
Machine Assisted Proofs for Generic
Semantics to Compiler Transformation

Correctness Theorems

Saif Ullah Khan

Master of Philosophy
Department of Computer Science

University of Edinburgh
1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429732899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To My Parents

Abstract
This thesis investigates the issues involved in the creation of a “general theory of
operational semantics” in LEGO, a type-theoretic theorem proving environment
implementing a constructionist logic. Such a general theory permits the ability
to manipulate and reason about operational semantics both individually and as
a class. The motivation for this lies in the studies of semantics directed compiler
generation in which a set of generic semantics transforming functions can help
convert arbitrary semantic definitions to abstract machines. Such transformations
require correctness theorems that quantify over the class of operational semantics.
In implementation terms this indicates the need to ensure both the class of opera-
tional semantics and the means of inferring results thereon remain at the theorem
prover level. The endeavour of this thesis can be seen as assessing both the re-
quirements that general theories of semantics impose on proof assistants and the
efficacy of proof assistants in modelling such theories.

Acknowledgements
First and foremost I would like to thank Kevin Mitchell who supervised me for my
first four years, supplying me with many helpful hints and constructive criticisms.
He also bore with me at a period of my life when my mental health deteriorated
for which I am eternally grateful. Secondly I would like to thank Stuart Anderson
an ever present of my life at the University since I first arrived in 1988, for taking
over the supervision of my work when it was seemingly near its conclusion. The
help and encouragement I received meant I was able to (finally!) complete this
thesis. Special mention must go to Rod Burstall, my mentor through the entirety
of my postgraduate studies. My all too brief encounters with him lifted my spirits
at a time when they were desperately in need of a boost. I would also like to
especially thank Thomas Kleymann (formerly Schreiber) for the many times he
aided me in my Lego miseries. I also thank James Hugh McKinna, Randy Pollack
and other members of the Lego club for their helpful ideas, various helpful office-
mates Pietro Cenciarelli, Andrew Wilson, Dilip Sequeira and Masahito Hasegawa,
Claudio Russo my long term friend whom I’ve known ever since I moved to
Edinburgh, all the secretarial staff: Eleanor Kerse, Tracy Combe, Sam Falconer,
Margaret Davis, Monika Lekuse, Lucinda McGill, Mairi McLennan, Bill Orrok
and Angela Riddell and everyone else I met at LFCS.

On a personal note I must thank the following: Lisa Charlotte Bolton for lots
of good advice and saving my life on numerous occasions, Nick Robinson for being
a Gooner who it was alright to be “different” around, his charming wife Tomoko,
Vicki Clayton my loving, gullible and tolerant friend — don’t know where I’d
be without you mate, Beaded de Mowbray for all those pinky perky beef jerkey
bubbly times and breaking my Arsenal mug, Sally Mayne my partner and soul
mate on many trips and escapades for her layed back yet enthusiastic lovely voice
and e-mails and breaking my Arsenal mug, Elaine - Oh Elaine, you’re beautiful,
Moira MacKay for general revelry and letting me be a moustached lecher, Richard
Elphee my one time room-mate and companion who breaks the records in smiling,
dancing, laughing and general consumptious behaviour, Meg his darling darling
sister, Tom “Come at ME!” Elphee his brother, Udi the interesting and very
congenial friend who didn’t learn enough sensible Urdu from me to go to India —
Kya baat hai?, Shlair Teimourian the lovely tea drinker who was so nice to me on

so many occasions, Alison Kjellström her infinitely energetic friend, Davva Angel
the lanky vegan who let me star in his film and helped me in my maddest tempest,
Sally his lovely partner and Margaret his voluptuous sister, Lucy Ketchin the bees
knees and a charming little girl, Sarah “Listen — Take care” Eckersley for being
one of the few people I loved as a sister (Awww), Iggy Smith and Penny the
mad and thin people, John Wallace the man with the Wok, Tom “Don’t call me
doughboy” Hirons just for the smile on his face, Ruth Kingshott for her wit and
gorgeous Banoffie Pie, Nick Florey and Alison Blackhall for just about everything
else, Sarah Jessica Longley for letting me slowly uncoil when her seeing eye was far
next to happier times, Miss Gina Ward for so many insane and yet disturbingly
hilarious comments, Miss Amelia Davies for laughing when I was joking, Andy
Clamp and Keith “scratch card” Butler, Leah Bain and Vicki Hageman, Chris
Binnie and Duncan Moore for their help in my homeless hardships, Donna and
Paul Douglas for “sorting us out” with a roof over my head, Bruce Danraj for
his . . . well yes, Mark McCauley for his supremely captivating style and being
one of the funniest people I have ever met, Shane “Chancellor” Gorman, Helen
Cairns for an interesting time in Paris and a lovely slap up meal, Beth, Julia
Lappin, Maggie Loach for all those “conversations”, Julie Abrahams for being a
friend I desperately needed when times were bad and for letting me stay in her
flat when I was homeless (not forgetting Lucy Head!), Thom McKean for letting
me stay at his place in San Francisco, Julie Doak who I sadly broke down in
front of but who gave me some of the best days of my life, not forgetting the
Mancunian and oh so pretty Anita, Rita, Sue, Bob too, and all the rest of the
Forrest People and their parents in no particular order, Rachel Louise Wilson —
We’d fallen out of the sky the day before and kissed on the sandy mile with the
clean sea behind. We walked across fields of soft earth that fed our bellies and
I realised why my body was a smile. Finally, Dr. Blackwood, Dr. Tim Brown,
Dr. Shah, Dr. Cunliffe, Dr. Fletcher, Dr. Last, everyone at the Richard Verney
Centre, Ward 1 and 2 of the Royal Edinburgh Hospital, Mum and Dad who
kept me going in some of the darkest days of my life, brothers Khurshid, Saad,
Fraaz, sisters Romisa, Rubina, Memoona, nieces Afifa, Maaria all who supported
me in every way possible and for their priceless patience with me, the rest of
the family and rabble of Barking people, the close friends I haven’t mentioned
already: Muazzam, Muazzamel, Rehan, Jay, Asad, Saad, and finally Perry Farrell,
Seaman, Dixon, Winterburn, Bould, Adams, Keown, Viera, Merson, Bergkamp,
Wright, Davis, Michael Thomas, Lukic, Wenger, Rioch, Graham, Bertie Mee and
Herbert Chapman may he rest in peace.

2

3

Declaration
I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text.

(Saif Ullah Khan)

Table of Contents

Chapter 1 Introduction 4
1.1 Operational Semantics . 5
1.2 Lego: A Proof Assistant for Constructionist Logics 6
1.3 Generic Semantics Transformations 7
1.4 Formalizing at Different Levels . 9
1.5 Representation in Lego . 14
1.6 Outline of the Thesis . 15

Chapter 2 Well-Formed Terms in a General Theory 17
2.1 Sorts, Identifiers and First Order Signatures 17

2.1.1 Sorts and Function Names 18
2.1.2 First Order Signatures . 18

2.2 Well Formed Terms . 20
2.2.1 Well Formed Terms Using Dependent Sum Types 21
2.2.2 Well Formed Terms From Dependent Product Types . . . 26

Chapter 3 Object Language Support, Parsing and Pretty Printing 30

3.1 Approximation 1: Lego’s In-Built Utilities 31
3.2 Object Language Support in Other Theorem Provers 33
3.3 Object Language Support via Grammar and Lexicon 36
3.4 Typed Parsing Versus Parsing as Preprocessing 38
3.5 Extending Lego with Object Language Support 39

3.5.1 Defining the Lexicon . 39
3.5.2 Defining the Grammar and Signature 39
3.5.3 The Parser . 41
3.5.4 The Unparser . 44

3.6 Lego Inductive Types Specified with Object Language Support . . 46

Chapter 4 Formalizing Operational Semantics 47

4.1 Types for Inductive Definitions 47

1

4.1.1 Side Conditions . 48
4.1.2 Rules . 49
4.1.3 Rule Sets . 51

4.2 The Meaning of Semantic Specifications 52
4.2.1 Substitution . 54
4.2.2 Side Conditions and their Proofs 56
4.2.3 Judgements: Inductively Defined Sets 57

4.3 Utilities for Inductively Defined Sets 60
4.3.1 Named Rules . 60
4.3.2 HeadPremiss, TailPremisses 61
4.3.3 Case Analysis . 62
4.3.4 Properties of Rule Sets . 65
4.3.5 Automated Substitutions and Interpreting 67

4.4 Preliminary Evaluation . 69
4.5 Other Side Conditions . 71

Chapter 5 An Example Semantics 73
5.1 The Syntax of ExpSem . 73
5.2 The Semantics of ExpSem . 78
5.3 Example derivations . 83

5.3.1 Top Down Derivations . 84
5.3.2 Bottom Up Proofs . 87
5.3.3 Proving Side Conditions 89
5.3.4 Named Rules . 89

5.4 Monogenicity Theorem for ExpSem 90
5.5 Let and Function Application Equivalence Theorem 93

Chapter 6 An Example Transformation and Correctness Proof 103
6.1 Branch Elimination . 103
6.2 The Transformation in Lego . 105
6.3 The Branch Elimination Theorem 111

Chapter 7 Conclusion and Further Work 119

7.1 Well Formed Terms . 119
7.2 Object Language Support . 121
7.3 Types and Semantics for Inductive Definitions 124
7.4 Transformation Correctness Proofs 128
7.5 Future Directions – Theorem Prover Support 131

2

7.6 Conclusion . 133

Bibliography 135

Appendix A A Type Theory Primer 140

Appendix B Lego Syntax and Commands 142

Appendix C Code for the Lego General Theory of Operational Se-

mantics 146

3

Chapter 1

Introduction

Several proof checkers [GM93, Des88, BB+96a] exist today that allow reasoning
about operational semantics, viewed as inductively defined rules, in a style con-
sistent with the presentation of inductive reasoning in the literature. Typically
a proof checker is supplied with a package allowing one to specify semantics,
construct derivations and use rule induction. One aspect these packages do not
cover is reasoning generalized over the class of inductively defined operational se-
mantics. This is not a common necessity — unless we wished to provide support
for functions taking semantics as arguments and returning them as results and
then prove theorems of such functions that quantify over the whole class. The
motive behind this seemingly obscure circumstance lies in the studies of semantics
directed compiler generation. There, generic functions are used to convert arbit-
rary operational semantics to abstract machine equivalents — formalisms that are
intermediate between semantics and compilers. Such translation functions require
“consistency theorems” to ensure that the antecedent and consequent semantics
elicit the same behaviours — both being equivalent in some sense. These theor-
ems quantify over the class of operational semantics due to the generic nature of
the transformations. Facilitating the proof of such theorems motivates this study.

We shall explore issues in the development of a feasible implementation of a
package, in the LEGO [LP92] proof assistant, to specify and logically reason about
operational semantics both individually (as in other packages) and collectively as
a class. In specifying semantics, they must, as a prerequisite, be represented as
first order objects within the framework. In other words, there must be a means
of syntactically enumerating the elements of this class in the proof assistant.
However, having only a lexicographic description, semantics are rendered mean-
ingless unless a notion of their connotations in computation is supplied alongside
to give a mathematical basis upon which reasoning can occur. There is a gen-
eric quality inherent in this notion of meaning as it must be applicable to any

4

semantics as well as providing a foundation upon which to reason about the class
of semantics as a whole in the sense that theorems quantifying over all semantics
can be both specified and proven in the context of a proof assistant.

Before continuing further we need to embellish the concepts introduced above.
In the next section we discuss the forms of operational semantics that are the focus
of this thesis, section 1.2 describes proof checkers in general and our choice, Lego
[LP92], for its expressive and flexible type theory as well as an exercise in its suit-
ability as a plausible environment within which to implement the concepts above.
Section 1.3 illuminates the work that motivates our own — general transforma-
tions converting operational semantics closer to abstract machine equivalents in
a provably correct fashion. In section 1.4 we highlight the shortcomings of the
traditional implementations of inductive rule reasoning mechanisms with regard
to supporting the kind of generalization mentioned above as well as discussing
features necessary to do so. Section 1.5 introduces and explains the aspects of
Lego that can be used to realise such features and section 1.6 provides an outline
of the rest of the thesis.

1.1 Operational Semantics

Operational Semantics [Plo81] is an established medium for expressing the mean-
ing of programming languages in use today. The term is used loosely to refer
to the class of formalisms in which the behaviour of programming languages is
defined by how programs are evaluated to results. In time a style of operational
semantics developed in which inference rules were used as the defining mechan-
ism — inspired by [Plo81] where the term “structural operational semantics” was
coined to refer to inference rules providing an inductive definition of some relation
defined as the phrases of the language. The structural aspect of the semantics is
in the use of inductive rules, guided by the abstract syntax of the programming
language, to define the relation. Since the relation defined was single step, the
style of semantics is referred to as transitional.

In Kahn’s work on Natural Semantics [Kah87, Kah88] a proof-theoretic vein
is taken. Programming languages are defined in terms of deductive systems in
the form of a sequent calculus [Sza69] where a deductive system is a set of natural
deductive rules [Pra65] of sequents. The conclusions of natural semantics rules
were, in general, statements relating program states to canonical forms. For
this reason this style of operational semantics is referred to as relational. Using
inference rules to represent such relations was inspired by Martin-Löf in [ML84].

5

Relational semantics are highly abstract and have been successfully used to define
real languages [MTH90]. As a paradigm it has been particularly fitted to specify
programming languages where evaluation is an inherent factor.

The relational style is also expressed by inductive definitions, which are used
extensively in computer science to define sets having a natural formulation in
terms of an inductive closure condition [Acz77]. Several forms of inductive defini-
tion exist including classical (or positive), co-inductive, bi-inductive and negative
[CC92]. We shall concentrate on the classical form because it is the most fre-
quently used. Plotkin’s structured operational semantics and Kahn’s natural
semantics have a common representation as inductive definitions. In view of this,
we shall henceforth use the terms operational semantics and inductive definition
synonymously.

1.2 Lego: A Proof Assistant for Constructionist
Logics

Proof development systems (alternatively proof assistants, proof checkers or the-
orem proving assistants) are computer implementations of logical reasoning mech-
anisms within which true propositions can be rigorously verified with machine
assistance. Formulae proved in this manner become reliable and undeniably cor-
rect since every aspect of a proof is formalized. With progressive use of such
tools, theories of whole sections of mathematics can be coded within a proof as-
sistant. A myriad of implementations exist equipped for a variety of logics and
applications including HOL [GM93, BCG91] for higher order logic and hardware
verification, LAMBDA [MH91] for the same purpose and Isabelle [Pau94, Pau93]
a generic theorem prover supporting a wide variety of logics.

Lego [LP92] is an interactive proof checker designed and written in Edinburgh
in the functional programming language ML [HMM86]. A number of type systems
are implemented by it including the Edinburgh Logical Framework [HHP87], the
Calculus of Constructions [CH88] and the Extended Calculus of Constructions
[Luo90]. Proofs are developed in a natural deduction system by refinement. Lego
provides an expressive language with which to formalize mathematical notions.
That language is a framework for higher-order type theories with dependent types
(including strong sum types, useful for natural representations of abstract data
types and mathematical theories [Luo91a, LPT89]), inductive types, type uni-
verses and universal polymorphism1.

1For a summary of type theoretic concepts see Appendix A

6

Applications of Lego include a proof of the Chinese Remainder Theorem
[McK92], a formalization of the Z specification notation [Mah91] as well as pro-
gram specification and program correctness proofs [BM91, Luo91b, Hof91, McK92].
More recently, work on issues such as verification calculi for imperative programs
[Sch97] and representing modular specification languages [Mah96] has taken place.
A brief summary of the system is provided in Appendix B. A more detailed ex-
position on the theory and implementation of Lego can be found in [Pol95].

The expressiveness of Lego’s type theory is one of the reasons for the choice
of Lego in this thesis. This exercise also provides an assessment of the suitability
of Lego for the development of a theory of operational semantics.

1.3 Generic Semantics Transformations

The problem of constructing correct compilers from precise semantic definitions
has become increasingly familiar in recent years [Jon80]. During this time a
trade-off has been realised between the efficiency of the eventual compiler and
the difficulty of the correctness proof [HM91].

On the one hand a hand crafted compiler may be implemented by techniques
specialized to a language and machine — the implementor having a degree of
flexibility as a result. The correctness of the compiler can be difficult to show
however since the resulting program may have an obscure relationship to the
original semantics. On the other hand an implementation can be coded directly
from the semantics — affording mechanization in both the compiler’s construction
and the proof process. Unfortunately, the performance of an implementation
produced in this way is usually far outshone by a hand crafted compiler since the
flexibility available in the hand crafted case have given way to the rigours of the
direct encoding.

In the light of this, work by Hannan and Miller [HM91, HM90] has focussed on
bridging this gap by founding a set of semantics transformations general enough to
convert a significant proportion of operational semantics closer to a representation
intermediate between high level mathematical description and low level compiler,
keeping results abstract from any particular machine architecture. The chosen
intermediate is the abstract machine (examples of which are Landin’s SECD
machine [Lan64] and Milner’s SMC machine [Mil76]) typically used as a low level
architecture for a wide range of programming languages since it is a paradigm that
facilitates portability, code optimizations and machine code generation [Car84].

The generic transformations in [HM91] preserve the original qualities of se-

7

mantics in the sense that they are each accompanied by theorems stating a re-
lationship (usually equivalence) between input and output. All the examples of
such transformations can be seen in [HM91], one of which (Branch Elimination)
is discussed in detail in chapter 6. To illustrate the idea we shall introduce an ar-
tificial example of a semantic transformation here. Suppose we have a semantics
LessSem describing the less-than relation

0 < suc n

n < m
suc n < suc m

and we wish to convert this to a semantics to describe the greater-than relation
written as

suc n > 0

m > n
suc m > suc n

We could apply the function Perm2 defined in the following way. For any
semantics Sem specifying a two place predicate P , Perm2 takes all rules in Sem
mentioning P xy (where x and y are well-formed arguments to P) and substitutes
the new formula P ′ y x (where P ′ is a new predicate not mentioned in Sem with
the reversed arity of P). The result is a semantics Perm2(Sem) related by the
transformation theorem

∀Sem. ∀P. ∀x, y. Sem ` P x y ⇐⇒ Perm2(Sem) ` P ′ y x

where ` denotes derivability in the proof theoretic sense. The theorem above
quantifies over the set of semantics and so our notion of meaning must also span
to this wider context. In terms of the theorem above, the symbol ` should be
taken to denote a generic notion of derivability in the sense that it is a relation
applicable to any semantics and one that we can reason about.

The transformations in [HM91] are meant to be used in stages to automat-
ically build abstract machine equivalent semantics. The correctness theorems
ensure that the results are immediately correct. Demonstrations are provided
in the paper of this process, converting simple evaluation semantics to abstract
machines implementing those evaluators. The application of Perm2 to LessSem
is an example of one stage in the kind of process in Hannan and Miller’s work.
From the general theorem for Perm2 we can infer the theorem

LessSem ` x < y ⇐⇒ Perm2(LessSem) ` y > x

8

The Hannan and Miller transformations are small in number and can readily
be automated. Our interest is in the machine assisted proofs of the attached
correctness theorems. In such circumstances, it would be possible to automate
both compiler construction and correctness proof. With transformations used in
stages and each stage being machine verified, the proof immediately follows. It
is to this end to be able to blend all aspects of operational semantics reasoning,
that we wish to create a workbench within a proof assistant context for this task.
Taking the issues in this section into account, the mandatory features of such a
package include

• A syntactic formalism to express operational semantics. This allows us to
define the elements of the class of operational semantics and transformations
thereon. Furthermore, it must make quantification over this class possible.

• The syntactic descriptions must be furnished with their intended meaning
as inference rules (including an induction principle) in some shape or form.
This permits the usual kinds of reasoning to take place including proof tree
construction and the proofs of theorems connected to individual semantics
such as monogenicity and the like.

• The characterization of meaning must extend to the general class of oper-
ational semantics. We must be able to define and reason about a generic
relation over this class to express the fact that a formula f is derivable
from a semantics Sem. With this we are able to specify and prove the
transformation correctness theorems we are interested in.

The points above necessitate a separation between the idea of a semantics as syn-
tactic notation and a semantics as meaningful entity while the notion of meaning
itself must be generalised to the extent that theorems can be proven of func-
tions on semantics. We shall refer to inductive definitions expressed as syntactic
entities as inductive specifications. We shall refer to the foundation of a general
workbench for operational semantics in Lego as a “General Theory of Operational
Semantics” or simply as a general theory.

1.4 Formalizing at Different Levels

Schema already exist in a number of proof assistants in which semantics can
be specified syntactically where meaning is derived from functions that produce
theorem prover rules. Whilst this gives us a way of defining transformations for

9

inductive definitions as well as a means of reasoning with them in the proof as-
sistant, we cannot prove or even define the kinds of transformation correctness
theorems we are interested in. This is a consequence of the absence of the general
relation of derivability we mentioned in the previous section. In other words,
the functions that provide the meanings to inductive specifications do not them-
selves provide a way of reasoning about inductive rules in general. Their purpose
is purely imperative in asserting inference rules in a proof assistant’s context
for specific inductive specifications rather than providing a generic derivability
relation so essential to a machine formalization of Hannan and Miller’s trans-
formation theorems. This is related to work in “shallow” and “deep” embeddings
in [BG+92]. There, a distinction was made between representing the syntax of
hardware description languages and their semantic functions explicitly within the
logic of the theorem prover (deep embeddings) and representing them in a shallow
manner by only defining the semantic structures within the logic. The syntactic
aspects being parsed directly into semantic features by the user-interface. The
implementation suggested here is closer to a shallow embedding. We provide an
illustration of the points above with reference to the HOL system [GM93].

In HOL we can represent an inductive specification as a list of pairs. Each pair
represents a rule. The first object of the pair is a list of strings (the premisses) and
the second object is a string (the conclusion). We are then provided a procedure
that takes these structures and produces the corresponding inference rules at the
theorem prover level with an associated rule induction principle for them. The
function is called new_inductive_definition in HOL [Mel92, CM92, Mel88].
We can cater for Hannan and Miller transformations by writing functions in
HOL to manipulate the string representations of inductive definitions. To reason
about these syntactic entities we can invoke new_inductive_definition to give
us the appropriate inference rules in the global HOL context. To demonstrate the
process, take the following specification for the LessSem semantics of the previous
section

[([],

(* --------------*)

"lt 0 (Suc n) "),

(["lt m n"],

(*---------------*)

"lt (Suc m) (Suc n)")]

10

We can reason about this by applying new_inductive_definition to obtain
the rules

lt 0 (Suc n)

lt m n
lt (Suc m) (Suc n)

R 0 (Suc m) ∀m,n. R m n → (R (Suc m) (Suc n))
∀m,n. lt m n → R m n

in the HOL context. We can define the Perm2 transformation of the previous
section by defining a function that takes a string specification like the one above
and performs the appropriate manipulations to construct a new string consist-
ent with the action of Perm2. Let us say that the result of applying such an
implementation of Perm2 to our representation of LessSem yields the new list

[([],

(* --------------*)

"gtr (Suc n) 0"),

(["gtr n m"],

(*---------------*)

"gtr (Suc n) (Suc m)")]

where the new predicate name gtr stands for the greater-than relation. We can
now again supply HOL with a means of reasoning with the new rules by applying
new_inductive_definition to give the new rules

gtr (Suc n) 0

gtr n m

gtr (Suc n) (Suc m)

R (Suc n) 0 ∀n,m. R n m → (R (Suc n) (Suc m))
∀n,m. gtr n m → R n m

This kind of set-up in HOL allows both a syntacticly manipulable representa-
tion for inductive definitions as well as a ready means of reasoning with individual
inductive definitions. Top down derivations can be constructed using HOL’s ba-
sic operators by continuous rule applications until axioms are reached. The rule

11

induction principle is immediately available allowing a straightforward way of
proving theorems of a set of inductive rules. The presentation of the inference
rules in HOL is also fairly close to the notation of the literature.

However it falls short of providing a general theory of operational semantics
since it precludes the possibility of defining a general derivability relation in HOL.
The new_inductive_definition command cannot itself be reasoned about at
the theorem proving level (its soundness for example is a meta theorem). It
operates as a command which takes a string specification and simply asserts the
right inductive rules and rule induction principle in the theorem proving context.
Derivations may be built using HOL’s basic reasoning mechanisms but derivations
of arbitrary semantics cannot be related. The consequence being that there is no
means of specifying a transformation correctness theorem such as

∀Sem. ∀P. ∀x, y. Sem ` P x y ⇐⇒ Perm2(Sem) ` P ′ y x

because `, the generic derivability relation has no representation in HOL. In terms
of supplying machine checked proofs of correctness for programming language
transformations, the best that can be done is a proof in HOL of a relation between
two specific semantics. In the demonstration above this amounts to a machine
assisted proof of the theorem

∀n,m. (lt n m) ⇐⇒ (gtr m n)

which is not quantified over the set of semantics but an instance of the general
theorem. The effect of an inability to state and prove general transformation
correctness theorems is that when using transformations for a particular inductive
specification Sem say, we do not immediately have a proof that the meaning of
Sem is related to the meaning of the result of applying a transformation to Sem.
Full mechanization of the proof process becomes impossible.

Despite this drawback, some machine assistance can be given to prove spe-
cific theorems like the one above. Tactics are useful accompaniments to each
transformation aiding the automation of the correctness proofs at this level. For
example, a general tactic to solve the theorem above would be given the rules
and predicate names for the two semantics involved and then first apply the ∀-
introduction rule (to strip off the quantifiers) continuously until it is no longer
applicable. It would then simplify the double implication to turn the goal into a
conjunction of implications. For each implication goal it would apply the relevant
rule induction rules (for lt and gtr in the example) and proceed thereon.

By providing tactics in this way, we are able to provide some machine assist-
ance for proofs of specific theorems but they are not guaranteed to succeed. In

12

fact, the tactic discussed above is guaranteed to succeed and its success amounts
to a proof of the general theorem — but we cannot reason about tactics in HOL.
In general, the best that can be done is to design tactics in such a way that
they can be used to prove the widest subset of semantics covered by a general
transformation correctness theorem. Although we may have meta theorems that
a given tactic always succeeds, there is no means of verifying this within HOL
since tactics themselves cannot be reasoned about at the theorem proving level.

Having understood the problems of a ground level implementation for induct-
ive definitions, what are the essential features of a generalized one? To begin
with we need a language to represent inductive specifications as first order ob-
jects. Rules and rule sets are easy to represent since the format in different
inductive rule sets is relatively uniform. However there is a range of notation in
the atomic formulae in different rule sets. The grammar for formulae in LessSem
would differ from that of a semantics for lists for example. We need a formalism
to account for this and first order term algebras are a simple yet effective solution.
A first order term algebra consists of a set of sorts, function names and signatures
coupled with a simple set of term forming rules. A signature acts similarly to a
type signature and the term forming rules mirror typing rules. The signature for
LessSem looks like

{0 :→ nat, suc : nat→ nat, <: nat→ nat→ φ}

where φ is understood as the sort for propositions. In this way inductive defini-
tions with differing notations can all be specified in a universal formalism. One
last point worth bearing in mind is that meta-variables in inductive definitions
can be represented as variables in the first order term algebra.

Once we have a first-order representation of inductive definitions, we need to
assign a way of reasoning with them in a generic fashion, obtaining a means of
constructing proof trees and an induction principle, both ranging over the class
of inductive definitions. One of the main contentious issues confronting us is in
representing in some form the set defined by an inductive definition. An inductive
set of rules defines the least set of formulae closed under the rules in a rule set.
Closure is typically simple to codify but a notion of “leastness” always proves
trickier to supply in machine implementations. We now focus our attention on
integrating these ideas into the concrete structures of Lego.

13

1.5 Representation in Lego

Expressiveness in Lego is manifested in its type theory which includes nested type
universes as well as dependent and inductive types. Such rich types are ideal for
abstract and recursive structure representations, which may be particularly help-
ful in representing the set of inductive specifications. The notions of set in set
theory have a natural equivalence with notions of type in type theory and so the
set of inductive specifications can be represented by a type in Lego. Furthermore,
the structures in an inductive definition such as premisses, conclusions, rules and
rule sets can all be defined in some form of inductive manner. A formula is com-
posed of sub-terms, themselves recursively made up from sub-terms for example.
There are several ways of using dependent types, especially strong sum types, in
Lego. Abstract data types are naturally expressed using dependent sums. Se-
mantic specifications fit this category. Another use for strong sum types is a
consequence of the Curry-Howard isomorphism [How80]. Types can be thought
of as propositions in the underlying intuitionistic logic. In summary, the depend-
ent sum Σx : A.P corresponds to the existential formula ∃x : A.P in constructive
logic where the first element x is a well typed term and the second element P
(mentioning x) is a proposition. Furthermore, a proof of the proposition ∃x.P
is equivalent to the construction of a pair (a, p) where the types of a and p are
respectively A and [a/x]P (substituting a for x in P)2. This is a powerful tool
that can be used to describe complex theories and structures — an induction
principle and derivability relation perhaps.

Assessing the suitability of Lego is an important issue in this thesis. Features
such as the expressiveness and flexibility of the type theory, how easily inductive
definitions can be read and operated upon and the space and time efficiencies
possible are all factors in the assessment.

One of the most contentious questions is how flexible Lego is. We need to
define inductive specifications, reason about specific inductive definitions thereon,
define transformations, prove correctness theorems and reason about the class of
operational semantics in general all within one package. It seems as though to
focus on one aspect must mean a detraction from another. It is important to
combine all of the above in a cohesive manner so that any deficiencies are kept
to a minimum and support is provided to cover for them where necessary.

For example one of the problems we may expect is a certain amount of verb-
osity in encodings of inductive specifications. This is due to the necessitation of a

2cf. Appendix A

14

specification language (first order algebra) for them, the implementation of which
will probably be more complex than the notation normally used in a description
in the literature. There are certain features of Lego that help remove some of
the more tedious aspects of the theorem proving process. One of these is type
synthesis which allows the user to omit certain arguments in a term which can be
inferred from its context. Aside from this Lego provides a fairly sparse interface
in this respect.

1.6 Outline of the Thesis

The next chapter introduces the basic concepts of first order signatures and their
implementation in Lego. It then discusses the suitability of the various types
available for the definition of well formed terms in a first order term algebra. This
involves a comparison between dependent sum and product types. The resulting
notation for well formed terms in the general theory of operational semantics is
cumbersome and makes opaque reading compared with the usual presentations
of terms in the literature — A consequence of Lego’s primitive interface.

Chapter 3 sets out to redress the balance and improve the readability of nota-
tion. It starts by analyzing the ways in which Lego’s in-built features can be
exploited to allow clearer representations of terms. Taking the intrinsic limita-
tions of this solution into account, we adopt the approach of adding a quotation
parser for well formed terms to Lego. This allows users to write terms as quo-
tations3 and the system translates these to Lego terms. The parser itself must
be generic, accommodating all first order signatures, and so new Lego commands
are given and documented allowing users to define their own grammars for their
signatures. The printing routines built into Lego are also augmented to display
terms as quotations.

In chapter 4 we complete the formalisation of inductive specifications by ex-
tending our general theory with the syntactic formalisms for side conditions, rules,
rule sets and inductive specifications. A generic basis for the semantics of induct-
ive definitions is then given. This includes notions of substitution, the meaning
attributed to side conditions, how they are proved, and the main semantic con-
structions: a type denoting the set of formulae derivable from inductive specific-
ations (the constructors of which enable, among other things, proof tree devel-
opment) and a generic induction and recursion operator for inductive definitions.
From this basic material we define a library of routines and theorems useful in the

3streams of characters parenthesised by quotation marks.

15

domain of normal inductive definition reasoning similar to those provided in other
theorem proving environments [CM92]. These include proof tree de-constructors,
a case analysis facility (for “backward” reasoning), automatic substitution (for
interpreting), as well as a means of performing induction on the depth of inference
in an obvious manner. In section 4.4 derivation construction is found to be very
slow in Lego. This sluggishness is explained and we describe how to rectify the
problem using Lego’s in-built facilities. The chapter concludes with an illustra-
tion of how the general theory can be extended to cope with a larger variety of
side conditions.

In chapter 5, all the elements of the general theory of operational semantics
are brought together by specifying and reasoning about an example inductive
definition, a small functional programming language ExpSem, in Lego. We go
on to explain how derivations can be built for ExpSem in both top down and
bottom up fashion. Induction on the depth of inference is exemplified by proving
monogenicity for ExpSem and an example of case analysis is performed in a proof
of the equivalence of the let and function application constructs of functional
languages. Examples of the use of the various library utilities introduced in
chapter 4 are also provided.

We show that the class of operational semantics can be reasoned about in
chapter 6 by defining one of Hannan and Miller’s transformations and proving
its correctness theorem within our general theory. The construction of the trans-
formation and the subsequent theorem and proof also act as a template for future
encodings of transformations on operational semantics.

Finally chapter 7 discusses the various issues arising from the work in this
thesis including an assessment of Lego and the capability of the general theory
within it. Future directions of the work such as interface extensions and the
implementations of other transformations are also discussed.

