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"Belderg" 

'They just kept turning up 
And were thought of as foreign'

One-eyed and benign 
They lie about his house, 
Quernstones out of a bog. 

To lift the lid of the peat 
And find this pupil dreaming 

Of neolithic wheat! 
When he stripped off blanket bog 

The soft-piles centuries 

Fell open like a glib: 
There were the first plough-marks, 

The stone age fields, the tomb 
Corbelled, turfed and chambered, 

Floored with dry turf-coomb. 

A landscape fossilized, 
Its stone wall patterning 

Repeated before our eyes 
In the stone walls of Mayo 

Before I turn to go 

He talked about persistence, 
A congruence of lives, 

How, stubbed and cleared of stones, 
His home accrued growth rings 

Of iron, flint and bronze. 

So I talked of Mossbawn, 
A bogland name. 'But moss?' 

He crossed myoId home's music 
With older strains of Norse. 
I'd told how its foundation 

Was mutable as sound 
And how I could derive 

A forked root from that ground 
And make bawn an English fort, 

A planter's walled-in mound 

Or else find sanctuary 
And think of it as Irish, 
Persistent if outworn. 

'But the Norse ring on your tree?' 
I passed through the eye of the quem, 
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Grist to an ancient mill, 
And in my mind's eye saw 

A world-tree of balanced stones, 
Querns piled like vertebrae, 

The marrow crushed to grounds. 

Seamus Heaney 1975 
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Abstract 

This thesis assesses the environmental marginality of a site at the Atlantic fringe of the British Isles, 

occupied at various points throughout prehistory. Palaeoclimatic proxy records from the North Atlantic 

show that climatic fluctuations have occurred in the mid- and late-Holocene, at amplitudes likely to be 

perceptible to human communities. Coincident environmental changes occurred to affect the development 

of landscapes via vegetation change and pedogenesis. The degree to which prehistoric agricultural 

economies were vulnerable to these external fluctuations is tested in this thesis. 

The archaeological complex at Belderg Beg, Co. Mayo, Ireland, consists of a sub-peat stone-built field 

system of the sixth millennium cal. BP, a Middle Bronze Age roundhouse and adjacent areas of ridge-and

furrow cultivation. By the time of Bronze Age occupation, blanket bog already covered a significant 

proportion of the landscape. A combination of on- and off-site investigation strategies included AMS 14C 

dated sediment stratigraphic analyses, palynology, soil micromorphology, peat humification and 

geochemistry. Results show that peat initiation occurred during Neolithic agricultural occupation, at c. 

5465 cal. BP. The initial woodland assemblage was a combination of typical upland and lowland tree 

types, and had been subjected to disturbance. The economy was primarily pastoral but with an arable 

component. Abandonment occurred at c. 5375 cal. BP, and woodland regenerated rapidly. Neolithic 

abandonment occurred several centuries prior to the spread of blanket peat over the fields. Peat spread 

upslope at an average rate of c. O.385m/cal. yr. The Bronze Age archaeological remains probably represent 

several discrete phases of occupation, associated with intensive arable agriculture which included soil 

amendment strategies, and ceasing in the mid-second millennium cal. BP. Geochemical analysis failed to 

support previous hypotheses that a vein of copper ore 2km distant was exploited during the Bronze Age. 

The results from this investigation add to a growing corpus from western Ireland suggesting a clear pattern 

of Early and Middle Neolithic sedentism and mixed agriculture, followed by abandonment until 

reoccupation in the Early Bronze Age. 

As the Neolithic field system at Belderg Beg was apparently smaller and less regular than that at nearby 

Ceide Fields, it may represent an economically marginal site in terms of core-periphery relationships. 

Abandonment occurred during a phase of relative climatic aridity and it is concluded that soil deterioration 

and erosion was probably a factor in the demise of agriculture. The Bronze Age occupation is more 

difficult to characterise in terms of economy, but the gradual contraction of intensive agriculture suggests 

that again, soil quality rather than direct climatic shifts was the limiting factor and that the location 

eventually became environmentally marginal for an economy including significant cereal production. 
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Chapter 1 

Questioning marginality in prehistory 

1.1 Aims and approach 

1.1.1 Aims 

This thesis addresses the issues of environmental marginality and climatic vulnerability in 

the context of a case study. A study area in western Ireland was sought due to its location in 

proximity to the Atlantic seaboard of Europe, where climatic changes resulting from 

Northern Atlantic coupled ocean-atmosphere system variations may have been recorded in 

terrestrial proxy indicators. A field system at Belderg Beg, North Mayo, was selected 

because it was known to have been occupied in the Neolithic and the Bronze Age and was at 

some time buried by blanket peat. This investigation aims to reconstruct, through the use of 

multiple palaeoenvironmental techniques, the climatic, pedological and environmental 

conditions throughout the period of occupation and abandonment, and how landscape 

evolution has impacted on the nature and effects of human activities. 

1.1.2 Quotation of radiocarbon dates 

All radiocarbon assays quoted from the literature have been calibrated with OxCal v3.9 

(Bronk Ramsey 2003) using atmospheric data from Stuiver et al (1998). In the text dates are 

quoted in calibrated years BP (midpoint of 2cr range) with 2cr error. Full details of original 

assays and sources are presented in Appendix A. 

Radiocarbon assays are presented in the published literature in different forms. Most 

archaeological literature, and an increasing proportion of the palaeoenvironmental literature, 

quotes calibrated ages in text, due to the calendrical significance and the extended and 

refined calibration curves available. Presentation methods may differ. The Irish Radiocarbon 

Date Database website (Milliken 2002) quoted raw (uncalibrated) dates only, whilst the web

based database of Scottish archaeological radiocarbon dates (Historic Scotland Radiocarbon 

Dating Search) quotes the calibrated range at 2cr error in addition to the raw measurement. 

Whilst uncalibrated ages are commonly presented with a lcr error range, the 20 range is most 

commonly used for calendar ages. 



The problems associated with many archaeological (and indeed palaeoecological) 

radiocarbon assays must be addressed. It is vital to state at the outset of this thesis that not all 

published assays are uncritically accepted as a true estimate of the age of the event they are 

assumed to represent. As this investigation is concerned with human settlement over time, a 

synthesis of the archaeological background to the area in question is required. Many of the 

sites referred to were excavated before the era of AMS radiocarbon dating, and materials 

selected to date such sites were necessarily composed of mixed bulk charcoal samples. Due 

to the potential old wood effect and the possibility of a bulk sample containing a mixture of 

contemporary and residual material, Ashmore (1999) has counselled against the acceptance 

of bulk charcoal radiocarbon dates, instead proposing that single entity samples only should 

be used for archaeological dating purposes. There are related and additional complicating 

problems associated with the dating of organic samples, and these are discussed further in 

Section 4.4.7.2 in the context of methodological aspects of the present study. 

Ashmore (2002, 784~ 2004, 125) has also argued that radiocarbon assays measured many 

years ago should be rejected or used cautiously. Elsewhere, on the basis of the findings from 

the International Study Group (1982) the early- to mid-1980s have been suggested as a cut

off point, with errors of assays measured before these years being larger in fact than those 

quoted by a factor of between 1.8 and 4 (Ashmore et al2000, 45-46). 

It is therefore proposed that in discussion of sites dated by bulk charcoal samples, and/or by 

dates measured before 1982, caution should be taken in acceptance of the dates presented. 

Attempts have been made to avoid basing theories or arguments upon such sites. 

1.1.3 Structure of the thesis 

The opening chapter introduces the issue of marginality in archaeology and palaeoecology. 

The various types of marginality are discussed. Chapter Two is a literature review which 

assesses research and current thinking regarding the archaeology and palaeoenvironment of 

Ireland, focusing on the west of the island. The nearby sub-peat field system at C6ide Fields 

is also described in detail as results from investigations there are extremely pertinent to this 

research. From previous work at Belderg, the sites are known to have been occupied at 

roughly the same time, and blanket bog spread also occurred at similar times. Other 

archaeological sites and published pollen profiles in the North Mayo area are discussed. 



North Atlantic Holocene palaeoclimatic records are evaluated in order to locate the points in 

time at which environmental stress may have been an issue for societies of the British 

Atlantic fringe. Chapter Three provides an introduction to the study area. The site is 

described in its local environmental and archaeological contexts, and a summary of previous 

and ongoing research is provided. Chapter Four outlines the research questions which this 

investigation seeks to address, the research strategies employed and the methodologies 

involved. Both off-site and on-site studies are employed, the former consisting of sediment 

stratigraphic analysis of the valley-side and mUlti-proxy analysis of a long peat core taken 

from a basin outwith the area of archaeological remains. This long core provides the 

palaeoenvironmental history of the site. More specific on-site methods, pollen and soil 

micromorphological analysis of formerly cultivated Old Land Surfaces, are employed to 

specifically address the nature of prehistoric agriculture. Chapter Five presents the results 

and interpretations of the off-site palaeoenvironmental investigations. Chapter Six presents 

the results and interpretations of the on-site investigations. Chapter Seven integrates the 

results and interpretations and develops a wider assessment, forming a multi-tiered 

appreciation of the site with respect to its local, regional and wider significance and presents 

opportunities for further research. Chapter Eight summarises the conclusions of this study. 

1.2 Introduction to Chapter One 

This thesis is concerned with the environmental marginality of prehistoric societies. This is 

in most cases considered as climatically driven (Young & Simmonds 1999), however other 

environmental stresses such as soil degradation and resource depletion exist in this category. 

Holocene climate change is discussed and the different proxies are assessed to pinpoint the 

most clearly indicated climatic shifts. There is not complete agreement between the different 

forms of proxy climate evidence. However, as analytical and dating techniques become more 

sophisticated, some trends are consistently apparent in different records. 

The effects of environmental marginality are not limited to humans. Chapter Two explores 

the 6000 cal. BP Ulmus decline and the 4500 cal. BP Pinus decline, pan-regional phenomena 

which are arguably the consequence of crossing environmental thresholds pertaining to one 

particular species. These examples, and other instances of recognised environmental 

marginalisation of non-human biota, may be significant to the study of human societies in 

that they help to pinpoint periods of climatic or ecological change and can aid quantification 

of flux in particular climatic parameters. 



1.3 Marginality in archaeology 

1.3.1 Defining marginality 

The perception of marginality in prehistory largely rests upon the identification of 

core/periphery patterns. So-called marginal societies are those deemed to be 'living on the 

edge' (Coles & Mills 1998, vii). Marginality may perhaps be described as the vulnerability 

of a society or community to change. The degree of favourability for occupation or use of the 

landscape is almost always invoked, hence the term 'marginal environment'. There are 

currently three (overlapping) types of marginality recognised in archaeology, corresponding 

to the categories defined by Blaikie & Brookfield (1987): environmental, economic and 

social/political marginality. 

1.3.1.1 Environmental marginality 

Common causal factors of environmental marginality are climate, soils, biota and disease. 

These factors may be linked and work in tandem, compounding the stresses involved. 

Human activity can compound or cause marginalisation, for instance land management 

practices could cause soil deterioration. 

Assessment of the environment as a limiting factor to the success of a society, measured in 

terms of maintenance of a viable population, rests upon ecological principles of adaptation, 

tolerance and critical environmental variables - whatever is in shortest supply (Coles & Mills 

1998, viii; Dean 2000, 96). Marginality may advance through two routes; firstly, due to the 

short supply of a critical environmental variable (e.g. water, good quality soils), or 

alternatively, due to a change in a critical environmental threshold (most often climate). 

Adaptations and adoptions of new technologies may overcome environmental constraints. 

However if a change occurs which puts a particular variable beyond the operating threshold 

applicable to the society, failure or collapse is inevitable (Barber 1998, 152; Coles & Mills 

1998, viii; Dean 2000, 96). The classic early studies of environmental marginality were those 

by Parry (1975; 1978; 1985) and these are discussed below (Section 1.3.2.2). 

In prehistoric archaeology, environmental marginality is usually invoked in relation to 

societies perceived as having practised largely subsistence agriculture. A society becoming 



increasingly prone to diminishing returns under ecological stress will be less buffered against 

the effects of short term environmental changes and thence more susceptible to agricultural 

failure, with the eventual result being famine and population collapse, settlement 

abandonment or economic reorganisation (see Parry 1978; Baillie 1998; Grattan 1998). 

Assumptions of isolation and reliance on subsistence agriculture have arguably been over

estimated (see e.g. Tipping 1998). The existence of trading networks to redistribute 

commodities such as cereal products would mean that the suitability of land for arable 

agriculture was not a prime consideration in settlement location, and that a population 

inhabiting an area considered climatically or pedologic ally marginal for arable agriCUlture 

was able to prosper. 

1.3.1.2 Economic marginality 

The economic structure of a society may be marginal if there is a disparity between a 

community's food requirements and the relative economic potential of their environment to 

provide sufficient yields (Young & Simmonds 1999,200). Marginal economies are typified 

by low rates of return for effort invested, or high inherent risk of potential crop failure, and 

are generally associated with systems in which labour inputs are high (ibid.). Put simply, it 

may be described as a periphery that cannot compete or trade with a core. 

1.3.1.3 Social/political marginality 

Political, social or cultural isolation of communities within the wider social or political 

system may stem from geographic remoteness, social status, or religious, linguistic or ethnic 

factors (see Coles & Mills 1998, ix). For instance, the Western Isles of Scotland were 

commonly considered 'marginal' during the 18th and 19th centuries AD (ibid.). However 

during the late Norse period (pre-14 th century AD when the Isles were incorporated into the 

Kingdom of Scotland), the area formed the core of the Norse Kingdom of the Isles, 

suggesting that geographic location only influenced the move towards marginality once the 

larger polity developed, leading to the marginalisation of the areas on the periphery of the 

enlarged political unity (Arrnit 1998). 



1.3.2 Archaeological recognition of marginality 

1.3.2.1 General considerations 

Recognising the marginal status of a prehistoric society can be difficult, because evidence 

varies depending upon the form of marginality. Identification of environmental or climatic 

change coincident with a change of some sort in the archaeological record is usually the 

starting point, as the change is seen as indicative of adaptive response to external pressure. 

The most commonly asserted examples probably relate to settlement expansion/contraction 

in relation to climate change and involve an element of arable agricultural decline (i.e. 

environmental marginality). The development of thought associated with this phenomenon is 

discussed below in Section 1.3.2.2. Additionally, or perhaps alternatively, the adoption of 

new subsistence methods or new technologies may well signal an adaptive response to 

environmental or economic marginality. Examples could be the introduction or evolution of 

manuring techniques (e.g. Simpson & Bryant 1998; Simpson et al 1998a; Simpson et al 

1998b). Economic or social innovations to combat increasing marginality are closely related 

(see Coles & Mills 1998, xi). Increasing development of specialisation and trading (usually 

of cereal crops to communities in locations unfavourable for arable agriculture, but also of 

luxury goods) has been postulated (e.g. Tipping & McCullagh 1998). The emergence of 

social hierarchies has in part been linked to the development of redistribution networks, and 

repeated short-term episodes of marginality may have been a trigger in this (Halstead & 

0' Shea 1982) although it is equally possible that trade routes and networks were constructed 

for the purpose of distributing prestige or exotic items. Of course the two models are not 

mutually incompatible. 

1.3.2.2 Marginality and agricultural settlement 

The research of Martin Parry in the 1970s and early 1980s was instrumental in defining 

environmental marginality, and has explicitly influenced all subsequent research into the 

phenomenon of marginality i~ the British Isles. Essentially, Parry attempted to trace the 

effects of the Little Ice Age (LIA; c. 600-200 cal. BP) on agricultural settlement. Whilst 

Parry's original work was concerned with early modem agriculture in southern Scotland, its 

value as a case study ensured that the hypotheses contained therein have been discussed 

and/or tested in relation to other periods and regions. 
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The basis of Parry's (1975, 1978) original hypothesis was that cereal harvest yields and the 

probability of harvest failures are to a large degree influenced by climatic conditions, i.e. 

weather. By concluding that summer temperature is the most important influence on crop 

yield and therefore success/failure of a harvest, utilising the accumulated temperature (day

degree) measure of summer warmth he was able to calculate theoretical altitudinal isopleths 

of accumulated temperature, and thereby construct rational limits to cereal cultivation. By 

reference to instrumental records of temperature (Lamb 1977; Manley 1953) and 

documented records of harvest yields, crop prices, harvest failure and farm abandonment, he 

was able to construct a link between runs of years of poor yields or crop failures, and retreat 

from the agricultural margin, i.e. progressive abandonment of agricultural land at the upper 

altitudinal limit of arable cultivation during times of climatic deterioration. 

Parry (1978, 62-65) recognised the increasing knowledge of Holocene climatic fluctuations -

largely the work of H.H. Lamb; see Lamb et al (1966) - and postulated that from the fifth 

and fourth millennia BP there was a northern European trend towards cooler and drier 

conditions, possibly occurring in rapid shifts between phases of relative stability. This was 

followed in the first millennium BP with a cyclonic north Atlantic circulation pattern 

bringing a maritime climate of mild winters and cool damp summers to the British Isles and 

northern Europe. This phenomenon has been linked here and elsewhere to the recurrence of 

surfaces of renewed or accelerated mire growth in north west Europe (Parry 1978, 65). Parry 

(ibid., 119) also commented upon the potential significance of (principally Bronze Age) sub

peat archaeological sites in Ireland and Scotland as indicators of agricultural retreat from less 

favourable land during periods of climatic stress. 

The main criticisms of Parry's theories are twofold. The first centres upon the processual 

view of human societies; that they ignore the buffering capability of exchange networks and 

the social and political factors that existed at any time (e.g. Tipping 1998; Young & 

Simmonds 1999, 199-200). The second is the focus on cereal agriculture to the near

exclusion of any other economic strategy (Young & Simmonds 1995, 11; 1999, 199) and a 

disregard for the actual farm organisation with respect to altitude during the time period 

concerned (Tipping 1998, 8). A further criticism is that Parry's evidence was wholly 

documentary, and based of absences of evidence. Direct evidence from radiocarbon-dated 

palynological investigations in a neighbouring area, the Cheviot Hills, recorded persistent 

cereal cultivation throughout the LIA (Tipping 1998). 
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Alternative theories regarding human action m the face of environmental or other 

marginality have been proposed that more or less oppose the 'agricultural retreat' hypothesis. 

These centre upon adaptation principles. Archaeological detection of settlement expansion 

and contraction has been suggested for the Strath of Kildonan, Scotland (Cowley 1998). 

Whether this is related to extensification of agricultural land as a response to ecological 

stress or climatic deterioration is unknown due to the poor chronological control on upland 

hut circle sites, and the problems associated with correlation of palaeoenvironmental records 

taken at some distance from archaeological sites (Cowley 1998, 170-171; Coles & Mills 

1998, x). Edwards & Whittington (1998) suggested that 'regeneration' phases recognised in 

palynological profiles may reflect the marginalisation of land for agriculture - whatever the 

causal factors behind this shift. They argued that partial regeneration, especially in 

conjunction with increasing representation of acid grassland and heath taxa, may signal less 

intensive utilisation of land, conceivably due to marginalisation (ibid., 63). 

1.3.2.3 Problems with the archaeological recognition of marginality 

The most problematic aspect of the archaeological study of responses to marginality is 

provmg cause and effect. This is compounded by the often imprecise dating of 

archaeological sites and certain palaeoecological records. In the case of settlement 

archaeology, a marked regional trend can support the case for settlement shift, but as 

described above and below, precisely dating each individual site can be difficult, and the 

identification of a climatic shift from peat stratigraphies can be problematic due to dating 

precision and the recognition of a definitive palaeoclimatic indicator (i.e. avoiding the 

problem of equifinality). 

The wide age-ranges commonly provided by calibration of radiocarbon assays have been 

highlighted as often inadequate for correlation with historical events (Dumayne et al 1995). 

The related problems of sucking-in of events known to have occurred within a particular 

date-range into a radiocarbon chronology with a wide age-range, and of wide age-ranges 

smearing events across extended time periods, have been described by Baillie (1991) with 

respect to the insertion of calendrical tree-ring dates into radiocarbon-based chronologies. By 

extension, these problems are compounded when correlating events from the prehistoric 

archaeological record (which at best relies on radiocarbon dating of single events within a 

site's history) with an independent palaeoenvironmental chronology. 
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The need to consider more than just one part of the econOmIC sphere of a prehistoric 

community is vital. Bearing in mind the criticism of Parry's study of the Lammermuir Hills 

in the LIA, a considered judgement of the relevant economic and agricultural systems in 

place (including buffering mechanisms such as trade) must be made, to avoid simple value 

judgements equating the economic success of a community with the sustainability of a cereal 

crop. 
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Chapter 2 

Background literature review 

2.1 Introduction to Chapter 2 

Discussion of Irish archaeology and economy commences at the Mesolithic-Neolithic 

transition, as this period is important in setting the scene for a thorough understanding of the 

Neolithic, in social, economic, cultural and settlement terms. The apparently rapid and 

marked changes in economy between the two archaeological phases coincide with climatic 

and environmental changes, and causal links have been suggested. 

2.2 The prehistoric archaeology of Ireland - settlement and economy 

2.2.1 The Mesolithic-Neolithic transition 

2.2.1.1 The transition in Ireland: continuity and contemporaneity? 

Departing from the traditional VIew that Irish Mesolithic and Neolithic societies were 

dissimilar and separate from one another (e.g. Woodman 1976), discoveries in the 1990s 

proposed links between Later Mesolithic and Neolithic societies. Overlapping site 

distributions and greater continuity between lithic industries were postulated (Green & 

Zvelebil 1990, 83-84; Peterson 1990, 94-98 Woodman & Andersen 1990, 378). 

Contemporaneity between Later Mesolithic artefacts and animal domesticates was implied by 

occasional discoveries of domesticated animal bones in Mesolithic contexts (e.g. Woodman 

1976), inviting suggestions of an 'availability phase' (Green & Zvelebil 1990, 85; cf. Zvelebil 

& Rowley-Conwy 1984; 1986). The Quaternary Fauna project (QFP) of the mid-1990s 

resulted in the undermining of many of these assumptions. AMS dating of mammalian bones 

from the late Pleistocene and Early Holocene was employed in an attempt to elucidate the 

chronology of a range of species in Ireland (Woodman et al 1997). Bones identified as 

domesticate (usually cattle) from several sites, which had been dated by context. were 

established as being in fact intrusive, for instance at Dalkey Island, Co. Dublin (McAuley & 

Watts 1961; Liversage 1968; Woodman 1976) and Moynaugh Lough (Bradley 1991). Details 

are presented in Appendix A. An early date for a Bos taurus (domesticated cattle) bone at 

Sutton, Co. Dublin, in a Later Mesolithic shell midden. may either be a brown bear or 
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possibly a red deer bone, or that it represents a chance incursion of an aurochs (Bas 

primigenius) from Wales (Woodman et a11997, 155). 

Ferriter's Cove, Co. Kerry, provided a further incidence of cattle bones within a platfonn of 

mostly Later Mesolithic occupation sites (Woodman & O'Brien, 1993). These were originally 

assumed to be intrusive, but AMS dating proved the bones were roughly contemporary with 

the human remains and to 14C-assayed charcoal samples from the 1992 excavations (see 

Appendix A; Woodman et al 1997, 139). The 013C value of the cattle bone indicates the 

animal consumed a partially marine diet. The recent assay of a further cattle bone from 

Ferriter's Cove to c. 6620 cal. BP (not fully published; see Woodman 2000, 259) has 

indicated significantly earlier knowledge of domestication than was previously assumed, even 

considering the pre-existing cattle bone dates from that site. 

The beginnings of cereal cultivation are also problematic. As the principal definitive evidence 

of cereal cultivation - archaeobotanical assemblages - were rare and limited until the 1990s, 

the Ulmus decline was traditionally taken as the palynological indication of the start of the 

Neolithic (e.g. Herity & Eogan 1977). However, some potential cereal-type grains were 

recorded in pre-Ulmus decline levels in a small number of palynological investigations in the 

British Isles (e.g. Edwards & Hirons 1984), including between 2 and 11 instances in Ireland 

(Groenman van Waateringe 1983). A very early pioneer Neolithic, or 'substitution' phase (cf. 

Zvelebil & Rowley-Conwy 1984; 1986) before the earliest dated archaeological contexts was 

proposed (see Woodman 2000, 224). When the problems associated with distinguishing 

cereal from wild grass pollen (Section 4.4.2.3) were considered, most of these were 

discounted as cereal grains (O'Connell 1987, 218). It has become accepted that palynological 

inference of Neolithic agricultural activity is strongest when the pollen assemblage contains 

increased representation of agricultural indicator taxa (notably Plantago lanceolata) as well 

as the presence of cereal-type grains. Most western Irish profiles record an interval of 

between one and three centuries between the Ulmus decline and the palynologic ally 

recognisable onset of Neolithic agriculture (O'Connell & Molloy 2001). 

2.2.1.2 Climatic change at the transition to agriculture 

With the inferred increasingly continental climate of c. 6100 - 5000 cal. BP in northwest 

Europe, came changes in weather patterns that may have affected the lives of human 

societies. The main phase of the mid-Holocene IRD event (Section 2.3.4.1) was between c. 

6000 and c. 5600 cal. BP (Bond et al 2001; see Tipping & Tisdall 2004, 74-75). Terrestrial 

records from northern Britain and Ireland, being of generally high resolution, show a complex 
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sequence of frequent change from c. 6300 cal. BP until c. 6000 cal. BP; where wetness from 

c. 6300-6100 was abruptly terminated and followed by a very dry period at around 6100 cal. 

BP, which continued until c. 5200 cal. BP (Barber et al 1994; Tipping 1995; Anderson et al 

1998; Hughes et al 2000; Barber et al 2003; Tipping & Tisdall 2004). By decoupling the 

often-assumed correlative relationship between temperature and precipitation, there is no 

necessity for an increase in warmth to have accompanied this brief dry spell (Tipping & 

Tisdall 2004, 75; contra Bonsall et al2002b). 

Agriculture was established along the channel coast of France and on the North European 

Plain between c. 7400 and c. 6800 cal. BP, but was not adopted widely in the Atlantic fringe, 

(Britain, Ireland, Denmark and Southern Sweden) until c. 6100 to 5700 cal. BP; a delay 

primarily accounted for thus far by emphasising the success of indigenous hunter-fisher

gatherers (e.g. Zvelebil & Rowley-Conwy 1986). Recent reinterpretations of the delayed 

transition in Atlantic Europe have focussed on the concurrent environmental changes (Bonsall 

et al2002a; 2002b; Tipping & Tisdall 2004). 

2.2.1.3 The Ulmus decline 

Early suggestions as to the cause of the mid-Holocene Ulmus decline centred upon climatic 

change as the dominant factor, with climatic deterioration causing a contraction of the range 

limits of the already marginalised genus (Iversen 1941; 1960; Faegri 1944; Nilsson 1948; 

1961; Frenzel 1966; Smith 1981). Paradigm shifts have occurred, bringing alternative theories 

to the fore: principally those of human activity (Troels-Smith 1960) and species-specific 

disease (Pilcher et al 1971; Girling & Greig 1985; Molloy & O'Connell 1987). By the late 

1990s the hypothesis of disease, most likely aided by anthropogenic woodland clearance, was 

the most favoured. The spatial patterns displayed by the Ulmus decline across Europe suggest 

that the decline was a synchronous wave, generally coincidental with the adoption of 

agriculture, occurring in any particular region as the transition from a hunter-gatherer 

Mesolithic to a Neolithic agricultural economy occurred (Parker et al2002, 26). 

Reanalysis of the Ulmus decline has been advantaged by increasingly precise dating and 

larger datasets, and whilst disease as a key cause remains undisputed, climatic change is re

emerging as a contributory factor (Parker et al 2002). The proposed mechanisms were 

twofold. Firstly, the direct effect of colder winters might have damaged an environmentally 

marginalised biota. Colder winters, the increasing likelihood of spring frosts, and the effects 

of drier soils - Ulmus is vulnerable to drought (Rackham 1980) - have all been postulated as 

causal factors (Iversen 19.+1; 194.+; Godwin 1975, 2.+7; Tipping & Milburn 2000, 191). 
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Furthennore, climate could indirectly affect the spread of Ulmus disease if climate change 

partially determined the timing of the adoption of agriculture in certain locations (see below), 

and this transition facilitated the disease spread (Parker et al 2002, 27). 

2.2.1.4 Subsistence ec.onomies of Atlantic Britain 

Bone stable isotope analysis, hitherto relatively new to archaeology, is furthering knowledge 

in the field of palaeodietary research. This technique has been applied to skeletal remains 

from the Late Mesolithic and Early Neolithic of various locations within the north European 

Atlantic fringe, and studies so far have indicated that an abrupt shift in diet composition 

occurred at the transition to the Neolithic. Taken in consideration of the above evidence for 

climatic and environmental change, this has important implications for current theories as to 

the nature and mechanisms of the Neolithisation of Britain and Ireland. 

The relative values of stable isotopes of carbon (813e) and nitrogen (8 15N) in bone indicate the 

long-term (5-10 year) protein component of the individual's diet. The 813e ratio reflects the 

balance of terrestrial versus marine dietary components, with more negative values 

representing increasing terrestrial-based resources. For nitrogen isotopic ratios, higher 815N 

values represent increasing trophic levels, indicating whether an individual had a mainly 

herbivorous, omnivorous or carnivorous diet (Schulting 1998). 

Stable isotope data from northwest European archaeological human and faunal bone samples 

have been collated to reconstruct how dietary shifts characterising the Mesolithic-Neolithic 

boundary varied temporally and spatially. Samples from Scandinavia, western Scotland and 

Brittany (Schulting 1998) have comprised the main corpus of data, with some examples 

existing from Wales (Schulting & Richards 2002b) and England (Richards & Hedges 1999; 

Schulting 2000). Most studies have focused on 813e with additional infonnation sometimes 

supplied by sulphur isotopes, which reflect the food source location, rather than the diet 

(Richards 2004, 87). These datasets display a distinct, rapid dietary change between the Late 

Mesolithic (characterised by marine-based economies) and Early Neolithic (characterised by 

terrestrial economies) individuals, regardless of inland or coastal location (see Richards 2004 

for summary). In Britain this disjuncture occurred at c. 5950 cal. BP, at the point when 

Neolithic material culture began to appear (Richards 2004, 87). The 8
15

N data are sparser 

(Richards 2000; Schulting & Richards 2002a; 2002b) but it appears that no further 

generalisation of a British Neolithic diet can be made (Richards 2004. 88). 
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Mesolithic human bones have been found at three sites in Ireland (see Appendix A): Ferriter's 

Cove, Co. Kerry (Woodman & O'Brien 1993; Woodman et al 1999), Rockmarshall shell 

midden, Co. Louth (Hedges et al 1997), and Stoney Island, Co. Galway (Hedges et al 1993). 

At Ferriter's Cove, 813C values indicate a marine-based diet. Although the 813C value for the 

Rockmarshall bone is still higher than those of most prehistoric Irish human bones sampled to 

date (Woodman et al 1997, 143), including the Stoney Island bog bodies, it suggests that the 

Rockmarshall inhabitants did not exclusively rely on marine resources. The small number of 

Mesolithic human bones from the British Isles makes generalisation difficult, but artefactual 

evidence undoubtedly supports theories of marine-based diets (Richards 2004, 87). 

This apparent rapid shift from marine to terrestrial econOffiles, which occurred even in 

coastally-based societies, coincident with the arrival of Neolithic pottery, has re-opened the 

discussion of a Neolithic package, which for many years had been out of favour in preference 

to a more gradual model of adoption. Identification of the reasons behind such a rapid, 

complete shift has largely focussed on the coincident environmental changes, although 

cultural change with sweeping reforms has also been considered (Richards 2003). 

Arguments for an environmental trigger to the transition to farming along the northwest 

European Atlantic fringe largely rest upon the shift to a more continental climate, specifically 

the lowered precipitation levels which were apparently at their most extreme c. 6100 cal. BP 

(see Section 1.4.3.2; Bonsall et al 2002a; 2002b; Tipping & Tisdall 2004). By this model, 

drier soils have been argued to be the critical factor in the facilitation of the adoption of 

agriculture (Bonsall et al 2002b). This view implicitly assumes a crucial role for cereals in 

early Neolithic economies, indeed by extrapolation in the Neolithic package (see Section 

2.2.2.1). The concept of a predominantly pastoral economy persists, with arable agriculture 

often considered to have been integral, yet lesser in terms of dietary contribution (e.g. Monk 

2000; O'Connell & Molloy 2001). The significance of drier soils as the major variable 

allowing the adoption of cereal agriculture is enhanced by the above discussion of soil 

dryness as a contributory factor in the Ulmus decline. 

In short, this somewhat environmentally deterministic model accounting for the near

millennial delay in adoption of agriculture along the northwest European Atlantic fringe 

describes an availability phase during which agriculture may have been known about, or even 

attempted to some degree; however until the c. 6100 cal. BP climatic shift towards 

increasingly continental conditions, further expansion was not feasible (Bonsall et al 2002b). 

The adoption of agriculture therefore commenced when environmental conditions \\ere 

appropriate. The remaining question as to why the marine dietary component was apparently 
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abandoned so rapidly, rather than a mixed diet prevailing, or coexistence of neighbouring 

communities with different economies, remains (Bonsall et al 2002b). The chief argument for 

wholesale adoption is that cereals provide an important storable food source for humans and 

animals and that straw is important for winter bedding for cattle (ibid., 6). The model of 

Rowley-Conwy (1984) which attributed the collapse of Mesolithic maritime systems in the 

Baltic to climate change via a reduction in marine foods caused by salinity changes, never 

gained wide popularity, and an environmentally deterministic model for the near-total 

abandonment of marine resources on a regional scale is unlikely to win support (Bonsall et al 

2002b, 11; Schulting 1998, 214). Nevertheless, some element of declining marine 

productivity in the mid-Holocene has been postulated in connection with falling sea-levels, 

thereby contributing to the necessary total switch of resource-base (Schulting 1998,214). 

2.2.2 The Neolithic 

2.2.2.1 The Irish Neolithic 

Chronology 

In this thesis, terminology conforms to generally accepted schemes (see e.g. Waddell 1998; 

Cooney & Grogan 1999) and the Neolithic chronology is subdivided into Early (c. 6000 - c. 

5500 cal. BP), Middle (c. 5500 - 4800 cal. BP), and Late (c. 4800 - 4300) cal. BP) horizons. 

Settlement 

Theories have recently emerged regarding the nature of Neolithic settlement of Britain and 

Ireland which tend to characterise the period by transitory seasonal mobility (e.g. Thomas 

1996; 1999; Whittle 1996; Bradley 1997, Edmonds 1999; Pollard 1999). This has partly 

resulted from the paucity of Neolithic domestic sites in southern mainland Britain in 

comparison to continental Europe. The large number of ceremonial monuments dating to the 

Neolithic is taken as evidence of migratory populations staking claims to the land, and 

utilising these constructions for seasonal congregational purposes (Thomas 1999, 23-29; 

Cooney 2000, 32-34). In the Scottish islands, some structures interpreted as having a 

domestic function have been dated to the Neolithic and occupation of some multi-period 

structures or sites appears to have included at least some Neolithic activity, such as the houses 

with associated fields at Scord of Brouster, Shetland (Whittle et al 1986; contra Whittle 

1999), and the Outer Hebridean islet settlements Eilan Domhnuill and Eilan an Tighe, North 

Uist, and Northton, Harris (Armit 1996). These have been often considered as atypicaL 
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adaptations to particular environmental settings (e.g. Thomas 1996; Pollard 1999). Primarily 

non-domestic functions have been postulated (Thomas 1996, 9-10), with comparisons drawn 

to structures such as the long timber-built, probably roofed structures at Balbridie 

(Fairweather & Ralston 1993) and Claish (Barclay et al 2002), both in Scotland, which are 

generally considered too large to represent domestic dwellings (ibid.). 

A rapidly increasing number of house structures dating to the Neolithic have been excavated 

in Ireland, largely precipitated by developer-funded archaeology (Armit et al 2003, 146), with 

around 100 excavated at the time of writing (Grogan 2004, 103-105). Added to these as 

evidence of permanent settlement are fossilised agricultural landscapes such as the field 

systems buried beneath blanket peat at Ceide Fields and elsewhere in North Mayo (Section 

2.2.2.2). Sub-peat and other field boundaries dating to the Late Neolithic and the Bronze Age 

have also been found on Valencia Island, County Kerry (Mitchell 1989) and at Roughan Hill 

on the Burren in County Clare (Jones 1998). This evidence has arguably been overlooked in 

its European context by the prevalence of models stressing the prominence of mobility in 

Neolithic societies, which have been broadly based on evidence from southern Britain (see 

Cooney 1997; 2000; 2003). This interpretation and its tacit argument that the southern British 

Neolithic settlement model should not uncritically be applied elsewhere, support theories of a 

more regionalised British and Irish Neolithic than has hitherto been accepted (Armit & 

Finlayson 1992; Barclay 2000). Figure 2.1 shows the distribution of Neolithic houses and 

settlement sites at the time of writing. 

Assessing the evidence from house sites in Ireland in terms of Neolithic settlement patterns, 

social structures and economies, Grogan (2004, 103) and Armit et al (2003, 147) have 

commented that the recent focus on house structures and the limited areas excavated in 

developer-funded archaeology have added to understanding of the period yet masked the 

importance of landscape- and regional-scale research and the frequency and extent of 

occupation evidence on sites with no identified structural evidence. Contextual frameworks 

may be provided by general surveys of the Neolithic, although greater attention at local and 

regional level is needed to fully appreciate these new data (Grogan 2004, 103). 

Taken uncritically, the evidence from the known Neolithic house sites in Ireland can be seen 

to support some generalisations. At first, in his appraisal of Irish Neolithic houses, Grogan's 

(2004) chronological distinction between the Early Neolithic, characterised by rectangular 

timber houses (see Armit et al 2003, 148), and the Middle and Late Neolithic, when circular 

or oval houses dominate, appears sound. However dating evidence is omitted, for instance the 
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Belderg Beg roundhouse is listed as Neolithic, although a timber presumed to be structural 

was assayed to the Bronze Age (Appendix A; Section 3.2.2.1). 

Using Grogan's (2004, 107) interpretation criteria, the majority «90%) of the Early Neolithic 

rectangular houses were estimated to be capable of housing groups of between 5 and 12 

people. One to three rooms are represented in each case, and sites occasionally contained 

structural indications of possible upper floors. Internal fires were frequent, but few formal 

hearths have been found. These dwellings were generally considered indicative of family unit 

groupings, with complex social relationships suggested by internal differentiations (ibid., 

109). A further level of interpretation exists in the clustering of houses, although the spatial 

limitations of many excavations might infer caution in accepting uncritically the occurrences 

of isolated single farmsteads (ibid.). There is more substantial evidence for clustering (ibid.; 

Moore 2003), although contemporaneity on more than a broad level is difficult to prove due 

to the nature of radiocarbon dating and other evidence. Continuous or successive occupation 

is indicated in some sites by evidence of substantial rebuilding and/or structural repair 

(Grogan 2004, 109; Moore 2003). These factors, taken with the general similarity in ground 

plans exhibited by many agglomerated houses, can suggest long-term occupation by kin 

groups (Grogan 2004, 110). Nevertheless, permanent, year-round occupation is still difficult 

to establish. Environmental analysis at one site suggested short-lived occupation (Dunne 

2003, 168). Furthermore, Grogan's automatic use of the term 'house' for a structure. can also 

be criticised. Non-domestic functions for some structures in his critique have been proposed, 

such as feasting (Cross 2003) or mortuary locations (Dunne 2003). Without fully integrated 

investigations assessing such structures in their landscapes, the position of the Irish Early 

Neolithic on a spectrum between mobility and sedentism is still unclear, and of course unified 

settlement practice across the island did not necessarily occur. 

Transition to circular ground plans in the Middle Neolithic is in evidence at both Lough Gur 

(O'Rfordain 1954; Grogan & Eogan 1987) and Knowth (Eogan & Roche 1997; 1998) where 

both house types are present, distinguished stratigraphically. The majority of the known 

circular MiddlelLate Neolithic houses are at three sites; Knowth, Newgrange and 

Townleyhall 2, suggesting that agglomeration continued to dominate over isolated settlement 

(Grogan 2004, 111-112). However, a pattern of longer occupation sequences by smaller 

groups has been proposed at some sites (Cooney & Grogan 1999), suggesting a gradual 

movement of the focus of domestic sites over subsequent generations, and a drift in settlement 

as houses were replaced metres or tens of metres away from the abandoned sites (Grogan 

2004, 112). With imprecise site stratigraphies, inter-site sequences and site-specific 

radiocarbon chronologies, these theories remain difficult to confirm. That a change in 

17 



architecture from rectangular to circular involved a decrease in internal area to an average of 

25m
2 

has been taken to imply a reduction in inhabitants to generally five to seven (ibid.). 

Taken further, this consequence of a change in house shape may indicate more substantial 

developments in social organisation and the structure of residential groups, and perhaps a 

reduction in the range of activities which occurred in the house. Changing non-residential 

functions may reflect alterations in the perceived roles of domestic dwellings and perhaps a 

reduction in the status and social importance of the buildings themselves (ibid., 103 & 112). 

Perhaps dwelling places or buildings had lost their status or necessity as a claim to land in the 

Middle and Late Neolithic. This chronological disjuncture is also important in land-use and 

economic terms. 

Economies 

Following the numerous recent discoveries of settlement remams, the Irish Neolithic 

economy can now be considered independently, rather than extrapolated from (arguably 

already biased) southern mainland British excavations and assemblages (Legge 1989; Monk 

2000; see also Robinson 2000). Some plant macrofossil assemblages contain high 

concentrations of cereal grains, e.g. Tankardstown, Co. Limerick (Gowen 1987; Monk 1988). 

The general evidence from these assemblages (see Appendix A for details of selected 

radiocarbon dated cereal remains) points to an Early Neolithic of c. 5700 - 5550 cal. BP 

characterised by a diverse mixed food base with a substantial cereal grain component (Monk 

1993; 2000). The main cereal species was apparently emmer wheat (Triticum dicoccum), with 

barley (Hordeum sp.) less common. Einkorn (Triticum monococcum) was possibly 

represented at some sites (Gowen 1987; Simpson 1995; Monk 2000, 79). The principal 

gathered plants were hazelnuts (Corylus avellana) and wild/crab apple (Malus sylvestris) 

(Monk 1993,45; 2000, 79). 

A contraction in human activity in the Late Neolithic has been suggested on the basis of 

palaeobotanical evidence (e.g. the higher incidence of wild plants) from the British mainland 

as well as Ireland (Monk 2000, 82). Wild plants bearing edible fruit and nuts tend to be 

ecologically characteristic of secondary woodland, and their archaeological increase in the 

Late Neolithic may reflect the exploitation of re-wooded formerly cultivated areas (ibid.). 

Suggested causal factors of this change are population expansion, relocation, or 

environmental changes (ibid.), and the coincident changes in house and settlement 

characteristics may well be associated. In an overview of palynological evidence of Irish 

Neolithic agricultural dynamics, O'Connell & Molloy (2001) concluded that ~eolithic 

agriculture was concentrated in the Early Neolithic in much of the west of Ireland. 
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particularly North Mayo, and the Late Neolithic was characterised by less intensive 

agriculture and substantial woodland regeneration. Cereals were an integral, though minor, 

part of the Earlier Neolithic economy, and the lesser representation of cereal-type pollen in 

Late Neolithic levels is in agreement with the conclusions of Monk (2000; see above). 

Evidence is therefore increasingly suggesting the Middle Neolithic (c. 5500 - 4800 cal. BP) 

was a pivotal stage in the early prehistoric economy and settlement of much of Ireland, 

including the west. 

Despite being a focus of ritual activity rather than domestic settlement, Newgrange, Co. 

Meath, has been one of the most informative sources of zooarchaeological evidence for the 

meat component of Irish Neolithic and Beaker diets. The lateral and vertical distribution of 

species was variable, but age-at-death patterns suggested a beef cattle economy rather than a 

significant dairying component (van Wijngaarden-Bakker 1986; McCormick 1987). Pig 

bones formed 35% of the assemblage but the MNI index indicated that they were nearly twice 

as numerous as cattle (van Wijngaarden-Bakker 1986; McCormick 1987). At Lough Gur, 

cattle bones comprised 95-99% of the assemblage (O'Rfordain 1954), although this may be 

unreliable as smaller bones from other species may not have been retained by excavation 

methods of the time (Woodman 1985,261). 

2.2.2.2 The North Mayo evidence I: C6ide Fields 

Discovery and excavation 

Following the discovery of pre-bog walls by peat-cutting and survey by M. Herity and S. 

Caulfield, survey and excavation in the Behy and Glenulra townlands revealed the widespread 

conjoined field systems now known as C6ide Fields. From early in the investigations, it was 

noted that at least one court tomb was located within the areas enclosed by the walls 

(Caulfield 1978, 138) and more were later discovered, all constructed on mineral soil beneath 

the peat (Molloy & O'Connell 1995, 191-193). Probing demonstrated and defined the 

presence and dimensions of the stone walls (now buried by up to 4m of blanket peat) and, 

consequently, the areas they enclosed. The vast extent of C6ide Fields, the relatively intensive 

investigations conducted therein, and the relative proximity of the site to Belderg Beg (7km) 

necessitate the detailed examination of this site. It is undoubtedly of vital importance in aiding 

the interpretation of the results from this investigation at Belderg Beg, particularly in regional 

terms. 
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Form andfunction 

The regularity and unity of the field system patterning has been interpreted to indicate that the 

Ceide Fields were constructed as a single operation, presumably by a sizable population 

(Caulfield 1978, 138; 1983, 197). Subsequent surveys established that two systems (in Behy 

and Glenulra townlands) were conjoined (see Figure 2.2). On present evidence there is no 

proof that the entirety of the system was in use contemporaneously, and the diachronous 

nature of blanket peat spread (see below) may account for some temporal differences in the 

fields; perhaps spread of peat forced abandonment of certain areas of the system, and 

extension of settlement into new areas. The two conjoined co-axial field systems appear to 

follow the lie of the land in their principal axes and cover over 1000ha. Walls run for up to 

2km along their long axis and are spaced ISO-200m apart, with the areas thus delimited being 

divided by offset cross-walls. Many of the walled fields contained stone-built oval or sub

rounded enclosures within them (see Figure 2.2). 

Using calculations based on the size of the walls and individual fields, Caulfield (1983) 

concluded that the function of the field system was to organise land into individual family 

farms, with the primary agricultural system being one of grass-grazed beef production. The 

height of the walls (both in original condition as excavated and also when rebuilt from 

tumble) indicated that they were functional barriers capable of retaining cattle but not sheep 

(Caulfield 1983, 200). A dairying economy was considered unlikely due to the relatively 

small number of people who could be supported by this in such a large area (ibid.); however 

this can be criticised as a circular argument based on the presumption of a large population. 

By comparing the Neolithic cattle bones from Newgrange and Lough Gur with modem cattle, 

the Aberdeen Angus was selected as an analogue, and a stocking rate of one livestock unit per 

hectare proposed for the Ceide Fields, calculated to maintain four or five families per square 

kilometre (Caulfield 1983, 203-20S). A viable family farm was therefore estimated as 

occupying c. 2Sha. 

In the early excavations, archaeological evidence for cereal cultivation at Ceide Fields was 

rather limited; a polished stone interpreted as the tip of an ard was recovered within the 

Glenulra enclosure (see Figure 2.2; S. Caulfield pers. comm; see also Molloy & O'Connell 

1995, 218). An unresolved question regarding a cattle economy concerns the availability of 

water. Only a few streams today run through the Ceide Fields area, and at present no geo

prospecting techniques to identify sub-peat former watercourses have been employed. No 
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artefactual evidence of troughs was discovered in the (relatively small-scale) excavations (S. 

Caulfield, pers. comm). 

Charcoal from the Glenulra enclosure assayed to c. 5300 cal. BP (Caulfield 1978, 141; see 

Appendix A) is questionable evidence of occupation within that date range due to the 

potential inherent age of the timber that produced it, and its standard error is too large for any 

practical purpose. Also recovered from the Glenulra enclosure were Neolithic pottery, 

scrapers, stone axes and a leaf-shaped arrowhead, which, with the above assay and three 

assays from a peat monolith by the Behy tomb (see Appendix A) were used to argue a 

Neolithic date for the whole Behy/Glenulra field system (Caulfield 1978, 141). A Neolithic 

date for agricultural activity was later verified palynologically by the investigations of Molloy 

& O'Connell (1995), although the same investigation discovered that occupation had 

occurred in the Bronze and Iron Ages also. Numerous assays from sub-peat pine stumps 

within the field system were also used to argue for a Neolithic date of peat initiation and 

therefore utilisation of the mineral soil (Caulfield et al 1998). 

Palaeoenvironmental analyses 

Palaeoenvironmental investigations were undertaken by Molloy & O'Connell (1995), based 

upon palynological analysis and radiocarbon dating of a core from a small deep peat basin 

within the Ceide Fields, and of shorter monoliths from elsewhere within the fields (see Figure 

2.2). The long pollen profile from the peat basin is actually a combination of two cores, with 

GLU IV being the main core analysed: spectra from GLU IIa completed the basal part of the 

profile (Molloy & O'Connell 1995, 201). Percentage pollen diagrams from GLU IV are 

reproduced in Figure 2.3. Only the relevant parts of the profile (post-Ulmus decline) are 

discussed here. 

Mid-Holocene 

An hiatus in the early to mid-Holocene period following the Corylus maximum (at 534cm 

depth) is suggested by the absence of Alnus, and supported by the radiocarbon assays (Molloy 

& O'Connell 1995, 199). The charcoal-rich nature of the peat at this depth and the high 

frequency of sand and silt inclusions in corresponding deposits in other cores suggests that 

severe firing of the peat surface occurred and fires in the wider catchment caused substantial 

erosion (ibid., 202). By extrapolation the Ulmus decline was dated to c. 5850 cal. BP (ibid., 

198). 
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Neolithic land use 

The first indications of (limited) anthropogenic clearance occurred after the Ulmus decline 

when a decline in arboreal pollen (AP; especially marked in Pinus) and increase in non

arboreal pollen (NAP) indicate opening of the canopy. Despite the reduction in local (mire

growing) Pinus being one considerable factor in the increased NAP representation, a typical 

Landmim sequence including Plantago lanceolata, indicates that open conditions replaced 

woodland more widely (Molloy & O'Connell 1995, 203). An increase in Sphagnum 

representation, indicating an increasingly wet local mire surface, was ascribed to increased 

runoff following deforestation (ibid.). 

The pollen profiles suggest that the most intensive Neolithic activity occurred between 5660 -

5170 cal. BP (interpolated: Molloy & O'Connell 1995, 203). Maxima were reached in 

pastoral indicator curves: Plantago lanceolata, Poaceae and Pteridium aquilinum, with 

increases also in Ranunculus, Rumex, Lactuceae and Trifolium repens (ibid.). Only a single 

cereal pollen grain (probably attributable to Triticum-type) was recorded in the Neolithic 

levels of OLU IV, although four Triticum-type pollen grains were encountered in preliminary 

scanning of OLU IIa within the main Neolithic Landmim phase. Low representation of cereal 

pollen supported Caulfield's (1983) hypothesis that pastoral farming was the dominant mode 

of subsistence, although there was obviously a minor yet significant arable component, with 

the most likely crop being wheat (Molloy & O'Connell 1995, 202-218). Phases of cultivation 

may have been missed by non-contiguous sampling, and cultivation may have occurred 

undetected at some distance from the sampling site (ibid., 218). This latter point is 

particularly pertinent considering the location of the core sample within a small-diameter peat 

basin where cultivation in the near proximity would presumably have been unlikely. 

Recognition of land abandonment from pollen profiles is notoriously problematical (Buckland 

& Edwards 1984). Rapid abandonment at c. 5170 cal. BP (interpolated: the LPAZ OLU IV-

5/6 boundary) was suggested by the abrupt decline of NAP (Molloy & O'Connell 1995, 203). 

Scrub regeneration was indicated in LPAZ OLU IV-5c by increases in Corylus and Alnus, 

although these latter phenomena could have been a regional development, not necessarily 

indicative of local land abandonment (ibid., 219). 

On the basis of trends in the curves for macrofossils, pollen and palynofacies, Molloy & 

O'Connell argued (1995, 203-204 & 219; O'Connell & Molloy 2001. 108) that the 

abandonment of the Neolithic farming phase occurred during a phase when the bog surface 

was relatively dry, indicating a shift towards relative climatic dryness. This contradicts 



suggestions that increased climatic wetness in an environment already somewhat marginal for 

agriculture was the primary causal factor in land abandonment. Further the available 

chronology of the basal peat overlying mineral soil in the short monoliths indicates an 

absence of evidence for general blanket peat growth prior to c. 4500 cal. BP (Molloy & 

O'Connell 1995, 219). Abandonment occurred significantly earlier, at c. 5170 cal. BP, 

evidently not in the context of widespread blanket peat initiation (ibid.). 

2.2.2.3 The North Mayo evidence II: Rathlackan 

Excavations at Rathlackan, approximately llkm west of Ceide Fields, revealed a prehistoric 

landscape consisting of sub-peat stone built features (Byrne 1990; 1992; 1993). This 

megalithic landscape complex consists of seventeen enclosures (described as 'house sites' 

without implying a specific function) of various shapes and sizes, and eleven megalithic 

tombs, scattered throughout a sub-peat stone-walled field system in an area of four square 

miles (Byrne 1990; see Figure 2.4 for a plan of the archaeological complex). Excavation 

focussed on a 20m diameter D-shaped enclosure, abutting the court tomb M(vi) and enclosing 

house site RIO (see Figure 2.4). Excavations established that the enclosure was constructed 

after the tomb, but probably whilst the tomb was in use (Byrne 1990). Although there was a 

hearth within the house structure, the artefact assemblage consisted of only a few chert flakes. 

The paucity of artefacts, together with its small size, contributed to the interpretation of the 

house structure as fulfilling a ritual function associated with the tomb rather than a domestic 

dwelling (ibid.). Radiocarbon dates from the excavations are presented in Appendix A. 

Notwithstanding the uncertainty associated with unreliable charcoal dates (see section 1.1.2) 

the age can be placed within the brackets of the Middle and Late Neolithic, with secondary 

use evident in the Early Bronze Age. The radiocarbon evidence supports the age inferred from 

the artefact assemblage (Byrne 1993). 

2.2.2.4 The significance of Neolithic field systems in north-west Europe 

The earliest known fields in northwest Europe are those of the Atlantic fringe, such as Ceide 

Fields and Belderg Beg, North Mayo (Caulfield 1978; 1983; Molloy & O'Connell 1995; 

Caulfield et af 1998; O'Connell & Molloy 2001). Scord of Brouster, Shetland (Whittle et af 

1986; but contra Whittle 1999), and Machrie Moor. Isle of Arran (Barber 1998, 80-83). Less 

substantial clearance features of similar dates are known in Cornwall (Mercer 1978). That 

these are all sub-peat features raises the question of whether their distribution is in fact 

t t've or is biased by coincidence with areas of blanket peat spread; i.e. the represen a I 
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whilst in locations of better soil, such features would be archaeologically invisible due to 

reworking and/or superimposition. Johnston (2000) has argued that the distinctive Atlantic 

distribution of Neolithic field systems should be viewed as tangible evidence of changing 

social relationships between people and the land they occupied, rather than in purely 

economic or technological frameworks. 

The idea that changing relationships between humans and landscape in prehistory have been 

expressed (and can therefore be traced) by changing traditions in the form and nature of 

upstanding settlements and constructions is, of course, not new. Arguably revisiting the 

domus ideology of Hodder (1990; 1998), Fokkens (1999) has linked the evolving traditions of 

longhouse typology in the late Neolithic and Early Bronze Age of the Netherlands to the 

increasing economic or status value of cattle and to the issue of land ownership, in 

conjunction with the phenomenon of burial monuments in close proximity to the settlements. 

That stone field boundaries were not necessarily present in this area does not detract from the 

relevance of the pattern to the current study. The location of megalithic tombs within the field 

boundaries at Ceide Fields and Belderg Mor in North Mayo (see Figures 2.5 and 2.6) can be 

considered in a similar context. 

Caution has been prescribed against over-emphasising the significance of the British and Irish 

Neolithic field systems and permanent settlements, with suggestions made that they are 

unrepresentative of British Neolithic settlement as a whole (Thomas 1999, 10). Molloy & 

O'Connell (1995, 222) considered the extensive Ceide Fields to have been initiated by a 

desire to clear the land of stones. Such permanent settlements have also been argued as 

adaptations in response to impositions of island location or environmental conditions (Pollard 

1999, 85). This is a s'Jmewhat environmentally deterministic theory, and arguably recalls the 

idea that the adoption of permanent settlement reflected a particular view of the relationship 

between self and environment on the part of the communities who inhabited them. 

The abandonment of field systems is, like the wider issue of archaeological settlement 

abandonment, complex. As the known Neolithic systems were buried by blanket peat, it was 

perhaps inevitable that the question of environmental deterioration would be raised. It is 

extremely difficult to pinpoint with sufficient precision and accuracy the date of 

abandonment, and burial by peat may be diachronic across single sites (e.g. the Ceide Fields: 

Molloy & O'Connell 1995). Furthermore, even if two events are proven to have occurred at 

the same time, causality is difficult to establish. 



2.2.3 The Bronze Age 

2.2.3.1 The Irish Bronze Age 

Chronology 

This thesis uses a scheme subdividing the Irish Bronze Age into Early (c. 4300 - 3700 cal. 

BP), Middle (c. 3700 - 3200 cal. BP) and Late (c. 3200 - 2550 cal. BP) phases (Cooney & 

Grogan 1999). The transition between the Late Neolithic and Early Bronze Age of Ireland is 

archaeologically recognised by a chronology constructed according to the appearance of 

metallurgy. The trends of increasing emphasis on the individual, settlement expansion and 

population increase, and developing regional identities, are all perceptible in the final phases 

of the Neolithic (ibid., 93-94). 

Settlement 

The Irish Bronze Age is much better known for its metalwork and burials than for its 

settlement practices (Doody 1993a, 93; Waddell 1998, 205) and even less is known about its 

agricultural regimes and the relative importance of cereals and pastoralism (Mitchell & Ryan 

2001, 219). As with the Neolithic, however, more house sites have been discovered in recent 

years as construction has necessitated archaeological monitoring, and more landscape surveys 

have occurred. General conclusions regarding settlement can be made from the sites 

available, although economic information rests largely on palynological analyses and a small 

number of archaeobotanical and faunal assemblages. 

The Bronze Age settlement of Ireland is typified by isolated, frequently enclosed, settlements. 

Whilst circular/oval houses continued to be constructed in the Bronze Age, rectilinear 

dwellings are known also. Occupation at Lough Gur continued into the Early Bronze Age in 

both rectangular and round houses. Rectangular turf-walled houses at Coney Island, Co. 

Armagh contained bowl pottery dated by context to the mid-fourth millennium cal. BP (see 

Appendix A; Smith et al 1971). Bronze Age round houses are known at Belderg Beg (Section 

3.2.2.1); Carrownaglogh, Co. Mayo (Section 2.2.3.3) and Downpatrick, Co. Down (Smith et 

al 1973a, 213; see Appendix A). Carrigillihy, Co. Cork and at Chancellorsland, Co. Tipperary 

(both dated to around the early fourth millennium cal. BP; see Appendix A) consist of oval 

house structures within oval enclosures of stone and earth respectively. At Ballyveelish, Co. 

Ti pperary, a truncated sub-rectangular ditched enclosure contained sufficient artefactual and 

economic evidence for general interpretation (Appendix A; Doody 1987a). A more extensi\'e 



Late Bronze Age settlement at Curraghatoor, Co. Tipperary, had circular and rectangular huts, 

refuse/storage pits, fence-lines and animal enclosures (see below & Appendix A; Doody 

1987b; 1990). 

Some wetland settlement occurred. Domestic settlement at Cullyhanna Lough, Co. Armagh, 

consisted of an oval house enclosed by a wooden stockade (Hodges 1958). An inter-tidal peat 

at Carrigdirty, Co. Limerick, contained an arc of vertical alder posts with axe-marks, and a 

cattle jawbone was found inside the arc (O'Sullivan 1996). This has been interpreted as a 

seasonal cowherd shelter (Mitchell & Ryan 2001, 220). Both sites date to c. 3500 cal. BP (see 

Appendix A). 

The final part of the Irish Bronze Age, the Dowris Phase (c. 2850-2450 cal. BP) is 

archaeologically recognised by its artefact typologies and numerous metal hoards, 

characterising an aristocratic warrior society (Waddell 1998, 225). Settlement evidence is 

sparser but shows the same general landscape distribution pattern and range of sites, i.e. 

wetland and hilltop locations (ibid., 264). A multi-phase crannog at Lough Eskragh, Co. 

Tyrone, included Bronze Age, Dowris and Iron Age levels (Appendix A; Williams 1978). 

Lakeside settlements have been documented at Ballinderry, Co. Offaly, and Knockalappa, Co. 

Clare (Waddell 1998, 264-268). Enclosures of various sizes occurred, from the relatively 

small such as that at Aughinish, Co. Limerick, to the large hill fort at Mooghaun, Co. Clare. At 

Aughinish, in the Shannon estuary, two enclosures comparable to the Carrigillihy site were 

discovered; one contained a circular house and both included shell-filled pits and coarse 

pottery (Kelly 1974). 

Mooghaun was constructed with three (probably contemporary) ramparts utilising a natural 

slope in a prominent landscape position, with only limited evidence for domestic settlement 

discovered inside its boundaries (Grogan 1995; 1999). Material sealed by the outer rampart 

was dated to c. 3040 cal. BP (Appendix A). Pollen analysis from the small Mooghaun Lough, 

750m from the hill fort , recorded low-level human impact from c. 4835 cal. BP, cereal 

cultivation associated with increasing agricultural activity from c. 4190 cal. BP, and the main 

Landnam at c. 3050 cal. BP, which is in agreement with the terminus post quem date for 

rampart construction (O'Connell et al 2001). Cereal pollen was relatively well-represented, 

dominated by Triticum type (sensu Beug 1961: O'Connell et al 2001, 172). Agriculture was 

at its most intensive until c. 2755 cal. BP, but continued at reduced levels until c. 1930 cal. 

BP. 
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A range of Bronze Age settlement types can thus be seen, from isolated enclosed houses and 

enclosed agglomerated houses to larger-scale sites such as Haughey's Fort and the early 

phases of settlement at Dun Aonghasa, Inis Mor, Co. Galway. An emerging settlement 

hierarchy has been envisaged in parallel with the importance of bronze and gold and symbolic 

weaponry (Waddell 1998, 221). The poorer preservation of cattle bones prevents full 

assessment of the possibilities of cattle as status items, and whilst coarse pottery was the 

norm, there was an apparent scarcity of finer wares even at high-status sites (ibid.). 

Fulachta fiadh (burnt mounds), almost invariably dating to the Bronze Age (Brindley et al 

1990, 28), are the most common prehistoric monument type in Ireland. Vastly more numerous 

in the landscape than known Bronze Age settlements (more than 4500 are recorded), they 

have been used to interpret part of the settlement record (Waddell 1998, 174; Cooney & 

Grogan 1999, 102; Mitchell & Ryan 2001, 220). Distribution is skewed to the south-west 

(Doody 1993a, 96; Waddell 1998, 174; Mitchell & Ryan 2001, 220). They are usually 

kidney-shaped or circular grassy mounds, close to water or in marshy ground, consisting of 

hearth/fire traces and a wooden or stone-lined trough surrounded by burnt stones which had 

been used to heat water, then discarded (Waddell 1998, 174-177; Mitchell & Ryan 2001,220-

221). Evidence from excavated and radiocarbon-dated sites suggests that they were typically 

used repeatedly over long periods of time, resulting in mound accumulation (Waddell 1998, 

177). As they rarely contain artefactual or environmental evidence, the idea that they 

represent seasonal or temporary hunting camps (Doody 1993a, 96) has fallen out of favour, 

and suggested functions include ritual feasting with thorough cleaning (6 Drisceoil 1988, 

675), or bathing (Barfield & Hodder 1987). Their distribution in the landscape vanes 

regionally, perhaps indicating differences in purpose or even settlement patterns. 

Economies 

Until the late 1980s all knowledge of crop husbandry in Bronze Age Ireland came from 

pottery impressions; the majority of these being of naked barley (Hordeum polystichum var. 

nudum), with occasional imprints of hulled barley (Hordeum vulgare), flax (Unum 

usitatissimum) and probable bread wheat (Triticum aestivum) (Monk 1986; cf. Jessen & 

Helbaek 1944). The increasing corpus of plant macrofossil evidence is slowly furthering 

knowledge of arable agriculture. The main sites to produce such evidence are Ballyveelish 

and Curraghatoor, Co. Tipperary. Haughey's Fort, Co. Armagh. and two shell middens (False 

Bay and Mannin 2) at Ballyconneely. Co. Galway (Monk 1986; 1987a; 1987b; Weir & 

Conway 1988; McCormick et al 1996; Weir 1996a; 1996b). The principal cereal crop appears 

to be barley, with 6-row (Hordeum polysticl1ll11l), naked (H. vulgare var. nudum), and hulled 
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(H. vulgare) varieties all represented. Emmer (Triticum dicoccum) and spelt (Triticum cf. 

spelta) wheats were also present at Curraghatoor. Oat (Avena strigosa) was well-represented 

at Mannin 2 (Weir 1996b, 81-82). Although oat is represented in the Late Bronze Age in 

England and in the Scottish pre-Roman Iron Age (Boyd 1988, Greig 1991), it was previously 

thought to be introduced to Ireland in the later fIrst millennium AD; however its presence in 

such high frequencies here suggest cultivation rather than that it was occurring as a weed 

species (Weir 1996b, 81). Nevertheless, the processing stages represented by the assemblage 

are uncertain, inhibiting interpretation. Weed flora assemblages included Chenopodiaceae, 

Cyperaceae, Plantago lanceolata, Poaceae, Polygonum aviculare, Rumex and Sinapsis. 

There are a number of zooarchaeological assemblages dating to the Bronze Age in Ireland, 

although few date to the Late Bronze Age. The assemblage at Haughey's Fort, Co. Armagh 

was too small to provide useful information pertaining to the livestock economy or the dietary 

importance of the individual species, but cattle, horse, sheep/goat, pigs and dog were 

represented (McCormick 1988, 25). A few sheep/goat and possibly cattle bones were present 

at the Mannin 2 midden (McCormick et a11996, 81). Ballyveelish, Co. Tipperary, contained a 

larger zooarchaeological assemblage, primarily of food refuse. Cattle was the dominant 

species represented, with pig secondary, and sheep tertiary, and occasional remains of horse, 

red deer and dog (McCormick 1987, 26). 

2.2.3.2 The North Mayo later prehistoric fIelds I: Ceide Fields 

Blanket bog initiation and spread 

Radiocarbon assays from the short monoliths confirmed that peat initiation was diachronous 

across the Ceide Fields area (Molloy & O'Connell 1995; O'Connell & Molloy 2001). 

Relevant dates are reproduced in Appendix A. Whilst in some locations peat growth 

commenced early enough to record the Pinus expansion (see below), in the area near the tomb 

(BHY IV and BHY V), peat accumulation began a few centuries later, when Pinus had 

declined and was of minor importance in the pollen rain and consequently the landscape 

(Figures 2.7 and 2.8; O'Connell & Molloy 2001, 101). 

The Pinus expansion and decline 

Blanket peat initiation at Ceide Fields occurred early enough in many locations, for instance 

west of the Behy court tomb (profIles BHY III and IV: Figures 2.2, 2.3 & '2.7-2.11). to record 

(by macro- and micro-fossils) an expansion of Pinlls trees at c. 5300 cal. BP. and the 
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regionally significant decline of the taxon at c. 4500 cal. BP (Caulfield et a11998; see Section 

2.2.3.4). Successful colonisation of Pinus onto blanket bog suggests the mire surface was then 

relatively dry. A two-phase climatic sequence was proposed; drier, less windy conditions 

allowing the Pinus expansion in the early sixth millennium cal. BP; with the mid-fifth 

millennium cal. BP Pinus decline and renewed or accelerated blanket bog growth caused by 

the shift to a wetter, windier climate (Caulfield et al 1998, 636-637). The synchroneity of the 

Pinus decline is highlighted by the tight bracket of radiocarbon dates cataloguing the deaths 

of these stumps (Caulfield et a11998; see Section 2.2.3.4). 

Later land use 

Between c. 3540 and 1865 cal. BP, farming in the locality of the sampling area is indicated. 

Plantago lanceolata is well-represented, and its peak at the lower zone boundary is 

accompanied by minor peaks in Lactuceae, Trifolium repens and Urtica (LP AZ GLU IV -9a 

and 9b, see Figure 2.3; Molloy & O'Connell 1995, 204-205). Occasional cereal pollen grains 

are recorded (see Figure 2.3). The knoll to the east of the Glenulra basin (see Figure 2.2) was 

suggested as the likely location of such agricultural activity as it was probably the only land 

in the vicinity of the sampling site not to have been covered by blanket peat at this time, 

(ibid.). A drier bog surface was indicated in 9b (c. 2880 - 1930 cal. BP) than 9a (c. 3490 -

2880 cal. BP) by pollen and palynofacies indicators and the higher frequency of microscopic 

charcoal particles in the former, indicating frequent firing (see Figure 2.3; Molloy & 

O'Connell 1995, 205). 

The BHY monoliths also contain evidence of Bronze Age mixed agriculture. In BHY IV, 

high Poaceae values around c. 3095 cal. BP (zone 3) are accompanied by strong Plantago 

lanceolata representation along with Cereal-type pollen, Trifolium, Rumex and Lactuceae. 

Similar phenomena are recorded in BHY V after c. 3685 cal. BP and in BHY VI at some time 

after c. 3830 cal. BP (Molloy & O'Connell 1995; Figures 2.7, 2.8 and 2.9). The CF lb profile 

contains high representation of cereal pollen, with indications of a grass and herb dominated 

landscape at c. 3000 cal. BP, continuing after c. 2245cal. BP (ibid. 221; & Figure 2.10). This 

profile was taken from just outside a short length of wall which is part of a network of smaller 

walls appearing to form a later addition to the Neolithic field system (Molloy & O'Connell 

1995, 213 & 221). Plough- or ard-marks were recorded 55m from the CF lb sampling site 

prior to construction of the visitors' centre (ibid., 195 & 221). Infill material from these 

contained cereal-type pollen, however, similarly to CF lb, arable weed taxa are poorly 

represented (see Figure 2.11: ibid., 214). In the course of that excavation, a lynchet, some 

undiagnostic pottery and an ard share were discovered (ibid., 193; Byrne 1991), although 
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these, like the plough-marks, do not necessarily date to the Neolithic occupation (Molloy & 

O'Connell 1995, 218). Agriculture ceased at c. 1865 cal. BP, during the Late Iron Age, 

typical for western Ireland (see Section 2.4.2.1). 

2.2.3.3 The North Mayo later prehistoric fields II: Carrownaglogh 

Site location, investigation and form 

Excavations at Carrownaglogh, Co. Mayo, by M. Herity revealed a sub-peat stone wall 

enclosure, an extensive, well-formed ridge system and a circular structure interpreted as a 

house (Herity 1981). Palaeoenvironmental investigations were undertaken by O'Connell 

(1986) and results further discussed in O'Connell (1990b). The site lies on drift deposits on 

the lower western slopes of the Ox Mountains, between two regions rich in megalithic 

monuments; the northwest coastal area of North Mayo west of Killala Bay, and the passage 

tomb cemeteries of Carrowmore and Carrowkeel, Co. Sligo to the east (see Figure 2.12; 

O'Connell 1986, 118-120). The four common tomb typologies (Neolithic court tombs, 

passage graves and portal tombs, and the mainly Early Bronze Age wedge tombs) are 

represented in the immediate area (ibid., Herity & Eogan 1977). 

A plan of the site is reproduced in Figure 2.13. Ridges were spaced around 1.5m apart, with a 

height of 10-15cm from hollow to ridge (O'Connell 1986, 119). T4ey assume numerous 

orientations with the main group contouring the hillside, suggesting drainage was not 

problematic in the coarse sandy loam soil at this locality (ibid.). Stone features, apart from the 

main enclosure, were two robbed out walls with evident lynchet formation; several stone 

clearance heaps; and the circular house structure with a central hearth (ibid., 119-120). 

Palaeoenvironmental analyses 

A 2m long monolith from a peat basin c. 250m south of the enclosure wall was 

palynologically analysed (see Figure 2.14). Radiocarbon dates are reproduced in Appendix A. 

