

pathogens, including fungi and Gram positive bacteria. Expression of a dominant 

negative form of TLR2 by a M1 cell line blocked production of TNFa in response to 

the yeast cell component, zymosan (Underhill et al. 1999), and TLR2 mutants also did 

not respond to S. aureus or Gram positive cell wall preparations (Takeuchi et al. 1999; 

Underhill et at 1999). TLR2 was also subsequently shown to function as a receptor for 

Mycobacterial components (Takeuchi et al. 1999; Wang etal. 2000). 

1.2.4.2.3 Other Members of the TLR Family 

At present ten members are reported to belong to the Toll-like receptor family (Rock et 

al. 1998; Kaisho and Akira 2001) However ligands have only been identified for TLR 2, 

3, 4, 5 and 9 (Figure 1.3). 

TLR3 is unique among members of the TLR family because the proline which is 

mutated in LP S -unresponsive mice is replaced by an alanine (Kaisho and Akira 2001). 

This led to the suggestion that TLR3 was not a functional receptor. However, 
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Alexopoulou et a! (Alexopoulou et al. 2001) recently reported that TLR3 was the 

receptor for viral dsRNA: 293T cells expressing TLR3 plus an NF-KB-dependent 

reporter responded specifically to the synthetic dsRNA analogue, poly(I:C), and this was 

confirmed by the generation of tlr3 mice, since M1 from these mice produced neither 

pro-inflammatory cytokines nor anti-viral type I interferons (IFNa, IFNJ) in response to 

poly(I:C). Interestingly, while splenocytes from myd88 mice did not proliferate in 

response to poly(I:C), and DC from these mice were not induced to produce IL-12, 

incubation with poly(I:C) did induce up-regulation of MHC II and CD86 on the surface 

of myd88 DC. Therefore, as with TLR4, TLR3 signalling in response to poly(I:C) 

induces cytokine production via an MyD88-dependent pathway, but maturation of DC 

via an MyD88-independent pathway. 

TLR5 was cloned by data base searching, due to the presence of its TIR domain, and is 

expressed by monocytes, immature DC and epithelial cells. Screening of putative 

pathogen-derived products using COS cells transfected with TLR5 linked to a luciferase 

reporter identified Gram positive and Gram negative bacterial culture supernatants as 

activators of TLR5-expressing cells. This activity was subsequently demonstrated to be 

due to bacterial flagellin (Hayashi et al. 2001), as activation of TLR5 was restricted to 

Gram positive and Gram negative flagellated bacteria and was inhibited on deletion of 

flagellin. Interestingly, on interstitial epithelial cells, TLR5 expression has been shown 

to be restricted to the basal membrane (Gewirtz et al. 2001), suggesting a mechanism to 

prevent flagellated commensal bacteria in the gut from activating an inflammatory 

response unless they cross the intestinal epithelia. 

TLR9 was cloned and characterised as the mammalian receptor for CpG-containing 

DNA (Hemmi et al. 2000). Non-methylated CpG motifs are characteristic of bacterial 

DNA and have been shown to activate mammalian DC and drive Thi responses (Jakob 

et al. 1998; Hartmann et al. 1999). This receptor is highly specific for CpG DNA, since 

tlr9-1-  mice responded to LPS, zymosan, and peptidoglycan. 
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A lack of specific reagents has meant that questions such as whether binding of PAMP 

to TLR is direct or via interaction with other accessory proteins, and where TLR are 

localised in the cell, remain largely unanswered. Some TLR are, however, thought to be 

intracellular: HA-tagged TLR2 transfected into a M cell line was recruited to 

phagosomes following ingestion of zymosan (Underhill et al. 1999); TLR9 is likely to 

be endosomal (Hemmi et al. 2000) since responsiveness to CpG was shown to require its 

internalisation (Krieg et al. 1995). Additionally, it has recently been suggested that TLR 

may form functional heterodimers thus broadening the specificity of the pathogenic 

components which are recognised: Ozinsky et a! (2000) showed that the PAMP 

specificity of TLR 2 and 6 is partially overlapping and that both these receptors are 

recruited to phagosomes upon uptake of zymosan, or peptidoglycan derived from Gram 

positive bacteria. However, TLR2 and 6 also co-localised with phagosomes containing 

opsonised red blood cells, so it was not clear whether this recruitment was specific or 

merely reflected non-specific internalisation of the receptors on phagocytosis. 

Immunoprecipitation of epitope-tagged TLR2 co-precipitated TLR6 and deletion of the 

intracellular domain indicated that this interaction was mediated by the extracellular 

domains of the proteins. Chimeric proteins, in which the signalling domain of TLR 

molecules were fused to the extracellular domain of CD4, were used to investigate the 

function of TLR homo- and heterodimers. TLR4 homodimers were constitutively active, 

and induced NF-KB-dependent reporter gene expression in transfected 293 cells 

(Hoshino et al. 1999), suggesting that TLR4 forms functional homodimers in vivo. CD4-

TLR1, 2 or 6 homodimers, however, did not induce constitutive cytokine expression 

when transfected into a M cell line (Ozinsky et al. 2000), although CD4-TLR2/CD4-

TLR6 or CD4-TLR1/CD4-TLR2 heterodimers activated production of TNFa. These 

data imply that TLR may form functional heterodimers which confer specificity to 

different pathogen-derived products, thus broadening their recognition spectrum. The 

inability of TLR2 homodimers to activate cytokine production indicates that TLR2-

transfected cells which responded to signals from Gram positive bacteria must express 

additional unidentified TLR molecules (eg.Yang etal. 1998). 
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1.2.4.3.4 Expression of TLR by DC 

In order to assess the potential physiological role of TLR in the activation of DC it is 

important to determine their expression patterns on immature and mature DC. TLR2 

mRNA was most highly expressed on monocytes and was down-regulated as the cells 

were matured into DC (Thoma-Uszynski etal. 2000; Visintin et al. 2001). Production of 

IL-12 p40 by monocyte-derived DC, on activation by lipoprotein, was blocked on 

addition of an anti-TLR2 antibody supporting the role for TLR-dependent activation of 

DC as a link between innate and adaptive immune responses (Thoma-Uszynski et al. 

2000). Lipopeptides induce classical activation of DC; CD80, CD86, CD54 and MHC II 

were upregulated, endocytosis was down-regulated and the DC showed an enhanced 

ability to stimulate T cells in an MLR (Hertz et al. 2001). All of these responses were 

inhibited on addition of an anti-TLR2 mAb (Hertz et al. 2001). TLR4 gene expression 

also decreased as monocytes mature into DC (Visintin et al. 2001), but was upregulated 

on DC activated by bacterial products and cytokines, in a mechanism which could be 

blocked by IL-10 (Muzio et al. 2000). However surface expression of TLR4 proteins 

was low on monocytes and dropped as the cells differentiated into immature and then 

mature DC (Visintin et al. 2001). Furthermore, LPS induced activation of the signalling 

molecule IRAK in immature not mature DC, supporting the idea that only immature DC 

are competent to respond to signalling through TLR. TLR3 was highly expressed on 

human DC, but levels decreased upon activation with LPS (Muzio et al. 2000). 

Taken together DC expression and function data support the hypothesis that TLR 

function as PRR, enabling immature DC to act as a bridge between the innate and 

adaptive immune system. A recently published study on human DC demonstrated that 

distinct DC subsets expressed distinct TLR patterns; plasmacytoid (pDC2) were shown 

to specifically express TLR9 which correlated with responses to CpG but not other 

stimuli, whereas immature DC  expressed TLR1, 2 and 3, and specifically responded to 

proteoglycan and poly(I:C) (Kadowaki et al. 2001). This raises the possibility that the 

pattern of TLR expression by different DC subsets may determine which DC 

populations are competent to respond to different pathogen-derived signals, which in 

turn could determine the outcome of the subsequent T cell response (see section 1.2.5). 
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Thoma-Uszynski et al (Thoma-Uszynski et al. 2000) reported that activation of TLR2 

by lipoprotein results in preferential production of IL-12 rather than IL-10. Therefore, 

this indicates that activation of DC via TLR2 could result in the development of an IL-

12-driven polarised Thi response. However, it has not been shown whether signalling 

via other TLR leads to production of alternative cytokines. 

1.2.5 Polarisation of the T cell Response by Activated DC 

Recent studies have revealed that DC do not simply initiate the adaptive immune 

response in the presence of danger but also play a role in directing the shape of the 

effector T cell response (Moser and Murphy 2000). It is clear that resolution of infection 

by different pathogens requires different effector responses, e.g Th 1-mediated cellular 

immune responses are generally required for the clearance of intracellular bacteria and 

viruses but Th2-mediated humoral responses are usually needed for protection against 

helminths (see section. 1.4.1.2). Activation of inappropriate responses will result in an 

inability to control the infection and can lead to the development of immunopathologies 

that are harmful to the host. Two hypotheses have been put forward to explain the 

mechanisms by which DC polarise CD4 Th responses (Figure 1.4): 

DC of different lineages elicit distinct T helper cell responses, 

the ability of DC to regulate the T cell response is flexible and is shaped by signals 

from the pathogen and the microenvironment in which the cells are activated. This 

latter hypothesis requires the involvement of a "third signal" which instructs the DC 

as to the nature of the immune challenge (Kalinski et al. 1999). 

1.2.5.1 Model One: Different DC Subsets are Polarised to Direct Different T 

Helper Cell Responses 

In this model, DC1 and DC2, which prime Thi and Th2 responses respectively, 

constitute different DC subsets, which may be derived from separate DC lineages 

(Figure 1.4). Of the three murine splenic DC subsets, 
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(Kamath etal. 2000, section 1.2.2.1) it is the CD8a population which has been 

repeatedly shown to produce IL-12 upon activation in vitro (Hochrein et al. 2001) and in 

vivo (Maldonado-Lopez et al. 1999; Schulz et al. 2000): splenic DC were incubated 

overnight with Keyhole Limpet Haemocyanin (KLH), then sorted into CD80t and 

CD8oc populations and transferred into naïve hosts. LN cells from mice receiving either 

population of DC proliferated on restimulation with KLH in vitro, indicating that they 

had been primed by the injected DC. Analysis of cytokine release from these cells 

showed that injection with CD8a DC had primed an IL-2 and IFN'y-producing Thi 

response while CD 8cC DC had primed a Th-2 like response (Maldonado-Lopez et al. 

1999). In a separate set of experiments splenic DC were sorted into CD  lc+/CDllbthhhi 

"lymphoid" cells, which would contain the majority of the CD8a DC, and 

CD  1c/CD1 1briht  "myeloid" DC, which would be predominantly CD8cC (Pulendran et 

al. 1999). These subsets were incubated with OVA overnight and injected into BALB/c 

mice that had been reconstituted with OVA-specific T cells. The CD  1c /CD 1 lb bright 

DC primed IL-4 and IL-10 production in recipient mice, consistent with the CD8cC DC 

transfer data of Maldonado-Lopez et a! (Maldonado-Lopez et al. 1999). However, 

unlike the transfer of CD811  or CD8cC subsets (Maldonado-Lopez et al. 1999), injection 

of both CD 1lb dul '  and CD 11bbright  subsets induced equal levels of IL-2 and IFNy in these 

experiments. The reason for this discrepancy is unclear but may be due to fact that the 

DC populations were sorted using different criteria. Based on these data, it has been 

proposed that the response directed by activated DC will depend on the subset of DC 

which encounters antigen, whereby CD86 DC (DC 1) direct Thi responses and CD8a 

DC (DC2) direct Th2 responses. The converse is true in humans where myeloid "DC 1" 

have been shown to prime Thl primary allogeneic responses and plasmacytoid "DC2" 

prime Th2 responses (Rissoan et al. 1999). The work by (Maldonado-Lopez et al. 1999) 

strongly supports this, since in these experiments all the DC were incubated with antigen 

together. Thus, all the cells had been exposed to the same microenvironment and 

antigen, but primed different polarised responses in vivo. A recent publication describing 

the differential expression of different TLR on "myeloid" or plasmacytoid human DC 

supports the hypothesis that different lineages of DC could respond to different 

pathogens (Kadowaki etal. 2001). 
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1.2.5.2 Model two: Polarisation of DC is Driven by the Pathogen and the 

Microenvironment in which Challenge Occurs. 

The lineage argument (model one) is limited by the fact that CD8a DC are localised to 

the T cell areas of the LN and spleen (de St Groth 1998) but all antigens will first 

encounter CD8a DC in the periphery before being taken to secondary lymphoid organs. 

It also seems inefficient since, in this scenario, activation of an appropriate response 

would depend on the correct DC meeting the correct pathogen. Kalinski and colleagues 

proposed that immature DC can adopt a Thi or Th2-promoting function depending on 

pathogen-derived signals and the nature of the microenvironment in which the encounter 

occurs (Kalinski et al. 1999). This implies that DC  and DC2 can develop from the same 

precusor (see Figure 1.4). Immature monocyte-derived DC stimulated with IFNi in vitro 

produced IL- 12. If subsequently matured in an IFNy-containing environment, these cells 

become effector "DC1" which produced large amounts of IL-12 on CD40 ligation, 

irrespective of the culture conditions. Conversely, if the DC were stimulated and 

matured in the presence of prostaglandin (PG) E2 they did not produce IL- 12 even in the 

presence of IFNy (Vieira et al. 2000). These data imply that the environment in which 

the DC are activated directs their maturation into DC1 or DC2, but that this becomes 

fixed and cannot be influenced by cytokines in the LN, away from the site of infection, 

in keeping with the 'snap-shot' idea of DC maturation. 

Model 2 was supported by data obtained using pathogen-derived antigens, which 

directed the establishment of Thi or Th2 responses. Toxoplasma gondii soluble antigen 

(STAg) primed a strong Thi response in vivo and splenic DC from infected mice 

produced large amounts of IL-12 (Sousa et al. 1997). IL-12 production was principally 

localised to the CD8a subset, but CD8a DC could also be induced to secrete IL-12 

when activated with STAg, or CpG DNA, in the presence of CD40 ligation (Schulz et 

al. 2000), or when incubated with heat killed Brucella abortus (Huang et al. 2001). 

Uptake of different forms of the fungus Candida albicans by DC can lead to distinct 

effector functions in vitro and in vivo: yeast stimulated IL-12 production and promoted a 

Thi response, while hyphae directed Th2 priming via IL-4 production (d'Ostiani et al. 

2000). However, these studies were performed using unsorted splenic DC, and it will be 
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interesting to define the respective roles of CD8a positive and negative populations in 

these responses. 

It has been more difficult to demonstrate the ability of DC activated by pathogen-derived 

signals to direct a Th2 response, since IL-12 production seems to be the dominant 

response to infection. However, some parasite-derived products were clearly able to 

polarise DC to a "DC2" phenotype (Whelan et al. 2000; MacDonald et al. 2001). Bone 

marrow-derived DC cultured with OVA and the filarial nematode glycoprotein ES-62 

induced production of IL-4 by OVA-specific T cells in vitro. Control DC given LPS not 

ES-62 induced the production of IFNy but not IL-4 (Whelan et al. 2000). Likewise, DC 

pulsed with Schistosome soluble egg antigen (SEA) primed Th2 responses in vivo, as 

determined by production of IL-4 (MacDonald et al. 2001). Interestingly, levels of the 

DC surface markers MHC II, CD80, CD86 and CD40 were not up-regulated upon 

incubation with ES-62 or SEA, and these DC did not differentially up-regulate 

production of IL-b. Development of a Th2 response may therefore simply be a default 

pathway in the presence of antigen but relative lack of co-stimulatory molecules or it 

may result from an alternative form of activation involving up-regulation of as yet un-

identified co-stimulatory molecules. Since low doses of antigen preferentially induce 

Th2 responses the polarisation of a Th2 response by SEA may also be a result of low 

levels of MHC II on the surface of these DC (Ruedl et al. 2000). The work of Fe 

d'Ostiani et a! (d'Ostiani et al. 2000), however demonstrates that an antigen can 

stimulate IL-4 production by DC and this will drive a Th2 response in vivo. 

Although CD8c DC have repeatedly been identified as the source of bioactive IL-12 

(eg.Maldonado-Lopez et al. 1999; Schulz et al. 2000; Hochrein et al. 2001) it is clear 

that, under certain conditions, CD8a DC can also be polarised along Thi pathways. 

Maldonado-Lopez and colleagues (2001) recently demonstrated that, while DC function 

appears to be set by its lineage, there is a certain amount of flexibility in the response, 

depending on the cytokines present in the local microenvironment. It is therefore likely 

that the polarisation of the Th response by DC will result from a combination of factors 

including lineage, the nature of the challenge and the microenvironment in which it 
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occurs, and models one and two should not be considered as exclusive. However, model 

two is more appealing than model one since it relies only on one precursor cell which 

can become either a Thi- or Th2-priming cell depending on the pathogen it encounters. 

A kinetic model of DC activation has also recently been proposed whereby progression 

from a DC1 to a DC2 phenotype depends on the length of time DC have been 

stimulated. Therefore, during activation DC will progress from a Thi-promoting DC 

which secretes IL-12 to a Th2-promoting DC which is "exhausted" and no longer 

secretes IL-12 (Langenkamp etal. 2000). This model would imply that priming of a Th2 

response would depend on DC moving rapidly through the Thi -promoting phase to the 

exhausted Th2-promoting phase. This seems inefficient compared to the flexibility of 

model two. 

1.3 Processing and Presentation of Exogenous Antigen 

by Antigen Presenting Cells 

Antigens are presented to T cells by DC and other APC in the form of short peptides 

complexed to MHC Class I and II molecules. These complexes are recognised by 

cognate T cell receptors on CD8 and CD4 T cells respectively. Cytosolic proteins, or 

antigens from intracellular pathogens, are usually presented on the surface of cells in the 

context of MHC I. MHC class II molecules usually present antigens from extracellular 

proteins, bacteria and parasites. MHC I is expressed by all nucleated cells, whereas 

MHC II expression is restricted to B cells, M1 and DC, and to thymic epithelial cells 

and activated keratinocytes (Abbas 1997). This discussion will be restricted to 

presentation of exogenous antigens by MHC II molecules, since the outcome of 

Leishmania infection is critically dependent on the presentation of Leishmania antigens 

to CD4 T cells in the context of MHC II. 
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1.3.1 Antigen Presentation by MHC II Molecules 

Processing and presentation of exogenous antigens by APC requires newly synthesised 

MHC II molecules to meet antigens that have been brought into the cell via endocytosis. 

Thus, pathways leading to proteolytic degradation must integrate with those trafficking 

MHC II from the ER to the cell surface. To achieve this APC exploit pre-existing 

endosomal pathways. 

1.3.1.1 Formation of MHC II: Peptide Complexes in APC 

MHC class II molecules consist of an af3 heterodimer which forms in the endoplasmic 

reticulum (ER) and is stabilised by the binding of a protein known as Invariant Chain 

(Ii). Trimers of Ii associate with three class II heterodimers to form nonameric 

complexes. Ii is successively cleaved by cell proteases, resulting in release of a 24 amino 

acid peptide known as CLIP, (class II associated invariant chain peptide) which binds 

MHC II molecules via the antigen-binding groove, and which is replaced by exogenous 

peptides in peptide loading compartments. Ii plays a critical role in controlling MHC II 

function: the Ti-derived CLIP peptide binds the antigen-binding groove of the 

heterodimer, thus preventing binding of inappropriate self-peptides in the ER; sorting 

signals at the cytoplasmic tail of Ii mediate trafficking of the complex into appropriate 

cellular compartments; and an internalisation signal ensures that any unloaded MHC II 

dimers reaching the cell surface are rapidly endocytosed (Pieters 1997). 

Mice express two different isoforms of Ii, Ii-p33 and Ii-p41. Both forms interact equally 

with newly folded c43 heterodimers (Fineschi et al. 1995), but the presence of Ii-p41 

enhanced the processing of certain antigens (Peterson and Miller 1992), and inhibited 

the lysosomal protease Cathepsin L (Bevec et al. 1996) (see section 1.3.2.3). 

H2-M, HLA-DM in humans, is a class 11-like a13  heterodimer which catalyses the 

removal of CLIP from the peptide-binding groove and allows its replacement with 

antigenic peptides (Denzin and Cresswell 1995; Sloan et al. 1995). This activity has 
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been demonstrated by a number of studies which showed that in the absence of H2-M 

presentation of antigens to T cell hybridomas was inefficient, and MHC II molecules on 

the cell surface were exclusively loaded with CLIP (Martin et al. 1996; Miyazaki et al. 

1996). Furthermore, H2-M' mice were deficient in the negative selection of CD4 

thymocytes as indicated by their strong response in a syngeneic MLR, since in these 

mice all MHC II molecules in the thymus are loaded with CLIP rather than the 

appropriate negatively selecting ligands (Martin et al. 1996; Miyazaki et al. 1996): in 

H2-M-1-  1i' mice, which do not express CLIP, this phenotype was corrected (Swier et al. 

1998). 

H2-M dimers possess tyrosine-based sorting motifs in their cytoplasmic tails that differ 

from the di-isoleucine motifs which target the Ii:a13 complex. This suggests that Ii and 

H2-M are transported to the MHC II loading compartment via distinct pathways, such 

that H2-M cannot catalyse inappropriate loading of MHC II (Pieters 1997). 112-M is also 

thought to play a proof-reading function by catalysing removal of low-affinity peptides 

from the MHC binding groove, ensuring that only the most stable complexes reach the 

cell surface (Kropshofer 1996). H2-M is transported from the Golgi to lysosomes in 

association with the related molecule 112-0 (HLA-DO), which may regulate H2-M 

function (Liljedahl etal. 1996). 

1.3.2.2 Processing Compartments within APC 

The delay in the appearance of MHC 11-peptide complexes on the surface of APC 

reflects the need for the MHC II pathway to integrate with endocytosed antigen. The 

route of entry of antigens into APC, and the nature of the intracellular compartment to 

which antigens are delivered, will play an important role in determining degradation of 

proteins and the dominant T cell epitopes generated. Electron microscopy studies 

indicated co-localisation of the antigen import pathway (surface immunoglobulin (Ig)) 

and the MHC II export pathway in an endocytic compartment, thus demonstrating that 

the molecules involved in processing and presentation might meet via the endosomal 

pathway (Guagliardi et al. 1990). Compartments containing high levels of MHC II were 

subsequently identified in B cell lines and termed MIIC for MHC 11-containing 
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compartments (Peters et al. 1991). These multi-laminar compartments have since been 

identified in DC and MCI) (Harding and Geuze 1993; Kleijmeer et al. 1995). MIIC are 

positive for the lysosomal markers LAMP-1 and CD63, negative for the transferrin 

receptor, but can be reached by endocytic tracers, identifying them as late 

endosomal/early lysosomal compartments (Peters et al. 1991; Kleijmeer et al. 1997). 

MIIC contain high levels of the exchange catalyst H2-M (Sanderson et al. 1994) and, in 

a human cell line, are also strongly positive for the mAb YAe (Kleijmeer et al. 1997), 

which recognises the MHC 111-A" molecule bound to the endogenous HLA-DR a chain 

(Murphy et al. 1989). These data therefore implicated MIIC as the principal sites of 

MHC II-peptide loading. A second distinct MHC IT-rich compartment was subsequently 

identified in B cells (Amigorena et al. 1994; Drake et al. 1997). These Class II 

containing Vesicles (CITY) contained small amounts of transferrin receptor and lacked 

lysosomal markers, indicating that they were more closely related to early and recycling 

endosomes. CITY contained SDS-stable MHC II (xp heterodimers, ie. peptide-loaded 

complexes (Amigorena et al. 1994), and were positive for MHC II aJ-Ii complexes and 

H2-M (Amigorena et al. 1995). This led to the proposal that they may play a role in the 

final steps of peptide loading before transport of MHC 11-peptide complexes to the cell 

surface (Amigorena et al. 1995; Pierre etal. 1997). 

An alternative MHC II loading pathway has been proposed that utilises the recycling of 

surface MHC II into early endosomal or recycling compartments (Salamero etal. 1990; 

Pinet et al. 1995). This pathway appears to be relatively unimportant compared to 

classical transport of newly synthesised MHC II molecules, however it may play a role 

in the presentation of peptides which are sensitive to degradation in acidic endosomal 

compartments. Early endosomes could function as peptide exchange compartments, 

resulting in the replacement of low affinity peptides with high affinity peptides on 

surface MHC II molecules (Salamero et al. 1990). Immature DC have also been reported 

to use a third "rogue pathway" in which MHC II-Ii complexes transiently appear on the 

plasma membrane before being internalised and loaded with peptide (Saudrais et al. 

1998). The functional significance of this pathway is, however, unclear. 
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Transport of MHC Il-peptide complexes from peptide-loading compartments to the cell 

surface is thought to be via direct transport from the loading compartment to the cell 

surface using vesicular carriers or fusion of MIIC with the plasma membrane. This is 

supported by experiments in which the transport of MHC II complexes was examined in 

Mel JuSo cells transfected with a MHC II 3 chain:GFP fusion protein (Wubbolts et al. 

1996). These experiments demonstrated, using confocal microscopy, that MHC II:GFP 

was concentrated in MIIC-like late endosomal/early lysosomal compartments. MHC 

II:GFP-containing vesicles were visualised migrating from the region of these 

compartments to the plasma membrane independently of conventional endocytic routes. 

MIIC-derived vesicles have also been shown to fuse with the plasma membrane and to 

be shed by B cells (Raposo et al. 1996), and T cells were stimulated by MHC Il-peptide 

complexes on B cells in which Transferrin-containing early endosomes had been ablated 

(Pond and Watts 1997). Collectively, these data support the direct transport of MHC II-

peptide complexes to the plasma membrane, without interaction with the early 

endosomal/recycling pathway. 

1.3.1.3 Generation of Antigenic Peptides and Control of Processing of Ii by 

Host Proteases. 

Cleavage of antigens by endosomal proteases will determine the dominant T cell 

epitopes presented from exogenous proteins. The aspartate proteases Cathepsins D and E 

and the cysteine proteases Cathepsins B, L, S and H have all been implicated in the 

processing of exogenous antigens - either directly through modulation of the peptide or 

through interactions with Ii. Cathepsins D and E are both involved in the production of 

functional T cell epitopes whereas H and B appeared to play more redundant roles 

(Villadangos et al. 1999). Hewitt and colleagues (Hewitt et al. 1997) extensively 

analysed the ability of Cathepsins D and E to cleave the C fragment domain from tetanus 

toxin and produce functional T cell epitopes. This work revealed preferential cleavage 

sites for each epitope, allowing characterisation of putative amino acid consensus 

sequences. The similarity in sites cleaved by Cathepsins D and E suggested that they 

might have overlapping functions. Consistant with this, Cathepsin D mice were able to 
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process and present four different antigens to T cell clones, indicating that Cathepsin D 

is not necessary for MHC TI-mediated presentation (Deussing etal. 1998). 

A novel protease, asparaginyl endopeptidase (AEP), has recently been identified which 

may be responsible for initial processing of native proteins (Manoury et al. 1998). 

Incubation of a tetanus toxin antigen with disrupted lysosomes from a transformed B cell 

line revealed that the majority of the processing activity was due to this protease 

(Manoury et al. 1998). AEP was demonstrated to cleave the tetanus toxin protein after 

asparagine (N) residues, indicating that the positioning of these residues may dictate 

cleavage of dominant epitopes by this protease. N-glycosylation of asparagine residues 

has been demonstrated to block processing by AEP (Manoury et al. 1998). Thus, 

bacterial proteins, which are non-glycosylated, may be more sensitive to degradation by 

AEP than self proteins, suggesting that cleavage by AEP may bias the repertoire of 

complexes generated away from self proteins. 

Proteases also control the presentation of T cell epitopes via cleavage of the Ii protein. 

Cathepsin S catalyses cleavage of a 1 OKDa CLIP-containing fragment from Ii (Ii-plo), 

allowing dissociation of MI-IC II c4:Ii nonamers into MHC II cc:CLIP complexes that 

are receptive for peptide (Riese et al. 1996). The importance of this activity was 

demonstrated through inhibition of Cathepsin S, which resulted in the retention of MHC 

II a13:Ii  molecules within lysosomes and a lack of peptide-loaded MHC II on the plasma 

membrane (Pierre and Mellman 1998). Cathepsin L also cleaves Ii but, unlike Cathepsin 

S. is expressed in cortical thymic epithelial cells and not in DC or B cells (Nakagawa et 

al. 1998). 
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1.3.2 Control of the MHC II Processing and Presentation 

Pathway in DC 

The maturation of DC as they migrate from the skin to the draining LN is reflected by 

changes in MHC II compartmentalisation: in immature bone marrow-derived DC, MHC 

II was shown to be abundant in intracellular MIIC, but as the cells matured MHC II 

localised to CII V-like compartments, and in fully mature DC all MHC II molecules were 

found on the plasma membrane (Nijman et al. 1995; Pierre et al. 1997). Maturation of 

DC was accompanied by a change in the stability of MHC II-peptide complexes at the 

cell surface: in immature DC, MHC II complexes are rapidly re-routed to lysosomes for 

degradation, but as the cells mature, the half life of complexes on the surface increases 

from approximately ten to more than one hundred hours (Celia et al. 1997). This 

observation led to the hypothesis that control of surface expression of loaded MHC II 

molecules is due to rapid recycling of these molecules into degradative compartments. 

This was recently modified by Inaba and colleagues who, in the absence of a maturation 

stimulus; could not detect the generation of MHC II-peptide complexes using a 

complex-specific mAb (C4H3) (Inaba et al. 2000). In these experiments antigen 

appeared to be internalised and retained intracellularly for at least sixty hours, but C41 ­13 

positive complexes were not observed unless LPS was added to the culture. C4H3 

positive complexes appeared to be sorted into CIIV-like structures, along with other T 

cell co-stimulatory molecules, which were then transferred to the cell surface (Turley et 

al. 2000). These data imply that control of presentation in DC is at the level of antigen 

processing/peptide loading and not due to degradation of pre-formed complexes. 

However, the well characterised differences in the half life of MHC II-peptide 

complexes in immature versus mature DC make it unlikely that the model proposed by 

Inaba et al is the sole mechanism for controlling antigen presentation by DC. We have 

recently shown, using an alternative complex-specific mAb, that MHC 11-peptide 

complexes form rapidly in immature DC, upon incubation with exogenous protein in the 

absence of a strong maturation signal (Colledge et al.). Furthermore, while both 

immature and activated DC generated MHC 11-peptide complexes with equal kinetics, in 

immature, but not mature, DC these complexes were rapidly internalised from the 
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plasma membrane and degraded (Villadangos et al. 2001). Together, these data support 

the hypothesis that control of the rate of degradation of MHC II-peptide complexes is 

responsible for the regulation of their expression in immature versus mature DC (Cella 

etal. 1997). 

Loading of MHC II molecules with peptides and transport to the cell surface is 

dependent on cleavage of Ii. Significant amounts of Ii-p 10 accumulated in immature but 

not mature DC and this decrease as the cells were activated was paralleled by decreased 

levels of Cystatin C, an inhibitor of Cathepsin S (Pierre and Mellman 1998). A model 

has been proposed whereby control of cleavage of Ii restricts loading of MHC II 

molecules and transport to the cell surface in immature cells. This model is based on 

experiments which demonstrated that in immature DC, Cystatin C blocked Cathepsin S 

activity and MHC II c43-plO complexes were retained in lysosomes. As the DC matured, 

Cystatin C appeared to be sequestered in the Golgi, permitting Cathepsin S to degrade Ii-

10 to CLIP, which will be replaced by antigenic peptides (Pierre and Mellman 1998). 

However, Villadangos and colleagues (Villadangos et al. 2001) could not detect a 

difference between localisation and trafficking of MHC II-peptide complexes in DC 

from Cathepsin S-dependent (IAb)  and Cathepsin S-independent (IAs)  allotypes of 

mice suggesting that Ii does not control loading of MHC II complexes in DC. 

1.4 Initiation and Resolution of Leishmania Infection 

The immunobiology of Leishmania infection has been extensively studied in mice due to 

the development of a well-characterised model of Leishmaniasis that reflects the 

spectrum of dieases found in man. The primary and effector T cell responses to 

Leishmania are dependent on priming of T cells by activated DC and MO. The literature 

discussed in this section describes the role of T cells in the balance between resistance 

and susceptibility to Leishmania infection, and highlights the importance of the 

interaction between Leishmania parasites and DC and M for the development of this 

response. This chapter will focus on studies investigating the infection of mice with the 
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cutaneous species Leishmania major and Leishmania mexicana or Leishmania 

amazonensis. 

Most inbred strains of mice are resistant to infection with L. major, and develop small, 

self-healing lesions. However a few strains, such as BALB/c, CB. 17 or NZW mice, are 

unable to control the infection (Morris et al. 1993). Studies on immune responses 

generally focus on C3H/HeN or C57BL/6 mice, which are genetically resistant, and can 

control infection with L. major, and BALB/c mice, which are highly susceptible, and 

generally die due to uncontrolled dissemination of the parasites (Reiner and Locksley 

1995). However, other Leishmania species that cause cutaneous Leishmaniasis do not 

induce such clear cut polarised responses in "resistant" or "susceptible" strains; whilst 

BALB/c mice are susceptible to infection with all Leishmania species, "resistant" 

C3HIHen or C57BL/6 mice are unable to control infection with L. amazonensis (Afonso 

and Scott 1993; Soong etal. 1997). 

1.4.1 The Role of T Cells in Controlling Infection with 

Leishmania 

1.4.1.1 Control of Leishmania Infection Requires MHC II-Dependent CD4 T 

Cells 

T cell-deficient BALB/c nude (Moll et al. 1988) or thymectomised BALB/c mice 

(Shankar and Titus 1995) could not resolve infection with L. major, and developed large 

ulcerating lesions. Adoptive transfer of CD8 (Ly-2)-depleted, but not CD4 (L3T4)-

depleted, T cells from non-infected animals into BALB/c nude mice conferred an ability 

to heal the infection (Moll et al. 1988), indicating that CD4 T cells were essential for 

the generation of protective responses in infected mice. In subsequent experiments 

Locksley and co-workers (1993) demonstrated that C57BL/6/129 Fl MHC TI-deficient 

mice were highly susceptible to infection with L. major, confirming that stimulation of 

CD4 T cells was critical for the resolution of the disease. Lesion development in L. 

amazonensis-infected C57BL/6 nude mice was delayed compared to wild type mice 
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(Soong et al. 1997), and lesion size directly correlated with the number of CD4 T cells 

transferred into these mice, implying that CD4 T cells play role in the immune-

pathology, as well as the resolution, of infection with L. amazonensis. 

Mice lacking MHC I molecules (due to a disruption in the 2-microglobulin gene) have 

normal CD4 T cell numbers but lack MHC I-restricted CD8 T cells, and have 

disrupted NK cell activity. A number of different studies have shown that the course of 

infection with L. major or L. mexicana parasites in these mice on C57BL/6/129 Fl, 129 

or BALB/c backgrounds was equivalent to infection in matched wild type mice, 

indicating that CD8 T cells do not influence the outcome of the response to these 

parasites (Locksley et al. 1993; Overath and Harbecke 1993; Wang et al. 1993). 

BALB/c mice that had healed the infection did, however, show an increase in the 

production of IFNy by CD8 T cells (Wang et al. 1993). Mice immunised with predicted 

MHC I epitopes from the Leishmania surface glycoprotein, gp63, developed specific 

cytotoxic T lymphocyte (CD8 T cell) responses to some peptides but were not protected 

against infection (Wang et al. 1993). Therefore, collectively these data indicate that 

CD8 T cells are not critical for controlling the outcome of infection with cutaneous 

Leishmania species but that IFNy-production by CD8 T cells may enhance CD4t 

mediated cure of infection. 

The presence or absence of B cells from non-infected mice, when transferred with T 

cells into C.B- 17 scid/scid mice had no effect on the induction of a protective T cell 

response to L. major, even when given at a ratio of ten B cells to one T cell (Varkila et 

al. 1993). These data indicate that B cell responses neither control nor exacerbate the 

infection. BALB/c pMT mice, which lack B cells due to a disruption of the 1gM locus 

(Kitamura etal. 1991), remained susceptible to L. major infection, while C57BL/6 IIMT 

mice remained resistant (Brown and Reiner 1999), suggesting that B cells are also not 

required for the development of T helper subsets in L. major infected mice (see section 

1.4.1.2). B cell-derived antibodies may play a role in the uptake of opsonised parasites 

by APC, since mice lacking Fc receptors were resistant to infection with L. major (Kima 

et al. 2000). Furthermore, mice lacking circulating antibodies, which had been injected 
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with serum from Leishmania-infected mice or mice immunised with amastigote 

membrane components, were more susceptible to infection than those receiving serum 

from non-immune mice (Peters et al. 1995; Kima et al. 2000). Thus, Leishmania-

specific antibodies may mediate uptake of parasites by cells expressing FcR (see section 

1.4.2.1) but B cell responses do not otherwise influence the outcome of infection. 

1.4.1.2 The Role of Polarised T Helper Cell Subsets in Resistance or 

Susceptibility to Infection with L. major 

1.4.1.2.1 Development of CD4 Thi and Th2 Subsets 

Murine CD4 Th cells can be divided into subsets based on the secretion of different 

cytokines upon restimulation. Mosmann et a! (Mosmann et al. 1986) originally reported 

that a panel of CD4 T helper clones could be divided into two groups depending on the 

secretion of IL-2 and IFNy or their IgG- and IgE-enhancing activities upon activation in 

vitro (Mosmann et al. 1986). These subsets have subsequently been well characterised 

and shown to have distinct, often antagonistic roles in the immune response (Abbas et 

al. 1996); Thi cells secrete IFNy, thus directing cell-mediated immune responses, and 

promote switching to IgG2a and IgG2b isotypes, while Th2 cells secrete the cytokines 

IL-4, IL-5 and IL- i 3 and promote switching to IgE, IgGi and IgG4 antibody responses 

which characterise the development of humoral responses. 

Naïve Th precursor cells, termed ThO cells, can develop into either Thi and Th2 effector 

cells depending on whether they are cultured in the presence of IL-12 or IL-4 

respectively (Abbas et al. 1996). IL-12 induces activation of Thi cells via the signalling 

molecule STAT (Signal Transducer and Activator of Transcription) 4 (Thierfelder et al. 

1996; Kaplan et al. 1996a), while IL-4 induced responses are transduced via STAT 6 

(Kaplan et al. 1996b) Stimulation of ThO precusors, e.g. with anti-CD3 antibodies, 

induces the cells to proliferate and begin to produce effector cytokines (Bird et al. 1998; 

Gett and Hodgkin 1998). Recent studies using the fluoresecent dye CFSE 

(carboxyfluoroscein diacetate succinimidyl ester) have demonstrated that cytokine 

production is linked to the number of cell cycles undergone after stimulation (Bird et al. 

1998; Gett and Hodgkin 1998). Thus, IFNy is produced successively as the cells divide 
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whereas expression of IL-4 genes requires additional cell divisions (Bird et al. 1998; 

Gett and Hodgkin 1998). The transcription factor Gata-3 is thought to be the key 

mediator in development of Th2 cells (Zheng and Flavell 1997), while a second 

transcription factor, T-bet, has recently been identified as a potential inducer of Thi 

development (Szabo et al. 2000). The differential expression of IL-4 and IFNy by 

activated T cells was shown to be controlled by epigenetic constraints; chromatin 

structure and DNA methylation prevented transcription of cytokine genes before the 

cells had undergone the requisite number of divisions. This process was strictly related 

to the number of actual cell divisions and not the time taken for these divisions to occur 

(Bird et al. 1998). Once demethylation of IFNy or IL-4 genes occurred it was stably 

inherited by daughter cells, ensuring that descendants of the original polarised precursor 

would maintain that effector T helper phenotype (Bird et al. 1998). 

Individual cells within pools of naïve T cells were shown to have the potential to secrete 

both Th 1- and Th2-associated cytokines, suggesting that the development of ThO 

pre cusors into Thi or Th2 effector cells was a stochastic event (Kelso and Gough 1988; 

Kelso et al. 1995). A more recent study has, however, indicated that there is also an 

inherent instructive component to this process: IFN'y- and IL-4-secreting cells developed 

from naïve precursors in cultures in which all polarising cytokines were neutralised 

(Farrar et al. 2001); furthermore, retro-viral expression of Gata-3 in polarised Thi or 

Th2 cells resulted in the skewing of the majority of these cells to a Th2 phenotype, 

indicating that their phenotype had not been fixed by selective differentiation of 

progenitors in IFNy or IL-4 (Farrar et al. 2001). This result, however, contradicts the 

observation of Bird et al. (1998), discussed in the previous paragraph, that polariastion 

of Th cells was stably inherited due to epigentic constraints on cytokine gene expression. 

It is therefore likely that the selective expansion of Thi versus Th2 clones in response to 

stimulation will depend on both instructive and selective signals, whereby progenitors 

have a tendency towards different fates, but this can be influenced by the cytokine 

milieu in the LN at the time of activation. 
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Different T helper subsets are important in the elimination of different pathogens: Thi 

responses are generally thought to be required for protection against intracellular 

pathogens, including viruses, while Th2 responses eliminate extracellular pathogens and 

mediate allergic responses. While this paradigm is useful for defining responses to 

different organisms, immune responses to pathogens usually develop as a balance 

between these two extremes (Allen and Maizels 1997). Leishmania infection has 

emerged as a model system in which the ability to cure infection is strictly related to the 

Th subset which predominates. 

1.4.1.2.2 The Role of Th Subsets in Infection with Leishmania 

Resistance to infection with L. major was originally shown to correlate with expansion 

of the IFNy-producing Thi subset, while Th2 responses predominated in susceptible 

BALB/c mice (Scott etal. 1988; Heinzel etal. 1989). The role of these two subsets in 

controlling the outcome of infection was further defined by studies showing that transfer 

of Thi or Th2 cell lines conferred protection or exacerbation of disease respectively: T 

cell lines were generated from two fractions of soluble Leishmania antigens (SLA) 

which were known to be protective or not on immunisation of BALB/c mice. The T cell 

line specific for the protective fraction produced IL-2 and IFNy upon restimulation with 

Leishmünia antigen, whereas, the T cell line expanded with the non-protective SLA 

fraction produced Th2-type cytokines (Scott et al. 1988). This observation was 

supported by a study that showed that reconstitution of BALB/c scid mice with T cells 

from cured mice transferred the healing phenotype, an effect that was blocked on 

administration of anti-IFNy antibodies, whilst adoptive transfer of T cells from 

chronically infected mice conferred IL-4-dependent susceptibility (Holaday et al. 1991). 

The polarisation of responding T cells towards a type 1 or type 2 phenotype occurs very 

rapidly after infection by L. major. Three days post-infection a five to ten fold increase 

in cell numbers was observed in LN draining the site of infection, with a concomitant 

increase in the levels of IFNy or IL-4 present in the draining LN of OH/Hen or BALB/c 

mice respectively (Scott 1991). 
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Interestingly, transfer of low numbers of T cells into BALB/c mice (Mitchell et al. 1981; 

Moll et al. 1988; Varkila et al. 1993), or infection of these mice with low numbers of 

parasites (Doherty and Coffman 1996) resulted in the development of a healing Th 1 

response. This demonstrated that susceptible BALB/c mice do contain 'healer' Thi 

cells, and suggests that they can control the infection when there is a reduction in the 

frequency of IL-4-producing cells early on in the infection (see section 1.4.1.4). 

1.4.1.3 The Role of Thi-Derived Cytokines in Resistance to Infection 

The correlation between expansion of the Thi cell subset and resolution of infection 

strongly implicates the Thi-associated cytokines IFNy and IL-12 in development of the 

protective anti-Leishmania immune response. 

1.4.1.3.1 The Role of IFNy in the Anti-Leishmania Response 

IFNy is produced by activated T cells and NK cells. Among other roles, IFNy is a potent 

activator of mononuclear phagocytes, and promotes differentiation of Th cells to Thi 

phenotypes while inhibiting development of Th2 cells. Activation of M by IFNy leads 

to enhanced microbicidal mechanisms such as production of nitric oxide (NO), and up-

regulation of surface expression of phagocytic receptors (Boehm 1997). IFNy will, 

therefore, play a dual role in the outcome of Leishmania infection; by promoting 

differentiation of Thi cells and via direct effector functions on M1 at the site of 

infection. 

Treatment of resistant L. major-infected mice with anti-IFNy mAb abrogated their 

ability to control the infection (Belosevic et al. 1989) and switched cytokine production 

in the draining LN from IFNy to IL-4 and IL-5 (Scott 1991). Parasite burdens in treated 

mice were equivalent to those in susceptible BALB/c mice, indicating that ablation of 

IFNy is sufficient to convert a resistant to a susceptible phenotype (Belosevic et al. 

1989). This is supported by the observation that IFNy-deficient mice were unable to 

control infection and produced significant amounts of Th2 cytokines (Wang et al. 1994). 

Significantly, a single dose of anti-IFNy given at the time of infection, but not a week 

later, was sufficient to switch the response from healing to non-healing (Belosevic et al. 
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1989; Scott 1991). Thus, the timing of IFNy production is important for its ability to 

control infection. Administration of IFN'y to BALB/c mice at the time of infection led to 

an increase in IFNy production by LN cells and a decrease in IL-4 and IL-5. However, 

lesion development only showed a transient delay and the mice were not able to control 

the infection (Scott 1991). Therefore, while IFN'y appears to be critical in controlling 

infection with Leishmania, it is not sufficient to control the spread of Leishmania 

infection in susceptible mice, indicating that other factors must also be involved. 

The early requirement for IFN'y implies that it is produced as part of the innate response 

to infection, before the adaptive response is initiated. Activated NK cells were present in 

the LN of infected mice three days post-infection (Scharton and Scott 1993). High NK 

cell activity in different inbred stains of mice inversely correlates with parasite burden, 

thus resistant mice with a low parasite burden tend to have higher NK cell activity 

(Scharton and Scott 1993). Ablation of NK cells in mice using a rabbit anti-asialo 

antiserum or an anti NK1 .1 mAb led to reduced levels of IFNy production in the 

draining LN and an initial enhancement in susceptibility, although the mice eventually 

recovered (Laskay et al. 1993). These data suggest that NK cells may play a role in 

control of Leishmania parasites via non-antigen-specific IFNy production during the 

early stages of infection. 

1.4.1.3.2 The Role of IL-12 in Initiating the Development of a Thi Response 

to Leishmania 

Introduction to IL -12 

IL-12 was first identified in the supernatants of transformed B cells which had been 

stimulated with the phorbol diester PDBu (phorbol-12,13-dibutyrate). Supernatant from 

these cells induced high amounts of IFNy in peripheral blood lymphocytes (PBL), 

augmented cytotoxic activity against target cell lines, and enhanced PBL proliferation in 

response to PDBu. All three of these activities were co-purifed with a 70KDa 

glycoprotein which was initially called Natural Killer cell Stimulatory Factor (NKSF) 

but was later renamed IL-12 (Kobayashi et al. 1989; Trinchieri 1995). IL-12 is produced 



Chapter 1: Introduction 	 45 

by DC, M and, to a lesser extent, B cells. It is biologically active as a 70KDa 

heterodimer (p70) that is composed of two covalently linked subunits of 40 (p40) and 35 

(p35) KDa respectively. IL-12 both induces NK cells and T cells to secrete IFNy and 

functions as a T cell growth factor, thus contributing to optimal proliferation of, and 

IFNy production by, differentiated Thl clones in response to antigen (Trinchieri 1995). 