16

Chapter 2

Well-Formed Terms in a General
Theory

In this chapter we discuss the implementation of some of the basic constituents of
operational semantics in a theorem proving context. The implementation allows
quantification over all these basic constituents. As described in the previous
chapter, we seek to set up a foundation in the proof assistant which allows us
to specify and enumerate the set of operational semantics, and also to define
and reason about the meaning attributed to such constructions. Since Lego is
a type-based theorem prover, defining the set of operational semantics amounts
to providing a type for them. The implementation in this chapter is developed
to the point of describing terms and formulae, the basic fabric of the theory of
operational semantics.

The sections below are structured in the following way. Section 2.1 outlines
the preliminary definitions we need to be able to represent terms as objects in
a first order term algebra, and section 2.2 explores the ways in which we may
specify these concepts in Lego.

2.1 Sorts, Identifiers and First Order Signatures

The descriptions provided below are based on the work on operational semantics
transformations by Hannan and Miller’s [HM91]. We assume knowledge of uni-
versal algebra [ST87]. Before being able to specify the terms mentioned above it
is necessary to define a notion of first order signature, and before this we need a
notion of sorts and function names.

17

2.1.1 Sorts and Function Names

Let S= {s0, s1, . . . } be a countable set of names or sorts. Let F= {f0, f1, . . .}
be a countable set of function names. Let o stand for the distinguished sort of
(atomic) logical formulae. As we shall see later, we must be able to distinguish
between sorts and similarly between function names. That is we must be able to
define equality for sorts (function names). We can simply define them in Lego as
record types (a variation of an inductive type) where there is only one constructor
which takes a natural number as its sole argument. In Lego we have

Record [Sort:Type(0)]

Fields

[sort:nat];

[Formula = make_Sort (suc zero)];

Record [FIdent:Type(0)]

Fields

[id:nat];

where the type nat is the expected inductive type for natural numbers and
Formula represents the sort o in our Lego formulation. Equality between sorts
(or identifiers) is simply natural number equality. In the example operational
semantics provided in chapter 1 we make the following definitions.

[Natural = make_Sort (suc (suc zero))];

[Zero = make_FIdent zero];

[Suc = make_FIdent (suc zero)];

[LessThan = make_FIdent (suc (suc zero))];

2.1.2 First Order Signatures

The purpose of a first order signature is to ensure the well-formedness of terms in
a similar way that type signatures are used for type checking. The definition of a
first order signature we shall use is a simplification of the one given in [HM91]. For
a set S, let S∗ denote the set of sequences <s1, . . . , sn> such that s1, . . . , sn ∈ S
for n ≥ 0, where <> is the empty sequence.

18

Definition 2.1 (First Order Signatures)

A First Order Signature is a finite map from F to S∗→S. Let us write
f :<s1, s2, . . . , sn>→ s to represent a binding in such a map. Then <s1, s2, . . . , sn>

is the domain of f and s is the range of f .

Let SIG stand for the set of all first order signatures. We now need functions
to interrogate signatures for a given function name. For any Sig ∈ SIG, and
any f ∈ F , let domSig(f) return the domain of f in Sig and let rngSig(f) return
the range of f in Sig. In Lego we can define SIG as a list of bindings where a
binding is a triple: a function name, its domain and its range:

[FSig = list | (prod FIdent

(prod (list|Sort)

Sort

)

)

];

We could also represent SIG more directly as the type of functions from
FIdent to list|Sort to Sort but using lists and products make it straightforward
to manipulate and reason about signatures by utilizing the respective elimination
operators. For instance, the dom and rng functions above can be defined very
simply.

Using a list to represent a finite map as we do means we allow multiple bindings
for the same function name. We must be able to handle the constraint that a
signature is effectively a finite map in the theorem prover. Failure to do so
would be synonymous with giving a function two possibly different functional
types in a type signature, which is clearly possible with this loose definition for
signatures. The anomaly is curtailed by ensuring that the implementations of the
two projection functions domSig and rngSig for any given signature consistently
return only one set of values. Two functions in Lego fulfil these requirements
given any signature. Their types are

IDSort1 : FSig -> FIdent -> (list | Sort)

IDSort2 : FSig -> FIdent -> Sort

and are both defined using list recursion on the signature. It is at this point where
we need to test for equality between function names. Bindings closer to the head

19

of the list effectively over-write ones further down. This guarantees the fact that
a signature is effectively treated as a finite map.

As with all functions in Lego these projections must be total. The functions
they realize are naturally partial. If a function name does not appear in a signa-
ture then no value should be returned. Partiality can be achieved in Lego using
dependent sum-types, but as we shall discuss in section 2.2.1 we wish to avoid
their use. As an alternative, the functions return default values. The empty list
of sorts (nil|Sort) in the case of IDSort1 and a special sort botSort in the case
of IDSort2. This exception value is defined as

[botSort = make_Sort zero];

This is not a major shortcoming but it is an inconvenience. As long as one is
aware of and avoids including terms whose sort is this exception value, no prob-
lems are posed. In practice, dealing with partiality becomes tedious. Following
the running example, the appropriate signature is

[NatSig = (cons (Pair Zero

(Pair (nil|Sort)

natural))

(cons (Pair Suc

(Pair (cons natural (nil|Sort))

natural))

(cons (Pair LessThan

(Pair (cons natural (cons natural (nil|Sort)))

Formula))

(nil|(prod FIdent (prod (list|Sort) Sort))))))];

so for example the final entry denotes the fact that the function LessThan takes
a list of two naturals to form a Formula term. With these preliminary building
blocks we shall now be able to define well formed terms.

2.2 Well Formed Terms

This section compares and contrasts the various ways in which the specification
of the class of well-formed terms can be described in Lego’s type scheme. For a
given signature Sig ∈ SIG, we define a well-formed term to be an object in the
first order term algebra of Sig. Such an algebra is described as follows.

20

Definition 2.2 (Well Formed Terms)

Assume Sig ∈ SIG is a signature and V is an S-sorted set of variables. Then
the set of Well Formed Terms with respect to Sig is the least set closed under the
following rules.

1. A variable v ∈ Vs is a Well Formed Term of sort s ∈ S

2. A function application f(x1, x2, . . . , xn) is a Well Formed Term of sort s ∈
S, where f ∈ F , domSig(f) = < s1, s2, . . . , sn >, rngSig(f) = s, and
s1, s2, . . . , sn, s ∈ S, n ≥ 0, and each xi is a Well Formed Term (with
respect to Sig) of sort si for 1 ≤ i ≤ n

From this specification we can see that the type for Well Formed Term in Lego
will take a signature as a parameter. We can also see this definition is inherently
inductive so we may expect to use inductive types to describe it. The critical
issue is how to encapsulate the final condition in the second rule above using
Lego’s type system. Conditional constraints on types can be dealt with by using
dependent types. Lego has two such type constructs. Dependent sum types and
dependent product types [Luo92]. We start by investigating the sufficiency of the
former.

2.2.1 Well Formed Terms Using Dependent Sum Types

We begin by giving an introduction to types, dependent sum types and how we
can use them for our purposes. For a summary of type theoretic concepts used
here see Appendix A. However in the main text we introduce those concepts we
need as they are used to make the exposition self-contained.

Let T YPE be a universe of types, i.e. some collection with types as members.
For types T and T ′ in T YPE we write a : T to mean a is a member of T and
T → T ′ for the type of total functions mapping members of T to members of
T ′. The universe T YPE is closed under function formation (functional values).
In addition to types we consider families of types indexed by a particular type.
For example for some type T we may have a family F such that F (t) is a type
for every t : T . Using this notion we can define a new type constructor called
a dependent sum or sigma type written Σx : T. F (x) whose members are pairs
(a, b) where a : T and b : F (a). For any type T and family F indexed by T ,
Σx : T. F (x) is a type. Henceforth we abuse notation by writing T :T YPE to
mean that T is a type.

We can utilize this to specify well-formed terms by defining a sigma type
where the first argument is an object x whose type defines the set of all terms (any

21

structure 1:

f (t , p) (t , p) . . . (t , p)
1 1 2 2 n n

(T , P)

Figure 2.1: The Structure of Well Formed Function Applications

variable and any function application) regardless of any signature, and the second
argument is a type that represents a “proof” that x is well-formed. Such a proof
can be constructed in Lego by taking advantage of the Curry-Howard isomorphism
[How80] [Luo91c] that states that types can be thought of as propositions in the
calculus of constructions. The set of well-formed terms would be defined as the
set of pairs (x, P) where x is a term (variable or function application) and P is a
proof that x is well-formed according to a given signature. What we are essentially
doing is defining the universal set of terms, and then defining well-formed terms
(for a given signature) as pairs of a term and a witness to the fact that the term
is in the subset of this universal set that includes all well-formed terms.

The next question is how do we define such a set? We need two types, a type
Term and a family of types WF(t) (for t : Term) for well-formedness proofs. We
can break this problem down further by looking at definition 2.2. We need to
know how to define well-formed variables and well-formed function applications.
In the case of variables we simply have to provide a variable v and prove it is a
member of the set of variables Vs for known s. From definition 2.2, we see that
the set of well-formed terms is an inductive set and that function applications are
built recursively from their sub-terms. The structure in figure 2.1 is a graphic
representation of the abstract syntax tree of a well-formed function application
(T, P) where T is the term f t1 · · · tn (for n ≥ 0) and P the well-formedness proof.
Both T and P are built recursively from their sub-terms ti and sub-proofs pi (for
0 ≤ i ≤ n) respectively.

Whilst this gives a systematic way in which to construct well-formed terms it is
a tedious process to manually provide well-formedness proofs. Ideally proof build-
ing would be automated. This means providing functions that act as constructors
for well formed terms — with the basic components we have separate constructors
for terms and proofs. The new constructor for well-formed function applications
for example would be used to build the term in figure 2.1 by taking the function
name f and the appropriate list of well-formed terms (t1, p1) · · · (tn, pn) to give the

22

well-formed term (T, P). Having these “well forming” constructors means well-
formed terms can be treated as having a recursive structure rather than being
dependent pairs — provided we complement this recursiveness with an elimina-
tion operator for well-formed terms to give the ability to define recursive functions
for them as well as the ability to prove theorems thereon in an inductive manner.
The summary of this enquiry is the acknowledgement that types of both terms
and proofs are most naturally some form of inductive type, and well-formed terms
themselves can be represented as if they were also built inductively.

One question remains. Which proposition should be used to express well
formedness? If we again look at definition 2.2, we see that the formula needed
can be expressed as “Term t is a well-formed term of sort s with respect to
signature Sig”. We shall now describe the types we need for terms, proofs and
well formed terms.

Definition 2.3 (Terms)

The set T, of Terms is the least set closed under the following rules.

1. A variable v ∈ Vs is in T , for s ∈ S

2. If f ∈ F , and t1, t2, . . . tn are in T , then f(t1, t2, . . . tn) is in T , for n ≥ 0.

Let the symbols S, F , V , SIG, T and T YPE denote the types of the sets
they represent. We use the notation Πx : t.y to stand for the dependent product
type for type variable x, and types t and y and assume we have the inductive type
list : t→ Type (where t : Type) of lists whose constructors are nil for empty lists
(where t is clear from the context) and :: the infix list concatenation constructor.
The type T can be defined as an inductive type with two constructors

var : Πs : S. Vs → T
fun app : F → (list T)→ T

Note that there is no mention of any signature, so there is no notion of well-
formedness. Let us now turn to the types of proofs. It is simplest to describe this
as two sets.

Definition 2.4 (Well Formed Term Proofs)

For s : S and Sig : SIG, let Ws
Sig stand for the set of functions from T to

proofs of well-formedness of the given term as detailed in definition 2.2. Also for
n ≥ 0, let WL<s1 ,s2,...,sn>Sig stand for the set of functions taking a sequence of terms
< t1, t2, . . . , tn > and returning the sequence

<Ws1
Sig,Ws2

Sig , . . . ,Wsn
Sig>

23

If we use the list type to represent sequences, let the symbols Ws
Sig and

WL<s1,s2,...,sn>Sig again denote the type of the sets they represent and in addition
use domSig : F → (list S) and rngSig : F → S to represent the functions for
domSig and rngSig respectively, we can define the sets

Ws
Sig : T → Type

WL<s1,s2,...,sn>Sig : (list T)→ Type

by mutual induction using the constructors

WFvar : ΠSig : SIG.
Πs : S.

Πv : Vs.
Ws

Sig (var s v)

WFfun app : ΠSig : SIG.
Πf : F .

Πtl : list T .
(WL(domSig f)

Sig tl)→
W(rngSig f)

Sig (fun app f tl)

WFnil : ΠSig : SIG.WL<>Sig nil
WFcons : ΠSig : SIG.

Πs : S.
Πsl : list S.

Πt : T .
Πtl : list T .

(Ws
Sig t)→

(WLslSig tl)→
WL<s,sl>Sig (t :: tl)

The interesting constructor here is WFfun app. Given a signature Sig, func-
tion name f , and list of terms t1, t2, . . . , tn, the application is well-formed and
of sort rngSig(f) if you can supply a proof that the terms t1, t2, . . . , tn are of
sort domSig(f) = s1, s2, . . . sn respectively. Such a proof is obtained using the
constructors WFnil and WFcons. Finally we can express the type of well-formed
terms and lists thereon as the types

WFTerm = ΠSig : SIG. Πs : S. Σt : T .Ws
Sig t

WFList = ΠSig : SIG. Πsl : list S. Σtl : list T .WLslSig tl

24

Once we have these types we need the “well forming” constructors mentioned
earlier to automate proof construction. We can easily provide a proof that a vari-
able is well-formed using WFvar. To construct well-formed function applications
automatically one would want to provide a function name f and the well-formed
terms (t1, p1), (t2, p2), . . . , (tn, pn) of the right arity and construct the term part
of the application (using fun app, f and t1, t2, . . . tn). The proof for the applica-
tion would use all the proofs p1, . . . , pn as its sub-proofs in the application of the
constructor WFfun app. This is essentially what is depicted in the structure of
figure 2.1. It is helpful to look at the types of two functions that would perform
the operations above, one for variables and one for function applications.

varWF : ΠSig : SIG. Πs : S. Πv : Vs. WFTerm Sig s

appWF : ΠSig : SIG.
Πf : F .

(vector (map (λs : S. WFTerm Sig s) (domSig f)))→
WFTerm Sig (rngSig f)

We can see that varWF can simply be defined to take arguments pertaining
to a variable and use var and WFvar to make a well-formed term. Well-formed
function applications are more complicated. In the type above, we assume we
have the map function for lists map and we assume we have the type vector

whose objects are list-like structures that allow one to concatenate objects of
different types. The type of vector is (list|Type(0))->Type(1). The types of
the elements of the vector are given in the argument applied to the type vector
above. In this case the vector contains the elements whose types are successively
WFTerm Sig s1, . . . ,WFTerm Sig sn where s1 :: · · · :: sn is equal to domSig f .

We can understand the operation of appWF if we again refer to the diagram
in figure 2.1. For a given signature Sig and function name f , the third argument
to appWF is the vector containing the well-formed sub-terms (t1, p1), . . . , (tn, pn)
where the sorts of t1, . . . , tn equal respectively s1, . . . , sn equal domSig(f). With
these functions the user is freed from providing well-formedness proofs and they
can view well-formed terms as if the proofs are not present.

As mentioned previously, we should provide an elimination operator to com-
plement varWF and appWF. Such a construction, like other elimination rules
for inductive types, includes a quantification over all functions from well-formed
terms to types. It also takes two functions — one from well-formed variables to
the chosen type and a similar function for well-formed function applications. The

25

type of such an operator could be written as

WFElim : ΠSig : SIG.
ΠP : Πs : S. (WFTerm Sig s)→ T YPE.

ΠPL : Πsl : list S. (WFList Sig sl)→ T YPE.
(1) (Πs : S.Πv : Vs. P s (varWF Sig s v))→
(2) (Πf : F .

Πtl : WFList Sig (domSig f).

(PL (domSigf) tl)→
(P (rngSigf) (appWF Sig f tlv)))→

Πs : S. Πwft : WFTerm Sig s. P s wft

where PL is a function from WFLists to a chosen type and tlv is a WFList conver-
ted to a vector. The parenthesized type expression (1) is the type of the variable
case function and expression (2) is the type for the function application one. One
notable advantage with well-formed terms defined in terms of dependent sum
types is that since we have a type for all terms (well and ill formed) we can
prove theorems of all well-formed terms by proving the case for all terms since
the former is a subset of the latter.

There is however a practical drawback with this type specification. If we define
well-formed terms in this way, we are constructing them by including objects
whose sole purpose is to be a witness to well formedness. Note that in figure
2.1 each node of the term tree has a proof along with each actual term. It is
important to keep the size of objects to a minimum since the larger objects get,
the slower it is to process them in a machine. Recall we are using sigma types
here to define pairs, where the first element is an object in the larger set T of
both well and ill formed terms, and the second argument is essentially a witness
to the fact that the given object is in the subset Ws

Sig of T of well-formed terms
of sort s with respect to signature Sig. Ideally we would wish to be able to build
terms in such a way so that all and only all elements of Ws

Sig can be constructed
without the need for any witnesses. We discuss how this can be done in the next
section.

2.2.2 Well Formed Terms From Dependent Product Types

We can use another dependent type in Lego to define well-formed terms in a
more direct manner. The dependent product types (or Π types) mentioned in
the previous section can be used to define this set. To start, recall that the

26

definition 2.2 for such objects is inductive. So we would expect the type we
require to be an inductive one. Again we need two constructors for variables and
function applications. If we define these using Π-types, we no longer need witness
constructions, providing a means for creating compact terms. We specifically use
them so that they effectively implement the constraint on function applications
in definition 2.2. Let us define the inductive type T ERM. It is parametric on
signatures and sorts and has two constructors both exploiting Π-types:

var : ΠSig : SIG.
Πs : S.

Πv : Vs. T ERMs
Sig

fun app : ΠSig : SIG.
Πf : F .

(vector (map (λs : S. T ERMs
Sig) (domSig f)))→

T ERMrngSig f
Sig

Note that now we parameterize the constructors with a signature. Note also that
fun app is now defined in such a way that the arguments supplied in the function
application are the terms of the right sort with respect to the signature. To see
this more clearly, recall that the vector type allows objects of different types to
be concatenated, and that the types of the elements of a vector are dictated by
the argument that the type vector is applied to. So in this case, the types of the
elements of the vector specified above are successively

T ERMs1
Sig , T ERMs2

Sig , . . . , T ERMsn
Sig ,

where s1 :: s2 :: · · · :: sn is equal to domSig(f). Defining well-formed terms in
this way obviates the need for extra constructions. In Lego we define the type
above in a slightly different way since the Inductive command in Lego does not
allow vectors to be used in this way for defining constructors. Rather than using
vectors, we define two mutually inductive types

[Term : FSig -> Sort -> Type(0)]

[Tlist: FSig -> (list|Sort) -> Type(0)]

of well-formed terms and well-formed term lists. We can think of the type Tlist

as being a vector type made specific for terms (terms of different sort still have
a different type). There are four constructors. The two for Terms and two for
Tlists. They are

27

[var:{FS|FSig}

{n:nat}

{s:Sort}Term|FS s]

[fa:{FS|FSig}

{f:FIdent}

{tl:(Tlist|FS (IDSort1|FS f))} Term|FS (IDSort2|FS f)]

[tnil:{FS|FSig}Tlist|FS (nil|Sort)]

[tcons:{FS|FSig}

{s|Sort}

{sl|(list|Sort)}

{t:(Term|FS s)}

{lt:(Tlist|FS sl)} (Tlist|FS (cons s sl))];

The set of variables is defined using natural numbers (again because we wish to
be able to distinguish between such objects).

The two constructors tnil and tcons define the type Tlist of term vectors,
and fa takes a function name with an appropriate term vector (as dictated by the
signature via the function IDSort1) to return a well-formed function application.
Note this definition allows us to build terms of sort botSort. This is a consequence
of the totality of Lego functions, imposing exception results on the functions
IDSort1 and IDSort2. The use and abuse of this fact is left as a user prerogative.
Such values do need to be accounted for in certain circumstances as we shall see
in chapter 6.

In our example we can construct terms such as

fa Zero (tnil|NatSig)

fa Suc (tcons (fa Suc (tcons (fa Zero (tnil|NatSig))

(tnil|NatSig)))

(tnil|NatSig))

to represent the natural numbers 0 and 2. It should be appreciated from the above
that although we can now describe terms relatively concisely, such terms are very
hard to comprehend as syntactic objects. Even for very simple terms with the
helpful spacing above it is hard to recognize the second term as a representation
for the number 2.

28

This is one of the effects of defining objects in the general theory. Here we
are able to define terms from many different signatures. This accounts for the
proliferation of the signature parameter NatSig above, and the fact that we have
to make the structure of terms explicit. If we now extrapolate and imagine we
are constructing more complex terms from a larger signature than NatSig, we
can expect to come across terms that become unreadable. The consequence of
this is that using a system where the terms look so complex would become a very
laborious and frustrating task. The next chapter is devoted to studying ways in
which we can provide systems support to make it easier to read and write the
kinds of terms introduced in this chapter.

29

Chapter 3

Object Language Support,
Parsing and Pretty Printing

It is an immediate conclusion from the last chapter that if we expect our general
encoding of operational semantics to be effective, we must present the terms of
this encoding in a notation closer to that used in mathematical representations
of such semantics. For example, we would wish to be able to write the inequality
0 < (suc n) directly into Lego rather than the cumbersome and unreadable

[n = var|Nat zero natural]

fa LessThan (tcons (fa Zero (tnil|Nat))

(tcons (fa Succ (tcons n

(tnil|Nat)))

(tnil|Nat)))

This problem arises as a by-product of the generality and manipulability of
the encoding. If terms must be defined at a level in which they are first order
objects in a theorem prover (and specifically Lego) we must define them as ob-
jects of some form of datatype with given constructors. It follows that we must
expect to include these constructors (fa, var, tnil and tcons in our case) in
the constitution of a term. If we also add the proviso that the datatype is gen-
eric parameterized on a signature, we must also presume that this signature will
appear in some part of the body of a term. In the coding of terms in Lego, the
signature is an argument to each constructor of the type for terms. But due
to the type synthesis facility in Lego, we may omit stating this information for
certain constructors (fa and tcons) when it can be inferred from the sub-terms
involved. Sorts are another parameter to term constructors hidden in this way.
To appreciate the expediency of type synthesis, the term above written without
exploiting this utility would be

30

fa Nat LessThan (tcons Nat

natural

(cons Sort natural (nil Sort))

(fa Nat Zero (tnil Nat))

(tcons Nat

natural

(nil Sort)

(fa Nat Succ (tcons Nat

natural

(nil Sort)

(var Nat zero natural)

(tnil Nat)))

(tnil Nat)))

The next sections discuss the ways in which a clearer representation of terms
can be written and presented in Lego’s user interface.

3.1 Approximation 1: Lego’s In-Built Utilities

Lego has two main features we can use to build terms in a more succinct manner.
We have seen that type synthesis can be used to a great extent to hide parameters
such as sorts and signatures as much as possible. The next step we can take is to
extend the context of Lego with a set of definitions, each being a macro for each
possible function application with respect to a given signature. In this way, we can
essentially abbreviate a term as a macro where any parameters and constructors
are omitted. In our example, we would provide the signature Nat with the macros

[zro = fa Zero (tnil|Nat)]

[succ = [n:Term|Nat natural]fa Succ (tcons n (tnil|Nat))]

[lessthan = [n1,n2:Term|Nat natural]

fa LessThan (tcons n1 (tcons n2 (tnil|Nat)))]

Given these definitions we can then write 0 < (suc 0) as the clearer term

lessthan zro (succ zro)

Having to repeat this process for every signature is time consuming so Lego
can be extended with a new command that adds these macros every time a new

31

Signature Nat = zro :()->natural,
succ :(natural)->natural,
lessthan:(natural,natural)->Formula ;

Figure 3.1: Example Signature Command in Lego

signature is defined. The command takes a sugared representation of a signature.
Its form is

Signature <name> ::=

f1 : (s1
1, s

2
1, . . . , s

n1
1)→ s1

f2 : (s1
2, s

2
2, . . . , s

n2
2)→ s2

...
...

fm : (s1
m, s

2
m, . . . , s

nm
m)→ sm

where <name> is the name of the signature, si is a sort for 0 ≤ i ≤ m, each skj
is a Sort for 0 ≤ j ≤ m and 0 ≤ k ≤ nj, and each fi is an FIdent for 0 ≤ i ≤ m.
The example would be written in Lego as shown in figure 3.1.

A call to Signature invokes an in-built Lego function that adds the definitions
of the signature and macro functions to the global Lego context. If the identifiers
and sorts are not already defined in Lego, the command automatically adds them
as new ones.

There are still a number of problems if we rely on this facility. The macro

lessthan zro (succ zro)

is still not as succinct or clear as 0 < (suc 0). The form and notation of terms is
still dictated by Lego. Only alphanumerical symbols can be used to build terms,
all operator-like symbols (zro, succ and lessthan) are prefix ones, variables are
still verbose and the only kind of parentheses are “(” and “)”. This can in turn
lead to further reading difficulties. If we were to extend our example signature
with a conditional functional

ifthenelse:(bool,natural,natural)->natural

where bool is a new sort with two functionals True:()->bool and False:()->bool,
we would represent the mathematical term

suc suc n < (if true then (suc (suc (suc 0))) else (suc 0))

as

32

lessthan (succ (succ (var|Nat zero natural)))

(ifthenelse True

(succ (succ (succ zro)))

(succ zro))

losing any non-prefix non alphanumeric notation and any helpful keywords. An-
other complication can be foreseen in that if a macro term were to be broken
down and operated on by a Lego function the system will return the fully expan-
ded object and not the equivalent macro. Any advantage gained before would be
lost.

This is in essence, a limitation of Lego’s interface. It has no facility with
which to support customized notations for Lego constructions. A way to relax
these restrictions is necessary. The next sections provide details of how other
theorem proving assistants have dealt with similar problems, and how we achieve
the same in Lego.

3.2 Object Language Support in Other Theorem
Provers

Similar problems to those above, arise in the HOL theorem proving system
[BCG91]. The primitive objects in HOL are well typed ML (see [HMM86])
terms representing either variables, function abstractions or function applica-
tions. Other operators are supplied to enrich the logic and are also themselves
well typed ML terms. Before describing the structure of terms it is necessary to
define the notion of type in HOL.

Definition 3.1 There are two primitive constructor functions for HOL types:

• Type variables: mk_vartype: string->type where the string is a succes-
sion of asterisks followed by a number or identifier.

• Compound types: mk_type: (string # type list)-> type such that for
a type expression mk_type(‘name‘,[σ1; . . . ; σn]) the name is an identifier
and type operator in the current theory whose arity is n.

For example, the type nat→ bool would be written as

mk_type(‘fun‘,[mk_type(‘nat‘,[]); mk_type(‘bool‘,[])]).

33

As can be seen, this is a very complicated expression defining a fairly simple type.
As types become more complex, readability suffers. To this end HOL is supplied
with a quotation parser allowing the user to write concrete HOL expressions using
the usual abstract notation. Quotations are streams of ASCII characters enclosed
by a pair of quotation marks. The parser translates quotations into concrete HOL
expressions in the following way:

Definition 3.2 Type quotation forms and their translation:

• Type variables are of the form ‘‘:*...’’ and translate to
mk_vartype(‘*...‘).

• Function type quotations ‘‘:σ1→ σ2’’ translate to
mk_type(‘fun‘,[τ1; τ2]) where τ1 and τ2 are the translations of ‘‘:σ1’’

and ‘‘:σ2’’ respectively.

• Type constant quotations ‘‘:op’’ translate to mk_type(‘op‘,[])

Terms are built and quoted in a similar manner to types. We start by defining
the primitive constructors for terms, give an example term and then define the
forms of quotations for terms.

Definition 3.3 Primitive terms are built using four constructors:

Variables: mk_var: (string # type)-> term where mk_var(x,σ) evaluates to
a variable x of type σ.

Constants: mk_const:(string # type)-> term where mk_const(c,σ) evalu-
ates to a constant c with type σ if c is a valid constant and σ is its generic
type.

Function abstractions: mk_abs: (term # term)-> term where mk_abs(x, t) eval-
uates to a term representing the abstraction λx. t provided x is a variable.

Combinations: mk_comb:(term # term)-> term where mk_comb(t1, t2) is a com-
bination t1 t2 provided t1 is of type σ1 → σ2 and t2 is of type σ1 for types σ1 and
σ2.

An example term highlights the need for a better interface for reading and writing
terms. The function application (λx : bool. x)F where F is the boolean false
constant is written as

mk_comb (mk_abs (mk_var(‘x‘, mk_type(‘bool‘,[])),

(mk_var(‘x‘, mk_type(‘bool‘,[])))),

mk_const (‘F‘,mk_type(‘bool‘,[])))

34

Again we could assign identifiers to parts of the expression and work with these
macros as we did in section 3.1 for Lego but as before this technique has its
limitations. To absolve the user from this problem, quotations can be used to
abstract away from the concrete syntax.

Definition 3.4 Quotations for terms:

Variables: ‘‘x:σ’’

Constants: ‘‘c:σ’’

Abstractions: ‘‘\x. t’’

Combinations: ‘‘t1 t2’’

More operators in the logic exist with their quoted form so that formulae such
as

∀x y. x < y ⇒ ∃z. x + z = y

are written as

‘‘!x y. x < y ==> ?z. x + z = y’’

In addition to a quotation parser, the system presents its output in quoted
form wherever possible. This pretty printing sets the user in an environment
almost free from the underlying representations of HOL objects. It is an import-
ant part of the utility since the output of a theorem prover must be sufficiently
understandable for the reader to be able to reason within the system fluently.

The final significant facility provided by HOL in this respect is the ability to
intermingle concrete terms within quotations. This is called anti-quotation and
a concrete term is written as such by prefixing it with a “ˆ” (caret) mark. For
example we can write the quotation

‘‘\x. x + ˆ(mk_comb (....))’’

It is sometimes necessary to make use of anti-quotation since some complex
concrete expressions have no quoted form. As we can see, writing complicated
terms as anti-quotations can begin to detract from any advantages gained from
this utility but we can tidy such quotations up by first making use of a quoted
form for let expressions that binds the concrete term to an identifier and then
using the identifier in the body of the let expression:

‘‘let a = ˆ(mk_comb (.....))

in

\x. x + a’’

35

The HOL experience is useful in that it can provide a basis for object language
support facilities to abstract away from the concrete syntax for the Lego Terms
introduced in the previous chapter. The main difference in our case is that our
generic framework allows one to define an innumerable number of signatures for
which different notational customizations may apply. A typical user may expect
the notation for one operational semantics to use different symbols and structures
from another. In HOL, the language of the parser can be thought of as fixed and
in our case there is no one convenient syntax to cater for the multitude of definable
semantics. As a result it seems we need to generalize the notion of a parser to
allow for differing customizations of terms for different users and/or signatures.

3.3 Object Language Support via Grammar and
Lexicon

Reviewing the material in the previous section we can affirm that our goal is to
add a generic quotation parser and a compatible pretty printer to Lego. The range
and domain of these respective utilities are the Term type constructs introduced
in the previous chapter. The parser must be general in the sense that the range of
the parser is not a single set T of terms as in HOL, but a T SSIG indexed set (SIG
and S being the set of signatures and sorts defined in the previous chapter). This
immediately suggests the parser should be a function on signatures and sorts as
well as quotations.

Furthermore, we would also expect the syntax of a quotation corresponding to
one set T sSig of well formed terms to look different from a quotation associated to a
different set T s′Sig′. Quotations for the set of well formed naturals for instance would
look unlike quotations for boolean expressions. They are formed in accordance to
distinct languages. A language can be thought of as being composed of a lexicon
of symbols and a grammar of sentence forming rules. In our example we could
define them as in figure 3.2 where the elements of the lexicon are the terminals of
the language and each production in the grammar is composed of a non-terminal
on the left hand side and either terminals or non-terminals on the right. Note the
parallel between this language and the definition of the signature in figure 3.1.
The functional map

lessthan:(natural,natural)->Formula

has a simile in the grammatical rule

Formula −→ natural “<” natural

36

Lexicon = {“0”, “suc”, “<”}

Grammar =
Formula −→ natural “<” natural
natural −→ “0”
natural −→ “suc” natural

Figure 3.2: Language for natural numbers

which suggests a close relationship between signatures and context free grammars;
something we shall exploit in section 3.5.2.

Another requirement of the quotation parser is to provide a means of defining
variables succinctly. Recall the constructor var

var : {FS|FSig}natural->{s:Sort}(Term|FS s)

We would prefer the syntax of variables to be an alphanumeric quantity as
normally portrayed in the literature rather a term built using constructors.

A further necessity is to support the antiquotation facility described in the
previous section. This allows one to write concrete Lego constructions within the
scope of a quotation. This is an important facility in Lego. It allows quotations
to reference terms outside their scope (defined in the global context for example).

Parsing sentences to concrete Lego expressions is not the only requirement on
the system. It must also unparse such expressions and print them in their quoted
form. In this way the interface is completed as the user only reads and writes
terms as quotations. On implementing the parser and unparser it would be best
to show that for any quotation q, the formula

Parse(Unparse(Parse(q))) = Parse(q)

holds to ensure no information is lost in either procedure. However, this theorem
is difficult to prove because of the complexity of the functions involved.