The ,extremely wide error margins associated with all assays reduce the certainty of the 

chronology. Peat initiation was dated to c. 4000 cal. BP (O'Connell 1986). Typical western 

Irish woodland prevailed (see Section 2.4.2.1) until clearance at c. 2855 cal. BP for mixed 

agriculture, estimated to have lasted for c. 250 years. Slow woodland recovery followed, with 

a second phase of clearance and agricultural activity (probably of a lesser magnitude) dated to 

c. 1850 - 1500 cal. BP (O'Connell 1986, 165-167). 
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Short monoliths from podzolised soil including the ridges were also taken for pollen analysis 

and overlying peat layers radiocarbon-dated (Appendix A & Figure 2.15; O'Connell 1986, 

123-127). Comparison with the long monolith chronology suggests that peat began to 

accumulate over the lower slopes of the knoll containing the archaeological site, and that its 

spread upslope was fairly rapid (ibid., 172). Activity within the enclosure was therefore 

firmly correlated with the first agricultural phase (c. 2855 - c. 2600 cal. BP) and the ridges 

assigned to late stages of this occupation. Triticum- and Hordeum-type pollen grains were 

recorded in spectra from the short monoliths. Rotation was implied by the depth-dependent 

dominance of one cereal type over another, and fallowing inferred by high values of 

Pteridium (ibid., 162-163). The presence of occasional Avena type pollen grains in lower 

spectra may indicate pre-Iron Age cultivation of oat (ibid., 163; contra Jessen & Helbaek 

1944). 

2.2.3.4 Environmental marginality? - the 4500 cal. BP Pinus decline 

Wood macrofossils (principally stumps) preserved in peat have been recognised in the British 

Isles since at least the 19th century (e.g. Moss 1904; Lewis 1905; 1906; 1907; 1911; Praeger 

1937). Although Pinus was rejected in favour of Quercus for Irish dendrochronological 

research (Smith et al 1972: Pilcher et al 1995) investigations into the possible climatic 

significance of subfossil Pinus stumps continued (Birks 1975; Tallis & Switsur 1983; Bennett 

1984; Wilkins 1984; Dubois & Ferguson 1985; Gear & Huntley 1991). Radiocarbon dating of 

subfossil Pinus stumps in Ireland and the north of Scotland identified a phase of widespread 

expansion of Pinus onto peat between c. 5200 and 4500 cal. BP, immediately followed by the 

decline and virtual disappearance of the species from the sedimentary record as a macrofossil 

(Bennett 1984; Bradshaw & Browne 1987,243-244). 

Due to the combined problems of abundant pollen productioQ (Andersen 1970) and the long

distance transport of wind-dispersed pollen grains, Pinus can be overrepresented in 

palynological records (ibid., Bennett 1984, 137). Presence in a pollen diagram is not always 

interpreted as an indicator of local or even regional presence of the species, with various cut

off points suggested to distinguish a local population from the long-distance component (e.g. 

20% in Bennett 1984, 137). Nevertheless, a distinct decline in Pinus at around 4500 cal. BP 

has been noted in many pollen diagrams from the British Isles, particularly in the north and 

west where it was most strongly represented. This is now a well-recognised 

chronostratigraphic marker in Holocene palynology. That the decline was synchronous and 

most marked in those regions where the tree was nearest its range limits (the northern Atlantic 

fringe of the British Isles) suggests the species was environmentally marginal and some 
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climatic parameter crossed the threshold beyond which pine growth was near-impossible 

(Blackford et al 1992). 

Many pine stumps dating to the expansion and subsequent decline occur in North Mayo, 

including the Belderg Beg vicinity. A dating programme was undertaken to establish the c. 

5200-4500 cal. BP Pinus expansion as a terminus ante quem for the initiation of blanket bog 

and the abandonment of the Belderrig Valley and Ceide field systems (Caulfield et al 1998). 

Excluding five outliers, the mean age of the main cluster (N=39) of the North Mayo sub-peat 

pines was c. 4850 ± 120 cal. BP (Figure 2.16). The onset and demise of the North Mayo pine 

cluster was shown to coincide with the dates of pine expansion onto peat and decline in 

northern Scotland collected by Gear & Huntley (1991) (Figure 2.17). The mean age of the 

northern Scottish pines (N=31) was c. 4745 ± 225 cal. BP, indistinguishable from the North 

Mayo pines (Caulfield et al 1998, 636-7). Caution may be advised in over-emphasising the 

importance of the apparently definitive onset of the chronological clustering of bog pines. 

Caulfield et al (1998, 636-7) purport that before the starting point of c. 5200 cal. BP there 

were very few pine trees, and that this suggests the cause of this pine expansion was quite 

dramatic. The apparent expansion of pines may, however, be due to their circumstance of 

preservation, i.e. the widespread growth of blanket bog (cf. Dubois & Ferguson 1985, 68). 

Assays from macrofossils inevitably record periods of tree growth rather than decline and 

rarely occur in sufficient concentration to indicate changes in abundance through a stratified 

sequence (Bennett 1984, 135). Comparing pollen diagrams from several sites in Counties 

Mayo and Galway, O'Connell & Molloy (2001) record pine colonisation onto peat 

(recognised by elevated Pinus pollen values) occurring between c. 4750-4400 cal. BP. 

Interpretation of the cause of the Pinus decline and apparent associated widespread initiation 

and/or acceleration of blanket bog growth has to be approached carefully due to the multiple 

factors which could possibly have interlinked to produce such a phenomenon. Similarly to the 

Ulmus decline, a widespread death of pine trees could result from climatic change, pathogenic 

activity, human activity or pedogenesis, none of which need be mutually exclusive (Bennett 

1984, 146). 

Theories linking the Pinus decline in Ireland to human activity (Baillie 1995b) and the Hekla-

4 eruption of 4260 ± 20 cal. BP (Blackford et al 1992) have been criticised due to low human 

populations and methodological errors respectively (Hall et al 1994; 1996; Edwards et al 

1996; Dwyer & Mitchell 1997). Association between the Pinus decline and blanket bog 

spread has favoured climate change leading to increased bog-surface wetness as an 

explanation (Birks 1975; Bennett 1984; Dubois & Ferguson 1985; Bradshaw & Browne 1987; 
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Bridge et al 1990; Gear & Huntley 1991). This was supported by the recognition that the 

decline was apparently more severe in the Atlantic north and west of the British Isles, i.e. in 

the region of harshest climatic conditions, based on the theory that the most environmentally 

marginal populations would suffer the greatest effect of any climatic deterioration (Gear & 

Huntley 1991; Blackford et al 1992; Lageard et al 1999). Southward shift of the range-limits 

of Pinus was also seen at c. 4500 cal. BP in Fennoscandia (Eronen 1979; Eronen & Huttunen 

1987; Kullman 1989; Eronen & Zetterberg 1996). 

O'Connell & Molloy (2001, 102) suggested that although peat was common in North Mayo 

before the Pinus expansion (some stumps are rooted on up to 90cm of peat) it may have been 

too wet to facilitate germination of Pinus seedlings, and that the window of opportunity for 

colonisation of bog at c. 4600 cal. BP existed because the peat provided a suitable habitat for 

Pinus. This supports the hypothesis that two periods of climate change are represented: one 

towards a drier climate, attributed to higher summer temperatures an/or decreased 

precipitation, slowing blanket peat growth and allowing Pinus to colonise its surface, then a 

second change towards wetter conditions, leading to renewed bog growth and the death of 

Pinus trees (Caulfield et al1998, 636-7). 

Gear & Huntley (1991, 546) also proposed a two-stage hypothesis of climate change which is 

in broad agreement with that of Caulfield et al (1998). Firstly, it stated that the expansion of 

Pinus onto peat in northern Scotland resulted from drying of blanket peat and the northwards 

movement of range limits in Fennoscandia resulted from higher summer temperatures around 

c. 5000 cal. BP, and that these changes are consistent with a north or north-east expansion or 

shift of the Azores high and consequent north shift of the jet stream. Subsequently, at c. 4500 

cal. BP, a reversal of these circulation trends occurred, resulting in the extinction of Pinus on 

blanket bog and the southwards shift of its range limit in Fennoscandia. 

Investigations into 8D records in subfossil Pinus stumps from the Cairngorms by Dubois & 

Ferguson (1985) can be seen to support arguments for a two-phase climatic oscillation. The 

period between c. 6650-4800 cal. BP was marked by 8D values indicating relative climatic 

dryness (cf. Section 2.3.3.2). At c. 4800 cal. BP a rapid shift to increasingly wet conditions 

was signalled. 

2.2.3.5 Later prehistoric upland settlement in the British Isles 

Drawing on the work of Parry (1975; 1978; 1985) a settlement concept was constructed for 

later prehistoric northern Britain. based on studies from Northumberland and the Scottish 
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Borders, which hypothesised large-scale abandonment of upland settlement as a response to 

climatic deterioration (Burgess 1984; 1985; 1989; 1992). The change from a continental 

climate with warmer summers in the fIrst half of the fourth millennium BP to a cooler, wetter, 

stormier regime at around 3400-3200 cal. BP (Lamb 1981, 53-55) was interpreted as causing 

a restriction of crop growing seasons and reducing altitudinal limits to ripening and thus 

cereal cultivation (Burgess 1985, 200). During the climatically mild majority of the fourth 

millennium BP, Burgess (1985, 202-203) reported a settlement and agricultural expansion 

onto marginal land in most of upland, and indeed lowland, Britain, citing the development of 

(principally sub-peat) fIeld systems as evidence. A concurrent rise of population was 

suggested. He noted an hiatus between hill forts dating to the late fourth and mid-third 

millennia BP, proposing that the gap or discontinuity in the hilltop settlement record 

corresponded to the phase of climatic deterioration and that population decline must have 

been involved (ibid, 204-205; Burgess 1992, 25-26). Burgess (1989) subsequently correlated 

this supposed event of environmental marginalisation of upland Britain with (Icelandic) 

volcanicity (principally the H3 eruption) based on the research of Baillie (1989a; 1989b). 

This settlement retreat and its explicit assumption of environmental marginality in the uplands 

have subsequently been questioned. Edaphic effects of volcanic aerosols have been 

questioned, and H3 tephra is apparently absent from Scotland; hence the potential of 

volcanicity to cause such climatic deterioration is dubious. Alternative reasons for land 

abandonment may be applicable to the supposed later prehistoric settlement retreat; the most 

frequent suggestion is pedogenesis. Changes in soil hydrological regimes (Piggott 1972) and 

waterlogging (Turner 1981) have been suggested as causal factors in later prehistoric land 

reorganisation, and these theories have recently been developed by Barber (1998, 137-144), 

who linked accelerated soil acidification (podzolisation) combined with waterlogging to crop 

failure and the abandonment of agricultural land to blanket peat in later prehistoric Arran. 

Furthermore, doubts have been cast upon the widespread land abandonment in Late Bronze 

Age upland Britain. The supposed 300-year upland settlement dislocation between 

unenclosed ring-bank and ring-ditch structures in the fourth millennium BP and the enclosed 

(palisaded or hillfort) sites dating from c. 2750 cal. BP (Burgess 1985, 208-212) has been 

largely discredited as a result of incremented excavation and radiocarbon dates (Gates 1983; 

Jobey 1985; Young & Simmonds 1995). Although the problem has been recognised that the 

bulk of available radiocarbon evidence rests on charcoal assays, sites have also been dated by 

cereal macrofossils (van der Veen 1992; Young & Simmonds 1995, 10). 



More precisely dated examples of settlement studies are known of in northwest Europe. 

though on smaller spatial scales. Wiggle-match dating of climate changes and extensive 

dating of settlements in West Friesland, the Netherlands, has enabled a direct mechanism by 

which climatically-driven environmental change was linked to abandonment of marginal 

settlements. Coastal ridges around a tidal inlet, occupied since c. 3500 cal. BP, were 

increasingly threatened by increasing water tables caused by impeded drainage and climatic 

deterioration from c. 2760 cal. BP, and the settlement areas were abandoned by around 2620 

cal. BP (van Geel et al 1996,453-454; 1998, 536-538). A shift of settlement focus at c. 2650 

cal. BP to salt marshes newly exposed by a fall in sea-level was inferred, also based on 

multiple radiocarbon assays (van Geel et al 1996; 454-455; 1998; 540-541). 

2.2.3.6 The significance of Bronze Age field systems in north-west Atlantic Europe 

In his appraisal of the prehistoric field systems of Atlantic Europe, Johnston (2000) envisaged 

a northwest Atlantic European Bronze Age phenomenon of enclosed settlements and field 

systems, apparently chronologically distinct from the Neolithic field systems considered 

above (Section 2.2.2.4). He stressed that their distributions were related, as the later fourth 

millennium BP field systems (i.e. the earliest of the Bronze Age systems) are located 

throughout Britain. Without necessarily assuming a diffusionist perspective upon the 

geographical spread of such features, the field systems of western Europe (those of 

Scandinavia, the Netherlands, eastern France and the Rhineland), appear chronologically 

later, in the Later Bronze Age and Early Iron Age (ibid., 52). 

In contrast to Neolithic field systems, later prehistoric fields are generally considered as 

commonplace rather than exceptional; central to the mechanics of upland cattle-based 

agriculture (Johnston 2001). Land tenure and delimitations have been the primary focus of 

such studies (ibid.). Land tenure, and by implication, field systems, are structured by, and also 

are responsible for structuring, agricultural practices; a recognition which has resulted largely 

from ethnography (ibid.). One further inference gleaned by examining the agendas pursued by 

those studying Neolithic and later prehistoric landscapes is a perceived transference of land 

occupation symbolism from communal burial monuments to enclosed settlements over these 

periods. This perception can be interpreted as supporting views that Neolithic fields and 

permanent settlements were exceptional and responses to particular circumstances (Thomas 

1999; Pollard 1999). 

The environmental context of later prehistoric field system co~struction and usage is complex 

and has never been satisfactorily addressed. Fleming (1987, 193) highlights the fact that many 
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prehistoric field systems are situated in locations currently environmentally marginal for 

agriculture. This may unnecessarily influence interpretations of their function and agricultural 

capabilities. An interpretation of extensification rather than intensification of agriculture does 

not necessarily imply that a prehistoric community needed to use marginal land. Rather, 

population factors may be considered, such as the potential requirement for future expansion, 

which may have been primary considerations in land-use strategies (ibid.). Perhaps later 

prehistoric coaxial field systems were situated on land which was most capable of sustaining 

extensive agriculture. 

Many studies have sought to portray a distinction between cairnfields, which are typically 

small and poorly defined, bounded by clearance heaps, and coaxial field systems. 

Conventional wisdom has portrayed an evolutionary development of later prehistoric field 

systems from small, irregular fields to the large coaxial field systems, perhaps with the 

repeated actions of stone clearance and agriculture causing the former to develop over time 

into the latter (cf. Fowler 1981, 37). In Britain, the major phase of cairnfield construction has 

been calibrated to the end of the fifth millennium BP and the first half of the fourth 

millennium BP, which, when the likelihood of long-term and intermittent occupation histories 

are taken into account, suggests that there was a discrete phase of cairn construction during 

the Bronze Age (Johnston 2000; 2001, 106). In the case of coaxial field systems, a distinct 

mid-fourth millennium BP phase of field system construction can be identified in Ireland, 

Britain and the Netherlands (Smith et al 1981; Yates 1999; see Johnston 2000 for summary), 

and whilst changes in agricultural technology and increased permanence of settlement have 

been associated with this phenomenon, the dating evidence is not always unequivocal 

(J ohnston 2000, 50). 

The typology of field systems may not be simply a function of chronology or evolution. 

Johnston (2001) draws a distinction between Bronze Age cairnfields and field systems based 

upon their social functions. Drawing upon examples of cairnfields from Northumbria and 

Cumbria where charred material (including human remains) were deliberately deposited and 

sealed beneath clearance cairns on agricultural land, he suggests that such depositions formed 

a link between the ancestral past and the agricultural present, acting to formally express pre

existing networks of tenure and belonging (Johnston 2001, 104-7). Field systems, especially 

when joined to houses, legitimated tenure differently, by linking the domestic and agricultural 

domains through the lives and wider network of relationships of the inhabitants (ibid.). 

In conclusion, it becomes apparent that a simple evolution of agricultural enclosure from 

clearance cairns, via cairnfields. to coaxial field systems and those systems incorporating the 
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domestic landscape, is no longer tenable. Whatever their roots, the field systems of later 

prehistoric Britain and Ireland are part of a distinct Atlantic European phenomenon showing 

variation in function, form and indeed symbolism. 

2.3 Holocene climatic history of the North Atlantic, focussing on Ireland 

2.3.1 Late-Quaternary chronology 

The late-Quaternary Irish climatic and geological chronology as currently recognised is 

presented in Table 2.1. Correlation with Britain, mainland Europe and the marine oxygen 

isotope record is difficult (see Woodman et aI1997). 

2.3.2 Sources of evidence 

In order to identify the periods of time during which communities on the North Atlantic 

seaboard might have been particularly vulnerable to climatic change, it is necessary to 

consider evidence from a wide range of literature. Various proxy indicators often reveal 

different or contradictory suggestions as to the timing and nature of climatic shifts. An 

appraisal of the most common sources of evidence is considered most likely to identify the 

most commonly-discovered results. 

2.3.2.1 Marine records 

Deep sea sediments 

Atlantic deep-sea sediment cores have been analysed for a variety of palaeoclimatic 

indicators. Methods have included sedimentation rates and grain size analysis to reconstruct 

flow rates of deep dense water, a component of thermohaline circulation (THC: see section 

2.3.3.1) (Bianchi & McCave 1999); carbon isotope analysis of benthic foraminifera to 

reconstruct palaeoclimate (Oppo et al 2003) and analysis of lithic concentration, petrologic 

tracers, and species abundance and oxygen-isotope measurement of planktonic foraminifera 

(Bond et al 1997). Lithological analysis has identified episodic deposition of ice-rafted debris 

(IRD); discrete events during which angular rock fragments (probably derived from Arctic 

icebergs surviving to British latitudes) increased in proportion in north Atlantic deep-sea 

sediments (Bond et al 1997; 1999; 2001). IRD events (also called Heinrich events) occurred 

at various intervals during the Holocene with inferred cyclicity (see Section 2.3.3.1). 
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Ice-cores 

Investigations in Greenland have focussed on the Greenland Ice Sheet Project (GISP2) core, 

which has been analysed for accumulation rate change (Meese et al 1994), glaciochemical 

composition (marine- versus terrestrially-derived elements) (O'Brien et al 1995) and oxygen 

isotope records (Grootes et al 1993). These proxies have been used to indicate, respectively, 

climatically-induced atmospheric snowfall delivery, atmospheric circulation patterns and 

palaeotemperatures (Alley 2000). Accumulation rates of the cosmogenic nuclide lOBe have 

been used as an index of irradiance, aiding development of theories that Holocene climatic 

fluctuations are in part forced by solar activity (see below, section 2.3.3.1; Finkel & 

Nishiizumi 1997; Yiou et aI1997). 

Different proxy indicators exhibit different amplitudes of climatic fluctuations. Oxygen 

isotope ratios, methane concentrations and snow accumulation rates in the GISP2 core 

indicate a relatively stable Holocene climate in comparison to glacial events, but the chemical 

impurity analysis showed significant climatic fluctuations, again with cyclical patterning (see 

section 2.3.3.1; O'Brien et aI1995). 

2.3.2.2 Terrestrial records 

Tree-rings 

As dendrochronological records now cover the entire Holocene, ring-width and stable-isotope 

variations have been used as indices of growing conditions of sub-fossil trees and as 

palaeoclimatic proxies. Pinus sylvestris records now extend 7400 years in Swedish Lapland 

(Grudd et al 2002) and 7500 years in Finnish Lapland (Helama et al 2002). In temperate 

Europe, Quercus have been used to construct Holocene radiocarbon chronologies (Stuiver et 

al 1998; Bronk Ramsey 2003) and palaeoclimatic records (Leuschner et al 2002; Mayr et al 

2003). Synchronous inter- and intra-site ring-width variations in trees indicate growing 

conditions, governed ultimately by regional climate factors as well as local environmental 

variables (Baillie 1995a; Leuschner et aI2002). Trees growing close to their thermal limits (in 

climatically marginal locations such as altitudinal or high-latitude tree-lines) react most 

palpably to climatic fluctuations, principally growing-season temperature (Tranquillini 1979; 

Leuschner et al 2002; Helama et al 2002; Grudd et aI2002). 

Stable carbon and hydrogen isotope ratios of sub-fossil trees are used to reconstruct 

palaeoclimates. The stable hydrogen isotope 8D (deuterium) value of tree rings indicates the 
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isotopic composition of water taken up by the tree, which in turn generally reflects the 

isotopic composition of precipitation (Mayr et al 2003, 393). Deuterium levels within 

precipitation are governed by both temperature (Tang et al 2000) and humidity (White et al 

1994). Low 8D values in the Cairngorm subfossil pines were attributed to pluvial periods with 

very heavy rainfall, probably originating from more northern air masses than at present 

(Dubois & Ferguson 1985, 73). The deuterium record of Pinus trees has been investigated in 

the context of the mid-Holocene pine decline (Section 2.2.3.4). The carbon isotope 813C has 

been found to be closely correlated with climatic parameters such as temperature, relative 

humidity, light intensity and water availability; with the controlling variable dependent upon 

site conditions (McCarroll & Pawellek 2001). In marginal European conditions it is suggested 

that water availability is the most important factor controlling 813C ratios (Mayr et aI2003). 

Mires 

Peatlands are a source of palaeoclimatic evidence often applied to human timescales due to 

their rapid accumulation rates and high temporal resolution in comparison to deep-sea 

sediments. The most commonly utilised peatland palaeoclimatic proxies are the humification 

record (see Section 4.4.4), testate amoebae, and plant macrofossils. These are often used in 

combination to avoid confusion arriving from equifinality, as humification in particular can 

be affected by more than one environmental variable. Both raised and blanket mires are 

sources of palaeoclimatic information (Aaby & Tauber 1975; Aaby 1976; Chambers 1984; 

Rowell & Turner 1985; Blackford & Chambers 1991; Blackford & Chambers 1995; 

Chambers et al 1997, 391). The selection of potentially sensitive locations appears to be vital 

in gaining a meaningful record of humification changes in blanket mires, both locally (water

shedding sites are ideal) and regionally (with sites near the Atlantic Ocean showing most 

sensitivity: Haslam 1987). Comparison of mires displaying different microclimatic regimes, 

affected by topography, effective precipitation and thereby hydrological stability, has 

suggested that mires without potential summer water deficits show the greatest sensitivity to 

shifts towards climatic wetness, perhaps because conditions for Sphagnum growth are optimal 

at such sites (Mauquoy & Barber 2002). Like marine and ice-core proxies, some peat 

stratigraphies show evidence for cyclic environmental change, though generally on much 

reduced periodicities (Section 2.3.3.1). 

Stable isotope ratio studies have been applied less frequently in mires than in other substrates, 

but 8180 and 813C shifts have been correlated qualitatively to climatic shifts (Brenninkmeijer 

ct al 1982). Glacial deposits and lake sediments have also been subjected to limited stable 

isotope analyses (Whittington et al 1996; O'Connell et al 1999: Ahlberg et at 2001). 
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Speleothems 

Speleothems record palaeoclimates via variations in stable isotopes, extension-rates, textures 

and luminescence wavelengths. Luminescence wavelength has been related to mean annual 

rainfall via effects on properties of overlying sediments in Sutherland, Scotland (Baker et al 

1998~ Charman et al 2001). Speleothems from elsewhere in Europe have given different, 

indeed contradictory, palaeoclimatic signals. For instance, temperature appeared to govern 

speleothem 0
18

0, ol3C, textural and extension-rate variations at Crag Cave, Co. Kerry, Ireland 

(McDermott et al 1999, see Section 2.3.3.1). Such inter-site differences question the 

reliability of speleothems as indicators of regional palaeoclimates, prompting suggestions that 

speleothem proxy signals might more closely reflect local environments (e.g. McDermott et 

a11999~ Charman et a12001, 232-233). 

Lake levels 

Former lake level changes are reconstructed by a variety of sedimentological and biological 

methods. Sedimentological or geological indicators include changes in sediment texture, 

lithology, and the relative frequency of biochemically-originated carbonate concretion 

morphotypes (Magny 1992~ 2004~ Magny et al 2003). Biological indicators include plant 

macrofossils, diatom and ostracod assemblages, and chemical or stable isotopic analysis of 

fossils (Gray 1988). Regional syntheses have emerged from central and northern European 

lake-level reconstructions (Digerfeldt 1988; Magny 1993~ Magny et al 2003), furthering 

understanding of the mechanisms of North Atlantic atmospheric circulation patterns (e.g. 

Magny 1992~ 2003~ Yu & Harrison 1995). Lake levels indicate precipitation/evaporation 

ratios, forced by the climatic regime, and climatic variables can differentially affect 

precipitation and evaporation (e.g. Magny et al 2003, 268). Additionally, non-climatic factors 

such as tectonic activity can also affect lake levels (ibid., 270). Quantitative data models have 

correlated phases of higher lake levels with lower summer and winter temperatures, mean 

annual temperatures and growing day-degrees (see section 1.3.2.2), and higher annual 

precipitation, precipitation minus evaporation, and available moisture (Magny et al 2003. 

270). A certain degree of synchronicity exists between Jura lake-level fluctuations and French 

alpine glacier advance/regression models (Magny 1992). 
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2.3.3 Towards a Holocene palaeoclimatic chronology 

2.3.3.1 Mechanisms of Holocene climate change 

The coupled ocean-atmosphere convective model 

Ocean circulation (the oceanic conveyor-belt model) is at the forefront of research into 

Quaternary climate variability and a coupled ocean-atmosphere convective model has been 

developed (Broecker 1994~ Broecker & Denton 1989~ 1990). Thermohaline circulation (THC) 

is explained in Figure 2.18. Ocean-atmosphere coupling of the THC system is responsible for 

the current dominant westerly weather systems. The atmospheric constituent is governed by 

the North Atlantic Oscillation (NAO)~ the relative strengths of the Azores High and Icelandic 

Low pressure. This large-scale controlling factor of northern hemisphere climate determines 

the position and strength of poleward pressure gradients, directly influencing the position of 

westerly winds and storm tracks over Europe (Dunbar 2000, 64). Monthly NAO indices in 

Atlantic Britain (northern Scotland and western Ireland) have been analysed with reference to 

storm frequencies from historic records, and a positive correlation has been uncovered 

between low or negative NAO index values and storm frequency, effecting speculations that 

phases of stormy weather were influenced by southward displacement of polar atmospheric 

and oceanic fronts and therefore storm tracks (Dawson et al 2002). 

Cyclicities, periodicities and solar activity 

High-resolution investigation of deep-sea sediments and ice-cores have proved the Holocene 

has hosted events of abrupt, rapid shifts in northern hemisphere sea-surface temperatures 

(SSTs), direction of prevailing air currents, and thereby the climatic regimes of the North 

Atlantic (Bond et al 1997~ 1999~ Meese et al 1994~ O'Brien et al 1995), such as had occurred 

more distinctly during the last glaciation (Bond et al 1993). Furthermore, these events were 

abrupt and cyclical, with quasi-millennial periodicities identified (O'Brien et al 1995; Bond et 

al 1997; Chapman & Shackleton 2000). Climatic cycles noted in deep-sea sediment and ice

core records exhibit varying periodicities (see Figure 2.19). The GISP2 glaciochemical index 

displayed trends indicating cooler climatic conditions at quasi-2600 year periodicities, with 

cooling events occurring at c. 0 to 600, 2400 to 3100, 5000 to 6100, 7800 to 8800, and 

>11300 BP (O'Brien et al 1995). Conversely, milder climatic regimes were indicated at c. 

610 to 960, 1500 to 2700, 6300 to 7900, and 9300 to 10600 BP (ibid.). Deep-sea sediment 

cores have shown periodicity in cyclicity of palaeotemperature signals on different time

scales. IRD events, accompanied by shifts in foraminifera assemblages, in 0:orth Atlantic 
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cores studied by Bond et al (1997) occurred on millennial scales, peaking at about 1400. 

2800, 4200, 5900, 8100, 9400, 10300, and 11100 BP. This 1470-year cycle correlated well 

with the GISP2 record (see Figure 2.19), supporting theories of a coupling between oceanic 

and atmospheric circulation patterns of the North Atlantic governing short, millennial-scale 

climatic shifts ( ibid., 1262-1263). 

Correlation between the glacial and IRD evidence suggested that these episodes were 

triggered by iceberg discharges pushing south and persisting to lower latitudes (Bond et al 

1997; 1999; 2001). One suggested mechanism allowing iceberg discharges from the Arctic is 

by reduction of North Atlantic Deep Water (NADW) formation, which could potentially 

weaken THC (e.g. Bond et al 1997; Bianchi & McCave 1999; Chapman & Shackleton 2000). 

There is some evidence for this in some of the Holocene climatic events: registered in (iI3C 

content of benthic foraminifera at 9300, 8000, 5000 and 2800 cal. BP (Oppo et al 2003); on 

550-year and 1000-year periodicities (Chapman & Shackleton 2000); and in phase with the 

GISP2 record (Bianchi & McCave 1999). A positive feedback mechanism enhancing oceanic 

circulation fluctuations during periods of climate change has been identified, via increased 

freshwater from increased river discharge (related to precipitation levels) in the northernmost 

North Atlantic resulting in a dilution of high-latitude dense salty water weakening the pump 

mechanism (Dickson et al 2002; Prange & Lohmann 2003). Nevertheless, THC fluctuations 

are far from proven as the causal mechanism of iceberg discharge and thereby Holocene 

climate change. Marotzke (2000) has underlined the lack of current understanding regarding 

fundamental aspects of THC changes, whilst Keigwin & Boyle (2000) highlighted the 

ambiguity of evidence for Holocene deep ocean circulation change by comparison to that for 

the last glacial cycle. Arguably, the only Holocene climatic event with sufficient evidence for 

a cautious link with THC fluctuation is the Little Ice Age (Broecker 2000; Keigwin & Boyle 

2000). 

The driving force behind Holocene climate change is uncertain, although solar variability is 

currently a popular theory. Bianchi & McCave (1999) have suggested that solar forcing drives 

the 2500 year periodic cycle noted by O'Brien et al (1995), whilst internal climatic oscillation 

drives the 1500 year cycle noted by Bianchi & McCave (1999) and Bond et al (1997). 

Enhanced amplification of ocean surface forcing of deep water formation was suggested to 

increase the effects of solar fluctuations (Karlen & Kuylenstierna 1996; van Geel et al 1999; 

Bond et al 2001; Oppo et al 2003). Solar output fluctuations were also implied in the quasi-

1500 year cycle (Bond et al 2001). Petrological tracers of IRD events were correlated with 

variations recognised in the accumulation rate records of cosmogenic nuclides: 11113e flux in 

GRIP and GISP2 ice cores (Finkel & Nishiizumi 1997: Yiou et al 1997) and 14C in tree rinp 



(Stuiver et al 1998). Higher production rates of cosmogenic nuclides are associated with 

weaker solar winds and reduced solar irradiance. Rapid, centennial scale cyclic shifts of 200-

500 years in drift ice records closely matched shifts in production rates of cosmogenic 

nuclides. Several of these cosmogenic fluctuations were rapid (100-200 years) with large 

amplitudes, suggestive of a forcing beyond the capability of Holocene climate fluctuation 

alone (Bond et al2001, 2133). The grouping of these centennial oscillations corresponds well 

to the 1500-year quasi-periodicity noted in earlier studies (ibid., Bond et al1997; 1999). 

Cyclical palaeoclimatic shifts have been recorded in peat-based investigations, with varying 

periodicities: c. 1100 and c. 600 years at Walton Moss, Cumbria (Hughes et al 2000); c. 1100 

years at Temple Hill Moss, southeast Scotland (Langdon et al 2003); c. 800 years at Bolton 

Fell Moss, Cumbria (Barber et al 1994); c. 210 years at Talla Moss, Scottish Borders 

(Chambers et al 199,); and c. 260 years at Draved Mose, (Aaby 1976). The major difficulty 

in reconciling these datasets is the precision and accuracy of the dating methods applied 

(Chambers et al1997, 396). 

Solar activity fluctuations, causing variabilities in insolation, have been postulated at complex 

periodicities, traced by fluctuations in atmospheric 14C in the INTCAL curve (Stuiver et al 

1998) and correlated to palaeoclimatic signals in wiggle-match-dated terrestrial records in 

attempts to prove linkages between solar activity levels and Holocene climatic change. In 

investigations utilising plant macrofossils and humification data in British and Irish 

ombrotrophic mires as palaeoclimatic proxies, the onset points of the late third millennium 

cal. BP wet shift and the LIA were found to have occurred during rapid increases of 

atmospheric 014C flux (Blackford & Chambers 1995; Kilian et al 1995; Mauquoy & Barber 

2002). 

Short-term climatic fluctuations 

Seasonal to centennial-scale fluctuations are currently the focus of much research into 

Holocene climate history, based on evidence that regionally-specific multidecadal 

temperature anomalies of c. 0.5-1 °c characterised late Holocene variability, such as the MWP 

and the LIA (Bradley & Jones 1992; Hughes & Diaz 1994). Such fluctuations are best 

highlighted by fine-resolution terrestrial palaeoclimate records. Centennial-scale fluctuations 

in 0180 were observed to dominate over lower-resolution periodicities in the late-Holocene 

section of the Crag Cave stalagmite (McDermott et al 2001). Various causal mechanisms 

have been debated for such rapid, low-frequency shifts: solar forcing. volcanism. internal 

variations within the coupled ocean-atmosphere system. oceanic variability, and trace gas 
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variability (Crowley & Kim 1993; Rind & Overpeck 1993). Modelling has predicted that any 

of the above factors could be capable of causing regional temperature anomalies of 0.5-1 0 C 

(Rind & Overpeck 1993), however the evidence for volcanic influence has been argued as 

overstated (Crowley & Kim 1993). With reference to the aforementioned recent evidence for 

oceanic enhancement of solar fluctuations, it appears increasingly likely that this is a 

promising area of future research into short-term climate changes. 

2.3.3.2 Evaluating the various palaeoenvironmental records 

A problem with the reconstruction of palaeoclimates from terrestrial proxies from the mid

Holocene onwards is the complicating issue of human activity. If a proxy record itself has not 

been directly affected by humans, then anthropogenic alterations of ecosystems may well 

have caused environmental changes apparent in the record. Therefore palaeoenvironmental 

proxy records of the mid- and late-Holocene have often been interpreted as dominated by 

anthropogenic activity, whereas the early Holocene records are interpreted as climatically

driven (e.g. Selby et aI2005). 

The most marked Holocene (post -Younger Dryas) cooling events are the 8200 cal. BP event 

and the LIA (O'Brien et al 1995; Alley 2000, 1333; Alley et al 1997, 483; Broecker 2000; 

Keigwin & Boyle 2000). The most noticeable events in the deep-sea sediment study by Oppo 

et al (2003) were those at c. 5000 BP and the LIA. The interval between 5000 and 6000 cal 

BP was marked as an especially prominent peak in cosmogenic nuclide production by Bond 

et al (2001). 

Irish proxy records of Holocene climate change are summarised in Figure 2.20. Pollen, 

geochemical, magnetic and stable isotope (8 180 and 8l3C) investigations at Tory Hill, Co. 

Limerick, suggest that rapid climatic amelioration occurred subsequently to the Nahanagan 

(Younger Dryas) stadial, from c. 11450 - 11280 cal. BP (O'Connell et al 1999,204). In the 

early Holocene, data is available from stable isotope records in speleothems and lake 

sediments. In the Crag Cave stalagmite rapid early-Holocene warming was evident, possibly 

in response to the melting Laurentide ice-sheet (McDermott et al 1999, 1033). Shifts in 

oxygen isotope ratios generally did not correspond to the quasi-1500-year ice-rafting episodes 

(ibid., 1330; see Bond et al1997; 1999). Coupling of cold events in the Crag Cave and GISP2 

records occurring in the early- to mid-Holocene (see Figures 2.20 & 2.21) were interpreted as 

centennial-scale manifestations of regional North Atlantic margin climate signals, rather than 

local effects (McDermott et af 2001, 1330). The inferred cause was THC fluctuations. JS the 



impacts were better detected than those of lower-frequency IRD events, and mid-to late

Holocene ice-rafting failed to impact on 8180 at this site (ibid.). 

The Crag Cave stalagmite 8
18

0 record was interpreted as recording a cooling trend on the 

Atlantic seaboard between c. 7800 and 3500 cal. BP, followed by warming continuing until 

the present day (McDermott et al 1999). There is some agreement of the Sutherland 

speleothem and humification records with GISP2 records, but forcing mechanisms are 

complex, primarily because effects of temperature and precipitation are difficult to distinguish 

(Charman et a12001, '232-233). 

The major results and trends seen in long-term tree-ring records from various studies in 

northern Europe are presented in Figure 2.22. Ring-width studies have had variable success 

correlating with records from other regions and other proxies (Grudd et a12002; Helama et al 

2002), however most chronologies seem to indicate cooling with high variability in the late 

third millennium BP and a cold climate in the mid-late second millennium BP (Grudd et al 

2002; Helama et aI2002). Reasonable correlation between Irish and continental (German and 

Dutch) ring-width chronologies was observed between c. 7500 and 4000 cal. BP, with either 

increased human influence or a shift in growing conditions in one or both regions effecting 

asynchronous growing dynamics after this point (Leuschner et al 2003). A common forcing 

factor has been interpreted causing the often contemporary germination, die-off and growth

depression events in the Irish ring-width records (ibid., 702). 

Palaeoclimatic proxies from British and Irish ombrotrophic mires are presented in Figure 

2.23, with the identified periods of wetter climate marked by shading. Atmospheric 

circulation has been reconstructed primarily by reference to lake-level reconstructions on a 

regional scale. Results from major European published studies are presented in Figure 2.22. A 

synthesis of northern European Holocene lake-level changes showed that from 11500 cal. BP 

in the band from southern British, southern Scandinavian to the eastern Baltic, climatic 

conditions became increasingly dry, whilst lake-levels in northern Britain were higher 

indicating a wetter climate (Yu & Harrison 1995). After c. 10200 cal. BP a more meridional 

circulation regime emerged, with the regions suffering wetter conditions confined to the 

extreme northwest of Europe. From 8900 cal. BP the band of lakes with regressed conditions 

spread northwards, and between 6800 and 4500 cal. BP most of northern Europe was drier 

than at present, with wetter conditions in the far north such as Iceland. By 3200 cal. BP wetter 

conditions prevailed in Britain, lasting until after 2000 cal. BP. These patterns were translated 

into a reconstruction of atmospheric circulation, whereby a more zonal circulation system 

caused the early Holocene contrast between wet conditions in northern Britain and northern 



Scandinavia and drier conditions in southern Britain and southern Scandinavia. Westerlies 

would have been more strong and northerly than today. (ibid., 266-267). 

An alternative hypothesis whereby the LIA was correlated with more enhanced meridional 

circulation patterns has been proposed by Lamb (1977). This has been given recent support; 

impurities in Greenland snow peak in the northern hemisphere winter when meridional flow 

is intensified, thereby indicating that the cooling periods observed by glaciochemical records 

in the GISP2 core correlate to meridional circulation (O'Brien et a11995, 1962). 

2.3.3.3 Correlating the various records 

Correlation between climatic shifts registered in different proxy records is hampered by the 

differing resolutions, levels of sensitivity, and governing environmental constraints. In 

addition to the 8200 cal. BP event, analysis of the various terrestrial records confirmed the 

LIA as a major cold period and added additional detail regarding its progress, identifying 

various phases of extreme cooling within the overall period concerned. The 6100-5000 cal. 

BP cooling phase seen in the Greenland ice core and cosmogenic nuclide records is not 

especially well highlighted in many terrestrial records, although cooler or wetter episodes 

within it are present in some records, and indeed several of the peat stratigraphies under study 

were apparently initiated during this timespan. The most frequently recognised periods of 

climatic deterioration apparent in the terrestrial records described above occur at c. 4500-

4000, c.2700-2300, c. 1400, c. 1000, c. 540 and c. 300-100 cal. BP; with cooling periods also 

noted (in multiple, but less frequent) records at c. 5300, c. 3500, c. 3200-2800, c. 1900, c. 

1750 and c. 700 cal. BP. Peat stratigraphies have provided most of this evidence. It must be 

noted that due to the dating methods applied the correlations are often imprecise, with some 

smeanng of the chronological boundaries of each identified climatic episode (cf. Baillie 

1991). 

Taking into account the problems of applying accurate, precise chronological boundaries in 

incremental records (especially peatlands) the aforementioned most frequently recognised 

periods of climatic deterioration on the British Atlantic seaboard can be summarised thus: c. 

8200 cal. BP, c. 6100-5000 cal. BP, c. 4500-4000 cal. BP, c.3200-2300 cal. BP, various 

phases over the second millennium BP, and the LIA. These periods have been highlighted by 

shading in Figures 2.22 and 2.23. Only the periods directly relevant to this study are discussed 

in detail. 



2.3.4 Timing and nature of Holocene climatic events 

2.3.4.1 The period 6100 - 5000 cal. BP 

Glaciochemical ice core evidence of atmospheric reorganisation at c. 6100 to 5000 cal. BP 

(O'Brien et al 1995) can be tentatively correlated to the c. 5900 cal. BP IRD event (Bond et al 

1997) and several peat-based indications of wetter bog surfaces, taking into account the 

problems associated with correlating different proxy records. As increasing volumes of data 

are analysed, the period in question appears to be characterised by several discrete events. A 

complex series of rapidly fluctuating climatic parameters could have had implications for 

human responses. The ability to adapt to rapid changes in environmental conditions may have 

influenced the long-term success of human societies in vulnerable locations. 

The c. 6100 cal. BP climatic shift has been interpreted as triggering an increasingly 

continental climate in northwest Europe, prompting exaggerated seasonal temperature 

differences (e.g. O'Brien et al 1995). Effects on vulnerable human communities and 

vegetation taxa are discussed in Sections 2.2.1.3 and 2.2.1.4. 

A significant event of extreme storminess at c. 5200-5100 cal. BP has been inferred from a 

layer of silt preserved in blanket peat at Achill Island, Co. Mayo (Caseldine et al 2005). 

Whilst the period 5800 - 5200 cal. BP was apparently one of relative climatic dryness, 

extreme dry conditions just before c. 5200 cal. BP were evidenced in humification records 

(ibid., 172), similar to the inferences from Ceide Fields (Molloy & O'Connell 1995, 219). At 

Achill Island, Pinus invaded the (presumably dry) peat surface in the period immediately 

post-dating the c. 5200 - 5100 cal. BP event, for a brief duration of a few generations. 

Occurring immediately prior to a shift to wetter climatic conditions (seen in decreasing 

humification and increasing peat accumulation rates), the stonniness was interpreted as a 

manifestation of the regionally significant shift in North Atlantic climate dynamics. The 

storminess was tentatively correlated with the abandonment of Ceide Fields. Similarly to 

Ceide, Achill Island contains evidence of occupation in the Early to Middle Neolithic 

occupation (though in the form of megalithic tombs rather than definite agricultural systems), 

but not the Late Neolithic; a situation characteristic of Irish pollen profiles during the c. 5200 

- 4500 cal. BP Pinlls expansion (ibid., 175; Cooney 2000). 

2.3.4.24500-4000 cal. BP 
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The later Holocene is typified by more frequent climatic excursions, arguably of lesser 

magnitude, and on a more regional basis, than the early- and mid-Holocene (Barber et al 

1994; O'Brien et al 1995; Spurk et al 2002; Tipping & Tisdall 2004, 76). The interlude .+500 

- 4000 cal. BP is characteristic of this; with modest peaks in North Atlantic IRD (Bond et al 

1997; 2001), and evidence of climatic deterioration in British peat stratigraphies (Barber et al 

1994; 2003; Anderson 1998; Anderson et al 1998). NAO weakening by a reduced Azores 

High and resulting contraction of the jet stream was inferred by Gear & Huntley (1991), 

bringing cooler, wetter summers to the Atlantic fringe of northern Europe. 

It has therefore been proposed that an increase in variability of climate was of major 

significance during this period (Tipping & Tisdall 2004, 76). The Pinus decline is a probable 

example of a species reducing its range limits at its environmental margins during this period 

(see section 2.2.3.4). Human responses in the British Isles to climatic fluctuations have 

proved more difficult to gauge. Settlement expansion into upland areas after this period, at c. 

4000 - 3500 cal. BP has been postulated (Burgess 1980; 1984; Cowley 1998; McCullagh & 

Tipping 1998; Tipping 2002), possibly indicating uptake of increased opportunities for 

pastoral agriculture provided by upland woodland c,ollapse (Tipping & Tisdall 2004, 76-77). 

2.3.4.3 c. 3200-2300 cal. BP 

The chronological precision of a climatic shift at this period is poorly defined, but quasi

corresponding cooling events exist in the IRD record (Bond et al 1997), the GISP2 

glaciochemical index (O'Brien et al 1995) and benthic foraminifera assemblages from 

subpolar Atlantic deep-sea sediments (Oppo et al 2003), with most of the peat-based proxy 

reconstructions showing similar trends (see Figure 2.23 and section 2.3.3.2). This millennial

scale cooling signal may in fact represent the combination of several discrete events. The IRD 

event and benthic foraminifera assemblage shift are well-dated to c. 2800 cal. BP and several 

peatland studies show cooler and/or wetter conditions prevailing from around this point 

(Mauquoy & Barber 1999a; Barber et al 2003; Langdon et al 2003). Similarly, a sudden, 

sharp rise in atmospheric 14C at 2800-2710 cal. BP (coinciding with the IRD event) has been 

recorded and correlated with transitions in northwest European raised bogs from macrofossil 

assemblages signifying wann, dry conditions to those indicating humid, cold conditions, 

reflecting a shift to an increasingly oceanic climate (Kilian et al 1995). As more data emerge 

from Europe, the Americas and Asia, climatic teleconnections relating to a considerable 

abrupt climate change at c. 2800 cal. BP have been postulated (van Geel et at 1998). 

Alternatively, the more prolonged GISP2 event, though apparent, is less marked than other 

such increases in impurities (O'Brien et al 1995, 1962). Again. a g~n~rally more variable 



climate may well have characterised the period In question with a particularly marked 

climatic event at c. 2800 cal. BP. 

This period and the LIA are the principal phases of Holocene climatic change which have 

been explored in detail by archaeologists and landscape historians with reference to human 

settlement (Tipping 2002, 15). Contraction of upland settlement in the British Isles has been 

proposed (see Section 2.2.3.5) and hitherto accepted as a generalisation (e.g. Armit & Ralston 

1997, 188; Mitchell & Ryan 2001, 236). Due to the chronological resolution of the 

archaeological record and the complex societal factors in existence, such oversimplifications 

are increasingly being queried or revoked (Tipping 2002; Young & Simmonds 1995; Cooney 

& Grogan 1999, 141-142; see Section 2.2.3.5). 

2.3.4.4 The second millennium cal. BP 

A climatic cooling at c. 1400 cal. BP is registered in many peat-based records (e.g. Blackford 

& Chambers 1991) as well as by an IRD event (Bond et at 1997), though not in the GISP2 

record (O'Brien et at 1995). There are some, but fewer, terrestrial indications of short-lived 

cold phases at c. 1900 and c. 1750 cal. BP (see section 1.4.2.2). The general picture is of an 

unstable climate in the early second millennium BP with a markedly cold phase at c. 1400 cal. 

BP. This event has only recently been defined (in contrast to the Late Bronze Age and LIA 

climatic downturns), and no human response to this event has been recorded or suggested in 

northern or upland Britain, supporting arguments that archaeological evidence of 

abandonment is only sought when evidence of climate change exists already (Tipping 2002, 

15). 

2.4 Irish Holocene environmental history 

2.4.1 Pedogenesis 

Pedogenesis is affected by climate, relief, time, parent material and biota. Holocene soil 

maturation in Ireland has been affected to varying degrees according to location (see Figure 

2.24; Gardiner & Radford, 1980). Soil development from the C- (unaltered) horizon in the 

post-glacial landscape depended upon parent material, and as extensive drift deposits cover 

most of Ireland, solid geology is relatively unimportant (Curtis et at 1976, 1'+7). Although full 

weathering of soil parent materials can take many millennia (Cruickshank 1970, 90). 

Dimbleby (1965, 355) estimated that most of Britain's soils would have been mature hy the 

mid-Holocene. 
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Predominant downward water movement in Ireland resulted in surface leaching and therefore 

gradual acidification of soils and sediments (Mitchell & Ryan 2001, 103). In much of 

northern and central Ireland, clay-rich tills prevented soil horizon development and so luvisols 

and gleys (surface-water, ground-water and peaty gleys) are present (Cruickshank 1970, 92; 

Mitchell & Ryan 2001, 103-104). Brown earths developed in areas of coarser, better drained 

parent material (e.g. cambisols of the north-east), although no virgin brown earths remain 

today due to anthropogenic influences (Cruickshank 1970, 92). Acid brown earths, somewhat 

leached soils with developed B-horizons, formed where non-calcareous basal material 

predominated (e.g. cambisols of the south-east). In higher rainfall areas - the south-west _ 

leaching is more intensive and podzolisation has occurred, giving rise to brown podzolic soils, 

and peaty podzols in upland areas where plant decomposition is delayed by lower 

temperatures and higher precipitation/evaporation ratios. Histosols - organic soils - in this 

case refer to peatlands; the lowlying Atlantic blanket mires, the upland blanket mires and the 

raised mires most common in the centre of the island. 

Progressive acidification of soils in temperate climates, via leaching and podzolisation of 

(principally) brown earths, is accepted to be most noticeably manifested on base-poor soils 

(Iversen 1969; Dimbleby 1962; 1965; Simmons et al 1981, 98). Such acidification was 

conventionally believed to have occurred in late interglacial times, when soils were fully 

mature (e.g. Andersen 1961) though arguments have been made for earlier degradation (early

or mid-Flandrian) in certain fragile environments such as base-poor upland soils (e.g. 

Simmons 1964; Dimbleby 1962; 1965; Simmons et al 1981,98). Evidence from Scotland is 

suggestive of significantly earlier acidification (Davidson & Carter 1997); podzolisation in 

areas of freely draining, coarse-textured parent materials (e.g. McCullagh 1993) and gleying 

in finer-textured parent materials (e.g. Pennington et al 1972) leading to peat development. 

Peat initiation therefore occurred on both fine- and coarse-textured parent materials. It has 

been argued that by the Neolithic, when the first widespread and long-term human impacts 

upon soils were initiated, the present-day pattern of soil distribution in Scotland was already 

established (Davidson & Carter 1997, 57). A similar sequence may have occurred in Ireland 

as its climate is similar to that of Scotland and its geology also largely covered by drift. 

Pedogenesis from the mid-Holocene onwards is more complex to reconstruct because of 

increasing human influence. In the west of Ireland, the area under study, peat initiation and 

spread have been the most prominent and widespread modes of soil evolution. Histosols now 

cover a significant proportion of County Mayo (see Figure 2.2'+) and from the surveys of 

Herity and Caulfield undertaken in the 1970s (see Section 2.2.2.2) it is known that in many 
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locations blanket peat is a superficial deposit overlying mineral soil (see Herity & Eogan 

1977,50; Caulfield 1978, 137; 1983, 196-7). 

Raised bog development had begun in the early- to mid-Holocene from terrestrialisation of 

marshes and lakes (e.g. Bradshaw 1987), and was probably a natural process (Bradshaw 2001, 

436). Outside of small basins, large-scale blanket bog spread was largely a post-Ulmus 

decline phenomenon, which has led to ongoing debate over its primary causal factors _ 

climatic, pedological, or anthropogenic (see O'Connell 1990a). In some areas of Co. Donegal 

blanket bog initiation commenced earlier in the Holocene, in two main phases; from c. 10100 

- 9150 cal. BP, concurrent with increasing woodland diversity and loss of canopy cover 

associated with tree invasions, and from 5700 and 5150 cal. BP as woodland declined (Fossitt 

1994, 26). These developments, whilst atypical for Ireland, are useful in the study of more 

general later Holocene blanket peat spread. The early Holocene blanket bog spread was 

apparently a natural process in areas which were marginal for tree growth, with no associated 

soil deterioration or podzolisation (ibid.). The mid-Holocene peat initiation phase in Co. 

Donegal may have commenced naturally, however human activity probably contributed to its 

spread (ibid.), by suppressing tree growth and woodland regeneration. This situation has been 

compared to lowland Atlantic blanket bog expansion further south (O'Connell 1990a; Huang 

2002). 

Elsewhere, radiocarbon dates have been obtained from Irish blanket peat showing initiation 

dating from c. 8000 to less than 1000 cal. BP, with pollen and plant macrofossil evidence 

showing that woodland occurred under almost all areas now covered by blanket bog 

(Bradshaw 2001, 437). Occurrences of archaeological evidence for human settlement at 

various times underneath blanket peat have prompted theories that anthropogenic activity, 

especially forest clearance and agriculture, may have initiated blanket bog spread in some 

areas (e.g. O'Connell 1990a). This theory is similar to that which Moore (1975; 1986) 

developed in mainland Britain, whereby small raised bogs developed in natural topographic 

depressions and lakes, and acted as foci for further peat development. Increased run-off from 

human or natural canopy opening would enhance peat development, with more widespread 

waterlogging induced by extensive deforestation, burning and grazing. The crux of this model 

is that the more optimal the location for forest growth, the more necessary was human impact 

for initiating blanket peat growth (Bradshaw 2001, 437). Areas marginal for tree growth 

would therefore require less interference for blanket bog to initiate and spread. 

At present, peat erOSIOn is apparent III all mountainous areas of Ireland. manifested by 

gullying on slopes and deep channel incision on plateaus, culminating eventually in frec-
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standing peat haggs (Bradshaw & McGee 1988). Peat erosion has been registered in Irish lake 

sediments for up to 3000 years (Bradshaw & McGee 1988; McGee & Bradshaw 1990, 117) 

and the factors governing sensitivity or susceptibility to erosion appear to have varied. 

Mechanisms to maintain stability appear to be incorporated in intact mire systems and erosion 

results when the stability threshold is crossed, which occurs under particular circumstances. 

Factors as climate change, human disturbance, overgrazing, atmospheric pollution and 

changes in the mechanical stability of peat masses over time have been suggested to cause 

passing of this threshold (Stevenson et al 1990; Bragg & Tallis 2001). Causal factors appear 

to vary according to location: some studies have suggested that susceptibility to 

anthropogenic interference is heightened during periods of climate change (Bragg & Tallis 

2001; cf. Stevenson et al 1990). Similarly, Bradshaw (2001, 437; see also Bradshaw & 

McGee 1988) has argued that peat erosion is probably an autogenic process on sloping 

ground, and human activity may have accelerated its progress. In other ecosystems, however, 

long-term stability has been displayed and recent erosion has been correlated with the upland 

extension of grazing in the 18th and 19th centuries AD (Huang 2002, 163-164). 

2.4.2 Vegetation history 

2.4.2.1 General vegetation history 

This section employs the classical Blytt-Semander scheme subdividing the Holocene into 

pollen assemblage zones. The divisions have been applied sensu Mitchell (1956), delimited 

by palynological reference points rather than by radiocarbon dated horizons. 

The primary cause of Ireland's reduced range of native flora and fauna in comparison to 

mainland Britain is the post -glacial severing of the land bridge. Various arguments regarding 

the presence of a land bridge have been advanced (Devoy 1985; Preece et al 1986) and new 

modelling suggests that the glacial forebulge would have exposed migrating sea-bed sand-

ridges in the Early Holocene (Wingfield 1995). 

The classic Irish postglacial pollen diagram was from Littleton Bog, Co. Tipperary, which 

gave its name to the term for the Irish postglacial; the Littletonian (Mitchell 1965). In addition 

to the complete or near-complete Holocene records from raised bogs in the Irish Midlands. 

lake sediments have been used for early Holocene vegetation reconstruction (e.g. O'Connell 

et al 1988; Fossitt 1994; Huang 2002: Molloy & O'Connell 2004~ Selby et al 2005). 

Generalisations can be made from comparisons of such pollen profiles to form an outline 

scheme of vegetation successions. 



An early postglacial flora of disturbed-ground herb taxa such as Poaceae, Rumex and 

Filipendula, with Empetrum heath, was rapidly colonised by the scrub taxa Juniperus from c. 

12350 cal. BP, followed by Betula at c. 11500 cal. BP and then Salix (Fossitt 1994, 23; Huang 

2002, 159; Molloy & O'Connell 2004, 51). Betula pubescens has been presumed to be the 

major taxa (O'Connell 1980, 313), though B. nana may have been a lateglacial survivor 

(Mitchell & Ryan 2001, 109). By c. 10800 cal. BP the SalixlJuniperus scrub had mostly been 

overtaken by Betula, and Corylus appeared. Pinus, the fIrst canopy species to invade, 

appeared in western Ireland as the Corylus expansion commenced at around 10350 cal. BP 

(O'Connell et al 1988, 283; Molloy & O'Connell 2004, 51). Similar sequences occurred in 

midland and north-central Ireland, though Pinus apparently never reached such high 

proportions on base-rich lithology (Bradshaw & Browne 1987; Selby et al 2005, 158-160). 

The Corylus maximum is fairly well-dated in western Ireland to the centuries around 10100 

cal. BP (see Section 2.4.3.1). Pinus peaked shortly after Corylus, and between c. 10000 and 

9000 cal. BP Quercus and Ulmus became slowly established (Molloy & O'Connell 2004). 

Persistence of some open ground populated by herbs such as Plantago spp., Rumex, and 

Helianthemum is evident into the Boreal period in the extreme west, probably due to 

unfavourable edaphic conditions (e.g. the Aran islands: Molloy & O'Connell 2004). The 

Alnus rise, traditionally characteristic of the onset of the Atlantic period in northwest Europe, 

began asynchronously between c. 8000 - 7500 cal. BP (Fossitt 1994, 23), coincident with the 

spread of damp soils (e.g. Huang 2002, 159; Selby et al 2005, 160). As most Irish sites show 

a decline in Pinus percentages coincident with the Alnus rise, suggestions have been made 

that Pinus was replaced by Alnus in the lowlands, possibly in response to increased 

waterlogging, and by blanket peat in the uplands at a similar time (Bradshaw & Brown 1987, 

214; Bennett 1984). As there are indications of peaks in microscopic charcoal frequencies 

before the Alnus rise in some Irish profiles, suggestions have been made that forests may have 

been deliberately opened to attract game and that Alnus capitalised on the clearances 

(Bradshaw 2001, 438). 

The Atlantic woodlands (here considered to represent the time in between the Alnus 

expansion and the Ulmus decline) represent the vegetational response to the Holocene 

climatic optimum of c. 9000 - 6000 cal. BP, when temperatures have been estimated at I-2°C 

higher than those of the present day (Bell & Walker 1992, 70-71), although this is a 

generalisation not accounting for the fluctuations outlined above. Composition of the Atlantic 

woodlands varied according to location, largely influenced by edaphic conditions (Bradshaw 

2001). In western Ireland, many pollen diagrams indicate that the dominant taxa w~re 

Querclls, Pinlls and Corylus, with ['lmlls of lesser significance, although it is usually under-



represented in the palynological-record (Bradshaw 2001, 433; Molloy & O'Connell 2004). 

Quercus and Ulmus were commonly dominant in midland Ireland (e.g. Selby et a12005, 160), 

with Ulmus frequently predominant in base-rich lithology (see O'Connell 1980, 309). Alnus 

was the principal taxa of wetter soils and lake margins, and in most upland areas Pinus and 

Betula dominated (ibid., Bradshaw 2001, 433; Huang 2002, 159; cf. Bradshaw & Browne 

1987). Other well-represented taxa in lowland habitats included Populus, !lex, Hedera helix, 

and woodland-edge taxa such as Prunus and Sorbus (Fossitt 1994, 23; Bradshaw 2001, 433; 

Huang 2002, 159). As woodland diversity increased, open areas became more frequent in 

western Ireland and NAP percentages (e.g. tall shrubs such as Rhamnus cathartica and 

Viburnum opulus, and Poaceae, Cyperaceae, Calluna and Pteridium) increased (Fossitt 1994, 

23; Molloy & O'Connell 2004, 51). Taxus and Fraxinus were present, but better-represented 

in more open conditions (Fossitt 1994, 23; Molloy & O'Connell 2004, 52). Deciduous tree 

species native to mainland Britain that never became established in Ireland are TWa, 

Carpinus and Fagus, with uncertainty remaining as to whether the Irish Sea or subtle 

temperature constraints acted as the barrier that prevented TWa from spreading (Bradshaw 

2001,430). 

Some western Irish pollen diagrams show evidence of the pre-Ulmus decline presence of 

Plantago lanceolata (e.g. Huang 2002; Molloy & O'Connell 1987; 2004). Although P. 

lanceolata has been traditionally considered a strong indicator of agricultural activity (Behre 

1981; Groenman van Waateringe 1986) such incidences are unlikely to represent farming 

activity in western Ireland, where pronounced Neolithic Landmim phases invariably occur 

after the Ulmus decline (Molloy & O'Connell 2004; see also O'Connell & Molloy 2001). The 

Ulmus decline is well-dated to c. 5900 cal. BP, although it is not a feature of all Irish pollen 

profiles, especially those in upland, wet locations where conditions were never favourable for 

the taxon or where woodland was already open (Fossitt 1994, 24). The arguments regarding 

causality of the Ulmus decline are summarised in Section 2.2.1.3; but in western Ireland there 

is little evidence for contemporaneous human activity, therefore early settlement may have 

been facilitated by increased openings and clearances provided by the demise of UIn-IliS 

(O'Connell et al 1988, 285; Fossitt 1994, 24; Molloy & O'Connell 2004, 58). Multiple or 

complex, protracted Ulmlls declines are features of some Irish pollen diagrams (O'Connell 

1980; Hirons & Edwards 1986, 147-148; Heery 1997; Selby et al 2005), and have been 

ascribed to the influence of anthropogenic activity (O'Connell 1980; Hirons & Edwards 1986: 

Selby ct aI2005). 

Due to the complicating factor of human influence, it is difficult to det~ct authigenic 

vegetational changes or those forced by alterations in climatic or edaphic conditions from the 
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Sub-boreal onwards. Landnams evident in pollen diagrams in western Ireland are invariably 

post- Ulmus decline (O'Connell & Molloy 2001; Molloy & O'Connell 2004, 52) although, 

based on securely stratified cereal pollen grains, small-scale agriculture immediately prior to 

or during the Ulmus decline has been occasionally recorded (e.g. Molloy & O'Connell 1987; 

Huang 2002) and is assumed to have been practised upon the better soils such as brown earths 

(Huang 2002, 162). Landnams were typified by decreases in AP and substantial increases in 

NAP, especially Poaceae and Plantago lanceolata, indicating extensive grassland creation at 

the expense of woodlands. Canopy openings following the Ulmus decline and Neolithic 

Landnams favoured light-demanding tree taxa such as Fraxinus and Taxus, which are better 

represented in Sub-boreal than Atlantic period (e.g. Fossitt 1994, 24; Bradshaw 2001, 438; 

O'Connell et al 2001, 179-180; Selby et al 2005, 160). Whilst woodland regeneration often 

occurred in post-Landnam contexts, some upland landscapes were characterised by secondary 

woodland of a scrubby nature, as evidenced by increases in such taxa as Juniperus and /lex 

which are grazing-tolerant and could represent the use of woodland for pasture (Huang 2002, 

162). Elsewhere, an expansion of Corylus has been seen in secondary Neolithic woodland 

clearance phases, possibly due to inferred resistance to burning and grazing (Pilcher & Smith 

1979, 360). 

The expansion of Pinus between around 5700 and 5150 cal. BP and its subsequent decline at 

c. 4500 cal. BP have been discussed in detail in Section 2.2.3.4. Whilst the Pinus decline has 

been associated with blanket bog spread in the uplands (Bradshaw & Browne 1987), in 

Connemara a delay of c. 200 years between the decline of pine (and coincident expansion of 

Taxus) and the major blanket bog expansion has been noted, suggesting no causal connection 

(Huang 2002, 162). Blanket bog spread in western Ireland from c. 4500 cal. BP has been 

associated with maintenance of open ground (O'Connell 1990a) and the upsurge in farming 

activity at the beginning of the Bronze Age (Huang 2002). Referring to the model of blanket 

bog spread described by Moore (1986: see Section 2.4.1), the decline of Pinus (a tree of 

marginal edaphic conditions) due to environmental marginality would indicate heightened 

edaphic vulnerability to blanket peat spread. After the Pinus decline the species survi ved in 

low numbers (though not in significantly waterlogged upland locations), becoming more or 

less extinct by the third millennium BP, although occasional specimens may have survived 

until c. 1000 cal. BP (Bradshaw & Browne 1987, 246). Widespread replanting took place in 

the 17th and 18th centuries AD (ibid.). 

Woodland instability and subsequent woodland decline in the Subboreal varied across 

Ireland, with the transition to a treeless blanket bog landscape occurring earliest in the north

west (Fossitt 1994, 27). Arguments that human agency was largely responsible for woodland 
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decline in Ireland have been to some extent favoured by evidence of its asynchronicity, 

although the variability of ecosystems in different environmental locations to withstand 

externally-forced stress means that woodland regeneration would be more successful in some 

areas than in others (ibid.). In Connemara, considerable human impact from c. 3750 cal. BP 

(Late Bronze Age) has been linked to woodland decline and blanket bog spread, with fire 

important in effecting the transition (O'Connell et a11988, 285). 

In some areas of Ireland, human-induced landscape clearance did not take place until post

Neolithic times, such as Mooghaun, Co. Clare (see Section 2.2.3.1). The implications of 

increasing grazing pressure on Bronze Age landscapes, and consequent blanket peat spread, 

suggests pastorally-based agriculture dominated during much of this period in western Ireland 

(Molloy & O'Connell 2004, 53). Increased forest clearance in the early- and mid-Iron Age is 

seen frequently in Irish pollen profiles (O'Connell et al 2001; Molloy & O'Connell 2004). 

This often represented the final phase during which dense woodland occurred; for instance, in 

Co. Donegal, blanket peat dominated the landscape and woodland was scarce after c. 2400-

1500 cal. BP (Fossitt 1994, 28). 

The Late Iron Age, c. 1850 - 1450 cal. BP, has typically been seen as period of relative forest 

resurgence and reduced farming activity in Ireland, especially the western portion (Mitchell 

1986; cf. Lynch 1981; JeliCic & O'Connell 1992; O'Connell 1994; O'Connell & Nf Ghrainne 

1994; Molloy & O'Connell 1993; 1995; 2004, 54; O'Connell et al 2001, 173 & 180-181; 

Lomas-Clarke & Barber 2004). This is not, however, universal. Killarney Valley, Co. Kerry, 

has palynological evidence of disturbance and large-scale deforestation and mixed farming, 

implying a large population (Mitchell 1988). Dendrochronological evidence shows that the 

wooden trackways of midland Ireland were constructed and maintained at a constant rate 

during the Iron Age (Bradshaw 2001, 439). In Co. Louth, eastern Ireland, some sites record a 

late Iron Age forest regeneration whilst others show major clearance (Weir 1995). A Late Iron 

Age lull in farming activity cannot therefore be extended to the whole island. 

The Early Medieval period, from c. 1400 to 1000 cal. BP, has been described as the final 

woodland demise in Connemara (O'Connell et al 1988, 286) and this extends to Ireland as a 

whole. Expansions of NAP indicating an upsurge in farming activity are characteristic of 

pollen profiles (Weir 1995; O'Connell et a12001, 178; Lomas-Clarke & Barber 200.+; Molloy 

& O'Connell 2004, 55). Mixed agriculture continued into the Anglo-Norman and early 

Modern periods, with increasing Qllerclls values and concurrent declines of other AP taxa. 

indicating that woodland management such as coppicing or pollarding may have occurred 

(Lomas-Clarke & Barber 2004). Recent high-resolution palaeoen vironmental investigations 



and comparisons with historical records have allowed more detailed reconstruction of 

vegetation dynamics during the last millennium. Tephrochronology has dated agricultural 

collapse in the lowlands to c. 20 years after the mid-14th century AD Black Death, indicating 

either a population decline or abandonment of less favourable agricultural land (Hall 2003, 

15). General reductions or temporary cessations of cereal cultivation, with persistence of 

pastoralism, are evident in most Irish pollen records of the late Middle Ages (ibid.). 

Major human impact on the western Irish landscape commenced in 17th century AD (Cole & 

Mitchell 2003; Lomas-Clarke & Barber 2004), as population pressure increased following 

land confiscation elsewhere (O'Connell et al 1986, 286). This culminated in the period of 

maximum population pressure during the early 19th Century AD, regarded as representing the 

greatest impact upon the landscape in terms of floral and faunal extent and diversity 

(Bradshaw 2001, 439). Management strategies in the past century have revived forest cover 

somewhat, with reduced diversity (ibid.). 

2.4.2.2 Pollen profiles from North Mayo 

Garrynagran 

A blanket peat monolith from an area of sandstone bedrock in Garrynagran townland, 16km 

south of Ceide Fields, was palynologic ally investigated by Jennings (1997) and results 

partially published in O'Connell & Molloy (2001). Site location is indicated in Figure 2.25. 

Two court tombs and adjacent pre-bog stone walls occur within 2km of the sampling site 

(ibid., 108). Pinus stumps are preserved within the blanket bog (ibid.). In common with many 

western Irish pollen profiles (see section 2.2.1.1) the Ulmus decline at c. 5950 cal. BP clearly 

occurred some two centuries earlier than the Neolithic Landmim, (see pollen profile in Figure 

2.26; O'Connell & Molloy 2001, 110). Low microscopic charcoal values suggested that fire 

was not important in woodland clearance. NAP components indicated that substantial pastoral 

agriculture with a minor cereal component typified the Neolithic activity, within a wider 

landscape in which woodland was still important. This agricultural phase ceased or became 

drastically reduced by c. 5150 cal. BP. Re-emergence of agricultural activity occurred in the 

Late Neolithic / Early Bronze Age, at c. 4500 cal. BP (ibid.). 

Lough Doo 

This site, situated at the junction of the Ballina lowlands and the south western part of the Ox 

mountain range (see Figure ~.25), was investigated by O'Connell et al (1987) and further 
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discussed in O'Connell (l990b). Probably lying on psammitic (metamorphosed sandstone) 

bedrock, the solid geology in the vicinity of the lake is covered by drift (O'Connell et al 1987, 

150). The pollen and geochemical profiles are reproduced in Figures 2.27 and 2.28. The 

topmost two radiocarbon dates (see Appendix A) were considered inverted, resulting from 

recent severe inwash of older humic soil horizons (ibid., 156; O'Connell et al 1988). 

Similarly to Carrownaglogh, the wide error margins associated with the radiocarbon assays 

reduces the precision of inteipretation, and to all practical purposes the radiocarbon 

chronology is useless. The zonation therefore defines chronology in this discussion. 

Sedimentation began before the Alnus expansion, with some degree of openness in the 

woodland landscape evident. Soil erosion in the catchment during DOO-l was indicated by 

low loss-on-ignition and relatively high levels of K, Mg and Na (see Figures 2.27 and 2.28). 

Before the upper zone boundary a peak in Pinus (see Figure 2.27) records its expansion onto 

the lake margin, facilitated by falling water table levels; a situation subsequently reversed by 

the upper boundary (the Alnus rise: O'Connell et al 1987, 1'59). The Atlantic woodland was 

typical of western Ireland (see section 2.4.2.1) and geochemistry indicated stable soils. At the 

Ulmus decline, marking the DOO-2/3 boundary (see Figure 2.27), slight relative increases in 

tree pollen, the appearance of NAP, falling organic content and rising K and Na flux indicated 

substantial canopy opening, interpreted as caused by Ulmus-specific disease, rather than 

anthropogenic clearance (ibid., 158). 

The Pinus decline at c. 4540 cal. BP (interpolated; note large errors) was gradual with no 

indications of human interference (O'Connell et al 1987, 158). Geochemistry indicated some 

catchment erosion and reducing conditions in DOO-3; although rising Betula and Quercus 

percentages preclude widespread podzolisation, paludification and blanket bog spread. The 

precedence of Betula over Corylus-type might however be interpreted as edaphic 

deterioration (ibid.). In a landscape context, the palaeoenvironmental signals in this zone of 

the Pinus decline and blanket bog spread accord with those at other sites in the North Mayo 

region, e.g. the nearby Carrownaglogh site (see above). At Lough Doo, where agriculture was 

not practised until the Middle Bronze Age, the mid-fifth millennium cal. BP indications of 

blanket bog spread are much more muted than at sites of known Neolithic occupation (e.g. 