IL- 12 production by activated DC or M is critical for the priming of a type 1 Th cell 

response (Hsieh et al. 1993; Macatonia et al. 1995): mice in which the p40 gene was 

mutated (Magram et al. 1996) showed decreased NK cell activity and reduced IFNi 

production in response to LPS, and consequently failed to generate normal Thi 

responses. LN cells from p40 mice immunised with KLH also did not efficiently 

secrete IFNy upon restimulation in vivo, although antigen-induced proliferation of LN 

cells was normal. Production of IL-4 was enhanced in these mice compared to wild type 

controls, suggesting that IL-12 may inhibit production of IL-4. IL-12 has therefore been 

proposed to act as a bridge between the innate and adaptive type 1-biased immune 

responses since production of IL-12 upon activation of APC directly induces the 

development of these T cell responses. 

The p35 and p40 proteins are encoded by genes on separate chromosomes in humans 

and mice, indicating that they are differentially controlled (Trinchieri 1995). Differential 

regulation of both subunits by cytokines (Hochrein et al. 2000) can result in the 

production of an excess of the p40 protein which forms homodimers that can inhibit 

responses to IL-12 p70 by blocking its binding to the IL-12 receptor (Gillessen et al. 

1995). (p40)2  homodimers blocked IL-12-induced proliferation and IFNy production by 

T cell blasts (Gillessen et al. 1995), and the presence of (p40)2  homodimers suppressed 

rejection of myocytes which had been transplanted into the quadriceps of allogeneic 

mice (Kato et al. 1996). 

IL-12 and Resolution of Infection with Leishmania 

IFNyis clearly required to control infection with Leishmania, but the inability of 

exogenous IFN1 to heal susceptible mice suggested that other factors were also involved 
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in the development of a resistant immune response. Treatment of BALB/c mice with 

recombinant IL-12 (rIL- 12) during the first week of infection with L. major parasites 

rendered these mice resistant to infection in an IFNy-dependent manner (Heinzel et al. 

1993; Sypek et al. 1993). Lymphocytes from the draining LN of treated mice produced 

ten to fifty times less IL-4 than wild type mice in response to Leishmania antigen, 

indicating that the presence of IL-12 had resulted in a switch from a Th2 to Thi 

response (Heinzel et al. 1993). Furthermore, immunisation with SLA and IL-12, but not 

with SLA alone, resulted in complete protection of mice against challenge with L. major 

promastigotes (Afonso et al. 1994). As had been shown previously for IFNy (Belosevic 

et al. 1989; Scott 1991), IL-12 is required during the early stages of infection, since 

administration of rIL- 12 during the first week elicited a durable healing response that 

lasted up to four months (Heinzel et al. 1993), whereas administration of rIL- 12 after the 

first week could only delay lesion development (Sypek et al. 1993). These data imply 

that early production of IL- 12 initiates the early IFNy response that is needed to control 

the infection. Evidence for the role of endogenous IL-12 in vivo was demonstrated by 

the administration of anti-IL-12 antibodies to C57BL/6 mice. Infection of these mice 

with L. major resulted in a decrease in IFNy production in the draining LN and an 

increase in parasite burden compared to non-treated animals (Sypek et al. 1993; Heinzel 

et al. 1995). IL-4 production in infected C3H/Hen mice treated with an anti-IL-12 

antibody was equivalent to levels induced on infection of susceptible BALB/c mice 

(Scharton-Kersten et al. 1995), indicating that ablation of IL-12 is sufficient to switch 

the outcome of infection. Definitive evidence for the role of IL-12 in mediating 

resistance to infection with Leishmania came from infection of resistant 129 mice 

lacking either IL-12 p35 or p40. These mice were highly susceptible to infection with L. 

major and produced levels of IL-4 equivalent to those seen in infected wild-type 

BALB/c mice. This increase in IL-4 was associated with reduced levels of IFNy. In this 

study there was no difference between p35 or p40 deficient mice (Mattner et al. 1996). 

Three separate studies have shown a requirement for the interaction between CD40 on 

APC and CD40L on activated T cells for the resolution of infection by L. major or L. 

amazonensis (Campbell et al. 1996; Kamanaka et al. 1996; Soong et al. 1996). This 
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phenotype is also likely to be due to a lack of IL-12 since CD40 ligation enhances IL-12 

production and Thi responses are decreased in mice lacking either CD40 (Kamanaka et 

al. 1996) or CD40L (Campbell etal. 1996). 

Regulation of Expression of the IL-12 Receptor Correlates with Resistance 

to Leishmania Infection 

The IL-12 receptor (IL-12R) is composed of two chains, IL-12R J31 and 132 (Gately etal. 

1998). Culture in Thi-promoting conditions induced up-regulation of IL-12R 132 

expression on T cells, while Th2-promoting conditions induced a transient up-regulation 

of IL-12R 32 mRNA followed by down-regulation to undetectable levels (Szabo et al. 

1997), suggesting that maintained expression of the IL-12R 132 subunit promotes 

development of a Thi versus a Th2 response. 

LN cells from C3H/HeN mice infected with L. major for two days bound more IL-12 

than cells from BALB/c mice. This correlated with increased expression of IL-12R 132 in 

the draining LN, although expression of the 132 subunit was up-regulated on all cells, not 

just those which were antigen-specific (Jones etal. 1998). Administration of rIL-l2 to L. 

major-infected BALB/c mice, or treatment with an anti-IL-4 antibody, increased IL-12R 

132 expression in LN cells, while anti-IL-12 antibodies inhibited IL-12R 132 expression 

and decreased levels of IFNy mRNA in the LN (Jones et al. 1998). Therefore, these data 

suggest that maintenance of IL-12R 132 expression is related to the ability of resistant 

mice to control infection with Leishmania. 

Heath and co-workers (Heath et al. 2000) demonstrated that ectopic expression of the 

IL-i 2R 132 chain in Th2 cells did not induce IFNy production upon restimulation, even 

though IL-12-induced STAT signalling was restored in these cells. BALB/c mice in 

which the IL-i 2R 132 chain was over-expressed under the control of a CD2 promoter and 

CD2 locus control region developed Th2 responses in the presence of IL-4, even if IL- 12 

was also present (Nishikomori et al. 2000). These mice were as susceptible as their wild 

type litter-mates to infection with L. major, and developed a polarised Th2 response in 
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the draining LN (Nishikomori et al. 2001). The observation that BALB/c mice 

developed a healing phenotype if given IL- 12 at the time of infection, but not seven days 

post-infection (Fleinzel etal. 1993; Sypek etal. 1993), was assumed to be due to the fact 

that the IL-12R P2 chain is no longer expressed by T cells at later time points. 

Administration of IL-12 seven days post-infection of the IL-12R f2 chain transgenic 

mice did not, however, result in an ability of these mice to control the infection 

(Nishikomori et al. 2001). Thus, these results demonstrate that maintenance of the IL-

12R P2 chain is not sufficient to switch a Th2 response to Thi, and that expression of 

IL-12R f2 is not the primary factor determining the ability of resistant versus 

susceptible mice to control infection. 

C3H/Hen mice cannot control infection with L. amazonensis, and this also correlated 

with a lack of expression of IL-i 2R 32 on CD4 T cells and an inability of these cells to 

respond to IL-12. This lack of response was independent of IL-4 and IL-10. 

Interestingly, the link between IL-12 responsiveness and the inability of C3HIHeN mice 

to resolve infection with L. amazonensis is different to that linking susceptibility of 

BALB/c mice to L. major, because administration of exogenous IL-12 failed to resolve 

infection with L. amazonensis (Jones et al. 2000). 

1.4.1.4 The Role of Th2-Derived Cytokines in Susceptibility to Infection 

1.4.1.4.1 The Role of IL-4 in Exacerbating Disease 

IL-4 promotes the growth and differentiation of Th2 cells and antagonises production of 

IFNy by Thl cells. Eighty five percent of BALB/c mice infected with L. major 

recovered after administration of an anti-IL-4 antibody (Sadick et al. 1990) and anti-IL-4 

antibodies switched the cytokine response in the draining LN from IL-4 to IFNy 

(Holaday et al. 1991). Furthermore, a single injection of an anti-1L4 mAb was sufficient 

to switch the outcome of infection to a healing Thi-mediated response when it was 

given two days prior to infection. These mice were also resistant to re-infection 

(Chatelain et al. 1992). Reconstitution of SCID mice with splenocytes from wild type or 

IL-4' BALB/c mice showed that innate production of IL-4 by non-lymphocytes may 



Chapter 1: Introduction 	 49 

play a role in the development of lesions, but that lymphocyte-derived IL-4 was needed 

for exacerbation of the disease (Satoskar et al. 1997). Unexpectedly, IL-4 mice were 

initially reported to remain highly susceptible to infection with L. major, indicating that 

there is not a simple relationship between the presence of IL-4 and susceptibility of 

BALB/c mice (Noben-Trauth et al. 1996). However, other groups have subsequently 

reported that the same IL-4 deficient mice are resistant to infection with L. major (Kopf 

et al. 1996) and L. mexicana ( Satoskar et al. 1997). L. mexicana-infected C57BL/6 IL-4 

mice were resistant to infection and this was associated with the development of a Thi 

response. Ablation of STAT6, which is an essential component of the IL-4 signalling 

pathway (Takeda et al. 1996), resulted in mice that resolved infection with L. mexicana 

(Stamm et al. 1998). Thus, together these data indicate that IL-4 plays a dominant role in 

exacerbating disease in susceptible mice. 

Infection of BALB/c mice in the foot pad with L. major led to two waves of IL-4 

production by CD4 T cells in the draining LN: a peak in IL-4 mRNA was first seen at 

sixteen hours post-infection, decreased and peaked again at five days (Launois et al. 

1995). This peak of IL-4 was not seen in resistant strains of mice such as C57BL/6 or 

C3H/Hen and has been thought to correlate with the enhanced susceptibility of BALB/c 

mice to L. major (Launois et al. 1995). Anti-IL-4 antibodies given at the time of 

infection did not abrogate the initial peak of IL-4 production at sixteen hours but did 

prevent the second peak at five days post-infection, indicating that early IL-4 regulates 

the development of the effector Th2 response, and subsequent IL-4 production (Launois 

et al. 1997). CD4 T cells from infected BALB/c and C57BL/6 mice both expressed IL-

12R 32 mRNA 24 hours post-infection, but by day five expression had decreased in 

BALB/c mice to below the level of detection. This decrease did not occur in BALB/c 

mice treated with anti-IL-4 antibodies (I-Iimmelrich et al. 1998), thus correlating the 

early production of IL-4 in susceptible mice with down-regulation of the IL-12R P2 

chain on T cells. 

Screening of a L. major promastigote expression library with the protective Thi cell 

clone 9.1-2 (Scott etal. 1988) identified an antigen which was subsequently cloned, and 
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characterised as a Leishmania homologue (LACK) of a mammalian Receptor of 

Activated C Kinase (RACK 1) (Mougneau et al. 1995). LACK is a 36KDa protein that 

is expressed by both promastigotes and amastigotes and is highly conserved between all 

Leishmania species tested (Mougneau et al. 1995). Infection with L. major had been 

previously shown to induce the clonotypic expansion of heterodimeric V4, Va8 TCR-

expressing T cell clones in both susceptible and resistant mice (Reiner et al. 1993). 

Mougneau and colleagues (Mougneau et al. 1995) demonstrated that LACK-specific T 

cell hybridomas all expressed TCR composed of V4 and Va8 chains, suggesting that 

LACK induced expansion of these cells during natural infection with L. major. Launois 

et a! (Launois etal. 1997) later confirmed this by demonstrating that deletion of the V4 

chain by infection of mice with mouse mammary tumour viruses (MMTV(SIM)) 

resulted in the ability to resolve infection with L. major, which was associated with 

ablation of the early peak of IL-4 and the concommitant up-regulation of Th 1 responses 

in the draining LN. In order to determine whether the early LACK-induced peak of IL-4 

was solely responsible for exacerbation of disease in BALB/c mice, LACK cDNA was 

expressed from the MHC II I-Ea promoter to generate mice that were tolerant to LACK. 

Infection of these mice did not induce production of IL-4 in the LN and LACK-tolerant 

mice were able to control infection (Julia et al. 1996), suggesting that development of a 

susceptible phenotype in BALB/c mice was dependent on early production of IL-4 by 

LACK-specific T cells. Recent studies have, however, indicated that LACK itself is not 

crucial for the development of a Th2 response; V34-deficient mice on a BALB/c 

background could control infection with L. major, but uncontrolled lesions developed in 

the presence of exogenous IL-4 (Himmelrich et al. 2000). Non-infected BALB/c mice 

were shown to possess LACK-reactive T cells, which cross-reacted with microbial 

antigens in the gut (Julia et al. 2000), which would therefore explain the rapid 

production of IL-4 upon infection with Leishmania, before the primary effector response 

has been primed. 

It has recently been shown that administration of IL-4 eight hours post-infection, before 

the T cell-derived peak of IL-4 has occurred, resulted in cure of L. major infection by 

BALB/c mice and the development of a Thi response equivalent to that seen in resistant 
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C57BL/6 mice (Biedermann et al. 2001). This was associated with IL-12 production by 

DC in the IN, which inhibited the subsequent burst of IL-4. If IL-4, however, was given 

at the time of T cell priming, the mice developed a Th2 response and could not control 

the infection. These results indicate that the non-specific production of IL-4 very early 

on during infection could promote the development of a healing Thi response. They do 

not, however, suggest a source for this early IL-4 if it does play a role during the natural 

infection. 

1.4.1.4.2 The Role of IL-10 in Susceptibility to Infection 

IL-10 is produced by Th2 CD4 T cells and indirectly down-regulates the development 

of Thi responses by inhibiting expression of co-stimulatory molecules and pro-

inflammatory cytokines by DC and M (Moore et al. 2001). 

IL-10 was shown to promote survival of intracellular L. major parasites, and this 

correlated with a decrease in production of NO by infected M1i (Vouldoukis et al. 

1997). Administration of anti-IL-10 antibodies to susceptible BALB/c mice, however, 

did not induce resistance to infection with L. major, although other IL-10-mediated 

responses were altered in these mice (Chatelain et al. 1999), and C57BL/6 mice 

engineered to over-express IL-10 remained resistant to infection with L. major 

(Hagenbaugh et al. 1997). These data suggested that IL- 10 was not a key mediator in 

controlling susceptibility or resistance of inbred mouse strains to Leishmania infection. 

Other studies using transgenic mice indicate, however, that IL-10 does promote parasite 

survival: resistant mice in which IL-10 was expressed from the MHC II Ea promoter 

were susceptible to infection with L. major (Groux et al. 1999), possible due to the 

inhibition of both Thl and Th2 responses in these mice; likewise, Kane and Mosser 

(2001) recently demonstrated that BALB/c IL-10 mice were relatively resistant to 

infection with L. major. 

Wild type mice infected intradermally with a low dose of L. major promastigotes 

contained parasites that persisted at the site of infection and in the draining LN for the 

ral 	- 
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life-span of the animal. Persistent parasites were not, however, detected in C5713L/6 IL-

10 mice (Belkaid et al. 200 1) indicating that IL- 10 also plays a role in the maintenance 

of a parasite reservoir in cured hosts. 

1.4.2 Summary I: The Balance Between Thl and Th2 Responses 

in Leishmania Infection 

Resolution of infection with Leishmania is dependent on the activation of MHC II-

dependent CD4 T cells. The outcome of the infection depends on the rapid activation of 

specific T helper cells, and represents a balance between the production and 

maintenance of Thi-or Th2-promoting cytokines. IL-12 production drives Thi 

responses, leading to the production of IFNy, which in turn activates the Leishmanicidal 

properties of M. Conversely, IL-4 down-regulates expression of IL-12, IL-12R 02, 

IFN-y, inhibits NO production in Mt and stimulates differentiation of the Th2 subset of 

CD4 T cells. This leads to an inability of the mouse to control infection. IL-4 

production is clearly important in the outcome of disease since susceptible inbred mouse 

strains have a higher precursor frequency of antigen-specific IL-4-secreting T cells than 

resistant strains, and IL-4 but not IFNi levels in the draining LN of L. major-infected 

mice correlate with susceptibility (Morris etal. 1993; Morris etal. 1993). 

Based on the data reported in this section, the following model for infection of inbred 

strains of mice with L. major can be proposed: in resistant mice IL-12R 02 expression is 

up-regulated on CD4 T cells due to IL-12 production by activated DC and M and 

IFNy production by NK cells, and is maintained at high levels on these cells. IL-12 

signalling inhibits the early IL-4 production by Va8, V4 T cells and induces 

development of IFN-producing Thi cells. In susceptible mice, T cells do not maintain 

expression of the IL-12R 132 chain and its down-regulation is reinforced by the early 

LACK-induced peak of IL-4. These T cells develop into Th2 effector cells that produce 

more IL-4 and lead to exacerbation of disease (Figure 1.5). 



Figure 1.5: Schematic Representation of the Role of 
T Helper Cell Responses in the Outcome 
of Infection with Leishmania 
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Data from mouse models of Leishmania infection demonstrate that the outcome of 

infection is the result of interplay between a number of different factors, none of which 

alone is sufficient to resolve or exacerbate the disease. Guler et al (1996) have elegantly 

shown that inherent genetic differences between resistant and susceptible mice control 

the differential ability of T cells from these mice to maintain their responsiveness to IL-

12. Thus, data from infection of inbred strains of mice must be considered in the light of 

the genetic pre-dispositions of these mice. Natural infection in outbred hosts is likely to 

represent a less extreme polarisation of Thi and Th2 responses, and the majority of 

humans are able to resolve infection with cutaneous species of Leishmania (Handman 

1997). The model proposed in this summary highlights, however, the critical role of DC 

and MCI) from both resistant and susceptible strains of mice in controlling initial 

responses to infection and progression of the disease. 

1.4.3 The Role of Infected Macrophages in the Anti-Leishmania 

Immune Response 

Activated APC present Leishmania-derived antigens in the context of MHC II 

molecules. In most immunocompetent individuals, cell-mediated immune responses are 

efficiently activated and recovered patients are protected against subsequent infections 

(Handman 1997). However, MCI are the principal host cells for Leishmania parasites, 

and low parasite numbers persist indefinitely in 'cured' hosts (Aebischer et al. 1993). 

The outcome of infection with Leishmania parasites will depend on a balance between 

the ability of the parasites to avoid activation of their host cells and the success of APC 

in presenting parasite antigens to, and activating, the appropriate T cell response. 

Therefore, a detailed understanding of the specific interaction between Leishmania 

parasites and their host antigen presenting cells is crucial to the understanding of the 

generation of protective immune responses to Leishmania infection. 
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1.4.3.1 Up-take of Leishmania by Macrophages 

The receptors engaged by Leishmania promastigotes and amastigotes upon entry into 

host cells will have important consequences for their ability to avoid activation of these 

cells. Internalisation via different receptors will also determine the intracellular 

compartments in which the parasites initially reside, and therefore, access of the host 

processing and presentation machinery to Leishmania proteins. 

Promastigotes and amastigotes at the site of infection will be exposed to serum proteins, 

including Complement components and 1g. Binding of antibodies and Complement 

components to invading microbes targets them for phagocytosis by mononuclear 

phagocytes via FcR and Complement Receptors (CR) respectively. The Complement 

system, which comprises a group of serum proteins that respond to infection via a 

system of enzymatic cascades, is composed of two converging pathways: the classical 

pathway is initiated by binding of complement proteins to antigen-antibody complexes; 

while the alternative pathway is initiated by microbial stimuli, without the need for 

specific antibodies. A third pathway, the lectin pathway is triggered on binding of the 

mannose-binding protein to manno se -containing components on the surface of 

pathogens (Parham 2000). The classical and alternative pathways both result in the 

proteolysis of a protein, C3 to C3b or iC3b by either the classical pathway or alternative 

pathway C3 convertase complex respectively. C3b coated molecules bind to 

Complement Receptor (CR)1, while iC3b binds to CR3. Binding of C3 proteolysis 

products to C3 convertase changes it to a C5 convertase which catalyses cleavage of CS 

to C5b, this in turn triggers formation of a structure known as the membrane attack 

complex (MAC) by the soluble Complement components C5b to C9. The presence of 

the MAC on the surface of cells causes their lysis by osmosis through the formation of 

pores in the plasma membrane (Parham 2000). The consequence of Complement 

fixation on Leishmania infection is discussed below. 

1.4.3.1.1 Uptake of Leishmania Promastigotes by Macrophages 

The surface of Leishmania promastigotes is dominated by two molecules: 

lipophosphoglycan (LPG) and the metalloprotease gp63. Leishmania promastigotes bind 
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to mannose receptors (Blackwell 1985; Blackwell etal. 1985), and fibronectin receptors 

(Brittingham et al. 1999). However, uptake primarily occurs on binding to the 

Complement receptors CR1 and CR3 (Mosser and Edelson 1985; Da Silva et al. 1989; 

Mosser etal. 1992). 

Promastigotes were originally thought to interact with components of the alternative 

Complement pathway since L. major promastigotes were shown to be bound 

predominantly by C3, which was then rapidly converted to iC3b (Mosser and Edelson 

1985), probably due to the proteolytic activity of gp63 (Brittingham et al. 1995). A 

number of groups have documented the inhibition of uptake of L. major, L. donovani 

and L. mexicana promastigotes in the presence of anti-CR3 antibodies (Blackwell et al. 

1985; Mosser and Edelson 1985; Talamas-Rohana et al. 1990; Mosser et al. 1992). In 

particular, Blackwell and colleagues (Blackwell et al. 1985) reported eighty percent 

inhibition of uptake of L. donovani promastigotes in the presence of anti-CR3 antibodies 

indicating that CR3 might play a dominant role in mediating their internalisation. 

Subsequent studies showed, however, that L. major promastigotes were also coated with 

C3b, a component of the classical pathway which mediates binding to CR1 (Puentes et 

al. 1988). Sub-division of the promastigote population into non-infective (peanut 

agglutinin (PNA) positive) log phase parasites and infective (PNA) metacyclic parasites 

demonstrated that it was infective metacyclic parasites which predominantly bound C3b, 

and that LPG appeared to be the acceptor for C3b molecules (Puentes et al. 1988). 

Procyclic parasites also fixed C3, which was, however, released on cleavage to i0b. 

Thus, the different developmental stages of L. major promastigotes appear to bind 

different components of the Complement pathways, such that procyclic promastigotes 

interact with the alternative pathway while infective metacyclics interact with the 

classical pathway. Since different CR will mediate uptake of different forms of parasites, 

this might result in differential activation of host M1 Leishmanicidal mechanisms. 

However, uptake by neither the C3b receptor nor the iC3b receptor induced the release 

of toxic oxygen from human cells (Wright and Silverstein 1983). Transformation of 

procyclics to metacyclics results in a thickening of the LPG glycocalyx (see Chaper 6, 

section 6.3). This transformation was associated with the shedding of membrane attack 
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complex components C5b-C9 from the surface of the parasites (Puentes et al. 1990), 

which supports data showing that infective, metacylic, promastigotes are more resistant 

to complement-mediated lysis than non-infective forms (Puentes etal. 1988). Therefore, 

L. major promastigotes have evolved so that the infective form of the parasite avoids 

Complement-mediated lysis, but can utilise binding by Complement components to 

facilitate their uptake by Mt. 

Leishmania promastigotes of all species bind directly to M (Mosser 1994). Uptake of 

L. major promastigotes by M in the absence of serum was blocked by anti-CR3 

antibodies (Blackwell etal. 1985; Mosser and Edelson 1985). However, promastigotes 

incubated with M1 acquired low amounts of Me-derived C3 on their surface, which 

may mediate this interaction (Wozencraft et al. 1986). Furthermore, Mosser and 

colleagues were unable to detect binding of L. major, L. donovani, or L. mexicana 

promastigotes to Mac-i (CR3)-coated plates when incubated in serum depleted of C3 

(Mosser et al. 1992). Gp63- or LPG-coated beads were taken up by M and this could 

also be blocked by anti-CR3 antibodies (Russell and Wright 1988; Talamas-Rohana et 

al. 1990). Gp63 contains an RGD-like motif (Button and McMaster 1988; Miller et al. 

1990) which is similar to that which mediates binding of iC3b to CR3 (Russell and 

Wright 1988), suggesting that a direct interaction could occur between gp63 and CR3. 

Uptake of L. major promastigotes was only inhibited by fifty percent on incubation of 

the MCI cell line J774 with anti-gp63 F(ab)' fragments (Russell and Wilhelm 1986), 

however, and L. amazonensis promastigotes expressing a mutated form of the motif 

could bind MCI) as well as wild type parasites, indicating that other MCI binding sites are 

also employed by the parasites (Brittingham et al. 1999). 

The uptake of Leishmania promastigotes by MI) is likely to involve multiple receptors. 

Sheep erythrocytes opsonised with Complement bound to MCI),  but were not 

phagocytosed, but cross-linking of gp63 to opsonised sheep erythrocytes led to an 

increase in the efficiency of binding and internalisation by MCI (Brittingham et al. 

1999). This suggests that receptors such as the fibronectin receptor (which binds to 



Chapter 1: Introduction 	 58 

gp63) may work in conjunction with Complement receptors to mediate internalisation of 

Complement-bound parasites. 

1.4.3.1.2 Uptake of Amastigotes by Macrophages 

In comparison to promastigotes, the amastigote surface is much less well defined, and is 

dominated by a small GPI-anchored glycolipid, EpiM3 (Winter et al. 1994). L. 

amazonensis amastigotes have some capacity for interacting directly with host cells via 

heparin-binding to cell surface heparin sulphate proteoglycans (Love et al. 1993) 

probably via a number of low affinity interactions with the MCI) glycocalyx (Peters et al. 

1995). This may account for the ability of amastigotes to bind to a wide range of 

adherent cells, while promastigotes, which do not have this heparin-binding activity, are 

more restricted in the cells to which they adhere (Mosser 1994). L. major and L. 

mexicana amastigotes did not bind mannose receptors (Guy and Belosevic 1993; Peters 

et al. 1995), and neither in vitro cultured amastigotes, nor amastigotes isolated from 

SCID mice bound CR3 or FcR efficiently, indicating that the parasites do not bind these 

receptors in the absence of antibodies (Guy and Belosevic 1993; Peters et al. 1995). 

BALB/c-derived amastigotes are coated with Ig and C3, which mediates their uptake by 

FcR and CR3 respectively (Guy and Belosevic 1993). However, immunofluorescence 

analysis of lesion sections revealed that, in vivo, free L. mexicana amastigotes are bound 

by mouse IgG but are not coated with Complement (Peters et al. 1995). Mice lacking 1g, 

or the common y  chain of Fc receptors, were refractory to infection with L. mexicana, 

supporting the role for antibody binding of amastigotes and their consequent uptake by 

FcR during infection (Kima et al. 2000). Evidence that this was due to amastigote-

specific antibodies came from experiments showing that large lesions developed in B 

cell-deficient mice that had been injected with serum from infected mice, or mice 

immunised with amastigote membrane components, but not in mice which had been 

given non-immune serum (Peters et al. 1995; Kima et al. 2000). Amastigotes must also 

bind receptors other than the FcR for their uptake, however, since amastigotes from 

SCID and B cell-deficient, mice are still internalised by MCI (Guy and Belosevic 1993; 

Peters et al. 1995). A role has been proposed for L. major amastigote LPG in mediating 

binding to MI) in a CR1- and CR3-independent manner (Kelleher et al. 1995). This was 
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via the phosphorylated oligosaccharide repeat region of L. major LPG and may be 

mediated by a lectin-like receptor (Kelleher et al. 1995). 

1.4.3.2 Infection of Macrophages by Leishmania 

Leishmania-infected MCI play two important roles in determining the outcome of 

infection: first infected McI) must be activated to kill intracellular parasites via the 

expression of microbicidal molecules in order to limit parasite numbers and ultimately to 

control the infection; second infected MI), or MI) that have engulfed dead parasites, 

must present parasite-derived antigens to activated T cells at the site of infection. 

Survival of the parasites, however, will depend on their ability to interfere with both of 

these processes. 

1.4.3.2.1 Inhibition of Activation of Leishmania-Infected Macrophages 

Cytokine-activated MCI) are the principal Leishmanicidal cells; McI)  express inducible 

Nitric Oxide Synthase (iNOS) which produces NO from L-arginine. NO reacts with 

oxygen radicals to form toxic products that kill intracellular Leishmania (Green et al. 

1990), and mice lacking iNOS are unable to control infection with L. major (Wei et al. 

1995). MCI production of IL-12 is also required for the development of IFNy-producing 

Thi cells that will in turn activate killing of Leishmania by infected MCI. McI)  are not, 

however, activated simply by uptake of Leishmania parasites and low numbers of 

parasites persist in the LN and at the site of infection in an immune host (Aebischer et 

al. 1993; Schubach et al. 1998) 

NO production is not triggered upon infection of McI)  by Leishmania, unless they are 

activated by an additional stimulus (Reiner et al. 1994; Carrera et al. 1996; Weinheber et 

al. 1998); and infection of MCI) by neither L. major promastigotes (Reiner et al. 1994; 

Carrera et al. 1996) nor L. mexicana amastigotes (Weinheber et al. 1998) induced 

production of IL- 12. Indeed, infection with L. mexicana amastigotes and L. major 

metacyclic promastigotes suppressed production of IL-12 by MCI) (Belkaid et al. 1998; 

Weinheber et al. 1998). This inhibition of IL-12 is highly, selective since TNFa is 

secreted by infected MCI) upon activation in vitro (Carrera et al. 1996; Belkaid et al. 
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1998) and by infected M in vivo (Gorak et al. 1998). The mechanisms leading to 

suppression of IL- 12 production are not clear but may be related to receptor ligation on 

entry of Leishmania sp. into M; ligation of FcyR or CR by erythrocytes opsonised with 

IgG or Complement respectively did not induce production of IL- l2p4.O and suppressed 

activation of M by LPS (Sutterwala et al. 1997). Suppression of L. mexicana 

amastigote-infected M was, however, independent of engagement of CR3 or Fc'yR 

(Weinheber et al. 1998), and phagocytosis of latex beads also resulted in inhibition of 

IL-12 production by Mb in this study, indicating that this phenomenon is not specific to 

uptake of L. mexicana amastigotes (Weinheber et al. 1998). By comparison, IL- 10 was 

produced upon ligation of FcR by lesion-derived, but not in vitro-derived axenic L. 

major amastigotes (Kane and Mosser 2001). Inhibition of IL-12 on ligation of the FcyR 

was shown to be due to specific suppression of the IL-12 p35 and p40 genes (Sutterwala 

et al. 1997). However, inhibition of IL-12 on infection of MI) with Leishmania is 

controlled both at the transcriptional (Carrera et al. 1996; Piedrafita et al. 1999) and 

post-transcriptional (Weinheber et al. 1998) levels. The molecular interactions which 

result in the specific suppression of IL-12 thus remain unclear. However, purified LPG 

was shown to inhibit IL-12 production in the absence of infection (Piedrafita et al. 

1999). 

1.4.3.2.2 Stimulation of Primed T Cells by Leishmania-infected 

Macrophages 

A number of studies have shown that the kinetics of presentation of parasite antigens to 

CD4 T cells are impaired in MCI) infected with different Leishmania species (Wolfram 

et al. 1995; Kima etal. 1996; Prina et al. 1996), and that this deficiency extended to the 

processing of exogenously supplied antigens (Fruth et al. 1993; Prina et al. 1993). 

However, inefficient presentation of exogenous antigens could be overcome by 

increasing antigen concentration (Prina etal. 1993) and by using peptide antigens (Fruth 

et al. 1993), suggesting defects in loading of MHC II and processing of parasite proteins 

respectively. Presentation of endogenous parasite antigens can be enhanced by killing 

the parasites within MCI (Wolfram et al. 1995), showing that compartmentalisation of 

proteins within the parasites plays an important role in the inefficient processing and 
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presentation of Leishmania antigens by infected M. M infected with L. major and L. 

donovani promastigotes transfected with an episomal vector, pX, carrying the ovalbumin 

and lacZ genes efficiently stimulated OVA- or 3-galactosidase-specific T cells, 

respectively, in vitro (Kaye et al. 1993). Likewise, L. mexicana promastigotes over-

expressing an endogenous protein, the membrane-bound acid phosphatase, also 

stimulated an efficient T cell response in vitro (Wolfram et al. 1996). Collectively, these 

studies showed that parasite-derived antigens localised to the PV could be processed and 

presented to T cells in the context of MHC II. Thus, there is no functional defect in 

MHC II presentation pathways in infected cells, and vesicular flow can occur from the 

PV to the plasma membrane. Promastigote-infected Mc1  could stimulate T cells specific 

for the intracellular protein, LACK, but this ability was lost 48 hours post-infection, and 

amastigote-infected cells were never able to activate LACK-specific T cells (Prina et al. 

1996). Furthermore, when promastigotes were sub-divided into procyclic and metacylic 

forms only the procyclic parasites could activate LACK-specific T cells (Courret et al. 

1999). This indicates that the infective forms of the parasite have evolved so that 

immuogenic molecules are not easily accessible to the host processing and presentation 

machinery. 

Infection of M4 by L. donovani did not lead to up-regulation of the co-stimulatory 

molecule 137-1, and these cells were unresponsive to activation with LPS. Thus, rather 

than avoiding presentation to T cells, infected M1 could also promote anergy of 

parasite-specific T cells by providing signal 1 in the absence of signal 2 (Kaye et al. 

1994). 

1.4.3.2.3 MHC II Loading Compartments in Leishmania-Infected 

Macrophages 

Processing of Leishmania antigens in infected cells will require convergence of the PV 

with the endosomal pathway. PV are late endosomal/early lysosomal, LAMP-l +  

compartments (Russell et al. 1992; Antoine et al. 1998), which share similarities to 

MIIC: they contain the host proteases Cathepsins B, D, H and L (Prina et al. 1990); 

MHC 11 but not MHC I molecules (Antoine et al. 1991; Lang et al. 1994); and the 
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loading catalyst, H2-M (Antoine et al. 1999). Therefore, PV are potential sites for 

processing and loading of Leishmania antigens onto MHC II molecules. Biosynthesis 

and steady-state levels of MHC II are unaltered by infection, (Antoine et al. 1991; Lang 

et al. 1994) although immunohistochemical studies have documented the redistribution 

of MHC II molecules to the limiting membrane of the PV in IFNy-activated M1 

(Antoine et al. 1991; Lang et al. 1994; De Souza Leao et al. 1995). MHC II molecules in 

the PV tend to be concentrated at the point at which amastigotes bind to the membrane, a 

phenomenon known as "capping" (Antoine et al. 1991; Dc Souza Leao et al. 1995). 

Parasites attach to this point at the site of the megasome, a lysosome-like organelle at the 

posterior pole of the parasite that contains abundant cysteine proteases. Treatment of 

infected M1 with protease inhibitors resulted in an increase in PV-associated MHC II, Ii 

and amastigote-associated MHC II molecules (De Souza Leao et al. 1995). Parasites in 

infected cells were also shown to co-localise with MHC II and H2-M by confocal 

microscopy (Antoine et al. 1999; Courret etal. 2001). These observations suggest that 

Leishmania parasites interact with components of the host processing and presentation 

machinery in the PV of infected cells. Whether this is due to active mechanism on the 

part of the parasite, however, remains open to debate. 

Parasite antigen-MHC II complexes have never been visualised in infected cells. Thus, it 

is not know whether parasite antigens complex with MHC II molecules in the PV, for 

subsequent transport directly to the cell surface, or whether Leishmania antigens are 

transported out of the PV to meet MHC II molecules at a different point along the 

endosomal pathway. The observation of Wolfram and colleagues (Wolfram etal. 1996) 

that degradation of intracellular parasites, or over-expression of a membrane-bound or 

secreted antigen, is sufficient to restore efficient presentation of Leishmania antigens to 

T cells strongly implies that the lack of presentation reflects inaccessibility of parasite-

derived antigens, rather than an active block on the part of the parasite. In this case, co-

localisation, and the implied sequestration, of MHC II molecules with Leishmania 

parasites would not necessarily represent an active mechanism on the part of the parasite 

to prevent presentation of parasite-derived antigens to CD4 T cells, but would simply 
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reflect non-specific transport of nutrients into the PV via the endocytic pathway, and 

general degradation of proteins in late endosomes/early lysosomes. 

1.4.4 The Interaction Between DC and Leishmania Parasites 

The requirement for DC to stimulate a primary T cell response, and the relatively poor 

presentation of parasite antigens by infected M1, has lead to the proposition that 

infected DC are responsible for initiating the anti-Leishmania T cell response. Moll et al 

demonstrated internalisation of L. major promastigotes by LC in the epidermis of the 

skin (Moll et al. 1993), and showed that LC incubated with promastigotes or amastigotes 

could stimulate T cells from infected mice (Will et al. 1992). Infection of mice with L. 

major promastigotes led to the loss of LC in the epidermis overlying the site of 

infection, (Blank et al. 1993) and the migration of fluorescently-labelled amastigote-

infected epidermal cells from the skin to the LN was observed (Moll et al. 1993). 

Parasite-primed T cells were specifically stimulated in vitro by NLDC 145 k  cells from. 

these LN, i.e. DC (Moll et al. 1993). Le ishman ia- infected LC are also found in the 

epidermis, dermis and draining LN of infected humans (ElHassan et al. 1995). Therefore 

it was proposed that DC are infected in the skin and migrate to the draining LN where 

they prime the primary anti-Leishmania T cell response (Moll et al. 1993). The 

DC:Leishmania interaction has not, however, been well characterised and initial studies 

have produced conflicting data on whether uptake of Leishmania parasites activated DC, 

possibly reflecting differences in the species of parasite used and the population of DC 

infected. Infection of LC with L. major parasites, or lysates, prevented the down-

regulation in MHC II biosynthesis normally seen after LC culture in vitro (Flohe et al. 

1997), indicating suppression of maturation of these cells. However this observation 

may be a general phenomenon related to non-specific phagocytosis (Scheicher et al. 

1995). Uptake of lesion-derived L. major amastigotes, but not promastigotes, by foetal 

skin-derived DC induced the up-regulation of MHC II, CD40, CD54, CD86 and TNFa. 

IL-12 p40 was induced upon infection with these amastigotes but the bioactive p70 

heterodimer could only be detected when cultures were co-stimulated with IFNy or 



Chapter 1: Introduction 

CD40L (von Stebut et al. 1998; von Stebut et al. 2000). Infection of foetal skin-derived 

DC with L. major amastigotes down-regulated E-cadherin expression, which is 

associated with migration of LC out of the epidermis in vivo (Tang et al. 1993; von 

Stebut etal. 1998). In agreement with these studies, Konecny et al (Konecny etal. 1999) 

showed that uptake of L. major promastigotes by splenic DC did not affect surface 

expression levels of any of the activation markers tested. By comparison, uptake of both 

L. amazonensis promastigotes and amastigotes activated bone marrow-derived DC (Qi et 

al. 2001). Marovich eta! (Marovich etal. 2000) used the promastigote surface molecule, 

LPG, to shown selective activation of infected cells, however, staining for the presence 

of LPG would not have distinguished between DC which had taken up live, intact or 

degraded parasites. CD  1c splenic DC were induced to produce IL-12 p40 upon 

infection with L. major promastigotes (Konecny et al. 1999), and, in agreement with the 

need for synergy between a microbial stimulus and CD40 ligation to induce optimal 

levels of IL-12 (Schulz et al. 2000), promastigote-infected human DC secreted high 

amounts of IL- 12 p70  upon ligation of CD40 (Marovich et al. 2000). 

DC infected with Leishmania parasites in vitro can clearly be used to generate a primary 

T cell response in mice. Vaccination of BALB/c mice with LC incubated with L. major 

promastigote lysate, but not with lysate alone, immunised mice against challenge with 

live parasites. This was associated with decreased footpad swelling and a bias towards a 

healing Thi response (Flohe et al. 1998). Secondary challenge of healed, immunised 

mice with L. major promastigotes resulted in more rapid healing, indicating that a 

memory repsonse had been established. Likewise, injection of L. major amastigote-

infected BALB/c-derived DC into syngeic mice resulted in an enhanced ability to 

resolve the infection (von Stebut et al. 2000). These studies do not, however, address the 

interaction between DC and Leishmania during the course of a natural infection. 

In vivo, parasites and parasite-derived material were detected in the LN (Moll et al. 

1993) and spleen (Gorak et al. 1998) of infected mice. IL-12 p40 was detected by 

immunohistochemistry in DC on sections of spleens from L. donovani-infected mice one 

day after infection (Gorak et al. 1998), although it was impossible to confirm whether 
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IL-12 was specific to cells containing whole amastigotes. This expression was transient 

and was down-regulated three days post-infection. 

DC from BALB/c or C57BL/6 and C3H/HeJ mice showed no difference in their ability 

to ingest L. major or L. amazonensis parasites, and were equivalent in the upregulation 

of surface DC activation markers upon infection with lesion-derived amastigotes (von 

Stebut et al. 2000; Qi et al. 2001). However, BALB/c DC infected with L. amazonensis 

amastigotes secreted significantly more IL-4 than C3HIHeJ DC in vitro, and transfer of 

amastigote-infected BALB/c-derived DC into non-infected BALB/c recipients induced 

production of IL-4 from cells of the draining LN when restimulated with parasite lysate. 

This was not seen when C3H/HeJ DC or BALB/c IL-4' DC were infected and 

adoptively transferred. IFNy was not induced in the LN of recipient mice. These data 

imply that infection of BALB/c DC with L. amazonensis amastigotes activates them 

such that they are polarised to stimulate a Th2 response in vivo. This study did not, 

however, distinguish between the effect of the activated DC, and the effect of the 

presence of Leishmania parasites in the recipient mice (Qi et al. 2001). 

Thus, DC are clearly infected by Leishmania parasites in vivo and DC can efficiently 

stimulate the anti-parasite T cell response. However, whether the cells that initiate this 

response contain live, intact parasites and whether infection of DC by Leishmania at the 

site of infection is sufficient to activate this response remains unclear. Evidence from 

other systems that DC polarise the effector Th response (section 1.2.5) and the data from 

(Qi et al. 2001) suggest that uptake of Leishmania parasites by DC from susceptible and 

resistant strains of mice may play an important role in polarisation of the subsequent T 

cell response. However, further experiments are required to determine the ability of 

Leishmania-infected DC to polarise Thi versus Th2 responses, and also whether receipt 

of L. mexciana-encoded or L. major-encoded signals by DC may explain the differential 

ability to C57BL/6 mice to control infection with these parasites. 
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1.4.5 Summary II: The Significance of Infection of APC by 

Leishmania to the Development of an Anti-Leishmania Immune 

Response 

The expansion of parasite-specific IFNy-secreting Thi cells is critical for the ability of 

an infected host to resolve infection with Leishmania (Figure 1.5). Leishmania parasites 

reside within the cells that are ultimately responsible for their clearance, however, 

activation of infected cells depends on IFNy secretion by Thi CD4 T cells and 

evolutionary pressure will select parasites that minimise antigen presentation by infected 

cells. 

Phagocytosis of opsonised particles in the absence of other exogenous stimuli does not 

result in the activation of M, thus triggering of the activation of immune cells on 

uptake of cell debris in the absence of an infection or trauma is avoided. Leishmania 

promastigotes have apparently exploited this mechanism by using the same receptors to 

mediate their entry into host M. It has recently been demonstrated, furthermore, that 

amastigotes bind phosphatidylserine (PS) which is normally displayed by apoptotic 

cells. Recognition of this molecule by M induces transforming growth factor (TGF)-

and IL-10 production, resulting in the entry of amastigotes into cells without induction 

of an inflammatory response (de Freitas Balanco et al. 2001). Thus, infected Mt are not 

stimulated by infection with Leishmania and become refractory to stimulation by 

exogenous stimuli. Lack of activation of Leishmanicidal activities on uptake of 

Leishmania parasites allows a delay in the initiation of the anti-parasite T cell response. 

During this time promastigotes will transform into amastigotes, which are better adapted 

for intracellular survival and display fewer potential antigens on their surface. The 

paucity of Leishmania-derived T cell antigens that are accessible to the host processing 

and presentation pathway apparently represents an additional strategy evolved by the 

parasites to avoid activating a deleterious T cell response. 
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DC containing Leishmania parasites have been shown to produce IL-12 in vivo. This 

will polarise the development of Th 1 cells upon presentation of Leishmania antigens by 

DC to naïve T cells in the LN. IFN'y production by activated Thi cells will activate 

destruction of intracellular parasites by M, and will up-regulate surface expression of 

peptide-MHC II molecules, thus facilitating the interaction with activated Thi cells, and 

augmenting the response. Degradation of intracellular parasites will result in an increase 

the pool of accessible antigens that can be presented by MHC II molecules (Overath and 

Aebischer 1999). 

1.5 Aims and Experimental Approach 

DC are critically important for the initiation of the primary T cell response against 

foreign organisms. Recognition of conserved determinants on the surface of pathogens 

results in the activation of DC to a mature form that expresses high levels of co-

stimulatory molecules and other surface molecules necessary for the interaction with 

naïve T cells. Peptide fragments from phagocytosed organisms, which were taken up at 

the site of infection, are displayed on the surface of these DC in the context of MHC II 

molecules. It is clear from the literature that DC internalise Leishmania parasites at the 

site of infection, and that DC prime parasite-specific T cells in the draining LN of 

infected mice. The data reported in the literature, however, do not demonstrate whether 

uptake of the parasites per se is sufficient to activate immature DC, that is, whether 

Leishmania parasites express PAMP on their surface. Furthermore, it is not known 

whether the primary anti-Leishmania T cell response is primed by DC presenting 

antigens generated from intracellular parasites. 

The aim of this thesis was to address the hypothesis that infection of DC by Leishmania 

parasites is sufficient to activate the primary anti-parasite T cell response. This 

hypothesis was addressed through two aims: first to develop an experimental model to 

investigate the fate of Leishmania antigens in infected cells; second to examine the 

Leishmania:DC interaction per se in a defined in vitro model. 
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Chapter three addresses the first aim and describes the development of a model system 

with which to follow the fate of Leishmania-derived antigens in infected DC. In this 

experimental model the MHC TI-restricted T cell epitope MCC is transgenically 

expressed by L. mexicana parasites. A complex-specific mAb, or MCC-specific T cells, 

were used to detect the formation of MHC II-MCC complexes in infected cells. This 

chapter addresses the problems encountered in establishing this experimental model. 