The final requirement is related to the transformations discussed in chapters
1 and 6. We would expect that we should be able to preserve the quoted repres-
entations of terms after transformations have been applied to supplied semantics.
Informally we can define this to be the commutativity of the diagram in figure
3.3. If we have a semantics Sem and transformation T and a notion of a function
Pretty mapping Sem to its user friendly parallel, then applying T then Pretty

37

Sem

Pretty(Sem)

Pretty

T(Sem)

Pretty

Pretty(T(Sem))

T

TPretty

Figure 3.3: Transformation Commutativity Diagram

to Sem is equivalent to applying Pretty then TPretty (The pretty equivalent of T)
to Sem. This congruence is one that we would want to demonstrate informally if
not at the theorem prover level. Given these objectives the next sections discuss
the various ways in which parsing and unparsing can be implemented.

3.4 Typed Parsing Versus Parsing as Prepro-
cessing

There are two options available to effect object language support in Lego. The
first choice is to extend Lego with the capability to assign a type to quotations
(strings) and then build the lexicon and grammar building commands as well as
the parsing routines at the theorem prover level. The benefit here would be that
we could reason about the parser and more specifically prove the commutativity
diagram in figure 3.3 in Lego. There are a number of technical and practical
problems with this approach however which detract from any of these benefits. If
parsing is built into Lego’s machinery a new construction and type for quotations
must be added to Lego with the parser presumably defined by reduction strategies.
On top of this a necessary amount of meta theorems would need to be proved to
ensure the consistency of the type theory. This amounts in total to a significant
addition to the implementation of Lego.

The second choice is to design the parser as a preprocessing procedure that
passes the translation of a quotation to the machinery of Lego. The immediate
implication of this is that quotations and parsing are placed outside the theorem
prover level and so the commutativity of the diagram of figure 3.3 cannot be
demonstrated in Lego. An informal proof must suffice. A second point worth
noting on this subject is that the function TPretty also cannot be defined in Lego.
If we wish to obtain Pretty(T (Sem)) from Pretty(Sem) as in figure 3.3, we must
follow the other arrows in the diagram. This can be achieved if for a semantics
Sem the user provides the informal map Pretty via the definition of the language

38

for that semantics, and then for a given transformation T the user again supplies
the appropriate informal map. This second alternative has advantages over the
first in that it is a conservative extension of Lego’s type theory and a parsing
algorithm written in ML will inevitably be much faster than one written in Lego.

3.5 Extending Lego with Object Language Sup-
port

Four additions must be made to the Lego system to provide a quotation support-
ing mechanism. A means of defining a language lexicon, a grammar, a parsing
facility and an unparsing facility. The next four subsections outline the imple-
mentation of these respective modules.

3.5.1 Defining the Lexicon

A new command is added to Lego that allows one to define a lexicon for a new
language. The form of the command is

Terminals <name> = s1, s2 . . . sn

where s1, s2 . . . sn are strings for n ≥ 0 and <name> is the name of the language
being defined. This set of symbols is stored within a special area outside the Lego
context. It is essential to define this set before a context free grammar using this
set can be defined (since the grammar rules will include these terminals). The
parser and unparser access this information. For the example, the command is

Terminals Nat = ‘‘0’’ ‘‘suc’’ ‘‘<’’

3.5.2 Defining the Grammar and Signature

In section 3.3 it was observed that a signature and a language bore a close re-
semblance. In fact, if we extend the format of a grammar to provide a name
for each production then the grammar can be effectively treated as a signature
definition as well. The reasons are clear if we realize that the non-terminals of the
grammar correspond to the sorts in a signature and the names for productions
correspond to the function names of a signature. If we extend the grammar in
figure 3.2 to include the appropriately named productions we get

39

Formula → lessthan : natural “<” natural

natural → zro : “0”

natural → succ : “suc” natural

from which we can immediately see the relationship between the functional arity

lessthan : (natural,natural) -> Formula

in the signature of figure 3.1 and the extended production labelled by lessthan

in the grammar above. Each production is a parallel of a functional arity map
in a signature. We can take advantage of this loose equivalence and encode a
signature into the context free grammar. This allows the user to perceive terms as
objects well formed according to their own notation (the grammar they supplied)
rather than according to the implementation of terms in Lego. It also provides a
straightforward means of translating a quotation into the appropriate Lego term
as shall be demonstrated in section 3.5.3.

A new Lego command Productions is defined for the creation of a language
grammar (and thus also a signature). Its form is

Productions <name> ::= <prodns> ;

where the form of <prodns> is either a <prodn> or

<prodns> , <prodn>

and where a <prodn> has the form

S =

f1 : α1
1 α2

1 · · ·αn1
1 |

f2 : α1
2 α2

2 · · ·αn2
2 |

...
... . . . |

fm : α1
m α2

m · · ·αnmm

where S is a sort name, each fi is a function name for 0 ≤ i ≤ m, each ni ≥ 0
for each 0 ≤ i ≤ m, each α is either a non-terminal (sort name) or a terminal
symbol of the language and m ≥ 0. Each such <prodn> defines the subset of the
relevant signature Sig characterized as the set of functional maps

f : (s1, s2 . . . , sn)→ s

40

for sort s in Sig. The information needed to define the implied signature is
extracted from each production of the grammar. The provided <name> is bound
to the signature in the global Lego context, and the grammar is stored in a
separate context along with the <name> for future reference as data for the
parsing and unparsing processes. This <name> is a reference for both signature
and language (terminals and productions). As in the Signature command in
section 3.1, if the sort or function names are not already defined as such in the
global Lego context then they are added as new ones. The example command
call is shown below

Productions Nat ::=

natural = zro : "0" |

succ : "suc" natural,

Formula = lessthan : natural "<" natural;

3.5.3 The Parser

There are a plethora of parsing algorithms applicable to the task of parsing a
quotation to a base term. The Earley Algorithm is one of the most general
algorithms available. It can be used to parse a wider variety of languages than
other parsers. In fact, the algorithm is so general that even sentences of an
ambiguous grammar may be parsed; every possible parse tree being returned. In
order to specify which particular parse tree is intended when working with an
ambiguous grammar, the user is expected to make use of parenthesis constructs
included explicitly as part of the language. For instance, if we intended to extend
the example with addition, we would need two extra productions

natural = ... |

... |

pls : natural ‘‘+’’ natural |

natp : ‘‘(’’ natural ‘‘)’’,

...

the first to introduce addition and the second to be able to enforce the intended
form of associativity for addition. Ambiguous sentences can still be parsed so it
is up to the user to use parentheses to disambiguate them.

Since the parser is essentially a pre-processing procedure, it is written in
Standard ML as an extension to the implementation of Lego. As mentioned
earlier, the parser is a general function capable of parsing any number of different
languages. In order to invoke it correctly for a given quotation, the name of its

41

language must be supplied. In addition to this we must also supply the relevant
non-terminal (sort) name because a language may allow a quotation to be a term
of two different sorts. Say we were to allow identifiers in Nat:

natural = ... |

... |

Id,

Id = x | y | z, ...

then the parser may parse the quotation ‘‘x’’ as an Id when the intention of
the user is to parse it as a natural. Therefore an invocation to the parser has
the form

<Sig> ! <sort><string>

being the language/signature name, sort and quotation in double quotes respect-
ively. Typing an invocation sets off the parser which converts the quote to a
Lego term that is in turn passed to the evaluator and type checker. Parsing and
translation is performed simultaneously in the following way. When an invoca-
tion is detected in Lego, the parser is executed with the given language terminals
and the productions associated with the given sort. The algorithm then builds a
succession of states, sets of configurations where a configuration is a 5-tuple

A → α . β , n, T

where A → αβ is a production in the language, the dot separating α and β is
taken to mean that all the symbols in α to the left of it have been recognized and
all the symbols in β are yet to be recognized, the prediction number n represents
the number of the state in which this configuration was initially predicted (see
below) and T represents the current translation fragment of the configuration.

A state is synonymous with a point in the parsing process. For natural number
i, state i represents the point in the parse where the first i tokens in the input
string have been recognized. So if we have a quotation invocation

Nat!Formula ‘‘0 < suc 0’’

The parser adds the initial configurations for Formula productions to state 0,
since this prediction is in the initial state the prediction number attached to this
configuration is 0 to give

config1 = Formula −→ • natural “<” natural, 0, lessthan

42

The translation fragment lessthan comes from the name of the production used
for this configuration. It is the initial form of the translation signifying the main
function name of the Lego construction to be built. After a number of prediction
and reduction steps in the algorithm we arrive at the final state:

config9 = natural −→ “suc” natural •, 2, succ zro
config10 = Formula −→ natural “<” natural •, 0, lessthan zro

(succ zro)

The last configuration signals the fact that a Formula has been recognized. Note
that the translation result is the macro form for the Lego term of the quotation
‘‘0 < suc 0’’. Correctness is ensured since the grammar is also essentially
encoding the signature it describes.

The parser is also provided with an ability to handle variables so that they
may be written succinctly. It must essentially code up a concrete term such as
var|Sig n sort in a more abbreviated form like e1 or e’ etc. But we have to
be able to parse a variable to its intended sort and distinct natural number as
well as determine which signature it is a variable of. Since it must be expected
that there will be many sorts involved in many languages, abbreviated forms of
variables may become confusing to read. We provide a means by which a variable
is close in definition to a concrete variable term. The form is

<sortname>˜<N>

where N is a number. The translation is simple. The number translates to the
Lego natural number representation of N , the sort is directly translated and the
signature can be obtained from the parser invocation. An example of a variable
quotation is

Nat!natural ‘‘natural˜1’’

Antiquotation is also supported as in HOL except that any concrete HOL
term can be antiquoted, but this can again lead to problems of readability. In
our case, this would mean we could for example write a quotation such as

Nat!Formula ‘‘0 < ˆ(fa succ (tcons (fa zro (tnil|Nat))

(tnil|Nat)))’’

but this only serves to reintroduce the confusion that quotations set out to eradic-
ate. A compromise can be reached in that only Lego identifiers can be antiquoted
and if more complex concrete terms are to be included in a quotation, then they
should be bound to a new identifier in the current Lego context and then this
identifier should be antiquoted in their place. Thus the quotation above would
be written in Lego as

43

Lego> [x = (fa succ (tcons (fa zro (tnil|Nat)) (tnil|Nat)))];

value = ...

type = ...

Lego> Nat!Formula ‘‘0 < ˆx’’

Obviously the concrete term here can immediately be written as a quotation
anyway but there may be more complex terms that cannot be directly parsed
into a quotation.

3.5.4 The Unparser

Unparsing is the inverse function of translation. It is an extension of the output
procedures of Lego in that wherever possible, quotations are substituted as output
for Lego constructions of type Term|Sig s (where Sig is a signature, s is a sort).
In this way, the concrete structure of such objects is to some extent hidden from
the user. At most, only quotations are read or written at the theorem prover
level. A typical session in Lego without this unparsing facility would look like
this:

(* User input *)

Lego> Nat!natural ‘‘suc 0’’

(* Lego output *)

value = fa succ (tcons (fa zro (tnil|Nat)) (tnil|Nat))

type = Term Nat natural

where we would ideally like the system to return the value field as the quotation
provided.

Once the parser routines are implemented, it is a simple procedure to augment
the printing routines of Lego so that whenever a quotable ‘‘Term’’ type object
is to be outputted, the appropriate quotation is printed instead. Such objects can
be identified as those built entirely from either

• The two constructors for the type of Terms: fa and var

• OR Antiquotable Lego identifiers.

We shall call such constructions quotable terms. Once a quotable term is recog-
nized, the relevant lexicon and grammar are retrieved from storage by looking
within the structure of the term to locate the signature (and hence language)

44

name. Once this information is produced the reverse of the translation process
is applied to give a quotation. The following is an example of unparsing. The
quotation Nat!natural ‘‘suc 0’’ is written in concrete Lego syntax as

fa succ (tcons (fa zro (tnil|Nat))

(tnil|Nat))

The output stream is initially empty. The term is immediately quotable so the
unparsing routines locate the production of the main function name, succ in the
grammar of Nat, which is

natural = ... |

succ: ‘‘suc’’ natural

The current output stream becomes

‘Nat!natural ‘‘suc ’’ ’.

The hole at the end of the string represents the position of the rest of the quotation
yet to be filled in. The first and only argument of the term is

fa zro (tnil|Nat)

and again the production for zro is

natural = ... |

zro: ‘‘0’’

appending “0” to the output stream completing it to become

‘Nat!natural ‘‘suc 0’’ ’.

Variables and antiquotation are handled slightly differently and the details are
straightforward.

The final concern is to ensure that quotations are printed to the screen in an
appropriate format so that larger terms become easier to read. When the length
of a quotation is longer than the width of the screen it is printed to, it can become
difficult to identify the different parts or blocks of the sentence. Pretty printing
routines are supplied in the Lego source code, and it is expedient to make use
of them here. Since the object language support utilities here are general and
allow for any form of context free grammar, and aesthetics for formatting term
fragments differ, it is difficult to provide one ideal formatting style to suit all or
most languages and tastes. A convenient compromise is therefore to make use of
any in-built utilities of the system. The formatting programs in Lego are very
imposing in that it is difficult to provide a separate formatting module without
major changes in the source code for Lego, and this then in turn means it is
problematic to keep such a system up to date with newer implementations.

45

3.6 Lego Inductive Types Specified with Object
Language Support

The object language support facilities described in this chapter can also be directly
applied to cater for a small subset of Lego’s inductive types. This subset can be
defined as the set of inductive types specified with the following form

Inductive [T1, T2, . . . , Tj : Type(x)]

Constructors

[c1: t11→t21→ · · · →tn1
1]

[c2: t12→t22→ · · · →tn2
2]

...
...

[cm: t1m→t2m→ · · · →tnmm]

where x ≥ 0, j ≥ 1, m ≥ 0 and each t ∈ {T1, . . . , Tj} for 1 ≤ i ≤ ni, each ni ≥ 1
and 0 ≤ i ≤ m. Obviously this is a major restriction since no types outside
the set {T1, . . . , Tj} are permitted in the type declarations of the constructors.
Significantly we have to abandon polymorphism due to the absence of Π-types.
As an example we may define a lexicon and grammar for the inductive type of
natural number lists, which in normal Lego is defined using the command

Inductive [natural,nlist:Type(0)]

Constructors

[zero:natural]

[succ:natural->natural]

[nil: nlist]

[cons:natural->nlist->nlist];

and which in the extension to Lego covered in this chapter can be defined using
the commands

Terminals = ‘‘0’’ ‘‘suc’’ ‘‘,’’ ‘‘[’’ ‘‘]’’;

Productions NatList Ind ::=

natural = zero : ‘‘0’’ | succ : ‘‘suc’’ ‘‘natural’’,

nlist = nil : ‘‘[’’ ‘‘]’’ |

ne : ‘‘[’’ ‘‘nlst’’ ‘‘]’’,

nlst = sngl : ‘‘natural’’ |

cons : ‘‘natural’’ ‘‘,’’ ‘‘nlst’’;

Given these, we can express nlists as quotes such as

NatList!nlist ‘‘[suc 0, 0, suc suc 0]’’

46

Chapter 4

Formalizing Operational
Semantics

In the previous chapters we introduced the basic terms in our formalization of lan-
guage semantics. We now extend the theory to include operational rules which we
choose to describe as inductive definitions. Once we have this set, we can ascribe
the intended meaning to its elements. Henceforth we use the terms “operational
semantics” and “inductive definition” interchangeably. We commence in section
4.1 with a complete outline of the components and syntax of inductive definitions
in terms of Lego types, section 4.2 describes the meaning attached to them, sec-
tion 4.3 gives some useful functions and theorems thereon, section 4.4 provides a
preliminary evaluation of the system and section 4.5 outlines an extension to the
theory of the preceding sections.

4.1 Types for Inductive Definitions

An inductive definition is a set of inference rules of the form

P1 P2 · · · Pn
C

σ1, . . . , σm

for n,m ≥ 0, where the atomic formulae P1, P2, . . .,Pn are premisses or relational
assumptions, σ1, . . . , σm are side conditions not directly connected with the rela-
tions being defined and C is an atomic formula, the conclusion of the rule. The
rule represents the Horn clause

∀x1.∀x2. . . .∀xk.(P1 ∧ P2 ∧ . . . ∧ Pn) → (σ1 ∧ σ2 ∧ . . . ∧ σm) → C

as expected where the meta-variables x1, x2, . . . , xk are the free variables in the
succeeding formulae. In our theory, premisses and conclusions are Formula Terms.
The meta-variables in rules are Terms built using the constructor var.

47

Universal quantification can be kept implicit in the syntactic representation
of rules — as in their presentations in the literature. It must be borne in mind
that semantically, the quantification is present and is treated as such. We must
remember that semantic operations should respect this. In particular, substitu-
tion must be applied to a rule uniformly to preserve the implied binding in rules.
This leaves us to define the notion of side condition in our theory to complete the
encoding of the syntactic representations of inductive rules.

4.1.1 Side Conditions

Side conditions are present in rules where a predicate/relation being defined can-
not be described using positive induction rules. The most common such relation
is inequality (for terms), a minimum requirement. Other inductively definable
relations are also sometimes presented as side conditions making proof trees more
concise. A common such relation being evaluation under natural number ad-
dition. Take ⇒ to be the relation denoting evaluation for addition for natural
numbers. The formula

n + m ⇒ k

could equally be expressed as a side condition or by the inference rules for Peano
arithmetic. The consequence of expanding the set of side condition relations
amounts to a transfer of complexity from the proof tree to the side condition. We
gain nothing in terms of expressibility so for now we disregard providing relations
other than inequality for terms. An account of extending our theory for other
relations is given in section 4.5. With this restriction in mind we can express side
conditions in rules as a sequence of pairs of terms

(x1, y1), . . . , (xn, yn)

where each xi, yi are Terms of sort si for 0 ≤ i ≤ n. Since each si may differ, the
type of each element in a sequence may differ. In Lego we can express the type
of this sequence as an inductive type

SCList: FSig -> Type(0)

whose constructors are

SCnil : {FS|FSig}SCList|FS

SCcons : {FS|FSig}

{s|Sort}

(Term|FS s)->(Term|FS s)->(SCList|FS)->SCList|FS

48

where an object

SCcons t1 t2 scl

represents the inequality t1 6= t2 appended to the list scl of side conditions. The
vector type introduced in section 2.2.1 could have been used here but we opt to
use a special inductive type for side conditions to make the sub-theory easier to
reason about.

4.1.2 Rules

We can now express the type of rules, rule sets and inductive definitions. A rule
is a triple (P, σ, c) of a list of formulae terms P denoting a rule’s premisses, σ
denoting its side conditions and a formula c, the conclusion of the rule. In Lego
we use the product type to obtain the type for rules as

[Rule = {FS|FSig}

prod (list|(Term|FS Formula))

(prod (SCList|FS)

(Term|FS Formula))]

With this we provide projection functions to access each triplet in a rule

[Prems : {FS|FSig}(Rule|FS)->(list|(Term|FS Formula))]

[SideConds : {FS|FSig}(Rule|FS)->(SCList|FS)]

[Conc : {FS|FSig}(Rule|FS)->(Term|FS Formula)]

returning respectively the premisses, side conditions and conclusions of a rule. We
can express a rule’s components in a readable manner using the parsing facilities
of the previous chapter, but we cannot yet do this for a rule as a whole. The rule

x < y
suc x < suc y

is written as

Pair (cons (Nat!Formula "natural˜1 < natural˜2")

(nil|(Term|Nat Formula)))

(Pair (SCnil|Nat)

(Nat!Formula "suc natural˜1 < suc natural˜2"))

We have reintroduced raw Lego syntax into the objects of our theory. In chapter
3 we saw how to extend Lego with parsing capabilities for Terms. The appropriate

49

solution is to extend this further for a wider variety of types (those occurring in
rules).

In effect we are extending Lego’s user interface to provide a better means of
understanding the objects in our theory. An extension of the language grammar
command Productions from the previous chapter is provided for the new ele-
ments of our theory. Four new groups of productions are permissible in language
grammars. The templates for them are

”Prems” =

”prems” : α1 ”Prms” α2 |
”nilPrems” : α3,

”Prms” =

”snglPrms” : α4 ”Formula” α5 |
”consPrems” : α6 ”Formula” α7 ”Prms” α8,

for premisses,

”SCList” =

”nilSC” : α9 |
”consSC” : α10 ”Formula” α11 ”Formula” α12 ”SCList” α13 | . . .

for side conditions (one production for each sort in the signature) and

”Rule” =

”rule” : α14 ”Prems” α15 ”SCList” α16 ”Formula”,

for rules, where each α is a sequence of terminal symbols of the user’s choosing.
In our example, we could add the following rules to our grammar for the example
language Nat from section 3.5.2:

"Prems"

= "prems" : "[" "Prms" "]" |

"nilPrems" : "[" "]",

"Prms"

= "snglPrms" : "Formula" |

"consPrems" : "Formula" "," "Prms",

50

"SCList"

=

"consSC" : "natural" "<>" "natural" "," "SCList" |

"consSC" : "Formula" "<>" "Formula" "," "SCList" |

"nilSC" : ".",

"Rule"

= "rule" : "Prems" "[" "SCList" "]" "|-" "Formula";

The parser is invoked in the same way, so for example we can now write our two
example rules as

[

ZeroRule = Nat!Rule "[][.]|- 0 < suc natural˜1"

]

[

SuccRule = Nat!Rule "[natural˜1 < natural˜2]

[.]

|- suc natural˜1 < suc natural˜2"

]

The keywords Prems, Prms, SCList, Rule, prems, nilPrems, snglPrms,

consPrems, consSC, nilSC and rule are special and should not be used in a
Productions command for any other purpose.

The form of the grammatical rules is restricted. The user is only free to choose
the terminal symbols they require, but this helps the user by accommodating their
own notation. As an alternative, with a few changes to the grammar we could
express the second rule above as

Nat!Rule "natural˜1 < natural˜2

--------------------- ()

suc natural˜1 < suc natural˜2 "

4.1.3 Rule Sets

The final syntactic object to categorize is the rule set. One could use lists to
represent them but it would be naive to do so since we can expect to make use
of functions that return elements of rule sets. This cannot be done for the empty
list of rules if Lego functions are total, which they are. We circumvent this by
dictating that rule sets be non-empty. We lose nothing of interest as a result.
Non-empty lists are defined as a Lego inductive type

51

NElist:Type(0)->Type(0)

with the expected constructors Nnil and Ncons for singleton and larger lists
respectively. The gives us the type for rule sets:

[RuleSet = [FS|FSig]NElist|(Rule|FS)]

Three functions are supplied with this definition to refer to the head rule in
a rule set, the tail rules and the i th rule. They are simple instantiations of the
elimination rule for non-empty lists and their respective types are

HdRule : {FS|FSig}(RuleSet|FS)->Rule|FS

(* In the singleton case, TlRule is the identity function *)

TlRule : {FS|FSig}(RuleSet|FS)->(RuleSet|FS)

(* If nat out of range, RuleNum returns the last rule *)

RuleNum : {FS|FSig}(RuleSet|FS)->nat->Rule|FS

The third function RuleNum is particularly important in our theory as it is the
primary means of referring to specific elements of a rule set. Our example rule
set is written in our theory as

[NatRules = (Ncons ZeroRule (Nnil SuccRule)) :RuleSet|Nat]

In order to complete the type of inductive definitions, we can define them
as a pair: A signature with a rule set over that signature. The right type for
this is a sigma type: “[Spec = sigma|FSig|RuleSet];” Our example semantics
becomes (Nat,NatRules):Spec. Up to this point we have discussed the syntactic
properties of operational semantics to give us a first order representation of them
in our theory. We now provide the mathematical substance for them.

4.2 The Meaning of Semantic Specifications

We begin with the notion of ground term instances of rules. A rule instance is a
rule in which all meta-variables have been substituted with ground terms.

Definition 4.1 (Closure)
For a set of inductive rules R, a set S of formulae is closed under R if and

only if for all rule instances r ∈ R:

P1 P2 · · · Pk
C

σ1, . . . , σm

if each Pi ∈ S for each 1 ≤ i ≤ k and each of σ1, . . . , σm is true, then C ∈ S.

52

Definition 4.2 (Inductive Sets)

A set of inductive rules R defines an Inductive Set

Ind(R) =
⋂
{S |S is closed under R}

and as such this set is the least such set closed under the rules.

The assertion x ∈ Ind(R) can be thought of as formalizing the fact that “x
is derivable by the rules of R.” Any inductive set has an associated induction
principle, and one described by an inductive definition has an accompanying rule
induction principle.

Definition 4.3 (Rule Induction)

For a set S inductively defined by a set of rules R, the property P holds of S
by Rule Induction if P is closed under R.

In rule induction, we only have to prove properties hold for any set closed
under the rules, not just the least set. From the definition of closure above we
see that instantiations of the premisses and conclusions of rules are the elements
of inductive sets. The example rule set NatRules defines the inductive set

Ind(NatRules) = {(0 < suc 0), (0 < suc suc 0), . . . ,

(suc 0 < suc suc 0), . . .}

A set is naturally equated to a type in constructive logic with set membership
translating to type membership. To define inductive sets therefore is to define a
type for them in Lego. Our basic aim in this section is to provide a statement in
our theory of the general type for inductive sets (the elements of which we call
judgements) provided with a general operator for rule induction over this type.
Other useful lemmas and theorems on such sets can then be built on these found-
ations. The generality reflects the fact that we need a type equipped to delineate
the inductive sets defined by any rule set. The rule induction operator must be
similarly generic. In our Lego theory, this means the type for judgements and rule
induction will be parametric on RuleSets and (since RuleSets are parametric on
FSig) signatures.

A type encoding judgements is a type that must encode the notions of closure
given in definition 4.1 and leastness in definition 4.2. We immediately come across
two types similar to the two type choices in chapter 2, powerful enough to describe
inductive sets. We could use a parameterized sigma type ΠRSet.Σx. P (x, RSet)
where elements of this set are pairs of a formula x and a proof P (x, RSet) that

53

x is in the inductive set Ind(RSet). This is akin to the method of defining
the set of well formed terms in chapter 2 using sigma types. Only a subset of
Formulae Terms are in Ind(RSet) so a dependent pair delineates this by dictating
judgements are pairs (x, P) where the proof P that x is a judgement encodes the
closure and leastness criteria.

However taking the lessons of chapter 2 into account, it is more expedient
to be able to define types without this bureaucracy. It can be avoided again by
using Lego’s inductive types. The significant feature this time is that we can
use the inductive property of inductive types to encode the leastness we require
and encode closure in the constructor types. The elimination operator for an
inductive type gives the induction principle.

Taking a closer look at definition 4.1 and the inductive set defined by NatRules

notice that the definition above hides the fact that substitutions for the meta-
variables in rules occur implicitly via rule instances. It is more precise to point
out that we are interested in closure modulo substitution. This leaves us with
two concepts to define before we can encode closure and therefore the type of
judgements. Firstly substitution and secondly the meaning attached to side con-
ditions.

4.2.1 Substitution

Substitutions can be represented in two equivalent senses. Firstly as a function
from variables to terms and secondly as a list of variable term pairs. The former is
relevant to the process of substitution and the latter is relevant to the information
within one. It is clear that the theory needs a substitution function but it is also
essential to construct and reason about the class of substitutions in a simple
manner. For this reason we represent a substitution as a list whose elements
are variable term pairs, and furnish this with a function from substitutions and
variables to terms. This way we can easily build and reason about substitutions
(via list recursion) as well as apply them as a function.

Recall that variables are Terms formed using the constructor

var : {FS|FSig}nat->{s:Sort}Term|FS s

which means the defining criteria of a variable is its sort and numbering index.
A function from variables to terms is then a function from these two values. The
type of substitutions as lists of such mappings is parametric on signatures and
sorts and is written as

[Subst = {FS|FSig}{s:Sort}list|(prod nat (Term|FS s))]

54

in our theory. For a given signature FS and sort s, we have a list of pairs repres-
enting bindings of variables of sort s (distinguished by a numbering parameter)
to terms of type Term|FS s. If a variable is mentioned twice in a list, it is the
mapping closest to the front that takes precedent. Since substitutions are para-
meterized lists we have to provide building functions for them analogous to list
constructors. An empty substitution is formed by

[initSub = ([FS|FSig]

[s:Sort]nil|(prod nat (Term s))):Subst|FS

]

and we can add to substitutions by using a function that overrides a given sub-
stitution with a new mapping. The function

updateSub : {FS|FSig}{s|Sort}nat->(Term s)->(Subst|FS)->Subst|FS

does this via a conditional construct that finds the appropriate list of mappings for
the given sort and plants the new mapping at its head. The conditional depends
on Martin-Löf equality as opposed to the normal Leibniz equality used in Lego.
This gives us the substitutions as lists slant to our theory. To complete the picture
and ensure the intended overriding takes place we define a substituting function

SubFn : {FS|FSig}(Subst|FS)->{s:Sort}nat->Term s

taking a substitution and a variable’s attributes to return the right (most recently
mapped to) term. As we shall be making use of substitutions in rules, it is
necessary to provide functions that apply them to the premiss, side condition
and conclusion components of rules. The function

TSubFn :{FS|FSig}(Subst|FS)->{s|Sort}(Term|FS s)->(Term|FS s)

applies a substitution to a Term and therefore can be used to apply one to the
conclusion of a rule. It is defined by recursion on terms. Any variables that are
sub-terms of a term are replaced by calling SubFn. The function

TlistSubFn:

{FS|FSig}

(Subst|FS)->

{s|Sort}(list|(Term|FS s))->(list|(Term|FS s))

applies a substitution to a list of terms by list recursion. TSubFn is applied to
each element of the list. It can be applied to the premisses of a rule. Finally the
function

55

SCSub: {FS|FSig}(Subst|FS)->(SCList|FS)->(SCList|FS)

applies a substitution to a list of side conditions by recursion on the specialist
SCList type.

We return to the subject of legibility. As in section 4.1.2 we extend our parsing
capabilities with a facility for objects of type Subst. The new production class
has the form

”Subst” =

”nilSub” : α1 |
”consSub” : α2 ”Formula” α3 ”Formula” α4 ”Subst” α5 | . . .

similar to the production class for side conditions, there should be one production
for every sort in the language. In our example language Nat we have

"Subst"

=

"consSub" : "natural" "|-->" "natural" "," "Subst" |

"consSub" : "Formula" "|-->" "Formula" "," "Subst" |

"nilSub" : "nil" ,

To appreciate the perspicuity here, the substitution

{x 7→ 0, y 7→ suc 0}

is expressed in raw Lego as

updateSub one (Nat!natural "0")

(updateSub two (Nat!natural "suc 0")

(initSub|Nat))

but in its pretty form as

Nat!Subst "natural˜1 |--> 0, natural˜2 |--> suc 0, nil"

4.2.2 Side Conditions and their Proofs

Recall that in section 4.1.1 we introduced side conditions as sequences of pairs
of terms. Each pair denoting an inequality. To determine whether the inequality
holds, a simple function can be defined from terms to Prop (the proposition type
in Lego). Its functionality is

56

TermNeq : {FS|FSig}

{s|Sort}

(Term|FS s)->(Term|FS s)->Prop

where TermNeq is an object with the appropriate instantiation of the elimination
operator for Terms. To determine the same for a list of side conditions then
requires a function

SCHold : {FS|FSig}(SCList|FS)->Prop

constructed by primitive recursion on SCLists essentially conjoining all the in-
equalities therein. With this, two auxiliary functions are provided

NilSCPrf : {FS|FSig}SCHold (SCnil|FS)

ConsSCPrf : {FS|FSig}

{s|Sort}

{l:SCList|FS}

{t1,t2:Term|FS s}(TermNeq t1 t2)->(SCHold l)->

(SCHold (SCcons t1 t2 l))

the first provides an automatic proof that an empty list of side conditions hold
trivially, and the second breaks the proof that a non-empty list is true down to
proving the first inequality holds and the rest of the inequalities hold. By using
these two functions, a user can assert the validity of a list of side conditions by
the continual application of these functions coupled with proofs of the individual
inequalities.

4.2.3 Judgements: Inductively Defined Sets

We are now ready to describe the type of judgements using an inductive type with
a constructor defining closure which must be the type equivalent of the informal
proposition

“For any signature FS, rule set RSet over FS, rule r in RSet and sub-
stitution Sub over FS, if the premisses of r under Sub are judgements
and if the side conditions of r under Sub hold, then the conclusion of
r under Sub is a judgement.”