Ceide Fields, Carrownaglogh, Belderg Beg). 

The first widespread deforestation and agricultural activity occurred in DOO-4, from c. 3750 -

2600 cal. BP (interpolated; O'Connell et al 1987, 158 & 162), in the Middle and Late Bronze 

Age. The Landmim was typical of woodland clearance for mixed farming. with an expansion 

of Betula indicating its colonisation of open ground in edaphically unfavourable areas. Peaks 



in Na, K, Mg and Fe indicated increasing erosion, and the increasing Fe:Mn ratio and rising 

percentages of Cyperaceae and Calluna suggested progressively severe reducing conditions, 

perhaps as a result of waterlogging (ibid., 161). General woodland recovery, with Taxus 

initially important, followed. Woodland regeneration equating to the Late Iron Age lull in 

farming activity (see Section 2.4.2.1) occurred in DOO-4 (from c. 1800 cal. BP [interpolated]; 

see Figure 2.27 & Appendix A). 

DOO-S saw a major phase of deforestation and a renewal of mixed agriculture in the locality 

(O'Connell et al 1987, 161). The reversal in radiocarbon dates, plus rising Fe:Mn ratios but 

steady loss-on-ignition values, indicate anoxic conditions, probably organic inwash. Blanket 

peat erosion in the catchment was suggested (ibid.). This phase was dated to post- AD 400; 

archaeologically supported by the nearby presence of Early Medieval church sites (ibid., 161-

162). 

Bunnyconnellan East 

A short section from an undulating sub-peat soil surface on a glacial ridge in the Ox 

Mountains some 4km south of Carrownaglogh (see Figure 2.2S for location) was investigated 

to determine whether the ridge features were natural or relics of previous cultivation 

(O'Connell 1990b, 270). A sub-peat oval cairn of stones was discovered Sm from the 

sampling location, although whether it was constructed prior to peat initiation was unclear 

(ibid.). The sub-peat profile was an organic-rich soil overlying a gleyed horizon and a well

developed iron pan over an iron-enriched B2 horizon (ibid.). The pollen profile is presented in 

Figure 2.29. 

Palynological analysis suggested that pollen was differentially preserved in the soil, and that 

Pinus/Corylus woodland probably existed prior to peat inception (O'Connell 1990b, 270). 

Subsequently, increasing Calluna values probably reflect the local mire taxa, whilst the 

regional component was dominated by Quercus, Corylus, Ulmus and Alnus. There were no 

indicators of agricultural activity in these lower spectra. In the upper zone (after c. 3740 cal. 

BP), the uppermost spectra contained cereal pollen grains, Plantago lanceolata and elevated 

Poaceae percentages, with generally lower AP levels. A short-lived agricultural function was 

therefore proposed. 



Chapter 3 

Introduction to the study area 

3.1 Introduction to Chapter 3 

This chapter describes the archaeological site which is used as a case study to test previously 

held assumptions concerning the responses of prehistoric human communities to climate 

change. The site in question, Belderg Beg, is located in close proximity to the Atlantic Ocean, 

on the extreme westem fringe of Ireland and thereby of the British Isles. It is established that 

climatic changes have occurred throughout the Holocene, forced by alterations in an 

integrated atmospheric-oceanic convection system, and that the manifestations of such 

changes were of greatest amplitude nearest the north-west Atlantic fringe. In order to assess 

the potential of the Belderg Beg site to contribute to knowledge of Holocene environmental 

changes, their effects on ecosystems, and any responses or adaptations by the people that 

lived on and farmed the land, an appraisal of current understanding of the Holocene climatic, 

environmental, edaphic and vegetational history of Ireland is required. The site at Belderg 

Beg and its environs are then discussed. Finally, the opportunities at Belderg Beg to 

investigate Holocene climate and environmental change and adaptive or buffering responses 

of the human inhabitants are assessed. 

3.2 Belderg Beg 

3.2.1 Location and present environment 

3.2.1.1 Location 

The archaeological site at Belderg Beg (NG F983407, longitude 8 degrees 0 minutes 0.000 

seconds W, latitude 53 degrees 21 minutes 24.654 seconds N), lies at c. 50m OD in the 

townland of Belderg Beg, Co. Mayo. The site is located on a gently sloping hill which has an 

east-facing aspect. Modem settlement and road construction means that its original extent is 

unknown. Figure 2.25 shows the North Mayo area with sites considered in the thesis marked. 

Figure 3.1 shows a detail of the Belderrig area. Figure 3.2 shows the location of the site in its 

landscape context. 
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3.2.1.2 Geology 

The bedrock geology of the area is the Grampian subdivision of the Dalradian supergroup. 

metamorphosed sedimentary rocks, with subordinate volcanic and intrusive rocks and some 

metamorphosed glacial deposits (Long et al 1992, 13). The rocks around Belderg consist of 

quartzites and psammitic schists (metamorphosed sandstones), with intrusive veins of 

Caledonian igneous metadolerite around Belderg harbour. Copper mineralization occurs 

frequently in Grampian group rocks along the North Mayo coast between Broad Haven and 

Killala Bay. The best known example occurs at Horse Island, approximately 2km north of 

Belderg, where the mineralization, including green malachite coatings, formed along the 

contact between a quartz vein and a basic intrusive dyke which both cross-cut quartzites 

(ibid., 33). Figure 2.12 shows the solid geology of the North Mayo area. 

Devensian landscape development of the area is poorly understood. It is believed that Belderg 

lay outside the limits of the British and Irish ice sheet as it is several kilometres west of the 

Ballycastle-Mulrany moraine and the immediate area contains few or no drift deposits (Coxon 

1991, 7-9). However, localised shelly drift deposits at Belderg harbour have been offered as 

evidence for localised glaciation or a Late Midlandian ice advance (ibid.). Decalcification of 

upper layers of this drift has occurred. Today the site is within an extensive area of blanket 

peat, classified as lowland Atlantic blanket bog (see Section 2.4.1). 

3.2.1.3 Climate 

Present-day Irish climatic features (30-year average mean annual rainfall, mean annual wind 

speed and wind direction for the island of Ireland and annual temperature range at Valentia, 

Co. Kerry) are presented in Figure 3.3. 

Local climatic statistics reflect 30-year averages from the nearest national weather station, 

situated at Belmullet, 35km west of Belderg. Mean maximum and minimum annual 

temperatures are 12.5°C and 6.7°C respectively. Mean January and July daily temperatures 

are 5.7 and 12.6°C respectively. Mean annual rainfall is 1142mm. The mean annual sunshine 

hours are 3.5 per day. Mean wind speed is 13.1 knots, with a prevailing south-westerly 

direction. 
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3.2.1.4 Vegetation and land-use 

Belderg Beg is within the area of Atlantic blanket bog, the low-lying ombrotrophic vegetation 

system complexes which are generally confined to the western seaboard counties of Ireland 

and which covers 120, OOOha of County Mayo. Atlantic blanket bog is characterised not only 

by relief but on the basis of its distinctive floristic composition (Doyle 1990; O'Connell 

1990a). Varying in depth from l.5 to 7m, it is permanently waterlogged due to low drainage 

capacity and high precipitation in relation to evaporation (Doyle 1990, 77). Typical 

vegetation of the north west Mayo Atlantic blanket bog complexes has been described by 

Doyle (1982; 1990). The blanket bog in the area under study corresponds to the 'valleyside 

mire' subcategory as defined by Lindsay (1995): occurring on sloping ground, bounded by a 

watercourse at the base of the slope, with linear pools oriented along the slope's contours (see 

also Charman 2002, 10). 

Today, the vegetation at the archaeological site is somewhat drier than that of the surrounding 

blanket bog; this appears to be a product of the removal of peat for domestic fuel, the 1970s 

archaeological excavations and road-building. The vegetation in the drier areas consists of 

Poaceae, Cyperaceae, Calluna vulgaris, Ranunculaceae, Bellis perennis, Cirsium, Taraxacum 

officianalis, Plantago lanceolata, Potentilla erecta, Potentilla palustris and Trifolium repens. 

Wetter areas of the site contain various Sphagnum species. The surrounding blanket bog 

vegetation in the vicinity of the area under investigation (see Figure 3.1 and Plate 3.1) 

consists primarily of typical Atlantic bog species such as Molinia caerulea, Drosera 

rotundifolia, Eriophorum vaginatum, Schoenus nigricans, Juncus, Hydrocotyle vulgaris and 

Narthecium ossifragum. The bog area as a whole generally corresponds to the western Irish 

equivalent of the M17 Scirpus cepitosus-Eriophorum vaginatum blanket mire as described by 

Rodwell (1991, 179), with the main difference being the higher representation of Schoenus 

nigricans (ibid.), probably due to the extreme oceanicity of the Irish Atlantic seaboard 

(Sparling 1967). 

Use of the land surrounding the site is today limited to low-intensity sheep grazing. It appears 

that within living memory and local historical recollection, only small-scale crofting was 

practised. It is thus unlikely that the intensity of activity has changed substantially, at least 

over the past century or two. Domestic peat cutting for fuel has occurred around the site 

throughout living memory. 
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3.2.2 History of investigation 

3.2.2.1 Belderg Beg 

Pre-bog stone walls have been known in the area from the 1930s when a local teacher, P. 

Caulfield, reported their occurrence to the National Museum, Dublin. In the 1970s their 

significance as indicators of prehistoric occupation was explored by his son, Professor 

Seamas Caulfield, and Dr Michael Herity in a survey uncovering over thirty such features, 

often in close proximity to court tombs, along the north Mayo coastline (Herity & Eogan 

1977, 50; Caulfield 1978, 137; 1983, 196-7). This survey led to Caulfield's excavations at 

Belderg and at Behy/Glenulra, now known as C6ide Fields (Caulfield 1978; 1983). 

Belderg Beg was excavated between 1971 and 1976. The excavation results have not been 

fully published, so the summary reports published annually in The Excavations Bulletin 

(currently titled Excavations) are included in Appendix B. A plan of the site is presented in 

Figure 3.4; this is not a full excavation plan drawing but has been printed in a guide to the 

area (Caulfield 1988). This plan has been used as the basis for the current investigation, with 

some annotations added. Radiocarbon assays from the excavation are included in Appendix 

A. Figure 3.5 shows the interpreted phases of the site. 

As no full publication exists, the main results and interpretations have been summarised from 

the Excavations reports (see Appendix B), summaries in later publications (Caulfield 1978; 

1983; 1988) and personal communication from the excavator. 

Earliest occupation 

The earliest archaeological remains at Belderg were considered to be Walls 1, 2 and 4 and 

Enclosures 5 and 6 (see Figure 3.4 and 3.5a and Plates 3.2 and 3.3). In their excavated 

sections, the walls were found to be constructed on mineral soil. A pine stump rooted in the 

soil and dated to c. 5145 cal. BP (UCD-C31: Caulfield et al 1998,633-634; see Appendix B 

and Figure 3.4) has served as a terminlls ante quem for wall construction. Enclosure 6 was 

assigned to the Neolithic phase by its association with Wall 4 and because it was constructed 

on mineral soil, and Enclosure 5 was assigned an early date because it contained typical 

Neolithic pottery (Caulfield 1988). 
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Reoccupation 

The roundhouse (see Figures 3.4 and 3.5b and Plate 3.4) was constructed of stone and earth , 

with timber supports. It contained a central hearth with charcoal spreads, but the only 

artefacts were saddle querns, rubbers and a polished stone disc (Caulfield 1973; see Appendix 

B), which influenced the interpretation of the structure as a granary (Caulfield 1988). Wall 3 

(see Plate 3.5) was considered to be contemporary with the roundhouse occupation because of 

the near-identical ages of radiocarbon assays from a structural timber within the house and 

stakes extending the' wall in question. However, the two stakes submitted for radiocarbon 

assay were adjacent to one another (G. Byrne pers. comm; see Figure 3.4 and 3.5b). Their 

age need not reflect the date of construction of any other part of Wall 3. 

Agriculture 

Evidence for prehistoric agriculture was first discovered in an area close to the roundhouse in 

1972. Initially, relict ridges and furrows were discovered to overlie ard-marks, and both 

features were assigned a Neolithic date (Caulfield 1972). In later excavations, the ard-marked 

area was discovered to extend beyond the confines of the ridge cultivation and the two 

cultivation indications were seen to be unconnected with one another (Caulfield 1973; 1974). 

The stratigraphic relationship between the roundhouse and the ploughed areas seemed to 

suggest that the house was constructed subsequently to one phase of clearance and ploughing 

of the ridged cultivation plots, but prior to another phase of stone clearance and agriculture 

(Caulfield 1975). The ridge cultivation area is shown in Plates 3.6 and 3.7. 

Anomalies 

Two radiocarbon assays (SI-1474 and SI-1475) from charcoal associated with flints within 

the round house were dated to the first millennium cal. BP (see Appendix A) and as they were 

inconsistent with the archaeological evidence, were considered as anomalous (Caulfield 1973; 

1978, 142). These assays have not been considered in any subsequent discussion of the site. 

3.2.2.2 Belderrig Quartz Scatter 

Close to the Belderg Beg site, on a cliff of the sheltered bay at the mouth of the Belderg River 

(see Figure 3.1 for location), is a scatter of worked quartz, other lithic materials, fishbone and 

macrofossils including hazelnut shell, sealed in a layer of soil beneath peat. The lithic 

technology, which includes a uniplanar Larnian core, is characteristically Lat~r Mesolithic 



(Warren 2004, 5). Many of the artefacts are distributed in a sub-peat soil layer forming an Old 

Land Surface (OLS) enclosed by field walls running upslope, possibly part of the Belderg 

Mor field system (see Section 2.2.2.4). 



Chapter 4 

Research strategy and methodology 

4.1 Introduction 

This chapter sets out the research design which was constructed to address the gaps in 

knowledge pertaining to the palaeoenvironmental and occupation history at Belderg Beg, 

and to assess the degree of climatic or other environmental marginality under which the 

inhabitants lived during prehistory. A plan of the site with all sampling locations marked is 

shown in Figure 4.1. 

4.2 Research design 

The purpose of this investigation is to reconstruct as fully as possible the Holocene 

landscape evolution and vegetation dynamics of the Belderg Beg hillslope, with a special 

emphasis on the mid- to late-Holocene agricultural activity. A research strategy combining 

on-site and off-site investigations was required to address both the palaeoenvironmental and 

the archaeological issues, in order to provide a holistic interpretation of landscape dynamics. 

From the palaeoclimatic and palaeoenvironmental records contained within the peat it will 

be possible to assess any environmental stresses which the communities were subjected to, 

and to reconstruct the effects which their activities may have had upon components of the 

environment, namely the vegetation systems and pedogenesis. On-site bioarchaeological and 

geoarchaeological analyses are included in order to elucidate the nature of agriculture and 

supplement chronological control. A threefold research programme was designed: 

1. Recording the sediment stratigraphy of the hillslope in three dimensions, 

encompassing part of the area within the Neolithic field system and a significant 

portion of the area downslope of it. 

2. Detailed palaeoenvironmental and radiocarbon investigation of a peat core from 

outwith, but close to, the field system; selected on the basis of the results from 

research strategy 1. 

3. Geoarchaeological and palaeoenvironmental investigation of exposed sections of 

the palaeosols in the vicinity of the Bronze Age roundhouse. 
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This design is anticipated to complement the prevIOUS archaeological investigations at 

Belderg by providing the missing palaeoenvironmental evidence to address the assumptions 

(Caulfield 1978; 1983; 1988; Caulfield et al 1998) that underlie some of the interpretations 

of this site: 

1. The walls running downslope (Walls 1 and 2, Figure 3.4) are relics of Neolithic 

agricultural activity. At present, this has been assumed on the basis of post

Neolithic radiocarbon dates from subfossil pine stumps preserved in peat overlying 

the mineral soil upon which the walls were built, within the enclosed areas. 

2. The primary purpose of the field system was pastoral agriculture. 

3. Soil deterioration and peat formation were likely causal factors III the 

abandonment of agriculture. 

4. Bronze Age reoccupation of the site was on a smaller scale than that of the 

previous Neolithic activity and was concerned with exploitation of the 

chalcopyrite seam at Horse Island. 

5. This Bronze Age activity occurred during a period of environmental deterioration 

associated with the spread of blanket peat. 

The research is also intended to further knowledge and understanding of the nature and 

dynamics of prehistoric settlement and agriculture in western Ireland. Attention was paid to 

how best to supplement knowledge from the previous palaeoenvironmental investigations at 

(in particular) Ceide Fields (Molloy & O'Connell 1995; O'Connell & Molloy 2001), but also 

other sites in North Mayo, to build up an integrated regional picture of palaeoenvironment 

and agriculture in mid-late prehistory. 

4.3 Field methods 

4.3.1 Site selection 

4.3.1.1 Coring transects (Figure 4.1) 

East- West transect 

In order to elucidate the Holocene evolution of the Belderg Beg hillside a record of the 

sediment stratigraphies at regular points on the slope was required. A transect of cores 

sectioning the slope was taken, and the sediment stratigraphies contained within the 

boreholes was logged as described below. 



North-South transect 

A sediment-stratigraphic record laterally transecting the field system upslope of the east-west 

transect was taken in order to highlight any spatial differentiation of activity areas. 

Specifically, the transect was designed to cross two field walls (Walls 1 and 2) and record 

the sediment sequences around two pine stumps dated during the investigation by Caulfield 

et al (1998). 

As part of the research design it was intended that samples of basal peat would be removed 

from locations along the transects, selected on the basis of sediment-stratigraphic analysis, 

and submitted for AMS dating. The results would be instrumental in illustrating the spread of 

peat over the study area and in highlighting relationships between land use and landscape 

development. 

4.3.1.2 BEL cor;ng site (Figure 4.1) 

From the results of the transect 1 sediment-stratigraphical investigations the location that 

came to be labelled the BEL core was selected for detailed palaeoenvironmental analysis. It 

was situated in an area of deep blanket peat just downslope of the terminus of the Neolithic 

field system. The deepest peat deposits were likely to be the oldest and, because of the 

location beyond the field system, peat growth was suspected to have commenced before its 

construction and use. Thus it was hoped that pollen preserved in these deposits would 

contain a full stratigraphic record of the phases of prehistoric agriculture. To ascertain 

precisely the location of the deepest, most stratigraphically complex sedimentary sequence, a 

programme of trial probing with an Eijelkamp corer was undertaken. This confirmed that the 

most suitable location was indeed located on the transect, in a c. 1m peat hagg representing a 

cutting face, apparently the result of turf cutting. It was thus assumed that a complete 

sequence from within this hagg would represent uncut peat growth. This core was therefore 

labelled the BEL core, with the transect cores running downslope (eastwards) of it numbered 

El, E2 etc, and those running upslope (westwards), WI, W2 etc (see Figure 4.1). 

4.3.1.3 BB Soil sections 

Two complete sections of buried soil from the archaeological site were selected for sampling 

based on interpretation of the 1970s excavations (S. Caulfield pers. comm.). 
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Section BBl (Plate 4.1). 

This section was taken from the area of cultivation ridges by the roundhouse, formerly sealed 

by blanket peat. Excavation in the 1970s revealed that the cultivation ridges were formed of 

a distinct soil layer, in part overlying an ard-marked soil horizon. The cultivation ridges were 

thought to be associated with the Bronze Age occupation (see Section 3.2.2.1), and the ard

marked layer was tentatively interpreted as representing the Neolithic ground surface, based 

on its greater spatial distribution and similarity to the mineral soil associated with the 

Neolithic walls (S. Caulfield pers. comm.). 

Section BB2 (Plate 4.2). 

This section was taken from an area south-west of the roundhouse which upon excavation 

was revealed to contain an ard-marked soil horizon directly under blanket peat. It was 

anticipated that soil micromorphological analysis of both sections, together with radiocarbon 

dates of the basal peats overlying the mineral soil in each section, would definitively indicate 

the contemporaneity or otherwise of the two soil layers. 

4.3.2 Sampling 

4.3.2.1 Coring transects 

An Eijelkamp corer with an open-sided chamber 2.5cm in diameter and 100cm in length was 

used to recover sediment stratigraphies from the boreholes for description. The location and 

ground surface altitude of each core was surveyed by a Total Station. Each borehole was 

logged from present-day ground surface to impenetrable basal sediment. At locations 

selected on the basis of the sediment stratigraphies recorded in this manner, samples for 

AMS dating were recovered using a closed-chamber 60cm long, 5cm diameter Abbey piston 

corer which was capable of obtaining sediments in contact with impenetrable substrates. 

Upon recovery, cores from the piston corer were placed in clean plastic guttering and sub

samples removed in the field and double-bagged for transport back to the laboratory. 

East-West transect 

A 300m transect of 33 boreholes (including the BEL core) was placed sectioning the 

hillslope, encompassing the deepest areas of blanket peat and including altitudes within and 

downslope of the Neolithic field walls. 
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North-South transect 

This 120m long transect of 17 boreholes was placed across the upslope section of the 

Neolithic field system at roughly the same altitude as the BB sections (see below). Two 

Neolithic walls were crossed by this transect, in an attempt to elucidate any spatial 

differentiation within the field system. 

4.3.2.2 BEL core 

Two complete 300cm sequences (BEL sequence) were obtained by cleaning back c. 30cm 

from a turf cutti.ng to form a peat face and removing a 100cm section in monoliths (Plate 

4.3). A 1m length, 5cm diameter hand-held Russian corer (Jowsey 1966) was used to recover 

the remainder of the sequence, with overlaps taken using a 30cm length, 10cm diameter 

Russian corer. All samples were wrapped in heavy-duty plastic film and aluminium foil and 

cores were transported back to the laboratory in plastic drainpipes cut in half lengthways. 

The cores were retained horizontally in a cold-store at a constant 4°C. 

4.3.2.3 BB sections 

Two trench sections from the 1970s excavations were cleaned back by at least 30cm and the 

stratigraphy was described, drawn and photographed (Plate 4.4). Two complete undisturbed 

sections from each soil profile were sampled using 8 x 5 x 5cm Kubiena tins: one for soil 

pollen analysis and radiocarbon dating, the other for soil micromorphological analysis. The 

Kubiena tins were labelled in situ with orientation and provenance details. Once removed, 

the tins were sealed and wrapped in heavy-duty plastic film and aluminium foil. Bulk soil 

samples were taken of all identified contexts, except for the recent turf-growth, and double

bagged. All samples were retained in a cold-store at a constant 4°C. 

4.4 Laboratory methods 

4.4.1 Sediment description 

4.4.1.1 Transect cores 

Sediment stratigraphies were recorded in the field according to the recommendations of 

West (1977), describing sediment type, internal structure and stratification, dominant 
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components (and for organic matter, recognisable plant materials) and stratigraphic relations. 

Particle sizes and organic contents were estimated in the field. Boundaries between units 

were defined as gradual (>2cm), clear (1-2cm) or abrupt «lcm). 

4.4.1.2 BEL core 

For the purposes of comparability to the transect cores, sediment stratigraphy was first 

described according to the recommendations of West (1977~ see above). 

For detailed palaeoenvironmental investigation, sediment stratigraphic units identified from 

the descriptive system above were further described according to the system of Troels-Smith 

(1955), utilising the modifications to grain-size classes suggested by Aaby and Berglund 

(1986). 

4.4.1.3 BB sections 

Organic sediments were described according to the system of Troels-Smith (1955), utilising 

the modifications to grain-size classes suggested by Aaby and Berglund (1986). Minerogenic 

sediments were described and characterised by Munsell colour (1992), texture and particle 

size, structure, consistency, boundaries with adjacent deposits, clasts or inclusions, grading 

and any other characteristic feature, based upon the descriptive system of West (1977). 

Particle sizes and organic content were estimated by judgement. 

4.4.2 Pollen & microscopic charcoal analysis 

4.4.2.1 Pollen incorporation into peats 

The pollen input into a mire depends upon factors including its topographical position, the 

hydrological conditions in which the mire operates and the vegetation upon and surrounding 

the mire. The classification of mires according to their hydrological conditions divided peat 

landforms into three principal types (Moore et a11991, 15): 

1. Rheotrophic / minerotrophic: the mIre vegetation receIves water from land 

drainage and from precipitation, and is generally nutrient rich. Includes marshes. 

fens, swamps, carrs and flushes. 
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2. Mesotrophic: intermediate sites where ground water makes little contribution to 

the total nutrient load. Generally nutrient poor, these sites are usually transition 

mires or poor fens. 

3. Ombrotrophic: rain-fed mires with resulting low nutrient input. Typically raised or 

blanket mires. 

Methods of pollen dispersal have been described by Tauber (1965) and Jacobson & 

Bradshaw (1981): 

1. Local sources of pollen «20m from the edge of the sampling basin): 

a. The local component (CI), from the species growing on the mire surface. 

b. The trunk space component (Ct) in part, the pollen falling from a canopy or 

produced by the herbs and shrubs growing under the canopy, which is transported by 

subcanopy air movements (e.g. where a woodland borders a mire). 

c. The inwashed, secondary component (Cw) in part, pollen incorporated into the 

drainage water, which mayor may not have been reworked from other, potentially 

older, sediments within the catchment. 

2. Extra-local sources of pollen (20m to a few hundred metres from the basin edge): 

a. Ct in part., 

b. Cw in part. 

c. The canopy component (Cc) in part, that is some of the pollen produced in the 

canopy which is carried along by air components above the canopy. 

3. Regional sources (from longer distances): 

a. Cc in part. 

b. The rain component (Cr), where pollen grains act as nuclei around which water 

droplets form, accounting for the majority of pollen removal from the atmosphere. 

The relative importance of each pollen source depends upon the size of the site; however 

these models assume a forested environment and it is essential to consider other types of 

landscape differently. 

As the mire at Belderg Beg is classified as a lowland Atlantic blanket bog, the pollen source 

components typical of ombrotrophic blanket mires must be considered when analysing the 

BEL pollen profile. An additional factor is the history of formation of the bog on the Belderg 

valley side; for instance, early in its formation there may have been a fen peat which 
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underwent a process of terrestrialisation, or alternatively small raised mires may have formed 

in hollows, which expanded laterally in the transition to blanket mire (e.g. Charman 2002. 

10, 74-75, 150-153). 

Previous studies (e.g. Molloy & O'Connell 1995; O'Connell & Molloy 2001) indicate that 

blanket peat spread in North Mayo began in a forested environment. Anthropogenic 

maintenance of open areas in this environment was possibly the ultimate force causing 

blanket mire spread over much of western Ireland (O'Connell 1990a). The scheme of Tauber 

(1965), which assesses the pollen sources in a small lake or mire within a wooded landscape, 

is therefore considered applicable to interpretation of part of the BEL core (see results 

below). In one s~udy of pollen sampled from a woodland floor, the source area was estimated 

as the surrounding 20-30m (Andersen 1970). The potential of vegetation reconstruction from 

wooded sites is therefore limited to the scale of the woodland stand (Jacobson & Bradshaw 

1981,91). 

It is evident from the landscape and sediment stratigraphy (see below) that Belderg Beg has 

been covered by this type of peatland for the majority of its sedimentary history. 

Ombrotrophic bogs have a low or negligible Cw pollen component. Blanket mires on water

shedding sites such as slopes or ridges will be subjected to certain air-flow patterns which 

must be considered when assessing the pollen input patterns. The pollen at such sites will 

derive from the rainfall component (Cr), the canopy component from neighbouring valleys 

(Cc), and the local mire plants (Cl) (Moore et al 1991, 15). Analysis of moss polsters in 

modem north-west Scottish blanket peats suggest the non-arboreal pollen components are 

likely to have an extremely small source area, in the region of 0.5 - 2m (Bunting 2003). 

Local vegetation dynamics rather than wider landscape changes are therefore reflected in the 

non-arboreal components of moorland or blanket bog taxa. 

Pollen accumulation rate diagrams for peats often show high internal variability and 

therefore are frequently spiky in appearance. Three contributing factors are suggested by 

Jacobson & Bradshaw (1981, 90): growth gates may be irregular, uneven distribution of 

plants growing on the peat can cause over- or under-representation of taxa at some times, 

and volumetric sampling may be inaccurate. It is possible to assess the first and third of these 

factors: standardised, thorough laboratory methodology can improve sampling precision and 

radiocarbon dating is often used to quantify growth rates (see below). Degree of 

humification may also indicate the rate of grmvth. 
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4.4.2.2 Pollen incorporation into soils 

Pollen profiles from soils must be interpreted differently to those from peats and usually with 

great caution. The aerobic nature of the soil environment results in a poor quality of 

preservation. Furthermore, stratification is less secure as vertical mixing will take place in 

biologically active soils with populations of biota such as invertebrate detritivores (Andersen 

1986). Some soils are nevertheless useful for palynological investigation. In soils with a pH 

below 5 the level of pollen preservation is generally high, regardless of the soil classification 

(Moore et al 1991, 22). 

4.4.2.3 Pollen evidence of human activity 

Palynological detection of agricultural activity depends upon recognition of destruction or 

modification of the pre-existing vegetation, the introduction of crop species, the presence of 

weed species associated with arable or pastoral activities and, following abandonment of the 

site, the recovery of vegetation (Moore et a11991, 9). The study of weed species commonly 

occurring in agricultural habitats has led to certain pollen taxa routinely being identified as 

'anthropogenic indicators' (Behre 1981). 

Recognition of agriculture from the representation of cereal pollen grains is problematical. 

Cereals such as wheat and barley are self-pollinating and therefore produce low quantities of 

pollen. Their pollen grains tend not to disperse great distances from the parent plant (V uorela 

1973). Pollen investigations are therefore likelier to contain cereal grains originating from 

past agricultural activity with increasing proximity to the formerly cultivated area (Edwards 

& McIntosh 1988, 180). A further difficulty regarding cereal pollen identification is that taxa 

in the Poaceae family to which cereals belong bear close morphological similarities. Whilst 

cereal pollen grains are usually larger than those of non-cultivated grasses (typically larger 

than 37/-lm), there is a degree of overlap with certain species (Andersen 1979; Dickson 

1988). Further criteria are usually considered, principally the pore and annulus diameters and 

the surface sculpturing patterns (Andersen 1979). Large grass pollen grains, particularly 

those in pre-Ulmlls Decline levels, are often described as 'Cereal-type' (e.g. Edwards & 

Hirons 1984; Edwards & McIntosh 1988; O'Connell 1987). 
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Analysis of modem pollen rams m blanket peat have recorded low percentages of 

anthropogenic indicator taxa which were not part of the local vegetation communities, 

suggesting that sporadic or occasional low percentage occurrences of 'anthropogenic 

indicator' taxa in pollen records from blanket bog landscapes need not be interpreted as 

recording agricultural activity in the near vicinity of the sampling point, but may instead 

originate from the wider landscape (Bunting 2003). 

4.4.2.4 Microscopic charcoal analysis 

Microscopically identified charred products of the burning of biospheric material (chiefly 

vegetation) are here referred to as microscopic charcoal (condensed to 'microcharcoal' in 

pollen diagrams). Microscopic charcoal analysis can be combined with pollen analysis to 

understand vegetational successions and their causes. The cause of fires, anthropogenic or 

climatic via lighting-strike frequency, can be estimated (Tolonen 1986, 485). Sizes of 

microscopic charcoal particles transported in smoke vary from micro- to macroscopic, and 

the distance that different sized particles are carried in the atmosphere before deposition 

varies. The charcoal influx to a particular sampling location will also depend upon 

meteorological conditions at the time of transport and deposition, basin morphology and 

local and regional topography (ibid., 486). 

Several methods are used to quantify the microscopic charcoal content of pollen 

preparations. The total area may be estimated by either counting individual particles within 

size classes, or by a point-count method (Clark 1982). A total area of charcoal per unit 

volume sediment is then estimated for each preparation. Alternatively, particles may be 

counted as encountered during routine pollen counting and expressed as a percentage of the 

pollen sum. Charcoal particles are usually differentiated from other black discrete objects 

(decomposed plant debris: Substantia humosa cf. Troels-Smith [1955]; Tolonen 1986, 488) 

although in practice identification may be more difficult in the case of smaller particles. 

Most analysts therefore employ a minimum diameter of particles included, which may vary 

from 5 to 50~m (ibid., 489). 



4.4.2.5 Incorporation into research design 

Charcoal particles 

Charcoal particles of >371lm were counted during routine pollen analysis and calculated as a 

percentage of TLP (see below). This size was selected as a threshold (see above) because it 

equates to that used in the investigation at Ceide Fields (Molloy & O'Connell 1995) and it 

was hoped that comparability would thus be aided. 

BEL core 

Levels to be palynologically analysed were selected as a skeleton diagram was built up and 

intervals varied between lcm and 6cm. Slices were 0.5cm or lcm thick. Analysis necessarily 

occurred at closer intervals in the archaeologically significant levels of the core, i.e. 

generally below 80cm depth. Where evidence of anthropogenic activity was recorded, 0.5cm 

thick slices were taken to increase the likelihood of recovering cereal grains. 

BB sections 

Sampling for pollen analysis took place contiguously in lcm slices from Kubiena tins K6, 

K7 and K8 (BB 1) and K12, K13 and K14 (BB2). Sampling occurred through the earliest in 

situ peat layers and as far as was possible into the underlying palaeosol: that is, as far as 

pollen was preserved in sufficient quantity and satisfactory quality to be counted. 

4.4.2.6 Methodology 

Laboratory methodology 

Standard laboratory procedures were employed (Moore et alI991): 

1. One cm3 was subsampled by displacement into 10% hydrochloric acid. Two 

Lycopodium clavatum tablets were added for pollen concentration calculations. 

2. Hot digestion in 10% sodium hydroxide was used as an alternative to potassium 

hydroxide for removal of humic acids. 
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3. Samples were sieved at 150Jlm and 7Jlm to remove large and small particles. A 711m 

mesh was selected for fine sieving as a smaller mesh (e.g. 5)lm) easily becomes 

clogged, and larger meshes (e.g. 10Jlm) result in the loss of pollen in the filtrate, 

whereas losses with a 7)lm mesh have been determined (by absolute techniques) to 

be negligible (Cwynar et aI1979). 

4. Where necessary, digestion in boiling 40% hydrofluoric acid for 15 minutes was 

carried out to remove silica, followed by resuspension in 10% hydrochloric acid to 

remove any silicofluorates formed during treatment with hydrofluoric acid. 

5. Acetolysis for 3 minutes in a 1:9 mixture of concentrated sulphuric acid to 

concentrated acetic anhydride resulted in removal of cellulose. 

6. Samples were dehydrated in 2-methylpropan-2-01 and stained with aqueous 

safranine. 

7. Silicone oil (200112500cS) was used as a mounting medium. 

Analysis 

Analysis was carried out using an Olympus BH-2 optical microscope. Routine counting 

occurred at 400x magnification, with 1000x oil immersion used for critical identifications 

and measurements. Identification was made to the highest possible taxonomic levels using 

the keys in Moore and Webb (1978), Moore et al (1991), Oldfield (1959), Punt & Blackmore 

(eds., 1991), Punt, Blackmore & Clarke (eds., 1988) and Punt & Clarke (eds., 1980, 1981, 

1984), and the reference collection of silicone oil mounted type-slides in Archaeology, 

Uni versity of Edinburgh. Special criteria for particularly difficult taxa are detailed in 

Appendix C. 

4.4.2.7 Pollen sum 

A minimum of 500 pollen grains were identified per sample for the BEL core samples, and a 

minimum of 1000 grains per sample for the BB samples, excluding obligate aquatics and 

spores. No attempt was made to identify local pollen sources and exclude such taxa from the 

sum (contra e.g. Molloy & O'Connell 1995). All taxa are presented as percentages of TLP. 

Charcoal particles with minimum length 37Jlm were also counted (see above) and expressed 

as a percentage of TLP. 
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4.4.2.8 Nomenclature 

Taxon nomenclature follows Moore et al (1991) with minor amendments: in some cases, 

where confusion would not be possible, names were changed to comply with Stace (1997), 

e.g. Poaceae rather than Gramineae. Asteraceae were subdivided as suggested by Bennett et 

al (1994) into the Asteraceae (Lactuceae), the Asteroidea (Aster type and Anthemis type), 

and the Cardueae (Serratula type, Cirsium type and Centaurea). 

Nomenclature follows the standardised set of conventions for taxon determination as 

described by Birks (1973, 225-226), repeated in Appendix C for explanation. Where a 

greater degree of certainty than was available in pollen keys could not be established by the 

use of reference slides, the degree of determination remains at the level published in the 

appropriate keys, according to the above convention. 

4.4.2.9 Presentation 

Pollen diagrams were constructed using the programs Tilia, Tiliagraph and TGview (Grimm 

1991; 2002). Pollen profiles are presented as both pollen percentage and pollen influx 

diagrams. Influx data are preferable to raw concentration data as the latter do not account for 

sedimentation rates. The 'raw' pollen percentage data are presented here (i.e. all AP and 

NAP expressed as a percentage of TLP - see above) although for the purpose of clarity, most 

interpretation is based upon a percentage diagram in which Alnus has been removed from the 

TLP sum (cf. Chi verrell et al 2004; Lomas-Clarke & Barber 2004). This is because Alnus 

may grow on the bog itself and therefore show variations which are independent of the tree 

species outside the bog (Janssen 1959, 55). Preliminary analysis of the BEL peat and pollen 

stratigraphy confirmed that Alnus was likely to have grown on the bog itself and that it was 

dominant in the palynological record for a significant length of time, therefore including it in 

the TLP sum would result in a filtering-out of the species from beyond the bog (Rybnfcova 

& Rybnfcek 1971, 173). CONISS was used to aid zonation; however, in using this program 

the placing of zones is still subjected to the analyst's bias. 
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4.4.3 Loss-on-Ignition 

4.4.3.1 Fundamentals of loss-on-ignition 

Loss-on-ignition is a reasonable reflection of organic carbon content in most sediments 

(Aaby 1986, 150; Bengtsson & Enell 1986, 428). In peat, the residual material after loss-on

ignition (the ash content) represents the inclusion of mineral material transported by 

precipitation or dry fallout. The quantity of ash varies according to vegetation structure. 

filtration capacity, deposition rate of such particles, rate of peat decay and the degree of peat 

compaction (Aaby 1986, 160). Ombrotrophic peatlands are the most reliable for 

investigating ash content fluctuations as they are totally rain-fed and therefore mineral 

inclusions can be definitively traced to atmospheric deposition. Field erosion of soil is a 

common occurrence especially in arable agriculture where soil may be bare for a certain 

period of time. Dust particles removed from fields by erosion can be deposited at a distance, 

and in this way phases of former agricultural activity have been traced in the sediment 

stratigraphy of ombrotrophic mires, with typical prehistoric agriculture increasing the ash 

content of peats by two- to ten-fold values (e.g. Vuorela 1983). Quantified dust contents may 

indicate the extent of arable fields, as permanent pastures would contribute no additional 

dust unless severely overgrazed. In combination with detailed examination of pollen types, 

such investigation may indicate the nature of the agricultural systems in place (Aaby 1986, 

161-162). 

4.4.3.2 Incorporation into research design 

Percentage organic matter is commonly employed to define peat as a substance (Charman 

2002, 4), with the typical threshold being that it is a substance composed of the partially 

decaying remains of plants with over 65% organic matter on a dry weight basis and less than 

25-30% inorganic content (Clymo 1983). In this investigation, the percentage loss-on

ignition was measured as part of further methodologies (see below); to provide a potential 

indication of anthropogenic activity; and also to provide an independent indication, 

supplementing the information gathered from sediment inspection, peat humification and 

pollen analysis, as to the point of transition to a true peat in the BEL core. 

4.4.3.3 Laboratory Methodology 
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Slices of lcm thickness from BEL cores and monoliths were oven-dried at l05°C overnight. 

A 2-3g subsample was weighed, ashed in a muffle furnace at 400°C for 5 hours and re

weighed to provide loss-on-ignition values. The residual ash from ignition was retained for 

digestion for geochemical analysis (below). 

4.4.4 Humification 

4.4.4.1 Fundamentals of humification 

Humification refers to the degree of decay of peat. This seemingly simple description masks 

inherent complications: there exists no single scale on which humification is measured and 

no accepted definition of what it measures (Charman 2002, 137), hence interpretation is 

intrinsically problematic. The basic principle is perhaps most clearly defined by Blackford & 

Chambers (1993, 11): "Humic acids are produced by the decomposition of organic material. 

They are dark brown in solution, giving humus its colour. As peat decomposes, the 

proportion of humic acid increases, and attempts have been made to estimate the quantities 

of humic acid in peat and organic soil". Detailed discussion of the theoretical and practical 

concepts of humification is presented in Appendix D. 

4.4.4.2 Assessing degree of humification 

The most commonly employed method of humification measurement is the alkali-extraction 

technique refined by Blackford (1990) and Blackford & Chambers (1993), whereby an alkali 

extract of peat is determined by colorimetric assessment at 540nm, based on the principle 

that the alkali absorption is proportional to the amount of humic matter dissolved, and 

therefore of the extent of decomposition. A recent luminescence spectroscopy study has 

prompted suggestions that the alkali-extraction method itself is responsible for much of the 

breakdown of peat and alters the organic matter present (Caseldine et al 2000). Nevertheless, 

applied rigorou::;ly, percentage transmission of alkali-extracts is widely accepted as a 

reasonable qualitative proxy of humification (ibid; Charman 2002, 137). 

4.4.4.3 Interpreting humification data 

Humification data are generally accepted to indicate changes in hydrological conditions on 

and within mires: shifts towards increasing humification values suggest warmer, drier 
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conditions with increased decay, whilst cooler, wetter periods of decreased decay would 

result in a lesser degree of humification. The technique is most often used on ombrotrophic 

mires to reconstruct climatic changes, as peatlands which are wholly dependent on 

atmospheric precipitation for their moisture are assumed to show strongest links to climatic 

fluctuations (Charman 2002, 137; 182). 

Investigations of ombrotrophic mires in the UK and elsewhere have successfully produced 

humification data correlating well with other proxy records of climatic change (Section 

2.3.3.3). Correspondence of certain humification shifts with vegetation shifts apparent in the 

palynological record have been noted (Chambers et al 1997, 396; Anderson et al 1998). 

Palynological taxonomic discrimination is usually at a lower level than that achieved in 

macrofossil or testate amoeba (rhizopod) investigations (Chambers et al 1997, 396), 

therefore investigations of bog-surface wetness records have tended to employ either or both 

of these methods in addition to humification. 

Multi-proxy investigations have advanced understanding of the nature of the humification 

signal, surmising that humification represents a relative (semi-quantitative) measure of 

average effective summer precipitation (Blackford & Chambers 1993, 8; Mauquoy & Barber 

1999a, 265). The degree of humification is dependent upon the time the plant remains take to 

pass from the biologically active acrotelm to the near-inert catotelm; which is itself 

controlled by water table depth. Where water tables are shallow, under conditions of high 

effective precipitation, there is less time for decay before peat passes into the catotelm where 

decay rates are extremely slow (Clymo 1984; Mauquoy & Barber 1999a, 265). Furthermore, 

the ability of different mires to respond to changes in effective precipitation in this manner 

has been shown to depend upon mire size, internal hydrology and geographical position 

(Section 2.3.2.2). 

The degree of peat humification can be affected by factors other than surface wetness or 

humidity. Coulson & Butterfield (1978) showed that rates of decomposition of litter from 

different peat-forming plant species differ substantially, with some species being inherently 

resistant to decay. Concerns exist that humification values may in part reflect changes in 

local species composition (Chambers et al 1997, 395-396). Multi-proxy analyses utilising 

palaeovegetation identification, principally palynology or plant macrofossil analysis, can 

help identify whether humification shifts correspond with vegetational shifts. At Talla Moss, 

Scottish Borders, (subjectively identified) minor humification shifts were found to 
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correspond to changes in vegetation species representation III the palynological record, 

whereas major shifts in humification were not apparently accompanied by major vegetational 

changes (ibid.). This situation is further complicated by the consideration that climatic 

fluctuations may be a direct cause of changes in vegetational species composition. Use of 

cores from mUltiple bogs in the same region can help to identify externally-forced (i.e. 

climatic) shifts, which will coincide in all mires, whereas autogenic changes are likely to 

operate independently (Mauquoy & Barber 1999a, 263). 

A problem with interpretation and correlation of peat-based studies is one of dating control; 

calibrated radiocarbon dates can only provide estimates and thus calculated periodicities 

must be treated with caution (Chambers et al 1997, 397-398). Additional dating techniques 

may help refine chronological control; in particular analysis of any tephra layers in peats 

(ibid.) and AMS wiggle-match dating (van Geel et aI1996). 

Several studies have recommended manipUlation of raw percentage transmission data for 

presentation and interpretation purposes. Percentage transmission can be transformed to 

percentage peat humification by linear transformation of the optical density (absorbance) 

data using the formula x = 8.3 (lOy + 0.1), where x is the claimed percentage peat 

humification and y is the mean of three recorded optical density readings (Aaby & Tauber 

1975, 3). Although some studies have made use of this percentage humification measure 

(Chambers et al 1997; Mauquoy & Barber 1999a) it has been suggested that such 

transformation is essentially a form of data manipulation, as percentage transmission data are 

measured on a linear scale, whilst absorbance values should be seen as a semi-quantitative 

estimate (Blackford & Chambers 1993, 16-17). Percentage transmission is also used in many 

studies (e.g. Blackford & Chambers 1991; Blackford & Chambers 1995; Anderson et al 

1998). 

Detrending the percentage transmission or humification data is sometimes carried out if a 

clear increase in humification is seen towards the base of the profile; a phenomenon usually 

interpreted as indicative of continuous peat decay in both the aerobic acrotelm and, albeit at 

a much reduced rate, in the anaerobic catotelm (Clymo 1984). Calculation of the linear 

regression line for the data points allows subtraction of the aging factor. Such trends for 

increased decay with depth have been found at some sites and correction may be applied 

(Blackford & Chambers 1995; Anderson et al 1998; Mauquoy & Barber 1999a; 2002; 

Langdon et al 2003). There exists the consequent question as to why some sites do not show 
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such continuous decay with depth, and this raIses the following issue of whether such 

detrending transformations are a form of data manipulation that may limit comparability of 

datasets, particularly between those detrended and those not so corrected. 

A further problematic aspect of interpreting humification results is discerning at what level a 

shift is classed as significant. In the majority of studies, the significance of a particular 

humification episode is subjectively judged (e.g. Aaby & Tauber 1975; Blackford & 

Chambers 1991; Chambers et al 1997; Anderson et al 1998; Langdon et al 2003). 

Alternatively, negative percentage humification values may be used to delimit significant 

changes, whereas directional shifts are considered less certain (Mauquoy & Barber 1999a), 

or site-specific criteria may be chosen (Mauqouy & Barber 2002). Spectral analysis has been 

used to identify statistically significant spectral peaks '(Baker et al 1999). The method 

employed here is to consider significant changes as those differences between depths in the 

smoothed curve (3-point running mean) exceeding one standard deviation (LOa) above or 

below the mean value for the profile (cf. Tisdall 2000; Tipping et al2003) 

4.4.4.4 Incorporation into research design 

It was anticipated that the BEL core would yield a satisfactory humification record as its 

location fulfils the requirements implicit from reference to literature (see above): the mire is 

extremely close to the Atlantic Ocean (c. 2km, see Figure 2.25) and, as the sampling location 

is situated on a break-of-slope (see coring transect results below, Section 5.2.1.1 and Figure 

5.2) from a shallow slope uphill to a larger gradient downhill, it can be considered a water

shedding part of the blanket mire. It was accepted from the outset that palaeohydrology may 

have been altered by human activity in the upslope field systems; however, the utilisation of 

geochemical analysis was employed as a further check on human activity and palaeoclimatic 

fluctuations (see Section 4.4.5). 

Humification analysis was carried out on the most archaeologically significant section of the 

peat profile. Humification was tested after pollen analysis was completed, and the 

preliminary indications of the pollen record were that the upper 80cm of the core would not 

aid interpretation of human-environment interactions in prehistory. A high-resolution record 

was desirable, but as material had already been removed and destroyed in geochemical and 

palynological analysis by this point, analysis at less than 1cm was impossible. 
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4.4.4.5 Laboratory methodology 

Methodology followed Blackford (1990) and Blackford & Chambers (1993). Contiguous 

1cm slices of peat were oven-dried at 40°C and crushed with a pestle and mortar. A 0.2g 

subsample of powdered peat was weighed into a 150mI conical flask and 100mI of freshly 

mixed 5% sodium hydroxide (NaOH) was added. A batch of 15 such samples was placed on 

a hotplate in a fume hood and simmered gently for 1 hour. After cooling, the contents of the 

flask were transferred to a measuring cylinder, topped up to 200mI with de-ionised water, 

and shaken well. Samples were filtered through Whatman Qualitative 1 paper with the aid of 

a vacuum pump to accelerate the process. Of the resultant mixture, 50mI were transferred to 

a measuring cylinder, diluted to a 1:3 mixture with de-ionised water, and shaken. The 

percentage transmission at 540nm was measured using a Hach DR/2000 direct reading 

spectrophotometer which was zeroed to 100% transmission with de-ionised water between 

samples. As the vacuum pump speeded up the filtration process, readings for all samples 

were measured within 4 hours so no corrections for time were necessary. 

Loss-on-ignition values (see above) were used to calculate organic content for correction of 

the percentage transmission in line with Blackford (1990, 192). In so doing, percentage 

organic content is multiplied by percentage transmission to give percentage transmission 

corrected for mineral content. 

4.4.5 Geochemistry 

4.4.5.1 Fundamentals of peat geochemistry 

Certain trace elements in peat can be of significance to palaeoenvironmental reconstructions 

(Charman 2002, 137). Lake sediments have been more frequently investigated for 

quantitatively determined geochemical evidence of anthropogenically-induced erosion (e.g. 

Mackereth 1966; Engstrom & Wright 1984); however peat-based studies have been 

increasing in number in recent years (e.g. Gardner 2002; Lomas-Clarke & Barber 2004). A 

recent upsurge of interest has resulted from the recognition of peat bogs as archives of 

atmospheric pollution (see Shotyk et al 1997; and other papers in the same volume). The 

incorporation of different metals into peat may occur by different processes, and certain 
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metals are mobile in the peat profile; hence interpretation of geochemical records is not 

always straightforward (Shotyk et a11997, 213). 

4.4.5.2 Geochemical evidence of climatic change 

Sodium (Na) and magnesmm (Mg) are components of seawater, therefore increased 

concentrations are expected in peat in maritime locations as a result of sea-spray contribution 

(Shotyk 1988, 134). In peat profiles, changes in their concentration may identify variation in 

the importance of the maritime influence. This may indicate atmospheric circulation patterns 

and storm-tracks. Sodium:potassium (Na:K) and calcium:magnesium (Ca:Mg) ratios are 

usually used to indicate the maritime influence (Bengtsson & Enell 1986,494). Higher Na:K 

and lower Ca:Mg ratios would be expected in times of more maritime influence; however, 

the latter are also used to distinguish ombrotrophic from minerotrophic bogs (Shotyk 1988, 

150). 

4.4.5.3 Geochemical evidence of agricultural activity 

Geochemical analysis of the ash content of peat, particularly when combined with the 

proportion of inorganic (ash) content itself, can indicate periods of increased erosional 

intensity in the catchment as inorganic material is deposited on the peat surface. An 

advantage of using ombrotrophic peat rather than lake sediments for palaeoenvironmental 

analyses, particularly those concerned with human activity, is that the catchment area will be 

considerably reduced and the reconstruction will be at a much more localised scale. The 

alkali and alkaline-earth elements (N a, K, Mg), common in detrital minerals, are often seen 

to increase in concentration during times when other erosional indicators (ash content, pollen 

indicators) increase (Engstrom & Wright 1984, 27-29). Other studies have used soil-derived 

silicon (Si) and titanium (Ti) as indicators of erosion from deforestation and farming 

activities (HOlzer & Holzer 1998; Lomas-Clarke & Barber 2004). 

4.4.5.4 Geochemical evidence of metal mining 

Geochemistry is potentially important in addressing the nature of Bronze Age occupation at 

Belderg. Although Bronze and Iron Age agricultural activity is in evidence at Ceide Fields 

(Molloy & O'Connell 1995) it has been suggested that the spread of blanket peat by the mid 

Bronze Age at Belderg Beg would have precluded intensive or extensive agriculture, and 
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that the seam of chalcopyrite might have been the primary reason for settlement (Caulfield 

1978). If this were the case, then evidence of industrial activity might be expected in the 

geochemical archive of nearby peat. Chalcopyrite, a copper sUlphite ore, is particularly 

difficult to smelt (Rapp & Hill 1998, 119), requiring up to three smeltings before any copper 

is produced (Marshall 2003, 11). Extraction from the rock face would also involve fire

setting (O'Brien 1996, 22; cf. Timberlake 2001; Mighall et al 2002; Gale 2003, 32). The 

required volume of wood fuel for the necessary fire-setting and smelting would inevitably 

leave a signal in the palaeoenvironmental record; a significant peak in microscopic charcoal 

deposition and reductions in arboreal pollen percentages and absolute frequencies may be 

expected (cf. Marshall 2003). 

There have been several studies of peatland archives of atmospheric pollution from recent, 

historic and prehistoric mining activities, and a number of these have been concerned with 

copper mines and/or smelting sites. Studies of modern and recent sediments at known 

distances from industrial sites are usually concerned with the spatial scale of atmospheric 

transport and deposition of airborne pollutants, or the retention of pollutants in peatland 

ecosystems (e.g. Stiennes 1997; Nieminen et al 2002). The distance from copper mining and 

smelting sites at which peat enrichment is seen is important in locating past industrial sites 

and constructing metal deposition chronologies, and is therefore significant to this study. The 

distance over which atmospheric pollutants are dispersed varies considerably, according to 

the prevailing winds and also the particle sizes (cf. Mighall et al 2002; Nieminen et al2002) 

but it appears that the majority of particulate matter is deposited within 3km of the source 

(Davies & Roberts 1978). 

4.4.5.5 Incorporation into research design 

There may be multiple causes for certain phenomena in the geochemical record of peat, as 

with the palynological and humification record. For this reason a multi-proxy approach is 

most valuable; the use of several indicators may provide a check on a particular theorem 

based on an individual proxy. 

Flame AAS was identified as the most practical and cost-effective method available. Using 

this method only one element can be measured at once, and so six elements were selected for 

analysis: 
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1. Copper (Cu) was anticipated to be present at elevated concentrations in any levels of peat 

accumulating during times at which the chalcopyrite at Horse Island was being industrially 

exploited or mined. Although the BEL coring site is approximately 2km to the south of the 

chalcopyrite source it is possible that prevailing wind directions may have been such during 

the Bronze Age occupation that the atmospheric dispersion halo would have extended south 

to the sampling site. 

2. Zinc (Zn) is commonly used as an indicator of industrial activity (Bengtsson & Enell 

1986,494) 

3. Sodium (Na) to indicate soil erosion from upslope, and to indicate relative storminess. 

4. Potassium (K) to indicate soil erosion, and via the Na:K ratio, to indicate storminess. 

5. Calcium (Ca) to indicate salt-water influence via the Ca:Mg ratio. 

6. Magnesium (Mg) to indicate salt-water influence and therefore storminess. 

4.4.5.6 Laboratory methodology 

Sampling 

The closest interval sampling occurred in the lower, more archaeologically significant peat 

layers. Above 150cm depth, 1cm slices were sampled at 4cm intervals. Below 150cm, 1cm 

slices were sampled at 2cm intervals. As loss-on-ignition testing is a necessary precondition 

for the digestion method selected (see below), the amount of peat sampled at each level was 

not crucial but all measurements of weight before and after loss-on-ignition were recorded to 

3 decimal places for maximum precision. 

Glassware pre-treatment 

Prior to each processing session, all glassware and plastic ware was boiled in a large vessel in 

10% nitric acid in deionised water for at least 1 hour and left to air-dry. 

Digestion 

A modification of the standard 'aqua regia' (hydrochloric acid/nitric acid digestion) was 

used (P. Anderson, pers. comm.). The ash residue from Loss-on-ignition testing (above) was 

digested in boiling concentrated nitric acid (69%, AnalaR grade) for 2 hours on a hotplate, 

then filtered through Whatman 541 paper and made up to 50m! with de-ionised water. 
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Analysis 

Na, K, Cu and Zn were analysed usmg a Solaar Unicam flame AAS system with an 

air/acetylene flame at the Contaminated Land Assessment and Research Remediation Centre 

(CLARRC), Edinburgh. Ca and Mg were analysed using a Solaar Unicam flame AAS 

system with a nitrous oxide/acetylene flame at Geography, University of Edinburgh 

4.4.5.7 Expression of results 

Results of geochemical analyses are most usefully and usually expressed as parts per million 

(ppm), which equates to milligrams per kilogram (mg kg-I) and this usually relates to dry 

weight. The spectrometer systems calculate the concentration of the metal solution in 

micrograms per millilitre (/lg ml-I) which also equates to ppm. Reference to the original 

weight of ash in the solution, and also the weight before ignition, allows calculation of the 

concentration of metal in dry peat. 

4.4.6 Magnetic susceptibility 

4.4.6.1 Fundamentals of magnetic susceptibility 

Soil magnetic susceptibility is affected by pedogenesis, particle size, weathering history, 

drainage and mineral content (Thompson & Oldfield 1986). Magnetic properties of 

archaeological soils and sediments are subject to alteration by thermal activity. Three 

measures of magnetic susceptibility are commonly used to aid interpretation of 

archaeological sediments: 

1. Volume susceptibility (K), a dimensionless measurement of the ratio of the magnetic field 

created to the magnetization of the sample, in SI units. 

2. Mass specific magnetic susceptibility (x), provides an indication of the concentration of 

magnetic particles within the sediment measured in /lm3ki 1
• 

3. Frequency dependent magnetic susceptibility (Xfd%) distinguishes between the sizes, or 

domain states, of the magnetic particles. 
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4.4.6.2 Incorporation into research design 

BEL core 

Insufficient material was available from the BEL cores to assess X and xfd% with the 

available equipment (Bartington MS2B sensor: Dearing 1994). An MS2 meter used in 

conjunction with a MS2F can be adapted for laboratory measurement of volume 

susceptibility of cores at low frequency (Xlf). Peat generally shows very little variation in Xlf 

as it is composed largely of water and vegetation, which are both diamagnetic (i.e. they 

display weak and negative magnetic susceptibility due to an absence of unpaired electrons in 

the various electron shells of their constituent atoms [Dearing 1994, 15; Smith 1999, 7]). 

Inwash layers containing mineral material (which may exhibit magnetic properties), would 

usually only show up under dual frequency measurement, where the diamagnetic component 

of water was removed by drying. However, volume susceptibility is useful in conjunction 

with loss-on-ignition in identifying the transition to blanket peat from soil. 

4.4.6.3 Laboratory methodology 

BEL core 

Volume susceptibility (K) was measured at lcm resolution on all cores whilst still in their 

plastic half-pipes, and on 2cm thick slices of the vertical faces of the 'b' monoliths. A 

Bartington MS2 meter with a lcm diameter MS2F probe attached was used; the probe was 

clamped in a vertical position and the core or slice passed horizontally underneath it, then 

raised by a wedge until the sensor was normal with, and just touching, the peat face. 

Magnetic susceptibility was then measured at low frequency (0.46kHz, O.lmT). 

4.4.7 AMS 14C dating 

4.4.7.1 AMS 14C dating of peat 

Despite the advances in I~C dating brought about by the introduction of AMS technology, 

there are still problems associated with the methodology and interpretation of 14C dates from 

peat. Pretreatment methods can vary according to which particular fraction of the peat is 

being dated. The selected fraction may vary according to the research question: for instance, 
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to date a change in a pollen profile, it is ideal to assay the pollen itself (e.g. Brown et al 

1992). However, this technique is rarely applied as it is laborious and inherently 

problematical and dating the peat itself is much more common (Shore et al 1995, 382). 

Traditionally, peat samples for radiocarbon dating purposes are seen as being chemically 

broken down into three fractions: the alkali and acid insoluble humin fraction (which can be 

further broken down e.g. by fine sieving to date the 'fine fraction'); the acid and alkali 

soluble fulvic acid; and the acid insoluble, alkali soluble humic acid (Shore et al 1995, 374). 

These fractions may however give different radiocarbon ages. 

Fulvic acid is usually younger than the humic acid and humin fractions from the same peat 

sample. This tendency is attributed to its likely high degree of mobility in peat, as it is 

soluble in both acid and alkali and therefore susceptible to downward leaching (Shore et al 

1995, 379). For this reason it is usually chemically removed from peat samples prior to 

dating. The humin (Bartley & Chambers 1992) and humic acid (Johnson et al 1990) fractions 

have both been considered to most closely represent the radiocarbon age of peat samples. 

Humin material may give too young dates due to contamination from intrusive rootlets 

penetrating downwards, whereas humic acid may give too young ages due to downward 

transport of water soluble organics (Shore et al 1995, 374). In recent years it has become 

increasingly common to date discrete plant macrofossils, in particular those of Sphagnum or 

other mosses, as they have been shown not to assimilate either 'old' carbon dioxide 

sufficiently to contaminate their 14C composition, or 'young' carbon via root exudates and 

vascular plant roots (Nilsson et al 2001). Depending upon the sediment stratigraphy of the 

material in question, however, this may not be practical. It becomes apparent that the nature 

of the sediment should be carefully considered before selection of the fraction to be dated. 

4.4.7.2 Incorporation into research design 

BEL and transect cores 

Whilst it is widely accepted that Sphagnum or bryophyte moss fragments may be considered 

to give the truest reflection of the radiocarbon age of a peat sample (cf. Tornqvist et al 1992; 

Wohlfarth et al 1998; Nilsson et al 2001), in this investigation, owing to the nature of the 

BEL core sediment stratigraphy (see results below), this method would not be possible for all 

required dating levels. The basal peat developed from an organic rich mud, composed of 

highly degraded detrital plant material. from which it was not possible to identify discrete 
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plant macrofossils. Furthermore, it was doubtful that Sphagnum or bryophyte macrofossils 

would be preserved in certain other levels of the core, in particular the considerable depth of 

wood peat. It was therefore considered that comparing like with like was of primary 

importance, especially considering the likelihood that different fractions would give different 

radiocarbon ages. The decision regarding what material to date was thus limited to the humin 

and the humic 2,cid fractions. Considering that the humin fraction may be contaminated by 

the penetration of younger rootlets from above, that the humin fractions at different levels 

would be composed of different types of plant remains, and that the humin fraction in the 

wood peat could be composed of older woody material around which finer peat has 

accumulated (Shore et al 1995, 379), it was decided that the humic acid fraction of the 

selected levels would be assayed. In addition to the BEL assayed levels, four samples were 

selected from the transect cores for radiocarbon dating. 

As a check on the relative ages of different peat constituents it was decided that two levels 

should have both the humin and the humic acid fractions assayed. These dual-dated levels 

were selected on the basis that they would be the likeliest to have undergone hydrological 

translocation (see section 5.2.1.2). 

There are further problems associated with the interpretation of radiocarbon assays from 

basal peat layers, which are assumed to date the onset of peat accumulation. The issue of 

definition of peat initiation is one such crucial factor. Defining the transition in a hydroseral 

succession is fairly straightforward palynologic ally, by identifying the shift from aquatic to 

terrestrial fen communities (Charman 2002, 79). When paludification is concerned, however, 

the change from a highly organic soil to true peat is much less clear-cut. The organic carbon 

content of a highly organic sediment such as that in the base of the BEL core (see Section 

5.3.1 below) may have a long residence time (ibid.). 

BB sections 

Where peat overlies soil there may have been a time period of unknown duration between 

the cessation of activity on the soil profiles and the initiation of peat accumulation. 

Furthermore, the date obtained from the peat will represent the average age of the organic 

carbon in the humic acids of the sample, and not the date at which accumulation commenced 

(Carter 1993-1994, 86). If blanket peat growth was immediate, the soil and climatic 

conditions must have been favourable (ibid., 86-87). As there is some evidence of organic 
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accumulation in the BB soil sections - plant macrofossils preserved in the sub-peat soils - it 

can be assumed that this might be the case. A further indication of the accuracy of a 

radiocarbon age of a basal peat sample in relation to the true basal age would be achieved by 

assaying a second, contiguous sample, just above the basal peat sample. The more rapid the 

rate of growth, indicated by the difference between the ages, the more accurate the 

estimation of the basal age. This technique has been used to suggest radiocarbon assays from 

basal peat overlying ridges at Lairg, northern Scotland, provided a good estimate of the age 

of accumulation (ibid., 88). 

For this study only limited funding was available for radiocarbon assays and obtaining 

sufficient radiocarbon dates to answer questions regarding whole-site formation, including 

landscape-scale analysis, was judged to be of higher significance. Therefore only single 

radiocarbon assays were taken from each of the BB sections. However, as a sample from 

N10, a Transect 2 borehole close to BB2, was assayed (see Figure 5.2), it was hoped that a 

viable interpretation of peat accumulation might be possible. 

4.4.7.3 Laboratory methodology 

Samples were submitted to the Scottish Universities Environmental Research Centre, East 

Kilbride for preparation and analysis. 

4.4.7.4 Presentation of results 

In construction of age-depth models, necessary for the calculation of sediment accumulation 

rates, the use of calendar years is preferable to radiocarbon years (Bennett 1994, 339; 

Bartlein et al 1995). Age-depth models calculated using radiocarbon years implicitly make 

the implausible assumption that variations in sediment accumulation rate cancel out wiggles 

in the calibration curve (Bartlein et al 1995; Telford et al 2004, 1). Using calibrated dates 

adds an extra complication in that the resulting probability distributions are not Gaussian 

(Bennett 1994; Telford et al 2004, 1). Various models are commonly used for constructing 

age-depth relationships: linear interpolation, splines, linear regression models (Bennett 

1994), fuzzy regression (Boreux et al 1997) and mixed-effect regression (Heegaard et al 

2005), all of which can give very different answers (Telford et al 2004). It is accepted that 

the low number of dates available to this investigation is less than ideal, as it is ideal to 

optimise precision by maximising the number of dates in the sequence. The most practical 
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models to apply to a sequence with few dates are linear interpolation or polynomial models. 

Application of these models would necessarily assume that the sediment deposition rates 

changed abruptly at the depths of the dates or followed a polynomial of the appropriate order 

respectively; both of which are not necessarily correct assumptions for sites with just a few 

dates (Telford et al 2004, 3). It is recognised that linear interpolation forces the age-depth 

model to pass through the dates, meaning that the model cannot deviate too far from reality, 

although this results in the incorporation of noise from the uncertainties of radiocarbon 

dating into the model (ibid., 4). For this reason, linear interpolation has been selected to 

calculate age-depth relations in this investigation. 

4.4.8 Thin section soil micromorphology 

4.4.8.1 Fundamentals of thin section soil micromorphology 

Soil micromorphology involves thin section examination of undisturbed sections of soil

sediment. Individual signatures identified in thin sections offer insight into the formation of 

the soil itself ('site formation processes'), the nature of previous human activity and landuse 

practices, and post-depositional processes that have acted upon it (usually) since burial. 

Anthropogenic signatures in the sections are identified by empirically defined relationships 

of human effects on archaeological soil-sediment formation. These effects are expressed in 

the thin sections by a hierarchy of observed spatial and temporal patterning of various 

features that are used to reconstruct sequences of sedimentary, pedogenic, and 

anthropological events. The principle of stratigraphy is used to match the microscopic 

analysis to field-observed stratigraphic units. Thus chronologically and spatially varying 

human activities and environmental conditions can be identified, adding a detailed 

dimension to the archaeological interpretation of a soil known to have been subject to human 

modification. 

4.4.8.2 Soil micromorphological evidence of palaeoenvironmental change 

Various features of soils and sediments can inform of post-depositional processes caused by 

environmental conditions. Shrink-swell transformations, drastic changes in microfabrics, 

result from repeated wetting-drying episodes. Examples include the formation of vertisols 

typified by compaction, a lack of horizonation, uniform colour, and a blocky or prismatic 

microstructure (FitzPatrick 1984, 145-159; Courty et al 1989, 151). A massive 
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microstructure is more indicative of continuously wet soils. Freeze-thaw conditions are 

signified by soils with angular blocky, subcuboidal or lenticular microstructure (FitzPatrick 

1984, 147-162). Frequent fires can be indicated by high concentrations of charcoal, and this 

can relate to lightning strikes which occur frequently in suitable climatic conditions, as well 

as being an indicator of deliberate anthropogenic clearance. Storm events can be signalled by 

single-event deposition of windblown sands in certain geographic areas. Whilst pedogenic 

processes such as podzolisation are often a natural evolutionary process of some soils, they 

can be enhanced or accelerated under certain environmental or climatic conditions and an 

integrated investigation including soil micromorphology may be able to establish causal or 

contributory factors. 

4.4.8.3 Soil micromorphological evidence of former agricultural activity 

Clearance 

Uprooting is recognisable at the field level in plan and section, and has disturbance effects 

on soil horizonation (Macphail 1987; Courty et al 1989, 127). The manner in which the 

subsequent hollow was infilled is recognisable in the soil microfabric, which is examined in 

thin section. Rapid infilling is characterised by strongly mixed, heterogeneous fabric 

composed of material from different soil horizons (Macphail 1987, 15). The inclusion of 

artefacts or coarse wood charcoal can indicate that anthropogenic activity was associated 

with the uprooting (Courty et al 1989, 127). Slower infilling and gradual recolonisation of 

the surface by vegetation is indicated by more homogenous microfabric showing evidence of 

substantial reworking by biological activity (ibid.; Macphail 1987, 15). 

Former clearance by burning is often recognised in soil thin sections by a microfabric 

containing finely mixed charred organic fragments as well as some remnants of charcoals 

and burned wood, with rubified aggregates representing burnt topsoil, in a clay-containing 

soil. Clay coatings rich in fine charcoals can be seen in lower topsoil levels of rapidly sealed 

burned soils (Courty et al 1989, 129). 

Agriculture 

Pastoral agriculture is recognised in palaeosols by the stable, deep crumb structure with 

intensive fine rooting that is typical of grassland surfaces (Courty et al 1989, 129). In 
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addition, the effects of trampling can be recognised by platy structures near the soil surface, 

and increased quantities of organic matter and fungal bodies are representative of herbivore 

grazing (ibid.). 

Arable soils can be recognised at field-scale (byard-marks or relict cultivation ridges) or in 

thin section. The mixing action of ploughing activity will have eliminated the upper soil 

horizons, therefore a homogenous ploughed layer including humic material as well as 

mineral material from the underlying A horizon, may have been created (Courty et al 1989, 

131; Courty et al 1994, 262). The disruption features commonly associated with agricultural 

soils have been identified from modem analogues or experimental work. Such disruption 

features include certain types of textural pedofeature: clay infills and coatings, which are 

usually silty or dusty, and agricutans, coatings, infills and pans composed of fine plasma, 

fine sand grains and fine organic materials, which form as a result of surface slaking of bare 

soil surfaces, followed by translocation resulting from ploughing (ibid., 131-132). 

The redistribution of soil fines material (the fine fraction) and the pattern of textural 

pedofeatures can aid identification of former cultivation implements (Macphail et al 1987, 

652). Recent experimental work, supported by archaeological investigations, has resulted in 

the identification of further micromorphological features characteristic of former agriculture 

(Lewis 1998). Silt-dominated lenses and pans of soil fines characteristically form beneath 

and around implement cut marks, as a result of trickling-down and density boundaries within 

the tilled horizon (ibid.). Certain structural features (angular or subangular blocky aggregates 

and smaller rolled or rounded aggregates) are characteristic of feature fills. A compaction 

zone including stress-induced shear planar voids, possibly infilled by fines, echo implement 

mark bases and cuts (ibid., 190). Certain characteristics are indicative of tillage implements 

in general, whilst some features can distinguish between implements. For instance, turning 

implements (spades and mouldboard ploughs) tend to result in enhancement of the organic 

content of soils within the marks, whilst pushing implements (ards) increase the organic 

character of the cultivation layer as a whole (ibid., 339). 

A further aspect of former agriculture which may have left tangible identification evidence in 

thin section is that of soil amendment practices such as manuring. Addition of organic 

manures such as animal dung may be recognised by the presence of higher amounts of 

organic fragments, including phytoliths, which may be fractured as a result of ingestion 

(COUIty et al 1989, 134; Courty et al 1994, 257). Calcium spherulites, evident in crossed 
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polars at high magnification, which source from animal dung, are a further indication of 

manuring (Dockrill & Simpson 1994, 88; Canti 1997; 1998). Seaweed added as manure can 

also be recognised by the presence of marine calcium carbonate shell fragments (Doc krill & 

Simpson 1994, 86 & 91). The addition of domestic wastes to arable land, namely the practice 

of middening, can be recognised in thin section. Typical indications of the addition of 

midden material would be the presence of animal or fish bone fragments, charcoal, and ash 

(which is recognised as fine redlbrown mineral material in crossed polars, often with rubified 

mineral grains) (Courty et al 1994, 263). In acidic contexts, bone can decompose and 

recrystallise, producing characteristic textural pedofeatures: amorphous and crypto

crystalline calcium-iron-phosphate nodules, infills and coatings (Jenkins 1993; Simpson et al 

1998b). 