Chapters four, five and six address the second aim. Chapter four describes the use of an 

experimental model in which in vitro-cultured L. mexicana parasites are incubated with 

bone marrow-derived DC. The effect of uptake of the parasites on the maturation status 

of the DC is examined. In chapter five the interaction between L. mexicana parasites and 

a splenic DC culture is investigated. The use of this DC culture allowed the effect of 

long-term infection of DC by L. mexicana parasites to be investigated. Finally, chapter 

six describes the use of this in vitro model to identify L. mexicana LPG as a putative 

Leishmania PAMP. 
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Chapter 2: Materials and Methods 

Unless otherwise stated, analytical grade chemicals were obtained from either Sigma or 

BDH Laboratory supplies (Merck Ltd.). Analytical grade agarose was supplied by 

Biowhittaker Molecular Applications. All bacterial media components were supplied by 

DIFCO laboratories. Synthetic oligonucleotides were synthesised by OSWEL DNA 

service (University of Southampton, U.K.). Radioisotopes were supplied by Amersham 

InternatiOnal plc (Little Chafont, U.K.). All tissue culture media were bought from 

Sigma or GibcoBRL. 

2 x Semi-defined medium (SDM) (all components from GibcoBRL or Sigma) 

Components 	 Amount for 10L 

Minimum essential medium (S-MEM) powder 140g 

(with Earle's salt, L-glutamine, without sodium carbonate) 

Ml 99 medium powder 40g 

(with Hank's solution, L-glutamine, without sodium carbonate) 

MEM essential amino acids 160m1 

MEM non essential amino acids 120m1 

Glucose 20g 

Hepes buffer 160g 

Mops buffer lOOg 

NaHCO3  40g 

Sodium pyruvate 2g 

L-alanine 4g 

L-glutamine 6g 

L-arginine 2g 

L-methionine 1.4g 

L-phenylalanine 1.6g 

L-proline 1.2g 

L-serine 1.2g 



Chapter 2: Materials and Methods 
	

70 

L-taurine 3.2g 

L-threonine 7g 

L-tyrosine 2g 

Adenosine 0.2g 

Guanosine 0.2g 

Glucosamine-HC1 1 g 

Folic acid 0.08g 

p-aninobenzoic acid 0.04g 

Biotin 0.004g 

The medium was made without NaHCO3, the pH adjusted to 7.0, then NaHCO 3  added 

and the pH corrected to 7.3. Medium was filter sterilsed and stored at —20°C. 

For use 2 x SDM was diluted to 1 x with sterile H20. 

2.1 Molecular Biology Methods 

General molecular biology techniques and the preparation of standard solutions was 

carried out according to (Sambrook et al. 1989) unless otherwise stated. Restriction 

digests were performed as recommended by the suppliers (New England Biolabs and 

Roche). Digestion products were routinely analysed by agarose gel electrophoresis with 

gels cast and run in 1 x TAE buffer at an appropriate concentration containing 0.5jig/ml 

ethidium bromide. 0.5.tg of 1kb DNA ladder (GibcoBRL) was loaded on each gel as a 

size standard. 

2.1.1 General Cloning Techniques 

DNA fragments were routinely subcloned by restriction enzyme digestion and cloning 

into plasmids. Taq polymerase PCR products (which often have a deoxyadenosine added 

to the end) were subcloned using the TOPO TA Cloning ®  kit (Invitrogen), according to 

the manufacturer's instructions. 
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2.1.1.1 Gel purification of DNA 

Restriction fragments for subcloning, plasmid vectors and PCR products were purified 

as follows. DNA fragments were run on 0.8% agarose gels until suitable separation had 

occurred to isolate single bands. Bands of interest were excised from the gel slice using 

the Geneclean®  kit (Bio 101 inc., U.S.A.), according to the manufacturer's instructions. 

2.1.1.2 Modification of Enzyme Sites with the Klenow Fragment 

Restriction enzyme sites with cohesive ends were ablated when necessary using the 

Klenow fragment. DNA was digested and incubated with 1U Kienow (NEB) per pg 

DNA and 33iiM dNTP in 1 x restriction enzyme buffer (NEB), for 15 minutes at 25°C. 

The enzyme was then heat inactivated at 75°C for 10 minutes. The digested DNA was 

then religated as a blunt end ligation. 

2.1.1.3 Ligations 

For ligations, plasmid vectors were digested and gel purifed. Restriction fragments were 

also gel purified. To prevent re-ligation of empty vectors, purified, linearised vectors 

were dephosphorylated by treatment with Shrimp Alkaline Phosphatase (SAP) 

(Amersham). The DNA was incubated with lp,l (1 unit) of SAP in 1 x SAP buffer for 90 

minutes at 37°C, then at 65°C for 15 minutes to inactivate the SAP. 

Ligations were set up with 1:1 and 1:10 vector:insert ratio of molar ends with 1p1 (1 

unit) of T4 DNA ligase (Roche) and 2.tl of 10 x ligase buffer (660mM TrisJ4CL pH7.5; 

50mM MgC12 ; 10mM ATP; Roche) to a final volume of 20111. Cohesive end ligations 

were performed at room temperature for at least 1 hour, blunt end ligations were 

incubated overnight at 18°C. To determine the background level of vector re-ligation, a 

control reaction containing vector alone was also set up. 

2.1.1.4 Transformations 

Competent DHSa bacteria were routinely used for chemical transformations. KCM- 

competent bacteria were prepared as described by (Chung and Miller 1988). A single 

bacterial colony from a freshly streaked plate was used to innoculate 5mls Luria Broth 
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(LB) culture media (1% w/v tryptone; 0.5% w/v yeast extract; 85mM NaCl) which was 

grown at 37°C overnight with shaking. The 5m1 overnight culture was added to 500m1 

LB media and the culture grown to A600=0.3-0.6 to ensure the cells were in log phase. 

The cell suspension was split between two tubes and centrifuged at 3000 rpm, in a 

Sorvall GSA rotor, for 10 minutes at 4°C. The cell pellet was resuspended in 1/20 

volume ice cold, sterile LB pH6.1, supplemented with 10% PEG Mw 3350; 5% DMSO; 

10mM MgCl2; 10mM MgSO 4  and 10% glycerol, and incubated on ice for 10 minutes. 

Cells were dispensed into 1 OOpJ aliquots in pre-chilled eppendorf tubes and snap frozen 

in liquid nitrogen before storage at —80°C. 

lOjil of the ligation reaction was mixed with 20p.l 5 x KCM (0.5M KC1; 0.15M CaCl2; 

0.25M MgC12) in a final volume of 100 j.tl, and chilled on ice. Frozen competent bacteria 

were thawed on ice. lOOp! of cells were added to the KCM-ligation mix, incubated on 

ice for 20 minutes then transferred to room temperature for 10 minutes. lml of LB was 

added and the sample incubated at 37°C for at least 30 minutes. 0.lml and 0.9m1 were 

plated out onto LB agar plates (1.5% w/v agar in LB) with 50pg/ml ampicillin or 

50pg/ml kanamycin. 

2.1.1.5 Screening Transformants 

Recombinant bacterial colonies were screened for presence of inserts by plasmid DNA 

preparation (section 2.1.2.1) and subsequent restriction enzyme analysis, or by 

amplifying PCR products directly from picked colonies (section 2.1.7.1). 

2.1.2 Isolation of Nucleic Acids 

2.1.2.1 Plasmid Preparation 

Plasmid isolation was either performed using Qiagen plasmid isolation kits (Qiagen) 

according to the manufacturers instructions, or by the following protocol taken from 

(Zhouetal. 1990) 
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A single colony was picked with a sterile yellow tip into 5mls of LB with the 

appropriate antibiotic and the culture incubated overnight at 37C, with shaking. 1 .5m1 

of overnight culture was centrifuged for 1 minute at 13 000 rpm (microfuge) to pellet the 

cells. The supernatant was tipped off and the pellet resuspended in the remaining 50-

100p1 by vortexing. 3001.11 TENS (10mM Tris.HC1 pH8.0; 1mM EDTA p118.0; 100mM 

NaOH; 0.5% SDS) was added, the solution vortexed for 4 seconds and placed on ice. To 

this tube was added 150111 of 3M NaOAc pH 5.2 and the tube vortexed for 3 seconds and 

put on ice again. Samples were then centrifuged at 13 000 rpm for 10 minutes. The 

supernatant was transferred to a fresh tube and the samples spun again to precipitate all 

particles. The supernatant from the second spin was transferred to fresh tubes and mixed 

with 900p1 100% ethanol (stored at —20°C). The DNA was pelleted by centrifugation at 

13 000 rpm for 15 minutes. The DNA pellet was washed in 70% ethanol, air-dried and 

resuspended in 40j.fl of 1120. DNA concentration was determined by absorbance at 

260nm. 

DNA prepared this way was of sufficient quality for diagnostic digest analysis. If DNA 

was to be used for sequencing reactions (section 2.1.6) it was prepared using Qiagen 

miniprep kits. For all midi and maxi preps DNA was prepared using Qiagen plasmid 

purification kits. 

2.1.2.2 Isolation of Leishmania Genomic DNA 

lml of parasite culture was pelleted at 6000 rpm for 10 minutes. The cells were 

resuspended in 450p,l  P1 buffer (Qiagen: 50mM Tris-HC1, p118.0; 10mM EDTA, 

100pg/m1 Rnase A) and 50pl 10% SDS, and incubated at room temperature for 5 

minutes. 2111  of a stock solution of Proteinase K (20mg/mi; Sigma) was then added and 

the tubes incubated at 55°C for at least 3 hours. The DNA was purified by sequential 

extraction with 500111 (1 volume) phenol, 5001111:1 phenol/chlorofom and 500111 

chloroform. The DNA was precipitated with 0.1 volumes 3M NaOAc and 2.5 volumes 

100% ethanol, and resuspended in 20-30111 sterile H20. 
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2.1.2.3 Isolation of RNA 

Total RNA was isolated from promastigotes using Trizol ®  reagent (Gibco). 

Approximately lxi 7  parasites were pelleted at 6000 rpm for 10 minutes. The pellet was 

resuspended in 1 ml Trizol and incubated for 5 minutes at room temperature to allow 

complete lysis of the cells. RNA was isolated by adding 200pJ chloroform, shaking for 

15 seconds followed by centrifugation at 13 000 rpm for 15 minutes. The aqueous phase 

was transferred to a fresh tube and RNA was precipitated by addition of SOOpi 

isopropanol. After incubation for 10 minutes at room temperature the samples were 

centrifuged at 13 000 rpm for 10 minutes at 4°C. The RNA pellet was washed in 1 ml 

75% ethanol, air-dried and resuspended in 20iIl RNase-free H20 (Qiagen). The RNA 

concentration was determined by absorbance at 260nm. Samples were stored at —80°C. 

2.1.3 Northern Blotting 

5ig total Leishmania RNA was separated on a denaturing formaldehyde gel as follows. 

0.8g of agarose were dissolved in 77ml H20 and boiled. The solution was allowed to 

cool slightly and lOmi 10 x MOPS (200mM MOPS; 50mM NaOAc; 10mM EDTA; pH 

7.0) and 5.1 ml 37% formaldehyde were added to make a 0.8% agarose gel. The 

required volume of RNA was made up to Sjil with RNase-free H20 and mixed with 25pJ 

sample buffer (50% formamide; 2.2M formaldehyde; 1 x MOPS; 5% glycerol; 5% 2.5% 

bromophenol blue) and 0.125.t1 ethidium bromide (10mg/mi). Samples were loaded onto 

the gel and electrophoresis performed at 80V in 1 x MOPS. 

The gel was washed in 0.1% DEPC-treated H 20 and photographed. A piece of Hybond 

N nylon membrane (Amersham) was cut to the size of the gel, and a capillary blot was 

set up and left overnight according to the Hybond manufacturers instructions. The 

membrane was removed after blotting, rinsed in H 2O and baked at 80°C for 30 minutes. 
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2.1.4 Radio-labelling Probes 

DNA PCR products were radiolabelled by random priming (Sambrook etal. 1989). PCR 

products were gel purified (section 2.1.1.1) and the concentration determined by 

absorbance at 260nm. Random priming was performed using High Prime (Roche) 

according to the manufacturer's instructions. 

25ng of DNA was adjusted to a final volume of 11 p1 with H20 and denatured by boiling 

for 10 minutes and chilling on ice. On ice, 4j.tl High Prime (containing 1 U/mi Klenow 

polymerase; 0.125mM dATP; 0.125mM dGTP; 0.125mM dTTP) and 5j.il (50tCi) 

[a32P]dCTP were added to the DNA and the reaction incubated at 37°C for 10 minutes. 

The reaction was stopped by adding 21.tl  0.2M EDTA (pH 8.0). Unincorporated 

nucleotides were removed by centrifugation of the reaction through a G-50 sephadex 

column at 2000 rpm (microfuge) for 2 minutes. Prior to hybridisation the probe was 

denatured at 100°C for 10 minutes, snap cooled on ice and added directly to the 

hybridisation mix. 

2.1.5 Hybridisation Conditions 

All hybridisations and washes were performed in Techne hybridisation bottles rotating 

in a Techne HB-1 oven using 20m1 hybridisation buffer per filter. Prehybridisation, 

hybridisation and washes were all carried out at 65°C. 

Filters were prehybridised for at least 15 minutes in Rapid-hyb buffer (Amersham). 

Denatured radiolabelled probe was added to the same hybridisation buffer for 2.5 hours. 

Following hybridisation, filters were washed briefly with 2 x SSC; 0.1%SDS at room 

temperature followed by 2 x 20 minute washes with the same wash solution and 2 x 20 

minute washes with 1 x SSC; 0.1% SDS, all at 65°C. After washing, filters were rinsed 

in H20, wrapped in Saran Wrap and exposed to autoradiographic film at —70°C for the 

appropriate length of time (1-7 days) for a signal to appear. 
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2.1.6 DNA sequencing 

The manipulation of raw sequence data was performed using Genejockey II for 

Macintosh. 

2.1.6.1 Automated Cycle Sequencing 

Automated cycle sequencing was performed using the Perkin-Elmer Taq DyeDeoxy 

Terminator Cycle Sequencing Kit (Applied Biosystems). The cycle sequencing reaction 

is a modification of the dideoxy-termination method of (Sanger et al. 1977). The four 

2',3 '-dideoxynucleoside 5'triphosphates (ddNTP) are covalently linked to different 

fluorescent dyes allowing the sequencing reaction to be carried out in a single tube. 

Plasmid DNA was prepared using a Qiagen miniprep kit. The DyeDeoxy terminator 

cycle sequencing reactions were carried out according to the manufacturers instructions. 

To conserve reagents, half the amounts were used (200-500ng plasmid DNA, 1 .6pM 

primer (section 2.1.6.2), 4pJ terminator ready reaction mix and sterile H 20 to 10il 

volume). The reactions were subjected to 25 PCR cycles of 96°C for 30 seconds; 50°C 

for 20 seconds; 60°C for 4 minutes. The PCR products were precipitated with ipi 3M 

NaOAc, pH 5.2 and 100% ethanol on ice for 20 minutes: The DNA pellet was washed in 

70% ethanol, air-dried and resuspended in 4p1  loading buffer (5mM EDTA pH8.0; 

lOmg/ml Blue dextran in deionised formamide). The sequencing reactions were 

denatured at 95°C for 2 minutes and 2p1 run on a denaturing polyacrylamide gel (7M 

urea; 5% acrylamide (29:1 Biorad); 1 x TBE; 0.06% ammonium persuiphate; 15m1 

TEMED per 50m1 mix) in 1 x TBE on the ABI PRISM 377 DNA Sequencer. 

Sequencing gels were run by the CGR sequencing facility. 

2.1.6.2 Sequencing Primers 

For all constructs PCR primers used for the cloning strategies were also used in 

sequencing reactions. Additional sequencing primers were: 

a) GST-specific primers 

GST-int F': 5' GCGTGCAGAGATTTCAATGC 3' 

GST-int R': 5' GGATGGGTTACATGATCACC 3' 
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MBAP-specific primers 

HA SEQ F: 5' CCTCTACCGGTGCGTGGTGGT 3' 

1203F': 5' CCACCTGGCGAAACTGCTGGT 3' 

1531R': 5' ACGTGTTGCCCGTCGCGTCC 3' 

MBAPO1 F': 5' GTGGTGTCGTGTGCACTGTACTCG 3' 

Gp63-specific primers 

Gp63-803F': 5' ACATCACGGAAGGCGTGACC 3' 

Gp63-1462R': 5'ACAAGTTCCGACTCTCAGACG 3' 

2.1.7 Polymerase Chain Reaction 

All PCR reactions were carried in a GeneAmp 9700 thermal cycler (PE Applied 

Biosystems). dNTPs and Taq polymerase were supplied by Roche. PCR reactions to 

clone genes were performed using a proof-reading Taq polymerase, (ExpandTM; Roche) 

and a high concentration of template with a low number of cycles to reduce the 

frequency of Taq-induced mutations in the amplified product. 

2.1.7.1 PCR to Screen Transformants 

Single bacterial colonies were picked with a sterile yellow tip, then both mixed with 5tl 

H20 in a thin walled 0.2ml PCR tube and smeared on a gridded bacterial agar plate. SpA 

of a PCR mix was added containing 1 pA forward primer (1 OOng/ml), 1 p.1 reverse primer 

(bOng/mi), 2p.1 2mM dNTPs, 1 x PCR buffer (containing 50mM KC1, 2.5mM M902; 

Roche) and 0.1 units Taq. PCR reactions were performed using appropriate internal 

primers. 

2.1.7.2 PCR on Genomic DNA 

To 1 OOng genomic DNA was added 2p1 10 x PCR buffer; 2p.l forward primer 

(lOOng/p.l); 2j.il reverse primer (lOOpi/mi); 2p.l 2mM dNTPs; 0.lunits Taq and the 

volume adjusted to 20p.l with sterile H20. 



Chapter 2: Materials and Methods 
	

78 

The PCR conditions were: 

GST-L (GST-int-XhoI F and GST-int-XbaI; PromR' and GST-int R'): 95°C for 5 

minutes followed by 30 cycles of 95°C 20s; 58°C 30s; 72°C 2 minutes; followed by 

72°C 7 minutes. 

CLB clones (CLB2: MCC1 F and 1531R'; HA SEQ F and MCC-Hind R'): 95°C for 5 

minutes followed by 25 cycles of 95°C 30s; 58°C 30s; 72°C 1.5 minutes; followed by 

72°C 7 minutes. 

GP63 (gp63-XhoI F and gp63-XbaI R'): 95°C for 2 minutes followed by 30 cycles of 

95°C 30s; 58°C 20s; 72°C 2 minutes; followed by 72°C 7 minutes. 

Integration PCR (Prom R' and SL-pX): 95°C for 5 minutes followed by 95°C 30s; 

55°C 30s; 72°C 2 minutes; followed by 72°C 7 minutes. 

Control PCR on promoter region (Prom R' and Prom F'): 95°C for 1 minute followed 

by 30 cycles of 95°C 30s; 58°C 30s; 72°C 30s; followed by 72°C 7 minutes. 

PCR products were analysed directly on a 0.8% TAE agarose gel. 

2.1.7.3 Primers used for PCR 

5' 	 3' 

GST-int XhoI-BsrGI F: GGCTCGAGCCCTGTACATGTCCCCTATACTAGG 

GST-int XbaI R': 	GGTCTAGATTCAGTCAGTCACGATGAATTCCC 

SL-Px R': 	 GCCTCTGAGCATCTCGAGGCTAGCCTCCAGGGC 

MCC-1 F: GGGTGTACACCGCGAACGAGCGCGCGGACCTGATCGCGTACC 
TGAAGCAGGCGACGAAGCGGTACCGGG 

Hind-MCC R': AGCTTGCCTTCGTCGCCTGCTTCAGGTACGCGATCAGGTCCG 
CGCGCTCGTTCGCGTTAACGA 

Gp63-XbaI R': TCTAGATTCAGACGTCCTTGGCAGCTTTGACG 

PROM F: TTGTGTGACAACGTGAGTCG 

PROM R': CATGTTTTGTGTGTGCTGCC 
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2.1.8 Generation of Constructs 

2.1.8.1 MCC Peptide Sequences 

The following MCC peptide sequences were used for the generation of MCC fusion 

proteins (Reay et al. 1994): 

MCC(88103): ANERADLIAYLKQATK 

MCC(9 5 103): IAYLKQATK 

For all MCC sequences the DNA sequence was corrected for optimal codon usage by 

Leishmania parasites according to (Langford etal. 1992). 

2.1.8.2 GSTint-L 

For the following cloning strategies, a slightly modified form of the pSSU-int vector was 

used (kindly provided by Martin Wiese, TUbingen); hygromycin T  was replaced by 

puromycin', and the CPB 2.8 intergenic region was cloned downstream of the multiple 

cloning site (see Appendix A-a). 

The cloning strategy for the generation of pSSU-GST-int-L is depicted in Figure 2.1. 

GST-int was amplified from pGEX-2T (GST-int) (Appendix A-a) using GST-int-Xho-

BsrGI F' and GST-int-Xba R' primers (section 2.1.7.3) that were complementary to the 

start ATG and the TGA stop codon respectively. XhoI and BsrGI sites were included at 

the 5' end of the GST-int-Xho-BsrGI F' primer and an XbaI site was included at the 5' 

end of GST-int-Xba R', so that the amplified product would be flanked by these 

restriction sites. The PCR conditions were: 94°C 5 minutes; then 20 cycles of 94°C 20s; 

60°C 30s; 72°C lOs; followed by 72°C 10 minutes. The amplified PCR product was sub-

cloned into a TA cloning vector (pTA-GST-int). 

The 91bp leader peptide sequence from the L. mexicana membrane-bound acid 

phosphatase (mbap) gene was cloned onto the N-terminus of GST-int, immediately 

upstream of the start ATG, using the XhoI and BsrGI sites that had been introduced by 

PCR. The leader peptide was digested from pTA-Modlap (see Figure 2.2) with XhoI and 

BsrGI, and the 91bp fragment separated on a 6% polyacrylamide gel. The resulting 
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bands were excised from the gel, eluted on incubation with 0.5M NH 40Ac, 1mM EDTA 

over-night at 37°C, and inserted into XhoI, BsrGI digested pTA-GST-int, generating 

pTA-GST-int-L. 

The resulting construct was carefully sequenced to check it was in frame and then 

digested with XhoI and XbaI and directionally cloned into pSSU-int-lm mkk digested 

with the same enzymes, to generate pSSU-GST-int-L (Appendix A-b). 

Prior to transfection pSSU-GST-int-L was linearised using the PacT (410) site at the 5' 

end of the integration cassette (Appendix A-a), gel purified to remove any non-digested 

DNA and electroporated into log phase L. mexicana promastigotes (see section 2.3.1.4). 

For sterilisation of purified DNA the sample was precipitated with 0.1 volumes 3M 

NaOAC and 2.5 volumes 100% ice cold ethanol for 20 minutes at —70°C, microfuged at 

13 000 rpm for 5 minutes, washed with 70% ethanol and air dried in a laminar flow 

hood. The DNA pellet was resuspended in 20d sterile water. 

2.1.8.3 MBAP 

CLB1 

The cloning strategy for the CLB I construct is depicted in Figure 2.2. L. mexicana mbap 

was amplified from the vector pX-Modlap (provided by Martin Wiese, Tubingen) using 

the following primers: 

XhoI-lmmbap 5' CCCCTCGAGATGCTCAGAGGCATCGGTTTCCTC 3' 

XbaI-lmmbap 5' GGGTC TAGATCAGATCTCGCCGCTGGACATGGG 3' 

The amplified product was cloned into the TA cloning vector for subsequent cloning 

steps (pTA-Modlap). Two complimentary MCC (8 8 103 ) olignucleotides were designed 

flanked by sites for the restriction enzymes BsrG I and Acc 651 at the 5' and 3' ends 

respectively. These sites are compatible with the BsrGI (386) site immediately 

downstream of the inbap leader peptide. Acc65I and BsrGI have compatible cohesive 

ends, but this destroys the BsrGI site, resulting in loss of the BsrGI site at the 3' end of 

the MCC epitope. 
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MCC-l: 5' GGGTGTACACCGCGAACGAGCGCGCGGACCTGATCGCGTACCTGAAGCAG-

GCGACGAAGCGGTACCGGG 3' 

MCC-2: 5' CCCGGTACCGCTTCGTCGCCTGCTTCAGGTACGCGATCAGGTCCGCGCGC - 
TCGTTCGCGGTGTACACCC 3' 

The MCC oligomers were resuspended at a concentration of 1pg/ml, mixed at a ratio of 

1:1 and annealed by heating to 65°C then cooling slowly to room temperature. The 

annealed oligomers were then digested with BsrGI and Acc651, purified with 

phenol/choloform and inserted into BsrGI digested pTA-Modlap, to create pTA-

Modlap-MCC. Olignucleotides specific for the 17 gene 10 epitope tag (Novagen) were 

designed, which also contained restriction sites for BsrGI, and inserted into the BsrGI 

site which was now 5' to the MCC epitope. 

G10-1: 5' AAAGGTACCCCATGGCGTCGATGACGGGCGGCCAGCAGATGGGCCGGTACC-
GGG 3' 

G 10-2: 5' CCCGGTACCGGCCCATCTGCTGGCCGCCCGTCATCGACGCCATGGGGTACC - 
TTT 3' 

pTA-Modlap-G10-MCC was sequenced extensively to ensure that no mutations had 

been introduced during PCR amplification of mbap, that the gene 10 tag and MCC 

epitope were both inserted in frame with the initiation Methionine and that they were 

present in the correct orientation. The transgene was digested with XhoI and XbaI and 

inserted into XhoI, XbaI digested pSSU-int-lm mkk to generate CLB 1 (see Appendix A-

b). CLB 1 was linearised using the PacI site at the 5' end of the integration cassette, as 

described in section 2.8.1.2, and electroporated into log phase L. mexicana 

promastigotes. 

CLB2 

CLB2 was generated as described for CLB 1 but without insertion of the T7 gene 10 tag 

(Appendix A-b). 
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CLB3 

The cloning strategy to generate CLB3 is depicted in Figure 2.3. An AvrII restriction 

site was inserted into a site at the C-terminus of pTA-Modlap using the following 

primers: 

AvrII F': 5' CCTAGGCGAGATCTGATCTAGA 3' 

AvrII R': 5' CCTAGGGACATGGGCGACGATC 3' 

AvrIIF' and AvrIIR' are homologous to a sequence at the C-terminus of Modlap and 

contain an overlapping region that contains the AvrII site. The PCR conditions were 

94°C for 5 minutes followed by 94°C 15 seconds; 58°C 30 seconds; 72°C 4 minutes for 

30 cycles, then 72°C for 10 minutes. The linear PCR product was digested with AvrII 

and ligated to create a circular plasmid (pTA-Modlap-AvrII. 1) containing the unique 

AvrII (1716) site. pTA-Modlap-AvrII. 1 was digested with Hindlil, end-filled with 

Klenow fragment and religated, thus destroying the Hindlil site and generating pTA-

Modlap-AvrII.2. Complementary olignucleotides encoding a multiple cloning site 

(MCS) flanked by AvrII restriction sites were annealed, digested with AvrII and inserted 

into AvrII digested pTA-Modlap-AvrII.2 to generate pTA-Modlap-MCS. 

MCSI: 5' TTTCCTAGGTCCGGAATCGATGTTAACCCGTACGATATCAAGCTTCAATTG-
CCTAGGTTT 3' 

MCSII: 5' AA.ACCTAGGCAATTGAAGCTTGATATCGTACGGGTTAACATCGATTCCGG-
ACCTAGGAA.A 3 1 . 

MCC(88103) was inserted as two annealed oligomers which were flanked by Hindlil sites. 

MCC-HindIIIF': 5' AGCTTGCTTAACGCGAACGAGCGCGCGGACCTGATCGCGTACCT-
GAAGCAGGCGACGAAGGCA 3' 

MCC-HindIIIR': 5' AGCTTGCCTTCGTCGCCTGCTTCAGGTACGCGATCAGGTCCGCG-
CGCTCGTTCGCGTTAACGA 3' 

The MCC oligonucleotides were annealed, digested with Hindill and inserted into the 

Hindlil site of the MCS at the C-terminus of pTA-Modlap-MCS to create pTA-Modlap-

MCS-MCC. Clones were analysed by sequencing to ensure that the MCC epitope was 

inserted in the correct orientation, and that it was in frame with the rest of the MBAP 
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protein. Verified clones were digested with XhoI and XbaI and inserted into XhoI, XbaI 

digested to pSSU-int-lm mkk to generate CLB3 (Appendix A-b). 

2.1.8.4 GP63-MCC 

The cloning strategy for the generation of pSSU-int-gp63-MCC is depicted in Figure 

2.4. The sequence for the L. amazonensis gp63 Cl gene was obtained from Genbank, 

accession number X64394. The truncated gene was amplified from L. mexicana wild 

type genomic DNA using the following primers: 

Gp63-XhoI F': 5' CTCGAGATGCCCGTCGACAGCAGCAGC 3' 

Gp63-XbaI R': (see section 2.1.7.3). 

Gp63-XhoI F' contains the start ATG codon and Gp63-XbaI R' is complementary to a 

sequence at the 3' end of the gene, 5' of the GPI anchor addition site. Gp63-XbaI F' 

inserts a stop codon (TGA) immediately after Aspartate residue 1921. Therefore the 

amplified product would lack the GPI anchor addition site, mutation of which has been 

shown to result in a secreted form of the intact protein (McGwire and Chang 1996). The 

Xho I and Xba I sites included in Gp63-XhoI F' and Gp63-XbaI R' respectively were 

included to facilitate sub-cloning of the product into pSSU-int-lm mkk. The PCR 

conditions were: 94°C 5 minutes; then 20 cycles of 94°C 30s; 62°C 30s; 72°C 1 minute; 

followed by 72°C for 7 minutes. The amplified PCR product was sub-cloned into a TA 

cloning vector to generate pTA-gp63. 

To mutate the active site of gp63 Glutamate 265 was converted to an Aspartate residue 

using the QuikChangeTM Site-Directed Mutagenesis Kit (Stratagene). Antisense primers 

were designed containing the mutagenised Glutamate—Aspartate (GAG—GAC) codon 

(mutated base pairs are underlined). 

GLU-265 F': 5' GTCACGCACGACATGGCGCACG 3' 

GLU-265 R'; 5' CGTGCGCCATGTCGTGCGTGACG 3' 

pTA-gp63 was amplified with the mutagensis primers using Pfu polymerase 

(Stratagene) and the following PCR conditions: 95°C for 30 seconds then 12 cycles of 

95°C 30 seconds; 55°C 60 seconds; 68°C 12 minutes; then 68°C for 7 minutes. The PCR 
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reaction was then incubated with the restriction enzyme DpnI that digests the methylated 

template DNA but not the non-methylated PCR products. The PCR product, which is 

maintained as a nicked circular molecule is then transformed into competent cells, in 

pTA-gp63-SDM was digested with Sacl and religated to isolate the C-terminus of gp63 

for subsequent cloning steps. pTA-gp63-SacI. 1 was digested with Hind III, the ends 

filled in with the Kienow fragment and religated, thus destroying the Hind III site and 

generating pTA-gp63-SacI.2. Two Hind III sites were then introduced into pTA-gp63-

SacI.2 by two rounds of site-directed mutagenesis. These sites flanked base pairs 1697-

1729 (see Figure 3.19), which could subsequently be removed and replaced by the MCC 

epitope. The primers used for the site-directed mutagenesis were as follows: 

SDM-Hind III 1: 5' CGCAGCGGTTCTAAGCTTCGGCGTGAAGG 3' 

SDM-Hind 111 2: 5' GCCTTCACGCCGAAGCTTAGAACCGCTCGC 3' 

SDM-Hind 111 3: 5' CGTTGGCGCAAAGCTTGGTGTAGTATCC 3' 

SDM-Hind 111 4: 5' GGATACTACACCA1GCTTTGCGCCAACG 3' 

The following PCR conditions were used for both rounds of site-directed mutagenesis: 

95°C for 30 seconds then 16 cycles of 95°C 30 seconds; 55°C 60 seconds; 68°C 9 

minutes; then 68°C for 7 minutes. The resulting construct was called pTA-gp63-HH-

SacI.2. Two complementary MCC (95
-
103)  oligomers were designed flanked by Hind III 

sites: 

MCC-gp63 F': 5' AGCTTAACATCGCGTACCTGAAGCAGGCGACGA 3' 

MCC-gp63 R': 5' AGCTTCGTCGCCTGCTTCAGGTACGCGATGTTA 3' 

These oligomers were annealed, and inserted into Hindlil digested TA-gp63-HH-SacI.2 

to generate TA-gp63-MCC-SacI.2. This construct was thoroughly sequenced to confirm 

the orientation of the inserted MCC epitope, and that it was in-frame with the rest of the 

gp63 protein. The pTA-gp63-MCC-SacI.2 SacI-XbaI fragment was ligated with the 

pTA-gp63 XhoI-SacI fragment and XhoI, XbaI digested pSSU-int-lm mkk to generated 

pSSU-gp63-MCC (Appendix A-b). 
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2.2 Protein Analysis 

2.2.1 Preparation of Protein Samples 

Parasite material was boiled in lx reducing protein sample buffer for 10 minutes with 

vortexing to lyse the parasites. Samples were then placed on ice. Parasite supernatants 

were diluted in 5 x reducing protein sample buffer and boiled. To concentrate 

supernatants, samples were spun through a concentrating column (Vivaspin 

Concentrator, 5,000 Mw cut-off; Vivascience). 

2.2.2 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Discontinuous SDS-PAGE was performed as described by (Laemmli 1970). Protein 

samples were separated by electrophoresis through acrylamide gels using a Bio-Rad 

mini gel apparatus. Stock acrylamide solutions for polyacrylamide gels were 30% 

acrylamide/ bis (37.5:1) (Bio-Rad). The lower resolving gel consisted of 10 or 12.5% 

acrylamide, 1 .5M Tris-HC1 pH8.8 and 0.4% SDS, while the upper stacking gel was 4% 

acrylamide, 0.5M Tris-HC1 pH6.8 and 0.4% SDS. Reducing protein sample buffer (1 x 

concentration) consisted of 0.5% bromophenol blue, 2% SDS, 10% glycerol, 62.5mM 

Tris-FIC1 p116.8 and 2.9M 3-mercaptoethanol. Samples were run through the stacking 

gel at a constant current of 1 OmA per gel and through the resolving gel at 20mA per gel 

until the bromophenol blue dye ran off the end of the gel. Running buffer contained 

25mM Tris-HC1 pH8.3, 192mM glycine and 0.1% SDS. 

Full range pre-stained molecular mass standards (Amersham) were routinely run as 

markers on SDS-PAGE gels. 

2.2.3 Western Blotting 

Proteins separated by SDS-PAGE were transferred to HybondTMECLTM nitrocellulose 

membrane (Amersham) by electroblotting. Transfers were performed using a semidry 

blotter (Bio-Rad) at a constant voltage of 100V with 25mM Tris-HC1 pH8.3, 192mM 
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Glycine, 0.1% SDS and 20% methanol as the transfer buffer. After blotting, membranes 

were blocked by incubation in blocking solution (PBS-T (PBS, 0.05% Tween-20) / 5% 

(w/v) skimmed milk powder with shaking overnight at 4°C. Membranes were washed 

three times with PBS-T before incubation with primary antibody diluted in blocking 

solution for 1 hour shaking at room temperature. Membranes were washed a further 3 

times with PBS-T before incubation with a 1: 5, 000 dilution of an appropriate hydrogen 

peroxidase (HRP)-conjugated anti-species IgG+IgM (Sigma) for 1 hour at room 

temparature with shaking. After another round of washes the membranes were 

developed using the Enhanced Chemiluminescence (ECLTM,  Amersham) reagents and 

exposed to Hyperfi1mTMECLTM (Amersham) for appropriate lengths of time. 

2.2.4 Antibodies used for immunoblotting 

The T7 gene 10 tag was detected with an anti-gene 10 mAb (Novagen) diluted 1:3000 

and detected with a goat anti-mouse-HRP secondary at 1:5000. The primary anti-GST 

polyclonal antibody (Amersham) was diluted 1:1000 and detected with a mouse anti-

goat-HRP secondary at 1: 160 000. 

2.2.5 Acid Phosphatase Assay 

Acid phospatase activity was assayed as described by (Menz et al. 1991). Amastigotes 

were cultured overnight in volumes of imi at 1x10 7/ml in a 24 well plate. Supernatants 

were harvested the next day and stored at —80°C. For the phosphatase assay 10pl of 

supernatant was incubated with 90pi 5mM p-Nitrophenol phosphate (pNPP) (Sigma) in 

100mM NaOAc, pH5.0 in triplicate wells of a 96 well plate. Samples were incubated for 

30, 60 and 90 minutes at 37°C, and the reactions stopped with lOj.tl of 2M NaOH. 

Absorbance was read at 405nm, and a blank was subtracted from wells containing 

samples. The acid phosphatase activity was calculated in units, whereby 1 unit equals 

the amount of enzyme that hydrolyses 1 .tM of substrate per minute, using the equation: 

Units = AOD405nm(t2-tl)/E405 flm, E405nm = 18500M 1 cm 1 
. 
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2.3 General Tissue Culture 

All cell culture was performed in laminar flow sterile hoods using strict sterile technique 

which included wiping the hood down and spraying all items entering the hood with 

70% industrial methylated spirits (IMS). All solutions were tested for sterility by 

incubation of aliquots at 37°C for at least 24 hours before use. Cells were examined 

using an inverted microscope (Nikon TMS). 

2.3.1 Culture of Leishmania Parasites 

L. mexicana (strain MNYC/BZ/62/M379) and L. major (LRC-L137 V121) were used for 

Leishmania experiments. 

2.3.1.1 Thawing of Promastigotes Cultures 

Vials of frozen promastigotes were taken directly from the liquid nitrogen storage and 

quickly thawed in a 37°C water bath. The cell suspension was transferred to a 20ml 

universal tube containing 1 Oml of pre-warmed promastigote media. The cell suspension 

was centrifuged immediately at 3000 rpm for 5 minutes. The supernatant was poured off 

and the pellet resuspended in imI pre-warmed promastigote culture medium, then 

transferred to a 25cm 3  flask containing 9m1 of the pre-warmed medium. 

2.3.1.2 Passage and Expansion of Parasite Cultures 

Promastigotes were cultured in vitro in SDM / 10% heat inactivated foetal calf serum 

(iFCS) at 26°C. Cultures were maintained in a volume of 10 ml in 25cm 3  tissue culture 

flasks and passaged weekly. Amastigotes were cultured axenically (section 2.3.1.2) at 

34°C in Schneider's Drosophila medium (GibcoBLR) supplemented with 20% iFCS and 

3 .9g/l 2-(N-morpholino)ethane-sulphonic acid (Sigma). Cultures were split 1:20 weekly. 

Amastigote clumps were dispersed by passing them up and down through a 23G needle 

(Beckton-Dickinson) before passage. 

Parasites were passaged through mice to maintain virulence. Stationary phase 

promastigotes were washed 3 times in PBS and resuspended at 1x10 8/ml. Approximately 

30j.il (3x106) parasites were injected sub-cutaneously at the base of the tail of BALB/c 
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mice. Mice were sacrificed after at least 4 weeks post-infection and the popliteal lymph 

nodes taken. Lymph nodes were cut up and cultured in 10 ml SDM / 10% iFCS with 

antibiotics (50U/ml Penicillin and Sojig/ml Streptomycin, Gibco) at 26°C. 

2.3.1.2 Generation of Axenic Amastigotes 

L. mexicana axenic amastigotes were generated as described by (Bates et al. 1992; Bates 

1994). Stationary phase promastigotes were diluted 1:10 into amastigotes medium and 

cultured at 26°C until dense. Cultures were diluted 1:10 again into fresh medium and 

transferred to 34°C. Amastigotes were then passaged at least twice before use. 

2.3.1.3 Freezing Leishmania Parasites 

1 Oml log phase L. mexicana and L. major promastigotes were centrifuged at 3000 rpm 

for 5 minutes, the cell pellet resupended in 2.5ml of ice cold freezing solution (iFCS / 

10% DMSO) and rapidly transferred in 500j.tl aliquots to Nunc cryotubes on ice. 

Cryotubes were wrapped in blue towel and transferred to —80°C for at least 24 hours, 

then moved to liquid nitrogen storage. Exposure of parasites to DMSO is kept to a 

minimum as it toxic to the cells. 

2.3.1.4 Transfer of DNA to Leishmania Parasites 

Exogenous DNA was routinely introduced into L. mexicana promastigotes by 

elecroporation as described by (Kapler et al. 1990). Briefly, log phase, actively dividing 

promastigotes were centrifuged at 3000 rpm for 5 minutes and the supernatant discarded. 

The cell pellet was washed in lOmi sterile elecroporation buffer (EPB; 21mM HEPES 

pH7.5, 137mM NaCl, 5mM KC1, 0.7mM Na 2HPO4, 6mM glucose), resuspended in 

lOml EPB and counted in a haemocytometer. The cells were centrifuged again and 

resuspended at lxlO 8/ml in EPB and chilled on ice. 400u1 of cells were added to chilled 

0.2cm elecroporation cuvettes (Bio-Rad) containing 20u1 of sterile linearised DNA 

(section 2.1.8.2). Cells were elecroporated at 0.45V, 50011F in a Bio-Rad Genepulser, 

which would normally result in a time constant of 4.0. The cuvette was incubated on ice 

for 10 minutes before transfer of the cells to 1 Oml promastigote medium. The next day 

the parasite culture was made up to 24m1 and Puromycin added at a final concentration 

of 40p.M. The culture was split into a 24 well plate. Based on an transfection efficiency 
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of 1 in 1x106  this will result in approximately one transfected parasite per well, and 

cultures grown up from each well were therefore be considered lines. 

After approximately 5 days parasites were split 1:10 and the media replaced in the 

original plate. By 2 weeks positive wells were confluent with drug-resistant parasites 

that were passaged to be frozen, and harvested for analysis of genomic DNA (section 

2.1.7.2). 

2.3.2 Culture of Mammalian Cells 

All mammalian cells were cultured at 37°C in a humidified incubator with 5% CO2. 

2.3.2.1 T Cell Hybridomas 

The 2B4 T cell hybridoma was cultured in RPM! cell culture medium containing 10% 

FCS; 4mM Glutamine 2mM sodium pyruvate; 0.1% MEM non-essential amino acids; 

0. 1 m 2-mercaptoethanol. All stock solutions were prepared by at the CGR tissue 

culture facility. The cells were cultured in 6 well plates and split 1:10 into fresh medium 

every other day. Aliquots of lx10 6  cells were thawed and frozen, as described in 

sections 2.3.1.1 and 2.3.1.3. 

2.3.2.2 IL-2-Dependent Cells (Swain etal. 1981) 

The IL-2-dependent T cell line C.C3.11.75 was thawed as described in section 2.3.1.1 

and resuspended in 1 imi RPMI / 10% FCS in a 25cm 3  tissue culture flask with imi 

CASM (section 2.3.2.3). Cells were passaged every 4 days or less by transferring imi 

into a new flask containing 1 Omi culture medium and 1 ml CASM. Cells were monitored 

by microscopy to ensure that they grew as clumps. Once the cells started growing as 

single cell suspensions, the cultures were discarded and new aliquots thawed. lxi 06  cells 

were frozen in 500il aliquots as described in section 2.3.1.3. 
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2.3.2.3 ConA-Stimulated Medium 

ConA-stimulated medium (CASM) was prepared as follows. Rat spleen single cell 

suspensions were cultured at 2x10 6/ml in RIO containing 2.5pg/ml Concanavalin A 

(Sigma) for 48 hours. The contents were then transferred to 50m1 Falcon tubes and 

centrifuged at 1200 rpm for 5 minutes. Aliquots of the supernatant were transferred to 

20m1 Universal tubes containing 0.4g of a-methyl mannoside (Sigma) and stored at 

—20°C. Aliquots were filter sterilised before use, and tested for IL-2 activity using an IL-

2-dependent cell line (see section 2.5.4.3). 

2.3.2.4 Culture of Dl Cells 

Dl DC were cultured as described by (Winzler et al. 1997). The cells were cultured in 

IMDM supplemented with 10% FCS, 2mM L-glutamine, 50.tM 2-mercaptoethanol 

antibiotics (100U/ml Penicillin and lOOj.tg/ml Streptomycin) and 30% supernatant from 

NIH/3T3 cells containing 10-20ng/ml GM-CSF. 

Cells were harvested for passaging by removing the supernatant and incubating the cells 

in 2mM EDTAIPBS for 10 minutes at room temperature. Cells were dislodged by 

vigourous washing with PBS and harvested into 15m1 Falcon tubes. Cells were 

centrifuged at 12000 rpm for 5 minutes and the supernatant discarded. Cells were 

resuspended in 2m1 Dl cell media and counted on a haemocytometer. 2.5x10 6  cells were 

plated in lOmi Dl cell medium in 10cm tissue culture dishes, or 5x10 5  cells in 2ml in 

35mm tissue culture dishes for infection with Leishmania. 

2.4 Primary Tissue Culture 

2.4.1 Animal Maintenance 

Six to eight week old female CBA or BALB/c mice were obtained from colonies 

maintained at the Centre for Genome Research and Ann Walker animal facilities at the 

University of Edinburgh. All animals were housed and bred according to the provisions 

of the Animals (Scientific Procedures) Act (UK) 1986. 
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2.4.2 Isolation of Bone Marrow 

Femurs and tibias were taken from CBA mice, sterilised in 70% ethanol and washed 

well in RPMI. The ends were cut off the bones and the bone marrow flushed out using 

RPMI in a imi syringe with a 26G needle (Beckton Dickinson). Cells were passed 

through a cell strainer (Beckton Dickinson) to remove any bone fragments and to create 

a single cell suspension. 

2.4.3 Generation of Bone Marrow-Derived DC 

BM-DC were cultured in vitro according to a method adapted from (Inaba et al. 1992). 

The bone marrow single cell suspension was centrifuged for 5 minutes at 1200 rpm and 

red blood cells lysed by incubation of the pellet in 5ml TBAC (144mM NH 4C1, 17mM 

Tris pH7.2) for 5 minutes at 37°C, then washed 3 times in RPMI, 10% FCS, 4mM 

glutamine, 2mM sodium pyruvate (RIO). The cell pellet was resuspended in 2m1 RIO 

and cells counted on a haemocytometer. Bone marrow cells were diluted a final 

concentration of 3.75x10 5/ml in RIO, with lOng/mi recombinant GM-CSF (Peprotech) 

or 20% supernatant from fibroblasts engineered to secrete GM-CSF (X63 cells; 

(Stockinger et al. 1995). Cells were plated out in 24 well plates at lml per well. The 

cultures were washed on days 3 and 6 to remove non-adherent granulocytes and 

lymphocytes. On day 7, loosely adherent BM-DC were removed by vigorous washing 

and replated to exclude firmly adherent Mc1  from subsequent culture. Where necessary, 

DC were stimulated for 18 hours with 1 ig/m1 E. coli-derived LPS (Sigma) and 103  U/mi 

IFNy (R&D systems), or with lOng/mi TNFa (Peprotech). 