Notice that the substitution is applied uniformly throughout the rule r. This
fulfils the need to model the implicit universal binding in rules when applying
substitution. Note also the inductive part of the closure property is propagated

57

through the premisses. In fact, we can ascribe a type for judgements analogous
to the type for well formed terms in chapter 2. In Lego we have a type for
Judgements with a type Jlist (for judgement lists) defined by mutual induction:

Judgement: {FS|FSig}(RuleSet|FS)->(Term|FS Formula)->Type(0)

Jlist : {FS|FSig}(RuleSet|FS)->(list|(Term|FS Formula))->Type(0)

where the type Judgement RSet f can be thought of as asserting “f is in the
inductive set defined by RSet,” and Jlist RSet fl is equivalent to “The formulae
fl are in the inductive set defined by RSet”. Recalling the functions described in
this chapter and using natural numbers to refer to the elements of rule sets, the
constructor for the type of Judgements is

ruleAp :

(* For all signatures *)

{FS|FSig}

(* For all rule sets *)

{RSet:RuleSet|FS}

(* For all naturals *)

{i:nat}

(* For all substitutions *)

{Sub:Subst|FS}

(* If the premisses are judgements *)

(Jlist RSet (TlistSubFn Sub (Prems (RuleNum RSet i))))->

(* If the side conditions hold *)

(SCHold|FS (SCSub Sub (SideConds (RuleNum RSet i))))->

(* Then the conclusion is a judgement *)

Judgement RSet (TSubFn Sub (Conc (RuleNum RSet i)))

encoding closure in the sense of the quoted proposition above. In proof theoretic
terms it can be seen as the rule applying function for building proof trees for a
given set of inductive rules. An object inhabiting the type Judgement RSet f

can be thought of as being a proof tree of the proposition f ∈ Ind(RSet). The
constructors for Jlists are used to build lists of Judgements corresponding to
the list of formulae denoted in the type information for Jlists:

jnil :

{FS|FSig}

{RSet:RuleSet|FS}

Jlist RSet (nil|(Term|FS Formula))

58

J_Induction :
(* For all signatures *)
{FS|FSig}
(* For all rule sets *)
{RSet:RuleSet|FS}
(* For all properties P of judgements *)
{P:{f|Term|FS Formula}(Judgement RSet f)->Prop}
(* If the property preserves closure *)
({i:nat}

{Sub:Subst|FS}
{p:Jlist (TlistSubFn Sub (Prems (RuleNum RSet i)))}
{x1:SCHold (SCSub Sub (SideConds (RuleNum RSet i)))}
(Conj P p)->

P (ruleAp RSet i Sub p x1)
)->
(* If P holds the empty list of judgements *)
(Conj P (jnil|FS RSet))->
(* If P holds for all elements of a non-empty judgement list *)
({f|Term|FS Formula}

{fl|list|(Term|FS Formula)}
{jh:Judgement RSet f}
{jt:Jlist RSet fl}
(P jh)->
(Conj P jt)->

Conj P (jcons RSet jh jt))->
(* Then P holds for all judgements *)
{x1|(Term|FS Formula)}{z:Judgement|FS RSet x1}P z

Figure 4.1: The Induction Operator for Judgements

the empty formula list being a judgement list and

jcons :

{FS|FSig}

{RSet:RuleSet|FS}

{f|(Term|FS Formula)}

{fl|list|(Term|FS Formula)}

(Judgement RSet f)->(Jlist RSet fl)->

Jlist RSet (cons f fl)

to concatenate a judgement to a judgement list to make a judgement list.
The elimination operator Judgement elim provides the recursive function and

inductive operator for judgements. The relevant instantiation for induction gives
us the functionality in figure 4.1 where the result of the function

59

Conj :

{FS|FSig}

{RSet|(RuleSet|FS)}

{P:{f|(Term|FS Formula)}(Judgement RSet f)->Prop}

{fl|list|(Term|FS Formula)}

(Jlist RSet fl)-> Prop

is the conjunction of P applied to every element in the judgement list. The version
of induction we acquire is tighter than the notion of rule induction in that instead
of having to prove a property is preserved by any closed set, you need to prove
it holds for exactly the elements of the least closed set. The property P does not
quantify over all formulae but over the subset of them that are judgements. This
is the same situation as we discovered for the type of well formed Terms in chapter
2 where the elimination operator only quantified for the subset of terms that were
well formed. We lose nothing however if our only interest is in proving theorems
of the least closed set. In fact, the induction operator in figure 4.1 is close to
a rule for the induction on the depth of inference. With some extra machinery,
outlined in section 4.3.4, we can indeed perform this kind of reasoning in our
general theory. We now have a foundation upon which to reason about inductive
definitions. The next section details some helpful functions and theorems for
inductive rules, sets and judgements.

4.3 Utilities for Inductively Defined Sets

The constructions that follow are provided as corollaries to the work already
provided in the general theory. They can be used to enhance the theorem proving
interface for the class of judgements and its associated induction principle.

4.3.1 Named Rules

The way rules are referenced in our theory of Judgements contributes to the
relative illegibility of proof tree construction. When using ruleApwe must provide
the position of the rule being applied in the rule set, which can often mean
manually determining this index beforehand. We provide an alternative function
to ruleAp which allows one to give instead the rule or the name of the rule one
wishes to apply at a point in a derivation. The type of the function is

60

ruleAp’ :

{FS|FSig}

{RSet:RuleSet|FS}

{r:Rule|FS}

[i=RuleNameToNum r RSet]

{Sub:Subst|FS}

(Jlist RSet (TlistSubFn Sub (Prems (RuleNum RSet i))))->

(SCHold (SCSub Sub (SideConds (RuleNum RSet i))))->

Judgement RSet (TSubFn Sub (Conc (RuleNum RSet i)))

which is identical to ruleAp except one provides an object of type Rule in place
of a natural. Lego automatically searches the rule set RSet for the rule and
determines the relevant index by calling RuleNameToNum, the rest of the arguments
are supplied as they are to ruleAp. If the provided rule is not in the rule set then
the index of the last rule is returned by RuleNameToNum. This allows us for
example to write

ruleAp’ NatRules ZeroRule ...

and frees us from the lower levels of detail in our theory. As such it provides a
form of abstraction for rule referencing. Examples and an assessment of the use
of ruleAp’ are provided in the next chapter.

4.3.2 HeadPremiss, TailPremisses

The functions HeadPremissand TailPremisses extract the head and tail respect-
ively of a non-empty list of judgements. If we have such a list, its type (disreg-
arding parameter information) must be Jlist...(cons f fl). The judgement
list must be non-empty since it must at least have a judgement for the formula
f at its head. The functions are derived from a specialization of the recursive
operator for Jlists that caters specifically for non-empty judgement lists. The
types of the functions are

(* Returns the judgement at the head of a Jlist *)

HeadPremiss :

{FS|FSig}

{RSet:RuleSet|FS}

{f|(Term|FS Formula)}

{fl|list|(Term|FS Formula)}

(Jlist RSet (cons f fl))->Judgement RSet f

61

(* Returns the tail of a non-empty Jlist *)

TailPremisses :

{FS|FSig}

{RSet:RuleSet|FS}

{f|(Term|FS Formula)}

{fl|list|(Term Formula)}

(Jlist RSet (cons f fl))->Jlist RSet fl

4.3.3 Case Analysis

Its often the case that in order to prove that if a formula f is a judgement with
respect to a rule set RSet, it is so only by virtue of the fact that one of the rules
in RSet can be used to derive it. This allows us to be able to assert that if a
formula holds (is a judgement) then the premisses and side conditions of one of
the rules hold. We can think of the theorem we are about to prove as the generic
analogue of derive cases thm in HOL [CM92]. In logical terms, if for a rule set
RSet = {r1, r2, . . . , rn} the formula f is a judgement then we can show

(∃Sub : Subst. Jlist RSet (Prems r1)Sub ∧ f ≡ (Conc r1)Sub)

∨ (∃Sub : Subst. Jlist RSet (Prems r2)Sub ∧ f ≡ (Conc r2)Sub)

∨ ...

∨ (∃Sub : Subst. Jlist RSet (Prems rn)Sub ∧ f ≡ (Conc rn)Sub)

where terms subscripted by substitutions represent those terms with the sub-
stitution applied to them. The logical connectives range over the appropriate
type universes. The existentials and equalities are needed when applying this
formula in practice to either derive contradictions or ensure the correct bindings
for variables. We can render a type in Lego to represent this formula using the
function

JlistSum : {FS|FSig}

(RuleSet|FS)->

(RuleSet|FS)->

(Term|FS Formula)->Type(0)

where JlistSum RSet RSet f represents the formula above. Two copies of a
rule set are passed to this function since on closer inspection of the formula, we
must both recurse along and keep a full copy of the rule set within the body of

62

the type. More importantly, the function must have this form to make a crucial
induction further on in the theory possible. The body of the function is

[JlistSum =

[FS|FSig][RSet:RuleSet|FS]

[RSet’:RuleSet|FS][f:Term|FS Formula]

NElist_elim ([_:RuleSet|FS]Type(0))

([r:Rule|FS]

sigma|(Subst|FS)

|([Sub:Subst|FS]

prod (Jlist RSet (TlistSubFn Sub (Prems r)))

(Eq f (TSubFn Sub (Conc r)))))

([r:Rule|FS]

[rl:NElist|(Rule|FS)]

[rl_ih:Type(0)]

sum (sigma|(Subst|FS)

|([Sub:Subst|FS]

prod (Jlist RSet (TlistSubFn Sub (Prems r)))

(Eq f (TSubFn Sub (Conc r)))))

rl_ih)

RSet’];

where the first rule set is kept fixed and the second is recursed upon. We use
sigma types to represent existentials, sum types for disjunction and product types
for conjunctions since we are combining objects from Prop and Type(0) and these
types generalize over both universes.

Before we can continue we have to define a theorem that states that if we
know that the ith element in the disjunction of the formula above holds, then we
can show that JlistSum RSet RSet f holds. We start with the type

[Jl_exists =

[FS|FSig][RSet:RuleSet|FS]

[RSet’:RuleSet|FS][f:Term|FS Formula][i:nat]

sigma|(Subst|FS)|([sub:Subst|FS]

prod (Jlist RSet (TlistSubFn sub (Prems (RuleNum RSet’ i))))

(Eq f (TSubFn sub (Conc (RuleNum RSet’ i)))))];

where the type Jl_exists RSet RSet f i is isomorphic to the formula

∃Sub : Subst. Jlist RSet (Prems (RuleNum RSet i))Sub

∧ f ≡ (Conc (RuleNum RSet i))Sub

63

With this we can write the theorem

Goal ith_sum :

{FS|FSig}

{f:Term|FS Formula}

{RSet:RuleSet|FS}

{i:nat}

(Jl_exists RSet RSet f i)->

(JlistSum RSet RSet f);

which essentially states that if we can construct the ith element in the summation
defined by JlistSum then we can derive an object of type JlistSum itself. The
proof of this theorem involves an intricate induction. Given the proof state

FS | FSig

f : Term|FS Formula

RSet : RuleSet|FS

?1 : {i:nat}

(Jl_exists RSet RSet f i)->

JlistSum RSet RSet f

we need to refine by

NElist_elim ([RSet’:RuleSet|FS]

{i:nat}(Jl_exists RSet RSet’ f i)->

JlistSum RSet RSet’ f)

to make sure that the correct type on induction takes place and that the right
form of induction hypothesis is formed in the inductive step of the proof. Notice
how the induction is conducted upon the second copy of RSet. The correct form of
induction hypothesis would not be formed if we define JlistSum and Jl exists

with a single rule set argument.
Having proven ith sum, we can now prove our main result

JRSum :

{FS|FSig}

{RSet:RuleSet|FS}

{f|(Term|FS Formula)}

{j:Judgement RSet f}

JlistSum RSet RSet f;

by induction on Judgements. In the main ruleAp case we get the proof state

64

i : nat

Sub : Subst|FS

jl : Jlist RSet (TlistSubFn Sub (Prems (RuleNum RSet i)))

sch : SCHold (SCSub Sub (SideConds (RuleNum RSet i)))

jl_ih : Jlist RSet (TlistSubFn Sub (Prems (RuleNum RSet i)))

?16 : JlistSum RSet RSet (TSubFn Sub (Conc (RuleNum RSet i)))

at which point we refine by

Refine ith_sum (TSubFn Sub (Conc (RuleNum RSet i))) RSet i;

to get

?22 : Jl_exists RSet RSet (TSubFn Sub (Conc (RuleNum RSet i))) i

which can be easily shown by the steps

Refine dep_pair Sub ?;

Refine Pair jl (Eq_refl ?);

JRSum is usually used in conjunction with the case function in Lego

case : {s,t|SET}{u|TYPE}(s->u)->(t->u)->(sum s t)->u

Given that the user assumes a formula f is a Judgement, we can apply JRSum

to it to get a summation over the rule set. If their goal involves inferring the
premisses of the last rule application for f then they apply case recursively to
this summation until it diminishes. The effect is that each rule is posited as
the rule from which we derived f as a Judgement. This will either generate a
contradiction (due to the form of the rule combined with the imposed equality in
each summand of JlistSum) or the rule will indeed be one of the possible rules
the formula could be derived from and we proceed to derive the premisses. In
such a case, the presence (as assumptions) of the existential substitution and the
equality in that summand of JlistSum make sure that the correct substitutions
for the variables can be inferred. An example of the use of JlistSum is shown in
the next chapter.

4.3.4 Properties of Rule Sets

The function RuleRec is used to prove a property is true for every rule in a rule
set. Its an instantiation of the recursive function for rule sets (non-empty lists)
and its type is

65

RuleRec :

{FS|FSig}

(RuleSet|FS)->

((Rule|FS)->Prop)->

Prop

We can derive a corollary of this stating for all signatures FS and rule sets
RSet that if for a property P:(Rule|FS)->Prop, the proposition

RuleRec RSet P

holds, then for all i:nat

P (RuleNum RSet i)

holds. The theorem

RLemma :

{FS|FSig}

{RSet:RuleSet|FS}

{P:(Rule|FS)->Prop}

(RuleRec RSet P)->

{i:nat} P (RuleNum RSet i)

effectively states the same thing as RuleRec but it is significant in that it is in
terms of the way rules are referenced using the constructor ruleAp for the type
Judgement. This means that whenever we wish to prove a property

R : {FS|FSig}

{RSet:RuleSet|FS}

{f|(Term|FS Formula)}(Judgement RSet f)->Prop

using J_Induction our representation of induction for judgements, we can, with
the right instance of the function P above, prove that R preserves closure for every
rule in RSet by induction on non-empty lists. This form of reasoning is referred to
as induction on the depth of inference and is a common means of reasoning about
inductive rules. This is obvious once one realizes that the type Judgement can
also be seen as the type of proof trees. The constructors of the type apply rules,
and concatenate proof trees together using Jlist objects, themselves formed of
Judgement objects. An example application of induction on the depth of inference
can be seen in the next chapter.

66

4.3.5 Automated Substitutions and Interpreting

With the current state of the theory in Lego, a goal directed derivation of an
inductive definition demands the user define the exact substitution to be used for
every rule application since it is one of the arguments of ruleAp. There are times
however when we may wish to leave it partly or wholly unspecified. There are
two main reasons for doing so.

Firstly, in certain circumstances the substitution we need can be entirely de-
rivable from our goal on the one hand and the conclusion of the rule we wish to
apply on the other. For example if our goal is

Judgement ... Nat!Formula ‘‘suc 0 < suc suc 0’’

and we wish to apply the rule

x < y
suc x < suc y

the substitution we need is

{x 7→ 0, y 7→ suc 0}

which can be obtained from the information in the goal and the conclusion of
the rule. In such cases it is expedient to be able to let the system automatically
create the right instantiation.

Secondly we may wish to leave some variables unbound to a ground term in a
substitution and allow them to become bound further up the proof tree, in effect
using the derivation process to act as an interpreting machine. The inductive
definition for addition in Peano arithmetic

0 + y ⇒ y
(1)

x + suc y ⇒ z
suc x + y ⇒ z (2)

is a good example. Starting off with a goal

suc 0 + suc 0 ⇒ v

we can apply rule (2) and then (1) to get the proof tree

0 + suc suc 0 ⇒ suc suc 0 by rule 1

suc 0 + suc 0 ⇒ suc suc 0 by rule 2

thus instantiating the variable v.
To this end we supply a function

67

unifSub :

{FS|FSig}

{s|Sort}(Term|FS s)-> (Term|FS s)-> (Subst|FS)

that takes two terms and creates a substitution for the variables in each such that
if applied to both, it would make them equal if this is possible. The function’s
strategy is to recurse through both terms constructing the substitution as it does
so. At each point in the double recursion there are four possibilities.

• One sub-term is a variable and the other is a function application of the
same sort: a mapping from the variable to the function application is added
to the substitution.

• Both are variables of the same sort: one is mapped to the other.

• Both are function applications of the same sort: the function recurses
through their sub-terms collating all the resulting substitutions.

• The two sub-terms are of different sorts: no substitution is returned.

The user is free to attempt to use this function on two terms that cannot be
unified. The result would be a useless construction. An example invocation of
unifSub is

unifSub (Nat!Formula "natural˜1 < suc 0")

(Nat!Formula "0 < natural˜2")

which produces the substitution

Nat!Subst "natural˜1 |--> 0, natural˜2 |--> suc 0"

In a goal directed proof, unifSub can be used instead of a written substitution
by supplying it the conclusion formula of the rule we wish to apply and the formula
of the current goal. To apply the rule SuccRule

Nat!Rule "[natural˜1 < natural˜2]

[.]

|- suc natural˜1 < suc natural˜2"

from section 4.1.2 to the goal

Judgement NatRules "suc 0 < suc suc 0"

one would write

68

ruleAp NatRules

one

(unifSub (Nat!Formula "suc natural˜1 < suc natural˜2")

(Nat!Formula "suc 0 < suc suc 0"))

or even

ruleAp NatRules one (unifSub (Conc (RuleNum NatRules one))

(Nat!Formula "suc 0 < suc suc 0"))

Examples of the use of all the utilities in this section appear in the next
chapter.

4.4 Preliminary Evaluation

Before continuing it is instructive to analyse in part our theory up to this point.
Proof trees of semantics are built using the constructors for Judgements. They
can be built top down or bottom up in Lego. To construct the equivalent proof
tree to

0 < suc 0
suc 0 < suc suc 0

in a bottom up fashion, we would enter the following list of definitions in Lego:

[sub1 = Nat!Subst "natural˜1 |--> 0"];

[j1 = ruleAp NatRules zero sub1 (jnil NatRules) (NilSCPrf|Nat)];

[sub2 = Nat!Subst "natural˜1 |-> 0, natural˜2 |--> suc 0"];

[j2 = ruleAp NatRules one sub2 (jcons NatRules j1

(jnil NatRules))

(NilSCPrf|Nat)]

A straightforward process, but it is at this point where a curious phenomenon
occurs. Constructing j2 takes an infeasible amount of time. With such a small
language and semantics the time in real terms is negligible but if we extrapolate
this to the semantics in the next chapter, a thirty step proof (thirty rule applic-
ations) takes approximately five hours to compute using steps similar to those
above. This is a problem that reappears in top down proofs. It can be traced
back to the type checking invoked when applying

ruleAp NatRules one sub2

which expects something of type

69

(* type number (1) *)

Jlist...(TlistSubFn sub2 (Prems (RuleNum NatRules one)))

that is something consistent with a list of judgements for the premisses of rule
one of NatRules, and it is supplied with (jcons j1 (jnil...)) which has type

(* type number (2) *)

Jlist...(cons (TSubFn sub1 (Conc (RuleNum NatRules zero)))

(nil|(Term|FS Formula)))

The type of the former does not match the type of the latter so an amount of
reducing is necessary before the types conflate to the same term. Looking at the
two types (1) and (2) above, we can see that the earliest possible point at which
the two types become identical is when they both reduce to

(* type number (3) *)

Jlist ... (cons (Nat!Formula "0 < suc 0")

(nil|(Term|Nat Formula)))

something that can be confirmed if we try to reduce them so in Lego using the
Equiv command, but the unification strategy of Lego fails to find this point and
reduces the two terms further. In fact its heuristics virtually normalize both terms
fully before type checking succeeds. In the example here, this means both terms
evaluate to the raw Lego terms for Judgement...(Nat!Formula "0 < suc 0")

that is

Judgement...

(fa ltn (tcons (fa zro (tnil|Nat))

(tcons (fa succ (tcons (fa zro (tnil|Nat)) (tnil|Nat)))

(tnil|Nat)))

before they are unified. Furthermore, in reducing (1) and (2) to these concrete
terms, they themselves are type checked to see that their sub-terms are well-
formed with respect to the signature Nat. In the term above it is done four times
since there are four function applications in it. Larger terms require more and
more of this well-formedness checking proportional to the size of the abstract
syntax tree of the term. The time taken is also a function of the size of the
signatures and rule sets involved since they too are processed in the unification.
This adds up to contribute to the intractable performance.

We can observe this at the top level of Lego by attempting to unify types (1)

and (2) when we Freeze the signature Nat. Doing so signals to the system that

70

Nat is not to be expanded. This results in the same amount of delay succeeded
by an type error message confirming the failure of the well formed check. But as
we have seen, this processing is neither correct nor necessary since both types (1)
and (2) are reducible to type (3). In essence, this inexpediency is a consequence
of an aberration in Lego’s reduction heuristics. To attempt to rectify them for
the sake of speeding up the type checking above may be to the detriment of the
other reductions. Work is currently being undertaken to improve Lego’s run-time
performances.

The problem can be circumvented by forcing Lego’s unification process to
prohibit expanding and reducing terms to the full extent. Whenever a term is
passed to the Lego engine it should be type casted to its normalized type. This
can be automatically done at the parsing stage for objects of type Term. Doing so
means that all the necessary type checking is done beforehand. If this is the case
then the signature can be frozen in Lego when proof trees are constructed thus
forcing the unification process to unify types (1) and (2) earlier. The solution
is not an extension of Lego but an effective use of its pre-existing mechanisms. It
yields an approximate one hundred fold improvement in run-time.

4.5 Other Side Conditions

We can expand the library of side conditions by extending and modifying the
existing tools in the theory defined in section 4.1.1. Presently there is only one
kind of side condition: term inequality with type

{FS|FSig}{s|Sort}(Term|FS s)->(Term|FS s)->Prop

The type of side conditions can be generalized to allow for properties taking
any number of Terms as arguments. A side condition becomes a pair (P, a) of a
property P and a list of arguments a of the right arity. The type of such properties
would be

{FS|FSig}{sl|list|Sort}(Tlist|FS sl)->Prop

and one can get an instance of this for term inequality TermNeq if its type is
changed equivalently to

{FS|FSig}{s|Sort}(Tlist (cons s (cons s (nil|Sort))))->Prop

and if we refer to it as TermNeq|s for given s.
With this change, the constructor SCcons for SCList, the inductive type of

side condition lists of section 4.1.1 is transformed to

71

SCcons: {FS|FSig}

{sl|list|Sort}

((Tlist|FS sl)->Prop)-> (** property **)

(Tlist|FS sl)-> (** arguments **)

(SCList|FS)-> (** rest of side conditions **)

(SCList|FS)

so that the side condition function and the arguments of the side condition are
supplied as the data of each element of the list.

As a result of this change, we also have to amend the type of ConsSCPrf

(section 4.1.1) to

ConsSCPrf : {FS|FSig}

{sl|list|Sort}

{f:(Tlist|FS sl)->Prop}

{a:Tlist|FS a}

{scl:SCList|FS}

(f a)-> (** Proof of head **)

(SCHold scl)-> (** Proof of tail **)

SCHold (SCcons f a scl) (** Proof of whole **)

One would be expected to add any extra side condition properties to the
theory where necessary. Libraries of such properties could then be accumulated
for properties of common sorts of terms such as natural numbers and booleans.

The list of side conditions
[0 6= suc 0]

would be expressed in the new style as

SCcons (TermNeq|Nat) (tcons (Nat!natural "0")

(tcons (Nat!natural "suc 0")

(tnil|Nat)))

(SCnil|Nat)

The extensions in this section would be complete if the parsing facilities were
extended likewise.

72

Chapter 5

An Example Semantics

In this chapter we demonstrate all aspects of defining and reasoning with a se-
mantics in our general theory of inductive specifications. The example we choose
is a simple functional language and semantics ExpSem. In section 5.1 we show how
to specify its syntax in terms of our parsing facilities, in section 5.2 we declare
the semantic rules of ExpSem and section 5.3 exhibits the various methods and
provisions available for proof tree construction using some derivations of ExpSem
as examples. Subsequent sections quote various theorems and proofs of proper-
ties of the semantics of ExpSem, demonstrating how to reason about semantics
in our general theory using such techniques as rule induction and case analysis
discussed in the previous chapter. Theorems include the proof of the monogen-
icity of ExpSem as well as a proof that the let construction and the function
application construction are equivalent.

5.1 The Syntax of ExpSem

The basic entities of the semantics for ExpSem are natural number constants,
variables, expressions and declarations. The BNF grammar for these is shown in
figure 5.1. We can encode this grammar in terms of the commands Terminals

and Productions specified in chapter 3. We commence with the tokens of the
language for ExpSem, written in Lego as in figure 5.2. The first three lines are
included for the basic entities in figure 5.1. The rest of the tokens pertain to the
pretty language for the components of rules and substitution.

Before we describe Exp, the grammar of the terms of ExpSem it is necessary to
understand the nature of the relations being specified, to give us an insight into the
form of the formulae in its rules. The inductive sets of ExpSem relate environments
(mappings of identifiers to values) and phrases to values. A phrase being either
an expression or a declaration. Values are either natural number expressions (in

73

Basic Entities Generic Name
Constants 0, 1, . . . , true, false n
Identifiers x, y, . . . x

Phrase Class Generic Name Phrase Forms
Expressions e ::= n |x | e1 e2 |e1 + e2|

if e0 then e1 else e2 |
fn x . e | let d in e end

Declarations d ::= x = e

Figure 5.1: The Basic Entities of ExpSem

Terminals "Exp" =
"0" "suc" "+" "++" "true" "false" "if"
"then" "else" "x" "y" "z" "let" "=" "in"
"in" "end" "fn" "." "@" "(" ")" "{}"
"," "::" ":" "Nat" "==>" "=:=>" "|-" "<>"
"[" "]" "|=" "|-->" "nil";

Figure 5.2: The Terminals of Exp

terms of Peano arithmetic), function expressions, or environments. The form of
the relations can be written as

E ` phrase ⇒ value

where E is an environment and the ‘result’ value is an expression if the phrase
is an expression and an environment if the phrase is a declaration. With this
information, we are ready to define the language of the terms of ExpSem using
the Productions command. We start with the portion of the grammar for well
formed terms, described in figure 5.3.

There are a number of points to be made about this grammar. Note that
the productions labelled under "ID", the ones for describing identifiers, are a
simplification of the original declaration of the basic entities of ExpSem. There
are only three possible identifiers x, y and z. The set can obviously be extended
to an infinite one if for example, we define them as an indexed set, using natural
numbers as the indexing set for instance.

There are two productions for addition in figure 5.3 since we shall distinguish
between the addition of natural numbers and the addition of expressions in the
rules of ExpSem later. The productions labelled under "Formula" give us the forms

74

Productions "Exp"
FirstOrder ::=

"expr" = "zro" : "0" |
"succ" : "suc" "expr" |
"pl" : "expr" "+" "expr" |
"tr" : "true" |
"fls" : "false" |
"Idr" : "ID" |
"ifte" : "if" "expr" "then" "expr" "else" "expr" |
"let" : "let" "decl" "in" "expr" "end" |
"abs" : "fn" "ID" "." "expr" |
"app" : "expr" "@" "expr" |
"eplus" : "expr" "++" "expr" |
"brexp" : "(" "expr" ")",

"ID" = "x_ID" : "x" |
"y_ID" : "y" |
"z_ID" : "z" ,

"decl" = "dcl" : "ID" "=" "expr",
"Env" = "enil" : "{}" |

"econs" : "(" "ID" "," "expr" ")" "::" "Env",
"Formula"

= "statNat" : "expr" ":" "Nat" |
"evalE" : "Env" "|=" "expr" "==>" "expr" |
"evalD" : "Env" "|=" "decl" "=:=>" "Env" ,

Figure 5.3: The Grammar of Terms in Exp

of the three types of formulae to be defined, the first statNat can be thought of
as a relation defining the static semantics for the portion of expressions that are
natural numbers. Finally note that a bracketing production has been added to
the grammar for expressions since there is no facility in the parser to deal with
precedence or associativity information.

The rest of the grammar for ExpSem (describing the form of rules and substi-
tution) will be given later in this section. We shall now concentrate on the effects
of this first part of the grammar on the Lego context. Assuming that no sorts
have been specified by the user already, the definitions

[expr = make_Sort (suc (suc zero))]

[ID = make_Sort (suc (suc (suc zero)))] ...

...[Env = make_Sort (suc (suc (suc (suc (suc zero)))))]

are added to the current context, where the numerical index is distinct for each
newly defined sort, in turn making each sort distinct. A similar treatment is given

75

to the names zro, succ, ... labelling each production in the grammar in figure
5.3. Each production name id necessitates the addition of a new function name
definition idF to the current context. For Exp, this means we add

[zroF = make_FIdent zero]

[succF = make_FIdent (suc zero)]...

...[evalEF = make_FIdent (suc (suc(suc zero)...))];

The next addition to Lego’s context is the signature that the grammar denotes.
The name of the signature is the name of the language. The sort and function
name information is also supplied within the grammar as explained in section
3.5.2.

[Exp =

cons (Pair zroF (Pair (nil|Sort) expr))

(cons (Pair succF (Pair (cons expr (nil|Sort)) expr))

. . . .

. . . .

. . . .

(cons (Pair evalEF

(Pair (cons Env (cons expr (cons expr (nil|Sort))))

Formula))

(nil|(prod FIdent (prod (list|Sort) Sort))))...)];

Additionally to these basic definitions, a set of abbreviating functions are
added to Lego’s context. These are the same abbreviations that were described
in section 3.1, and the information needed to create them can again be obtained
from the details in the signature Exp. In this example we get the functions

[zro = Exp!expr "0"]

[succ = [expr0:Term|Exp expr]Exp!expr "suc ˆexpr0"]...

.

.

.

[evalE =

[Env0:Term|Exp Env]

[expr0:Term|Exp expr]

[expr1:Term|Exp expr]

Exp!Formula "ˆEnv0 |= ˆexpr0 ==> ˆexpr1"];

76

"Prems"
= "prems" : "[" "Prms" "]" |
"nilPrems" : "[" "]",

"Prms"
= "snglPrms" : "Formula" |
"consPrems" : "Formula" "," "Prms",

"SCList"
= "consSC" : "expr" "<>" "expr" "," "SCList" |
"consSC" : "Env" "<>" "Env" "," "SCList" |

.

.

.
"nilSC" : "nil",

"Rule"
= "rule" : "Prems" "[" "SCList" "]" "|-" "Formula",

"Subst"
= "consSub" : "expr" "|-->" "expr" "," "Subst" |

.

.

.
"nilSub" : "nil";

Figure 5.4: The Grammar for Rules and Substitution for ExpSem

These intermediary definitions are sometimes a helpful substitute for quota-
tions when reasoning about well formed terms, their components and the effect
of functions on them. As we shall see in later sections, it is sometimes hard to
understand and reason about the make-up of terms in a quoted form especially
when functions such as substitution are being applied to them. We wish to write
terms in a comprehensible manner in such situations but we need to make sure we
can reason about them clearly at the same time. These abbreviations provide a
convenient medium since they are written as Lego expressions but are not so con-
crete as to become unreadable and not as opaque as a quote in that the structure
of the term is evident and readily accessible.

We can now complete the grammar of ExpSem by providing its productions
for rules and substitution. They are similar to the productions in the previous
chapter for the language Nat and are shown in figure 5.4.

Note that we need a production in the SCList and Subst groups for every
sort (including Formula) in the grammar of figure 5.3. A rule in ExpSem has the
form

Exp!Rule "[p1, p2, ..., pN][sc1, sc2, ..., scM] |- c"

77

Expressions e

Constant: E ` n ⇒ n n : natural

Identifier: E ` x ⇒ n
x 7→ n ∈ E

Addition:
E ` e1 ⇒ n1 E ` e2 ⇒ n2

E ` e1 + e2 ⇒ n
n1 + n2 7→ n

Conditional: (1)
E ` e1 ⇒ n

E ` if true then e1 else e2 ⇒ n

(2)
E ` e2 ⇒ n

E ` if false then e1 else e2 ⇒ n

Let:
E ` d ⇒ E′ E′ ` e ⇒ n
E ` let d in e end ⇒ n

Function: E ` fn x.e ⇒ fn x.e

Application:
E ` e1 ⇒ fn x.e E ` e2 ⇒ n {x 7→ n} ⊕ E ` e ⇒ n′

E ` e1(e2) ⇒ n′

Declarations d

Simple:
E ` e ⇒ n

E ` x = e ⇒ {x 7→ n} ⊕ E

Figure 5.5: The Semantics for ExpSem

where p1, ... pN and c are Formulae quotes and sc1, ..., scM are SCList

quotes.

5.2 The Semantics of ExpSem

The semantic rules of ExpSem are shown in figure 5.5. It has the basic attributes
of a functional language, but demonstrates fully the complexity of our general
theory. It is important to point out that environments E in ExpSem can be
thought of as functions upon which overriding can take place. This is represented
as terms of the form E1 ⊕E2 meaning that the maps in E1 override the maps in
E2, so for example if we have (x 7→ n) ∈ E1 and (x 7→ n′) ∈ E2 then we have
{x 7→ n} ∈ E1 ⊕ E2. We shall now iterate through the rules in figure 5.5 and
show their counterparts in our theory in Lego.