Addition of midden material has been recognised in North West European arable soils from 

the Late Neolithic (Bakels 1997; Dockrill & Simpson 1994). The use of burnt turves and 

domestic waste continued throughout the Bronze Age, and the application of animal dung as 

manure apparently began later, in the Iron Age (ibid., Simpson et aI1998b). 

4.4.8.4 Incorporation into research design 

The Kubiena tin samples from sections BB 1 and BB2 were described in detail, allowing the 

stratigraphy to be studied and provisionally interpreted. The sections that were anticipated to 

record the fullest history of pedogenesis were submitted for thin section preparation. The 

remaining sections were retained for analysis of pollen content and physical properties (see 

above). The aims of the soil micromorphological analysis are outlined as follows: 

• To investigate the hypotheses that 

1. The ard-marked soil horizons recognised in both sections represent the same 

layer, and that this is the layer cultivated during the utilisation of the Neolithic 

field system; 

2. The cultivation ridges in section BB 1 relate to the Bronze Age occupation. 

• To investigate the formation of the soil deposits, including environmental and climatic 

factors in their modification. 

• To investigate any evidence of human modification of the soils, especially relating to 

their agricultural utilisation. 
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• To assess whether deteriorating soil conditions may have been a factor in abandonment 

of occupation of the site and the causal factors behind any such changes. 

4.4.8.5 Methodology 

Laboratory methodology 

Thin sections were produced by George McLeod of the Micromorphology Laboratory, 

Department of Environmental Science, University of Stirling, based on the procedures of 

Murphy (1986). Samples were dried in acetone vapour, checked by specific gravity 

measurement. The samples were impregnated with crystic 17449 resin (polyester). The ratio 

was 350ml resin: 1.75ml catalyst (Methyl Ethyl Ketone Peroxide):75ml acetone. This is 

about half the standard amount of catalyst to allow for the slower cure rate needed by peaty 

samples. Samples were cut into lcm slices, lapped, mounted on glass slides then ground to 

appro x 30-40/lm thickness. Finally they were polished with 3/lm diamond in oil suspension. 

Analysis 

Analysis was performed using a Nikon transmitting light microscope using a range of light 

sources (plane polarised, crossed polars, oblique incident) at a range of magnifications (x 1 -

x 400). Thin section descriptions conform to internationally accepted terminology by 

Bullock et al (1985), with components and features within the sediments semi-quantified by 

the aid of frequency charts in the same handbook. 
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Chapter 5 

Off-site investigation: results and interpretation 

5.1 Introduction 

The investigations at Belderg Beg consist of off- and on-site analyses with respect to the 

archaeology. The investigations defined as on-site relate to those conducted within the area 

of archaeological remains. In this study, this refers to the geoarchaeological and 

palynological analyses of the sub-peat soil sections near the roundhouse. The results and 

interpretation from those investigations shall be considered in Chapter 6. Chapter 5 concerns 

the palaeoenvironmental aspect of the investigations, away from the excavated site: the 

analysis of the coring transects and the BEL core. In each section, results are presented first, 

and interpretation is considered in a separate sub-section. 

Unless stated otherwise, all radiocarbon dates in text or diagrams and used to calculate 

sediment accumulation rates are quoted in calibrated years BP (midpoint of 2a range), 

calculated using Ox Cal v. 3.9 (Bronk Ramsey 2003) and atmospheric data from Stuiver et al 

(1998). 

5.2 Sediment-stratigraphic transects 

5.2.1 Results 

5.2.1.1 Sediment descriptions and sediment stratigraphy 

Figure 5.1 shows the location of each transect core plotted on a plan of the Belderg Beg area, 

which also shows the locations of the main archaeological features. Figure 5.2 shows the 

sediment stratigraphies of individual boreholes plotted against altitude (Irish OD) on 

Transect 1 and inferred sediment-stratigraphic correlations. Note the change of scale 

between 5.2b and 5.2c. Figure 5.3 shows the sediment stratigraphies of individual boreholes 

plotted against altitude on Transect 2 and inferred sediment-stratigraphic correlations. 

Sediments are described according to the system outlined in Section 4.4.1.1. Detailed 

descriptions of the sediment stratigraphies of each core in Transects 1 and 2 are presented in 
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Appendix D. Descriptions of Transect 2 sediments are less detailed than those of Transect 1 

due to particularly inclement weather conditions preventing such thorough field analysis 

from taking place. In these tables, the final column, labelled Unit, refers to the identification 

of a recurring sediment type, developing inferred sediment-stratigraphic correlations. 

5.2.1.2 AMS radiocarbon dates 

To interpret the sediment sequences of the transects it was necessary to understand the 

chronology of the hillslope stratigraphy. Six samples of basal peat were submitted from the 

transects for AMS radiocarbon dating. This chronological control aided interpretation of 

sediment formation and thus landscape evolution, although the potential problems associated 

with dating basal peat from paludified ground (see Section 4.4.7.2) must be borne in mind. 

The samples were selected with respect to their locations and sediment stratigraphies: 

• The BEL core was selected because it has the greatest depth and most complex sediment 

stratigraphy. For these reasons it was anticipated that this would be the best core to use 

for detailed palaeoenvironmental analysis. 

• W2 was chosen because it is close to the BEL core and at its base has a similar sediment 

stratigraphy. Although on a slight slope, its base is at a similar altitude to that at BEL, 

and it lies above the break of slope between BEL and E1 (see Figure 5.2). A similar date 

of peat initiation was expected to that at BEL. 

• W7 is located immediately downslope of the terminal Wall 1, and is therefore situated 

outside of a field wall assumed (Caulfield pers. comm.) to have been Neolithic. As well 

as its usefulness in assessing rates of lateral peat spread, W7 is important to compare 

with W8, upslope of Wall 1. 

• W8 is located just upslope of Wall 1 and is thus situated inside the inferred Neolithic 

field wall. The age of peat initiation at W8 may be cross-referenced to the BEL pollen 

profile to infer whether or not abandonment of agricultural activity occurred 

coincidentally with the spread of peat on to the field system. Furthermore, any 

significant delay in peat initiation between this location and W7 may represent deliberate 

strategies to retard peat spread within the fields by human agency, such as cultivation, 

peat stripping or intensive manuring. 

• W21 is upslope and within the inferred Neolithic field bounded by Wall l. Peat initiation 

is assumed to have occurred relatively late at this location because upslope spread has 

been hitherto supposed. As rare silt grains are disseminated throughout the core, peat 
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initiation possibly began when human activity III the form of agriculture was still 

occurring. The possible disturbance of sediment stratigraphy in this location made it a 

good choice to investigate any differences in age determinations between peat fractions 

(see below). 

• N10 is outwith the large area apparently enclosed, to the north of Wall 1 and the south of 

Wall 2 and is assumed to have been in the area of Bronze Age agricultural activity. It 

was hoped that by comparing the age of basal peat at N10 with that at W21, it might 

become apparent whether or not attempts had been made by people to retard the spread 

of peat. 

As there are known problems inherent in the radiocarbon dating of peat (see Section 4.4.7.2) 

the reliability of the use of the humic acid fraction for dating was checked by separately 

dating the humin and the humic acid fractions of two samples: 

• W2 was selected because it was most comparable in sediment stratigraphy (and therefore 

presumably age) to the basal peat date from the BEL core (GU-11634). It thus provided 

an indication of the reliability of the humic acid age of GU -11634. 

• W21 (P2) was selected because, as it was upslope, it was considered likely to represent 

later peat initiation. As it appeared to be within the area of Neolithic activity (see 

proximity to Wall 1 in Figure 5.1) groundwater movement from open ground upslope 

may have affected the relative radiocarbon ages of the peat fractions. 

In addition to the basal peat samples, one further sample was submitted for radiocarbon 

dating: 

• W21 (PI) was taken from 38-40cm in W21, immediately underlying a band of mineral 

sediment in washed at 37-38cm. This horizon was selected for dating purposes in order to 

determine the age of the inwash band and, by comparison with the pollen profile, 

whether it represented erosion from human activity occurring upslope. 

Table 5.1 shows the AMS radiocarbon age details obtained from the transect cores. The 

calibration details of each assay are presented graphically in Figure 5.4. 
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5.2.2 Interpretation 

5.2.2.1 AMS radiocarbon dates 

To assess the reliability of using the humic acid fraction to date selected levels of cores and 

sections, two samples, W2 and W21 (P2), also had their humin fractions dated. As discussed 

in Section 5.2.1.2, W21 (P2) was considered more likely to have been affected by 

groundwater movement resulting from inwash. From Table 5.1 it is seen that the calibrated 

20 ranges overlap therefore the samples are statistically indistinguishable. Had down washing 

of water-soluble organics occurred via groundwater movement, the humic acid fraction 

would be expected to be significantly younger than the humin fraction. As this is not the case 

it can be interpreted that the humic acid fraction gives an accurate reflection of the sample 

age. 

A basal peat sample from W2 was chosen as it was comparable in stratigraphical terms to the 

basal peat in the BEL core. Again, as the calibrated 20 ranges are statistically 

indistinguishable, the interpretation is that both fractions give a reliable indication of sample 

age. 

5.2.2.2 Overall transect stratigraphy 

From examination of the stratigraphy of the transect cores, with the added information given 

by radiocarbon ages, it is possible to construct a chronology of the evolution of the Belderg 

Beg hillslope. Peat initiation occurred in the BEL core at c. 5465 cal. BP. BEL is not in a 

basin but rather at the top of a break of slope: a small basin exists just below it (core El; see 

Figure 5.2). Whilst peat might be expected to form at the lowest points, such as in a basin, 

earlier than on a slope, comparison of the sediment 'stratigraphy of the BEL core with that of 

the E1 core suggests that there was probably little temporal difference in peat initiation 

between these locations. Both cores have till at the base. This is overlain in BEL by an 

inorganic sand, lnd in El by a silty fine sand with low organic content, then by a waterlain 

banded coarse sand, equivalent to the sand layer in BEL. The next stratigraphic layer in 

BEL, the organic-rich mud, is not present in El, where the sand layer was superseded 

immediately by wood peat. As it is reasonable to assume that the yellow sand layers in the 

two profiles represent the same event, there is no reason to expect a difference in age 

between the sediments that immediately overlie the sand in each profile. The differences in 
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sediment stratigraphy between the two cores perhaps indicates episodes of erosion during 

which soil material accumulated in the basin (E1). Following deposition of the inorganic 

yellow sand which is present in both profiles, the surface at BEL was apparently stable 

enough to allow accumulation of an increasingly organic detrital sediment, while wood peat 

began to accumulate downslope at E1. Wood peat apparently began to accumulate very soon 

after this in the BEL area. 

Till is absent at the base of all the profiles downslope of E1, and several of those upslope, 

and this confirms that till cover is patchy (cf. Coxon 1991, 6-13). The sediment sequences 

along the hillslope profile are complex. Towards the base of the transect this is complicated 

further due to the loss of loose basal sediments from the coring equipment. The sand layer 

around BEL is discontinuous (see above), as is the amorphous organic silt mud which 

featured at the base of the BEL core. Erosion or redeposition of sub-peat mineral soils or 

sediments may have occurred patchily, creating these different profiles. Many of the cores 

show that peat developed directly on bedrock, with both herbaceous and herb/wood peat 

seen in such positions. As lacustrine deposits are not found below the peat, it is evident that 

in all profiles paludification rather than terrestrialisation was the route to peat initiation 

(sensu Charman 2002, 74). 

A further consideration for landscape evolution is related to the date of initiation of deep peat 

on the hilltop plateau (see Figure 3.2). There, a Pinus expansion is recorded in the form of a 

dense concentration of sub-fossil stumps preserved at some considerable height above the 

mineral soil/peat transition. A peat sample from 5cm above mineral soil, below a subfossil 

Pinus stump, was assayed to c. 6150 cal. BP (see Appendix A; Caulfield et al 1998,633). It 

is evident that peat growth commenced significantly earlier on the plateau than lower down 

the hill slope. 

5.2.2.3 Sub-peat stratigraphy 

There were no developed soil profiles below the peat recorded downslope of the cultivated 

areas, as recognised during the excavations (see Figures 5.1 and 5.2 and Appendix D), and 

even at altitudes above those of the walls, there were profiles recording peat apparently 

growing directly on bedrock (e.g. WI7). None of the cores in Transect 1 can be described as 

having true soils beneath peat, although mineral-rich detrital peat layers and/or organic 

sediments were common. There are two possible reasons for the absence of full soil profiles: 
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1. Throughout the early- and mid-Holocene, the lower hillslope at Belderg Beg had always 

been characterised by bare rock with only patchy coverage of till, sands and silts, and 

with thin soil profiles developing in topographically suitable locations. From such 

points, peat initiation began in the mid-Holocene when climatic, hydrological and 

pedogenic conditions were suitable, and this peat spread fromJoci onto the surrounding 

surfaces. The likelihood of this scenario being correct appears to be slim, taking into 

account contrary evidence such as the considerable depth of soil profiles (including 

horizon development) in the vicinity of the roundhouse (see Figures 5.1 and 5.3 and 

Appendix D). Should the soils around the roundhouse be entirely human-made ('plaggen 

soils'), the possibility of an entirely soil-free hillslope might not be so unlikely. 

However, horizonation is evident in the soils in question. Whilst the walls of the field 

system may well have acted in a retaining capacity, preventing substantial soil erosion 

from the fields, and significant amendment strategies may have been continually made to 

maintain the soil structure and fertility, it appears unlikely that sufficient soil 

development for agricultural purposes took place within the walled areas, while just 

outside this, bare rock existed-and soils never really developed. 

2. The more likely scenario appears to be that a soil profile developed over the entire 

Belderg Beg hillslope, and that much of it was lost prior to the earliest peat initiation at 

c. 5465 cal. BP. Loss of this soil could have occurred by erosion. Sub-peat pockets of 

soils remaining in topographically suitable positions were covered by peat at different 

times, leaving open the question as to whether erosion was a single event or progressive, 

multiple events occurred. Alternatively, people could have stripped soils from some 

areas in order to amend soils at other locations (cf. Davidson & Carter 1998). Whilst 

widespread use of plaggen soils is generally considered to have been a Medieval 

phenomenon (Spek 1992), earlier examples are known, and the earliest yet dated are 

within Atlantic Britain. Turf stripping for plaggen soil formation to support arable 

agriculture elsewhere is evidenced from micromorphological analysis of Late Neolithic 

(Simpson et al 1998a) and Late Bronze Age / Iron Age soils at Tofts Ness, Orkney Isles 

(Dockrill & Simpson 1994, 89; Simpson 1998, 96). Late Iron Age soils at Old Scatness, 

Shetland, incorporated turves that had evidently been used as animal bedding, adding a 

further component to the integrated farming system (Simpson et al 1998b, 121-123). 

'Scalping' of soils has been suggested to have occurred in Neolithic Scotland more 

widely than previously believed (Edwards 2004, 65-66). 
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Soil micromorphological analysis of the ridged cultivation plots near the roundhouse 

(Sections 6.2.3 and 6.3.3) does not indicate that soils in these locations were amended bv the 
.I 

addition of turves from elsewhere. Horizonation is evident in those profiles. Of course, 

amendment could have occurred in other locations within the field system. Erosion of soils 

within the area enclosed by Wall 1 is evidenced by progressive deepening of soils downslope 

towards borehole W8 (see below). It is therefore accepted that soil erosion did occur at 

Belderg, but whether it was responsible for the almost entire loss of soil from below the field 

system is unknown. A situation in which soil from downslope of the field system was 

stripped and utilised to amend the eroding soils within the fields might be appropriate. 

Transect 2 boreholes show that the sediment stratigraphy at the altitude of the assumed 

Bronze Age activity contains a relatively well-preserved soil profile that is fuller than that 

seen in Transect 1. Eleven of the seventeen boreholes contain a basal mineral soil, and of the 

remaining six, two (N7 and N8) have sandy fibrous peat at the base, whilst four exhibit peat 

growing directly on bedrock (see Figure 5.3 and Appendix D). 

In examining the sediment stratigraphy of Transect 1 boreholes it became apparent that true 

mineral soils comparable to those in Transect 2 are not recorded in any of the profiles. Many 

of the borehole sediment stratigraphies contain mineral-rich basal sediments. The absence of 

a soil profile is vital in understanding the landscape development at Belderg Beg throughout 

prehistory. Before the earliest peat initiation in the mid-sixth millennium cal. BP the soils 

were evidently sufficient to support a forest (Section 5.4.2), and to sustain agriculture on the 

mid-altitude slope of the valley side. Before peat had spread over the landscape, most of this 

soil had been lost from altitudes below the Bronze Age activity. 

Looking first at the area within the field enclosed by Wall 1, i.e. boreholes W8 and upslope 

(see Figures 5.1 and 5.2), it is seen that the thickness of basal mineral sediments increases 

with proximity to Wall 1 (i.e. 3cm in W9 increasing to 14cm in W8e: see Appendix E). This 

indicates that a certain amount of erosion occurred within the field via slopewash or soil 

creep, resulting in the banking up of mineral rich soils against the terminal wall (lynchet 

formation). This occurred prior to the development of true peat at c. 4930 cal. BP, and was 

relatively long-lasting, as evidenced by the depth of organic matter accumulation with 

mineral inclusions in the affected boreholes (6cm of peat with silt in WI 0; 13cm in W 15: 

5cm in W8). An estimation of the period of time in which soil erosion was active is reached 
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by dividing the depth of organic matter with mineral inclusions in the W8 core - l00mm 

(68-78cm depth: see Appendix E) - by the estimated growth rate of the BEL core at that 

particular point in time (c. 0.34mm1cal. yr: gradient of appropriate section [Trendline 5] of 

age/depth curve in Figure 5.8). This equates to c. 294 years, which when rounded up for 

simplification suggests 300 calendar years of soil erosion is represented. 

Downslope of the field system (boreholes W7 to E8) the mineral inclusions in basal peat 

layers become less frequent and of lesser thickness. Exploratory Eijelkamp coring in the area 

between the Belderg River and the E8 borehole site (see Figure 5.1) displayed similar 

sediment sequences to those between E8 and W7. Had gravitational soil erosion truncated 

the soil below the field system, redeposition at the base of the slope would be expected. 

Instead, slopewash and groundwater transfer from upslope may have resulted in wetter soils 

forming on these flatter areas near the floodplain, causing paludified soils and inhibiting soil 

maturation and profile development. This still does not adequately address why some of the 

boreholes (E8 and E7) record peat growth directly on bedrock. The basal peat in these 

instances is woody, compared with the detrital amorphous silty peat overlying basal layers in 

E6 and E5. There is perhaps a conceptual difficulty in concluding that wetland trees 

successfully colonised a thin peat layer overlying bare rock. 

5.2.2.4 Peat initiation and expansion 

Peat development through paludification requires a shift in local hydrological conditions 

sufficient to reduce the rate of organic decay significantly below that of its production, 

though there need not be any external forcing mechanism involved (Charman 2002, 74). Peat 

spread from the early foci, followed by coalescence of these islands of peat to form a large 

blanket, can account for the increasing extent of cover (Chapman 1964b; Smith & Cloutman 

1988, 197-200; Smith & Taylor 1989; Moore 1993), although some workers have questioned 

whether blanket peat does in fact expand upslope from basin mires (Chambers 1982. 38~ 

with reference to Chambers 1980). Nev~rtheless, the data from Belderg Beg are indicative of 

blanket mire spreading upslope. The sequence of sedimentary deposit evolution leading to 

upslope spread in this case may be more complex than this seemingly simple description 

would suggest. 

The basal peat assays show that peat initiation at various points along the Belderg Beg 

hillslope was diachronic. Lateral expansion of peat could occur by different mechanisms. 
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Firstly, paludification and organic matter accumulation could occur in multiple locations 

under conditions of, say, rising groundwater. A time-transgressive 'front' of peat could creep 

laterally, altering the hydrology of adjacent soils and triggering vegetational successions 

towards mire communities (Kuhry 1985). Predictive modelling has shown that substrate 

morphology affects blanket mire spread (Granerio & Price 1999, 250). Mires expand across 

a range of topographical types, and whilst no particular substrate morphology limits 

expansion, concave morphologies seem to counteract the effect of downslope water loss 

(ibid., 250-251; Charman 2002, 153). Peat expansion up slopes has frequently been 

evidenced by radiocarbon assays from basal peats at various points along slopes. similarly to 

this investigation (e.g. Foster & Fritz 1987; Charman 1994). 

Rates of peat expansion are calculated in Tables 5.2a and 5.2b. The mean rate of peat spread 

is calculated at c. 0.091m/cai. yr, not including the trendline between W7 and W8 (either 

side of Wall 1; see Figure 5.1). Initially, the spread from BEL to W2 (c. 5465 to c. 5180 cal. 

BP) proceeded at a roughly average rate (0.095m/cal. yr), on a relatively gentle slope 

(gradient 0.029). Rates of spread between W2 and W7 (c. 5180 to c. 4935 cal. BP) increased 

to 0.161m/cal. yr, along a steeper slope (gradient 0.053). The basal peat assays from W7 and 

W8 (either side of Wall 1) are inseparable (c. 4935 to c. 4930 cal. BP at 1.56m/cal. yr) 

suggesting that peat grew at both these locations at the same time. After this time, peat 

spread proceeded at reduced rates, perhaps because the slopes were slightly steeper. Between 

W8 and W21 (c. 4930 to c. 2860 cal. BP) spread occurred at 0.071m/cal. yr along a slope of 

0.067. Between W21 and NIO, peat spread was much slower (c. 2860 to c. 2030 cal. BP), at 

0.036m/cal.yr, along a slope of 0.065. The pertinence of these results to dating the 

archaeological remains is important and is discussed further in Section 5.2.2.5 below. 

The hydromorphic mire type represented by the wood peat layer below the Neolithic walls 

can be described as a soligenous sloping fen sensu Charman (2002, 7): peat on sloping 

terrain receiving water from runoff and (in this case, decreasing amounts over time of) 

groundwater. The appropriate model is apparently one of a valley mire (soligenous fen), as a 

mesotope formation on the lowermost part of the Belderg Beg slope, within the larger 

blanket mire macrotope (see Charman 2002, 27). Whilst damp soils such as peat would 

typically be expected at the base of a slope, valley mire formation may be enhanced or 

accelerated by human activity, particularly anthropogenic forest clearance, in certain areas 

(ibid., 86). In North Wales, woodland removal, soil acidification and valley mire initiation 

around the fringes of a lake at c. 6300 - 5700 cal. BP has been attributed to Late \lesolithic / 
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Early Neolithic human activity (Mighall & Chambers 1995). The critical factor appears to be 

increased runoff. 

The evolution and expansion of a sloping fen carr system through to blanket bog by 

increasing ombrotrophy may have proceeded according to the primary, secondary and 

tertiary peat growth model (Moore & Bellamy 1973). This model essentially describes the 

physical mechanisms by which peat initiation and lateral spread occurs, and is regarded as a 

conceptual aid to the visualisation of peatland development in landscape terms (Charman 

2002, 78-79). According to this model, primary peats tend to form in water-collecting 

topographical locations such as basins or depressions, where they are often preceded by 

limnic developmental phases. Secondary peats grow as the ground surrounding the primary 

peatland tends to become waterlogged, without necessarily implying external triggers, and 

allow the peat to expand beyond the depression foci. Tertiary peats develop above the 

influence of groundwater, with conditions allowing peat to cover most areas of the 

landscape, and these occur mostly in ombrotrophic mires. 

This model was reviewed for its application to palaeoenvironmental investigation of 

landscape development by Edwards & Hirons (1982), who considered the influence of 

topography. Whilst acknowledging the importance of microtopographical depressions on 

slopes in acting as initiation foci (see Figure 5.5), they applied the primary-secondary

tertiary peat growth model to a smooth-sloped hillside (see Figure 5.6). Their conclusions 

were that accurate determination of the true spread of peat would depend upon the growth 

rates being within the resolution limits of radiocarbon dating, coupled with the identification 

of the correct fraction of the most appropriate deposit for analysis and dating (ibid., 3-+-35). 

In applying this model to mire development at Belderg Beg, the primary peats are those 

initiated in the microtopographically suitable depressions of early peat growth, such as the 

BEL and E1 core locations. The primary-secondary transition is frequently particularly 

difficult to determine (Charman 2002, 79), and at Belderg Beg the boundary between 

primary and secondary peat is less easily identified from examination of the transect 

stratigraphy. It is likely to represent the main phase of expansion of the fen carr; from the 

stratigraphic transition to woody peat in the BEL core to the palynological indication of 

blanket bog inception, lasting from c. 5170 - 3775 cal. BP (c. 268cm - 180cm in BEL). This 

may suggest that a strict primary-secondary-tertiary model is not particularly useful and that 

site-specific conditions and variations in mire growth and spread are more important to 
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palaeoenvironmental study. Nevertheless, the pollen profile in BEL shov,'s a sharp transition 

to woodland-dominated vegetation cover just prior to the 268cm sedimentary shift (see 

Figure 5.16). There might be some screening effect, by which open patches of the mire

dominated landscape existed without being represented in the pollen profile, but overall a 

synchronous shift in landscape and vegetation dynamics is interpreted. 

The secondary/tertiary peat transition IS typical of shifts from fen to bog conditions 

(Charman 2002, 79) and can be more easily identified as the stratigraphic boundary between 

woody and herbaceous peat, for instance at 180cm (c. 3775 cal. BP) in the BEL core 

(although a somewhat earlier transition to ombrotrophic conditions is implied by the 

palynological profile than the peat stratigraphy; the former recording principally blanket bog 

vegetation composition from c. 190cm [c. 3945 cal. BP]: see Section 5.4.5). 

When considering the hills lope over a wider area than that covered by Transect 1, it is 

apparent that the Moore & Bellamy (1973) model would identify the earliest peat growth at 

both the top of the hill (a water-shedding location), and the base of slope in the floodplain of 

the Belderg River (see Figure 3.1), with other initiation foci occurring within hill-slope 

depressions such as the BEL-W2 and E1 core locations. This is confirmed by the earliest 

date of peat initiation occurring on the hilltop plateau, early peat also at the base of the slope 

(BEL) and the youngest peat deposits located mid-slope. 

5.2.2.5 Linking peat spread to archaeology 

The knowledge of rates and timing of peat spread over the Belderg Beg hillslope allows a 

critical review of previously held assumptions regarding the sequence of activity on the 

archaeological site. 

The age of Walll 

As outlined in Section 3.2.2.1, prevIOUS studies have assumed that Walls 1 and 2 were 

remnants of a Neolithic field system. The primary evidence offered for this was that their 

upslope extremities were constructed on mineral soil, and that the outer rings of a subfossil 

Pinus stump rooted in that mineral soil, near the upslope end of Wall 1. were assayed to c. 

5145 cal. BP (see Figure 3.4 and Appendix A). Second is the implicit assumption that peat 
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would have covered a significant proportion of the area enclosed by Wall 1 by the time of 

Bronze Age occupation (Caulfield 1978, 140). 

Approaching the question of the age of Wall 1, the date of peat spread either side of it must 

be taken into account. There is no significant difference between the age ranges of basal peat 

at W7 (5040-4830 cal. BP) and at W8 (5030-4830 cal. BP). It is evident that there was no 

measurable delay in peat spread either side of Wall 1 (in terms of the resolution of 

radiocarbon dating), and therefore it can be concluded that no effort was made by people to 

retard peat spread inside the field. 

There are two possible hypotheses. Firstly, that the walls were indeed constructed in the 

Neolithic period. If they were constructed on mineral soil for their entire lengths, they would 

have had to have been built before c. 4900 cal. BP, because that was the approximate date at 

which peat inception occurred at the W7 and W8 borehole locations. At c. 4900 cal. BP peat 

formed on either side of the wall unimpeded. Alternatively, the walls could have been 

constructed later, extending downslope on to peat, and the terminal section of Wall 1 

(running across the slope) was constructed on peat of the same age either side of it. As that 

terminal section of wall remains unexcavated and its dimensions marked only by probing, 

the question must be addressed by palaeoenvironmental analysis of the BEL core. As shall 

be seen below (Section 5.4.2) the palynological record supports the former hypothesis; that 

Wall 1 was a functional barrier in a very early phase of agriculture. 

5.3 BEL core results 

5.3.1 Description of sediment stratigraphy. 

Table 5.3 records the sediment stratigraphy in detail using the Troels-Smith (1955) system as 

modified by Aaby & Berglund (1986). In addition to the Troels-Smith notation, a brief 

description of t!1e sedimentary units is included, utilising the same descriptive criteria as 

those used to describe the transect cores (see Appendix D). This is to aid comparison with 

the transect cores, which were described in the field, where pressures of time and inclement 

weather prevented full description using the Troels-Smith system. 
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5.3.2 AMS radiocarbon dates and accumulation rates 

5.3.2.1 Presentation of results 

Table 5.4 shows the details of the radiocarbon assays for the BEL core. Graphical 

representations of calibration details are presented in Figure 5.7. Figure 5.8 shows the 

age/depth relations for the BEL core, adopting linear interpolation to assess age-depth 

relations. 

5.3.2.2 Sediment accumulation rates 

From Figure 5.8 it can be seen that sediment accumulation rates in the BEL core have not 

been constant over time. The key in Figure 5.8 explains calculation of the changing rates of 

growth (sediment accumulation rates), which are calculated by linear interpolation between 

each assayed level. The relatively shallow gradient between the lowest two assays (c. 4935 

to 5465 cal. BP, Trendline 5) indicates an initially slow sedimentation rate of 0.34mm1cal. 

yr. The gradient between the uppermost assay (c. 1440 cal. BP) and the surface (Trendline 1) 

is also relatively shallow, with an accumulation rate of 0.28mm1cal. yr, which could result 

from either slower peat accumulation or reduced compaction, which acts upon peat at greater 

depths. Between c. 1440 and c. 4110 cal. BP (Trendlines 2 and 3) the accumulation rate was 

0.6mm1cal. yr. The accumulation rate was 0.73mm1cal. yr between c. 4110 and c. 4935 cal. 

BP (Trendline 4). The age of the basal sediment is estimated at c. 5525 cal. BP from linear 

extrapolation of the lowermost accumulation rate (Trendline 5). 

5.3.3 Magnetic susceptibility 

5.3.3.1 Presentation of results 

Figure 5.9 shows the volumetric magnetic susceptibility (K) of the BEL core. As overlapping 

cores and monoliths were taken, susceptibility was tested on each core and monolith and 

Figure 5.9 shows these results superimposed. The curve in Figure 5.10 represents the mean 

value of these individual curves. 
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5.3.3.2 Interpretation 

Figure 5.9 shows that there are differences in volumetric magnetic susceptibility between 

cores at the same depths, such as the peak seen in core 3 between c. 242 and 248cm, not 

apparent in cores 2 or 4. This peak skews the curve representing the mean volumetric 

susceptibility, resulting in a small peak in that curve at 244-250cm. The cores were taken 

approximately 50cm apart so it is unlikely that there are any significant differences in 

sediment stratigraphy between them. As was explained in Section 4.4.6.2, the volumetric 

susceptibility of peat is of little interpretational value due to the overwhelmingly diamagnetic 

components, vegetation and water. It may be that post-sampling loss of moisture IS 

responsible for the variations in susceptibility between cores from the same level. 

Nevertheless, the volumetric susceptibility curves are useful in determining the transition 

between minerogenic and organic sediments, i.e. identifying the precise depth at which mire 

deposits began to accumulate. From Figure 5.10 it is seen that 268cm is the lowermost depth 

at which the mean volumetric susceptibility is zero. In the sediment stratigraphy (Table 5.3) 

this marks the transition between 'dark grey-brown organic deposit with common highly 

decomposed plant remains and abundant silt particles' and 'dark brown moderately humified 

wood peat with abundant wood fragments including small fragments and rare deciduous 

roundwood pieces'. The combination of these two lines of evidence is strongly indicative 

that the transition to true mire conditions commenced at c. 5170 cal. BP. 

5.3.4 Loss-on-Ignition 

5.3.4.1 Presentation of results 

Figure 5.11 shows the percentage loss-on-ignition of the BEL core. Figure 5.12 shows the 

inverse of this: the percentage ash content. 

5.3.4.2 Interpretation 

From Figure 5.12 it is seen that 268cm is the lowermost depth at which ignition residues 

(inorganic content) form less than 20-30% of the sediment mass on a dry weight basis, 

fulfilling the criteria of Clymo (1983) used to define peat as a substance (see Section 

4.3.3.2). This identification of 268cm as the transition to mire sediments is in agreement with 
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the evidence from the volumetric magnetic susceptibility investigations and the sediment 

stratigraphic descriptions (above). 

5.3.5 Humification 

5.3.5.1 Presentation of results 

Figure 5.13 shows the percentage transmission profile of the BEL core. The y-axis records 

percentage transmission following correction for mineral content (Blackford 1990). Columns 

represent individual percentage transmission values and the line represents the 3-point 

running mean. Figure 5.14 shows the 3-point running mean with the whole-core mean 

percentage transmission (thick bar) and l.Oa either side of the mean (thin lines). Zonation of 

the profile has been constructed according to the points delimiting significant changes of the 

averaged curve (exceeding l.Oa above or below the mean). 

Interpretation of the percentage transmission results occurs in conjunction with those of the 

geochemical and palynological investigations, in Section 5.4 below. A holistic analysis was 

preferred because it permits comparison of any coincident phenomena in multiple proxy 

records, thereby maximising the interpretive value of the investigations. 

5.3.5.2 Zonation 

Eight zones from the percentage transmission patterns have been identified. 

Zone a: 280-68cm; c. 5525 - 5170 cal. BP. Initially percentage transmission values are lower 

than the whole-core mean, but become increasingly elevated after c. 5320 cal. BP. 

Zone b: 268-254cm; c. 5170 - 4850 cal. BP. This period is characterised by the highest 

percentage transmission values in the profile, peaking at 260cm; c. 4935 cal. BP. 

Zone c: 254-232cm; c. 4850 - 4550 cal. BP. A rapid shift to lower percentage transmission at 

c. 4850 cal. BP is followed by c. 400 cal. years in which transmission values are 

higher than the whole-core-mean. 

Zone d: 232-228cm; c. 4550 - 4495 cal. BP. This is a short-lived phase of significantly high 

transmission values (greater than la above the mean). 

Zone e: 228-180cm; c. 4495 - 3775 cal. BP. During this time, transmission values fluctuate 

around the whole-core mean, shifting towards higher values at the top of the zone. 
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Zone f: 180-135cm; c. 3775 - 3025 cal. BP. The opening of this zone marks a transition from 

relatively high to relatively low transmission values, although neither of the 

extremes range beyond the 1.0cr bars. 

Zone g: 135-132cm; c. 3025 - 2975 cal. BP. This period records a brief phase of significantly 

low percentage transmission. 

Zone h: 132-80cm; c. 2975 - 2110 cal. BP. This phase records relatively percentage 

transmission values, lower than the whole-core mean but not outwith the 1.0cr 

range. 

5.3.6 Geochemistry 

5.3.6.1 Presentation of results 

Figure 5.15 shows the profiles of the six elements analysed in the BEL core, with ratios of 

Na:K and Ca:Mg also plotted. All concentrations are in mg/kg (= ppm) relative to dry 

weights. Interpretation of the geochemistry results occurs in conjunction with those of the 

percentage transmission and palynological investigations, in Section 5.4 below, for the 

reasons stated in Section 5.3.5.1 above. 

5.3.6.2 Zonation 

Four principal zones were identified, with three of these sub-zoned. Zones were identified 

subjectively by eye. 

CZ BEL-I: 280-260cm; c. 5525 - 4935 cal. BP 

The basal zone is typified by increasing concentrations of all measured elements except for 

K, which exhibits decreasing concentrations. 
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CZ BEL-2: 260-164cm; c. 4935 - 3510 cal. BP 

CZ BEL-2a: 260-225cm; c. 4935 - 4455 cal. BP 

In this zone the elements K and Na remain relatively stable at low levels compared to other 

zones. Ca, Zn and Cu also remain more-or-Iess stable. Mg concentrations increase to c. 

2000ppm, reducing the Ca:Mg ratio to below 1. 

CZ BEL-2b: 225-164cm; c. 4455 - 3510 cal. BP 

Zinc concentrations fluctuate between 10 and 20ppm, peaking at c. 45ppm at c. 180cm. A 

minor decrease of copper is registered at the opening of zone 2b, followed by a very gradual 

decrease and its eventual disappearance from the sedimentary record at 170cm. K remains at 

the low levels established in zone 2a. Na and Mg increase throughout the zone, whilst Ca 

shows a very gradual constant decrease, further reducing the Ca:Mg ratio. 

CZ BEL-3: 164-52cm; 3510 - 1640 cal. BP 

CZ BEL-3a: 164-104cm; c. 3510 - 2510 cal. BP 

This zone is characterised by high concentrations for Na and Mg, although Na decreases 

somewhat towards the upper boundary. Zn and K remain at low levels. A slight increase in 

Ca at the lower boundary and maintenance of such concentrations means the Ca:Mg ratio is 

similar to the previous subzone. 

CZ BEL-3b: 104-52cm; c. 2510 - 1640 cal. BP 

A brief peak in Zn concentrations at the base of the zone is followed by persistence at low 

levels. K increases gradually throughout the zone. Mg, and to a lesser extent Na, decrease 

throughout the zone. Until a decline at the upper boundary, concentrations of Ca remain 

more-or-Iess equivalent to those of C-3a, causing a very minor increase in the Ca:Mg ratio, 

although this remains below 1. The Na:K ratio, which peaked at the 3a!b boundary, declines 

to less than 5 by the upper boundary. 
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CZ BEL-4: 52-0cm; c. 1640 - 0 cal. BP 

CZ BEL-4a: 52-20cm; c. 1640 - 720 cal. BP 

This zone is characterised by major fluctuations in the concentrations of some analysed 

elements. Peaks in Zn and Ca occur, bringing these elements to their greatest concentrations 

in the profile. Mg peaks but at a lower level than Ca; therefore the Ca:Mg ratio peaks briefly 

at almost 2. Na and K remain more-or-Iess constant, meaning that the ratio of these elements 

is stable at low levels. The upper boundary is marked by troughs in Na, Ca, Mg, and to a 

lesser extent, K. 

CZ BEL-4b: 20-0cm; c. 720 - 0 cal. BP 

The topmost zone is characterised by rapidly increasing levels of Ca, Mg and K, which 

completes its C-shaped profile. Zn and Na remain stable. The Ca:Mg profile remains at 

about 1, and the Na:K profile approaches zero. 

5.3.7 Pollen analysis 

5.3.7.1 Presentation of results 

The pollen data are presented in six separate diagrams. Shaded (coloured) curves represent a 

tenfold exaggeration (the colour of which corresponds to that of the appropriate group's 

summary diagram) and a cross represents a single pollen grain or spore. 

Figure 5.16. Percentages based on the TLP sum grouped in the summary as Trees, Shrubs, 

Bog & heath taxa and Herbs. 

Figure 5.17. Percentages based on the TLP sum grouped in the summary as Trees (excluding 

Alnus), Shrubs, Bog & heath taxa and Herbs. 

Figure 5.18. Percentages based on the TLP sum grouped in the summary as Trees (excluding 

Alnus), Shrubs, Bog & heath taxa, Herbs, Pastoral indicators and Arable/disturbed 

ground indicators. 

Figure 5.19. Principal taxa percentages (based on TLP excluding Alnlls) with CONISS 

plotted. 

Figure 5.20. Influx values of main taxa. 
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Figure 5.21. Concentration values of main taxa. 

Ecological groupings were constructed principally with reference to Webb (1943), Godwin 

(1975), Grime et al (1988), Stace (1997) and Preston et al (2002). Anthropogenic indicator 

herbs (the Pastoral indicators and the Arable/disturbed ground indicators) are further 

identified with reference to Turner (1964) and Behre (1981). The term 'pollen influx' is used 

rather than 'pollen accumulation' to distinguish from sediment accumulation rates, which are 

discussed above in Section 5.3.2.2. Pollen influx is a measurement of the quantity of pollen 

grains incorporated into a set area of ground surface during a set period of time. 

Pastoral indicators: Lactuceae indet., Plantago lanceolata, R. undiff, Rumex acetosa, R. 

acetosella, R. obtusifolius and Trifolium type. 

Arable/disturbed ground indicators: Cereal type, Anagallis arvensis, Artemisia, 

Chenopodiaceae, Papaver rhoeas type, Plantago major/media, Polygonum aviculare, P. 

persicaria and Urtica. This group comprises indicators of both arable agriculture and of bare 

or disturbed ground, including ruderals which are generally positively correlated with human 

settlement (Behre 1981). It is recognised that this is a particularly difficult grouping. As 

some taxa occupy both arable field and settlement-area habitats, generally as a result of their 

occupation of disturbed or bare ground, these types are here combined into a single indicator 

group. The Rumex family is particularly problematic to interpret; different workers have 

included Rumex species in different ecological groups. Varying levels of pollen taxon 

identification add to the difficulty: R. acetosa/acetosella type has been used as a pastoral 

indicator (Donaldson & Turner 1977), while Riezebos & Slotboom (1978) define Rumex 

undiff. as an arable indicator. The more exhaustive scheme in Behre (1981) considers R. 

acetosa as particularly indicative of wet meadows and pasture, whilst R. acetosella is 

apparently more catholic in its ecological inclinations, though with tendencies towards 

winter cereal crops as well as pasture and fallow lands. Kramm (1978) found a positive 

correlation between Rumex pollen and dust content, suggesting it is a biotype of open and 

disturbed conditions. Such variation in interpretations has led workers to question or reject 

the use of ratios of certain pollen types to devise arable/pastoral indices designed to 

objectively evaluate the changing trends in prehistoric farming practices (e.g. Maguire 1983. 

13; Buckland & Edwards 1984, 244). For this reason, no such calculations have been 

attempted in th:s investigation, and the more general 'pastoral' and 'arable/disturbance' 

indicator groups are used. 
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Size details of all pollen grains identified as 'cereal-type' are presented m Table .fA. 

Selected photomicrographs with scale are presented in Plates 5.1-5.17. 

5.3.7.2 Lithology column 

For ease of visual interpretation, the pollen diagrams utilise a lithology column which 

records only the most significant sedimentary units (see Table 5.2 for further details). 

5.3.7.3 Zonation 

Percentages are based on the TLP sum excluding Alnus. Zonation was achieved usmg 

CONISS (see Section 4.4.2.9). 

PAZ BEL-I: Poaceae-Corylus-Betula. 280-275cm; c. 5525-5375 cal. BP. 

Poaceae fluctuate between 20 and 40% TLP. There are low frequencies of Plantago 

lanceolata and occasional grains of other pastoral and arable/disturbance indicators: 

Lactuceae indet., Rumex acetosa, R. acetosella, Polygonum aviculare and Urtica. The 

arboreal and shrub component is dominated by Corylus at 20% TLP, with Betula and Alnus. 

The main arboreal pollen types (Alnus, Betula, /lex, Pinus and Quercus) and Corylus expand. 

There are low percentages of Calluna vulgaris and Empetrum. At the upper zone boundary, 

the NAP components decrease in representation. Influx rates for all taxa are high, and the 

total influx rate is also relatively high. 

PAZ BEL-2: Alnus-Betula-Corylus. 275-226cm; c. 5375-4465 cal. BP. 

At the opening of the zone there is a small temporary peak in aquatic plant pollen. This zone 

is characterised by the expansion of tree taxa, especially Alnus. Betula, /lex, Pinus, Quercus 

and Corylus remain well-represented through most of the subzone, and Ulmus, Salix, Sorbus 

and Taxus pollen are also present intermittently in low proportions, while Fraxinus and 

Lonicera are only occasionally recorded. Calluna is at lower percentages than in BEL-I, and 

other heathland taxa are only sporadically recorded. There is lesser representation from open 

ground indicators such as Cyperaceae and Poaceae, although at 240cm there is perhaps a 

minor expansion of open ground recorded: most tree taxa decline slightly, and the herbs 
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Ranunculus type, Rosaceae, Saxifraga undiff., Urtica and Plantago lanceolata, as well as 

Pteridium aquilinum are all present in low numbers. Just below the upper boundary, at c. 

232cm, Pinus and Alnus expand to the detriment of Betula. Immediately above this, from 

231-228cm (c. 4520 cal. BP), the Pinus decline (from 24% to 5% TLP) is recorded, with an 

accompanying reduction in !lex. Alnus, Betula, !lex and Quercus all expand initially in 

response to this, however at the upper zone boundary Alnus decreases sharply from 523% to 

89% TLP and there is also a decline in Quercus. Small increases in Cyperaceae, Poaceae and 

Sphagnum are apparent. Fern spore values fluctuate between 10% and 40% TLP. Pollen 

influx rates are very low between 264 and 260cm, but increase rapidly and a peak in influx 

rate occurs at 250cm (c. 4800 cal. BP). 

PAZ BEL-3: Betula-Cyperaceae. 226-219cm; c. 4465-4370 cal. BP. 

All tree pollen and Corylus values decline in this zone, although at the upper boundary there 

is a slight, temporary resurgence in Alnus. There are short-lived appearances of the heath 

taxa, Calluna, Empetrum and Erica tetralix, as well as Cyperaceae and Poaceae. Sphagnum 

peaks at its highest percentage (372% TLP) in the profile and there is the first significant 

peak in microscopic charcoal percentage. Both peaks are also apparent in the influx values. 

As total influx values and influx values of other individual pollen taxa do not peak, these can 

be seen as recording real phenomena. At the upper boundary, fern spores all but disappear in 

percentage representation. 

PAZ BEL-4: Betula. 219-190cm; c. 4370-3945cal. BP. 

PAZ BEL-4a: 219-204cm; c. 4370-4165 cal. BP. 

The opening of this subzone is marked by reductions in percentages of the tree taxa Alnus, 

!lex, Pinus, Quercus and Ulmus to very low values, from which they never recover. Betula 

expands rapidly from 25% to 72% TLP. Corylus fluctuates between 5% and 10% TLP. Bog 

and heath taxa are sporadically represented, and whilst there is an overall decrease in 

Cyperaceae from initially high values (45% TLP), Poaceae remain more or less stable at low 

values. Pollen influx values remain relatively stable until a sharp, major peak in all taxa 

occurs at 210cm. This peak is only evident in a single pollen spectrum. 

PAZ BEL-4b: 204-196cm; c. 4165-4045 cal. BP. 
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This subzone records a short-lived reduction in Betula percentages; a decline from 63% to 

27% TLP is recorded at 200-197cm. Very slight, temporary increases in Quercus and Salix, 

and a peak in Sorbus, accompany this decline. Open-ground herbs are better represented in 

this subzone than previously; Ranunculus type, Rosaceae, and Potentilla type are all 

recorded. Plantago lanceolata, Rumex acetosa, R. acetosella and Urtica are occasionally 

recorded. The first instance of a single cereal pollen grain (see Table 5.5 and plate 5.17) and 

occasional Plantago major/media grains are recorded at 196cm (c. 4045 cal. BP). There is a 

peak in Sphagnum (174% TLP at 201cm) followed by a small, short-lived increase in fern 

spores. 

PAZ BEL-4c: 196-190cm; c. 4045-3945 cal. BP. 

Betula is rapidly re-established at 70% TLP. The small peaks in Sorbus, Quercus and Salix 

sharply decline and other tree and shrub taxa remain at extremely low values. Percentages of 

fern spores decline at the opening of this subzone and Sphagnum values are also suppressed. 

Pastoral and disturbance indicators are at generally lower percentages than in BEL-4b. 

PAZ BEL-5: Poaceae-Calluna. 190-161cm; c. 3945-3460 cal. BP. 

PAZ BEL-5a: 190-177cm; c. 3945-3725 cal. BP. 

Following an initially sharp decline, Betula percentages fall steadily throughout BEL-5a, 

reaching 7% TLP by the upper boundary. !lex, Pinus, Quercus and Corylus values remain at 

low levels. Other tree and shrub taxa are sporadically recorded. The Calluna curve becomes 

continuous by the upper boundary, and other heath taxa (Erica tetralix, E. cinerea and 

Myrica gale) are also recorded. Poaceae percentages reach their maximum levels in the 

profile during this subzone, and other indicators of grassland are also represented, for 

instance Caryophyllaceae, Filipendula, Ranunculus type, Hypericum perforatum type, 

Saxifragaceae, Potentilla type and Succisa pratensis. The pastoral indicators Plantago 

lanceolata, Rumex acetosa and R. acetosella are present but in low numbers. There are two 

cereal grains recorded at the upper boundary (see Table 5.5 and Plate 5.16). A small increase 

in microscopic charcoal is seen from the previous zone. At 180cm there is a slight yet 

sustained increase in total pollen influx rates. 

119 



PAZ BEL-5b: 177-161cm; c. 3725-3460 cal. BP. 

A minor, temporary increase in Betula percentages marks the opening of the subzone, though 

they again decrease by the upper boundary to 7% TLP. Pinus, flex, Salix, Taxus, Ulmus and 

all shrub taxa excluding Corylus are only occasionally recorded from this subzone. Callzl1la 

begins a rapid increase, the Erica tetralix and Myrica gale curves become continuous and E. 

cinerea and Empetrum are also represented in increased frequencies. Vaccinium is 

occasionally recorded. Cyperaceae values increase, those of Poaceae decrease to 18% TLP 

and open-ground herbs such as Ranunculus type, Potentilla type, Rosaceae and Hypericum 

perforatum type are still represented. Disturbance and pastoral indicators are present at low, 

continuous levels, including cereal pollen grains (Table 5.5 and Plates 5.14 and 5.15). 

Sphagnum values are higher than in subzone BEL-Sa and Pteridium aquilinum appears 

briefly. 

PAZ BEL-6: Calluna-Poaceae-Cyperaceae. 161-0cm; c. 3460 cal. BP - present. 

PAZ BEL-6a: 161-111cm; c. 3460-2625 cal. BP. 

Tree and shrub pollen do not regain their former levels after this depth, and during BEL-6a 

there is an overall increase in the Calluna curve. Poaceae pollen values fluctuate although 

the overall trend is of a slight decrease in representation. Values of other heath taxa fluctuate 

throughout the zone. Cyperaceae remain at relatively high levels, reaching 40% TLP. Herbs 

are well-represented, although Ranunculus type becomes discontinuous after 144cm. 

Plantago lanceolata is better represented than in previous zones, and both pastoral and 

disturbance indicators are relatively well-represented, especially in the lower half of the 

zone. After 138cm, cereal grains are extremely sporadic. In the upper part of the zone there 

is a relatively small peak in aquatic plant pollen, although Sphagnum values remain 

negligible. Microscopic charcoal values rise until they reach 242% TLP at 132cm, and then 

decrease for the remainder of the zone. 

PAZ BEL-6b: 111-51cm; c. 2625-1625 cal. BP. 

The dominant pollen taxa are Call una and Poaceae, with lower, also varying, percentages of 

Cyperaceae. Plantago lanceolata is initially well-represented, but for most of the subzone 

there are few, sporadic palynological indicators of disturbance or indeed pastoral activity. In 
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the top few centimetres of the subzone (above 55cm) there is a slight resurgence of P. 

lanceolata and occasional disturbance indicators are also recorded. Total pollen influx rates 

are slightly reduced in this zone compared to the rates established in PAZ 5b. 

PAZ BEL-6c: 51-30cm; c. 1625-1080 cal. BP. 

This subzone records a period during which Calluna and other heath specIes were the 

dominant pollen types, and when values of Poaceae, Cyperaceae and most herbs were 

depressed. 

PAZ BEL-6d: 30-0cm c. 1080 cal. BP - present. 

Cyperaceae initially expand over Calluna, followed by an increase in Poaceae. Other herbs 

are well represented, including pastoral and disturbance indicators. Plantago lanceolata 

attains its highest percentages and cereal pollen is once again recorded (Table 5.5 & Plates 

5.1-5.4). In the upper half of the zone a few grains of obligate aquatic taxa are recorded. 

S.4 Interpretation of the BEL sequence 

5.4.1 Basal sediment stratigraphy 

The Scm thick deposit of yellowish-brown coarse sand overlying till at the base of the BEL 

profile (see Table 5.3) is well sorted texturally, suggesting that it represents high energy 

deposition (Brown 1992, 77; Rapp & Hill 1998, 41). It is massively bedded rather than 

laminar, which suggests a single event was responsible for deposition as opposed to, say, an 

ongoing fluvial event. Such a succession can be identified as typical of a glaciogenic 

sequence, resulting from episodes of glacial and glaciofluvial activity during a single glacial 

event (Lowe & Walker 1997, 300-301). As was discussed earlier, it appears likely that the 

soil which formed above this sand was lost prior to organic accumulation and peat initiation, 

possibly as a result of farmers stripping turves to supplement agricultural soils elsewhere 

(Section 5.2.2.3) 
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5.4.2 c. 5525 - c. 5375 cal. BP 

The boundary at 280cm between sand and organic deposits was dated to c. 5525 cal. BP by 

linear extrapolation of the lowermost radiocarbon assay, explicitly assuming linear 

sedimentation rates (see Section 5.3.2.2). As was discussed above (Sections 4.4.7.2 and 

5.2.l.2) it is likely that the residence times of organic carbon in mineral-rich detrital 

sediments are much longer than those in peat, hence sedimentation rates could be much 

slower than would be indicated by assuming linear sedimentation rates. Humification and 

pollen concentration data could be used as indices of growth rates, but as the sediment in 

question is only 2cm deep (278 to 280cm) any significant revision of the age estimate is 

unlikely. 

The organic deposit overlying the sand layer is formed of Substantia humosa, detrital plant 

remains and silt (see Table 5.3). This sediment is 12cm thick, and accumulated relatively 

slowly (see Figure 5.8). Despite its relatively low mineral content in comparison to organic 

matter it clearly supported vegetation communities, as evidenced by its macrofossil content, 

but arguably does not represent a soil sensu stricto. Considering that the BEL borehole is 

situated at the lip of a basin (see Figure 5.2) a more appropriate scenario might be that the 

basin at that time (c. 5525 cal. BP, see above) consisted of a shallow mire or marsh, and the 

organic detrital sediment in the BEL core formed a higher shelf overlying the coarse sand 

base (cf. Rapp & Hill 1998, 57-58). This interpretation is supported by the presence of a 

minor peak in aquatic plant pollen prior to 268cm (see Figure 5.16c). Figure 5.22 shows this 

interpretation applied to the Belderg Beg valley side. 

The basal deposit in the BEL core and other boreholes along Transect 1, the black 

amorphous organic-rich silty mud, can be compared to sub-peat deposits present under 

blanket peat in upland South Wales (e.g. Smith & Cloutman 1988). A comparison could be 

the sub-blanket peat 'mor' deposits; black greasy amorphous peats, often charcoal rich, and 

including graded mineral content increasing towards the base (ibid., 163). This mor often 

developed on stones or sand (ibid., 204-208). However the basal deposits underlying nearby 

fen carr peats in the same study tended to be described as coarse detrital muds. The 

difference can probably be accounted for by trophic status; a more nutrient-rich basal 

material would be required for establishment of a fen carr, whilst the more acid, anaerobic 

122 



conditions of a mor deposit would be more restrictive for vegetational succession, and acid

tolerant blanket peat species would be best suited to these substrates. 

Taken uncritically, the percentage transmission curve can be interpreted to represent an 

initially dry surface which became increasingly wet after c. 5320 cal. BP (273cm). However, 

the sediment below 268cm is not a true peat (see Sections 5.3.3.2 and 5.3.4.2), and although 

the percentage transmission value was corrected for mineral content (Blackford 1990; see 

Section 4.4.4.5) it may be that organic sediments such as this deposit do not react in the same 

way as peat to alkali extraction of humic substances and therefore do not accurately reflect 

surface wetness. The palynological evidence is of a somewhat patchy vegetation 

environment, with aquatic, grassland, woodland and heath taxa all represented. It may well 

be that the drier areas newly exposed by terrestrialisation of the retreating marsh were 

colonised by acid heath taxa such as Empetrum and Call una vulgaris. 

High Poaceae pollen percentages (c. 20% TLP, or c. 35% if Alnus is excluded) indicate that 

there was significant grassland vegetation cover in between c. 5525 and c. 5375 cal. BP (see 

Figures 5.16 - 5.18). The occurrence of Lactuceae, Plantago lanceolata and Rumex pollen 

grains suggests that pastoral agriculture was being practised. The question of cereal 

cultivation is more complex. There are no cereal pollen grains recorded in the appropriate 

spectra. However, arable/disturbance indicators Urtica and Polygonum aviculare grains are 

occasionally present, which perhaps indicates that there may have been some cereal 

cultivation. If arable cultivation occurred some distance from the sampling location, cereal 

pollen might not be expected to be represented in the BEL core, considering the poor 

dispersal and low pollen production of cereal crops (see Section 4.4.2.3). Nevertheless, 

arguing for cereal cultivation without direct evidence from palynology, plant macrofossils or 

geoarchaeology can be dangerous (see Chapter 6 for geoarchaeological investigation). A 

cereal-importing economy may be represented. This issue shall be returned to in Sections 

7.2.4.2, 7.3.1.2 and 7.4.1 below. Arboreal pollen values are relatively low in comparison to 

overlying spectra (c. 60 - 70% TLP compared to c. 90%; see Figure 5.16). This indicates a 

patchy landscape, including agricultural land as well as Alnus-dominated woodland. At this 

depth in the BEL core (280 to 275cm) the sediment is a silt-rich organic detrital material, and 

the few plant macrofossils are highly degraded but of an herbaceous nature (see Table 5.3). 

As the BEL core is considered to contain the earliest peat accumulation in the area, it is 

unlikely that thicker substrates capable of supporting trees existed in the vicinity. This 

suggests that trees were not growing at that location at that point in time. The arboreal pollen 
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content of the palynological record therefore represents open woodland in the wider 

landscape. The spatial area of grassland indicated by the pollen profiles is difficult to 

calculate, but the interpreted scenario of a patchy, differentiated landscape might support the 

interpretation of Walls 1 and 2 (see Figure 5.1) as enclosing agricultural fields at this time 

(see Section 5.2.2.5 above). 

Outwith the agricultural fields the vegetation cover was evidently patchy. There were high 

values of Alnus, suggesting a carr environment close by, but there was also vegetation cover 

of a scrubby nature rather than a full woodland canopy. Pollen values of light-demanding 

taxa such as Betula, Corylus and Pinus are higher than those of the canopy trees Quercus, 

!lex, Taxus and Ulmus. Dwarf shrub/heath taxa such as Calluna vulgaris and Empetrum were 

also present. The landscape was thus much more differentiated and varied than seen in the 

present day, with probable acid heath below the agricultural fields, scrub in areas of thicker 

soils, and Alnus carr fringing the wetland below the BEL core location. The presence of acid 

heath indicates that soil/sediment acidification was well-developed by the mid-Holocene. 

The location of field walls (e.g. Walls 1 and 2, see Figure 5.1) were apparently planned with 

consideration to soil quality. This is suggested by the existence of soil profiles above the 

altitude of the terminus of Wall 1 (see Figure 5.2 and Section 5.2.2.3 above). Furthermore, 

the landscape downslope of the fields was patchy at this time and included acidified organic 

accumulating sediments. Extending this interpretation, it is evident that the Neolithic farmers 

at Belderg Beg did not maintain a completely open landscape beyond the limits of the field 

system. 

The palynological record indicates that agriculture ceased at c. 5375 cal. BP (275cm), as 

Poaceae and agricultural indicator values decline in frequency to near-negligible levels. An 

alternative interpretation to abandonment relates to the changing vegetation dynamics of the 

landscape. The concurrent increase in tree pollen values, especially Alnus, could suggest that 

a filtering effect was in existence, if the trees occurred as a barrier between the agricultural 

fields and the BEL sampling location. At this time, the sediment at BEL was still an organic 

detritus containing herbaceous macrofossils and silt (see Table 5.3) and organic 

accumulation had not commenced 30m upslope at W2 (see Figure 5.2 and Table 5.1), 

suggesting that there was insufficient sediment to support tree communities between BEL 

and the agricultural fields. The abandonment is therefore interpreted as real rather than 

apparent. The difference between the opening of the palynological profile (c. 5525 cal. BP; 
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see Section 5.4.1 above) and the observed agricultural abandonment (c. 5375 cal. BP) is just 

150 calendar years. The date of onset of agriculture at Belderg remains elusive. 

5.4.3 c. 5375 - c. 4550 cal. BP 

The abandonment of agriculture at c. 5375 cal. BP is characterised palynologic ally by a 

sharp decline in Poaceae and a near-absence of pastoral and arable/disturbance indicators 

(see Figures 5.16-5.18). Both Alnus and Betula expanded relatively rapidly. The especially 

marked expansion of Alnus suggests it had colonised the mire surface by this point in time. 

The first record of wood macrofossils in the sediment stratigraphy of the BEL core (see 

Table 5.3) occurs at c. 268cm (c. 5170 cal. BP). The small peak in aquatic plant pollen at 

275cm (c. 5375 cal. BP), in combination with the rapid increase in Alnus, supports the 

indication of an increasingly wet mire surface at BEL. Increasing wetness was also 

suggested by the humification curve (Figures 5.13 and 5.14), but the sharp increase in 

percentage transmission may be wholly or partially a factor of the transition to true peat at 

268cm (see Section 5.4.2 above) as suggested by the humification curve. When the soil 

erosion associated with agriculture in the field enclosed by Wall 1 (see Section 5.2.2.3) is 

combined with this evidence for increasing surface wetness downslope of the fields, an 

interpretation of increased run-off caused by agricultural activity may be reached. The 

especially marked sharp increases in Alnus and Betula (Figure 5.17) support this 

interpretation. However, dryland trees such as Quercus, Corylus and /lex increased also, 

suggesting that it was not only taxa of wet soils which expanded. However the dryland trees 

did not increase at such marked rates and to such high percentages, so it seems likelier that 

these taxa colonised some drier areas upslope, which had been newly abandoned. Expansion 

of Alnus following the mid-Holocene Ulmus decline is a common feature in pollen profiles 

from central Ireland, where Ulmus tended to be well-represented (Godwin 1975, 470). 

Although the Ulmus decline was not recorded in the BEL profile as sedimentation began 

later, its date can be estimated with reference to regional data. Despite Ulmus being 

relatively poorly represented in north Mayo its decline is well-dated: c. 5840 cal. BP at Ceide 

Fields and c. 5900 cal. BP at Garrynagran (O'Connell & Molloy 2001, 104 & 108-9). 

The loss-on-ignition curve supports the interpretation of the sediment stratigraphy, which 

suggests a rapid transition from a silty detrital mud to woody fen peat occurred at c. 5170 

cal. BP. Potassium concentrations were high in the detrital mud. Similar basal enrichment of 

K has been seen in other profiles from ombrotrophic bogs (e.g. Walsh & Barry 1958; 



Chapman 1964b). This could be due to two factors (see Steinmann & Shotyk 1997). 

Groundwater diffusion followed by formation of stable complexes is a possibility; 

suggestions have been made that K (also Ca) is more soluble in higher than lower levels of 

blanket peat profiles (Walsh & Barry 1958, 327). More likely is the presence of K in the 

mineral component of the basal sediment. Low Ca concentrations in the basal geochemical 

zone support the latter interpretation. Bedrock-derived K in an area of quartzite and 

psammitic schist geology would originate from the feldspar, and microcline (alkali, K-rich) 

feldspar is a component of the Grampian group (Chew et al 2003) which forms the regional 

geology of much of North Mayo, including Belderg (see Section 2.3.1.2). K typically 

exhibits a C-shaped profile in peat sections, with basal enhancement from bedrock influence 

(Grattan et al 1996, 33; cf. Chapman 1964b) and surface enhancement from plant uptake 

(Damman 1978, 491). Low levels of the other elements analysed suggest that the soil was 

relatively nutrient-poor. 

During and after abandonment, the former agricultural land seems to have become 

overgrown, initially by scrub taxa such as Betula and Corylus, and then by woodland taxa 

such as Quercus, Ilex and Pinus. Classically, the small, temporary nature of Neolithic forest 

clearances allowed passing expansion of pioneer genera such as Betula, Corylus, Fraxinus, 

and Alnus (Godwin 1975,471) and such regeneration is recorded between c. 5375 and 5000 

cal. BP. The fine resolution pollen analysis at these depths of the BEL core allows estimates 

to be made regarding the rates of woodland establishment. Alnus rapidly expanded (73% to 

200% TLP) between c. 5465 and c. 5400 cal. BP (278-276cm), which probably represents 

the establishment of a single pioneer generation, which persisted until c. 5050 cal. BP before 

beginning a slight overall decline. Betula expanded from 10% to 30% TLP between c. 5400 

and c. 5350 cal. BP (276-274cm), again this probably represents a pioneer generation which 

declined slowly until it reached c. 20% TLP at c. 5050 cal. BP. The establishment of Corylus 

took longer, from c. 5525 to c. 5290 cal. BP (280-272cm; 17-33% TLP). Quercus also took 

longer to expand, from c. 5465 to c. 5230 cal. BP (278-270cm; 3-10% TLP). The expansion 

of Ilex commenced at c. 5465 from occasional palynological presence and reached 11 % TLP 

by c. 5050 cal. BP (264cm). Pinus actually decreased in pollen percentage representation at 

c. 5400 cal. BP (276cm) but increased between c. 5290 and 5170 cal. BP, probably 

representing a single generation expansion as Betula declined. 

A landscape-scale picture of vegetation succeSSIOn can be estimated from these data. 

Vegetation cover on the mire surface in the immediate vicinity of the BEL core probably 
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consisted of Alnus, Betula and Pinus in varying proportions. For instance, Alnus was initially 

favoured at c. 5465-5050 cal. BP, probably due to extremely wet sediment conditions, which 

are suggested by the humification curve (Figure 5.14). As the mire became established and 

spread, Betula seems to have been favoured, especially as the surface became drier after c. 

4870 cal. BP (c. 255cm; Figure 5.17). Pinus seems to have been a mire-dwelling taxa, as its 

dynamics in the first half of PAZ BEL-2 appear to inversely correlate with those of Betula. 

In the wider landscape on drier ground, Corylus was apparently replaced by woodland 

consisting of Quercus, /lex, Ulmus and Taxus. These woodland dynamics, together with the 

reduced, sporadic representation of pastoral and disturbance indicators, suggest that 

abandonment of the field system was followed by much reduced human activity in the 

vicinity. 

The most appropriate modem plant community equivalent to PAZ BEL-2 (c. 5375-4465 cal. 

BP) would appear to be the W6 Alnus glutinosa - Urtica dioica woodland (Rodwell 1991a, 

30-33; 91-101), elsewhere defined as fen carr (e.g. Binney et al 2005; Waller et al 2005). 

This community is poorly defined and is therefore characterised by a variety of canopies, 

with the dominant species being Alnus glutinosa, Salix spp. and Betula pubescens, and a 

range of floristically diverse but typically species-poor understorey layers (Rodwell 1991a, 

91). There are certain palynological indications that the woodland in the vicinity of the BEL 

core during PAZ BEL-2 was at the drier end of the spectrum of W6 woodland (cf. Betula 

pubescens sub-community: Rodwell 1991a, 94). The principal such indicator is the 

dominance of Betula over Salix as a secondary canopy component (see Rodwell 1991a, 91). 

This is supported by the low representation of Urtica and the presence of Lonicera and 

Pteridophyta. A wetter W6 woodland would be indicated by more substantial percentages of 

Urtica and Cyperaceae (ibid., 92). Such an interpretation of the community is further 

supported by the observation that the Betula sub-community of the W6 group may develop 

directly from Betula - Molinia woodlands on disturbed acid peat in basin mires on base-poor 

substrates (ibid., 96). Unfortunately, the sediment record begins in the BEL area only as the 

Alnus glutinosa - Urtica dioica woodland community was establishing, so it is impossible to 

verify the nature of its precursor. 

That the species present in the palynological profile in BEL-2 do not match exactly those 

species listed as typical of fen carr (Binney et al 2005; Waller et al 2005) or of the W6 

woodland and associated sub-communities (Rodwell 1991a, 92-101) is indicative of the 

wider landscape component of the palynological record. The main difference is the sporadic 

127 



representation of Ericaceae in BEL-2~ a family not reported in the above characterisations of 

fen carr communities. These heath pollen taxa are likely to derive from the abandoned 

agricultural fields upslope. Generalising the taxa representation as percentages of TLP 

throughout BEL-2, Alnus fluctuated between 50 and 85%, with Betula and Corylus both 

typically present at around 10%. Pinus, Quercus and Ilex all fluctuated between 0 and 10% 

TLP. Perhaps atypically for a fen carr, Salix was poorly represented (but screening may have 

caused this~ see below). Also present in low quantities were Fraxinus, Populus, Taxus and 

Ulmus. Distinguishing the source areas of the recorded pollen taxa is vital in describing the 

nature of the community. The extremely high dominance and over-representation of Alnus 

over all other taxa in BEL-2 may account for the low palynological diversity; less prolific 

pollen producers including the (probably patchy) herb understorey are likely to be under

represented in the pollen record. 

From c. 5170 cal. BP until c. 4850 cal. BP, the mire surface was wetter than at any other 

time in the profile, with wetness peaking at c. 4935 cal. BP, at the point when loss-on

ignition values reached 95% (Figure 5.11), a figure which is typical for ombrotrophic peat 

(Aaby 1986, 160-161). Coincidental with this peak in mire surface wetness, total pollen 

concentration values were very low, indicating rapidly accumulating sediments; i.e. 

enhanced growth rates. From c. 4935 cal. BP, as the fen carr persisted, there are indications 

of an increasingly oceanic influence upon the mire hydrology. This need not have a climatic 

origin (see below). At c. 4935 cal. BP, whilst the influx of Mg had increased, a 

corresponding increase in Ca means that the ratio between the two elements (Ca:Mg) was 

relatively high at above 1.0, indicative of minerotrophic (fen) rather than ombrotrophic (bog) 

conditions (Shotyk 1988, 150). The decrease of this ratio between c. 4935 and 4455 cal. BP 

illustrates the increasing importance of seawater (with a typical Ca:Mg ratio of 1:3) over 

freshwater (ratio 3: 1) (ibid.). Rather than indicating a climatic shift involving changing 

weather patterns, the increased oceanicity of the mire water may result from the spread of 

peat and consequent isolation of the mire from freshwater sources. Fen (wood) peat 

formation has the effect of making areas of peat more dependent upon direct rainfall, and 

less upon surface drainage for their water supply, accelerating the shift towards 

ombrotrophic conditions, and lowering Ca:Mg ratios (Chapman 1964b, 319). A 

compounding increase in climatic oceanicity is unlikely, as concentrations of Na fluctuated 

around 550ppm until c. 4500 cal. BP. 
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At c. 4850 cal. BP the humification data recorded a relatively rapid shift to relatively drier 

mire surface conditions, indicating slower peat accumulation. This is corroborated by the 

pollen concentration diagram (Figure 5.21) which shows a short-lived peak in total fossil 

concentrations from c. 4900 to c. 4800 cal. BP (258-250cm). The humification curve 

suggests that this episode was followed by c. 300 years of a wetter than average mire 

surface. Whilst initially receiving nutrients from outside its confines (minerotrophic), the 

geochemical profile is by c. 4800 cal. BP indicative of a rather oligotrophic (nutrient poor) 

fen. 

5.4.4 c. 4550 - c. 3945 cal. BP 

As the mire system developed, it may have changed into an ombrotrophic system. More 

acid-tolerant plant taxa invaded the mire surface and blanket bog vegetation successfully 

out-competed fen carr species. This transition occurred in two stages. Firstly, Alnus was 

relatively rapidly replaced by Betula as the dominant species between c. 4465 and 4370 cal. 

BP. Later, at c. 3945 - 3775 cal. BP Betula itself declined, to be replaced by more typical 

blanket bog taxa such as Poaceae and Calluna vulgaris. 

The humification curve shows there was a brief phase of significantly enhanced surface 

wetness at c. 4550 - 4495 cal. BP, and a small, short-lived decline in pollen concentrations at 

the same point supports the implied inference of a brief phase of increased sedimentation. 

When compared with the sediment stratigraphy (Table 5.3), the humification curve (Figure 

5.14) shows that the mire surface remained more than averagely wet (not exceeding 10-

outwith the whole-core mean) for most of the fen peat phase, which lasted until c. 3775 cal. 