For infection with Leishmania parasites, washed parasites were added to replated DC at 

a ratio of 8:1 and the cells cultured at 37°C for 18 hours. Promastigotes were taken from 

stationary phase cultures, in which parasites were not dividing but which did not contain 

debris indicative of cell death. The majority of stationary phase promastigotes were 

assumed to be metacyclic. 
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2.4.4 Generation of Bone Marrow-Derived M 

Single cell suspension bone marrow cultures were plated at a concentration of 5x1 0 5/ml 

in M'b medium (DMEM supplemented with 20% FCS, 4mM glutamine, 2mM sodim 

pyruvate, and 30% L929 cell supernatant). 12m1 of cells were plated in 130mm bacterial 

petri dishes. After 6 days in culture, non-adherent cells were washed away with warm 

PBS. The adherent MCI) were removed by 5 minutes incubation at 37°C with PBS, 3mM 

EDTA and 10mM glucose, followed by vigourous washing with cold PBS. 

For infection with Leishmania parasites, MCI were replated at a concentration of 

lxi 05/ml in 2m1 Mb medium in 30mm bacterial petri dishes and incubated overnight at 

37°C. Washed parasites were added at a concentration of 8:1 and the cells incubated at 

34°C overnight, for 4 or 7 days. For long-term culture, the cells were give fresh medium 

every three days. MCI) were given low levels of IFNy (200 U/ml) either overnight, with 

the overnight infection, or on days two, three and six of culture to up-regulate expression 

of MHC II without activating destruction of the parasites. 

DC were also incubated with 3.Ojim latex beads (Sigma). 

2.5 Immunological Methods 

2.5.1 Flow Cytometry 

2.5.1.1 Preparation of Cells 

Day 7 BM-DC were harvested as described in section 2.4.3 into 1 5m1 Falcon tubes (one 

well per Falcon tube) and diluted with PBS. Alternatively Dl cells were harvested into 

Falcon tubes, as described in section 2.3.2.3. Cells were centrifuged for 5 minutes at 

1200 rpm and cell pellets were resuspended in 100pl PBS / 10% FCS (FACS wash), 

transferred to a Sml FACS tube (Beckton-Dickinson) and placed on ice. 
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2.5.1.2 FACS Analysis 

Parasite-infected cells were fixed by addition of 20.t1 fixation medium A (Fix & Perm 

kit, Caltag) for 20 minutes at room temperature and then washed with FACS wash. Cells 

were resuspended in SOp! FACS wash and FcR were blocked by adding 50pl 2.4G2 

antibody diluted to a 2 x concentration in FACS wash to the tube. Cells were mixed by 

agitation of the tube and incubated for 20 minutes at room temperature (if fixed) or at 

4°C. Cells were centrifuged at 1200 rpm for 5 minutes and washed in FACS wash. Cells 

were resuspended in 50tl FACS wash and 50il of the appropriate primary antibody or 

antibodies added, diluted to a 2 x concentration in FACS wash. Cells were incubated for 

20 minutes at room temperature or on ice, centrifuged and washed. Where necessary 

cells were resuspended in 50p1 FACS wash and incubated with 50p1 of a 2 x secondary 

antibody. 

For intracellular staining, the cells were fixed as described above and 20tl of 

permeabilisation solution B (Fix & Perm Kit, Caltag) was added to the cells with each 

round of antibody and the cells vortexed gently. 

After the final staining, cells were resuspended in 300p1 FACS wash containing 0.01% 

sodium azide for direct analysis or 300p1 FACS wash containing 0.5% 

paraformaldehyde and 0.01% sodium azide if the cells had not already been fixed and 

were to be analysed more than 12 hours later. Cells were stored at 4°C in the dark until 

analysis, for no more than 96 hours. Stained cells were analysed on a Becton Dickinson 

FACSCalibur. FITC and PE labelled cells were identified in the FL-i and FL-2 channels 

respectively. FACS data was analysed using CELLQuest version 3.2 (Beckton 

Dickinson). Dead cells were routinely excluded by gating. Statistical analysis on FACS 

data was performed using Student's T-Test. 

2.5.1.3 Analysis of Dead Cells by Flow Cytometry 

Dead cells were identified by staining with Propidium Iodide (PT) which distinguishes 

viable cells from non-viable cells. Cells were washed in cold PBS and resuspended in lx 

binding buffer (10mM Hepes, NaOH pH7.4, 140mM NaCl, 2.5mM CaC1 2) at a 



Chapter 2: Materials and Methods 	 103 

concentration of 1x10 6  cells/mi. 50p1 of the solution was incubated with 5tl P1 (50j.ig/ml 

dissolved in PBS buffer; 8g NaCl, 0.2g KC1, 1.44g Na2HPO 4•71120 0.249 K1I2PO4  in 1 

litre H20, pH7.2). The cells were vortexed and incubated for 15 minutes at room 

temperature in the dark. 200jtl binding buffer was added to the tube and the cells 

analysed by flow cytometry. 

2.5.1.4 FACS Sorting 

Day 7 BM-DC cultures were incubated for 18 hours with EGFP-expressing L. mexicana 

promastigotes or amastigotes. The cells were harvested from multiple wells of the 24 

well plate, pooled into 1 5m1 Falcon tubes, then centrifuged at 1200 rpm for 5 minutes. 

The cell pellet was then washed two times in a large volume of PBS. Cells were 

resuspended in 1 -2m1 PBS and placed on ice. EGFP positive and negative fractions were 

isolated using a MoFlo®  (Cytomation) cell sorter at 4°C, recovered in RIO and placed on 

ice. A sample of the sorted population was reanalysed to check the purity of the sort. 

FACS sorting was carried out by Steven LeMoenic (CGR). 

2.5.2 Magnetic Cell Sorting (MACS) 

Day 7 BM-DC cultures were enriched for CD  1c cells by MACS. Cells were harvested 

and incubated with a FITC-conjugated anti-CD 1 I  antibody at a concentration of 0.2tg 

per 1x106  cells for 20 minutes on ice. Cells were centrifuged for 5 minutes at 1200 rpm 

and washed with MACS wash (PBS/2mM EDTA with 0.5% BSA). 1x10 7  cells were 

incubated with 90jil MACS wash and 1 Ojil anti-FITC magnetic beads (Miltenyi Biotec) 

for 15 minutes at 4°C. After washing with MACS wash cells were loaded onto a pre-

washed MS+ column held in a MACS magnet (Miltenyi Biotec). The column was 

washed thoroughly and the effluent discarded. The column was then removed from the 

magnet and the CD! 1 c-FITC cells pushed through with a syringe plunger. CD 11 .  c 

enriched cells were plated in 24 well plates overnight before analysis. 
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2.5.3 Cytokine Detection 

2.5.3.1 Enzyme-Linked Immunosorbant Assays (ELISA) 

Supernatants were collected from pelleted DC cultures and stored at —80°C. Supernatants 

were analysed for cytokines by ELISA using Pharmingen OptEIATM Sets as follows. 96 

well plates were coated overnight at 4°C with the appropriate capture antibody diluted to 

the recommended concentration in 0.06M Sodium Bicarbonate. The following day the 

wells were aspirated and washed 3 times with wash buffer (PBS / 0.05% Tween20). 

Plates were blocked with >200p.l assay diluent (PBS I 10% FCS) for one hour at room 

temperature. Wells were then aspirated and washed 3 times with wash buffer. Following 

the last wash plates were blotted on absorbant paper to remove any residual buffer. 

Plates were then incubated with 50pA of the appropriate samples or recombinant 

standards diluted in assay diluent (section 2.5.3.2) for 2 hours at room temperature. The 

plates were sealed to prevent evaporation. Samples were then washed as before. 501x1 of 

the Working Detector (biotinylated detection antibody ± Avidin-HRP), diluted to the 

recommended concentration in assay diluent, was added to the wells, the plates sealed 

and incubated at room temperature for 1 hour. Plates were then washed again, as before. 

To detect bound antibody samples were incubated with lOOpl  Tetramethylbenzidine 

(TMB) and Hydrogen Peroxide (Pharmingen) for 30 minutes, or until a blue colour had 

developed, and the reaction stopped with 50pi 2M H2SO4. Absorbance was read at 

450nm and a blank was subtracted. 

2.5.3.2 ELISA Samples 

Supernatants were diluted in assay diluent unit to an appropriate concentration for the 

standard curve. Each sample was tested in triplicate. Recombinant standards were 

diluted 1:2 down the plate from a 1 000pg/ml standard, in triplicate. The last wells were 

incubated with assay diluent alone as the blank. Cytokine concentrations were 

determined by extrapolation from the standards. Statistical analysis was performed using 

Student's T-Test. 
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2.5.4 T cell Assays 

2.5.4.1 2B4 

Presentation of MCC was assayed using the MCC-specific T cell hybridoma 2B4. DC 

and MCI were plated out in 96 well plates for T cell assays. As controls, DC or MCI had 

been pulsed with ljiM or 10pM MCC or 50.tM PCC for 4 hours and washed twice by 

centrifuging the plate for 4 minutes at 800 rpm then inverting it on blue towel, and 

refilling the wells with fresh medium. T cells were incubated with DC or MCI) at a ratio 

of 10 T cells (10) to 1 DC (10) or 1 T cell (10) to 1MI) (10) in a total volume of 

200p1 of RIO, for 18 hours. 1 50p1 of supernatant was subsequently removed and snap 

frozen at —80°C to kill any cells. Each well was set up in triplicate. 

2.5.4.2 IL-2 Assays 

Activation of 2B4 cells was assayed by measuring IL-2 production using the IL-2-

dependent cell line, C.C3.11.75 (Swain et al. 1981), as described by (Lawrence et al. 

1994). 20t1 supernatant from T cell assays was added to individual wells of round-

bottomed 96 well plates (Nunc). A standard was also set up using recombinant IL-2 

(Sigma) diluted 1:2 down the plate from 1000U/ml. IL-2-dependent cells were washed 3 

times to remove all CASM and resuspended in RIO at a concentration of ix10 5/ml. To 

this was added an anti-IL-4 antibody (11B11) diluted 1:400, because the IL-2-dependent 

cells also proliferate in response to IL-4. lOOjil cells was added to each well of the 96 

well plate and cultured at 37C  for 24 hours. The following day 1.tl [3 H]thymidine 

(1Ci) was added to each well in 10tl RIO, to measure cell proliferation by thymidine 

incorporation, and the plates incubated for a further 18 hours. Cells were harvested and 

counted using a Top Count Microplate Scintillation Counter (Canberra Packard). 
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2.6 Antibodies 

2.6.1 Primary Antibodies 

Antigen Specificity Clone Conjugation Dilution Company! 
Cat. no. 

CD1 lb Rat Ml/70 FITC 1:100 Pharmingen 
amouse  01710D 

CD1 ic Hamster a HL3 FITC 1:50 Pharmingen 
mouse  09704D 

DEC205 Rat 	a NLDC145 1:50 Serotec 
mouse  MCA949 

CD16/CD32 Rat 	a 2.4G2 1:100 Pharmingen 
FcBlock® mouse  01241D 
CD40 Rat 	a 3/23 PE 1:100 Pharmingen 

mouse  09665B 
CD54 Rat 	a KAT-1 PE 1:200 Southern 

mouse Biotechnology 
1700-08 

CD54 Hamster a 3E2 Biotin 1:100 Pharmingen 
mouse  01542D 

CD80 Hamster a 1 Gi 0 PE 1:100 Pharmingen 
mouse  09605B 

CD86 Rat 	a 2F7 PE 1:100 Pharmingen 
mouse  09275B 

MHC I Mouse a A176-88.5 PE 1:100 Pharmingen 
mouse  06105A 

MHC II Mouse a 14-44S PE 1:100 Pharmingen 
mouse  06025A 

CD45R1B220 Rat 	a RA3-6B2 PE 1:100 Pharmingen 
mouse  01125B 

C133 Rat a TCR 17A2 FITC 1:100 Pharmingen 
hybridoma  28004D 

174/80 Rat 	a FITC 1:100 Caltag 
mouse  RM2901 

H2EkMCC(95 103) Mouse a D4 1:1000 Reay et al 
mouse  (1994) 

Leishmania Rabbit a 1:400 T. Aebischer 
parasites promlamas.  
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2.6.2 Isotype Controls and Secondary Reagents 

Reagent Description Clone Conjugation Dilution Company! 
Cat. no. 

Hamster Hamster A19-3 FITC 1:100 Pharmingen 
IgG 1 ? isotype  111 54C 
Rat IgG2a K Rat isotype R35-95 PE 1:100 Pharmingen 

11025A 
Rat IgG2b K Rat isotype G28-5 FITC 1:100 Pharmingen 

11184C 
Mouse Mouse isotype G155-178 PE 1:100 Pharmingen 
IgG2a K  03025A 
Anti-rat Goat FITC 1:100 Jackson 

IgG+IgM Immunoresearch 
(H+L)  112-095-068 

Anti-mouse Goat FITC 1:100 Jackson 
IgG+IgM Immunoresearch 
(H+L)  115-095-100 

Streptavidin PE 1:100 Pharmingen  
13025D 
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Chapter 3: 

Generation and Testing of a Model Experimental System 

Proposed for the Investigation of Processing and 

Presentation of Leishmania-Derived Antigens in 

Infected DC 

3.1 Introduction 

Several studies have addressed the capacity of infected M to present parasite-derived 

antigens and have demonstrated that M infected with L. major or L. amazonensis 

parasites and treated with IFNy to up-regulate expression of MHC II did not efficiently 

stimulate antigen-specific T cells (Fruth et al. 1993; Prina etal. 1993). Since the killing 

of intracellular parasites resulted in the stimulation of T cells specific for parasite 

cysteine proteases (Wolfram et al. 1995), and MCI infected with Leishmania which over-

expressed parasite-derived or exogenous antigens could efficiently stimulate specific T 

cells in vitro (Kaye et al. 1993; Wolfram et al. 1996), this inefficient presentation of 

Leishmania proteins was proposed to reflect a general inaccessibility of parasite antigens 

to the antigen processing and presentation machinery. In infected M(I), L. mexicana 

parasites reside in large phagolysosomes, known as parasitophorous vacuoles (PV), that 

develop as a result of fusion of the original phagosome with host endosomal 

compartments (Antoine et al. 1999). These compartments contain the molecules 

necessary for processing and presentation of Leishmania antigens, and have been 

compared to MIIC, the putative site of peptide loading onto MHC II molecules. 

Complexes of MHC II molecules loaded with parasite-derived antigens have, however, 

never been directly visualised in infected APC and therefore it is not known whether 
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these complexes can form in the PV, or whether parasite antigens exit the PV and meet 

MHC II molecules in alternative endosomal compartments. These studies, furthermore, 

have focused on infection of M with Leishmania sp. and the presentation capacity of 

infected DC has not been directly addressed. Therefore, it is not known whether DC 

containing live parasites can efficiently present parasite antigens to T cells, or whether 

the kinetics of presentation are impaired, as in infected M. The work discussed in this 

chapter aimed to develop a model experimental system with which to address the fate of 

parasite-derived antigens in infected DC and M. 

3.2 The Experimental Model 

To follow the fate of parasite-derived antigens in infected cells, an optimal model 

system would require the uniform infection of DC and M4 with Leishmania parasites 

expressing an antigen that can be detected when complexed with MHC II molecules in 

vitro. Ideally, the formation of MHC II: parasite antigen complexes would be monitored 

in infected cells using a detection system which could distinguish between MHC II 

complexes displayed on the surface of the cells and complexes which were sequestered 

intracellularly. 

3.2.1 Detection of MHC 11-Peptide Complexes in vitro 

The formation of complexes between MHC II molecules and a defined T cell epitope 

can be monitored using a complex-specific mAb which recognises MHC II molecules, 

of a defined haplotype, only when bound by a relevant peptide. D4 is such an antibody 

that specifically recognises MHC II 1 ­12Ek  molecules when bound by the MHC II-

restricted T cell epitope Moth Cytochrome C (MCC). Detailed characterisation of the 

binding of a series of peptides differing by a single amino acids from MCC, to a specific 

T cell receptor (TCR), identified MCC(95103) as the core epitope recognised by T cells 
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(Reay et al. 1994). D4 binds only to H2Ek  molecules complexed with this epitope 

(Figure 3.1) (Reay et al. 2000), which is derived from MCC protein, or with the 

equivalent epitope in Pigeon Cytochrome C (PCC), which differs by one amino acid 

from MCC, by APC (L. Colledge unpublished results). D4 binds to H2Ek_MCC 

complexes with a rate constant of 1.25xl0 8M 1
, indicating that it can detect complex 

formation with a sensitivity equivalent to that of a TCR (Reay et al. 2000). The T cell 

hybridoma, 2134, also specifically recognises H2Ek  molecules bound to MCC(951 03) 

(Hedrick etal. 1982). Thus 2134 T cells can also be used to follow the appearance of 

MCC-loaded MIHC II molecules on the surface of cells. 

3.2.2 Expression of Transgenic Proteins by Leishmania sp. 

Transgenes are classically expressed in Leishmania parasites using the episomal 

expression vector, pX. pX was constructed using DNA from a circular region identified 

in methotrexate-resistant L. major parasites that encoded the dihydrofolate reductase-

thymidylate synthase (DHFR-TS) gene, and appeared to contain all the elements 

necessary for expression of this gene and replication of the DNA (LeBowitz et al. 1990). 

While pX has been successfully used in many different studies to over-express 

Leishmania-derived (e.g. Wolfram et al. 1996) or exogenous (e.g. Kaye et al. 1993) 

proteins in different Leishmania species, it has a number of limitations: transgene 

expression in pX-transfected cultures is extremely heterogeneous (Wolfram et al. 1996); 

transgenes are expressed much more highly by promastigotes than amastigotes (Misslitz 

et al. 2000); and continuous selective pressure is required to ensure that the episome is 

maintained at a high copy number, limiting the use of transgenic parasites in vivo. 

An alternative vector has recently been developed that mediates the stable integration of 

the gene of interest downstream of a promoter that drives high level expression of that 

gene (Misslitz et al. 2000). Integration of the transgene is particularly efficient because 

homologous recombination in Leishmania, as in yeast, predominates over non-

homologous recombination (Cappecchi 1990). The integration vector, pSSU-int, 

contains homology arms for sequences in the 18S small sub-unit ribosomal RNA 
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Figure 3.1: D4 only Detects MHC II Complexes in the 
Presence of MCC. 

Saponin - 	- 	+ 	+ 

MCC peptide was incubated over-night with CHO-1 7 cells that had been 
engineered to express MHC II (1-12-E k)molecules and other components of 
the MHC II processing and presentation pathway (CHO-1 7 cells are 
described by Colledge etal. 2001). Formation of MHC 11-MCC complexes in 
these cells was detected by ELISA using D4 with or without saponin to 
permeabilise the cells. Binding of D4 was visualised using an anti-mouse-
alkaline phosphatase secondary antibody. 
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(rRNA) gene that is transcribed by both promastigotes and amastigotes (Figure 3.2 and 

Appendix A-a). Transcription of ribosomal genes from this locus is driven by an RNA 

polymerase I promoter, whereas protein-encoding genes are normally expressed from 

RNA polymerase II promoters. Post-transcriptional trans-splicing of a spliced leader 

transcript from the vector onto the transgene means, however, that genes expressed from 

the ribosomal locus will be expressed as genes transcribed by RNA polymerase H. 

Expression of Leishmania genes is controlled by undefined elements in 3' untranslated 

intergenic regions that couple both trans-splicing and polyadenylation of the upstream 

gene (LeBowitz et al. 1993). Sequences cloned into pSSU-int therefore require a 3' non-

translated region to ensure correct expression of the transgene: the intergenic region 

from the cysteine protease B 2.8 gene cluster (CPB 2.8) is used since it is highly 

expressed in L. mexicana amastigotes (Mottram et al. 1997), ensuring high-level 

transgene expression in the intracellular form of the parasites. A selectable marker was 

also included in the cassette upstream of a second CPB 2.8 intergenic region, to allow 

selection of targeted parasites. 

The efficacy of pSSU-int was demonstrated through the characterisation of transgenic 

parasites expressing -ga1actosidase or the enhanced green fluorescent protein (EGFP). 

L. mexicana parasites transfected with pSSU-int carrying lacZ or EGFP cDNA 

expressed these proteins as promastigotes and expression was up-regulated to high levels 

in amastigotes (Misslitz et al. 2000). Expression of EGFP was equivalent in in vitro 

cultured axenic amastigotes and lesion-derived amastigotes, even when isolated from 

animals that had been infected for several months, indicating that high levels of the 

protein were expressed in the absence of selection (Misslitz et al. 2000). A significant 

advantage of this vector compared to pX is that transfected parasites express highly 

homogeneous levels of the transgene in culture; flow cytometric analyses of EGFP 

production by promastigotes and amastigotes revealed a normally distributed single 

histogram for the culture (Misslitz et al. 2000). Therefore, pSSU-int was chosen as the 

optimal vector for these studies. 



Figure 3.2: Integration of a Transgene into a 18S Small 
Subunit rRNA Locus using pSSU-int 

INEW 

Schematic representation of pSSU-int and integration into the rRNA small 
subunit locus by homologous recombination. 5' SSU and 3' SSU refer to the 
sequences required for the homology arms for recombination into the 18S 
rRNA gene. SSU= small sub-unit, LSU= large sub-unit; SL, splice leader; 
MCS, multiple cloning site; HYGT hygromycin resistance gene; CPB 2.8 IR, L. 

mexicana CPB 2.8 gene intergenic region; AMP, ampicillin resistance gene 
for selection in bacteria. 

Taken from Misslitz et a! (2000). For a plasmid map of pSSU-int see 
Appendix A-a. 
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3.2.3 The Model (Figure 3.3) 

A model experimental system for the investigation of the fate of parasite-derived 

antigens in infected cells was designed based on the tools described above. This model 

proposed that transgenic expression of MCC as a fusion protein in L. mexicana parasites 

would permit the generation of complexes between MHC II molecules and parasite-

derived MCC in infected DC and MCI to be detected in vitro using D4 and the T cell 

hybridoma, 2134. L. mexicana was chosen for this model since it can be cultured both as 

promastigotes and amastigotes in vitro, facilitating uniform infection of cultured cells, 

and the effect of infection of MCI with these parasites has been studied in detail. 

Furthermore, it has been shown that over-expression of a Leishmania protein by 

transgenic parasites results in its detection by parasite-specific CD4 T cells (Wolfram et 

al. 1996), implying that complexes between L. mexicana-derived antigens and MHC II 

molecules do form in infected MCI, . 

This chapter describes the derivation and characterisation of several lines of transgenic 

L. mexicana parasites in which different protein carriers were used as vehicles for the 

expression of the MCC epitope. These lines were used to infect BM-DC and MCI) in 

order to establish whether formation of MHC IT-parasite-derived MCC complexes could 

be detected in vitro and, therefore, whether the experimental model described herein was 

suitable for investigating the formation of MHC 11-parasite-derived antigen complexes 

in infected DC and M(I). 

3.3 Integration of GST-int into the rRNA Locus of L. 

mexicana Parasites 

A proven processing-dependent MCC carrier protein, GST-int, was initially used for 

these experiments. 



Figure 3.3: Schematic Representation of an 
Experimental Model with which to Detect 
the Fate of Leishmania-Derived Antigens 
in Infected Cells 
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Detection of parasite-derived antigen-MHC II complexes in Leishmania-
infected DC and M4. Cells are infected with transgenic Leishmania parasites 
that secrete a fusion protein containing the T cell epitope Moth Cytochrome C 
(red circles). The complex-specfic mAb, D4, is used to detect the formation of 
H2-E'-MCC complexes in infected cells, either intracellularly or on the cell 
surface. An MOO-specific T cell hybridoma can also be used to detect 
presentation of MCC epitopes on the surface of infected cells. PV, 
parasitophorous vacuole; MIIC, MHC II containing compartment; T, MCC-
specific T cells. 
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3.3.1 GST-int 

Glutathione S-transferase (GST) is a well-characterised enzyme, commonly used for 

fusion protein production. The core MCC (95 - 103)  epitope was used to replace non-

conserved residues in an internal loop of GST, generating the construct known as GST-

mt (kindly provided by Phil Reay, Oxford; (Colledge et al. 2001)). Two of the 

endogenous GST amino acids provided amino acids 93 and 94 of the MCC peptide. 

Processing and presentation of MCC from this carrier protein has been carefully 

characterised (Colledge et al. 2001), and MHC II-MCC complexes could be detected 

with D4 in DC infected with bacteria expressing this fusion protein (L. Colledge 

unpublished results). GST-int was therefore a potential carrier molecule from which to 

express the MCC epitope in L. mexicana parasites. 

3.3.2 Generation of the Targeting Construct and Integration into 

L. mexicana Parasites 

An initial cloning strategy was designed in which GST-int was cloned into pSSU-int-lm 

mkk (kindly provided by Martin Wiese, Tubingen; see Appendix A-a). The cloning 

strategy for the generation of the construct pSSU-GST-int-L is described in Chapter 2 

(section 2.1.8.2). Leishmania antigens had previously been shown to be most efficiently 

presented to T cells if over-expressed on the surface of the parasites, or secreted into the 

PV (Wolfram et al. 1996). The leader sequence from the L. mexicana membrane-bound 

acid phosphatase gene (mbap) was therefore cloned onto the N-terminus of GST-int so 

that the transgene would be targeted to the plasma membrane and would be secreted by 

the parasite (Figure 3.4). 

Log phase promastigote cultures were electroporated with the GST-int-L construct, 

passaged one day later into a 24-well plate and grown in Puromycin to select for 



Figure 3.4: Schematic Diagram Showing Integration of 
GST-int-L into the 18S SSU rRNA Gene 

A. 
mbap leader peptide 
(400-491) GST-int 

MCC 
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Schematic diagram of GST-int-L. The blue box represents the 90bp 
leader peptide derived from the L. mexicana mbap gene. MCC(91 ) is 
represented in orange. Numbers are base pairs from the start of the 
transcribed GST-int DNA or mbap DNA sequences. 

Integration of GST-int-L (orange) into the 18S small sub-unit rRNA 
gene. 
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transfectants. It was assumed, based on a transfection efficiency of I in 1x10 6, that each 

well contained approximately one parasite. Parasites derived from each well were 

therefore considered clonal lines (see section 2.3.1.4). 10 out of the 24 wells contained 

parasites that grew in the presence of Puromycin. Positive wells were screened by PCR 

using a forward primer specific for the promoter of the 18S rRNA gene, outside the 

homology arms of the integration cassette, and a reverse primer specific for the 

integrated transgene. Of the lines tested, four were shown to contain GST-int-L correctly 

integrated into the rRNA 18S SSU gene by PCR. In a further line GST-int-L integrated 

into the genomic DNA but not into the correct locus (Figure 3.5). 

3.3.3 Expression of GST-int-L by L. mexicana Parasites 

Expression of GST-int-L mRNA by two of these transgenic lines of parasites (10 and 

22) was confirmed by Northern blot analysis. The blot was probed with a labelled PCR 

fragment specific to GST-int-L. GST-int-L was transcribed by clones 10 and 22 (Figure 

3.6A). However, Western blot analysis using an anti-GST polyclonal antibody was 

unable to detect the fusion protein in promastigote or amastigote pellets or supernatants 

(Figure 3.613). 

Despite the strong inference that no stable fusion protein was being produced by these 

parasites, further experiments were carried out to determine whether DC infected with 

GST-int-L parasites could stimulate MCC-specific T cells. BM-DC were incubated with 

parasites from GST-int-L lines 10 and 22 at a ratio of 1:8 overnight, washed and co-

cultured with the MCC-specific T cell hybridoma, 2134, at a ratio of 1 DC: 10 T cells for 

18 hours. Activation of T cells was followed by analysing IL-2 production in the culture 

supernatant. As expected, DC incubated with purified GST-int protein overnight 

efficiently stimulated the T cell hybridoma, confirming that MCC was processed and 

presented from this antigen by DC. However, DC infected with GST-int-L parasites did 

not stimulate MCC-specific T cells in vitro (Figure 3.7). 



Genomic DNA from GST-int-L lines was analysed for integration into the 
ribosomal locus by PCR using a forward primer external to the 5' 
homology arm of the vector and specific to the promoter region, and a 
reverse primer specific to a sequence within the GST-int-L construct (red 
arrows). The predicted band size for this product was approximately 2kb. 
4 clones showed correct integration of GST-int-L into the ribosomal locus. 
A PCR product was not seen when these primers were used with wild 
type (WT) genomic DNA. 

PCR with primers specific for the GST-int-L transgene to indicate the 
presence of the GST-int-L transgene. The predicted band size for this 
product was 700bp. In addition to the 4 lines identified in A., one line (4) 
contains the GST-int-L DNA but is not integrated into the correct locus. 

Primers specific to the ribosomal promoter region external to the 5' 
homology arm of pSSU-int, which should be present in all samples, were 
used as a postive control (blue arrows). 

Numbers represent the wells of a 24 well plate containing Puromycin-
resistant parasites. 

M = 1 kb ladder. 
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Figure 3.5: PCR Analyses to Show Correct Integration 
of GST-int-L Lines into the 18S SSU 
Ribosomal Locus 
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L! 

Figure 3.6: Expression of mRNA, but not Protein, by 
GST-int-L Parasites 

A. 	 GST-int-L 
WT 10 22 

2.4kb 

2kb 	 __ 

4-14kb 

__ ___ 
rGST 
250ng 

51g of total RNA from L. mexicana wild type (WT) or GST-int-L 

parasites was run on a denaturing gel, blotted onto a nylon 

membrane, and probed with a labelled PCR fragment complementary 

to the GST sequence. A 2kb transcript was detected as predicted for 

the correctly expressed gene. The right hand panel shows ribosomal 

RNA as a loading control. Leishmania parasites express three rRNA 

bands between 1.4 and 2.4kb. 

Transgenic GST-int-L amastigotes were cultured overnight at a 

concentration of 10 8/ml in 100il of serum-free medium. Parasites were 

centrifuged the next day and supernatants were loaded onto a 12% 

SIDS-polyacrylamide gel. Proteins were transferred onto nitrocellulose 

and the membrane incubated with a polyclonal antibody to GST 

(Amersham). No staining was seen in any parasite samples. This blot 

is representative of Westerns performed on promastigote 

supernatants, concentrated supernatants and promastigote and 

amastigote cell pellets. 
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Figure 3.7: DC Infected with GST-int-L Transgenic 
Parasites do not Stimulate a MCC-Specific 
T Cell Response 
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DC were cultured overnight with GST-int-L transgenic amastigotes, and then 
co-cultured with the T cell hybridoma 2134. IL-2 production by 2134 cells was 
measured using an IL-2-dependent indicator cell line. Values shown 
represent [3H]-thymidine incorporation by IL-2-dependent indicator cell line 
C.C3.1 1.75. 

DC were incubated overnight with 0.4mg/mi purified GST-int as a positive 
control for presentation of MCC to 2134 cells from GST-int. 

Each experiment was performed in triplicate. 
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(Figure 3.7). Since these results were as predicted by Western data GST-int was not 

pursued further as a potential epitope carrier, and an alternative carrier protein was 

sought. 

3.4 Use of the L. mexicana Membrane-Bound Acid 

Phosphatase as a Carrier Molecule for MCC 

3.4.1 Introduction 

The L. mexicana membrane-bound acid phosphatase (MBAP) was originally identified 

using antibodies generated from mice immunised with Concanavalin A-binding 

membrane components of L. mexicana promastigotes (Menz et al. 1991). The L. 

mexicana mbap gene was subsequently cloned and characterised (Wiese et al. 1996); 

Figure 3.8), and shown, in promastigotes, to be localised to endosomal/lysosomal 

compartments between the nucleus and the flagellar pocket. Over-expression of MBAP, 

by episomal expression in pX, resulted in its re-localisation to the plasma membrane of 

promastigotes (Wiese et al. 1996), while deletion of the transmembrane domain (Figure 

18) resulted in secretion of large amounts of active enzyme into the culture supernatant 

(Wolfram et al. 1996). Mc1 infected by these transgenic parasites in vitro, but not with 

wild type parasites, were able to stimulate a MBAP-specific T cell line, indicating that 

localisation of MBAP to the parasite surface, or its secretion into the PV, was sufficient 

to facilitate the formation of MHC 11-peptide complexes (Wolfram et al. 1996). L. 

mexicana MBAP therefore constituted an attractive carrier molecule in which to clone 

the MCC epitope. Furthermore, the 3D structure of MBAP, predicted based on the 

crystal structure of the related rat prostate gland acid phosphatase (rPAP) (M. Wiese 

unpublished results; (Schneider et al. 1992)) provided a means of designing fusion 

proteins anticipated to retain the structural integrity of native MBAP. 
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DNA sequence of the L. mexicana membrane-bound acid phosphatase (mbap) 
gene (accession number Z46971). Blue underlined codons are the translation 
start and stop codons; the peptide leader sequence is highlighted in green; the 
transmembrane domain is underlined with a dashed line. The sequence that 
was deleted to create Modlap, the secreted form of MBAP, is marked in bold. 



Figure 3.8: Sequence of the L. mexicana Membrane-
Bound Acid Phosphatase Gene 

CCCCACACACACACATACATGCGAGCACCTAATACGACCTCTGTGCCATTGCCTACCGGA 60 
AGACGCAACCGCGCACCGTTTACATATGTTGCCTCTGTTACAGAAAGGTTGCCTTCCCC 120 
ACTGTCTGCGTCCTTTGTTCTCTATTTTTTTTTTCTCTTCCCCACTCTCACGCCATTGTA 180 
TGCACACGTTCATTGCCTGACCTTTTCCAACGCATGCACACGTGCACGGTCATCTTGTCG 240 
TGCTGGCCATTTCCTTGTCTTTTGCAGGTATCCTCCCCGTCTTCTTCCCACTCCACTGCT 300 
TGTGGGCTCTCACCCCCTTTTTTCGACCCATTTTACCGCCGGCGAACTCCTCTCATAGAA 360 

GAGACTTCCCATCGCCCGCTTCCCTTCTCTTCCGCTATCThCTCAGAGGCATCGGTTTC 420 

CTCTACCGGTGCGTGGTGGTGGTGGTGGTGGCTGTGGTGGTCAGCGCAGCGGTGGTGTCG 480 
BsrGI 

GCGGCACCGA 	AGGTGGAGCTGGTGCAGGTGGTGCACCGCCACGGAGCACGCTCC 540 

CCGCTCGTCGATGACAACCA ACACTCATCTGCGGCACCGAGTTCCCGTGCGGGTTTCTC 600 

AACTACGAGGGTCAGGCGATGCTGGTGAACCTCGGTAAGTATCTGCACCATCGCTACACG 660 

GAGAACCCTTCGGTTGTGTCGAAGCCATACTTCCCGTACAGCTGGTACAACCTATCTATC 720 

TCGTATACGCGCTCGACGGATGTGCTGCGCACGCTTCAGAGCGCCAACGGGCTTCTGCAG 780 

GGCCTCTTCCCGAACATGTCGACTTTCTTTCCTGCAATCCACGCAGTGGGAAGAAAGGAG 840 

GATGTGCTACTGCACAGCTACATGGTGCCGATGATTCGCGCTCGCTTCATTACGCGAAG 900 

GAGGAGCTGCGGGCCGTGTGCGACGAGGTGTTGGACAGACTAATGTCATTCGATCAGCTG 960 

CAGGCGGTAGCGGCGGAGGTTCACTCGCAGAGGTTTTGCGCCAACTACACCCTGCGCTCG 1020 

CGTTGTGCGAAGCGGCTGTGCGACATTGGGCGCGCGTACGAGCCCACTGGCCGCTTGGAA 1080 

AGTCTCCCGCTGCTTAGTCGGCACCTGGACGACGTGTGCGCTGTGACGGCGATGAGCTCG 1140 

TATTTCTATTTCGCTTACAACGCCAGCAATCCCGTCCATCAGAAGCAAGGCGCACCGTTC 1200 

TACCACCTGGCGAAACTGCTGGTGAGCAACATGGTAGCGCACCAGCAGCGCGAGACGGCA 1260 

CCGCCGTACAAGCTGTACGAGTACAGTGCACACGACACCACTATCTCGCCCCTGGCGGTT 1320 

TCCTTCGGTGATAACTCGATGGAGGCGATGCTGCCGCCATTCGGCACAGCGTTTATCATA 1380 

GAACTCCTGTCGCTGACGGACGCGCCTGCCGCGCCGTCGTCCTTCTACGTGCGGCTGCTG 1440 

CGCGGTCACTCTGGTGTGAGGCCGGAAGTAACTTCACCTTCGCTCTGAGTCACTTCGAC 1500 

ATGCGCTGCCAGGACGCGACGGGCAACACGTACATTGCGACGGACAACATATGCCCCTTC 1560 

GCCGACTTTGAGCGCTTTATAAACTCCACCGCGCCAACGAGCCCGATGGGCACGTGCTAC 1620 

CTCGACCCTGGTCTTCTGTTCCGCATGGACTGTCCGATTGACGTCGTCAGCGACAACCGC 1680 

AGCTTGTCGGAGGACTGCCTCTTCTACCGCCAGCACTGCAGCAACTACTCGTGCGGCACC 1740 

GGCTACTACCTCGACGCGATCGACTACGGCTGCCACCGCATCCCGGCGAACAACTCAACG 1800 

GCTGGATCGTCGCCCATGTCCAGCGGCGGGATTGCTGTCCTGAGCATCACACTCTTCATC 1860 

GTCGGCGGAGTGGCGAGCGTCGGCGGTATGGAGGTGTGGAGACGCTACATGAAGTTCAAA 1920 

AACAAGCAATCCGAGGCGATTATCGTCCAACCTATCGAACCCTGTAGCCATGCTTTT 1980 

TTCCTTCGTAGCCTTTATTTTCCTTAAGCAAGAGCATAGCCTTACTTGCGGGCTTCCTCA 2040 

ACAGTACACCCCCTATTCGACAGTGCTTCTGCGAGAAATCGTACATCTGCGCTCAGGTTG 2100 
CAATTCGCAAACGCCCAACACACGAACATTCTCTGATTTATTCTATCTGCCTCGGTACA 2160 
TGCTTTTCTTCCTTCTGTGC GTGTGAAGCATATTTGCAGTGGATTATGCTTTCGCTTAG 2220 
CCGTGTTTTTGTTTCTCCCACTACTACTGCTGCTACTGTTCTTTTCGTGTTCTAGCCCTT 2280 
CGAGGGGCCCATCAGCTTCCCCGCCGTTGCGCTCACTCAGCGGTGGATCC 2330 
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3.4.2 Generation of L. mexicana Parasites Expressing 

MBAP:MCC Fusion Proteins 

3.4.2.1 Integration of MCC into the N-terminus of MBAP 

3.4.2.1.1 CL131: Generation of Parasites and Integration into the rRNA SSU 

gene 

A cloning strategy was designed in which MCC was cloned into the secreted form of 

MBAP, known as Modlap (kindly provided by Markus Wolfram, TUbingen; (Wolfram et 

al. 1996)). Modlap was chosen as secretion of high amounts of the acid phosphatase into 

the PV may facilitate processing of the protein and loading of epitopes onto intracellular 

MHC II molecules. MCC (8 8.. 1 03 )  was initially cloned adjacent to the N-terminus of 

MBAP. The extended MCC peptide was chosen because the sequence may include 

protease cleavage sites that would facilitate processing of the core 95-103 epitope. The 

sequence of the epitope was corrected for optimal codon usage by L. n2exicana parasites 

(Langford et al. 1992). Modelling of the MBAP protein predicted that the N-terminus 

would not be contained within the globular structure of the enzyme, therefore, cloning 

into this site should not alter the correct folding and function of the protein. Expression 

of MCC at the exposed N-terminus of the protein should also ensure that it was easily 

accessible to host proteases. The T7 gene 10 epitope tag (Novagen) was included N-

terminal to MCC in the fusion protein to facilitate analysis of transgene expression by 

i mmunohistochemistry and immunoprecipitation. The final construct was designated 

CLB1, the cloning strategy for which is described in section 2.1.8.3 (Figure 3.9 and 

Appendix A-b). 

To generate lines of CLB I transgenic parasites the linearised CLB 1 construct was 

electroporated into L. mexicana promastigotes. Six Puromycin-resistant lines were 

selected and expanded. Genornic DNA from these lines was screened by PCR using 

primers specific to the rRNA promoter and to the splice leader of the integration cassette 

(Figure 3.10). A PCR product of the expected size (1.6kb) was amplified from all of the 

lines tested, indicating that they each contained the N-terminal MBAP:MCC construct 



Figure 3.9: Schematic Diagram Showing Integration of 
CLB1 into the 18S SSU rRNA Gene 
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tm domain 
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Schematic diagram of CLB1. The hatched box represents the L. 
mexicana mbap leader peptide. MCC (B103)  (black line) and the T7 gene 
10 tag (grey line) were cloned into the BsrGl site downstream of the 
leader peptide. The diagram shows the secreted form of mbap, 
Modlap, in which the transmembrane (tm) domain was deleted. 

Numbers refer to the DNA sequence shown in Figure 3.8. 

Integration of CLB1 into the 18S small sub-unit rRNA gene. 
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Figure 3.10: PCR Analysis to Show Correct Integration 
of CLB-1 Lines into the Ribosomal Locus 
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Genomic DNA from CLB1 lines was analysed for integration into the 
ribosomal locus by PCR using a forward primer external to the 5' homology 

arm of the vector and specific to the promoter region, and a reverse primer 

specific to the splice leader sequence of the pSSU-int vector (red arrows). 

The expected size for the FOR product from these two primers if the 

transgene was correctly integrated into the ribosomal locus was 
approximately 1 .6kb. A PCR product was not seen when these primers were 

used to amplify wild type (WT) genomic DNA. 

Numbers represent wells containing Puromycin-resistant parasites from a 24 

well plate. 

M = 1 kb ladder. 
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integrated into the 18S SSU rRNA gene (Figure 3.10). These lines were therefore tested 

br transgene expression. as described below. 

3.4.2.1.2 CLB1: Up-regulation of Acid Phosphatase Activity in the 

Supernatant of CLB1 Parasites 

Wild type L. mexicana amastigotes do not secrete acid phosphatases, therefore, Modlap 

expression levels could be assessed by assaying acid phosphatase activity in parasite 

culture supernatants. IX107  CLB 1 axenic amastigotes from different transgenic lines 

were therefore cultured overnight in I ml of serum-free medium. The supernatants were 

then collected and tested for acid phosphatase activity. The acid phosphatase activity 

was calculated in units, whereby 1 unit equals the amount of enzyme required to 

hydrolyse lp.M of substrate per minute (see section 2.2.2). Figure 3.IIA shows that wild 

type L. mexicana amastigotes secrete no detectable acid phosphatase activity, whereas 

parasites in which Modlap had been cloned into pX (pX Modlap) secreted large amounts 

of the enzyme. CLB I clones also secreted the functional enzyme, although at much 

lower levels than the pX Modlap parasites (Figure 3.11B). The lower expression levels 

in CLB1 clones are likely due to differences in copy number; only one copy of the 

CLBI transgene will be expressed by each parasite whilst parasites containing pX 

Modlap, which is maintained episomally, will express multiple copies of the gene. These 

results demonstrated that CLB 1 transgenic parasite lines over-expressed a functional 

secreted form of the membrane-bound acid phosphatase. 

The existing anti-MBAP antibody, AP4, could not be used to detect CLB1 because it 

recognises an epitope that was disrupted by insertion of the MCC epitope. To determine 

whether the fusion protein could be detected using expression of the T7 gene 10 epitope 

tag, lysates derived from CLB1 parasites and culture supernatants were analysed by 

Western blotting. No proteins were identified using a mAb specific to the gene 10 

epitope. Since repeated phosphatase assays prior to the Western blot analysis had 

demonstrated that the fusion protein was correctly expressed these data suggested that 

this peptide was not an appropriate epitope tag for use in this system. 



Figure 3.11: Detection of Acid Phosphatase Activity in 
Supernatants from MBAP:MCC CLB1 
Transgenic Amastigote Cultures 
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Acid phosphatase activity was measured in supernatants from 1 xl 07  wild type 
(WT), pX Modlap (A.) or CLB1 (B.) amastigotes cultured overnight in 1 m of 
serum-free medium. Activity was calculated from the change in absorbance of 
the substrate pNpp on incubation with culture supernatants and is expressed 
as units (1 unit = the amount of enzyme which hydrolyses 1 .tM substrate per 
mm). 

Values represent the average of 2 experiments. Error bars represent the 
s.e.m. from 2 experiments, each of which was performed in triplicate. 
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3.4.2.1.3 CL131: MHC II-MCC Complexes can not be Detected on Infected 

DC 

Since infected M have repeatedly been shown to present Leishmania-derived antigens 

inefficiently to T cells, the utility of the CLB 1 parasites for the experimental model 

described in section 3.2 was initially tested using infected DC. BM-DC were generated 

in vitro from CBA mice and incubated overnight with different transgenic lines of CLB 1 

axenic amastigotes at a ratio of 1:8 DC:amastigotes. The following day the cells were 

harvested, fixed, and incubated with D4 and an appropriate secondary antibody, both 

with and without permeabilisation, to detect the formation of surface and intracellular 

complexes. These cells were then analysed by flow cytometry. Figure 3.12 shows the 

results from infection of DC with CLB 1-2 amastigotes, and reflects the results obtained 

by all the other lines tested. No D4 staining was detected in DC infected with transgenic 

promastigotes and amastigotes, amastigote supernatants or fixed amastigotes. To attempt 

to optimise these experiments DC were also infected for different time points, with 

promastigotes and amastigotes, however, D4 staining could still not be detected on or in 

infected cells (data not shown). Since presentation of Modlap epitopes was previously 

shown in M, CLB 1-2 amastigotes were also used to infect bone marrow-derived Mct , , 

according to the protocol described by (Wolfram et al. 1996). The cells were then 

harvested, fixed and stained as above with permeabilisation to detect the formation of 

intracellular MHC II-MCC complexes. D4 staining was not detectable in infected MI 

(data not shown). Therefore, although CLB1 parasites expressed the secreted acid 

phosphatase, the MCC epitope was not processed for presentation via MHC II molecules 

in infected DC or M4 at levels detectable with D4 or 2B4 T cells. 

Based on these results, it was decided that the lack of detectable presentation of MCC 

may have been due to incorrect processing of the epitope from MBAP. Alternative 

strategies were therefore devised, also using secreted MBAP as the carrier molecule. 

During experiments to attempt to optimise detection of MHCII-MCC complexes in 

infected cells, BM-DC were also infected with L. mexicana parasites and analysed by 
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Day 7 bone marrow-derived DC were incubated with MCC peptide, L. mexicana 
wild type (WT) amastigotes or CLB1-2 amastigotes for 18 hours at a ratio of 1:8. 
Cells were harvested and incubated with the complex-specific antibody, D4 
followed by FITC-conjugated goat anti-mouse antibody. 

A, surface stain on DC cultured without antigen or with 50iiM MCC peptide, with 
or without 1Otg/ml LPS; B, surface stain on amastigote-infected cells; C, as B 
but DC were activated with 1Opg/mI LPS; D, intracellular stain on amastigote-
infected cells; E, as D but DC were activated with lOjig/ml LPS; F, surface stain 
on cells incubated with fixed amastigotes; G, surface stain on cells incubated 
with supernatants from amastigote cultures. 