The Constant rule can be expressed as two rules that in effect define the subset

78

of expressions that are natural numbers (in Peano arithmetic). Before we provide
these, we need to define the side condition attached to this rule in terms of two
inductive rules:

[NatRule1 =

Exp!Rule "[][nil] |- 0 : Nat"

];

[NatRule2 =

Exp!Rule "[expr˜1 : Nat][nil] |- suc expr˜1 : Nat "

];

These rules can be seen as defining a part of the static semantics of ExpSem in
that the relation being defined is one concerning the types of expressions. With
the side condition defined, we can represent the Constant rule with two rules.
The first for zero and the second for higher numbers:

[ZeroRule =

Exp!Rule "[][nil] |- Env˜1 |= 0 ==> 0"

];

[SuccRule =

Exp!Rule "[expr˜1 : Nat]

[nil] |-

Env˜1 |= suc expr˜1 ==> suc expr˜1 "

];

The Identifier rule in figure 5.5 is subtle in the fact that environments are func-
tions upon which functional overriding takes place as stated in the rules Let and
Application. This can be implemented by representing environments as stacks,
or FIFO lists. Whenever a binding takes place (in either Let or Application), the
bound identifier together with the attached value is pushed onto the stack. The
most recent mapping for a particular identifier is the one nearest the top of the
stack and is therefore the correct map to refer to when its value is needed. This
feature can be realized by the two rules:

[IdentRule1 =

Exp!Rule "[][nil] |-

(ID˜1,expr˜1)::Env˜1 |= ID˜1 ==> expr˜1"

];

79

[IdentRule2 =

Exp!Rule "[Env˜1 |= ID˜1 ==> expr˜2]

[ID˜1 <> ID˜2, nil] |-

(ID˜2,expr˜1)::Env˜1 |= ID˜1 ==> expr˜2 "

];

where the first rule is for the case when the identifier to reference is at the front
of the environment list, and the second when it is not. Note that the second
rule has to have a side condition asserting an inequality between identifiers. If
the identifier we are interested in is not equal to the identifier involved in the
mapping at the top of the environment stack, it is “popped” and the premiss
effectively lets us us recurse with the rest of the environment.

The Addition rule has again a side condition we must define in terms of in-
ductive rules. The addition in the side condition for this rule pertains to addition
for natural numbers whereas the addition in the conclusion of the rule corres-
ponds to the addition of expressions. We distinguish the two in our language by
using the symbol “+” to denote the former and “++” to denote the latter. The
former can be defined using two rules

[PlusRule1 =

Exp!Rule "[expr˜1 : Nat]

[nil] |-

Env˜1 |= 0 + expr˜1 ==> expr˜1 "

];

[PlusRule2 =

Exp!Rule "[Env˜1 |= expr˜1 + suc expr˜2 ==> expr˜3]

[nil] |-

Env˜1 |= suc expr˜1 + expr˜2 ==> expr˜3 "

];

80

and the latter, the representation of the Addition rule is written

[ExpPlusRule =

Exp!Rule "[Env˜1 |= expr˜1 ==> expr˜4,

Env˜1 |= expr˜2 ==> expr˜5,

Env˜1 |= expr˜4 + expr˜5 ==> expr˜3]

[nil] |-

Env˜1 |= expr˜1 ++ expr˜2 ==> expr˜3 "

];

The conditional rules are a straightforward translation:

[IfRule1 =

Exp!Rule "[Env˜1 |= expr˜1 ==> expr˜3]

[nil] |-

Env˜1 |= if true then expr˜1 else expr˜2 ==> expr˜3"

];

[IfRule2 =

Exp!Rule "[Env˜1 |= expr˜2 ==> expr˜3]

[nil] |-

Env˜1 |= if false then expr˜1 else expr˜2 ==> expr˜3"

];

The only boolean terms in ExpSem are true and false but we could extend
ExpSem to have more complex boolean terms by defining operators such as and,
or and implication by adding the inductive rules for them as we did for natural
number addition.

The Let rule in figure 5.5 provides the definition of a construct familiar from
many functional languages. We must somehow make sure that the new environ-
ment E′ created by the declaration d overrides the current environment in the
body of the expression e. The rule we write in Lego is:

[LetRule =

Exp!Rule "[Env˜1 |= decl˜1 =:=> Env˜2, Env˜2 |= expr˜1 ==> expr˜2]

[nil] |-

Env˜1 |= let decl˜1 in expr˜1 end ==> expr˜2"

];

where the variable Env˜2 is taken to be Env˜1 overridden by the mapping in
the declaration decl˜1. To guarantee that this is so, we define the rule for
declarations to be:

81

[DeclRule =

Exp!Rule "[Env˜1 |= expr˜1 ==> expr˜2]

[nil] |-

Env˜1 |= ID˜1 = expr˜1 =:=> (ID˜1 , expr˜2) :: Env˜1"

];

so that the mapping of the identifier ID˜1 to the expression expr˜2 is placed
at the head of the environment. The overriding is effectively taking place in
the rule for declarations. The rule for functions and function applications are
straightforward:

[FnRule =

Exp!Rule "[]

[nil] |-

Env˜1 |= fn ID˜1.expr˜1 ==> fn ID˜1.expr˜1"

];

[AppRule =

Exp!Rule "[Env˜1 |= expr˜1 ==> fn ID˜1. expr˜3,

Env˜1 |= expr˜2 ==> expr˜4,

(ID˜1,expr˜4)::Env˜1 |= expr˜3 ==> expr˜5]

[nil] |-

Env˜1 |= expr˜1 @ expr˜2 ==> expr˜5"

];

Finally, we need a rule for bracketing expressions so that the parser returns
the parse tree of the user’s choosing. The grammar for expressions is ambiguous
and so explicit parenthesizing is necessary. The rule for brackets is:

[BracRule =

Exp!Rule "[Env˜1 |= expr˜1 ==> expr˜2]

[nil] |-

Env˜1 |= (expr˜1) ==> expr˜2"

];

With all the rules defined in Lego, the rule set ExpRules of ExpSem is the list
in figure 5.6. Now, we can define ExpSem itself as the specification

[ExpSem = (dep_pair|FSig|RuleSet Exp ExpRules):Spec];

which is the pair of the signature and rule set.

82

[ExpRules =
(Ncons ZeroRule (* zero *)
(Ncons SuccRule
(Ncons NatRule1 (* two *)
(Ncons NatRule2
(Ncons IdentRule1 (* four *)
(Ncons IdentRule2
(Ncons PlusRule1 (* six *)
(Ncons PlusRule2
(Ncons ExpPlusRule (* eight *)
(Ncons IfRule1
(Ncons IfRule2 (* ten *)
(Ncons LetRule
(Ncons DeclRule (* twelve *)
(Ncons FnRule
(Ncons AppRule (* fourteen *)
(Nnil BracRule)))))))))))))))):RuleSet|Exp];

Figure 5.6: The Rule Set for ExpSem

5.3 Example derivations

We shall now demonstrate how proof trees can be constructed in both bottom up
and top down fashion. We will use the proof tree for the assertion

{} ` let x = (suc suc 0)

in

0 + x

end ⇒ suc suc 0

as an example. In formal terms, the derivation for this formula looks like

0 : Nat
suc 0 : Nat

{} ` suc suc 0 ⇒ suc suc 0
{}` x = suc suc 0 ⇒ {x 7→ suc suc 0}

{x 7→ suc suc 0}` x ⇒ suc suc 0
...

{x 7→ suc suc 0}` 0 + x ⇒ suc suc 0
{}` let x = (suc suc 0) in . . . ⇒ suc suc 0

This section is divided into three parts. The first shows how to construct the
proof tree in a top down fashion, the second in a bottom up manner and the third
discusses a derivation that includes proving a side condition.

83

5.3.1 Top Down Derivations

We start by executing the command Freeze Exp in Lego. This makes sure that
it cannot expand the definition of the signature Exp during the course of its
evaluations of terms and types. As explained in section 4.4, this is necessary to
save time especially when as here, derivations are being built. We then declare
our Lego goal to be that the assertion above is a Judgement:

Goal

Judgement ExpRules

(Exp!Formula " {} |= let x = suc suc 0

in

0 ++ x

end ==>

suc suc 0"

);

The first rule we wish to apply is the LetRule with the substitution

[sub1 = Exp!Subst "Env˜1 |--> {},

decl˜1 |--> x = suc suc 0,

expr˜1 |--> 0 ++ x,

expr˜2 |--> suc suc 0,

Env˜2 |--> (x , suc suc 0) :: {},

nil"

];

The rule has no side conditions, so we can break the goal down by refining it with

ruleAp ExpRules (suc ten) sub1 ? (NilSCPrf|Exp)

which gives us the subgoal

Jlist ExpRules (TlistSubFn sub1

(Prems (RuleNum ExpRules (suc ten))))

which we know pertains to the premisses of the let rule under the substitution
sub1. We know therefore that the judgement list we require has two elements
since LetRule has two premisses, so we can refine this subgoal by jcons since
we know the list must be non-empty. Going further, we can be more specific and
refine it by

jcons ExpRules ? (jcons ExpRules ? (jnil ExpRules))

84

using the Lego wildcard symbol ? since we know the list must have exactly two
judgements in it. It is easier to use this “template” expression rather than simply
jcons since refining by the latter gives us a more complicated looking (although
equivalent) subgoal to prove. Refining by the template expression gives us the
new subgoals

?6 : Judgement ExpRules

(TSubFn sub1

(Exp!Formula "Env˜1 |= decl˜1 =:=> Env˜2"))

?10 : Judgement ExpRules

(TSubFn sub1

(Exp!Formula "Env˜2 |= expr˜1 ==> expr˜2"))

These relate to the two premisses of LetRule under substitution sub1. As can be
seen it is not at all clear what the actual instantiations of the formulae are since a
substitution is applied to the quoted formulae. The problem is exacerbated since
the next step in the proof is to apply different rules to the new subgoals which
means making use of another substitution in order to refine by ruleAp. This can
make the construction of proof trees hard to manage correctly. There are no ways
of influencing Lego’s reduction strategies on parts of expressions other than using
the command Equiv, where the user postulates an equivalent goal to the one for
them to prove. In this case, we can assert that the goal ?6 is equivalently

?6 : Judgement ExpRules

(Exp!Formula "{} |= x = suc suc 0 =:=>

(x, suc suc 0)::{}");

in that the substitution sub1 has been applied to the previous expression of ?6.
We can carry on and prove this goal using the rule for declarations and so on.

As can be seen, supplying a substitution every time a rule is applied can make
derivations exceedingly prolix. The function unifSub defined in section 4.3.5 can
be used in its place to make Lego find a substitution that unifies the goal formula
with a conclusion of a provided rule. Consider our initial goal. Let us make a
definition

[goal_formula = Exp!Formula " {} |= let x = suc suc 0 in ..."];

being the formula of the judgement that is our goal. We could refine the goal by

85

Refine ruleAp ExpRules

(suc ten)

(unifSub (Conc LetRule) goal_formula)

?

(NilSCPrf|Exp);

to get the subgoal

?5 : Jlist ExpRules

(TlistSubFn (unifSub (Conc LetRule) goal_formula)

(Prems (RuleNum ExpRules (suc ten))))

and then refining by

Refine jcons ExpRules ? (jcons ExpRules ? (jnil ExpRules));

as before, we get the subgoals

?9 : Judgement ExpRules

(TSubFn (unifSub (Conc LetRule) goal_formula)

(Exp!Formula "Env˜1 |= decl˜1 =:=> Env˜2"))

?13 : Judgement ExpRules

(TSubFn (unifSub (Conc LetRule) goal_formula)

(Exp!Formula "Env˜2 |= expr˜1 ==> expr˜2"))

Although this does not aid our understanding of the instantiations of the formulae
involved, we are at least spared the trouble of determining the concrete values
of the goals and defining the substitution beforehand. Again, if we were to want
to know the actual value of the formula in subgoal ?9, we could use Equiv to
postulate a value for the formula and reduce it so. Another drawback to using
this function is that it is time intensive due to the unification process taking place.
A consequence of this is that derivations take longer to construct if unifSub is
used for each successive rule application. This is because the function has to deal
with increasingly complex terms — unless of course the user intervenes regularly
to reduce each successive goal using an Equiv step.

As mentioned at the beginning of this section, we must make sure that the
signature Exp is frozen at the start of the proof. Indeed, if we left it unfrozen,
then a derivation would take approximately sixty times longer to construct. Un-
fortunately, once all the steps in a top down derivation are executed, the system
requires that the signature be unfrozen before the goal can be proven. It then

86

executes some necessary type checks that involve expanding the value of the signa-
ture and evaluations thereon similar to the ones we avoided during the interactive
steps of the proof. This virtually wipes out the speed-up gained by freezing, but
at least it can be said that the interactive part of the process is completed by this
time.

5.3.2 Bottom Up Proofs

We now demonstrate the construction of the same proof tree in a bottom up
manner. In this case we need to provide each substitution for every step in the
derivation since there is no one initial goal as our focus. Let us start by building
the sub-proof for the subgoal

Judgement ExpRules (Exp!Formula " {} |= x = suc suc 0 =:=>

{x,suc suc 0}::{} ")

We build the proof tree for this with a succession of definitions in Lego. We first
start with the command “Freeze Exp;” so that Lego avoids any superfluous
evaluation. The first step in the proof of this branch of the proof tree (given at
the beginning of section 5.3) is to construct the derivation of 0: Nat. This is
realized by the definition

Lego> [J1 = ruleAp ExpRules

two

(Exp!Subst "nil")

(jnil ExpRules)

(NilSCPrf|Exp)];

defn J1 : Judgement ExpRules (TSubFn (Exp!Subst "nil")

(Conc (RuleNum ExpRules two)))

(* J1 :Judgement ExpRules (Exp!Formula "0 : Nat") *)

where the type added in (*comments*) for intelligibility is equivalent to the
type returned by Lego since it refers to the conclusion of NatRule1 with the
nullary substitution applied to it. From J1 we can now build the derivation for
suc 0 : Nat with

Lego> [subst1 = Exp!Subst "expr˜1 |--> 0, nil"];

Lego> [J2 = ruleAp ExpRules

three

subst1

(jcons ExpRules J1 (jnil ExpRules)) (NilSCPrf|Exp)];

87

defn J2 : Judgement ExpRules (TSubFn subst1

(Conc (RuleNum ExpRules three)))

(* J2 : Judgement ExpRules (Exp!Formula "suc 0 : Nat") *)

although it is not obvious from the output of Lego that the judgement J1 fits in
the rule application for J2. Carrying on, the definitions

Lego> [subst2 = Exp!Subst "Env˜1 |--> {}, expr˜1 |--> suc 0, nil"];

Lego> [J3 = ruleAp ExpRules

one

subst2

(jcons ExpRules J2 (jnil ExpRules))

(NilSCPrf|Exp)];

defn J3 : Judgement ExpRules (TSubFn subst2

(Conc (RuleNum ExpRules one)))

(* J3 : Judgement ExpRules

(Exp!Formula "{} |= suc suc 0 ==> suc suc 0") *)

give us the proof tree equivalent to an application of the Constant rule for the
number two. Finally we need

Lego> [subst3 = Exp!Subst " Env˜1 |--> {},

expr˜1 |--> suc suc 0,

expr˜2 |--> suc suc 0,

ID˜1 |--> x,

nil "]

Lego> [J4 = ruleAp ExpRules

(suc (suc ten))

subst3

(jcons ExpRules J3 (jnil ExpRules))

(NilSCPrf|Exp)];

defn J4 :

Judgement ExpRules

(TSubFn subst3

(Conc (RuleNum ExpRules (suc (suc ten)))))

(* J4 :

Judgement ExpRules

(Exp!Formula "{} |= x = suc suc 0

=:=>

(x, suc suc 0)::{}") *)

88

to get the desired proof-tree. As can be seen, the types returned by Lego do not
aid our understanding of the derivations we are building. Indeed it can be harder
to build derivations bottom up in Lego because the information returned by the
system is less helpful than the information provided during a top down proof.

5.3.3 Proving Side Conditions

We shall conclude this section by looking at a top down derivation of a proof
tree involving the proof of a side condition. Assume we have the following goal
somewhere in a top down derivation:

Judgement ExpRules

(Exp!Formula "(x, 0)::(y, suc 0)::{} |= y ==> suc 0")

We need to use the rule IdentRule2 which has a side condition, an inequality
between the meta-variables for identifiers. We can refine this goal by the rule
application

Refine ruleAp ExpRules five (unifSub ...)

(jcons ExpRules ? (jnil ExpRules))

(ConsSCPrf x y ? (NilSCPrf|Exp))

since we know there is one premiss (hence one wildcard symbol in the judge-
ment list) and one side condition (hence one ? in the list of side conditions) in
IdentRule2, so the refinement spawns two new subgoals equivalent to

n? : Judgement ExpRules

(Exp!Formula "(y, suc 0)::{} |= y ==> suc 0")

n+1? : TermNeq (Exp!ID "x") (Exp!ID "y")

The first goal can be refined by the rule application of IdentRule1 and the
second is solved purely through expanding and reducing the value of TermNeq x

y which reduces to trueProp, whose proof is is trivially true.

5.3.4 Named Rules

Until now we have been applying rules in derivations and the like by referring
to their position in the list ExpRules. This is an inconvenience when every time
a rule is applied, the definition of ExpRules has to be consulted to find this
numerical index. The alternative is the rule applying function ruleAp’ from
section 4.3.1. Recall that the function determines the position of the named
rules in the given rule set and applies ruleAp with the appropriate number. If

89

we also take into account that the function unifSub can automatically create
substitutions for us, top down derivations can be built with a minimum of effort
on the user’s part. What follows is an example of a rule application in a top down
derivation in which we maximize the amount of automation available to us. We
start with the goal

Judgement ExpRules (Exp!Formula "{} |= suc suc 0 ==> suc suc 0")

which we can refine by the term

Refine ruleAp’ ExpRules

SuccRule

(unifSub (Conc SuccRule)

(Exp!Formula "{} |= suc suc 0 ==>

suc suc 0"))

(jcons ExpRules ? (jnil ExpRules))

(NilSCPrf|Exp);

as can be seen, we are applying SuccRule with a substitution to match the goal
formula with the conclusion of the rule. Lego returns with the new goal

?8 : Judgement ExpRules

(TSubFn (unifSub (Conc SuccRule)

(Exp!Formula "{}|= suc suc 0 ==> suc suc 0"))

(Exp!Formula "expr˜1 :Nat"))

which if we work this out is equivalent to

Judgement ExpRules (Exp!Formula "suc 0 : Nat")

but again, as when we exploited unifSub in section 5.3.1 to save effort, we find
that the output of the theorem prover becomes difficult to understand. Another
problem is the time taken to infer the rule number and substitution using ruleAp’

and unifSub respectively is over a hundred times slower than the time taken using
ruleAp and an explicit substitution.

5.4 Monogenicity Theorem for ExpSem

In this section we demonstrate the use of rule induction in a proof of the mono-
genicity of the semantics of ExpSem. The theorem represents the assertion that
every expression phrase evaluates to exactly one value. It is expressed in Lego

90

Goal {e1,e2,e3:Term|Exp expr}
{E:Term|Exp Env}
{t|Term|Exp Formula}
{j:Judgement ExpRules t}
{t’|Term|Exp Formula}
{j’:Judgement ExpRules t’}
(Term_Eq t (Exp!Formula " ˆE |= ˆe1 ==> ˆe2 "))->
(Term_Eq t’ (Exp!Formula " ˆE |= ˆe1 ==> ˆe3 "))->
(Term_Eq e2 e3);

Figure 5.7: Monogenicity Theorem for ExpSem

as in figure 5.7 The proof proceeds by double rule induction, first on j and then
on j’. Applying this breaks the goal down so that we can prove the property
is closed under all the rules in ExpRules. After applying J Induction for all
judgements j above, we get the goal

?11 : {i:nat}

{Sub:Subst|Exp}

{p:Jlist ExpRules (... (RuleNum ExpRules i)))}

(SCHold (SCSub Sub (SideConds (RuleNum ExpRules i))))->

(Conj (....) p)->

{t’|Term|Exp Formula}

(Judgement ExpRules t’)->

(Term_Eq (TSubFn Sub (Conc (RuleNum ExpRules i)))

(Exp!Formula "ˆE |= ˆe1 ==> ˆe2"))->

(Term_Eq t’

(Exp!Formula "ˆE |= ˆe1 ==> ˆe3"))->

Term_Eq e2 e3

Note that this goal is a statement of closure that is inductive on natural num-
bers but we wish to transform this somehow to something inductive on the list
ExpRules. Doing so would mean we could iterate through ExpRules to show
the property preserves closure. At this point it is necessary to convert goal ?11
using Rlemma. If we have a goal such as the above of the form {i:nat}T and we
refine it by Rlemma ExpRules ([r:Rule|FS]T’) where T’ is T with all instances
of RuleNum ExpRules i substituted with r, we get a new goal which is effectively
the conjunction that T is closed under all the rules in ExpRules. The appropriate
instantiation of Rlemma is:

91

Refine Rlemma ExpRules

([r:Rule|Exp]

{Sub:Subst|Exp}

{p:Jlist ExpRules (TlistSubFn Sub (Prems r))}

(SCHold (SCSub Sub (SideConds r)))->

(Conj (...) p)->

{t’|Term|Exp Formula}(Judgement ExpRules t’)->

(Term_Eq (TSubFn Sub (Conc r))

(Exp!Formula "ˆE |= ˆe1 ==> ˆe2"))->

(Term_Eq t’

(Exp!Formula "ˆE |= ˆe1 ==> ˆe3"))->

Term_Eq e2 e3);

from which we get the the new goal

?43 : RuleRec ExpRules

([r:Rule|Exp]{Sub:Subst|Exp}

{p:Jlist ExpRules (TlistSubFn Sub (Prems r))}

(SCHold (SCSub Sub (SideConds r)))->

(Conj (...) p)->

{t’|Term|Exp Formula}

(Judgement ExpRules t’)->

(Term_Eq (TSubFn Sub (Conc r))

(Exp!Formula "ˆE |= ˆe1 ==> ˆe2"))->

(Term_Eq t’ (Exp!Formula "ˆE |= ˆe1 ==> ˆe3"))->

Term_Eq e2 e3)

to which we can successively apply and-introduction iterating through the list
ExpRules. The rest of the proof amounts to comparing the possible forms of j
and j’ and showing that if

j = Judgement ExpRules (Exp!Formula "ˆE |= ˆe1 ==> ˆe2 ")

j’ = Judgement ExpRules (Exp!Formula "ˆE |= ˆe1 ==> ˆe3 ")

then either e2 equals e3 or we can infer a contradiction. We can examine all the
possible forms and permutations of these judgements by looking at the last rule
application used to derive them. For instance once we have refined both j and
j’ by J Induction, the first case we come to is the one where both j and j’

represent derivations that last applied the rule ZeroRule:

92

...

Sub : Subst|Exp

Sub’ : Subst|Exp

h_eq :

Term_Eq (TSubFn Sub (Conc ZeroRule))

(Exp!Formula "ˆE |= ˆe1 ==> ˆe2")

h_eq’ :

Term_Eq (TSubFn Sub’ (Conc ZeroRule))

(Exp!Formula "ˆE |= ˆe1 ==> ˆe3")

?101 : Term_Eq e2 e3

from which we can trivially prove the goal since both must be 0. The next case
is the one where j is a derivation using ZeroRule and j’ uses SuccRule. The
proof state at this point is:

...

Sub : Subst|Exp

Sub’ : Subst|Exp

h_eq :

Term_Eq (TSubFn Sub (Conc ZeroRule))

(Exp!Formula "ˆE |= ˆe1 ==> ˆe2")

h_eq’ :

Term_Eq (TSubFn Sub’ (Conc SuccRule))

(Exp!Formula "ˆE |= ˆe1 ==> ˆe3")

?121 : Term_Eq e2 e3

which is a contradiction since e1 cannot be both “0” and “suc n” (for some ex-
pression “n”) as implied by the hypotheses above. The rest of the proof continues
along the same vein.

5.5 Let and Function Application Equivalence
Theorem

The theorem in this section is the simple equality between the evaluations of let
and function application expressions. We also show how to apply case analysis
when we wish to infer premisses from given conclusions. The theorem is

∀E : Env. ∀e1, e2, e3 : expr.

E ` let x = e1 in e2 end ⇒ e3 iff E ` (fn x. e2) e1 ⇒ e3

93

and its proof proceeds in two steps, proving the implication in both directions.
We show the first direction, the second is similar. We must prove the goal

∀E : Env. ∀e1, e2, e3 : expr.

E ` let x = e1 in e2 end ⇒ e3 implies E ` (fn x. e2) e1 ⇒ e3

In essence, the proof proceeds by building a top down proof tree for the
function application from a set of “backwards derived” premisses in the proof
tree for the let construct. These premisses must be built from the assumption
that the formula “let x = e1 in e2 end ⇒ e3” is a Judgement. In mathematical
terms, if we know this formula is a Judgement then we know we must have derived
the proof tree

...
E ` e1 ⇒ e4

E ` x = e1 ⇒ {x 7→ e4} ⊕E Decl.
...

{x 7→ e4} ⊕ E ` e2 ⇒ e3

E ` let x = e1 in e2 end ⇒ e3
Let.

and so we must know that the premisses above are all Judgements. More import-
antly, we know that an e4 exists such that those premisses may hold. If we now
take a look at the proof tree we need to build for the function application:

E ` (fn x. e2) ⇒ (fn x. e2)
Fn.

E ` e1 ⇒ e4 {x 7→ e4} ⊕ E ` e2 ⇒ e3

E ` (fn x. e2) e1 ⇒ e3
App.

we can see that once we have inferred the premisses of the let construction, we
can plug them into this proof tree making sure that e4, the existential variable is
correctly bound.

We shall start with the proof of the theorem that derives the premisses of the
Let rule from the assumption of its conclusion. The formula in figure 5.8 states
that given a Judgement involving the let construct, there must exist an expres-
sion e4 such that the premisses of the Let rule under the implied substitution are
Judgements. We can then use this existential object to bind the expr˜4 variable
of the AppRule in our main theorem. The theorem is proved using JRSum from
section 4.3.3 and a long case analysis. After introducing our assumptions we get
the proof state

94

Let_derive :
{E:Term|Exp Env}
{e1,e2,e3:Term|Exp expr}
(Judgement ExpRules

(Exp!Formula "ˆE|= let x=ˆe1 in ˆe2 end ==> ˆe3"))->
sigma|(Term|Exp expr)

|([e4:Term|Exp expr]
Jlist ExpRules

(cons (Exp!Formula "ˆE |= x = ˆe1 =:=> (x,ˆe4)::ˆE")
(cons (Exp!Formula "(x,ˆe4)::ˆE |= ˆe2 ==> ˆe3")
(nil|(Term|Exp Formula)))));

Figure 5.8: The Let derive Lemma

E : Term|Exp Env

e1 : Term|Exp expr

e2 : Term|Exp expr

e3 : Term|Exp expr

J : Judgement ExpRules

(Exp!Formula "ˆE|= let x =ˆe1 in ˆe2 end ==> ˆe3")

?1 : sigma|(Term|Exp expr)

|([e4:Term|Exp expr]

Jlist ExpRules

(cons (Exp!Formula "ˆE |= x = ˆe1 =:=> (x,ˆe4)::ˆE")

(cons (Exp!Formula "(x,ˆe4)::ˆE |= ˆe2 ==> ˆe3")

(nil|(Term|Exp Formula)))));

at which point we make the definition “[JLs = JRSum ExpRules J]” to provide
us with a summation. We can derive our goal from this sum by refining by the
term “case ? ? JLs”. This then gives us two proof obligations. The first
being

Je_H : sigma|(Subst|Exp)

|([Sub:Subst|Exp]

prod (Jlist ExpRules (TlistSubFn Sub (Prems ZeroRule)))

(Eq (Exp!Formula "ˆE|= let x=ˆe1 in ˆe2 end ==>ˆe3")

(TSubFn Sub (Conc ZeroRule))))

?7 : sigma|(Term|Exp expr)

|([e4:Term|Exp expr]

Jlist ExpRules (cons (Exp!Formula "ˆE |= ...") ...)

95

which denotes the case where we must derive our goal from the assumption that
the premisses of the ZeroRule hold and that its conclusion under some substitu-
tion matches “let x = e1 ...”. We can derive a proof by contradiction from
the second part of this assumption in the following way. Firstly we can refine by

empty_elim ([_:empty]

sigma|(Term|Exp expr)

|([e4:Term|Exp expr]Jlist ExpRules ...))

the elimination operator for the empty type. This means having to provide an
object of type empty which we do by applying the theorem

absurd_impl_empty : absurd -> empty

which holds in our theory since we implement Martin-Löf equality. This leaves
us to derive absurd which we do from the equality in Je H above. It implies that
the function name for “let” equals the function name for “0”. The term

true_not_false (Eq_sym (fst (fst

(snd (snd (Term_Eq_character’ ? ?

(Snd (sig_pi2 Je_H))))))));

gives us an object of type absurd from this implication of Je H. Refining by this
finishes the proof of this first case. The second proof obligation mentioned above
is

?6 : (JlistSum ExpRules

(Ncons SuccRule (Ncons ... (Nnil BracRule)))

(Exp!Formula "ˆE|= let x=ˆe1 in ˆe2 ==> ˆe3"))->

sigma|(Term|Exp expr)

|([e4:Term|Exp expr]

Jlist ExpRules (cons (Exp!Formula "...") ...)

where now we can show our goal holds from a smaller summation than before: a
sum over ExpRules minus the ZeroRule. We continue exactly as before proving
each case by contradiction until we reach the LetRule case. In this instance we do
not have a contradiction but must derive our goal from our immediate assumption.
The proof state can be reduced to the one shown in figure 5.9. Notice that the
assumption Je H has had to be expanded and stated in the more verbose manner
in order to be able to apply rewrites later on. The list in Je H is the expansion of
the term TlistSubFn Sub (Prems LetRule). It is from the Jlist part of Je H

96

Je_H : sigma|(Subst|Exp)
|([Sub:Subst|Exp]

prod (Jlist ExpRules
(cons (evalD (SubFn Sub Env (suc zero))

(SubFn Sub decl (suc zero))
(SubFn Sub Env (suc (suc zero))))

(cons (evalE (SubFn Sub Env (suc (suc zero)))
(SubFn Sub expr (suc zero))
(SubFn Sub expr (suc (suc zero))))

(nil|(Term|Exp Formula)))))
(Eq (Exp!Formula "ˆE |= let x = ˆe1 in ˆe2 end ==> ˆe3")

(TSubFn Sub (Conc LetRule))))
?259 : sigma|(Term|Exp expr)

|([e4:Term|Exp expr]
Jlist ExpRules

(cons (Exp!Formula "ˆE|= x=ˆe1 =:=> (x,ˆe4)::ˆE")
(cons (Exp!Formula "(x,ˆe4)::ˆE|= ˆe2 ==> ˆe3")
(nil|(Term|Exp Formula)))))

Figure 5.9: The LetRule case in the proof of Let derive

that we shall prove our goal. From the equality in Je H we can impose equalities
on the terms of the Jlist so that it matches our goal formula list. We can derive
the equalities

Env1_Eq : Eq E (SubFn (sig_pi1 Je_H) Env (suc zero))

Decl1_Eq : Eq (Exp!decl "x = ˆe1")

(SubFn (sig_pi1 Je_H) decl (suc zero))

e2_Eq = : Eq e2 (SubFn (sig_pi1 Je_H) expr (suc zero))

e3_Eq = : Eq e3 (SubFn (sig_pi1 Je_H) expr (suc (suc zero)))

from the equality in Je H but we cannot define an equality for the Env˜2 variable
in the LetRule under the substitution of Je H, i.e. for the term

SubFn (sig_pi1 Je_H) Env (suc (suc zero))

in Je H. It is at this point that we need to backwards derive the premisses of the
DeclRule as pointed out in the proof tree for the let construction above. We
need the theorem Decl derive shown in figure 5.10 which is proven in exactly
the same way as we prove the current theorem. With this we can introduce the
definition

97

Decl_derive :
{E,E’:Term|Exp Env}
{e1:Term|Exp expr}
(Judgement ExpRules (Exp!Formula "ˆE|= x=ˆe1 =:=> ˆE’"))->
sigma|(Term|Exp expr)

|([e2:Term|Exp expr]
prod (Judgement ExpRules

(Exp!Formula "ˆE|= ˆe1 ==> ˆe2"))
(Eq E’ (Exp!Env "(x,ˆe2)::ˆE")));

Figure 5.10: The theorem Decl derive

[J_L2_eH = (Decl_derive E

(SubFn (sig_pi1 Je_H) Env (suc (suc zero)))

e1

(HeadPremiss ExpRules J_L2))

: sigma|(Term|Exp expr)

|([e2:Term|Exp expr]

prod (Judgement ExpRules

(Exp!Formula "ˆE|= ˆe1 ==> ˆe2"))

(Eq (SubFn (sig_pi1 Je_H) Env (suc (suc zero)))

(Exp!Env "(x,ˆe2)::ˆE")))];

giving us not only the equality on Env˜2 we desire but also the existential term
we require in our goal in figure 5.9. We shall set the value of this existential to
be “[e’ = sig_pi1 J_L2_eH]” and we now successively rewrite the Jlist term
in Je H shown in figure 5.9 until we reach the proof state

...

e’ : Term|Exp expr

JL_5 : Jlist ExpRules

(cons (Exp!Formula "ˆE|= x=ˆe1 =:=> (x,ˆe’)::ˆE")

(cons (Exp!Formula "(x,ˆe’)::ˆE |= ˆe2 ==> ˆe3")

(nil|(Term|Exp Formula))))

?259 : sigma|(Term|Exp expr)

|([e4:Term|Exp expr]

Jlist ExpRules

(cons (Exp!Formula "ˆE|= x=ˆe1 =:=> (x,ˆe4)::ˆE")

(cons (Exp!Formula "(x,ˆe4)::ˆE|= ˆe2 ==> ˆe3")

(nil|(Term|Exp Formula)))))

98

from which we can immediately derive our goal by refining by

Refine dep_pair e’ ?;

Refine JL_5;

The rest of the proof’s cases are proved by contradiction as before.
Having proven Let derive and Decl derive we can prove our main result

Goal {E:Term|Exp Env}

{e1,e2,e3:Term|Exp expr}

(Judgement ExpRules

(Exp!Formula "ˆE|= let x=ˆe1 in ˆe2 end ==> ˆe3"))->

(Judgement ExpRules

(Exp!Formula "ˆE|= (fn x.ˆe2) @ ˆe1 ==> ˆe3"));

in Lego. After introducing our assumptions we reach the proof state

E : Term|Exp Env

e1 : Term|Exp expr

e2 : Term|Exp expr

e3 : Term|Exp expr

J : Judgement ExpRules (Exp!Formula "ˆE|= let x=ˆe1

in ˆe2 end ==> ˆe3")

?1 : Judgement ExpRules (Exp!Formula "ˆE|= (fn x.ˆe2)@ˆe1 ==> ˆe3")

At which point we need to build the proof tree for the function application bear-
ing in mind that the variable expr˜4 in AppRule must be determined from our
assumption J. To do this we introduce the definitions

[JL = Let_derive E e1 e2 e3 J];

[e4 = sig_pi1 JL];

and then define our first substitution

[sub1 = Exp!Subst "Env˜1 |--> ˆE ,

expr˜1 |--> (fn x. ˆe2) ,

expr˜2 |--> ˆe1 ,

expr˜3 |--> ˆe2 ,

expr˜4 |--> ˆe4 ,

expr˜5 |--> ˆe3 ,

ID˜1 |--> x,

nil"];

99

...
JL : sigma|(Term|Exp expr)

|([e4:Term|Exp expr]
Jlist ExpRules

(cons (Exp!Formula "ˆE|= x=ˆe1 =:=> (x,ˆe4)::ˆE")
(cons (Exp!Formula "(x,ˆe4)::ˆE|= ˆe2 ==> ˆe3")
(nil|(Term|Exp Formula)))))

e4 = ... : Term|Exp expr
sub1 = ... : Subst|Exp
sub2 = ... : Subst|Exp
sub3 = ... : Subst|Exp
?28 : Judgement ExpRules

(Exp!Formula "(x,ˆe4)::ˆE|= ˆe2 ==> ˆe3")
?22 : Judgement ExpRules (Exp!Formula "ˆE|= ˆe1 ==> ˆe4")
?29 : Jlist ExpRules (nil|(Term|Exp Formula))

Figure 5.11: The Premisses of AppRule

Note that expr˜4 is set to the existential term in our backwards derived list of
Judgements by the substitution sub1. After applying ruleAp using AppRule and
sub1 we need to prove that the premisses of AppRule under sub1 are Judgements.
The first premiss is easily proved by the BracRule and then the FnRule — exactly
proving the Fn branch of the function application proof tree shown at the start
of this section. This leaves us with a proof state reducible to the one in figure
5.11. The last goal can be proved by jnil. The first goal can be proved using
our Let derive assumption JL — more particularly the second Judgement in JL.