BP. Total pollen concentration values suggest there were no significant changes in 

sedimentation rates. 

A Pinus decline was dated by interpolation to c. 4520 cal. BP. This slightly predated declines 

in other arboreal pollen taxa (Querclls, Corylus and !lex) which occupied the wider 

landscape (see Section 5.4.3 above), suggesting that there was a complex sequence of 

vegetation successions in the region. The Pinus decline was accompanied by a small decline 

in proportions of !lex, a small increase in Quercus and a sharp, short-lived increase in Alnus. 

The Alnus peak is so large (> 500% TLP when Alnus is excluded from the TLP count - see 

Figure 5.17) that it appears anomalous, possibly being the result of the preservation of a 

flower rather than a true palynological representation of the vegetation cover. However if 
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Alnus is included in the TLP count (see Figure 5.16) the peak does not appear so skewed. 

Furthermore, the influx diagram (Figure 5.20) does not show an anomalous peak in Alnus at 

230cm. It can therefore be concluded that Alnus experienced a brief, rapid expansion on the 

mire surface at the time of the Pinus decline, indicating a direct competitive relationship 

between the taxa. Betula also declined during this Alnus expansion. This succession may 

have been promoted by the increase in surface wetness indicated by the humification curve. 

This c. 4520 cal. BP decline in Pinus can be interpreted as the representing the classic 4500 

cal. BP Pinus decline discussed in Section 2.2.3.4. 

The Alnus expansIOn was short-lived. Woodland loss commenced at c. 4500 cal. BP, 

beginning with a drastic reduction in Alnus, suggesting its disappearance from the mire 

surface. Betula and Corylus remained more or less stable, whilst !lex and Quercus declined. 

over perhaps 50 calendar years. This phase was also characterised by minor, short-lived 

peaks in the dwarf shrub and heath taxa, Calluna vulgaris, Empetrum and Erica tetralix. 

Empetrum, intolerant of severe waterlogging (Grime et al 1988, 240), is associated with the 

drier parts of a mire surface, such as hummocks, peat hagg caps and gully sides (Bell & 

Tallis 1974; Tallis 1997). A widespread drying of the surface can be discounted, however, as 

PAZ BEL-3 is also characterised by a large peak (in percentage, concentration and influx 

values) of Sphagnum spores, which may suggest a wetter surface. The humification curve 

suggests that the mire surface had become relatively drier after the c. 4500 cal. BP wetness 

peak, but that it was still more than averagely, although not significantly, wet. The total 

pollen concentration· data suggest that there was a very slight decrease in sediment 

accumulation rates after c. 4500 cal. BP. Together, these factors indicate a variable mire 

surface in terms of contrasting relatively dry and wet areas. Drier patches of the mire will 

have been colonised by Betula. The virtual disappearance of fern spores (Pteropsida 

[monolete] indet. and Hymenophyllum) by c. 4450 cal. BP is probably related to the 

reduction in woodland cover. 

The peak in microscopic charcoal at c. 4500 cal. BP suggests that fire may have been a 

causal factor in woodland clearance. Although there is a small peak in Poaceae during the 

clearance phase, and occasional disturbance indicators are recorded, pastoral indicators are 

almost totally absent. If the clearance was local to the BEL core, then it is considered 

unlikely that human activity was the agent of deforestation. Fires induced by lightning 

strikes may have been responsible for the peak in microscopic charcoal particles, with open

ground taxa and ruderal herbs opportunistically moving into newly created open spaces. 

130 



However, the scale of the peak in microscopic charcoal indicates that this would have been 

an extreme event of lightning strikes above the background rate of their occurrence. An 

alternative interpretation would be that the clearance was occurring at a more distant 

location, i.e. within the regional pollen source area (canopy and rainfall components: see 

Section 4.4.2.1). 

The putative trend toward increasing oceanicity continued after c. 4455 cal. BP. This is 

indicated by Mg concentrations, which continued to increase, and Ca:Mg ratios, which 

declined further and stabilised at around 0.4, and an overall increase in Na was also 

registered. The Na and Mg curves followed similar patterns between c. 4455 and 3510 cal. 

BP, with comparable small-scale peaks and troughs. As Na and Mg are associated with a 

maritime influence (Walsh & Barry 1958; Damman 1978, 492; Shotyk 1988, 150), this 

subzone contains evidence for increasing climatic oceanicity. 

At c. 4370 cal. BP, Betula expanded onto the mire surface and fully replaced Alnus. Betula 

also probably colonised the areas upslope, from where the deciduous trees had been lost. 

There were additional associated vegetation shifts; a short-lived decline in frequency of 

Poaceae percentages and a corresponding increase in Cyperaceae. Whilst this could be 

construed as resulting from a wetter mire surface, the replacement of Alnus by Betula and the 

decrease in Sphagnum representation contradict such an interpretation. Neither the pollen 

concentration nor the humification curves indicate any significant change in sedimentation 

rate at this point (c. 219cm). The possibility of preferential clearance by humans of Alnus 

carr remains. However, because there is an absence of human activity indicator taxa, this 

suggestion appears unlikely. The total replacement of Alnus by Betula is therefore best 

accounted for as a natural vegetation succession, part of the trend established at c. 4500 cal. 

BP. 

There was a major, marked peak in total pollen concentration rates at c. 4250 cal. BP. As all 

taxa show the peak and therefore it is not mirrored in percentage curves of any particular 

taxa, it might indicate a slowing or perhaps temporary cessation of peat growth. However, 

the humification curve at that point (210cm: Figure 5.14) shows average percentage 

transmission values, which contradict such an interpretation. An extreme forcing factor 

would be required to stop peat growth completely on such a slope as the Belderg Beg valley 

side. That interpretation would have severe implications for palaeoenvironmental 

reconstruction. Alternatively, especially as the peak is so large. it might be the product of an 
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anomalous sample or a laboratory error. The latter interpretation is favoured due to the 

ambiguous signals given by the various palaeoenvironmental proxies. Had peat growth 

temporarily ceased, a definitive signal to this effect would be apparent in the humification 

curve. 

Renewed changes in woodland composition occurred from c. 4165 cal. BP. This was 

characterised by a major decline in Betula, accompanied by slight, temporary increases in 

Quercus, Salix 3.nd Sorbus. Although it is possible that the latter may have resulted from 

their increased visibility in the palynological record as a consequence of the reduction in 

Betula, the influx curve of Quercus shows a small peak at c. 4110 cal. BP (200cm: Figure 

5.20), suggesting that its increased percentage representation was indicative of its greater 

population in the landscape. If this temporary woodland expansion occurred at some distance 

from the sampling location, there is no need to infer a conflicting signal from that of 

scrubland loss near the BEL core. Increases in Poaceae, Cyperaceae and open-ground herbs, 

with the occurrences of Plantago lanceolata, Rumex acetosa, R. acetosella and a cereal 

pollen grain, suggest that the clearance was occurring for agricultural activity. This is the 

first definitive indication of any post-Neolithic human activity occurring at the site. 

A temporary but marked resurgence of Betula was apparent at c. 4045 cal. BP, suggesting 

that scrubland may have become re-established over a limited part of the cleared areas. 

Whilst there was a significant reduction in percentages of Cyperaceae, the decline in Poaceae 

was of a lesser magnitude, suggesting that the better quality, drier grassland was maintained 

whilst the wetter areas were perhaps allowed to revert to scrub. Although Ranunculus type 

pollen remained at its previous levels, other open-ground herbs declined and pastoral and 

disturbance indicators were sporadic. This supports the interpretation that active clearance 

had ceased, and that poorer quality land outside the farmed area had been allowed to return 

to Betula scrub. Abandonment or cessation of agriculture within the fields was not 

necessarily indicated; the Betula scrub is likely to have acted as a filter or screen, restricting 

the probability of pollen from the areas of agricultural activity reaching the coring location. 

5.4.5 c. 3945 cal. BP - c. 3460 cal. BP 

Renewed clearance commenced at c. 3945 cal. BP, where a decrease in Betula \\'as 

accompanied by the virtual disappearance of /lex, Pinlls and TaniS from the palynological 

record. Continued pastoral activity is signalled by increases in the Plantago lanceolata and 
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Rumex spp. cu,:ves. A disturbed biotope is indicated by two cereal pollen grains, and 

occasional occurrences of Papaver rhoeas type and Plantago major/media pollen. The rise 

in representation of heath types, Calluna vulgaris, Erica cinerea, E. tetralix and Myrica gale 

(including the establishment of a constant Calluna curve) suggests that heathland began to 

replace the Betula scrub in the landscape around agricultural areas from c. 3860 cal. BP. 

At c. 3945 cal. BP the palynological profile also records a sharp shift between birch

dominated and NAP-dominated conditions. This suggests that the transition from fen carr to 

blanket bog conditions (see Section 5.2.2.4 above) was synchronous over the area. Were this 

transition merely extra-local, with trees simply disappearing from the fen carr area, a 

significant influx of AP would be expected to persist until the transition was complete over 

the wider pollen source area. This interpretation of linkage between the loss of woodland and 

changing hydrology has major significance for the study. Identification of the forcing factor 

behind these changes is of primary importance. 

Short-lived troughs in the profiles of Na and Mg at c. 3945 cal. BP perhaps indicate a 

temporary cessation or reversal of the trend to increased oceanicity. However, as the wood 

peat was replaced at the BEL borehole location by herbaceous peat at c. 3775 cal. BP, the 

humification profile records a concurrent shift from a relatively stable phase of higher than 

average mire surface wetness to another relatively stable phase, this time of lower than 

average surface wetness (see Figure 5.14 and Table 5.3). In support of this interpretation of 

the humification data, there was a coincidental slight increase in pollen influx rates, which 

suggests a reduction in peat growth. Scrubland was gradually replaced by heath and blanket 

bog in the wider landscape from c. 3945 cal. BP for the following two centuries. Betula 

reached stable low values at c. 3640 cal. BP. Mixed arable and pastoral agriculture continued 

throughout this phase of landscape evolution, as seen in the pastoral and disturbance 

indicator curves. The increases in Sphagnum and Calluna vulgaris, when taken in 

conjunction with the sedimentological transition from wood peat to herbaceous peat, signal a 

shift from fen peat to blanket bog in the vicinity of the sampling area. The pollen 

concentration data suggest that peat growth rates remained more or less stable for the 

remainder of the profile. 

Copper ceases to be detected in the sediment record after c. 3610 cal. BP. The concentrations 

of copper previous to this varied between 0 and 20ppm, averaging at around 10ppm (Figure 

5.15). Such values are similar to those recorded throughout other peat profiles in Irish 
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Atlantic blanket bogs (Walsh & Barry 1958). Its absence in the profile after c. 3610 cal. BP 

is curious. It is unlikely to have been leached from the profile, as Cu has a strong affinity for 

organic matter, and is often enriched in peat deposits relative to its abundance in crustal 

rocks (Shotyk 1988, 156). Cu is a bioessential nutrient and so was presumably present in 

concentrations ~elow the detection limit after c. 3610 cal. BP. Routine calculations made 

during AAS analysis determined that the detection limit was 2.83ppm. Flame AAS has the 

poorest sensitivity for detection of the various methods available (US EPA 1986). However, 

in background British sites far from atmospheric pollution sources, Cu concentrations 

throughout ombrogenous peat profiles were found to average roughly 15ppm (Livett et al 

1979, 877), though due to its presence as a sulphide (DiToro et al 1990) or strong organic 

ligands, peat may be deficient in available copper for plant growth (Adriano 1986). Studies 

have shown that anomalies in the distribution of elements within the profile can be attributed 

to differences in vegetation composition, although zinc has been shown to be more affected 

than lead, and copper was not analysed (Livett et al1979, 879-881). 

As the point at which copper ceased to be detected in the BEL profile occurred just after a 

major change in peat stratigraphy, recognisable by macrofossils, from wood to herb peat, it 

may be that the two phenomena were related. If the change in vegetational composition of 

the peat from woody to herbaceous triggered increasingly acidified, anaerobic conditions 

with higher concentrations of humic and fulvic acids, the copper might have become more 

strongly bound in organic complexes (Neubecker et al 1983; Coale & Bruland 1988; Allen 

& Hansen 1996) and the digestion method used may not have adequately isolated it. 

However, separation from the (removed) organic matrix has been considered 'generally 

achievable' with the method utilised (open vessel oxidative degradation with aqua regia), 

although other methods are considered perhaps more sensitive (IPCS 1998). As bryophytes 

lack a root and cuticle system they obtain nutrients as particulates and in solution directly 

from atmospheric deposition (Mulgrew & Williams 2000). The surfaces of moss-rich 

ombrotrophic bogs, isolated from crustal sources, might be expected to have lower uptake of 

heavy metals such as copper than those rich in higher (e.g. herbaceous or ligneous) plants, 

which also take up heavy metals in the soiUsediment by their root systems. However. the 

levels of the BEL core where copper is not detected did not contain appreciable quantities of 

bryophyte macrofossils; the peat was instead herbaceous with occasional to frequent 

ericaceous components, hence in this case this is an unlikely explanation for sub-detection 

level concentration of Cu. The digestion method utilised is therefore concluded to be 

responsible for the observed absence of Cu from the profile. 



A peak in zinc concentrations is registered at c. 3775 cal. BP (Figure 5.15). Zinc \\as 

selected as a potential index of atmospheric pollution in this study. However, the behaviour 

of its profile suggests it has been mobilised in the BEL core and its vertical distribution has 

probably been altered. Although, like Cu, Zn has a high affinity for organic matter, its 

vertical distribution in mires is affected by numerous processes, causing it to be regarded as 

the most variable of commonly-studied elements (Shotyk 1988, 159). Vegetation 

composition is known to affect Zn distribution (Livett et al1979), whilst peaks in profiles at 

roughly the depth of the water table have been reported (e.g. Damman 1978,493). This latter 

feature is probably due to oxidation to mobile (soluble) sulphates in lower water levels, and 

reduction (precipitation) as a sulphide or carbonate at a higher water level (ibid., Shotyk 

1988, 160). Other researchers have suggested that ash enrichment may be a simpler 

explanation for apparently anomalous peaks in zinc concentration (see discussion in Shotyk 

1988, 159-160). There was only a minor temporary decrease in loss-on-ignition just prior to 

the c. 3775 cal. BP Zn peak suggesting this latter interpretation was not applicable in this 

case. As the Zn peak under consideration, and also the peaks at c. 2450 and c. 1080 cal. BP, 

occurred close to major changes in sediment stratigraphy, a more likely explanation is a 

combination of the changing vegetational composition of the peat and the varied (related) 

hydrological and redox statuses. 

Sustained high concentrations of Na and Mg indicate the climate was at its most oceanic 

from c. 3510 until c. 2950 cal. BP. During this period, the water supply to the bog had a 

higher marine-derived component than at any other time under study. Calcium levels 

increased at c. 3510 cal. BP and remained relatively steady, fluctuating around 1025ppm 

until c. 1950 cal. BP. Ca, despite being relatively stable in aerobic peat, adsorbed to peat or 

in organic forms, is easily lost below the acrotelm (Damman 1978, 493) and the profile 

appearance in the BEL core may simply be a function of time. However its steplike progress 

rather than typical fall-off curve would suggest that, although losses occurred, the shape of 

the profile may in fact replicate supply over time. 

5.4.6 c. 3460 cal. BP - present. 

A blanket bog flora was established as the dominant vegetation III the vicinity of the 

sampling site by c. 3600 cal. BP. For the next millennium, there was an overall replacement 

of grassland by bog and heath vegetation, indicating expanding blanket bog. Mixed 
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agriculture persisted, as evidenced in cereal pollen and disturbance and pastoral indicator 

records. Cereal pollen grains cease to be recorded at c. 3060 cal. BP. This line of evidence 

can be interpreted to indicate a cessation of agriculture, as both pastoral and disturbance 

indicators were also generally less well-represented after this point. Abandonment of 

agriculture can be difficult to interpret in palynological records, and woodland regrowth need 

not be expected in a blanket-bog landscape such as this. Many of the taxa comprising the 

pastoral and arable/disturbance indicator groups also inhabit 'natural' and bog communities 

to a lesser extent (e.g. Poaceae, Rumex acetosella, Polygonum aviculare, Persicaria 

maculosa, Lactuceae, Artemisia type and Urtica: Behre 1981, 233). Therefore, although such 

taxa would not be widespread in the wooded environment prior to clearance at Belderg, their 

persistence in the post-abandonment blanket bog environment in all likelihood makes 

palynological interpretation of the cessation of agricultural activity vastly complex. Whilst it 

may be argued that the cereal-type pollen record is the most reliable indicator of 

anthropogenic activity, a cereal-importing economy must also be considered (see Section 

7.4). However, if a purely pastoral agricultural economy were practised, higher values of 

pastoral indicator taxa and Poaceae would be expected. Between c. 3045 and 2775 cal. BP, 

however, Poaceae values fluctuated around an overall decline, whilst Calluna vulgaris 

underwent an overall increase in percentage representation. An interpretation of 

abandonment of this area in terms of both cultivation and pastoralism is therefore supported. 

There was possibly a minor, short-lived resurgence in activity recorded between c. 2775 and 

2600 cal. BP as a small peak in Plantago lanceolata was accompanied by occasional 

disturbance indicators and one cereal pollen grain was recorded. A layer of mineral inwash 

in Transect Core W21 was assayed to just after c. 2860 cal. BP, suggesting that soil erosion 

was occurring. This could be related to the farming activity, originating from agricultural 

soils with reduced vegetation cover from overgrazing or arable production. 

Humification records suggest that between c. 3025 and 2975 cal. BP the mire surface was 

significantly drier than average. The geochemistry record is contrary to this, indicating 

maxima in Na and Mg influx (Figure 5.15). Whether the humification data record a short

lived event outside the resolution of the geochemical record, or whether the humification 

curve is recording internal hydrological changes, is uncertain. Perhaps at these depths the 

bog at this location was less sensitive to shifts in climatic wetness, and the humification 

curve does not reflect surface wetness. Regardless, until c. 2110 cal. BP, humification 

indicates the mire surface was drier than average but less so; remaining within the 10 range 

of the whole-core mean. From c. 2950 cal. BP, concentrations of Mg, and more markedly 
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Na, both declined, a pattern which continued until c. 1650 cal. BP. A progressive decrease in 

marine-derived aerosol spray is perhaps suggested, and that the climate was becoming less 

oceamc. 

From c. 2600 cal. BP the previously established blanket bog vegetation was maintained, 

although the balance between grass and heath vegetation coverage remained in a state of 

flux. The pollen source areas for large diameter blanket bogs are calculated as being the local 

and regional components, with insignificant extra-local pollen (Jacobson & Bradshaw 1981, 

82 & 89). The local component is more important in peats than in other sediments, with 

proportion of the pollen rain represented by local components increasing sharply from the 

mire edge towards the centre (Caseldine 1981). The BEL pollen diagram at this point 

indicates a large diameter mire, as non-mire taxa are poorly represented. Therefore, although 

fluctuations in mire taxa occurred they are likely to represent extremely local floristic 

conditions only, rather than displaying any wider significance. The peak in Plantago 

lanceolata at c. 2600 - 2400 cal. BP could be interpreted as recording an expansion of 

pastoral agriculture, or alternatively the recolonisation of abandoned formerly cultivated land 

(cf. Behre 1981, 228-229). A further putative phase of mixed agriculture is suggested at c. 

1935 - 1600 cal. BP, where a single cereal pollen grain and other disturbance indicators, in 

addition to a peak in P. lanceolata and occasional occurrences of other pastoral indicators, 

were recorded. 

The K curve begins to reflect gradually increasing concentrations of that element from c. 

2100 cal. BP, which is, on balance, probably evidence for its gradual loss from the profile 

below the depth of living plant material. K is rapidly removed from dead plants despite being 

efficiently retained in surface layers of ombrotrophic bogs (Damman 1978,491). At c. 1640 

cal. BP there were major changes in the stratigraphy of Mg and Ca. Na concentrations 

remained at roughly the same level as previously, and the K curve showed continually 

increasing concentrations, which further reflect progressive leaching below the surface. 

Large peaks in Mg and Ca, however, and a further peak in Zn, indicate anomalies in aspects 

of the bog geochemistry. One explanation might be a hiatus in the sediment record, most 

likely due to peat cutting in historical times. Humification was not tested at this depth (52cm: 

see Section 4.4.4.4). Pollen profiles for the main taxa (Calluna vulgaris, Erica tetralix. 

Cyperaceae and Poaceae) exhibited sharp changes in percentage representation at this point. 

supporting the hiatus interpretation. Furthermore, total pollen concentration increased at 
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approximately SOcm (Figure S.21). Had buried peat been newly exposed by cutting, fresh 

pollen would supplement the fossil content, thereby increasing total pollen concentration. 

Live plants colonising a freshly cut peat surface might have utilised available nutrients, 

accounting for the troughs in Mg, Ca, and to a lesser extent Na, at c. SO-SScm. As peat 

developed over time, this surface layer would be progressively leached, but because of its 

relatively young age due to the hiatus, higher levels of certain elements would still be 

expected. Na and K, regarded as the most easily leached elements in peatlands (Damman 

1978, 489; Shotyk 1988, 149), were in lower concentration than Mg and Ca, which are not 

so easily lost (Damman 1978, 489). In the topmost zone, bioaccumulation of nutrients by 

living plants can be seen above c. 20cm. Surface accumulation of K and Ca is characteristic 

of ombrotrophic peat bogs, as they are efficiently retained by living plants (Damman 1978, 

491). Essentially, above the probable disturbance feature at c. SOcm (c. 1600 cal. BP), the 

geochemical records are considered to represent uptake by living plants rather than their 

former vertical distribution. 

Following this hiatus the chronology must be interpreted as insecure. At some point Calluna 

vulgaris became established as dominant over Poaceae and Cyperaceae. At c. 30cm there 

was a further marked change in percentage representation of the main taxa, Calluna vulgaris, 

Erica tetralix and Cyperaceae. Again, a renewed minor peak in total pollen concentration 

occurred, which could indicate newly cut-over surfaces. Because no secure chronology exists 

and the likelihood of at least two inconsistencies in sediment stratigraphy, the 

palaeoenvironmental records have not been interpreted after the first indication of a hiatus, at 

c. 1600 cal. BP. 
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Chapter 6 

On-site investigation: results and interpretation 

6.1 Introduction 

This chapter describes the results and provides interpretations of the geoarchaeological and 

palynological investigations of two sections of soil near to the roundhouse (see Figures 6.1 

and 4.1 for location). The sections were selected because they displayed field-scale evidence 

of tillage. There were several objectives in investigating these soil sections. The preservation 

of macroscopic tillage indicators provided ideal conditions in which to explore the 

agricultural practices used by farmers. Until now the macroscopic evidence has been 

described from field-scale inspection only (see Section 3.2.2.1 and Appendix B), as a layer 

of ard-marked soil and overlying ridge cultivation. Arable cultivation has been interpreted on 

this basis (Section 3.2.2.1 and Appendix B), and is supported by the presence of quem stones 

in the roundhouse. In certain upland post-medieval contexts, suggestions have been made 

that ridge-and-furrow traces can over-estimate the importance of arable agriculture (Carter et 

at 1997). Ard-marks under some Neolithic monuments have been explained as cross

ploughing as a ritual act of ground preparation, and in similar contexts there is no reason to 

necessarily link ard-marks with cereal cultivation (Tarlow 1995). Soil micromorphological 

analysis offers an opportunity to definitively address these issues, and to determine the 

tillage implements used in the different soil horizons (Lewis 1998). Pollen analysis is likely 

to ascertain the cereals cropped, if the tillage plots had an arable function. Furthermore, the 

burial of the soils by peat allows evaluation of when the tillage occurred in absolute terms 

and thereby in relation to the other archaeological remains on the site. 

6.2 BBI Section 

6.2.1 Description of sediment stratigraphy. 

Table 6.1 records the sediment stratigraphy in detail using the Troels-Smith (1955) system as 

modified by Aaby & Berglund (1986). Figure 6.2 presents the section drawing of BB 1 with 

the contents of Table 6.1 repeated; Plate 4.1 shows the BB 1 section before sampling, and 

Plate 4.4 shows the section with Kubiena sampling tins in place. 
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The soil profile exhibits visually distinctive layers. These were described as contexts rather 

than by the traditional method of profile description, because there was potentially 

significant disturbance and human alteration. However, soil micromorphological analysis 

(below, Section 6.2.4.2) was able to identify horizonation and apply this to the soil layers. 

The basal layer (1006) appeared to be natural, unaltered subsoil, a stony sand with low silt 

content. The overlying layer (1005) displayed criss-crossing ard-marks in plan (Caulfield 

1972: Appendix B) but these were not evident in section. This layer (1005) contained 

charcoal inclusions and a higher proportion of organic material than the unaltered soil. This 

ard-rnarked layer was visually distinguished from the overlying soil (1004), which formed 

ridges and furrows evident in plan and section. The distance between the centre of each 

furrow is approximately 1m (Caulfield 1975: Appendix B) and each furrow is approximately 

10cm wide. The vertical distance between the base of a furrow to the top of a ridge was 

noted in the field to be approximately 5cm, although peat accumulation and sediment 

infilling since excavation may have altered their original forms. The organic content was 

higher and there was some peat formation evident by the presence of well-preserved plant 

macrofossils. Overlying the ridges and furrows was a thin layer of very well humified, 

highly organic, greasy amorphous peat (1003). This was overlain by poorly humified fibrous 

peat with herbaceous and ericaceous fragments (1002). The top layer represented the 

acrotelm and was probably disturbed by peat cutting (1001). 

6.2.2 AMS radiocarbon dating 

A 1cm slice of basal peat from 1003 was sampled from Kubiena tin K7 (see Figure 6.2) for 

radiocarbon assay (see Section 4.4.7.2 for justification of sampling strategy). Details of the 

radiocarbon assay are presented in Table 6.2 with that from the BB2 section, and graphical 

calibration details (BB 1 only) are shown in Figure 6.3. By reference to Table 6.8 the assayed 

sample can be cross-referenced to the pollen (Figures 6.4 - 6.6) and sedimentary (Table 6.1) 

profiles. 

The radiocarbon assay indicates basal peat (1003) began to accumulate at c. 2535 cal. BP. 

However, due to the mid-third millennium cal. BP radiocarbon plateau, the 20 error range is 

very wide (2720-2350 cal. BP). Effectively, samples from between 2400 and 2800 cal. BP 

have the same radiocarbon age, and it must be stressed that whilst the midpoint is judged the 
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most appropriate estimation of the age of basal peat (see Section 4.4.7.2), in this particular 

instance the uncertainty surrounding its accuracy is great. 

6.2.3 Pollen analysis 

6.2.3.1 Presentation of results 

By reference to Table 6.3, each spectrum from the BB1 pollen profile (Figures 6.4, 6.5 and 

6.6) can be related to both a context and a Kubiena tin sample (shown in Figure 6.2), 

The pollen data are presented in three separate diagrams for optimal interpretation purposes. 

Shaded (coloured) curves represent a tenfold exaggeration (the colour of which corresponds 

to that of the appropriate group's summary diagram) except for the summary curve of the 

Aquatics group, which represents a twenty-fold exaggeration. A cross represents a single 

pollen grain or spore. 

Figure 6.4: Percentages based on the TLP sum grouped in the summary as Trees, Shrubs, 

Bog & heath taxa and Herbs. 

Figure 6.5: Percentages based on the TLP sum grouped in the summary as Trees, Shrubs, 

Bog & heath taxa, Herbs, Pastoral indicators and Arable/disturbed ground indicators. 

Figure 6.6: Pollen concentration data of selected taxa. 

Taxa forming the Pastoral indicator and Arable/disturbed ground indicator groups are 

classified as in the BEL profile (see Section 5.3.7.1 above). Size and descriptive details of 

cereal-type pollen grains are presented in Table 6.3. Selected photomicrographs of these 

cereal-type pollen grains are presented in Plates 6.1 to 6.9. 

6.2.3.2 Zonation 

The BBI pollen profile has been divided visually into two zones; BBI-I and BBI-2. 
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PAZ BBl-l: Alnus-Betula-Poaceae: 10 to 1 cm below peat boundary. TennillUS ante quem c. 

2540 cal. BP 

The dominant taxa in BB 1-1 are Alnus and Betula, fluctuating between 20-45 % and 20-40% 

TLP respectively. Other tree taxa (!lex, Quercus, Taxus) are present in low percentages. 

Corylus is represented at about 10% TLP. The other main shrub taxon represented is Hedera 

helix. Heath taxa are not well represented, with all taxa remaining below 10% TLP 

throughout the zone. The best-represented NAP group are the herbs, with Poaceae at around 

20% TLP, becoming increasingly better-represented near the upper zone boundary and 

reaching 40% TLP. Continuous curves are present for Lactuceae, Plantago lanceolata, P. 

major/media and Urtica for the section of the zone represented by the organic soil (the ridge 

cultivation horizon). Cereal-type grains are present in low frequencies throughout most of 

the zone. 

BBI-2: Calluna-Poaceae: 1 to -8cm below peat boundary. Terminus post quem c. 2540 cal. 

BP 

The AP content of this zone is lower than that of BB 1-1. Alnus and Betula rapidly decrease 

before the lower zone boundary and fluctuate between 0-10% TLP for the remainder of the 

profile. !lex and Quercus are no longer represented by continuous curves and all other AP 

are represented by low frequencies or sporadic occurrences in the profile. Corylus remains at 

c. 5% TLP for the entire zone. There is a marked rise in Calluna vulgaris and other heath 

taxa at the interface between peat and mineral soil; once established, Calluna remains fairly 

constant between 25-40% TLP. NAP also expands during BB 1-2; Cyperaceae values 

fluctuate between 0-20%, and Poaceae values are at generally higher levels than in BB 1-1, 

between 25-45%TLP. The herb suite becomes generally less diverse, with many taxa (e.g. 

Aster type, Caryophyllaceae, Digitalis purpurea type) virtually disappearing from the flora; 

and others (Ranunculus type, Rosaceae, Lactuceae, Plantago lanceolata, P. major/media, 

Urtica) becoming less prevalent. Cereal-type grains are only represented in two levels. The 

Sphagnum curve becomes continuous and fern taxa decline in frequency. A minor 

appearance of one or two aquatic indicator grains occurs around the lower zone boundary. 

Microscopic charcoal particles are represented at higher levels than in the previous zone. 
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6.2.3.3 Pollen concentrations 

There is no great differential between the different sedimentary layers in terms of the total 

concentration of microfossils (land pollen, aquatics and spores: see Figure 6.6). Context 

100S contains a slightly lower total fossil concentration than 1004. Spectra from contexts 

1003, the basal peat layer, and 1002, which overlies it, contain varying concentrations of 

fossils which do not appear to relate to depth. 

6.2.4 Thin section soil micromorphology 

6.2.4.1 Description of micromorphological features 

The soil micromorphological features noted in the BB 1 thin sections are presented in Table 

6.5. A summary of the main microscopic features and their interpretation is presented in 

Table 6.6. 

6.2.4.2 Description of soils and sediments 

The features noted in thin section (Table 6.5), when compared with the features noted from 

field examination, can be combined to describe more fully the sediments. The following 

descriptions result from such combination. 

Context 1006 

The primary soil is characterised by poorly sorted subangular to subrounded mineral material 

comprised of quartz and with lesser quantities of feldspar, muscovite and hornblende. Fine 

material is organo-mineral with close porphyric related distribution. There are occasional 

organic coating') of grains and also infrequent excremental pedofeatures, indicating soil 

fauna activity. There are occasional inclusions of carboni sed material. Plate 6.10a shows Kl, 

the lower half of which is comprised of 1006 (see Figure 6.2 for location in BB 1 section). 

Plate 6.10b shows Kl with annotations. The base of an implement cut mark (base of furrow 

in 100S, see below) in K2 is characterised by a compacted zone of fines accumulation, 

including a cracked fines pan. This is shown in Plate 6.11a in plane polarised light (PPL) and 

6.11 b in crossed polars (XPL). Another cracked fines pan within a compaction zone at the 

top of 1006 marks the transition to 100S in Kl (Plates 6.12a & 6.12b). 
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Context 1005 

Viewed macroscopically, thin section K2 is seen to have sectioned an implement mark (see 

Plate 6.13a & 6.13b; and see Figure 6.2 and Plate 3.4 for location). This has provided ideal 

conditions for examination of the properties of a relict agriculture soil. Overall, context 1005 

has similar characteristics to 1006 but with slightly more frequent pedofeatures and charcoal 

inclusions and less lignified organic material. 

K2 can therefore be described as two parts: the cut sediment and the fill (see Plate 6.13 b). 

The cut sediment, marked on Plate 6.13b, is pale brown in PPL with a low organic content. It 

has few root channels. There are patches of light yellowfbrown fine material seen in PPL 

which indicate leaching, and yellow patches of fine organo-mineral material (PPL) indicative 

of iron movement. The base of 1005 is distinguished from 1006 by a discontinuous fines pan 

- an elongated lens of silt and fine sand c. 100Jlm in thickness. This soil also contains larger 

stones than the fill, and the mineral content varies from moderately to poorly sorted, with the 

level of sorting increasing up the profile. 

The fill, marked on Plate 6.13b, has a higher organic content and also a higher quantity of 

fine organo-mineral material. The fine organo-mineral material is brown and red-brown in 

PPL. The mineral material is moderately sorted. There are more root channels than in the fill 

sediment, and these run vertically. Occasional cellular structural material is present. The fill 

contains fines lenses; angular bands of fine minerals (silt and fine sand), c. SOO x 100Jlm in 

dimension (see Plates 6.14a&b & 6.1Sa&b). There is a discontinuous (cracked) fines pan 

underlying the cut mark (see above). Dusty (silty clay) infills and coatings are present 

occasionally. There are very rare rubified mineral grains evident in oblique incident light 

(OIL) (Plate 6.16). The related distribution is described as vughy. 

Context 1004 

At the base of this context there is a very thin accumulation of organic material. This context 

contains a lesser coarse mineral fraction with more rounded grains and more organic matter 

than 1005. K3 is shown in Plate 6.17a, with annotations in Plate 6.17b. The mineral material 

is moderately tc poorly sorted, with the level of sorting decreasing upwards in the profile. 

The related distribution is described as close porphyric. The organic material is progressively 

darker in colour upwards in the profile. The fine organo-mineral material is red-brown and 

dark brown in both OIL and PPL. There are concentrations of rubified (reddened) mineral 

inclusions seen in OIL (see Plate 6.18). There are some indications of organic coatings to 
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coarse mineral grains and occasional Ca-Fe-P accumulations in pore spaces. There are also 

occasional accumulations of phytoliths and fractured siliceous concentrations. The 

occurrence of occasional patches of yellowish, fine organo-mineral material (PPL) indicates 

leaching. There are occasional poorly defined fines lenses (see Plates 6.19 and 6.20a&b). 

There is a thin band near the top of K3 which contains a higher concentration of mineral 

material (see Plate 6.17a&b). The top lcm of 1004, beneath the transition to 1003, is 

characterised by a lower mineral content and a spongy microstructure more typical of peat 

than of soil. 

Context 1003 

The boundary between this layer and 1004 is clear. 1003 contains a much reduced mineral 

fraction, containing only a few rounded quartz grains with occasional muscovite. There are 

occasional phytoliths. The coarse organic material consists of fibrous parenchymatic tissue 

and there is also abundant fine organic material, with rare inclusions of charcoal. The spongy 

structure and undifferentiated groundmass B fabric suggest that this peat is largely 

undisturbed. 

Context 1002 

Rare quartz grains compnse the mineral component of this deposit. The coarse orgamc 

fraction contains both lignified and parenchymatic tissues, whilst the finer organic fraction 

largely consists of amorphous black material. There are occasional carbonised particles. The 

microstructure is complex - a combination of spongy and angular blocky. 

6.2.5 Interpretation 

6.2.5.1 Pollen taphonomy 

The taphonomy of the pollen content of the soil profiles is vital to their interpretation 

(Tipping 2000). The three taphonomic aspects which may affect a pollen profile are the 

pollen source area, the processes acting upon the pollen once it has landed in a sediment, and 

its survival or otherwise in that sediment. Therefore, different pollen assemblages contained 

in these zones may reflect the different post-depositional and post-burial taphonomic 

processes acting upon the pollen content of the sediments as well as variations in the local 

and regional vegetation cover. 
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Most research has concluded that pollen assemblages from terrestrial soils have an extremely 

localised source area (e.g. Andersen 1986, 167; Bunting 2003). Multiple soil pollen profiles 

at a landscape-scale have been used to interpret spatial patterning of former vegetation cover 

(Whittington & Edwards 1999, 596-597). 

The abundance of indeterminate Pteridophyte [monolete] spores (formerly classified as 

Filicales or undifferentiated Polypodiaceae) has been used as an index of the reliability of 

soil pollen profiles. The spores are particularly resistant to corrosion and deterioration, hence 

their abundance relative to the TLP count can indicate whether the profile has suffered 

preferential removal of pollen (Havinga 1984; Tipping et al 1994, 391-395). A value of 

>40% TLP for these spores has been taken as indicative of differential pollen preservation 

(ibid., 395). In the soil horizons of the BB 1 profiles, values of indeterminate Pteridophyte 

[monolete] spores 40 not exceed 5% TLP (see Figure 6.4). By this index, it can be concluded 

that there is no significant differential pollen preservation or preferential removal. This 

would argue against the Alnus and Betula components of the assemblage representing 

residual pollen content. Research has concluded that the pollen content of most terrestrial 

soil profiles consists of mixed-age assemblages as a result of earthworm activity (Davidson 

et al 1999; Tipping et al 1999). In certain circumstances, a thin surface layer of soil beneath 

a sealing context can be interpreted as representing a snapshot of vegetation cover just prior 

to burial (Casparie & Groenman van Waateringe 1980; Andersen 1992; Tipping et al 1999, 

79; Whittington & Edwards 1999, 595). This may not be applicable to sub-peat profiles 

where there is a transition layer between soil and peat, and in any case pollen lower down in 

the soil profile will contain older pollen. Whilst some previous interpretations of soil pollen 

profiles assume all pollen to be coeval in base-rich, biologically active soils (e.g. Dimbleby 

& Evans 1974); such interpretations have been extended to buried podzols and base-poor 

brown earth soils as well (Tipping et al 1994, 400). Some particularly robust pollen types 

such as Alnus and Corylus/Myrica which are identifiable when deteriorated to 'ghosts' may 

be considered to potentially skew interpretations via residual presence (ibid.). 

Detailed analysis of the concentration data suggests significant differentials in pollen 

survival and destruction patterns. In overall concentration terms, there is no great overall 

difference in total fossil concentration between the two zones, which might suggest there has 

been differential deterioration between fossil types, leading to greater losses of pollen 

compared to spores. The internal differences in the BB 1 pollen percentage and concentration 
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profiles reveal more interesting patterns relating to pollen survival and destruction. Within 

the soil spectra, TLP concentrations are greater in the upper layer (1004) than the lower layer 

(1005) (see Figure 6.6), which suggests that decay is greater at depth. This would be 

expected in a sub-peat soil. However, the known ploughing has complicated matters, and the 

patterns of particularly resistant pollen and spore types (e.g. Lactuceae and Pteropsida 

[monolete] indet.) are more informative on this issue. 

Whilst percentage representation in the soil profile of indeterminate Pteropsida (monolete) 

spores is low, they are present in much greater concentrations in zone BB 1-1 (the soil 

spectra) than in BB 1-2 (the peat spectra). Rather than necessarily indicating preferential 

preservation of spores to pollen in the soil, this may reflect an ecological change, as ferns are 

less likely to grow in peats than in soils (Grime et al 1988, 627). The patterning of pollen 

and spore concentrations within the soil profile supports this suggestion, as there is a sharp 

decline in concentration of indeterminate Pteropsida (monolete) spores towards the soil/peat 

interface in 1004 (3cm to Ocm). The extremely resistant pollen taxon Lactuceae is present in 

the uppermost soil spectra at its highest concentrations, suggesting that these spectra have 

been affected by significant preferential survival. The various indices of preservation quality 

in the soil horizons as compared with the overlying peat are contradictory and complex. It is 

evident that the ploughing activity in the soil has greatly altered the taphonomy of its pollen 

content. However, the evidence from Lactuceae in particular, suggesting oxidation in the 

upper spectra of 1004, might indicate that the destruction occurred post-depositionally in a 

span of time between cessation of agriculture and burial by peat. 

As discussed above (Section 4.4.2.2), the stratigraphic security of pollen in the soil spectra is 

likely to be poor, as bioturbation and mechanical mixing (by ploughing and downwashing) 

are more active in soils than in peats, resulting in the vertical distribution of pollen being 

unrepresentative of age (e.g. Dimbleby 1957; Andersen 1986). The process of incorporation 

and redistribution of pollen into soil profiles is variable, depending upon the soil type 

(Davidson et al 1999), with the pollen content of well-drained mineral soils being most 

affected by bioturbation (Tyler et al 2001). Only in the actively accumulating organic 

horizons of peaty soils or podzols can pollen be stratified for palaeoenvironmental 

interpretation (Davidson et a11999; Tipping et aI1999). BBI-2 can be considered to contain 

securely stratified pollen as it represents the undisturbed peat accumulation over the ridge 

cultivation horizon. 
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Applying these considerations to the soil profile BB 1, a theoretical model of pollen 

incorporation can be constructed. 1006 consists of the natural, acid brown earth formed from 

weathering of the Dalradian quartzite/schist bedrock and/or till. As it has a high sand content 

(see Table 6.1) it may originate from similar deposits to the compacted sand which features 

at the base of the BEL core and other sedimentary profiles downslope (see Section 5.2.2.3). 

There are no macroscopic indications of human modification of the soil, and the charcoals 

could be relict from natural fires. Initial exploratory pollen analysis suggested that pollen 

survival was extremely low or negligible and therefore spectra from this layer were not 

analysed further. In 1005, an inorganic, leached silty sand, mixing by ard cultivation, 

downwashing and some bioturbation are likely to have been the primary taphonomic factors 

affecting pollen distribution. The pollen profile at this point cannot be considered 

stratigraphically secure. The overlying horizon, 1004, records the accumulating organic layer 

of the increasingly peaty acidic brown earth. Although some degree of stratification could 

perhaps be inferred, at a coarse temporal resolution, the agricultural use of the horizon 

indicated by ridges and furrows will have involved mechanical redistribution. 1003 is 

interpreted as representing in situ peat which accumulated undisturbed over the cultivation 

ridges following abandonment. 1002 is interpreted as a fibrous peat which has possibly been 

disturbed, perhaps as a result of cutting for fuel. 

6.2.5.2 Interpretation 

As the ridged layer (1004) is likely to represent a later period of cultivation than 1005 (see 

below) it is not possible to definitively identify traditional soil horizonation in the profile. 

Nevertheless, an estimation can be made. Typically, archaeological ard-marks should be 

expected to represent the lower parts of the zone of disturbance, rather than the entirety of 

this zone, due to truncation, later disturbance or difficulty recognising less distinctive parts 

of such features (Lewis 1998, 78-80). The ard-marked horizon in BBI (1005) may have 

been disturbed or truncated by the overlying ridges and furrows (1004). The part of 1005 

visible in the BB 1 section varies between c. 5.5 and 12cm thickness (see Figure 6.2). 

Therefore, the later disturbance in BB 1 represented by the ridge cultivation horizon should 

not be seen as a barrier to interpretation of the ard-marked soils. The ard-marked layer can be 

described as the homogenous Ap (ploughed) horizon, formed from mixing over the Ah 

(humic) and 0 (organic rich) layers (Courty et al 1989, 131; cf. Courtney & Trudgill 1984, 

92). In thin soils the Ap horizon can include material from the B and even C horizons (Lewis 

1998, 65) and, judging by the similarity between 1005 and 1006 (particularly the mineral 
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fractions), such a situation is indicated at Belderg. The sub-peat soil profiles even near the 

BB 1 and BB2 profiles are generally thin (see Section 5.2.2 and Figure 5.2). 1006 is thus 

interpreted as the B horizon, with some downwashed material from the A horizon and some 

indications of illuviation, for instance downwashed charcoals. 1004, distinctive from 1005, 

represents a second, discrete Ap horizon, formed from the upper part of 1005 and further 

accumulated humic material. The overlying peat layers can be described collectively as the 

o horizon. 

1005 is interpreted as representing intensive arable cultivation. With the exception of 

extremely rare rubified minerals visible in Orr. (Plate 6.16) there is no evidence for 

amendment material in this layer, despite the evidence of leaching and iron translocation that 

might suggest that the soil was nutrient-poor and some amendment strategies would have 

been useful to maintain long-term arable cultivability. The rubified minerals do not occur in 

a matrix of red or red-brown fine organo-mineral material, which suggests they are not 

derived from ash inclusions. The strongest cultivation indications are in the form of both 

profile/horizon characteristics and microscopic characteristics, which have previously been 

identified experimentally and archaeologically to signify tillage (cf. Lewis 1998, 7). These 

shall be discussed separately. 

1. Profile / horizon characteristics. 

The primary indication of tillage is the presence of ard-marks in plan and in thin 

section. The horizonation appears to be distinctive, with stony material from the 

underlying B horizon pushed up into a ridge, probably as a result of the moving force 

from the ard tillage (cf. Lewis 1998, 324). The differences between the furrow fill and 

ridge material are marked. The furrow fill material is looser than that external to the 

cut, with a particularly compact zone relative to the fill being present below the ard

mark; a particular characteristic of archaeological tillage features (Lewis 1998, 320). 

The furrow cut is lined by small «1cm) rounded or rolled aggregates, with larger 

subangula~ and angular clods present in the upper fill. These are marked in Plate 6.11 b. 

Again, such features have been seen in laboratory- and field-based experimental 

tillage, and in archaeological ard-marks at Bjerre, Denmark (ibid., 323). The voids 

within the fill are a combination of vughs and channels. Plant roots are more frequent 

in the furrow fill and assume a vertical or near-vertical orientation. Some roots run 

continuously into the underlying B horizon. These characteristics, added to the 
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palynological evidence, indicate that the ard-marks were created for tillage; i.e. 

preparation of a seed bed (cf. Lewis 1998, 56) rather than ritual ground preparation 

(e.g. Tarlow 1995). 

The implement cut mark is discernible by typical features - the evident density 

boundary has resulted in a compaction zone marked by a blocky structure marking the 

outside as well as the inside of the implement mark (ibid., 320); fines accumulation 

outside the furrow, especially at the base of the cut (Plate 6.10); and shear planes 

infilled by fines materials at the base and sides of the cut (ibid., 325; Macphail et al 

1990, 57). All of these have been seen both experimentally in the field and laboratory, 

and archaeologically at Bjerre in Denmark (Lewis 1998, 325-327). In particular, fines 

fraction accumulations - especially silt pans - are characteristic at the base of the 

tillage zone (Macphail et a11990, 61; Gebhardt 1992). 

2. Microscopic characteristics (textural pedofeatures). 

Generally (Courty et al 1989, 134), dusty-dirty clay infills and coatings are the textural 

pedofeatures that are considered to indicate tillage, although they also occur in untilled 

soils. Such features are often laminated, and the degree of limpidity (inversely 

proportional to the dust or silt content) is reflected by the birefringence upon rotation 

under crossed polars. Dusty clay coatings are common in tilled heavy textured soils, 

whilst limpid clay coatings are generally associated with weathering (Macphail et al 

1990, 56). There are only very occasional and limited indications of dusty infills in the 

BB 1 furrow fill, which is unexpected for a horizon which displays otherwise clear 

indications of tillage. However, the soil is sandy and low in clay, which might account 

for the near-absence of clay coatings and infills. Archaeological examples of clay-free 

soils with ard-marks exhibit only rare and poorly formed coatings (e.g. Phoenix Wharf, 

London and Lodbjerg, Denmark: see Macphail et al 1990, 63). Experimental ard 

tillage in a soil bin at Silsoe College, Cranfield University, in a silt loam and at Lejre. 

Denmark, in an argillic brown earth, both utilising reconstructed Donneruplund ards, 

failed to produce significant quantities of dusty clay textural pedofeatures, despite the 

resulting thin sections displaying other unequivocal tillage indicators (Lewis 1998, 

161-187). Whilst insufficient time for formation might explain the absence of clay 

coatings in experimental tilled soils, clay illuviation has been known to occur quite 

rapidly at times, even in less favourable conditions for clay dispersion, such as 
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calcareous soils (Aguilar et al 1983). Post-abandonment processes such as biological 

reworking, trampling, erosion or shrub colonisation may alter or rework formerly 

cultivated soils and remove or blur the agricultural history from the soil (Courty et al 

1989, 140-146). The fragmentary nature of some of the fines lenses in the furrow fill 

(see below) partially supports this as an explanation for the situation at Belderg. but 

other features such as the relatively sharp ard-mark cut and the well-defined basal fines 

accumulation would counteract this. Unfortunately, insufficient experimental work has 

been completed regarding the relationship between tillage frequency and the 

occurrence of micromorphological features, so it is unknown whether there were 

simply insufficient repetitions of cultivation at Belderg to produce dusty coatings (cf. 

Lewis 1998, 175). Therefore, the conclusion is that the soil texture was responsible for 

the near-absence of clay coatings and infills. 

The fines pan at the base of the furrow, overlying the zone of fine fraction compaction, 

represents a discrete textural pedofeature (cf. Lewis 1998, 187). Whilst these features 

have been identified in experimental studies at Silsoe soil bin, Lejre, Denmark (ibid.) 

and Hambacher Forest, Germany (Gebhardt 1992), archaeological examples are also 

known, at Chysauster, Cornwall (Macphail 1996, 200-203) and West Heslerton, 

Yorkshire (Macphail 1998). In addition to these fines pans at the base of and 

underneath furrows, fines lenses were present in experimental ard tilled soils at Lejre, 

Denmark, infilling voids at the side of furrows (Lewis 1998, 183). Fines lenses are 

also in evidence in some archaeological samples and occur as fragments within or 

upon individual peds (e.g. Macphail 1996, 203). Their morphology is clear and can be 

directly related to ard tillage. They are generally characterised by high proportions of 

silt, with clay and fine sand components, and are created quickly and with minimal 

disruption (ibid., 187). 

Fines lenses (discrete panmng features) are typically composed of very fine 

microaggregates, rounded or subangular blocky grains, the presence of which are 

suggested to indicate either their physical movement down into the zone under 

implement pressure, and/or post-depositional aggregate formation or cracking within a 

lens of fines that has accumulated through translocation (trickling-down). Both 

mechanisms are probably involved in most cases (Lewis 1998, 329). Although they 

normally have a higher silt content than clay, the fines lenses in the BB 1 furrow fill 

have a higher fine sand than silt component, which may be a factor of soil texture. 



Whilst the main fines accumulation zone varies between 1 to 3cm at, just above or 

below, or either side of, implement mark cuts, the BB 1 furrow fill contains fines lenses 

within the main fill (see Plates 6.13 & 6.14 & 6.1S). These could result from infillino 
b 

of a planar void (ibid., 32S), or secondary disturbance. The example in Plate 6.1S is 

infilling a void. Sorted and fragmented fines lenses in archaeological samples are 

perhaps best explained as incorporated crust fragments (from surface slaking) rather 

than panning features, but the unsorted nature of the lenses in question and the lack of 

additional evidence for slaking would argue against this. 

1004 indicates continuing cultivation. There is no indication of a substantial hiatus between 

this context and 1005. A discrete accumulation layer of mineral material would be expected 

if soil erosion from upslope had settled on the newly abandoned soils. Significant erosion 

episodes may be expected after agricultural cessation, reflecting the absence of amelioration 

by humans in the form of management strategies (Lewis 1998, 46). Had sufficient time 

elapsed between abandonment and reutilisation of the soil, grassland, heath or scrub would 

be expected to have colonised the surface. Whilst the pollen profile would not be expected to 

retain a record of this, a signal would be likely in thin section in the form of accumulated 

organic material representing vegetative growth. In this case there is only a discontinuous 

layer of slightly increased mineral inclusions, overlain by a more organic soil, then finally by 

a limited, c. a.Scm thick, accumulation of organic material separating context 1004 from 

1005 (see Plate 6. 17a&b). 

Similarly to 1005, the fabric of 1004 is well mixed, which suggests soil disturbance by 

cultivation. This is in keeping with the macro-scale evidence from the cultivation ridge 

formation. There are, however, apparent differences in cultivation strategies. Firstly, there 

are fewer, less well-defined fines lenses which would suggest ard cultivation, and secondly, 

there are subtle indications in 1004 of amendment strategies. Ca-Fe-phosphatic infills 

indicate the decomposition and recrystallisation of animal bone (cf. Jenkins 1993; Simpson 

et al 1998b), and the fact that these features are rare in thin section at BB 1 suggests that 

perhaps soil acidity largely prevented recrystallisation. The fine reddish organo-mineral 

material and rubified stone (see Plate 6.18), both visible in OIL, indicate ash inclusion, but 

this is limited and the phytolith concentrations are insufficient to suggest addition of burnt 

peat. 



The addition of domestic waste as manure was concluded from micromorphological 

examination of ard-marked soils from Bronze Age levels at Old Scatness, Shetland (Simpson 

et al 1998b, 116). Those soils also contained limited evidence of Ca-Pe-P accumulations, red 

fine organo-mineral material with rubified minerals (visible under On..) and fractured 

diatoms (ibid.). The practice of adding domestic waste was continued into the Iron Age; 

however, animal manures were added to the Iron Age cultivated soils, signalling a further 

development in amendment techniques (ibid., 121). Late Neolithic and Early Bronze Age 

cultivated soils at Tofts Ness, Orkney, also used ash and midden material, possibly 

incorporating animal dung (Dockrill & Simpson 1994, 88). By the Late Bronze Age / Early 

Iron Age at the same site, amendment techniques had also developed somewhat, apparently 

being more intensive to offset the increasingly marginal nature of the soils for agriculture 

(ibid., 89). Soil amendment practices in Atlantic Britain have arguably been developed from 

the Neolithic onwards, gaining complexity and becoming more intensive through time. 

The evidence from BB 1 suggests that the earliest cultivation (the ard cultivation of 1005) did 

not involve the use of any amendment materials. Maintenance of a cultivable soil was 

apparently achieved by physical mixing, using an ard. Although no great length of time 

elapsed in-between cultivation of 1005 and 1004, tillage of the latter was associated with a 

significant change in agricultural techniques. Domestic wastes, including ash and animal 

bone, were added to the soils in attempts to improve structure and/or fertility. The evidence 

of leaching in 1005 suggests that nutrient loss via leaching may have been problematic. The 

increasingly organic nature of the soil in 1004 and the occurrence of fresh plant materials 

indicate that the surface may have been beginning to paludify, and therefore amendment was 

required to maintain a soil structure capable of sustaining arable crops. The soil was 

becoming increasingly marginal for cereal cultivation. 

The ridged cultivation plots were believed by the excavator to record spade cultivation 

(Caulfield 1972: see Appendix B). This assumption appears to be based on the interpretation 

that they dated to the Bronze Age, before the mouldboard plough came into use in western 

Europe. The average width of a combined ridge and furrow was approximately one metre 

(Caulfield 1975: see Appendix B). This falls into the category of narrow or cord rig 

(Topping 1989; Carter 1993-1994, 83). Evidence of cord rig cultivation in Britain exists 

from the Late Bronze Age to the medieval period (Carter 1993-1994, 88). Some workers 

have suggested that ploughs (Lewis 1998, 103) or a combination of plough and spade \vas 

used to create narrow ridges (see summary in Carter 1993-199.+.88). That there was a stony 
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headland separating two ridged areas, upon which the roundhouse was constructed 

(Caulfield 1975: see Appendix B), suggests ploughing might have been involved (cf. 

Halliday 1993, 71). An ard rather than a mouldboard plough may have been used, as the 

latter is not thought to have been introduced to Ireland until the seventh or eighth century 

AD (Mitchell & Ryan 2001, 234). Spades are believed to have been used in Neolithic 

Scotland (Barclay 1985; 1989) and spade marks exist in pre-Late Bronze Age levels at 

Hengistbury Head, Dorset (Lewis 1998, 288). There is thus no reason to believe that the 

Belderg Beg farmers were unaware of spade technology. 

Spade marks can produce macro- and microscopically-identified characteristic features. V

shaped cuts are macroscopically identifiable (Lewis 1998, 294) and there is often a tendency 

for spade-tilled soils to become blocky, subangular blocky or apedal with depth, and to 

incorporate vermicular structural elements resulting from increased earthworm activity 

(ibid., 209). Fabric inversion, mixing and disruption is characteristic (ibid.,151). 

Archaeologically identified spade cuts contain planar voids, as well as fines lens 

accumulations at the base of the fill and echoing planar voids, similar to those seen in ard

marks (ibid., 298). However, the turning action of spade tillage results in an enrichment of 

organic matter within the fill, as opposed to ard tillage where the whole of the Ap horizon is 

enriched (ibid., 321). Plant roots tend to line the cuts of spade or plough tillage marks (ibid., 

304) and clay deposits can line spade cuts (ibid., 327). There is no definite micro- or 

macroscopic evidence to substantiate the assumption that the ridges and furrows at Belderg 

were cut by spades. However, fines lenses are not generally seen in mouldboard plough 

tillage (ibid., 324), so their presence at the base of 1004 does lend support to this theory. 

In addition to the soil micromorphological evidence for arable cultivation, the pollen profile 

of the BB 1 section records cereal-type pollen grains in the spectra from 1004 and 1005 (see 

Plates 6.1 - 6.9). The continuous curve of Plantago major/media pollen in this horizon, as 

well as the occurrence of other arable and disturbance indicator pollen types (Anagallis 

arvensis, Chenopodiaceae, Papaver rhoeas type, Polygonum aviculare, Persicaria maculosa 

and Urtica), further support the inference of arable cultivation. The dimensions of the cereal

type pollen grains are presented in Table 6.4. All of the grains are categorised as Hordeum 

type senSll Andersen (1979). Whilst that type does include the pollen of some wild grasses 

(ibid.), and therefore its presence need not indicate the cultivation of barley, the weight of 

evidence in the BB 1 profile (i.e. the frequencies of Hordeum type and arable indicator 

pollen) suggests that barley was the sole cereal crop cultivated in the BB 1 soil. This probably 



relates to the later cultivation period only (the spade and ridge cultivation of 1004), bearing 

in mind the relatively short timespan represented by soil pollen spectra (see above. Section 

6.2.5.1). 

The interval between abandonment of the spade and ridge cultivation represented by 1004 

and the onset of peat accumulation (1003) was apparently not long in duration (see Table 

6.3). The thin layer in 1004 with a greater concentration of mineral grains (see above and 

Plate 6. 17a&b) may record abandonment of cultivation. Increased soil erosion is expected 

upon abandonment as the management strategies practiced by farmers decrease in intensity 

(Lewis 1998, 46). This thin lens of increasingly mineral-rich soil was overlain by a c. 2cm 

accumulation of soil identical to that comprising 1004 below this mineral layer. The thin 

organic accumulation at the top of 1004 represents the (undisturbed) transition to peat. The 

decline from maximum to very low percentages in arable/disturbance indicator pollen 

between lcm and Ocm below the peat surface (see Figure 6.5), including the disappearance 

of cereal-type pollen, suggests that the final cultivation episode is represented by the 

spectrum lcm below the peat/soil transition. This supports the above inference that 

approximately the top centimetre of highly organic soil in 1004 represents the post

abandonment shift to peat accumulation. That the mineral-rich layer in 1004 occurs below 

the palynological indication of agricultural cessation, suggests that mineral layer does not 

record abandonment. It may record increased erosion from an earlier hiatus in cultivation, 

such as a fallow year, or an extreme erosional event. 

6.3 BB2 Section 

6.3.1 Description of sediment stratigraphy. 

Table 6.7 records the sediment stratigraphy in detail using the Troels-Smith (1955) system as 

modified by Aaby & Berglund (1986). Figure 6.7 presents the section drawing of BB2 with 

Kubiena sampling tins in place and with the contents of Table 6.7 repeated. Plate 4.2 shows 

the BB2 section prior to sampling. 

Similarly to BB 1, the soil profile exhibited visually distinctive layering. Again, these were 

described as contexts rather than by the traditional method of profile description, because 

there was potentially significant disturbance and human alteration. The basal layer, 2005, is a 

very stony sandy soil of unknown vertical extent, which appeared to represent the natural 

155 



unaltered subsoil. This is overlain by 2004, a more organic soil with a higher silt component. 

This layer displayed ard-marks evident in plan (S. Caulfield pers. comm.) but not in section. 

2004 was overlain by 2003, a thin layer of amorphous, very well humified greasy black peat. 

The next layer, 2002, was a poorly to moderately humified fibrous peat with herbaceous and 

ericaceous fragments. This was overlain by 2001, the acrotelm, which included the root 

systems of living plants and has probably been disturbed by peat cutting in modem times. 

6.3.2 AMS radiocarbon dating 

A lcm slice of basal peat from 2003 was sampled from Kubiena tin Kl3 (see Figure 6.6) for 

radiocarbon assay (see Section 4.4.7.2 for justification of sampling strategy). Details of the 

radiocarbon assay are presented in Table 6.2 with that from the BB2 section, and graphical 

calibration details (BB 1 only) are shown in Figure 6.3. By reference to Table 6.8 the assayed 

sample can be cross-referenced to the pollen (Figures 6.9 - 6.11) and sedimentary (Table 

6.7) profiles. 

The radiocarbon assay indicates basal peat began to accumulate at c. 2840 cal. BP. There is a 

shorter error range (2930 - 2750 cal. BP at 20") than that associated with the BB 1 basal peat 

assay, indicating a higher degree of precision because this date does not fall into the 

radiocarbon plateau. The two ranges do not overlap, which shows that peat initiation was 

diachronic at these locations, occurring later in BB 1 than BB2. 

6.3.3 Pollen analysis 

6.3.3.1 Presentation of results 

By reference to Table 6.8, each spectrum from the BB2 pollen profile (Figures 6.9, 6.10 and 

6.11) can be related to both a context and a Kubiena tin sample (shown in Figure 6.7). 

The pollen data are presented in three separate diagrams for optimal interpretation purposes. 

Shaded (coloured) curves represent a tenfold exaggeration (the colour of which corresponds 

to that of the appropriate group's summary diagram). A cross represents a single pollen grain 

or spore, and a large dot represents presence of one or two grains. 



Figure 6.9: Percentages based on the TLP sum grouped in the summary as Trees, Shrubs. 

Bog & heath taxa and Herbs. 

Figure 6.10: Percentages based on the TLP sum grouped in the summary as Trees, Shrubs. 

Bog & heath taxa, Herbs, Pastoral indicators and Arable/disturbed ground indicators. 

Figure 6.11: Pollen concentration data of selected taxa. 

Taxa forming the Pastoral indicator and Arable/disturbed ground indicator groups are 

classified as in the BEL profile (see section 5.3.7.1 above). Size and descriptive details of 

cereal-type pollen grains are presented in Table 6.9. Photomicrographs of pollen grains 

identified as cereal-type are presented in Plates 6.21 to 6.24. 

6.3.3.2 Zonation 

The BB2 pollen percentage diagram has been divided visually into three zones; BB2-1, BB2-

2 and BB2-3. 

BB2-1: Betula-Alnus: 6 to -1 cm below peat boundary. Tenninus ante quem c. 2840 cal. BP. 

Betula is the dominant pollen taxon at c. 40% TLP, with Alnus pollen secondary at c. 25% 

TLP. The minor tree taxa also maintain constant pollen values: Quercus at c. 10% TLP, and 

flex, Pinus and Taxus at lower percentages. Fraxinus, Salix and Ulmus are only occasionally 

recorded. Corylus is recorded at c. 5-10% TLP. At the top of the zone, Alnus and Betula 

pollen begin to decline in percentage, coincident with minor peaks in Sorbus and Taxus. 

There are few bog and heath taxa recorded in the zone. Poaceae are steady at c. 10% TLP, 

rising sharply to 40% TLP at the upper zone boundary. The only constantly present 

accompanying herb pollen taxa are Cyperaceae, Ranunculus type and Potentilla type, and 

Aster type are represented occasionally. Grazing indicator taxa are poorly represented until 

the upper zone boundary, with Plantago lanceolata pollen recorded constantly, but in low 

frequencies. Arable or disturbance indicators are similarly poorly represented by sporadic 

occurrences, with the occasional cereal-type pollen grain recorded in the upper half of the 

zone, peaking at the upper boundary. Pteridophyte spores are present throughout the zone, 

gradually decreasing from c. 10% TLP to <5% TLP. Microscopic charcoal particle 

percentages are at low values until the upper zone boundary, where a sharp increase 

commences. 



BB2-2: Poaceae-Calluna-Cyperaceae: -1 to -9cm below peat boundary. Tenninlls post quem 

c. 2840 cal. BP 

All tree and shrub pollen are at low percentages throughout the zone, with only Betula and 

Corylus rising at the upper boundary. Calluna fluctuates between 15% and ..J.O\C TLP, 

although values for other Ericaceae are low. Cyperaceae form 10 - 20% TLP throughout 

most of the zone, falling to c. 5% by -8cm. Poaceae are initially high at 55% TLP, falling to 

20% mid-zone and then recovering, beginning a further decline at the upper boundary. 

Potentilla type forms c. 5% TLP. A decline in both pastoral and arable/disturbance indicators 

occurs in the first half of the zone. Mid-zone, a small increase in Plantago lanceolata pollen 

commences, and occasional cereal-type grains are recorded in the upper half of the zone. The 

Sphagnum spore curve is constant throughout the zone, albeit at low values. Pteridophyte 

spores are at lower values than the previous zone. An increase in microscopic charcoal 

particles is seen, reaching maximum values of c. 40% TLP. 

BB2-3: Betula-Poaceae-Calluna: -9 to -12cm below peat boundary. 

In the uppermost zone Betula and Corylus increase to c. 35% and c. 20% TLP respectively. 

Calluna decreases from 30% to 10% TLP, and Myrica increases from negligible values to c. 

10% TLP. Cyperaceae and Poaceae remain at their relatively depressed values of <5% and c. 

20% TLP, which were established at the lower zone boundary. Percentage values for other 

herb pollen taxa are generally depressed, and decreases are seen in pastoral and 

arable/disturban.::e indicators also. Sphagnum spore values also fall temporarily, as do those 

of microscopic charcoal particles, but both are re-established by the top of the profile. 

6.3.3.3 Pollen concentrations 

With reference to Figure 6.11 it can be seen that, with the exception of the basal spectrum 

analysed, the spectra from the soil layer (2004) have higher fossil concentrations than those 

from the overlying peat (2003). Concentrations increase again in the upper part of the 

profile, the topmost pollen zone, BB2-3. 
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6.3.4 Soil micromorphology 

6.3.4.1 Description of micromorphological features 

The soil micromorphological features noted in the BB2 thin sections are presented in Table 

6.10. A summary of the main microscopic features and their interpretation is presented in 

Table 6.11. 

6.3.4.2 Description of soils and sediments 

The features noted in thin section have been compared with the features noted from 

macroscopic examination, and combined to describe more fully the nature of the sediments. 

Context 2005 

This is a soil of low organic content. The mineral material is unsorted, the microstructure 

channel to intergrain channel, and the related distribution described as close porphyric. 

Context 2004 

The base of 2004 is distinguished by an accumulation of fines materials - silt and fine sand 

size grains. 2004 is patchy, with accumulations of well-sorted organo-mineral material 

including silt size grains, and patches of fresh parenchymatic plant material. There are 

occasional diatoms visible. The level of sorting of mineral material increases upwards in the 

profile, with the related distribution between materials of different size classes changing 

gradually from close porphyric at the base to open porphyric at the top of the context. The 

structure, although compact, is not massive, and the void spaces are a complex mixture of 

vughs and channels. At the top of the context the mineral material is described as unsorted. 

At the top of the context occasional phytoliths are present, though not in marked 

concentrations. 

Context 2003 

2003 is a typical peat with low mineral content and a spongy microstructure. 
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6.3.5 Interpretation 

6.3.5.1 Pollen taphonomy 

Regarding the possibility of differential preservation of palynomorphs between the soil and 

peat layers, indeterminate Pteropsida (monolete) spores form no more than 10% of the TLP 

count in the soil profile (Figure 6.9). This is around twice the maximum value of the same 

spores in the BB 1 soil profile (see Section 6.2.5.1), perhaps indicating more severe pollen 

destruction in BB2 than in BB 1. Total fossil concentrations fall toward the surface of the soil 

(Figure 6.11). In a typical sub-peat soil, pollen concentrations would be expected to rise 

towards the surface as the soil becomes more organic-rich. It is possible that mixing of the 

topsoil by ploughing occurred before peat accumulation. Soil from lower down in the profile, 

where pollen was less concentrated, would be mixed with relatively pollen-rich soil from the 

Ah or 0 horizon. Concentrations of indeterminate Pteropsida (monolete) spores also 

decrease towards the soil/peat interface, though rather more sharply than the decrease of total 

fossil concentrations. Superficially, this might indicate that differential preservation in 

favour of spores became less distinct towards the surface. However, the increased 

representation of Lactuceae towards the surface contradicts this. Lactuceae are extremely 

resistant to decay and the possible preferential preservation of this pollen type in the upper 

soil spectra suggests differential pollen decay. There are roughly the same numbers of pollen 

types present in the soil and the peat layers (55 and 57 respectively), which indicates that 

pollen was not preferentially lost from the soil. The contradictory signals regarding pollen 

preservation conditions in 2004 might result from a high degree of mixing, such as by 

ploughing. 

6.3.5.2 Interpretation 

The soil layer 2005 can be interpreted as the natural, unaltered soil, probably constituting the 

B horizon. As it is identical to the basal soil layer 1006 in BB 1 (see Table 6.1), with a high 

sand content, the case is strengthened for its interpretation as originating from similar 

deposits to the compact sand overlying till in the BEL core and in other sediments 

downslope (Section 5.2.2.3, cf. Section 6.2.5.2). The transition to 2004 is marked by an 

accumulation of fines materials, but these are not compacted into pans or lenses. The 

abundance of root channels and preserved plant root material in 2004 indicates that the soil 

was vegetated. The presence of accumulated fines fraction material at the base of 2004 might 
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be interpreted as an indication of ard tillage, based on comparable results from BB 1 and the 

literature (see Section 6.2.5.2). This is especially pertinent given that ard-marks are visible in 

2004 in plan (S. Caulfield pers. comm.). It must be noted that the author only examined the 

soil in section and could not identify such macro-scale features. The visible parts of 2004 in 

thin sections from K9 and K10 do not contain either macro- or microscopic evidence of 

tillage. The combination of these factors does not necessarily imply that tillage was not 

practiced at BB2. Just as an ard-mark was serendipitously sampled by K2 in BB1, sampling 

may have missed similar marks in BB2. Sampling strategies are believed to be responsible 

for the previous rarity of fines panning features in thin sections from tilled soils (Lewis 1998, 

329). However, there is an absence in 2004 (K9 and K10) of other micromorphological 

indications of cultivation, such as variability in fine fraction material, evidence of mixing, 

and loosening relative to the underlying compacted horizon. The layer of compaction 

separating 2005 from 2004 may suggest that cultivation had been practiced (cf. the 

1006/1005 interface: see Section 6.2.4 above). 

The pollen profile from the soil spectra in BB2 (PAZ BB2-1) contains contradictory 

evidence in terms of preservation indicators (Section 6.3.5.1). The profiles (Figure 6.10) 

contain lower percentages of disturbance and arable indicators than are seen in the BB 1 soil 

spectra (Figure 6.5), and only three cereal-type pollen grains are seen in BB2-1, with a 

further three at 1cm above the peat-soil transition layer. Similarly to the soil 

micromorphology, the pollen evidence from BB2 is equivocal with regards to interpreting 

the possible occurrence of tillage. Representation of pastoral indicator taxa is also generally 

low in BB2-1, and Plantago lanceolata pollen percentages increase at the transition to peat, 

which might reflect the vegetational changes associated with the recolonisation of formerly 

cultivated land (cf. Behre 1981, 228-229). Perhaps this soil was only subjected to limited 

short-term tillage, and post-abandonment pedogenic processes (both biological and eventual 

paludification) resulted in the disturbance and destruction of micromorphological tillage 

features. This would also account for the poor representation of arable indicators in the soil 

spectra. 

6.4 Interpretation of BBI and BB2 profiles with reference to the off-site investigations 

The lowermost zones in BB 1 and BB2 (which represent soils with macro- and microscopic 

scale evidence of cultivation) can be interpreted to record roughly the same chronological 

period. The evidence for their contemporaneity however is somewhat contradictory. The 
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pollen profiles are similar, which suggests contemporaneity. However, the radiocarbon 

assays from the basal peat overlying the profiles are different and, despite that from BB 1 

falling into the mid-third millennium cal. BP calibration plateau, the 2cr error ranges of the 

assays do not overlap. 