Ml was set on DC incubated in the absence of antigen and stained with D4 and 
the appropriate secondary (first panel). Numbers in the top left hand corner of 
plots represent the mean of the population; percentages represent the 
percentage of cells in Ml. 



Figure 3.12: Detection of MHC 11-MCC Complexes by D4 
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flow cytometry to ensure that the lack of presentation of MCC was not due to low level 

expression of MHC II molecules on the surface of infected cells. BM-DC were infected 

with EGFP-expressing amastigotes (see Chapter 4) overnight, harvested, fixed and 

stained with the anti-MI-IC II mAb 14.4.4. Figure 3.13 shows that, surprisingly, infected 

BM-DC did not up-regulate expression of surface MHC H. This effect is discussed 

further in Chapter 4. Based on this result, both immature BM-DC and BM-DC activated 

with LPS were used to assess presentation of MCC from fusion proteins. 

3.4.2.2 CLB2 and CL133: Alternative MBAP Fusion Proteins 

3.4.2.2.1 Integration of CL132 and CL133 Constructs into the rRNA SSU 

Gene 

As neither GST-int-L nor CLB 1 appeared suitable vehicles for developing a MCC 

fusion protein, useful for antigen processing and presentation studies, two further 

constructs were made. First, MBAP :MCC transgenic parasites were generated in which 

MCC was cloned into the N-terminal of Modlap, as in the CLB 1 construct, but without 

the T7 gene 10 tag: this tag was omitted as it was not detectable by Western blot analysis 

in the previous fusion protein, and could have conceivably obstructed processing of 

MCC. Second, MCC was cloned near to the C-terminus of Modlap, immediately prior to 

the stop codon. For both of these constructs the core MCC(88-103) epitope was used. 

Again, the DNA sequence of the MCC epitope was corrected for optimal codon usage 

by L. mexicana parasites (Langford et al. 1992). 

The new N-terminal MCC construct, CLB2, was generated as described in section 

2.1.8.3. CLB2 was cloned into pSSU-int (Appendix A-b) and lines of transgenic 

parasites were generated and analysed for correct integration of the transgene. Six lines 

carrying the CLB2 transgene were identified by PCR on genomic DNA using a reverse 

primer specific to mbap and oligonucleotide corresponding to MCC as a forward primer 

to amplify a 900bp product. Of these lines, two contained the construct correctly 

integrated into the 18S SSU rRNA gene, as ascertained using a forward primer specific 

to the rRNA promoter and a reverse primer specific to the transgene (Figure 3.14). 
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Day 7 BM-DC were incubated with EGFP-expressing L. mexicana 
amastigotes overnight. Cells were then harvested, fixed, stained for MHC Il 
expression and analysed by flow cytometry. 

Numbers represent the percentage of cells in the respective quadrants. 
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Figure 3.14: PCR Analysis to Show Correct Integration 
of CL132 Lines into the Ribosomal Locus 

MCC 

1 5' SSU 	MBAP I  CPB 2.8 IR 	purot 	CFB 2.8 IR 	3' SSU 

SSU(18S) H 	(28S) 

A. 	M 1 3 8 11 12 15 18 19 23 24 WT 

B. 	 * 	* 
34 

k'—> - 
	i 

I LI LI Ell I   
Genornic DNA from CLB2 clones was analysed by PCR for the 
presence of the mbap:MCC transgene. The forward primer was 
specific to the MCC oligonucleotide inserted into mbap and the reverse 
primer was specific to a sequence within mbap (blue arrows). The 
expected product size using these primers was 900bp. 

Integration into the ribosomal locus was verified using a forward primer 
external to the 5' homology arm of the vector, and specific to the 
promoter region, and a reverse primer specific to the splice leader 
sequence of the pSSU-int vector (red arrows). The expected band size 
for the PCR product from these two primers if the transgene was 
correctly integrated into the ribosomal locus was approximately 1 .6kb. 
A PCR product was not seen when these primers were used with wild 
type (WI) genomic DNA. * marks positive lines of parasites. 

Numbers represent wells containing Puromycin resistant parasites in a 
24 well plate. 

M = 1 kb ladder. 
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The cloning strategy for the C-terminal MCC fusion protein is outlined in section 

2.1.8.3. In this construct, the MCC epitope was flanked by a multiple cloning site (MCS) 

which could be used, if necessary, to modulate the sequences surrounding the MCC 

epitope in order to facilitate processing by host cell proteases (Figure 3.15). The plasmid 

map for this construct, CL133, is shown in Appendix A-b. Lines of transgenic parasites 

were generated and selected by culture with Puromycin. Lines in which the construct 

was integrated into the SSU locus were identified by amplification of PCR products 

from genomic DNA (Figure 3.16): internal primers, including an MCC oligonucleotide, 

confirmed the presence of the intact mbap:MCC transgene in five CL133 clones; of 

these, PCR products were amplified from two clones using primers specific for 

integration of the construct into the rRNA SSU gene. 

3.4.2.2.2 CLB2 and C1_133: Over-expression of Acid Phosphatase Activity in 

Culture Supernatants 

Supernatants from CL132 and CL133 lines were assayed for acid phosphatase activity, as 

described in section 3.4.2.1.2. None of the CLB2 lines tested expressed the acid 

phosphatase (Figure 3.17). Since L. mexicana parasites express an endogenous copy of 

the CPB 2.8 gene, and the vector used contains two copies of the intergenic region from 

this gene flanking the antibiotic resistance gene, the puromycin' gene may have been 

integrated into the CPB 2.8 gene by homologous recombination in resistant lines which 

were shown by PCR not to have the transgene inserted into the SSU locus. However, it 

is not clear why the parasites containing the correctly integrated transgene did not 

express high levels of acid phosphatase activity. 

All of the CL133 clones tested expressed the functional acid phosphatase. However there 

was large variation between transgenic lines (Figure 3.17). Surprisingly, expression of 

acid phosphatase was as high from non-SSU integrants as from parasites containing the 

correctly integrated transgene. These results indicated that the fusion proteins were 

produced in an enzymatically active form, suggesting correct folding of Modlap. Based 

on these results two clones were selected: CL133-13 in which the transgene was correctly 

integrated into the rRNA 18S gene and which expressed high levels of secreted acid 



Figure 3.15: Schematic Diagram Showing Integration 
of CLB3 into the 18S SSU rRNA Gene 
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Schematic diagram of CLB3. The hatched box represents the L. 
mexicana mbap leader peptide. MCC(103)  (black line) was cloned into 
a multiple cloning site that had been inserted into the Avrll(1 820) site. 

Numbers refer to the DNA sequence shown in Figure 3.8. 

Integration of CLB3 into the small sub-unit rRNA 18S gene. 
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Figure 3.16: PCR Analysis to Show Correct Integration 
of CL133 Lines into the Ribosomal Locus 

MCC 

I 5'SSU 	II MBAP!I CPB2.81R 	I 	purci  I CPB2.81R 	I 3'SSU I 

SSU(18S) 	.H.) 

A. 
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Genomic DNA from CLB3 lines was analysed by FOR for the presence 
of the mbap:MCC transgene. The forward primer was specific to a 
sequence within mbap and the reverse primer was specific to the MCC 
oligonucleotide inserted into mbap (blue arrows). The expected 
product size using these primers was 600bp. 

Integration into the ribosomal locus was verified using a forward primer 
external to the 5 homology arm of the vector, and specific to the 
promoter region, and a reverse primer specific to the splice leader 
sequence of the pSSU-int vector (red arrows). The expected FOR 
product from these two primers if the transgene was correctly 
integrated into the ribosomal locus was approximately 1.6kb. A FOR 
product was not seen when these primers where used with wild type 
(WT) genomic DNA. * marks positive lines of parasites. 

Numbers represent wells containing Puromycin-resistant parasites 
from a 24 well plate. 

M = 1 k ladder. 
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Figure 3.17: Detection of Acid Phosphatase Activity in 
Supernatants from MBAP:MCC Transgenic 
CLB2 and CLB3 Amastigotes 
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Acid phosphatase activity was measured in supernatants from 1X107  
amastigotes cultured overnight in 1 ml of serum-free medium. Activity was 
calculated from the change in absorbance of the substrate pNPP on 
incubation with culture supernatants and is expressed as units (1 unit = the 
amount of enzyme which hydrolyses 1 1AM substrate per minute). 

Values represent  the average of 2 experiments. Error bars represent the 
s.e.m. from 2 experiments, each of which was performed in triplicate. 

Numbers in bold represent parasite lines in which the transgene was correctly 
integrated into the SSU locus. 
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phosphatase; and CLB3-14 in which the transgene was integrated into the genome, 

although not downstream of the rRNA promoter, and which also expressed the acid 

phosphatase at high levels. 

3.4.2.2.2 CLB3-infected DC and MCD do not Stimulate the MCC-Specific T 

Cell Hybridoma 2134 

In order to analyse presentation of MCC from CLB3 transgenic parasites, CLB3-13 and 

CL133-14 axenic amastigotes were used to infect CBA BM-DC, overnight, at a ratio of 

8:1 amastigotes:DC. The following day the cells were washed thoroughly then incubated 

with MCC-specific T cells at a ratio of 1:10 for 18 hours. Stimulation of the T cells was 

followed by assaying levels of IL-2 in the culture supernatant using an IL-2-dependent 

cell line (Figure 3.18). As a positive control, 1tM or 10pM MCC peptide was incubated 

with non-infected DC for 4 hours prior to co-culture with T cells. Figure 3.18 shows the 

results from three independent experiments. These results demonstrate that DC infected 

with CLB3 transgenic parasites do not present the MCC epitope to T cells in vitro. 

Processing and presentation of Leishmania-derived MCC was also analysed in MCD. It 

had previously been shown that MCD infected for seven days with parasites that over-

expressed Modlap were able to stimulate MBAP-specific T cells (Wolfram et al. 1996), 

possibly because high concentrations of the antigen could build up in the PV which form 

in these cells. Therefore, bone marrow-derived MCD were generated from CBA mice and 

infected with CL133-13 and CLB3-14 axenic amastigotes either overnight, for four or 

seven days. The cultures were given IFNy either overnight or on days two, three and 

seven to up-regulate expression of MHC II molecules. Cells were then washed and 

incubated with T cells as above. Figure 3.18 shows that MCD infected with CLB3 

transgenic parasites did not stimulate MCC-specific T cells. Incubation of non-infected 

MCD with MCC for four hours prior to adding the T cells resulted in IL-2 production, 

although levels were always much lower than with DC cultures. 

These results were confirmed by flow cytometric analysis with D4. DC were incubated 

with CL133-13 and CL133-14 amastigotes over-night, harvested, fixed and stained with 

D4 and an appropriate secondary antibody. Figure 3.19 shows that no staining could be 
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Figure 3.18:Neither DC nor M Infected with CL133 
Transgenic Parasites Stimulate a MCC-
Specific T Cell Hybridoma 
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Bone marrow-derived DC or McI  were infected with transgenic amastigotes 
either overnight (DC) or for different times (Me; see legend). Cells were then 
co-cultured with the MCC-specific I hybridoma 2B4 for 18 hours. IL-2 
production by 2B4 cells was measured using an IL-2-dependent cell line. The 
values shown represent [3H]-thymidine incorporation by the IL-2 dependent 
cells. 

As a positive control MCC peptide was incubated with DC or M for 4 hours 
prior to culture with 2B4 cells. 

Each experiment was performed in triplicate. ND, not done. 
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Day 7 BM-DC were incubated with 10pM MCC peptide, 250pM PCC protein or 

L. mexicana wild type (WT) or CLB3 amastigotes for 18 hours at a ratio of 1:8, 
with or without lOjig/mi LPS. Cells were harvested and incubated with the 
complex-specific mAb, D4 followed by a FITC-conjugated goat anti-mouse 
secondary antibody. 

Ml was set on DC incubated in the absence of antigen, and stained with D4 and 
the appropriate secondary (first panel). Numbers in the top left corner represent 
the mean of the peak; percentages show the percentage of cells within Ml. 
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detected with the D4 antibody, indicating that MHC II-MCC complexes did not form at 

detectable levels in these cells. 

3.5 Discussion 

This chapter describes work that aimed to establish an experimental model with which to 

follow the fate of parasite-derived antigens in vitro, and in particular, to determine 

whether DC could efficiently process and present parasite antigens to naïve CD4 T cells 

for the initiation of the anti-Leishmania immune response. The experimental model was 

based on transgenic expression of the T cell epitope, MCC (95103) , within a carrier 

molecule that was expressed at high levels by the parasite. MHC II-MCC complexes 

would then be detected using the complex-specific mAb, D4, and a MCC-specific T cell 

hybridoma. Both of these read-outs provide highly sensitive means of detecting the 

formation of H2Ek_MCC  complexes. 

It had previously been shown that over-expression of Leishmania-derived antigens is 

sufficient to surmount the block in antigen presentation observed for Leishmania-

de rived proteins in infected MCI) (Wolfram et al. 1996). Therefore, in our experimental 

model, transgenes were integrated into the L. mexicana genome downstream of a 

promoter that drives high-level gene expression. Carrier proteins for the MCC epitope 

were selected that, once over-expressed, should not be detrimental to the intracellular 

survival of the parasite. Secreted forms of the fusion proteins were engineered for this 

strategy, since this should result in high concentrations of the antigen being accumulated 

in the PV of infected cells, and would possibly improve accessibility of fusion proteins 

for antigen processing and presentation: L. mexicana antigens have been shown to be 

efficiently presented to T cells when secreted into the PV (Wolfram et al. 1996), and 

secreted antigens primed a protective immune response against Listeria monocyto genes 

more efficiently than somatic antigens when delivered as part of a recombinant 

Salmonella vaccine (Hess et al. 1996). 
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Two different carrier molecules were selected in which the MCC epitope was inserted at 

different positions within the gene. Of these, only the MBAP:MCC fusion proteins were 

successfully secreted at high levels by the parasites. However, MBAP:MCC-derived 

MHC II-MCC complexes could not be detected within, or on the surface of, DC and M1 

infected with these parasites using either D4 or MCC-specific T cells. 

3.5.1 Integration of GST-int into the L. mexicana rRNA SSU 

Gene 

In initial experiments GST was selected as the carrier molecule for MCC. A construct, 

GST-int, in which MCC was integrated into a non-conserved loop of the protein, had 

previously been generated (Colledge et al. 2001), and infection of DC with bacteria 

expressing this fusion protein resulted in the formation of MHC II-MCC complexes that 

could be detected with D4 (L. Colledge unpublished results). Since GST is a well-

characterised protein, and is routinely over-expressed for the production of GST fusion 

proteins, this construct was an attractive molecule from which to deliver MCC in our 

system. The peptide leader sequence from L. mexicana mbap was fused onto the N-

terminus of GST-int to target the protein for secretion. Parasite lines were generated 

with the GST-int-L transgene integrated into the rRNA 18S gene, and transgene 

expression was demonstrated by Northern blot analysis. However, GST protein could 

not be detected in these parasites or in culture supernatants, and DC infected with the 

transgenic parasites did not present MCC to T cells. These results suggested that the 

GST-int-L protein was not translated by these parasites, or was rapidly degraded upon 

synthesis, perhaps due to incorrect folding of the fusion protein. Therefore it was not a 

suitable epitope carrier for these studies. 
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3.5.2 Generation of Parasites Expressing MBAP:MCC Fusion 

Proteins 

The L. mexicana membrane-bound acid phosphatase (MBAP) was chosen as an 

alternative carrier molecule for MCC. This protein was selected because it had 

previously been shown that deletion of the transmembrane domain resulted in secretion 

of the active enzyme by the parasites (Wolfram et al. 1996). Importantly, M1i infected 

with these parasites stimulated MBAP-specific T cells, indicating that the protein was 

processed from the PV (Wolfram et al. 1996). 

A first round of MBAP constructs was made in which MCC(88 103)  was cloned into a site 

at the N-terminus of Modlap (i.e. secreted MBAP), immediately 3' to the leader peptide. 

An epitope tag was included to follow expression of the transgene. The extended 

MCC(88 .. 103 ) peptide was chosen for this construct to maximise the chances of including 

protease recognition sites involved in mediating processing of the core 95-103 epitope. 

The construct, CLB 1, was integrated into the 18S SSU rRNA gene, and transgenic lines 

were selected which over-expressed the acid phosphatase in the culture supernatant. 

MHC II-MCC complexes could not, however, be detected in DC or M infected with 

CLB 1 parasites using D4. 

Since Modlap epitopes were previously shown to be presented by Mcb (Wolfram et al. 

1996), we considered whether expression levels could explain this finding. The amount 

of protein produced was calculated using the specific activity of the enzyme, (specific 

activity = units of enzyme activity/mg protein; specific activity of Modlap = 380UImg; 

(Wolfram et al. 1996)), and was estimated as 3.2x10 8  mg of protein produced by five 

CLB 1-2 amastigotes over 18 hours. Assuming that the PV occupies most of the cell, the 

PV volume was estimated as 20pm 3 . Therefore, the concentration of Modlap within the 

PV, assuming five amastigotes occupied the compartment, should be around 4mg/mi, 

assuming limited proteolysis of protein. This is approximately four fold more than the 

amount of PCC protein given to DC for T cell assays with the MCC-specific T cell 
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hybridoma, 2B4 (see section 4.8). These calculations indicate that MBAP:MCC was 

produced at high enough levels to permit detection H2EkMCC  complexes, if they were 

formed. 

Since Modlap was over-expressed by CLB 1 parasites, but MCC was not presented by 

DC or M1, two alternative lines of parasites were generated. MCC (88103)  was cloned 

into the N-terminus of Modlap, as for the CLB 1 construct, but without the T7 gene 10 

epitope tag. Alternatively, MCC (88103 ) was cloned into a site at the C-terminus of 

Modlap. Lines of CLB2 (N-terminal) and CLB3 (C-terminal) parasites were generated 

which contained the transgene inserted into the rRNA 18S SSU gene. However, MBAP 

was not present in the culture supernatant of CLB2 lines tested. The reason for this is not 

clear since CLB I parasites, which also had MCC integrated into the same site, over-

expressed the acid phosphatase, and all CLB2 constructs had been extensively 

sequenced. 

CLB3 transgenic parasites did over-express the acid phosphatase, although there was 

variability between lines of parasites. Of these lines, two were selected, one in which the 

transgene was inserted into the rRNA locus, and which secreted high amounts of MBAP 

(CLB3-13), and a second in which the mbap:MCC transgene had inserted into genomic 

DNA outside the rRNA locus, and which also over-expressed the protein (CLB3-14). 

CLB3-infected APC did not stimulate T cells; MHC II-MCC complexes could not be 

detected by incubating infected DC and M with the specific T cell hybridoma, 2B4. 

The lack of complex formation was confirmed by flow cytometric analysis of DC 

infected with CLB3-13 and CLB3-14 amastigotes, using D4. 

These data demonstrate that MCC was not processed and presented from the MBAP 

carrier molecule in infected DC and M, at levels that could be detected with D4 or 

specific T cells. Since several different constructs had been generated in which MCC 

was integrated at different positions within the protein, this work suggested that MCC 

would not be presented from MBAP-based fusion proteins without modifications to the 

current experimental model. 
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3.5.3 Processing of a Parasite-Derived Antigen by Infected DC 

and MCD 

Three different hypotheses can be put forward to explain why MCC was not presented 

by DC or McI)  infected with transgenic L. mexicana parasites expressing MCC fusion 

proteins: first, the fusion proteins were degraded in the PV; second, functional proteins 

accumulated in the PV but MCC was not correctly processed by host proteases; third, 

the fusion proteins were not expressed at sufficiently high levels to overcome the 

inefficiency of antigen presentation in infected cells. 

L. mexicana promastigotes and amastigotes produce high levels of cysteine proteases 

(Mottram et al. 1997) that have been implicated in the degradation of MHC II molecules 

within the PV (De Souza Leao etal. 1995). These proteases may also degrade parasite-

derived antigens, which are secreted into the PV, before they can be bound by MHC II 

molecules. A role for parasite inhibition of presentation of parasite antigens is supported 

by data showing that intracellular L. mexicana antigens were presented to T cells only 

following drug-induced death of intracellular parasites (Wolfram et al. 1995). 

The role of cysteine proteases in degrading MCC fusion proteins would be difficult to 

address: L. mexicana parasites in which cysteine protease genes had been deleted were 

less infective than wild type parasites (Mottram et al. 1996) and were rapidly killed once 

taken up by MCI) (Frame et al. 2000); inhibitors of cysteine proteases also reduced the 

infectivity of wild type promastigotes (Frame et al. 2000). These studies indicate that 

inhibitors of L. mexicana cysteine proteases could not be used to promote processing of 

intact MCC in this experimental model, since they also play a role in the survival of 

Leishmania parasites. Protease inhibitors would also inhibit Cathepsins S, which is 

essential for processing of T cell epitopes by the host cells. Therefore, while it is likely 

that the abundant cysteine proteases produced by amastigotes will not favour processing 

of the MCC epitope for presentation in the context of MHC II, this would be difficult to 

address directly within this model. An alternative approach would be to include sites in 

the constructs flanking MCC that stabilise the protein: the introduction of N- 
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glycosylation sites or Serine/Threonine-rich repeats, which have been shown to be sites 

for 0-linked post-translational modification of Leishmania proteins (Wiese et al. 1995), 

proximal to MCC might protect the fusion protein from proteases in the PV. However 

inclusion of these sites could also occlude processing of the epitope by host proteases. 

A second hypothesis to account for the lack of detectable MHC II-MCC complexes in 

cells infected with MBAP:MCC parasites is that the protein is not degraded but that 

MCC is not correctly processed for loading onto MHC II molecules. A core peptide and 

its flanking sequences provide the signals necessary for its processing, independent of 

the carrier molecule in which it sits (Lo-Man and Leclerc 1997). However, the tertiary 

structure of the protein will determine which parts are the most accessible to the host 

processing machinery. It has also been shown that flanking residues of long peptide 

fragments, which bind MHC II but remain outside the peptide-binding groove, can 

hinder the interaction between the loaded MHC II molecule and the TCR (Moudgil et al. 

1998), thus if MCC was not correctly processed the epitope could actively inhibit 

presentation. MCC was cloned into N-or C-terminal sites of mbap that, according to the 

predicted 3-D structure, would not be contained within the folded enzyme. The epitope 

should therefore be accessible to intracellular proteases. Protease cleavage sites are not 

well defined, but certain residues have been shown to be important: characterisation of 

the epitopes cleaved from tetanus toxin by Cathepsins D and E revealed that 

hydrophobic residues often flank the cleaved site (position P1 and P1') and there is low 

tolerance for positively charged polar residues in the site adjacent to this (P2) (Hewitt et 

al. 1997). The sequence of the MCS surrounding the C-terminal MCC was designed to 

avoid residues that are known to inhibit processing, but this was limited by constraints 

imposed by sequences for restriction enzyme sites; the amino acid at P1' was arginine, 

which is a basic, non-hydrophobic amino acid. 

MBAP-specific T cells have previously been shown to be stimulated by MI infected 

with L. mexicana amastigotes that over-express Modlap at very high levels (Wolfram et 

al. 1996), indicating that the inaccessibility of parasite-derived antigens can be 

overcome by increasing the concentration of antigen. It may be, therefore, that while 
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CLB 1 and CLB3 parasites, in theory, produced sufficient protein for MHC II-MCC 

complexes to be detectable with D4, it was not sufficient to over-ride the inefficient 

processing of antigens that has been shown to occur in infected M. In other studies in 

which M infected with transgenic parasites stimulated T cells specific for parasite-

derived antigens, the transgenes were expressed from the episomal vector, pX, which is 

present at high copy numbers within the cells (Kaye et al. 1993; Wolfram et al. 1996). 

Thus, it would be useful to express the MCC fusion proteins generated here from pX and 

compare these parasites to those in which the transgene was integrated into the 18S 

rRNA locus. Use of pX would, however, introduce other limitations into the system, as 

described in section 3.2.1. In the present, pSSU-int-based system, incubation of MBAP-

specific T cells with DC and M infected with CLB transgenic parasites would 

determine whether the concentration of Modlap in the PV was sufficient for MBAP 

epitopes to be processed and presented in these cells and if so, whether the defect in 

presentation of MCC was due to the amount of antigen secreted into the PV. 

3.5.4 Replacement of a Defined T Cell Epitope from Gp63 with 

MCC 

In the light of the results using the MBAP transgenic parasites an alternative carrier 

molecule was chosen from which to express the MCC epitope. Unfortunately, time 

constraints prevented generation of these transgenic parasites, and therefore only the 

cloning strategy is presented in this thesis. 

Glycoprotein 63 (gp63; also known as Leishmanolysin) is a 63 KDa zinc proteinase that 

is abundantly expressed on the surface of Leishmania promastigotes (Russell and 

Wilhelm 1986). T cells from cured Leishmaniasis patients produced IFNy in response to 

restimulation with gp63 protein or peptide epitopes from gp63, indicating that 

presentation of gp63 antigens may be important in the development of the healing Thi 

response in vivo (Russo et al. 1991; Russo et al. 1993). A number of defined T cell 

epitopes have also been identified in murine gp63, of which PT3 was shown to protect 
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immunised mice against challenge with L. major promastigotes (Jardim et al. 1990), 

indicating that gp63 epitopes are highly immunogenic in vivo. This is supported by the 

fact that mice can be successfully immunised against Leishamaniasis by vaccination 

with Bacillus Calmette-Guerin (BCG) (Connell et al. 1993) or Salmonella typhi 

(Gonzalez et al. 1998) (Yang et al. 1990) vectors expressing gp63 epitopes. Gp63 was 

therefore considered a good candidate carrier molecule for MCC. 

3.5.4.1 The Cloning Strategy 

The gp63 DNA (Figure 3.20) and protein structure is highly conserved between different 

Leishmania species, with most of the differences being clustered at the N-terminal pro-

peptide region or at the carboxy terminus (Medina-Acosta et al. 1989; Medina-Acosta et 

al. 1993). Gp63 genes are present as multiple copies of a 3.1kb unit, which is tandemly 

repeated on a single chromosome. L. mexicana was shown to contain three classes of 

structurally distinct genes, Cl, 2 and 3, containing five, four and one copy of the gene 

respectively. While comparable levels of gp63 RNA were found in both L. mexicana 

promastigotes and amastigotes, Cl transcripts were enriched in amastigotes, suggesting 

developmental regulation of different classes of gp63 genes (Medina-Acosta et al. 

1993). Abundant expression of gp63 by promastigotes is thought to be due to 

polycistronic transcription of the gp63 genes, which are subsequently trans-spliced into 

multiple mRNAs (Button et al. 1989). 

A cloning strategy (see section 2.1.8.4) was therefore devised in which the amino acid 

sequence encoding a stretch of known gp63 T cell epitopes was replaced by the MCC(9 5  

103) epitope (Figure 3.21). The protease sites that flank the endogenous gp63 T cell 

epitope should thus mediate the correct processing of MCC. The gp63 Cl gene was 

amplified from L. mexicana wild type genomic DNA by PCR. Mutation of the GPI 

anchor addition site (Asn 577) has been shown to result in secretion of the intact gp63 

protein (McGwire and Chang 1996). A truncated form of the gp63 Cl gene was 

therefore cloned by insertional mutagenesis to create a TGA stop codon adjacent to Asp 

560. It is from this point that the greatest divergence occurs between the amino acid 

sequences of different Leishmania species, indicating that this region is not essential for 
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DNA sequence of the L. mexicana gp63 Cl gene (accession number X64394). 
Blue underlined codons are the start and stop codons; the amino terminus of the 
mature protein is underlined and marked with an asterix (*); letters indicate the 
amino acids which make up the Mc1  binding motif and the HEXXH motif of the 
active site; regions covering human and mouse T cell epitopes are underlined. 

A stop codon was introduced immediately downstream of the aspartate residue 
at 1927 (green) to remove the GPI anchor addition site and produce a secreted 
protein. The maximum sequence divergence between species is within this 
region. The cytosine of the glutamine residue of the active site was mutated to a 
guanosine (red codon) to inactive the protease. The Hind Ill sites (AAGCTT) 
used to insert MCC are shown in red. 

Differences between the published L. mexicana sequence and the L. mexicana 
strain used for these experiments are indicated with red stars. 



Figure 3.20: Sequence of the L. mexicana gp63 Cl 
Gene 

AATTCCCCATTTCCGCCATTCACAGACCCATCTCCCCGTGCCCCCTCCCTGTCCCCTCCC 60 
TCCCCAGATCCACCAGCGCATCCCATCCCGCTATACCCTCTCCCCCGCCCGCACGCACGC 120 
GCACACCGCCGTGCACAAGCCCTCGCCCTCGCCACCACACCCCACCGCCCGGCCCAGCGC 180 

CCCCGCGCCCGCAGACCCATGCCCGTCGACAGCAGCAGCACGCACCGGCACCGCTGCGTC 240 

GCCGCGCCCCTGGTGCGCCTCGCGGCTGCCGGCGCCGCAGTCACCGTCGCTGTCGGCACC 300 

GCGGCCGCGTGGGCACACGCCGGTGCGCCCCAGCACCGCTGCATCCACGACGCGATGCAG 360 

GCCCGCGTGCTGCAGTCGGTGGCGGCTCAGCGCATGGCCCCCAGCGCGGTGTCCGCGGTG 420 

GGCCTGCCGTACGTGTCCGTGGTCCCCGTCGAGAACGCCAGCACCCTCGACTACTCGCTA 480 
* 

TCGGACAGCACGTCGCCCGGTGTTGTGCGCGCCGCGAACTGGGGCGCGCTGCGAGTCGCC 540 

GTCTCCGCCGAAGACCTCACCGACCCCGCCTACCACTGCGCTCGTGTTGGGCAGCAGGTC 600 

AACAACCACGCCGGCGACATCGTCACCTGCACCGCCGAGGACATCCTCACCGACGAGAAG 660 

CGCGACACCCTCGTCAAGCACCTCGTCCCGCAGGCGCTGCAGCTGCACAGGGAGCGCCTG 720 

AAGGTGCGGCAGGTGCAGGGCAAGTGGAAGGTGACGGGCATGGCGGACGTGATCTGTGGC 780 

GACTTCAAGGTGCCGCCGGAGCACATCACGGAAGGCGTGACCAACACCGACTTCGTGCTG 840 

TACGTCGCCTCCGTGCCGAGCGAGGAGAGTGTGCTGGCGTGGGCCACGACCTGCCAGGTG 900 
S 

TTCCCTGACGGCCACCCAGCCGTCGGCGTCATCAACATCCCCGCGGCGAACATTGCGTCG 960 
R Y D 	 H E M A H * 

CGGTACGACCAGCTCGTCACGCGTGTCGTCACGCAC ATGGCGCACGCGGTGGGCTTC 1020 
* 

AGCGGCACATTCTTTGGGGCCGTCGGCATCGTGCAAGAGGTGCCGCACCTTCGGCGCAAG 1080 

GACTTTAATGTGTCGGTGATCACCAGCAGCACGGTGGTGGCGAAGGCGCGTGAGCAGTAC 1140 

GGCTGCAACAGCTTGGAGTATCTGGAGATTGAGGACCAGGGCGGTGCGGGCTCCGCCGGG 1200 

TCGCATATCAAGATGCGCAACGCCAAGGACGAGCTCATGGCGCCTGCCGCATCTGCCGGG 1260 

TACTACACCGCCCTGACCATGGCCGTCTTCCAGGACCTCGGCTTCTACCAGGCGGACTTC 1320 

AGCAAGGCCGAGGAGATGCCGTGGGGCCGGAACGTCGGCTGCGCCTTCCTCAGCGAGAAG 1380 

TGCATGGCGAAGAACGTCACGAAGTGGCCGGCGATGTTCTGCAATGAGAGTGCGGCCACC 1440 

ATACGGTGCCCCACCGACCGTCTGAGAGTCGGAACTTGTGGTATAACAGCATACAATACT 1500 

TCGTTGGCGACGTACTGGCAGTACTTCACCAATGCGTCCCTCGGGGGCTACTCGCCATTC 1560 

CTGGACTACTGCCCGTTTGTTGTTGGCTACAGGAATGGCTCGTGCAATCAGGATGCGTCG 1620 

ACGACACCGGACCTTCTCGCTGCGTTCAACGTCTTCTCCGAGGCCGCGCGGTGCATCGAT 1680 

GGCGCCTTCACGCCGAAGAACAGAACCGCTGCGGATGGATACTACACCGCCCTGTGCGCC 1740 

AACGTGAAGTGCGACACGGCCACGCGCACGTACAGCGTCCAGGTGCGCGGCACGAACGGC 1800 

TACGCC1ACTGCACGCCGGGCCTCAGAGTTAAGTTGAGCAGCGTGAGCGACGCCTTCGAG 1860 

AAGGGCGGCTACGTCACGTGCCCGCCGTACGTGGAGGTGTGCCAGGGCAACGTCAAAGCT 1920 

GCCAAGGACTTTGCAGGCGACACCGACAGCTCCAGCAGCGCCGATGACGCTGCCGACAAA 1980 

GAGGCGATGCAGCGGTGGAGTGACAGGATGGCCGCCTTGGCTACTGCGACGACGCTGCTG 2040 
CTAGGAATGGTGCTCTCTCTCATGGCACTCCTCGTGGTGCGGCTACTCCTTACCAGCTCC 2100 
CCCTGGTGCTGCTGCAGACTGGGGGGGCTCCCGACGTGAGTTGCGGCGGCCCACTAGCTT 2160 
GAAACGGCGTGAAGAGGCTGGGCATGG 2187 

154 



Figure 3.21: Schematic Diagram Showing Integration 
of Gp63:MCC into the 18S SSU rRNA Gene 
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line) was cloned into a Hind Ill site that had been inserted immediately 
upstream of the deleted C-terminus. The amino acid sequence of the 
active site is shown, demonstrating the site-directed mutation from 
glutamate (E) to aspartate (D). Numbers refer to the DNA sequence 
shown in Figure 3.20. 

Integration ofgp 63:MCC into the 18S small sub-unit rRNA gene. 
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the correct folding and function of the protein. Sequencing of the cloned gp63 Cl gene 

revealed a number of differences compared to the sequence published in Genbank 

(Figure 3.20). These differences were, however, consistent among all of the clones 

tested, indicating that they were due to differences between the strain of L. mexicana 

parasites used, and not mutations introduced by PCR. This was confirmed by direct 

sequencing of the gp63 gene from wild type L. mexicana genomic DNA. 

Gp63 is a metalloprotease and secretion of large amounts of this enzyme into the PV 

may not favour the generation of intact T cell epitopes. It had previously been shown 

that mutation of Glutamate 265, within the HEXXH motif of the active site, was 

sufficient to create a mutated protein that was expressed at the same level as the wild 

type protein, but the enzyme activity of which was greatly reduced (McGwire and 

Chang 1996). Therefore, this amino acid was mutated by site-directed mutagenesis in 

the cloned gp63 constructs by converting the GAG glutamate codon to a GAç aspartate 

codon (E265 to D265; see section 2.1.8.4). 

The dominant murine and human gp63 CD4 T cell epitopes have been well 

characterised (Jardim et al. 1990; Russo et al. 1993). Immunisation of BALB/c mice 

with the murine PT3 epitope, but not other putative epitopes, resulted in delayed lesion 

development, suggesting that T cells which recognise this peptide are important in 

controlling the response (Jardim et al. 1990). However, this epitope overlaps the active 

site of gp63, including the HEXXH motif and is highly conserved between species, 

indicating that disruption of the amino acid sequence would be detrimental to the folding 

and function of gp63. Therefore, the core MCC(95103) epitope was cloned into an 

alternative region at the C-terminal of the gene that contained three overlapping T cell 

epitopes, PT6, PT7 and PT8 (Figure 3.20). GP63 has a highly globular tertiary structure, 

suggesting that domains in the middle of the protein would be relatively inaccessible to 

host proteases. Cloning of MCC into a site toward the exposed C-terminus of the protein 

may therefore have the added benefit of promoting cleavage by proteases. The amino 

acid sequence chosen was relatively similar to the MCC epitope, and avoided potential 

N-glycosylation sites that are important for the stability of the protein (McGwire and 
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Chang 1996). An epitope tag was not included in the construct at this point, but would 

be included in a second round of constructs if the transgene was correctly expressed by 

transfected parasites. 

3.5.4.2 Integration of Gp63:MCC Fusion Proteins into the rRNA SSU Gene 

The gp63 :MCC construct was electroporated into L. mexicana promastigotes and 

individual lines were expanded, as described previously. Genomic DNA was extracted 

and analysed by PCR for correct integration of the transgene. Figure 3.22 shows that 

amplification of genomic DNA with primers specific for gp63 produced the expected 

1kb band in all but one of the lanes, including the wild type. When the forward primer, 

which recognises a sequence in the promoter region of the rRNA gene, was used with a 

reverse primer specific for gp63, however, the predicted 3kb product was not amplified 

(Figure 3.22). Three rounds of transfectants were analysed (72 lines of Puromycin 

resistant parasites) but in none was the transgene integrated into the 18S rRNA small 

sub-unit gene. This strongly indicated that the transgene and antibiotic resistance gene 

were preferentially targeted to a locus other than the ribosomal locus. Gp63 :MCC may 

have been integrated by homologous recombination into one of the clusters of gp63 

genes expressed by L. mexicana parasites, however, this does not account for the fact 

that the antibiotic resistance marker was also expressed by these parasites. These results 

indicate that there may be a strong selective pressure against parasites that express high 

levels of gp63, although the protease should be inactive in these parasites, and 

integration into the 18S rRINA small sub-unit gene does not always drive high levels of 

transgene expression. Furthermore, over-expression of gp63 has not been reported to be 

detrimental to the survival of the parasites (Liu and Chang 1992). Large numbers of 

parasites may, therefore, need to be screened before positive clones are identified. 

Unfortunately, time constraints meant that this was not possible within the time frame of 

this thesis. 
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Figure 3.22: PCR Analyses to Show Correct Integration 
of Gp63:MCC Lines into the Ribosomal 
Locus 

MCC 

I 5' SSU 	I I GP63 I I CPB 2.8 IA 	I 	purcf I CPB 2.8 IR 	I 3' SSU 

SSU (18S) [H 5S  H LSU (28S) 

Gp63 clones 	
No 

1kb - 

19 
3kb - 
2kb - 

Genoniic DNA from gp63:MCC lines was analysed for the presence of the 
gp63 as a positive PCR control. All clones and wild type (WT) genomic 
DNA should be positive because these primers will recognise the 
endogenous copy of the gene. An approximately 1 kb product was 
predicted from these primers (blue arrows). 

Genomic DNA from gp63:MCC lines was analysed for integration into the 
ribosomal locus by PCR using a forward primer external to the 5' 
homology arm of the vector, and specific to the promoter region, and a 
reverse primer specific to a sequence within gp63 (red arrows). The 
predicted product would be approximately 3kb. No product was amplified 
by PCR from any of the lines indicating that the gp63:MCC transgene had 
not been targeted to the correct locus. 

M = 1 k ladder. 



Chapter 3: Investigation of the Fate of Leishmania-derived Antigens in Infected DC and IVIO 159 

3.6 Concluding Remarks 

Leishmania-derived antigens are not efficiently processed and presented by infected 

M4. This chapter has described attempts to establish an experimental model system 

with which to explore the fate of parasite-derived antigens in infected DC and M1. 

Presentation of antigens from Leishmania-infected DC has not been well characterised, 

although it is assumed that MHC II-Leishmania antigen complexes on the surface of 

activated DC prime the initial anti-parasite immune response. 

DC infected with parasites expressing the T cell epitope MCC did not stimulate antigen-

specific T cells, and MHC 11-MCC complexes could not be detected using the highly 

sensitive complex-specific mAb, D4. This indicates that the experimental model 

proposed at the beginning of this chapter requires further modification before MHC II-

parasite-derived antigen complexes can be directly visualised in vitro. All of the 

hypotheses addressed in section 3.6 may contribute to the inefficient processing of 

Leishmania-derived antigens in infected DC and MO and it will be important to generate 

transgenic lines of parasites that express very high levels of the fusion protein to ensure 

that antigen concentration is not a limiting factor in these experiments. As exogenous 

antigens are efficiently processed and presented by Leishmania promastigote- or 

amastigote-infected DC (see Chapter 4), MHC 11-parasite-derived MCC complexes 

should be detectable in infected DC once the carrier molecule and processing of the 

epitope have been optimised. The experiment presented in Figure 3.13 indicated that, 

unexpectedly, infection of BM-DC with L. inexicana amastigotes did not induce up-

regulation of surface MHC II. This observation led to a more extensive analysis of the 

effect of up-take of L. mexicana parasites in vitro. 
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Chapter 4: 

Characterisation of Infection of Bone Marrow-Derived 

DC with L. mexicana Parasites 

(Bennett eta! EJI (2001) see Appendix C) 

4.1 Introduction 

M are the primary reservoir for Leishmania parasites. However, they are not activated 

upon infection but rather become refractory to additional stimuli (Weinheber et al. 

1998), and are inefficient in the presentation of Leishmania antigens to T cells (Kima et 

al. 1996; Prina et al. 1996; Wolfram et al. 1996). DC are required for the initiation of 

primary T cell responses, and it is assumed that parasite-infected DC must prime the T 

cell response to Leishmania. Supporting this, it has been demonstrated that infected LC 

can migrate from the site of infection to the draining LN, and that DC from LN of 

infected mice can stimulate parasite-primed T cells in vitro (Moll et al. 1993). Parasites 

and parasite-derived material can also be detected in DC in the LN (Moll et al. 1993) 

and spleen of infected mice (Gorak et al. 1998). However, the specific interaction 

between DC and Leishmania parasites has not been examined in detail, and is of 

particular interest given the close lineage relationship between DC and Mt , . 

Incubation of L. mexicana parasites expressing the MBAP:MCC fusion protein with 

BM-DC did not induce up-regulation of surface levels of MUC II (see Figure 3.13). This 

was contrary to expectations since Leishmania have been assumed to activate DC upon 

uptake similar to other pathogens (Reis e Sousa et al. 1999): several studies have 

documented the up-regulation of activation markers on the surface of different DC 

populations upon uptake of Leishmania amastigotes and/or promastigotes (von Stebut et 

al. 1998; Marovich et al. 2000; Qi et al. 2001), while others have reported infection-

induced production of IL-12 (Gorak et al. 1998; Konecny et al. 1999). However, ex 
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vivo-derived DC are sensitive to manipulation and constitutively mature upon culture in 

vitro (Gallucci et al. 1999). Furthermore, lesion-derived parasites will be opsonised by 

complement and Ig (Guy and Belosevic 1993; Peters et al. 1995) and exposed to other 

host proteins in the inflamed tissue (Winter et al. 1994). Thus, it is difficult to define in 

these systems the ability of Leishmania parasites per se to activate DC in the absence of 

other contaminating factors. 

This chapter describes experiments that aimed to characterise the interaction between L. 

mexicana parasites and DC, through the use of a highly controlled in vitro model. 

4.2 The Experimental Model (Figure 4.1) 

DC can be generated in culture from bone marrow-derived precursors cultured with 

granulocyte/Mcb-colony stimulating factor (GM-CSF). Unlike L. major parasites, L. 

mexicana maintain their virulence after long-term culture in vitro and L. mexicana 

promastigotes can be transformed into axenic amastigotes without passage though a host 

(Bates et al. 1992; Bates 1994); see also section 2.3.1.2)). Axenic amastigotes of 

different Leishmania species have been well characterised and display a number of 

morphological and biochemical markers which distinguish them as bone fide 

amastigotes (Gupta et al. 2001): ultrastructural analyses revealed the presence of 

amastigote-specific organs such as the megasome and a non-emergent flagellum (Bates 

et al. 1992); axenic amastigotes have increased cysteine protease (Bates et al. 1992) and 

nuclease activity (Bates 1994); they show decreased total protein content, including 

down-regulation of the secreted acid phosphatase (Bates 1994); surface LPG is down-

regulated (Saar et al. 1998); and axenic amastigotes are more infective than 

promastigotes in vitro and in vivo (Gupta et al. 2001). The combination of these tools 

provided an in vitro model in which BM-DC were incubated with L. mexicana 

promastigotes and amastigotes in vitro. In order to identify cells infected with live 

parasites, these experiments utilised transgenic parasites in which the enhanced green 
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fluorescent (EGFP) gene was integrated into a small subunit ribosomal locus by 

homologous recombination (Misslitz et al. 2000): integration of the transgene into this 

locus ensures high expression levels (see Chapter 3). Characterisation of these 

transgenic parasites demonstrated that the virulence of EGFP-expressing parasites was 

unimpaired compared to wild type parasites in vivo, although lesion development was 

marginally delayed (Bennett et al. 2001). Thus, in the experiments described below, 

cultured EGFP-expressing L. mexicana parasites were used to infect in vitro-generated 

immature BM-DC. The activation status of DC was subsequently followed by measuring 

up-regulation of CD86, MHC II, CD54 and production of IL-12. 

4.3 Phenotypic Characterisation of BM-DC 

BM-DC were generated by culture of bone marrow precursors in medium containing 

GM-CSF, as described in section 2.4.3. DC, which are semi-adherent, were harvested 

into new plates on day 7, by vigorous washing, leaving behind the firmly adherent M1. 

This protocol was carefully optimised to minimise the presence of contaminating MI 

since Leishmania parasites may show a preference for this cell type over DC. Once 

harvested, DC were cultured for 18 hours with or without LPS and IFNy as maturation 

stimuli. The purity of these DC preparations was assessed by phenotypic 

characterisation with a panel of surface markers (Figure 4.2A). 

Immature BM-DC derived by this protocol were routinely CD 11 c, CD 11 b and DEC-

205 10 ,  consistent with the immunophenotype of myeloid lineage DC (Kamath et al. 

2000). More than 80% of the cells were routinely intermediate for surface CD86, CD54 

and MHC II, and expressed high intracellular levels of MHC II (Figure 4.2A). Overnight 

incubation of immature DC with lp.g/ml LPS and 10 3  U/mi IFNy resulted in the up-

regulation of CD86, CD54 and MHC II in at least 50% of the population (Figure 4.2A). 

Double staining with MHC II and CD 11 c indicated that 70% of the population were DC 

(Gallucci et al. 1999) (Figure 4.213). No contamination with T cells or Mc1 was apparent 
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in these preparations, as determined by staining with anti-CD3 and F4180 respectively 

(Figure 4.2A). Staining with anti-B220 revealed a small population of B cells. These 

were generally smaller cells and were therefore excluded from further analysis by gating 

on forward and side scatter. Although further purification of day 7 BM-DC by 

enrichment for CD! I c cells by magnetic activated cell sorting (MACS) resulted in a 

DC population which was more than 85% pure (based on CD86 and MHC II levels in 

immature cells), phenotypic analysis indicated that these DC became activated upon 

replating and therefore, this procedure was not used for this study (Figure 4.2C). 

4.4 Leishmania Parasites are Internalised by BM-DC 

In order to verify that L. mexicana parasites were taken up by DC, day 7 BM-DC were 

incubated with stationary phase EGFP-parasites at a ratio of 1:8 for 18 hours at 37'C. 