Refine HeadPremiss ExpRules

(TailPremisses ExpRules (sig_pi2 JL));

but the second goal must be backwards derived using Decl derive and JL. The
first Judgement in JL must have been derived using the DeclRule, and it is the
premiss of this that we need. The definition

[J_D_eH = Decl_derive E

(Exp!Env "(x,ˆe4)::ˆE")

e1

(HeadPremiss ExpRules (sig_pi2 JL))];

Gives us a Jlist of the form we require and also an equality we need to impose
on e4, so that we eventually reach the proof state

100

J_D_eH : sigma|(Term|Exp expr)

|([e2:Term|Exp expr]

prod (Judgement ExpRules

(Exp!Formula "ˆE|= ˆe1 ==> ˆe2"))

(Eq (Exp!Env "(x,ˆe4)::ˆE")

(Exp!Env "(x,ˆe2)::ˆE")))

e4_Eq : Eq e4 (sig_pi1 J_D_eH)

J_D1 : Judgement ExpRules (Exp!Formula "ˆE |= ˆe1 ==> ˆe4")

?22 : Judgement ExpRules (Exp!Formula "ˆE |= ˆe1 ==> ˆe4")

where e4 Eq is defined from J D eH and J D1 is part of J D eH with the rewrite of
e4 Eq applied to it. The last goal in our proof is immediate from J D1.

We glossed over many of the Lego specific parts of the proof above. For
instance, in the proofs by contradiction we made use of term equality using the
theorem

Term_Eq_character’ :

{FS|FSig}

{s|Sort}

{t1,t2:Term s}

(Eq t1 t2)->

(Term_Eq t1 t2)

that gave us a Term Eq object. Such constructions are terms in Prop consisting of
numerous nested conjunctions equating various elements of the terms supplied.
To get the right conjunction that produces absurd presupposes the knowledge
of how Term Eq is structured. The user would either have to study this function
(and hence the implementation of terms) or extra theorems and definitions would
have to be added to the theory to make such things easier to reason about. In
effect, hiding more of the concrete code of Lego from the user.

Another issue worthy of mention is term rewriting. In the proofs above, we
could not apply the usual rewrite tool Qrepl to the goal. Type check errors would
be created as a result. Instead the function Eq subst has to be used to effectively
rewrite assumptions. The type of this function is

Eq_subst : {t|SET}

{m,n|t}

(Eq m n)->

{P:t->TYPE_minus1}

(P m)->P n

101

and it is used by defining a new term

[T = Eq_subst E F t]

where E is an equality, F is a suitable template function and t is the assumption
we wish to apply the rewrite (implied by E) to. Usually, we can get Lego to help
us by leaving the function parameter uninstantiated and let it fill in the gap for
us. In this case however, all parameters must be quoted explicitly.

Issues such as these make it harder to prove all but the simplest of theorems
about semantics in our general theory without a fairly thorough knowledge of both
the underlying theorem prover and the implementation of our general theory. By
simple inspection of the proofs above it is clear that the user must be conversant
with Lego’s libraries of definitions and theorems. It is also an advantage to know
the variety of tricks necessary to prove many goals in Lego. Supplements to the
theory that help the user avoid implementation specific issues are only helpful if
all the possible requirements of a user are covered. Even if such a global library
could be provided, using user-friendly theorems is likely to greatly expand the size
of the underlying terms. This then makes theorem proving slower as we showed
in section 5.3.4 where one could avoid having to reference rules by numbers by
supplying their names instead. This coupled with another function that built
substitutions automatically resulted in a hundred-fold increase in compute time.

102

Chapter 6

An Example Transformation and
Correctness Proof

This chapter provides an example transformation from Hannan and Miller’s work
[HM91] discussed in chapter 1 together with its correctness theorem. In our
theory, a transformation is a function from semantics1 to semantics. The theorem
relates an arbitrary semantics to the result of applying the transformation to it
so that if you can derive a judgement for the former then you can derive a related
one for the latter. The next section describes the general transformation and the
correctness theorem we shall be implementing in this chapter. The successive
sections describe how to realize them in our general theory as well as providing a
template for implementing other transformations and correctness theorems.

6.1 Branch Elimination

The transformation we shall be looking at is one from Hannan and Miller’s work
[HM91, HM90] called Branch Elimination. Its effect is to eliminate branches in
the proof trees of semantics by making sure that all rules in a rule set have at most
one premiss. It is an important transformation in Hannan and Miller’s work since
it introduces determinism into the rules and therefore produces a semantics one
step closer to a parallel of an abstract machine. It does this by taking inference
rules and replacing them with rules in which multiple premisses are added to a
stack of “formulae to be proven”. This stack eliminates branching in inference
rules and imposes an order in which formulae are proved. The transformation is
defined as follows.

1Recall that a semantics is a pair (FS,RSet) of a signature FS and a rule set RSet

103

Definition 6.1 Branch Elimination Transformation: Let Sem be a semantics.
Let nil and :: be the term constructors for lists of formulae and let prove be a
one place predicate taking a formula list as its argument. Define BESem to be the
proof system consisting of the following axioms and inference rules:

• prove nil ∈ BESem

• if
A1 · · · An

A0
σ ∈ Sem for n ≥ 0, then

prove A1:: · · · ::An::G
proveA0::G

σ ∈ BESem
for formula list meta-variable G not free in any Ai for i ≥ 0.

The semantics Sem and BESem are related by the following theorem

Theorem 6.1 Let Sem be a semantics. Then

x ∈ Ind(Sem) iff prove(x::nil) ∈ Ind(BESem)

The proof is by elementary induction on the depth of inference. To see the
effect of eliminating branches, take an example semantics AndSem

Γ, A, Γ′ ` A

Γ ` A Γ ` B
Γ ` A ∧B

Γ, A, B ` C
Γ, A ∧B ` C

consisting of the axiom, introduction and elimination rules for conjunction. We
can transform AndSem to BEAndSem to get

prove nil

prove (Γ, A, Γ′ ` A) :: G

prove (Γ ` A) :: (Γ ` B) :: G
prove (Γ ` A ∧ B) :: G

prove (Γ, A, B ` C) :: G
prove (Γ, A ∧ B ` C) :: G

where the introduction rule for conjunction is turned into a rule with one premiss
by creating a stack from the formulae of the rules in AndSem.

104

6.2 The Transformation in Lego

A transformation in the general theory consists of a function from Spec to Spec.
Recall an object of such a type in our theory is a pair (FS,RSet) of a signature
and complimentary rule set. In a typical transformation this means both elements
of a Spec are transformed. We can think of the function as consisting of two main
sub-functions. One to transform the signature and the other, the rule set. This is
indeed the case for Branch Elimination as we have to add a new sort for formula
lists and the function arity definitions for nil, :: and prove to the signature of a
semantics.

The act of adding sorts and function identifiers so that they are indeed new
to the signature given can be tackled in a number of ways — not all of them
desirable. Recall that sorts and function identifiers (whose types are Sort and
FIdent in the general theory respectively) are essentially objects in a natural
number indexed set. Adding a new object be it sort or function identifier to
the information of a signature means ensuring that its index is not mentioned
in the existing signature. The obvious solution seems to be to iterate through a
signature FS and find the highest index for function names and sorts within it
(topFIdent FS and topSort FS say) and then to use a higher index than that
for the new object. Unfortunately this is undesirable in the detail of our general
theory. To see why, recall the type Sort of sorts where

[botSort = make_Sort zero]

is defined as a global sort. If we also closely inspect the Term constructor for
function applications

[fa:{FS|FSig}

{f:FIdent}

(Tlist|FS (IDSort1 FS f))->Term|FS (IDSort2 FS f)]

we can see from the definitions of IDSort1 and IDSort2 in section 2.1.2 that it is
possible to use any function identifier f not mentioned in a signature FS to make
a term whose sort is botSort. If we now add a new entry to FS for the arity
of f to (to create a new signature FS’ say) we have a situation in which a term
built using f has sort botSort with respect to FS, but which could potentially
have a different sort in FS’. This is undesirable because we expect that any
additions to a signature should be a conservative extension in the sense that if
terms have a certain sort s with respect to signature FS then they should have
the same sort with respect to FS’, the extension of FS. This is especially crucial

105

when proving properties of transformations with respect to substitutions such as
BEConvSubstLemma in section 6.3.

The same problem arises if we add new sorts to a signature FS by mapping
their indices to ones higher than topSort FS. We could build a term

[T = fa f (tcons (var zero s) (tnil|FS))]

where the indices of s and f are suc (topSort FS) and suc (topFIdent FS)

respectively. The term itself has sort botSort. But now if we extend FS with a
new entry, which in the notation of figure 3.1 is

f : s -> s

to make a new signature FS’, then the term above translated over for FS’ would
have sort s. This means that theorems such as BEConvSubstLemma (essential later
on) no longer hold true.

The solution lies in making sure any additions be they sorts, function names
(and later on rule sets) are added at the beginning of a sequence. For sorts and
function identifiers this means that their indices in a signature are shifted along
the appropriate number of places to accommodate for the additions. On top of
this we must make sure that when a term is translated from being well formed
with respect to a signature to being well formed with respect to the extension
of that signature, the index shift is accounted for. Doing so means we no longer
have the problem where adding more information to a signature results in the
possibility of translating terms of sort botSort to terms of a different sort.

Getting back to the transformation example, we need to add one new sort to
stand for the list of formulae (it is a specific kind of list since we do not support
polymorphism) called flist. We also need three new function identifiers: one
for the empty formula list fnil, one for the :: constructor in the definition of
the transformation (call it fcons) and finally the new predicate prove. The new
entries again in the notation of figure 3.1 are

fnil : flist,

fcons : Formula->flist->flist,

prove : flist->Formula

Before we can define a function to transform a signature, we need the functions

suc_sort : Sort->Sort

suc_sortL : (list|Sort)->list|Sort

add3_id : FIdent->FIdent

106

to increase the index(indices) of a sort, sort list and function identifier respectively.
The first is a conditional that is the identity function for botSort and Formula

(since they are global values that should not be changed) and adds one to the
index of all other sorts. The second function is defined using list recursion and
suc_sort and the third function adds three to the index of any function identifier
(since three new function identifiers are being added).

The next function takes a signature and shifts the sort and function name
indices in it by one and three respectively. It is defined using the functions above
and its name and functionality are

BESig’ : FSig->FSig

With this function we can now write the signature transformation as the function

[BESig = [FS:FSig]

[flist=make_Sort two][fnil=make_FIdent zero]

[fcons=make_FIdent one][prove=make_FIdent two]

cons (Pair fnil (Pair (nil|Sort) flist))

(cons (Pair fcons

(Pair (cons Formula (cons flist (nil|Sort))) flist))

(cons (Pair prove (Pair (cons flist (nil|Sort)) Formula))

(BESig’ FS)))]

In addition to this we prove a couple of theorems that relate a function iden-
tifier arity in FS to its arity in “BESig FS.” These are essential to the process of
translating terms. They are

BESigThm1 :

{FS:FSig}

{f:FIdent}

Eq (suc_sort (IDSort2|FS f))

(IDSort2|(BESig FS) (add3_id f))

BESigThm2 :

{FS:FSig}

{f:FIdent}

Eq (suc_sortL (IDSort1|FS f))

(IDSort1|(BESig FS) (add3_id f))

and are proven by list induction on the length of signatures.
To retain legibility in the general theory we must state a new set of productions

for each new signature. The parsing and printing facilities in chapter 3 do not

107

account for functions on signatures so it is up to the end user to produce an
updated grammar for the transformed subject. In our example AndSem this
means adding the following grammar2 to the general theory’s context:

Productions FirstOrder BEAndSig ::=

"prop" = tr : "true" |

fls : "false"|

aNd : "prop" "/\" "prop",

"props" = pnl : "pnil" |

pcn : "prop" "," "props",

"Formula" = prv : "prove" "flist" |

frm : "props" "|-" "prop",

"flist" = fnl : "nil" |

fcn : "Formula" "::" "flist",

...

To complete the transformation we need a function from rule sets to rule sets.
This means writing translation functions for terms, term lists, side condition lists
and rules. With the theorems BESigThm1 and BESigThm2 above it is possible
to write translation functions for terms and term lists by primitive recursion on
those types. The functions

BEConv :

{FS|FSig}

{s|Sort}(Term|FS s)->

Term|(BESig FS) (suc_sort s)

BEConvTL :

{FS|FSig}

{sl|list|Sort}

(Tlist|FS sl)->

Tlist|(BESig FS) (suc_sortL sl)

convert a term (term list) well formed for an arbitrary signature FS to the appro-
priate term (term list) well formed for BESig FS. Similarly the function

BEConvSc : {FS|FSig}(SCList|FS)->SCList|(BESig FS)

Converts side condition lists for FS to ones for BESig FS by recursion on SCLists.
The next step is to introduce abbreviation functions for the new constructors

fnil, fcons and prove to relieve us of writing such terms out in the longhand of
concrete Lego much the way we did so in section 3.1. If we define the functions

2omitting the productions for rules and substitutions for brevity

108

(* FNIL : ...Term|BS flist *)

[FNIL = [FS|FSig][BS = BESig FS]

[fnil = make_FIdent zero]

fa fnil (tnil|BS)];

(* FCONS : ...(Term|BS flist)->(Term|BS Formula)->Term|BS flist *)

[FCONS = [FS|FSig][BS = BESig FS]

[flist = make_Sort two]

[fcons = make_FIdent one]

[f:Term|BS Formula]

[fl:Term|BS flist]

fa fcons (tcons f (tcons fl (tnil|BS)))];

(* PROVE : ...(Term|BS flist)->Term|BS Formula *)

[PROVE = [FS|FSig][BS = BESig FS]

[flist = make_Sort two]

[prove = make_FIdent two]

[fl:Term|BS flist]

fa prove (tcons fl (tnil|BS))];

in Lego we can write terms involving the new function names more concisely.
This helps us not only in writing the transformation but also in proving the
transformation theorem.

The next function takes a list of formulae and converts it into a term of
sort flist whose last element is a variable not occurring in the given list. It’s
effectively the part of the overall transformation that is responsible for taking the
premisses of a rule

A1 · · · An

in definition 6.1 and converting them to the term

A1 :: · · · :: An :: G

It is defined by list recursion and its functionality is

flistify :

{FS|FSig}

[BS=BESig FS]

[flist = make_Sort two]

(list|(Term|FS Formula))->

Term|BS flist

109

Bringing all of the functions in this section together we can now define a
transformation on rules as

(* BERule : {FS|FSig}[BS=BESig FS](Rule|FS)->Rule|BS *)

[BERule =

[FS|FSig]

[BS=BESig FS]

[flist = make_Sort two]

[r:Rule|FS]

Pair (cons (PROVE (flistify (Prems r))) (*1*)

(nil|(Term|BS Formula)))

(Pair (BEConvSc (SideConds r)) (*2*)

(PROVE (FCONS (BEConv (Conc r)) (*3*)

(var|BS zero flist)))) (*4*)

];

where line (*1*) indicates the transformation on the premisses of a rule r, line
(*2*) is the transformation for its side conditions and the subsequent lines rep-
resent the translation for its conclusion. The transformation on rule sets is the
function

BERuleSet : {FS|FSig}[BS=BESig FS](RuleSet|FS)->RuleSet|BS

that converts each rule in RSet using BERule and adds the additional rule

(Pair (nil|(Term|BS Formula))

(Pair (SCnil|BS)

(PROVE (FNIL|FS))))

analogous to the rule
prove nil

in the transformation’s definition to the front of the converted RSet. New rules
are added to the front of a new rule set for similar reasons as to why new sort and
function name indices were mapped to the start of their enumerating sequences.
If a rule set RSet is of length i then RuleNum RSet (suc i) returns the same
rule as RuleNum RSet i (cf. the definition of RuleNum in section 4.1.3) by default.
So if we add a new rule to the end of RSet to get RSet’ and we call RuleNum with
RSet’ and suc i we get that new rule and not the ith one. So the equality

Eq (RuleNum RSet i) (RuleNum RSet’ i)

110

does not hold for all RSet and i. We have no way of relating rules from RSet to
RSet’ — which is something necessary in a transformation proof. If we instead
add the new rule to the front to get the rule set RSet’’, we can relate it to RSet

by the equality

Eq (RuleNum RSet i) (RuleNum RSet’’ (suc i))

In the next section we will see that the ith rule in the old semantics is related
to the (suc i)th rule in the new semantics in this way although the relationship
is not the equality mentioned in this specific example.

Finally the complete transformation BETrans is defined as a function taking
a dependent pair of a signature and rule set and returning a new dependent pair
of a transformed signature and a transformed rule set:

(* BETrans : Spec -> Spec *)

[BETrans = [Sem:Spec](

(dep_pair (BESig (sig_pi1 Sem))

(BERuleSet (sig_pi2 Sem))):Spec)]

6.3 The Branch Elimination Theorem

This section outlines the steps up to and including the proof of the transformation
theorem for Branch Elimination. The theorem itself amounts to showing that if
for a given rule set RSet we can derive a Judgement for a formula f then we can
also derive an appropriate Judgement from BERuleSet RSet for the transforma-
tion of f. The structure of the transformation theorem proving process here acts
as an example template for proving other such theorems for transformations in
our general theory.

Before we quote and prove the theorem it is imperative that a number of
functions and theorems be proved. Most of the sub-theorems we need here involve
substitution. This is the prominent function in the definition of the Judgement

type. To begin with we define the function

flistify2 :

{FS|FSig}

[BS=BESig FS]

[flist=make_Sort two]

(list|(Term|FS Formula))->

Term|BS flist

111

identical to flistify in the previous section except that instead of appending
a variable to the end of the flist term, it adds an FNIL term. From this we
define a function that takes the formula list f1, . . . , fn and transforms it into the
formula prove (f1 :: · · · :: fn :: nil). The function

[BEConc =

[FS|FSig]

[lt:list|(Term|FS Formula)]

PROVE (flistify2 lt)];

does this using flistify2. The function will be used below in representing the
effect of Branch Elimination on a ground instance of the conclusion of a rule.
The effect of Branch Elimination on the premisses of a rule is captured by the
function

[BEFlist =

[FS|FSig]

[BS=BESig FS]

[lt:list|(Term|FS Formula)]

cons (PROVE (flistify2 lt))

(nil|(Term|BS Formula))]

converting a list [f1, . . . , fn] to the list [prove (f1 :: · · · :: fn :: nil)], a ground
instance of the premiss of a rule where the free variable added by BERule is
instantiated to FNIL. We now begin to look at the effect of Branch Elimination
on substitutions. Begin by defining a function

BESub : {FS|FSig}

(Subst|FS)->

(list|(Term|FS Formula))->

Subst|(BESig FS)

that takes a substitution Sub and a list of formulae fl and converts Sub into one
well formed for the transformed signature with an additional entry that maps the
free variable introduced in BEConv to flistify2 fl. The reason being that in
our main theorem we shall be taking a rule

prove f1 :: · · · :: G
prove f :: G

and substituting an arbitrary list of formulae for the variable G. This makes the
main theorem stronger but at the same time provable by induction. We must

112

C

C

Sub

C

C

SubBe

Be

Sub

Be

BeSub

BEConc

Be

Figure 6.1: Commutativity Diagram for theorem BEHom2

now prove a theorem that states it is equivalent to either apply a substitution
Sub to a term t and then transform that term or to transform t first and then
apply BESub Sub to it. The form of the theorem is

BEConvSubstLemma:

{FS|FSig}

{fl:list|(Term|FS Formula)}

{Sub:Subst|FS}

{s|Sort}

{t:Term|FS s}

Eq (BEConv (TSubFn Sub t))

(TSubFn (BESub Sub fl) (BEConv t))

and is proven by induction on the Term type. From this important theorem we can
prove three similar theorems that say that to apply the transformation to a rule
set and then apply a substitution to a constituent of one of the rules is equivalent
to applying the substitution to the rule and then transforming that constituent.
The equality we require for the conclusions of rules can be represented as demon-
strating the commutativity of the diagram in figure 6.1 where subscripted terms
are ones with the transformation applied to them, superscripted terms are ones
with substitution applied and where the arrow marked Be takes the conclusion of
a rule

C = Conc (RuleNum RSet i)

to the conclusion of the transformed rule

C_be = Conc (RuleNum (BERuleSet RSet) (suc i))

It is vital to prove these sub-theorems since the transformation proof com-
mences by induction on judgements and it is here that substitution is applied
to the constituents of rules. The equality theorems are used for rewriting the

113

BEHom1 :
{FS|FSig}
{fl:list|(Term|FS Formula)}
{Sub|Subst|FS}
{RSet:RuleSet|FS}
{i:nat}

Eq (BEFlist (append (TlistSubFn Sub (Prems (RuleNum RSet i))) fl))
(TlistSubFn (BESub Sub fl)

(Prems (RuleNum (BERuleSet RSet) (suc i))));
BEHom2 :

{FS|FSig}
{fl:list|(Term|FS Formula)}
{Sub:Subst|FS}
{RSet:RuleSet|FS}
{i:nat}

Eq (BEConc (cons (TSubFn Sub (Conc (RuleNum RSet i))) fl))
(TSubFn (BESub Sub fl)

(Conc (RuleNum (BERuleSet RSet) (suc i))));
BEHom3 :

{FS|FSig}
{fl:list|(Term|FS Formula)}
{Sub:Subst|FS}
{RSet:RuleSet|FS}
{i:nat}

(SCHold (SCSub Sub (SideConds (RuleNum RSet i))))->
(SCHold (SCSub (BESub Sub fl)

(SideConds (RuleNum (BERuleSet RSet) (suc i)))))

Figure 6.2: BEHom Theorems

formulae in Judgement types to shift the transformation to entirely within the
scope of the substitution. Terms matching the left hand side of the equality are
rewritten to the terms on the right hand side. This is essential when in the proof
of the main theorem we need to apply ruleAp. The outermost function in the
types of the main arguments to this constructor is substitution.

The sub-theorems we need in our theory are stated in figure 6.2 and are proven
by induction on the length of rule sets as well as induction on natural numbers.

Each of the theorems in figure 6.2 rely on the proof of three respective lemmas.
These lemmas prove the properties of the BEHom theorems not in terms of a
RuleNum index i but in terms of an arbitrary rule r. For example the lemma we
need in the proof of BEHom2 is

114

BEHomLemma2 : {FS|FSig}

{fl:list|(Term|FS Formula)}

{Sub:Subst|FS}

{r:Rule|FS}

Eq (BEConc (cons (TSubFn Sub (Conc r)) fl))

(TSubFn (BESub Sub fl) (Conc (BERule r)));

and is proven (as indeed BEHomLemma1 and BEHomLemma3 are) by breaking down
the structure of rules and making use of BEConvSubstLemma. They are used in
the proofs of the BEHom theorems once induction (for both rule sets and natural
numbers) has been applied.

We can now quote and prove the transformation theorem for Branch Elimin-
ation. The theorem we write in Lego is

BETheorem : {FS:FSig}

{RSet:RuleSet|FS}

[BRSet = BERuleSet RSet]

{f|Term|FS Formula}

(Judgement|FS RSet f)->

{fl’|list|(Term|FS Formula)}

(Jlist BRSet (BEFlist fl’))->

(Judgement BRSet (BEConc (cons f fl’)));

which states that given any formula f that is a Judgement of a rule set RSet

and given any list of formulae fl for which we can show prove fl, we can show
prove (f :: fl). This is slightly more general than we desire but it makes the
proof by induction on the depth of inference possible. The proof proceeds as
follows. After the relevant assumption introductions we proceed by induction on
judgements using the term

Judgement_elim RSet ([f|Term|FS Formula]

[_:Judgement|FS RSet f]

{fl’|list|(Term|FS Formula)}

(Jlist BRSet (BEFlist fl’))->

Judgement BRSet (BEConc (cons f fl’)))

([fl|list|(Term|FS Formula)]

[jl:Jlist RSet fl]

{fl’|list|(Term|FS Formula)}

(Jlist BRSet (BEFlist fl’))->

(Jlist BRSet (BEFlist (append fl fl’))));

115

i : nat
Sub : Subst|FS
jl : Jlist RSet (TlistSubFn Sub (Prems (RuleNum RSet i)))
sch : SCHold (SCSub Sub (SideConds (RuleNum RSet i)))
jl_ih :
{fl’|list|(Term|FS Formula)}
(Jlist BRSet (BEFlist fl’))->
Jlist BRSet

(BEFlist (append (TlistSubFn Sub (Prems (RuleNum RSet i)))
fl’))

fl’ | list|(Term|FS Formula)
Jl_fl’ : Jlist BRSet (BEFlist fl’)
?17 : Judgement BRSet

(BEConc (cons (TSubFn Sub (Conc (RuleNum RSet i)))
fl’))

Figure 6.3: Proof state for ruleAp case

to give us three subgoals, the ruleAp, jnil and jcons cases. Notice how ap-
plying induction for Judgements entails additionally writing a template function
for judgement lists which in this instance means taking a list of judgements for
the formulae fl in RSet together with a list of Judgements for the formula list
BEFlist fl’ and deriving a singleton judgement list in BRSet where the fl and
transformed fl’ are put into a “formulae to prove” stack by the transformation.

We start with the important ruleAp case. The proof state we get is displayed
in figure 6.3. At this point we need to use the BEHom theorems in figure 6.2 since we
need to rewrite the goal and some of the assumptions so that the transformation
is “moved” to within the application of substitution to both the premisses and
conclusion of rule number i. The theorems BEHom1 and BEHom2 in figure 6.2
allow us to perform such rewrites in conjunction with Lego’s Qrepl command
and Eq_subst function. The theorem BEHom3 is different. It lets us derive a
proof of the side conditions for a branch eliminated rule set from a derivation of
the side conditions of the original rule set. By entering the commands

[JL = jl_ih Jl_fl’];

[JL1 = Eq_subst (BEHom1 fl’ RSet i) ? JL];

[SCH = BEHom3 fl’ Sub RSet i sch];

Qrepl BEHom2 fl’ Sub RSet i;

we can get a Jlist from the induction hypothesis (and then rewrite it), a side
condition list using BEHom3 and rewrite the goal to obtain the proof state

116

...

JL1 :

Jlist BRSet

(TlistSubFn (BESub Sub fl’)

(Prems (RuleNum BRSet (suc i))))

SCH :

SCHold (SCSub (BESub Sub fl’)

(SideConds (RuleNum BRSet (suc i))))

?28 : Judgement BRSet

(TSubFn (BESub Sub fl’)

(Conc (RuleNum BRSet (suc i))))

which is easily derivable by refining by

Refine ruleAp BRSet (suc i) (BESub Sub fl’) JL1 SCH;

Since we had refined by Judgement_elim earlier we must prove the two cases
for Jlists. The jnil case gives us the proof state

...

fl’ | list|(Term|FS Formula)

Jl_fl’ : Jlist BRSet (BEFlist fl’)

?31 : Jlist BRSet (BEFlist (append (nil|(Term Formula)) fl’))

which is simply refined by Jl fl’. Finally, the proof state for the jcons case
looks like

...

jh_ih :

{fl’|list|(Term|FS Formula)}

(Jlist BRSet (BEFlist fl’))->

Judgement BRSet (BEConc (cons f fl’))

jt_ih :

{fl’|list|(Term|FS Formula)}

(Jlist BRSet (BEFlist fl’))->

Jlist BRSet (BEFlist (append fl fl’))

fl’ | list|(Term|FS Formula)

Jl_fl’ : Jlist BRSet (BEFlist fl’)

?32 : Jlist BRSet (BEFlist (append (cons f fl) fl’))

We can see that the goal here is equivalent to

117

Jlist BRSet (BEFlist (cons f (append fl fl’)));

so we can use our induction hypotheses. The goal can be shown by refining by
the term

jcons BRSet (jh_ih (jt_ih Jl_fl’)) (jnil BRSet);

completing the proof of the theorem.
This is a general theorem from which we can obtain a corollary equivalent

to theorem 6.1 quoted at the beginning of this chapter. Such a theorem in our
theory would look like

BranchElimTheorem :

{FS|FSig}

{RSet:RuleSet|FS}

[BRSet = BERuleSet RSet]

{f|Term|FS Formula}

(Judgement RSet f)->

(Judgement BRSet

(BEConc (cons f (nil|(Term|FS Formula)))));

and be proven quite simply by using BETheorem above. If we refine by BETheorem

in the proof of this corollary we still have a proof obligation reducible to

?2 : Jlist BRSet (cons (PROVE (FNIL|FS))

(nil|(Term|(BESig FS) Formula)))

a trivially derivable list of Judgements since we added a rule specifically for
“PROVE (FNIL|FS)” in BERuleSet. This corollary is perhaps the usual theorem
we would use in practice since it relates a formula in one semantics directly to its
counterpart in a branch eliminated semantics.

118

Chapter 7

Conclusion and Further Work

Thus far we have concentrated on documenting the construction of a “general
theory of operational semantics” in Lego, but have to a large extent refrained
from assessing it as an effective tool for the purposes for which it was made.
In this final chapter we bring all the individual issues raised in the preceding
chapters together in our appraisal of the whole. We commence by analyzing the
basic syntactic fabric and then continue with a discussion of our enhancements
to the user interface. We then assess the formalization of our general theory in
Lego in the light of the case studies in chapters 5 and 6. We point to the future
directions of our work at each stage of its development.

7.1 Well Formed Terms

In chapter 2 we introduced the basic elements of our general theory — the terms
that make up and include the atomic formulae in inference rules. In Hannan and
Miller’s work [HM91], the meta-logic comprised simply typed λ−terms over a
given finite set of base types and constants particular to each application. For us
the issue developed into the pursuit of a suitable formalism for our general theory
in which the whole range of such base types and constants could be expressed.

We found first order term algebras were an adequate notation although in some
instances simple expressions have large representations. This is evident in the use
of Peano arithmetic in representing natural numbers. In this case however it can
be argued that this is merely a consequence of modelling a particularly simple
basis of a meta-logic. A certain amount of prolixity arises when such an algebra
is used due to the lack of polymorphic sorts. For example, there can be no generic
sort for all lists. They must be particularized.

First order term algebras comprise of sets of sorts, function names, signatures
and a set of well forming rules for the terms in the algebra. The first three entities

119

can be expressed in Lego as fairly simple inductive types. The well forming rules
are a little trickier to implement. Lego is supplied with an expressive type system
although one has to be mindful of matters concerning efficiency. The lack of
partiality is an additional shortcoming.