It has been accepted that the soil spectra will contain mixed-age pollen assemblages, and that 

their taphonomy is complicated by ploughing. The terminus ante quem of each soil pollen 

zone, together with an assessment of the levels of particular taxa present, can inform on the 

chronological span represented by the soil spectra. The pollen taxa most useful as 

chronological indicators in a mid- and late-Holocene context are Ulmus and Pinus, because 

of their well-defined declines (see Sections 2.2.l.3 and 2.2.3.4). In both PAZ BB1-l and 

PAZ BB2-l, Ulmus is present only occasionally. This would indicate that the pollen content 

is derived from after the Ulmus decline of c. 6000 cal. BP. Pinus is present in low 

percentages in both profiles, in slightly higher frequencies in BB2 than BB 1. There is the 

complicating factor of long-distance transport to be taken into account when interpreting the 

representation of Pinus in pollen profiles, hence there need not have been significant Pinus 

populations in the regional landscape as the soils accumulated. This further delimits the age 

of the pollen assemblages to between c. 4500 cal. BP (the Pinus decline) and c. 2800 cal. BP 

(the assay from basal peat in BB2). 

The apparent upper age limit for pollen in the profile could be due to two factors. The first 

explanation relies on the eventual deterioration of all pollen grains. Using this argument, the 

soil profiles are seen to contain mixed-age pollen assemblages, but due to decay there is an 

absence of pollen older than c. 4500 cal. years. However, this might be considered unlikely. 

Pinus pollen grains in particular are robust and readily identifiable even if fragmented and/or 

deteriorated. The alternative explanation concerns the age and nature of the soil itself. If the 

soil itself were built up after c. 4500 cal. BP then it would contain pollen of that age also. 

Such a situation would occur if earlier soil had largely eroded. Erosion has been interpreted 

as occurring earlier, before peat expansion onto the Neolithic fields at c. 4930 cal. BP (see 

Section 5.2.2.3). The soil in the Bronze Age occupation area could have been subject to this 

erosion, which decreased in intensity after c. 4930 cal. BP. Less severe erosion still occurred 

after this date, as evidenced by the presence of mineral grains in the post-.+930 cal. BP 

sediment sequences downslope (see Figure 5.2). The soil in BB 1 and BB2 could have 

accumulated naturally, or been amended by the addition of soil removed from elsewhere. A 

similar situation is postulated for the Neolithic use of the fields (see Section 5.2.2.3). The 
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soil removed from downslope of the field system (e.g. Transect cores E8 to EI: see Figures 

5.1 and 5.2) is likely to have been used in the Neolithic occupation phase, because that area 

would have been covered by peat by the time of the Bronze Age occupation. Therefore, if 

additional soil was used to amend the profiles around BB 1 and BB2, it would have to have 

come from elsewhere. 

The soil profiles at BB 1 and BB2 are at least 20cm and IOcm deep respectively (see Figures 

6.2 and 6.7). Both of these are deeper than the soil profiles in the nearby Transect 2 cores 

(N9 to NI7: see Figure 5.1) which contain between 1 and IOcm of sub-peat soils (see 

Appendix D). Interestingly, one of these profiles, NI6, features a IOcm soil profile overlying 

an 8cm sand layer (see Appendix D). The survival of sand at this point perhaps confmns the 

above suggestion that this area of the hillslope was subjected to soil erosion prior to 

formation of the sub-peat soil profiles. That there is only limited evidence for amendment in 

the form of manuring in the later phase of agriculture, at BB 1 (the spade and ridge 

cultivation) only, indicates that earlier amendment strategies were limited to addition of soil 

from elsewhere to the cultivated areas. 

Having concluded that, although the calibration ranges for the basal peat radiocarbon ages do 

not overlap, the BB 1 and BB2 pollen profiles were buried by peat at much the same time, 

and their ecological indications must now be examined. Considering the basal zones first, 

Alnus and Betula are dominant in both profiles, although the latter is more prolific than the 

former in the BB2 section, whereas the taxa are roughly co-dominant in BB 1-1. Corylus is 

represented at c. 10% TLP in both sections, but Quercus is more abundant in BB2 than BB 1. 

Poaceae are better represented in BB 1. Other than these differences, the profiles record low, 

constant representations of pastoral and arable agriculture indicators, including cereal pollen 

grains. Such agricultural indicator taxa are best represented at the mineral soiVpeat interface 

in both sections. 

Interesting issues arise when the BB 1 and BB2 soil pollen profiles are interpreted in terms of 

a dynamic landscape, by comparing their pollen content to that from the contemporary 

depths of the BEL core (4500 - 2800 cal. BP is represented in the BEL core at 228-121cm). 

High percentages of Alnus pollen are seen in the BB soil profiles but not the BEL core 

during this time, and Betula pollen peaks and declines between c. 4465 and c. 3725 cal. BP. 

Although it is acknowledged that the BB profiles contain mixed-age pollen assemblages. 

such high proportions of AP are not borne out by the BEL core, especially with respect to 

16~ 



Alnus. Whilst both Betula and Alnus grains are fairly resistant types which can be easily 

recognised as ghosts in a pollen preparation and thus might be over-represented, this 

differential is considered to be mainly a function of the different pollen source areas 

represented by those deposits at that time. In another landscape-scale study, profiles from 

upslope near archaeological monuments contained higher tree pollen percentages than those 

from downslope soil profiles and a downslope pond (Whittington & Edwards 1999,596-597). 

This mirrors the situation in this study, where relatively high percentages of AP are present 

in the upslope soil profiles at times when the peat profile downslope (BEL) contains 

negligible AP values. 

Both blanket bogs and soils are considered to have extremely localised pollen source areas, 

with local and extra-local components dominating the pollen assemblages (Sections 4.4.2.1, 

5.4.6 and 6.2.5.1). The soil pollen profiles may therefore record late stands of woodland 

located nearby. Another unexpected feature of the soil pollen profiles is the lower than 

expected representation of cereal pollen and grains from arable weed taxa. Since macro-scale 

examination and thin section soil micromorphological analysis have confirmed cultivation of 

BB 1 and possibly BB2, significant percentages of cereal pollen would be expected. 

However, cereal pollen is poorly represented because cereals, which are autogamous, are 

known to produce low quantities of pollen, and dispersal capacity is poor (Section 4.4.2.3). 

The picture becomes clearer and a sequence of landscape development can be unravelled. 

Cultivation ceased earlier at BB2 than BB1, as short-lived ard tillage only is recorded in the 

former section. Cultivation at BB2 ceased prior to c. 2840 cal. BP. This may reflect the 

cessation of ard tillage at both locations, or a contraction of the spatial area of land which 

was tilled. At this point, the pollen assemblages of the soil horizons in the BB profiles 

represent the vegetation cover of the immediate locality, and an extra-local component. The 

extra-local component was largely derived from pastoral land and blanket bog vegetation 

surrounding the cultivated areas. Within this component, Poaceae dominated over Calluna 

and other Ericaceae from the blanket bog vegetation, largely as a result of the low dispersal 

capacity of entomophilous Ericaceae pollen, especially in comparison to the wind-dispersed 

Poaceae (Evans & Moore 1985). The appearance of Calluna in a pollen profile is usually 

considered to reflect local presence of the taxon (ibid.). The extra-local component is also 

represented by the high values of Betula and, to a lesser degree. Alnlls pollen, which 

originated from late survival of stands of woodland nearby. The cereal pollen recorded in the 

soil spectra at BB2 is interpreted as representing the ard tillage evident in macroscopic scale 
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at BB 1 and BB2, and in microscopic scale at BB 1. Whilst this tillage may have been short

lived at BB2 and ended there before c. 2840 cal. BP, its duration and the date of its cessation 

at BB 1 is unknown, as a result of the superimposition of the ridges and furrows. At some 

point the cultivation practices changed at BB 1 from ard tillage to spade and ridge. 

From c. 2840 cal. BP, as cultivation ceased at the BB2 location, blanket peat slowly 

accumulated over the former agricultural soil. This coincided with the decline of woodland 

in the locality registered by the decreases in Alnus, Betula and Quercus. The different 

taphonomic processes operating upon pollen assemblages in the two depositional 

environments caused different components of the landscape to be recorded in the 

palynological profile. Blanket bog profiles chiefly record the local component, especially the 

non-arboreal pollen fraction of the profile (see Sections 4.4.2.1 and 5.4.6), hence the 

dominance of Poaceae and Calluna. In particular, the swamping effect of the presence of 

Calluna at the sampling location reduced the contribution of the extra-local components of 

the pollen rain to the pollen assemblage. Elevated Cyperaceae percentages and the 

continuous Sphagnum curve are further indicators of establishment of blanket bog 

vegetation. For a short period (-1 to -7 cm), no cereal grains and few arable weeds or 

disturbance indicators were recorded in BB2. This may represent a brief period of 

abandonment or a decline in the level of agricultural intensity. In the peat initiation layer, 

Plantago lanceolata and Lactuceae percentages peak, however, which could record either 

the recolonisation of former arable land by pioneer taxa (Behre 1981, 228-229) or turning 

over the land to grazing. An increase and persistence in microscopic charcoal values would 

tend to favour the latter interpretation, rather than a total cessation of activity. Furthermore, 

the soil micromorphological analysis suggests only a brief period occurred in between the 

ard tillage and the spade and ridge cultivation of BB 1. Elevated Betula and Corylus values in 

the upper spectra of the BB2 profile may represent a resurgence of scrubland from the extra

local contribution to the pollen assemblage. It is noteworthy that Alnus percentages remain 

depressed, indicating that any regenerated scrubland was of a different ecotype to that 

recorded in the soil pollen spectra. 

Pastoral and arable agricultural indicator pollen taxa are better represented in the BB 1 soil 

section than in the BB2 soil section. This supports the macroscopic evidence that indicates 

cultivation occurred for longer at this location. Indeed, cereal pollen grains are present in the 

basal peat spectrum at BB 1, suggesting that cultivation continued as peat began to 

accumulate. Similarly to the situation in BB2, the transition to blanket peat at the sampling 
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site IS accompanied by a change in pollen taphonomy and landscape component 

representation, and the local component, the blanket bog taxa Calluna and Poaceae, 

dominates the pollen assemblage. The BB 1 profile ends before the resurgence of Betula and 

Corylus recorded in BB2-3. 



Chapter 7 

Interpretation: Significance of the results from Belderg Beg 

7.1 Introduction 

This chapter offers a comprehensive integration of the results assembled in the two previous 

chapters. Firstly, the on- and off-site results will be compared and combined to formulate a 

wider interpretation. The new information provided by this investigation is then used to 

assess previously held theories regarding the occupation and agricultural regime of the site. 

The evidence from Belderg Beg will then be compared to existing knowledge of prehistoric 

occupation and agriculture in the area. This will allow an assessment of the consequences of 

this additional evidence for our understanding of the prehistory of North Mayo. The site is 

placed in its broader regional context, by assessing it in comparison with western Irish 

evidence of prehistoric settlement and agriculture. Finally, the wider context is studied, by 

considering what this investigation has discovered about the marginality of later prehistoric 

societies of the N orthem Atlantic fringe. 

7.2 Integration of site results 

7.2.1 Settlement history 

7.2.1.1 Chronology 

A major aim of this investigation was to refine existing knowledge of the sequence of 

prehistoric occupation at Belderg Beg (see Section 1.1.1). A linear age/depth profile (see 

Figure 5.8) has allowed secure interpolation of dates in order to estimate the internal 

chronology of the BEL profile. The palynological record is therefore used as a basis for 

identification of the phases of occupation and agriculture. 

Due to the date of peat initiation, only limited new evidence pertaining to the chronology of 

the Neolithic occupation phase has been forthcoming. Peat accumulation did not commence 

early enough to palynologically recognise the start of activity. The date of abandonment has, 

however, been refined to c. 5375 cal. BP. Following this, human activity was much reduced 
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for more than a millennium. The chronology of Bronze Age occupation is more complex. 

The three pollen profiles (BEL, BBI and BB2) provide evidence of activity for almost the 

entire span of the Bronze Age, from c. 4100 cal. BP to the mid-third millennium cal. BP. 

Initial re-occupation commenced at c. 4100 cal. BP, with mixed agriculture recorded 

palynologically in the BEL profile (Figure 5.18). At c. 3400 cal. BP, the roundhouse was 

constructed and oak stakes used to extend Wall 3 (see Figure 3.4). This phase of activity is 

registered in the BEL profile until c. 3060 cal. BP. However, whilst the BEL profile records 

abandonment or a decline in human activity at c. 3060 cal. BP, the BB2 profile records 

cessation of arable agriculture at c. 2840 cal. BP, with pastoral activity continuing (Figure 

6.9). In the BEL core, further evidence for agriculture is recorded again from c. 2775 cal. 

BP, lasting until c. 2600 cal. BP (Figure 5.18 & Section 5.4.5). The cultivation ridges in the 

BB 1 section were apparently in use until they were overwhelmed by blanket peat in the mid

third millennium cal. BP (Figure 6.4). In addition, one particular taxon in the BEL core may 

be of use in deconstructing the phasing of settlement and agriculture. Pteridium aquilinum is 

considered indicative of the recolonisation of fallow land, hence it is used to identify both 

abandonment and agricultural phases which included fallow phases between cycles of arable 

cultivation (Behre 1981). 

The chronological evidence from the three pollen profiles with regard to Bronze Age 

agricultural activity may be summarised as follows: 

• The general signal of pastoral and arable/disturbance indicators in the BEL core 

identifies mixed agricultural phases between c. 4100 - 3060 cal. BP and c. 1935 -

1600 cal. BP 

• Less definitively, pastoral and arable/disturbance pollen indicators in the BEL core 

suggest an additional phase of mixed agriculture at c. 2775 - 2600 cal. BP and 

pastoral agriculture from c. 2600 to c. 2400 cal. BP. 

• In this context, the Pteridium aquilinum profile in the BEL core (Figure 5.18) clearly 

identifies three main phases of post-Neolithic, pre-modem agriculture: from c. 4100 

_ 3250 cal. BP, from c. 2775 - 2450 cal. BP and from c. 1940 - 1775 cal. BP. 

• 

• 

The BB2 section records a short-lived phase of mixed agriculture which ceased at 

this location at c. 2840 cal. BP. Agriculture continued elsewhere, as pastoral activity 

is recorded in the peat overlying the soil section. 

The BB 1 section records cessation of a phase of mixed agriculture in the mid-third 

millennium cal. BP. 
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These results are displayed in Figure 7.1. This suggests that there were two main phases of 

activity within the Bronze Age. The general chronology of settlement is summarised thus: 

1. Neolithic occupation, utilising the field system including Walls 1 and 2, which was 

abandoned at c. 5375 cal. BP 

2. Bronze Age occupation from c. 4110 - 3060 cal. BP. This main period of occupation may 

have consisted of shorter, discrete phases of settlement and abandonment. This phase 

included the roundhouse construction and extension of Wall 3 with oak stakes, both at c. 

3400 cal. BP. 

3. Late Bronze Age occupation in the first half of the third millennium cal. BP. This period 

may have consisted of shorter sub-phases of occupation. 

4. Iron Age activity from c. 1940 - 1600 cal. BP. 

The question remains as to whether the area was totally abandoned between c. 3060 cal. BP 

and the start of the agricultural activity which ceased at c. 2840 cal. BP. Perhaps agricultural 

reorganisation occurred at c. 3060 cal. BP in response to a reduction in good quality soil 

availability (due to peat expansion) and cultivation was concentrated thereafter in the ard

marked area close to the roundhouse. Considering the poor dispersal of cereal pollen (see 

Section 4.4.2.3) cereal cultivation at such a distance from the BEL core (see Figure 5.1) 

might not necessarily be expected to register in the BEL palynological profile. However, 

continued representation of other palynological indications of agricultural activity would be 

expected, such as Plantago lanceolata, Rumex and Pteridium aquilinum. These taxa are all 

much reduced, occurring sporadically if at all between c. 3050 and c. 2850 cal. BP (136 to 

124cm) in the BEL profile. Therefore, cessation of agricultural activity is suggested. 

The brief phase of cultivation recorded in the BB2 profile at c. 2840 cal. BP (Section 6.3.5.2) 

is not particularly marked by palynological indications of agriculture in the BEL core. A 

cereal pollen grain is recorded at c. 2710 cal. BP, contemporary with the appearance of the 

arable/disturbance indicator Plantago major/media and a small peak of P. lanceolata. The 

BB2 pollen profile suggests that the intensity of arable agricultural activity was reduced for a 

brief period after c. 2840 cal. BP. However, considering poor dispersal rates of cereal pollen 

grains, cultivation did not necessarily cease at this time. There is no evidence for a 

significant hiatus between the ard tillage and ridge-and-furrow cultivation phases at BB 1. 

Between the phases, pastoral indicators are at low levels, remaining so even during the phase 

associated with the reappearance of cereal pollen grains (see Figure 6.9). 
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These results are further discussed below (section 7.2.2) in the context of agricultural 

dynamics, in an attempt to uncover the nature of the agriculture that was undertaken. They 

are also discussed in Sections 7.3.1 and 7.3.2 in terms of the regional evidence of prehistoric 

settlement and agriculture. 

7.2.1.2 Geochemical evidence 

The geochemical record of the BEL profile (Figure 5.15) does not contain evidence of any 

periods of enhanced copper deposition onto the mire surface. This suggests that there was no 

prehistoric exploitation of the chalcopyrite seam at the Horse Island cliffs. Whilst this could 

be a false indication, as the sampling location is some 2 km distant from the copper vein, 

there is no other evidence of copper working in the palaeoenvironmental or archaeological 

record at Belderg Beg. Such evidence might be expected to consist of particularly high 

quantities of microscopic charcoal in the palaeoenvironmental record, reflecting increased 

burning from fire-setting at the ore face, or artefactual evidence of copper smelting or 

working. Despite the widespread blanket peat limiting the availability of agricultural land, it 

appears that Bronze Age occupation was not concerned with copper exploitation and 

therefore occurred for alternative reasons. 

7.2.2 Agricultural dynamics 

7.2.2.1 Pollen analysis 

Neolithic agriculture 

The herb taxa present in the basal levels of the BEL core (Figure 5.18) are indicative of a 

pastoral agricultural regime during the Neolithic occupation. High levels of Poaceae and 

moderate representation of Plantago lanceolata, with occasional Rumex grains, indicate that 

the fields in the vicinity of the BEL core (i.e. the land enclosed by Wall 1; see Figure 5.1) 

were used for stock grazing. The sporadic occurrence of disturbance indicators Urtica and 

POlygOIl111ll aviculare suggest that there may have been a minor arable component. However. 

cereal-type pollen grains, which would more definitively indicate arable agriculture. were 

not discovered. The economic position of cereals in the Neolithic of western Ireland. linked 

to the level of arable agriculture, has been debated using palynological evidence (e.g. 
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O'Connell & Molloy 2001). The economic importance of cereal cultivation in the Neolithic 

of the British Isles as a whole has been more widely discussed (e.g. Richmond 1999). This 

issue is returned to below in Sections 7.3.1.2, 7.2.4.2 and 7.4.1. 

Bronze Age agriculture 

The following appraisal of the chronology of Bronze Age agriculture is made with reference 

to Figure 7.1. There is fIrm evidence for cereal cultivation in the Bronze Age occupation. In 

the palynological record of the BEL core, the fIrst cereal-type pollen grain is recorded at c. 

4045 cal. BP, approximately at the start of the main Bronze Age phase of occupation and 

agriculture. This is followed by an apparent hiatus in arable evidence, and signifIcant 

numbers of cereal-type grains and arable weed taxa are recorded from c. 3775 cal. BP. 

Mixed agriculture continues to be evidenced palynologic ally in the BEL profile until c. 3060 

cal. BP. 

Ideally, in a pollen profile from a buried agricultural soil certain features could be used to 

elicit further information pertaining to the nature of the arable regime. Cereal pollen grains 

can potentially be identified to type level (see Appendix C), to provide information on the 

main crop grown. However this is not always possible due to the preservation quality of the 

grain, or an inability to identify sufficient diagnostic features. The suite of herb taxa may 

also identify agricultural practices, such as the season in which crops were grown and 

harvested (Behre 1981). High percentages of Urtica pollen are commonly found in dung

heaps (V orren 1981, 3). The use of animal dung or bedding as manure may be indicated by 

very high values of this taxon in a palaeosol. Similarly low percentages of cereal-type pollen 

to those in the BB sections are known in other buried soils which have been identified as 

formerly cultivated, and in such situations the herb flora have proved useful indicators of 

former agricultural regimes (e.g. Sageidet 2005). 

The dimensions of, and notes on, each cereal-type pollen grain from the BEL core and BB 1 

and BB2 profiles are presented in Tables 5.5, 6.3 and 6.6. The cereal-type pollen grains from 

depths in the BEL core corresponding to the prehistoric settlement phases (196 - 92cm) are 

all of Hordeum (barley) type, with the exception of one probably Avella-Triticum (oat or 

wheat) type and one indeterminate grain. Cereal-type pollen grains in the lower levels of the 

BB2 core (2cm to -lcm), corresponding to the end of one phase of Bronze Age occupation 

are also of Hordeum type, with the exception of one indeterminate grain. This grain, found at 
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1cm below the peat/mineral soil interface, is larger than the average for Hordeum type grains 

mounted in silicone oil (Andersen 1979), but its annulus diameter and surface sculpturing are 

typical of Hordeum type pollen rather than Avena-Triticum type. The cereal-type pollen 

assemblage from the upper spectra of the BB2 profile (-7 to -10cm below the peat/mineral 

soil interface) is represented by two grains each of Hordeum and Avena-Triticum types. It is 

suggested above (Section 6.4) that these spectra are equivalent to the lowermost cereal grains 

recorded in the BB 1 section (-1 to 9cm below peat/mineral soil interface). All of these grains 

in the BB 1 section are classified into the Hordeum type. This suggests that barley was the 

sole or main crop. The presence of two Avena-Triticum type pollen grains in BB2 should not 

be taken to indicate the cultivation of wheat or oats as a secondary crop; occasional grains 

are likely to represent the presence of the taxon as a weed. In many prehistoric macrofossil 

assemblages, the occasional occurrence of unexpected cereal taxa (usually oat or rye) is 

explained as its presence as a weed (e.g. Boyd 1988, 104; Greig 1991, 305) and similar 

interpretations have been applied to isolated 'anomalous' cereal pollen types in assemblages 

located in or near agricultural soils (e.g. Sageidet 2005, 67). 

The combined cereal-type pollen evidence from all three cores suggests that barley was the 

principal or sole arable crop cultivated at Belderg Beg in all prehistoric occupation phases. 

Relatively high percentages of Plantago lanceolata in the soil spectra of the BB 1 profile 

might be taken to indicate ley agriculture, as this taxon characteristically colonises former 

agricultural land, and in pollen profiles is commonly identified as an indicator of ley farming 

(Behre 1981). 

7.2.2.2 Soil micromorphology 

Interpretations of the BB 1 and BB2 sections in terms of pedogenesis and agriculture, based 

on the features noted in thin section soil micromorphological analysis (see Tables 6.4 and 

6.8), are presented in Tables 6.5 and 6.9 respectively and discussed in Sections 6.2.5 and 

6.3.5. 

Repeated cultivation is evident and is most marked in the BB 1 section. Use of an ard to work 

the soil is apparent both in plan (Caulfield pers. comm.) and in thin section (see Plate 6.13). 

Leaching and amendment suggests that significant efforts were made to work the soil. The 

macroscopic and microscopic features of Section BB 1 suggest that two phases of agriculture 

are represented by this profile, separated chronologically by a brief intermission. Both 
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phases are considered to have occurred in the Bronze Age, because the interlude was brief in 

comparison to the considerable gap evident between Neolithic and Bronze Age agriculture. 

In the latter case, abandonment lasted from c. 5375 to c. 4110 cal. BP. 

The textural features identified as indicative of arable agricultural activity are the fines lenses 

and the dusty clay infills and coatings. The latter, occurring only in 1005, are typical of 

disturbance, including that associated with cultivation activity (Courty et al 1989, 132; 

Macphail et al 1990, 56). The fines pans and lenses in 1005 and 1004 are a particularly 

interesting relic characteristic of ard tillage. Similar features have been noted in 

archaeological and experimental ard-worked soils (Lewis 1998). Evidence of amendment 

strategies employed to improve soil quality and thereby crop yields consists of the Calcium

Iron-Phosphate (Ca-Fe-P) infills (1004) and the rubified minerals evident in OIL (1004 and 

to a lesser extent 1005). 

A generalised picture of changing agricultural strategies is thus formed. The first agricultural 

phase represented in the soil sections is one of ard tillage. It is recorded in both BB 1 and 

BB2, but had a longer duration in the former than the latter. Barley was grown and it is 

possible that some ash was added to the soils to improve fertility, which was compromised 

as nutrients were leached. It is not evident from the soil profiles precisely when this phase 

was abandoned, as the only available radiocarbon age providing a terminus ante quem for 

cessation is from BB2, which was evidently tilled for a shorter period than BB 1. It is 

therefore unclear when BB2 was abandoned relative to the abandonment of BB 1. As 

discussed above (Section 7.2.1.1) comparison with the BEL palynological profile suggests 

that the BB2 tillage occurred during the final phase of ard tillage at BB 1. This possibly 

represents a last attempt to increase arable production, ending just prior to c. 2840 cal. BP. 

Pastoral activity and probably arable cultivation continued, and at some point the second 

phase of activity at BB 1 commenced. This phase consisted of cultivation of the ridge-and

furrow plots which are evident in plan and in section in the vicinity of the roundhouse, 

reworked in different chronological stages. It is possible that a spade was used to till the 

ridge-and-furrow plots, but this is not definitively indicated by the soil micromorphological 

features. Again, barley was cultivated. This agricultural phase ended at some time during the 

radiocarbon calibration plateau in the mid-third millennium cal. BP. 
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7.2.3 The environment and occupation of Belderg Beg 

Table 7.1 presents a schematic account, from the data obtained in this thesis and in previous 

studies, of the chronology, palaeoenvironment, occupation and agricultural dynamics at 

Belderg Beg from c. 5500 cal. BP until present. This section describes how the landscape at 

and around Belderg Beg looked, as reconstructed from the analyses of this thesis and 

previous investigations. 

7.2.3.1 The Neolithic (c. 6000 - 4300 cal. BP) 

Agriculture and landscape 

In line with other Neolithic agricultural sites in the North Mayo region, farming is assumed 

to have commenced at Belderg Beg in the centuries following the Ulmus decline of c. 5800-

5900 cal. BP. The largest-scale fields known at present (Walls 1 and 2: see Figure 5.1) relate 

to this period of agriculture. It was evidently primarily pastoral in nature, although there was 

probably a minor arable component to the economy (see Sections 7.2.4.2 and 7.3.l.2). This 

agriculture took place within a disturbed landscape, although full woodland clearance 

beyond the extent of the field system did not occur. The wider landscape around the Belderg 

Beg farm in the Neolithic occupation phase was highly differentiated. The sub-peat walls on 

the Belderg Mor hill (see Figure 2.6 for location) have been assigned to the Neolithic by 

Caulfield et al (1998, 639), on the basis of subfossil Pinus stumps in blanket peat overlying 

the walls and the soils upon which they were constructed. The Belderg Valley therefore 

contained at least two stone-walled field systems. Whether those field systems could be 

described as individual farmsteads is unknown, due to the absence of sufficient landscape

scale surveying of sub-peat field walls. The presence of a court tomb on the Belderg Mor hill 

(see Figure 3.1) suggests a substantial Neolithic population (see Cooney & Grogan 1999. 

53). The interpretation is that the Belderg Valley was a differentiated landscape home to 

communities occupying discrete farmsteads, but which were linked to one another in other 

ways. 

Vegetation 

Damp organic sediments were present on the lower valley slopes. In areas with sufficiently 

developed sediment, fen carr communities were present, whereas damp-loving tall-herb 
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communities and marshland existed in areas of thinner soils. Blanket peat was already 

accumulating on the upper plateaux (Caulfield et al 1998,638). Woodland patches existed in 

edaphicaUy suitable locations which had not been subject to anthropogenic clearance. 

An organic detrital sediment began to accumulate at the location of the BEL core at c. 5525 

cal. BP, chiefly a natural development of acidified soils, but perhaps accelerated by 

increasing runoff from the open agricultural land upslope. Soil within the fields was 

subjected to erosion and sediment banked up against the terminal downslope field walls. In 

the continuingly relatively dry climatic regime, the sandy soils became droughty and easily 

leached. Soils from below the field system were removed to supplement soil profiles within 

the fields. Edaphic conditions became increasingly marginal for the agricultural regime, and 

at c. 5375 the field system was abandoned. After abandonment, erosion may have continued 

for some time, due to the absence of management techniques (see Lewis 1988, 46). 

Woodland became rapidly re-established, consisting of Alnus carr in the area of wetter soils 

downslope of the fields, and mixed woodland with Betula, Corylus, Quercus and Pinus 

elsewhere in the valley, on drier soils. 

Hydrology and climate 

There are two mam phases of hydrological and climatic change recognised within this 

period, at c. 5170 - 4850 cal. BP and c. 4550 - 4495 cal. BP. As well as climatically-induced 

rainfall fluctuat:ons (temperature induced reductions in evaporation as well as increasing 

precipitation rates), the ecological and hydrological status of a mire, its topographical 

location and its vegetation may significantly affect its surface wetness and post-depositional 

internal dynamics (see above, section 3.4.4.2). In this study, the pollen and geochemical 

profiles provide a check on the humification signal. 

The c. 5170-4850 cal. BP wet shift was characterised by a change from an organic sediment 

developing into a fen peat capable of supporting trees (section 5.2.3). The hydrophilic tree 

Alnlls was the main beneficiary of these ecological changes and would have grown on the 

fen surface. This shift is likely to have been inevitable as soil acidification is suggested to 

have been commenced in the early Holocene in Ireland, causing the development of blanket 

peat in vulnerable locations. However. the precise timing of pedogenic change varied from 

location to location and at Belderg Beg there were apparently two driving forces which 

caused the development of fen peat at this particular time. The first factor was climate: as 
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discussed above, the period from c. 6000-5000 cal. BP was relatively dry in the North 

Atlantic, with a more continental climatic regime (Section 2.3.4.1) and the transition to 

presumably averagely wet climatic conditions at c. 5000 cal. BP coincides with increased 

surface wetness at Belderg Beg. The beginning of farming at Belderg may have accelerated 

this pedogenic process via increased run-off from agricultural fields upslope. 

The wet phase at Belderg Beg at c. 4550-4495 cal. BP coincides with generally well

recognised regional indications of climatic wetness. It is expressed in lesser magnitude in the 

Belderg Beg humification curve than the preceding wet phase. This wet period is associated 

with a pronounced change in the sedimentary environment at c. 4450 cal. BP when the fen 

carr below the (by then disused) field system experienced a major change in floristic 

composition. Alnus was replaced by Betula as the chief mire-dwelling species, with open 

ground represented by the increasing Poaceae and Cyperaceae pollen curves. At c. 4370 cal. 

BP Betula increased in representation, becoming dominant on the mire surface. Vegetational 

change in the wider landscape is evident also, in the form of general woodland decline 

indicated by decreases in all non-mire-dwelling woodland taxa to background representation 

only. Human activity is not registered in the palynological record at this point. Climatic 

change, also causing the Pinus decline (Section 2.2.3.4), is interpreted as the trigger. 

7.2.3.2 The Early Bronze Age (c. 4300 - 3700 cal. BP) 

Agriculture and landscape 

Secondary clearance aided by fire occurred between c. 4100 and c. 4000 cal. BP, affecting 

the mire-dwelling Betula. This clearance took place in the context of reoccupation for 

agriculture. Following clearance, there was a temporary re-establishment of Betula on the 

mire surfaces, but the taxon commenced its final decline at c. 3945 cal. BP. Agriculture 

practiced from this date onwards was primarily pastoral, but the presence of cereal-type 

pollen grains and arable weed taxa indicate that a minor arable element was present in the 

economy. In PAZ BEL-5a (c. 3950 - 3700 cal. BP), Poaceae pollen percentages are at their 

highest levels in the profile. This suggests that pastoral farming was at its most spatially 

extensive during that phase of time. This is interpreted as a local phenomenon, relating to 

the Belderg Beg farmstead. There are no other known farmsteads of an equivalent age in the 

Belderg Valley, although the presence of a wedge tomb on the apex of the Belderg Mar hill 

(see Figure 3.1) indicates a significant human population existed at the time of its 
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construction. The earliest wedge tombs date to the Late Neolithic, but their construction 

continued well into the Bronze Age (Cooney & Grogan 1999, 53). The Belderg Valley was 

abandoned during the Late Neolithic (see Section 7.2.1.1); therefore a Bronze Age 

construction date can be suggested for the Belderg Mor wedge tomb. 

Vegetation 

The low AP percentages, including the decline in Betula, suggest that the coverage of 

scrubland in the wider landscape progressively declined, probably due to blanket peat 

expansion. Maintenance of open landscapes by Early Bronze Age farmers has been 

identified as the chief causal factor in Atlantic blanket bog expansion (O'Connell 1990a). 

Peat had expanded upslope to roughly the altitude of the modem road. The local presence of 

Calluna vulgaris at the BEL location is highlighted by the commencement of a constant 

curve in the pollen profile as herb peat began to replace wood peat. 

Hydrology and climate 

The geochemical and humification records both suggest that the climate was more than 

averagely wet during the Early Bronze Age. The complicating factor of increased run-off via 

woodland clearance from c. 4100 cal. BP could cause the humification curve to record 

increased surface wetness. The change in BEL sediment stratigraphy from wood to herb peat 

further complicates interpretation of its humification signal. The Early Bronze Age was 

evidently a pivotal point in landscape history as blanket peat rapidly expanded over the 

hillslope and the nature of vegetation drastically changed from carr and scrub to blanket bog 

taxa. 

7.2.3.3 The Middle Bronze Age (c. 3700 - 3200 cal. BP) 

Agriculture and landscape 

Construction of the roundhouse and the extension of Wall 3 with oak stakes occurred at c. 

3400 cal. BP, in this phase of activity. A continuation of the mixed agriculture throughout 

subzone BEL-5b (c. 3725-3460 cal. BP) is seen in the pastoral and disturbance indicator 

curves. Cereal-type pollen are better represented in this phase than the Early Bronze Age, 

suggesting that the farmstead reorganisation associated with Wall 3 extension and 
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roundhouse construction may have been part of a general agricultural reorganisation centred 

upon the intensification of arable cultivation. 

Vegetation 

The increases in Sphagnum and Calluna vulgaris at c. 3725 cal. BP (180 cm in BEL), when 

taken in conjunction with the sedimentological transition from wood peat to herbaceous peat, 

signalled a shift from fen peat to blanket bog in the vicinity of the sampling area in the Early 

Bronze Age. By c. 3725 cal. BP, blanket bog had expanded upslope to approximately the 

altitude of the modern road; the basal peat at W21 is assayed to c. 4040 cal. BP (see Figure 

5.1 and Table 5.1). The modification or re-organisation of the farmstead (see above) 

occurred within a changing landscape that was being covered by blanket peat. However, 

there was a significant delay between peat development below the modern road and above it, 

which is highlighted by comparing the age of basal peat at W21 with that at N10 (see Figure 

5.1 and Table 5.1). This may indicate that the farmers in the intervening timespan took 

measures to retard peat expansion. Such strategies may have consisted of drainage ditch 

construction, removal of peaty turves (which may have then been burnt as fuel), or 

amendment by addition of manures to increase fertility or mineral matter to inhibit 

paludification. 

Hydrology and climate 

In the Middle Bronze Age the proxies at Belderg give conflicting palaeoclimatic indications. 

The geochemical record indicates maximum oceanic influence, whilst the humification 

record suggests a shift to relatively dry surface conditions. This suggests that there was 

minimal groundwater influence in this phase, and that rainfall supplied the vast majority of 

water to (at least the lower slopes of) the bog. Surface run-off may have declined as a 

consequence of strategies to inhibit peat spread, possibly linked to land management 

techniques associated with agricultural reorganisation (see above). 
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7.2.3.4 The Late Bronze Age (c. 3200 - 2550 cal. BP) 

Agriculture and landscape 

In the BB2 core, cessation of agricultural activity is dated to just above the basal peat layer. 

at c .. 2840 cal. BP. The 2cr range, 2930 - 2750 cal. BP, correlates to around 124cm in the 

BEL core. In the BB 1 core, similar cessation is dated to the boundary between the rig-and

furrow horizon and the earliest overlying peat, at c. 2540 cal. BP, with a 2cr range of 2725 -

2355 cal. BP. These ranges are considerably later than the estimate of agricultural cessation 

in the vicinity of the BEL core. A contraction of agricultural activity is perhaps signified. At 

c. 3060 cal. BP, when cultivation ceased to be recorded in the BEL profile, blanket peat was 

already established upslope at the W21P coring location (see Figure 5.1). The only peat-free 

areas appeared to be those at approximately the altitude of the roundhouse (i.e. the BB 1 and 

BB2 sections and the N10P coring location: see Figure 5.1). Cultivation is less likely to be 

recorded in the highly localised pollen source area represented in the BEL profile at this 

point as the blanket bog was well established. 

Vegetation 

Although blanket peat covered most of the landscape by the Late Bronze Age, the significant 

proportions of tree pollen in the BB soil profiles indicates that limited stands of woodland 

survived in the area until c. 2800 cal. BP. The evidence of final woodland demise, added to 

that of contemporary severe erosion (below) is suggestive of landscape deterioration in terms 

of suitability for agriculture. 

Hydrology and climate 

Soil profiles BB 1 and BB2 consist of relatively nutrient-poor, sandy soils that were only 

capable of sustaining repeated cultivation with significant amendment techniques employed. 

The agricultural soils were easily eroded at Belderg Beg in the Neolithic, and the multiple 

layers of inwashed mineral grains evident in the Transect 1 sediment-stratigraphic record 

(see Appendix D) indicates that this was the case in later agricultural phases also. One 

particularly clear inwash layer was assayed to c. 2860 cal. BP, showing that erosion was 

especially severe at that date. As this corresponds to abandonment of tillage and peat 

development at BB2. an interpretation of severely unfavourable edaphic conditions is made. 
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The increase in erosion IS interpreted as resulting from a phase of extreme climatic 

storminess. Such storminess episodes have been associated with phases of rapid climatic flux 

(e.g. Dawson et al 2003,391; Caseldine et al 2005) and the Later Bronze Age, particularly 

the century centred on c. 2850 cal. BP, is identified as such a period of rapid climate change 

and northern hemisphere atmospheric reorganisation (see Section 2.3.4.3; Kilian et al 1995: 

van Geel et al 1998) recognised in many peat-based palaeoclimatic reconstructions (e.g. 

Mauquoy & Barber 1999a; Barber et al 2003; Langdon et al 2003). 

7.2.4 Comparison with previous landscape narratives 

The following sections summarise current assumptions or theories based on existing data 

pertaining to the archaeological and palaeoenvironmental history of Belderg Beg, and 

provide a discussion of how the results obtained in this investigation compare with those 

conclusions. 

7.2.4.1 Earliest occupation 

Initial occupation at Belderg Beg has never been satisfactorily dated, owing to the nature of 

material selected for dating in previous studies. Although Mitchell & Ryan (2001, 206) 

preferred a Later Neolithic date of c. 4500 cal BP for the first recognisable human activity, 

absolute dates have suggested otherwise. A terminus ante quem of c. 5145 cal. BP from a 

sub-peat pine rooted in mineral soil near a supposedly Neolithic wall (see Figure 5.1) has 

hitherto been the most precise dating evidence (Caulfield et al 1998, 633-634). 

Due to the absence of peat growth at a sufficiently early stage the current investigation has 

failed to provide any firm evidence pinpointing when Neolithic agricultural activity began. 

Although it is impossible to ascertain that there is no earlier blanket peat located on the 

Belderg Beg hillslope, an extensive programme of probing and Eijelkamp coring located the 

deepest peat known within the vicinity of the archaeological remains and, crucially, the 

location with the most complete sediment stratigraphy including till, sand, thin organic 

detrital sediment and various layers of peat. The combinations of stratigraphic complexity 

and greatest depth suggest that this location (the BEL core) should contain the earliest peat 

sufficiently close to the archaeological remains to have received any palynological signals of 

human activity. The BEL pollen profile starts with an open environment including pastoral, 

and probably some arable. agriculture. The dating of the opening of the BEL profile to c. 
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5525 cal. BP provides an earlier terminus ante quem for the beginning of Neolithic 

agriculture at Belderg Beg than that which was obtained from the pine stump upslope (see 

Caulfield et al 1998). A date for initial activity within the Early Neolithic (6000 - 5500 cal. 

BP: see Section 2.2.2) is suggested. 

The absence of indications of peat growth before this significant period of agricultural 

activity is in itself interesting and informative. Increasing erosion and run-off from 

agricultural activity is concluded to have triggered or enhanced peat development (see 

Section 7.2.3.1 above). The regional significance of the timing of peat initiation is discussed 

further in Section 7.3.1.1 below. 

7.2.4.2 Nature of Neolithic agriculture 

Prior to this investigation, all that was known about the nature of Neolithic agriculture at 

Belderg Beg was that stone walls had been constructed around irregularly shaped fields, 

forming a field system of unknown size. The individual fields were demonstrably smaller 

than those at Ceide Fields, and the layout was apparently less regular (Molloy & O'Connell 

1995, 190). The former extent of the field system is unknown due to modem construction, 

but was assumed to have been much smaller than Ceide Fields (ibid.; Caulfield 1978, 140). 

As this study did not involve excavation or probing large areas, further estimations that can 

be made regarding the spatial extent of the agriculture can only be derived from the degree 

of landscape openness indicated in the pollen record. Walls 1 and 2 (see Figure 5.1) are 

argued to have acted as field walls in the Neolithic agricultural phase. The BEL pollen 

profile during this time records significant percentages of tree pollen (Figures 5.16 - 5.18). 

This suggests that the surrounding landscape was not completely open and that significant 

areas of woodland remained within the extra-local as well as the regional pollen source area. 

Percentages of AP in the levels of the BEL core corresponding to Neolithic agriculture (PAZ 

BEL-I), c. 60% TLP (see Figure 5.16), are higher than those in the most intensive phase of 

Neolithic agriculture at Ceide Fields (c. 20%: see Figure 2.3). As the environment at Ceide 

Fields is considered to have been very open over a wide geographical area at that time (see 

Molloy & O'ConneUI995; Caulfield et al 1998), the comparisons of AP content suggest that 

the Belderg Beg field system must have been much smaller than that at Ceide Fields in the 

Neolithic phase of activity. However. if the swamping effect of Alnlls is removed from the 

BEL calculations, AP contributes 20% to the TLP total at that time (see Figure 5.17), a 

1 ~ I 



figure comparable to the Ceide Fields percentages. As Alnus is likely to have been present in 

the wider landscape and not just at the locality of the BEL core, perhaps the interpretation of 

an open landscape comparable to that at Ceide Fields is an unrealistic assumption. 

Nevertheless, the presence of a field system on the other side of the Belderg Valley at 

Belderg M6r suggests that a reasonably large farmed landscape existed in the Neolithic. This 

issue is considered further in Section 7.3.1.2. 

Although no firm stratigraphic evidence relating to the ard-marked layer of soil near the 

roundhouse was forthcoming via excavation (Caulfield 1978), these features (see Figure 5.1) 

have previously been tentatively assumed to date to the Neolithic occupation (Molloy & 

O'Connell 1995, 191; Caulfield pers. comm.). The main supporting evidence for this 

hypothesis is stratigraphic: the ard-marks are present not only beneath the area covered by 

cultivation ridges but also outside it (see Figure 5.1). This has been assumed to indicate that 

the ard-marks and cultivation ridges relate to different agricultural phases (Caulfield 1974: 

see Appendix B). 

Thin section soil micromorphological analysis does not support this hypothesis. Firstly, in 

the BB 1 section, there is no evidence of a significant distinction between the ard-marked soil 

and the overlying ridged layer which would signal a considerable intervening period of 

abandonment. If such a period of agricultural inactivity were present, certain features would 

be expected in the thin sections at the boundary between the layers; principally evidence for 

grassland with increased vegetation cover, perhaps indicated by an increased concentration 

of phytoliths. No such features were identified. The conclusion is that there was no 

significant break in activity associated with the change in cultivation technique from ard to 

ridge-and-furrow tillage. 

Neolithic agriculture at Ceide Fields (and elsewhere in North Mayo) has been described as 

predominantly pastoral with a small but significant cereal component (see Molloy & 

O'Connell 1995; O'Connell & Molloy 2001). An arable component to the productive 

economy at Belderg Beg is signified by the ard-marked soil layer (Caulfield 1978, 140) but 

the present investigator considers that layer to represent Bronze Age activity. The 

palynological profile at BEL produced by this investigation is limited in terms of the 

Neolithic agricultural phase, and although no cereal-type pollen grains were counted in the 

few slides pertaining to that phase, several taxa in the group classed as herbs typical of arable 

land or disturbed habitats were recorded (see Figure 5.18). This might suggest that arable 
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agriculture did indeed take place but at some distance from the sampling site. This is 

credible, as the BEL core is located downslope from the Neolithic fields and arable 

cultivation would presumably be located further upslope on drier ground. The scrubby nature 

of the vegetation outwith the fields (Corylus and Betula are well-represented 

palynologically, with high indeterminate Pteropsida [monolete] spore percentages suggestive 

of significant tree cover) might have acted as a filter, reducing the probability of pollen from 

a distance reaching the sampling location. 

7.2.4.3 Abandonment of Neolithic agriculture 

Peat initiation in the Neolithic fields has hitherto been assumed to have acted as a tenninliS 

ante quem for the abandonment of agriculture therein. As dating evidence pertaining to the 

site is limited to Pinus macrofossils, estimates as to the date of abandonment have been 

made by reference to dates from the outer rings of pines rooted in the sub-peat mineral soil. 

Two such indirect dates, c. 4725 cal. BP and c. 5145 cal. BP (see Appendix A) are imprecise, 

as they do not record events associated with human activity. The current investigation has 

provided a much more precise date for the abandonment of c. 5375 cal. BP, in the Middle 

Neolithic (see above, section 5.4 and Table 5.4). 

The context of abandonment remained hypothetical until this investigation. Whether or not 

the Neolithic fields were abandoned because peat began to cover the mineral soil is critical to 

an assessment of the environmental marginality of the site. Long-term maintenance of open 

ground undoubtedly promoted blanket peat expansion (see O'Connell 1990a). However, the 

presence of blanket peat in the early- and mid-Holocene in North Mayo, including locations 

close to the Belderg Valley, indicates that early human impact (i.e. Neolithic agriculture) 

was not responsible for its spread (see Caulfield et al 1998, 637). That those locations 

subject to early blanket peat coverage are apparently lacking in archaeological evidence for 

mid-Holocene occupation is taken to suggest that the best, peat-free areas were selected for 

settlement and agriculture (ibid.). This study supports these conclusions: the Belderg Beg 

hillslope was indeed free of peat before the Neolithic farming commenced. Furthermore. 

abandonment of the Neolithic field system occurred some four centuries prior to, and thus 

entirely independently of. peat initiation within the fields. At the time the fields were 

abandoned, peat was apparently confined to altitudes some 40m downslope of the terminal 

field walls (i.e. the section of Wall 1 running roughly north-south: see Figure 5.1). The fact 

that peat began to accumulate on either side of that part of Wall 1 (see Figure :".1) at the 
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same time, supports the conclusion that Neolithic agriculture was not abandoned because of 

peat spread. The evidence for lynchet formation, illustrated by increasing depths of 

minerogenic soil banking up against the terminal field wall 1 (see Figures 5.1 and 5.2). 

suggests that significant soil erosion occurred prior to peat initiation within the field; this 

may have been a causative factor in land abandonment (see Section 7.3.2.2. below). 

7.2.4.4 Reoccupation 

The secondary occupation of Belderg Beg is firmly associated with construction of the 

roundhouse and the oak stakes in Wall 3 (see Figure 5.1) at c. 3400 cal. BP (see Caulfield 

1978, 140; Molloy & O'Connell 190-192). Mitchell & Ryan (2001, 206) raised the 

possibility of an interim phase of activity marked by the cultivation ridges, occurring at some 

indeterminate time prior to the roundhouse construction, based on their interpretation of the 

stratigraphical relationships between these features (contra Caulfield 1978; Molloy & 

O'Connell 1995; Caulfield pers. comm.). 

The palynological record examined in this investigation has dated the anthropogenic 

clearance of the secondary woodland to c. 4100-4000 cal. BP, with further clearance and 

mixed agriculture commencing at c. 3950 cal. BP. Although this is significantly earlier than 

previously believed, evidence from the cultivation ridges themselves does not support the 

aforementioned hypothesis of Mitchell & Ryan (2001). This places initial reoccupation in the 

Early Bronze Age, continuing through to the Late Bronze Age. 

Whilst this thesis has no new archaeological evidence to put forward, a critique can be made 

of some previously held hypotheses. Wall 3 (see Figures 3.4 and 3.5b) has been firmly 

interpreted as a single-phase structure acting as a boundary in the Bronze Age occupation 

(Caulfield 1978, 140; Molloy & O'Connell 1995, 191). That the wall is extended at its 

western extremity by stakes into gradually encroaching peat has been presumed to result 

from the greater availability of timber than stone. Support for a single phase of construction 

for the entire boundary was given by the statistically inseparable dates of two of the oak 

stakes (Caulfield pers. comm.). However it has been noted that the dated stakes were 

adjacent to each other, and located at the point where the stone wall began to be 

supplemented by stakes (Byrne pers. comm.). It is thus proposed that two adjacent oak stakes 

cannot be used to date the entire length of the stone and timber wall. An alternative 
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hypothesis would be that the stone wall was constructed during an earlier phase, and was 

extended by oak stakes at the time of roundhouse construction. 

As the landscape at Belderg Beg was largely covered in blanket peat by the time the 

secondary occupation commenced, previous interpretations have suggested that the motive 

for settlement must have outweighed the restrictions resulting from the limited quality and 

availability of agricultural soils. Interest in the seam of chalcopyrite at the cliffs in Horse 

Island (see Figure 3.1) was considered the most likely motivation for settlement (Caulfield 

1978, 140; Mitchell & Ryan 2001, 205). On balance, the geochemical evidence presented in 

this investigation makes it clear that such an interpretation cannot be upheld. 

7.2.4.5 The cultivation ridges 

The cultivation ridges have been assumed to relate to the roundhouse (Caulfield 1978, 140; 

Molloy & O'Connell 1995, 191) or alternatively to be older than it, belonging to a phase 

between the Neolithic occupation of the site its construction (Mitchell & Ryan 2001,206). 

The soil forming these ridges evidently supported repeated agriculture, as it was leached and 

acidified, and amendment strategies had been employed to some degree. The absence of 

cultivation ridges over the entire area occupied by the ard-marks resulted from agricultural 

reorganisation, perhaps a consequence of the contraction of the area put under cultivation 

and a change in crop husbandry practices. Support for this hypothesis comes from the 

retardation of peat spread between the BB2 and BB 1 sections. Despite the large errors 

associated with the radiocarbon assays, a delay is apparent between abandonment of the area 

at BB2 (ard-marks only) and BB 1 (ard-marks under cultivation ridges). A period of 

agricultural reorganisation is postulated, whereby ard tillage was abandoned and cultivation 

resumed under a ridge-and-furrow regime. 

There is a certain disjuncture between the dating of the roundhouse and the cultivation 

ridges. An oak timber (presumed to be structural) from the house was dated to c. 3400 cal. 

BP (with a wide error of ±240 cal. years: see Appendix A) whilst basal peat covering the 

cultivation ridges in the BB 1 section was dated nearly a millennium later, at c. 25.+0 cal. BP 

(with a wide error of ±185 cal. years: see Table 5.1). The 20 ranges, 36.+0 - 3160 cal. BP and 

2720 - 2350 cal. BP respectively, do not overlap. The 20 range of the basal peat date in the 

BB2 section, 2930 - 2750 cal. BP, does not overlap with that of the roundhouse either. The 
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lifespan of a Neolithic or Bronze Age stone and timber roundhouse has been estimated at c. 

20-25 years (Cooney & Grogan 1999, 48), so it is evident that without significant rebuilding 

and structural modification the house could not have been in use when either of the BB 

sections became buried by blanket peat. As is discussed above in Section 6.4, cereal 

cultivation is recorded in the BB2 profile c. 100-150 years after peat initiation at that 

location, which is considerably later than the range indicated for roundhouse construction, 

but potentially relates to cultivation of the ridges. Peat initiation at BB 1 is furthermore not 

believed to have been delayed after its agricultural abandonment. It is therefore concluded 

that agricultural activity, including cultivation of the ridge plots, persisted for some centuries 

subsequent to the roundhouse falling into disrepair. 

7.2.4.6 Anomalies 

Two bulk samples of charcoal from the roundhouse hearth, radiocarbon dated to the mid 

third and the late fourth/early third millennium cal. BP (see Appendix A) have been 

described as 'impossible to reconcile with either the archaeological material or the 

radiocarbon dates from the site' (Caulfield 1978, 142). Notwithstanding the problems 

associated with radiocarbon dating samples from bulk charcoal contexts, the potential old 

wood effect and the large error ranges associated with the calibrated dates (see Section 

1.1.2), it may not be necessary to discard these results as anomalous. The refined chronology 

provided by the current investigation confirms activity on the site during the earlier, and at 

least some of the later, spans of time bounded by these date ranges. Although construction of 

the roundhouse is placed at a much earlier time than either of these charcoal dates, and the 

building would almost certainly have fallen into disrepair by the opening of the third 

millennium cal. BP, the ruined building may have been used by the inhabitants of the later 

phase of activity. 
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7.3 Integration into regional datasets 

7.3.1 The Neolithic 

7.3.1.1 Environmental history 

Palaeoclimate 

In order to integrate the palaeoenvironmental proxy signals from Belderg Beg within the 

mid- and late Holocene climatic scheme from wider north-west Britain and Ireland, the 

summarised accounts of these proxies (see Table 7.1) must be compared with existing data. 

Table 7.2 displays the sequence of occupation, agriculture and main palaeoenvironmental 

signals from sites in North Mayo. 

The palaeoclimatic sequence indicated by the Belderg Beg proxy record suggests climatic 

forcing of the observed sedimentological changes in the Neolithic period. The outline 

scheme is of wetness between c. 5200 - 4900 cal. BP, forced by switching from a relatively 

dry to a relatively damp climatic regime, followed by a phase of relative surface dryness 

from c. 4850 to c. 4520 cal. BP. This sequence of wet/dry shifts is in accord with the 

generalised scheme recognised in British and Irish palaeoenvironmental proxy records 

outlined in Section 1.4.2.3. The Crag Cave stalagmite records cool phases in the early sixth 

and early fifth millennia cal. BP (McDermott et al 2001, see Figure 2.21). 

Increasing oceanicity and a brief peak in surface wetness are indicated at c. 4500 cal. BP at 

Belderg Beg, coincidentally with the Pinus decline. This lasted until the early fourth 

millennium cal. BP and is in accordance with the wet phase lasting most of the fifth 

millennium cal. BP at AchilI Island (Caseldine et al 2005). The scheme is also in agreement 

with the generalised British and Irish sequence. A phase of increased wetness is recognised 

from Northern Scotland at c. 4500 cal. BP in humification profiles (Anderson et al 1998; 

Tipping et al2003, 42) and is supported by the sub-fossil pine dating programme by Gear & 

Huntley (1991). 
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Disturbed Neolithic woodland 

There is no palynological evidence of the primary (pre-Neolithic disturbance) woodland at 

Belderg Beg, due to the relatively late date of peat accumulation. Only limited evidence is 

available for the disturbed woodland which existed during the Neolithic occupation. As the 

extra-local landscape was open in nature, due to the presence of the pastoral field system, 

Poaceae dominates the pollen assemblage (if Alnus is removed from the TLP count: see 

Figure 5.18). Of the woodland taxa, Alnus is dominant, with Corylus, Betula and Pinus 

secondary. The Alnus component has been interpreted as locally dominant on incipient peat 

at the base of the hillslope. 

Although the Belderg Beg pollen profile opens during a period of agriculture and is thus 

dominated by Poaceae, the arboreal pollen components of the lowermost few spectra 

(equivalent to the final part of the agricultural phase) provide information on the nature of 

the woodland which surrounded the field system. In PAZ BEL-I, at c. 5465 cal. BP, the AP 

assemblage is dominated by Alnus, with Corylus and Betula, and smaller percentages of 

Pinus. By reference to Section 2.4.2 the similarity of the Belderg Beg woodland to typical 

western Irish pollen profiles of that period is seen. Alnus dominated lake margins and areas 

of wetter soils. Despite its low altitude, Belderg Beg seems to have had a more typically 

upland vegetation cover, characterised by the relatively high proportions of Betula and 

Pinus. Corylus is typically well-represented in western Irish pollen diagrams (see Section 

2.4.2.1) and has been suggested as an indicator taxon of disturbed landscapes, owing to its 

fire-resistance and tendency to colonise recently burned open ground (Huntley 1993, 214). 

Some typical lowland taxa are present in lesser proportions at PAZ BEL-I, for instance Ilex, 

Quercus, Ulmus, Taxus, Salix and Hedera (see Section 2.4.2.1 and Figure 5.17). In general, 

however, these lowland taxa are better represented palynologic ally in PAZ BEL-2, 

suggesting that the wooded part of the landscape represented in BEL-l was characterised by 

typical upland trees. That Alnus dominated at this early stage suggests that low-altitude soils 

were damp and waterlogged. The woodland assemblage may have been more typically 

upland than lowland in composition because it was disturbed, or because it was originally 

more upland in character, possibly because of the exposed position of the site and its 

susceptibility to Atlantic storms. 

The similarity of the AP assemblages of Belderg Beg (mostly below 50m OD) and Ceide 

Fields (mostly above 150m OD) highlights the more characteristically upland nature of the 
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Belderg Beg woodland, with the Belderg Beg AP suite otherwise more typical of damp soils. 

The pre-Landmim woodlands at Ceide Fields were dominated by Corylus and Pinus, with 

Betula and Quercus at lesser levels and Alnus poorly represented at c. 5%TLP (Molloy & 

O'Connell 1995). Most of the Pinus was probably localised (O'Connell & Molloy 2001, 

103). Corylus and Pinus also dominated at Garrynagran, with a similar woodland suite to 

that at Ceide Fields, albeit with Ulmus of greater importance than Quercus (ibid., 108; see 

Figure 2.26). 

The perceived upland-lowland divide in woodland composition is increasingly evident when 

the pollen assemblages from western Ireland (Counties Clare, Donegal and Galway) are 

considered. Corylus generally declines in representation in disturbed woodlands (e.g. Lough 

Maumeen, Co. Galway: Huang 2002; An Loch Mar, Inis OIIT, Aran Islands: Molloy & 

O'Connell 2004; Lough Mullaghlahan and Altar Lough, Co. Donegal: Fossitt 1994; Lough 

Sheeauns, Co. Galway: Molloy & O'Connell 1987). Other than that, no further 

generalisations are apparent. 

Comparison of the other western Irish datasets with those from North Mayo suggests that 

woodland disturbance associated with post-Ulmus decline Neolithic agriculture was less than 

total clearance, but one which resulted in shifting woodland dynamics with regards to 

composition. The precise nature of the shifts in composition varied according to the nature of 

the pre-existing woodland, itself evidently largely a function of location, with topography 

and edaphic factors apparently constituting the controlling factors. O'Connell & Molloy 

(2001, 118) suggested that at sites where Ulmus was previously unimportant in the 

landscape, substantial Neolithic woodland clearances were marked by decreases in the 

canopy formers Pinus and Quercus and especially the understorey shrub Corylus. Several 

factors suggest that this may have been the case at Belderg Beg. Whilst the Belderg Beg 

disturbed woodland cannot be compared with its precursor, the resurgence of those taxa after 

abandonment suggests they may have been important in the landscape. That Alnus responded 

to abandonment more markedly with sharp increases, suggests that it was a local, mire

dwelling taxon (cf. Section 5.4.2). The response of Betula was also rapid, but less so than 

that of Alnus, suggesting that, with the light-demanding shrub Corylus, it rapidly expanded 

into newly abandoned areas. 

By the Neolithic, peat had been growing for considerable lengths of time at various locations 

in the North Mayo region. At the plateau at the apex of the Belderg Beg hillslope itself 
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(Geevraun townland), numerous pine stumps are preserved in peat well above the mineral 

soil. There, a bulk peat sample from 5cm above the transition between mineral soil and peat 

was dated to c. 6510 cal. BP (Caulfield et al 1998, 633; see Appendix A). Peat began to 

accumulate in the early Holocene in the small basin used by Molloy & O'Connell (1995) for 

their palynological investigations at C6ide Fields. Peat initiation occurred on the lower flatter 

areas of Achill Island between 10000 and 9000 cal. BP, with large areas of the island 

covered by peat by c. 6000 cal. BP (Caseldine et al 2005, 172). At Garrynagran, peat 

accumulation started in the early Holocene, before 6500 cal. BP (see Figure 2.26; O'Connell 

& Molloy 2001, 108-9 & 115) and the bog was considered to have been 'extensive' by the 

time of Neolithic Landmim (ibid., 110). 

A vital factor is that there is a likely hiatus in peat growth in the early- and mid-Holocene in 

the C6ide Fields sampling basin; the precise chronology has not been explored but the 

authors concluded that peat accumulation re-commenced at c. 5900 cal. BP, shortly before 

the Ulmus Decline (Molloy & O'Connell 1995, 198). A case can perhaps be made for an 

externally-forced environmental change in the first half of the sixth millennium cal. BP, 

causing peat initiation or renewed accumulation in sensitive locations as and when particular 

edaphic thresholds were crossed. 

Secondary woodland 

At Belderg Beg, Alnus formed the main mire-dwelling canopy, and outside that area Betula, 

Pinus and Quercus expanded, forming a canopy to the detriment of Corylus. That Ulmus did 

not feature particularly strongly in the secondary woodland at Belderg supports the 

suggestion that it had not been an important component in primary (pre-Ulmus Decline) 

woodland (cf. O'Connell & Molloy 2001, 120). Again, the nature and species composition of 

woodland regeneration in the Middle and Late Neolithic post-abandonment contexts of 

western Ireland appears to vary largely in response to local topographic and edaphic 

controls. At the island site of An Loch Mor, the secondary woodland resurgence was 

characterised by increases in Pinus, Corylus and Ulmus and declining percentages of 

Quercus and Alnus (Molloy & O'Connell 2004, 47 & 53). At the upland site of Lough 

Maumeen, Quercus became dominant over Pinus; Betula, Corylus and Alnus stabilised, 

Fra.xinliS formed a continuous curve and Taxus peaked (Huang 2002, 160). At the lowland 

sheltered site of Lough Sheeauns, the woodland regeneration saw values of Quercus and 

Ulmus recover, and percentages of Betula, Corylus and Alnlls stabilise (Molloy & O'Connell 
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1987, 210-214). Although site-specific factors govern the general composition of 

regenerated woodland, a number of recurring phenomena are identifiable. 

1. Fraxinus increase 

Fraxinus was fairly well-represented in the secondary woodland at Belderg Beg, which is 

typical of its pattern of expansion in post-Ulmus decline woodlands of western Ireland 

(O'Connell & Molloy 2001, 120). Fraxinus expanded in post-abandonment secondary 

woodland from the Middle Neolithic at An Loch Mor (Molloy & O'Connell 2004, 53), 

Lough Maumeen (Huang 2002), Altar Lough and Lough Mullaghlahan (Fossitt 1994, 10 & 

17), C6ide Fields (Molloy & O'Connell 1995; see Figure 2.3) and Garrynagran (O'Connell 

& Molloy 2001, 109). Its increase is apparent but was less marked at Lough Sheeauns 

(Molloy & O'Connell 1987, 215) and at Church Lough, Inishbofin (O'Connell & Nf 

Ghniinne 1994, 74). At sites with little or no evidence of Neolithic farming activity, 

Fraxinus did not expand so markedly in the Middle and Late Neolithic, such as Lough 

Nabraddan, Co. Donegal (Fossitt 1994, 10-14) and Mooghaun, Co. Clare (O'Connell et al 

2001). 

The Fraxinus expansion occurred later in Ireland than England, where it expanded fust in the 

Atlantic period, several centuries before its main expansion in the Sub-Boreal (O'Connell & 

Molloy 2001, 120; cf. Godwin 1975). The causal factor behind the Fraxinus increase is 

likely to have been that the taxon (which is relatively light-demanding) opportunistically 

colonised newly abandoned areas. The similar expansion of Quercus in the Late Neolithic at 

Belderg Beg is also a common characteristic of north-west Irish pollen diagrams (O'Connell 

& Molloy 2001, 120) such as Lough Sheeauns (Molloy & O'Connell 1987) and Lough 

Maumeen (Huang 2002). 

2. Taxus representation 

The status of Taxus is particularly interesting. In keeping with many western and south

western Irish pollen profiles (see O'Connell & Molloy 2001, 120), Taxus shows a marked 

expansion in the Late Neolithic at Belderg Beg. 

Both human activity and a climatic shift have been postulated as causal factors in the Late 

Neolithic Tanis expansion. The former hypothesis, that yew took advantage of woodland 
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disturbance by Neolithic fanners, is countered by its concurrent expansion at locations where 

Neolithic human impact was absent or minimal, e.g. Mooghaun (O'Connell et al 2(01), 

Lough Namackanbeg, Co. Galway (O'Connell et al 1988, 279), Lough Doo (O'Connell et al 

1987, 154-155) and Lough Nabraddan (Fossitt 1994, 14). O'Connell & Molloy (2001, 121) 

consider the general synchroneity of the Taxus expansion to support a climatic cause; 

highlighting that it occurred coincidentally with the colonisation of bog surfaces by Pinus; a 

phenomenon considered to have been mediated by a climatic shift (see Section 2.2.3.4). 

3. Pinus decline 

From Figure 7.2 it is seen that all the interpolated palynologic ally recognised Pinus decline 

dates in North Mayo, including that from Belderg Beg, occurred within the 2cr ranges where 

the decline was directly dated (Ceide Fields: Molloy & O'Connell 1995 and Bunnyconnellan 

East: O'Connell 1990b). 

In Connemara the Pinus decline is apparently more complex. A distinct Pinus decline 

occurred at c. 4650 cal. BP at Loch an Chorcail (interpolated: see O'Connell & Molloy 

2001), which is in line with the majority of the North Mayo dates. However at certain other 

sites there is no apparent decline, such as Lough Namackanbeg (O'Connell et al 1988), or 

Pinus declined much later, such as at Letterfrack, Connemara National Park (ibid.; see 

Figure 6.1). At Lough Sheeauns, the earlier Holocene (c. 7500 cal. BP) Pinus decline, in the 

context of the Alnus expansion, is well registered (a feature also seen at Ceide Fields: Molloy 

& O'Connell 1995), but subsequently there was only a slow mid-Holocene decline of Pinus 

from c. 5150 cal. BP, lasting a few centuries (O'Connell et al 1988). In the karstic 

environment at Inis Oirr, Aran Islands, Pinus declined at c. 5100 cal. BP, but pollen 

percentages indicate it persisted in the region, and percentage representation increased 

briefly before a further decline at c. 4700 cal. BP (Molloy & O'Connell 2003, 53). 

In County Donegal, the accumulated evidence points to an expansion of Pinus between c. 

5700 and 5150 cal. BP, followed by a general, but not markedly synchronous decline (Fossitt 

1994, 26-27). The complexity of this situation is seen by comparing sites: at Lough 

Mullaghlahan, Pinus began a slow decline from already low percentage values at c. 5700 cal. 

BP: whereas at Lough Nabraddan, the taxon expanded at c. 5400 cal. BP and declined 

gradually between c. 5150 and c. 3760 cal. BP; and at Altar Lough, a short-lived Pinlls 

decline at c. 4000-3630 cal. BP is the only marked event within the generally steady 
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percentage representations of the taxon which occurred between c. 5550 and c. 2340 cal. BP, 

when a marked decline got under way (ibid.). 

The available radiocarbon-dated Pinus declines from northern Scottish pollen profiles range 

from c. 4600 to c. 3500 cal. BP (see Figure 6.3). Nevertheless, in that region, pine stumps 

ceased to be preserved in peat after c. 4200 cal. BP, although there is the potential problem 

of absence of preservation conditions (see Section 2.2.3.4). It is difficult to avoid making the 

general conclusion that the Pinus declines of northern Scotland occurred slightly later than 

those of western Ireland. 

From assessment of this accumulation of data, it can be argued that the Pinus decline was 

indeed a response to externally forced climatic changes, which were characterised by the 

extinction or near-extinction of a taxon from its range limits (see Section 2.2.3.4). However, 

the situation was probably more complex than that statement would suggest. It would appear 

that local conditions played a significant part in determining the timing of the decline; 

indicating that whilst external forcing was the ultimate cause, the timing of the resultant 

effect was influenced by local conditions, such as topography, vegetation dynamics, edaphic 

conditions, and human activity; the consequence being that thresholds were crossed at any 

particular location according to the authigenic response to the external forcing. 

7.3.1.2 Settlement and agriculture 

The chronology of settlement at Belderg Beg is comparable with the sequence of occupation 

at other sites in North Mayo. Figure 7.3 shows a comparative chronology of occupation of 

the major Neolithic and Bronze Age sites of settlement and agriculture in Counties Galway 

and Mayo. Similarly to the other sites where Neolithic agriculture is evidenced in North 

Mayo, Ceide Fields and Garrynagran, initial agricultural activity occurred in the Early 

Neolithic and the first half of the Middle Neolithic periods (see Table 7.2). It remains 

unknown whether farming at Belderg Beg (and indeed Belderg Mor on the other side of the 

valley) began at a similar time to that at Ceide Fields and Garrynagran, that is to say just a 

century or so later than the Ulmus Decline (see O'Connell & Molloy 2001). 

Whilst stone-walled field systems are absolutely dated to the Neolithic in the Belderrig 

valley (Belderg Beg and Belderg Mor) and at Ceide Fields, the remainder of the pre-bog 

stone walls and other features in North Mayo recorded by Herity and Caulfield in the 1970s 

193 



must be described as just that: pre-bog stone features. There does not appear to be any 

adherence to a particular typology in field system design when the only surveyed examples -

Ceide Fields and Belderg Beg - are compared. Both the individual fields within the Ceide 

Fields and the overall system are much more regularly shaped than the known parts of the 

system at Belderg Beg. Nevertheless, a predominantly pastoral economy with a minor arable 

growing component appears to be in evidence at the three North Mayo sites with evidence of 

Neolithic agriculture: Ceide Fields, Garrynagran and Belderg Beg (Table 7.2). 

Although settled agriculture is established as a recurring feature of western Ireland in the 

Early and Middle Neolithic, unequivocal evidence for coaxial field systems seems to be 

limited to North Mayo. Whilst several stretches of pre-bog stone walls have been recorded in 

Connemara (Gosling 1993; M. Gibbons pers. comm.), no organised field systems have been 

found to date, even in regions where subsequent blanket bog development and non-intensive 

human activity have provided suitable preservation conditions (O'Connell & Molloy 2001, 

122). Arguments have been made for assigning some of the field boundaries on the Burren to 

the EarlylMiddle Neolithic, although the dating is not secure (ibid.). Reasonable conclusions 

may be that Early and Middle Neolithic settled agriculture was a robust feature of western 

Ireland, and that it was unusual in terms of its wider geographical context, but that strong 

sub-regional identities were present which were expressed in the physical organisation of the 

agricultural landscapes. The pre-bog stone wall features of Connemara and Mayo which 

have been recorded but not fully explored may be contemporary with the Early and Middle 

Neolithic agriculture and may perhaps represent a different strategy of landscape utilisation 

to those employed in the coaxial field systems. There is perhaps an undiscovered typological 

continuum of stone boundary features from that period, encompassing the discrete, obscure 

lengths of pre-bog wall in Mayo and Connemara, the small, patchy fields at Belderg Beg and 

the large coaxial system at Ceide Fields, which is related to the regional agricultural 

sedentism of the time. 

The relatively small size, irregular layout and earlier abandonment of Belderg Beg in 

comparison to Ceide Fields could reflect the marginal status of the former site. Perhaps sites 

such as Belderg Beg and Belderg Mor were peripheral to the core, Ceide Fields. If the 

economy at Belderg Beg was unable to maintain the population, amalgamation with the 

Ceide Fields community (i.e. the core absorbing the periphery), or relocation elsewhere, 

might have been the only options available. 
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The question of arable agriculture in the Neolithic is difficult to answer at Belderg Beg. The 

regional (North Mayo) Neolithic economy has been described as primarily pastoral, with a 

minor arable element present at most sites, in the first few centuries after the Ulmus Decline 

(O'Connell & Molloy 2001, 123). This occurred within a settled rather than mobile 

agricultural landscape (ibid.) although field systems were not a ubiquitous characteristic. 