This ratio was selected because it resulted in optimal uptake of parasites, with few 

extracellular parasites remaining in the culture after 18 hours. Preliminary experiments 

had demonstrated that the effect of uptake of L. mexicana parasites was the same at 4, 

12, 18 and 24 hours (data not shown). Thus, an 18 hour incubation was routinely used 

for these experiments. In contrast to in vitro infection of M1, parasite uptake by DC 

could not be monitored by light microscopy, as parasites were not clearly visible inside 

DC. However, microscopic analysis indicated that they had disappeared from the culture 

medium. Infection was therefore monitored by flow cytometry. EGFP DC were clearly 

visible by FACS (Figure 4.3A), suggesting that parasites had been taken up by DC in 

culture. However, this analysis could not determine whether parasites had been 

internalised or were adhered to the cell surface. Therefore, to ascertain whether 

Leishmania were truly internalised by BM-DC, cells were infected with wild type 

parasites, fixed, and stained with an anti-parasite serum. Figure 4.313 shows that anti-

parasite staining could be seen only when the cells were permeabilised, indicating that 

the parasites were intracellular and not on the surface. Incubation of BM-DC with 

Leishmania amastigotes resulted in infection of 37.0±3.9% (mean ±s.e.m.) of the cells 
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based on percentages of EGFP cells in the population. Incubation with promastigotes 

lead to infection of 22.7±4.1% of the cells, although green fluorescence was always 

decreased in promastigote-infected cultures probably due to higher levels of degradation 

of promastigotes than amastigotes, suggesting this value may be an underestimate. Table 

4.1 presents the complete FACS data set for internalization of Leishmania parasites in 

six different experiments. 

4.5 Incubation of BM-DC with L. mexicana 

Promastigotes or Promastigote Lysate Results in 

Activation of a Small Percentage of BM-DC 

To determine whether uptake of L. mexicana promastigotes in vitro could activate BM-

DC, DC were incubated with EGFP-promastigotes, harvested, fixed, and stained for 

surface activation markers. Flow cytometric analysis revealed that approximately 90% 

of the population remained immature, as indicated by surface levels of CD86, MHC II 

and CD54. This immature population contained both infected and non-infected cells 

(Figure 4.4A). 

A small, but statistically significant percentage of cells (14.7±2.2%) showed increased 

levels of CD86 expression compared to immature non-infected DC, indicating activation 

(immature DC versus promastigote-infected cultures, p<O.Ol; statistical analyses are 

based on the numbers of CD86 cells in the upper quadrants of dot plots, and are 

calculated from the average of five different experiments using Student's T test; 

statistical analyses based on MHC II expression are shown in Table 4.2; CD54 levels 

were not included in these calculations because the difference in CD54 expression 

between immature and activated DC was much smaller than for CD86 and MHC II, and 

therefore is not a sensitive marker for the effect of uptake of parasites on the cells). 
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Table 4.1: 
Complete FACS Data Showing Infection Levels of BM-DC 
Incubated with L. mexicana Promastigotes or Amastigotes. 

Percentage of EGFF1  cells 
Promastigotes Amastigotes 

Expt. 1 8.8 32.1 
Expt. 2 28.2 22.2 
Expt. 3 17.9 35.6 
Expt. 4 29.2 39.3 
Expt. 5 29.1 49.7 
Expt. 6  43.3 

Mean 22.7 37.0 
s.e.m. 4.1 3.9 

Numbers indicate the percentage of EGFP positive cells after incubation of day 7 BM-
DC with EGFP-expressing L. mexicana promastigotes or amastigotes for 18 hours. 



Figure 4.4: Incubation of BM-DC with L. mexicana 
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Numbers indicate the percentage of cells in the upper left (UL) and upper right 

(UR) quadrants for FACS plots of immature BM-DC, or BM-DC incubated with L. 

mexicana amastigotes, promastigotes, opsonised promastigotes or 3.0jim latex 

beads, for 18 hours and stained with anti-CD86 or anti-MHC II antibodies. For 

amastigote-, promastigote- and opsonised promastigote-infected populations the 

values in the upper left quadrant represent the activated EGFP negative cells 

and the values in the upper right quadrant represent the activated EGFP positive 

cells. 

Values are not included for CD54 data because CD54 levels were not as 

indicative of activation as CD86 or MHC II. 

CD86: Immature BM-DC versus promastigotes p.<0.01; immature versus 

amastigotes, p=0.24; promastigotes versus opsonised promastigotes p=0.76; 

immature versus beads p=0.43; amastigotes versus beads p=0.89; 

promastigotes EGFP versus EGFP p<0.01; amastigotes EGFP versus EGFP 

p<O.O1. 

MHC II: Immature BM-DC versus promastigotes p=0.76; immature versus 

amastigotes, p=0.67; promastigotes versus opsonised promastigotes p=0.63; 

immature versus beads p=0.80; amastigotes versus beads p=0.50; 

promastigotes EGFP versus EGFP p=0.15; amastigotes EGFP versus EGFP 

p=O.48. 
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Table 4.2: 
Complete FACS Data Showing Infection of BM-DC with L. 

mexicana Parasites or Latex Beads. 

CD86 I I I I I 
Immature Amasti gotes Promastigotes Ops. prom. Beads 
UL UR UL UR UL UR UL UR UL UR 

Expt.1 4.7 0.1 4.4 1.5 7.8 0.9 15.6 1.4 2.1 1.3 
Expt.2 4.2 0.1 4.5 1.0 13.0 6.6 13.8 0.2 5.1 0.0 
Expt.3 4.6 0.1 2.9 1.3 9.3 2.0 10.1 7.0 8.1 1 0.1 
Expt.4 5.8 0.3 6.2 3.5 16.8 3.1 13.5 1 0.4 4.1 0.1 
Expt.5 5.4 0.1 1 3.8 2.5 10.6 13.2 1 9.6 0.0 

Mean 1 4.9 1 	0.1 14.4 12.0 1 	11.5 13.1 1 	13.3 12.3 1 5.8 0.3 
10.3 s.e.m. 1 0.3 1 0.0 1 0.5 1 0.5 1 	1.6 1 	1.0 1 	1.2 11.6 1 	1.4 

MHC 
II 

Immature Amasti otes Promastigotes Ops. prom. Beads 
UL UR UL UR UL IJR UL UR UL UR 

Expt.1 5.8 0.0 3.1 0.8 3.6 0.3 7.7 0.2 2.5 2.2 
Expt.2 5.6 0.0 4.4 0.7 2.4 2.3 6.0 0.1 5.0 0.0 
Expt.3 4.2 0.1 2.5 1.1 2.2 0.3 7.0 0.6 4.8 0.0 
Expt.4 17.0 10.1 9.3 4.0 122.2 1 	1.5 123.5 1 	1.5 4.1 0.1 
Expt.5 3.6 10.1 1 7.9 11.5 1 6.3 1 2.2 1  13.5 0.2 

Mean 1 7.2 10.1 1 5.4 1 3.6 1 7.3 1 	1.3 1 	11.1 1 0.6 16.0 0.5 
s.c.m. 1 2.5 10.0 1 	1.3 12.1 1 3.8 1 0.4 14.2 1 0.3 1 	1.9 0.4 
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However activated BM-DC tended to be negative for EGFP, suggesting that these cells 

did not contain live parasites. The data presented in Figure 4.4 indicate that there is a 

larger increase in CD86 expression on incubation with L. mexicana promastigotes than 

MHC II, indicating differential regulation of these surface markers. The mean 

percentage of cells expressing high levels of CD86 on incubation with promastigotes is 

14.7±2.2 compared to 5.1±0.3% of immature cells, whereas 8.7±3.9% and 7.2±2.5% of 

the cells, respectively, up-regulated MHC II (Table 4.2). These data indicate that CD86 

expression is more sensitive to promastigote-derived activating stimuli than MHC II. 

In vivo, uptake of Leishmania promastigotes is likely to be mediated by opsonisation of 

parasites with 1g. In order to determine whether opsonisation of promastigotes enhanced 

uptake and activation of DC, promastigotes were incubated with 5% inactivated normal 

mouse serum for 5 minutes and washed thoroughly before their addition to the BM-DC 

cultures (Figure 4.413). Opsonisation of promastigotes did not enhance activation of DC. 

15.5±0.9% of the cells up-regulated expression of CD86. This percentage was not 

significantly different from the percentage of cells activated upon incubation with non-

opsonised promastigotes (p=0.76, numbers represent the mean ±s.e.m of four different 

experiments, see Table 4.2). Infection levels, as measured by green fluorescence 

appeared lower in these cells, probably due to enhanced degradation of these opsonised 

parasites. 

Since incubation of BM-DC with L. mexicana promastigotes induced activation of a 

small percentage of cells that did not appear to contain green parasites, it was interesting 

to assess whether parasite debris alone could also activate DC. BM-DC were incubated 

with promastigote freeze/thaw lysates for 18 hours and then analysed for surface levels 

of activation markers. Incubation of BM-DC with lysates from promastigote numbers 

which were equivalent to giving intact promastigotes at a ratio of 1:8 led to activation of 

13.6±1.8% of the population, based on levels of CD86 expression (Figure 4.5 and Table 

4.3). This was equivalent to the percentage of cells activated on incubation with intact 

promastigotes (percentage of cells activated upon incubation with promastigotes versus 

percentage of cells activated upon incubation with an equivalent amount of promastigote 



Figure 4.5: Incubation of BM-DC with Different Amounts 
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Table 4.3: 
Complete FACS Data for BM-DC Incubated with Promastigote 
Lysate. 

CD86  

- 

Immature Promastigote 
Lysate8:1 

Promastigote_lysates 
5:1 10:1 20:1 

UL  UL  
Expt.1 4.1  13.7 17.3 23.7 31.9 
Expt.2 3.3  8.7 10.3 15.0 16.7 
Expt.3 4.5  11.2 16.4 15.4 20.0 
Expt.4 6.9  15.2  
Expt.5 3.4  19.3  

Mean 14.4  13.6 14.7 1 2.2 
18.0 22.9 

s.e.m. 1 0.7  1.8 2.8 4.6 

MHCII  

 - 

Immature Promastigote 
Lysate8:1 

Promastigote_lysates 
5:1 10:1 20:1 

UL  UL  
Expt.1 25.4  20.7 39.6 42.4 40.7 
Expt.2 12.8  14.1 14.5 21.9 24.2 
Expt.3 8.1  12.5 13.8 19.5 21.6 
Expt.4 8.1  14.2  
Expt.5 11.2  13.3  

Mean 13.1  15.0 22.6 127.9 28.8 
s.e.m. 3.2  1.5 8.5 1 7.3 6.0 

Numbers on the left hand side of the tables indicate the percentage of cells in 
the upper left (UL) quadrants of FACS plots of non-infected BM-DC or BM-DC 
incubated with L. mexicana promastigote freeze / thaw lysates at an equivalent 
of 8 parasites : 1 DC. Cells were harvested after 18 hours incubation with lysate, 
stained with anti-CD86 or anti-MHC II antibodies and analysed by flow 
cytometry. 

Numbers on the right hand side of the tables are from 3 different experiments in 
which BM-DC were incubated with different amounts of promastigote lysate. 

CD86: Immature BM-DC versus promastigote lysate 8:1, p<0.01; promastigotes 
versus lysate 8:1 p=0.73. 

MHC II: Immature BM-DC versus promastigote lysate 8:1, p=0.62; 
promastigotes versus lysate 8:1 p=0.23. 
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lysate p0.73 ;  value calculated from four different experiments) (see Figure 4.4). 

However, this percentage could not be increased on addition of more lysate, possibly 

due either to the large amount of proteases released on lysis of Leishmania parasites, or 

due to the limited number of cells in the culture that were susceptible to this activating 

stimulus. The data presented in Figure 4.5 suggest that, as for incubation with live 

promastigotes, CD86 is more sensitive to the promastigote-encoded activating stimulus 

than MHC II or CD54. This difference was not, however, reflected in the other 

experiments included in this data set (see Table 4.3). 

Therefore, these data indicate that uptake of intact L. mexicana promastigotes in vitro 

does not activate BM-DC, but that a promastigote product is able to activate a 

percentage of BM-DC. 

4.6 Infection with L. mexicana Amastigotes does not 

Induce Activation of BM-DC 

BM-DC were also incubated with L. mexicana axenic amastigotes. Figure 4.6A 

illustrates that infection with amastigotes does not induce activation of BM-DC. Both 

the EGFP and EGFF populations remained immature, as judged by levels of surface 

expression of CD86, MHC II and CD54. There was no significant difference between 

the percentage of CD86 cells in the upper quadrants of flow cytometric plots of 

immature DC versus those incubated with amastigotes (p=0.24, values based on 

percentages from five different experiments, Table 4.2). There was no significant 

difference between MHC II levels on EGFP and EGFP DC (upper left versus upper 

right quadrants) derived from the same culture (p0A8), however, EGFP cells within 

the amastigote -infected cultures did appear to be retarded in expression of CD86 

compared to the EGFP cells (upper left versus upper right p<O.Ol). This observation 

supports the idea of differential regulation of CD86 and MHC II expression on the 

surface of BM-DC. The findings from these experiments are in contrast to those of von 
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Stebut and colleagues (von Stebut et al. 1998), who demonstrated activation of foetal 

skin-derived DC by lesion-purified L. major amastigotes. These data indicate that uptake 

of L. mexicana amastigotes, in the absence of exogenous factors, does not activate DC. 

This could be due to Leishmania amastigotes presenting as inert particles, so that uptake 

by the DC is effectively silent. Alternatively, uptake may suppress activation of DC, as 

has been reported with Leishmania-infected M1i (Kaye et al. 1994; Weinheber et al. 

1998). 

The following experiments attempted to differentiate between these two hypotheses. 

First, day 7 BM-DC were incubated for 18 hours with 3.Opm latex beads, which are 

similar in size to L. mexicana amastigotes, at a ratio of 1:8. Phagocytosis of latex beads 

did not induce activation of BM-DC, and there was no statistical difference between the 

effect of beads versus the effect of amastigotes on the percentage of activated cells in the 

cultures (p0.89, based on the percentages of CD86 cells in the upper quadrants of dot 

plots from five different experiments, Table 4.2) (Figure 4.613). 

To further investigate whether L. mexicana amastigotes could suppress activation of DC, 

BM-DC were simultaneously incubated for 18 hours with L. mexicana amastigotes and 

activated with 0.5ig/ml LPS and 500U/ml IFNy. Flow cytometric analysis showed that 

infected BM-DC were clearly activated by these stimuli, and there was no difference 

between the number of activated cells in infected and non-infected cultures (p=0.91, 

based on the number of activated CD86 cells from five different experiments) (Figure 

4.7A). When the complete data set for CD86 and MHC II expression from the five 

different experiments is examined, there appears to be a slight retardation in the 

activation of infected (EGFP) cells in the population (Table 4.4). This retardation is not, 

however statistically significant: CD86 EGFP versus EGFP cells p0.09; MHC TI 

EGFP versus EGFP cells p=0.20. Infected DC could also be activated to equivalent 

levels as uninfected DC with lower doses of stimuli (0.1ig/ml LPS and 500 U/mI IFNy) 

(Figure 4.713). Therefore, these data suggest that lack of activation by L. mexicana 

amastigotes is not due to strong suppression of DC function by the parasites. 



Day 7 BM-DC were simultaneously infected with L. mexicana 
amastigotes and activated with 0.5pg/mI LIPS and 500U/ml IFNy for 18 
hours. Cells were then harvested, fixed, stained for surface activation 
markers and analysed by flow cytometry. 

Activation with O.lp.g/ml LPS and 500U/ml IFN'y is not suppressed by 
simultaneous infection with amastigotes. Day 7 BM-DC were 
simultaneously infected with L. mexicana amastigotes and activated with 
0.1 jig/ml LIPS and 500U/ml IFNy for 18 hours. Cells were then harvested, 
fixed, stained for CD86 and MHC II and analysed by flow cytometry. 

Numbers represent percentages of cells in the respective quadrants. Dot 
plots are representative of 5 (A) and 1 (B) different experiments. 
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Table 4.4: 
Complete FACS data for BM-DC Activated with LIDS and IFNy 
with or without Concomitant Infection with L. mexicana 
Amastigotes. 

CD86 I I I 
LPS/IFNy Amas. + LPS/IFNy 

UL UR UL UR Total 

Expt.1 56.3 0.4 29.9 16.2 46.1 

Expt.2 24.7 0.2 20.1 7.8 27.9 

Expt.3 35.9 0.1 25.5 14.6 40.1 

Expt.4 58.0 1.6 29.3 26.8 56.1 

Expt.5 30.5 0.3 15.3 14.8 30.1 

Mean 42.8 1 0.5 24.0 16.0 40.1 

s.e.m. 4.4 1 0.3 2.8 3.1 5.2 

MHCII  
LPS/IFNy Amas. + LPS/IFNT 

UL UR UL UR Total 

Expt.1 51.9 0.3 20.9 12.4 33.3 
Expt.2 35.8 0.2 22.9 8.1 31.0 

Expt.3 25.7 0.0 18.1 12.5 30.6 
Expt.4 62.8 1.4 26.2 31.4 57.6 

Expt.5 46.3 0.3 21.8 15.8 37.6 

Mean 44.5 0.4 22.0 16.0 38.0 

s.e.m. 6.4 0.3 1.3 4.0 571 

Numbers indicate the percentage of cells in the upper left (UL) and upper right 
(UR) quadrants for FACS plots of BM-DC activated with LPS and lFNy and 

incubated with or without L. mexicana amastigotes. Cells were activated with 
either 0.5gml LPS and 500U/ml IFN7 or with 10ig/ml LPS alone (expt. 2 and 

3), harvested after 18 hours, stained with anti-CD86 or anti-MHC II antibodies 
and analysed by flow cytometry. For the amastigote-infected cultures the values 
in the upper left quadrant represent the activated EGFP negative cells and the 
values in the upper right quadrant represent the activated EGFP positive cells. 

CD86: Activated BM-DC versus amastigotes p=0.91; amastigotes EGFPmiersus 

EGFP p=0.09. 

MHC II: Activated BM-DC versus amastigotes p=0.45; amastigotes 
EGFPversus EGFP p=0.20. 
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4.7 The effect of L. mexicana Infection on IL-12 

Production by BM-DC 

Activation of DC is associated with the production of pro-inflammatory cytokines 

including TNFa, IL-6 and IL-12. In order to determine whether incubation with 

promastigotes or amastigotes could induce secretion of IL-12, the concentration of the 

IL-12 p40 subunit was measured in culture supernatants (Figure 4.8A). Immature DC 

did not secrete IL- 12 p40, but stimulation with LPS and IFNy induced production of 

high levels of this protein. BM-DC incubated with L. mexicana amastigotes or latex 

beads were not stimulated to produce IL-12. Incubation with promastigotes induced 

levels of IL-12 p40 that are significantly higher than in non-infected or amastigote-

infected cells, consistent with the activation of a small percentage of the population. 

Thus, production of the IL-12p40 subunit reflects the results obtained by flow 

cytometry. 

Secretion of the IL-12 p40 subunit is indicative of the production of bioactive IL-12p70 

in DC, but does not reflect levels of functional IL-12 since p40 can homodimerise and 

inhibit binding of IL-12p70 to the IL-12 receptor (Gillessen et al. 1995). Therefore, 

levels of IL-12 p70 were measured in the supernatant of infected cells (Figure 4.813). As 

expected, immature DC did not produce IL- 12p'7O and p70 could only be detected on 

addition of LPS and IFNy. No bioactive IL-12 was detected in cultures from 

promastigote- or amastigote-infected cells. 

4.8 Presentation of Exogenous Antigen to T cells by L. 

mexicana-Infected BM-DC 

L. mexicana-infected Mc1 are impaired in their ability to present exogenous antigen to T 

cells, even after only a two hour incubation with parasites (Fruth et al. 1993). DC from 

infected mice have been reported to efficiently stimulate an anti-parasite T cell response 



Figure 4.8: Production of IL-12 by L. mexicana-infected 
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Day 7 BM-DC were incubated for 18 hours with L. mexicana amastigotes, 
promastigotes or latex beads, with or without 1 ig/ml LPS and 103U/Ml IFNy. 
The presence of (A) the p40 subunit (n=4) or, (B) the p70 heterodimer (n=3) 
were measured in 18 hour supernatants by ELISA. The lower sensitivity limit 
of the assay was 30 pg/mI (dashed line). Values represent concentrations of 
cytokine in supernatants from —2x105  cells (means ± s.e.m.). 

* p40: amastigotes vs promastigotes: p=0.035; immature DC vs amastigotes: 
p=0.71 1; amastigotes vs beads p=0.067. 
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(Moll et al. 1993), however it has not been shown whether these cells contained intact 

parasites. Therefore, BM-DC incubated with EGFP-expressing parasites were used to 

investigate whether Leishmania-infected DC are competent to stimulate an efficient T 

cell response in vitro. 

BM-DC were infected for 18 hours with EGFP-expressing parasites, as described above. 

The cells were then harvested, washed and sorted flow cytometrically into EGFP 

positive and EGFP negative populations. Immature DC were also harvested and sorted 

as a non-infected, sorted control. The cells were then replated in 96-well plates and 

pulsed with 1 or lOji.M MCC peptide or 50.tM PCC protein for 4 hours. They were then 

co-cultured with the PCC-specific T cell line 2134 (Reay et al. 2000) at a ratio of 1 

DC: 10 T cells and supernatants collected after 18 hours. Production of IL-2 by activated 

T cells was monitored using an IL-2-dependent cell line (Swain et al. 1981; Lawrence et 

al. 1994). Figure 4.9 shows the results from three separate experiments. These data show 

good concordance between experiments 2 and 3 but variation between these experiments 

and experiment 1, probably due to variation in responses by the T cell hybridoma, and 

also due to variable effects which sorting and replating of the DC may have on DC 

maturation status. When comparing non-infected controls with promastigote EGFP or 

EGFP samples or amastigote EGFP or EGFP samples within each experiment there 

was no significant difference between any of the variables (p>0.05) for all except two of 

the samples. The exceptions were in experiment 1, non-infected cells versus 

promastigote EGFP cells pulsed with 1 p.M MCC, p<O.Ol, and in experiment 3, non-

infected cells versus amastigote EGFP cells pulsed with 50p.M PCC, p<O.Ol. However, 

when the results for the three experiments were pooled there was no significant 

difference between any of the samples (p>0.3). Therefore, these results indicate that 

infection of DC with L. mexicana promastigotes or amastigotes does not alter the 

efficiency with which DC present exogenous antigen to T cells. 
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Day 7 BM-DC were incubated with L. mexicana EGFP-expressing 
promastigotes or amastigotes or left uninfected for 18 hours. Cells were 
harvested and sorted into EGFP positive (infected) and negative (non-infected) 
populations. Non-parasite exposed DC were sorted as a control. Sorted 
populations were replated, pulsed with peptide or protein for 4 hours and 
incubated with the T cell hybridoma 2134 for 18 hours. IL-2 levels in the T cell 
supernatant were measured by assessing [3H] thymidine incorporation by an IL-
2-dependent cell line. 

The data shown here are from 3 independent experiments, with each 
experimental group performed in triplicate (mean ± s.e.m.). 



Figure 49: L. mexicana-infected DC can Stimulate an 
Efficient T cell Response in vitro 
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4.9 Discussion 

4.9.1 Infection by L. mexicana Amastigotes does not Activate 

BM-DC 

The data presented in this chapter demonstrate that internalisation of L. mexicana 

amastigotes per se does not classically activate BM-DC. Rather these parasites appear to 

be recognised by DC as inert particles, similar to latex beads, at least in terms of the 

expression of surface activation markers and production of IL-12. This was surprising 

since phagocytosis has been reported to be an activation stimulus in some models 

(Randolph etal. 1998). Weinheber and colleagues (Weinheber et al. 1998) also showed 

that L. mexicana amastigotes present as inert particles on infection of M, since 

infection-induced suppression of IL-12 could be mimicked by phagocytosis of latex 

beads. However, in contrast, to the situation in M, the data presented here indicate that 

infection does not suppress the ability of DC to respond to other activating stimuli 

Therefore infection of BM-DC by L. mexicana amastigotes may be regarded as silent 

based on the parameters tested. 

In addition to these findings, the data presented in this chapter suggest that uptake of 

intact L. mexicana promastigotes may not induce activation of BM-DC. A small 

percentage of cells up-regulated expression of the surface markers tested upon 

incubation with promastigotes, however, these cells were not positive for EGFP, 

indicating that metabolically active parasites are not required for activation of BM-DC. 

This is supported by the fact that promastigote lysate induced similar levels of activation 

when added to the culture. The observation that addition of increasing amounts of 

lysates only marginally increased the number of cells activated indicates that only 

limited numbers of DC can respond to the promastigote-encoded signal, however, loss 

of parasite integrity will also release proteases that will have negative effects on the host 

cells and may restrict the proportion of BM-DC that are able to respond to this signal. 
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Interestingly, the data presented on infection of BM-DC with L. mexicana promastigotes 

suggests that CD86 and MHC II expression are differentially regulated, such that CD86 

levels are more sensitive to low levels of an activating stimulus than MHC II. This 

observation was not, however, evident in other experiments, indicating that this 

difference is only apparent in the presence of very low levels of activating stimuli. 

The discovery that receptors on the surface of DC recognise conserved pathogen-derived 

molecules has led to the paradigm that uptake of pathogens activates DC. This scenario 

is apparently supported by published studies which have examined the effect of 

Leishmania infection on ex vivo DC; von Stebut et a! (von Stebut et al. 1998) reported 

activation of foetal skin-derived DC by lesion-derived L. major amastigotes but not 

promastigotes, whereas Qui et al (Qi et al. 2001) reported activation of BM-DC by L. 

amazonensis promastigotes and amastigotes. In contrast, the data presented in this 

chapter show that L. mexicana amastigotes per se do not express PAMP. 

The discrepancies between our findings and those of others may be a function of the 

respective experimental systems, and in particular due to the use of lesion-derived 

amastigotes (von Stebut et al. 1998; Qi et al. 2001). Parasites derived ex-vivo are coated 

with Ig (Peters et al. 1995) and other proteins (Winter et al. 1994). Ligation of parasite-

bound Ig by DC surface receptors may have two non-exclusive consequences: the 

interaction might directly activate DC; receptor-mediated endocytosis via FcR may 

transport the parasites to distinct intracellular compartments in which they may be more 

efficiently degraded, rendering intracellular Leishmania PAMP more accessible to 

internal DC pattern receptors. As ligation of FcyR by immune complexes induces 

maturation of DC (Regnault et al. 1999), the presence of Ig on lesion-derived (von 

Stebut et al. 1998; Qi et al. 2001), but not in vitro cultured, amastigotes is likely to 

explain the apparent differential ability of these parasite populations to activate DC. To 

address this hypothesis, the effect of uptake of Ig-opsonised axenic amastigotes on DC 

should be examined. In this experimental model, however, incubation of promastigotes 

with normal mouse serum did not increase activation of DC, although this would lead to 

coating of parasites with Complement rather than 1g. The observation that opsonisation 
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of promastigotes with 5% normal mouse serum led to increased degradation of the 

parasites supports the hypothesis that uptake of opsonised parasites may result in their 

internalization in distinct compartments. Although opsonisation of promastigotes with 

normal mouse serum did not apparently lead to increased uptake by DC, it may be that 

promastigotes were more efficiently internalised but that this was balanced by the 

increased rates of degradation. 

An additional reason for the differential effects on uptake of Leishmania parasites by DC 

is that ex vivo DC may have been primed by endogenous factors in vivo before isolation 

and may therefore be more sensitive to activation upon culture in vitro. Konecny et al 

(Konecny et al. 1999) reported IL- 12 production from CD 11 c splenic DC infected with 

L. major promastigotes. As shown herein, selection with CD 11 c results in activation of 

DC upon replating overnight in the absence of additional stimuli, suggesting that 

CD1 ic-purified DC may be pre-disposed to maturation upon phagocytosis of the 

parasites. 

The experimental model described herein has the unique advantage that it allows 

investigation of the DC:Leishmania interaction in a highly controlled system. Infection 

of BM-DC by EGFP-expressing parasites that have been cultured in vitro allowed the 

effects of this interaction to be addressed in the absence of contaminating host-derived 

factors, which may prime the activation of DC independently of the effect of the 

parasites. The results presented in this chapter indicate that, in vitro, intact promastigotes 

and axenic amastigotes bind DC receptors on uptake that do not result in activation of 

the DC. It is not clear, however, which receptors the parasites are binding in this 

experimental model: promastigotes utilise the mannose receptor for entry into host cells, 

however as yet, no evidence suggests that binding of this receptor activates DC (Reis e 

Sousa et al. 1999); promastigotes also bind CR1 and CR3. BM-DC express CR3 

(CD11b, see Figure 1.2), however, ligation of CR3 has been shown to suppress 

activation of M1, and there does not appear to be any suppression in these experiments 

(Marth and Kelsall 1997; Sutterwala et al. 1997). The receptors involved in uptake of 

amastigotes in the absence of 19 therefore remain to be elucidated. 
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4.9.2 L. mexicana-Infected BM-DC can Efficiently Process and 

Present Exogenous Antigen to T cells. 

Leishmania-infected MCI) do not efficiently process and present exogenous antigens. 

Therefore, in view of the close lineage relationship between DC and MCI it was of 

interest to investigate the ability of infected DC to stimulate T cells in vitro. DC were 

incubated with EGFP-expressing promastigotes and amastigotes for 18 hours and sorted 

into EGFP positive and negative populations. These cells were pulsed with MCC peptide 

or PCC protein for four hours and then incubated with a MCC-specific T cell 

hybridoma. Use of EGFP-expressing parasites permitted direct investigation of the 

ability of infected DC to stimulate T cells. These data indicated that infected DC present 

exogenous antigen to T cells as efficiently as parasite-exposed non-infected DC, and 

non-infected control DC. Despite significant variation between the different 

experiments, all of the DC populations induced similar levels of proliferation of the T 

cell hybridoma within each experiment. It is important to note that T cell hybridomas are 

often co-stimulation-independent so these data only reflect the ability of infected DC to 

process and present exogenous antigens in association with the MHC II molecule H2Ek. 

DC and MI) may therefore respond differently to infection with L. mexicana. While 

others have shown that infection strongly suppresses activation of MCI) and alters the 

kinetics of antigen presentation, in our studies DC responses appear to be relatively 

unaffected by internalisation of Leishmania parasites. This difference may be related to 

the observation that L. mexicana parasites do not appear to be able to establish a chronic 

infection in DC as successfully as they do in MCI) (see section 5.4). 

4.10 Concluding Remarks 

The data presented here indicate, for the first time, that the receptors utilised by intact L. 

mexicana promastigotes or amastigotes for entry into DC do not trigger maturation of 
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this exquisitely sensitive cell type. The data presented in this chapter imply that 

activation of DC in vivo, and the consequent initiation of the anti-Leishmania T cell 

response, is not due to the uptake of intact parasites, but may be due to uptake of Ig-

opsonised intact amastigotes and/or other exogenous activating stimuli. Injection of 

parasites into the epidermis will induce production of pro-inflammatory factors on 

wounding, and this innate immune response will also cause further tissue damage. This 

will result in the production of pro-inflammatory cytokines such as TNFa that activate 

maturation of immature DC. Sandfly saliva, which is injected into the host along with 

promastigotes, has also been shown to have an important immunomodulatory effect; 

inoculation of saliva from non-infected sandflies induces a delayed-type hypersensitivity 

response upon re-exposure to sandfly saliva, and can immunise against challenge with L. 

major promastigotes (Kamhawi et al. 2000). The data presented here also demonstrate 

that infection does not suppress activation and that infected DC are fully competent to 

process and present antigen to T cells. Thus, in the context of infection in vivo, infected 

DC should be able to initiate the anti-parasite T cell response. 
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Chapter 5: 

Characterisation of Infection of an Alternative DC 

Population with L. mexicana 

5.1 Introduction to Dl Splenic DC 

A continuous DC culture has been derived from C57BL16 splenocytes that were 

expanded in the presence of conditioned medium from fibroblasts engineered to secrete 

recombinant GM-CSF. These factor-dependent, long-term, relatively homogeneous DC 

cultures have been termed Dl cells (Winzler et al. 1997). Dl cells have all the properties 

of an immature DC population: they have a surface immunophenotype characteristic of 

immature splenic DC and up-regulate molecules associated with interaction with T cells 

upon stimulation with LPS (Figure 5.1); they are highly efficient at taking up antigen, 

and this decreases upon activation; activation leads to increased motility; and Dl cells 

potently stimulate an allogeneic T cell response (Winzler et al. 1997). Phenotypically 

immature Dl cells are rounded, but extend long dendrites upon activation. Unlike other 

ex-vivo-derived DC, Dl cells can be cultured long-term in an immature form as a fairly 

homogeneous population of cells, which can be matured synchronously with LPS. This 

is a distinct advantage over BM-DC that are heterogeneous in terms of their 

differentiation from monocyte precursors into DC and their activation status, mature 

spontaneously over time, and generally die by day nine or ten of culture. 

Data presented in the previous chapter demonstrated that infection with intact L. 

mexicana promastigotes or amastigotes in vitro does not induce activation of BM-DC. In 

order to test whether this was a general phenomenon, the effect of infection on an 

alternative in vitro DC culture was investigated. The experiments described in Chapter 5 

aimed to characterise the effect of infection with L. mexicana on Dl splenic DC 
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Dl cells were plated out for 18 hours with or without lOp.g/ml LPS as a 
maturation stimulus. The cells were harvested, stained for surface DC 
markers and analysed by flow cytometry (see also Winzler et all 997). 
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(Winzler et al. 1997). Dl cells were infected with L. mexicana promastigotes and 

amastigotes and the effect on surface activation markers and cytokine production was 

measured. These cells also provided an in vitro culture system with which to carry out a 

kinetic analysis of gene expression in L. mexicana promastigote- or amastigote-infected 

DC. Finally, culture of immature Dl cells facilitated investigation of long-term infection 

of DC with L. mexicana parasites, in particular, whether the formation of the large 

communal parasitophorous vacuole (PV) characteristic of infected M is induced in 

DC. 

5.2 Infection of Dl cells with L. mexicana Promastigotes 

and Amastigotes 

5.2.1 Characterisation of Infection of Dl cells with L. mexicana 

In order to compare the effect of infection of Dl cells with L. mexicana to the studies 

performed with BM-DC (Chapter 4), Dl cells were incubated for 18 hours with EGFP -

expressing stationary phase L. mexicana promastigotes, axenic amastigotes, or 3 .Ojim 

latex beads at 37°C. The cells were then harvested, washed, fixed, stained for the surface 

markers CD86, MHC II and CD54 and analysed by flow cytometry. 

D 1 cells efficiently internalised the parasites after 18 hours in culture; 48.0±3.7% 

(mean±s.e.m) and 45.4±2.9% of the Dl cells internalised promastigotes and amastigotes 

respectively, (results are taken from five different experiments, see Table 5.1). 

Incubation with L. mexicana promastigotes resulted in more clearly defined EGFP 

populations than were observed with the BM-DC cultures, perhaps due to the relative 

homogeneity of Dl cultures compared to BM-DC. 

Incubation of Dl cells with stationary phase L. mexicana promastigotes induced 

activation of 33.1±5.4% of the cells (Figure 5.2), which was statistically different from 

the non-infected culture (p<O.Ol, based on percentages of activated CD86 cells from 
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Table 5.1: 
Complete FACS Data Showing Infection Levels of Dl DC 
Incubated with L. mexicana Promastigotes or Amastigotes. 

Percentage of EGFP cells 
Promastigotes Amastigotes 

Expt. 1 49.1 43.1 
Expt. 2 50.1 46.1 
Expt. 3 60.0 47.9 
Expt. 4 42.6 54.0 
Expt.5 38.0 36.1 
Expt. 6 37.0  

Mean 48.0 1 45.4 
s.e.m. 3.7 12.9 

Numbers indicate the percentage of EGFP positive cells after incubation of Dl 
DC with EGFP-expressing L. mexicana promastigotes or amastigotes for 18 
hours. 
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Figure 5.2: Infection of Dl Cells with L. mexicana 
EGFP- expressing Promastigotes and 
Amastigotes. 
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five different experiments; statistical analyses on MHC II levels are shown in Table 5.2). 

Unlike BM-DC, the activated population of Dl cells comprised both infected and non-

infected DC, and there was no difference between the EGFP and EGFP cells in the 

cultures (CD86 cells, upper left quadrant versus upper right p0.79). Interestingly, the 

percentage of CD86 and MHC II cells were very similar in these experiments (see 

Table 5.2), indicating that the differential regulation of these markers by low levels of 

activating stimuli did not occur in the Dl cells. Opsonisation of promastigotes with 

mouse complement enhanced neither uptake nor activation of DC (data not shown). The 

data from five independent experiments is presented in Table 5.2. 

Figure 5.2 shows that, as with BM-DC, uptake of L. mexicana amastigotes did not 

induce activation of Dl cells, and that this resembled uptake of latex beads: there was no 

significant difference between the percentage of CD86 hi  cells in non-infected Dl 

cultures compared to cells which had been incubated with L. mexicana amastigotes 

(p=0.21), or latex beads (p0.92); statistical analyses were performed on percentages of 

cells in the upper quadrants of plots from five different experiments (see Table 5.2). 

Moreover, as with the BM-DC cultures, there was no difference between EGFP and 

EGFP cells in amastigote-exposed cultures (p0.86). 

Analysis of cytokine production by infected Dl cells supported the flow cytometric data 

(Figure 5.3A): infection with L. mexicana promastigotes, but not amastigotes or latex 

beads, induced secretion of statistically significant levels of TNFa, but no IL-6 or IL-i P. 
The Dl cultures did not produce IL-12p70, which was expected since CD40 was not 

cross-linked in these experiments (Winzler et al. 1997). IL-10 has been shown to block 

up-regulation of co-stimulatory molecules on DC, and inhibit production of IL-12 

(Steinbrink et al. 1997). Therefore, supernatants from parasite-infected cultures were 

also tested for IL-10 to investigate whether amastigote -induced IL-10 could be 

preventing the activation of infected DC. Both immature and LPS-matured Dl cultures 

produced IL-10 in these experiments (Figure 5.313). No IL-10 was detected in 

promastigote-infected cultures, while low levels, below those seen in the immature non-

infected cultures, were detected in amastigote-infected cultures, and in cultures 
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Numbers indicate the percentage of cells in the upper left (UL) and upper right 
(UR) quadrants for FACS plots of immature Dl DC, or Dl DC incubated with L. 
mexicana amastigotes, promastigotes, or 3.0j.tm latex beads, for 18 hours and 
stained with anti-CD86 or anti-MHC II antibodies. For amastigote- and 
promastigote-infected populations the values in the upper left quadrant 
represent the activated EGFP negative cells and the values in the upper right 
quadrant represent the activated EGFP positive cells. 

CD54 data is not shown because expression of this marker was high in 
immature cells and CD86 and MHC II were thought to provide a more sensitive 
read-out of activation in this system. 

CD86: Immature Dl cells versus promastigotes p<0.01; immature versus 
amastigotes p=0.21; immature versus beads p=0.16; amastigotes versus beads 
p=0.92; promastigotes EGFP versus EGFP p=0.79; amastigotes EGFP 
versus EGFP p=0.86. 

MHC II: Immature Dl cells versus promastigotes p<O.Ol; immature versus 
amastigotes p=0.94; immature versus beads p=0.74; amastigotes versus beads 
p=0.70; promastigotes EGFP versus EGFP p=0.80; amastigotes EGFP 
versus EGFP p=0.64 
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Table 5.2: 
Complete FACS Data Showing Levels of Surface Activation 
Markers on Dl DC Incubated with L. mexicana Parasites or 
Latex Beads. 

CD86 I I 
Immature Amastigotes Promastigotes Beads 
UL UR UL UR UL UR UL 

Expt.1 3.6 0.2 4.0 3.5 21.2 16.6 8.6 
Expt.2 5.9 0.0 3.2 4.9 26.7 22.3 1 9.9 
Expt.3 7.8 0.4 3.7 5.5 10.6 8.0 7.7 
Expt.4 8.2 0.4 6.9 9.0 12.8 23.5 19.8 
Expt.5 12.9 0.8 13.9 11 14.4 9.3 17.5 

Mean 7.7 0.34 6.3 6.8 17.4 15.9 12.7 
s.e.m. 1.5 0.1 2.0 1.4 3.0 3.2 2.5 

MHCII 
Immature Amastigotes Promastigotes Beads 
UL UR UL UR UL UR UL 

Expt.1 17.7 0.8 3.0 1.8 21.4 17.9 9.6 
Expt.2 5.6 0.0 3.7 5.6 23.5 22.0 10.4 
Expt.3 8.0 0.8 4.0 7.2 10.2 11.4 8.3 
Expt.4 14.1 0.4 7.9 10.3 11.5 23.8 17.9 
Expt.5 16.5 1.0 10.6 9.3 11.3 8.2 25.8 

Mean 12.4 0.6 5.8 6.8 15.6 16.7 14.4 
s.e.m. 2.4 0.2 1.5 1.5 2.8 3.0 3.3 



Figure 5.3A: Production of Pro-inflammatory 
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Dl cells were incubated for 18 hours with 10tg/ml LIDS, promastigotes, 
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is 30 pg/nil (dashed line). Values represent concentrations of cytokine in 
supernatants from —1 X105  cells (mean ± s.e.m.). 
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Figure 5.313: IL-10 Secretion is not Induced by 
Infection of Dl Cells with L. mexicana 
Promastigotes or Amastigotes 
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incubated with 3.0Ilm latex beads. Lack of IL- 10 in the amastigotes-infected culture was 

not statistically significant compared to non-infected cultures (p=0.07) (see Figure 

5.3B), due to the large amount of variability in the assay, however, cultures containing 

amastigotes did not produce significantly less IL-lO than cultures containing latex beads 

(p=0.12) indicating uptake of inert particles represses production of IL-10 by Dl cells. 

Therefore, these data suggest that the lack of activation of L. mexicana amastigote-

infected Dl cells is not due to inhibition by IL-10. 

5.5.2 Partially Activated BM-DC do not Become More Sensitive 

to Activation by Promastigotes 

The enhanced activation of Dl cells compared to BM-DC on incubation with L. 

mexicana promastigotes might be explained if the Dl cells were partially activated in 

culture prior to infection with promastigotes as this might render them more sensitive to 

activating stimuli. A difference in basal activation state between Dl cells and BM-DC 

was suggested by the high levels of CD54 expressed by Dl cells versus BM-DC. 

Therefore, the effect of providing low levels of activating stimuli to BM-DC prior to 

infection was investigated in these experiments: BM-DC were "tickled" with sub-

optimal levels of IFNy and LPS for two hours before infection with L. mexicana 

promastigotes. Figures 5.4A and B demonstrate that infection of sub-optimally activated 

BM-DC did not result in increased expression of surface CD86 or MHC II compared to 

non-infected cells. These data therefore suggest that the difference between infection of 

Dl cells and BM-DC does not reflect prior conditioning of the Dl cells to a more 

responsive state. 

The data presented in Figure 5.4A support the data from Chapter 4 (section 4.5) showing 

that activated BM-DC do not contain EGFP parasites. These data suggest either that L. 

mexicana promastigotes suppress activation of DC, or that. the parasites are rapidly 

degraded upon activation of the cells. 



Figure 5.4A: Infection of Sub-Optimally Activated 
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Day 7 BM-DC were incubated for 2 hours with activating stimuli of different 
concentrations before infection with stationary phase L. mexicana 
promastigotes for 18 hours. The cells were then harvested, stained for 
surface expression of CD86 and analysed by flow cytometry. 

Numbers indicate the percentage of activated cells in the labelled quadrants. 
Quadrants were set on immature, non-activated DC. The dot plots are 
representative of the results from two different experiments. 
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Day 7 BM-DC were incubated for 2 hours with activating stimuli of different 
concentrations before infection with stationary phase L. mexicana 
promastigotes for 18 hours. The cells were then harvested, stained for 
surface expression of MHC II and analysed by flow cytometry. 

Numbers indicate the percentage of activated cells in the labelled quadrants. 
Quadrants were set on immature, non-activated cells. The dot plots are 
representative of the results from two different experiments. 
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5.3 Kinetic Characterisation of the Effect of L. mexicana 

Infection on Dl Cells. 

In order to assess whether the data obtained from 18 hour incubation of Dl cells with L. 

mexicana parasites was representative of the effect of the parasites at earlier or later time 

points, as had been suggested by preliminary experiments on BM-DC prior to the work 

presented in Chapter 4, a kinetic analysis was performed to analyse the levels of surface 

activation markers on Dl cells incubated with L. mexicana promastigotes and 

amastigotes for different times. Dl cells were incubated with EGFP-expressing 

stationary phase L. mexicana promastigotes or amastigotes for 4, 8, 18 and 24 hours, 

then washed, fixed and stained. Figures 5.5A, B and C show surface levels of CD86, 

MHC II and CD54 expression respectively throughout the time course, (histograms are 

representative of three different experiments). CD86 and MHC II levels indicate that 

activated cells first become apparent 8 hours after infection with promastigotes, and a 

distinct population is seen by 18 hours. This is less obvious with the cells stained for 

CD54, as Dl cells consistently express very high levels of CD54. Maximal activation by 

promastigotes is seen by 18 hours post-infection, but this never reaches levels induced 

by LPS, and is not sufficient to activate the whole population. In contrast, L. mexicana 

amastigote-infected cultures always resemble the non-infected controls. At 18 hours 

post-infection MHC II levels on the amastigote- infected culture appeared below levels 

on the non-infected cells in the experiment shown, however this trend was not repeated 

in later experiments (see Appendix B). Therefore, these data confirmed that L. mexicana 

amastigotes did not activate Dl cells, and that maximal activation on incubation with 

promastigotes appears to be reached by 18 hours. Based on this time course, Dl cells 

were infected, harvested at different times and the RNA extracted for a kinetic analysis 

of the effect of infection with L. mexicana parasites on global gene transcription in Dl 

cells (see Appendix B). 
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Dl cells were infected with L. mexicana promastigotes, amastigotes or 
activated with 1 Ogg/ml LIPS, for the times indicated. Cells were then 
harvested, fixed and stained for the surface activation marker CD86. 
Histograms show non-infected Dl cells (thin lines) and cells incubated with 
LPS or Leishmania parasites (thick lines). 

These results are representative of 2 separate experiments. Numbers 
represent the percentage of activated cells based on the marker set on LPS-
activated cells at 24 hours. 

4 



Figure 5.513: Kinetic Analysis of MHC II Expression on 
L. mexicana Promastigote and Amastigote-
infected Dl Cells 
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Dl cells were infected with L. mexicana promastigotes, amastigotes or 
activated with 1 Ogg/ml LIPS, for the times indicated. Cells were then 
harvested, fixed and stained for surface MHC II. Histograms show non-
infected Dl cells (thin lines) and cells incubated with LIPS or Leishmania 
parasites (thick lines). 