These points are best illustrated in the two type choices for well formed terms
in chapter 2. Elaborate Σ−types could be used to express the formation rules
for well formed terms at the expense of clarity and practicability. All terms in
such a scenario are appended with witnesses: well formedness proofs that are a
weight to handle in the context of functions and theories built on top of these
foundations. Since terms are the basic elements of operational semantics it is
clear that a significant amount of space and run-time complexity must be sacri-
ficed to accommodate witnesses. Construction of well formed terms themselves
does not have to be as tedious as expected since functions can be defined to con-
struct well formed proofs automatically. But because of the prevalence of terms
in operational semantic theories, leaner representations would be a significant
improvement.

Indeed the robustness of Lego’s type system allows us a type that can es-
sentially combine all aspects of well formed term construction into a small set
of mutually inductive constructors utilizing simpler Π−types to express the con-
straints of well formedness.

However one limit of Lego’s type theory is in its handling of partiality. Func-
tions in Lego must be total1. This poses a technical anomaly in that the functions
involved in the constructors for well formed terms are most naturally partial —
a trait that must be mimicked by mapping all undefined objects to a global error
(exception) value. As a result, inclusion in the type Term does not technically
mean the term is well typed unless its sort is not the exception value for the set of
sorts. Pragmatism suggests that these values should be avoided except where ne-
cessary. Subsequent parts of a theory ultimately must take account of them when
dealing with functions where the error value may prove significant in a function
or proof (as we found in chapter 6 in the proof of the important BESig theorems).
Partiality could only be approximated for both type choices in chapter 2.

The final issue in chapter 2 was more practical. It concerned the clarity of the
notation used to describe (well formed) terms in the general theory at that point
in its development. Even with a type aiding the formation of compact terms,
their form as presented in Lego is relatively incomprehensible. This is partly due
to the generic nature of the theory being defined and partly a result of the proof

1Totality is essential for Lego functions since their results must be well-typed.

120

assistant’s basic interface.

7.2 Object Language Support

Chapter 3 addresses this problem by at first exploring the extent to which Lego’s
in-built functions can be exploited to yield a notation for terms closer to that
used in the literature. A feature like type synthesis helps rid Lego notation of
extraneous syntax, terms that can be inferred from context, but is not useful for
the notational clarity needed. We turned to using Lego definition as a device to
provide macros in the Lego global context that abbreviate the concrete syntax
to the notation of basic first order term algebra. Whilst this allowed the user
a clearer and more practical way of writing terms, the limits of the basic term
algebra, restricting terms to alphanumerics with all operators prefixing their ar-
guments, results in confusion especially when the size of terms increases. This
is exacerbated by printing routines that do not necessarily print terms in their
macro form. If a term is passed to a function that outputs a term, then that
output will typically consist of a marriage between macro and concrete syntax.

Our generalization of a HOL style quotation parser gives the user a much
freer reign on the notation they desire. We elicited a correspondence between
context free grammars and first order signatures. This allowed us to extend
Lego’s interface in a natural manner. Rather than defining a signature in concrete
syntax, it can be declared in terms of a language grammar. Each signature entry
for a function name’s arity

f : (s1, s2, . . . , sn)→ s

can be written in terms of a production in a grammar by punctuating the sort
references with lexical tokens as

s → · · · |
f : α1 s1 α2 s2 . . . sn |
...

where each αi is a sequence of strings. Turning to our choice of parser, various
alterations should include dispensing with the Earley algorithm in favour of an
LR type parsing strategy. The accommodation of ambiguity can lead to parses
not consistent with the user’s expectations leading to errors in theory creation. If
we choose an LR-type parser there would be no possibility of parsing ambiguous
grammars but it can be argued that they do not on the whole exist in typical

121

program language specifications. An important extension in this respect to an
acceptable grammar and parser would be the inclusion of associativity and pre-
cedence information for infix operators, facilitating an implementation closer to
Unix’s YACC and other parsers in common use. Such a modification frees the
user from the explicit parenthesizing currently obligatory as seen in chapter 5.

Several minor improvements can be made to the grammar syntax and parser
including changing the way variables are referenced in quotations of the general
theory. Currently a variable in a quotation of sort expr say is quoted as "expr˜ν"
where ν is a sequence of one or more numerical digits. This is clearly at odds with
the usual notation often as simple as "e" which may be suffixed by numerics or
any number of prime symbols. To take account of this, the grammar could include
the users preference for the form of variables in each non-terminal’s production
as in

expr e = ... |

suc : "suc" "expr" | ...

where the e is the expected token/prefix for variables. It would be left to the
system to map each variable to the numerical index in the implementation.

On the pretty printing side, the in-built Lego utilities we use do not give the
user an indication of where line breaks may take place. The user has no control
over the way Lego presents terms but may well wish to do so as format could be
crucial to their notation. For instance inference rules written as

E |- n ==> n

---------------------- ()

E |- suc n ==> suc n

may well be displayed as

E |- n ==> n ---------------------- () E |- suc n ==> suc n

Since we added extra routines to the pretty printer to take account of the
parser and as a result, consult language grammars, we could add even more
complexity to the grammar by allowing the user to specify where breaks are
necessary, forbidden or permissible. This information would be processed only by
the pretty printing routines.

The concepts in chapter 3 and above are only the beginning of an adequate
user interface. For instance, currently we have parsing facilities for only the
syntactic aspects of the general theory. All reasoning within it is still expressed

122

in terms of Lego notation. Extending Lego with a full quotation parsing facility
is a massive task considering its behaviours and the plethora of applications. An
intermediate improvement would be an extension of the class of Lego types the
quotation parser can cope with. In section 3.6 we showed an implementation of
parsing for a class of simple mutually inductive types. Extending the class means
fitting in a facility for more complex types most importantly dependent types and
type universes.

Type universes are relatively simple to handle. Any grammatical object Prop
or Type is treated as a special non-terminal. Dependent types are trickier. Take
the type for the function application constructor for Terms (ignoring the signature
parameter for now):

fa : {f:FIdent}(Tlist (IDSort1 f))->Term (IDSort2 f)

If we were to express this dependent type information in a grammar rule it follows
that the dependencies must be accounted for, and so grammars must become more
complex. One grammar representation for the Term type could be

Term = ... |

fa : "FIdent" "(" "Tlist (IDSort1 FIdent#1)" ")"

: Term (IDSort2 FIdent#1) |

...

where the FIdent#1 is a yacc-style reference to the type variable of the dependent
product. With this promulgation of the parser, we would be able to define all
inductively defined constructs (including Judgements) in terms of quotations.

The next step is the introduction of a graphical user interface, one which may
include several windows each for differing purposes such as entering commands,
displaying the global context or a library of proven theorems, editing and showing
the current proof state. In Nuprl [C+86], four windows comprise the interface.
A command/status window for overall control of the interaction with NuPrl, a
Library or current global context window, a text editor for general input and a
proof editor where proofs are formed. Each window can be moved and resized.

A more up to date version along the same lines is the CtCoq interface [BB96b],
where a multipaned window is used. Each pane comes with a scroll bar which
can be resized within the window. The window itself may also be moved and
resized on the screen. The purpose of using panes is to avoid the overuse of
many windows on a screen at the same time and yet to maintain some kind of
proximity between each facet of the theorem proving environment. The top pane
functions as the command window recording the script of commands sent to the

123

proof engine. The pane in the middle displays the current state of the proof
including the premisses and conclusion divided by a visible bar and the bottom
pane shows the theorem prover’s database of definitions and theorems. Coupled
with this is a method called proof by pointing in which subgoals of the current
goal can be selected with the aid of a mouse to bring the selected subgoal to the
surface of the goal. Many bookkeeping steps in a proof are simplified with this
utility and the proof becomes more mouse oriented.

This is particularly suitable style of graphical user interface for our general
theory. With it we could for instance build top down derivations by stating a
goal formula in a command/proof state pane running in Lego. We would then
consult a global context pane containing the sets of operational semantics and
general theory theorems and definitions in the global context. Using a proof by
pointing strategy we could then select a rule to apply and let the system search the
appropriate rule set to get the correct numerical index for ruleAp, use unifSub

to elicit the right substitution and apply ruleAp with this information to the
current goal formula. Using the same idea of proof by pointing we could help
prove other theorems of a semantics by for instance selecting the induction on
the depth of inference principle when it is applicable to the current goal.

7.3 Types and Semantics for Inductive Defini-
tions

Chapter 4 concluded the syntactic description of operational semantics — which
we chose to represent as inductive definitions — by providing the form of premisses,
side conditions, rules and rule sets in terms of Lego types. It could have been
possible to define these as special kinds of the Term type, making the whole
syntactic structure of inductive definitions accessible to the parser. Grammars
could then include productions for Terms of sort Prems, SideConds, Rule and so
on. However this increases the number of reserved sorts (such as botSort and
Formula) already in the global context, leads to a necessity to account for more
and more special cases in subsequent functions and theorems2. It is also difficult
to process and provide inferences upon rules and their components directly if
those components are nested within a Term-like structure. In our encoding, rules
are simple to reason about. This is at the expense of including ad-hoc extensions
to the parser to simplify their format to the user. In the light of chapters 5 and 6
this is not such a bad decision since it makes sense to present such entities whose

2cf. the BESig theorems in chapter 6

124

form is a global constant, in a standard and readily accessible form as we do.
As far as semantics were concerned, we concentrate on providing the inductive

aspects of inductive definitions at the expense of certain logical concerns. A
type for the set of inductive sets and an induction principle thereon provides
the mathematical basis for inductive definitions in our general theory. While this
gives us an immediate and satisfactory way of dealing with their inductive nature,
some of the more logic related aspects must be approached indirectly.

Inductive definitions can be directly encoded in Lego as an inductive type,
albeit in Lego a mutual one, in which the secondary type Jlist, the type for lists
of Judgements tends to become obstructive in functions and theorems since they
must take account of Jlists. These factors add to the technical complexity of
an implementation rendering a level of imposed sophistication to the whole that
is both distracting and bureaucratic.

An obvious omission in our treatment of inductive definitions is the connection
between the rules and Horn clauses, their logical denotation. At the syntactic
level, they are merely unquantified triples with no logical connectives involved.
Their only presence being implicit in the inductive sub-theory. Variables in rules
are left unbounded in our general theory both in syntax and semantics, so no
direct link between rules and horn clauses is made. As a result, it is difficult
to emulate intrinsically logic oriented reasoning in the general theory as we have
organized it. Case analysis inferences (see section 5.5) where we have to use a
certain amount of indirect and complex inferences to obtain what is essentially
a propositional conclusion, exemplify this problem. The proof steps are made
harder mainly by the absence of quantified rules (and hence binding) in the logic.

The type of Judgements themselves had a fairly natural denotation as a Lego
inductive type (following the design of the Term type). The “leastness” of in-
ductive definitions was the leastness in the inductive type. The closure principle
encoded in the constructor type. One point of note was the employment of mu-
tual induction. This made it awkward to reason about Judgements as one would
also have to take account of the Jlist (lists of Judgements) type every time a
Judgement function was written, a refinement by ruleAp took place or when one
applied induction on the depth of inference.

The next step of our evaluation is an assessment of the functionality of the
general theory for reasoning with inductive definitions with regards to similar
features in HOL’s inductive definition package [CM92]. The general theory fa-
cilitated both top-down and bottom-up styles of derivation construction as well
as the principle of induction on the depth of inference but in a comparatively

125

indigestible manner. Both refinement terms and Lego’s outputs verge on the
incomprehensible. Recall that applying a rule in a derivation means supplying
substitutions and numerical references to rules. The latter is something we could
conceal in the user interface whereas the former is an inextricable part of the
platform we intend to model. Furthermore, during derivation-time construction,
the system does not help the user by returning goal/derivative values that do not
correspond to our perceptions of the inferences taking place but as unreadable
expressions. This is obvious in the examples of derivations in chapter 5 where
the consequence of applying the rule for let expressions to the goal formula in
section 5.3.1 did not yield the two new subgoals we would normally expect but
an expression

Jlist ExpRules (TlistSubFn sub1

(Prems (RuleNum ExpRules (suc ten))))

which with a little extra inference gave the subgoals

?6 : Judgement ExpRules

(TSubFn sub1

(Exp!Formula "Env˜1 |= decl˜1 =:=> Env˜2"))

?10 : Judgement ExpRules

(TSubFn sub1

(Exp!Formula "Env˜2 |= expr˜1 ==> expr˜2"))

admittedly closer in some respects to the expected subgoals at that point in
the derivation but still obscured by an unapplied substitution. In comparison,
substitution in the HOL package is almost completely transparent. A similar
problem arose in uses of our version of induction on the depth of inference where
the object terms we applied hardly resemble the usual inference rules we associate
with such depth of inference inductions. Again, the values Lego returns as a result
of the proof steps applied tend to obscure the nature of the inference taking place.

These observations can partly be explained by the generic nature of our plat-
form. As we mentioned in the introductory chapter, we must expect a certain
degree of complexity with any “deep embedding” style activity that intends to
model a set of objects in both syntactic and semantic domains. At the same time
however, two points are prevalent. The first is the obtrusive nature of substitution
and the second is the difficulty Lego faces in reducing terms to the canonical forms
we expect. The first issue accounts for much of the illegibility in applications of
the general theory for inferences upon specific inductive definitions as compared
to HOL’s package. It becomes obstructive in top down derivations and even if we

126

use unifSub to impel the system to unify a goal formula with the conclusion of
a specified rule, we cannot expect to omit some form of substitution information.
In bottom up proofs, substitution terms are similarly unreduced contributing to
the confusion in building derivations as the user cannot see immediately the dir-
ection in which they have taken a derivation. It also a hindrance in proofs of
theorems of semantics such as monogenicity in section 5.4 and the case analysis
proofs in section 5.5. Continuing further, inferring properties of substitution con-
stitutes the trickiest part of transformation correctness proofs as demonstrated
in chapter 6 where a great deal of the work involved proving the transformation
applied to a substitution expression could be wholly moved within the body of
that expression.

By comparison, substitution in HOL’s inductive definition package is kept im-
plicit by the natural representation of rules as universally quantified formulae.
Clearly this was not an option for us as we showed in chapter 1. In our general
theory, substitution must be accounted for explicitly since rules at the represent-
ational level need to be understood as objects of syntax. Nevertheless we should
hope that this, like the numerical referencing of rules, can be hidden by a layer of
Lego between the user and the system that combines reduction strategies to sim-
plify terms involving substitution wherever possible — leading us to our second
observation.

Whenever we apply ruleAp in a derivation the substitution is not automatic-
ally applied to the current formula(e) by the system and so it returns an unreduced
expression. It is up to the user to use the Equiv command to reduce the results to
the intuitive result they expect as demonstrated in section 5.3.1. Lego makes it
extremely difficult to automate this process. It provides normalizing and expand-
ing routines but the nature of the calculation makes it difficult to reach the ideal
result somewhere in between an unevaluated expression and a canonical form
(where everything is normalized and expanded as far as possible). If this were
in fact possible to do simply then we could expect to use its reduction facilities
to apply substitutions and the like wherever they can be used to simplify terms.
Indeed, this would not only make derivations significantly more comprehensible,
it would also contribute to a better run-time performance. In chapter 4 we found
that the due to the lazy attitude of the Lego evaluator coupled with the nature of
derivations being built successively upon one another, each time a proof was ad-
vanced one step when a substitution had not been applied as a result, the system
took longer to compute the next proof step than if we used Equiv to manually
reduce the goal formula.

127

The final point worth mentioning in this section is the speed of operations in
general. With Lego in its current form, reasoning with inductive definitions can
become a relatively compute intensive task particularly when building derivations
where the base language and the set of rules is large. Couple this with shortcut
routines such as named rules and automated substitutions, the system becomes
increasingly slower especially if we further compound this with the run-time ob-
servation above. This is a typical trait of Lego’s reduction and normalization
module. As the complexity of tasks increase, it takes significantly longer to run.
In section 4.4 we experienced the brunt of Lego’s intractabilities when relatively
simple derivations took extraordinary times to evaluate. Work has taken place
to improve some aspects of its run time performance by improving its reduction
heuristics. However, this does not give a guarantee that computations will be
faster in all cases.

With these criticisms in mind, we can see that future developments of this
portion of our theory would include

• exploring means of making applications such as case analysis and depth of
inference induction easier for the user to use and understand. This may
include adding strategic tacticals to automate more and more of the book-
keeping tasks involved. For instance, it may be advisable to combine the
two main theorems used in depth of inference induction: J Induction and
RuleRec in a more comprehensible manner,

• eliciting ways of partially evaluating terms involving substitution in an at-
tempt to conceal its explicit nature as much as possible from the user. This
would require an in depth analysis of the possibilities of Lego’s reduction
features

• and a general consideration of the ways in which the general theory’s run-
time performance can be improved — a wide ranging problem that touches
on many of the aspects of the general theory as a whole as well as the
internal features of Lego itself.

7.4 Transformation Correctness Proofs

In chapter 6 we saw how to apply our general theory to implement a simple Han-
nan and Miller transformation [HM91] and correctness proof. The transforma-
tion itself was relatively easy to render into the system. This set down a clear
structured means of defining transformations. Stating this structure in order,

128

we need to define the effect of the transformation on an inductive specification’s
signature, proofs that the transformation preserves well formed terms, the extra
features needed for the parsing facilities (new terminals and productions), the
term transforming functions, rule transformers and finally the whole combined
transformation of the rule set and signature.

The Branch Elimination transformation described in the previous chapter is
a very simple example of a Hannan and Miller transformation however, and we
must expect to cater for more complex examples that may impose conditions on
the structural aspects of operational semantics or may add and delete a varying
number of sorts and/or function names. Branch elimination imposed no condi-
tions on its input. Other transformations require certain syntactic features of a
semantics before a transformation is applicable. Such conditions would not be
difficult to implement but they are likely to be verbose and run-time expensive.
In addition, recall that Lego allows only the definition of total functions. The
consequence being that transformations involving partiality must be lifted to total
functions. We can imagine the pseudo code description of such transformations
as

if b then Trans(Sem) else Id(Sem)

where Id is the identity function. As mentioned above, Branch Elimination adds
only a constant number of new sorts and function names no matter which se-
mantics it is given. Typically this is not the case. A transformation may add
and/or delete any number of such entities depending on the form of the rules it is
passed. (They may also replace rules with two or more rules — in the transform-
ation in chapter 6, each rule was mapped to one new rule.) This means using
more complex mapping functions for the indices of sorts and function names to
avoid any inconsistencies and to preserve the well formed nature of terms passed
into a transformation suite.

In chapter 6 we laid out guidelines for adding new sort and function names to
signatures if well formedness is to be maintained. The indices of all additions must
be added to the beginning of the respective index list and all pre-existing indices
shifted up the total number of additions. If we now consider deleting sorts or
function names, we must simply ensure that the new signature does not contain a
sort/function name whose indexing number is equal to the number of the deleted
item had it been shifted the appropriate number of places. An example of the
idea can be seen in figure 7.1. The function name whose index is four in the as yet
untransformed signature is to be deleted from the new signature. This is achieved
by making sure that no function name in the latter has the corresponding index

129

0

2

1

3

4

5

7

8

0

1

2

3

4

5

6

function name to
be deleted

New Signature IndicesOld Signature Indices

}new function names

Figure 7.1: Mapping Indices for Function Names.

(six in this case). Not knowing how many additions or deletions to a signature
are necessary beforehand is not a problem if a transformation is effected in two
passes through a rule set — one to determine the number new sort/function
names and the second to perform the transformation. A similar solution can be
applied to the problem of adding variable numbers of new rules. Again this means
transformation implementations become invariably complex.

Similar to the structural form of the transformation, the correctness proof in
chapter 6 also provided the reader with a template of a methodological means
of proving such theorems. After any necessary extra definitions (native to the
transformation), we must prove a succession of theorems that state that the
transformation applied to a substitution can be wholly taken within the body
of the substitution term. These are exemplified by the proofs of the “commut-
ativity” theorems (BEConvSubstLemma and the like) in section 6.3. The proof
of transformation correctness itself proceeds by induction using the elimination
operator for Judgements. At this point the commutativity theorems are applied.
It then remains for the user to finish off the proof for Jlists, requiring either a
set of extra lemmas proven beforehand or the induction hypotheses.

A couple of points are worth mentioning. As before, inferring properties about
substitution comprises the major portion of the proof process. This vindicates us
in our choice of implementation of substitution as parameterized lists of variable-
value pairs, which affords easy reasoning. Nevertheless, these theorems are for-
midable to prove, even in simple circumstances. The second point is the con-
sequence of using a mutually inductive type for our main inference mechanism.
All inferences with Judgements must invariably take account of the effect of in-
ferences with Jlists, lists of judgements, which can mean concerting a great
deal of energy into defining functions and proving theorems for judgement lists.

130

In chapter 6 this was not as trivial as we may have expected. More intricate
transformations may pose significantly greater problems.

As far as conditional transformations are concerned, any attached conditions
will be manifested in extra hypotheses in the proof. Ones we should expect to
use. It is up to the user to make their presence as accessible to reasoning as
possible. The fact that we must also now deal with sorts, function names and
rules being added and deleted arbitrarily means the proofs of well formedness
and transformation correctness must employ complex mapping functions such as
shown in figure 7.1 to actuate their results and as such become more complicated
themselves.

Further developments in this area would include defining more of Hannan and
Miller’s transformations in an attempt to explore the issues outlined above in
greater depth. In this way we shall be able to fully assess the merits and faults
of a general theory of operational semantics designed with the aim of providing
an efficacious platform supporting transformation correctness proofs.

7.5 Future Directions – Theorem Prover Sup-
port

In the light of evidence from previous sections we can foresee a need for supple-
mentary theorem prover support for our general theory of operational semantics.
The arguments put forward suggest that as the theory currently stands, reasoning
about individual semantics and their class requires developed understanding of
Lego and the implementation of the theory.

To begin with we can bring tacticals and functions into the theory that handle
some of the more mundane aspects of proof checking. We already mentioned the
possibility of combining J Induction and RuleRec to provide a more cohesive
version of induction on the depth of inference. Other feasible routines include
bringing the JlistSum and case functions together into a tactic that, when con-
fronted with a case analysis on a rule set, the user can call upon it to immediately
list all the necessary proof obligations.

More advanced additions may be possible or even feasible. Just as we de-
scribed extra features to enhance the interface of our theory, so we can also
perceive of supplements to the basic reasoning mechanism to hide the low level
aspects within it.

In case analysis proofs for example, one has to delve into the implementation
of the Term type to elicit contradictions. It is possible that inferences such as these

131

can be automated. For instance, a function that takes two terms and an obviously
contradictory equality between them would recurse through them to root it out.
Other examples of our theory that may afford some form of mechanization include
transformation definitions. A library of functions and theorems that help add or
delete sorts and function names in a consistent manner. In this way, signatures
could be safely transformed so that no inconsistencies arise when Terms are formed
thereon.

We have seen examples of such automation previously in the functions ruleAp’
and unifSub in chapters 4 and 5. We can draw the conclusion from their im-
plementation that evaluation times increase significantly. Particularly when such
functions are combined. The challenge then becomes acquiring a balance between
the need to hide low level elements of the theory and maintaining an efficient
system. Unfortunately, the primitive evaluation mechanisms in Lego make this
extremely difficult.

Furthermore, it seems that certain aspects of Lego and our theory must be
kept largely explicit. Term rewrites are a case in point. Where normally one would
expect to be able to use the command Qrepl to rewrite terms in a goal, sometimes
assumptions must be taken to be rewritten laboriously using the Eq subst func-
tion. Other situations arise where quite legitimate terms have to be type casted
to avoid type check errors. Lego does allow such shortcuts as applying theorems
with parameters uninstantiated although in some of our proofs we found that
even this was not possible.

Generally, although Lego has a versatile type system for representations, its
inference engine can be frustratingly inflexible. At some points, Lego will only
allow theorems to be proven in one very specific way although the same theorem
could be proved in many ways mathematically.

In our general theory of operational semantics, accommodating substitution
presents the greatest challenge. It is pervasive in all of the main proofs in the
previous chapters. It is due to the inherent nature of the theory we model that
this is so. Nevertheless we would hope to conceal its existence in some instances
such as proof tree construction. In section 5.3.1 we saw how the system leaves
substitutions unapplied. The value of terms was thus not immediately obvious.
Sadly not much can be done about this at the theorem prover level as the user can
only control the evaluation of terms very bluntly. Some form of complex ad-hoc
extension to Lego’s reduction routines would be necessary — and this is likely to
be difficult.

On the whole however, substitution is an integral part of the theory that

132

one cannot avoid in proof checking. One would have to be conversant in its
implementation if attempting to prove theorems with the theory. Its generic
aspects restrict the freedom with which to afford optimization in all areas.

7.6 Conclusion

This thesis has studied the impact of the generalization of a theory on Lego as
a model of a proof assistant. Explicitly setting up an algebra and reasoning
mechanisms for this theory leads to an implementation much more visible at
the theorem prover level. This is manifested in a syntax, semantics and modus
operandi that can be both diffuse and awkward to handle.

There are various ways and levels in which these can problems can be allevi-
ated. From the introduction of parsing facilities to enhance the proof assistant’s
interface to functions and theorems at the theorem prover level to hide implement-
ation specific details of the theory. It must borne in mind that such enhancements
are limited in range and may adversely slow down a proof assistant’s processes.

It could be argued that at least some of the problems encountered in this
thesis are due to Lego. Perhaps it is too basic a tool in its foundation upon a few
elementary notions such as types, type universes, proof by refinement, the Curry-
Howard isomorphism and induction. Everything is built up successively from first
principles, which in the course of a session, often have to be returned to. When
a generalization of a theory takes place we can expect that an implementation
built in this environment will involve overtly complex forms. This was mirrored
in both the incomprehensible concrete syntactic encoding of operational semantic
terms and the awkward nature of reasoning about them in our theory. Of these
concerns the former can be allayed albeit with additions to the implementation of
the proof assistant. The latter poses a harder problem for us. If we try to hide the
low level elements of our general theory we must be mindful of the implications
of automating implementation-specific areas on the run-time performance of the
system as a whole. It has been acknowledged that Lego’s evaluation routines can
be improved in this respect.

Our study then suggests that a successful realization of a general theory such
as ours imposes criteria on the features of proof assistants. Firstly, the notion
of expressiveness should be coupled with the ideas of elegance and notational
freedom. Such ideas should be integrated more comprehensively within the fabric
of the theorem prover so that the abstract syntax of user created terms can be used
seamlessly throughout it. Elegant representations of the syntax and semantics

133

of general theories should give the elements of a theory a more natural look.
Simpler to read and cleaner to use. Secondly, the whole evaluation processes of
a proof assistant must afford degrees of flexibility, efficiency and if possible, user
interaction. In this way, functions in a general theory running at optimal speeds
can be written. More of a general theory can be automated without detriment to
the performance of the system. Such mechanizations are desirable since they free
the user from many of the inevitable bureaucracies of a proof checker. Finally, if
a proof system allows more control over evaluation then more of the prominent
features of a general theory may be hidden via notions like partial evaluation. If
proof assistants combine the features suggested above we can expect the successful
realizations of the general theories we desire.

134

Bibliography

[Acz77] Peter Aczel. An introduction to inductive definitions. In K. J. Bar-
wise, editor, The Handbook of Mathematical Logic, Studies in Logic
and Foundations of Mathematics. North Holland, 1977.

[BB+96a] B. Barras, S. Boutin, et al. The Coq Proof Assistant Reference Manual.
INRIA, Rocquencourt, November 1996.

[BB96b] J. Bertot and Y. Bertot. The CtCoq experience. In N. Merriam, editor,
The Second International Workshop on User Interfaces for Theorem
Provers. Dept. of Computer Science, University of York, July 1996.

[BCG91] G. Birtwistle, S.K. Chin, and B. Graham. An Introduction to Hardware
Verification in Higher Order Logic. University of Cambridge, 1991.

[BG+92] Richard Boulton, Andrew Gordon, et al. Experience with embedding
hardware description languages in HOL. In T.F. Melham V. Stavridon
and R.T. Bourke, editors, Theorem Provers in Circuit Design: Theory,
Practice and Experience, pages 129–156. North-Holland, June 1992.

[BM91] R. Burstall and J. McKinna. Deliverables: an approach to program
development in the Calculus of Constructions. Technical Report ECS-
LFCS-91-133, LFCS, Dept. of Computer Science, University of Edin-
burgh, 1991.

[C+86] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, 1986.

[Car84] L. Cardelli. Compiling a functional language. In 1984 ACM Symposium
on LISP and Functional Programming, pages 208–217. ACM, August
1984.

[CC92] P. Cousot and R. Cousot. Inductive definitions, semantics and ab-
stract interpretation. In The Ninteenth Annual SIGPLAN-SIGACT

135

Symposium on Principles of Programming Languages, volume 247.
Springer-Verlag, January 1992. Albuquerque, New Mexico, USA.

[CH88] Th. Coquand and G. Huet. The Calculus of Constructions. Information
and Computation, 76:96–120, 1988.

[CM92] J. Camilleri and T.F. Melham. Reasoning with inductively defined
relations in the HOL theorem prover. Technical Report 265, University
of Cambridge Computing Laboratory, 1992.

[Des88] T. Despeyroux. TYPOL: A formalism to implement natural semantics.
Technical Report RT-0094, INRIA, Sophia-Antipolis, March 1988.

[GM93] M. Gordon and T. F. Melham. Introduction to HOL. Cambridge Uni-
versity Press, 1993.

[HHP87] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. In Symposium on Logic in Computer Science, Ithaca,
NY, pages 194–204. IEEE, June 1987.

[HM90] J. Hannan and D. Miller. From operational semantics to abstract ma-
chines preliminary results. In ACM Conference on LISP and Functional
Programming, pages 323–332. acm Press, June 1990.

[HM91] J. Hannan and D. Miller. From operational semantics to abstract ma-
chines. Technical report, Department of Computer and Information
Science, University of Pennsylvania, 1991.

[HMM86] R. Harper, D. MacQueen, and R. Milner. Standard ML. Technical
Report ECS-LFCS-86-2, Department of Computer Science, University
of Edinburgh, 1986.

[Hof91] M. Hofmann. Verifikation von ML-programmen mit dem beweisprüfer
Lego. Master’s thesis, Diplomarbeit an der Universität Erlangen
Nürnberg, 1991.

[How80] W. A. Howard. The Formulae-as-Types notion of construction. In
J. Hindley and J. Seldin, editors, To H. B. Curry: Essays on Combin-
atory Logic. Academic Press, 1980.

[Jon80] N. Jones, editor. Semantics Directed Compiler Generation, volume 94
of Lecture Notes in Computer Science. Springer-Verlag, 1980.

136

[Kah87] G. Kahn. Natural Semantics. In G. Goos and J. Hartmanis, editors,
The Fourth Annual Symposium on Theoretical Aspects of Computer
Science, volume 247, pages 22–39. Springer-Verlag LNCS, February
1987. Passau, Germany.

[Kah88] G. Kahn. Natural Semantics. In K. Fuchi and M. Nivat, editors,
Programming of Future Generation Computers, pages 237–258. North-
Holland Publishing Company, 1988.

[Lan64] P. J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, January 1964.

[LP92] Z. Luo and R. Pollack. LEGO proof development system: A user’s
manual. Technical Report ECS-LFCS-92-211, Laboratory for Founda-
tions of Computer Science, University of Edinburgh, 1992.

[LPT89] Z. Luo, R. Pollack, and P. Taylor. How to use LEGO: a preliminary
users manual. Technical Report LFCS-TN-27, LFCS, Dept. of Com-
puter Science, University of Edinburgh, 1989.

[Luo90] Z. Luo. PhD. Thesis, An Extended Calculus of Constructions. PhD
thesis, LFCS, Department of Computer Science, University of Edin-
burgh, 1990. Also as technical report CST-65-90/ECS-LFCS-90-118,
Dept. of Computer Science, University of Edinburgh.

[Luo91a] Z. Luo. A higher-order calculus and theory abstraction. Information
and Computation, 90(1):107–137, January 1991.

[Luo91b] Z. Luo. Program specification and data refinement in type theory.
In Proceedings of the Intermational Joint Conference on the Theory
and Practice of Software Development, Brighton, 1991. Also LFCS
report ECS-LFCS-91-131, Dept. of Computer Science, University of
Edinburgh.

[Luo91c] Z. Luo. Type theory, logic and computer science. Lecture Notes for
Post-Graduate Theory course, LFCS Edinburgh University, January
1991.

[Luo92] Z. Luo. A unifying theory of dependent types: The schematic approach.
In A. Nerode and M. Taitslin, editors, The Second International Sym-
posium on Logical Foundations of Computer Science, pages 98–145,
July 1992. Tver, Russia.

137

[Mah91] S. Maharaj. Implementing Z in Lego. Master’s thesis, Dept. of Com-
puter Science, University of Edinburgh, 1991.

[Mah96] S. Maharaj. PhD. Thesis, A Type-theoretic Analysis of Modular Spe-
cifications. PhD thesis, LFCS, The University of Edinburgh, 1996.
Report No: ECS-LFCS-97-354.

[McK92] J. McKinna. Deliverables: a categorical approach to program develop-
ment in type theory. PhD thesis, Dept. of Computer Science, University
of Edinburgh, 1992.

[Mel88] T.F. Melham. Using recursive types to reason about hardware in higher
order logic. Technical Report 135, University of Cambridge Computing
Laboratory, 1988.