There are interesting parallels in the Neolithic of Atlantic Scotland which may be applicable 

to western Ireland. Site-based archaeological investigations with intensive geoarchaeological 

sampling strategies (soil micromorphology, phosphate analysis, magnetic susceptibility, loss

on-ignition and microscopic charcoal analysis) have suggested midden cultivation occurred 

at Old Scatness, Shetland (Guttmann et al 2004, 61) and Northton, Harris, where a pre

existing Mesolithic midden was cultivated (Gregory et al 2005, 947). Guttmann (2005) has 

argued for Neolithic midden cultivation at other sites in Atlantic Scotland: Knap of Howar, 

Papa Westray (Ritchie 1983); Links of Noltland, Westray (Clarke et al 1978), and possibly 

also in England: Hazleton North, Gloucestershire (Macphail 1990). Evidence shows that this 

practice continued into the Bronze and Iron Ages at Cill Donain (Gilbertson et al 1999) and 

Hornish Point (Barber 2003), both on South Uist, and Old Scatness, Shetland (Guttmann et 

al 2004, 61). Research strategies have obviously influenced these discoveries; site-based 

integrated archaeological investigations have resulted in the wealth of detailed evidence for 

Scottish prehistoric agriculture, whereas western Irish evidence for Neolithic agriculture has 

exclusively derived from pollen profiles and landscape-scale surveys (see O'Connell & 

Molloy 2001) with little intensive site-based excavation. 

It is evident from the soil micromorphological investigation in this study that the Bronze Age 

arable agriculture at Belderg (as evidenced in the BB 1 section) was not carried out in the 

context of midden heap cultivation. Soil horizonation was evident and only the later tillage 

phase displayed minor indications of amendment by domestic refuse addition. There is, 

however, a possibility that the Neolithic farming phase at Belderg (and indeed the other 

Eady/Middle Neolithic settled agricultural sites) employed midden cultivation techniques. 

With most Neolithic agricultural sites in Ireland being preserved under peat and therefore not 

extensively or intensively excavated, the chance of discovery of any tillage sites, whatever 

their form, has been largely unrealised. 
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7.3.1.3 Abandonment 

The field system at Belderg Beg was abandoned around 200 - 250 years before Ceide Fields 

and Garrynagran. Although doubts have been expressed above as to whether the entire Ceide 

Fields system as seen in plan represents a single phase of occupation, the palynological 

evidence does support agricultural cessation within the pollen source area of the GLU IV 

core (see Molloy & O'Connell 1995). 

The evidence from Belderg adds to the corpus of data accumulated by O'Connell & Molloy 

(2001), which indicates a distinct pattern to regional (Co. Galway and Co. Mayo) Neolithic 

occupation (see Figure 7.2). Agriculture typically began immediately after the Ulmus decline 

and peaked in intensity at the end of the Early Neolithic. Sites were then abandoned from the 

second half of the Middle Neolithic until the end of the Late Neolithic, i.e. from c. 5100 -

4300 cal. BP, although reoccupation commenced later at many locations. This is particularly 

interesting and worthy of further investigation. Why did human activity cease or decline in 

intensity in much of western Ireland at this time? Did the model of sedentism described in 

Section 2.2.2, apparently so uncharacteristic of most of mainland Britain, apply to the Early 

and Middle Neolithic only in this region, with the Late Neolithic characterised by mobility? 

A decline in overall population rather than a geographical shift within the region has been 

postulated as a causal factor for the woodland regeneration (ibid., 120). 

Although environmentally deterministic causes of population dynamics are unfashionable, 

the contemporary environmental and climatic conditions must be considered when seeking a 

possible cause for the apparent abandonment of much of the region. By reference to Figure 

2.1 and Section 2.3.4.1 it can be seen that the Irish palaeoclimatic indicators suggest the 

period 5400 - 5100 cal. BP was one of climatic fluctuations, with a regionally significant 

shift in North Atlantic climatic regimes evidenced. Cool conditions were signified by the 

GISP2 glacio-chemical index (O'Brien et al 1995). Few terrestrial records are available 

because peat initiation generally occurred later at sites which have been hitherto analysed for 

palaeoclimatic proxies (see Section 2.3.4.1), but the Crag Cave stalagmite (O'Donnell et al 

2001) indicates a cooling phase within the appropriate time period. The Achill Island peat 

humification record suggests that surface conditions remained relatively dry until c. 5000 

cal. BP (Caseldine et al 2005) and the Ceide Fields pollen record suggests a drier mire 

surface between c. 5200 and 4900 cal. BP (O'Connell & Molloy 2001, 115). The episode of 

extreme storminess registered at Achill Island at c. 5200-5100 cal. BP (Caseldine et al 2005) 
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may be a representation of a short-lived climatic fluctuation. Regardless of causality, the 

period in which much of the west of Ireland was apparently largely depopulated seems to 

have occurred in the interlude between two phases of climatic deterioration: those at c. 6000 

- c. 5000 and c. 4500 - c. 4000 cal. BP (see Section 2.3.4). 

Although peat initiation commenced shortly before agricultural abandonment at Belderg 

Beg, which in itself indicates increasingly wet surface conditions, the humification record 

suggests the initial detrital peat was relatively dry. Relatively dry surfaces at three sites -

Belderg Beg, Ceide Fields and Achill Island - indicate a significant regional trend. 

Furthermore, this trend is coincident with land abandonment. Causal connections can be 

postulated, requiring a rethinking of common assumptions regarding the nature of 

environmental marginality. 

The theory proposed here rests on pastoral agriculture being the mainstay of the economy, 

with cereals playing a minor role. It has been suggested that pioneer Neolithic 

agriculturalists selected the best areas to colonise based on edaphic factors, and that 

increased climatic dryness at c. 6000 cal. BP permitted arable cultivation on soils that were 

at that time drier than they would subsequently be (see Bonsall et al 2001). Pastorally-based 

economies with a minor arable component were established in North Mayo, in the areas with 

better soils, as peat was already widely spread. A spectrum of stone wall field system 

typologies developed, characterising the agricultural economies. Ceide Fields, the largest 

such site, was a core area, with outlying peripheral communities including Belderg Beg and 

Belderg Mor. This economy was successful for a time but soils gradually became exhausted 

as a result of long-term agriculture, perhaps even overgrazing; a situation amplified by the 

continuing climatic regime of relative dryness in the sixth millennium cal. BP. Water 

shortage could have been a problem, in terms of both soil moisture and finding sufficient 

water to maintain cattle populations. Droughty soils would decline in productivity and the 

resulting reduction in vegetation cover would increase susceptibility to erosion. Meanwhile, 

downslope of the barriers formed by the stone walls, peat growth commenced in suitable 

initiation foci. By c. 5375 cal. BP the situation was such that there was insufficient 

vegetation available to maintain grazing requirements, and the required level of agriculture 

could not be sustained. Extensification of the field system was inhibited by peat spread in the 

vicinity. Environmental marginality - with soil quality and water availability the limiting 

factors - ultimately had a climatic cause - increased dryness. Relocation of settlement must 

have been neces~ary. 

197 



A similar situation occurred approximately two centuries later at Ceide Fields (Molloy & 

O'Connell 1995; O'Connell & Molloy 2001) and at Achill Island also, where 

palaeoenvironmental records suggest that extreme storminess accompanied the transition 

from phase of climatic dryness to one of wetter conditions at c. 5100-5000 cal. BP 

(Caseldine et al2005). The effects of this regionally significant climatic shift on rates of peat 

spread varied at different locations according to local edaphic and topographic influences. 

Societal factors would have been involved in the shift in settlement patterns and locations. 

That western Ireland was more or less abandoned as populations migrated elsewhere, or 

adopted a less sedentary lifestyle, seems logically more probable than catastrophic 

population decline in that region alone. Grogan (2004) interprets changing house structural 

typology in the Middle Neolithic to express changing societal relationships and dynamics; 

with a reduction in size and therefore number of inhabitants, and longer-term occupation by 

smaller groups, as the main traits that can be inferred (see Section 2.2.2.1). Although the 

houses he makes these inferences from are not located in western Ireland, there may be a 

wider significance betrayed by changing social networks and domestic arrangements noted 

elsewhere in Ireland. 

There is some evidence that the Middle and Late Neolithic agricultural decline so apparent in 

western Irish pollen profiles was part of a pan-regional (Atlantic fringe) phenomenon. A 

reduction in agricultural intensity was interpreted in the Neolithic occupation of Scord of 

Brouster, Shetland, registered palynologic ally in several cores by a short phase of scrub 

regeneration ending just prior to c. 4700 cal. BP. This was ascribed to a decline in population 

levels (Keith-Lucas 1986, 116-117). At that stage, comparisons were drawn to similar 

regenerative phases in Northern Ireland commencing between c. 5380 and c. 5150 cal. BP, 

namely Ballynagilly, Ballyscullion and Beaghmore (Pilcher et al 1971) and Gortcorbies 

(Smith 1975). As more detailed studies have become available and comparisons possible 

(e.g. Bradley 1978; Whittle 1978; Edwards 1993), suggestions have been made that the Later 

Neolithic of Britain was generally characterised by woodland regeneration, prior to a 

progressive woodland reduction continuing thereafter to the present, a pattern most 

commonly identified and palpable in upland and peripheral areas (Edwards 2004, 63). The 

possibility of any relationship between Middle and Late Neolithic woodland regeneration 

and climatic change has not been explored, arguably due to the prevalent interpretation of 

settlement continuity (Tipping & Tisdall 2004, 76; see Thomas 1999). 
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7.3.2 The Early and Middle Bronze Age 

7.3.2.1 Environmental history 

Palaeoclimate 

After c. 3500 cal. BP the palaeoclimatic indicators at Belderg Beg appear to give largely 

inconclusive, indeed contrary, signals. The humification curve records increasing dryness, 

whilst geochemistry indicates an absolute increase in oceanic ally-derived elements, 

suggesting climatic oceanicity at its maximum level for the profile. The general scheme 

outlined in Section 2.3.4.3 shows an increase in climatic wetness commencing at c. 3200 cal. 

BP and lasting until c. 2300 cal. BP, although sub-phases characterised by short-lived 

fluctuations undoubtedly occurred within this timespan. Comparison to other sites in western 

Ireland is also inconclusive. A relatively dry mire surface is also recorded at Ceide Fields at 

this time (see Table 7.2), but a brief spell of cool wet conditions is recorded in the late fourth 

millennium cal. BP at Abbeyknockmoy, Co. Galway (Barber et a12003, see Figure 2.20). 

Vegetation 

The post-Neolithic regenerated woodland at Belderg was again characteristic of damp soils, 

with elements typical of both upland and lowland assemblages. The over-representation of 

Alnus, due to its presence on the mire surface, somewhat masks the nature of the wider 

woodland regeneration. With the exception of the occasional Pinus tree, this secondary 

woodland apparently did not extend to the previously farmed fields (as evidenced by the peat 

stratigraphy). When compared to the post-Neolithic secondary woodland at Garrynagran and 

Ceide Fields (see Figures 2.26 and 2.11), the dominance of Alnus at Belderg Beg seems 

anomalous, but is probably a factor of hydrology. The high representation of Corylus at 

Belderg Beg is in keeping with its dominance at contemporary levels at both the 

aforementioned sites. Perhaps due to their somewhat more exposed locations, Belderg Beg 

and Ceide Fields have higher percentages of Betula than Quercus, a situation which is 

reversed at Garrynagran, where Pinus is also of greater importance than at the other sites. 

The expansion of the minor woodland taxa, Frcuinus and Taxus, is characteristic of north

west Ireland (see Section 7.3.1.1 above). The commencement of a continuous curve for Salix 

is seen at both Belderg Beg and Ceide Fields in the secondary woodland, as is the 
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regeneration of Ulmus, which is also seen at Garrynagran. !lex is better-represented at 

Belderg Beg than at either Ceide Fields or Garrynagran. Indeed, other typically light

demanding woodland and woodland-edge taxa, such as Salix, Fraxinus, Taxus and Sorbus, 

appear to be best represented at Belderg Beg (if Alnus is removed from the TLP sum). 

It is particularly interesting that the Taxus expansion at Belderg Beg persisted beyond the 

renewed clearance and agricultural activity, decreasing in percentage representation at c. 

2775 cal. BP. In most profiles it was apparently cleared in the context of renewed 

anthropogenic impact of the Early Bronze Age (O'Connell & Molloy 2001, 121), such as 

Lough Maumeen (Huang 2002, 158-160), Church Lough, Inishbofin (O'Connell & Nf 

Ghrciinne 1994, 74), Gortlecka, the Burren, Co. Clare (Watts 1994, 52), An Loch Mar 

(Molloy & O'Connell 2004, 53), Lough Doo (O'Connell et al 1987, 155). Only occasionally 

did it persist until modem times (Mitchell 1990). The level of grazing seems to have been a 

controlling factor in the success of Taxus expansion throughout prehistory (O'Connell & 

Molloy 2001, 121). Interestingly, in contrast to the situation with Fraxinus, Taxus showed a 

characteristic peak in the Late Neolithic at Mooghaun (O'Connell et al 2001, 170-171), 

which perhaps supports a climatic driver in its population dynamics. 

With regards to the non-arboreal pollen component of the North Mayo assemblages, it is 

apparent that even though bog taxa had been eliminated from the TLP count at Ceide Fields, 

Call una was less important at Belderg Beg. This could be a function of hydrology, or of 

pollen source areas. Call una has a low dispersal rate and ~he sampling site at Belderg Beg 

was at that time vegetated by fen woodland species, whilst at Ceide Fields the sampling 

location, a small basin mire, was in all probability dominated by Ericaceae. Poaceae are 

slightly better represented at Belderg Beg than Ceide Fields. Overall, the woodland at 

Belderg Beg following abandonment of the Neolithic field system apparently regenerated in 

a similar way to that at proximal sites in the region (Ceide Fields and Garrynagran) albeit in 

accordance with the particular edaphic and topographical conditions - its damp soils and 

exposed conditions limiting the expansion of deciduous woodland. 

Peat accumulation appears to have started later in the areas of base-rich Carboniferous 

limestone bedrock than in those areas of acidic bedrock geologies further to the west. Peat 

initiation in localised areas within the Carrownaglogh area has been estimated to have begun 

at c. 4500-4400 cal. BP, principally caused by increased climatic wetness (O'Connell 1986, 

171). At Bunnyconnellan East townland, peat accumulated over mineral soils slightly earlier, 
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at c. 4630 cal. BP, at a higher altitude (O'Connell 1990b, 270-271). At Lough Doo, the main 

expansion of bog and heath pollen taxa was underway at c. 3750 cal. BP (ibid., 275), and the 

absence of prior agricultural activity has been argued as a causal factor in the delayed 

blanket bog spread (O'Connell et al1987; see Section 2.4.2.2). At 

In his appraisal of the timing of blanket bog initiation in western Ireland, O'Connell (1990a, 

64) considered that synchroneity or clustering of dates of peat initiation and expansion would 

suggest control by factors operating at a regional level, such as climate, or the introduction of 

a new element such as Neolithic farming. In contrast, a wide range of dates and an absence 

of clustering would indicate that local factors were probably responsible, such as edaphic 

conditions, which are mainly determined by solid and drift geology (ibid.). On this basis, it is 

suggested that the mid-fifth millennium cal. BP cluster of peat initiation dates in the 

Carrownaglogh area was primarily caused by climatic factors, and that acceleration of bog 

expansion at individual sites may have been triggered by human activities, as evidenced at 

Lough Doo. Further west along the North Mayo coastline, human activity in the first half of 

the sixth millennium cal. BP evidently triggered peat initiation at Belderg Beg and renewed 

accumulation in the Ceide Fields basin (cf. Molloy & O'Connell 1995, 198). Similar 

sequences occurred in Connemara at susceptible sites also, supporting the causal 

connections. For instance, at Lough Maumeen, blanket bog became established in the 

context of Neolithic farming and had replaced woodland by the Late Neolithic, but the major 

blanket bog expansion commenced as a consequence of Early Bronze Age agriculture 

(Huang 2002, 162). Early and Middle Bronze Age human activity, including clearance by 

fire, was considered to have been the causal factor in blanket bog expansion at Lough 

Namackanbeg and probably also Lough Sheeauns, (O'Connell et al1988, 285). 

7.3.2.2 Settlement and agriculture 

Reoccupation occurred later at Belderg Beg than at Ceide Fields and Garrynagran. The 

secondary occupation at Belderg Beg occurred at a point when agriculture apparently 

contracted at Ceide Fields. The main phase of agriculture at Lough Doo, and the activity at 

Bunnyconnellan East, both started approximately two centuries after reoccupation at Belderg 

began (see Figure 7.2). Although it is unclear from the archaeological record or this 

investigation whether the Bronze Age occupation at Belderg was continuous throughout the 

entire timespan indicated (c. 4000 cal. BP to the mid-third millennium cal. BP), or whether 

activity occurred in discrete shorter periods not recognisable as such in the 
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palaeoenvironmental record, the end of this phase is roughly contemporaneous with 

abandonment of agriculture at Carrownaglogh and Lough Doo (see Figure 7.2). Sustained 

activity is seen in the Ceide Fields palaeoenvironmental record, although again, the 

continuity or otherwise of occupation through the span is unknown. 

Bronze Age agriculture at Belderg Beg is in a curious position of having good archaeological 

evidence for intensive cultivation and pastoralism, but poor chronological resolution. The 

latter has been discussed above and it is likely that the distance between the agricultural land 

and the pollen sampling location, as well as the prevailing wind direction, are causal factors. 

Sustained agriculture throughout most of the Bronze Age is typical for the western Irish 

pollen profiles; suggesting that long-term occupation at Belderg Beg would not have been 

regionally anomalous. In particular, the entire fourth millennium cal. BP seems to have been 

a phase of particularly intensive agriculture. 

The inferred cultivation of barley as the sole cereal crop during the Bronze Age at Belderg 

Beg is typical of Bronze Age Ireland, where barley is the most common cereal crop 

identified macroscopically (see Section 2.2.3). Occasional finds of wheat species have been 

made, such as Triticum-type pollen grains in Late Bronze Age levels of a lake sediment 

profile at Mayo Abbey, central Co. Mayo (Fuller 2002, 21). Oat cultivation is signalled at 

Mannin 2, Co. Galway, at c. 2875 cal. BP (Weir 1996b). Both of these are roughly 

coincident with a phase of agriculture at Belderg Beg, but on a widespread scale, barley is 

the most common identified crop. 

7.3.3 The Late Bronze Age 

7.3.3.1 Environmental history 

Palaeoclimate 

The third millennium cal. BP, most of which is commonly considered to have been 

dominated by cool, wet conditions in north-west Europe, especially from c. 2800 cal. BP 

onwards (see Section 1.4.3.4) is not highlighted as such in the Belderg Beg humification or 

geochemical indices, although deteriorating edaphic conditions are suggested by the 

presence of AMS-dated mineral inwash layers. Several peat-based records of Northern 

Britain and Ireland, including that from Abbeyknockmoy, Co. Galway (Barber et al 2003) 
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have identified cool or wet phases in the early third millennium cal. BP. The geochemical 

and humification records from Belderg Beg do not appear to exhibit sensitivity to known 

climatic fluctuations in this phase. Hydrology and land management techniques may be the 

cause of this insensitivity (see Section 7.2.3.4), as storminess resulting from the climatic shift 

evidently caused erosive episodes upslope. 

Vegetation 

By the Late Bronze Age, blanket peat dominated the landscape of Belderg Beg and the last 

woodland stands had disappeared. AP percentages remain negligible, reflecting background 

regional pollen input. The extremely sporadic representation of Pinus pollen from the Late 

Bronze Age onwards in the Belderg Beg profile is characteristic of western Ireland (cf. Ceide 

Fields: Molloy & O'Connell 1995, 204; Lough Doo: O'Connell et al 1987, 160). Extensive 

bog growth in all areas of North Mayo by the Late Bronze Age has been indicated 

(O'Connell et al 1987, 162) and general data from Ireland suggest that blanket bog growth 

was well established in the Atlantic fringe of Ireland by the middle of the third millennium 

cal. BP (see O'Connell 1990a, 50-51). The evidence of small-scale woodland survival at 

Belderg Beg is limited to the Betula, Corylus and Fraxinus curves, which persisted beyond 

the Late Bronze Age. Wider ranges of AP taxa persisted at Ceide Fields (Molloy & 

O'Connell 1995), Carrownaglogh (O'Connell 1986) and Lough Doo (O'Connell et al 1987) .. 

Late Bronze Age human impact upon woodland was particularly marked in the western Irish 

sites of Mooghaun Lough (O'Connell et al 2001) and An Loch Mar (Molloy & O'Connell 

2004), but clearance was not permanent, and regeneration of open woodland followed the 

abandonment or reduction in intensity of agricultural activity at both sites. 

The patterns of blanket bog development in relation to human impact in western Ireland 

suggest that topography, solid geology and edaphic factors were strongly involved in 

determining landscape evolution. For instance, peat spread most readily as a consequence of 

Neolithic human impact in upland or exposed locations (Lough Maumeen, Ceide Fields, 

Belderg Beg, most of Co. Donegal). Early and Middle Bronze Age human impact is most 

strongly associated with large-scale blanket bog spread in most Connemara sites. In 

particular locations, such as the karstic locations An Loch Mar and Mooghaun Lough, where 

Carboniferous limestone will have provided preferable edaphic conditions, even sustained 

and severe human activity in the Late Bronze Age did not prevent woodland regeneration. 
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7.3.3.2 Settlement and agriculture 

The chronology of Late Bronze Age agricultural activity in western Ireland is as site-specific 

as that of the Early and Middle Bronze Age, therefore the potential to identify recurring 

patterns is limited. Reference to Figure 7.3 allows the construction of certain hypotheses. 

Several sites showing apparent abandonment or reduction in activity in the Middle Bronze 

Age, feature reoccupation in the opening centuries of the third millennium cal. BP, lasting 

for only a few centuries at most. This is seen at Belderg Beg, Carrownaglogh (O'Connell 

1986), Derryinver (Molloy & O'Connell 1993) and An Loch M6r (Molloy & O'Connell 

2004). Late Bronze Age agricultural abandonment also occurred at Lough Doo (O'Connell et 

al 1987). However, agriculture commenced or persisted at other sites past c. 2500 cal. BP, 

e.g. C6ide Fields (Molloy & O'Connell 1995) and Lough Sheeauns (O'Connell et al 1988), 

and the break or reduction in activity at Derryinver was brief (Molloy & O'Connell 1993). 

Based on this evidence, the conclusion is that certain vulnerable sites became marginalised 

for agriculture by Late Bronze Age climatic fluctuations. That abandonment was not as 

wide-spread as that seen in the Middle Neolithic, suggests that either the climatic 

fluctuations were less severe, or that sufficient buffering mechanisms had been developed to 

offset the stresses in some locations. 

Agricultural practices III the Late Bronze Age at Belderg Beg appear to be directly 

comparable to those recognised in other regions within the Atlantic fringe. Soil 

micromorphology has been particularly informative in this respect. Bronze Age ard 

cultivation has been noted at many British sites, particularly those in the Atlantic fringe, such 

as Old Scatness Broch, Shetland (Simpson et al 1998b), South Nesting, Shetland (Dockrill & 

Simpson 1994) and Tofts Ness, Orkney (ibid.). Bronze Age examples from the European 

Atlantic fringe are known also, such as at Bjerre, Denmark (Lewis 1998). Sites from 

mainland Britain containing ard-marks datable to the Bronze Age are Phoenix Wharf, 

London (Macphail et al1990, 63), Strathallan, Perthshire (ibid.; Romans & Robertson 1983), 

Fengate, Cambridgeshire (Lewis 1998) and Ashcombe Bottom, Sussex (Macphail et al 1990, 

64). At this stage it appears that there is insufficient chronological detail available to chart 

any temporal patterning to the spread of agricultural practices and technology within the 

British Isles. 

Soil amendment strategies in Bronze Age Atlantic fringe sites typically involve the addition 

of organic manures or composts, such as domestic wastes. This practice was apparently more 
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intensive later in the Bronze Age than earlier, as evidenced by differences between primary 

and secondary Bronze Age soils at Old Scatness Broch (Simpson et al 1998b, 116), a 

situation directly comparable to that at Belderg Beg. Cultivation of barley as the primary 

cereal crop is typical of the Bronze Age of Atlantic sites, with barley being the dominant 

crop in most Atlantic Scottish archaeobotanical assemblages from that period, e.g. Ardnave, 

Islay (Ritchie & Welfare 1983), Machrie Moor, Arran (Barber 1998), Rosinish, Benbecula 

(Shepherd & Tuckwell 1979), Buckquoy, Orkney (Donaldson et al 1981), Tofts Ness, 

Orkney (Doc krill et a11994) and Ness of Gruting, Shetland (Milles 1986). 

7.3.4 The Iron Age 

7.3.4.1 Environmental history 

Similarly to the Late Bronze Age, the second millennium cal. BP climatic fluctuations 

commonly seen in Atlantic British and Irish terrestrial proxy records are not marked in the 

Belderg Beg palaeoenvironmental proxy records. The BEL humification profile records 

continuing relatively dry surface conditions, suggesting that this location remained 

insensitive to changes in climatic wetness. Humification was not tested after 80cm (c. 2100 

cal. BP). Although Betula and Corylus experienced short-lived minor expansions between c. 

2275 and 2100 cal. BP, woodland regeneration in the Late Iron Age was not evident at 

Belderg Beg, in contrast to many other sites. 

7.3.4.2 Settlement and agriculture 

The typical lull in farming activity in the Late Iron Age (c. 1950 - 1600 cal. BP) noted in 

many pollen profiles from western Ireland (O'Connell et al 2001) is not particularly 

recognisable in the North Mayo sites, with the exception of Ceide Fields (see Figure 7.2). 

The Belderg Beg main pollen profile suggests that pastoral and possibly arable agriculture 

occurred between c. 1950 and c. 1600 cal. BP. Indeed, a resurgence of pastoral agriculture is 

seen not just at Belderg Beg but also at Carrownaglogh and Lough Doo (see Figure 7.3). 

Research strategies and poor chronological resolution can be identified as a factor in the 

relative absence of detailed knowledge regarding the Late Bronze Age and Iron Age of 

North Mayo, and to some extent Connemara as well. To date, the Neolithic and Bronze Age 

have been the primary research targets of palaeoenvironmental and archaeological 

investigations. Palaeoenvironmental sampling has occurred at fine temporal resolution in 



Neolithic levels of cores, and sampling in Iron Age levels has tended to be at a rather coarse 

resolution. A further consideration has been that of dating. Not only does the mid-third 

millennium cal. BP calibration plateau cause problems with calibrating Late Bronze Age and 

Iron Age radiocarbon assays, but most studies to date have utilised conventional rather than 

AMS radiocarbon technology, necessitating thicker samples from cores and thereby reducing 

the precision of resultant assays. The introduction of sophisticated tephra chronologies has 

improved precision in recent years, e.g. at An Loch Mor (Chambers et al 2004; Molloy & 

O'Connell 2004). 

7.4 Environmental marginality of prehistoric societies of the British and Irish Atlantic 

fringe 

7.4.1 Neolithic environmental marginality 

With the evidence for arable cultivation at Belderg Beg being so scant and indirect, the 

possibility of a phase of activity without cereal cultivation must be addressed. If conditions 

were climatically or edaphically marginal for arable cultivation in the Neolithic occupation 

phase, the opportunity may have existed to supplement the pastoral economy by importing 

cereal grain. Cereal-importing has been suggested in certain sites considered marginal for 

agriculture. The most cogently argued interpretations are based on multiple lines of 

evidence, for instance in the Early Bronze Age occupation at Lairg, Sutherland, based on the 

near-absence of cereal pollen and the absences of chaff in archaeological deposits and of 

querns in the archaeological record (Tipping & McCullagh 1998, 207). The producer

consumer model based on southern English sites would identify the absence of chaff, a 

common northern British phenomenon (van der Veen 1992) as indicative of consumer sites, 

though the evidence is equivocal (cf. Hillman 1980; Jones 1985) and this has not frequently 

been discussed in terms of self-sufficiency (Tipping & McCullagh 1998, 207). Therefore, too 

little is known to speculate upon regional patterns, and to extend speculations to sites with no 

pertinent archaeobotanical evidence. The regional picture may be more informative. The 

Neolithic occupation phases at Garrynagran and Ceide Fields, and indeed most sites in the 

western Irish region, have been described as primarily pastoral, with a minor arable 

component (cf. O'Connell & Molloy 2001, 123). From this description, and from the levels 

of cereal-type grains in pollen profiles, it is difficult to imagine any of the known sites within 

the region producing a cereal grain surplus sufficient to supply to other sites. Whilst Belderg 
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Beg has been interpreted as peripheral to the Ceide Fields core, it seems unlikely that any 

trade between the sites included the movement of grain. 

As has been discussed above, the abandonment of agriculture and settlement at Belderg Beg 

in the Middle and Late Neolithic period is a characteristic and recurring feature of many 

palynological profiles of that time. This phenomenon is well-recognised not just extra

locally (i.e. in North Mayo) but regionally (in western Ireland) and potentially pan-regionally 

(in Atlantic Britain). The causal factors behind this phenomenon are largely unknown. and 

whilst individual site-based theories have been mooted (such as soil quality in the present 

investigation), there is no identified common trigger. 

This investigation may aid interpretation of causality of Middle and Late Neolithic declining 

human activity in the North Mayo region. Deteriorating soil quality caused by erosion, 

facilitated by a relatively dry climatic regime, has been postulated as a causal factor in the 

abandonment of agriculture at Belderg Beg (see Section 7.2.4.2). A relatively dry climate 

was also interpreted to have prevailed at the time Neolithic agriculture was abandoned at 

Ceide Fields, whilst Neolithic settlement and agriculture on Achill Island was seen to decline 

in intensity at c. 5200-5100 cal. BP, associated with extreme storminess and resultant severe 

erosive episodes at the transition between relatively dry and a relatively wet climatic regimes 

(see Section 7.3.2.2). There are no indications of severe erosion associated with Neolithic 

agricultural phases at Lough Maumeen (Huang 2002), Lough Sheeauns (O'Connell et al 

1988), or An Loch Mor (Molloy & O'Connell 2004). 

Based on the proxies shown in Figures 2.20, 2.22 and 2.23, climatic conditions in Ireland, 

and the North Atlantic region as a whole, at the critical period in question (c. 5400-5100 cal. 

BP) can generally be categorised as cool and dry. Coolness is indicated by the Crag Cave 

stalagmite (McDermott et al 2001) and the GISP2 glaciochemical index (O'Brien et al 

1995), whilst dryness is indicated by the Achill Island humification record (Caseldine et al 

2005), tree-ring records from Southern Germany (Mayr et al 2003) and the Cairngorms 

(Dubois & Ferguson 1985), and lake levels in Northern Britain (Yu & Harrison 1995) and 

Sweden (Digerfeldt 1988). There is less regional evidence to corroborate the shift to wetter 

conditions at c. 5000 cal. BP which was implied at Achill Island (Caseldine et al 2005), 

although in the early fifth millennium cal. BP the Cairngorms tree-ring evidence suggests a 

shift to increased wetness (Dubois & Ferguson 1988) and a die-off event is signalled by Irish 

tree-ring widths (Leuschner et al 2003). 
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The conclusion reached, therefore, is that the trend towards increasing dryness, which 

commenced at c. 6100 cal. BP (see Section 2.2.1.2), allowed the adoption of mixed 

agriculture in Britain and Ireland. The climatic conditions of the second half of the sixth 

millennium cal. BP, of persistent dryness and increasing storminess, facilitated acceleration 

of soil erosion on agricultural sites in susceptible locations. In some locations it is known 

that relatively sophisticated arable cultivation techniques had been developed, such as 

midden cultivation and manuring. Edaphic pressures associated with overgrazing may have 

been prevalent at sites such as Belderg Beg, where it is suggested that a significant 

proportion of the landscape was already covered by blanket peat. Eventually, soils became so 

exhausted that the sites could be described as environmentally marginal for the agricultural 

regimes in place. This scheme appears to apply well to North Mayo, but is evidently not 

applicable to Connemara, where there is less evidence for soil erosion. The pivotal threshold 

in that region, and others within the North Atlantic fringe, has yet to be ascertained. 

7.4.2 Bronze Age environmental marginality 

At Belderg Beg, it is evident that peat expansion was underway during the Bronze Age 

occupation phase. This was also displayed at Ceide Fields and Carrownaglogh by analysis of 

multiple pollen profiles (O'Connell 1986, 171-172; Molloy & O'Connell 1995, 221). Soil 

acidification and blanket peat expansion continuing from the Middle and Late Neolithic 

period, in which edaphic conditions were already marginal for agriculture, might be expected 

to seriously impede the success of settled farming societies. 

However, the edaphic pressures on Bronze Age farmers as a result of the increasing expanse 

of blanket peat did not prevent long-lasting agriculture from occurring, and cereal cultivation 

is also evident. The general picture from Co. Mayo is that Bronze Age agriculture was of a 

similar nature to that practised in the Neolithic, i.e. mainly pastoral but with a minor arable 

component. Belderg Beg, Ceide Fields and Carrownaglogh contain evidence of relatively 

intensive arable agriculture on a small scale, as exemplified by the small ridge-and-furrow 

plots at Belderg Beg and Carrownaglogh (O'Connell 1986), and the apparent restructuring of 

former Neolithic walls forming smaller cultivated fields at Ceide Fields (Molloy & 

O'Connell 1995. 221). Soil micromorphological study of the tillage plots at Belderg Beg has 

revealed that adaptive strategies including manuring were developed in order to maintain 

cereal crop yields, and that tillage strategies changed over time. Turf stripping or 'scalping' 
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is interpreted to have occurred during both the Neolithic and Bronze Age occupation phases 

at Belderg, based on soil micromorphological and sediment-stratigraphical evidence. This 

adaptive strategy suggests that the society was subjected to edaphic stresses, and that without 

such actions, the site would have been marginal for agriculture. The importance of adapti \'e 

strategies during times of climatic or environmental stress has arguably been under

emphasised, perhaps because of archaeological invisibility (see Davies et al2004, 8). 

The development of peat whilst cultivation was occurring at BB 1, as evidenced by the highly 

organic nature of the upper part of the ridge-and-furrow layer and the preservation of fresh 

plant material (see Section 6.2.4), indicates that any attempts to retard or inhibit peat 

expansion were ultimately unsuccessful. Whether or not this peat spread was a causal factor 

in the mid-third millennium cal. BP abandonment of agriculture at Belderg Beg is obviously 

unknown, but it is certainly a possibility. A further factor to be considered is that of the 

climatic conditions, which obviously may have affected the edaphic and pedogenic processes 

operating at Belderg. 

The early- and mid-third millennium cal. BP has been identified as a period of climatic 

change, in that most proxies signal wet or cool conditions in the North Atlantic region (see 

Figures 2.19 & 2.22). An IRD event occurred at c. 2800 cal. BP (Bond et al 1997; see 

Figures 2.19 & 2.22). Cool conditions are registered by the GISP2 glaciochemical record 

(O'Brien et al 1995). Tree-ring records from Southern Germany and Ireland indicate cool 

and/or wet conditions, at c. 2900 cal. BP (Leuschner et al 2003; Mayr et al 2003). Lake 

levels are interpreted to have transgressed (indicating higher precipitation/evaporation ratios) 

during the third millennium cal. BP in Northern Britain (Yu & Harrison 1995), Sweden 

(Digerfeldt 1988) and Jura (Magny 1992). The Irish palaeoclimatic data are less definitive 

during this period; only the Abbeyknockmoy plant macrofossil record indicates cooler, 

wetter conditions occurring at c. 2800 cal. BP (Barber et al 2003). Referring back to Section 

2.3.4.3, the accumulating evidence for a shift to an increasingly oceanic climatic regime at c. 

2800 cal. BP might be taken as an indication of increasing rates of peat expansion. The 

generally variable climatic regime indicated during the early third millennium cal. BP might 

be characterised by frequent climatic shifts at amplitudes perceptible to human communities. 

These may be expressed by increased uncertainty regarding agricultural success or failure, 

which has been suggested as the primary factor in land occupation or abandonment. 

Assuming that the Belderg Beg economy was substantially self-sufficient, the increased 

likelihood of agricultural failure may have forced abandonment of the site. 
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Chapter 8 

Summary and conclusions 

8.1 Introduction 

This study has attempted to reconstruct the environmental conditions and dynamics of 

settlement and economy at Belderg Beg during later prehistory, with the aim of establishing 

any links between landscape evolution, climatic and environmental changes or stresses, and 

responses or adaptations by the human communities. Prior investigations at this site have 

been limited and there has been no palaeoenvironmental assessment. A second aim of this 

investigation was therefore to assess some of the assumptions that have underlain 

discussions of the site. Use of this site as a case study has allowed its results to be added to 

the corpus of regional evidence, and has furthered knowledge of the degree to which 

prehistoric agricultural settlements in North Mayo were vulnerable to particular 

environmental stresses. This final chapter summarises and concludes the findings from this 

investigation. 

8.2 Summary 

8.2.1 Summary of site findings 

The sedimentary sequence opens in the Middle Neolithic at c. 5525 cal. BP when intensive 

agriculture was underway, in a disturbed landscape. The farming was evidently primarily 

pastoral, there being no direct evidence of arable cultivation in the palynological record. The 

field walls running downslope were assumed in previous investigations to be part of a field 

system constructed during the Neolithic, and this investigation corroborates that assumption, 

as well as placing a chronological framework upon their occupancy. The sedimentary 

sequence along the hillslope suggests that soil erosion occurred within the field system. This 

evidently caused significant stress upon the agriculture, because the sediment stratigraphy of 

the lower hillslope also indicates that turf stripping occurred, presumably in order to 

supplement the soils within the field system. That phase of farming came to an end at c. 5375 

cal. BP and the palaeoenvironmental record suggests that continuing relative climatic 
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dryness may have been a factor in abandonment, via the incremental effects of soil erosion 

and edaphic stress. 

Following abandonment, the palynological record shows that woodland regeneration was 

rapid. The hillslope sediment stratigraphy suggests that woodland did not regenerate within 

the former fields. Outwith the fields, the increasing area covered by mire deposits was 

rapidly colonised by Alnus, and elsewhere on drier soils the main taxa were Betula, Cory/us, 

Quercus and Pinus. Coincidentally with the Pinus decline at c. 4520 cal. BP, the 

humification record signals a peak in climatic wetness. 

Secondary clearance commenced at c. 4100-4000 cal. BP, probably aided by fire. Mixed 

agriculture is in evidence palynologically from c. 3950 cal. BP. This farming phase 

continued until c. 3060 cal. BP, when there was either a temporary cessation of agriculture, 

or a reorganisation and spatial contraction of agricultural land. Many of the visible 

archaeological features were constructed during that long phase of agriculture, such as the 

timber extension to Wall 3 and the roundhouse. 

On-site palaeoenvironmental study provided most of the information regarding the final 

phases of Late Bronze Age agriculture. Ard cultivation was fairly intensive, and although 

leaching and nutrient loss are in evidence, significant effort was made to cultivate the soils in 

the vicinity of the roundhouse. It is evident that midway through this farming phase, at c. 

2840 cal. BP, the area under ard tillage was reduced in spatial extent. At some point, 

potentially the same time, the tillage method changed. The ard was no longer employed, and 

ridge-and-furrow cultivation was instead performed, probably using the spade. Soil erosion 

was occurring downslope from the cultivation plots at the time of this reorganisation, 

therefore it is possible that the change in tillage method was an adaptive response to 

deteriorating edaphic conditions. During the time that the ridges were cultivated, domestic 

wastes, including ash and kitchen refuse, were used as fertiliser, although this form of 

manuring was not employed intensively. This agricultural phase finished in the mid-third 

millennium cal. BP. Cultivation had been continuing in the face of peat encroachment for 

some time, and it is possible that a cooler wetter climate accelerated blanket bog expansion, 

tipping the balance of agricultural risk associated with settlement at the site. 
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8.2.2 Regional significance 

The vegetation sequence and settlement chronology during the Neolithic occupation phase at 

Belderg were typical when considered in a regional context. Although there is no direct 

evidence of cereal cultivation during the Neolithic, palaeoenvironmental analysis of other 

sites in North Mayo suggests that self-sufficient economies were the norm, based on pastoral 

agriculture with small-scale arable cultivation. As it is unlikely that any of the identified 

locations might have been used to produce significant cereal surpluses, it is concluded that 

the Neolithic farmers at Belderg Beg probably practiced a similar agricultural production 

economy to those at the other known sites. There is significant evidence on a regional scale 

(North Mayo and Connemara) that substantial agricultural settlement occurred in the 

centuries after the Ulmus decline of c. 5800-5900 cal. BP, and that widespread abandonment 

ensued during the Middle Neolithic. The cause of this phenomenon is elusive, but the 

incremented results from Belderg Beg and Ceide Fields suggest that relative climatic dryness 

may have compounded soil erosion in North Mayo. 

Bronze Age oc~upation in North Mayo and in western Ireland as a whole is less well 

chronologically defined. However, the economy in North Mayo was apparently little 

changed from the Neolithic, in that pastoral agriculture with a minor arable element 

prevailed. Later in the Bronze Age, arable tillage techniques became more refined and 

cultivation intensified, although still on a small scale. The area under agriculture at Belderg 

Beg may have been reduced in comparison to the Neolithic, similarly to the situation at 

C6ide Fields. Self-sufficient communities, possibly with lower population levels than the 

Neolithic, are interpreted to have inhabited sites such as Belderg Beg, C6ide Fields and 

Carrownaglogh. Peat spread and soil erosion during the Bronze Age occupation of Belderg 

Beg may have been a causal factor in its abandonment in the mid-third millennium cal. BP. 

The regional evidence suggests that this was not such a marked common feature at that time, 

in contrast to the Middle Neolithic abandonment. 

8.3 Importance of the site and the results 

8.3.1 Importance of the findings 

The investigations at Belderg Beg have proved the site to be of great importance in terms of 

its local and regional archaeological and palaeoenvironmental contexts. The findings go 
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some way to identifying a likely common causal factor in the Middle Neolithic abandonment 

of agriculture in North Mayo - soil erosion and associated edaphic stress in a relatively dry 

climatic regime. Furthermore, the findings confirm that Belderg Beg was a relatively small 

field system. Its size and irregularity, along with its earlier date of abandonment, suggests 

that, along with Belderg M6r, it was perhaps a peripheral site, where Ceide Fields was a 

regional core. 

The findings of this investigation regarding Bronze Age occupation of Belderg Beg are 

important in terms of the site economy. Long-term occupation is indicated, and is mirrored at 

Ceide Fields, although Bronze Age occupation and agriculture is less well chronologically 

defined on a regional scale than those of the Neolithic. Contrary to previous suggestions, this 

investigation concludes that the Bronze Age occupation was not concerned with exploitation 

of copper ore at Horse Island. The increasing intensity of arable cultivation in the Bronze 

Age and the changing techniques used to cultivate the deteriorating soils are of significance 

to characterisations of the region's prehistory. 

8.3.2 Methodology and sampling strategies 

This study has successfully realised its aims of reconstructing prehistoric agriculture and 

settlement chronology at Belderg Beg and relating the settlement dynamics to environmental 

conditions where appropriate. The sampling strategy may therefore be of relevance in 

influencing research design of investigations at other sites within the North Atlantic fringe. 

Although on-site investigation of ploughsoils depends on fortuitous excavation, the sampling 

strategy on a field system scale which may be recommended can be summarised. 

• The use of sediment-stratigraphic characterisation on a landscape scale, i.e. across and 

outwith fields. 

• 

• 

• 

Identification of off-site basins from which to reconstruct palaeoenvironmental 

conditions. 

Palaeoenvironmental analysis and AMS dating from objectively identified locations 

within fields, for comparison with the main palaeoenvironmental sequence. 

Soil micromorphological analysis of cultivation traces. 

The use of soil micromorphological analysis has been of critical importance in the study and 

characterisation of Bronze Age agriculture at Belderg Beg. The soil micromorphological 
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results from the ard-marked layer in particular are of great significance, not just to the site 

interpretation but to methodological research also. The characteristic features of ard 

cultivation exhibited in the BB 1 profile have only recently been realised due to experimental 

work and detailed sampling strategies (Lewis 1998). 

8.4 Opportunities and recommendations 

8.4.1 Opportunities at Belderg Beg 

There are several opportunities for further research at Belderg Beg to supplement the 

information incremented by previous excavations and this thesis. Although knowledge 

regarding the spatial extent of the Neolithic field system is hampered by modem buildings to 

the north and east of the site (see Figures 3.1 and 3.2), extensive probing and surveying to 

the west and south of the known extent of the field system may inform on the scale of 

agricultural settlement. Excavation of some sections of field walls (e.g. the downslope 

terminal of Wall 1: see Figure 5.1), with pollen and thin section micromorphological analysis 

of the soils and sediments contained by them, would further inform as to the nature and 

chronology of agricultural processes. This could operate by a targeted system of test pitting. 

Differentiation of functions across the field system could potentially be identified. 

Extending the soil micromorphological investigation of the formerly cultivated soils would 

offer an opportunity to further know ledge of the length of time the soils were cultivated, and 

perhaps allow a fuller analysis of the ard-marks in the region of the BB2 section than was 

possible in the current investigation. A detailed, thorough sampling strategy incorporating all 

features of the ard-marks and the cultivation ridges would be required. This would benefit 

knowledge not just of this particular site, but also the general recognition of archaeological 

arable cultivation. Soil micromorphology could also be employed within the roundhouse and 

other enclosures within the site to identify functionality. 

8.4.2 Recommendations based upon sampling strategy 

There has been no soil micromorphological work in an archaeological context in Ireland 

published to date; a situation in contrast to that in mainland Britain and North West Europe. 

This study has shown how soil micromorphology can be a valuable technique to identify and 

characterise former agricultural practices. Soil micromorphological analysis in conjunction 
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with soil pollen analysis and AMS dating of discrete locations within identified former 

agricultural sites would considerably add to the collective knowledge regarding prehistoric 

agriculture in western Ireland, bringing knowledge in line with that from mainland Britain 

and the Scottish islands. For instance, knowledge of agricultural practices such as manuring 

is hitherto unavailable, and soil micromorphology could readily rectify this information gap. 

More detailed site-based investigation, including excavation, to locate precise activity areas 

would be ideal, in order to bring the Irish prehistoric settlement data in line with that from, 

for instance, Atlantic Scotland. 
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Figure 2.1: Irish Neolithic houses and settlement sites. From Grogan 2004, 106. 
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Figure 2.2: Plan of Ceide Fields. From Molloy & O'Connell 1995, 191. 
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Figure 2.3: Ceide Fields (GLU IV) pollen percentage diagram. From Molloy & O'Connell 

1995. 
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Figure 2.4: Plan of Rathlackan prehistoric landscape. From G. Byrne (unpublished) . 
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Figure 2.5: Plan of Ceide Fields showing locations of megalith ic tombs. Adapted from Molloy 

& O'Connell 1995, 191 . 
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Figure 2.6: Plan of Belderrig area showing locations of megal ithic tombs in the vicinity of the 

Belderg M6r pre'-peat field walls 
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Figure 2.7: Ceide Fields pollen percentage diagrams (BHY III and IV). From Molloy & 

O'Connell 1995. 

(..i.L'Ill,) fl 

.",\.. ;, .><t. : I"'~~ I 

•••••••• • •• ·~· vJ.... ..... " .... ....... .... . ... ... . .-- --...... ".~--

~~ n 

-;- 7 ~ -;- '7 - '" , '" ... ~ 

t ', ! . , 

. •. ~ .. . .:. • •• I .•• •.•..•... .I .. : --.-----"""-
flU .0 0 

~ ~~ 

'" 

:J~~~~L __ ·: '",= .. "l~: ~: {.::"-~ 

(.:1 ~ \;l ! ~-; 

!lI 'C' \,> :'; ~Io:<K~S I 

E 

., 

.:.: .... c.t;.~: _._.~.=-, ... 

. . ......... ~ 
--r ... i L '_. I 

. ' ........ ~ 

~ 

~:. __ ", __ . __ . 'JL =,,"~~~~ __ -,'i'::': 

I I 

-. ~ .! ~ ','. 

- ---_ ... . " . ........... _----_ ... --

245 



Figure 2.8: Ceide Fields pollen percentage diagram (SHY V). From Molloy & O'Connell 

1995. 
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Figure 2.9: Ceide Fields pollen percentage diagram (BHY VI ). From Molloy & O'Connell 

1995. 
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Figure 2.10: Ceide Fields pollen percentage diagrams (CF Ib and CF III ). From Molloy & 

O'Connell 1995. 
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Figure 2.11 : Ceide Fields pollen percentage diagram (ploughmark infills). From Molloy & 

O'Connell 1995. 
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Figure 2.13: Plan of Carrownaglogh prehistoric site. From O'Connell 199Gb, 261. 
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Figure 2.14: Pollen percentage profile from Carrownag logh (Long Monolith). From O'Connell 

1990b, 262. 
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Figure 2.15: Pollen percentage profiles from Carrownaglogh (short profiles). From O'Connell 

1990b, 265. 
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Figure 2.16: Subfossil pine dates in North Mayo. Redrawn from Caulfie ld et a/1998, 636 . 
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Figure 2.17: Subfossil pine dates in northern Scotland. Redrawn from Caulfield et a/1998, 

636. 
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Figure 2.18: Thermohaline oceanic circulation . 

The oceanic conveyor compensates for water transported as vapour from the Atlantic to the 

Pacific Ocean through the atmosphere. Dense salty deep water formed in the northern 

Atlantic flows down the length of the Atlantic and eventually northwards into th e deep Pacific. 

Some of this water upwells in the northern Pacific , bringing with it the salt remaining in the 

Atlantic due to vapour transport. From Lowe & Walker 1997, 363; after original in Broecker & 

Denton 1990. 
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Figure 2.21: Extension rate and 0180 values for Crag Cave stalagmite, Co. Kerry. 

Arrows denote the timing of wet shifts recorded in Scottish mires (Chambers et al 1997), 

many of which appear to coincide with second-order troughs in the 0180 curve. From 

McDermott et a/1999, 1028. 
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Figure 2.24: Soil map of Ireland. From Agmet, 1980. 

http://www.ucd.ie/agmeUPub/ications/Atlas/Soilscolour.html . accessed 09/01/06 
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Figure 2.25: Map of North Mayo showing sites discussed in Chapter Two. 
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Figure 2.26: Garrynagran pollen percentage diagram. From O'Connell & Molloy 2001 , 109, 

after Jennings 1997. 
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Figure 2.27: Lough 000 pollen percentage diagram. From O'Connell et al 1987, 152 . 
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Figure 2.28: Lough 000 geochemical profile. From O'Connell et al 1987, 157. 
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Figure 2.29: Bunnyconnellan East pollen percentage diagram. From O'Connell 1990b, 271. 
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Figure 3.1: Detail of the Belderrig area with list of relevant Recorded Monuments. 
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4 MAOOO?5 Field system Belderg Beg 

5 MAOO068 Promontory fort Horse Island 

6 MAOO08? Wedge tomb Belderg M6r 

? MA00103 Megalithic tomb Belderg M6r 

8 MA00104 Court tomb Belderg M6r 
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Figure 3.2: Location of Belderg Beg in its landscape context. From Warren 2004, 1 . 
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Figure 3.3a: Mean annual rainfall , island of Ireland 30 year average. From Met Eiran n, 

http://www.met.ie/climate/rainfall.asp. accessed 09/01/06 
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Figure 3.3b: Mean annual wind speed , island of Ireland 30 year average. From Met Eirann , 

http://www.met.ie/cl imate/wind. asp, accessed 09/01/06 
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Figure 3.3c: Percentage frequency of wind direction, island of Ireland 30 year average. From 

Met Eirann, http://www.metie/climate/wind.asp, accessed 09/01/06 . Circled number = 
percentage of 'calm' on Beaufort scale. 

Figure 3.3d: Annual temperature range at Valentia Island, 30 year average. From Met 

Eirann, http://www.met.ie/climate/temperature.asp. accessed 09/01/06 . 
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Figure 3.4: Plan of Belderg Beg archaeological site (adapted from Caulf ield 1988) 
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Figure 3.5a: Inferred Neolithic features at Belderg Beg (after Caulfield 1988) 
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Figure 3.5b: Inferred Bronze Age features at Belderg Beg (after Caulfield 1988) 
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Figure 4.1: Sampling locations plotted on a detailed map of the Belderg Beg area 
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Figure 5.1: Sampling locations and main archaeological features 
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For identification of every coring location cross-refer to Figure 4.1 
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Figure 5.4a: Calibration details of GU-11634 
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Figure 5.4b: Calibration details of GU-12211 
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Figure 5.4c: Calibration details of G U-12725 
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Figure 5.4e: Calibration details of GU-12616 
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Figure 5.4g: Calibration details of GU-12728 
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Figure 5.4h: Calibration details of GU-12727 
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Figure 5.4i : Comparative plot showing calibration details of all transect cores 
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Figure 5.5: Influence of microtopography on peat initiation on a hillslope (after Edwards & 
Hirons 1982, 34' Figure 2 in original) . 
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Figure 5.6: Model of primary-secondary-tertiary peat growth as app lied to a theoretical 
smooth-sloped hillslope (from Edwards & Hirons 1982, 35; Figure 3 in original). 
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Figure 5.7a: Calibration details of GU-11630 
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Figure 5.7b: Calibration details of GU-11631 
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Figure S.7e: Cal ibration details of GU-1 1632 
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Figure S.7d: Calibration details of GU-11633 
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Figure 5.7e: Calibration details of GU-11634 
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Figure 5.8: Age/depth relat ions for the BEL core 

Age/depth profile of BEL core 

o 

500 

2 

1000 

E 1500 
E 3 .c 
Q. 
Q) 

0 

2000 

4 

2500 

o 1000 2000 3000 4000 5000 6000 

Age cal. BP 

Trendline Depths Ages cal. BP Regression Growth rate Growth rate 
(see graph) (mm) (midpoint) equation mm/cal. yr cal. yr/mm 

1 0-400 0-1440 Y = 0.2778x 0.28 3.6 

2 400 -1310 1440 - 2960 Y = 0.5987x- 0.6 1.67 
462.11 

3 1310 - 2000 2960 - 4110 Y = 0.6x - 466 0.6 1.67 

4 2000 - 2600 4110 - 4935 
Y = 0.7273x -

0.73 1.38 
989.09 

5 2600 - 2780 4935 - 5465 Y = 0.3396x + 0.34 2.94 
· 923.96 



Figure 5.9: Volume magnetic susceptibility (K) of all BEL cores and monoliths 
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Figure 5.10: Mean volume magnetic susceptibility (K) of all BEL cores and monoliths 
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Figure 5.11 : Percentage loss-on-ignition of BEL core 
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Figure 5.12: Percentage ash content of BEL core 
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Figure 5.13: Percentage transmission values of BEL core showing 3-point running mean 
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Figure 5.14: Percentage transmission curve of BEL core showing mean transmission values 
plus and minus one standard deviation 
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Figure 5.16b: Pollen percentage diagram, BEL core (continued) 
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Figure 5.17a: Pollen percentage diagram, BEL core 
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Figure 5.17b: Pollen percentage diagram, BEL core (conti nued) 
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Figure 5.18b: Pollen percentage diagram, BEL core (continued) 
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Figure 5.18c: Pol/en percentage diagram, BEL core (continued) 
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Figure 5.19: Pollen percentage diagram, BEL core (main taxa, CONISS plotted) 
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Figure 5.20: Pollen influx diagram, BEL core 
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Figure 5.22 : Interpreted sediment sequence of Belderg Beg valley side at c. 5500 ca l. BP, 
following Figure 3.3 in Rapp & Hill (1998, 58) 
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Figure 6.1: Location of BB1 and BB2 profiles (cross-reference to Figure 5.1 for landscape 
location) 
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Figure 6.2: Section drawing of BB1 with locations of Kubiena sampling tins 
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Figure 6.3: Calibration details of GU-11628 
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Figure 6.4b: Pollen percentage diagram , BB1 section (continued) 
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Figure 6.5a: Pollen percentage diagram, BB1 section 
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Figure 6.5b: Pollen percentage diagram, BB1 section (continued) 
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Figure 6.5c: Pollen percentage diagram, BB1 section (continued) 
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Figure 6.7: Section drawing of BB2 with locations of Kubiena sampl ing tins 

Context 

2001 

2002 

2003 

2004 

2005 

o 100 200mm 

~ 

\ 
\ 

\ 
\ . 
\ 

\ ,---
\ , , 

\ 

2001 

2002 

K14 2003 

, 
~ , 

; 
\ 
\ -
I 

\ 
\ , , 
I 

/ 

EJ /' 

K131~~ __ --__ ~=-____ ~' 
K12 2004Q ___ j 

I-----r--,e;-.-.-.-.-./ 
-.-.~, 

\ Kg 
\ , 

' ... ,*, 

2005 

Description 

Acrotelm. 
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Figure 6.8: Calibration details for GU-11629 
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Figure 6.11: Pollen concentration diagram, BB2 section (selected taxa) 
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Figu~e :.3: Graphical representation of the chronology of agricultural activity at major 
Neolithic and Bronze Age sites of North Mayo and western Galway 
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Table 2.1 : Provisional Late Quaternary Irish cl imate stages (After Coxon 1993; Bell & Walker 
1997, 13; Woodman et a/1997, 132; Mitchell & Ryan 2001 , 37) . 

Q) --(ll 0 ... 
Ka BP Mainland Britain Ireland 

- Q) 
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'00. .§ ~ - E o Q) (ll (ll 

u .... ~u; 

10 - 0 Flandrian Littletonian T 
11 - 10 Loch Lomond Nahanagan 

C 
Lateglacial 

stadial 
Lateglacial stadial 1 

13 - 11 Windermere Woodgrange 
interstadial interstadial T 

35 -13 Derryvee stadial C 2 
65 - 35 Aghnadarraghian 

T 3 
Midlandian 

interstadial 
79 - 65 Devensian glacial 

glacial Fermanagh 
C 4 stadial 

120 - 79 Kilnefora 
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5a-
interstadial d 

130 -120 Ipswichian interqlacial ?Eemian interQlacial T 5e 



SUERC 
Depth & 

GU no Core thickness Material sampled 
no 

of sample 

Very well humified dark 
11634 2055 BEL 277-278cm brown/black amorphous 

silty peat 

Dark grey brown organic 
12211 4028 W2 144-146cm rich mud with common 

highly decomposed plant 

12616 4961 W2 144-146cm remains and abundant silt 
particles . 

12212 4029 
W21 

80-82cm 
Light brown brown 

(P2) humified amorphous peat 
with common herb stems 

12617 4962 
W21 

80-82cm and rare broken wood 
(P2) fragments . 

Dark grey brown organic 
rich mud with common 

12725 5757 W7 90-92cm highly decomposed plant 
remains and abundant silt 
particles . 

Brown amorphous 
12726 5758 W8 66-68cm 

structureless peat. 

Dark brown humified 
amorphous peat with 

12727 5759 
W21 

38-40cm 
common herb stems, rare 

(P1 ) broken wood fragments 
and common silt and fine 
sand throughout. 

Very well humified brown 
12728 5760 N10 29-31cm herb peat with very rare 

silt. 

Fraction 14C age a13c %0 
assayed BP:t: 10' 

Humic acid 4775 ± 35 -29.2 

Humic acid 
(fine 4545 ± 35 -28.9 
fraction) 

Humin (fine 
4640 ± 35 -29.3 

fraction) 

Humic acid( 
3715 ± 35 -28.1 

fine fraction) 

Humin (fine 
3625 ± 35 -29.0 

fraction) 

Humic acid 
(fine 4345 ± 35 -28.1 
fraction) 

Humic acid 
(fine 4335 ± 35 -28.6 
fraction) 

Humic acid 
(fine 2770 ± 40 -28.6 
fraction) 

Humic acid 
(fine 2070 ± 35 -29.0 
fraction) 

Calibrated 
Mid-
point 

range :t: 20' 
cal. BP 

5330-5600 5465 

5040-5320 5180 

5300-5470 5385 

3920-4160 4040 

3830-4080 3955 

4830-5040 4935 

4830-5030 4930 

2770-2950 2860 

1930-2130 2030 
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Table 5.2a: Data required to calculate rates of peat up Belderg Beg hillslope 

surface core depth base distance 
basal peat age core height (m height from BEL 

00) 
(m) 

(m 00) (m) 
midpoint cal. BP 

BEL 28.7 3 25.7 0 5465 
W2 28.18 1.7 26.48 27 5180 
W7 29.53 0.95 28.58 66.5 4935 
W8 29.83 0.87 28.96 74.3 4930 
W21 34.04 0.85 33.19 137.7 4040 
N10 38.35 0.4 37.95 210.7 2030 

Table 5.2b: Rates of peat spread up Belderg Beg hillslope 

relative relative age peat spread 
stage 

height distance 
gradient difference rate m/cal. 

difference (m) = dx 
(dy/dx) (cal. years) year 

(m) = dy 
BEL-
W2 0.78 27 0.029 285 0.095 

W2-
W7 2.1 39.5 0.053 245 0.161 

W7-
W8 0.38 7.8 0.049 n/a n/a 

W8-
W21 4.23 63.4 0.067 890 0.071 

W21-
N10 4.76 73 0.065 2010 0.036 

Mean 
values 0.053 0.091 



Table 5.3: Sediment stratigraphy of BEL core 

Depth cm Description 

Poorly humified red/brown fine fibrous herbaceous peat . Abundant fine herb 
0-40 fragments, frequent sedge fragments. 

Nig. 1, Str. 3, Sicc. 3, Elas. 3; Humo. 0; Th3, Dh1 . 
Dark red/brown fibrous herbaceous peat with very rare roundwood 

40-45 fragments. 
~~ig. 2, Str. 4, Sicc. ,2 Elas . 3; Humo. 1; Th3 , Dh1 , TI+. 
Dark brown well humified herbaceous peat with abundant fine herb 

45-55 fragments. 
Nig. 4, Str. 4, Sicc. 2, Elas. 3; Humo. 3; Th4. 

55-70 Dark brown well humified herbaceous peat with abundant fine herb fragments 
and rare ericaceous fragments. 
Nig. 4, Str. 4, Sicc. 1, Elas. 2; Humo. 4; Th3, Tlerica 1. 

70-80 Moderately humified dark brown ericaceous peat. Common fine herb 
fragments. 
NigA , Str. 4, Sicc. 1, Elas. 2; Humo. 3; Tlerica2, Th1, Sh1. 

80-90 Dark brown moderately humified fine fibrous herbaceous peat with abundant 
fine herb fragments . Occasional ericaceous fragments. Rare roundwood 
twigs. 
Nig . 4, Str. 4, Sicc. 1, Elas. 1; Humo. 3; Th2, Dh1 , Tlerica 1, TI+. 

90-96 Compressed large wood fragments . 
Nig. 2, Str. 1, Sicc. 2, Elas. 1; Humo. 1; T13 , Dh1. 

96-115 Dark brown moderately humified fine fibrous herbaceous peat with abundant 
herb fragments and rare ericaceous fragments. 
f\lig. 4, Str. 4, Sicc. 2, Elas. 2; Humo. 2; Th2.5, Dh1 , TlericaO.5. 

115-135 Dark brown moderately humified fine fibrous herbaceous peat with abundant 
herb fragments. 
Nig.3, Str. 4, Sicc. 2, Elas. 2; Humo. 2; Th3 , Dh1 , Sh1. 

135-180 Dark brown moderately humified fine fibrous herbaceous peat with abundant 
herb fragments and rare ericaceous fragments. 
Nig. 3, Str. 4, Sicc. 2, Elas. 2; Humo. 3; Th2, Dh1, TI0.5, ShO.5. 

180-200 Mid-brown poorly humified fibrous wood peat with common large roundwood 
twigs and common fine fibrous herb fragments . 
Nig. 2, Str.2 , Sicc. 2, Elas. 1; Humo. 1; T13, Th1 , Sh+. 

200-219 Dark brown moderately humified wood peat with abundant wood fragments 
including small fragments and rare deciduous roundwood pieces. 
Nig.3 , Str. 2, Sicc. 2, Elas. 1; Humo.2 ; T13, Sh1. 

219-224 Deciduous tree fragment filling chamber. 
Nig. 1, Str. 0, Sicc.1 , Elas. 0; Humo. 2; Sh4 [stirpes indet. 4] . 

224-268 Dark brown moderately humified wood peat with abundant wood fragments 
including small fragments and rare deciduous roundwood pieces . 
Nig. 4, Str. 2, Sicc. 2, Elas. 1; Humo. 3; T13, Sh1 . 

268-280 Dark grey brown organiC deposit with common highly decomposed plant 
remains and abundant silt particles. 
Nig . 4, Str. 0, Sicc. 3, Elas. 0; Humo. 4; Sh2.5, ThO.5, AG1 . 

280-285 Yellowish brown coarse sand, well sorted , no organic matter. 
Nig . 0, Str. 4, Sicc. 3, Elas. 0; Humo. 0; Gm in4. 

285-300 Grey/brown till 
Nig . 0, Str. 2, Sicc . 3, Elas . 0; Humo. 0; Gmin3, Gmaj1 . 

Described using system of Aaby & Berglund (1986). 



GU SUERC Depth & 
Fraction 

Core thickness Material sampled no. no 
of sample 

assayed 

Moderately humified 
11630 2048 BEL 39-40cm silty pseudo-fibrous Humic acid 

peat. 

Dark brown pseudo 
11631 2049 BEL 130-131 cm fibrous moderately Humic acid 

humified peat 

Well humified dark 
11632 2053 BEL 199-200cm brown pseudo-fibrous Humic acid 

peat 

Pseudo-fibrous woody 
peat, moderately-well 

11633 2054 BEL 259-260cm humified with Humic acid 
numerous ligneous 
fragments 

Very well humified dark 
11634 2055 BEL 277-278cm brown/black Humic acid 

amorphous silty peat 
~- - - - _ ._---

14C age ~13C Calibrated 
BP ± 10' %0 range ± 20' 

1565 ± 35 -28.6 1350-1530 

2830 ± 35 -28.8 2840-3080 

3765 ± 35 -29.3 3980-4240 

4350 ± 35 -28.4 4830-5040 

4775 ± 35 -29.2 5330-5600 

- -
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Table 5.5: Details of cereal-type pollen grains from BEL core 

Grain Pore 
Depth dia. Annulus dia. Pollen 
cm * ~m dia. ~m ~m Surface Notes type Plate? 

Avena-
4 50 10 5 Scab rate Triticum? 5. 1 

Avena-
8 1 47.5 10 5 Scab rate Triticum? 

8 2 38 10 5 Scab rate Hordeum 
Split - pore not Avena-

12 52 .5 Scab rate measurable Triticum? 

16 40 10 5 Scab rate Hordeum 5.2 
20 40 8 5 Scab rate Hordeum 5.3 

28 37.5 10 5 Verrucate Hordeum ? 5.4 

56 37.5 8 5 Scab rate Degraded Hordeum 

92 38 9 4 Scab rate Hordeum 5.5 

116 40 8 3 Scab rate Hordeum 
Pore part 

138 40 9 4 Scab rate concealed Hordeum 5.6 

140 38 10 5 Scabrate Hordeum 

150 40 9 5 Scab rate Hordeum 5.7 

152 40 10 5 Scab rate Hordeum 5.8 

154 1 42 11 5 Scab rate 5.9 

154 2 38 10 4 Scab rate Hordeum 5.10 
Avena-

156 1 41 10 4 Verrucate Triticum? 5.11 

156 2 38 8 5 Scab rate Hordeum 5.12 

158 37.5 10 4 Scabrate Part concealed Hordeum 5.13 

166 37.5 10 5 Scab rate Hordeum 5.14 

172 37.5 9 5 Scab rate Hordeum 5.15 

178 1 37.5 9 4 Scab rate Hordeum 5.16 
Pore 

178 2 38 Scab rate concealed Hordeum 

196 37.5 9 5 Scab rate Hordeum 5.17 



Table 6.1: Sediment stratigraphy of BB 1 section 

Context Description 

1001 
Acrotelm. 
N(f)4, N3, SO, EO, Si2 1 H1 1 TIO.S, Th1 , DIO .S, DhO.S, AgO .S, Gmin1 

Poorly humified fibrous peat. 
1002 N(f)3, N3, SO, EO, Si2 1 H1 1 Th1, Dh1, Ag1 , Ga1 

10YR 2/1 black 

Amorphous, very well humified peat. 
1003 N(f)4, N4, SO, E2, Si2.S 1 H3 1 Dg1 , Sh2, Ag1 

SYR 2/1 black 

Compact highly organic soil. 
1004 N(f)2.S, N2, SO, E1, Si3 1 H3 1 Sh1, Ag2, Ga1 

10YR 2/2 very dark brown 

Moderately organic medium sand. Weak consistence. Frequent charcoal and 

100S 
coarse pebble inclusions. 
Gs2, Ga1 , Ag1 
7.SYR 2.S/2 very dark brown 

1006 
Loose inorganic silty sand. Pebble inclusions . Vertical extent unknown . 
2.SY 3/2 very dark grayish brown 

Described using system of Aaby & Berglund (1986). 



Depth & 
14C age 

GU no 
SUERC 

Section 
thickness 

Material sampled 
Fraction 

no of assayed BP j: 10 
sample 

Amorphous, very 
11628 2046 BB1 (K7) 1-2cm well humified silty Humic acid 2450 ± 35 

peat 

(K13) 
Amorphous, very 

11629 2047 BB2 
7-8cm 

well humified silty Humic acid 2730 ± 40 
peat 

Mid-
1113C %0 

Calibrated 
point 

range j: 20 
cal. BP 

-31.4 2350-2720 2535 
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Table 6.3: Location of BB1 pollen spectra with reference to Kub iena tin sample and context 

Kubiena tin 
Depth in 

Context Depth below 
tin (em) basal peat (em) 

0-1 -8 
1-2 1002 -7 
2-3 -6 

K8 
3-4 -5 

4-5 -4 
5-6 

1003 -3 
6-7 -2 
7-8 -1 

1-2 0 

2-3 1 
K7 3-4 2 

4-5 3 
5-6 1004 4 
6-7 5 
1-2 6 

2-3 7 

K6 3-4 8 

4-5 
1005 

9 

5-6 10 

The soil-peat interface was used as the reference point (Ocm) because it was the only fixed 
point in the BB sections. The surface is artificial, resulting from excavation , and the base was 
not fixed. 

By reference to this table, each spectrum from the pollen profile (Figures 6.4, 6.5 and 6.6) 
can be related to both a context and a Kubiena tin sample. 



Table 6.4: Details of cereal-type pollen grains from BB1 section 

Depth 
below Grain Pore 
peat dia. Annulus dia. Pollen 
cm * IJm dia. IJm IJm Surface Notes type Plate? 