These results are representative of 2 separate experiments. Numbers 
represent the percentage of activated cells based on the marker set on LPS-
activated cells at 24 hours. 



Figure 5.5C: Kinetic analysis of CD54 expression on 
L. mexicana Promastigote and Amastigote-
infected Dl Cells 
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Dl cells were infected with L. mexicana promastigotes and amastigotes, or 
activated with 1 Oig/ml LPS, for the times indicated. Cells were then 
harvested, fixed, stained for the surface activation marker CD54 and 
analysed by flow cytometry. 

Histograms show non-infected Dl cells (thin lines) and cells incubated with 
LPS or Leishmania parasites (thick lines). 

These results are representative of 2 separate experiments. Numbers 
represent the percentage of activated cells based on the marker set on LPS-
activated cells at 24 hours. 
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5.4 Characterisation of long-term infection of Dl cells 

with L. mexicana 

Infection of MCI) by L. mexicana is characterised by the formation of a large 

phagolysosome known as the PV, which is clearly visible 48 hours after infection. 

Fusion of Leishman ia-containing vesicles with other MCII endocytic compartments 

begins to occur within the first 12 hours of infection, while the parasites are still at the 

promastigote stage (Courret et al. 2001). Upon transformation, L. mexicana amastigotes 

secrete large amounts of a proteophosphoglycan (aPPG), which induces expansion of the 

compartment to a large communal PV (Peters et al. 1997). Long-term culture of Dl cells 

was used to investigate whether DC could also support chronic infection with 

Leishmania parasites, characterised by formation of a communal PV. 

5.4.1 Effect of Long-term Infection on the Viability of Dl Cells 

Dl cells were infected with EGFP-expressing L. mexicana promastigotes or amastigotes 

and cultured at 34°C for up to 96 hours. Cells were harvested at the time points indicated 

and stained with propidium iodide (P1) to assess viability. Figure 5.6 shows that 

throughout the 96 hour period of the experiment, there were few P1 positive cells in 

either the infected or non-infected populations, and that the number of EGFP PI cells 

never exceeded 4% of the population. The percentage of promastigote- infected cells 

stayed fairly constant throughout the experiment, whereas the percentage of amastigote-

infected cells decreased to approximately half the value at 24 hours. This observation 

may be due to killing of intracellular parasites by Dl cells, or may be the result of inter-

sample variation in the experiment. The presence of an EGFP positive population at 96 

hours post-infection with promastigotes or amastigotes supports that fact that 

Leishmania remain viable within DC, since EGFP is rapidly lost upon parasite death (T. 

Aebischer personal communication). Therefore these data show that DC are permissive 

for long-term infection with L. mexicana parasites, and that both the DC and the 

parasites remain viable. 



Figure 5.6: Dl Cells Support Long-term Infection with L. mexicana Parasites 
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Dl cells were incubated with EGFP-expressing L. mexicana promastigotes or amastigotes at 34 2C for the times indicated. 
Cells were then harvested and stained with propidium iodide (P1) to identify dead cells by flow cytometry. 

Numbers represent the percentage of cells in the respective quadrants. These results are from a single experiment. 
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Infected cultures were also stained for surface CD86 to follow the activation status of 

infected DC over the time course. Figure 5.7 shows that there is some spontaneous 

maturation in all three samples by 96 hours, but amastigote-infected cells always have 

surface levels of CD86 that are more similar to the non-infected cells than the 

promastigote-infected cells. Maximal activation by promastigotes occurs within the first 

24 hours and numerically, based on percentages in the upper left and right quadrants, 

does not increase beyond this. It is interesting to note, however, that at 24 and 48 hours, 

the cells expressing the highest levels of CD86 are EGFP but that as the experiment 

progresses the EGFP cells express increasingly higher levels of CD86. This implies a 

slight retardation of activation of cells containing intact promastigotes. This experiment 

must be repeated to ascertain whether this observation is significant, but the trend was 

consistent in cells stained for MHC II during the same experiment (data not shown). 

5.4.2 Characterisation of PV Formation in Infected Dl Cells 

In order to investigate whether communal PV formed in infected DC, the Dl cells were 

infected for 72 hours at 34°C, harvested and fixed onto poly-L-lysine-coated coverslips 

for examination by confocal microscopy (coverslips were coated with 0.5mg/mi poly-L-

lysine (Sigma), washed with 1120 and air dried). Data were kindly collected by A. 

Misslitz and T. Aebischer, Berlin. At 72 hours infection is well established in Mc1  and 

large PV containing multiple parasites are clearly visible (Alexander and Russell 1992; 

Antoine etal. 1998) (see also Figure 5.8). Figure 5.9 shows Dl cells infected for 24 or 

72 hours with EGFP-expressing promastigotes. Infected DC were not easily identified 

by phase contrast microscopy alone, however fluorescence microscopy revealed that 

EGFP parasites were contained within the cells. Communal PV were virtually never 

seen in promastigote-infected DC: 77 out of 186 cells examined contained 

promastigotes; in only 10 of these the parasites appeared to be contained within 

individual vacuoles while parasites in the remaining infected cells were not clearly 

bound by a membrane; in one cell three parasites appeared to be contained within a 

single vacuole (see Figure 5.9, arrow). Figure 5.10 illustrates that amastigote-infected 
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Figure 5.8: PV Formation in L. mexicana-Infected M 
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Confocal image showing PV development in a bone marrow-derived M that 
has been infected with EGFP-expressing L. mexicana promastigotes for 72 
hours in vitro. Kindly provided by A. Misslitz and T. Aebischer, Berlin. 
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Dl cells were incubated with EGFP-expressing L. mexicana promastigotes at 
34°C for different times. Cells were then fixed onto coverslips and analysed 
by confocal microscopy. Images are individual sections through cells and are 
representative of all images captured. Images were captured using a X63 
objective. 

The arrow points to a potential vacuole containing three parasites. 
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Dl cells also did not develop the large PV seen in MT: of the 157 cells screened from 

amastigote-infected cultures, 79 were infected and of these only 6 of the cells contained 

parasites that appeared to be within small individual vacuoles. Vacuoles were not seen in 

cells that had been incubated with amastigotes for less than 72 hours. Therefore, these 

data indicate that although promastigotes and amastigotes are viable within Dl cells, 

infection of Dl DC by L. mexicana parasites in vitro does not induce formation of the 

large PV characteristic of infected M. 

5.5 Discussion 

5.5.1 L. mexicana Promastigotes but not Amastigotes Activate a 

Percentage of Dl Cells upon Infection 

The data presented in this chapter indicate that uptake of L. mexicana amastigotes does 

not trigger activation of Dl cells. This supports the idea developed in Chapter 4 that 

amastigotes use receptors for entry into DC that do not trigger classical activation upon 

ligation. Incubation with amastigotes did not induce production of the anti-inflammatory 

cytokine, IL- 10, and in fact appeared to repress it, indicating that L. mexicana 

amastigotes do not inhibit activation of DC via production of IL- 10. 

Uptake of intact L. mexicana promastigotes, as with BM-DC, only activated a proportion 

of the Dl cell population. These results, however, differed from the BM-DC results 

presented in Chapter 4 in two ways; approximately two fold more Dl cells were 

activated, which represented a discrete population of cells, and activated Dl cells 

included both EGFP and EGFP cells. 
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The apparent increased sensitivity of Dl cells to promastigote-derived activating stimuli 

may reflect genetic differences in the origins of Dl cells (C57BL/6) compared to the 

BM-DC (CBA) used in Chapter 4. However, infection of BM-DC from C5713L16 mice 

with promastigotes did not result in an increase in the percentage of activated cells, 

indicating that this difference was not responsible for this observation (data not shown). 

It was hypothesised that Dl DC were partially activated in culture and that this would 

synergise with promastigote-derived signals. "Tickling" of BM-DC with low levels of 

IFNy and LPS prior to infection with promastigotes did not, however, increase activation 

of these cells indicating that the differences between Dl cells and BM-DC are more 

fundamental than this, indeed, the observation that CD86 and MHC II surface 

expression levels are not differentially regulated in Dl cells, as they appeared to be 

under some circumstances in BM-DC, supports the notion that there may be inherent 

differences between these two DC cultures. 

Activation of Dl cells by stimuli such as LPS or TNFa induces a synchronous shift of 

surface marker expression in the population (Winzler et al. 1997). Activated DC are 

induced to secrete TNFa, which will activate other cells in the culture by a positive 

feedback loop. Therefore, it was surprising that incubation with promastigotes only 

activated a percentage of Dl cells. These data indicate that L. mexicana promastigotes 

induce only low levels of TNFa secretion, suggesting that they encode only a weak 

activating stimulus, which does not induce sufficient levels of TNFa to activate other 

cells in the culture. In future work, this hypothesis could be tested by addition of 

equivalent amounts of TNFa to Dl cultures to that produced by promastigote-infected 

cultures (411±61.3pg/ml). It is likely, however, that this would induce a small, but 

synchronous shift in the culture and would not be the reason why promastigotes only 

activate a proportion of Dl cells. Therefore, activation of only a percentage of Dl cells 

by promastigotes is most probably due to heterogeneity in the Dl cell culture such that 

only a fraction of the cells are susceptible to promastigote-derived activation signals. 

The observation that the fraction of Dl cells activated by L. mexicana promastigotes 

contained both EGFP positive and negative cells indicates that metabolically active L. 
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mexicana promastigotes do activate Dl cells. These data suggest that BM-DC or Dl 

cells are activated upon uptake of intact parasites, but while they become rapidly 

degraded in BM-DC, Dl cells are less able to kill intracellular parasites. This is 

supported by the observation that EGFP populations were always more defined in 

promastigote-infected Dl cells compared to BM-DC, and by the data presented in Figure 

5 .4A which demonstrate that activated cells in BM-DC cultures incubated with TNFa or 

IFNy are EGFP. 

Kinetic characterisation of the effect of infection on Dl cells confirmed that these cells 

are not activated upon infection with L. mexicana amastigotes, since they remain 

immature throughout the experiment. Activation induced by L. mexicana promastigotes 

was first seen by 8 hours post-infection and this increased throughout the time course, 

reaching a maximum at 24 hours. This kinetic analysis of infection was extended by 

investigating the effects of Leishmania infection at the level of transcription (see 

Appendix B). The data from this experiment, however, awaits in depth analysis, and is 

only summarised in this thesis. 

5.5.2 Characterisation of Long-term Infection of Dl cells with L. 

mexicana 

MI infected with L. mexicana can be cultured in vitro for over a week, during which 

time a chronic infection is established. Large communal PV, in which amastigotes 

persist, are clearly seen by 48 hours post-infection (Courret et al. 2001). The data 

presented here demonstrate that Dl cells internalise L. mexicana, and that the parasites 

persist within the cells. However, large communal PV do not develop. Instead, Dl DC 

appear to contain intracellular promastigotes or amastigotes, which are retained within 

small individual vacuoles that do not expand during infection. This supports the work by 

Konecny et al (Konecny et al. 1999) who also did not see formation of classic PV in 

splenic DC incubated with L. major promastigotes for 24 hours. 
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An in vivo analysis has shown that communal PV do form in infected DC in the LN of 

mice infected with L. mexicana for one year, but that these are consistently smaller than 

in infected MCI (T. Aebischer personal communication). Confocal analysis of optical 

sections confirmed that the discrepancy between the results obtained in vitro and in vivo 

was not due to the fact that MCI) are firmly adherent to tissue culture plates whereas DC 

are only semi-adherent and tend to be more rounded. Thus, by light microscopy the PV 

would appear to take up more room in the flattened MCI than in cultured DC in vitro. 

The limited expansion of PV could be envisaged to be due to inhibition of fusion of the 

phagosome with host endocytic compartments or slower kinetics of PV formation in DC 

compared to MCI. If the latter hypothesis was correct larger PV might be expected to 

form if the infected DC were cultured longer. This might therefore account for the fact 

that communal vacuoles were not seen after 72 hour infection in vitro, but were seen in 

mice which had been infected for one year. However, it is not possible distinguish 

between long-term infected DC and those which have recently taken up parasites 

released from neighbouring cells in vivo. Therefore, in order to test this hypothesis Dl 

cultures need to be infected for extended periods in vitro to ascertain whether communal 

PV can eventually establish in these cells. If these experiments demonstrate inhibition of 

PV development by DC, important consequences for the survival/growth of the parasite 

and also for the trafficking of parasite antigens through host MHC II processing and 

presentation pathways could be inferred. The experiments reported in Chapter 4 (section 

4.8) however, demonstrate that infected DC are fully functional in their ability to process 

and present exogenous antigen to T cells. This strongly suggests that the formation of a 

PV in MCI but not DC may play a critical role in the differential ability of these antigen 

presenting cells to efficiently process and present parasite antigens to T cells. 
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5.6 Concluding remarks 

Dl cells provide a unique and versatile DC culture with which to dissect the interaction 

between DC and Leishmania parasites. The data presented in this chapter reinforce the 

observation that uptake of L. mexicana amastigotes per se does not classically activate 

DC. However, unlike BM-DC, some activated Dl cells containing intact L. mexicana 

promastigotes were observed. This indicates that promastigotes do encode a weak 

activating stimulus but that the Dl cell population is heterogeneous in its ability to 

respond to this signal, and that this stimulus is not strong enough to induce a 

synchronous activation of the entire Dl population as detected by flow cytometry. 

Differences between the sensitivity of Dl cells and BM-DC to this activating stimulus 

cannot be wholly ascribed to the activation status of the cells, or to genetic differences, 

indicating that more fundamental differences exist between these in vitro DC cultures. 

Finally, characterisation of long-term infection of Dl cells supported the hypothesis that 

L. mexciana parasites do not establish a chronic infection in DC since large communal 

PV characteristic of infected M1 did not form in these cells in vitro. This observation 

has important implications in the role of DC as hosts for Leishmania parasites, and also 

in the efficiency with which infected DC can process and present parasite-derived 

antigens for the activation of an appropriate anti-Leishmania CD4 T cell response. 
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Chapter 6: 

The role of L. mexicana LPG as a Protozoan PAMP 

6.1 Introduction 

The experiments described in Chapters 4 and 5 demonstrate that around 15% or 33% of 

BM-DC or Dl cells respectively are activated upon incubation with L. mexicana 

promastigotes, but that L. mexicana amastigotes do not activate these cells. These results 

suggest that L. mexicana promastigotes encode a PAMP that induces activation of those 

DC bearing the relevant pattern receptor. The experiments described in this chapter 

aimed to identify this promastigote-derived PAMP via a "candidate molecule" approach. 

6.2 Incubation of DC with L. major Promastigotes 

Initial experiments were performed in which both BM-DC and Dl cultures were 

infected with L. major promastigotes, since the results from these experiments would 

indicate whether the activating molecule was conserved between different Leishmania 

species. EGFP-expressing L. major promastigotes (kindly provided by T. Aebischer; 

(Misslitz et al. 2000)) were used for these experiments, to facilitate visualisation of 

infected DC. L. major promastigotes were transformed from amastigotes freshly isolated 

from mouse lymph nodes, and passaged once in vitro before use to remove contaminants 

associated with purification. Stationary phase metacyclic promastigotes were then 

incubated with BM-DC and Dl cells, as described in Chapters 4 and 5. 

L. major promastigotes were efficiently taken up by both BM-DC and Dl cells; 

40.1±10.1% of BM-DC, and 47.6±4.2% of Dl cells were EGFP after 18 hours of 
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culture with L. major promastigotes (percentages are averages from four different 

experiments (mean ±s.e.m.), see Table 6.1). Incubation of BM-DC with L. major 

promastigotes resulted in the presence of a distinct EGFP population, thus differing 

from infection with L. mexicana promastigotes where the parasite-infected DC did not 

form such a clear population (Figure 6.1A compared to Figure 4.4). This observation 

may reflect a differential ability of L. major rather than L. mexicana promastigotes to 

survive in BM-DC in culture, or might be due to the fact that L. major promastigotes 

survive for longer at 37°C than L. mexicana promastigotes (T. Aebischer personal 

communication). 

Uptake of L. major promastigotes did not activate BM-DC; expression of the surface 

markers CD86, MHC II and CD54 remained intermediate in both the EGFF and EGFP 

populations of BM-DC (Figure 6. 1A). The activation status of L. major-infected BM-

DC cultures reflected that of non-infected cultures or L. mexicana amastigote-infected 

cultures (see Figure 4.6), and the small percentage of activated cells characteristic of 

BM-DC infected with L. mexicana promastigotes was not seen (non-infected culture 

versus L. major-infected cultures p0.90, percentages calculated from activated CD86 

cells from four different experiments; for statistical analyses of MHC II levels see Table 

6.2). These experiments also reinforced the observation made in Chapter 4 that surface 

levels of CD86 and MHC II are differentially regulated upon infection of BM-DC with 

Leishmania parasites; EGFP cells expressed significantly higher levels of CD86 than 

EGFP cells within the same sample (p0.04), whereas EGFP and EGFP cells did not 

express significantly different levels of MHC II (p011, see Table 6.2). 

During an initial experiment up-take of L. major promastigotes also did not activate Dl 

cells (Figure 6.1B). However, although this experiment was repeated, spontaneous 

activation of Dl cells in control cultures made the data unusable. Despite this, Dl cells 

incubated with L. major promastigotes were not induced to secrete the cytokines TNFa, 

IL-6, or IL-1 (Figure 6.2), even in cultures in which the 'immature' Dl cells had 

spontaneously activated; supernatants from L. major-infected cultures contained 
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Table 6.1: 
Complete FACS Data for Infection Levels of DC Incubated with 
L. major Promastigotes. 

Percentage of EGFP cells 
BM-DC Dl cells 

Expt. 1 22.2 43.2 
Expt. 2 37.3 57.6 
Expt. 3 69.0 51.1 
Expt. 4 32.0 38.5 

Mean 40.1 47.6 
s.e.m. 10.1 4.2 

Numbers indicate the percentage of EGFP-positive cells after incubation of day 
7 BM-DC or Dl cells with EGFP-expressing L. major promastigotes for 18 
hours. 
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EGFP 

BM-DC were incubated for 18 hours with EGFP-expressing stationary phase 
L. major promastigotes. Cells were harvested, fixed, stained for surface 
activation markers and analysed by flow cytometry. 

Numbers represent the percentage of cells in the respective quadrants. FACS 
plots are representative of 4 separate experiments. 
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Dl cells were incubated for 18 hours with EGFP-expressing stationary phase 
L. major promastigotes. Cells were harvested, fixed, stained for surface 
activation markers and analysed by flow cytometry. 

Numbers represent the percentage of cells in the respective quadrants. 
These data are representative of a single experiment. 
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Table 6.2: 
Complete FACS Data for Infection of BM-DC with L. major 
Promastigotes. 

CD86 1 - 

- 

MHC 
II ___ 

Immature Promastigotes  Immature Promastigotes  
UL HR UL HR  UL HR UL HR 
4.3 0.2 3.1 0.4  8.6 0.8 6.7 1.5 

pt.2 4.8 0.0 6.7 1.9  11.1 0.0 7.6 3.6 1 pt.l 

pt.3 5.8 0.4 2.1 0.2  8.0 0.8 2.1 1.5 
pt.4 3.0 0.4 3.5 1.8  3.0 0.4 1 2.5 0.9 

Mean 4.5 0.3 3.9 1.1  7.7 0.5 1 4.7 1.5 
s.e.m. 0.6 10.1 1.0 0.5  1.7 0.2 11.4 0.6 

Numbers indicate the percentage of cells in the upper left (UL) and upper right 
(U R) quadrants for FACS plots of BM-DC incubated with L. major promastigotes 
for 18 hours. Cells were harvested, fixed, stained with anti LCD86 or anti-MHC II 
antibodies and analysed by flow cytometry. For promastigote-infected 
populations the values in the upper left quadrant represent the activated EGFP 
negative cells and the values in the upper right quadrant represent the activated 
EGFP positive cells. 

CD86: Immature BM-DC versus L. major promastigotes p=0.90; L. major 
promastigotes EGFP versus EGFP p=0.04. 

MHC II: Immature BM-DC versus L. major promastigotes p0.55; L. major 
promastigotes EGFP versus EGFP p=0.11. 
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Dl cells were incubated for 18 hours with 1 Otg/mI LPS, L. mexicana or L. 
major stationary phase promastigotes. Supernatants (n=3) were assayed by 
ELISA for the presence of TNFa, IL-6 and IL-1 P . The sensitivity limit of these 
assays was 30 pg/mI (dashed line). Values represent the concentrations from 
the supernatant of - 1X1 0 cells (mean ± s.e.m.). 

*TNFu: L. mexicana promastigotes versus L. major promastigotes: p = 0.01 
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significantly less TNFa than those from Dl cells incubated with L. mexicana 

promastigotes (J=O.Ol, see Figure 6.2). 

The FACS plots presented in Figure 6.1 A indicate that EGFP cells expressed lower 

levels of CD86 and CD54 than the non-infected EGFP cells. In order to investigate 

whether L. major promastigotes were suppressing activation of DC, BM-DC were 

infected for 18 hours with stationary phase promastigotes and then activated for 3 hours 

with low levels of TNFa (10 ng/ml) or IFNy (10 U/ml). The FACS plots presented in 

Figure 6.3 are representative of two different experiments. Numerically, based on 

percentages of cells in the upper two quadrants, infection does not appear to suppress 

activation with IFNy or TNFa. However, EGFP cells consistently appear to express 

lower levels of CD86 and CD54 than the EGFF cells. These data therefore suggest that 

infection with L. major promastigotes does retard activation of BM-DC with low levels 

of activating stimuli. Alternatively, however, these data may support the idea proposed 

for infection of BM-DC with L. mexicana promastigotes, that the parasites are more 

rapidly degraded in infected cells, so that the activated cells are consistently negative for 

EGFP. This idea is discussed further in Chapter 7. 

6.3 Identification of L. mexicana LPG as a Leishmania 

PAMP 

6.3.1 Introduction to LPG 

The surface of Leishmania promastigotes is dominated by the glycoconjugate, 

lipophosphoglycan (LPG), which forms a thick glycocaix around the entire surface of 

the parasite, including the flagellum (Turco and Descoteaux 1992). The LPG of all 

Leishmania species is comprised of four domains (Figure 6.4): a phosphatidylinositol 

lipid anchor attached to the plasma membrane; a hexasaccharide glycan core; a 

phosphoglycan domain and a neutral cap consisting of galactose and mannose residues. 
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Numbers represent the percentage of cells in the respective quadrants. FACS 
plots are representative of 2 different experiments. 
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Differences between species arise in substitutions made to the phosphoglycan core; in L. 

mexicana promastigotés approximately 25% of the galactose molecules are substituted 

on the third position with glucose molecules (Ilg et al. 1992), whereas in L. major 87% 

of the galactose molecules are substituted with different side chains. These substitutions 

include galactose molecules, linear saccharide chains, or, in metacyclic promastigotes, 

arabinose molecules (McConville et al. 1990; Sacks et al. 1 990).These side chains are 

exposed in the folded LPG molecule and would be accessible for interactions with 

different host cell receptors (McConville and Ferguson 1993). Transformation from non-

infective promastigotes in the sandfly gut to infective metacyclics is associated with a 

doubling in size of the LPG molecule due to an increase in the number of phosphoglycan 

repeat units, resulting in a thickening of the surface glycocalyx (Sacks et al. 1990). L. 

major promastigotes bind to the insect midgut epithelial cells via 3-galactose residues 

terminating the LPG side chains. Metacyclogensis results in the production of LPG 

molecules, in which these terminal residues are replaced by a-arabinose, leading to 

release of the parasites and migration of the now virulent forms to the mouthparts of the 

sandfly (Pimenta et al. 1992). The importance of LPG for midgut attachment was 

demonstrated. definitively using LPG knock-out promastigotes, which were lost from the 

sandfly with excretion of the blood meal (Sacks etal. 2000). 

Within the host the thickened LPG glyocalyx of metacyclic promastigotes probably 

protects them from complement-mediated lysis (Puentes et al. 1988) and masks other 

surface components from recognition by host opsonising antibodies (Karp etal. 1991). It 

may also mediate direct binding of parasites to MCI) (Handman and Goding 1985; 

Talamas-Rohana et al. 1990). Once in the cell LPG plays a number of roles in protecting 

the parasites until they have transformed into amastigotes, which are better adapted for 

intracellular survival: LPG protects Leishmania from oxidative attack (Chan et al. 

1989); fusion of the phagosome with host endsomal compartments containing 

proteolytic enzymes is inhibited by LPG (Dermine et al. 2000); and expression of NOS, 

IL- 12 and IL-i P can be down-regulated in a LPG-dependent manner (Hatzigeorgiou et 

al. 1996; Proudfoot etal. 1996; Piedrafita et al. 1999). The latter may be partly due to 

inhibition of protein kinase C by LPG (Descoteaux et al. 1992; Giorgione et al. 1996) 
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and the consequent disruption of a number of signal transduction pathways. LPG may 

also have an anti-inflammatory effect upon infection since it has been shown to inhibit 

monocyte migration and responses to chemotactic factors (Lo et al. 1998). 

The multifunctional role of LPG in promoting promastigote survival lead to the 

assumption that it was a key Leishmania virulence factor. This was supported by 

naturally occurring LPG mutants (Handman et al. 1986) or mutants generated by 

mutagenesis screens (Elhay et al. 1990) which were no longer able to survive in M. 

However, Leishmania promastigotes express a number of related phosphoglycans on 

their surface (McConville and Ferguson 1993) which share common epitopes with LPG 

(Jig ci' al. 1991) and which may also be mutated in these screens. The recent generation 

of LPG-specific knock-outs has, however, not clarified the issue: LPG mutants were 

independently generated by knocking out the -galactofuranosyl transferase (lpgl) gene 

which is specifically involved in modifying the LPG glycan core, thus leaving intact 

other proteoglycan synthesis pathways (Ilg 2000; Spath et al. 2000). Ilg (Jig 2000) 

demonstrated that L. mexicana promastigotes lacking LPG were unimpaired in their 

ability to infect, and survive in, M1. These parasites were as virulent, if not more so, as 

wild type promastigotes in vivo. However, while Spath et a! (Spath et al. 2000) agreed 

that LPG' L. major promastigotes were efficiently taken up by M1 in the presence of 

Complement, they reported decreased intracellular survival of LPG --  which 

were approximately one hundred times less virulent than wild-type promastigotes in 

vivo. The differences between the results published by these two groups may reflect 

differences in the relative importance of LPG for amastigotes of different Leishmania 

species; L. major but not L. mexicana amastigotes express low levels of LPG (Turco and 

Sacks 1991; Bahr et al. 1993) that may play a role in their intracellular survival. 

Therefore it follows that loss of L. major amastigote-expression of LPG may explain the 

decreased survival of L. major parasites in vivo. 

The data presented in section 6.2 indicated that activation of a percentage of DC in vitro 

was due to an interaction with a L. mexicana promastigote molecule that was not 

structurally conserved between L. major promastigotes. Since activated Dl cells were 
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shown to contain intact EGFP parasites (Chapter 5), it was likely that this molecule was 

expressed on the surface or was secreted by the parasites. LPG was therefore an 

attractive candidate for the L. mexicana promastigote PAMP. The hypothesis was 

proposed that pattern receptors expressed by a fraction of DC in BM-DC or Dl cell 

cultures recognise components of the metacyclic L. mexicana LPG molecule, but that 

the more complicated substitutions to metacyclic L. major LPG render these components 

inaccessible to DC receptors. In order to address this hypothesis, BM-DC were 

incubated with L. mexicana LPG' promastigotes in vitro. 

6.3.2 Internalisation of LPG Promastigotes by BM-DC 

Two independent clones of LPG mutants which had been generated by targeted deletion 

of the lpgl gene (hg 2000), and were kindly provided by T. hg, Tubingen, were used to 

infect BM-DC. These parasites lack LPG, but display abundant non-LPG 

phosphoglycans on their surface (Jig 2000). The results from both clones were identical, 

and data from only one of the clones, I/81), is presented in this chapter. 

LPG has been shown in a number of studies to mediate Complement-independent uptake 

of promastigotes by MCI) (Handman and Goding 1985; Talamas-Rohana et al. 1990). 

Studies using L. mexicana LPG parasites reported no impairment in the ability of these 

parasites to be taken up by MCI (Jig 2000), however it was important to confirm that DC 

efficiently internalised LPG --  Day 7 BM-DC were incubated with L. 

mexicana LPG' or wild type promastigotes for 18 hours. Cells were then harvested, 

fixed, permeablised, stained with an anti-parasite serum and analysed by flow 

cytometry. Some non-permeabilised cells were positive with the anti-parasite serum 

(16.8±2.1%) indicating the attachment of some parasites to the surface of the cells, 

however permeabilisation of cells prior to incubation with the anti-parasite serum 

showed that the majority of the parasites were intracellular (Figure 6.5), and that 
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41.6±2.5% of the cells were infected (average from four different experiments, see Table 

6.3). 

6.3.3 Incubation of DC with L. mexicana LPG Promastigotes 

To investigate whether uptake of LPG -- 	activated BM-DC in vitro, BM- 

DC were incubated with L. mexicana LPG' promastigotes for 18 hours, harvested, 

fixed, and stained for surface activation markers before being permeabilised and stained 

with the anti-parasite serum to identify infected cells by flow cytometry. Infection of 

BM-DC with LPG' promastigotes did not induce up-regulation of the surface markers 

CD86, MHC II or CD54 (Figure 6.6). Co-staining of BM-DC with the anti-parasite 

serum and antibodies against CD86, MHC II or CD54 demonstrated that both the 

infected and non-infected populations retained low levels of the surface activation 

markers tested. Interestingly, as with the L. major data in section 6.2, the lack of up-

regulation of surface markers was more apparent with CD86 expression than MHC II. 

(Figure 6.6; Table 6.4). These data indicate that L. mexicana promastigotes lacking LPG 

no longer activate BM-DC (percentage of CD86 11 cells in BM-DC cultures versus LPG' 

cultures p0.50 ;  L. mexicana wild type versus LPG--  p0.06, see Table 

6.4). 

The effect of uptake of LPG -- 	was also examined in Dl cells. Figure 6.7A 

shows that incubation of Dl cells with LPG promastigotes did not result in the up-

regulation of the surface markers CD86, MHC II and CD54 seen on approximately 33% 

of the cells upon incubation with wild-type EGFP-expressing promastigotes, confirming 

the results from the BM-DC experiments (wild type EGFP-expressing promastigote-

infected culture versus LPG --  p0.04; value based on percentage of 

activated CD86 cells from five different experiments, see Table 6.4). It should be noted 

that infected and non-infected Dl cells were not distinguished in experiments using 

LPG' promastigotes. 
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Table 63: 
Complete FACS Data for Infection Levels of BM-DC Incubated 
with L. mexicana LPG Promastigotes. 

Percentage of cells stained with 
the anti-parasite serum 
Permeabilised Surface 

Expt. 1 35.0 18.8 
Expt. 2 46.7 14.7 
Expt. 3 43.6  
Expt.4 41.1  

Mean 41.6 16.8 
s.e.m. 2.5  

Numbers indicate the percentage of cells stained with the anti-parasite serum in 
BM-DC cultures incubated with L. mexicana LPG--  for 18 hours. 
Cells were harvested, fixed, stained with or without permeabilisation to 
distinguish between surface-bound and intracellular parasites and analysed by 
flow cytometry. 
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BM-DC were incubated with stationary phase wild-type or LPG' L. mexicana 
promastigotes for 18 hours. Cells were harvested, fixed, stained for surface 
activation markers then permeablised and stained with an anti-parasite 
serum. Cells were then analysed by flow cytometry. 

Numbers represent the percentage of cells in the respective quadrants. FAGS 
plots are representative of plots from 4 different experiments. 



Numbers indicate the percentage of cells in the upper left (UL) and upper right 
(UR) quadrants for FACS plots of immature BM-DC and Dl DC, or BM-DC and 
Dl DC incubated with L. mexicana LPG' promastigotes for 18 hours. Cells were 
harvested, fixed, stained with anti-CD86 or anti-MHC II antibodies, then 
permeabilised and incubated with anti-parasite serum followed by the 
appropriate FITC-conjugated secondary. Cells were then analysed by flow 
cytometry. For promastigote-infected populations the values in the upper left 
quadrant represent the activated serum negative cells and the values in the 
upper right quadrant represent the activated serum positive cells. 

CD86: Immature BM-DC versus LPG'p=0.50; wild type promastigotes 
versus LPG p=0.06. 
MHC II: Immature BM-DC versus LPG' p=0.54; wild type promastigotes 
versus LPG' p=0.03. 

CD86: Immature Dl cells versus LPG'p=0.13; wild type promastigotes 
versus LPG p=0.04 
MHC II: Immature BM-DC versus LPG' p=0.09; wild type promastigotes 
versus LPG' p=0.07. 



Table 6.4: Complete FACS data for infection of DC with L. mexicana LPG--  

BM-DC 

CD86 - 

- 

MHC 

Immature WT prom. LPG' prom.  Immature WT prom. LPG' prom. 

UL HR UL UR UL HR UL UR UL UR UL UR 

Expt.1 6.2 0.0 12.4 2.4 9.0 3.0  10.1 0.0 17.0 6.4 9.8 3.3 

Expt.2 11.0 0.0 43.2 8.1 6.4 2.1  16.8 0.0 24.8 6.5 9.0 6.4 

Expt.3 9.3 0.0 35.5 2.5 6.2 1.1  13.9 0.0 32.5 7.2 15.3 2.7 

Expt.4 6.0 0.0 12.5 3.0 7.5 1.7  9.6 0.0 14.2 4.0 5.6 4.5 

Mean 8.1 0.0 25.9 4.0 7.3 2.0  12.6 0.0 .22.1 4.8 9.9 4.2 

s.e.m. 1.2 0.0 7.9 1.4 0.7 0.4  1.7 0.0 4.1 0.7 2.0 0.8 

Dl cells 

CD86 - 

- 

MHC 

Immature EGFP prom. LPG--   Immature EGFP prom. LPG' prom. 

UL UR UL HR UL HR  UL HR UL HR UL HR 

Expt.1 3.6 0.2 21.2 16.6 13.0 0.3  17.7 0.8 21.4 17.9 25.3 0.2 

Expt.2 5.9 0.0 26.7 22.3 11.4 0.0  5.6 0.0 23.5 22.0 14.5 0.1 

Expt.3 12.9 0.8 14.4 9.3 22.6 0.6  16.5 1.0 11.3 8.2 22.8 0.8 

Expt.4 1 	16.9 0.2 40.3 18.6 28.6 0.0  16.0 0.3 31.7 14.8 27.2 1 0.0 

Mean 9.8 0.3 25.7 16.7 18.9 0.2  14.0 0.5 22.0 15.7 22.5 0.2 

s.e.m. 3.1 0.2 5.5 2.7 4.1 0.1  2.8 0.2 4.2 2.9 2.8 0.3 

w 
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The lack of activation of DC on incubation with LPG -- 	was confirmed by 

analysing TNFa production in infected Dl cell cultures, since this cytokine had been 

induced on incubation with wild type promastigotes (Figure 5.3); incubation with LPG' 

promastigotes did not induce TNFa production by Dl cells (Figure 6.7B); wild type 

promastigotes versus LPG --  p=0.03. 

6.3.4 Incubation of BM-DC with Purified LPG 

In order to determine whether LPG itself could activate DC in vitro, BM-DC were 

incubated with purified L. mexicana or L. major LPG (kindly provided by T. Jig, 

Tubingen), for 18 hours, harvested, stained for surface activation markers and analysed 

by flow cytometry. LPG' parasites were also incubated with purified L. mexicana LPG 

to test whether this was sufficient to restore the activation of 15% of the cells seen on 

incubation with wild type promastigotes. 

Simultaneous incubation of LPG -/- promastigotes and 1 0j.tg/ml L. mexicana—derived 

LPG with BM-DC restored activation of BM-DC to levels seen on infection with wild 

type L. mexicana promastigotes (Figure 6.8; wild type promastigotes versus LPG' 

promastigotes with 10pg/m1 LPG p0.57, based on CD86 expression from three 

separate experiments, see Table 6.5). 1 Opg/ml LPG was chosen for these experiments 

based on a titration of the effect of LPG on infected M1 (T. Aebischer personal 

communication). Incubation of BM-DC with 1 Ojig/ml purified L. mexicana LPG 

activated 23.0±2.3% of the cells (based on CD86 expression from five separate 

experiments; Table 6.6, see also Figure 6.9). Incubation with SOjig/ml L. mexicana LPG 

did not significantly increase the percentage of activated CD86 or MHC ff 1  cells in the 

population, confirming the idea that BM-DC are heterogeneous in their ability to 

respond to the promastigote-derived activating signal. 
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Day 7 BM-DC were incubated with L. mexicana wild type (WT) or LPG' 
promastigotes, or LPG' promastigotes with 1 Oj.iglml purified L. mexicana 
LPG for 18 hours. Cells were harvested, fixed and stained for surface 
activation markers, then permeabilised and stained with an anti-parasite 
serum and FITC-conjugated goat anti-rabbit secondary antibody. Cells were 
then analysed by flow cytometry. 

Quadrants were set on non-infected DC. Numbers represent the percentage 
of cells in the respective quadrants. Dot plots are representative of 3 different 
experiments. 
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Numbers indicate the percentage of cells in the upper left (UL) and upper right 
(UR) quadrants for FACS plots of immature BM-DC, or BM-DC incubated with L. 
mexicana wild type (WT) or LPG' promastigotes, or LPG' promastigotes and 
10mg/mI purified L. mexicana LPG, for 18 hours. Cells were harvested, fixed, 
stained with anti-CD86 or anti-MHC II antibodies, then permeabilised and 
stained with an anti-parasite serum and a FITC-conjugated secondary antibody. 
Cells were then analysed by flow cytometry. 

CD86: Wild type promastigotes versus LPG' promastigotes + 1Opg/ml LPG 
P=0.57; LPG --  versus LPG' +lOjig/ml LPG p=0.09; wild type versus lOjig/mI L. 
mexicana LPG p=0.93. 

MHC II: Wild type promastigotes versus LPG' promastigotes + 1Og/ml LPG 
P=0.63; LPG -/-  versus LPG' +10pg/ml LPG p=0.07; wild type versus 1Opg/ml L. 

mexicana LPG p=0.64. 
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Table 6.5: 
Complete FACS Data for Infection of BM-DC with L. mexicana 
Wild Type or LPG -1-  Promastigotes, or LPG 4  Promastigotes and 
Purified L. mexicana LPG 

CD86 I I I I I I I 
Immature 

______  
WT promastigotes LPG' 

promastigotes 
LPG-- 	+ 
1 0igIm1 LPG 

______ UL UR UL hR Total UL TJR Total hit UR Total 

Expt.1 8.9 0.0 9.9 3.4 13.3 7.2 1.0 8.2  
Expt.2 6.6 0.0 6.8 3.1 9.9 5.8 0.5 6.3  
Expt.3 5.5 0.0 8.1 4.7 12.8 6.6 0.9 7.5 15.4 3.4 18.8 

Expt.4 6.2 0.0 27.4 25.0 52.4 6.5 0.7 7.2 11.7 4.2 15.9 

9.0 0.0  39.5 16.6 56.1 

M 

7.2 0.0 13.1 9.1 22.1 6.5 0.8 7.3 22.2 8.1 30.3 

0.7 0.0 4.8 5.3 10.1 0.3 0.1 0.4 8.7 4.3 12.9 

Immature WT promastigotes LPG-' -  
promastigotes 

LPG-- 	+ 
1 Ogg/ml LPG 

UL UR UL UR Total UL UR Total UL UR Total 

16.6 0.0 11.4 7.7 19.1 4.9 5.2 
0.0 8.4 

10.1
27.0 8.4 16.8 7.5 2.9 10.4 
8.6 0.0 12.6 19.0 31.6 7.4 2.0 9.4 26.4 6.7 33.1 

V 

21.6 0.0 ND ND 69.3 11.2 3.9 15.1 17.2 13.2 30.4 

12.8 0.0  4.1 7.1 11.2 

17.3 0.0 10.8 11.7 34.2 7.8 3.5 11.3 15.9 9.0 24.9 

3.2 10.0  1.3 3.7 12.1 1.3 0.7 1.3 6.5 2.1 1 6.9 
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Day 7 BM-DC were incubated with 10pg/ml purified L. mexicana or L. major 
LPG for 18 hours. Cells were then harvested, fixed, stained for surface 
activation markers and analysed by flow cytometry. 

Quadrants were set on dot plots from non-infected BM-DC. Numbers 
represent the percentage of cells in the upper left quadrant. Dot plots are 
representative of plots from 4 different experiments. 
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Table 6.6: 
Complete FACS Data for Incubation of BM -DC with Purified L. 
mexicana and L. major LPG. 

L. mexicana LPG 

CD86 - MHC 
II 

LPG (lag/ml)   LPG (jig/ml)  

1 5 10 50  1 5 10 50 
Expt.1  20.9 1 44.5  41.3 53.4 

Ex t.2  16.0 36.4  41.3 41.8 
Ex t.  21.9 38.2  33.4 43.8 

Ex t.4  26.9 17.9  53.5 8.8 

Expt.5 12.3 11.8 29.2  19.5 19.7 30.1  

Expt.6 10.6 35.6  18.0 27.7  

Mean 11.5 23.7 23.0 34.3  18.8 23.7 39.9 37.0 

s.e.m. 0.9 111.9 2.3 15.7 1 0.8 14.0 14.1 19.7 

L. major LPG 

CD86 - 

- 

MHC 
II 

LPG (jig/ml)  LPG (jig/ml)  

1 5 10  1 5 10 
Expt.1  35.3  34.8 

Expt.2  29.5  41.9 

Expt.3  22.2  55.8 

Expt.4  24.3  36.0 

Expt.5 10.9 31.5 43.7  18.2 30.6 43.8 

Expt.6 36.8 30.4  20.7 37.9  

Mean 23.9 31.0 31.0  19.5 34.3 1 3.7 
42.5 

s.c.m. 13.0 0.6 3.9  1.3 1 3.8 

Numbers indicate the percentage of cells in the upper left (UL) and upper right 
(UR) quadrants for FACS plots of BM-DC or Dl cells incubated with L. major 
promastigotes for 18 hours. Cells were harvested, fixed, stained with anti-CD86 
or anti-MHC 11 antibodies and analysed by flow cytometry. 
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Unexpectedly incubation with 1 Ogg/ml L. major-derived LPG potently activated BM-

DC (Figure 6.9); 31±3.9% of the cells up-regulated surface expression of CD86 on 

incubation with L. major LPG (statistical analysis based on five separate experiments, 

see Table 6.6). L. major LPG also appeared to activate BM-DC more potently than L. 

mexicana LPG at lower concentrations (Table 6.6). In order to demonstrate that this 

activation was not due to contamination of LPG samples with endotoxin, BM-DC were 

incubated with 1 Opg/ml LPG that had been pre-incubated with 50j.tg/ml Polymyxin B 

(Sigma), which binds to the lipid A component of LPS thus inhibiting its activity. Table 

6.7 shows that L. mexicana and L. major LPG activate BM-DC in the presence of 

Polymyxin B, indicating that the results described above are not due to endotoxin 

contamination of the samples. Thus, these data demonstrate that binding of Leishmania 

LPG activates a proportion of BM-DC. 

6.4 Discussion 

To investigate the nature of the L. mexicana promastigote-derived signal responsible for 

activating 15% or 33% of BM-DC or Dl cells respectively, experiments were performed 

in which metacyclic L. major promastigotes were incubated with DC in vitro. The data 

presented in this chapter indicate that uptake of stationary phase L. major promastigotes 

does not activate BM-DC and therefore, that infection with these parasites resembles 

infection with L. mexicana amastigotes in its overt effect on DC maturation. LPG is an 

abundant Leishmania surface glycoconjugate, the structure of which differs between 

metacyclic L. mexicana and L. major promastigotes, and LPG expression is down-

regulated on transformation of L. mexicana promastigotes into amastigotes. Thus, L. 

mexicana LPG appeared an attractive candidate PAMP. 

To address this possibility, BM-DC and Dl cells were incubated with L. mexicana LPG 

mutants. These parasites were efficiently taken up by both cell types, but did not 

induce activation of DC as assessed by expression of surface activation markers and 
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Table 6.7: 
Incubation of BM-DC with Purified LPG and Polymyxin B 

CD86 I 	I 
Polymyxin B  

Immature LPS 
lOOng/mi 

L. mexicana 
LPG 
10pg/m1 

L. major 
LPG 
10pg/m1  

1 OOngIml 
LPS 

Expt.1 19.1 133.0 120.9 1 72.9 1 14.8 
Expt.2 17.7 1 ND 123.6 1 59.6 1 	11.8 

MHC 
II 

Polymyxin B  
Immature LPS 

lOOng/mi 
L. mex LPG 
10pg/m1 

L. major 
LPG 
1 0Lg/m1  

1 OOng/ml 
LPS 

Expt.1 13.1 30.3 1 23.9 1 34.3 17.9 
Expt.2 7.2 1 ND 112.1 143.8 13.7 

Day 7 BM-DC were incubated with LPS alone or purified L. mexicana LPG, L. 

major LPG and LPS with 50pg/ml Polymyxin B for 18 hours. Cells were then 
harvested, fixed, stained for the surface activation markers CD86 and MHC II 
and analysed by flow cytometry. 

Numbers represent percentages of cells in the upper left quandrants of dot plots. 
ND, not done. 
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cytokine production. Rather, infection appeared to resemble incubation of the cells with 

L. mexicana amastigotes, or L. major promastigotes. Therefore, these data support the 

hypothesis that binding of L. mexicana LPG to receptors on DC induces activation of 

DC in vitro. 

To further test this hypothesis, BM-DC were incubated with purified L. mexicana LPG. 

The results from this experiment would determine whether LPG itself is an activating 

stimulus, or whether uptake of parasites expressing LPG results in internalisation of 

parasites in compartments where they are accessible to other host pattern receptors. 

Incubation of BM-DC with purified L. mexicana LPG alone or LPG with LPG' 

promastigotes resulted in activation of a proportion of the BM-DC population. 

Therefore, these data indicate that LPG is the promastigote-encoded molecule that 

directly induces activation of a percentage of BM-DC when incubated with intact 

promastigotes or promastigote lysate. 

LPG derived from both L. mexicana and L. major metacyclic promastigotes is composed 

of the same neutral cap strucure and phosphatidylinositol lipid anchor. However L. 

mexicana LPG contains a glycan core substituted with occasional glucose molecules, 

whereas in metacyclic L. major LPG the glucose residues are replaced by more complex 

saccharide units, including arabinose moelcules (McConville and Ferguson 1993). Since 

L. mexicana, but not L. major, promastigotes activated BM-DC, this observation 

indicates that DC receptors that recognise L. mexicana, but not L. major, promastigotes 

bind to determinants on the phosphoglycan core. Thus, the more complex substitutions 

to the L. major LPG glycan core may occlude access of these receptors to these 

determinants. Addition of purified L. major LPG to BM-DC culture resulted in potent 

activation of the cells. However, purification of LPG would result in loss of the ordered 

arrangement of the LPG molecules that occurs on the surface of the parasites, and DC 

receptors would therefore have access to activating determinants on the phosphoglycan 

core. This idea could be tested by reconstituting LPG --  with L. mexicana and L. 

major LPG, as described by (Handman et al. 1986). 
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6.5 Concluding Remarks 

The results from experiments described in this chapter strongly implicate L. mexicana-

derived LPG as a potential activation signal for DC, since in the absence of LPG L. 

mexicana promastigotes could not activate DC, and purified LPG activated BM-DC. 