[Mel92] Thomas F. Melham. A package for inductive relation definitions in
HOL. In M. Archer, J. J. Joyce, K. N. Levitt and P. J. Windley,
editors, Proceedings of the 1991 International Workshop on the HOL
Theorem Proving System and its Applications, Davis, August 1991,
pages 350–357. IEEE Computer Society Press, 1992.

[MH91] E. Maygar and R.L. Harris. User Guide for the LAMBDA System.
Abstract HardWare Ltd, 1991.

[Mil76] R. Milner. Program semantics and mechanized proof. Foundations
of Computer Science II, pages 3–44, 1976. Math. Centre Amsterdam
Tracts 82.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory
Lecture Notes. BIBLIOPOLIS, Napoli, 1984.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

[Pau93] L.C. Paulson. Introduction to Isabelle. Technical Report 280, Uni-
versity of Cambridge, Computer Laboratory, 1993.

[Pau94] L.C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag
LNCS 828, 1994.

[Plo81] G. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, Aarhus, Denmark, Septem-
ber 1981.

138

[Pol95] R. Pollack. The Theory of Lego: a Proof Checker for the Extended
Calculus of Constructions. PhD thesis, Dept. of Computer Science,
University of Edinburgh, 1995.

[Pra65] D. Prawitz. Natural Deduction. Almqvist and Wiksell, 1965.

[Sch97] T. Schreiber. Auxiliary variables and recursive procedures. In
TAPSOFT ’97: The Theory and Practice of Software Development,
volume 1214, pages 697–711. Springer-Verlag, April 1997. Lille, France.

[ST87] D. Sannella and A. Tarlecki. Algebraic Specifications in Theory and
Practice. LFCS, Department of Computer Science, University of Ed-
inburgh, 1987.

[Sza69] M. E. Szabo, editor. The collected papers of Gerhard Gentzen. North-
Holland, Amsterdam, 1969.

139

Appendix A

A Type Theory Primer

In this primer we shall introduce some of the type-theoretic notations used in
this thesis. Consider for now a single universal type of types called Type. The
operator “:” denotes type inhabitance. Throughout this discourse read “x : T” as
“x is of type T” and where T is a type universe, as “x is a type”. Let A,B : Type
and let Γ represent a type context. Let us now consider the simply typed lambda
calculus. This can be described by the formation, introduction and elimination
rules:

Γ ` A : Type Γ ` B : Type
Γ ` A→ B : Type

Γ, x : A,Γ′ ` x : A
Γ, x : A ` b : B

Γ ` λx :A.b : A→ B

Γ ` f : A→ B Γ ` a : A
Γ ` f a : B

We can describe base types by introducing new constants. For example the
rules

Γ ` N : Type Γ ` 0 : N
Γ ` n : N

Γ ` suc(n) : N

describe the type formation and introduction rules for natural numbers. Com-
binatory types such as disjoint sum types can be described by the rules

Γ ` A : Type Γ ` B : Type
Γ ` A+B : Type

Γ ` a : A
Γ ` i(a) : A+B

Γ ` b : B
Γ ` j(b) : A+B

and the product type with the rules

Γ ` A : Type Γ ` B : Type
Γ ` A×B : Type

Γ ` a : A Γ ` b : B
Γ ` (a, b) : A×B

Γ ` c : A×B
Γ ` π1(c) : A

Γ ` c : A×B
Γ ` π2(c) : B

140

where π1(a, b) = a and π2(a, b) = b for (a, b) : A×B. We can generalize the notion
of types to include type variables and dependent product types and dependent
sum types. The formation rule for dependent product types (or Π-types) is

Γ ` A : Type Γ, x : A ` B : Type
Γ ` Πx :A.B : Type

We may write A → B for Πx : A.B when x is not free in B. An object of
a Π-type is a functional construction which can be applied to an object of its
domain type to form an object in its range type:

Γ, x : A ` b : B
Γ ` Λx :A.b : Πx :A.B

Γ ` f : Πx :A.B Γ ` a : A
Γ ` f a : [a/x]B

where the term [a/x]B represents the term B with all free occurrences of a replaced
by x. Dependent sum types (Σ-types, strong sum types) have the formation rule:

Γ ` A : Type Γ, x :A ` B : Type
Γ ` Σx :A.B : Type

where we may write A × B for Σx : A.B when x does not occur free in B. A
Σ-type object is a pair whose components can be extracted by using projections:

Γ ` a : A Γ ` b : [a/x]B
Γ ` (a, b) : Σx :A.B

Γ ` c : Σx :A.B
Γ ` π1(c) : A

Γ ` c : Σx :A.B
Γ ` π2(c) : [π1(c)/x]B

where π1(a, b) = a and π2(a, b) = b for (a, b) : Σx :A.B.
The use of a universal type of types as we did above leads to paradoxes within

the type theory. The work in this theory is based in an impredicative type system:
The Extended Calculus of Constructions (ECC). In such a system, paradoxes are
avoided by setting up a hierarchy of type universes:

Prop : Type(0) : Type(1) : · · ·

where Prop is the type of propositions. In this context, the rules above elicit a
correspondence between formulae and types in an intuitionistic logic. Summar-
ily, to show a type is inhabited is to prove a formula holds in the underlying
intuitionistic logic. Furthermore, the types above correspond to logical operat-
ors. The function type corresponds to implication as is borne out by the rules
above. Disjoint sums correspond to disjunction and product types to conjunction.
The Π-type Πx :A.B corresponds to the formula ∀x :A.B. Similarly the Σ-type
Σx : A.B corresponds to the existential formula ∃x : A.B whose proof is a pair
(a, b) of a witness a and a proof of B(a). This correspondence is known as the
Curry-Howard isomorphism.

141

Appendix B

Lego Syntax and Commands

The following is taken from the Lego reference card available on-line available in
Lego in its two states. The modules and tactical facilities are also shown. Notice
that all commands need to be terminated by a semicolon. Drop will enable you
to exit Lego and return to Unix.

The Syntax of Terms

Prop, Type kinds
{id:term }term, { id|term } term, term->term Π abstraction
[id:term]term, [id|term]term λ abstraction
term term application
term symb term infix application
term.term postfix application
<id:term>term, <id|term>term, term#term Σ type
(term,term,...) tuple
(term,term,...:term) annotated tuple
term.1, term.2 projections
(term:term) type cast
[id=term]term local definition

Lego State and Proof State

After loading Lego, the system enters a state called Lego state, in which you
may extend the context. Using the command Goal you enter the proof state. The
system returns to Lego state, if a proof is finished. The following commands
apply to both states

142

[id=term] persistent definition
$[id=term] non-persistent definition
Cd "directory" change directory
Ctxt, Ctxt n, Ctxt id display the current context
Decls,
Decls n, Decls id display the declarations in the current context
(Dnf term) compute display-normal form of term
Dnf TReg compute display-normal form of the current type
Dnf VReg compute display-normal form of the current term
echo "comment" print comment
Equiv TReg term replace current type with equivalent type term
Equiv VReg term replace current term with equivalent term term
ExpAll TReg n expand all definitions in the current type to a depth of n
ExpAll VReg n expand all definitions in the current term to a depth of n
Expand TReg id1 id2 . . . use definitions id1 id2 . . . to expand the current type
Expand VReg id1 id2 . . . use definitions id1 id2 . . . to expand the current term
ExportState "filename" save the current Lego process in filename
Help print help message
(Hnf term) compute (weak) head normal form of term
(Hnf n term) compute (weak) head normal form of term for n toplevels
Hnf TReg compute (weak) head normal form of the current type
Hnf n TReg compute (weak) head normal form of the current type for

n toplevels
Hnf VReg compute (weak) head normal form of the current term
Hnf n VReg compute (weak) head normal form of the current term for

n toplevels
Init theory, initialise the context where theory is one of LF, PCC, XCC,

XCC’, XCC s or XCC’ s
line insert a blank line
Normal TReg normalise the current type
Normal VReg normalise the current term
(Normal term) Normalise term
Pwd print the current working directory

Lego State
[id:term] non-persistent declaration
$[id:term] persistent declaration
Discharge id Abstract and remove all non-persistent entries in the con-

text back to and including id
DischargeKeep id Abstract all non-persistent entries in the context back to

and including id and append them to the context
Forget id Remove all entries in the context back to and including

id
Goal term, Goal id:term start refinement proof with goal term
$Goal term, $Goal id:term start refinement proof with non-persistent goal term

143

Syntax for Inductive Types

Inductive [T1:M1] ... [Tm:Mm]
Double Inversion NoReductions Relation Theorems (optional)
ElimOver Universe (optional)
Parameters [a1:N1] ... [an:Nn] (optional)
Constructors [cons1:L1] ... [conso:Lo]
Record [id:kind]
Fields [cons1:L1] . . . [conso:Lo];

Proof State

Certain commands in proof state take the number of a goal as argument, which
may be either an absolute value, or a value relative to the number of the current
goal. We denote this by [+|-]n.

Assumption [+|-]n close goal by an assumption
Claim term create a new goal (lemma) in a proof
Cut [id1=id2] apply substitution lemma
Dnf compute the display-normal form of the current goal
ExpAll n, ExpAll +n expand all definitions in a goal
Expand id1 id2 . . . use definitions id1 id2 . . . to expand the current goal
Equiv term replace current goal with equivalent goal term
Hnf compute the (weak) head normal form of the current goal
Hnf n compute the (weak) head normal form of the current goal

for n toplevels
Immed remove all goals which unify with some type in the context
Invert id invert premise id
Induction id induction on premise id
Induction n induction on nth unnamed premise
Induction term abstract term from the goal, then do induction on it
intros id1 id2 . . . named Π introduction on the current goal
intros [+|-]n id1 id2 . . . named Π introduction on the goal ?[+|-]n
intros Π introduction on the current goal
intros [+|-]n Π introduction on a goal
Intros id1 id2 . . . named Π introduction on head normal form of the current

goal
Intros [+|-]n id1 id2 . . . named Π introduction on head normal form of the goal

?[+|-]n
Intros Π introduction on head normal form of the current goal
Intros [+|-]n Π introduction on head normal form of a goal
Intros # single introduction on Σ types
KillRef kill the current refinement proof
Next [+|-]n focus on another goal
Prf show current proof context
Normal normalise the current goal

144

Qnify n unify, considering leftmost n equational premises
Qnify unify, considering all equational premises
Qnify id unify equational premise id
Qrepl term use the type of term as a conditional equation to rewrite

the current goal
Refine term refine the current goal by term
Refine [+|-]n term refine the goal ?[+|-] n by term
Save, Save id save persistent proof term
$Save, $Save id save non-persistent proof term
Undo n undo n proof steps

The Module mechanism
ForgetMark id forget back to the mark id
Load id load module id if not yet loaded
Make id load object file corresponding to module id
Marks list current marks
Module id module header which creates the mark id
Module id0 Import id1 id2 . . . module header with imported modules id1 id2 . . . cre-

ating the mark id0

Reload id is an abbreviation for ForgetMark id; Load id
Reload id0 From id1 is an abbreviation for ForgetMark id1; Load id0

Tacticals
exprsn1 Then exprsn2 evaluate exprsn1, if evaluation succeeds, evaluate

exprsn2

exprsn1 Else exprsn2 evaluate exprsn1, if evaluation fails, backtrack and eval-
uate exprsn2

Repeat exprsn1 evaluate exprsn1 Then exprsn1 Then . . .
For n exprsn1 evaluate exprsn1 Then exprsn1 Then . . . (n times)
Succeed this tactical always succeeds
Fail this tactical always fails
Try exprsn evaluate exprsn and backtrack if evaluation fails

145

Appendix C

Code for the Lego General
Theory of Operational Semantics

[Set = Type(0)];

Include lib_start_up;

Include lib_unit;

Include lib_list;

Include lib_prod;

Include lib_sigma;

Include lib_NElist;

Include lib_sum.l;

Include lib_empty.l;

Include lib_ML.l;

[Q = Eq];

(* Specification Section *)

(* ********************* *)

(* Set of sorts S *)

(* This can be done by declaring the sorts directly as (S)Types *)

(* Or by sigma type with functional and relational signatures *)

Record [Sort:Type(0)]

Fields

[sort:nat];

[Formula = (make_Sort one)];

146

Goal sort_eq : Sort->Sort->bool;

intros s1 s2;

Refine nat_eq;

Refine sort s1;

Refine sort s2;

Save;

(* Sort equality theorem *)

Goal Sort_Eq : {s1,s2:Sort}

iff (is_true (sort_eq s1 s2))

(Eq s1 s2);

intros;

andI;

(* ==> *)

Refine Sort_elim [s1:Sort]

(is_true (sort_eq s1 s2))->(Eq s1 s2);

intros _;

Refine Sort_elim [s2:Sort]

(is_true (sort_eq (make_Sort sort1) s2))->

(Eq (make_Sort sort1) s2);

intros;

Refine Eq_resp;

Refine fst (nat_eq_character ? ?);

Immed;

(* ==> *)

intros;

Qrepl H;

Refine nat_eq_refl;

Save;

(* Identifiers *)

(* Exactly as above *)

Record [FIdent:Type(0)]

Fields

[id:nat];

147

Goal id_eq : FIdent->FIdent->bool;

intros f1 f2;

Refine nat_eq;

Refine id f1;

Refine id f2;

Save;

Goal Id_Eq : {f1,f2:FIdent}

iff (is_true (id_eq f1 f2))

(Eq f1 f2);

intros;

andI;

(* ==> *)

Refine FIdent_elim [f1:FIdent]

(is_true (id_eq f1 f2))->(Eq f1 f2);

intros _;

Refine FIdent_elim [f2:FIdent]

(is_true (id_eq (make_FIdent id1) f2))->

(Eq (make_FIdent id1) f2);

intros;

Refine Eq_resp;

Refine fst (nat_eq_character ? ?);

Immed;

(* ==> *)

intros;

Qrepl H;

Refine nat_eq_refl;

Save;

[FSig = list|(prod FIdent (prod (list|Sort) Sort))];

[FS|FSig];

(* First Order Signature is the triple (S,F,P) *)

(* May or may not include S as mentioned before *)

[botSort = make_Sort zero];

148

[IDSort1 [f:FIdent] =

(listiter (nil|Sort)

([h:(prod FIdent (prod (list|Sort) Sort))]

[tl:(list|Sort)]

bool_rec (Fst (Snd h))

tl

(id_eq f (Fst h)))

) FS];

[IDSort2 [f:FIdent] =

(listiter botSort

([h:(prod FIdent (prod (list|Sort) Sort))]

[so:Sort]

bool_rec (Snd (Snd h))

so

(id_eq f (Fst h)))

) FS];

(* Terms *)

(* The sort of a meta-variable is a component of the

definition of Terms *)

Inductive [Term:Sort->Type(0)]

[Tlist:(list|Sort)->Type(0)]

Constructors

[var:{n:nat}{s:Sort}Term s]

[fa:{f:FIdent}

{tl:(Tlist (IDSort1 f))}

Term (IDSort2 f)]

[tnil:Tlist (nil|Sort)]

[tcons:{s|Sort}

{sl|(list|Sort)}

{t:(Term s)}

{lt:(Tlist sl)}(Tlist (cons s sl))];

149

[termrec = [s|Type]

[t|Type]

Term_elim ([a|Sort][_:Term a]s)

([b|list|Sort][_:Tlist b]t)];

[tlistrec = [s|Type]

[t|Type]

Tlist_elim ([a|Sort][_:Term a]s)

([b|list|Sort][_:Tlist b]t)];

(* Boolean and Prop equality inequality for terms *)

Include "term_eq.l";

(* Rules: *)

Inductive [SCList:Type(0)]

Constructors

[SCnil:SCList]

[SCcons:{s|Sort}(Term s)->(Term s)->SCList->SCList];

[Rule = (prod (list|(Term Formula))

(prod (SCList)

(Term Formula)))];

[Conc = [r:Rule]Snd (Snd r)];

[SideConds = [r:Rule]Fst (Snd r)];

[Prems = [r:Rule]Fst r];

[RuleSet = (NElist|Rule)];

[RSet:RuleSet];

(* Rule Selection *)

(* If n is larger than the length of the list,

the last element is returned *)

150

[HdRule = NElistiter ([r:Rule]r)

([r:Rule][_:Rule]r)];

[TlRule = NElistrec ([r:Rule]Nnil r)

([_:Rule]

[rt:NElist|Rule]

[_:NElist|Rule]rt)];

[RuleNum [n:nat] =

[z [rl:NElist|Rule] = HdRule rl]

[s [_:nat]

[f:(NElist|Rule)->Rule]

[rls:(NElist|Rule)] = f (TlRule rls)]

nat_rec z s n RSet];

(* Semantic Section *)

(* **************** *)

(* Substitution *)

[Subst = {s:Sort}list|(prod nat (Term s))];

[initSub = ([s:Sort](nil|(prod nat (Term s)))):Subst];

Goal updateSub :

{s|Sort}{n:nat}{t:Term s}{Sub:Subst}Subst;

Intros s n t recSub s’;

Refine bool_elim [cond:bool](Eq (sort_eq s’ s) cond)->

(list|(prod nat (Term s’)));

Refine +3 Eq_refl;

intros;

Qrepl fst (Sort_Eq ? ?) H;

Refine (cons (Pair n t) (recSub s));

intros;

Refine recSub s’;

Save;

151

(* Type of SubFn: Subst->Sort->nat->(Term s) *)

[SubFn = [Sub:Subst][s:Sort][n:nat]

listiter (var n s)

([h:(prod nat (Term s))]

[recn:Term s]

bool_rec (Snd h)

recn

(nat_eq n (Fst h)))

(Sub s)];

[TSubFn = [Sub:Subst]

Term_elim ([s|Sort][t:Term s]Term s)

([sl|list|Sort][t:Tlist sl]Tlist sl)

([n:nat][s:Sort]SubFn Sub s n)

([f:FIdent][tl:(Tlist (IDSort1 f))]

[res:(Tlist (IDSort1 f))]

((fa f res):(Term (IDSort2 f))))

tnil

([s|Sort][sl|list|Sort]

[t:Term s][tl:Tlist sl]

[resT:Term s][resTl:Tlist sl]

(tcons resT resTl))];

(* This one is useful for proving transformations *)

[tlistSubFn = [Sub:Subst]

Tlist_elim ([s|Sort][t:Term s]Term s)

([sl|list|Sort][t:Tlist sl]Tlist sl)

([n:nat][s:Sort]SubFn Sub s n)

([f:FIdent][tl:(Tlist (IDSort1 f))]

[res:(Tlist (IDSort1 f))]

((fa f res):(Term (IDSort2 f))))

tnil

([s|Sort][sl|list|Sort]

[t:Term s]

[tl:Tlist sl]

[resT:Term s]

[resTl:Tlist sl](tcons resT resTl))];

152

[TlistSubFn = [s|Sort]

[Sub:Subst]

listiter (nil|(Term s))

([h:Term s]

[recn:list|(Term s)]

(cons (TSubFn Sub h) recn))];

(* Side Condition Functions *)

(* Function checks all side conditions in a list hold *)

Goal SCHold : SCList->Prop;

Refine SCList_elim ([SC:SCList]Prop);

Refine trueProp;

intros s t1 t2 SC recn;

Refine (TermNeq t1 t2) /\ recn;

Save;

(* Function applying substitution to a list of side conditions *)

Goal SCSub : Subst->SCList->SCList;

intros sub;

Refine SCList_elim ([SC:SCList]SCList);

Refine SCnil;

intros s t1 t2 SCTail SCrecn;

Refine SCcons (TSubFn sub t1) (TSubFn sub t2) SCrecn;

Save;

(* Automated Proof for when there are no side conditions *)

Goal NilSCPrf :SCHold SCnil;

Intros;

Refine H;

Save;

(* Automated Proof for when there are many side conditions *)

153

Goal ConsSCPrf : {s|Sort}

{l|SCList}

{t1,t2:Term s}

(TermNeq t1 t2)->

(SCHold l)->

(SCHold (SCcons t1 t2 l));

Intros;

Refine H2;

Refine H;

Refine H1;

Save;

(* Meanings in terms of Judgements *)

Inductive [Judgement:(Term Formula)->Type(0)]

[Jlist:(list|(Term Formula))->Type(0)]

Constructors

[ruleAp:{i:nat}

{Sub:Subst}

{p:(Jlist (TlistSubFn Sub (Prems (RuleNum i))))}

(SCHold (SCSub Sub (SideConds (RuleNum i))))->

Judgement (TSubFn Sub (Conc (RuleNum i)))]

[jnil:Jlist (nil|(Term Formula))]

[jcons:{f|(Term Formula)}

{fl|(list|(Term Formula))}

{jh:(Judgement f)}

{jt:(Jlist fl)}Jlist (cons f fl)];

(* Elimination rule for a non-empty list of premisses *)

Goal {P:{f|Term Formula}{fl|list|(Term Formula)}

(Jlist (cons f fl))->Type(0)}

{pl:{f|Term Formula}{fl|list|(Term Formula)}

{jh:Judgement f}{jt:Jlist fl}P (jcons jh jt)}

{f|Term Formula}

{fl|list|(Term Formula)}

{jl:Jlist (cons f fl)}P jl;

Intros;

154

(* Type {l|list|(Term Formula)}(Jlist l)->Type(1) *)

[PP = list_elim ([fl:list|(Term Formula)](Jlist fl)->Type)

([_:Jlist (nil|(Term Formula))]Unit)

([f:Term Formula]

[fl:list|(Term Formula)]

[_:(Jlist fl)->Type]

[jl:(Jlist (cons f fl))]P jl)];

Refine Jlist_elim ([f|Term Formula][_:Judgement f]Unit)

PP

([i:nat]

[sub:Subst]

[jl:Jlist (TlistSubFn sub (Fst (RuleNum i)))]

[SC:SCHold (SCSub sub (Fst (Snd (RuleNum i))))]

[_:PP (TlistSubFn sub (Fst (RuleNum i))) jl]void)

void

([f|Term Formula]

[fl|list|(Term Formula)]

[jh:Judgement f]

[jt:Jlist fl]

[_:Unit]

[_:PP fl jt]pl jh jt)

jl;

Save Jlist_cons_elim;

(* Extracting the head premiss of

a non-empty list of premisses *)

Goal HeadPremiss :

{f|Term Formula}

{fl|list|(Term Formula)}

{jl:Jlist (cons f fl)}(Judgement f);

Refine Jlist_cons_elim ([f|Term Formula]

[fl|list|(Term Formula)]

[jl:Jlist (cons f fl)](Judgement f));

Intros;

Refine jh;

Save;

155

(* Extracting the tail premisses of

a non-empty list of premisses *)

Goal TailPremisses :

{f|Term Formula}

{fl|list|(Term Formula)}

{jl:Jlist (cons f fl)}(Jlist fl);

Refine Jlist_cons_elim ([f|Term Formula]

[fl|list|(Term Formula)]

[jl:Jlist (cons f fl)](Jlist fl));

Intros;

Refine jt;

Save;

Goal (NElist|Rule)->Rule;

Refine NElistiter;

intros r;

Refine r;

intros hr lastr;

Refine lastr;

Save NElistLast;

Goal (NElist|Rule)->Rule;

Refine NElistiter;

intros r;

Refine r;

intros headr tr;

Refine headr;

Save NElistHead;

Goal (NElist|Rule)->(NElist|Rule);

Refine NElistrec;

intros r;

Refine (Nnil r);

intros hr tailrs tlrs;

Refine tailrs;

Save NElistTail;

156

Discharge FS;

(* Spec is a pair: First Order Signature and a Rule Set over it *)

[Spec = sigma|FSig|RuleSet];

[jlistrec = [FS|FSig][RSet:RuleSet|FS][s|Type][t|Type]

Jlist_elim RSet ([f|(Term|FS Formula)]

[_:Judgement RSet f]s)

([fl|(list|(Term|FS Formula))]

[_:Jlist RSet fl]t)

];

[RuleRec = [FS|FSig]

[RSet:RuleSet|FS]

[f:(Rule|FS)->Prop]

NElistiter ([r:Rule|FS](f r))

([r:Rule|FS]

[p:Prop](f r) /\ p)

RSet];

Goal Rlemma : {FS|FSig}

{RSet:RuleSet|FS}

{P:(Rule|FS)->Prop}

(RuleRec RSet P)->

{i:nat}P (RuleNum RSet i);

intros FS;

Refine NElist_elim ([RSet:RuleSet|FS]

{P:(Rule|FS)->Prop}

(RuleRec RSet P)->

{i:nat}P (RuleNum RSet i));

intros r P H;

Refine nat_elim ([i:nat]P (RuleNum (Nnil r) i));

157

Refine H;

intros i H1;

Equiv P (RuleNum (Nnil r) i);

Refine H1;

intros HeadRule TailRules H P H1;

Refine nat_elim ([i:nat]

P (RuleNum (Ncons HeadRule TailRules) i));

Refine fst H1;

intros i H2;

Refine H;

Refine snd H1;

Save;

Goal Conj : {FS|FSig}

{RSet|(RuleSet|FS)}

{P:{f|(Term|FS Formula)}(Judgement RSet f)->Prop}

{fl|list|(Term|FS Formula)}(Jlist RSet fl)-> Prop;

intros FS RSet P;

Refine jlistrec RSet

([i:nat]

[Sub:Subst|FS]

[jl:Jlist RSet

(TlistSubFn Sub

(Prems (RuleNum RSet i)))]

[scl:SCHold (SCSub Sub

(SideConds (RuleNum RSet i)))]

[_:Prop]P (ruleAp RSet i Sub jl scl))

trueProp

([f|(Term|FS Formula)]

[fl|(list|(Term|FS Formula))]

[j:Judgement RSet f]

[jl:Jlist RSet fl]

[J:Prop]

[JL:Prop]J /\ JL);

Save;

158

[J_Induction = [FS|FSig]

[RSet:RuleSet|FS]

[P:{f|(Term|FS Formula)}(Judgement RSet f)->Prop]

Judgement_elim RSet P

([fl|(list|(Term|FS Formula))]

[jl:Jlist RSet fl]Conj P jl)];

(* Append Substitutions *)

Goal appendSubs : {FS|FSig}(Subst|FS)->(Subst|FS)->(Subst|FS);

Intros FS Sub1 Sub2 s;

Refine append (Sub1 s) (Sub2 s);

Save;

(* This is a very naive function *)

Goal unifSub : {FS|FSig}

{s|Sort}

{conc:Term|FS s}

{goal_f:Term|FS s}

(Subst|FS);

intros FS;

(* Term elim on conclusion of given rule *)

Refine Term_elim|FS ([s|Sort]

[t:Term|FS s]

(Term|FS s)->Subst|FS)

([sl|list|Sort]

[tl:Tlist|FS sl]

(Tlist|FS sl)->Subst|FS);

(* var case for conc *)

intros n s t;

Refine updateSub|FS n t (initSub|FS);

(* function app case *)

intros _ _ _;

Refine Term_elim|FS ([s|Sort][t:Term|FS s]Subst|FS)

([sl|list|Sort][tl:Tlist|FS sl]Subst|FS);

159

intros; Refine initSub|FS;

intros f1;

Refine bool_elim [cond:bool]

(Eq (id_eq f1 f) cond)->

((Tlist|FS (IDSort1|FS f1))->

(Subst|FS)->Subst|FS);

Refine +3 Eq_refl;

intros H;

Qrepl fst (Id_Eq ? ?) H;

intros;

Refine tl_ih H1;

intros; Refine initSub|FS;

Refine initSub|FS;

intros; Refine initSub|FS;

(* tnil case *)

intros;

Refine initSub;

(* tcons case *)

intros;

Refine appendSubs (t_ih (HeadTerm|FS H))

(lt_ih (TailTerms|FS H));

Save;

[rAP = [FS|FSig]

[RSet:RuleSet|FS]

[i:nat]

[f:(Term|FS Formula)]

[r = RuleNum RSet i]

[conc = Conc|FS r]

[scs = SideConds|FS r]

[prems= Prems|FS r]

[sub = unifSub|FS conc f]

[jl: Jlist RSet (TlistSubFn sub prems)]

[sc: SCHold (SCSub sub scs)]ruleAp RSet i sub jl sc];

160

Goal sclist_eq : {FS|FSig}(SCList|FS)->(SCList|FS)->bool;

intros _;

Refine SCList_elim ([_:SCList|FS](SCList|FS)->bool);

Refine SCList_elim ([_:(SCList|FS)]bool);

Refine true;

intros; Refine false;

intros s t1 t2 scl ih_sch;

Refine SCList_elim ([_:(SCList|FS)]bool);

Refine false;

intros s’ t1’ t2’ scl’ ih’;

Refine bool_elim ([cond:bool](Eq (sort_eq s s’) cond)->bool);

Refine +3 Eq_refl;

Next +1; intros; Refine false;

intros s_eq;

[s_eq1 = fst (Sort_Eq s s’) s_eq];

Refine andalso;

Refine andalso (term_eq t1’ (Eq_subst s_eq1 ? t1))

(term_eq t2’ (Eq_subst s_eq1 ? t2));

Refine ih_sch scl’;

Save;

[rule_eq = [FS|FSig]

[r1,r2:Rule|FS]

andalso

(list_eq (term_eq|FS|Formula) (Prems r1) (Prems r2))

(andalso (sclist_eq (SideConds r1) (SideConds r2))

(term_eq (Conc r1) (Conc r2)))];

Goal RuleNameToNum :

{FS|FSig}(Rule|FS)->(RuleSet|FS)->nat;

intros FS r RSet;

Refine NElist_elim ([_:RuleSet|FS]nat->nat);

Refine +2 RSet;

Refine +2 zero;

intros;

Refine suc H;

intros r rl ih n;

161

Refine bool_rec ? ? (rule_eq r r1);

Refine n;

Refine suc (ih n);

Save;

[ruleAp’ =

[FS|FSig]

[RSet:RuleSet|FS]

[r:Rule|FS]

[i = RuleNameToNum r RSet]ruleAp RSet i];

(* The Theory’s version of derive_cases_thm in HOL *)

[Jl_exists =

[FS|FSig]

[RSet:RuleSet|FS]

[RSet’:RuleSet|FS]

[f:Term|FS Formula]

[i:nat]

sigma|(Subst|FS)

|([sub:Subst|FS]

prod (Jlist RSet

(TlistSubFn sub (Prems (RuleNum RSet’ i))))

(Eq f (TSubFn sub (Conc (RuleNum RSet’ i)))))];

[JlistSum =

[FS|FSig]

[RSet:RuleSet|FS]

[RSet’:RuleSet|FS]

[f:Term|FS Formula]

NElist_elim ([_:RuleSet|FS]Type(0))

([r:Rule|FS]

sigma|(Subst|FS)

|([Sub:Subst|FS]

prod (Jlist RSet (TlistSubFn Sub (Prems r)))

(Eq f (TSubFn Sub (Conc r)))))

162

([r:Rule|FS]

[rl:NElist|(Rule|FS)]

[rl_ih:Type(0)]

sum (sigma|(Subst|FS)

|([Sub:Subst|FS]

prod (Jlist RSet (TlistSubFn Sub (Prems r)))

(Eq f (TSubFn Sub (Conc r)))))

rl_ih)

RSet’

];

(* Again we want to convert something referring to rules

by numbers to something that is list recursive *)

Goal sngRSetEq :

{FS|FSig}

{r:Rule|FS}

{i:nat}Eq (RuleNum (Nnil r) i) r;

intros FS r;

Refine nat_elim ([i:nat]Eq (RuleNum (Nnil r) i) r);

Refine Eq_refl;intros i ind_hyp;

Refine ind_hyp;

Save;

Goal ith_sum :

{FS|FSig}

{f:Term|FS Formula}

{RSet:RuleSet|FS}

{i:nat}

(Jl_exists RSet RSet f i)->

(JlistSum RSet RSet f);

intros FS f RSet;

Refine NElist_elim ([RSet’:RuleSet|FS]

{i:nat}(Jl_exists RSet RSet’ f i)->

JlistSum RSet RSet’ f);

(*base case *)

intros r i; Expand Jl_exists; Qrepl sngRSetEq r i;

intros; Refine H;

163

(* ind step *)

intros r rl rl_ih;

Refine nat_elim ([i:nat](Jl_exists RSet (Ncons r rl) f i)->

JlistSum RSet (Ncons r rl) f);

intros; Refine in1; Refine H;

intros n n_ih;

Equiv (Jl_exists RSet rl f n)->(JlistSum RSet (Ncons r rl) f);

intros;

Refine in2;

Equiv JlistSum RSet rl f;

Refine rl_ih n H;

Save;

Goal JRSum :

{FS|FSig}

{RSet:RuleSet|FS}

{f|(Term|FS Formula)}

{j:Judgement RSet f}

JlistSum RSet RSet f;

intros FS RSet;

Refine Judgement_elim RSet ([f|Term|FS Formula]

[_:Judgement RSet f]

JlistSum RSet RSet f)

([fl|(list|(Term|FS Formula))]

[_:Jlist RSet fl]Jlist RSet fl);

Refine +1 jnil; Next +1;

intros f fl j jl j_ih jl_ih;

Refine jcons RSet j jl;

intros i Sub jl sch jl_ih;

Refine ith_sum (TSubFn Sub (Conc (RuleNum RSet i))) RSet i;

Refine dep_pair Sub;

Refine Pair jl;

Refine Eq_refl;

Save;

164