-8 42.5 10 3 scab rate Hordeum 

-1 1 40 10 3.75 scab rate Hordeum 

-1 2 37.5 8 4 scab rate Hordeum 
6.1 

-1 3 40 8 4 scab rate same plate Hordeum 

-1 4 40 9 5 scab rate Hordeum 6.2 

1 1 37.5 10 4 scab rate Hordeum 6.3 

1 2 42.5 10 3 psilate split Hordeum 

1 3 40 10 5 scab rate Hordeum 

3 1 45 10 3 scab rate Hordeum 6.4 

3 2 45 10 5 scab rate Hordeum 6.5 

3 3 42.5 8 4 scab rate Hordeum 

4 37.5 9 4 scab rate Hordeum 

5 1 45 10 4 scab rate Hordeum 

5 2 42.5 9 4 scab rate Hordeum 6.6 
degraded & 

6 37.5 10 3 scab rate crumpled Hordeum 

7 1 42.5 10 4 scabrate Hordeum 6.7 

7 2 40 10 3 scab rate Hordeum 

7 3 40 9 4 scab rate Hordeum 6.8 

7 4 44 9 4 scab rate Hordeum 6.9 

9 40 8 4 scab rate split Hordeum 

341 



Table 6.5: Features noted in thin section soil micromorphological analysis of BB1 sediments 

Section 
K4 
1002 

K4 
1003 

K3 
1004 

Kl & K2 
1005 

Kl 
1006 

Section 
K4 
1002 
K4 
1003 
K3 
1004 

Kl& 
K2 
1005 
Kl 
1006 

COARSE MINERAL MATERIAL 
(>10~m) 

• 

• 

• + • 

• + • • • 

• • + + • • 

+ + + 

+ • • • • + + 

• • • • • 

• + • • • 

FINE 
MINERAL 
MATERIAL 
« 10l-lm) 
Organo
mineral 
Red PPL 
Brown & 
grey/brown 
OIL 
Organo
mineral 
Red/brown 
PPL 
Red/brown 
& dark 
brown OIL 
Organo
mineral 
Brown, 
red/brown & 
dark brown 
PPL 
Red/brown 
& dark 
brown OIL 
Organo
mineral 
Brown & 
grey-brown 
OIL 
Brown PPL 
Organo
mineral 
Brown OIL 
Brown & 
Brown PPL 

COARSE 
ORGANIC 
MATERIAL 
(>5 cells) 

• • • • 

• • • • 

• • 

+ • 

• • 

COARSE MATERIAL GROUNDMASS 
MICROSTRUCTURE ARRANGEMENT B FABRIC 
Angular blocky Undifferentiated 

Spongy Moderately sorted Undifferentiated 

Intergrain channel Unsorted, random Crystallitic to 
speckled 

Vughy (furrow fill) Poorly sorted, Crystallitic 
random 

Intergrain channel Poorly sorted, Speckled to 
random stipple-speckled 

FINE ORGANIC 
MATERIAL 
«5 cells) 

• • + • 

• • • • + • 

• • • 

• • 

• • + 

RELATED 
DISTRIBUTION 

Porphyric 

Porphyric 

Porphyric 

Close porphyric 

PEDOFEATURES 

+ + • 

• • • + 

• + + 

Frequency class refers to the appropriate area of section (Bullock et al 1985), .: very few; .. : few; ... : frequent I 
common; .... : dominanVvery dominant. 
Frequency class for textural pedofeatures (Bullock et al 1985), • rare; .. : occasional; ... : many. 



Table 6.6: Main micromorphological features of BB1 section (relevant contexts only). 

Context Micromorphogical feature Interpretation 

Largely consists of organic material Peat 

1003 
Spongy microstructure, undifferentiated groundmass B Undisturbed, in situ 
fabric 
Rounded quartz grains Worked/weathered 

Red/brown fine organo-mineral fraction (OIL&PPL) Ash inclusions 

Rubified minerals (OIL) Ash inclusions 

Organic coatings Peat growth underway 

1004 Patches of accumulated phytoliths and silicaceous Soil amendment by addition 
material 
Yellowish patches of fine material (PPL) Leaching, iron movement 

Calcium-iron-phosphate accumulations & infills Decomposed & recrystallised bone 

High organic component, spongy microstructure Peat growth underway 

Fines lenses of sand/silt and fine microaggregates Ard cultivation 

Subrounded quartz grains Some working 

Excremental pedofeatures Soil fauna activity 

Dusty coatings & infills Cultivation 

1005 Light yellow patches of fine material (PPL) Leaching 

Fines lenses of sand/silt and fine microaggregates Ard cultivation 

Some rubified minerals (OIL) Possible ash inclusion 

Poorly sorted subangular quartz Quartz/schist bedrock forming soil 

1006 Excremental pedofeatures Soil fauna activity 



Table 6.7: Sediment stratigraphy of BB2 section 

Context Description i 
i 

2001 
Acrotelm. 
N(f)O, N2, SO, EO, Si21 H11 TI0.5, Th1, D10.5, DhO.5, AgO.5, Gmin1 

Dark brown moderately humified fibrous peat. 
2002 N(f)2, N3, S2, E1, Si1 1 H1.5 1 T10.5, ThO.5, Dh1, Dg1, Sh1 

10YR 2/1 black 

Amorphous, very well humified peat. 
2003 N(f)4, N3, SO, E3, Si11 H3 1 Sh2, Dg1, Ag1 

5YR 2.5/1 black 

Moderately organic silty sand. Firm consistence with frequent gravel & cobble 

2004 
inclusions. Organic matter well humified. 
Gs2, Ga1, Sh1 
10YR 2/2 very dark brown 

Inorganic loose medium sand. Cobble clasts - clast supported in places. 
2005 Vertical extent unknown. 

10YR 3/2 very dark grayish brown 

Described using system of Aaby & Berglund (1986). 



Table 6.8: Location of BB2 pollen spectra with reference to Kubiena tin sample and context 

Kubiena tin 
Depth in 

Context Depth below 
tin (em) basal peat (em) 

0-1 -12 
1-2 -11 
2-3 -10 

K14 
3-4 -9 
4-5 -8 
5-6 -7 
6-7 2003 -6 
7-8 -5 
1-2 -4 
2-3 -3 

K13 3-4 -2 
4-5 -1 

5-6 0 

1-2 1 

2-3 2 

K12 
3-4 2004 3 

4-5 4 

5-6 5 

6-7 6 

The soil-peat interface was used as the reference point (Ocm) because it was the only fixed 
point in the BB sections. The surface is artificial, resulting from excavation, and the base was 
not fixed. 

By reference to this table, each spectrum from the pollen profile (Figures 6.9, 6.10 and 6.11) 
can be related to both a context and a Kubiena tin sample. 



Table 6.9: Details of cereal-type pollen grains from BB2 

Depth 
below Grain Pore 
peat dia. Annulus dia. Pollen 
cm * !-1m dia. !-1m !-1m Surface Notes type Plate? 

Avena-
6.21 -10 1 45 10 4 verrucate Triticum 

-10 2 42.5 8 4 scab rate Hordeum 6.22 

-8 40 9 4 scab rate Hordeum 6.23 
Avena-

-7 47.5 12.5 7 verrucate Triticum 

-1 1 40 10 4 scab rate Hordeum 

-1 2 40 10 4 scab rate Hordeum 6.24 

-1 3 38 9 4 scab rate Hordeum 
Avena-

1 48 10 5 scabrate Triticum? 
Crumpled -
pore not 

2 1 42.5 scab rate measurable Hordeum 

2 2 42.5 10 4 scab rate Hordeum 

3-l6 



Tab.le 6.10: Features noted in thin section soil micromorphological analysis of BB2 
sediments 

COARSE MINERAL MATERIAL 
(>10l-lm) 

COARSE 
ORGANIC 
MATERIAL 

FINE ORGANIC 
MATERIAL 
«5 cells) 

PEDOFEATURES 

Section 

K10 & 
K11 
2003 

Kg 
2004 

Kg 
2005 

Section 

K10 & 
K11 
2003 

Kg 
2004 

Kg 
2005 

+ 

• + • • 

• + • • 

+ • 

• 

• + 

• + 

COARSE 
MATERIAL 

FINE 
MINERAL 
MATERIAL 
«10IJm) 
Organo
mineral 
Brown & 
red-brown 
PPL 
Red, brown 
& dark 
brown OIL 
Organo
mineral 
Brown & 
red-brown 
PPL 
Brown & 
dark brown 
OIL 
Organo
mineral 
Brown PPL 
Brown & 
light brown 
OIL 

(>5 cells) 

• • • • • 

• • • 

• • 

GROUNDMASS 
MICROSTRUCTURE ARRANGEMENT B FABRIC 
Prismatic / angular Undifferentiated 
blocky 

Complex - channel Poorly sorted Speckled 
& vughy Random 

Intergrain channel Moderately Mosaic 
sorted speckled 

• • • • 

• • 

RELATED 
DISTRIBUTION 

Open porphyric 

Porphyric 

• • • • 

• • 

Frequency class refers to the appropnate area of section (Bullock et al 1985), .: very few; .. : few; ... : frequent / 
common; .... : dominant/very dominant. 
Frequency class for textural pedofeatures (Bullock et al 1985), • rare; .. : occasional; ... : many. 

3-l7 



Table 6.11: Main micromorphological features of BB2 section (relevant contexts only). 

Context Micromorphogical feature Interpretation 

Largely consists of organic material Peat 

2003 Angular blocky microstructure, undifferentiated Wetting / drying 
groundmass B fabric 
Few carbonised particles Burning activity in area 

Subrounded/subangular quartz grains Worked/weathered 

Brown fine organo-mineral fraction (OIL&PPL); Possible ash inclusions 
red-brown in PPL 

2004 Excremental pedofeatures Soil fauna activity 

Highly organic Peat formation underway 

Channel / vughy microstructure Cultivation / grassland 

Subangular quartz grains Schist bedrock forming soil 

Excremental pedofeatures Soil fauna activity 

2005 Brown/light brown fine organo-mineral fraction Some leaching, no addition or 
(PPL & OIL) amendment 
Intergrain channel microstructure Grassland 
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Plate 3.1 : Area surrounding BEL sampling site facing approximately west. 

Plate 3.2: Enclosure 5 (Neolithic) - see Figure 2.8 for location. Facing approximately west. 
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Plate 3.3: Wall 4 viewed from western end. See Figure 2.8 for location. 

Plate 3.4: Roundhouse viewed roughly to east. See Figure 2.8 for location. 
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Plate 3.5: Wall 3 viewed from southern end. See Figure 2.8 for location. 

Plate 3.6: Area of ridge-and-furrow adjacent to roundhouse viewed roughly to the east. 
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Plate 3.7: Area of ridge-and-furrow adjacent to roundhouse viewed roughly to north . See 
Figure 3.4 for location. 
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Plate 4.1: BB1 section prior to sampling 

Plate 4.2: BB2 section prior to sampling 

Plate 4.3: BEL location during sampling 
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Plate 4.4: SS 1 section during sampling 
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Plates 5: 1-5.12: Cereal-type pollen grains from BEL core 

Plate 5.1: BEL 4cm 

10um 

Plate 5.4: BEL 28cm 

Plate 5.7: BEL 150cm 

10um 

Plate 5.10: BEL 154cm 2) 
10um 

Plate 5.2 : BEL 16cm 
10um 

Plate 5.5: BEL 92cm 
10um 

6 · 

Plate 5.8: BEL 152cm 

10um 

Plate 5.11: BEL 156cm 1) 

10um 

Plate 5.3: BEL 20cm 
10um 

Plate 5.6: BEL 138cm 

Plate 5.9: BEL 154cm 1) 

10um 

Plate 5.12: BEL 156cm (2) 
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Plates 5.13 - 5.17 : Selected cereal pollen from BEL core 

Plate 5.13: BEL 158cm Plate 5.14: BEL 166cm Plate 5.15: BEL 172cm 

10um 

10um 

Plate 5.16: BEL 178cm Plate 5.17: BEL 196cm 

10um 

10um 



Plates 6.1-6.9: Cereal-type pollen grains from BB 1 section 

Plate 6.1 : BB1 -1cm (2&3) Plate 6.2: BB1 -1cm 

10um 

Plate 6.4: BB1 3cm 1 Plate 6.6: BB 1 5cm 2 

Plate 6.9: BB1 7cm 4 



Plate 6.10a: Thin section from Kubiena tin K1 
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Plate 6.1 Ob: K1 illustrated 
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Plate 6.11 a: Part of fines accumulation in 1006 (PPL) 

1mm 

Plate 6.11 b: Part of fines accumulation in 1006 (XPL) 

1mm 
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Plate 6.12a: Part of fines pan in 1006 (PPL) 

1mm 

Plate 6.12b: Part of fines pan in 1006 (XPL) 

1mm 
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Plate 6.13a: Thin section from Kubiena tin K2 

55mm 

Figure 6.13b: K2 annotated 
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Plate 6.14a: Fines lens in furrow fill of 1005 (PPL) 

1mm 

Plate 6.14b: Fines lens in furrow fill of 1006 (XPL) 

1mm 
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Plate 6.15a: Fines lens in basal furrow fill of 1005 (PPL) 

1mm 

Plate 6.15b: Fines lens in basal furrow fill of 1005 (XPL) 

1mm 
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Plate 6.16: Rubified minerals in 1005 (OIL) 

20mm 
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Plate 6.17a: Thin section from Kubiena tin K3 

55mm 

Plate 6.17b: K3 annotated 
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Plate 6.18: Rubified minerals in 1004 (OIL) 

20mm 

Plate 6.19: Fines lens in (upper) 1004 (PPL) 

1mm 
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Plate 6.20a: Fines lens in (lower) 1004 (PPL) 

1mm 

Plate 6.20b: Fines lens in (lower) 1004 (XPL) 

1mm 
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Plates 6.21 - 6.24: Cereal-type pollen grains from BB2 section 

Plate 6.21 : BB2 -10cm (1) Plate 6.22: BB2 -1 Ocm (2) 

1() m Oum 

Plate 6.23: BB2 -Bcm 2) 
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Appendix A 

Radiocarbon assays quoted in the text 

For further details and discussion of radiocarbon dating see Section 1.1.2. Assay details are 
arranged alphabetically by site name. 

14C lab. no 
Age 

Material Age (bp) (cal. Context fl13C Source 
BP/AD)'Il dated 

Ballyveelish, Co. Tipperary 
GrN-11656 2810±90 2880±230 Charcoal Ditch of 

square 
structure 

Doody GrN-11657 3580±50 3880±190 Charcoal Fragments in 
vessel (1987a) 

GrN-11659 3485+40 3750+120 Charcoal Wattle in ditch 
GrN-11445 2550+130 2625+325 Charcoal Pit Site 2 
GrN-11658 2770±60 2885±135 Charcoal Circular ditch 
Belderg Beg 
SI-1469 3835±85 4250±300 Oak stump Growing in 

peat 
SI-1470 4220±95 4725±345 Pine stump Rooted on 

mineral soil 
SI-1471 3220±85 3440±200 Oak stake* Extend stone 
SI-1472 3210±85 3440±200 Oak stake* wall onto Caulfield 

shallow peat (1978) 
SI-1473 3170±85 3400±240 Wood* From 

roundhouse 
SI-1474 2295±75 2400±350 Charcoal* Associated 
SI-1475 2905±75 3060±210 Charcoal* with flint 

scrapers in 
roundhouse 

UCD-C60 3930±50 4355±175 Pine 
stump* 

Caulfield et 
UCD-C31 4510±50 5145±175 Pine Rooted in al (1998) 

stump* mineral soil 
5m from wall 

Bunnyconnellan East, Co. Mayo'" 
3410±70 3740+190 Peat 0-2cm O'Connell 
4090+40 4630±190 Peat 6-7cm (1990b) 

Carrigdirty Rock, Co. Limerick 
GrN-20976 3330±25 3555±85 Wood Sharpened O'Sullivan 

post from 
(1996) 

?house 
Carrigillihy, Co. Cork 
GrN-12917 2810±50 2930±150 Charcoal Refuse inside 

house O'Kelly 
GrN-12916 3100±50 3305±145 Charcoal Twigs in pit (1989) 

inside house 
Carrownaglogh, Co. Mayo 
SI-1465 3425±85 3675±215 Charcoal Hearth O'Connell 

underlying (1986) 
wall at At 

SI-1466 3080±140 3250±400 Charcoal Cultivation 
ridge at st 

SI-1467 2620±75 2650±300 Peat Overlying 
ridge sampled 
for SI-1466t 

GrN-13108 2390±35 2525±185 Peat Overlying L2 
furrowt 

GrN-13109 2435±35 2535±185 Peat Overlying L3 



14C lab. no 
Age 

Material Age (bp) (cal. Context ll.13C Source 
BP/AD)lI dated 

furrowT 

GrN-13110 2465±35 2535±185 Peat Overring L7 
ridge 

SI-1468 3285±75 3525±165 Wood Stake in peat 
at Ct 

GrN-12301 1205±25 1140±90 Peat -130cm, long 
monolitht * 

GrN-12302 2000±25 1850±60 Peat -90cm, long 
monolith t:I: 

GrN-12303 2750±50 2855±95 Peat -52cm, long 
monolitht * 

GrN-12304 3510±50 3770±140 Peat -5cm, lon~ 
monolitht 

Ceide Fields 

Dates from a monolith taken beside Behy tomb court cairn. Depths given are with respect to mineral 
Qround/peat interface 
UB-158F 3930+105 4425+425 Peat (pt. fr.) 36-38cm 
UB-155 3630±70 3935±215 PeatS 30-34cm Smith et al 

UB-153F 3890±110 4275±375 Peat (pt. fr.) 24-38cm 
(1973a) 

Glenulra enclosure 
SI-1464 4460±115 5150±350 Charcoal Enclosure 

Caulfield within field 
~stem 

(1978) 

Pollen profiles within Ceide Fields 

GLU-IV core: Depths given relate to cm below modern day surface t 
GrN-21638 1820±50 1745±135 Peat 167-170cm 
GrN-21637 1940±50 1815±85 Peat 185-188cm 
GrN-21636 2890±50 3040±170 Peat 255-258cm 
GrN-21121 3310±60 3540±150 Peat 289-293cm 
GrN-21635 3510±50 3770+140 Peat 319-322cm 
GrN-21120 3890±60 4325±185 Peat 351-355cm 
GrN-21634 4070+60 4615±205 Peat 387-390cm 
GrN-21119 4110+60 4635±195 Peat 402-406cm 
GrN-21633 4470+60 5090±220 Peat 440-444cm 
GrN-21118 4550+60 5215±235 Peat 448-452cm 
GrN-21632 4500±60 5095±225 Peat 459-462cm 
GrN-21117 4840±60 5525+195 Peat 486-490cm 
GrN-21631 5170+60 5955±215 Peat 494-497cm 
GrN-21630 5100+80 5825+175 Peat 515-518cm 
BHY short monoliths: '" 
BHY IVT 
GrN-20030 2940+40 2550+190 Peat -7 - -10 Molloy & 
GrN-20029 3630+40 3960+130 Peat -1 - 0 O'Connell 

BHYVT (1995) 

Gd-6696 3450±80 3685±215 Peat -8.5 - -7 

Gd-6694 3990+80 4500±350 Peat 0-1.5 

BHY VIT 
GrN-20028 3540+50 3830±150 Peat -10 - -13 

GrN-20027 4080+50 4620±200 Peat -5 - -8 

CF I monolith: T * 
GrN-20632 2250±50 2245+105 Peat -7 - -8 

GrN-21116 2870+40 3010±150 Peat -1 - -2 

GrN-20631 2760±40 2860+90 Peat 0--1 

Plough mark BHY (6) T 
GrN-20032 2390±40 2520±190 Peat Plough fill 

BHY III: T * 
GrN-20031 3290+30 3540±100 Peat -14.5 - -16.5 

Gd 7147 3360±50 3580±120 Peat -7 - -6 

Gd - 6693 4030±80 4550+300 Peat -1 - 0 

GrN-23499 3090+30 3295±85 PeatP -17.5--16.5 O'Connell & 

GrN-23498 3870±25 4285+125 Peat~ -6 - -5 Molloy 

GrN-23497 4110+40 4635+195 PeatP -1 - 0 (2001 ) 

Chancellorsland, Co. Tipperary 



14C lab. no 
Age 

Material 
Age (bp) (cal. Context [l13C Source 

BP/AD)lI dated 

UB-3723 3080±65 3260±190 ? Structure 5 Doody 
(1995) 

UB-3626 3095±100 3275±325 ? Hut foundation 
trench 

UB-3627 3320±170 3525±475 ? Palisade Doody 
trench (1993b) 

UB-3628 2980±250 3150±700 ? Palisade 
trench 

GrA-5294 3340±40 3580+110 ? Ditch 
GrA-5293 3160±40 3365±105 Charcoal Perimeter 

Doody 

stake 
(1999) 

Coney Island, Co. Armagh 
UB-43 3350±80 3610±220 Charcoal Deposit with Smith et al 

Bowl pottery (1971 ) 
Corbally, Co. Kildare 
GrA-13697 4910±50 5620±130 Emmer Post hole of 

grain house 
A. Purcell 

GrA-13702 4880±50 5605±125 Emmer Foundation 
grain trench of 

(unpub.) in 

house 
Milliken 

GrA-13700 4900±50 5615±135 Emmer Post hole of 
(2002) 

grain house 
Cullyhanna, Co. Armagh 
UB-688 3305±50 3545±145 Wood Oak stake of Smith et al 

enclosure on 
lake margin 

(1973b) 

Curraghatoor, Co. Tipperary 
GrN-19562 2730±50 2850±100 Charcoal ? 
GrN-11660 2840±35 2965±115 Charcoal Pit inside 

round house 

GrN-16786 2845±40 2960±120 Charcoal Refuse pit Doody 

GrN-16787 3030±70 3185±195 Charcoal Pit or posthole (1990) 

GrN-16785 2940±50 3105±165 Charcoal Refuse pit 

GrN-16788 2865±35 3005+135 Charcoal Pit or posthole 

GrN-16789 2850+35 2970+110 Charcoal Pit or posthole 

Dalkey Island, Co. Dublin 
D-38 5300±170 6050±400 Charcoal McAuley & 

Watts 
(1961 ) 

OxA-4566 5050±90 5795±195 Sheep -19.6%0 
humerus 

OxA-4567 3050±70 3200±200 Cattle ulna -22.9%0 

OxA-4568 6870±90 7750+180 Pig scapula Shell midden 
-19.2%0 

OxA-4569 7250±100 8085±245 Seal/sheep -13.9%0 Woodman et 
rib al (1997) 

OxA-4570 5600±80 6385±185 Pig radius -20.2%0 

OxA-4571 4820±75 5515±195 Cattle -21.4%0 

vertebra 

OxA-4572 6410±110 7300±300 Seal -11.4%0 

phalanx 

False Bay, Ball'Yconneely, Co. Galway 

? 3587±36 3945±135 Charcoal Pit fill McCormick 
et al (1996) 

Ferriter's Cove, Co~ Kerry 
OxA-4918 5545±65 6335±145 Human -14.0%0 

femur 

OxA-5770 5590±60 6390±110 Human -14.1%0 Woodman & 

molar O'Brien 

OxA-3869 5510±70 6280±170 Cattle bone -18.1%0 (1993) 

GrN-18772 6300±140 7150±350 Charcoal ? 

0-2641 5245±55 6045±135 Charcoal ? 

OxA-8775 5825±50 6620±130 Cattle bone ? Woodman 
(2000) 

Geevraun, 300m west of Belder~ Beg 
UCD-C46 5710±90 6510±210 Peat 5cm above Caulfield et 

mineral soil al (1998) 

UCD-C47 4210±60 4720±150 Pine stump 45cm above 



14C lab. no 
Age 

Material Age (bp) (cal. Context fl13C Source 
BP/AD)lI dated 

Kilgreany Cave, Co. Waterford 
mineral soil 

OxA-4269 5190+80 5960±220 Cattle tibia Cave stratum -22.5%0 Woodman et 

LouJJh 000, Co. Mayo at (1997) 
I GrN-11739B 2800±100 2975±235 Lake 59-65cm 

sediment 
GrN-11739 2510±50 2555±195 Lake 65-80cm 

sediment 
GrN-11738B 1510±120 1425±525 Lake 164-169cm 

sediment 
GrN-11738 1895±50 1830±120 Lake 169-186cm 

sediment O'Connell et 
GrN-11737 4610±60 5000±300 Lake 221-231cm at (1987) 

sediment 
GrN-11737B 5020±230 5700±650 Lake 231-237cm 

sediment 
GrN-11736 6280±70 7205±215 Lake 273-281cm 

sediment 
GrN-11736B 6750±210 7625±425 Lake 281-286cm 

sediment 
Lough Eskragh, Co. Tyrone 
UB-1472 2590±45 2640±150 Wood Oak plank 

from crannog 
A 

UB-950 2360±45 2475±275 Wood Vertical pile 
site C Williams 

UB-965 2475±45 2540±190 Wood Crannog A (1978) 
UB-2047 2690±45 2805±65 Wood ? 
UB-948 3105±80 3275±205 Wood Site C 

horizontal 
timber 

GrN-14740 2165±25 2185±125 Wood Dug-out Lanting & 
canoe Brindley 

(1996) 
L)'Ies Hill, Co. Antrim 
UB-3063 4775±125 5475±125 Barley Hearth 

I 
Sheridan 

(2001 ) 
Mannin 2, Ballyconneely, Co. Galway 
? 2799±28 2875±85 Charcoal Midden McCormick 
? 2503+30 2605±145 Shell Midden et at (1996) 
Meadowlands, Downpatrick, Co. Down 
UB-471 3575±70 3885±205 Charcoal Occupation 

layer (lower) 
UB-472 3795±75 4200±220 Charcoal Occupation 

layer (lower) Smith et at 
UB-473 3265±80 3515±175 Charcoal Occupation (1973a) 

layer (upperl 
UB-474 3325±75 3555±175 Charcoal Occupation 

layer (upper) 

Moojlhaun, Co. Clare 
GrN-20490 2895±50 3040±170 Wood Sealed by Grogan 

outer ramQart (1995) 

MOEau~h Lou~ h, Co. Meath 
GrN-11443 5270±60 6055±145 Charcoal Bradley 

(1991 ) 
Lake mud 

-22.5%0 Woodman et OxA-4268 1660±70 AD Charcoal 
395±175 at (19971 

Rathlackan, Co. Mayo 
Beta-76588 4640±80 5325±275 Charcoal Upper pit fill in 

tomb chamber Byrne (n.d.) 
3 

Beta-76591 4570±90 5225±375 Charcoal Deposit 
surrounding 
hearth in court 

Beta-76587 4520±80 5150±300 Charcoal Spread on 
court surface 

~--- , , 



14 
Age 

Material C lab. no Age (bp) (cal. Context ~13C 
BP/AD)lI dated Source 

Beta-76589 4390±240 4950±700 Charcoal Pit fill in tomb 
chamber 3 

Beta-76590 4130+80 4640±200 Charcoal Silt in top of 
I socket in I 
I 

tomb chamber 
3 

Beta-76583 4110+90 4625±215 Charcoal Spread on 
court surface 

i 
i 

Beta-76585 4090±70 4625±205 Charcoal Deposit in 
tomb chamber 
3 above basal 
stones 

Beta-76584 3640±80 3975±275 Charcoal With 
secondary 
pottery in 
tomb chamber 
3 

Beta-76586 3630±80 3925±235 Charcoal With 
secondary 
pottery in 
tomb chamber 
3 

Beta-48102 4110±60 4605+165 Charcoal Hearth of 
Beta-63836 4040±60 4575±275 Charcoal house 10 
Rockmarshall Midden, Co. Louth 
OxA-4604 5705±75 6490±180 Human -18.1%0 Hedges et al 

femur (1997) 
Stoney Island, Co. Galway 
OxA-2758 6200±80 7075±205 Human Bog body -22.6%0 Hedges et al 

bone (1993) 
OxA-2942 5270±80 6090±190 Human Bog body -21.2%0 

bone 
Sutton Shell Midden, Co. Dublin 
15067 5250±100 6025±275 Charcoal Mitchell 

Shell midden (1972) 

OxA-3691 6660±80 7545±125 ?Cattle -20.5%0 
bone 

Woodman et 

OxA-3960 6560+75 7450+140 Recheck of OxA-3691 -23.5%0 
al (1997) 

Tankardstown, Co. Limerick 
OxA-1476 4890±80 5600±300 Emmer House 1 Hedges et 

Qrain al (1989) 

OxA-1477 4840±80 5530±210 Emmer House 1 
grain 

Where necessary, all assays quoted from literature have been re-calibrated with 
OxCal version 3.9 (Bronk Ramsey 2003), using atmospheric data from Stuiver et a/ 
(1998). Here and in the text, the date given is mid-point of calibrated age range and 
± value represents calibrated age range (end points at 95% [20] confidence level) 

§ 

t 

* 

divided by 2. 
In this sample, the fine particulate fraction and the humic acid fraction were 
combined for dating. Humic acid samples from samples 24-28cm (=UB-153C) and 
36-38cm (=UB-153C) gave dates of 3245±70 and 3750±85 bp respectively. The 
authors concluded that there was considerable movement of humic acid and that 
UB-155 therefore was too young. 
Additional dates for the BHY III profile were sought due to uncertainties with the 
initial dates. These new results confirmed the suspicions (based on palynological 
interpretations) that the original dates were inaccurate (Molloy & O'Connell 1995, 
210; O'Connell & Molloy 2001, 101). 
See Figure 2.10 for locations. 
See Figure 2.8 for locations. 
Depth signifies distance from mineral soil, i.e. -130cm correlates to 130cm above 

mineral soil/peat horizon. 



Appendix B 

Belderg Beg site reports published in 'Excavations' 

1. Caulfield, S. 1971. Beldergbeg. Excavations 1971. 

BELDERGBEG 

Pre-bog Field System 

F982410 

A preliminary investigation of a pre-bog field system at Beldergbeg, Co. Mayo was begun in 

November 1971 and is continuing at present (February 1972). The site is four miles west of 

the Behy-Glenulra field complex and less than half a mile from Belderg harbour. 

The excavation so far has revealed a number of small conjoined enclosures of irregular 

pattern. Flint knapping was carried out in these enclosures over a wide area. One site yielded 

a number of hammerstones and a large quantity of crushed quartz. In this same area a 

number of sherds of pottery were found around and under a loose stone. It appeared at first 

as if one vessel had been broken by the stone but reconstruction indicates at least two 

vessels, one a shouldered round bottomed vessel and the other an un shouldered vessel. A 

number of thumb scrapers of flint and a projectile head were also found. 

One long stone wall at the western side of the site lies on approximately 20-30cm of peat. 

Following the line of this wall and in some cases directly under it, a number of pointed 

stakes 8-12cm in diameter were found. The stakes were in the peat and did not penetrate the 

underlying soil. 

It is hoped to CO!1tinue excavation on the site in the coming summer. 

Mr. S. Caulfield, Department of Archaeology, University College Dublin 
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2. Caulfield, S. 1972. Beldergbeg. Excavations 1972. 

BELDERGBEG 

Neolithic Settlement 

F985406 

The excavation in Beldergbeg, Co. Mayo which was begun in November 1971 was resumed 

on July 4, 1972 and continued until August 29. The areas of the site which had produced 

finds in the first season's work were concentrated on. In one area which had an extensive 

spread of charcoal, about 15 flint scrapers, some small sherds of pottery and a cow's hom 

were found. The area which had previously yielded broken Neolithic pottery vessels 

produced further sherds of similar pottery. Further excavation in the area of the late wall 

which is built on a growth of peat confirmed the two periods of activity on the site. 

Half of the circular earth and stone structure, 9m in diameter, was excavated. A wall trench 

immediately inside the enclosing bank shows that this is in all probability a house. Finds 

were rare but two broken saddle querns were found and a heat-shattered flint implement. The 

amount of charcoal within the enclosure in particular in the wall trench suggests that the 

structure was burnt down. 

The most important result from this season's excavation was the evidence for prehistoric 

tillage which came from beside the circular enclosure. Plough marks indicating cross

ploughing were recovered over a 10m square area. Overlying the plough marks and 

extending over an area 20 x 20m was a pattern of ridges and furrows indicating subsequent 

spade cultivation. The plough marks are the first discovery of this phenomenon in Ireland 

and the pattern compares with the eight to ten examples known in Britain and the 

approximately 100 known from the continent. The apparently Neolithic date for the 

Beldergbeg plough marks makes this evidence of ploughing one of the earliest known in 

Europe. Its discovery in an open field where there is the opportunity to investigate the extent 

of the ploughing gives the discovery added significance. Ridge and furrow cultivation 

overlying plough marks is unparalleled elsewhere. 

The main results of the 1972 season of excavation were therefore the evidence of prehistoric 

agriculture which was discovered. Apart from the obviously agricultural reason for the 

enclosing stone walls which led to the excavation of this site, evidence of agricultural 

activity was forthcoming from the plough marks, ridges and furrows, cow's hom and saddle 
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quems. The other finds while not very numerous are sufficient to indicate that the two 

periods of activity on the site took place within Neolithic times. 

It is hoped to continue the excavation in the 1973 season. 

Mr. S. Caulfield, Dept of Archaeology, University College Dublin 



3. Caulfield, S. 1973. Beldergbeg. Excavations 1973. 

BELDERGBEG 

Prehistoric Settlement and Field Systems 

F 982410 

The excavation this season concentrated on the circular "house" and the tillage plot with 

ridges and plough marks. It was hoped to complete the excavation of the house but 

continuous wet weather made this impossible. However, peat stripping of the tillage area was 

carried out on a more extensive scale than had been originally planned. 

The plough marks have now been traced in an area 24m x 16m. The extent of the ridges 

discovered last year was defined on three sides (the road prohibits excavation on the fourth 

side) and three other contiguous tillage plots have been found. One plot does not have ridges, 

the second has ridges parallel to those first discovered, and the third has ridges at right angles 

to these. 

Excavation in the house revealed an internal wall trench and a concentric ring of postholes 

approximately 1 .Sm inside this trench and 2m apart. Other postholes and some stone filled 

pits were found, in particular in the SE quadrant. In one of the pits small flecks of bone 

survived. Two further saddle querns and portions of three rubbers and a polished stone disc 

were the only finds from within this structure. 

Some new evidence of the second period of habitation on the site came to light. The second 

period wall built on peat with stones robbed from the earlier pre-bog wall terminated after 

running approximately 70m to the south but the oak posts associated with the final 40m of 

this wall continued on independently for at least a further Sam into the deep bog. (Are the 

pointed stakes so commonly found in bogs simply some form of fencing as they certainly are 

in this case?). The other structural evidence of second period occupation, a late trench with 

the upcast thrown on to approximately 10cm of bog was located at another part of the site 

40m from where it was first discovered. Close by but not directly related to it sherds of a 

broken pottery vessel were found. This pottery vessel with flat rim and body ornament is 

totally different to that previously found. Up until the discovery of this pottery none of the 

archaeological objects could be definitely isolated into groups to tie in with the clearly 

differentiated structural features as all the material could be Neolithic in date. This new 

pottery differing in form, grit and decoration should eventually prove of value in the cultural 

identification of the second occupation. The occupation of what was obviously a pom 

agricultural site when the site was already covered by bog is difficult to explain if this 

happened in Neolithic times. But if this second occupation was in Bronze Age times no 
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explanation is required as the rich vein of copper ore in the cliff face 1 mile to the ~\V could 

be sufficient reason for these people to occupy such a poor agricultural site. The wedge tomb 

three-quarters of a mile east of the site already points to the presence of Bronze Age people 

in Belderrig valley. 

It is hoped to continue the excavation in the 1974 season. 

Site 26 Appendix. 

7 Radiocarbon determinations for the site have been provided by the Smithsonian Institute. 

Five samples of wood from the site suggest that the 1st pre-bog occupation is earlier than the 

mid-3rd Millennium BC and that the 2nd occupation is of Mid-2DdMillennium BC date. 

1. Pine stump near pre bog wall at S. end of site 

2. Oak stump at SE end of site 

3. Pointed oak post from late wall 

4. Pointed stake from late wall 

5. Burnt block of wood from round house 

4290 ± 95 BP 

3835 ± 85 BP 

3220 ± 85 BP 

3210 ± 85BP 

3170 ± 5BP 

Two charcoal samples yielded dates inconsistent with the archaeological evidence 

6. Charcoal from wall trench within round house 

7. Charcoal from area which produced number of flint scrapers 

S. Caulfield, Dept of Archaeology, University College, Cork. 



4. Caulfield, S. 1974. Beldergbeg. Excavations 1974. 

BELDERGBEG 

Prehistoric Settlement + field system 

F982410 

The aim this season was to complete the excavation of the house and to try to define the 

overall limits of the settlement to the north and south. 

The round house was totally excavated apart from one small segment where the stratification 

was left intact. The rubber of a saddle quem and the fragment of another were found. The 

external trench which surrounds the house is not continuous as it stops just short of an 

unexcavated baulk on the western side. The trench in the neighbourhood of the ridge is filled 

with a disturbed peaty soil. 

Excavation at the extreme northern end of the site showed a large spread of charcoal in 

which shells of hazel nut were found. A large cutting within the boundary of the stone walls 

at the extreme south end of the site uncovered a very stony area in which were found sherds 

of pottery with sharply-angular quartz grit very similar to pottery from the Glenulra 

enclosure. Elsewhere on the site at a number of places there was found pottery with a non

quartz grit similar to the cord-ornamented pottery discovered in 1973. 

In a non-ridged area contiguous to the ridge plots further traces of plough marks were 

revealed. This new evidence shows that ridging was not necessarily the reason for the 

ploughing and it is possible that the two indications of tillage are unconnected and could in 

fact belong to the two well-separated occupations of the site. 

(NOTE. The appendix to the 1973 report gives a series of radio carbon dates supplied by the 

Smithsonian Institution. The dates published were the uncalibrated dates and to conform to 

the normal convention should have been published with lower case b.p.) 

Mr. S. Caulfield, Department of Archaeology, University College, Dublin. 
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5. Caulfield, S. 1975. Beldergbeg. Excavations 1975 

BELDERGBEG 

Prehistoric Settlement & Field System 

F 982 410 

The excavation concentrated on the tillage area and its relationship to the round house. It 

would seem that the ploughing and clearance of stones from the tillage plots pre-dated the 

round house because (i) the house was built on a stony headland between two such plots. (ii) 

there was a break in the external house trench where it met the stones of the headland and 

(iii) plough marks were found very close to the house. There was tillage also after the house 

was built as the trench near the ridges is filled with a disturbed soil which suggests digging 

close by. The specialized function of the round house was further emphasised by the finding 

of another saddle quem and two rubbers in its immediate vicinity. The average width of a 

ridge and "seoch" combined is around one metre. 

At the western end of the ridge-plots an extensive charcoal spread contained shells of 

hazelnut, a few broken flint scrapers and numerous sherds of pottery. The pottery is in 

extremely poor condition but it is possible to identify its grit as being non-quartz and similar 

to that in some cord ornamented pottery discovered in 1973. 

S. Caulfield, Department of Archaeology, University College, Dublin. 
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C61976 

BELDERGBEG 

Prehistoric Settlement and Field Settlement 

F 982 410 

The excavation concentrated on an oval-shaped enclosure at the W. side of the site. The 

enclosure which was bounded by a low field wall had been partially robbed during the 

Bronze Age to provide stones for a later field wall built on a varying depth of peat. 

An area approximately 700 sq. m. was uncovered but proved to be surprisingly barren of 

finds and structural features. Traces of burning at the pre-bog level and in the basal peat need 

be no more than the general burning evidence which occurs over a widespread area in the 

region of the site. There were no traces of any postholes or other structural evidence while 

the very stony nature of the enclosure rules out the possibility that it could have been an 

enclosed tillage plot. 

One struck chert flake, a small amount of pottery and a few as yet unidentified seeds were 

the total finds from within the enclosure. A few sherds of poorly preserved pottery were also 

found immediately outside the enclosure wall. 

The negative results from this area of the settlement have helped to define the main focus of 

occupation which is now seen to be confined within certain contour levels across the site. 

S. Caulfield, Department of Archaeology, University College, Dublin. 



Appendix C 

Pollen analysis - additional notes 

1. Identification and differentiation criteria 

Identification of certain commonly misidentified taxa followed the most detailed keys 

available: 

Cerealia 

Size details of all pollen falling into the cereal-type classifications recognised by Andersen 

(1979) and reprinted by Moore et al (1991) were noted and photomicrographs taken in most 

instances. An eyepiece with graduated reticle was used and a micrometer was used to 

confirm that the graduations represented 21lm. 

Co ry I uslMy rica 

Corylus and Myrica were differentiated on the basis of Corylus possibly exhibiting some 

(but not complete) nexine thinning and sexine thickening adjacent to the porus, and Myrica 

exhibiting nexine absence and sexine thickening in the porus area (Moore et al 1991, 103). 

Reference material was also used in differentiation. 

Ericaceae 
Differentiation of Ericaceae was made primarily upon reference to type slide material after 

reference to Moore et al (1991) and additionally, in cases of uncertainty, to Oldfield (l959). 

Although Oldfield (1959) intimates that differentiation of taxa within the Ericaceae family is 

possible, this degree of confidence has subsequently been questioned, particularly with 

reference to imperfectly preserved grains (Moore et al 1991, 88). Primary differentiation 

criteria were: 

Calluna vulgaris: Tetrads with all grains in one plane, or tetrad lobed and often irregularly 

shaped. Surface sculpturing scabrate-verrucate-gemmate. Colpi short and often irregularly 

spaced. 



Erica cinerea: Tetrad almost globular in shape and sized >45 C l' h d . d 11m. 0 pI S arp e ge and 

often widening towards the grain equator. Pori elliptical-acute or represented by a transverse 

endocolpus. 

Erica tetralix: Grain lobed, size usually 38-43Ilm, often with flattened apocolpia. Coarse 

scabrate-verrucate sculpturing. Colpi often open and widen toward the equator. Costae to the 

colpi. 

Vaccinium: Tetrad lobed to globular, varying size. Grain apocolpia not as flattened as III 

Erica. Costae to the colpi absent or insignificant. 

Empetrum nigrum: Tetrad triangular-obtuse, size 30-34Ilm. Tetrad has thick inner walls. 

Colpi short and narrow. 

Andromeda potifolia: Tetrad large; 44-57Ilm; and sub-globular to triangular-obtuse. Colpi 

usually narrow. 

2. Nomenclature 

Explanation of classification system (after Birks 1973). 

Poaceae (=Gramineae) Family determination certain, types or subgroups undetermined or 
indeterminable. 

Thalictrum Genus determination certain, types or subgroups undetermined or 
indeterminable. 

Plantago lanceolata Species determination certain. 
Sedum ct. S. rosea Genus determination certain, species identification less certain because 

of imperfect preservation of fossil grain or spore, inadequate reference 
material, or close morphological similarity of the grain or spore with 
those of other taxa. In each case, the reason is explained in the notes 
on the determination. 

Plantago major/ One fossil type present; only two taxa are considered probable 
P. media alternatives, but further distinctions are not possible on the basis of 

pollen or spore morphology alone. In view of their modern ecology 
and/or distribution, the occurrence of both taxa is considered equally 
likely. 

Angelica type One fossil type present, three or more taxa are possible alternatives, but 
further distinctions are not possible on the basis of pollen or spore 
morphology alone. The selection of the taxon name is based on modem 
ecological and/or phytogeographical criteria. The notes on the 
determination list all the known possibilities. 

Rosaceae Family determination certain, some morphological types distinguished 

undifferentiated and presented separately. Curve represents fossil grains or spores that 

(undiff.) were not or could not be separated beyond family level. 

Stellaria undiff. Genus determination certain, some morphological types distinguished 
and presented separately. Curve represents fossil grains or spores that 
were not or could not be separated beyond qenus level. 



Appendix D 

Sediment-stratigraphic descriptions of transect cores 

Table 1: Sediment stratigraphies of Transect 1 cores 

Core Depth cm Description Unit 

0-23 Fresh pale brown very poorly humified fibrous herb peat. 
Sharp (peat cut) to: 

E8 
23-87 Dark brown moderately humified fine fibrous herb peat with 

very rare small wood fraQments. 
87 Bedrock 
0-5 Fresh moss peat a 

E7 5-93 Moderately humified herb peat with common roundwood 
b pieces with bark and larger wood fraQments. Gradual to: 

93 Bedrock 
0-5 Fresh moss peat a 

5-52 Moderately humified herb peat with common roundwood 
b pieces with bark and larger wood fragments. Gradual to: 

E6 Mid brown moderately humified amorphous peat with rare 
52-70 very fine fibrous stems and rare silt disseminated c 

throughout. Clear to: 
70 Bedrock 
0-12 Reddish brown poorly humified moss peat. Sharp to: a 

12-91 
Moderately humified herb peat with common roundwood 

b 
pieces, bark and larQer wood fraQments. Gradual to: 
Mid brown moderately humified amorphous peat with rare 

91-100 very fine fibrous stems and rare silt disseminated c 

E5 
throughout. Clear to: 
Grey-brown structureless silty clay with vertical fine fibrous 

100-103 rootlets and with rare small charcoal flecks. Gradual to: 
103-107 Creamy grey fine, structureless sandy silt. Sharp to: 

107-114 
Cream structure less well-sorted medium sand, changing to 
green-grey down unit. 

114 Bedrock 

0-24 
Dry dark to reddish brown herb peat with occasional sedge d 
remains. Gradual to: 

E4 24-125 

Brown moderately humified herb peat with rare roundwood 
twigs and rare fragments of bark. Common large wood e 

fragments. Gradual to: 
125-140 Not sampled 
140 Bedrock 

E3 0-24 
Dry dark to reddish brown herb peat with occasional sedge d 
remains. Gradual to: 

24-43 
Dry dark to reddish brown moderately humified herb peat 
with occasional sedge remains. Gradual to: 

43-125 Brown moderately humified herb pe~t with rare roundw~od e 

tWigs and rare fragments of bark. With large wood remains 

~89 



and large charcoal fragment at 50cm. Gradual to: I 

125-141 Not sampled 
141 Bedrock , 

0-18 Dry dark to reddish brown herb peat with occasional sedge 
d remains. Gradual to: 

18-45 Brown moderately humified herb peat with rare roundwood 
e 

E2 twigs and rare fragments of bark. Gradual to: 
Dark brown moderately to well humified herb peat with 

45-112 common wood: large roundwood twigs with bark preserved f 
of deciduous trees [birch/alder]; no inwash. Gradual to: 

112-142 Not sampled I 

142 Grit I 

0-5 Lost 

5-35 
Brown poorly humified herb peat with common stratified 
sedge remains. Gradual to: ! 

Dark brown moderately to well humified herb peat with 
35-132 common wood: large roundwood twigs with bark preserved f 

of deciduous trees [birch/alder1; no inwash. Gradual to: 
Dark brown moderately to well humified herb peat with I 

I , 

132-140 occasional wood, almost all roundwood twigs, plus rare 
charcoal flecks. Sharp to: 

140-153 Wood macrofossil 
E1 Dark brown moderately to well humified herb peat with 

153-164 occasional wood, almost all roundwood twigs, plus rare 
charcoal flecks. Rare broken wood fragments. Sharp to: 
Yellow-grey weakly banded (waterlain) well-sorted coarse 

164-167 sand with rare subrounded medium (0.5cm diameter) 
quartz-rich rock. Clear to: 

167-170 

Mid-brown silty fine sand with amorphous organic content 
(too low to 14C date), structureless. Sharp irregular 
(erosional?) boundary to: 

170-210 
Pale grey till. Uppermost 0.25cm of till is pale grey-yellow -
weathered surface? 

BEL See Table 4.4 
core 

0-20 Not sampled 

20-70 
Wet fibrous stratified poorly humified peat with abundant 9 
sedge remains 

70-93 Wood macrofossil, probably deciduous 

93-95 Partially carbonised wood 

W1 Sludgy, poorly structured and highly humified wood peat. 

95-162 
Very rare fibrous plant remains and abundant wood - small h 
branches often with bark - birch/alder and larger wood 

fragments. 

162-175 Not sampled 

175 Bedrock 

W2 0-62 
Wet fibrous poorly humified peat with abundant sedge g 
remains, stratified, no wood, no inwash. 

62-80 
Reddish brown poorly humified herb peat with abundant 

fine fibrous stems. 
Sludgy, poorly structured and highly humified wood peat. 
Very rare fibrous plant remains and abundant wood - small h 

80-11 0 branches often with bark - birch/alder and larger wood 

fragments. Gradual to: . 
Dark brown highly humified herb peat With abundant small i 

110-126 wood fragments including twigs. Gradual to: 
.~ '.1... _ . ~-

.. "'.1. 
-i 1"\(" ... A,.. 1"'\ .• 1. L- ,~ .~ [V' I~' J J 

c...v· 'v LJUI ~'vy-U'VVV v::;lo.' IV IVI 
l'UU ,. \I VVI 



decomposed plant remains and abundant silt particles. 
Abrupt to: 

Yellowish brown coarse sand, well sorted, no organic 
f 

146-156 1 

matter k I 

156-170 Blue till I 

0-40 Wet fibrous poorly humified peat with abundant sedge 
remains, stratified. g 

40-63 Spongy fibrous poorly humified herbaceous peat. Gradual 
to: I 

63-81 More compact pseudo-fibrous, common wood fragments, 
twigs & larger fragments. Gradual to: i 

W3 
81-106 Highly humified amorphous peat with occasional herb 

stems and rare wood fragments. Gradual to: 
Dark grey brown organic rich mud with common highly 

106-118.5 decomposed plant remains and abundant silt particles. j 
Abrupt to: 

118.5-127.5 
Yellowish brown coarse sand, well sorted, no organic 

k 
matter 

127.5-136.5 Blue/grey till. Gradual to: I 
136.5-143 Blue/grey well sorted coarse sand 

0-51 
Compact, dry herbaceous peat with high amorphous 
content. Gradual to: 

51-117 
Black poorly humified sedge peat with occasional 
ericaceous fragments. Gradual to: 
Sludgy, poorly structured and highly humified wood peat. 

W4 
117-153 

Very rare fibrous plant remains and abundant wood - small 
branches often with bark - birch/alder and larger wood 

h 

fragments. Gradual to: 

153-172 
Dark brown highly humified herb peat with abundant small i 
wood fragments including twigs. 

172 Bedrock 
0-75 Not sampled 

Fairly well humified herbaceous peat with very rare 

75-102 ericaceous fragments and common herb fragments. 
Gradual to: 
Wood peat - sludgy, poorly structured and highly humified. 

102-142 
Very rare fibrous plant remains and abundant wood - small h 

W5 branches often with bark - birch/alder and larger wood 
fragments Gradual to: 

142-171 
Dark brown highly humified herb peat with abundant small I 
wood fragments including twigs. Gradual to: 

171-175 
Dark grey brown organic rich mud with common highly j 
decomposed plant remains and abundant silt particles. 

175 Bedrock 
Poorly humified dark brown compact, dry fibrous 

0-30 herbaceous peat with rare ericaceous fragments and m 

W23 
abundant herb fragments. Clear to: 
Dark brown highly humified herb peat with abundant small i 

30-115 wood fragments including twigs. 

115 Bedrock 
Poorly humified dark brown compact, dry fibrous 

W6 0-10 herbaceous peat with rare ericaceous fragments and m 

abundant herb fragments. Clear to: 
Poorly humified bloack, crumbly, compact, extremely dry 

10-18 fibrous herbaceous peat with rare ericaceous fragments 
and abundant herb fragments. Clear to: 

010 cn f"' ..I _~. I, ~ 
:l' ..I l:i .... _, ~ 
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herbaceous fragments. Gradual to: 
" 

Sludgy, po?rly structured and highly humified wood peat. I 
I 

Very rare fibrous plant remains and abundant wood - small 
I 

68-76 
h branches often with bark - birch/alder and larger wood 

fragments. Gradual to: 

76-113 Dark brown highly humified herb peat with abundant small I 

wood fraQments includinQ twigs I 
I 

113 Bedrock I 

0-30 
Poorly humified dark brown compact, dry fibrous 
herbaceous peat with rare ericaceous fragments and m 
abundant herb fragments. Gradual to: 

30-51 Brown moderately humified greasy herbaceous peat with 
rare wood fragments and common herb stems. Gradual to: n 

Sludgy, poorly structured and highly humified wood peat. 

51-70 Very rare fibrous plant remains and abundant wood - small 
h branches often with bark - birch/alder and larger wood 

fragments. Gradual to: 

W7 Brown/dark brown well humified herb peat with common 
70-80 amorphous matter, rare twigs and larger broken wood 

fragments, occasional herb remains. Abrupt to: 
80-81 Band of charred black amorphous peat. Abrupt to: 
81-89 Wood macrofossil. Abrupt to: 

Dark grey brown organic rich mud with common highly 
89-92 decomposed plant remains and abundant silt particles. J 

Gradual to: 

92-95 Grey structure less silty sand with rare amorphous matter 
and very rare charcoal flecks. 

95 Bedrock 
Poorly humified dark brown compact, dry fibrous 

0-34 herbaceous peat with rare ericaceous fragments and m 
abundant herb fragments. 

34-40 
Dark brown well humified amorphous peat with rare herb 
stems. Gradual to: 

40-56 
Brown moderately humified greasy herbaceous peat with 

n 
rare wood fragments and common herb stems. Sharp to: 

W8e 56-65 
Reddish-brown wood peat with common very large 
fraQments. Abrupt to: 

65-68 Brown amorphous structureless peat. Gradual to: 0 

68-73 
Dark grey smooth, greasy highly organic structureless silt p 
with rare mica Qrains. Gradual to: 

73-78 
Grey-brown silt with sand and lower organic content, no 
plant macrofossils. Gradual to: 

78-87 Brown silty sand with rare small rounded stones. 

87 Bedrock 

0-90 
Moderately humified herb peat with common fine fibrous 
herb stems & rare ericaceous fragments. Sharp to: 

q 

90-95 
Dark grey-brown silt with high amorphous organic content p 
and rare fine fibrous stems. Sharp to: 
Dark brown amorphous highly humified peat with rare fine 

W15 95-100 
fibrous herb stems, common silt and fine sand throughou~. 
Weakly developed bands (1 mm thick) of orange-yellow fine 

sand. Sharp to: . . 

100-103 
Dark brown amorphous highly humified peat With rare fine 
fibrous herb stems, with rare yellow fine sand. Sharp to: 

103-105 Yellow well-sorted fine sand 

105 Bedrock 
W9 0-8 Unhumified fresh Sphagnum peat. Sharp to: 



8-39 Dark brown poorly humified herb peat with abundant herb i stems. Gradual to: r 
I 

39-40 Inwashed yellow well-sorted medium sand with rare 
charcoal flecks. Sharp to: 

I 

! 

D~rk brown, moderately humified herb peat with rare 

40-70 encac~ous fragments and common herb stems. 53-56cm= 
peat with common diffuse yellow medium sand with gradual q 

upper and lower boundaries. Gradual to: 

70-110 Brown well humified herb peat with common herb stems. ! 

Gradual to: s 

110-112 Brown amorphous structureless peat. Common silt grains. 
Gradual to: 0 

112-115 Dark grey smooth, greasy highly organic structure less silt 
with rare mica grains. P 

115 Bedrock 

0-37 Mid-brown poorly humified herb peat with rare ericaceous 
fragments. Gradual to: 

37-76 Brown poorly humified herb peat with common ericaceous 
fragments. Gradual to: 

76-104 Dark brown moderately to well humified amorphous peat 
with common herb fragments. Sharp to: s 

W16 104-113 
Dark grey-brown silt, structureless except for a single 
discontinuous horizontal band at 11 0.5-111.0cm of orange p 
fine sand. Abrupt to: 
Orange-yellOW, largely structureless fine-medium sand. 
Weakly horizontally banded in uppermost 1 cm, no organic 

113-138 matter except isolated coarse wood fragments at 134cm t 
[roots penetrating into material] Possible weathered 
bedrock 

138 Bedrock 

0-28 
Dark brown poorly humified herb peat with abundant herb 

r 
stems. Gradual to: 

28-46 
Reddish-brown poorly humified crumbly herb peat. Abrupt 
to: 
Dark brown well humified herb peat with common herb 

46-65 stems and common amorphous matter, rare small twigs 
with bark. Gradual to: 

W10 65-85 
Dark brown moderately to well humified amorphous peat s 
with common herb fragments. Gradual to: 

85-90 
Reddish brown - orange well humified amorphous peat 
with common broken wood fragments. Gradual to: 

90-96 
Brown amorphous structure less peat. Common silt grains. 

0 
Gradual to: 

96-105 
Grey structureless medium sand with red-orange mineral 
grains, coarsing to base. 

105 Bedrock 
Dark brown moderately humified herb peat with common 

0-86 herb stems and rare ericaceous fragments. Broken wood q 
W17 fragments at 71 cm and 82cm. 

86 Bedrock. 
W18 0-20 Unhumified fresh fibrous red-brown peat. Gradual to: u 

Dark brown moderately humified herb peat with common 

20-112 
herb stems and rare ericaceous fragments. Large charcoal q 

I flecks at 95 and 105cm, larger bark fragments between 108 

and 11 Ocm. Gradual to: j 
I 

Dark brown highly humified amor~hous ~eat with very rare v i 

112-121 
plant remains and rare Silt disseminated throughout. 



Gradual to: 

121-124 
Dark brow~ highly h~mified amorphous peat with very rare 
plant remains and with rare to common orange fine sand 
particles disseminated throughout. Sharp to: 

i 124-130 Orange:yellow, largely structureless fine-medium sand. t ! 
130 Bedrock 

0-33 Unhumified fresh fibrous red-brown peat. Occasional sedge 
u stems. Gradual to: 

Mid-brown moderately humified herb peat with abundant 

33-56 
herb stems and occasional sedge stems and rare silt 
disseminated throughout; rare small twigs with bark but no w 
larger wood fragments. 46-47cm = grey medium sand 
within peat, gradual upper & lower boundaries. Gradual to: 

W11 56-77 
Dark brown highly humified amorphous peat with very rare 
plant remains and rare silt disseminated throughout. Very v 
rare mica. Gradual to: 
Brown amorphous structureless peat. Common silt grains. 

77-86 78-80cm = yellow-orange medium sand within peat, 0 
gradual upper & lower boundaries. Gradual to: 
Compact orange-brown coarse-medium silty sand with 

86-95 small rounded pebbles and occasional amorphous organic 
matter. 

95 Bedrock 
0-33 Unhumified fresh fibrous red-brown peat. u 

Dark brown moderately to well humified amorphous peat 
33-68 with common herb fragments. Band of Sphagnum at 46- s 

51 cm. Abrupt to: 
W19 

68-77 
Black hard charred apparently herb peat with rare 
uncharred Jintrusive) fibrous stems. Abrupt to: 

77-78 
Brown-orange medium sand (altered surface of sand). 
Gradual to: 

78-87 Orange:yellow, larQely structureless fine-medium sand. t 

0-16 
Unhumified fresh fibrous red-brown peat. Occasional sedge 

u 
stems. Gradual to: 
Dark brown moderately to well humified amorphous peat 

16-48 
with common herb fragments. Rare charcoal flecks. s 
Common silt and fine sand disseminated throughout and 

W12 concentrations at 26-30cm within peat. Clear to: 
Very dark brown amorphous peat with no plant. . 

48-55 macrofossils, rare charcoal flecks and common Silt and fine 
sand. 

55-70 Not sampled 
70 Bedrock 

Dark brown moderately to well humified amorphous peat 
with common herb fragments. Common bleached fine to 

0-28 medium sand grains disseminated throughout and s 

abundantly in concentrations within peat at 15-16cm, 18-
19cm, 21-22cm, 24-26cm and 28cm. Gradual to: 
Dark brown moderately to well humified amorphous peat s 

W20 28-54 with common herb fragments. Gradual to: 
Dark brown very highly humified amorphous peat with very 

v 
54-63 rare plant remains and rare silt disseminated throughout. 

Abrupt to: . 
t 

63-70 Orange-yellow, larQely structureless fine-medium sand. -!----

70 Bedrock ---
W13a Dark brown very hiQhly humified amorphous peat with very v 

0-63 -.----
. .' inated throu hout. rare plant remains and rare Silt dlssem 9 



Abrupt to: 

Orange/bro~n structure less medium well-sorted sand with 

63-72 some organic matter, very rare charcoal flecks common 
I highly degraded rounded pebbles broken to m~dium- I 

coarse sand. Gradual to: I 

72-79 
Mid-brown compact, slightly organic structureless fine-
medium sand, very rare charcoal flecks, rare degraded 
sandstone pebbles. 

79 Bedrock 

0-20 Unhumified fresh fibrous red-brown peat. Occasional sedge 
u stems. Gradual to: . 

Dark brown moderately to well humified amorphous peat 
with common herb fragments. Rare charcoal flecks. 
Common silt and fine sand disseminated throughout and 

W13 
20-38 concentrations at 22-24cm = prominent yellow medium well 

s sorted sand with common charcoal flecks, quite sharp 
upper and lower boundaries; 33-36cm = diffuse yellow 
medium sand within peat and gradual upper & lower 
boundaries. Gradual to: 

38-63 Dark brown very highly humified amorphous peat with v 
v rare plant remains and rare silt disseminated throughout. 

63 Bedrock 

0-14 Unhumified fresh fibrous red-brown peat. Occasional sedge 
x stems. Silt disseminated throughout. Gradual to: 

Dark brown humified amorphous peat with common herb 
stems, rare broken wood fragments and common silt and 

14-40 fine sand throughout. Concentrations of bleached fine sand 
y particles within peat at 25-26 and 29-30cm strong band of 

W21 
fine to coarse sand between 37 and 38cm containing rare 
charcoal flecks. 

40-82 
Light brown brown humified amorphous peat with common 

w 
herb stems and rare broken wood fragments. 

82-85 Yellow sand - possible weathered bedrock 
85 Bedrock 

0-15 
Unhumified fresh fibrous red-brown peat. Occasional sedge u 
stems. Gradual to: 
Mid-brown moderately humified herb peat with abundant 

15-37 
herb stems and occasional sedge stems and rare silt w 

W14 disseminated throughout; rare small twigs with bark. Clear 
to: 

37-45 
Brown amorphous peat with common to abundant yellow 
medium sand throughout. 

45 Bedrock 

0-17 
Unhumified fresh fibrous red-brown peat. Occasional sedge x 
stems. Silt disseminated throughout. Gradual to: 

17-25 
Dark brown moderately humified coarse fibrous peat with 
very rare silt throughout. Gradual to: 

W22 
Dark brown well humified herb peat with occasional herb 

25-40 stems with common medium charcoal flecks «3mm 
diameter) at 31-34cm. Clear to: . 
Dark brown very highly humified amorphous peat With very v 

40-50 rare plant remains and rare silt disseminated throuqhout. 

50 Bedrock 



Table 2: Sediment stratigraphies of Transect 2 cores 

Core Depth cm Description 
0-15 Coarse fibrous peat with no inwash 

Unit 

15-30 Coarse fibrous peat with inwashed sand 
z I 

N1 30-31 Charcoal rich peat surface 
aa 

31-45 Mineral soil bb 

45 Bedrock cc 

0-30 Coarse fibrous peat with no inwash 
30-52 Fine fibrous peat with no inwash 

z 
N2 dd 52-60 Mineral soil 

60 Bedrock 
cc 

0-65 Coarse fibrous peat with no inwash z 
N3 65-105 Fine herb peat dd 

105 Bedrock 
0-35 Coarse fibrous peat with no inwash z 

N4 35-55 Fine herb peat dd 
55 Bedrock 
0-35 Coarse fibrous peat with no inwash z 

N5 35-55 Fine herb peat 
55 Bedrock 
0-30 Coarse fibrous peat with inwashed sand aa 

30-85 Red-brown poorly humified herb peat with rare ericaceous 
fragments and very rare silt 

N6 85-90 Fine herb peat dd 
90-95 Not sampJed 
95-98 Greasy black peat ee 
98 Bedrock 
0-25 Coarse fibrous peat with inwashed sand aa 
25-35 Red-brown poorly humified herb peat with no inwash ff 

N7 
35-45 

Highly humified dark brown peat with rare silt and with 
charcoal band at 40-42cm 

45 Bedrock 
0-10 Coarse fibrous peat with no inwash z 
10-20 Red-brown herb _p_eat with rare fine sand 

N8 
20-23 

Charcoal rich herb peat, common medium sand including 
concentration at 21-22cm 

23 Bedrock 
0-15 Coarse fibrous peat with no inwash z 
15-19 Red-brown poorly humified herb peat with no inwash ff 

N9 19-22 Charcoal rich peat gg 

22-27 Mineral soil with rare charcoal flecks cc 

27 Bedrock 

0-21 
Coarse fibrous peat with inwashed sand at 5cm and l Ocm, 
charcoal at 12cm 

21-23 Charcoal rich peat gg 

23-27 
Red-brown poorly humified herb peat with layer inwashed ff 

N10 medium sand at 27cm 

27-32 
Very well humified brown herb peat with very rare silt. Band hh 
of medium sand at 32cm. 

32-40 Soil with rare charcoal flecks cc 

40 Bedrock 
N11 0-35 Coarse fibrous peat with no inwash z 

bb 
35-37 Charcoal rich peat surface . 

hh i 

37-40 Very well humified brown herb peat with very rare silt. 
Mineral soil with rare charcoal flecks 

cc 
40-43 



43 Bedrock 

0-28 
Red-brown poorly humified herb peat with inwashed , 

medium sand at 2-4cm and 13-14cm ff 

28-30 Charcoal rich fine sand 
N12 30-40 Moderately humified herb peat with very rare silt 

40-50 Well humified herb peat ii 
50-60 Mineral soil with rare charcoal flecks cc 
60 Bedrock 
0-10 Coarse fibrous peat with rare inwashed fine sand aa 

10-19 Very well humified brown herb peat with very rare silt and 
hh occasional charcoal. 

N13 
19-20 Medium sand inwash 
20-23 Mineral soil with rare charcoal flecks cc 
23 Bedrock 
0-23 Coarse fibrous peat with no inwash, with common charcoal z 

N14 
23-35 Well humified herb peat with no silt ii 
35-36 Mineral soil with rare charcoal flecks cc 
36 Bedrock 
0-8 Coarse fibrous peat with common inwashed sand aa 

8-17 
Coarse fibrous peat common medium sand with occasional 
charcoal and occasional ericaceous fragments 

N15 
17-25 Greasy moderately humified herb peat with rare silt 
25-29 Organic rich mineral soil 
29 Bedrock 

0-21 
Coarse fibrous peat with no inwash, charcoal at 12-15 and z 
20-21cm 

21-25 Moderately humified light brown herb peat with no silt jj 

25-27 Greasy black peat ee 
N16 Mineral soil with rare charcoal flecks and common small-

27-37 cc 
medium subangular pebbles 

37-45 Yellow-brown fine sand 

45 Bedrock 
0-20 Coarse fibrous peat with no inwash z 

20-31 Moderately humified light brown herb peat with no silt jl 

Mineral soil with rare charcoal flecks and common small-N17 
31-38 

cc 
medium subangular pebbles 

38 Bedrock 


	536230_0000
	536230_0001
	536230_0002
	536230_0003
	536230_0004
	536230_0005
	536230_0006
	536230_0007
	536230_0008
	536230_0009
	536230_0010
	536230_0011
	536230_0012
	536230_0013
	536230_0014
	536230_0015
	536230_0016
	536230_0017
	536230_0018
	536230_0019
	536230_0020
	536230_0021
	536230_0022
	536230_0023
	536230_0024
	536230_0025
	536230_0026
	536230_0027
	536230_0028
	536230_0029
	536230_0030
	536230_0031
	536230_0032
	536230_0033
	536230_0034
	536230_0035
	536230_0036
	536230_0037
	536230_0038
	536230_0039
	536230_0040
	536230_0041
	536230_0042
	536230_0043
	536230_0044
	536230_0045
	536230_0046
	536230_0047
	536230_0048
	536230_0049
	536230_0050
	536230_0051
	536230_0052
	536230_0053
	536230_0054
	536230_0055
	536230_0056
	536230_0057
	536230_0058
	536230_0059
	536230_0060
	536230_0061
	536230_0062
	536230_0063
	536230_0064
	536230_0065
	536230_0066
	536230_0067
	536230_0068
	536230_0069
	536230_0070
	536230_0071
	536230_0072
	536230_0073
	536230_0074
	536230_0075
	536230_0076
	536230_0077
	536230_0078
	536230_0079
	536230_0080
	536230_0081
	536230_0082
	536230_0083
	536230_0084
	536230_0085
	536230_0086
	536230_0087
	536230_0088
	536230_0089
	536230_0090
	536230_0091
	536230_0092
	536230_0093
	536230_0094
	536230_0095
	536230_0096
	536230_0097
	536230_0098
	536230_0099
	536230_0100
	536230_0101
	536230_0102
	536230_0103
	536230_0104
	536230_0105
	536230_0106
	536230_0107
	536230_0108
	536230_0109
	536230_0110
	536230_0111
	536230_0112
	536230_0113
	536230_0114
	536230_0115
	536230_0116
	536230_0117
	536230_0118
	536230_0119
	536230_0120
	536230_0121
	536230_0122
	536230_0123
	536230_0124
	536230_0125
	536230_0126
	536230_0127
	536230_0128
	536230_0129
	536230_0130
	536230_0131
	536230_0132
	536230_0133
	536230_0134
	536230_0135
	536230_0136
	536230_0137
	536230_0138
	536230_0139
	536230_0140
	536230_0141
	536230_0142
	536230_0143
	536230_0144
	536230_0145
	536230_0146
	536230_0147
	536230_0148
	536230_0149
	536230_0150
	536230_0151
	536230_0152
	536230_0153
	536230_0154
	536230_0155
	536230_0156
	536230_0157
	536230_0158
	536230_0159
	536230_0160
	536230_0161
	536230_0162
	536230_0163
	536230_0164
	536230_0165
	536230_0166
	536230_0167
	536230_0168
	536230_0169
	536230_0170
	536230_0171
	536230_0172
	536230_0173
	536230_0174
	536230_0175
	536230_0176
	536230_0177
	536230_0178
	536230_0179
	536230_0180
	536230_0181
	536230_0182
	536230_0183
	536230_0184
	536230_0185
	536230_0186
	536230_0187
	536230_0188
	536230_0189
	536230_0190
	536230_0191
	536230_0192
	536230_0193
	536230_0194
	536230_0195
	536230_0196
	536230_0197
	536230_0198
	536230_0199
	536230_0200
	536230_0201
	536230_0202
	536230_0203
	536230_0204
	536230_0205
	536230_0206
	536230_0207
	536230_0208
	536230_0209
	536230_0210
	536230_0211
	536230_0212
	536230_0213
	536230_0214
	536230_0215
	536230_0216
	536230_0217
	536230_0218
	536230_0219
	536230_0220
	536230_0221
	536230_0222
	536230_0223
	536230_0224
	536230_0225
	536230_0226
	536230_0227
	536230_0228
	536230_0229
	536230_0230
	536230_0231
	536230_0232
	536230_0233
	536230_0234
	536230_0235
	536230_0236
	536230_0237
	536230_0238
	536230_0239
	536230_0240
	536230_0241
	536230_0242
	536230_0243
	536230_0244
	536230_0245
	536230_0246
	536230_0247
	536230_0248
	536230_0249
	536230_0250
	536230_0251
	536230_0252
	536230_0253
	536230_0254
	536230_0255
	536230_0256
	536230_0257
	536230_0258
	536230_0259
	536230_0260
	536230_0261
	536230_0262
	536230_0263
	536230_0264
	536230_0265
	536230_0266
	536230_0267
	536230_0268
	536230_0269
	536230_0270
	536230_0271
	536230_0272
	536230_0273
	536230_0274
	536230_0275
	536230_0276
	536230_0277
	536230_0278
	536230_0279
	536230_0280
	536230_0281
	536230_0282
	536230_0283
	536230_0284
	536230_0285
	536230_0286
	536230_0287
	536230_0288
	536230_0289
	536230_0290
	536230_0291
	536230_0292
	536230_0293
	536230_0294
	536230_0295
	536230_0296
	536230_0297
	536230_0298
	536230_0299
	536230_0300
	536230_0301
	536230_0302
	536230_0303
	536230_0304
	536230_0305
	536230_0306
	536230_0307
	536230_0308
	536230_0309
	536230_0310
	536230_0311
	536230_0312
	536230_0313
	536230_0314
	536230_0315
	536230_0316
	536230_0317
	536230_0318
	536230_0319
	536230_0320
	536230_0321
	536230_0322
	536230_0323
	536230_0324
	536230_0325
	536230_0326
	536230_0327
	536230_0328
	536230_0329
	536230_0330
	536230_0331
	536230_0332
	536230_0333
	536230_0334
	536230_0335
	536230_0336
	536230_0337
	536230_0338
	536230_0339
	536230_0340
	536230_0341
	536230_0342
	536230_0343
	536230_0344
	536230_0345
	536230_0346
	536230_0347
	536230_0348
	536230_0349
	536230_0350
	536230_0351
	536230_0352
	536230_0353
	536230_0354
	536230_0355
	536230_0356
	536230_0357
	536230_0358
	536230_0359
	536230_0360
	536230_0361
	536230_0362
	536230_0363
	536230_0364
	536230_0365
	536230_0366
	536230_0367
	536230_0368
	536230_0369
	536230_0370
	536230_0371
	536230_0372
	536230_0373
	536230_0374
	536230_0375
	536230_0376
	536230_0377
	536230_0378
	536230_0379
	536230_0380
	536230_0381
	536230_0382
	536230_0383
	536230_0384
	536230_0385
	536230_0386
	536230_0387
	536230_0388
	536230_0389
	536230_0390
	536230_0391
	536230_0392
	536230_0393
	536230_0394
	536230_0395
	536230_0396
	536230_0397
	536230_0398
	536230_0399
	536230_0400
	536230_0401
	536230_0402
	536230_0403
	536230_0404
	536230_0405
	536230_0406
	536230_0407
	536230_0408
	536230_0409
	536230_0410
	536230_0411
	536230_0412
	536230_0413