Therefore, L. mexicana LPG is the first example described of a protozoan PAMP. 

Activation of DC is likely to be due to recognition of a part of the L. mexicana 

phosphoglycan core by DC sugar/lectin receptors since it is within this region that the 

main differences occur between L. mexicana and L. major LPG. Binding of LPG only 

triggers low levels of activation in DC cultures, however, indicating that the DC 

population is heterogeneous in terms of susceptibility to LPG activation. This 

observation implies that, in vivo, binding of LPG on uptake of metacyclic L. mexicana 

promastigotes may not be sufficient to activate DC at the site of infection. Thus 

activation by LPG would likely synergise with the effect of other exogenous factors, 

such as pro-inflammatory cytokines, to initiate the primary anti-Leishmania T cell 

response. 
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Chapter 7: Discussion 

The work presented in this thesis had two aims: first to establish and test a model system 

with which to follow the fate of Leishmania-derived antigens in infected cells; second to 

investigate the specific interaction between Leishmania and DC using a defined in vitro 

model. 

Do infected DC process and present Leishmania-derived antigens? 

A model experimental system was designed with which to follow the fate of 

Leishmania-derived antigens in infected cells. This model was based on the transgenic 

expression of a defined MHC IT-restricted T cell epitope, MCC, by L. mexicana 

parasites. H2EkMCC complexes would be detected using the complex-specific mAb 

D4 and the H2-Ek-MCC-specific T cell hybridoma, 2134. MCC was cloned into two 

different carrier proteins; GST and a secreted form of L. mexicana MBAP. MBAP:MCC 

fusion proteins were expressed by transgenic parasites, but MCC was not presented at 

detectable levels by infected DC and M. Published data indicated that MBAP epitopes 

are present on the surface of infected M4 in the context of MHC II molecules, and, 

therefore, that MCC should be presented in this system. A number of different factors 

are likely to contribute to the lack of presentation from transgenic parasites in this 

experimental system: the secretion of amastigote cysteine proteases into the PV may 

result in the destruction of T cell epitopes before they are bound by MHC II molecules. 

Incubation of infected cells with protease inhibitors would result in inactivation of the 

host processing machinery and could not be used to avoid this problem. However, 

expression of high levels of fusion protein by transgenic parasites may saturate proteases 

in the PV, resulting in the presentation of intact T cell epitopes. Second, sequences 

surrounding the MCC epitope may not favour optimal processing of this peptide by host 

cell proteases; replacing a known T cell epitope of gp63 with MCC should circumvent 

this problem. It is not known whether parasite antigens bind MHC 11 in the PV or 
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whether the antigens are transported out of the PV to join the host endosomal pathway in 

an alternative compartment. If complexes form in the PV then it may be that transport 

from the PV to the cell surface is less efficient that conventional processing and 

presentation pathways, and that high concentrations of parasite antigens are required to 

overcome this inefficiency. Leishmania-infected DC were fully competent to process 

exogenous antigen for presentation to T cells, therefore, once levels of expression of 

fusion proteins and processing of the epitope have been optimised, this experimental 

model should be appropriate for following the fate of parasite-derived antigens in 

infected cells. 

Does uptake of Leishmania parasites per se activate DC? 

Leishmania parasites, as pathogens, have been assumed to activate DC upon uptake. 

However the published data is conflicting regarding whether promastigotes or 

amastigotes, or both, can provide the activating stimulus. Following initial and 

unexpected observations that amastigote infection did not cause upregulation of MHC II 

on BM-DC, an experimental model was established to address the question of whether, 

in a highly controlled system, uptake of Leishmania parasites per se could activate DC. 

EGFP-expressing L. mexicana parasites, which can be maintained in vitro, were used to 

distinguish between infected and non-infected cells in the population. The results 

reported in this thesis demonstrate that uptake of L. mexicana amastigotes does not 

activate BM-DC or Dl cells either in terms of upregulation of surface activation markers 

or increased cytokine production. Thus, L. mexicana amastigotes do not express 

molecules that signal activation upon binding by DC receptors. This result apparently 

contradicts previous reports that lesion-derived L. major or L. amazonensis amastigotes 

activated DC upon up-take (von Stebut et al. 1998; Qi et al. 2001); a discrepancy likely 

to be due to the fact that lesion-derived amastigotes will be coated with Ig and other host 

proteins from the inflamed tissues that may trigger activation of DC. Differences in the 

species of parasite used may also account for the results obtained by different groups on 

infection of DC with Leishmania promastigotes; the data presented in this thesis 

demonstrate, in accordance with von Stebut and colleagues (1998) that uptake of L. 
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major promastigotes does not activate BM-DC; L. mexicana promastigotes however 

could activate at least some BM-DC and Dl cells. 

While L. mexicana amastigotes do not induce upregulation of DC activation markers, it 

seems unlikely that there will be no interaction at all between the parasites and DC. This 

is supported by the clusteral analysis from the GeneChip ®  analysis of L. mexicana-

infected Dl cells. Provisional data from this experiment indicates that transcription of 

880 DC genes was altered by at least three fold on infection with L. mexicana 

amastigotes. Thus, these data, together with the flow cytometry data, indicate that 

amastigotes do not behave as inert particles on infection of Dl cells, but that this 

interaction does not result in classical activation of the cells. 

Uptake of L. mexicana promastigotes activated a percentage of BM-DC, and this effect 

was more pronounced with Dl cells. Activated BM-DC were consistently EGFP but it 

was subsequently shown that activated Dl cells were infected with intact, EGFP, 

parasites. Taken together these data suggest that the activating signal was not 

intracellular, as initially proposed in Chapter 4, but that BM-DC had been activated upon 

uptake of intact parasites that were subsequently degraded. These results suggest that 

Leishmania parasites are more rapidly degraded in BM-DC than Dl cells. 

Experiments to address the nature of the L. mexicana promastigote activating signal 

demonstrated that L. major promastigotes did not activate BM-DC or Dl cells upon 

uptake, and resembled L. mexicana amastigotes in their interaction with this host cell 

type. The hypothesis was therefore proposed that metacyclic L. mexicana LPG might be 

the activating signal, since L. mexicana amastigotes do not express LPG and the 

composition of the sugar side chains on this molecule differs between L. mexicana and 

L. major. Experiments using LPG--  indicated that LPG was a L. mexicana 

PAMP and this was supported by incubation of BM-DC with purified LPG. It is 

proposed that the receptor for LPG recognises determinants on the L. mexicana LPG 

phosphoglycan core. The more complicated sugar substitutions on L. major LPG would 

block access to this core, preventing activation of DC via signalling through these 
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receptors. Only a limited number of cells in DC cultures responded to the promastigote-

derived activating stimulus in these experiments, suggesting heterogeneity amongst both 

BM-DC and Dl cells in the expression of the LPG receptor, and that a higher percentage 

of Dl cells expressed this receptor than BM-DC. 

The potential of LPG as a protozoan PAMP 

LPG fulfills the requirements put forward by Medzhitov & Janeway (Medzhitov and 

Janeway 1997) that PAMP should be signature molecules for a range of pathogens, 

which are essential for their survival, and so will be relatively invariant. LPG is 

expressed by all species of Leishmania parasites and, while depending on the species, it 

may not be essential for survival in the host, it is critical for the passage of promastigotes 

through the sandfly (Sacks et al. 2000). LPG also shares structural similarities with LPS, 

a well-defined bacterial PAMP. Infact, LPG was originally characterised as "a 

Leishmania lipopolysaccharide molecule (L-LPS)"(Handman et al. 1986). Thus, LPG is 

proposed to be the first example identified of a protozoal PAMP. The similarities 

between LPG and LPS and the fact that LPG epitopes transiently appear on the surface 

of MCI) upon infection with L. mexicana promastigotes (Stierhof et al. 1991) suggest that 

LPG could mediate activation of DC by binding to the receptors utilised by LPS, 

including TLR4 in association with C1314. However, preliminary data indicates that 

LPG does not bind to TLR4, since BM-DC from BlO mice, which carry a natural 

mutation in the TLR4 gene, were still activated upon incubation with L. mexicana 

promastigotes (data not shown). Thus the receptor for L. mexicana LPG awaits 

identification. However, it is likely to be a sugar or lectin receptor if it recognises 

determinants on the phosphoglycan core. 

Do Leishmania parasites suppress activation of DC? 

DC are exquisitely sensitive to activating stimuli. Therefore, the lack of activation by L. 

mexicana amastigotes or L. major promastigotes implied that these parasites are able to 

suppress maturation of DC, as has been documented for infected MI). L. mexicana 

amastigotes, however, did not suppress simultaneous activation of BM-DC with LPS 
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and IFN'y and also did not induce IL- 10 production in Dl cultures. It was more difficult, 

however, to define whether intracellular L. major promastigotes suppressed activation of 

DC; L. major promastigote-infected cells expressed consistently lower levels of 

activation markers than the non-infected cells in the culture. This was particularly 

evident when BM-DC were activated with low levels of activating stimuli (TNF(x or 

IFNy) prior to infection. This observation could imply either that activation of infected 

cells was suppressed, or that parasites were more rapidly degraded in activated cells. In 

order to distinguish between these two possibilities, one would ideally mark cells 

containing parasites in such a way that this label persisted once the parasites had been 

degraded. One way to approach this may be to infect DC with EGFP parasites and sort 

them into a homogeneous infected population by flow cytometry. The EGFP DC could 

then be cultured with low levels of activating stimuli and stained for surface activation 

markers. If parasites were suppressing activation then there should be very few activated 

cells in the culture. By comparison, if parasites were degraded in activated cells then an 

EGFP population would emerge expressing high levels of surface activation markers. 

Dl cells versus BM-DC 

The experiments described in Chapters 4, 5 and 6 used two in vitro-cultured populations 

of DC as in vitro models of DC in vivo. BM-DC are derived from bone marrow 

precursors that have been cultured in the presence of GM-CSF. These cultures are fairly 

heterogeneous, containing DC precursors as well as immature, and spontaneously 

maturing DC, and are likely to reflect the myeloid DC that will be recruited to the site of 

infection from the blood in vivo. Dl cells are a long-term growth factor-dependent 

population of splenic DC, which are also cultured in the presence of GM-CSF. The Dl 

population is more homogeneous than BM-DC, and can be maintained as an immature 

population of DC in culture. Thus, they provide a useful system with which to 

investigate the interaction between Leishmania parasites and DC in vitro, and were an 

ideal population with which to perform the kinetic analysis described in Appendix B. 

The experiments described in this thesis, however, highlighted some differences 

between BM-DC and Dl cells: experiments performed using BM-DC indicated that 

CD86 was more sensitive to Leishmania-derived activating signals than MHC II, 



Chapter 7: Discussion 
	

256 

suggesting that surface expression of these two markers was differentially regulated. 

This was not the case in the Dl cells. This observation may imply that long-term culture 

of Dl cells in conditioned medium has resulted in a homogeneity in the responses of 

these cells that does not reflect the situation in vivo. Furthermore, expression profiles of 

surface DC markers and the activation of only 33% of Dl cells on incubation with L. 

mexicana promastigotes indicates that these cells are not as homogeneous as they 

sometimes appeared. Finally, L. mexicana promastigotes were more rapidly degraded in 

activated BM-DC than activated Dl cells, indicating again that BM-DC are more 

responsive to infection than Dl cells. Thus, while the Dl cell culture provides an 

invaluable tool for the investigation DC interactions in vitro, these observations indicate 

the importance of interpreting the results from Dl experiments in the light of results 

from other DC cultures. 

Relevance of the in vitro model to Leishmania infection in vivo 

The results presented in this thesis use in vitro model experimental systems to explore 

the interaction between Leishmania and DC. In order to understand the complex 

interactions that occur in vivo during the initiation of a primary T cell response, it is 

important to be able to dissect the individual parts that contribute to this response. The 

experimental system described in Chapter 4 allowed the specific interaction between 

Leishmania parasites and DC to be examined in a highly controlled manner in the 

absence of other exogenous factors. Thus, the precise question of whether uptake of 

Leishmania parasites per se activated DC could be addressed. These results must, 

however, be considered within the context of the micorenvironment in which the 

interaction will occur in vivo: L. mexicana parasites will be injected into the epidermis of 

the host along with sandfly saliva, which has been shown to be immunomodulatory. In 

addition, wounding, caused by injection of the parasites, will initiate inflammatory 

responses in the host. Thus, promastigotes will be injected into an environment 

containing pro-inflammatory cytokines that may synergise with LPG to activate 

immature DC, that will then migrate to the draining LN and stimulate the primary anti-

Leishmania T cell response. These DC may contain intact parasites, degraded parasites 
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or have picked up parasite debris at the site of infection. The apparent heterogeneity of 

expression of the putative LPG receptor in DC cultures may reflect the restricted 

expression of this receptor by distinct DC subsets in vivo, implying that activation of a 

response to Leishmania will depend on the subset of DC encountered by the parasites. It 

would therefore be interesting to investigate the interaction of Leishmania with LC in 

more detail, since these are the DC subset that first encounters the parasites on injection 

into the epidermis, notably whether these cells are more sensitive to activation by LPG 

than BM-DC. 

An interesting extension of this work would be to investigate whether the was any 

difference between the ability of promastigote- or amastigote-infected DC, or DC 

incubated with LPG, to stimulate Thi versus Th2 responses in vitro and on adoptive 

transfer in vivo. In particular it would be interesting to explore the consequence of the 

apparent 'silent' infection of DC by amastigotes on polarisation of developing Th cells. 

It might be expected that these DC would induce expansion of Th2, cells since previous 

studies have demonstrated that incubation of DC with a pathogen-derived product which 

does not induce up-regulation of DC surface activation markers, resulted in the 

development of DC which induced polarisation of Th2 cells in vivo (MacDonald et al. 

2001). However, CD40 signalling has recently been shown to be important for the 

induction of a Th2 response by DC (MacDonald et al. 2002). CD40 expression was not 

measured in the experiments described in this thesis, but, based on the lack of activation 

of other surface markers, CD40 would be anticipated to be upregulated on the surface of 

promasti gote- infected, but not amastigote-infected, DC. This would suggest that 

promastigote- infected DC may polarise a Th2 response but amastigote- infected DC 

would polarise a Thi response. Finally, it would also be interesting to consider whether 

activation of DC upon uptake of L. mexicana, but not L. major, LPG could be partly 

responsible for the differential ability of C57BL/6 mice to control infection with these 

parasites, since these mice mount a polarised Thi response to infection with L. major, 

but a non-polarised Th response to infection with L. mexicana. 
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DC will initially take up L. mexicana promastigotes at the site of infection, thus the 

primary immune response will be primed to promastigote antigens. Intracellular 

promastigotes will then transform into amastigotes, which express different antigens, so 

how is the immune response to Leishmania maintained? Bystander activation of 

amastigote-infected M1 may occur by anti-promastigote effector cells which have been 

recruited to the site of infection and which will interact with Mc1  that have taken up 

promastigote debris and degraded intracellular promastigotes. This would lead to the 

killing of intracellular amastigotes and the release of aniastigote debris, thus increasing 

the pool of available amastigote antigens, which will be taken up and presented by DC 

activated at the site of infection. 

The lack of classical activation of DC by amastigotes may, however, be important for 

the persistence of parasites in a 'cured' host. In the absence of pro-inflammatory 

cytokines, when the anti-Leishmania response has died down, amastigotes, which are 

released upon lysis or death of host cells, will be taken up by DC at the site of the lesion, 

or in the LN, without triggering activation. This may contribute to the persistence of 

parasites in the immune host. 

DC are not the natural reservoirs for Leishmania parasites 

Infection of Dl cells facilitated investigation of the effect of long-term infection of DC 

with L. mexicana parasites. Infected Mb develop large communal PV within 48 hours of 

infection that contain multiple parasites. It was proposed that Leishmania parasites 

would not be able to establish infection in DC in the way that they do MCI), and that this 

was related to the observation that infected DC can efficiently process and present 

exogenous antigen in vitro. The results presented in Chapter 5 demonstrate that live L. 

mexicana promastigotes and amastigotes persist for up to 96 hours in Dl cells. This 

observation should be confirmed in an alternative DC population because, as discussed 

above, Dl cells do not degrade intracellular parasites as readily as BM-DC. 

Unfortunately, BM-DC die after 48 hours infection and so the experiment cannot be 

repeated in these cells. Confocal analysis of infected Dl cells showed that large 
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communal PV did not form in Dl cells infected with L. mexicana promastigotes or 

amastigotes within the 96 hour time frame of the experiment. This work was supported 

by the observation that PV in infected DC in vivo were significantly smaller than those 

formed in infected Mc1 (T. Aebischer personal communication). This suggests that L. 

mexicana parasites cannot establish a chronic infection in DC as efficiently as in MCI) 

and that, in vivo, DC will not constitute a significant parasite reservoir. The hypothesis is 

proposed that the differential ability of L. mexicana parasites to form large PV in MCI) 

but not DC determines the efficiency with which Leishmania antigens are presented by 

these cell types. If so, then inhibition of PV formation in MCI)  should alter the kinetics of 

antigen presentation in these cells. Care would have to be taken, however, not to inhibit 

transport of MHC II complexes in these cells. Results from the GeneChip experiment 

may give clues about differential expression of DC genes related to vacuole formation 

and transport along the endosomal pathway, for example, transcriptional regulation of 

rab genes. 

In conclusion, this thesis demonstrates that Leishmania-infected DC are capable of 

initiating the primary T cell response because they efficiently present antigen to T cells. 

However, uptake of Leishmania parasites per se is probably insufficient to initiate the 

primary anti-parasite immune response. Thus, the anti-Leishmania T cell response is 

likely to be primed via activation of DC at the site of infection by factors produced in 

response to injection of parasites by the insect vector, such as pro-inflammatory 

cytokines. 
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Appendix B: 

Transcriptional Analysis of the Effect of Incubation of 

Dl Cell Cultures with L. mexicana Wild Type or LPG' 

Parasites. 

Introduction 

Oligonucleotide microarrays have recently been used to analyse the response of DC to 

infection with different organisms at the level of transcription (Granucci et al. 2001; 

Huang et al. 2001). Experiments comparing the effect of infection with different well 

characterised pathogens, or key molecular components from these pathogens, 

demonstrated that infection initiates a core response involving the up-regulation of over 

one hundred genes, as well as activating transcription of other genes more specific to the 

response to that class of pathogen. Interestingly, incubation of DC with purified 

molecular components from these pathogens (LPS, mannan or double stranded RNA) 

mimicked the effect of infection with the whole organism, in particular when comparing 

LPS and the gram negative bacteria, E coli (Huang et al. 2001). Thus, a kinetic analysis 

was performed to investigate the effect of uptake of L. mexicana promastigotes and 

amastigotes on the transcription of Dl DC genes. LPG --  mexicana promastigotes 

were also included to investigate the LPG-specific up-regulation of gene expression in 

infected cells, since LPG is a major determinant on the surface of L. mexicana 

promastigotes but is lacking from the surface of amastigotes. 

Preliminary Results and Discussion 

Based on the results from the time course performed on L. mexicana promastigote- and 

amastigote-infected cells (see Chapter 5, Figure 5.5), time points of 4, 8, 12 and 24 

hours were chosen for the transcriptional analysis. A 12 hour time point was included 

because the maximum change of surface activation marker expression on incubation 
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with promastigotes occurred between 8 and 18 hours (Figure 5.5). 2x106  Dl cells were 

incubated for 4, 8, 12 or 24 hours with stationary phase wild type L. mexicana 

promastigotes or amastigotes, or stationary phase L. mexicana LPG--  at a 

ratio of 1:5. This ratio of DC:parasites was chosen to maximise parasite uptake but 

minimise the number of excess parasites remaining in the culture medium, thus reducing 

the risk of contamination of samples with Leishmania RNA from extracellular parasites. 

Cells were then harvested, washed thoroughly and cell pellets frozen at —80°C. Aliquots 

of cells were tested by flow cytometry at each time point (Figure B.1). This analysis 

confirmed that uptake of L. mexicana amastigotes or LPG' promastigotes did not 

activate Dl cells, but that promastigotes activated approximately 37% of the cells after 

24 hours. An early peak of activated cells that decreased through-out the time course 

was detected by flow cytometry for the amastigote- and LPG' promastigote-infected 

cultures, while this peak merged into the activated population of the promastigote-

infected cultures. However, since this early peak appeared to be non-specific, and since 

it was present at the onset of the time course, it was likely to be due to the surface 

display of preexisting molecules and should not be. reflected at the level of 

transcription. 

RNA was extracted from frozen pellets and used to generate biotin-labelled cRNA for 

hybridisation onto two high density oligonucleotide arrays (Affymetrix Mulik 

GeneChip®  array) which collectively displayed 11 000 genes and ESTs (Expressed 

Sequence Tags). RNA extraction and chip hybridisation was performed by Caterina 

Vizzardelli (Milan). Statistical and filtering analyses were performed by Mattia Pellizola 

(Milan). 

At present, only preliminary analyses have been performed on these data. Figure B.2 

depicts the correlation between the genes that are up- or down-regulated by more than 

three fold upon incubation of Dl cells with L. mexicana promastigotes, amastigotes or 

LPG' promastigotes. This diagram illustrates that large numbers of genes are 

differentially regulated in the three groups. Notably, although infection with L. mexicana 

amastigotes did not induce up-regulation of surface activation markers or production of 



Figure B.1 A: CD86 Expression on L. mexicana-infected Dl 
Cells Used for the GeneChip® Analysis 
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Dl cells were infected with L. mexicana promastigotes, amastigotes, or LPG' 
promastigotes, for the times indicated. Cells were then harvested, fixed and 
stained for the surface activation marker CD86. Histograms show non-
infected Dl cells at 4 hours (thin lines) and cells incubated with Leishmania 

parasites for 4, 8, 12 or 24 hours (thick lines). 

Numbers represent the percentage of activated cells based on a marker set 
on activated cells at 24 hours. 



Figure B.1 B: MHC II Expression on L. mexicana-Infected 
Dl Cells Used for the GeneChip® Analysis 
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Figure B.1C: CD54 Expression on L. mexicana-Infected Dl 
Cells Used for the GeneChip® Analysis 
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stained for the surface activation marker CD54. Histograms show non-
infected Dl cells at 4 hours (thin lines) and cells incubated Leishmania 
parasites for 4, 8, 12 or 24 hours (thick lines). 

Numbers represent the percentage of activated cells based on a marker set 
on activated cells at 24 hours. 



Figure B.2: Diagram Showing Correlations Between Genes 
Expressed by Wild Type L. mexicana 
Promastigote-, Amastigote- or LPG 
Promastigote-infected Dl Cells. 
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Venn diagram showing the correlation between gene expression of Dl cells 
incubated for 4, 8, 12 or 24 hours with wild type L. mexicana promastigotes, 
amastigotes or LPG-' promastigotes. 

Numbers represent the number of pooled genes in each subset, expression 
of which is regulated by three fold or more upon incubation with 
promastigotes, amastigotes or LPG promastigotes. 
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cytokines, 880 Dl genes were regulated in an amastigote- specific manner. This is much 

higher than the number of differentially regulated genes in the promastigote-specific 

groups. It is also significant that incubation of Dl cells with LPG --  results in 

the differential expression of 202 genes. This implies that interactions between Dl cell 

molecules and L. mexicana LPG have an important modulatory effect on the cell. 

Figure B.3 shows the results from hierarchal clustering of genes regulated on incubation 

with Leishmania parasites. This analysis was performed as described by (Granucci et al. 

2001). These diagrams illustrate the differential expression of groups of genes in the 

three infection groups, demonstrating the extent to which Dl cells respond to infection 

by L. mexicana promastigotes, amastigotes or LPG --  at the level of gene 

transcription. 

The results discussed in this appendix are preliminary and the data awaits further 

analysis. However, initial analyses indicate that the microarray data supports the results 

presented in Chapters 4, 5 and 6; surface activation markers are not transcriptionally up-

regulated upon incubation of Dl cells with L. mexicana amastigotes or LPG' 

promastigOtes, and infection with wild type L. mexicana promastigotes specifically up-

regulates expression of the IL-12 p40 gene. These data also indicate that, while infection 

with amastigotes or LPG -/- promastigotes appeared to be silent according to the 

parameters tested, hundreds of genes are regulated in response to these interactions, and 

it is evident that the parasites are not merely behaving as inert particles. However, it 

remains to be seen whether any of these responses are related to the activation of DC, 

and the efficacy with which they can initiate the anti-Leishmania T cell response. 
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Hierarchal clusters showing the different types of gene expression profiles 
obtained. For each group the kinetic points (0, 4, 8, 12, and 24) are represented 
from left to right. The label above the upper left corner of each box identifies the 
cluster and the number above the upper right corner indicates the number of 
genes in each cluster. Genes were clustered as described by Granucci et al. 
(2001). A filter was used to examine only those genes which showed a 
difference in expression of at least 3 fold between the maximum and minimum 
kinetic expression values. 

Colour changes from black to red as expression increases. 
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Table 1. Infection of BM-DC by L.mexicana amastigotes 
does not induce secretion of IL-1 2 (p40)a) 

IL-12 (p40) pg/mI 

BM-DC alone 	 43.4 ± 15 

• 	LPS + IFN-y 	 3.6 x lO ± 1 x io 

• Amastigotes 	 36.1 ±11 

• Amastigotes + LPS + IFN-'y 2.7 x iO ± 9 x io 

• 	Promastigotes 	 341.0 ± 112 

+ Opsonized promastigotes 	632.7 ± 184 

+ Latex beads 	 ND 

Day 7 BM-DC (n = 4) were incubated for 18 h with 
L. mexicana amastigotes, promastigotes, or latex beads, 
with or without 1 [tg/ml LIPS and 103  U/mI EN-?. The p40 
subunit of IL-12 was measured in 18 h supernatants by 
ELISA. The sensitivity of the assay was 30 pg/mI. Values 
represent 	concentrations 	of 	cytokine 	in 	su- 
pernatants from —2 x 10' cells (mean ± SEM). 
Amastigotes vs. promastigotes: p = 0.035. 

DC activation. Our data indicate that axenic L. mexicana 

amastigotes do not activate BM-DC, but present to DC 
as inert particles similar to latex beads during infection in 

vitro. Incubation with promastigotes results in the activa- 
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Fig. 5. Infection of EGFP-expressing parasites in vivo. 
C57BL/6 mice were infected with two clones of L. mexi-
cana: EGFP (filled symbols) or two wild-type clones (open 
symbols) in the left hind footpads (107  promastigotes). 
Thereafter lesion development in this mouse strain (left part) 
was monitored at biweekly intervals, commencing at week 
three. Lesion size is also shown for BALB/c mice (right part) 
32 weeks post-infection, by which time all animals had 
developed large, non-healing lesions. Data points refer to 
mean lesion size ± SD; numbers refer to the geometric mean 
of the parasite burden in the lesions at 32 weeks ± SD. 

tion of a fraction of BM-DC, which is not increased by 
parasite opsonization with 5 % mouse serum. However, 
the majority of promastigote-infected BM-DC retain an 
immature phenotype, suggesting that the promastigote 
surface is also devoid of BM-DC-activating signals. In 
contrast to the situation documented in MI, where infec-
tion suppresses subsequent activation [4, 6, 18,20], BM-
DC incubated with either promastigotes or amastigotes 
could be fully matured upon addition of LIDS and IEN-y, 
indicating that L. mexicana do not suppress the ability of 
DC to respond to activating stimuli. 

Activation of immature DC is believed to be triggered by 
"danger signals". These include conserved structural 
motifs on pathogenic organisms which are recognized 
by specific pattern recognition receptors [11-13], and 
host-derived factors. The list of pattern receptors cur-
rently includes members of the Toll-like receptor family 
involved in recognition of bacterial Iipopolysaccharide or 
lipoteichoic acids [21-23], the multi-lectin family includ-
ing DEC-205 [24] and mannose receptors [25, 261, and 
the presumptive receptor for unmethylated CpG islands 
[27]. In addition, pathogens can be opsonized by soluble 
factors such as complement and immunoglobulins, and 
sampled by DC that express complement (CD1 lb and 
c/CD18) and Ec receptors [28-30]. Since the surface of 
different Leishmania sp. is understood in some detail, our 
results can be considered in the context of the molecular 
composition of these surfaces, and their known and 
potential interactions with different classes of pattern 
receptors. 

The surface of promastigotes is dominated by phos-
phoglycans, in particular lipophosphoglycan, and the 
glycoprotein GP63. These molecules activate comple-
ment via the alternative or the MBlectin pathway (for 
review see [31, 32]). Binding of cultured promastigotes to 
host cells via these surface molecules is mediated by 
CD1 lb and c/CD1 8 (directly to the lectin domain or indi-
rectly, if opsonized, through the iC3b binding site) and 
mannose receptors [33-35]. Binding of these receptors 
appears not to change the expression of DC surface 
activation markers (this study; [14, 36]) implying that 
engagement of the mannose receptors, and of CD1 lb 
and c/CD1 8 (after reacting with 5 % serum; see [36]), by 
Leishmania sp. promastigotes is sufficient for triggering 
phagocytosis but does not cause DC maturation and 
activation. 

Konecny and colleagues have reported that incubation 
of CD1 1 c splenic DC with L. major promastigotes 
increased IL-12 production [14], while von Stebut et al. 
infected Langerhans cell-like foetal skin-derived DC 
(FSDDC) with L. major promastigotes, but did not note 
IL-l2 expression [36]. In our hands selection with CD1 1c 
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Fig. 3. Infection by L. mexicana amastigotes does not activate BM-DC. (A) Replated day 7 BM-DC were incubated with EGFP-
expressing amastigotes for 18 h, fixed and stained with antibodies against DC activation markers. (B) "Infection" of BM-DC with 
3.0-tm latex beads. The results are representative of at least five different experiments. 

induced low levels of IL-12 production, which were sig-
nificantly higher than those produced by amastigote-
infected cells, consistent with the activation of a small 
percentage of the population (Fig. 2). These data support 
those presented in Sect. 2.4. 

3 Discussion 

In this study, we have investigated the interaction 
between L. mexicana parasites cultured in vitro and BM-
DC, choosing to use this in vitro model in order to define 
the extent to which parasite-derived factors contribute to 
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2.3 Infection with L. mexicana amastigotes 

The effect of L. mexicana amastigotes on BM-DC was 
investigated by harvesting day 7 BM-DC and replating 
with axenic amastigotes. BM-DC infected with L. mexi-
cana amastigotes retained an immature phenotype and 
did not up-regulate expression of the DC activation 
markers CD86, CD54 or MHC class II (Fig. 3A). In this 
respect, the L. mexicana amastigotes behaved similarly 
to latex beads, phagocytosis of which also did not acti-
vate BM-DC (uptake of latex beads was confirmed by 
microscopy; Fig. 3 B). Infected BM-DC were stained with 
an anti-amastigote serum to confirm that the parasites 
were truly intracellular and not attached to the surface of 
the cell; fluorescence was seen only in permeabilized 
cells (data not shown). 

2.4 L. mexicana infection does not suppress 
activation of immature BM-DC 

Infection of M by Leishmania sp. was previously shown 
to suppress up-regulation of co-stimulatory molecules 
[18] and production of IL-12 [6]. Immature DC were 
therefore given LPS/IFN-y at the time of infection, or at 

various times thereafter, to establish whether L. mexi-
cana promastigote or amastigote-infected BM-DC were 
similarly refractory to activation. In all cases, this induced 
activation of infected BM-DC to levels equivalent to 
those seen in LPS/IFN-?-activated, non-infected BM-DC 
(Fig. 4 and data not shown). Infected BM-DC could also 
be activated by lower concentrations of these stimuli 
(data not shown). Thus, L. mexicana did not actively sup-
press activation of BM-DC. 

2.5 Effect of L. mexicana infection of ILA 2 
secretion by BM-DC 

We also investigated the effect of these parasites on 
IL-12 production by BM-DC. Day 7 BM-DC were incu-
bated with parasites for 18 h with or without LIPS and 
IFN-y, after which the supernatants were collected and 
assayed by ELISA for production of IL-12. Table 1 shows 
that LPS/IFN-y-activated, but not immature, BM-DC 
secreted high levels of IL-12, as expected [19]. Immature 
BM-DC infected by L. mexicana amastigotes did not 
secrete IL-12, although addition of LPS/IFN-y resulted in 
production of IL-12 by infected cells. Incubation of BM-
DC with promastigotes or opsonized promastigotes 
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to dissect the parasite: DC interaction through use of the 
highly controlled in vitro system afforded by L. mexicana 
parasites and bone marrow-derived DC (BM-DC), which 
permits discrimination between true parasite-mediated 
effects and effects mediated by host-derived factors 
associated with infection. Specifically, we have investi-
gated whether L. mexicana promastigotes or amastigo-
tes provide activation signals for immune BM-DC. 

2 Results 

2.1 Phenotypic characterization of BM-DC 

Immature DC, derived from bone marrow precursors by 
in vitro culture with GM-CSF, express markers consistent 
with the immunophenotype of myeloid lineage DC [15]. 
Leishmania exhibit a strong tissue tropism for M1, and 
care was therefore taken to ensure high levels of purity in 
harvested BM-DC (>70 % BM-DC). Fig. 1 shows the 
phenotype of BM-DC harvested after 7 days of culture, 
and replated for a further 18 h with or without LIDS and 
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Fig. 1. Immunophenotype of day 7 BM-DC. BM-DC were 
harvested on day 7, replated and incubated for a further 
18 h with or without activation stimuli. (A) Thin lines repre-
sent immature BM-DC and thick lines show BM-DC acti-
vated for 18 h with 1 1g/ml LIDS and io U/mI IFN-'y. Dotted 
lines are negative controls. Small and dead cells were 
excluded from the plots by gating. (B) Day 7 BM-DC are 
positive for both CD11c and MHC class II. 

IFN-y. Staining with T cell (CD3) and M (F4/80) markers 
showed no contamination with these cell types. Staining 
with B220 revealed a small population of B cells, which 
were excluded from subsequent analyses by gating. Fur-
ther purification of the BM-DC, e. g. by enrichment for 
CD1 1 c cells, resulted in maturation of the BM-DC popu-
lation upon replating (data not shown), and therefore was 
not used in this study. 

2.2 Infection of BM-DC by L. mexicana 
promastigotes 

Promastigotes are injected by the sandfly into the host 
epidermis, where they become opsonized, enhancing 
uptake by the phagocyte [16]. We therefore investigated 
whether infection with promastigotes or opsonized pro-
mastigotes could provide a maturation signal for imma-
ture BM-DC. To this end, green-fluorescent parasites 
were generated by integrating the enhanced green fluo-
rescent protein (EGFP) gene into a ribosomal RNA locus 
of L. mexicana by homologous recombination [17]. 
Briefly, a DNA cassette containing the EGFP reporter 
gene fused to the L. mexicana cysteine protease B 2.8 
intergenic gene region, and followed in tandem by the 
hygromycin-resistance gene fused to a copy of the same 
intergenic region, was integrated into a genomic small 
subunit rRNA locus. Drug-resistant clones expressing 
high levels of EGFP were selected. The recombinant par-
asites expressed high levels of EGFP as both promasti-
gotes and amastigotes, and expression levels between 
axenic amastigotes and lesion-derived amastigotes 
remained similar for at least 10 months post-infection. 

Day 7 BM-DC were incubated for 18 h with stationary-
phase EGFP-promastigotes. Flow cytometric analysis of 
this population (Fig. 2A) revealed that the majority of 
cells (85-90 %) remained immature, and that the im-
mature population contained both infected and non-
infected BM-DC. A small but consistent percentage 
(10-15%), consisting mainly of uninfected cells, up-
regulated the surface activation markers CD86 and MHC 
class II. Opsonization of the promastigotes with 5 % 
mouse serum did not significantly increase the propor-
tion of activated cells in the population (Fig. 2 B). These 
data indicate that infection with L. mexicana promasti-
gotes did not stimulate BM-DC to mature within the 18-h 
period investigated. However, promastigotes, or 
promastigote-derived material, could occasionally acti-
vate immature BM-DC. The lower levels of GFP fluores-
cence observed in experiments using opsonized com-
pared to non-opsonized promastigotes was probably 
due to enhanced degradation of opsonized parasites. 
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Resolution of infection by Leishmania sp. is critically dependent on activation of CD4 T 
helper cells. Naive CD4 T helper cells are primed by dendritic cells which have responded 
to an activation signal in the periphery. However, the role of Leishmania-infected dendritic 
cells in the activation of an anti-Leishmania immune response has not been comprehensively 
addressed. Using the highly controlled model system of bone marrow-derived dendritic cell 
infection by Leishmania mexicana cultured in vitro, we show that uptake of L. mexicana para-
sites does not result in activation of immature dendritic cells or secretion of IL-12. Incubation 
with L. mexicana promastigotes results in the activation of a small percentage of dendritic 
cells which do not appear to contain whole parasites. Activation of dendritic cells is not sup-
pressed by infection, since infected cells can be fully activated on addition of activating 
stimuli. Therefore, uptake of intact Leishmania mexicana parasites is not sufficient to activate 
dendritic cells in vitro. We propose that these data provide a basis for interpreting the inter-
actions between dendritic cells and all Leishmania sp. 
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1 Introduction 

The protozoan parasites Leishmania sp. are the causa-
tive agents of a spectrum of diseases in humans. They 
undergo a digenetic lifecycle: the promastigote form 
resides in and is transmitted by its insect vector, the 
sandfly, while the amastigote form is an obligate intracel-
lular resident of host monocytic phagocytes [1]. M are 
the predominant host for Leishmania sp. in infected 
mammals and are also the principal effector cells in the 
clearance of intracellular parasites, through the activa-
tion of nitric oxide synthase [2, 3]. However, Leishmania 
infection itself does not appropriately activate Mt [4-6] 
and resolution of the infection is entirely dependent 
on the presence of Mm-activating type 1 phenotype 
parasite-specific CD4 T helper cells [7]. 

The Leishmania-specific T cell response is thought to be 
initiated by dendritic cells (DC), since parasites and 
parasite-derived material can be detected by immuno- 

[I 20820] 

The last two authors contributed equally to the work. 

Abbreviations: DC: Dendritic cell BM-DC: Bone marrow-
derived dendritic cell EGFP: Enhanced green fluorescent 
protein 

histochemistry in DC in the LN [8] and spleen [9] of 
infected mice. Some of these DC populations stimulate 
specific I cells in vitro ([8]; TA., unpublished data). DC 
must mature to strongly stimulate T cells. Tissue DC are 
mostly immature, but are actively phagocytosing and 
processing antigens for loading onto largely intracellular 
MHC class II molecules. Activation signals stimulate DC 
to undergo dramatic phenotypic changes, which result in 
the redistribution of peptide-loaded MHC II molecules to 
the cell surface, up-regulation of co-stimulatory mole-
cules, expression of cytokines such as IL-12, and down-
regulation of phagocytosis. The maturing DC migrate to 
I cell areas of the draining LN where they can activate 
specific naive CD4 I helper cells [10]. 

It has recently been suggested that DC provide a link 
between the innate and adaptive immune responses, 
and that recognition of pathogen-derived "danger" sig-
nals activates DC and consequently enables them to 
stimulate appropriate T cell responses [11-13]. However, 
this emerging paradigm has not been rigorously investi-
gated for complex pathogens such as protozoa and 
macroparasites. Several studies have reported effects of 
Leishmania infection on DC maturation [14]; however, 
these do not yet comprise an exhaustive survey of DC 
infection by different Leishmania sp. and moreover, are 
open to alternative interpretations. Here, we have sought 
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antibodies is by itself an activation signal, possibly 
because of extensive cross-linking, and phagocytosis of 
the parasites may provide some synergy at the level of 
IL-12 expression, providing a possible explanation for 
the discrepancy between these results. In our study, a 
small percentage of BM-DC incubated with L. mexicana 

promastigotes was activated. These cells did not exhibit 
green fluorescence, indicating that they harbored para-
site debris rather than live parasites. This is supported by 
the fact that incubation with promastigote lysates acti-
vates a small fraction of BM-DC, equivalent to that seen 
on incubation with whole parasites (CLB, COB unpub-
lished data). We therefore suggest that intracellular pro-
teins released as a result of lost parasite integrity may be 
responsible for the observed BM-DC activation by pro-
mastigotes. Precedent for this is suggested by a previ-
ous report that LeIF, a leishmanial homologoue of 
eukaryotic initiation factor 4A, could induce monocyte-
derived DC activation [37]. Liberated parasite DNA could 
also contain sequences with CpG activity, though we 
have thus far been unable to demonstrate this for L. mex-

icana genomic DNA (T. A., unpublished data). 

The surface of axenic L. mexicana amastigotes [38] has 
previously been characterized, and is covered with a 
small GPI-anchored glycolipid, EpiM3. EpiM3 contains 
mannoses and an ethanolamine-phosphate group, but 
no equatorial OH groups to engage mannose receptors 
[39]. Thus, cultured amastigotes do not bind mannose 
receptors, CR3 or FcRyll [40].  However, although the 
receptors involved in their uptake remain elusive, cul-
tured L. mexicana amastigotes are clearly phagocytosed 
by BM-DC: our data indicate that they do not encode 
surface-associated "danger" signals capable of activat-
ing BM-DC. Infection with lesion-derived L. major amas-
tigotes has, in contrast, been shown to induce CD40, 
CD54, CD80 and CD86 as well as IL-12 secretion in 
FSDDC [36]. Lesion-derived parasites are opsonized by 
complement and Ig [40-42] and are co-purified with 
other host proteins present in the inflamed tissue [38]. 
Therefore, their interaction with DC is mediated at least 
by complement receptors and Fc receptors, ligation of 
the latter of which has been shown to induce DC matura-
tion [28]. 

In murine models of Leishmaniasis the place of DC-
parasite encounter is known to bias the development of 
DC-induced effector T cell populations: in experimental 
visceral leishmaniasis, intravenous injection of L. dono-

vani leads to IL-12 expression in splenic DC harboring 
parasite material [9], and apparently, a type 1, though not 
protective, T cell response [43]. We propose that intact 
Leishmania sp. promastigotes and amastigotes lack 
adjuvant activity. An important consequence of our find-
ings is that, in the absence of such activity, DC matura- 

tion and activation during experimental Leishmania 

infection in vivo will be mediated by host-derived factors, 
such as cytokines released due to the trauma of injection 
or biting by the sand fly vector, and the array of receptors 
involved in the interaction. These are likely to depend on 
the microenvironment in which DC interaction with the 
parasites occurs, for instance, whether the parasite inoc-
ulum has been fully exposed to serum components, or 
whether the locale is conditioned by components pres-
ent in the insects' saliva [44-46]. 

4 Materials and methods 

4.1 Mice 

Six- to eight-week-old female CBA mice were obtained from 
a colony maintained at the Centre for Genome Research ani-
mal facility. 

4.2 Parasite cultures 

L. mexicana (strain MNYC/BZ/62/M379) promastigotes 
were cultured in vitro in semi-defined medium/1 0% heat 
inactivated FCS at 26°C. Amastigotes were cultured axeni-
cally at 34°C in Schneider's Drosophila medium (Gibco BLR) 
supplemented with 20 % heat-inactivated FCS and 3.9 g/l 
2-(N-morpholino)ethanesulphonic acid (Sigma, GB). EGFP-
expressing parasites are virulent upon infection in vivo 
(Fig. 5) with a tendency to slightly delayed lesion develop-
ment compared to wild-type in C57BL/6 mice, which show 
intermediate resistance when infected with L. mexicana. At 
32 weeks post-infection the parasite burden in lesions in 
fully susceptible BALB/c mice is identical to that reported 
for wild-type infections [47], indicating no gross difference in 
virulence between wild-type and transgenic parasites [17]. 

4.3 Isolation and propagation of BM-DC 

BM-DC were cultured in vitro according to a method 
adapted from Inaba et al. [48]. Briefly, BM-derived white 
cells were plated at a density of 3.75 x 105/ml in RPMI 
(Sigma) supplemented with 10% FCS, 2 mM glutamine/ 
pyruvate and 10 ng/ml murine GM-CSF (Peprotech), in 24-
well plates, at 1 ml/well, and incubated at 37°C. The cul-
tures were washed on days 3 and 6 to remove nonadherent 
granulocytes and lymphocytes. On day 7 loosely adherent 
BM-DC were removed by more vigorous washing and rep-
lated, to exclude firmly adherent M4 from subsequent cul-
ture. Where necessary, DC were stimulated for 18 hours with 
1 [tg/ml E. co/i-derived LPS (Sigma) and io U/mI IFN-y 
(R&D systems). 
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4.4 Infection of BM-DC with L. mexicana parasites and 
phagocytosis of latex beads 

Day 7 BM-DC were incubated with well-washed L. mexica-

na amastigotes, stationary-phase promastigotes, or latex 

beads, at a ratio of 1:8, for 18 h at 37°C. We used 3.0-.tm 

beads (Sigma) since this is approximately the size of an 

amastigote. Stationary-phase promastigotes were opson-

ized by incubation with 5 % normal mouse serum at 37°C 

for 15 mm, followed by thorough washing. BM-DC were then 

harvested and fixed (Sect. 4.5) before staining, and the 

supernatant was stored frozen at -70°C for analysis for 

IL-12 content. 

4.5 Flow cytometry 

BM-DC were harvested into 5-ml polypropylene tubes (Bec-

ton Dickinson), washed with PBS/10 % FCS, then stained 

using standard protocols. For intracellular staining cells 

were fixed and permeabilized using a Fix & Perm kit (TCS 

Biological Ltd). The following mAb were used: GL1-PE, 

specific for CD86; 14-4-4S-PE, specific for lEk;  HL3-FITC, 

specific for CD1 1 C; anti-B220-FITC; anti-CD3-PE (all from 

Pharmingen); KAT-1 -PE, specific for ICAM1 (Cambridge Bio-

science) and anti-F4/80-FITC (Caltag). Appropriate isotype 

controls were also used. An anti-DEC-205 antiserum (Sero-

tec) was used with an anti-rat-PE secondary Ab (Pharmin-

gen). Intracellular infection by amastigotes was confirmed 

with an anti-L. mexicana rabbit serum, generated by immu-

nization of rabbits with L. mexicana promastigotes, and visu-

alized using an anti-rabbit-FITC secondary Ab (Sigma). DC 

were fixed and blocked before staining using 2.4G2 (Fc 

Block T1,  Pharmingen) and 10 % normal mouse serum. Flow 

cytometric analysis was performed using a FACScan (Bec-

ton Dickinson) and analyzed using CellQuest 3.1 software. 

4.6 Cytokine detection 

The p40 subunit of IL-12 in culture supernatants was mea-

sured using a commercially available ELISA kit (Pharmin-

gen). Statistical analyses were performed using the Stu-

dent's t-test. 
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